HIGHER DERIVATIONS OF A PLANE ALGEBRAIC CURVE OVER A FIELD OF PRIME CHARACTERISTIC

Dissertation for the Degree of Ph. D. MICHIGAN STATE UNIVERSITY ANNE LARIMER LUDINGTON 1975

This is to certify that the

thesis entitled HIGHER DERIVATIONS OF A PLANE ALGEBRAIC CURVE OVER A FIELD OF PRIME CHARACTERISTIC

presented by

Anne Larimer Ludington

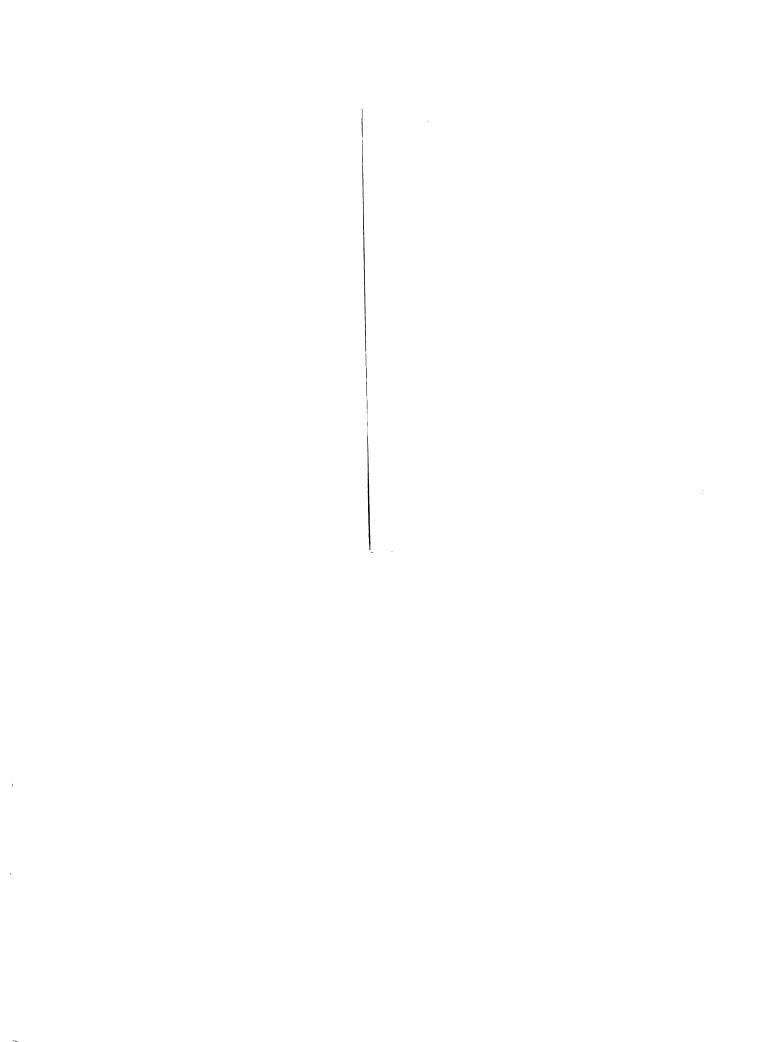
has been accepted towards fulfillment of the requirements for

Ph.D. degree in Mathematics

<u>r. William C. Brawn</u>
Major professor

Date 20 June 1975

O-7639



CA6059

ABSTRACT

HIGHER DERIVATIONS OF A PLANE ALGEBRAIC CURVE OVER A FIELD OF PRIME CHARACTERISTIC

By

Anne Larimer Ludington

Let Γ be a plane irreducible algebraic curve defined over an algebraically closed field k. Let P be a point on the curve and let R be the local ring of Γ at P.

 $\operatorname{Der}^n_k(R)$ is the R-module of all n-th order k-derivations of R to R. Thus $\mathfrak{P}\in\operatorname{Der}^n_k(R)$ if and only if $\phi\in\operatorname{Hom}_k(R,R)$ and for all $r_0,\cdots,r_n\in R$ we have

$$\varphi(\mathbf{r}_0 \cdots \mathbf{r}_n) = \sum_{s=1}^{n} (-1)^{s-1} \sum_{\mathbf{i}_1 < \cdots < \mathbf{i}_s} \mathbf{r}_{\mathbf{i}_1} \cdots \mathbf{r}_{\mathbf{i}_s} \varphi(\mathbf{r}_0 \cdots \mathbf{r}_{\mathbf{i}_1} \cdots \mathbf{r}_{\mathbf{i}_s} \cdots \mathbf{r}_n).$$

Let $Der(R) = \bigcup_{n} Der_{k}^{n}(R)$. If k has characteristic zero, we define der(R) to be the subalgebra of Der(R) generated by composites of 1st order derivations. If the characteristic of k is $p \neq 0$, we say Der(R) is generated by p^{i} -th order derivations if the following condition is satisfied:

Let $\lambda \in \text{Der}(R)$ and let n be the smallest integer such that $\lambda \in \text{Der}_k^n(R)$. Let the p-adic expansion of n be given by $n = \sum_{i=0}^N \alpha_i p^i$. Then there exist

 $\begin{array}{lll} p^i\text{-th order derivations} & \tau_{1i},\cdots,\tau_{mi} \in \operatorname{Der}_k^{p^i}(R)\,,\\ i=0,\cdots,\,N, & \text{such that} & \lambda-(\tau_{1N}^N\circ\ldots\circ\tau_{1O}^O+\cdots+\tau_{mN}^\alpha\circ\ldots\circ\tau_{mO}^O) \in \operatorname{Der}_k^{n-1}(R)\,. \end{array}$

Here $\operatorname{Der}_{\mathbf{k}}^{\mathbf{O}}(\mathbf{R})=0$. Thus $\operatorname{Der}(\mathbf{R})$ is generated by $\mathbf{p^i}$ -th order derivations if every n-th order derivation is a sum of composites of $\mathbf{p^i}$ -th order derivations. If $\operatorname{Der}(\mathbf{R})$ is generated by $\mathbf{p^i}$ -th order derivations, we write $\operatorname{Der}(\mathbf{R})=\operatorname{der}(\mathbf{R})$.

In Chapter 2 we consider the following example: R is the local ring at the origin of Γ : $f(X,Y) = X^2 - Y^3$ over a field of characteristic 2. Since (0,0) is a singular point of Γ , R is not a regular local ring. We show that $Der_k^n(R)$ is a free R-module for all n and that Der(R) = der(R). Thus this example shows that over a field of characteristic $p \neq 0$ the following two conjectures are false:

(I) $\operatorname{Der}_{k}^{n}(R)$ is a free R-module for all n if and only if R is a regular local ring.

(II) Der(R) = der(R) if and only if R is a regular local
 ring.

The first conjecture is a generalization of a conjecture by Lipman; the second is Nakai's conjecture.

The main theorem of Chapter 3 is that if Der(R) = der(R) and $Der_k^n(R)$ is a free R-module for all n, then R is analytically irreducible, that is, $\stackrel{\wedge}{R}$, the completion of R, is an integral domain. Geometrically this means that Γ has only one branch at P.

HIGHER DERIVATIONS OF A PLANE ALGEBRAIC CURVE OVER A FIELD OF PRIME CHARACTERISTIC

Ву

Anne Larimer Ludington

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

1975

TO PAUL

ACKNOWLEDGEMENTS

I am grateful to my thesis advisor, Dr. William C. Brown for suggesting this topic and for the guidance and help that he gave me during the last two years. I am particularly appreciative of the time and effort that he spent while I was writing the rough draft. I also wish to thank my husband, Paul, for being a source of inspiration and encouragement.

TABLE OF CONTENTS

		INTR	ODUCTIO	N	•	•	•	•	•	•	•	•	•	•]
CHAPTER	I:	CHARACTERIZA R-MODULE	ZAT	101	1 OI	3	DER	n k (R)	AS	A F	REE			
		R-M	ODULE		•	•	•	•	•	•	•	•	•	•	5
CHAPTER	II:	AN	EXAMPLE	;	•	•	•	•	•	•	•	•	•	•	16
CHAPTER	III:	THE	COMPLE	TIO	N	^ R	•	•	•	•	•	•	•	•	28
		BIBL	IOGRAPH	Y								•			74

INTRODUCTION

Throughout this entire paper we shall assume that Γ is a plane irreducible algebraic curve, defined over an algebraically closed field k. Let P be a point on the curve, and let R be the local ring at P. Without loss of generality, we may assume that P is (0,0). We shall denote the quotient field of R by K. If Γ is given by f(X,Y) = 0, then $R = (k[x,y])_{(x,y)}$ where k[x,y] = k[X,Y]/(f(X,Y)), f(X,Y) is irreducible over k, and f(0,0) = 0.

For each $n=1,2,\cdots$, we let $\operatorname{Der}_k^n(R,M)$ denote the R-module of all n-th order derivations of R to an R-module M which vanish on k. Thus, $\phi\in\operatorname{Der}_k^n(R,M)$ if and only if $\phi\in\operatorname{Hom}_k(R,M)$ and for all $r_0,\cdots,r_n\in R$ we have

(1)

$$\varphi(\mathbf{r}_0 \cdots \mathbf{r}_n) = \sum_{s=1}^{n} (-1)^{s-1} \sum_{\mathbf{i}_1 < \cdots < \mathbf{i}_s} \mathbf{r}_{\mathbf{i}_1} \cdots \mathbf{r}_{\mathbf{i}_s} \varphi(\mathbf{r}_0 \cdots \mathbf{r}_{\mathbf{i}_1} \cdots \mathbf{r}_{\mathbf{i}_s} \cdots \mathbf{r}_n)$$

When M = R, we write $Der_k^n(R)$ instead of $Der_k^n(R,R)$.

 $\Omega_{\mathbf{k}}^{\mathbf{n}}(\mathbf{R})$ will denote the R-module of all n-th order differentials. $\mathrm{Der}_{\mathbf{k}}^{\mathbf{n}}(\mathbf{R})$ is the dual module of $\Omega_{\mathbf{k}}^{\mathbf{n}}(\mathbf{R})$ so $\mathrm{Der}_{\mathbf{k}}^{\mathbf{n}}(\mathbf{R})=\mathrm{Hom}_{\mathbf{R}}(\Omega_{\mathbf{k}}^{\mathbf{n}}(\mathbf{R}),\mathbf{R})$.

Let $Der(R) = \bigcup_{n} Der_{k}^{n}(R)$. If k has characteristic zero, we define der(R) to be the subalgebra of Der(R) generated by composites of 1st order derivations. If the characteristic of k is $p \neq 0$, we say Der(R) is generated by p^{i} -th order derivations if the following condition is satisfied:

Let $\lambda \in \text{Der}(R)$ and let n the smallest integer such that $\lambda \in \text{Der}_k^n(R)$. Let $n = \sum_{i=0}^N \alpha_i p^i$ be the p-adic expansion of n. Then there exist p^i -th order derivations $\tau_{1i}, \dots, \tau_{mi} \in \text{Der}_k^p(R)$, $i = 0, \dots, N$, such that

$$\lambda - (\tau_{1N}^{\alpha_N} \cdot \ldots \cdot \tau_{1O}^{\alpha_O} + \cdots + \tau_{mN}^{\alpha_N} \cdot \ldots \cdot \tau_{mO}^{\alpha_O}) \in \text{Der}_k^{n-1}(R)$$

Here $\operatorname{Der}_{\mathbf{k}}^{\mathsf{O}}(\mathsf{R}) = \mathsf{O}$. Thus by induction we see that $\operatorname{Der}(\mathsf{R})$ is generated by $\mathsf{p}^{\mathbf{i}}$ -th order derivations if every n-th order derivation is a sum of composites of $\mathsf{p}^{\mathbf{i}}$ -th order derivations. If $\operatorname{Der}(\mathsf{R})$ is generated by $\mathsf{p}^{\mathbf{i}}$ -th order derivations, we shall write $\operatorname{Der}(\mathsf{R}) = \operatorname{der}(\mathsf{R})$. For K, $\operatorname{Der}(\mathsf{K}) = \operatorname{der}(\mathsf{K})$, [Prop. 18;7]. Further, if R is a regular local ring, then $\operatorname{Der}(\mathsf{R}) = \operatorname{der}(\mathsf{R})$ [Theorem 4.3;4].

Well-known properties of $\operatorname{Der}_k^n(R)$, $\Omega_k^n(R)$, and $\operatorname{Der}(R)$ may be found in Nakai's papers [6 and 7].

The starting point of this thesis concerns two conjectures which are known to hold for plane curves when k has characteristic zero:

- (I) Lipman's conjecture: $Der_k^1(R)$ is a free R-module if and only if R is a regular local ring [Theorem 1;2].
- (II) Nakai's conjecture: Der(R) = der(R) if
 and only if R is regular [3].

It is easily shown that (I) is false when the characteristic of k is $p \neq 0$; in fact, the example given in Chapter 2 is a counterexample. That (I) is false is perhaps to be expected, since when k has characteristic zero, Der(K) is generated by composities of 1-st order derivations [Prop. 18; 7]. However, when the characteristic is p, Der(K) is generated by composities of p^i -th order derivations, $i = 0,1,\cdots$ [Prop. 18; 7]. Thus, the following conjecture arises when k has characteristic p:

(III) $\operatorname{Der}_{\mathbf{k}}^{\mathbf{n}}(\mathbf{R})$ is a free R-module for all $\mathbf{n}=1,2,\cdots$ if and only if R is a regular local ring.

It is known that if R is regular and k has characteristic $p \neq 0$, then $\operatorname{Der}_k^n(R)$ is a free R-module for all n [Theorem 16.11.2; 1]. The example which we shall give in Chapter 2 will show that the converses of (II) and (III) are false. That is, we shall construct a ring R over a field k of characteristic p which is not regular, but such that $\operatorname{Der}(R) = \operatorname{der}(R)$ and $\operatorname{Der}_k^n(R)$ is a free R-module for all n.

In order to show (II) and (III) are false, some results about $\operatorname{Der}_k^n(R)$ are needed. Thus, Chapter 1 is devoted to theorems which characterize $\operatorname{Der}_k^n(R)$ when it is a free R-module.

CHAPTER I

CHARACTERIZATION OF $\operatorname{DER}_{k}^{n}(R)$ AS A FREE R-MODULE

The first lemma of this chapter shows that we may assume K is a separable algebraic extension over k(x). The remainder of the chapter gives necessary and sufficient conditions for $\operatorname{Der}^n_k(R)$ to be a free R-module. We shall show that if $\operatorname{Der}^n_k(R)$ is free, it must be free on n generators. Moreover, there exists a set of generators $\lambda_1, \dots, \lambda_n$ of $\operatorname{Der}^n_k(R)$ and monomials x_1, \dots, x_n of k[x,y] such that $\lambda_i(x_j) = \left\{ \begin{array}{ccc} 0 & j < i \\ 1 & j = 1 \end{array} \right.$

<u>Lemma 1.1</u>: K is a separable algebraic extension of either k(x) or k(y).

<u>Proof:</u> The only case requiring proof is when k has characteristic $p \neq 0$. Let f_X and f_Y denote the partial derivatives of f(X,Y) with respect to X and Y respectively. Suppose $f_X(x,y) = 0$ and $f_Y(x,y) = 0$. Pulling back to k[X,Y] gives $f_X(X,Y) = h(X,Y)f(X,Y)$. Viewing these as polynomials in X with coefficients in k[Y] gives $deg \ f_X < deg \ f \le deg \ fh$, which is a contradiction unless $f_X(X,Y) = 0$. So $f_X(X,Y) = 0$ and $f_Y(X,Y) = 0$. This implies that $f(X,Y) = g(X^p,Y^p) = (h(X,Y))^p$,

contradicting the assumption that f is irreducible. Hence, either $f_X(x,y) \neq 0$ or $f_Y(x,y) \neq 0$. Thus K is a separable algebraic extension of k(x) or k(y). QED

Henceforth, we shall assume $f_Y(x,y) \neq 0$; thus K is a separable algebraic extension of k(x).

Theorem 1.2: $\operatorname{Der}_k^n(K)$ is a free K-module; it is free on n generators. If $\operatorname{Der}_k^n(R)$ is a free R-module, then it is free on n generators.

<u>Proof:</u> Since K is a separable algebraic extension of k(x), $\Omega_k^n(K) \cong \Omega_k^n(k[x]) \otimes_{k[x]}^K [p.26;7]$. Since $\Omega_k^n(k[x])$ is a free k[x]-module of rank n [II, Prop. 2; 6], we have that $\Omega_k^n(K)$ is free of rank n over K. Now, $\operatorname{Der}_k^n(K) = \operatorname{Hom}_K(\Omega_k^n(K), K)$, so $[\operatorname{Der}_k^n(K): K] = n$.

Now $\operatorname{Der}_{k}^{n}(R) \otimes_{R}^{K} = \operatorname{Hom}_{R}(\Omega_{k}^{n}(R), R) \otimes_{R}^{K} \cong \operatorname{Hom}_{K}(\Omega_{k}^{n}(R) \otimes_{R}^{K}, K)$. Since $\Omega_{k}^{n}(R) \otimes_{R}^{K} \cong \Omega_{k}^{n}(K)$ [II, Theorem 9; 6], $\operatorname{Der}_{k}^{n}(R) \otimes_{R}^{K} \cong \operatorname{Der}_{k}^{n}(K)$. Thus, if $\operatorname{Der}_{k}^{n}(R)$ is a free R-module, it must be free on n generators. QED

Since $f_Y(x,y) \neq 0$, f(X,Y) must have a term involving Y. Further, since f(X,Y) is irreducible, there must be a term of the form αY^N , $\alpha \in k$; otherwise, X would divide f(X,Y). Hence subdeg f(0,Y) > 0.

Lemma 1.3: Let subdeg_Yf(O,Y) = N. Then $y^{N-1}/x \notin R$.

<u>Proof:</u> As shown above, N > 0. Write $f(X,Y) = Xh(X,Y) + Y^N g(Y)$, where g(Y) begins with a non-zero constant term.

Suppose $y^{N-1}/x \in R$. Then $y^{N-1}/x = r(x,y)/s(x,y)$, where r(x,y), $s(x,y) \in k[x,y]$ and $s(x,y) \notin (x,y)$. Then $y^{N-1}s(x,y) - xr(x,y) = 0$. Pulling back to k[x,y] we have

(2)
$$Y^{N-1}s(X,Y) - r(X,Y)X = t(X,Y)[Xh(X,Y) + Y^{N}g(Y)].$$

Evaluating (2) at X = 0 gives

(3)
$$Y^{N-1}s(0,Y) = t(0,Y)Y^{N}g(Y)$$
.

Thus, s(0,Y) = t(0,Y)Yg(Y). Since s(X,Y) has a constant term, $s(0,Y) \neq 0$. Thus, (3) implies that Y divides s(0,Y), which is a contradiction. Hence, $y^{N-1}/x \notin R$.

In the theorems which follow, we shall often use the fact that an n-th order derivation is also an (n+1)-st order derivation [I, Prop. 4; 6]. We shall also use the result that if $\lambda \in \operatorname{Der}^n_k(R)$, then $\lambda \in \operatorname{Der}^n_k(K)$ [I,Theorem 15; 6]. Hence if $\lambda_1, \dots, \lambda_n$ are a free basis for $\operatorname{Der}^n_k(R)$, these derivations must also be a free basis for $\operatorname{Der}^n_k(K)$.

If $\lambda_1,\cdots,\lambda_n$ are a free basis for $\operatorname{Der}^n_k(R)$, then we shall write $\operatorname{Der}^n_k(R)=<\lambda_1,\cdots,\lambda_n>$.

Before $\operatorname{Der}^n_k(R)$ is considered for arbitrary n, $\operatorname{Der}^1_k(R)$ is studied. Special attention should be paid to the method of proof, since the same technique will be used when n>1.

Theorem 1.4: $\operatorname{Der}_{k}^{1}(R)$ is a free R-module if and only if there exists $\lambda \in \operatorname{Der}_{k}^{1}(R)$ and $z \in R$ such that $\lambda(z) = 1$.

<u>Proof:</u> Let $Der_{\mathbf{k}}^{1}(R)$ be generated by γ as a free R-module. Suppose $\gamma(r) \in (x,y)$ for all $r \in R$. Then $\gamma(r)$ may be written as $\gamma(r) = xr_{\mathbf{x}} + yr_{\mathbf{y}}$ with $r_{\mathbf{x}}$, $r_{\mathbf{y}} \in R$. As in Lemma 1.3, write $f(X,Y) = Xh(X,Y) + Y^{N}g(Y)$. Now consider $(y^{N-1}/x)\gamma$ which is certainly a derivation from K to K. For $r \in R$,

$$(y^{N-1}/x) \gamma(x) = (y^{N-1}/x) (xr_x + yr_y)$$

= $y^{N-1}r_x + (y^N/x)r_y$
= $y^{N-1}r_x - (h(x,y)/g(y))r_y$.

Since g(y) is a unit in R, $(y^{N-1}/x)\gamma$: $R \to R$. Thus $(y^{N-1}/x)\gamma \in \operatorname{Der}^1_k(R)$ which implies that $(y^{N-1}/x)\gamma = t\gamma$ for some $t \in R$. Thus $(y^{N-1}/x - t)\gamma = 0$ on R, hence on K. Thus $y^{N-1}/x - t = 0$ or $y^{N-1}/x = t \in R$ which is a contradiction. Thus there exists $z \in R$ such that $\gamma(z)$ is a unit in R. Let $\lambda = \gamma/\gamma(z)$. Then $\operatorname{Der}^1_k(R) = \langle \lambda \rangle$ and $\lambda(z) = 1$.

Theorem 1.4 yields an easy proof of (I), Lipman's conjecture, for a plane curve Γ defined over a field of characteristic zero. For if $\operatorname{Der}^1_k(R)$ is free on λ , then by Theorem 1.4 there exists $\mathbf{z} \in R$ such that $\lambda(\mathbf{z}) = 1$. Thus by Zariski's Lemma [Theorem 2; 2], $\hat{R} \cong B[[\mathbf{z}]]$ where \mathbf{z} is analytically independent over \mathbf{B} . By Chevalley's Theorem [Theorem 31, p. 320;9], \hat{R} has no nilpotent elements. Thus, the dimension of \hat{R} is 1 which implies that \mathbf{B} is a reduced, zero-dimensional local ring. Therefore, \mathbf{B} is a field and \hat{R} is regular. Hence, \mathbf{R} is regular.

Theorem 1.5: $\operatorname{Der}_k^n(R)$ is a free R-module if and only if there exist n-th order derivations $\lambda_1, \cdots, \lambda_n$ and distinct elements $x_1, \cdots, x_n \in R$ such that $\lambda_i(x_j) = \left\{ \begin{array}{ll} 0 & j < i \\ 1 & j = 1 \end{array} \right.$

 $\begin{array}{llll} & \underline{\operatorname{Proof:}} & \operatorname{Assume} \ \operatorname{Der}^n_k(R) = \langle \ \delta_1, \cdots, \ \delta_n \ \rangle. & \operatorname{Suppose} & \delta_1(r) \in \\ & (x,y) & \text{for all} & r \in R. & \operatorname{Then, as is the proof of Theorem} \\ & 1.4, & (y^{N-1}/x) \ \delta_1 \in \operatorname{Der}^n_k(R). & \operatorname{So,} & (y^{N-1}/x) \ \delta_1 = \sum\limits_{i=1}^{n} \ t_i \ \delta_i \\ & \text{with} & t_i \in R. & \operatorname{Thus,} & (t_1 - y^{N-1}/x) \ \delta_1 + \sum\limits_{i=2}^{n} \ t_i \ \delta_i = 0 & \operatorname{on} \\ & R, & \operatorname{hence, on} & K. & \operatorname{This implies} & y^{N-1}/x = t_1 \in R & \operatorname{which is} \\ & a & \operatorname{contradiction.} & \operatorname{So, there exists an} & x_1 \in R & \operatorname{such that} \\ & \delta_1(x_1) & \operatorname{is a unit.} & \operatorname{Let} & \lambda_1 = \delta_1/\delta_1(x_1). & \operatorname{Then} \\ & \operatorname{Der}^n_k(R) = \langle \ \lambda_1, \delta_2, \cdots, \delta_n \ \rangle. & \end{array}$

We now proceed by induction. Suppose we have found derivations $\lambda_1 \cdots$, λ_{m-1} and elements $x_1, \cdots, x_{m-1} \in \mathbb{R}$ such that $\mathrm{Der}^n_k(\mathbb{R}) = \langle \lambda_1, \cdots, \lambda_{m-1}, \delta_m, \cdots, \delta_n \rangle$ and $\lambda_i(x_j) = \left\{ \begin{array}{l} 0 & j < i \\ 1 & j = i \end{array} \right.$ for $1 \leq i \leq m-1$ and $1 \leq j \leq m-1$. Define $\overline{\lambda}_m$ as follows:

$$\bar{\lambda}_{m} = \delta_{m} - \sum_{i=1}^{m-1} r_{i}\lambda_{i} \quad \text{where} \quad r_{1} = \delta_{m}(x_{1})$$
and
$$r_{i} = \delta_{m}(x_{i}) - \sum_{j=1}^{i-1} r_{j}\lambda_{j}(x_{i}).$$

Computing $\bar{\lambda}_{m}(x_{\ell})$, $\ell = 1, \dots, m-1$, gives

$$\bar{\lambda}_{m}(\mathbf{x}_{\ell}) = \delta_{m}(\mathbf{x}_{\ell}) - \sum_{i=1}^{m-1} \mathbf{r}_{i}\lambda_{i}(\mathbf{x}_{\ell})$$

$$= \delta_{m}(\mathbf{x}_{\ell}) - \sum_{i=1}^{\ell-1} \mathbf{r}_{i}\lambda_{i}(\mathbf{x}_{\ell}) - \mathbf{r}_{\ell}$$

$$= 0.$$

Also, $\operatorname{Der}_{k}^{n}(R) = \langle \lambda_{1}, \cdots, \lambda_{m-1}, \overline{\lambda}_{m}, \cdots, \delta_{n} \rangle$. As before, there is an element $\mathbf{x}_{m} \in R$ such that $\overline{\lambda}_{m}(\mathbf{x}_{m})$ is a unit in R. Finally, let $\lambda_{m} = \overline{\lambda}_{m}/\overline{\lambda}_{m}(\mathbf{x}_{m})$. Therefore $\operatorname{Der}_{k}^{n}(R) = \langle \lambda_{1}, \cdots, \lambda_{m}, \delta_{m+1}, \cdots, \delta_{n} \rangle$ and $\lambda_{i}(\mathbf{x}_{j}) = \left\{ \begin{array}{c} 0 & j < i \\ 1 & j = i \end{array} \right.$ for $1 \leq i \leq m$ and $1 \leq j \leq m$.

Thus, by induction, $\operatorname{Der}_k^n(R) = \langle \lambda_1, \cdots, \lambda_n \rangle$ and there are elements x_1, \cdots, x_n of R such that $\lambda_i(x_j) = \left\{ \begin{array}{ll} 0 & j < i \\ 1 & j = i \end{array} \right.$

Conversely, suppose such elements and derivations exist. Consider

$$(4) a_1 \lambda_1 + \cdots + a_n \lambda_n = 0$$

with $a_i \in R \subset K$. Evaluating (4) at x_1 gives $a_1 = 0$ since $\lambda_i(x_1) = 0$ for i > 1. Suppose a_i equals zero for $1 \le i \le m-1$. Then evaluating (4) at x_m gives $a_m = 0$. Hence $a_i = 0$ for $1 \le i \le n$.

Thus, $\operatorname{Der}_{k}^{n}(K) = \langle \lambda_{1}, \cdots, \lambda_{n} \rangle$. Let $\gamma \in \operatorname{Der}_{k}^{n}(R)$. Then γ may be written as $\gamma = \sum_{i=1}^{n} t_{i}\lambda_{i}$ with $t_{i} \in K$. It suffices to show $t_{i} \in R$. Now $\gamma(x_{1}) = t_{1} \in R$. Inductively assume that $t_{1}, \cdots, t_{m-1} \in R$. Then $\gamma(x_{m}) = \sum_{i=1}^{m-1} t_{i}\lambda_{i}(x_{m}) + t_{m} \text{ since again } \lambda_{i}(x_{m}) = 0 \text{ for } m+1 \leq i \leq n$. So $t_{m} = \gamma(x_{m}) - \sum_{i=1}^{m-1} t_{i}\lambda_{i}(x_{m}) \in R$. Hence, $\operatorname{Der}_{k}^{n}(R) = \langle \lambda_{1}, \cdots, \lambda_{n} \rangle$. QED

Theorem 1.5 does not require that $\operatorname{Der}_{k}^{i}(R)$ be a free R-module for i < n. With this added assumption we get a much stronger result.

Theorem 1.6: Suppose $\operatorname{Der}_k^{n-1}(R)$ is a free R-module with generators $\lambda_1, \cdots, \lambda_{n-1}$ where $\lambda_i \in \operatorname{Der}_k^i(R)$ for $1 \leq i \leq n-1$. Further suppose that there exist distinct elements of R, x_1, \cdots, x_{n-1} , such that $\lambda_i(x_j) = \left\{ \begin{array}{ll} 0 & j < i \\ 1 & j = i \end{array} \right.$ If $\operatorname{Der}_k^n(R)$ is a free R-module, then the following hold:

- (a) $\operatorname{Der}_{k}^{n}(R) = \operatorname{Der}_{k}^{n-1}(R) \oplus R\gamma \text{ where } \gamma \in \operatorname{Der}_{k}^{n}(R)$.
- (b) There exists an n-th order derivation λ_n and an element $\mathbf{x}_n \in \mathbf{R}$ such that $\mathbf{x}_n \neq \mathbf{x}_i$, $i=1,\cdots,n-1; \lambda_n(\mathbf{x}_i)=0$, $i=1,\cdots,n-1;$ and $\lambda_n(\mathbf{x}_n)=1$.

Proof: Suppose $\operatorname{Der}_k^n(R) = \langle \delta_1, \cdots, \delta_n \rangle$. Since an (n-1)-st order derivation is an n-th order derivation, $\lambda_{n-1} \in \operatorname{Der}_k^n(R) \quad \text{and} \quad \lambda_{n-1} = \sum_{i=1}^n r_i \delta_i \quad \text{where} \quad r_i \in R. \quad \text{Evaluating} \quad \lambda_{n-1} \quad \text{at} \quad x_{n-1} \quad \text{gives} \quad 1 = \sum_{i=1}^n r_i \delta_i (x_{n-1}). \quad \text{So, for some} \quad I, \ 1 \leq I \leq n, \ r_I \quad \text{and} \quad \delta_I (x_{n-1}) \quad \text{are units in } R. \quad \text{We reorder, if necessary, so that} \quad I = n-1. \quad \text{Thus,}$

$$\delta_{n-1} = \frac{1}{r_{n-1}} \lambda_{n-1} - \sum_{i=1}^{n-2} \frac{r_i}{r_{n-1}} \delta_i - \frac{r_n}{r_{n-1}} \delta_n.$$

And so, $\operatorname{Der}_{k}^{n}(R) = \langle \delta_{1}, \dots, \delta_{n-2}, \lambda_{n-1}, \delta_{n} \rangle$.

Inductively we assume

 $\operatorname{Der}^n_k(R) = \langle \delta_1, \cdots, \delta_m, \lambda_{m+1}, \cdots, \lambda_{n-1}, \delta_n \rangle$, and we show that δ_m may be replaced by λ_m , after relabeling the δ_i 's if need be. Since $\lambda_m \in \operatorname{Der}^n_k(R)$, λ_m may be written as

(5)
$$\lambda_{m} = \sum_{i=1}^{m} t_{i} \delta_{i} + \sum_{j=m+1}^{n-1} t_{j} \lambda_{j} + t_{n} \delta_{n}.$$

Evaluating (5) at x_m gives

¥

$$1 = \sum_{i=1}^{m} t_i \delta_i(x_m) + \sum_{j=m+1}^{n-1} t_j \lambda_j(x_m) + t_n \delta_n(x_m)$$
$$= \sum_{i=1}^{m} t_i \delta_i(x_m) + t_n \delta_n(x_m)$$

since $\lambda_j(x_m)=0$ for $j=m+1,\cdots,n-1$. For some I, t_I and $\delta_I(x_m)$ are units in R, $I=1,\cdots,m,n$. Rearrange the δ_j , if necessary, so that I=m. Thus,

$$\delta_{m} = \frac{1}{t_{m}} \lambda_{m} - \sum_{i=1}^{m-1} \frac{t_{i}}{t_{m}} \delta_{i} - \sum_{j=m+1}^{m-1} \frac{t_{j}}{t_{m}} \lambda_{j} - \frac{t_{n}}{t_{m}} \delta_{n}.$$

Hence, $\operatorname{Der}_{k}^{n}(R) = \langle \delta_{1}, \cdots, \delta_{m-1}, \lambda_{m}, \cdots, \lambda_{n-1}, \delta_{n} \rangle$.

Therefore by induction, $\operatorname{Der}_k^n(R) = \langle \lambda_1, \cdots, \lambda_{n-1}, \delta_n \rangle$. This completes the proof of (a).

To prove (b), we assume by (a) that $\mathrm{Der}_{\mathbf{k}}^{\mathbf{n}}(\mathbf{R})=$ $<\lambda_1,\cdots,\lambda_{n-1},\delta_n>$. We define a new n-th order derivation as follows:

(6)
$$\gamma = \delta_n + \sum_{i=1}^{n-1} r_i \lambda_i$$
 where $r_1 = -\delta_n(x_1)$ and $r_i = -\delta_n(x_i) - \sum_{j=1}^{i-1} r_j \lambda_j(x_i)$.

Then since $\lambda_i(x_m) = 0$ for $i = m+1, \dots, n-1$, evaluating (6) at x_m gives

$$\gamma(\mathbf{x}_{m}) = \delta_{n}(\mathbf{x}_{m}) + \sum_{i=1}^{n-1} \mathbf{r}_{i}\lambda_{i}(\mathbf{x}_{m})$$

$$= \delta_{n}(\mathbf{x}_{m}) + \sum_{i=1}^{m-1} \mathbf{r}_{i}\lambda_{i}(\mathbf{x}_{m}) + \mathbf{r}_{m}$$

$$= 0.$$

Thus $\gamma(x_m) = 0$ for $1 \le m \le n-1$. Moreover, $\operatorname{Der}^n_k(R) = \langle \lambda_1, \cdots, \lambda_{n-1}, \gamma \rangle$.

As in Theorems 1.4 and 1.5, there must exist an element $x_n \in R$ such that $\gamma(x_n)$ is an unit in R. Finally then, let $\lambda_n = \gamma/\gamma(x_n)$. The theorem is now proved. QED

We shall use the following lemma to show that the x_i given in Theorems 1.5 and 1.6 may be assumed to be monomials in $k[x,y] \subseteq R$.

Lemma 1.7: If λ is an n-th order derivation and $\lambda(r)=1$ for some $r \in R$, then $\lambda(x^iy^j)$ is a unit in R for some $x^iy^j \in k[x,y] \subseteq R$.

<u>Proof:</u> Write r = s(x,y)/t(x,y) where $s(x,y),t(x,y) \in k[x,y]$ and $t(x,y) \notin (x,y)$. By [I,Theorem 5;6]

$$1 = \lambda(r)$$

$$= \lambda(s/t)$$

$$= (-1)^{n} \sum_{m=0}^{n} (-1)^{m} {n+1 \choose m} t^{m} \lambda(t^{n-m}s)/t^{n+1}.$$

For some m, $\lambda(t^{n-m}s)$ is a unit in R. Write $t^{n-m}s = \sum \alpha_{ij} x^i y^j \in k[x,y]$. So, $\lambda(x^i y^j)$ is a unit for some $x^i y^j$. QED

The following theorem summarizes the results of this chapter.

Theorem 1.8: If $\operatorname{Der}_k^n(R)$ is a free R-module for all n, then there exist derivations $\lambda_1, \dots, \lambda_n$ and monomials $x_1, \dots, x_n \in k[x,y]$ such that

(a)
$$\lambda_i \in Der_k^i(R)$$

(b)
$$\operatorname{Der}_{k}^{n}(R) = \langle \lambda_{1}, \dots, \lambda_{n} \rangle$$

(c)
$$\lambda_{i}(x_{j}) = \begin{cases} 0 & j < i \\ 1 & j = i \end{cases}$$

<u>Proof:</u> The only part of the theorem that requires proof is that the x_i may be choosen to be monomials. We show this by induction on n. If n=1, then by Theorem 1.4 there exists a derivation λ such that $\operatorname{Der}_k^1(R) = \langle \lambda \rangle$ and $\lambda(z) = 1$ for some $z \in R$. By Lemma 1.7 there exists a monomial $x_1 \in k[x,y]$ such that $\lambda(x_1)$ is a unit in R. Let $\lambda_1 = \lambda/\lambda(x_1)$. Then $\operatorname{Der}_k^1(R) = \langle \lambda_1 \rangle$ and $\lambda_1(x_1) = 1$ where x_1 is a monomial in k[x,y].

We now assume that $\operatorname{Der}_{k}^{n-1}(R) = \langle \lambda_{1}, \cdots, \lambda_{n-1} \rangle$ and $\lambda_{i}(x_{j}) = \left\{ \begin{array}{l} 0 & j < i \\ 1 & j = i \end{array} \right.$ for monomials $x_{i} \in k[x,y]$. By Theorem 1.6 there exists a derivation $\overline{\lambda}_{n}$ and an element $\overline{x}_{n} \in R$ such that $\operatorname{Der}_{k}^{n}(R) = \langle \lambda_{1}, \cdots, \lambda_{n-1}, \overline{\lambda}_{n} \rangle, \overline{\lambda}_{n}(x_{i}) = 0$ for i < n, and $\overline{\lambda}_{n}(\overline{x}_{n}) = 1$. Again by Lemma 1.7, there exists a monomial $x_{n} \in k[x,y]$ such that $\overline{\lambda}_{n}(x_{n})$ is a unit in R. Now let $\lambda_{n} = \overline{\lambda}_{n}/\overline{\lambda}_{n}(x_{n})$. Then $\operatorname{Der}_{k}^{n}(R) = \langle \lambda_{1}, \cdots, \lambda_{n} \rangle, \lambda_{n}(x_{i}) = 0$ for i < n, and $\lambda_{n}(x_{n}) = 1$ where x_{n} is a monomial in k[x,y]. QED

CHAPTER II

AN EXAMPLE

In this chapter we give an example of a curve Γ defined over a field of characteristic 2. Γ is given by $f(x,Y) = x^2 - Y^3$. Since (0,0) is a singular point of Γ , the local ring, R, at (0,0) is not regular. By constructing i-th order derivations λ_i and monomials $x_i \in k[x,y]$ which satisfy the conditions of Theorem 1.5, we shall show that $\operatorname{Der}_k^n(R)$ is a free R-module for all n. We shall also show $\operatorname{Der}(R) = \operatorname{der}(R)$. Thus, this example shows that both (II) and (III) are false.

The following lemma will be used repeatedly in the example. The results hold for any characteristic $p \neq 0$. Thus, we shall prove the lemma in this more general setting even though in the example k has characteristic 2.

<u>Lemma 2.1</u>: If $\lambda \in \text{Der}_k^p$ (R) and $r,s \in R$, then

(a)
$$\lambda(r^{p^n}s) = r^{p^n}\lambda(s) + s\lambda(r^{p^n})$$

(b)
$$\lambda(r^{p^{n+i}}s) = r^{p^{n+i}}\lambda(s)$$
 for $i \ge 1$.

<u>Proof</u>: The proof of (a) follows immediately from the definition of a p^n -th order derivation; this is equation (1).

For (b), the previous part gives

$$\lambda(r^{p^{n+i}}s) = \lambda((r^{p^{i}})^{p^{n}}s)$$
$$= r^{p^{n+i}}\lambda(s) + s\lambda(r^{p^{n+i}}).$$

Since $\lambda(r^{p^{n+1}}) = 0$ [I,Prop. 10;6], $\lambda(r^{p^{n+1}}s) = r^{p^{n+1}}\lambda(s)$.

QED

Example 2.2: Let R be the local ring at (0,0) of $\Gamma\colon f(x,y) = x^2 - y^3 \quad \text{over a field } k \quad \text{of characteristic 2.}$ $R = \left(k[x,y]\right)_{(x,y)} \quad \text{and} \quad x^2 = y^3. \quad \text{Then } \text{Der}_k^n(R) \quad \text{is a free}$ $R\text{-module for all } \quad n \quad \text{and} \quad \text{Der}(R) = \text{der}(R).$

<u>Proof:</u> Let $A = k[x,y] = k[x,y]/(x^2-y^3)$. So $R = (A)_{(x,y)}$. For $m = 0,1,\cdots$, define $y_{2^m} \in Der_k^{2^m}(k[y])$ as follows:

Thus, γ_2^m is a 2^m -th order derivation of k[y] to k[y]. Define $\gamma_1 = \gamma_2^{\alpha_1} \cdots \gamma_1^{\alpha_0}$ where the α_j 's are the

coefficients in the 2-adic expansion of i; that is

$$i = \sum_{j=0}^{I} \alpha_j 2^j$$
. It is easily shown that $\gamma_i(y^j) = \begin{cases} 0 & j < i \\ 1 & j = i \end{cases}$.

We now define a 2^n -th order derivation on k[x] to k[x,y], $n=0,1,\cdots$. For n=0, define

 $\lambda_{2^n} \in Der_k^{2^n}(k[x], k[x,y])$ as follows:

$$(8a) \qquad \lambda_{2}^{n}(x) = 0$$

(8b)
$$\lambda_{2^n}(x^{2j}) = \gamma_{2^{n-1}}(y^{3j})$$
 $j = 1, \dots, 2^{n-1}$

(8c)
$$\lambda_{2^{n}}(x^{2j+1}) = x\lambda_{2^{n}}(x^{2j})$$
 $j = 1, \dots, 2^{n-1}-1$.

For each n, λ_{2^n} extends uniquely to a 2^n -th order derivation of k(x) to k(x,y) [I,Theorem 15;6]. We call this extension λ_{2^n} . Since k(x,y) is separably algebraic over k(x), λ_{2^n} extends in a unique way to a 2^n -th order derivation of k(x,y) to k(x,y) [Theorem 17;7]. This extension is also called λ_{2^n} .

We shall show that $\lambda_{2^n}\in \mathrm{Der}_k^{2^n}(A)$. First however we shall show that (8b) and (8c) hold for all values of j.

From the definition of λ_{2^n} , we have that $\lambda_{2^n}(x^{2^n}) = y^{2^n}$. For, by Lemma 2.1,

$$\lambda_{2^{n}}(x^{2^{n}}) = \lambda_{2^{n}}((x^{2})^{2^{n-1}}) = \gamma_{2^{n-1}}((y^{3})^{2^{n-1}}) = \gamma_{2^{n-1}}(y^{2^{n-1}+2^{n}})$$

$$= y^{2^{n}}\gamma_{2^{n-1}}(y^{2^{n-1}}) = y^{2^{n}}$$

We now show by induction that for all j we have

(8b)
$$\lambda_{2^{n}}(x^{2j}) = \gamma_{2^{n-1}}(y^{3j}).$$

First, suppose $2j = 2^n + 2i$ where $i = 1, \dots, 2^{n-1}$. Evaluating both sides of equation (8b) gives

$$\lambda_{2^{n}}(x^{2j}) = \lambda_{2^{n}}(x^{2^{n}}x^{2i})$$

$$= x^{2^{n}}\lambda_{2^{n}}(x^{2i}) + x^{2i}\lambda_{2^{n}}(x^{2^{n}})$$

$$= x^{2^{n}}\gamma_{2^{n-1}}(y^{3i}) + x^{2i}y^{2^{n}}$$

and

$$\begin{split} \gamma_{2^{n-1}}(y^{3j}) &= \gamma_{2^{n-1}}(y^{(2+1)}(2^{n-1}+i)) \\ &= \gamma_{2^{n-1}}(y^{2^n}y^{2^{n-1}}y^{3i}) \\ &= y^{2^n}\gamma_{2^{n-1}}(y^{2^{n-1}}y^{3i}) \\ &= y^{2^n}y^{2^{n-1}}\gamma_{2^{n-1}}(y^{3i}) + y^{2^n}y^{3i} \\ &= x^{2^n}\gamma_{2^{n-1}}(y^{3i}) + y^{2^n}x^{2i} \cdot \end{split}$$

Thus, (8b) is valid for $2j \le 2^{n+1}$.

Now suppose that (8b) holds for $2j \le 2^{n+k}$ where k>0. We show (8b) also holds for $2j=2^{n+k}+2i$ where $i=1,\cdots,\ 2^{n+k-1}$. Again we compute $\lambda_{2^n}(x^{2^j})$ and $\gamma_{2^{n-1}}(y^{3^j})$:

$$\lambda_{2^{n}}(\mathbf{x}^{2j}) = \lambda_{2^{n}}(\mathbf{x}^{2^{n+k}}\mathbf{x}^{2i})$$

$$= \mathbf{x}^{2^{n+k}} \lambda_{2^{n}}(\mathbf{x}^{2i})$$

$$= \mathbf{x}^{2^{n+k}} \gamma_{2^{n-1}}(\mathbf{y}^{3i})$$

$$\gamma_{2^{n-1}}(\mathbf{y}^{3j}) = \gamma_{2^{n-1}}(\mathbf{y}^{2^{n+k}}\mathbf{y}^{2^{n+k-1}}\mathbf{y}^{3i})$$

$$= \mathbf{y}^{2^{n+k}} \mathbf{y}^{2^{n+k-1}} \gamma_{2^{n-1}}(\mathbf{y}^{3i})$$

$$= \mathbf{x}^{2^{n+k}} \gamma_{2^{n-1}}(\mathbf{y}^{3i}).$$

Thus (8b) holds for $2j \le 2^{n+k+1}$ and so by induction holds for all values of j.

Now we show that (8c) is valid for all values of j. That is, $\lambda_{2^n}(\mathbf{x}^{2j+1}) = \mathbf{x}\lambda_{2^n}(\mathbf{x}^{2j})$. First suppose $2j+1=2^n+2i+1 \text{ where } i=0,\cdots,\ 2^{n-1}-1.$ Then

$$\lambda_{2^{n}}(x^{2j+1}) = \lambda_{2^{n}}(x^{2^{n}} x^{2i+1})$$

$$= x^{2^{n}} \lambda_{2^{n}}(x^{2i+1}) + x^{2i+1} \lambda_{2^{n}}(x^{2^{n}})$$

$$= x^{2^{n}} x \lambda_{2^{n}}(x^{2i}) + x^{2i+1} \lambda_{2^{n}}(x^{2^{n}})$$

$$= x(x^{2^{n}} \lambda_{2^{n}}(x^{2i}) + x^{2i} \lambda_{2^{n}}(x^{2^{n}}))$$

$$= x \lambda_{2^{n}}(x^{2^{n}} x^{2i})$$

$$= x \lambda_{2^{n}}(x^{2^{n}}).$$

Now suppose that (8c) holds for $2j+1 \le 2^{n+k}-1$ where k>0. We show (8c) holds for $2j+1=2^{n+k}+2i-1$ where $i=1,\cdots,\ 2^{n+k-1}-1$.

$$\lambda_{2^{n}}(x^{2j+1}) = \lambda_{2^{n}}(x^{2^{n+k}} x^{2i+1})$$

$$= x^{2^{n+k}} \lambda_{2^{n}}(x^{2i+1})$$

$$= x^{2^{n+k}} x \lambda_{2^{n}}(x^{2i})$$

$$= x \lambda_{2^{n}}(x^{2j}).$$

Thus, (8c) is valid for $2j + 1 \le 2^{n+k+1}$ and hence, by induction (8c) holds for all values of j.

We now show that $\lambda_{2^n} \in \operatorname{Der}_k^{2^n}(A)$. In order to show this, we compute $\lambda_{2^n}(y^i)$ and $\lambda_{2^n}(xy^i)$ and show that

(9a)
$$\lambda_{2^{n}}(y^{i}) = \gamma_{2^{n-1}}(y^{i})$$

(9b)
$$\lambda_{2^{n}}(xy^{i}) = x \gamma_{2^{n-1}}(y^{i})$$

where $i = 1, 2, \cdots$ and $n = 1, 2, \cdots$.

To show (9a), there are several cases depending on whether $i \equiv 0,1,2 \pmod{3}$.

Case 1: $i \equiv 0 \pmod{3}$

Let i = 3l. Then from (8b), $\lambda_{2^{n}}(y^{i}) = \lambda_{2^{n}}(y^{3l}) = \lambda_{2^{n}}(y^{3l}) = \lambda_{2^{n}}(y^{3l}) = \lambda_{2^{n}}(y^{3l}) = \lambda_{2^{n}}(y^{3l})$.

Case 2: $i \equiv 1 \pmod{3}$ and $2^n \equiv 1 \pmod{3}$.

Case 3: $i \equiv 2 \pmod{3}$ and $2^n \equiv 2 \pmod{3}$.

These cases are considered together for in both $i+2^{n+1}\equiv 0\pmod 3.\quad \text{Let}\quad i+2^{n+1}=3\,\text{l.}\quad \text{Then}$ $\lambda_{2^n}(y^i\ y^{2^{n+1}})=y^{2^{n+1}}\quad \lambda_{2^n}(y^i)\,.\quad \text{On the other hand}$

$$\lambda_{2^{n}}(y^{3\ell}) = \lambda_{2^{n}}(x^{2\ell})$$

$$= \gamma_{2^{n-1}}(y^{3\ell})$$

$$= \gamma_{2^{n-1}}(y^{i}y^{2^{n+1}})$$

$$= y^{2^{n+1}} \gamma_{2^{n-1}}(y^{i}).$$

So,
$$y^{2^{n+1}} \lambda_{2^n}(y^i) = y^{2^{n+1}} \gamma_{2^{n-1}}(y^i)$$
 or $\lambda_{2^n}(y^i) = \gamma_{2^{n-1}}(y^i)$.

Case 4: $i = 2 \pmod{3}$ and $2^n = 1 \pmod{3}$.

Case 5: $i \equiv 1 \pmod{3}$ and $2^n \equiv 2 \pmod{3}$.

In both of these cases, $i+2^{n+2}\equiv 0\pmod 3$. Say, $i+2^{n+2}=3\ell. \quad \text{Then,} \quad \lambda_2^n(y^iy^{2^{n+2}})=y^{2^{n+2}}\quad \lambda_2^n(y^i). \quad \text{on}$

the other hand

$$\lambda_{2^{n}}(y^{3\ell}) = \lambda_{2^{n}}(x^{2\ell})$$
$$= \gamma_{2^{n-1}}(y^{3\ell})$$

$$= \gamma_{2^{n-1}}(y^{i} y^{2^{n+2}})$$

$$= y^{2^{n+2}} \gamma_{2^{n-1}}(y^{i})$$

$$= y^{2^{n+2}} \gamma_{2^{n-1}}(y^{i}) \quad \text{or} \quad \lambda_{2^{n}}(y^{i}) = \gamma_{2^{n-1}}(y^{i}).$$

Now we show that $\lambda_{2^n}(xy^i) = x\gamma_{2^{n-1}}(y^i)$. The cases are the same as above.

Case 1: $i \equiv 0 \pmod{3}$.

Let $i = 3 \ell$. The result follows immediately from (8c):

$$\lambda_{2^{n}}(xy^{i}) = \lambda_{2^{n}}(xx^{2l})$$

$$= x\lambda_{2^{n}}(x^{2l})$$

$$= x\gamma_{2^{n-1}}(y^{3l})$$

$$= x\gamma_{2^{n-1}}(y^{i}).$$

Case 2: $i \equiv 1 \pmod{3}$ and $2^n \equiv 1 \pmod{3}$.

Case 3: $i \equiv 2 \pmod{3}$ and $2^n \equiv 2 \pmod{3}$.

Again $i + 2^{n+1} \equiv 0 \pmod{3}$. Say, $i + 2^{n+1} = 3 \ell$. Then, $\lambda_{2^n} (xy^iy^{2^{n+1}}) = y^{2^{n+1}} \lambda_{2^n} (xy^i)$.

Also

$$\lambda_{2^{n}}(xy^{3\ell}) = \lambda_{2^{n}}(xx^{2\ell})$$

$$= x\lambda_{2^{n}}(x^{2\ell})$$

$$= x\gamma_{2^{n-1}}(y^{3\ell})$$

$$= x\gamma_{2^{n-1}}(y^{i}y^{2^{n+1}})$$

$$= xy^{2^{n+1}}\gamma_{2^{n-1}}(y^{i}).$$

Thus, $y^{2^{n+1}} \lambda_{2^n}(xy^i) = xy^{2^{n+1}} \gamma_{2^{n-1}}(y^i)$ or $\lambda_{2^n}(xy^i) = x\gamma_{2^{n-1}}(y^i)$.

Case 4: $i \equiv 2 \pmod{3}$ and $2^n \equiv 1 \pmod{3}$.

Case 5: $i \equiv 1 \pmod{3}$ and $2^n \equiv 2 \pmod{3}$.

Here $i + 2^{n+2} \equiv 0 \pmod{3}$. Let $i + 2^{n+2} = 3 \ell$. Now

 $\lambda_{2^{n}}(xy^{i}y^{2^{n+2}}) = y^{2^{n+2}}\lambda_{2^{n}}(xy^{i})$. On the other hand

$$\lambda_{2^{n}}(xy^{3\ell}) = \lambda_{2^{n}}(xx^{2\ell})$$

$$= x\lambda_{2^{n}}(x^{2\ell})$$

$$= x\gamma_{2^{n-1}}(y^{3\ell})$$

$$= x\gamma_{2^{n-1}}(y^{i}y^{2^{n+2}})$$

$$= xy^{2^{n+2}}\gamma_{2^{n-1}}(y^{i}).$$

So again we have $y^{2^{n+2}}$ $\lambda_{2^n}(xy^i) = xy^{2^{n+2}}$ $\gamma_{2^{n-1}}(y^i)$ or $\lambda_{2^n}(xy^i) = x\gamma_{2^{n-1}}(y^i)$. Thus, we have completed the proofs of (9a) and (9b).

Since every monomial in A can be written as x^jy^i with j=0 or 1 and $0 \le i$, (9a) and (9b) imply that $\lambda_2^n \colon A \to A$ for $n=1,2,\cdots$. To show that $\lambda_1 \colon A \to A$ we compute λ_1 (y). Since

$$0 = \lambda_1(x^2) = \lambda_1(y^3) = y^2 \lambda_1(y)$$

 $\lambda_1(y) = 0$. Thus, $\lambda_1 \in Der_k^1(A)$. Hence, $\lambda_2^n: A \to A$ for $n = 0, 1, \cdots$.

By taking composites, we define an m-th order derivation for m = 1,2,.... Write m in its 2-adic expansion as m = $\sum_{i=0}^{M} \alpha_i 2^i$ where $\alpha_i = 0$ or 1. Define

$$\lambda_{m} = \lambda_{2}^{\alpha}{}_{M}^{M} \circ \cdots \circ \lambda_{1}^{\alpha}{}_{O}^{O}$$
. Then $\lambda_{m} \in Der_{k}^{m}(A)$.

We now make some observations about λ_m . We first consider $\lambda_{2\ell} = \lambda_{2^L}^{\alpha_L} \cdot \dots \cdot \lambda_{2^l}^{\alpha_1}$ where $2\ell = \sum_{i=1}^L \alpha_i 2^i$.

Equation (9a) shows that λ_{2^n} when restricted to k[y] equals $\gamma_{2^{n-1}}$. Thus, if $\lambda_{2\ell}$ is restricted to k[y], we have

$$\lambda_{2\ell}|_{\mathbf{k}[y]} = \gamma_{2^{L-1}}^{\alpha_L} \circ \cdots \circ \gamma_{1}^{\alpha_{1}} = \gamma_{\ell}.$$

By the definition of γ_i , $\lambda_{2\ell}(y^i) = \gamma_{\ell}(y^i) = \begin{cases} 0 & i < \ell \\ 1 & i = \ell \end{cases}$.

Also $\lambda_{2\ell}(x) = 0$ since $\lambda_{2n}(x) = 0$ for $n \ge 1$. And finally, $\lambda_{2\ell}(xy^i) = x\lambda_{2\ell}(y^i)$ by (9b).

Now consider $\lambda_{2\ell+1} = \lambda_{2\ell} \circ \lambda_1$. Since $\lambda_1(\mathbf{x}) = 1$, $\lambda_1(\mathbf{y}^i) = 0$, and $\lambda_1(\mathbf{x}\mathbf{y}^i) = \mathbf{y}^i$, the following hold:

(11a)
$$\lambda_{2\ell+1}(x) = 0$$

(11b)
$$\lambda_{2l+1}(y^i) = 0$$
 $i = 1, 2, \cdots$

(11c)
$$\lambda_{2\ell+1}(xy^{i}) = \lambda_{2\ell}(y^{i})$$
 $i = 1, 2, \cdots$

Thus, we have defined derivations λ_n , $n=1,2,\cdots$, from A to A. Since $R=(A)_{(x,y)}$, it follows that $\lambda_n\in \operatorname{Der}^n_k(R)$ [I, Theorem 15;6].

Summarizing the above, we have that the $\,\,\lambda_{n}^{}\,\,$ satisfy the following:

$$\lambda_1(x) = 1$$

$$\lambda_{2\ell}(\mathbf{y}^{\ell}) = 1$$
 and $\lambda_{2\ell}(\mathbf{y}^{\mathbf{i}}) = 0$ $\mathbf{i} = 1, \dots, \ell - 1$

$$\lambda_{2\ell}(\mathbf{x}\mathbf{y}^{\mathbf{i}}) = 0 \qquad \mathbf{i} = 0, \dots, \ell - 1$$

$$\lambda_{2\ell+1}(\mathbf{x}\mathbf{y}^{\ell}) = 1 \quad \text{and} \quad \lambda_{2\ell+1}(\mathbf{y}^{\mathbf{i}}) = 0 \qquad \mathbf{i} = 1, \dots, \ell$$

$$\lambda_{2\ell+1}(\mathbf{x}\mathbf{y}^{\mathbf{i}}) = 0 \qquad \mathbf{i} = 0, \dots, \ell - 1$$

where $\ell = 1, 2, \cdots$.

We now define x; as follows:

(13)
$$x_{2\ell+1} = xy^{\ell} \qquad \ell = 0, 1, \cdots$$
$$x_{2\ell} = y^{\ell} \qquad \ell = 1, 2, \cdots$$

Thus using the notation of (13), equation (12) says that $\lambda_i(x_j) = \left\{ \begin{array}{l} 0 & j < i \\ 1 & j = i \end{array} \right.$ Thus, the conditions of Theorem 1.5 are satisfied and $\operatorname{Der}_k^n(R)$ is a free R-module for all n. And by construction, $\operatorname{Der}(R) = \operatorname{der}(R)$.

Since Γ has a singular point at the origin, R is not regular. Thus, R is an example of a local ring which is not regular but $\operatorname{Der}^n_k(R)$ is a free R-module for all n and $\operatorname{Der}(R) = \operatorname{der}(R)$. Hence, we have shown that (II) and (III) are false.

CHAPTER III

THE COMPLETION R

In this chapter we shall prove the following theorem:

If $Der_k^n(R)$ is a free R-module for all n and Der(R) = der(R), then R is an integral domain.

If the characteristic of k is zero, then $\operatorname{Der}_k^1(R)$ being free implies that R is a regular local ring [Theorem 1;2]. Hence \hat{R} is regular and thus an integral domain. Thus, we shall assume throughout this chapter that the characteristic of k is $p \neq 0$. Further, if P is a simple point of Γ , then R is regular. So, \hat{R} is an integral domain and the theorem is trivial in this case. Thus, we also assume P is a singular point of Γ ; that is, subdeg $f \geq 2$.

As in Chapter 1, we shall assume in this chapter that $f_y(x,y) \neq 0$. Thus, K is a separable algebraic extension of k(x).

We shall use the following notation in this chapter. Let δ_i denote the i-th order derivation of k[x] to k[x] defined by $\delta_i(x^j) = \left\{ \begin{array}{ll} 0 & j < i \\ 1 & j = i \end{array} \right.$ The following results hold for δ_i :

- (14) $\operatorname{Der}_{k}^{n}(k[x]) = \langle \delta_{1}, \dots, \delta_{n} \rangle$ as a k[x]-module. $\operatorname{Der}_{k}^{n}(k(x)) = \langle \delta_{1}, \dots, \delta_{n} \rangle$ as a k(x)-module [pp. 26,27; 7].
- (15) Since K is a separable algebraic extension of $k(x) \text{, } \delta_n \in \text{Der}^n_k(K) \quad [\text{Theorem 17; 7}]. \quad \text{Hence,}$ $\text{Der}^n_k(K) = \langle \delta_1, \cdots, \delta_n \rangle.$
- (16) $\delta_{n} = \frac{\delta_{N}^{\alpha_{N}}}{\alpha_{N}!} \cdot \dots \cdot \frac{\delta_{1}^{\alpha_{O}}}{\alpha_{O}!} \quad \text{where the p-adic expansion of}$ $n \quad \text{is given by} \quad n = \sum_{i=0}^{N} \alpha_{i} p^{i} \quad [\text{Prop. 18; 7}].$
- $(17) \qquad \delta^{\mathbf{p}}_{\mathbf{p}^{\mathbf{i}}} = 0.$

<u>Proof:</u> $\delta_{p_i}^p$ is a p^{i+1} -order derivation. Hence,

 $\delta_{p}^{p} = \sum_{j=1}^{p^{i+1}} r_{j} \delta_{j}.$ It is easily verified that $\delta_{p}^{p}(x^{j}) = 0$

for $j = 1, \dots, p^{i+1}$ so, $r_j = 0, j = 1, \dots, p^{i+1}$.

(18) $\delta_{\mathbf{p}} \circ \delta_{\mathbf{p}} = \delta_{\mathbf{p}} \circ \delta_{\mathbf{p}} .$

 $\frac{\mathbf{Proof:}}{\mathbf{p}^{n}} \quad \delta_{\mathbf{p}^{m}} = \delta_{\mathbf{p}^{m}} \circ \delta_{\mathbf{p}^{n}} + [\delta_{\mathbf{p}^{n}}, \delta_{\mathbf{p}^{m}}] \quad \text{where} \quad [\delta_{\mathbf{p}^{n}}, \delta_{\mathbf{p}^{m}}]$

is a derivation of order $p^n + p^m - 1$ [I, Cor. 6.2; 6].

So, $\delta_{\mathbf{p}^n} \circ \delta_{\mathbf{p}^m} = \delta_{\mathbf{p}^m} \circ \delta_{\mathbf{p}^n} + \sum_{i=1}^{\mathbf{p}^n + \mathbf{p}^m - 1} \mathbf{r}_i \delta_i$. But

$$\delta_{\mathbf{p}^{n}} \circ \delta_{\mathbf{p}^{m}}(\mathbf{x}^{j}) = 0 \quad \text{and} \quad \delta_{\mathbf{p}^{m}} \circ \delta_{\mathbf{p}^{n}}(\mathbf{x}^{j}) = 0 \quad \text{for}$$

$$j = 1, \dots, p^{n} + p^{m} - 1. \quad \text{Hence,} \quad \delta_{\mathbf{p}^{n}} \circ \delta_{\mathbf{p}^{m}} = \delta_{\mathbf{p}^{m}} \circ \delta_{\mathbf{p}^{n}}.$$

Now consider the completion of R, denoted by \hat{R} , with respect to its maximal ideal m=(x,y). We note that if $\lambda\in \operatorname{Der}^N_k(R)$, then λ extends to an N-th order k-derivation from \hat{R} to \hat{R} . Let $\lambda\in \operatorname{Der}^N_k(R)$. Define $\overset{\wedge}{\lambda}:\hat{R}\to\hat{R}$ by $\overset{\wedge}{\lambda}(r)=\lim\lambda(r_n)$ where $r=\lim r_n$ with $\{r_n\}$ a Cauchy sequence in R. We show $\overset{\wedge}{\lambda}$ is continuous. For any n_0 we must find n such that $\lambda((m)^n)\subseteq m^0$ for the ideal m. Let $n=n_0^{N+1}$. Then it is easily checked using the definition of an N-th order derivation, equation (1), that $\lambda(m^n)\subseteq m^0$. Hence, $\overset{\wedge}{\lambda}$ is continuous. That $\overset{\wedge}{\lambda}$ is an N-th order derivation on \hat{R} follows from the fact that λ is an N-th order derivation on R. Henceforth, we shall denote $\overset{\wedge}{\lambda}$ by λ .

The next theorem relates derivations and zero divisors.

Theorem 3.1: Let A be a commutative reduced k-algebra where k is a field of characteristic p. Let $D = \{0\} \cup \{\text{zero divisors in A}\}$. Then D is closed under every derivation λ .

<u>Proof:</u> Suppose λ is a derivation of order n. Choose N such that $p^N > n$. Then λ may be viewed as a derivation of order p^N .

Now let $r \in D$, $r \ne 0$, and find $s \ne 0$ such that rs = 0. Then $rs^{p} = 0$ and $s^{p} \ne 0$. Then

$$0 = \lambda(rs^{p^{N}}) = s^{p^{N}} \lambda(r) + r\lambda(s^{p^{N}}) = s^{p^{N}} \lambda(r)$$

since $\lambda(s^p) = 0$ [I,Prop. 10:6]. Thus, $\lambda(r) \in D$. So, D is closed under λ . QED

Theorem 3.1 assumes that A is reduced; that is,

A has no nilpotent elements. We can apply this theorem
to R because R has no nilpotent elements if k is

perfect [Theorem 31,p. 320;9]. This is our case.

 $\hat{R} = k[[x,y]];$ that is, every element in \hat{R} may be written as $\sum \alpha_{ij} x^i y^j$ with $\alpha_{ij} \in k$. This representation, however, is not necessarily unique.

Theorem 3.2: Suppose $\operatorname{Der}^n_k(R)$ is a free R-module for all n and $\operatorname{Der}(R) = \operatorname{der}(R)$. Let $\{\lambda_i\}$ be any set of generators such that $\lambda_i \in \operatorname{Der}^i_k(R)$ and $\operatorname{Der}^n_k(R) = \langle \lambda_1, \cdots, \lambda_n \rangle$. Define derivations γ_m as follows:

(19)
$$\gamma_{m} = \frac{p^{M}}{\alpha_{M}!} \dots \frac{\lambda_{1}^{\alpha_{0}}}{\alpha_{0}!} \text{ where } m = \sum_{i=0}^{M} \alpha_{i}p^{i}.$$

Then $\operatorname{Der}_{k}^{n}(R) = \langle \gamma_{1}, \dots, \gamma_{n} \rangle$.

Before we prove this theorem we note that Theorem 1.8 implies the existence of such $\,\lambda_{\,\underline{i}}\,{}'s.$

<u>Proof:</u> We first show that the following three relationships hold:

(20a)
$$(\lambda_{p^{i}} \circ r\lambda_{p^{j}}) - (r\lambda_{p^{i}} \circ \lambda_{p^{j}}) \in Der_{k}^{p^{i}+p^{j}-1}(R)$$
 for $r \in R$.

(20b)
$$r_1^{\lambda}_{p_1}^{i_1} \cdots r_n^{\lambda}_{p_n}^{i_n} - (\prod_{j=1}^{n} r_j)(\lambda_{p_j}^{i_1} \cdots \lambda_{p_n}^{i_n}) \in$$

$$\operatorname{Der}_{k}^{m-1}(R) \quad \text{where} \quad m = \sum_{j=1}^{n} p_j^{i_j}.$$

(20c)
$$(\sum_{j=1}^{p^{i}} s_{1j}\lambda_{j}) \circ \cdots \circ (\sum_{j=1}^{p^{i}} s_{nj}\lambda_{j}) - (\prod_{j=1}^{n} s_{j})\lambda_{j} \circ \cdots \circ \lambda_{j} \circ \prod_{p^{i}} s_{p^{i}} \circ \cdots \circ \lambda_{p^{i}} \circ \cdots \circ$$

For (a),

Since $\begin{bmatrix} \lambda & r\lambda & j \end{bmatrix}$ and $\begin{bmatrix} \lambda & j & \lambda & j \end{bmatrix}$ are derivations of order $p^i + p^j - 1$ [I,Cor. 6.2;6], the result follows.

Result (b) follows from (a) by induction. And (c) follows immediately from (b).

We prove the theorem by induction. For n=1, $\gamma_1=\lambda_1 \quad \text{and} \quad \operatorname{Der}_k^1(R)=<\lambda_1>=<\gamma_1>. \quad \text{Assume that}$ $\operatorname{Der}_k^{n-1}(R)=<\gamma_1,\cdots, \ \gamma_{n-1}>. \quad \text{To show} \quad \operatorname{Der}_k^n(R)=<\gamma_1,\cdots, \gamma_n>$ it suffices to show that $\lambda_n=\sum\limits_{i=1}^n \ r_i\gamma_i \quad \text{for some} \quad r_i\in R.$ Since $\operatorname{Der}_k^n(R)=\operatorname{Der}_k^{n-1}(R)\oplus R\lambda_n, \quad \text{we see that} \quad n \quad \text{is the}$

smallest integer such that $\lambda_n \in \operatorname{Der}^n_k(R)$. Since $\operatorname{Der}(R) = \operatorname{der}(R)$, we have

(21)
$$\lambda_n = \tau_{1N}^{\alpha_N} \circ \cdots \circ \tau_{1O}^{\alpha_O} + \cdots + \tau_{mN}^{\alpha_N} \circ \cdots \circ \tau_{mO}^{\alpha_O} + \sigma$$

where $\sigma \in \operatorname{Der}_{k}^{n-1}(R)$ and $\tau_{ij} \in \operatorname{Der}_{k}^{p^{j}}(R)$. Here

 $n = \sum_{j=0}^{N} \alpha_j P^j$ is the p-adic expansion of n. By absorbing

any bogus terms in with σ , we may assume p^j is the smallest power of p such that $\tau_{ij} \in Der_k^{p^j}(R)$, $j = 0, \dots, N$.

Thus, $\sum_{j=0}^{N} \text{ ord } \tau_{ij}^{\alpha_{j}} = n \text{ for } i = 1, \dots, m.$

Now consider one of the summands $\tau_{iN}^{\alpha} \circ \dots \circ \tau_{iO}^{\alpha}$ in

(21). Since $\operatorname{Der}_{k}^{p^{j}}(R) = \langle \lambda_{1}, \dots, \lambda_{p^{j}} \rangle$ we have by (20c)

(22)
$$\tau_{iN}^{\alpha_{N}} \circ \cdots \circ \tau_{iO}^{\alpha_{O}} = \left(\sum_{\ell=0}^{p^{N}} s_{iN\ell} \lambda_{\ell}\right)^{\alpha_{N}} \circ \cdots \circ \left(s_{iO1}\lambda_{1}\right)^{\alpha_{O}}$$
$$= s\left(\lambda_{p^{N}}^{\alpha_{N}} \circ \cdots \circ \lambda_{1}^{\alpha_{O}}\right) + \sigma'$$

where $\sigma' \in \text{Der}_k^{n-1}(R)$ and $s \in R$.

Thus λ_n has the form $\lambda_n = r(\lambda_N^{\alpha_N} \circ \cdots \circ \lambda_1^{\alpha_O}) + \sigma''$ where $r \in \mathbb{R}$ and $\sigma'' \in \mathrm{Der}_k^{n-1}(\mathbb{R}) = \langle \gamma_1, \cdots, \gamma_{n-1} \rangle$. Now $\gamma_n = \alpha \lambda_p^{\alpha_N} \circ \cdots \circ \lambda_1^{\alpha_O}$ where $\alpha = 1/\prod_{i=0}^{N} \alpha_i!$ is a non-zero

constant in k. Thus $\lambda_n = (r/\alpha) \gamma_n + \sigma''$ or $\lambda_n \in \langle \gamma_1, \dots, \gamma_n \rangle$. QED

Corollary 3.3: Under the assumptions of the previous theorem and using the notation of it, $\lambda_n = r\gamma_n + \sum_{i=1}^{n-1} r_i \gamma_i$ and $\gamma_n = s\lambda_n + \sum_{i=1}^{n-1} s_i \lambda_i \text{ where } r \text{ and } s \text{ are units in } R.$

<u>Proof:</u> The only part requiring proof is that r and s are units. Substituting for γ_i in $\lambda_n = r\gamma_n + \sum_{i=1}^{n-1} r_i \gamma_i$ gives $\lambda_n = rs\lambda_n + \sum_{i=1}^{n} t_i \lambda_i$. Thus, rs = 1 and since $r,s \in R$, they must be units. QED

Corollary 3.4: Again assume the conditions and notation of Theorem 3.2. For $\gamma = \gamma_n + \sum_{i=1}^{n} r_i \gamma_i \in \operatorname{Der}_k^n(R)$ for some $r_i \in R$, there exists an element $r \in R$ such that $\gamma(r)$ is a unit in R.

Proof: As in Lemma 1.3, write $f(x,y) = xh(x,y) + y^N g(y)$. Suppose $\gamma(r) \in (x,y)$ for all $r \in R$. Then $(y^{N-1}/x) \gamma \in Der_k^n(R)$. Since $Der_k^n(R) = \langle \gamma_1, \cdots, \gamma_n \rangle$, $(y^{N-1}/x) \gamma = \sum_{i=1}^n s_i \gamma_i$ with $s_i \in R$. Also $(y^{N-1}/x) \gamma = (y^{N-1}/x) \gamma_n + \sum_{i=1}^{n-1} (y^{N-1}/x) r_i \gamma_i$. But this implies that $y^{N-1}/x = s_n \in R$; this is a contradiction. Therefore, there exists some $r \in R$ such that $\gamma(r)$ is a unit. QED

<u>Proposition 3.5</u>: Let $S = (k[x,z])_{(x,z)}$ where k has characteristic p, k[x,z] = k[X,Z]/(h(X,Z)), and h(X,Z)

is an irreducible polynomial such that $h_Z(x,z) \neq 0$ and h(0,0) = 0. Suppose $\delta_i(z) = 0$ for all i less than some fixed N. Then $h(X,Z) = g(X^p,Z)$ and $\delta_p i^z = z \delta_p i$ for i < N.

<u>Proof:</u> Since $h_Z(x,z) \neq 0$, δ extends uniquely to k(x,z). We shall view all calculations which we make in the proof of this proposition as taking place in k(x,z).

Now $h_X(x,z) \delta_1(x) + h_Z(x,z) \delta_1(z) = 0$. So, $\delta_1(z) = -h_X(x,z)/h_Z(x,z)$ and since $\delta_1(z) = 0$, $h_X(x,z) = 0$. As in Lemma 1.1, this implies that $h_X(X,Z) = 0$. Thus, $h(X,Z) = g_1(X^p,Z)$.

Inductively, we suppose that $h(X,Z) = g_i(X^{p^i},Z)$ with i < N. Now δ_i is a 1st order derivation on $k[x^{p^i}]$ [I, Theorem 14;6]. Since $(g_i)_Z(x^{p^i},z) = h_Z(x,z) \neq 0, \delta_{p^i}$ extends uniquely to a 1st order derivation on $k(x^{p^i},z)$. Thus, $(g_i)_Z(x^{p^i},z)\delta_{p^i}(z) + (g_i)_{p^i}\delta_{p^i}(x^{p^i}) = 0$. So, $p^i(z) = -(g_i)_{p^i}(x^{p^i},z)/(g_i)_Z(x^{p^i},z)$. Since $\delta_i(z) = 0$, $p^i(g_i)_{p^i}(x^{p^i},z) = 0$. And therefore $(g_i)_{p^i}(x^{p^i},z) = 0$. Hence, $h(X,Z) = g_{i+1}(x^{p^{i+1}},z)$. By induction then

We now show by induction that $\delta_{p}iz = z\delta_{p}i$, i < N. For i = 0, $\delta_{1}(zr) = r\delta_{1}(z) + z\delta_{1}(r) = z\delta_{1}(r)$, for any $r \in S$. Thus $\delta_{1}z = z\delta_{1}$.

For 1 < i < N, consider the polynomials g, Zg, \dots ,

$$z^{p^{1}-1}g$$
. Write $z^{j}g$, $j = 0, \dots, p^{i}-1$, as

(23)
$$z^{j}g = \sum_{n=1}^{p^{i}} r_{jn}(x^{p^{N}}, z^{p^{i}})z^{n} + r_{j}(x^{p^{N}})$$

where $r_{jn}(x^{p^N}, z^{p^i}) = \sum_{k,m} \alpha_{jnkm}(x^{p^N})^k (z^{p^i})^m$. Since

 $\delta_{pi}(z^{j}g) = 0$, evaluating (23) gives

(24)

$$0 = \delta_{p^{i}}(z^{j}g)$$

$$= \sum_{n=1}^{p^{i}} r_{jn}(x^{p^{N}}, z^{p^{i}}) \delta_{p^{i}}(z^{n}) + \sum_{n=1}^{p^{i}} z^{n} \delta_{p^{i}}(r_{jn}(x^{p^{N}}, z^{p^{i}})) + 0$$

$$= \sum_{n=1}^{p^{i}} r_{jn} \delta_{p^{i}}(z^{n}) + \sum_{n=1}^{p^{i}} z^{n} \delta_{p^{i}}(\sum_{k,m} \alpha_{jnkm}(x^{p^{N}})^{k}(z^{p^{i}})^{m})$$

$$= \sum_{n=1}^{p^{i}} r_{jn} \delta_{p^{i}}(z^{n}) + \sum_{n=1}^{p^{i}} z^{n} \sum_{k,m} \alpha_{jnkm} x^{kp^{N}} \delta_{p^{i}}(z^{mp^{i}})$$

$$= \sum_{n=1}^{p^{i}} r_{jn} \delta_{p^{i}}(z^{n}) + \sum_{n=1}^{p^{i}} z^{n} \sum_{k,m} \alpha_{jnkm} x^{kp^{N}} m(z^{p^{i}})^{m-1} \delta_{p^{i}}(z^{p^{i}})$$

$$= \sum_{n=1}^{p^{i}} r_{jn} \delta_{p^{i}}(z^{n}) + r'_{j} \delta_{p^{i}}(z^{p^{i}})$$

$$= \sum_{n=1}^{p^{i}} r_{jn} \delta_{p^{i}}(z^{n})$$

where $\bar{r}_{jn} = r_{jn}$ if $n < p^i$ and $\bar{r}_{jp}i = r_{jp}i + r'_{j}$. The equations in (24) yield the following matrix equation:

$$(\bar{r}_{jn}) \begin{pmatrix} \delta_{i}(z) \\ \vdots \\ \delta_{i}(z^{p^{i}}) \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$

Suppose that the determinant of (\bar{r}_{jn}) is zero. Then there exists a non-zero solution, say (t_1, \cdots, t_i) . Since $(\bar{r}_{jn}) \in \{k(x^p, z)\}_{p^i}$, we have $t_j \in k(x^p, z)$, $j = 1, \cdots, p^i$. By replacing the t_j with some multiple, if necessary, we may assume $t_j \in k[x^p, z]$.

Now consider the short exact sequence:

$$0 \rightarrow (g(x^{p^{N}},z)) \rightarrow k[x^{p^{i}},z] \xrightarrow{\pi} k[x^{p^{i}},z] \rightarrow 0.$$

Let $T_j \in k[X^{p^i}, Z]$ such that $\pi(T_j) = t_j$, $j = 1, \dots, p^i$. We define $\bar{\delta}_j : k[X] \to k[X]$ to be the canonical p^i -th

order derivation; that is, $\delta_{p^{i}}(x^{j}) = \begin{cases} 0 & j < p^{1} \\ 1 & j = p^{i} \end{cases}$. Now we

define $\bar{\lambda} \in \text{Der}_{k}^{p^{i}}(k[x^{p^{i}},Z])$ as follows:

$$\bar{\lambda}(z^{j}) = T_{j}$$
 $j = 1, \dots, p^{i}$

$$\bar{\lambda}((x^{p^i})^{\ell}) = \bar{\delta}_{p^i}((x^{p^i})^{\ell})$$
 $\ell = 1, \dots, p^i$

$$\vec{\lambda} ((x^{p^i})^{\ell} z^j) = (x^{p^i})^{\ell} T_j + z^j \vec{\delta}_{p^i} ((x^{p^i})^{\ell})$$
 $0 < \ell + j \le p^i$

extend $\bar{\lambda}$ to monomials of $k[x^{p^1}, Z]$ using (1).

We first observe that $\bar{\lambda} = \bar{\delta}_{p^i}$ on $k[x^{p^i}]$. This is obvious since both are p^i -th order derivations on $k[x^{p^i}]$ and $\bar{\lambda}((x^{p^i})^{\ell}) = \bar{\delta}_{p^i}((x^{p^i})^{\ell})$ for $\ell = 1, \dots, p^i$.

We next show

(26)
$$\bar{\lambda}((x^{p^i})^{\ell}z^j) = (x^{p^i})^{\ell}\bar{\lambda}(z^j) + z^j\bar{\lambda}((x^{p^i})^{\ell})$$

for all ℓ and j. By the definition of $\bar{\lambda}$, (26) holds for $l + j \le p^i$. We first prove (26) for l and j when ℓ < pⁱ and j < pⁱ. The proof is by induction. Suppose $\ell + j = p^{i} + 1$. Using (1) and the fact that $\sum_{m=0}^{L} (-1)^m \binom{L}{m} = 0, \text{ we get}$ $\bar{\lambda}((\mathbf{x}^{\mathbf{p^i}})^{\ell}\mathbf{z}^{\mathbf{j}}) = \sum_{\substack{n=0 \\ 1 \le n+m \le \mathbf{p^i}}}^{\mathbf{j}} \sum_{m=0}^{\ell} (-1)^{n+m-1} \binom{\ell}{m} \binom{j}{n} (\mathbf{x}^{\mathbf{p^i}})^{m} \mathbf{z}^{n} \bar{\lambda}((\mathbf{x}^{\mathbf{p^i}})^{\ell-m} \mathbf{z}^{\mathbf{j}-n})$ $= \sum_{\substack{n=0 \ m=0 \\ 1 \le n+m \le p}}^{j} \sum_{i=0}^{\ell} (-1)^{n+m-1} {\binom{\ell}{m}} {\binom{j}{n}} {(x^{p^{i}})^{m}} z^{n} {(x^{p^{i}})^{\ell-m}} \bar{\lambda} (z^{j-n})$ $+ z^{j-n} - (x^{p^1})^{\ell-m}$ $= \sum_{n=0}^{j} \sum_{m=0}^{\ell} (-1)^{n+m-1} {n \choose m} {j \choose n} {x^{j}} \sum_{m=0}^{\ell} z^{m} \overline{\lambda} (z^{j-m})$ $+ z^{j} (x^{p^{i}})^{m} \bar{\lambda} (x^{p^{i}})^{\ell-m}$ $= \sum_{n=0}^{j} \sum_{m=0}^{\ell} (-1)^{m+m-1} {\binom{\ell}{m}} {\binom{j}{n}} {\binom{j}$ $+ z^{j}(x^{p^{i}})^{m} \bar{\lambda}(x^{p^{i}})^{\ell-m}$

$$+ \binom{\ell}{0} \binom{j}{0} [(x^{p^{i}})^{\ell} \bar{\lambda}(z^{j}) + z^{j} \bar{\lambda}((x^{p^{i}})^{\ell})]$$

$$= \sum_{n=0}^{j} (-1)^{n-1} \binom{j}{n} z^{n} \bar{\lambda}(z^{j-n}) (x^{p^{i}})^{\ell} \sum_{m=0}^{\ell} (-1)^{m} \binom{\ell}{m}$$

$$+ \sum_{n=0}^{j} (-1)^{n} \binom{j}{n} \sum_{m=0}^{\ell} (-1)^{m-1} \binom{\ell}{m} (x^{p^{i}})^{m} z^{j} \bar{\lambda}((x^{p^{i}})^{\ell-m})$$

$$+ (x^{p^{i}})^{\ell} \bar{\lambda}(z^{j}) + z^{j} \bar{\lambda}((x^{p^{i}})^{\ell})$$

$$= (x^{p^{i}})^{\ell} \bar{\lambda}(z^{j}) + z^{j} \bar{\lambda}((x^{p^{i}})^{\ell}) .$$

Thus, (26) holds for $\ell + j = p + 1$ when $\ell < p^i$ and $j < p^i$. Suppose (26) holds for $\ell' < p^i$ and $j' < p^i$ whenever $\ell' + j' < \ell + j$, $\ell < p^i$, $j < p^i$. We now show (26) is valid for $\ell + j$. Since $\ell < p^i$ and $\ell + j \ge p^i + 2$, $j \ge 3$. Write $j = j_1 + j_2$ where $j_1 = p^i - \ell$. Then

$$(x^{p^{i}})^{\ell}z^{j} = (x^{p^{i}})^{\ell}z^{j_{1}}(z^{j_{2}}) = x^{p^{i}}\cdots x^{p^{i}}z\cdots z(z^{j_{2}}).$$

Equation (1) gives

$$\begin{split} \bar{\lambda}((\mathbf{x}^{\mathbf{p^{i}}}) \, ^{\ell}\!\mathbf{z}^{\mathbf{j}}) &= \, \bar{\lambda}((\mathbf{x}^{\mathbf{p^{i}}}) \, ^{\ell}\!\mathbf{z}^{\mathbf{j}} \mathbf{1}(\mathbf{z}^{\mathbf{j}2})) \\ &= \, \sum_{\substack{n=0 \\ n=0 \\ 1 \le n+m+t \le p^{\mathbf{j}}}}^{j_{1}} \sum_{\substack{n=0 \\ n=0 \\ 1 \le n+m+t \le p^{\mathbf{j}}}}^{j_{1}} (-1)^{n+m+t-1} \binom{\ell}{m} \binom{j_{1}}{n} (\mathbf{x}^{\mathbf{p^{i}}})^{m} \mathbf{z}^{n} (\mathbf{z}^{\mathbf{j}2})^{t} \\ &= \, \sum_{\substack{n=0 \\ n=0 \\ 1 \le n+m}}^{j_{1}} \sum_{\substack{n=0 \\ n=0 \\ n+m \le p^{\mathbf{j}}}}^{\ell} (-1)^{n+m-1} \binom{\ell}{m} \binom{j_{1}}{n} (\mathbf{x}^{\mathbf{p^{i}}})^{m} \mathbf{z}^{n} \bar{\lambda}((\mathbf{x}^{\mathbf{p^{i}}}) \stackrel{\ell-m}{z}^{\mathbf{j}_{1}-n+\mathbf{j}_{2}}) \end{split}$$

$$\frac{1}{\lambda} ((x^{p^{i}}) \ell^{-m} z^{j_{1}-n})$$

$$= \sum_{\substack{n=0 \text{ m=0} \\ 1 \le n+m}}^{j_{1}} \sum_{k=0}^{\ell} (-1)^{n+m-1} {n \choose k} {j \choose n} (x^{p^{i}})^{m} z^{n} [(x^{p^{i}}) \ell^{-m} \lambda (z^{j-n})]$$

$$+ \sum_{\substack{n=0 \text{ m=0} \\ n=0 \text{ m=0}}}^{j_{1}} \sum_{k=0}^{\ell} (-1)^{m+n} {n \choose k} {j \choose n} (x^{p^{i}})^{m} z^{n+j_{2}} [(x^{p^{i}}) \ell^{-m} \lambda (z^{j-n})]$$

$$+ \sum_{\substack{n=0 \text{ m=0} \\ n=0 \text{ m=0}}}^{j_{1}} \sum_{k=0}^{\ell} (-1)^{n+m-1} {n \choose k} {j \choose n} (x^{p^{i}})^{\ell} z^{n} \lambda (z^{j-n})$$

$$+ \sum_{\substack{n=0 \text{ m=0} \\ n=0 \text{ m=0}}}^{j_{1}} \sum_{k=0}^{\ell} (-1)^{n+m-1} {n \choose k} {j \choose n} (x^{p^{i}})^{\ell} z^{n} \lambda (x^{p^{i}})^{\ell-m})$$

$$+ {n \choose 0} {j \choose 0} [(x^{p^{i}}) \ell^{k} \lambda (z^{j}) + z^{j} \lambda ((x^{p^{i}}) \ell^{k})]$$

$$+ {n \choose 0} {j \choose 0} [(x^{p^{i}}) \ell^{k} \lambda (z^{j}) + z^{j} \lambda ((x^{p^{i}}) \ell^{k})]$$

$$+ {n \choose 0} {n \choose 0} [(x^{p^{i}}) \ell^{k} \lambda (z^{j}) + z^{j} \lambda ((x^{p^{i}}) \ell^{k})]$$

$$+ {n \choose 0} {n \choose 0} [(x^{p^{i}}) \ell^{k} \lambda (z^{j}) + z^{j} \lambda ((x^{p^{i}}) \ell^{k})]$$

$$+ {n \choose 0} {n \choose 0} [(x^{p^{i}}) \ell^{k} \lambda (z^{j}) + z^{j} \lambda ((x^{p^{i}}) \ell^{k})]$$

$$= (x^{p^{i}}) \ell^{k} \lambda (z^{j}) + z^{j} \lambda ((x^{p^{i}}) \ell^{k}).$$

Thus, we have shown that (26) holds for all $\boldsymbol{\ell}$ and \boldsymbol{j} when $\boldsymbol{\ell} < p^i$ and $\boldsymbol{j} < p^i$. We now prove (26) for arbitrary $\boldsymbol{\ell}$ and \boldsymbol{j} . Write $\boldsymbol{\ell} = \boldsymbol{\ell}_1 + \boldsymbol{\ell}_2 p^i + \boldsymbol{\ell}_3 p^{i+1}$ with $0 \le \boldsymbol{\ell}_1 < p^i$, $0 \le \boldsymbol{\ell}_2 < p$, $0 \le \boldsymbol{\ell}_3$ and $\boldsymbol{j} = \boldsymbol{j}_1 + \boldsymbol{j}_2 p^i + \boldsymbol{j}_3 p^{i+1}$ with $0 \le \boldsymbol{j}_1 < p^i$, $0 \le \boldsymbol{j}_2 < p$, $0 \le \boldsymbol{j}_3$. Then using Lemma 2.1, we have

$$\bar{\lambda}((\mathbf{x}^{\mathbf{p}^{\mathbf{i}}}) \mathbf{L}_{\mathbf{z}^{\mathbf{j}}}) = \bar{\lambda}((\mathbf{x}^{\mathbf{p}^{\mathbf{i}}}) \mathbf{L}_{\mathbf{1}}^{\mathbf{p}^{\mathbf{i}}} (\mathbf{x}^{\mathbf{p}^{\mathbf{i}}}) \mathbf{L}_{\mathbf{2}^{\mathbf{p}^{\mathbf{i}}}} (\mathbf{x}^{\mathbf{p}^{\mathbf{i}}}) \mathbf{L}_{\mathbf{3}^{\mathbf{p}^{\mathbf{i}+1}}} \mathbf{z}^{\mathbf{j}} \mathbf{1}_{\mathbf{z}^{\mathbf{j}} \mathbf{2}^{\mathbf{p}^{\mathbf{i}}} \mathbf{z}^{\mathbf{j}} \mathbf{2}^{\mathbf{p}^{\mathbf{i}}} \mathbf{z}^{\mathbf{j}} \mathbf{2}^{\mathbf{p}^{\mathbf{i}}})$$

$$= (\mathbf{x}^{\mathbf{p}^{\mathbf{i}}}) \mathbf{L}_{\mathbf{3}^{\mathbf{p}^{\mathbf{i}+1}}} \mathbf{z}^{\mathbf{j}} \mathbf{3}^{\mathbf{p}^{\mathbf{i}+1}} \bar{\lambda}((\mathbf{x}^{\mathbf{p}^{\mathbf{i}}}) \mathbf{L}_{\mathbf{2}^{\mathbf{j}}} \mathbf{1}_{\mathbf{z}^{\mathbf{j}} \mathbf{1}^{\mathbf{j}}} (\mathbf{x}^{\mathbf{p}^{\mathbf{i}}}) \mathbf{L}_{\mathbf{2}^{\mathbf{p}^{\mathbf{i}}}} \mathbf{1}_{\mathbf{2}^{\mathbf{p}^{\mathbf{i}}}} \mathbf{1}_{\mathbf{2}^{\mathbf{p}^{\mathbf{i}}} \mathbf{1}^{\mathbf{j}} \mathbf{1}^{\mathbf{j}} \mathbf{1}_{\mathbf{1}^{\mathbf{j}}} (\mathbf{x}^{\mathbf{p}^{\mathbf{i}}}) \mathbf{L}_{\mathbf{2}^{\mathbf{p}^{\mathbf{i}}}} \mathbf{1}_{\mathbf{1}^{\mathbf{j}}} \mathbf{1}_{\mathbf{1}^{\mathbf{j}}})$$

$$+ (\mathbf{x}^{\mathbf{p}^{\mathbf{i}}}) \mathbf{L}_{\mathbf{2}^{\mathbf{p}^{\mathbf{i}}}} \mathbf{L}_{\mathbf{2}^{\mathbf{p}^{\mathbf{i}}}} \mathbf{L}_{\mathbf{1}^{\mathbf{p}^{\mathbf{i}}}} \mathbf{L}_{\mathbf{2}^{\mathbf{p}^{\mathbf{i}}}} \mathbf{L}_{\mathbf{1}^{\mathbf{p}^{\mathbf{i}}}} \mathbf{L}_{\mathbf{2}^{\mathbf{p}^{\mathbf{i}}}} \mathbf{L}_{\mathbf{1}^{\mathbf{p}^{\mathbf{i}}}} \mathbf{L}_{\mathbf{1}^{\mathbf{p}^{\mathbf{i}^{\mathbf{i}}}}} \mathbf{L}_{\mathbf{1}^{\mathbf{p}^{\mathbf{i}^{\mathbf{i}}}} \mathbf{L}_{\mathbf{1}^{\mathbf{p}^{\mathbf{i}^{\mathbf{i}}}} \mathbf{L}_{\mathbf{1}^{\mathbf{p}^{\mathbf{i}^{\mathbf{i}}}} \mathbf{L}_{\mathbf{1}^{\mathbf{p}^{\mathbf{i}^{\mathbf{i}}}}} \mathbf{L}_{\mathbf{1}^$$

Hence, (26) holds for arbitrary ℓ and j.

We want to show

(27)
$$\bar{\lambda}(s(x^{p^{i}}, z^{p^{i}})r) = s(x^{p^{i}}, z^{p^{i}})\bar{\lambda}(r) + r\bar{\lambda}(s(x^{p^{i}}, z^{p^{i}}))$$

for any $r \in k[x^{p^i}, Z]$. To do this we first show

$$\bar{\lambda} ((x^{p^{i}})^{n}(z^{p^{i}})^{m}(x^{p^{i}})^{\ell}z^{j}) = (x^{p^{i}})^{n}(z^{p^{i}})^{m}\bar{\lambda} ((x^{p^{i}})^{\ell}z^{j}) + (x^{p^{i}})^{\ell}z^{j}\bar{\lambda} ((x^{p^{i}})^{n}(z^{p^{i}})^{m}).$$

Using (26) and Lemma 2.1, we have

$$\bar{\lambda}(x^{np^{i}}z^{mp^{i}} \times^{\ell p^{i}} z^{j}) = x^{np^{i}} \times^{\ell p^{i}} \bar{\lambda}(z^{mp^{i}}z^{j}) + z^{j}z^{mp^{i}} \bar{\lambda}(x^{np^{i}}x^{\ell p^{i}})$$

$$= x^{np^{i}} \times^{\ell p^{i}} [z^{mp^{i}} \bar{\lambda}(z^{j}) + z^{j} \bar{\lambda}(z^{mp^{i}})]$$

$$+ z^{j}z^{mp^{i}} [\bar{\delta}_{p^{i}}(x^{np^{i}} \times^{\ell p^{i}})]$$

$$= x^{np^{i}} z^{mp^{i}} [x^{\ell p^{i}} \bar{\lambda}(z^{j}) + z^{j} \bar{\lambda}(x^{\ell p^{i}})]$$

$$+ x^{\ell p^{i}} z^{j} [x^{np^{i}} \bar{\lambda}(z^{mp^{i}}) + z^{mp^{i}} \bar{\lambda}(x^{np^{i}})]$$

$$= x^{np^{i}} z^{mp^{i}} \bar{\lambda}(x^{\ell p^{i}}z^{j}) + x^{\ell p^{i}} z^{j} \bar{\lambda}(x^{np^{i}}z^{mp^{i}}).$$

Now we consider $\bar{\lambda}((x^{p^i})^n(z^{p^i})^m r)$ where $r = \sum \alpha_{\ell j}(x^{p^i})^{\ell}z^{j}$: $\bar{\lambda}(x^{np^i}z^{mp^i}r) = \bar{\lambda}(x^{np^i}z^{mp^i}\sum \alpha_{\ell j}(x^{p^i})^{\ell}z^{j})$

$$= \sum \alpha_{\ell j} [x^{np^{i}} z^{mp^{i}} \bar{\lambda} (x^{\ell p^{i}} z^{j}) + x^{\ell p^{i}} z^{j} \bar{\lambda} (x^{np^{i}} z^{mp^{i}})]$$

$$= x^{np^{i}} z^{mp^{i}} \bar{\lambda} (r) + r \bar{\lambda} (x^{np^{i}} z^{mp^{i}})$$

Now we prove (27) with $s(x^{p^i}, z^{p^i}) = \sum \alpha_{nm}(x^{p^i})^n (z^{p^i})^m$:

$$\bar{\lambda}(\mathbf{s}(\mathbf{x}^{\mathbf{p^i}}, \mathbf{z}^{\mathbf{p^i}}) \mathbf{r}) = \bar{\lambda}((\sum \alpha_{nm}(\mathbf{x}^{\mathbf{p^i}})^{\mathbf{n}}(\mathbf{z}^{\mathbf{p^i}})^{\mathbf{m}}) \mathbf{r})$$

$$= \sum \alpha_{nm} \bar{\lambda}(\mathbf{x}^{n\mathbf{p^i}} \mathbf{z}^{m\mathbf{p^i}} \mathbf{r})$$

$$= \sum \alpha_{nm}(\mathbf{x}^{n\mathbf{p^i}} \mathbf{z}^{m\mathbf{p^i}} \bar{\lambda}(\mathbf{r}) + \mathbf{r}\bar{\lambda}(\mathbf{x}^{n\mathbf{p^i}} \mathbf{z}^{m\mathbf{p^i}}))$$

$$= \sum \alpha_{nm} \mathbf{x}^{n\mathbf{p^i}} \mathbf{z}^{m\mathbf{p^i}} \bar{\lambda}(\mathbf{r}) + \mathbf{r}\bar{\lambda}(\sum \alpha_{nm} \mathbf{x}^{n\mathbf{p^i}} \mathbf{z}^{m\mathbf{p^i}})$$

$$= \mathbf{s}(\mathbf{x}^{\mathbf{p^i}}, \mathbf{z}^{\mathbf{p^i}}) \bar{\lambda}(\mathbf{r}) + \mathbf{r}\bar{\lambda}(\mathbf{s}(\mathbf{x}^{\mathbf{p^i}}, \mathbf{z}^{\mathbf{p^i}}).$$

Thus, we have proven (27). We use (27) to show

(28)
$$\frac{1}{\lambda} (s(x^{p^{i+1}}, z^{p^{i+1}}) r) = s(x^{p^{i+1}}, z^{p^{i+1}}) \lambda (r)$$

for $r \in k[x^{p^{i}}, Z]$. By (27) we have

$$\frac{1}{\lambda}(s(x^{p^{i+1}}, z^{p^{i+1}}) r) = s(x^{p^{i+1}}, z^{p^{i+1}}) \lambda(r) + r\lambda(s(x^{p^{i+1}}, z^{p^{i+1}}) .$$

Now

$$\bar{\lambda}(s(x^{p^{i+1}}, z^{p^{i+1}})) = \bar{\lambda}(\sum \alpha_{nm}(x^{p^{i+1}})^n(z^{p^{i+1}})^m)$$

$$= \sum \alpha_{nm} \bar{\lambda}(x^{np^{i+1}}z^{mp^{i+1}})$$

$$= \sum \alpha_{nm} z^{mp^{i+1}} \bar{\lambda}(x^{np^{i+1}})$$

$$= \sum \alpha_{nm} z^{mp^{i+1}} \bar{\delta}_{p^i}(x^{np^{i+1}})$$

$$= 0.$$

Thus,
$$\bar{\lambda}(s(x^{p^{i+1}}, z^{p^{i+1}})r) = s(x^{p^{i+1}}, z^{p^{i+1}}) \bar{\lambda}(r)$$
.

We now use (27) and (28) to show that $\overline{\lambda}((g)) \subseteq (g)$. Suppose $f(x^{p^i}, Z) \in (g)$. Then $f(x^{p^i}, Z) = k(x^{p^i}, Z)g(x^{p^N}, Z) = p^{i+1} \sum_{m=0}^{i-1} \sum_{\ell=0}^{p-1} s_{\ell m}(x^{p^i+1}, z^{p^i+1})(x^{p^i})^{\ell} z^m g(x^{p^N}, Z)$. Thus,

$$\bar{\lambda}(f(x^{p^{i}},Z)) = \bar{\lambda}(\sum_{m=0}^{p^{i+1}-1} \sum_{\ell=0}^{p-1} s_{\ell m} x^{\ell p^{i}} z^{m}g)$$

$$= \sum_{m=0}^{p^{i+1}-1} \sum_{\ell=0}^{p-1} \bar{\lambda}(s_{\ell m} x^{\ell p^{i}} z^{m}g)$$

$$\sum_{m=0}^{p^{i+1}-1} \sum_{\ell=0}^{p-1} s_{\ell m} \bar{\lambda}(x^{\ell p^{i}} z^{m}g)$$

by (28) since $s_{\ell m} \in k[X^{p^{i+1}}, Z^{p^{i+1}}]$. Thus, it suffices to show $\bar{\lambda}(X^{\ell p^i} Z^m g) \in (g)$ where $0 \le \ell < p$, $0 \le m \le p^{i+1}-1$. Let $m = np^i + j$ where $0 \le n < p$ and $j < p^i$. Then $\bar{\lambda}(X^{\ell p^i} Z^m g) = \bar{\lambda}(X^{\ell p^i} Z^{np^i} Z^j g) = X^{\ell p^i} Z^{np^i} \bar{\lambda}(Z^j g) + Z^j g \bar{\lambda}(X^{\ell p^i} Z^{np^i})$ by (27). So, it suffices to show $\bar{\lambda}(Z^j g) \in (g)$ for $0 \le j < p^i$.

Now by (23), $z^{j}g = \sum_{n=1}^{p^{i}} r_{jn}(x^{p^{N}}, z^{p^{i}})z^{n} + r_{j}(x^{p^{N}})$.
Thus,

 $\bar{\lambda}(z^{j}g) = \sum_{n=1}^{p^{i}} \bar{\lambda}(r_{jn}(x^{p^{N}}, z^{p^{i}})z^{n}) + \bar{\lambda}(r_{j}(x^{p^{N}}))$ $= \sum_{n=1}^{p^{i}} r_{jn}\bar{\lambda}(z^{n}) + \sum_{n=1}^{p^{i}} z^{n}\bar{\lambda}(r_{jn}) + \bar{\delta}_{p^{i}}(r_{j}(x^{p^{N}}))$

by (27). Using the notation of (24), we have

$$\begin{split} \bar{\lambda}(\mathbf{z}^{\mathbf{j}}\mathbf{g}) &= \sum_{n=1}^{\mathbf{p}^{\mathbf{i}}} \mathbf{r}_{\mathbf{j}n} \bar{\lambda}(\mathbf{z}^{n}) + \sum_{n=1}^{\mathbf{p}^{\mathbf{i}}} \mathbf{z}^{n} \bar{\lambda}(\sum_{\mathbf{k},\mathbf{m}} \alpha_{\mathbf{j}n\mathbf{k}\mathbf{m}} \mathbf{x}^{\mathbf{k}\mathbf{p}^{\mathbf{N}}} \mathbf{z}^{\mathbf{m}\mathbf{p}^{\mathbf{i}}}) + o \\ &= \sum_{n=1}^{\mathbf{p}^{\mathbf{i}}} \mathbf{r}_{\mathbf{j}n} \bar{\lambda}(\mathbf{z}^{n}) + \sum_{n=1}^{\mathbf{p}^{\mathbf{i}}} \mathbf{z}^{n} \sum_{\mathbf{k},\mathbf{m}} \alpha_{\mathbf{j}n\mathbf{k}\mathbf{m}} \mathbf{x}^{\mathbf{k}\mathbf{p}^{\mathbf{N}}} \bar{\lambda}(\mathbf{z}^{\mathbf{m}\mathbf{p}^{\mathbf{i}}}) \\ &= \sum_{n=1}^{\mathbf{p}^{\mathbf{i}}} \mathbf{r}_{\mathbf{j}n} \bar{\lambda}(\mathbf{z}^{n}) + \sum_{n=1}^{\mathbf{p}^{\mathbf{i}}} \mathbf{z}^{n} \sum_{\mathbf{k},\mathbf{m}} \alpha_{\mathbf{j}n\mathbf{k}\mathbf{m}} \mathbf{x}^{\mathbf{k}\mathbf{p}^{\mathbf{N}}} \mathbf{m}(\mathbf{z}^{\mathbf{p}^{\mathbf{i}}})^{\mathbf{m}-1} \bar{\lambda}(\mathbf{z}^{\mathbf{p}^{\mathbf{i}}}) \\ &= \sum_{n=1}^{\mathbf{p}^{\mathbf{i}}} \mathbf{r}_{\mathbf{j}n} \bar{\lambda}(\mathbf{z}^{n}) + \mathbf{r}_{\mathbf{j}}' \bar{\lambda}(\mathbf{z}^{\mathbf{p}^{\mathbf{i}}}) \\ &= \sum_{n=1}^{\mathbf{p}^{\mathbf{i}}} \bar{\mathbf{r}}_{\mathbf{j}n} \bar{\lambda}(\mathbf{z}^{n}) \\ &= \sum_{n=1}^{\mathbf{p}^{\mathbf{i}}} \bar{\mathbf{r}}_{\mathbf{j}n} \bar{\lambda}(\mathbf{z}^{n}) \\ &= \sum_{n=1}^{\mathbf{p}^{\mathbf{i}}} \bar{\mathbf{r}}_{\mathbf{j}n} \bar{\lambda}(\mathbf{z}^{n}) \end{split}$$

Now $\pi(\sum_{n=1}^{p^{i}} \bar{r}_{jn}^{T} T_{n}) = \sum_{n=1}^{p^{i}} \bar{r}_{jn}^{T} (x^{p^{N}}, z) t_{n} = 0$. Thus,

 $\bar{\lambda}(\mathbf{Z}^{\mathbf{j}}\mathbf{g}) \in \ker \pi = (\mathbf{g})$. Thus, we have shown that $\bar{\lambda}(\mathbf{g}) \subseteq (\mathbf{g})$.

Now $\bar{\lambda}$ induces a p^i -th order derivation λ on the ring $k[x^p,z]$ as follows:

$$\lambda(a) = \pi \overline{\lambda}(A)$$
 where $\pi A = a$

or $\lambda(A + (g)) = \overline{\lambda}(A) + (g)$ where $A \in k[X^p]$, Z]. If A + (g) = B + (g) then $A - B \in (g)$; $\overline{\lambda}(A) - \overline{\lambda}(B) = \overline{\lambda}(A - B) \in (g)$ since $\overline{\lambda}(g) \subseteq (g)$. Thus, $\lambda(A + (g)) = \lambda(B + (g))$ and so λ is well defined.

We observe that $\lambda(z^{j}) = t_{j}$:

$$\lambda(z^{j}) = \lambda(z^{j} + (g)) = \bar{\lambda}(z^{j}) + (g) = T_{j} + (g) = t_{j}$$

for $j = 1, \dots, p^{i}$. Also, we have $\lambda((x^{p^{i}})^{\ell}) = \delta_{p^{i}}((x^{p^{i}})^{\ell})$ for all ℓ . For, $\lambda((x^{p^{i}})^{\ell}) = \lambda((x^{p^{i}})^{\ell} + (g)) = \overline{\lambda}((x^{p^{i}})^{\ell}) + (g) = \overline{\delta}_{p^{i}}((x^{p^{i}})^{\ell}) + (g) = \delta_{p^{i}}((x^{p^{i}})^{\ell})$.

Thus, λ is a p^i -th order derivation from $k[x^{p^i},z]$ to $k[x^{p^i},z]$. So, $\lambda \in \operatorname{Der}_k^{p^i}(k(x^{p^i},z))$ and λ agrees with δ on $k(x^{p^i})$. This is a contradiction since δ in the has a unique extension to $k(x^{p^i},z)$. Hence, the determinant in (25), $|(\bar{r}_{in})|$, is non-zero.

Multiplying (23) by x^m , $m = 1, \dots, p^i - 1$, gives $x^m z^j g = \sum_{n=1}^{p^i} r_{jn} (x^{p^N}, z^{p^i}) x^m z^j + x^m r_j (x^{p^N}).$ These give rise to the following equations in k(x,z):

(29)

$$0 = \delta_{p_{i}}(x^{m}z^{j}g)$$

$$= \sum_{n=1}^{p_{i}} r_{jn} \delta_{p_{i}}(x^{m}z^{n}) + \sum_{n=1}^{p_{i}} x^{m}z^{n} \delta_{p_{i}}(r_{jn}) + r_{j}(x^{p_{i}}) \delta_{p_{i}}(x^{m})$$

$$= \sum_{n=1}^{p_{i}} r_{jn} \delta_{p_{i}}(x^{m}z^{n}) + x^{m} \sum_{n=1}^{p_{i}} z^{n} \delta_{p_{i}}(r_{jn}) + 0$$

$$= \sum_{n=1}^{p_{i}} r_{jn} \delta_{p_{i}}(x^{m}z^{n}) + x^{m}r_{j}^{\ell} \delta_{p_{i}}(z^{p_{i}}) .$$

$$Now \delta_{p_{i}}(x^{m}z^{p_{i}}) = x^{m} \delta_{p_{i}}(z^{p_{i}}) + z^{p_{i}} \delta_{p_{i}}(x^{m}) = x^{m} \delta_{p_{i}}(z^{p_{i}});$$

$$\delta_{p_{i}}(x^{m}) = 0 \text{ since } m < p_{i}^{i}. \text{ So, (29) can be written as }$$

$$0 = \sum_{n=1}^{p^{i}} r_{jn} \delta_{p^{i}} (x^{m} z^{n}) + r'_{j} \delta_{p^{i}} (x^{m} z^{p^{i}})$$
$$= \sum_{n=1}^{p^{i}} \bar{r}_{jn} \delta_{p^{i}} (x^{m} z^{n}).$$

Since $|(\bar{r}_{jn})| \neq 0$, $\delta_{p^{i}}(x^{m}z^{n}) = 0$ for $0 \leq m < p^{i}$, $1 \leq n \leq p^{i}$.

Now we consider the p^i -1 order derivation $\begin{bmatrix} \delta_{p^i}, z \end{bmatrix}$ given by $\begin{bmatrix} \delta_{p^i}, z \end{bmatrix}(r) = \delta_{p^i}(zr) - r\delta_{p^i}(z) - z\delta_{p^i}(r)$ p^i p^i for some $r_j \in k(x,z)$. Evaluating $\begin{bmatrix} \delta_{p^i}, z \end{bmatrix} = \sum_{j=1}^{p^i-1} r_j \delta_j$ for p^i p^i

$$0 = \begin{bmatrix} \delta_{i}, z \end{bmatrix}(r)$$

$$= \delta_{i}(zr) - r\delta_{i}(z) - z\delta_{i}(r)$$

$$= \delta_{i}(zr) - z\delta_{i}(r).$$

Thus, $\delta_{p}iz = z\delta_{p}i$ for i < N. QED

We now prove a special case of the main theorem. Namely, if $\delta_n\in \operatorname{Der}^n_k(R)$ for all n, then k is an integral domain. If $\delta_n\in \operatorname{Der}^n_k(R)$ for all n, then

 $\begin{array}{lll} \operatorname{Der}_{k}^{n}(R) &=& \langle \delta_{1}, \cdots, \delta_{n} \rangle. & \text{Also Der}(R) &=& \operatorname{der}(R) & \text{since} \\ \delta_{n} &=& \delta_{t}^{\alpha} / \alpha_{t}! & \cdots & \delta_{1}^{\alpha} / \alpha_{0}! & \text{where the p-adic expansion of} \\ n & \text{is given by } n &=& \sum_{i=0}^{t} \alpha_{i} p^{i}. & \text{Thus, } \delta_{n} &\in \operatorname{Der}_{k}^{n}(R) & \text{for} \\ & \text{all } n & \text{implies that both hypotheses of the main theorem} \\ & \text{are satisfied. That is, } \operatorname{Der}_{k}^{n}(R) & \text{is free for all } n & \text{and} \\ & \operatorname{Der}(R) &=& \operatorname{der}(R). & \end{array}$

Theorem 3.6: If $\delta_n \in \operatorname{Der}_k^n(R)$ for all n, then $\stackrel{\wedge}{R}$ is an integral domain.

Proof: We define a sequence of elements in R as follows:

(30)
$$z_1 = y + \sum_{i=1}^{p-1} (-1)^i \frac{\delta_1^i(y) x^i}{i!}$$

$$z_n = z_{n-1} + \sum_{i=1}^{p-1} (-1)^i \frac{\delta_1^{i-1}(z_{n-1}) x^{ip^{n-1}}}{i!}$$

Consider z_n . Since K is a separable algebraic extension of k(x) and since $z_n \in K$, z_n satisfies a minimal polynomial g(Z) with coefficients in k(x) such that $g_Z \neq 0$. By multiplying g by some $d(x) \in k[x]$, g may be assumed to be in k[x][Z]. If g factors over k[X,Z] so that $g = g_1g_2$, then either g_1 or g_2 is in k[X] since $\deg_Z g = \deg_Z g_1 + \deg_Z g_2$ and g is the polynomial of minimal Z-degree which z_n satisfies.

Thus, g may be assumed to be irreducible over k. Thus, for each z_n there exists an irreducible polynomial g(X,Z) with $g(x,z_n)=0$ and $g_Z(x,z_n)\neq 0$.

We shall show that $\delta_p j^{\mathbf{z}} n = \mathbf{z}_n \delta_p j$ for j < n . We first consider δ_1 .

$$\begin{split} \delta_{1}(\mathbf{z}_{1}) &= \delta_{1}(\mathbf{y}) - \delta_{1}(\mathbf{y}) - \delta_{1}(\mathbf{y}) \times + \delta_{1}(\mathbf{y}) \times + \cdots \\ &+ (-1)^{\mathbf{p}-2} \delta_{1}^{\mathbf{p}-1}(\mathbf{y}) \times^{\mathbf{p}-2} / (\mathbf{p}-2) : + (-1)^{\mathbf{p}-1} \delta_{1}^{\mathbf{p}-1}(\mathbf{y}) \times^{\mathbf{p}-2} / (\mathbf{p}-2) : \\ &+ (-1)^{\mathbf{p}-1} \delta_{1}^{\mathbf{p}}(\mathbf{y}) \times^{\mathbf{p}-1} / (\mathbf{p}-1) : \\ &= (-1)^{\mathbf{p}-1} \delta_{1}^{\mathbf{p}}(\mathbf{y}) \times^{\mathbf{p}-1} / (\mathbf{p}-1) : \\ &= 0 \end{split}$$

since $\delta_1^{\mathbf{p}}(\mathbf{y}) = 0$ by (17). Thus, by Proposition 3.5, $\delta_1 \mathbf{z}_1 = \mathbf{z}_1 \delta_1$.

$$\delta_{p^{j}}(z_{n}) = \delta_{p^{j}}(z_{n-1}) + \sum_{i=1}^{p-1} (-1)^{i} \frac{\delta_{p^{n-1}}^{i} \delta_{p^{j}}(z_{n-1}) \times^{ip^{n-1}}}{i!}$$

Thus, $\delta_{p^{j}}(z_{n}) = 0$ for j < n. Hence by Proposition 3.5, $\delta_{p^{j}}z_{n} = z_{n}\delta_{p^{j}}$ for j < n.

Now z_n is a Cauchy sequence since $z_{n+1}-z_n\in \mathbb{R}^p$. Let $z=\lim z_n; z\in \stackrel{\wedge}{R}$. Now δ is a continuous function on $\stackrel{\wedge}{R}$. Thus for $r\in \stackrel{\wedge}{R}$ with $r=\lim r_n,r_n\in R$, we have

$$\delta_{pj}(zr) = \delta_{pj}(\lim z_n \lim r_n)$$

$$= \delta_{pj}(\lim z_n r_n)$$

$$= \lim \delta_{pj}(z_n r_n)$$

$$= \lim (z_n \delta_{pj}(r_n))$$

$$= \lim z_n \lim \delta_{pj}(r_n)$$

$$= z \delta_{pj}(\lim r_n)$$

$$= z \delta_{pj}(r).$$

Thus, $\delta_{p^j} z = z \delta_{p^j}$ for all j and hence, $\delta_{i^j} z = z \delta_{i^j}$ for all i.

Now $\mathbf{z} = \mathbf{z_1} + (\mathbf{z_2} - \mathbf{z_1}) + \cdots + (\mathbf{z_n} - \mathbf{z_{n-1}}) + \cdots$; so, $\mathbf{z} = \mathbf{y} + \sum_{i>0} \alpha_{ij} \mathbf{x^i} \mathbf{y^j}$. Hence, $\mathbf{y} = \mathbf{z} - \sum_{i>0} \alpha_{ij} \mathbf{x^i} \mathbf{y^j}$. We substitute for \mathbf{y} on the right hand side of the equation; thus, $\mathbf{y} = \mathbf{z} - \sum_{i>0} \alpha_{ij} \mathbf{x^i} (\mathbf{z} - \sum_{i>0} \alpha_{ij} \mathbf{x^i} \mathbf{y^j})$. Continue

substituting for y. This gives that y may be written as $y = \sum \beta_{ij} x^i z^j$ and from this follows that every element $r \in \hat{R}$ is of the form $r = \sum \mu_{ij} x^i z^j$.

Suppose r is a zero divisor in $\hat{\mathbb{R}}$. Then $\mathbf{r} = \sum \alpha_{\mathbf{i}\mathbf{j}} \mathbf{x}^{\mathbf{i}} \mathbf{z}^{\mathbf{j}}$ with $\alpha_{\mathbf{i}\mathbf{j}} \in \mathbf{k}$ and $\alpha_{\mathbf{00}} = \mathbf{0}$. By Theorem 3.1, $\delta_{\mathbf{1}}(\mathbf{r})$ is a zero divisor. Now $\delta_{\mathbf{1}}(\mathbf{r}) = \alpha_{\mathbf{10}} + \sum \alpha_{\mathbf{i}\mathbf{j}} \delta_{\mathbf{1}}(\mathbf{x}^{\mathbf{i}} \mathbf{z}^{\mathbf{j}})$. $\delta_{\mathbf{1}}(\mathbf{x}^{\mathbf{i}} \mathbf{z}^{\mathbf{j}}) = \mathbf{z}^{\mathbf{j}} \delta_{\mathbf{1}}(\mathbf{x}^{\mathbf{i}}) \in (\mathbf{x}, \mathbf{y})$ for $\mathbf{i} + \mathbf{j} \geq \mathbf{2}$, so, $\delta_{\mathbf{1}}(\mathbf{r})$ is a unit unless $\alpha_{\mathbf{10}} = \mathbf{0}$. Hence, $\alpha_{\mathbf{10}} = \mathbf{0}$. Suppose $\alpha_{\mathbf{i0}} = \mathbf{0}$ for $\mathbf{i} < \mathbf{n}$. Then, $\delta_{\mathbf{n}}(\mathbf{r}) = \alpha_{\mathbf{n0}} + \sum \alpha_{\mathbf{i}\mathbf{j}} \delta_{\mathbf{n}}(\mathbf{x}^{\mathbf{i}} \mathbf{z}^{\mathbf{j}})$ is a zero divisor. Since $\delta_{\mathbf{n}}(\mathbf{x}^{\mathbf{i}} \mathbf{z}^{\mathbf{j}}) \in (\mathbf{x}, \mathbf{y})$, $\alpha_{\mathbf{n0}} = \mathbf{0}$. Hence, we have shown that $\alpha_{\mathbf{i0}} = \mathbf{0}$ for all \mathbf{i} . Thus, elements of the form $\sum \alpha_{\mathbf{i}\mathbf{j}} \mathbf{x}^{\mathbf{i}} \mathbf{z}^{\mathbf{j}}$ with $\alpha_{\mathbf{10}} \neq \mathbf{0}$ for some I are not zero divisors in $\hat{\mathbb{R}}$.

Now we suppose that rs=0 with $r=\sum \alpha_{ij}x^iz^j$ and $s=\sum \beta_{ij}x^iz^j$. Then writing $r=z^{\ell}\sum_{j\geq \ell}\alpha_{ij}x^iz^{j-\ell}$ with $\alpha_{i\ell}\neq 0$ for some I, the above shows that $\sum\limits_{j\geq \ell}\alpha_{ij}x^iz^{j-\ell}$ is not a zero divisor. Note that if r is a zero divisor, but not equal to zero, then ℓ must be greater than zero. Likewise $s=z^m\sum_{j\geq m}\beta_{ij}x^iz^{j-m}$ with $\beta_{i\ell}\neq 0$ and $\sum\limits_{j\geq m}\beta_{ij}x^iz^{j-m}$ is not a zero divisor. Hence, $z^{\ell}z^m=0$ and since k has no nilpotent elements, k and k is an integral domain. QED

Theorem 3.7: If $Der_k^n(R)$ is a free R-module for all n and if Der(R) = der(R), then R is an integral domain.

Proof: Since $\operatorname{Der}_k^1(R)$ is a free R-module, by Theorem 1.8 there exists a derivation λ_1 and a monomial x_1 such that $\lambda_1(x_1)=1$. Because λ_1 is a 1st order derivation, x_1 can only be x or y. If $f_X(x,y) \neq 0$, then the curve does not distinguish between x and y since $f_y(x,y) \neq 0$. Thus, without loss of generality we may assume $x_1 = x$. If $f_X(x,y) = 0$, then $f_X(x,y)\lambda_1(x) + f_Y(x,y)\lambda_1(y) = 0$. Hence, $\lambda_1(y) = 0$ and so, $x_1 = x$. Hence, we shall assume $x_1 = x$. Further, since λ_1 and δ_1 agree on k(x) and since both extend uniquely to k(x,y), $\lambda_1 = \delta_1$.

Now if $\delta_n \in \operatorname{Der}^n_k(R)$ for all n, then by Theorem 3.6 \mathbb{R}^n is an integral domain. Thus, the only case we need consider is if some $\delta_n \notin \operatorname{Der}^n_k(R)$. Since $\delta_n = \delta_t^{\alpha} t / \alpha_t! \circ \cdots \circ \delta_1^{\alpha} / \alpha_0!, \text{ when } n = \sum_{i=0}^t \alpha_i p^i, \text{ there } n$ must exist a positive integer n such that $\delta_i \colon R \to R$ for $i < p^n$, but $\delta_n \notin \operatorname{Der}^p_k(R)$.

If $\delta_1(y) = (\alpha+s)/(1+t)$ where $\alpha \neq 0$, $\alpha \in k$, and $s,t \in m$, let $y' = y - \alpha x$. Note that $y' \neq 0$ since R is not regular. Now $\delta_1(y') = (\alpha+s)/(1+t) - \alpha = (s-\alpha t)/(1+t) \in m$. Then since k[x,y] = k[x,y'] and (x,y) = (x,y'), $(k[x,y'])_{(x,y')} = R$. Let $g(x,y') = f(x,y' + \alpha x)$. Then g(x,y') = 0. Also,

 $g_{Y}'(x,y') = f_{Y}'(x,y'+\alpha x) = f_{Y}(x,y) dY/dY' =$ $f_{Y}(x,y) d(Y'+\alpha X)/dY' = f_{Y}(x,y) \neq 0$ by the chain rule.

Thus $g_{Y}'(x,y') \neq 0$. Thus we may assume that $\delta_{1}(y) \in m$.

We have then the following assumptions on R:

 $\begin{array}{lll} \text{Der}_{\mathbf{k}}^{\mathbf{n}}(\mathbf{R}) & \text{is a free R-module for all } & \mathbf{n} \\ & \text{Der}(\mathbf{R}) & = \text{der}(\mathbf{R}) \\ & & \mathbf{f}_{\mathbf{Y}}(\mathbf{x},\mathbf{y}) \neq \mathbf{0} \\ & & \text{Der}_{\mathbf{k}}^{\mathbf{l}}(\mathbf{R}) & = < \delta_{\mathbf{l}} > \\ & & & \delta_{\mathbf{l}}(\mathbf{y}) \in \mathbf{m}. \end{array}$

Now we define \mathbf{z}_n for $n \leq N$ as we did in (30). That is,

$$z_{1} = y + \sum_{i=1}^{p-1} (-1)^{i} \frac{\delta_{1}^{i}(y) x^{i}}{i!}$$

$$z_{n} = z_{n-1} + \sum_{i=1}^{p-1} (-1)^{i} \frac{\delta_{1}^{i}(y) x^{i}}{p^{n-1}}$$

Let $\mathbf{z} = \mathbf{z_N}$. As in the previous theorem, $\delta_{\mathbf{i}}(\mathbf{z}) = 0$ for $\mathbf{i} < \mathbf{p^N}$. Thus, by Proposition 3.5, there exists an irreducible polynomial $\mathbf{g}(\mathbf{x^p^N},\mathbf{z})$ such that $\mathbf{g}(\mathbf{x^p^N},\mathbf{z}) = 0$ and $\mathbf{g_Z}(\mathbf{x^p^N},\mathbf{z}) \neq 0$. Also, $\delta_{\mathbf{i}}\mathbf{z} = \mathbf{z}\delta_{\mathbf{i}}$ for $\mathbf{i} < \mathbf{p^N}$. We observe that $\mathbf{z_1} = \mathbf{y} + \mathbf{xr_1}(\mathbf{x},\mathbf{y})$ with $\mathbf{r_1}(\mathbf{x},\mathbf{y}) \in \mathbf{m}$ since $\delta_{\mathbf{1}}(\mathbf{y}) \in \mathbf{m}$. Thus,

(32)
$$z = y + xr(x,y)$$
 for some $r(x,y) \in (x,y)$.

We now consider the ring $R_1 = (k[x,z])_{(x,z)}$. We shall show that $R_1 \subseteq R$. Let $s(x,z)/t(x,z) \in R_1$, with $s,t \in k[x,z]$ and $t \notin (x,z)$. Since $k[x,z] \subseteq k(x,y)$, $s,t \in k[x,y]$. $t \notin (x,z)$ implies that $t = \alpha + h(x,z)$ with α a non-zero constant in k and $h(x,z) \in (x,z)$. Thus, $h(x,z) \in (x,y)$ since $(x,z) \subseteq (x,y)$ and so, t is a non-unit in R. Hence, $s/t \in R$. Thus, $R_1 \subseteq R$.

We now show that $R_1 = R$. Since z = y + xr(x,y), y = z - xr(x,y). Substituting for y on the right hand side of the equation and continuing this process gives that $y = \sum \alpha_{ij} x^i z^j$ for some $\alpha_{ij} \in k$. Thus, $y \in R_1$ and so, $R_1 = R$.

Let $K_1 = k(x,z)$. K_1 is a separable algebraic extension of k(x) since $g_Z(x^p,z) \neq 0$. Thus, δ_n extends uniquely to K_1 for all n. Since $\delta_i z = z \delta_i$ for $i < p^N$, $\delta_i : k[x,z] \rightarrow k[x,z]$. Hence, $\delta_i \in \operatorname{Der}_k^i(R_1)$ for all $i < p^N$. In fact, $\operatorname{Der}_k^n(R_1) = \langle \delta_1, \cdots, \delta_n \rangle$ for $n < p^N$.

We shall show that $\operatorname{Der}_k^n(R_1)$ is a free R_1 -module for all n. In order to do this, we shall need to know that there exist derivations λ_i and monomials $x_i \in k[x,z] \subseteq R_1 \quad \text{such that} \quad \operatorname{Der}_k^n(R) = \langle \ \lambda_1, \cdots, \ \lambda_n \ \rangle \quad \text{and}$ $\lambda_i(x_j) = \left\{ \begin{array}{ccc} 0 & j < i \\ 1 & j = i \end{array} \right. \quad \text{Thus, we show this first.} \quad \text{For}$ $i < p^N, \quad \text{we let} \quad \lambda_i = \delta_i \quad \text{and} \quad x_i = x^i. \quad \text{Then clearly we}$ have satisfied the desired requirements for λ_i and x_i .

Now consider $\operatorname{Der}_k^{p^N}(R)$. By Theorem 1.6 $\operatorname{Der}_k^{p^N}(R) = \operatorname{Der}_k^{p^N-1}(R) \oplus R\gamma = \langle \delta_1, \cdots, \delta_{p^N-1} \rangle \oplus R\gamma$ where $\gamma \in \operatorname{Der}_k^{p^N}(R)$. Further, there exists an element $r \in R$ such that $\gamma(r) = 1$. Now $r \in R \subseteq R = R_1$ so, $r = \sum_{0 \le i+j} \alpha_{ij} x^i z^j.$ Thus, $1 = \gamma(r) = \sum_{1 \le i+j} \alpha_{ij} \gamma(x^i z^j).$ This implies that $\gamma(x^I z^J)$ must be a unit in R for some I and J. Let $\lambda_{p^N} = (1/\gamma(x^I z^J))\gamma$. Then $\operatorname{Der}_k^{p^N}(R) = \langle \lambda_1, \cdots, \lambda_{p^N} \rangle \text{ where } \lambda_i = \delta_i \text{ for } i < p^N.$ And we have shown that there is a monomial $x_{p^N} \in k[x,z] \subseteq R_1$ such that $\lambda_{p^N}(x_p^N) = 1.$

We now proceed by induction. Suppose $\operatorname{Der}_k^{n-1}(R) = \langle \lambda_1, \cdots, \lambda_{n-1} \rangle$ and that there are monomials $x_1, \cdots, x_{n-1} \in R_1$ such that $\lambda_i(x_j) = \left\{ \begin{array}{l} 0 & j < i \\ 1 & j = i \end{array} \right.$ Again we are taking $\lambda_i = \delta_i$ and $x_i = x^i$ for $i < p^N$. Now by Theorem 1.6, $\operatorname{Der}_k^n(R) = \langle \lambda_1, \cdots, \lambda_{n-1}, \gamma \rangle$ where $\gamma(x_i) = 0$ for i < n and $\gamma(r) = 1$ for some $r \in R$. As before $r = \sum \alpha_{ij} x^i z^j$ and so, $\gamma(x^I z^J)$ is an unit in R for some I and J. Thus there exists a monomial $x_n \in k[x,z]$ such that $\gamma(x_n)$ is a unit in R. Let $\lambda_n = \gamma/\gamma(x_n)$. Then $\operatorname{Der}_k^n(R) = \langle \lambda_1, \cdots, \lambda_n \rangle$ and $\lambda_n(x_i) = \left\{ \begin{array}{l} 0 & i < n \\ 1 & i = n \end{array} \right.$ with x_n a monomial.

We want to show that the λ_i 's which have just been found are in fact derivations from R_1 to R_1 . In order to do this we shall need to know that $R \cap k(x,z) = R_1$. To see that this is the case we consider the following: $R_1 \subseteq k(x,z) \cap R \subseteq k(x,z) \cap \stackrel{\wedge}{R} = k(x,z) \cap \stackrel{\wedge}{R}_1$. Since $\bigotimes_{R_1} \stackrel{\wedge}{R}_1$ is exact [Cor. 17.11,p.57;5], $k(x,z) \cap \stackrel{\wedge}{R}_1 = R_1$ [Theorem 8.4,p.59;5]. Hence, $R_1 = k(x,z) \cap R$.

As we have already seen, $\lambda_1 = \delta_1 \colon R_1 \to R_1$. Suppose inductively that $\lambda_1, \cdots, \lambda_{n-1} \colon R_1 \to R_1$. Then $\lambda_i \colon K_1 \to K_1$ for i < n. Now $\lambda_1, \cdots, \lambda_n$ are a basis for $\operatorname{Der}^n_k(K)$ and $\delta_n \in \operatorname{Der}^n_k(K)$ so, $\delta_n = \sum\limits_{i=1}^n r_i \lambda_i$ with $r_i \in K$ and $r_n \neq 0$. We show that $r_i \in K_1$. Since $\delta_n \in \operatorname{Der}^n_k(K_1)$, $\delta_n(x_1) = r_1 \in K_1$ (in fact, $r_1 = 0$). Suppose $r_1, \cdots, r_{j-1} \in K_1$. Then $\delta_n(x_j) = \sum\limits_{i=1}^n r_i \lambda_i(x_j) = j$ $\sum\limits_{i=1}^n r_i \lambda_i(x_j)$ which implies that $r_j = \delta_n(x_j) - j$ $\sum\limits_{i=1}^{j-1} r_i \lambda_i(x_j)$ which implies that $r_j = \delta_n(x_j) - j$ $\sum\limits_{i=1}^{j-1} r_i \lambda_i(x_j) \in K_1$. Thus, $r_i \in K_1$ for $i = 1, \cdots, n$. Now $\lambda_n = \delta_n/r_n - \sum\limits_{i=1}^{n-1} r_i \lambda_i/r_n$; $\lambda_n \colon R_1 \to R$ while $\delta_n/r_n - \sum\limits_{i=1}^{n-1} r_i \lambda_i/r_n$; $R_1 \to K_1$. Thus, $\lambda_n \colon R_1 \to R \cap K_1 = R_1$.

Thus, for all i, $\lambda_i \in \operatorname{Der}_k^i(R_1)$. Also, there exist monomials $x_i \in R_1$ such that $\lambda_i(x_j) = \left\{ \begin{array}{l} 0 & j < i \\ 1 & j = i \end{array} \right.$ Thus, by Theorem 1.5, $\operatorname{Der}_k^n(R_1)$ is a free R_1 -module generated by $\lambda_1, \cdots, \lambda_n$; this holds for all n. Further, we have that $\lambda_i = \delta_i$ and $x_i = x^i$ for $i < p^N$.

By assumption $\delta_{\mathbf{N}}: \mathbb{R} \not\longrightarrow \mathbb{R}$. We want to show the same is true for \mathbb{R}_1 ; that is, $\delta_{\mathbf{p}}N: \mathbb{R}_1 \not\longrightarrow \mathbb{R}_1$. Since $\delta_1, \cdots, \delta_{\mathbf{p}}N$ are a free basis for $\mathrm{Der}_{\mathbf{k}}^{\mathbf{p}N}(\mathbb{K})$, $p^{\mathbf{p}N-1} = r\delta_{\mathbf{p}}N + \sum_{i=1}^{p^N-1} r_i\delta_i. \quad \mathrm{But} \quad \lambda_{\mathbf{p}}N(\mathbf{x}^i) = \lambda_{\mathbf{p}}N(\mathbf{x}_i) = 0 \quad \mathrm{for} \quad i < \mathbf{p}^N, \quad \mathrm{so}, \quad r_i = 0 \quad \mathrm{for} \quad i < \mathbf{p}^N. \quad \mathrm{Thus}, \quad \lambda_{\mathbf{p}}N = r\delta_{\mathbf{p}}N. \quad \mathrm{Now} \quad \mathbf{r} = \lambda_{\mathbf{p}}N(\mathbf{x}^{\mathbf{p}}) \in \mathbb{R}. \quad \mathrm{Since} \quad \delta_{\mathbf{p}}N: \, \mathbb{R} \not\longrightarrow \mathbb{R}, \quad \mathbf{r} \in (\mathbf{x},\mathbf{y}).$ Also, $1 = \lambda_{\mathbf{p}}N(\mathbf{x}_{\mathbf{p}}N) = r\delta_{\mathbf{p}}N(\mathbf{x}_{\mathbf{p}}N) \quad \mathrm{so}, \quad \delta_{\mathbf{p}}N(\mathbf{x}_{\mathbf{p}}N) = 1/r \notin \mathbb{R}.$ Now $\mathbf{x}_{\mathbf{p}}N \in \mathbb{R}_1$; if $\delta_{\mathbf{p}}N: \, \mathbb{R}_1 \xrightarrow{\mathbf{R}_1}$, then $1/r = \delta_{\mathbf{p}}N(\mathbf{x}_{\mathbf{p}}N) \in \mathbb{R}_1$ which is a contradiction. Thus, $\delta_{\mathbf{p}}N: \, \mathbb{R}_1 \not\longrightarrow \mathbb{R}_1$.

And further we have

(33)
$$\lambda_{pN} = r\delta_{pN} \quad \text{where} \quad r = \lambda_{pN}(x^{pN}) \in (x,z).$$

Finally for R_1 , we show that $Der(R_1) = der(R_1)$. It suffices to show λ_n is generated by p^i -th order derivations for all n. Define $\gamma_m \in Der^m_k(R)$ as follows:

(34)
$$\gamma_{m} = \lambda_{p}^{\alpha_{M}}/\alpha_{M!} \cdots \lambda_{1}^{\alpha_{O}}/\alpha_{0!}$$
 where $m = \sum_{i=0}^{M} \alpha_{i}p^{i}$.

By Theorem 3.2 $\operatorname{Der}_{k}^{n}(R) = \langle \gamma_{1}, \dots, \gamma_{n} \rangle$. So,

 $\begin{array}{lll} \lambda_n = \sum\limits_{i=1}^n \ r_i \gamma_i & \text{with} & r_i \in R. & \text{On the other hand, it is clear} \\ \\ \text{that} & \gamma_n \in \text{Der}_k^n(R_1) & \text{so,} & \gamma_n = \sum\limits_{i=1}^n \ t_i \lambda_i & \text{with} & t_i \in R_1. & \text{By} \end{array}$

Corollary 3.3 r_n and t_n are units in R. Thus, $r_n = 1/t_n \in K_1 \cap R = R_1 \text{ and so, } t_n \text{ is a unit in } R_1.$ So, $\lambda_n = \gamma_n/t_n - \sum_{i=1}^{n-1} t_i \lambda_i/t_n. \text{ Assume by induction that } for i < n, \\ \lambda_i = \sum_{j=1}^{i} s_{ij} \gamma_j \text{ with } s_{ij} \in R_1. \text{ We can do } this since \\ \lambda_1 = \gamma_1. \text{ Then } \\ \lambda_n = \gamma_n/t_n - \sum_{i=1}^{n-1} t_i (\sum_{j=1}^{i} s_{ij} \gamma_j)/t_n. \text{ Hence, } \\ \lambda_n - (1/t_n) \lambda_p^{\alpha_t} / \alpha_t! \cdots \lambda_1^{\alpha_1} / \alpha_0! \in \text{Der}_k^{n-1}(R_1). \text{ Thus, } \lambda_n \\ \text{is generated by composites of } p^i - \text{th order derivations.} \\ \text{Hence } \text{Der}(R_1) = \text{der}(R_1).$

We have shown then that the following hold for R_1 :

Let $R_2 = (k[x^p^N, z])$. We still have (x^p^N, z) $g(x^p^N, z) = 0$ and $g_Z(x^p^N, z) \neq 0$. Just as R_1 was

contained in R so too is $R_2 \subseteq R_1$. We shall show that all the assumptions on R which are given in (31) also hold for R_2 . Before we do this however, we observe that if R_2 is a domain then so is $R = R_1$. Suppose R is not a domain. Then there exists $r \neq 0$ and $s \neq 0$ such that rs = 0. By Chevalley's Theorem R has no nilpotent elements so, $r^{p^N} \neq 0$ and $s^{p^N} \neq 0$. But $r^p s^p = 0$ and $r^p r^p s^p \in R_2$. Thus, if R_2 is a domain, either r = 0 or s = 0.

An important relationship between the derivations λ_n and R_2 is that $\lambda_i(r) = 0$ and $\lambda_i r = r \lambda_i$ when $r \in R_2$ and $i < p^N$. Also, if $p^N \not \mid n$, then $\gamma_n(r) = 0$ for $r \in R_2$. To see this we write n in its p-adic expansion as $n = \sum_{i=0}^{n} \alpha_i p^i$. Since $p^N \not \mid n$, some $\alpha_i \neq 0$ for i < N. Let $I < p^N$ be the smallest i such that $\alpha_I \neq 0$. Then $\gamma_n = \lambda_t^{\alpha_i t} / \alpha_t! \cdots \lambda_p^{\alpha_i I} / \alpha_i!$. Since $\lambda_i = \delta_i$ for $\lambda_i = 0$ for $\lambda_i = 0$ for $\lambda_i = 0$. This relationship also holds for $\lambda_i \in Der_k^n(K)$. That is, if $p^N \not \mid n$, then $\lambda_i(r) = 0$ for $r \in R_2$.

Before we study R_2 further, we make an observation about zero divisors in R. For any $r \in (x,y)^{\wedge}R$, we write r as

(36)
$$r = \sum_{i=1}^{p^{N}-1} \beta_{i} x^{i} + \sum_{i=0}^{p^{N}-1} r_{i} x^{i}$$

where $\beta_i \in k$ and $r_i \in (x^p^N, z) k[[x^p^N, z]]$; we can do this since $k = k_1$. If r is a zero divisor, then by Lemma 3.1 $\delta_n(r)$ is also a zero divisor for $n < p^N$. Since δ_n is linear with respect to R_2 , we have

$$\delta_{\mathbf{n}}(\mathbf{r}) = \beta_{\mathbf{n}} + \sum_{\mathbf{i}=\mathbf{n}+1}^{\mathbf{p}^{\mathbf{N}}-1} \beta_{\mathbf{i}} \delta_{\mathbf{n}}(\mathbf{x}^{\mathbf{i}}) + \sum_{\mathbf{i}=\mathbf{0}}^{\mathbf{p}^{\mathbf{N}}-1} \mathbf{r}_{\mathbf{i}} \delta_{\mathbf{n}}(\mathbf{x}^{\mathbf{i}}).$$

Since all terms but the first are in $(x,y)^{\bigwedge}$, β_n must zero. Thus, $\beta_i = 0$ for $i = 1, \dots, p^N-1$. Hence, a zero divisor in \bigcap^{\bigwedge} has the form

(37)
$$\mathbf{r} = \sum_{i=0}^{\mathbf{N}-1} \mathbf{r}_{i} \mathbf{x}^{i}$$

where $r_i \in (x^{p^N}, z)k[[x^{p^N}, z]]$.

We shall show that the derivations γ_{np}^{N} , $n=1,2,\cdots$, p_{np}^{N} give rise to generators which freely generate $\operatorname{Der}_{k}^{n}(R_{2})$ for all n. We make use of the fact that δ_{np}^{N} is an p_{np}^{N} n-th order derivation on $k[x^{p}]$ [I, Theorem 14; 6] and that δ_{np}^{N} extends uniquely to $k(x^{p},z)=K_{2}$ and is an n-th order derivation on K_{2} .

Now consider γ_{np}^{N} ; $\gamma_{np}^{N} = \sum_{i=1}^{np} r_{i}\delta_{i}$ with $r_{i} \in K$. For $r \in R_{2}$, $\gamma_{np}^{N}(r) = \sum_{i=1}^{np} r_{i}\delta_{i}(r) = \sum_{j=1}^{n} r_{jp}^{N}\delta_{jp}^{N}(r)$. So, $\gamma_{np}^{N} \in Der_{k}^{n}(K_{2},K)$. We first show that there exist monomials $y_n \in k[x^p^N,z] \text{ such that } \gamma_{np}^N(y_n) \text{ is a unit in } R_1.$ Suppose $\gamma_{p}^N(r) \in (x,z) \text{ for all } r \in k[x^p^N,z]. \text{ Since } \gamma_{p}^N(k[x,z]) \not \leq (x,z), \text{ there exists some monomial } x^iz^i$ such that $\gamma_{p}^N(x^iz^j) \text{ is a unit in } R_1. \text{ Clearly } i > 0,$ since $\gamma_{p}^N(k[x^p^N,z]) \subseteq (x,z). \text{ Also, } p^N \not | i, \text{ otherwise } p^N \not | i, \text{ ot$

$$\gamma_{\mathbf{p}^{\mathbf{N}}} \circ \gamma_{\mathbf{p}^{\mathbf{N}} - \mathbf{j}} (\mathbf{x}^{\mathbf{t}} \mathbf{r}) = \gamma_{\mathbf{p}^{\mathbf{N}}} \circ \delta_{\mathbf{p}^{\mathbf{N}} - \mathbf{j}} (\mathbf{x}^{\mathbf{t}} \mathbf{r})$$

$$= \gamma_{\mathbf{p}^{\mathbf{N}}} (\mathbf{r} \delta_{\mathbf{p}^{\mathbf{N}} - \mathbf{j}} (\mathbf{x}^{\mathbf{t}})).$$

Now for $t \ge p^N$ -j

$$\begin{array}{l} \delta_{\mathbf{p^{N}-j}}(\mathbf{x^{t}}) = \\ p^{\mathbf{N}-\mathbf{j}-1} \\ \sum_{s=0}^{p^{\mathbf{N}-\mathbf{j}-1}} (-1)^{s} {t \choose \mathbf{p^{N}-\mathbf{j}-s}} {t \choose \mathbf{p^{N}-\mathbf{j}-s}} x^{\mathbf{t-p^{N}+\mathbf{j}+s}} \\ = {t \choose \mathbf{p^{N}-j}} x^{\mathbf{t-p^{N}+\mathbf{j}}} \end{array}$$

[1, Prop. 9;6]. So,

$$\gamma_{p^{N}} \circ \gamma_{p^{N}-j} (x^{t}r) = \begin{cases} \binom{p^{N}-j}{p^{N}} (rx^{t-p^{N}+j}) & p^{N}-j \leq t < p^{N} \\ 0 & 0 \leq t < p^{N}-j \end{cases}$$

By assumption $\gamma_{p^N}(x^tr) \in m$ since $t-p^N+j < j$. Thus, $\gamma_{p^N+p^N-j}(s) \in m$ for all $s \in R_1$ which is a contradiction to Corollary 3.4. Thus, there exists a monomial $\gamma_1 \in k[x^{p^N},z] \text{ such that } \gamma_{p^N}(\gamma_1) \text{ is a unit in } R_1.$ Let $\gamma_{p^N}' = \gamma_{p^N}/\gamma_{p^N}(\gamma_1).$

Suppose we have found derivations $y_i \in \operatorname{Der}_k^{ip^N}(R_1)$ and monomials $y_i \in k[x^{p^N},z]$ such that the following hold: $y_i = r y_{ip^N} + \sum_{j=1}^{i-1} r_j y_{jp^N} \quad \text{with} \quad r_j \in R_1, \quad r \quad \text{a unit in} \quad R_1$

$$\gamma_{ip}^{\prime\prime}(\gamma_{j}) = \begin{cases} 0 & j < i \\ 1 & j = i \end{cases}$$

for i < n. Let $\bar{\gamma}_{np^N} = \gamma_{np^N} - \sum_{i=1}^{n-1} r_i \gamma_{ip^N}^*$ where $r_1 = \gamma_{np^N}(y_1)$, $r_j = \gamma_{np^N}(y_j) - \sum_{i=1}^{j-1} r_i \gamma_{ip^N}^*(y_j)$. So,

 $r_i \in R_1$. Then by construction $\bar{Y}_{np}^{N}(y_i) = 0$ for i < n.

Suppose $\bar{\gamma}_{np}^{N}(r) \in (x,z)$ for all $r \in k[x^{p^{N}},z]$. By Corollary 3.4 there exists $s \in R_1$ such that $\bar{\gamma}_{np}^{N}(s)$ is a unit in R_1 . Again choose j as small as possible so that $\bar{\gamma}_{np}^{N}(x^{j}\bar{r})$ is a unit in R_1 , $0 < j < p^{N}$ and $\bar{r} \in k[x^{p^{N}},z]$. Then as before one shows that

 $\bar{\gamma}_{np}^{N} \circ \delta_{p}^{N} = \gamma_{np}^{N} + \sum_{i=1}^{n-1} r_{i} \gamma_{ip}^{N} + p^{N} - j$: $R_{1} \rightarrow (x,z)$ contradicting Corollary 3.4. Thus, there is a monomial $y_{n} \in k[x^{p}^{N},z]$ such that $\bar{\gamma}_{np}^{N}(y_{n})$ is a unit in R_{1} . Let $\gamma_{np}^{N} = \bar{\gamma}_{np}^{N} / \bar{\gamma}_{np}^{N}(y_{n})$. This completes the induction step.

Thus, we have constructed derivations γ^{\prime}_{np} and monomials $y_n\in k[\mathbf{x}^p]$ which satisfy the following properties:

 $\gamma'_{np}{}^N$ is an n-th order derivation from ${\rm K}_2$ to ${\rm K}$ and and ${\rm np}^N{}$ -th order derivation from ${\rm R}_1$ to ${\rm R}_1.$

 $\begin{array}{l} \gamma_{np}^{\prime\prime} = r\gamma_{np}^{\prime\prime} + \sum\limits_{i=1}^{n-1} r_{i}\gamma_{ip}^{\prime\prime} & \text{where} \quad r_{i} \in R_{1} \quad \text{and} \quad r \quad \text{is a} \\ \\ \text{unit in} \quad R_{1}. \end{array}$

$$\gamma_{np}^{\prime\prime}(\gamma_i) = \left\{ \begin{array}{ll} 0 & i < n \\ 1 & i = n \end{array} \right.$$

If $p^N \not\mid m$, define $\gamma_m' = \gamma_m$. So, γ_n' is defined for all n and $\gamma_n' \in \mathrm{Der}_k^n(R_1)$. We now show by induction that $\mathrm{Der}_k^n(R_1) = \langle \gamma_1', \cdots, \gamma_n' \rangle$. The first step is clear.

Since $\delta_1 = \lambda_1 = \gamma_1 = \gamma_1'$, $\operatorname{Der}_k^1(R_1) = \langle \gamma_1' \rangle$. Suppose $\operatorname{Der}_k^{n-1}(R_1) = \langle \gamma_1', \cdots, \gamma_{n-1}' \rangle$. It suffices to show that $\gamma_n = \sum_{i=1}^n s_i \gamma_i'$ for some $s_i \in R_1$. If $p^N \not\mid n$, $\gamma_n = \gamma_n'$. If $p^N \mid n$, so that $n = \overline{n}p^N$, then $\gamma_n = \gamma_{n-1}N = \gamma_{n-1}N' = \gamma$

We shall show that $\gamma'_{np}N: R_2 \to R_2$ for all n. In order to do this, we shall need to know that $R_1 \cap K_2 = R_2$; so, we prove this first. Suppose $r(x^p,z)/s(x^p,z) = u(x,z)/v(x,z)$ in R_1 with $r,s,u,v, \in k[x,z]$ and v(x,z) a unit in R_1 . Then pulling back to k[x,z] gives $r(x^p,z)v(x,z) - s(x^p,z)u(x,z) = h(x,z)g(x^p,z)$.

Write $v(X,Z) = \sum_{i=0}^{p^{N}-1} v_i(x^{p^{N}},Z)x^i$. Do the same for u and h. Then

$$r(x^{p^{N}},z)(v_{o}^{+\cdots+v_{p^{N}-1}}x^{p^{N}-1}) - s(x^{p^{N}},z)(u_{o}^{+\cdots+u_{p^{N}-1}}x^{p^{N}-1})$$

$$= (k_{o}^{+\cdots+k_{p^{N}-1}}x^{p^{N}-1})g(x^{p^{N}},z)$$

and so,

$$\begin{split} & r\left(x^{p^N},z\right)v_o\left(x^{p^N},z\right) - s\left(x^{p^N},z\right)u_o\left(x^{p^N},z\right) = k_o\left(x^{p^N},z\right)g\left(x^{p^N},z\right) \\ & \text{since all other terms involve } x^i, \ 0 < i < p^N. \ \text{Since} \\ & v\left(x,z\right) \text{ is a unit in } R_1, \ v\left(x,z\right) \text{ begins with a constant} \\ & \text{term. Thus, } v_o\left(x^{p^N},z\right) \text{ is a unit in } R_2. \ \text{Hence,} \\ & r\left(x^{p^N},z\right)/s\left(x^{p^N},z\right) = u_o\left(x^{p^N},z\right)/v_o\left(x^{p^N},z\right) \in R_2. \ \text{Therefore,} \\ & K_2 \cap R_1 = R_2. \end{split}$$

We now show that $\gamma'_{np}N: R_2 \to R_2$. We first consider $\gamma'_{p}N$. Since $\gamma'_{p}N = u\lambda_{p}N$ where u is a unit in R_1 , we have by (33) that $\gamma'_{p}N = r\delta_{p}N$ where $r = \gamma'_{p}N(x^p) \in R_1$. We have $1 = \gamma'_{p}N(y_1) = r\delta_{p}N(y_1)$. Since $\delta_{p}N: K_2 \to K_2$, $r = 1/\delta_{p}N(y_1) \in K_2$. Now $\gamma'_{p}N: R_2 \to R_1$ and $r\delta_{p}N: R_2 \to K_2$; thus, $\gamma'_{p}N: R_2 \to R_1 \cap K_2 = R_2$.

Inductively we assume $\gamma_{ip}'': R_2 \rightarrow R_2$ for i < n. Recall that δ_{np}'' when restricted to R_2 may be written as $\delta_{np}'' = \sum_{i=1}^n t_i \gamma_{ip}''$, with $t_i \in K_1$ and $t_n \neq 0$. Evaluating δ_{np}'' at γ_i gives $t_i \in K_2$ since

Finally we show that $\operatorname{Der}(R_2) = \operatorname{der}(R_2)$. Let $\sigma_m = \gamma_p^{\alpha_M}/\alpha_M! \circ \cdots \circ \gamma_1^{\alpha_0}/\alpha_0!$ where the p-adic expansion of m is given by $m = \sum_{i=0}^M \alpha_i p^i$. By Theorem 3.4 $\operatorname{Der}_k^n(R_1) = \langle \sigma_1, \cdots, \sigma_n \rangle$. To prove that $\operatorname{Der}(R_2) = \operatorname{der}(R_2)$, it suffices to show for all n that

(38)
$$\mathbf{v}_{\mathbf{np}^{\mathbf{N}}}^{\prime} = \sum_{i=1}^{\mathbf{n}} \mathbf{r}_{i} \mathbf{\sigma}_{i\mathbf{p}^{\mathbf{N}}}^{\mathbf{N}}$$

with $r_i \in R_2$. To see this suppose that (38) holds. We first observe that σ is a j-th order derivation on p_i^{i} is a j-th order derivation on R_2 . We write $j = \sum_{i=0}^{J} \alpha_i p^i$. Then $jp^N = \sum_{i=0}^{J} \alpha_i p^{i+N}$. Thus, $\sigma_{jp^N} = \gamma_{j+N}^{\sigma J}/\alpha_j! \cdots \gamma_{jN}^{\sigma O}/\alpha_0!$. Since $\gamma_{jp^N}^{\prime N}: R_2 \rightarrow R_2$, $\sigma_{jp^N}: R_2 \rightarrow R_2$. Further, since $\gamma_{jp^N}^{\prime N}: R_1 \rightarrow R_2$ is a p^i -th order derivation on R_2 , $\sigma_{jp^N}: R_1 \rightarrow R_2$ has order $\sigma_{jp^N}: R_2 \rightarrow R_2$. Now let $\sigma_{jp^N}: R_2 \rightarrow R_2$ and suppose that $\sigma_{jp^N}: R_1 \rightarrow R_2$ is the smallest integer such that $\sigma_{jp^N}: R_1 \rightarrow R_2$. Write $\sigma_{jp^N}: R_1 \rightarrow R_2$ and suppose that $\sigma_{jp^N}: R_1 \rightarrow R_2$ is the smallest integer such that $\sigma_{jp^N}: R_2 \rightarrow R_2$. Write $\sigma_{jp^N}: R_1 \rightarrow R_2$ and suppose that $\sigma_{jp^N}: R_1 \rightarrow R_2$ and suppose that $\sigma_{jp^N}: R_1 \rightarrow R_2$ is the smallest integer such that $\sigma_{jp^N}: R_1 \rightarrow R_2$. Write $\sigma_{jp^N}: R_1 \rightarrow R_2$ is the smallest integer such that $\sigma_{jp^N}: R_1 \rightarrow R_2$ is the smallest integer such that $\sigma_{jp^N}: R_1 \rightarrow R_2$ is the smallest integer such that $\sigma_{jp^N}: R_1 \rightarrow R_2$ is the smallest integer such that $\sigma_{jp^N}: R_1 \rightarrow R_2$ is the smallest integer such that $\sigma_{jp^N}: R_1 \rightarrow R_2$ is the smallest integer such that $\sigma_{jp^N}: R_1 \rightarrow R_2$ is the smallest integer such that $\sigma_{jp^N}: R_1 \rightarrow R_2$ is the smallest integer such that $\sigma_{jp^N}: R_1 \rightarrow R_2$ is the smallest integer such that $\sigma_{jp^N}: R_1 \rightarrow R_2$ is the smallest integer such that $\sigma_{jp^N}: R_1 \rightarrow R_2$ is the smallest integer such that $\sigma_{jp^N}: R_1 \rightarrow R_2$ is the smallest integer such that $\sigma_{jp^N}: R_1 \rightarrow R_2$ is the smallest integer such that $\sigma_{jp^N}: R_1 \rightarrow R_2$ is the smallest integer such that $\sigma_{jp^N}: R_1 \rightarrow R_2$ is the smallest integer such that $\sigma_{jp^N}: R_1 \rightarrow R_2$ is the smallest integer such that $\sigma_{jp^N}: R_1 \rightarrow R_2$ is the smallest integer such that $\sigma_{jp^N}: R_1 \rightarrow R_2$ is the smallest integer such that $\sigma_{jp^N}: R_1 \rightarrow R_2$ is the smallest integer such that $\sigma_{jp^N}: R_1 \rightarrow R_2$ is the smallest integer such that $\sigma_{jp^N}: R_1 \rightarrow$

in its p-adic expansion as $n = \sum_{i=0}^{s} \alpha_i p^i$. Since

 $\operatorname{Der}_{k}^{n}(R_{2}) = \langle \gamma'_{n}, \dots, \gamma'_{np} \rangle, \quad \lambda = \sum_{i=1}^{n} t_{i} \gamma'_{ip} \text{ with }$

 $t_i \in R_2$ and $t_n \neq 0$. Using (38) and the above remark,

we have that $\lambda - t_n r_n \sigma_{np}^N \in Der_k^{n-1}(R_2)$. Thus,

 $\lambda - t_n r_n (\gamma_{N+s}^{\prime s} / \alpha_s! \dots, \gamma_{p}^{\prime 0} / \alpha_0!) \in \text{Der}_k^{n-1}(R_2) \quad \text{where} \quad$

 $\gamma_{p^{N+i}} \in \text{Der}_{k}^{p^{i}}(R_{2})$ and $\sum_{i=0}^{s} \alpha_{i}p^{i} = n$. Thus, if (38) holds,

 $Der(R_2) = der(R_2).$

We now show (38). The result is true for n = 1

since $\sigma_{\mathbf{p}} = \gamma_{\mathbf{N}}'$. Assume it holds for i < n. Now $\sigma_{\mathbf{np}} \in \mathrm{Der}_{\mathbf{k}}^{\mathbf{n}}(\mathbf{R}_{2})$ so, $\sigma_{\mathbf{np}} = \sum_{i=1}^{n} \mathbf{u}_{i} \gamma_{ip}''$, $\mathbf{u}_{i} \in \mathbf{R}_{2}$. In

 $R_{1}, \gamma'_{np} = \sum_{i=1}^{np} t_{i}\sigma_{i} \text{ with } t_{i} \in R_{1}. \text{ By Corollary 3.5 } u_{n}$

and t_{np}^{N} are units in R_1 , so, $t_{np}^{N} = 1/u_n \in K_2 \cap R_1 = R_2$.

So, u_n is a unit in R_2 . Hence, $\gamma' = \sigma_N / u_n - \frac{n-1}{np^N} = \frac{1}{np^N} / u_n - \frac{n-1}{np^N} = \frac{1$

(38) is proven.

Thus we have shown that $\operatorname{Der}_k^n(R_2)$ is a free R_2 -module for all n and $\operatorname{Der}(R_2) = \operatorname{der}(R_2)$.

We now examine $\operatorname{Der}_k^1(R_2)$ more closely. We know $g_Z(x^p,z) \neq 0$. We shall also show that $g_X(x^p,z) \neq 0$.

In $k(x^{p^N},z)g_{N}(x^{p^N},z)\delta_{p^N}(x^{p^N}) + g_{Z}(x^{p^N},z)\delta_{p^N}(z) = 0$ since δ_{p^N} is a first order derivation on $k(x^{p^N},z)$. If $g_{N^N}(x^{p^N},z) = 0$, then $\delta_{N^N}(z) = 0$. Then by Proposition x^{p^N} 3.5, $\delta_{p^N}z = z\delta_{p^N}$. If this were the case then $\delta_{p^N}: R_1 \to R_1$ which does not happen. Thus, $g_{N^N}(x^{p^N},z) \neq 0$.

Since y_1 is the monomial in $k[x^p^N, z]$ paired with the first order derivation γ_N' , it must be either z or x^p^N . But $\gamma_N' = r\delta_N$ where $r = \gamma_N'(x^p^N)$. Since $\delta_N: R_2 \not\longrightarrow R_2$, $\gamma_N'(x^p^N)$ is not a unit in R_2 . Hence, y_1 must be z.

(39)
$$\operatorname{Der}_{\mathbf{k}}^{\mathbf{n}}(\mathbf{R}_{2}) \text{ is free for all } \mathbf{n}.$$

$$\operatorname{Der}(\mathbf{R}_{2}) = \operatorname{der}(\mathbf{R}_{2}).$$

$$\operatorname{g}_{\mathbf{X}^{\mathbf{p}^{\mathbf{N}}}}(\mathbf{x}^{\mathbf{p}^{\mathbf{N}}},\mathbf{z}) \neq 0.$$

$$\operatorname{Der}_{\mathbf{k}}^{\mathbf{1}}(\mathbf{R}_{2}) = \langle \delta_{1}^{2} \rangle; \text{ in fact, } \delta_{1}^{2} = \gamma_{\mathbf{p}^{\mathbf{N}}}'.$$

$$\delta_1^2(\mathbf{x}^{\mathbf{p}^N}) \in (\mathbf{x}^{\mathbf{p}^N}, \mathbf{z}).$$

Thus, all the hypotheses that we originally had for R, which are listed in (31), hold for R_2 . Here z plays the role of x and x^p plays the role of y.

There are two cases. If $\delta_i^2: R_2 \rightarrow R_2$ for all i, then by Theorem 3.8 R_2^{\wedge} is a domain. Hence, R^{\wedge} is a domain. The second case is that there exists N(1) such that $\delta_i: R_2 \to R_2$ for $i < p^{N(1)}$, but $\delta_{p^{N(1)}}: R_2 \not\longrightarrow R_2$. We now proceed exactly as before and construct rings R_3 and R_4 . $R_3 = (k[u,z])_{(u,z)}$ $R_4 = (k[u,z^{p^{N(1)}}])$. Here u plays the same $(u,z^{p^{N(1)}})$ role that z played in R_1 and R_2 . Hence, $u = x^p + zr(x^p, z)$ for some $r(x^p, z) \in (x^p, z)$; this is equation (32). Since $z \in (x,y)$, $u \in (x,y)^2$. We also have that $\operatorname{Der}_k^n(R_2) = \langle \delta_1^2, \cdots, \delta_n^2 \rangle$ for $n < p^{N(1)}$ and $\delta_i^2 r = r \delta_i^2$ for $i < p^{N(1)}$ and $r \in R_A$. Further, $\delta_{\,i}^{\,2}\text{, i}\,<\,p^{N\,(1)}\,\text{, may be viewed as a derivation on }\,R$ since $\operatorname{Der}_{k}^{n}(R_{2}) = \langle \gamma'_{N}, \cdots, \gamma'_{n_{D}N} \rangle \text{ and } \gamma'_{i_{D}N}: R \to R.$

Now any element $r_i \in (x^p, z)R_2$ may be written as

(40)
$$r_{i} = \sum_{j=1}^{p^{N(1)}-1} \beta_{ij} z^{j} + \sum_{j=0}^{p^{N(1)}-1} r_{ij} z^{j}$$

where $\beta_{ij} \in k$ and $r_{ij} \in (u, z^{p^{N(1)}}) k[[u, z^{p^{N(1)}}]]$.

This is just equation (36) with R_2 playing the role of R, u playing the role of R, and R playing the role of R.

We now consider $r \in (x,y) \stackrel{\wedge}{R}$. Suppose r is a zero divisor. Then by (37) r has the form $r = \sum_{i=0}^{p^N-1} r_i x^i$.

Using (40) we substitute for r;

$$\mathbf{r} = \sum_{i=0}^{N-1} \sum_{j=1}^{p^{N(1)}-1} \beta_{ij} \mathbf{x}^{i} \mathbf{z}^{j} + \sum_{i=0}^{p^{N}-1} \sum_{j=0}^{p^{N(1)}-1} \mathbf{r}_{ij} \mathbf{x}^{i} \mathbf{z}^{j}.$$

Here $\beta_{ij} \in k$ and $r_{ij} \in (u, \mathbf{z}^{p^{N(1)}}) k[[u, \mathbf{z}^{p^{N(1)}}]] \subseteq (x, y)^{2 \stackrel{\wedge}{R}}$. We now apply $\delta_{p^{N(1)}-1}^{2} \circ \delta_{p^{N-1}}^{N}$ to r:

Since $\delta_{p^{N(1)}-1}^{2} \circ \delta_{p^{N}-1}^{N}$ (r) is a zero divisor,

 $\beta_{p^{N}-1,p^{N(1)}-1} = 0$. If we continue evaluating r at

$$\delta_{p^{N(1)}-2}^{2} \circ \delta_{p^{N}-1}^{N}, \dots, \delta_{1}^{2} \circ \delta_{p^{N}-1}^{N}, \delta_{p^{N(1)}-1}^{2} \circ \delta_{p^{N}-2}^{N}, \dots, \delta_{1}^{2},$$

we get $\beta_{ij} = 0$ for $0 \le i < p^N$ and $0 < j < p^{N(1)}$. Thus, if r is a zero divisor $r \in (x,y)^2 \stackrel{\wedge}{R}$. We continue this process and construct a sequence of rings R_{2j} such that R_{2j} relative to $R_{2(j-1)}$ satisfies the analogous properties listed in (39). We denote the canonical derivations on R_{2j} by δ_i^{2j} . There are two cases. The first is that there exists j such that $\delta_i^{2s}:R_{2J}\to R_{2J}$ for all i. Then by Theorem 3.6, A_{2J} is a domain. This implies that $A_{2(J-1)}$ is a domain. Hence, A_{2J} is a domain. The second case is that for all A_{2J} there exists A_{2J} such that A_{2J} is a domain. The second case is that for all A_{2J} there exists A_{2J} such that A_{2J} is A_{2J} . In this case we have that for a zero divisor A_{2J} is an integral domain. QED

The next theorem gives a geometric interpretation to this result: \hat{R} is an integral domain only if $\overset{\wedge}{\Gamma}$ is unibranched at the origin. Algebraically this means that $f(X,Y) = (\alpha X + \beta Y)^n + f_{n+1} + \cdots + f_m.$

Theorem 3.8: Let R be the local ring of the irreducible curve f(X,Y) at (0,0) over an algebraically closed field k. Suppose f has r distinct branches at (0,0). Then the integral closure \bar{R} of R has r maximal ideals and the completion of R is $\hat{R} = R_1 \oplus \cdots \oplus R_r$.

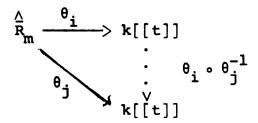
<u>Proof:</u> Consider the integral closure \bar{R} of R. It is a semilocal ring with maximal ideals m_1, \dots, m_t . \bar{R}_{m_i} is

a discrete rank 1 valuation ring so, $\bar{R}_{m_{\dot{1}}} \cong k[[t]]$. Hence, $R \longrightarrow k[[t]]$. Consider the image of (x,y) in k[[t]], say, $(\xi(t),\eta(t))$. Since f(x,y) = 0, we have $f(\xi(t),\eta(t)) = 0$. Thus, $m_{\dot{1}}$ determines a branch of f(x,y).

Now suppose $m_i \neq m_j$ determine the same branch. Then $R_{m_i} \stackrel{\cong}{=} k[[t]]$ with $(x,y) \stackrel{\theta_1}{\longrightarrow} (\xi_1(t),\eta_1(t))$ and $R_{m_j} \stackrel{\cong}{=} k[[t]]$ with $(x,y) \stackrel{\theta_2}{\longrightarrow} (\xi_2(t),\eta_2(t))$. Since m_i and m_j determine the same branch, there exists a substitution σ of order 1 such that $\sigma(\xi_1(t),\eta_1(t))=(\xi_2(t),\eta_2(t))$ [Theorem 12.3; 8]. Let K be the quotient field of R. Since k is algebraically closed, K is the quotient field of R and R_{m_j} . So, on K we have $\sigma \circ \theta_1 = \theta_2 \colon K \to k((t))$. Now since $m_i \neq m_j$ choose $r \in m_i$ such that $r \not \models m_j$. Then $\theta_1(r) \in (t)$ so, $\sigma \circ \theta_1(r) \in (t)$ but $\theta_2(r) \not \models (t)$; this is a contradiction. Therefore, distinct maximal ideals determine distinct branches. So, $t \leq r$.

Consider a branch γ_i . This branch determines a local homomorphism $\theta_i \colon R \to k[[t]]$. θ_i extends to K so, $\theta_i \colon K \to k[[t]]$. Consider $\theta_i^{-1}(t) \cap \bar{R}$; this is prime hence, maximal in \bar{R} . Suppose $\theta_i^{-1}(t) \cap \bar{R} = \theta_j^{-1}(t) \cap \bar{R} = m$.

Then



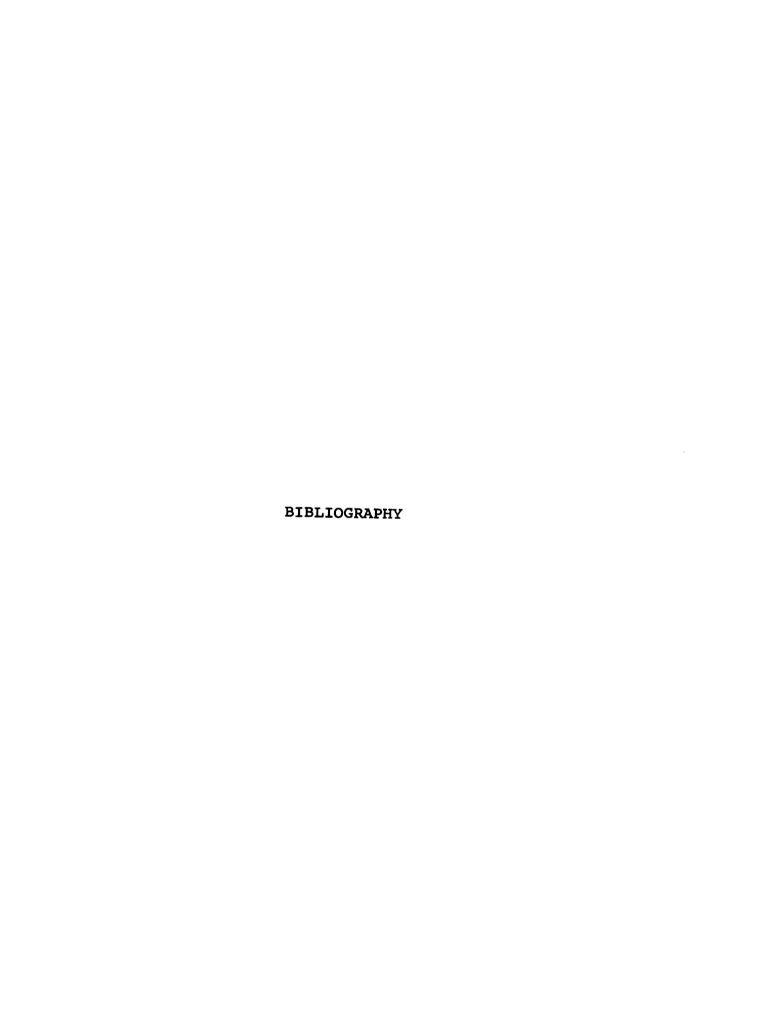
 $\theta_i \circ \theta_j^{-1}$ is an automorphism since $\theta_i^{-1}(t) \cap \bar{R} = \theta_j^{-1}(t) \cap \bar{R}$. Thus, $\theta_i \circ \theta_j^{-1}$ gives a substitution of order 1 and hence, γ_i and γ_j are the same branch. Thus, $r \leq t$.

Therefore r=t and the number of maximal ideals in \bar{R} equals the number of branches of f at (0,0). Thus, $\stackrel{\wedge}{R}=R_1\oplus\cdots\oplus R_r$. [Theorem 37.9; 5].

We have immediately the following corollaries.

Corollary 3.9: If R is an integral domain, then f has one distinct branch at (0,0).

Corollary 3.10: If $Der_k^n(R)$ is a free R-module for all n and if Der(R) = der(R), then f has one distinct branch at (0,0).



BIBLIOGRAPHY

- Grothendick, A., "Elements of Geometrie Algebrique," Part 4, Publications Mathematiques de L'IHES No. 32.
- 2. Lipman, J., "Free Derivation Modules on Algebraic Varieties," Amer. J. Math., 87 (1965), pp. 874-898.
- 3. Mount, K.R. and Villamayor, O.E., On a Conjecture of Y. Nakai, Osaka J. Math. to appear.
- 4. _____,"Taylor Series and Higher Derivations,"
 Universidad de Buenos Aries, No. 18.
- 5. Nagata, M., Local Rings, John Wiley and Sons, Inc., New York, 1962.
- 6. Nakai, Y., "High Order Derivations I," Osaka J. Math., 7 (1970), pp. 1-27.
- 7. Nakai, Y., et. al., "High Order Derivations II,"
 J. Sci. Hiroshima Univ. Sci. A-I, 34 (1970),
 pp. 17-27.
- 8. Siedenberg, A., Elements of the Theory of Algebraic Curves, Addison-Wesley Publishing Company, Reading, Massachusetts, 1968.
- 9. Zariski, O. and Samuel, P., Commutative Algebra II, D. Van Nostrand Company, Inc., Princeton, 1960.

