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ABSTRACT

HIGHER DERIVATIONS OF A PLANE ALGEBRAIC

CURVE OVER A FIELD OF PRIME CHARACTERISTIC

BY

Anne Larimer Ludington

Let T be a plane irreducible algebraic curve defined

over an algebraically closed field k. Let P be a point

on the curve and let R be the local ring of f at P.

Der:(R) is the R-module of all n-th order k-deriva-

tions of R to R. Thus w 6 Der:(R) if and only if

-, r E R we havem E Homk(R,R) and for all r n
0'0.

n v

- 8-1 V o o o o o o o o o o o o

w(ro°°°rn)- §3(-l) . M _ ri ri cp(rO ri ri rn).

s—l 11(---<1S 1 s l 5

Let Der(R) = kJDer:(R). If k has characteristic

zero, we define der(R) to be the subalgebra of Der(R)

generated by composites of lst order derivations. If the

characteristic of k is p #'0, ‘we say Der(R) is gener—

ated by pi-th order derivations if the following condition

is satisfied:

Let I E Der(R) and let n be the smallest integer

such that x € Der:(R;. Let the p-adic expans1on of

n be given by n = 2‘ oip1 . Then there exist

i=0
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Here Der:(R) = 0. Thus Der(R) is generated by pi—th

order derivations if every n—th order derivation is a sum of

composites of pi-th order derivations. If Der(R) is gen-

erated by pi—th order derivations, we write Der(R) = der(R).

Chapter 1 is devoted to theorems which characterize

Der:(R) when it is a free R—module. We show that if it is

free, it must be free on n generators. Further, if Der:(Rl

is free for all n, then there exist derivations

l1,---, In,°-- and elements x1,--o, xn,--- of R such

that xi 6 Der:(R): Der:(R) is generated by l X
1,000. n;

_ r0 j<1i

and xi(xj) — 11 '==i .

In Chapter 2 we consider the following example:

R is the local ring at the origin of F: f(X,Y) = X2 - Y3

over a field of characteristic 2. Since (0,0) is a

singular point of F, R is not a regular local ring. We

show that Der£(R) is a free Remodule for all n and that

Der(R) = der(R). Thus this example shows that over a field

of characteristic p # O the following two conjectures are

false:

(I) Der:(R) is a free R-module for all n if and

only if R is a regular local ring.



Anne Larimer Ludington

(II) Der(R) = der(R) if and only if R is a regular local

ring.

The first conjecture is a generalization of a conjecture by

Lipman: the second is Nakai's conjecture.

The main theorem of Chapter 3 is that if Der(R)==der(R)

and Der:(R) is a free R—module for all n, then R is

analytically irreducible, that is, R, the completion of R,

is an integral domain. Geometrically this means that P has

only one branch at P.
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INTRODUCTION

Throughout this entire paper we shall assume that T

is a plane irreducible algebraic curve, defined over an

algebraically closed field k. Let P be a point on the

curve, and let R be the local ring at P. Without loss

of generality, we may assume that P is (0,0). We shall

denote the quotient field of R by K. If F is given by

f(X,Y) = 0, then R = (k[x'Y])(x,y) where

kfX.y]

and f(0,0) = O.

k[X,Y]/(f(X,Y)), f(X,Y) is irreducible over k,

For each n = 1,2,---, we let Der:(R,M) denote the

R-module of all n—th order derivations of R to an R—module

M which vanish on k. Thus, m 6 Der:(R,M) if and only if

r 6 R we havem E Homk(R,M) and for all rO,---, n

(1)

n
-1 v

m(r °--r )== Z)(-l)s Z: r. -~-r. m(r '°°r. ---r. ...r )

When M = R, we write Der:(R) instead of Der:(R,R).

d:(R) will denote the R-module of all n-th order differ—

entials. DerE(R) is the dual module of fl:(R) so

Der:(R) = HomR(O:(R),R).



Let Der(R) = LJDer:(R). If R has characteristic

n

zero, we define der(R) to be the subalgebra of Der(R)

generated by composites of lst order derivations. If the

characteristic of k is p #’O, we say Der(R) is

generated by pi-th order derivations if the following

condition is satisfied:

Let A E.Der(R) and let n the smallest integer

N .

such that A 6 Der:(R). Let n = Z) OL.pl be the
. 1
i=0

p-adic expansion of n. Then there exist pl-th

i

order derivations T ---,T . E Derp (R), i==O,o--,N,
li' m1 k

such that

a o o a
N O N O n-l

l - (TlN o,,,° r10 +---+ TmN °,,,o rmo) E Derk (R).

Here Derg(R) = 0. Thus by induction we see that Der(R)

is generated by pi-th order derivations if every n-th

order derivation is a sum of composites of pi-th order

derivations. If Der(R) is generated by pi-th order der-

ivations, we shall write Der(R) = der(R). For

K, Der(K) = der(K), [Pr0p. 18:7]. Further, if R is a

regular local ring, then Der(R) = der(R) [Theorem 4.3;4].

Well-known prOperties of Der:(R), Q:(R), and Der(R)

may be found in Nakai's papers [6 and 7].

The starting point of this thesis concerns two conjec—

tures which are known to hold for plane curves when k has

characteristic zero:



(I) Lipman's conjecture: Deri(R) is a free

R-module if and only if R is a regular local

ring [Theorem 1:2].

(II) Nakai's conjecture: Der(R) = der(R) if

and only if R is regular [3].

It is easily shown that (I) is false when the charac-

teristic of k is p #'O; in fact, the example given in

Chapter 2 is a counterexample. That (I) is false is per—

haps to be expected, since when k has characteristic

zero, Der(K) is generated by composities of l-st order

derivations [Pr0p. 18: 7]. However, when the character-

istic is p, Der(K) is generated by composities of pi-th

order derivations, i = 0,1,--- [Pr0p. 18: 7]. Thus, the

following conjecture arises when k has characteristic p:

(III) DerE(R) is a free R-module for all

n = 1,2, --- if and only if R is a regular

local ring.

It is known that if R is regular and k has character-

istic p #'0, then Der:(R) is a free R-module for all

n [Theorem l6.ll.2: l]. The example which we shall give

in Chapter 2 will show that the converses of (II) and (III)

are false. That is, we shall construct a ring R over a

field k of characteristic p which is not regular, but

suCh that Der(R) = der(R) and Der:(R) is a free

R-module for all n.



In order to show (II) and (III) are false, some

results about Der:(R) are needed. Thus, Chapter 1 is

devoted to theorems which characterize Der:(R) when it

is a free Ramodule.

The main result of Chapter 3 is that if

Der(R) = der(R) and Der:(R) is a free R-module for all

n, then R is analytically irreducible; that is, R,

the completion of R, is an integral domain. Geometri—

cally this means that F has only one branch centered at P.



CHAPTER I

CHARACTERIZATION OF DER;1 (R) AS A FREE R-MODULE

The first lemma of this chapter shows that we may

assume K is a separable algebraic extension over k(x).

The remainder of the chapter gives necessary and sufficient

conditions for Der:(R) to be a free R-module. We shall

show that if Der£(R) is free, it must be free on n gen—

erators. Moreover, there exists a set of generators

n .

11, , In of Derk(R) and monomials x1, , xn of

O j<1

k[x,y] such that A.(x.) = { , .

1 J 1 j==l

Lemma 1.1: K is a separable algebraic extension of either
 

k(x) or k(y).

23923: The only case requiring proof is when k has char—

acteristic p #’0. Let fX and fY denote the partial

derivatives of f(X,Y) with respect to X and Y respec-

tively. Suppose fx(x,y) = O and fY(x,y) = O. Pulling

back to k[X,Y] gives fX(X,Y) = h(X,Y)f(X,Y). Viewing

these as polynomials in X with coefficients in k[Y]

gives deg fX < deg f‘g deg fh, which is a contradiction

unless fx(X,Y) = 0. So fX(X,Y) = O and fY(X,Y) = O.

This implies that f(X,Y) = g(XP,YP) = (h(X,Y))p.



contradicting the assumption that f is irreducible.

Hence, either fx(x,y) #’O or fY(x,y) #'0. Thus K is

a separable algebraic extension of k(x) or k(y). QED

Henceforth, we shall assume fY(x,y) # 0: thus K is

a separable algebraic extension of k(x).

 

Theorem 1.2: Der:(K) is a free K-module; it is free on

n generators. If Der£(R) is a free R-module, then it is

free on n generators.

Proof: Since K is a separable algebraic extension of
 

n :_ n . . n
k(x), flk(K) ._ Ok(k [x]) ®k[x]K [p.26,7]. Since Qk(k[x])p

is a free k[x]-module of rank n [11, Prop. 2: 6], we

have that Q:(K) is free of rank n over K. Now,

n _ n n . _
Derk(K) — HomK(flk(K) ,K), so [Derk(K). K] — n.

n _ n m n
Now Derk(R) ®RK - I-lomR(Qk (R) ,R) ®RK — HomK(Qk(R) ®RK,K) .

Since Q:(R) ®RK & Q:(K) [11, Theorem 9; 6],

n a n . n .
Derk(R) ®RK _ Derk(K). Thus, if Derk(R) IS a free

R-module, it must be free on n generators. QED

Since fY(x,y) #’O, f(X,Y) must have a term involVing

Y. Further, since f(X,Y) is irreducible, there must be a

term of the form OLYN , o. E k: otherwise, X would divide

f(X,Y). Hence subdngf(0,Y) > 0.

Lemma 1.3: Let subdngf(O,Y) = N. Then yN-l/x { R.
 



nggf: .As shown above, N > 0. write f(X,Y) = Xh(X,Y) +

YNg(Y), ‘where g(Y) begins with a non-zero constant term.

‘ Suppose yN-l/x 6 R. Then yN'l/x = r(x,y)/s(x,y),

where r(x,y), s(x,y) E k[x,y] and s(x,y) ¢ (x,y). Then

yN-ls(x,y) - xr(x,y) = O. Pulling back to k[X,Y] we

have

(2) YN-ls(X,Y) - r(X,Y)X = t(X,Y)[Xh(X,Y) + YNg(Y)].

Evaluating (2) at x = 0 gives

(3) YN'1s(o,Y) == t(O,Y)YNg(Y).

Thus, s(O,Y) = t(O,Y)Yg(Y). Since s(X,Y) has a constant

term, s(O,Y) # 0. Thus, (3) implies that Y divides

s(O,Y), which is a contradiction. Hence, yN-l/x { R.

QED

In the theorems which follow, we shall often use the

fact that an n-th order derivation is also an (n+1)-st

order derivation [1, Prop. 4: 6]. We shall also use the

result that if A E Der:(R), then A E Der:(K) [I,Theorem

15: 6]. Hence if l1,'--, In are a free basis for Der£(R),

these derivations must also be a free basis for Der:(K).

If Al,°'°, 1n are a free basis for Der:(R), then

we shall write Der:(R) = < ll,'°°, In >.

Before Der:(R) is considered for arbitrary n,

Der%(R) is studied. Special attention should be paid to

the method of proof, since the same technique will be used

‘when n > 1.



Theorem 1.4: Deri(R) is a free R-module if and only if

there exists I E Deri(R) and z 6 R such that k(z) = 1.

Proof: Let Deri(R) be generated by Y as a free

R-module. Suppose y(r)€(x,y) for all r E R. Then y(r)

may be written as y(r) = xrx + yry With rx, ry E R. As

in Lemma 1.3, write f(X,Y) = Xh(X,Y) + YNg(Y). Now con-

sider (yN-l/x)y which is certainly a derivation from K

to K. For r 6 R,

(yN-l/E)Y(X) = (yN'l/karx + yry)

= YN'er + (yN/xny

_ N-l
— y rx - (h(x.y)/s(y))ry.

Since g(y) is a unit in R, (yN'l/x)y: R 4 R. Thus

N-l 1 . . . N-l _
(y /x)Y E Derk(R) 'Wthh implies that (y /x)y — ty

for some t 6 R. Thus (yN-l/x - t)y = 0 on R, hence on

K. Thus yN—l/x - t = O or yN’l/x = t E R which is a

contradiction. Thus there exists 2 6 R such that y(z)

is a unit in R. Let A = y/y(z). Then Der;(R) < A >

and k(z) = 1.

Conversely, suppose such a l and z exist.

Deri(R) C Deri(K) and I may be regarded as the generator

of the K—module, Der:(K). Now let 6 e Deri(R). Then since

6 6 Deri(K), 5 tx ‘where t E K. Evaluating at 2 gives

6(2) = tX(z) = t. Thus t = 6(2) e R.’ Hence Deri(R) is

a free R-module. QED



Theorem 1.4 yields an easy proof of (I), Lipman's

conjecture, for a plane curve I defined over a field of

characteristic zero. For if Deri(R) is free on I,

then by Theorem 1.4 there exists 2 6 R such that I(z)==1.

Thus by Zariski's Lemma [Theorem 2: 2], R 2 B[[z]] where

z is analytically independent over. B. By Chevalley's

Theorem [Theorem 31, p. 320:9], R has no nilpotent ele—

ments. Thus, the dimension of R is l which implies

that B is a reduced, zero-dimensional local ring. There-

fore, B is a field and R is regular. Hence, R is

regular.

Theorem 1.5: Der:(R) is a free R-module if and only if
 

there exist n-th order derivations I1,"', In and

distinct elements xl,---, xn 6 R such that

0 ji<i

I.(xj)= 1 j=l°

n — 000

Proof: Assume Derk(R) — < 51, , 6n >. Suppose 61(r) E
 

(x,y) for all r E R. Then, as is the proof of Theorem

1 4 ( N"1/x)6 E Dern(R) So (yN—l/x)6 = E) t 6
° ' Y 1 k ' ' 1 i=1 i i

N 1 n
with t. e R. Thus, (t — y ' /x)6 + Z t.5. = 0 on

i l 1 i=2 i i

R, hence, on K. This implies yN_1/x = t1 6 R which is

a contradiction. So, there exists an x1 6 R such that

61(x1) is a unit. Let I1 = 61/61(x1). Then

6 >.
n — ...
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we now proceed by induction. Suppose we have found

derivations I ---, I and elements x1,---, x E R

l m-l m—l

n — .0. 0..such that Derk(R) - < I1. . xm-l'fim' , 6n > and

O j‘Ci . .

Ii(xj)={1 j=i for l_<_i_<_m—l and igggm—i.

Define Im as follows:

_ m-l

Im = 6m - 1E: riIi where r1 = 6m(xl)

i-l

and ri = qm(xi) - jg) rjIj(xi).

Computing Im(x£), L = l,°°‘, m - 1, gives

_ m—l

1mm) = smog) - . , HEW)
i=1

1—1

= 6m(X£) ‘ E7 rixih‘z) ’ ‘33
1—1

= o.

n — CO.
- .0.

Also, Derk(R) — < I1, , Im_1, Im, , 6n >. As before,

there is an element x 6 R such that Im(xm) is a unit
m

in R. Finally, let Im = Im/Im(xm). Therefore

n

Derk(R) — < Il,---, Im,5m+l,---, 6n > and

o j<i

Xi(xj)={1j=i for l_<_i__<_m and l_<_j_<_m.

Thus, by induction, Der:(R) = < I1,---, In > and

there are elements x1,---, xn of R such that

{ 0 j<<i

11(ij " 1 j=i'
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Conversely, suppose such elements and derivations

exist. Consider

(4) aI +---+aI =0
1 1 n n

with a1 6 R C K. Evaluating (4) at x1 gives a1 = 0

since Ii(x1) = 0 for i > 1. Suppose ai equals zero

for l g i _<_ m-l. Then evaluating (4) at xm gives

am = 0. Hence ai = 0 for 1.3 i.g n.

Thus, Der:(K) = < I1,---, I > . Let Y 6 Der:(R).

Then y may be written as y =

ll
1
3
:
!

P
M t.I. with 12.1 E K.

i i i

It suffices to show t.1 E R. Now y(x1) = t1 6 R. Induc- ‘

tively assume that t1.°°-. tm_1 6 R. Then

m-l

y(xm) = 1E1 tiIi(xm) + tm Since again Ii(xm) = 0 for

m—

m4-l g i S_n. So tm = y(xm) — iEI tiIi(xm) E R. Hence,

n _ ...

Derk(R) — < I1, , In >. QED

Theorem 1.5 does not require that Der;(R) be a free

R-module for i < n. With this added assumption we get a

much stronger result.

Theorem 1.6: Suppose Der2—1(R) is a free R-module with
 

generators I1,°--, I where Ii €_Der:(R) for
n-l

1 g_i g n-l. Further suppose that there exist distinct

elements of R, x .°°°, x , such that

l n-l

0 j<<i n

Ii(xj) = { 1 j==i . If Derk(R) is a free R-module, then

the following hold:
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(a) Der:(R) = Der:'1(R) e Ry where y €.Der:(R).

(b) There exists an n-th order derivation In and an

element xn E R such that xn # xi, 1 = 1,°°°,n-l:In(xi)==0,

i = 1,-°°, n-1: and In(xn) = 1.

Proof: Suppose Der:(R) = < 61,---, 6n >. Since an

(n-1)-st order derivation is an n—th order derivation,

n

n — —In_1 e Derk(R) and I — Z) ri6i where ri e R. Eval

“’1 i=1 n

uating In_l at Xn-l gives 1 = 1E; ri6i(xn_l). So, for

some I, 1 3.1 g'n, rI and 6I(xn_1) are units in R. we‘

reorder, if necessary, so that I = n-l. Thus,

 

 

 

1 n—2 ri rn

6n-l _ r xn-l - Z) r 6i - r 6n
n-l i=1 n—1 n-1

n _ 0..

And so, Derk(R) — < 61, , 6n_2,In_1,6n > .

Inductively we assume

n — 0..

Derk(R) - < 61, , 6 Im' °, xn-l'bn > , and we show

m+1'..

that 6m may be replaced by Im, after relabeling the

. . n .
61's if need be. Since Im E Derk(R), Im may be written

a8

IE: nil

(5) I = t.6. + > t.I. + t 6 .

m i=1 1 1 j=m+1 n n

Evaluating (5) at xm gives
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m n-l

—_— . . 61 iii ti6i(xm) + j=§i1 tJIJ(xm) + tn n(xm)

m

= .23 ti6i(xm) + tn6n(xm)
i=1

since Ij(xm) = 0 for j = ma+1,--~, n-—l. For some I,

tI and 6I(xm) are units in R, I = l,'°°, m,n. Re-

arrange the 61, if necessary, so that I = m. Thus,

6m-?xm--Z?-5i— 4‘3 th-E‘bn-
m 1=1 m j=m 1 m m

n — 00.
.0.

Hence, Derk(R) — < 61, , 6m-l'xm’ , In_1,6n > .

. . n

Therefore by induction, Derk(R) - < I1, -, In_l,6n >.

This completes the proof of (a).

To prove (b), we assume by (a) that Der:(R) =

< I1,:°°, In_1,6n > . We define a new n-th order deriva—

tion as follows:

n-l

(6) y = 6n + '53 riIi where r1 = — 6n(x1)

1- i-l

and ri = - 6n(xi)". : rjIj(xi).

J=1

Then since Ii(xm) = 0 for i = m4—1,°°°, n-1, evalua—

ting (6) at xm gives

n-l

y(xm) = 6n(xm) + _ZZ rixi(xm)

i=1

m—l

= 6n(xm) + 1:: riIi(xm) + r1“

= O.



Thus y(xm) = 0 for 1 g_m < n-l. Moreover,

n _ ...
Der-k(R) -' < All 0 Ari-lav >-

As in Theorems 1.4 and 1.5, there must exist an

element xn E R such that y(xn) is an unit in R.

Finally then, let In = y/y(xn). The theorem is now

proved. QED

We shall use the following lemma to show that the xi

given in Theorems 1.5 and 1.6 may be assumed to be

monomials in k[x,y] c R.

Lemma 1.7: If I is an n-th order derivation and I(r)==1
 

for some r 6 R, then I(xlyj) is a unit in R for some

x1 J 6 k[x,y] c R.

Proof: ‘Write r = s(x,y)/t(x,y) where s(x,y),t(xgy)€kIX.y]

and t(x,y) t (x,y). By [I,Theorem 5:6]

1 = I(r)

= I(s/t)

n

= (4)“ 23 (-1)‘“ < “1:1 > tmI(tn—ms)/tn+1.

m=0 ‘

For some m, I(tn.ms) is a unit in R. write tn-ms =

ZloijxlyJ E k[x,y]. So, I(xlyj) is a unit for some

xlyj. QED

The following theorem summarizes the results of this

chapter.
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Theorem 1.8: If Der:(R) is a free R—module for all n,

then there exist derivations I1,'°°, In and monomials

xl,---, xn 6 k[x,y] such that

(a) x e Deri(R)
i k

n

(b) Derk(R) - < I1. . In >

() I() {Oj<ic . x. =

1 3 1 j==i

2529;: The only part of the theorem that requires proof

is that the xi may be choosen to be monomials. We show

this by induction on n. If n==1, then by Theorem 1.4

there exists a derivation I such that Deri(R) = < I >

and I(z) = 1 for some z 6 R. By Lemma 1.7 there exists

a monomial x1 6 k[x,y] such that I(xl) is a unit in R.

Let I1 = I/I(x1). Then Deri(R) = < x1 > and I1(xi) = 1

where x1 is a monomial in k[x,y].

n-l - 0..

We now assume that Derk (R) — < I1, , In_1 > and

0 j<ii .

Ii(xj) — { 1 j==i for monomials xi 6 k[x,y]. By

Theorem 1.6 there exists a derivation In and an element

- n — o o o - - =

xn E R such that Derk(R) — < I1, , In_1.In2>.In(Xi) 0

for i < n, and I (n xn) = 1. Again by Lemma 1.7, there

exists a monomial xn 6 k[x,y] such that In(xn) is a

unit in R. Now let In = In/In(xn). Then

n -— so.
=3 .Derk(R) - < I1, , In >, In(xi) 0 for i < n, and

In(xn) = 1 where xn is a monomial in k[x,y]. QED



CHAPTER II

AN EXAMPLE

In this chapter we give an example of a curve F

defined over a field of characteristic 2. I is given by

f(X,Y) = X2 — Y3. Since (0,0) is a singular point of F,

the local ring, R, at (0,0) is not regular. By con-

structing i-th order derivations I1 and monomials

x.1 6 k[x,y] which satisfy the conditions of Theorem 1.5,

we shall show that Der§(R) is a free R-module for all n.

We shall also show Der(R) = der(R). Thus, this example

shows that both (II) and (III) are false.

The following lemma will be used repeatedly in the

example. The results hold for any characteristic p #’0.

Thus, we shall prove the lemma in this more general setting

even though in the example k has characteristic 2.

n

Lemma 2.1: If I 6 DerE (R) and r,s E R, then
 

n n n

(a) I(rp s) = rp I(s) + sI(rp )

n+i n+i

(b) I(rp s) = rp I(s) for i 21.

Proof: The proof of (a) follows immediately from the de—

finition of a pn—th order derivation: this is equation (1).

16



17

For (b), the previous part gives

in+ i n

I(rp s) I((rp )9 s)

n+i n+i

rp I(s) + sI(rp ).

i n+i

rp I(s).

n+i n+

Since I(rp ) = 0 [I,PrOp. 10:6], I(rp s)

QED

Example 2.2: Let R be the local ring at (0,0) of

F:f(X,Y) = X2 — Y3 over a field k of characteristic 2.

3

R = (k[X'Y])(x,y) and x2 = y . Then Der:(R) is a free

 

R-module for all n and Der(R) = der(R).

Proof: Let A = k[x,y] = k[X,Y]/(XZ-Y3). 50

m

—
- O O O .

2R _ (A)(x,y)' For m — 0,1, , define Yzm E Derk (k[Y])

as follows:

. o i<2m

7) Y (Y1) = { m( 2m 1 i==2

Thus, y m is a Zm-th order derivation of k[y] to

2 GI a0

k[y]. Define Yi = y I °,,,° Y1 where the aj's are the

2

coefficients in the 2—adic expansion of i: that is

I . .

i = Z: c.23. It is easily shown that y.(yj) = { . ..

j=O J l 1 j==i

O j<Ii

We now define a 2n—th order derivation on k[x] to

k[x,y], n = 0,l,--°, . For n = 0, define
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n

I n E Deri (k[x], k[x,y]) as follows:

2

(8a) I n(x) = 0

2

2j _ 3j . _ n—l

(8b) I n(x ) — Y n—1(Y ) J — 1.°--. 2

2 2

(BC) I n0:23”) = XI (x23) j = 1,---, 2n'1-1.

2 2n

For each n, I n extends uniquely to a 2n-th order

2

derivation of k(x) to k(x,y) [I,Theorem 15:6]. We

call this extension I n' Since k(x,y) is separably

2

algebraic over k(x),I n extends in a unique way to a

2

2n~th order derivation of k(x,y) to k(x,y) [Theorem

17:7]. This extension is also called I n'

2

2n

We shall show that I n 6 Derk (A). First however

2

we shall show that (8b) and (8c) hold for all values of j.

From the definition of I , we have that

2n

2n 2n
I n(x ) = y . For, by Lemma 2.1,

2

n

n n-1 n-1 n-1+2

2 2 2 3 2 2

I m )=I HX) )=Y (W) )=w (y )
2n 2n 2n—l 2n—l

2n 2n-l 2n

= y Y2n_l(Y ) = y

We now show by induction that for all j we have

23' _ 33'
(sh) 12n<x ) - Y2n_1(y ).
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First, suppose 2j = 2n + 2i where i = l,'°°, 2n-1

Evaluating both sides of equation (8b) gives

. n .

I n(x23) = I n(x2 x21)

2 2

n . n
= X2 I n(X21) + X21 I n(X2 )

2 2

_ 2n ( 3i) + 21 2n
- X Y n-l Y X Y

2

and

. n-l

3 2+1 2 +'

Y n_1(y 3) = Y n_l(y( )( 1))

2 2

2n “'1 3i
— Y n_l(y y y )

n n-l .

_ 2 2 3i

— y Y2n_1(Y y )

2n 2’“1 3i 2n 31
= y y Y2n_1(Y ) + y Y

n . n .
2 3i 2 21

- x Y2n_l(Y ) + y X -

Thus, (8b) is valid for 2jIg 2n+1.

. n+k
Now suppose that (8b) holds for 23.3 2 where

k > 0. We show (8b) also holds for 2j = 2n+k + 2i where

i = 1,---, 2n+k-1 . Again we compute I n(x23) and

2

3j .
Y2n_l(Y ).
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2n+k 2n+k-l

33' _
Y2n_1(y ) " Y2n—l (y y Y )

2n+k 2n+k—l

= Y Y Y
2n

1(y )

2n+k

31
= X Y n_1(y )

2

Thus (8b) holds for 2j g 2n+k+l and so by induction holds

for all values of j.

Now we show that (8c) is valid for all values of j.

That is, I (x23+1) = XI (x23). First suppose

2n 2n

2j + 1 = 2n + 2i + 1 where i = o,---, 2‘"1 — 1. Then

2'+1 2n 2i+l
I n(x j ) = I n(x x )

2 2

n . . n
= x2 I n(x21+l) x21+1 I n(X2 )

2 2

n . . n

= x2 xI (x21) + x21+1 I (x2 )
n n

2 2

n . n

= x(x2 I (X21) + 21 A (X2 ))

2n 2n

n .

= xI n(x2 x21)

2

= xI n(x23).
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Now suppose that (8c) holds for 2j + 1 g_2n+k-1

where k > 0. We show (8c) holds for 2j + 1 = 2n+k4-2i_.1

where i = l,-~-, 2n+k-1-_1.

. n+k .

I n(X23+1) = I n(X2 X21+1)

2 2

n+k .

= X2
A n(X21+l)

2

n+k .

= X2 XI n(X21)

2

= xI n(x23).

2

n+k+1
Thus, (8c) is valid for 2j + 1.3 2 and hence, by

induction (8c) holds for all values of j.

n

We now show that I n 6 Der: (A). In order to show

. 2 .

this, we compute I n(yl) and I n(xyl) and show that

2 2

(9a) 1 (yi> = v (yi>
2n 2n—l

i _ i

(9b) I n(XY ) - XY n_l(y )

2 2

where i = l,2,°°° and n = 1,2,---

To show (9a), there are several cases depending on

0,1,2 (mod 3).whether i

Case 1: i E 0 (mod 3)

Let i = 3L. Then from (8b), I (yl) = I (Y3!) =
2n 2n

21 32 i

I(x)=Y (Y)=Y (y).
2n 2n-l 2n—l
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1 (mod 3) and 2n 2 1 (mod 3).Case 2: i

2 (mod 3) and 2n 5 2 (mod 3).H
)

Case 3: 1

These cases are considered together for in both

i + 2n+1 e 0 (mod 3). Let i + 2n+1 = 32. Then

1 2n+1 2n+1 i

I (y y ) = y I (y ). 0n the other hand
2n 2n

3 2

I n<y ‘) = I n<x ‘)
2 2

32

= Y ( )
2n-l

- n+1

i 2

= Yn_1(yy )

2

_ 2n+1 ( i)

—Y Yn—l Y °

2

n+1 . n+1 . . .

2 i _ 2 i i __ 1

So. y I n(y ) — y Y n_1(y ) or I n(y )-Y n_1(y ).

2 2 2 2

Case 4: i I 2 (mod 3) and 2n 5 1 (mod 3).

Case 5: i E 1 (mod 3) and 2n 5 2 (mod 3).

. n+2 _

In both of these cases, i + 2 = 0 (mod 3). Say,

. n+2 n+2 .

i + 2n+2 = 32. Then, I (yly2 ) = y2 I (yl). 0n
n n

2 2

the other hand

32 22

I (Y ) = I (x )

2n 2n

_ 32

— Y n_1(y )
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. n+2
i 2

2

n+2 i

= y2 Y2n_1(Y )

2’”2 i 2n+2 i i i
80. y I n(y ) = y Y n_1(y ) or I n(y )==Y n_1(y )-

2 2 2 2

Now we show that I (xyl) = xY (yl). The cases
2n 2n-l

are the same as above.

Case 1: i E 0 (mod 3).

Let i = 32. The result follows immediately from

(BC):

I n<xy1) = I n<xx2‘)
2 2

= xI n(x2£)

2

3

= XY n_l(y L)

2

= XY n_1(Y1) 0

2

Case 2: i 2 1 (mod 3) and 2n 2 1 (mod 3).

Case 3: i E 2 (mod 3) and 2n 5 2 (mod 3).

. . n+1 _ . n+1

Again 1 + 2 = 0 (mod 3). Say, 1 + 2 = 32.

. n+1 n+1 .

Then, I n(xyly2 ) = y2 I n(xyl).

2 2

Also
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NOW

32 22

I (XY ) = X (XX )
2n 2n

= xI n(x22

2

3

= XY n_1(y z)

2

2n+1

= XY n-1(Y y )

2

2n+1 i

= xy Y n_1(y ).

2

n+1 . n+1 . . .
2

Thus, y I n(xy1)==xy2 y n_]_(y1) or I n(xyl)==xY n_1(yl).

2 2 2 2

Case 4: i E 2 (mod 3) and 2n 5 1 (mod 3).

Case 5: i a 1 (mod 3) and 2n 5 2 (mod 3).

Here i + 2n+2 E 0 (mod 3). Let i + 2n+2 = 32.

1 2n+2 2n+2 l

I n(xy y ) = y I (xy ) 0n the other hand

2 2n

32 22

I (xy ) = I (xx )

2n 2n

= xI n(le’)

2

3

- XY n_1(Y L)

2

i 2n+2

= XY n_1(y y )

2

2n+2 i

= xy Y n_1(y )-
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2n+2 i 2n+2

So again we have y I n(xy ) = xy Y

2 2

I (xyl) = xY 1(yl). Thus, we have completed the proofs

2n 2n‘

i
n_1(y ) or

of (9a) and (9b).

. . . . i
Since every monomial in A can be written as xjy

with j = 0 or 1 and 0.3 i, (9a) and (9b) imply that

I n: A 4 A for n = 1,2,°°° . To show that Il:A 4 A we

2

compute Il(y). Since

0 = 11(x2) = I1(y3) = y2 11(y).

6 Deri(A). Hence, I n:A 4 A forI1(Y) = 0. Thus, I

2

l

n = 0,1,-°°

By taking composites, we define an m—th order deriva-

tion for m = l,2,--- . Write m in its 2-adic expansion

M .

as m = Z) (1.21 ‘where o. = 0 or 1. Define
. i 1
i=0

a a

_ M 0 m

We now make some observations about Im. We first

oL a1 L 1

consider I = I °,,,° I where 22 = 23 o.2 .
22 L 2 ._ i

2 1-1

Equation (9a) shows that I n when restricted to k[y]

2

equals Y 1. Thus, if I is restricted to k[y], we
2n— 22

have

a a

_ L ,, 1 _

X2,¢|k[y’] — Y L-l ° ° Y1 - Y2°

2
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i i r 0 i<<2

By the definition of Y1, I2z(y ) = Y2(Y ) = 1 1 i==2.

Also I2 (x) = 0 since I (x) = 0 for n > 1. And

2 2n -—

. i _ i
finally, I2£(xy ) — xI2£(y ) by (9b).

Now consider I = I I

. 22+1 21° 13

I1(y1) = o, and I1(xy1) = Y1, the following hold:

Since I1(x) = 1,

(11a) I2£+l(x) = 0

i . _
(11b) X22+1(y ) — 0 1 - 1.2.

i _ i _

(11c) I2£+1(xy ) - I21(y ) 1 — 1.2.

Thus, we have defined derivations In, n = 1,2,

from A to A. Since R = it follows that

(A)(X.y)'

In e Der:(R) [1, Theorem 15:6].

Summarizing the above, we have that the I satisfy

the following:

(12) I1(X) = 1

L - i — . —’ ...

I2£(y ) — l and I21(y ) — 0 i - 1, , 2

I (xyi) = o i = 0 ~--. 2
22 '

I (xyz) = 1 and I (yi) = 0 i = 1 --° 2
22+1 22+1 ' '

i . ...
X22+1(XY ) - 0 i — 0, o L

where 2 = 1,2,°
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We now define xi as follows:

_ L — .00

(13) x22+1 — xy 2 — 0,1,

Thus using the notation of (13), equation (12) says

j<i0

that Ii(xj) = { 1 Thus, the conditions of

j==i

Theorem 1.5 are satisfied and Der:(R) is a free R-module

for all n. And.by construction, Der(R) = der(R).

Since I has a singular point at the origin, R is

not regular. Thus, R is an example of a local ring

which is not regular but Der:(R) is a free Remodule for

all n and Der(R) = der(R). Hence, we have shown that

(II) and (III) are false.



CHAPTER III

A

THE COMPLETION R

In this chapter we shall prove the following theorem:

If Der:(R) is a free R-module for all n and

A

Der(R) = der(R), then R is an integral domain.

If the characteristic of k is zero, then Deri(R) being

free implies that R is a regular local ring [Theorem 1:2].

Hence R is regular and thus an integral domain. Thus,

‘we shall assume throughout this chapter that the charac-

teristic of k is p #’0. Further, if P is a simple

point of I, then R is regular. So, R is an integral

domain and the theorem is trivial in this case. Thus, we

also assume P is a singular point of F: that is,

subdeg f 2.2.

As in Chapter 1, we shall assume in this chapter that

fy(x,y) #'0. Thus, K is a separable algebraic extension

of k(x).

We shall use the following notation in this chapter.

Let 6i denote the i—th order derivation of k[x] to

j<i. j 0
k[x] defined by 6i(x ) = { 1 j==i° The following

results hold for 61:

28
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(14) Der2(k[x]) < 61,'°°, 6n > as a k[x]—module.

< 6Der:(k(x)) ', 6n > as a k(x)-module
1'..

[pp. 26,27: 7].

(15) Since K is a separable algebraic extension of

k(x), 6n 6 Der:(K) [Theorem 17: 7]. Hence,

n — o o o

n

a

5 N 0‘0
N 61

(16) 6n = 527-0...° 6r7- where the p—adic expansion of

N' O'

N .

n is given by n = Z) dip1 [Pr0p. 18: 7].

i=0

 

 

i

P

Proof: 6Pi is a pl+1-order derivation. Hence,

P

pi+1

6pi - .2: r 6 It is easily verified that 6pi(x3) - 0

p 3:1 3 P

for j = l.°°°. p“1 80: rj = 0. j = 1.--°. pi+1o

(18) 5n05m=5m05n

P P P P

Proof: ono5m=omoon+[5n.6m] where [én'ém]

P P P P P P P P

is a derivation of order pn + pm-1 [1, Cor. 6.2: 6].

So, 6 ° 6 = 6

pn+ Ill-1

n m m o 5 n + $1 r161. But

P P P P 1'-
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3' _ 9 j __
6 "6 m(x ) — 0 and 6 m 6 n(x ) - 0 for

P P P P

j=lo°°°v Pn+Pm-l. Hence, 5 05 =5 05

P P P P

A

Now consider the completion of R, denoted by R,

with respect to its maximal ideal m = (x,y). We note

that if I 6 DerE(R), then I extends to an N-th order

A A

k-derivation from R to R. Let I 6 Der§(R). Define

..A A ..

I:R 4 R 'by I(r) = lim I(rn) where r = 1im rn with

{rn} a Cauchy sequence in R. We show I is continuous.

n

For any n we must find n such that I((m)n)c m 0

0

the ideal m. Let n = ng+1.

using the definition of an N-th order derivation, equation

n _

(1), that I(mn) c m 0. Hence, I is continuous. That

A

I is an N-th order derivation on R follows from the

for

Then it is easily checked

fact that I is an N-th order derivation on R. Hence-

forth, we shall denote I by I.

The next theorem relates derivations and zero

divisors.

Theorem 3.1: Let A be a commutative reduced k—algebra
 

where k is a field of characteristic p. Let

D = {0}LJ{zero divisors in A]. Then D is closed under

every derivation I.

Proof: Suppose I is a derivation of order n. Choose

N such that pN > n. Then I may be viewed as a deriva—

tion of order pN
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Now let r 6 D, r #’o, and find 5 # 0 such that

N N

rs = 0. Then rsp = 0 and 3p #'0. Then

NN N N

0 = I(rsP ) = sp I(r) + rI(sP ) = sp I(r)

N

since I(sp ) = 0 [I,Pr0p. 10:6]. Thus, I(r) 6,D. So,

D is closed under I. QED

Theorem 3.1 assumes that A is reduced: that is,

A has no nilpotent elements. We can apply this theorem

A A

to R because R has no nilpotent elements if k is

perfect [Theorem 31,p. 320:9]. This is our case.

A A

R = k[[x,y]]: that is, every element in R may be

written as ZiaijxlyJ ‘with aij 6'k. This representation,

however, is not necessarily unique.

Theorem 3.2: Suppose Der:(R) is a free Remodule for all

n and Der(R) = der(R). Let [Ii] be any set of gener—

1 n - .0.

ators such that Ii 6 De k(R) and Derk(R) — < I1. , In >.

Define derivations Ym as follows:

I M 0‘o
M I1 M i

(19) Ym = 527-0...° EIT' where m = Z) dip .

M' 0' i=0

n "" O O 0

Then Derk(R) — < Y1, , Yn >.

Before we prove this theorem we note that Theorem 1.8

implies the existence of such Ii's.

ProOf: We first show that the following three relation—

ships hold:
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i 3'

(20a) (I .°rI .) - (rI iOI j) 6Derfi +p -1(R) for r 6R.

P P P P

n

(20b) r I . o...o r I . - ( H r.)(I . o...° I . ) 6
1 11 n in j=l j 11 in

P P P

n i.

Dart-I(R) where m = 23 p 3.

j='l

i l

p 1 p n n

(20C) (3.231 Slej) o-o-o (jgl SnjAj) "" (jg-:15. ij))\ .110...o A in

JP P P

n i.

Deri-1(R) where m = 23 p 3.

j=1

For (a),

I1°rxj=rIon +[AiorAj]

P P P P P P

= r(I o 0A . + [A ”I 1]) + [A i'r)‘ j]-

P P P P P P

Since [I i,rI .] and [I j,I i] are derivations of order

P P:J P P

p1 + p3-l [I,Cor. 6.2:6], the result follows.

Result (b) follows from (a) by induction. And (c)

follows immediately from (b).

We prove the theorem by induction. For n = 1,

Y1 = I1 and Deri(R) = < I1 > = < Y1 > . Assume that

Darn-I(R) = < °°' > To show Dern(R)==< --- \
k Y1' ' Yn—i ° k Y1' ' Yn .

n

it suffices to show that I = Z} r.Y. for some r. 6 R.
n i=1 i i 1

Since Der:(R) = DerE-1(R) ® RIn, we see that n is the
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smallest integer such that In 6 Der:(R). Since

Der(R) = der(R), we have

a a o a

— N o... O ... N 0(21) In - TIN o T10 + + TmN o...o TmO + o

where o 6 Dern'1(R) and T 6 Derpj(R) H r

k ij k ' e e

N j
n = Z) a.P is the p—adic expansion of n. By absorbing

j=0

any bogus terms in with O, we may assume p3 is the

j

smallest power of p such that Tij 6 Derfi (R), j==0,---,N.

N a.

Thus, Z) ord 7.? = n for i = 1,'°°, m.

i=0 ‘3

0‘N 0‘0
Now consider one of the summands TiN o...o r10 in

j

(21). Since Derfi (R) = < I I . > we have by (20c)1'...'

P3

N

a a p a a
N o _ N o

(22) TiN o...o T10 — (‘2; siN2 IL) o...o (siolIl)

o

= s(IaN o o I O) + 0'

pN 1

where 0‘ 6 Dern-1(R) and s 6 R.
k

Thus I has the form I = r(IOLN o... IaO)-+o”
n n pN ° 1

II n-l _ . . . .

where r 6 R and o 6 Derk (R) - < Y1, , Yn-l ,. Now

0. C1. N

Y = aI N °°°°o I 0 where o = l/ H o.! is a non-zero

n N 1 . 1
p i=0

constant in k. Thus In = (r/a)Yn + c” or

In 6 < Y1."’. Yn > . QED
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Corollary 3.3: Under the assumptions of the previous

n-l

theorem and using the notation of it, In = rYni- Z} riYi

i=1

n-1

and Y = sI + Z} s.I. where r and s are units in IL
n n i=1 i 1

Proof: The only part requiring proof is that r and s

n-l

are units. Substituting for Yi in In = rYn + i=1riYi

n-l

gives In = rsIn + iEI tiIi. Thus, rs = 1 and Since

r,s 6 R, they must be units. QED

Corollary 3.4: Again assume the conditions and notation

n-l

of Theorem 3.2. For Y = Y + Z} r.Y. 6 Dern(R) for
n i=1 i i k

some r1 6 R, there exists an element r 6 R such that

 

Y(r) is a unit in R.

Proof: As in Lemma 1.3, write f(X,Y) = Xh(X,Y) + YNg(Y).

Suppose Y(r) 6 (x,y) for all r 6 R. Then

N-l n . n _ ...

(y /k)Y E Derk(R). Slnce Derk(R) — < Y1. . Yn > .

N-l n .
(y /x)Y = Z) s.Y. With 5. 6 R. Also

i=1 1 1. 1

n-l

(YN-l/k)Y = (EN-l/X)Yn + .2; (yN-l/x)riYi. But this

1:

implies that yN-l/x = 3n 6 R: this is a contradiction.

Therefore, there exists some r 6 R such that Y(r) is a

unit. QED

Proposition 3.5: Let S = (k[x,z])(x z) where k has

characteristic p, k[x,z] = k[x,z]/(h(X,Z)), and h(X,Z)
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is an irreducible polynomial such that hz(x,z) #'0 and

h(0,0) = 0. Suppose 6 .1(2) = 0 for all i less than

N

g(Xp ,Z) and 6 i2 = 26 i

P P

P

some fixed N. Then h(X,Z)

for i < N.

Proof: Since hz(x,z) # 0, 6 1 extends uniquely to

P

k(x,z). We shall View all calculations which we make in

 

the proof of this prOposition as taking place in k(x,z).

Now hx(x,z)6l(x) + hz(x,z) 61(2) = 0. So, 61(2) =

-hx(x,z)/hz(x,z) and since 61(2) = 0, hx(x,z) = 0. As

in Lemma 1.1, this implies that hx(X,Z) = 0. Thus,

h(X.Z) = 91(xp.2).

i

Inductively, we suppose that h(X,Z) = gi(Xp ,Z) with

i

i < N. Now 6 i is a lst order derivation on k[xp ]

P
i

[1, Theorem 14:6]. Since (gi)z(xp ,z) = hZ(x,z) # 0,6 i

P

1

extends uniquely to a lst order derivation on k(xp ,z).

i i

Thus. (gi)z(xp .2)6 '1(2) + (91) 16 i(xp ) = 0. SO.

P XP P

pi i

6 1(2) = - (91) i(x .2)/(gi)z(xp .2). Slnce 6 i(2)==0.

P XP P

i i

(gi) i(xp ,z) = 0. And therefore (gi) i(Xp ,Z) = 0.

xp XP

i+1

Hence, h(X,Z) = gi+l(Xp ,Z). By induction then

n
P

h(X.Z) = g(X .Z).

We now ShOW’by induction that 6 i2 = 26 i < N.

P P

For i = 0, 61(zr) = r61(z) + 261(r) = 261(r), for any

il

r 6 S. Thus 612 = 261.
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consider the polynomials 9,29 I ‘0

1

.(2p )

The

i . .

ZP ’19. write ng, j = 0,°°°, pl—l, as

i .
. p N i N

(23) ng = Z) r. (XP ,ZP )zn + r.(Xp )

=1 Jn J

N i N i

where r. (Xp ,ZP ) = Z) a. (Xp )k(Zp )m. Since
3n k jnkm

,m

6 i(zjg) = 0, evaluating (23) gives

P

(24)

P

i . i .

N i p N i

= I: r. (xp ,zP )5 .(zn)+ )3 z“: .(r. (xP ,zP ))+o
n=1 3n Pi n=1 pi 3n

1 i .

P 11 P n N k 1
_ p m
-- n§1 rjn6 1(2 ) +n§1 Z Opi&?m ajnkmucp ) (Z ) )

i i .

P N i

= $3 rjn6 i(zn) + 2 2n 2 a'nkmxkp 6 i(sz )

i i .

P N i

= Z r'n6 .(zn) + EX 2n 2 a. ka m(zp )m-16
3 i jnkm 1

~ n=1 P n=1 kom p

i .

P n l p1

= Z“ rjnO 1(2 )+rj6 i(z )

n=1 p p

Pi

- n
= r. . z

nZ-Pl Jn6p1( )

' _ . i “ _ l
where rjn — rjn if n < p and r. i — r. i + rj.

JP JP

equations in (24) yield the following matrix equation:
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6 .(z) 0

jn .
l

6 J-_(zp) o

P

Suppose that the determinant of (Ejn) is zero. Then

.).there exists a non-zero solution, say (t1,---, t

_ N Npl
Since (rjn) 6 [k(xp ,Z)] i' we have tj 6k(xP ,2),

P

j==l:"': p1. By replacing the tj with some multiple, if

N

necessary, we may assume tj 6'k[xp ,2].

Now consider the short exact sequence:

N i W i

o .. (g(xp .z)) -v k[xp .z] 4 k[xp ,z] a o.

i .

Let T]. 6k[XP ,2] such that 1T(Tj) = tj, j=1,---. p1.

We define 6 i: k[x] 4 k[x] to be the canonical pl—th

p i
. . . - j j<P

order derivation: that is, 6 .(X ) = { . 1 Now we

pl 1 J==P

_ i i

define I 6 Derfi (k[xP ,Z]) as follows:

I(z)) = T3. 3 = l, - , p1

_ i _ i .

I((xP )‘) = 6 1((XP )‘) z = 1.- . p1

P

_ i . i ._ i .

I((xpflzl) =(xP)‘Tj+zjai((xP)‘) o<z+j_<_p1

P

i

extend I to monomials of k[Xp ,Z] using (1).
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_ - i

We first Observe that I = 6 i on k[Xp ]. This is

. P i

obvious since both are pl—th order derivations on k[Xp ]

‘ p.1 2 _ ‘ p1 2 _ i
and I((X ) ) — 6 i((X ) ) for 2 - 1,°°°, p .

P

We next show

_ i . i . . _ i

(26) I((xp )‘23) = (xp )‘ I(zj) + 23 I((xp )‘)

for all 2 and j. By the definition of I, (26) holds

for 2 + j S_p1. We first prove (26) for 2 and j when

2 < p1 and j < p1. The proof is by induction. Suppose

2 + j = pli-l. Using (1) and the fact that

Z: (-1)m (2) = 0, we get

m=0 m

_ i . j 2 . i _ i .

I((xp )‘zJ)== 23 z:(—1)n+m-1(;>(g>(xp >mz“I((xP )“mz3’")
n=0 m=0,

lsn+m5p1

j g . i i _ .

= E Z (-1)n+‘“'1(,fi)(g) (Xp )mznuxp )"’“I(23’“)
n=0 m=0.

lin+m$p1

. _ i

+ 23‘“ I((xp )“m)}

j 2 . i _ .

= Z? z:(_i>n+m-1(;>(g)[<xp )‘ z“I(z3‘n)
n=0 m=0.

1Sn+msp1

. i m _ i 2

+ z3 (xP ) I((xp ) ‘m)}

j 2 . i - .

= z: 2: (-1>n+m-1<;)(g>((xp )‘ z“I(23’“)
n=0 m=0

. i m _ i 1 m

+ z3(xp ) I((xp ) ' )1
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. i _ . . _ i

+ <3)(g>[(xp )‘ I(zj) + 23 I((xp )‘)J

j . _ . i 2

= z: (-1)“'1(g)z“ I(zj‘“)(xp )‘ z>(-1)m(‘)
n=0 =0 m

j . 2 i ._ i

+ 2: (-1)“(r31> E (-1)"“'1(‘)(xP )mZJquP )L‘m)
n=0 m=0

i _ . . _ i

+ (xp )‘ I(ZJ) + 23 I((xp )‘)

i _ . i

= (xp )‘ I(ZJ) + 23 I((Xp )‘) .

Thus, (26) holds for 2+-j==p4-1 when 2 < pi and j<<pi.

Suppose (26) holds for 2' < p1 and j' < p1 whenever

2I + j' < 2 + j, 2 < pi, j < pi. We now show (26) is valid

for 2 + j. Since 2 < p1 and 2 + j 2_pi + 2, j 2_3.

Write j = j1 + j2 where j1 = p -2. Then

1 . i j j i 1 j

(xP )‘z3 = (xp )‘ z 1(z 2) = xp ---XP z---Z(z 2).

Equation (1) gives

- i . - i J J

I((Xp )‘zj)= I((Xp )‘ z 1(z 2))

j1 1 1 j i j

23 2 t2 (-1>“+m+t’1(,fi)(,})(xp )mznm 2)t
n=O m=0 =0

1Sn+m+tsp1

- i _ j -n j

I((xP >‘ m z 1 (z 2)1't)

jl jl 2—mZj —n+j

= Z E(-1)“*‘“'1(‘H ,3prin)mzI((xp’ 1 2)
n=0 m=0

l£n+m 3

1 2 j n+i

+ Z? Z? (-1)n+m(nf)(n1)(xp)m z 2

n=0 m=0

n+msp1



_ i j -n

I((Xp )"m z 1 )

jl n+m—1 2 jl m- '-n

= z: 23(-1) (m)( F)(xp) mzni[(xP)mI(zj )

n=0 m=0

lSn+m

+ZjnI((xpi")m)J

jl j1 n+i i - j —n

+ 2: z:(-1)m+n(‘)( §)(xp)mz 2[(xp )"mI(z 1 )

n=0 m=0

n+m$p1

j —n_ i

+ z 1 I((Xp >“m)]

jl
.

= z: 23(-1)“+m1(‘)(jv>(xp ) ”z I(zj'n)

=0 m=0

jl2 j . i_ i

+ z: Z‘(-1)“+m'1(;)(13)z3(xp )mI((XP )"m)
n=0 m=0

. . _ i

+ (31(V>1<xp> I(z)) + 23 I((xp )‘>]

jl 2 n+j _ j -n

+ 2: 23(-1)“+m(m)(:1)(xpW)‘ 2 I(z 1 )
n=0 m--0

j1 j i . _ i

+ z: 23(-1)n+m(m)(,3)(xp )mzJ I((XP )“m)

n=0 m=0

p.1 L ' j j ‘ pi L
(x ) I(z ) + z I((X ) ).

Thus, we have shown that (26) holds for all 2 and j

when 2 < p1 and j < p1. We now prove (26) for arbitrary

2 and j. Write 2 = 21 + 22p1 + 23p1+1 with

i ._ . . i . i+l
0.3 21 < p , 0322 < p, o_g 23 and j-314-32p 4-j3p

with 0 g,jl < pl, 0.3 j2 < p, 0.3 j3. Then using

Lemma 2.1, we have
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i ‘ p1+1j j pi j p1+1

3 Z 12 2 Z 3
1 l p1

2 (XP I

_ i . _ i z '

I((xp #23):qup I 1(xP I )

i+1 . 1+1 . i . .

z p 3 p - 1 L i L p 3 3 p

J<xp) 3 z 3 I((xp I 1(xP I 2 z 1z 2

pi £3p1 j3p pi £1 11- pi fizpl jzp1

=(X) Z [(X ) z I((X) Z I

1 z p1 j p1 i z j
+(xp ) 2 z 2 I((Xp I 1z 1)]

i 1 p1 j p i L 31 i 2 pi j p.

-(xp I 3 z 3 [(xp I 121((xp I 2 I(z 2 I

Zj pi i 1 pi i L p1 j pi i L

+ 2 I(xp I 2 I+<xP I 2 z 2 ((xP I 1I(zj1 I

1 Lj _

+zl)\((xp)1 ))J

j p' j _ j p' j p' - j
(XP”)1 3 (z 1 I(z 2 )+-z 2 I(z 1))

+1 .

1p . 1 £1 lip

+ (x9 I 3p 23((xp I 1I((xpI

1 zzpi' 1 L

+ (Xp ) {((xp ) 1 ))

. . . . i

1 J P _ 3 +3 P

i+1

13p - 1 11+‘2Pi
+ (xP I zj k((XP I I

p.1 z ‘ j j ' pi L(x ) I(z ) + z I((x ) I.

Hence, (26) holds for arbitrary L and j.

We want to show

_ i i i i _ _ i i

(27) I(s(xp ,zP )r)==s(Xp ,zp )I(r) + r I(s(xP .29 I)
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i

for any r 6 k[xP ,2]. To do this we first show

i i .

n(zp )mi((xp )‘zJ)

_ i i i . '1

k((xP )n(zp )m(xp )‘23) = (xp )

i . i i
... n m

+ (x9 >‘23x(<xp ) (Z? > ).

Using (26) and Lemma 2.1, we have

_ i i i . i i_ i. . i__ i i

Mxnp zmp sz zj) = an sz Hz]mp 23) +23]sz )4an sz )

n i L i m i_ . ._ m i

= x p x p [z P x(23) + zJX(z p )]

. i _ i L i

+zjzmp[6 i(xnp xp)]

P

i i i_ . ._ i

= an zmp [x‘p M23) + 23“le )]

L i . n i_ m i i_ n i

+xpz:'[xp)\(z“-’)+z’“p MXPH

i i_ L i . L i ._ i i

= an zmp Mx P 23) +x 9 zJMXnp zmp ).

' pfL n p1 m p1 23'
Now we consider X((X ) (Z ) r) where r = 23a£j(x ) Z :

_ i i _ i i i .

Mxnp zmp r) =)\(xnp zmp Z) a£j(xp )LZJ)

i i_ Li. Li._ imi

Za£j[xnp zmp k(xp 23)+XP z3Mxnp z p )]

i i _ i i

= xnp zmp Mr) + ruxnp zmp )

i i i n pi m

Now we prove (27) with s(XP‘,Zp ) = Zlanm(xp ) (Z ) :
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.. i i _ i i

MS(XP .2? )r) = mzanmmp )n(zP )mm

= Ea X(anlzmplr)
nm

nimi_ ‘nimi

=Zanm(xpzp k(r)+r)\(Xpr))

i i _ .. i i

np mp nP mp
Zanmx Z Mr) + rk(2anmx Z )

i i _ _ i i

= s(xp ,zP )x(r) + rX(s(Xp .Zp ).

Thus, we have proven (27) . We use (27) to show

_. i+1 i+1 i+1 i+1 _

<28) x(s(xP .zP )r) = s(xp .zP )x(r)

i

for r €k[Xp ,Z]. By (27) we have

_ i+1 i+1 i+1 i+1 .. _ i+1 i+1

k(s(Xp ,zP )r)==s(xP ,zP )x(r)+-rx(s(xp ,zP ).

Now

__ i+1 i+1 i+1 i+1

x(s(xP .zP )) II >
»

I

M

3
9 3
? ’
U :3

1
3 "
O

V
B

II M 9 >
’

I

3
5 U '
U
H
.

+

N

3

"
U

_ i+1 i+1 i+1 i+1 _

Thus, x(s(xP , zp )r) = s(xp ,zp ) k(r).
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We now use (27) and (28) to show that i((g)) s: (g).

i i i N

Suppose f(Xp ,Z) 6 (g) . Then f(Xp , z) =k(xp ,z)g(xp ,z) =

p -1 p-l i+1 i+1 i z m N

Z Z- smmp ,Zp )(xp) 2 g(xp ,2). Thus,

m=0 t:

. i+1 .

_ l _ p -1 p-l i

Mf(xp ,Z)) = M Z 23 smx‘P 2mg)

m=0 i=0

i+1 .
p -l p-l _ 1

= Z Z k(sm‘X‘!’p ng)

m=0 £=O

i+1 .

p -1 p-l _ 1.

23 Z smux‘p ng)

m=0 i=0

i+1. i+1

by(28) since s)"m E k[Xp ,ZP ]. Thus, it suffices to

+1
_ i .

show k(xl'p 2mg) 6 (9) ‘where O g_z < p, O g.m g.p1 —1.

Let m = npli-j ‘where 0 g.n < p and j < pl.

.11 _‘ini. Lini-' ._‘ini

k(xp zmg)=x(xPzPZJg)=xPzpk(ZJg)+zjgx(xpzp)

by (27). So, it suffices to show X(ng) E (g) for

'Then

0$j<p1-
i .

. p N 1. N

Now by (23), 239 = 2 rjn(xp ,zp )2n + rj(xp ).

n=1

Thus, i

- - P ._ N i _ N

M239) = 23 Mr. (xp ,2p )2“) + >\(r.(xP ))

n=1 3n 3

"5 i n "5 n- - PN"’ n=1 rjn (Z ) + =1 Z k(rjn) + 6pi(rj (X ))

by (27). Using the notation of (24), we have
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i i .

_ . _ p _ N 1

X(ng) = 23rjnx(zn) + Z} znx( Z) ajnkmxkp zmp ) + 0

n=1 n=1 k,m

i i .
_ p N_ 1

= %rjnuzn) + )3 Zn 2‘ ajnkmka Mzmp )

n=1 n=1 k,m

i i . .

p _ N 1 _ 1

= ernuzn) + 22 Zn 2 ajnkmxkp m(zp )m’lxwp )

n=1 n=1 k,m

i .

1

_. % " n I " p
— r. Z + . Zn=1 3n1( ) rJ X( )

i

= 2);. k(zn)

n=1 3n

g-
= r. T

n=1 3n n

1 i

P .. _ N

Now rr( ernTn) = % rjnmp ,z)tn = 0. Thus,

n=1 n=1

g(zjg) E ker w = (9). Thus, we have shown that {(9) g (9).

Now i induces a pl-th order derivation x on the

1

ring k[xP ,2] as follows:

Ma) = Trim) where 1rA =a

or k(A + (9)) = X(A) + (9) where A e k[xpl,z]. If

A + (g) = B + (9) then A43 6 (9): Km) -X(B) =i(A—B) 6(9)

since X(g) : (9). Thus, 1(A + (9)) = 1(3 + (9)) and

so 1 is well defined.

We observe that k(zj) = tj:

sz) = M23 + (9)) = MD) + (g) = T]. + (g) = tj
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. i i

for j = 1,---, p1. Also, we have k((xP )‘)==6 i((xp )L)

P

i z i z - z
for all i. For, k((xp ) )==x((xP ) +(g))==x((xp ) )-+(g)==

i z 1 z
aiuxp))+ (g)=ai((xp) ).

P P .

. 1

Thus, l is a pl—th order derivation from k[xp ,z)

i 1 i

to k[xp ,2]. 30, X E Derp (k(xp ,z)) and A agrees

k

with 6 i on k(xp ). This is a contradiction since 6 i

P i P

has a unique extension to k(xp ,2). Hence, the deter-

minant in (25), |(E. )I, is non-zero.
3n

Multiplying (23) by Xm, m = 1,"', p1-1, gives

i .
. N 1 . N

XmZJg = $3 rjn(XP ,Zp )XmZJ + erj(xP ). These give rise

n=1

to the following equations in k(x,z)z

(29)

o = 6 i(xmzjg)

P

Pi pi N

= ngar'bn 1(anz)+ I%'_)xmnzai(r.n)~I~r.(xp){5j_(Xm)

-1 J p1 n-l p 3 J p

i pi

= %r.n5 1(szn) + xm Z znb i(r.n) + 0

n=1 3 p n=1 p 3

= 33L!) imnmz)+xmr.‘ (zpi)

n=1 jn6p j 6p1

p1 __ m p1 pi m __ m p1
Now “(xz ) — x 6 1(2 ) + z 6 i(x ) — x 6 1(2 ):

51P P P P

6 i(xm) = 0 since m < p1. So, (29) can be written as

P
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i

P

O = Z} rjnb i(xmzn) + r56

=1 P p

m pi
i(x Z )

g;= r. 6 .(x z ).
n 1

=1 3 p

Since |(Ejn)| #’o, 6 i(xmzn) = O for O g_m < pl.

. P

1 _<_ n 3 p1.

Now we consider the pl-l order derivation [6 1,2]

P

given by [6 i,z](r) = 6 i(zr) - r6 i(z) - z6 i(r)

P P . P P

[10P0376]° For m = lo°°°o pl-ll [6 1,2](Xm) =

P

5 i(zxm) — xm6 jL(z) — 25 i(xm) = 0. Now

P P P i

1_1 p -1

[6 1.2] €Der£ (k(x.z)) so. [5 ..z] = Z 125. for
1 °— 3 3

P p 3-

some rj E k(x,z). Evaluating [6 .1,2] at x shows that

P

r1 = 0. Similarly, since [6 i,z](xm) = O, rm = O for

. P

m = 1' .0 pl‘lo Thus, [6 1,2] = 00 Hence,

P

0 = [6 i.Z](r)

P

= 6 i(zr) " r6 i(z) - 26 i(r)

P P P

= 6 J-L(zr) - 26 i(r).

P P

Thus, 6 i2 = 26 i for i < N. QED

P P

We now prove a special case of the main theorem.

Namely, if 6n 6 Der:(R) for all n, then a is an

integral domain. If 6n 6 Der:(R) for all n, then
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Derk(R) - < 510°°°0 6n >. Also Der(R) = der(R) since

at 0‘0
6 = 6 /e 1 o...o 6 /e E where the p—adic expansion of
n pt t 1 O

t .

n is given by n = Z} a.p1. Thus, 6 E Der:(R) for

i=0 1 n ,

all n implies that both hypotheses of the main theorem

are satisfied. That is, Der:(R) is free for all n and

Der(R) = der(R).

A

Theorem 3.6: If 6n e Der:(R) for all n, then R is
 

an integral domain.

Proof: We define a sequence of elements in R as follows:

 

i i

p-l - 6 (Y)x

(3O) 21 = y + Z (-l) l —-];-]--.———

i=l '

i ipn-l

p—l i jpn—l(zn-l)x

2n = zn-l + i2; ('1) i!

Consider zn. Since K is a separable algebraic

extension of k(x) and since zn E K, zn satisfies a

minimal polynomial g(Z) with coefficients in k(x) such

that gZ #’O. By multiplying g by some d(x) €'k[x], 9;

may be assumed to be in k[x][Z]. If g factors over

k[x,z] so that g = 9192' then either g1 or g2 is in

k[x] since degzg = deng1 + degzg2 and g is the

polynomial of minimal Z-degree which zn satisfies.



‘
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Thus, 9 may be assumed to be irreducible over k. Thus,

for each zn there exists an irreducible polynomial

g(X,Z) 'w1th g(x,zn) = O and gZ(x,zn) # 0.

We shall show that 6pjzn = zn6pj for J < n. We

first consider 61.

+(—1)P"2511"1(y)xp'2/<p—2) :+ (-1)P'1a§‘1(y)xp’2/(p-2) :

+(-1)p‘15§(y)xp'l/(p-1)!

(-1)P‘16‘1’(y)xp'1/(p-1) :

= 0

since 6§(Y) = 0 by (17). Thus, by Proposition 3.5,

1 2151'

NOW'We assume that 6 jzn_1==zn_l6 j for j==l,---,

P P

n—2. Evaluating 6 n_l(zn), as above, gives that

6 n—l(zn) 0. Also, since 6 j<36 ==5 .

P P P P P

6 j(zn_1) = O for j = l,---, n-2, we have

P

1 ip

p—l i 5 ml6 j(""n--1)X

5 .(z ) = 5 .(zn_1) + .Z}(-1) .2

p3 n p3 1=1

 

i!

= O.



50

Thus, 6 j(2n) = O for j < n. Hence by Proposition 3.5,

P

6 jzn = zn6 j for j < n.

P P n

- - _ P
Now zn is a Cauchy sequence s1nce zn+1 2n 6 m .

Let 2 = lim Zn: 2 E R. Now 6 j is a continuous

P
A

function on R. Thus for r 6 R with r = lim rn.rn ER,

we have

6pj(zr) = 6Pj(11m zn 11m rn)

= 6 j(1im znrn)

P

= lim 6 j(znrn)

P

= 11m (znb j(rn))

P

= 11m zn 11m 6 j(rn)

P

= z 6 j (1im rn)

P

= 26 -(r).

p3

Thus, 6 . z = 26 . for all j and hence, 6.2 = 26.

J J 1 1

P P

for all i.

Now 2 = 21 + (zZ-zl) +°°°+ (Zn-zn-l) +--° : so,

2 = y + Z) ai.xly3. Hence, y = z — Z} ai.x1yj. We

DO 3 i>o 3

substitute for y on the right hand side of the equation;

thus, y = z — Z: a..x1(z — Z) a..x1y3)j. Continue

i>0 13 i>o 13
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substituting for y. This gives that y may be written

as y = Zjaijxlzj and from this follows that every

A . .

element r E R is of the form r = Z3uijxlzj.

A

Suppose r is a zero divisor in R. Then

= i j . =Z>aijx z ‘Wlth aij E‘k and GOO 0. By Theorem

3.1, 61(r) is a zero divisor. Now

61(r) = a1 + 23a. 61(xizj). 61(xizj) zj6l(xi) E (x,y)

ii

for i + j 2.2, so, 61(r) is a unit unless alo = O.

= 0. Suppose aiO = O for i < n. Then,

6n(r) = a + Z3aij6n (x123) is a zero divisor. Since

n(xizj) E (x, y), a 0. Hence, we have shown that

no

aio = o for all i. Thus, elements of the form ZaijxlzJ

A

‘with aIO #'O for some I are not zero divisors in R.

Now we suppose that rs = O with r = ZaijxlzJ

and s = 2 E3. .xlzj. Then writing r = 21’ Z a. .xlzJ-l’with

1] jzz 1]

#’o for some I, the above shows that Z) a..xlzj-£(1.

IL jzz 1]

is not a zero divisor. Note that if r is a zero

divisor, but not equal to zero, then L must be greater

than zero. Likewise = 2m ZIBijxizzjm ‘with BI m#'0

32m

j——m . L m__

and 2) Bi .x 1z is not a zero divisor. Hence, 2 Z -0

j=m j

and since R has no nilpotent elements, z==0. Thus,

A

r==0 and R is an integral domain. QED
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Theorem 3.7: If Der:(R) is a free Remodule for all n
 

A

and if Der(R) = der(R), then R is an integral domain.

 

Proof: Since Deri(R) is a free Remodule, by Theorem

1.8 there exists a derivation Al and a monomial xl

such that l1(x1) = 1. Because Al is a lst order deri-

vation, xl can only be x or y. If fx(x,y) # 0,

then the curve does not distinguish between x and y

since fy(x,y) #'0. Thus, without loss of generality we

may assume x1 = x. If fX(x,y) = 0, then

fx(x,y)11(x) + fy(x,y)kl(y) = 0. Hence, 61(Y) = O and

so, x1 = x. Hence, we shall assume x1 = x. Further,

since l1 and 61 agree on k(x) and since both extend

uniquely to k(x,y), XI = 61.

Now if 6n €.Der:(R) for all n, then by Theorem 3.6

A

R is an integral domain. Thus, the only case we need

consider is if some 6n t Derfi(R). Since

at do t i

5 = 5 /d E o...o 5 /d !, when n = Z) a.p , there

must exist a positive integer N such that 61: R 4 R

N

for i < pN, but 6 N ¢,Der£ (R).

P

If 61(y) = (a+s)/(l+t) where a #‘0, a 67k, and

s,t 6 m, let y' = y - ax. Note that y’ #'0 since R

is not regular. wa 61(y') = (a+s)/(l+t) - a =

(s-at)/(l+t) E‘m. Then since k[x,y] = k[x,y'] and

_ I 0 _ o =

(X.y) - (my ). (k[X.y ])(X'y:) — R. Let g(X.Y )

f(X,Y' + ax). Then g(x,y') = 0. Also,



S3

' _ t _ t —

ng(xoY ) — le(ny + (IX) " fY(XpY)dY/dY -

fY(x,y) d(Y' + aX)/dY' = fY(x,y) #‘o by the chain rule.

Thus gYI(x,y') # 0. Thus we may assume that 61(y) E m.

We have then the following assumptions on R:

(31) Der:(R) is a free R-module for all n

Der(R) = der(R)

Der1(R) = < a >
k l

61(y) €,m.

Now we define zn for n S_N as we did in (30).

 

That is,

i .

P-1 i 61(Y)X1

21 = y + Z (-l) —1—,—-

'_ 1.

1—1

. n—l
1 1p

p-l i 5 n-l(zn 1)x

2n = zn-l + iii (-1) i!

Let 2 = 2N. As in the previous theorem, 61(2) = O for

i < pN. Thus, by PrOposition 3.5, there exists an

N N

irreducible polynomial g(Xp ,Z) such that g(xP ,z)==0

N.

and gZ(xp ,z) #'0. Also, 6iz = 261 for i < pN. We

observe that 21 = y + xr1(x,y) ‘with r1(x,y) €;m since

61(Y) 6 m. Thus,

(32) z = y + xr(x,y) for some r(x,y) G (x,y).
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We now con31der the ring R1 = (k[x,z])(x'z). we

shall show that R c R. Let s(x,z)/t(x,z) 6 R ‘with
1 1'

s,t E k[x,z] and t t (x,z). Since k[x,z] c k(x,y),

s,t 6 k[x,y]. t t (x,z) implies that t = a + h(x,z)

'with a a non-zero constant in k and h(x,z) E (x,z).

Thus, h(x,z) 6 (x,y) since (x,z) : (x,y) and so, t

is a non-unit in R.‘ Hence, s/t e R. Thus, R1 c R.

We now show that $1 = a. Since 2 = y + xr(x,y),

y = z - xr(x,y). substituting for y on the right hand

side of the equation and continuing this process gives

i j A

that y = 23a..x z for some o.. 67k. Thus, y E R1 and

A A 13 13

so, R1 = R.

Let K1 = k(x,z). K1 is a separable algebraic ex-

N

tension of k(x) since gz(xP ,z) #'0. Thus, 6n extends

uniquely to K1 for all n. Since 612 = 261 for

i < pN, 6i:k[x,z] 4 k[x,z]. Hence, 6i 6 Der;(R for all1)

i < pN. In fact, Der:(Rl) = < 61,°°°, 6n > for n < p“.

‘We shall show that Der:(R1) is a free Rl-module for

all n. In order to do this, we shall need to know that

there exist derivations Xi and monomials

x. E k[x,z] c R such that Der:(R) = < 11.'°°, 1n > and
1 1

{0 j<i

k.(x.) = , , . Thus, we show this first. For
1 j 1.1 3:1

1 < pN, we let xi = 61 and xi = x1. Then clearly we

have satisfied the desired requirements for ii and xi.
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N N

Now consider Deri (R). By Theorem 1.6 Der: (R)==

N

Derfi -1(R) ® RY ='< 61.-°°, 6 N >19 RY ‘where

p -1

N

Y 6 Derfi (R). Further, there exists an element r E R

A A

such that y(r) = 1. Now r 6 R c R = R1 so,

r = Z) ai.xlzj. Thus, 1 = y(r) = Z) ai.y(xlzj).

O‘i+j 3 131+]. J

This implies that y(szJ) must be a unit in R for some

I and J. Let 1 N = (l/y(szJ))Y. Then

P

pN N
Derk (R) = < 11,°°-, 1 N > where xi = 61 for 1 < p .

P

And we have shown that there is a monomial

x N E k[x,z] : R1 such that 1 N(x N) = l.

P , P P

We now proceed by induction. Suppose Der2'1(R) =

< 11,---, xn—l > and that there are monomials

O j<<i .

x1, , Xn-l 6 R1 such that 11(xj) — { 1 j==i . Again

61 and x1 = x1 for i < pN. Nowwe are taking 11

n — 0..

by Theorem 1.6, Derk(R) - < 11, , Xn-l'Y > ‘where

y(xi) = 0 for i < n and y(r) = l for some r E R. As

before r = ZaijxlzJ and so, y(szJ) is an unit in R

for some I and J. Thus there exists a monomial

xn E k[x,z] such that y(xn) is a unit in R. Let

- n - .0.1n — Y/Y(Xn)- Then Derk(R) - < 11. , An > and

{0 i<n

1 (x.) = , with x a monomial.

n 1 1 1:11 n
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we want to show that the 11's which have just been

found are in fact derivations from Rl to R1. In order

to do this we shall need to know that R n k(x,z) = R1.

To see that this is the case we consider the following:

A A A

R Q k(x,z) 0 R c k(x,z) 0 R = k(x,z) n R . Since ® R

1 1 R1 1

A

is exact [Cor. 17.11,p.57:5], k(x,z) n R1 = R1 [Theorem

8.4,p.59:5]. Hence, R = k(x,z) n R.
1

As we have already seen, 11 = 61:R1 4 R1. Suppose

1nduct1ve1y that X1,---, xn-l: R1 4 R1. Then 1.1:Kl 4 K1

for i < n. Now 1 -, 1n are a basis for Der:(K)
1...

n
n .

and 6n 6 Derk(K) so, 6n - 12; r11i ‘w1th ri E,K and

. n
rn #’O. ‘We show that ri €,K Since 6n €.Derk(K

1' 1"

6n(x1) = r1 6 K1 (in fact, r1 = 0). Suppose

n

G K Then 6n(xj) = Z) riki(xj) =r '...' r,

i 3’1 i=1

1'

3

Z) rixi(xj) wh1ch implies that r. = 6n(xj) -

i=1 3

j-1 .

iii rixi(xj) 6 K1. Thus, ri 6 K1 for 1 = l,---, n.

n-l

Now An = 6n/rn - iii riAi/rn; 1n: R1 4 R while

n-l

6n/rn - i=1 rixi/rn: R1 4 K1. Thus, 1n:R1 4 R 0 K1 = R1.

Thus, for all i, Xi E Der:(R1). Also, there exist

0 j<:i

monomials xi 6 R1 such that Ai(xj) = { 1 j==i Thus,

by Theorem 1.5, Der:(R1) is a free Rl-module generated

l'°.°' 1n; this holds for all n. Further, we have

i_ _ - N
that Xi - 6i and xi - x for 1 < p .
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By assumption 6 N:R-74> R. ‘We want to show the same

P

15 true for R1; that 1s, 6 N:Rl-7L> R1. S1nce

P N

61, , 6 N are a free basis for Derfi (K),

p 11
p -l .

1 = r6 + Z) r.6.. But 1 (x1) = 1 (x.) = o for
N N .p p 1:1 1 l pN pN l

i < pN, so, ri = O for i < pN. Thus, 1 N = r6 N'

N P P

Now r = 1 N(xp ) E R. Since 6 N: R 7L> R, r 6 (x,y).

P P

Also, 1 = 1 N(x N) = r6 N(x N) so, 6 N(x N) = l/r t R.

P P P P P P

Now x N e R1; 1f 6 N: R1 4 R1, then 1/r = 6 N(x N) e

P P P P

R1 9 R which is a contradiction. Thus, 6 N:R1 74> R1.

P

And further we have

N

N N ‘where r = 1 N(xP )6 (x,z).

P P P

(33) 1 = r6

'Finally for R1, we show that Der(Rl) = der(Rl). It

suffices to show 1n is generated by pl—th order deriva—

tions for all n. Define n“ €1De£:(R) as follows:

0‘11 “o i
(34) yh = 1 M/dM! o...o 11 /'aog where m = .23 dip .

p 1=O

n — O O .

By Theorem 3.2 Derk(R) — < Y1: . Yn >. So,

n

1 = Z: r.y..'with r. E R. On the other hand, it is clear
n i=1 1 1 1

n n

that Yn E Derk(R1) so, Yn = .2) ti).i w1th ti E R1. By

1=l
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Corollary 3.3 rn and tn are units in R. Thus,

r = l/tn €IK1 n R = R1 and so, tn is a unit in R .
n l

- n-l

So, 1n = yn/tn - 1E) ti1i/tn. Assume by induction that

1

for i < n, 11 = jg) sinj with sij 6 R1. we can do

this Since 11 = Y1“ Then

n—l 1

1n = yn/tn - .E) ti(.§> sijyj)/tn. Hence,

—1 3—1

at al n l
- ' O. O ' -1n (1/tn)1Pt/nt. o o 11 /oo. 6 Derk (R1). Thus, 1n

is generated by composites of pl-th order derivations.

Hence Der(R = der(R1) 1) .

We have shown then that the following hold for R1:

n - .0. .

(35) Derk(R1) — < 11, , 1n > where 1i is also

an i-th order derivation of R to R.

O j<<i

There ex1st xi 6 R1 such that 11(xj) = { 1 j==i.

_ _ i . N

1.1 — 6i and xi — x for i < p .

_ - N
112 — z1i for 1 < p .

— . n

Der(Rl) — der(Rl) and in fact Derk(R1)

(I. (I.

-’ M ' 00. 00 o '< Yl'”°' yn> where Ym

M .

Z dipl.

i=0

m

N

(k[xp .21) N . We still have

(xP .2)

N N

9(Xp .2) = O and gz(xP ,2) #’O. Just as R1 was

Let R2
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contained in R so too is R2 : R1. we shall show that

all the assumptions on R. which are given in (31) also

hold for R2. Before we do this however, we Observe that

. A . . . A A A .
if R2 is a domain then so is R = R1. Suppose R is

not a domain. Then there exists r #’o and s #’0 such

A

that rs = 0. By Chevalley's Theorem R has no nil-

N N

potent elements so, rP #’O and sp #'0. But

NN N N
A A

rP sp = O and rp ,sp 6 R2. Thus, if R is a domain,

2

either r = 0 or s = 0.

An important relationship between the derivations

1n and R2 is that 1i(r) = O and 1ir = r11 when

r 6 R2 and i < pN. Also, if pN X n, then yh(r) = O

for r 6 R2. To see this we write n in its p—adic ex-

t .

pansion as n = Z) a.p1. Since puyl n, some a. # 0

i=0 1 1

for i < N. Let I < pN be the smallest i such that

0"t 0‘1
ol #’0. Then yh = 1 t/ot! o---o 1 I/'aI! . Since

P P

1pI(r) = O for r E R2, yn(r) = 0. Since 11.- = 6i for

i < pN, this relationship also holds for 6n 6 Der:(K).

That is, if pN X n, then 6n(r) = O for r 6 R2.

Before we study R further, we make an observation
2

A A

about zero divisors in R. For any r 6 (x,y)R, we write

r as

N N

P -1 - P -1 -

Z 6.x1 + Z) rix1(36) r 1

'=1 i=0
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N N

where Bi €.k and ri 6 (xP ,z)k[[xP ,2]]: ‘we can do

A A

this since R = R1. If r is a zero divisor, then by

Lemma 3.1 6n(r) is also a zero divisor for n < pN.

Since 6n is linear with respect to R2. we have

N N

6 ( ) [3 :pfsl B 6 ( j') P E; 6 ( i)
r = + . x + r- X o

n n i=n+1 1. n i 0 1 n

A

Since all terms but the first are in (x,y)R, 6n must

zero. Thus, 6. O for i = 1,'°°, pN-l. Hence, a1.:

A

Rzero divisor in has the form

PN'l i

(37) r = Z) rix

i=0

N N

where ri e (xP ,z)k[[xp .21].

We shall show that the derivations Y N' n==1,2,---,

nP

give rise to generators which freely generate Der:(R2)

for all n. we make use of the fact that 6 N is an

nP
N

n-th order derivation on k[xp ] [1, Theorem 14: 6] and

N

that 6 N extends uniquely to k(xp ,z) = K2 and is

nP

an n-th order derivation on K2-

rs8N

Now consider y N; y N = r16i ‘with ri E K.

np np '=1

. n N

For r 6 R2. Y N(r) = E? ri6i(r) = Z) r 6 (r).

np i=1 ' '

n
So, y N E Derk(K2,K).

nP
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We first show that there exist monomials

N

E k[xp ,2] such that y (y ) is a unit in R .
npN n 1

N

Suppose yN(r) 6 (x,z) for all r €k[xp ,2]. Since

P

y N(k[x,z]) 5t (x,z), there exists some monomial x121

P

such that y N(xlz

P N
N

since N(k[xp ,z]) c (x, 2). Also, p X i, otherwise

yn

3) is a unit in R1. Clearly i > O,

1‘23 6 k[xpN,2]. Thus, there exists an element of the

form xjs 6 k[x,z] : R1 such that Y N(xjs) is a unit in

P
N

R s E k[xp ,z] and j is as small as possible with1'

0 < j < pN. Consider the derivation y N =

p +(1:>N-j)

YNoYN. Forany xtr where O_<_t<pN and r€R2

P P-J

we have

YN°YN .(xtr) = YN°6N .(xtr)

P P.) P P-J

=meN .(xtn.

P P-J

N.

Now for tZP-J

5N .(xt) =

P-J

PN __ t-pN+j+s N_._
Sid} )(s Nt>CtpN+j+s-1)( 6N.(xp38)

PN“)8 P-J

=<M
P'J
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[I, Pr0p. 9:6]. So,

N

P

YN°YN (xr)-

P P-J N

o 0.3 t < p -j

. t . N. .

By assumption Y N(x r) 63m Since t-p +3 < 3. Thus,

P

y N N (s) E'm for all s E R1 ‘which is a contradiction

p+p -j

to Corollary 3.4. Thus, there exists a monomial

N

yl E k[xp ,2] such that y N(yl) is a unit in R Let

P

l'

’ -

P P P

o N

E Der1p (R1)Suppose we have found derivations k
a

Y

ipN

N

and monomials yi E k[xp ,2] such that the following hold:

i—l

y. N = rY. N + Z; rjy. N with rj 6 R1, r a unit in R

1P 1P j: 3P

j<i

Y N(ya-H {1. .

1

ip 3‘1

_ n-l ’

for 1 < n. Let y N = Y N - .23 riY N where

np np i=1 ip

jil ‘

r = Y (17). r. = Y (y.) - r.Y (y-). SO.
1 npN 1 j npN j i= 1 ipN j

r.l 6 R1. Then by construction Y N(yi) = O for i < n.
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N

Suppose (r) 6 (x,z) fbr all r E k[xp ,2]. By
s

npN

Corollary 3.4 there exists s 6 R1 such that § N(s)

nP

is a unit in R1. Again choose j as small as possible

so that § N(XJE) is a unit in R1, 0 < j < pN and

an

E 6 k[xp ,2]. Then as before one shows that

_ n-l

Y 0 6 = Y + Z) r.y :R 4 (x,z)
N N . N N . . . N . 1

up p -3 up +9 -3 1=1 1 1p +9 -3

contradicting Corollary 3.4. Thus, there is a monomial

N

yn E k[xp ,2] such that y N(yn) is a unit in R1. Let

nP

y' N = Y N/Y N(yn). This completes the induction step.

np np np

Thus, we have constructed derivations y' N and

N “P

monomials yn 6 k[xp ,2] ‘which satisfy the following

properties:

y' N is an n-th order derivation from K2 to K and

nP

and npN-th order derivation from R1 to R1.

‘ n-l .

y N = ry N + 'Z) riY. N where ri E R1 and r 13 a

np np i=1 1p

unit in R1.

' O i<<n

anN(Yi) — { 1 i==n

If pN X’m, define v; = vm. So, Y; is defined for all

I

n and Yn € Der:(R1). we now show by induction that

Der:(R1) = < y£,---, Y; >. The first step is clear.
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- _ _ _ I _ I

Since 61 - l1 — Y1 — Y1, Der1k(Rl) - < Y1 >. Suppose

Derfi 1(R1) = < Y1,---, y 1 >. It suffices to show that
n...

_ N _ I
Yn - 121 s.HY for some 31 E R1. If p X’n, Yn — Yn .

If pN‘ n, so that n = fipN, then Yn = y_ N =

nP

I n—l
ngg-ls ’

Y— N/r " 2' riY N/r = Y__ N/r + iYi by the

np i=1 ip np i=1

induction hypothesis. Thus, Der:(Rl) = < y£,---, Y; >.

n — I o o o 'We also hgve that Derk(K1) — < Y1, , Yn >. So,

11% t ’ f‘ 0 Y. or son‘e to E K

npN i=1 1 i 1

On R we have

5 1° 2

n

6 N = Z) t NY’ N since for pN X i, yf(s) = y.(s) = O
._ . . i

nP 3-1 JP JP

when s 6 R2.

We shall show that y' N: R2 4 R2 for all n. In

nP

order to do this, we shall need to know that thlK2==R -

SO. we prove this first. Suppose r(xp ,z)/s(xp ,z) =

U(X.Z)/V(X.Z) in R1 with r,s,u,v, e k[x,z] and v(x,z)

a unit in R1. Then pulling back to k[x,z] gives

N N N

r(xp ,Z)v(X,Z) -s(xp ,Z)u(X,Z) =h(x,Z)g(xp ,Z).

PN'l P i

Write v(x,z) = Z3 vi(X ,Z)X . Do the same for u and

i=0

h. Then
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N N N

r(xp ,Z)(v +---+v x? '1).-s(xP ,Z)(u +---+u xp '1)
O O N

P '1 p -l

N N

= (ko+---+k Xp "1)g(xp ,Z)

and so,

N N N N N N

r(xp .z)vo(xp ,Z)-s(xp .Z)uo(xp ,Z) = ko(xp ,Z)g(xp ,2)

since all other terms involve X1, 0 < i < pN. Since

v(x,z) is a unit in R1, v(x,z) begins with a constant

N

term. Thus, vo(xp ,z) is a unit in R2. Hence,

N N pN N

r(xP ,z)/'s(xp ,z) = uo(x ,z)/Vb(xp ,z) E R2. Therefore,

K2 0 R1 = R2.

We now show that Y' NzR2 4 R2. We first consider

nP

I . 3 _ . . .

Y N' Since Y N — ul N where u is a unit in R1, we

P P P N

I _ _ i P
have by (33) that Y N — r6 N where r — Y N(x ) 6 R1.

P P P

__ l _ . .

We have 1 — Y N(y1) — r6 N(yl)' Since 6 N'KZ 4 K2,

P P P

_. ' . 0 0

r — 1/5 N(yl) 6 K2. Now Y H.122 4 R1 and r5 N.R2 4 K2,

P P P

I 0 =thus, Y N.R2 4 R1 n K2 R2.

P

Inductively we assume Y' N:R2 4 R2 for i < n.

ip

Recall that 6 N when restricted to R2 may be written

n np
_ I .

as 5 N — .Z’ tiY. N, With ti 6K1 and tn #0.

np i=1 ip

Evaluating 6 N at yi gives ti € K2 Since

np



I
5 :K4K.So,Y -5 /t-
npN 2 2 npN nPN n

n-l I

.5) tiY. N/tn:R2 4 R1 0 K2 = R2. Thus, by Theorem 1.5

i—l ip

Dern(R ) is a free R —module generated by Y' ,---,Y'
R 2 2 N N

P nP

We should again note that Y' N is also an npN-th order

nP

derivation from R to R.

Finally we show that Der(R2) der(Rz). Let

IaM I00
2 ' .0 t ._ . .Om YpM /aM. Y1 /a0 where the p adic expanSion

M i
of m is given by m = Z3 dip . By Theorem 3.4

i=0

n — O. =

Derk(R1) — < 01 , , on >. To prove that Der(Rz)

der(RZ), it suffices to show for all n that

' n

(38) Y N = .2 ‘1". N
np i=1 ip

with r.l E R2. To see this suppose that (38) holds. We

first Observe that o N is a j-th order derivation on

ij

. J .

R2. We write j = Z? d.p1. Then ij = Z} a.p1+N.
. . i . 1

i=0 i=0

1a.: 90
_ I I °

Thus, 0. N — Y J+N/dJ' o...o Y N /do. . Since

JP P P

I . I .

Y :R 4 R , O :R 4 R . Further, Since Y . is a
. N 2 2 . N 2 n+i

1P JP 2 P

pl-th order derivation on R2, 0 has order

J jp

Z) dip1 = j. Now let X E Der(RZ) and suppose that n

i=0

is the smallest integer such that A E Der:(R2). write n
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in its p-adic expansion as n = Z3 a.p . Since

n

n "" ' o o o ' = .Derk(R2) - < Y N , , Y N >, X .2) t.Y. N With

p np i=1 ip

t.l E R2 and tn # 0. Using (38) and the above remark,

n-l

E Derkwe have that l — tnrno N (R Thus,

nP

2)°

n-l

k (R

a

l — tnrn (Y N+S/as E o...o Y’NO/ool) 6 Der ) where

SP

2

i

Y N+' E Derp (R ) and Z) a.lpi = n. Thus, if (38) holds,

P 1 k 2 i=0

Der(Rz) = der(RZ).

We now show (38). The result is true for n = 1

since 0 N = Y'N. Assume it holds for i < n. Now

p p n
n I

o E Der (R ) so, 0 = Z) u.Y , u. E R . In
npN k 3 npN i=1 i ipN i 2

np
I __ .

R1, Y N — .E) tici With ti 6 R1. By Corollary 3.5 un

np i—l

and t N are units in R1, so, t N = l/un 6K2f1R1==R2.

np nP

. . . I _ _
So, un 15 a unit in R2. Hence, Y N — o N/un

nP nP

n- 1 n-l

Z? u.lY. N/'un = O N/un + Z? ri O. N With ri E R2 and

i=1. ip npN i=1 ip

(38) is proven.

Thus we have shown that Der: (R2 ) is a free Rz-module

for all n and Der(Rz) = der(RZ).

We now examine Deri(R2) more closely. We know

N pN

92(XP ,z) ¢ 0. ‘We shall also show that g N(xp ,z) ¢ 0.

P
X
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N N N N

In M):13 .z)g N(xP .2)6 N(xp) + gzhcP .2)6 N(z) = 0

xp p P

N

since 5 N is a first order derivation on k(xp ,2). If

P

N

g N(xp ,z) = 0, then 6 N(2) = 0. Then by Proposition

P P
X

5 N2 = 26 N’ If this were the case then 6 N:R1 4 R1

P P P

N

which does not happen. Thus. 9 N(xp ,z) #'0.

P
X

N

Since y1 is the monomial in k[xp ,z] paired with

the first order derivation Y'N, it must be either 2 or

P

I

’ N

Y = r6 where r = Y (xp ). Since
N N N

P P P

N

5PN:R2‘7L> R2. Y;fi(xp ) is not a unit in R2. Hence, y1

must be 2.

Let 6: represent the canonical derivations on k[z]

23. oj<i N 2

That is, 5.(z ) = { . Since 9 (xp ,z);!0, 6.

1 1 j==i N 1

P
X

extends uniquely to K2. To summarize then, we have the

following:

(39) Der:(R2) is free for all n.

Der(Rz) = der(Rz).

N

g N(xp Oz) #0“

XP

1 _ 2 . . 2 _ ,

Derk(R2) - < 51 >. in fact, 61 — YpN.
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N N

5i<xp ) 6 (XP 02) I

Thus, all the hypotheses that we originally had for R,

which are listed in (31), hold for R Here 2 plays2.

N

the role of x and xP plays the role of y.

There are two cases. If bisz * R2 for all i,

A A

then by Theorem 3.8 R2 is a domain. Hence, R is a

domain. The second case is that there exists N(l) such

that si:R 4 R for i < pN(1)2 2 , but 6PN(1):R2 +> R2.

We now proceed exactly as before and construct rings R3

and R . R3 = (k[u,z])(u'z) and
4

N(1)

R4 = (k[u,zp ]) N(1) . Here u plays the same

(“IZP )

role that z played in R1 and R2. Hence,

N N N N

u = xp + zr(xP ,z) for some r(xp ,z) E (xp ,2); this

is equation (32). Since 2 E (x,y), u E (x,y)z. We also

N(l)n _ 2 ... 2
have that Derk(R2) — < 61 , , 5n > for n < p and

bir = r6: for i < pN(1) and r E R4. Further,

2 . N(l) . . . .

bi. i < p , may be Viewed as a derivation on R Since

n _ t o O . I I .

Derk(R2) — < Y N , , Y N > and Y_ N.R 4 R.

P np N ip

A

Now any element ri E (xp ,z)R2 may be written as

pN(1)_1 . PN(1)_1 .

(40) ri = 23 6.1.23 + Z ri.zJ

N(1) N(l)

where aij E k and rij E (u,zp )k[[u,zp ]].
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A

This is just equation (36) with R2 playing the role of

A

R, u playing the role of z, and 2 playing the role

of x.

We now consider r E (x,y)R. Suppose r is a zero

-1 i

divisor. Then by (37) r has the form r = P2) r.1x1 .

i=0

Using (40) we substitute for rj:

N Np _1 p (1)_1 i pN_1 pN(1)-l i j

r = Z) .23 fii.x1zJ + 23 _Z: ri.x z .

i=0 3=1 3 i=0 3=0 3

MD MD A

Here fiij E k and rij E (u,zp )k[[u,zp ]]s:(x,y)2R.

2
we now apply 6 o 6 to r:

62
o 6 (r) = B

6N 1 N -
p ( ) -1 p -1 pN 1.me-l

N

+ Z Z rij°um °°N (“in
i=0 j=0 p -l p —1

Since 62N(l) «:6 N (r) is a zero divisor,

—1 p -1

B N N(l) = 0. If we continue evaluating r at

P-lIP 1

2 2 2 2

6 06 .'°°,606 .6 06 I"'I6I
PN(1)_2 pN-l 1 pN_1 PN(1)_1 pN_2 1

we get Bij = 0 for 0.3 i < pN and O < j < pN(l).

Thus, if r is a zero divisor r E (x,y)2 R
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we continue this process and construct a sequence

of rings sz such that sz relative to R2(j—l)

satisfies the analogous properties listed in (39). We

23'
1 . Theredenote the canonical derivations on sz by 6

are two cases. The first is that there exists j such

that 5?”:R -+ R for all 1. Then by Theorem 3.6,
A 1 2J 2J A

R2J is : domain. This implies that R2(J_1) is a domain.

Hence, R is a domain. The second case is that for all

2:]
j there exists N(j) such that 6 N(j):

P

sz +> R23” In

A

this case we have that for a zero divisor r E R.

A A

r E (x,y)n R for all n. Since fl(x,y)n R = O, r = O.

n

A

Thus, in either case we have that R is an integral

domain. QED

The next theorem gives a geometric interpretation to

A ' .
this result: R is an integral domain only if P is uni-

branched at the origin. Algebraically this means that

f(X,Y) = (ax + BY)n + f +--- + fm.
n+1

Theorem 3.8: Let R be the local ring of the irreducible
 

curve f(X.Y) at (0.0) over an algebraically closed

field k. Suppose f has r distinct branches at (0.0).

Then the integral closure R of R has r maximal ideals

A

and the completion of R is R = R1 ®'°°® Rr'

Proof: Consider the integral closure R of R. It is a

semilocal ring with maximal ideals ml .°-°, mt. Rm is

i
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A

a discrete rank 1 valuation ring so, Rm. 27k[[t]].

1

Hence, R -—fi> k[[t]]. Consider the image of (x,y) in

k[[t]], say, (g(t),n(t)). Since f(x,y) = O, we have

f(§(t),n(t)) = 0. Thus, mi determines a branch of

f(x,y).

Now suppose mi fi'mj determine the same branch.

6

T en Kai 9.1 [[t]] With (x,y) -——> (§l(t),n1(t)) an

A e

fim. 93 k[[tl] With (x.y) —§-> (§2(t).n2(t)). Since

3 2

mi and mj determine the same branch, there exists a

substitution 0 of order 1 such that

0(§1(t).nl(t)) = (§2(t).n2(t)) [Theorem 12.3: 8]. Let

K be the quotient field of R. Since k is algebrai-

A

cally closed, K is the quotient field of Rm and

iA

Rm . So, on K ‘we have 0.391 = 92: K 4 k((t)). Now

3

since mi #mj choose r Emi such that r {my Then

91(r) e (t) so, 0°91(r) e (t) but 92(r) t(t); this

is a contradiction. Therefore, distinct maximal ideals

determine distinct branches. So, t.g r.

Consider a branch Yi' This branch determines a

local homomorphism eizR 4 k[[tJ]. 9i extends to K so,

GizK .. k[[t]]. Consider eglm n 1'1; this is prime

hence, maximal in R. Suppose 9;l(t) fl §==6;1(t)!lR==m.
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Then

9

——i—--> k[[tn

l
>

a
”

- e...e’.1
e . 1 J

v

k[[tJ]

1
91° 9; is an automorphism since 911(t)I1R==631(t)f1R.

1
Thus, Bi<>97 gives a substitution of order 1 and

3

hence, Yi and Yj are the same branch. Thus, r'g t.

Therefore r = t and the number of maximal ideals

in R equals the number of branches of f at (0,0).

Thus, R = R1 ®--~@ Rr‘ [Theorem 37.9: S].

We have immediately the following corollaries.

A

Corollary 3.9: If R is an integral domain, then f
 

has one distinct branch at (0,0).

Corollary_3.lo: If Der:(R) is a free R-module for all
 

n and if Der(R) = der(R), then f has one distinct

branch at (0,0).
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