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ABSTRACT

HIGHER DERIVATIONS OF A PLANE ALGEBRAIC
CURVE OVER A FIELD OF PRIME CHARACTERISTIC

By

Anne Larimer Ludington

Let T be a plane irreducible algebraic curve defined
over an algebraically closed field k. Let P be a point
on the curve and let R be the local ring of T at P.

Dera(R) is the R-module of all n-th order k-deriva-
tions of R to R. Thus ¢ € Derz(R) if and only if
© € Homk(R,R) and for all Loet' e Ty € R we have

e = - - b .o e e e
w(ro r.) Z (-1) Y. r. r, cp(rO r. r. r

s=1 7. e<i a1 s a1 s

]

Let Der(R) = H Der;(R). If % has characteristic
zero, we define der(R) to be the subalgebra of Der(R)
generated by composites of lst order derivations. If the
characteristic of kX is p # O, we say Der(R) 1is gener-
ated by pi-th order derivations if the following condition
is satisfied:

Let )\ € Der(R) and let n Dbe the smallest integer

such that ) ¢ Der:(R;. Let the p-adic expansion of

n be given by n = 7 aip1 . Then there exist
i=0
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. i
i . .
P -th order derivations Tyie e Tmi € Deri (R),

a
i=0,-"*, N, such that 2\ - (TQN 0eesoT o
o 1N 10
TaN T 0) € Dern_1
mN °°°°° 'mo k

+.¢o+

(R) .

Here Derg(R) = 0. Thus Der(R) 1is generated by pi—th

order derivations if every n-th order derivation is a sum of

composites of pi—th order derivations. If Der(R) 1is gen-

erated by pi—th order derivations, we write Der(R) = der(R).
Chapter 1 is devoted to theorems which characterize

Derﬁ(R) when it is a free R-module. We show that if it is

free, it must be free on n generators. Further, if DerE(R)

is free for all n, then there exist derivations

xl,-o-, xn,--- and elements xl,---, Xpe®os of R such
i n .

that ki € Derk(R), Derk(R) is generated by Xl,-'-. kn,
0 j<i

and xi(xj) = 11 3 - -

In Chapter 2 we consider the following example:
R 1is the local ring at the origin of T: f£(X,Y) = X2 - Y3
over a field of characteristic 2. Since (0,0) is a
singular point of T, R 1is not a regular local ring. We
show that Dera(R) is a free R-module for all n and that
Der (R) = der(R). Thus this example shows that over a field
of characteristic p # O the following two conjectures are
false:

(1) Der;(R) is a free R-module for all n if and

only if R 1is a regular local ring.
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(II) Der(R) = der(R) if and only if R 1is a regular local
ring.
The first conjecture is a generalization of a conjecture by
Lipman; the second is Nakai's conjecture.
The main theorem of Chapter 3 is that if Der(R) =der(R)
and Derﬁ(R) is a free R-module for all n, then R is
analytically irreducible, that is, Q, the completion of R,

is an integral domain. Geometrically this means that T has

only one branch at P.
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INTRODUCTION

Throughout this entire paper we shall assume that T
is a plane irreducible algebraic curve, defined over an
algebraically closed field k. Let P be a point on the
curve, and let R Dbe the local ring at P. Without loss
of generality, we may assume that P is (0,0). We shall
denote the quotient field of R by K. If T 1is given by
f(X,Y) = 0, then R = (k[x,y])(x’y) where
k[(x,y]

and f(0,0) = O.

k[X,Y]/(£(X,Y)), £(X,Y) 1is irreducible over Xk,

For each n=1,2,---, we let Derﬁ(R,M) denote the
R-module of all n-th order derivations of R to an R-module
M which vanish on k. Thus, ¢ € Derﬁ(R,M) if and only if

® € Homk(R,M) and for all Loet ™" r € R we have

(1)

Vv

n
-1 v
olr.---r )= 2 (-1)° T r, seer, o(r.cccr, ccer, ---r )
(0] n s=1 il<°"<is 1l 1 (0] 1, 1s n

When M = R, we write Derﬁ(R) instead of Deri(R,R).
QE(R) will denote the R-module of all n-th order differ-
entials. Dera(R) is the dual module of QQ(R) so

Derﬁ(R) = HomR(Qﬁ(R),R).



Let Der(R) = LJDera(R). If kX has characteristic
n

zero, we define der(R) to be the subalgebra of Der(R)
generated by composites of lst order derivations. If the
characteristic of kX is p # 0, we say Der(R) is
generated by pi-th order derivations if the following

condition is satisfied:

Let A € Der(R) and let n the smallest integer

N .
such that 2\ € Derﬁ(R). Let n= X2 aipl be the

i=0
p-adic expansion of n. Then there exist pl—th
i

order derivations Tj.,-e-,T . € Derﬁ (R), i=0,---,N,
such that

a a a a

N (0] N o n-1
M= (Tyg ovveo Tig * 0% T 0-ev0 Tpo) € Derp “(R).

Here Derg(R) = 0. Thus by induction we see that Der (R)
is generated by pi-th order derivations if every n-th
order derivation is a sum of composites of pi-th order
derivations. If Der(R) is generated by pi—th order der-
ivations, we shall write Der(R) = der(R). For

K, Der(K) = der(K), [Prop. 18;7)]. Further, if R 1is a

regular local ring, then Der(R) der (R) [Theorem 4.3:;4].
Well-known properties of Der:(R), QQ(R), and Der (R)
may be found in Nakai's papers [6 and 7].
The starting point of this thesis concerns two conjec-

tures which are known to hold for plane curves when Xk has

characteristic zero:



(I) Lipman's conjecture: Deri(R) is a free
R-module if and only if R 1is a regular local

ring [Theorem 1;2].

(II) Nakai's conjecture: Der(R) = der(R) 1if

and only if R is regular [3].

It is easily shown that (I) is false when the charac-
teristic of k 1is p # 0; in fact, the example given in
Chapter 2 is a counterexample. That (I) is false is per-
haps to be expected, since when Xk has characteristic
zero, Der(K) 1is generated by composities of l-st order
derivations [Prop. 18; 7]. However, when the character-
istic is p, Der(K) is generated by composities of pi—th
order derivations, i =0,1,.-. [Prop. 18; 7]. Thus, the

following conjecture arises when %k has characteristic p:

(I11I1) Derﬁ(R) is a free R-module for all
n=1,2, --- if and only if R 1is a regular

local ring.

It is known that if R 1is regular and %k has character-
istic p # 0, then Derz(R) is a free R-module for all

n [Theorem 16.11.2; 1]. The example which we shall give
in Chapter 2 will show that the converses of (II) and (III)
are false. That is, we shall construct a ring R over a
field k of characteristic p which is not regular, but
such that Der(R) = der(R) and Deri(R) is a free

R-module for all n.



In order to show (II) and (III) are false, some
results about Derz(R) are needed. Thus, Chapter 1 is
devoted to theorems which characterize Derﬁ(R) when it
is a free R-module.

The main result of Chapter 3 is that if
Der (R) = der(R) and Derﬁ(R) is a free R-module for all
n, then R 1is analytically irreducible; that is, ﬁ,
the completion of R, 1is an integral domain. Geometri-

cally this means that T has only one branch centered at P.



CHAPTER I
CHARACTERIZATION OF DERﬁ(R) AS A FREE R-MODULE

The first lemma of this chapter shows that we may
assume K is a separable algebraic extension over k(x).
The remainder of the chapter gives necessary and sufficient
conditions for Deri(R) to be a free R-module. We shall
show that if Derﬁ(R) is free, it must be free on n gen-

erators. Moreover, there exists a set of generators

n .

\ye--+s A, of Der (R) and monomials x,,:--, x, of
k[x,y] such that X, (x.) {O )=t
x' u : - = . °
Y i3 1 j=1

Lemma l.l: K 1is a separable algebraic extension of either

k(x) or k(y).

Proof: The only case requiring proof is when k has char-
acteristic p # 0. Let f, and £, denote the partial
derivatives of f(X,Y) with respect to X and Y respec-
tively. Suppose fx(x,y) = 0 and fY(x,y) = 0. Pulling
back to k[X,Y] gives £,(X,Y) = h(X,¥) £(X,Y). Viewing
these as polynomials in X with coefficients in k[Y]
gives deg fX < deg £ < deg fh, which is a contradiction
unless fx(X,Y) = 0. So fx(X,Y) = 0 and fY(X,Y) = 0.

This implies that £(X,¥) = g(xf,¥P) = (h(x,Y))P,



contradicting the assumption that £ is irreducible.

Hence, either £ (x,y) #Z0O0 or fY(x,y) # 0. Thus K is

a separable algebraic extension of k(x) or k(y). QED
Henceforth, we shall assume fY(x,y) # 0; thus K is

a separable algebraic extension of k(x).

Theorem 1.2: Derz(K) is a free K-module; it is free on
n generators. 1If Derﬁ(R) is a free R-module, then it is

free on n generators.

Proof: Since K 1is a separable algebraic extension of

n -~ Ah . . n
k(x), Qk(K) = Qk(k[x]) Sk[x]K [p.26;7]. Since Qk(k[x]),
is a free k[x]-module of rank n [II, Prop. 2; 6], we
have that Qﬁ(K) is free of rank n over K. Now,
n _ n n . _
Derk(K) = HomK(Qk(K),K), so [Derk(K). K] = n.
n _ n - n
Now Derk(R) ®RK = HomR(Qk (R) ,R) ®RK = HomK(Qk(R) ®RK,K) .
Since Qﬁ(R)G&K E Q:(K) [1I, Theorem 9; 6],
n -~ n . n .
Derk(R) GhK = Derk(K). Thus, if Derk(R) is a free

R-module, it must be free on n generators. QED

Since fY(x,y) # 0, £(X,¥Y) must have a term involving
Y. Further, since f(X,Y) 1is irreducible, there must be a
term of the form a¥Y', a € k; otherwise, X would divide

f(X,Y). Hence subdegyf(O,Y) > 0.

Lemma 1.3: Let subdeg, f(0,Y) = N. Then yN_l/k ¢ R.



Proof: As shown above, N > 0. Write £(X,Y) = Xh(X,Y) +
YNg(Y), where g(Y) Dbegins with a non-zero constant term.
| Suppose yN'l/k € R. Then yN-l/k = r(x,y)/s(x,y).,
where r(x,y), s(x,y) € k[x,y] and s(x,y) ¢ (x,y). Then

yN-ls(x.y) - xr(x,y) = 0. Pulling back to k[X,Y] we

have

(2) Y lsx,¥) - r(x,¥)X = £(X,¥) [Xh(X,¥) + YVg(¥)].
Evaluating (2) at X = O gives

(3) W 1s(0,v) = t0, g (v).

Thus, s(0,Y) = t(0,Y)¥Yg(Y). Since s(X,Y) has a constant
term, s(0,Y) # 0. Thus, (3) implies that Y divides

s(0,Y), which is a contradiction. Hence, yN-l/x t R.
QED

In the theorems which follow, we shall often use the
fact that an n-th order derivation is also an (n+l)-st
order derivation [I, Prop. 4; 6]. We shall also use the
result that if ) € Der:(R). then 1\ € Derﬁ(K) [I,Theorem

15; 6]. Hence if Xl"”‘ Xn are a free basis for Derﬁ(R),

these derivations must also be a free basis for Derﬁ(K).
If Xl""' xn are a free basis for DerE(R), then
we shall write Dera(R) =< Ayecoce A, >
Before Derﬁ(R) is considered for arbitrary n,
Deri(R) is studied. Special attention should be paid to
the method of proof, since the same technique will be used

when n > 1.



Theorem 1.4: Deri(R) is a free R-module if and only if

there exists 1\ € Deri(R) and z € R such that A(z) = 1.

Proof: Let Deri(R) be generated by Yy as a free

R-module. Suppose vy(r)€(x,y) for all r € R. Then y(r)

may be written as y(r) = xr + yry with Lo ry € R. As
in Lemma 1.3, write f£(X,Y) = Xh(X,Y) + YNg(Y). Now con-
sider (yN-l/k)Y which is certainly a derivation from K

to K. For r € R,

SR v = /R (e, +oyry)

= YN-lrx + (Y /x) r,
=Y, - (k) 9y))E,

Since g(y) 1is a unit in R, (yN'l/k)Y: R #» R. Thus
(yN"l/k)Y € Deri(R) which implies that (yN-l/k)Y =ty
for some t € R. Thus (yN'l/k - t)y=0 on R, hence on
K. Thus yN-l/k -t=0 or yN_l/k =t € R which is a
contradiction. Thus there exists 2z € R such that y(z)
is a unit in R. Let 1\ = y/y(2z). Then Deri(R) =< A D>
and \(2) = 1.

Conversely, suppose such a A and 2z exist.
Deri(R) = Deri(K) and )\ may be regarded as the generator

of the K-module, Deri(K). Now let & € Deri(R). Then since

6 € Deri(K), ) tA where t € K. Evaluating at 2z gives
6(z) = tA\(2z) = t. Thus t = &§(z) € R. Hence Deri(R) is

a free R-module. QED



Theorem 1.4 yields an easy proof of (I), Lipman's
conjecture, for a plane curve T defined over a field of
characteristic zero. For if De i(R) is free on ),
then by Theorem 1.4 there exists 2z € R such that (z) =1.
Thus by Zariski's Lemma [Theorem 2;-2], ﬁ = B[[z]] where
z is analytically independent ovef‘ B. By Chevalley's
Theorem [Theorem 31, p. 320:;9], Q has no nilpotent ele-
ments. Thus, the dimension of £ is 1 which implies
that B is a reduced, zero-dimensional local ring. There-

A
fore, B 1is a field and R 1is regular. Hence, R is

regular.

Theorem 1.5: Dera(R) is a free R-module if and only if

there exist n-th order derivations X1,°", xn and
distinct elements Xyettte X € R such that

0 j<i
A (x5) -{; j=1"

n — o o o

Proof: Assume Derk(R) = < 61, ’ bn >. Suppose él(r) €
(x,y) for all r € R. Then, as is the proof of Theorem

N-1 n N-1 _ 2
1.4, (y ~/x)& €Der (R). So, [y /x) 8y = 2t 6.

=1
N-1 3

with t, € R. Thus, (t, -y ~/x)8, + 2 t.8, =0 on

i 1 1l j=o 11
R, hence, on K. This implies yN-l/k =t;, €R which is
a contradiction. So, there exists an Xy € R such that

él(xl) is a unit. Let A o= 61/61(x1). Then

6 >~

n — * o o
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We now proceed by induction. Suppose we have found

derivations Xl---, xm_l and elements xl,---, xm_1 € R
n — * o o * o o
such that Derk(R) = < Xl' ' Xm-l'qm’ ’ Gn > and

0 j<i )
)‘i(xj)z{l j=i for 1 <i<m

1l and 1< j<m~-1.

Define km as follows:

- m-1
Ay = 8 - izi rohy where r; = 6 (x;)
i-1
and r; = Q“(xi) - jE; rjxj(xi).

Computing Km(xt), L =1,"*", m -1, gives

_ m-1
-1
8.(x,) - izi rid(x,) -r

L

= 0.

n — o o o Y * o @
Also, Derk(R) = < xl, ’ Xm—l' Xm, ’ 6n >. As before,

there is an element X € R such that im(xm) is a unit

in R. Finally, let Xm = xm/im(xm). Therefore

n = e o o * e o
0 j<i . .
xi(xj)={l jop for 1<igm and 1<3<m.

Thus, by induction, Derﬁ(R) = < Xl,-~-, Xn > and
there are elements xl,-o-, xn of R such that
{ o0 j<i
MOy =1y 5o
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Conversely, suppose such elements and derivations

exist. Consider

(4) a,\

11 7 n'n

with a; € R € K. Evaluating (4) at Xy gives a, =0

1
since xi(xl) =0 for i > 1. Suppose a; equals zero

for 1 {i<{m-1. Then evaluating (4) at x_  gives

a, =0. Hence a, =0 for 1< i<n.

Thus, Derﬁ(K) = < Xl,---, A D>, Let v € Derz(R).

Then Yy may be written as vy = t.\. with ts € K.

11

EE
i~

i

It suffices to show ti € R. Now Y(xl) = tl € R. Induc-

tively assume that tl"." tm_1 € R. Then
m-1
Y(x,) = izi tih(x) + t  since agaln xi(xm) =0 for
m-

m+l<idn. So t = v(x) - igl t A (x ) €R. Hence,

n 3 e o o
Derk(R) = < xl, ' Xn >. QED

Theorem 1.5 does not require that Der;(R) be a free
R-module for i < n. With this added assumption we get a

much stronger result.

Theorem 1.6: Suppose Derﬁ_l(R) is a free R-module with

generators xl,---, A where xi € Der;(R) for

n-1

l1 <i<n-1. Further suppose that there exist distinct

elements of R, xl."', xn-l' such that

0 j<i
xi(xj) = { 1 =i If Derﬁ(R) is a free R-module, then

the following hold:
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(a) Deri(R) = Derﬁ'l(R) ® Ry where 1y € Derz(R).

(b) There exists an n-th order derivation xn and an
element x, €R such that X # X;0 1= l,'-',n-l:xn(xi)==0,

i=1,--+, n-1; and xn(xn) = 1.

Proof: Suppose Derﬁ(R) = < 61,---, 6n >. Since an

(n-1) -st order derivation is an n-th order derivation,

n
n il -
Ay € Derp(R) and A , = .Z) r.8, where r, €R. Eval
i=1l n
uating A, _; at x , gives 1 = izi ribi(xn_l). So, for
some I, 1<IZ<n, r, and él(xn_l) are units in R. We

reorder, if necessary, so that I = n-1. Thus,

1 n-2 r. r

1 5. -
1 r

n-1 . r

n-1 i=l "n-1

n — o o o
And so, Derk(R) = < 61, R én—z'xn—l'an > .

Inductively we assume

n —4 o o0
Derk(R) - < 610 ’ am')\

m+1’ " Moy 8y >+ and we show

that 6m may be replaced by Xm' after relabeling the

. . n .
6i's if need be. Since xm € Derk(R), xm may be written

as
%'l: ni\l
(5) A= t. 8, + 2  t.h,+ t 8.
S £ . £ S | nn

Evaluating (5) at X gives
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m n-1
1 = i'=21 t 6 (x ) + jq%)ﬂ tjxj (x ) + t 8, 0x)

m
.Z: tiai(xm) + tnén(xm)

i=1
since xj(xm) =0 for j=m+1l,:-+, n-1. For some I,
tI and 61(xm) are units in R, I =1,*°-, m,n. Re-

arrange the éi' if necessary, so that I = m. Thus,

b = o xm—mil —ti 5y - 5 —lt v -—E“ b -
m i=l ™m j=m+1 m J m
n — o o o ® o o
Hence, Derk(R) = < 611 ’ 61'[\—1' )\ml [} )\n_ll 61’1 > .
. . n
Therefore by induction, Dery(R) =< Aj,--"s A 1.8 >.

This completes the proof of (a).
To prove (b), we assume by (a) that Derﬁ(R) =
< Xotte X308, > . We define a new n-th order deriva-

tion as follows:

n-1
(6) y=28 + T r;x, where r; = - 8 (x;)
1=1 i-1
and r, = - én(xi) -j‘f rj)\j (xi) .
Then since ki(xm) =0 for i=m+1,***, n-1, evalua-
ting (6) at X gives
n-1
vix ) = 8 (x ) + _Zf rixi(xm)
i=1
m-1
= én(xm) + iza rixi(xm) +

o.



Thus Y(xm) =0 for 1 {m<n-1l. Moreover,

n - ..
Derk(R) = < Xl. ’ Xn-l'Y >.
As in Theorems 1.4 and 1.5, there must exist an
element X, € R such that y(xn) is an unit in R.

Finally then, let xn = Y/y(xn). The theorem is now

proved. QED

We shall use the following lemma to show that the X
given in Theorems 1.5 and 1.6 may be assumed to be

monomials in k[x,y] € R.

Lemma 1.7: If X 1is an n-th order derivation and \(r) =1
for some r € R, then X(xlyj) is a unit in R for some

xiyj € k[x,¥vy] € R.

Proof: Write r = s(x,y)/t(x,y) where s(x,y).,t(x,y)€k[x,y]

and t(x,y) t (x,y). By [I,Theorem 5;6]

1 = )\(r)
= A (s/t)
n 2 m n+l m n-m n+l
= (-1) Z  (-1) < m >t)\(t s) /t .
mn=0 )
For some m, A(t"™s) is a unit in R. Write £ Mg =
Z)aijxlyJ € k[x,y]. So, I(x'yl) 1is a unit for some
xtyd. QED

The following theorem summarizes the results of this

chapter.
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Theorem 1.8: If Derﬁ(R) is a free R-module for all n,

then there exist derivations xl,---, Xn and monomials
Xyottts X € k[x,y] such that
i
(a) Xi € Derk(R)
n
(b) Derk(R) = < Xl' R DS
(© ey ={20 2%
c (% =
i x] 1 j=1

Proof: The only part of the theorem that requires proof

is that the X, may be choosen to be monomials. We show
this by induction on n. If n=1, then by Theorem 1.4
there exists a derivation 2\ such that Deri(R) =< A D>
and A(z) =1 for some 2z € R. By Lemma 1.7 there exists
a monomial Xy € k[x,y] such that X(xl) is a unit in R.

Let A, = A/A(x;). Then Der]]('(R) =< > and A (k) =1

1
where X, is a monomial in k[x,y].
n_l — e o o
We now assume that Derk (R) =< xl. ' xn_l > and
0 j<i )

xi(xj) = { 1 =i for monomials x; € k[x,y]. By
Theorem 1.6 there exists a derivation in and an element
- n —3 e o o 3 3 =
xn E R SUCh that Derk (R) = < )\lp I} )\n_ll )\n > '] )\n (xi) o

for i < n, and in(;n) = 1. Again by Lemma 1.7, there

exists a monomial x_ € k[x,y] such that in(xn) is a

unit in R. Now let A = xn/xn(xn). Then

n = o o 0 = j
Derk(R) = < Xl' . A >, xn(xi) O for i< n, and

n

Xn(xn) = 1 where X is a monomial in k[x,y]. QED



CHAPTER II
AN EXAMPLE

In this chapter we give an example of a curve T
defined over a field of characteristic 2. T is given by
f(xX,Y) = X2 - Y3. Since (0,0) 1is a singular point of T,
the local ring, R, at (0,0) 1is not regular. By con-
structing i-th order derivations xi and monomials
x, € k[x,y] which satisfy the conditions of Theorem 1.5,
we shall show that Derﬁ(R) is a free R-module for all n.

We shall also show Der(R) = der(R). Thus, this example
shows that both (II) and (III) are false.

The following lemma will be used repeatedly in the
example. The results hold for any characteristic p # O.
Thus, we shall prove the lemma in this more general setting
even though in the example %k has characteristic 2.

n

Lemma 2.1: If )\ € Deri (R)Y and r,s € R, then

n n n
(a) )\(rp s) = P A(s) + sx(rP )

n+i n+i
(b) arP os) =P a(s) for i > 1.

Proof: The proof of (a) follows immediately from the de-

finition of a pn—th order derivation; this is equation (1).

l6



17

For (b), the previous part gives

i

n+ i _n
AP s) = A (P )P s

n+i n+i
P A(s) + s)\(rp ).

i n+i

P A(s).

n+i n+
Since )\(rp ) =0 [I,Prop. 10;6], )\(rp s)

QED

Example 2.2: Let R Dbe the local ring at (0,0) of

T f(X,Y) = X2 - Y3 over a field %k of characteristic 2.

3
R = (k[x'Y])(x,y) and x° = Y . Then Derg(R) is a free

R-module for all n and Der(R) = der(R).

Proof: Let A = k[x,y] = k[X,Y]/(Xz—Y3). So

m
—1 b= o o o 3 2
R = (A)(x,y)' For m = 0,1, , define Yzm € Der, (x[y])
as follows:
i o i<2"
(7) Yzm(Y ) = { 1 i=oM
Thus, vy o is a 2™-th order derivation of k[y] to
2 o ao
k(y]. Define vy, =y 0eveo Y where the a.'s are the
i 2I 1 Jj
coefficients in the 2-adic expansion of 1i; that is
. I j . . 3 0o j<i
i= 2 a.2’. It is easily shown that vy, (y’) = { .
3=0 J 1 1l j=1

We now define a 2"-th order derivation on k[x] to

k[x,y]l], n=0,1,*+, . For n =0, define
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n
A, € Deri (k[x], k[x,y]) as follows:
2
(8a)  x ,(x) =0
2
23, _ 33 . n-1
(Bb) Xn(x ) —Yn_l(Y ) J—'ll°"' 2
2 2
8) A xPh = ) 5 =1, 227N
2 2

For each n, A n extends uniquely to a 2"_th order

2
derivation of k(x) to k(x,y) [I,Theorem 15:;6]. We

call this extension )\ n Since k(x,y) 1is separably
2

algebraic over k(x),)\ n extends in a unique way to a
2

2"_th order derivation of k(x,y) to k(x,y) [Theorem

17;7]. This extension is also called n’
2
on
We shall show that n € Derk (A) . First however
2

we shall show that (8b) and (8c) hold for all values of

From the definition of n’ Ve have that
2

) =y° . For, by Lemma 2.1,

2 3,2 2
) ) =k2n((x ) ) = an_l((y ) ) = an_l(y

n 2n-l 2n

2
=y an_l(y ) =y

We now show by induction that for all Jj we have

23 33
(8b) A (xT) = v (y™-).
2n 2n-l

2n--l n-1 n-1+2n

j.

)
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First, suppose 2j = 2" + 2i where i = 1,:°-,

Evaluating both sides of equation (8b) gives

. n .
A ) = X%
2 2

and

(2+1)(2“‘1+1))

~—
|

_ =v . (y
5 2n 1l
n .,n-1
2
= an_l(y Y Yy o)

21’1
=Y an_l(y Yy )

2n 2n—l . n

3i 27 3i
=y v an_l(y ) + Yy Yy

n . n

2 3i 27 21
=x" Y )+ Yy X"
2

Thus, (8b) is valid for 2j < 27*1.

. n+k

Now suppose that (8b) holds for 2j < 2 where

k > 0. We show (8b) also holds for 2j = 2n+k + 2i where
i=1,.---, 2n+k—1 . Again we compute )\ n(x23) and

2

33
Y (y™°):
2n-l
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2n+k 2n+k—1 3i

33y -
an_l(y ) = an_l(y Y Yy )

2n+k 2n+k-1

=y Y Y

(y
5 1

2n+k

.
= x an_l(y 1)

Thus (8b) holds for 2j < 2n+k+l and so by induction holds

for all values of j.

Now we show that (8c) is valid for all values of j.

That is, (x23+1) = X\ (xzj). First suppose
2" 2"
29 +1=2"42i +1 where i=0,--+, 21 _ 1. Then
2j+1 2N 2i+1
N I = x )
2 2
n . . n
- x2 N n(x21+1) + x21+1 X n(x2 )
2 2
n . . n
= x2 XA (x21) + x2]'+1 A (x2 )
n n
2 2
n . n
= x(x2 I (le) + 21 A (x2 ))
n n
2 2
n .
= X\ n(x2 x21)
2
= X\ n(xzj).
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n+k

Now suppose that (8¢c) holds for 2j + 1 < 2 -1

where k > 0. We show (8c) holds for 2j + 1 = 2n+k-+21-1
where i=1,.--, 2n+k-l-l.
. n+k .
\ n(x23+1) = 2 n(x2 x21+1)
2 2
n+k .
- x2 X n(x21+1)
2
n+k .
= x2 XA n(le)
2
= X\ n(xzj).
2
n+k+1

Thus, (8c) is valid for 2j + 1 < 2 and hence, by

induction (8c) holds for all values of j.

n
We now show that 2 n € Deri (A). In order to show
.2 .
this, we compute A\ n(yl) and 2\ n(xyl) and show that
2 2
(9a) A (D) =y o yh)
on 2n--l
i, _ i
(9b) xzn(xy ) = Xan_l(Y )
where i =1,2,** and n=1,2,--"

To show (9a), there are several cases depending on

m

whether i 0,1,2 (mod 3).

]

Case 1: i O (mod 3)

Let i = 34. Then from (8b), 2\ n(yl) = A n(y“) =
2 2
\ (x2t

32 i
) = v (y™7) = v (y") .
2n n-1 2n—l

2
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1 (mod 3) and 2n

Case 2: i =1 (mod 3).

2 (mod 3) and 2" = 2 (mod 3).

e
il

Case 3:

These cases are considered together for in both

i+ 2%l 20 (mod 3). Let i+ 2°1 =34 Then
i 2n+l 2n+l i
Ay y ) =y A _(y). oOn the other hand
on on
3 2
xR h = x*h
2 2
32
=Y ( )
2n—l
. ~n+1l
12
2
_ 2n+l ( i)
=Yy Y no1\W¥ )
2
n+l . n+1l . . .
2 i, _ .2 i i, _ i
So, y N aly) =y Y pop¥) or A (¥ =y o 5(¥).
2 2 2 2
Case 4: i ® 2 (mod 3) and 2" = 1 (mod 3).
Case 5: i =1 (mod 3) and 2™ = 2 (mod 3).
. n+2 _
In both of these cases, 1 + 2 = 0 (mod 3). Say,
. ~n+2 n+2 .
i+ 2n+2 = 34. Then, A\ (yly2 ) = y2 P\ (yl). On
n n
2 2
the other hand
32 24
Ay = _(xTT)
20 2"
32
=Y n1 )
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i 2n+2
2

n+2 i
- y2 an_l(y )

n+2 . n+2 . . .

2 i, _ .2 i i, _ i

So, 'y Ayt =y Y po1(¥) or A ¥y =y (7).
2 2 2 2
Now we show that (xyl) = XY (yl). The cases
on 2n-l

are the same as above.

Case 1l: i =0 (mod 3).

Let i = 34. The result follows immediately from

(8¢c):

L (xx

i
AL (xy™)
20 20

(xzz)

x\

2n

3
= szn-l(y g

= xvzn_l(yi).
Case 2: i =1 (mod 3) and 2" =1 (mod 3).
Case 3: i =2 (mod 3) and 2 = 2 (mod 3).
Again i + 2n+1 =0 (mod 3). Say, i+ 2n+1 = 34%.
Then, in(xyiy2n+l) = y2n+1 xzn(xyi).

Also
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32
A o (xy

|
x
>

L

_ 3
= XY n1(¥77)

2
n+l

277

1
= szn-l(Y Y

2n+1 i
Xy an_l(y ).

n+l . n+l . . .
2 i, _ .2 i i, _ i
Thus, vy in(xy ) =xy an_l(y ) or xzn(xy )"szn-l(y ).
Case 4: i =2 (mod 3) and 2" =1 (mod 3).
Case 5: i=1 (mod 3) and 2" = 2 (mod 3).
Here i + 2n+2 =0 (mod 3). Let i + 2n+2 = 34. Now
i 2n+2 2n+2 i
N n(xy y ) =Yy A .(xy7). On the other hand
2 2"
34 24
A LxyTT) = x _(xxT7)
2" 2
24
= x\ _(x°7)
on
3
n+2
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2n+2 i
So again we have vy A n(xy ) = xy Y
2 2

A (xyl) = XY l(yi). Thus, we have completed the proofs
on on-

i
n-1 (y’) or

of (9a) and (9b).

. . . . i
Since every monomial in A can be written as xjy

with j =0 or 1 and 0 < i, (9a) and (9b) imply that
A nt A+A for n=1,2,"** . To show that Xl:A + A we
2

compute Xl(y). Since
= 2, _ 3y - 2
0 =37 =X3FE) =y I,

€ Deri(A). Hence, X\ n:A 4+ A for

Xl(y) = 0. Thus, 2\
2

1
n =0'l’..o

By taking composites, we define an m-th order deriva-

tion for m=1,2,--- . Write m in its 2-adic expansion
: i
as m= 2 0,2 where a, =0 or 1. Define
i=0o * .
o} a
_ M (o] m
Xm = XZM 0o xl . Then xm € Derk(A).

We now make some observations about xm. We first

aL al L i

consider A,, = X[ o...o A where 2L = 2 a.2”.
) L 2 . i

2 i=1

Equation (9a) shows that )\ _ when restricted to k[y]
2
equals vy _ ;. Thus, if Xzz is restricted to k[y], we
2
have
a Q

= L o o o l —4
Xzﬂk[y] = Yqp-1 e Y1 T Yy
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o0 i<y

By the definition of Yo xzt(yl) = YL(Yl) = { 1 i=g"

Also 12 (x) =0 since A (x) =0 for n > 1. And
2 2n =

finally, kzz(xyl) = xxzz(yl) by (9b).

Now consider A\ A xl. Since Xl(x) =1,

. 2441 7 "2t
Xl(yl) = 0, and ll(xyl) = yl, the following hold:

(11a) P\ (x) =0

24+1
i .
(11b) x2£+1(y ) =0 i=1,2,
i, _ i .

Thus, we have defined derivations Xn’ n=1,2,

from A to A. Since R = it follows that

(A)(x.y)'
A, € Derz(R) [I, Theorem 15;6].

Summarizing the above, we have that the A\ satisfy

the following:
(12) A\ () =1

L = i = 1 3 o o o
Xzz(y ) =1 and xzz(y ) =0 i=1, . 4
x (Xyi) = O i_ = o e o o l‘
24 ’ ’
A (Xyz) =1 and 2\ (yi) =0 i =1,¢+, &
24+1 24+1 ’ ’

i . .o
Mg ¥) =0 i =0,""", &

where ¢

1'2'...
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We now define xi as follows:

(13) Xppel = XY L=0,1,---

Thus using the notation of (13), equation (12) says
j<i

j=i ° Thus, the conditions of

o
that 1 (x;) = { X

Theorem 1.5 are satisfied and Derﬁ(R) is a free R-module
for all n. And by construction, Der(R) = der(R).

Since T has a singqular point at the origin, R is
not regular. Thus, R 1is an example of a local ring
which is not regular but Dera(R) is a free R-module for
all n and Der(R) = der(R). Hence, we have shown that

(I1) and (III) are false.



CHAPTER III

A
THE COMPLETION R

In this chapter we shall prove the following theorem:

If Derﬁ(R) is a free R-module for all n and

A
Der (R) = der(R), then R 1is an integral domain.

If the characteristic of %k 1is zero, then Deri(R) being
free implies that R is a regular local ring [Theorem 1;2].
Hence Q is regular and thus an integral domain. Thus,
we shall assume throughout this chapter that the charac-
teristic of kX 1is p # 0. Further, if P is a simple
point of T, then R is regular. So, ﬁ is an integral
domain and the theorem is trivial in this case. Thus, we
also assume P 1is a singular point of I that is,
subdeg f > 2.

As in Chapter 1, we shall assume in this chapter that
fy(x,y) # 0. Thus, K is a separable algebraic extension
of k(x).

We shall use the following notation in this chapter.
Let bi denote the i-th order d?i:Yation of k[x] to
j<i

k[x] defined by & (xj) = { ©
i 1 j=1i°

The following

results hold for 6i:

28
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(14) Derﬁ(k[x]) =< & . bn > as a k[x]-module.

10

n e o o P
Derk(k(x)) < 61, . 6n > as a k(x)-module

[pp. 26,27; 7].

(15) Since K 1is a separable algebraic extension of

k(x), bn € Deri(K) [Theorem 17; 7). Hence,

n -_— * o o
Dery (K) = < 6,0 . 5, >
a
s N %
N 61
(16) 6, = EI;L. 0eeeo @- where the p-adic expansion of

N .
n is givenby n = % aip1 [Prop. 18; 7].
i=0

(17) . = 0.

i+ . .
1--order derivation. Hence,

Proof: épi is a p
p

i+l
p o
. = T r.6.. It is easily verified that &, (x7) =0
1 =1 J ] 1
p J p
for j = l' ) -' p1+1 So' rj = o' j - l' e, pi+1.
(18) ) o b = § o 8
Pn Pm Pm Pn
Proof: 6n°6m=6m°6n+[6n.6m] where [an.bm]
b P p p P p p P

is a derivation of order pn + pm-l [I, Cor. 6.2; 6].

pn+ m_l
Sol 6 ° 6 = 6 ° 6 + % rv 6' . But
n = ivi
p p p p 1=
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3
o8 (x’) =0 for
P’ P PP

j=1,°", pn + pm - 1l. Hence, §&§ _°398 =8 _©°8§ .
p P P p

6 . °b m(xj) =0 and §

A
Now consider the completion of R, denoted by R,
with respect to its maximal ideal m = (x,y). We note

that if A\ € Derﬂ(R), then )\ extends to an N-th order

A A
k-derivation from R to R. Let 2\ € Derﬁ(R). Define

- A A -
AR @ R by A(r) = lim X(rn) where r = lim r with

[rn} a Cauchy sequence in R. We show i is continuous.

For any n, we must find n such that k((m)n)c mno

the ideal m. Let n = ng+1.

using the definition of an N-th order derivation, eqQuation
n -

(1), that x(mn) cm o. Hence, )\ 1is continuous. That

A
A 1is an N-th order derivation on R follows from the

for

Then it is easily checked

fact that )\ 1is an N-th order derivation on R. Hence-

forth, we shall denote b by .

The next theorem relates derivations and zero

divisors.

Theorem 3.1: Let A be a commutative reduced k-algebra

where %k is a field of characteristic p. Let
D = {0} U {zero divisors in A}. Then D is closed under

every derivation .

Proof: Suppose ) 1is a derivation of order n. Choose

N such that pN > n. Then 2\ may be viewed as a deriva-

tion of order pN.
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Now let r €D, r #0, and find s # O such that
N N
rs = 0. Then rsP =0 anda sP # 0. Then

N

N N N
0=x(sP ) =8P ) + ra(sP ) = sP a(r)

N
since A(sP ) = 0 [I,Prop. 10:6]. Thus, \(r) € D. So,

D 1is closed under . QED

Theorem 3.1 assumes that A is reduced; that is,
A has no nilpotent elements. We can apply this theorem
to ﬁ because Q has no nilpotent elements if k is
perfect [Theorem 31,p. 320:;9]. This is our case.

ﬁ = k[[x,y]]); that is, every element in ﬁ may be

jxlyj with aij € k. This representation,

however, is not necessarily unique.

written as %, ai

Theorem 3.2: Suppose Derz(R) is a free R-module for all

n and Der(R) = der(R). Let [Xi] be any set of gener-

i n -— e o o
ators such that xi € Derk(R) and Derk(R) = < xl, . Xn >.

Define derivations Yo 2S follows:

A x?o M .
(19) Yo = EET 0s+eo g—T Where m = T a,p .
M*® o’ i=0

n —4 e o o
Then Derk(R) = < Yy v Yo 2
Before we prove this theorem we note that Theorem 1.8

implies the existence of such xi's.

Proof: We first show that the following three relation-

ships holad:
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i 3
(20a) (A j°rr ) - (£h 4o ) eperd *P “1R) for r €R.

i
P p’ P P
n
(20b) rlk ilo .0 rnX in - (jgl rj)(k il 0csco A in) €
P p p P
m— n i,
Der, " (R) where m = % p J,
j=1
i i
p 1 p n n
(20c¢) (jzi sljxj) R (jzi snjxj)-—(jgls. ij)x ilo o \ i
Jp p p

m-1 2 i
Der!' “(R) where m= ¥ p J.
j=1

=r(\ oA 3 + [A <o\ i]) + [ ;0 TA j].
P P p p p p

Since [\ i.rx j] and [\ .,) i] are derivations of order

p ) P P

p1 + pj-l [I,Cor. 6.2;6], the result follows.

Result (b) follows from (a) by induction. And (c)
follows immediately from (b).
We prove the theorem by induction. For n =1,

= 1 - -
Y = Xl and Derk(R) = < xl > =K< Y1 > . Assume that

n-1 n
Derp, "(R) =< yj, ', Y,_3 >- To show Der, (R) =< yp, -,y >

n
it suffices to show that A_= 2 r.y. for some r. € R.
n - 5 it i

Since Derﬁ(R) = Derﬁ'l(R) ® RA,, we see that n is the
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smallest integer such that xn € Derﬁ(R). Since

Der(R) = der(R), we have

a a a a
— N o o o O e o o N 0
(21) Xn = TlN o ° Tlo + + TmN Oeeseo Tﬁo + O
where o0 € Dern-l(R) and T € Deer(R) Here
k ij k y

N j
n= 2 a.P” is the p-adic expansion of n. By absorbing

j=0

.

any bogus terms in with 0, we may assume pJ is the

J
smallest power of p such that Tij € Derﬁ (R), j=0,---,N.
N o.

Thus, > ord 1.2 =n for i=1,""*, m.
j=0 J
N %
Now consider one of the summands TiN 0.c00 TiO in

J
(21) . Since Der£ (R) =< X1.°", X > we have by (20c¢)

pJ
N
Q, Q P Q Q
N o _ N )
(22) TiN ©...0 ‘rio = (tgo siNL )\!‘) OeesO (Siolkl)
= s(xag o o 1.9 4+ o
1
p
where o’ ¢ Derz'l(R) and s € R.
N %
Thus xn has the form Xn = r(xpN 0eeeyg xl ) +o0

" n-1 _ v <
where r € R and 0" € Dery (R) =< Yp- ¢+ Yp_1 -+ Now

Qa a N
_ N (0] _ . .
Yo = QN g o e Ny where o =1/ 1 a,! is a non-zero
jo) i=0

constant in k. Thus A, = (r/'a)yn + ¢’ or

xn € < Yyettte Yp > . QED
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Corollary 3.3: Under the assumptions of the previous

n-1
theorem and using the notation of it, \ = ry_ + b Ty
i=1
n-1
and y_=s8\_+ 2 s.\., where r and s are units in R.
n n l=l 11

Proof: The only part requiring proof is that r and s

n-1
are units. Substituting for vy, in A =ry + iziriYi
n-1
gives \ = rs\ + izi t.\;. Thus, rs =1 and since
r,s € R, they must be units. QED

Corollary 3.4: Again assume the conditions and notation
n-1
of Theorem 3.2. For y=1y_ + 2 r,y. € Derl(R) for

n j=p 11 k

some ri € R, there exists an element r € R such that

vy(r) is a unit in R.

Proof: As in Lemma 1.3, write £(X,Y) = Xh(X,Y) + YNg(Y).
Suppose Y(r) € (x,y) for all r € R. Then

N-1 n . n _ o
(y ~/X)y € Der, (R) . Since Dery (R) = < vy, ' Yy > e

N-1 n
(y “/x)y= X s.y. with s, € R. Also
jop i'i i

n-1
(YN-l/k)Y + (yN°1/k)r.y.. But this
I S | i

implies that yN-l/k =8, €R; this is a contradiction.

(yN'l/x) Y

Therefore, there exists some r € R such that y(r) 1is a

unit. QED

Proposition 3.5: Let S = (k[x,z])(x z) where X has
’
characteristic p, k[x,z] = k[X,2]/(h(X,2)), and h(X,2)
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is an irreducible polynomial such that hz(x,z) # 0O and
h(0,0) = O. Suppose § i(z) =0 for all i 1less than

N
P =
g(x* ,2) and apiz = zapi

p
some fixed N. Then h(X,2)
for i < N.

Proof: Since hz(x,z) £ 0, § i extends uniquely to
p

k(x,2). We shall view all calculations which we make in

the proof of this proposition as taking place in k(x,z).
Now hx(x,z)al(x) + hz(x,z)bl(z) = 0. So, 61(2) =
—hx(x,z)/hz(x,z) and since él(z) = 0, hx(x,z) = 0. As
in Lemma 1.1, this implies that hX(X,Z) = 0. Thus,
h(X,2) = gl(Xp,Z). _
Inductively, we suppose that h(X,2) = gi(Xpl,Z) with
i

i <N. Now 6 ; is a lst order derivation on k[xP ]

P

i
[I, Theorem 14;6]. Since (gi)z(xp ,2) = hz(x,z) # 0,8 i
b

i
extends uniquely to a 1lst order derivation on k(xp 0 2) .

i i
Thus, (g.) (xp ,2) 8 i(z) + (gi) i& i(xp ) = 0. So,

1°2

P xP P

pi i
8 3(2) = - (g) ;P ,2)/(g;),(x® ,2). since & ,(z) =0,
P xP p

i i
(gi) i(xp ,2) = 0. And therefore (gi) i(Xp ,2) = 0.
xP xP
i+l
Hence, h(X,2) = gi+l(xp .2). By induction then
n

h(x,2) = g(x* ,2).

We now show by induction that § 12 = 28 i <N.
P P

For i =0, bl(zr) = rél(z) + z&l(r) = zbl(r). for any

il

r € S. Thus 512 = zal.



36

For 1 < i <N, consider the polynomials g,Zg,...,

i : .
zP “lg. write 239, 3 =o0,-+-, pi-1, as

(23) o Ty (xP zp yz? + T, (xp)

i N i
where r (Xp ,ZP )y = T xP )'k(zp )™. Since

a. (
K, m jnkm
) i(zjg) = 0, evaluating (23) gives
P

(24)
P
i i i .
N N i
= % r.n(xp ,zp (z ) + Z 2z .(Jr.n(xp ,2zP )) +0
n=1 > p n=1 P J
i i .
P P N i
= T £y 652N+ 2 2" (T ai (P )5EP )M
n=1 in p n=1 p k,m I
. i .
P N i
=%§ r. (z)+Zz z a. kmxkp bi(zmp)
n=1 0 p n-l k,m I° P
i . .
P N i i
= T rjnd ; (2" + % Z oy X T m(zP )" s (2P )
. n=1l p n=1 k,m p
i
= %‘ r. & .(zn)+r'6 (zpl)
ne] B pl j pl
pi
= 2 r. 6 .(zh
n=1 Jnpi
- _ . i - _ ‘
where rjn = rjn if n<p and r ;=r ;+ rj . The
Jp Jp

equations in (24) yield the following matrix equation:
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—~~
A
I

i
6 i(zp ) ¢
p

Suppose that the determinant of (r..) is zero. Then

jn
there exists a non-zero solution, say (tl,---, t ).
_ N N p
Since (rjn) € {k(xp . 2) ] j0 we have tj ek(xp ' 2),
p
j=1,°"", pl. By replacing the tj with some multiple, if

N
necessary, we may assume tj € k[xP 2],

Now consider the short exact sequence:

N i T i
0o + (g(xP ,2)) =+ k[xP ,2] » x[x* ,z] + 0.

i .
Let T, € k[XP ,2] such that T(T;) = tg, 3=1,--- pt.

We define & il k[X] # k[X] to be the canonical pl—th

P i
. . - 3 o Ji<p
order derivation; that is, & .(X’) = { . i + Now we
pt 1 j=p
_ i i
define )\ € Derﬁ (k[Xp :Z]) as follows:
2\ zd) = T, j=1,---, p'
- i _ i .
NP =7 (Pl t=1,--+, p*
P

i((xpi)‘zj) = (xpi)‘ T. + 2% ((xpi)‘) 0< s+ 3 <pt
= 3 i JSP
p

- i
extend )\ to monomials of k[Xp ¢Z] wusing (1).
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- - i
We first observe that \ =6 , on k[ xP ]. This is

. p i
obvious since both are pl-th order derivations on k[Xp ]

Y iz " iz i
and A ((xP )Y = & i((xp )Yy for g4 =1,-+-, p-.
P

We next show
_ i . i . . i
(26) A M(xP %23y = Pt ) + 2 NP h

for all £ and j. By the definition of 1, (26) holds
for 2 + j < pl. We first prove (26) for ¢4 and 3j when
4 < p1 and j < pl. The proof is by induction. Suppose

L+ 3= p1+l. Using (1) and the fact that

J/
z (-n" (rﬁ) = 0, we get
m=0

- i, . i 2 . i _ i .
NP 2d) = T 0™ () 6P )T ) AT
n=0 m=0,
l€n+m<p?l

J L . i i .

= T o™i ) o) xR ) AR I
n=0 m=0,
l‘n+msp:L

. _ i
+ 277" Y xP )yt ™)

s ) . i L

= 2 ™A @)t 2™
n=0 m=0
lsn+msp?t

. i i
+ 23 PH™ (PP

J s : i :
=2 T ™A @)t 2eE™
n=0 m=0

. i i
+ 230 H™ Y (xPHE™)
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. i, R
+ G Qe e + 23 xPHrh)
3

. - = i
- 2 o™l 5 o0t (- ™k

n=0 m-O
J . L . i,
+ 2 0t T En™ 1(‘)(xP y"2IX (P ) A
n=0 =0

i i
+ PHrt i) + 23 e h

i . i
= PHr X)) + 23 vePHh .

Thus, (26) holds for f+3j=p+1 when £ < p- and j<p>.
Suppose (26) holds for ' < pi and j' < pi whenever
L'+ 3 <+ 3, 2K pi. j < pi. We now show (26) is valid
for £+ j. Since £<p' and 4+ j>pi+ 2, 5> 3.

Write j = j1 + j2 where j1 = pl-z. Then

i . i 3 j i i j
P 22) = Ptz Yz ?) =xP ...xP z...2(2 9.

Equation (1) gives

N Y SRS SR

Ptz = (xPHrtz iz %)

3y j i 3
X tE (-p ey () (PR 2 H
n=0 m=0 t=0

l<n+m+tspt
Ly j“n P
M) 2t @ A
Jl )/ 4-m j -n+j
= £ (- 1)“*“"1(;“)( ) )0y ) 1T
n=0 m=0
l1€n+m j
1 2 j n+j
S > (-1)“*‘“(;(1)(xp PR
n=0 m=0

n+m<pt



- i j,-n
N((xP )L™ 271
! ntm-1,4, J1 m N —
= 3 2(1) () ( )(xp)z[(xp) ™ (z3™
n=0 m=0
1€n+m
_ i
s 22 N (kP ) A ]
3y n+j i _ Jj.-n
P R 2 1)“‘”‘(‘)( oy (xP )’“z 20 (xPH A ™zt )
=0 m-O
n+m‘p
J
sz b x((xp ) 2™
j . .
1 £ Jj i - .
= 2 T n™i o oP) i N
n=0 m=0
3y j. . i _ i
+ T2 (0™l (Chzd o)™ P ) i
n=0 m=0
3j i _ . . i
G ChreP)Ht X)) « 2 XPhh)
J1 £ n+j, - Jj,-n
£ T 23(1)“““(‘)( )(xp)‘ 2 5@z 1)
n=0 m=0
3
LT P 1)“*‘“(‘)( 1) (xP) My3 mxp) m)
n=0 m=0

i . - i
= xXPHyt N + 23 NPy,

Thus, we have shown that (26) holds for all £ and 3j

when ¢ < pl and Jj < pl. We now prove (26) for arbitrary

+1

£ and j. Write £ = f) + zzpl + z3p1 with

i s A S €3 §
0<¢, <p,0 Sy <P, 043 and J=3; 43P +35P
with 0 < jl < pl, o< j2 <p, 0L j3. Then using

Lemma 2.1, we have
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i ‘epi+1 5.5 pi 3 pi.+1
P ) 3 z 1Z 2 7 3

i
i4.p
2 (x

Y S i
MNP ) 42d) =2 (xP) 1(xP) )

i+1 . i+l . i
1 L.p j.p - iy izsp” 3, 3,p
-xP) ¥ 23 NP )y TxP) 2 g1z72

) i+1 . i+l . . i . i
i 4.p J.p i4, 3,- iL,p” 3,pP
=xP) 3 27 @)y NPy P 2 %)

ol z2pi 3Pt ol 4 3
+(xXF) A(xT ) Tz )]

i p j.p £y 3] 4,p J p.
=xP) 3 273 [(xp ) 1z 1((xp ) 2 Xz )

i i, i
i zzp BPA i

J p - isp i
2 e xP) 2 27?7 (xP)

+ x(xp ) 13

X(Z )

s N |

jy -
+z N (xP)H !

)) ]

. . i+l . . i . i

pl . J3p1 5, - i i

= (X*) 2 (2 A (2
. i+l

i i Ll_

. 1
23 (@) ) F

)

b Y )

N

))

. . A |
1 J,P - JytJ,P
L 3 7 1 -2 )

i 1,3p _ i l,1+!,2p

z) X ((xP) )

i . . i
xP )t )+ 2 xPHh.

Hence, (26) holds for arbitrary £ and 3j.

We want to show

- i i i i - ii
(270 AsxP ,z2P )r) =sx® 2P )X(x) + r r(s(xP ,ZP )
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i
for any r € k[x‘p +2]. To do this we first show

i i .
2P )R ((xP ) 229)

_ i i i . i
MNP )PP )" xP ) t2d) = (xP)
i . i i
- n m
+ () I (@) zP ).
Using (26) and Lemma 2.1, we have
IS ST TR i, i i. . i i i
NXTP ZP IR 5Ty o PP AP Y (P 5Ty pJ P f (PP P
i i i . i
= x"P P 7P Y (z7) + 2IN(ZP ))
i i
+ 232" [% i(xnp x*P )]
P
i i i ._ i
= xX"P P xfP Y (2d) 4+ NP )]
iL di_ i i i
+ xP ZI[x"P (2P ) + 7P T (x"P )]
i i_ p i . 4 i i
= xPP Z"P ) (x*P zJ) + x*P I (x"P 2P ).
- i i i .
Now we consider )\((xp )n(Zp )mr) where r = Eazj (Xp )‘e'ZJ:

_ i i _ i i i, .
Y (KPP ) = X (xPP P 3 a, (xP ) %23y

i i i i . i i
Za‘j[xnp 2P % (x2P 23y 4+ x¥P 23N (P 2P )

= xnpizmpii(r) + ri(xnpizmpi)

i i i n pi m
Now we prove (27) with s(Xp ,Zp ) = Zoznm(xp Y (25 ) -



- i i
A(sxP ,zP )r)

Thus, we have proven (27).

43

- i i
A(Za (P )PP )M

- i i
Z)anm A(x"P Z"P r)

n i n i _ - n i - i
Ta (X P 2MP 3 (r) + ra(x"P 2™P )

> np.l mpi N N npi rnp.1
a X Z Mr)+xﬂ(2am$ 2 )

i i _ - i i
s(xp ,Zp YA () + r)\(s(xp ,Zp ).

We use (27) to show

- i+l i+l i+l i+l _
(28) As(xP  ,zP ) =sixP ,ZP )a(p)
i
for r ek[xp +2]. By (27) we have
_ i+l i+l i+l i+l - - i
rs(xP  ,zP ) =sxP ,Z2P  )a(x) +ea(s (XP
Now
- i+l i+l - i+l i+l
AMs (P 2P ) = A(Za P )PP )
- i+l i+l
- np mp
= Eanm A (X Z )
i+l i+1
_ mp T P
= Eamn VA o' )
i+l _ i+l
=Y a _ 2P s . (X"P )
nm b 8
P
= 0.
_ i+l i+l i+l i+1
Thus, A(s(xP , 2zZP ) =sxP ,2P ) a2 (x).

+1

,zP

i+l

).
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We now use (27) and (28) to show that i((g)) < (g).

i i i N
Ssuppose f£(xP ,2) € (g). Then £(X* ,2) =k(xP ,z)gxP ,2) =
i+l

p -1 p-1 i+l i+l i N
z 2 sm\(xP ,ZP )y (xP )z z™ g(x* ,2). rThus,
m=0 4=0
. i+l .
- i _p -1p-1 i
MEXP ,2)) = X( T z smx“p z"g)
m=0 £=0
i+l .
p -1 p-1 _ i
= )2 T s, x¥® Mg
A
m=0 £4=0
i+l .
p -1 p-1 - i
= = smx(x‘Qp zZ"g)
m=0  £=0
i+l i+l
by(28) since s € x[xP ,ZP ]. Thus, it suffices to

J Al

+1

_ ol -
show X(sz Z"g) € (g) where 0 < £<p,0<m S.pl -1.

Let m = np1+-j where 0 < n<p and j < pl. " Then

- i _ i i i i . . i i
MxTP 2l =X (xR zPP zlg) =x P 2"P ) (z23g) + 2IgX (x*P 2"P )
by (27). So, it suffices to show i(zjg) € (g) for
0<j<ph .
1 .
. o) N 1 N
Now by (23), 2Zig = & ::.n(xp ,zP )z™ + x, xP .

n=1 J
Thus,

- s P - N i _ N

2zlg) = T Xz xP ,zP )z™) + (. xP )
n=1 in J

-5 2 (z? %; z% 5 . ( (xpN))

by (27). Using the notation of (24), we have
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i i .
s - P - N 1
T(z3a) = n n kp " mp
A (27g) = n*i:‘,lrjnuz ) + n§1 z™X ( k‘,Zi“ TN ZP ) + 0
i i .
- P N_ i
%: n n kKp mp
= 2r. AM2Z) + 2 2 ¥ a,., XF A(Z°)
n=1 J® n=1 X, m jnkm

i . .
p - N i - i
= Zr.n)\(zn) + % z" © a.nkmxkp m(zP )™ 1% (2P )
n=1 J n=1 k,m J

i
- ' =P
2 jn + rj A (zZ¥ )

1}
MC
a1
>
N
v.’.'i

n
™
|

-

i N
Now m( L r. T.) = %: r. (x° ,z)t_ = 0. Thus,
n=1 jnn n=1 jn n

K(ng) € ker T = (g). Thus, we have shown that i(g) c (g9).

Now ) induces a pl-th order derivation )\ on the
i
ring %[xP ,z] as follows:

x(a) ='WK(A) where TA =a

or A(A + (9)) = A (a) + (g) where A ek[xpl,z]. If

A+ (g) =B+ (g0 then A-B € (9); A(A) - X(B) =X(A-B) €(g)
since A(g) € (g).- Thus, A(A + (g)) = A(B + (g)) and

so A is well defined.

We observe that X(zj) = tj:

Azd) = 2@+ (@) =1z + (@ = T+ (@) =ty
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. i i
for j =1,---, p-. Also, we have A((xP )") =3 i((xP )
p

i, i, _ i,
for all . For, MOGEHIY =2a(xP )%+ (9)) =2 ((xP )

) + (9) =
_ i i
5 (P h + (@ =8 (6P,
p
i i
Thus, )\ 1is a p -th order derivation from k[xp 2z

i i i
to k[xp .2]. So, A\ GDeri (k(xP ,z)) and A agrees

i
with § i on k(xp ). This is a contradiction since § i

p i P
has a unique extension to k(xp +2). Hence, the deter-

minant in (25), |(r. )|, is non-zero.

jn
Multiplying (23) by xm, m=1,°°", pl-l, gives

i .
. N 1 . N
x‘“ng = %) rjn(xp ,Zp )szJ + erj (xp ). These give rise
n=1

to the following equations in k(x,z):

(29)

0 =5 ;(x"zl9g

P
pt p’ N
- Z)rjna i(x“‘zn) + T X2 J(Es )+ r.(xf )s i(x‘“)
n=1 " p n=1 p- J p
i i
= %ir nb i(xmzn) + % zna 1(r.n) + 0
=1 " p n=1 p-
%; i
_ m n m_ e P
= _lrjn5 i_(x z) + x rj ) i(z )
n P o
m ot m i i m m i
Now bi(xzp)=xbi(zp)+zp5i(x)=x61(zp):
P P P P
5 j.(xm) = 0 since m < pl. So, (29) can be written as
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i .
P i

o= 2 r.na i(xmzn) + r’s i(xmzp )
n=1 p I p

r

- m n
| rjnb i(x z ).

p

Since l(;jn)l #0, 8 i(xmzn) =0 for 0<m<p,

) P
1<n<p.
Now we consider the pi—l order derivation [§ i,z]
p
given by [ i,z](r) = § i(zr) -rd i(z) - 2z8 i(r)
p P . p P
[1,p.3;6]. For m=1,---, p--1, [& i.z](xm) =
p
m m m, _
) i(zx ) - X8 i(z) - 28 i(x ) = 0. Now
P P i
i, p -1
[8 i,z] € Der£ (k(x,2z)) so, [& i,z] = .23 r.s8. for
P P j=1 3 )
some rj € k(x,2). Evaluating [8§ i,z] at x shows that
p
r, = 0. Similarly, since [§ i,z](x:m) = 0, r, = 0 for
. P
m=1,---, pl—l. Thus, [8 i.z] = 0. Hence,
P
0=1[6;,2](r)
P
=8 ;(2r) - rs ;(2) - z8 4(r)
P P p
=& ;(zr) - 28 ;(r).
p p
Thus, § 12 = 26 4 for i < N. QED
p P

We now prove a special case of the main theorem.
Namely, if 6n € Der;(R) for all n, then ﬁ is an

integral domain. 1If 6n € Derﬁ(R) for all n, then
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Der:(R) =< 61070 8 >. Also Der(R) = der(R) since

a a
6. =6 t/d ! 60..0 & o/d ! where the p-adic expansion of
n pt t 1 (0]
. . t i n
n is givenby n = 2 a.p. Thus, 6n € Derk(R) for
i=0 ’
all n implies that both hypotheses of the main theorem

are satisfied. That is, Derz(R) is free for all n and

Der (R) = der(R).

A
Theorem 3.6: If 6n € Derg(R) for all n, then R is

an integral domain.

Proof: We define a sequence of elements in R as follows:

i i
p-1 . 6y (y)x
(30) 21 =Yy + 2 (-l)l —-:-L—{-,——-
i=1 ‘
. .. n-=1
p-1 i G;n-l(zn-l)xlp
Zn = %21 t izi (-1) 1!

Consider z - Since K 1is a separable algebraic
extension of k(x) and since z, € K, z, satisfies a
minimal polynomial g(Z) with coefficients in k(x) such
that g, # 0. By multiplying g by some d(x) € k[x], g
may be assumed to be in k[x][2]. If g factors over
k[X,Z2] so that g = 919, then either g, or g, is in
k[X] since degzg = degzg1 + degzg2 and g 1is the

polynomial of minimal Z-degree which z satisfies.
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Thus, g may be assumed to be irreducible over k. Thus,
for each z, there exists an irreducible polynomial
g(X,2) with g(x,zn) = 0 and gz(x,zn) # 0.

We shall show that 6pjzn = znépj for j < n. We

first consider 61.

6;(21) = 6,(y) - 8;(¥) - 8;(WIx + & (¥)x +---
+ (-1 P28 (v) P72/ (p-2) 1+ (-1 PR (1) kP 2/ (p-2) ¢
+ (-1 PR () P L/ (p-1) ¢
=(-1)P P (v) xP~1/ (p-1) ¢
=0

since bg(y) =0 by (17). Thus, by Proposition 3.5,

Now we assume that bpjzn_]_::zn_lépj for j=1,---,

n-2. Evaluating § n-l(zn)' as above, gives that

6pn_l(zn) = 0. Also, since § j° 8 n__1=={5 n-1°® & j and

p p p p

bpj(zn_l) =0 for j=1,---, n-2, we have
i ipn-l
p-1 i 6 n-l6 j(zn—l)x
8 .(z) =5 .(z )+ T (-1n)* -B
n-1 0

n
pl pl

it

= 0.
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Thus, § j(zn) =0 for j < n. Hence by Proposition 3.5,

p
6 jzn =28 5 for j < n.
P o n
. . _ 1)
Now zn 18 a Ca:chy sequence since Z 41 zn Em .
Let 2z = lim 2. 2 € R. Now § j is a continuous
p
A
function on R. Thus for r ¢ ﬁ with r = lim L €R,
we have
5§ .(zr) = 8§ .(lim z_ lim r_ )
p’ p’ n n
= § j(1im znrn)
P
= lim § .(z_r )
nn
pJ
= lim (znb j(rn))
P
= lim z, lim § j(rn)
p
=2 § j (lim rn)
P
=28 s(r)
pJ
Thus, & . z = 28§ . for all j and hence, §.z2 = 2§,
pj pj i i

for all 1i.

Now z = z, + (zz-zl) +e+ (zn-zn

-1
z =y + Z aijxlyj. Hence, y =2 - Z aijxlyj. We
i>0 i>0

substitute for y on the right hand side of the equation;

thus, y =2z - 2 a..x(z - 2 a..x'y))J. continue
i>o 1J i>o 13
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substituting for y. This gives that y may be written

as y =X Bijxlzj and from this follows that every
A i3
element r € R is of the form r =2 MigX 2
- . . . A
Suppose r is a zero divisor in R. Then

- i3 . _
= Zaijx z7 with a5 €k and oy, = 0. By Theorem

3.1, 61(r) is a zero divisor. Now

= 3 3y 2 3 i
6, (r) = a4 + 20‘13 l(x z7). (x z°) = 276, (x7) € (x,Y)
for i+ j > 2, so, bl(r) is a unit unless %o = O
Hence, a,. = 0. Suppose a.. =0 for i < n. Then,

10

bn(r) =qQ + Ea. .6 (xlzj) is a zero divisor. Since

6n(x zJ) € (x,y), a no = O. Hence, we have shown that

a,o =0 for all i. Thus, elements of the form EOLijx)‘z:l

A
with %o # 0 for some I are not zero divisors in R.

Now we suppose that rs =0 with r = .aijxlzj
and s = 2B, .x"zJ. Then writing r = z‘ > a, .xlzj_!'with
1] jzz lj
a., # 0 for some I, the above shows that 2 a, xtzIl-4
I‘ jz‘ 1]

is not a zero divisor. Note that if r 1is a zero
divisor, but not equal to zero, then ¢ must be greater

than zero. Likewise s = z® 2B, Jxlzj M with B ?-‘ o
j2m
-m . . 4 m_
and X B. is not a zero divisor. Hence, 22 =0

j2m 3/’\

and since R has no nilpotent elements, 2z =0. Thus,
A
R

r=0 and is an integral domain. QED
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Theorem 3.7: If Der:(R) is a free R-module for all n

A
and if Der(R) = der(R), then R is an integral domain.

Proof: Since Deri(R) is a free R-module, by Theorem
1.8 there exists a derivation *1 and a monomial X
such that Xl(xl) = 1. Because Xl is a 1lst order deri-
vation, X, can only be x or y. If fx(x,y) # 0,
then the curve does not distinguish between x and vy
since fy(x,y) # 0. Thus, without loss of generality we
may assume X, = X. If fx(x,y) = 0, then
£, (X, ¥) A (%) + fy(x,y)kl(y) = 0. Hence, kl(y) = 0 and
so, X, = X. Hence, we shall assume X = X. Further,
since kl and 61 agree on k(x) and since both extend
uniquely to k(x,y)., Xl = 8-

Now if 6, € Dera(R) for all n, then by Theorem 3.6
ﬁ is an integral domain. Thus, the only case we need

consider is if some & ¢ Derﬁ(R). Since

at ao t i
6. =8 J/a, ! o--v0 8, /a.', when n= 2 a.,p, there
n pt t 1 (o] j=0 I

must exist a positive integer N such that 6;: R R

N
for i < p', but 5 iy ¢ Dert (R).
P
If Gl(y) = (a+s)/(l+t) where o # 0, a € k, and

s,t €m, let y' =y - ax. Note that y' # O since R
is not regular. Now Gl(y') = (a+s)/(1+t) - a =
(s-at)/(1+t) € m. Then since k[x,y] = k[x,y’] and

_ ’ ? _ no_
(x,y) = (x,¥7), (k[x,y ])(x'y,) = R. Let g(X,Y’)
£(X,Y’ + aX). Then g(x,y’) = 0. Also,
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gy.(x.y') = £,4(x,y" + ax) = £ (x,y)dy/ay’ =

fY(x,y) a’ + ax)/day’ = fY(x,y) # 0 by the chain rule.

Thus gY'(x,y') # 0. Thus we may assume that bl(y) € m.

We have then the following assumptions on R:

(31) Derz(R) is a free R-module for all n
Der (R) = der (R)
Derl(R) = < &, >
k 1l

61(y) € m.

Now we define zn for n { N as we did in (30).

That is,
i
P-l i 61(Y)x1
z, =y+ 2 (-1) " ———
'=1 1.
. _n-1
i ip
p-1 i 6 n—l(zn l)x
N i§l (-1) it
Let 2z = Zye As in the previous theorem, 61(2) = 0 for
i< pN. Thus, by Proposition 3.5, there exists an

N N
irreducible polynomial g(Xp ,Z) such that g(xP ,2) =0
N N
and gz(xp ,2) # 0. Also, éiz = zbi for i <p . We
observe that z, = y + xrl(x,y) with rl(x,y) €m since

(32) z =y + xr(x,y) for some r(x,y) € (x,y).
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We now consider the ring R, = (k[x,z])(x'z). We

shall show that R, ¢ R. Let s(x,2)/t(x,2) € R,, with

1
s,t € k[x,z] and t ¢ (x,z). Since k[x,z] ¢ k(x,y),
s,t € k[x,y]. t § (x,2z) implies that t = a + h(x,2)
with o a non-zero constant in k and h(x,2) € (x,z).
Thus, h(x,2z) € (x,y) since (x,2) < (x,y) and so, t
is a non-unit in R. Hence, s/t € R. Thus, R, € R.
We now show that gl = ﬁ. Since z =y + xr(x,y),
Yy = 2 - xr(x,y). Substituting for y on the right hand
side of the equation and continuing this process gives

3 A
that y = Y a,.x'z) for some aij € k. Thus, y € Ry and

1j
A A
so, Rl = R.
Let K, = k(x,2). K is a separable algebraic ex-

1 1
N
tension of k(x) since gz(xp ,2) # 0. Thus, bn extends

uniquely to Kl for all n. Since biz = 28, for

i< pN, 6i:k[x,z] + k[x,z]. Hence, 6; € Der;(Rl) for all

i< pN. In fact, Derﬁ(Rl) = < 61,--', bn > for n < pN.

We shall show that Derﬁ(Rl) is a free Rl-module for
all n. 1In order to do this, we shall need to know that
there exist derivations xi and monomials

n — * o o
x; € k[(x,z] ¢ Ry such that Derk(R) = < Ay TR and
‘{0 j<i

. e Thus, we show this first. For
Ll =1

xi(xj) =

i< pN, we let li = §. and x; = x*. Then clearly we

i
have satisfied the desired requirements for xi and X, -
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N N
Now consider Derﬁ (R). By Theorem 1.6 Derﬁ (R) =

N
Derﬁ ‘l(R) ® Ry = < 61.--'. 8 N > ® RY where

p -1
N
Y € Derﬁ (R) . Further, there exists an element r € R

A A
such that y(r) = 1. Now r € R < R =R so,

1
r= 2 ai.xlzj. Thus, 1 = y(xr) = X ai.y(xizj).
osi+j *J 1si+j 3

This implies that Y(szJ) must be a unit in R for some

I and J. Let 2 N~ (l/y(szJ))Y. Then

P
P N
Derk (R) = < xl,- ‘Y XpN > where Xi = bi for i <p .
And we have shown that there is a monomial
Xy € k[x,2z] < Ry such that A\ N(x N) = 1.
P P P
We now proceed by induction. Suppose Derﬁ'l(R) =
< xl,---, kn—l > and that there are monomials
0o j<i .
Xy ¢ X g € R1 such that Xi(xj) = 1 =i ° Again

we are taking Xi =6, and X, = x* for i< pN. Now

n — o o o
by Theorem 1.6, Derk(R) = < kl. ’ xn_l,y > where
y(xi) =0 for i<n and ¥(r) =1 for some r € R. As
before r = Z}aijxlzJ and so, Y(szJ) is an unit in R
for some I and J. Thus there exists a monomial

x € k[x,2z] such that Y(xn) is a unit in R. Let

= n ] e o o
A, = ¥/¥(x_). Then Der (R) =< \,*-+, A > and
{ O i<n

)\ L) =
n(xl) l i=n

with X, a monomial.
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We want to show that the xi's which have just been

found are in fact derivations from R1 to Rl' In order

to do this we shall need to know that R N k(x,2z) = R

1!
To see that this is the case we consider the following:
A A A
R1 c k(x,2) NR ¢ k(x,2) NR =%k(x,2) N Rl' Since Gh R1

1
A
is exact [Cor. 17.11,p.57;5], k(x,z) N Ry = Ry [ Theorem

8.4,p.59;5]. Hence, R, = k(x,2z) N R.

1

As we have already seen, A, = blle + R Suppose

1 1°

n-1° Rl - Rl. Then Xi:Kl

for i < n. Now Xl,---, kn are a basis for Derﬁ(K)

inductively that Xl.-'-, A + K

1

n
n .
and 6, € Derk(K) so, & = iEi rili with r, €K and
. n
r # 0. We show that r, € Kl' Since an € Derk(K

5n(xl) =r € K1 (in fact, r, = 0). Suppose

AE

n
ryest+s Ty €Kj. Then 6n(xj) = 2 rixi(xj) =

i=1
iéi rixi(xj) which implies that ry = bn(xj) -
i-1 .
iZi rixi(xj) € K, . Thus, r, € Ky for i=1,--., n.
n-1
Now A, = 6n/rn - .Ei rili/tn; A,: Ry # R while
n-1
5./Cn - Z r;\;/r,: Ry * K;. Thus, )\ :R; * R NK; =R,.

Thus, for all i, xi € Der;(Rl). Also, there exist
j<i

j=i * Thus,

(o)
monomials X5 € Rl such that li(xj) = { 1

by Theorem 1.5, Deri(Rl) is a free Rl-module generated

by Xn; this holds for all n. Further, we have

107
i

_ _ . N
that ki = 6; and X; =X for i <p.
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By assumption § N:R--7/-4> R. We want to show the same

P
is true for Rys that is, 6PN:R1-7L> R,. Since
N
61. ‘e 8 N are a free basis for Derﬁ (K),
P N
p -1 .

I =1rd + 2 r.s8.. But 2\ (xl) =\ . (x.) =0 for

N N .

p p i=1 11 pN PN 1

i< pN. so, r, = O for i< pN. Thus, A\ N = rd N
P P
N
Now r = )\ N(xp ) € R. Since § N° R-4> R, r € (x,y).
p p

Also, 1 =2 N(x N) =rh N(x N) so, & N(x N) =1/r t R.
p P p P b p

Now x . € Ry if & .. R, * Ry, then 1/r = § N(x N) €

p p P P

R, < R which is a contradiction. Thus, § N:Ry —£> Ry -
o

And further we have

N
(33) Y N = r N where r = A N(xp e (x,2).
P P P

' Finally for R we show that Der(Rl) = der(Rl). It

1'
suffices to show kn is generated by pl-th order deriva-

tions for all n. Define Yo € Derﬁ(R) as follows:

-}

M % i
(34) Yo = A u/%ys °--0 Ay /Ay, where m = Z a;p.
p

n * o o
By Theorem 3.2 De k(R) < Yo ¢ Yy >+ So,

n
A\. = 2 r.¥. with r. € R. On the other hand, it is clear
n jop 1 i
n n
that vy, € Der, (R;) so, vy = 'Z) t;A; with t, €R;. By

i=1
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Corollary 3.3 r and tn are units in R. Thus,

= 1/'tn €EK, NR = R1 and so, t  is a unit in R,.

Tn 1l
- n-1
so, A = Yn/fn - izi tixi/tn. Assume by induction that
i

for i < n, Ay = jzi sin' with sij € Ry. We can do
this since Xl = Y- Then

n-1 i
Ay = yn/fn - izi ti(jzi sijyj)/tn. Hence,

¢ 1 n-1
Ay - (1/£n)xpt/dt! ocevo Ay /do! € Der, (Rl)' Thus, X

is generated by composites of pl-th order derivations.

Hence Der(Rl) = der(Rl).

We have shown then that the following hold for Rlz
n —3 e o o :
(35) Derk(Rl) = < ll' R Xn > where xi is also
an i-th order derivation of R to R.
0 j<i
Therg exist X, € R1 such that xi(xj) = { 13 -
- _Ji . N
xi = éi and xi = X for 1 <p.
_ . N
xiz = zki for 1 <p.
— . n —
Der(Rl) = der(Rl) and in fact Derk(Rl) =
O %o
< ¥petote Y, > where Yp = M M/dM! °ce0 Xy /dol,
M . p
m= 2 aipl.
i=0
N
Let R2 = (k[xp ' 2]) N We still have
(xP ,z)

N N
g(xp ,2) = 0 and gz(xp ,2) # 0. Just as R, was
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contained in R 8o too is R2 c Rl. We shall show that

all the assumptions on R which are given in (31) also

hold for Rz. Before we do this however, we observe that
A A A A
if R, is a domain then so is R = R,. Suppose R is

not a domain. Then there exists r # 0 and s # 0 such
A
that rs = 0. By Chevalley's Theorem R has no nil-

N N
potent elements so, r’! # o0 and sP # 0. But
P s?P =0 anda P ,sp € R2. Thus, if R2 is a domain,

either r =0 or s = 0.

An important relationship between the derivations
xn and R2 is that li(r) = 0 and xir = rki when
r €R, and i < pN. Also, if pN X n, then yh(r) =0

for r € R,. To see this we write n in its p-adic ex-

2
t .
pansion as n = % aipl. Since pN A n, some a, #0
i=0
for 1 < N. Let I < pN be the smallest i such that
a a
=13 t I .
a; # 0. Then Yo, = M t/’at! 0ess0 A I/'aI! . Since
p o
XPI(r) =0 for r € R2, yn(r) = 0. Since Ai = bi for

i< pN, this relationship also holds for 5, € Der;(K).

That is, if pN X n, then 6n(r) =0 for r € Rz.

Before we study R further, we make an observation

2
A A
about zero divisors in R. For any r € (x,y)R, we write

r as
pu‘l i PN-]-

(36) r= X Bix + 2 r;x
i=1 i=0

i
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N N
where Bi € k and r, € (xp ,z)k[[xp ,2]]: we can do
A A
this since R = Rl' If r is a zero divisor, then by
Lemma 3.1 6h(r) is also a zero divisor for n < pN.

Since 6§, 1is linear with respect to R,, we have

N N
s ) =B+ T3 s ) ¢t D s (xh)
r = + . X + . X B
n n i=n+1 in i=0 in

A
Since all terms but the first are in (x,yY)R, Bn must

zero. Thus, B.

i O for i=1,°"", pN—l. Hence, a

>0

zero divisor in R has the form
PN‘l i

(37) r= X r.x
i=0

N N
where r. € (xP ,z)k[[xp ' 2]].

We shall show that the derivations vy N’ n=1,2,---,
n
give rise to generators which freely generate Derﬁ(Rz)

for all n. We make use of the fact that § N is an
np
N
n-th order derivation on k[xP ] [I, Theorem 14; 6] and

N
extends uniquely to k(xp ' 2) = K2 and is

that §
npN

an n-th order derivation on Kz,

_ riSN

Now consider vy N Y NT ribi with r. € K.
np np i=1
: nE? n
For r € Ry, Y N = z riéi(r) = _Z) r o6 (r).
np i=1 j=1 3Jjp 3Jp

So, ¥ N € Derz(Kz,K).
np
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We first show that there exist monomials

N
Ek[xp 2] such that vy N(y) is a unit in R, .
np
Suppose YN(r) € (x,z) for all r Ek[xp ,2]. Since
P
Y N(k[x,z]) £ (x,2), there exists some monomial xizt
P
such that YN (xlzj) is a unit in Rl. Clearly 1i > O,
P N N
since \(N('k[xp .2]) € (x,2). Also, p /|’ i, otherwise

¥n

123 € k[x‘p ,2]. Thus, there exists an element of the
j

form xJs € k[x,z] < R, such that vy N(x g8) is a unit in

)

N
R,, 8 € k[xp ,2] and j 1is as small as possible with

l'

0<3j< pN. Consider the derivation vy N =
P +(p -3)

For any x*r where O £t< p and r €R,

YN°YN .
P P -]
we have
YN° YN .(xtr) = YN°6N _(xtr)
P P -J] p P -)
t
= Y o(rs (x7)).
N N .
P P -]
Now for t > p -]
5 N (x5) =
P -]
- t- .
p £ s t ><t-p +j+8- 1>x p+3+s 5 (x_pN-]—s)
—Js ph-3

N .
=< Nt>xtp+3
P -]
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[1, Prop. 9;6]. So,

N .
(. Nt.> Ve P g ce Bt
P -] P
t
YooYy (xE)=/
p p -] N
o} oL t<p-j
\
B . t . N . .
Yy assumption Yy N(x r) €m since ¢t-p +j < j. Thus,
p
YN N (s) €m for all s € R1 which is a contradiction

P +p -]

to Corollary 3.4. Thus, there exists a monomial

N
Yy € k[xp .2] such that vy N(yl) is a unit in R Let
p

1°
vie = ¥ /Y o (¥q)
N N N'f1l%°
P P P
iN
Suppose we have found derivations Y' N € Derkp (Rl)
ip
N
and monomials Y; € k[xp 2] such that the following hold:

i-1
4 o o .
Y =ry + 2 r.y with r. € R,, r a unit in R
. N . N . .
ip iph §=1 I jp% 1 -1 1
{ j<i
Yi N (¥5) 1 3=i
_ n-1
for i < n. Let Yy N=Y N~ Z: r. Y where
np np =1 ip
jil ,
r{ =Y (Y{), r. =y (y.) - r.y (y.). So,
1 npN 1l Jj npN J j=1 1 ipN j

r. € R, . Then by construction Y N(yi) =0 for i < n.
np
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N

Suppose (r) € (x,z) for all r € k[xp .2]. By

Y
np
Corollary 3.4 there exists s € R, such that Y N(s)
np

is a unit in Rl. Again choose Jj as small as possible

so that Yy N(xjf‘) is a unit in R;, 0 < J < p'  and
np
N
f € kx[xP ,z]. Then as before one shows that
_ n-1
Y o8 =y + 2 r.y :R, =+ (x,2)
N N . N N . . .. N N . 1
np’ p-j np+p -3 i=l ' ip+p -3

contradicting Corollary 3.4. Thus, there is a monomial

N
Y, € k[xp .2z] such that vy N(yn) is a unit in Rl' Let
np

v’ N=Y N/; n(Y,) - This completes the induction step.
np np np

Thus, we have constructed derivations vy’ N and

N np

monomials Y, € k[xp .2] which satisfy the following

pfoperties:

v’ Ny 1S an n-th order derivation from K, to K and
np

and npN-th order derivation from R, to Rl'
, n-1 )
Y N=FY N + _ riY. N where ri € R1 and r 1is a
np np i=1 ip
unit in Rl'
. 0O i<n
Y (y.)={ .
npN 1 1 i=n

N . ¢ _ ' . .
If p X m, define Yn = Yo So, Y, 1s defined for all

n and y'

n € Deri(Rl). We now show by induction that

Derz(Rl) = < Yi,"°. Yé >. The first step is clear.
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Since &, =\ =y, = Yi. Deri(Rl) =< yi >. Suppose

Der, ~(R;) =< Y{."'. Yé-l >. It suffices to show that

- , ’ N _
Yn T izi S;VYi for some s; € Rl. If p X n, Y, <Y, -
If p'| n, so that n = np', then Y, = Y_§ =

np
N1
Y_'N/r- Z r;vY N/r=Y N/r"'% Yi' by the
np i=1 ip np i=1

induction hypothesis. Thus, Der. (Rl) = < Y{.-°'. Y. >.

n

= '
We also have that Derk(Kl) < Yl"” Yn >. So,
nP
6 = 2 t, Y for some t. €K

npN 1 1l

1° on R2 we have

)

I

N Z) t NY N since for pN X i, Y{(S) = Yi(s) =0
np j=1 Jjp Jjp
when s € Rz.

We shall show that vy’ n* R, # R, for all n. 1In
np

order to do this, we shall need to know that R1

N N
so, we prove this first. Suppose r(xP ,z)/s(xP ,z) =
u(x,z)/v(x,z) 1in Ry with r,s,u,v, € k[x,z] and v(x,2)

a unit in R, - Then pulling back to k[X,2] gives
N N N
r(xP ,2)v(x,2) -s(xP ,2)u(x,2) =h(X,2)g(xP ,2).

Write v(X,2) = 2 vi(xp ,Z)X . Do the same for u and
i=0
h. Then
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N N N N
r (xP .Z)(v°+-°-+v xP _1)-S(XP ,2) (U +---+u xP -l)
o N
p -1 p -1

N N
= (k_+---+k xP "l)g(xp ,Z)
o N1

and so,

r(xPN,Z)vo(xpN,z) -s(XpN,Z)uo(XpN,Z) = ko(XpN,Z)g(xpN,Z)
since all other terms involve Xi, 0<icK pN. Since
v(x,2z) is a unit in Rl' v(X,2) Dbegins with a constant
term. Thus, vo(xpN,z) is a unit in R2. Hence,
r(xPN,z)/é(xpN,z) = uo(xpN,z)/Vo(xpN,z) € R,- Therefore,

K, N R, =R

2 1 2°

We now show that y’ N=R2 - Rz. We first consider

np
! . Il - N . N
Y n Since vy N = ul N where u 1is a unit in Rl' we
P p P N
' _ - ! P
have by (33) that vy N = rd N where r = vy N(x ) € Rl'
p p P
— ¢ - 1 °
We have 1 = vy N(yl) =1rd N(yl)' Since § N.K2 - K2,
P P P
— ' 3 [ d L
r =1/8% N(yl) € K,. Now Yy’ :R, *R; and r§ N°Ry Ky
P P )
Y 4 =
thus, vy N.R2 - R1 n K2 R2'

p

Inductively we assume vy’ N:Ry * R, for i <n.
ip

Recall that § when restricted to R2 may be written

n N
as & = A Y , with t. € K, and t_ # O.
npN jo1 ipN 1 1 n
Evaluating § N at yi glives ti € K2 since



npN 2 2 np np n
n-1
lzi tlY.pN/t :R, * Ry N K, = R,. Thus, by Theorem 1.5

Derﬁ(Rz) is a free R,-module generated by y'N,---,Y'

2 N
p np

We should again note that vy’ N is also an npN-th order
np
derivation from R to R.

Finally we show that Der(Rz) = der(Rz). Let

a
o = Ya;M/d ' 5...0 Yi O/d ! where the p-adic expansion
p

of m is given by m = Z) a, p . By Theorem 3.4
i=0

n
Derk(Rl) = < Oy ¢"""% O >. To prove that Der(Rz) =

der(Rz), it suffices to show for all n that

n
(38) v! .= Z r.o

with r, € R To see this suppose that (38) holds. We

2.
first observe that o N is a j-th order derivation on
jp
J N +N
R,. We write j = 2 a. p . Then 3Jjp = Zf a, p .
i=0 i=0
= ¢t O ' .
Thus, O N Y J+N/d orero Yy /do. . Since
jp P P
7 . 7 .
Y :tR, * R_, O :R, » R,. Further, since vy . 1s a
.. N"T2 2 . N 2 n+i
ip Jp 2 P

pl—th order derivation on R2, o N has order
J jp
j. Now let A\ € Der(Rz) and suppose that n

™
Q

ke
I

is the smallest integer such that ) € Derﬂ(Rz). Write n
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in its p-adic expansion as n = Zf a, p . Since
i=0

n - ‘! e o o —3
Derk(Rz)—<YN. e N> A ?tY.N with
P np i=1 ip

t, €R, and t # 0. Using (38) and the above remark,

we have that )\ - tnrno N
np

€ Der (R Thus,

2)'

n-1

x R

a
A - t T (y N+s/d ! oo Y'No/dol) € Der ) where

S

2
p P

i
YpN+i € Derﬁ (R2) and 1%2 a. p = n. Thus, if (38) holds,

Der(Rz) = der(Rz).

We now show (38). The result is true for n =1

since 0 Y'N‘ Assume it holds for i < n. Now

P P n
n
o € Der, (R,) so, O = 25 u. Y , U, €R,. In
npN k é npN i=1 lPN i 2
np
¢ _ .
Ry» Y y = _Z} t;0; with t; €R;. By Corollary 3.5 u,
np i=1
and t are units in R,, so, t = 1/u_ €K_.NR, =R..
npN 1 npN n 2 1 72
. S, s ¢ _
So, u is a unit in R2. Hence, v N=0 N/hn -
np np
n-1 , -
.ET LA N/hn =0 N/hn + .§’ r, o o with r, € R, and
= 1p ‘ np i=1 1p

(38) is proven.

Thus we have shown that Der (R ) 1is a free Rz—module

for all n and Der(Rz) = der(Rz).

We now examine Deri(RZ) more closely. We know
N N
gz(xp ,2) # O. We shall also show that g N(xp ,2) # O.
P
X
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N N N N
In k(P ,2)g L (xF ,2)6 ((F) + g (P ,2)8 ((2) =0
xP P P
N
since 3§ N is a first order derivation on k(xp ,2). If

)

N
g N(xp ,2) =0, then 3§ N(z) = 0. Then by Proposition
P P
X

3.5, § NZ = z9 N If this were the case then § N:Rl -+ R

P p p

N
(xp ,Z) # O.

which does not happen. Thus, g N

xP
N

Since Yy is the monomial in k[xp ,2] paired with

the first order derivation Y'N' it must be either z or
P

N

p .

f} : N
X But vy N = rs N where r = vy N(xp ). Since

p p p

N
5 iR, 4> R, vy’ (xp ) 1is not a unit in R,. Hence, Yy
pN 2 2 pN 2 1

must be =z.

Let 6? represent the canonical derivations on k[z]

2,35 0 j<i N >
That is, &, (27) ={ . Since g (xp ,2Z) #0, 6%
1 1 j=1i N 1
P
X
extends uniquely to Kz. To summarize then, we have the
following:
(39) Derz(Rz) is free for all n.

Der(Rz) = der(Rz).

N
g N(xp Iz) #o'
xP

1 _ 2 . . 2 _ e
Derk(Rz) = < 6 >: 1in fact, & = YpN.
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N N
805 ) € F ,z).

Thus, all the hypotheses that we originally had for R,

which are listed in (31), hold for R Here 2z plays

2l
N
the role of x and x¥ plays the role of vy.

There are two cases. If 5§:R2 - R2 for all i,

A

A
then by Theorem 3.8 R is a domain. Hence, R 1is a

2
domain. The second case is that there exists N(1l) such

that ai:R <+ R for i < pN(l)

2 5 , but GPN(]_):R2 —+> Rz.

We now proceed exactly as before and construct rings Ry

and R,. Ry = (k[u,z])(u’z) and

4
N(1)
R, = (k[u, 2P 1 N (1) Here u plays the same
(u,zP )
role that 2z played in Ry and R,. Hence,

N N N N
u=xP + zr(xp ,2) for some r(xp ,2) € (xp ,2); this

is equation (32). Since z € (x,y), u € (x,y)z. We also
N(1l)

n _ 2 .. 2
have that Derk(Rz) = < 61 ’ R 5n > for n<p and
6§r = rai for i < pN(l) and r € R4. Further,
2 N (1) . . . .
61. i<p , may be viewed as a derivation on R since
n - I'4 e ] ! .
Derk(Rz) =<y N ¢ Y N > and Y xR *R.
P np - ip
A
Now any element r. € (xp ,z)R2 may be written as
PNy . PN, .
(40) r, = > Bi.zJ + > 1:']._.2J
=t j=0
N(1) N (1)

where Bij € kX and ris € (u,2zP )k[[u,zp 17.
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A
This is just equation (36) with R2 playing the role of
A
R, u playing the role of 2z, and 2z playing the role
of x.

We now consider r € (x.y)ﬁ. Suppose r is a zero

l i
divisor. Then by (37) r has the form r = E r. x .
i=0
Using (40) we substitute for rys
N N(1l) N(1l)
P -1 p -1 p -1 p -1 A
r= 2 z By xiz) 4+ T z ri.xlzj.
i=0 =1 1] i=0  Jj=0 J
N(1) N (1) A
Here Bij € k and ri.j € (u,zp )k[[u,zP 1] e (%x,y) 2R.
2
We now apply § ) to r:
PN ) °° Ny
521«(1) °by (B =B g1 N
P -1 p-l P P -1
Ny N , 3
+ T R R R TTURET ek
i=0 j=0 P -1 p-1

Since 62N(1) L ° pr-l(r) is a zero divisor,

B = 0. If we continue evaluating r at
PN-l'PN(l) 1
2 2 2 2
[} o § 1°**, 87008 s O o d e 84,
PN 5% PN 1°°N " SNy O, 1

we get Bij=0 for O_<_i<pN and O<J<p(1)

Thus, if r 1is a zero divisor «r € (x,y)2 R
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We continue this process and construct a sequence

of rings R such that R,. relative to R2(j-l)

2j 2j
satisfies the analogous properties listed in (39). We
denote the canonical derivations on sz by 653. There

are two cases. The first is that there exists j such

that 62%:R._ + R.. for all i. Then by Theorem 3.6,

A i 2J7 2J A

RZJ is i domain. This implies that R2(J-1) is a domain.
Hence, R 1is a domain. The second case is that for all

j there exists N(j) such that 623 R 3 > sz. In

N(j) %2
p (3) .
this case we have that for a zero divisor r € R,
A A
r € (x,y)n R for all n. Since r\(x,y)n R=0, r =0.
n

A
Thus, in either case we have that R is an integral

domain. QED

The next theorem gives a geometric interpretation to
A f
this result: R is an integral domain only if T is uni-
branched at the origin. Algebraically this means that

£(X,¥) = (aX + BY)T + £ o 4eee + £

n+1l

Theorem 3.8: Let R be the local ring of the irreducible

curve f£(X,Y) at (0,0) over an algebraically closed
field k. Suppose f has r distinct branches at (0,0).
Then the integral closure R of R has r maximal ideals

A
and the completion of R is R = R1 @D Rr’

Proof: Consider the integral closure R of R. It is a

semilocal ring with maximal ideals m; ,---, m. ﬁm is
i
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A
a discrete rank 1 valuation ring so, gm. = k[[t]].
i

Hence, R —> k[[t]]. Consider the image of (x,y) in
k[[t]], say, (8(t),n(t)). since f£(x,y) =0, we have

f(€(t),n(t)) = 0. Thus, m, determines a branch of

f(x,y).
Now suppose m, # mj determine the same branch.
Ja) 91
Then Ry~ =k[[t]] with (x,y) —> (§;(t),n;(t)) and
A * el e

R, = k[[t]] with (x,y) —2 (8,(t),ny(t)). Since
J 2
m; and my; determine the same branch, there exists a

substitution o of order 1 such that

o(8) (t).mny (£)) = (§,(t),n,(t)) [Theorem 12.3; 8]. Let

K Dbe the quotient field of R. Since %k 1is algebrai-
A

cally closed, K is the quotient field of §m and
i

A

ij. So, on K we have O'oel = 62: K+ k((t)). Now

since m, # mj choose r ¢ m, such that r t mj. Then
el(r) € (t) so, 0o Ol(r) € (t) but 8,(r) ¢ (t); this
is a contradiction. Therefore, distinct maximal ideals
determine distinct branches. So, t < r.

Consider a branch Y;- This branch determines a
local homomorphism 8;:R k[[t]]. ei extends to K so,
8;:K » k[[t]]. Consider e;l(t) NR; this is prime

hence, maximal in R. Suppose Gzl(t) n §=9;1(t) NR=m.
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Then
A Oi
R ——> k[[t]]
) -1
o . ei ° ej
J v
k([t]]
-1 . . . -1 = -1 =
ei ° Bj is an automorphism since 6.l (t) NR= ej (t) NR.

Thus, Sio 631 gives a substitution of order 1 and
hence, Yi and Yj are the same branch. Thus, r < t.

Therefore r = t and the number of maximal ideals
in R equals the number of branches of f at (0,0).
A

We have immediately the following corollaries.

A
Corollary 3.9: If R is an integral domain, then £

has one distinct branch at (0,0).

Corollary 3.10: If Derﬁ(R) is a free R-module for all
n and if Der(R) = der(R), then f has one distinct

branch at (0,0).
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