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ABSTRACT

FREQUENCY DOMAIN METHODS FOR SYSTEMS

WITH SLOW AND FAST DYNAMICS

By

Douglas William Luse

The mathematical treatment of systems with slow and

fast dynamics has traditionally involved singular

perturbation theory for differential equationsl This

thesis suggests a set of conditions to be placed on a

frequency domain description of a system to guarantee two

time scale behavior. Some basic stability and approxima-

tion results are presented.
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I. INTRODUCTION

The automatic control literature contains a wide°

variety of analysis and design methods for linear multi-

variable systems. Most of these, however, suffer from the

so-called "curse of dimensionality." That is, the amount

of computation required increases dramatically with the

dimension of the system under consideration. This situa‘

tion creates a need for efficient model reduction and

decomposition methods. Some model simplification schemes

[e.g., l3] assume no particular structural properties for

the system being treated. Others rely on natural subsystem

decomposition caused by spatial [e.g., 14] or temporal

separation [l]. The subject of this thesis is the latter.

There is an extensive literature on time scale separa-

tion through the use of singular perturbation methods for

differential equations. This thesis considers the same

problem from a frequency domain approach. A discussion of

some basic time domain results for linear systems is

included here for later comparison.

An autonomous linear singularly perturbed system is

shown in (1.1). The blocks A11’ A12, A21, and A22 are ana-

lytic at e = 0. It can be shown [2] that the state matrix

A(e) defined in (1.2) can be brought to block diagonal form



(1.3) by a similarity transformation T(e) where the following

statements hold:

1. T, As’ and Af are analytic at e = 0.

-1 A
2. “AS(O) = All(0) - A12(O) A22 (0) A21(O) = A

3. Af(0) = A22(0)

4. T(0) = [I 1 0]

A22 A21 I

x1 = All(e) x1 + A12(e) x2 (1.1)

6X2 = A21(e) x1 + A22(e) x2, det A22(O) # O

  

Me) A land) A12<ef (1.2)

T(e) A(e) T'1(€) = FAS(e) . o . (1.3)

o éAf(e)

  

It is easily seen that the eigenvalues of As(e) approach

finite limits as e + 0 and the eigenvalues of Af(e) of

all go to infinity as 0(l/e) as s + 0. Thus, A(e) has been

split into slow and fast parts. The limiting effect of this

transformation can be interpreted: AS(0) is the state

matrix of a system obtained by setting a = 0 in (1.1), solv-

ing for x2 in terms of x1, and substituting in the first

equation; Af(0) is the state matrix for the x2 vector assum-

ing that the x1 vector is constant. The exponential matrix,

which contains all information about the state space trajec-

tories, can now be decomposed as shown in (1.4).



4W” = T‘1(e) [4‘45” 0] Na) +1

o o

T‘l(e) 0 o T(e) (1.4)

O eéAf(e)t

The transformation T(e) employed here is not unique. In

fact, the transformation to Jordan form (varying with 6)

would also suffice. The advantages here are that T, As’ and

Af are analytic at e = 0, and that limiting values for these -

matrices are easily computed.

Associated with the decomposition (1.4) is an approxi-

mation of the exponential matrix (1.5). It is formed by

settingez= 0 everywhere in (1.4) except where it divides

Af(e). If the matrices A0 and A22(0) both have all eigen-

values in the open left half plane, then the relation (1.6)

holds. Note that neither ¢(t,e) nor exp A(e)t has a uniform

limit function aSe-+0. Pointwise limit functions exist but

are discontinuous at the origin.

eME)t z ¢(t, e) 9- T'1(0) [ert o] T(0) +

o o

T-l(0) 0 0 T(0) (1.5)

0 eA22(0)'§

sup H eA<€>t -'¢(t,s)H = 0(8) as e-*O (1 6)

:20 .

II‘H is any matrix norm.

The decomposition (1.4) and approximation (1.5) have

been generalized for certain e-dependent systems which do



not have the form (1.1) [ 6]. There are methods of computing

higher order approximations of the matrices T, AS, and Af

[ 8]. In [S9], multiple (more than two) time scales are

allowed and A(e) is generalized to be a linear mapping on a

Banach space.

The approximate time scale decomposition above has a

number of other applications. As a representative example,

its application to the pole assignment problem with state

feedback is included here. The system (1.7) is split into

slow and fast subsystems (1.8) and (1.9) respectively. The

original problem is stated: Assign, by state feedback, the

  

poles A , A , . . ., A , A , A , . . ., A . It
1 2 nl nl+l nl+2 nl+n2

E E E

is required that An +1, . . ., An +n be non-zero. The slow

1 l 2

subproblem is: assign the poles Al, . . ., Anl to the

system (1.8) by state feedback Gs' Similarly, the fast sub-

problem is: assign the poles An +1, . . ., An +n to the

l l 2

system (1.9) with state feedback Gf.

x1 = All x1 + A12 x2 + Bl u (1.7)

5x2 = A21 x1 + A22 x2 + B2 u, det A22 # 0.

All is n1 x n1, A22 is n2 x n2

x8 = A0 XS + Bo uS (1.8)

xf = A22 xf + B2 uf (1.9)

_ -l

_ -1

Bo ‘ Bl ‘ A12 A22 32



Assuming that the slow and fast subproblems have been solved,

their solutions are combined in (1.10) and (1.11) to form

the composite control law (1.12) for the system (1.7).

_ -l -1
G1 - (II+ of A22 32) GS + of A22 A21 (1.10)

G2 = Gf (1.11)

u = Cl x1 + C2 x2 (1.12)

If the feedback (1.12) is applied to (1.7), then the follow—

ing result holds: The closed loop poles can be written (as

functions ofE).

v (e) v , (e)
nl+l n1+n2

e , O O O ’ 8

 

Vl(€), . - -, Vn(€).

wherelvj - Ajl + 0 ass + 0 for 15.j5 n1-+ n2

At this time, there are very few applications of fre-

quency domain methods for slow-fast subsystem decomposition

in the literature. In CID, the "asymptotic forms" (1.14)

for the transfer matrix of the system (1.13) are derived.

However, no precise theoretical meaning is given to the

terminology "asymptotic forms."

x 3 A1 A2 x + B1 u (1.13)

z A3/e A4/e z 32/8 ,

y = C1 x + C2 2

where Al is n.x n, A4 is m x m



Gl(s) = CO(sIn - AO)‘ BO - c2 A4 32 (1.14)

Gh(s) = C2(esIn - A4)-1 32

where A0 = A1 - A2 A4-1 A3

B0 = Bl ' A2 A4_1 B2

C0 = cl - c2 A4’1 A3

The purpose of this thesis is to show frequency domain

analogs for the fundamental time domain results. One of the

achievements of this work is to give theoretical meaning to

the frequency scale decomposition (1.14), in much the same

way in which time domain results give meaning to the approx-

imation (1.5). Throughout this work, however, the basic

system description used is the transfer matrix, with internal

descriptions used only for proofs and examples.

There are a number of reasons for investigating multiple

time scale systems from a frequency domain viewpoint. Fre-

quency domain methods have been revived in recent years with

generalizations of classical methods to multivariable

systems. This work should open the way for investigation of

regularities which may occur in the generalized nyquist and

root locus plots of multiple time scale systems. It may

lead to convenient application of multivariable robustness

[e.g.,15] and sensitivity [e.g.,15] methods, which could

lead to design schemes which are fundamentally different

from time domain methods.



Through this approach, multiple time scale methods may

be extended to systems described by convolution operators,

such as those involving time delays. For theoretical pur-

poses, the approach is useful for clarifying some time

domain results. This is because no particular internal

structure for systems is assumed--only input-output rela-

tionships.

In summary, this thesis should be regarded as the

theoretical basis for future application of frequency

response methods to multiple time scale systems.



II. SYSTEM MATRIX THEORY FOR AN ARBITRARY FIELD

Rosenbrock [3] develops the theory of time invariant

linear system through the use of system matrices. Two

classes of system matrices are considered: rational and

polynomial. Rational system matrices have elements which

are rational over some field and may be regarded as a

generalization of the concept of transfer matrix. The

class of polynomial system matrices, that is, the class of

system matrices with polynomial elements only, includes

both the class of state space descriptions and the class

of matrix fraction descriptions as special cases. Poly-

nomial system matrices are useful because they provide

very general internal descriptions of linear systems.

Operations which preserve the relation of strict system

equivalence are analogous to similarity and unimodular

transformations for state space and matrix fraction descrip-

tions respectively. Strict system equivalence preserves

all external descriptions of a system as well as maintain-

ing the values of all (possibly internal) poles.

In [3], the underlying number field is the field of

complex numbers. An extension is needed, for the present

work, to allow the parameter c to appear in coefficients of

polynomials and rational fractions of the frequency vari-

ables. Whatever manner a is allowed to appear, the field

8



properties of the coefficients must be preserved; otherwise

most of the theory of system matrices would be lost. Also,

all concern will be with small values of the parameter a.

With these observations in mind, we make the following

definition:

Definition 2.0.1:
 

 f(e) is analytic at e = 0; r is an integer

This variation of coefficients with e is general enough for

most physical purposes. A smaller field, such as the field of

functions rational in.e could have been chosen, but a: is

needed for a polynomial factorization later on.

As mentioned before, most of the theory of system

matrices carries over when the field 52 is used. All pro-

cesses involving only field Operations, such as block

Gaussian elimination, are performed in an identical manner.

The important Euclid's algorithm for computation of the

greatest common factor of two polynomials is still avail-

able. There is one major difference, however: there exist

nonlinear prime polynomials. Stated differently, there are

polynomials over 9; whose roots are not in 5'8. An example

is $2 - e = 0. The roots are s = :vE'which are not analytic

at e = 0. Note that as a consequence, the Jordan form of a

matrix cannot be generated without leaving the underlying

field.



10

A number of Rosenbrock's proofs assume that any

polynomial can be factorized into linear factors, but all

essential results can be derived without using this property.

The remainder of this chapter consists of two parts. First,

a statement of the key results from [3] which are needed for

this work. Second, the modifications of proofs necessary to

alleviate the difficulty discussed above.

II.l. Basic Theorems from System Matrix Theory
 

This section contains results from system matrix theory

which are needed later. All theorems in this section assume

that the underlying field is arbitrary, and the field will

be denoted by F. The development roughly follows [3]. A

reader familiar with the system matrix approach can follow

this seCtion if he assumes that the mechanics of "extraction

of decoupling zeros" has been extended to system matrices

over a field F.

Definition 2.1.1: A rational matrix P(s) (over a field F)
 

is a system matrix with m outputs and z inputs if

T(s) U(s)

P(s) = (2.1.1)

—V(s) W(s)

where U is r x 2, V is m xfr, and det T(s) # 0.

The associated transfer matrix H(s) is given by

H= V'r'lu+w (2.1.2)

Also, P is called a system matrix representation of H.

Relations between the matrices in (2.1.1) will be indicated
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by subscripts. For instance, Pl will consist of the blocks

T1, U1, V1 and W1.

Definition 2.1.2: P(s) is a polynomial system matrix of
 

order n if:

1. P(s) is a system matrix with only polynomial

elements;

2. deg det T(s) = n;

3. r 2 max (n,£,m).

Definition 2.1.3: A polynomial system matrix P(s) of order
 

n with associated transfer matrix H(s) has least order if

every other polynomial system matrix representation of H has

order n or greater.

Definition 2.1.4: Polynomial system matrices P1 and P2 are
 

strictly system equivalent if there exist polynomial matrices

X and Y, and unimodular matrices M and N such that

M o N Y

P = - P - (2.1.3)

2 x I l o I

Definition 2.1.5: System matrices P1 and P2 are system
 

equivalent if P2 can be obtained from P1 by one or more of

the following two types of transformations:

1. Transformations of the form of (2.1.3) with X,Y,

M,N all rational and M,N non-singular;

2. Trivial expansions and contractions as shown in

(2.1.4).



I 0

E’<——.-[ ] (2.1.4)

It can be shown that two equivalent system matrices have

the same associated transfer matrix.

Theorem 2.2.1: Let H(s) be a rational matrix over a field
 

P. Then there exist polynomial matrices T(s) and V(s) over

F with T(s) non-singular such that H(s) has a least order

polynomial system matrix representation of the form (2.1.5).

(The form of system matrix (2 1.5) will be referred to as

Matrix Fraction Description or MFD form).

 

PI 0 : 01

o T(s) j I (2.1.5)

Lo -V(s) E o 

Proof: Let d(s) be a least common denominator for the ele-

ments of H(s) so that H(s) = N(s)/d(s) with N(s) polynomial.

Then (2.1.6) is a system matrix representation for H(s).

d(s)I I (2.1.6)

-N(s) 0

All non-unimodular common right divisors of d(s)I and

N(s) can be extracted using system equivalence operations

followed by an expansion to meet condition 3 of Definition

(2.1.2). (2.1.5) is least order by an extension of Theorem

3.2 of [3]. D
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Definition 2.1.6: The characteristic polynomial of a rational
 

matrix H(s) over a field F is the least common multiple of

the denominators of all non-zero minors of all orders of

H(s). The characteristic polynomial is assumed to be nor-

malized in the case F = J: so that e can be non-trivially

861': to zero.

Definition 2.1.7: Let P(s) be a polynomial system matrix
 

over a field F. Then the input decoupling polynomial of P

is the product of the diagonal elements of the Smith form

of [T(s) U(s)]. The output decoupling polynomial of P is

the product of the diagonal elements of the Smith form of

[T(s)T -V(s)T]T. Let P1(s) be a system matrix obtained by

extracting the input decoupling polynomial from P(s), i.e.,

by extracting all non-unimodular common left divisions from

[T(s) U(s)]in.P(s). Then the input-output decoupling poly—

nomial of P(s) is the quotient y(s)/yl(s) where y(s) is the

output decoupling polynomial of P(s) and yl(s) is the output

decoupling polynomial of P1(s).

Figure 2.1.1

—:’O H1

I .7 .+
‘L " H2 d‘—‘

 

 

 

   

V

  

  

Theorem 2.1.2: Let H(s) be rational over a field F. Let P
 

be a least order polynomial system matrix realization of



l4

H(s). Denote the blocks of P by T,U,V, and W. Then

CP[H(s)] = f - det T (2.1.7)

where feF

Proof: Follows almost exactly as in [3]. 0

Theorem 2.1.3: Suppose two systems with transfer matrices
 

H1 and H2 over a field F are connected in series, and put in

the unity feedback configuration of Figure 2.1.1. Let H1

and H2 be described by system matrices P1 and P2, respec-

tively. Then the closed 100p system matrix can be repre-

sented by the system matrix PCL as shown in (2.1.8) if

det(I + HlHZ) # O.

P ' -

T1 U1 0 0 o o i o 0

0 0 T2 U2 0 0 ; 0 o

I

-v w 0 0 —I o ' o o
1 1 i

PCL = o 0 -v2 w2 0 -I : o 0 (2.1.8)

.0 I 0 o o I 5-1 0
I

0 0 o I -I o : o -I

............................l-------

-v w o o o o ' 0 o
1 1 :

0 -v2 W2 0 o i 0 0_  
Furthermore det TCL = :det Tl det T2 det(I + H1H2)' (The

sign depends upon the sizes of the blocks.)

Proof: Follows from a trivial extension of the derivation

in Chapter 5, Section 1, of [3]. D
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Theorem 2.1 4: Let H1, H2, P1’ P2, etc. be as in Theorem
 

2.1.3. Suppose, furthermore, that PI and P2 are polynomial

system matrices. Let B, y, and 6 be generic input decoupl-

ing polynomial, output decoupling polynomial, and input-

output decoupling polynomial, respectively. They will be

subscripted according to the system matrices to which they

refer (1,2,CL). Then

BCL = 81 B2

YCL = Y1 Y2

6CL = 51 52

Proof: It is evident from (2.1.8) that BCL = 81 82.

(2.1.8) can be transformed by operations of strict system

equivalence to (2.1.9).

  

T1 0 U1 0 0 o E 0 0

-v1 0 W1 0 -I o E 0 o

.
0 T2 0 U2 0 o E o o

0 -v2 0 W2 0 -I 5 o o

o o I o o I E -I 0 (2.1.9)

o o o I -I o E o -I
..................................T"""“'

o o o o I o ; o o

_ o o o o o I E o o‘

It can now be seen that YCL = Y1 Y2' To show that

6 first extract the input decoupling polynomial
CL = 51 52'

from (2.1.8) and perform the same operations of strict systan

equivalence that were used to arrive at (2.1.9). This new
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system matrix is identical to (2.1.9) except that the pairs

(TlUl) and (T2U2) are replaced by reduced versions. D

The next theorem involves a commonly used regularity

condition which guarantees that both Open loop and closed

loop systems have the same order.

Theorem 2.1.5: Suppose two systems with proper transfer
 

matrices H1 and H2 over a field F are connected as in Figure

2.1.1. If det(I + Hl(m) H2(w)) ¢ 0, then the matrix (2.1.8)

is a system matrix. Furthermore, the number of closed loop

poles of Figure 2.1.1 is equal to the sum of the number of

poles of the two open loop systems.

Proof: Clearly, det(I + Hl(s)H2(s)) i 0 if det (I + Hl(m)

H2(m))# 0. Hence, (2.1 8) is a system matrix. Referring to

(2.1.8),

:det T
CL

= det I + H H 2.1.10

det T1 det T2 ( l 2) ( )

 

If s is allowed to go to w, it is apparent that det TCL and

det Tl ° det T2 must have the same degree. D

11.2. Appendix: Extensions of Rosenbrock's Results

This section is not self-contained: it assumes the

reader is familiar with the reference [3] and the theory of

polynomial matrices [21]. In this section, an R preceeding

a theorem number means that it corresponds to that theorem

in [3].
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The concept of ”extracting a decoupling zero" no longer

makes sense, since this zero may not be in the field F. The

next theorem has been reworded and reproved to reflect this.

Theorem R2.4.l: Let P be a polynomial system matrix over
 

F. Let the blocks of P be labeled:

T U

p = (2.2.1)

-V W

T

If either [T u] or [IT -vT] is not Smith equivalent to

[I 0] then there is a polynomial system matrix P1 of lower

order (i.e., deg det Tl < deg det T) giving rise to the

same transfer matrix.

Proof: Suppose [T U] ” [S 0] where [S 0] is in Smith form

.with S # I. Then there exist unimodular R and Q such that

R [T U] Q = [s 0] or,

R [T U] [s 0] Q’1 (2.2.2)

The rows of (2.2.2) are divisible by the corresponding

diagonal elements of S. The system matrix (2 2.1) can be

transformed by strict system equivalence:

-l
R o T u s 0 Q o

I -v w —VQW o I

This matrix has the first r rows divisible by the diagonal

elements of S. S has no zero diagonal elements because T

is nonsingular. Thus 8'1 exists. Define Pl as

s‘1 0 R o T U
p A
1

o I o I -v w
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Then P1 is a polynomial system matrix with deg det T1 =

deg det T - deg det S < deg det T.

As mentioned in the last section, the concept of set

of decoupling zeros" must be replaced by ”decoupling poly—

nomial.” We now introduce (and repeat some of) the follow-

ing terminology for a polynomial system matrix P with

associated transfer matrix C.

a = pole polynomial of G

B = input decoupling polynomial

Y = output decoupling polynomial

6 = input-output decoupling polynomial

n = pole polynomial of P

The definitions of the above are:

B Q det S where [T U] ‘ [S 0] where [S 0] is

in Smith form.

"
D

Y det S where [TT - VT] ” [S 0] where.[S 0]

is in Smith form.

9 A the output decoupling polynomial of a system

matrix obtained from P by "removing" the input decoupling

polynomial as in Theorem R2.4.l.

6 A g— (shown later to be a polynomial)

y g %$ (shown later to be a polynomial)

g
det T.
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Theorem R2.5.1: Let a,8,y,5,n, and o be defined as above
 

for a system matrix P over F. Then the polynomial division

relations hold:

0 l v, 6 I B, and BY I n5.

Also, 8 | n and y | n.

Proof: Let Pl be the system matrix resulting from removal

of B from the input of P.

If [S 0] is the Smith form of [T U] then det S = the

greatest common factor of all r x r minors of [T U].

Then det S l det T or B I n

By similar reasoning, y I n.

Let R and Q be unimodular matrices which transfer [T U]

to its Smith form:

R [T U] Q = [S 0]

Then P can be transformed through strict system equivalence:

R 0 T U [S 0] Q-1

0 I -V W [-V W]

“
D

F (2.2.3)

Thhstransformation preserves the Smith form of the output

pair:
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We can left multiply (2.2.3) by the matrix (2.2.4). The

result is still a polynomial system matrix and the transfer

matrix is unchanged. However, the Smith form of the output

pair may change.

S 0 (2.2.4)

Consider the effect of left multiplying P in (2.2.3)

by (2.2.4) on an r x r minor of [TT, -VT]T. The minors

will be divided by the (possibly non-unity) diagonal ele-

ments of S which correspond to the positions of their rows

from T. Pl can be written explicitly:

3'11 s'lu
p =

1 -V w

A T T

Thus, if M is an r x r minor of [T , -V ] and N is the cor-

responding r x r minor of [T1T, -VT], then N I M.

A

T

r x r minors of : PH’ M2, ..., Mp y = GCF Mi

-V ].Si.$p

s‘1 I
r x r minors of N1, N2, ., N

-V P

e = GCF Ni (2.2.5)

15 isjp

Since Nil Mi for l S i.s p, then the minors of

. T T

[T , -V ] can be written

glfil, 52N2’ ..., gpr; and y = GCF giNl (2.2 o)



21

where each gi is a polynomial. It is now clear that o IY-

Since 8 = det S, gi I B for l S i S p. Stated other-

wise, B is a common multiple of the gi's. We then have

LCM gi I B

M1 i.Sp

since the least common multiple divides all other common

multiples. Let h be a prime factor of 6 of multiplicity K.

R+1I 5.
That is, hKI 6 but h Viewing the list (2.2.6) as a

modification of the list (2.2.5), it is seen that hKI gj

for some j. The same argument can be repeated for each

prime factor of 6 to show that

6 I LCM gi

1515p

Thus, 6 I B.

T T T
Since det T1 is an r x r minor of [T1 -V ]

i

A

O I det T . Also, det T det S = det T. Therefore,
1 1 °

0 - B I (det T1) - B

o - B | det T1 - det S

9 ° 8 I det T

But det T a det T and n = det T. This gives

0 ° 8 I n

substituting o = 7/6 yields

YB I n or VB I n6. D
7?
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Three standard conditions for two polynomial matrices

to be c0prime are generalized in the next theorem. Part

(i) of this theorem in [3] is no longer applicable. That

is, quantities may be involved which are not in 3:.

Theorem R2.6 1: Let T and U be polynomial matrices over a

field F where [T U] has normal rank r. Then each of the

following conditions are equivalent to T and U being left

c0prime.

(ii) [T U] is Smith equivalent to [I 0].

(iii) There exist polynomial matrices V and W respectively.

2 x r and 2 x 2 such that

T U

-V W

(iv) There exist right c0prime X and Y such that TX +

UY = I.

(ii) (+) Suppose T and U are left c0prime.

Suppose, to the contrary, that [T U] ~ [S 0] where

[S 0] is in Smith form with det S # 1. Then there

exist unimodular R and Q such that I

[T U] =R[S 0]Q

= RS [I 0] Q

RS is a left. divisor of T and U, but det RS = det R

det S which depends on s. This is a contradiction.

Therefore, [T U] ~ [I 0].



(iii)

(iV)
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(+) Suppose that [T U] ” [I 0]. Let R be any

common left divisor of T and U. Then there exist

polynomial matrices T1 and U1 such that

[T U] = R [Tl U1].

Let M be an r x r minor of [T U], and let N be

the corresponding r x r minor of [T1 U1]. Then

M = (detR)-N

follows from the Cauchy-Binet formula. Thus,

det R divides every r x r minor of [T U]. Det R

must divide the greatest common factor of all

r x r minors of [T U]. But the latter is equal

to unity, because of.a standard theorem on the

Smith form. Since det R Il, det R is independent

of s and thus R is unimodular. Coprimeness

of T and U follows because R was an arbitrary

common left. divisor of T and U. It is also clear

that the normal rank of [T U] is r.

The proof in [3] holds as written.

(+) Suppose T and U are left c0prime. Then there

exist M and N such that

M [I 0] . N

[I 0] [h. d] - N

o I

[I 0] Q'1

where Q.1 = M 0 - N

O I

[T U]

0
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Clearly, Q is unimodular. Let blocks of Q be written as

Qij' The last equation can be rewritten:

[T u] = [I o]
Q11 Q12

Q21 Q22

Multiplying out yields:

T Qll + U Q21 = I

We now set X = Q11 and Y = Q21. To prove that X and Y are

T

right c0prime, let [XT YT] have Smith form [S 0]T. Taking

determinants of the above equation,

det [T u][x] = det I = 1 (2.2.7)

Y .

The left hand side can be expanded using the Cauchy-Binet

formula. Let the r x r minors of [T U] be listed:

M1, ..., M ; let the corresponding (column for row) minors

of [XT YT] be listed: N1, ..., Np' Then (2.2.7) becomes

P

I M. N. = 1 (2.2.8)

T

We know that det S divides each minor Ni of [XT YT] . Write

N1 = Ci - det S where each Gi is a polynomial. Then (2.2.8)

becomes

P

det S - 2 Mi G. = 1

i=1
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Thus, det 8 I1, and S = I. A transposed version of part

(ii) of this theorem shows that X and Y are right c0prime.

(+) Suppose there exist X and Y such that T X + U Y = I.

Both sides can be transposed:

XT TT + YT UT = I

This can be written in block form

[XT YT] TT = I

UT

The argument starting just before (2.2.7) above can now be

T and UT are right c0prime and there-repeated to show that T

fore that T and U are left c0prime. Note that the hypo-

thesis of X and Y being right c0prime was not needed. D

Theorem 2.6.2 of [3] gives several equivalent conditions

for the matrices sI — A and B to be left c0prime. Only parts

(iii), (iv), and (vi) are necessary for the essential

theorems in the remainder of the book [3], so only these

parts will be extended.

Lemma 2.2.1: The rank defects of the matrices (2.2.9) and

(2.2.10), whose elements are in F, are equal.
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I I o 0 o o o o B-

-A I 0 o 0 o B o

o -A 0 o o B o 0 (2.2.9)

0 o I o B o o 0

0 o -A B o o o 0

[B AB A2B ... Am'1 B] (2.2.10)

where A is n x n, B is n x I, and (2.2.9) has m block

rows. (Thus, (2.2.9) is mn x [(m-l) n + m2] and (2.2.10)

is n x m2.

Proof: Starting with the first block row of (2.2.9), left

multiply each block row by A and add to the next row down.

Repeating this m-l times gives

  

I 0 o 0 o o o B

0 I o o 0 o B AB

0 o o o o B AB AZB (2.2.11)

0 o I o B Am’4 Am'3B Am'ZB

o 0 0 B AB ..Am'3B E’ZB Am'lB

The first n(m-l) rows of (2.2.11) are linearly independent

from each other and from the last n rows. The last row

obviously has the same rank as (2.2.10). Therefore, the

rank defects are the same. 0
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Lemma 2.2.2: Let A and B be matrices whose elements are
 

in F. Let q be the degree of the minimal polynomial of A.

Then rank [B AB ... Am’1 B] = rank [B AB ... Aq'l B] (2.2.12)

where m 2 q

Prggfz Note--while some results such as the Jordan form

are lost in the extension to an arbitrary field, others such

as the Hamilton—Cayley theorem still hold. Thus, it is

still true that q s n.

This lemma is proved by expanding the powers of A on

the left hand side of (2.2.12) which are higher than q-l in

terms of lower powers of A. This is followed by zeroing out

these terms by applying appropriate column operations. D

Theorem R2.6.2: Let A and B be matrices with elements in F.
 

Then each of the following conditions is equivalent to

SI - A and B being left c0prime. A is n x n, B is n x 2,

and the degree of the minimal polynomial of A is q.

(iii) The matrix (2.2.10) with m set equal to q has rank n.

(iv) The matrix (2.2.9) with m set equal to q has rank nq.

(vi) There exist X and Y such that

(sI - A) X + BY = I (2.2.13)

where deg X_<.q - 2 and deg YSq - 1.

Proof: Lemma 2.2.1 shows that (iii) and (iv) are equiva-

lent to each other. Figure 2.2.1 shows the circle of

implications for the proof.
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sI - A and B III (...) d (, )

are left c0prime t? 111 an IV

E

Figure 2.2.1 _

 

 
 

  
 

 

Implication I: This follows immediately from R2.6.1 (iv)
 

(recall the last sentence of the proof of R2.6.1).

Implication II: Suppose that (iv) is true. To show that
 

polynomial matrices with the specified properties exist, a

system of equations, which the coefficients of X and Y must

satisfy, is written. Define Hq as

Hq 2 Matrix (2.2.9) with m set equal to q.

Also define X and E (nq x n):

I- q

    

X = X E = [0-

q-2

X 0

Oq- 0

xo 5

YO I

I O

.Yq_1. .I.

where X = XO + X13 + + Xq 2 s - and

Y=Y+Ys+...+Y s’
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Coefficients of s in (2.2.13) can be equated to yield

This has a solution if rank Hq = rank [Hq: E]. By assump-

tion, Hq has rank equal to its number of rows, so that add-

ing more columns cannot change its rank. [This proves

Implication II.

Implication III: Suppose sI - A and B are left c0prime.
 

Then R2.6.1 (iv) shows that there exist X and Y such that

(31 - A) X + BY = I (2.2.14)

Since X and Y are polynomial matrices, they can be expanded

in terms of their coefficients:

X X + X0 1 s + ... + Xm-

Y Y + Y0 1 s + ... + Y

Proceeding in the same manner as above, define

X = Xm-Z E = 0 Hm.= matrix (2.2.9)

I 0

X0

Y0 .

I 0

Ym-l I    
Coefficients of s in (2.2.14) can be equated:

H X = E (2.2.15)
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The row operations employed in the proof of Lemma 2.2.1 can

be applied to (2.2.15). Let Hm be matrix (2.2.11). Note

that E does not change when these row operations are applied

to it.

HmX = E (2.2.16)

The last block row of (2.2.16) is

[o o ... o B A B ... Am’lB] x = I

This shows that rank [B AB ... Am-lB] z n, so that

[B AB ... Am-lB] has rank equal to n, its number of rows.

There are now three possible cases:

1. If m = q, (iii) is true

2. If m > q, Lemma 2.2.2 implies (iii)

3. If m < q, addition of the columns AmB, ..., Aq-lB

leaves the rank equal to n. Again, (iii) is true.

This proves Implication III. D

There is one point remaining which needs clarification.

Theorem 3.2.2 of [3] requires the next lemma for extension.

The notation is preserved from the proof in [3].

Lemma 2.2.3: Let M =
 qu

t

where Mq_1(s) is a polynomial matrix over F, with q-l-rows,

such that M§_l ~ISI 0], M has normal rank q-l, and t is a

polynomial row vector. Then there exists a polynomial row

vector w such that



31

Proof: There exist unimodular matrices R and Q such that

R Mq-l Q = [I 0]

We now apply a unimodular transformation to M

R O Mq-l Q = IiMq_l(2 _= I 0 (2.2.17)

0 1 t tQ tll t12

where C Q = [tll t12]

The row t12 is zero in (2.2.17) since M has normal rank

q-l. Then

t Q = [tll O] = tll [I O]

= t1l R Mq_l Q,

Therefore, t = (tll R) Mq-l' The lemma is proved by setting

The following list of theorems from [3] consists

of those which hold over a general field F. It is not

exhaustive: others may have generalizations, especially

when F = 3:. In this the theory of analytic functions of

several complex variables may be of use. An asterisk indi-

cates that the theorem needs superficial restatement.

Chapter 1: 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.10
 

The above theorems are developed for the general case

in [21].
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must be added

Chapter 2:
 

Chapter 3:
 

Chapter 5:
 

W
N
G
M
D
W
N
H

H
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1

1*, 9.2* Some uniformity conditions in e

to hypotheses here.

.1

.l

.l, 1.2, 1.3, 1.4, 1.5

.1, 3.2, 3.3, 3.4, 3.5

.1*

.1*, 5.2*

.1* (except (1)), 6.2* (except (i) and (ii))

.1*

1 (Theory is developed in [21])

1, 2.2

.l, 3.2

l, 4.2, 4.3

1, 6.2, 6.3, 6.4

.1, 1.2



III. TWO FREQUENCY SCALE RATIONAL MATRICES

The method of introducing a into rational matrices

which was presented in the previous chapter is very general.

We now narrow this down in such a way that "two frequency

scale" behavior, in analogy to "two time scale" behavior,

is guaranteed. Before this is done, however, the defini-

tion is motivated by examining the variation of the roots

of a polynomial in 3 whose coefficients are in the field

57.
8

Theorem 3.0.1: Suppose that in Equation (3.0.1), aj(e)e32

for 05 js n. Then each of the n roots of (3 0.1) can be

expanded about e = 0 as in Equation (3.0.2) where the Hg's

are complex constants, N is an integer, and el/q is a branch

of zq = e.

an(e)sn + ... + a1(e)s + ao(e) = 0 (3.0.1)

b . j/q lsks 3.0.2
N kJe 9 n ( )

"
M
B

S (e) =

k 3'

Furthermore, if one root has an expansion (3.0.2) with q >1”

then there will be q - 1 other roots having expansions with

the same coefficients but using different branches of zq = a.

Proof: First, (3.0.1) is multiplied by a suitable power of

a so that the result is a polynomial in s with coefficients

33
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analytic at s = 0. Furthermore, setting 5 to zero will not

leave the left hand side identically zero. To do this,

express the coefficients:

aj(e) = er] Cj(e). 0535“

where each r. is an integer and each cj is analytic and non-

J

zero at e = 0. Define

When (3.0.1) is divided by erCn(e), the resulting poly-

nomial has the above properties. (3.0.1) becomes

tsn + e ( ) sn‘l + + e ( ) = 0 (3 0 3)E n‘]. E .... O E . .

a.(e)

where e.(e) = —;l———— and

3 e Cn(e)

t is a non—negative integer

Up to this point, the roots are not changed. Now the sub-

stitution p = ets is made in (3.0.3) and the result is multi-

plied byefin-1)t:

1 2
pH + en_l(e) pn- + Jen_2(e) p“. + ... +

én’lfie0(.) = 0 (3.0.4)

Theorem 4.12 ofI2dlshows that the roots of (3.0.4) can be

expanded:

Pk(€) = E aki ° 6 , 1 S k.$ n
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The roots of (3 0.1) can now be written

co co

_ 1 Z i/q _ z a (i-tq)/q

Sk(€) “ Et: i=0 “R1 8 ‘ i=0 ki 8

Changing the index of summation gives (3.0.2). The

last remark in the theorem is merely a statement that all

branches of the qth root appear. 0

The case when the coefficients in (3.0.1) are rational

is treated in most standard texts on complex variables under

the topic of algebraic functions [e.g.,l9, or the treatise

22]. (3.0.1) as stated defines s as an algebroidal function

of s, which behaves locally as an algebraic function.

It is assumed that the slow (or low frequency) and the

fast (or high frequency) behaviors are each described by

transfer matrices which are independent of a. Following

the usual time domain treatment, a scaling ratio of p = as

is assumed. The next definition is made in view of these

observations.

Definition 3.0.1: A matrix H(s,e) rational in s over the
 

field 52 is two frequency scale if:

1. H(s,e) is proper in s;

2. H(s,0) is defined and proper; (3.0.5)

3. H(]%” e) 6:: 0 is defined and proper; (3.0.6)

4. The expansions (3.0.1) of each of the poles

of H(s,e) about 6 = 0 take one of the

following special forms:



(3.0.7)

II

II
M

8

0
‘

m

(
.
1
.

\ .
0

A. Sp(e)

 2 b. ej/q, b0 I 0. (3.0.8)B. Sp(e) 0 J

E 3

Note that each term of H(s,e) or H(—E—, s) can be

expressed as the ratio of two polynomials in 3 whose coef-

ficients are analytic at e = 0 by multiplying numerator and

denominator by a suitable power of B. When expressed in

this way, the numerator and denominator are defined at

e = 0. Now, only indeterminate forms of the 0/0 type can

occur when the evaluations (3.0.5) and (3 0.6) are made.

These can always be resolved, however, by dividing both

numerator and denominator by a suitable power of 6 while

maintaining analytic coefficients.

Although part 4 of Definition 3.0.1 may seem compli-

cated, it is quite easy to verify once the characteristic

polynomial q(s,e) of H(s,e) is known. By definition,s:can

be set to zero in q(s,e) so that q(s,0) is defined and

q(s,0) f 0. Let r be the smallest integer for which all

coefficients of the polynomial (in p) erq(—E—,e) are analy-

tic at e = 0. Then part 4 of Definition 3.1 is equivalent

to (3.0.9) where L is the number of non-zero roots of

€rq(-E-. e) E = 0

deg q(s,€) = deg q(s,0) + L (3.0.9)

The notation Hs(s) = H(s,0) and HF(p) = H(-E—, e) E = 0

is introduced for convenience. HS(s) and HF(p) can be
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interpreted as descriptions of the system at low and high

frequencies respectively.

The following simple examples illustrate these concepts.

3 + l

(B + 2)(es +‘17'

 Example 3.0.1: Let h(s,6)
 

+ l, d

Then hs(s) = h(s,0) - 3—1—2 an

hF(p) = h(-E—, e) ‘
-é.’-+1

”0 <-§—+2><p+1>

 

5:: O

_ E_:_T

1

(s + 1)(es + l)’

 Example 3 0.2: Let h(s,€) =
 

_ l -
Then [18(8) - m, and

= 0 

hp‘?’ = (p+€Y(p + 15 e = 0

Example 3.0.3: Suppose a transfer matrix has charac-
 

teristic polynomial

£82 + s + 1 = 0 (3.0.9)

Letting e = 0, we get

3 + 1 = 0 ' (3.0.10)

Substituting p = as and clearing,

p2 + p + e = O.
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Again, setting a = 0,

p<p + l) = 0 (3.0.11)

Thus, there is a pole which is 0(1) as e-+0 and a pole

0(1/2) as e-*O from (3.0.10) and (3.0.11) respectively.

This shows that the polynomial (3.0.9) satisfies part 4 of

Definition 3.0.1.

III.1. Algebraic Form of a Two Frequency Scale

RationalFMatrix

 

 

In this section, it is shown.that a necessary and suf-

ficient condition for a rational matrix H(s,e) to be two

frequency scale is that its elements satisfy a certain alge-

braic form. This is accomplished by first finding a form

for polynomials whose roots obey property 4 of Definition

3.0.1.

Lemma 3.1.1: Suppose that q(s,e) is a polynomial in s with
 

coefficients analytic at e = 0. Then q has roots obeying

property 4 of Definition 3.0.1 if and only if

q(s,e) = ea[d1(s,e) + SKd2(eS,e)]

where

1. K = deg dl(s,e) = deg dl(s,0);

2. deg d2(p,0) = deg d2(p,e);

3. the constant term of d2 is zero;

4. <11 and d2 have coefficients analytic at e = 0;

5. a is an integer 2 0.
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Proof: If q(s,0) a 0, then each coefficient of q(s,e) has

zero as the constant term in its power series in a, and each

coefficient can be divided by some power of 8 while remain-

ing analytic. This shows that

q(s,€) = saql(s,€) where ql(s,0) i 0 and a is some

integer 2 0. Let q(s,t) have roots obeying property 4 of

Definition 3.0.1. Since ql(s,e) has the same roots as

q(S.€).

ql(s,e) = f(e) (8 - ai(e))

1 j1

"
a
t
“

H

TY (ES - bj(€))

(3.1.1)

where the ai(e) and bj(e) may have algebraic singularities

at e = 0, but approach finite limits as e 4 0. Matching of

leading coefficients in Equation (3.1.1) shows that

f(e) c:¥%. Since ql(s,0) f 0, f(0) # 0. Matching coeffi-

cients of SK and noting that all bj(0) are non-zero shows

that f(0) # m. Therefore, f(e) is analytic and non-zero at

e = 0.

K+L .

Let ql(s,e) = .2 Ci(e)sl (3.1.2)

1:

Setting 6 = 0 in (3.1.1) yields

L

q1<s.0) = 13(0). n <-bj<0>> ( - -(0))j=1 3 al

"
=
7
5
:

Hi

This polynomial has degree K and it is evident that

L

CK(O) = f(O) jll (-bj(0)) t O.

K 1
.: Ci(e)sDefine dl(S,€) =

1 0
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Using (3.1.1)

n
:
W

H

equ(—§—,e> = f<e> (p - eai<e>>.
i

L

W (P - b-(€)) (3.1.3)

j=1 3

From (3 l 2),

EKq1(‘E"€) =

"
P
I
N

O

K-l °
. e Ck(e)pl +

l

K+L C.(e)

z . p

j=K+l EJ-K

j (3.1.4)

Evaluting (3.1.3) and (3.1.4) at e = 0 gives

 

 

K L K
f(0)p I (p - b-(0)) = C (0)13 +

, j=1 J K

L C. (e) .
pK 2 1+? p1

i=1 a e = O

Ci+K(€)
This shows that i is finite for 1:5 i S L,

e e = O

C (e)

and —E:%——— ¢ 0

e €==O

 

Then Ci+k(e) = eiei(e) for 1 S i S L with ei(e) analytic

at e = 0, and eL(0) # 0.

K i L+K .

qi(s.e) = z Ci(e)s + I c.(e)sJ

i=0 j=1+K 3

d ( ,e) + 2 .(e)(eS)jSK1 3 3:1 eJ

dl(s,e) + SKd2(eS,e)
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On the other hand, if ql(s,e) = dl(s,e) + SKd2(eS,€) then

q(s,0) = dl(s,0) has K roots, so that K of the expansions

will have no negative powers of 6. Therefore, K of the

expansions will be of form A of Definition 3 0.1 part 4.

If p = as is substituted into q,

K K K
e - q1(—E—,e) = e dl(—E+,e) + p d2(p,e) (3 1.5)

Evaluating at e = 0,

K(—P——) =[c<o>+d<0)]K (316)
que’€e=0 K 21"p '°

The K zero roots of (3.1.6) correspond to the finite

roots of d1(s,0). The L non-zero roots of (3.1.6) must have

expansions of type A of Definition 3.0.1 part 4, with the

additional constraint that they approach non-zero limits as

E a 0. But the roots of (3.1.5) are scaled by a, so the

roots of ql(s,e) have expansions of type B of Definition

3.0.1 part 4.

In the following discussions. it will be assumed that

in each term hij(S,€) of H(s,e), the numerator and denomina-

tor are c0prime in 3.

Theorem 3.1.1: H(s,e) is two frequency scale if and only if
 

each term can be expanded as

K

n11j(s'e) + s “211)83’5)

 h..(s e) =
ij ' K

dlij(8.€) + s d21j(88.€)
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where

1. nlij’ n2ij’ dlij’ and d2ij are polynomial with

coefficients analytic in e at e = 0;

deg dlij(s,e) deg dl j(3,0) = K;
1

deg d2ij(p:€) = deg d (p20);
Zij

deg nlij s K;

deg n2ij 5 deg dZij;

@
L
fl
w
a

The constant terms of n2.. and d .. are both zero.
13 213

nggfz Let each term hij(s,e) of H(s,e) be expressed as

nij(s,e)/dij(s,e). Then each denominator dij divides the.

characteristic polynomial. Thus, if the characteristic

polynomial of H(s,€) satisfies the conditions of Lemma

3.1.1, then so must each dij‘ Conversely, suppose that each

dij satisfies the conditions of Lemma 3.1.1. Let M(s,e) =

nM(s,€)/dM(s,€) be a minor of H(s,€) computed in the follow-

ing manner: all products are performed without cancellation

and sums are computed by cross-multiplication. Thus,

dM(s,e) is the product of some of the dij(S,€). Clearly,

dM(s,€) satisfies the conditions of Lemma 3.1.1. Let

M(s,€) = nM'(s,€)/dM'(s,€) be the result of performing all

possible numerator and denominator cancellations. It can

be shown from the last statement of Theorem 3.0.1 that

dM'(s,8) can be chosen to have coefficients analytic intaat

t = 0. This shows that dM'(s,e) satisfies the conditions

of Lemma 3.1.1. [Since the characteristic polynomial is

found by taking the least common multiple of all such poly-

nomials, it follows (by similar arguments) that the
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characteristic polynomial also satisfies the conditions of

Lemma 3.1.1. Thus, H(s,e) is two frequency scale if and

only if each hij(s,e) is so, and it is enough to prove the

theorem for the scalar case.

n(s,e)

8,8

(->) Let hij(s,e)

B“ A

EMELELEL “ g

Eaa(s,€): H(SJO) O I! d(s,0)

imam»)

d(s,e)

B - a 2 0 since hij(S’O) is defined.

_ m(5,e)

Therefore, hij(S,€) ‘ dl(s’€) + SKd2(€S,€)

where m(s,e) has coefficients analytic in t.

Properness of H(s,e) implies

 

K+L 1

m(s,e) = X l.(e)s

i=0 ’-

K+L . .

z 1i(€)eK-lpl

_P_ = i=0hij( e .e)
K ‘K

e d1(—E—,e) + p d2(p,e)

Setting 6 = 0, and using the notation Ci(e) from the

previous lemma,

 

K+L . .

Z li(e)eK--l pl

h..(-E— e) = i=0 e =0

13 E e=o pK[CK(0) +d2(p.0>1
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K+L 1.1(8)

i=-K+1K81

pK[cK<o> + d2<p.0>1

° K
p1 + 1K(0)p

 

 

1 ej

cK<o> + 02(p.0>

1. (e ) .

4+ K I p3 + 1K(0)

e=0

For this to be defined,

Ifixe>=e3t¢o.ls.j5L

with fj analytic at t = 0.

The proof is completed by setting

1 _
1i(e)S , dlij - dl

I
I
M
V
:

nlij (S,e)

i 0

"
M
t
"

H

fj(e)(es)j, d .. = d2
n21j(€S’€) = 213

J'

(+-) Inspection shows that hij(S,€) is proper.

nllj(s,0)

h1j(s’0) = d11j(5:07 (3.1.7) 

This is defined and proper.

K _p_ + K

h .(Le) :8 “11j< ’5) p“213‘
J 5 ' e:=0

E Kd1:j(i'E ,6) + pKdZij(p,€) 5:0

(p.6)

 

X + n21j(p O) (3..].8)

= 0K (0) + d21j’(p 0)

 

where x is the coefficient of degree K in n11j(s 0). This

is also defined and proper.
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Examination of (3.1.7) and (3.1.8) shows the following

corollary.

Corollary.31 1: If H(S,€) is two frequency scale, then
 

HS(m) = HF(0) and

III.2. Exact Frequency Scale Decomposition
 

This section presents a frequency scale decomposition

analogous to (1.4). It can be viewed as a partial Laplace

expansion of a transfer matrix H(s,e). Most of the compli-

cations associated with the complete Laplace expansion are

avoided here because the denominators in the decomposition

are c0prime. The first step is to show that the denomina-

tors of the terms of a two frequency scale transfer matrix

can be factorized into slow and fast parts, with each of the

parts having coefficients in 32.

Lemma 3.2.1: Let d(s,e) be a polynomial whose coefficients
 

are analytic in e at e = 0. Suppose that the roots of d(s,t)

obey property 4 of Definition 3.0.1. Then d(s,e) has a

unique factorization.

d(S.€) = f(€) - dS(S.€) - dF(€S.€)

where 1. deg d(s,e) = deg dS(s,0) + deg dF(p,0)

dF(0,O) # 0

M
N

all of the following are analytic atez= 0:
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f, the coefficients of ds(s,€), and the

coefficients of dF(p,e)

4. (1S and dF are monic

Proof: d(s,e) can be factorized as in the proof of Lemma

3.1.1:

"
:
7
:

|
.
_
A

"
:
3
?
"

H

d(s.e>==f<e)- .
l

(3 -ai(€)) ° . (es-B.(e)) (3.2.1)

J J

where each ai(e) and Bj(e) has an expansion of the type

(3.0.7), with each Bj(0) # 0. If we set

K

ds<s.e) = 11 (s - ai<e)) (3.2.2)

A L

dF(p,e) = n (p - B.(e)) (3.2.3)

j=1 3

then all points of the lemma are easily varified except the

statement concerning dS(s,e) and dF(p,e) in part 3. Note

that uniqueness follows because no other grouping of the

linear terms (in s) of (3.2.1) into two groups can satisfy

all of the other three properties simultaneously. What

remains to be proved is that the products (3.2.2) and (3.2.3)

have coefficients analytic at e = 0. To show this, we first

note that the product of two or more polynomials with analy-

tic coefficients is a polynomial with analytic coefficients.

Then we show that the product of all the linear terms cor-

th
responding to each "q root group" mentioned in Theorem

3.0.1 yields a polynomial with coefficients analytic ate;= 0.
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The proof of the above statement, although simple in

principle, is somewhat tedious. We show that only integral

powers of 3 remain after each "qth root group” is multiplied

out. Let q of the roots of dS(s,€) or dF(p,€) have expan-

sions (taking here the dS case):

b. .j/q, 1 s 1 s qII MS.(e)
l j=0

1/
Q(€(i) q)

where 0 (-) is analytic at 0.

Here, there are q different functions of 6, each defined by

taking a different branch of el/q. This is indicated by the

subscript (i) above. Define

jZni

Wi(e) = el/qe q ' 1 s i s q

The "qth root group" product is:

(S - Q(W.(€))) = sq + plsq-l + ... + pq

fl
M
I
)

H

H

0<wi<e>>
1

p2 = z B<wi<e>> 0<wj(e>>
1. j?‘

- '8 0(W.(€)) {MW-(ED 904(6))
?3 i,j,k# 1 J k

3 q

pq = 1:1 0(wi(e>>

We firSt claim that
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Z . 27T(ilKl + + inKn)

I

when q T Kl + K2 + ... + Kq

The summation of (3.2.4) is taken over all possible combina-

tions of the indices ij’ 1 s j s n with l S ij 5 q for which

no indices are repeated. Thus, (3.2.4) has (3) terms.

Proof of this claim is by induction on n with q fixed.

q j ZniK

n = 1 case: 2 e q is seen to be the discrete

i=1

Fourier transform of the constant function 1, evaluated at

the frequency variable K. It is well known that this is

zero if q I K.

Suppose now that the claim is true for n = l, 2, ...,

n-l. Assume that q I Kl + K2 + ... + Kn' The "missing"

terms can be added to (3.2.4):

 

q q . 2n(i K + ... + i K )

z z eJ 1 l q I?“ (3.2.5)

11=1 1n=1

The difference between (3.2.5) and (3.2.4) consists of the

terms:

(3) summations with 2 of 11, ..., in set equal

(3) summations with 3 of i1, ..., in set equal

(2) summations with all of il’ ..., in set equal
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All of these summations are zero by the previous cases. For

instance, the last sum is zero by the n = 1 case. (3.2.5)

is the n-dimenstional discrete Fourier transform of the con-

stant function 1 evaluated at the frequency variables Kl’

., Kn' As in the n = 1 case, this is zero. This proves

the claim (3.2.4). The coefficient pn can be written

3
MPn(€) in# 9 (W1 (6)) -.- 0 (Wi (8))

 

 

il’ ’ 1 n

m m K + K + ... K

= Z Z bK bK g l 2 qn

Kl=0 Kn=0 1 n q

:E: ej 217(11Kl + + ann)

l 1 D s in# q

(3.2.4) shows that all fractional powers of e have zero

coefficients. Therefore, each pH is analytic in e. a

The next series of lemmas provides a way of finding

numerators for the previously mentioned partial Laplace

expansion, once the denominator has been factorized. All

polynomials are over F in Lemmas 3.2.2, 3.2.3, and 3.2.4.

Lemma 3.2.2: Suppose a, b, x and y are non-zero polynomials
 

such that

ax + by = 0 (3.2.6)

with deg x < deg b and deg y < deg a.

Then a and b are not c0prime.

Proof: If (3.2.6) is written ax = -by, then the lemma easily

follows by cancellation of prime factors on both sides. D
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_ n . .
Lemma 3.2.3: Let h — 3173; be str1ctly proper w1th d1, d
 

2.9

and n polynomials, and d1 and d2 are c0prime. Suppose h has

a strictly proper decomposition:

That is, deg a < deg dl and deg b < deg d2. Then a and b

are unique.

. b - .

Proof: Suppose h = 7?— + 71— where a # a or b # b.

. . l 2

a-a b-b _ . , . . _

Then 7r” + 7E; — 0; and th1s g1ves (a-a)d2 + (b-b)dl — 0

1

If a = a, then b = B and the lemma follows; and similarly in

A

the case that b = b. -If a # a and b # b, Lemma 3.2.2 shows

that dl and d2 are not c0prime. The lemma follows from this

contradiction. a

 

Lemma 3.2.4: Let h = did- be strictly proper with d1, d2,

1 2

and n polynomials, and <11 and d2 c0prime. Then there exist

and r2 such that

rl

r r
l 2

h = +
HI 3;

with deg r1 < deg d1 and deg r2 < deg d2.

Proof: By applying Euclid's algorithm, or as a special case

of Theorem R2.6.l(iv) in Section 2.2, there exist x and y

such that

dlx + dzy = l
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Then ndlx + ndzy = n

nd x + nd y
h _ 133 2

l 2

_ nx n“

‘B*%
- qld1 + rl + qzd2 + r2

_ d d
l 2

where my = qldl + rl and

nx = qzd2 + r2

with deg r1 < deg (11 and deg r2 < deg d2.

h can now be written

since h is

Lemma 3.2.5:
 

§+¥+h+h
1 2

;—.—
1 2

strictly prOper ql must equal -q2. G

Let h(s,e) be a two frequency scale scalar.

Then h(s,e) can be expressed

h(s,e) = h1(S,e) + h2(es,e) + A(e)

where l. h1(s,e) and h2(es,e) are both strictly proper

and

2. The

two frequency scale;

poles of h1(s,e) and h2(p,e) approach finite

limits as e + 0 and all poles of h2(p,e) approach

non-zero limits;

3. A(e) is analytic at e = 0.
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Proof: By division, h(s,e) can be written

h(S.€) = 8(S.€) + A(€)

where g is strictly proper.

That A(e) is analytic follows from Theorem 3.1.1. Clearly,

g(s,e) is two frequency scale.

Let g be expressed

n(s,e)

We) =EIIs—,e:7

where 0 i d(s,0) f.”

Let 0i(€), l s i =EK be the slow poles of g and let

Bj(€)/€, 13 j SL be the fast poles of g. .

K

Then d(s,€) = f(€) ° H (S - 01(3))

i=1

L

H (as - B.(e)) (3.2.7)

j=1 3

where f is analytic at e = 0 and f(0) # 0.

Lemma 3.2.1 shows that the two products in (3.2.7) are poly-

nomials with analytic coefficients.

K

Define: dl(s,e) = f(e) - H (S - 0.(6))

i=1 1

( ) L ( ( ))d ,e = H - B. e

2 P i=1 p J

Properties of d1 and d2 include: dl(s,0) t 0, d2(0,0) # 0;

d1(s,e) and d2(€s,8) are c0prime; and deg dl(s,0) =

deg dl(s,€). These observations show property 2 of the

lemma. d1, d2, and n satisfy the hypothesis of Lemma 3.2.4

so that
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rl(s,e) r2(s,e)

g(s,e) = 3123,55 + 323:3,55

The next step is to show that the coefficients of rl

and r2 are analytic--we know only that they are in a: at

this point. Expand rl and r2 in powers of t:

i

|

"
M
S

rl(s,e) - i ai(S)€

o
i

r2(s,e) -

l

|
|
M
8

bj (S>€j

33,,

The ai's and bj's are polynomials in s with

deg ai(s) < deg dl(s,e), i = i i + 1,

deg bj(s) < deg d2(p,e), j = jo, jO + 1,

Let Ko = min (10, jo) so that K0 is the smallest integer

for which 3K (3) 1 0 or bK (s) 1 0. g can now be expressed

o o

_ m ai(s) bi(s) i

g(s,e) = .2 31:3,ES + 32(es,e) E

1=Ko

The quantity in braces is analytic at e = 0 and has a power

series expansion. Thus, g(s,e) has a Laurent series expan-

sion

aKo(S) bKo(S) K °° i
8(S.€) = 'HIIETUY + 357676] E O + 2 81(3)8

1=K0+1

Suppose that Ko< 0. Since g(s,0) is defined,
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3K (S) bK (S)

O O ..

m18, + m2, : 0

By letting s + w and observing that aK /dl is strictly

o

proper, we must have

bKo(s) s 0

It then follows that 8K (s) E 0. But this is a contradic-

. 0

tion since either aK or bK was assumed to be non-zero.

o 0

Therefore, KO 2 0 and it has been shown that r1 and r2 have

coefficients which are analytic at e = 0.

Only the dependence of h2(p,€) on 5 remains to be

shown. Substituting p = as,

rl<J—. e)

B(—E—.€) = e +

d1<-%—. .) c120). e)

r2(‘§‘:€)
  

eKr1(‘E"€) + r2(“%"€)

eKdl(—P€—’ e) d2(p, e)

  

Setting 8 to zero,

.4E.
=r2( €96)

- (3.2.8)

(12(1), 5) €-

 _2_ ~
g( E: ’8) e=0

Since (3.2.8) must be defined, r2(p/e,e) must be a polyno-

mial in p with analytic coefficients.

Let r2(—%—,e) = f2(p,e).
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The lemma follows when we set

rl(S,€)

h1<s:€) 317377

m
>

f2(p,e) D

hZCP,e) -W

I
D

Theorem 3.2.1: Let H(s,e) be a two frequency scale transfer
 

matrix. Then H(S,€) can be expressed

H(S’E) = I'll-(3,5) + H2(ES:€) + A(€)

where l. H1(s,€) and H2(€s,€) are both strictly preper and

two frequency scale;

2. The poles of Hl(s,€) and H2(p,8) approach finite

limits as e:+0 and all poles of H2(p,0) approach

non-zero limits;

3. A(e) is analytic at e = 0.

2529;: Apply Lemma 3.2.5 term by term. We have used the

fact a pole of a rational matrix must be a pole of at least

one of its terms. D

Two simple examples are now given to illustrate this

theorem. They demonstrate that the major step is factoriza-

tion of the denominator. The computation of the numerators

in Lemma 3.2.4 is mainly for theoretical purposes. In

practice it is more efficient to set up equations for the

coefficients of r1 and r2 directly.
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Example 3.2.1:
 

l

(s+1)(es+1)

1 e

ITE+ErI
Ell eS+1

 h(S,e)

Example 3.2.2:
 

l

esz+s+1

1_ ...

'1'48 V1-4e

1- V 1-46 1+ rf-Zm
9—28— es+——Z—

h(S,e) =

 

III.3. System Matrices for Two Frequency Scale

Transfer Matrices

 

 

This section specializes the system matrix approach of

Chapter II to the case of two frequency scale transfer

matrices. This will aid in the study of closed loop systems.

It will also be seen that system matrices can be used as a

convenient tool for evaluating the slow and fast descriptions

HS(s) and HF(p).

Theorem 2.1 shows that a rational matrix H(s,e) over

32 can be represented by a least order polynomial system

matrix P(s,e) in MFD form. If any coefficients of s in

P(s,e) have a pole at e = 0, the columns can be multiplied

by suitable powers of a so that all coefficients are analytic

at e = 0. Let the system matrix with cleared columns be

Pl(s,€). Even if H(s,0) is defined, the matrix P1(s,0) may
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not be a system matrix because the upper left block of

Pl(s,0) may be singular. It will be convenient later to

work with system matrices over 3: for which e can be set to

zero. The next theorem shows how this difficulty can be

alleviated.

Lemma 3.3.1: Let H(s,t) be a rational matrix over 3: for
 

which H(s,0) is defined. Let P(s,e) be a polynomial system

matrix representation for H(s,e) in MFD form with coeffici-

ents analytic at e = 0. Then P(s,e) is strictly system

equivalent to a system matrix Pl(s,c) in MFD form where

P1(s,0) is a polynomial matrix over c.

 

"I 0 0]

Let P(s,e) = 0 T(s,€) I (3.3.1)

[0 -V(s,€) 0_ 

If det T(s,0) = 0, then det T(s,€) = erq(s,€) where q(s,€)

is a polynomial in s with q(s,0) 1 0 and r 2 1. Also, if

det T(s,0) = 0, then the Smith form of T(s,0) must have some

zero diagonal element. Let R(s) and Q(s) be unimodular

matrices over c which transform T(s,0) to its Smith form as

in (3.3.2).

8(3) 0

R(s)T(s,0)Q(s) = ‘ (3.3.2)

0 Otxt
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Since premultiplication by R-](s) can be interpreted as a

sequence Of row Operations,

8(5) 0 * 0

’1(s) = (3.3.3)T(s,0)Q(s) = R

The *‘s represent possibly non-zero polynomial entries. Con-

sider the effect Of performing the column Operations of post-

multiplication by Q(s) on the system matrix (3.3.1).

   

-1 0 0] ”I 0 0]

0 T(s,e)Q(s) I = 0 T(s,e) I = P(s,t)

[0 -V(s,s)Q(s) 0 L0 41“,.) 0_ (3.3.4)

 

All coefficients in the last t columns of T(s,e) are

zero when t = 0. The rule for computing the transfer matrix

yields (3.3.5). This is expressed column by column in

(3.3.6).

H(s,e) = v(s,e)[I(s,e)]'1 (3.3.5)

H(s,6:) - T.j(s,e) = {7.j(s,e) (3.3.6)

Suppose that T j(3,2) above is one of the last t columns

Of T(s,e). Then (3.3.7) holds.

v.j(s,0) = H(s,0) - 0 = 0 (3.3.7)

This shows that the entire jth column Of P(s,t) is zero when

8 = 0. This column can now be divided by 6 while leaving

all Of its coefficients analytic at e = 0. The Operation of
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dividing this column by 8 produces a new system matrix for

which the exponent r in det T(s,e) = Erq(S,€) is reduced by

one.

In summary, if P(S,E) is a polynomial system matrix

representation for H(S,e) in MFD form with det T(s,e) =

Erq(S,€), a new system matrix P2(s,e) strictly system equi—

valent to P(s,e) can be found for which det T2(s,e) =

K Er-1q(S,€) where K is a complex constant. This process

can be repeated until a system matrix P1(s,e) is formed for

which det Tl(s,0) f 0.

If P(S,€) is a system matrix for a two frequency scale

transfer matrix H(s,e), then Lemma 3.3.1 can be applied to

the system matrix P(—E—,e) after all negative powers of

are eliminated from the coefficients. The various results

can now be combined.

Theorem 3.3.1: Let H(s,e) be a two frequency scale transfer
 

matrix. Then H(s,e) has a least order polynomial system

matrix representation P(S,e) in MFD form for which P(s,0) is

a polynomial system matrix over c. Furthermore H(—E—,E)

also has a least order polynomial system matrix representa-

tion P(p,e) in MFD form for which P(p,0) is a polynomial

system matrix over ¢. D

In Theorem 3.3.1, P(s,0) and P(p,0) may not be of least

order even though P(S,€) and P(p,t) are. It is evident that

some poles Of H(s,e) may be undergoing numerator-denominator

or other types Of cancellations as e-+0. These will be
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called "lost poles" Of H(s,€) in accordance with the next

definition. This behavior is discussed in [4] for singularly

perturbed systems.

Definition 3 3.1: Let P(s,s) and P(p,e) be least order poly-
 

nomial system matrices for a two frequency scale rational

matrix H(s,e) and its scaled version H(—E—,e) respectively.

Suppose that P(s,0) and P(p,0) are polynomial system matricai

Let P1(s) and Pl(p) be least order polynomial system matrices

equivalent to P(s,0) and P(p,0) respectively. The "lost slow

poles" of H(s,e) are the roots Of the "lost slow polynomial"

(3.3.8).

det T(s,0)

qLS(S) a det T1(Sjfi (3.3.8)

The ”lost fast poles" Of H(s,e) are the non-zero roots Of

(3.3.9).

M det T(P.0)

p qLF(P) a Jet Ti(p) (3.3.9)

The "lost fast polynomial” is a polynomial having the lost

fast poles as roots. qLS and qLF are chosen to be monic.

Since the polynomial det T(p,e) is simply a 'scaled"

version of det T(s,e) and since the zeros Of det T(s,e) = 0

Obey property 4 Of Definition 3.0.1,

det T(p,0) = pK - ¢(p) (3.3.10)
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where ¢(0) # 0 and K = deg det T(s,0). It can be seen from

Section 2 Of this chapter that HF(p) has no poles at the

origin. Thus, det Tl(0) # 0. This shows that M = K in

(3.3.11).

Alternatively, the lost slow and fast poles are the

roots Of (3.3.11) and the non-zero roots Of (3.3.12) respec-

tively.

CP[H(S,B)]I€=O

3, (3.3.11)

CP[H<—§—. 2)]I€=0

pKCP[H(—E—,E)I

 (3.3.12)

e=0J

For system matrices in MFD form, the lost slow poles are

rOOts Of the output decoupling polynomial of P(s,0) and,

similarly, the-lost fast poles are non-zero roots Of the

output decoupling polynomial of P(p,0).

The next three examples demonstrate the decomposition

method on non-trivial systems. Although the use Of system

matrices is not necessary here, their use makes the computa—

tions simple and Obvious.

Example 3.3.1: (Singularly Perturbed System)

The system Of equations (3.3.13) determine a transfer

matrix for the output y in terms Of the input u, so that

Y(s) = H(s,e)u(s). The matrices on the right hand side Of

(3.3.13) are analytic at e = 0, and det A22(0) # 0.



x1 = All(€)x1 + A12(€)x2 + B1(€)u

8X2

Y

A system matrix representation is

SI - All(e)

-A21(e)

E

“Cl(€) 
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A21(e)xl + A22(e)x2 + B2(e)u

C1(e)xl + C2(e)x2 + D(e)u

-A(e)

sI -

E

'C2(€)

A22(e)

31(5)

B2(E)

8

 

D(e)  

(3.3.13)

The second row can be multiplied by c to give a system

matrix for which 6 can be set to zero. This yields a system

matrix for the slow subsystem.

 

BI - All(0) -A12(0) B1(o)

-A21(0) -A22(O) B2(0)

. -c1<o> -c2<0) D<0)- 

This is easily shown to give the transfer matrix (3.3.l4a)

with A0, B Co After substitut-o, and Do defined by (3.3.15).

ing p = as, clearing e's from denominators, and setting

a = 0, a system matrix for the fast subsystem is Obtained.

 

"pl 0

”A21 PI ' A22

L-Cl -C2 _ 
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This gives HF(p) as in (3.3.l4b). Since A22(0) is

non-singular, all poles are either 0(1) or 0(—%—) as e+ 0.

Thus, H(s,e) is two frequency scale. The expressions

(3.3.14) are similar to those in.[1fl. The matrices (3.3.15)

for the slow sybsystem are the same as those for the reduced

subsystem in [2].

HS(s) = CO(sI - AO)’1BO + 00 (3.3.l4a)

HF(p) = C2(O)[pI - A22(0)]'1B2(0) + D(0) (3.3.l4b)

A0 = A11 ' A12A22.1A21Ie=0 (3 3 15)

B6 = B1 ' A12A22.132 I€=0

Co = Cl ’ C2A22-1A21Ie=0

D0 = D ‘ C2A22-132 Ie=0

Example 3.3.2: (Implicit Singularly Perturbed System)

Chow'[ 5] considers the nxn system (3.3.16) where A1(e)

remains bounded at e = 0. In [ 5] it is shown that if AO

satisfies condition (3.3.17), then (3.3.16) can be brought

to explicit singularly perturbed form (3.3.13) by a simi-

larity transformation.

Herezflzwill be shown that condition (3.3.17) is suffi-

cient for the transfer matrix defined by (3.3.16) (with

appropriate input and output matrices added) to satisfy con-

dition 4 Of Definition 3.0.1.
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ex = (A0 + eAl(e))x (3.3.16)

R(AO) e N(AO) = Rn (3.3.17)

where R(o) and N(-) indicate range and null spaces respec-

tively, and 6 indicates the direct sum of subspaces.

It is easily shown that (3.3.17) is equivalent to:

There exists a non-singular matrix T such that (3.3.19)

holds, where Jl is an rxr, non-singular Jordan matrix. For

simplicity, the input and output matrices will be suppressed

in the discussion that follows.

IAOI‘l = J = diag(Jl, 0) (3.3.18)

The system matrix in the unsealed frequency variables

is given by (3.3.19). It is assumed here that Al(€) is

analytic in E at 8 = 0.

P(s,e) = sI - —%— AO - Al(e) (3.3 19)

Now the above similarity transformation is applied and

the denominators are cleared of E.

Pl(S,E) = TP(S,€)T-l diag(e,e, ...,t, 0, 0, ..., 0)

r 8's

= 681 - J1 - €B11(€) - 8312(8)

' 321(8) SI ‘ 322(6)

- I

311(6) 312(5) _1

where B(e) = = TA1(5)T

[321(8) 322(8)   
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The matrix Pl(s,0) is a system matrix, and det P(s,0) =

det(-Jl). det(sI - B22(0)). Clearly, det P(s,0) has degree

n - r.

The system matrix for the scaled frequency variable is

P(p,e) = pI - AO - 5A1

P(p,0) is a system matrix and det P(p,0) = det(pI - AC) has

r non-zero roots since AC has rank r. This shows that con-

dition 4 Of Definition 3.0.1 holds. Condition 1 holds for

any choice of input and output matrices independent Of 3.

Conditions 2 and 3 are satisfied only for certain choices of

input and output matrices.

If (3.3.18) is not satisfied, then Al(e) is important,

as shown by (3.3.20) and (3.3.21).

”-1 0 0]

exl = 0 -e 1 x1 (3.3.20)

I0 0 -e_

:1. O 0

2x2 = 0 0 1 x2 (3.3.21)

[0 -€ 0 . .  
(3.3.20) has eigenvalues -1, -1, and --%—, satisfying

condition 4 Of Definition 3.0.1. (3.3.21), however, has

eigenvalues -—%— and tj//ET

Example 3.3.3: (High Frequency Oscillatory Modes)
 

Given in [ 7] (without inputs and outputs) is the
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second order system (3.3.22) where Q4 has simple, positive

eigenvalues.

   

x + Bx + Qx = Lu

y = Cx

x1 B1 32

where x = 18 =

Ixzj I33 B4_

C = [c 1 c J L —
1 “7T 2

  

The system matrix (3.3.23) can be written.

n
2 ,

s I + sBl + Ql

P(s,u) = 3B3 + Q3

.01

 b  

(3.3.22)

' Q2 I

Q1 7

Q = Q4

[Q3 73?;

L1 dim x1 = n1

L2 dim x2 = n2

usz + Q L j
2 2 l

“2821 + usz4 + Q4 L2

-C2 0

(3.3.23)

The slow and fast characteristic polynomials are shown

in (3.3.24) and (3.3.25).

' 2
s I + sB1 + Q1

det T(s,0) det

sB3 + Q3

 

Q2Q4-1(SB3 + Q37]

det Q4 - det[sZI + 331 + Q1

Q2

Q4

 d

(3.3.24)
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-2 I

p1 Q2

det T(p,0) = det

0 p21 + Q4

L .

= pznl . det(pZI + Q4) (3.3.25)

Again, the high frequency oscillations are obvious from

(3.3.25).



IV. APPROXIMATION OF TWO FREQUENCY SCALE RATIONAL MATRICES

The main result Of this chapter may be regarded as a

frequency domain version Of (1.6). Even though this result

holds for more general cases, most practical applications

will require stability conditions on the slow and fast sub-

systems. This parallels the stability requirements for (1.6)

tO hold. I

Robustness and sensitivity results for linear feedback

systems typically involve properties of stable rational

matrices along the imaginary axis, e.g. [13, [16, [18].

The next theorem shows that under certain conditions, the

values Of Hs(s) and HF(p) along the imaginary axis determine

a uniform 0(6) approximation Of H(s,e) along the imaginary

axis. If such a rational matrix represents a signal gain,

then HS(jw) and HF(jew) are approximate signal gains for low

and high frequency sinusoidal inputs. The reciprocal Of

singular value graphs used for robustness evaluation can be

approximated from HS(s) and HF(p). Note, however, that the

0(8) approximation may be lost here. Ifg[HS(jw)] goes to

zero at some specific value ml Of w, it cannot be concluded

that l/g[H(jwl,e)] is infinity. It can only be concluded

that 1/g[H(jwl,e)] is large when a is small.

68
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Lemma 4.1.1: Let h(s,e) be a two frequency scale scalar
 

rational function. Let h(s,e) be expressed as the ratio of

two polynomials with analytic coefficients:

h(S,e) = mn(s,€)
S,€

Let the denominator have the expansion

d(S.€) = f(€) (8 - 81(6)) (68 - bj(e))
"
=
1
7
:

H

|
|
=
1
1
'
*

Hi 3'

Let D be the imaginary axis. Suppose that for all i and j,

ai(0) and bj(0) are not on D. Then

sup h(s,e) - hs(s) - hF(es) + w = 0(6) (4.1.1)

seD

where W’= hS(w) = hF(0) and e is restricted to be real.

Proof: Let h(S,€) be expressed as guaranteed by Lemma 3.2.5.

h(S,e) = hl(s,e) + h2(eS,e) + A(e)

Then hS(s) = hl(s,0) + h2(0,0) + A(0)

hF<p> = h1<-§—.e>l,=o + h2<p.0> + A<o>

h2<p.o> + 4(0)

(4.1.1) can be written:
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sup Ih(s.e> - hs(s) - hF(es) + w I
seD

= sup Ih1(s,€) - hl(s,0) + h9(€s,€) - h2(€s,0)

56D ‘

+ 4(a) - A(o>|

:Ssup Ihl(s,e) - h1(s,0)I + supI h2(es,e)

seD seD

- h2(es,0)I + IA(€) - A(0)I

Since A(e) is analytic, A(€) - A(0) = 0(6).

Let hl(s,€) be expressed as

n1(s,€)

h1<s'€> = BITE???

where nl and d1 are polynomials in s with analytic coeffi-

cients. Then

sup hl(s,€) - hl(S’0) = sup a(S,€)

36D 36D 31(s,e) 31(S,O)

 

where a(s,€) = nl(s,€) dl(s,0) - nl(s,0) dl(s,€).

Let deg d1(s,€) = K. Then deg dl(s,0) = K and deg nl(s,e)£

K - 1. Thus, deg a(s,e) 5 2K - 1. Since a(s,0) a O,

d(s,g) = e - B(s,e) where B is a polynomial in s with ana-

lytic coefficients, and having degree 3 2K -1. Combining,

suP h1(S.€) - hl(S.0)I = IEISUP 865.6)

36D 36D dl(s,€)-d1(s,0)

 

The sup on the right hand side is uniformly bounded for

sufficiently small 8 by Corollary 4.2.2.
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Proceeding in a like manner, h2(€S,€) can be expressed:

n2(es,e)

h2<€$~€> = W

We then have

sue h (28.6) - h (85,0) =Iel- sup V(es.e>

SGD I 2 2 I seD dE(es,e)d2(es,0)

The rational function on the right hand side is two frequency

scale and has no slow or fast poles on the imaginary axis.

Theorem 4.2.5 shows that the sup on the right hand side is

uniformly bounded for sufficiently small real 8. (Note that

the requirement Of real 6 appears only at this point.) This

proves the lemma. 0

Lemma 4.1.2: Suppose that all of the elements Of a rational
 

matrix H(s,e) satisfy the conditions of Lemma 4.1.1. Then

sup lIH(s,e) - HS(s) - HF(es) + W H = 0(8)

seD .

where W = HS(w) = HF(O)’ II ' II is some matrix norm, and

D is the imaginary axis.

Proof: By the norm equivalence theorem, there is a constant

B such that

'IIAII <13 IIAIIM

where H A IIM = ma? IAijI
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For brevity, let H(s,e) - HS(s) - HF(es) + W = A (3,5)

sup I A(s,e) 'Ig sup B I‘ A(8,2) Il

SED SED M

= sup B max A..(S,e)

seD i,j 13 I

= B max sup A ..(S,g)

i,j seD I 13 I

By Lemma 4.1.1, there exists 6* and constants Cij such that

for E e[- 5*, 8*],

B max C..

1.3 13

E EB max sup Ai.(s,e) 5 B max Ci’

i,j 36D 3 i,j J    

 

Cl

Theorem 4.1.1: Let H(s,s) be a two frequency scale rational
 

matrix. Suppose that HS(s) and HF(p) have no pure imaginary

poles and that H(s,e) has no pure imaginary lost poles.

Then

sup ’H(s,e) -HS(S)'HF(es) + W H = 0(6)

seD

where W = Hs(w) = HF(O), II ' II is some matrix norm, and

D is the imaginary axis.

Proof: Let hij(s,e) = nij(s,e)/dij(s,e) be any term of

H(s,e). Then hij clearly satisfies the first three condi-

tions of Definition 3.0.1. The characteristic polynomial

q(s,e) of H(s,e) can be expressed as (4.1.4).

K L

q(s,e) = f(€) It (s - a (5)) N (as - b (5)) (4.1.4)
=1 n m

n m=l
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where f(0) # O and for all 1 s n s K and l s m s L, an(0)

and bm(0) do not lie on the imaginary axis. Since each

dij(s,s) divides q(s,e), it is seen that all hypothesis of

Lemma 4.1.2 are met. D

IV.2. Appendix--Bounds on Rational Functions
 

This appendix shows in detail the boundedness of the

rational functions as needed in the proof of Lemma 4.1.1.

Theorem 4.2.1: Let g(s) = n(s)/d(s) be a proper rational
 

function over c with n(s) and d(s) polynomials. Suppose

that none of the zeros of d(s) lie in the closed set D.

Then d(s) is uniformly bounded on D.

Proof: g(s) can be expressed

K K-l
Ks + nK_ls + ... + no

K K-l
sz + dK-ls + ... + do

n

 

g(S) =

where the nj's and di's are complex.

Rewrite g(s)

 

—l -K
g(s) = nK + nK_ls + ... + nos

-1 -K
dK + dK_1s + ... + dos

Choose R large enough so that the values nK-lR-l , ...,

-K -1 -K

noR ’ dK-lR ’ "" doR are all less than gk .

min (G, IdKI)' where G = max (anI, l).

5‘6

%|dxl

 then for Isl > R. Ig(s)I <
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The set DFNISIS S R} is closed and bounded and therefore

compact. g is analytic and therefore continuous on this set.

Since the continuous image of a compact set is compact, g is

uniformly bounded on DID ISISJSRI. Thus, g is bounded on

all of D. 0

Theorem 4.2.2: Let g(s,8) = n(s,8)/d(s) where g is proper,
 

d is a polynomial with complex coefficients, and n(s,8) is

a polynomial with coefficients analytic at 8 = 0. Suppose

that none of the zeros of d lie in a closed set D. Then

there exists 8* >0 such that g(s,8) is uniformly bounded for

all (8,8) 6 D x {8] I8] < 8*}.

Proof: Choose 8* so that all coefficients of n(s,8) are

 

 

analytic in the disc E = {8| |8|s 8*}. Let n(s,€) =

nK(8)sK + ... + no(8) where the nj's are analytic at 8 = 0.

Let B. = max In.(8)l.

8£E J

K
n(8)s +...+n(€)

|(se)|=K °
g ’ d(s)

<B|SKI+ +BISI+B 1|
’ K d(s) "’ 1 dis) 0 dis) 

Each of the functions sj/d(s) satisfies the conditions of

Theorem 4.2.1 on D. This shows that g(s,8) is uniformly

bounded on DxE. 0

Theorem 4.2.3: Let D be the imaginary axis and restrict e
 

to be real. Suppose g(s,€) = n(€s,€)/d(€s) where g is

proper, n(p,8) is a polynomial with coefficients analytic
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at 8 = O, and d(p) is a polynomial with complex coefficients

with no zeros on D. Then there exists 5*.> 0 such that

g(s,g) is uniformly bounded for all (8,5)6 D x [-e*, 5*].

Proof: Choose 8* such that all coefficients of n are analy-

tic on {8| |8Is 8*}. By changing variables,

(83 8) _ n( ,8)

supIg(s,8)l= sup BET—LT— — sup _d%—)—

SGD seD as I pED p I

Boundedness follows from Theorem 4.2 2.

Theorem 4.2.4: Let D be the imaginary axis and let d(s,8) =
 

dl(S,€) + SKd2(€S,E) where

l. d1(s,8) and d2(p,8) have coefficients analytic

in 8 at 8 = O;

2. deg dl(s,8) = deg d1(s,0) = K;

3. d2(0,€) = 0

Define dS(s) = d1(s,0)

1

dF(P) ='—;— [X + d2(P.0)]

where x is the leading coefficient of dl(s,0). Let (1S

and dF have no roots in D. Let r(s,€) = dS(s)dF(es)/d(s,€).

Then

lim r(s,€) = l uniformly for s E D.

8+0

real

In particular, there exists 8* > 0 such that r(s,€) is

uniformly bounded for (3,6) GDXE -€*, 8*].
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Proof: Using previously derived expressions,

K L

d(s,8) = f(8) - H (s-ai(8)) II (as - b-(8))

i=1 j=l 3

where f is analytic at 8 = 0, all ai(8) and bj(€)

approach finite limits as 8 + O, and all bj(0) are non-zero.

Also,

"
2
1
%

H

l
l
:
1
[
-
*

H

dS(s) dF(€S) = f(0) (s - ai(0)) (8S - b.(0))

j J
i

 

_ f(0> 1; s - 31(0) , }{ es - bi(0)
r(s,8) _ 8 _j i 1 S - ai(€) j=1 es - b3(€7

If s e D, then

  

 

ai(0) - ai(8)

s - ai(0)

 

s - ai(8)

s - ai(0) -

ai(0) - ai(8)

Re 31(0) -*0 as 8-+ O. 

 

 

This limit is uniform in s.

s - ai(0)

Therefore, + l as 8 + O uniformly in s.
S - 31(8)

 

 

Similarly, as - bj<0> + l as 8 + 0 uniformly in s.

88 - ij8)

The theorem follows using standard limit theorems. 0

Corollary 4.2.1: Let D be the imaginary axis and let d(s,8)
 

be a polynomial with coefficients analytic in 8 at 8 = 0.

Suppose that the leading coefficient of d(s,8) does not

vanish when 8 is set to zero, and that d(s,0) has no roots

in D. Define r(s,8) = d(s,O)/d(s,8). Then
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1im r(s,8) = l uniformly for s e D.

8+0

Proof: Easily extracted from proof of Theorem 4.2.4. 0

Theorem 4.2.5: Let h(s,8) be two frequency scale. Suppose

that the limits of the roots of the characteristic polyno-

mial do not lie on the imaginary axis D (as in Lemma 4.1.1).

Then there exists E*>’O such that h(s,8) is uniformly

bounded for (s,8)e D x [-8*,8*].

Proof: Ih(S,€)I can be written

|h(s,8)| = nl(S 8) + sKn 2(83, 8)

 

  

dl(S,€) + SKd2(€S,€)

where the right hand side is the form guaranteed by

Theorem 3.1.1.

nl(S,€) + SKn2(€S,€)

dS(S) dF(8S)

lh(S,€)I
  

 

 

-| dS(s) - dF(€S)

dl(s’€) + SKd2(ES,€)

The right hand factor is bounded by virtue of Theorem 4.2.4.

The left hand factor can be rewritten

nl(s,8) + SKn2(€S,€)

dSCS) dF(ES)

 

 

 

=n1(s, 8) SK n2(8s, 8)

as (s 5 dFie 3) +3: (3 5 d_(Es)

 

 

The theorem follows from application of Theorems 4.2.2 and

4.2.3 to the individual functions on the right hand side.EJ
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Corollary 4.2.2: Let h(s,8) be a rational, proper function
 

of s with coefficients analytic in 8 at 8 = 0. Let h be

expressed

h(s, e) = mn(:,:)

where d(s,8) satisfies the hypothesis of Corollary 4.2.1.

Then there exists 8* > 0 such that h(s,8) is uniformly

bounded for all imaginary s and 18|< 8*.

Proof: Similar to proof of Theorem 4.2.5. 0



V. CLOSED LOOP SYSTEMS

This chapter investigates what can be said about a two

frequency scale system when a feedback loop is closed around

it. A cascade of two two frequency scale systems with feed-

back applied will be considered. It is shown that under cer-

tain conditions, knowledge of the open loop lost poles and the

poles of the closed loop slow and fast subsystems is suffi-

cient to approximate all of the closed loop poles.

Figure 5.1 shows the inputs and outputs and the manner

in which the loop is closed. Figures 5.2 and 5.3 show the

closed loop slow and fast subsystems, respectively.

 

 

 
 

 

Figure 5.1
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Figure 5.2
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The following notation is introduced for convenience.

Let i = 1,2.

l. Hi(S,€) has a least order polynomial system matrix

representation Pi(S,€) in MFD form such that Pi(s,0)

is a polynomial system.matrix.

2. Hi8 has a least order polynomial system matrix

Pis derived from Pi(s,0) by extracting all output

decoupling zeros.

3. Hi(—§—,E) has a least order polynomial system

matrix representation Pi(p,g) in MFD form such

that Pi(p,0) is a polynomial system matrix.
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4. HiF has a least order polynomial system matrix

PiF derived from Pi(p,0) by extracting all output

decoupling zeros.

5. PCL(S,€) is formed by inserting the blocks of

Pi(s,e) (i = l, 2) into (2.1.8). This is a can-

didate polynomial system matrix for Figure 5.1.

6. PCLS(S) is formed by inserting the blocks of

PiS(S) (i = l, 2) into (2.1.8). This is a can-

didate polynomial system matrix for Figure 5.2.

7. PCL(p,g) is formed by inserting the blocks of

Pi(p,8) into (2.1.8). This is a candidate fre-

quency scaled polynomial system matrix for Figure

5.1.

8. PCLF(p) is formed by inserting the blocks of PiF

into (2.1.8). This is a candidate polynomial

system matrix for Figure 5.3.

9. y is a generic output decoupling polynomial.

10. q is a generic lost polynomial.

Theorem 5.1: Let H1(S,€) and H2(s,€) be two frequency scale
 

rational matrices. Suppose that (5.1) and (5.2) hold.

det(I + Hls(w)HZS(m)) ¢ 0 (5.1)

det(I + H1F(m)H2F(m)) # O (5.2)

Then (with the above and previous notation), PCL(s,€) and

PCL(p,€) are polynomial system matrices for Figure 5.1,
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and PCLS(s) and PCLF(p) are polynomial system matrices for

Figures 5.2 and 5.3, respectively. The relations (5.3) and

(5.4) for limiting forms of the closed loop characteristic

polynomial hold.

det TCL(s,O)aqlLS(s) . qZLS(S) - det TCLS(S) (5.3)

~ K1+K2

det TCLCP.0)GP ' qlLF(P)q2LF(p)

det T (5.4)CLF(p)

where Ki = deg det Ti(s,0), i = 1,2 .

Furthermore, the lost poles of Figure 5.1 are the open

loop lost poles of Hl(S,€) and H2(s,8).

Proof: By Theorem 2.1.5, (5.1) and (5.2) guarantee that

PCLS(S) and PCLF(p) are polynomial system matrices for the

closed-loop slow and fast subsystems, respectively. From

Corollary 3.1.1,

det(I + Hl(m,€)HZQ”fi)) 6 =0 = det(I + H1F(w)H2F(w)) ¢ 0

Thus, det(I + Hl(m,8)H2(m,8)) # 0. Applying Theorem 2.1.5 shows

that PCL(S,€) and PCL(p,8) are polynomial system matrices

for the closed-100p system of Figure 5.1.

Since Pi(s,0) is in MFD form, it follows that

det Ti(s,0)ayis(s) - det TiS(S)

where yiS(s) is the output decoupling polynomial of Pi(s,0).
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Moreover, YiS = qiLS' Theorem 2.1.3 shows that

det TCL(s,0)adet Tl(s,0)det T2(s,0)det(l + HlS(S)HZS(S))

aqlLS(s)q2LS(s)det TlS(s)det TZS

O‘qu.s(S)qus(S)det TCLS(S)

which proves (5.3). (5.4) is proved similarly.

The last statement in the theorem follows from Theorem

2.1.4. Consider the lost slow poles of Figure 5.1, i.e ,

the output decoupling polynomial TS of PCL(s,O) (Note that

the input decoupling polynomial is unity.) Then

FS(S) = Yls(S)Y28(S)

Theorem 5.2: With the hypothesis and notation of Theorem
 

5.1, all closed loop poles in Figure 5.1 can be approximated

by either (5.5) or (5.6).

 

31(8) = si0 + Ai(€), l i i 5 K1 + K2 (5.5)

p. + D.(8)

Sj(8) = JO 8 ,J , 5 J 5 L1 + L2 (5.6)

where Kc = deg det Ta(s,0) a = 1,2

La = deg det Ta(p.0)- deg det Ta(s,0) a = 1,2

Ai(8) + o as e + o, 1 s i 5 K1 + K2

Dj(€) + 0 as e + O, l S j 5 L1 + L2
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K1 + K2

pjO is a root of gF(p), l S j L1 + L

i I
A

I
A

310 is a root of gS(s), l

M

2

gS(S) = qlLS(S)q2LS(S)det TCLS(S) (5.7)

gF(p) = qlLF(p)q2LF(p)det TCLF(p) (5‘8)

grggfz Since the roots of a polynomial vary continuously

with its coefficients, for every si0 satisfying (5.7) there

is a root 31(5) of det TCL(s,g) satisfying (5.5). Similarly,

for every pjo # O satisfying (5.8), there is a root pj(e) of

det TCL(p,e) satisfying (5.9).

If sj(e) = pj(e)/€, sj(e) satisfies (5.6). It remains to

be shown that all roots of det TCL(s,e) = 0 satisfy (5.5)

or (5.6). This is done by showing that deg det TCL(s,e) is

the sum of the degrees of gs and gF. By Theorem 5.1,

deg gS(s) deg det TCL(s,O)

deg det T1(s,0) + deg det T2(s,0)

+ K

1 2

K +K
1 2

deg p gF(p) deg det TCL(p,O)

deg det Tl(p,0) + deg det T2(p,0)

Kl + K2 + Ll + L2

This shows that

deg gF(p) = L1 + L2
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Together, (5.7) and (5.8) determine Kl + K2 + Ll + L2 roots

of det TCL(s,e) = 0. By Corollary 3.1.1, det(I +.Hl(w,e)

H2(m,e)) # O for sufficiently small 8, and Theorem 2.1.5 can

be applied to the system of Figure 5.1.

deg det TCL(s,e) deg det Tl(s,e) + deg det T2(s,e)

deg det Tl(p,0) + deg det T2(p,0)

K1+K2+L1+L2 D

In words, Theorem 5.2 shows that for sufficiently small a

the closed-loop poles of the system of Figure 5.1 can be

approximated by the closed-loop poles of the slow and fast

subsystems and the lost poles.

Corollary 5.1: Suppose Hl(s,e) and H2(s,e) satisfy the
 

hypothesis of Theorem 5.1. Let G(s,e) be any point to point

transfer matrix in Figure 5.1. Then G(s,a) is two frequency

scale.

Proof: The four conditions of Definition 3.0.1 are easily

verified. D

This corollary shows that Theorem 4.1.1 can be applied

to the point to point transfer matrix G(s,e) when both slow

and fast closed-loop subsystems as well as all lost poles

are stable.

Corollary 5.2: Suppose H1(s,e) and H2(s,a) satisfy the
 

hypothesis of Theorem 5.1, and both the slow and fast
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closed—loop subsystems as well as all lost poles are stable.

Then, for sufficiently small positive 8, the closed-loop

system of Figure 5.1 is stable. D

The results of this section are illustrated with two

simple examples.

Example 5.1: Consider the transfer function of ExampleliOfll
 

with unity feedback applied.

Entire closed-loop transfer function:

h (3,8) = s + 1

CL s + l + (E + 2)(ts + l)

 

 

_ s + l

€32 + (2 + Ze)s + 3

This has two poles: one which approaches - —%—, and one

 which asymptotically approaches - a

Slow closed-loop transfer function:

_ s + l

hCLS(s) ‘ 25‘1‘3

This has a pole at - —%—.

Fast closed-loop transfer function:

h <>=—-zl
CLF P p +

This has a pole at -2.
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Example 5.2: Consider the transfer function of Example.3.0.2
 

with unity feedback applied.

1

hCL(S’€) = I + (s + 1)(es + T)

 

1 (5.10)

832 + (1 + E)s + 2

 

This has two poles: one which approaches -2, and one which

asymptotically appraoches - —%—.

Slow closed-loop transfer function:

_ 1'
hCLS(S) ‘ s—+Z

This has a pole at -2.

The fast closed-loop transfer function (like the fast open-

loop transfer function) is zero. However, there is a lost

fast pole at p = -1. Note that -l is also a lost fast pole

of (5.10).



VI. APPLICATIONS

VI 1. Steady State LQG Controller for a Singularly

Perturbed System
 

This section provides an interpretation of the time

domain solution of an output feedback regulator problem for

a singularly perturbed system [Id]. The solution employs

the usual division of the problem into slow and fast sub-

problems, followed by synthesis of the two subproblem solu-

tions into a composite controller. A number of matrix

manipulations are involved, making it not intuitively

obvious why the solution works. The problem statement is:

find a control law for the system.

+ A + B u + G w (6.1.1)
5‘1 = A11x1 12x2 1 1

8X2 A21Xl + A22x2 + Bzu + G2w

y Hlxl + H2x2 + v

such that the performance criterion J in (6.1.2) is minimized

 

1 tf T T
J=lim t-t E f [zz+uRu]dt (6.1.2)

t+‘°° f O t

0 o

tf++-co

where z = Clxl + sz2

The following conditions hold:
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For

quadratic-Gaussian problem [e.g.,

89

All coefficient matrices (capital letters) in

(6.1.1) are independent of t.

F, Cl’ and 02 are constant and R is positive

definite.

w and V are independent, zero mean, stationary,

white Gaussian noise processes with intensities

I and V respectively. V is positive definite.-

The input u and output y are available for feed-

back purposes.

fixed values of 5, this is a standard linear-

ll]. It can be shown,

however, that a slightly sub-optimal solution can be found

by using a time scale decomposition.

The slow subproblem is: find a control law for the

system

x3 = ons + Bens + Gd”

yS = Hoxs + SouS + Now + u

where A = A - A A '1 A
0 ll 12 22 21

_ -1

Bo ‘ B1 ' A12A22 B2

_ -1

Ho ‘ H1 ’ H2A22 A21

- -1.
So _ -H2A22 B2

N = -H A '1 G I
o 2 22 2

_ -l

Go ‘ G1 A12A22 Gz
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which minimizes the criterion

. 1 f T

J = 11m -————-- E j; ([C x + D u ]

tf-+ 00

[C x8 + DOu ] + uSI‘Ru
o S S) dt

h C = c - C A '1A
W ere o 1 2 22 21

_ -1

Co ‘ ’C2A22 B2

The fast subproblem is: find a control law for the system

exf = A22Xf + 3211f + GZW

yf = Hzxf + v

which minimizes the criterion

_ . 1 T
Jf - 11m E—Z—t— E 1;: (X; C; szf + 11f Ruf) dt

to+-w f’ o

tf+ on

It can be shown that the solution for the slow subprob-

lem has the form

us 'Fs x3

x3 = ons + Bens + Qs [Vs ’ Sous ‘ Hoxs]

Similarly, it can be shown that the fast subproblem solution

can be written
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uf 'fof

The matrices FS’ Ff, QS’ and Qf are found by least squares

methods. We assume that stabilizing solutions to the two

subproblems exist.

After the above solutions have been computed, a com-

posite control is formed:

uC = -Fst - fof (6.1.3)

XS = ons + BouC + QS [y - Souc - HoxS]

E”‘f ' (A22 ' BZFf ' QfHZ) Xf + Qf [Y + Sosts‘ Hoxs]

A block diagram for the entire closed-loop system is

shown in Figure 6.1.1. It can be shown that the relative

error in the criterion (6.1.2) for the system (6.1.1) with

the controller (6.1.3) applied asymptotically approaches

zero as e + 0.

We assume here that the fast filter has no poles at the

origin. Let Hl(s,e) be the transfer matrix from a to d with

the fast filter removed in Figure 6.1.1. It can be shown

that

Hls(s) = S

H1F(P) = H2(pI ’ A22) 32
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Figure 6.1.1

-—————fi

u \l Plant Y
  

 

  

 

 

  
 

 

 
 

 

   

 

  

   
 

 

   

 

   
   

+ -- XS Slow /

F 4 . ‘

(2 %+ S .‘ - 1 filter <

11+

I H
O

L

... S 1..

b. > ° —:@ .(,,

g Fast

‘Ff e 5 filter 4 0 ~
c d      

Let H2(s,€) be the transfer matrix for the fast filter by

itself, that is, from c to b in Figure 6.1.1.

Then

st(s) = 'Ff ('A22 + BZFf + Qsz)-l Qf

which is a constant independent of 3. Theorem 5.2 shows that

all of the closed 100p slow poles are the lost slow poles of

H1(s,e) which are clearly the poles of the slow design sub-

system shown in Figure 6.1.2 (in addition to the lost slow

poles of the plant).
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Figure 6.1.2

 

Slow part

of plant
 
 

  
 

 
 

N
)

  

  FS Slow 4———————

filter

 
  

  .
m
\

 

  
 

Also, the fast poles are the lost fast poles of the plant

together with the poles of the system of Figure 6.1.3, which

is the fast design subsystem.

Figure 6.1.3

 

Fast part

of plant 

  
 

 

 

 

 -F Fast

f filter
 

 

 

   
  
 

The case when the fast filter has a pole at the origin

can be treated in a similar way after H1(s,s) above is split

into exact slow and fast components using Theorem 3.2.1.

VI.2. Feedback Design Strategies

Theorems 5.2 and 4.1.1 can be used to derive various

feedback design strategies. Although there are many possi-

bilities, only two will be discussed here.
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Design Strategy #1: Let H(s,e) be a two frequency scale
 

transfer matrix which has no unstable lost poles.

Step 1: Design slow and fast cascade and feedback

compensators so that the closed loop systems in Figure

6.2.1 and 6.2.2 have desirable characteristics including

asymptotic stability.

Figure 6.2.1

 
 

+ CS(s) HS(s)

 
 

 

      

 

 F3(3).  

  

'Figure 6.2.2

 

  

CF(p) ' HF<p>

      

 

 FF(p)
  

   

The designs are subject to the constraints

6 (6.2.1)W
>

O

m

A

8

v

II cF<0)

"
D

f (6.2.2)'
1
1

U
) A

8

V

l

FF(0)

Step 2: Form composite cascade and feedback compensa-

tors in one of two different ways:
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I
K
>

F(s,e) FS(s) + FF( 3) - F or

F(s,e) FS(s) F-l FF(es) if F is invertable

Similarly, C(S,e) is computed from CS(s) and CF(p).

These are combined to form the composite control of Figure

6.2.3.

Figure 6.2.3

  

 

  
C(s,e)} ] H(s,e)
 

  

+

n

ij

.
—
.
—
_
_
_
.
.
—
—
_
—
_

i F(S,e) I
 

 

Result: The poles of the system in Figure 6.2.3 can be

approximated from the lost poles of H(s,e) and from the

poles of the systems in Figures 6.2.1 and 6.2.2. Further-

more, any point to point transfer matrix in Figure 6.2.3

can be approximated along the imaginary axis from the cor-

responding transfer matrices in Figures 6.2.1 and 6.2.2.

Proof: Follows by direct application of Theorems 5.2 and

4.1.1. Note that the compensators have no lost poles.

The main difficulty with the above strategy is the con-

straints (6.2.1) and (6.2.2) which make the subproblems

nonstandard. Although not-as satisfying theoretically, the

next strategy circumvents this problem.
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Design Strategy #2: Let H(s,e) be a two frequency scale
 

transfer matrix with no unstable lost poles.

Step 1: Design a controller PS(s) to stabilize Hs(s)

and to shape the transfer matrix from a to b in a desirable

way, as shown in Figure 6.2.4. Let T(s) be the transfer

matrix from a to b.

Figure.6.2.4

+

a——————* >44 ' HS(S) b

 

  

   

 

   PS(S)

  
 

Step 2: Design PF(p) to stabilize the system of

Figure 6.2.5.

Figure 6.2.5

 

T(s)
 

   

 

 

  
 

HF(p) _ +

 

 

 

 
 Ps(w) é____

  
 

—
_
—
—
—
-

b
-
—
—
—
—
—
—
—

4* PF(p) <   
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Step 3: Form the composite control of Figure 6.2.6.

Figure 6.2.6

  

 

 

 
 

 

  

.; T(s) L a

! i ':i{+ ; H(s,e) ¢' >b' ;

I “f- ”: i 1

a * . a !

i ‘ I PS(S) ;, I 5

i --—--‘

' PF(es) §<

  

Result: Pole approximation holds as for Design Strategy #1.

The transfer matrix from a' to b' is approximated at low

frequencies by T(s).

Proof: Direct application of Theoream 5.2 and 4.1.1 suffices.

Theorem 3.2.1 is required if PF(p) has poles at the origin.

This method is similar to the explanation of the LQG

design in the previous section. In this case, however, the

stable transfer matrix T(s) must be realized separately

since the states of PS(s) do not replicate the states of

Hs(s) in general.
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V1.3. Numerical Examples
 

If a numerically described transfer matrix is given,

these methods cannot be applied unless a is introduced in

some manner. This can be done quite freely in the single

variable case (that is, for lxm or mxl transfer matrices).

The next example will show that the problem is nontrivial

for the multivariable case.

Example 6.3.1: Suppose a system is described by the trans-
 

fer matrix (6.3.1). Then the characteristic polynomial is

(s—l). Suppose we perturb one of the numerators by e as

in (6.3.2). The characteristic polynomial becomes (s-1)2.

  

fi(s) = 3‘31 g._-2.1 (6.3.1)

2 2

s—-T s—-I

H
-

H(s,e) = gff EgI (6.3.2)

2 2+6

:1 3:1   

It might be argued that only existing poles have been

doubled, but if unity feedback is placed around (6.3.1),

then

CLCP(s) OLCP(s) ~ det (1 + fi(s)) (6.3.3)

(s-l) ' (£172 ' [(s+l)2 - 4]

= s + 3
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where CLCP and OLCP stand for ”closed loop characteristic

polynomial" and "open loop characteristic polynomial",

respectively. Note that (6.3.3) is a restatement of

(2.1.10). Unity feedback around (6.3.2) gives the closed

loop characteristic polynomial

CLCP(s) = (9,-1)2 - 3:132 - [(s+l)(s+l+e) - 4]

= 82+(2+e)s+e- 3 (6.3.4)

(6.3.4) has two roots: -3 + 0(a) and l + 0(a). In other

words, 1 is a lost (slow) pole of (6.3.2) and the system

formed by placing unity feedback around (6.3.2). Thus,

introducing a has created new poles in this case. V

Given a transfer function h(s), there are two obvious

ways of introducing e if the roots of the denominator seem

to fall into fast and slow groups. Let h(s) be written

 

* _ n(s)
h(s) - ds(s) dF(s) (6.3.5)

By equating coefficients and solving the resulting set of

linear equations, (6.3.5) can be rewritten

A 118(3) nF(S)

h(S) = W + W + a

We can now choose 51 > 0 arbitrarily and write

113(3) nF(-§-S)

h(S, E) ‘-" W + ml-T + a
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Now h(s,el) = h(s). If 61 is chosen so that it

represents an "average" of the ratio of magnitudes of slow

and fast poles, then dS(s) and dF(7§f) will have zeros

which are of approximately the same magnitude. For compu-

tational simplicity, however, it is best to choose 81 = 1.

This method can be applied to a transfer matrix of arbitrary

dimensions without encountering the problem of Example

6.3.1.

Suppose that the zeros of the numerator of h(s) also

fall fast and slow groups. Let h(s) be written

A nS(s) nF(s)

h(s) = dSZ§) dFTs)
 

Here we must have deg nS 5 deg dS' a can be introduced:

as

ns(s) nF(?I)

es
 

h(s,8)

Again, 81 is arbitrary and h(s) = h(s,81). This cannot be

applied to multivariable transfer matrices because of the

pole duplication problem. Note that all fast poles will be

lost poles if nS/dS is strictly preper so that this method

tends to give more simple reduced models. Also, the compu-

tations are more simple than with the previous method.

The next example applies the sum method to a nontrivial

numerical system.

Example 6.3.2: The transfer matrix fi(s) below is for an
 

open loop unstable chemical reactor and C(s) is the contrtfller

design derived in [12].
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. a (s) 3 (s)
“(5) _ A t . 11 12

N21(s) 322(3)

where

Nll(s) = 29.24 + 263.3

fi12(s) = -3.146s3 - 32.6232 - 89.833 - 31.81

fiZI(s) = 5.67933 + 42.6732 - 68.843 - 106.8

fi22(s) = 9.433 + 15.15

_ 4 . 3 2
1(3) — s + 11.673 + 15.753 - 88.313 + 5.514

(s - .06318)(3 - l.99l)(s + 5.057)(s + 8.666)

The four roots of A(s) are the poles of this system. They

are all simple because the determinant N11N22 - N12N21 has

4(3) as an exact division.

. 1 0 208 + 18

(3(3) = __

S -(203 + 42) -16

Note that C(s) is second order.

The exact characteristic polynomial of the closed loop

system is

32 A(s) - det [I I H(s) 0(3)]

1 2
= -K(3) - [447315 - 59914503 - 163897003

3 4 5 6
+ 27313603 + 11118303

8 + 199.8439 + 31°]

- 121805003

7

- 4253093

+ 1750713 + 11114.053



102

The roots of the polynomial in brackets are

.06321 *

-8.666 *

1.991 *

-4.9128 *

-1.0098 : j.075002

-2.6739

-4.l631

-62.567

-116.89

The four roots marked with asterisks are cancelled by A(S),

leaving the remaining roots as the closed loop poles. The

slight discrepancies are caused by round-off errors.

We now factorize A(S) as 68(3) AF(s) where

18(3) = (s - .06318)(s - 1.991)

= s2 - 2.054183 + .12579

AF(S) = (3 + 5.057)(s + 8.666)

52 + 13.7233 + 43.824

By equating coefficients of like powers of s and solving

the resulting systems of linear equations,

  

 
 

  

A _ 5.98648 - 8.573393 7.5399 + .8573393

3 _ -.710036 - 2.082773 -5.51215 - 1.063233

‘&2(S) ‘ 18(5Y + AF(S) (6-3°6b)

‘ _ -2.55133 + 1.0815473 39.82326 + 4.597453
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‘ _ .349037 + .0515488 -1.16232 - .0515483

H22(S) - AS(S) + AF(Sj (6.3.6d)
  

H(s,€) is formed as described above. For simplicity, El is

taken as 1. HS(s) can now be computed (H(s,€) need not be

witten out):

5.98648 - 8.573393 7 5399
 

 

 

 

 

“311(3) = 18(3) + 437824

= .1720532 - 1.210763 + 6.11227

43(8)

Similarly,

H (S) = -.125779s2 - 1.8244s - .725858

812 05(8)

H (S) = .90871s2 - .7851063 - 2.43702

$21 03(8)

H (S) = -.026szzss2 + .106033 + .345701

322 AS(s)

It is easily seen that HF(p) consists of the right hand

terms of the sums (6.3.6) with 3 replaced by p. For.example,

. _ 7.5399 + .857339p
hF11(P) ‘ AF(p) '

The compensator C(s) has no fast poles. Thus,

Cs(s) = C(3)

and _ -

O 20

CF(p) =

-20 0
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The slow and fast closed loop characteristic polynomials are

computed in the same manner as for the entire system. The

slow closed loop characteristic polynomial is:

3248(3) - det [I + HS(s) CS(s)]

K—%§7 - [43.893436 + 796.15255 + 1491.5434
3

- 2333.14s3 - 6660.68s2 - 3163.983 + 257.77]

The roots of the polynomial in brackets are:

.070699‘ *

1.98732 *

-.856861

-l.9ll92

-1.61333

-15.842

Again, the roots marked by asterisks are cancelled (with

some round-off discrepancy) by 48(3).

The fast closed loop characteristic polynomial is:

AF(p) - det [I + HF(p) CF(p)]

l 2
+ 4673.89p

+ 45126.2p + 125955]

The roots of the polynomial in brackets are:
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-5.02555 *

-8.66673 *

-29.7445

-97.2232

Table 6.3.1 gives a comparison of exact and approximate poles.

'Note that, as may be expected,

for poles of intermediate magnitude.

Table 6.3.1

the approximation is worst

 

Exact roots Appoximate roots

 

-1.0098 ij.075002 -.856861, -l.61333

-2.6739 -1.91192

-4.l63l -15.842

-62.567 -29.7445

-116.89 .2232
 

An example of the product method is included for

 

 

completeness.

Example 6.3.3: Let h(s) = (s-I§(:+10)'

« +
h(s) = §:% §£10 . Then

_ 3+1 1

MS”) ‘ s—-'I'Es_+IU

where El = 1.

_ 1 3+1

hS(S) - I0" s-I

h()= 1
PP p—+TU

A

Factorize h as
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If static negative feedback of 20 is placed around h(s) then

the characteristic polynomial is

2
(s-l)(s+10) + 20(s+1) = s + 293 + 10,

yielding poles at -.34903 and -28.65.

The slow closed loop pole is computed:

s - l + 20 ° f% (3+1) = 3s + l,

which gives a slow pole at s = -.3333.

Similarly, the fast closed loop pole is given by:

p + 10 + 20 = p + 30 = 0.

The approximate poles are in good agreement with the

exact poles.



V11. CONCLUSION

Some advantages of this approach are now apparent. The

LQG regulator structure of Section V1.1 became intuitively

obvious because internal structures for the plant and con-

troller blocks were removed. Similarly for the design

strategies of Section VI.2. The sum form decomposition of

Section V1.3 corresponds to an exact block diagonalization

of a system in state space form into slow and fast blocks.

Again, no internal model is needed. There are some basic

questions which still remain, however.

The first is one which should be easily answered. It

was shown in Section 111.3 that a transfer matrix described

by a set of singularly perturbed state space equations is

two frequency scale. The converse statement that any two

frequency scale transfer matrix has a singularly perturbed

state space description is most likely true. Approaching

the problem through MFD methods runs into some technical

difficulties. Theorem 3.2.1 reduces the question to that of

realizing a "regularly perturbed" transfer matrix with a

state space system whose matrices are analytic in E. To see

this, let a two frequency scale rational matrix H(s,e) be

written as guaranteed by Theorem 3.2.1:

H(S,€) = H1(S,e) + H2(es,e) + D(e) (7.1)

107
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Suppose H1(S,€) = Cl(e)(sI - Al(e))'lBl(e) and H2(p E) =

C2(€)(PI ' A2(€))-le(e) where the matrices Ai’ Bi’ and Ci

are analytic at e = 0. Then

H(s,e) = c<e><sI - A<e)>‘18<e) + 0(a)

where C(s) = [C1(e) C2(€)]

. A(e) = Al(€) O

o éAzm

3(a) = PBl(e) q

L5%“5  
D(€) as in (7.1).

Clearly, these are the matrices of a singularly perturbed

system. .

As stated in Section V1.3, the numerator denominator

factorization method of introducing 2 into a numerically

described transfer matrix can, when applied term by term,

cause duplication of poles in the multivariable case. Appli-

cation of feedback can cause these multiple poles to separate

and cause problems, especially in machine computation. The

Smith-MacMillan form for a transfer matrix has suggestive

possibilities for circumventing this difficulty. Let H(s)

be transformed to Smith-MacMillan form by the unimodular

matrices P and Q.

11(8) = P(S) 8*(8) Q(S)
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If all poles and zeros of the diagonal elements of 8* are

clustered into slow and fast groups, then 8* can be factor-

ized as 8*(3) = 88*(3) ' SF*(s). For any unimodular matrix

R(S).

H(s) = [P(s)ss*<s)R<s)1£R<s)‘lsF*(s>Q(s)1 (7.2)

A number of questions arise now, the most important being

under what conditions the two factors in (7.2) are proper.

This is not guaranteed by having 88* and SF* proper. Given

that the two factors are proper, one can proceed as in V1.3

to introduce c. There will be no additional poles created

in this case. Once the question of properness is answered,

a "best" choice of the matrices P, Q, and R in (7.2) is

needed. In general, P and Q are not unique even though 8*

is. 4

One final remark should be made on maintaining real

quantities in this work, as is done in [3]. In Definition

2.0.1, the field 3% could have been defined with the added

condition "f(e) has only real coefficients in its power

series expansion about a = 0." Then all results would

follow as before, since 3: is still a number field with this

added restriction. Thus, we are assured that if a two fre-

quency scale rational matrix H(s,e) has coefficients of s

which are real for real values of a, then HS(3) and HF(p)

will have onlyreal coefficients. Furthermore, the decom-

position of Theorem 3.2.1 yields rational matrices with the

same property.
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