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ABSTRACT

THE MAGNETIC BEHAVIOR OF
SEVERAL TRANSITION METAL SALTS-
SOME LOW-DIMENSIONAL EFFECTS

By

Charles Ralph Stirrat

Low-temperature magnetic measurements are reported on
three transition metal salts, ((CHS)SNH)CuC13-2H20, ((CH3)3NH)
CoClS-ZHZO, and NiIZ-GHZO. These measurements include elec-
tron spin resonance, nuclear magnetic resonance, and magnetic
susceptibility in zero and applied field. The experimental
results have been interpreted in terms of existing theories.

Trimethylamine copper chloride orders magnetically at
TC=0.15710.003 K. Above the transition the susceptibility is
given by the high-temperature expansion for a two-dimensional
square Heisenberg lattice with JF/k=0.28tO.02 K. Below T.
the crystal exhibits behavior characteristic of weak anti-
ferromagnetic coupling between the ferromagnetic layers. The
successive spins along a are canted slightly away from a due
to the presence of two inequivalent anisotropic g-tensors.

The magnetic susceptibility of trimethylamine cobalt

chloride in the ordered state(T<TN=4.135 K) exhibits metamag-



Charles Ralph Stirrat

netic behavior. This field dependent behavior is explained
qualitatively by a phenomenological model due to Spence and
Bottermanl.

Nickel iodide hexahydrate orders magnetically at Tc=0'120
K. The paramagnetic behavior can be interpreted in terms of
two nonequivalent Ni*7t sites having g=2.22, zero field split-
ting parameters D1/k=1.60 K, Dz/k=2.30 K and weak ferromag-

1271 NMR can be ex-

netic exchange with 2zJ/k=+0.05 K. The
plained assuming a quadrupole term with vQ=S.7010.01 MHz and
n=0 and a transferred hyperfine tensor specified by A,=2.30%

0.10 MHz and A;=0.55+0.10 MHz.

1. R. D. Spence and A. C. Botterman, Phys. Rev. B9, 2993
(1974).
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INTRODUCTION

The magnetic properties of transition metal salts have
been studied by experimentalists and theorists for a long
time. Historically the interplay between experiment and
theory has been varied and complex. Sometimes an experiment
will produce new and unexpected results which require the de-
velopment of a new theory to explain them. At other times
theorists have predicted behavior long before it was experi-
mentally observed. In this thesis experiments designed to
substantiate existing theories are reported. Failure of the
theories to predict experimental results indicates the inap-
propriateness of a particular model or the need for expanded
theoretical work.

An exact theoretical description of the magnetic proper-
ties of any real crystal is an impossibility because of the
number of particles involved. Therefore most theories project
out of the exact description those terms which adequately des-
cribe the situation of interest and yet are amenable to cal-
culation. One assumption, currently the subject of much theo-
retical work, is that the exchange interaction in one or more
directions is negligible. This leads to a '"low-dimensional"
model in which a linear(one-dimensional) or planar(two-dimen-
sional) lattice, rather than a three-dimensional lattice, is
considered.

Experiments on three salts; trimethylamine copper chlo-

ride, trimethylamine cobalt chloride, and nickel iodide; are

1
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reported in this thesis. The interpretation of the results
involves models with varied assumptions as to what interac-
tions are important. The trimethylamine salts exhibit low-
dimensionality while nickel iodide does not. A short summary
of the theoretical models and some of the assumptions they
imply is given in Section I.

Section II describes the experimental apparatus and the
techniques used for the measurements reported in this thesis.
The experiments include magnetic susceptibility, electron spin
resonance (ESR), and nuclear magnetic resonance(NMR).

The experimental results and interpretation of measure-
ments on ((CH3)3NH)CuC13-2H20 are given in Section III. A
two-dimensional-square Heisenberg lattice is appropriate for
trimethylamine copper chloride.

In Section IV results of field dependent magnetic suscep-
tibility measurements on ((CHS)SNH)COCIS-ZHZO are reported.
Prior work has shown this salt to be described by a two-dimen-
sional rectangular Ising latticel. The salt exhibits unusual
metamagnetic behavior in applied field2 and the measurements
included here reflect this behavior.

In Section V ESR and susceptibility experiments are des-
cribed which show that the exchange interaction in Nilz’6H20
is less important than the electrostatic crystal field inter-
action. NMR measurements are also discussed.

In addition, for each of the three salts, three dimen-
sional magnetic order Qas observed at sufficiently low tem-

peratures.



I. THEORETICAL BACKGROUND

The magnetic properties of transition metal salts are
due to the orbital and intrinsic spin angular momenta of un-
paired electrons. Therefore any theoretical model, other than
a purely phenomenological one, must describe this system of

electrons. A general Hamiltonians’4 can be written:
W=Hiyrra * Her *¥go * Nz * ¥pp * ¥yp (1.1)

The first term,}JINTRA, includes the intraatomic Coulomb
interactions between the electronic and nuclear charges. Most
theories treét this term using a product of single electron
wave functions as a first approximation for the intraatomic
wave functions. These one-electron functions are the solu-
tions for the electron moving in the Coulomb potential of the
nucleus. The ground state of the ion is determined by ”INTRA
but its configuration is summarized by Hund's rule. The rule
states that the minimum energy configuration will have the
maximum possible spin S, and that the orbital angular momen-
tum, L, will have the largest value that can be associated
with that maximum S.

The Coulomb interactions between each electron and the
charges external to the ion are included in the second term,
NbF’ This crystal field term treats the potential V(;) seen
by the electron as being due to point charges at the sites of
other ions. A more complete calculation involves treating
the spatial distribution of charge on the neighboring sites.

Such a ligand field theory can be employed when the
3



4
neighboring ion orbitals overlap the electron orbitals of
interest. It is easier and usually sufficient to use the
crystal field approach. The symmetry of the lattice is re-
flected in V(?) so that group theory provides a means of de-
termining the degeneracy of the levels resulting after'#bF
splits the degenerate ground state of the isolated ion.

The combination of ]ﬁNTRA and uCF allows the characteri-
zation of the ion's ground state by a total orbital angular
momentum, f, and total spin angular momentum, S.

The spin-orbit term, H%O’ represents the interaction
between the orbital angular momentum and the intrinsic spin
angular momentum. The contribution for each ion can be writ-

ten
i L]

where T and S are defined above and A is the spin-orbit para-
meter. Although HSO couples L and §, for the iron group tran-
sition metals,?vl'cF normally dominates "SO and the characteri-
zation of the ground state in terms of T and § is still appro-
priate.

N;, the Zeeman term, involves the interaction between the

. . +> .

magnetic moment of the ion, Mio and a uniform external magne-

tic field, . Thus

My o= U0 = up(Ee28) A (1.3)

where g is the Bohr magneton.
The magnetic dipole-dipole contribution,)JBg, for the

magnetic moments at sites i and j separated by ;i’

j is given



by
> > + A +
. - poow.=3(u, . ) (u,-1. )
—H]]j% = 1 J 13 1) J 1) (1.4)

The hyperfine term,’NHF, involves the interaction between
the nuclear magnetic moment and the electronic magnetic mo-
ment. For most problems it is only a small perturbation on
the electronic energy levels, but it can be very important in
considering the nuclear energy levels(Section V). It consists
of an orbital term, a contact term and a dipolar term. The
last two are included in the magnetic hyperfine coupling ten-

L o d
sor, A. Thus

NHF = -ZuBYNﬂ Ijt- + T-Xog (1.5)

T

where N is the nuclear gyromagnetic ratio and T is the nu-
clear spin.'NHF is considered negligible in treating the elec-
tronic magnetic properties.

The use of one-electron wave functions for wINTRA fails
to predict behavior resulting from the fact that the solution
should be antisymmetric. Adding a term of the form

ij
M Ex

= -ZJij§i-§j (1.6)
will include some of the effects lost by failing to use anti-
symmetric solutions. This is known as the Heisenberg exchange
Hamiltonian. Jij’ the exchange energy between sites i and j,
is greater than zero for ferromagnetic exchange and less than

zero for antiferromagnetic exchange. It is also
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possible to have ''superexchange'" where the magnetic ion wave-
functions overlap the wavefunctions of an intervening anion,
thus increasing the effective exchange between the two sites.

Because of its many-body nature, the solution of this
general Hamiltonian (1.1) is impossible; however, it is often
possible to project out of N the terms that adequately de-
scribe the properties of interest. This is done by using a
spin Hamiltonian3 in which the orbital contribution does not
appear explicitly.

A spin treatment of the 3d transition metal salts is
especially appropriate because the expectation value of each
component of L for these ions in a crystal field is zero. This
""quenching of the orbital angular momentum'" by the crystal
field greatly reduces the contribution of the orbital angular
momentum to the magnetic moment. Although <Lx)= (Ly7=(Lz>=0,
the magnitude of L may be nonzero.

If the crystal has a symmetry such that the orbital de-
generacy of the ground state is completely lifted, then to
first order in A, {L)=0. The higher order orbital contribu-

tions can be included as an anisotropic g-tensor:

U= wy B8, (1.7)

where g does not differ greatly from the free electron value,
g=2.0023. The spin Hamiltonian corresponding to'#z,)Jso, and
the zero-field splitting of the spin states contained in NCF

can be written, for a single ion spin, §i, as

i _ . 2 2 2
Hg = uBﬁ-‘g §i + DS, + E(Sy; Syi) - (1.8)
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It is often possible to use the spin Hamiltonian forma-
lism even if the orbital degeneracy of the ground state is not
lifted by wCF and L#0. 3 must be replaced by an effective
spin, 3, which is chosen so that the number of states into
which the ground state splits in an applied field is (2s+1).
In such cases the spin-orbit interaction produces first order
shifts of the energy, and thus the g-factors will differ sig-
nificantly from the free electron value. For example in a
cubic crystal field Co** has a ground state with L=1, S=3/2.
The spin-orbit interaction splits this 12-fold degenerate
level so that a doublet lies lowest. Thus at low temperatures
Co** can be treated as having effective spin s=1/2 with a very
anisotropic g-tensor. Using an effective spin Hamiltonian

implies no zero-field splitting so

> oy >

Wy = Mg E°S; (1.9)
and

Hi = up H-¥5; (1.10)

Thus the spin Hamiltonian formalism can be used either
with § or s depending on the orbital degeneracy of the ground
state. In the rest of this section the spin is denoted by 3
but if L#0 then S should be used along with equations (1.9)
and (1.10) instead of (1.7) and (1.8).

In addition to the single spin terms considered above,
one may include two-spin interactions, exchange and dipole-
dipole in the spin Hamiltonian formalism. In the terml‘%%

one uses ;i determined by equation (1.7). The exchange



contribution is

ey = 1/2 2" Hgy (1.11)
ij

where the sum is over all pairs of spins, i#j, but it is

usually sufficient to consider nearest neighbor spins only.
Although a simple form for the exchange term is given in

equation (1.6), the most general form is written in terms of

the exchange dyadic,tf

ij as

‘)4113)3( =-2§i-‘5’ij-§j (1.12)

If'ﬁzj has only symmetric elements, then (1.12) reduces to the

Heisenberg Hamiltonian,

ij - . ij ij ij
7+HEIS 2(Jxxs'ixij * Jyysiysjy * Jzzsizsjz) (1.13)

The case J;;=J;;=0 is known as the Ising Hamiltonian.
If the antisymmetric elements of'3;j are nonzero, the
antisymmetric part of equation (1.12) can be written in the

form
1 = . X 4

which may lead to canting of the spins. In many problems the
antisymmetric terms may be neglected.
Thus the total spin Hamiltonian can be written as
Hg = IHg +1/2 2N, (1.15)
i ij
ij _ywij ij
where Ho? =Hpy + Wop.
The eigenvalues of'ﬂs can, in principle, be found and
used to calculate the statistical average for such magnetic

quantities as magnetization, magnetic specific heat, and
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magnetic susceptibility. This is done using the total density
operator p. The thermal equilibrium value of an operator Q is

given by5

Tr(Qe ’”s/kT)

> =Tr(pQ = .
<Q P Tr (o S/,

(1.16)

In practice the eigenvalues for'NS can be found only for
special cases since the problem is still a many-body problem.
A number of methods will be used here to handle this problem
including single ion treatments, molecular fields, high-tem-
perature expansions, and low-dimensionality.

If'N§j<<N; it is often possible to consider the case of
noninteracting spins. Then the eigenvalues of Né can be found

since ﬂs= zﬂé and the density operator becomes p= Lp; So
i i

Qy=: > ) (1.17)
1

A system of noninteracting magnetic moments describable

dM

by Hg with N§j=0 will have a magnetic susceptibility, xquHH§

that is temperature dependent. Such behavior is described as
paramagnetic. At high temperature the zero-field suscepti-
bility of a system of spins, each described by equation (1.8),

is given by the Curie-Weiss law,

C
Xpy = prg— (1.18)

uv
2 .

where Cuv=Noguvu

BS(S+’1)/3k and 6 contains terms proportional
to D and E.

If Néi is not negligible one may assume that the exchange
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produces an effective field at site i proportional to the av-
erage magnetization of the rest of the sample. Thus in the

molecular field approximationS for isotropic exchange
ij . .
Hex ™ zJiJ.(gj) §i, (1.19)

where (35) is determined from ﬁ=NguB(Sj). In this approxi-
mation the total Hamiltonian can be written as the sum of Ni's
so that the methods employed in the single ion case can still
be used. The molecular field treatment often gives good
qualitative results, but fails quantitatively due to the
correlation effects that are neglected.

If the only exchange contribution of significance is an
isotropic exchange, J, with z nearest neighbors then the mole-
cular field approximation predicts that the high temperature
susceptibility is still given by the Curie-Weiss law but 8
now includes a term eex=ZzJS(S+1)/3k.

Another method used in calculating thermodynamic quan-
tities from equations (1.15) and (1.16) is to expand p, the
density operator, as a series in ascending negative powers of
the temperature4. For example, a high temperature expansion
for the partition function written in terms of 8z1/kT is

given by

Tr(e'B”S)r

N
m

2, g? 3. g3
1 - (TT*S)B + (Tr'“s) 2T ~ (Tl‘"s) T + -+ (1.20)

Such calculations are exact to the extent that, unlike the

molecular field approximation, no approximation is made for
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NS. Such an expansion is valid only for T such that the se-
ries converges. This condition is given qualitatively by
EfkT. In practice the exact solution for'NS is not obtained
because the labor involved in calculating the higher order
terms becomes prohibitive.
Consider a high temperature expansion for the zero field

susceptibility with D and E=0 and nearest neighbor isotropic

exchange6. Then for Hilz

Ng = -2J ¢ §i-§j + gug T S_. (1.21)

’
i,j i *
where the sum is over nearest neighbor spins. This can be

used in equation (1.20) along with

2
9

(kT1nZ) (1.22)
W

>
"

to obtain a high temperature expansion for x in powers of
J/kT. Estimates of the ordering temperature, Tc’ can be made
by determining the lower limit on T for which the series con-
verges if the sequence of coefficients behaves regularly.

The sums in equation (1.15) are sums over the lattice
sites occupied by the spins. The calculation of these sums
is much easier for a linear chain(one-dimensional), a planar
lattice(two-dimensional), or a cubic lattice than for the more
complicated three-dimensional lattices characteristic of many
transition metal salts. The results of such "low-dimensional"
or simple lattice calculations can be applied if the exchange
between a given spin and its neighbors can be characterized

by three exchange parameters, Jl’ JZ’ and J3, corresponding
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to the exchange parallel to three orthogonal directions in the
crystal. For convenience the directions can be chosen so that
J129,
approximated by a linear chain with nearest neighbor exchange,

3J3. A three dimensional system where J1>>J23J3, can be

Jl'

A "low-dimensional" model may apply for structures in
which the magnetic ions are separated by nonmagnetic organic
complexes in one or two directions but not in the others.
Conversely the presence of certain anions between the magnetic
ions in one direction can enhance the exchange in that direc-
tion through the mechanism of '"superexchange."

For spins situated on a primitive orthogonal 1lattice,
there will be a one-to-one correspondence between the Jij's
and Jl, JZ’ and J3. If the spins are not on such a lattice,
the connection will not be as simple but Jl, JZ’ and J3 can
often still be used. Consider a three dimensional lattice
composed of layers in which the spins form a square lattice
but the spins in successive layers are not directly above
their neighbors. Then J1=J2 for spin i would equal Jij where
j refers to the four nearest neighbor spins in the plane. J3
might correspond to an effective exchange between spin i and
several near spins in the plane above or below spin i.

In conclusion, although the complete deécription of the
magnetic properties of a transition metal salt must involve
a description of the orbital and spin angular momentum of the

unpaired electrons, it is often possible to obtain important

information using only a‘'spin Hamiltonian. Even the solution
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of this problem is often too dificult if two-spin processes,
like exchange, are important. In these cases it is necessary
to use one or more of the methods outlined above including
molecular fields, high-temperature expansions, or low-dimen-

sionality to make the problem tractable.



IT. EXPERIMENTAL TECHNIQUES
AND APPARATUS

A. Magnetic Susceptibility

Magnetic susceptibility was measured by a mutual induc-

tance technique 7,8

at 17 Hertz using a Cryotronics Model
17B 9 mutual inductance bridge. Mutual inductance coils were
wound to fit three different cryostats. In each case the
coils were wound with a single primary and multiple secondary
windings with sections wound oppositely so that the total
mutual inductance of the empty system was approximately zero.
The measuring field was less than 5 Oe.

Absolute measurements of x(T,0) were made in an immersion
4He cryostat in which the sample could be removed from the
coil at each temperature. The sample was mounted on an epoxy
rotor which had a relative accuracy of 1°, and an absolute
accuracy of #3°. This apparatus was calibrated with a single
crystal of Ferric Ammonium Alum to give an accuracy of approx-
imately 10'6 emu/gm for a 0.1 gm sample. Sample masses were
between 0.1 and 0.3 gm.

Temperatures from 0.025 K to 1.5 K were achieved with a
3He-4He dilution refrigerator. The sample is fixed so that
only relative values were obtained. More-or-less absolute
values were achieved by normalizing the results obtained with

this apparatus near 1.5 K to those obtained with the 4

He appa-
ratus in the same temperature region. The temperature was

determined with a carbon resistance thermometer which has been

14
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calibrated using the temperature dependence of the magnetic
susceptibility of a pellet of Cerium Magnesium Nitrate powder.
This calibration is good to *0.005 K. Thus, although the
numerical value of x is not very accurate, the temperature
at which, for example, magnetic ordering takes place is well
determined.

The field dependence of the susceptibility was measured
in a second 4He immersion cryostat which consisted of a single
horizontal axis rotor surrounded by a set of mutual inductance
coils whose axis was, as in all three cryostats, vertical.
These were in turn surrounded by and coaxial to a supercon-
ducting solenoid. Although it was possible to remove the
sample and rotor from the measuring coil, the balance and
sensitivity of the mutual inductance coils was a strong func-
tion of the field produced by the solenoid so that only rela-
tive values of x could be determined. The solenoid produced
approximately 17 kOe with an excitation current of 10 amperes.
From rather crude measurements, the homogeneity of the field
was estimated to be 0.3% over a 1 cm sphere, which is slightly
larger than the size of samples used. This produced some
broadening of the field dependent susceptibilities determined

in Section Vlo.

B. Electron Spin Resonance (ESR)

A variety of ESR spectrometers was employed to obtain the
data reported on in Section III and V. Simple reflection type

spectrometers operating from 8 to 11, 13 to 15, and 22 to 25
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GHz were used in conjunction with a large electromagnet
capable of producing 20 kOe. For those cases where frequency
dependence was of interest, the samples were mounted on the
narrow wall of a shorted piece of rectangular waveguide. For
those cases where more accurate values of g or stronger sig-
nals were desired, either rectangular TE102 or cylindrical
TE011 cavities were used. Measurements were made at 300, 77,

4

and from 1-4 K in a "'He immersion cryostat.

C. Nuclear Magnetic Resonance (NMR)

Here too a variety of techniques were used. Marginal

4

oscillator and free-induction spectrometers were used in 'He,

3He, and 3He-4He dilution refrigerators with and without

applied magnetic fields. Frequencies between 2 and 20 MH:z
and fields from zero to 20 kOe were used with different cryo-
stats at different times. For example, pure quadrupole reso-

nances of 1271 in NiIZ-6H20 were observed in an AC modulation

4

field using the marginal oscillator and the 'He immersion

cryostat at temperatures between 1 and 4 K. No pure quad-

3

rupole resonances were observed below 1 K in either the “He

3

cryostat or the He-4He cryostat for different reasons. In

the 3He cryostat the sample is immersed in the liquid 3He

which is contained in a small dewar that is in turn immersed

4

in the "He. The NMR coil is wound on the outside of the

small dewar giving a filling factor less than 0.2. The dilu-

tion refrigerator also has a very small filling factor - the

3

sample is immersed in the He-4He mixture and the coil is
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wound on an epoxy form which is far from the sample chamber.
In addition one may not use an AC modulation field because
of eddy current heating; thus the marginal oscillator, which
is the more sensitive of the two NMR spectrometers, may not
be used.

127I resonances was observed in

Zeeman splitting of the
all cryostats using both spectrometers, but quantitative data
was only obtained above the transition (Tc=.120 K) due to
presumed rf heating.

The free induction spectrometer is a "mini pulser"

11. It consists of a low level rf

developed by S. I. Parks
oscillator, an rf pulse amplifier, a rf receiver and detector
operating with a single coil. The apparatus is unique and
operates as follows. A small rf signal at frequency w, is
continually applied to the rf receiver. A pulse sequence
triggers the rf pulse amplifier which applies an rf pulse

(of frequency w ) to the coil. If the external magnetic field
is adjusted so that the NMR frequency, w, is approximately
equal to w the magnetization is tipped through an angle 6

and precesses at w. The signal induced in the coil is fed to
the rf receiver-detector combination producing a beat frequency
at wuw, which decays in time as the net transverse magnetiza-
tion decays. This repetitive pattern is normally presented

on an oscilloscope. The amplitude of the free induction beat
pattern is a complicated function of w-w_ but when the field

is adjusted to be at the center of the resonance line, w-mo=0,

the beat frequency is zero.
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Figure 1. Block diagram of pulsed NMR spectrometer.
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Figure 2. Time sequence of mini-pulser and boxcar inte-

grator operation.
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Figure 3. Sample recording using the pulsed NMR

spectrometer.
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The mini pulser as described is relatively sensitive and
needs no modulation field. Its disadvantages, as compared to
the marginal oscillator, are complexity of tuning (there are
several rf stages to tune) and the relative difficulty of
determining from the scope the exact field at which zero beat
occurs. By comparison the marginal oscillator is normally
used with first or second derivative detection and for well
resolved lines the resonant field is quite accurately deter-
mined.

Mr. Paul Newman of our laboratory suggested a very nice
scheme for overcoming this last limitation which uses a Boxcar
integrator. A block diagram of the system is shown in Figure
1. Each time the mini-pulser produces an rf pulse it also
produces a '"sync'" pulse. The Boxcar(PAR model 160)12 was used
in a mode where each '"sync" pulse initiated a time base for
the integrator. With the model 160 set on "HOLD" the inte-
grator sampled the mini pulser output over a narrow time aper-
ture(v.1 usec) at a fixed time, s after each "sync" pulse.
The output of the boxcar was then proportional to the average
voltage level at some fixed time after the rf pulse (rD > pulse
width). The various time bases and voltages are shown in
Figure 2.

The boxcar output was displayed on the Y axis and a Hall
probe output, proportional to the applied field, was displayed
on the X axis of an X-Y recorder. Figure 3 shows a sample
recording made using this technique. The field at which zero

127

beats occurred for each of the five I resonances is marked
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by an arrow. Several unresolved proton resonances are also

seen between 2 and 3 kOe.

D. Crystal Orientation

All three crystals exhibited well developed faces with
consistent morphology. Orientation was done by optical goni-
ometry or simply by looking at the faces. As a check on the
morphologies, at least one sample of each salt was checked
by X-ray crystallography to confirm the correct labeling of

axes.



III. ((CHS)SNH)CuC13°2H o -

2
A TWO DIMENSIONAL SQUARE

HEISENBERG FERROMAGNET

A. Crystal Structure and Preparation

The crystal structure and some magnetic properties of
((CH3)3NH)CuC13oZH20 have recently been reported by Losee et.

31.13

The compound is monoclinic and belongs to the space
group P2_/c with a=7.479 A, b=7.864 A, c=16.730 A, and
8=91.28° with four chemical-formula units per unit cell. The
most significant feature of the structure is the chains of
edge-sharing CuC14(OH2)2 octahedra running along the a-axis.
These chains may be pictured as bonded into layers of compo-

sition CuC13-2H O situated at heights 0 and 1/2 along the

2
c-axis. These layers are separated by layers composed of
(CHS)SNH‘

The properties of the analogous cobalt salt have been
well explained using a two-dimensional rectangular Ising
model. Although the cobalt salt is orthorhombic and the
copper is monoclinic, the monoclinic salt can be derived from
the orthorhombic by a 2° macroscopic distortion. Thus the
description of their microscopic properties may be similar.

Green single crystals were grown from a 1:1 mixture of
((CHS)SNH)CI and CuClz-ZHZO in water at room temperature.
Following the convention of Losee et.al.lz, the a and c axes
have been interchanged relative to Groth's morphological

description14.

26
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Figure 4. Angle dependence of the ESR of ((CHS)SNH)CuCIS'
ZHZO in the ac' plane plotted as g2 vs. 6. The
curves are the least squares result used in the

principal axis determination.
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B. Experimental Results

In order to confirm low-dimensional behavior as suggested
by Losee et.alls, magnetic susceptibility was measured down to
.025 K. This permitted determination of the ordering tempera-
ture as well. In addition ESR measurements were made in the

paramagnetic state at T=300, 77, and 4 K.

1. ESR - Principal Axis Determination

Although this is a magnetically concentrated salt, the
ESR lines at 77 K were only 250 Oe wide, so that the signals
from nonequivalent coppers were resolvable and g-value accu-
racy of 1/2% could be obtained.

The principal g values and axis orientations relative to
the crystal were determined from measurements of the g-value
variation in the ab, bc', and c'a planes. The c' axis is
defined as the axis perpendicular to the ab plane. It differs
from the c-axis by less than 2°. Using the method of Schon-

15

land™", these rotation patterns were fit by a least squares

technique to

g2 = a + BCOS26 + ysin26 (3.1)
Figure 4 shows the rotation pattern for gz in the ac' plane
and the resulting fit. From a, 8, and y determined for each
rotation, the g-tensor elements were determined. The prin-
cipal values were obtained by diagonalizing this tensor.
There are four chemical-formula units, and therefore four

copper atoms per unit cell, but no more than two resonance

lines were observed in any rotation. Thus only two
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nonequivalent paramagnetic complexes could be resolved.
The observed rotation patterns correspond to two principal-
axis g-tensors having essentially the same principal values
but different principal axes. The principal values and polar
and azimuthal angles specifying these two tensors are given
in Table I. Although the principal axes do not coincide with
the crystal axes, the g-values parallel to the crystal axes
are well determined, being the g-value extremes in the ab
rotation, where only one resonance line was observed, and the
values where the two observed lines cross for the other two
rotations. Near the crossing where two lines overlap, the
absorption maxima were not resolved so that the fit to the
rotation patterns gives a better determination of the crystal
axes g-values than a single measurement on each axis. The
values obtained are ga=2.23810.010, gb=2.03710.010, and
gc=2.19530.010.

The data used in this determination was taken at T=77 K,
but no difference in the rotation patterns was observed in
data taken at 300 and 4 K except for a signal to noise enhance-

ment at lower temperatures.

2. Magnetic Susceptibility

The magnetic susceptibility data is displayed in Figure
S where x-l is plotted for the a, b, and c axes over the
entire temperature range for which data was taken. In Figure
6 the magnetic susceptibility, x, parallel to these three

axes at temperatures below 0.45 K is shown.
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Table I

Principal g-tensor Values and Orientations

® is measured from the c' axis toward the ab plane and ¢ is

measured from the a-axis toward the b-axis.

2.343
2.027
2.095

2.333
2.029
2.101

o

I+ 1+ I+

0Q

+ I+ I+

.010
.010
.010

.010
.010
.010

Tensor
3]

49.8
74.4
44.4

Tensor

]

140.5
76.9
42.4

I+

2.

0

¢

170.1
273.6
20.3

176.9
103.7
151.6

+

2.0
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Figure 5. Inverse magnetic susceptibilities of ((CH3)3NH)
CuC13-2H20 measured parallel to the a, b, and c

axes.
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Figure 6. Magnetic susceptibilities of ((CHS)SNH)CuCIS-
ZHZO measured parallel to the a, b, and c axes

near the transition temperature.



35

°
S 1S
e o
o K
O £ O cu
X X X s € ©
o o <4 ¢ 3
. « ¢ @)
* L
. - oooo
.l < 00 2
® P 1A~
a® <¢ [ o
*% ® e AA“ “,
“A‘“’Q‘
‘A o
<< otu
4 ° S ]
S o
4 [ e
1 (]
%
.
2 - ' 1 2 '] [l 'Y
© o ® < ©

(310w /nwa)y



36
There are three interesting features in the results. First,
the system does order magnetically at Tc=0.157t0.003 K, where
the ordering temperature is taken as the point of maximum
dxa/dT. Second, the behavior of x well below TC appears to
be antiferromagnetic in nature, yet Xgo which most resembles
Xy does have a nonzero value as T+0. Experimental errors
due to misalignment and empty-sample-holder contributions are
smaller than this deviation. In addition, Xp and Xc exhibit
strong temperature dependence below TC, unlike x, for an
antiferromagnet. The third feature is the large value of the
peak susceptibility for all three axes. Such a large peak in
the susceptibility could arise from antiferromagnetic order
with the spins canted away from an antiparallel alignment; or
it could be the result of ferromagnetic planes weakly coupled

antiferromagnetically.

C. Interpretation of Results

The ESR results do not lend themselves to a simple inter-
pretation. Attempts at relating the principal axes orienta-
tions to the Cu-Cl and Cu-O directions of the distorted octa-
hedron surrounding the coppers were not successful.

The angle dependence of the line widths was compared
with the Dietz et.al.16 result for exchange narrowing in a
one dimensional system, and no correlation was found.

The main value of the ESR results is in the determina-
tion of g values to be used to calculate Curie constants for

the susceptibility. In addition, the presence of two
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different g tensors provides a possible explanation for the
behavior of x in the ordered state.

The susceptibility results above 1.5 K show no unusual
behavior. Thus Losee et.al. 1> found they could fit both
4their susceptibility and specific heat results to a variety
of models with no conclusive results. They fit their results
to Curie-Weiss, Ising linear chain, and isotropic Heisenberg
ferromagnetic chain models.

The data in Figure 5 shows that x" ! varies from linear
Curie-Weiss behavior below 1 K. Fitting x in this temperature
region should distinguish between various models.

The cobalt saltl’2

is best described as an Ising lattice
with J1/k=7.7 K, JZ/k=O.09 K, and J3=-.01 K giving rise to
ferromagnetic sheets very weakly coupled antiferromagnetically
with a net moment. (See Section IV) The lack of deviations
from Curie-Weiss behavior above 1 K for the copper salt indi-
cates that J1 is much smaller than it was in the cobalt salt.
Since copper has rather small g-factor anisotropy, and (being
S=1/2) no zero field splitting, it is unlikely to be Ising-
like.

In the light of these factors a fit of the susceptibility
data above Tc to a two-dimensional ferromagnetic Heisenberg
model with an anisotropic g-tensor was performed. Since there
are no exact solutions available, the high temperature series
expansion, due to Baker et.a1.17, for a square lattice was

used. In order to best display deviations from Curie-Weiss

behavior one normally plots C/xT vs. J/kT. Figure 7 is a
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The magnetic susceptibility of ((CH3)3NH)CuC13-
ZHZO measured parallel to the c-axis plotted as
C/xT vs. J/kT. Solid curve (1) is the Curie-
Weiss result with e=2J/k, (2) is the square
Heisenberg ferromagnet, and (3) is the Heisen-
berg ferromagnetic chain(abscissa scaled down
by a factor of 2). (J/kT=0.5 corresponds to
T=0.56 K)
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graph of C/xCT vs. J/kT, where C is calculated from
C=N°g2u§S(S+l)/3k using S=1/2 and g from the ESR results.
The solid 1line (2) is obtained using the first ten terms of
Baker's expansion. The best fit is obtained for J1/k5J2/k=
0.28+0.02 K. For comparison, curve (1) is the Curie-Weiss
law with 0=2ZJS(S+1)/3k, which reduces to (C/xT)=(1-2J/kT)
for the two-dimensional square lattice; and curve (3) is the
Bonner and Fisher'18 result for a Heisenberg linear chain with
S=1/2. Note that the abscissa for the Bonner and Fisherl3
result has been scaled down by a factor of 2. There is no
value of J/k for which either of these expressions gives as
good an overall fit as does the two-dimensional square ferro-
magnetic Heisenberg interaction. The b-axis data is fit
equally well using 8y from the ESR results with the same
value of J/k.

The interpretation of Xa is not as simple. Using the
value of ga=2.24 found by ESR, no value of J/k gives anything
resembling a fit to any of the proposed models. ‘However, if
we make a two parameter fit to the square Heisenberg lattice
high temperature expansion allowing g and J/k to vary, a fit
comparable to that obtained for the b and c axes is obtained.
This fit corresponds to ga-2.36t.02 and J/k=0.2810.02 K. It
is striking that although there is a discrepancy between the
ESR and susceptibility g values, the same J values are

obtained from all three fits. None of the models considered

offered any resolution of this discrepancy in the value of g,-

The susceptibility results above the transition
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temperature indicate that trimethylamine copper chloride
behaves as a two-dimensional Heisenberg ferromagnet. Fitting
the results to a square lattice in which J/kT=0.28 K may well
be an over-simplification, since a rectangular lattice with
two different exchange interactions would no doubt be more
realistic, but this problem has not been solved. Below Tc,
the data seems to indicate that the ferromagnetic sheets are
antiferromagnetically ordered with successive ab planes
oriented oppositely. The antiferromagnetic interaction may
arise from dipole-dipole interactions or from a weak exchange
interaction. In any event, the interlayer interaction, J3,
will be denoted by JAF and the intralayer ferromagnetic inter-
action, JI-JZ, by JF'

The properties of a layered structure with ferromagnetic
intralayer exchange and a weaker antiferromagnetic interlayer
coupling have been studied by a number of authorslg'zs; both
theoretically, using a variety of two sublattice models, and
experimentally. Attempts have been made to apply sevefal of
these models to the experimental results.

22 in fitting x vs. T

The success of Berger and Freidberg
for the layered structure, Ni(NOS)Z-ZHZO, using a simple mole-
cular field calculation suggested such a calculation might

describe the ordered state susceptibility of ((CHs)NH)CuC13°
ZHZO. No meaningful results were obtained using this approach.

From measurements made on several metallo-organic salts
exhibiting two-dimensional ferromagnetic Heisenberg behavior,
de Jongh et.al.23 have drawn a series of empirical conclu-

sions concerning the magnetic properties of such salts. They
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define Té to be the temperature at which x for such a two
dimensional lattice diverges. They observe that above Té X
drops steeply. They deduce that the relationship between Té
and JF is kTé/JF~0.44. In one compound, (CZHSNHS)ZCUC14’ they
observed the effect of a weak antiferromagnetic coupling
between the layers. In this compound three dimensional order
occured at a temperature, Tc’ approximately 25% greater than
Té determined from Jg. Also they found that Xy dropped
steeply on both sides of TC from a large peak value given by
Xymax TC/C ~85. x, showed only slight temperature dependence
below Tc. They concluded that the effect of JAF is to shift
the ordering temperature up from Té determined by Jp» and to
cause x, to fall steeply below Tc' They also conclude that
the ferromagnetic layers explain the large peak value and the
steep fall of x above Tc' Inserting JF/k=0.Z8 K into the
expression they deduced for Té gives TENO.IZ K. The ordering

temperature for ((CH3)3NH)CuCI -ZHZO, TC=0.157 K, is approx-

3

. . .
imately 25% greater than TL. xmaxTc/CNS for this salt

is much less than that for (CZHSNH3)zCuC1 but it is still

4°
larger than the molecular field prediction, xmaxTN/C-l. Thus
the behavior of x agrees with the empirical results de Jongh
et.al.23 deduced for a two dimensional Heisenberg ferromagnet
with weak antiferromagnetic interplanar coupling.

As noted previously, the susceptibility in the a direc-
tion, which we would like to associate with Xp o has a nonzero

value as T+0. This could be due to canting of spins on

inequivalent ions. Spin resonance results indicate there are
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two anisotropic g-tensor orientations for the copper ion sites.
Silvera et.al.24 have shown that two anisotropic g-tensors
tilted with respect to each other are sufficient to produce
canting of the spins on the inequivalent sites, even with
isotropic exchange. Assume as a first approximation that
tensor 2 can be obtained from 1 by a rotation of 26 around
the b-axis, as in Figure 8. The x, y, z coordinate system is
the crystal system and xa, y&, z& coincide with the principal
axes of the ith g-tensor. In order to consider anisotropic

effects due to the g tensors the exchange is described as an

isotropic exchange between two ''true' spins.
N= -2JF§1-§2 (3.2)

Although the exchange written in this form is isotropic, the
true spin magnitudes will be anisotropic if the ions' envi-
ronment is a distorted octahedron. The problem is handled
more simply by using isotropic effective spin variables §1
and §2, and including the anisotropy in effective exchange
constants. In the case of Cu'' the orbital contribution is
zero to first order and the anisotropic g values relate the
true spin components to the effective spin components in the

principal axis coordinate system as

Si = gisi/Z (3.3)

where i=x', y', z'. Referring to Figure 8, the Hamiltonian,
equation (3.2), can be written in terms of the effective

spins as
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Figure 8. The various coordinate systems used to show
canting due to g-tensor inequivalence. xyz is
the crystal system; x'y'z' is the system in
which the g-tensor is diagonal; x"y"z" is the

system in which $ lies along y" in equilibrium.
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N=-J[( )Zs s + ( )Zcos 20s s
ng 1x'°2x! gyv ly'>2y"

+ (gz.)ZCOSZeslz.szz. (3.4)

- gyvgz|51n29(51yvszzl - slzlszyl)]

Thus the symmetric elements of the effective exchange dyadic

(See Section I) are

2
Jxvxc = '(gxl) J
Jy'y' = - (gy,)zJCOSZO (3.5)
Jz'z' = - (gz,)zJCOSZG

and the nonzero antisymmetric elements are

J =g ,gz,JsinZG (3.6)

y'z' = Jz'y' y

It is this antisymmetric exchange which leads to a canting

24

of the effective spins. Silvera et.al. then define the

X '.l

1 y'.l', z'i' coordinate axes, such that in equilibrium <§1)

and (32) are parallel to y'l' and y'z'. In this frame sy.. is
a constant of the motion, therefore

ihds " dt = "o =0 3.7
ihds . /dt = [s ..M (3.7)
Solving this for the equilibrium angle, ¢go $ makes with the
y' axis gives

-Zgy,gz,tanZG (3.8)
(g),.)j‘i(gz.)2

tm%s=

or in terms of the effective exchange constants,

2J_ 4.
tan2$ = y z . (3.9)
S J

ylyl+Jz|zl
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Figure 9. The relationship between the effective spin 31

and magnetic moment ﬁl'
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Figure 9
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The values obtained from the principal axes determination,

gy.=2.34, gz.=2.10 and 6~40°, gives

¢ = -39.97°
Therefore, the effective spins are canted less than .1° from
the y(i.e. a) axis. The quantity of real interest, however,
is the orientation of the magnetic moment. Defining the angle
between the magnetic moment equilibrium position and the y'
axis, ¢m, the situation for spin 1 is shown in Figure 9.

*n

Since ﬁ=uBg'§ it follows that

tang = — tan¢ (3.10)

Substituting the appropriate values one obtains ¢m=-37°.

The canting angle of the moment relative to the y axis is
given by o + O Therefore moment 1 is canted 3° from a

towards (-c') while moment 2 is canted 3° towards +c'.

Although the rotational inequivalence of the two tensors
is more complicated than assumed above, the conclusion that
the magnetic moments are canted a few degrees from the a-axis
is probably valid. Other factors such as anisotropic exchange
may contribute to the canting, but canting is a probable
explanation for the nonzero value of Xgq 3S T»0.

Canting also explains the strong temperature dependence
of Xp and Xc below Tc' An upper limit on the magnitude of
JAF can be obtained by assuming that the value of Xp and Xe
extrapolated to T=0 is given by the molecular field expression

for xJ_of a two sublattice layered antiferromagnetzs,
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Ngu,$S Ngzu2
X\T W T T (3.11)
4 AF AF

Using Xc extrapolated to zero and z=2 one obtains JAF/k ~
-0.023 K. This is an upper limit on the magnitude of JAF
since xc(T»O) will be less than the molecular field predic-
tion if canting is present. Therefore the magnitude of the
intraplanar exchange is at least a factor of 10 greater than
the interplanar exchange.

The probable ordered state spin configuration is shown
in Figure 10. The spins lie in the ac plane mostly along a.
Successive spins along a are canted towards c and -c. Spins
in adjacent ab planes are antiparallel.

There are five members of the family25

of magnetic space
groups belonging to P21/c. Since the copper atoms are located
at inversion centers in PZl/c, and since no magnetic moment
can exist at an antiinversion center, the two members con-
taining anti-centers can be eliminated. The three remaining
groups are PZazl/c, PaZI/c, and PZi/c'. If the group were
PZi/c' then the a component of all spins would be equal and
parallel. The assumption that the a components of spins on
successive layers are antiparallel eliminates this group.
Pza21/°’ obtained by doubling the unit cell along a, is pos-
sible but not necessary to explain the observed data. Thus
the probable magnetic space group is Pazllc which is consis-
tent with Figure 10.

In conclusion, ((CHS)SNH)CuCIS-ZHZO displays the proper-

ties of a two-dimensional Heisenberg ferromagnet above
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Figure 10. Proposed ordered state spin arrangement for
((CHS)SNH)CuCIS'ZHZO. The spins lie in the ac

plane.
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T.=0.157 K with JF/k=0.28 K. Below T, it exhibits behavior
characteristic of antiferromagnetic coupling between the
ferromagnetic layers with JAF ~ -0.023 K. Apparently the
spins are canted slightly away from the a axis in the

ordered state. The configuration has no net moment and corre-

sponds to the magnetic space group Pa21/c.
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METAMAGNETIC BEHAVIOR

Iv. ((CH3)3NH)COC1

A. Crystal Structure and Preparation

1 reported

In a recently published paper, Losee et.al.
the structure of ((CHS)SNH)C0C13°2HZO in addition to detailed
magnetic susceptibility and specific heat measurements in
zero field. The compound is orthorhombic and belongs to the
space group Pnma with a=16.67 R, b=7.27 R, and c=8.11 R with
four chemical formula units per unit cell. The most signi-
ficant feature of the structure is the chains of edge-sharing
CoC14(0Hz)2 octahedra running along the b-axis. These chains
are bonded into layers of composition CoC13'2H20 situated at
heights 0 and 1/2 along the a-axis. These layers are sepa-
rated by layers composed of (CHS)SNH'

The structure is similar to that of the monoclinic copper
salt but the axes are labeled differently.

Single crystals were grown from equimolar solutions of
((CH3)3NH)C1 and CoC12'6H20. The crystals are violet/red in
color but appear blue when viewed along the a-axis with light

polarized parallel to c. This optical dichroism aided orien-

tation of the samples.

B. Experimental Results
1

Losee et.al. concluded from their measurements that
above TN=4.13S K the magnetic properties could be described

by a two-dimensional rectangular lattice with Ising-like

54



55
exchange. They found good agreement with such a model with
Jl/k=7.7 K and‘J2/k=0.09 K. Below Ty the compound ordered
three dimensionally as a canted antiferromagnet. The anti-
ferromagnetic order indicates a small negative value for J3.
From the crystal structure and their measurements Losee

1 proposed a spin arrangement for the ordered state.

2

et.al.
Spence and Botterman® were able to confirm this arrangement
using NMR and found that it could be described by the magnetic
space group Pnm'a'. In this configuration the spins lie
nearly parallel to c, but are canted towards the a-axis.
Spence found tﬁat the application of a magnetic field greater
than 64 Oe along c drastically modified the magnetization of
the sample. In order to explain this metamagnetic behavior
they proposed a phenomenological model. The model success-
fully explained the NMR and magnetization measurements. Ib
this section measurements of the magnetic susceptibility in
applied field are compared with the predictions of the model.
The model proposed by Spence and Botterman has no temper-
atufe dependence; it predicts results for the applied field
oniy in the ac plane and only for temperatures near 2 K where
they performed their NMR and magnetization experiments.
Although experiments have been performed at a variety of
temperatures, only the results obtained near T=2 K and with
H in the ac plane will be discussed here. The data was
normalized so that the experimental and theoretical values of

X. were approximately equal in an applied field, Hc=450 Oe.

In Figure 11 the magnetic susceptibility at T=2.05 K



Figure 11.
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The field dependence of the magnetic suscep-

tibility of ((CHS)SNH)COCIS-ZH 0. (a) The

2
open squares are experimental results for Hflc.
The solid line is the theoretical prediction
for 6=0°; the dashed line is the theoretical
prediction for 6=3°. (b) Data and theory for

HW\a(e =90°).
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is plotted as a function of magnetic field, H, applied parallel
to the c-axis(6=0°) and to the a-axis(#=90°). The theoretical
predictions for 6=0°, 3°, amd 90° are also shown. The data is
plotted only for fields up to 1400 Oe since for higher fields
the susceptibility is approximately zero.

The rotation data taken at T=2.32 K is plotted in Figures
12-15. Each successive figure shows x vs 6 for a larger value
of H than the preceding figure. In addition the theoretical

fits are displayed.

C. Interpretation of Results

In order to compare the results for x(H) with the Spence
model it is necessary to summarize the model. He assumes that
the sample consists of regions in which the spin orientations

correspond to one of the configurations C CZ’ C3 shown in

1’
Figure 16. It should be noted that although the model does
not use an explicit Hamiltonian, this is equivalent to
assuming the exchange is Ising-like; that is, the spins on a
given sublattice can only point parallel or antiparallel to
an axis z'. =z' is approximately 10° from z toward +x for one
sublattice and towards -x for the other. In this model satu-
ration corresponds to the entire sample being in one of the
three spin configurations. It does not refer to the rotation
of spins away from z' at very high fields. Spence denotes by

fl’ fZ’ and f3 the fractions of the total sample volume occu-

pied by each of the corresponding spin configurations, thus

f. + £, + £, =1 (4.1)

1 2 3
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Figure 12. 1y vs. 8 with H=300 Oe for ((CHS)SNH)C0C13-

ZHZO.
Figure 13. x vs. 8 with H=438 Oe for ((CHS)SNH)COCIS-

ZHZO.
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® with H=976 Oe for ((CHs)SNH)CoC13°

8 with H=1075 Oe for ((CH3)3NH)C0C13'
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Figure 16. The spin configurations Cl’ CZ’ and C3 assumed

by the Spence2 model.
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The magnetic energy of such a system will then be the usual
magnetostatic term plus the energy to create configuration C2
from spins in configurations Cy and CS' This creation term
involves the energy to overcome the weak antiferromagnetic
exchange J3, which is characterized by a critical field,
Hk=64 Oe. Spence minimizes the magnetic energy subject to the
restriction of equation (4.1). In order to do this he assumes
a linear relation between the applied field, H, and the inter-

nal field, ﬁi’ given by
B, =H -'N-¥ (4.2)

where N is an effective demagnetizing tensor. The associa-

tion of N with the normal demagnetizing tensor26

is, as Spence
points out, probably invalid because the magnetization, ﬁ, is
spatially inhomogeneous. Nevertheless, such a linear rela-
tionship appears to be valid experimentally.

In order to make use of Spence's results the following
definitions and assumptions are needed:

8 is the angle between applied field and c-axis,

Mx and Mz are the components of magnetization along a

and c,

Ma and M. are the saturation values of these components,
¥ is diagonalized by x and z, (4.3
Nxx and sz are the diagonal elements of N,

Ha - NxxMa’

Hc - szMc’

e = H /H_,

r = Ma/Mc'
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With these definitions and referring to Figure 16, it is

clear equation (4.1) can be rewritten as

MZ
+ MZ + Zf3 =1

ZIZ
o X

(4.4)

Five regions of the H-8 plane can be distinguished depending

on the form of equation (4.4). The components of M for the

five regions are given by:
Region A (Mx/Ma+Mz/Mc<1)

1

M. = N_
XX

X H sins

= N1 .
MZ = sz (Hcost Hk)

Region B (Mx/Ma+Mz/MC=1)

_ -1 -1 . _ . _

Mx = Nxx (1+zp) “[zeHsind -p (Hcose Hk Hc)]
= -1 -1 - - 3 -

M, = N_, (1+zp) "[(Hcose -H;)-¢(Hsine -H )]

Region a (Mz/Mc=1)

Mx =0

MZ=MC

Region 8 (Mx/Ma=1)

Mx = Ma

Mz =0

Region y (Mz=0’ and Mx/Ma<1)

-1

M X H sind

X NX

M

2 0.

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)
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Figure 17. Regions of magnetization in the H8 plane.
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Regions a and B correspond to saturation of Mz and Mx'

The H-8 boundary between any two of these regions is
found by determinimg the values of H and 8 for which M, and
Mz in both regions become identical. Figure 17 shows the five
regions of magnetization in the H-6 plane for the following
choice of parameters: Hk=64 Oe, Ha=150 Oe, HC=650 Oe, p=.231,
and £=.166.

The parameters used to fit the susceptibility data are
M

Mc’ Hk’ Ha’ and HC. The critical field, Hk’ is deter-

a’
mined very accurately by NMR to be 64 Oe and since the
susceptibility measurements only indicate that it is less
than 100 Oe, the NMR value will be used. The saturation
magnetizations are well determined from the magnetization
measurements to be Ma=21.2 emu/cm3 and Mc=127.4 emu/cms.

Thus these values determined by Spence and Botterman are con-

sidered fixed and the shape dependent parameters Ha and HC

are the only parameters to be fit in this experiment.
The calculation of x from the magnetization expression
can be done numerically using,

. dMH 8 ,H) MH(G,H+AH)-MH(9,H)

x(H,8) = ( (4.10)
dH AH

where AH is small and MH(e,H) is the component of ﬂ(e,H) para-

1lel to H. Then

MH(e,H) = stine + Mzcose (4.11)

where M, and Mz are given by the expressions for the
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appropriate region of the H-6 plane.

Using such a numerical differentiation gives values of x
even at boundaries between regions where M vs H is discontin-
uous and x is really undefined. The model correctly predicts
x only on either side of the boundary. A model to explain
the behavior of x at these boundaries would have to include
the spin dynamics.

Since all measurements were made on a single sample, one
set of shape dependent parameters, Ha and Hc, should fit the
data if the model is to be further confirmed. The effect of
demagnetizing factors is included in the model so normal
demagnetizing corrections of the data are not necessary.

The qualitative nature of the model suggests that a
quantitative fitting procedure is inappropriate. A qualita-
tive '"best fit'" was found by varying the parameters to deter-
mine if an '"eyeball" fit with the appropriate angle and field
dependence could be found. The best values found in this
manner were Ha-150125 Oe and Hc=650125 Oe. The predicted
susceptibility obtained using these values is shown as the
solid and dashed lines on Figure 11 and the solid lines on
Figures 12-15.

The model predicts(Figure 11) that for H parallel to C
(6=0°), solid line, the susceptibility is zero for H<Hk(Region
y) and for H>(Hc+Hk) (Region o). For Hk<H<(Hc+Hk) (Region A)
x 1s constant at approximately 0.20 emu/cm3 (see Figure 17).
The data does not have precisely this form but x does change
sharply near these fields and reaches a large if not constant

value midway between them. Qualitatively the experimental
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results are as predicted except for a '"rounding" of the discon-
tinuities in x. This “rounding" is probably related to the
spins' dynamic behavior which is not included in the model.
Another influence, which may be important, is the contribution
to the total energy from formation and motion of domain walls.

Figure 11 also shows the prediction of x for 86=3°, short
dashed line, which corresponds to the maximum possible mis-
alignment for the c-axis. Notice the lower value of x from
590-720 Oe. This corresponds to Region B which is not encoun-
tered for 6=0°(see Figure 17). The experimental data may
show a slight change in this region, but such an interpretation
cannot be made conclusively.

Finally Figure 11 shows the prediction for 6=90°, long
dashed 1line, corresponding to H parallel to a. The qualita-
tive behavior of the data does not as convincingly confirm the
model. For H<H, the model predicts a large value of Xg
(Region y) and it predicts xa=0 for H>Ha(Region 8). The
experimental susceptibility for H>Ha fluctuates but is quite
small and approaches zero at high fields. The low value of
Xg 9 compared to the model prediction, for H<H, is probably
related to the temperature dependent behavior Losee et.al.1
observed for Xga in zero field. They observed variations from
sample to sample in the temperature dependence of Xq below TN.
With such a complicated spin structure, it is not unreasonable
that the configuration of minimum energy in small fields might
be sample dependent giving rise to large Xg at TN/Z for one

sample and small X, at the same temperature for another. At
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_temperatures above T=2.05 K, xa for H<100 Oe did increase in
agreement with the findings of Losee et.al. and also in better
agreement with the Spence model. Thus the poor agreement for
X, appears to be a result of the temperature independent
nature of the model.

The rotation patterns, Figures 12-15, show the experi-
mental data and theoretical predictions for x(H) as a func-
tion of 6 for four values of H. For Hk<H<Hk+HC(Figures 12
and 13) behavior characteristic of the three regions, A, B,
and B8, is observed. For H>Hk+HC(Figures 14 and 15) three
regions, o, B, and B, are observed. The fits are only quali-
tatively correct but three distinct angle dependences are
observed for each rotation. The distinction between regions
A and a appearing as H is increased is quite striking. For
completeness, note that Figure 11 shows evidence of the y
region where xC(H)NO for H¥100 Oe.

Using equations (4.3), the values of Ma and Mc given by
Spence and Botterman, and the values of H, and HC given above,
one obtains for the shape dependent demagnetizing factors
Nxx=7.111.0 and sz=5.1t.2. These values fall between the
results which Spence and Botterman obtained using NMR on
ellipsoidal samples and those obtained from their magnetiza-
tion measurements on unshaped samples. Since the samples
used for the susceptibility measurements were unshaped, these
are not unreasonable values of Nxx and sz.

In conclusion the magnetic susceptibility measurements

in applied field further confirm the validity of the
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assumptions made by Spence in describing ((CHS)SNH)C0C13°2HZO.
The model predicts qualitatively the dependence of x on H and
8. The inclusion of temperature in a model for the behavior
of this system would be interesting but difficult. If one
could design such a model, experimental investigations below

2 K would be worthwhile. At present nothing is known of the
spatial distribution of the various spin configurations as a
function of field, orientation, and temperature, nor of domain
boundary conditions. Optical and electron spin resonance
experiments, in addition to further NMR, magnetization, and

susceptibility experiments, might answer some of the questions.



V. NiI,°*6H,0 -

2 2
CRYSTAL FIELD SPLITTING

WITH WEAK EXCHANGE

A. Crystal Structure and Preparation

Gaudin-Louer and Weigel27 have reported the X-ray deter-
mination of the unit cell parameters and Ni and I positions
in NiIz'6H20. At room temperature the unit cell is hexagonal
with a=7.67 R and c=4.87 R. There is one molecule per unit
cell and the density is 2.825 gm/cms. The fractional coor-
dinates are:

Ni**: 0,0,0

I~ :1/3,2/3,u and 2/3,1/3,u
where ur0.22. The O positions were not determined but they
probably form a regular octahedron about the Ni. Depending
on the symmetry of this octahedron, Gaudin-Louer et.al. con-
clude the chemical space group is P3 or P3nl.

The magnetic measurements reported in this section indi-
cate that at low temperatures there are two different Nitt
complexes, each having axial symmetry about the c-axis. The
appearance of two different Ni environments implies that a
crystallographic phase change occurs between room temperature
and 4.2 K. This phase change must result in a doubling of
the unit cell while the axial symmetry suggests the change
may involve an axial distortion of the octahedron.

Single crystals were grown from a saturated aqueous

solution of NiIz-6H20. The green hexagonal crystals have a

74
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cleavage plane perpendicular to the c axis and are quite hygro-

scopic.

B. Experimental Results

ESR, zero-field magnetic susceptibility and NMR measure-
ments were made to study the relative magnitudes of crystal

field splitting and magnetic exchange in nickel iodide.

1. ESR

At 1 K the resonance lines in this magnetically concen-
trated salt were between 1 and 2 kOe wide, thus the center of
the lines could be determined to +100 Oe. For a rotation
about the c-axis only one broad line, exhibiting no anisotropy,
was observed. Figures 18 and 19 show the rotation pattern data
for resonant fields in the ac plane for v=10 and 25 GHz. 8
is the angle between the applied field and the c-axis.

The resonant frequencies plotted as a function of field
applied parallel to c are given in Figure 20. Negative fre-
quencies correspond to transitions observed at fields greater

than the field at which the energy levels cross(Figure 26).

2. Magnetic Susceptibility

Figure 21 shows the reciprocal magnetic susceptibility
measured parallel to the c and a axes plotted for T<4.2 K.
No anisotropy was observed in x for rotations about c between
1-4 K. The magnetic susceptibility measured parallel to c

and a for T<1.4 K is plotted in Figure 22.
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Figure 18. ESR rotation patterns in the ac plane(6=0° is
the c-axis) for NiIZ~6H20 at v=10.01 GHz and
T=1.1 K. The solid lines are the theoretical

predictions.
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Figure 19. ESR rotation patterns in the ac plane (6=0° is
the c-axis) for NiIZ-GHZO at v=24.45 GHz and

T=1.1 K. The solid lines are the theoretical

predictions.
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Figure 20. Resonant frequency vs. field applied parallel
to the c-axis for NiIZ-6H20. The solid and

dashed lines are theoretical predictions.
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Figure 21. Inverse magnetic susceptibility of NiIZ'6H20
measured parallel to the a and ¢ axes. The

solid lines are the theoretical results using

equations (5.3)-(5.8).
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Figure 22. Magnetic susceptibility of NiIZ-6H20 measured

parallel to the a and c axes below 1.4 K.



85

32

)M
D
T

(o))
T

X (emu/mole)

Figure 22



86

It is apparent that magnetic order occurs somewhere below
0.3 K. Defining the ordering temperature as the temperature
with maximum positive dxc/dT gives TC=0.1201.005 K. In con-
sidering Xga the detailed behavior is best displayed in Figure
21 because the scale for Figure 22 necessary to display the

peak in Xc does not show the dip in xg at approximately 0.2 K.

3. NMR

Two pure quadrupole resonances were observed at v1=S.70:
.01 MHz and v2=11.39t.01 MHz near 1 K. The line widths were
approximately 250 kHz.

The results of NMR measurements near 1 K in applied field
are summarized in Figures 23 and 24. 1In Figure 23 the data
for resonant frequency versus field applied perpendicular to
c is plotted. In this orientation the lines were sufficiently
intense to permit a mapping of v vs H over the entire range
of experimental variables. Figure 24 shows v vs H for HIl c.
In this orientation the lines were much less intense and were
not observed below 8 MHz.

Both the intensity and position of the NMR lines were
strongly temperature dependent. Although the temperature
dependence of the position is important in determining whether
a transferred hyperfine term is present, the rapidly decreasing
intensity of the lines allowed measurement of the temperature
dependence only over a narrow temperature range. Figure 25
shows two data points and the theoretical calculation for the

temperature dependence of the mI=+1/2*—+mI=-1/2 resonance line.



87

127

Figure 23. I NMR frequency vs. magnetic field applied

perpendicular to c for NiIZ'6H20.
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127

Figure 24. I NMR frequency vs. magnetic field applied

parallel to c for NiIz-6H20.
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Figure 25. Temperature dependence of the mI=+1/2++mI=-1/2
resonance line of 1271 in NiIz~6H20 for v=13.1
MHz.
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Although quantitative results were not obtained below
Tc=0.12 K, two zero-field NMR lines were observed. The fre-
quency splitting varied with time(temperature) due to rf

heating. The observed extremes of frequency were approximately

6.1 and 5.3 MHz.

C. Interpretation of Results
28-31

A number of authors have successfully interpreted
the magnetic properties of Ni** salts in terms of a spin

Hamiltonian(eq. 1.8) of the form
i _ el 2 2 .
Ng = -DS;; - E(Sy;-Sy3) + guph-8, (5.1)

with S=1 and an isotropic g~ 2.25. Schlapp and Penney32 have
shown theoretically that a cubic crystal field, produced by
octahedral coordination of the Ni*® ion 1ifts the orbital
degeneracy leaving an orbital singlet lowest. A rhombic dis-
tortion of the field produces zero field splitting of the
spin states described by the D and E terms in equation (5.1).
The ESR transition frequencies, v;, are given by

o, - |E;-E;l (5.2)

h

where Ei and Ej are any two of the three eigenvalues of )+é.
The symmetry of the ESR rotation patterns indicates that the
c axis corresponds to z. The absence of any anisotropy in
the plane normal to c is conclusive evidence that the x and
y axes are equivalent; indicating E=0. The ESR patterns also
give conclusive evidence that there are two nonequivalent Ni

sites each having z parallel to c and E=0 but with different
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magnitudes for D. Figure 26 shows the energy levels for the
Hamiltonian (5.1) with H applied along c. The ESR results do
not reveal the sign of D but the figure is drawn assuming D>0;
implying the doublet lies lowest in zero field. Selection
rules allow only AmS=1 transitions for this orientation. The
two "eggs'" observed in the rotation patterns(Figures 18 and
19) and the two lines in the frequency vs field data (Figure
20) can only be explained by assuming two different Ni sites.

Using equations (5.1) and (5.2) the theoretical results
shown in Figures 18 and 19 are obtained using g1=g2=2.22,
E.=E

172
vV Vs Hc shown as the solid lines in Figure 20.

=0, D1/k=1.6 K and Dz/k=2.3 K. The same parameters give

The magnetic susceptibility can be calculated from the
Hamiltonian (5.1) using the density operator defined in Sec-
tion I. Doing this one obtains:

_ 2 2
X; = ZNOg uBGi (5.3)

where i=x,y,z,
- gD/ KT (5.4)

) 1
]
z oyt 277Ky

and

e L . 1 SD/KT_4 _
x Y D 2eD/KT,q

e

(5.5)

Assuming 50% of the sites are characterized by D, and 50% by

D,, the total susceptibility is given by
(D, , @
L

X. = (5.6)

1 2
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Figure 26. Energy level diagram of Ni++(S=1) as a function
of magnetic field, H, parallel to z with D>0

(doublet lowest).
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Figure 26
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Equations (5.3) - (5.5) give Xy > Xy ™ xy if D>0, and
Xy <Xy™ Xy if D<0. Equation (5.6) predicts that if D1 and D2
had opposite signs there would be very little difference be-
tween x. and Xga- Figure 21 shows large anisotropy between Xc
and Xg» with Xc>Xgs therefore, since the ESR showed z parallel
to c, both D1 and D2 are assumed positive.

If the values of D, and D2 found from the ESR are used
in fitting x,the agreement is quite good but the predicted
magnitudes of X and X, are somewhat low. Since the salt does
order magnetically, a contribution due to exchange may be re-
quired. A simple way to include exchange in the molecular

field approximation is to modify the Hamiltonian (5.1) as

follows:
'Ni = -Dsii + g"Bﬁ'gi - 22J(§)‘§i (5.7

Equation (5.3) becomes
ZNngugai
Xxj = ———— (5.8)
1-22J6i

Using this expression in equation (5.6) with g, Dl’ D2 given
above and2zJ/k=+0.05 K gives the solid lines shown in Figure
21. The inclusion of a ferromagnetic exchange makes the
agreement between experiment and theory for Xa quite good but
the theoretical results for X. are still less than the experi-
mental data.

Including exchange in the description of x suggests that
it should be included in the interpretation of the ESR.

McMillan and Opechowski33 have calculated the shift in resonant
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frequency away from the value determined by'wé due to an
exchange term,'HEx, with'NEx<<NS and J/kT<<1. The first term
of the high temperature expansion for the change in frequency

due to NEX is

E,/kT__-E,/kT

heavy = 227 (& ) (5.9)

z

where, for Hlc, E1 and Ez are the eigenvalues of'Hé for mS=-1
and mg=0 respectively and Z is the partition function calcu-
lated from Né. The results for v vs H obtained with this
correction with the values used to calculate x are shown as
dashed lines in Figure 20. The correction is not shown for
the rotation patterns; however, the small shift to lower fields
that it gives will improve the agreement between theory and
experiment for most of the patterns.

Demagnetizing and dipole-dipole corrections also need to
be considered; however, they are quite small and tend to can-
cel because they have opposite signs. Thus it appears the
magnetic properties of NiIZ-GHZO in its paramagnetic state are
due to two nonequivalent Ni ion sites having crystal field
splitting characterized by D1/k=1.6 K and Dz/k=2.3 K. In
addition, a weak ferromagnetic exchange between the spins is
also present with 2zJ/k=+0.05 K.

The behavior in the ordered state is more confusing. The
large value of Xe at approximately 0.2 K is indicative of
magnetic moments parallel to c, which is consistent with the
single ion anisotropy prediction for D>0(doublet lowest) and

zllc. The presence of ferromagnetic exchange(coupling the
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moments) is also in agreement with the large value of X The
susceptibility could not be measured to sufficiently low tem-
perature to determine the nature of the ordered state. If X
continues to decrease so that Xc=xy*0 as T+0 then the ordered
state is probably antiferromagnetic due to a weak antiferro-
magnetic exchange as in the case of ((CHS)SNH)CUCIS'ZHZO. If
Xc does not continue to decrease the ordered state is prqbably
consistent with the ferromagnetic exchange observed in the
paramagnetic state being three dimensional. The fact that Xa
is increasing at the lowest temperatures obtained is incon-
sistent with simple antiferromagnetic order but is not con-
clusive. -

The transition temperature predicted by the MF result,

_ 22JS(S+1
T, = -—-gé-——l , (5.10)

with 22J/k=0.05 K is TCNO.OS K, considerably below the
observed Tc=0.12 K. Although molecular field estimates of
transition temperatures are notoriously unreliable, the low
value of Tc predicted may indicate that additional exchange,
raising the value of TC, is present.

The interpretation of the NMR measurements in the para-
magnetic state does not expand greatly on the understanding
of the magnetic properties of the system, but the 1271
resonances do include some points of intrinsic interest. A
nuclear spin Hamiltonian to describe a nucleus of spin I=5/2

127

like I is analogous in many ways to the electron spin

Hamiltonian which describes the Ni®" ion, equation (5.1).
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The Hamiltonian can be written
‘"N =NQ +wD’ (5011)

where NQ is the nuclear electric quadrupole term and ﬂD is
the nuclear magnetic dipole term.

”Q involves the interaction of the nuclear quadrupole
moment with the electric field gradient at the nucleus.
Dropping constant terms,'NQ can be written,

N, = l%! 1% 4 1129 (1%-12) (5.12)
where vQ ESeZqQ/ZI(ZI-l)h. Q is the scalar nuclear quadrupole
moment, eq is the axial component of the electric field gra-
dient, and n is a measure of the nonaxial nature of the field
gradient. The similarity between these two terms and the D
and E terms in equation (5.1) is quite apparent.

The dipole term,‘ND, includes the interaction of the

nuclear magnetic dipole moment with the external magnetic

field and all internally produced magnetic fields. Therefore

Wp = -yNnT-ﬁi (5.13)

where N is the nuclear gyromagnetic ratio. It is assumed
that the contributions to ﬁi can be separated into those due
to external fields, those due to electrons in I orbitals,

and those due to electrons external to the I . Thus,
By = A - oW 1R + 2upger I+ Hy (5.14)

ﬁo is the applied field. In this case the magnetic hyperfine

coupling tensor,ﬂ?, represents the transferred hyperfine
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contribution due to the unpaired spin present in I orbitals
because they overlap the Ni'" 3d wavefunctions. The orbital
hyperfine term is assumed to be small. The term Hd includes
fields due to all the other electronic magnetic dipoles in
the crystal including shape dependent demagnetizing fields.
In this case it is quite small and can be neglected as it was
for NS' Since the correlation times for the electrons are
usually much shorter than the nuclear precession time, the
nuclear magnetization responds to the average electronic field
so 3+ <3). Neglecting the last two terms equation (5.14)

becomes

i, =B+ (yNn)‘l'K-<§> (5.15)

Often the nuclear spin Hamiltonian is solved for either
the low field (ND<NQ) or the high field C"D>uQ) case using a
perturbation calculation34’36. Since the NMR data presented
here was taken over a range of fields covering both cases it
is necessary to solve for the eigenvalues of'”N exact1y37.

Since ﬁi=0 in the paramagnetic state when Ho=0, the two
Amzl resonances observed in zero field uniquely determine vQ
and n as vQ=5.70 MHz and n=0. With n=0 equation (5.12) is
axially symmetric and no anisotropy is expected or observed
in the xy plane. This is an unusually low value of vQ for

127y With Q=-0.75x10" %4cm?

it is customary to find the pure
quadrupole resonances at frequencies greater than 100 MHz.
This implies that the electric field gradient at the I site

is small with correspondingly high symmetry. It should be
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noted that only one set of I resonances was observed. The
two I sites predicted by the room temperature X-ray structure
have the same symmetry and thus should have the same value
for vq and n. However the apparent doubling of the unit cell
indicated by ESR might produce two pairs of I sites. Since
only one set of lines were observed, either the I sites still
all have the same electric field gradient, or the other site

127I and is beyond the

has a more typical value of vQ for
experimental range of frequencies available.

Assuming'x;o as a first approximation, then ﬁigﬁo and
the resonant frequencies can be determined as a function of
field from the eigenvalues of'NN. The solutions, for Hjdc,
are shown as the solid lines in Figure 23. The results for
Hoilc are shown in Figure 24. At high fields the Zeeman line
is split by the quadrupole interaction into five lines with
the splitting for H parallel to c much larger than that for
H perpendicular to c. Although the theory is qualitatively
correct, the data appears at lower fields than predicted.

The agreement between theory and experiment can be improved

by including the hyperfine term in equation (5.15). Assume

X to be axially symmetric with diagonal elements denoted

Ax=Ayy=Ay and A, =A,. Then for Hic, <$>= (5> and
. -1
Hy o = Hoo *+ (vyh) A"<sz>. (5.16)
Similarly,
-1
Hi, = Ho, + (yyh) 2A,48 > (5.17)

L co s
To determine A in the paramagnetic state it is normally
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sufficient’® to obtain the components of <§)»from
FERN e %0 (5.18)
. = - n .
i NhguB NoguB ’

where i = x and z. However in this case, the applied field
produces saturation effects so that (S{) cannot be determined
in this way. The theoretical expressions for S5y found using
the density operator and Hamiltonian (5.1) are used instead.
The results obtained using A =2.30 MHz and A =0.55 MHz at
T=1.1 K are shown in Figures 23 and 24 as dashed lines. A
summary of the quadrupole and hyperfine constants are given

in Table II.

The contribution due to the hyperfine term should have
the same temperature dependence as (§). In Figure 25 the pre-
dicted temperature dependence of the resonant field is shown
for the mgl/2 «<— mz-1/2 transition with Hllc at fixed fre-
quency. The approximate value of A, was determined from the
lower temperature point, but the agreement with the other
point and that found for the other lines using the same value
of A, is very reasonable.

It is interesting and confusing to note that the agree-
ment between theory and experiment for the intensities of the
NMR transitions is very good for Hlc and very poor for Hliic.
The theoretical intensities are determined by the square of
the transition operator matrix elements between eigenfunctions
of 'NN(neglecting 'K). Theory predicts the two cases should
have approximately the same intensity whereas the experimental

lines for Hllc are much weaker. No explanation of this
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Table II

1271 Quadrupole and Hyperfine Constants for Paramagnetic

NiIZ°6H20

5.70 £ 0.01 MHz

<
"

Q

n = 0.00 + 0.03

Ay = 2.30 + 0.01 Miz
Ay = 0.55 + 0.10 MHz
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behavior has been found.

Most of the NMR results do not apply directly to the
description of the magnetic properties of nickel iodide, but
the presence of the transferred hyperfine term is consistent
with the existence of exchange. The exchange is most likely
superexchange through the I , requiring that the Ni** un-
paired electron wavefunctions overlap the I wavefunctions.

Attempts to extend these quantitative measurements into
the ordered state were unsuccessful. The only two lines
observed were split about vQ as expected in a weak internal
magnetic field(See Figures 23 and 24), but the temperature
dependence could not be measured.

In conclusion the magnetic properties of NiIz-6H20 are
explained by two inequivalent Ni*" ion sites described by
Dl/k-l.ﬁ K, Dz/k=2.3 K, g=2.22, and a weak ferromagnetic ex-
change with 2zJ/k=+0.05 K. The exchange is most likely .
superexchange through the I . Below T_=0.12 K the salt is
apparently in a three dimensional ordered state with the
spins most likely parallel to c. The nature of the ordered

state could not be determined.



VI. CONCLUSIONS

Experimental investigations of three transition metal
salts have been discussed. The measurements included ESR,
NMR and magnetic susceptibility.

The paramagnetic behavior of all three salts can be
understood in terms of existing theoretical models.

The two trimethylamine salts exhibit low-dimensionality.
While the cobalt salt is nearly one dimensional with the
ferromagnetic exchange along the chains more than ten times
what it is between the chainsl, the copper salt is a two-
dimensional square ferromagnetic system. The exchange in the
cobalt salt is Ising exchange while in the copper it is iso-
tropic Heisenberg exchange.

The paramagnetic behavior of nickel iodide is dominated
by the zero field splitting of the single ion spin states.
The effective dimensionality of the exchange cannot be deter-
mined because the effects due to exchange are masked by the
single ion effects.

The models for the ordered state give qualitative results
for the trimethylamine salts, while the data is insufficient
to determine the nature of the ordered state of nickel iodide.

((CHS)SNH)CuCIS-ZHZO has ferromagnetic sheets coupled
antiferromagnetically. The ordered state has no net moment
but the successive spins in the chains are canted slightly
away from the a axis.

((CH3)3NH)C0C13'2H20 in zero field is also a canted anti-

ferromagnet. However, it displays unusual metamagnetic
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behavior in applied field. The phenomenological model pro-
posed by Spence2 provides a qualitative understanding of this
behavior, but does not contain any temperature dependence.
The experimental data in the ordered state of NiIz'6H20
is rather limited and indicates only that the system is
ordered and has the spins parallel to the single ion preferred

direction. Whether the state is ferromagnetic or antiferro-

P,
magnetic is unclear.
Several recommendations for additional work on these
salts can be made.
The high temperature expansion for the susceptibility ;
¥

of a rectangular Heisenberg lattice might give a better fit
to x for the copper salt. In addition, a molecular field
treatment of the layered antiferromagnet with canting might
give more quantitative results for the ordered state.

A model for the metamagnetic behavior of trimethylamine
cobalt chloride which includes temperature and possibly do-
mains, would be very interesting. If such a model were ob-
tained, additional experimental work would also be indicated.

Further work on nickel iodide might be worthwhile, but
of greater interest would be a nickel salt in which the ex-
change energy were larger so that the effects due to both
exchange and zero field splitting would be present in a more
reasonable temperature range. The presence of low-dimen-

sionality in such a case would be of even greater interest.
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