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ABSTRACT 
 
 

STATISTICAL ANALYSIS OF PHARMACOKINETIC DATA--
BIOEQUIVALENCE STUDY 

 
By 

 
Qingmin Guo 

 
 
Bioequivalence (BE) studies are widely carried out in the pharmaceutical industry. The assessment 

of BE adopted by the Food and Drugs Administration (FDA) is a moment-based criterion 

evaluating log-transformed pharmacokinetic responses such as Area Under the Curve (AUC), 

Maximum Concentration ( maxC ), which are usually estimated from drug plasma time profiles. 

Average BE (ABE) is based solely on the comparison of population averages but not on the 

variances, while Population BE (PBE) and individual BE (IBE) approaches include comparisons of 

both averages and variances. The objective of this thesis is to review the standard approaches to 

statistical analyses of pharmacokinetic data. It also covers estimation of AUC, maxC and other 

pharmacokinetic (PK) parameters as introduced in a Non-Compartmental Analysis (NCA) 

approach and Compartmental Models Analysis approach. Widely cited data sets from the published 

literature are used to illustrate these two approaches. They show the benefits of parameter 

estimation and subsequent statistical inference with an appropriate compartmental model, even 

though the model fitting could be a little complicated. 
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CHAPTER 1 INTRODUCTION 

 

 

1.1   Pharmacokinetics (PK) 

PK is the study of the movement of drugs in the body, involving the processes of absorption, 

distribution, metabolism, and excretion (ADME), including the rate and extent of each of these 

processes. The science of PK concerns on how the body converts an active drug molecule into 

metabolites, the time course of drugs in the body, and what the body does to the drug. PK data 

are often derived from blood (serum or plasma) samples in small to medium-size datasets of 

individuals over time.  

From a PK profile, pharmacokinetic parameters can be estimated such as Area Under the Curve 

(AUC), Maximum Concentration ( maxC ), Time to Maximum Concentration ( maxT ), Half Life  

( 1/2T ), Bioavailability, Clearance, Volume of Distribution, etc. These PK parameters are very 

useful in optimization of the dosage form and dose interval. 

 

1.2   Area Under the Curve (AUC) 

AUC has units of concentration×time (e.g., /mg hr L× ), is a measure of the total systemic 

exposure of a drug integrated over time. AUC is usually estimated from concentration-time data. 

There are two major approaches to estimation of AUC: one is Non-Compartmental Analysis 

(NCA), which calculates the AUC following the trapezoidal rule by adding up the area under the 

curve between consecutive time points, the requirement of the Food and Drugs Administration 

(FDA)[1][2] for AUC estimation; the other is compartmental modeling analysis, which will be 

discussed in chapter 3.  
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1.3   Peak Concentration ( maxC ) 

maxC refers to the maximum (or peak) serum concentration that a drug achieves in a specified 

compartment or test area of the body after the drug has been administrated and prior to the 

administration of a second dose, i.e., in brief, maxC is the maximum concentration observed. 

 

Figure 1  Schema of plasma concentration-vs.-time curve. 
 

In bioequivalence studies, the key pharmacokinetic parameters are log-transformed AUC and 

maxC .[3] Figure 1 shows the schema of AUC, maxC and maxT  in the plasma concentration -vs.-

time curve after a single oral drug dose, cited from Atkinson AJ, et al. 2007[4] with a little 

modification. maxT is Time to Peak Concentration, the term used in pharmacokinetics to describe 

the time at which the maxC  is observed. 

 

1.4   Bioequivalence (BE) 

BE studies are widely carried out in the pharmaceutical industry. The US Food and Drugs 

Administration -Code of Federal Regulations (FDA-CFR)  definition[5] of BE is that the absence 
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of a significant difference in the rate and extent to which the active ingredient in pharmaceutical 

equivalents or pharmaceutical alternatives becomes available at the site of drug action when 

administered at the same molar dose under similar conditions in an appropriately designed study. 

Although it is seen sometimes that measures used in BE study are pharmacological or clinical 

end-points, the most sensitive measures used in BE studies[6] are drug concentrations in the 

blood. From subject-level time and concentration data, subject-level AUC and maxC can be 

estimated, which form the BE outcome data for statistical analyses. If the drugs' plasma 

concentration curves are superimposable, then these drugs are considered as bioequivalent in 

extent and rate of absorption. 

The FDA guidelines for BE studies recommend a minimum of 12 samples collected over time 

following drug administration with an additional sample prior to dosing.[2] These investigations 

on BE are best made through randomized clinical trials, and BE of two drugs is assessed by 

analysis of logarithmic transformed AUC and maxC  typically obtained from a crossover design.  

 

1.5   Crossover Design 

Crossover Design is probably the most commonly used statistical design for comparing 

bioequivalence between two formulations of a drug. We shall refer to a two-sequence, two-

period, crossover design as the standard 2×2 crossover design, also called AB|BA design.  

Table 1  The standard 2×2 crossover design 
Crossover Designs for Two Formulations Period 1 Period 2 
Sequence AB = 1 A B 
Sequence BA = 2 B A 

A standard 2 2× crossover study will generate paired outcomes 1 2( , )Y Y  in two sequences of 

subjects: (a) In sequence AB subjects receive drug A in period 1 and are crossed over to drug B 
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in period 2; (b) In sequence BA subjects receive drug B in period 1 and are crossed over to drug 

A in period 2, as shown in Table 1. The dosing periods are separated by a washout period of 

sufficient length for the drug received in the first period to be completely metabolized or 

excreted from the body. Now, let's discuss here treatment effect, period effect and carry-over 

effect. 

 

1.5.1  Treatment Effect. The objective of a cross-over trial is to focus attention on within-

patient treatment differences, the difference between different measurements in the same subject, 

also called within-subject difference. The difference between these measurements removes any 

component that is related to the differences between the subjects, which is called ‘subject-effect’, 

from the comparison. 

 

1.5.2  Period Effect. The within-subject difference could also be thought of as a comparison 

between the two treatment periods, which is the reason why usually one group of subjects 

received the treatments in the order AB and the other group received the treatments in the order 

BA. 

 

1.5.3  Carryover Effect. A carryover effect is defined as effect of the treatment from the 

previous time period on the response at the current time period. The presence of carryover is an 

empirical matter.[7] It depends on the design, the setting, the treatment, and the response. The 

washout periods are usually included in the design, to allow the active effects of a treatment 

given in one period to be washed out of the body before each subject begins the next period of 

treatment. The disadvantage of the 2 2× crossover trial is that several important effects, such as 
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carryover effect and interaction effect are aliased with each other. Therefore, the carryover effect 

cannot be removed just by randomization alone in 2 2×  crossover design. Washout period has to 

be clarified, usually 5 Half-life time ( 1/2 T ) is necessary. 

The objective of crossover design is to estimate the treatment effect, the expected difference in 

mean of logarithm transformed AUC and maxC  of drug A versus drug B obtained from each 

subject. In each sequence, Treatment A and Treatment B produce a difference measure, provided 

that the period effect can be assumed to be constant, the information from both sequences can be 

combined to obtain the estimate of expected difference. Since the difference measure is within 

one subject, the difference removes any ‘subject-effect’ from the comparison. 

 

1.6   Statistical Model 

Consider a statistical model without considering carryover effect used by Byron Jones and  

Michael G. Kenward.[7] Let ijkY =response in k-th patient, in j-th period for i-th treatment. There 

is implied ‘nesting’ of treatment in period. 

The model is: 

    
  ijk i j k ijkY µ τ π α ε= + + + +     (1) 

where 

µ  is effect of an overall mean;   

iτ is effect of i-th treatment effect, i=1, 2, ..., t; 

 jπ is effect of the j-th period effect, k=1, 2, ..., p;   

kα   is random effect associated with the k-th subject.  
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ijkε is random error associated with the k-th subject who received the i-th treatment in the j-th 

period, k=1, 2, ..., ni. 

( )2~ 0,k N αα σ , 2~ (0, )ijk N εε α , kα  and ijkε are independent. 

( ) ( ) 2 2 2  ijk k ijkVar Y Var α εα ε σ α σ= + = + = , and 2
, ' )(  ijk ij kCov Y Y ασ=  for all j j≠ ′ . 

In this random subject-effects model, 2
ασ   is the inter-subject variability and 2

εα  is the within-

subject variability. 

In Table 2, there are only four sample means 11 12 21., ., .,y y y and 22.y . 11y ⋅ represents the mean 

of samples of treatment 1 and period 1, ..., 21.y represents the mean of samples of treatment 2 

and period 1; Table 3 lists the mean of treatment and period, period effect and treatment effect 

with regard to this 2 2×  crossover design.  

Table 2  Expected Cell Means for Model (1) 
Sequence Period 

1 2 
1 11 1 1.y µ τ π= + +  22 2 2.y µ τ π= + +  
2 21 2 1.y µ τ π= + +  12 1 2.y µ τ π= + +  

 

Table 3  Expected Means and Effects for Model (1) 

Mean of Treatment A 11 12 1 1 2½( . .)= ½ ½y y µ τ π π+ + + +  

Mean of Treatment B 21 22 2 1 2½( . .)= ½ ½y y µ τ π π+ + + +  

Mean of Period 1 11 21 1 1 2½( . .) ½ ½y y µ π τ τ+ = + + +  

Mean of Period 2 12 22 2 1 2½( . .) ½ ½y y µ π τ τ+ = + + +  

Treatment (A-B) Effect 1 2τ τ−  

Period (1-2) Effect 1 2π π−  
 



7 

It is known from empirical studies that after logarithmic transformation, AUC and maxC  are 

normally distributed or may be assumed to be approximately normally distributed. The core 

modeling component of SAS proc GLIMMIX can be illustrated for both fixed and random 

subject-effects models.[7] Suppose there are variates including subject, period, direct treatment 

and  response variables in the dataset, model fitting and inference for fixed subject-effect models 

follow conventional ordinary least squares (OLS) procedures and for random subject-effect 

models Restricted Maximum Likelihood (REML) analyzes are used.[7]
 

The benefit of crossover design is that each subject serves as their own control, and statistical 

efficiencies are gained with respect to power and precision. Although crossover design has great 

advantages, it also brings a potential disadvantage: (1) Carryover may be confounded with direct 

treatment effects.  (2) There are at least 2 periods, patients may withdraw from the trial, or 

become "lost to follow-up".  

Special consideration is needed while doing statistical analysis for the crossover design. The 

typical method of Null Hypothesis Significance Testing (NHST) is designed to assess the 

evidence against the null hypothesis. The null hypothesis is rejected if the observed p-value is 

less than the stated significance level α; if not rejected, the null hypothesis will be retained. 

However, equivalence is not concluded just because we do not reject null. Here, the Two One-

Sided Tests (TOST) is applied to assessing bioequivalence. 

 

1.7   Average Bioequivalence (ABE) 

ABE is a conventional method for the BE study, which solely compares the population averages 

of a BE measure of interest but not the variances of the measures for the T and R products, 
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following the FDA 1992 guidance on Statistical Procedures for Bioequivalence Studies.[3][8] 

TOST has been used to determine whether the ratio of the logarithm transformed averages of the 

measures for the test and reference products were comparable.[9]   

The two null hypotheses of TOST: (1) the mean difference is larger than the upper value of the 

BE limit ∆; and (2) the mean difference is below the lower bound of the BE limit -∆, versus the 

alternative hypothesis of the difference falls within the range of the BE limit. 

         

 

where T is Test, and R is Reference. 

BE is established at significance level of α if a t-interval of confidence ( )1 2 100%α− ×  is 

contained in the interval ( , )−∆ ∆ , which is called Westlake’s Confidence Interval.[10] Therefore, 

to establish BE at significant level of 0.05α = , a 90% confidence interval should fall within the 

BE limit ( , )−∆ ∆ . For PK measures after logarithmic transformation, ln 1.25∆ = , ln 1.25−∆ = −

,[3] while for PK measures without logarithmic transformation, the BE limit is a little different.  
For the case of no logarithmic transformation, let T R/D µ µ=  be the ratio of the averages of the 

measures for the Test and Reference products.  

01 T 02:  /   , :  /      :   /   µ µ ε µ µ ε ε µ µ ε≥ ≤ < <R U T R L a L T R UH H H  

4 / 5 0.8Lε = = , and 5 / 4 1.25Uε = = on /µ µ= T RD  that define the region of equivalence.[3] 

To establish BE at significant level of 0.05α = , a 90% confidence interval should fall within the 

BE limit ( , )ε εL U . 

01 02: , :T R T RH Hµ µ µ µ− ≥ ∆   − ≤ −∆ :a T RH µ µ−∆ < − < ∆
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ABE only compares the population averages of a BE measure, assesses no comparison between 

variances of the measure for T and R products, therefore, there are some limitations on ABE.   

FDA (2001)[3] recommends Population Bioequivalence (PBE) and Individual Bioequivalence 

(IBE), which include comparisons of both averages and variances of the measure. In Table 4, the 

evaluation criteria are listed for ABE, PBE and IBE. 

Table 4  Bioequivalence Types and Evaluation Criteria 
Bioequivalence/Parameters Evaluation  Criteria 
ABE 
Population averages( T R;µ µ ) 

2 2
T R(   ) Aµ µ θ− ≤  

PBE 
Population averages ( T R;µ µ ) 

Total variances ( 2 2;TT TRσ σ ) 

2 2 2 2  
T R P[(   )  ( )] /TT TR TRµ µ σ σ σ θ− + − ≤   or 

2 2 2 2  
T R 0 P[(   )  ( )] /TT TR Tµ µ σ σ σ θ− + − ≤  

IBE 
Population averages ( T R;µ µ ) 

Intra-subject variances ( 2 2 ,WT WRσ σ ) 
Subject-by-formulation interaction 
variance ( 2

Dσ ) 

2 2 2 2 2  
T R I[(   ) ( )] /D WT WR WRµ µ σ σ σ σ θ− + + − ≤

or  
2 2 2 2 2  

T R 0 I[(   ) ( )] /D WT WR Wµ µ σ σ σ σ θ− + + − ≤  

, ,A P Iθ θ θ : specified bounds by the FDA; 2
0 Tσ , 2

0Wσ :specified threshold value by the FDA. 

 

1.8   Population Bioequivalence (PBE) 

PBE approach uses both the mean and  the variance of log(AUC) and maxlog(C ) , to assess total 

variability of the measure in the population.[3][11] 

For PBE, the parameter of interest is: 

2 2 2

2

2 2 2

2
0

( )

( )

T R TT TR

TR
PBE

T R TT TR

T

µ µ σ σ
σ

µ µ σ σ
σ

 − + −



Θ = 
− + −




  

when 2 2
0TR Tσ σ> (Reference-scaled criterion) 

when 2 2
0TR Tσ σ≤ (Constant-scaled criterion) 
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In the equation, T Rµ µ−  is still the mean difference between the test and reference. 2
TTσ  is the 

total variance of test, and 2
TRσ  is the total variance of reference. 2

0 Tσ  is the FDA specified 

threshold value, currently the values recommended by the FDA is 2
0 0.04Tσ = .[11] When the 

total variance of Reference 2
TRσ  is greater than the FDA specified threshold value 2

0 Tσ , 

Reference-scaled criterion is to be applied. Otherwise, Constant-scaled criterion is to be used. 

Currently FDA recommended value for Pθ  is 1.7448,[11] if PBE pθΘ < , and ABE is concluded, 

then PBE is also concluded. 

 

1.9   Individual Bioequivalence (IBE) 

IBE approach uses the means and variances of T and R, and the subject-by-formulation 

interaction to assess within-subject variability for the T and R products, as well as the subject-by-

formulation interaction. 

 
when 2 2

0WR Wσ σ> ( Reference-scaled criterion) 
 

when 2 2
0WR Wσ σ≤ (Constant-scaled criterion) 

 
Here, 2

WTσ  is within-subject variance for test drug, and 2
WRσ  is within- subject variance for 

reference drug. 2
BTσ  is between-subject variance for test drug, 2

BRσ  is between-subject variance 

for reference drug. ( )22  2 (1 )σ σ σ ρ σ σ= − + −D BT BR BT BR , assesses the subject-by-

formulation interaction. ρ  is the correlation coefficient between individual average test and 

reference formulation, they both contribute to the IBE determination.[3][11] 

2 2 2 2

2

2 2 2 2

2
0

( )

( )

T R D WT WR

WR
IBE

T R D WT WR

W

µ µ σ σ σ
σ

µ µ σ σ σ
σ

 − + + −



Θ = 
− + + −



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2
0Wσ  is specified threshold value, currently the FDA recommended 2

0 0.04Wσ = .When the 

within variance of reference 2 2
0 WR Wσ σ> , Reference-scaled criterion is to be applied. 

Otherwise, Constant-scaled criterion is to be used. FDA recommended value for Iθ  is 

2.4948[11], if IBE IθΘ < , and ABE is concluded, then IBE is also concluded. 

The two-period two-treatment crossover design is the simplest prototype, which is not enough 

for PBE and IBE. When additional periods and/or treatments are considered, the possible 

configurations would increase. Some examples of a three-period two-treatment crossover design 

are (i) Sequences ABA and BAB; (ii) Sequences AAB, ABA and BAA; (iii) Sequences ABB and 

BAA.[3] Just as in the AB|BA design, we note that the treatment difference can be estimated in 

each period from any of these three designs. The benefit of having additional periods and/or 

treatments contributes to detecting if there is carryover effect in crossover design. Moreover, the 

IBE can be estimated with high order crossover design in addition to ABE and PBE. 
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CHAPTER 2 BIOEQUIVALENCE  

 

 

 
A data set called "pkdata" from STATA documentation[12] is used here for our illustration. The 

data comprises two concentrations CONCA, CONCB in the same n=16 subjects assesses at 13 

time points, including t=0. At baseline the concentration is zero. Eight patients are randomly 

assigned to sequence 1, which means they take the drug A in the period 1, and then take the drug 

B in the period 2; the other 8 patients are assigned to sequence 2, take the drug B in the period 1, 

and then take the drug A in the period 2. Assume the Drug B is the reference drug (R), and Drug 

A is the test drug (T). We will calculate AUC and maxC  by Non Compartmental Analysis 

approach. Take the logarithmic transformation of AUC and maxC  as the variables for the ABE 

study. 

 

2.1   ABE 

Consider the parameter AUC. Let BRµ µ=  be the reference group population mean,   T Aµ µ=  

be the test group population mean. Let  D T Rµ µ µ= −  be the treatment difference, ln1.25−∆ = −  

be the lower bound, and ln1.25∆ = (=0.2231) be the upper bounds on  D T Rµ µ µ= −  that define 

the region of equivalence. ABE involves the calculation of a 90% CI for  D T Rµ µ µ= − , the 

difference in the means of log-transformed AUC. The ABE will be concluded based on the 

calculated 90% confidence limits falling within 0.2231  0.2231T Rµ µ− ≤ − ≤ . First, the expected 

cell means for ( )log AUC  in Table 5 are listed following notations used in Table 2.  
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Table 5  Expected Cell Means for ( )log AUC  
Sequence Period 

1 2 
1 11. 5.0069y =  22. 4.9270y =  
2 21. 5.0077y =  12. 4.8740y =  

 
Similarly, the expected means and effects for ( )log AUC in Table 6 are listed following notations 

used in Table 3.  

Table 6  Expected Means and Effects for ( )log AUC  
Mean of Treatment T 11 12½( . .)= 4.9404+y y  
Mean of Treatment R 21 22½( . .)= 4.9673+y y  
Mean of Period 1 11 21½( . .) 5.0073y y+ =  
Mean of Period 2 12 22½( . .) 4.9005y y+ =  
Treatment (T-R)  Effect -0.0269 

Period (1-2) Effect 0.1067 

 

 

Figure 2  Profiles over treatment A and B for ( )log AUC  in two periods. 
 

The objective of this study with cross-over design is to focus attention on within-subject 

treatment differences. Figure 2 shows profiles over treatment for crossover designs. The subject-
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profiles in Figure 2 are plotted for each sequence the change in each subject’s response over the 

two treatment periods, which show no strong treatment effect or period effect.  

 
Figure 3  Treatment A vs. B Agreement of ( )log AUC  in two periods. 

The treatment agreement in Figure 3 is plotted for the response associated with the second 

treatment against the response associated with the first treatment.  The figure indicates the 

strength of the treatment effect is small, and the treatment effect A-B is negative. The spread of 

points within sequence AB being wider indicates the bigger between-subject variability.  

Table 7  TTEST output for ( )log AUC  

Treatment Method Mean Lower 
Bound 

  90% CL Mean   Upper 
Bound 

Assessment 

Diff (1-2) Pooled -0.0269 -0.2231 < -0.1462 0.0924 < 0.2231 Equivalent 
Diff (1-2) Satterthwaite -0.0269 -0.2231 < -0.1503 0.0965 < 0.2231 Equivalent 

 

For crossover design, TOST option of PROC TTEST requests Schuirman’s TOST equivalence 

test, with the option of specifying the equivalence bounds. After log - transformation of PK data, 

given the BE limit is (-0.2231, 0.2231), the assessment of BE is finally shown in Table 7. 

Exactly the same calculations can be carried out in PROC GLIMMIX with LSMEANS statement 

(1) compute least squares (LS) means of fixed effects (2) compute the 90% CI for LS-mean 
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difference, and (3) see if 90% CI falls in the stated BE limits (-∆, ∆).  The BE limits are (-0.2231, 

0.2231) in ABE evaluation. 

Table 8  GLIMMIX output for ( )log AUC  

Estimates 
Label Estimate Standard 

Error 
DF t Value Pr> |t| Lower Upper 

T-R -0.02690 0.06774 14 -0.40 0.6973 -0.1462 0.09241 
 
In Table 8, the PROC GLIMMIX output shows that the 90% CI (-0.1462, 0.09241) falls within 

the range (-0.2231, 0.2231), the ABE is concluded for ( )log AUC  at significance level 0.05α =  

Table 9  Expected Cell Means for ( )maxlog C  
Sequence Period 

1 2 
1 11. 1.9763y =  22. 2.5126y =  
2 21. 2.0101y =  12. 2.4469y =  

Similarly, the expected cell means for ( )maxlog C  in Table 9 are listed following notations used 

in Table 2.  ( )maxlog C  of Drug T and Drug R are estimated by PROC TTEST and PROC 

GLIMMIX procedures. 

Table 10  Expected Means and Effects for ( )maxlog C  
Mean of Treatment T 11 12½( . .) = 2.2116+y y  

Mean of Treatment R 21 22½( . .)= 2.2614+y y  
Mean of Period 1 11 21½( . .) 1.9932y y+ =  
Mean of Period 2 12 22½( . .) 2.4798y y+ =  
Treatment (T-R) Effect -0.0498 

Period (1-2) Effect -0.4866 

 

Similarly, the expected means and effects for ( )maxlog C  in Table 10 are listed following 

notations used in Table 3.  
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Figure 4 shows profiles over treatment for crossover designs. The subject-profiles in Figure 4 are 

plotted for each sequence the change in each subject’s response over the two treatment periods, 

which show no strong treatment effect but maybe a period effect.  

 

Figure 4  Profiles over treatment A and B for ( )maxlog C in two periods. 
 
 

 

Figure 5  Treatment A vs. B Agreement of ( )maxlog C in two periods. 
 

The treatment agreement in Figure 5 is plotted for the response associated with the second 

treatment against the response associated with the first treatment.  The figure indicates the 
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strength of the treatment effect is small, and the treatment effect of A-B is negative. Substantial 

location differences between the two sequences indicate a strong period effect. 

Table 11  TTEST output for ( )maxlog C

Treatment Method Mean Lower 
Bound 

  90% CL Mean   Upper 
Bound 

Assessment 

Diff (1-2) Pooled -0.0498 -0.2231 < -0.1280 0.0285 < 0.2231 Equivalent 
Diff (1-2) Satterthwaite -0.0498 -0.2231 < -0.1285 0.0290 < 0.2231 Equivalent 

 

For crossover design, TOST option of PROC TTEST requests Schuirman’s TOST equivalence 

test, with the option of specifying the equivalence bounds. After logarithmic transformation of 

PK data, given the BE limit is (-0.2231, 0.2231), the assessment of bioequivalence is finally 

shown in Table 11. 

Table 12  GLIMMIX output for ( )maxlog C  

Estimates 
Label Estimate Standard 

Error 
DF t Value Pr> |t| Lower Upper 

T-R -0.04976 0.04379 14 -1.14 0.2749 -0.1269 0.02737 
 

Similarly use PROC GLIMMIX with LSMEANS statement: (1) compute LS means of fixed 

effects, (2) compute the 90% CI for LS-mean difference, and (3) see if 90% CI falls in the stated 

BE limits (-∆, ∆), here the BE limits are (-0.2231, 0.2231). 

In Table 12, PROC GLIMMIX output shows that the 90% CI (-0.1269, 0.02737) falls within the 

range (-0.2231, 0.2231), the ABE is concluded for ( )maxlog C  at significance level 0.05α = .  

Therefore, summarizing the two primary response variables for BE study, ( )log AUC  and  

( )maxlog C , the ABE is concluded for T and R at the significance level 0.05α = . 
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2.2   Sample Size Calculation 

Sample size calculation for crossover design in bioavailability and bioequivalence study is an 

essential question, which establishes bioequivalence within meaningful limits in the case of 

logarithm transformed AUC and maxC .[13] A minimum number of 12 evaluable subjects should 

be included in any BE study according to FDA guidelines.[3] 

Based on Schuirmann’s TOST procedure for interval hypothesis, use the data D T Rµ µ µ= −  as 

the expected mean difference after logarithmic transformation. If the 100(1-2α )% CI

( ),2 2 ,2 2ˆ ˆ ˆ ˆ,D n D nt tα αµ σ µ σ− −− ⋅ + ⋅  of the mean µD is entirely within the BE limit (-ln1.25, 

ln1.25), then 0H  is rejected at significance level α  and no drug-drug interaction is concluded; 

otherwise, 0H fails to be rejected.  

The type-I error α of the TOST procedure is often set as 5%.Total number of subjects should 

provide adequate power for BE demonstration, and the adequate power means at least 80% 

power to detect a 20% difference in products’ BE. In practice the power usually is about 80% - 

90%.  

 

2.2.1  Formula for sample size. Let n = number of subjects required per sequence. α is the 

significant level, β  is the type ΙΙ error, CV = coefficient of variation, / 100%e RCV σ µ= ⋅ , δ = 

the BE limit, ∇  is the expected difference compared to expected mean of Reference ,

100T R

R

µ µ
µ
−

∇ = ⋅ ; σ̂ is the intra-subject standard deviation.  Assuming a normal distribution of 

logarithm transformed PK data (AUC, maxC ), for 0∇ = , n can be estimated[13][14] by 
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2 2
,2 2 /2,2 2 ˆ2[ ] [ / ]n nn t tα β σ δ− −≥ +  

The approximate sample size calculation for the TOST tests for ∇ > 0, the equation is:  

2 2
,2 2 ,2 2 ˆ2[ ] [ / ( )]α β σ δ− −≥ + −∇n nn t t  

The n on the right hand side is unknown (in the degrees of freedom). Start with an initial value 

n0, the n1 is calculated. The calculation is iterative until n is almost unchangeable.  

As an illustration, consider the STATA dataset described at the beginning of this chapter. 

Let α =0.05, β =0.2; For ( )log AUC , 0.2231δ = , σ̂ =0.1355, use the initial value 0 8n =

2 2/2 2 2
2 2

[ (2 2) (2 2)] [1.761 1.345]ˆ2 2 0.1355 8
0.2231

t n t n
n α β σ

δ

− + − +
≥ ≥ ≅  

So n per group = 8, and total n = 16.  

The n per group =8 is also estimated from PROC POWER.  The example is for ABE study. The 

number of subjects for PBE or IBE studies can be estimated by simulation according to the FDA 

guideline,[3] which will not be discussed here.  
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CHAPTER 3 AUC ESTIMATION 

 

 

There are two representative examples of one compartmental pharmacokinetic models:[15][16] 

(A) One compartmental model with i.v. administration; (B) One compartmental model with 

extravascular administration. 

One compartmental model with i.v. dosing means administering a dose of drug over a very short 

time period, there is no absorption rate constant ( ak ) considered. A one compartmental model 

with extravascular administration means absorption phase is involved in the whole process. As 

shown in Chapter 1, the maxC  and  maxT  are simple measures for summarizing the absorption 

process. In one compartment model, assessment of maxT  depends on the value of both 

elimination rate constant ( ek ) and absorption rate constant ( ak ). 

( )
max

log /a e

a e

k k
T

k k
=

−
. 

Let us look into the concepts of ek  and ak , and how they appear in a pharmacokinetic model. 

 

3.1   Definition of PK Parameters  

3.1.1  Elimination Rate Constant ( ek , units are h-1) describes the rate of decrease in 

concentration per unit time, usually the time unit is hour. It is estimated from the log-linear 

terminal part of the concentration-time curve,    ek slope= − . 

3.1.2  Absorption Rate Constant ( ak , units are h-1) is the rate of absorption of a drug absorbed 

from its site of application according to assumption of first-order kinetics, which is for a drug 
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administered by a route (for example, oral) other than the intravenous. The first-order differential 

equation that governs the drug amount remained ( )X t : ( ) ( )a
dX t k X t

dt
= − . (0)D X=  is the actual 

dose (mg) that is available to the body for kinetics, whereas the oral dose is given in mg/kg.  

Next we define the four most useful PK parameters characterizing the in vivo disposition of a 

drug.[15][16] 

 

3.1.3  Half-life ( 1/2T ) is given by ( )1/2 log 2 / keT = , that is, the time from maxT  to reach one-

half of the maximum concentration maxC .  

 

3.1.4  Bioavailability (F , has no unit) is described as the fraction of the extravascular dose of 

the administered drug that reaches the absorption depot. If the drug is injected intravenously, it is 

assumed that bioavailability F =100%. Bioavailability generally decreases when a medication is 

administered via other routes (such as orally), such as oral iv

iv oral

AUC Dose
F

AUC Dose
×

=
×

, F is often 

measured by quantifying the "AUC". 

 

3.1.5  Volume of Distribution (V , the units of volume, e.g., L) or apparent volume of 

distribution is a pharmacological, theoretical volume that the total amount of administered drug 

would have to occupy (if it were uniformly distributed), to provide the same concentration as it 

currently is in blood plasma. There are two quantities: the concentration ( )C t  in plasma and the 

amount of drug ( )X t  in tissue. It is assumed that ( ) / ( )X t C t V=  is constant.  

 



22 

3.1.6  Clearance (CL , the units are volume per time, e.g., L/hr) is called the drug clearance rate, 

can be defined as the volume of plasma which is completely cleared of drug per unit time. CL  is 

calculated using the dose administered divided by the subsequent measured AUC,

( ) (0)
 e

Oral dose F XCL V k
AUC AUC

×
= = = × , where F is the bioavailability. Unless we have 

information on F, the parameter CL/F is only identified, this is called the apparent clearance.  

With the drug plasma concentration-time profile, AUC can be estimated by NCA, and also by 

compartmental modeling analysis.  

 

3.2   Non-Compartmental Analysis (NCA) 

Based on the theory of statistical moments, the moments of a function are used in the analysis of 

pharmacokinetic data.[17] Suppose drug concentration ( )C t  is a real-valued function defined on 

the interval [0, ∞); the zeroth moment of ( )C t  is 0S : 0 0
( )S C t dt AUC

∞
= =∫ , “the area under the 

curve from time zero to infinity”; and the first moment of ( )C t  is  1S : 1 0
( )S t C t dt AUMC

∞
= ⋅ =∫

, “the area under the first moment curve”, is the area under the curve of concentration-time 

versus time curve from time zero to infinity, AUMC  can be used to estimate some other PK 

parameters. 

Non-compartmental Analysis estimate AUC using the trapezoidal rule without making any 

assumption concerning the number of compartments. Following the trapezoidal rule, 

concentration-time curve is considered as a series of trapezoids and the AUC estimate is the total 

area of all the trapezoids. 
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For non-compartment model, (0 )  tAUC −  is AUC from 0 h to the last quantifiable concentration 

to be calculated; (0 ) (0 ) ( )t tAUC AUC AUC−∞ − −∞= + , represents the total drug exposure over 

time. (0 )AUC −∞ requires extrapolation of the elimination-phase curve beyond the last measurable 

plasma concentration. The extrapolation of AUC from t to infinity requires several assumptions: 

(1) At low concentrations, drug usually declines in mono exponential fashion; (2) The terminal 

elimination rate constant does not change over time or with different concentrations of 

circulating drug; (3) other processes such as absorption and distribution do not play a significant 

role in the terminal phase of the pharmacokinetic profile.  These assumptions usually are valid in 

almost all PK applications. Therefore, (0 )AUC −∞  can be calculated as

(0 ) (0 )  C /t last eAUC AUC k−∞ −= + , where lastC is the last observed quantifiable concentration 

and ek  is the terminal phase rate constant, ek slope= − (units: h-1). When a regression line is 

fitted to terminal phase data points on log-scale, then elimination half-life 1/2  log(2) / eT k=  can 

be estimated. With NCA, the observed maxC  and  maxT  are obtained directly from the data 

without interpolation. 

Non-compartmental analysis allows a simple estimation of AUC. It basically summarizes the 

concentration-time profile without modeling assumptions. However, non-compartmental 

methods are unable to visualize or predict plasma concentration‐ time profile for other dosing 

regimens. It assumes the kinetics to be linear and stationary (i.e., time‐independent) for simple 

applications. In more sophisticated analyses of PK data, the one compartment model or multi-

compartment analysis with nonlinear mixed effects models (NLMEM) are increasingly used in 

drug development.[18] 
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We will use the widely cited example of drug theophylline,[19][20][21] which has serum 

concentrations  measured at 11 time points over a 25 hour period in 12 subjects to illustrate the 

NCA method and compare the results with that of a one compartment model. 

 

3.3   One Compartment Model 

Compartmental modeling in pharmacokinetics estimate the concentration- time curve using 

kinetic models that depend on the rate of drug distribution to the different parts of the body.[15] 

In a one compartment model, the drug is considered to be distributed instantaneously into all 

parts of the body. The simplest case, if i.v. drug is received, it instantaneously equilibrates within 

the compartment and is eliminated at a constant rate ek . For a concentration measure ( )C t , first-

order kinetics is assumed: ( ) ( )e
dC t k C t

dt
= −  where 0ek >  is the elimination rate constant. We 

get ( ) (0)exp( )eC t C k t= −  where C(0) is the initial concentration. The elimination rate is h-1, per 

hour. (0) (0) /C X V=  is the initial amount of dose in mg per unit volume in L, where V is the 

volume distribution.  

 

 

Figure 6  One compartmental model with i.v. administration. 
 
 

 

 

 

i.v. ek  
Central 
Compartment 
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Figure 7  One compartmental model with extravascular administration. 
 

For extravascular (such as oral) administration, the body receives the drug and is absorbed at 

constant rate ak  proportional to the amount of drug available for absorption. The drug 

instantaneously equilibrates within the compartment and is eliminated at a constant rate ek . The 

first-order differential equations that govern the amounts 1( )X t : 1
1

( ) ( )a
dX t k X t

dt
= − , and 2( )X t : 

2
1 2

( ) ( ) ( )a e
dX t k X t k X t

dt
= − .The initial amounts are 1(0)X D=  and 2(0) 0X = ; at time t, the 

drug amount in the absorption depot is: 1 1( ) (0)exp( )aX t X k t= − , as shown in Figure 6; and the 

drug amount in the central compartment is ( )1
2

(0)
( ) exp( ) exp( )a

e a
a e

k X
X t k t k t

k k
= − − −

−
, as shown 

in Figure 7. Note that this equation makes sense only when a ek k> . The focus is on the equation 

of central compartment, which can be expressed as the concentration equation: 

( )( ) exp( ) exp( )
( )

a
e a

a e

k D
C t k t k t

V k k
= − − −

−
. 

From the equations /ek CL V=  and  (0) ( )X Oral dose F= × , an operational expression of drug 

concentration in the central compartment at time t is  

( )( )
( ) exp( ) exp( )

( )
a e

e a
a e

k k oral dose F
C t k t k t

CL k k
×

= − − −
−

. 

input ak  ek  Absorption 
depot, 1( )X t  

Central  
compartment, 

2( )X t  
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The unknown parameters are ,ak  ,ek  CL  that must be estimated from observed concentrations

{ ( ) : 0,1, , }C t t m= … in individuals over a grid of time points.  

 

3.3.1  AUC estimation. From the equation of the drug concentration, the AUC is defined as

0
( )AUC C t dt

∞
= ∫  and also denoted by (0 )AUC −∞ . From the formula for ( )C t  we get 

( )
0

( ) exp( ) exp( )
( )

( ) 1 1 ( ) .
( )

a e
e a

a e

a e

a e e a

k k oral dose FAUC k t k t dt
CL k k

k k oral dose F oral dose F
CL k k k k CL

∞×
= − − −

−

 × ×
= − = −  

∫
 

Only if the underlying pharmacokinetic model is identified, can the parameters be accurately 

estimated, otherwise this method of estimation is not to be recommended.[22] 

 

3.3.2  maxT  and maxC  estimation.. Since maxT  is the time to maximum concentration we 

obtain the maximum value of ( )C t  by solving ( ) 0dC t
dt

=  and showing that the unique solution is 

indeed the maximum value. 

( )( )( ) exp( ) exp( )
( )

a e
e e a a

a e

k k oral dose FdC t k k t k k t
dt CL k k

×
= − − + −

−
. 

The derivative is a continuous function; at t=0 it is positive; as t → +∞, the derivative approaches 

zero. When a ek k> , the solution maxT  is given by 
( )

max
log /a e

a e

k k
T

k k
=

−
.  

To obtain maxC : 
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( )max max max
( )

( ) exp( ) exp( )
( )

a e
e a

a e

k k oral dose F
C T k T k T

CL k k
×

= − − −
−

. 

Although we defined 
0

( )AUC C t dt
∞

= ∫ , another quantity of interest is  

max
max

( )(0, ) 0
TAUC C t dtT = ∫ . 

Using the formula maxmax
0

1 exp( )
exp( )T a

a
a

k T
k t dt

k
− −

− =∫  and repeating the previous calculation 

gives 

( )max
(0, )max 0

max max

max

( )
exp( ) exp( )

( )

( ) exp( ) exp( )1 1
( )

( ) exp( ) exp( )
( )

Ta e
T e a

a e

a e e a

a e e a e a

a e e

a e e

k k oral dose F
AUC k t k t dt

CL k k

k k oral dose F k T k T
CL k k k k k k

k k oral dose F k Toral dose F
CL CL k k k

×
= − − −

−

  × − −
= − − −   −   

× −×
= − −

−

∫

max( )a

a

k T
k

 −
 
 

 

The first term on the right hand side is (0, )AUC ∞  that was calculated previously. 

 

3.3.3  1/2T  (half life) estimation. The half-life 1/2T  is the time from maxT  to reach one-half of 

the maximum concentration maxC . Initially at t=0 the concentration is zero. With the passage of 

time the concentration ( )C t  increases to a peak maxC  at time maxT  and then ( )C t  declines to 

zero asymptotically. 

The relationship between elimination rate constant ( ek ) and half-life ( 1/2T ) is: 

1/2

log 2
ek

t
= . 

The half-life ( 1/2T ) is determined by clearance ( CL ) and volume of distribution (V): 
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1/2
log 2 VT

CL
×

= . 

An objective of PK studies is to obtain estimates of parameters from observations of 

concentrations { ( ) : 0,1, , }C t t m= …  in individuals over a grid of time points. The 

parameterization may allow for some parameters to be individual-specific which makes them 

random effects instead of pure constants.  

 

3.3.4  Application. Take the widely cited example of drug theophylline,[19][20][21] serum 

concentrations  measured at 11 time points over a 25 hour period in 12 subjects. First the NCA 

method is used to estimate the PK parameters, comparing the results from the one compartment 

model. As described above, the one compartment model is used to estimate the PK parameters, 

and then estimates of AUC, maxC  and maxT  are derived from the formulas. Among the benefits 

of the one compartment model analysis is that the PK parameters are estimated together with 

their standard errors and 95% confidence intervals. In addition individual (subject-specific) 

prediction of drug concentration can be made. 

 

3.3.5  Model for ( )C t . Assume normal distribution for ( )C t  given ( , , )a ek k CL .  The parameters 

( , )ak CL  are subject-specific, i.e., random effects, but ek  is a fixed parameter. All parameters 

are transformed to their logged form: ( )alog k , ( )elog k  and ( )log CL ;and the random effects 

are jointly normal and independent of the error term in ( )C t . 

Therefore, formally the model is described by the equation (for one subject) 

( )( )( ) exp( ) exp( ) ( )
( )

ε
×

= − − − +
−

a e
e a

a e

k k oral dose FC t k t k t t
CL k k
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where 

(i) the error term(s) ( )ε t  are serially independent (within subject), normally distributed, mean 

zero and variance 2
εσ  . 

(ii) 1 1( ) ,CLl g bo β= + ( ) 2 2 ,a blog k β= + ( ) 3,elog k β= with 1β , 2β , 3β  as fixed parameters, 

1,b  2b  as subject-specific random effects — means 0, covariance matrix Σ  (3-parameters 

2 2
1 2 12, ,σ σ σ ). 

(iii) 1 2( , )b b  independent of the error term. 

Across subjects independence is assumed. Hence we can construct a joint likelihood for the 

sample data { ( ) : 0 ,1 }τ≤ ≤ ≤ ≤iC t t i n  for the n=12 subjects with 11 concentrations assessed at 

the same grid of time points from (0, 25hr). 

Maximum likelihood estimation (MLE) provides estimates of all model parameters and their 

covariance matrix. There are 7 parameters: 1β , 2β , 3β , 2
1 ,σ  2

2 ,σ  12σ , 2
εσ .The formulas for 

AUC, maxC  and maxT  for the compartment model now give their estimates. Because ( , )ak CL  

is individual-specific, we will get individual- specific estimates for the PK parameters. The 

additional big advantage of the compartment model is the calculation of standard errors of these 

estimates. 

Table 13 shows the 0 infAUC −  calculation by NCA approach, and AUC estimates by 

compartment model. It shows the values estimated by these two approaches are very similar 

except subject 1 and subject 10.   
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Table 13  Comparison of AUC by NCA and compartment model based estimates 

  NCA Compartment model based estimates 

Obs subject 0 infAUC −  AUC Stderr 
AUC 

Lower 
95% CI 

Upper 
95% CI 

1 1 270.004 144.816 7.00102 129.217 160.416 
2 2 95.050 110.005 5.87935 96.905 123.105 
3 3 107.599 111.415 5.95405 98.148 124.681 
4 4 121.926 118.535 6.25209 104.604 132.465 
5 5 146.878 137.689 6.62215 122.934 152.444 
6 6 87.877 87.023 5.54399 74.670 99.376 
7 7 115.931 106.554 6.28655 92.547 120.561 
8 8 104.732 102.774 5.87002 89.695 115.853 
9 9 96.641 95.818 5.34297 83.914 107.723 

10 10 207.536 154.629 7.40864 138.122 171.137 
11 11 85.472 96.932 5.54048 84.587 109.277 
12 12 126.815 141.073 6.77517 125.977 156.169 

 

 

Figure 8  Individual concentration profiles by NCA. 
 

Figure 8 shows individual concentration profiles by NCA, AUC of subject 1 and subject10by 

NCA are higher than AUC of most subjects. Higher lastC of these 2 subjects explains the higher 

AUC by NCA, and furthermore, explains the discrepancy of AUC by NCA and compartment 

model analysis. 

AUC=270 

AUC=207 
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Table 14  Comparison of maxC  by NCA and compartment model based estimates 
  NCA Compartment model based estimates 

Obs subject maxC  maxC  Stderr 
maxC  

Lower 
95% CI 

Upper 
95% CI 

1 1 10.50 10.3420 0.33180 9.60273 11.0813 
2 2 8.33 8.2205 0.32169 7.50370 8.9372 
3 3 8.20 8.3918 0.32066 7.67732 9.1063 
4 4 8.60 8.2855 0.31677 7.57966 8.9913 
5 5 11.40 9.8981 0.32666 9.17026 10.6259 
6 6 6.44 6.1226 0.30897 5.43414 6.8110 
7 7 7.09 6.9453 0.31625 6.24068 7.6500 
8 8 7.56 7.3470 0.31939 6.63534 8.0586 
9 9 9.03 7.7379 0.31140 7.04408 8.4318 

10 10 10.21 9.7244 0.31813 9.01554 10.4332 
11 11 8.00 7.5903 0.32118 6.87468 8.3060 
12 12 9.75 9.5540 0.32690 8.82562 10.2824 

 
Table 15  Comparison of maxT  by NCA and compartment model based estimates 

  NCA Compartment model based estimates 

Obs subject maxT  maxT  Stderr
maxT  

Lower 
95% CI 

Upper 
95% CI 

1 1 1.12 2.10624 0.18124 1.70241 2.51008 
2 2 1.92 1.57581 0.16126 1.21650 1.93511 
3 3 1.02 1.48354 0.17806 1.08680 1.88028 
4 4 1.07 2.35712 0.21209 1.88455 2.82969 
5 5 1.00 2.02911 0.15872 1.67545 2.38277 
6 6 1.15 2.28098 0.27775 1.66212 2.89984 
7 7 3.48 3.17439 0.32442 2.45154 3.89723 
8 8 2.02 2.09445 0.22878 1.58470 2.60420 
9 9 0.63 0.66861 0.13729 0.36270 0.97452 

10 10 3.55 3.59319 0.26621 3.00003 4.18634 
11 11 0.98 1.02902 0.15033 0.69407 1.36397 
12 12 3.52 2.72684 0.20907 2.26101 3.19268 

 

Similarly, the maxC  and maxT estimates by NCA approach and compartment model are shown in 

Table 14 and 15. It indicates the values estimated by these two approaches are very similar. 

Our analysis shows the benefits of parameter estimation and subsequent statistical inference with 

an appropriate compartmental model, even though the model fitting could be a little complicated. 
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This pharmacokinetic model is well identified; the parameters can be accurately estimated. If it 

failed AUC estimation is recommended by NCA.[22] Failure to fit a compartment model to a 

given data set could be due to many factors. As seen the statistical model is highly non-linear, 

introduction of too many random effects can be problematic if the data set cannot support a 

complex structure. A good approach would start with a ‘fixed’ parameters model to obtain initial 

parameter values for building a more complex model. A few attempts might be needed before a 

stable model can be obtained. 

Extension beyond a one compartment model is possible. Two-compartment models view the 

body as a central compartment that receives the drug with transfer from the central compartment 

to a peripheral blood compartment that absorbs the drug. Transfer in the opposite direction from 

peripheral to central is also possible. Elimination occurs from the central compartment. 
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CHAPTER 4 DISCUSSION 

 

 

The objective of this thesis is to review the standard approaches to statistical analyses of 

pharmacokinetic (PK) data. It covers estimation of Area Under the Curve (AUC), Peak 

Concentration ( maxC ) and other PK parameters and how a bioequivalence (BE) study can be 

conducted with crossover design. Parameters such as AUC and maxC  are the key parameters in a 

PK study and used for bioavailability and bioequivalence. They are identified as population 

parameters and estimated from observed drug concentration-time profiles. 

 

The assessment of AUC adopted by the Food and Drugs Administration (FDA) is the Non-

Compartmental Analysis (NCA) approach that estimates AUC using the trapezoidal rule without 

making any assumption concerning the number of compartments. Following the trapezoidal rule, 

concentration-time curve is considered as a series of trapezoids and the AUC estimate is the total 

area of all the trapezoids. The other approach is based on compartmental models.  

 

The one compartment model is used to estimate the PK parameters, such as Absorption Rate 

Constant ( ak ), Elimination Rate Constant ( ek ) and Clearance (CL). They can be estimated from 

observed concentrations { ( ) : 0,1, , }C t t m= …  in individuals over a grid of time points, and then 

estimates of AUC, maxC  and maxT  are derived from formulas. They show the benefits of 

parameter estimation and subsequent statistical inference with an appropriate compartmental 

model, even though the model fitting could be a little complicated. Among the benefits of the 

one compartment model analysis is that the PK parameters are estimated together with their 
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standard errors and 95% confidence intervals.  In addition individual (subject-specific) prediction 

of drug concentration can be made. For Pharmacokinetic/Pharmacodynamic modeling, the 

compartmental pharmacokinetic models are widely used, providing continuous description of the 

drug concentration that can serve as the input of pharmacodynamic models.[23] 

 

Fitting of compartmental models can be a complex and lengthy process. As seen the statistical 

model is highly non-linear, introduction of too many random effects can be problematic if the 

data set cannot support a complex structure. A good approach would start with a ‘fixed’ 

parameters model to obtain initial parameter values for building a more complex model. A few 

attempts might be needed before a stable model can be obtained. If it failed AUC estimation is 

recommended by NCA.[22] 

 

The widely cited example of drug "theophylline" data[19][20][21] is used to illustrate these two 

approaches.  Comparison of the PK parameters by NCA and one compartmental model shows 

the parameters estimated from these two methods are very close, the model is identified. Only 

when the underlying pharmacokinetic model parameters are identified, can  AUC be accurately 

estimated, otherwise AUC estimation is recommended by the NCA. 

 

BE studies are widely carried out in the pharmaceutical industry. For small molecule drug 

products, a bioavailability and bioequivalence study are required by FDA for approval of generic 

drug products, which contain the exact same active ingredient as the innovator drug. Biosimilars 

are large molecule biological drug products made via living systems. As generic forms of 
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biological products instead of the classical generic drugs, biosimilars are only similar to the 

reference product; with no exactly the same active ingredient as the innovator drug. The more 

stringent assessment include safety, purity, and potency, to show that a follow-on biologic is not 

clinically different from the reference biological product.[24] 

 

Average bioequivalence (ABE) is based solely on the comparison of population averages but not 

on the variances, while population bioequivalence (PBE) and individual bioequivalence (IBE) 

approaches include comparisons of both averages and variances. For statistical analyses in a 

bioequivalence study, we used the "pkdata" example with AB|BA design to illustrate how the 

crossover design is applied and ABE is tested. SAS procedures PROC TTEST and PROC 

GLIMMIX are applied to the logarithm-transformed AUC and maxC  to estimate ABE. Available 

from a public resource even though there are quality issues in this data, the "pkdata" example is 

the reasonable example of data with blood concentration time profiles, from which we can 

estimate AUC and maxC , the two key parameters to compare in the BE study.  

 

The deficit of the data for BE study includes: (1) For a AB/BA design, since there are only 4 

combinations of periods and treatments, the period effect in this particular parameterization is 

aliased with the carryover effect.[25] Our results show that there is period effect when comparing 

maxlog( )C for A and B. There is no information available if there is carryover effect,  therefore,  

it is not  clear if the period effect is a real period effect. The purpose of this thesis is to illustrate 

how a bioequivalence (BE) study can be conducted with crossover design, so we claim there is 

no carryover effects. (2) For the AB/BA design, it is not well-suited for comparison of the 
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within-unit variance 2
Aσ  and 2

Bσ
[25] in the statistical model, we have only have one common 

variance 2
εσ  for treatment A and treatment B. Therefore, total variance of A and B cannot be 

calculated.  The "pkdata" example cannot be used for Population BE and individual BE study. 

We will need a replicated crossover design.[3] 

 

In recent years statisticians in the pharmaceutical industry have given attention to developing 

strategies for statistical analyses for Biosimilars and Biobetters. The FDA recently (April 2015) 

issued guidance on the scientific issues to be considered in demonstrating biosimilarity to a 

reference product.[26] The FDA’s definition states: Biosimilar or biosimilarity means that “the 

biological product is highly similar to the reference product notwithstanding minor differences in 

clinically inactive components,” and that “there are no clinically meaningful differences between 

the biological product and the reference product in terms of the safety, purity, and potency of the 

product.” 

 
Therefore, the role that crossover designs have in bioequivalence demonstration on a single 

endpoint or outcome measures must now be expanded in ways to assess multiple endpoints and 

measures.  It will bring biostatisticians and methodologists in pharmacology together to craft the 

statistical designs and studies for clinical evaluations  that can answer these questions. 
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