


ABSTRACT

COMPUTATION OF OPTIMLL

CONTROLS FOR NONLINEAR SYSTEMS

VIA GEOIETRIC SEARCH

By

Richard Blain Stratton

This thesis develops computational procedures for

determining optimal controls for a rather general class

of nonlinear systems. The procedures combine the general

applicability of search techniques with the more rapid con,

vergence of reachable set-oriented methods. Example prob-

lems and numerical results are given for the algorithms

developed.

The minimum distance problem is principally considered

although the time optimal control problem is also discussed.

Extensions to other control problems are also possible. For

the minimum distance problem, all optima lie on the boundary

of the reachable set—-the collection of attainable system

states for a specified final time.

Reachable sets resulting from linear systems are con,

vex, and the optimum final state is well-defined and in most

cases unique. For nonlinear systems, however, the resulting

reachable sets are, in general, nonconvex. As a result,

there may be many boundary points on the reachable set which.

are optima in a local sense. The global optima or optimum,a

if unique, are found within this collection of local optima.

Since the reachable set may not be convex, many of the pre-
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viously developed reachable set techniques are not easily

applied. Thus a relatively new approach is taken.

To evaluate each control which is considered, several

error functions are developed which depend on the collin~

earity of the final adjoint and the final state at an opti-

mum. In as much as an explicit expression for the boundary

of the reachable set is not available, principles from dif-

ferential geometry are used to define a path on the boundary

of the reachable set. A sequence of final system states for

which the error functions decrease monotonically to the op-

timum value characterizes the path.

Because of the fact that the reachable set is defined

implicitly through the system differential equation, it is

not possible to write an explicit equation for this path.

Hewever, an algorithm to determine an optimum final state is

developed utilizing an approximation to the path. Because

of the approximate nature of this path, several alternative

decisions relating to the algorithm are considered and their

relationship to the error functions are investigated.

Some special problems pertaining to reachable set char—

acteristics are discussed and shown to be related to the

global problem--that of find a global optimum. To treat the

global jproblem, a random sequence of starting points are

generated as a basis for each determination of a local opti-
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Several example nonlinear systems are considered and

algorithm alternatives are compared. Example computational

results for a variety of applications are given as are exam-

ple reachable sets and trajectories. A summary of the theo-

retical and computational results for the algorithms devel-

Oped in this thesis is presented in the concluding section.
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CHAPTER 1

INTRODUCTION

The traditional approach to the investigation of con-

trol systems has evolved significantly in the past twenty

years. The criteria previously used for evaluating systems

have changed as have the approaches used to insure that a

system has desirable performance characteristics. Concepts

such as rise time and steady-state error are being sup-

planted with performance functional, target set, control

constraints, etc. Bode, Nyquist and root-locus procedures

are being supplemented by various other theoretical and

computational methods. The newer concepts of modern opti-

mal control theory are used in addition to the classical

control principles.

Together with this evolution in concepts, terminology

and methods, there has been a change in the computational

methods utilized to solve problems. These are becoming

much.more computer-oriented because of the advent of com-

puters which are faster and have greater capacity.

As a result of this increased use of computers in

solving optimal control problems, many computational tech-

niques have been presented [Tl]. These methods, though

related, have some significant differences. Dynamic pro-

gramming, which was developed by Bellman [B3] and others

is one approach. The methods of linear and nonlinear pro-



gramming [H1,Zl] are appropriate for certain static opti-

mization.problems. Another major class of procedures in,

cludes gradient methods [B7,Nl] and search methods [H6]

which.attempt to "directly" minimize the performance func-

tional.

In 1958 Soviet Union mathematicians led by Pontryagin

[P2] presented the important maximum principle which is a

necessary condition for optimality. Its impact on control

theory has been great. Many computational methods involve

the determination of a solution to the two-point boundary

value problem generated by the maximum principle [D1,K1,Pl].

Closely related to these approaches are those which utilize

properties of the reachable system states and the related

adjoint system vectors [B2,E1,G1,H5,N2]. These concepts

are basic to the work of this thesis.

Initially, optimal control problems and the associ-

ated computational methods were applicable only to low or-

der, linear systems for which time optimal or minimum error

regulator solutions were desired. Recently, however, empha-

sis has been.placed on more complex systems--systems of

higher order and systems which are nonlinear or stochastic

in nature. Hereover, an additional objective has been to

increase the computation speed for determining an.Optimal

control.

The subject area for this thesis is the computation of

optimal controls for nonlinear systems. Within this general



area, several approaches have been suggested. By far the

most Obvious is a linearization [H7,Ll] of the systems such

that existing linear methods can be utilized. Here subtle

linearizations include the methods of successive approxima-

tions applied to the system, to the control or to the reach.

able set [H2,K2].

Other techniques for nonlinear systems include direct,

random and pattern search. The method of quasilinearization

in.which time-independent nonlinear systems become time-

dependent linear systems is sometimes employed [Bh,B5].

The approach to be used in this thesis combines direct

search methods with reachable set techniques. A feature of

direct search procedures is general applicability to a wide

class of problems. By utilizing the geometrically-oriented

reachable set concepts, more efficient computational pro-

cedures can be obtained.

The application of reachable set techniques to the

optimization of nonlinear systems is relatively new. The

resulting reachable sets are usually not convex, hence

existing techniques for convex sets must be significantly

modified. Another difficulty is the lack of useful examples

and computational data for comparison. Thus, one contribu-

tion of this thesis is providing data for example nonlinear

problems and reachable sets. The minimum error regulator

problem is primarilyexamined but, as has been shown [B1,Fl],

solution to more complex problems can.be based upon the
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successive solution of this basic problem.

Often thesis tOpics are generated by an attempt to find

the solution to a specific physical problem or by restrict-

ing the system considered to a very specialized class. While

such a restriction often.yields a definite mathematical

structure, it results in a method which is, as expected,

restricted in the area of application. On the contrary, the

approach of this thesis is general in the physical applica-

tions which can be treated and in the rather general form of

the nonlinear equations. It should be noted that such a

general approach does not preclude specific applications--

as is evident from the examples which are included.

This dissertation may be outlined in the following man-

ner. Chapter 2 includes comments relative to notation and

basic definitions. The systems and problems to be consid-

ered are also defined. The important maximum principle is

introduced as are the concepts of normality, extremality and

optimality. Also in Chapter 2 the reachable set is defined

and related properties are given. Finally, the modified

(for nonconvex reachable sets) minimum distance problem (HP)

and the associated local optimum problem (LP) are defined.

Reachable set computational methods are discussed in

Chapter 3,_particularly as they apply to problems involving

nonlinear systems. Preparatory to the introduction of an

algorithm to solve the local minimum distance problem, sev-

eral error functions are developed. They emphasize the



collinearity of the Optimum final state and adjoint vectors.

A direct search algorithm is given.which utilizes these

error functions to evaluate convergence.

Also in Chapter 3 various concepts from differential

geometry are presented and are used in the development of a

geometric search procedure for computing optima. The previ-

ously defined error functions are shown to decrease mono-

tonically along paths defined on the boundary of the reachp

able set. Various algorithm alternatives are discussed as

they relate to effective boundary path selection. Con»

cluding Chapter 3 is an algorithm based on geometric search,

to determine the optimum in a locally convex subset of the

reachable set.

In Chapter h, the global optimization problem is OOH!

sidered. In this case there may be many local optima. Re-

lated to the global problem are several special cases which

are also discussed. A global minimum distance procedure is

then presented and its application to time optimal control

problems is demonstrated.

In.Chapter 5 example nonlinear problems are given.

Reachable sets and typical trajectories are also presented.

Within the algorithms, alternative choices are compared and

general computational results are given for the local and

the global problem. Finally, conclusions relating to the

computational results and the developments of previous

chapters are discussed.

' I



CHAPTER 2

PROBLEM FORMULATION AND REACHABLE SET CONCEPTS

A discussion of systems and optimal control problems

can.be approached in any one of several ways. One approach

is to start with a basic, simple system and later extend

the discussion to more general systems. In this chapter,

however, the more general formulation is first introduced

and then specialized as needed. System and control assump-

tions necessary for future development are also introduced.

Knowledge of many common optimal centrol concepts,

such as target set, performance functional, etc., is as-

sumed and only discussed as deemed necessary or instructive.

The reachable set is defined and important related results

are summarized. In the last section of this chapter, an

introduction is given to the basic problems to be solved.

2.1 Notation and Terminology

Let En denote npdimensional Euclidean.space. No spe-

cial notation is used to distinguish between scalars and

vectors. lest symbols in this thesis are vectors (for ex-

ample, x, u and p); scalars are so designated as they are

introduced. The components of any vector are denoted by

subscripts, namely, x1, 1 a l,:-:, n.

Let t be a scalar, time. Let [to,.T] denote a general

time interval where to is initial time and T is final time.

lhere any vector, for example x, is a function, x(t), of

6



time, the following abbreviated forms are frequently used:

x(t) = xt’ (2.1)

x(to) . 10 (2.2)

and

x(T) = IT. (2.3)

Where both component subscripts and the time subscripts of

Equations 2.1 through 2.3 are simultaneously used, the com-

ponent subscripts are placed first and the time subscripts

last (for example, xZT). To represent the vector function

x(t) over an interval of time, x(o) is used. The time de-

rivative of x(t), dx/dt, is denoted x(t) and 3x/ at is used

to denote the partial derivative.

Let [a] denote the absolute value of the scalar a.

Let <x , y> denote the inner product of two vectors, x and

y:

n

<1 , y) 3 Elxiyi. (20“)

1::

Let llxl] denote the Euclidean norm of x:

llxu = <<x.x> )i. (2.5)

and thus ”x“ represents the length of the vector x. Since

x may be viewed as either the vector x or the point x in E”,

“x“ also represents the distance of the point x to the

origin. Similarly, [Ix-y” denotes the distance between

the points x and y.

Superscripts are used to denote iteration indices,

1
namely x denotes the x vector for the 1th iteration. To
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denote Optima, superscripts are also used: x+ denotes a

local optimum and x. denotes a global optimum. Optima. are

also indexed, if necessary, using pro-superscripts. For

1x+ represents the it11 local Optimum.example,

Standard set notation is used (I) ,C, 3, etc.) with

one exception: brackets are used to define a set. For

example,

Y=Echn=ll7|l<1L (2.6)

denotes the set of all y in En such that norm y is less

than 1. The boundary of a set V is denoted aY, the com-

plement is denoted Yo and the closure is denoted 1'. A

neighborhood, or open sphere, with center x and radius e,

is denoted N(x;e):

N(x:e) = [y z "7-!“ < e]. (2.7)

A set K in En is convex if for any x1 and any x2 in K,

the point x3 = nxl + (1-n)x2, 051751, x3 belongs to K. A

set K in En is strictly convex if for any x1 and x2 in K,

the point x3 = rrx1 + (l-n)x2, O<rr<1, is in K but not on OK.

If x e R and if

R(xge) a N(x:e)nR (2.8)

is convex, then R(xxe) is said to be a convex subset 9; _t_h_e_

_s__e_t R at x (B may be nonconvex).

The boundary OK of a convex set K is a convex surface.

If K = R(xge), then

Rn(x;e) = [r e R(x;e) : r e OR] (2.9)

is called a locally convex surface a; x. If N(x:e) n in



is convex, then

Rcv(x;e) s [r e N(x;c)fi-RU : r e OR], (2.10)

is said to be a locally concave surface _a_t_ x. If N(x39)nDR

is neither a locally convex surface nor a locally concave

surface, then it is said to be aM surface at x.

The hyperplane (dimension n-l) throgh x _w_i_t_h normal p

is defined as

Q(x;p) = [y e En : <y ,p> - <x ,p> ], p ,4 O. (2.11)

The closed half-space bounded by 91x52) _w_i_t_h outward nOrmal

p is defined as: ‘

Q-(xgp) a: [y e En : <y ,p> S <x ,p> ], pg! 0. (2.12)

Let K be a closed, convex set in E”. A hyperplane such that

K ”an) is nonempty and KCQ-(np) is called a support

gypegplane 3.3 K 1111; outward normal p.

DEFINITION 2.1 L_e1 p e En, let R = R(T)C En be a

nonempty, compact, reachable set (defined in Section 2.5)

l

and let x e E1'1 be such that x e DR.

Case 1 (convex surface): Li: R(x;e) for some e > O is

a convex set, then p lg _e_._n outward norml to R at x, i_f_

p is the outward normal to a support hyperplane to the con-

vex set R(xge) at x.

Case 2 (concave surface): If; N(x:e)n R3 for some

x i; -p is the outward normal to a support hyperplane to

the convex set R(xge) n R5 at x.
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Case mixed surface : .I_f_ N(x:e)n 9R is a mixed

is a final adjoint corresponding to the extremal endpoint

x(T) = x (extremal endpoints are subsequently defined in

Definition 2.b).

Note that there may be many such.p for one x or many x

for one p. See Figure 2.1 for examples of these cases.

The scalar signum function, sgn, is defined by:

sgn (a) = 1 a > O. (2.13)

[sgn (a)| S 1 a = O, (2.1h)

sgn (a) = -1 a < O. (2.15)

The vector signum function is denoted SGN and is defined

as:

sgn'(x1)

SGN (x) = Z . (2.16)

  Ls gno' (xnL

2.2 System Definition

Consider a system whose state at any time t is de-

scribed by the solution.x(t), to S t S T, to the following

nonhomogeneous,.nonlinear, vector differential equation:

. A

X(t) = f(t,x(t),v(t),W(t)), 1(to) = x0, (2.17)

where:

t represents the independent variable, time,

x(t) e En is the state vector,

x(t) is its time derivative,
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p1

 
a. Case 1 - Strictly Convex b. Case 1 - Convex but has

”flats" and a ”corner” (See

Section.h.2)

 

i”

N(x;e) ‘/ x1 p1

\R 1’2 a

\ x2 /

4’
\\_/,

c. Case 2 - Concave d. Case 2‘- Concave with

"flats“ and a ”corner"

  
e. Case 3 - Mixed with corners f. Case 3 - Mixed

FIGURE 2.1 Outward Normals for Various subsets and Sets
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x0 is the initial state

v(t) e Em is the control vector defined on a

compact interval of E1, namely, I = [to,T],

w(t) e Eq is the parameter vector defined on I,

f('.°,',') is an npdimensional vector function

defined on I x En'x Em x Eq.

In the development to follow, v(t) and w(t) are treat-

ed as one composite control vector, u(t), i.e.,

v(t)

u(t) = (2.18)

w(t)

where u(t) is an m + q = r-dimensional vector defined on 1.

Thus Equation 2.17 becomes:

x(t) = f(t,x(t),u(t)), x(to) = x0, (2.19)

where f(-,-,-) is an npdimensional vector function defined

on I x En‘x Er. Unless otherwise specified, the term "con.

trol" will hereafter refer to the composite vector, u(t).

Let U’be a nonempty compact set in Er. A measurable func-

tion u(-), defined on I with range space U is said'to be an

admissible control and F is used to denote the family of

admissible controls.

In order that the solution exists, is unique and con-‘

tinuous [A1] for all u(-) in F, additional assumptions are

introduced:

H1) f(t,x(t),u(t)) is continuous on I x o x U,

where e is a nonempty open set in E“,
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H2) for any x in e, u in U and t in I, f(t,x,u) e Cl,

(i.e., the first partial derivative with re-

spect to x is also continuous).

For linear systems it can be shown that a unique, global

solution exists, but for nonlinear systems only a local

(unique) solution can be proven. Note that the assumption

of measurability for u(-) is often replaced with the strong-

er assumption that u(-) is piecewise continuous. Note also

that H2) is often replaced with the Lipschitz Condition:

H2‘) There exists an integrableAfunction K(-) on I

such that:

[I f(t,x,u)-f(t.y.u) [I S R(t) [Ix-y”, (2.20)

for any x and y in 9, u in U and t in I.

The stronger assumption H2) is used since it is necessary

for proving convergence to a local optimum.

Additional assumptions are required for some of the

results. In another section of this chapter the reachable

set R(t) is defined. To guarantee that R(t) is compact and

varies continuously with time (hence to guarantee the gens

eral existence of the optimal control) the following two

conditions (boundedness and convexity) are necessary [L2]:

H3) III”) II S B for any t in 1, any u(-) in F

(uniform bound).

Rh) V(t,x) = [f(t,x,u) : u e U] is convex for each

fixed x and t.
q

The assumptions listed above are not excessively re—

strictive. For instance, consider one of the most often

used families of admissible controls, F1, corresponding to
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the range space U1 in which each component of u(-) has

absolute value less than or equal to l on 1:

U1 = [y e Er : |y1| S 1, i = l,'-',r]. (2.21)

Certainly this control satisfies the requirement that U'be

compact and simplies the fulfillment of Rh). Further, if

the control is a vector signum function of a continuous

argument, (then u(-) ‘is certainly measurable.

2‘3 Optimal Contgol‘Problem Definition

In addition to the system description and the class of

available control functions, the optimal control problem

also includes a prescribed set of conditions (final and

sometimes initial) and a performance functional to be opti-

mized. The initial conditions for time and state were pre-

viously given as to and x(to) = x0, respectively. The final

conditions are often determined by a target set G for the

problem. For example, xT e G(T) may be required where G(o)

is a nonempty set in En for each t e 1. Thus the general

Optimal control problem is as follows:

PROBLEM’2,1: Qiygg: the system (Equation 2.19), the

class F of admissible controllers, and the performance func—

tional

T

t
0

where K(o,-) is a continuous function from E1 x 9 to E1,

and L(-,-,-) is a continuous function from I x e x U to E1.
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Find: a control function, u*(o) in F which optimizes (maxi-

mizes or minimizes) the performance functional while satis-

fying Equation 2.19 and the prescribed set of conditions.

It should be emphasized that an optimal control u‘(o) which

generates an optimal trajectory x*(-) need not be unique.

2.h Minimum Regulator Problem

In preparation for more complex problems, initial

attention is given to the minimum regulator problem. For

this problem, given a specific final time T, a control

which drives the state xT closest to the origin is an

optimal control. Specifically, the problem is defined

as follows:

PROBLEM 2,2: Q1122: the system (Equation 2.19), the

class F of admissible control functions, final time T and

the performance functional

J(to,T,x,u) = K(xT) = 1le“, (2.23)

,Eigg: a control function u'(-) in.F which.mdnimizes K(xT)

while satisfying Equation 2.19.

2.5 Reachable Set Dgfinition

In much of the discussion to follow, the concept of

the reachable set is important. For example, many system

characteristics are directly related to properties of the

reachable set. In fact, the search for a solution to Prob-

lem 2.2 may be viewed as a search along the boundary of a

reachable set.
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For each u(o) belonging to F there corresponds a

trajectory, xn(o) (a solution to Equation 2.19), which

originates at x0 and terminates at xu(T).

DEFINITION 2.2 The reachable (attainable or ob-

tainable) gel at time t e I, denoted R(t), is the set of

all states which can be reached at time t utilizing admis-

sible controls, i.e.,

R(t) a [x 3 En : x a xu(t), u(-) e F]. (2.21.)

Let R(-) designate the reachable set as a function of

time on the interval 1. As previously indicated, c)R(t)

represents the boundary of the reachable set at time t

and let DR(o) designate' the boundary of the reachable set

on the time interval 1. For most problems it is nearly

impossible to give an explicit formula for c)R(t). Certain

general properties of R(t) are known and are described in

SoCtion 2. 8 e

2.6 Pontryagin's Maximum Principle

Consider now, Pontryagin's Maximum Principle [P2] and

its relationship to the optimal control problems previously

introduced. The statement of the maximum principle varies

with the nature of the problem, specifically with the na—

ture of the prescribed conditions and the performance func-

tional. There are, however, several essential concepts in

the description of the maximum'principle regardless of the

nature of the problem. These include the Hamiltonian

function:
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H(t,1(t) .u(t) .p(t)) 1' L(t,x(t) w(t)) + <p(t) ,f(t.x(t),u(t))>

(2.25)

with the associated Hamiltonian differential system:

i“) g ggt,x(t),u(t).p(t)) (2.26)

{w(t) = - gflmflfluhpm), (2.27)

where p(t) is a nontrivial solution of the differential

systems called the adjoint or the costate response. In

the event that L(t,x(t),u(t)) is independent of x(t) (for

instance, constant, as in the case of time optimal control

problems), the adjoint equation.(Equation 2.27) becomes:

in.) = - gghflflmfin p(t) (2.2a).

because the partial derivative of L is zero. In fact,

this is the same adjoint equation which one would Obtain

if L(t,x(t),u(t)) = O, i.e. if the Hamiltonian function

were ”unaugmented”:

H(t,x(t),u(t)) = <p(t) , f(t,x(t),u(t)) > . (2.29)

Utilizing this unaugmented Hamiltonian function and the

adjoint equation (Equation 2.28) above, the following

theorem results [L2]:

THEOREM 2,1 Consider the process given in Equation

2.19 with assumptions H1) through.H3). 1L2: u'(-) belong

to F and have the response x'(o) with x'(T) on the boundary

of the reachable set, R(T).

‘ghgg there exists a nontrivial adjoint response p'(o) of

Equation.2.28 such that the maximum condition holds almost
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everywhere:

R(t,x'(t).n'(t).p'(t)) = u(t,x'(t).p'(t)). (2.30)

where

u(t.x(t).p(t)) a max R(t.x(t),y,p(t)). (2.31)

yeU

This theorem is proved for autonomous systems in.Loe and

Markus [L2], page 25“ and is extended to nonautonomous

systems on page 318 and following pages.

Before discussing this theorem in relation to the op-

timal control, consider the following theorem which is a

general existence theorem for optimal controllers [L2].

THEOREM 2,2 Consider Problem 2.1. ‘22; the target

set G(t) in En'be a nonempty, compact set which varies conp

tinuously for all t in 1. ‘L21 the family of admissible

controllers, F, be nonempty. Further, 121.Hypotheses H1)

and H2) aPPIY.

‘Thgg there exists an optimal control, u'(-), in F, on I

minimizing J(tO,T,xu,u).

Before relating the results of the preceding two theo-

rems, consider the following terminology.

DEFINITION 2,} Controls which satisfy the maximum

principle (Equation 2.30) are called maximal controls. The

resulting trajectories are maximal trajectories and termi-

nate at maximal endpoints.

DEFINTION 2.b Controls which result in trajectories

terminating on the boundary of the reachable set are called

extremal controls and the corresponding trajectories are
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extremal trajectories. The boundary of the reachable set

thus consists of extremal epgpoints.

DEFINITION 2,5. Controls which minimize J(to,T,xu,u),

as stated in Theorem 2.2, are optimal controls. The corre-

sponding trajectories are called optimal trajectories and

terminate at optimal epgpoints.

Theorem 2.1 asserts that state trajectories terminate

on the boundary of the reachable set (extremal trajecto—

ries)‘pplz.1£ the Hamiltonian is maximized. For nonlinear

systems trajectories corresponding to controls which sat-

isfy the maximum principle (maximal controls) do not neces-

sarily terminate on the boundary of the reachable set. For

linear systems, however, maximal controls are also extremal

controls.

A third important and well-known theorem is the follows

ing which asserts that all optimal controls are extremal

controls. .

THEOREM 2.2 ‘Lpt the hypotheses of Theorem 2.2 apply.

Let u‘(.) be an admissible control with corresponding tra-

jectory x‘(.) fromxO to G(T). gppp the control u*(.) is

optimal pplz‘ig it is extremal.

This theorem is proven.in Lee and Markus [L2,page 310] and

in.Athans and Falb [A1, page 305], among others.

Theorem 2.2 states the existence of an optimal control

but does not guarantee that such a control is uniquw. Be—

cause of Theorem 2.3, Theorem 2.2 also indicates the
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existence of at least one extremal control. In general, of

course, there are many extremal controls. It is also pos-

sible that several distinct extremal controls could generate

the same extremal endpoint. The terminology relating opti-

mal, extremal and maximal endpoints is illustrated in Fig—

ure 2.2.

Maximal

Endpoints

(/ \
‘ Origin

\_/ wuml

 

 

3R(T)=Extrema1 Endpoints

FIGURE 2.2 Epgpgint Terminologz and the Reachable Set R(T)
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Since the reachable set represents all possible tra-

jectory endpoints, one possible means of locating an opti-

mal trajectory would be to examine the entire reachable

set--a prohibitive procedure in the case of higher order

systems. It should be noted, however, that it is possible

to examine the boundary points of the reachable set by con_

sidering all maximal endpoints. Certainly this consider-

ably reduces the computations necessary to determine an

optimal control, but for higher order systems, such an.ex-

amination would still include a prohibitive number of pos-

sible trajectory endpoints. It should also be repeated

that interior points of R(T) might also exist as maximal

endpoints (See Figure 2.2).

Finally, several important additional facts relating

to extremal controls should be stated. The adjoint or co-

state variable p(T) is an outward normal to the reachable

set R(T) at x(T) [L2]. This fact is important in.the de—

velopment of several error functions later to be considered.

It is also equivalent to Equation.2.30. In addition it is

related to the transversality condition which is an addi-

tional necessary condition in the event that the target set

G(t) is a convex set. The transversality condition states

that the final adjoint p(T) is normal (inward) to the tar-

get set at x(T).
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2. Normalit

The concept of normality is briefly discussed in this

section due to its close relationship to the character of

the reachable set and because of its effect upon the avail-

ability and difficulty in computing the optimal control. It

has previously been stated that extremal controls belong to

the more general class of nximal controls. Hence extreml

controls must mimize the Hamiltonian. Such mimization

would be straightforward if for each adjoint variable there

exists exactly one corresponding control. Unfortunately

this is not always the case. In fact, there my be several

(say two: 310) and ui(-) ), corresponding to the same ad-

joint p1(o), which maximize the Hamiltonian for an arbi-

trary time interval IB-C I.

Were the two controls equal almost everywhere:

fil(t) '1 ui(t) 3.0., (2032)

no singularity would result. If, however,

'filu) ,4 u1'(t), t e la, (2.33)

where Is is finite or countably infinite, then a singu—

larity occurs.

DEFINITION 2,6 lgfor any solution to Equation 2.28,

there are two or more controls (u1(t) :4 u2(t), t e la, I,I

finite or countably infinite) which differ yet which max-

imize the Hamiltonian on 1s, 113313 the problem is sipgular.

DEFINITION 2,2 iffor each solution of the adjoint

equation (Equation 2.28) there is one unique mimal
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control 31222 the system (problem) is normal.

If a problem is singular, optimal controls may exist,

but may not be uniquely defined on.some interval Is. Such

nonuniqueness may have a variety of effects on the reachp

able set. For linear systems, normality is equivalent to

strict convexity of the reachable set, while singularity

causes “flats” on.the boundary of R(t). With a singular-

ity, i.e. u1(t) # u2(t), t in Is, it is still possible that

x1(T) = x2(T) (that the same maximal point is attained).

For more insight into this problem, consider the fol-

lowing nonlinear state equation in.which the control be-

longs to the control family F1 and is separable:

i(t) = i(t,x(t)) + R(t,x(t)) u(t). (2.3u)

The corresponding unaugmented Hamiltonian function.is:

R(t,x(t).u(t),p(t)) = <A(t.x(t)) J“) > +

<B(t,x(t))u(t) ,p(t) >. (2.35)

At any instant in time, the maximum with respect to u(t) is

attainted if

u(t) = 3an BT(t,x(t)) p(t)] . (2.36)

If, however, any component of BT(',x(-))p(t) is zero for a

finite interval of time, the corresponding control component

is indeterminate, taking on any value or variation allowed

for F1. Each of these various controls may, in.turn, lead

to different maximal endpoints. This possibility is illus-

trated in Figure 2.3. Note that even.though the adjoint

trajectories all start at 36, the final adjoints may vary
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( ) indicates the value of the costate corresponding to

the state vector.

FIGURE 2 Si ular Tra ectories

greatly since the partial derivative in Equation 2.28 is

control dependent .

According to Theorem.2.3, an optimal control is one

of the extremal controls. Associated with each of the ex-

tremal controls is an extremal endpoint which.lies on the

boundary of the reachable set, and a final value for the

adjoint variable which is normal to the boundary of the

reachable set at the extremal endpoint. For such a control

to be extremal, it must also be maximal. Note that once

the initial state and initial adjoint have been.specified,

the final state and final adjoint are also specified

(through Equation 2.30, the maximum.condition, and inte-

gration of Equations 2.19 and 2.28) unless the problem is

singular. In this case, a whole section of the boundary

of the reachable set might correspond to the same initial
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adjoint (See Figure 2.3), but the extremal controls differ

over the singularity interval, Is“

while such a “singularity gap” can occur and would

complicate the determination of the optimal control, it

would be readily recognizable. That is, any procedure

yielding a series of extremal endpoints would encounter a

“jump” between successive final states when the system

singularity is encountered. Finally, it is possible that

the singularity may not affect the determination of the

optimal control-all extremal endpoints in a large region

around the optimal endpoint are the result of normal conp

trols. As a result of the above consideration, normality

is not a requirement imposed upon the problems to be con-

sidered. Even if it were desired, proving normality for a

general class of nonlinear systems would be extremely dif-

ficult, if possible at all.

2.8 Properties of the Rgachable Set . .

The concopt of the reachable‘set, R(t), was needed for

earlier discussion, hence was defined in Section 2.5. It

is the purpose of this section to list and discuss some of

the important properties of R(t). Necessary assumptions ‘

for proving these properties have already been.given. As

expected, fewer results are available in.nonlinear system

study than in the study of linear systems. Reachable sets

resulting from linear systems can.be proved to be continue

ous, compact, convex and to have a computable contact
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function [Bl,L2]. For nonlinear systems, however, the

reachable set is generally not convex (although there may

be locally convex regions) and the computation of a contact

function is complicated. For most nonlinear system,.how-

ever, compactness and continuity have been proven [L2,Rl] :

THEOREM 2.14 Consider the process given in linuatio'n

2.19 with assumptions Hl) through Hit). Let F be defined

as in Section 2.2. 1339;; R(t) is compact and varies con-

tinuously with time on I.

Both compactness and continuity are important in prov-

ing the existence of a unique optimal control. For in-

stance, if R(t) is not continuous then a unique time op-

timal control is not guaranteed for time optiml control

problems. ..

Another important observation is given in the follow-

ing theorem [RI]:

THEOREM 2,: L23 R(t). be the reachable set for the

process given in Equation 2.19 with assumptions H1) and

H2). if, IT a EMT) 392p 1,6311”) for any t in I.

Stated differently, all points on an extremal trajectory

will belong to the boundary of the reachable set of cor-

responding time, t.

Several other important properties. of the boundary of

the reachable set have already been given, including:

1) x, e blur) (extremal trajectory)” xT is a

maximal endpoint.
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2) xT c R(T) —> pT (corresponding to x1.) is nor-

mal to the boundary of R(t) at IT.

2,2 Problem Statements

Gilbert and Barr have shown that a useful approach to

optimal control problems centers around the solution or

repetitive solutions to the following basic problem (BP)

[G1]:

PROBLEM 2,} (BP) m: K, a compact, convex set in

E"; Fig}: A point x* e X such that IIx‘ [I a :1; ”x“.

In the case of linear systems, an obvious candidate for K

is the reachable set R(T) and the problem essentially be-

comes a minimum error regulator problem. Assuming that the

origin is external to R(T), the solution lieslon the bound-

ary of the reachable set. Since R(T) is not, in general,

convex for nonlinear system, the following modified prob-

lem (MP) must be solved:

PROBLEM 2,1) (MP) W: R, a compact set in E“: mg:

a point r" e n, such that no" u - 113:: ”r”.

As part of this modified problem, it is possible that

several subproblem similar to Problem 2.3 (HP) butM

in nature mustbe solved. Consider the local problem (LP):

.PROBLE! 2,5 (LP) 9.1.7.4.“: 1R, a convex subsetof R, a

compact set in. En: Lipid: a point 1r+ o 1R such that

‘1 +

n r n = mm1 u 1.”.
re R
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‘ Since R and 1R are defined to be compact, and since

”r“ is a continuous function of r, solutions always exist

to Problems 2.“ and 2.5. It may be euphasized that R is

not necessarily convex. .In addition, the following pro-

perties can be shown [B1,Gl] for LP:

1) 1r+ is unique,

2) llir || .. o if and only if 0 e in.

3) For ||1r+|| ? 0, ir+ e 31R.

For Problem 2.“ (MP), properties 2) and 3) are true but

r* is not necessarily unique. In, the next chapter, one

additional important property is proven-the collinearity

of r,“ (MP) (or 1r+ for LP) with the normal to clR (or 31R)

at r' (1r+).



CHAPTER 3

THE LOCAL OPTIMUM PROCEDURE

In this chapter various iterative methods and their

limitations are discussed. Consideration is given to the

important function which the initial adjoint has in the

determination of the extremal endpoint (for a given.xo)

and the associated normals to the boundary of the reachable

set (final adjoints). It is shown that a straightforward

solution to LP can be implemented by a direct search on the

initial adjoints.

Utilizing properties of reachable sets and principles

from differential geometry, a more sephistioated iterative“

procedure is developed for solution of LP. In as much.as

reachable sets for nonlinear problems are generally not

explicitly defined, part of the development of this algo-

rithm is based on geometrical considerations of the reach—

able set and perturbation analysis.

Special consideration is given to the choice of error

functions which correctly indicate a solution to LP and

which are based on significant properties of reachable sets.

Finally, convergence is considered and the solution algo-

rithm is given. Special problems arising as a result of

nonlinearity will be deferred until Chapter 0.

29
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2.1 A Discussion of Iterative Methods

The set R of the modified.problem (MP) given in Chapter

2 is not convex, hence the global optimum (r‘, the point

closest to the origin) is generally difficult to compute.

Methods developed for obtaining such an optimum depend on

the nature of the system, of the admissible controls and

of the reachable set. For linear systems, hence convex

reachable sets (assuming certain conditions on the control,

etc.), the iterative procedures given by Neudstadt, Gilbert

and Barr [Nl,Gl and B1] are effective in solving the problem.

For nonlinear systems, however, convergence to the

global optimum is not guaranteed. If this were the only

handicap, such.methods would still have direct application

in determining local optima. Possibly a linearization of

the system or a 'convexization' of the reachable set could

be used to implement these methods: In the event, however,

that one desires to retain the nonlinear equations describ—

ing the system, difficulties are encountered in.applying

the above-mentioned methods. These methods require the

determination of a contact point corresponding to each fi-

nal costate selected [B2]. A contact point is any point in

DR(T) which maximizes the projection onto the final co-

state. In typical methods for linear systems, this deter-

mination is relatively easy (considering present-day compup

tational equipment) to implement by the following steps:

1) Consider the desired outward normal which is in

the direction of the final value of the costate.
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2) Since Equation 2.19 reduces to:

i(t) . I(t)x(t) + R(t)u(t), (3.1)

I where A(t) is an‘n x n matrix and R(t) is an

n.x r matrix, the costate differential equap

tion is also linear and homogeneous:

fi(t) . -iT(t) P(t). (3.2)

Thus, given one bOundary point, pT, p(:) 18

defined on I.

3) Once p(o) is defined, u(.) (a maximal control) and

x(.) are also defined by Equations 2.30 and 3.1.

Hence xT(the contact point) is computable.o

Not only is the resulting set usually nonconvex for

nonlinear systems, but also the above listed method to

solve for contact points is not directly applicable. An

iterative method to solve MP would thus have 319 levels of

iteration instead of one, with the additional level result-

ing from the difficulty in obtaining contact points.

To demonstrate this, consider the adjoint equation for

nonlinear systems (Equation 2.28):

T

é(t) = -’§§—1"“"'““” p(t). (3.3)

Since contact points are on the boundary of R(T), maximal

controls are employed. Certainly the determination of p(o),

u(-) and hence x(o) is possible once po is known: but it is

not possible to solve for p(-) from the final adjoint (as

suggested above) since the adjoint differential equation

also depends on the yet unknown.x(o). In.aummary, two lev-

els of iteration would be necessary:
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1) An iterative solution of the two-point boundary

value problem to determine each (p ,SI) pair

corresponding to each given.(xo,pT? ir.

2) Some type of iteration.(such as the Basic Iter-

ative or Improved Iterative Procedure of Gibert

and Barr, respectively [G1 and B1], on.xT and

pT to determine x as defined in LP.

2.2 Initial Costate Iterations and Error Functions.

Consideration of the above discussion suggested tothe

author that an iterative method based on.the initial co—

state would be simple, most direct, yet effective. Since

x0 is given and maximal controls are utilized, po is suffi—

cent to yield x(o) and.p(o). Starting with an arbitrary

initial adjoint, a sequence of initial adjoints can be de-

termined such that the resulting sequence of final states

converges to a local optimum. An evaluation.of whether the

local optimum is being approached or has been.reached is

based on error functions to be later discussed.

Both digital and hybrid computation.methods are feasi-

ble: Each approach.has advantages and disadvantages. Nu-

merical integration.methods (particularly for ill-behaved

nonlinear systems) are sometimes slow, but consistent and

accurate if sufficient computation time is available. Hy-

brid computation.techniques have improved significantly in

recent years and thus represent another effective approach.

Since analog components are used to determine x(-) and p(o),

hybrid computations are usually faster. 0n the other hand;

less accuracy and consistency can be expected from hybrid
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computers. Overall control of the iterations, of course,

is a digital function for either approach, as is the eval-

uation of the error functions and selection of the next

initial adjoint. In this thesis, both hybrid and complete

digital computation are employed. Based on these computa-

tions, conclusions comparing their relative value are given

in Chapter 5.

The choice of the error function is critical and deter-

mines the convergence and efficiency of the method. Con.

sider the local problem.(LP); one obvious error function

would simply be: ’

E1(Po) = H IT H- (3.u)'

If a small change inpo results in a correspondingly small

change in xT (proof to be given later), a method using E1

would generally converge if the step size of changesin.po

were reasonably chosen.

The error function E is certainly not the only avail-

l

able test for optimality. The following development, based

upon a theorem proven for convex sets provides an effective

error function, E2, which is later used in conjunction with

E1. Since the reachable set is not, in general, convex,

for nonlinear problems, it is necessary to select a subset

of the reachable set in the following manner.

Consider the compact, but not necessarily convex, set

R(T) in En. Let 1,. be on the boundary of R(T) and let R(T)

be convex in a local region of xT. That is, R(xT;e) defined
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R(xT3e) a: N(xT;e)nR(T), (3.5)

is convex. Then

M(xT,p) :2 [y in En : <p ,y> s c], (3.6)

where c :2 <11. ,p> is a scalar constant, can be called a

local support hyperplane of R(T) at xT. The following the-

orem can be applied in this case with K a R(nge).

THEOREM 3,1 L_e_t K be a compact, convex set in E”,

0 e I; The); IT (3 DH is the closest point of K to the

origin: ' . ‘ I] .

”IT“ <||x|l, for anyx e'K, xixT (3.7)

if, m; gn_l_z i_f, there exists a support hyperplane M(xT,-‘pT)

of K through the point IT such that “IT is norml to

M(IT,pT), i.e., ,

lull-.131.) = Mar-IT). (3.8)

Or, stated differently, xT and pr are collinear and oppo-

sitely directed.

23391: This theorem has been proven by Gilbert [G1]; how;-

ever, a different proof which provides additional insight

is presented here. First sufficiency is shown.

If M(xT,pT). is asupport hyperplane to K, then either

<pT ,x> Z c for any x in K, (3.9)

or

' <PT ,x> f c for any x in K. . (3.10)

Since <pT , x? a 0 (xi. is on the hyperplane), then either

(PT , (x-xT) > 2 0 for any x in K, (3.11)
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or .

<pT , (x-xT) > S 0 for any x in K. (3.12)

Thus if -xT is to be norml to the support hyperplane, then

either . _

(“T , (x-xT) > Z 0 for any x in R(szc), (3.13)

or

_<-xT , (x—xT) > S 0 for any x in R(szc). (3.11))

In fact, itwill be shown that Equation 3.114 is true:

<xT , (x-xT) > Z 0 for any 'x in R(ngc). (3.15)

Since x.r is the closest point to the origin,

1|qu - IIITIIZ : o. (3.1.)

Since R(nge) is convex, it is known that for any x1

and x2 in R(nge), x3 defined by:

x3 = nxl + (l - n)x2, 0 S 11 S l (3.17)

is also in R(xT;e). In particular, let x1 be an arbitrary

x 5‘ IT and let x2 be LP. The resulting x3 is in R(xTz’e),

but is not (of 0) the closest point to the origin. Define,

for0$u51,_ _ . . ., .

f(n) éllnx + (l—n)xT|I2 - nxTu2, (3.18)

or _ . . _ _ _ ._

1(a) = <(rrx+(l-rrxT)) ,(nx+(1-nx.r))> - nxTnZ. (3.19)

Note that ‘ .

f(fl') Z 0 (3.20)

and that ,

f(n) = o if and only if 11 = o. (3.21)
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Therefore,f(u)'has a minimum on the interval [0,1] at

the endpoint, n a 0, consequently:

iii-ELL), a 0 z o. (3.22)

Differentiating Eqmtion 3.19 yields

(if '11 ' ' - *
73111—1 =< (113: + (1-")xT) , (x-xT) 1’

+ < (x-xT) . (nx+ (l-n'kT) > , (3.23)

or

9,11%“)- : 2< (nx + (l-n:)xT), (x-xT)> , (3.214)

and _

df‘ ' .. .. . , .2#Ifl280_2<xT,(xxT)> (3 5)

But by Equation 3-. '22. . .

2 (IT , (1.1T) > Z O, (3026)

or .3 . , ..

<xT , (x-xT) > Z 0. (3.27)

which is precisely Equation 3.15, thus the proof of

sufficiency is complete.

Necessity is easily proved. Since M(xT,pT) is a sup-

port hyperplane and since the origin is a point external

to the hyperplane, there is exactly one line through the

origin which is normal to the hyperplane [B6]. But this

is the shortest path to the hyperplane, hence to the set

I, since M(xT,pT) is a support hyperplane. Thus the proof

of Theorem 3.1 is conplete.

Using the results given in Theorem 3.1, several error
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functions can be developed. They are all based on the fact

that at a local optimum.(closest point‘to the origin.in a

convex subset of R(T)), IT and pr are collinear and oppo-

sitely directed. One obvious candidate for an error func-

tion isthe following:

‘< .P >‘ I '.

E2(po) = 008 Y 3 IT , T (3028)

Hz." up." 1

It should be noted that at a local optimum, cos y is -1

since x1. and pT are collinear. Much attention is later

given to this error function; in particular, it is shown

that cos y monotonically decreases. to -1 along a (yet to

be defined) path.on.the boundary of a locally convex sub-

set of the reachable set.

It is also possible to consider other error functions.

They are, however, just modifications and combinations of

E1 and E2. Since both E1 and E2 are a minimum at the opti-

mum, one possible combination would be the product of the

two, thus compounding their convergence: 3

< p >

E3(po) " ET, I ’ (3.29)

” PT (I

with the optimum occurring at the minimum negative number.

While E3 should compound the convergence rate, it is less

desirable than 1!:2 from one standpointu-it does not approach

a specific value at the minimum. Converting E2 such that

it approaches zero gives:
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< 13 > ' '

typo) =~ 1” L H, (3.30)

andthe corresponding compound error fmction would be:

< ,p > . .

Esme) .. 33—J— + ”IT". (3.31)
. . . “PT“

Multiplying by ”pr”, another version is:

E693) " “T :PT> + “IT” llpfllo . (3.32)

Of course, many other combinations are possible, but those

listed above represent the most convenient forms.

Examination of the error functions indicates tint

there is a possibility of erroneous minima if either xT or.

p1, equals 0. If xT‘is zero then E2 and El: have the inde-

terminant 0/0 form. If pT is zero then E2 through ES all

have the indeterminant 0/0 form and 156 is zero even though

1:1. is not necessarily an optimum. Thus E1 must be. used in

the. event that PT is 0. 0f the compound error functions

(E3, E5 and E6), E5 is preferable to E3 because it, equals

mro at the optimum and to E6 because E5 is not dependent

upon the magnitude of the final adjoint.“ In most of the

computations described in Chapter 5, the error function

E5 is used.-

In summary, several error functions have been intro-

duced which can be used in an algorithm for solving LP.

The suggested iterative procedure is:

1) Pick an initial p0.
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2) Integrate Equations 2.19 and 2.28 using a

maximl control (Equation 2.30) until xT

and pr are available. , .

3) Compute the value of the error ftmction, E.

’4) Change p0 (by some method yet to be determined) .

such that E is improved. Continue until the

error function indicates (forexample, E5 =- 0)

that an optimum has been determined. _

Now that error flmctions are available to differen-

tiate between local optinm. and other points, it is imor-

tant to consider the precise method for changing Po (item

’4 of the suggested method) such that E is improved. Two

methods are consideredr One is based upon a direct search-

on the initial adjoints, the other upon geometric consider-

ations of the reachable set. These. methods and their con-

vergence are discussed in‘the following sections of this

chapter.

 

2,} Determination of a Local Optimum via Direct Search

Any direct (or pattern) search a'technique presupposes

that the change in the controlled parameter (Do) can be

made sufficiently small such that the resulting change in

the evaluation parameter (E), is correspondingly small. For

linear systems it. is evident that a sufficiently snmll .

change in E can be obtained. For nonlinear systems, how-

ever, it is not so evident. ‘

Given a specified bound on the change in PT and LT,

it must be shown that the change in pa can be made suffi-

ciently small to keep the change in PT and IT within this
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bmmd. To prove this result for nonlinear systems, an

embedding theorem by Hestenes' and Guinn is utilized [H3].

The theorem is somewhat more general than the embedding

theorem given in Hestenes' book [Hit].

THEOREM 2,2 ,_I._g;t_ x(‘), p(o.) and u(-) be defined by

Equations 2.19, 2.28 and 2.30 withcorresponding initial

adjoint p0. 933-213(1)“ represent anyof the error fimctions

previously defined (Equations 3.’-), 3.28-3.32). The}; for

any a > 0, there exists a 6 > 0 such that

I E(po) - R(pg) I < (a. (3.33)

whenever _ '

II p, -.p,', ll < 6. (3.31))

259231“ e be given. Since each cf the error fimctions

being considered is continuous in IT and pr, there exists

a 51 and a 52 such that . .

ll pT-pT ll < 61 + (3.35)

lle .. 1., n < :2“ (3.36)

imply Ineqml-ity 3.33 is satisfied. Now consider Inequal-

ity 3.35. The relationship between po and pr can be writ-

ten as

p,-'l._-=:‘I'(T,t0)p0 (3.37)

where 9(T, to) is the fundamental untrix for the adjoint

system (Equation 2.28) which satisfies:

$11"to)-- 13?“.t). (3.38)

Since ‘1’(t,to) is nonsingula‘r, there exists a 63 such that
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ll po-pf, H < 63 (3.39)

implies . . .

n pT-pé n < 61. (3.1m)

Since hypotheses H1) through H3) are sufficient assumptions

for the embedding theorem [113], there exists a 514 such that

H goo-p; II < a), (3.1.1)

implies . .

I] xT—xé. I] < 62. (3.152)

Now let 6 be the. snaller of 63 and 6,4 and the theorem is

proved. The fact that snail changes in p0 result in small

cmnges in IT is necessary for the following direct search

algorithm:-

LOCAL OPTIMUM PROCEDm-QIRECT SEARCH (LQP-IB)

A. f Mpg). Evaluation: Whenever Mpg) is to be evaluated,

then these steps are followed: ‘Given p}, and x0, '

initial conditions, integrate Equations 2.19 and .

2.28 utilizing a naxinal control. From the values

obtained for z} and p1, evaluate Mpg) by means of

Equation 3.31 (E5(Po) unless otherwise indicated.

 

B. Initialization: Choose a step size h for the'com-

ponents of p , a final stopping tolerance E , an

improvement factor Rt) 1 and a mximum number of

allowed iterations, I . Set 1 a 0 and select an

arbitrary pg; then.evaluate E(pg). If E(pg) s E ~

then x51!- 1? is "a suitable approximtion to an opti-

mum 14;.

C. Iterations: Define the vector 6 whose 3‘13 com—

ponent is h, all other componen s being zero. Let

3 ‘3 10 ‘ ‘

1. Evaluate E(pg + i3) and E(pg — 63).

2. Let



p:(i) =

3.

5.

7.

1.2

p: + 63 if E(p1 + a j) < E(p1)

pg-a, 11' 3(1):“ )>E(p1) and E(p1-6 )<E(p.1, ) (3.1(3)

pg otherwise.

If :1 < n, let .1- 1+1 and repeat steps 1 and 2 with

p; replaced by po1(3-1). If jun, go to'step ’4.

If p:(n)= p1, decrease h, set is=1 and repeat

steps 1 through 3. Otherwise go to step 5.

Test to determine if

E5(p1(n))-< Et. (3.uu)

If so,pp1(n) is an approximation to p; and the

corresponding fiml state xT(n) . x: is an ap-

proximtion to a local optimum. If not, go to

step 6. .

If

E(p1) - E(p1(n)) z Et/Nt (3.u5)

let p1+1 :- p:(n), i 8 1+1, 3-1 and repeat steps

1 through 6. Otherwise go to step 7.

Evaluate E1(p(1’(n)). Let p1111 = p1(n),i -i+1 and

j:=1. Apply steps 1 through 6 using El for E

except in Equation 3.1414. In the event that in

step 6,

mpg) - E(p1,(n)) < Et/Nt, (3.1:6)

go to step 8.

If i 2 It’ then terminate the procedure (in this

case, a new arbitrary pg could be selected and

the algorithm repeated). Otherwise, let i s 1,

p311 - p1(n) and i a 1+1. Increase h and go

to step .1 (continue using E-El).

NOTE: A consistent pattern for increasing h is desir-

able. For example, at each decrease, h could be

halved, at each increase, h could be multiplied

by a factor such tint a continually increasing h

is attained in step 8. 1 flow chart for this

algorithm is given in Figure 3.1.
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Examination of the preceding algorithm is instructive

relative to the possible limit points of E5(po). If Equa-

tion 3.1m holds, then an approximtion to a local optimum

has been achieved. If step 7 is reached and subsequent

usage of E1 does achieve convergence to a local optimum,

then a local minimum of E5 (but not a local minimum of E1)

had previously been attained (see Section 14.3). In the

event that step 8 is reached, a limit point which is nois-

ther a minimum of E1 nor of E5 is a possibility. Clearly

the initial choice of h, Et’ Nt and 1t require careful

cons ideration.

Since E5 and (E1 have a lower bound and since a se-

quence of controls is possible for which these error func—

tions monotonically decrease, convergence to a limit point

is assured even though convergence to a local optimum can.-

not be guaranteed. In addition, as indicated in LOP-IE, it

is possible to evaluate a limit point (using E5) to deter-

mine whether or not it is a local optimum. Similarly, it

is possible to determine if the limit point represents a

minimum of E5 but not of E1. Certainly it should be point-

ed out that no limit points, other than local minim of E1

and E5 were encountered in any experimentation performed by

the author. Thus in a practical sense, LOP-D8 converges to

xg, an approximation to x;, while theoretically speaking,

only convergence to limit points is guaranteed.

Finally, one other limitation must be noted in the
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above algorithm. There exists the possibility, though

remote, that x: does not belong to 3B(T), i.e., that a lax-

imal but not an extremal solution has been found. Any ef-

fective, global iterative procedure must take into account

the above limitations. These are again considered in Chap-

ter h.

Several limitations are apparent in the above method

and convergence proof:

1) There is no guarantee that the initial adjoint

thus determined represents an optimum (for

instance, E5 my be a minimum but not zero). a“

does not belong to EMT), i.e., that a n.xi-a

l but not an extremal solution has been found.

2) Tgre exists the possibility, though remote, that

Any effective, global iterative procedure must take the

above limitations into accoimt. These are considered in

Chapter ’4.

3,14 Essential Ceng_epts from Differential Geometry

In the previous section it was shown that a sequence

of extreml endpoints, xg,°",x$, can be determined start-

ing with an arbitrary final state and terminating at a

final state which is an approximation to a local optimum.

If the step size is kept sufficiently shall, this sequence

essentially defines a curve, L(xg,x:), on the boundary of

the reachable set. It should be noted, however, that few

geometric characteristics of the reachable set were employ-

ed in determining this curve.
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It is the purpose of this and future sections of this

chapter to utilize geometric characteristics of the hyper-

surface DR(T) in defining the curve L(xgfig). Preparatory

to this, the following definitions from differential geom—

etry are given [G2,Il]. While these definitions apply to

curves and hypersurfaces in general, specific application

is made to the curve L(xgpig) with position vector IT on

the hypersurface EMT). Incremental arc length is desig-

nated ds and the position vector is designated x(s). .

DEFINITION 3,1 Let x(s) be a vector function describ-

r

in acurveL. Lt-dlg-Ell Oandletdx ...'11'—1

g e do M‘s" Esq dsrq

exist and be linearly independent. Then the r-dimensional

osculating space of the curve at the point q is the r-

dimensional vector space spanned by the derivative vectors

as. 21le
as q d8]! q

DEFINITION 3,2 The unit tggent vector to x(s) (that

is, to the curve L) at a point q is defined as

Ms) .. Egg-1. (3.1)?)

Note that the one-dimensional osculating space at point q

is the tangent to x(s) at q.

DEFINITION 3,3 Let x(q) and x(q') be two neighbor-

ing points on L, then the osculating 21.9.1.2 of L at x(q) is

the limiting position (as x(q') approaches x(q) ) of that

plane containing t(q) and x(q'). Note that this is the '

two—dimensional osculating space.
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DEFINITION 3,h Let x(q) be a point on L with tangent

t(q), then.the normal gzpegplane at x(q) is the hyperplane

through x(q) which.is orthogonal to t(Q).

DEFINITION 3,5 The principal normal at x(q) is the

line of intersection.of the osculating plane and the normal

hyperplane. The unit vector along the principal normal is

denoted by n(q).

DEFINITION 3,6 The curvature (of the curve L), denot—

ed k, is the arc rate at which.the tangent changes direc-

tion.along L:

1511.11 .139 . kn(s). (3.148)

Note that n belongs to the hyperplane normal to t(s), hence

they are orthogonal:

<t(s) .n(s)> - 0. (3.149)

The preceding definitions are given.for curves in.genp

eral; now consider curves on.a hypersurface. The hyper-

surface itself has a tangent hyperplane (assuming smooth.

ness) and an.associated unit normal N to the hypersurface.

The two normals (n, to the curve and N, to the hypersur-

face) do not necessarily coincide. In.fact, two of the

most important curves on.a hypersurface are defined by the

behavior of the normal to the hypersurface as related to

the tangent and to the normal to a curve on.the'hypersur-

face.

DEFINITION 3,2 For any curve on a hypersurface the

curvature vector is d2x(s)/ds2, which can further be
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represented as a combination.of the hypersurface normal and

the vector w:

dzxés) g kn(s) g kn N +1. (3.50)

ds

where kn is the normal curvature.

One important curve on.a hypersurface is the geodesic.

In differential geometry it is defined in the following

manner:

DEFINITION 3,8 A geodesic is a curve on.a hypersur-

face for which w s 0, i.e. for which the principal normal

to the curve coincides with the normal to the hypersurface.

Thus the curvature k and the normal curvature kh are equal.

Generally speaking, geodesics (on.hypersurfaces) are

analogous to straight lines in Euclidean.space and are -

curves of shortest distance. Since geodesics are curves

of shortest distance, it was desired to seek a modificaa'

tion of LOP-DB so that the curve L(xg,xg) would be a geo-

desic. Thus 144,4) would represent a shortest path from

the arbitrary starting point xg on.the boundary of the

reachable set to :3. Attempts of the author to achieve

such a modification have thus far been unsuccessful.

A second important class of curves on.a hypersurface

are the lines of curvature. Such.a line is determined by

considering the rate of change of the hypersurface normal.

In.general, one can.write

'%g a "k %% +1; v (3.51)
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where v is a unit vector orthogonal to dx/ds 9.2.4. contained

in the tangent hyperspace at the point under consideration.

The factor “rs is called the torsion of the hypersurface in

the direction of the tangent (dx/ds) to the curve.

DEFINITION 3,2 Consider curves which lave a direction

such that “(as 0: such directions are called principal

directions (of curvature) and the associated curvatures,

k, are called princiml curvatures.

DEFINITION 3,10 A curve on a hypersurface whose tan-

gent at every point is along a principal direction is a

line 2; curvature.

Lines of curvature thus have the property that the

rate of change of hypersurface normal coincides (in direc-

tion) with the tangent to the curve on the hypersurface.

This is expressed in Rodriques' formula:

dN +. k dx = o. A (3.52)

Further, concerning lines of curvature and principal

directions, it has been shown [G2,N1] that:

l) A point where the principal directions are wholly

indeterminate (all principal curvatures have the

same value) is called an umbilical point. A

hyperplane and a hypersphere (or portion thereof)

are the only hypersurfaces whose points are all

umbilical points. ‘

2) Except for the two instances mentioned in item 1),

the principal directions always exist and define

an orthogonal system if, directions.

3) The principal directions represent directions of

extreme values 2; curvature.
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Conver ence to aLQcal Optimum via Lines of Curvature

In Section 3.3 a direct search technique on the ini-

tial adjoints was shown to result in a sequence of extremal

endpoints (defining a curve, L, on the boundary of R(T) )

which converges to an.approximation.to a minimum of E(p°).

In this section, the definitions of the previous section

are combined with the concepts of extremal endpoints and

orthogonal final adjoints to formulate a different converg-

ing sequence. It is shown that for a convex set, there

exists a well-defined curve, L(xg,x;), consisting of lines

of curvature, along which the error function monotonically

decreases to the optimum. This is shown using E2(p°) or

cos y.

THEOREM’3,3 ‘Lgl R inEn be a strictly convex compact

set with 0 s B. Let x: be an arbitrary boundary point of

R and let_x; be such that

llell > lleII for any xT .4 x; in n. (3.53)

‘Thgp.there exists a.path L(xg,x;) on the boundary of R,

consisting entirely of lines of curvature, such that the

error function

<1) > .

E2(po) a cosy: ' T 1:11 ' (3.511)

llpTll ”Ii-ll

monotonically decreases to -l and such that ”sq” meno-

 

tonically decreases to its minimum.va1ue x}.

Proof: Note first that B may represent the entire reach-

able set R(T) if the system being considered is linear, or

it may represent a convex subset of R(T). The boundary
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points in these cases would represent extremal endpoints and

the corresponding outward normals, pT, would represent final

adjoints. As previously introduced, ds represents the in.

cremental arc length along L(xg,x;). To show the monotonic—

ity of cos y, it is sufficient to show that

LII—3&1; < O (3o55)

along the specified path.

Since pT is an outward normal to the surface at xT,

utilizing the terminology of the previous section yields

' , (3.56)

”PT“

As a notational simplification, the subscript T will be

Ni

deleted. Thus Equation 3.5b becomes

1:,N3»

E2(po) 3 OOBY '13 frr'x—rr—‘o (3o57)

)

Taking the derivative of Equation 3.57 one obtains:

dcosxagllx‘ dxds

ds <ds’]T_nx ’ +<N""-xn"l

-<N’xd ‘12“). (3o58)

llel

Since dx/ds a t is the tangent

<N ,uxd') a o (3.59)

and Equation 3.58 b00039“ , . '

d.___zooa .. <21! '1‘ > .. <N -—Jl—l‘lL—1‘1 1 'd'>. .60
as as 'U‘TII ’ ((xu (3 1

To this point, the path has not been identified more pre-

cisely than.belonging to the boundary of B3thus it is new
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assumed that L is composed entirely of segments of lines of

curvature. Hence imitation 3.52 applies and Equation 3.60

becomes _

g—c-gg—l z <..k-d—1— x >-<N m>o (3o61)

a. 18’qu ’ len

Now consider

Thus

(1 2

Or

Mdd: a rr—nv; (X’s-J?) . (3o6’4)

Substituting Equation 3.6’-) into Equation 3.61 gives:

Leg—1-1: 41.111- da< ,m> (3.65)

Hence ,

d cos 1=—(k + cos ) glx || . (3.66)

(18

Since the curve, L, is on the surface of a convex set, the

curvature k is always negative. At or near the optimum on

any reasonably behaved surface cos y is negative; thus for

the derivative of cos y to always satisfy Equation 3.5!). it

Elf—Ll < o. (3.67)

Not only is this requirement necessary for the proof of the

is necessary that

theorem, it is also desirable from an understanding of the

problem since the optimum point is the point of minimum
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[I x I]. It is now shown that Equation 3.6? can be satisfied

while simultaneously renining on lines of curvature.

The hypersurface an is m-dimensional where m < n- 1.

Through each point x on an there are m orthogonal direc-

tions defined by the tangents to the lines of curvature

through x. Although these vectors are orthogonal, in the

proof to follow, it is' only necessary to require that they

are linearly independent.

Consider the arbitrary starting point x0 ,4 x+ and

let L(x°,x1) denote a path on all composed of lines of cur-_

vature, along which llxlI decreases monotonically from [I x0“

to ||x1 II. It is first shown that there must exist one such

path, i.e. that it is possible to move from x0 along a line

of curvature such that “x” is decreased.

Define level hypersurfaces, P(r), on 9R as the inter-

section of all with m—dimensional hyperspheres S(r) of radi-

us r and centered at the origin. The resulting level hyper-

surfaces are of dimension m—l, thus at least one of the

tangent vectors for any xix... belonging to one of these

level hypersurfaces must intersect that level hypersurface.

Thus it is possible to move along the lines of curvature

corresponding to this tangent such that [I x [I is decreased.

In the event that r = ||x+ll, the intersection of S(r) with

:33 yields a point, x+.

Consider the collection of all paths, L(xo,x), formed

of lines of curvature for which ”x” is decreased. If
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L(xo,x+) is in this collection, then the theorem is proved.

If not, then there must be a lower bound greater than ||x+||

for the “x“ obtainable, i.e., a level hypersurface P(h)

must bound all L(xo,x) from below. There may be many such

paths which approach P(b).

For each x1 there is a corresponding orthogonal system

through x1 consisting of lines of curvature. Along some of

these lines, ”x” is decreased. Let D(x1) represent the

point x1 together with those arcs of its lines of curvature,

containing x1, along which llxll decreases and for which

llxll < um).

Since b is the lower bound of the norms of points which

are joinable to x0 by admissible paths, there exists a se-

quence of points {x1} such that {II x1 H} converges to b.

Since (DH is compact, {x1} contains a subsequence converging

to a point 3', whose norm is b. For notational simplicity,

{x1} is also used to denote the convergent subsequence. As

previously mentioned for an arbitrary x 1‘ 1+, at least one

member of the orthogonal system must penetrate the level

hypersurface to which the point x belongs. Thus there

exists an 3' e DGE) with “x" [I < b.

From considerations of continuity, it follows that

{D(x1)} approaches DCx'). Thus there exists a sequence

{x'i}. where x'1 e D(x1), which converges to 32'. Also

{llx'1ll} 1Ephroaches Hi" [I < b. Hence for some k, le'kll<b.

Consider the union of L (x°,x1‘) with the arc 1112.1: of
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D(xk). This union Joins x0 to x'k. But x'k has a norm

less than.b, thus contradicting the definition.of b as the

lower bolmd. Hence the only lower bound is le'1’ll and it

0 is Joinable to x1 by a path,has been shown that x

L(x°,x+). Hence the proof of the theorem.

Although this theorem.is proven for the error function

E2 = cos y, it is also possible to prove the monotonicity

of the other error functions along the path.L(xg,x;). Of

all error functions given in Section 3.2, El and E2 are

most basic and are fundamental to all others. The final

statement of Theorem 3.3 also demonstrates the monotonicity

of El'

0f the compound error functions, E5 is most direct

and effective. Thus, consider Theorem 3.3 as it relates

to E5.

COROLLARY 3,3,1 ‘32; the hypotheses of Theorem 3.3

apply. ‘ghgp there exists a.path L(xg,x;) on the boundary

of R, consisting entirely of lines of curvature, such that

the error function .

E5(po) =||xT[|(l-+cos v) (3.68)

monotonically decreases to 0.

Proof: Since E decreases monotonically to -l, lircosv'

2

decreases monotonically to 0. But [IxTII also decreases

monotonically, hence the product decreases monotonically

to 0. Hence the proof.

It is instructive to consider E5 so as to develop an

equation analogous to Equation 3.66. Consider
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an

Tush-€55 “*er “HWY”: ”'69)

01'

an a ,
flit—wai-cos y) + 111T“ d 3:8 . (3.70)

Substituting Equation 3.66, one obtains

dB (1 d

fi=—%?fl(l+c.flY),- (kl'nrl‘+OOCY)—1lfi'xflo (3.71)

Thus .

an ‘ dll Ill .fi=‘1-1|"rl"—d-;XL- (3.72)

For E5 to decrease monotonically along L(xg,x;), the follow-

ing inequality must hold:

1 - k l' IT H > 0, (3o73)

or .

1 . .

k < . (3.7“)

For the convex set of Theorem 3.3 this inequality certainly

holds since k is negative. Questions relating to non-

convex sets are considered in Chapter ’4. Note that Eqm—

tion 3.71) allows this possibility since dE5/ds my be nega-

tive even though k is positive.

3.6 Effective Beundapz Path Selection

For a convex region of R(T) which includes a local

optimum, the results of the previous section show tint at

least one and probably many acceptable paths exist on the

boundary of the reachable set. Each of these paths run
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from the arbitrary starting point to the local optimum.

These paths represent collections of extremal trajectory

endpoints. Any method based upon these results would have

as its goal the successive determination of these end—

points, hence of these trajectories. Certainly it is not

desirable to identify all of the endpoints since the path

consists of an infinite number, but it is desirable to ‘

identify a sufficient number to define the path and hence

locate the optimum endpoint.

Were the boundary of the reachable set explicitly de-

fined by a vector function, the path would likewise be pre-

cisely defined. If this were the case, however, determina-

tion of the path would be unnecessary since such an explic-

it definition of aR(T) would easily lead to location of the

local optimum either by direct calculation or through func-

tional minimization. In any practical nonlinear problem,

however, it is not possible to explicitly define the reach-

able set. Based on hypotheses and theorems given earlier

in this thesis, only the following general observations are

available:

1) R(t) is of dimension r S n, where n is the

dimension of the state equations.

2) 'The boundary of R(t) consists of extremal trajec—

tory endpoints resulting from extremal controls.

3) R(t) is compact and varies continuously with time.

1)) R(t) is, in general, not globally convex, but will

have regions of local convexity.
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Howthen, does one, experimentally, determine the path

from the arbitrary starting point to the local optimum?

Because of the fact that so little is known of the shape

of the reachable set, it was the author's original decision

to implement some type of search method on aB(T) (i.e. among

the initial adjoints corresponding to these extremal end-

points). One such method is LOP-IB given in Section 3.3.

Theorem 3.3, however, yields some additional insight into

the nature of an effective path to the optimum. Some of

these results were previously apparent from the nature of

the problem:

l) d“ lel/ds< O, i.e. “IT” must successively

decrease.

2) The decrease in || [I should be made as large as

possible (i.e., dl LIT” / ds should be minimized).

Others are provided as a result of Theorem 3.3:

3) Since the path consists of lines of curvature,

91.15. 4, k 1?. = o. (3.75)

'4) If there is a choice of lines of curvature,

as exists in most cases, theone for which I:

is minimum should be selected at each decision

point along the path.

While arbitrary changes in' the. pd's might. be acceptable

in lower order systems, higher order systems require more

sophisticated methods; hence the insight provided through

Theorem 3.3 is important and should be utilized. The basic

structure of such a method would be as follows:
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O .

1) Try an arbitrary po , note E(po), p: and 1:.

2) Emlcying insight into the relationship of ’1‘

and/or pT to IT and/or pT and the interrelation-

ship between 51.1. and4691. (perturbations), change

0

IT and pT yielding IT and pr.

3) Run the system in reverse time from .0 and '5:

using extremal switching. This yields an

i: and a '53. Note that 320 probably differs

from xo (the specified initial state).

’4) Consider a new initial adjoint p1 which is

related to 53 and perhaps to p00and to the

change inxoo(x0 -xo.)

5) Assuming that p10results1 in a better value of

the error function, E(po), then the method is

repeated. If the result is not better, some

alternative approach must be taken.

Within these five steps, there are strategies which must

be chosen on the basis of good judgement as well as math-

ematical development. Basically these alternatives can

be classed into two subdivisions, according to the time

at which they occur: in step 2), after forward integration

of the system and in step ’4), after reverse time integra-

tions

3 , 6 , l Curvature Algorithm Al ternatives-F1nal Time

Consider first the alternatives available at the final

time, i.e. on the boundary of the reachable set. The fol-

lowing choices must be nude:

1) Should just IT or pT be perturbed or both IT

and pr?



6O

2) What should be the size of the perturbation?

3) In.what direction should the perturbation.be made?

b) If both xT andpT are perturbed, are the perturba-

tions performed dependently or independently?

5) If xT andpT are perturbed dependently, which.one

is perturbed independently and what is the rela-

ticnship between.the perturbations?

These decisions can be represented as shown in the decision

flow chart given in Figure 3.2. It should be emphasized

that these decisions must be made on the basis of little

knowledge of the nature of the reachable set in the neigh-

borhood of xT-any additional information.must be experi-

mentally determined. The goal, of course, is a perturba-

tion of xT andpT such that the error function is decreased

and such that the perturbed final state 'iTebnu') and the

perturbed final adjoint is normal to¢8B(T) at if.
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Consider some aspects relative to these perturbations

and the above listed alternatives. In the discussion to

follow, the perturbed final state and costate are desig-

nated if and if: ‘

i1. = IT + 61.1. (3.76)

ii, = Pr + apT. . (3.77)

For any perturbation in xT, there is a good possibility

that 3% does not lie on the boundary of the reachable set.

Of course, the goal of any perturbation.is to minimize this

possibility. In.addition.tc this fact, however, other as—

pects must be considered.

If only IT is perturbed, stpT probably does not

represent a correct outward normal for the new boundary

point. Similarly if only pT is perturbed, 55 does not

represent a correct outward normal for the unperturbed

final state. If both.xT andpT are perturbed independp

ently or if an incorrect perturbation.interrelationship is

utilized, again the resulting perturbed normal may not be

accurate for the resulting boundary point. Thus a judi-

ciously chosen, related perturbation is most desirable.

Even.in.this case, some departure from the reachable set

andthe proper outward normal can be expected, particularly

if the step size is too large. With careful control of the

step size, however, a joint, related perturbation may re-

sult in a new ET close to aR(T) yet allow 6:1. to be large

enough to represent a considerable improvement in.the final
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state.

The interrelationship between IT and pr is chosen to

coincide with the theoretical developments for lines of

curvature, namely, Equation 3.52 applies, or, in incre-

mental steps:

6N + k 6xT .. o. (3.78)

Obviously, I: must experimentally be estimted and updated

as the path moves towards the optimum. The final state,

1.1,, is chosen for the independent perturbation since the

proof, of Theorem 3.3 requires (and common sense dictates)

that ”IT” continuously decreases. Thus, choosing ml. to

be independent allows easy verification of this requirement.

The crucial question remining unanswered is number ,

3)-—in what direction should the perturbation be made?

While this decision must be made without an explicit ex—

pression for the reachable set, some facts are available:

1) ”le] must decrease.

2) E(po) must decrease.

3) The final perturbed state, 21., should rennin on

the boundary of the reachable set.

To give justification for the direction of perturbation to

be selected, consider the following perturbation analyses

of E(po) which are presented as theorems. The first per-

turbation direction is based mostly on fact number l)--

decreasing || IT [I .
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THEOREM 3,14 Consider the error function E2(po) \(the

final time subscript, T, has been deleted for notational

simplicity):

E2(po) = 0087 -We Sfi-ffiz (3.79)

where x belongs to a convex region of an”) (thus the cur:-

vature, k, is negative) and N is norml to R(T) at x. p23

ox be a perturbation in x with corresponding 6N given by

Equation 3.78. .1; 6x is defined by

6x a -cx (3.80)

where c is a positive constant, 0 < c < 1, than

E(x+ 61.p+6p) S E(x,p) a E2(po) (3.81)

with equality only at the optimum.

Proof: Let

as . sum) - E(x+6x,p+6p). (3.82)

It must be shown that

6E > 0. (3.83)

Consider

<‘x N) <x+6x N+6N>

6E3 x - 1+6! , (Beau)

or,

=<x N>_<x n>_<:x 11>

6E ”x” - ”xi-bx” x-‘+6x

_ <x N> _ <5: 6N>

nit-3?” "fin-[1' (3'85)

Substituting Equation 3.78 into 3.85 gives:

'1' ' l ' <6x N>

‘E = (x ’N’ (U31? ururu)‘ [FT-07.5?“

+ ("x k6x> + <5: Rex) . (3.86)

x+6x ' ||x+ox||
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Note that . _ A A

”1+5!" = III-01H = ll-Ol Hill ‘3 ”-0) “III (3.87)

because of Equation 3.80 and since O< c< 1. Substituting

Equations 3.87 and 3.80 into 3.86 results in:

. _ ' ' 2 ' ‘ .

6E as cos y (€130) + I—f—ocos y - 19%|!” + fill”; (3.83)

or,

or = afigflwn -.- -ckl|x|l . (3.89)

Since 0 is positive and k is negative, Inequality 3.83 is

satisfied and the proof is complete. Note that maximizing

[kl will mximize 6E. ,

It should be noted that Equation 3.80 disregards the

fact that x+ 6x should also lie on the boundary of the

reachable set. If cos y is near zero (i.e., far from the

optimum), ex is approximately tangential and Equation 3.80

is a good approximtion (See Figure 3.3a). On the other

hand, consider an 1 near the optimum (Figure 3.3b). In

this event, any 6x defined by Equation 3.80 is nearly nor-

ml to aB(T) and thus is a poor choice. Hence, some other

choice must be made for ox based on the available informa—

tion which includes past knowledge of 6B(T'), x(T) and p(T)

and current knowledge of p(T) and x(T).

When IT is near x; 6x is nearly orthogonal to IT.

For second order systems, this would be sufficient infor—

mation for calculating 6x, but for higher dimensional sys-

tem, this still does not adequately define 6x. Considera-

tion of pT and IT near an optimum shows that they are
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origin or gin

a. Far from Optimum b. Near the Optimum

FIGURE Final State Perturbations: bxs-cx

nearly collinear, thus the veetor

u a -0. ‘fi'fi Am) , (3.90)

is nearly tangential near the optimum. This fact is illus-

trated in Figure 3J4, and leads to the next perturbation

analysis as given in Theorem 3.5.

THEOREM 3,5 Let the error function be defined by

Equation‘ 3.79 and 1;; Equation 3.78 apply. Le; x and N

be as previously defined. l1 6x “is defined by Equation

3.90 with o < c' < ”x" /2 , j_l_1_(_5_1_1 Equation 3.81 is satisfied.

3391: Consider 6E as defined in Equation 3.82, and as ex-

pressed in Equation 3.86. Substituting Equation 3.90 into

parts of Equation 3.86, one obtains: '
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‘l' ' l '<c'x R) <c'N N>

6E=<x,N> (le||-||x+3x||) + ||x||||x+3x||+ ”xi-Ex”

_ '<x kc'x>' _ <‘x kc'N>

IIx+6x|||Ix|I x+ x

_ 2 ’ _ ' . .

kc' I. 2 I >+<N N) .. . 1+n%&n(”m“ +2<m9N 9 ) (39)

Since N and x/ [I x“ are both unit vectors, Eqmtion 3.91

becomes: ,

‘ l‘ ' l ‘ '0' cos ' c' ' kc' x

6E3<x’N>‘(|lel'llx+6xll)+|Ix~'+61ii+l_lx+oxll' x+ x

_ ke' x 2k 0' 2 .. . , 2
nx—‘S‘L—x-HOOB Y 4' 1+5! (1 008 Y) (3 9 )

Rearranging Equation 3.92 and collecting term yields:

or . a... u-" ,3, )+°—'é}117f,%firfl(l-Idlxll+2h')o (3.93)

To relate the magnitudes of the bx's in this theorem and

the previous theorem, define a new constant

0' 3 fi" e (3o9u)

 
FIGURE h Final State Perturbations near :3 T
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Note that the hypothesis :for the theorem requires that

0 < c' < i. With substitution of c', Equation 3.93

becomes:

1‘)
6E .n'ces y (l - 1+;

+ 0" gmxlms (1-1.1121) +2kc'llxlI ). (3.95)

Now it must be proven that GE is positive. Note tint the

second term is positive if . .

l .. kllx||+ 2kc'llx[|>0, (3.96)

since cos y 2 -1 with equality only at the optimum (hence

the second term is zero at the optimum). Inequality 3.96

can be rearranged as follows: .

2kc" [I x” > k” x" - I, (3.97)

or since k is negative (convex surface),

at l‘é‘fi'lrfi'r (3.98)

Certainly if m is less than t, Inequality 3.98 is satis-

fied since -l/2k|| x” is positive; hence the second term of

Equation 3.95 is positive except at the optimum where it is

zero. Now consider the first term of Equation 3.95, for

which it must be shown that

. x . _

cos Y (1- 1.“: )5 O- - (3.99)

It has previously been stated that cos y is negative in any

well-behaved region near a local optimum: thus one must

show that .

(1 -' x ' )503 (3.100)
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or . . .

llxflxll - “III S 0. (3.101)

which was already the objective of this method. With the

introduction of c", Equation 3.90 has become

6x :2 -c"x - c'lltxll N. (3.102)

Consider ‘ _ . . . .

llxflxl) =ll(1- 9")“ O'IIIIIN)". (3.103)

or . e . . .

[I x-I-bxll =||'(x(1-c") - c" [I xll N)“. (3.101!)

Using the triangular inequality one obtains:

III“!!! 5 "1(1-0') II + ll(°"llxllN)l|: (3.105)

or . . . . . .

[Ix-tax“ S (l-c')[l:x|| + c'llxll _ _ (3.106)

since a“ < é (thus l-c' is positive) and since UN“ is 1.

Thus Inequality 3.101 is satisfied and the proof of the

theorem is conplete.

Sumrizing, two candidates have been selected for

perturbing the final state, as given in Equations 3.80 and

3.90. Equation 3.80 is most effective at points where cos y

is near 0 (far from optimum) and Equation 3.90 is most ef-

fective for points on bR(T) which are near the optimum

(cos 7 near -l). Letting

0 5 c". (3.107)

an obvious candidate for a cogosite choice for ax is

6x = -c(x-[Ig.[|N cos y )‘, (3.108)

because it reduces to Equation 3.80 when cos y is O and to
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Equation 3.90 when cos y is -1. This perturbation choice

is considered in the next theorem.

THEOREM 3,6 1:21 the error function be defined by

Eqmtion 3.79 and 131 Equation 3.78 apply. _1_._e_t_ x and N.

be as previously defined. .I_!_ 6x is defined by Equation

3.108, 0 < c < 1, M Equation 3.81 is satisfied. 6

PM: Again consider 6E as defined in Equation 3.82.

By partial substitution of Equation 3.108 into Equation

3.86, one obtains:

1. . l . o.

GEI<I,N> (m-m)+m<x,n>

.. 0 t ‘_ ck'

amn<-l"””°°"'“’ m“"’

ck
+ W<x , [I xHN cosy > + "-31%” GIII2. (3.109)

Since ' 3

[lel cos y a <x , N), (3.110)

Equation 3.109 becomes

,3 +ckx

+nfifi-nll51ll2. (3.111)

Now consider

[laxllzacz(“1“2' 2|]x" cosy<x,N>+flx|lzcoszY) (3.112)

’1' A . _ . . . . ,

u '6: u? . «:20! x ()2- u x llzooezv) - «221)qu (1- coszy). (3.113)

Substituting this result into Equation 3.111 gives:

6E=cosy(1- )- x (1- cos27)
x+Ox ext-x

kc
+ 1+5: 22(1-cos v): (3.111))
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or

or: a cosy (l-- )+ 2(1-0082y)(o-1). (3.115)
x+6x c,x-I-6x

While the first term of this equation is the same as de-

rivod in Equation 3.95, it must again be considered since

6x differs. For that term to befpositive (or zero) it must

be shown that . . . .

IIxII 2 11:11:” . (3.116)

From Equation 3.108 we can write,

[I x+6x II - |I(x-cx+c II x“ Recs 7 )II =IKx(1-c)+oIIxIINcos7)". (3. 117)

Using the triangular inequality one obtains:

llx+61llllx(1-°)ll + II (cllrllNoos (Noll .(3-118)

Since Icos yI<.. l, c and l-c are positive; and IINII-l;

IIx+6xII S (1-c) ”x“ + c IIxII a IIxII. (3.119)

Thus the first term in Equation 3.115 is positive or zero

(at the optimum). Now consider the second term. The

factor (c-'l) is negative as' is It: all other factors are

positive hence the term is positive except at the optimum

where it is zero; hence the' proof of the theorem.

Experimental results are given in Chapter 5 to compare

the three possible methods of perturbing, 6x as given by

Equations 3.80, 3.90 and 3.108. Once 6: has been defined,

then on is determined through Equation 3.78. Once k is

determined then 6N is specifically defined. The deter-

mination of curvature, k, however, is not an easy task

for higher order system. Since R(T) is not explicitly
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defined, 1: must be experimentally approximted.

Given two neighboring points on a line of curvature,

(x,p) and (-x',p'), several means are available for calcu-

lating an estimte of k. The first estimates are apparent

from Equation 3.78 where n (dimension of the state) approx-

imations are possible

E1 1: — ———L:i-:' , i-l,n~,n. (3.120)

1" i

any of these estimates could be used or the average:

11

KT ‘3 (1211(1) / no (3o121)

A second estimate of k is available from Equation 3.66

which, solving for k gives

ks-W-fi. (3.122)

Or, in terms of perturbations

Finally, a combination of k and Eav say be used:

iavz = i (PM, + E) . (3.1214)

For two final statee x and x' close to each other (and on a

line of curvature), all of the estimates of k (Equations

3.121, 3.123 and 3.121)) are near the actual value.

For a second order system, with 6x sufficiently shall,

k can easily be estimted since the boundary of the reachable

set is the line of curvature. In higher order systems, how-

ever, a perturbation of (x,p) yielding
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E, s E s E, i=1,”‘,n—1 (3.125)
itl

would indeed be fortuitous. In general one can expect that

the ki's and k have differing values and differing signs I

since the. perturbation of (x,p) my not be along a line of

curvature through x. For small perturbations in x, the

variance of the values for k and the 151's is certainly an

indication of whether or not the perturbation is along a

line of curvature.” If the variance is large, several op-

tions are available in selectingk: an average my be chosen,

one particular estimte formula may be relied upon or more

perturbations may be taken until a better estinte of k re-

sults. The methods for estimating. k are experimentally

compared in the next chapter.

3,6,2 Curvature Algorithm Alternativeso-Initial Time

As indicated in Section 3.6, after reverse time inte-

gration from (2:55;), there are several alternative means

“1', the initial adjoint for the next itera-
o

tion. Since 6x}. and 6p&. are only estimates for an accurate

of choosing p

perturbation on 3R(T), the resulting 1; found by reverse

time integration of the estate and costate equations using 1 "

maximal switching often differs from the specified initial

state, x0. In addition, computational errors may develop

which also contribute to the difference between :3,

Indeed, experimentation indicates that significant errors

and :0.

do develop and that a ccmputated (iT’fiT) pair when used,

without perturbations, as initial points in a reverse time
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integration, may not produce x0 and p0. The origin of this

computational error is discussed in éhapter 5. For the de-

velopments in this section, it is sufficient to observe

that a computed x; may not be the initial state because of:

1) Computational errors.

2) Failure of i}. to lie on bB(T) and/or failure of

5.}. to take the correct direction.

Regardless of the source of this difference, when a new

pi“ is selected, based upon '13:, the validity of 3: should

be examined as well as the possible benefit of adjusting for

1 -1
6x0 = 10 - Io. , (3.126)

Disregarding these differences, a new approximation for Po

is i+l -i‘
po 3 Poe (30127)

Consider the computational errors in integration which

might develop. Ons’ possible means of reducing their effect

would be to consider the following error correction vectors:

(:1 a i: — 10 (3.128)

31 a p: - pg, (3.129)

where 201 and 15; are initial points obtained by reverse time

1

T

and 31 thus re-

integration with extremal switching from. p

i

and I; (1.0.,

without perturbation). The differences a

sult entirely from computational errors. These correction

factors may then be used to give new estimates of ‘0 and pa:

a}, = if; - «1 (3.130)

and .
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1 ‘-i i

50 = p0 - a . (3.131)

These new, hopefully better estimates can then be used to

determine pg“. The effect of these correction factors is

evaluated through experimentation in the next chapter. It

should be noted that their computation at each step re-

quires an extra integration of the state/costate equation

pair.

Once i; and $3 (or E; and 5;) have been computed, then

a new pgfl'must be calculated. is mentioned, a straight-

forward method is to pick

pf,“ = 15; (or 33,). (3.132)

Other alternatives are available such as:

pf,“ = p}, + ow; - pg), o > o (3.133)

where c < 1 if ox: is large and c z 1 if the estimates are

EOOdo

2,2 The Lgcal mtimum Procedure-moogposite Method

Incorporating the results obtained in the previous

sections of this chapter, an algorithm can be given to

solve Problem 2’.5 (LP). Included in this algorithm are

several alternatives. Some are given in the form of sub-

algorithms, others are evident by the choice between sev-

eral alternative equations. In Figure 3.5 a flow chart

is given for LOP-CM and in Figure 3.6 a flow chart is given

for an example subalgorithm (hb).
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L00 OPTIMUM PROCEDURE-~COMPOSITE METHOD LOP-CH

l.

2.

3.

h.

5.

9.

Select an error function

Select an arbitrary pg, (1 = O ).

Determine x;, p; and E(p:) corresponding to xb,

p: and extremal switching.

Determine an estimate for k through Subalgo—

rithm b.a or h.b.

Perturb x% by using Equation 3.80, 3.90 or 3.108

yielding 'x',}_.), where the magnitude of 0 (step size)

may be dependent on the error of the i-l'st iter-

ation.

Perturb p: in.a corresponding manner (through

Equation 3.78), giving '51.

Determine E: and.§: corresponding to extremal

switching,'§%, E} and reverse time integration.

Evaluate 32'1 and ii: and determine (through one of
c

the Subalgorithms 8.a through 8.0) a new'p:+l.

Determine x$+l, p%+l and.e(p:+l). Test to see

if the error value is decreased. If so, test to

determine if the error value is sufficiently

close to the optimum value. ‘If it is sufficient-

ly close, then a local optimum has been.found:

if not, go to step b and repeat. If E(p:+1) is

net an.improvement, and if the step size has not

been reduced past.its reduction limits, decrease

c and go to step number 5. If the step size can

no longer be reduced, go to LOP-D8 for final de-

termination of the optimum. '

SUBALGORITHMS h——CURV1TURE DETERMINATION

NOTE: For either of the following, the value finally see

lected for curvature may be given.by Equations 3.120, 3.121,

3o123 or 3o12’4o
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Select E1; , Ae£ggtagiyi
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1 resulting in 5:.
o

11,. Determine is}. and it}. from x0, 13.}. and

extremal switching.

Lha. I . Perturb p

III. If i}. a 1.}, increase the perturbation size

and go to step I. If not, go'to step IV.

IV. Calculate an estimate of I: from i}, 13.},

i
1.}. and pr.

h.b.1. 'Perturb p: resulting in 39:! J :- 1.

II. Determine in}. and 3p; from x0, 1p; and

extremal switching.

III. If 31.}. a in}, increase the perturlntion size

and go to ste'p II. If not, go to step IV.

IV. Determine the standard deviation jan' ”(B/Fa.

where jam) is the standard deviation of the 51's

and Ea is the average of their absolute values.

If on is less-‘than ”a (allowable limitfor

the standard deviation), then calculate an

estimate of k. If Jon is greater than c

then go to step V.

V. Perturb pg in a random manner from the pre-

vious perturbations, yielding 3+lpg. Unless 3+1

is greater“- than a preset limit on the-‘number of.

allowed initial costate perturbations, go to step

II and repeat steps II through V. In the event

that 1+1 exceeds the preset limit, use-the value

of p: for which o'n is a minimum to estimate k.

SUBLLGORITHKS B—NEI INITIAL COSTLTE IETEBMINATION

8.a. Utilize Equation 3.127, i.e. p3“ - 3:.

do not correct for 61:.
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8.11.1.1 Determine 21 and p1 corresponding to p; and

IT (without perturbations) and extreml switching

in reverse time integration.

,II. Calculate the correction factors of Equations

3.128 and 3.129.

111. Correct 3:

3.131.

IV. Let pz+1 ' figo Ignore 61:0

and 2: using Equations 3.130 and

-i -l
8.0. Using either x0and p0 or i1 and p1(as determined

in Subalgorithmo8 .b),0define a newopifl by using

Equation 3.133.

Examination of the above algorithm and subalgorithms

points out a number of possible alternatives within the

basic algorithm. By way of sumry these alternatives

occur at:

1) Step 1. -- Error Function Selection

2) Step 11'. - Curvature Determination

3) Step 5. - Final State Perturbation

14) Step 8. -- New pg“ Estimtion.

In addition to these, there are alternative step sizes

to be chosen and also step 6 could be altered so that m}.

would not be perturbed, or some of the other unrelated

perturbations as discussed earlier (See Figure 3.2) could

be selected. In Chapter 5 comparisons are made using these

various a1 ternatives .



C H AP T E R ’4

THE GLOBAL OPTIMUM AND RELATED PROBLEIB

In the previous chapter, a method (including several

options) was developed for determining the local optimum of

a convex subset of R(T) (i.e. solving LP). Direct applica-

tion of this method to an arbitrary R(T) might encounter

one of several special cases for which the results of the

previous chapter need to be reassessed. In this chapter,

means of identifying and treating these are discussed. lost

of these special cases are actually part of the more gener-

al problem of locating the global optimum; hence it is not

necessary to implement specialized techniques for their

solution.

The more general problem of determining the global

optimum for an arbitrary R(T) which my. have. several or

even numerous local optima is most difficult. In this the-

sis a random approach is taken for finding the local optima.

and thus identifying a global optimum. This global optimum

procedure solves Problem 2.14 (NP). Using some of the con-3

oepts of Fadden and Barr [F1 and BI], other types or opti-

mal control problems can also be solved. Of these,.on1y

the time optimal control problem is. considered here. All

experimental results and example problems are presented in

the next chapter.

80
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14,1 Special Pgoblem l: Nonconzex regions on Q3”)

The algorithm presented in Chapter 3 assumes that the

region on 3R(T) boing considered is convex. For an arbi-

trary reachable set there may be mnylocal optim (i.e.

locally closest points to the origin). Much of the surface

my not be convex and, in fact, some of these local optimal

and even the global optimum my lie on a non-convex region.

Such regions my be concave or my be “mixed" (saddle

points, neither concave nor convex).

Upon first consideration it my seem that it is not

possible for an cptimmn to noon a concave region of DIRT).

This, however, is not .the case. Consider, for example, the

reachable set shown in Figure 11.1a, with the origin located

as indicated. Since all of the surface (in this case a '

curve--R(T) is 2-dimensiona'l) near the origin is concave,

the Optimum is obviously on a concave re'gion, namely at 1;.

A very special case is shown. in Figure 15179, where the op-

timum is not unique: infact, where there are an infinite

number of minim, all equally close .to the origin. As a

final example, Figure 14.10 is given in which the optimum _‘

is located at a "corner". .Note that the determining fac-

tor in all three examples is' the‘relationship between the

radius of curvature of the concave surface and the, distance

of that surface from the origin. This observation leads to

the following theorem which is given afterlsome preliminary

definitions. 0 .1
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= (T)

' o ,

origin origin origin

. #

R(T) R(T) 1%

a. f be I. _ co

FIGURE 14,1 gptim on Concave Boimg_a_r_z Regiw

, I . ,

DEFINITION “,1 Let DIRT), x(T) and I: be aspreviously

defined. Let' theprincipal curvatures 1:1, 1 - 1,0vf,n-l, be

nonzero, then the principal. radii g_f_ curvature, fi’ at x(T)

are defined as

1
f1 B-IE? o (uol)

IEFINITION h 2 Let EMT), x(T) and It. be as previous-

 

1y defined, then the mximum convex c ture, Kn, at x(T)

is defined as , ‘

x” . min ki , if any k1< o, (14.2)

or . .

Kn = o, if all 1:1 2 o. (11.3)

mrml'rlon 14,; Let em), x(T) and 1111 be as previous-

2

ly defined, then the mximum concave curvature, K0,, at

x(T) is defined as
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I" a mix k1, if any 1:1 > O, (14.1!)

or

Kev e o, if all 1:1 5 0. (M5)

THEORE]! 11,1 .112! R(T) be a compact set in ER, on R(T).

Consider a point x(T) e 3R(T) for which. cos y = -l, where

p(T) is defined as the outward normal to R(T) at x(T). .1451

No(x,c) be a neighborhood of x(T) on 3R(T). _1._e_t_ k1, ;'

i a 1,0",n-1 be the principal curvatures at x(T).

a. _I_£ .

m > {—1—— (M6)
. . ’

111‘“

then x(T) is not a local optimum: i.e., there exists a

y c Nr)(x,e) such that

“7” < III”) II- (in?)

b. l;

. .1 _ ‘ -

K07 B m, (14.3)

then x(T) is not a unique optimum; i.e. there exist many

2 c No(x,e) such that

 

IIZII '3 ”x(T) ll- (M9)

c. Finally, if

_ 1 . _

K < 04.10)

W llx'rll ’

then x(T) is a local optimum: i.e. for any w c Na(x,c),

.u an >. n and) H. (14.11)

Proof: Consider part a. first. There exists at least

one principal curvature, namely



RC? 3 Kbv (“.12)

for which

1 .

k" )W o (“313)

Consider the line of curvature, 1.", through x(T) cor-

responding to kcv' Since ch is a line of curvature, Equa-

tion 3.66 applies. Since cos 7 at x(T) is -1, Equation ,

3.66 reduces to:

d 008 x = -(kcv _ A x¥r ') d “IdssTl II . (1.1.114)

By Equation (4.13 this reduces. to

H31? =--(“fin—(fa—Lflj‘” . (“-15)

where l is a positive number. If an infinitesiml change

is made in x(T) along I‘cv’

i-CT’i‘iE-l > O (14.16)

since cos y is a minimum at x(T). Therefore by Equation

b.15,

d

451.1 < 0. (£1.17)

Let y be a point on ch infinitesimlly close to x(T);

thus by Equation l$.17, Equation ’4.7 is true and part a.

is proven.

Now consider part b. If for one curvature,

k a K 8 A 1 ' “.18

then at x(T),

d—gm a: O, (14.19)

ds
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over a segment of Lev’ hence the optimum is not unique.

Finally consider part c. In this case, the number A

of Inequality 14.15 is negative, regardless of the choice of

principal curvature. Since the principal curvatures repre-

sent the extreme values which curvature can take, K rep-
cv

resents the maximum value for curvature on the surface in

the neighborhood of x(T). Since Equation 14.16 holds and l

is negative,

‘1 'IsT > 0 (11.20)

and x(T) is the local minimum. Hence the proof of the theo-

rem.

It is interesting. to note that the important relation-

ship between k and 1 /|| x(T) [I for concave surfaces is con-

firmed by Equation 3.72 for the composite error flmctien E5,

In this case the requirement on k for monotonicity of the

error flmction is the same as that for the existence of a

local optimum on a concave surface (part c of Theorem 14.1) .

Since the object of this chapter is to eventially

adapt LOP-Cl! to the global problem, consider the results of

Theorem “.1 as they apply to LOP-CM. First of all, it is

evident that any minimum of cos 7 must be verified if even

one of the principal curvatures is positive. In this event,

one of the alternatives suggested by Theorem 14.1 applies.

Thus, consider the following decision scheme for computa-

tion based on these alternatives: "
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1) If Equation 11.6 applies, the apparent 'cptimum

must be a‘ ”false" optimum. Switching to

E (p ) = ”x(T) [I effectively overcomes this

difficulty. Note that this circumstance is

improbable since the nature of LOP-CM, par-

ticularly the method of choosingox, contra-

dicts Equation 11.7. The chance of an arbi-

trary trajector, x0(o) yielding this special

case is likewise remote. ‘

2) If Equation 14.8 applies, the optimum is not

unique, bu computationally x(T) is one of

the (infinite number of) local optima.

3) If Equation ’4.10 applies, then no computational

change need be .mde since x(T) is the local

Optimum.

It is appropriate to mks an observation at this point.

Considering the fact that a convex reachable set results

from a linear system and considering the very nature of the

optimization problem with O 6 R(T), it is reasonable to ex-

pect that the global optimum usually lies on a convex, or

at worst, a mixed (saddle-point) surface. Thus if an init-

tial guess for po yields a boundary point where Equation

14.6 applies, a mJor change or jump in the initial costate

might be most effective rather than a routine application

of LOP-CM.

In the discussion given above and in Chapter 3 only

convex or concave surfaces have been considered. The re-

sults, however, apply to mixed surfaces which are neither

concave nor convex. For example, if Equation 15.10 holds

(which allows the possibility of negative principal cur-

vatures) then it is quite possible that the optimum lies

on a mixed region. For such a region, examination of
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Equations 3.66 and 3.72 indicates that if a choice of path

is available, based on the value of curvature, then the

principal curve corresponding to the minimum value for k

should be chosen. Since the actual computational method

of perturbation from iteration to iteration is based on -the

ox's, the value of k only enters in the computation of 6p.

14,2 Special Pgoblem 2: Flats and Corners g.

In the application of mny reachable set-oriented com—

putational methods, two surface characteristics are partic-g

ularly troublesome. These are the £13.55, for which one out-

ward normal‘ corresponds to more than one adjacent boundary

point, and the corner, for which a unique norml plane is

not defined to the surface at that point. These are illus-

trated in Figure 11.2. The norml plane to a flat is said

to be nonregular and the corner is termed a nonregular ;

point.

pc(pT at corner)

pf (pT at flat) -' p

c.0 a

a. Flat only b. Corner only 0. Flat and Corners

 
FIGURE 11,2 Flats and Corners on Surfaces
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Consider first the flat. In mny computational meth-

ods which determine contact points [132] corresponding to a

specific p(T), sets such as that shown in Figure h.2a and

14.20 are especially difficult to handle since mny boundary

points correspond to the outward normal pf. In Section 2.7

it was indicated that the flats result from singular con-

trols in linear systems. For nonlinear systems, however,

flats my occur even though the problem is nonsingular. If

the flat is not the result of singular controls, then it

does not present special problems for the computational

method introduced in Section 3.7. Although 'the direction

of p(T) is constant for a region on 3R(T) (i.e. k is zero),

there is a change in the final state corresponding to a

change in the initial adJo int, hence any of the previously

introduced error functions differentiate between boundary

points even though the outward normls are the same.

If the flat results from a singular control, then gr_1_e_

initial adjoint corresponds to all of the points on the

flat. Thus if only the mximl values of the control are

assigned at singular points, only the boundary points of

the flat are determined, resulting in the singularity gap

mentioned in Section 2.7. This gap is only significant if

the global optimum is on the flat. In the event that this

optimum is the only optimum, then the failure of LOP-Cl! to

converge would identify this special case. If, on the

other hand, other optim exist, then a global technique
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would incorrectly identify one of these optim as the global

optimum. The possibility of such an occurrence is slight

but must be considered.

Short of restricting LOP-CM and its global modificaa.

tion only to norml problem, there is an additional alter-

native which can be taken. Any minim (but not optima)

located by a global procedure would have to be carefully

examined to verify that they are not boundary points of a

flat, and that. lle" for these points is not, in fact,

less than “IT" for the supposedly global optimum. While

this approach does not guarantee the identification of a

global Optimum on a flat, it does reduce the already small

possibility that such an optimum is overlooked.

One final observation should be made. For linear

systems the adjoint equation is fixed regardless of the

state trajectory; thus to each p0 there corresponds one

pT even though the state trajectories my vary (due to

singularities). This, of course, results in a flat on

3R(T). For nonlinear systems, however, the adjoint equa-

tion is dependent on the state trajectory, thus an initial

adjoint which results in singular controls usually would

produce differing final adjoints since the state trajec-

tories vary. While no conclusion can be drawn, this would

seem to indicate that flats caused by singular controls

are less likely for nonlinear systems than for linear

systems .
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The second special case to consider is the corner.

'hereas the flat spot results from a boundary section for

which p(T) is constant in direction, a corner results from

a boundary point which is constant for a number of final

adjoints (hence initial adjoints). In this event no par-

ticular computational difficulty is introduced for LOP-CM

if any of the error functions including the cos 7 factor

are used. Since the final adjoints vary, the error func-

tion oranges even though the final state does not clmnge.

Note that the effective curvature in this case is infinite,

thus indicating a perturbation in p(T) but no corresponding

perturbation in x(T).

14.3 Special Problem 3: Ememum but Not hocal Optimum

If error function E1 = ”x(T) [I is used, any minimum of

the error function must also indicate a local optimum. For

the other error functions, however, a minimum my be ob—

tained but my not be the optimum value. For instance,

cos y may reach a minimum but not the optimum value of -1.

This possibility? is illustrated in FigurezbJ. ’r‘lhile LOP-IE

or LOP-CM may converge to, such .a point, no particular com-

putational problem would result since any global procedure

excludes the choice of such an extremum as the global opti-

mum. In the event that convergence to such an extremum is

to be prevented, E1(p°) is utilized.
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origin

R(T)

x(T) = extremum of E1 but not a

' local optimum; in fact cosyh

is greater than -1.

FIGURE h,3 Extremum.but Net a Local Optimum for Cos 1

b,h §pecia1 Problem.h: Internal Boundaries

Consider the complement of R(T):

Q(T) e [ x e En : x e R(T) J. (n.21)

Usually Q(T) is connected; however, a situation as shown

in Figure h.hc is certainly possible. Designate the por-

tion of G(T) which contains the origin as QO(T) and index

the remaining disjoint subsets of G(T) as Q1(T), i=l,oo-,k.

IEFINITION Let) The 332 internal bounda , diner), of

R(T) is the subset of 9301') defined by

oinm = menses). (14.22)

Several observations can.be made concerning Q1 of

Figure h.#c. Because of Theorem 2.5, it is known that any

x c J&R(T) was a boundary point for all reachable sets R(tL

t < T: thus one can.assume that tho reachable set shown in

Figure h.hc evolved in a manner similar to that illustrated

in.Figures h.ha and h.hb.
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R(tl)

 R(tz)

 
o O

origin origin origin

FIGURE '4 14 Develo ment of an Internal Boundar

 

The global optimum (or optim, if not unique) must lie

on 30R(T) :

W L_e_t_ R(T) be a compact set for which Q(T)

is not connected. 1.21 Q0(T) be the connected subset of Q(T)

which contains the origin. 1119}; any global optimum belongs

to 0011”).

Proof: Let x* c 3301') be a global optimum. Assume that

x“ e 3312(1)), 3 .L 0. Thus x“ c 6301-), :j ,4 0. But the ori-

gin belongs to QO(T), thus there is no path lying entirely

in 153”) from x* to the origin. Consider the line from

x* to the origin. Since for any i i j, Q1(T) and Q3(T) are

disjoint, part of the line must lie in R(T). But this con-

tradicts the assumption that x* is a global optimum, hence

x* e ()JMT), j :4 O. The only portion of R(T) remining is

JOINT) and since x‘ 63R”), x* c 30R“); hence the proof.
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Note that the theorem is proven for a global optimum,

x*. A local optimum may lie on.an internal boundary (See

Figure “.5) and thus may be determined by LOP-CM. (Although

a means of identifying such an.eptimum is available (i.e.,

examination.of the line segment fromx+ to the origin),

such an.approach is not necessary since a global technique

cannot select such local optima as global optima. Thus, no

specialized algorithm is given to differentiate these local

optima from other local Optima.

“.5 Special Ppoblem 5: [also Boundagz;Points

As has previously been indicated, all extremal coup

trols are maximal controls but the converse does not hold.

As a result, ”false boundary points" (fbp) are generated.

0

origin

 
FIGURE “.5 A Local Optimum on.an Internal Boundar:
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DEFINITION “.5 1 false bound_a_1_‘_z. point is a mximl

endpoint which is not extremal (i.e., x e OR(T)).

It can be seen that the situation depicted in.Figure “.“

can result in false boundary points. The evolution.of the

reachable set is such that the points lying on the line

F(T) in Figure “.“c are false boundary points.

Since LOP-CM utilizes maximal controls with.the an-

ticipated result that x(T) e DENT), false boundary points

could cause computational difficulties. If LOP-CM were re-

quired to converge only to true (i.e., not fbp's) local

optima, some specialized technique would be needed to idenp

tify and treat the case of false boundary points. Such a

method could be based on the following facts:

1) Each fbp (e.g., x e F(T) in.Figure “.“c) previous-

ly existed as a boundary point for some t1 < T.

2) At some time t1, for each x1 e F(T), the state—

costate pairs (x1(t1),p1(t1)) and (x1(t1),-Pi(t1))

represent true boundary points.

3) For each x e F(T) there’exists a y,' y =- cx, O<c<l,

which is a boundary point ofR(T). An illustraa

tion of this is given in Figure “.“c, points x1

In as much as the ultimate objective is the determina-

tion of the globaIOptimum, specialized techniques are not'

needed. Although.LOP—CM might converge to a false boundary

point, any global optimum procedure would not choose this

false boundary point as an x*,since it is not a local opti-

mum and certainly not a global Optimum.
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“.6 ecial Problem 6: O i in Interior to R T

All of the discussion to this point has assumed that

the origin is exterior to the reachable set. On the other

hand, the system definition is general and since little is

known, prior to computation, of the reachable set, it is

quite possible that O c R(T). Some effective means of

testing this possibility is desirable. This is especially

true in the case of originpseeking, time optimal controls

where the optimum is attained when the origin first belongs

to the boundary of the reachable set.

For many reachable sets, an interior origin would

readily be identified since boundary points satisfying

minimum distance considerations would have +1 as the value

for cos 1 (See Figure “.6a). Other possibilities, however,

can occur, such as that illustrated in Figure “.6b, in

which local optima 21 or z2 would give no indication that

the origin.belongs to R(T). Ihile specialized techniques

can.be developed to test each local optimum to see if

0 c R(T), these are not necessary in.a global technique.

In fact, if the closest point to the origin.bas been deter-

mined, then it is simply necessary to test that point to

ascertain if cos y is positive or negative. If it is -l,

the optimum.has been.determined, if not, the origin.must

belong to R(T). This result is presented in the following

theorem.
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a. b.

FIGURE “.6 Reacflable Sets with Interior Origins

THEOREM “,3 Let R(T) be a compact set in E”. 331

x*(T) be a global boundary optimum, i.e.

||x*(T) I] S ||y(T) [I for any y e OR(T), (“.23)

with corresponding outward norml p*(T). M x*(T) is the

optimum for MP 1;

<x*(T) ,p*(T) > = -1. (“.2“)

<x‘(T) ,p*(T) > a +1, (“.25)

mg x“(T) is not the optimum for MP app 0 e R(T).

Proof: COnsider the first part of the theorem. Since

x*(T) is the global boundary optimum, it must only be shown

that o d R(T) to establish that x*(T) is the global optimum.

Since Equation “.2“ holds, x*(T) and p*(T) must be collinear

but oppositely directed. Let L(x*(T),O) denote the line

segment from x"'(T) to the origin. Since the final adjoint,

p*(T), is directed outward from R(T) (i.e., from x*(T) )

along L(x*(T),O), points on L near x*(T) must lie exterior
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to R(T). If this line were to intersect R(T) then it would

include at least one point on BR(T), closer to the origin

than x*(T). Since this contradicts Equation “.23, the ori-

gin.must be external to R(T) and thus the global boundary

optimum.x*(T) is the optimum for HP,

Now consider the second part of the theorem. If Equa-

tion.“.25 holds true, then xf(T) and.p*(T) must be collinear

and similarly directed. Since p‘(T) is outward to the .

reachable set, points on the line L(x*(T),O) near x*(T)

must lie in R(T). Thus the origin must lie internal to

R(T) or the line L(xf(T),O) would intersect DR(T). If the

latter were the case, then.Equation “.23 would be contra-

dicted, thus the origin must belong to the reachable set.

Hence there is a trajectory endpoint (namely x(T) a O)

which is closer to the origin than 1*(T); hence x‘(T) is

not the optimum for MP.

“.7 The Global Optimum

In the previous sections, special problems have been

suggested as possible difficulties in determining an.epti-

mum. Careful consideration, however, has demonstrated that

these special problems are really part of the global prob—

lem. In as much as an explicit equation is not available

for.aR(T), the global problem is very difficult, especially

for high order, nonlinear systems.

Several possible approaches can be taken to extend

LOP-CM to determination of global optima. Once a local
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optimum, x+, has been located, then the global optimum must

be located within a hypersphere of radius [I x+|I. One meth-

od of determining a global optimum would thus be to inves-

tigate all possible final states within this radius.

Since extremal endpoints, and thus global optima, are

associated with initial adjoints (assuming normality), any

other approach is to consider the set of all possible ini-

tial adjoints. Since only the magnitude of the adjoint

(hence initial adjoint-~see Equation 3.37) is important:

max<cp,f>=max<p,f>, O<ceE1, (14.26)

ucU ucU

a search on,a hypersphere in En of arbitrary radius, would

likewise locate global optima.

The second approach is chosen here since it involves a

search on a hypersphere inEn rather than a search.within a

hypersphere in.En. Thus a sequence of random initial ad-

joints of constant norm is generated and LOP-CM is used

to converge to a local optimum corresponding to each ran—

dom initial adjoint. The resulting set of local cptima

‘with associated starting initial adjoints is then.examined

and the global optimum (or optima) is identified. Since

it is not feasible to exhaustively search all possibilia

ties, the degree of confidence in the solution to the glob-

al problem is directly related to the amount of time which

one is willing to allocate to the computation.

The approach.presented above is summarized in the fol-

lowing procedure:
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GLOBAL OPTIMUMIPROCEDMBE (GOP)

1. Select a sequence of random starting initial

adjoints, N terms in the sequence.

2. Utilize LGP—CI for each starting initial adjoint.

3. Compare all local optima thus obtained (11*, .

ids l,o-~,N. Let the global optimum (optima)

be chosen.such that ‘

Hz“ n = min “11*”. (than

Examples of the application of this procedure are given in

the next chapter.

“,8 Application of GOP to Time thimal Control Problems

In the previous section an algorithm is given to deb

 

termine the global optimum for HP (i.e. solve the minimum

distance problem). It is the purpose of this section.to

apply this method to the determination of the origin.seeks

ing time optimal control. This problem.can be stated as

follows:

PROBLEM’D.1 Q1132: the system (Equation 2.19), the

class F of admissible control functions, and the perform_

ance functional

J(T) s T - tog. (n.28)

‘Eigg a control function uf(o) in.F which.minimizes J(T)

while satisfying Equation.2.l9 and the final condition

x(T) = 0.

Since GOP determines the closest point to the origin

on aR(T) for a specified time T, it is apparent that a
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series of iterations, allowing t to incrementally increase

at each iteration, would be one approach for solving the

time optimal control problem [F1,B1]. An.optimal control

exists if there is a control which results in a trajectory

terminating at the origin. If R(t) is compact and continp

uous (Theorem 2.h) the control is an extremal control and

the optimal time t‘ (time at which the origin.first belongs

to R(T) ) can be determined and corresponds to the time at

which the origin first belongs to ONT), i.e., ¢)R(t*).

Thus consider the following time optimal control algo-

rithm which includes several alternative choices:

TIME OPTIMUM PROCEDURE (TOP)

1. Let T = to; choose an initial oTo. Pick:an

arbitrary initial costate pg. Let i a 1 and

T1 a T0 + 6T0.

0

2. make an initial iteration using LOP-BS, LOP-CM“

or con to determine an initial optimum 1::(1'1).

If 1x(Tl) s 0, the problem is solved. If

0 e R(Tl), then decrease 6T0 and repeat.

Otherwise proceed to step 3.

3. Increment time, T1+1 a T1 + 6T1, where 5T1 may

be constant or may be a variable dependent on

E(po).

h. Starting at an arbitrary initial costate, at the

ithpoptimum'ip; (optimum initial costate for the

previous time iteration) or an initial costate

determined in some other manner, use LOP-BS,

LOP-CM or cor to determine 1+11(T1+l)e If

1+1x(T1+1 s 0, the problem.is solved. If

0 o R(T1* ) then decrease GT1 and repeat. oOther-

wise, let i 2 1+1 and repeat steps 3 and h.
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Examination of the above algorithm.demenstrates a num-

ber of possible alternatives within.TOP:

1) Step 2--Choice of LOP-BS, LOP-CM or GOP to

determine the initial optimum 1x(T1).

2) Step 3--Method of choosing 6T1:

a) 6T1 a h, a constant, or

b) 6T1 a some function of E, the error function.

3) Step u—nethod of selecting the 1+1“ starting

initialtcostate:

a) Choose an arbitrary initial costate, or

b) Choose the preceding optimal initial r

costate , 1p: .

h) Step h—-Choice of LOP-BS, LOP-CM or GOP for

determining the 141%" optim, .i >. 0.

Consider the alternatives given.above. As was the

case for GOP, there is a tradeoff between the reliability

of the method and the amount of allowable computational

time. If GOP is utilized at each time increment and if

the time increments are made sufficiently small, then.there

is confidence in the choice of t‘. On the other hand, to

be realistic, some compromise in computations mmst be made.

For example, GOP may just be utilized at the initial itera-

tion and as a check of the final result.

In.as much as the step size alternatives (step 3) are

not difficult to implement, the choice should'be‘based

entirely on.the effectiveness of the two alternatives. For

the alternative given in.3), it is logical to use prior

information, rather than starting with an arbitrary initial
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costate. In fact, if GT1 is kept reasonably small, the new

optimum initial costate “11:; my be very close to 1p;, in—

dicating that LOP-IE is a good candidate for use in alter-

native h).

Caution, however, must be exercised in attemting to

reduce the computation time. Even though a T:l has been

determined for which 0 o DMTJ) and even though 0 o R(Ti-l),

it is possible that there existed a Tk < T3 for which

0 e 3R(Tk)‘.. If the step size were too large or if an in-

correct, local optimum was considered the global optimum

at each time increment, then this situation could occur.

One final observation should be made. The successive

values of final states at each iteration, 1x(Ti) do not

necessarily approach the origin monotonically. It is quite

possible that an optimum final state 3x(TJ) has the prop-

erty that . . . .

u Jx(ri) u > u J-lx(r1-1) u, (n.29)

even though the sequence of .1x(T1)'s converges to 0.

Examples of this as well as other aspects of TOP are given

in the following chapter.



 

CHLPTER,5

COMPUTATIONAL RESULTS AND CONCLUSIONS

In.the preceding chapters, general problems, methods

and alternative choices have been given which can.effec—‘

tively be evaluated utilizing computational results. It is

the purpose of this chapter to provide these results and to

form.conclusions based on the data obtained.

Specifically, example systems are detailed and dis-

cussed in the first section. These systems are then used

as examples in.the remaining sections of the chapter.

These computational examples are introduced with several

purposes in mind:

1) To give insight into the nature of the problems.

2) To present the resulting reachable sets and give

example extremal trajectories.

3) To use these examples in comparing the various

computational alternatives previously introduced.

b) To demonstrate that the previously introduced

algorithms are effective in.computing Optima.

In particular, the author feels, based on personal experi-

ence, that example nonlinear problems with resulting reach,

able sets should be given for the benefit of others wishing

to consider this type of problem.

As the computational results are presented and analy-

zed, comparisons are made and conclusions are drawn. These

conclusions are listed in the various sections of this

chapter and are summarized in the final section.
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.1 Exa le S stems,

In this section several example systems are intro-

duced. For each of these systems, a differential equa—

tion is given, state and costate equations are introduced

and maximal control is considered. For simplicity, these

results are presented in outline‘form.

EXAMPLE SYSTEM £1 (ES-1)

a. Differential Equation

(13$th .01 [x(t) [x(t)] 1+ .1[%Q§u(t)] 55.1)

b. State Equations ( x = x1

i1 (5 2)a u .» o

5:2 -.1| x1|.1x23

c. Hamiltonian

H = .lplxz- .lp2[ x1 I x1 + .lpzxzu _ (5.3)

d. Ldjoint System N

' a
(50")

pz -01 ' “.1111

e. Control

1. Restraint Set: [u] 5

ii. Maximal Switching:

u a sgn (.lxépz) a sgn (xzpz) (5.5)

1’. An analog diagram for this system is given in

Appendixwl.
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EXAMPLE SYSTEM £2 (ES-2)

a. Differential Equation:

3 2 dudx=_ dx de __?.

E3 153+(at) +“14"”‘2J’ dt (5’6)

This system equation was derived from a well-

known equation of fluid dynamics known as

Schlichting's Equation (Equation 5.6 becomes

Schlichting's Equation if u a l and =0).

In general, equations of this type r resent

fluid flow across surfaces. With the addition

of u , flow across a wedge is indicated.

        

[13, 1].

b. State Equations (x1 2 x)

121’ *0 1. o— z: 70 er

i2 8 0 0 1 12 + O l “1 (507)

u
0 2

:34 f3 12 (3. IL 1 o

c. Hamiltonian

2 . '
H 3 13112 + p213 + p2u2 - DBIBII + p312 + p3ul (5o8)

d. Adjoint System

'2“[ 1" "' ”"1

pl 0 0 x3 1’1 .

fl, = -1 0 -2x2 p2 (5.9)

p 0 -d x P

L34 L. ' 1.... L3.      
e. Control

1. Restraint Set: [nil 5 1, i=l,2

ii. Maximal Control:

[11] 3 [p2] (Solo)

1’3
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EXAMPLE SYSTEI, ES- a e

a. Differential Equation (for the system shown.in

Figure 5.1)

d3! 3 -«QE§ - 12,2; + u(t) (5.11)

dt3 dt2 ' at ' ‘

b. State Equations (xwx1 )

F. T — —- gl— .1 I-O-q

x1 0 l 0 x1

:12 s o 02 1 x2 + o u (5.12)

i O -x -J l

c. Hamiltonian

2

H = Izpi + are - 1112p: - 131°: + up: (W)

d. Adjoint System ‘

h. 1' P _ _ _

pl 0 0 2"1“2 I’1

p O -l l P

.L. 3. L ._ i. :1.

9. Control _

i. Restraint Set: In} f 1

ii. Maximal control:

11 = sgn (p3) (5.15)

u(t) .1

+ s2 (s + 1) ’1”)

 
 

   
 

dx(t

earity

FIGURE 1 Exa 1e stem. 2- rd 0 der Nonlinear

 



1
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EXAMPLE SYSTEM f4 (ES-J4) IE}, page 226]

a. Differential Equation

U 3
d x t g _2 d x t _ t t ( .16)
—§-)-dt -——§—)-dt s[x( )] + u( ) 5

   

2 2-~ l h

S[X(t)] 3 "5’1“” “1'3 x(t) *5-5-6 x(t) (5.17)

b. State Equations: (x exl )

E17 — o 1 o 6- E1— 0‘

’ a o o o 1 + (5.18)

T3 t 21:1 11 x3 “2

x ~+F‘m O O -2 xu “l

_L.L ' J J- J. _. .4     
c. Hamil—tonian

2 2 l '4
H = plx2 + pr3 «I-pr,4 + fpuxl +1-5pux1 - W311

- qupg, + 133,111 + p3u2 (5.19)

d. __A_d:loint System .1

131 {—0 o 0 .. fi- «in—5- + g; Fill—

152 g -l o o 0 p2) (5.20)

133 o -l o 0 pg

31“} _o o -1 2 .1 ”pu-J

      
e. Control , .

i. Restraint Set: lull s 1, [112‘ S 1,

ii. Maximal Control:

u2 sgn p3
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5.2 An Introduction to Computational Examples -

The computations summarized in the following sections

were performed in the Hybrid Simulation.and Control Labora-

tory at Michigan State University. In this lab an IBM+1800

digital computer and an.ADbh analog computer are linked to-

gether, thus allowing digital control of analog operation

and also hybrid computation.

In all computational examples in this thesis, the dig-

ital computer was used to provide overall control (direct

the optimization routines, implement alternative compari-

sons, etc.) and to input/output data. Depending on the

example, either the analog or the digital computer was used

to integrate the state and costate equations at each itera— .

tion. While the capability exists, the digital was not

used in oneline integration linkage (i.e., true hybrid cp-

eration) with the analog computer.

The digital integrations were performed using a hth

order Bunge-Kutta method. While this method is relatively

slow on the IBM-1800, it is reasonably accurate. It is

presumed that the most significant source of inaccuracies

is introduced through.the control, which in.all example

systems is only piecewise continuous (signum.funotion COD!

trol--signum switching). To partially overcome this dif-

ficulty, whenever a discontinuity in any component of the

control occurs, the integration step size is reduced by a

factor of ten for the interval containing the control dis-

continuity.
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The analog computer, on the other hand, is generally

faster for equivalent accuracy. Its accuracy, however,

cannot readily be improved by reducing step size, as is the

case for the digital.computer. It also has the tendency to

be less consistent. This is especially apparent in the

forwardpreverse time integrations as is indicated in Sec-

tion 3.6.2.

Example computer programs and subroutines are given

in.tppendix B. It should be noted that these programs are

more complex than.the basic algorithms because capabilities

(data and sense switch options) for quick alternative com-

parisons are included.

host of the alternative method comparisons were made

using ES-l and.ES-2 for various reachable sets. This is

possible since the nature of the reachable set significant-

ly changes, for a given.system, with changes in initial

state, initial time and final time. For ES—l the analog-

digital computer combination was utilized. Otherwise, to-

tal digital methods were employed.

The comparisons are given in.two sections. The first

contains comparisons for the various algorithm alternatives.

The second presents example optimization.problems and in,

cludes example trajectories, reachable sets and comparisons

with a totally direct search method. As previously menp

tioned, conclusions are included within these sections and

are clearly identified.
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5,} Computational Copparisons of Algorithm Alternatives

In Chapter 3, algorithms have been.presented which

include alternative choices and subalgorithms. Although

theoretical considerations indicate, in.most instances,

which alternatives are best, it is the purpose of this

section to substantiate (or refute) these choices on the

basis of actual computational results.

For each comparison, only one change or alternative

is evaluated, Taking a specified group of reachable sets,

LOP-CM is started at an arbitrary (but fixed) po and the

number of iterations required for convergence is measured

for the first of the two alternatives. Then the second

alternative is incorporated into LOP-CM and again the spec-

ified reachable sets and.po's are used. A comparison of

the average number of iterations required for the two al-

ternatives or of the average percent decrease in the error

function.per iteration for each method gives an estimate

of their relative value.

All results are identified by the alternatives to be

compared and the basis on which the comparisons are made.

These results are presented in.semi-outline form and are

arranged in.an order corresponding to the discussion of the

alternatives in Chapter 3. It is only possible to present

a summary of the computational work and example results.

In.most cases, data, other than that listed, also confirm

the results presented.
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5.3.1 Stud: of Perturbation Rglationships--Fina1 Time

In this section, comparisons are made of some of the

 

possibilities introduced in Section 3.6.1 (See Figure 3.2).

Specifically, the relative effectiveness of a joint per-

turbation (both IT and.pT) versus a single perturbation.(xT

and PT) is considered.

a. Joint Perturbation.(;d and_pT via Eguation.2.28

1g 3,1. perturbation only.

i. Copparison.Basis: ES-l, Analog Integration,

t0 = O, T = 20 secs.,lnput Data Set 1 (See Appendix C).

ii. Illustrative Exa 1e: In Figure 5.2 the

reachable set for x = 13,-35T is given. On this set the

sequence of final agates generated for each approach of

this comparison are given (joint-~13 , xT only- 0).

iii. Summa ‘2; Co arison Results: The average

number of iterat one requires io aitain a Iocal optimum

were compared for the joint perturbation and for the per-

turbation of xT only. The joint perturbation.approach re-

quired an average of h.7 iterations whereas perturbing xT

only resulted in an average of 6.0 iterations.

iv. CONCLUSION: The joint perturbation.approach

is more effective than an xT only perturbation approach.

b. Joint Perturbation _Y_S_ p,r perturbation only.

i. Copparison.Basis: ES-l, Analog Integration,

t0 = O, T = 20 secs., Input Data Set 1: ES—2, Digital ID!

tegration, to = O, T = .5 sec., Input Data Set 3.

ii. Summa ‘2; Copparison.Resu1ts: The average

number of iterat ons require to attain a Iocal optimum for

the joint perturbation.was 8.1, for perturbation.of pT only,

8.5. Another means of comparison is the average percent

improvement for each curvature move (perturbation of xT and

PT). On this basis, a joint perturbation yielded an aver-

age 56% improvement while the pT only approach gave an

average 51% improvement.

iii. CONCLUSION: The joint perturbation approach

is slightly better than a PT only approach.
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9

R(ZO) for i

. T r _ 3

:0: (59-5)

7

origin 6 .

g "' .9...

‘ =2.

2......

b
.---_-2 6

§r--- 5 ‘-

R(20) for

T

10: (59‘1)

,

Dindicates 3 int

perturbat tons

Oindicatos onl 5.

perturba lion 1

numbered .-L

\N ‘—

-7‘ill 2

x1

FIGURE 5.2 Joint vs Sipgle (IT only) R(T) Perturbations
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0. GENERAL CONCLUSIONS: On the basis of the two come

parisons made above, it can be concluded that the perturba-

tion of the final adjoint has the most significant effect

in improving the error function. The improvement due to

perturbations in the final state are probably diminished

due to the fact that slightly inaccurate perturbations in

xT result in perturbed.points lying off the boundary of the

reachable set. In either case the joint perturbation ap-

proach is the most effective.

5.2,2 Copparison of Curvature Values

In.Chapter 3 several alternative means of estimating

curvature are given. It is the purpose of this section to

compare these means and the resulting curvature values. In

as much as the estimates of the curvature are obtained by

perturbing the final state-final costate pair, one can ex-

pect that small errors in the determination of the final

state and final costate can introduce significant errors in

curvature determination. Because of this, the analog and

digital means of integration are analyzed separately since

significant inconsistencies do result from analog computation.

a. Copparison_of Curvature Values as Determined on

the Analo Copputer (using Equations 3.120, 3.121

and 3.123%.

1. Co arison Basis: ES-1,tO:-O, T==20 secs.,

Input Data Set 1 ESee Appendix C).

ii. IllustrativeEmppl : In Figure(5. 3 the

reachable set correspondingEto T= 20 andx 5,0)T is

given. Curvature values for several extregal endpoints in

an iteration sequence are given.
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x1 0 1 2 j 3 L1

_2_ k s: :37 (convex)
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it.

“ . Ecomx)

!
f
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FIGURE Exa 1e Curvature Values in an Iteration Sg'uence
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iii. Summarz of Copparison Results: In.as much as

ES—l is a second order_system, the boundary of the reachp

able set is a line of curvature. If the perturbations of

and PTare sufficiently small and if no computational

inaccuracies are encountered, all estimates of curvature as

defined in Section 3. 6. 1 should coincide. This is not,

however,the case for higher order systems as the perturbed

final state may not be on a line of curvature through the

original final state.

Comparison results are given in Table 5.1. There is

reasonable correspondence between'k and except for in_

put data numbers 2, 6,10 and 11. Since gel is a second

order system, these inaccuracies must result from too large

of perturbations or from integration.inaccuracies in the

analog compuper. It is interesting to note that in.these

four cases, k1 and'kz have Opposite signs, indicating that

the estimate of k is not accurate. Several methods of cor—

relating the various curvature estimates are available.

One is the standard deviation of the'k 's(denoted u(k)),

another the standard deviation of k an (denoted

u(k,r? ) and a third, the ratio of u(k) and the average

1) (denoted an). The importance of these various

comparisons are discussed further in comparison 5. 3. 2. d

of this section.

iv. CONCLUSIONS: Experimental curvature esti-

mates agree with those expected from reachable set geometry.

Perhaps the best measure of the accuracy of the curvature

determination (also the measure of whether or not the per-

turbation is on.a line of curvature for greater than sec-

ond order systems) is o = a(k)/ . If this value is

too large, then.the perihrbation [(ioi‘vdetermining curvature)

is too large, computational inaccuracies have resulted ,

and/or the perturbation is not along a line of curvature.

b. Copparison of Curvature Values as Determined on

the Di ita Gogputer‘l’using Equations 5.120. 3.121 ..

and 3.1 ) for a Second Order sttem.

1. Co arison Basis: ES-l, to -O, T= 20 sec.,

Input Data Set i (See Appendix C).

ii. Illustrative Exapple: In Figure 5.h, the

reachable set corresponding to x0 = (-lO ,-5)T is given.

Curvature values for several extremal endpoints are in-

dicated on the boundary.

iii. Summarz of Copparison Results: In Table 5.2

estimates of curvature—are given. It is readily apparent

that there is good agreement between these estimates.
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TABLE 5.1 Copparison of Various Analog Estimates of Curvature

INPUT

DATA f*

1

\
O
m
V
O
‘
x
U
l
-
F
'
N

10

11

12

13

10

15

 
 

 

 

 

 

  

3.1.. ‘2 .5:— E .13.)- £55.!) .31..

.3630 .1217 ..2023 .2175 .1206 £0120 .0977

.0809 —.1111 -.0157 1.g311 .0966 .6230 1.0000

-.0185 —.0159 -.0172 .0123 .0013 10108 .0756

.1037 .1302 .1389 .1390 .0005 .0001 .0338

—.2101 .0870 -.0616 2.2019 .1086 1.1518 1.0000

.0799 .0975 .0887 .0821 .0088 .0033 .0992

-.0256 —.0552 —.o000 -.1670 .0108 10633 .3663

.0563 .0520 .0502 .0055 .0022 .0000 .0006

_45915 -.6657 -.0371 1.0009 .6286 .5010 1.0000

-.0008 polg1 ».0006 .1208 .0095 .0607 1.0000

.2186 .1980 .2085 .2096 .0101 .0005 .0089

.0650 .0538 .0590 .0921 .0056 .0163 L0903

-.0168 -.0159 -.0160 .0358 .0005 .0261 .0305

.0160 .0120 .0100 .0090 .0020 .0158 .1389

*

determined for Data Set 1 (See Appendix C). No data was

obtained for #3 since the initial guess of p '. was

approximately the optimum; hence no curvaturg estimates

were calculated.
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FIGURE 5.0.Exagple Curvature Values for R(20), xn= (-—10,...5)T
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TABLE 5.2 Digital Estimates of Curvature for a 2nd-Order System

INPUT

DATA f* _El_

.1500

-.7205

.0002

~1559

.0195

.0685

.0868

-.0292

-.2000

.0697

.0003

-.0019

‘iev .__EL__ .JiSEl_‘9§EiEaI).__SR__

._:1539 .1501 .0005 .0001 .0033

-.7166 -.7117 .0039 .0025 .0055

.0002 .0001 .0000 .0020 .0020

.1561 .1557 .0002 .0003 .0010

.0195 .0210 .0000 .0010 .0009

.0686 .0670 .0001 .0008 .0016

.0866 .0806 .0001 .0010 .0018

-.0292 -.0301 .0001 .0005 .0020

-.2027 -.2062 .0013 .0018 .0055

.0696 .0690 .0001 .0003 .0013

.0003 .0086 .0000 .0022 .0009

-.0019' -.0023 .0000 .0002 .0051

I"determined for Data Set 1 (See Appendix C).

6 and 13 are left off since the original guess was so near

the optimum that LOP-BS was employed rather than LOP-CM;

hence no estimates of curvature were calculated.

Data numbers 3,
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iv. CONCLUSIONS: For the second order system be-

ing considered, perturbations of the digitally integrated

differential equations gave very good estimates of the cur-

vature. As expected, all variances were low: thus verify-

ing that the perturbation size was sufficiently small to

give a good estimate of curvature.

c. Copparison of Curvature Values as Determined on

the Di ital Co uter—(using Equations 3.120, 3.121,

SoEZS; f 51and or a T rd Order System.

i. Copparison Basis: ES-2, t°=O, T: .5 sec.,

Input Data Sets 3 and .

ii. Summar ‘21 Copparison Results: In Table 5.3

various estimates 0 curvature are given. Unlike the pre-

vious comparison, made for a second order system, most data

points have rather large variance of curvature values.

This is, of course, expected where the boundary of the

reachable set is not implicitly a line of curvature. Er-

ror function values (E2) are given.at the final state be-

fore perturbation and as the result of the next itera-w

tion (which is based on the estimate of curvature value).

iii. CONCLUSIONS: Since the same methods were

utilized in this example and in comparison 5.3.2.b, it is

reasonable to expect that the large variances as shown in

Table 5.3 result from perturbations which are not generally

on lines of curvature. There is no reason to believe that

these large variances result from perturbations which are

too large.or from computational inaccuracies.

d. GENERAL CONCLUSIONS: Examination of the three

comparisons made in this section indicate several impor-

tant facts pertaining to curvature determination as it re-

lates to computational efficiency. First of all, compari-

sons 5.3.2.a and 5.3.2.b indicate the relative consistency

and accuracy of the digital integration approach.as com-

pared to that of analog integration. Since a second order

system represents a very special case, the important OOH!

clusions relative to curvature determination rests on third

and higher order comparisons.
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*determined for Data Sets 3 and 0 (See Appendix C).

TABLE . Di ital Estimates of Curvature fora rd—Orders stem

— 1th 1+1“

_iniiim“ _1‘1 _‘2 _‘3 Lav _5 __°n 0.22.1 m

3o1.1 -u82o6 -9o232 -0059 -163o9 23.679 1o37u -o111 -O962

3.1.2 .375 -.253 -.026 .032 -.070 1.191 -.962 -.979

3.3.1 -.l00 —1.288 -1.220 -.880 —l.513 .596 -.190 -.688

30302 "30292 ”0370 ‘10531 '10731 ‘025 069“ ‘o688 ”0971

3.0.1 3.803 —2.000 -2.590 -.262 -2.590 1.031 -.070 -.896

3.0.2 -2.801 —5.075 -0.328 -0.215 -12.80 .256 -.896 -.999

3.5.1 1.055 -.061 -.332 .097 -.899 1.106 -.561 -.797

3.5.2 1.195 -.793 -l. 6 —.361 -1.512 .981 -.797 -.918

3.6.3 -.259 -.062 -3.013 71.378 -.090 1.006 -.918 -.975

3o7o1 -uo633 ‘0597 -31o23 -12o15 -u0867 lo118 -0u10 -0315

3.7.3 -7.708 .352 -.996 -2.797 8.375 1.169 -.691 -. 82

3.9.1 -0.716 -.709 .057 -1.656 -. 05 1.130 -.29 -.300

3.9.2 -7.500 -1.057 .092 -2.823 -1. 90 1.159 —.30 ..330

3.9.3 —7.001 -1.385 -.367 -2.920 -1.720 1.000 -.ugo —. 5

309o ‘Eo656 '1o139 ‘03u0 ”20378 ‘1o389 ‘.980 -o 5 'o629

3o905 - 0303 ”0912 “0555 “10923 '100u1 0878 '0629 -0887

3.10.1 22.013 -1.718 .837 7.177 .001 1.300 4.115 .186

0.1.1 -.389 .153 -.l07 -.127 -.169 .966 —.769 -.901

0.1.2 -.555 -1.371 -.506 -.812 -.939 .091 -.901 -.976

0.2.1 -0.766 —.063 -.095 -l.77l -.860 1.195 -.222 -.176

nouol 10.097 “3080“ -o173 2.0u0 o810 1.255 -o666 -.003

0.5.1 -0.091 10.213 -.060 1.887 -.102 1.251 -.899 -.771

uo6o1 -3o153 -10u03 ‘ollu -1o557 -20502 oBOO -o06l -o973

The

input data # indicates the data set, data point and the

iteration number for that point. For example, 3.9.3

indicates Data Set 3, 110 number 9 and LOP-CM iteration

number 3.
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Examination of comparison 5.3.2.0 (third order) yields

several important conclusions. Obviously, if it were nec-

essary to-aocm'a-te‘lyidenttify a line of curvature, it would be

necessary to attempt several, perhaps even many, perturba-

tions. In fact, of all the perturbations represented in

Table 5.3, only several give definite indication of being

near a line of curvature (data number 3.0.2, for example).

Perhaps the single most important number given for

each data.point is on, the ratio of the standard deviation

of the curvature estimates to the average of the absolute

values of these estimates. To demonstrate the significance

of this value and to indicate its use in LOP-CM, consider

Table 5.0. In this table, the data is arranged according

to increasing magnitude of on. 'Except for one data point

(3.1.1), there is a close correspondence between.the value

for on and the percent decrease of the error function‘de-

noted by. The data point 3.1.1 which does not follow this

general observation is assumed to be an anomaly-resu1ting

from the extreme values taken.by the curvature estimates.

The value for on which seems to represent the cut-off

point (i.e., the point at which no improvement in cos y is

noted) is approximately at on = 1.2. Stated differently,

for any curvature estimate with a value of on below 1.159,

the error function.is improved in the iteration based upon

that estimate.

It would certainly be desirable to obtain.a very good
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TABLE 5.0 Evaluation of the Significance of Cg

1th 1+1“"a? 3

DATA f" 0:1 cos 1' cos I -§cos y 51* ”We 59

3.”.2 .256 -0896 -0999 .103 .99

uo1o2 ou91 'o901 '0976 007 0758 817

3.3.1 .596 -.190 -.688 .09 1.613 '

30302 069“ -0688 ‘0971 0283 0908

0.6.1 .800 -.061 -.973 .912 . 71

3.9.5 .878 -.629 -.887 .158 . 27 601

0.1.1 .966 -.769 -.901 .132 .572 ’

3.5.2 .981 —.797 -.918 .121 .596

3.9.0 .980 -.005 -.629 .180 .332 ,

3.B.3 1.000 -.350 -.005 .095 .106 .516

3. .1 1.031 -.O70 -.896 .826 .892

3o6o3 1.006 ' 'o918 -0975 0057 0695

3o5o1 1o106 -o 61 -0797 0236 0537

3.7.1 1.118 -. 10 —.51 .105 .178) .197

3.9.1 1.130 -.29 -.3 .005 .007

3.9.2 1.159 -.3 -.350 .006 .066

3.7.3 1.169 -.691 -.082 -.209 -.678

3.1.2 1.191 -.962 -.979 .017 .008 _ 272

0.2.1 1.195 -.222 -.176 -.o06 -.059 ‘

uoSol 1o251 -o899 ‘o771 -0128 -1.268

0.0.1 1.255 -.666 --°”3 -o623 ‘1-368) -1-100
0.10.1 1.300 -.115 -.186 -. Ol -. 00

3.1.1 1.37“ -.111 —.962 o 57 o 51

* determined for Data Sets 3 and 0 (See Appendix C). The

data number corresponds to those in Table 5.3.

* CS?)
0 =

n ki av

* _ -gcos 1'

6y ‘ + cos y
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estimate of curvature, but there is a tradeoff between the

computational time required for obtaining that estimate

and the time required for iterating to a final state near-

er the optimum. For this reason, the factor on is partic-

ularly useful in indicating when the curvature estimate is

close enough to use in LOP-CM.

Another observation is apparent from Tables 5.3 and

5.0. As the optimum is approached, the curvature estimate

generally improves. This is especially apparent in cone

sidering on for data points 3.1, 3.0, 3.5 and 3.9.

In.summary, the experimentation.of this section indi-

cates:

1) For second order systems (where the boundary is

the line of curvature), the curvature estimates

correspond closely to that expected from reach,

able set geometry.

2) Estimates of curvature obtained by digital inte-

gration.are more consistent and more accurate

than those determined by the analog computer.

3) The factor a is a good measure of both the loca-

tion of a fim1 state perturbation relative to a

line of curvature and the usefulness of the cur-

vature estimate.

0) As the optimum is approached, the curvature esti-

mate generally improves.

5.3.3 Effect of the Basic Curvature Formula Choice

In this section the effect of the basic curvature for-

mula choice (Equations 3.120, 3.121, 3.123 and 3.120) on

the rate of optimization convergence is considered. Com-

parisons were made for LOP—CM using both Subalgorithms 0

(i.e. with and without standard deviation evaluation of
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the curvature).

a. Go arison.Basis: ES—l, to = O, T = 20 secs.,

Input Data Sets 1 and 2 (See Appendix C): ES—2, to = O

T = .5 sec., Input Data Sets 3 and 0 (See Appendix C).

b. Summa ‘2; Copparison.Results: The average num—

ber of itera ions requ red to attain a local optimum were

compared for each of the basic curvature formulas. The

following results were obtained:

12 (Equation L123)-----7.7 iterations

Eav2(Equation 3.120)---7.7 iterations

Tc, (Equation 3.120)----—8.3 iterations

'Eav (Equation 3.121)----9.3 iterations.

In as much as and k.had the same average number of

iterations, a fur her comparison of these two estimates

was made. This comparison was based on ES-2, a third

order system. In this case the percent improvement in

the error function for each curvature move was consider-

ed. For E the percent improvement was 27.9 while it was

c. CONCLUSIONS: If the estimates of the curvature

were accurate, the choice of basic curvature formula would

have little effect on the algorithm efficiency. In the

case of third and higher order systems, where only

approximations to lines of curvature are achieved, the

choice of basic curvature formula does alter the algo-

.rithm convergence. The data of this section indicates

that 2, the overall average of curvature estimates,

is the est choice with'E'being the second choice.

5,3,0, Copparison of ng-CM'Subalgprithms 0a and 0b,

Within the structure of LOP-CM, two potential sub—

algorithms are introduced to determine curvature. sub—

algorithm 0.a provides an estimate of k without consider-

ing the accuracy of the estimate. On the other hand,

Subalgorithm 0.b considers the normalized standard devi-

ation on and rejects any estimate for which on is greater

than a specified value. In the computations of this
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section, the limit is specified as 1.2 corresponding to

the results indicated in Section 5.3.2.

a. Copparison Basis: ES—Z, t0 = O, T = .5 sec., Ins

put Data Set 3. '

b. Summapy p£.Comparison Results: In as much as there

is tradeoff between computation time spent estimating cur-

vature and time spent iterating, only a maximum of n (3

for this third order.system) attempts at obtaining a suit-

able estimate of curvature are allowed. For this case,

the average number of iterations to achieve a local opti-

mum without considering cn_was11.0 whereas utilizing a

to evaluate the curvature estimate improved this averagg

number to 9.3. Consideration of the average percent

improvement in the error function.per curvature move (LOP-

CM iteration), substantiates these figures. If a is not

considered, this percent is 30.7 whereas utilizatibn of

the on factor gives an improvement of 03.3%.

c. CONCLUSION: The data of this section indicates

that rejection 0f poor curvature estimates (high a ) im-

proves the convergence of LOP-CM. This effect woufd be

even.more marked were the allowable a smaller and the

allowed number of attempts at obtaining a good curvature

estimate 1arger..

5.3.5 Cepparison of Perturbation Direction Alternatives

In step 5 of LOP-CM, three alternative equations

(3.80, 3.90 and 3.108) are listed for determining the di-

rection of the perturbation of the state at the final

time. It is the purpose of this section to present ex—

perimental results comparing these three choices.

a. Go arison.Bpsis: ES-l, to = O, T s 20 sec.,

Input Data Sets and 2; ES-2, to = 0, T = .5 sec., Input

Data Set 3. '

h. Summapy‘pg Copparison.Resu1ts: The average num—

ber of iterations required to attain a local optimum for

these three alternatives were as follows:

i. Equation.3.80------ 7.20 iterations

i i . Equation 3. 1.08------ 7 . 31 iterations
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iii. Equation.3.90 7.81 iterations. 

Similar results were obtained for the average percent de-

crease in the error function for each LOP-CM iteration:

i. 02.0%, ii. 00.7% and iii. 20.9%

0. CONCLUSIONS: Very little difference was noted

between the effect on.LOP-CM.of using Equations 3.80 and

3.108. On the other hand, Equation 3.90 gives less sat-

isfactory results. It should be recalled that Equation

3.80 was developed for regions far from an.eptimum, Equa-

tion 3.90 for regions near an.0ptimum and.Equation 3.108

for general applicability. In the computations of this

section, LOP-CM was used until E reached .1 and then

LOP-DS was employed. Had LOP-CM een.used for greater

convergence, the utility of Equation 3.108 would have

been more readily apparent.

5.3,6 Copparison of Perturbation.Step Size Alternatives

In.the previous subsection, the direction of the final

state perturbation was considered. In this section, its

relative magnitude, c, is discussed. The important com-

parison.to be made is that of a constant step size as com—

pared to a step size dependent upon the error of the unper-

turbed boundary point. Specifically, the two candidates

selected are c = .2 and c = (l + cos y).

a. Copparison.Basis: ES—l, t = O, T = 20 secs, Ins

put Data Sets 1 and.2 (See AppendixOC); ES-2, t0 = 0,

T = 20 sec., Input Data Set 3.

b. Illustrative 1e: In Figure 5.5 an example

iteration sequence is g ven. or both the constant and

variable step factors.

c. Summary‘p; Copparison Results: The average number

of iterations required to attain.a iocal Optimum for cone

stant step factor (c = .2) was 6.68, while the error de-

dendent factor yielded a lower average number of itera—

tions--5.92. The average percent decrease in.the error

for each LOP-CM iteration. ave corresponding results:

constant step factor-03.0 , error dependent step '

factor-09.l%.
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10.,5

“ U independent step factor

j” 0 error dependent step factor
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1 2 3 0 5 6 7 a

iteration'number

FIGURE 5,5 Cogparison of Perturbation Stgp Size Alternatives

d. CONCLUSION: The error dependent step factor

(c = l + cos y) is more satisfactory in.achieving coup

vergence than the constant step factor.

5.3.2 Analog Error and the Integration Correction Routine

Section 3.6.2 pointed out that significant errors are

encountered in analog integration of the differential equa-

tions of Example Problem 1. As a consequence, correction

factors a and a are introduced in Step 8 of LOP-CM. It is

the purpose of this section to give‘examples of these er—

rors, consider their origin and evaluate the effectiveness

of the correction factors.

a. Go arison Basis: ES—l, t =0, T = 20 secs., Ins

put Data Set!“ !'1""'(See ip"'p'e'nd'"ir C), Roth Analog and Digital

Integration.
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b. Illustrative Examples: Figure 5.6 is given to re-

late the various state and adjoint vectors and correction

factors. In Table 5.5, examples of these various vectors

are given for both.analog and digital integration. values

of the various vectors depicted in Figure 5.6 are presented

as are error function.values at the start and at the conp

clusion of the iteration.

c. Summarz‘gg Results: The computations of this sec-

tion yield several important r sults. First of all, COD!

sideration.of the values for a and 31 in Table 5.5 demon— ‘

strates that analog computation errors are indeed important.

Furthermore, at points'on R(T) far from.an Optimum, these.

errors appear to be larger than.for points near an optimum.

Two digital iterations are also presented and it is readily

apparent that the digital integration routine does not pro-

duce these large errors.

Comparison of LOP~CM with and without the use of the

error correction factors a1 and 51 demonstrates their use-

fulness. 'Without the error corrections, the average number

of iterations required to determine a local Optimum is 9.75

whereas the introduction of the correction factors lowered

this to 7.00. Comparison of the relative efficiency of

LOP-CM with analog integration and LOP-CM’with digital

integration is given in the next section.

d. CONCLUSIONS: It is, of course, obvious that ana-

log computation errors do occur and that the correction

factors a1 and 31 do help compensate for these difficul-

ties. The significant item to determine is the cause of

these errors. At first the author considered the possi-

bility of incorrect patching on the analog computer or

incorrect conversion to reversed time integration. After

eliminating these as possibilities, analog-digital con-

version and digital-analog conversion.were considered.

These too, do not appear to be significant since the error

is only on the order of one-half of one percent.

Further consideration indicates that the errors enp

countered are a result of the interaction.between several

factors:

1) The nature of the differential equations

and the large time interval involved

in these comparisons (20 seconds).

2) The sensitivity of the trajectories to

switching time.

3) The errors created.by analog equipment--

comparitors, integrators, multipliers,

electronic switches, etc.
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TABLE 5,: ForwardpReverse Time Integration.Error Evaluation

IE:
1141

A1-2

D1-1

D1—2

iu-l

Au—z

Au—a

Ah—h

115-1

115-2

AIS-3

AlS-h

IO

-10.

_ 5,

-10.

-5,

 

-10.

-5,

-10.

-5.

6.

2.

6.

2.

pf.
0.000..

10.000

l.h7h

6.779

0.000

10.000

2.166

9.769

10.000

“'3 o 000

-6.932

-6.6h2

-9.5 6

“207 3

”90883

-l.uOO

'50000

-5.000

“90389

“50995

-9.862

-1.892

‘9o9h6

0.271

error

 

1.087

.600

1.277

1.219

3.1962

1 .052

.393

.286

1.862

.UBO

.293

.056

Hi

.131

n.292

.063

3.218

.001

.002

.001

.002

-.360

“0755

'0360

-1.h87

-0360

-1.63h

-ouo9

-l.2h3

—1.167

.630

-.630

.386

”0532

-0396

-0581

‘0200

i

8.212

““0293

.021

”0358

‘0029

-.000

-.026

~.006

-0139

“0&29

-0271

.890

“0115

1.218

-.060

.927

n.036

-2.h57

.156

-.51h

.002

.780

.373

1.567

new

i error

.600

n.619

1.219

.689

1.052

.393

o 286

.167

.uao

2293

.056

.030

*qui indicates the ith iteration for the 3th data.point

using analog integration.

the same data point is indicated by Di—i.

Digital_integration for
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The first two factors multiply the effect of the er—

rors introduced by the analog equipment. Take, for exam-

ple, the state and costate trajectories plotted in.Figure

5.7. While the initial and final points are not far re-

moved from.one another, the trajectories traced out do by

no means represent a shortest path from the initial to the

final pOints. Also, four switching times occur for this

extremal trajectory even though only a second order system

is involved. Even slight differences in.awitching time

due to comparitor hysteresis, slight multiplier inaccura-

cies, etc. can have a significant effect on trajectory be-

havior.

5.2,8 Comparison of Analog vs Digital Integration in LOP-CM

The previous subsection strongly indicates that the er-

rors due to inaccurate analog computation have a signifi-

cant effect on the algorithm convergence. The introduction

of the correction factors a1 and 31 improve this conver-

gence. It is the purpose of this section to determine if

the resulting improved LOP-CM with analog integration is as

effective as a completely digital LOP-CM.

a. Comparison.Bgsis: ES—l, t0 = 0, T = 20 secs.,

Input Data Set 1. _

b. Summa ‘2; Results: The average number of itera—

tions required to attain.a local Optimum for LOP-CM with

corrected analog integration was 6.25..‘With.digital inte-

gration, the average number was only 5.33 for the same data.

In addition, LOP-CM with analog integration failed to con,

verge in two cases because of analog inconsistencies where-

as convergence was always achieved using digital integraa

t on.

c. Illustrative E les: Two typical examples of

the convergence of LOP-CMZwith.analog and LOP-CM with dig-

ital integration are shown in.Figure 5.8.

d. CONCLUSION: Use Of digital integration in LOPaCM

is far more consistent and accurate. As a result, it con-

verges in less iterations than.LOP-CM with analog integra-

tion. It has the disadvantage of requiring more digital

computer time. A judgmentl as to which.approach is best

would depend on the equipment available, the accuracy of
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the desired results and the computation.time available.

It is the author's opinion that," in general, LOP-CM with

digital integration.wou1d.be the better choice.

5,h Comparison of LOP~CM with LOP-BS

In the preceding section many LOP-CM alternatives were

considered. Choice of the most suitable of these alterna-

tives yields an effective optimization algorithm. It is

the purpose of this section to summarize the comparisons

made between.the resulting LOP-CMIand LOP-BS, a direct

search algorithm. . ~

The comparisons were made for Example Systems 1 and

2, with selected data points from Appendix C. The results

of several sequences Of comparisons showed an.average of

h.17 iterations required to achieve each local optimum us-

ing LOP-CM. The direct search routine, LOPeDS, required

an average of 7.12. Thus LOP-CM represents a definite imp

provement over a direct search routine. In Figure 5.9 an

example of their relative convergence is given.

5,5 Global thimization.Examples

All of the preceding developments and comparisons

were aimed at producing an efficient algorithm for solving

the modified problem HP. As a result Of the comparisons

summarized thus far in this chapter, an efficient form of

LOP-CM is identified. Using this ”Optimized" LOP-CM, the

Global Optimum.Procedure GOP given in Section.h.7 is now

applied to example problems. This procedure is based on
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the generation of N local minima Of the error function.by

starting at N arbitrary initial adjoints and utilizing

LOP-CM until a local minimum is obtained. Of course, the

probability that a global Optimum is included in this re-

sulting group of local minima increases as the integer N

is increased.

In this section, the Global Optimum Procedure is ap-

plied tO the example problems Of Section 5.1. The integer

N is fixed at 10, thus ten arbitrary initial adjoints are

specified and ten.minima of the error function.iE5 are lo-

cated. Many or all of these minima may coincide. In fact,

if only one minimum Of E5 exists, i.e. the global optimum

is unique, then all ten.must coincide.



136

Some Of the special problems discussed in.Chapter h

are encountered in the computations of this section. They

are discussed as they occur. In.addition, typical itera-

tions for LOP-CM are presented for some of the gIObal prob—

lems considered.

5.5.1 Examples for ES—l: 2nd—0rder sttem, Scalar Control

Example Problem 1 is particularly useful as an example

Of global optimization since it was specifically developed

to produce significantly nonconvex reachable sets. The

shape of these-sets, of course, depends on the initial

state selected and on the time interval of integration.

The effect of increasing the time interval is demonstrated

in the next section (time optimal control). In this sec-

tion the global problem is considered for several reachp

able sets for ES-l corresponding to different initial

states. The time interval is fixed at T = 20 seconds.

The first initial state to be considered is ’

x0 = (-10,-5)T. The reachable set has alreadybeen shown.

in Figure 5.0. The ten resulting minima of GOP are given

in Table 5.6. Consideration of these data points shows

that GOP selects three possibilities for the global Opti-

mum--data points 1, Band-8: data points 2, ’4, 5, 7 and 9;

and data.points 6 and 10. Of these, E1 is minimum for data

number 1, 3 and 8. Hence they represent the global Optimum

as consideration of the reachable set demonstrates.
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TABLE 5.6 Application of GOP to ES—1.with 1gp: (:lo,—51T

 22M .311. gm. him! E2 .21.

1 .526 -8.268 8.281: -.9993 .0057

2 44.10“ -9.106 9.989 r -.9999 .0013

3 .526 -8.268 8.28u -.9990 .0078

u -u.2ua -9.039 9.987 -.9995 .0052

5 -u.lou -9.108 9.989 -.9998 .0021

6 -8.151 -2.lul 8.u27 -.9999 .0009

7 -u.lou +9.108 9.989 -.9998 .0022

8 .586 -8.26l: 8.285 -.9997 .0027

9 A: . 2'48 -9 . 039 9 . 987 - . 999’4 . 0056

10 —8.039 -2.539 . 8.180 -.9997 .0023

Consideration Of the other two minima of E5 shows that

one is a local Optimum (Data pOints 6 and 10) and that the

other is a false optimum as discussed in SectiOn 15.1. Both

of these minima occur. on concave surfaces. Application Of

Theorem.u.1 to the first point (6 and 10) demonstrates that

it is a true local Optimum. The curvature at this point is

.02; thus K0,, is .02 since the boundary .is $2 line Of cur-

vature. But [Ilel is 8.11 or l/[Ilel is .119. Thus Equa-

tion “.10 applies: _ _

no, = .02 < .119 ,s 1/||x.,.||. (5.22)

and thus 1:1. is a local Optimum. For data points 2, '4, 5,

7 and 9, the curvature is. .22; hence Kcv is also .22.. But

“IT” is 9.99 13111.18 l/llell is approximtely .1, thus Equa-

tion 11.6 applies:
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Kev = .22 > .1 = 1/[IxT|I, (5.23)

or xT in this case is not a local Optimum.

The second initial state considered for ES—l is

x0 = (5.5)T. The resulting reachable set is shown in

Figure 5.10. While this set is nonconvex, it does not

produce as interesting results as the previous example.

In this case, there is only one local Optimum (located

at xT = (-2.’+,.5)T ) and thus each iteration of GOP se-

lected it. It, of course, represents the global Optimum.

Also illustrated in Figure 5.10 is an example se-

quence of iterations. In this case, it took 5 iterations

to converge to the Optimum. The final state perturbations

for the first four steps are shown.

5,5,2 Emmmples for-Higher Order sttems

While application of GOP to ES-l resulted in.aeveral

minima of E5 being achieved, application to the other ex-

ample problems yielded unique optima. The resulting Opti-

mum final states are given in.Tab1e 5.7 as are the corre-

sponding values of the error functions. Given in Figure

5.11 are several examples of the change of error with each

0 .

iteration for ES-2 for various p0.

5,6 Time thimization Examples

In Section.h.8 the application of GOP to time optimal

control problems was introduced. It is the purpose of this

section to apply the resulting procedure to several example
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TABLE 5.2 -Application of GOP to Higher Order Systems

Example

Problem

ES-3

ES-h

.5

.5

.5

.5

.5

#

xT Illill

-.9998

-.998

-.998

-.9996

—.996

-.9990

'0962

.001

.009

.001

.0011

.00“

.001

.007

.007

.062
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FIGURE 5,11 Example Iterations of GOP for Example Problem 2
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reachable sets for ES-l. Example Problem 1 is chosen since

the resulting reachable sets are particularly nonconvex and

interesting in their behavior. Unfortunately, however, the

sequence of optimum final states for these reachable sets

only asymptotically approaches the origin as' :‘time is in-

creased. ‘

The first example considered is for the reachable set

corresponding to the initial’state xb = (-10,-5)T. In Ta-

ble 5.8 the results of some time increments are given. It

should be observed that [I IT” does approach the origin, but

the convergence is asymptotic. Likewise, it should be not-

ed that the sequence Of llell's is not monotonic. These

results are illustrated in the reachable sets corresponding

to various times as given in Figure 5.12. From this figure

it is easy to see the spiraling which R(t) does around the

origin and its increasingly nonconvex nature. The locus of

optimum final states (for the minimum distance problem) is

also plotted in Figure 5.12.

The second example corresponds to the initial state

x0 = (5,-5)T. In Table 5.9 the results for various final

,times are given. The reachable set at various times is

plotted in.Figure 5.13. Again, there is the spiraling ef-

fect noted in.the previous example, with the reachable set

becoming increasingly nonconvex as time increases.

Consideration of the initial adjoints listed in Tables

5.8 and 5.9 shows that there is a consistency in the manner
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TABLE 5,8~ Application 0: ‘TOP to ES-gl. xx = (-10.-5)E

Time

0.00

5.00

7.10

9.65

12.06

15.75

19.17

25.00

28.03

30.09

33.53

36.79

38.“?

00.00

01.09

“2.86

00.26

05.60

06.92

08.22

“9.51

50.8“

JET.”—

11.180

20.980

18.009

12.060

6.639

9.899

9.792

0.321

3.955

“.551

“.309

2.812

2.000

1.809

1.659

1.620

1.519

1.002

1.391

1.33“

1.303

1.358

xlT‘

-3.5“0

0.757

“.810

6.519

5.“?3

1.001

-“.O77

-3.881

-3.662

-l.2“5

-O.l70

0.268

0.659

0.903

1.098

1.098

1.196

1.098

1.098

1.196

1.293

321

-5.000

20.679

15.99“

11.099

1.205

-8.250

-9.7“2

-1.“89

0.756

2.710

0.126

2.807

’2.026

1.68“

.1.391

1.196

1.0“9

0.805

0.85“

0.756

0.610

0.015

Plo

5.000

5.929

6.78“

5.955

5.972

5.998

5.999

5.900

5.882

6.000

3.333

0.117

3.817

3.902

“.003

“.003

0 0.980

5.““9

6.377

6.038

5.962

5.962

P20

-10.000

0.071

0.836

0.730

0.999

0.110

0.618

0.100

-0.007

0.000

3.533

“.360

3.070

0.322

0.003

“.“33

3.500

3.2“9

1.072

0.670

0.666

0.666
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TABLE 5.9 Applicatiom_of,TOPLtOJES-l, IQ = (5. -5)T

Time.

0.00

5.00

5.78

6.12

7.50

8.02

9.38

10.33

12.80

1“.“9

15.29

16.13

17.05

19.16

21.50

23.7“

25.65

27.23

28.66

30.0“

32.02

3“.12

35.37

36.03

llgmll

7.071

7.758

7.202

6.716

6.102

5.679

5.081

0.022

3.089

2.760

2.701

2.803

2.960

3.000

2.702

2.107

1.587

1.3“8

1.202

1.103

1.038

0.911

0.929

0.950

5.000

1.3“2

0.756

0.170

-0.“15

-1.001

--I.“89

-l.928

-2.758

-2.758

-2.710

-2.661

-2.563

—2.075

-1.538

—0.366

-0.020

0.122

0.122

0.317

0.015

0.317

0.063

0.512

-5.000

-7.601

-7.202

-6.71“

-6.128

-5.590

-“.858

-3.979

-1.391

—O.170

0.015

1.001

1.089

2.172

2.221

2.075

1.586

1.302

1.196

1.098

0.952

0.85“

0.805

0.805

5.000

-5.992

-5.983

-5.99“

-5.990

-5.99“

-5.988

-5.990

-5.035

-6.302

-5.3“9

-5.577

-5.577

-6.“53

-6.21“

-5.955

-5.893

-5.881

-5.950

-5.950

-5.968

-6.679

-5.999

25.999

.3111__£2L”_I:10__1120_

5.000

0.395

0.251

0.251

0.251

0.251

0.188

0.002

-0.13“

1.556

2.211

2.211

2.211

2.011

1.081

01.137

-1.125

-0.995

-0.766

-0.766

-0.612

—0.036

-0.032

_0.032
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in which.the optimum initial costate changes as time is

incremented. In.the examples of this section, use is made

of this fact. For the first local Optimum (T = 5 seconds)

LOP-CM is employed. fFor succeeding Optima, the change in

the initial adjoints is sufficiently small to optimize

using LOP-D8. In fact, in several instances the 1th p; is

also the 1+18t p3 (See Table 5.9, time = 6.12, 7.50 and

8.02).

5.2 Summar: and Conclusions

It is the purpose of this section to present a general

summary of the theoretical developments, computational re-

sults and comparisons of the previous sections of this the-

sis. Conclusions which.are given in previous sections of

this chapter are also briefly summarized in this section.

Additional comments or conclusions which seem appropriate

are also made.

As indicated by the title, the purpose Of this thesis

is to consider the computation of Optimal controls for DOD!

linear systems. Rather general nonlinear systems are al-

lowed. The restrictions placed on these systemsare given

'3 ‘ww.w:fiQ-FI
. .s... “-4

in Section 2.2. The concept of the reachableset is intro—

duced and investigated. A number of related definitions

and results are givenxin.Chapter 2.

The minimum-error regulatorprO‘Bie-sismprincipally

treated and computational methods are developed to solve

this problem. The problem is somewhat difficult when ‘

.slmw’" '

”1.-A xv.
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nonlinearities are allowed in the state equations. The

nonlinearities have a two-fold effect on the computation

of an optimal control for the minimum distance, problem.

First Of all, they introduce the possibility of the occur-

rence of several or even many local optim since the re-

sulting reachable set is not convex. Secondly, the deter-

mination of a local optimum is made more difficult since

the adjoint system becomes dependent on the state.

Although many reachable set-oriented methods have pre-

viously been utiiized, their application to nonlinear sys-

tems has been limited. One of the most restrictive limita-

tions is a result of the dependence of the adjoint system

of equations on the state variables. As a result, the di-

rect determination of an initial adjoint given a final ad-

joint is not possible without knowing the corresponding

state trajectory.

To overcome this difficulty, the author decided to

place the emphasis of his computational approach on the

initial adjoint. Once the initial adjoint is specified,

it is possible to compute the state response, a maximal

trajectory, and to identify a boundary point on the reach-

able Bate

An intrinsic part of any effective computational meth-

od is a means Of evaluating each iteration and of deter-.

mining when an optimum has been achieved. This is the pur-

pose for the error function. One obvious error function
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for the minimum distance problem is E1, the norm Of the

final state. Other error functions are available and are

introduced in Chapter 3. It is shown that for the minimum

distance problem, the final state and the final adjoint are

collinear at the Optimlmi. This leads to a secondverror

g ='<x,p> ‘

E2 003 Y I p 9 (502,4)

where x is the final state and p is the final adjoint.

fmetion:

This error function is more sensitive to changes in extre-g

mal trajectories than is IIxII. Also, [lel may just be ap-

proaching an unspecified minimum whereas E2 approaches -1

at the Optimum. For these reasons, E2 is usually employed

in combination with E1:

E5 = (1 + E2) E1. (5025)

One approach to the solution of the minimum error reg-

ulator problem is a direct search (related to gradient tech-

niques) method based on varying the initial adjoints such

that the error flmction is improved. A direct search pro-

cedure is given.on pages “1 and.“2 and a flow chart of this

method is given in Figure 3.1.

Since the direct 'search technique is inefficient,

other possible methods are considered. To develOp another

method, the determination of the optimal control can be

viewed as the determination of .a sequence of initial ad-

joints which, in turn, determines a sequence of extremal

endpoints starting at an arbitrary final state and
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terminating at an optimum. Thus the problem is one of de-

fininga path on the boundary of the reachable set, specif-

ically a path for which the error flmctions decrease mono-

tonically.

To show that such a path exists and to give insight

into the nature of this path, various principles and facts

from differential geometry are utilized. Specifically, it

is possible to prove that on a locally convex surface, a

satisfactory path can be constructed from lines of curva-

ture. Requiring that the path consist of lines of curva-

ture gives a relationship between the perturbations of the

final state and the final adjoint on the boundary of the

reachable set:

I: 6x + 0p ,= O, (5.26)

where It represents the curvature of the surface at the

pOint'x on 'the line of curvature. This aids in the imple-

mentation of a procedure using this geometric approach.

Chapter 3 develops this procedure and considers the al-

ternative choices which are encountered.

Several interesting facts develop as a result of these

geometric considerations. To prove the monotonicity Of the

error function E2, it is necessary to also prove the mono-

tonicity of the error function E1,.along the desired path.

As a result of this proof the importance of the curvature

of the surface is demonstrated (see Equations 3.66 and

3.72). These facts lead to Theorem “.1 which analyzes the
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effect of concave surfaces on.the procedure.

The alternative choices available in the procedure can.

generally be classified as those which are available on.the

boundary of the reachable set (perturbation of the final

state and the final adjoint to yield a better estimate of

the initial state, hence Of an.eptimum) and those which are

important at the initial time (perturbation of the initial

adjoint).

The computations summarized in Section.5.3.l indicate

that the final time perturbation.is most effective if both

the final state and the final adjoint are perturbed as re-

lated through Equation.5.26. The perturbation.af xT is

considered to be the independent perturbation, hence it

is important to consider the direction.and magnitude of

this perturbation. Sections 5.3.5 and 5.3.6 consider these

choices and indicate that the best means of perturbing the

final state IT is: .

OxT = -c(xT-||x.r|| "—15%" E2) (5.27)

where c represents the step size. Consideration of the

effect Of the step size demonstrates that the method is

most effective if c is made dependent on the error at each

iteration.

The perturbation of the final adjoint is related to

the perturbation.of the final state through Equation 5.26,

hence determination.of the curvature k is important. Sec-

tions 5.3.2 through 5.3.“ consider the various methods
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of estimating curvature and of evaluating the validity of

the estimate. Examples Of estimates Of curvature are given

in these sections and shown to correspond to the values ex-

pected from reachable set geometry.

The analog correction factors a and 8 introduced in

Section 3.6.2 are shown to improve the convergence Of

LOP-Cliusing analog integration. While the experimentation

of this thesis was not intended to evaluate the relative

merits Of analog or hybrid computation versus digital com-

putation, the necessity of these correction factors intro-

duces this subject. The advantages and disadvantages of

both are apparent in.the computations of this thesis. No

decision is clearly Obvious concerning their relative mer-

its, but digital computation is more reliable.

While the hybrid computer has the advantage of Speed

of integrations, it has disadvantages also. Accuracy is

limited due to the analog elements employed and to analog-

digital and digital-analog conversion.limits. Because of

the nonlinear systems considered and the discontinuities

introduced by the controls, the trajectories are very same

sitive to hystersis of comparitors and switches, inaooue

racies in.multipliers, integrators, etc. Thus there is a

large amount Of sensitivity to the control switching times.

On the other hand, the digital computer is consistent

and repeatable in its results. The accuracy of the inte-

gration can be controlled by controlling the step size.
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However, the major drawback of the digital. computer is its

speed of integration of the differential equations. Thus,

as previously indicated,.the decision as to whether to use

analog or digital computers for the differential equation

integration must be based on the nature of the system be-

ing considered, the accuracy desired, the computational

equipment available and the speed of computation desired.

For the equipment available to the author, total digital

computation was preferred because of its accuracy.

Both local Optimum procedures, LOP-CM and LOP-DS,

were utilized and performed as expectedm-converging to lo-

cal optim. The )convergence of LOP-CM, as expected, was

more rapid than that Of LOP-DS, In none of the experimen-

tation performed for this thesis were any limit points of

LOP-CM or LOP-DS encountered. The only failures of these

methods to converge can be traced to analog integration

inconsistencies.

Some of the special problems introduced in Chapter “

were encmmtered. Special Problem 1, relating to concave

curvatures, was encountered in Example 5.5.1 and the re-

sults verify those predicted by Theorem “.1. NO flats or

singularities were noted, nor were false bomidary points

and interior boundaries. Corners were produced in several

examples, but caused no special problem. In most cases,

in fact, the corner is the optimum.

Generating a sequence of local minima. did locate the
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global optimum in the examples considered (See Section 5.5).

Only one optimum was computed for the reachable sets cor—

responding to Example Problems 2 through “. While this is

a disappointment from the standpoint of effectively testing

the Global Optimum Procedure, it is encouraging in that it

indicates that the reachable sets corresponding to many

nonlinear problems are not extremely badly behaved.

In Section 5.6, the time Optimal control problem is ,

considered and example computation is done. Examination of

this computation demonstrates the mobility and changing

shape of the reachable sets with increasing time. It is

important to note that for the examples considered, the

initial adjoint (corresponding to the optimal control) did

not significantly change as time was" increased.

In sumry it can be concluded that the theory of

Chapters. 2 through “ provides the basis for an effective

computational procedure. The consideration of the algo-

rithm alternatives in Chapter 5 verifies the choices made

in Chapter 3. The resulting LOP-CM is effective in the de-

termination Of local minima and, when employed as part of

a global procedure, determines the global optimum.

Certainly there are many areas Open for future in-

vestigation. Possibly other principles Of differential

geometry can be brought to bear on the Optimization prob—

lem (utilization of geodesics, for instance). Other appli-

cations Of LOP-CM, GOP and TOP could be considered as well
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as comparisons with other existing methods. Possible

future investigations and extensions are suggested in

Appendix D.



BIBLIOGRAPHY

 

“
‘
0
‘
-

 _L-A rr





A1

B1

BZ

B3

BS

B6

B7

D1

E1

BIBLIOGRAPHY

Athans, M. and P.L. Falb, "Optimal Control,"

McGraw-Hill Book Co., New York, (1966).

Barr, R. 0., "Computation of Optiml Controls by

Quadratic Programming on Convex Reachable Sets ,"

Ph.D. thesis, University of Michigan, 1966.

Barr, R. O. and E. G. Gilbert, Some Efficient Al O-

rithms for 9, Class 9; Abstract thimization Prob ems

Arisimg-fp thiml Control, To Appear in IEEE Trans-

actions on Automatic Control, 1969.

 

Bellmn, R. "Dynamic Programming," Princeton

University Press, Princeton, N.J., (1957).

Bellman, R. and R. Kalaba, gffiamgProgrammimg,

Invariant impeddimg 9mm uas nearizat on: omar-

Isons _a_ng lpjterconnections, in ”Computing Methods

In Optimization Problems," Academic Press, New

York, (196“), pp l35—1“5..

Bellmn, R. and R. E. Kalaba, "Quasilinearization

and Boundary Value Problems," American Elsevier

Publishing Co., New York, (1965).

 

Benson, R., "Eucl idean Geometry and Convexity,”

McGraw-Hill Book Company, New York, (1966).

Bryson, A. E. and W. F. Denhamri glzegpest-Ascent

Method for Soivimg timum Pro rammimg Problems .

J. Appl, Mech. Ser E. 01 29, 519620.131). 257-257.

de Jong, J. L., “Application of Picard's and Newton's

Methods to the Solution of Two-Point Boundary-Value

Problems in Optiml Control Theory," Ph.D. Thesis,

University of Michigan, 1967‘. i , '

Eaton J . H. Anlterative Solution to Time-gp‘timi

ContrOl‘, J. 11555. AnaI and Ipp1., .1701— '

 

p"_3"‘—p29.300; Errpta and Addenda, J. Math. Anal. 11nd

App1., Vol. , 617): pp 157-152.

156

 



F1

G1

G2

H1

H3

H“

H5

H6

H7

157

Fadden, E.J., ”Computational Aspects of a Class Of

Optiml Control Problems,“ Ph.D. Thesis, University

of Michigan, 1965.

Gilbert, E. E., An Iterative procedure for CO uti ,

the Minimum if, _a_ ufiratIc Form pm 9, Eonvex ,et, AM.

J. on Control, S'er. L, VO ’3, NO. 1, (1966), pp 61-80.

Gerretsen, J. C. H., "Lectures on Tensor Calculus and

Differential Geometry,” P. Noordhoff, Groningen, The

Netherlands, (1962).

Hadley G., "Nonlinear and Dynamic Programming,"

Addison-Wesley, Reading Mass., (196“).

Halkin, H., 1_A_e_j;hod _9_f_ Convex Ascent, in ”Computing

Methods .in Optimization Problems ," Academic Press,

New York, (196“), pp.‘211-239-

 

Hestenes, M.R. and T. Guinn, g Embeddimg Theorem

_fpm Differential E uations, J. of Opt mization

Theory and AppIications, Vol. 2,‘ NO. 2 (March 1969),

pp 87-101.

Hestenes, M. R., ”Calculus of Variations and Optimal

Control Theory," John Wiley and Sons, New York, (1967).

HO, Y. E. A Successive Approximation Technigue for

thimal ControI S stems Subject 1159 Imput Saturation,

Trans. fiSME,‘ J. Res c Eng., Series , . 82, (1960),

pp. 33" 00

Hooke, R. and T. A. Je‘eves, "Direct Search" Solution

of Numeric l and" StatisticaI PrObIems J. Assoc.

5311p. Mac ., 701 8, NO. 2, (Aer 1961), pp 212-229.

Hsu, J.C, and A. U. Meyer, "Modern Control Principles

and Its Applications,” McGraw Hill Book Co., New

York, (1968).

Knudsen, H. R., All Iterative .P ocedure for Co uti

thimal Controls IEEE Trans. on Au 0. Contro .

V01. ‘10-9’ NO. 1: (19.6“), pp 23-300 ,

Kepp, R. E.‘ and R. McGill, _S__;vera1 Trajectomz $timiza-

tion Technigues, in ”Computing Methods in Opt mizat on

Problems," Academic Press, New York, (196“), pp. 65-89”.

 

  

Ku, Y. H., ”Analysis and Control of Nonlinear Systems,”

The Ronald Press Co., New York, (1958).

i



L1

L2

N1

112

P1

P2

R1

81

T1

W1

21

158

Lapidus, L. and R. Luus, ”Optiml Control of Engineer-

ing Processes," Blaisdell Publishing Co., Waltham,

Mass., (1967).

Lee, E. B. and L. Markus, "Foundations of Optiml

Theory,“ John Wiley and Sons, New York, (1967).

Neustadt, L. W., Szm‘thepizimg Time timal Control

§zstems,uJ. Math. Anal. and App1., VO 1, (1960),

Pp. 92.

Neustadt, L. W. and B. Paiewonsky, 9m mthesimg

thimal Controls, in "Proceedings of the 'Second Con-

gress of the Internatiomzl Federation Of Automtic

Control (IFAC), Basel, 1963', Butterworth, London.

Plant, J'. R., “Some Iterative Solutions in Optimal

Control," The M,LI.T. Press, Cambridge, Mass., (1968).

Pontryagin, L. S,, V. G. Boltyanskii, R. V, Gam-

krelidze and E. F. Mischenko, ”The Mathemti-cal Theory

of Optiml Processes,” John Wiley and Sons, Inc., New

York, (1962).

Roxin, E., A Gpometric Intempretation pg Pontmzmgin's

Maximum Principle, in ”Nonlinear Differentia Equat one

and Nonlinear Mechanics,“ Academic‘ Press, 'New York,

Schliching, H., "Boundary Layer Theor ", 6th Ed.,

McGraw Hill Book Co., New York, (1968).

Tapley, B.D‘. and J. M. Lewallen, Comparison of Several

Ng‘erical thimizmtion etho s, J. Of Optimization ,

Theory and App cat ons,‘VO ' , No. 1, (1967), pp‘1—32.

Willmore, T. J., o'An Introduction to Differential

Geometry,“ The Clarendon Press, Oxford, England,

(1959).

Zukhovitskiy, S. I. and L. I. Avdeyera, "Linear and

(gongg? Programming," W, B. Saunders Co., Philadelphia,

19 . ‘



APPENDICES



 

AI’PIENIJIXC A

ANALOG DIAGRAM FOR EXAMPLE PROBLEM 1
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13 «0 output

T16 [b- output

indicates an integrator, A indicates an amplifier,

indicates a relay; P indicates a potentiometer; '

indicates a multiplier; C indicates a comparitor;

indicates a trunk line (to the digital computer);

indicates an electronic switch. »

A11 amplifiers and integrators consisted of two

operational amplifiers, hence both a positive and

negative output were available.

Trunk 20 was used to switch the system for reverse

time integration.
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APPENDIX B

EXAMPLE COMPUTER PROGRAMS

1. GLOBAL OPTIMUM PROCEDURE AND OPTIONS“

// FOR GLOP2

*IOCS(CARD,1““3 PRINTER)

*LIST SOURCE PROGRAM

*NONPROCESS PROGRAM

*ONE WORD INTEGERS

DATSW 0 PROVIDES FOR XM=-XM*XM

DATSw 1 PROVIDES KICXOUT OF ANY INEFFECTIVE ITERATIONS

DATSW 2 PROVIDES DIRECT ACCESS TO DIRECT SEARCH ROUTINE

DATSW PROVIDES STEP SIZE INIEPENIENCE 0F ERROR

DATSW PROVIDES FOR LESS SUBCURVATURE MOVES, DEL(KK)=1

DATSw 5 DETERMINES THE STARTING VALUE OF KK,NORMAL-10

DATSW 6 BYPASSES THE ORTHOGONALIZATION IMPROVEMENT ROUTINE

DATSw 7 CORRECTS FOR ANALOG INTEGRATION INACCURACIES

DATSW 8 DETERMINES KM, NORMAL = COS, UP =- -1

DATsw 9 DETERMINES THE CURVATURE CHOICE (SINGLE 0R COMP. )

DATSW 10 STOPS ALL GOAN. PRINTOUTS EXCEPT ERROR PRINTOUT

DATSW 11 SKIPS THE RANDOM INPUT AND SEARCH 0ch

mm 12 PROVIDES FOR XICIIOUT OF THE RANDOM INITIAL ROUTINE

DATSWl PROVIDES FOR PRINTING. OUT TRAJECTORY POINTS

DATSWl SETS THE BASIC NMER OF INTEGRATION STEPS AT 10

DATSW 15 IETERMINES-THE INTEGRATION STEP MULTIPLIER

SSWTCH 0 PROVIDES FOR TYPEWRITER INPUT AND OUTPUT

SSWTCH 1 PROVIDES FOR THE CURVATURE AVERAGE 0F xx AND m

SSWTCH 2 PROVIDES FOR ST. IEV. DEPENIENT ESTIMATE OF OURV.

SSWTCH PROVIIES A BASIS OF 100 R(T) BOUNDARY PTS, N-25.

SSWTCH PROVIDES ANR(T) DATA POINT MULT. 0F 5, N-2.

SSWTCH 5 PROVIIES FOR RANDOMLY PICEING POINTS ON BOUND R(T)

SSWTCH 6 PROVIDES FOR MULTIPLYING VALUE OF XD BY 2

ITI (FIRST READ) SPECIFIES THE NUMBER OF STANDARD DEV. .

POSSIBILITIES OR CORNER CURVATURE ATTEMPTS

TOLl (2ND READ) SPECIFIES THE KICKOUT ERROR TO THE DIRECT

SEARCH ROUTINE

TOL2 ( RD READ) SPECIFIES THE FINAL ERROR TOLERANCE

TOL3 ( TH READ) SPECIFIES THE STANDARD IEYIATION MAXIMUM

DIMENSION X(0)PP,(0),XI(0),PI(0)XJ(0),PJ(0),0(0) ,XL(0),

x0(0),Pc(0), XS(“, 10),PS(“, 10),XERS(.11)

IY=5309

wRITE (1,2180) -'

218“ FORMAT(('()',,'() ) )','( )','( )',
0

READ (6,2183) ITI TOL1,T0L2, TOL3

2183 FORMAT (12,3F10.“)

CALL DIGO (20,—1)

READ (2, 2)T,N

2 FORMAT (F10.0,11)

0
0

O
O
O
O
O
O
O
O
O
O
O
O
Q
O
O
O
Q
O
Q
O
Q
O
Q
O
O

160





XI=XI

N‘I=I38800

6fl€§=AI

O=VZI

3600100

OI=VZI

IgI6n‘060)0100

(XHIII)ASLVOTTVO

(HH‘.1:‘Zd‘zx‘d‘X‘101‘IX‘L‘AMIVOOTHO

.(N‘I-I‘(1)11)(6‘9)OVER

(1()()())LVHHOA

(5401‘1)8118A

OOI‘(0101‘0201)0100

(001‘0)HOLASSTTVO

;59-ASH=(P)Id

(ASH‘ASHI‘ 1881)DONVHITVO

ASHI=XSHI

N‘I8f400100

SHAI‘I=IOIOI00

ZSSHNI=SHHI

90010100

SeSHNI=SHNI

rr‘(SOOI‘0001)0100

(PP‘n)HOLASSTTVO

Sz=SHNI

8001OL00

OOI=SHNI

II‘(8001‘1001)0100

(II‘8)HOLASSTTYO

(nI)LVKHOJ

‘~1881(4111‘9)GVHH

HI‘(1101‘0001)0100

(HI‘S)HOLASSTTVO

osNELI

1441=Xx

HOAILHOO

1831(80fl‘C)RITA

AI‘(800‘400)OL00

(AI‘AAI)HOLASSTTVO

I-IaAAI

8‘I=I80000

(.anHERASEHOLIASESHRSSNIAOTTOANHL.)LVHHOX

(900‘S)ELISA

’(001)LVNHOA

HONILHOO

A111(8011‘S)ELIHA

I‘(flOfl300)0100

(AIAAI)ASLVUTIVO

'I-IaAAI

91‘I=Inot00

(.ddEHHASEHOLIASummIIAO'I'IOJRBI..)LVHHOA

(I00‘8)ELIHA

(A‘IsI‘(I)Id)‘(N‘I=I‘(1)1X)(8‘z)OVER

(80118)LVHHOJ

I91

I60

06h

IIOI

OIOI

$401

0301

4001

9001

$001

flOOI

6001

3001

1001

6111

0001

80h

400

90h

€00

ZOfl

IOfl
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882

#92

101

11

379

13

1b

#923

1113

1322

12

555

556

1&1

lull

1321

1212

2181

2182

218

219

162

CALL RLNnU (1X, 11,1)

0111 DATSW (12, IRK)

GO TO (9,882), IRK

PI(I)=Y‘0

WRITE (3,101)(X1(1),1-1,N)

FORMAT (II/#120 .8)

011.1. GOAN(N, 1', XI,PI, 11,1, 12,12,X1>, ER)

ERSfiER

IF(ER-TOL2)5, 5,379

Enx=ER/X2)-1.

IF (EBX) u923,13,13

no In I=1N

PI(1)=-PIiI)

CALL GOLN (N, T, XI,11, X,P ,xz,12,xr,E11)

ERS:ER

ERX=(ER/X2)-1.

IF(ERX) #923, 8, 8

CALL DATSW(2, 1E)

GO TO (1113 12), IE

HH:SQET(EES +. 5’

no 1322 1:1,N

Q(I)+PI(I)

Enn:EEs

GO TO 1662

Pz=;05

XPI=0.

m555 1.1N

XPI=XPI+11(I)*PI(I)

XPI=SQRT(XPI)

556 I=1N

PI(1)=11(15*5. /XPI

100:0

no 1&1 1=1,N

XX=KX

0111 RANDU (XX, 11, YR)

PC(I)=YK905

PCO=PCO+PC(I)*PC(I)

PCO=SQBT(PCO)

no Iu11 1=1,N

PC(I)=PC(1)/PCO

LL=O

IF(ERS—TOLl)20,20,1212

PZ=_5.*PZ

LL=LL+1

11(LL—u) 217, 217, 2181

IF(ITKM-IT1)2182, 2182, 218

ITEN:ITXN11

00'10 12

no 219 I=I,N

XL(I)=-1000

xxg-Ioo.

xxo=-100.



216

2160

2162

2161

2163

'18u

180

.181

160

162

161

220

102

170

171

1791

179

20

163

GO TO 220

no 216 I=1,N

Q(1):PI(I)+rz*rc(I)

CALL sszCH (0,100)

GO To (2160, 2162), 100

WRITE (1,1075)

READ (6,3) (Q(I), I=1,N)

CALL CCAN (N, T, X1,Q, XJ,PJ,X2n,P2D, XPD,ERn)

IF(ERD—TOL2) 1,1, 2161

IF(ERD—TOL1) 1662, 1662,2163

CALL nATsw (6 10)

GO TO (160,185),10

IF(.95-ERn/ERs)160,160, 180

no 181 1:1,N

PI(I)=Q(I)

x(1)=XJ(I)

P(I)=PJ(I)

ER=ERn

ERS=ER

X2=X2n

12=1>20

C0 To 217

xxgo. 0

no 161 1=1,N

IF (Ans(XJ(I)-X(I))-.00001) 1212,1212,162

u(1)=((PJ(I)/12n)- (P(I)/Pz))/(X(I)-XJ(I))

XK=H+XL(I)

XK:XK/N

WRITE (3,102) (XL(1),I=LNLxx

Cl=XP/;P2*x2)

02=XPD (szxzn)

XKQ=(Cl—CZ)/(X2D-XZ)-CIIXZ

XK1V=(XK&XKN)/2.

WRITE (3,102) XXQ,XKAv

FORMAT (7115. 5)

CALL SSWTCH (2 Iv)

GO TO (170,179,1v

AAxso

VAR=0

no 171 1:1,N

VAR=XL(I)*XL(I)+VAR

AAK:AAK+ABS(XL(I))

V1R=VAB/N-XK#XK

STDW=SQRT(VLR)

AAngAK/N

TEST=STnv/AAK

WRITE (3,102) VAR,STnv,AAX,TEST

1TXN:1TXR+1

IF(TEST-TOL3)179,179 1791

IF (ITKN+IT1) 12,12,179

IF(ERD—ER) 30,30, 20

no 21 1=1N

Q(I)=PI(I)N



N‘1=ISCon

RX(20196)RLIHA

.HIfiKX'=NX

NAI‘(§A9I‘nA9I)0100

(NXI‘C)ASLRH11vo

0=NX

21~(azX/sua)=nx

6491CL00

'1-gnx

RXI‘(2491‘149I)CL00
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0491
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0
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1691

991
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9991
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2991
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686

636

262$

163$

26

fl031
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3031
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1031

113C

611$

311$
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A66‘266‘8(11~121)11

1+sz=121

02X=(VZI)311X

(I)I'X=(VZI‘I)SX

(1)1):(121‘I)81

N1=IA00

2X=02X

(I)X=(I)flx

(1)11:(I)b

N‘1=I901

21‘9‘9(2101-111)11

0=1111

s11‘s11‘s11‘s11(201‘s)11111

11=s11an

as0100

1X(201‘€)11111211

2mx=aX1h
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(1)1=(1)11S88

N‘1=1S8800988

6880100
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NI=188801
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(1‘02)00101110

m+(I)I'X=-(I)XSC

(I)PX=(I)X0

01X1X11121-(1)r1=(1)11121

SC0100

(1)1X1111121e(1)11:(1)10121

HtMflZJ-(I)rc1=(1)<10

(I)1‘1=(I)10

11‘(1121‘0121)0100

(11‘6)101111110£121

SE0100

AIXX:XH*GZJ?(I)PJ:(I)Jn121

A111‘(€121‘0121)0100

(1111‘1)1011831110

(Gael/(1110(1)I‘dflZX)-(I)PX)*(IX"=X(I
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DX=~XD*(XJ(1)-(xszJ(1)*XM)/12n)

CALL SSWTCH (1,111v)

G0 T0 (1211,1213), IXAv

P(I)=PJ(I)—P2D*DX*XZKLV

GO TO 35

CALL answ (9,11)

G0 T0 (1210,1211), IK

P(I)=PJ(I)

P(1)=PJ(I)-P2D*DX*XK

P(I)=PJ(I)-P2D*DX*XL(I)

G0 10 35

P(I)=PJ(I)-P2D*11X*IKQ

X(I)=XJ(I)

X(I)=XJ(I)+DX

CALL DIGO (20,1)

WRITE (3,102) (X(I), 121 ,N)

WRITE (3,102) (1(1) ,I=1,N)

CALLGCAN (N,,,TXP X,P, XZ,,,P2XP ER)

CALL nATsw (7,11)

GO To (891, 886),11

CALL GCAN (N,T,X1,RJ,XC,1C,X2C,120,X1C,ERC)

no 888 I=1N

X0(I)=XC(1$-XI(I)

PC(I)=Pc(I)-Q(I)

wRITE (3,102) (XC(1),1=1,N)

WRITE (3,102) (10(1), I=1,N)

no 889 1:1,N

x(I)=X(I)-XC(1)

PI(I):P(I)-PC(I)

WRITE (3,102) (X(

PI

) 1=1,N)

WRITE (3,102) ( I

I

( ,I=1,N)

’DO 890 I=1N

PI(1)=:PI(1$N

G0 10 887

no 885 I=1, N

PI(I)=P(I)

CALL DIGO (20,-1)

CALL CCAN (N T, X1,PI, X,1, X2,12, XX, ER)

IF (ER.ERs) 02,11m

XD=XD*,2

WRITE (3,102)Xn

GO TO 32

ERs=ER

IRITE (3,102) ERs,ERs,ERs,ERs

ITKM=0

IF (ERS-TOLZ) 5, 5.12

no 6 I=1, N

Q(I)=PI(I)

XJ(I)=X(1)

X2n=X2

no 7 1=1N

PS(I, IZA)=Q(I)

XS(I,IZA)=XJ(1)

XERs(IzA)=X2n

IZA=IZA+1

IF(IZA~11)899979997
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99? CALL DATS"(11,IRX)

GO T0 (0, 9),

9 no 999 J=1,10IRX

999 ‘WRITE £3,102)XEBS(J),,(Xs(I, J), I=1,N), (PS(I, J), 1-1,N)

GO TO

99 CALL EXIT

ENn

*As previously mentioned, several options or alternatives

are provided as a result of the CALL DATSW and.CALL

SSWTCH subrouxines. 'In.addition, unnecessary printout

routines are included.

2. DIGITAL INTEGRATION AND ERROR FUNCTION EVALUATION ROUTINE

// EOR

*LIST SOURCE PROGRAM

*ONE WORD INTEGERS

*NONPROCESS PROGRAM

SURROUTINE GOAN (N, T, X1,P1, X,P ,X2,,12 X1 ,ER)

EXTERNAL F, F0

DIMENSION(§1(b),,X(u),p(u), X1(u), 1(9),11(9), 101 (10,9),

PRMT

COMMON ITRNK(8),OLn(9),XXZ(5)'

NAX=2*N

n0 1 I=LN

Y(2*I-1)=XI(I)

1 1(2*1):PI(I)

ITRNK(3)=O

E=.5/N

CALL n1TSW(Ih,11)

GO TO (591,592),11

591 11:10.

GO TO 593

592 11:50.

593 CALL n1Tsw (15 JJ)

GO TO (59h, 595$,JJ

59h HT=HT*2.

595 HT=HT

596 IF(ITRNK(1)) 3,3,u

3 PBMT(1)=O

TEaT

XYZ(1)=TF

PRMT(2)=T

PRNT(3)=T/HT

GO TO 5

u PRMT (l)=T

TF=O

XYz(1)=TE

PBMT(2)=0

RRMT(3)=—T/HT



  



N
U
‘

525

528

526

527

77

30

308

110

112

111

18

10

20

31

32’

38
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no 2 I-1,NAX

DX(I):E

ITRNK(2)=O

CALL HPCG (RRMT, Y, DY, 2*N, IHLF, F, No,AUX)

IF(PRMT(5)) )5257 525

IF(ITRNK(3)) 7, 52é,7

no 526 KJ=1,9

Y(KJ)=OLD(KJ)

PRMT(1)=PRMT(1)-PRMT(3)

PRME(3)=PRMT(3)/10.

FRET (2):FRMT(1)+IO.%PRMT(3)

no 527 XJ=1,NAX .

DY(KJ)=E

ITRNX(2)=1

CALL HPOG (PRMT,Y, UN, 2*N, IHLF, F, To, AUX)

RRMT(1):PRMT(2)

RRMT3):PRMT(3)*IO.

IF(ITRNK(3)) 7, 77,7

FRMT(2)=TF

GO TO 5

DO 6 I=1,N

X(I):Y(2*I-1)

P(I)=Y(2*I)

P2=0.

D0 30 I=l N

F2:P2+P(I)*P(I)

P2=sORT(R2)

no 308 IaLN

P(I)=T(I)*5 /P2

F2=5.

CALL RATSW'(IO, IPX)

I GO TO (20,110), IPX

WRITE (3,112)T

FORMAT (F15. 5)

FORMAT (' THE CURRENT ERROR 1: ',F15. 5,' NORM X = ',

F15 5.‘ XP= ',F105)

no 18 L=LN

WRITE (3,10) XI(L),PI(L),P(L), X(L)

FORMAT (6F20. 5)

X2=o. O .

DO 31 1=1 N

X2=X2+X(I$*X(I)

X2=SQRT(X2)

XP=O.‘

DO 32 I=1 N

XF=XR+X(I)*F(I)

ER=(XF/P2)+X2

XFN=ER/X2—1. ‘

WRITE (3,111) ER, X2, XFN

CALL SSWTCH (0,100)

GO TO (38,no), 100

no 39 JI=i,N
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39 WRITE (1,10) XI(JI) ,PI(JI) ,P(JI), X(JI)

WRITE (1,’111) ER, x2,XPN

no RETURN

END

3. DIGITAL INTEGRATION FORWARD-REVERSE TIME SURROUTINE"

// FOR

*LIST SOURCE PROGRAM

*NONPROCESS PROGRAM

*ONE WORD INTEGERS

SURROUTINE DIGO (M, N)

COMMON ITRNK(8), OLD(9)

ITRNK (M-19)=N '

RETURN

END

*Thil aubrOutine supplements the digital integration sub-

routine to replace a hybrid subroutine called in.the

mainprogram.

’4. HYBRID INTEGRATION AND ERROR FUNCTION EVALUATION ROUTINE

// FOR

*NONPROCESS PROGRAM

*LIST SOURCE PROGRAM

*ONE WORD INTEGERS

SURROUTINE GOAN (N T, XI PI, X,P X2,P2 XP ,ER)

DIMENSION P1(u),X(fi),P(fi),XI(U$,JI(u3,K1(u),EJ(u),JJ(U)

CALL LOGEX(1)

DO 5 J=1, N

u JI(J)=XI(J)*3276.7

5 CALL ANOUT (31+J,JI(J))

XP1=O.

W555 I=lg N

555 XPI=XPI+PI(I)*PI(I)

XPI=SQRT(XPI)

DO 556 121 N

556 PI(I):P1(I$*IO./XPI

Do 8 K:1,N

JJ(K):PI(K)*3276. 7

8 CALL ANOUT (33+K:,JJ(R))

NT=T*h0.+30.

CALL LOAD

CALL DELAY (8000)

CALL RUN

DO 7&2 I=1, 10

7R2 CALL DELAY (NT)

CALL STOP!

CALL AINP (12 ,N,KI(1),KI(2))

CALL AINP (1'4 ,N,KJ(1),XJ(2))

DO 19 L=1,N





19

30

308

110

111

112

18

20

31

32

5.
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x(L)=-K1(L)/327.67

P(L)=-KJ(L)/327.67

CALL AINP (16,1

TK#-KL/327. 67

P2=0.

D030 I=1 N

' P2#P2+P(I$*P(I)

F2=s0RT(F2)

D0 308 I=1,N

P(I)=P(I)*10. [F2

F2=10.

CALL DATSW (10,1Fx)

GO To (20,110), EFx

WRITE (3,112)TK

FORMAT (' THE CURRENT ERROR IS ',F15.5)

FORMAT (F15. 5) -

DO 18 L=1,N

‘WBITE (3,10) X1(L),P1(L),P(L), x(L)

FORMAT (6F20. 5)

CALL LOAD

X2=0.

DO 31 I=1 N

x2=x2+X(1$*X(I)

x2=sORT(x2)

xF=0.0

D0 32 I=1N

XPBXP+X(I‘*P(I)

ER=(XP/P2)+X2

WRITE (3,111) ER

RETURN

END

DIRECT SEARCH SUBROUTINE

// FOR

*LIST SOURCE FROGRAM

*ONE WORD INTEGERS .

*NONPROCESS PROGRAM

205

210

215

SUBROUTINE EXPLR(N, Tx ,FI, x,F

DIMENSION XI(u) ,F1(u$ ”x(hF(u3

Do 260 I=1N

FI(I)¢FI(I$-HR .

011.1. GOAN(N, T,HF1, 1:,F,x2,F2,xF,Es)

IF (ES-EB) 205,210, 210

ET=ER

EBFEB

IF( .80—ER/ET)260, 260, 265

FI(i)=FI(I)+2.*HH

CALL GOLN (N, T, XI,FI, x,P ,,12,F2 1F ,Es)

1F(Es-ER) 215,220, 220 .

ET=ER

ERES

x2,F2,1F,ER, HR)
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IF(.95—ER/ET)260, 260, 265

220 PI(I)#PI(I)-HH

260 CONTINUE

265 NRITE (3,270) (PI(II) ,II-1,N)

270 FORMAT (9F10. 5)

99 RETURN

END

6. DIGITAL INTEGRATION OUTPUT AND CONTROL DISCONTINUITY

SENSOR SURROUTINE

//'FOR

*NONPROCESS PROGRAM

*ONE WORD INTEGERS

*LIST SOURCE PROGRAM

100

101

111

113

10h

103

10

1

2

22

109

108

107

110

7.

SUEROUTINE FO(T,T,DY,IHLF, NN,PRMT)

DIMENSION 1(9) PRMTCS)

COMMON ITRNE(85, 0LD(9‘), XYZ(5)

IF(T-PRMT(1)) 101,100,101

SIGN=Y(9)

SIGNV=Y(8)

GO TO 103

IF(ITRNK(2)) 111,111,103

1F(Y(9)*SIGN)IOu1131

IF(Y(8)*SIGNV(1M 03,103)

FRMT(5)=1. ‘

PRMT(1)=T

CALL DATSw (13, Ex)

GO TO (1, 2),ER

FORMAT(12F10.3)

‘wRITE E3Y10)8T,PRMT(u), (Y(I), I=1,NN, 2), (Y(I), 1:2, NN, 2),

Y 9

IF(PRMT(53)108,22,108

DO 109 I=19

OLD(I)=Y(I$9

IF(ARS(XY2(1)-T)—. 0001)107,107, 110

ITRNK(3)=1

PBMT(5)=1.

RETURN

END

RANDOM NUMBER GENERATOR SUEROUTINE

// FOR

*NONPROCESS PROGRAM

*ONE WORD INTEGERS

O
\
U
K

SUEROUTINE RANDU(Ix, IY, Y)

IY=IX*899

IF(IY)5, 6, 6

IY=IY+32767+1

Y=IY

Y=Y/32767

RETURN

END
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IELT=IELT+IELT _

Y(I)=AUX(1,I)+.3333333*H*(AUX(5.11*DELT+AUX(791))

GO TO 23

DO 30 I=LNDIM

DELTaAUX(6, I)+AUX(7,I)

DELT =IELT+IELT+1ELT

Y(I)=AUX(1,I)+.375*H*(AUX(5,I)+DELT+AUX(8,I))

GO TO 23

Do 203 N=2,8

DO 203 I=1,NDIM

AUX(N-L I)=AUX(N,I)

DO 205 I=LNDIM

AUX(u,I)=F(I)

AUX(8, I)=DERY(I)

=x+R

DO 207 I=LNDIM

DELT=AUX(1,I)+1.333333*R*(AUX(8,1)+AUx(8,1)-AUx(7,1)

+AUX(6, I)+AUX(6, 1))

Y(I)=DELT—.9256198*ADX(10, I)

AUX(10, I)=DELT

CALL FCT(x, Y, DERY)

DO 208 I=1, NDIM

DELT=.125*(9.*AUX(u, I)—AUX(2, I)+3.*H*(DERI(I)+AUX(8, I)

+AUX(8, I)-AUX(7,I)))

AUX(10, I)=AUX(10, I)-UELT

Y(I)=DELT+. 07u38017*AUX(10, I)

DELT=).

DO 209 I=1,NDIM

RELT=DELT+AUX(9, I)*ABS(LDX(10, 1))

IF (PRMT(u)-DELT) 215,210, 210

PRMT(u) = DELT

CALL FCT(x,L DERY)

CALL OUTP(LL DERL IHLF, NDIM,FRMT)

IF(PRMT(5)) 212,213,212

RETURN

IF (H*XAPRMT(2))) 21h, 212, 212

IF (ABS(XAPRMT(2))-.1*ABS(H)) 212,200,200

END

I"Thus: integration.routine is part of the Scientific Sub-

9.

routine Set for the IBNZSyStem/36O.

FUNCTION EVALUATION SURROUTINE FOR.ES-2 '
I

l

// FOR

*LIST SOURCE PROGRAM

*NONPROCESS PROGRAM

*ONE WORD INTEGERS

SURROUTINE F(T,L DR)

DIMENSION 1(9), NIB)

%F{Y(6)),2, -
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G0 T03

U=ABS(YY(6)) Y(6)

gin”)) 5.,

GO T06

Y=ABS(Y(#))/Y(U)

Y(9)=U

Y(8)=v

DY(1)=Y(3)

DY(3)=Y(5)+v

DY(5)=—Y(5)*Y(1)+Y(3)*Y(3)+U

DY(2)=Y(5)*Y(6 )

m<u)=-Y(2)-2.*1(3)*I(6)

m(6)=-Y(h)+Y(1)*Y(6)

RETURN

END



APPENDIX C

INPUT DATA SETS

1. lgput Data Set 1

 11210.21; _fl (1%)" Me; 41523. .2223.
1 (-109 ‘5) ( O, 5) .9 ( “59‘5) ( 59-5)

2 ( 2,-10) ( -5, -E) 10 (-10,-5) ( 5,-1)

3 ( 2, 6) ( 5, ) 11 ( 5, 5) ( 5,-1;

h ( 6, 2) ( 10, -3) 12 ( -5, 5) ( 5. 5»

5 ( -7. -2) ( -2, -2) 13 (210,-5) ( 5, 3)

6 ( '19 9) ( 39 ‘u) I” ( 59 5) (“39‘1)

7 ( 5. 0) ( 5, -E) 15 ( 5,-5) ( 5. 5)

8 ( -5, 0) ( -3, )

2. I ut Data Set 2: x0 = (-10,-5)T, po 19 randomly genp

eratefi and normalized to 10.

 
 

  

Number (PO)T NuMber (P9)T

1 ( 9.879, 1.551) 6 (44.919, 8.706

2 ( 9.997.-0.25'4) 7 ( 9.82 ,-1.871

a ( 3.671,-9.302) e 8 ( 9.2 ,-3.766)

{-6.959.-7.181) 9 ( 9.970,-0.769)

5 (-8.171, 5.76h) 10 (-0.235,-9.997)

3- .1222£_2232J§2142

Number (xb)T (PO)T

1 (“39‘29'1) ( 19‘29-3)

2 ( 2,-1, I) (—1, O, 0)

a ( 2"‘2, 2) ( 1, 1,-1)

( 2,12, 0) ( 1,-1,-g)

5 ( 2,-2,-2) (-2’-2, )

6 ( , o, 2) (—E,—h,—2)

7 ( 2, 0, 0) ( 9'39 5)

8 ( 29 0"2) ( 79'79'7)

9 ( 29 29 2) ('39 1, 2)

10 ( 2, 2, O) ( 5, 2, 5)

h. Lgput Data Set h: 10 = (-3,-2,-1)T, p0 is randmmfly

generated:

Number (PO)T Number ‘ (P0)T

1 ‘- ( .251“, .039“, ,ou733) '4 ( .1732,-;2'.497, #1420)

2 (_.0120, .1630,-.h131) 5 ( .uOO3,-.O762, .u392)

3 ("ou‘659-0u6079-02’4‘56) 6 ('01785, .u760,-.0366)

17h
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11.

APPENDIX D

POSSIBLE EXTENSIONS AND FUTURE INVESTIGATIONS

Further examination of time optiml central problem.

Extension to other Optiml control problems such as min-,-

immn fuel, convex function minimum error regulator,etc.

Determination of computational results for the special

cases given in Chapter 11.

Another approach to the solution of MP based on LOP,

other than simply the generation of random initial

adjoints.

DevelOpment of higher order systems with nonconvex

reachable sets and mny local optim.

Application to parameter Optimization problems.

Comparison of GOP and LOP with other nonlinear methods.

Further investigations of the nature of the reachable

sets as they relateto the nonlinear problem involved:

a. Classification of reachable sets in some manner.

b. Transformation of reachable sets as a result of

the transformation of the origin.

Effect of singularities and oontrollabilityon the

general problems considered in this thesis.

Relationship of the path composed of lines of curvature

to the path determined by gradient methods.

Use of geodesics instead of lines of curvature as the

means of defining the path on the boundary of the

reachable set.
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