


ABSTRACT
COMPUTATION OF OPTIMAL
CONTROLS FOR NONLINEAR SYSTEMS
VIA GEOMETRIC SEARCH
By

Richard Blain Stratton

This thesis develops computational procedures for
determining optimal controls for a rather general class
of nonlinear systems., The procedures combine the general
upplioability of search techniques with the more rapid con-
vérgence of reachable set—oriehted methods, Example prob-
lems and numerical results are given for the algorithms
developed.

The minimum distance problem is principally considered
although the time optimal control problem is also discussed.
Extensions to other control problems are also possible. For
the minimum distance problem, all optima lie on the boundary
of the reachable set--the collection of attainable system
states for a specified final time,

Reachable sets resulting from linear systems are con-
vex, and the optimum final state is well-defined and in most
cases unique, For nonlinear systems, however, the resul ting
reachable sets are, in general, nonconvex., As a result,
there may be many boundary points on the reachable set which
are optima in a local sense., The global optima or optimum, .
if unique, are found within this collection of local optima,

Since the reachable set may not be convex, many of the pre-
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viously developed reachable set techniques are not easily
applied. Thus a relatively new approach is taken.

To evaluate each control which is oconsidered, several
error functions are developed which depend on the collin-
earity of the final adjoint and the final state at an opti-
mum, In as much as an explicit expression for the boundary
of the reachable set is not available, principles from dif-
ferential geometry are used to define a path on the boundary
of the reachable set. A sequence of final system states for
which the error functions decrease monotonically to the op-
timum value characterizes the path,

Because of the fact that the reachable set is defined
implicitly through the system differential equation, it is
not possible to write an explicit equation for this path,
However, an algorithm to determine an optimum final state is
developed utilizing an approximation to the path. Because
of the approximate nature of this path, several alternative
decisions relating to the algorithm are considered and their
relationship to the error functions are investigated.

Some special problems pertaining to reachable set char-
acteristics are discussed and shown to be related to the
global problem--that of find a global optimum, To treat the
global problem, a random sequence of starting points are
generated as a ba?is for each determination of a local opti-
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Several example nonlinear systems are considered and
algorithm alternatives are compared, Example computational
results for a variety of applications are given as are exam-
ple reachable sets and trajectories. A summary of the theo-
retical and computational results for the algorithms devel-
oped in this thesis is presented in the concluding section.
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CHAPTER 1
INTRODUCTION

The traditional approach to the investigation of con-
trol systems has evolved significantly in the past twenty
years., The criteria previously used for evaluating systems
have changed as have the approaches used to insure that a
system has desirable performance characteristiocs. Concepts
such as rise time and steady-state error are being sup-
planted with performance functional, target set, control
constraints, etc. Bode, Nyquist and root-locus procedures
are being supplemented by various other theoretiocal and
computational methods., The newer concepts of modern opti-
mal control theory are used in addition to the classical
control principles.

Together with this evolution in concepts, terminology
and methods, there has been a change in the computational
methods utilized to solve problems, These are becoming
much more computer-oriented because of the advent of com-
puters which are faster and have greater capacity.

As a result of this increased use of computers in
solving optimal control problems, many computational tech-
niques have been presented [T1]. These methods, though
related, have some significant differences, Dynamic pro-
gramming, which was developed by Bellman [B3] and others

is one approach. The methods of linear and nonlinear pro-



gramming [Hl,Zl] are appropriate for certain static opti-
mization problems. Another major class of procedures in-
cludes gradient methods [B7,N1] and search methods [H6]
which attempt to "directly"” minimize the performance func-
tional,

In 1958 Soviet Union mathematicians led by Pontryagin
[P2] presented the important maximum principle which is a
necessary condition for optimality. Its impact on control
theory has been great. Many computational methods involve
the determination of a solution to the two-point boundary
value problem generated by the maximum principle [Dl,Kl,Pl].
Closely related to these approaches are those which utilize
properties of the reachable system states and the related
adjoint system vectors [B2,E1,G1,H5,N2]., These concepts
are basic to the work of this thesis,

Initially, optimal control problems and the associ-
ated computational methods were applicable only to low or-
der, linear systems for which time optimal or minimum error
regulator solutions were desired. Recently, however, empha-
sis has been placed on more complex systems--systems of
higher order and systems which are nonlinear or stochastic
in nature. Moreover, an additional objective has been to
increase the computation speed for determining an optimal
control.

The subject area for this thesis is the computation of

optimal controls for nonlinear systems., Within this general



area, several approaches have been suggested. By far the
most obvious is a linearization [H7,L1] of the systems such
that existing linear methods can be utilized. More subtle
linearizations include the methods of successive approxima-
tions applied to the system, to the control or to the reach-
able set [H2,K2],

Other techniques for nonlinear systems include direct,
random and pattern search. The method of quasilinearization
in which time-independent nonlinear systems become time-
dependent linear systems is sometimes employed [B4,B5].

The approach to be used in this thesis combines direct
search methods with reachable set techniques. A feature of
direct search proocedures is general applicability-;o a wide
class of problems, By utilizing the geometrically-oriented
reachable set concepts, more efficient computational pro-
cedures can be obtained.

The application of reachable set techniques to the
optimization of nonlinear systems is relatively new., The
resul ting reachable sets are usually not convex, hence
existing techniques for convex sets must be significantly
modified., Another difficulty is the lack of useful examples
and computational data for comparison. Thus, one contribu-
tion of this thesis is providing data for example nonlinear
problems and reachable sets. The minimum error regulator
problem is primarily examined but, as has been shown [Bl,Fl],

solution to more complex problems can be based upon the
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successive solution of this basic problem.

Often thesis topios are generated by an attempt to find
the solution to a specific physical problem or by restrict-
ing the system considered to a very specialized class,., While
such a restriction often yields a definite mathematical
structure, it results in a method which is, as expected,
restricted in the area of application., On the contrary, the
approach of this thesis is general in the physical applica-
tions which can be treated and in the rather general form of
the nonlinear equations., It should be noted that such a
general approach does not preclude specific applications—--
a8 is evident from the examples which are included.

This dissertation may be outlined in the following man-
ner, Chapter 2 includes comments relative to notation and
basic definitions., The systems and problems to be consid-
ered are also defined., The impertant maximum principle is
introduced as are the concepts of normality, extremality and
optimality. Also in Chapter 2 the reachable set is defined
and related properties are given, Finally, the modified
(for nonconvex reachable sets) minimum distance problem (MP)
and the associated local optimum problem (LP) are defined.

Reachable set computational methods are discussed in
Chapter 3, particularly as they apply to problems involving
nonl inear systems, Preparatory to the introduction of an
algorithm to solve the local minimum distance problem, sev-

eral error functions are developed. They emphasize the



collinearity of the optimum final state and adjoint vectors.
A direct search algorithm is given which utilizes these
error functions to evaluate convergence,

Also in Chapter 3 various concepts from differential
geametry are presented and are used in the development of a
geometric search procedure for computing optima, The previ-
ously defined error functions are shown to decrease mono-
tonically along paths defined on the boundary of the reach-
able set., Various algorithm alternatives are discussed as
they relate to effective boundary path selection., Con-
cluding Chapter 3 is an algorithm based on geometric search,
t0 determine the optimum in a locally convex subset of the
reachable set.

In Chapter 4, the global optimization problem is con-
sidered. In this case there may be many local optima. Re-
lated to the global problem are several special cases which
are also discussed. A global minimum distance procedure is
then presented and its application to time optimal control
problems is demonstrated.

In Chapter 5 example nonlinear problems are given.,
Reachable sets and typical trajectories are also presented.
Within the algorithms, alternative choices are compared and
general computational results are given for the local and
the global problem, Finally, conclusions relating to the
computational results and the developments of previous

chapters are discussed.,

Ty



CHAPTER 2
PROBLEM FORMULATION AND REACHABLE SET CONCEPTS

A discussion of systems and optimal control problems
can be approached in any one of several ways. One approach
is to start with a basic, simple system and later extend
the discussion to more general systems, In this chapter,
however, the more general formulation is first introduced
and then specialized as needed. System and control assump-
tions necessary for future development are also introduced.

Knowledge of many common optimal control concepts,
such as target set, performance functional, etc., is as-
sumed and only discussed as deemed necessary or instructive,
The reachable set is defined and important related results
are summarized. In the last section of this chapter, an

introduction is given to the basic problems to be solved.

2,1 Notation and Terminology

Let E™ denote n-dimensional Euclidean space, No spe-
cial notation is used to distinguish between scalars and
vectors. Most symbols in this thesis are vectors (for ex-
ample, x, u and p); scalars are so designated as they are
introduced. The components of any vector are denoted by
subscripts, namely, xy, i = 1,¢°°, n,

Let t be a scalar, time. Let [t,, T] denote a general
time interval where t, is initial time and T is final time;

Where any vector, for example x, is a function, x(t), of

6
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time, the following abbreviated forms are frequently used:

x(t) = x,, (2.1)

x(t,) = x, (2.2)
and

x(T) = xq. (2.3)

Where both component subscripts and the time subscoripts of
Equations 2.1 through 2.3 are simul taneously used, the com-
ponent subscripts are placed first and the time subsoripts
last (for example, sz). To represent the vector function
x(t) over an interval of time, x(°¢) ies used, The time de-
rivative of x(t), dx/dt, is denoted x(t) and Jx/Jt is used
to0 denote the partial derivative.
Let | a]| denote the absolute value of the scalar a.

Let <x ,y> denote the inner product of two veoctors, x and
vy

n
<X QY> z Iiyi. (2.“’)

i=1

Let || x|] denote the Euclidean norm of x:

lx|] = (<x,x>)‘§, (2.5)
and thus |]x|] reprqsents the length of the vector x, Since
X may be viewed as either the vector x or the point x in En,
|| x|] also represents the distance of the point x to the
origin, Similarly, ||x-y|| denotes the distance between
the points x and y.

Superscripts are used to denote iteration indices,

i

namely x~ denotes the x vector for the ith iteration., To

LR}
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denote optima, superscripts are also used: xt denotes a
local optimum and x* denotes a global optimum, Optima are
also indexed, if necessary, using pre-superscripts. For

ix"' represents the ith 10cal optimum,

example,

Standard set notation is used (f) ,C, e, etc.) with
one exception: brackets are used to define a set. For
example,

Y=[yeE": 7] <1], (2.6)
denotes the set of all y in E" such that norm y is less
than 1, The boundary of a set Y is denoted Y, the com-
pPlement is denoted Y® and the closure is denoted Y. A
neighborhood, or open sphere, with center x and radius e,
is denoted N(x;e):

N(x;e) = [y :||y-x|] < e]. (2.7)
A set K in E™ is convex if for any x, and any x, in K,
the point x4 = mx; + (1-m)x,, 0Snws1, X4 belongs to K. A
set K in E" is strictly convex if for any 31 and x, in K,
the point xq = mx; + (1-m)x,, 0<w<1, is in K but not on oK.
If x e R and if
R(xje) = N(x;e)NR (2.8)
is convex, then R(xje) is said to be a convex subset of the
set R at x (R may be nonconvex).
The boundary OK of a convex set K is a convex surface.
If K = R(xje), then
Ry(x5e) = [r e R(x;e) s r ¢ JR] (2.9)
is oalled a locally convex surface at x, If N(xje)() RC



is convex, then
Rcv(x;e) =[r e N(x;o)ﬂ? : r e JR], (2.10)

is said to be a locally concave surface at x. If N(x;e)oR

is neither a locally convex surface nor a iooally concave

surface, then it is said to be a mixed surface at x.

The hyperplane (dimension n-1) through x with normal p

is defined as
Q(x;p) = [y e E" : <y ,p> =<x,p> ], p # 0. (2.11)
The closed half-space bounded by Q(x;p) with outward normal

p is defined as:

Q (x;p) =[y e ED <y,p>S<x,p> ], p# 0. (2.12)
Let K be a closed, convex set in E%, A hyperplane suofx that
K N Q(x;p) is nonempty and K C Q (x;p) is called a support
hyperplane to K with outward normal p.

DEFINITION 2,1 Let b e E®, let R = R(T)C E™ be a

nonempty, compact, reachable set (defined in Section 2.5)

and let x e EM be such that x ¢ OR. ]

Case 1 (convex surface): If R(xje) for some e > 0 is
a convex set, then p is an outward normal to R at x, if
p is the outward normal to a support hyperplane to the con-
vex set R(x;e) at x.

Case 2 (concave surface): If N(x;e)/) RC for some

e > 0 is a convex set, then p is an outward normal to R at

x if -p is the outward normal to a support hyperplane to
the convex set N(x;e) M RC at x.
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Case 3 (mixed surface): If N(x;e)) OR is a mixed

surface, then p is an outward normal to R at x if p = p(T)

is a final adjoint corresponding to the extremal endpoint
x(T) = x (extremal endpoints are subsequently defined in
Definition 2.4).

Note that there may be many such p for one x or many x
for one p. See Figure 2.1 for examples of these cases,

The socalar signum function, sgn, is defined by:

sgn (a) =1 a>0, (2.13)
|sgn (a) ]| £ 1 a=0, (2.14)
sgn (a) = -1 a <o, (2.15)

The vector signum function is denoted SGN and is defined

as’

sgn‘(xl)
SGN (x) = . . (2.16)

| sgn’ (xn)‘_

2,2 System Definition

Consider a system whose state at any time t is de-
scribed by the solution x(t), t, < t S T, to the following

nonhomogeneous, nonlinear, vector differential equation:

£(1) = T(+,x(4),v(+),w(t)), x(t,) = x,, (2.17)
where: |

t represents the independent variable, time,

x(t) ¢ EM is the state vector,

x(t) is its time derivative,
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P2
" , P,
Py
)

a. Case 1 - Strictly Convex b, Case 1 - Convex but has
"flats" and a "corner" (See
Section 4.2)

/”
N(x;e) 7 ox P,
| B P2 .
\ X2 /
P
\\_/,
d, Case 2 - Conocave d. Case 2 - Concave with

"glats" and a "corner"

"2

e, Case 3 - Mixed with corners f., Case 3 - Mixed

FIGURE 2,1 Outward Normals for Various Subsets and Sets
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X, is the initial state

v(t) e E® is the control vector defined on a
compact interval of El, namely, I = [t ,T],

w(t) e E! is the parameter vector defined on I,

?(‘.’,',') is an n-dimensional vector function
defined on I x E® x E™ x E%,

In the development to follow, v(t) and w(t) are treat-
ed as one composite control vector, u(t), i.e.,
v(t)
u(t) = (2.18)
w(t)
where u(t) is an m + q = r-dimensional vector defined on I,

Thus Equation 2,17 becomes:

x(t) = £(t,x(t),u(t)), x(t,) = x,, (2.19)
where f(°,°,°) is an n-dimensional vector function defined
on I x E? x ET, Unless otherwise specified, the term "con-
trol" will hereafter refer to the composite vector, u(t).
Let U be a nonempty compact set in Er. A measurable func-
tion u(*), defined on I with range space U is sa{é’to be an
admissible control and F is used to denote the family of
admissible controls.

In order that the solution exists, is unique and ocon-
tinuous [Al] for all u(-) in F, additional assumptions are
introduced:

Hl) f£(t,x(t),u(t)) is continuous on I x 6 x U,
where 0 is a nonempty open set in EN,
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H2) for any x in 6, u in U and t in I, f(t,x,u) e C!,
(i.e., the first partial derivative with re-
spect to x is also continuous).

For linear systems it can be shown that a unique, global
solution exists, but for nonlinear systems only a loocal
(unique) solution can be proven, Note that the assumption
of measurability for u(¢) is often replaced with the strong-
er assumption that u(.) is piecewise continuous., Note also
that H2) is often replaced with the Lipschitz Condition:

H2') There exists an integrable function K(¢) on I
such that:

[| £(t,x,u)=2(t,y,un) || £ K(¢) ||x-7]|, (2.20)
for any xand y in 6, u in Uand t in I,

The stronger assumption H2) is used since it is necessary
for proving convergence to a local optimum,

Additional assumptions are required for some of the
results, In another section of this chapter the reachable
set R(t) is defined. To guarantee that R(t) is compact and
varies continuously with time (hence to guarantee the gen-
eral existence of the optimal control) the following two
conditions (boundedness and convexity) are necessary [L2]:

H3) ||x(t)|] £ B for any t in I, any u(-) in F
(uniform bound).

H4) vV(t,x) = [f(t,x,u) : u e U] is convex for each
fixed x and t.

The assumptions listed above are not excessively re-
strictive., For instance, consider one of the most often

used families of admissible controls, F,, corresponding to
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the range space Ui in which each component of u(¢) has
absolute value less than or equal to 1 on I:

Uy =[yeEf s [yg]S1,1=1,c00,r], (2.21)
Certainly this control satisfies the requirement that U be
compact and simplies the fulfillment of H4). Further, if
the control is a vector sigpum function of a continuous

argument, then wu(.) is certainly'measurable;

2,3 Optimal Control Problem Definition
In addition to the system description and the class of

available control functions, the optimal control problem
also includes a prescribed set of conditions (final and
sometimes initial) and a performance functional to be opti-
mized. The initial conditions for time and state were pre-
viously given as t, and x(t,) = x,, respectively., The final
conditions are often determined by a target set G for the
problem, For example, Xp © G(T) may be required where G(-)
is a nonempty set in ED for each t ¢ I. Thus the general
optimal control problem is as follows:

PROBLEM 2.1: Given: the system (Equation 2,19), the
class F of admissible controllers, and the performance func-
tional

T

J(to,T,x,n) = K(T,xq) + [ L(s,x,u) ds, (2.22)
t
o

where K(.,¢) is a continuous funotion from El x 0 to El,

and L(e,¢,¢) is a continuous function from I x ¢ x U to El.
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Find: a control function, u'(+) in F which optimizes (maxi-
mizes or minimizes) the performance functional while satis-
fying Equation 2.19 and the prescribed set of-oonditions.

It should be emphasized that an optimal control u'(-) which

generates an optimal trajectory x*(-) need not be unique.

2,4 Minimum Regulator Problem

In preparation for more complex problems, initial
attention is given to the minimum regulator problem, For
this problem, given a specific final time T, a ocontrol
which drives the state Xp closest to the origin is an
optimal control. Specifically, the problem is defined
as follows:

PROBLEM 2,2: Given: the system (Equation 2,19), the
class F of admissible control functions, final time T and
the performance functional

J(t,,T,x,u) = K(xq) = [| xq]|, (2.23)
Find: a control function u*(.) in F which minimizes K(xq)
while satisfying Equation 2.19,

2.5 Reachable Set Definition

In much of the discussion to follow, the concept of

the reachable set is important. For example, many system
characteristics are directly related to properties of the
reachable set, In fact, the search for a solution to Prob-
lem 2.2 may be viewed as a search along the boundary of a

reachable set.
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For each u(-) belonging to F there corresponds a
trajectory, xn(o) (a solution to Equation 2,19), which
originates at x, and terminates at x, (T).

DEFINITION 2.2 The reachable (attainable or ob-
tainable) set at time t ¢ I, denoted R(t), is the set of
all states which can be reached at time t utilizing admis-
sible controls, i.e.,

R(t) =[x e E® : x = x,(t), u(-) e FJ. (2.24)
Let R(+) designate the reachable set as a funoction of
time on the interval I. As previously indicated, OR(t)
represents the boundary of the reachable set at time t
and let QR(+) designate' the boundary of the reachable set
on the time interval 1, For most problems it is nearly
impossible to give an explicit formula for OR(t). Certain
general properties of R(t) are known and are desoribed in

Section 2.8,

2,6 Pontryagin's Maximum Principle
Consider now, Pontryagin's Maximum Principle [P2] and

its relationship to the optimal control problems previously
introduced. The statement of the maximum principle varies
with the nature of the problem, specifically with the na-
ture of the prescribed conditions and the performance func-
tional. There are, however, several essential concepts in
the description of the maximum principle regardless of the
nature of the problem, These include the Hamil tonian

function:
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H(t,x(t),u(t),p(t)) =L(t,x(t),u(t)) +<p(t),r(t,x(t),u(t))>

(2.25)

with the associated Hamiltonian differential system:
(%) = ggit,x(t),u(t),P(t)) (2.26)
p(t) = - g%("""‘)'“(t)’l’("”, (2.27)

where p(t) is a nontrivial solution of the differential
systems called the adjoint or the costate response. In
the event that L(t,x(t),u(t)) is independent of x(t) (for
instance, constant, as in the case of time optimal control

problems), the adjoint equation (Equation 2,27) becomes:

(%) = - ;T(t,x(t),u(t)) p(%) (2.28)

because the partial derivative of L is zero, In faot,
this is the same adjoint equation which one would obtain
it L(t,x(t),u(t)) = 0, i,e, if the Hamiltonian function
were "unaugmented®:

H(t,x(t),u(t)) = <p(t) , £(t,x(t),u(t))> . (2.29)
Utilizing this unaugmented Hamiltonian function and the
adjoint equation (Equation 2.28) above, the following
theorem results [L2]:

THEOREM 2,1 Consider the process given in Equation
2,19 with assumptions Hl) through H3), Let u'(e) belong
to F and have the response x'(¢) with x'(T) on the boundary
of the reachable set, R(T).
Then there exists a nontrivial adjoint response p'(-) of

Equation 2,28 such that the maximum condition holds almost



18

everywhere:

H(t,x'(t),u'(t),p'(t)) = M(t,x'(¢),p' (%)), (2.30)
where

M(t,x(t),p(t)) = max H(t,x(t),y,p(t)). (2.31)

yeU
This theorem is proved for autonomous systems in Lee and
Markus [L2], page 254 and is extended to nonautonomous
systems on page 318 and following pages.

Before discussing this theorem in relation to the op-
timal control, consider the following theorem which is a
general existence theorem for optimal controllers [L2].

THEOREM 2,2 Consider Problem 2,1, Let the target
set G(t) in E2 be a nonempty, compact set which varies con-
tinuously for all t in I, Let the family of admissible
controllers, F, be nonempty., Further, let Hypotheses Hl)
and H2) apply.

Then there exists an optimal control, u*(o), in F, on 1
minimizing J(t,,T,x,,u).

Before relating the results of the preceding two theo-
rems, consider the following terminology.

DEFINITION 2,3 Controls which satisfy the maximum
principle (Equation 2,30) are called maximal controls., The
resulting trajectories are maximal trajectories and termi-
nate at maximal endpoints.

DEFINTION 2.4 Controls which result in trajectories
terminating on the boundary of the reachable set are called

extremal controls and the corresponding trajectories are
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extremal trajectories, The boundary of the reachable set

thus consists of extremal endpoints,

DEFINITION 2,5 Controls which minimize J(t_ ,T,x,,u),
as stated in Theorem 2.2, are optimal controls. The corre-
sponding trajectories are called optimal trajectories and
terminate at optimal endpoints,

Theorem 2,1 asserts that state trajectories terminate
on the boundary of the reachable set (extremal trajecto-
ries) only if the Hamiltonian is maximized. For nonlinear
systems trajectories corresponding to controls which sat-
isfy the maximum principle (maximal controls) do not neces-
sarily terminate on the boundary of the reachable set. For
linear systems, however, maximal controls are also extremal
controls,

A third important and well-known theorem is the follow-
ing which asserts that all optimal controls are extremal
controls, |

THEOREM 2,3 Let the hypotheses of Theorem 2,2 apply.
Let u*(.) be an admissible control with corresponding tra-
jectory x' (») from X, to G(T). Then the control u*(.) is
optimal only if it is extremal.

This theorem is proven in Lee and Markus [L2,page 310] and
in Athans and Falb [Al, page 305], among others.

Theorem 2,2 states the existence of an optimal control
but does not guarantee that such a control is unique, Be-

cause of Theorem 2,3, Theorem 2,2 also indicates the
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existence of at least one extremal control., In general, of
course, there are many extremal controls, It is also pos-
sible that several distinct extremal controls could generate
the same extremal endpoint. The terminology relating opti-
mal, extremal and maximal endpoints is illustrated in Fig-

ure 2.2,

Maximal
Endpoints

Origin

OR(T)=Extremal Endpoints

FIGURE 2,2 Endpoint Terminologz and the Reachable Set R]Tl
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Since the reachable set represents all possible tra-
jectory endpoints, one possible means of locating an opti-
mal trajectory would be to examine the entire reachable
set--a prohibitive procedure in the case of higher order
systems, It should be noted, however, that it is possible
to examine the boundary points of the reachable sef by con-
sidering all maximal endpoints., Certainly this consider-
ably reduces the computations necessary to determine an
optimal control, but for higher order systems, such an ex-
amination would still include a prohibitive number of pos-
sible trajectory endpoints. It should also be repeated
that interior points of R(T) might also exist as maximal
endpoints (See Figure 2,.2).

Finally, several important additional facts relating
to extremal controls should be stated. The adjeint or co-
state variable p(T) is an outward normal to the reachable
set R(T) at x(T) [L2]. This fact is important in the de-
velopment of several error functions later to be considered.
It is also equivalent to Equation 2,30, In addition it is
related to the transversality condition which is an addi-
tional necessary condition in the event that the target set
G(t) is a convex set. The transversality condition states
that the final adjoint p(T) is normal (inward) to the tar-
get set at x(T),
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2.7 Normality
The concept of normality is briefly discussed in this

section due to its close relationship to the character of
the reachable set and because of its effect upon the avail-
ability and difficulty in computing the optimal control, It
has previously been stated that extremal controls belong to
the more general class of maximal oontrols, Hence extremal
controls must maximize the Hamiltonian., Such maximization
would be straightforward if for each adjoint variable there
exists exactly one corresponding control, Unfortunately
this is not always the case. In fact, there may be several
(say two: 55(0) and ui(o) ), corresponding to the same ad-
joint pl(o), which maximize the Hamiltonian for an arbi-
trary time interval I C I,

Were the two controls equal almost everywhere:

El(t) = ui(t) 8.0., (2032)
no singularity would result. If, however,

u(t) # 9(t), tely, (2.33)
where I, is finite or countably infinite, then a singu-
larity ocours,

DEFINITION 2,6 1ffor any solution to Bquation 2.28,
there are two or more controls (u(t) # u(t), te I, I
finite or countably infinite) which differ yet which max-
imize the Hamiltonian on Is’ then the problem is singular.

DEFINITION 2.7 1I1ffor each solution of the adjoint
equation (Equation 2.28) there is one unique maximal
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control then the system (problem) is normal.

If a probiem is singular, optimal controls may exist,
but may not be uniquely defined on some interval Is. Such
nonuniqueness may have a variety of effects on the reach-
able set. For linear systems, normality is equivalent to
strict convexity of the reachable set, while singularity
causes "flats"” on the boundary of R(t). With a singular-
ity, i.e. u (t) # u,(t), ¢t in I, it is still possible that
xl(T) = X5(T) (that the same maximal point is attained).

For more insight into this problem, consider the fol-
lowing nonlinear state equation in which the control be-

longs to the control family Fl and is separable:

x(t) = A(%,x(£)) + B(%,x(t)) u(t). (2.34)
The corresponding unaugmented Hamiltonian function is:
H(t,x(t),u(t),p(t)) = <A(t,x(t)),p(t) > +
<B(t,x(t))u(t) ,p(t) >. (2.35)
At any instant in time, the maximum with respect to u(t) is
attainted if
u(t) = S6N[ BT(¢,x(t)) p(¥)].  (2.36)
I1f, however, any component of BT(',x(-))p(t) is zero for a
finite interval of time, the correspending control component
is indeterminate, taking on any value or variation allowed
for F;. Each of these various controls may, in turn, lead
to different maximal endpoints. This possibility is illus-
trated in Figure 2.3, Note that even though the adjoint
trajectories all start at 56, the final adjoints may vary
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( ) indicates the value of the costate corresponding to
the state vector.

FIGUBE 2,3 Singular Trajectories

greatly since the partial derivative in Equation 2,28 is
control dependent.

According to Theorem 2;3, an optimal control is one
of the extremal controls., Associated with each of the ex-
tremal controls is an extremal endpoint which lies on the
boundary of the reachable set, and a final value for the
adjoint variable which is normal to the boundary of the
reachable set at the extremal endpoint. For such a control
to be extremal, it must also be maximal, Note that once
the initial state and initial adjoint have been specified,
the final state and final adjoint are also specified
(through Equation 2,30, the maximum condition, and inte-
gration of Equations 2.19 and 2,28) unless the problem is
singular. In this case, a whole section of the boundary
of the reachable set might correspond to the same initial
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adjoint (See Figure 2,3), but the extremal controls differ
over the singularity interwval, Is.

While such a "singularity gap" can occur and would
complicate the determination of the optimal control, it
would be readily recognizable. That is, any procedure
yielding a series of extremal endpoints woeuld encounter a
*"jump® between successive final states when the system
singularity is encountered. Finally, it is possible that
the singularity may not affect the determination of the
optimal control--all extremal endpeints in a large region
around the optimal endpoint are the result of normal con-
trols., As a result of the above consideration, normality
is not a requirement imposed upon the problems to be ocon-
sidered. Even if it were desired, proving normality for a
general class of nonlinear systems would be extremely dif-

ficult, if possible at all,

2,8 Properties of the Reachable Set

The concept of the reachable set, R(t), was needed for
earlier discussion, hence was defined in Section 2.5. It
is the purpose of this section to 1list and discuss some of
the important properties of R(t). Necessary assumptions
for proving these properties have already been given; A8
expected, fewer results are available in nonlinear system
study than in the study of linegr systems, Reachable sets
resulting from linear systems can be proved to be continu-

ous, compact, convex and to have a computable contact
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function [B1,L2]. For nonlinear systems, however, the
reachable set is generally not convex (although there may
be locally convex regions) and the computation of a contact
funo-!;ion is complicated., For most nonlinear systems ,.how—
ever, compactness and continuity have been proven [L2,R1]:

THEOREM 2.4 Consider the process given in Equation
2,19 with assumptions Hl) through H4)., Let F be defined
a8 in Section 2,2, Then R(t) is compact and varies con-
tinmously with time on I,

Both compactness and continuity are important in prbv-
ing the existence of a unique optimal control. For in-
stance, if R(t) is not continuous then a unique time op-
timal control is not guaranteed for time optimal control
problems, )

Another important observation is given in the follow-
ing theorem [R1]:

THEOREM 2,5 Let R(t)_ be the reachable set for the
process given in BEquation 2,19 with assumptions Hl) and
H2), If xp e OR(T) then x e OR(t) for any t in I,

Stated differently, all points on an extremal trajectory
will belong to the boundary of the reachable set of cor-
responding time, t.

Several other important propertioa‘ 0‘1’1 the boundary of

the reachable set have already been given, including:

1) xp e OR(T) (extremal trajeotory)—b Xp is a
maximal endpoint,
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2) Xy © R(T) = Prp (corresponding to xT) is nor-
mal to the boundary of R(t) at xqp.

2,9 Problem Statements
Gilbert and Barr have shown that a useful approach to

optimal control problems centers around the sqlution or
repetitive solutions to the following basic problem (BP)
(e1]:

PROBLEM 2.3 (BP) Given: K, a compact, convex set in
E"; Find: A point x e X such that =" | = ::; =il

In the case of linear systems, an obvious candidate fer K
is the reachable set h(T) and the problem essentially be-
comes a minimum error regu;ator problen; Assuming that thg
origin is external to R(T), the solution lies on the bound-
ary of the reachable set. Since R(T) is not, in general,
convex for nonlinear systems, the following modified prob-
lem (MP) must be solved:

PROBLEM 2.4 (WP) Given: R, a compact set in E"; Find:
a point r e R, such thatllr*“ = ::gllr(].

As part of this modified problem, it is possible that
several subproblems similar to Problem 2.3 (BP) but local
in nature must be solved. Consider the looal problem (LP):

_PROBLEM 2.5 (LP) Givens 1R, a oconvex subset of R, a

pompapt set in.En;.Find: a point ir+ e 1R such that

i+
I22*1) = mtn (132,
re R
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A Since R and iR are defined to be compact, and since
]| is a continuous funoction of r, solutions always exist
to Problems 2.4 and 2,5, It may be emphasized that R is
not necessarily convex. In addition, the following pro-
perties can be shown [B1,G1] for LP:

1) _1r+ is unique,

2) [|'%|) = 0 1f and only ir 0 e !r.

3) For || i1""|| > 0, 1yt ¢ oip,
For Problem 2,4 (MP), properties é) and 3) are true but
r* is not necessarily unique., In the next chapter, one
additional important property is proven--the collinearity
of r* (M) (or ir* for IP) with the normal to OR (or diR)

at r* (irt),



CHAPTER 3
THE LOCAL OPTIMUM PROCEDURE

In this chapter various iterative methods and their
limitations are discussed. Consideration is given to the
important function which the initial adjoint has in the
determination of the extremal endpoint (for a given xo)
and the associated normals to the boundary of the reachable
set (final adjoints)., It is shown that a straightforward
solution to LP can be implemented by a direct search on the
initial adjoints.

Utilizing properties of reachable sets and principles
from differential geometry, a more sophisticated iterative
procedure is developed for solution of LP. In as much as
reachable sets for nonlinear problems are generally not
explicitly defined, part of the development of this algo-
rithm is based on geometrical considerations of the reach-
able set and perturbation analysis,

Special consideration is given to the choice of error
functions which correctly indicate a solution to LP and
which are based on significant properties of reachable sets,
Finally, convergence is oconsidered and the solution algo-
rithm is given, Special problems arising as a result of
nonlinearity will be deferred until Chapter 4.

29
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3.1 A Discussion of Iterative Méthods
The set R of the modified problem (MP) given in Chapter

2 is not convex, hence the global optimum (r‘, the point
closest to the origin) is generally difficult to compute.
Methods developed for obtaining such an optimum depend on
the nature of the system, of the admissible controls and
of the reachable set, For linear systems, hence convex
reachable sets (assuming certain;conditions on the conirol,
etc.), the iterative procedures given by Neudstadt, Gilbert
and Barr [N1,G1 and Bl)] are effective in solving the problem
For nonlinear systems, however, convergence to the
global optimum is not guaranteed. If this were the only
handicap, such methods would still have direct application
in determining local optima. Possibly a linearization of
the system or a "convexization" of the reachable set could
be used to implement these methods. In the event, however,
that one desires to retain the nonlinear equations desorib-
ing the system, difficulties are encountered in applying
the above-mentioned methods, These methods require the
determination of a contact point corresponding to each fi-
nal costate selected [B2]., A contact point is any point in
DR(T) which maximizes the projection onto the final co-
state. In typical methods for linear systems, this deter-
mination is relatively easy (considering present-day compu-
tational equipment) to implement by the following steps:

1) Consider the desired outward normal which is in
the direction of the final value of the costate.
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2) Since Equation 2,19 reduces to:
x(t) = A(t)x(t) + B(t)u(t), (3.1)
y where A(t) is an n x n matrix and B(t) is an
n x r mtrix, the costate differential equa-
tion is also linear and homogeneous:

B(4) = -AT(%) p(t). (3.2)

Thus, given one boundary point, pg, p(e) 1is
defined on I,

3) Once p(.) is defined, u(.) (a maximal control) and
x(.) are also defined by Equations 2,30 and 3.1,
Hence xq(the contact point) is computable.

Not only is the resulting set usually nonconvex for
nonlinear systems, but also the above listed method to
solve for contact points is not directly applicable. An
iterative method to solve MP would thus have two levels of
iteration instead of one, with the additional level result-
ing from the difficulty in obtaining contact points,

To demonstrate this, consider the adjoint equation for

nonlinear systems (Equation 2,28):
T
B(1) = - QLX) u(8)) oy, (3.3)

Since contact points are on the boundary of R(T), maximal
controls are employed., Certainly the determimation of p(-),
u(¢) and hence x(°¢) is possible once P, is known; but it is
not possible to solve for p(.) from the final adjoint (as
suggested above) since the adjoint differential equation
also depends on the yet unknown x(.). In summary, two lev-

els of iteration would be necessary:
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1) An iterative solution of the two-point boundary
value problem to determine each (p ’;I) pair
corresponding to each given (xo,pT? ir.

2) Some type of iteration (such as the Basic Iter-
ative or Improved Iterative Procedure of Gibert

and Barr, respectjvely [(G1 and Bl1], on xp and
Pp to determine x as defined in LP,

3.2 Initial Costate Iterations and Error Functions
Consideration of the above discussion suggested to the

author that an iterative method based on the initial ce-
state would be simple, most direct, yet effective., Since
X, is given and maximal controls are utilized, p, is suffi-
cent to yield x(¢) and p(¢)., Starting with an arbitrary
initial adjoint, a sequence of initial adjoints can be de-
termined such that the resulting sequence of final states
converges to a local optimum, An evaluation of whether the
local optimum is being approached or has been reached is
based on error funoctions to be later discussed.

Both digital and hybrid computation methods are feasi-
ble; Each approach has advantages and disadvantages, Nu-
merical integration methods (particularly for ill-behaved
nonlinear systems) are sometimes slow, but consistent and
acourate if sufficient computation time is available., Hy-
brid computation techniques have improved significantly in
recent years and thus represent another effective approach,
Since analog components are used to determine x(¢) and p(.),
hybrid computations are usually faster. bn the other hand,

less accuracy and consistency can be expected from hybrid
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computers., Overall control of the iterations, of course,
is a digital function for either approach, as is the eval-
uation of the error functions and selection of the next
initial adjoint, In this thesis, both hybrid and complete
digital computation are employed., Based on these computa-
tions, conclusions comparing their relative value are given
in Chapter 5,

The choice of the error function is critical and deter-
mines the convergence and efficiency of the method. Con-
sider the local problem (LP); one obvious error function
would simply be: |

Ey(p,) = || xp (] (3.4)
If a small change in P, results in a correspondingly small
change in x, (proof to be given later), a method using Ej
would generally converge if the step size of changes in Po
were reasonably chosen,

The error function E, is certainly not the only avail-

1
able test for optimality. The following development, based
upon a theorem proven for convex sets provides an effective
error function, E,, which is later ;sed in conjunction with
E,. 8ince the reachable set is not, in general, convex,
for nonlinear problems, it is necessary to select a subset
of the reachable set in the following manner.,

Consider the compact, but not necessarily convex, set

R(T) in E®. Let Xp be on the boundary of R(T) and let R(T)

be convex in a local region of Xpo That is, B(xT;e) defined
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R(xpje) = N(xp;e)\R(T), (3.5)
is convex. Then
M(xp,p) = [y 1n E" ¢ <p,y> = c], (3.6)
where ¢ = <xp ,p > is a scalar constant, can be called a
local support hyperplane of R(T) at Xp. The following the-
orem can be applied in this case with K = R(x.l.,e).
THEOREM 3,1 Let K be a compact, convex set in En
0 ¢ K; Then x, ¢ OK is the closest point of K to the
origin: _ ' o
l|xp[l < |Ix|[|], for any x e K, x # xy (3.7
if and only if there exists a support hyperplane M(xy,Pq)
of K through the point Xp such that -xp is normml to
M(xp,pr), i.e., .
M(xp,pp) = H(IT,-xT). (3.8)
Or, stated differently, xT and Py are collinear and oppo-
sitely directed.
Proof: This thporem has been proven by Gi}bert [61]; how-
ever, a different proof which provides additional insight
is presented here:. First suffioiency is shown,
1f l((x.r,p,r)‘ is a support hyperplane to K, then either
<pp ,Xx> 2 o for any x in K, (3.9)
or
~ <pPp,x> S o for any x in K, (3.10)
Since <pyp , x> = ¢ (xp is on the hyperpla.ne), then either
<Pp , (Xx-x¢) > 2 0 for any x in K, (3.11)
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or .

<Pp s (x-x4) > S 0 for any x in K, (3;12)
Thus if =X is to be normal to the support hyperplane, then
either

<-Xp, (x-xp) > Z 0 for any x in R(xje), (3.13)
or _ L , .

<=Xp 4 (x-xp) > < O for any x in R(xgpje).  (3.14)
In faot, it will be shown that Equation 3.1k is trues

<Xp,(x-xXp)> Z 0 for any x in R(xgpse),  (3.15)

Since Xp 19 the clésesj point to the origin,
Ix()? - [1xp |12 2 o, (3.16)

Since B(xT;e) is convex, it is known that for any x,
and x, in R(xgje), x5 defined by:

X3 =mx; + (1 -mxy 0SS (3.17)
is also in R(xqpj;e), In particular, let X, be an arbitrary
x # xp and let x, be xy. The resulting x, is in R(xpje),
but is not (n‘f 0) the closest point to the origin. Define,
for 0Sm=<1, _ . o ‘

t(m) =|lmx + Q-mxg |12 - (| xq (I3, (3.18)
or - : : : . -
£(n) = < (mx+ (1-mxp)) , (mx+ (1-mxyp)) > - [Ixp[12. (3.19)
Note that ] :
£(m) 2 0 (3.20)
and that
f(n) = 0 if and only if w = O, (3.21)
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Therefore f(m) has a minimum on the interval [0,1] at

the endpoint, m = 0, consequently:

dar | ' '
—aﬁﬂll" -0 20
Differentiating Equation 3,19 yields
as (m Ly e
L w< (mx + (emixg) 5 (x-xy) >

+ < (X-IT) ) (nx + (l—ﬂ')x-r) >,

or

%—%ﬂ = 2< (nx + (1-m)xp), (x-xq)>,

and

af ' = - >,
_a;('.ﬂ).l r=0 2<xT,(x xT)

But by Equation 3,22 ‘
2 <xp, (I-IT) > Z o,
or

<xT 9 (I-IT)> 2 oo

which is precisely Equation 3.15, thus the proof of

sufficiency is complete.

(3.22)

(3.23)
(3.24)
(3.25)

(3.26)

(3.27)

Necessity is easily proved. Sinoce M(xT,pT) is a sup-

port hyperplane and since the origin is a point external

to the hyperplane, there is exactly one line through the

origin which is normal to the hyperplane [B6].

But this

is the shortest path to the hyperplane, hence to the set

K, since M(xT,pT) is a support hyperplane, Thus the proof

of Theorem 3,1 is complete.

Using the results given in Theorem 3.1, several error



37

functions can be developed. They are all based on the fact
that at a local optimup (closest point to the origin in a
convex subset of R(T)), Xy and Py are collinear and oppo-
sitely directed. One obvious candidate for an error funo-
tion is the following:

<XpyPp>
=gl lopll *

It should be*hotad that at a looal optimum, cos vy is -1

E,(p,) = 008 y = (3.28)

since Xp and Pp are collinear. Much attention ii later
given to thiq error function; in purtiéular, it is shown
that cos y monotonically deoroases,to =1 along a (yet to
be defined) path on the boundary of a loocally convex sub-
set of the reachable set.
It is also possible to consider other error functions.

They are, however, just modifications and combinations of
E, and E,. 8ince both E; and E, are a minimum at the opti-
mum, one possible combination would be the produot of the
two, thus compounding their convergence:
<XpsPp>

I l] |
with the optimum ocourring at the minimum negative number.

EB(po) = (3029)

While E3 should compound the convergence rate, it is less
desirable than E2 from one atandpbint-—it does not approach
a specific value at the minimum, Converting E2 such that

it approaches zero gives:
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. <XpsPp> .
ENTEN.

and the corresponding compound error function would be:

<I.T ’pT>

[1ppll

Multiplying by ||pyp|], another version is:
Eg(py) = <xp,pp> + |Ixpll Hpgll. - G32)

E,, () 1, (3.30)

Eg(p,) = + 1 xgll (3.31)

0f course, many other ocombinations are possible, but those
listed above represent the most convenient forms.

Examination of the error functions indicates that
there is a possibility of erroneous minima if either Xp or
Pp equals O, If x, is zero then E, and E) have the inde-
terminant 0/0 form. If py is zero then E, through E, all
have the indejerﬁiﬁant 0/0 form apd'ﬁg is zero even though
Xp is not necessarily an optimum, Thus E, mst be used in
the event that Py is 0, Of the compound error funotions
(E3, E5 and Eg), E5 is preferable to E; because it equals
zero at the optimum and to E6 beoause E5 is not dependent
upon the magnitude of the final adjoint; In most of the
computations described in Chapter 5, the error function
E5 is used.:

In summary, several error functions have been intro-
duced which can be used in an algorithm for solving LP,
The suggested iterative pfocedure is:

1) Piock an initial Pye
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2) Integrate Equations 2,19 and 2.28 using a
maximal control (Equution 2.30) until xT
and Pp are available, _
3) Compute the value of tho error funotion, E.
4) Change p, (by some method yet to be determined)
such that E is improved. Continue until the
error function indicates (for emmple, Eg = 0)
that an optimum has been determined, }
Now that error functions are avaiiablg-to differen-
tiate between lecal optima and other points, it is impor-
tant to consider the precise method for ohinging Po (item
4 of the suggested method) such that E is improved. Two
methods are considered. One is based upon a direct search
on the initial adjoints, the other upon geometric consider-
ations of the reachable set., These methods and their con~
vergence are discussed in the following sections of this

chapter.

3.3 Determination of a Local Optimum via Direct Search

Any direot (or pattern) search technique presupposes
that the change in the controlled parameter (p,) ocan be
made sufficiently small such that the resulting change in
the evaluation parameter (E) is correspondingly smll, For
linear systems it is evident that a sq{;ioiently small
change in E can be obtained. For nonlinear systems, how-
ever, it is not so evident. |

Given a spacified bound on the change in Pp and Xq,
it must be shown that the change in.pb can be made suffi-

ciently small to keep the change in Py and Xp within this
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bound, To prove this result for noniinaa.r systems, an
embedding theorem by Hestenes'and Guinn is utilized [_HB];
The theorem is soméwhat more general than the embodding
theorem ‘gi—ven in Hestenes' “book [H4] . |
~ THEOREM 3,2 Let x(+), p(-) and u(.) be defined by

Equations 2.19, 2.28 and 2,30 with corresponding initial
adjoint Poe Let E‘(po) fcpresent any of the error functions
previously defined (Equations 3.’4, 3,.28-3.32). Then for
any e > 0, there exists a & > 0 such that

| E(p,) - E(p}) | < e, (3.33)
whenever _

Il po - »g Il < 6. (3.34)
g_z;o_g_;:ILet e be given, Since each of the error functions

being considered is continuous in x, and py, there exists

ablanda.bz such that ,
Il pp - PT ” <& (3.35)
l xp - xp [l <&, (3.36)

imply Inegml-ity 3.33 is sgtisfied. Now consider Inequal-
ity 3.35. The relationship between p, and p, can be writ-
ten as

i,asv('rt ) p, (3.37)
where '-P(T t, ) is the fundamental mtrix for the adjoint
system (Equa.tion 2.28) which satisfies:

a..i" %) = ‘P(t t5). (3.38)

Since W(t,t,) is nonsingular, there exists a 63 such that
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| po-pg Il < 84 (3.39)
implies ‘ _ ]

I} pp=-pp [] < 8;. (3.40)
Since hypotheses Hl) through H3) are sufficient assumptions
for the embedding theorem [Hj], there exists a ¢, such that

Il po-pg Il < 8y (3.41)
implies _ _

| xp-xq ] < 8,. (3.42)
Now let & be the.smalle; of 63 and &) and the theorem is
proved. The fact that smll changes in P, result in small
changes in Xy is necessary for the following direct search
algorithm:

LOCAL OPTIMUM PROCEDURE--DIRECT SEARCH (LOP-DS)

A. E(pg) Evaluation: Whenever E(pg) is to be evaluated,
Then these steps are followed: Given pl and x,
initial conditions, integrate Equations 2,19 and
2,28 utilizing a maximal control. From the values
obtained for :% and pl, evaluate E(p ) by means of

Equation 3,31 (Es(Po) unless othorwise indicated.

B, Initialization: Choose a step size h for the com-
ponents of p_, a final stopping tolerance E,, an
improvement gaotor Nt"l and a maximum number of
allowed iterations, I,. Set i = 0 and select an
arbitrary pg' then evaluate E(po). if E(po)
then x.r- xg is a suitable a.pproximtion to an op:ti-

mum x}
C. Iterations: Define the vector & whose jth com-

ponent is h, all other components being zero, Let
=1,

1., Evaluate E(po + 84) and E(pi - 84).
2, Let
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ol + o if B} + 8,) < E(})

po(3) =<pi-8, if E(}+s,)2E(p1) and E(p}-85)<E(p}) (3.43)

3.

56

7.

pg otherwise.

If § < n, let j= j+1 and repeat steps 1 and 2 with
pg replaced by po(j-l). If j=n, go to step 4,

) & ¢ po(n) = pi decrease h, set j=1 and repeat
steps 1 through 3., Otherwise go to step 5.

Test to determine if ,
. 5(p1(n)) <E 3 'h’-&)
If so, pi(n) is an a.pproximtion to p and the
oorresponding final state xT(n) = xg is an ap-
proximation to a local optimum, If net, go to
step 6, :
If

E(p}) - E(p}(n)) 2 E /N4 (3.45)

let p"l‘*1 = pg(n), i =1i+l, j=1 and repeat steps
1 through 6. Otherwise go to step 7.

Evaluate E, (pi(n)). Let pi*! = pl(n), 1=1+1 ana
j=1. Apply steps 1 through 6 using li:1 for E
except in Equation 3,44, In the event that in
step 6,

E(pl) - E(pl(n)) < E /N, (3.46)
go to etep 8,

If 1 I, then terminate the procedure (in this
case, a new arbitrary pg could be selected and:
the algorithm repeated)., 'Otherwise, let j = 1,

1'*1 = pi(n) and i = 1+1, TIncrease h and go
to step 1 (contime using E:El).

NOTE: A consistent pattern for inoreasing h is desir-

able, For example, at each decrease, h could be
halved; at each increase, h could be multiplied
by a factor such that a continually increasing h
is attained in step 8. A flow chart for this
algorithm is given in Figure 3.1,
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Examination of the preceding algorithm is instructive
relative to the possible limit points of Es(po). 1f Equa-
tion 3.44 holds, then an approximation to a looal optimum
has been achieved, If step 7 is reached and subsequent
usage of E1 does achieve convergence to a local optimum,
then a loocal minimum of ES (but not a local minimum of El)
had previously been attained (see Section 4.,3), In the
event that step 8 is reached, a 1limit point which is nei-
ther a minimm of El nor of E5 is a possibility., Clearly
the initial choice of h, Et' Nt and It require careful
oonsideration,

Since E5 and E; have a lower bound and since a se-
quence of controls is possible for which these error funo-
tions monotonically deorease, convergence to a limit point
is assured even though convergence to a local optimum can-
not be guaranteed, In addition, as indicated in LOP-DS, it
is possible to evaluate a 1limit point (using E5) to deter-
mine whether or not it is a local optimum, Similarly, it
is possible to determine if the limit point represents a
minimm of E5 but not of El' Certainly it should be point-
ed out that no 1imit peints, other than local minime of E,
and E5 were encountered in any experimentation performed by
the author., Thus in a practical sense, LOP-D8 converges to
xg, an approximation to x;, while theoretiocally speaking,
only convergence to limit points is guaranteed,

Finally, one other limitation must be noted in the
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above algorithm, There exists the possibility, though
remote, that xg does not belong to OR(T), i.e.,, that a max-
imal but not an extremal solution has been found, Any ef-
fective, global iterative precedure must take into account
the above limitations, These are again considered in Chap-
ter 4,

Several limitations are apparent in the above methed

and cenvergence proof:

1) There is no guarantee that the initial adjoint
thus determined represents an eptimm (for
instance, E; may be a minimum but net zere), -

2) There exists the pessibility, though remete, that
:g dees net belong to OR(T), i.e., that a maxi-

1 but not an extremal solutien has been found,
Any effective, global iterative precedure must take the
above limitations into accoeunt, These are considered in

Chapter U4,

3,4 Essential Cencepts froem Differential Geemetry

In the previous section it was shown that a sequence
of extremal endpoints, xg,"',xg, ocan be determined start-
ing with an arbitrary final state and terminating at a
final state which is an approximation te a local optimum,
If the step size is kept sufficiently small, this sequence
essentially defines a curve, L(xg,xg), on the boundary of
the reachable set, It should be noted, however, that few
geometric characteristios of the reachable set were employ-

ed in determining this curve.
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It is the purpose of this and future sections of this
chapter to utilize geometric characteristios of the hyper-
surface OR(T) in defining the curve L(xg,xg). Preparatory
to this, the following definitions from differential geom-
etry are given [G2,W1], While these definitions apply to
ocurves and hyporéurfaces in general, specific application
is made to the curve L(x,g,xg), with position vector x, on
the hypersurface OR(T). Incremental arc length is desig-
nated ds and the position vector is designated x(s).

DEFINITION 3,1 Let x(s) be a vector function desorib-

r
ing a ourve L. Let 9X(8) 0 and let &x| ,, 44X
g ®* s ls#q" dslq asTla

exist and be linearly independent, Then the r-dimensional
osculating space of the curve at the point q is the r-

dimensional vector space spanned by the derivative vectors

d_x. ....d—rzl 4
ds q dsr q

DEFINITION 3,2 The unit tangent vector to x(s) (that
is, to the curve L) at a point q is defined as

'.t(B) = g':._s(-s'lo (30“7)

Note that the one-dimensional osculating space at peint q
is the tangent to x(s) at q.

DEFINITION 3,3 Let x(q) and x(q') be two neighber-
ing points on L, then the osculating plane of L at x(q) is
the limiting position (as x(q') approaches x(q) ) of that
plane containing t(q) and x(q*')., Note that this is the

two-dimensional osculating space.
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DEFINITION 3.4 Let x(q) be a point on L with tangent
t(qa), then the normal hyperplane at x(q) is the hyperplane
threugh x(q) which is ofthogonal to t(a).

DEFINITION 3,5 The principal normal at x(q) is the
line of intersection of the osculating plane and the normal
hyperplane, The unit vector along the principal normal is
denoted by n(q).

DEFINITION 3,6 The curvature (of the curve L), denot-
ed k, is the arc rate at which the tangent changes direo-
tion along L:

gg—sﬁ)- = %égl = h(s). (30"‘8)

Note that n belongs te the hyperplane normal to t(s), hence
they are orthogonal:
<t(s) ,n(s)> = 0, (3.49)

The preceding definitions are given for curves in gen-
eral; now consider curves on a hypersurface., The hyper-
surface itself has a tangent hyperplane (assuming smooth-
ness) and an associated unit normal N te the hypersurface.
The two normals (n, to the curve and N, to the hypersur-
face) do not necessarily coincide., In fact, twe of the
most important curves on a hypersurface are defined by the
behavior of the normal to the hypersurface as related to
the tangent and to the normal to a curve on the hypersur-
face,

DEFINITION 3,7 For any curve on a hypersurface the

curvature vector is dzx(s)/dsz, which can further be
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represented as a combination of the hypersurface normal and

the vector w:

d_zrés). = kn(s) = kK, N+w (3.50)

ds
where k, is the normal curvature.

One important curve on a hypersurface is the geodesioc.
In differential geometry it is defined in the fellowing
manner:

DEFINITION 3,8 A geedesic is a curve on a hypersur-
face for which w = 0, i,e, for which the principal normsl
to the curve ceincides with the normal to the hypersurface.,
Thus the curvature k and the normal curvature kh are equal,

Generally speaking, geedesics (en hypersurfaces) are
analogous to straight lines in Euclidean space and are
curves of shortest distance, Since geodesics are curves
0f shortest distance, it was desired to seek a'ﬁodificaa'
tion of LOP-DS so that the ocurve L(xg,xg) woulq be a geo-
desic. Thus L(xg,xg) would represent a shortest path from
the arbitrary starting point xg on the beundary of the
reachable set to xg. Attempts of the author to achieve
such a modification have thus far been unsuccessful,

A second important class of curves on a hypersurface
are the lines of curvature, Such a line is determined by
considering the rate of change of the hypersurface normal,

In general, one can write

Lok Ty v (3.51)
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where v is a unit vector orthogonal to dx/ds and contained
in the tangent hyperspace at the point under censideration,
The factor 7z is called the torsion of the hypersurface in
the direction of the tangent (dx/ds) to the ocurve.

DEFINITION 3,9 Consider curves which have a direction
such that v = 0; such directions are called principal
directions (of curvature) and the associated curvatures,

k, are called principal curvatures.

DEFINITION 3,10 A curve on a hypersurface whose tan-
gent at every point is along a principal direction is a
line of curvature.

Lines of curvature thus have the property that the
rate of change of hypersurface normal coincides (in direo-
tion) with the tangent to the curve on the hypersurface.
This is expressed in Rodriques®' formula:

d¥ + k dx = 0. (3.52)

Further, concerning lines of ocurvature and principal
directions, it has heen shown [G2,W1] that:

1) A peint whefe the principal directiens are wholly

indeterminate (all principal curvatures have the
same value) is called an umbilical point., A
hyperplane and a hypersphere (or portien thereof)
are the enly hypersurfaces whose points are all
umbilical points, ‘

2) Except for the two instances mentioned in item 1),

the principal directions always exist and define
an orthogonal system of directions.

3) The principal directions represent directions of
extreme values of curvature.
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3,5 Cenvergence to a looal Optimum via Lines of Curvature

In Section 3.3 a direct search technique on the ini-
tial adjoints was shown to result in a sequence of extremal
endpoints (defining a curve, L, on the boundary of R(T) )
which cenverges to an approximation te a minimum of E(po)'
In this sectien, the definitions ef the previeus section
are combined with the concepts ef extremal endpoints and
orthegonal final adjoints to formulate a different converg-
ing sequence, It is shown that fer a cenvex set, there
exists a well-defined curve, L(xg,x;), consisting ef lines
of curvature, along which the errer functien nonotonioaliy
decreases to the eptimum, This is shown using Ez(po) or
ces Y,

THEOREM 3,3 Let R in E” be a strictly convex cempact
set with 0 ¢ R. Let xy be an arbitrary boundary peint ef
R and let x7 be such that

lIxpll > [lxg || for any x; # x} in B. (3.53)
Then there exists a path L(xg,x;) en the beundary of R,
consisting entirely of lines of curvature, such that the

error function

Py s Xp¥ (3.54)
Hopll || xpll

monotoniocally decreases to -1 and such that ||xq{| meno-

E;(py) = cosy =

tonically decreases te its minimum value x}.

Proof: Note first that R may represent the entire reach-
able set R(T) if the system being considered is linear, or
it may represent a convex subset of R(T). The beundary
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points in these cases would represent extremal endpeints and
the corresponding outward normals, Py would represent final
adjoints, As previously introduced, ds represents the in-
cremental arc length aleng L(xg,xg). To show the monotonio-
ity of cos y, it is sufficient to show that

% <0 (3055)

along the specified path,
Since Pp is an outward normal to the surface at Xy

utilizing the terminology of the previous section yields
Na T (3.56)

Mo 1T °
As a notational simplification; the subscript T will be
deleted, Thus Equation 3.54 becomes

. <x 4, N>
Ez(po) = CoOSY = —n?’n_-o (3057)
Taking the derivative ef Equation 3,57 one obtains:
d cos vy _ 4N X dx/ds

s <@ 'mxn> <Y

- <n,xdllx|l/as, (3 sg)
~ e
[ x|

Since dx/ds = t is the tangent

<N, 928> = o (3.59)

and Equation 3.58 becomes . :
doosy ., (dN X 5 _ <N _.I.l_g.L_!d!~d'>. .60
3s as * [TxT] ’ =0l (3.60)

To this point, the path has not been identified mere pre-
cisely than belonging te the boundary of Rjthus it is new
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assumed that L is composed entirely of segments of lines of

curvature, Hence Equation 3.52 applies and Equation 3,60

becomes
doosy _ . pdx X 5 _cy x—dﬂl-l}@—’ >. (3.61)
ds ds * [TxT] 1 x|
Now consider
<x, x>=||x|l (3.62)

Thus

ex,x> = 2<x,E> "3,;‘”!||2=2”!"Q'5;'u (3.63)
or

_”_ﬂd d: = n——” ; <x,%> . (3062")

Substituting Bquation 3,64 into Equation 3.61 gives:

408y . k_ﬂ_ll lde <y, “_“>. (3.65)

Hence,

d %g? Y - - (k+ cos ) Ql || (3.66)

Since the curve, L, is on the surface of a convex set, the
curvature k is always negative, At or near the optimum on
any reasonably behaved surface cos y is negative; thus for

the derivative of cos y to always satisfy Equatien 3.55, it

—g’—ﬂd Xl < o, (3.67)

Not only is this requirement necessary for the preof of the

is necessary that

theorem, it is alse desirable frem an understanding of the

problem since the optimum peint is the peint ef minimum
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] x || It is new shewn that Equatien 3.67 ocan be satisfied
while simultaneously remeining en lines ef ourvature.

The hypersurface OR is m-dimensioenal where m < n-1,
Through each peint x en OR there are m erthegenal direo-
tiens defined by the tangents te the lines ef curvature
through x, Altheugh these vectors are orthegenal, in the
proof to follow, it is' enly necessary te require that they
are linearly independent,

Consider the arbitrary starting point x° ¢ x* and
let L(xo,xi) denote a path on OR composed eof lines of our-
vature, along which || x|| decreases monotonically frem ||x°||
to llxi [l It is first shown that there must exist one such
path, i,e, that it is posa_ible to move from xo along & line
of curvature such that ||x|| is decreased.

Define level hypersurfaces, P(r), on OR as the inter-
section of OR with m-dimensional hyperspheres S(r) of radi-
us r and centered at the origin, The resulting level hyper-
surfaces are of dimension m-1, thus at least one of the
tangent vectors for any x#x"' belonging to one of these
level hypersurfaces must intersect that level hypersurface,
Thus it is possible to move along the lines 91’ curvature
corresponding to this tangent such that || x || is decreased.
In the event that r = || x+||, the intersection of S(r) with
OR yields a point, x'.

Consider the collection of all paths, L(xo,x), formed

of lines of curvature for which || x|| is decreased. If
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L(xo,x+) is in this collection, then the theorem is proved.
If not, then there must be a lower bound greater than ||x*||
for the ||x|| obtainable, i.e., a level hypersurface P(b)
must bound all L(xo,x) from below, There may be many such
paths which approach P(b),

For each x1 theré is a corresponding erthegonal system
through x! consisting of lines of curvature. Along some of
these lines, || x|| is decreased. Let D(x!) represent the
point x1 together with thosp arcs of its lines of curvature,

i

containing x*, along which || x|| decreases and for which

=1l < (1=* (]

Since b is the lower bound of the norms ef peints which
are joinable to xo by admissible paths, there exists a se-
quence of points {xi} such that {[l x ll} converges to b,
Since OR is cempact, {xi} contains a subsequence converging
t0 a point i', whose norm is b, For notational simplicity,
{xj} is also used to denote the convergent subsequence, As
previously mentioned for an arbitrary x ¢ x+, at least one
member of the orthogonal system must penetrate the level
hypersurface to which the} point x belengs, Thus there
exists an x' e D(X) with ||X'|] < b.

From considerations of continuity, it fellows that
{D(xi)} approaches D(X). Thus there exists a sequence
{x'i}; where x'i ¢ D(x1), which converges to x'. Also
{llx'i“} approaches ||x'|| < b, Hence for some k, [|x'K|<0b.
Consider the union of L (x9,xX) with the arc £ x'k of
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0 4o x'K, But x'K bas a norm

D(xk). This union joins x
less than b, thus contradicting the definitign of b as the
lower bound. Hence the only lower bound is || x*|| and it

0 is joeinable to xt by a path,

has been shewn that x
L(x%,xt)., Hence the proof of the theerem.

Although this theorem is proven for the error function
E2 = cos Y, it is also possible to prove the monotonicity
of the other error functions along the path L(x?,x}); of
all error functions given in Section 3.2, El and E; are
most basic and are fundamental to all others., The final
statement of Theorem 3.3 also demonstrates the menotonicity
of E,.

0f the cempound error functions, E5 is mest direct
and effective. Thus, consider Theorem 3.3 as it relates
to E5.

COROLLARY 3,3.,1 Let the hypotheses of Theorem 3.3
apply. Then there exists a path L(x3,xj) on the boundary
of R, consisting entirely of lines of ocurvature, such that
the error function |

Ez(po) = || xp[| (1+cos y) (3.68)
monotonically decreases to O,
Proof: Since E2 decreases monotonically te -1, 1+ cesy
decreases monotonically te 0. But [|xy|| alse decreases
monotonically, hence the product decreases monotonically
to 0, Hence the proof.

It is instructive to consider E5 so as to develop an

equation analogous to Equation 3.66, Consider
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dE
%= =3 [llxpll Q+oosm) ], (3.69)
or
dE d :
7‘_85,_%?’11_‘(1”03 v) + [zl 488 (3.70)

Substituting Bquation 3.66, one obtains

g _dll xgll

’ ,
s T 1 e M N o P | LTI

Thus

dE ) da ' .
e - xlixy ) 2l (3.72)

For E5 to decrease monotonically along L(xg,x;), the follow-
ing inequality must holdz

) I klle“ > 0, (3.73)
or '

kK< . (3.74)
M=l

For the convex set of Theerem 3.3 this inequality certainly
helds since k is negative. Questions relating te non-
convex sets are considered in Chapter 4, Nete that Equa-
tion 3.74 allews this pessibility since dE5/ds my be nega-

tive even though k is pesitive.

3.6 Effective Beundary Path Selectien

For a convex region of R(T) which includes a local
optimum, the results of the previous section show that at
least one and probably many acceptable paths exist on the
boundary of the reachable set. Each of these paths run
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from the arbitrary starting point to the looal optimun;
These paths represent collections of extremal trajectory
endpoints, Any method based upon these results would have
as its goal the successive determination of these end-
points, hence of these trajectories, Certainly it ia not
desirable to identify all of the endpoints since the path
consists of an infinite number, but it is desirable to
identify a sufficient number to define the path and hence
locate the optimum endpoint,

Were the boundary of the reachable set explicitly de-
fined by a vector function, the path would likewise be pre-
cisely defined., If this were the case, however, determina-
tion of the path would be unnecessary since such an explio-
it definition of JR(T) would easily lead to location of the
local optimum either by direct calculation or through funo-
tional minimization., In any practical nonlinear problem,
however, it is not possible to explicitly define the reach-
able set. Based on hypotheses and theorems given earlier
in this thesis, only the following general observations are
available:

1) R(t) is of dimension r S n, where n is the
dimension of the state equations,

2) The boundary of R(t) consists of extremal trajeo-
tory endpoints resulting from extremal controls,

3) R(t) is compact and varies continuously with time,

4) R(t) ie, in general, not globally convex, but will
have regions of local convexity.
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How‘the'n, does one, experimentally, determine the path
from the arbitrary starting point to the local optimum?
Because of the fact that so little is known of the shape
of the reachable set, it was the author's original decision
to implement some type of search method on JR(T) (i.e.among
the initial adjoints corresponding to these extremal end-
points), One such method is LOP-DS given in Section 3,3.
Theorem 3.3, however, yields some additional insight inte
the nature of an effective path to the optimum, Some of
these results were previously apparent from the nature of
the problem:

1) d|| xp[|/ds< 0, i.e. || xp|] must successively
decrease.

2) The decrease in || x,|| should be made as large as
possible (i.e., dl[x, || /ds should be minimized).

Others are provided as a result of Theorem 3.'33

3) S8Since the path consists of lines of curvature,

dxq

aN . = =o. (3.75)

ds
4) 1r there is a choice of lines of curvature,
as exists in most cases, the one for whioch k
is minimum should be selected at each decision
point along the path,

While arbitrary changes in the P, 's might be acceptable
in lower order systéms, higher order s'yteins require more
sophisticated methods; hqnoe the insight provided through
Theorem 3.3 is important and should be utilized. The basio

structure of such a method would be as follows:
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(V)
1) Try an arbitrary p,s note E(pg), pg and xg.

2) Employing inaight into the relationship of x,
and/or Py to xT and/or pT and the interrelation-
ship between 8x, and apT (pertnrbations), change

0
xT and Py yielding xT and Ppe
3) Run the system in reverse time from‘_o and Eg

using extremal switching. This yields an
ig and a ﬁg. Note that 56 probably differs

from x, (the specified initial state).

4) Consider a new initial adjoint p1 whioh is
related to Fo und perhaps to po and to the
change in x, (x - X, ).

5) Assuming that pl results in a better value of

the error funotion, E(po), then the method is
repeated., If the result is not better, some

alternative approach must be taken,
Within these five steps, there are strategies which must
be chosen on the basis of geed judgement as well as math-
emantical develepment. Basiocally these alternatives can
be classed into two subdivisiens, accerding to the time
at which they occur: in step 2), after forward integratien
of the system and in step h), after reverse time integra-

tion.

3,6,1 Curvature Algorithm Alternatives——Final Time
Consider firét the alternatives available at the final

time, i,e6. on the boundary of the reachable set, The fol-
lowing choices must be made:

1) Should just X, Or P, be perturbed or both X
and pT?
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2) What should be the size of the perturbation?
3) In what direction should the perturbation bhe made?

L) If both Xy and Py are perturbed, are the perturbe-
tions performed dependently or independently?

5) If Xp and Pp are perturbed dependently, which dno
is perturbed independently and what is the rela-
tionship between the perturbations?

These decisions can be represented as shown in the decision
flow chart given in Figure 3.2. It should be emphasized
that these decisions must be made on the basis of little
knowledge of the nature of the reachable set in the neigh-
borhood of Xq~—any additional information must be experi-
mentally determined. The goal, of course, is a perturba-
tion of Xp and py such that the error funotion is decreased
and such that the perturbed final state Xpo JR(T) and the
perturbed final adjoint is normal to OR(T) at Xg.

Perturdb.

Depend-
. ently
erturbation
Direction | |
Independ- ¢ ship >
ent

Perturbation [ 8Pq
’ Magnitude — bx.l.

FIGURE 3,2 Final Time Perturbation Decisions
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Consider some aspects relative to these perturbations
and the above listed alternatives. In the discussion to
follow, the perturbed final state and costate are desig-
nated E& and 5&:

;T =X, + 6!,1. (3.76)

Pp = Pp + 8Pp. (3.77)
For any perturbation in Xy there is a good possibility
that X, does not lie on the boundary of the reachable set.
Of course, the goal of any perturbation is te minimize this
possibility, In addition to this fact, however, other as-
pects must be considered,

If only Xp is perturbed, ;T‘p'r probably does not
represent a correct outward normal for the new boundary
point, Similarly if only p, is perturbed, S& does not
represent a correct outward normal for the unperturbed
final state, If both IT and Py are perturbed independ-
ently or if an incorrect perturbation interrelationship is
utilized, again the resulting perturbed normal may not be
accurate for the resul ting boundary point., Thus a judi-
ciously chosen, related perturbation is most desirable.
Even in this oase, some departure from the reachable set
and the proper outward normal can be expected, particularly
if the step size is too large. With careful centrol of the
step size, however, a joint, related perturbation may re-
sult in a new E& close to OR(T) yet allow 8x, to be large

enough to represent a considerable improvement in the final
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state.

The interrelationship between x, and Pp is chosen to
coincide with the theoretical developments for lines of
curvature, namely, Equation 3,52 applies, or, in incre-
mental steps:

N + k °xT = 0. (3078)

Obviously, k must experimentally be estimated and updated
as the path moves towards the optimum. The final state,
Xy is chosen for the independent perturbation since the
proof of Theorem 3,3 requires (and common sense dictates)
that lle|| continuously decreases. Thus, choosing éx, to
be independent allows easy verificatien of this requirement,

The crucial question remaining unanswered is number
3)=—in what direction should the perturbation be made?
While this decision must be made without an explicit ex-
pression for the reachable set, some facts are available:

1) [|xp[] must decrease.

2) E(po) must decrease.

3) The final perturbed state, Xy, sheuld remain on
the boundary of the reachable set.

To give justification for the direction of perturbation to
be selected, consider the following perturbation analyses
of E(po) which are presented as theorems, The fir.st per-
turbation direction is based mostly on fact number 1)--

decreasing || x, le
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THEOREM 3.4 Consider the error function E,(p,) (the
final time subsoript, T, has been deleted for notational
simplicity):

Ey(p,) = cosy = n%m- sﬁ—;ﬁz (3.79)
where x belongs to a convex region of OR(T) (thus the our-
vature, k, is negative) and N is normal to R(T) at x. Let
4x be a perturbation in x with corresponding 4N given by
Equation 3,78, 1f 8x is defined by

8x = -ox (3.80)
where ¢ is a positive constant, 0 < 0 < 1, then
E(x+éx,p+8p) 2 E(x,p) = E,(p,) (3.81)
with equality only at the optimum,
Proof: Let

8E = E(x,p) - E(x+8x,p+ip). (3.82)
It must be shown that
8E > 0, (3.83)
Consider
o5 = SELH2 _ ST KiN> (3.84)
or,

=<X, N> <x, N> _ <b4x,N>
SE ||x|| : ||x+cx|| x+6x
_<SxX,8N> <8x,8K>
Tadeall ~ Teeeags  ©89
Substituting Equation 3.78 into 3.85 gives:
1 1 ' <éx,N>
8E = <x, N> (x17- Tx+8=1) ~ Tx+6x1

<x,kéx> , <8x,kbx> (3.86)

+ x+é6x || x+8x



Note that

|| x+éx|] = || x=ox|| = [ 1-¢]| [|x[] = (1=0) || x]| (3.87)
because of Equation 3,80 and since 0<c<1l, Substituting
Bquations 3,87 and 3.80 into 3.86 results in:

| s 0
OE = cos y (-1"—_°3) + l-f—ooos y - %le] + f—_%lxll; (3.88)
or,

ok = Hlxllo1) - —ong x| (3.89)

Since ¢ is positive and k is negative, Inequality 3.83 is
satisfied and the proof is complete., Note that maximizing
| k| will maximize 8E.

It should be noted that Equation 3,80 disregards the
faoct that x+ 86x should also lie on the boundary ef the
reachable set, If cos vy is near zero (i,e.,, far from the
optimum), Qx is approximately tangential and Equation 3,80
is a good approximation (See Figure 3.3a). On the other
hand, oonsider an x near the optimum (Figure 3.3b). In
this event, any 6x defined by Equation 3.30 is nearly nor-
ml to QR(T) and thus is a poor choice. Hence, some other
choice must be made for 8x based on the available informa-
tion which includes past knowledge of OR(T), x(T) and p(T)
and current knowledge of p(T) and x(T).

When x,r is near x;, 6x is nearly orthogonal to Xme
For second order systems, this would be sufficient infor-
mation for calculating 8§x, but for higher dimensional sys-
tems, this still does not adequately define éx. Considera-
tion of Pp and Xp near an optimum shows that they are
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origin origin

a. Far from Optimum b. Near the Optimum

FIGUBRE 3.3 Final State Perturbations: éx=-oXx,

nearly collinear, thus the ve?tor

éx = -0 (n—:—r[ +‘n‘%‘r[) ’ (3090)

is nearly tangential near the optimum, This fact is illus-
trated in Figure 3.4, and leads to the next perturbation
analysis as given in Theorem 3,5,

THEOREM 3,5 Let the error function be defined by
Equa,tion' 3.79 and let Equation 3.78 apply. Let x and N
be as previously defined. If 8x is defined by Equation
3,90 with 0 < o' < ||x|| /2, then Equation 3.81 is satisfied,
Proof: Consider 8E as defined in Equation 3.82, and as ex-
pressed in Egquation 3,86, Substituting Equation 3.90 into
parts of Equation 3.86, one obtains: .
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1 1 <0o'x , N> <o6'N,N>
8E=<x,N> (||x||-||x+ix||) + ||x||||x+3x||+ [Tx+8x]]
_ <x,kc'x> _<x,kc'N>
||x+cx||||x|| x+6x
2 o ' . .
k(o' p SENTT4 x +< N>). (3.91
+|-|-L-L"x+u .(lln—"'x [ +2<rEe M2 ). (3.91)

S8ince N and x/ || x|| are both unit vectors, Equation 3.91

becomes :
1 1 c' cos o' _ko'|lx
6E-<x,N>.(m-nm“)*n?mﬁ+l_lxﬂx”- x+6x ||
_ke'|lx 2k(c*)2 + o .92
";:LIQ_I-HOOS Yy + Xt53 (1 + cos Y) (3.9 )

Rearranging Equation 3.92 and collecting terms yields:

8F = cosy (1- ity + {1t 008 v) (k| x||+2kot). (3.93)

Te relate the magnitudes of the 8x's in this theorem and

the previeus theorem, define a new constant

c" = n%'" ° (309“')

FIGURE 3.4 Final State Perturbations near x (T
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Note that the hypothesis for the theorem requires that
0<oc" <4, With substitution of oc", Bquation 3.93
becomes :

)

0E = ces 7 1 - THix

» Lzl (13008 Y) (3 k|| x| +2ko || x[| ). (3.95)
Now it must be proven that 8E is positive. Note that the
second term is pesitivg ir -

1 - k|| x|] + 2ko*|| x[| >0, (3.96)
since cos vy 2 -1 with equality only at the eptimum (hence
the second term is zero at the optimum), Inequality 3.96
can be rearranged as rqllows_: |

2ke* || x|| > k|| x|| -1, (3.97)

or since k is negative (convex surface),

o < Kllxll-1 R

c? < T = 3 ZET=]) ° (3.98)
Certainly if o" is less than#, Inequality 3.98 is satis-
fied since -1/2k|| x|| 1s positive; hence the second term of
Equation 3,95 is pesitive except at the optimum where it is

zero, Now consider the first term of Equation 3.95, for

which it must be shown that

cos vy (1-, x‘+x6x‘)2°‘ ‘ (3.99)
It has previously been stated that cos y is negative in any
well-behaved region near a local optimum; thus one must
show that

(1 - Xl ) <03 (3.100)



or | |

[l x+ex[] - [| x[] = o, (3.101)
which was already the objective of this method. With the
introduction of c", Equation 3.90 has beocome

8x = -o"x - o" || x|| N, (3.102)
Consider o |
[| x+6x [} =||(x- c"x- o|| x[| )|} (3.103)
or . . . .
[| x+6x|] =||(x(1=-0") - o || x|] ®){{. (3.104)

Using the triangular iﬂequa.lity one obtains:

l|x+ox|] S [1x(1-0") || + [ || x[IM)]; (3.108)
or | o -

[| x+6x || £ (1-c") ||:x]|] + o" || x|] | (3.106)
since c" < 4 (thus 1-c" is positive) and since [|N|| 18 1.
Thus Inequality 3,101 is satisfied and the proof of the
theorem is complete,

Summarizing, two candidates have been selected for
perturbing the final state, as given in Equations 3,80 and
3.90, Equation 3.80 is most effective at points where cos vy
is near 0 (far from optimum) and Equation 3,90 is most ef-
fective for points on QR(T) which are near the optimum
(coe y near ~1), Letting

©c = c", (3.107)
an obvious candidate for a composite choice for &x is
8x = -o(x~||x||Ncos v ), (3.108)

because it reduces to Equation 3,80 when ces y is 0 and to
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Equation 3,90 when cos y is -1, This perturbatien choice
is considered in the next theorem,

THEOREM 3,6 Let the error functien be defined by
Equation 3.79 and let Equatien 3.78 apply. Let x and N.
be as previously defined. If éx is defined by Eqmjion
3.108, 0 < ¢ < 1, then Equatien 3,81 is satisfied. ‘
Preef: Again consider 8E as defined in Equatien 3.82,

By partial substitutien ef Equatien 3.108 inte Equatien
3.86, ene obtains:

1 1 P
6E = <x ,N> (n?n m)+m<x,n>
- (o] ' '_ ok
"x+—6xn <‘[|x||Noosy,N> “x+—u"<x,x>

ck

+ l"l?ﬂ_xtf x,||x||Ncesy >+ ﬂ-x_ﬂg'x'ﬂ'” 5:“2. (3.109)
Since |
|x|] ces vy = <x, N>, (3.110)
Equation 3.109 becemes

- I =x || _oH|x || ck”x” 1
6E cos v (1- X+8X x+6x x+6x

+ n;.r;;;n“ ox||2, (3.111)

Now oons:lder

I Oxllzcoz(llxllz 2||x[| cosy<x, N>+{|x[|2008 y) (3.112)
or . . . . . .

1 8x (12 = e®([ x |2 - || x [|%0082y) = 6¥| x[|? (1- cos?y). (3.113)
Substituting this result into Eqna.tion 3.111 gives:

8E = cos y (1 - ) -

x-l-bx x+x (1 - cos Y)

+k0

x+ax (l-oos Y)s (3.114)
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or
X ),,_‘c 12

2 .
x+8x x+8X (1- cos Y)(o"‘l)o (3.115)

6E = cosy (1=,

While the first term of this equatien is the same as de-
rived in Equation 3.95, it must again be considered since
8x differs., For that term to be positive (or zero) it must
be shown that - _ |
=zl Z (| x+x]] . (3.116)
From Equation 3.108 we ouﬁ write, o
[| x+sx || = |=cx+c || x || Noos v )[| = [Kx(1~c)+c||xi|Ncos v)[|. (3.117)
Using the triangular inequality one obtgins: _
| x+x(] < [ x(1-0) || + | (cljxf|Ncos v)[|. ~(3.118)
S8ince [cos y| £ 1, ¢ and 1-c are positive; and || N||=1;
[lx+ex|] = (-0) [|x[] + o [Ix]| = [Ix]]. (3.119)
Thus the first term in Equation 3.115 is positive or zero
(at the eptimum), Now consider the second term, The
factor (c-1) is negative as is k; all other facters are
positive hence the term is pesitive except at the optimum
where it is zero; hence the proef of the theerem,
Experimental results are given in Chapter 5 to compare
the three possible methods of perturbing 8x as given by
Equations 3,80, 3,90 and 3,108, Once 8x has been defined,
then §N is determined through Equatien 3,78, Onoce k is
determined then 4N is specifically defined. The deter-
mination of curvature, k, however, is not an easy task

for higher order systems, Since R(T) is not expliocitly
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defined, k must be experimentally approximated.

Given two neighboring peints on a line of ocurvature,
(x,p) and (x',p'), several means are available for calcu-
lating an estimate of k, The first estimates are apparent
from Equation 3,78 where n (dimension ef the state) approx-
imations are possible

1= i
any of these estimates ceuld be used er the average:

n

A second estimate of k is available from Equation 3,66
which, selving for k gives

k=-%—ﬁ5’fnl--'ﬁ-’%ﬁ. (3.122)

Or, in terms of perturbations

Finally, a cembimation of k and k _ may be used:
Ly =% (5, + K. (3.124)

For two final states x and x' close te each other (and en a
line of curvature), all of the estimates of k (Equations
3.121, 3.123 and 3.124) are near the actual value,

For a second order system, with éx sufficiently small,
k can easily be estimated since the boundary of the reachable
set is the line of curvature., In higher order systems, how-

ever, a perturbation of (x,p) yielding



72

121 sk, 0k 1=1,°°*,n-1 (3.125)

would indeed be foertuitous., In general one can expect that
the ¥, 's and K have differing values and differing signs
since the perturbation of (x,p) may not be along a line eof
curvature through x, For small perturbations in x, the
variance of the values for k and the Ei'e is certainly an
indicatien of whether or not the perturbation is along a
line of curvature, If the variance is large, several op-
tions are available in seloctin;.k: an average may be chosen,
one particular estimate formula may be relied upen er more
perturbations may be taken until a better estimate of k re-
sults, The methods for estimating k are experimentally
compared in the next ochapter.

3,6,2 Curvature Algorithm Alternatives-—Initial Time

As indicated in Section 3.6, after réverse time inte-
gration from (;,}‘,5;), there are several alternative means

of choosing p:"l', the initial adjoint for the next itera-
tion, 8ince 6:.}. and bp.}. are only estimates for an accurate

perturbation on aR(T),, the resulting x}, found by reverse

time integration of the state and costate equatiens using - '
maximal switching eften differs from the specified initial
state, x,, In addition, cemputational errers may develop
which also centribute to the difference between x:
Indeed, experimentation indicates that significant errors

and xoo

do develop and that a computated (iT,ﬂT) pair when used,

without perturbations, as initial f»ohits in a reverse time
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integration, may not produce x, and 8,. The origin of this

computational error is discussed in éha.pter 5. For the de-

velopments in this section, it is sufficient to observe

that a computed xg may not be the initial state because eof:
1) Computational errors,

2) Failure of 'x',}\ t0 lie on JR(T) and/or failure of
5.}. to0 take the correct direction,

Regardless of the source of this difference, when a new

p;ﬂ is selected, based upon 5:, the validity of 3: should

be examined as well as the possible benefit of adjusting for

i =i
éx, = X - X . , (3.126)

Disregarding these differences, a new approximation for p,

is i+l =i
Consider the computational errors in integration which
might develop. One possible means of reducing their effect

would be to consider the following error correction vectors:

ol - ici, - x, (3.128)
8! = 8! - pl, (3.129)

where ig and pg are in:lti‘a.l points obtained by reverse time

:‘ and xé. (ioeo,

and ai thus re-

integration with extremal switching fro"m‘ P
without perturbation), The differences al
sult entirely from computational errors. These correction
factors may then be used to give new estimates of X, and Pyt
tl =3 .ol (3.130)

and
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. -5i -8l (3.131)

These new, hopefully better estimates can then be used to

i+l
o

evaluated through experimentation in the next chapter. It

determine p o The effect of these correction factors is
should be noted that their computation at each step re-
quires an extra integration of the state/costate equation
pair,

Once ig and ﬁg (or E% and.ﬁ%) have been computed, then
a new pé*l'must be calculated., As mentioned, a straight-
forward method is to pick

pitl = 81 (or 1) (3.132)

Other alternatives are available such as:

41 _ 1

P, o * 085 - p3), 0> 0 (3.133)

where ¢ < 1 if 6xg is large and ¢ 2 1 if the estimates are

good,

3.7 The Local Optimum Procedure-—Composite Method

Incorporating the results obtained in the previous
sections of this chapter, an algorithm can be given to
solve Problem 2,5 (LP), Included in this algorithm are
several alternatives, Some are given in the form of sub-
algorithms, others are evident by the choice between sev-
eral alternative equations, In Figure 3.5 a flow chart
is given for LOP-CM and in Figure 3.6 a flow chart is given
for an example subalgorithm (4b).
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LOCAL OPTIMUM PROCEDURE--COMPOSITE METHOD (LOP-CM

1.
2.
3.

b,

5.

9.

Select an error function

Select an arbitrary pg, (i=0).

Determine x;, p% and E(pg) corresponding to x,,

p: and extremal switching,

Determine an estimate for k through Subalgo-
rithm 4.,a or 4,0,

Perturb x. by using Equation 3.80, 3.90 or 3.108
yielding X}), where the magnitude of o (step size)
may be dependent on the error of the i-1'st iter-
ation,

Perturbd p% in a corresponding manner (through

Equation 3.78), giving 3}.

Determine 5% and Eg corresponding to extremal

switching, _1, Ei and reverse time integration.
X1s P

Evaluate xi and pi and determine (through one of

° ° 141
the Subalgorithms 8,a through 8.0) a new Py -

Determine x;+1, p;+l and e(p1+l). Test to see

if the error value is decroased. If so, test to
determine if the error value is sufficiently
close to the optimum value, If it is sufficient-
ly close, then a local optimum has been foundj

if not, go to step 4 and repeat. If E(p:*l) is
not an improvement, and if the step size has not
been reduced past its reduction Iimits, decrease
c and go to step number 5., If the step size can
no longer be reduced, go to LOP-DS for final de-
termination of the qptimum.

SUBALGORITHMS 4—-CURVATURE IETERMINATION

NOTE:

For either of the following, the value finally se-

lected for curvature may be given by Equations 3,120, 3.121,
3.123 or 3.124,



Select Et,

76

indicates: initial condi-
tions pl
tion of

F and x,; integra-

2.28, utilizing g maximal con-

trol, to yield
evaluation of E(B§).-

i)

-‘-’i‘

reverge time to givo
and Pipe xd
kk=Kkk+1

indiocates: i?itial
conditions p

H integrat?on of
Equations 2,19 and 2,28

and p$° then

GO TO
LOP-DS

i=1i+1

F

Equations 2.19 and|l:

ubalgorith
Curvatur
terminat,

pubalgorit
Eval 10

‘g,, pigf

IGURE Flow Chart for LOP-CM
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1 resulting 1n.§:.

[
11, Determine i% and i% from x_, ﬁ% and
extremal ewitphing.

h,a,I. Perturb p

III. 1If i% = x%, increase the perturbation size
and go to step I. If not, ge to step IV,

IV. Calculate an estimate of k from X3, Bi,
x.}. and p%\o

4.,v.I. Perturd p: resulting in jpg, i=1.
II. Determine jx% and Jp% from x,, jpg and
extremal switching,

111, 1If Jx% = x%, inorease the perturbation size
and go to step II, If not, go to step 1V,

IV, Determine the standard c'levia.tion 49n " 1"(;) /f:&
where jc(i) is the standard deviation of tho'ii's
and k, is the average of their absolute values.
1r o, 1s less than o, (allewable limit fer

the standard deviation), then calculate an
estimate of k, 1If §%n is greater than g,

then go to step V.,

V. Perturd pg in a random manner frem the pre-
vious perturbatiens, yielding 3+1P3- Unless j+1
is greater than a preset 1limit en the number of.
allowed initial costate perturbations, go te step
I1 and repeat steps II through V, In the event
that j+1 exceeds the preset limit, use the value

of pg fer which o is a minimum to estimate k.,

SUBALGORITHMS 8-—NEW INITIAL COSTATE IETERMINATION

8.a. TUtilize Equation 3.127, 1,e. pi*l = pi,
do not correct for cx%;
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Given p Select p,,
T To 11 , oz’ For meaning of the
AR a‘nﬁaf a symbol refer

‘ : : : - - Nym= sNym(11)
—"< \[ . g, = AT § AT
Y TR

Generate a
random vec—{

[
gfil_)l_

11=11+1
<

i=i+]je—

FIGURE 3,6 Flow Chart for Subalgorithm 4,b
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8.b.1. Determine ii and ﬁi corresponding te p% and

xT (without perturbations) and extremal switching
in reverse time integration,

II. Calculate the correction factors of Equations
3,128 and 3.129,

111, Cerrect 5:
3.131.

1V, Let p1+1 = ﬁi. Ignore oi,
o o °

and.E: using Equations 3,130 and

8.c. Using either xiand pi or ii and ﬁi(as determined

in Subalgorithm 8 b), defino a new p%*l by using

Equation 3,133,

Examination 6f the above algorithm and subalgorithms
points out a number of possible alternatives within the
basic algorithm, By way of summary these alternatives
occur at:

1) Step 1, -- Error Function Selection

2) B8tep 4, —— Curvature Determination

3) Step 5. — Final State Perturbation

4) Step 8, — New pltl Egtimation,

In addition to these, there are alternative step sizes

to be chosen and also step 6 could be altered so that p%
would not be perturbed, or some of the other unrelated
perturbations as discussed earlier (See Figure 3.2) could
be selected. In Chapter 5 comparisons are made using these

various alternatives.



CHAPTER 4
THE GLOBAL OPTIMUM AND BRELATED PROBLEMS

In the previeus chapter, a methed (including several
optiens) was develeped for determining the loocal eptimum ef
a cenvex subset of R(T) (i.e. selving LP), Direct applica-
tien ef this methed te uﬁ arbitrary R(T) might enceunter
ene of several special cases fer which the results ef the
previous chapter need te be reassessed., In this chapter,
means of identifying and treating these are discussed., Mest
of these special cases are actually part of the more gener-
al preblem of loocating the global eptimumj; hence it is net
necessary to implement specialized techmiques for their
selution,

The more general problem of determining the globel
optimum for an uibitrary R(T) which nay'have_several or
even numerous loocal optiya is most diffiocult., In this the-
sis a random approach is taken for finding the local optima
and thus identifying a global optimum; This global optimum
procedure solves Preblem 2.4 (MP)., Using some of the con-
cepts of Fadden and Barr [F1 and Bl], ether types of opti-
mal control problems can also be solved, Of these, only
the time optimal ocontrol preblem 1s'oonsiderqd here. All
experimental results and example problems are presented in
the next chapter.

80
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4,1 Special Problem 1: Nonconyvex regions on OR(T)

The algorithm presented in Chapter 3 assumes that the
region on JR(T) being considered is convex, For an arbi-
trary reachable set there may be many local optima (1.0,
locally closest points to the prigin); Much of the surface
may not be convex and, in fact, some of these looal optim'
and even the globael optimum may lie on a non-convex region,
Such regions may be concave or may be "mixed" (saddle
points, neither concave nor convex).

Upon first coﬁsidera.tion it may seem that it is not
possible for an optimum to lie on a coencave region of OR(T):
This, howev_er, is not the case, Censider, for example, the
reachable set shown in Figure 4,la, with the origin located
as indicated, Since all of the surface (in this case a
curve--R(T) is 2-dimensional) near the origin is oconcave,
the optimum is obviously on a conocave re’giop, namely at x,;.
A very special case is shown in Figure h;lb, where the op-
timum is not unique; in fact, where there are an infinite
number of mihima, all equally clese ‘tq the origin, As a
final example, Figure 4,10 is given in which the optimum
is located at a "corner®. Note that the determining fac-
tor in all three examples is jho‘relat:lonship between the
radius of curvature of the concave surface and fhe, distance
of that surface from the origin, This observation leads to
the following theorem which is given a.ftor.some preliminary
definitions.
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(T)
. s .
orfgin origin origin
; *
R(T) R(T) Xp
Qe | b. ) oo

FIGURE 4.1 Optima on Concave Boundary Regions

| | : |
DEFINITION 4,1 Let QR(T), x(T) and k be as previously

defined, Let the principal ourvatures ky, i=1,¢+,n-1, be
nonzero, then the principal radii of curvature, P1s ot x(T)

are defined as

= 1 o (uol)
Pi=

IEFINITION 4,2 Let ®B(T), x(T) and k; be as previous-

ly defined, then the maximum convex o ture, K ., at x(T)
is defined as ,
Ky = m%n k; , if any k;<0, (4.2)
or ‘ .
Kvx = 0, if all k; 2 O, (4.3)
DEFINITION 4,3 Let OR(T), x(T) and k; be as previous-
ly defined, then the maximum cencave curvature, K,,, at

x(T) is defined as
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Koy = mi.; kg, if any k; > O, (b.b4)

or

<
K, =0, if all k; X 0, (%.5)

THEOREM 4,1 Let R(T) be a compact set in E®, 0¢ R(T)
Consider a peint x(T) e OR(T) for which cos y = -1, where
p(T) is defined as the outward normal te R(T) at x(T). Let
Ny(x,e) be a neighborhood of x(T) on OR(T): Let ky, |
i =1,¢¢¢,n-1 be the principal curvatures at x(T).

a, I1f
. ,
[l xq (1

then x(T) is not a local optimum; i.e., there exists a

(4.6)

K, >

y e Na(x,e) such that | | |
71l < {1 =() [l (4.7)
b, 1f
K,, = m , (4.8)
then x(T) is not a unique optimum; i.e. there exist many
z ¢ Ny(x,e) such that

Nzl =[] x(T) . (.9)
c, Finally, if
1 .
K k.10
ov < Ixg [’ (4.10)
then x(T) is a local optimum; i.e, for any w e Ny(x,e),
A=l > [1x(m) . (4.11)

Proof: Consider part a., first. There exists at least

one principa.l curvature, namely



kw = K, (k.,12)
for which
1
kCV > m . (’4013)

Consider the line of ourvature,L, , through x(T) ocor-
responding te k... Since Loy is a line of curvature, Equa-
tion 3.66 applies, Since cos y at x(T) is -1, Equation

3.66 reduces to:

ud?_t = =(kgy U—(LTT[) dllx(M]l | (4.14)

By Equation 4,13 this reduces to

doey__ (n)dlxml (4.15)

where A is a positive number, If an infinitesimal change
is made in x(T) along Loy?

d_.%_zu >0 (4.16)

since cos y is a minimmm at x(T), Therefore by Equation

k.15,

d
—ILTITL! < oo (uo]-?)

Let y be a point on ch infinitesimally close to x(T)}
thus by Equation 4,17, Equation 4,7 is true and part a.
is proven,

Now consider part b, If for one curvature,

k

= = 1 .

then at x(T),

doosy .o, (t.19)
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over a segment of ch, hence the optimum is not unique.

Finally consider part o. In this case, the number A
of Inequality 4.15 ie negative, regardless of the choice of
principal curvature. Since the principal curvatures repre-
sent the extreme values which curvature can take, Kcv rep-
resents the maximum value for curvature on the surface in
the neighborhood of x(T). Since Equation 4,16 holds and A
is negative,

d XL >0 (4.20)
and x(T) is the local miﬂimum. Hence the proof of the theo-
rem,

It is interesting'to note that the important relation-
ship between k and 1 /|| x(T) || for cencave surfaces is con-
firmed by Equation 3.72 for the composite error function ES;
In this case the requirement on k for mqnotonicity of the
error functien is the same as that for the existenoe of a
local optimum on a conocave surface (part ¢ of Theorem 4,1),

Since the objeot of this chapter is to eventially
adapt LOP-CM to the global problem, consider the results of
Theorem 4,1 as they apply to LOP-CM, First of all, it is
evident that any minimum of cos y must be verified if even
one of the principal curvatures is positive, In this event
one of the alternatives suggested by Theorem 4,1 applies,
Thus, consider the following decision scheme for computa-

tion based on these alternatives:
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1) If Equation 4,6 applies, the apparent optimum
must be a "false" optimum, 8Switching to
E,(po) = || x(T) || effectively overcomes this
d}ff?culty. Note that this oircumstance is
improbable since the nature of LOP-CM, par-
ticularly the method of choosing &x, contra-
dicts Equation 4,7, The chance of an arbi-
trary trajector, x0(.) yielding this special
case is likewise remote. ‘

2) If Equation 4.8 applies, the optimum is not
unique, but computationally x(T) is one of
the (infinite number of) local optima,

3) 1If Equation 4,10 applies, then no computational
change need be made since x(T) is the local
optimum,

It is appropriate to make an observation at this point,
Considering the fact that a convex reachable set resulis
from a linear system and considering the very nature of the
optimization problem with 0 ¢ R(T), it is reasonable to ex-
pect that the global optimum usually lies on a convex, or
at worst, a mixed (saddle-point) surface. Thus if an ini-
tial guess for P, yields a boundary point where Equation
k.6 applies, a major change or jump in the initial costate
might be most effeot:lve rather than a routine application
of LOP-CM,

In the discussion given above and in Chapter 3 only
convex or concave surfaces have been considered., The re-
sults, however, apply to mixed surfaces which are neither
concave nor convex, For example, if Equation 4,10 holds
(which allows the possibility of negative principal ocur-
vatures) then it is quite possible that the optimum lies

on a mixed region, For such a region, examination of
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Equations 3,66 and 3.72 indicates that if a choice of path
is available, based on the value ef curvature, then the
principal curve corresponding to the minimum value for k
should be chosen., Since the actual computational method
of perturbation from iteration to iteration is based on.the
8x's, the value of k only enters in the computation of &p.

4,2 Special Problem 2: Flats and Coerners

In the application of many reachable set-oriented com-
putational methods, two surface characteristics are partioc-
ularly troublesome, These are the flat, for which one out-
ward normal corresponds to more than oho adjacent boundary
point, and the corner, for which a unique normal plane is
not defined to the surface at that point. These are illus-
trated in Figure 4,2, The nermal plane to a flat is said
to be nonregular and the corner is termed a nonregular

point,
Po(Pp Bt corner)
: : >\pf (pp at flat)
L
a. Flat enly b, Corner only c. Flat and Corners

FIGURE 4,2 Flats and Corners on Surfaces
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Consider first the flat, In many computational meth-
ods which determine centact points [BZ] corresponding to a
specific p(T), sets such as that shown in Figure k,2a and
4,20 are especially difficult to handle siﬁoe many boundary
points correspoyd to the outward normal Pge In Section 2.7
it was indicated that the flats result from singular con-
trols in linear systems, For nonlinear systems, however,
flats may occur even though the problem is nonsingular, If
the flat is not the result of singular contrels, then it
does not present special problems for the computational
method introduced in Section 3,7. Although the direction
of p(T) is constant for a region on OR(T) (i.e., k is zero),
there is a change in the final state cerresponding to a
change in the initial adjoint, hence any of the previously
introduced error functions differentiate between boundary
points even though the outward normals are the same,

If the flat results from a singular control, then one
initial adjoint corresponds to all of the points on the
flat, Thus if only the maximal values of the control are
assigned at singular points, only the boundary points of
the flat are determined, resulting in the singularity gap
mentioned in Section 2,7, This gap is only significant if
the global optimum is on the flat, In the event thut this
optimm is the only optimum, then the failure of LOP-CM to
converge would identify this special case., If, on the
other hand, ether eptima exist, then a glebal technique
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would incerrectly identify one of these optima as the glebal
optimum, The possibility of such an occurrence is slight
but must be considered.

Short of restricting LOP-CM and its global modifica:
tion only to normal problems, there is an additional alter-
native which can be taken., Any minima (but not optima)
located by a global procedure would have to be carefully
examined to verify that they are not boundary points of a
flat, and that ||xT|| for these points is not, in fact,
less th&nllell for the supposedly global optimum, While
this approach does not guarantee the identification of a
global optimum on a flat, it does reduce the already small
possibility that such an optimum is overleoked.

One final observation should be made., For linear
systems the adjoint equation is fixed regardless of the
state trajectory; thus to each Po there corresponds one
Py even though the state trajectories may vary (due to
singularities), This, of course, results in a flat on
OR(T). For nonlinear systems, however, the adjeint equa-
tion is dependent on the state trajectory, thus an initial
adjoint which results in singular controls usually would
produce differing final adjoints since the state trajec-
tories vary, While no conclusion can be drawn, this would
seem to indicate that flats caused by singular centrels
are less likely feor nenlinear éiste-s than fer linear

systems,
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The secend special ocase te censider is the cerner,
Whereas the flat spet results frem a beundary section fer
which p(T) is censtant in directien, a cerner results frem
a boundary point which is constant for a number ef final
adjoints (hence initial adjoints). In this event no par-
ticular computational difficulty is introduood for LOP-CM
if any of the error functiens including the ces y facter
are used, Since the final adjeints vary, the error func-
tion changes even though the final state dees not change.
Nete that the effective curvature in this ocase is infinite,
thus indicating a perturbation in p(T) but no coerrespending
perturbation in x(T).

4.3 Special Problem 3: Extiremum but Not Local Optimum

If error function E; = || x(T) || is used, any minimum of
the error function must also indicate a local optimum, For
the other error functions, however, a minimum may be ob-
tained but may not be the optimum value. For instance,
ces Yy may reach a minimum but not the optimum value of -1,
This possibility is illustrated in Figure: 4.3, While LOP-DS
or LOP-CM may converge te such & point, ne particular gem-
putational proeblem would result since any global procedure
excludes the choice of such an extremum as the global opti-
mum, In the event that convergence to such an extremum is

to be prevented, El(Pe) is utilized.
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or{gin

x(T) = extremum of E; but not a
local eptimum; in fact cosy-
is greater than -1,

FIGURE 4,3 Extremum but Not a Local Optimum for Cos y

4,4 Special Problem 4: Internal Boundaries

Consider the complement of R(T):
Q(T) =[ xeE™*: x ¢ R(T) ]. (4.21)
Usually Q(T) is connected; ﬁowever, a situation as shown
in Figure 4.4c is certainly possible., Designate the por-
tion of Q(T) which contains the origin as QO(T) and index
the remaining disjoint subsets of Q(T) as Qi(T), i=l,00¢,k,
IEFINITION 4,4 The i*® internal boundary, J,R(T), of

R(T) is the subset of OR(T) defined by
O;R(T) = IR(TINIF, (T). (4.22)
Severa1~obéervations can be made concerning Ql of
Figure 4.4c. Because of Theorem 2.5, it is known that any
x e Oln('r) was a boundary point for all reachable sets R(t),
t < T3 thus one can assume that tha reachable set shown in
Figure 4.bc evolved in a manner similar to that illustrated

in Figures U4.,4a and 4,40,
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4e

origin origin origin
8o t =% <ty <T b, t=1t,<T c. t =T

FIGURE 4,4 Development of an Internal Boundar

The global optimum (or optima, if not unique) must lie
on OyR(T):

THEOREM 4,2 Let R(T) be a compact set for which Q(T)
is not connected. Let QO(T) be the connected subset of Q(T)
which contains the origin., Then any global optimum belongs
to O R(T).
Proof: Let x* e BR(T) be a global optimum, Assume that
x* e O;R(T), j # 0. Thus e q,(T), § # 0. But the ori-
gin belongs to QO(T), thus there is no path lying entirely
in Q j(T) from x* to the origin. Consider the line from
x* to the origin. Since for any i # j, Qi(T) and Qj('l‘) are
disjoint, part of the line must lie in R(T). But this con-
tradicts the assumption that x* is a global optimum, hence
x* ¢ ajR(T)v, i # 0. The only portion of R(T) remaining is
c)oR(T) and since x* e JR(T), x* ¢ c)on('r); hence the proof.
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Note that the theorem is preven for a global optimum,
x*. @ local optimum may lie on an internal boundary (See
Figure 4.5) and thus may be determined by LOP-CM. Although
a means of identifying such an optimum is available (i.e.,
examination of the 1ine segment from xt to the origin),
such an approach is not necessary since a glebal technique
cannot select such loocal optima as globel optima, Thus, no
specialized algorithm is given to differentiate these local

optima from other local optima.

4,5 Special Problem 5: False Boundary Points

As has previously been indicated, all extremal con-
trols are maximal centrols but the converse does not hold.

As a result, "false boundary points®™ (fbp) are generated.

[
origin

FIGURE 4.5 A Local Optimum on an Internal Boundary
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DEFINITION h;i A false boundary poeint is a maximal
endpoint which is not extremal (i.e., x ¢ OR(T) ).

It can be seen that the situation depicted in Figure 4.4
can result in false boundary points., The evolution of the
reachable set is such that the points lying on the line
F(T) in Figure 4. 4c are false boundary points.

Since LOP-CM utilizes maximal controls with the an-
ticipated result that x(T) e bR(T), false boundary points
could cause computational difficulties., If LOP-CM were re-
quired to cenverge only to true (i.e., not fbp's) lecal
optima, some specialized technique would be needed to iden-
tify and treat the case of false boundary points., Such a
method could be based on the following faocts:

1) Each fbp (e.g., x e F(T) in Figure 4.4c) previous-
ly existed as a boundary point for seme tl <T,

2) At some time t,, for each x, e F(T), the state-
costate pairs (xi(tl),pi(tl)) and (xi(tl)”pi(tl))
represent true boundary points,

3) For each x e F(T) there exists a y, y = ox, O<o<1,
which is a boundary point of R(T)., An illustra~
tion of this is given in Figure L.l4c, points x,
and Yy

In as much as the ultimate objective is the determina-
tion of the globel optimum, specialized techniques are not
needed. Although LOP-CM might converge te a false boundary
point, any global optimum procedure would not choose this
false boundary point as &an x*‘Sinoe it is not a local opti-

mum and certainly not a global optimum,
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h,6 ecial Problem 6: Origin Interior to R(T

All of the discussion to this point has assumed that
the origin is exterior to the reachable set. On the other
hand, the system definition is general and since little is
known, prior to computation, of the reachable set, it is
quite possible that 0 ¢ R(T), Some effective means of
testing this possibility is desirable, This is especially
true in the case of origin-seeking, time optimal centrols
where the optimum is attained when the origin first belongs
to the boundary of the reachable set,

For many reachable sets, an interior erigin weuld
readily be identified since boundary points satisfying
minimum distance censiderations would have +1 as the value
for cos y (See Figure 4,6a), Other possibilities, however,
can ocour, such as that illustrated in Figure 4,6b, in
which local optime z) or z, would give no indication that
the origin belongs to R(T). While specialized techniques
can be developed to test each local optimum to see if
0 ¢ R(T), these are not necessary in a glebal technique.

In fact, if the closest point to the origin has been deter-
mined, then it is simply necessary to test that point te
ascertain if cos y is positive or negative, If it is -1,
the optimum has been determined, if not, the origin must
belong to R(T)., This result is presented in the following

theorem,



96

B, b.

FIGURE 4,6 Reachable Sets with Interior Origins

THEOREM 4,3 Let R(T) be a compact set in E", Let
x*(’l‘). be a global boundary optimum, i.e.
||x*('1‘) | € l¥(T)|| for any y e OR(T), (4.23)
with corresponding outward normal p*(T). Then x*(T) is the
optimum for MP if
<x (1) ,p (1) > = -1, (4. 24)

<x (1) ,p (T)> = +1, (4.25)
then x*(T) is not the optimum for MP and 0 e R(T).
Proof: Consider the first part of the theorem., Since
x*(T) is the global boundary optimum, it must only be shown
that 0 ¢ R(T) to establish that x*(T) is the global optimum,
Since Equation 4,24 holds, x (T) and p*(T) must be collinear
but oppositely directed. Let L(x*(T),O)‘ denote the line
segment from x"(T) to the origin, Since the final adjoint,
p*(T), is directed outward frem R(T) (i.e., from x*(T) )

along L(x*(T),0), points on L near x*(T) must lie exterior
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to R(T). If this line were to intersect R(T) then it would
include at'least one point on OR(T), closer to the origin
than x*(T). Since this contradicés Equation 4.23, the ori-
gin must be external to R(T) and thus the global boundary
optimum x*(T) is the optimum for MP,

Now consider the second part of the theorem, If Equa-
tion 4,25 holds true, then x*(T) and p*(T) must be cellinear
and similarly directed. Since p*(T) is outward to the .
reachable set, points on the line L(x*(T),0) near x'(T)
must lie in R(T). Thus the origin must lie internal te
R(T) or the line L(x*(T),0) would intersect OR(T). If the
latter were the case, then Equation 4.23 would be contra-
dicted, thus the origin must belong to the reachable set.
Hence there is a trajectory endpoint (namely x(T) = 0)
which is closer to the origin than x*(T); hence x*(T) is

not the optimum for MP,

4.7 The Global Optimum

In the previous sections, special preblems have been
suggested as possible difficulties in determining an opti-
mum, Careful consideration, however, has demonstrated that
these special problems are really part of the global prob-
lem, In as much as an explicit equation is not available
for OR(T), the global problem is very difficult, especially
for high order, nonlinear systems.

Several possible approaches can be taken to extend

LOP-CM to determination of global optima, Once a local
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optimum, x*, has been located, then the global eptimum must
be located within a hypersphere of radiws[lx&ll. One meth-
od of determining a global eptimum would thus be to inves-
tigate all possible final states within this radius,

Since extremal endpoints, and thus global eptima, are
associated with initial adjoints (assuming normality), an-
other approach is to consider the set of all pessible ini-
tial adjoints., Since only the magnitude of the adjoint
(hence initial adjoint--see Equation 3.37) is important:

max <cp ,f> = max <p , £ >, o<ocE1, (4.26)
ueU ueU

a search on a hypersphere in ET of arbitrary radius, would
likewise locate global optima.

The second approach is chosen here since it involves a
search on a hypersphere in E™ rather than a search within a
hypersphere in E”. Thus a sequence of random initial ad-
joints of censtant norm is generated and LOP-CM is used
to converge to a local optimum corresponding to each ran-
dom initial adjoint., The resulting set of local optimsa
with associated starting initial adjoints is then examined
and the global optimum (or optima) is identified. Since
it is not feasible to exhaustively search all possibili=
ties, the degree of confidence in the solution to the glob-
al problem is directly related to the amount of time which
one is willing to allocate to the computation,

The approach presented above is summarized in the fol-

lowing procedure:
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GLOBAL OPTIMUM PROCEDURE (GOP)

1, Select a sequence of randem starting initial
adjoints, N terms in the sequence.

2. Utilize LOP-CM fer each starting initial adjeint.

3. Cempare all lecal eptima thus ebtained (ix*, .
i =1,ec¢,N, Let the global eptimum (eptima)
be chosen such that

="l = min | ). (4.27)

Examples ef the applicatien ef this precedure are given in
the next chapter.

4,8 Applicatien ef GOP te Time Optimal Contrel Problems

In the previeus sectien an algerithm is given to de-
termine the glebal eptimum for MP (i.e. selve the minimum
distance preblem), It is the purpose ef this sectien to
apply this methed to the determination of the erigin seek-
ing time eptimal contrel. This problem can be stated as
follows:

PROBLEM 4,1 Gjven: the system (Equation 2,19), the
class F of admissible centrel functiens, and the perform-
ance functional

JI(T) =T = t.3. (4.28)
Find a control fumction u*(.) in F which minimizes J(T)
while satisfying Equation 2,19 and the final condition
x(T) = 0,

Since GOP determines the clesest point te the origin
on JR(T) for a specified time T, it is apparent that a
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series of iterations, allowing t to inorementally inocrease
at each iteratien, weuld be one appreach for solving the
time optimal centrel problem [F1,B1]. An optimal contrel
exists if there is a control which results in a trajectory
terminating at the origin., If R(t) is cempact and centin-
uous (Theorem 2.4) the centrol is an extremal contrel and
the optimal time t* (time at which the origin first belongs
to R(T) ) can be determined and cerresponds to the time at
which the origin first belongs to OR(T), i.e., OR(t*).

Thus consider the following time optimal contrel alge-

rithm which includes several alternative choices:

TIME OPTIMUM PROCEDURE (TOP)

1., Let To = 1,35 choose an initial GTO. Pick an
arbitrary initial costate pJ. Let i = 1 and
™l = 70 4+ ¢70,

2., Make an initial iteration using LOP-DS, LOP-CM

or GOP. to determine an initial optimum lx(T!),
1§ ¢ 1x('l‘l) s 0, the problem is selved. If

0 e R(Tl), then decrease 8TO and repeat.
Otherwise proceed to step 3.

3. Increment time, Ti*l = 71 4+ sl  where 81! may

be constant er may be a variable dependent on

4, Starting at an arbitrary initial cestate, at the
ith-optimum 1p; (optimum initial costate fer the
previous time iteration) or an initial cestate
determined in some other manner, use LOP-DS,
LOP-CM or GOP to determine 1tlyx(Ti+l), 6 1f

i+1x(7i+l) 0, the problem is solved. If
0 ¢ R(Ti*l) then decrease 8Tl and repeat. Other-

wise, let i = i+l and repeat steps 3 and 4,
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Examination of the abeve algoerithm demenstrates a num-
ber of possible alternatives within TOP:

1) Step 2--Cheice of LOP-DS, LOP-CM er GOP to
determine the initial optimum lx(Tl),

2) Step 3--Method of choosing sTi;
a) oT! = h, a constant, or
b) 6Tl = gome functien of E, the error functien.

3) Step UY—=Method ef selecting the i+18t gtarting
initial. costate:

a) Choose an arbitrary initial costate, or
b) Choose the preceding optimal initial -
costate, ipg,

4) Step 4~—Cheice of LOP-DS, LOP-CM or GOP for
determining the i+18%t eptima, -1 >. 0,

Consider the alternatives given above. As was the
case for GOP, there is a tradeoff between the reliability
of the method and the amount of allowable cemputatienal
time, If GOP is utilized at each time increment and if
the time inorements are made sufficiently small, then there
is cenfidence in the cheice of t*. On the other hand, to
be realistic, some compromise in computations must be made.
Fer example, GOP may just be utilized at the initial itera-
tion and as a check of the final result.

In as much as the step size alternatives (astep 3) are
not difficult te implement, the choice sheuld be based
entiyely on the effectiveness of the two alternatives, Fer
the alternative given in 3), it is logical te use prier

information, rather than starting with an arbitrary initial
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ocostate, In fact, if 8Ti is kept reasenably small, the new
optimum initial costate 1*1p: my be very close te 'pg, in-
dicating that LOP-DS is a good candidate for use in alter-
native 4),

Caution, however, must be exercised in attempting te
reduce the computation time, Even though a 'l‘:l has been
determined for which 0 e OR(TJ) and even theugh 0 ¢ R(Ti-1),
it is possible that there existed a TK < Td for which
0 e OR(TK),. If the step size were teo large or if an in-
correct, lecal optimum was considered the global eptimum
at each time increment, then this situation could eccur.

One final observation should be made. The successive
values of final states at each iteration, 1x(T1) de net
necessarily approach the erigin menetonically., It is quite
possible that an optimum final state Jx(TJ) has the prop-
erty that

[] Ix(13) (] > || I-1x(T3-1) ||, (4.29)
even though the sequence of ;x(Ti)'s converges te O,

Examples of this as well as ether aspects ef TOP are given
in the following chapter.



CHAPTER 5
COMPUTATIONAL RESULTS AND CONCLUSIONS

In the preceding chapters, general preblems, metheds
and alternative cheices have been given which can effec-
tively be evaluated utilizing computational results. It is
the purpese of this chapter to provide these results and to
form conclusions based on the data ebtained,

Specifically, example systems are detailed and dis-
cussed in the first section, These systems are then used
as examples in the remaining sections of the chapter,

These computational examples are introduced with several
purposes in mind:

1) To give insight into the nature of the problems,

2) To present the resulting reachable sets and give
example extremal trajectories,

3) To use these examples in comparing the various
computational alternatives previously intreduced.

4) To demonstrate that the previously introduced
algorithms are effective in computing optima,

In particular, the author feels, based on personal experi-
ence, that example nonlinear problems with resulting reach-
able sets should be given for the benefit of ethers wishing
to consider this type of problem,

As the computational results are presented and analy-
zed, comparisons are made and coenclusions are drawn, These
conclusions are listed in the various sections of this

chapter and are summarized in the final section,

103
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5.1 Example Systems

In this section several example systems are intro-
duced. For each of these systems, a differential equa-
tion is given, state and costate equations are introduced
and maximal control is considered. For simplicity, these

results are presented in outline form,

EXAMPLE SYSTEM #1 (ES-1

a. Differential Equation

2 | ‘
__é_).dd: 8- - Lo1 [x(t) [x(+)] 1+ .20 % ()] (5.1)

b, State Equations ( x = Xy )

% (5.2)
i2 -.1[ x, | .1x,

c. Hamiltonian |
H = .1p;x5- .1ps| x; | xl + .1p,x,u , (5.3)
d. Adjoint System )

ﬁl 0 .2|x
° = (Scu)
p2 -.1 . -.111
e, Control
i. Restraint Set: [u| <1
ii, Maximal Switching:

u = sgn (.1x,p,) = sgn (x;p,) (5.5)

f. An analog diagram for this system is given in
Appendix A,
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EXAMPLE SYSTEM $2 (ES-2)

a. Differential Equation:

3 2 du
dx _ _,4dx dx)2 2
" Tt @ttty (5.6

This system equation was derived frem a well-
known equation of fluid dynamiocs known as
Schlichting's Equation (Equatien 5.6 becomes
Schlichting's Equation if u, =1 and =0),

In general, equations of this type represent
fluid flow across surfaces, With the addition
of u;, flow across a wedge is indicated.

[x3,81].
b. State Equations (x; = x)

3] o 1 ol [=] [o o
iz = 0 0 1 xz + 0 1 ul (507)
u
o 2
Bl s o [s] [
ce Hamiltonian
2. :
H=Pp) X, + PyXq + PoUy = P3X3X) + PqX; + Pauy (5.8)
d. Adjoint System
f,]. 0 0 13 pl A
Pl = |- o -2x,| |p, (5.9)
) 0 -1 x )
_3_ . ' ]:_ _3_

e, Control

i, Restraint Set: [u;| 51, 1=1,2

ii, Maximal Control:

[u] = [1’2] (5010)
P3



106

EXAMPLE SYSTEM ES- age
a., Differential Equation (fer the system shown in
Figure 5.1)
3 2
d’'x. d'x 2 dx
dt5 dt®™ at ' ‘
b. State Equations (xcxl )
—;-1 e e P-T e
xy 0 1 0 xl 0
iz =|0 02 1 x| + |0]| u (5.12)
x 0 -x, -1 1
c. Hamiltenian
2
H = x,p; + 30, = X)X;P5 — X3P3 + UP3 (5.13)
d., Adjoint System
Py 0 0 2x,| | Py
b, = [-1 o £ | |p (5514)
P o -1 1 P
[ 3_ - d L ?_

e. Control
i, Restraint Set: [u| S 1
ii, Maximal Control:

u = sgn (p3) (5.15)
u(t) 1
+ / 8¢ (8 + 1) >x(1)
dax(t
xz(t) 1‘_)' Nonl:ln-it)
earity

FIGURE 5,1 Example System $2--3rd Order, Nenlinear
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EXAMPLE SYSTEM #4 (Es-U4) K3, page 296]
Differential Equatien

a.

b 3
d'x(t a’x(t -
Lxft) - 2 £XL) - g[x(1)] + ult) 5.16)
- 2 )2+ L x(t)*
glx(t)] = -3x(t) - 5 x(£)"+ 559 X(t) (5.17)
b, State Equations: (xle )
_xﬂ o 1 o O] 'il_ (0 |
X, 0 o 1 0]|x 0
) 221 x% o O 1 |+ |y (5.18)
iu §+-E*-73-5 0 0 -2 x,tj u,
c._ —Ilamii—tonian - — -

2 .2 1 k4
H = pyX, + PpXy +P3X, + dp4%) +TRPYT] - S3gPu%)

- ZIupu + puul + P3u2 (5. 19)
d. Adjoint System —
By 0o o0 o -5.34-37% P,
o) -1 0 O 0 P
2l - 2 (5.20)
p3 0 -1 0 0 p3
p 0 o0 -1 2 p
i N
e, Contrel .
i. BRestraint Set: |u;| <1, [u| S 1.
ii, Maximal Centrol:
u sgn p
1. 4 (5.21)
u, 8gn pq
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52 An Introduction to Computational Examples

The computations summarized in the following sections
were performed in the Hybrid Simulation and Control Labora-
tory at Michigan State University. In this lab an IBM-1800
digital computer and an AD-U4 analog computer are linked to-
gether, thus allowing digital control of analog operation
and also hybrid computation.,

In all computational examples in this thesis, the dig-
ital computer was used to provide overall control (direct
the optimization routines, implement alternative compari-
sons, etc.) and to input/output data., Depending on the
example, either the analog or the digital computer was used
to integrate the state and costate equations at each itera- .
tion., While the capability exists, the digital was not
used in on~line integration linkage (i.e., true hybrid op-
eration) with the analog computer.

The digital integrations were performed using a 4th
order Runge-Kutta method, While this method is relatively
slow on the IBM-1800, it is reasonably accurate. It is
presumed that the most significant source of inaccuracies
is introduced through the control, which in all example
systems is only piecewise continuous (signum function con-
trol--signum switching). To partially overcome this dif-
ficulty, whenever a discontinuity in any component of the
control ococurs, the integrati;n step size is reduced by a
factor of ten for the interval containing the control dis-

continuity.
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The analog computer, on the other hand, is generally
faster for equivalent accuracy. Its accuracy, however,
cannot readily be improved by reducing step size, as is the
case for the digital computer., It also has the tendency to
be less consistent. This is especially apparent in the
forward-reverse time integrations as is indicated in Seo-
tion 3.6.2.

Example computer programs and subroutines are given
in Appendix B, It should be noted that these programs are
more complex than the basic algorithms because capabilities
(data and sense switch options) for quick alternative com-
parisons are included.

Most of the alternative method comparisons were made
using ES-1 and ES-2 for various reachable sets. This is
possible since the nature of the reachable set significant-
ly changes, for a given system, with changes in initial
state, initial time and final time., For ES-1 the analog-
digital computer combinmation was utilized., Otherwise, to-
tal digital methods were employed.

The comparisons are given in two sections, The first
contains comparisons for the various algorithm alternatives.
The second presents example optimization problems and in-
cludes example trajectories, reachable sets and comparisons
with a totally direct search method. As previously men-
tioned, conclusions are included within these sections and

are clearly identified.
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5.3 Computational Comparisons of Algorithm Alternatives

In Chapter 3, algorithms have been presented which
include alternative choices and suhalgorithma; Although
theoretical considerations indicate, in most instances,
which alternatives are best, it is the purpose of this
section to substantiate (or refute) these choices on the
basis of actual computational results.

For each comparison, only one change or alternative
is evaluated. Taking a specified group of reachable sets,
LOP-CM is started at an arbitrary (but fixed) p, and the
number of iterations required for convergence is measured
for the first of the two alternatives., Then the second
alternative is incorporated inte LOP-CM and again the spec-
ified reachable sets and po's are used., A comparison of
the average number of iterations required for the two al-
ternatives or of the average percent decrease in the error
function per iteration for each method gives an estimate
of their relative value.

All results are identified by the alternatives to be
compared and the basis on which the comparisons are made,
These results are presented in semi-outline form and are
arranged in an order corresponding to the discussidn of the
alternatives in Chapter 3., It is only possible to present
a summary of the computational work and example results.
In most cases, data, other than that listed, also confirm

the results presented.
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5.3.1 Study of Perturbation Relationships——Final Time
In this section, comparisons are made of some of the

possibilities introduced in Section 3.6.1 (See Figure 3.2).
Specifiocally, the relativé efféctiveness of a joint per-
turbation (both Xy and pT) versus a single perturbation (xT
and py) is considered.

a, Joint Perturbation (ET and,pT via Equation 2;28
¥s x, perturbation only.

i, Comparison Bagis: ES-1, Analog Integration,

t, = 0, T = 20 secs., Input Data Set 1 (See Appendix C).

ii, Illustrative Example: In Figure 5.2 the
reachable set for x, = (5,-5)T is given. On this set the
sequence of final s%ates generated for each approach of
this comparison are given (joint--pD, xp only— o).

iii, Summary of Cogsarison Results: The average
number of iterations require o attaln a local optimum
were compared for the joint perturbation and for the per-
turbation of xy only. The joint perturbation approach re-
quired an average of 4.7 iterations whereas perturbing X
only resulted in an average of 6.0 iterations,

iv. CONCLUSION: The joint perturbation approach
is more effective than an x7 only perturbation approach.

b, Joint Perturbation VS p, perturbation only.

i, Comparison Bagsis: ES-1, Analog Integration,
to = 0, T = 20 secs., Input Data Set 1; ES-2, Digital In-
tegration, t, = 0, T = .5 sec., Input Data Set 3.

ii, Summary of Cogsarison Results: The average
number of iterations required to attain a local optimum for
the joint perturbation was 8.1, for perturbation of Py only,
8.5. Another means of comparison is the average percéent
improvement for each curvature move (perturbation of xp and
pT). On this basis, a joint perturbation yielded an aver-
age 56% improvement while the Pp only approach gave an
average 51% improvement.

iii, CONCLUSION: The joint perturbation approach
is slightly better than a Pp only approach,
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X2

R(20) for
x,= (5,-5)7

R(20) fo
x0= (5,"5)

O indicates jeint
perturbatjons
oindicates xypjonl

perturbatjion 6
numbered |
| =
751
513 2
S |

FIGURE 5.2 Joint VS Single (Xp only ) R(T) Perturbations
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Cc. GENERAL CONCLUSIONS: On the basis of the two com-
parisons made above, it can be concluded that the perturba-
tion of the final adjoint has the most significant effect
in improving the error function. The improvement due to
perturbations in the final state are probably diminished
due to the fact that slightly inaccurate perturbations in
X result in perturbed points lying off the boundary of the
reachable set. In either case the joint perturbation ap-

proach is the most effective.

5.3.2 Comparison of Curvature Values

In Chapter 3 several alternative means of estimating
curvature are given, It is the purpose of this section to
compare these means and the resulting curvature values, In
as much as the estimates of the curvature are obtained by
perturbing the final state-final costate pair, one can ex-
rect that small errors in the determination of the final
state and final costate can introduce significant errors in
curvature determination. Because of this, the analog and
digital means of integration are analyzed separately since
significant inconsistencies do result from analog computation,

a., Comparison of Curvature Values as Determined on

the Analog Computer (using Equations 3,120, 3.121
and 3.123 o

i, Comparison Basis: ES-1, t,=0, T=20 secs.,
Input Data Set l-isee Appendix C),

ii, Illustrative Example: In Figure 5.3 the
reachable set corresponding to T=20 and x, = (-5,0)T is
given, Curvature values for several extreﬂal endpoints in
an iteration sequence are given,
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0 1 2 /3 4

S |

24k -.37 (cohvex)
3 pk ~ =150 (convex)

&

0 fconvex)

i indicates iteration
number,

f R(20) for
xog(_5’o)T

-7 1 Z k » ,0036 {concave) . /

FIGURE 5,3 Example Curvature Values in an Iteration Sequence
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iii. 8 of Comparison Results: In as much as
ES-1 is a second order system, the boundary of the reach~
able set ig a line of curvature. If the perturbations of

and pp are sufficiently small and if no computational
inaccuracies are encountered, all estimates of curvature as
defined in Section 3.6.1 should coincide. This is not,
however, the case for higher order systems as the perturbed
final state may not be on a line of curvature through the
original final state.

Comparison results are given in Table 5.1. There is
reasonable correspondence between k and except for in-
put data numbers 2, 6, 10 and 11, Since 8.1 is a second
order system, these inaccuracies must result from too large
of perturbations or from integration inaccuracies in the
analog computer, It is interesting to note that in these
four cases, §1 and k, have opposite signs, indicating that
the estimate 0f k is not accurate., Several methods of cor-
relating the various curvature estimates are available,

One is the standard deviation of the k;'s (denoted o(k)),
another the standard deviation of &k qgé.ia (denoted
c(’E,Eﬂ ) and a third, the ratio of o(k) and the average
of | 11 (denoted op,). The importance of these various
comparisons are discussed further in comparison 5.3.2.d
of this section.

iv. CONCLUSIONS: Experimental curvature esti-
mates agree with those expected from reachable set geometry.
Perhaps the best measure of the accuracy of the curvature
determination (also the measure of whether or not the per-
turbation is on a line of curvature, for greater than sec-
ond order systems) is g, = a(k)/|k v 1f this value is
too large, then the pergurbation (}o? determining curvature)
is too large, computational inaccuracies have resulted
and/or the perturbation is not along a line of curvature,

b. Comparison of Curvature Values as Determined on

the Digital Computer (using Equations 3.120, 3,121
and 3,123) for a Second Order System,

i. Comparison Basis: ES-1, t,=0, T=20 sec.,
Input Data Set 1 ESee Appendix C).

ii, Illustrative Example: In Figure 5.4, the
reachable set corresponding to X, = (-10,-5)T is given.
Curvature values for several extremal endpoints are in-
dicated on the boundary.

iii, Summary of Comparison Results: 1In Table 5,2
estimates of curvature are given, It is readily apparent
that there is good agreement between these estimates,
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TABLE 5.1 Comparison of Various Analog Estimates of Curvature

BT S L E o® oLy o

1 .3630 .1217  ..2423 .2175 .1206 ,0124 4977

2 ,0809 -,1111  =,0157 1.2311  ,0966  ,6234 1,0000
4 -,0185 -,0159 -.0172 ,0123 ,0013 ,0148 ,0756
5 JA437 1342 ,1389 ,.1390 .0045 ,0001 .0338
6  -.2101 ,0870 -,0616 2.2419 1486 1.1518 1,0000
7 .0799 ,0975  ,0887 ,0821 ,0088 ,0033 .0992
8  -.0256 -.0552 -,04ol4 -.,1670 ,0148  ,0633 .3663
9 .0563 .0520  .0542 ,0455 ,0022 ,o0044 0406
10 _.5015 -,6657 -,0371 1,0449 ,6286 .5410 1.0000
11  -,0048 L0141 o046 ,1248 ,0095 ,0647 1,0000
12 .2186 .1984  ,2085 .2096 ,0101 ,0005 ,04B9
13 .0650 .0538  .0594% ,0921 ,0056 .0163 ,0943
14 -,0168 -.0159 -,0164 .0358 ,0005 .0261 ,0305

15 L0164 ,0124 L0144 .0490 .0020 ,0158 ,1389

*

determined for Data Set 1 (See Appendix C). No data was
obtained for #3 since the initial guess of p_ ~ was
approximately the optimum; hence no ourvatur8 estimates
were calculated,
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FIGURE 5.4.Example Curvature Values for R(20), x,=(~10,-5)T
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TABLE 5.2 Digital Estimates of Curvature for a 2nd-Order System

gt B Ey E 0B o(ELy) on
1 1544 1534 «1539 1541 ,0005 .0001 . 0033
-.7205 -,7126 -.7166 -,7117 ,.0039 .0025 .0055

0002 .0002 »0002 0041 ,0000 0020 0020

2
L
5 1559  .1562 .1561 .1557 .0002 ,0003 ,0010
7
8
9

.0195 .0195 .0195  ,0214 ,0000 .0010 ,0009
.0685 .0687 ,0686 ,0670 ,0001 ,0008 .0016
.0868 ,0865 ,0866 ,0846 ,0001 ,0010 0018

10 -.,0292 -,0293 -,0292 -,0301 ,0001 .0005 .0020
11 -.2u40 -,2414 -,2427 -,2462 ,0013 .0018 .0055
12 .0697 .0695 .0696 .0690 ,0001 .0003 .0013
14 .0043 .0043 .0043 .0086 ,0000 . 0022 .0009
15 -.0019 -,0019 -,0019 -,0023 ,0000 .0002 .0051

*determined for Data Set 1 (See Appendix C). Data numbers 3,
6 and 13 are left off since the original guess was 80 near
the optimum that LOP-DS was employed rather than LOP-CM;
hence no estimates of curvature were calculated.
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iv. CONCLUSIONS: For the second order system be-
ing considered, perturbations of the digitally integrated
differential equations gave very good estimates of the cur-
vature. As expected, all variances were low; thus verify-
ing that the perturbation size was sufficiently small to
give a good estimate of curvature.

c. Comparison of Curvature Values as Determined on

the Digital Computer (using Equations 3.120, 3.121,
and 5.5235 for a Third Order System,

i, Comparison Bagis: ES-2, t,=0, T=.5 sec.,
Input Data Sets 3 and 4.

ii., Summary of Comparison Results: In Table 5.3
various estimates of curvature are given., Unlike the pre-

vious comparison, made for a second order system, most data
points have rather large variance of curvature values,

This is, of course, expected where the boundary of the
reachable set is not implicitly a line of curvature., Er-
ror function values (E2) are given at the final state be-
fore perturbation and as the result of the next itera-
tion (which is based on the estimate of curvature value),

iii., CONCLUSIONS: Since the same methods were
utilized in this example and in comparison 5.3.2.b, it is
reasonable to expect that the large variances as shown in
Table 5.3 result from perturbations which are not generally
on lines of curvature., There is no reason to believe that

these large variances result from perturbations which are
too large or from computational inaccuracies,

d. GENERAL CONCLUSIONS: Examination of the three
comparisons made in this section indicate several impor-
tant facts pertaining to curvature determination as it re-
lates to computational efficiency. First of all, compari-
sons 5.3.2.a and 5.3.2.b indicate the relative consistency
and accuracy of the digital integration approach as com-
pared to that of analog integration, Since a second order
system represents a very special case, the important con-
clusions relative to curvature determination rests on third

and higher order comparisons,
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TABLE 5.3 Digital Estimates of Curvature fora 3rd-Order system
ijth 348t

Di}lq‘l;mf =IE1 Ez EB Kav k on cosy cosy
3.,1.1 -482.6 -9.,232 -,059 -163.9 23,67 1.374 -,111 -,.962

3.102 03?5 -0253 -0026 0032 "'007 10191 -0962 -0979

3.3.1 =-,140 -1,288 -1,224 -.884 -1,513 .596 -.194 -,688

30302 "3.292 -0370 "10531 -10731 "025’" 069"" -0688 "0971

3.4.1 3.803 -2.000 -2,590 =.,262 -2,590 1,031 -,074 -.896

34,2 -2.841 -5.475 -4,328 4,215 -12,.80 0256 =,896 -,999

3.5.1 1.455 =,461 -.Zgz .097 =,899 1,106 -.561 =,797

30502 10195 -0793 -lo 6 "0361 "10512 0981 "0797 “0918

3.6.3 =.259 =.462 =3,413 71.378 -.490 1,046 -.918 -,975

307.1 —’4.633 -0597 "31023 -12.15 -u.867 10118 -.'410 -ogés

3.7.3 =7.748 e352 =4996 =2,797 8.375 1,169 -.691 -, 482

3.9.1 =4,716 -.709 457 -1,656 -,905 1,130 -.299 -,304

3.9.2 =7,.504 -1,057 .092 -2,823 -1,490 1,159 =,30 -.BEO

3.9.3 -7.001 -1,385 -,367 =2,920 -1,720 1,000 -=,350 -, 445

309. -30656 -10139 "03’40 -20378 ‘10389 098," -e 5 -0629

3.9.5 -4.,303 -,912 -,555 =1,923 -1,041 .878 -,629 -,887

3.10,1 22,413 -1,718 .837 7.177 401 1,300 -,115 ,186
h,1,1 -.389 153 =,147 -,127 -,169 0966 -,769 -,901

boa1.2 -.555 -1,371 -,506 =-.812 -,939 1491 -,901 -,976

4.2.1 -4,766 -.,463 =-.095 -1.771 -.860 1,195 —.222 —-.176

4.,4.1 10,097 -3.804 -,173 2,040 ,810 1,255 -.666 -,043

’4.6.1 -3.153 -1.’403 —.11,4 -10557 -20502 .800 -.061 ""0973

*determined for Data

Sets 3 and 4 (See Appendix C).

The

input data # indicates the data set, data point and the

iteration number for t

hﬁt point,

For example, 3.9.3

indicates Data Set 3, P, number 9 and LOP-CM iteration
number 3,
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Examination of comparison 5.3.2.¢ (third order) yields
several important conclusions. Obviously, if it were nec-
essary to aocurately identify a line of curvature, it would be
necessary to attempt several, perhaps even many, perturba-
tions., In fact, of all the perturbations represented in
Table 5.3, only several give definite indication of being
near a line of curvature (data number 3.4.2, for example).

Perhaps the single most important number given for
each data point is g,, the ratio of the standard deviation
of the curvature estimates to the average of the absolute
values of these estimates., To demonstrate the significance
of this value and to indicate its use in LOP-CM, consider
Table 5.4. In this table, the data is arranged according
to increasing magnitude of Ope Except for one data point
(3.1.1), there is a close correspondence between the value
for 9, and the percent decrease of the error funotion‘de-
noted 6y. The data point 3.1.1 which does not follow this
general observation is assumed to be an anomaly--resulting
from the extreme values taken by the curvature estimates.

The value for 0, Which seems to represent the cut-off
point (i.e., the point at which no improvement in cos y is
noted) is approximately at on = 1.2, Stated differently,
for any curvature estimate with a value of o, below 1,159,
the error function is improved in the iteration based upon

that estimate,

It would certainly be desirable to obtain a very good
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TABLE 5.4 Evaluation of the Significance of op

co8 y -gcos y

INPUT . jth i+18%
DATA $#* _9n =  cos y
3.4.2 «256  =.896  -,999
'4.1.2 .u91 -0901 _0976
3.3.1 .596 -.191’ -.688
3.3.2 694 -,688 -,971
b,6,1 .800 -.061 -.973
3.9.5 .878 -.629 -0887
1.1 966 -.769 -.901
3.5.2 .981 -e797 -.918
3.9.’4 .98’4’ —.MS -0629
3.3.3 1,000 -+350 -5
3.4.1 1.031 -.074 -.896
30603 1.0“6 "'0918 "0975
3.5.1 1.106 -.561 -e797
3.7.1 1.118 - 10 -.51
309.1 10130 -029 -03
30902 10159 -03 "'0350
30703 1.169 -0691 -.,482
301.2 10191 -.962 -0979
h,2,1 1,195 -e222 -.176
,4‘.501 10251 -0899 "0771
L4,1 1.255 -.666 -.043
’4.10.1 1.300 -.115 -.186
30101 10371’ —.111 -.962
* det

ermined for Data Sets 3 and 4 (See Appendix C).

.103
.07
49
.283

912
.158
.132
121

.184

.095
.826

.057

.857

6y ave 3,

99
.753)
613

.817
.908

641

e o o
n

NN o

~——"
.

.516

The

data number corresponds to those in Table 5,.3.

*

a(k)

g =

n ki av

* _ =8008 Yy
8 = T+ cos Y
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estimate of curvature, but there is a tradeoff between the
computational time required for obtaining that estimate
and the time required for iterating to a final state near-
er the optimum, For this reason, the factor o, is partio-
ularly useful in indicating when the curvature estimate is
close enough to use in LOP-CM,

Another observation is apparent from Tables 5.3 and
5.4. A8 the optimum is approached, the curvature estimate
generally improves. This is especially apparent in con-
sidering o, for data points 3.1, 3.4, 3.5 and 3.9,

In summary, the experimentation of this seotion indi-
cates:

1) For second order systems (where the boundary is
the line of curvature), the curvature estimates
correspond closely to that expected from reach-
able set geometry.

2) Estimates of curvature obtained by digital inte-
gration are more consistent and more accurate
than those determined by the analog computer.

3) The factor o, is a good measure of both the loca-
tion of a f? 1 state perturbation relative to a
line of curvature and the usefulness of the cur-
vature estimate,

4) Ae the optimum is approached, the curvature esti-
mate generally improves,

5.3.3 Effect of the Basic Curvature Formula Choice

In this section the effect of the basic curvature for-
mula choice (Equations 3.120, 3,121, 3.123 and 3.124) on
the rate of optimization convergence is considered. Com-
parisons were made for LOP-CM using both Subalgorithms 4
(i.e. with and without standard deviation evaluation of
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the curvature).

a, Comparison Basis: ES-1, t, = 0, T = 20 secs.,
Input Data Eets 1 and 2 (See Appendix C), ES-2, to = O

= .5 sec.,, Input Data Sets 3 and 4 (See Appendix C).

Summa, of Comparison Results: The average num-
ber of itera?%ons requgred to attain a local optimum were
compared for each of the basic curvature formulas. The
following results were obtained:

k (Equation 3,123)==—===7,7 iterations
F;vz(Equntion 3.,124)=e==?,7 iterations
ki (Equation 3,120)====<8,3 iterations

'E (Equation 3.121)-—--9.3 iterations.

In as much as and k had the same average number of
iterations, a fur%her comparison of these two estimates
was made, This comparison was based on ES-2, a third
order system, In this case the percent improvement in
the error function for each curvature move was consider-
ed, For'E the percent improvement was 27.9 while it was
43.3 for Eyyp.

c. CONCLUSIONS: If the estimates of the curvature
were accurate, the choice of basic curvature formula would
have little effect on the algorithm efficiency. In the
case of third and higher order systems, where only
approximations to lines of curvature are achieved, the
choice of basic curvature formula does alter the algo-

- rithm convergence., The data of this section indicates
that 2, the overall average of curvature estimates,
is the best choice with k being the second choice.

5,3.4, Comparison of LOP-CM Subalgorithms 4a and 4b
Within the structure of LOP-CM, two potential sub-

algorithms are introduced to determine curvature. Sub-
algorithm 4.a provides an estimate of k without consider-
ing the accuracy of the estimate. On the other hand,
Subalgorithm 4.0 éonsiders the normalized standard devi-
ation o, and rejects any estimate for which On is greater

than a specified value. In the computations of this
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section, the limit is specified as 1.2 corresponding to
the results indicated in Section 5.3.2.

a. Comparison Basis: ES-2, t, =0, T = ,5 sec., In-
put Data Set 3, '

b, Summary of Comparison Results: In as much as there
is tradeoff between computation time spent estimating cur-
vature and time spent iterating, only a maximum of n (3
for this third order. system) attempts at obtaining a suit-
able estimate of curvature are allowed. For this case,
the average number of iterations to achieve a local opti-
mum without considering ¢, was 11.0 whereas utilizing ¢

to evaluate the curvature estimate improved this averagg
number to 9.3. Consideration of the average percent
improvement in the error function per curvature move (LOP-
CM iteration), substantiates these figures. If g, is not
considered, this percent is 34.7 whereas utilizatfon of
the o, factor gives an improvement of 43.3%.

c. CONCLUSION: The data of this section indicates
that rejection of poor curvature estimates (high ¢,) im-
proves the convergence of LOP-CM, This effect woufd be
even more marked were the allowable o,, smaller and the
allowed number of attempts at obtaining a good curvature
estimate larger,.

5.3.5 Comparison of Perturbation Direction Alternatives
In step 5 of LOP-CM, three alternative equations

(3.80, 3.90 and 3.108) are listed for determining the di-

rection of the perturbation of the state at the final
time., It is the purpose of this section to present ex-
perimental results compa;ing these three choices,

a. Comparison Basis: ES-1, t, = 0, T = 20 sec.,

Input Data Sets 1 and 2; ES-2, t, = 0, T = ,5 sec., Input
Data Set 3. ‘

b. Summary of Comparison Results: The average num-
ber of iterations required to attain a local optimum for
these three alternatives were as follows:

i, Equation 3,80-- - 7,20 iterations

ii., Equation 3,108«wmecee-?7.,31 iterations
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iii, Equation 3,90=—-- 7.81 iterations,

Similar results were obtained for the average percent de-
creage in the error function for each LOP-CM iteration:
i, U42.4%, ii, 40.7% and iii. 20,9%

C. CONCLUSIONS: Very little difference was noted
between the effect on LOP-CM of using Equations 3.80 and
3.108, On the other hand, Equation 3,90 gives less sat-
isfactory results. It should be recalled that Equation
3.80 was developed for regions far from an optimum, Equa-
tion 3,90 for regions near an optimum and Equation 3,108
for general applicability. In the computations of this
section, LOP-CM was used until E. reached .1 and then
LOP-DS was employed. Had LOP-CM5been used for greater
convergence, the utility of Equation 3.108 would have
been more readily apparent,

5.3,6 Comparison of Perturbation Step Size Alternatives

In the prévious subsection, the direction of the final
state perturbation was considered. In this section, its
relative magnitude, c, is discussed. The important com-
parison to be made is that of a constant step size as com-
pared to a step size dependent upon the error of the unper-
turbed boundary point. Specifically, the two candidateé
selected are ¢ = .2 and ¢ = (1 + cos y).

a. Comparison Basis: ES-1, }, = 0, T = 20 secs, In-
put Data Sets 1 and 2 (See Appendix C); ES-2, t, = 0,
T =20 8€C,, Input mt& Set 30

b, Illustrative g%gggl%: In Figure 5.5 an example
iteration sequence 1s given for both the constant and

variable step factors.

c. Summary of Comparison Results: The average number
of iterations required to attain a local optimum for con-
stant step factor (¢ = .2) was 6.68, while the error de-
dendent factor yielded a lower average number of itera-
tions--5.92. The average percent decrease in the error
for each LOP-CM iteration gave corresponding results:
constant step factor--43,0%, error dependent step '
factor--49,1%,
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FIGURE 5.5 Comparison of Pkrturbation Step Size Alternatives

d, CONCLUSION: The error dependent step factor
(c =1 + cos y; is more satisfactory in achieving con-
vergence than the constant step factor,

2.3.7 Analog Error and the Integration Correction Routine
Section 3.6.2 pointed out that significant errors are

encountered in analog integration of the differential equa-
tions of Example Problem 1, As a consequence, correction
factors o and g are introduced in Step 8 of LOP-CM., It is
the purpose of this section to give ‘examples of these er-
rors, consider their origin and evaluate the effectiveness

of the correction factors.

a. Comparison Basis: ES-1, t, =0, T = 20 secs., In-
put Dats Set-T (See Appendix C), Both Analog and Digital

Integration.



o
e




128

b, Illustrative Examples: Figure 5.6 is given to re-
late the various state and adjoint vectors and correction
factors., In Table 5.5, examples of these various vectors
are given for both analog and digital integration, Values
of the various vectors depicted in Figure 5.6 are presented
as are error function values at the start and at the con-
clusion of the iteration,

c. Summary of Results: The computations of this sec-
tion yield several important results, First of all, con-
gsideration of the values for al and gl in Table 5.5 demon-
strates that analog computation errors are indeed important.
Furthermore, at points on R(T) far from an optimum, these
errors appear to be larger than for points near an optimum,
Two digital iterations are also presented and it is readily
apparent that the digital integration routine does not pro-
duce these large errors.

Comparison of LOP-CM with and without the use of the
error correction factors al and gi demonstrates their use-
fulness. Without the error corrections, the average number
of iterations required to determine a local optimum is 9.75
whereas the introduction of the correction factors lowered
this to 7.00, Comparison of the relative efficiency of
LOP-CM with analog integration and LOP-CM with digital
integration is given in the next section,

d. CONCLUSIONS: It is, of course, obvious that ana-
log computation ?rrors do occur and that the correction
factors ol and g1 do help compensate for these difficul-
ties., The significant item to determine is the cause of
these errors, At first the author considered the possi-
bility of incorrect patching on the analog computer or
incorrect conversion to reversed time integration, After
eliminating these as possibilities, analog-digital con-
version and digital-analog conversion were considered.
These too, do not appear to be significant since the error
is only on the order of one-half of one percent.

Further consideration indicates that the errors en-
countered are a result of the interaction between several
factors:

1) The nature of the differential equations
and the large time interval involved
in these comparisons (20 seconds).

2) The sensitivity of the trajectories to
switching time.

3) The errors created by analog equipment--
comparitors, integrators, multipliers,
electronic switches, etc.
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The first two factors multiply the effect of the er-
rors introduced by the analog equipment, Take, for exam-
ple, the state and costate trajectories plotted in Figure
5.7. While the initial and final points are not far re-
moved from one another, the trajectories traced out do by
no means represent a shortest path from the initial to the
final points., Also, four switching times occur for this
extremal trajectory even though only a second order system
is involved. Even slight differences in switching time
due to comparitor hysteresis, slight multiplier inaccura-
cies, etc., can have a significant effect on trajectory be-
havior,

5.3.8 Comparigon of Analog vs Digital Integration in LOP-CM

The previous subsection strongly indicates that the er-
rors due to inaccurate analog computation have a signifi-
cant effect on the algorithm convergence. The introduction
of the correction factors al and ai improve this conver-
gence, It is the purpose of this section to determine if
the resulting improved LOP-CM with analog integration is as
effective as a completely digital LOP-CM,

&, Comparison Basis: ES-1, t, = 0, T = 20 secs.,
Input Data Set 1,

b, Summag¥ of Results: The average number of itera-
tions require o attain a local optimum for LOP-CM with
corrected analog integration was 6,25, With digital inte-
gration, the average number was only 5.33 for the same data.
In addition, LOP-CM with analog integration failed to con-
verge in two cases because of analog inconsistencies where-
as convergence was always achieved using digital integra-
tion,

c, Illustrative E les: Two typical examples of
the convergence of LOP-CM with analog and LOP-CM with dig-
ital integration are shown in Figure 5.8.

d. CONCLUSION: TUse of digital integration in LOP-CM
is far more consistent and accurate, As a result, it con-
verges in less iterations than LOP-CM with analog integra-
tion, It has the disadvantage of requiring more digital
computer time, A judgment as to which approach is best
would depend on the equipment available, the accuracy of
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the desired results and the computation time available.
It is the author's opinion that, in gemeral, LOP-CM with
digital integration would be the better choice.

5,4 Comparison of LOP-CM with LOP-DS

In the preceding section many LOP-CM alternatives were
considered. Choice of the most suitable of these alterna-
tives yields an effective optimization algorithm; It is
the purpose of this sectioniﬁo summarize the comparisons
made between the resulting LOP-CM and LOP-DS, a direct
search algorithm, ‘

The comparisons were made for Example Systems 1 and
2, with selected data points from Appendix C, The results
of several sequences of comparisons showed an average of
4,17 iterations required to achieve each local optimum us-
ing LOP-CM., The direct search routine, LOP-DS, required
an average of 7,12, Thus LOP-CM represents a definite im-
provement over a direct sedrch routine, In Figure 5.9 an

example of their relative convergence is given,

5,5 Global Optimization Examples

All of the preceding developments and comparisons

were aimed at producing an efficient algorithm for solving
the modified problem MP., As a result of the comparisons
summarized thus far in this chapter, an efficient form of
LOP-CM is identified. Using this "optimized" LOP-CM, the
Global Optimum Procedure GOP given in Section 4.7 is now

applied to example problems, This procedure is based on
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the generation of N local minima of the error function by
starting at N arbitrary initial adjoints and utilizing
LOP-CM until a local minimum is obtained. Of course, the
probability that a glabal optimum is included in this re-
sulting group of local minima increases as the integer N
is increased.

In this section, the Global Optimum Procedure is ap-
plied to the example problems of Section 5.1. The integer
N is fixed at 10, thus ten arbitrary initial adjoints are
specified and ten minima of the error function E5 are lo-
cated. Many or all of these minima may coincide. In fact,
if only one minimum of E5 exists, i.e, the global oﬁtimum

is unique, then all ten must coincide.
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Some of the special problems discussed in Chapter 4
are encountered in the computations of this section, They
are discussed as they occur. In addition, typical itera-
tions for LOP-CM are presénted for some of the global prob-

lems considered.

5.5.1 Examples for ES-1: 2nd-Order System, Scalar Control
Example Problem 1 is particularly useful as an example

of global optimization since it was specifically developed
to produce significantly nonconvex reachable sets. The
shape of these-sets, of course, depends on the initial
state selected and on the iime interval of integration,
The effect of increasing the time interval is demonstrated
in the next section (time optimal control). In this sec-
tion the global problem is considered for several reach-
able sets for ES-1 corresponding to different initial
states, The time interval is fixed at T = 20 seconds.

The first initial state to be considered is
X, = '(-10,-5)T, The reachable set has already been shown.
in Figure 5.4. The ten resulting minima of GOP are given
in Table 5.6. Consideration of these data points shows
that GOP selects three possibilities for the global opti-
mum--data points 1, 3 and 8; data points 2, 4, 5, 7 and 9;
and data points 6 and 10. Of these, E; is minimum for data
number 1, 3 and 8., Hence they represent the global optimum

as consideration of the reachable set demonstrates.
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TABLE 5.6 Application of GOP to ES-1 with x, = (~10,-5)T

Data _xr X Epe|xq] E2 Es
1 .526  -8,268 8.284  -,9993 .0057
2 -4,104 -9.106 9.989 =+9999 .0013
3 .526  -8.268 8,284  -.9990 .0078
L -4,248  -9.039 9.987  -.9995 .0052
5 -4.104  -9.108 9,989  -.9998 .0021
6 -8.151 -2,141 8.427 -.9999 « 0009
7 -, 104 -9,108 9,989 -.9998 0022
8 .586  -8,264 8.285  -.9997 .0027
9 -4,248  -9,039 9.987  -.999% .0056
10 -8.039 -2.539 . 8,430 -.,9997 .0023

Consideration of the other two minima of E5 shows that
one is a local optimum (Data points 6 and 10) and that the
other is a false optimum as discussed in Section 4.1. Both
of these minima occur on concave surfaces. Application of
Theorem 4,1 to the first point (6 and 10) demonstrates that
it is a true local optimum. The curvature at this point is
»02; thus K, is .02 since the boundary is the line of cur-
vature, But ||xn|| is 8.4 or 1/[|xp || is .119. Thus Equa~-
tion 4,10 applies:

Koy = .02 < 119 = 1/|| xp []. (5.22)
and thus xq; is a local optimum, For data points 2, U4, 5,
7 and 9, the curvature is .22; hence K,, is also .22, But
llell is 9.99 th&s lﬂlelj is approximately .1, thus Equa-
tion 4,6 applies:
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K,, = .22 >.1= /] xq 1, (5.23)

or xp in this case is not a local optimum,

The second initial state considered for ES-1 is
x, = (5,5)T. The resulting reachable set is shown in
Figure 5.10, Whi}e this set is nonconvex, it does not
produce as interesting results as the previous example;
In this case, there is only one local optimum (located
at xp = (-2,4,.5)T) and thus each iteration of GOP se-
lected it. It, of course, represents the global optimum,

Also illustrated in Figure 5.10 is an example se-
quence of iterations. In this case, it took 5 iterations
to converge to the optimum. The final state perturbations

for the first four steps are shown,

5:5.,2 Examples for_ Higher Order Systems
While application of GOP to ES-1 resulted in several

minima of E5 being achieved, application to the other ex-
ample problems yielded unique optima, The resulting opti-
mum final states are given in Table 5.7 as are the corre-
sponding values of the error functions., Given in Figure

5.11 are several examples of the change of error with each

0.

iteration for ES-2 for various Poe

5,6 Time Optimization Examples
In Section 4.8 the application of GOP to time optimal

control problems was introduced., It is the purpose of this

section to apply the resulting procedure to several example
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TABLE 5.7 _Application of GOP to Higher Order Systems

Example
Problem _ Xo. T xy || xz |l
ES-2 -3 =4.745
-1 «533
2 .695
0 ..358
"3 —3.9&7
-2 05 -'1 0676 uoBOO
2 1.344
-2 05 -.701 10882
2 1,116
2 1,181
0 .670
2 1. 8
-1 5 -.332 1,688
1 «291
2 5 1.831 1.848
0 -021"8
"5 -ou83
-5 1 -1,182 13,762
-5 -12,834
ES—L" —2 'otg?
2 1.463 .
0 "0111

Ep Es
-.9998 ,001
-.990 . 009
-.9998 001
-.998 .00k
-.998 .004
-.9996 .00l
-.996 .00?
-.9990 007
-.962 .062
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reachable sets for ES-1, Example Problem 1 is chosen since
the resulting reachable sets are particularly nonconvex and
interesting in their behavior. TUnfortunately, however, the
sequence of optimum final states for these reachable sets
only asymptotically approaches the origin as time is in-
creased. ‘

The first example considered is for the reachable set
corresponding to the initial state x, = (-10,-5)T. In Ta-
ble 5.8 the results of some time increments are given, It
should be observed that || x;|| does approach the origin, but
the convergence is asymptotic. Likewise, it should be not-
ed that the sequence of || xp||'s is not monotonic, These
results are illustrated in the reaohablq sets corresponding
to various times as given in Figure 5.12., From this figure
it is easy to see the spiralihg which R(t) does around the
origin and its increasingly nonconvex nature. The locus of
optimum final states (for the minimum distance problem) is
also plotted in Figure 5.12,

The second example corresponds to the initial state
x, = (5,-5)T. In Table 5.9 the results for various final
times are given, The reachable set at various timee is
plotted in'Figure 5.13. Again, there is the spiraling ef-
fect noted in the previous example, with the reachable set
becoming increasingly nonconvex as time increases.

Consideration of the initial adjoints listed in Tables
5.8 and 5.9 shows that there is a consistency in the manner
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TABLE 5,8 Application of TOP to ES-1, x, = (=10,-5)"

Time

0,00
5.00
7.10
9.65
12,06
15.75
19.17
25,00
28,03
30.49
33.53
36.79
38.47
40,04
11,49
42,86
I, 26
45,60
46,92
48,22
49,51
50.84

[ xp (] Xy
11.180  -10,000
20,980 -3.540
18,009 0.757
12,464 4.810

6.639 6.519

9.899 5.473

9.792 1,001

4,321 -4,077

3.955 -3.881

4,551 -3.662

4.309 -1.245

2,812 -0.170

2,044 0,268

1.809 0.659

1,659 0.903

1.624 1.098

1.519 1.098

1,442 1,196

1.391 1,098

1,334 1,098

1.343 1,196

1,358 1.293

_Tor
‘-50 000

20,679
15.994
11.499
1.245
-8.250
-9,742
-1,489
0.756
2,710
bh,126
2,807
*2.026
1,684
- 1,391
1.196
1.049
0.805
0.854
0.756
0.610
0.415

Plo P2o
5,000 =10.000
5.929 0.471
6.784 0.836
5.955 0.734
5.972 0.999
5.998 0.110
5.999 0.618
5.900 0.100
5.882  -0,007
6.000 0.000
3.333 3.533
4,117 4,364
3.817 3.470
3.942 4,322
4,043 b.443
h,043 L,433

CL.9Bh 3504
5.449 3.249
6.377 1,072
6.038 0,674
5.962 0,666
5.962 0.666
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TABLE 5.9 Application of TOP to ES-1, x5 = (5, -5)T

_Time. || xp (] T Xor Plo P2o
0.00 7.071 5.000 -5,000 5.000 5.000
5.00 7.758 1.342 -7.641 =5.992 0.395
5.78 7.2U2 0,756 =7.202 -5.983 0.251
6.12 6.716 0.170 -6.71k4 -5.994 0.251
7.50 6.142 -0,415 -6.128  -5,994 0.251
8.42 5.679 -1,001 -5.590 =5,994 0.251
9.38 5.081 -I1,489 4,858  -5,988 0.188

10,33 4,422 -1,928 =3.979 -5.990 0.002
12.80 3.089 -2.758 -1.391 -5.,035 -0,134
14.49 2,764 -2,758 -0.170  -6.342 1.556
15.29 2,741 -2,710 0.k15 -5.349 2,211
16.13 2.843 -2.661 1.001  -5.577 2,211
17.05 2,964 -2,563 1.489  -5.577 2,211
19.16 3,004 -2,075 2,172  =6.453 2.011
21,50 2,702 -1.538 2,221 -6.214 1,081
23.74 2,107 -0.366 2,075 -5.955 -1.137
25,65 1.587 -0,024 1,586 -5.893  -1,125
27.23 1,348 0,122 1.342 -5.881 -0,995
28,66 1.202 0,122 1,196 -5.950 =0,766
30,04 1.143 0.317 1,098 -5.950  -0,766
32,02 1.038 0.415 0,952 -5.968  -0.612
34.12 0.911 0.317 0.854  -6.,679  -0,036
35.37 0.929 0.463 0,805 -5.999 -0,032
36.03 0.954 0,512 0,805 =5.999 -0,032
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in which the optimum initial costate changes as time is
incremented. In the examples of this section, use is made
of this fact. For the first local optimum (T = 5 seconds)
LOP-CM is employed. For succeeding optima, the change in
the initial adjoints is sufficiently small to optimize
using LOP-DS. In fact, in several instances the ith p} is
also the i*lst py (See Table 5.9, time = 6,12, 7.50 and
8.42),

5.7 Summary and Conclusions

It is the purpose of this section to present a general
sumary of the theoretical developments, computational re-
sults and comparisons of the previous sections of this the-
sis, Conclusions which are given in previous sections of
this chapter are also briefly summarized in this section.
Additional comments or conclusions which seem appropriate
are also made.

As indicated by the title, the purpose of this thesis
is to consider the computation of optimal controls for non-
linear systems. Rather general nonlinear systems are al-
lowed. The restrictions pleced on these syeteme are given

z ‘...»\-a.-"'ﬁ@vx

in Section 2.2. The oonoept of the reachable eet~ie intro-

duced and investigated. A number of related definitions
and results are given -in chapter 2.

The minimum-error regulator pr?ﬂﬁ'el_-ip prinoipa.lly
treated and computational methods are developed to solve

this problem. The problem is somewhat difficult when -

¥ L "
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nonlinearities are allowed in the state equations. The
nonlinearities have a two-fold effect on the computation
of an optimal control for the minimum distance problem;
First of all, they introdu;e the possibility of the occur-
rence of several or even many local optima since the re-
sulting reachable set is not convex. Secondly, the deter-
mination of a local optimum is made more difficult since
the adjoint system becomes dependent on the state.

Although many reachable set-oriented methods have pre-
viously been utilized, their application to nonlinear sys-
tems has been limited. One of the most restrictive limita-
tions is a result of the dependence of the adjoint system
of equut}ons on the state variables. 4s a result, the di-
rect determination of an initial adjoint given a final ad-
joint is not possible without knowing the corresponding
state trajectory.

To overcome this difficulty, the author decided to
place the emphasis of his computational approach on the
initiql adjoint, Once the initial adjoint is specified,
it is possible to compute the state response, a maximal
trajectory, and to identify a boundary point on the reach-

able set,

An intrinsic part of any effective computational meth-
od is a means of evaluating each iteration and of deter-.
mining when an optimum has been achieved., This is the pur-

pose for the error function. One obvious error function
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for the minimum distance problem is E;, the norm of the
final state. Other error functions are available and are
introduced in Chapter 3. It is shown that for the minimum
distance problem, the final state and the final adjoint are

collinear at the optimum, This leads to a second error

= = < > '
E2 cos Y n-ﬁr‘-ﬁp-lT’ (5.2“)

where x is the final state and p is the fimal adjoint.

function:

This error function is more sensitive to changes in extre-
mal trajectories than is ||x||. Also, || x|| may just be ap-
proaching an unspecified minimum whereas E2 approaches -1
at the optimum. For these reasons, E, is usually employed
in combination with E;:

Eg = (1 + Ep) E;. (5.25)

One approach to the solution of the minimum error reg-
ulator problem is a direct search (related to gradient tech-
niques) method based on varying the initial adjoints such
that the error function is improved, A direct search pro-
cedure is given on rages 41 and 42 and a flow chart of this
method is given in Figure 3.1.

Since the direct search technique is inefficient,
other possible methods are considered. To develop another
method, the determination of the optimal control can be
viewed as the determination of a sequence of initial ad-
joints which, in turn, determines a sequence of extremal

endpoints starting at an arbitrary final state and
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terminating at an optimum, Thus the problem is one of de-
fining .a path on the boundary of the reachable set, specif-
ically a path for which the error functions decrease mono-
tonically.

To show that such a path exists and to give insight
into the nature of this path, various principles and facts
from differential geometry are utilized. Specifically, it
is possible to pro;e that on a locally convex surface, a
satisfactory path can be constructed from lines of curva~-
ture. Requiring that the path consist of lines of curva-
ture gives a relationship between the perturbations of the
final state and the final adjoint on the boundary of the
reachable set:

k 6x + 8p = O, (5.26)
where k represents the curvature of the surface at the
point x on the line of curvature., This aids in the imple-
mentation of a procedure using this geometric approach;
Chapter 3 develops this procedure and considers the al-
ternative choices which are encountered.

Several interesting facts develop as a result of these
geometric considerations. To prove the monptonioity of the
error function E2, it is necessary to also prove the mono-
tonicity of the error function E,.along the desired path,
A8 a result of this proof the imbortance of the curvature
of the surface is demonstrated (see Equations 3.66 and

3.72). These facts lead to Theorem 4,1 which analyzes the
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effect of concave surfaces on the procedure.

The alternative choices available in the procedure can
generally be classified as those which are available on the
boundary of the reachable set (perturbation of the final
state and the final adjoint to yield a better estimate of
the initial state, hence of an optimum) and those which are
important at the initial time (perturbation of the initial
adjoint).

The computations summarized in Section 5.3.1 indicate
that the final time perturbation is most effeotive if both
the final state and the final adjoint are perturbed as re-
lated through Equation 5.26. The perturbation of Xp is
considered to be the independent perturbation, hence it
is important to consider the direotion and magnitude of
this perturbation., Sections 5.3.5 and 5.3.6 consider these
choices and indicate that the best means of perturbing the
final state xqp is: .

8xp = ~c(xp =[xy | rrg-::—n E,) (5.27)
where ¢ represents the step size. Consideration of the
effect of the step size demonstrates that the method is
most effective if ¢ is made dependent on the error at each
iteration,

The perturbation of the final adjoint is related to
the perturbation of the final state through Equation 5.26,
hence determination of the curvature k is important. Sec-

tions 5.3.2 through 5.3.4 consider the various methods
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of estimating curvature and of evaluating the validity of
the estimate, Examples of estimates of curvature are given
in these sections and shown to correspond to the values ex-
pected from reacpable set geometry.

The analog correction factors a and g introduced in
Section 3,6.2 are shown to improve the convergence of
LOP-CM using analog integration. While the experimentation
of this thesis was not intended to evaluate the relative
merits of analog or hybrid computation versus digital com-
putation, the necessity of these correction factors intro-
duces this subject. The advantages and disadvantages of
both are apparent in the computations of this thesis. No
decision is clearly obvious concerning their relative mer-
its, but digital computation is more reliable.

While the hybrid computer has the advantage of speed
of integrations, it has disadvantages also., Accuracy is
limited due to the analog elements employed and to analog-
digital and digital-analog conversion limits., Because of
the nonlinear systemg considered and the discontinuities
introduced by the controls, the trajectories are very sen-
sitive to hystersis of comparitors and switches, inacou-
racies in multipliers, integrators, etc. Thus there is a
large amount of sensitivity to the control switching times.

On the other hand, the digital computer is consistent
and repeatable in its results. The accuracy of the inte-
gration can be controlled by controlling the step size,
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However, the major drwqback of the digital computer is its
speed of integration of the differential equations; Thus;
as previously 1ndicated,'the decision as to whether to use
analog or digital computers for the differential equation
integration must be based on the mature of the systems be-
ing considered, the accuracy desired, the computational
equipment available and the speed of computation desired;
For the equipment available to the author, total digital
computation was preferred because of its aocuracy;

Both local optimum procedures, LOP-CM and LOP-DS,
were utilized and performed as expected--converging to lo-
cal optima, Thelconvergence of LOP-CM, as expected, was
more rapid than that of LOP-DS, In none of the experimen-
tation performed for this thesis were any limit points of
LOP-CM or LOP-DS encountered. The only failures of these
methods to converge can be traced to analog integration
inconsistencies,

Some of the special problems introduced in Chapter 4
were encountered. Special Problem 1, relating to concave
curvatures, was encountered in Example 5.5.1 and the re-
sults verify those predicted by Theorem 4,1, No flats or
singularities were noted, nor were false boundary points
and interior boundaries. Corners were produced in several
examples, but caused no special problem, In most cases,
in fact, the corner is the optimum,

Generating a sequence of local minima did locate the
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global optimum in the éxamples considered (See Section 5.5).
Only one optiﬁum was computed for the reachable sets cor-
responding to Example Problems 2 through b; While this is
a disappointment from the standpoint of effectively testing
the Global Optimum Procedure, it is encouraging in that it
indicates that the reachable sets corresponding to many
nonl inear problems are not extrgmely badly behaved.

In Section 5.6, the time optimal control problem is
considered and example computation is done, Examination of
this computation demonstrates the mobility and changing
shape of the reachable sets with increasing time. It is
important to note that for the examples considered, the
initial adjoint (corresponding to the optimal control) did
not significantly change as time waslincreaseﬁ.

In summary it can be goncluded that the theory of
Chapters. 2 through 4 provides the basis for an effective
computational procedure., The consideration of the algo-
rithm alternatives in Chapter 5 verifies the choices made
in Chapter 3. The resulting LOP-CM is effective in the de-
termination of local minima and, when employed as part of
a global procedure, determines the global optimum,

Certainly there are many areas open for future in-
vestigation. Possibly other principles of differential
geometry can be brought to bear on the optimization prob-
lem (utilization of geodesics, for instance), Other appli-

cations of LOP-CM, GOP and TOP could be considered as well
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as comparisons with other existing methods; Possible
future investigations and extensions are suggested in

Appendix D,
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APPENDIX A

ANALOG DIAGRAM FOR EXAMPLE PROBLEM 1

T340 TI4 oT20 T350 T15 oT20
.01 8
913 R3 A3 2 it RY Al
P P2
c2 A7 (1
M
2 3
N both .01
DR
3 86 AT 2 a b7

1 .+ output
T16 Ib- output

I indicates an integrator; A indicates an amplifier;
R indicates a relay; P indicates a potentiometer; -
M indicates a multiplier; C indicates a comparitor;
T indicates a trunk line (to the digital computer);
S indicates an electronic switch,,

All amplifiers and integrators consisted of two
operational amplifiers; hence both a positive and
negative output were available.

Trunk 20 was used to switch the system for reverse
time integration.

.001

159






APPENDIX B

EXAMPLE COMPUTER PROGRAMS

1. GLOBAL OPTIMUM PROCEDURE AND OPTIONS®
// FOR GLOP2
*J0CS(CARD, 1443 PRINTER)
*LIST SOURCE PROGRAM
*NONPROCESS PROGRAM
*ONE WORD INTEGERS
DATSW O PROVIIES FOR XM=-XM*XM
DATSW 1 PROVIDES KICKOUT OF ANY INEFFECTIVE ITERATIONS
DATSW 2 PROVIIES DIRECT ACCESS TO DIRECT SEARCH ROUTINE
DATSW 3 PROVIIES STEP SIZE INIEPENIENCE OF ERROR
DATSW 4 PROVIIES FOR LESS SUBCURVATURE MOVES, DEL(KK)=l
DATSW 5 DETERMINES THE STARTING VALUE OF KK, NORMAL=0
DATSW 6 BYPASSES THE ORTHOGONALIZATION IMPROVEMERT ROUTINE
DATSW 7 CORRECTS FOR ANALOG INTEGRATION INACCURACIES
DATSW 8 IETERMINES XM, NORMAL = C0S, TP = -1
DATSW 9 IETERMINES THE CURVATURE CHOICE (SINGLE OR COMP.)
DATSW10 STOPS ALL GOAN PRINTOUTS EXCEPT ERROR PRINTOUT
DATSW11 SKIPS THE RANDOM INPUT AND SEARCH CYCLE
DATSW12 PROVIIES FOR KICKOUT OF THE RANDOM INITIAL ROUTINE
DATSW13 PROVIIES FOR PRINTING OB® TRAJECTORY POINTS
DATSW 14 SETS THE BASIC NUMBER OF INTEGRATION STEPS AT 10
DATSW 15 DETERMINES THE INTEGRATION STEP MULTIPLIER
SSWICH 0 PROVIIES FOR TYPEWRITER INPUT AND OUTPUT
SSWICH 1 PROVIIES FOR THE CURVATURE AVERAGE OF XK AND XKQ
SSWICH 2 PROVIIES FOR ST. IEV. IEPENIENT ESTIMATE OF CURV,
SSWICH 3 PROVIIES A BASIS OF 100 R(T) BOUNDARY PTS, N=25,
SSWICH 4 PROVIIES ANR(T) DATA POINT MULT. OF 5, N=2,
SSWI'CH 5 PROVIIES FOR RANDOMLY PICKING POINTS ON BOUND R(T)
SSWICH 6 PROVIIES FOR MULTIPLYING VALUE OF XD BY 2
ITI (FIRST READ) SPECIFIES THE NUMBER OF STANDARD IEV.
POSSIBILITIES OR CORNER CURVATURE ATTEMPTS
TOLl (2ND READ) SPECIFIES THE KICKOUT ERROR TO THE DIRECT
SEARCH ROUTINE
TOL2 (3RD READ) SPECIFIES THE FINAL ERROR TOLERANCE
TOL3 (4TH READ) SPECIFIES THE STANDARD IEVIATION MAXIMUM
DIMENSION X(4),P(4),XI(4),PI(4),XJ(4),PT(¥),Q(4),XL(L),
xc(4),Pc(4),x8(k,10) ,p8(4,10) ,XERS(11)
1Y=5349
WRITE (1,2184) :
2184 FORMAT(( 0O, '() \ )ty ' ( ), ( )Y,
]

READ (6,2183) 1T1,TOL1,TOL2,TOL3
2183 FORMAT (12,3F10.L4}

CALL DIGO (20,-1)

READ (2,2)T, N
2 FORMAT (no ,I1)

QaaQ QO aaoaaoaaoaaaoaQaaaQaaaaaaaaaaaa
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W

Lol

402
403
406

Loy
Lo8

1000
1117
1001

1002
1003

1004

1005
1006

1007

1020
1475

1010
1011

161

FORMAT (8F10,3)

READ (2,3) (x1(x),1=1,N),(P1(1),I=1,N)
WRITE (3,401)

FORMAT (¢ THE FOLLOWING DATA SWITCHES WERE TP ')
DO Lok 1=1, 16

IWW=1-1 \

CALL DATSW(IWW,IW)

GO TO (402,404), IW
WRITE (3, 403) mv

CONTINUE

FORMAT (I40) .

WRITE (3,406)

FORMAT (' THE FOLLOWING SENSE SWITCHES WERE TP ')
DO 408 I=1,8

IWW=I-1

CALL SSWICH (IWW,IW)

GO TO (4o7,408), iw

WITE (3, uo3)1ww

CONTINUE

KY=1771

ITEM=0

CALL SSWICH (5,IR)

GO TO (1000, 1011) IR

READ (6, 1117) IRSY

FORMAT (I4)

CALL SSWTCH (3,11)

GO TO (1001, 1002) 11

INRS=100

GO TO 1003

INRS=25

CALL SSWTCH(4,JJ)

GO TO (1004, 1oo5) JJ

INRS=INRS*5

GO TO 1006

INRS=INRS*2

DO 1010 I=1,INRS

DO 1007 J=1,N

IRSX=1RSY

CALL RANDU (Insx,xnsx nsr)
PI(J)‘RSY—'QS

CALL SSWTCH (0,100)

GO TO (1020, 1010) 100

WRITE (1, 1&75) :

FORMAT (' ( )( )( )*)
READ (6,3) (PI(I),I=1,N)

CALL GOAN(N,T,XI, PI X, P ,X2,P2,XP ,ER)
CALL maTsw (11 1 )

GO TO (490,491),

1ZA=10

GO TO 492

IZA = 0

1Y=5349

DO 882 I=1,N

IX=1Y



NI, WWI) HOTWES

WY, (804!, SO4)

wi(od8)
{4



882
L92
101
11

379

13
14

k923
1113
1322

12

555

556

141

1411
1321
1212
2181
2182

218
219

162

CALL RANDU (IX,I1Y,Y)

CALL DATSW (12 IRK)

GO TO (9,882) IRK
PI(1)=Y-,

WRITE (3,101)(XI(I),I=1,N)
FORMAT (///urzo 8)

CALL GOAN(N,T,XI,PI,X,P,X2,P2,XP ,ER)
ERS=ER

IF(ER-TOL2)5,5,379
EBX=ER/X2)-1

IF (ERX) u923 13,13

DO 14 I=1,N

PI(I)saplil)

CALL GOAN (N,T,XI,PI,X,P xz,rz XP,ER)
ERS=ER

ERX=(ER/X2)-1,

1F(ERX) 4923,8,8

CALL DLTSW(Z IE)

GO TO (1113 12) 1E
HH=SQRT(ERS)+. 5

D0 1322 I=1,N

Q(I)=PI(I)

ERD=ERS

GO TO 1662

PZ=,05

XPI“OQ

DO 555 I=1,N
xr1=xr1+w1(1)*r1(1)
xr1=sqm*(x91)

556 I=1,N
r1(1)491(15*5 /XP1
PCO=0
DO 141 I=1,N
KX=KY
CALL RANDU (KX,KY,YK)
PC(1)=YK-,.5
PCO=PCO+PC(I)*PC(I)
PCO=SQRT(PCO)

DO 1411 I=1,N
PC(I)=?C(I)/PCO

LL=0
1F(ERS-TOL1)20,20,1212
PZ=5,*PZ

LL=LL+1

IF(LL-4) 217,217,2181
IF(ITKM-IT1)2182 2182,218
ITKM=1TEM+1

GO TO 12

DO 219 1=1,N
xL(1)=-1oo.

XK=~100,

XKQ=-100,



2160
2162

2161
2163

184
180

181

160

162
161

220
102

170

171

1791
179
20

163

GO TO 220
D0 216 I=1,N
Q(I)éPI(I)fPZ*PC(I)

CALL SSWICH (0,100)

GO TO (2160, 2162) 100

WRITE (1, 1u75)

READ (6, 3) (Q(1),1=1,N)

CALL GOAN (N, T, xI Q, xJ PJ,X2D,P2D,XPD, ERD)
IF(ERD-TOL2) 1,1, 2161
IF(ERD-TOL1) 1662 1662,2163
CALL DATSW (6,10)

GO TO (160,18%4),10

IF(. 95-ERDMERS)160 160,180

DO 181 I=1,N

PI(I)—Q(I)

X(I)=XJ(1)

P(I)=PJ(I)

ER=ERD -

ERS=ER

X2=X2D

P2=P2D

GO TO 217

XK=0,0

DO 161 1=1,N

IF (ABS(XJ(I)-X(I))-.OOOOI) 1212,1212,162
XL(I)=((PJ(1)/P2D)-(B(1)/P2))/(X(1)-XI{I))
XE=XK+XL(I)

XK=XK/N

WRITE (3,102) (XL(I),I=1,N), xx
CI-XP/}PZ*IZ)

C2=XPD/ (P2D*X2D)
XKQ=(C1-C2)/(X2D-X2)-C1/X2
XKAV=(XK+XKN) /2.

WRITE (3,102) XKQ,XKAV

FORMAT (7F15.5)

CALL SSWTCH (2,1IV)

GO TO (170,179),IV

AAK=0

VAR=0

DO 171 1=1,N
VARBXL(I)*XL(I)+VAR
AAK=AAK+ABS(XL(I))
VAR=VAR/N-XK*XK

STDV=SQRT (VAR)

AAK=AAK/N

TEST=STDV/AAK

WRITE (3.102) VAR,STDV,AAK,TEST
ITEM=ITKM+1
IF(TEST-TOL3)179,179,1791

IF (ITRM-IT1) 12,12,179
IF(ERD-ER) 30, 30 20’

DO 21 I=1,N

Q(I)-PI(Is
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XJ(I)=X(I)
21 PJI(1)=P(I)

ERD=ER

X2D=X2

ERS=ER

P2D=P2
30 CALL DATSW (5,IMX)

GO TO (3111, 3112) IMX
3111 KK=-3

GO TO 3113
3112 KK=0
3113 HH=SQRT(ERS)+.5

IF (ERS-TOL2) 1,1,3211
3211 CALL DATSW (3, 18)"

GO TO (1201, 1200) 18
1201 XD=.2

GO TO 1202
1200 XD=ERS/X2D
1202 CALL SSWTCH (6,1DM)

GO TO (1203, 120&) IDM
1283 XD=XD*2,
1204 WRITE (3,102) XD
32 WRITE (3, ,102) (XL(1) ,I=1,N), XK

IF(ERS-TOLI) 1662,1662 3291 '
3291 CALL DATSW (4,IKK

GO TO (3293,3292) 1KK
3292 KK=KEK+1

GO TO 3294
3293 KK=KK+2
329 IF(KK;2)1661 1661 1662
1663 HH=HH*.5

IF (HH-.005)1 1664,1664
1664 WRITE (3,102) HH

CALL DATSW (1 un)

GO TO (1,1662),
1662 CALL EXPLR(N T x1 Q, xn PJ,X2D,P2D, XPD, ERD, HH)

IF (ERD-TOL2)1,1,166
1665 IF (ERD-ERS)1666, 1663 1663
1666 ERS=ERD

GO TO 1664
1661 CALL DATSW (1,II)

GO TO (1, 166) 11
166 CALL numsv(a 1XM)

GO TO (1671, 1672) IXM
1671 XM=-1,

GO TO 1673
1672 XM=(ERS/X2D)-1,
c XM=0
1673 CALL DATSW (0,IYM)

GO TO (1674, 1675) 1M
1674 XM=—XM*XM
1675 WRITE (3,102) XM

DO 35 I=1,N
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DX=—XD* (XJ (I)-(X2D*PJ (I)*XM) /P2D)
CALL SSWICH (1,IKAV)
GO TO (1214, 1213) 1IKAV
1214 P(I)-PJ(I)-PZD*DX*XIQV
GO TO 35
1213 CALL DATSW (9,IK)
GO TO (1210, 1211) 1K
c P(I)=PJ(I)
(o] P(I)=PJ(1)=-P2D*DX*XKX
1210 P(I)=PJ(I)-P2D*DX*XL(I)
GO TO 35
1211 P(I)=PJ(I)-P2D*DX*XKQ
c X(I)=xJ(I)
35 X(1)=XxJ(I)+DX
CALL DIGO (20,1)
WRITE (3,102) (X(1),I=1,N)
WRITE (3, 102) (p(1), ) I=1 ,N)
CALL GOAN (N, T,X,P, x P xz,rz XP,ER)
CALL DATSW (7,31} ’
GO TO (891 886),JL
891 CALL GOAN (N T,XJ ,PJ,XC,PC,X2C,P2C,XPC,ERC)
Do 888 1=1,N
xc(1)=xc(15-x1(1)
888 PC(I)=PC(I)-Q(I)
WRITE (3,102) (XC(I),I=1,N)
WRITE (3,102) (PC(I) 1=1,N)
DO 889 I=1,N
X(I)-X(I)-XC(I)
889 PI(I)=P(I)-PC(I)
WRITE (3,102) (X(I),I=1,N)
WRITE (3, 102) (PI(1),I=1,N)
-DO 890 1=1,N
890 r1(1)=p1(1$
GO TO 887
886 DO 885 I=1,N
885 r1(1)=p(1)
887 CALL DIGO (20,-1)
CALL GOAN (N,T XI,PI X,P,X2,P2,XP,ER)
IF (ER-ERS) L2 41,41
41  XD=XD*.2
412 WRITE (3,102)XD
GO TO 32
42 ERS=ER
WRITE (3,102) ERS,ERS, EBS ERS
ITEM=0
IF (ERS-TOL2) 5,5,12
D0 6 1=1,N
(I)=PI(I)
XJ(I)-X(I)
X2D=X2
Do 7 I=1,N
PS(I, 12A5=Q(1)
XS(1,12A)=XJ (1)
XERS(I1ZA )=X2D
1ZA=1ZA+1
1F(12A-11)8,997,997

N = 0N v
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nx.-xn*(U(I)—(xzmn(l)*n)/rzn)
CALL SSWTCH (1,IKAV)
GO TO (1214, 1213) IKAV
1214 P(I)—PJ(I)—PZD*DX*XKA.V
GO TO 35
1213 CALL DATSW (9,IK)
GO TO (1210, 1211) 1K
c P(I)=PJ(I)
(o] P(1)=PJ(1)-P2D*DX*XKX
1210 P(1)=PJ (I)=-P2D*DX*XL(I)
GO TO 35
1211 P(I)=PJ(I)-P2D*DX*XKQ
c X(1)=XxJ3(1)
35 X(I)=XxJ(1)+DX
CALL DIGO (20,1)
WRITE (3,102) (X(1),I=1,N)
WRITE (3 102) (P(I) 1-1,N)
CALL GOAN (N,T,X,P, x P,X2,P2,XP,ER)
CALL DATSW (7,JL) °
GO TO (891, 886) JL
891 CALL GOAN (N T, X3 ,PJ, XC,PC,X2C,P2C,XPC,ERC)
DO 888 I=1,N
xc(1)=xc(13-x1(1)
888 PC(I)=PC(I)-Q(I)
WRITE (3,102) (XC(1),I=1,N)
WRITE (3, 102) (PC(I) I=1,N)
DO 889 1-1 N
X(I)—X(I)-XC(I)
889 PI(I)=P(1)-PC(1)
WRITE (3,102) (X(I),I=1,N)
WRITE (3,102) (PI(I ,I=1,N)
-DO 890 I=1,N
890 PI(I):pI(Ii
GO TO 887
886 DO 885 I=1,N
885 PI(I)=P(I)
887 CALL DIGO (20,-1)
CALL GOAN (N,T x1,p1 X,P,X2,P2, XP,ER)
IF (ER-ERS) 42,414
41  XD=xD*.2
412 WRITE (3,102)XD
GO TO 32
L2 ERS=ER
WRITE (3,102) ERS,ERS, ERS ERS
ITKM=0
IF (ERS-TOL2) 5,5,12
DO 6 I=1,N
Q(I):PI(I)
XJ(I)=X(1)
X2D=X2
Do 7 I=1,N
PS(I,1za}=q(1)
XS(I,1ZA)=XJ (1)
XERS(1ZA)=X2D
1ZA=IZA+1
IF(1ZA-11)8,997,997

N = N W




166

997 CALL DATSW (11,IRX)
GO TO (4,9), IRX
9 DO 999 J=1 10
999 gglwg 53 102)xERs(J) (Xs(1, J) 1=1,N), (PS(I J),1=1,N)
T
99  CALL EXIT
END

*As previously mentioned, several options or alternatives
are provided as a result of the CALL DATSW and CALL
SSWICH subroutines. In addition, unnecessary printout
routines are included.,

2. DIGITAL INTEGRATION AND ERROR FUNCTION EVALUATION ROUTINE

// FOR
*LIST SOURCE PROGRAM
*ONE WORD INTEGERS
*NONPROCESS PROGRAM ,
SUBROUTINE GOAN (N,T,XI,PI,X,P,X2,P2,XP,ER)
EXTERNAL F,FO
DIMENSION(%%(#) yX(4),P(4),x1(4),Y(9),DY(9),AUX(10,9),
PRMT
COMMON ITRNK(8),0LD(9),XYZ(5)
NAX=2%N
D0 1 1=1,N
Y(2%1-1)=XI(I)
1 Y(2*1)=PI(I)
ITRNK(3)=0
E-os/N
CALL DATSW(1k,II)
GO TO (591, 592) 11
591 HT=10,
GO TO 593
592 HT=50,
593 CALL DATSW (15,JJ)
GO To (594,595),33
594 =HT* 2
G0 TO 596
595 HT=HT
596 IF(ITRNK(1)) 3,3,4
3 PRMT(1)=0
TF=T
XYZ(1)=TF
PRMT(2)=T
PRMT (3 )=T/HT
GO TO 5
L PRMT (1)=T
TF=0
XYZ(1)=TF
PRMT(2)=0
PRMT (3 )=-=T/HT
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DO 2 I=1,NAX

DY(I)=E

ITRNK(2)=0

CALL HPCG (PRMT,Y,DY,2*N,IHLF,F,F0,AUX)

IF(PRMT(5)) 525, 7,525

525 IF(ITRNK(3)) 7,528,7

528 DO 526 KJ=1,9

526 Y(KJ)=OLD(KJ)
PRMT (1 )=PRMT (1)-PRMT(3)
PRMT (3)=PRMT(3) /10,
PRMT (2)=PRMT(1)+10,*PRMT(3)
DO 527 KJ=1,NAX .

527 DY(KJ)=E
ITRNK(2)=1
CALL HPCG (PRMT, Y DY,2*N, IHLF,F,F0,AUX)
PBMT (1)=PRMT(2)
PRMT3 )=PRMT (3)*10,
IF(ITBNK(3)) 7,77,7

77 PRMT(2)=TF
GO TO 5
DO 6 I=1,N
x(1)=¥(2*1-1)
P(1)=Y(2*1)
P2=0,
DO 30 I=1,N

30 P2¢P2fP(I$*P(I)
P2=SQRT(P2)
DO 308 I=1,N

308 P(I)=P(I)*5 /P2
P2=50

~ CALL DATSW (10,IPX)

Go To (20,110),IPX

110 WRITE (3, 112)T

112 FORMAT (F15 5)

111 FORMAT (' THE CUBRENT ERROR IS ',F15.5,' NORM X = ',
F15.5,' Xp= ',F10.5)
DO 18 L=1,N

18 WRITE (3, 10) XI1(L),PI(L),P(L),X(L)

10 FORMAT (6F20 5)

20 X2=0.0
DO 31 I=1,N

31 x2=xz+x(1$*x(1)
X2=SQRT(X2)
XP=0.'

- DO 32 I=1,N

32 XP=XP+X(I)*P (1)
ER=(XP /P2)+X2
XPN=ER/X2-1,
WRITE (3,111) ER,X2,XPN
CALL SSWICH (o0 IOO)
GO TO (38,40),100

38 DO 39 J1=1,N

N\
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39 WRITE (1,10) XI(JI),PI(JI) P(JI) X(J1)
WRITE (1, 111) ER, xz XPN

4O RETURN
END

3. DIGITAL INTEGRATION FORWARD-REVERSE TIME SUBROUTINE*

// FOR

*LIST SOURCE PROGRAM

*NONPROCESS PROGRAM

*ONE WORD INTEGERS
SUBROUTINE DIGO (M,N)
COMMON ITRNK(8), 0LD(9)
ITRNK (M-19)=
RETURN
END

*This subroutine supplements the digital integration sub-
routine to replace a hybrid subroutim ocalled in the
main program,

L4, HYBRID INTEGRATION AND ERROR FUNCTION EVALUATION ROUTINE

// FOR

*NONPROCESS PROGRAM

*LIST SOTRCE PROGRAM

*ONE WORD INTEGERS
SUBROUTINE GOAN (N,T,XI,PI,X,P,X2,P2,XP,ER)
DIMENSION PI(4),X(4) P (%), XT84}, a1 (), k1(4),KI(8),33 (1)
CALL LOGEX(1)
DO 5 J=1,N

L JI(J)-XI(J)*3276 7

5  CALL ANOUT (31+J,J1(J))
DI-O.
DO 555 I=1,N

555 XPI=XPI+PI(I1)*PI(I)
XPI=SQRT (XP1)
DO 556 I=1,N

556 PI(1)=PI(I)*10./XPI
DO 8 K=1,N
JJ (K)=P1(K)*3276.7

8 CALL ANOUT (33+K,JJ(K))
NT=T+40,+30.
CALL LOAD
CALL IELAY (8000)
CALL RUN
D0 742 I=1,10

742 CALL DELAY (NT)
CALL STCPY
CALL AINP (12,N,KI(1),KI(2))
CALL AINP (1L,N.KJ(1),KJ(2))
D0 19 L=1,N
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X(L)==K1(L)/327.67
19 P(L)=-KJ(L)/32? 67
CALL AINP (16,1,KL)
TK=-KL/327.67
P2=00
DO 30 I=1,N
30 - P2=P2+P (1)*P(I)
P2=SQRT(P2)
DO 308 I=1,N
308 P(I)—P(I)*IO /P2
P2=10,
CALL DATSW (10,IPX)
GO TO (20,110),IPX
110 WRITE (3, 112)TK
111 FORMAT (' THE CUBRENT ERROR IS ',F15.5)
112 FORMAT (F15.5)
DO 18 L=1,N
18 WRITE (3, 10) XI1(L),PI(L) P(L) X(L)
10 FORMAT (6F20.5)
20 CALL LOAD
X2=0.
DO 31 I=1,N
31 x2-x2+x(1$*x(1)
X2=SQRT(X2)
XP=0,0
D0 32 I=1,N
32 xr=xr+x(15*r(1)
ER=(XP/P2)+X2
WRITE (3,111) ER
RETURN
END

5. DIRECT SEARCH SUBROUTINE

// FOR
*LIST SOURCE PROGRAM
*ONE WORD INTEGERS -
*NONPROCESS PROGRAM
SUBROUTINE EXPLR(N,T,XI, P,X2,P2,XP,ER, HH)
DIMENSION XI(h),PI(uS, P
DO 260 I=1,N
PI(I)éPI(Is—HH |
CALL GOAN(N,T,XI,PI,X,P,X2,P2,XP,ES)
IF (ES-ER) 205,210 210
205 ET=ER
ER=ES
IF(.80-ER/ET)260,260,265
210 PI(I)-PI(I)+2.*HH
CALL GOAN (N,T,XI,PI,X,P,X2,P2,XP,ES)
IF(ES-ER) 215,220 220
215 ET=ER
ER=ES






220
260
265
270
99

6.
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IF(.95-ER/ET) 260,260, 265
PI(I)=PI(I)-HH

CONTINUE

WRITE (3,270) (PI(I1I),II=l,N)
FORMAT (9F10 5)

RETURN

END

DIGITAL INTEGRATION OUTPUT AND CONTROL DISCONTINUITY

SENSOR SUBROUTINE

// FOR

*NONPROCESS PROGRAM
*ONE WORD INTEGERS
*LIST SOURCE PROGRAM

100

101
111
113
104

103

10
1

2
22
109
108
107

110

7.

SUBROUTINE FO(T,Y DY,IHLF,NN PRMT)

DIMENSION Y(9) PRMT(

COMMON ITRNK(8), 0Ln(9) XYZ(5)

IF(T-PRMT(1)) 101 100, iol

SIGN=Y(9)

SIGNV=Y(8)

GO TO 103

AR

IF(Y(9)*SIGN

IF(Y(g)*SIGNV(lob 10%,103)

PRMT(5)=1. .

PRMT(1)=T

CALL DATSW (13,KK)

GO TO (1,2),KK

FORMAT(IZFIO 3)

WRITE 23S10) T,PRMT(4), (Y(1),I=1,NN,2), (Y(I) I=2,NN,2),
Y(9

IF(pnnm(55)1oa 22,108

DO 109 I=1,9

LD D)=1(1}

IF(ABS(XYZ(1)-T)-.0001)107,107,110

ITRNK(3)=1

PRMT(5)=1,

RETURN

END

RANDOM NUMBER GENERATOR SUBROUTINE

// FOR
*NONPROCESS PROGRAM
*ONE WORD INTEGERS

o\\r

SUBROUTINE RANDU(IX,IY,Y)
1Y=IX*899

1F(1Y)5,6,6

IY=IY+32767+1

Y=1Y

Y=Y/32767

RETURN

END
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8. BASIC DIGITAL INTEGRATION SUBROUTINE*

// FOR
*LIST SOURCE PROGRAM
*ONE WORD INTEGERS
SUBROUTINE HPCG (PRMT,Y,IERY,NDIM,IHLF,FCT,OUTP,AUX)
DIMENSION PRMT(5),Y¥(200), ERY(200),AUX{10,200)
IHLF=0
X=PRMT(1)
H=PRMT(3)
PRMT (4)=0,
PRMT(5)=0,
DO 1 I=1,NDIM
AUX(10,1)=0.
AUX(9, 1)=IERY(I)
1F (H*(PRMT(Z)-X)) 3,2,5
IHLF=12
GO TO 4
IHLF = 13
RETURN
DO 10 N=1,3
CALL FCT (x Y, IERY)
IF (N-1) 11, 11,12
11 CALL OUTP(X Y, DERY o JHLF ,NDIM,PRMT)
12 IF(PRMT(5)) u 6,4
6 D0 9 1=1, NDIM
AUX(N, 1)=Y(I)
9 mx(n-ru 1)=DERY(I)
DO 101 1=1 NDIM
101 Y(I)—mx(N,I)m*mX(mu 1)
X=X+H
CALL FCT (X,Y, IERY)
DO 102 I=1, NDIM
102 Y(I)=AUX(N, 1) +.5*H* (AUX(N+4,1)+IERY(1))
10 CONTINUE
21 N=1
CALL FCT (X,Y,IERY)
X=PRMT (1)

WNMEW N =

DO 22 I=1,NDIM
AUX(8, 1)=mm(1)
22 Y(I)-wx(l 1)+H*(.375*AUX(5,1)+.791667*AUX(6,1)
-.2083333*mx(7 1)4041 66667* IERY( I ))
23  X=X+H
N=N+1
CALL FCT(X,Y,IERY)
CALL om'p(x Y n-:mr IHLF,NDIM, PRMT)
IF(PRMT(5)) u 24
2y IF(N-4)25,204, 2ot’s
25 DO 26 1=1,NDIM
AUX(N44, 1) =IERY(1)
IF(N—3)2? 29,204
27 DO 28 I=1, NDIM
mm-mx(é I)+AUX(6,1)




28
29

30
200

200

205

207

208

209

215
210

212
213
214
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IELT=IELT+IELT .

Y(I)=AUX(1,1)+,3333333*H* (AUX(5,I)+IELT+AUX(7,1))

GO TO 23

DO 30 I=1,NDIM

IELT=AUX(6,1)+AUX(7,1)

IELT =DELT+IELT+IELT

Y(I)=AUX(1,1)+,375*%H* (AUX(5,1)+IELT+AUX(8,1))

GO TO 23

DO 203 N=2,8

DO 203 I=1,NDIM

AUX(N-1,1)=AUX(N,I)

DO 205 I=1,NDIM

AUX(4,1)=Y(1)

AUX(8,1)=IERY(I)

X=X+H

DO 207 I=1,NDIM

IELT=AUX(1,1)+1,333333*%H* (AUX(8,1)+AUX(8,1)-AUX(7,1)
+AUX(6,1)+AUX(6,1))

Y(I)=IELT-.9256198%A0X(10,1)

AUX(10,I)=IELT

CALL FCT(X,Y,IERY)

DO 208 I=1,NDIM

ELT=,125*(9.*AUX(4,I)-AUX(2,1)+3,*H* (DERY(I)+AUX(8,I)
+AUX(8,1)-AUX(7,1)))

AUX(10,1)=AUX(10,1)=IELT

Y(I)=IELT+,07438017*AUX(10,1)

IELT=), :

DO 209 I=1,NDIM

DELT=IELT+AUX(9,1)*ABS(AUX(10,1))

IF (PRMT(4)-IELT) 215,210,210

PBRMT(4) = DELT.

CALL FCT(X,Y,IERY)

CALL OUTP(X,Y, DERY, IHLF,NDIM,PRMT)

IF(PRMT(5)) 212,213,212

RETURN

IF (H*X-PRMT(2))) 214,212,212

IF (ABS(X-PRMT(2))-.1*ABS(H)) 212,200,200

END : ' :

*This integration routine is part of the Scientific Sub-

routine Bet for the IBM System/360.

9. FUNCTION EVALUATION SUBROUTINE FOR ES-2 '

// FOR
*LIST SOURCE PROGRAM
*NONPROCESS PROGRAM

*ONE

WORD INTEGERS
SUBROUTINE F(T,Y, DY)
DIMENSION Y(9),D¥(8)
IF(1(6) 2,1,2"
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GO TO 3
U=LBS( Y(6)) Y(6)
%F{Y( )) 5,4,

GO
v=ABs(Y(u))/Y(h)

Y(8)=V

DY(I)éY(B)

DY (3)=Y(5)
DY(S)—-Y(S)*Y(I)+Y(3)*Y(3)+U
DY(Z)éY(5)*Y( )

DY (4)=-Y(2)-2.*7(3)*Y(6)
DY(6)=-Y(h)+Y(1)*Y(6)

RETURN

END
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INPUT DATA SETS
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1., Input Data Set 1
Number (%) T (Po)” Number _(Xp)T (po)”
1 (-10, =5) ( 0, 5) 9 ( =-5,=5) ( 5,-5)
2 ( 2"‘10) ( -5, -a) 10 (-109"‘5) ( 5,"1)
3 (2, 6) ( 5, L) 11 ( 5 5) ( 5,-1;
L ( 6, 2) (10, =3) 12 (-5,5) (5,5
5 ( =7, =2) ( -2, =2) 13 (=10,=-5) ( 5, 3)
6 ( "l’ 9) ( 39 ","') 1’4 ( 59 5) ("3""1)
7 ( 5, 0) ( 5, -E) 15 ( 5,-5) (5, 5)
8 (-3, 0) (-3, b)
2, Input Data Set 2: x, = (-10,-5)T, Po is randomly gen-
erated and normalized to 10,
Number (Po)T Number (I_)_Q)T
1 ( 9.879, 1.551) 6 (-4.919, 8,706
2 ( 9.997,-0.254) 7 ( 9.823,-1.871
3 (.3.671,-9.302) 8 ( 9.264,-3,766)
(-6.959,-7.181) 9 ( 9.970,-0.769)
5 (-8.171, 5,764) 10 (-0.235,-9.997)
3. Input Data Set 3
Number (x)T (po)”
1 (=3,=2,~1) (1,-2,-3)
2 ( 2,-1, 1) (-1, 0, 0)
a ( 2,-2, 2) ( 1, 1,-1)
( 2,"‘2’ o) ( 1,—1,- )
5 ( 2,‘-2,-2) (-2,-’2, )
6 ( 2, 0, 2) (-g,-u,-z)
7 ( 2, 0, 0) ( 9-3, 5)
8 ( 2, 0,—2) ( 7,"79-7)
9 ( 2, 2, 2) (- 9 1, 2)
10 (2, 2, 0) (5 2, 5)
4, Input Data Set U: X, = (-3,-2,-1)T, Po is randomly
generated:
Number (Po)T Number | (Po)T
1 ( .2514, ,0394, ,4738) L ( .1732,-.2497, .4420)
2 (-00120, .1630’-.u131) 5 ( .u003,—.0762, Ql"392)
3 (= Ll65,-.4607,-,2456) 6 (-.1785, .4760,-.0366)



1,
2,

3,

9.
10,

11,

APPENDIX D

POSSIBLE EXTENSIONS AND FUTURE INVESTIGATIONS
Further examination of time optimal control problems,

Extension to other optimal control problems such as min-
imum fuel, oonvex: function minimum error regulator,etc.

Determination of computational results for the special
cases given in Chapter 4.

Another approach to the solution of MP based on LOP,
other than simply the generation of random initial
adjoints,

Development of higher order systems with nonconvex
reachable sets and many local optima,

Application to parameter qptimizatioﬁ.problems.
Comparison of GOP and LOP with other nonlinear methods.,

Further investigations of the nmature of the reachable
sets as they relate t6 the nonlinear problem involved:

a, Classification of reachable sets in some manner;

b, Transformation of reachable sets as a result of
the transforme.tion of the origin.

Effect of singularities and controllability on the
general problems considered in this thesis,

Relationship of the path composed of lines of ocurvature
to the path determined by gradient methods,

Use of geodesics instead of lines of ocurvature as the

means of defining the path on the boundary of the
reachable set,
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