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AN ABSTRACT

RADIATION IN A COMPRESSIVE PLASMA BY A SMALL SOURCE

SURROUNDED BY A PLASMA SHEATH

by David F. Strawe

The purpose of this investigation is to determine the effect

of the nonuniform plasma sheath region surrounding a small dipole

antenna,immersed in an otherwise uniform compressive plasma,

upon the driving point admittance and the radiated electroacoustic

and electromagnetic energy. Most previous analyses have ignored

the sheath assuming an entirely uniform surrounding plasma. These

analyses generally predict relatively large amounts of power radiated

in the form of longitudinal plasma waves or electroacoustic waves as

they are called; because of this effect the driving point admittance

of the antenna is modified greatly from the value it would assume

in a free space environment. It is then a goal of this study to check

the validity of these predictions by including in the analysis the

effect of a plasma sheath using a geometry previously analyzed

assuming a completely uniform surrounding plasma.

A simple geometry has been chosen consisting of two perfectly

conducting spher'es connected by an extremely thin straight feed wire;

the system is driven symmetrically at the center of the feed wire with

a sufficiently small excitation voltage that the perturbations in electron

plasma density are linearly related to the excitation. Around each

sphere spherically symmetric sheath regions are assumed to form
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whose thicknesses are sufficiently small that they do not overlap.

Also,the electron density perturbations are assumed spherically

symmetric. These symmetry conditions can be obtained approxi-

mately if the spheres are sufficiently separated. Further, the

dimensions are limited so that the fields surrounding the antenna

are quasi-static. The input admittance is determined approximately

from the quasi-static solution and corrected by a radiation conductance

determined by the usual Poynting vector approach. The plasma is

considered collisionless,and Landau damping is neglected; as a

result,the plasma is lossless and the quasi-static input conductance

can be related to the radiated electroacoustic power.

The symmetry assumed allows the perturbation in electron

density around each of the spheres to be described by spherically

symmetric wave equations which are determined from the first

and second moment equations derived from Boltzmann's equation.

Solution in the uniform plasma is particularly simple, but within

the sheath regions a pair of wave equations must be solved

simultaneously; each equation involves the electron density

perturbation and the perturbation in electron drift velocity. These

wave equations are extremely complicated and must be solved

numerically. The method chosen here for solution is an iterative

one involving solution of a simplified wave equation in the density

perturbation only as a first step. This approximate solution can be

substituted into the remaining wave equationallowing approximate

solution for the drift velocity perturbation; this solution is reintroduced
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into the first wave equation to obtain a first order iterative solution

for the electron density perturbation. Once this solution is determined

the input admittance is derived from it. When the EM radiation con-

ductance correction is made the total input admittance is determined.

The relative amount of power radiated in each radiation mode is

determined by the ratio of the quasi-static input conductance to the EM

radiation conductance.

Plots from which the quasi-static input admittance and the

radiation conductance can be determined are given as are those of

other parameters of interest. Comparison is made with the results

obtained for the same geometry without the plasma sheath. Although

there are many similarities in the two cases there are significant

differences. The most salient of these is the general tendency for

the magnitude of all solutions to be reduced when the sheath is

considered. Although the trends of the solution for the quasi-static

input conductance are the same in each case, with the sheath it is

greatly reduced indicating greatly reduced radiated electroacoustic

power. With the sheath there is a very significant increase in input

susceptance (i. e. , toward the value corresponding to a free space

environment). The radiation conductance is zero for each case at

and below the plasma frequency, and each conductance increases

monotonically with frequency to attain the same limiting forms at

high frequencies although the uniform plasma case shows somewhat

greater conductance and hence,greater EM power in the intermediate
I
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frequency range. It is generally concluded that previous analyses

have unjustifiably neglected the sheath and have thereby predicted

excessively large effects due to electroacoustic radiation.
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CHAPTER I

INTRODUCTION

1.1. The Problem and Its Motivation
 

The purpose of this investigation is to determine the effect

of the nonuniform plasma sheath region surrounding a small dipole

antenna,immersed in an otherwise uniform plasma,upon the driving

point admittance and the radiated electroacoustic and electromagnetic

waves. It is hOped that certain generalizations can be made as a

result of this study which will be of general applicability to antenna

problems where the effect of the plasma sheath is important.

Generally,when antennas in plasmas are analyzed the plasma sheath

is ignored; this usually leads to the prediction of a relatively large

amount of power radiated from the antenna in the form of electro-

acoustic waves and of a considerable modification of the driving

point admittance over its free space value; many analyses of this

form have appeared in the literature.

Wait1 has analyzed the spherical aperture antenna in a uniform

compressive plasma. He assumes the applicability of the linearized

Maxwell and moment equations neglecting all loss mechanisms and

replacing the stress tensor by the gradient of a scalar pressure

as is, it seems, conventional in these analyses (this idealization

neglects the existence of Landau dampingZ which is very significant

for frequencies appreciably above the plasma frequency); his solution

is a modal analysis exact within the framework of the basic equations

which he uses. Wait's theory predicts a rather large effect due to



the radiation of EA waves. On the other hand,Larsonf in his doctoral

dissertation analyzed the symmetric version of the same model with
:

essentially the same basic equations and approach but retained the

plasma sheath with its nonuniform electron density and static

potential distribution (be neglected the electron drift current); this

theory predicts a much smaller effect due to EA propagation.

In the class of analyses in which the existence of the plasma

sheath is ignored the common conclusion drawn is that the radiation

of EA waves has a relatively great effect upon the antenna driving

point admittance. Those analyses including the sheath show,as a

general rule, a much reduced effect.

Chen4 has analyzed the hertzian dipole as well as the thin

cylindrical dipole assuming a uniform plasma and no plasma sheath;

he obtains relatively large effects in each case. Chen5 also has

analyzed a conducting cylinder in a uniform plasma with no sheath;

he has found that the radar cross section due to the excitation of

EA waves is orders of magnitude greater than that due to EM wave

excitation, i. e. again a large effect due to EA wave propagation.

Fejer6 has analyzed a short dipole antenna consisting of two

metal spheres connected by a thin feed wire driven at its center and

assuming a uniform plasma with no plasma sheath. He determined

the quasi-static fields surrounding the dipole using Poisson's

equation and the linearized moment equations derived from the

collisionless Boltzmann equation; he calculated the driving point

impedance based on this quasi-static solution and proceeded to

correct this expression with a radiation resistance using the usual



Poynting vector method in conjunction with the radiation zone fields

which were matched to those in the quasi-static zone of the dipole.

The model was simple,if somewhat unrealistic,but yields some

particularly simple and interesting analytical results; his results

also predict a substantial effect due to the excitation of EA waves.

There are many criticisms which might be made of these

various antenna -plasma analyses, but the most seemingly questionable

assumption is that of a completely uniform surrounding plasma

(i. e. , neglecting the plasma sheath); the vast difference in the results

of Wait and of Larson,which represents essentially a comparison of

the same geometry with and without the sheath,dramatizes this

contention. The exact mechanism accounting for this difference

is in question. This mechanism may be simply a matter of the

depleted plasma sheath region, which forms a relative void near

the antenna's surface, effectively isolating the antenna from the

plasma for EA excitation. It is well known that there is a coupling

between EA and EM waves in the presence of a density nonuniformity

or discontinuity; this latter explanation seems more plausible since

the sheath seems too thin for a void of that thickness to be an effective

decoupling agent.

The most rigorous of the analyses referenced here is that

of Larson,whose approach does not depend upon a dipole approximation

involving solution for only the quasi-static solution in the vicinity

of the antenna but solves for the total fields and is,therefore,not

limited in antenna dimension. Prior to this analysis,Schmitt7

analyzed acoustic plasma resonances in a cylindrical plasma column



 

solving a modified form of the homogeneous Klein-Gordon equation

with the plasma frequency written as a function of position to account

for the nonuniformity in the electron density; the electric field of

charge separation and the electron drift current were neglected. As

mentioned before,Larson included the electric field but neglected the

electron drift current. Inspection of the electron density wave

equation developed in chapter IV indicates that the effect of the drift

current is not entirely negligible, if small, so that it should be

included in a rigorous solution of antenna -plasma problems.

1. 2. The Geometry
 

The geometry of the problem considered here consists of two

perfectly conducting spheres, each of radius a , and separated by a

distance D in a compressive plasma of infinite extent and of uniform

density nm except in the vicinity of the spheres' surfaces. The

spheres are connected by and symmetrically driven in antiphase

from thin feed wires lying along the line between the sphere centers

as indicated in Figure 1.1. The main body of the plasma consists

of electrons and positive ions in equal numbers per unit volume

assuring plasma neutrality; each constituent gas has the constant

density nco there, and the electron gas is assumed to have a

Maxwellian velocity distribution with a constant temperature Te

so that the gas obeys the ideal gas laws. Due to the thermal motion

of the electrons and ions a "plasma sheath" of nonuniform plasma is

formed around each sphere. Because of their small mass relative

to the ions, the electrons accumulate on the spheres in sufficient



numbers to create a negative static potential on each of the spheres

which accelerates ions to them and repells further ingress of

electrons; this leads to an equilibrium situation in which electron

and ion densities decrease to relatively small values and in which

charge separation, with an accompanying electric field, occurs as

the spheres are approached; in addition, there is a steady drift of

electrons and ions toward the spheres in this sheath region. The

densities and drift velocities as well as the electric field due to

charge separation return to their uniform plasma values

asymptotically with distance from the spheres; drift velocities

and the electric field vanish in the uniform body of the plasma.

Although the sheath variables return asymtotically to their uniform

values, uniformity has been essentially reestablished within a

distance of approximately ten debye shielding lengths so that, in

order to facilitate analysis, the plasma may be considered uniform

for distances from the spheres of the order of,or greater than,this

figure. The plasma surrounding each sphere is to be modeled,then,

by assuming a certain plasma density profile in a sheath region which

returns to uniformity smoothly in a finite and arbitrarily specified

distance from the sphere; the rest of the plasma is considered

uniform so that analysis of the propagation of electroacoustic and

electromagnetic waves is greatly simplified, in the absence of a

constant magnetic field, by the mode separation technique developed

by Cohen. 8 The feed wires are considered to be so thin that there

is no appreciable charge accumulation upon them and hence,neg1igible

sheath formation around them. The assumption is made that the



sheath thickness is much smaller than the center to center sphere

spacing D so that the sheath formation is essentially spherically

symmetric about the spheres' centers; this requirement is not

unreasonable since in most plasmas the sheath thickness will be

quite small. Further,the sphere spacing D is assumed sufficiently

greater than the sphere radius a so that when the system is driven

the perturbation in the spheres surface charge density,as well as

all perturbations in plasma variables within the sheath)have

spherical symmetry about the center of the sphere in question.

The dimension D is assumed to be much smaller than the electro-

magnetic wave length in the uniform portion of the plasma so that

the radiated electromagnetic fields may be determined considering

the antenna to be an electric dipole in the uniform plasma consisting

of two point charges (located at the sphere centers with charge equal

to the sum of that on the sphere's surface and that in the sheath)

separated by a distance D; for this assumption to be valid there

must be no charge accumulation on the feed wires,a condition which

requires that D not be extremely large relative to the sphere

radius a (the antenna is an end loaded dipole and requires coupling

between the spheres to guarantee uniform current in the feed wires

and,hence,no charge accumulation upon them). There is obviously

a conflict here with the symmetry requirement that D be much

larger than a; even though there may be a compromise range of

values for D/a in which each requirement is adequately met it

seems that this range would be small at best. Despite this conflict,

the assumptions made are necessary to make the problem tractable,



and herein lies the justification for their use.

This geometry has precedent for its use; with the exception

of deletion of the sheath region the same geometry has been analyzed

by Fejer6 who obtained some very interesting results in surprisingly

simple analytical form; a major goal of the present study is to check

out Fejer‘s results by inclusion of the effect of the sheath region.

This geometry, while not representing a practical antenna structure,

lends itself nicely to solution, and the results obtained should shed

some light on the effect of the plasma sheath on antenna performance

in a compressive plasma. The spherical symmetry of the perturbed

quantities in the sheath allows the analysis to center around the

solution for electromagnetic and hydrodynamic (plasma density,

drift velocity, etc.) quantities radiated from a single sphere; the

problem then reduces to a one dimensional one greatly simplifying

the analysis.

The plasma surrounding each sphere will be arbitrarily

subdivided into three regions. First Region I, the sheath region,

extending from r 2 a to r : d is conSidered to contain all of the

nonuniform plasma. Second Region II, extending from r = d to

r 2 dl , is conSidered to have. uniform plasma everywhere,joining

that of Region I smoothly at r 2 d, and to be entirely within the

quasi-static zone of the antenna so that the EM fields can be

approximated nicely by solutions to Poisson/s equation. Region 111

extends from r : d1 to infinity, has uniform plasma everywhere,

and encompasses the radiation zone as well as the transition zone

between the radiation zone and the quasi—static zone. The profiles



of pertinent plasma variables in the three regions are plotted in

Figure 1.2.

1. 3. The General Approach
 

The driving voltage applied to the antenna just described

is limited to magnitudes much less than the static potential built

up on each sphere by the thermal motion of electrons and ions in

the plasma in order that the perturbations in the electromagnetic

and hydrodynamic quantities in the plasma be linearly related to

the applied voltage. This allows linearization of Maxwell’s equations

and the moment equations which represents a major simplification

of the analysis; the development of the linearized equations is

carried out in chapter 11. This study ignores the possible existence

of a static magnetic field; therefore, in the uniform plasma region

(Regions II and III) Cohen‘s mode separation approach can be used

to advantage. This approach separates the solutions for the

electromagnetic and hydrodynamic perturbation terms from the

linearized Maxwell and electron moment equations, developed in

chapter II, into an EM mode (electromagnetic)- and an EA (electro-

acoustic) mode for a uniform plasma in the absence of a static

magnetic field and loss mechanisms. The equations show that the

modes are decoupled,with the EM mode containing all of the

perturbation magnetic field and no charge accumulation,behaving

as if in a lossless dielectric medium of relative permitivity

2
w

l - % (where (up is the plasma frequency). No loss mechanism

(.0



is considered here for simplicity although there exist, in reality,

two major sources of damping,namely’the electron-neutral particle

collision and Landau damping. Although not always negligible,

collision losses above the plasma frequency, where EA prOpagation

is possible, should not be great in most laboratory plasmas and

in the ionosphere. Landau damping results from the trapping of

electrons of high thermal velocity in the potential troughs of the

EA wave resulting in a net transfer of energy from the wave into

the plasma in the form of heat; this effect greatly clamps EA waves

for frequencies higher than about twice the plasma frequency so

that the results of this analysis should be applied with care beyond

this point.

Regions I and II lie entirely in the quasi-static zone of the

antenna so that the electromagnetic fields can be approximated by

solutions to Poisson's equation. A one dimensional Poisson's

equation will be solved in conjunction with a one dimensional wave

equation in the electron density perturbation analogous to the

inhomogeneous Klein-Gordon equation; in Region II,this equation

is, in fact, the Klein-Cor don equation. In each of these regions

the Poisson equation is solved in terms of the solution to the

density wave equation. The density wave equation is independently

solved-~exactly analytically in Region II and approximately by

numerical means in Region I. The solutions in Regions I and II

are matched at the interregional boundary (rzd) assuming the

continuous differentiability of the potential perturbation and the

electron density perturbation. In Region I,at the surface of the



lO

sphere, boundary conditions developed in chapter V are used to

tie together the solutions for the density and potential perturbations

as well as to tie the solutions to the driving potential V. In Region

III,the mode separation technique of Cohen is employed to obtain

solutions for the complete EM and EA terms. The EA terms are

directly tied to those of Region II since the solutions are identical

in the two regions. At the interregional boundary (r=dl) the scalar

potential term valid in the radiation zone as well as in Region II

(taken from modal solutions) is matched to the scalar potential

derived in Region II from Poisson's equation. This matching

process is surprisingly simple here; the scalar potential in each

region consists of a term due to the electron density perturbation

and an “EM" term; the EM term from Region III matches directly

the degenerate EM term from Region II, their forms being

essentially the same while the EA terms are identical.

The antenna current I can be determined from the surface

charge density perturbation on the sphere and the plasma current

perturbation at r = a ; each is easily related to the driving potential

V so that a driving point admittance (denoted YP) can be calculated.

Since no loss mechanism was included in the analysis and since no

EM radiation effect is included in this admittance, because only

the quasi-static solution was obtained in Region I, the real part of

this admittance accounts for the existence of electroacoustic waves.

The effect upon the driving pomt admittance of the EM radiation

can be included, because of the absence of all loss mechanisms,

by the usual Poynting vector method; a radiation conductance term



 

11

will be calculated by this method and displayed, in addition to YP ,

in chapter VIII. The ratio of the power radiated in the form of

electroacoustic waves to that radiated in electromagnetic form is

also given versus frequency.

Fejer describes the application of his theory to resonance

probes and the modifications to the usual theory brought about by

its application. He indicates that the usual theory can be grossly

in error; this contention makes comparison of his theory with the

present one on this particular point of interest. He argues that

resonance indications take place at frequencies representing peaks

(poles in his theory) of the electron density perturbation at the

probes surface; the peaks in his theory occur appreciably below

the plasma frequency whereas the conventional theory takes the

resonance indications to occur at the plasma frequency. Plots

of the electron density perturbation at the sphere’s surface versus

frequency from the present theory are presented in chapter VIII

for comparison with Fejer’s results.

Admittedly,the model analyzed here is highly idealized as

well as being quite specialized, and the boundary conditions to be

used (developed in chapter V) are somewhat arbitrary and perhaps

not entirely realistic; hopefully, however, the results of the

analysis will yield some insight into the extremely difficult

problem which antenna-plasma problems represent.
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CHAPTER II

BASIC EQUATIONS

2.1. Basic Equations

The most basic description of the dynamical behavior of a

plasmawould be a description of the position as a function of time

of each constituent particle of that plasma. Obviously this kinetic

or microscopic approach is impossible in general and recourse to

the statistical hydrodynamic or macroscopic approach is required.

A plasma being merely an ionized gas it is natural to apply the

basic equations of gas dynamics to the description of the plasma.

A basic set of equations applicable to gas dynamics consists of the

Boltzmann equation

a _ _ .

5fgw-VHEJL.vvf=(5?) (2.1)

and its first and second moment equations

v-(nfi) = - .31? (2.2)

.ai — ’___:_ _1_... .s _.l.__
at+(u.V)u—a ~an w+nm PC (2 3)

where f = f(-r_, V, t) is the statistical distribution function for the

gas in question in phase space,

_3

n = g f‘dv is the number density of the gas equal to the

' vs . ..

integral of f over velocrty space,

— -3

g‘ fv dv is the mean velocity of the gas particles,

' vs

5
|

II

"
I

l
l

5
|
“

5
|
“

' _ _3

S f a dv is the mean acceleration of the gas particles,

' vs

14
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q; is the stress tensor related to the compressibility of the

8 _. -3

m 5361-8“ f wi w dw where

VS

gas and defined by (V ° Mi 2

E = V - E ,

PC is the mean momentum gain of the gas particle defined as

' _ _3

m 3 (g—E— v dv ,

vs coll

m is the particle mass.

The only other term requiring description is (3-5) 11 WhiCh

co

can be considered as the total derivative in time of the distribution

... _ ..3 _3

function f(r, v, t) due to collisions. Also (3%)“)11 dr dv is

the net time rate of increase of particles in a differential volume

dr3 dV3 in phase space moving at velocity V and is due to

collisions; this seems reasonable when it is recognized that the

Boltzmann equation is just a continuity equation in phase space.

In addition when the particles of a gas are ionized the

dynamics of the plasma is also determined by Maxwell's equations.

The plasma consists of electrons, positive ions, and neutral atoms

so that Maxwell's equations take the form

__ .3 _

V - F. _ 6 (Iii-he) (2.4)

O

— _ as
VXE — - 5-?- (2.5)

VXE— (" ‘)+ 53—37 (26)
- IJ'oe niui-neue Ho oat '

v-Ez o (2.7)

U
3
!

where E and are the total electric field and the total magnetic

flux density, respectively; e is the electronic charge; “‘0 and 60

are the permeability and the permitivity of free space, respectively.
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The subscripts i and e on n and E denote positive ion and

electron quantities, respectively.

Each of the three constituent gases in the plasma (electrons,

positive ions, and neutrals) should be described in part by separate

systems of equations of the form (2.1) through (2. 7); the neutrals,

of course, are not affected by the E and -B_ fields so that only

equations (2.1), (2. 2), and (2. 3) apply. The neutrals do not enter

into the wave prOpagation picture and so are of little interest

except in so far as they collide with electrons and ions thereby

affecting their distributions. The ions are much too heavy relative

to the electron mass to contribute to wave propagation directly

although they do affect plasma sheath variations of electron density

and the sheath potential distribution, and thus in this manner make

their presence felt. Characterization of the positive ion gas by use

of equations (2.1), (2. Z), and (2. 3) is found to be difficult so that

different means must be found. The electron gas lends itself fairly

well to description by means of these equations however, and use

will be made of them as the basis of the following work.

2. 2. The Collision Term
 

The collision term PC in equation (2. 3) is, in general,

an extremely difficult quantity to evaluate; it can be approximated

only under special conditions. In the case of the weakly ionized

gases which are being considered the dominant collision effect

is that corresponding to the collision of electrons and neutral atoms.

One commonly used model in this case where the plasma is assumed
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to be nearly in equilibrium assumes a constant collision frequency;

then the collision term in the Boltzmann equation can be shown to

be approximately

6 .

(—-) = - fc (fe — fee) (2.8)

where fC is the collision frequency between the electrons and the

neutral atoms, fe is the distribution function for the electrons,

and feo is the equilibrium distribution function for the electrons.

The acceleration term 3 for the electrons is related to the E

and E fields by

e

m

e

3’: - [f+;xB]

if gravity and other external potentials are assumed absent. In

this case equation (2.1) becomes

Bfe _ e

'5? ”'er-rn:
(E + va)- vae = - fc (fe -feo) (2.9)

The collision term fie then becomes

 

_ __3

P =m§-f(f -f)vdv=-mf(nu-nu)
c e'vs c e eo ec ee eeo

sothat

re _ _

n m 2 - fc (ue - ueo)' (2°10)
e e

Other models for this weakly ionized case are possible, such as a

constant mean free path, but equation (2. 8) is likely to be as good

of a model as any other yielding such a simple form for Tic .
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2.3. The Stress Tensor
 

The stress tensor term Hrln- V ° q; is another term which

defies description. It seems impossible to evaluate for the ion

gas, but it can be approximated for the electron gas by assuming

that the ideal adiabatic gas law applies. For the electron gas the

divergence of the stress tensor can be replaced by the gradient

of a scalar pressure derived on the basis of an ideal gas formulation.

This can be shown by direct calculation of the i-th component of

the divergence of the stress tensor

3 _ _3

(V-Lp)i=me fw.wdw .
8 X. 1

1 vs

First it can be shown that by the definition of U the integral

5‘ fwiw. dU3 vanishes if i 75 J so that

vs J

a Z —3

(V°\P)i = m S fa.)i dw 

e 8X.
1 vs

8 2
: —-—— < >3X1 [mene mi ] (2.11)

where < wiz > is the mean square of the i-th component of particle

velocity in the reference coordinate system moving with velocity

E .
e

Next a differential volume of cross section dA and length

A

d Xi is considered. Within this volume all particles with Xi

directed velocity components (in the moving system) equal to wi

dw.

within :b-z—l— are considered as a group to carry, in time dt, a

A

momentum dp out of the volume in the Xi direction.
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dp = m f(w.) dw. dAdX. w.
e 1 1 1 1

This corresponds to a pressure of

m f(w.) do). dA dX. w.
e 1 1 1 1
 

_ __1. £2 _

dP ‘ dA dt " dA dt‘w

dX.

But mi = Tit—1 so that this ensemble of particles contributes a

pressure

dP : m f(w.)m:Z dw..
e 1 1 1

Integrating the contribution of all particles of all velocities in the

Xi direction

2 - 2

P: dP= m f(w)w.dw=mn <w.>
. e 1 e o 1

so that

01‘

V'Lll = VP (2.12)

where P is the usual pressure in the moving system. It must be

remembered that for this expression to be useful the gas considered

must behave in a sufficiently ideal manner that the concept of a

pressure is justified.

In the electron gas,collisims are assumed to be sufficiently

frequent so that in the equilibrium state, i. e. , when no external

fields are present, the distribution function feo is nearly

Maxwell-Boltzmann, and the gas obeys to a good approximation

the ideal gas laws. If feo is Maxwell-Boltzmann the concept of

a pressure and a temperature is valid; the electron temperature
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T8 of the electron gas is assumed to be constant so that

P = K T n and

VP = KT Vn (2.13)
e e o

for the unperturbed gas (n0 will henceforth be used to denote the

unperturbed value of ne).

In all of the work to follow all of the electron plasma

variables (ne, Ee’ f, etc.) are assumed to consist of their

unperturbed values (those existing in the absence of external

fields) plus a relatively small perturbation term due to external

fields. All of the unperturbed terms will carry the subscript

zero while the perturbation terms will carry the subscript one.

The ion variables will be assumed to be unperturbed and will

carry the usual symbolism.

In so far as perturbations are concerned it is assumed

that collisons are sufficiently frequent to allow description in

terms of a perturbation pressure term but that the effect of the

external fields is so great as to reduce the number of degrees

of freedom in the perturbation system to one. Perturbation

density variations are assumed to form adiabatically so that the

ideal adiabatic gas law applies. Just how well all of these

conditions are satisfied is open to question, but these assumptions

are common ones evidently representing the best approximations

available. The ideal adiabatic gas law states that

P~ n‘1 (2.14)
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C

where a is the specific heat ratio OR which is equal to L?

v

from the kinetic theory, and Y is the number of degrees of

freedom of the perturbation system. Here Y = 1 which implies

that o. = 3 . Equation (2. 14) implies that

P (11 )Cl

__9. =

P
o o

11
Cl.

_ e _
VPe—V P0 (11—) _v Pe(n1,no). (2.15)

0

fi
l
m

or that

The chain rule can be used to write

 

6P 8P -

VPe=a—n—e vno+anle an . (2.16)

O

Evaluat1ng a Pe/ a no and a Pe/ a n1

 

 

 
  

8P 8 n1 0. nl a-l

ezKT —— 11 1+— =KTc1(l+—)
an e an o n e n

1 1 o 0

or

8Pe P6

8111 = (1 I—1_ (2.17)

e

and

a

ape z KT 3 (n1 +110) = KT :9. n°+(l-a)n1 (218)
an e an a-l e P n +n ° °

0 o n o 1 0

Assuming the perturbation density term n1 is much smaller than

the unperturbed term n0 equations (2.17) and (2.18) become,

respectively
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BPe PO

: G. —— = (1 KT (2.19)

anl no e

and

BP

ane = KTe . (2.20)

0

Substituting equations (2.19) and (2. 20) into equation (2.16) VPe

take 3 the form

VPe = KTeVnO+oKTean . (2.21)

The assumption that the unperturbed electron gas obeys the ideal

gas laws allows application of the equipartition principle. Since

there are three degrees of freedom in the unperturbed gas the

mean kinetic energy of the unperturbed electrons is

mv

3
K.E. 2 3° = EKT (2.22) 

where v: is the mean square unperturbed electron velmity. The

constant a hasbeen given the value three; use of this value and

equation (2. 22) in equation (2. 21) imples

VP =KT Vn +mv2 Vn . (2.23)
e e o e o 1

This is the common scalar pressure subsitution for the stress

tensor; it can be no better as an approximation than the set of

assumptions leading to its development.
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2. 4. The Moment Equations

The mean electron acceleration term -a: of equation (2. 3)

can easily be shown to be

a. : .-

‘m" e

in the absence of gravity and other external potentials. If equations

(2. 23) and (2. 10) are substituted in equation (2. 3) the moment

equations for the electron gas with small perturbations from

equilibrium take the form

 

— anl 224
V-(neue) = - ‘52—'- (- )

and

351 _ _ e _ _ __

——t-— +(ue°V)ue=-E-;(E+uex)

- 1 (KT Vn +mv2Vn)—fu
nem e o 80 1 Cl

(2.25)

It is possible to separate equations for the unperturbed variables

by dropping all perturbation terms, 1. e. ,

V ' (nouo) = O

and

... .— _ e _ _ __

(uO°V)uo---rH(EO+qu )-n m Vno. (2.26)

e o e

 

The moment equations for the perturbation terms can be simplified

by retaining only first order terms in the perturbation terms, i. e. ,

dropping all the unperturbed terms as well as all of those involving
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the product of more than one perturbation term. Equation (2. 24)

1s reduced by replac1ng neue by noul + nluo so that

an

— - _ 1
V ~[noul +nluo] - --—at . (2.27)

The first order terms corresponding to ne(1_1-e - V) 3e are

[ne(ue - V)ue]l = n0(uo - V)ul + no(ul - V)uo + n1(uo - V)uo;

(2. 28)

those corresponding to ne[E + 3e x a are

[n (E+u xB)]l =nlEo+nO l+nO OXB1+nOuIXEO+nlEOXEO

(2.29)

It follows that equation (2. 25) is reduced to

aul _ _ _ eno _ _ _ 2

no -8t— +[ne(ue - V)ue]l + fcu1 = - E'T-[El + ue x )]l - voan

e (2.30)

Equations (2. 26), (2. 27), and (2. 30) are general and complete for

the case of small perturbation of the equilibrium plasma.

In the special case to be considered in the bulk of this work

where collisions, the Lorentz force, and any constant magnetic

field are neglected the moment equations for the perturbation terms

become

_ _ 8n1

V- [noul +nluo] : - 3t

and _

aul - - e —- — 2
no 3?— + [ne(ue - V)ue]l = - Eel: noEl + nlEo] - voan . (2. 31)

In a region of uniform plasma where the densities of ions and

electrons are constant and equal, :0 = O, collisions can be neglected,

the perturbation Lorentz force term is neglected, and the unperturbed

"E" field is zero equat'nls (2. 27) and (2. 30) take the relatively simple

form
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8n

n V° E = - —1-
o 1 3t

and __

aul eno _ 2

no—at— = - m E1 - Voan . (2.32)

e

Maxwell's equations can also be separated into equations in

unperturbed and perturbation terms, respectively.

_ -1 _

v. E0 _ 60 (ni no) (2.33)

— - .53.

V' E1“ "e n1
0

v x350 = o (2.35)

VxE1= -—3-t- (2.36)

V x30 = o (2.37)

_ _ _ 315

V x B1 = - p.oe(noul + nluo) + [.1060 —5t— (2.38)

V°B0=V°B1=O (2.39)

In the uniform plasma region just described equation (2. 38) can

be simplified to

__ 8E1

(2.34)

V X B1 = - uoe noul + p.060 -5_t_ . (2. 40)

Thus equations (2. 32), (2. 34), (2. 36), and (2. 39),together with

equation (2. 40),comp1etely specify the dynamics of the uniform

plasma.

The solution of the perturbation equations for the uniform

plasma can be simplified by separation of the plasma variables

into two sets of variables corresponding to an electromagnetic

and electroacoustic mode as described by Cohen. 8 In this

mode separation technique the four perturbation plasma variables
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are considered each to be the sum of an ”EM” and an "EA" component

to be denoted with subscripts 1e and 1p, respectively.

E1

B1
3
:

It can be shown that

+E

Ele 1p

1316+131p

u

1e+ulp

+n

n1e 1p
(2. 41)

such a mode separation is indeed valid in the

frequency domain and that the new modal variables are determined

by the following equations.

 

 

EMmode

V xE1e = -ijl

—- __S — - —

Vx 1— LLOJ -|J.Oen0u1e+jwp.o€0Ele

s

- "' z 2....

V E:1e 6(a))

2

0)

do) - 60(1 ~---%)

to

2

2 noe

w = (2.42)
p meeo

EA mode

V xEl = O

P

jwpoeoElp-uoe non—1 = O

V - E = £— - — n -V ° E
1p 6 e 1 1e

0 .2

_ enO E1

jwn 1.11 = -——In—E' -V an (2.43)
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The terms 78 and pS are source current density and source

charge density terms which are independent of the plasma variables;

0) is a plasma parameter called the plasma frequency. It can be

seen that Blp = file = 0. Equations (2. 42) and (2. 43) indicate

that the EM mode has an electric field, all of the magnetic field,

but no charge accumulation. The EA mode consists of an electric

field, no magnetic field, and all of the charge accumulation. It

is a simple matter to manipulate equations (2. 43) into a wave

equation in 111

2 s

w )0
V2+—12-(w2-w2) n = -—P—— . (2.44)

p 1 2

V0 evo

This is the well known inhomogeneous Klein-Gordon equation. This

equation has the particular solution

1 w ' s E-jfipr
: ._ __L __._____nl 411' 2 5 p r dv (2. 45)

e v vol

0

where 2 2

b.) - (1)

(3p - V0 .

The EM equations can be solved considering that the sources exist

in a region of constant permitivity

2

(.0

6(0)) 2 e0 (1 -43).

w

This mode separation technique is unfortunately not valid

when external magnetic fields are present or when the plasma
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density is not uniform, i. e. , in the plasma sheath surrounding an

antenna emersed in a compressive plasma, for example. For the

case of the plasma sheath a wave equation for nl similar in form

to equation (2. 44) is developed in chapter IV; its extremely complicated

nature requires that its solution be numerical.



CHAPTER III

THE PLASMA SHEATH

3 .1. Sheath Formation
 

Whenever a conducting object is submerged in a hot plasma

it assumes a negative potential relative to the surrounding plasma.

If it is assumed that initially both electrons and ions are individually

in thermal equilibrium at temperatures T6 and Ti’ respectively,

where Ti < < Te (generally in arcs and ionospheric plasmas, where

the plasma density is low, Ti < < Te) the electrons because of

their small relative mass have much greater thermal velocities

than do the ions. Therefore, upon introduction of the conductor

into the previously uniform plasma, the electrons initially impact

upon it in relatively large numbers before the ions can reach it in

appreciable numbers. As a result a negative potential is produced

at the conductor surface which accelerates the ions to the conductor

and repells the electrons from it. Equilibrium is achieved when

electrons and ions impact the conductor in equal numbers per unit

time.

As a result of this process there exists in the plasma

surrounding the conducting object a negative potential distribution

which increases monotonically with distance from the conductor to

the potential of the main body of the plasma. Also electron and ion

densities as well as the corresponding drift velocities vary in the

same manner in space as a function of the potential. If the conducting

object is an antenna the nature of these spatial distributions of

29
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of potential, densities, and drift velocities will influence the electro-

magnetic and electroacoustic waves radiated into the plasma.

This region of nonuniform plasma will henceforth be termed

the "plasma sheath" or merely the "sheath". Specification of the

plasma sheath parameters is a very difficult problem although

approximate analyses of various geometries under restrictive

assumptions have been carried out by numerous workers.

In genera1,the character of the plasma sheath is determined

by the effects of particle collisions as well as the effect of the fields

due to charge separation. The solution of the problem considering

the effects of collisions, diffusion, and drift due to charge separation

is a very elusive one, and no one to date has adequately attacked

this general situation.

A large class of plasma problems involves the so-called

"low density" or "low pressure" plasma where collision effects can

be largely neglected relative to the dominant effect of drift due to

the electric fields of charge separation. Once attention is limited

to this class of plasmas a number of simplifying assumptions can

be made allowing approximate solution for the major parameters

describing the plasma sheath. Various sets of assumptions and

corresponding analyses have been made by many authors.

3.2. Analyses of Low Density Plasmas
 

In the case of low density plasmas contained in a finite volume

where the mean free path of the ions through the neutral particles

(and therefore of the electrons through the neutrals) is much greater
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than any linear dimension of the plasma a simplified analysis (such

as that given by Tonks and Langmuir10 and extended by Self“) for

the sheath can be carried out. It is found that the magnitude of the

conductor potential corresponds to several times the average electron

thermal energy outside the sheath; therefore, nearly all electrons

entering the sheath are reflected by the retarding sheath potential

so that the distribution function for the electrons outside and inside

(except perhaps very near the conductor surface) the sheath should

be nearly Maxwell -Boltzmann. It is easily shown that the ion

velocities cannot be Maxwellian distributed anywhere in the vicinity

of the conductor since the conductor absorbs nearly every ion

impacting it yielding a deficiency of ions traveling outward from the

conductor. The ion density distribution can be related to the potential

distribution by various orbital analyses; Poisson's equation can then

be solved for the potential distribution.

To illustrate the mathematical difficulty incurred if a

Maxwellian ion velocity distribution is used (whether totally Maxwellian

or Maxwellian for incident ions only) to calculate the ion drift current

density to the conductor a Maxwellian distribution is assumed valid

outside the sheath at a distance far enough from the sheath to allow

the ion velocity distribution to become essentially Maxwellian with

a drift term yet close enough that collisions between this point and

the conductor can be neglected. To simplify the description the

conductor is assumed spherical and the plasma surrounding the

sphere has spherical symmetry. The ion distribution function is



 

32

M. 3/2 --2—I-<—:I.-:[(vr-uoo)+ve+v¢]

__1__

noo (21rKT.)
1

{(17, £7) = . (3.1)

For the case of negligible collisions between r = d and r = a the

continuity equation becomes

_ 2 _

O = V ° (nu) or 411' r nu = constant (3.2)

so that the ion current directed to the sphere at r = d equals that

at r = a. The total ion current density at r = dis then

 

. . M. 3/2

nu _( H? mm?” (———1—-)-
r=d ’ 0° ZTrKT.

vel. space v. s. 1

—M-i—- [( u )2+ 2+ 2]'2KT. Vr' co V9 V4» __ _3

6 1 v dv

or

nur___d=nGO ucJo . (3.3)

This follows from the definition of the drift velocity and direct

integration of f(;, V) V over the velocity space. No information on

the value of ucJo is available from this integration process; also,

the assumed distribution HF, _) vanishes only at v = infinity

irrespective of the absorptive properties of the sphere. Generally,

the sphere is assumed to absorb all ions impacting it, hence, in

the absence of collisions in the sheath no ”outward going" ions

should exist at r = a or r = d, i. e. , f(d., v) should vanish for

vr > 0 contradicting the Maxwellian form of the distribution for

positive vr . The standard Maxwellian distribution seems invalid

and an alternative must be considered.
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The next reasonable approach seems to be that of assuming

that the incomlng ions have a Maxwellian velocity distribution while

the distribution function vanishes indentically for Vr > O . One

might then attempt to calculate nco um as 3 f(r, v) V dv

by writting this integral in terms of um ther‘lfossoolving the resulting

equation in uGO for u(D . This,at first,might seem plausible since

in this case

n u = ‘3 f(r, V) VdV3

as in the case of the complete Maxwellian distribution.

This equation takes the form

 

,2 M 3/2 .0 .+00

- - — —-3 l

nooucJo =3 f(r, v) v dv - C3 (ZTTKT) S ‘8

V S
:-<D Ve_-m

r

Mi

o+00 ‘2—1-(1‘ [(v -uq) +ve +v¢)]

e 1 v dv dvedvq)

V¢:‘-CD

or M.

M 1/2 .0 ————-—l--(v -u )2

n u :n (—-—i—--) e ZKT'I 1‘ 00v dv . (3.4)
00 00 00 2TrKT.1 W _ CC. ‘ r r

VII—V

This can be integrated to obtain
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or _.-_ ,_.._

l e ~x2 Miu:

X = —- m where X 5 'Z‘R—f— . (3. 5)

V17 i

This equation, unfortunately, has only an infinite solution for uCO .

This can be seen from the fact that

 

f(x) 3 l u —' “x

«n

is an asymptotic approximation for erf x approaching it asymptotically

"from below" and increasing monotonically as x approaches +00 .

Therefore equation (3. 5) is satisfied only for ucJo : - 00 which is non-

physical, and therefore the assumed distribution is again invalid.

Although this technique is useless for determination of um) its

failure does not indicate that the assumed distribution is grossly in

error because g(x) is a very good approximation for erf x if

x a V2 so that the equation is very nearly balanced for u: of the

4KT.

M.

1

various authors by different techniques.

which is of the same order as that determined by

 

order of

The problem of including the temperature of the ions in the

main body of the plasma in the sheath analysis is very difficult and

has not been rigorously approached to date in the literature. The

usual approach when including ion temperature is to assume that the

ions are monoenergetic, i. e. , all having the same average energy.

In contrast a Maxwellian distribution for the electrons at r = (1

seems quite appropriate since most electrons are reflected back

into the plasma maintaining the Maxwellian character of the outwardly
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directed electrons at r : d. With the exception of the close vicinity

of the spheres surface, at every point in the sheath it is also true

that most of the inwardly directed electrons are reflected by the

sheath potential somewhere between that point and the spheres

surface. The velocity distribution in the sheath (except very near

the spheres surface) is essentially Maxwellian so that the electron

density distribution can be assumed to be essentially Boltzmann.

Corrections to the Boltzmann distributlon close to the sphere have

been given by various authors although most analyses merely assume

that the electron density is perfectly Boltzmann everywhere.

Only the ”tail" of the Maxwellian distribution contributes

electrons to the drift current to the sphere. The drift velocity can

be determined in terms of the. sphere potential by assuming a strictly

Maxwellian distribution of electron velocities at r = d and integrating

the contributions of the fast electrons in the Maxwellian "tail", i. e. ,

those electrons with negative velocities at r : (1 corresponding to

energies sufficiently great to overcome the large negative sphere

potential, 1. e. ,

  

2e <33“,

V < V _2- .. .._._ 4

r c m

where éw 3‘7 - (PW is the potential of the sphere. The resulting

integral equation can be solved exactly and reduced to the standard

approximation by use of order of magnitude values of um and vC

from other analyses. Then



 

  

 

  

 

 

 

m

_ e
r dvr where 0.6— ZKTe . (3.6)

KTe -nw use

um = - 21rme E + 7(1 - erf ‘VCle (VC - 11(0)) (3.7)

h - ——e¢ s l ' fweren—-KTe. ov1ng or uClo

l
ucO = - 1 (3.8)

2[1+ erf Vae(vC-um)]

It is known from various sources that the order of magnitude of

KT

uco is M and that of nw is 4. 50 so that

i

‘ [me 2e §w

We Vc W‘zme '“n‘ej— “MW = 2'1 (3'9)

and

me KT?

Nice uClo 7 2KT M1 = l. (3.10)

 

This implies that \loe(vc - um) is of the order of 2 so that the

é—[l + erf N/cTe (vC 4100)] is equal to unity within about 0.1%. The

erf x "flattens" out to asymptotically approach 1. 0 very closely

for x_>_ 1 so that variations in the values of nw and u00 from their

assumed values have little effect upon the erf and hence upon the

order of the approximation for 1 [ l + erf V’s: (vC ~um)] and um .
2

The approximate relation for um in terms of nw which is normally

used has been developed.



e W (3.11)

 

It was assumed that collisions within the sheath could be

neglected so that

V - (nu) = O .

This implie s that

~

.0 .0 (g) n<r)u(r) (3.12)

where I = 0,1, 2 for planar, cylindrical, and spherical symmetry,

respectively. In the spherical case if 51:51- < < 1 (i. e. , for a thin

sheath) the factor (E) is es sentiall r unit so thatd 3 Y

nmu =2 n(r) u(r) . (3.13)
CD

In accord with the assumption of a Boltzmann distribution of electron

density

n(r) = n €»:7(r) . (3.14)
(D

It follows directly from (3.11), (3.12), and (3.14) that

2 /K , I
(,(,1\ 2“ .2. Emr) - nw 77(1‘) . (3.15)

T d

u(r) = -\r,- ,—-—m =<;—) ume
'\l e

To complete the description of the sheath it is required that

the ion density distribution and the ion current density be determined

in terms of the potential distribution. Once this has been accomplished

the Poisson equation can be solved for the potential distribution from

which all other sheath variables can be determined.
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v Mr) = -§;<ni<r) weir» (3.16)

Because of the difficulty in determining the ion density and drift

current these quantities are normally determined by orbital analyses

of some type. Normally the ions are considered to be generated cold

so that the drift currents are the result of the potential distribution

.1o,11
only when ion temperatures are considered the energy

distribution is usually neglected and the ions are assumed to be

2, 13 (i. e. , all of equal energy). It might be questionedmonoenergetic1

why a direct and rigorous approach such as solution of the Boltzmann

equation is not employed. If such a solution were accomplished for

both ions and electrons all drift velocities and densities can be

determined hence the sheath would be completely described. If

collisions are neglected and the previous symmetry (or any other

symmetric situation which reduces the description to one space

variable) is considered and if the only field present is that due to

charge separation in the sheath then the Boltzmann equation becomes

__ 6 .~- .

V): “'- “ 7‘;"T,V) _: O (3.17)

for ions and electrons, respectively, where r and v are the space

and velocity coordinates, respectively. Since act/Br is continous

everywhere in the plasma it is easy to show that any differentiable

 

function of x e ¢(r) is a solution. The whole problem then
mv

2

lies in the selection of the correct function which satisfies a set of

boundary conditions sufficient to uniquely describe the solution.
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The fact of the matter is the specification of this basic set of sufficient

boundary conditions is not easily accomplished.

Tonks and Langmuir10 first considered the ion drift into the

sheath as due entirely to acceleration of ions generated in the plasma

at zero velocity by the sheath potential which actually penetrates the

plasma. They limited consideration to a finite plasma enclosed by a

conductor with the ion—neutral mean free path If > > R , the largest

plasma dimension without symmetry, so that only drift due to charge

separation is considered. They solved by a series technique a

"plasma equation" which is really the Poisson equation (3.16) with

n. -n
1 e
 

the left hand side set equal to zero in the plasma since .

approximates zero everywhere except in the sheath. Theilr solution

yields ion density and ion current density at the sheath edge which

allows solution for the “wall" potential (conductor potential) ¢w

by equating ion and electron currents at the conductor surface as

demanded by continuity.

Self11 following Langmuir's formulation obtains complete

solutions for the sheath potential and density profiles. Since this

formulation and the corresponding results. are so commonly used a

brief sketch seems in order here. Three symmetric geometries

are considered: planar, cylindrical, and spherical with the spherical

case pictured in Figure 3.2.

Ions are assumed generated at rest everywhere in the main

plasma body at a rate C(r) ions/cm3/sec. Mi?) is taken as zero

at the plasma center. The drift of ions to the sheath is considered
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as a result of the presence of ';7(;) only, i. e. , thermal effects are

neglected. Further all collisions of the ions once formed are

neglected so that the ion drift and density can be determined from

simple orbital analysis. To determine n(r) u(r) we consider

the number 6N of ions generated in the differential volume

pictured in Figure 3. Z of volume

,2

dv' : A(r') dr' : 4TT1‘ dr'

at r = r' in time dt with zero velocity and accelerated to

 

m. r') = if @(r) —§(r'))
1

at r = r. Now

6N = C(r’) dv' dt (3.18)

and the contribution to n(r) u(r) in time dt when they arrive there

(at r = r) is

_ 6N * G(r') dv'dt _ 3;! ,
d(nu) — Am”)dt .- A(r)dt - G(r')(r ) dr (3.19)
 

where I = 0,1, 2 for the planar, cylindrical, and spherical cases,

respectively. n(r) u(r) is obtained by integrating the contributions

of each differential volume over 0 _<_ r’ E r . Then

.r 2 2

n(r) u(r) = 3 G<rr> (3) dr‘ . (3.20)
O

This integral is generally transformed to an integral over n(r)

and the variables are transformed to dimensionless ones to facilitate

numerical integration, i. e. , the following definitions are applied:
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. _ C(S') ___I_‘_ _ n“
g(s ) — C(O) , s — L L — (3(0) (3.21)

Then (3.20) becomes

n(r)u(r) = not, l(n(r)) (3.22)

where

.n s’ I as’

1M) = 50 g(S') (g‘) 5}]— d-‘l - (3-23)

1(n) is obtained numerically and tabulated for I = 0,1, 2. Except

for the planar case I(n) is a weak function of the form of the

generation function. Two cases are considered: (1) ionization

rate constant in space and (2) ionization rate prOportional to

electron density. The electrons are assumed Boltzmann distributed

so that g(s) can be written

Yr;

g(S) = 61

where Y1 = O for case (1) and Y1 = l for case (2). Self indicates

the following values are valid for Ith):

TABLE 3.1. Self‘s Values for H71»)

[:0 leo 1(11N)=O.3444

— __.-_.——-—-_
 

.3444

.2914

. 2703

. 2571

. 2136N
N
t
-
‘
l
—
‘
O

t
—
‘
o
v
—
‘
o
r
—
I

O
O
O
O
O



The contribution to n(r) due to 6N is

 

 

d(nu) (I I

dn<r) T5“) cm (3) 8 ,dr
V ' (ff-z mr) - in»)

N’ i

Mi r' I dr'
= ZKT G(r')(;—) . (3.24)

Then integrating over r'

dr'

————————— (3.25)

W) - n‘

 

or in terms of the dimensionless variables

r:

n(r) = Mi ) (s') (it)! 1 85' d (3 26)
ZKTe . 0 g S" m an 1’) . .

This latter equation has been solved in conjunction with Poisson's

 

 

equation for the density and po:entia1 distributions. The geometry

analyzed considered a finite plasma (at least the range of the space

variable without symmetry is finite). If the external symmetric

cases are considered the formulation of equations for n(r) u(r)

and n(r) is identical and yields equations of identical form so

that one might be tempted to use Self‘s result for the external

infinite plasma cases. No doubt the results apply well enough for

sheath thicknesses much less than the radius for cylindrical and

spherical cases, but these integrals involve integration over r

from infinity to r = a . It is a simple matter to show that each

diverges. For thin sheaths the sheath geometry is nearly planar;
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further, it is difficult to imagine much difference between external

and internal sheath formation. This contradiction of physical

intuition with mathematical results can be rationalized by realizing

that in the infinite plasma region surrounding the conductor the

collisionless assumption of Self‘s internal plasma analysis cannot

be justified as r ->00 . Eventually)as r increases,collisions

become more important, the analysis breaks down, and drift

currents and densities are maintained finite.

Bernstein and Rabinowitzl‘2 analyzed the external infinite

plasma for the spherical and cylindrical cases. Electrons are

assumed to be Boltzmann distributed while an attempt to solve

the Boltzmann equation for the ion distribution function is made.

Then the Poisson equation is solved for the potential distribution.

The ion current density is formulated as a complicated integral.

This can be solved in conjunction with Poissons equation only by

tedious numerical computation. To simplify the problem ions are

assumed to be monoenergetic. Solution for the potential and

density distributicns still involves numerical calculation but Bernstein

and Rabinowitz present the results of this computation. Although

more dependence of the results on ion temperature was found

than previously predicted by a majority of analyses indicating essentially

no dependence of sheath parameters on ion temperature, the dependence

is still not great (approximately 20% over the entire range of possible

ion temperatures).

In 1949 Bohm14 gave a Simplified treatment ignoring the

distribution of energy of the p051tive ions entering the sheath. Bohm
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showed that the positive ions have an energy given by

when they arrive at the sheath edge. This result is obtained by

considering the planar case with ions assumed entering the sheath

region all at the same velocity uO, electrons are Boltzmann

distributed, and collisions of ions in the sheath are neglected.

The density distribution of the ions is computed assuming

n(r) u(r) = nco u00 : constant

where the drift velocity is computed from the potential distribution

Lflr) = «fag +-3%q?iii (3.27)

1

 

so that the density distribution becomes

1";

 

 

 

ni : m . (3.28)

Vi +C"'mj)

where

ZKT

0' '2' e_ .

M. ui
1 t»

Poisson's equation then becomes

2

d n 1 . 6‘” (3.29)3 = “—“7:

dx \1 l + 0' 3’)

where x '5 r/XD and XD is the debye shielding length for the main

plasma defined by
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If the R. H. S. of equation (3. 29) is expanded in a power series in

n for small 77, i. e. , in the plasma near the sheath edge, equation

(3. 29), becomes

—1-—GW,-u_n)+u.:=nu—%q. (i3m

If 0' > 2 the solutions of equation (3. 30) in the plasma region will

oscillate with wavelength

x
= O

2nJ%—1

which obviously is not allowable. Therefore cr 5 2 and

X  

KT

e

M.

1

 

2

um:

from a physical argument; unfortunately nothing can be said at this

K T

point about an upper bound for u: although M e is found to be

i

of the right order of magnitude from other analyses.

 

Allen and Thonemann15 also considered the planar case

and arrived at the same density expressions starting with the same

physical model. They note,however, that at the sheath edge

 

n. =n 5n

1 e s

and

dn dne

a? : dx (3.31)

to a high degree of accuracy. It is found as a result that

2

MET ~LI<T
Z - 2 e
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from these conditions; this agrees with Bohm's result.

Later Allen, Boyd, and Reynolds16 analyzed the spherical

case and published potential and density profile data as well as

ion drift current. The drift current density was approximated by

the equation valid at the sheath edge

(3.32)

 

It is interesting to note that Bohm, Burhop, and Massey obtain

the same result for nS uS considering monoenergetic ions except

that 0. 61 is replaced by O. 57 and O. 54 for ion energies of O. 01 and

O. 5 times KTe , respectively, indicating a very weak dependence on

ion temperature. The apparent contradiction with Bohm's result

 

can be understood if it is noted that the more rigorous analyses of

Langmuir and of Self, for example, indicate that n is not zero at

the sheath edge and that consequently the density is less than half

that in the uniform body of the plasma, n,JO . It follows then that

  

since

n u =
s s

KT

that um > Me at the sheath edge and the conflict is resolved.

1
7

Additionally, Laframboise1 ' has performed an analysis

and numerical integration similar to the approach of Bernstein and

Rabinowitz but retaining a Boltzmann distribution for the ion density.
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Other authors have attacked the problem with various approaches

largely similar to those previously described.

A general result of all these analyses is that the ion drift

KT

velocity at the sheath edge is approximately Me , The ion and

i

electron densities at the sheath edge are roughly half their values

 

in the main plasma. The sheath potential and density profiles are

nearly independent of ion temperature being dependent almost

entirely on the electron density and temperature in the main plasma

C

a

body.

3. 3. Conductor Potential
 

The potential of the conducting object must be determined by

equating the electron and ion currents to the conductor in accordance

with continuity. It has been previously show that the ion current

density is given by

ZKT 1/2
e
 

while the electron current density is

KTe 'le

ZTrm 6

e

 nooe

1(nW) is determined by geometry and generation function form as is

shown in Table 3. l. Equating the current densities yields the

potential at the conductor surface as

M.
_ 1 1

77w - 1n HUW) 41Tme o (3.33)
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In the planar case Selfll obtains

H77) 2 0.3444
W

s 0 that

n = 3.56+:— ln (3,34)

W

M

M

P

where M/Mp is the molecular weight of the gas in question.

Larson3 has collected typical profiles of potential and electron

density from the analyses of various authors for the spherical case

and for conductor potentials corresponding to nw= 3. 5. These data

are presented in Figure 3. 3. In each case Larson has plotted the

curves to correspond to nw = 3. 5 and a/XD = 19.6.

3. 4. Selection of a Sheath Model
 

The value nw = 3. 5 was arbitrarily chosen by Larson because

most theories predict nw near 3. 5 for hydrogen and because several

of the investigators presented profile data for hydrogen. Since

heavier gases are normally encountered a value of nW: 4. 5 was

arbitrarily chosen for the following work as it better approximates

the values expected for most gases.

Larson's analysis indicates that EA wave propagation is not

greatly affected by changing the sheath profiles, hence the arbitrary

adoption of a set of profiles from any one of the sheath analyses

reviewed is justified. As stated in the introduction the sheath

thickness will commonly be many times less than the sphere radius;

in this Hthin sheath" case the geometry within the sheath and that of

the plasma adjacent to the sheath becomes nearly planar. The profiles
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to be used correspond to the solution of equation (3. 29) develOped

 

KT

by Bohm for the planar case with um taken as _M.e , i. e. ,

. i

.2

L; 2 __.._._l. _ E"? (3.35)

dxd NJ 1 + 22’)

where x 2 r/)\D with the boundary conditions

.7) r:a '5 nw : 4.5

and

(2"0 as xr"+00 . (3.36)

Although the sheath potential profile is determined from the planar

case for simplicity (because the potential profile description is not

a function of the sphere radius a) the other sheath parameters are

determined on the basis of spherically symmetric geometry. The

equations governing the sheath parameters in terms of r) are

repeated here for ease of reference.

 

n(r) 2‘ no nus e (3.37)

Us 6” (3.38)

m.

W (3.39)

(3.40)

1
n. : n‘ —————-———-——- (3.41)

i 30 *-

1 + 2:7

The solution of equation (3‘. 35) is given in Figure 3. 4. Also

given in Figure 3. 4 are the slope of “73(X) from equation (3. 35) and

the correSpondiiig electron density profile.
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metallic \

sphe re

 sheath

W edge

 

Figure 3. l. Maxwellian Distribution at r=d

a< d<< 1f

the conducting

sphere

 

the sheath

 
Figure 3. Z. Self's Plasma Geometry.
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(A) Allen, Boyd, and Reynolds -- a/XD=14. 7, "W = 3. 5

(B) Bernstein and Rabinowitz -- a/XD=13. 0, nw :-. 3. 5,

T1

7i.— 30.1

e

(C) Laframboise -- a/xD = 10.0, "w = 3. 5

  
1.6 1.8 2.0 
 

 

   
1.0 1.2 1.4 1.6 1.0 ' 2.0

Figure 3. 3. Comparison of Sheath Potential and Density Profiles.
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CHAPTER IV

DEVELOPMENT OF THE WAVE EQUATION

4.1. Wave Equation Form
 

In this section a wave equation for the density perturbation 111

will be developed from the collisionless first-order moment equations

develOped in chapter II; this equation will be of general validity inside

as well as outside of the sheath. No consideration is given to any

possible static magnetic field in the interest of maintaining symmetry

in order to simplify the problem. When the moment equations are

combined to form a. Klein-Gordon type equation for n1 it is found

that the equation contains terms in electron drift velocity perturbation

111 as well as a term in the electric field perturbation E31 . It can be

shown that the E term contributes negligibly to the solution for
1

nl once the drift velocity terms are eliminated. Elimination of

the El term leaves one equation in n and u1 which cannot be
I

solved since 1.11 cannot be independently related to I11 . It is

possible to rewrite this equation in conjunction with the moment

equations to form a system of two coupled second order linear

partial differential equations in n1 and ul . In the symmetrical

geometry considered in this work this system can be simplified to

a system of two coupled second order linear ordinary differential

equations in n1 and 111 each of the basic form

.2

i d .
5% +a(x) 53V; +b<x) y P(x.n1.u
(ix

1) (4.1)

53
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where y represents n1 or u1 and x represents a space coordinate.

The coefficientsythough rather complicated in form,are readily

determined so that the system could be, in principle, solved if a

complete set of boundary conditions could be specified. The exact

form of this system will be given subsequently, and the required

boundary conditions are given in chapter V.

The complicated nature of the coefficients of the system

makes analytical solution impossible, and recourse to numerical

methods must be made; even this approach is not a simple one.

Most workers who have considered the effect of the plasma sheath

on the wave equation have completely sidestepped this mathematical

difficulty by neglecting all drift velocity terms. This obviously

greatly simplifies the problem reducing it to the solution of a single

linear second order ordinary differential equation in 111 for which,

depending on the extent of the simplification of the remaining terms,

there may even be an analytical solution. The arbitrary exclusion

of the drift velocity is not generally justified, and an attempt will

be made in the following work to determine, at least approximately,

the effect of the drift terms.

In chapter V it will be shown that the appropriate boundary

condition for u1 at the metallic surface is u1 = 0 . This will be

used to determine the boundary conditions required for the solution

of the approximate wave equation for n1 (i. e. , neglecting drift

terms); these boundary conditions can be reapplied,along with the

approximate solution for n1, to the solution of the equation in u1 .
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The solution to the latter equation can be substituted into the complete

equation for n1 so that it can be solved for a more accurate value

of 111 including drift velocity effects. This iterative approach could

be repeated for greater accuracy if desired. This iterative approach

is an alternative to the solution by the simultaneous system approach

to the inclusion of the drift effect in the analysis; it is justified

heuristically on the assumption that the approximate wave equation

for 111 (i. e. , neglecting drift terms) yields a good approximation.

to the true value so that the calculated value of 111 is a good

approximation to its true value, and the value of 111 calculated in

the final calculation differs from the initial solution by only a small

perturbation. The technique is justified,then,on the basis of being

a perturbation calculation.

In many cases the plasma sheath thickness is small compared

with antenna geometry; this case corresponds to XD < < d in the

spherically symmetric problem considered in this work. Great

simplification of the equations for 111 and 111 is possible here

because the sheath geometry is essentially planar, and the equations

may be formulated on this basis eliminating many complex terms

in the coefficients of the differential equations. The form of the

major equations will be indicated for this "thin sheath" case.

4. 2. Solution from the Moment Egations

The first order moment equations for the perturbation terms

neglecting collisions, any static magnetic field, and the perturbation

Lorentz force as derived in chapter II are equations (2.31)





 

_ Bnl

V°<noui+n1c9 = - T

331 - e
110 W + [ne(ue V)ue] = -33: (n El +n1E0) -v an

where

(131- vfio + nOGO- Vial + 111(30- WED .l
l
!

:
3[ne(Ee° Vfife]

Since complete spherical symmetry has been assumed in the

fields and density distributions around each sphere these vector

partial differential equations can be reduced,ultimate1y,to a set of

scalar ordinary differential equations with a single independent

variable r . For the present the vector form will be maintained

in order to develop, within the limits imposed by the assumptions

under which the moment equations were developed, a generally

applicable wave equation. Time domain description will also be

maintained at first for generality although ultimately the description

will be transformed to the frequency domain for solution.

Differentiating the first equation with respect to time and

taking the divergence of each term in the second,one obtains

 

2

8 n

1 1 __ 1 a — — _ 1 . a — —

v at v v

O O O

and

2 e -— 1 83 —

V n1 - - 2 V'[noEl +n1EO] ' 2 v.{n0 “at +[ne(u V)u ]l}

m V V

e O O

(4.3)

Adding equations(4..2) and (4. 3)



 
 

  v2 Laznl- e [vr+v.r+v -E+v r14.
“1’22“ zno.'1n1 o “01 “10

v at mv

0 e

1 a — — a"71 — —
:2- V' {67): noul +n1u0] " no 5"?" " [ne(ue.v)ue] 1} -

O

(4. 4)

The last collection of terms on the RHS of equation (4. 4) accounts for

the effect of the drift velocity on the solution for r11 . This term can

be expanded into the form

Bu

2 _L . _3._ — — __1_ " . -
R2(u) — V2 V {at [noul +n1u0] - no at —[ne(ue V)ue11}

o

1 — an — — — - - —
= :2— V-[uO-é—t— ~n0(ul'V)uo -no(uo-V)ul -n1(uo°V)uo] .

o

(4. 5)

The first collection of terms on the RHS of equation (4. 4) can

be simplified by taking note of a few relations developed in chapters

II and III. From chapter II,equations (2. 34) and (2. 33) are useful.

V'E =-£n

€1 l

V°E0=Ei(n.-n)

From chapter III,equations (3. 37), (3. 7), and (3. 41), respectively, are:

_ -n
no — nmé'

_ e¢0(r)

n “ ' KT
e

nm

11. 2
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These equations allow reduction of Vno, VoEO, and E0 to more

useful forms.

 

 

Vno = -n0Vn (4. 6)

en

V-Eo = €°° [—4—— -e"7] (4.7)

0 V1 +211

‘12" — KTe V (4 8)
o _ e T) °

The function 1‘) = n(r) was completely specified in chapter III so

that all of these terms are likewise completely specified. With the

substitution of these terms into the first Collection of terms/1t becomes

  

 

  

 

 

=_. e ."" .— .— .""'R1(E) — 2 [nOV E1+n1V EO+Vn0 121+an E0]

m v
e o

- l -n

=-——7[-n€n——n +n 5—( -e )n -nVnE+

mev0 m o 1 m 6o Vl+2n l o 1

KT

e Vn 'an]

n e2 T) 1 eno KTe

: (Z6- - )n + VT) E q——-—2-Vn Vn .

E 2 ~11+2n 1 m v2 1 m v 1
e o o e o e o

Noting that n eZ/m 6 '5 L02 and 3 KT = m v2 R (E) becomes
00 e o p e e o 1 1 ‘

2

22 -n 1 ) eno v E 1V V (4 )R (E): (Zc - n + n- -— 17' n . .9

1 V: W 1 .mev: 1 3 1

Using this expression to rewrite equation (4. 4) the wave equation

takes the form

2 2 ._

8 n to en Vn-E
2 1 1 _ o 1 1
an-y 2 --;%-fn — -§Vn-an+R2(u)

o o
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These equations allow reduction of Vno, V-EO, and E0 to more

useful forms .

 

 

Vno = -noVn (4.6)

en

V-EO = 6‘” [ -——1———- -e'"] (4.7)

o V1+2n

E - KTe v (4 8)
o _ e T) '

The function r) = n(r) was completely specified in chapter III so

that all of these terms are likewise completely specified. With the

substitution of these terms into the first Collection of terms/1t becomes

 
: e “- 0-... O— O.—R1(E)—- [nOV-El +n1V EO+Vn0 E1 +Vn1 E0]
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Noting that nooe /me€O — cop and 3 KTe — mevo , R1(E) becomes

  

L02 7’) 1 enO __ l

R(E)=—-E (26- - )n + Vn°E -—Vn'Vn . (4.9)

l v: \ll+2r) 1 'mev: 1 3 1

Using this expression to rewrite equation (4. 4) the wave equation

take 8 the form
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where

no 32 - l

rrEr-——’21=2e"-—————. (4.10)

00 Sr Alli-Zn

Equation (4. 10) bears a strong resemblance to the Klein-

Gordon equation previously described; it is easily shown that the

two become identical in a region of uniform plasma where VT) and

1

V 1+Zn

The basic equation from which n1 can be determined initially is

 Rz(u) are identically zero and f1. = 2 6m - = l identically.

obtained from equation (4.10) by dropping Rz(u) and the term

involving E1 ; in the time domain it takes the form

 

Z 2

v2 +1—v-v i—anl 22f -o (411)
“13" n1’2"_2—‘2rn1‘ '

v at v
o o

where

fr=2€'n- 1

l+2n

Equation (4, 11) can be written more compactly in the frequency domain

assuming that nl has solutions of form n1(r) ert . If the spherical

symmetry of the problem considered in this work is used to simplify

equation (4.11),it becomes

 

8n
2 1. an 1 2 _

Vrnl + 3 Br Br + 6 (r) nl " 0 (4°12)

where Z

w "" f 2 1 a 28

p (r) ‘ V2 and vr ‘ 1r2 a'r r 3r

It might be noted that most people7’ 18 attempting solution

for nl in the sheath start with

2 2

Vrn1+f3(r)nl = O
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solving this equation by either the WKB method (a rather inaccurate

method for most sheath problems) or some series technique (slow

convergence usually limits the usefulness of this method for analytical

purposes,although for numerical purposes it is usually more economical

in terms of computer time than is the standard integration procedure

involving ,say,a Runga -Kutta routine).

4. 3. Elimination of the El Term

—V V‘T

 

Elimination of the E1 term has not been justified as yet. It

is quite possible to include this term in the analysis using Poisson's

equation to relate n1 to El . Upon drOpping the drift term R2(u)

equation (4.10) becomes a linear third order D. E. in -1 . In the

frequency domain with spherical symmetry in space this D. E. becomes

a linear .third order ordinary D. E. which can be easily solved by

numerical means for three linearly independent solutions. There

would be no problem in matching these three linearly independent

solutions in the sheath to the corresponding solutions in the uniform

plasma region. The problem lies in matching these solutions to

each other (by means of boundary conditions) at the metallic surface

as the third order system requires one more boundary condition

than was required for the solution of the second order system in

nl . This additional boundary condition is simply not available at

this state of the art; boundary conditions for the hydrodynamic

quantities in general represent a major weakness in the theory.

Hence,inclusion of the El term is not possible since no direct way

of relating E1 to I11 in linear algebraic form is possible; its



61

exclusion is necessary, and hopefully, its contribution can be shown

to be small anyway. The fact is that this can be done in a rather

crude fashion as follpws.

The sheath thickness can generally be assumed to be small

in comparison to the radius of the metallic sphere hence the geometry

in the sheath is essentially planar, and reduction of equation (4. 10)

to a planar equation in E1 is justified. Using

v.f =..__ ,

to :replace n1 in equation (4. 10) while dropping R2(u) and transforming

description to the frequency domain. one obtains

 

 

3 2 2

6 E 8 E 8E w
1 l. 3H 1 2 1 E -n an _

Br Br vo

It is assumed that a W16 type solution is valid, at least roughly, in

this case, i. e. ,

I'

. _ -J'f B(r)dr
E1 — E10(r) 6

Further, the amplitude El 0(r) can change in the sheath only if there

is appreciable charge accumulation there by Gauss's law. The

magnitude of this charge accumulation appears not to be large compared

with that on the sphere's surface so that E10(r) is not a strong function
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of r . As a rough but very convenient simplifying assumption

El O(:t') is assumed constant so that

r

_ -J' 5(r)dr
E1 — E10 6 f

This expression is substituted into equation (4. 13), and the magnitude

of each of the resulting terms is compared to that of the last one

which it is hoped contributes negligibly. The resulting expression

is a very complicated one and will not be reproduced here; it is

sufficient to say that at every point within the sheath the last term

is the smallest and is normally much less than the largest term.

The last term vanishes at the sheath edge, is very small at the

sphereb surface, and has a single peak near the spheres surface

at which point it approximates one fifth of the amplitude of the

largest term in the equation. The contribution of the El term

is then rather small which is fortunate since it cannot be handled

owing to a shortage of boundary conditions.

4. 4. The Drift yilocity Wave Equation

In a manner similar to that in which the modified Klein-Gordon

equation for :11 was derived in terms of the unperturbed electric

field, electron density, and drift terms a wave equation for ul

can be derived in terms of the unperturbed parameters and 1'1l .

This equation is a second order linear partial differential equation

in vector form of rather complicated form; it will be developed here

only for the case of spherical symmetry.

Consider the moment equation (2. 27). Also, note that in

the case of spherical symmetry the divergence operation reduces to
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-—- _ 1 8 2

V A — 2 8—1: r Ar

r

The moment equation becomes

1 3 2

:3 5? r [nou1+n1uo] _

or

n 8u1+8nou +Buon +u anl

0 8r 8r 1 3r 1 oar

-jwn1

2 .
+ -17[nou1 + nluo] — -an1 . (4.14)

Differentiating each term with respect to r and collecting terms

yields the equation

  

Z

n 3111 + Zano +2no Bul + 8110 +£ ano -2no u —

2 8r r 8r 2 r 8r 2 1-
Br 3r 1'

2 2

8 n1 duo Zu 8n 3 u 2 auo Zuo

' “egg-t Zsr+—+Jw"r+ “airway-‘2' “1'

(4.15)

or compressing this equation by noting that in the spherically symmetric

C388

2VA: 28A 8
 4.2.,

r2 8r r 8r

equation (4.15) becomes

2n

n van
0 l

a 8n

5?
(

r
u
m

2 o _
+ ZVnO °VU1+(V nO --1:TZ—)u1 —

. 1 2

rue + 3(0) '5}— + (V

22%.

r r

aznl

"' ‘10-? +
8r

Zn

(4.16)11 -——9-)n

o 2 1

It is easily shown that in the thin sheath case equation (4. 15) reduces
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to

321.1 an an 3211 3211 an an

n l+2---—--° 1+ on =- u 1+(z °+'w)——-—l+
o 2 3r 5r 2 1 o 2 5r J Br

Br Br Br

azu

.72 n1 . (4.17)

8r

.—1

4. 5. The Drifggolrection to the Density Wave Equation

Before equation (4. 10) can be written in its complete form the

terms R2(u) as defined in equation (4. 5) must be evaluated. Making

use of the moment equation (2. 27) R2(u) becomes

- v: R2( u) = v.[ “Jo v-(no'fil + 111130) + no(Eo.V)El+ ”0‘51 .Vfiio +

 

  

n1(uo-V)uo] . (4.18)

Recalling the vector identity

._ __ 3 ""

(A °V) B = z A a B .

which for spherical symmetry becomes

_ __ air

(A . V) B 2 Ar 8 r ,

equation (4. 18) becomes

Bu
2 _ 1 a 2 _1_ _a_ 2 1

' vo R2(u) " :2- 5? r [no 12 8r r (nou1+nluo) +none 5r +

Buo auo

r1o 8r ul +uo-5—1T-nl] (4°19)
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2 __l_§_ 2 o
-voR2(u)— r2 8rr [u0(no 8r +——8r u +u

Zu Bu

—-—-9(nu +n

r 01 l r

Collecting similar terms this becomes

2 8 2
-voR2(u) _ 2 -a—r- 1‘ [211011

r

8n Bu

2 l

+(2 uO 8r

0
+

oar

 

u
 

u +nu—

o) 008

Bu an

0 8r + (no 8r

 

Bu . Bu

n u+u-—-9-n]
oar 1 3r 1 '

(4.20)

Bu 2.

no—-8r +}-nu)ul+

Z

uo
-r——) n1] (4.21)

Some additional relations taken from chapter 111 are useful, i. e. ,

equations (3.38), (3.39), and (3.40).
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These relations lead to the following equations:
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Substitution of these relations into equation (4. 21) reduces it to

Bu 8n
2 _ 1 8 Z 1 2 an _1_

- Vo R2(u) — r2. 8r 1' [ZnOuo 8r + u0 81‘ + 21)‘0 (8r - r)nl] (4° 23)

  

because the coefficient of u1 in equation (4. 21) conveniently vanishes.

Carrying out the indicated differentiation and simplifying the results

equation (4. 23) becomes

 

 
 

  
 

 

azu azn an 2

-v2R(u)=Znu ———1—+u2———1—+4u2(§fl--l—) l+2u2 ill-+-
o 2 oo 2 o 2 0 8r r 8r 0 2

Br Br Br

_n_a2.1-49.4
2(ar)+r2 r8r nl (4.24)

or

ZnouO 82111 n?) 2 2n: i1. 3 anl

'R2(u): 2 2 +—2-an+ 2 Zar-;-EE—+

v 3r v v
o 0

Zn2 2 2

__9 2.1L 5911 _3__.‘}.?.rL
2 I: 2 +2(8r) + 2 rar n1 ° (4°25)

v 8r r

The density wave equation (4. 10) now becomes

2 2 2

u 8n Zu 8n

_2 Z _1_ 1 Lin 0 2:1- 2 1
[1+2]an-2 2 +[38r+ 2 (Zar'r)] 8r
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o o o
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o _218 911 .2. 3.211 =
‘ frnl+ 2 2+2(ar)+2‘rar n1

v v r r
o o

Znu 82u

oo 1
 

- 2 2 (4.26)
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where

2

fr- 1—1— -)\D 2 nm 00

 

Equation (4. 26) is complete and general within the framework of the

development of the moment equations (2. 31). With the sheath model

chosen in chapter III

f =2e'”-——1——— ,

r '\/l+2n

but equation (4. 26) is independent of the sheath model chosen. If

uo is replaced by its equivalent function of 7) equation (4. 26) becomes
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2%}. . For the thin sheath case equation (4. 27) reduces to
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4. 6. Final Forms

The drift wave equation (4.15) can be expressed in a more

useful form by substituting functions of n for the coefficients.

Performing this substitution,equation (4. 15) becomes
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Where (2 is the normalized frequency variable w/wp. In the case of

the thin sheath equation (4. 30) reduces to
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The final form of the density wave equation in the frequency

domain is obtained from equation (4. 27) as

 

 
Inspection of equations (4. 30) and (4. 32) make it evident that

the wave equations in n1 and 111 are coupled as indicated previously.

They form a system of two linear ordinary differential equations

requiring simultaneous solution; the system may be written in the

form

L n + L u

1121

L3111 + L4111

H

O

H

O (4.33)

where the L's are second order linear operators of the general

form

2 2

+ b(r) g? + C(I‘) = a(r) d 2 +b(r) g? + C(r)

8r dr

 

L =a(r)

 

and the values corresponding to the set [ai(r), bi”), Ci(1’)] 1:1, 2’ 3, 4

are obvious from equations (4. 30) and (4. 32).
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Some insight into the extent of the modification of the solution

for n1 to be expected upon inclusion of the drift velocity effects

can be gained by consideration of the amplitude of the drift terms

added to equation (4. 12) to form equation (4. 32). For example, in

2(n-le) is extremely smallthe first term of equation (4. 32) 6_lr_ 6

compared to unity in almost all of the sheath; it increases rapidly

near the metallic surface to 6%- or approximately 0. 05. This term

should have very little effect on the solution for n1 . In the second

term :- 62(77-7’lw) increases rapidly to Z/Tr as the metallic surface

is approached; although appreciable at this surface its overall effect

should be small. The same general argument can be given for the

third term. Unfortunately,there is no accurate means of comparing

the RHS to the other terms in the equation; only solution for 1.11

can yield this information.



CHAPTER V

BOUNDAR Y CONDITIONS

5.1. IntrchBction

Before any of the equations for n1 and 111 developed in

chapter IV can be solved sufficient boundary conditions must be

described. This can be done only approximately and will be based

on the assumption that no electrons take part in the r. f. (perturbation)

motion at the surface of the metallic sphere, i. e. ,

E
A _

1 nr=a_0’

and upon the continuity of the potential perturbation at r = a .

Boundary conditions must also be specified at the sheath-plasma

boundary where, as will be detailed in chapter VI, solutions for

both the electromagnetic fields and the hydrodynamic variables

will be matched; this sheath-plasma boundary is assumed to be

just inside of the region of uniform plasma so that all electro-

magnetic and hydrodynamic variables are infinitely differentiable,

and the matching process is trivial. The matching of the far zone

electromagnetic and hydrodynamic variables to their corresponding

forms in the "quasi-static" zone (Region II) is simple and straight-

forward; it is covered in chapter VI and need not be further mentioned

here. The basic boundary conditions will be used to derive the

boundary conditions required for the solution of the specific equations

or systems of equations solved in chapters VI and VII.

71
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5. Z. Sheath-Plasma BoundarLConditions

The sheath-plasma boundary is a surface chosen, at r = d,

sufficiently far away from the metallic sphere's surface that the

electron density has returned essentially to its uniform value nco ,

the unperturbed potential is essentially zero, and the unperturbed

electron drift velocity is negligible, while still close enough to the

sphere to be in the quasi-static region surrounding it. In chapter

VI solutions for the electromagnetic and hydrodynamic variables

valid in the sheath are matched to those valid in the uniform ”quasi-

static" region at the sheath-plasma boundary . As stated before

at the sheath -p1asma boundary all electromagnetic and hydrodynamic

variables are infinitely differentiable so that matching is easily

accomplished. The continuity relations for the variables of interest

are given for completeness.

  

 
 

  

lim n = lim n (5.1)

r -’ d' l r —' d+ 1

anl anl

lim 8r : lim + Br (5. 2)

r —’ d‘ r -" (:1

lim <19 2 11m Cb (5.3)

r -’ d' l r -' (1+ 1

8¢l 8491

11m 8 = lim 8 (5. 4)

r —» d“ r r » d+ r

lim u1 = lim 111 (5. 5)

r -’ d' r -‘ d

Bul aul

11m 8r 2 11m + 8r (5.6)
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where (bl is the scalar potential associated with the perturbation

E field, i.e., since E1 is assumed quasi-static

E1 = -vq>l . (5.7)

5. 3. Boundary Conditions at the Surface of the Metal Sphere
 

At the sphere's surface the following field relations are

valid

91 x E1 = 0 (5.8)

(>1 = V (5.10)

where V is the perturbation potential applied to the sphere from an

external source, and as is the perturbation surface charge density

on the sphere. Equation (5. 9) will be used in the determination of

the current to the sphere, while equation (5. 10) will be used directly

as a boundary condition on $1 .

The boundary conditions for the hydrodynamic variables are

not so easily specified, in fact, this difficulty represents one of the

major weaknesses of the theory. If only the second order equation

for 111 is to be solved it can be shown that only one boundary

condition for the hydrodynamic variables is required; in fact, it

can be shown that only one relation, independent of the moment

anl aul 84>

equations, in the variables n1, ul, -a—r——, 317" and 3;— 13 required

to specify the problem. Obviously the independent specification of

any one of these variables would suffice. Various authors have used

various relations here. Cohen8 suggests the following linear relation
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3.3 =Yfi-E+Yn1 a 1 b (5.11)
l

in analogy with acoustics describing the boundary in terms of a surface

admittance. He argues that the acoustic analogy to this reflection

problem would lead to a linear relation between ii - 11.1 and 111 at

the boundary surface, since the admittance is the ratio of the

perturbation in velocity to the perturbation in pressure (the so-called

”excess pressure"). ”The excess pressure is the body pressure in

acoustics; but in the plasma the electric field also contributes to

the body force, and we should include it in the admittance. " Linear

inclusion of the electric field leads directly to equation (5.11). The

admittance coefficients Ya and Yb may be functions of the

configuration of the fields at the metallic surface and are, in general,

functions of frequency. Cohen indicates that, ”in principle, these

admittance coefficients can be measured, since for each incident

wave (impinging on the metal) there are two reflected waves (one

EM and one EA wave). A calculation of the coefficients themselves,

however, would have to start from the opposite point of view. One

would have to solve in detail the plasma -metal boundary problem,

including the fields and electron motions inside the metal. " No one

has,as yet,devised a method of evaluating these coefficients so that

the general form of equation (5.11), while of theoretical interest,

is not useful. There are two assumptions commonly used here

which are justified on the basis of analogy with acoustics. The

first is the analog of the so-called acoustic I'soft" boundary condition

in which the metallic surface is assumed to be perfectly absorptive

s 0 that
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n 5 O . (5.12)

surface

This model cannot be justified rigorously, but it has the advantages

of great simplicity and of representing one extreme of surface

absorptivity. Another more commonly used surface model is the

analog of the so-called acoustic ”hard" boundary condition in which

the metallic surface is assumed to be perfectly reflective for

electrons so that there is no net perturbation in drift velocity at

the surface, i. e. , microscopically every electron involved in

perturbation motion which strikes the surface is elastically reflected.

This leads to

3. H = o . (5.13)

surface

A criticism of this model is that, while in the case of the acoustically

hard surface the neutral molecules of the fluid cannot penetrate the

surface and 9-H isindeed zero, in the plasma case the fluid consists

1

of electrons which can, by nature of their charge, penetrate the

surface. The advantages of this model lie in its simplicity, its

ease of application, and in the fact that it represents the opposite

conceptual extreme of the soft model. Larson3 performing an

analysis similar to the present one uses both hard and soft boundary

conditions and achieves‘similar results in each case. This. might be

quite surprising considering the extreme difference in the surface

models if it were not recognized that the unperturbed density drops

to very small values at the metallic surface so that the perturbation

density should be small also regardless of the surface model used.
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In any case this result is a consoling one since the proper model is

in doubt. It can be noted that the hard and soft boundary conditions

correspond to the following admittance coefficients, respectively:

 

H
Q
. B.C.

Y =

b

Soft B. C. Har

Ya 0

Balmain20 suggested the following absorptive boundary

 

condition

a

u1= -u EBm Pl at r=a (5.14)

KB e

where uKB is the velocity of sound in the electron gas, no is the

unperturbed electron density in the uniform plasma, and GKB is a

dimensionless constant depending on the nature of the surface. For

a "completely collapsed sheath" (totally absorptive surface) O'KB

approximates «[2/17 , whereas a = 0 for the "perfectly rigid“
KB

(perfectly reflective) boundary. While this absorptive boundary

condition obviously represents an oversimplified picture of the

actual behavior at the metallic surface, it would seem to be an

improvement over the hard or soft boundary conditions; the problem

with its use is the determination of QKB .

All of the boundary conditions discussed have been used by

various authors in various applications; each has its advantages.

For the purposes of the present work the more conventional hard

boundary condition is arbitrarily adopted,primari1y for reasons

of simplicity, however use of a conventional boundary condition

facilitates comparison of results with those of others.
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5. 4. Hybrid Boundary Condition for the Density Solution

The solution of the density wave equation in chapter VI requires

 

84) an

a linear relation in -—1— , n , and —— . The perturbation moment
81' 1 8r Bu

equations contain these variables plus 111 and Sr in addition. Use

Bu

of the hard boundary condition 111 = 0 eliminates ul , and —81-- can

be eliminated from the moment equations by subtraction yielding a

relation of the proper type.

Consider the perturbation moment equations (2. 31) reduced

to the frequency domain.

. — — - _ _e__ — — Z
jtonou1 + [ne(ue°V)ue] — - me[ noE1 + nlEo] - v0 an (5.15)

l

and

Vo[nou1 +n1u0] = - jwn1 . (5.16)

In the case of spherical symmetry these equations become

 

 

Buo 8u duo

Jn(3““11‘Lno‘11 8r +nouo 8r +nluo 8r =

an

e 2 l

- EB: [nlEo+noEl] -vo Br

and

due anl Bul BnO 2

nl 337+uo 8r'+no 8r + 8r u1+ r(nluo+noul) : -anl '

Applying the conditions 111 = O and r : a while multiplying the

second equation through by uO leads to

8 u Bu . 2 anl 8431

 (5.17)   
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and

Bu BuO 2 u: 2 anl

110110 337+[u0 81‘ +qu0] n1 +1.10 ar 3 0. (5.18)
  

Subtracting equation (5.18) from equation (5. 17) a relation of the

desired form is obtained as

   

Z

2u an en 84)

e o . 2 l _ o l

(m I50- a -3wuo)nl Jr(Vonuo)"5?- me 6r (5'19)

Dividing through by v: and substituting for uo, E0, vi, and no

equation (5.19) becomes

 

2

Bales-MEL [ _1_(sl.:|an1+ 1
3r — -61ra 6r 3X

ve D

5 d4 . 52 d2
- P ---(—) +1 —(-)—‘n (5.20)

[ 1* a ma __Jl

2
where the parameters Lop, XD’ nw, v0, p, 52, d, and a have been

previously defined, and 6 is defined as xD/a. Equation (5. 20) can

be written in a more compact form for use in chapter VI.

  

 

8491 anl

_B?_ _ D1 3r _ + B1111 — (5.21)

r—a r—a r—a

where

v e 4

77w l C1

D1 — "—7—— e l: - a; (5)]

Lo 6

p o
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v2 e 4 2
T? l 6 d . d
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For the thin sheath case these coefficients become

2

V e '

_ 0 ”W l- l
 

 

 

1
to 6

p o —

V28

o T) l . Q
B = 6w [p +j—] . (5.22)

1 (11:60 3)D a «[2?

5. 5. Boundary Conditions for the Drift Equation

If the wave equations for 111 and 111 are solved by the iterative

method discussed in chapter IV the solution of the drift wave equation

Bu

(4.30) requires specification of the values of 111 and 3;- at the

metal boundary. The specification of 111 = O at the boundary fulfills

the first requirement. It is not difficult to apply this condition to

Bu

the first moment equation thus determining 5}— at the boundary in

Bnl

terms of the values of n and -—

1 8r

The first perturbation moment equation in the frequency domain

for spherical symmetry is

 

l 8 2 .

_2 B? r (noul +n1uo) : - anl
r

which can be written in the form

an] Brio 2 n0 anl Buo Zuo

nO——8r +( 8r + r )ul+uO—--—ar +(-—-—-ar+~--—r +_]11.))n1 = O . (5.23)

Letting u1 = O and r = a equation (5. 23) becomes

Bu 8n due 2

+ ; 110 + jw)n1 (5.24)   



8O

 
  

 

 

    

 
 

 

  
 

n u Bu u2 an Bu

—°° 1-—3 1+--1-—( °+— +1.) can
2 ar‘ 28r Zuoar aquuo)l

v v v
o o o

Remembering that

u _ KTe d: 71-le

o — - 2am 2 E
e r

so that

au

0 - in 2
8r — uo [8r - r]

then

2 2

nouO Bul uO anl 110 ‘81)- wu

' 2 8r =‘Zar +[——2-8r+J 21ml (5°25)
v v v v
o o o 0

Substituting for uO equation (5. 25) can be written as

ncnucn 8‘11 1 ((1)2 81‘11 + 1 pla (d)2 . $2
.— : _— -— .——-——- — _J — n

V2 81‘ 611' a 3r 3RD ZTT a m la

0 a a

(5.26)

For the thin sheath case this degenerates to

-nm OD Bul : _L 8n1 + 1 p13. -j —-- n (5 27)

V: 3r a 6n 3]: a 3RD Zn NI-Z—TT 1a

 

Equation (5. 26) is the desired form of the boundary condition for

 

8ul

8r '

The possibility of solving the wave equations for I11 and

111 simultaneously has been discussed in chapter IV. Without going

into the details of such a solution, it can be observed that specification
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anvl aul

of a set of boundary conditions for n , u , —-—--—- , and will be

1 1 Br Br

 

required at some common point r on the interval [a, d] . If the

On

boundary conditions for n1 and Br can be determined at r = d, 

then it can be shown that 1.11 and Bul /8r can be specified in terms

of the values of n1 and anl/Br . This relationship can be developed

as follows.

Since the plasma is assumed uniform at r = d with negligible

unperturbed electron drift velocity or electric field, the uniform

plasma relations described in section 2. 3 are applicable. If the

B- field is neglected the following relations can be developed.

 

-enO-ii1 +jweo-E-1 = O (5.28)

SE

- _ _1_3_. 2 _ l a _ _e_.

V'1‘31 ’ zarrE1‘ar +rE1“e n1 (5'29)
1‘ O

jwnomeul -.- -nOeE1-mev:Vn1 (5.30)

Solving for E1 from equation (5. 28)

en

0._. .
5.3

l jweo ul ( l)

 

Differentiating this expression with respect to r

8E en Bu

1 _ o 1

8r — jweo 8r ' (5°32)

  

Substituting equation (5. 31) into equation (5. 30) and simplifying

 

 

yields

V2 8n

- s. o 1
u1 ‘ Jn 2 2 8r

0 t) «w

P

L.) V: anl

.—. jif- 2 8r ' (5.33)
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Combining equations (5. 29), (5. 31), and (5.32.)

 

2

Bu . V 8n

1 . Lo 2 o 1
—— : -J _— n + _'

C (5.34).

8r n0 1 a. “’12)“? _1). 8r

Equations (5. 33) and (5. 34) specify 111 and Bul/Br in terms of

I11 and 8nl/8r in the uniform plasma region which includes r = (1.

These equations then specify boundary conditions for 111 and Bur/8r

in terms of those for I11 and anl/Br .



CHAPTER VI

ANALYTICAL FORMULATION

6.1. Introduction

As indicated in chapter I,the plasma surrounding each sphere

of the antenna can be divided into three separate concentric spherical

regions. The first of these is the sheath region, designated Region 1.

extending from the sphereis surface, r = a , to an arbitrarily chosen

radius r = d sufficiently far out into the plasma so that the unperturbed

electron and ion densities have returned very nearly to their values

in the uniform body of the plasma; the unperturbed electron drift

velocity and the unperturbed potential have very nearly

vanished at r = d so that for r i d they can be taken as identically

zero with little error. Region II extends from r = d to r = cl1 where

:11 is chosen to be within the "quasi-static" zone surrounding the

sphere; since Regions I and II are within the quasi-static sons the

solution for the "electromagnetic" fields can be simplified accordingly

there. Region III includes the radiation zone and the transition sons

between the radiation zone and the quasi-static zone; it extends from

r = (11 to + 0° . Solutions for the electromagnetic and hydrodynamic

quantities in regions II and III are easily obtained since the mode

separation discussed in chapter 11 is valid. The solution for these

quantities in Region I is greatly complicated by the effects of the

nonuniformity in the plasma density; the only practical approach

seems to involve numerical methods; a numerical approach to this

solution is outlined in chapter VII.

83
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The goals of this chapter include indicating the basic forms

of the solutions for the pertinent electromagnetic and hydrodynamic

quantities in each of the three regions and apprOpriately matching

the corresponding solutions at the interregional boundaries in order

to obtain the complete solutions. This matching process makes use

of the boundary conditions develOped in chapter V. The input admittance

will be approximated making use of the quasi-static solutions for the

electron density and electric field perturbations. The effect of electo-

magnetic radiation will be included by computing an effective radiation

conductance term calculated, as usual, by use of Poynting's theorem;

the electromagnetic energy radiated is determined by comparing the

far field scalar potential to that of an electric dipole and writing the

classical electric dipole expressions in terms of the appropriate

electric dipole moment. The density perturbation at the sphere's

surface (r=a) is of interest for resonance probe applications; this

is derived in a form useful for comparison with other theories.

6. 2. The Hydrodynamical Wave Equations
 

The basic equations describing the propagation of the hydro-

dynamic quantities n1 and 111 were derived in chapter IV, i. e. ,

equations (4. 32) and (4. 30), respectively. In Region I,where these

equations assume their most complicated form,both must be solved.

In Regions II and III,they assume relatively simple forms, are

decoupled, and only the density wave equation need be solved; the

drift velocity term 111 can be determined from the density term

n1 by use of equation (5. 33). In chapter VII,equations (4. 32) and



(4. 30) for Region I will be transformed to forms suitable for solutionby

iteration. Only equation (4. 32) in its simplified form is solved in Regions

II and III; exact analytical solution is accomplished in these regions.

The form of equations (4. 32) and (4. 30) is expressed in opera-

tional form in equation (4. 33), i. e. ,

l
l

0Lln1 + LZu1

H OL3n1 + L4u1

where the L's are second order linear ordinary differential operators

of the general form

82 8
L = a(r) 8—2- +b(r) 3—17 + C(r) .

r

In the iterative approach to the solution of this system,L2 is first

assumed identically zero, the coefficients of L1 are simplified by

retaining only major terms, and the resultant zeroth order decoupled

homogeneous equation is solved for two linearly independent solutions.

These solutions are appropriately joined to the solutions for n1 in

Region II; the boundary conditions at r = a,developed in chapter V, for

n in terms of anl/ar and mil/a: are applied completely determining
1

the zeroth order solution for n1. Next this zeroth order solution is

used in conjunction with L3nl to determine a decoupled inhomogeneous

equation in 111; this equation is solved in conjunction with boundary

conditions develOped previously to obtain the first order iterated

solution for ul. This solution is then substituted into the first equation

of (4. 33)(i. e. , as Lzul), and the resultant inhomogeneous equation in n1 is

solved as before to obtain the first order iterated solution for ml. The exact

form of the zeroth and first order Operators are determined from equations
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(4.12), (4. 30), and (4. 32).

In any of the three regions the basic equation to be solved,

then,is a second order linear differential equation of the form

anl

—a—r— +[if(r)nl = G2(r) (6-1)Vznl + Gl(r)

where the coefficients are determined from equation (4. 32). In

Regions II and III,where uo and r) are taken as identically zero,

it is evident that equation (6.1) reduces to the particularly simple

form

V2n1+82n1 = o (6.2)

since G1(r) and G2(r) vanish and 8%”) goes over to

2 2

2 - Z (a) -U

B1(r) : fl :: 2 '

v
o

In Region I, for the zeroth order solution for n1 , Gz(r), which

corresponds to the inclusion of the drift terms, is dropped and

(31(1') is reduced to

-lfl1___1
61m“ 3 8r ' 3). P ' (6'3)

D

and only the dominant terms of [3‘12(r) are retained so that

032 -w2f

fife) = 21’ r = szm (6.4)

O

 

V

where

and equation (6.1) becomes
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8n

2 l l 2 _
an+?x-Bp—a-;—+B(r)nl—O. (6.5)

It is evident that equation (6. 5) goes over to equation (6. 2) in accord

with the assumption previously made regarding plasma uniformity

at r = d. The solutions to either should apply equally well at r = d;

this concept will be used to match the solutions at r = d.

One further comment on the solution of equation (6.1) is

required so that no further reference to the form of the equation

need be made in this chapter. It will be useful to consider that

equation (6. 1) has two linearly independent solutions so that

independent boundary conditions can be specified for each solution;

i. e. , if Gz(r) = 0, equation (6.1) is homogeneous and has two

linearly independent solutions which can easily be shown to be of

theform

y1=l+a1x§+a3x:+...

y2=x2+b3x3+b4x:+... (6.6)

where x2 '55 r-d/XD, so that the following relation is true at x2 = 0 (r=d):

  

  

ryl(0) 3’2“” 1 0

= (6. 7)

6371(0) 63’2“» 0 1 '

8x2 8x2 i

l— _J L _i 

The form of equations (6. 6) follows from the fact that equation (6.1)

is homogeneous with coefficients regular everywhere in the region

of interest which guarantees the existence of two linearly independent

solutions in the form of Frobenius series (convergence is open to
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question of course). Equation (6. 7) will prove very useful in numerical

computations as well as in setting up analytical solutions. The problem

arises when the first order inhomogeneous equation for 111 is solved

(i. e. , Gz(r) # 0 in equation (6.1)); in addition to the two linearly

independent solutions,there is a particular solution determined

entirely by the zeroth order solution for 111 . The question arises as

to the usefulness of a relation such as equation (6. 7). This problem

can, fortunately, be dodged in the following manner. The drift terms

are considered zero at r = d, and they remain relatively insignificant

except for the portion of the sheath nearest the spheres surface.

Since the effect of the drift terms is negligible or zero at and about

r = d, so also should be the particular solution of equation (6.1) in

the vicinity of r = d. Thus the homogeneous solutions represent the

complete solution at r = d, and the situation is the same as for the

zeroth order density solution, 1. e. , equation (6. 7) holds for the

complete solution; adding the particular solution does not remove

the possibility of forming two linearly independent solutions. The

complete solution thenis (btermined by superimposing the particular

and homogeneous solutions. The point of this argument, the

justification of the general use of equation (6.7), has been made.

6. 3. Transformation of the Density Wave Equation

Equation (6. 2) can be written in a more useful form by noting

that for spherical symmetry

.23

Sr2

sz =

'
1
'
“

(If)



 

 

so that

2

l 8 _

:8r2 (rnl)+(3 n1 - 0

or

EBZN1 2

a2+13le0 (6.8)

r

where

N1 '=’ rn1

and 2 2

2 w -w

(3 5 __B.

2

v
o

This equation, valid in Regions II and III, has the general solution

N C 6361. +C e-jfir
l o l

where

_ 1 2 2
B — :- 1.) ~10

o

if w>w ,andifw<w

P P

N = C ebr+C 6-br
l l

where

b = Isl . (6.9)

In this geometry,only the forward propagating term need be retained

since there is nothing to justify the assumption of the existence of a

reflected wave; since these expressions are valid on the infinite

interval only the decaying term can be used for w < wp because

N must remain finite as r -' + 00 (111 must decay at least as fast
1

as l/r so that N must remain finite). The general solution to
l
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equation (6. 8) is then

N1 : C1 e-JBI'
(6.10)

for to >1.) and

P

l Cle'br (6.11)N

for w< (up . It might be questioned at this point whether or not it

is advisable to denote the density coefficients in equations (6.10) and

(6. 11) by the same symbol C1; no trouble arises from its use however

since these equations apply to different frequency ranges, and the

results are analogous and nearly identical, jfi being merely replaced

by b = I (3| in extending the results for w > (up to the range w < wp.

It is noted that equation (6. 8) has solutions of the form of equation (6.6)

satisfying equation (6. 7); these are given by

e-jfir = cos (3r - j sin Br

and

6-br = cosh (3r - sinh (3r

where the sets

y1 = cos (3r

y2 = %- sin Br

and

cosh (3r
y1

y2 %- sinh (3r

satisfy equations (6. 6) and (6. 7).

Equation (6.1), valid in Region I, can be similarly transformed

using the same variable changes and noting that



 

 

1_a_(rn)__l_61\11_3111+le

r 8r 1 - r 8r — 8r r

Equation (6.1) becomes

2 8N N
l 8 l l l 2 _
FEB-:Z-(rnl)+Gl(r) (F-EF -;'z)+fi (r)n1 — G2(r) (6.13)

which is easily rewritten in the form

BZN1 8Nl

?- +g1(r)—a—r_'+g3(r) N1 : 32(1‘) (6°14)

where the coefficients are obvious from equations (6.1) and (6.13)

although not of any particular interest here except in so far as their

regularity is concerned; the transformation to equation (6.14) involves

multiplication of certain coefficients by r and 1; which,as can easily

be seen,cannot effect their regularity on the interval r = a to r = d.

On this interval equation (6.14) has two linearly independent solutions

of the form of equation (6. 6) which satisfy the relation in equation (6. 7).

6. 4 Matching Solutions at r = d
 

In Region I,the general solution for N1(r) is a linear combination

of the linearly independent solutions justified.

Nl(r) = Ay1+ByZ ‘ (6.15)

where A and B are constants to be determined. The continuity of N1

and anl/Br at r = d guarantees the continuity of N1 and N'1 there

(primes will henceforth be used to designate derivatives with respect

to r, except where noted) so that

N1(d’) Nl(d+)

N1'(d") Ni(d+) . (6.16)
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In Region II, from equation (6.10),

(316-de

-iBC1€-j5d (6.17)

.+
N1(d )

, +

N1(d )

where the notation N(d+) is shorthand for 1li_1;nc.l_,l\l(r). In section 6. 3,

it was indicated that the development for w< top is completely analogous

to the w > top case presented, the steps being identical if jB is replaced by

(Lil. That this is true can easily be seen from the similarity of equations

(6.10) and (6.11); if use of equation (6.11) is visualized in lieu of equation

(6.10) in the development of this section the analogy is obvious.

From equations (6.15), (6. 6), and (6. 7)

N1(d') A

- l
N'(d ) _ B (6.18)

1 >‘D

so that the following relations are developed

C1 6"de
A

B
_ijDA _

(6.19)

Now if the following definition is made

Mr) E ,1 ~16 nyz . (6.20)

Nl (r) can then be written as

Region I: N1(r) A(yl - jfix Dyz) = A N(r)

RegionII: Nl(r) cle‘mr = Ae'jmr—d) . (6.21)

The perturbation potential (1)1 must be determined everywhere

and matched to the driving potential perturbation V at r = a. The

potential perturbation can be determined in general form by integrating

Poisson's equation after transforming it in the manner of equation (6. 8).
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Poisson's equation in the perturbation terms as derived in chapter II,

equation (2. 34), for the present symmetric geometry takes the form

en 2

 

 

2 l 1 3

V $1 = e = g 2 (NP)

0 Br

01‘

82 e

23—291”) = ;— N1(1‘) (6-22)

r 0

where §1(r) is defined as r451 . If equation (6. 22) is integrated twice

with respect to r in indefinite form ¢1(r) is determined as

a(r) = C2 + C3r + P(r)

where

P(r) E‘ E?— §S.N1(r)dr dr . (6.23)

o .

In Region II

N1(r) = c 6.3;”

which implie s

 

P(r) = .. 62 cle’jFir . (6.24)

608

Since (>1 must go to zero at least as fast as :7 as r approaches

infinity, §1(r) : r¢1 should remain finite as r approaches infinity;

C3r is unbounded so that C3 must be taken as zero. 2 In Region II,

§l(r) is then given by

i1 = CZ+P(r) . (6.25)

In Region I the situation is more complex. Evaluating P(r), the first

integral of Nl(r) is

H >

\
I
‘
:

Z f
l

9
.
.

H3.N1(r) dr
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and the second integral becomes

SKNIU) dr A S S N(r) dr dr

or or

A ‘Sd dN(r) dr dr + (ea -j(3>\DYa)(r-d)+ub -j(37\DYb

(6. 2.6)

The continuity of 431 and W1 at r = d guarantees that of §l(r) and

Qi there; this,in conjunction with equation (6. 25),guarantees the

continuity of P(r) and P‘(r) there also. Potential matching at

r = 6. will be carried out on the basis of the matching P(r) and P'(r);

this process leads to a specialization of the integration constants

ea, ob, Ya' and Vb . At r = d, the following relations are true:

 

 

 

P(d+) = - 82 cle‘jfidz - ez A (6.27)

605 6013

P' + = ' e ‘jfid : ' _§_ .2
(d) 360 C16 jeoflA (6 8)

mm = f— A[ab ~jsxDvb] (6.29)
0

Mel“) = g“?- AEaa ~1‘MDYa] (6.30)

0

Applying the conditions

P(d+) = P(d‘)

P'(d+) = P’(d‘) (6.31)

the following relationships between the integration constants are obtained.

- - _1..
ab_Jfi)\DYb ‘ "

(6.32)

l

{
—
4
.

"
5
3
1
*
“

'
U
)

Cla — Jfi‘XDYa
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The set of integration constants satisfying equations (6. 32) is not

unique,but if that set is considered real,then the set is uniquely

determined and potential matching is accomplished if

 

a = O

a

a _ l

b ‘ "'2‘

(3

Y _ l

a — '- 2

[3413

Vb = 0 . (6.33)

Then,in Region I, P(r) becomes

or s

P(r) = i MS Srmr) dr dr + j l(r-d) - i] (6.34)
60 e d s d a B2

so that the potential perturbation is given by:

 

C2 e A 2 .r 'r
Region I: (bl = —r—— - -——2- ;-[l - j(3(r-d) - B ‘8 S N(r) dr dr]

600 d‘ d

(6.35)

C .

Region II: (bl = 7.3- - :2 A? e-er-d) . (6.36)

6
o

6. 5. Matchinggat r = a
 

In chapter V,a hybrid boundary condition was developed from

the hard boundary condition. This condition,(5. 21),and the condition

that 491 = V at r = a (where V is the applied potential perturbation)

can be used to determine the constants A and C2 in terms of V ;

this process completely specifies the solutions for (PI and n1 , as

well as the radiation fields, in terms of V as will be shown subsequently.

The hybrid boundary condition to be applied has the form
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where the coefficients are given in section 5. 4. At r = a, 8¢1/8r

determined from equation (6. 35) is

 

 

 

69¢ (3
,a ,r

81 = 'i " eA {“Lll " jB(a-d)-fizlS N(r) dr dr] +

r 2 2 2 .

r=a a €05 a d d

-a

5 as 452) N(r) er}
‘ d

from which

34> C

1 2 e E

__r- ' ‘2 + “—77 A (6.37)

r23. a, 606 a

 

where

2 .a .r 2 ea

E=l+de-B 8.8 N(r)drdr+(3a5 N(r)dr.

' d d d

From the definition

 

  

_ Nl _ A N(r)
n _ —-—- _

1 r r

so that

8n

1 l l

“5‘;- = A[-;—Z-N(r)+-1-: N'(1‘)]

and

8n

1 __ A F

8r — - 2 (6.38)

r=a a

where

F E N(a) - a Ni(a)

If equations (6. 37) and (6.38) are used to substitute for anl/Br and

8431/ Gr in the hybrid boundary condition the following relation between

 

C2 and A is obtained

2+ eEA _ DlFA+BlN(a)A

- 2 2 2 _ - 2 a

a E (3 a a
O



9'7

01‘

e E2 - B1 N(a) a] . (6.39)

608

 

c‘2 = A[D1F+

Matching cpl at r = a to the driving potential perturbation V allows

the determination of A in terms of V . From equation (6. 35)

C -a -r

V = 4’1 : .35. __27 §-[1-jfi(a-d)- (328 S N(r)drdr] . (6.40)

rza €013 ' d. d

Substituting for C from equation (6. 39) equation (6. 40) can be written

  

2

Ia er

aV=A{D1F+ 6L; -B1N(a)a - ez[1 -js(a-d) -1325 S N(r)drdr]}

60(3 608 d d

01'

aV = A[D1F+£—H2- -B1N(a) a] (6.41)

600

where

,a

H '5 j8a+02a8 N(r)dr.

‘d

A and C2 are completely determined in terms of V as

 

 

 

 

eH '1

A = a.V[D1F+ 2 .131 N(a)a] (6.42)

6 P
O

and

131 F+9E2 -B1N(a)a

6 (3

C2 = aV OH (6-43)

D1F+ e 2 -B1N(a)a

608

6.6. Matching at r 2 d1

 

Equations (2. 42) describe the EM mode in the uniform plasma

without a constant magnetic field. They can be written in the same

form as Maxwell's equations ina linear isotropic lossless medium of
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permitivity 2

This can be seen if equation (2. 43) is subtracted from the frequency

domain version of equation (2. 32) yielding

° _ — __3.—jwule - meEle . (6.44)

If equation (6. 44) is substituted into the second equation of (2. 42) then

 

z _

— —s “06 nOEle --
VxBlqu + . +jwueE

o jmew o 0 le

or

(02

__ _ -s . - .2 _.

'V x13 — HOJ +jtsuoeo U. wZ)'E1e (6.45)

This being the case,it is a simple matter to derive wave equations

for the EM field quantities. For the purposes of this analysis the

usual wave equation for the scalar potential in a homogeneous medium

is sufficient, i. e. ,

 

2 2

V ¢le+fle ¢le — O (6.46)

where 2 2

2 to ~03

(3e : (,0 (1,05 : 7.2.

and

2 l

c = e

“o 0

Equation (6. 46) is applicable everywhere in Regions II and III and

has there the general solution

(tiger.

¢1=——-.
e I“
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only the forward prepagating term is retained since the geometry

does not justify a reflected term so that

E‘jfier

(bl = a --—-—- . (6.47)
e 4 r

In the quasi-static region (I and II) the term 6 -3691. is nearly constant

so that ¢le can be considered as being included in the Cz/r term;

that this is true is the heart of the "quasi-static" approximation.

The EA mode has a conservative field (V x Elp = 0 from

equation (2. 43)) so that

Elp = -V¢1p (6.48)

There being no independent source charge in regions II and III equation

(2. 43) yields

 V-E' :- 1, (6.49)

and

V ¢lp = 6 . (6.50)
 

Equation (6. 2) is easily shown to apply here for the EA mode since

this equation involves the total density perturbation n1 (the equation's

derivation did not involve the concept of mode separation), and the

EA mode contains all the charge accumulationfi. e. , n1p = n1).

Equations (6. 2) and (6. 50) can be combined to form

 
 

p 2 l

e t3
0

Equation (6. 51) can be transformed to

2 2

8 e a

(r4> ) = - (In) ; (6- 52)
ar2 1p 6 62 ar2 l

O
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integrating twice with respect to r yields

 

-en1 C16

¢1p = Z+<15+ T (6.53)

6 B
0

so that

'jfier 0‘

_ .e. €_.___ .6.

o

tend to zero as r approaches infinity and droppingDemanding that ((91

the nonphysical nonpropagating terms o6/r equation (6. 54) becomes

en -j(3 r
_ l e e

  

The potential expression (6. 55) can now be used to match the

far field scalar potential perturbation to the quasi-static potential

perturbation given in equation (6. 36). Demanding that both equations

r = d leads to

 

(6. 55) and (6. 36) hold at l

t - __enl . . __u _ . .
1 _ ‘ ‘” 2 4 d ‘ d ' 2 1 _
r—d1 e 08 r=d1 l l 600 r--d1

(6.56)

  

which implies immediately that

(6. 57)C2 eJfiedl

6.7. The Far Zone Field

As an immediate consequence of this matching process the

radiation zone scalar potential is determined in terms of C2 , which

has been determined in terms of the driving potential perturbation

V, as

(6.58)

_ €"jl3e(1‘-dl)

¢le — C2 r V
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Consider an oscillating point charge Q at r = 0 in a region of uniform

permitivity

3

2

1.)

6:6 (1-—-§-)

w

the general particular solution to equation (6. 46) in terms of the source

charge density ps is

 

1 ‘ F’s —js r
: — e

¢le 47r€ l r 6 dv ’

and for the point charge

93 = Q 5(r)

so that

_ Q e'Jfier

4)le — 411' e r (6' 59)

Comparing equations (6. 58) and (6. 59) it is seen that a single sphere

of the antenna looks like a point charge Q located at the sphere's

center where Q is related to C2 (and hence to V) by the relation

0 = 4n 6 c2 emedl . (6.60)

Since d1 is arbitrary the phase relationship between the source and

the far field is lost, but the amplitude and relative phase variations

are maintained. By symmetry this description is valid for each

sphere of the antenna and the resultant field is the superposition of

those due the individual spheres; in performing this superposition

the antenna-space geometry must be considered, i. e. , the relative

phasing of the fields at any given point in space will depend upon

1 the orientation of that point relative to the antenna as well as upon

the separation between the spheres.

The geometry of the antenna, as detailed in the introduction,
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was chosen so as to meet the requirements of an electric dipole;

it is electrically small, its magnetic dipole moment is zero, and

it is modeled as far as the radiation field is considered as two point

charges Q oscillating at frequency 0) in antiphase and separated

by a distance D .

Since the phase relation between the source and a radius r

in the radiation zone is lost in the expression for Q and only the

relative phase of the fields from each sphere is important, Q can

be taken as

Q = 4nelc21 . (6.61)

Neither EA or EM prOpagation is possible when w < Lop since both

(32 and (3: are negative indicating attenuation so that this radiation

model breaks down in this case.

The radiation zone EM fields can be determined from the

scalar potential given in equation (6. 58) and the vector potential

due to the current in the antenna feed wires. A more simple method

consists of merely writing down the radiation zone field expressions

for an electric dipole in terms of the dipole moment QD; these

classic dipole field expressions are given in many texts. 21’ 22

Ramo21 gives the following expressions in terms of the feed current

assuming the dipole to be oriented with both sphere centers on the

vertical axis in spherical coordinates.

391D

jwu I D _'

E9 2 ' “4:3“ Sin9 6 Jfier . (6°62)
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The feed current is related to the dipole charge by

IO : ij (6.63)

so that equations (6. 62) become

BerD

HCb : - 41T1‘

2
D .

0 “0 Q ‘Jfier . (6.64)E9 = --—-a-;T——1:-—- Slneé

"jfier
sine E

The field expressions can be linearly related to V through equations

(6.61) and (6. 43) replacing QD by

 

 
 

  

DF+ 8E -13 N(a)a
1 (37‘ 1

QD=41TEICZI D=41reaDV 0H (6.65)

DF+ e -B N(a)a
1 2 1

. 608

The radiated power is computed by integrating the time averaged

outwardly directed Poynting vector over a large sphere of radius R

The time averaged Poynting vectorconcentric with the antenna center.

is given by

 

 

__ _afc

s __ ExI-I __ E9 HY);

av — 2 _ 2

2 w2 2

“-0 fie 02 D 2

: --— 2 2 sin 9 . (6066)

E 32w R

The average EM power radiated is then

(320) 2 ()2 D2

2:2] 12w (6.67)
 

01'

4 102 5/2 2
._..1_ __ .2' 2

PaV—90( ) (1 —w2) lczl D . (6.68)
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6. 8. Radiation Conductance
 

Any solution for the driving point admittance (or impedance)

using the quasi-static solutions cannot include the effect of electro-

magnetic radiation. Because of the short electrical length of the

antenna, its driving point admittance is largely capacitive so that

a radiation conductance computed from the radiated EM power can

very nicely be added to the quasi-static input admittance to yield a

good approximation to the total input admittance. The total potential

applied to the antenna is 2 V so that the effective radiation conductance

is related to the EM power by

Pav

Ge = 2V2 (6.69)
 

so that Ge can be written in terms of C2 in the form

4 L02 5/2 c 2

_ _l. w. .2. __3. 2

Ge _ 180 (It) (1 -w2) V D (6°70)

  

This expression can be written in a form more useful for numerical

calculation by recalling the definition of the normalized frequency

variable $2 55)-- and by noting that equation (6. 43) for C2 can be

P

written in terms of a dimensionless quantity KC , i. e. ,

 

 

 

D F+ 6E .13 aN(a)
1 E (32 1

K S OH , (6.71)

C D F+ e -13 aN(a)
1 £32 1

60

sothat

C2 = aVKC . (6-72)
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With these definitions equation (6. 70) can be written as

__1 “:24
Ge 2180(C)

2 5/21 2 2 2
5(5) -1) DaIKCI

or if (op/c is defined as kpe this equation takes the form

_ 1 2 2 _1_ 2 5/2 2

C'e _180 (kpe D) (kpea) [$2 (9 -1) chl

_ 1 2 2
- _180 (kpe D) (kpea) K.3 (6.73)

where

_ _1_ 2 5/2 2

Ke-Qm -1) (KC!

6. 9. Quasi-Static Input Admittance

The perturbation current to each sphere can be calculated in

terms of the quasi-static solutions indicated previously. The current

supplied to the antenna is related to the sphere's surface charge and

the plasma current as follows:

 

I=J4Tra2

80's

.1: 8t +Jp

and

Jp = -e(nu)l (6.74)

where 0's is the surface charge density on the upper sphere, J is

the magnitude of the plasma current density perturbation directed

away from it, and (nu)l is the magnitude of the perturbation

component of the electron drift current there. The (nu) term
1

can be reduced to
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(nu)1 = nou1 +n11uO

01‘

u (6.75)(nu)1 2: 11

since 111 is taken as being identically zero at the sphere's surface.

The surface charge density 0'S is related to the field parameters

by the relation

 rza

8¢1

oar

 (6.76)I
I

I

m

 

Combining equations (6. 74), (6. 75), and (6. 76) while transforming the

first to frequency domain description,the current I can be written in

the following te rm 3

  

 

   

2 . 84)
I 2 417a -Jw€o ‘5';- -e(uon1) (6.77)

r: 1'33.

Use can once again be made of the hybrid boundary condition given

in equation (5. 21) to reduce this current expression to one in n1

and 8n1/ 8r only.

2 8“1
I = 41Ta -Jw€O(D1 8r +Blnl )-e(uon1) _

r=a r=a r-a

(6. 78)

an

Replacing 73-11!- using equation (6. 38) and noting that
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and

 

r=a

from equation (3. 38), equation (6. 78) becomes

KT 2

1:41: e 2.1m: ( ) N(a)a+jweO(D1F-B1N(a)a) A. (6.79) 

D
J
I
C
L

Replacing A , using equation (6. 42), a complete expression for I

in terms of V is obtained as

KT

 

 

 

2
e ane (g) N(a)a +3-on (D117 - B1N(a) a)

I=4TTaV e H ' (6'80)

D F+ e -B N(a)a
1 2 1

600

The quasi-static input admittance to the antenna is given by

Yp = “zit? (6.81)

since the potential applied to the antenna is twice the applied potential

perturbation of the individual spheres. From equation (6. 80), Yp is

KTe d 2

e ane (E) N(a)a + jweo(DlF - B1N(a) a) 

 

 

Y = 2n a H (6. 82)

P D F + e — B N(a) a
1 2 l

6 l3
o

It will be shown in chapter VII that Yp can be written in the form

Y : 2 n a e 0.) K 6. 83

p 0 p y ( )

where the dimensionless quantity Ky is a function of frequency and

plasma parameters; the definition of Ky is obvious from equations

(6. 82) and (6. 83).
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6.10.) EA-EM Power Ratio
 

It is of interest to compare the ratio of the power radiated in

the form of electroacoustic waves to that radiated in the form of

electromagnetic waves. No loss mechanism has been included in

the quasi-static analysis so that

GP : Re[Yp] : Z'rr aeowae[Ky] (6.84)

accounts for the power radiated in the form of electroacoustic waves.

Similarly, no loss mechanism is included in the EM mode assumed

here, and the radiation conductance computed in section 6. 8 from

the power radiated in electromagnetic form represents a valid radiation

correction to the quasi-static admittance. It follows that the ratio of

the radiated electroacoustic power to the radiated electromagnetic

power is given by the ratio of the conductances GP and Ge , i. e. ,

5; EB
Pe - Ge . (6.85)

 

 

P 360 1r aeo w R [K ]

152 z 4 2 .21J 2 Y 5/2 2 (6°86)
e k D a — (9 - 1) l K I

pe 9 c

Applying the definition of kpe’ equation (6. 86) can be written as

32 3 {2 Re [ KY]

2 (6. 87)

Fe (k D)2k a(QZ-1)5/ZIKIZ
e pe cP

In chapter VII, KY and l KC) 2 are reduced to a form suitable for

numerical evaluation. These dimensionless quantities, as well as

others, are plotted in chapter VIII. Equation (6. 87) can be written
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more compactly in terms of the dimensionless quantity Kp defined

 

 

as

3 {2 R [K ]

K E 2 5/2 8 ya
P (52 -1) IKCI

sothat

32 1= K . (6.88)

Fe (k D)Z(k a) P

pe pe

6.11. Application to Resonance Probes
 

In as much as one of the goals of this study is to check out the

relatively simple analytical results of Fejer6 who studied essentially

the same geometry but neglected the sheath, the application of his

theory to resonance probles will be checked with the present theory.

Without going into the theory of resonance probes in detail,it can

be said that resonance probes operate on the principle that when a

radio frequency voltage is applied to a Langmuir probe the perturbation

in the current as wellas the direct current collected is a function of the

applied frequency. It is normally accepted as an experimental fact

that the collected DC current shows a sharp increase at the plasma

frequency. Fejer disputes this claiming that (l) the change in the DC

current is due to rectification caused by the nonlinear characteristic

of the Langmuir probe, (2) the amplitude of the radio frequency

perturbation in the collected current will be proportional to the

density perturbation 111 at the probes surface, and (3) the peak in

n1 in his theory does not occur at no but at a frequency appreciably

P
r=a

lower than wp. To the extent that his arguments are valid, the
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conventional theory of resonance probes leads to very serious errors.

Fejer's expression for n in the notation used here is
l

 

 

 

r=a 2 a 3?. 92 -1

:2_wE ) V0 (6 39)n : V - ; o

lr=a e v: (1 - €22)1/2

this expression is relatively small for $2 > 1 , has a zero at 52 = 1,

and is entirely real for 82 < l with a pole at

2 2 2 1/2
v0 a 1.) 1/2

9 : ———-22 (1+4——B-2) -1 . (6.90)

p 2a wp v0

It might be noted that as the factor amp/v0, which can be written

a/Nf3 XD, approaches infinity the singular point 52p approaches zero

so that for the case of the thin sheath very appreciable errors could

be made assuming that 52p = 1 . The present study indicates a some-

what different density-frequency profile; this is plotted in chapter VIII.

The density perturbation can be written in terms of V and the plasma

parameters in the form

2

(1) €

: —E—-—2O V Ka N(a) (6°91)

r=a V e

0

where the dimensionless factor Ka is a function of frequency and

plasma parameters; the form of Ka is determined from equation

(6. 42.) and is developed in chapter VII. The quantity A is related

to Ka by the relation

A _ _P__°
a—V— K . (6.92)
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CHAPTER VII

a

FORMULATION FOR NUMERICAL SOLUTION

7.1. The Mathematical Sheath Model
 

The purpose of this chapter is to manipulate the results of

chapters IV, V, and VI into a form amenable to numerical solution.

It will be noted that the separation of the plasma into the sheath

region and the uniform region (Regions II and III) as described in

chapter VI is an artificial idealization of the actual situation described

in chapter III. If the point r = d is chosen sufficiently far from r = a

the conditions of uniformity at r = d assumed in the model will be very

closely achieved; however, if d is chosen too far from r = a practical

difficulties arise in the numerical solution of the wave equations on the

interval [ a, d] . The second order differential equations involved are

solved by numerical integration on this interval, and since the solutions

are either oscillatory, at times involving many cycles of sinusoidal

like functions on the interval, or exponential like functions with large

growth rates, the stability of the method over the entire interval may

be a problem. Thus, if d is chosen too far from r = a stability

requirements may force the use of extremely fine subdivisions of

the interval for calculation, and uneconomical amounts of machine

time may be required. The choice of the arbitrary value of d

represents a compromise between the extremes indicated. The

sheath model chosen in chapter III for this study is not dependent

upon the sphere radius and is shown in Figure 3. 4; the normalized

potential 11 drops to less than 2. 5% of its value at the spheres

lll
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surface in 10 debye lengths from the sphere, and the electron density

returns to within 10% of its uniform value. The sheath thickness for

the mathematical model is arbitrarily chosen as 10 debye lengths

regardless of sphere radius; a better approximation could be had if

this thickness were extended to 20 debye lengths at the cost of

appreciably more machine time. The various coefficients in the

differential equations will be evaluated from an arbitrarily chosen

mathematical model used in lieu of the physical model of Figure 3. 4;

this mathematical model is chosen so that the normalized potential

1') (1) is described by a low order polynomial in r for simplicity

of evaluation, (2) assumes the same value as the physical model at

the spheres surface, chosen in chapter III to be 4. 50, and (3) goes

to zero with zero slope at r = d maintaining uniformity (i. e. , continuity

of derivatives of plasma variables) there. Plots of the physical model

potential determined in chapter IIIJas well as the approximate

mathematical model for n, and the coefficients of the zeroth order

wave equation for n will be given in Figures 7.1 and 7. 2. The
l

analytical forms of the polynomials used are indicated in the figures.

7. 2. Transformation of the Wave Equations

First consider the complete wave equation for n1 derived

in chapter IV, namely equation (4. 32). If the variable substitution

Nl(r) 5 rn1

is applied, and if it is noted that
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equation (4. 32) becomes

2
4 ‘l a N 4 2(n-n ) x

[1+ .1. (£1) 62(77’le)|1; 1+ _1_... [:p + ($1.) §__._w_ (2p _ 3%J 

611' r arZ 3RD r 11’

 
 (7.1)
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If this equation is multiplied through by rkgA and the common terms

are collected it becomes

4 2 2(n-n ) 4 x
1 d 2 - 8 N( l W l) 8N

X

 

 

6w r 8 '1?)

1 L

k a(r)—.77) 4 2 k 2 k
2 2 p__D e W' 9 8n 2 _P. __D —{8(r)>.D-3 r+3Tr (r) axz+2p +b(r) .6pr }N(r)-

L l

2

2 nouO Ar 8 ul

2 2 (7.2)

v 3x

0 1

where 82(r) is defined in equation (4.12) and

r - a
x 5 . (7.3)

1 RD

Once n is defined all the terms in the coefficients of equation (7.. 2) are

easily determined; this equation is in the proper dimensionless form

for computation except for the right hand side which will be modified

by the defintion of the dimensionless counterpart to N(r) for u1 .

Since boundary conditions for the linearly independent solutions for

n are given at r = d, a different normalized independent variable
1

x d-r: x
RD 2
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will be used for the density wave equations of zeroth and first order

for convenience; x will be retained for the drift wave equation
1

since its boundary conditions have been given at r = a (x1 = O).

In the development of the normalized drift wave equation

it is convenient to start with equation (4. 15) transforming it in terms

  

 

of N1 as in equation (7.1).

2 Z
a2u+28r1o §E+(8 n0 £— ) - u 8 N1 + (2 fine +10) 8Nl +

no 2 Br Br 2 - 2 no u_ - o 2 8r J 5r
Br Br r 8r

azuo Z w _|

( 2 “'17 o‘J?)Nli (7'4)
81‘ _-

where

u '5 r ul (7.5)

If equation (7. 4) is multiplied through by 2 qui, and if the coefficients

are written as explicit functions of r) the following equation is obtained.

  

 

 

2 ncouoo (g) azu 4P nocuoo (9)2 £1}- + Z noouoo(g)21 2 _

V? r 81-2 " 1D V2 r 8r 2" r 1'2 P

o 0 V0 D

2

2 X 2 2(n-n ) 4 8 N

9—1-3- - 2(3)]11 ‘ - E W E 21 +

8 r 311 r 8

x1 1 r

E. 62(77-77w) Q4 _ z x_D.) ,J i (21);: n'nw-I .8311. +

3 11 r r m r __1 8x1

201 n ) 4 2 k2 X
e ' W q a g 2 _2 D

311 r) (8x2 +p +4r2 '4r p)+

l

2 $2 - d-2 )‘D
J 3' —— 6?? 77w (1:) (T) N1 } - (7-6)

VZW
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Further,if the following definition is made

anumAru

 

- l
U .. - 2 , (7.7)

V0

. . . . . p Z Z 2
and 1f equation (7. 6) is multiplied through by kDr /d then the

complete normalized drift wave equation is determined as

2 2 x 2 2(n-nw) 2 2
fl-zpfl_+pz_§_fl__z(_2) Uzi—__(i) .a_Nzl£1.+

2 8 Z r 31r
3x1 1 8x1 3x1

L.

I. 2(n-nw) 2 X

g): 1%)1p-2r—D)-1——” e"'"w 44331“ +
‘_ V211 1

2(n-nw) 2 2 X X _ K

-§-.-.-——<%> <—%+p2+4—-- wig-261% ~52 um-
3r r 3 211

The definition equation (7. 7) suggests the way to proceed in

reducing the right hand side of equation (7. 2). From the definition

of u it is easily shown that

 

 

  

22 - r 3111 + u

8r — 8r 1

and Z

2 8 u Bu

8 u 1 1

2 = r 2 + Z —a-—

Br Br r

from which

azu - azu 3.. .82. + 2.1.1...
1' 2 ‘ 2 ‘ r 8r 2
Br Br r

Multiplying equation (7. 9) through by

2nOuOA - ZnQuOOA (Si—)2

- 2 7 - 2 r
v v

o o

(7.8)

(7.9)
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it becomes

 

2

- 2nouO Ar. 3 ul : (d)2(82U -£ 8U + 2 U) (7 10)

2 2 r 2 r 8r 2 ° '

0 8r r

Substituting from equation (7.10) in equation (7. 2) the complete normalized

density wave equation is obtained after transformation of the independent

variable x

 

1

4 2 2(n-n) 4 X

14.51.. (51)t::(n‘nw)]_uaNr E+€______W (51.) (213-33.) _LlaNl‘ +

11 r 3 311 r r 3x
_) 8x2

1. 201--n) 4 2 1.2 x
rD W d an 2 D D

[_sz frl-E Jr“3‘17"'-"---"(-1:)(altzp +6 2-6TPJNU‘)

x r .

z 2 k XD 2

(4, __3U ‘2'}2 __aU +2U(—D—) (7.11)
r 2

8X1 8X1

where fr is defined in equation (4.11). This equation will be used as

the first order density wave equation in the iterative solution.

A word about notation seems in order here. The forms of the

functional coefficients of these wave equations are not changed as

the independent variables are changed, although, strictly speaking, they

are different functions of the new variables, and this fact should be

recognized, by using different symbols, for example. The approach

used is simple and probably less confusing. Such terms as d/r,

d/a, xD/r, and XD/a can be written in terms of a single parameter,

the debye length-sphere radius ratio defined as 6 ; this description

will be given later.

The zeroth order density equation is obtained from equation

(7.11) by dropping the drift terms on the right hand side and retaining
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only the leading terms in the coefficients (these are considered dominant),

i.e.,

2

2.32%11 -132 39.1311} +;_ [92-fr]N(r) = o; (7.12)

X

it is expected that equation (7. 12) will yield a good approximate solution

for N(r) which can be used to start the iterative solution.

7. 3. The Iterative Solution
 

The iterative approach to the solution for n1 is simple in

concept and has been previously described in general in section 6. 2,

however there are a few procedural details which should be mentioned.

It is clear that equation (7.12) has two linearly independent solutions

of the form given in equation (6. 6) satisfying the boundary conditions

given in equation (6. 7); the boundary conditions will be used also for

solution of the first order equation (7. 11) although this must be justified

since equation (7.11) is inhomogeneous and has a particular solution

depending on the drift terms on the right hand side in addition to the

two linearly independent solutions. It is obvious that the two linearly

independent solutions can be made to satisfy equation (6. 7); but what

of the particular solution? The mathematical model calls for

uniformity at r =d (x = 0) so that the drift terms become inconsequential

in the vicinity of x = 0 where the boundary conditions are specified. To

the extent that the drift terms on the right hand side of equation (7.11)

are negligible the equation becomes homogeneous, and the particular

solution vanishes in the vicinity of x = 0 . Boundary conditions suitable

for particular solution of equation (7.11) are then given by
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Np(0) = N'p(0) = 0 (7.13)

where Np represents the particular solution to equation (7.12), and

the complete solutions (as well as the homogeneous solutions) satisfy

P110) yaw) _ 1 o (714)

Jim) v'zw) o -1

—

the same set of boundary conditions satisfied by solutions to the zeroth

order equation (7.12). (Note: primes here indicate derivatives with

respect to x -- here only.)

The results of the solution of the zeroth order density wave

equation are substituted into the drift wave equation (7. 8), and this

equation is solved for its particular solution using the boundary

conditions developed,in the next section, from the basic form given

in section 5. 5. The results of this solution are then substituted into

the right hand side of the first order density wave equation (7. 11)

which now becomes an inhomogeneous equation in N(r) . Although

the boundary conditions given by equation (7. 14) could be used to

solve equation (7.11) for the complete solution for N(r) , it is more

convenient to solve independently for the particular and homogeneous

solutions. The homogeneous solution for N(r) is then

NH(I‘) : Y1 ‘jfixDYZ (7°15)

in accord with the definition in equation (6. 20). The first order

iterated solution for N(r) is obtained by addition-of Np(r) and NH(r) .
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7. 4. Boundary Conditions for the Drift Equation

The boundary conditions for equation (7. 8) are obtained starting

from equation (5. 26); making the usual variables substitutions and noting

 

 

 

that 0.1 = 0 it becomes

r=a

- nmum aul _ 1 (2 2 l 3111— - :1-

v 2 8r — 6? a> r 8r r

o r=a
r=a

2

l 1 d 0

+ 5x" 2'; ('5') P 'J NIT n1

D r=a " r=a

or

‘ 2
- nmum Bul _. 1 (2) BN1

2 ' - 61-1. a 8r
v 8r

0 r=a r=a

1 1 d 2 "D o
+ T 7,," (1;) (P ”T )-1 N1 ”-161

D _ \[211
r—a r=a

Multiplying equation (7. 16) through by ZAXD while noting the definition

 

 

of "U yields

2

an _ _1_ 51 3N1

8561 _ .. ' 7 311 (a) 81’ch

x1=0 xl='0

1 d2 "D 252 I
(7..) (p - )‘j —"__— N o (7017)

371- a a 3 ("T17 l , _

r=a xl - 0

Completing the picture, the fact that 111 vanishes at r = a implies that
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U = 0 . (7.18)

Equations (7. 17) and (7.18) are the desired boundary conditions for the

dimensionless drift wave equation.

7. 5. Reduction of the K Forms

The evaluation of the major functions derived in chapter VI depend

upon the calculation of the dimensionless forms Ka" Kc? K9, Ke’ and Kp

since it has been indicated that

 

2
w 6

V e

0

C2 = aVKE:

Y = 211a€ to K

p 0 P Y

_ 1 2 _p 2

Ge " '1'8'6 (kpeD’ (kpea) Kg.

5 1
= . K o (7'19)2 9

Pa (13551)) 1332a

First solving for 1%, from equation (6.42)

-l

A e H

—aV = DlF - B1N(a)a +—€o 73

where D1 and B are defined in equation (5. 21) while F and H are given
1

in equations (6. 38) and (6. 41). Substitution for these terms leads to



 

__
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V 2e v 2e
A _ o , o 1

TV- — —-2—- 01(N(a) - N (3)3.) +——z—- “x"— 0'2N(a)a

w e w e D

P 0 P 0

-1

.3

+ ,—9—z-(j[5a+[52a 5 N(r)dr) (7.20)

6 13 d
o

where

n 4
_ l d

0'1: 6 W 1-3-1;('a-)

and

0' ._._€_:’: P -.1_.)\_R(é)4+J Q (2)2

2 3 r=a 11' a a V217 a

 

Factoring common terms and writing the derivative and the integral in ':

terms of x

2

.. A z 322:1 a N(a)+_a__ 3 N(a)

1W v e 1‘ in 1x 1
O

10 '1

a a l . 2 2 . '
+ —— a" N(a)+—- --z—- (Jm - s x S N(r)dx)

(7.21)

If the 6 parameter is defined as

x

6 E .32 (7.22)

then factoring 6 from equation (7. 21) Ka is determined as
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1

«r8752:

 K: 6 61 (6N(a) + 53x— N(a)) + -02N(a) +3

1
.0 -1

S N(r)dx . (7. 23)

o

L
3 o

It should be noted that,as mentioned in chapter VI. all of the forms derived

are valid for 52> 1 ; for fl< l the same forms are valid where applicable

if j[3 is replaced by b E 18' or equivalently if jmz-l is replaced by

m2.

In equation (6.43),C2 is given as

l

606

C2 = aV .

eH
DIF +1? - B1N(a)a

O

1 N(a) a

 

Substitution from equations (5. 21), (6. 37), (6. 38), and (6. 41) yields the

following:

5.2.
aV

.a . .r

01(N(a)-aN'(a))+UZ—:'— N(a)+—l——[l+j 5d+flzaS'N(r)dr-flz‘8 N(r)drdr]

D 812-1 'd d‘d

 

a

«1(N(a)-aN'<a))+ozTaS N(a) + a 21% 1:, [1pr + (32>. D'Sd N(r)dr) 

(7. 24)
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K

C 10 1010

8N(a) 6
0' 1(6N(a)+——-—-—-')Ir.1';,‘l\1'(a)+ + N(r)dx-— N(r)dxdx

T J—_—2",-3-1_T"'3‘751,310.10

7 .17)
BN a) . l 1

0'1 (6N(a)+-a—§‘—)+ 02N(a) +3 3 2: - -3- .80 N(r)dx

 

 

(7. 25)

Ky can be determined from equation (6. 82) which gives Yp in the form

Z KTe d 2

e m:— (z) N(a)a+jw€o(DlF - B1N(a)a)

 Y =211a

P

eH
DlF +——z- - B1N(a)a

€08

Substituting for D F, Bl , and Hl 9

 

 

Yp = 211a

KTe d2
28

8V02 0'2

° 211m (5'“MWHamo[‘£2';e_°' (N(a1--aN'(a))+-—T--2N(a>a]

. e “p 60 66816 D .

V0 e
evo2 0-2

a

106

70—01(N(a)- 2111\11(a))4—0h7°--)k—DN(a)a+——e—-2-(jpa+8was N(r)dr)

9 ° ‘09 €°B d (7.26)

Further reduction,proceeding as before,leads to

Y =211a

P

6 w (i 2 o[ )]

"' Na '1‘ (1)6 016Na +38xNa +0 2N3
 

A

 

1 10

47sziN(r)dx.. ' O

l
I
H

618(6N(a)+axN(a)) + O'ZN(a) +1
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from which KY becomes

1

_ 3V 211

Y .10 °

8 N(r)dx

’o

 

2

1%) N(a) +1016116N1a1+ ~53,- N(a))+ 62mm]

K
 

(7. 28)

o
o
h
-a . 1

0' (6N(a)+ -—- N(a))+0' N(a) +3 -

1 8X 2 ~73er

Next K8 is determined from equation (6. 73) where it was defined as

_ 1 2 5/2 2
K6 “Ti-(9 -1) (Kcl .

Ke is determined once KC is obtained.

Kp is determined from Ky and KC” as indicated in equation (6. 88),

i. e. ,

352118 [K2]

(”2 _1)5/2 chi2

A

Earlier reduction of %, _i-p’ and; was promised. These terms

 

can be written in terms of the parameter 6 defined in equation (7. 22) noting

that the sheath thickness has been taken as a constant 10 debye lengths, i. e. ,

d-a 2101‘

 

 

D O

Dividing by a yields

d

'5- : 1'1‘106 . (7.29)

)1

The factor can be written

A
D 1
r _ ———-1— (7. 30)
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01‘

D __. 1 1
(7.31)

104-3-}:

 

since, as it is easily shown,

x =10-Xl= -X2 . (7.32)

Finally 5:- Can be reduced to

10+—

9 5 (7.33)
r +_l__

X1 6

7. 6. Comparison of Dege_nerate Forms with Feier's Results

It might be noticed that the major differences between this analysis

and that of Fejer stem from the inclusion of the plasma sheath. At first

glance there appears to be little similarity in the results obtained,or in

the analytical forms of YP, Pe’ n(a), etc. obtained,in this chapter and those

of Fejer. Fejer ignores the existence of an unperturbed electric field,

an electron drift velocity, and of the static potential of the spheres; these

terms effect the results of this theory to a great extent. If the analytical

forms for Yp’ Pe’ n(a), etc., (i. e., equations (6. 82), (6. 68), (6. 92),

and (7. 23)), are modified by the deletion of the terms which Fejer ignores

it is easily shown that the forms become identical to those derived by

Fejer. To accomplish this modification, first let the sheath parameters,

which Fejer ignores, take on their uniform plasma values, 1. e. , let
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and

n = n (7.34)

in the sheath region; also let the static potential of each sphere vanish.

Second let d-> a, i. e. , set d equal to a so that

d - a
x (d) = = 0 (7.35)

l )‘D

 

This is equivalent to shrinking the sheath to zero which is consistent

with Fejer's uniform plasma assumption. As a result of this shrinking

process all of the integrals in the equations mentioned vanish and the

following degeneration occurs.

N(a) —>1

8Na . .1 2—

8x *JfiXD-Tjfim-l

0'l ->l

02 -» 0

0'3 ->l

-a

8 ~ 0
d

'3, ex

H - 0
'd d

n

e‘” -»1 (7.36)

If a parameter 6f is defined by
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6f 3 ———1— (7.37)

«[3 6

and if substitutions are made using equations (7. 36) and (7. 37) into

the expressions for Yp’ Pe’ n(a), etc. , it is seen that all of

these expressions go over exactly to those developed by Fejer if

it is noted that 6f has the same definition as Fejer's 6 parameter.
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CHAPTER VIII

NUMERICAL RESULTS

In sections 6. 2 and 7. 3 the iterative solution of equations

(7. 8) and (7.11) for the normalized versions of 111 and 111 has

been described. The first step in the procedure is to solve the

simplified homogeneous equation (7. 12) for its two linearly

independent solutions yl and y2 . Examples of these solutions

are plotted for the case of 6 = 0 in Figures 8. 8 and 8.9. They

exhibit the expected decaying oscillatory nature in that portion of

the interval [0 f x _<_ 10] where w exceeds the effective local

plasma frequency wp'xffr ; on the rest of that interval they

experience a growth with increasing X . This character is

expected because if f1. and p are replaced by their "uniform

plasma" values (i. e. , 1. 0 and 0, respectively) equation (7. 12) becomes

2

$11 + B2 N(r) = 0 (8.1)

which has solutions of the form of sines and cosines if (32 is

positive and of the form of hyperbolic sines and cosines if 82 is

negative; the solutions to equation (7.12) bare a strong resemblance

to these functions in the related regions. The increase of oscillation

rate with X is due to the decrease of f1. with X; the damping

of the oscillatory solutions is due to the presence of the first

derivative term involving p. If to > wp then yl and y2 with

the imposed boundary conditions given by equation (7. 14) should

approximate cosine and negative sine solutions, respectively,

130
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which they appear to do.

The solutions for N(r) and its appropriate derivatives and

integrals are substituted into the K relations given in chapter VII;

the results are plotted or tabulated in this section and represent

the results of this study in that all of the quantities of interest are

related by constants to the K's. Yp is related to Ky by equation

(6. 83), and KY is defined by equation (7. 28). Zeroth order

solutions for Ky are plotted in Figure 8.1 for 6 = 0, 0. 01, and

0. 05‘.

A geometrical limitation has been placed on this analysis

and the results presented herein by the use of a fixed sheath

configuration. Reference to the work of Bernstein and Rabinowitz12

indicates that sheath thickness and potential profile change negligibly

on the range 6 = 0 to 6 = 0. 05 but for larger 6 values the sheath

shrinks. Extrapolation from their work indicates that the appropriate

sheath thicknesses for this study were approximately 9 )‘D for

6 = 0.10 and 5 x for 6 = 0. 50. The sheath was shortened by
D

changing the variable X to allow the mathematical sheath potential

model to assume its terminal value at X = 9 and X = 5, respectively.

Values of the zeroth order solution for Kz determined by this process

are tabulated in Tables 8. 7 and 8. 8.

It is seen that the imaginary portion of Ky is a very weak

function of 6 (at least over the range of 6 values considered);

further, with the exception of a zero at 52 = 1, it corresponds fairly

closely to a capacitor of capacitance 211'603. which would be the

capacitance of the antenna if only the capacitance of each sphere
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with respect to infinity were considered with the sphere to sphere

capacitance ignored and with a free space medium. The real part

of K corresponds to EA wave propagation since no loss mechanism was

included in the “quasi-static" analysis from which it was derived;

it is negligible with respect to the imaginary portion for Q greater

than about 1. 5 regardless of 6 but increases with decreasing Q

as Q = 1 is approached from above until it reaches a large sharp

peak very near 52 = 1 beyond which it drops rapidly to zero at

Q = 1 ; it vanishes identically for (2 less than 1. 0 since EA

propagation in the surrounding plasma is not possible. Figure 8. 1

would tend to indicate a general increase in ReKy with 6 for a

given 9 although when the sheath model is appropriately shortened

to accommodate larger 6's it is found that somewhere between

6 = O. 05 and 0.10 a maximum is achieved and ReKy decreases

monotomically with 6 thereafter.

Figure 8. 2 is a plot of the zeroth order solution for Kz;

it is simply the reciprocal of Ky’ but it is plotted to facilitate

comparison with other analytical and experimental results. The

results of Fejer6 for the case of 6 = 0. 01 are plotted in the same

figure for $2 > 1 for comparison purposes. It might be noted

that Fejer's result is generally of much greater magnitude although

it has similar trends and has the same limiting values as $2 - + 00

and as Q ‘14-. As in the case of Ky’ ReKz increases with 6,

for fixed 9, until a peak is reached between 6 = 0. 05 and 0.10

thereafter decreasing with 6 .
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The form I N(a) Kal is proportional to the density perturbation

at the sphere's surface, i. e. , n1(a); the specific relation to n1(a)

is given in equation (6. 91); the zeroth order solution for this quantity

is plotted in Figure 8. 3. It can be seen that there are three major

peaks in this term. The first peak occurs between 52 = 0 and Q = 1,

its amplitude increasing and its position migrating upward with

increasing 6; the second peak occurs very near but below (2 = l;

the third occurs very near but above {2 = 1 . The second and third

peaks appear to be essentially part of the same local maximum with

the very sharp notch caused by a zero at 52 = 1 (it is noted that if

a loss mechanism such as collision damping were considered this zero

would not occur;there would most likely appear a more shallow but

wider notch). These multiple peaks contrast with Fejers results;

his analysis yields a single pole between 52 = 0 and fl = 1 although

his solutions do increase in magnitude with 6 and his pole does

migrate upward with increasing 6 , and he does show a zero at

Q = 1; there are then several major similarities in the two sets of

results. Between the first and second peaks there is a local minimum

of very small magnitude; it appears not to migrate appreciably with

6. Finally it is noted that (N(a) Kal = 0 for all a if 6 = 0; this

is true also in Fejer's analysis.

Ka is defined by equation (7. 23); zeroth order solutions for

Kai are plotted in Figure'8. 4. Ka is identically zero for all 82 ’if

6 = 0. It is seen that Ka increases in magnitude with increasing

6; both the real and imaginary parts approximate slowly decaying

sinusoids for Q5 1 except near (2 = 1 where each assumes
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relatively large and sharp peaks before going to zero at Q = 1 .

The value of the far field static potential is related to the

parameter C2 by equation (6. 58); C2 ,in turn,is related to Kc

by equation (6. 72); Kc is defined by equation (6. 71) and more

explicitly by equation (7. 25). Plots of zeroth order Kc are given

in Figure 8. 5. It is seen that

KC : 1+j0 (8.2)

for 6 = 0; it assumes this value very nearly for all 6 except very

near (2 = l where a minor deviation can be noted.

The radiation conductance term Ge is related to Ke by

equations (6. 73); Ke is defined in terms of Kc also in equations

(6. 73) as

5/2 2

2 - 1) IKCI .K 1:

e

((2

3
|
“

Zeroth order solutions for Ke are given in Figure 8. 6. Since

Kc is very nearly equal to l + jO except near 52 = l where its

deviation is not great and since in this region of deviation ((22 - 1)

is very small, Ke can be represented to a good approximation by

. 5 2

KB = (112 .. 1) / (8.3)

5
1
3
1
'
”

for all 6 .

The ratio of power radiated in electroacoustic form to that

radiated in electromagnetic form- Pr/Pe '.is related to' Kp by equation

(7.19): Kp is defined by equation (6. 88). Zeroth order solutions

for Kp are plotted in Figure 8. 7. Kp appears to be a weak function
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of 6 with greatest dependence near 9 = 1; it increases without

bound as Q = l is approached from above and decreases

monotonically with 52 for all 52 > 1 . At 82 = 1.1 , PP is many

times larger than Pa for all antenna geometries satisfying the

"short antenna“ requirement imposed by the adopted model, but

for 0 > 3. O the situation is reversed for all antenna dimensions

except the most minute; the point of power equality falls at the value

of Q where

K = (k D)zk
Pe

P ea . (8. 4)

P

If,for example,the antenna geometry is such that

D=0.5

a = 0.1 (3.5)

k
pe

k
pe

then at the point of equality Kp = O. 025 which corresponds

approximately to $2 = 1. 35 essentially independent of 6 .

In order that greater accuracy may be conveyed than that

possible with curves Kz, Ka’ (N(a) Ka' , and KP are tabulated

for 6 = 0. 01 in Tables 8.1 through 8. 4.

In order that a quantitative picture of the effect of the plasma

on the input admittance may be obtained values of Yp and Ge were

calculated for 6 = 0. 01 and the dimensions given in equations (8. 5);

the results are tabulated in Table 8. 5. In this case it is easily

shown that

G = 1.39x10'5K
e e

P / P = 40 Kp

3
Y =1.667x10" K . (8.6)
p v
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For the same case Pp/Pe was calculated and tabulated in Table

8. 6. The total input admittance is

YT = Ge + Yp (8.7)

so that

GT Ge + Rer . (8. 8)

Zeroth order solutions for GT are also tabulated in Table 8. 6 for

6 = 0. 01 and the dimensions of equations (8. 5). It is seen that

CT takes on relatively large values near 52 = l (in fact, GT

increases without bound as $2 = l is approached from above) due

to the excessive amount of EA power radiated there (EM power is

negligible here). At first ((2 > 1) GT decreases with 52 as the

dominant EA power decreases; as the increasing EA power becomes

appreciable a minimum is approached near 52 = 1. 4, and beyond

this point GT increases along with the then dominant EM power.

For reasons of economy in the use of computer time,first

order iterative solutions were sparingly computed. First order

solutions for Kz, Ka’ [N(a) Kal , and Kp for 6 = 0.01 are

tabulated in Tables 8. 9 through 8.12.
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0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0.95

0.99

1.01

1.05

1.10

1.20

1.30

1.40

1.50

1.70

1.90

2.10

2.50
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R 1(

0.6503

0.0836

0.0314

0.0128

0.0057

0.0018

0.0006

0.0002

0.0002

0.0001

0.0000

0.0000

TABLE 8.1. Zeroth Order Kz for 6 = 0. 01.

INIKE
 

- 9. 565

- 4.770

-3.156

-2.328

-l.790

- 1.315

- 1.757

-l.398

- 1.230

- 1.211

- 1.499

-.0.7708

0.8642

- 0.8827

— 0.8360

. 0.7781

- 0.7228

- 0.6735

0.5928

0.5297

- 0.4788

0.4015

0.3342
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TABLE 8.2. Zeroth Order Ka for 6 = 0. 01.

 
 

_o_ 102 REKa 107' IMKa

0.10 -0.024 -0.002

0.20 0.001 0.000

0.30 0.001 0.000

0.40 0.002 0.000

0.50 0.004 0.001

0.60 0.009 0.013

0.70 0.014 0.005

0.80 0.011 0.000

0.90 0.017 -0.002

0.95 0.029 -0.007

0.99 0.065 -0.028

1.01 0.146 -0.107

1.05 0.113 0.020

1.10 0.082 0.000

1.20 0.054 -0.040

1.30 0.012 -0.060

1.40 0.028 - 0.046

1.50 0.044 -0.017

1.70 0.026 0.033

1.90 0.022 0.029

2.10 0.031 - 0.010

2.50 0.025 -0.010

3.00 0.019 0.011
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TABLE 8.3. Zeroth Order (N(a) Kal for 6 = 0.01

 

0 lo2 |N(a) Kal

0.10 0. 026

0. 20 0. 027

0. 30 0. 029

0. 40 0. 034

0. 50 0. 046

0. 60 0.094

0. 70 0. 033

0. 80 0. 002

0. 90 0. 010

O. 95 0. 017

0. 99 0. 027

1. 01 0. 043

l. 05 0. 029

l. 10 0. 023

1. 20 0. 023

1. 30 0. 024

1. 40 0. 021

1. 50 0. 019

1. 70 0. 018

1. 90 0. 016

2.10 0. 014

2. 50 0. 012

3. 00 0. 010
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TABLE 8. 4. Zeroth Order Kp for 6 = 0. 01.

12 K
._ __P__

1.01 2.80x104

1.05 1.04::10Z

1.10 6. 5951100

1.20 5.151410"1

1.30 9.28;:10‘2

1.40 1.643210”2

1.50 3.11xio'3

1.70 6.251610"4

1.90 3.45x10'4

2.10 2.101110'4

2.50 5.101110"5

6
3.00 8.24x10'



1.30

1.40

1.70

1.90

2.10

2.50

3.00

150

Zeroth Order Y1) and Ge for 6 = 0. 01.

RY

_e_p_

l. 0657

0.1848

0. 0671

0. 0306

0. 0157

0. 0059

0. 0020

0. 0010

0. 0008

0. 0007

0. 0005

0. 0003

Note: All values expressed in millimhos.

k D=0.50andk a: 0.10.

pe pe

G
e

 

0.0000

0.0000

0.0003

0.0015

0.0042

0.0091

0.0162

0.0402

0.0805

0.1422

0.3511

0.8387

For the case presented
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TABLE 8. 6.: Zeroth Order PP/Pe and CT for 6 = 0. 01.

.91.. P /1=>e GT (millimhos)

1.01 1.12014106 1.0657

1.05 0.416x104 0.1848

1.10 0.264 x 103 0.0674

1.20 0.206 x 102 0.0321

1.30 0.371 x 101 0.0199

1. 40 0. 683 0.0148

1.50 0.124 0.0182

1.70 0.250 x10."1 0.0412

1.90 0.1381410'l 0.0813

2.10 0. 840 x10.2 0.1429

2. 50 0.204 x 10'“2 0.3516

3
3.00 0.330 x 10" 0.8390
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TABLE 8.7. Zeroth Order Kz for 6 = 0. 5.

.01300

.00245

.00146

.00095

00075

00063

.00054

.00047

.00042

0.00038

0.00034

0.00031

0.00019

0.00013

O
O
O
C
O
O
O
O
O

 

- 0.400

- 0.333



153

TABLE 8. 8. Zeroth Order Kz for 6 = 0.1.

fl REK «IK

 

__ 2 M 2

0.10 -.- 8.786

0.30 --— 3.007

0.40 --- 2.260

0.50 --- 1.807

0.60 --- 1.498

0.70 —-- 1.285

0.80 --- 1.721

0.85 --- 1.667

0.90 --- 1.290

0.95 --— 1.205

0.99 --- 1.206

1.01 0.20374 1.296

1.05 0 05216 1.041

1.10 0.02649 0.933

1. 20 0 01662 '0.825

1.30 0 01127 0.759

1.40 0.00861 0.704

1.50 0 00595 0.658

1.70 0.00394 0.584

1.90 0 00257 0.523

2.10 0.00195 0.473

2.50 0.00111 0.398

3.00 0 00053 0.332
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TABLE 8. 9. First Order Kz for 6 = 0. 01.
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2
10RK

ea

TABLE 8.10. First Order Ka for 6 = 0. 01

10

2
I
m

K

a
  

0. 011

0. 006

0. 007

0. 008

0. 010

0. 009

0. 018

0. 006

0. 007

0. 017

0. 018

0. 005 O
O
O
O
O
O
O
O
O
O
O
O

. 059

. 072

. O65

. 045

. 035

. 039

. 090

. 037

. 045

. 029

. 028

. 037
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TABLE 8.11. First Order |N(a) Kal for 6 = 0. 01

 

o 102 l N(a) Kal

1.01 0.017

1.05 0.024

1.10 0.024

1.20 0.014

1.30 0.007

1.40 0.013

1.50 0.043

1.70 0.012

1.90 0.018

2.10 0.014

2.50 0.018

3.00 0.017
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TABLE 8.12. First Order Kp for 6 = 0. 01

52 K

_ _E_

1.01 2.24:;104

1.05 9.8431101

1.10 6.30x100

1.20 4.78x10"

1.30 8.95x10-

1.40 1.55x10-

1.50 2.60x10"

1.70 5.71 x10‘

1.90 3.23x10'

2.10 1.98x10'

2.50 4.51 x10"

3.00 7.32x10'



CHAPTER IX

CONCLUSION

The major conclusion to be drawn from the results of this

analysis is that Larson3 was seemingly quite justified in concluding,

after his analysis of the spherical aperture antenna including sheath

effects, that previous analyses ignoring the sheath had predicted

excessively large effects due to EA radiation. His analysis involved

the same geometry as and an approach similar to that of Waitl but

included the plasma sheath which Wait did not do; this made it quite

possible to compare directly his results with those of Wait to

determine the effect of the sheath. The present geometry is the

same as that of Fejer6 although he did not include the sheath; it is

apparent here also that consideration of the sheath leads to the

prediction of considerably reduced effects of EA radiation over

those predicted by the corresponding "sheath-less" analysis. Larson

noticed a considerably increased input susceptance (more nearly that

for a free space environment) relative to Wait's result; the present

study shows considerably increased input susceptance over Fejer's

result. Larson noticed a considerably reduced amount of radiated

EA power (hence a much reduced input conductance) in the region

near 52 = 1; in chapter VIII,the same trend is observed when the

results there are compared with Fejer's results. Figure 8. 2 shows

Fejer's input resistance in the vicinity of 52 = 1 to be greater by

nearly an order of magnitude for 6 = O. 01; comparison for large

6 values shows an even greater disparity.
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It is easily seen that except for the very close proximity of

Q = l the input reactance follows that of a capacitor with capacitance

211 60a which would be the capacitance of the antenna if it were placed

in a vacuum and the capacitance between the spheres were neglected

(i. e. , only the self capacitance or the capacitance to infinity of each

sphere were considered). Since the antenna is small electrically

the input admittance is essentially capacitive. The fact that the

radiated EA power is greatly reduced (as evidenced by a greatly

reduced input conductance) and the input susceptance is greatly

increased by the inclusion of the sheath makes it apparent that the

sheath greatly decouples the antenna from the plasma. This is

not surprising because the sheath represents a near void of plasma

at the surface of the antenna; that coupling to the plasma is reduced

by such a void seems reasonable.

If a conventional radiation resistance term is derived from

the total input admittance expression and compared with Fejer's

result it is seen that each expression vanishes at $2 = l and

increases monotonically with $2 to achieve the same limiting values

for large 52; it is seen also that Fejer's term increases much faster

initially although the ratio of the two is always less than 2. 0 if 52

is greater than about 1.10 so that the two analyses yield very

similar results in the range where the radiation resistance term

is appreciable.

Larson considered in his sheath model the unperturbed

electron density and the unperturbed electric field due to charge

separation; he did not consider the unperturbed drift of electrons
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toward the spheres. This study has included in an approximate

manner the effect of electron drift; it is found to be inconsequential

as far as the input susceptance is concerned but to have considerable

effect upon the magnitude of the input conductance and upon the

electron density perturbation. Both analyses dropped the effect

of the perturbation in the electric field; it was indicated in chapter

IV that its effect was small although there is reason to believe that

its effect might not be entirely negligible upon the relatively sensitive

solutions for the input conductance and the electron density pertur-

bation. The inclusion of this electric field term would require the

solution of a system of third order linear ordinary differential

equations if drift effects were simultaneously included; this could

be done in theory but at present a lack of suitable and sufficient

boundary conditions makes it impossible.

Boundary conditions represent a major weakness of this

type of analysis and work should be done in the area of developing

more reasonable boundary conditions. The “hard" boundary

condition used here is arbitrary and somewhat unbelievable, but

it is conventional. Other boundary conditions have been suggested

by various peoPle some of which offer greater flexibility although

all are arbitrary and open to question.
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