GROWTH OF PEAS IN WATER CULTURE UNDER VARIOUS LIGHT EXPOSURES

MHESIS FOR RHB DRGRME OR Pb, D.
 Orman E. Strect
 1932

Frouth (Plaila)
Qear
Tite

1) Buacary

GROFTH OF PEAS IN FIATER CULTURE UNDEK

VARIOUS LIGHT EXPOSURES

by

Orman E. Street

A THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at Michigan State College of Agriculture and Applied Soience.

1932

Department of Botany East Lansing, Michigan

 1. Carbohydrato-i.itrocen Relationships ()ran E. Etreet(1)
 Connocticut ariciltural xicri:cont Station

> Introcuction
> a volu: inous iltorature has mrown up on the
subjoct of the briance botween the organic constituenta In plants. $7: 0$ erenter part of the evidence has supyorted the hypotheses advanced by Kraus and Kraybill (13), but not all the results have sukstantiatod their views. The tendency has beon to employ redical trontments, espocially as rogaris control of nitrocen suinly, conclusions being advancod on corparisons totween a very 10% and a very much hishor lovel of nitrate nitrosen in the culture redium. Such wide differences of treatment wore perhans necessary In order to prove or cisprove the soundness of the primary hyoothesis. Jowevor, in the present work, it was consiciored advisatle to roep the nitraen supply witlin the same order
(1) The writer is indebted to Tr. 1. . I Iblurd, iclegan state Collese, for patient quidance ring the cource of tho exporimonts. lio is furtier incevted to :r. IT. F. Clonents. Tas?ington ctate college, for sucestions in the plaininc; of tre work, and to Dr. P. J. Anderson for permission to complete tho necessary annlytical worls in tho laboratory of tho robacco Sub-station, Connecticut icricultural rxperiment station.
of mannitude in all cultures. The employnont of difforential water cultures of the same total osmotic concentration permittod this control, as well as thnt of the othor nutrient materiala.

The use of several light exposures was a necessary complement to this study. in viem of the wellestablished effoct of lifht duration on grovth and reproduction.

Historical

The litorature on water cultures has been thorourhily revicwod by a nuber of writers, a ong others by Tottingham (26), Shive (22), Yonglanc (10) and libbard (ع) and (9). In vicw of the divercence of thone under which worlers have puilishod, it farcily seoms nocessary to enlarge on the fonoral ilteraturo. A Ereat variety of salt combinations hav beon devoloyed, but the simplest and the one most widely used at tie vresent tio is tiat of Chive (23). It has been sl:om by liclarcuo (16), fommor and Lipman (24), irenchley (3), laze (18) and others tlat plants require very suall amounts of various elenontse. Tho require:onts for such elenonts as alurinum, zinc, chlorine, mancanose, silicon, iodine, boron and perhaps others are so sall that they are usunlly suplied by imo purities in tico chomicals used, or by cissolution from containers. This very interestins phase of plant nutrition Fis toucled upon only incicertally in the present work. Tho exhauctive studies of Carnor and illard (5), (6), (7), on licht effocts in plants havo voon extended by Nightincile (10), (20), iaximov (17), :cclelland (15), Tinctrer (25), an.? anser (27). \therefore rocent wulication of Arthur, Gutirie and liwell (1) sumarizes wo freater part of this worle 'ine last nased authors also attenpted to control other cliwatic factors, such as noisture, tomporature,
carbon dioxide concontration of tho air, as well as the intensity, quality and duration of ligle mo goneralization that an increase of list porioa brincs about an increase in carbohyipato content and a decrease in nitrogen content is so well establisiod by differint workers with various plants that it bsarely needs repetition.

lan or xperinent

The exocrimerts of clowonts (1), rejorted in 100, were perfored in the sa:e lnocretory as tie present work, ond it was with a view toword testine some of his conclusions that the followin; experinents were initiated. Fo used the trianculne system of Tottingham (26) and chive (2x), rrowine single cultures of 40 plants in tireo ciallon crocks. $\because 1 s$ most important conclusion was that tho supply of potnssium has a very inrked influence on nitrogon assinilation, at least uncior loreor lifht exposures. In order to test this finding, it was decided to use the same salt combination, $\mathrm{YH}_{2} \mathrm{PO}_{4}, \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$, and ${ }^{\circ} \mathrm{CSO}$ cuplicate cultures in selected culture solutions. The followinr wero chosen as being representative of different portions of the trian le, as vell as iivins different combinetions of potassiun and nitrofon, under the conditions recommended by Ifvingston (14).

Table 1.
Differential Culture Solutions, Trpe 1
Oanotic Concentration, 1 atm.

In addition to the salts employed above, snall amounts of iron, menjanese and boron were added to the culture solutions. Preliminary tests shoved that 2.2-4.0 p.p.m. iron in ferric tartrate, $0.66-2.0$ p.p.m. boron in boric acid, and $0.55-2.0$ p.p.m. manganese in manganous chloride mere the optima, and the lower anounts wore used in subsequent oxperinants.

The culture solutions mere clanced once a week. Transpiration losses ucre racie up by the aicition of distilled water during the latter prit of tlo erowine period. The cultures vere aerated for a porion of two hours every day.

Ifight exposures of ten, thirteon and seventeen hours were chosen as reprosenting the rance of light period uncior which normal erowth mitht be expocted. The longer periods were in part artificial light, the ten cultures of each group being apraneod under a battory of lichts suspended five feet above the greenhouse bonches and supplying 2000 watts at 110 volts. siansurcments of light intensity vere not mace, as the curation of licht has been found by Gamer ct al (7) to ve tle most significant factor, provided the intensity is not too low. Homever, comparison of illuninntion per unit ares, as used in these experimonts, with that enoloyed sy Arthur ot al (1) would incicote that the intensity was quite hiche

1:0 water screens betwen tho lichts and the plants were avalinble, rut tie leating effoct wns not noticeable. As the plinte groy toller, the lidets mere raisod.

The 10 loup plants receivod only solar light, altered, of corree, ly the zlass of tho creonhouse. These cultures wore srom in lypo wooron boxes which were fittod with light ticht covers gna vontil ted by a shutter arpnce ont sinilar to thit erolo in photom Eranhic dark rooms. The period of illu ination of these cultures was 8 . . B . to C P. \because.

The 13 hour plants were protected fron the artificial lifht source of the 17 hour plents ty curtains of fine weave, black carbric cloth. These curtains were drawn around the bench at the ond of the 13 hour period ard mithdrawn earl: in t ' o morning.

Knott's Fxcolsior field pens, obtained from the : icligan State Pam Jurcau, Lansing, i.ichlean, were used throurhout the experiments. They vere found to be an excellent type for \mathfrak{t} :'is :oris, ravinc a sturdy crowth habit and flowering freely. Before boing placed in the germinator the seeds wero storilized in l-250 formalin for 20 minutes, wisied in tap witer and sonked for a few hours. They were thon placed between layors of nolst prper towelling in a lnreo galvanized iron pan. Aftor etout three cays a uniform lot of the more vicorous
seodings with roote enourin: ow inci: 1 " leath was
 were fitted lato porforated cor's ener an lich hol five plants. The three gallon culture gars were fitted with porforated nlu inum covers, onch of whith held eifet cones, wrise a totnl of 40 plats nor culture.

In the first two sories, the seodlines which were dennec in handinc were replaced durint the first few days of the exseriment. In the final series a number of extra corys wero prepared and allowed to remain in contact with taj wator until tie experiment had prorreseed about teo days when replace ent of corks not havins, a complete stand was :ade. Ey tho latter technique, a so: 6 :hat mare uniform stand wre obininod.

The chemical onalyses ine in conceiton with thels worle pore only on the tops and pols ans wore as follows: Mitrato ngtrogen, total nitrocen not includin; nitritos, simsle sifers, sucrose, starch and heri-cellulose. Physical measure ents includet top lencth in centimeters, green welcht of tops (and pods ithon found), dry wefcht of tops, roots and pods.

Clumpal ietinors

In orioz to oitain corparail: resulta, the ciensal ertars Son carkohyoretos and total nitroen not inelunine nitrates (oranic nitrocen) wore the sane as
 lurnctemontres cro woosrum \{: nlcohol to uhich
 neutralize jlant acico. A labonntory exerioont intw ripe tomato pulp showed tiet this kase wne wich preferable to calcium corbonte cescially whon tho lotter wno used in excess of reņuire ents to neutrelize plant acids. The Fevarda mathod for nitirate nitrogen was tried lut eave such unrolinble results that it was soon ciscarded. Thn impossibility of proventint the brea?rdown of tio simpler nitrozonous compounis such as amiro-acids, and amidespend tre consequert, lifis results, roncers the method vortiless for jinnt mateninl. The rodification of the Cilbart method ky Moltz and Larson (11) Eave very good results. $\because i j$ inures roiorted are on a ciry-weirht basise

Fxperincital Iesults
Cenfos I wos started on Xurcil 13, 1023 and run until $\because a y 14,1925$, a period oí nine weoks. Flossoms orneares uniel 17 hour linht trree veoles after transe planting of tia se日dilicis. Both the longer lisht periods produced pods ebundantly and at the tine of harvest the pois :ifre berinning to rive\%. Two short li-lit plants clossomed towncd tion end of tie seriod, but developod only a very fer pors. Sontrol of the toratwe in t'e ereene house wae not difficult curint tioge nonths, en" culture conditions were concmily sntisfactory. It wns necsenary to use "Lemon Cil enray" to control red eicors in the greentionse and to eive the cyanido treatient for mrite flies end aphids. Thi plants :nere not at any ifme seriously nffocted b these incocts.

Sorics II man Prom June 13, 1920 to évl. 31, 1920 a reriod of seven weoks. Due to the hicher nir tompornture In the Eroenhouse at this tine, the plonts motured roore ropirly, and tho uneforwity of plonta in a einglo coldiee wes not er entisfactorye The licht intonsfy rias aso hirher at inis Irter timo, and this appromely had smo
 or tin pugnts.

In écrios III it wias roc: Aes to lait the experio rent to 10 and 1 : Mour lier porions, to have treetrorts in
trinlicrete and to torninato ins exapimont when tre glonts were wegetatipely develoved wut hee not set frist. The cultures ware stortod $\because n 714,1039$ and ran until June 12, 1982, a period of fon weel-3. t this senson of the jear, tre coys were lons onoumh to mit tho uno overificinl 11-it for any pert of tho 13 hour period.

The averare top lenfth van usunliv mootost in tho solutions supplyise the hichost proportion of nitrotes, incilcating tho erecter tercency for vegetetive growth mith a rore jiberal suaply nf inftretes. The dry noinht of tops wos hichest with hich nitrotes in on cranl number of roups but not in the sene culurcs in evory ceso. In order to establish the relntive value of tre various trontments in dry woiryt pron?otson, the total dry welut por ylant, exclusive of nods, wn rea duced to a ra*10, taine th: bea* treatrent in each group fos unity. Tecse mitios aro eiton in the lost colimn of tovies $\alpha, 3$, are 4.

Table 2

Series I.

(1) Culture solution, Shive's 1.00 atmosohere. lst fisure $\mathrm{KH}_{2}\left(\mathrm{PO}_{4}\right)$, 2nd figure $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$, 3rd finure $\mathrm{V}_{3} \mathrm{SO}_{4}$.
(2) Iry weights of tops and roots, but not of pods, were comuted to a ratio by Elving the highest weight in the group the value of 1.00 , and resucing others to decimal parts of this value.

Table 3

Series II

(1) Culture solution, Shive's 1,00 atmosinere. lst ficure $\mathrm{KH}_{2}\left(\mathrm{PO}_{4}\right)$. 2nd fi Eure $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$. 3rd firure VgSO_{4} -
(2) Dry weiphts of tons and roots, but not of pods, were computed to a ratio ky giving the hiziost weight in the froup the value of 1.00 , and reducing others to decimal parts of this value.

renl. 4

Sories III

colcinm nitiato of thuso colojad. colution 5-1-2, hith

 fuvoinble for vogetaitve Erosthe
nosults of cap chycrato malysec of Sories $I_{\text {, }}$ tops, wro slown in rit?o 5. Tlc tcra "tore", as uste in
 der not include poro. It ras notronelio to seprute

 Tunson and :niker's tovis (2).
 tie amplinde culcures, ifth cuiliate deteninntions of each strule. Fius cool ontuy revoconts the averace nerisses of a eroup of oo plonts.
's an ald to letorpretation of live resulis, the
 upon tre totel sucers (exul of tre ei gle angars and
 arm totril enrbohyrates.

In the sorges, tio culture solutions suprifing
a lifh proportion. - rencsic: enly wo vore tio nost efficient in ronotine tho armarat on of owans. mis


```
twrat ment.
```



```
roonoct to that sol.t. Ghomonent uf ca(NOz)s in the
cultume solutions nocreneos frare lort to ni-l:t.l Finomise
```



```
wnm: g
cor`osgituto levol.
```



```
    It is nomt savmont fru ispow l thet tie
```



```
nitrote n!tmom:n ? - nt n.mon: lmom lowry tinn clements (4)
```


Toble 5

Sorios I

 as too sunnle of nitintos bocaro linqton, but tils is

 3:n-lv anc rennis witenon syationes.
 tring is of interost bocnuece it shoms tia lites lavel of curbsinemate montont in tic partly :-nture frust tut it fusle to decclon any consistont relusions'las witu trentmont. Joro oseln solution 1-6-1 lne the lo.est total corbohycretes in 13 hour lifht, while tieh potisuinm leads in Ionror ifm:t. It is evicient thent ti:o content of orcanic riftroron su not refocted by nutrient trontriont or ? folt exymure.

 nitroon contont or nos lu inios I．
ferles IT wes repetition of ferls I, os fer es tho outlime of the exierfinant wine concerned. "e anolpses of nois wome mide. Starah and homi-cellulnses wern nnalyed senaretoly, but ane romonted tometres es
 starch wa very low, rnd did not fuetify sepreto mention. The rosults on -ivon in tatin 7 ord fimerc ?.

 ternamtines in tre preenhouse. In this series, there pre rot a clonr fietinction betwon the levels of cnebohyrate gomulation in ione and intementate lant, tre
 efernt.
min effoct of herh rannostum on t'o n-mint of
sumprs found wne sentine to that in corice I, netho only
 level, trontments g-0-4 and 3-7-2, the lnttor in notinular, hein- so ampt orretin excent in ent ly 1% Th the serfos the hioh not"oriom entron …n nat on efflciont as

 corrolane of the ? on surne enntent, an mon'd tronglonention must have occurred.

$$
\text { Tavlo } 7
$$


```
is buraly onfe to concluee thet thie is a fluret ropotion.
es trn coltumes maricil miNoly in this rosenot.
    "o ono tront"ont uns rently somerion in total
```



```
to monk num efroctr ang to mutramate.
    Th:O nitrn-an entn otnoer nl-set rn zeffoncocos
```



```
sergna.
```



```
to sunmtec stquc': rys: Nomp-ogll:?osr.
```



```
reme -.ory- thot fomma in sergos I.
```



```
ctrot lint, Fro ?-nt trontmone:.... nontn cracucive to
nm-sircon fomintion in ti ig rerian, rltino mot rumerior to
```



```
totor morbolmirutns.
```



```
nf nrotofn elobormtion mon motgonging nt aron twes stumo
of m.0.*h.
```



```
rocneet ton vimolintinn nf munne: l-T-F, ?-R-A, 3-Z-R,
```

Tatle 8
9

 nitroron coucint of tons in ierica 1×1.


```
rgnk notagesmm ocounder un intrmonito morltacme
    ith reraont to molysrochortans, t'o followin%
```



```
In \cdotsr...7% nl? cruco.
```



```
urion rll moniftenmr.
```


 1ヵ. 10~.

 tron. Ono. con., A1: 1500-150n. 10ヶ2.


```
    2nan。
```


 Vn' INS ITMTM EMoM: S

II Baso olemont rolationships
Orman E. Street (1)
Connecticut Aricultural lixperiment rtation

Introcuction

The resionse of plents to the supply of various nutriont elements and the positive correlntion between tr: amount sup lied and tho percontace found in the plant heve been the subjocts of numerous investigntions. The derree of resionse is lorsoly govemed by environnental factors, frich may even nullify the effect of varying treatments. Soil as a modium of growth is apt to ve meh nore ${ }^{\circ}$ inflexiblo than a less dymanic meterial such as quartz sand, which in turn is a less flexivie odive than water cultures. It is possible to obtein sinificant differences in prowth and comosition of plents in wator cultures were the differoncos in nutriont runviy are rother srall. Altho the intare of any one elemont may be a function of the relat ive suply of other elemonts as well as tho one in question, or intake proportionate to the supply will obtain
(1) The writor wishes to expross his ayprecintion to Ir. P. J. Anderson for nermission to perform the analyscs horoin renortce in tho laboratory of tio '"obacco substation, Connecticut fricultiral ixnerinent station.
under optimm conditions.
In connection with cooperative research studies on salt requiremonts, attempts have boen racio to control many of the roverning factors, esyecially with plents Erowinc in witer cultures. Factors such as the decree of acicity of tho culture solution and its effect on the composition of the plant lave been quite thoroyfily evaluated.

As a continuation of tro study of the eroith of
peas in woter culturcs, it was docided to invostirato the offect of liont duation on tic intale of base elements by the plant. Euch provier:s as tie effect of tlo season on the composition of the plant are porinns rel ted to lint duration.

IIstorical
Gilbert and larein (8) working with a varioty of crons mater field conitions conclude as follows "Tn eoneral tho cure:t concentrations of anoral clements In the solations of crop plants wore found to correlate directly with the epplications of chemen fertilirers." Farlier work by lecool (15) shows the sne relation in th exiressed sap of corn, beets and onions.

Amone the fertill:er eloronts aplled to the eoil that canse a marked response in the plant, potassiur is usually foremost. Otrycanjow (18) raisod the potassium content of tobaceo fron 0.45 to 7.22 per cent $\mathrm{K}_{2} \mathrm{O}$ on a poor sandy soil. Ancerson, Swanback and itreet (2) reo rort a raneo of 4.07 to 6.69 por cont $\mathrm{Y}_{2} \mathrm{O}$ on flold totacoo, :ille ereenhouse tobacco ranced fror: 1.48 to 6.73 one cont $\mathrm{r}_{2} 0$ in soil coltures and 1.10 to 5.35 per cent in sand ciltures, with fertilization varying from 0 to 300 pounds per acre of reo. On tio or or lind lialey, lononecrer and $180 \mathrm{~m}(10)$ rol tobacco on a calcareous soll wore able to increase tho percentaco of potash to only 3.87 for cont by tlee acicition of 450 pouncs $\mathrm{F}_{2} 0$ per acre, as comared with 1.74 per cont :ith no potash. S1-11ar rosults ars royorted by Eartholomew and Janssen (4) for soveral legues and eresses. Fonder (7) has notod corsistont cifforonces in motesh content of alfalfa rown
on severnl soil types.
In water cultures an extrealy wide rane of potash content bis been reported by cayre (19), workinc with canning neas. "ilh CoO/KgO ratios varying from 0.029 to 18.3 , he obtained potash percentages ranging from 0.87 to 8.70 per cont in leaves and from 0.68 to 7.60 nor cont in stems.

Pesponses to calcium and mngnesiun apolications in soil are usually relnted to the relative ainucance of tiesc elements ns comprod with the potash supuly. A relative abuniance of sotash depresses tho intake of either or both, as shown by :orman (10 pos) and Inas (9).

The uso on hyiroter manosina 11 o containing 57 por cont CaO and 20 per cent forint bo cxpoctod to Increase both ti:e calcium and ramesiun, but such was not the case, as is shoin in tho followine table fron the work of Andorson, S:anback and street (2).

Toble 1

(Air dry bosis on unferwentel In aves)			
rounds machesia annlied per acre	$\begin{gathered} \text { Percentn } \theta \\ \text { ri } \end{gathered}$	rome in comead CaO	lenves $i \leqslant 0$
None	4.83	6.75	1.32
100	3.98	6.22	2. 47
200	3.12	5.63	3.13
400	3.09	5.26	3.83
600	2.40	4.95	4.59

It may be seen that the potash was notably depressed and the calclum quite strongly reduced. The reciprocal repression affects all tiree bases, as has boen noted by Fonder (5), (7), for alfalfa.

It is only wero both potash and ramnesia are aveilable in relotively sall amounts that the nient is able to take up calcium freoly, as has been shown by Iorean (16, p 905) and laley, Lorconecker anc olson (10) working on tobacco in soils and Sayre (19) witr peas in weter cultines. Foncior (C) did not find as Erent differonces on neas grown in eqveral soils in the rreenhouse, but the differences in calciuri content of tic various soils was not great and no fertilizer wis adcod. Nightincale, Adoms, Robbins and Echer erhorn (17) in a study of calcium deficioncy in tomato plants obtained results that clearly indicate rutunl calcium and potessium reoression. The
absence of calcium permitted an intake of as hirh as 10. 62 por cent potassium, as conpered rith as low as 2.at per cont in its prosence. Calciun varied fron a trace to 3.84 per cent. .

References to tile efroct of lint on the intake of bases are not numerous in tle literatire. vartholomev and Jannsen (4) by mears of analyses st different tines of the day, corciudo that potassium is taken up as frocly at nirint as durints the day. Iyson (20) Erew surar beets In shaded consartments having from one to four lners of cheesecloth, and one crom meder tro layers of cheesecloth and one of blacle calico. :e found that the ash contont of the leaves incroased with a decrease of lint. Calcium and :arnesium content of lenves wns invorsoly proportional to tho intensity of liett while potassium content was decronsed with ono and two lnyors of cloth, but increased with erester slasine will it was about the savo as in leaves erom in full sulis-t. This mould indicato a greater kaso absorpion in voai: lisht. Hichtinyale et al (17) in the stidies previously noted, fome thet plants Ero:m in a calciun deficient redium, wion placod in darl:ness showed the presence of "uncomined" calciung iee.e calcium thet could be detected microchemically by the usunl trentiont with oxalic acid, and that the presence of calcium in tlis for germitted rowth and rorinaps rotoin elaboration.

plan of Exporiment

The meterial for this rork was the ovon dried samples of the peas used in Part 1 for detcminntion of nitrate and total nitrogen. Analyses were made for crude rish, potassium, calciun, and marnesium on the tops of all three series. ro anclyses of pods were made, ns previous resilts ind shom no consiston: trend. The reador is referred to art 1 for dotalls of troatrent and physical reasurements of the plants.

Chomeal "ethods

Crude ast nain calcium vere cotermined ty the official mothods of tho \therefore. A. C. (2). Vagnestun was deterwined $k y$ tre voluctric -ect on of Mandy (1l). Potassium deter inations of tie first sories vore made Ey the sodium cobalti-nitrite net od of dio and iood (1). A conparison of this method witi the official chloroplatinate procedure showed that the forier mothod did not give consistent resulte, noct of tie percontaces being too hich. cories I whs thorefore repentod and all potassiun fimpes reported ners by tho officinl ethod.
lxove1 ontsi leoults
lata on cruid as. for all selios ine ivon in
Table 2.

Treatment ${ }^{\text {P }}$	Corlos	Percentace crudo I Sories II	Serios III
17 hours 11\%ht			
1-1-6	12.71	15.05	
1-6-1	12.76	15.81	
5-1-2	25.47	18.05	
3-3-2	14.59	17.37	
2-2-4	14.03	16.85	
13 rours 11cht			
1-1-6	13.41	12.80	11.80
1-6-1	15.18	15.00	16.13
5-1-2	15.21	15.85	17.08
3-3-2	10.43	14.12	14.09
2-2-4	10.55	14.71	13.20
10 hours 11-1tt			
1-1-6	14.95	14.95	15.11
1-601	10.32	10.71	10.03
5-1-2	10.10	18.22	14.:3
3-3-2	15.05	15.77	15.12
2-2-4	15.97	14.97	15.25

Tho avcrace amount of crucio ash was erontor uncier short 11.rit thnn intormodisto limit in overy casce Lon; lieht wes not consietont beine tio lowest in series I and tho Ficlest in Sorfes II. iop plants were rroin uncor lons licht in Eerios III.
"Culture solition, enive's 1.00 atmosphoro, lst figuro $\mathrm{FIP}^{2} \mathrm{O}_{4}$. and figure $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$, 3rd ficure "COO

The ef ect of nutriont iaterials on the cructo ash was quite clocrit shom. In every caso excopt ons, tre lowest ficupe was fund with tie hich morosiv: troatnent 1-1-6. Tio hirlest percontace of cruco ash mas noted with tle hich polissime twentront in fivo out of eiret croups, one with lich calciur trentrent, ou a convination of tho two, in tie other croups. Tlis is in accordance with tho relativo porcontares of the throe elements cormonly found in plents.

Table 3 mesonts the nnolyaes of tho three co inant bnses in tio ions for all eerieb. Tons include all aerinl perts of tie plonts aith tie excoption or pocis.

The data for Series I rero olso mesontod in Eraphic form in ligue 1. In this crah tie inercients of potessium, reppocenter by tio first of the tiree ficuces, incrense fron left to rigut. the fncrerents of calciun, renresented by tre socond fisure, and of nomesiun, by the thir? fiقure decrense from left to rimete To nore clearly Illustrate tie ronessive effect on potassiun on the other two beses, the trentert 5-1-2 wos praces nt tio ri-llt of all soctions of tho eranh.

Considerine first the correlation between the sun-ly of any one bsse in tio cilture solution and the percentare in the nints moouced in that rolution, it can bo soen thet g reven rroont existod. In all
Treatmont

but or: of tie inter cil!io li int treat erts a regular Incrense in percosiny or potan was to be fombe "hile
 fivior cortent in tis iant ofion eaci: incuence la amount In the culture soluione The corrolation in tie cace of Lamestum yas rator poor in tho lifhor trontanta Gown \#it 1s kurs liot, but as" ie frois this roup, it displaraz a ronulor iveredse.

Tricu:ce on t:o :.untunly rooressive effect of
 In t.o culte eviution (trautuert 5-1-a) rosides in a lower esloin lature uncen all concitions tuan a kifh proportion of majesiun (ireatont 1-1-6). ruxtiomore solution 1-1-6 pervittea eroater calciun intalo tran solution 2-2-4 in two light durations, foiling only in Intorad to 11-t. This mas norhnys due to the fact that
 colution l-l-6, it also supplied twice ss much potassium. Tie cfrect of potescium on ragnosi:e. inta'r was quite si:11. In every casa solution 1-i-1 permitted Eroctor racrosium intire tinn solution 5-1-2. lotwoen solutions $5-1-2$ aid an-2, ooth of will supplicd equal

 decronsce, cxcent unior onont li it.

Oilciu: st:o..oa a gicetor repressive effect than megnesium on the intalce of poteselua. In all casos solution l-G-1, lech in calcium, moducod vivis lowor in potesiua ontent tran did solution l-l-6.
Te rost mored offect of the cumation of 11-clet on the absoretan of bascs :ons unon two intaice of rotas-
 was equificanty :1\%ar tranont to ranco of cultural

 treatnent. fetween lonj and short 11 at on averana difforonce of over onc per cont in potesciur: contont was found for all treat onts.

Calciua content in reforence to duration of licht s: arod tho 13 hour day loncth able to reintain tio hichest level. Chort lifltt wes fectured by tin lowcst relative level of calcium absometion, and except in the hirhest consentration hy a rothor low obsoluts ontont.
"ith rospoct to menosium, the intaro was not consistent. Inter vedints lint curstion sermetted a erenter intore than lon is int in all but one treatnent.
 wes narover, tio low :gnes'uy ciluwos leving a sli-htly
 than under croator 19 int eumetions.

Tho dota for forios IT ere oleo porontod in

 raconeston mas riso consistont. Tra enloive eontont of

 tency in tilis receoct in the serios.

The verine rooressive effactz rotat $1:$ ories I
 colture, F-l-2, un protionlngy reatesive to calcium as, ancosima nesomtin in all cosos.

Vere dofinite differences in notessin ninorm tion with rosoct to lirit exposire wre fount diont lict plents vere nonin tho hiekot in potassium contont, while intermante lat was claunt :nno conducive to potasolum into'e ton long indit. is mint be crpocted in vier of tie antoconism of pntnssime and calciun, the short lacht plants lor the lowest levol of celciu: Intare. The eifferenos betweon low on intoreris to light wore not as comelngivo, int frumer t'r frem in nll but one trentent.
Yomosin? wrs emsirembly 's tem whor lor:

11-bt than in corics T ond corinitely oreater than in tho

l'icure 2. Graph showing inta'ro of base elements wor ormal fint ornomres 1arcries II。

 3. om nnt entimaly comernhle th thase of t'o murocoint
 ent elennets was not ns ront, consonnonthy tho rnne of
 notansium nomtont mas monoher rut nolding manonesium
 tha youn- lonves ros in nereament with reoulte of Tutmon
 of month. Potossfum mer or ount ontomonistic th tho ottar brese, kut tim prlatively emonter ropmescive offoct of nalefum towne notnocfir: ?...n mot hame to he evidonto

 prowth, ond mo peont fonveluntion ton? ntoce in any culturo.

 under sveral lirt exposmes in onlos III.
Te notissing on lyo oilor me, we notIn tho othor culsuros, ons part of aot:sll in tio solution
secind to pomet as reat an intrien on timoe mis uculd
1n'Iento that n lowor concontration of notuck 1 a abogunte
for foune ylunts.

Conemal Niscussion

Constrenine the culcomen on the fyrst twn sories, It senms coriclusivo that notnssirm wnomont sumnent in glonts mom to merity uncor short lint. fs the lirht period mas lonetioned, tio lowol no ontocelum intole
 mell derine
on the other land, colciry wes anst aburnent uncer lon-or limit noriods, pith 13 or 17 homms ahout erunlly efficient in nronotin; aboorntion nf tis olonont. ! a mostrm wos similorly offectad b; the rinotomerior.

In attorpting to erplein the results of thase exnoriments, it is well to roneover that on those same pinnts, deteminntions of erranic and total ritroron shomed thent the shorter the liflt meriod, the righer the percentace of nitroeen. whis was in accordence with the findines of mony other investirntors. Foreover the longth of iny wrs practically tie only controling factor, as the plants wore able to fet an adequate sundy oi nitrozon from to 10 est increnents, and therofore falled to resnond to incrersed arounts.
Thus it may te assumed tort in a sories of
culture solutions havine the sare osotic comentrntion, but varying pronortions of the tipos salts, ell tice plants In the sorios would lave an equal sumply of wase clowentse

 to the a rmit of orluta: In tijs ense, calctua vas

 somben are calcitn.

 or !oc-lon? and orten (1E) In profoce to tomesty of

 02 yod:

Conclustons

Cmate noh we himer in mens wrow in in hours

 rarte in manestim remuled in the lount emono not an ell

me corrolation botweon tro rolntivo son of
 intare of that elenent bur the pints arm in tiese oultures, wes very chonrly intiod.
potassium displorred a stronc ropressive effect
 other foctare wiern tho sungly of natossiv, wes lixel nut the sumply of the othor bases rition lome

Colofym ind a somemat prontor pornosive effect on notessiti: tion hat onostum, in eithres whern these rases woro nbinannt.
Tideht emocorns of in rours indly nomined niants

 of enlomin intato.

- 8 -

 nud manostume

 Tn. tn. Tul? ? 234. 1??
 and tontative molitors of nnnlusis. sum or. norington ก. 6 - าวか.

4. Tartholonew, R. \mathcal{A}. and Tannsen, G. Tlo rato nf phomption of poinssfun by plants and its nossisle effect uon the mount of potasivitroninin in solls from noplecations of potrssixy fortilizers. is? Nre "r. ta. Buld 206. 10~7.
5. Fonrer, T. F. A criticnl stury of the influence of 8011 tomo on tho enlofrm nne ramosiun contont and other phrigoln-icn] cinpactors of nlenifa. roil sci., 27: 205-20:2, 1930.
6. -.... Vorintions in lu calcim ond monesium eontent of men nlants on iqnorent : rilstmes. Soll Sci., ? : 15-26, 1080.
swousion ：
コロ0．
177－102．191．

 Tech．Paper 8．1023．
7. Wutman, B. F. ar.
 15)

 103-2. anc.

 \because rstole, E: orrarl. 12!1。

ROOM USE ONLY

