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AZSTRACT

A STUDY ON Fi.OW THROUTH POROUS MEDIUM

v Hon-Hsiel Sa

The present investiyation is a prokabilistic study of the porous
redium and t':e mechanism of fluid {low in the pore system:. If the
porous mediurn is such that its pores have differeat orientation with
respect to certaia direction and the hydraulic gradient is the sole
cause for the {luid particle to move in the pores, thien the tortuous
paths of the pores vwill result in a dispersion of fluid flow in a porous
meZium.

A caual netvrork model of a porous mediurm was assumed in this
study. An orientation factor was used to represent tiie preferred
orientation of the pore canals. For civen canal distributions, il was
possivle to calculate the deyree of dispersion at a given time. . theo-
retical analysis of dispersion was iviade hbased on the assumption that
a fluid particle - ould travel in a pore canal network system by follow-
iny the prokability distribution function for the clioice of direction. A
functional re lationship was derived for the dispersion that includes the
lonritudinal distance of fluid particle movement, the length of the unit
canal, and the orieuntation factor of the porous medium. It was also
shov'n that the orientation factor of the porous medium could be re-
lated to the ratio of permeability coefficients measured in two perpen-
dicular directions in the porous medium.

A laboratory; experiment was set up to investigate the dispersion
phenomenon. The laboratory analysis showed that the dispersion

phenomenon in a porous mediurn is a macroscopically measurable
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quantity, The factors affecting the quantity of dispersion were found
to be the lenyth of the pore canals, the distance of travel by the fluid
particles, and the orientation of the pore canals. It was also found
that the packing characteristics sucl: as porosit’, packing uniformity
which were not considered in ti.e present theoretical analysis also
affect the dispersion. The experimental results showed that the
functional relationships as derived theoretically appeared to be
qualitatively correct.

Therefore, it is in nriuncipie possible to isredict the dispersion
from a knowledye of the characteristics of the porous medium. From
the results of this study, it can be stated that the assurnption of the
canal netvork model and a corresponding probabilistic calculation
appear to help in explaining the dispersion phenomenon of the fluid

flow through porous mediam,
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CHAPTER 1

INTRODUCTION

Many studies on the flow of {luids tiirough porous materials
have been undertaken. Darcy's law is valid for rmost cases when an
average rate of flov: through a porous medium is considered. Many
investigations have been made to study the coefficient of permeability
in Darcy's equation. Most of these attempts were based on the so-
called capillary model. This is the simplest model of a porous
mediurn and cousists of a bundle of parallel capillaries with uniform
cross sectious. This model plus Poiseuille's viscous flow ecuation
leadsdirectly to Darcy's equation. Unfortunately, the permieabilities
derived from this tyne of model are unot entirely satisfactory when
used to descrive tle phenomenon of flow throuvh porous materials.

It is apparent that difficulties with the capillary model arise
because the cajillaries are all parallel and that they have identical
cross sectional area and lensth. The model is far from reality and
therefore it is unreasounable to expect a consistent fuuctional relation-
ship among several measurable properties.

The shortcomings of the capillary model ‘e¢ some investiga-
tcrs to an entirely different approach hased ou the statistical treat-
ment of the porous medium. Dispersion shenomenon was used to
study the movement of fluids in the porous medium and investigations
have been reported in the past ten years. Most of these are theoret-
ical studies.

The present investigation is a probabilistic analysis of fluid
flow through porous medium. A porous medium in this investigation

1






2
is assumed to consist of a network of pore canals linked together. A
fluid particle is assumed to follow a probability function in choosing
a flow path while travelliny from one position to another in the zorous
medium. Different paths have differeant lengths between two positions
and also require different travel times. If, during continuous flow, a
fluid is replaced abruptly by another miscible fluid so that they occupy
two distinct plhiases at the beginninyg, the difference in flow paths
causes a mixing of the tvio fluids. This mixing is the phenomenon of
dispersion. A theoretical analysis of dispersion based on these
assumptions was made and a functional relationship was derived for
the dispersion in porous rnedia.

A laboratory experiment vas set up to investigate the disper-
sion phenomenon. 'The experimental results showed that the disper-
sion is a function of the rmedium properties. The characteristics of
dispersion as observed in the experiments are in general agreement
with the theoretical predictions. The theoretical relationship tetween
the standard deviation of dispersion and the distance was found to be
correct.

It is hoped that a study of this nature would lead to a better
understanding of the basic aspects of the fluid flow through porous

materials.






CHAPTER 2
LITERATURE REVIEW

The well knovn Darcy's law (185(), an empirical expression
of the flow of fluids through porous materials based on measurements

of the flow of water through s@nds and sandstones, may be written as

v=k AP ...
2z

where v is the velocity of flow, Ap is the pressure head difference
between two points in the porous medium, and Az is the distance
between them. The coefficient of permeability k as defined in the
above equation is the rate of flow of fluids across a unit cross section-
al area of the porous medium under a unit pressure gradient.
Refinements to Darcy's equation were made by many investi-
gators such as Blake (2), Kozeny (9), and Carman (3) in attempts to
generalize the equation for flow through porous materials. While
keeping the fundamental form of Eq. (1) unchanged, these studies tried
to relate the permeability coefficient to the physical and geometrical
characteristics of the porous medium. /. widely known equation is

the Kozeny-Carmau equation

) 1 €3
k-kl/‘sé Tl-e)"""""'(z)

where A is the viscosity of the fluid in the porous medium, €& is
the porosity, S0 is the specific surface area, kl is a constant ex-

pressed as

e T &)
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in which L, is the actual path of the fluid flow and Ll is the distance
between the two sections of porous medium under consideration. k
is a constaunt representing the shape effect of the pores in the medium.

In the above treatrnent, the porous medium is represented by a
bundle of parallel capillaries, and the laws of viscous flow are applied
to flow in the capillaries. Relationships between the various macro-
scopically measurable quantities are deduced from this model. Ex-
perimental evidence shows that the theory applies with considerable
accuracy to porous media composed of nearly spherical particles of
relatively large size. However, it is unsuccessful in describing the
flow characteristics of clays, which are composed of fine, plate-
shaped particles.

Two groups of factors have been brought out to explain the
failure of the Kozeny-Carman equation. The first is the forces at the
liquid-solid interface. This includes the assumption of high viscosity
close to the particle surface or the presence of immobile films of
adsorbed fluids at the particle surface, Terzaghi (19) and Zunker
(20). Other investigations were reported by Bastwo and Bowden (1),
Elton (7), and Michaels and Lin (12). The second is the change in the
packing characteristics of the material. This includes the orientation
of the particles and pore size distribution. Michell (13) and Lambe
(10) studied the effect of the particle orientation and Olsen (14) studied
the effect of changing pore size distributions. The experimental
evidence shows that changes in the packing characteristics affect
the nature of fluid flow in [ine-grained soils and the relationship
between the property of the porous medium and the fluid flow remains

indefinite.
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Other investigators tried the statistical approach. In 1950,
Childs and Collis-George (4) proposed a theory wherein flow was
determined by the pore radii and by the probability of continuity of
pores of different radii. Spherical particles were assumed. Marshall
(11) in 1958 and Quirk (15) in 1959 pro.posed alternatives to Childs and
Collis-George's method. Scheidegger (17), (18) in 1954 derived the
differential equations of motion of fluid through a porous medium
from probability theory. An average ensemble represents all parts
of the porous medium under the so-called '"hypothesis of disorder'.
The geometrical conditions for the motion of a particle prevailing at
a spot in a porous medium are assumed to be entirely uncorrelated
with those at any other spot of that material. The movement of fluid
particles in such a medium is then considered as steps with respect
to time or distance. Then, by virtue of the Central Limit Theorem,
the probability of a specific particle being at x at time t is a

Gaussian distribution
-3/2 (x-;s

p(x,t) = (4 T Dt) exp(-4Dt ). . . . . . . . (4)
where X is the average distance and D is called the factor of disper-
sion. However, Scheidegger's differential equation for fluid motion
in a porous medium is too complicated for practical application.
Experimental results by Day (5) confirm the existence of the disper-
sion phenomenon in porous materials but are not extensive enough to
verify Scheidegger's theory. Scheidegger's statistical treatment does
not define the microscopical mechanism of the fluid movement in the

pores. Therefore, his result contains a numerical constant describ-

ing the granular properties of the porous medium which can only be
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6
determined by experiment. According to Scheidegger, the dispersion
constant should have equal magnitude in both longitudinal and trans-
versal dispersion. However, Day's experimental result indicates
that there is 2 marked difference of about £ to 8 times in longitudinal
and transversal dispersion.

De Josselin de Jong (6) in 1958 also derived an expression to
describe the fluid movement in a porous medium from probability
considerationus. The pore system of a packed material is represented
by a network of unit canals continuous throughout the medium. The
probability of a fluid particle moving in this network to travel a
certain distance within a certain time was calculated. Molecular
diffusion is not considered. The computation gives explicit values

for the coefficients of the longitudinal and transversal dispersions as

follows:
) 3Z 3 1/2
G'x-u(t_Q(?\JrT-losgr)) A )
e =L (3% s 2 cr0gn)) R L L (8
z 3 T I

In these expressions ¢, and (0, are the standard deviations
in transversal and longitudinal dispersion respectively; u is the
residence time for elementary canal in principal {low direction; Z4
is the average distance travelled along the longitudinal direction;

L. is the length of the unit canal; log r is Euler's constant and is
equal to 0. 577 approximately; and A is a function of distance Z .
De Josselin de Jong also performed one experiment and measured

the dispersion in sand. The measured longitudinal dispersion co-
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efficient increases with the distance and the relatiouship between the
standard deviation and the square root of distance is linear as indica-
ted by Eq. (6). However, De Josselin de Jong's computations are
rather complicated and apply only to a porous medium with com-
pletely random pore orientation.

Saffman (16) in 1959 also applied statistics to the dispersion
in a porous medium. Saffman considered three conditions: (a)
molecular diffusion is very large compared to velocity of flow, (b)
molecular diffusion is very small compared to velocity of flow, (c)
intermediate case iu which the {luid is comnletely mixed across each
channel but not along the channel. Case (c) is analogous to De
Josselin de Jongz's model. Saffman obtained solutions [or all three
cases. He arrived at the following expressions for the standard de-
viation of the longzitudinal dispersion of a fluid particle

in a porous medium after tirne T

2.1/2
T, =(TVLS) . . . ... ...

V4

where the quantity S2 is represented by the following equations. For
idealized fluid particles where t0 =ty -0 , or fluid particles very

close to idealized conditions

1 54VT 2
2 .78 (log ) . . . . . ... (8)

‘3—}3&?*—'2 >> L.

n logn’/

For the fluid particles with conditions of Vit /L1, Vig /L D> 1

] o 1
TlOgTTZ""“""‘(g)






Vi /'L
i iy << 1.
_% o Yz
a {log 7~ )
2 1 27VT
ST o= . lo B e ¢
5 0% TaL (10)
3Vt /L
O,
if > 1.
_*% _%"
© (log n?)

Therefore, the standard deviation increases linearly with the
logarithm of distance. In the above equations, V is the average
velocity of the fluid flow, T is the duration of time, L is the length
of the unit pore canal, 7y is the average nurnber of displacements,

t, is the estimate of the time for appreciable diffusion along the pore
and t; is the estimate of time for appreciable diffusion across the
pore.

Thus two essentially different approaches have been employed
to study the flow of fluids through a porous medium; namely, inves-
tigation of the factors affecting the permeability coefficients in the
classical Darcy's law based on the capillary model and the statistical
approach based on the canal network model. The capillary model has
proved itself to be an adequate rmodel for permeability of certain
types of porous materials but it does not apply to dispersion. The
statistical approach has been applied to fluid flow through porous
materials only in the last ten years and is not yet completely develop-
ed. However, statistics have been used to describe diffusion prob-
lems successfully and the recent application of statistics as described

in the preceding paragraphs gives a consistent explanation of the






9
disversion phenomeuon. Therefore it appears tl.at the statistical
approaci is a tool that deserves more attention in the study of the

flow through norous materials.
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CHAPTER 3

THEORETICAL ANALYSIS

1. Dispersion Phenomenon.

Dispersion is a phenomenon observed in a porous medium as a
mixing of two miscible fluids when a fluid flowing in a porous medium
is abruptly replaced at its bottom by another completely miscible
fluid. This phenomenon is also called a "miscible displacement' and
is different from the molecular diffusion. The microstructure of the
porous medium results in a tortuous path for a fluid particle travel-
ling through the pores. This tortuosity of the flow path causes the
individual fluid particles travelling in the pores to arrive at different
places after a given time interval. The relationship between this
dispersion and the structure of the porous medium is a basic char-

acteristic of the flow through a porous medium.

2. Canal Network Model.

In order to study the mechanism of fluid flow in the porous medi-
um, a canal network model is constructed for the pore canals. The
following assumptions are made recarding this model.

(1) The pores between grains of the porous medium can be

represeunted by a system of unit canals joined together to form

a network as illustrated schematically in Figure 3-1,

(2) The unit canals in the model of the porous medium have

a length and an average cross sectional area that are represen-

tative of the average size of the pores that form the canals.

(3) The grains in the porous medium are assumed to be

rigid.

10
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o

Figure 3-1. The schematic sketch of a canal network system
in a porous medium and a random path chosen by
a fluid particle.

{
7 U
ﬂ%::;@ J

Completely random Completely oriented

Figure 3-2. The schematic sketch of grain particle arrange-
ments in a porous medium for two extreme cases.
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(4) The external forces on the fluid in the porous medium are
homogeneous and time independent. The gravitational force is
neglected.
(5)  The pressure gradient in each canal is proportional to
the cosine of the augle between the direction of the canal and
the principal direction of the gradient.
(6)  Any part in the porous medium is macroscopically iden-
tical witl. other parts in the same sample. This implies that
a fluid particle travelling in the porous medium finds exactly
the same probability function for displacement at any point in *

the medium.

30 Pore Geometry.

Since a porous medium is constituted by packing . of the grain
particles, the shape, size and direction of the individual canal in the
medium depend upon those of its adjacent grain particles. The
directions of the canals in a porous mediam which is made up of
uniform spherical particles are approximately randomly oriented.
For a porous medinm consisting of plate-shaped particles, anisotropy
is depeundent on its packing characteristics and the canals usually show
some preferred orientation. In Figure 3-2, schematic sketches of
these two extreme conditions are shown for plate shaped particles.

A mathematical expression for the distribution of the canal
direction is required. For a randomly oriented porous medium
(Figure 3-3), let the direction of canal be represented by the fraction
of surface area on a hemisphere. Then the probability for a fluid
particle to find a direction defined by dA which is contained between

0, fand 0+de, #+ ag may be represented as
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r% sin¢ do d¢
p = 2 Trd

21
A

sin@ d6 d¢ . . . . . . . . . . . . . (1)

dA=r? sinfdodg

Figure 3-3. The distribution of pore canals as represented by the
fraction of surface area over a hemispnere.
An anisotronic porous medium is one in which particles show
It is assumed here that the distribution of

preferred orientations.

canal direction for the general anisotropic case has the following form

a
Pz y7— sin’® do df (12)

in which n is a positive number (equal to or greater thaan unity) that

characterizes the particle orientation. a is a normalization constant

which can be expressed by the following equation. (See Appendix I,

section 1, for derivation).

AN e R O N CE)
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where b = 1 for n evenand b = 0 for n odd. It is seen that when n is
equal to unity, Eq. (12) represents the case for a randomly oriented
porous medium and when n approaches infinity, Eq. (12) represents
a case where all the canals are lined up at 6 equals 90 degrees, a

completely oriented porous medium.

4. Probability Distribution Function of Fluid Flow.

A fluid particle travelling in 2 porous medium will have to make

a choice of direction whenever it arrives at a junction of canals. This

choice of direction not only depends on the pore canal distribution as
discussed in the preceding section but also depends on the direction
of the individual canals. The discharge of each individual canal is
proportional to the cosine of O by virtue of assumption (5) in section
2. Therefore, those canals making angles perpendicular to the grad-
ient will have no discharge at all., This means that the probability of
a fluid particle entering such a canal is zero even though there may
exist a large portion of canals in that particular direction. The
probability of a fluid particle to take up the direction defined by an
area dA which is contained between 6, § and 6 + d0, ¢+d¢ is
assumed to be equal to the proportion of the discharge in that direc-
tion to the total discharge (all canals in all directions), The dis-

charge of a canal with angle Oj is

9§ qo cosO, . (14)

where q, is the maximum possible discharge of a canal and is equal
to the discharge of that canal with Oi equal to zero.
Therefore, the discharge toward the direction dA can be de-

fined as, by combining Eq. (14) and Eq. (12),
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a
agg * 2%0 sin"0 cos0 do af . . (15)
Let Q be the overall average discharge for all directions, then,

Fid
J J 90 sin™@cos6de = 29, . . . . . (16)
n¥l

Let €og denote the fraction of the discharge in the direction

defined by dA which is contained between 0, # and 0 + d6, @ + df.

1 B
ggg = 309 % sin™0 coso do d¢ (17)

Eq. (17) is the probability distribution function for the choice of
direction based on discharge and geometric distributions of the pore

canals. Probability distribution functions for various orientation
factors are computed from Eq. (17) and are shown in Figure 3-4

3 T 25 T T il
2Trggy = (n+1) sin”0 do dff

5 N
=
5
=
~
=AY
o
= n=1
; e SN

/D/Xﬂf
0 i 2 ] 40 50 60 8 9

0 in degrees
Figure 3-4. The probability distribution curves of the choice
of directions at a junction in a porous medium.
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5. Longitudinal Displacement of Fluid Particle £fter N Consecu-

tive Steps.

The process of the fluid particle movement in the porous medi-
um is considered as a series of consecutive steps of displacement in
the unit canal network. Here a step of displacement is defined as the
journey through a unit canal. The distance of this displacement in
the gradient direction is called fhe longitudinal displacement and is

equal to
zj:Lcosgj...........A...(IB)

Now, after N consecutive steps the total longitudinal displacement is
N
2o S 00RO 2 AR e e 1 arb it o 5 4(10)
j=1 ]
in which Z is a function of the choice of direction at every step of
displacement and therefore is dependent on the probability distribu-
tion of 0 and ¢.
If the probability distribution of 0 and ¢ is that given by Eq.
(17), theun the average displacement of each step in the longitudinal
direction may be evaluated as follows. Let Ef®) be the average lon-

gitudinal displacement for each step in a unit canal, then

E(z):J‘LcosOggg. Bl BT e, SR B e e ARN)
g
Substitute Eq. (17) into Eq. (20) and integrate, it is obtained that
_ L(n+1) (n-1) . . b
E@ : mymteg——(2) - - - - - - - (@D

The variance of z is evaluated as (see Appendix I, section 2)
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20, wBLD , abakiiaa) 2
An n- .
var(z) :0; = 793 - (e — (D% . . . . (22)

The average displacement of a fluid particle in the longitudinal

direction after N consecutive steps is
E(Z)SONE(Z): Vo 3 - v g6, A0 e A Bl & 2 i(23)
and the variance of Z is the sum of the variances of the N steps
2
Var(z,) = N Var(z) = NGRS e i) Bte wies s 1 s S(24)

From Eq. (21) through Eq. (24) it can be seen that the average
displacement and the standard deviation of each step not only depend
on the length of the unit canal but also depend on the canal orientation
factor n.

According to probability calculus, after N repeated trials the
distribution approaches the Gaussian distribution provided N is
sufficiently large. Therefore, the proltability for a fluid particle to
arrive at a distance between Z and Z+dZ along the gradient direction

after N steps is
! (z-&(z))”
P(Zy) = ZwNezy? exp (-7 ones Vo @ o405 (25)
where ¥s is the standard deviation of each step as expressed by
Eq. (22) and Z is the longzitudinal displacement travelled by the fluid
particle after N repeated steps as represented by Eq. (19). E(Z) is
the average longitudinal displacement after N steps as represented by

Eq. (21) and Eq. (23).






6 The Mechanism of Fluid Flow in a Porous Medium.

Counsidering now the mechanism of fluid flow in a porous medi-
urm. Let to deunote the shortest time possible for a fluid particle to
Pass through a unit canal of length I.. Then by virtue of the preced-

inng assumptions made with regard to the canal network model,

tj:tosecgj i wow s (26)

~where tj is the time required for a fluid particle to pass through a

<z nal making angle Oj with the gradieut direction. If N canals are

taken, then the total time required Ty will be

2 N ;
Ty =ty = sec; (27)
izl
Therefore, the distribution function represented by Eq. (25) in

thc preceding section involves an unknown distribution of time which

is dependent on the path taken by an individual particle. Two fluid

particles may pass through the same number of canals arriving at
different longitudinal distances and spending different times. Also,
twwo fluid particles may pass through different number of canals by

taking different paths and arriving at different longitudinal distances

for the same amount of time. Furthermore, two fluid particles may

Pass through different paths in arriving at a given longitudinal dis-
tance but the time spent and the number of canals traversed are
different.

If, in a given porous medium, a large number of fluid particles
are introduced and the journey of each individual fluid particle is

followed closely. Then, for a given longitudinal distance Zo’ the
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nurmber of unit canals traversed by individual particles to arrive at
Z o ™may be averaged as N-Zo’ and the time required for each indivi-
dual particle to arrive at this longitudinal distance may be averaged
as —'on’ Letting L., the length of the unit canal and to’ the minimum
tirnme required for a fluid particle to pass through a unit canal ¥ be

e gqual to unity, the following two equations may be written from Egs.

(1 9) and (27).

Zo TN, LT8OV, .. . . ... L. (28)
-TZO:NZO<seCG>ZO‘ B 2°))

~ here ( m)ZO is the average longitudinal distance of each step and
is a representative value of the orientation of the given porous medium
which is defined by ZO/NZo and <?€E§>ZO is the average time re-
qguired for one step of journey for the given porous medium.

In Eqs. (28) and (29), NZO is the average number of canals and
TZO is the average time required for a given Z,. If an individual
£1uid particle travelling an arbitrary path is considered, then the
nnumber of canals travelled NZO’ and the time required Ty, are ran-
dom variables depending on the path taken. This is illustrated in
F igure 3-5 as case (c). The following two equations may be written

to describe these random variables:

ZO=NZO<cosQ>Zo T 10

= e e e e e e e e 1
TZO Nzo<sec0>zo (31)
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Now, if the average number of canals in the above case is con-
sidered as fixed, then for this fixed NZ , the average distance tra-
o)

v elled by the fluid particles and the average time required to complete

this fixed number of steps may be expressed as

Z_:N<cosg>_............(32)
N Z N

o
—TN z NZO< sech > _N . . . . . . . . . « . . (33)

A nxd similarly the individual fluid particles in an arbitrary path may

ha ve distributions of longitudinal distance Zz and Ty 2s follows:

N
ZN : Nzo<coso> T e e e (34)
TR - Nzo(sec0> N T 1|

This is the case illustrated in Figure 3-5 as case (b), and it can
be seen that this is exactly the case investigated in the preceding
S e ction and expressed in Eq. (25). The conditional probability distri-

b ution for the longitudinal displacement Z= may now be rewritten in

N
the following form
! (zx - 7))
p(z=)= = 20 exp(-—3=———) . . . (25a)
N (ZTI"NZOG‘Z ) Nz, G5

The above expression is the distribution function of longitudinal distan-
Ces travelled after a fixed number of canals N and is obtainable by
knOWing exactly the pore canal distribution. However, a measurement
©f such a distribution in a laboratory is practically impossible.

Another type of distribution may be investigated. If the average
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time TZO in Eq. (29) is [ixed, then there exists a distribution in the
longitudinal displacement for this fixed time and there also exists a
distribution of the number of canals taken by an individual fluid
parxticle. This is the case of (a) in Figure 3-3 and may be expressed

irx the following equatiouns:

Z,I_,-NTQCOSQ>,—I, B 1))
TZO:I‘\I—T<sm>Tr T X))

¥ o r the individual particle in an arbitrary path, the random variables

ITray be expressed in the forms

- = — — . . . . . ... .. . . (38
z Nz < cosdy - (38)
?Zo: N— <sec9>7{'- S 1))

The distribution of longitudinal displacement for fixed time as
expressed in Eq. (38) may be measured in the laboratory although
difficult. It is difficult to measure the quantity of fluid particles at
different positions at the same time.

In summary, for any path chosen in a porous medium, the
Progress of a fluid particle can be described in the following three
cases (see Figure 3-5).

(a) For a fixed time of :FZO, the number of canals and the

distance are variables dependent on the paths.

(b) For a fixed number of canals NZ , the time spent and

o
the distance travelled are variables depending on paths.
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(c)

For a given distance Zo’ the time spent and the number
of canals traversed are variables depending on paths.

The relationship between the random variables in the above

thr ee cases may be evaluated as follows:

From Egs. (32) and (38)

N _ NZO {os®’ T (40)
= - - -
T Nz < cos0)T
and from Egs. (33) and (39)
T= N sech >
N % < >N. (41)
Tzo T <secO) T
Therefore, by combining Eqs.(4C) and {41)
2 NZO)Z ‘:<seco)N<mn~>N T4 (42)
= = N= i eerdy—
T T <cosO> T{secy) 7, T
By comparing Eqs. (38) and (34)
7= N= < cos®) =
_r - 7T >T°.........(43)
ZN NZO < COSO}N"
The refore,
Nzo . 2N Lcosop 7 (44)
N7 Z7 <cos0p

Substitution of Eq. (44) into Eq. (42) will result in
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Z% <§<e_c':—0>_1(1 (c(_)—s@?f\} (cos()>:f.

N <sec9>7r '\/cos@%

This is the relationship between the longitudinal displacement
for a fixed time T aund the distribution of longitudinal displacement
foxr a fixed number of canals N. Under the assumption that for each
imdividual path ZTI. and ZN do not differ much, the distribution ZT
may be derived using Eq. (45). In Eg. (45) the expression inside
the brackets may be analyzed as follows. The ratio of —T—‘Zo to EN may
be considered as approximately unity in a porous medium of large
dixmension compared to the length of the individual canals. Also
<c059>} and <cos@>‘1;] for an individual path can also be cousider-
ed approximately equal by assuming that for a given path the average
O rientation is not changed greatly by the addition of a relatively
s mall number of unit canals. However, the values of <coso>f
times <sec9> T and \/m)I—\I times (gc_d}ﬁ are not necessarily
€ qgqual or approximately equal to unity depending on the particular

PO rous medium and the individual path. It is a function of the path

1nic luding the number of canals and the canal orientations. In order

to simplify the analysis, these two quantities, <COSO>'_T‘ <sec0>'f~' and
<€O\SO>I_\I <sec:()>’1;I , may be assumed to be equal to unity. The

P robable error involved in this assumption is investigated and pre-

S ented in Appendix II.

Now, if we compare Eqs. (30) and (38)

Z N cos6)
o . Nzo< Zo C L (48)

Z7 N?r <cosO):I.
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and from Egs. (39) and (31)

-TZO ) NT (sec0> T

- N X))
TZO NZO<SeCO7ZO
Therefore, from Eqs. (46) and (47)
T, = 25Tz, <cos(»i-‘ <sec0>zo .
o} — 4
Z7 <COSQ)ZO<SCCO>T (48)

where TZO is the distribution in time required to arrive at a given

loragitudinal distance Zg as represented by case (c) in Figure 3-5,

T Zo is a measurable quantity and the laboratory set-up for this

me asurement is usually more convenient because many time readings

ca n be taken at one location whereas there is a serious limitation on

the number of locations that can be measured at a given time. The

q uantity inside the brackets of Eq. (48) may be considered as approx-

imately equal to unity if it is assumed that for a fluid particle travel-

ling in a given path the average orientation will not change appre-

Ciably from one stage to another. This is a reasonable assumption

COmnsidering that the range of the dispersion in the porous medium is

U s ually small compared to the overall size of the.medium.
Approximations other than that obtained by replacing the

bracket of Eq. (48) by unity are possible, for example, by substi-

tution of Egs. (32) and (34) into Eq. (45), Eq. (45) may be rewritten

in the following manner:

Z% 2—1\'1 <s:_e“c—0>l*\I {cos0> 7 T,

Z— e <sec9>Téoso>& T
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or e M =
A (sec@);I <COSQ>'T TZO
Zieh iz
T N < — —= 5 b B asnsio g 1(49)
secO>T leos®y Ty

Therefore, the distribution of longitudinal displacement for
fixed T is now expressed as proportional to the distribution of longi-
tudinal displacement for fixed N. Based on the foregoing discussions,
the quantities in the bracket of Eq. (49) may be considered as approx-
ima tely equal to unity except the ratio of <§;0> N to <set:9>7r,
This ratio may be larger or smaller than unity dependent oun their
av e rage orientations because they represent two different paths in a
po rous medium.

The following additional assumptions are necessary with regard
to ¥qgs. (45), (48) and (49) in order to simplify the relationships
between random variables.

(1) In a given path the average orientation of the path is

approximately the same at different stages. This implies that

if <c050>1‘\1 is obtained for a fixed N steps, then, provided
the fluid particle continue this path until a fixed time T, the
new <5039>T- will still be approximately equal to <cosG>ﬁ.

Therefore, the quantity

<cos@>7r (sec@}zo
<cosQ>Zo<sec0>,—r

in Eq. (48) will be approximately equal to unity.

(2) The ratio 'fzo/i‘ﬁ is assumed to be approximately

equal to unity. Since N is the average number of steps re-

quired to arrive at a given longitudinal distance Z,, therefore,

the average time required for particles to complete a longitu-



-
P




27
dinal distance of Z, should be approximately equal to the
average time required for completion of I steps.
(3) In a given path if an average <cos8) is obtained, then
there exists an average (sec®’y such that <cos®) = 1/{sech),
This assumption will inevitably produce an error whose
magnitude depends on individual paths. An investigation of the
magnitude of error for this assurption is presented in Appendix
1L
(4) The ratio of (SecB) 7 to {secy 7 in Eq. (49) is assumed
to be approximately equal to unity. The possible error involved

in this assumption is investigated and presented in Appendix II.

Based onthe above assumptions, we may replace Eq. (45) by

z
Z= = e e o i R SEuTE maah ar b wban HAl50)

iy
NI
Z1 |21

and Eq. (49) may be replaced by

(s1)

zg = "o Tz it o mishy e 48 16 W 14 Jedinder A ASr GATR(52)

2

Eq. (52) is to be used to obtain the distribuation of the longitudi-

nal displacement for a fixed T from the measured distribution of time
for a given distance Zo. Eas. (57) and (51) are to be used to obtain
the theoretical distribution of the longitudinal displacement {rom the

knov.n distribution of lonyitudinal displaceir:ent for a fixed number of

steps N as expressed by Eq. (25a).
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¥s The Loungitudinal Dispersion of Fluid Flow in a Porous MNedium.

Duriny the displacement of one miscible fluid by another, the
break through curve obtained from Egs. (50) or (51) gives the particle
concentration at the mixing front. The degree of dispersion is mea-
sured by the standard deviation. It is necessary to derive the ex-
pressions for the expected mean and standard deviation for the dis-
tribution of longitudinal displacement at a fixed time ’?Zo'

Define /A; as the "i'th moment about an arbitrary point and
MHias the "i'th moment about the mean. Then, by definition the

following general equations may be written (see Kendall (8)).

ﬂ{=L(x)‘p(x)dx B Bt 3 ctor s st 4(55)

i g (x—/i)ip(x)dx S AT AL &, e a3 i (54)
We have i

/‘z :/Ag*/*lz g iy Gad i £ B 8 osritiinn
and

2 3 4
M4 :/44‘*4/‘1//1—3*6/“'1/*2*4/“‘3/"1*/"'1 o 5 e 4 2(56)

where /2 is the variance and since for the normal distribution

therefore, Eq. (56) may be written as

I 2 2 A4
Ma ® 3/L2+6/¢L1/4A2+/L1 e % 8 ke S0 € A T(5ea)
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Now, from Egq. (50), the expected value for ZTr may be evaluated as
RETE
E(z7) = Zg E(ZR) . bt A ot g v 8 (GT)

2
E(ZI_\X) may be written as

and from Eq. (55),
2. £ 2

E(ZR) sVt BAER) anedls o Solh 5 i wd gl it 50 (58)

Therefore, by substitution of Eq. (58) into Eq. (57), it is obtained that

-1
Hzg) T Z, (T5tZE) ... ... .. . (9)

The variance of ZT may be obtained [rom Eq. (55)

205 5 42 2
var(zz) - E(ZT) - E(Zg)

L B Bt e i O3 e 5 RN
and from Eq. (50), since
2 _-2 4
E(ZR)S ZNGBOERN. b on i obe e G 0 1o g, 50 S(61L)
Also from Eq. (56a)
4 4 Fite 12 2 4
Ezy) =30 ntezg O Y2z - - - - - . . (62)

By substitution of Eqs. (62), (61) and (59) into Eq. (60), it is obtained

that
i i e 2, oL A2 2
Var(zg) = 2Zg (G’N+4ZNQ"I—\I). by & e B pa(69)
For the case of n = 1, from Eq. (24)
N2
G BT Lol b b sk & B
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and from Eqgs. (21) and (23)

= _ 2%
g INL
therefore
Zh £ ey
=T = Z-L
O 12

(65)

(66)

Substitutions of the above three equations into Egs. (59) and (63)

give the following expressiouns:

E(Z}) = ?N-" —11:2
Var(Z-) = l.’(f_ + L)
T 3TN 24

(67)

(68)

(69)

Eq. (59) and Eq. (63) are the general expressions for the ex-

pected mean and the variance for Zz. Substitutions of Eq. (21) and

Eq. (22) into Eq. (59) and Eq. (63) give the expressions in terms of

the orientation factor n.

o 2
E(z5) = 2t arorc, Cn)

2 2
2 =G e e SRlonly L LS
= 28 E g Ja )
GZT N ((n+3)cn n ( (nt3)C n

where the term C, is expressed as

.- w-1) . .. 1 b
L s s )

_C)Z

(70)

(71)

(72)



-
e




31
and b = 1 for n equals even numbers and b = 0 for n equals odd numbers.
Let us define a2 numerical constant C to include all the terms that

coutain the orientation factor n in Eq. (70) and Eq. (71) as
C(—,=m—cn o i, S A IR L T (73)

In Figure 3-6 the relationship of C;‘ against n is shown. It is
noted that C’ﬂ has its maximum value at n = 4 and then decreases

rather slowly as n increases.

=
/r/"\o\o\\

75

n

Value of C

§150 s,
1 3 5 1 Il

Orientation factor n.

Figure 3-6. Relationship between orientation factor n and
Cy in Eq. (73).

The above analysis for the expected mean and variance for 7,—1_
are based on the relationship of random variables as represented by
Eq. (50). On the other hand, Eq. (51) may be used instead of Eq.(50).
Since in Eq. (51) the distribution of longitudinal displacement for a
fixed time is considered to be equal to the distribution of the longitu-
dinal distance for a fixed N, the expected mean and the variance for

Z7 may be represented by Eqs. (21), (22), (23) and (24).
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8. The Permeability Coefficient and Orientation I"actor.

In Figure 3-1 a fluid particle enters the porous medium at
point 0 and arrives at point 0} after travelling N unit canals. The
permeability is defined as the velocity of flow for a unit pressure
gradient. If the permeability of the porous medium is measured in
two perpendicular directions as K, and Kx and if <m> and (c—o—sW>
are used to denote the average value of the flow path through the
porous medium with respect to these two gradient directions, then a
relationship between canal orientation and the permeability coeffi-
cients can be established in the following manner.

If K, and K, are defined as the permeability coefficients along
Z-direction and X-direction respectively, then the following relation-

ships may be written:

K, =20/ Tp =1 <eos8y /tdsec) . . . . . (19)

K :XO/TXOZI‘<COS¥I>/t0<596¢>‘ 2. G ke 2 (S
Therefore,

Ky - {cos8> {cos§ >

A R )|

Sl

(evy/ (Geep)

The quantities on the right hand side of Eq. (76) caun be calcu-
lated using the equations derived in the preceding sections. Since the
distribution of canal direction for the general anisotropic case was
assumed to have the form represented by Eq. (12) and the theoretical
probability function of the choice of canals based on discharge and

geometric distribution was derived as Eq. (17) for a gradient in
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Z -direction, the quantities (cos@) and {sec@) wmay be expressed as

{cos8> :fo (ﬁ Zay cosk

n+l 2m 2 B
or sin®0 cos“0dedf . . . . (77)
0 0
2 vl
(5ecB) = “_”5 fsinnododﬂ Su B G o 2 078)
27
o ‘o

The numerical values of {cos@y and (secG) are calculated

Similarly,

frorr the above two equations for various u values and plotted in

Figrure 2-7.
For the gradient in X-direction, similar derivations would lead

to the results as follows (see Appendix I, section 3)

1) {n-1)
(cosp) = (;Jn)zg : ff *20cos?gdadd . (79)

vhere B is equal to 1/7 for odd numbers of n and is equal to /% for

even numbers of n.
Ir AT
(5ecy) - B%%Q—— j j sin®ododg. . . . . (80}
Jav
The numerical values of (c0sB) , <cosy>, <(secB> and <{secy>

are calculated for various n values and are shown in Figure 3-7. It
5 Seen that the values for (cosBy and (cosg)y, <Secly and (Secy>
2T € identical for the case of isotropical porous medium. The ratios
for Kz and K, are also calculated from Eq. (74} using these values

224 plotted as shovn in Figure 3-8,
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Figure 3-17. Numerical values of {cos@> , {secf> ,

\Cos¢ ) and {sécy ) for various n values.
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Orientation factor n.
Relationship between the orientation factor n

and the permeability ratio in an anisotropic
porous mediurn calculated from Eq. (76).






CHAPTER 4

EXPERIMENTAL PROGRANMS

1. Sample Preparation.

Packings of spherical, plate shaped, and cylindrical particles
were used to make the porous medium for the experiments. Ottawa
sand was used to represent the spherical particles. The sieve anal-
ysis of the Ottawa sand sho'vs that 97. 7 percent of the particles have
a diameter between 0.5% to 0. 84 mm. Plate shaped particles were
made out of plastic shects. The plates were cut with a metal cutter
carefully controlled to give uniform particle size. Eesides the
spherical and the plate shaped particles, cylindrically shaped par-
ticles were prepared from unylon filaments. A summary of the
iven in Table 4-1.

sample properties is

194
=l

2. Dispersion MNeasurements.

To measure the dispersion, a percolation apparatus as shown
oun Figure 4-1 was desi;yned. The percolation cylinder was made
of lucite. The cylinder was 6.35 cm. in diameter and 14 cm. in
length., Pairs of electrodes vere inserted at various distances fromn

the bottom of the cylinder. The locations of the electrodes were as

follows:
Position of electrodes Distance from base
Position 1 1.25 cm.
Position 2 5.05 cm.
Position 3 8.85 cm.
Position 4 12. 65 cm.

36
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The electrodes cousisted of ¥ mm. stainless steel wire and were
connected to an Impedance Bridge of 1000 cycles per second. This
set-up enabled the measurement of the electrical resistivity of the
fluid around the electrodes.

The percolation cylinder was packed with the particles to make
up the porous medium. The uniformity of the packing was controlled
carefully during the process of packing. A 1.20 cm. thick layer of
glass beads 6 mm. in diameter was placed underneath the percola-
tion cylinder to serve as a filter. Between the porous medium layer
and the filter a wire screen with 0.5 mm. opening was inserted.

The system was first saturated with 0. 001 Normal NaCl
solution. Then at the bottom of the cylinder the liquid was replaced
with 0. 1 Normal NaCl solution. The liquid at the bottom of the
percolation cylinder was counected to a constant head supply tank of
0.1 Normal NaCl solution. Thus the liquid flow in the cylinder was
upward and the flow rate was measured volumetrically at the outlet.
The velocity of the flow in the porous medium was controlled by ad-
justing the head between the liquid surface in the supply tank and the
outlet elevation of the cylinder. Different velocities were used for
the same sample to obtain a range in the duration of time in order to
obtain any information regarding the time effect on dispersion.

The flow velocities in the dispersion measurements were kept
sufficiently small to produce laminar flow in the pore system. The
actual velocities were all less than 1.0 cmm/min. And since the
largest size of the pore canal can be considered as to be approxi-
mately between 0.1 and 0.3 cm., the Reynold's number can be

calculated as
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VD f ] ]
- = to
R= & 600 200

where V is the velocity, D is the size of the pore, f is the den.sity
of the fluid and H is the viscosity of the fluid. A Reynold's number
of unity is usually considered as the boundary between laminar and
turbulent flow.

The time history of the change in NaCl concentration at each
electrode position was determined by measuring the electrical re-

sistance of the system with Impedance Bridge. From calibration

test the relationship between the NaC! concentration and the elec-
trical resistance was found to be linear in the log-log plot. There-
fore, by measuring the electric resistance against time, the concen-
tration of fluid around the electrode can be obtained by direct

interpolation.

3. Permeability Measurements.

The permeability constant for the porous materials used in
the dispersion measurements were determined by using a perme-
ability apparatus shown in Figure 4-2. The apparatus was made of
lucite and was designed to measure fluid flow in two perpendicular
directions.

The porous materials were packed in the apparatus from the
top. Preferred particle orientation was produced in the direction
perpeundicular to the direction of packing. After the medium was
saturated with water, flow was introduced in the vertical direction
and the rate of flow was measured at the outlet. The permeability

coefficient was calculated by Darcy's law.
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The longitudinal and transverse permeabilities Kz and K are
defined respectively as the permeability of flow perpendicular and
parallel to the direction of packing. According to the relationship
derived in Chapter 3, the average orientation of the porous medium

can be evaluated from the Kz and K, data using Figure 3-8.

4. Presentation of the Experimental Data.

(1) Dispersion with respect to time.

Electric resistivity of the fluid in the percolation cylin-
der was measured at three electrode positions. The resis-
tance was used to obtain the NaCl concentration of fluid at the
electrode position by direct interpolation from the calibration
curve. The measurements were taken at various time intervals
after the 0.1 N solution was introduced. Results of these
measurements are tabulated in Table V-1 through Table V-11
in the appendix. The time required for the NaCl concentra-
tion to reach 50% of 0.1 Normal NaCl concentration was taken
as the average time, 7‘7‘0'

(2) Dispersion with respect to distance.

As derived in Chapter 3, the break through curve with
respect to distance at a given time can be calculated from the
time distribution at a given distance. These break through
curves are shown on Figure V-1 through Figure V-11 in
Appendix V. The electrode positions were taken as the average
distance of the break through curves. The standard deviations

with respect to distance are also shown in the figures.
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(3) Permeability coefficients.

Permeabilities were measured in the laboratory in two
perpendicular directions using the procedure described in
section 3. The results of the permeability determinations are
listed in Table IV-1 through Table IV-5, and also shown in
Figure IV-1 through Figure IV-4 in Appendix IV. A summ-~ry
of these results is shown in Table 4-2. Different perme-
abilities are obtained for all the porous media used except the

Ottawa sand.
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Samples for permeability measurements.

Sample Material Particle Porosity Perm. Direction
test no. Dimeunsions % cm/min.  of flow
S Ottawa . Tmm dia. 35,00 8.85 Longit.
sand & Transv.
PP, plastics .3¥.1%,.03cm 34.50 5. 45 Transv.
PPIZ " ! 36.10 6.95 "
PPy3 16. 80 9. 60 1
PF{, " " 3+4.50 8.75 Longit.
PP a . 41.70 .34 "
12 ?
PP, K .3*.3%x.03cm 39.00 8.75 Transv.
PP,, . " 46, 40 10.52 "
PP.'ZI o " 30.20 10. 70 Longit.
! N " "
PP22 43,10 11, 22
) " N . "
PPZ3 43,50 11.20
PP31 " . 3X,1%.06cm 34,00 8. 04 Trausv.
PP3, " " 38.€0 11. 00
PPél " " 29.60 8. 65 LLongit.
! ' ] "
PP32 34.29 10. 10
PP, " .3%.3%X,0bcm  31.00 9. 05 Transv.
PP4.2 a " 34. 40 10. 24
PPy3 " " 35.60 10. 42
PP;}l A " 29.60 10. 42 I.ongit.
PP " " 35.20 11,17 "
42 22
N Nylon .05¢x.5cm 49.20 12.75 Traunsv.
filaments
N' " ! 49.20 11,00 [Longit.






CHAPTER 5

ANALYSIS OF EXPERIMENTAIL. RESUI.TS

1. The Break Thnrougi: Curves.

The procedures tor measuring tiie dispersion of fluid flow in a
porous medium as described in Chapter 4 give a relationship between
salt concentration of the mixing fluid front at the electrode positions
and time. Figurc 5-la shovs a tynical curve for this councentration

versus time. If therc 1s no dispersion phenomenon taking place and

the molecular dillusion is neulected, thewu there would be simply an
abrupt change in coucentration {rom 0.001 to .1 Normal at the mix-
ing tront. Tins is tie Lorizontal line shown on IFigure 5-la,

Now, il Tz  is tiie average timme, then the distance a {luid par-

ticle would have travelled at timme T can be calculated from Eqg. (52
Zo 9

N
i-—] l

-
A ZO

in which Tzo is the time in a curve represented by Ficure 5-la. The
distance thus crlculated gives the break throush curves with respect
to distance at a viven time :Zo' Fioure 5-1b shows such a curve
calculated from Fivure 5-la. The calculated break through curves
wiih respect to distunce are presented on IFijure V-1 through Figure
V-11 in Appendix V. One si-niticant properiy noted in these break

through curves is that the curves are asymmetric.

2. Dispersion as a Function of Distance.

Eq. (49) aud Eq. (71) indicate that in a <~iveun porous medium,

the standard deviatica ol a Lreak through curve is a linear function
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of the square root of the average distance. Table 5-1 is a summary
of the standard deviations obtained ia thie dispersion measurements.
The values of the standard deviations (Table “-1) are obtained from
Figure V-1 through Figure V-11 Ly taki-.g averaces of the vertical
distances between 0. 315 and 0. 085 Normal NaCl concentrations. This
assumes that the measured distribution may be approximated by a
normal distribution.

Ficure 5-3a through lligure 5-3f show. the relationship betv.een

the averaye standard deviation and the average distance in square root

scale. With no exception, the relationship is linear. Eq. (69) shows

an existence of a {inite value of the standard deviation at Zg equals to

zero. However, since the value of L. is very small, it is practically

insignificant.

3. The Characteristics of Pore Geometry.

Eaq. (71) also shows that the standard deviation of a break throuzh
curve is a function of the orientation factor n. This orientation func-
tion is represented by Eq. (73) as C}, and plotted against n in Figure
3-6. It can be secn from Eq. (71) and Figure 3-6 that the orientation
factor u is probably the least influential factor among the variables in
the right hand side of Eq. (71).

As derived in Chapter 3 the orientation factor n cau be obtained
from the permeability data. Table 5-2 shows the calculations and
results of the orientation factor obtained using Figure 3-8 and the
permeability data. The permeabilities of the porous materials were
measured in twwo perpendicular directions as described in Chapter 4.

The permeability data thus obtained permit the evaluation of the
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crientation factor of the porous medium. The results are given in
Table 5-2. Fiyure 5-4 shows tue relationslip between orientation and
porosity. For the saniples tested, the orieutation factor ranges from

1.0 to 2.0 approximately.

In Ficarc 5-3 the slope o! tie line represent the ratio G\Z_-://io
which is a functica of both n and 1. as was Jerive.l in Eq. (71‘-. ‘Since
the valucs of » for ti:e kuown porous rnaterials and sorosities may be
ovtained from Fi.urc 5-4, tue value of L. can be calculated with Eq.
(71). Table 5-3 shows the calculatel values of L.. It is seen that in
gencral, L increascs vith decrease iu porosity and therefore with
increase in orientation factor n. For randomly oriented case (n=1},
he following comparison between the value of [. and the dimensions of
the graiu particles constitutin the porous media can be made. IFor
Ottawa sand, thc calculated value of . is 0. 13 cm v hich is approxi-
mately twice the average diameter of the narticles. For nlates, the
calculated L. rauzes fromn 5. 12 cm to 0. 37 cm which is approximately
0.% to 1.2 times the longest side ot the plates. For cylindrical par-
ticles, the value ot [, calculated is approximately two-thirds of the
length of thie particles. Since for a loose packing of uniform spheri-
cal particles, tue leath of thie jores siould not be expected to ve
larzer than the particle diameter, the calculated L. for Ottawa sand
indicates that ttc agreement betiween thieory and experiment is rather
poor. This suigests the error introduced in tie assumptions of the
thcoretical derivations. Although the calculated values of [. for the
porous materials for plates and cylinders fall in more reasonable

range the same magnitude of errors may be involved in these cases

also.
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However, the above method of calculatin; the value L. is based
on the relationship represeated by Eq. (50). If Eq. (51) instead of
Eq. (50) was used to derive the standard deviation, then the standard
deviation of the dispersion will Le represented by Eq. (24) and the
average leugth of pore canals L. calculated will be approximately
four tirnes that calculated from Eq. (71). Therefore, the standard
deviation as given by Eq. (71) seems to be in better agreement with
the experimental results.

If Eq. (50) is the true representation of the distribution and if
Zﬁ is normally distributed, then ZTVL shoulc¢ also be normally dis-
tributed. Similarly ZT should be normally distributed if Eq. (51} is
to be the true representation of the distribution. The measured dis-
tributions for sample S| are plotted on probability papers as I"igure
5-2a znd 5-2b. The distribution curves on these figures do not
reveal any sigaificant difference between the two assumptions made
with regard to the distribution.

Differeunt porosities were used in the dispersion measurements
in order to produce a range in orientation. It is fouad that porosity
affects both orientation and the length of canal. From Figure 5-4 it
is seen that the range of porosity used produces ounly a range of
orientation factor n from 1.0 to 2. 0. This seems to indicate that the
actual pore canal orientation does not follow closely the orientation
of the graiu particles in the porous medium. For the plate shaped
particles a very deuse packing should produce a particle orientation
very close to a horizontal. The calculated n values from measured
data (Table 5-3) do not indicate much increased n values for a dense

packing. This may be due to the possibility that a dense packing of
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plates may produce clusters of particles in a porous medium and
fluid flow may occur largely throuvh the continuous pores between
these clusters (sec Figure 5-3). Tucrelore, the orientation factor
n is no longer controlled by the orientation of the plates. The contin-
uous pores Letween tae clusters will apparently reduce the value of n
due to the existeuce of acarly vertical pores. This explanation is
also supported by the observation that tlere is an almost counsistent
increasc in the calculated value of L. for decrease in porosity or
increase in deasity for plate samples (Taile 5-3). Since the sizes
of the pores betweecu the clusters are influenced by the size of the
clusters, it may be expected that the value of L. for a dense vacking

where clusters are likely to exist would be greater than that in a

loose packing where the [luid flow. takes >lace mainly tlirouvh the
pores Letv cen plates aud therelore tue value of L is controiled by

the size of tue individual plates.

4. Dispersion Coefticient.

Since the break through curve as shown in Figure 5-1b repre-
sents the distribution of the fluid particles that have travelled a lon-
gitudinal distance Zq after a given time 7, tlie ma ynitude of the
standard deviation of tae break throusi curve is a measure of the
degree of dispersicn and may be desiynated as the 'dispersion co-
efficient'. It is clear from the preceding analysis that this disper-
sion coefficicat is a fanction of the average cistance ol journey, the
length of the unit canal, aud tihe orientation lactor n.

A unumerical comparison is made in Appendix III for the

measured dispersion coelficient in this investigation with those
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which could be predicted from the present theory and the theories of
De Josselin de Jong and Saffrman. De Josselin de Jong's theory was
derived based on the assumption that the porous medium consists of
uniform spherical particles and Saffman's theory assumed a randomly
oriented straight pores in a porous medium. Therefore, the equa-
tions from both theories could be applied to the experimental data of
Ottawa sand samples in the present investigation where the orientation
factor n is equal to unity and also could be roughly compared to the
cases of loose packings of plate shaped particles.

In order to apply these theories, the length of the unit canal of
pores must be evaluated. Assuming the magnitude of the molecular
diffusion to be negligible, this can be done by substituting different
length of L into the equations representing different theories, (Eqs.
(6). (7), (69)), and compare the results with the measured dispersion
coefficients. For a porous medium consisting of spherical particles,
the length of the pores is not likely to be greater than the diameter of
the particles even for a loose packing. Therefore, it is reasonable
to assume that L. lies between )ﬁ to that of the diameter of the parti-
cles. For the Ottawa sand samples, a best agreement is obtained
when L is taken as the diameter of the particles. (The value of L
should be reduced if molecular diffusion is taken into account).
Calculations of the dispersion coefficients from different theories
are shown in Table III-2.

From this result, it can be seen that when L. is taken as 0.07
cm where the De Josselin de Jong's theory agrees best with the ex-
perimental results, then the Saffman's equations would give approxi-

mately 10% to 30% higher values and the present theory would give
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approximately 30% lover values compared to the De Josselin de joug's
resuilts. The difference betwween De Josselin de Jon3's and the pre-
sent theory can readily be seen by comparison of Egs. (7) and (49).
The De Jossclin ic Jen:'s theory would approximately give a higher

dis pe x sion coefficient oy a factor equal to

(7\ + 374 - 10g:‘)

which is approximately 1.4, The fact that the present theory is con-
sistently underestimating the measured cispersion coefficient may be

considered as tle res:lt of the errors involved in the assumptions

made in the conrse of the theoretical derivation (see ' ppendix II).

A difference ol similar mavnitaue is seen between these theo-
rics <. lean anplicd to loosc mackic s of ;“late slhaped particles ("able
111_2). A pore cazal lencth of "] cm is assumed for P aund P3
SAamples and 0.2 co for P, and P, samples. Thue calculated results
Y“hen compared to the measured ones suvgest that for plate shaped
PAa r ticles the lenuths of t.e pores are likely to be smaller than the
10ngcst side ol tne slaies coastituting the .orous medium,

Fiom L .¢ precediuy analyses, it can be stated tiat the present
thQOry cousisteatly andercstirmmates thie dispersion coefficient. The
“fmMount of error conld be approsimateiy 39% or even rmore for the
“Ascofu=1, Therew.e, it is probaile that for the cases of n
T eater than 1 or [or anisotrojic perous me<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>