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ABSTRACT

THE THEORY OF CLUSTER SETS

By

Ruth Ann Su

Since Painleve founded the theory of cluster sets in 1895,

mathematicians have discovered many significant properties pertaining

to the set of limit points of a function at the boundary of its domain

of definition. The functions studied may be divided into the following

three major classes: Arbitrary Functions, Normal Functions and Class A

Functions.

Arbitrary functions have limited patterns of behavior with respect

to cluster sets because of the particular topologies of the plane and

SPhere. For example, according to the Bagemihl Ambiguous Point Theorem,

any Complex-valued function defined in the unit disk D has at most a

countable number of boundary points eie with the property that there

eXist two curves in D ending at e19 along which f has disjoint cluster

Sets. Also, globally, there are numerous relationships between the

Cluster set of a function relative to an angle at a point ei and the

Cluster set of a function relative to a region between two circles each

i6internally tangent to the unit circle at e .
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Ruth Ann Su

A function is normal in a simply connected region if its family of

arbitrary conformal mappings of the region onto itself has the property

that every sequence of this family contains a subsequence which con-

verges uniformly or tends uniformly to infinity on every compact subset

of this region. A meromorphic function in D is normal if the function

omits at least three points in D. In addition a complex function in D

is normal if it is uniformly continuous from the disk with the hyper-

bolic metric to the sphere with the chordal metric. The sum of two

analytic normal functions is not necessarily normal although the special

type of normal functions called uniformly normal has the property that

the sum of two uniformly normal functions is uniformly normal. The

definition of a uniformly normal function is analogous to the definition

of a normal function where the sphere with the chordal metric is re-

placed by the plane With the usual metric.

Suppose f is a holomorphic nonconstant function in D. Then f be—

longs to Class A if for each point in a dense set of C, f has a path in

D ending at eie along which E approaches a limit. f belongs to Class B

if and only if the set of points eie, for which f has a path in D ending

at ei6 along which either f approaches infinity or the modulus of f is

bounded by some finite number, is dense on C. For any constant k greater

than or equal to zero the level set consists of all points z in D for

which the modulus of f is equal to X. Then f belongs to Class L if the

maximum diameter of the components of each level set intersected with the

Set of 2 having modulus greater than r approaches zero as r approaches

one. A very important theorem in the study of Class A Functions states

that a function is in Class A if and only if the function is in Class B
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if and only if the function is in Class L. Class A Functions are not

closed under the operations of addition and multiplication. In fact

every nonconstant, holomorphic function in D can be written as the sum

or as the product of pairs of functions in Class A.
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PREFACE

The purpose of this thesis is to bring together recent important

developments in the theory of cluster sets. We assume that the reader

would have the mathematical training equivalent to that of a graduate

course in the theory of complex variables and a cursory knowledge of

the works by Collingwood and Lohwater (l), Noshiro (l) and MacLane(l).

Painleve (1) founded the theory of cluster sets in 1895 when he

gave the name ”domains d'indetermination" to the set of limit points of

a function at a boundary of its domain of definition. Today this set is

called the clugter set of a function at a point. Although the theory

was first considered for analytic functions, it is applicable to more

general functions, and much of the present-day research is largely

topological.

Early developments in the theory of cluster sets were mostly con-

cerned with the behavior of an analytic function in the neighborhood of

an isolated essential singularity or in a discontinuous set of singu—

larities. The earliest result dealing with cluster sets was the theorem

proved in a paper of Weierstrass (1) in 1876. It states that if 20 is

an isolated point of a set E in the unit disk D and f(z) is meromorphic

in,D - E, then the set of limit points of f at z0 is either a single

Point or the entire Riemann sphere. In 1905 Painleve proved that this

theorem is true for any 20 in a set of measure zero.

If E is allowed to contain a continuum, then the cluster set of f
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at 20 may be a prOper subset of the Riemann sphere. A lot of research

has been done concerning the boundary behavior of functions defined in a

simply connected domain whose boundary contains more than one point and

which can therefore be mapped conformally onto the Open unit disk.

The study of cluster sets at a continuous boundary begins with the

Fatou paper (1) of 1906 on the radial limits of functions analytic in

the unit disk. Caratheodory (4) studied the boundary correspondence

between the unit disk and an arbitrary simply connected domain under a

conformal mapping. This led to the notion of a prime end, the corres-

pondence between the points of the unit circle and the prime ends of

the domain whose impressions are the cluster sets of the mapping

function at the corresponding points.

Since the 1930's, cluster sets have been widely studied. The books

It}; Theory pf Cluster Set; by Collingwood and Lohwater (1) and Cluster

§_e_t_s_ by Noshiro (1) contain most of the important results before 1960.

In this thesis we assume the above material to be background information

and present some of the more significant developments since then.

We organize our material into three chapters which deal with the

three major classes of functions: Arbitrary Functions, Normal Functions,

and Class A Functions. We have selected results from The Theory gf_

Cluster4§g§g by Collingwood and Lohwater (1) for preliminary work in the

chapter on arbitrary functions and results from Cluster Sets by Noshiro

(1) for introductory material in the chapter on normal functions. The

last chapter uses as background the MacLane paper (1), Asymptotic Values

91; Holomorphic Functions, since this paper is the foundation for the

study of Class A functions, which consist of non-constant holomorphic

functions in the open unit disk which approach limits on a dense subset
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3

of the unit circle. All of the results from these references have been

included without proof.

In the first chapter we primarily consider functions in the unit

disk without imposing any restrictions except that they be complex-

valued. In spite of the lack of restrictions, these functions have li—

mited patterns of behavior with respect to cluster sets. Much of this

is the result of the particular topologies of the plane and the sphere.

Bagemihl's Ambiguous Point Theorem is an outstanding example of the

limited patterns of behavior mentioned above. The theorem says that if f is

a complex-valued function defined in D, then there are at most a count-

able number of boundary points g with the property that there exist two

curves in D ending at g along which f has disjoint cluster sets. Even

though this result is true in the plane, it does not apply if the domain

of the function is the unit ball in three dimensions (Church, 1). More-

over the addition of some mild restrictions, such as requiring the func-

tion to be analytic, does not yield a stronger conclusion (Bagemihl and

Seidel, 4). This theorem has been extended by the theory of prime ends

to other domains, such as simply or multiply connected regions, with

approximately the same result.

The above theorem has found wide application in the study of clus-

ter sets. For example, let f have the n-separated-arc property at a

point p if, for any integer n> 1, there exist n arcs in D ending at p

which are mutually disjoint except for p where the intersection of the

Cluster sets of all n arcs is empty while that of any n- 1 of them is

nonempty. Then if f is a homeomorphism of D onto itself, any point p

satisfying the n-separated-arc property is an ambiguous point. Conse~

Cluetltly these points are at most countable. However, this does not hold
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4

in.general as there is a continuous function which has the 3-separated-

arc property at all but at most a countable number of points (Piranian, l) .

An interesting relationship between different cluster sets is the

relationship between the angular and the horocyclic cluster sets. An

angular cluster set is the cluster set of a function relative to an

angle at a point eieesc while a horocyclic cluster set is the cluster

set of a function relative to a region between two circles each intern—

ally tangent to the unit circle at a common point. Since an angle is

the region between two chords originating from eie, a horocyclic region

and an angle have no points in common near eie. So a relationship be-

tween these two types of cluster sets should not be expected. However,

there are numerous relationships between these two kinds of cluster sets

on a global, not local, basis. For example, for any function the set of

points e19 on the unit circle for which there exists an angle and a

horocycle such that the angular cluster set is not contained in the

horocyclic cluster set is a set of measure zero and of first category.

P is called a selector of arcs if it associates a nonempty col-

lection of arcs with every point in C. The P-principal cluster set

Ilr(f,e 0) is the intersection of the cluster sets of all the arcs in

ieo 190

l‘which end at the point e . Letjn&?(f,e ,M) denote the closure of

the union of the P-principal cluster sets for all points e19 for which

leie - e190, < #. Then the boundary r-principal cluster set at eieo is

the intersection of the Ilr(f,eieo,u)‘s for all positive n. For any

continuous function f in D and all points in C, the r-principal cluster

set is equal to the boundary reprincipal cluster set except for a set of

first category on C if T is either the collection of all arcs or all

chords.
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5

For continuous functions defined in D, the cluster sets along all

.kndan arcs in D ending at a point on C form a topology where the dis-

tance between any two closed sets is defined as the greatest distance

between a point in one set and a nearest point in the other set. This

topology is called the M-topology. If e19 is not an ambiguous point,

then the set G(ele) consisting of its Jordan-arc cluster sets is compact

in.the M-topology. So another consequence of the Ambiguous Point Theo—

'6

rem is the fact that the set of points for which C(e1 ) is not compact

is at most countable.

The cluster sets of special classes of functions have been studied

extensively. As might be expected the cluster sets of these functions

possess preperties which are not necessarily true for the cluster sets

of arbitrary functions. Some of the functions investigated most fre-

quently are normal functions and Class A functions.

Any normal meromorphic function f(z) in D which approaches a limit

a at a point 20 in C along a Jordan curve lying in D also has the angu-

lar limit a at zo. Moreover, if f(z) tends to a limit along a simple

continuous curve z(t) for which lz(t)b4>l as t-a-l and its end contains

more than one point, then it is a constant function. Another example

where f(z) must be a constant function occurs when it approaches a cons-

tant along a sequence of arcsier which convergeix>a boundary are in C.

Analytic normal functions are not closed under addition although

the special type of functions called uniformly normal functions are

closed under addition. These functions satisfy the condition sup(fl.-

2 zel)

lZl )lf'(zfl is finite. If, in addition, a uniformly normal function f

satisfies the condition f(0)==0 then it is called a Bloch function. The

collection of all Bloch functions form a Banach space. Each Bloch
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6

function, and thus each uniformly normal function, has the property that

it possesses angular limits on an uncountably dense subset of C.

Any normal holomorphic function in D belongs to the class I ,

which consists of those holomorphic functions f in D having the preperty

that if there exists a pair of arcs t1 and t2 along which f(z) +00 as

z->peC, then along any path between t1 and t2 the function f(z) is un-

bounded. If f is in class Ip, then the set G(eie) consisting of the

set of all cluster sets of all Jordan arcs in D which end at p is

compact in the M-topology. Consequently, for any normal holomorphic

function the set G(eie) is compact in the M-topology.

In order to study the behavior of normal meromorphic functions near

C, D has been compactified into a Hausdorff space M in such a way that

any bounded holomorphic function f has a continuous extension f and D is

dense in M. Theo points m1,m2 EM are in the same Gleason part if for any

bounded holomorphic function of modulus less than or equal to one, its

extension f has the preperty that the difference in magnitude of f(ml)

and f(mz) is strictly between 0 and 2. This determines an equivalence

relation. Each Gleason part consists of either a single point or the

image of a one-to-one analytic map of an open disk into M. The Gleason

parts partition the boundary points of D in such a way that any bounded

analytic function has a continuous extension onto the boundary of D. A

function is normal in D if and only if it can be continued continuously

to the set C consisting of the maximal ideal space M of H°° minus the tri-

vial Gleason parts lying over the boundary of D. So, in this sense,

normal functions are a generalization of bounded functions. If f is a

normal meromorphic function, then it is so continuous that on every non-

trivial Gleason part f is either meromorphic or identically infinite.
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7

Let f(z) be a holomorphic nonconstant function in D. Then f(z) be—

longs to Class A.if and only if for each point in a dense set of C, it

has a path in D ending at e19 along which it approaches a limit. f(z)

belongs to Class B if and only if the set of points e116 for which it has

a path in D ending at eie along which either f—>°° or IfI < a where a is

finite is dense on C. For any constant k 2;0, the level set LS(h) con-

sists of all points z in D for which lf(z)| = h. Then f(z) belongs to

(Hess L if and only if the maximum.diameter of the components of each

level set intersected with {2: Izl > r} ->0 as r +1. A very important

theorem in the study of Class A functions states that a function is in

Class A if and only if the function is in Class B if and only if the

function is in Class L.

In order to generalize Class A functions, Classes Am, Bm and Em are

defined by replacing the word "holomorphic" with "meromorphic" in the

appropriate definitions. Holomorphic normal functions are in Class A

and meromorphic normal functions are in Class Bm. Class Am is contained

in Class Bm. Class Lm is contained in Class Em. However, there are ex-

amples of functions in Class Em that are not in Class Am and examples of

functions in Class Em that are not contained in Class Em.

A tract associated with a constant a is a collection of nonempty

domains D(e) such that each D(e) is a component of the open set in D

which is mapped by f into the open disk about a of radius 6 and the in-

tersection of all of the D(e)'s is called the end of the tract. It is a

rmmempty, connected closed subset of C. A tract is called global if and

only if its and consists of the entire circumference C and for each arc

Y contained in C there exists a sequence of arcs Yn contained in D(1/n)

such that the Y 's approach Y. If f is in Class A and {Y } is a
n m n
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8

sequence of disjoint simple arcs in D which tend to the arc Y on C and

sup(f(z) — a) ->0 where a is a complex number, then f has a tract with

end K which contains ‘Y. In addition for any interior point of K, the

only asymptotic values come from the tract. If f is in A, then f has a

global tract if and only if f is unbounded on every curve in D on which

lzl -) 1.

If a is a finite asymptotic value along an are that f maps one-to-

one onto a linear segment, then this asymptotic value is called linearly

accessible. If f is in Class A and omits some finite constant, then the

set of linearly accessible points is dense on C.

Class A functions are not closed under the operations of addition

and multiplication. In fact every nonconstant, holomorphic function in

D can be written as the sum or as the product cf pairs of functions in

Class A. Furthermore, any nonconstant meromorphic function in D may be

represented in each of the following ways: (i) the quotient of two

holomorphic functions in Class A, (ii) the product of a function in

Class A and a function in Class AIn 0 Class Lm, (iii) the sum of two

functions in Class Am 0 Class Lm'

Our bibliography consists primarily of the publications which con—

tain the recent deve10pments in the theory of cluster sets. Older re-

ferences may be found in the bibliographies of the books of Collingwood

and Lohwater, and Noshiro.
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CHAPTER I

QBITRARY FUNCTIONS

INTRODUCTION

In this section we will first introduce some of the important defi-

rfitions which will be used throughout the paper. Then we will summarize

some of the major results in the theory of cluster sets which are in-

cluded in the book by E.P. Collingwood and A.J. Lohwater (1).

We will consistently use the notation D for the open unit disk, C

for the unit circle, and W for the Riemann sphere.

Some of the concepts which we will use repeatedly include those of

cluster sets, asymptotic values, and range of values. If 20 is any

Point in D and f is an arbitrary function defined in D, then the cluster

§££,C(f,zo) of f(z) at 20 is defined in one of the following two equi-

valent ways:

(i) C(f,zo) is the set of points a on the Riemann sphere W

for which there exists a sequence {Zn} in D-{zo} such

that, as n +>cn, limzn = Z0 and lim f(zn) = a where

D-{zo} is D with 20 removed.

(ii) For r >'0, C(f’zo) = DD; where Dr = f(drrl(D"lZo}))

and dr is the disk |z«-zo| <'r.
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If G is any infinite subset of D, then the cluster set CG(f,z ) of
o

f(z) relative to G is defined by

CG(f,zO) = n Dr(G)C C(f,zo)

where arm) = f(dr n (n - {zo})nc).

The range 9_f_ values R(f,zo) is defined to be the set of values a

such that there exists a sequence {Zn} in D such that as n —-—> co

and z 7‘ z , lim 2 = z and f(z ) = a. The set of asymptotic valuesn o n o n -— "-

A(f,zo) at 20 consists of those complex numbers a. for which there

exists a continuous curve 2 = z(t), 0 < t < 1, SUCh that z(t) C D ‘{ZO}>

lim z(t) =20 and lim f(z(t)) = a as t —> 1. We will. use the

symbol A(f) to denote the union of all of the A(f,zo) 's for all zo's

in C and the symbol R(f) to denote the union of all of the R(f,zo)'s.

If Y = z(t), 0 S t S 1, is a simple continuous arc lying in D

except for T = 2(1) 6 C, then ‘r is called a boundary are at T.

limit; l: If f(z) is an arbitrary function defined in D and if g

is an arbitrary point of C, then there exists a simple arc 'r, lying in

D and terminating at I; , such that CY(f’C) = C(f,§). (Collingwood, 2)

A set E on C is of first category if E is the union of a countable

set of nowhere dense sets; a set which is not of first category is said

to be of sicond category. A set E on C is called residual on C if the

complement of E on C is of first category-

For C any subset of B, a rotation Ge of G is obtained by mapping

19each point z e G to the point ze
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Theorem 2; If the real or complex function f(z) is continuous in D

and if {G6} is the family of rotations of a continuum Go such that

Gon C is the point 2 =1, then CGe(f,eie) = C(f,eie) on a residual set

of points e16 on C. (Collingwood, 3)

Let A(1) be an open connected subset of D such that A(l) (W C

is equal to {I}, and let A(ele) denote the transform of A(l) under the

rotation about the origin that sends 1 into e16. Dragosh (2, Lemma 1,

p.58) proves that C . (f,eie) = C(f,eie) for a residual G8 subset
A(e19)

of C.

In order to define boundary cluster sets, we use the notation

C(f, 0 < 'e - 90' < n) = L) C(f,ele). (1)

where the union is over 0 < '9 - 90' < n. Then the boundary cluster

§S£ CB(f,eleo) may be expressed as

o

 

c (f,ei90) = n C(f, o < lo - e l< n). (2)
Eb I!>0 o

16
The l2££;h§3§ and right-hand boundary cluster sets CB1(f,e ) and

CBr(f,ele) are defined by (l) and (2) and the restrictions that

0 < 9 ‘ 90 < n and 0 < 90 - e < 0 respectively.

Th
~JEEEE,§: If f(z) is a single-valued (real or complex) function in D,

then

19 = is = f 19
Cr(f,e ) C31(f’e ) C( ,e )

1 .

except Perhaps for a countable set of points e 9 e C. (Collingwood, 4)
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The right-hand cluster set CR(f,eie) is defined to be the set of

points or such that as n +u lim f(rneien) = or where lim rn= l and

lim 9n = 9 with en 5 9n+1 g . . .. The left-hand cluster set CL(f,eie)

is defined in the same way except that en 2¥en+l 2_.... Actually the

right-hand cluster set is the cluster set CG(f,eie) where G is the semi-

disk closed relative to D with diameter from -e19 to eie and to the

right of it. The left-hand cluster set is defined in a similar way but

is to the left of the diameter.

Corollary: If f(z) is single-valued in D, then

9 6i_ is= i
CR(f,e ) - CL(f,e ) C(f,e )

except perhaps for a countable set of points e16 e C. (Collingwood and

Iohwater, 1, Corollary, p.83)

IQ§£EEE§;(Bagemihl Ambiguous-Point Theorem): If f(z) is a complex

.9 .

function defined in D, then the set of points e1 on C With the pro-

i9
Perty that there exist two boundary arcs r1 and r2 at e such that

. e
c (f,ele) n c (f,ei ) = o
r1 r2

is at most countable. (Bagemihl, 1)

Tile pcnirrts eie defined in Theorem 4 are called ambiguous

POints.
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RESULTS RELATED TO BAGEMIHL'S AMBIGUOUS-POINT THEOREM

Researchers, such as Bagemihl, H. Mathews and McMillan, have

proved many theorems related to the Bagemihl Ambiguous-Point Theorem.

Let a be an are lying in D - {p} except for one end point at p.

The extended arc cluster set of f at p, ECa(f,p), is defined to be the

set fl FEED-where the intersection is taken over all neighborhoods

N of p and the union over all q on 301‘! for q 3‘ p. The point p is

called an extended ambiguous p_oint for f if there exist arcs a and B in

D - {p} such that ECa(f,p) and ECB(f,p) are disjoint.

1295312131: If f is an arbitrary function defined in D and if a point p

on C is an extended ambiguous point for f, then p is an ambiguous point

for f. (H. Mathews, 1, Theorem 1, p.138)

Since Mathew's proof only holds when f is continuous, Stebbins (1)

recently published the following proof. Let a be any are in D - {p}

such that (1 tends to p. It is sufficient to find an are or' C D which

tends to p such that Ca,(f,p) g ECa(f,p). By using points q 6 or n C

and the method of Cross (1), we construct a ”wedge" Z in D such that

every sequence of points {2k} in Z tends to p and {it-(2k); has limit

points only in n mwhere q e anC for q 7‘ p and the intersection

is taken over all neighborhoods 0f P-

M: An arbitrary function from D into W can have at most a

countable number of extended ambiguous points. (H. Mathews, 1,

Theorem 2, p.139)
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This corollary follows immediately from Theorem 5 and the Ambi-

guous Point Theorem.

If G is a simply connected region in the extended complex plane,

16 e F(G)

. . . . . i i ,and if there ex1sts an arc 1n C With an end pornt at e 6, then e 9 is

then we denote the set gf_boundary points of G by F(G). If e

called an accessible point of F(G).

 

A Jordan are which lies in G except for its two endpoints or a

Jordan curve which lies in G except for one point is called a cross-

92; of G. A sequence ql’ q2,..., qn,... of crosscuts of G is called a

22213 if the following conditions are satisfied:

(i) No two of them have any point, including their endpoints, in

common;

(ii) qn separates G into two domains, one of which contains qn-l

and the other qn+1. The domain containing qn+1 is denoted

by dn;

(iii) The diameter of qn tends to zero as n tends to infinity.

TWO Chains Q = {qn} and Q' = {qn'} in G are eguivalent if, for all

values of n, the domain dn contains all but a finite number of the

crosscuts qn' and the domain dn' contains all but a finite number of

the crosscuts qn. The class of all chains equivalent to a given chain

is an equivalence class. A pgim§.§gd of G is an equivalence class of

Chains in G.

A SEEKE 11 in G at Egg 23132 end P means a simple continuous

Curve 2 = z(t), 0 S t :S 1, such that z(t) E G and every sequence of

Points on A.that approaches F(G) also converges to P in the sense that

all but a finite number of the members of the sequence are contained

in each dn' If e19 e F(G) and there exist distinct prime ends P1,P2€(3
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and curves r and s at P1 and P2 respectively such that r and s are also

arcs at e19, then eie is a multiply accessible poi_n_t_ of F(G). If an

accessible point is not multiply accessible, it is simply accessible.

If A is an are at a point eieeF(G) (or a curve at a prime end P of

G), then the cluster set of f at e19 (or at P) on A will be denoted by

CA(f,eie) [or CA(f,P)]. If _P is a prime end of G and there exist two

curves r and s at P such that Cr(f,P)nCS(f,P) = ¢, then P is called an

ambiguous prime end of f.

Theorem 9: A necessary and sufficient condition that a simply connected
I

region G must satisfy, in order that every function defined in G have no

more than countably many ambiguous points from different prime ends, is

that at most countably many accessible points of F(G) be multiply acces-

sible from G. (Bagemihl, 5, Theorem 8, p.203)

m: Suppose that the set M of all points of F(G) multiply accessible

from G is more than countably many. Let w= f(z) map G in a one-to-one

conformal manner onto D. This mapping induces a correspondence between

F(G) and C under which every point of M corresponds to at least two

pOints of C. Thus f has more than countably many ambiguous points

Assume that F(G) contains at least two points. Let z=¢(w) map D

in a one-to-one conformal manner onto G. If a function g(z) in G has an

ambiguous point e16 that is simply accessible from G, then the function

MW) ‘3 8(¢(W)) in D has an ambiguous point at the point w on C that cor-

reSponds to e19 under the mapping ¢- It now follows from the Ambiguous

Point Theorem that g(z) has no more than countably many ambiguous

points.
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Theorem 1: Let f(z) be an arbitrary function in a simply connected re-

gion G with at least two boundary points. Then f has at most enu-

merably many ambiguous prime ends. (Bagemihl, 5, Theorem 9, p.203)

Proof: Let z = ¢(w) be a one-to-one conformal mapping of D onto C. By

Caratheodory's Theorem (Caratheodory, 3 and 4) this mapping induces a

one-to-one correspondence between the points of C and the prime ends of

G such that, if P is a prime end of G and A is a curve at P, then
P

the preimage of AP under the mapping is an arc OT at the point T of C

that corresponds to the prime end P. If f has more than enumerably !

many ambiguous prime ends, then the function h(w) 5 f(0(W)) in D would

have more than enumerably many ambiguous points, which is impossible.

111m 8.: Suppose f is continuous, S is a closed subset of W and the

. ie . 19 h
set 305,3) of {30111128 e for which there ex1sts an are d at e suc

that 0603,6319) C S is uncountably dense on an arbitrary closed arc h on

19G. Then the set B*(f,S) of points e19 such that for any arc 0 at e

Cg(faeie)n3 7‘ 4' is residual on k. (McMillan, 2, Theorem 5, p.188)

The theorem is proved by showing that B*(f,S)flInterior(}\) rela-

tive to C = 9{eie in the interior of A such that there exists a cross-

Cut T at e16 with diameter less than l/n such that f(T) C {wz 9(w,S)<

l/n}} where n is a positive integer and 9(w,S) denotes the

Euclidean distance between w and S.

If f is any function that is defined in D and takes its values in

some metric Space, then a boundary function for f is a function 4’ on C

SUCh that for every x e C there exists a simple are A having one
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endpoint at x for which A - {x} C D and as 2 approaches x along A

lim f(z) = ¢(x).

RTheorem 3: Every function f defined in D has at most 2 0 boundary

functions. (Bagemihl and Piranian, 1, Theorem 1, p.201)

Proof: By the Ambiguous Point Theorem, f has at most countably many am-

biguous points. At each ambiguous point f has at most 2N0 asymptotic

80

values. Therefore, f has at most (230) =2x° boundary functions.

RESULTS ON BOUNDARY FUNCTIONS

In 1965 Kaczynski published a paper on boundary functions for

functions defined in D. It includes descriptions of boundary functions

in terms of honorary Baire class functions.

Wig: If f is a homeomorphism of D onto itself and ¢ is a

boundary function for f, then there exists a countable set N such that

(be is continuous where (b is the restriction of the boundary function to

o

C ‘ N. (Kaczynski, 1, Theorem 1, p.590)

Let 8* be a base of open sets in R2 and let acc(E) denote the set

Of all points on C which are accessible by arcs in E. Then the above

theorem is proved by showing that for any 3 e 3*

(i) acc(f‘lums» = acc(f'lmn 5)) n f_1(D - s) u (c- f-1(D — 3))

(ii) if U is any open set which can be expressed in the form

— - -1
U = US where S E 8* and Sn 9 U, then ¢01(U) = Uacc(f (

n n

(S 0D)) - N where N consists of all of the ambiguous points

n
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accessible by arcs in f-1(DrlU).

lemma l: Let f be a continuous real-valued function in D and k be a

finite-valued boundary function for f. Let r and t be real numbers with

r‘< t. Then

(A) there exists a G6 set G and a countable set N such that

-l -l

l ([r,+°°))2G2>t ([t,+°°)) -N

where a G6 set is the intersection of a countable number

of open sets and

(B) there exists a G5 set H and a countable set M such that

i'1((-oo,t]) 2 H2 i'1<(-oo,r]) - M.

(Kaczynski, 1, Lemma 3, p.592)

m: Let n be any positive integer. Let 6 - (t-r)/2, Cn = {zeR :

2

'2' = 1 ' l/n}, An: iZER: l> '2' > l-l/n}, En: (xeC: there

exists an arc y at x having one endpoint on Cn with y - [x] E f'1((-«5r

))], and K.= {xesCz there exists an arc y at x with y - {x} S f-1((t"€a

+“0)}- For a fixed n and any point x in K'we can find a simple arc Yx

at x such that Yx - {x} 9 Ann f"1([t-e,+°°)). Then Yx - {x} is a con-

nected set. So yx-{x} must be contained entirely within one component

of the open set Anrlf-1((t-e;hw)). Let 0x denote this component and

lfit T'be the set of all points of K which are two-sided limit points

ofli.

n
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We want to show that if x,y e T and x 5‘ y, then 0x 0 0y is the

empty set. Suppose on the contrary there exists an element 2 in

Oxrl 0y' We choose points x' and y' in Yx - {x} and Yy - {y} respect-

ively. Then we join x to x' by a subarc of Yx and join x' to z by an

arc in Ox' Similarly we join 2 to y' by an arc in 0y and join y' to y

by a subarc of Yy. Putting these arcs together, we obtain an are (I

with endpoints at x and y such that a - {x,y} S An 0 f-1((t-e,+°°)).

If a is not a simple arc, we replace it by a simple arc (1' contained

in (1 having endpoints at x and y and rename the simple arc CL. on is a

crosscut of D. Let L1 and L2 be the two open arcs of C determined by

x and y. According to Newman (1, Theorem 11.8, p.119), D - (I has two

components V1 and V2 whose boundaries are L1 U or and L2 U (I respect-

ively. Because Cu is connected and does not intersect or, it is con-

tained entirely within one component of D - or. By syrmnetry we may

assume that Crl is contained in V2. Since x is a two-sided limit

point of En, L1 must contain a point of En and hence a point 0f.En'

SuPPose w is an element of L 0 En' There exists a simple are 6
l

jOIning W to some point on on with B - {w} E f-1((-°°,r)). But 5 - [W]

cannot have a point in common with or because (1 - {x,y} E f-1((t-e,

+°°)) and f'1((-oo, r)) n f"1((t-e,+oo)) = o. Thus CnU (B - {w}) is

a connected set not meeting or while meeting V2, and so is contained

in V2. Consequently w is in the boundary of V2. However, this is a

contradiction because w 6 L1 and the boundary of V2 is L2 U a. Conse-

quently if x,y e T and x 7‘ y, then Ox 0 0y = o.

T is countable since any family of disjoint nonempty open sets is
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countable. Also the set S of all points of E; which are not two-sided

limit points of E; is countable. Again let n be any positive integer.

Then ann = [Kns] u[r<n(En - 3)] = (KnS) u T. So for any n the

intersection of K and ER is countable. Therefore N = KiW UEn = U(KrlEn)

is countable. Let the G6 set G be the set C minus the union of all En '3.

Since K1((«n, r)) is contained in the union of the En 's and therefore

the En's, 0 ~ X1((-oo,r))2 c - uEn = a; K - N. But 0 - k-1((-oo,r)) is

equal to l-1([r;*u9) and K contains A-1((t-¢;ta9) which contains

A-1([t{ta9); so X-1([r,+aQ)contains G which contains K — N which

contains A-1([t;ta9) - N.

(B) follows from (A) by replacing f and A by -f and -X.

Let S and T be metric spaces. A function f is of Balgg plgpp

lfi§y21 if and only if

(i) domain g = S,

(ii) range f is contained in T,

(iii) there exists a sequence of continuous functions fn each map-

ping S into T such that fn approaches f pointwise on S.

A function g is of honorary Baire class 2§SIT2 if and only if
 

 

(1) domain g = S,

(ii) range g is contained in T,

(iii) there exists a function f of Baire class 1(S,T) and a count-

able set N such that the restriction of f to the set S - N

is equal to the restriction of g to S - N.

Any function f from S into the reals is of ppigg glass 9 if and

only if it is continuous. For any ordinal number a greater than zero,

fig Of fiéiEE Class a if and only if f is the pointwise limit of a
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sequence of functions each of Baire class less than (1.

Theorem 1.1: If f is a continuous real-valued function in D and h is a

finite-valued boundary function for f, then A. is of honorary Baire

class 2(C,R). (Kaczynski, 1, Theorem 2, p.594)

M: For each pair of rational numbers r and t with r < t, we can

choose, from Lemma 1, G6 sets G(r,t), H(r,t) and countable sets N(r,t),

M(r,t) such that l-1([r,+oo)) contains G(r,t) which contains

l-1([t,+oo)) - N(r,t) and h-1((-00,t]) contains H(r,t) which contains

h-1((-°°,r]) - M(r,t). Let N be the union over r and t of N(r,t) UM(r,t)

where r is smaller than t. Thus N is countable. Let ho be the res-

triction of l to C - N and G*(r,t) be G(r,t) - N. Since every count-

able set is an F0 set, G*(r,t) is a G6 set. h;1([r,+°°)) = A-1([ra+°°))

- N which contains G*(r,t) which contains X-1([t,+oo)) - N which is

equal to A;1([t,+oo)) . If t is a fixed rational number, let rn be

elements of a strictly increasing sequence of rational numbers conver-

ging to t. Then

ii ‘ o, °° -1 w =00 -1 0°
n=1loli[rn,+ ))2nglca(rn,t)2>to ([t,+ )) “Clio ([rn,+ )y,

And consequently for every rational t, h;1([t,+°°)) is a G5 set.

If u is any real number, choose a strictly increasing sequence of

rational numbers tn converging to u. Then l;1([ue+°°)) is equal to the

. .. -1
Intersection over n of Aol([tn,+°°) ). Thus he ([Us+°°)) 13 a G5 set.

. - -l

Slmflarly A01(('°°,u]) is a GIS set for each real u. Therefore lo ((U,'*:°°))

is the intersection of an F0 set with C - N where an F, set is any set

Which is the union of a countable number of closed sets. By a theorem
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of Hausdorff (1, p.309), K0 can be extended to a real-valued function

ll on C such that for every real number u, h;1([u,+°°)) is a G¢15 set and

-1 .

hl ((u,+°°)) is an F6 set. By Hausdorff (1, Theorem IX) K1 is of Baire

class 1(C,R). Since h(x) = h1(x) except for x e N, A is of honorary

Baire class 2(C,R) .

Corollary: Let fbe continuous. If f : D —>RN where RN is the

product of the reals with itself N times and h:C —-)RN is a boundary

function for f, then X is of honorary Baire class 2(C,RN). (Kaczynski,

1, Corollary, p. 595)

P_ro_of_: We express f and h in terms of their components: f=< f1,f2,

...,fN> and A = (h1,}\2,...,}\N> . hi is a boundary function for f1 and

so is of honorary Baire class 2(C,R). Now we choose a function gi of

Baire class 1(C,R) that agrees with hi except on a countable set Mi'

Setting g = <g1,gz,...,gN> we see that g is of Baire class 1(C,RN) and

that g agrees with A except on the countable set which is the union of

. » N

M1 for 1 = 1,”,N. Hence h is of honorary Baire class 2(C,R ).

. . 3 .
Latina; 2.: SuPpose g is a continuous function mapping C into R , q 18 a

point 0f R3, and 6 is a positive real number. Then there exists a con-

tinuous function g*:C -->R3 such that q does not lie in the range of g*

and for all x e C, [g(x) - q] 2 f implies g(x) = g*(X)- (Kaczynski, 1’

Lama 4, p. 596)

23-92:: Let S be the set of points y in R3 for which ly - ql is smaller

than G. If the image of C by g is contained in S, let 3*‘0 HR be
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any continuous function whose range does not include q. Otherwise the

preimage of S, g-1(S), is a proper Open subset of C. Hence it can be

expressed in the form g-1(S) = U Ik where Ik is the set of elements

etszr which ak.< t.< bk and k # 1 implies that 1k and 11 are disjoint.

Since g-1({q}) is a closed compact subset of g-1(S), it is covered by

a finite number of the Ik's, say the union of I I ""In' The end-1 3 2 3

iak ibk
-l

and e of Ik are not in g ({q}). 80 there exists, for

points e

iaeach k, a continuous function gk frOm Ik into R3 such that gk(e 1‘)

ib

=18(eak), gk(e1bk) = g(e k) and q is not in the range of gk. We de-

fine

g*(x) g(x) if x e C-(Il u I U...u I )
2 n

g*(x) gk(x) if x e 1 , k = 1,2,...,n.
k

Thus g*:C —)R3 as required.

mg: If f is a continuous function mapping D into the Riemann

sPhere W and h is a boundary function for f, then A is of honorary

Baire class 2(C,W). (Kaczynski, 1, Theorem 3, 13-596)

3.12%: Since W is a subset of R3, the Corollary of Theorem 11 shows

that h is of honorary Baire class 2(C,R3). Let g be a function of Baire

Class 1(C,R3) which differs from A only on a countable set N. Then

g(C) ‘ W is countable. Thus there exists a point q inside of W which

is not in the range of g. Let gn be an element of a sequence of con-

tinuous functions converging to g. By Lemma 2 there existS, for eaCh

D, a continuous function gzzc —-)R3 such that q does not lie in the

range of g: and, for all xeC, 'gn(x) - q 2 l/n implies gn(x) = gflx).
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Then g:(x) approaches g.

We now want to define a function P. If a e R3 - {q}, let 1 be

the unique ray with endpoint at q that passes through a and P(a) be the

point of intersection of 1 with W. P is a continuous mapping of

R3 - {q} onto W and P fixes every point of W. Therefore, P(g(x))==h(x)

if x é N. P(g:(x)) is a continuous function from C into W and P(g:(x))

"* P(g(x)) as n—>oo.

Theorem 12‘ If the function f has a boundary function A that is a

Baire function, then every boundary function for f is a Baire function.

If A is of Baire class a Z 3, then every boundary function for f is of

Baire class a. (Bagemihl and Piranian, 1, Theorem 3, p.202)

EEQQE: Let K be of class a and suppose that X1 is another boundary

function for f. By the Ambiguous Point Theorem, Al differs from h at

no more than countably many points; therefore, Al is of Baire class 5

Where 5 is less than or equal to the maximum of 2 and a according to

Hahn (1, Theorem VII, p.352). By a similar argument a is less than or

equal to the maximum 0f 2 and B.

SOME SPECIAL TYPES OF CLUSTER SETS

Frequently mathematicians have investigated special cluster sets

of 3. For example, in our introduction of this chapter we mentioned

boundary cluster sets and right-hand and left-hand cluster sets. In

Hus section we will consider another type: the outer angular cluster

set, In later sections we will consider some others.

fA Stolz angle is a domain bounded by an arc of C and two chords 0
E
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the unit circle each having e19 as an endpoint. The outer angular

cluster set CA(f,eie) is defined to be the union of all of the cluster

sets CA(f,ele) where A is a Stolz angle with vertex at e19.

Le_m_ma§_: Let f be an arbitrary complex-valued function in D. Suppose

a and b are two fixed real numbers satisfying the condition -o'r/2<a<b

<1'r/2. For each e16 e C let A(e) be the set of 2's in D for which

a < arg [l - (z/eie):l < b. Then there exists a subset F(a,b) of C such

that F(a,b) is a set of linear measure zero and for each e16 e C-F(a,b)

CM (f,eie) = C (Leia). (Lappan, 8, Lemma, p.1060)

e) A

£r_og_f_: Let Vn be an element in a countable base for the open sets of W

and Sn be an element in the collection of all finite unions of the sets

Vn' For each positive integer j, let A(e,j) = z E Dt-TT/2+1/j

< arg[1 - (z/eie)] < 11/2 - l/j} and E(r,j,n) = {816 E C=f(A(6)an=

lz' > 1")C Sn and (f,eie) is not contained in Sn} . We want to

CA(e.j)

Show that for each pair of positive integers j and n and each real num-

ber r in the interval 0 < r < l, E(r,j,n) is of linear measure zero.

30 suppose that there exists a triple r,j,n such that E(r,j,n) is not

0f linear measure zero. Since E(r,j,n) is measurable and not of measure

zero, there exists a subset E* of E(r,j,n) such that E* is closed, has

n0 isolated points and has positive measure. Let G be the

set [2: lzlér} U {A(9) :eie €E* ],where A(9)

19 as defined above . By an argument of Noshiro (1, p.71), the

boundary of G is a rectifiable Jordan curve. 80 there exists a subset

E. 0f 13* such that E' has positive measure and the boundary of G has a

tangent at each point of E' and this tangent is the tangent to C at this
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point. For any point e19 e E' and some t > O, A(9,j)n {2: lz-eiel<e}

is contained; in G. But for each point G for which '2' > r, f(z) 6 Sn'

Therefore, CA(9 j)(f,eie) is contained in Sn which contradicts the de-

finition of E(r,j,n) . Consequently E(r,j,n) must have linear measure

zero.

S ie i9 . .
uppose CA(9)(f’e ) 9‘ CA(f,e ). Then there must ex1st some J

19 19 .
h that C f, C f, . S ach of these clustersuc A(9:j)( e ) 7‘ A(6)( e ) ince e

sets is compact, there exists an integer n such that GAG) C 8n and

C . (f,eie) is not contained in S . So for some r, e16 E E(r,j,n).

A(99])
n

Let F(a,b) denote the union of all of the E(r,j,n) 's over all rational

numbers r between 0 and l and all pairs of positive integers n and 3'.

Since F(a,b) is the countable union of sets of linear measure zero, it

o i '

is of linear measure zero. If e19 e C - F(a,b), then CA )(f,e 6) 18

(9

equal to CA(f,eie).

ill—993% ii: Let f be an arbitrary complex-valued function in D. Then

there exists a subset F of C, where F is a set of linear measure zero,

such that for each point e16 e C - F and each Stolz angle A with vertex

at eie, CA(f,eie) = CA(f,eie). (Lappan,8, Theorem 1, p.1060; Brelot

and Doob, Theorem 7, p.409)

2339.93 Let the elements of two sequences of rational numbers, denoted

by an and bn respectively, satisfy the conditions -11/2 < an < bn < 11/2

and for each pair of real numbers c and d satisfying the condition

‘n/Z < C < d < n/Z there exists an integer n such that c < an < bn < d.

Let F: 8 F(a ,b ). If e19 E C - F and if A is any Stolz angle with

n=1 n n

Vertex at 619 then there exists a positive integer n such that

,
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A'(e) = {z e Dzan < arg[l - (z/eie)] < bn}

and A'(e) is contained in A. Since e19 of F(an,bn), = CA(f,ei9)C

A'(o)

and so CA(f,e16) = CA(f,ele) . Furthermore, F is the countable union of

sets of linear measure zero. So F is also of linear measure zero.

In the next paragraph we will give an example of a function which

satisfies the conditions of Theorem 14 such that F is uncountable and

has positive capacity. First we will explain the term capacity. Let

#(E) be a non-negative additive set function defined on all the Borel

sets in the plane. Let F be a closed bounded set in the plane having

a connected complement G and M* be the set of all set functions It with

the prOperty

fduU’) = 1.

{eF

We now define the function

11(2) = f 103(1/lz-tl ) deem.

HF

and the quantity

V =inf (su u(Z))o

F u¢M* 2‘8

-V

F

Then the capacity of the set F is defined to be cap F = e , and the

CsilPélCity of any Borel set E is

cap E = sup (cap F).

FCE

We now give the following example which is found in (Lappan, 8:

9°1062). Let U be the upper half plane, P be the Cantor middle third
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set on the closed interval [0,1], and In be an element in the collection

cflfopen intervals which are complementary to P in (0,1). For each n

let Tn be the triangular region bounded by the equilateral triangle in

00

llhaving I; as its base. Let T = UlTn and V = U - T. We define the
n:

function f in U to be as follows:

f(z)

f(z)

0 for z E V,

l for z E T.

If F is the subset of C of linear measure zero mentioned in Theorem 14,

then P<: F; therefore, F is uncountable and has positive capacity.

HOROCYCLES

In the study of cluster sets of special subsets of B, one of the

nmst important types of subsets has been the horocycle. A horocycle at

a point e16 E C is defined to be a circle internally tangent to C at

the point eie. The horocycle is denoted by hr(eie) or just hr where r

(0 < r'< 1) is the radius of the horocycle. The point eie is not con-

sidered to be part of hr' A point w e W is a horocyclic cluster value

of f at e19 if there exists a sequence with elements zn lying between

two horOCYCles at e16 such that limzn = e19 and lim f(zn) = W-

Given a horocycle hr at a point e19 E C, the region interior to hr

is denoted by 91:. The half of hr lying to the right of the radius at

i + i

e 6 as‘viewed from.the origin is denoted by hr(e 0) and is called the

£131EW at e16 with radius r. The left horocycle is defined

analogously. In addition (I: and 0; denote the right and left half

reSPectively of {Ir .

‘ t the
Suppose 0'< r1 < r21< 1 and r3 (0'< r3 < l) is so large tha
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circle '2' = r3 intersects both of the horocycles h

r

16

and h . Then

1 r2
. . +

the right horocyclic angle Hr at e with radii r1, r2 and r3 is
1 ’ r2 ’ 1'3

defined to be

H+ ‘ comp 52+ n (2+ n{ I I > }‘ z : z _ r ,
r13r2’r3 r1 r2 3

where the bar denotes closure and "comp" denotes complement, both with

respect to the plane. The corresponding left horocyclic angle is de-

noted by H;1,r2,r3° Hr1,r2,r3 denotes a horocyclic angle at e16

without specifying whether it is right or left. If we do not wish to

specify r1,r2,r3, then the notation is simplified to H.

We now wish to define special types of cluster sets for horo-

cycles. The right outer horocyclic angular cluster set of f at ei6 is

CU+(f,eie) = U CH+(f,eie), and the right inner horocyclic angular clus-

Eerie; of f at e16 is CI+(f,eie) = n CHI-(Leia), where the union and

the intersection are taken over H+ which ranges over all right horo-

cyclic angles at e19. CU_(f,eie) and CI_(f,eie) are defined analo-

gously. The Mar horocyclic angular cluster set of f at ei0 is defined

to be CU = Cud— U CU" and the inner horocyclic angular cluster set of f

is defined to be C = CI+ n CI" The right principal horocyclic clus-

I

Efil §_e_£ of f at e16 is defined to be I}: = n Ch+ while the left principal

r
 

WM;§§£ is defined by changing the + signs to - signs.

TheWhgrocyclic cluster set is the intersection of the right

and the left principal horocyclic cluster sets and is similar to the

WMcluster set which is defined as the intersection of

Cx(faele) over X and denoted by flx(f,eie). Cx is the cluster set of f

i .

at e 9 on the chord X. The inner horocyclic angular cluster set 18

. i

Simllar to the inner angular cluster set.CB(f,e 0) WhiCh is the
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intersection of CA(f,eie) over all Stolz angles at eie.

Finally we wish to define special types of points on C. Any point

e19 e C is called a right horocflzlic Fatou point of f with right horo-

cyclic Fatou value w e W whenever CU+ is equal to the set consisting of

the single w. A point e5Le is called a right horocyclic Plessner point

9 is called a right horocyclic Meier point of fof f if CI+ = W, and e1

. + 19 _ ie . .
prov1ded Hw(f,e ) - C(f,e ) is prOperly contained in W. The sets of

right horocyclic Fatou points, right horocyclic Plessner points and

, + +
right horocyclic Meier points of f are denoted by Fw(f)’ Iw(f) and

+ _

M (f) respectively. The corresponding left horocyclic sets Fw(f),

w

1;,(13) and M‘;(f) are defined in an analogous manner. Finally the sets

of horocyclic Fatou points, horocyclic Plessner points and horocyclic

Meier points of f are denoted by Fw’ Iw and MW respectively and defined

as follows: e19 e Fw if CU is a singleton; el6 6 1W if CI = W, that is,

= + - i9 . _ 19 . 1 d .

I I n I ; e e M If H - C(f,e ) which 18 properly conta ne in

W V W W W

+ -

W, that is Mw is the intersection of MW and Mw' F(f), I(f) and M(f)

denote respectively the sets of Fatou points, Plessner points and Meier

points. These points are quite similar to those including "horocyclic"

in their names since e19 e F(f) if CA is a singleton and lim f(z) exists

1 ..

uniformly as 2 approaches e19 in any Stolz angle; e 9 6 H15} if CA " W

for every angle A; e16 e M(f) if for any chord P(4’) of C P883318

1

through 619 and making an angle 4> with the radius to e 9, 47/2 < ¢> < "/2,

C90b) = C(f,eie) which is properly contained in W.

m it: Let f(z) be an arbitrary function from D into W. Then

CB(f’eie) = CI(f,eie) = C(f,eie) for a residual G5 subset of C.

(Dragosh, 2, Lemma 2, p.60)
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10
Proof: For any e e C, let An r(e16) be the Stolz angle at eie with aper-

,

ture TT/2n, where the bisector of An r(e16) at e19 makes a rational angle r,

-Tr/2< r<TT/2, with the radius at e19. If am is the annulus l - l/m< '2' < l

where l - l/m> sin(lrl +TT/2m-1) , then let A j—-A (eiefll a . Let
n,r,m- n,r m

E(eie) be the countable collection of all An r Inat 810 and Zw(ele) be the

countable collection of Hr1 r2 r at e19 with rational radii ri.
3 3 3

i9 19 _ 19 .For each Ae}:(e ), CA(f,e )— C(f,e ) for a re31dual G6 subset of

C (remark after Theorem 2). The intersection of countably many of these

residual G6 subsets is again a residual G6 subset E1 of C such that

C(f,eie)= fl . CA(f,eie)=CB(f,eie) for eleeEl.

AEZ(ele)

Also

'0 i9 i9 i6

C(f,el )= fl - C (f,e )=C (f,e ) for e 6E

H62 (e19) H I 2

w

where E2 is another G6 subset and ElflE2 is the required subset of C.

31, 32 E C are topologically equivalent if 81-82 and 82-31 are of first

category.

+ -
Theorem 15: Let f : D +W. Then the sets I(f), IW(f), Iw(f), and IW(W)\‘

are topologically equivalent. (Bagemihl, 3, Theorem 4, P013)

- - .6 06 ie —

2.19%: Since CI(f,e19)= CI+(f,ele) fl CI_(f,e1 ), e1 e C, CB(f,e )- CI+(f,

i
19

e 9) = CI-(f,eie) = C(f,eie) for a residual set of points e on C.

Th If f is an arbitrary function from D into W, then the setsJamie:

F(f): 1:“), F'(f) and F (f) are topologically equivalent- (Bagemihl,

w w

3: Remark 3, 13.16)
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Proof: By definition we have the following conditions: CB S CA,

01+ _CCU...,CI' .. CU- and CI E CU for any point on C. Consequently

Lemma 4 implies that CA = Cm. = CU' = CU for a residual set of points

on C.

In contrast to Theorems 15 and 16, the sets M(f) and Mw(f) are not ne-

cessarily tepologically equivalent. (Dragosh, 2, Remark 3, p.61) For

example, let S be a countable dense subset of C. We define f(z) in D

as follows: f(0) = 0, f(z) = 1 for z e big-(e19) for e16 6 Sand f(z) = O

for z e h;(eie) for e19 e C - 8. Since 8 and C - S are both dense on

C, ”w is the element 0 for e19 E C - S and HW is the set with a single

element 1 for e19 e 8. Thus M(f) = C, but Mw(f) =

m2: If f(z) is an arbitrary function from D into W, then for any

19 is ieset L(e ) for which there exists a Stolz angle at e containing L(e )

CL is contained in CB except for a set on C which is of measure zero

and of first category. (Dragosh, 2, Lemma 3, P~61)

2332.? Let E denote the set of points e16 E C for which CL is not con-

. ' i .tained in CB. Then for each e19 e E, there exists a set L(e 6) lying

inside of a Stolz angle at e19 for which CL is not contained in CA for

some Stolz angle A at e19. So there exists a disk Qp on W SUCh that

CL and Qp are not disjoint while CA and 6p are. Using the notation in

Lemma 4, we can find a Stolz angle An r m p E 2(e 16) 31101" that “Am r :11)

over all sub-
and Qp are disjoint. So We can express E as ”En,r,m,

i

9)Scripts where e16 5 En r m p if there exists at least one set L(e

, 2 3

1Ying in a Stolz angle at e16 such that CL and Qp are 110': (118301!“-
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while f(An,r,m) and Qp are dis_101nt.

Suppose there exists a set En r m p which has positive outer mea-
3 , 3

 

sure. Then f(A ) and Q are disjoint for e195 E ‘ .
n,r:m P

n,r:m:P

  

I .= UA ‘ i9 '
f G n,r,m over p01ntS e e En,r,m,P’ then G is composed of

finitely many open simply connected subsets G1, . . .,GN of D because

C - E contains only a finite number of arcs with length exceeding
n,r’m’p

a fixed number between 0 and 21T. Privalow (l, p.220) has shown that

each Gk’ for l ‘é k s N, has a rectifiable Jordan curve Jk as its

boundary.

Since En r m p is assumed to have positive outer measure, the in-
, , 3

tersection of E and J must have positive exterior measure for at
n,r,m’p k

least one Jk' The tangent to Jk at almost every point of CO Jk coin-

cides with the tangent to C. Consequently there exist points in

k at which the tangent to Jk coincides with

the tangent to C. At any such point each Stolz angle at that point has

n,r,m,p belonging to C n J

.
, i .its terminal portion contained in Gk' So there eXist points e 6 in

19 19'
t

En,r,m,p such that CL 13 contained in f(Gk) for each set L(e ) a e

 

which is contained in a Stolz angle at e19. Since f(An r m) and Qp are

diSjoint for any point in E and G is the union over points in

3 $ 3

C O O

) and Q are disjoint. However, the definition

P

E
 

f A f(G0

n’r3m3p n,r’m, k

of E says that for each point in E C n 9‘ ¢ for at
n,r,m,p

L Q?n,r,mip

1least one set L(eie) lying in a Stolz angle at e 6 which is a contra-

dietion. Therefore, each set E r m p has measure zero, and so E also

n) ’ 3

has measure zero.

By a similar argument it can be shown that each En,r,m,P is of

fiI‘St category, and consequently E is of first category.
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Theorem ll: Let f(z) be an arbitrary function from D into W and let

K(f) denote the set of points e19 e C for which CA (f,ele) = (f,eie)

1

C

, A2

for any pair of Stolz angles A1 and A2 at e16. Then K(f) is residual

and of measure 217 on C. (Dragosh, 2, Theorem 2, p.63)

Proof: At each point e16 E C - K(f), there exists a Stolz angle A such

that CA is not contained in CB. By Lemma 5, C - K(f) is of measure

zero and of first category.

This theorem is a very important result as it generalizes Theorems

2 and 14.

Theorem 18: Let f(z) be an arbitrary function from D into W and let‘—

Kw(f) denote the set of points e19 e C for which CHl = CH2 for any pair

of horocyclic angles H1 and H2 at e19. Then KW is residual and of mea-

sure ZTT on C. (Dragosh, 2, Theorem 3; 13.67)

The theorem can be proved in a manner very similar to that of

Lemma 5.

Two sets S1 and 82 are called metrically equivalent if and only if

measure (S1 - 82) = measure (82 - 81) = 0.

W: If f(z) is an arbitrary function from D into W, then the

+ ' h ts 1+ 1' and ISets Fw’ FW and FW are metrically equivalent and t e se w’ w W

are metrically equivalent. (Dragosh, 7-, Corollary 1, P68)

+ ..

m: Suppose eie belongs to at least one of the sets Fw’ FW and FW

bUt not to all of them. Then there exists a pair of horocyclic angles
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H and H at e16 such that C 5‘ C . By Theorem 18 the set of such1 2 H1 H2

points e16 e C is of measure zero. So Fw’ F; and FW are metrically

+ ..

equivalent. The proof for Iw’ IW and IW is identical.

F(f) and Fw(f) need not be metrically equivalent. Forexample

(Dragosh; 2, Theorem 5, p.69), we are able to define the Blascke product

a) 2n 2n
3(2) = I] ({n) + (Z3!

n=1 (1 + {nz)2.

where In = 1 - (n22n)-1

for any positive integer n which has zeros at the points

z k = 1,2,...,2n and n.> o.

_ f i(2k - 1)2'“n

n,k _ ne ’

For each point f e C and each horocycle hr for O < r < l at the point,

+ -
there exist sequences of these zeros lying interior to 9r and 91.. ThUS

for each point in C, O 6 Co}? for 0 < r < l and similarly for CST . A
r

r

Blaschke product has a Fatou value of modulus one at any point of C

except for a set of measure zero. Let I be a Fatou point of B that has

the Fatou value a with Ia' = 1. If i is a right horocyclic Fatou

point of B, then 09+ is the set with the single element 0 for 0 < r < 1.

r

Since this contradicts the fact that CA is the set with the single ele-

ment a for each Stolz angle A at f, the set of right horocyclic Fatou

Points of B is of measure zero. By the corollary following Theorem 18,

Fw(f) has measure zero.

I(f) and Iw(f) also need not be metrically equivalent. Dra80Sh

(1: Theorem, p.41) constructs a function f(z) holomorphic in D such that

every point of C is a horocyclic Plessner point of f and almost every

pOint of C is a Fatou point of f.

 



36

Lemma §_: If f(z) is an arbitrary function from D into W, then for any

i

set H*(e 6) for which there exists a disk Or at e19 containing H*(eie)

i
CH*(f,e 0) is contained in CI(f,eie) except for a set on C which is of

measure zero and of first category. (Dragosh, 2, Lemma 6, p.67)

Proof: Much of the proof of this lemma is analogous to the proof of

Lemma 5. We replace Stolz angles by horocyclic angles and the region G

. w . . .
by a region G , which is defined as follows; let P be a perfect no-

where dense subset of C and Hr r r (e19) be a fixed horocyclic angle,

1’ 2’ 3w

I

then G is the union of all of the H 's for e16 in P. According
r1,r2,r3

to Bagemihl (3, Lemma 1) GW is composed of finitely many simply.con-

w w . . .nected subregions G , . .., k having as their respective boundaries the

rectifiable Jordan curves JY, . . . ,

at almost every point e16 e C n J

J So the tangent to J: for l 5115 k

8
5
:
8

coincides with the tangent to C.

D

We must now show that except for a set of measure zero contained in the

set C 0J2, each horocyclic angle H at e19 has a terminal portion which

lies in G: because the tangent to H at e19 also coincides with the tan-

gent to C.

In order to verify the last statement, we will first show that if

P is a perfect nowhere dense subset of E0 , 1], then for almost every

13°int p E P for which a sequence of open intervals (an,bn) in [0 , 1] r P

converges to 9, Ian - pl/(bn- an) tends to positive infinity. If E 18 any

LebeBSue measureable set in R1 for which the upper and lower limits 0f

the quotient

meas (E 0(x - 6,x+ all

26

are equal, then their common value is called the metric density of E at

x. According to Hobson (p.194), in our case the metric density exists
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and is equal to l at almost every point p e P. Let p E P be a point

with metric density equal to l and suppose that the sequence

[ (an , bn) } converges to p from the right. Then

meas(Pn (p,bn)) meas(Pn(p,an)) _

= lim

n—-)oo

 

 lim
1

n _’ 0° meas(p,bn) meas(p,an)

meas(Pn (p,bn))

and lim ——> 1.

n —>oo (an - p)+ (bn - an)

 

meas (Pn (p,bn))

Since Pn(p,bn) = Pn(p,an) , 1 im — a _ —+ l .

n ———> 00 n P

 

Also since meas(Pn (p,bn)), an - p and bn - an are each greater than

zero, these conditions imply that lim[(bn - an)/(an - p)] approaches

zero. Consequently (an - p)/(bn - an) ->+oo, and in general

‘an ‘13l/(bn - an) ->+°° .

Now we will show that except for a set of measure zero contained in

the set Cruz, each horocyclic angle H(eie) for e16 6 J: has a terminal

portion which lies in 6:. By means of a bilinear transformation L(z),

it is possible to map D onto the upper half plane and to prove this re-

sult there. Let P be a nowhere dense set on the finite interval I on

the real axis and {(an,bn)} C I - P. We now choose circles C1 :

2 2 2 2
(X ' an) + (y .. R)2 = R2 and CZ : (x - bn) + (y - r) = r where

0<ngrgR
\

32<R3<RgR4. ()

We choose r and R in this manner so that the two horocyCIeS hrl and hrz

fOltming part of Hr are mapped by L(z) onto circles of the form Cl

1’r2’r3

and 19
' h d ints of

CZ as e ranges over PC C. At the left and rig t en po

eaCh interval in I - P we construct the circles C1 and C2 respectively.

We Will now prove that at almost every point p E P and for any sequence
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of arcs with elements (an’bn) in I - P converging to p, the point

(xn,yn) e cln 02 closest to p lies interior to any given circle tangent

to the x-axis at p for at most a finite number of n's. Our method of

proof will be to Show that if the previous condition holds, then

Ian - pl/(bn-an) tends to positive infinity. By the previous para-

graph this limit is valid at almost every point of P. Suppose there

exists a point p e P for which every sequence of open intervals in

b,l] - P converging to p satisfies the condition Ian - pI/(bn - an)

tends to infinity, but for which there exists a sequence of elements

(an’bn) such that the point (Xn’yn) E Clrlcz lies interior to a given

circle for an infinite number of n's. Without loss of generality, we

assume that p = 0. So we are assuming that there exists a circle.

2 for infinitely many n.

2 2 2
X + (y ‘ P)2 = 92 such that xn + (yn - p) < p

Since lanl/(bn - an) tends to infinity and signum (an) = signum (bn)’

+ _ - .
lbn anl/(bn an) also tends to infinity

Let L1 denote the line which passes through the points of inter-

section of C1 and C2. L1 satisfies the equation

(X'e'=ln)2+(y-R)2-R2 - [(x-bn)2+(y-r)2-r2 ] = 0

or

R - r
=_ + ,x b - a y + (bn an)/2

n n

Therefore

’ R - r (4)
= ————-——- + + 2.

xn bn — an yn (bn an)/

By solving Equation (4) and the equation for C1 simultaneously for yn,

we have 2

R - r 2 2 =
+ - + - R) R ,

( a yn+(bn an)/2 an) (yn

 

b -

n n

which can be rewritten as
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2 2 2 _
yum - r) /<bn - an) + (bn - an) /yn - R + r - yn.

As yn approaches 0 from the right, we have yn = ()((bn- an)2) where 0

indicates the order of the function. So yn < K(bu - an)2 for O < K and

n sufficiently large. Substituting Equation (4) into the condition

2 2 2
+ -xn (yn p) < p we have

- + +
bR r y +(R-r) bn an + bn an 2_l_+y < 20. (5)

‘ an n b - a 2 y n
n n n n

The left-hand side of this inequality is greater than

b+a b+a 21

b -a 2 Y
n n n

 

which by Condition (3) and the condition for yn is greater than

+ + + b +a(R - R )(bn an)+ n an)2 1 :3 bn anEI _ R + 4 [(11) 9f )] O

3 2 bn an < 2 K(bn _ an)2 bn an 3 n n

 
 

Since lbn + anl/(bn - an) tends to infinity, the lower bound on

2 2 2
Inequality (5) also tends to infinity. Hence xn + (yn - P) < p can

hold at most for a finite number of n's.

MEI; L: If f(z) is an arbitrary function from D into W, then for

any point I E C,C is contained in CH for every Stolz angle A and every

horocYclic angle at I except for a set on C which is of measure zero

and of first category. (Dragosh, 2, theorem 4, p.68)

t
239—93: If I is a point where CA is not contained in CH’ then CA is no

contained in C for some Stolz angle A at I. So this theorem follows

I

immediately from Lenma 6.
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Theorem 2_0: If f is a arbitrary function from D into W, then almost

every horocyclic Fatou point of f is a Fatou point of f and almost

every Plessner point of f is a horocyclic Plessner point of f.

(Dragosh, 2, Corollary 2, p.68)

M: If ( E Fw(f)’ then there exists a horocyclic angle H(() at (

and a point w e W such that CH is the set containing only the point w.

From Theorem 19, it follows that CA also contains only the point w for

almost every point ( E Fw(f) .

If C E I(f), then CB = W. According to Theorem 19 GB is contained

in CI for almost every point ( E C. So CI = W for almost every point

in I(f) .

ORICYCLIC CLUSTER SETS

Oricycles are another type of special subsets of D which have been

studied in the field of cluster sets. Let { be any point on C and U(()

denote the inscribed disk at ( such that U = {zzlz - P(I < 1 — P} where

P is a constant such that 0 < p < 1. Then the oricyclic cluster .s_e_t_ is

defined to be Co(f,() = fl CU(f,(). A gU_-singular M is any point

i E C such that there exilsts a pair of inscribed disks U' and U" for

WhiCh CUKfK) 9‘ CU.,(f,§'). Let V be any open angle with vertex at f.

The“ a fl‘m Mn—t is any point of C such that there exists a pair

0f angles V' and V" for which CV.(f,§) 5‘ CV..(f,§'). The set of all

W (or W) -singular points is called the Q (or YE) -singular s_et_

and is denoted by EUU(f) (or EVV(f)). A (ill (or Q!) -singular Egg; is

any point I e C for which there exists a U (or V) for which CU =f C(f,§)

(01- CV 5‘ C(f,§)). The GU (or GV) -singular set is denoted by EGU(f)
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(or EGV(f)). A UV-singularity is defined analogously.

For any 6 > 0 let Ne“) denote the neighborhood consisting of ele-

ments 2 such that 'z - g l < 6. Suppose we are given a set E in C and a

point 3' on C. Let r(§',e) = r(§’,e,E) be the largest of the lengths of

arcs contained in Ne “C and not intersecting E. Then for any a, O <

as l, the set E is said to have porosity (a) at f if l-ijtl(r(i’,€))a/E >0

as e -—2 0. E is said to have porosity (a) on C if each point I in E has

porosity (a). A set which is a countable sum of sets of porosity (a)

is called a g—porosity (3) set.

Yanagihara (1) has shown that E and EU are C sets and of
UU V 60

d-porosity for some a. (Theorems 22 and 23) while Dolgenko (1) has shown

that E is a GVV set and E is an F0 set (Theorems 21 and 24).
50 GV

Theorem 21: If f(z) is an arbitrary function, not necessarily single-
“*

valued, then EVV is of G60 type and of d-porosity for some a.

(Doléenko, 1, Theorem 1, p.3)

m3 Let {an} denote a sequence consisting of all rational numbers

between 47/2 and 1T/2, and let {a} be a sequence consisting of all

closed circles in W - {00} having rational radii rn and centers at the

P0111138 an with rational coordinates. If I E C, then Vp q denotes the

Open angle of size a with vertex at f and with bisector forming an an-

819 “q with the interior normal to C at I. We define En p q to be the

3 ’

set of all points g' e C such that if z e D, P(Z,C) < 1/P, and for Z in

VP”, the va 1 u e s of f(z) lie at adistancez rn from Dn where rn is

the radius of DE: For m,n,s,k any positive integers, let Fn,m,k,s be

the set of all points I e C for which the set
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{f(z) :z is in Dfle,k and l/(3s)<p(z,C)<l/s}

has points in common with the disk D—n' Then each En P q is closed and

eachF isoenonC WestF =fiwF’,
n,m,k,s p ' e n,m,k t=l Sit n,m,k-as '

We will now show that EV =
U U F E . S

V n,p q,m,k ( n,m,k n n,p,q) uppose

i E EVV(f). Then there exist angles V' and V” such that CVI 9‘ CV" .

Suppose CVI - CV" 7‘ 4’. Then we can choose m and k such that Vm k3 V'.

So CVm k - CV" =f db and there exists a disk E such that for some p and q

Du noV 9‘ ¢ and e’(Du,CV ) > 5ru.

m,k P,q

Consequently we can find positive integers p and q such that if z is in

Vp q and p(z,C) < l/p, then p(DJ,f(z)) > 4ru. Let n denote the index

of the disk D_r:which has the same center as E and radius rn = 2ru. So

P(¥,f(z)) > rn if z is in VP,q and P(z,C) < 1/p. Due to the choice of

E, there exists a sequence of elements 2 in Vm,k which approaches f

and a corresponding sequence of elements f(E) which approaches a point

a E 3;. So for an infinite set of positive numbers, there exist points

‘2 in V , for l/(3s) < p(§,C) < l/s such that D—[: and {f(2)} are not

disjoint. Thus 5* e 0L? F for all t and is therefore also in

S=t n,m,k,s

n,m,k'

N . Then b the definition ofow suppose f e Fn,m,k and En,p,q y

E — ' int. Since is in F , it is in

n’p’q, CVp, and DD. are diSJO f n,m,k

F for an infinite number of 5's. From the definition 0f
n,m,k,s

F .
D— re not dis'oint and so C is

n,m,k,s’ it follows that CVm,k and n a j Vm,k

nOt Equal to CV

P,q

We will now show that E Suppose on the contraryW is a-porous .

. , _ 'ththere « and E Which is not 0 P0rous W1eXists a point in Fn,m,k n,p,q
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respect to G. Then the angle Vfi. close to its vertex is covered by a
,k

union of angles V" for n in F and E . So by the definition

P,q n,m,k n,p,q

of E at points z in V ‘which are sufficiently close to the point,

n:P:q
m,k

the values of f(z) are at a distance Zrn from.D;l Therefore CV k and

m
3

D; are disjoint and the point is not in F k and E . Thus

3 3 3 3

F E is porous on C and E is a-porous.

n,m,k n n,p,q W

This theorem is closely related to the Collingwood Maximality

Theorem (Collingwood, 3), which states that for an arbitrary single-

valued function f(z) defined in D and any Stolz angle Atwith vertex at

(9 93(f,() = C(f,() except for a set of first category. It is also re-

 

lated to Theorem 14 which states that for an arbitrary single-valued

function f(z) defined in D the outer angular cluster set CA = 9A ex-

cept for a set of measure zero.

Theorem.22: If f(z) is an arbitrary function, then EUU is of G60 type

 

and of 0-porosity for some a, (Yanagihara, l, Theorem.l, p.424)

The proof of this theorem is quite similar to that of Theorem 21.

Theorem.23: If f(z) is an arbitrary function, then EUV is of Gfia type

M—_

and of o-porosity' (0 ). (Yanagihara, 1, Theorem 2, p.425)

Yanagihara (1, Theorem 4, p.426) has shown that there exists a

bounded holomorphic function f(z) for which EUV is of measure 2n. For

example, we pick an inscribed disk U(l)‘= {21 IZ ' Pl‘< 1 ’ Pi for

0 < P‘< 1. Then there exists a constant b such that an are A = iz-

reie :9 = bfi/l-i:i is contained in U(l). In addition we choose tn
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00

such that 0 < tn < 1, is strictly increasing to l and 2V1 - t <oo.

n
n=1

Let

k k
n n

f(z) = H z 'ktn

(tnz) n - 1

 

where the integers kn are determined by kn = [3TT/b\/l—_-_t;] + 1. This

product converges because 21:1an - tn) is finite. For every point

(e C, U(() contains an infinite number of zeros of f(z) and CU contains

0, but f(z) has angular limits of modulus l at almost every point of C.

Thus EUV has measure 21T.

Theorem 24: For an arbitrary function, not necessarily single-valued,

EGV(f) is of F0 type and of first category. (Dolzenko, 1, Theorem 3, p.9)

The proof of this theorem uses much of the notation and style of

Theorem 21. As before each E ,p, is closed. EGV =n,g,q En,p,q' If

EGV is not of first category, then there would exist a set Eno,p°,qo

such that on an Open are A contained in E , C(LQ WOUId be at
no ,p02qo

a distance at least rno from Dn for any{ in A, which contradicts the

0

to art 4’.p p , y that En°,p°,q°n0(f,() 3*

SELECTOR OF ARCS

F is called a selector of; arcs if it is a correspondence which

associates with each point in C a nonempty collectionl‘ of arcs at that

 point, If I‘ is a selector of arcs, then the [-principal cluster set

' ie ._. 19
0f f at a point e16 is defined to be the set Hp (f,e ) QC(f,e e“)

Where C(f,eie,¢) denotes the arc cluster set of f at e 9 along a and
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the intersection is taken over all a in F(G)". If the intersection is

19 . i9 .taken over all arcs at e , then the notation H(f,e ) is used.

If p is any positive number and e19° is any point on C, then let

Cu denote the set {e16 E C :0 < leie - eie°| < It} . For any function

f(z) defined in D, let Hr(f,ele°,#) = U Hr(f,ele) where the union is

'
at

over e19 which ranges over all points in C" and let III, denote the

closure of HP in the Riemann sphere. Then the boundary E—principal

i .
cluster set of f at e 6° is defined to be the set
 

BHr(f,eie°)= n n:(f,e19°,#).
fl>0  

If 1‘ contains all arcs at 8160’ then the notation BH(f, 8160) is used.

For any subset S contained in D, a point e16 e C is called almost

L-accessible through S if for every Open set C with S 9G ED there

exists an arc a e 1" such that a g G. This definition is abbreviated to

e19 is almost accessible through S in the case that I‘ is the collection

of all arcs at e19 which is a point of C. Let E be contained in C and

7 be a correspondence which associates with each point in E an arc 7(e19)

in P(eie). Let S(7,E) denote the relative closure in D of the set

3(7aE) = U 7(eie) where the union is over all e19 in E. Then I‘ is a

MWo_f_ eggs if for every set E of second category in C and

every arc 7, there exists a subarc AEC such that E is dense in A and

every point of A is almost F-accessible through S(7,E) .

If I‘ is a selector of arcs, then a new selector of arcs 1"* called

the completion 91:; I; is defined by {a : a QB e F(eiefl. Finally I‘ is

called an gfimissible selector 2t. 1222 if 1"* is a smooth selector of arcs.

The theorems which we prove in this section will lead to the maJor

' D
result stated in Theorem 29 that if f is a continuous function in ,
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then H(f,ele) = BH(f,ele) and Fk(f,ele) = BIIx (f,ele) where X denotes

the collection of all chords at e19 except fora set of first category.

Theorem 22: If f is an arbitrary complex-valued function defined in D

and l‘ is any selector of arcs, then there exists a selector of arcs [‘0

such that for each e19 e C, 1‘0(e19) is a finite or countable subset of

F(ele) and nr(f,e19) = "1‘ (f,ele). (Gresser, 2, Theorem, 7, p.11)

0

Proof: Let y be any are of I“. Then BY = W - CY(f,ele) is open in W.

 30 U BY = W - "P(f’ e16) and by the Lindelof covering prOperty there

Yq‘

i

is a countable subcovering with elements BYn of W - "F(t: e e) . Conse-

°° 19 ie _ °° ie _ II 19

quently U B = W - n (f, e ) and H (f,e ) - n C (f,e )- r(f,e ).

lhe_or_e_m _2_6_: If f(z) is an arbitrary complex-valued function defined in

’ i
D and l‘ is any selector of arcs, then "P(f,ele) E Bflr(f,e 6) for all

19
except for at most a countable number of points e in C. (Gresser,2,

Theorem 4, p. 6)

1129.9 For any positive integer j, let TJ. be a finite collection of

compact neighborhoods on W which cover W and such that using the usual

metric for W, we have diameter (G) < 1/3 for G any SUbset 0f TJ'.

Choosing a finite number of G's for each j, we let Tj = 3 ij for each

- ' i A i

J and define P to be {e19 e C: "F(f’e 9) i B "F(f’e 9)}. Let

_ 1 . 19 ¢}.
P .-{e96P.annflr(f,e )7‘

[1,] 3

EaCh G . is contained in W - B "P(tflaiG) for each POSitive integer 3'

n J

If e16 e P, then there exists a point w 6 "F(f,e ) SUCh that
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w a’ B “F(f,ele) which is closed in W. Thus there exist :1 and j such

thatwe G . (\Bn (f,e19)= ¢. Therefore e16 e P , and P= U Pnj 1‘
nj,

a n,j naj.

Now we wish to show that each Pn j is at most countable. In

2

order to show this, we fix j and n, and let e16 e Pn j' i If e16 is not

3

an isolated point of PH j’ then there exists a sequence { {k
’

. ie .
d>in ij that converges to e . Since each {k e Pn,k’ ij finr(f,§’k)7‘

for each positive integer k. 80 for each #1 >0 Gr1 j n ufi(f,e16,u) ‘7‘ (P.

i of points

,

Let {pk} be a decreasing sequence of positive real numbers which con-

verges to zero. Then

 16 = 00 7': 19Gn,jnBflr(f,e ) kQI(an”"r(f’e ,uk))#¢
9

, i
because W is compact. This contradicts the assumption that e 6 6 PH j'

9

So each e19 e P . is an isolated point and the set P is at most
:1

3

countable.

Theorem 27: Let f be defined in D and 1‘ be a selector of arcs. If G
M—

' i
is any open subset of W such that for some e16 e C, GflB nr(f.e 9) 7‘ d”

. 5-9
then there exists a sequence {(ji of points in C which converges to e

such that CO HP(f,(,) 54¢ for each j. (Gresser, 2, Lemma 5, p.8)

J

This theorem follows easily from the definition of “I‘( ,e .

£99393 1: Let f be continuous in D and I‘ be an admissible selector of

. i

arcs, For each point 819 e C, let 3 be an arc in I‘(e 6). Then

BHP(f,eie) _C_ CB(f,eie) except for at most a set of first category.

(Gresser, 2, Lemma 6, p.8)
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Proof: Suppose the lemma is false. Then the set P denotes the set of

ie t . 19 ie .

points e e C for which B III.(f,e ) Q CB(f,e ) is of second category

in C. Let 6 be an arbitrary positive number and S(ele,e) denote the set

of all points in W whose spherical distance from CB(f,eie) does not

exceed 6. Since CB(f,ele) is closed in W, it follows that for each

point e16 e P there exists an G(ele) > 0 such that BIIP(f,ele) - S(elée) #Q

Let i‘ji be a decreasing sequence of positive numbers which converges to

zero and Pj {el6 6 P: Bl'lr(f,eie) - S(ele,ej) 7‘ 4’}. Since P = U P3 and

is of second category, there exists a J such that PJ is of second cate-

gory. We choose a finite collection {CPUUGm} of open sets each of

diameter < eJ/4. For n g m let PJ(#) = {e16 6 PJ : Gfl(BHP- S(ele, e )) 7e 4’}.

Since PJ is a union of the PJ(#)'s and PJ is of second category, there

exists an M such that PJ(M) is of second category.

For two subsets A and B of W, let a be any point in A and b be any

point in B. Then the spherical distance X(A,B) between the sets A and B

is defined to be the infimum of the spherical distances between points

a and b. From the definition of PJ(#) it follows that X(G , Cfi)'>"3eJ/4

for any point e19 in PJ(M). According to Theorem 27 every point e19 in

PJ(M) is a limit point of the set Q = {e19 e C : GMflHr(f,eie) 7‘ ¢}.

We will now show that x<GM’CB) 7, BeJ/4 is valid for a subarc of C

1

Which violates the definition of Q. For each 819 e PJ(M) let 7(e 6) be

i
a terminal subarc of ,3 such that f(‘Y(eie)) _C_ S(e 6, eJ/A). If 3 denotes

i

the set U‘Y( e19) where the union is over e 9 e PJ(M): then x<GM’S) ZeJ/2

since X(GM’CB(f’eie)) _>_3eJ/4 for e19 e PJ(M). From the continuity of

f’ K(GM:§) Z eJ/Z where S denotes the relative closure in D of 8. Let

G be an open set such that f(S)C_ZG and x(GM,G) ZeJ/4. By the COhtihUity

0t f, the set U = f-1(G) is open in D and contains S. Since P iS an
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admissible selector of arcs, there exists a subarc A_C_C such that each

point of A is almost P*-accessible through S for I‘* the completion of I‘.

So for every point eie e A, there exists an are a e I‘*(eie) such that

aEU. Thus by the definition of U, C(f,e)EC for e19 e A. Since a. is

a terminal subarc of 3, an arc in F(eie), the two arc-cluster sets are

the same. Therefore, Hr(f,ele)§C—; for e19 e A and X(GM,HI.) 7/ /4,
6J

a contradiction to the definition of Q.

mg: Let f be a continuous function in D and I‘ be an admissible

selector of arcs. Then III,(f,ele) = BIIl..(f,ele) for nearly every point

e16 e C. (Gresser, 2, Theorem 8, p.11)

21319;; According to Theorem 25 for each e16 e C there is a finite or

19 iscountable subset of F(e ), say aj(e ) such that

. 0° . i

H (f,ele) = fl C(f,ele,a.(e e)).
F j=1 J

If the set {aj(eie)} is finite, we repeat one of the arcs infinitely

' i
often. For each j, let Pj denote the set {e19 e C : Bll g Caj(f,e 9)}.

BY Lemma 7 each of the sets Pj is of first category in C. Therefore

1 i

the set P = :J0 Pj is of first category and BIII.(f,e 9) E III.(f,e 6) for

i j
e9

E C - P. The proof is completed by using Theorem 26.

i .. 19
31mg: If f is a continuous function in D, then “(f,e 6) -Bfl(f,e )

and II (f,eie) = BI'I (f,eie),where x denotes the collection of all chords

7‘ x

i O

at e 9, except for at most a set of first category. (Gresser, 2,

Theorem 9 , p . ll)
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Proof: In order to apply Theorem 28 we must show that A(ele) the col-

lection of all arcs at e16 is an admissible selector of arcs. Let E be

a second category subset of C and R(ele) e A(ele) for each e19 e E.

For any positive integer j, we define Ej {e19 e E : A intersects the

00

circle lzl = 1 - l/j} . Then E = £1 E. and so there exists an N such

3'13

that EN is of second category on C. Therefore, there is an open subarc

AEC such that EN is dense in A. Let S = U h(ele) where the union is

taken over ei6 6 EN. Let G be an open set such that SEGED. We let

e190 be an arbitrary point in A and Do be an Open disk centered at

eie" having radius r S l - l/N. Let {in} be a sequence Of distinct

points in ENDo which converges to e190. Then for each n, let kn be

the component Of h(an) Do which forms a terminal subarc of K(fn). We

will show that there is a component Go of GODO such that AngGo for

infinitely many n. Let )tnk be a subsequence of kn's which converges to

a limit set L. If LflDOflD 7‘ 4’, let 2 e LflDOflD. Then 2 e SflDo so

that z is contained in some component C0 of GflDO. Since 2 e L(WGO and

G0 is Open, it follows from the definition of limits that there exists

an M such that Goflxnk7i ¢ for all k >M. Thus since Auk is a connected

subset Of GflDO, Auk; GO for all k > M. So suppose LflDofl D = 4’. Let

e19 e LflENflDO and a be the component Of K(eie)nDo which forms a

terminal subarc of K(eie) . By the definition Of convergence, there

exists an M such that aflknk 5‘ ¢ for all k > M. Since a is a connected

SUhset of GOD , ais contained in a component C0 of GflDo. Furthermore,

o

Ink is a connected subset of GflDO. SO AnkgGo for k > M. Therefore,

- twe have established that there eXists a component GO of'GflDo such tha

AnSGO for infinitely many “-
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For each positive integer k let D denote the open disk centered

k

at e190 having radius (1 - l/N) /k. Now we will construct a sequence

{Gki of Open connected subsets such that GQG 2G2... and each G 9D .
l k k

If e16 e Dk’ let ak denote the component of aflDk which forms a terminal

subarc of a. If e16 e Dk’ we let 01k = d>. Let itmi be a sequence of

j~9o .
distinct points in EN which converges to e Since there exists a

component GO such that. inc; Go for infinitely many n, we can select an

infinite subset T1 of {)4me and a component G1 of GflD1 such that

‘1’ 7‘ (11961 for each a 6 T1. Inductively we can define sequences {Gk}

and {T } for each positive integer k such that Gk is a component of

k

GflDk, {K(fm)}2T12T ..., ¢¥ak§G for each are T . We fix k and

2 k k

T . Since (19 '7‘ “kl-lgak, and atk-‘-1§G1(_|_1 and oszEGk

' dgGflDk. Since Gk+l is connecte

let T , it follows

H19- k

that Std-106k 7‘ ¢. But Gk‘l'lanDk'l‘l

and Gk is a component of GflDk which intersects Gld'l’ Gk-l'lEGk'

Finally using the Gk's which are arcwise connected, it is possible to

construct an are at eie" which lies in G. Consequently A(eie), the

collection of all arcs at e19 is an admissible selector of arcs.

Now we will prove that the theorem is true for X , the collection

Of all chords at e16. Let {Aj} be a countable collection of closed

Stolz angles at eie° = 1 such that each chord at e190 is contained in

at least one of the Aj's. For each positive integer j, let Aj(eie) be

the closed Stolz angle at e19 6- C Obtained by rotating Aj about the

i .

origin, Then for each j and each e16 e C, let Xj(e 6) be the collection

1

Of all chords at 819 which are contained in Aj(e 9). By an argument

1 .

Complete1y analogous to that for A(e 6), Xj is an admissible selector

0f arcs. Consequently by Theorem 28 for each j there exists a set Ej

1 _ 16 19 c- E..
0f first category in C such that anj(f’e 9) " ij(f’e ) for e E J
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Since BHx(f,ele)EBIIX.(f,ele) for each j and ei6 e C, we have

J

i

BHX(f,e e)EII _(f,eie) for e16 e C — E,. The set E = 3 E. is of

xj ' J . .j=l J

first category in C. So BIIX(f,ele)EIIX.(f,ele) for e16 E C - E.

- JO

Finally by Theorem 26 Hx(f,ele)SEBIIX(f,ele) except for at most a

w .

countable number of points in C, since BHXE .nIHX. = fix for e16 e C - E.

J= J

THEOREMS FOR SPECIAL TYPES OF FUNCTIONS

As one might expect, there are numerous theorems relating to the

theory Of cluster sets which are only valid for special types of func—

tions. In the remaining sections Of this chapter we will consider some

of the more important results for various types of functions including

those which are continuous, light interior and locally univalent.

Continuous Functions

The et Qi curvilinear convergence _£,a function f is defined to

be the set {x e C: there exists an are 7 at x and a point p in some

. lim _
metric space such that 2.9.x f(z) — p .

z e 7

Theorem 39: If f is a continuous function from D into W, then the set
‘—

Of curvilinear convergence of f is a F05 set. (McMillan, 1,Theorem 5,

p.302)

First we wish to define special subsets F(n,j,k) of D. For each

m a

positive integer n let {A(n,j)}j=1 be an enumeration of the open disks

each having its center at b, a point of W whose stereographic projection

has rational real and imaginary parts and such that the set
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{z e D: (f(z),b) < 4-n} contains points arbitrarily close to C. For

each pair of natural numbers n and j, let {D(n,j,k)} be an enumeration

of the components of the nonempty open set f-1(A(j,n))n{l - l/n<lz|<l }.

Then F(n,j,k) is defined to be D(n,j,k)nAwhere A is the set of curvi-

linear convergence Of f. Let N denote the set of points eie e C for

which there exist an n > 1 and integers jl’ j2, k1, k2 with the follow-

ing properties. If eie e F(n,j1,k1) nF(n,j2,k2), then either A(n,j1)n

A(n,j2) = 4) or there exist jo,k' and k" with k' 7‘ k” such that

F(n,jpu E(n.j,>cA<n - mo).

. _ - l

D(n,J1,k1)cD(n 1.Jo.k ),

D(n2J2,k2) CD(n' 12Joak") -

Then Theorem 30 is proved by verifying that N is countable and that

r](,U F(n,j,k)) - (NUN')cAcn( U F(n,j,k)) where N' is the countable
:1 J.k n j,k

set of points of A that are not two-sided accumulation points of A.

An analytic arc is an are described by parametric equations x=‘Y(t),

y = W“) for 0 < t < l where the functions ‘Yand W can be represented in

some neighborhood Of t for 0 < t < 1 by a power series with real coef-

ficients and throughout this neighborhood at least one of the deriva-

tives 'Y' and W is nonzero.

Let t1, t2 and t3 be Jordan arcs contained in Du{p}. If there

exi
St Jordan arcs t4, t5 and t6

U t5 is a Jordan curve and t6 - {p} is contained in the

in DU{p} such that tlct4, tzczt5 and

t6Ct3, where t
4

bounded region whose boundary is t4U t5, then t3 is said to be between

t1 and t2 ,
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Theorem 3_l: If f is a continuous function from D into W and p E C,

then there exist analytic arcs a,f3and Y each ending at p such that

(A) Ca(f,p)=C(f,p), CB(f,p)=CBl(f,p) and CY(f,p)=CBr(f,p),

(B) 3,8 andyrare mutually disjoint except for their common

endpoint p and

(C) a lies between B and Y.

(H.T.Mathews, 2, Theorem 1, p.1265)

Proof: We may assume without loss of generality that p = 1. Let

{Wi}i:l be a countable dense subset of C(f,l). Then there exist in D

sequences 2..1 such that z.. —9 l as j —+ m and f(z..) -+ w.. From

1]! ij ij i

the zij's we form a sequence {2.} such that z. —9 1, Real (2.) <

Real (zj+1) and wi is the limit of a subsequence of f(zj)}. We pick

open diSkS E in D sufficiently small so that f assumes only
1’ E2’

values close to f(zj) and with centers zl,z2,... respectively such that

Real(a)< Real(b) for each a e E3. and b e Ej+l' In addition if {xj}

is any sequence with xj e E., then xj —) l and each wj is the limit of

a subsequence of {f(xj)}. Let Lj denote that part of the vertical line

passing through zj that lies in D--Ej and L denote the slit disk

D'? Lj' Then L is a simply connected domain and so by the Riemann map-

ping theorem there exists a conformal mapping w of D onto L. Moreover,

it may be assumed that, when extended to the boundary, w takes -1 and 1

onto themselves. If a is the image under ¢ of the real line segment

Elil], then a is an analytic arc ending at 1. Since a must pass

through each diSk Ej’ Ca(f,l) = C(f,l).

Let A denote the set of all POihtS q on C SUCh that 0-S arg (q)S1T/4'
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According to Cross (1, pp.248 - 250) there exists an are 6 ending at 1

such that 6 lies between a and A and if {zj} is any sequence of points

lying between 6 and A such that zj-—+ l and f(zj)-—> w, then w e CBl'

Let A be an arc in D joining a point on 6 to a point on A so that the

domain A bounded by 6, A and a subarc of C is a Jordan domain containing

1 in its closure. Let h be the restriction of f to A. Then C(h,l)=

= CBl(f’1)° Since the preceding paragraph can be extended to Jordan

domains, by conformal mappings there exists in A an analytic arc B end—

ing at 1 such that CB(h,l) = C(h,l). Thus CB(h’1) = CB1(f,l). The are

y can be constructed in a similar manner.

If on and (12 are asymptotic paths of an arbitrary function f : D —> W

l

for the values a and a respectively, then d(a1,a2) denotes the infi-

l 2

mum of rational numbers 5 such that some disk A, whose diameter is 6

and whose center has a stereographic projection with rational real and

imaginary parts, has the properties (i){a1,a2}<:A and (ii) GI and a2

are eventually in the same component of f-1(A)n{l - é <|z|<l}. Any

path 8 = z(t) for 0 5 t g 1 such that |z(t)l -+ l as t-—% l is

EXEEEEQLLX in the subset SCZD provided that there exists a tO for

0 S to S 1 such that z(t) e S whenever to S t S 1.

If f is a continuous function from D into W, then two asymptotic

paths a1 and a2 are equivalent, denoted by alataz if and only if

d(a1,a2) = 0- Let C* denote the set of equivalence classes of asymp-

tOtic Paths determined by the relation ~:and [a] denote the element of

C* to which the asymptotic path a belongs. For [oi], [a2] in C*, set

p([a1]’[32]) = d(a1,a2). For each [a] e 0*, let v[a] denote the limit

Value of f on a. Then both u[a] and p are well-defined.
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Theorem 32: The metric space (C*,P) is separable and complete.

(McMillan, 1, Theorem 1, p.300)

nggf: In order to show separability we need to define a countable

dense set D*. This can be done in the following manner. We choose a

disk A whose center has a stereographic projection with rational real

and imaginary parts and whose diameter is a rational number 6. If for

some point in A there exists an asymptotic path which is eventually in

the component U of the set f_1(A)l1{l -6 < Izl < I}, then we pick one

such asymptotic path and denote it by a(U). Then D* is defined to be

the set of all [a(U)] where G(U) is defined. SO D* is countable and

dense.

a)

Suppose {E1n]}n=1 is a Cauchy sequence of elements in 0*. By con-

]} is a Cauchy sequencedition (i) in the preceding definitions, {u[on

in W. So {43:11]} must converge to some point a e W. Let{Aj} be a se-

quence of disks such that each one has a rational radius and a center

whose stereographic projection has rational real and imaginary parts,

J'

Let 6j denote the diameter of A.. Then for each j there exists a com~

co

and the Aj's satisfy the conditions Ajt>Aj+1 for J 2 1 and .QlAj -{a}.

ponent U, of f-1(A_)r]{1-o, < '2' < l} and a positive integer nj such

J J J

that if n 3 n., then an is eventually in each Uj' Since Uj 2 Uj+1 for

J > 1, there exists a boundary path a that is eventually in each Uj'

/

Since filA' = {a}, on is an asymptotic path of f for the value a and

j= J

p([an],[<i]) —. 0 as n —-> oo-
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M-Topology for Continuous Functions

Suppose f is a continuous complex-valued function defined in D.

Then we let T(p) denote the set of all Jordan arcs contained in DlJ{p}

and having one endpoint at p, and let Gf(p) = {Ct(f,p) :t e T(p)}. In

order to define the metric M, we choose two nonempty closed sets A and

B in W and set M(A,B) = max(sug<i(a,B), supd(A,b)) where d(w1,w2) is

at beB

the chordal distance between w1 and w2. Then this metric M topologizes

the set Gf(p) with what is called the Mftopology.

Any sequence {tn}.of Jordan arcs in T(p) is said to be a directed

seguence if for each positive integer n, the arc tn+1 lies between tn

mdtmq.

In this section we will include some of the results of Belna and

Lappan related to the M-topology. For example, if f is a continuous

function in D and p 6 C is not an ambiguous point of f, then Gf(p) is

compact in the M-topology (Theorem 33, below). Additional results for

normal functions will be included in Chapter II.

IEEQEEE 2;: Suppose f is a continuous function in D and p is a point in

C which is at the same time not an ambiguous point of f. Then Gf(P) is

a compact set in the M-topology. (Belna and Lappan, l, Theoreu11,p.211)

Emit Suppose Gf(p) is not compact in the M—topology. Then there

exist a sequence of continua {Kn} and a continuum K such that Kne Gép)

for each positive integer n, K t Gf(p) and M(Kn,K)«—+ 0. For each po-

sitive integer n, let Hn = {z e D: d(f(z),Kn) < l/n and lz-p|< 1/n}.

. .
t ET )

Slnce Kn E Gf(p), there eXist a component Gn of Hn and an are n (P
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such that Ctn(f’p) = Kn and tn: GnU{p}.

Suppose GnnGn+1 r ¢ for each n. There exists a Jordan curve

to E T(p) such that to passes through the consecutive Gn and such that

M(f(t n G ),K )-—§ 0. But then Ct (f,p) = K in violation of the as—
o n n o

sumption K é Gf(p). Therefore, there exists an integer n such that

Gnn Gn+1 = ¢. For this integer n the boundary of the component Gn con-

tains a set L such that LlJ{p} is a closed connected set. Since f is

uniformly continuous on each compact subset of D, there exists a se-

quence {sj} of points on L such that Sj -> p and such that for each

point z on any rectilinear segment [sj’sj+l] the condition d(f(Z),Kn) > /

l/Zn is satisfied. Some subset of the union of segments Sj’sj+1] con-

 

stitutes an element of T(p). Since Cs(f,P)n Ct (f:P)=:CS(f’p)n Kn: ¢’
n

p is an ambiguous point of f.

Corollary: Let f be a continuous function in D and E be the set of

points p for which Gf(p) is not compact in the M-topology. Then E is a

countable set. (Belna and Lappan, 1, Corollary 1, p.212)

This corollary follows immediately from Theorem 33 and the

Bagemihl Ambiguous Point Theorem (Theorem 4).

Theorem 23: Suppose f is a continuous function in D and p 6 C- If {tn}

is a directed sequence of arcs in T(p) such that Ctn(f,p) = KH and if K

is a Continuum such that M(Kn’K) —) 0 but K é Gf(p), then there exists

a directed sequence of arcs {8k }in T(p) and 6 > 0 such that for each

is between tnk

integer k > 0 there exists an integer nk > 0 such that sk

a d ]] Iemma ] p.88)
n t and d C f p),K) > e. (Lappan, a ’

nk'l'l ( Sk( ,
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2592:: We will prove this theorem by assuming that it is false and then

showing that we obtain a contradiction. If this theorem is false, then

for each positive integer k there exists an integer Nk such that for

each 6 > 0 which is sufficiently small, n > Nk implies that all of the

sets tnr1{z E D: 'z- pl < 5} lie in the same component of {z e D:

d(f(z),K) < l/k, 'z-—p| < 5}. Therefore, for each n > N and each 6 > 0
k

there exists a Jordan arc qn leading from a point of tn to a point of

tn+l such that qnc:{z e D: 'z- p' < 5 and d(f(z),K) < l/k}. So we may

choose a subsequence {tnk} of {tn} such that nk > Nk for each positive

integer R. Then for each k there exists a Jordan arc pk leading from a

point on t to a oint on t such that p c:{z E D: Iz- p < l/k and
”k p “H1 k |

d(f(z),K) < l/k}, and the portion té of tnk between the terminal point

0f pk_1 and the starting point of pk satisfies the relationship

M(f(t£,K) < l/k. Without loss of generality we may assume that pk

meets tn and t in exactly one point each. Then letting t be the

n
k k+1

I

Jordan arc obtained by splicing together all of the arcs tk and pk, we

have Ct(f,P) = K contradicting the hypothesis K é Gf(p).

IEEQEEE ii: Suppose f is a continuous function in D and p is a point

in C such that Gf(p) is not compact in the M-topology. Then there exist

directed sequences {tn} and {Sn} of arcs in T(p), e > 0 and a continuum

K suCh that if Kn = Ctn(f,p) and Ln = Csn(f,p), then for each n > 0

M(Kn’K) < l/n, d(Ln’K) > 6 and the arc sn is between tn and tn+l'

(Lappan, 11, Lemma 2, p.89)

' d‘tions
flfiwf: Let{t%l}be a sequence of arcs in T(P) satisfying the con 1

re notCtn(f:P) = Kn and M(Kn’K) < l/n Where K é Gf(p). If the arcs a
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mutually disjoint, they can be shortened individually so that an infi-

nite subset of the shortened arcs are mutually disjoint. If this was

not true, there would exist an arc t e T(p) where t is contained in the

union of the tn's and Ct(f,p) = K which contradicts the assumption on K.

Now we can choose a directed subsequence of the tn's. In addition we

can select an appropriate continuum K since Gf(p) is not compact. So

the conclusion of this theorem follows from Theorem 34.

Light Interior Functions

A function f from D into W is called a light interior function if

f is a continuous open map which does not take any continuum into a

Single point. It has been shown that f has a factorization f = goh

where h is a homeomorphism of the unit disk onto itself or onto the

finite complex plane and g is a nonconstant meromorphic function.

Let A(f) denote the set of all eie for which there exists an as-

ymptotic path of f in D which includes e19 in its end and let Ap(f)

denote the set of all ei6 for which there exists an asymptotic path of

f in D which ends at the point eie. For any homeomorphism h of D onto

D, we define B(h) to be the set of all e16 for which there exists an as-

ymptotic path of h in D with end E and ei6 is contained in the interior

of E.

1322£§m_29: Suppose f is a light interior function with factorization

f = g°h - If A(g) is dense on C, then A(f)LJB(h) is dense on 0.. Fur-

thermore, if Ap(g) and Ap(h) are dense on C, then Ap(f)LJB(h) is dense

on C. (3. Mathews, 1, Theorem, p.79)
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Proof: We will prove this theorem by assuming that it is false and show

that we have a contradiction. Let the arc (w1,11,2)CC - A(f) be arbi-

trary and [91,92]C(\y1,\y2) with 0 < 92 - 91<2Tr. Let I‘1 and 1‘2 be Jordan

i6 16

arcs inD ending ate 1 and e 2 respectively with 1‘1“ 1‘2 = {0}. Then h

maps the domain A bounded by 1‘1 UI‘2 and the arc [91,62] onto a domain A1

in D.

Then there exist a point ela e Cr1(h,9 )0 Cr2(h,92) and sequences

. . . id .
{Zn} and {zn} in 1‘1 and 1‘2 respectively With h(zn) —-> e and h(zn) —>

.a .

e1 . Let A be a Jordan are at eLe which passes consecutively through

the points h(zl), h(zi), h(zz), h(zlfl),.... According to Collingwood

and Cartwright (Lemma 1, p.93), either [61,62]CCA(h-1,CL) or [62,61+2«n]

C CA(h-l,a). Therefore, either (61,92)CB(h) or (62,91+2TT)CB(h) and

Case (ii) [ZS-10 C]3Cr1(h,91) uCr2(h,92), with a proper inclusion.

Then E = [510 CJ-[Cr1(h,91) Ucr2(h,92)] is a nonempty open subarc

of C. Let eia be in bothEand A(g). Then e1C1 is in the end of an

asymptotic path A of g. But C(h-1,a)C[91,62] so that h-1(A) is an

asymptotic path of f whose end intersects [91,62]. Therefore, [91,62] 0

A(f) 7‘ ¢, a contradiction.

Consequently both cases lead to contradictions. Since ($1,412) was

arbitrary A(f) UB(h) is dense on C. The second part of the theorem is

proved s imi 1 ar ly .
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Locally Univalent Functions

Any function f(z) meromorphic in D is called locally univalent if

f(z) has at most simple poles and f'(z) # 0. The function has Koebe

grgs if there exist curves JnCZD such that for some a < B < a + 2H and

some constant c which is possibly x

(i) Jn intersects the radii arg z =u and arg z = B for each n,

(ii) IzI-—+ l for z e Jn as n-+ m,

(iii) |f(z)- c| < e for z e Jn as n-—+ m.

For any set C, the boundary of G is denoted by BC.  
Theorem 31: Let f(z) be a meromorphic locally univalent function with-

out Koebe arcs. Then f(z) has three distinct asymptotic values on each

arc of C. (McMillan and Pommerenke, Theorem, p.31)

Erggf: Suppose that there exists an arc A of C on which there is at

most one asymptotic value. So we may assume without loss of generality

that f(z) has no finite asymptotic value on A. Let d(z) denote the

radius of the largest disk around f(z) having no branch points on the

Riemann image surface F. Since f is locally univalent there is a boun-

dary point on the periphery of this disk. Seidel and Walsh (p.133) have

 shown that d(z) <;(1 - Izl2)'f'(z)' for 'zl < 1. There exists a se-

quence {Zn} converging to some interior point g of A such that f'(z) is

bounded. Consequently d(zn)-+ 0. Assume f(zn)-—+ c where c is pos—

sibly m. Let Pn be the pre-image of the segment on F from f(zn) to the  
nearest boundary point bn' Thus f(z)-—+ bn for z e Pn as '2' —+~1.

Since there are no Koebe arcs, Pn ends at a point, say Cn' lf(z)-

f(znfl < d(zn)-+ 0, f(zn)-—+ c and zn-+ g for z 6 P11 as n-—+ w.





63

Then Cn—y g because there are no Koebe arcs on which f(z) --> c.

Therefore, f(z) has the finite asymptotic value bn at gm 6 A.

Now suppose there are no asymptotic values on the arc A except 0

and 00. From the preceding paragraph it follows that 0 and 00 are asymp-

totic values on a dense subset of A. Let a e A be a point at which

there is the asymptotic value 0. Hence there is a path P ending at a

such that f(z) —-> 0 as z—> a for z e P. Let GO») denote the component

of [z: lf(z)| < X, A > 0} that contains the part of P near a. Then

C flaGOQCA for small positive )\ because there are no Koebe arcs on

which f(z) —-> 0. For such a value of A, G(X) does not contain any as-

ymptotic path for values 7‘ 0, but it does contain the path P on which

f(z) —> 0. Since the Riemann image surface F does not contain branch

points it follows that f(z) maps G(l) onto a copy of the universal

covering surface of {O < le < A]. This construction can be performed

infinitely often to obtain disjoint domains GkCD that are mapped by

f(z) onto the universal covering surface of [0 < lwl <Ak}. In addition

this construction can be arranged so that ak lies on a fixed closed

subarc A' of A. Let H'k denote the maximal domain that contains G and

k

is mapped by f(z) onto the universal covering surface of [0 < Iw] < pk,

Pk th}. Since F is of hyperbolic type, pk<00. So there exists an asymp-

totic valuewhich is not 0 and 00 at gk 6 C 0 Hk. By assumption Ck at A.

Because of the local univalence, the domains Hk are disjoint. It may

be assumed that pk —+p where O S p S 00. Since Ck E A and ak e A',

there exiSt arcs of ask that converge to an arc of A - A' and on which

“(2), -+ p as k—)- 00. This contradicts the fact that f(z) has both 0

and 00 as asymptotic values on a dense subset of A.

\
.

  

 

 



 

64

Holomorphic Functions

For any point g in C, let h(§,¢) denote the chord at g which makes

the angle w, -fi/2 < W < “/2, with the radius h(§,0) drawn through E and

let.A(§,W1,W2) denote the angle at g between the chords h(§,¢1) and

lm§,¢2). For any two pOints z1 and 22 belonging to D, we let 0(21’22)

be the non-Euclidean hyperbolic distance between them. If f(z) is a

holomorphic function and S is any set contained in D, then

M*(f,S) = Sup (1- lz|2)lf—‘(£Ll‘ 2 .

26 S l+'|f(z)l

Using this notation in Theorem 38, we are able to obtain sufficient

conditions for a holomorphic function to be a constant function.

Let {2 } be a sequence of points such that z e D and lim '2 l = l.
n n _*m) n

Then the zn's are called a flfseguence for a meromorphic function f(z)

in D if for any real sequences {EV} and {Lv] having the properties

0 a o I =

< Ev+1 < ev for any p031tive integer v, Vlifhsv O, l < Lv < LV+1

and lim LV = w, there exists a subsequence {znv] such that for every v

V-)oo

the function f(z) takes in the disk {2 :o(z,zn ) < EV] all values of w

v

in IWI < LV with the possible exception of a set whose diameter is

less than 2/L .

v

Theorem 3Q: Let f(z) be holomorphic in D and y be an arc contained in

C. Suppose there exists a set A of second category on y such that at

every point C e A there exists a chord h(§,w) containing a sequence of

Points [Zn] satisfying the following conditions:
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(i) lim zn=§

n—+oo

(11) “1:11:00 (zn,zn+1) < 00

(111) a>é c{zn}(f,g)

(iv) M*(f,A(§y\|11,\112)<oo for xyl<w (1112

(v) There exists a value aew and a set N metrically dense in Y

such that for every g e N, a e C )(f,§) for at least one

h(§.v

h(§,w).

Then f(z) E a. (Krishnamoorthy, 1, Theorem 7, p.99)

Proof: Let g be an arbitrary point of A. We assume that g is a Pless-

ner point, which will lead to a contradiction. In every angle

A(g,¢1,¢2) there exists a sequence of points [2"],A} with V13:11 zv,A — g

00

along which the sequence [f(z‘; A)] —>oo. From these sequences, we can

~ I - I = - I
choose a sequence of pOints [zv} with Vl_1)mmzV g along which {f(zv)}-> oo

in such a way that there is a corresponding sequence of points {Ev} on

h(Cny) such that lim 0G ,z') = 0. By the application of
véw V V

condition (ii) we can choose a subsequence {znv] of [zv} so that

f .., , ,
vl_1>mwo(znv,zv) <oo. So we have two sequences {znv} and {2v} tending to

C such that lim (zn ,z') < co and lim f(z') = 00 while the sequence

V ->oo V V V éoo V

[f(zn )] is bounded. According to Gavrilov (l), there exists a p-

v

sequence {Ev} for the function f(z) lying in the non-Euclidean segments

joining the corresponding pairs of points znv and 2“,. After some messy

calculations involving bounds on lf'(z)l/(1+ 'f(z)'2) , condition (1V)

is violated. So ; cannot be a Plessner point.
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According to a theorem of Meier (Collingwood and Lohwater, Theorem

8.9, p.154), nearly all points of A are Meier points. For each Meier

point, C(f,§) is a proper subset of W. So by Fatou's Theorem there

exists a subarc Yo of Y around g with the property almost all of its

points are Fatou points. Let FYo(f) denote the set of Fatou points on

Yo. Then the set N0 = NFIFYO is a set of Fatou points whose linear

measure is positive and its angular limit is a. From the Lusin-Privalov

Theorem (Noshiro, l, p.60), f(z) E a

CD aJ

Theorem 3_9: Let g(z) = T‘- l - z where a is an integer > 4.

_ l - a-J

' J'
l 2flfl a

LetAJ, 1' denote the disk with center at the zero Zj 1. = (l --T)e /

’ a

for lI = 0,1,...,aj - l and radius l/(jZaJ). Then there exists a jo such

that for all j 2 jo the interiors of the disks {Aj 1.] are disjoint, and

a:

g(z)—+ oo uniformly as z —>1 within D - (,Uj Li'AJ' 1.). (Krishnamoorthy, 1,

J= o ’

Theorem 1 , p .94)

Proof: Let z e D - (08 A, 1.) and 20 near G. Then there exists a k

0 a 1

0

such that l - a-k<|z I < l - a-k-l. We will decompose g(z) into four

‘ 0

products P1’ P2, P3 and P4 which we will specify below in order to

obtain a lower bound of |g(ZO)|0 Let

 

all

k- 1 2 Th

P1(z)= Ugl -<———_—j) . en

j—l l - a

k-l aj k- 1 J 1<-1a,t(__1-_2_+1_1

[121(2)] Tl 1- >Tl 1-__a__'k -1 gea a > ‘1E>:UIJ

l - aj j=l 1 " aj J=l

\
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k
a

_2_k) , which is holomorphic in the whole complexLet P2(z) = l -(

l-a

plane. Then ‘P2(z)| has its minimum in D - < 30 Aj 1.) on one of the

  

 

  

  

 

 

 

j=j
circles Ak,l' enclosing its zeros. Therefore, 0

k ak

.I k ion . in k C

‘P2(zo)l= -1 (emu/,1, 28k ) -1 >e2“1’{1+e—2— ak L)+0(%k)?—§ '

k (a -l) k a - a k

k+l k+l
( z )a '13 )l 20 a 3

Letting P (z) = l - _ _ , we have (z = —_—_ -l
3 l-ak l o l-a k l (k‘tl)

m l aj

The last factor P4(z) must then be fl [1 -( z_.) . Then

k+2 l-a 3

co 2 aj 0° 1_ -k-l aj

IP4(ZO)|=7T 1-( ‘3.) >H 1--a—:-— and
k+2 l-a J k+2 l-a J  

 

-k—l aj j _ j—k-l

(LL) < 4(1 - a-k-l)a < 4e a . Consequently

I - a-J

:
1
8 u-l

(I - 4e.a ) = C4 > 0. Therefore,

2U

00 _ j-k-l

IP4(ZO)| >W<1 - 4e a =

k+2

C k-l

lg(z )l > 2—L—2 (e1 - 2/a - I) which approaches a) as k +00.

° k (k‘l'l)

Lappan (13) has recently used Theorem 39 to construct an example

0f two analytic functions f(z) and g(z) such that the spherical distance

X(f(z),8(z)) +0 uniformly as |z| —> 1 and f(z)/é g(z). Let

H(z) =

fiH—m);
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where s is a positive integer greater than 4. Using Theorem 39's nota-

tion and conclusion we have that H(z) is an analytic function inD such

00

that H(z) +00 uniformily as lzl —> 1 in D - (_U. UA. I). We now want

J=Jo J J,

to construct an analytic function K(z) in D such that K(z) —-> oo uni-

formly as |z| -+ l in ! and such that K(z) has no zeros in D.
U A,

jsl' 3’1 j l

. ' '2 j S -

For > 2 let D. = z :lzl 1 - 1 s 3 -2 s ) and A, = _U A, ..J / J [ < (/) /(J l J 1:0 1,1

By the Runge approximation theorem (Hille, l, p.303), there exists a

sequence of polynomials [Pj(z)] such that for each integer j 3 2

le(z)I < (1/2)j for z 6 DJ. and lpzm + 123(2) +...+ Pj(z) -j|<(l/2)j

. 00

for z E Aj. Setting L(z) = Z Pj(z), we have that L(z) is an analytic

j=2

 

function in D and that for each j a 2, |L(z) — jl < l for z e Aj. Then

K(z) = exp(L(z)) has the properties that K(z) -> oo uniformly as lzI—> l

jLfi'AjJ' and that K(z) has no zeros in D. In addition |H(z)l2 +

IK(Z)|2 -+ or) uniformly as lzl -> 1. Let f(z) = H(z)/K(z) and g(z) =

in

(H(z) ' 1)/l((Z). Then f(z) and g(z) are analytic functions in D,

f(z) 7‘ g(z) and x(f(2),g(Z)) = 1/J[|H(z>|2+ lK<z>|21 [1 + |g<z>|21 .

SO X(f(Z),g(z)) -> 0 uniformly as |z| -> 1.

 



 

 



CHAPTER g

NORMAL FUNCTIONS

SUFFICIENT CONDITIONS FOR A FUNCTION TO BE NORMAL

A family F* of functions f defined in a region Q is said to be

normal if every sequence [fn} of functions in F* contains a subsequence

{f } which either converges uniformly or tends uniformly toooon each compact
n
k

subset of 9. A function f(z) is called normal in a simply connected

region if the family {f(S(z))] is normal where S( 2) denotes an

arbitrary conformal map of 9 onto itself.

Noshiro (1, pp.87-88) cites the following conditions for a function

to be normal.

 

Theorem I: A non-constant function f(z), meromorphic in D, is normal

if and only if a(f(z))|d(z)Lg Kdo( 2) holds at every point of D where

d(f(z)) = lilfiéll_ d0(z) = _Jfl£l_ and K is a fixed positive cons-

’ 2

1+|f<z>l2 1- lzl

tant. (Lehto and Virtanen, l)

gQEQlléEX: A non-constant function meromorphic in D is normal if and

only if a(f(S(0)) is bounded for all conformal mappings S. (Lehto and

Virtanen, l)
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Theorem 2: Let f(z) be meromorphic in D, A(r,f) denote the spherical

area of the Riemannian image of the disk |2| < r and L(r,f) denote the

spherical length of the image of the circumference lzl = r. If

A(r,f(S(z)).S KL(r,f(S(z)) for O < r < l where S(z) denotes an arbitrary

conformal mapping of D onto itself and K is a fixed constant independent

of S and r, then f(z) is normal in D. (Ahlfors, 1)

Theorem 3: Let f(z) be meromorphic in D and A1, A2,..., Ah for q ;73 be

mutually disjoint closed Jordan domains on the Riemann sphere. For

j = 1,2,...,q, let pj denote the minimum of the numbers of sheets of

islands of R above Aj where R is the covering surface generated by f(z).

1

T’>2’

q

If there is no island of R above Aj, then #j ="*”- If .21(1-

J= J

then f(z) is normal in D. (Ahlfors, 1)

QQEQAAEEXI A function f(z) meromorphic in D is normal if one of the

following conditions is satisfied:

(i) f(z) omits three values in D,

(ii) the covering surface F has no univalent island above five mu-

tually disjoint Jordan closed domains on W.

(Ahlfors, 1)

Other mathematicians have proved additional criteria for a function

to be normal. These include the following results.

IEEQEEE it A complex-valued function f(z) in D is normal if and only if

I

for each pair of sequences {zn} and [zé] in D such that 0(zn,zn) -> 0

the convergence of {f(z )} to a value a e W implies the convergence of

n

(
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[f(zé)} to a. (Bagemihl and Seidel, 2, Lemma 1, p.10)

Since a normal function must be continuous, this theorem follows

from a well-known result that a family of continuous functions in D is

normal if and only if the functions are equicontinuous on each compact

subset of D. (Hille, 1, Theorem 15.2.2, p.244)

The sum of two analytic normal functions need not be normal as the

next example will show. However, Theorem 6 will give a sufficient

condition for the sum of two meromorphic functions to be normal.

In order to construct two analytic normal functions whose sum is

not normal (Lappan, 1, Theorem 3, p.190), we will first show that if

f(z) is a normal holomorphic function in D, then for any two sequences

.
lim l = -f .

[Zn] and {2;} in D such that 0(zn,z&) < M, n.—>«>f(zn) an 1 nli3;3f(q9

= m. If this conclusion is false, then without loss of generality we

may assume that lim f(z') = 0. Let S (2) =(z + z;)/Ql + zgz). Since

11..)oo n n

Sn(Z) is a linear transformation of D onto itself, the sequence of

a . . = 0

functions [f(Sn(z))] forms a normal family. Since ilsm”f(§fi(0)) ,

the limit of the sequence {f(Sni(z))}, which we will denote by F(z),

must be holomorphic in D. So there exists a positive constant L such

that |F(Z)| < L in the disk o(0,z).S M. Then there exists a positive

' ' th
1nteger N such that f(Sni(z)) < L + l for all ni > N and all z in e

‘1 u =

diSk 0(0,Z).$ M. However, setting Zn" = Sn (Zn)’ we have 0(0,Zn )

— " = f z . So0(Sn(0),sn(znn))_ O(41,211) < M and f(Sn(zn )) ( n)

11 f " l to ”-i-qfim (Sni(zn1)) must be equa h 1

Now we will let f(z) denote a normal holomorphic function whic S

i D such
unbounded in D, and we will construct a Blaschke product Bf(z) n
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that g(z) = f(z)Bf(z) is not normal. Let {zn"} be a sequence of points

(X)

‘ 0° and Z (l -lz "l)<°°. We pick a subse-

n=l n

in D such that lim f(z ”) -

Ii—rw n

quence {Zn} of {zn"} such that for each j < n, G(zj’zn) > 3(n-j)M‘

where M' > M, the constant in the preceding paragraph. Then we choose

I I = I = 0° J—zELI. zn—'z_
a sequence {Zn} such that G(zn’zn) M and Bf(z) “El Zn l-‘Enz .

= = = I

So Bf(zn) 0 and g(zn) 0. Since nlgm”f(zn) M, nlgmxf(zn) also

equals 00. le(zr'l)l?_a> O by comparison with the Blaschke product in Example

4 of Bagemihl and Seidel (2, p. 11) . So lim g(zr'1)=oo and g(z) is not normal.

n 00

Finally we define h(z) = 35(Bf(z) - 2)f(z) and G(z) = f(z) +h(z) . By direct

verification h(z) is normal, and 6(2) =35f(z)Bf(z).

A holomorphic function f(z) in D is uniformly normal if, for each

 

M > 0 there exists a finite number K > 0 such that for each 20 e D,

O(z,z°) < M implies that f(z) - f(zo) < K. If {Zn} and {2;} are two

is close to
 

sequences of points in D such that G(zn,zr'l) —+ 0, then {Zn}

{2;}, or {Zn} and {2:1} are called close sequences.

Suppose f(z) is meromorphic in D and there exist two closet
"

enma 1:

sequences {Zn} and {21,1} such that f(zn) ->a and f(zr'1)—> B with all 8.

 

Then for each complex number 6 with possibly two exceptions, there

exists a sequence {2:} close to a subsequence of (Zn) such that f(zi) =6.

(Lappan, 3, Theorem 4, p.44)

M: Let Sn be a linear transformation of D onto itself mapping 0

into 2 and let Fn(z) = f(Sn(z)). Since St:1(zr;) -) 0, no subsequence of

[Fn(z)} converges continuously at z = O and no subsequence of [Fn(z)} is

a normal family in any neighborhood of z = 0. Suppose this lemma is

false. Then there exists a neighborhood N of z = O and three complex
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numbers a, b and c such that for each n in an increasing sequence of

positive integers, Fn(z) omits a, b and c in N. However, by a theorem

of Montel (Hille, 1, Theorem 15.2.8, p.248), this subsequence of func-

tions is a normal family in N.

Theorem 2: A uniformly normal function is normal. (Lappan, 3, Theorem

8, p.46)

nggf: Let f be uniformly normal and {Zn} be a sequence of points in D

such that [f(zn)} converges to a value a which may be infinite. Given

M > 0 there exists K > 0 such that for each n 0(z,zn) < M implies that

,f(z) — f(zn)' < K. If a = “5 then f(zg) -)m» If a is finite, then

{f(z$)] is bounded. So there exist three complex numbers 6i (i= 1,2,3)

such that there is no subsequence {an-} of {2“} having the property

. i

that there exists a sequence {2:} close to [znk.} such that {2:} con-

i

verges to 61. So from the contrapositive of Lemma 1, f(zé) —+ a, and

by Theorem 4, f(z) is normal.

Theorem 9: If f(z) and g(z) are uniformly normal functions in D, then

h(z) = f(z) + g(z) is uniformly normal. (Lappan, 3, Theorem 9, p.46)

Proof: If M'> 0 is given, then there exist constants Kf and K.g such

that for each 2 e D, O(z,zo) < M implies [f(z) — f(zo)I < Kf and

.. = + '
/8(Z) g(zo)/ < Kg. Let K K? Kf Then for each 20 e D, U(z,zo)<:M

implies [(f(z) + g(z)) - (f(zo) + g(zoD, < K.
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Theorem 1: If u and v are harmonic functions such that f(z) =u(z)

+ iv(z) is uniformly normal, then u and v are both normal.

(Lappan, 4, Theorem 6, p.158)

Proof: Let [Sn] be a sequence of conformal mappings of D onto itself.

Let 2n = Sn(0) and M > 0 be given. Then the family [Fn(z) = f(Sn(z)

- f(zn)] is uniformly bounded in {z e D :0(z,0) s M/Z}. A subsequence

[Fnk} can be chosen so that it converges uniformly on each compact sub-

set of D. So {u(znk)] converges to a limit which may be either finite

or infinite. Since Fn(0) = 0 for each positive integer n, F(z) =

lim Fn (z) is a holomorphic function in D. If F(z) = U(z)+iV(z),

k—>00 k

then lim u S 2 = U z + lim u z ). If lim u z is finite,k....(nk(” <> k+w<nk k_W(nk>

then u(Snk(z)) converges uniformly on each compact subset of D to

U(z) + klimoouunk) while if kl_i)mwu(znk) =°°, u(Snk(z)) converges uni-

formly to co on each compact subset of D. Therefore, u(z) is normal.

Similarly v(z) is also normal.

A special type of uniformly normal functions consists of the Bloch

functions. A function f which is analytic in D is called a Bloch func~

 

tion if f(0) = 0 and it satisfies one of the following conditions:

(i) sudef(z) < oo where df(z) denotes the radius of the largest

z e

single-valued disk with center f(z) on the Riemann surface f(D).

(ii) sup (1 - IzI2)lf'(z)I <0...
2 e D +

(iii) f(¢(z)) - fol/(0)) where w(z)=c1i+é . [H < 1. lCl < 1, form a

finitely normal family where 00 is not allowed as a limit function.

(1V) there exists a univalent analytic function g(z) in D such that

f(z)=A logg'(z) for some constant A > 0.
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Theorem 8: The above four conditions are equivalent. (Pommerenke, l, p.79)

 

Proof: (i) ==>(ii): For any 21 e D we form

2 + z1 2

‘k = — _ _ lr (z) [flll'flz ) f(zl)] [(1 21‘ )f (21)].

d (z)

s. _,2_,_ >
_ I

(1 Izll >|f (21H

(ii) =€>(i): From Schwarz's Lemma (Hille,lq Theorem15dul,p235)

df(z)€ (l - lz’2)|f'(z)’ for '2' < 1 whenever f is analytic in D.

ii .¢=> iii : T is o ows rom onte s eorem i e, ,( ) ( ') h' f 11 f M 1' Th (H'll 1

Theorem 15.3.1, p.251) and the fact that (1 -|z|2)lf'(z)| is

invariant under w.

(iv) =;>(ii): (l— Iz‘2)'f'(z)l=l(l -lz|2)'§;%§%l, which is

bounded. (Hille, 1, Lemma 17.4.1, p.351)

,, , . _ 2 g”gz) .

(11) ==> (1v). 'zpqp1(l Izg )’8'(Z)I < m, which implies g(z) is

univalent by Nehari (1).

If f(z) is analytic in D and f'(zo)/¥ 0 for 20 E D, then the maxi-

that is mapped by f(z) one-to-one onto amal domain containing Z0

Gross
 

single-valued domain starlike with respect to f(zo) is called the

domain G(zo) of f. Rays of G(zo) are defined to be the preimagesstar

If R is a ray of G(zo) then

 

of the rays of the starlike image domain.

either R is a Jordan arc in D that goes from 20 to a point 21 e D where

f'(§1) = 0 or R is a Jordan arc in D except for its endpoint e 9 e C,

where f(z) has an asymptotic value.
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Lemma _2_: If f(z) is analytic in D and without Koebe arcs, then for any

19
point e e C either f(z) has an asymptotic value at e19 or diameter

G(z)—>0 as z—> e19. (Pommerenke, 1, Theorem 7, p.90)

m: Suppose G(z)—#0. Then we have {zn}—->eje with dia G(zn) >/ro >0. So

there exist rays Rn of G(zn) such that die Rn >/ro. We have two cases.

(i) There exists a subsequence [nk] and some r, 0 < r < r0, such

that min {'21: Iz— eiel < r, z E Rnk} -—>l as k-—>00. Then some subarcs

Rfik converge to an open arc A0 of C that has eie as an endpoint. In

addition f(Rfik) is either a line segment or a half line. We claim that

f(zo) is analytic on A0. We may assume without loss of generality that

the endpoints of the segments f(Rfik) converge respectively to the points

WI

and w" in W. Furthermore, we may assume that the directions of the

segments f(Rnk) converge. So as nk->oo f(Rnk) converges to a recti-

linear segment L joining w' and w" (which may be the same point). By a

suitable linear transformation we can make L a real segment or a single

point. Let g1 and g2 be distinct points on A0 and choose points 21; and

II

zn on Rfik such that zr'l—rgl and 23+QZ. Without loss of generality we

may assume that the corresponding sequences of points f(zh) and f(zg)

converge. Neither of these limits can be 00 since f(z) maps Rg‘k

one-to-one onto f(Rnk) and f(z) has no sequence of Koebe arcs for en.

Therefore, by replacing AD by its are between Q1 and {,2 we may assume

that L is bounded. We will now show that f(z) is bounded in a neigh-

borhood of each point of A0. Suppose on the contrary that there exists

a point Q3 6 A0 and a sequence of points zj e D such that 23 —>§3 and

f(zj) +00. Let Lj denote the half-line {Tf(zj) : T >1} and let A3. be

the component of the preimage f—1(Lj) that contains zj. We choose zj's

 



77

such that f'(z),¥ 0 on Aj. Then Aj is a simple curve tending at one

end to a point of C. For all sufficiently large j, Lj does not inter-

sect Uf(R&k) because L is bounded. So f(z) has a sequence of Koebe arcs

for m, a contradiction. Consequently f(z) is analytic on A0 and has an

. i
asymptotic value at e 9.

(ii) We can find c1 6 D such that a subsequence of Rn comes arbi-

If (i) does not hold, we can also find c e Dtrarily close to c 21.

with 0 < lcz -eie| < lc1 -eie|/2 and such that another subsequence of

Rn comes arbitrarily near to c2. After continuing this process of

taking subsequences we finally take the diagonal sequence. So we have

k e D with ck —+ e19 as k —+ «>such that for each fixed k, Rn

comes arbitrarily close to ck as n —>m. Since f(Rn) is a line segment

points c

or a half-line, all the points w = f(ck) lie on the same line L. The
k

points ck are all distinct since f(z) is not constant. Since f(z) maps

Rn one-to-one onto f(Rn), wk converges monotonically along L to a limit

wo. Let Dk be a disk around ck such that diameter f(Dk) —+ 0 as k —> m.

For each k, we choose nk
k k k

+ +Dk+l' Then Al-+ [gl,b1] [a2,b2] ... may be assumed to be a Jordan

9

and a subarc Ak of Rnk from a E D to b e

, i

arc that lies in D except for its endp01nt e f(Ak) converges to

[hk_1,wk]. Since wk —> W0 and diameter Dk —+ 0, f(z) has an asymptotic

i
value w at e 6_

0

Theorem 2: Every Bloch function in D has finite or infinite angular

limits on an uncountably dense subset of C. (Pommerenke, 1, Theorem 8,

p.91)

Proof: Since every Bloch function is normal, every asymptotic value
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is an angular limit. Let A be an arc of C. Suppose there exists an

interior point e16 of A where there is no asymptotic value. By Lemma 2

there exists a Gross star domain G(zo) such that Boundary G(zo) CiA.

The number of rays of G(zo) has the power of the continuum and only

countably many of them can end at points where the derivative is equal

to 0. All others end on C. Therefore, it is sufficient to prove that

any two distinct rays end at distinct points of C. Let R1 and R2 be

different rays of G(zo) with endpoints Q1 and g2 in C. Since af(z) + b

is also a Bloch function, we may assume that the half-lines or segments

f(Rl) and f(RZ) lie on different sides of the line {Realw = Realf(a)].

f(z)
So the normal function e tends to different limits along R and R2.

1

Consequently C1 f C2.

Theorem lg: Suppose F(z) is the Blaschke-Quotient expressed in the form

F(z) = B1(z)/B2(z) = n1 8W<K-afiz)//1“L<1_“.g:z)

n= n =

N 00

where Z (1- la ') < «>and Z (1 -lb ') < «n If the set of limit

n=1 n n=1 n

,

points of the an's is disjoint from the set of limit points of the bn's

then F(z) is normal. (Cima, 1, Lemma 1, p.769)

Proof: lBl(Z)Bé(Z) ' Bi(Z)B2( z)|(l - I212) < lB'2(z)J(1 - ‘2}2)+ ‘Bl(z)\(1 - \Z‘Z)

‘Bl(z)|2 + |32(z)l2 l31(z)|2 + \32(z)\2

  

ie
lifl(r31(2)‘24"B2(z)|2) 3,1 as z-—+ e in D and |Bi(z)‘(l- lzl) for

l = 1,2 is bounded for [z] < 1 according to Seidel and Walsh (1). So

I _ v

Ii_m_|131(z)132(z) B1(z)32(z)|

2

lBl(z)l2 + le(z)|

_lzlz) < m as z--)-ele in D and 
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'Bl(z>Bé(z) ‘ Bi(Z)Bz(Z)'ldzi cldzl
ll=d(F(2)) dz 'Bl(z)'2,_'32(z),2

< (1 - IZIZ)

the condition in Theorem 1.

CLUSTER-SET THEOREMS FOR NORMAL FUNCTIONS

The following theorem of Lehto and Virtanen is one of the first

important results in the theory of cluster sets of normal functions.

Theorem 11; Let f(z) be a normal meromorphic function in D. If f(z)

has an asymptotic value a at a point 20 on C along a Jordan curve lying

in D, then f(z) possesses the angular limit a at 20. (Lehto and

Virtanen, 1, Theorem 1, p.49; NQshiro, 1, Theorem 6, p.86)

Bagemihl and Seidel have proved many other cluster-set properties

of normal functions. These include conditions for f(z) to be identi-

cally constant and conditions for f(z) to have a limit at a point.

Theorem 1;: Let f(z)be anormalmeromorphic function in D Which omits

the finite or infinite value c and let (Zn) be a sequence of points in

D which converges to a point i e C. If there exists a positive number

M such that for every n, 0(z ,z + ) < M and if lim f(z ) = c, then f(z)

n n 1 n -+oo n

has the angular limit c at g. (Bagemihl and Seidel, 2, Theorem 1, p.4)

2 + z

lq-Ehz for n any positive

 

BEERQ: The family of functions gn(z) = f

 

integer is normal in D and lim gn(0) = c. So the functions [gn(z)}

[1900
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converge uniformly on every compact subset of D to c. Let S be the

compact subset '2’ $ A where l > A > tanth Since G(zn,zn+1) < M, the

um

1- l

in its interior. lim f(z) = c when 2 is re-

2 —*§

non-Euclidean circle Ah with center 2n and radius equal to %log

contains the pOint zn+1

stricted to the union of the interiors of the circles Ah' In particular

this relation holds if 2 lies on the polygonal line formed by joining

the points 2n and Zn+ by a Euclidean line for all n. So f(z) possesses
1

the angular limit c at g by Theorem 11.

A boundary path is a simple continuous curve 2 = z(t) (0 S t < l)

in D such that lz(t)| ->l as t -+1. The initial point of the boundary

path A is the point 2(0) and the end E of A is the set of limit points

of A on C. In order to decide when two boundary paths are ”close toge-

Il * = . * = .

ther , we let D1(A1,A2) tliml sup 0(z(t),A2),D (A1,A2) tliml sup

z(t)eA1 z(t)eA2

* = * *0(z(t),A1) and D (A1,A2) sup{D1(A1,A2),D (A1,A2)].

If P is a prime end of D, {gm} is a chain belonging to P and dn is

a I Q o _ = —'

the subdomain of D defined by qn and containing qn+l’ then rldn Fldn

for {qé} any equivalent chain. The set I(P) = erg, which is invariant

in the equivalence class of chains constituting P, is called the

impression of the prime end. Two distinct prime ends of D can have the

same impression. For example, if the domain D is obtained by deletion

Of an end-cut y from the unit disk, then each interior point of y cons-

titutes the impression of exactly two prime ends.

Theorem 13: Let f(z) be a non—constant meromorphic function in D that
\—

tends to C along a boundary path A whose end E contains more than one
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point. Then given E>>O there exist boundary pathsA1 and.A2 whose ends

are contained in E such that A”.A1 andA2 are mutually exclusive;

D*0\1,A2)<:e; and f(z) —*c along.A1, but not along A2. (Bagemihl and

Seidel, 1, Theorem 1, p.264)

2322:: Let G = D -.A. The initial point of A.is the impression of one

prime end of G whereas every other point of A.is the impression of two

prime ends of G. If E is the impression of a prime end of P and E = C,

then E is the impression of only P, but if E.f C, then E is the impres-

sion of P and of another prime end P'in G.

If E = C, we map G onto D in a one-to-one conformal manner so that

the initial point of A and the prime end P correspond respectively to

the points -1 and 1. Let F(z) denote the image of f(z) under the con-

formal mapping. Since f(z) ; c, there exists a sequence of points in G

tending to C on which f(z) —>b # c. So there is a sequence of points in

D tending to the point 1 on which F(z) —>b and there exists a segment S

in D bounded by a suitable arc and chord of C both having an endpoint at

1 that contains infinitely many points of this sequence. F(z) —>c as

z—>l along C but not as z —>l on S. Consequently from an argument of

Lehto and Virtanen (1, pp.49-52), given 6 > 0 there exist two disjoint

boundary paths Ai and A5 in D whose ends are the point 1 such that

D*(A1,A2) < e and F(z) -+c along Ai but not along Aé. So under the

original mapping of G onto D there exist boundary pathsA1 and A2 that

lie in G and satisfy the conditions of the theorem.

If E f C, then we map G onto D one-to-one conformally so that the

initial point of A and the prime ends P1 and P2 correspond respectively

to the points -1, -i and i. Let F(z) again denote the image of f(z)
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under this conformal mapping. Let A, A1 and A2 denote the open subarcs

of C which, when described once in the positive direction, have the

respective initial and terminal points -i and i, -l and -i, i and -1.

Under this conformal mapping A corresponds to the arc C-E while Al and

A2 each corresponds to A minus its initial point. Therefore, as the

point i or -i is approached along A, the inverse of the mapping function

approaches an end point of E. Then this limit is approached as z-+i or

-i on the set {lzl s 1, Real( 2) 1;,A}. Since f(z) é c,according to

PriValow (l, p.207) there exists a sequence of points in G tending to

an interior point of E on which f(z)—+ b # c. So there exists a se-

quence of points {Zn} tending to i or -i satisfying the conditions:

Real(zn)-<0 for n any positive integer and F(zn)-+-b as n-+om In add—

ition F(z) —>c as z —>-i along A1. The rest of the proof is the same as

above.

Theorem lg: Suppose thatf(z)is.anormal meromorphic function in D and

that Al and A2 are boundary paths for which D*(A1,A2) is finite. If

f(z)—+.c along Al, then f(z) ~>c along A2. (Bagemihl and Seidel, 1,

Theorem 3, p.266)

Proof: Assume c is finite. If C=cw, then we will look at the normal

meromorphic function l/f(z). If this theorem is false, then there

exists a number c: possibly w,different from c and a sequence of points

{2'} on A such that 11m Iz‘l = l and lim f(z') = c'. Since D*(A ,A )

n. 2 n+°° [1 11+” n 1. 2

is finite, there exists a positive number M and a sequence of points

[Z } on A such that lim Iz 1 = l and 0(z ,z') < M for n any positive
n l ,,_+wn n n n

integer. The family of functions [f(Sn(z))} where Sn(z)= (z+zn)/(1+Enz)
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Since c is finite,is normal in D. As n—rao, f(Sn(0)) = f(zn) —>c.

there exists a subsequence [f(Snk(z))} which, as k-94n, converges uni-

formly to a meromorphic function F(z) on the closed disk A in D whose

center is the origin and whose non-Euclidean radius is M. For all suf-

ficiently large values of k, 8;:(A1) intersects every circle O(0,z) = L

with L < M. Since f(z) -+c.along A1, F(z) 5 c. However, G(znk,zfik) < M

so that 8;:(zék) e A and since f(zfik) —>c' f c as k.—>ag F(z) é c, a

contradiction.

If a normal meromorphic function f(z) in D tends to a limitCorollagy:

along a boundary path whose end contains more than one point, then f(z)

is identically constant. (Bagemihl and Seidel, 1, Corollary 1, p.266)

In the section on Locally Univalent Functions in Chapter I we de-

fined Koebe arcs of f(z). A Koebe seguence pf arcs relative 59 pp open

app A of C is a sequence of Jordan arcs [Jul in D such that

(1) for some sequence {en} satisfying the conditions 0 < En < 1

for n any positive integer and En —>0 as n+oo, Jn lies in

the en-neighborhood of A,

(11} every open sector A of D subtending an arc of C that lies

strictly interior to A has the property that, for all but at

most a finite number of n's, the arc Jn contains at least one

Jordan subarc lying wholly in A except for its two end points

which lie on distinct sides of A.

Let f(z) be a normal meromorphic function in D. If f(z)—>cTheorem 12:

along a Koebe sequence of arcs {Jn}, then it is identically equal to c.

 

 



84

(Bagemihl and Seidel, 3, Theorem 1, p.10)

If c is a finite non-zero complex number, then weProof: Assume c = 0.

replace f(z) by f(z)- c;or, if c = «5 we replace f(z) by l/f(z).

Let {Jn} be the given sequence relative to an arc A. We define an

arc B = {z :lz' = l, q1 < argzz < qz} to be strictly interior to A. We

denote by A the open sector of D with vertex at the origin and vertex

angle 6 subtending the arc B. There is no loss in generality in assum-

ing that for every n the arc Jn contains a Jordan subarc {h lying

(1) and Piz) which lie on thewholly in A except for its endpoints Pn

max |21 for n anysides . = min d Rs1 and s2 of A We set rn ze Pn‘z' an n ze rn

positive integer. Then lint rn = lim Rn = 1. Now we define a Jordan

n+oo 11+!”

1 and 32 respectively atcurve Kn for each n. Let ‘2' = Rn intersect s

(1) (2). If Bn is the open arc of lzl = Rn which liesthe points Qn and Qn

in A and B: is the complementary arc, then we define Kn to be the union

of P(1)Q(1) 8*, P(2)Q(2) and P . An argument involving harmonic mea-

n n n n n n

sure shows that if D is mapped conformally onto the interior of Kn by

Z = ¢n(w) where ¢n(0) = 0, then for n sufficiently large the arc [h is

the image of an are S on C having a length at least F times the harmonic

measure w(O,Bn,{z :lz’< RHJ).

Since f(z) ->0 along the Koebe sequence {J 1, lim f(¢ (w)) = 0

n n—)oo n

uniformly on S. From Lehto and Virtanen (l, p.64),{f(¢n(w))] tends to

zero uniformly on every compact subset of D.

Suppose there exists a point 20 e D for which f(zo) is not zero.

is in the inter-BY the definition of a Koebe sequence relative to A, z

= ¢:(z) denote the in-ior 0f each Kn for n sufficiently large. Let w

Verse of z = ¢n(w). Then f(¢n(¢:(zo))) = f(zo) for n sufficiently
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large. Since {f(¢n(w))} +0 uniformly on every compact subset of D but

f(z ) 7‘ 0, lim '¢*(z )l = 1. However, if p is fixed so that lz |<P<l,
0 “+00 n o 0

then according to Schwarz's Lemma l¢§(zo>l5 'zol/p < 1 for n suffi-

ciently large, a contradiction.

Theorem lg: Let f(z) be a normal function in D that omits the value w

Ifwhich is either finite or infinite and let A be an open subarc of C.

the set of Fatou points of f(z) on A is of measure zero, then A contains

a Fatou point of f(z) at which the corresponding angular limit of f(z)

is w. (Bagemihl, 1, Theorem 1, p.3)

If f(z) were bounded in some neigh-Proof: Assume w is 00. Let g e A.

borhood of Q, then by a simple extension of Fatou's Theorem, the set of

Fatou points of f(z) on A would be of positive measure, which is con—

trary to the hypothesis. So f(z) is unbounded in every neighborhood of

g. Hence there exists a number 5 > 0 such that the region H = D n {z

’2 ' Q! < 5} satisfies the conditions that H0 C C A and f(z) is un-

Consequently there exists a sequence of points {Zn} in D

(M <...<

bounded in H.

l 2

such that zn -+§ and Mn = 'f(zn) 1 ->oo as n+oo where l < M

For 11 any positive integer, let Vn be the open set of pointsMn <. . . .

Let Rn denote the component of Vn thatin D for which 1f(z)l > Mn ~ 1.

contains zn [f(z)! = Mn - 1 at all boundary points of Rn that lie in

D By the maximum principle, Emma is non-empty. Suppose the diameter

__ miE

Let rn - 26erlzl. Since f(z)of Rn does not tend to zero as n->oo.

l and there exists a Koebe se-omits oo in D b a um tion lim

y 38 P ’ n+oo

Quence of arcs along which f(z) +00, a contradiction of Theorem 15.

rn

Thus there exists a natural number N such that RNCH.
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We want to show that f(z) is unbounded in G1 = RN' Let G? be the

smallest simply connected region containing G1 and z ? ¢(w) be a func-

tion that maps D conformally onto G*. The set B* = G%FWC is non-empty.

1

We denote by Bf the set of all points of B* that are accessible from CY.

111 _ lim ill . . . .

let ¢*(e )‘- r_+_1 ¢(re ) for every u for which the limit ex1sts. By

Fatou's Theorem this limit exists at almost every point of C. The set

E1 = (sin: '¢*(elu)' = l} is a Borel set and hence measurable. In addi-

iu

tion B? = {¢*(elu) :e GEE We want to show that the function g(w) =
l]'

f(¢(w)) is unbounded in D. Assume not.

Suppose m(E1) > 0. Let EO denote the Borel set of positive measure

which is the subset of E1 consisting of all the points for which g(w)

possesses a radial limit and B: be the image of EO under the mapping

2 = ¢(w). From an extension of Lowner's Theorem (Tsuji, l, p.322), B:

is a measurable subset of Bf with m(B:) > 0. Let goeng. Then there

exists a path in G? terminating at £0, and this path is the image under

Z = ¢(w) of a path in D that terminates at a point e1u°<sEo. ¢*(eiuo
)=

1110

C0 and g(w) has a radial limit at e ; therefore, f(z) tends to a limit

along a path in G? terminating at go. Since f(z) is normal in D, Co is

a Fatou point of f(z) (Theorem 11). Because g0 was an arbitrary point

of B3, a set of positive measure, we have contradicted the hypothesis

that the set of Fatou points of f(z) on A is of zero measure.

Suppose m(E1) = 0. Since every boundary point of G? is a boundary

point of G1 and lf(z)l = MN - l at all boundary points of RN that lie in

D, the Fatou values of g(w) are equal in modulus to MN - 1 almost every~

Where on C. The representation of g(w) by its Poisson Integral shows

that 18(W)|:$ MN - 1 throughout D. So |f(z)| <_MN-l = L throughout

G1 = RN which is contrary to the way RN was defined.
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Therefore, g(w) is unbounded in D and so f(z) is unbounded in G1?

and 61' The open set of points of G1 at which If(z)l > L + 1 is non-

empty. Let G2 denote a component of this set and f(z) is unbounded in

G2 as before. A continuation of this process yields a sequence of

. D ‘ .—

nested subregions G1 G2 I) of H. Now we choose zleGl, 22 6 G2

{21}, z3eG3 - {21,22}, . . ., zneGn - (21,22, . ..,zn_1], . .. and jOin 21 to

22 by means of a Jordan arc J1 lying in G1. In addition we join z2 to

23 by a Jordan arc J2 lying in G2 and having no point except z2 in com-

mon w1th J1,..., jOin zn to zn+1 by a Jordan arc Jn lying in Gn and

having no point except Zn in common with J1 U J2 U... UJn-l’ . So

00

P = U1 Jn is a path in D with initial point 21. Its end lies on C

n:

because hm m1“

n->

‘f(z)|= 0° and f(z) omits 00 in D. According to the
co ZEJn

Corollary following Theorem 14, the end of P is a single point :6 C.

Since f(z) is normal in D, g is a Fatou point of f(z) with the corres-

ponding value 00 by Theorem 11.

In conclusion if w is finite, we then define F(z) =m . From

the proof above, A contains a Fatou point of F(z) with the corresponding

angular limit 00. So this is a Fatou point of f(z) with the angular

limit w.

A hypercycle is the locus of points whose non—Euclidean distance

from a given non-Euclidean straight line is constant.

m l_7: Let f(z) be a normal meromorphic function in D that omits

the finite or infinite value w. If there exists a sequence {Zn} having

at least the limit points a and B on C and a constant M such that

G(zn,zn+1) < M for every n and nl_j-.;noof(zn) = c, then c 5‘ w and f(z) E c.
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(Bagemihl, 1, Theorem 2, p.4)

Ppppf: Assume c = w. Then by an argument in Theorem 12's proof, there

exists an asymptotic path P in D whose end contains the arc a8 such that

z¥3?1 f(z) = w. According to the Corollary following Theorem 14, this

fmilies that f(z) E w, a contradiction.

Assume f(z) i c. If the set of Fatou points is of measure zero,

then by Theorem 16, since f(z) omits w, f(z) has a Fatou point on the

are as at which the corresponding angular limit of f(z) is w. If the

set of Fatou points is of positive measure, then by a theorem of

Privalow (Noshiro, 1, Theorem 2, p.72), f(z) has a Fatou point g on the

arc QB at which the corresponding angular limit of f(z) is d # c.

Let Y be an angle such that 0 < Y < gfi and M < logtanQn-+ py)

where M is the constant in the statement of this theorem. Let A be the

subregion of D determined by the two hypercycles that form the angles y

and -y at g with the diameter of C joining g and -§. In a neighborhood

of g every point of A lies in a symmetric Stolz angle of opening ZY. So

:hgégf(z)= d r c. Since nEEEnf(zn)= c, the points 2H for all suffi-

ciently large n do not lie in A. Since every point of a6 is a limit

point of {Zn}, for infinitely many n the points zn and zn+1 lie on op-

posite sides of A. Every boundary point of A that lies in D is at the

non-Euclidean distance plog tan(%fi'+ %Y) from the diameter of C joining

‘C and g. Therefore, for infinitely many n, G(zn,zn+1) Zzlogtan(%fi +

hY) > M, a contradiction.
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SUBHARMONIC NORMAL FUNCTIONS

One special class of normal functions, the subharmonic normal

functions, have the property that for any u for which IT1u(reie) I = 0(1),

11 has Fatou points almost everywhere on C.

A continuous function u(x,y) not identically equal to zero is £12-

harmonic if and only if it satisfies either of the following mean-value

inequalities for each circular disk in D:

u(x y ) < ‘1'- 211u(x + ecose y +Psin9) d9
0’ o \ 2T1 o o ’ o ’

u(x y ) < Lfr fznu(x + 9cose y + Psine)9 d9 d6-
0’ o \ 2 o o o ’ o

Trr

If u(x,y) has continuous second partial derivatives in D, then it is

subharmonic if and only if

2 2

Au=a_121+.a_;>

6x 3y

0

at every point of D.

Theorem Q: If u is normal and subharmonic in D and

 

f:"1u(reie)ld6 = 0(1)

for Os r < 1, then u has Fatou points with finite Fatou values almost

everywhere on C. (Meek, 1, Theorem, 13-314)

M: According to Littlewood (1, Lemma 3, p.390) 11 has the represen-

tation u = v + u* where v has the property that if w9(z) is harmonic in

._ .. lim _. .z _ ._ 4,.
l l < 9 < 1 and W9 u on [Z] 9 , then 9 1W‘.(z) v(z) and u is a

. . . . . i9
non-p031tive subharmonic function in D With u*(re )+ 0 as r +1 for
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almost all e 6 [0,2"). In addition by a theorem of Tsuji (1, Theorem

1V.16, p.147) v has Fatou points corresponding to finite Fatou values

almost everywhere on C.

Let E denote the set of points on C at which u* has radial limit

aszero and v has a finite Fatou value. For any 8, 05 B < “/2, and e:L E,

1et H(eie,B) denote the open set in D bounded by the hypercycles from

--e19 to e16 making angles 8 and -B respectively with the diameter

. . a, .

through e19 and -ele. We pick a sequence {Zn}n=l S H(ele,B) such that

i

zn-+>e 6 as n-auw.

For each positive integer n, we denote the non-Euclidean straight

line which passes through zn and is perpendicular to the radius 9e16,

 

0.3'0 < 1, by En' Because of the invariance of the metric 0 under one-

to-one conformal mappings of D onto itself, it can be shown that each of

the bounding hypercycles of H(e16,8) is at a hyperbolic distance

0(O,tanB/2) from the diameter between e19 and -ele. Therefore, for

i . .

each positive integer n, one 6, the point of intersection of En with

9e19, satisfies the relation 0(9neie,zn) S o(0,tanB/2). For each

 positive integer n,8n(w) = (W“+ pneie)/(l +’9ne-iew) is a one-to-one

conformal mapping of D onto itself.

Since u is normal, there exists a subsequence, also denoted by

{U(Sn)};:1, which converges uniformly or diverges uniformly on the com-

pact set K = {w:0(0,w) g O(O,tanB/2)}. Since u(sn(o)) .-_- u(Pneie) =

v(eneie) + u*(9neie) —>v(6), the Fatou value at cm, the subsequence

cannot diverge uniformly on K. 30 the subsequence converges uniformly

on,K to a subharmonic function U.

We have u(Sn(w))<$'v(Sn(w)) for w e K and any positive integer n.

00

Since e16 is a Fatou point of v, [v(Sn)}n=1 converges uniformly on K
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< =1' =
to v(e) and U(w) \~v(6) for w e K. But U(O) n-:F&F(Sn(0)) v(e) and

by the Maximum Principle for subharmonic functions U(z) E v(e) in K.

Furthermore, E has linear measure 2“. So u has Fatou points almost

everywhere on C.

Corollagy A: Any normal subharmonic function on D which is bounded

above has Fatou points with finite Fatou values almost everywhere on C.

(Meek, 1, Corollary 1, p.316)

3529;: If u is normal, subharmonic and bounded above in D, then v==eu

is also normal, subharmonic and bounded in D. In addition every Fatou

point of v is a Fatou point of u. So u has Fatou points almost every-

where on C. By Arsove (1, Theorem B, p.260), a subharmonic function

bounded above on D has finite radial limits almost everywhere on C.

Consequently u has finite Fatou values almost everywhere on C.

Corollagy B: If u is normal, subharmonic, bounded below and admits a

harmonic majorant v on C, then u has Fatou points with finite Fatou

values almost everywhere on C. (Meek, 1, Corollary 2, p.316)

Proof: Without loss of generality we may assume that 0.< u(z) for zeIL

Then 0 5 I:Wu(rele)d6\< fjflv(rele)d6 = 2mm) for o\< r < 1. So

Theorem 18 applies.

In order to generalize Theorem 18, the following questions must be

answered: Must a normal subharmonic function in D have any Fatou points

on C? If so, is this set dense on C?
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BOUNDARY BEHAVIOR OF NORMAL FUNCTIONS

If A is any Stolz angle at eie, we define HA(f,eie)=C]CT(f,eie)

where 1' is any simple continuous curve in A and RA(f,eie)=E*int RA*(f,eie)

where KA*(f,eie) is the range of f in any Stolz angle A? that strictly

contains A.

A function f has the p—segment property for any integer n 3.2 if

there exist n chords F1,...,Ih terminating at eie such that Crff,ei%fl...

(\CP(f,ele) = o. In this section it will be shown that for any normal

n

. . . . i6 .
meromorphic function f in D the set of pOints e at which f possesses

 

the n-segment property is of first category and measure 0 on C.

Theorem 12: If f is normal and meromorphic in D, then for any e19 e C

and any symmetric Stolz angle an of opening 2d at e19,

CA (f,eie) - EA (f,eie) e IIA (f,eie).

(I U. a

(Rung, 1, Theorem 1, p.44)

Proof: Let c be any arbitrary point in 9A (f,ele) - EA (f,ele). Then

G. O.

 
i6 -

there ‘ ' A ' h ' = 11m =
ex1sts a sequence {Zn} in (I Wit nlimwzn e and n.~>«fi(zn) c

. i -'
Let wn be the unique point on the diameter of C from e 9 to e 16 for

which U(zn,wn) equals the non-Euclidean distance of zn to this diameter.

For any 3 satisfying a < 3 < n/Z, let HB denote the region bounded by

the two hypercycles symmetric in this diameter that form the angles 8

and ~B with it. If Bl is chosen so that a < Bl < B, then there exists

a positive integer N such that n > N implies

U(zn,wn) < s log cot(3zTT- #31) = M (l)
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because

-—— l n a
' < ... _ _ _

n11m U(zn,wn) \ 2 log cot(4 2) .

+ w

We define gn(§) = f(Igngflzfi for any positive integer n. Since f

n

is normal, there exists a subsequence {gnk] which converges uniformly in

any compact subset of D to g. We also define another sequence {Ck} by

gk + nk e2M - l
= <-——=“k 1 _hka . Because of (l) ICkl eZM 1 K, and

so for any accumulation point Co of {§k], |§o|.S K-

the equations z

Let {gp} be a sub-

sequence of {§k] tending to go Then the continuous convergence of{gnk}

im lies that lim ( ) = lim f(Zn ) = g( ) = c.

P p —>oognp Cp p-koo P go

We want to show g(g) E c. Suppose not. Let D* be any fixed non—

Euclidean open disk with center go which is contained in the open disk

1 e2 * - l 1 1 B
_—__ i: = — —_—

1C1< 2 e2M* 1 where M 2 log cot(4 2).

Let 3 be any point in D*. By Hurwitz's Theorem (Caratheodory, 2, p.195)

there exists an integer K0 and a sequence of points {3k} in D* that tend

to 3 such that gnk(3k) = g(z) for all k.;’Ko' For the points xk =

+W _ ' = . i6
(3k nk)/(l+3kwnk) for which kgKo, f(xk) g(z) So g(z) elifi(f,e ).

Since g( g ) i c, cesEA (f,ele), a contradiction. Consequently g(g) a g

(I.

which implies that f tends uniformly to c on the sequence of non-

and radii M. Each disk intersects bothEuclidean disks with centers Wnk

6).
boundary segments of Ah; so CEIL§(f,el

a

In Chapter I we defined K(f) to be the set of points §E'C for which

QA1(f,§) = QA2(f2C) for any pair of Stolz angles at g and the outer an-

gular cluster set CA(f,§) to be the union of all cluster sets q3(f,§)

for A any Stolz angle at €-
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Theorem 20: If f is normal and meromorphic in C and geK(f), then, for

any Stolz angle A and any chord (11((1) terminating at g and making the

angle a for "Tf/Z<Ct<TT/2 with the radius at g, CA(f,§) =Cwlr((1)(f’§)'

(Rung, 1, Theorem 2, p.48)

A

Proof: First we want to show that the set Cw(a)(f,g) =£*CA*(f’§)’ where

A* is any Stolz angle containing wax), is contained in Cw(a)(f,§). Let

A

ceCW(a)(f,§) and {An] be a sequence of Stolz angles at g containing

«3

v(a) and satisfying the conditions An: An+ and nglAn‘fl/(a). For each
1

positive integer n, let {215m} be a sequence contained in An such that

z(n)+ and f(z(n)) +c. We select a sequence [w = z(n)} so that
k

k k n n

lwn- £1 < l/n and |f(wn) - cl < l/n. The non-Euclidean distance of Wu to

wk!) tends to 0 as n+°°. If Cn is the point on p(a) at which this dis-

tance is assumed, then 0(wn,§n) +0. By a result of Bagemihl and

Seidel (2, Lemma 1, p.10), f(gn) +c as n+oo. So ceCw(a)(f,§). Since

)(f.§><.:f: )(f.g>.6 )<f.g>= )(f,g>.
v(a Ma CW:

The condition Ce K(f) says that for any two Stolz angles A1 and A2,

Cv(d

CA1(f,§) = CA2(f,§). So if geK(f), from the preceding paragraph, we

have that CA(f,§) = )(f,§) = )(f’C)'
Cw(c Cv(d

Theorem 21: If f is meromorphic in D and its range of values R(f) is

equal to the Frontier of R(f), then, for each g6 C, CA(f,§) = flnA(f,§)

A

where A varies over all Stolz angles at C. (Rung, 1, Theorem 3, p.49)

m: From the hypothesis there exist three values that f assumes at

most a finite number of times in D. 30 f is normal by a result of Lehto

and Virtanen (l, p.54). Since Interior RA(f,§) = ¢ for any C and any
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symmetric Stolz angle at g, Theorem 19 implies CA(f,§) = HA(f,C). If

A and A are any two Stolz angles at Q, then let A be a symmetric

l 2

Stolz angle that contains A1 and A2. Because of the definition of

[h(f,§) and CA3(f,§) =HA3(f,§), it follows that CA1(f,§) = HA2(f,§);

3

therefore, XCA(f’C) = 2%(f,§) where A varies over all Stolz angles at g.

A function f possesses the p—segment property at g if there exists

en:n chords T1,..., Tn at g such that Crk(f,§)fler(f,C) = q, for lgk

1<j<nandk#j.
\\

 

Theorem _2_2_: Let f be a normal meromorphic function in D. For any inte-

 

ger n >/2, the set of all points C at which f possesses the n-segment

property is a set of first category and measure zero on C. (Rung, 1,

Theorem 5 , p.50)

my Let S(f) denote the set of all g at which f possesses the n—

segment property. Then S(f) 0K(f) = o by Theorem 20 since the cluster

set along any chord lying in A and terminating at a point of K is

CA(f’C)' Since K(f) is a residual set of measure 2TT on C (Theorem 17,

Chapter I), S(f) is of first category and measure zero on C.

Suppose Y is any boundary arc of D and that 0 < r < 00. Then we

define the set J('Y,r) = {zeD :o(z,Y) < r}. If d7 denotes the diameter

0f C ending at T eC, then a boundary are y = z(t) at 1' approaches 1 _ip

é m—tangential manner whenever there exists some 0 5‘ to < l and some

0 < r < 0° such that z(t) eJ(d.,,r), t >/ to. The set of all non-tangential

boundary arcs at T will be denoted by A(T). Finally we define the sets  
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= = *flu YenA(T)CY(f’T) and nJ(Y,r)(f’T) ?*CY* (f,T) where Y ranges

over all boundary arcs at 1' that lie in J(Y,r).

Theorem 23 states that for any normal function f in D, any Y, Y' e

I = =

A(f) and any r, r > 0, nJ(Y,r)(f’T) HJ(Y',r')(f’T) Hu(f,'r). In

order to prove this theorem we will need the following two lemmas.

m 1: Suppose f is a normal function in D and YE A(T). Let B(z,a) =

{zeD :O(z,z') < a] and Zf(w,a) = LZJ'B(z',a) where the union is taken

over all 2' 6D such that f(z') = w. If we CY(f,‘r) and there exists an

a > 0 such that YflZf(w,a) = (b, then wecy.(f,r) for any Y' EA(T).

(Lappan and Rung, 1, Lame l, p.257)

Proof: Since we CY(f,'r), there exists a sequence {Zn} on Y such that

 = §+Zn
zn+T and f(zn)+ w as n+°°. Let Sn(C) 1+Cin for ICI < l and

f(Sn(§)) = gn(§) for any positive integer n. Because of the normalcy

of f, there exists a convergent subsequence {gnk(§)]. If g(g) denotes

' ' ' = lim = lim f(z )= .
the limit function, then g(O) k+oognk(0) [(+00 “k w, but, for

I“ < tanha , the equation 8nk(§) = w is not satisfied for any value of

k. So by Hurwitz's Theorem (Caratheodory, 2, p.195) g(g) 5w. So for

00

any fixed 0 < a' < 00, f +w as z+1 on the set UlB(znk,a'). If Y' e

k:

MT), then Y' flB(an,a') 7‘ 4) for suitable values of a' > 0 and any posi-

tive integer k. Therefore, we CY.(f,T) -

Lelnma A: Let f be normal in D. Suppose for some 16 C and for every

positive integer n, a set of distinct points {391)}, i = 1,2, ...,mn, with

the following properties exists:

(1) For some r > 0 and all n, 3;“) eJ(d1,r);
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(ii) 3§n)+ T as n +00;

, (n) (n . = _ . _
(iii) 0(3i ’3i+l) < Kn for i l,2,...,mn 1, With Kn-+~O as n —>ag

(iv) there exists a positive number A independent of n such that

0(3in),3rgn)) >,A > 0;

n

(v) f(3én)) = w for i = l,2,...,mn and n = 1,2,....

Then we5CY(f,1) for all Ye A(f). (Lappan and Rung, 1, Lemma 2, p.258)

2399f: As in the previous lemma, we set f(Sn(C)) = gn(§) for any inte-

ger n where now Sn(§) = (g + Ein))/(1 + 3:“)§), Again we denote the

convergent subsequence by [gnk(§)} and the limit function by g(g).

Since gnk(0) = f(BEnk)) +w as n+°0, g(O) = w. We want to show that

the set of points g’ such that g(g') = w which also lie in IQI < tanhzks

B is infinite.

Suppose there exists a ring R, 0 < r';§ IQ'I,S r" < B with r' r r”,

which contains none of the points g'. For any fixed n, the set (Bin):

i = l,2,...,mn} is transformed by s;1(z) onto a set of points we call

{§§n) :i = 1,2,...,mn] which have the properties:

(i') (in) = o and [$12)] >/B;

(ii') 0(gén),g§3_i) < Kn for i = l,2,...,mn- 1;

(iii') gn(§§n)) = w for i = l,2,...,mn.

There must be at most a finite number of gin) for i = l,2,...,mn

and any positive integer n within R. Otherwise this set would have a

limit point go and by continuous convergence of gn(§) to g(g), g(go)==w,

a contradiction of the definition of R. So there exists a positive

(:0
integer N such that for n > N no point of the form (1 for i = 1,2,...,

mn lies in R. If :11 > N is chosen so that Kn1 < O(O,r") - 0(0,r'), this

Violates the properties (i') - (iii') and the definition of R.
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Consequently g(g) aw in D and the rest of the proof is the same as the

last part of Lemma 3.

Theorem _2_;: If f(z) is normal in D, Y and Y' are any two arcs in Mr),

r.)(f.r) =nu<f.r).
I

and r and r > 0, then HJW,

(Lappan and Rung, 1, Theorem 1, p.259)

r)(f’T) = HJW',

2399:: Using the same notation as in the statement of Lemma 3, we let

B(z',a) = {z e D :O(Z,z')4<£fl and Zf(w,a) = %L3(z',a) where the union is

taken over all z'esD such that f(z') = w. Then for any fixed curve

YEEA(T) and fixed r > 0, let Z%(w,l/n) = Zf(w,l/n)id J(y,r) for n any

positive integer.

Suppose Y!) ZE(w,l/n) = ¢ for some n. Then the conclusion of this

theorem follows immediately from Lemma 3.

Now suppose ylW Z%(w,l/n) # o for every n. Then for each n we de—

(n)°i=lcompose Z%(w,l/n) into its components {Yi . a - "’jn where 1 S j <
n\

co}. Assume for each n there exists at least one component YES) whose

boundary meets both Y and the boundary of J(Y,r). Then there exists a

finite set of points (3?!) :j= l,...,hn} with the properties:

(i) 3:") e J(dT,r);

(ii) 3ft!) +7 as n+00;

(iii) U(3§n),3§:1)< Z/n for j= l, . ..,hn - 1;

(iv) 06391)”) < 1/n and U(Eéz), Frontier J(y,r)) <1/n which imply

0(an),3é:)) >/r - 2/n;

(V) f(3gn)) = w for j= l,...,hn and n any positive integer.

If no is chosen such that 2/no < r/2, then for n >/no the condi-

tions of Lemma 4 are satisfied with A: r/2 and Kn: 2/n. 30 the
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conclusion of this theorem.follows.

( o)n

Finally we assume that there exists an nO such that no Yi for

i - l,...,jno has a boundary which meets both Y and the boundary of

J(Y,r). Let V denote the union of all of the components of Z%(w,l/no)

that meet Y and also Y itself. Since this is a connected set lying

entirely in J(Y,r), Frlc=={r}. There exists a subset B of Frontier V

which is a boundary arc approaching 7 within J(Y,r) and B()Z%(w,l/no) =

o. Since WEEC (f,r), this theorem's conclusion follows from Lemma 4.

B

HOROCYCLIC PROPERTIES OF NORMAL FUNCTIONS

In Chapter I we proved properties of horocycles of arbitrary func-

tions. In this section we will prove other properties of horocycles

which only hold for normal functions. Here we will use some of the

same definitions and notations as we used previously. In addition we

will use the following definitions.

An admissible tangential arc at a point €650 is an arc Y at g for

which there exists a sequence {Hr1(n) r2(n) r3(n)(§)] of nested right or

nested left horocycles at g with nigmm(r2(n) - rl(n)) = O and each

member of the sequence contains some terminal subarc of y. Then

Hi%(f,§) = QZCYCf’g) where the intersection is taken over all admis-

Sflfle tangential arcs Y at C“

Any point gesc that is both a Plessner point and a horocyclic Ples-

sner point of f is called a generalized Plessner point of f.

Let Qr(§) denote the interior of the horocycle hr(§). Then the

EEAEQEX'tangential cluster set of f at g is defined to be the set

 

= L} .

09039 O<r<1CQr(§)(f,g)
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For any function f : D+W, a primary-tangential pre-Meier point is any

= C9(f,§) C W, where C denotes proper in-

 

point ge c such that HTw(f,g)

clusion. The term "pre-Meier" is used because the condition

C (f,§)=C (f,§)CWfor0<r<land0<r'<l

h' h+
r r

is fulfilled at each primary-tangential pre—Meier point of f, and this

is a necessary condition for a point (,6 C to be a horocyclic Meier point.

If it is also true that CQ(f,§) = C(f,§) C W, then (; is actually a horo-

cyclic Meier point of f. We will show in Theorem 25 that if f is any

normal meromorphic function in D, then almost every point gs C is either

 

a primary-tangential pre-Meier point or a point at which HTW(f’§) = w.

Lemma 5: If f(z) is a normal meromorphic function in D and geKw(f),

the set of points on C such that CH1(f,§) = CH2(f,§) for any pair of

horocyclic angles H1 and H2, then HTW(f,§) = CU(f,C) for CU(f,C) the

outer horocyclic angular cluster set. (Bagemihl, 2, Lemma 4, p.16)

Proof: Let 0,611 (f ). Then aeC (f, ) for every admissible tan—

— Tw ’C 0

gential arc A at C. By definition there exists a horocyclic angle H at

g which contains a terminal subarc of Y. Since CY(f,§) S CH(f,§), (16

cu(f,g).

Now suppose as CU(f,§). Let Y be any admissible tangential arc at

g. Since geKw(f), cce CH(f) for every horocyclic angle H at Q. There-

fore h ‘ ' z' i D h r lim 2' =, t ere eXists a sequence of paints { n) n w e e n+oo n g and

nlimmflzr'l) = a such that for an appropriate sequence of points {Zn} on

with lim = lim I = . h
'Y n+mzn C, we have n+ooo(zn’zn) 0 By Theorem 4 t is

imPlies that f(zn) +a as n+oo, and aeCY(f,§). Since Y was an
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arbitrary admissible tangential arc at g, UJEHTh(f,§).

Theorem 24: Suppose f(z) is a nonconstant normal meromorphic function

in D and the set of asymptotic values A(f) is of harmonic measure zero.

Then there exists a residual subset S of C of measure 2W such that for

every g 68, HT (f,§) = W. (Bagemihl, 2, Theorem 9, p.17)

w

Ppppp: According to Theorem 15, Section I, almost every Plessner point

of f is a horocyclic Plessner point of f; therefore, by Plessner's Theo-

rem (Collingwood and Cartwright, 1, Theorem 8.2, p.147) almost every

point of C is either a Fatou point or a point which is both a Plessner

point and a horocyclic Plessner point. Since f is nonconstant and A(f)

is of harmonic measure zero, Privalow's Theorem (1, p.210) implies that

the set of Fatou points of f is of measure zero. Consequently the set

of horocyclic points Iw(f) is of measure 20. A horocyclic analogue of

Collingwood's Theorem (1, Theorem 3, p.382) implies that Iw(f) is also

residual on C. If C Elw(f), then CU(f,§) = W. Since Iw(f)£;Kw(f),

HTw(f,§) = CU(f,§) by Lemma 5. This theorem is now valid by setting

S = Iw(f).

Theorem 25: If f(z) is a normal meromorphic function in D, then almost

 

every point ge C is either a primary—tangential pre-Meier point of f or

a point at which HT (f,§) = W. (Dragosh, 2, Theorem 10, p.76)

w

Proof: For any point g6 C, CI(f,§), the inner angular cluster set,

satisfies C1(f,g)SECU(f,§)SECQ(f,§). An approach similar to that used

to prove Lemma 4, Section I, shows that C9(f,§)S;CI(f,§) at almost every
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point gs C. 80 at almost every point Ce C, CU(f,§) = CI(f,§) = Cfl(f,§).

Since Kw(f) is of measure 2TT (Theorem 18, Section I), Lemma 5 implies

that HTw(f,§) = C9(f,g) at almost every point g6 C. This theorem now

follows because at every point gs C, either CQ(f,§)CW or C9(f,§) =W.

A FUNCTION THEORETIC CHARACTERIZATION OF NORMAL MEROMORPHIC FUNCTIONS

Let H°°denote the algebra of holomorphic functions bounded in D.

In the study of the behavior of these function near the boundary, it is

helpful to compactify D in such a way that each of them has a continuous

extension to the compactification. Let M be a compact Hausdorff space

such that it contains D as a dense subset. Each feH°° can be extended

to a continuous function f on M and each pair of distinct points in M

can be separated by one of the functions f. By Carleson's Corona Theo-

rem (1), Mis the maximal ideal space of H°° . Let B = M/D denote the

ideal boundary of D. If S is any subset of D, then we set B(S) = S/D

where S denotes the closure of S in M.

Two points m1 and m2 in M are in the same Gleason pgr__t if there

exists a constant c, 0 < c < 2, such that f(ml) - f(mz) S c for feH°°

and IfI \< 1. This is an equivalence relation and we denote by P(m) the

Gleason part of the point meM. If S C D, then P*(S) =u{P(m) :meB(S)}

for the set of Gleason parts generated by S. Each Gleason part P(m)

consists of either a single point or the image of a one-to-one analytic

map of an open disk into M (Hoffman, l and 2). We say that m is a

regular M if P(m) contains more than one point and denote the set of

all regular points in M by G. In Theorem 26 we will show that f is normal

in D if and only if f admits a spherically continuous extension to G.

For any subsets S and T in D, we define the pseudometrics:
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(i) HO(S,T) = inf {e : S C(z :0(z,T) <6},TC{z :O(z,S) <e}} where

O(z,z') denotes the hyperbolic distance between 2 and 2';

(ii) H(S,T) = ipf 110(30 {|z| >r},Tfl { |z| >r});

(iii) i(s,T) = info(so{ Iz|>r},Tn { lzl>r}).

r

Lemma _6_: If S and T are subsets in D, then B(S) = B(T) if and only if

H(S,T) = 0. (Brown and Gauthier, 1, Theorem 1, p.367)

Proof: Suppose H(S,T) = O and meB(S). Let {XA} be any net in S that

converges to m. We choose YA e T such that 0(xx,y>\) < 20()q\,T) . Since

leI +1 and H(S,T) = 0, it follows that 0(xx,y)\) +0. 80 {YA} con-

verges to m and 8(8) C B(T). By a similar argument we obtain the

inclusion B(T) c 5(3). Therefore, B(s) = B(T).

Then we may choose a Blaschke se-

zk_—_zn

Conversely, suppose H(S, T) > 0.

 

quence {zn } in S such that, for each positive integer n, HIMnz'><5>0

krn

and G(zn,T) >/a > 0. From Cima and Colwell (1, p.796) and Kerr-Lawson

(2, p.532) it follows that the Blaschke product B associated with the

Zn's is bounded away from zero on T. Consequently B(m) 7‘ 0 for each

meB(T). Since {Zn} C. S, there is a point meB(S) such that B(m) =

30 6(3) 9‘ B(T).

Lemma 1: If S and T are subsets of D, then GflB(S)OB(T) =f o if and

only if A(S,T) = 0. (Brown and Gauthier, 1, Theorem 3, p.368)

Proof: Suppose )((S,T) = 0. We choose two sequences {zn )l and {2:1} such

 

I I
that {zn}eS and {zn]eT, G(zn,zn)< l/n, and knnllkmznznzk l/b > 0, n>0.

L t o o

e m be in B({zn]). We pick a subsequence {2:00} of {Zn} that
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. l I

converges to m . Since n(k)+ww and 0(Zn(k)’zn(A9->O’{zn(l)] converges

to m. By Hoffman (l, p.75), m is in G. So Gle(S)(lB(T) # ¢~

_The converse follOWS immediately from Hoffman (l, p.75).

Theorem gg: A function f is normal in D if and only if f admits a

spherically continuous extension to the set G of regular points of M.

(Brown and Gauthier, 1, Theorem 4, p.368)

Egpgfz First we will show that if mEEG, then Cf(m) is a singleton

Suppose on the contrary there exist two distinct values w1 and w2 in

Cf(m) with spherical distance X(wl,w2) = 6 > 0. For each neighborhood

V of m, we choose two points 2V and z; in DF1V such that X(f(zv),w1) <

6/3 and X(f(z;),w2) < 6/3. Let S = [2v] and T = {2;}. Then mezB(S)fl

B(T)flG and Lemma 7 implies that A(S,T) = 0. By uniform continuity of

f, we can pick 216 S and 226 T so that G(zl,zz) < 6 where 6 is chosen

so small that X(f(zl),f(zz)) < 6/3. So 6 = X(w1,w2).§ X(w1,f(z)) +

X(f(zl),f(22)) + X(f(zz,w2) < 6, a contradiction. Therefore, Cf(m) is

a singleton for mesG and we set f(m) = Cf(m).

If f is not continuous at m, then for some 6 > 0, each relative

neighborhood VFlG of m contains a point mV such that x(f(mv),f(m)) > 6

There exists a ZVE VFID such that x(f(zv),f(mv)) < 6/2. So the net

{ZV] converges to m, but X(f(z),f(m)) 2 6/2, a contradiction.

Conversely, if f is not normal, then according to Lappan (3,

Theorem 1, p.155) there exist two sequences {Zn} and [2;] and an 6 > 0

such that for each n > 0, G(zn,z;)-<>0 but X(f(Zn),f(Z')) > 6- We may

Zk-zn l)6

n-lznzk’é

 
assume that the sequence [Zn] satisfies the conditionk

so by Hoffman (l, p.75) B({zn})CZG. Since G(zn,Zg)-—>0,1K{Znhiznh =
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and B({an = 8“th C G by Lemma 6. Suppose m68([zn]). Then for any

. g .

subnet {zn()\)] converging to m, we also have {znOQ} converging to m.

)),f(z' ))) >/e, the cluster set Cf(m) is notasingleton.Since X(f(zn0\ n()\

Theorem 21: If f is a normal meromorphic (holomorphic) function in D

and f is the extension of f to the set G of regular points of M, then on

each nontrivial Gleason part, f is either meromorphic (holomorphic) or

identically equal to infinity. (Brown and Gauthier, 1, Theorem 5, p.369)

Mfg: Let me G. Then for any (16 D converging to m, Lu(z) = i

converges pointwise to Lm, a one-to-one mapping of D onto P(m) .

(Hoffman, l, p.75) We will prove that EoLm is a meromorphic (holomor—

phic) function. We pick a fixed point 20 in D and assume that foLm(zo)

is finite. Furthermore, we may suppose that (1 lies in some neighborhood

of m for which f°L(I is uniformly bounded. For if f°La is not uni-

formly bounded in some neighborhood of 20, there exist sequences [Zn]

and {on} such that zn—->zO and foLan(zn)+oo . Since f is normal,

1f° Lam} is a normal family of functions. Consequently it contains a

subsequence which converges uniformly on compact subsets to a function g

meromorphic in D or to 00. Since fOLan+°0 , g(zo) is infinite; however,

[f0 La] is uniformly bounded at zo, a contradiction. The family {foLa]

converges to fOLm pointwise. Since {fOLa] is uniformly bounded in a

neighborhood of z , f0 Lm is holomorphic in a neighborhood of 20.

If fo Lm(zo) = co , we look at the family of functions [l/foLa].

The family {foLa} is normal and so it is equicontinuous. Since the

Spherical metric is invariant when taking reciprocals, the family of

reciprocals {l/foLa} is equicontinuous and thus normal. UfoLm(zo) =0,
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and,from the previous argument for the finite case, l/f°Lm is holomor-

phic in a neighborhood of zo. Therefore, for each point 265D, foLm is

either meromorphic (holomorphic) at z or identically infinite in a

neighborhood of z. Consequently f°Lm is either meromorphic (holomor-

phic) in D or identically infinite.

We will now give an example of a normal meromorphic function f such

that for each meEM/G, Cf(m) = Rf(m) = W. Let f be a Schwarz triangle

function (Carathéodory, 1, Part 7, pp.l73-l94) whose initial triangle

is strictly interior to the unit circle. It is well-known that f is a

normal function. Let a be any point on W, and let {Zn} be the preimages

of a. Since each triangle has the same finite p-diameter, there exists

an 6 > 0 such that an 6-neighborhood of [Zn] covers D. By a result of

Hoffman (1, Corollary, p.84), B({zn})33 M/G. Therefore, aeERf(m) for

each mesM/G. It is an open question whether for each mJEM/G the cluster

set is always equal to W. If this is true, then Theorem 27 is also

sharp for holomorphic functions.

NORMAL HOLOMORPHIC FUNCTIONS

In this section we will continue to use the same definitions and

notations used in the section of Chapter I which discusses the M—

topology for arbitrary functions. Here we will show in Theorem 30 that

if f(z) is a normal holomorphic function, then Gf(P) is compact in the

M-topology. First of all we will prove in Theorem 28 that any function

f(z) which is normal and holomorphic in D belongs to the plgpp :2. This

class consists of the holomorphic functions f in D that have the pro-

perty that for each pair of arcs t1, t2 6 T(p) along which f(z)—+4» as

 

\
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andt .z+p, f(z) is unbounded on each path t between t1 2

Theorem 28: If f is a holomorphic normal function in D, then for each

p6C, f is in the class Ip' (Lappan, 11, Theorem 3, p.91)

Proof: Suppose pEC and 00 is an asymptotic value of f at p along two 

disjoint paths t and t in T(p). If t is any path in T(p) between t

 

1 2 l

and t2, then by a remark of Lehto and Virtanen (l, p.53) f(z) +00 as

z+p along t.

Theorem _22: If p6 C and f6 Ip, then f may have at most two finite

asymptotic values at p. (Lappan, 11, Theorem 4, p.91)

Proof: Suppose f has three distinct finite asymptotic values a a and ‘

1’2

a3 at p so that there exist three disjoint arcs t1, t and t3 in T(p)
2

such that f(z) —>ai as z+p along the ti's. Then there exist paths q1

and q2 in T(p) such that qi is between ti and ti+l and f(z) +00 as z+p

along qi for i = l, 2. (Remark, MacLane, p.7) So t2 is between q1 and

q2 and f is bounded on t2. Therefore, failp

Lemma 8: If p 6C and f is a holomorphic function in D which is bounded

in a neighborhood of p relative to D, then Gf(p) is compact in the M-

t0pology. (Lappan, 11, Theorem 1, p.89)

Proof: Suppose Gf(p) is not compact in the M-topology. According to

Theorem 35 in Chapter I, there exist directed sequences {tn} and {sn]

of arcs in T(p), a number 6 > 0, and a continuum K such that letting
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Kn=Ctn(f’P) and Ln=Csn(f,p),we have, for any n>0, M(Kn,K) < l/n,

d(Ln,K) > 6, and SH is between tn and tn+l' Without loss of generality

we may assume that all of the arcs sn and tn originate at the origin,

terminate at p a‘nd no pair of arcs have any points in common except 0

and p. Finally we assume M(Kn,K) < 6/2 for all n. Let An be the region

It shouldbounded by t U t + and A' be the region bounded by s U s
n n n nl n+1 °

be noted that An and Ah are bounded in the complex plane. Since

_ - l l
sn {0,p}CAn and tn+1 {0,p]CAn, LnC CAn(f,p) and Kn+1 C CAn(f!P)'

According to Collingwood and Lohwater (1, Theorem 5.2.1, p.91),

Frontier CAn(f,p) C Ctn(f,p) U Ctn+l(f,p) = Kn U Kn+l

 

Frontier CAI;(f,p) C Csn(f,p) U Csn+1(f,p) = Lr1 U Ln+l‘

Since M(Kk,K) < 6/2 and d(Lk,K) > 6 for every positive integer k,

there eXists a point woeLnU Ln+ such that Iwol >sup{|w| :d(w,K) <6/2].

1

If woeLn, then the fact that Ln is contained in a bounded set whose

boundary is KnU K leads to the existence of a point wleKnU Kn+ such

n+1 1

that lel > lwol. ‘ However, d(w1,K) < 6/2 violates the choice of WC. If

WOELn+1, then there is a similar contradiction. So K6 Gf(p).

Lemma 2: Let f be holomorphic in D and p6 C. Suppose further {tn} is

a directed sequence of arcs in T(p), K = Ctn(f,p) for n > 0, and K is a
n

continuum such that M(Kn,K) +0. Then one of the following must hold:

(1) Ker(p);

(ii) 006 K;

(Hi) there exists q between q1 and q3 in T(p) such that f+oo on q1

2

and q3as z+p and f is bounded on q2. (Lappan, 11, Lemma 3, p.90)
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2399:: Suppose Ké(3f(p), «>6 K and each Kn is bounded. We want to show

that (iii) holds. Let Ah be the region bounded by tn U tn+l' If there

exists an integer N such that f is bounded in each region An for n > N,

then KeaGf(p) because the proof of Lemma 8 only required that f be

bounded on a union of three consecutive regions An. Since we are as-

suming Ké‘Sf(p), there exist positive integers n1 and n2 with [12 > n1

such that f is unbounded in AHI and Anz. So there exist paths q1 and q3

in T(p) such that q1 —{p} C Ahl, q3 ~{p] C.Ah2, and f(z) —>uaas z-+-p

along q1 and q3. Letting q2 = t , we have Cq2(f,p) = an which is

[12

bounded. 30 f is bounded on q2 which is between q1 and q3.

Theorem 30: If p6 C and fezIp, then Gf(p) is compact in the M—topology.

(Lappan, 11, Theorem 5, p.91)

E£22£3 If Gf(p) is not compact in the M-topology, then according to

Theorem 35 in Chapter I, there exist directed sequences {tn} and {Sn} of

arcs in T(p), a number 6 > 0 and a continuum K such that letting Kn

CtHCf,p) and Ln = Csn(f,p), we have that for each positive integer n,

M(KnaK) < l/n, d(Ln,K) > 6 and sn is between tn and tn+l’ We may assume

that “(K ,K) < 6/2 for each n. Since f6 Ip, °<>6 K by Lemma 9. Then

n

there exists a bounded set L such that Ln.C L for each n and d(L,K) > 6.

- I

Let A; be the set bounded by Sn U sn+1. f must be unbounded in An for

.
. 'n

each n since Kn+1 C CA$(f,p), Frontier CA$(f,p) CLn U Ln+1 and w is i

the same component of the complement of LnLJ Ln+1 as Kn+l' Thus for

each n, f has w as an asymptotic value at p along a path qn such that

'
r n and f is

qn"{P} C Ah' So sn+1 is between qn and qn+1 for eve y

b
I .ounded on Sn+l' 30 f é p
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Corollary: If f is a normal holomorphic function in D, then Gf is com-

pact in the M-topology.

This corollary follows immediately from Theorems 28 and 30.

NORMAL HARMONIC FUNCTIONS

In this paragraph we will show in Theorem 33 that a harmonic normal

function has Fatou points on a dense subset of C and in Theorem 34 that

a harmonic normal function which does not have +ww asa Fatou value has

a set of Fatou points possessing positive measure.

Theorem 31: If u is a harmonic normal function in D which omits the

value a and if u(z) —>a along a non-tangential boundary path P, then u

has a as a Fatou value. (Lappan, 5, Theorem 2, p-154)  
EEQQfi: Suppose a is finite. Since u omits a, we may assume that u(z) >

a for every 2 in D. Let A be an angle containing P and C denote the

vertex of A. If {2 ] is a sequence of points in A such that zn-+-§,

n

. I .

there exists a real number M and a sequence of pOints {Zn} in P such

. _ l ”I h b-

that o(zn,z$) < M. Setting Sn(z) - (Z + Zn)/(1 + an): we ave a 3“

sequence of {u(Sn(z))} converging uniformly in [Z :o(z,0).f M + 1} to a

harmonic function U(z). But u(Sn(0)) = u(zg) and so U(O) = a while

”(2) Z.a for zesD. It follows from the minimum principle for harmonic

functions that U(z) E a. So u(zn)-+-a and a is a Fatou value of u.

SUPPOSG a= +Ww. Defining Sn’ zn and z; as above, we have U(O) = «n

HOWeVer, since {u(S (z))} is a normal family, there exists a neighbor-

n

h00d N of 0 such that u(S (2)) > 0 for n sufficiently large and foN.

n
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It follows from Harnack's Inequality (Ahlfors, 1, Theorem 6, p.183) that

U(z) = 00 for ZEN. Consequently U(z) = 00 for ZED. Therefore, u(z)+oo

and w is a Fatou value of u. If a = -K5 the argument is similar.

Lemma 10: If u is a harmonic normal function in D and v is a harmonic

eu(z)+iv(z)
conjugate of u, then f(z) = is a holomorphic normal function

in D. (Lappan, 7, Lemma 1, p.110)

Proof: Let a and b be two complex numbers such that lal # lbl and let

[2n] be any sequence of points in D such that f(zn) —>a. Then u(zn) -+

lnlal where 1n0 = «w and lnaa= +om If [2;] is another sequence of

points in D such that U(zn,z;) —>0, then by Theorem 4, u(zg)-+-ln}ai

since u is normal. Therefore, ’f(z['1)| + 'a| and f(zh) 7913- Using the

contrapositive of Lemma 1, we conclude that f is normal.

Theorem 32: Let u be a harmonic normal function in D and f = e“(2)+iV(Z?

Then every Fatou point of f is a Fatou point of u. (Lappan,7, Theorem

1, p.111)

Proof: If g is a Fatou point of f with Fatou value a, then f(z) ~+a

and U(z) -+ 1n a as z —+ g from inside each Stolz angle at Q. So C

is a Fatou point of u.

Theorem 33; The set of Fatou points of a harmonic normal function in D

“—

is a dense subset of C. (Lappan, 7: Theorem 2’ P'lll)

Proof: Let f(z) = eu(z)+iv(z)' Since f is a holomorPhiC normal
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function, the set of Fatou points of f is dense on C according to Bage—

mihl and Seidel (3, Corollary 1, p.16). So by Theorem 32, the set of

Fatou points of u is also dense on C.

Theorem 24: If u is a harmonic normal function in D such that u does

not have +wn as a Fatou value, then the set of Fatou points of u has

positive linear measure on C. (Lappan, 7, Theorem 3, p.111)

eu(z)+iv(z)

Proof: Let f(z) = Since u does not have +w as a Fatou 

val ue , f does not have m as a Fatou value. Consequently according

to Bagemihl and Seidel (3, Theorem 3, p.15) the set of Fatou points of

f has positive measure on C. So by Theorem 32, the set of Fatou points

of u has positive measure on C.
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CHAPTER III

CLASS A FUNCTIONS 

INTRODUCTION

Let f(z) be holomorphic and non-constant in D. For any complex

number a, including w, let Aa denote the set of points C 6 C such that

f(z) has the asymptotic value a at C. Let A* = :J Aa and A' = A*lJAw.

300

Then f(z) belongs to Class A if and only if f is holomorphic and non- 

constant in D and A' is dense on C.

Let 8* denote the set of points g 6 C such that there exists

an arc F in D ending at C on which If, is bounded on F by some finite

constant M. In general M varies as F and g vary. Set B' = B* U A”.

Then f(z) belongs to glppg B if and only if f is holomorphic and non-

constant in D and B' is dense on G.

Since A*<: B* and A' C B', Class A<: Class B.

Now let S be any subset of D. For each i>(),0<rw<l, let Si be

the components of 30 {r<|z| < 1]. Let 61(1) = dia Si(r) and 6(r) = SLin 61(1‘)

with 6(r) E 0 if no S.(r) exists. S ends pp points of C if and only if

1
 

6(r) i 0 and r‘f 1. For any constant A 3.0 the level set LS(X) is given

by LS(A) = {Z :lf(z)l = A], and a level curve LC(1) isanycomponent of

LS(AX f(z) belongs to Class L (Class LE) if and only if f(z) is h010‘ 

morphic and non-constant in D and every level set LS(l) (every level

Curve LC(1)) ends at points of C.
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In 1963 G.R. MacLane published a monograph (l) which contains many

important properties of Class A functions. The purpose of his paper

was to derive results about the asymptotic values of functions f(z)

holomorphic in D. We list some of these conclusions below.

Theorem 1: A==B==L CIL* and the inclusion is proper. (MacLane, l
9

Theorem 1, p.10)

PROPERTIES OF CLASS A FUNCTIONS

Theorem 2: If f6A and Y is an arc of C such that Amny=¢, then A*fl

Y has the power of the continuum and is of positive measure. (MacLane,

1, Theorem 2, p.14 and Theorem 11, p.25)

A tract [D(6),a] associated with the finite value a is a set of

non-empty domains D(6), one for each 6 > 0, such that

(i) D(6) is a conponent of the open set {2: |z| < l, lf(z)- al<6}

(ii) 0 < 61 < 62 implies D(el) C D(62)

(iii) 0 D(6) = o.

6 > 0 . I I

If a = W, the only change in the above definition is to replace f(z)-a

< E by lf(z)l > 1/e.

Let K = flD(6). Then K is a non-empty, connected closed subset of C

and is called the end pf the £5223. If K is an arc, it is called an app-

tract. A tract is a global tract if and only if K is the entire Cerum-

 

ference C and for each arc Y(: C there exists a sequence 0f arcs {Yn]

SUCh that Yn(: D(l/n) and Yn-a-Y. This last condition is important

since Theorem 5 is untrue without some condition of this type 1h the

definition of global tracts.
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If {D(6),a] is a tract and I“: z = p(t), 0 S t <1, is a continuous

curve in D such that (p(t) 6 D(6) for l — 0(6) < t < 1, then r belongs to

{D(6).a}-

Theorem 3: Let f6A and {YD} be a sequence of distinct simple arcs in D

which tend to the arc Y of C with the property that zieninlflz)‘ =un+oo

as n +00. Then f has {D(6) ,00} with endK such that YCKand for any C 6 K

there is a curve T S {D(6) ,00} which ends at Q. At any interior point of K the

only asymptotic values come from this tract.

(MacLane, 1, Theorem 3, p.15)

Theorem 4: Let f6A and let {D(6),a] for a 3* 00 be a tract of f. Then

the end of this tract is a single point. (MacLane, 1, Theorem 4, p.18)

Theorem 5: Let f6A. Then

(i) f has a global tract if and only if f is unbounded and all

level curves of f are compact;

(ii) f has a global tract if and only if f is unbounded on every

curve I‘ in D on which |z| +1.

(MacLane, 1, Theorem 6, p.18)

Theorem 6: If f6A and S is any Borel set on the sphere, then A(S) iS

 

measurable. (MacLane, 1, Theorem 10, P-Zz)

SUFFICIENT CONDITIONS FOR f EA

Theorem 7: Each one of the following conditions is a sufficient condi-

‘—

tion for f6A:
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(i) f is a holomorphic, non-constant function in D such that there

exists a set Se C [0,2fl] thatis dense in [0,2fi] such that

£}(l -r) log+ |f(reie)ldr < M>for 96 Se;

(ii) f is a holomorphic, non-constant function in D such that

[61(1 - r)m(r)dr < 00 where m(r) = ifjfilogflflreieflde, Ogr< 1;

(iii) f is a holomorphic, non-constant function in D such that

Jél(l - r) log M(r)dr <oo where M(r) is the maximum modulus of f.

(MacLane, 1, Theorem 14, p.36 and following discussion)

It is important to notice that in condition (i) no uniformity is

implied. All that is required is that each individualintegralconverges.

Theorem 8: Let f(z) be non—constant and expressible in the form f(z) =

00

Z anzn for [Z] <‘1 and let A be a constant such that 0 < A < 2/3 and

log+lanl < nh for n > N. Then fszA. (MacLane, 1, Theorem 16, p.42)

f(Z) belongs to the Class N_if and only if f is holomorphic, non—r

constant in D and normal.  

 

Theorem g: N<: A. Also, if f6 N, then (i) given g6 C, f has at most

one asymptotic value at g. If f has the asymptotic value a at Q, then f

has the angular limit a at g; (ii) f has no arc-tracts. (MacLane, 1,

Theorem 17, p.43)

Bagemihl and Seidel results in ChapterII,

This theorem contains the

Theorems 4, 12 and 14.
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BARTH'S GENERALIZATIONS OF MACLANE'S RESULTS

In order to generalize MacLane's Results, Barth defined classes Am,

Bm, LIn and L; which differ from MacLane's classes A, B, L and L* only in

the replacement of the word "holomorphic" with the word "meromorphic" in

the appropriate definitions. Theorem 12 shows that AmC Bm and Lm C Bm.  
However, there are examples to show that no other inclusion relation—

ships exist among the classes Am, Bm and Lm' Let LSOx): 126D: |f(Z)| =A1-

Theorem m: Let f6Am and {Yn] be a sequence of disjoint simple arcs in

D that tend to the arc Y of C with the property that there exists a com—

plex number a such that

sup|f(z) - al = pn+0 as n+°° if a =r‘ °°,

Yn

inf|f(z)|= Mn —+oo as n + 00 if a - cc.

Yn

Then f has an arc tract {D(6),a} with end K such that Y C K and such

that for each point QEK some curve I‘ belonging to [D(6),a} ends at g.  At any interior point of K, the only asymptotic values come from this

tract. If f6L , the preceding conclusions are true for a = 00.

m

(Barth, 1, Theorem 1, p.323)

_ 19.

Proof: First we assume that f6Lm and a = 00. Let Y " {e ' <15 9 5 B]

I l

and g be an interior point of Y. We choose CLUB Sheh that a < a <

argg < B' < B. Let S(a',B') denote the sector {(1' < argz <B' for |z|<l]

. . = I

and let Y' C Y be a cross-cut of S(Ct',B') joining a p01nt of argz (1

n n

to a point of arg z= B'. By using a subsequence of Yn if necessary, we

| I

may assume that each Yn contains a cross-cut of Yn and that Yn+1
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separates Yd from '2' = 1 within S(q',B'). Let En denote the subdomain

of S(a',B') which is bounded by Yr'l,Yr'1+1 and two intervals on the bound-

ary radii of S(a',B'). For A, a fixed constant greater than zero, we

choose N(l) such that for n >, N(l) no Yr1 intersects LS()\). Let the

components of LS()() 0 En be denoted by p(n,i), for l\< i \< ni. For sim-

plicity we pick 1 so that LS(1) has no multiple points. Since feLm,

the maximum diameter p(n,i) for n 3 N()\) approaches zero. So for n>/N1,

any curve p(n,i) which intersects the radius R = [arg z= argg] is a

Jordan curve contained in En' Therefore, any interval of R in En on

which If(z)| < A may be replaced by an arc of a level curve p(n,i). By

making a finite number of such replacements for any one [1, we obtain a

curve TO.) such that z 131 zi€h£(x)lf(z)l >/)\-

We will now construct I‘. Let AnT 00 be given. Let Qn be the in-

tersection of R with Yh having max Izl, and let F(lkm) be the portion of

PO‘k) joining Qn to Q. We define I‘= F(kl) from z = O to in where n1

is chosen so that largz- arg§| < 1/2 and lf(Z)l >/)\2 for ZEI‘(A2,H1);

to Qn where n > n is

1 p p-1

chosen so that Iargz- arggl < l/2p and lf(z)l;1k for Z6 F(Xp,np_1).

and for any integer p > 1, F= P(lp) from Qn
p-

So P+C and f(z) +00 on 1‘.

Now we assume that g is an endpoint of Y. Let {gm} be a sequence

0f interior points of Y with §n+§ and I‘n be a curve ending at Cn on

which f +00. By using a construction similar to the one given above,

We can construct a curve I‘ tending to Q on which f +00.

Each asymptotic path I‘ to an interior point g of Y intersects all

Y 's for n > N. So there exists an integer N' such that all Yn for

h> N' belong to the same domain D(6) for If(z)l > l/E. Thus all

Paths belong to the same tract [D(6),°°}. If the end K of this tract
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contains Y as a proper subset, then we can choose arcs Y; CID(1/n) such

that Yé-a-Y' = K. Since Y; and Y' satisfy the same hypotheses as Yn and

Y, it follows that if CE K, then there exists a curve I belonging to

[D(6),m} which tends to g.

If fesAm and a = m, then LS(1) fl S(a,B) must also end at points of

C for all I > 0. For if this were not true, there would exist a 11 > 0,

a subarc A of Y and a sequence of continuous arcs {Ah} compact in D such

that An C LS()\1) for all n and An +A as n+°°. Let Q be any interior

point of A. Each curve ending at C must cross all but a finite numberof

the Aq£s and‘Yn's. Therefore, f cannot have an asymptotic value at g,

contradicting the assumption fesAm.

Finally, if a is finite, we define the function l/(f-—a) and use

the above proofs.

Ihgggem 11: If fesLm and Y = [e16 :q.S 0 S B,a #8) is a subarc of C

such that no level curve of f ends at any point of Y, then exactly one

Of the following two statements is valid.

(1) For each interior point em (a < ¢ < B) of Y, there exists a

'
i

.

continuous curve f(e1¢) C1D ending at e ¢ and such that f is

bounded on L} f(ei¢). Furthermore, f does not have m as

d<¢<B

an asymptotic value at any interior point of Y.

(ii) There exists an arc-tract {D(6),w] of f with end K such that

Y C K.

(Barth, 1, Theorem 2, p.324)

Proof: Let S(a,B) denote the sector {2 :|z| < l and a < arg z < B}. We

.

lt' le

P1Ck [An] so that 0 < 1n, 1n+°0 as n+00 and LS()\n) has no mu ip
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points. Since feLm, each LCOtn) is either a closed Jordan curve or a

crosscut of D. Suppose O is not a pole of f. If 0 is a pole, we may

pick a different point close to 0 which is not a pole and repeat the

following argument using this new point. We choose N such that 06 {z :

'f' < 1N) . For any n 3 N, let A(ln) denote the component of {2 :‘f' <)\n}

that contains 0. Since f6Lm and no level curve ends at any point of Y,

at least one of the following statements is valid for any n >/N.

(iii) there exists a TnC Boundary A(An) such that Tn is a cross-

cut of the sector S(a,B) that joins a point of arg z =(1 to

a point of argz =B.

(iv) Boundary A(An) 3 Y.

If (iii) is true for all n >/N, then Tn+Y and so by Theorem 10, f has

an arc tract {D(6),oo} with end KC Y. So (ii) holds.

Now suppose there exists some n = M for which (iv) holds. Let Q =

ei‘D for a < 4) < B be any arbitrary point of Y. By (iv) CE Boundary

A(AM). Since f6 Lm and no level curves of f end at points of Y, there

exists a 6 > 0 depending on g such that each component of Boundary A(XM)

having non-empty intersection with the set [z :Iz— d < 6, |z| < 1} is

a closed Jordan curve contained in S((I,B). Since the diameter of the

set LSQM) fl [2:1-6 < |z|< 1} +0 as 6+0, 0 and g may be connected

by a continuous curve New) C A(AM) U C'

The last part of (i) is proved by observing that the existence of

the asymptotic value 00 at g implies that L80.) ends at g for all >‘>>‘M’

which is a contradiction.

Theorem 12: A C B and L C B . (Barth, 1, Theorem 3: P325)
— m m m m

k
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Proof: Since the generalized definitions and notations include "mero—

morphic functions" instead of only "holomorphic functions", A'= A*UA°O

and B = B’" U Am. So A*C B* and A' C B'. Conse-where A*= U A

a7‘oo a

A C .quently m Bm

i6
t C . = : 1Now we wan to Show that LIn Bm Let f6 Lm and Y {e (is 9<B

be any subarc of C. We will show that there exists a continuous curve

ending at some point of Y on which f is bounded or else a continuous

curve ending at some point of Y on which f has the asymptotic value 00.

If a level curve of f ends at a point of Y, we are done. So suppose

not. Then Theorem 11 holds and either there exists for every interior

. i0 . i6
p01nt e , a < e < B, a continuous curve f(e) C D that ends at e on

which f is bounded or there is an arc—-tract (D(6),<>°] with end K con-

taining Y. In the first case we are finished; in the second case by

Theorem 10, f has the asymptotic value 00 at each point of Y.

The Schwarz triangle function is an example of a function f such

that f6 Bm and f6 Lm’ but féAm. This shows that Bm (Z Am and LmC Am.

We will now construct a function f such that fEAm, f6 Bm, but

féL . (Barth, Example 2, p.326) Let [rm] denote a sequence of posi-
m

tive numbers which are strictly increasing to 1. For n >, 1, let

C = {IZI = rn]

D = {|z| < rn]

n n

— = =o,1,...,2 -1.E - {z : rn SIZ|S rn+1 and argz 2kTT/2} for k

For n > 1 let F = D U E U C . Two sequences of functions

’ n n n-l n-l

[fn(z)1 and {R (2)] are now defined inductively.

n

W (
D

_ = E . N t We

define f1(z) and R1(z) on Dl so that f1 _. R1(z) 1/2 ex
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construct f2(z) so that it is continuous on F and

2

f2(z) = f1(z) on D1,

f2(z) = 5/4 on C2,

f2(z) is linear on each component of E1.

F2 is closed and it divides the plane into a finite number of regions.

In addition f2(z) is continuous on F2 and analytic on the interior of

F2. Therefore, by a remark in Mergelyan's paper (1, p.24) there exists

a rational function R (2) such that max If (z)-R (2)1 < 2-4. In gen-
2 ze F2 2 2

eral suppose that fn(z) is spherically continuous on Fn and that

fn(z) = Rn-1(Z) on Dn-l’

n -n
= + _fn(z) l ( 1) 2 on Cn’

fn(z) is linear on each component of En-l'

By using a remark of Mergelyan (l, p.24) we can find a rational function

-n-2. A straightforward calcula-Rn(z) such that 21?; Ifn(z)-Rn(z)! < 2

tion shows that [Rn(:)] converges to a meromorphic function R(z) in D.

In order to show that R(z) élhfi it is sufficient to prove that for

each n some component of [z :IRI = 1} separates Cn and Cn+l' This is

shown by verifying that IR(z)- (li-(—1)n2-n)| < 2‘“.1 for Z6 Cn' Fur—

thermore, f ( the limit of [fn(z)}) has the asymptotic value 1 on each

radius of the form [2 :0.S |z| < l and arg z=2_nk) for n > 0 and k = 0,

1,...,2n_1. Since these radii are dense, fezAm, f6 Bm and f6 Lm.

Barth has established some sufficient conditions for a function to

be a member of A . Theorem 14 shows that the conditions 0f Theorem 7

m

can be generalized to meromorphic functions.
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Theorem 13: Let g and h be holomorphic in D and let g/h be nonconstant.

Suppose g6A, h is bounded and f = g/h. Then f6Am and l/feAm.

(Barth, Theorem 6, p.331)

M: Let Y be any subarc of C. We will show that there exists a

point §6Y and a curve ending at g on which f tends to a limit as

[Z] +1. First suppose Aw(g)fl Y 9‘ (1). Then there exist a point §6Y

and a curve I‘ ending at g on which g +00 as 12' +1. Consequently,

since h is bounded, f +00 as [Z] +1 on I‘ and f has the asymptotic value

00 at g.

Now suppose A00(g)fl Y = ¢~ If g is bounded in some neighborhood of

a point g on Y, then f has an asymptotic value at g by the Fatou Theo-

rem (Fatou, 1). So suppose zlgngsuplgw)! = °° for all Q6Y. Under

these hypotheses MacLane (l, p.26) has shown that there exists a AC D

with the following properties:

(i) A is a simply connected Jordan domain, bounded by crosscuts 1‘

of D on which lgl = 1 for some )\ > 0 and by a nonempty subset

F of y.

(ii) lg(z)l < N whereNis apositive integer for all 26A.

(iii) There exists a nonempty subdomain A' of A such that 1 < l g(z)]

< N for all Z6A'.

Based on an argument of MacLane (1, p.27) for the proof of Theorem 2 of

this chapter, it can be shown that f has asymptotic values at some

points of Y. Consequently f6Am and l/f is also in Am.

We are now ready to generalize the conditions (i), (ii) and (iii)

. ' 'ons
in Theorem 7 to obtain sufficient conditions for meromorphic functl

 



n
—
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to be in Am' (Barth, l, p.332) Let f be meromorphic in D.

Condition (i') Suppose there exists a complex number a, possibly

w,and a set 0 dense on [0,2fi] such that the Nevan-

linna counting function N(r,a) = 0(1) (Nevanlinna,

1) and fl(l -r) log+ 1 dr < m for eese if

0 19
f(re ) -a

  

area. If a=oo, then Ilsa-r) log+lf(rele)‘dr<oo, 960.

Condition (iv) Suppose there exists a complex number a, possibly

m, such that N(r,a)==0(l) and £}(l-r)m(r,a)dr < w

l

f(rele)-a

+

where m(r,a) =fif02fi log d0 if aa‘oc and

  

_12TT+ ie
m(r,a9-§E £) log 'f(re )lde.

1

Condition (fiiW Suppose N(r,a)= 0(1) and £)(l-r)T(r)dr<<«>where

T(r) is the Nevanlinna characteristic of f.

l

f(rele)-a

l + .

Since Condition (ii') implies that £)(l—r)log dr<<w if arc»

  

and f1(l-r) log+ lf(reie)ldr<<m in the case a=(n, Condition (ii') implies

0

Condition (1'). By Nevanlinna's First Main Theorem (Nevanlinna, l,

P-168), it can be shown that Condition (iii') implies (ii').

Theorem 14: If f is meromorphic and nonconstant in D and satisfies one

 

0f the preceding conditions (i'), (ii') or (iii'), then féEAm. (Barth,

1, Theorem 7, p.333)

EEQQA: Since Condition (iii') implies Condition (ii') which in turn

implies (i'), it is sufficient to show that (i') implies fesAm. Suppose

a = w. Let B(z) denote the Blaschke product

 



 

11
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N b — ze

B(z)=z)‘ n i:__

k=1 1 - b 2

where A is the order of the pole at z = 0 and the rest of the poles of f

iB
are denoted by bk = lbk‘e k with a pole of order u appearing u times

among the bk's. Then the function g(z) = B(z)f(z) is holomorphic in D

and 1 'e 1 'e '9
J; (1-r) log+fg(re1 )ldr = J; (l—r) log+1B(rel )f(re1 )ldr

S 4}(1-r)log+lB(reiejdr + £3(1-r)1og+lf(reie)|dr for 9658.

So

£}(l—r)log+lg(relejdr s £}(l-r)1og+lf(rele)ldr for 6650

since |B(z)l g 1. Therefore,

1 + ie

1% (1-r)log Ig(re )ldr < m for eese

and g(EA by Theorem 7. Thus f = g/B and fezAm by Theorem 13.

If a a «5 the argument above implies that l/(f~a)6Am and so fesAm.

ALGEBRAIC OPERATIONS OF CLASS A FUNCTIONS

In Theorem 16, Brannan and Hornblower prove that Class A functions

are not closed under the operations of addition and multiplication. In

fact every nonconstant, holomorphic function in D can be written as the

sum or the product of pairs of functions in Class A. Furthermore, Barth

and Schneider (1, Theorem, p.121) have constructed after much work an

example of a function f in Class A such that efé A. However, if fesA

and f has no arc-tracts, then efe A (Theorem 17).
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Barth and Schneider (3) have recently shown that the product of a

function in A with a bounded holomorphic function is not necessarily in

A. First they construct a function f(z) which is holomorphic and non—

zero in D and which is approximately equal to n on certain subsets Fn of

D if n is even and approximately equal to 1 if n is odd. Much notation

is required in order to specify these Fn's. Let {rm} be a sequence of

real numbers such that 0 < r0 < r < ... < rn < ... fl and such that

l

r <‘fi/4n. Furthermore, let [on k} denote the set of angles
n rn- l\

on k = 2nk/2n for n any positive integer and k = l,2,...,2 -l. The

angles 9 's are defined as follow:
n,k

(1) 61,1 = 4’1,1

(11) 62,1 = ¢2,2 3 62,2 = ¢2,1 ; 62,3 = ¢2,3

(iii) in general, after the en k's have been defined for k=lr.”2n-l,

, = n_ . . _
the en+l,k s for k 1,...,2 1 are defined in the only pos

sible way such that all the 9m k's for nfi=l,2,...,n+l and

k= l,2,...,2n-l with the same second index are equal. Finally

+

the e 's for k= 2n,2n+l,...,2n 1-1 are defined in such a
n+l,k

way that 9.n+1,2n = ¢n+l,l ; en+1,2n+1 = ¢n+l,3 ; en+1,2“+2 =

¢n+1,5 ; 3 en+1,2“+1~1 = ¢n+1,2n+l-1'

With the above notation, many subsets of D are defined as follow:

En = {z : rn_1+ 3/4(rn - rn_1);<xsrn+ 3/4(rn+1 - tn),|y| Stn=TT/4n]

where z - x + iy.

Y = {z :1z1 < rn] - Interior En.

d ,i = A[O,rn,rni-3/8(rn+1- rn)] fl S[0’¢n,i’¢n,i] where A[a,rflr'fl =

{z : r' $1 z-a1gr“) and S[a,6',e"]= {z : 9's arg (z-a)<e" 1.

an = A[0, rn+5/8(rn+ -nrn)lrn+1] 0 SIO.¢n i’¢n 1]-

2n -1_

1‘n =nYU(U .211)U( 13i=1ani =1 n-li) for n>2and1‘1=Y1Uu11
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This function f(z), which Barth and Schneider construct, is not in A.

It is bounded away from zero on a countable set of asymptotic paths {an}

which are tangent to those radii ending at a countable dense subset {tn}

of C. According to Privalow (p.214), there exist nonzero functions

analytic and bounded in D which have radial, and hence angular, limit

zero on any pre—assigned subset N of C of measure zero. Let h(z) be the

particular function obtained when N = Eatn. h(z) = w(z)/b(z) is in

n-

Class A since 1im h(z)=(n for each on while w(z)==h(z)'b(z) 6 A.

Z6011

1z 1m>l

Recently Tse (1) has shown a condition which holds whenever a pro-

duct of a bounded holomorphic function and a Class A function is not in

Class A.

If f(z) is a meromorphic function in D, then we define Ff(K) [or

F¥(K)] for 0 s K g x>to be the set of Fatou points of f(z) on C at which

the Fatou values are greater than [or less than] K in absolute value.

Theorem 15: If b(z) is a bounded holomorphic function in D and if

f(z)6.A, but f(z)b(z)é.A, then Fb(0) is of first category in some

subarc of C. (Tse, 1, Theorem, p.68)

 

Proof: Let Aw(fb) denote the set of points g for which (6 C and fb has

w as its asymptotic value. Let B*(fb) denote the set of points g such

that g6 C and there exists an are P in D ending at C on which lfl is

bounded by some finite constant. So be = B*(fb) U Am(fb). Since

f(Z)b(z)¢_A= B, there exists a subarc Y of C such that be 0 Y = ¢. By

definition Fb(0) H Y = ngFb(l/n) 0 Y. We will show that Fb(0) 0 Y is

of first category. Suppose on the contrary it is of second category.
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Then there exists an no > 0 such that Fb(1/n) n Y is of second category.

So at each point g6 Fb(l/no)FIY, the radial cluster set of b(z) does

not contain the value 0. By Collingwood (2, Lemma 1) there exists a

number M' > 0 such that 1l/b(z)1 S M' in a neighborhood U of a subarc B

of Y. Therefore,

0<1/M'g|b(z)|gM<oo, (1)

in U where M is the bound of b(Z) in D. Since f(z) 6 A, Bf U B # ¢- By

(1) be H B # o, which contradicts the condition be H Y = o. Conse-

-quently Fb(0) H Y is of first category.

A set of points on C is of second category evenly on C if it is of

second category on each subarc of C.

Corollary: Let f(z) and g(z) both be in A and Ff(0) fl F¥(«O be of se-

cond category evenly on C, then f(z)g(z)(6A. (Tse, 1, Corollary L p.68)

This follows from Theorem 15 and Collingwood (2, Lemma 2).

Theorem 19: Any nonconstant function R(z) holomorphic in D can be re-

 

presented as the sum and as the product of pairs of Class A functions.

(Brannan and Hornblower, 1, Theorem 1, p.86)

2392:: We define u(r) = M(r,R(z))/(1 -r) where M(r,R(z)) denotes the

maximum modulus of R. According to Hornblower (1) there exists a non-

COnstant, nonzero function f(z) 6A.which, on a dense set of radii, tends

to zero faster than 1/u(r) and tends to u)faster than u(r). Then

r1:?11R(reie)/f(reie)] = O on a dense set of 9's and R(z)/f(z) EA”
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Thus R(z) can be written as the product of R(z)/f(z) and f(z). In addi-

tion, R(z) can also be written as the sum of [R(z)i'f(z)] and [-f(z)]

since lim1[R(rele)i'f(rele)] = w on a dense set of 9's implies that

r+

[R(z) +f(z)] 6A and f(z) 6A implies that [—f(z)] 6A.

Theorem 11: Any nonconstant function M(z) meromorphic in D may be re-

presented in each of the following three ways:

(i) the quotient of two holomorphic functions in A,

(ii) the product of a function in A and a function in Am 0 Lm’

(iii) the sum of two functions in Am.q Lm.

(Brannan and Hornblower, 1, Theorem 2, p.86)

Ppppp: According haHeins(l,p.l4) any meromorphic function in D can be

represented in the form M(z) = f1(z)/f2(z) where f1 and f2 are holo-

morphic in D. Consequently we construct the nonzero holomorphic func-

tion f(z) = max{M(z,fl),M(z,f )1/(l-r) in A.

Then M(z) = (fl/f1/{f2/f] where fl/f and fZ/f are nonconstant holo—

morphic functions in D, which according to Hornblower (l) have 0 as a

radial limit on a dense set of radii. So fl/f and fZ/f are both in A.

In addition M(z) = fl/f ' f/f2 where fl/f is again in A. Since

f/f2 has m as a radial limit on a dense set of radii, f/fzesAm. Fur-

thermore, f/fzesz because no level set LS(1) for 1 finite can end on an

arc of D.

Finally M(z) = f/f2 + f/f2[(f1/f) -l]. 0n the same dense set of

radii f/f2 and fl/f have radial limits w and 0 respectly. So on this

dense set of radii (fl/f) -1 has radial limit -1 and the radial limit of

f/f21(f1/f) - 1] is infinite.
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If fesA and has no arc tracts, then efesA. (proof bysignals:

MacLane in Barth and Schneider, 1, Theorem M, p.120)

Proof: Let Y be any subarc of C. If f has the finite asymptotic value

f , a

a at CEEY, then 6 has the asymptotic value 6 at Q. So we can assume

that f has only the asymptotic value «>at points of Y. Let g be any one

of these points in the interior of Y. We choose a tract T(6) so that

1f1 > 1/6 near g and T(6) (I C C Y. We also pick ZOET(E) and consider

the Riemann surface over the w-plane corresponding to T(6). Thereisea6,

0 < é<1T/4, such that sector {w : —6 <arg(w-f(zo)) <6} or {w :1T-6<arg(w-f(zo))<

 

"+61 does not intersect (w:|w|< é} . Denote the sector S and find a 9 such

that the ray {W':w==f(zO)-telet, 0.3 t <'afl is contained in S and such 
that the ray can be lifted into the Riemann surface corresponding to

T(6). Consequently Real:f—>jta> on the preimage F of this ray. So

ef+0 orooon F.

CALCULUS PROPERTIES OF CLASS A FUNCTIONS

MacLane (2) and Barth and Schneider (2) have investigated the ques-

tion, "If fesA, then what are sufficient conditions for f'EEA or

£ff(£)d£ 6 A‘W' The latter have also studied similar conditions for

functions in Class Am.

Let J denote any domain bounded by a Jordan curve K and lying in G.

Then A[J] is the set of nonconstant functions f holomorphic in J with

asymptotic values at every point of a set of points S<Z K with S dense

.—

u—on K. If a is a finite asymptotic value along an are T such that w

f(z) maps F one-to-one onto a linear segment, then we say that this

asymptotic value is linearly accessible. The set of linearly accessible

E
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points is denoted by A1".

Lemma _l_._: Let f(z) be holomorphic in any arbitrary domain A in the com-

plex plane. Suppose b 5" 00 is a boundary point of A and p0(z), p1(z),

-2 Pn_1(z), q(2) are given functions holomorphic in some disk A0

{’z-b f < r0]. Let I‘: z= w(u), 0 g u g 1, be a continuous curve such

that w(l) = b and F- 111(1) CAfl A0 = A'. If F satisfies the three

properties:

(1) rs : 2= ‘1, (u), 0 g u g s, is rectifiable for any 3 < 1,

(n) “'1 (m)
(ii) the function ¢(z) a f (z)+ Z pm(z)f (z)+q(z) for zeA' ,

111:0 .

 

satisfies ¢(w (u)) —>}\ 3‘ 00 as u f 1,

(iii) either (a) I‘ is rectifiable or (b) ¢1(w(u))=¢(¢(u)) -q(w(u))

is of bounded variation on [0,1],

then f has a finite asymptotic value on I‘. (MacLane, 2, Lemma, p.273)

Proof: Consider the differential equation

< > “'1 (m)
w n(z)+ z p (z)w (z)= ¢(z) -q(z) for zeA' (2)

m=o m

where q; is the function defined in (ii). Then f(z) is a solution in A'.

Let A* denote the component of A' which contains I‘~¢(1) where w(l) is

understood to be X. Let g1(z), ..., gn(z) be a set of linearly indepen-

dent solutions of the homogeneous differential equation associated with

Equation (2). The functions gi are holomorphic in A0. By variation of

parameters the solution of Equation (2) is given by

n z

= + - *f(z) Zl{a J; hm(t)[¢(t) q(t)] dt} gm(z) for zeA

where a=\1;(0) and (1m are constants. hm are functions holomorphic in A0.
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In Case (iii) (a), the integrand is continuous on F and

Bm = J": hm(t) [¢(t) - q(t)] dt = I: hm(t) ¢1(t) dt

has the finite asymptotic value

1

Bml = $0 th (u)) [cm (u)) ~q<v (u))] dw (u).

In Case (iii) (b), let H*(z) = hm(z) in.Ab. Then

- Z _ Z

Bm- Ia¢l(t)de(t) - ¢1(z)Hm(z> - ¢1(a)Hm(a) - fa Hm(t)d¢1(t>.

Each of the first two terms has a finite asymptotic value on F. Also

ffi<s>umd¢l = Jmew<u>>d¢l<¢<u>> ->folnm(¢(u)>d¢l<¢(u>>

because Hm(w(u)) is continuous on [0,1] and ¢1(w(u)) is continuous and

of bounded variation on [0,1].

Theorem 12; Suppose f(z) is holomorphic and nonconstant in D. Let

A* = {lz-ll < r}, n be a positive integer and po(z), ..., pn-1(z), q(z)

be holomorphic functions in.Afly Let A1= ner? D and

n-1

¢(z) = f(n)(z) + 2 p (z)f(m)(z) + q(z) for 2623.

m=o m

If ¢EEALA] and there exists a finite constant c such that ¢1(z) = ¢(z) -

q(z) # c, then fesA[AJ and A*(f), the set of finite asymptotic values,

is dense on car? C. (MacLane, 2, Theorem 1, p.275)

Proof: Sincezfi* can be replaced by a smaller disk contained in A? with

its center on C, it is sufficient to show that f possesses a finite

asymptotic value at one point on Afiflc.
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Let E denote the subset of points g on C such that for each point

g there exists a neighborhood UQ = [iz-§| < r}r) D and a Jordan arc JC

such that ¢(z) maps UQ into the complement of JC. In a similar manner

E1 is defined using ¢1 = ¢(t)-—q(t) instead of ¢. We set E2 = E LJEl.

Suppose AfiWW C contains points of E2. By shrinking.A* we may as-

sume.&*f) C is contained in E2. From a simple generalization of Fatou

(1) both ¢ and ¢1 have finite angular limits almost everywhere since

u(z) - ¢1(z) = q(z) has angular limits almost everywhere. Using the

notation in the proof of Lemma 1, we see that 8m has finite angular

limits almost everywhere. So f also has finite angular limits almost

 

everywhere on.A*F\C. From a theorem of Privalow (l, p.210) the asymp-

totic values assumed by f(z) on any interval Afllfi C contained in E2 form

a set containing a closed set of positive harmonic measure. Consequently

this set must be infinite. If E2 is dense on.A*rW C, we are finished.

So we now assume that.A*{) C is contained in the complement of E2.

According to MacLane (1, Theorem 7, p.19) each asymptotic tract of ¢1

must end at a single point because ¢1 omits the value c. Suppose that

the asymptotic values of ¢1 are bounded by a finite constant M. We

choose two distinct points g1 and g2 on.A*() C at which ¢1 has asymptotic

 
values and join C1 and g2 by a curve F(Z‘A which is an asymptotic path

at both Cl and g2. Then ¢1 is bounded on T and we denote the bound by

B. Let G be the domain bounded by F and part of Afif) C. If ¢1 is

bounded in G, then the arc §1§2 is contained in E2, a contradiction. So

we pick a value w such that w = ¢ (z ) for some 2 EEG and [W I >
o o 1 o o o

max(B,M). Then by the lifting argument of MacLane (1, p.13, Section 2),

¢1 has an asymptotic value a at some boundary point of G on C satisfying

the condition x);.a >"wo| > M,eacontradiction. Therefore, we now assume
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that ¢1 has two asymptotic values along r, whose magnitudes are greater

than 2IcI, where c is the constant defined above. So 1¢1-c‘ Z 6 > 0 on

r. Since ¢1 omits fewer values in G than a Jordan are, there exists a

216 G such that |¢1(zl) - cl < 6. By the lifting argument of MacLane (l,

p.13, Section 2), there exists r1(: G ending at a point of A*f) C such

that ¢1(z) maps f1 one-to-one onto a linear segment. By Case (iii) (b)  
of Lemma 1, f has a finite asymptotic value on F1.

Special cases of Theorem 19 show that for any positive integer n

if f(n) EA and f(n) 9‘ c, then feA and A*(f) is dense on C.  
Theorem 29; Let fezA and f(z) # c, where c is some finite constant.

Then A: is dense on C. (MacLane, 2, Theorem 5, p.278)

2529:: We may assume without loss of generality that c==0. Let Y be an

arbitrary arc of C. First we suppose that there is an interior point

of Y such that Tim inflf(z)l = O. From MacLane (1, Theorem 11 and its

2

Corollary, pp.25 - g8) we can find a crosscut F of C from gle‘Y to gze‘y

with the properties that f has nonzero asymptotic values on F at both g1

and Q2 and Q is in the open are from £1 to C2. Let A be the domain

bounded by r and the open are from £1 to g2. |f(z)l 2 m > 0 on F. We

pick a point zo<sA such that |f(zo)|< m. By the lifting argument of

 MacLane (1, p.13, Section 2), the ray [f(zo),0) produces a linear asymp-

totic value at a point in the are joining £1 to £2.

 If there is no interior point g of Y such that zkiPQinflf(z)] = 0,

then by shortening Y if necessary we can find a neighborhood U of Y such

that lf(z)l;zm > 0 for all Z<EU. By the Riesz-Riesz Theorem f(z) has

 



 

H
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finite asymptotic values on a dense set of points of Y. So there exists

a crosscut F1 of U with the properties that T1 ends at distinct points

g3 and :4 of Y, f has finite asymptotic values on F1 at both ends, and

the image of T1 by w = f(z) is a polygonal curve P on the Riemann sur-

face onto which f maps U. If the curve has only a finite number of

sides, we are finished. So we assume P has an infinite number of sides

in both directions. Let P* denote the projection of P in the w-plane.

Suppose that every neighborhood N in the w—plane contains a Subset

SN with the power of the continuum such that each point in SN 13 the

image of only a finite number of points in D. Let a be a finite asymp-

totic value of f at an interior point of Y. By choosing 6 small enough

the set {26 D: If(z)- a‘ < e] = D(e,a) is bounded by curves in D on

which f takes values on a square with center at a and sides of length e

(denoted by Q(e,a)) and interior points of Y. We choose 0 < 61 < 6 so

that a point WGESQ(e,a) lies on the boundary of Q<Efa)' Let w = f(z)

map D onto the Riemann surface over the w-plane, and let A(el,a) denote

the lifting of D(61,a). The part of the boundary of A(el,a) which lies

over Q(el,a) can contain no closed curves because otherwise D(el,a)

would be relatively compact in D. Thus each boundary component over

Q(€1,a) will be an open polygonal arc containing only a finite number of

segments since w is on the boundary of Q(el,a). The last segment of

any such polygon produces a linearly accessible asymptotic value of f at

some interior point of Y.

Now We assume that there exists a value wo which f(z) assumes infi-

nitely many times in A and that w0 is not an asymptotic value of £3 or

i . .
C4. We choose any ray R from wo to a point wl = me a where d 15 picked

so that R is a positive distance from the asymptotic values of Q3 and
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g4, R is not parallel to P*, and there are no branch points of the Rie-

mann surface over R. We consider all the liftings of R into the Riemann

surface starting at each of the infinitely many points over wo. The

liftings will be unique because R does not contain the projection of any

branch points. Some of the liftings may stop at points of P giving as-

ymptotic values at points of F1, but two distinct liftings cannot stop

at the same point of P. Since R is a positive distance from the asymp-

totic values of Q3 and Q4, R intersects P* in only a finite number of

So this lifting process gives a countably infinite number ofpoints.

finite asymptotic values with at most a finite number corresponding to

points of F1.

The theorem of McMillan and Pommerenke (Theorem 37, Chapter I)

generalizes some of the results of MacLane (2) since any function fe.A

for which f'(z) # 0 is also a meromorphic locally univalent function

without Koebe arcs. For example if f(z) is meromorphic locally univalent

without Koebe arcs and a is a finite asymptotic value of f at ge'C, then

either a is a linearly accessible asymptotic value in the tract {D(e),a}

or there is an infinite sequence of numerically distinct linear asymp-

totic values {an} occurring at a point gueEC such that an —>a and gn-—>g.

Another result is that if f'eaA and f'(z) # 0, then f possesses at least

three numerically distinct asymptotic values since f‘sA by Theorem 19.

For n 3 1, any function f meromorphic in D and any zeED, we define

the ”nth integral of f" as

('11) _ 2 $1 $2 Err-l

F (z) —J; J; J; ...J; f(gn)dsndgn_l...dsl

where the Ei's are dummy variables. In order to eliminatethestatement,
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"If f'(z) is nonconstant," in our theorems, we define the Class A? to be

the union of all functions in Class A and the constant functions.

Theorem 21: If f is holomorphic in D and satisfies the integral part of

Condition (ii) of Theorem 7, then f'esA*. (Earth and Schneider, 2,

Theorem 1, p.4)

Proof: First suppose f(0) = a # 0. Using the notation

2W .

m(r,f) = 2%“; 10g+|f(rele)ld9,

we have

m(r,f') = m(r,f'(f'/f)) S m(r,f) + m(r,f'/f).

According to the ”logarithmic derivative lemma" of Nevanlinna theory

(Hayman, l, p.36)

+

m(r, fo) <4log+m(R, f) + 410g+(10g+l—f_(16)—]) + 510g R+ 6log+R-}}+ log+ %+14

where 0 < r < R < 1. Suppose r > 1/2 and let R = (r+l)/2. Then

m(r,f'/f) < 4 log+un((r+l)/2,f) + 6 log+-(2/(l-r)) + K

where K is a constant that depends on a, but not on f. Therefore,

1 1 1

fen—nmnfvdr g o(l-r)m(r,f)dr+ J;(1-r)[6logf—r+ KJdr

1
+ 4J;2[1 - (#1)/2]1og+m(.g(r+1),f)dr.

Because of the hypotheses of this theorem, all the integrals on the

right hand side of the last inequality are finite. Consequently f'

satisfies the integral part of Condition (ii) of Theorem 7. So f'esA*.

Actually the previous proof demonstrates that if f and f' are
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nonconstant and f satisfies Condition (ii) of Theorem 7, then f' satis-

fies it also. So we have the following Corollary.

If f is holomorphic in D and satisfies Condition (ii) ofCorollary 3:

Theorem 7, then f(n)(z) eA* for all n 2 0. (Barth and Schneider, 2,

Corollary 1, p.6)

If f is holomorphic and normal in D, then f(n)(z) eA* forCorollary 11;:

n 2 0. (Barth and Schneider, 2, Corollary 2, p.6)

Proof: According to MacLane (1, p.44) if f is holomorphic and normal in

D, then m(r,f) g Cllog(l/(1—r)) + C2 where C1 and C2 are constants.

Hence f satisfies Condition (ii) of Theorem 7.

Theorem g: If f is holomorphic in D and satisfies

(l-r) log(l/(l-r))m(r,f)dr < 00,

then f and F(-1)(z) e A". (Earth and Schneider, 2, Theorem 2, p.7)

M: Since the integral condition in this theorem's hypothesis is

stronger than the integral part of Theorem 7's Condition (ii), feA*.

In order to establish that F(_1)(z) e A*, we will use the theorem of

Hayman (2, Theorem 2) which states that if F(z) is holomorphic in IzI<R,

f(z) = F'(z) has bounded characteristic and F(O)= 0, then for 0 < r < R

+

m(r,F) g (1 + 1.171%}? 11;) m(R,f).

 

Let R= (r+l)/2 where 0 < r < 1. Since f(z) is bounded in
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'2] < (r+l)/2 we can use the theorem of Hayman to obtain the inequality

m(r.F(‘1’> s (1+ (1/11))10g(4/(1 — r))m((r+ 1)/2,f).

Consequently

I (_1) l

,% (l-r)m(r,F )drgf‘g (l-r)m((ri'l)/2,f)dr

1 1 z,
+ fi 02[l—(r+l)/2](logifi:?;;is7ijhn«r+l)/2,f)dr.

Because of the hypotheses of this theorem, both of the above integrals

. -1)

of the right hand side of the inequality are finite. Consequently F(

. . (-1) 1

satisfies the integral part of Condition (11) of Theorem 7. So F GA}.

Theorem 21 and 22 may be generalized to meromorphic functions f for

which the Nevanlinna counting function N(r,f) = 0(1). Let A; denote the

union of the functions of Class Am and the constant functions.

1

ihggrgm 23: If f is meromorphic in D, N(r,f)==0(l), and‘£(l-r)T(nf)dr

7':

< m, where T(r,f) is the Nevanlinna characteristic of f, then f'eEAm.

(Barth and Schneider, 2, Theorem 4, p.11)

Since T(r,f) = m(r,f) + 0(1) and T(r,f') = m(r,f') + 0(1), this

Proof is completely analogous to that of Theorem 21.

Theorem 24: If f and F(-1) are meromorphic in D, N(r,f) = 0(1) and

fl(1-r)log(l/(l-r))T(r,f)dr < oo,

0

then f and F—1(z) e A*. (Barth and Schneider, 2, Theorem 5, p-lz)

m

\
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The proof of this theorem is quite similar to that of Theorem 22

where the meromorphic form of Hayman's Theorem (2, Theorem 2) replaces

the holomorphic one.
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