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ABSTRACT

THE THEORY OF CLUSTER SETS
By

Ruth Ann su

Since Painleve‘ founded the theory of cluster sets in 1895,
mathematicians have discovered many significant properties pertaining
to the set of limit points of a function at the boundary of its domain
of definition. The functions studied may be divided into the following
three major classes: Arbitrary Functions, Normal Functions and Class A
Functions.

Arbitrary functions have limited patterns of behavior with respect
to cluster sets because of the particular topologies of the plane and
sphere. For example, according to the Bagemihl Ambiguous Point Theorem,
any complex-valued function defined in the unit disk D has at most a
countable number of boundary points eie with the property that there
exist two curves in D ending at e'® along which £ has disjoint cluster

sets. Also, globally, there are numerous relationships between the

: i6
cluster get of a function relative to an angle at a point e ° and the

cluster set of a function relative to a region between two circles each

i0
internally tangent to the unit circle at e .
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Ruth Ann Su

A function is normal in a simply connected region if its family of
arbitrary conformal mappings of the region onto itself has the property
that every sequence of this family contains a subsequence which con-
verges uniformly or tends uniformly to infinity on every compact subset
of this region. A meromorphic function in D is normal if the function
omits at least three points in D. In addition a complex function in D
is normal if it is uniformly continuous from the disk with the hyper-
bolic metric to the sphere with the chordal metric. The sum of two
analytic normal functions is not necessarily normal although the special
type of normal functions called uniformly normal has the property that
the sum of two uniformly normal functions is uniformly normal. The
definition of a uniformly normal function is analogous to the definition
of a normal function where the sphere with the chordal metric is re-
placed by the plane with the usual metric.

Suppose f is a holomorphic nonconstant function in D. Then f be-
longs to Class A if for each point in a dense set of C, f has a path in
D ending at eie along which f approaches a limit. £ belongs to Class B
if and only if the set of points eie, for which f has a path in D ending

at e19 along which either f approaches infinity or the modulus of f is

bounded by some finite number, is dense on C. For any constant A greater
than or equal to zero the level set consists of all points z in D for
which the modulus of f is equal to A. Then f belongs to Class L if the
maximum diameter of the components of each level set intersected with the
set of z having modulus greater than r approaches zero as T approaches
one. A very important theorem in the study of Class A Functions states

that a function is in Class A if and only if the function is in Class B
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Ruth Ann Su
if and only if the function is in Class L. Class A Functions are not
closed under the operations of addition and multiplication. In fact
every nonconstant, holomorphic function in D can be written as the sum

or as the product of pairs of functions in Class A.
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PREFACE

The purpose of this thesis is to bring together recent important

developments in the theory of cluster sets. We assume that the reader

would have the mathematical training equivalent to that of a graduate
course in the theory of complex variables and a cursory knowledge of
the works by Collingwood and Lohwater (1), Noshiro (1) and MacLane(l).

Painleve (1) founded the theory of cluster sets in 1895 when he
gave the name "domaine d'indetermination' to the set of limit points of
a function at a boundary of its domain of definition. Today this set is
called the cluster set of a function at a point. Although the theory
was first considered for analytic functions, it is applicable to more
general functions, and much of the present-day research is largely
topological.

Early developments in the theory of cluster sets were mostly con-
cerned with the behavior of an analytic function in the neighborhood of
an igolated essential singularity or in a discontinuousvset of singu-
larities. The earliest result dealing with cluster sets was the theorem
proved in a paper of Weierstrass (1) in 1876. It states that if z_is
an isolated point of a set E in the unit disk D and f(z) is meromorphic
in D - E, then the set of limit points of f at z is either a single
point or the entire Riemann sphere. In 1905 Painleve proved that this

theorem is true for any z, in a set of measure zero.

If E is allowed to contain a continuum, then the cluster set of f
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at z, may be a proper subset of the Riemann sphere. A lot of research
has been done concerning the boundary behavior of functions defined in a
simply connected domain whose boundary contains more than one point and
which can therefore be mapped conformally onto the open unit disk.

The study of cluster sets at a continuous boundary begins with the
Fatou paper (1) of 1906 on the radial limits of functions analytic in
the unit disk. Caratheodory (4) studied the boundary correspondence
between the unit disk and an arbitrary simply connected domain under a
conformal mapping. This led to the notion of a prime end, the corres-
pondence between the points of the unit circle and the prime ends of
the domain whose impressions are the cluster sets of the mapping
function at the corresponding points.

Since the 1930's, cluster sets have been widely studied. The books

Ihe Theory of Cluster Sets by Collingwood and Lohwater (1) and Cluster

Sets by Noshiro (1) contain most of the important results before 1960.
In this thesis we assume the above material to be background information
and present some of the more significant developments since then.

We organize our material into three chapters which deal with the
three major classes of functions: Arbitrary Functions, Normal Functions,
and Class A Functiong. We have selected results from The Theory of
Cluster -Sets by Collingwood and Lohwater (1) for preliminary work in the

chapter on arbitrary functions and results from Cluster Sets by Noshiro

(1) for introductory material in the chapter on normal functions. The

last chapter uses as background the MacLane paper (1), Asymptotic Values

of Holomorphic Functions, since this paper is the foundation for the

study of Class A functions, which consist of non-constant holomorphic

functions in the open unit disk which approach limits on a dense subset
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3
of the unit circle. All of the results from these references have been
included without proof.

In the first chapter we primarily consider functions in the unit
disk without imposing any restrictions except that they be complex-
valued. In spite of the lack of restrictions, these functions have 1li-
mited patterns of behavior with respect to cluster sets. Much of this
is the result of the particular topologies of the plane and the sphere.

Bagemihl's Ambiguous Point Theorem is an outstanding example of the
limited patterns of behavior mentioned above. The theorem says that if fis
a complex-valued function defined in D, then there are at most a count-
able number of boundary points { with the property that there exist two
curves in D ending at ¢ along which f has disjoint cluster sets. Even
though this result is true in the plane, it does not apply if the domain
of the function is the unit ball in three dimensions (Church, 1). More-
over the addition of some mild restrictions, such as requiring the func-
tion to be analytic, does not yield a stronger conclusion (Bagemihl and
Seidel, 4). This theorem has been extended by the theory of prime ends
to other domains, such as simply or multiply connected regions, with
approximately the same result.

The above theorem has found wide application in the study of clus-
ter sets. For example, let f have the n-separated-arc property at a
point p if, for any integer n>1, there exist n arcs in D ending at p
which are mutually disjoint except for p where the intersection of the
cluster gsets of all n arcs is empty while that of any n-1 of them is
nonempty. Then if £ is a homeomorphism of D onto itself, any point p
satisfying the n-separated-arc property is an ambiguous point. Conse-

quently these points are at most countable. However, this does not hold
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4
in general as there is a continuous function which has the 3-separated-
arc property at all but atmost a countable number of points (Piranian, 1).

An interesting relationship between different cluster sets is the
relationship between the angular and the horocyclic cluster sets. An
angular cluster set is the cluster set of a function relative to an
angle at a point eie(EC while a horocyclic cluster set is the cluster
set of a function relative to a region between two circles each intern-
ally tangent to the unit circle at a common point. Since an angle is
the region between two chords originating from eie, a horocyclic region
and an angle have no points in common near eie. So a relationship be-
tween these two types of cluster sets should not be expected. However,
there are numerous relationships between these two kinds of cluster sets
on a global, not local, basis. For example, for any function the set of
points eie on the unit circle for which there exists an angle and a
horocycle such that the angular cluster set is not contained in the
horocyclic cluster set is a set of measure zero and of first category.

I is called a selector of arcs if it associates a nonempty col-
lection of arcs with every point in C. The I-principal cluster set
Hr(f,e o) is the intersection of the cluster sets of all the arcs in

i0, i8,
rwhich end at the point e ~. Let Hr?(f,e ,#) denote the closure of
the union of the r-principal cluster sets for all points eie for which
'e19 - eieo' < 4. Then the boundary I-principal cluster set at eieo is
the intersection of the l]r(f,eieo,u)'s for all positive u. For any
continuous function f in D and all points in C, the I-principal cluster
set is equal to the boundary r-principal cluster set except for a set of

first category on C 1f I' is either the collection of all arcs or all

chords,
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5
For continuous functions defined in D, the cluster sets along all
Jordan arcs in D ending at a point on C form a topology where the dis-
tance between any two closed sets is defined as the greatest distance

between a point in one set and a nearest point in the other set. This

topology is called the M-topology. If ele is not an ambiguous point,

then the set G(ele) consisting of its Jordan-arc cluster sets is compact
in the M-topology. So another comsequence of the Ambiguous Point Theo-

i0
rem is the fact that the set of points for which G(e'’) is not compact

is at most countable.

The cluster sets of special classes of functions have been studied
extensively. As might be expected the cluster sets of these functions
possess properties which are not necessarily true for the cluster sets
of arbitrary functions. Some of the functions investigated most fre-

quently are normal functions and Class A functions.
Any normal meromorphic function £(z) in D which approaches a limit

a at a point z, in C along a Jordan curve lying in D also has the angu-

lar limit o at z, Moreover, if f(z) tends to a limit along a simple

continuous curve z(t) for which (z(t)I=>1 as t &1 and its end contains
more than one point, then it is a constant function. Another example
where f(z) must be a constant function occurs when it approaches a cons-
tant along a sequence of arcs inD which converge toa boundary arc in C.
Analytic normal functions are not closed under addition although

the special type of functions called uniformly normal functions are

closed under addition. These functions satisfy the condition sup (1 -

2 zeD
12| )lf'(zﬂ ig finite. If, in addition, a uniformly normal function f

satisfies the condition £(0) =0 then it is called a Bloch function. The

collection of all Bloch functions form a Banach space. Each Bloch
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6

function, and thus each uniformly normal function, has the property that
it possesses angular limits on an uncountably dense subset of C.

Any normal holomorphic function in D belongs to the class I,
which consists of those holomorphic functions f in D having the property
that if there exists a pair of arcs t; and t, along which f(z) > as
z—>peC, then along any path between t and t, the function f(z) is un-
bounded. If f is in class Ip, then the set G(eie) consisting of the
set of all cluster sets of all Jordan arcs in D which end at p is
compact in the M-topology. Consequently, for any normal holomorphic
function the set G(eie) is compact in the M-topology.

In order to study the behavior of normal meromorphic functions near
C, D has been compactified into a Hausdorff space M in such a way that
any bounded holomorphic function f has a continuous extension t and D is
dense in M. Two points ml,mzesM are in the same Gleason part if for any
bounded holomorphic function of modulus less than or equal to ome, its
extension % has the property that the difference in magnitude of %(ml)
and %sz) is strictly between 0 and 2. This determines an equivalence
relation. Each Gleason part consists of either a single point or the
image of a one-to-one analytic map of an open disk into M. The Gleason
parts partition the boundary points of D in such a way that any bounded
analytic function has a continuous extension onto the boundary of D. A
function is normal in D if and only if it can be continued continuously
to the set G consisting of the maximal ideal space M of H® minus the tri-
vial Gleason parts lying over the boundary of D. So, in this sense,
normal functions are a generalization of bounded functions. 1If f is a
normal meromorphic function, then it is so continuous that on every non-

trivial Gleason part f is either meromorphic or identically infinite.
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7

Let £(z) be a holomorphic nonconstant function in D. Then £(z) be-
longs to Class A if and only if for each point in a dense set of C, it
has a path in D ending at eie along which it approaches a limit. f(z)
belongs to Class B if and only if the set of points eie for which it has
a path in D ending at eie along which either f—> or |f| < a where a is
finite is dense on C. For any constant A > 0, the level set LS(A) con-
sists of all points z in D for which |f(z)| = X. Then £(z) belongs to
Class L if and only if the maximum diameter of the components of each
level set intersected with {z: |z| >r}—+0as r—>1. A very important
theorem in the study of Class A functions states that a function is in

Class A if and only if the function is in Class B if and only if the
function is in Class L.

In order to generalize Class A functions, Classes Am’ Bm and Lm are
defined by replacing the word "holomorphic'" with "meromorphic'" in the
appropriate definitions. Holomorphic normal functions are in Class A
and meromorphic normal functions are in Class Bm. Class Am is contained
in Class Qm. Class Hm is contained in Class Bm' However, there are ex-
amples of functions in Class Bm that are not in Class A.In and examples of
functions in Class Lm that are not contained in Class Bm'

A tract associated with a constant a is a collection of nonempty
domains D(e) such that each D(e) is a component of the open set in D
which is mapped by f into the open disk about a of radius € and the in-
tersection of all of the D(e)'s is called the end of the tract. It is a
nonempty, connected closed subset of C. A tract is called global if and

only if its end consists of the entire circumference C and for each arc
Y contained in C there exists a sequence of arcs Y, contained in D(1/n)

such that the Yn‘s approach Y. If f is in Class Am and {Yn} is a




epence of disjoi
w(f(z) - 8) >0 v
ol K which contal
uly asymptotic v:
global tract if a
241,

Ifaisa fi
e onto a linear
uessible, If f
st of linearly a

Class A fun
i wltiplicati
Ve be written
(lasg 4. Furthe,
"®resented {p o,
holcmorphic func,

ClﬂSS A and g fu

fllnctit)ns in cla“
Our bibliog
iy the Tecent

ey By be

] Lohwater) an



8
sequence of disjoint simple arcs in D which tend to the arc Y on C and
sup(f(z) - a) >0 where a is a complex number, then f has a tract with
end K which contains Y. In addition for any interior point of K, the
only asymptotic values come from the tract. If f is in A, then f has a
global tract if and only if f is unbounded on every curve in D on which
lz| = 1.

If a is a finite asymptotic value along an arc that f maps one-to-
one onto a linear segment, then this asymptotic value is called linearly
accessible. If f is in Class A and omits some finite constant, then the
set of linearly accessible points is dense on C.

Class A functions are not closed under the operations of addition
and multiplication. In fact every nonconstant, holomorphic function in
D can be written as the sum or as the product of pairs of functions in
Class A. Furthermore, any nonconstant meromorphic function in D may be
represented in each of the following ways: (i) the quotient of two
holomorphic functions in Class A, (ii) the product of a function in
Class A and a function in Class Ame Class Lm’ (iii) the sum of two
functions in Class Amfﬁ Class Lm'

Our bibliography consists primarily of the publications which con-
tain the recent developments in the theory of cluster sets. Older re-
ferences may be found in the bibliographies of the books of Collingwood

and Lohwater, and Noshiro.
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CHAPTER I

ARBITRARY FUNCTIONS

INTRODUCTION

In this section we will first introduce some of the important defi-
nitions which will be used throughout the paper. Then we will summarize
some of the major results in the theory of cluster sets which are in-
cluded in the book by E.P. Collingwood and A.J. Lohwater (1).
We will consistently use the notation D for the open unit disk, C
for the unit circle, and W for the Riemann sphere.
Some of the concepts which we will use repeatedly include those of
cluster sets, asymptotic values, and range of values. If z, is any
point in D and f is an arbitrary function defined in D, then the cluster
set C(f,zo) of f(z) at z  is defined in one of the following two equi-
valent ways:
(1) C(f,zo) is the set of points a on the Riemann sphere W
for which there exists a sequence {zn} in D-[zo] such
that, as n &> o, lim z =z and lim f(zn) = a where
D - {zo] is D with z, removed.

(ii) For r > 0, C(f,z)) = nBr where D_ = £(d_N (D - [Zo}))

and dr is the disk Iz- Zol <r.
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10
If G is any infinite subset of D, then the cluster set CG(f,zo) of

£(z) relative to G is defined by
CG(f,zo) =N Dr(G)C C(f,zo)

where D (6) = £(d_N (D - {z_})NG).

The range of values R(f,zo) is defined to be the set of values a

such that there exists a sequence {zn} in D such that as n — «

and z # z , 1im z = z and f(z ) = a. The set of asymptotic values
n o n o n -
A(f,zo) at z, consists of those complex numbers a for which there
exists a continuous curve z = z(t), 0 < t < 1, such that z(t) C D -{zo},
lim z(t) =zo and lim f(z(t)) = a as t — 1. We will use the
symbol A(f) to denote the union of all of the A(f,zo)'s for all zo's
in C and the symbol R(f) to denote the union of all of the R(f,zo)'s.
If ¥ = 2(t), 0<t <1, is a simple centinuous arc lying in D

except for T = z(l) € C, then ¥ is called a boundary arc at T.

Theorem 1: If £(z) is an arbitrary function defined in D and if {
is an arbitrary point of C, then there exists a simple arc ¥, lying in

D and terminating at ¢ , such that CY(f’C)= C(f,t). (Collingwood, 2)

A set E on C is of first category if E is the union of a countable

set of nowhere dense sets; a set which is not of first category is said

to be of second category. A set E on C is called residual on C if the

complement of E on C is of first category.
For G any subset of D, a rotation Ge of G is obtained by mapping

i
each point z € G to the point ze ©.
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11

Theorem 2: If the real or complex function £(2z) is continuous in D
and if {Ge} is the family of rotations of a continuum G, such that
Goﬂc is the point z =1, then CGe(f,eie) = C(f,eie) on a residual set
of points eie on C. (Collingwood, 3)

Let A(1) be an open connected subset of D such that A(_l) n C
is equal to {1}, and let A(eie) denote the transform of A(l) under the
rotation about the origin that sends 1 into eie‘ Dragosh (2, Lemma 1,
p.58") proves that CA(eie)(f’eie) = c(f,eie) for a residual Gg subset
of C.

In order to define boundary cluster sets, we use the notation
if
o, 0< o -0 | <m) = U ceg,el®). (0

where the union is over 0 < Ie = eol < n. Then the boundary cluster
&CBb(f,elec’) may be expressed as
c (f,e¥) = N C(E, 0< Jo - o <m. (2)
Bo n>0

i
The left-hand and right-hand boundary cluster sets cBl(f’e 8) and
CBr(f,eie) are defined by (1) and (2) and the restrictions that

0<y - 8, <mand 0 < 8, - 0 < n respectively.

Theorem 3: 1f £(z) is a single-valued (real or complex) function in D,
then

igy _ igy - ig
Cpp(£,e77) = Cy (£,e77) = C(£,e7™)

i .
€Xcept perhaps for a countable set of points e 9 ¢ c. (Collingwood, 4)
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The right-hand cluster set CR(f,ele) is defined to be the set of

ie
points a such that as n—>0a 1lim f(rne D) = o where 1lim r = 1 and

lim 6 = 6 with 0, < 9n+1 < .... The left-hand cluster set CL(f,eie)

is defined in the same way except that 0y 2_6n+1 > .... Actually the
right-hand cluster set is the cluster set CG(f,eie) where G is the semi-
disk closed relative to D with diameter from -eie to eie and to the
right of it. The left-hand cluster set is defined in a similar way but

is to the left of the diameter.

Corollary: If f(z) is single-valued in D, then

e 0

cR(f,ei ) = CL(f,eie) = C(f,el?)

except perhaps for a countable set of points ele € C. (Collingwood and

Lohwater, 1, Corollary, p.83)

Theorem 4 (Bagemihl Ambiguous-Point Theorem): If f(z) is a complex
i6 .
function defined in D, then the set of points e’ on C with the pro-

i6
perty that there exist two boundary arcs r; and r, at e such that

i6

c, (£,e' nc_ (5,6 =0

1 2

is at most countable. (Bagemihl, 1)

The points eie defined in Theorem 4 are called ambiguous

points.
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RESULTS RELATED TO BAGEMIHL'S AMBIGUOUS-POINT THEOREM

Researchers, such as Bagemihl, H. Mathews and McMi]llan, have
proved many theorems related to the Bagemihl Ambiguous-Point Theorem.

Let g be an arc lying in D - {p} except for one end point at p.

The extended arc cluster set of f at P> ECa(f,p), is defined to be the
set MU C(f,q) where the intersection is taken over all neighborhoods
N of p and the union over all q on g NN for q # p. The point p is

called an extended ambiguous point for f if there exist arcs a and B in

D - {p} such that ECy (£f,p) and ECB(f,p) are disjoint.

Theorem 5: If f is an arbitrary function defined in D and if a point p
on C is an extended ambiguous point for f, then p is an ambiguous point

for £. (H. Mathews, 1, Theorem 1, p-138)

Since Mathew's proof only holds when f is continuous, Stebbins (1)
recently published the following proof. Let a be any arc in D - {p}
such that a tends to p. It is sufficient to find an arc o' C D which
tends to p such that Ca'(f’P) C ECa(f,p). By using points q ea N C
and the method of Gross (1), we construct a '"wedge" Z in D such that
évery sequence of points {zk} in Z tends to p and {f(zk)} has limit
points only in N mq—)Where q € a NC for q # p and the intersection

is taken over all neighborhoods of p.

M‘z: An arbitrary function from D into W can have at most a

countable number of extended ambiguous points. (H. Mathews, 1,

Theorem 2, p.139)
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This corollary follows immediately from Theorem 5 and the Ambi-
guous Point Theorem.

If G is a simply connected region in the extended complex plane,
then we denote the set of boundary points of G by F(G). If 10 e F(G)
and if there exists an arc in G with an end point at eie, then eie is

called an accessible point of F(G).

A Jordan arc which lies in G except for its two endpoints or a
Jordan curve which lies in G except for one point is called a cross-
cut of G. A sequence Ay dps--es Qs - of crosscuts of G is called a
chain if the following conditions are satisfied:

(i) No two of them have any point, including their endpoints, in

common

(ii) 4, separates G into two domains, one of which contains L

and the other Q- The domain containing Q1 is denoted
by dn;
(iii) The diameter of a, tends to zero as n tends to infinity.
o chains Q = {qn} and Q' = {qn'} in G are equivalent if, for all
values of n, the domain dn contains all but a finite number of the
crosscuts qn' and the domain dn' contains all but a finite number of
the crosscuts q,- The class of all chains equivalent to a given chain
is an equivalence class. A prime end of G is an equivalence class of
chains in G,

A curve A in G he prime end P means a simple continuous

at
curve z = z(t), 0 £ t < 1, such that z(t) € G and every sequence of
Points on A that approaches F(G) also converges to P in the sense that
all but a finite number of the members of the sequence are contained

in each dn. 1f 10 ¢ F(G) and there exist distinct prime ends Pj,P,€G
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and curves r and s at P1 and P2 respectively such that r and g are also
arcs at eie, then eie 1s a multiply accessible point of F(G). If an
accessible point is not multiply accessible, it is simply accessible.
If A is an arc at a point eieeF(G) (or a curve at a prime end P of
G), then the cluster set of f at eie (or at P) on A will be denoted by
CA(f,eie) [or CA(f,P)]. If P is a prime end of G and there exist two

curves r and s at P such that Cr(f,P)ﬂCS(f,P) = ¢, then P is called an

ambiguous prime end of f.

Theorem 6: A necessary and sufficient condition that a simply connected
region G must satisfy, in order that every function defined in G have no
more than countably many ambiguous points from different prime ends, is
that at most countably many accessible points of F(G) be multiply acces-

sible from G. (Bagemihl, 5, Theorem 8, p.203)

Proof: Suppose that the set M of all points of F(G) multiply accessible
from G is more than countably many. Let w=f(z) map G in a one-to-one
conformal manner onto D. This mapping induces a correspondence between
F(G) and C under which every point of M corresponds to at least two
points of C. Thus f has more than countably many ambiguous points

Assume that F(G) contains at least two points. Let z=¢(w) map D
in a one-to-one conformal manner onto G. If a function g(z) in G has an
ambiguous point eie that is simply accessible from G, then the function
h(w) = g(¢6(w)) in D has an ambiguous point at the point w on C that cor-
responds to eie under the mapping ¢. It now follows from the Ambiguous
Point Theorem that g(z) has no more than countably many ambiguous

pointg,
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Theorem 7: Let f(z) be an arbitrary function in a simply connected re-
glon G with at least two boundary points. Then f has at most enu-

merably many ambiguous prime ends. (Bagemihl, 5, Theorem 9, p.203)

Proof: Let z = ¢(w) be a one-to-one conformal mapping of D onto G. By
Caratheodory's Theorem (Caratheodory, 3 and 4) this mapping induces a
one-to-one correspondence between the points of C and the prime ends of

G such that, if P is a prime end of G and A_ is a curve at P, then

P

under the mapping is an arc @ at the point T of C

the preimage of Ap T

that corresponds to the prime end P. If f has more than enumerably
many ambiguous prime ends, then the function h(w) = f(®(w)) in D would

have more than enumerably many ambiguous points, which is impossible.

MQ: Suppose f is continuous, S is a closed subset of W and the
set B(f,S) of points eie for which there exists an arc ¢ at eie such

that Cd(f,eie) C S is uncountably dense on an arbitrary closed arc A on
C. Then the set B*(£f,S) of points eie such that for any arc ¢ at eie

C,,(f,eie)ns # ¢ is residual on A. (McMillan, 2, Theorem 5, p.188)

The theorem is proved by showing that B*(f,S) N Interior(A) rela-

tive to C = n{eie in the interior of A such that there exists a cross-
n

cut T at ei'e with diameter less than 1/n such that £(T) C {w: e (w,8)<

lln}} where n is a positive integer and @ (w,S) denotes the

Euclidean distance between w and S.
If f is any function that is defined in D and takes its values in

Some metric space, then a boundary function for f is a function ¢ on C

such that for every x € C there exists a simple arc A having one
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endpoint at x for which A - {x} CD and as z approaches x along A

lim £(z) = $(x).

R,
Theorem 9: Every function f defined in D has at most 2 ° boundary

functions. (Bagemihl and Piranian, 1, Theorem 1, p.201)

Proof: By the Ambiguous Point Theorem, f has at most countably many am-
biguous points. At each ambiguous point f has at most 2N° asymptotic

No
values. Therefore, f has at most (ZKO) =2N° boundary functions.

RESULTS ON BOUNDARY FUNCTIONS

In 1965 Kaczynski published a paper on boundary functions for
functions defined in D. It includes descriptions of boundary functions

in terms of honorary Baire class functions.

Theorem 10: If f is a homeomorphism of D onto itself and ¢ is a

boundary function for f, then there exists a countable set N such that

¢'D is continuous where ¢ is the restriction of the boundary function to
o

C - N. (Kaczynski, 1, Theorem 1, p.590)

Let S* be a base of open sets in R2 and let acc(E) denote the set
of all points on C which are accessible by arcs in E. Then the above

theorem ig proved by showing that for any S € S*

= -1
(D ace(£™koN%)) = acc(s2@NsH N £ D - HU (C-£D-5)

(i1) if U is any open set which can be expressed in the form
- & -1
U=Us_where S_¢ S* and 5 S U, then Luy = Uace(£7(
n n

(S_ND)) - N where N consists of all of the ambiguous points
n
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accessible by arcs in f-l(DnU).

Lemma 1: Let f be a continuous real-valued function in D and )\ be a
finite-valued boundary function for f. Let r and t be real numbers with
r< t. Then

(A) there exists a G6 set G and a countable set N such that
-1 -1
A ([e,re0)) D620 "([t,+) -N

where a G6 set is the intersection of a countable number
of open sets and

(B) there exists a G(S set H and a countable set M such that

A0, e]) 2 HD AT (o)) - M.

(Kaczynski, 1, Lemma 3, p.592)

Proof: Let n be any positive integer. Let € = (t-r)/2, Cn = {zest:
Izl =1 - 1/n}, An = {zeRZ: 1> ,z' >1-1/n}, E = {x e C: there
exists an arc y at x having one endpoint on Cn with v - {x} € f-l((dw,r
))}, and K = {xeC: there exists an arc v at x with v - {x} € f-l((t -€,
*<))}. For a fixed n and any point x in K we can find a simple arc Yx
at x such that Y, - {x} ¢ An.ﬂ f-l([t-e,+0®). Then vy _ - {x} is a con-
nected set. So Yy - {x} must be contained entirely within one component
of the open set Ann f-l((t-e,+00)). Let Ox denote this component and

let T be the set of all points of K which are two-sided limit points

of E .
n
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We want to show that if x,y € T and x # y, then Ox n 0y is the
empty set. Suppose on the contrary there exists an element z in
o, N Oy. We choose points x' and y' in Y, - {x} and Yy - {y} respect-
ively. Then we join x to x' by a subarc of Yx and join x' to z by an
arc in Ox’ Similarly we join z to y' by an arc in Oy and join y' to y
by a subarc of Yy’ Putting these arcs together, we obtain an arc a
with endpoints at x and y such that ¢ - {x,y} An N f-l((t-e,'|'°°)).
If o is not a simple arc, we replace it by a simple arc &' contained
in a having endpoints at x and y and rename the simple arc a. a is a
crosscut of D. Let L1 and L2 be the two open arcs of C determined by
x and y. According to Newman (1, Theorem 11.8, p.119), D - & has two
components V1 and V2 whose boundaries are L1 U a and L2 U a respect-
ively. Because Cn is connected and does not intersect a, it is con-
tained entirely within one component of D - a. By symmetry we may
assume that Cn is contained in V2. Since x is a two-sided limit
point of En’ L1 must contain a point of En and hence a point of En'
Suppose w is an element of L, N E . There exists a simple arc B
joining w to some point on Cn with B - {w} ¢ f']'((-oo,r)). But B - {w]}
cannot have a point in common with & because a - {x,y} € f-l((t'e,
+®)) and f'l((-oo, ) N £1((t-e,¥)) = ¢. Thus C,U B - {w)) is
4 connected set not meeting a while meeting V,, and so is contained
in VZ' Consequently w is in the boundary of V2' However, this is a
contradiction because w € L1 and the boundary of V2 is L2 U . Conse-
quently if x,y € T and x # y, then o, n Oy = 9.

T is countable since any family of disjoint nonempty open sets is
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countable. Also the set S of all points of En which are not two-sided
limit points of En is countable. Again let n be any positive integer.
Then KN E_ = [KNs] u[xn(frl - $)] = (KNS) U T. So for any n the
intersection of K and En is countable. Therefore N = KN UE = U(Kﬂf)
is countable. Let the GJ set G be the set C minus the union of all E 's:
Since A~ ((-eo r)) is contained in the union of the E 's and therefore
the E's, ¢ - A7l ((~0,r)) D C - VE =62 K- N But C- A (o) is
equal to )\-1( [r,'hxx)) and K contains X_l((t- t,%)) which contains
)x_l([t,*'w)) 5 so L-l([r,"'oo))contains G which contains K - N which
contains )\-1([:,+m)) - N.

(B) follows from (A) by replacing f and A by -f and -A.

Let S and T be metric spaces. A function f is of Baire class

1(8,T) if and only if

(1) domain g = s,

(ii) range f is contained in T
(iii) there exists a sequence of continuous functions £, each map-
ping S into T such that fn approaches f pointwise on S.

A function g is of honorary Baire class 2(S,T) if and only if

(i) domain g = s,
(ii) range g is contained in T,
(1i1) there exists a function f of Baire class 1(5,T) and a count-
able set N such that the restriction of f to the set S - N
is equal to the restriction of g to S - N.

Any function f from S into the reals is of Baire class 0 if and

only if it ig continuous. For any ordinal number o greater than zero,

fis of Baire class o if and only if f is the pointwise limit of a
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sequence of functions each of Baire class less than q.

Theorem 11: If f is a continuous real-valued function in D and A is a
finite-valued boundary function for f, then A is of honorary Baire

class 2(C,R). (Kaczynski, 1, Theorem 2, p.594)

Proof: For each pair of rational numbers r and t with r < t, we can
choose, from Lemma 1, G& sets G(r,t), H(r,t) and countable sets N(r,t),
M(r,t) such that X-l([r,‘*'w)) contains G(r,t) which contains
)t-l([t,'l'w)) - N(xr,t) and )\-1((-00, t]) contains H(r,t) which contains
)\-1((-°°,r]) - M(r,t). Let N be the union over r and t of N(r,t) uM(r,t)
where r is smaller than t. Thus N is c‘ountable. Let }\o be the res-
triction of A to C - N and G*(r,t) be G(r,t) - N. Since every count-
able set is an Fy set, G*(r,t) is a Gy set. k;l([r,+°°))= X-l([ra"'w))
- N which contains G*(r,t) which contains k-l([t,"'oo)) - N which is
equal to K;I([t,"'oo)) . If t is a fixed rational number, let r be
elements of a strictly increasing sequence of rational numbers conver-

ging to t. Then

0 - 00 _1 _ 00 _1 o
n x(,l([rn,m))gnglc*(rn,c)gxo ([t,+w>>—n91xo ([x_,+o)).

-1
And consequently for every rational t, }\0 ([t,+°°)) is a G; set.
If u is any real number, choose a strictly increasing sequence of
rational numbers t  converging to u. Then X;l([U,"'w)) is equal to the

intersection over n of X;l([tn,*'w)). Thus )\;1([11,+°°)) is a Gy set.

Similarly X;l((m,u]) is a G, set for each real u. Therefore }\ol((u,""w))

is the intersection of an Fd set with C - N where an F, set is any set

which is the union of a countable number of closed sets. By a theorem
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of Hausdorff (1, p.309), ko can be extended to a real-valued function
)\1 on C such that for every real number u, X;l([u,+°°)) is a G6 set and
kil((u,+w)) is an F, set. By Hausdorff (1, Theorem IX) )\.1 is of Baire
class 1(C,R). Since A(x) = )\l(x) except for x € N, A is of honorary

Baire class 2(C,R).

N
Corollary: Let f be continuous. Iff : D—)RN where R* is the
N .
product of the reals with itself N times and A:C — R is a boundary
N .
function for f, then A is of honorary Baire class 2(C,R"). (Kaczynski,

1, Corollary, p.595)

Proof: We express f and A in terms of their components: f=< fl’ 2
“"fN> and A =<)\1,)\2,...,)\.N>. }\i is a boundary function for £, and
$0 is of honorary Baire class 2(C,R). Now we choose a function g5 of
Baire class 1(C,R) that agrees with }\i except on a countable set Mi'

N
Setting g = <gl,g2,...,gN> we see that g is of Baire class 1(C,R ) and
that g agrees with A except on the countable set which is the union of

N
Mi for i = 1,.,,N. Hence A is of honorary Baire class 2(C,R ).

. . 3 .
@_a_g: Suppose g is a continuous function mapping C into R, q is a
point of R3, and € is a positive real number. Then there exists a con-
tinuous function g*:C —>R3 such that q does not lie in the range of g*

and for all x e C, [g(x) - q] 2 € implies g(x) = g*(x). (Kaczynski, 1,

Lemna 4, p,596)

3 -
Broof: Let S be the set of points y in R™ for which ly - ql is smaller

than €, 1f the image of C by g is contained in S, let g*¥:C — R™ be
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any continuous function whose range does not include q. Otherwise the
preimage of S, g.l(S), 1s a proper open subset of C. Hence it can be
expressed in the form g-l(S) = Ik where Ik is the set of elements

eit for which g <tc< bk and k # 1 implies that Ik and I1 are disjoint.
Since g-l({q}) is a closed compact subset of g-l(S), it 1is covered by
a finite number of the Ik's, say the union of 11,12,...,In. The end-
points eia’k and eibk of Ik are not in g-l({q}). So there exists, for
each k, a continuous function 81 from fk into R3 such that gk(eiak)

ia ib ib
=g(e k), gk(e ky = g(e” K) and q is not in the range of 8- We de-

fine

g*(x) g(x) if x e C - (Il U I2 U...u I)

n

g*(x) gk(x) ifxel, k=1,2,...,n.

k,

Thus g*:C —)R3 as required.

Theorem 12: 1If f is a continuous function mapping D into the Riemann
sphere W and \ is a boundary function for f, then A is of honorary

Baire class 2(C,W). (Kaczynski, 1, Theorem 3, p.596)

Proof: Since W is a subset of R3, the Corollary of Theorem 11 shows
that A ig of honorary Baire class 2(C,R3). Let g be a function of Baire
class 1(C,R3) which differs from A only on a countable set N. Then

8(C) - W is countable. Thus there exists a point q inside of W which

is not in the range of g. Let g, be an element of a sequence of con-
tinuous functions converging to g. By Lemma 2 there exists, for each

U, a continuous function g:‘l:C —>R3 such that q does not lie in the

. = o%(x).
range of g* and, for all xeC, 'gn(x) - q| > 1/n implies g (x) = gk(x)
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Then g;(x) approaches g.

We now want to define a function P. If a € R3 - {ql, let 1 be
the unique ray with endpoint at q that passes through a and P(a) be the
point of intersection of 1 with W. P is a continuous mapping of
R3 - {q} onto W and P fixes every point of W. Therefore, P(g(x)) =A(x)
if x ¢ N. P(g:(x)) is a continuous function from C into W and P(g:(x))

= P(g(x)) as n =>co.

Theorem 13: If the function f has a boundary function A that is a
Baire function, then every boundary function for f is a Baire function.
If A is of Baire class o 2 3, then every boundary function for f is of

Baire class q. (Bagemihl and Piranian, 1, Theorem 3, p.202)

Proof: Let A be of class ¢ and suppose that )\1 is another boundary
function for f£. By the Ambiguous Point Theorem, )Ll differs from A at
no more than countably many points; therefore, )\1 is of Baire class B
where B is less than or equal to the maximum of 2 and ¢ according to
Hahn (1, Theorem VII, p.352). By a similar argument q is less than or

equal to the maximum of 2 and B.

SOME SPECIAL TYPES OF CLUSTER SETS

Frequently mathematicians have investigated special cluster sets
of D, For example, in our introduction of this chapter we mentioned
boundary cluster sets and right-hand and left-hand cluster sets. In
this section we will consider another type: the outer angular cluster

Set. In later gections we will consider some others.

d £
A M angle is a domain bounded by an arc of C and two chords o
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. . i :
the unit circle each having e ® as an endpoint. The outer angular

CA(f,eie) is defined to be the union of all of the cluster
ig

sets C (f,ele) where A is a Stolz angle with vertex at e
A

cluster set

Lemma 3: Let f be an arbitrary complex-valued function in D. Suppose

a and b are two fixed real numbers satisfying the condition -m/2<a<b
<m/2. For each e® ¢ C let A(g) be the set of z's in D for which

ig .
a < arg [1 - (z/e )] < b. Then there exists a subset F(a,b) of C such
that F(a,b) is a set of linear measure zero and for each e]'e € C-F(a,b)
C (f eie) = C,(f eie) (Lappan, 8, Lemma, p.1060)
A(e) ’ A ’ . ] ’ H
Proof: Let Vn be an element in a countable base for the open sets of W
and Sn be an element in the collection of all finite unions of the sets
Vn’ For each positive integer j, let A(p,j) = {z € D:-r/2+1/j
< a1‘8[1 - (z/eie)] <n/2 - l/j} and E(r,j,n) = {ele € C:f(A(e)ﬂ{z:

Izl > r})CSn and j)(f,eie) is not contained in gn} . We want to

“aco,
show that for each pair of positive integers j and n and each real num-
ber r in the interval 0 < r < 1, E(r,j,n) is of linear measure zero.

So suppose that there exists a triple r,j,n such that E(r,j,n) is not

of linear measure zero. Since E(r,j,n) is measurable and not of measure
zero, there exists a subset E* of E(r,j,n) such that E* is closed, has
no isolated points and has positive measure. Let G be the

set { z: 'Z|gr] u (Aa(C8) . el® ¢ E*x ), where A(0)

is as defined above. By an argument of Noshiro (1, p.71), the

boundary of G is a rectifiable Jordan curve. So there exists a subset

E' of E* such that E' has positive measure and the boundary of G has a

tangent at each point of E' and this tangent is the tangent to C at this




pint, For any p
is contained in G
Nerefore, CA(e, j
finition of E(r,j
o,

Suppose C

(g
suh that €

A(p, 3)
s 15 compact,

igy .
E s
(B 1
1t B(a,b) denot
tmbers 1 betweey
e Ba,b) g5
Isof linear peg,

tqua] i|
el to CA(f,e



26

point. For any point eie € E' and some € > 0, A(g,j)N {z: 'z-ei9l<e}
is contained in G. But for each point G for which |z| >r, f(2) € Sn.
Therefore, CA(O j)(f,eie) is contained in §n which contradicts the de-
finition of E(r,j,n). Consequently E(r,j,n) must have linear measure
zero.
ig ig ] .
Suppose C (f,e V) # C,(f,e 7). Then there must exist some j
A(g) A

such that C

A, ]
sets is compact, there exists an integer n such that qa(e)(: Sn and

)(f,eie) # qﬁ(e)(f,eie). Since each of these cluster

QA(e,j)(f,eie) is not contained in g;. So for some r, eie € E(r,j,n).
Let F(a,b) denote the union of all of the E(r,j,n)'s over all rational
numbers r between 0 and 1 and all pairs of positive integers n and j.
Since F(a,b) is the countable union of sets of linear measure zero, it
is of linear measure zero. If eie € C - F(a,b), then QA(Q)(f,eie) is

equal to CA(f,eie).

Theorem 14: Let f be an arbitrary complex-valued function in D. Then
there exists a subset F of C, where F is a set of linear measure zero,
such that for each point eie € C - F and each Stolz angle A with vertex
at eie, A(f,eie) = CA(f,eie). (Lappan,8, Theorem 1, p.1060; Brelot

and Doob, Theorem 7, p.409)

Proof: Let the elements of two sequences of rational numbers, denoted

by a and bn respectively, satisfy the conditions /2 < a < bn <n/2

and for each pair of real numbers c and d satisfying the condition

. < d.
m2<ec<d < 11/2 there exists an integer n such that ¢ < a < bn

Let F=§1F(an,bn). If el® € ¢ - F and if A is any Stolz angle with

vertex at eie then there exists a positive integer n such that

’
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A'(g) = {z € D:an < arg[l - (z/eie)] < bn}

and A'(g) is contained in A. Since el0 ¢ F(an’bn)’ = CA(f,eie)

C
A'(g)
and so CA(f,ele) = CA(f,ele) . Furthermore, F is the countable union of

sets of linear measure zero. So F is also of linear measure zero.

In the next paragraph we will give an example of a function which
satisfies the conditions of Theorem 14 such that F is uncountable and
has positive capacity. First we will explain the term capacity. Let
#(E) be a non-negative additive set function defined on all the Borel
sets in the plane. Let F be a closed bounded set in the plane having
a connected complement G and M* be the set of all set functions u with

the property

fdu(r) =1,
eF

We now define the function

u(z) = f log(l/lz-i'l)dﬂ({),
$eF

and the quantity

V_ = inf (supu(z)).
Fooemx z‘g
-V

F
Then the capacity of the set F is defined to be cap F=ce , and the

Capacity of any Borel set E is

cap E = sup (cap F).
FCE

We now give the following example which is found in (Lappan, 8,

P.1062). Let U be the upper half plane, P be the Cantor middle third
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set on the closed interval [0,1], and In be an element in the collection
of open intervals which are complementary to P in (0,1). For each n

let Tn be the triangular region bounded by the equilateral triangle in
o0

ﬁ.having f; as its base. Let T = UlTn and V= U - T. We define the
n-—'

function £ in U to be as follows:

f(2)
f(z)

0 for z €V,

1 for =z €T,

If F is the subset of C of linear measure zero mentioned in Theorem 14,

then P C F; therefore, F is uncountable and has positive capacity.

HOROCYCLES

In the study of cluster sets of special subsets of 5, one of the
most important types of subsets has been the horocycle. A horocycle at
a point eie € C is defined to be a circle internally tangent to C at
the point eie. The horocycle is denoted by hr(eie) or just h_ where r
(0 <r<1) is the radius of the horocycle. The point eie is not con-
sidered to be part of hr' A point w € W is a horocyclic cluster value
of f at eie if there exists a sequence with elements zn lying between
two horocycles at eie such that lim z = eie and lim f(zn) = w.

Given a horocycle hr at a point eie € C, the region interior to hr
is denoted by nr" The half of hr lying to the right of the radius at
elo as viewed from the origin is denoted by h:(eie) and is called the
right horocycle at el® with radius r. The left horocycle is defined
analogously. In addition 9: and ﬂ; denote the right and left half
respectively of Qr.

i t the
Suppose 0 < r; < r, < 1 and ry (0 < ry < 1) is so large tha
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circle lzl = ry intersects both of the horocycles hr and hr . Then
1 2

i , L.
at e J with radii I r, and ry is

the right horocyclic angle ﬁ:

defined to be

+ + +
H = comp | N 0 (\{ z 'zl 2r },
rl’r2’r3 [ rl] 1’.'2 3

1’5273

where the bar denotes closure and "comp' denotes complement, both with

respect to the plane. The corresponding left horocyclic angle is de-

- . ig
noted by Hrl,rz,r3' Hr1,r2,r3 denotes a horocyclic angle at e
without specifying whether it is right or left. If we do not wish to
specify rl,rz,r3, then the notation is simplified to H.
We now wish to define special types of cluster sets for horo-

ig .
cycles. The right outer horocyclic angular cluster set of f at e 6 is

CU+(f,eie) =u CH+(f,ele), and the right inner horocyclic angular clus-

ter set of f at eie is CI+(f,e16) = f\CH+(f,eie), where the union and
+ .

the intersection are taken over H which ranges over all right horo-

cyclic angles at eie. CU_(f,eie) and CI_(f,eie) are defined analo-

i .
gously. The outer horocyclic angular cluster set of f at e J is defined

to be CU = CU+ u CU_, and the inner horocyclic angular cluster set of £

is defined to be CI = CI+ F\CI_. The right principal horocyclic clus-

ter set of f at eie is defined to be ﬂ: = F\Ch+ while the left principal
r

horocyclic cluster set is defined by changing the *+ signs to - signs.

The principal horocyclic cluster set is the intersection of the right
and the left principal horocyclic cluster sets and is similar to the
Brincipal chordal cluster set which is defined as the intersection of

, i .
Cx(f,ele) over X and denoted by Hk(f,e e). Cy is the cluster set of f

at eie on the chord X. The inner horocyclic angular cluster set is

i
Similar to the inner angular cluster set Cy(f,e %) which is the
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intersection of qA(f,ele) over all Stolz angles at eie.
Finally we wish to define special types of points on C. Any point

e'® ¢ C is called a right horocyclic Fatou point of f with right horo-

cyclic Fatou value w € W whenever CU+ is equal to the set consisting of

the single w. A point eie is called a right horocyclic Plessner point
e

of £ if CI+ = W, and e'® is called a right horocyclic Meier point of f
+

provided H&(f,eie) = C(f,eie) is properly contained in W. The sets of

right horocyclic Fatou points, right horocyclic Plessner points and

+ +
right horocyclic Meier points of f are denoted by Fw(f)’ Iw(f) and

ﬁ:(f) respectively. The corresponding left horocyclic sets F;(f),

1;(f) and M;(f) are defined in an analogous manner. Finally the sets

of horocyclic Fatou points, horocyclic Plessner points and horocyclic
Meier points of f are denoted by Fw’ Iw and Mw respectively and defined
as follows: eie € Fw if CU is a singleton; eie € Iw if CI = W, that is,
Iw = I: N I;; eie € M.W if f& = C(f,eie) which is properly contained in
W, that is Mw is the intersection of M: and M;. F(f), I(f) and M(f)
denote respectively the sets of Fatou points, Plessner points and Meier
points. These points are quite similar to those including "horocyeclic"
in their names since eie € F(f) if CA is a singleton and lim £(z) exists
uniformly as z approaches el® in any Stolz angle; el® e () if Ch=W
for every angle A; eie € M(f) if for any chord p(®) of C passing

i
through eie and making an angle ¢ with the radius to e e, /2 < ¢ < T/2,

Cp(¢) = C(f,eie) which is properly contained in W.

Lemma 4: Let f(z) be an arbitrary function from D into W. Then

Cy(t,e'®) = c_(£,e0) = c(£,e!®) for a residual G, subset of C.

(Dragosh, 2, Lemma 2, p.60)
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Proof: For any ele € C, let An 1_(eie) be the Stolz angle at 1o with aper-
b

ture 1T/2n, where the bisector of An l._(eie) at ele makes a rational angle r,
b

M/2<r<m/2, with the radius at ele. If a is the annulus 1 -1/m< |zl <1

. 1 _ 10
where 1-1/m> 31n(|r| +1/27 "), then let An,r,m: An,r(e n a_- Let
Z(eie) be the countable collection of all A at ele

ig
n,r,m andzw(e ) be the

countable collection of H at eie with rational radii r..
T1°%2°T3 1

For each Ae Z(eie), CA(f,eie) = C(f,eie) for a residual G6 subset of

C (remark after Theorem 2). The intersection of countably many of these

residual G6 subsets is again a residual G6 subset E1 of C such that

c(f,e®= N CA(f,eie)=CB(f,eie) for eleeEl.
Aex(el)
Also
10 6 6 6
C(f,et ) = N .n Cy(f,e” ) =C_(f,e ) for e €E
HeXl (ele) H 1 2
w

where E2 is another G() subset and ElﬁE2 is the required subset of C.

Sl’ 32 c C are topologically equivalent if 81-82 and 82-81 are of first

category.

+ -
Theorem 15: Let f:D —W. Then the sets I(f), Iw(f), Iw(f)’ and Iw(w)

e — e—

are topologically equivalent. (Bagemihl, 3, Theorem 4, p.13)

. i i® i® i6 i6, _
Proof: Since CI(f,ele)=CI+(f,e )Nc;_(f,e77), e "eC, Cp(f,e™) = Cri (£,

ig
eie) = CI_(f,eie) = C(f,eie) for a residual set of points e onC.

Iheorem 16: If f is an arbitrary function from D into W, then the sets
F(f), F;(f), F~(f) and F (f) are topologically equivalent. (Bagemihl,
w w

3, Remark 3, p.16)
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Proof: By definition we have the following conditions: Cy c Cyo
I+ = CU+, I- c CU' and CI - CU for any point on C. Consequently
Lemma 4 implies that CA = CU"' = CU_ = CU for a residual set of points

on C,

In contrast to Theorems 15 and 16, the sets M(f) and Mw(f) are not ne-
cessarily topologically equivalent. (Dragosh, 2, Remark 3, p.61) For
example, let S be a countable dense subset of C. We define f(z) in D
as follows: £(0) = 0, £(z) = 1 for z ¢ h;:(eie) for ¢'® € S and £(2) = 0
for z h;(eie) for eie € C - S. Since S and C - S are both dense on
C, Hw is the element 0 for e'® « C - S and ﬂw is the set with a single

element 1 for ele € S. Thus M(f) = C, but Mw(f) =

Lemma 5: If f(z) is an arbitrary function from D into W, then for any

i i
set L(ele) for which there exists a Stolz angle at et containing L(e e)

€, is contained in Cp except for a set on C which is of measure zero

and of first category. (Dragosh, 2, Lemma 3, p.61)

Proof: Let E denote the set of points eie € C for which CL is not con-
tained in CB' Then for each eie € E, there exists a set L(eie) lying
inside of a Stolz angle at ej'e for which CL is not contained in CA for
Some Stolz angle A at e®. S0 there exists a disk Qp on W such that

C, and Q are not disjoint while C, and Ep are. Using the notation in

Lemma 4, we can find a Stolz angle A r,m,p € (e 0) such that f(A n,r, m)
, b

b-
and Qp are disjoint. So we can express E as UEn,r,m,p over all su

scripts where ej'e € En r,m,p if there exists at least one set L(e™ %)
b b b

lying in 4 Stolz angle at eie such that CL and Qp are not disjoint
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while fOAn,r,m) and Qp are disjoint.

Suppose there exists a set E which has positive outer mea-
n,r,m,p

sure. Then f(A ) and Q_ are disjoint for e e E .
n,r,m P n,r,m,p

IfG=uA over points e®c E

then G is composed of
n,r,m n,r’m’P, P

finitely many open simply connected subsets G ..,GN of D because

1’

C-E contains only a finite number of arcs with length exceeding
n’r’m’p

a fixed number between 0 and 21. Privalow (1, p.220) has shown that

each Gk’ for 1 S k < N, has a rectifiable Jordan curve J. as its

k
boundary.
Since E rm is assumed to have positive outer measure, the in-
b I b
tersection of E and J, must have positive exterior measure for at
n’r’m’p k
least one Jk' The tangent to Jk at almost every point of CN Jk coin-

cides with the tangent to C. Consequently there exist points in

! incides with
En,r,m,p belonging to CN Jk at which the tangent to Jk coincides
the tangent to C. At any such point each Stolz angle at that point has

. . ig .
its terminal portion contained in Gk. So there exist points e ® in

ig ig
i t L at e
n,r,m,p such that CL is contained in f(Gk) for each se (e™™)

which is contained in a Stolz angle at e'®. since f(Ah,r,m

and are

) SN

disjoint for any point in E and G is the union over points in
n,r,m,p

e e s
) and Q are disjoint. However, the definition
P

n,r,mp °F 8y p o £(G

of ; c.N # ¢ for at
En,r,m,p says that for each point in En,r,m,p L (Ip

least one set L(eie) lying in a Stolz angle at eie which is a contra-

diction, Therefore, each set E . nm p has measure zero, and so E also
b b )

has measure zero.

is of

By a similar argument it can be shown that each En,r,m,

first category, and consequently E is of first category.




rof
that

80

Lan

Sure



34

Theorem 17: Let f£(z) be an arbitrary function from D into W and let

K(f) denote the set of points eie € C for which QA (f,ele)= (f,eie)
1

C
, By
for any pair of Stolz angles Al and A& at ele. Then K(f) is residual

and of measure 21 on C. (Dragosh, 2, Theorem 2, p.63)

ig

Proof: At each point e € C - K(f), there exists a Stolz angle A such

that 95 is not contained in CB. By Lemma 5, C - K(f) is of measure

zero and of first category.

This theorem is a very important result as it generalizes Theorems ﬁi

2 and 14.

Theorem 18: Let f(z) be an arbitrary function from D into W and let

e —— ——

Kw(f) denote the set of points e © e C for which CHl = CH2 for any pair

of horocyclic angles Hl and H, at eie. Then R is residual and of mea-

sure 2T on C. (Dragosh, 2, Theorem 3, p.67)

The theorem can be proved in a manner very similar to that of
Lemma 5,

Two sets S1 and 82 are called metrically equivalent if and only if

measure (S1 - Sz) = measure (82 - Sl) = 0.

Corollarx: If £(z) is an arbitrary function from D into W, then the
+ - h t I+ I and I
sets Ew’ Fw and Ew are metrically equivalent and the sets o Tu -

are metrically equivalent. (Dragosh, 2, Corollary 1, p.68)

+ -
Eroof: Suppose eie belongs to at least one of the sets Fw’ FW and F_

BUt not to all of them. Then there exists a pair of horocyclic angles
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H1 and H2 at e® such that Cy # Cy - By Theorem 18 the set of such
1 2
. + -
points e® e ¢ is of measure zero. So Fw’ FW and Fw are metrically

+ .
equivalent. The proof for Iw’ Iw and Iw is identical.

F(f) and Fw(f) need not be metrically equivalent. For example

(Dragesh, 2, Theorem 5, p.69), we are able to define the Blascke product

-1

® 20 20
B(z) = 11 Go)” + Szi where §,, = 1 -(n22n)
n=1 (1 + {nz)ZA

for any positive integer n which has zeros at the points

z k=1,2,...,2% and n > 0.

~ 1(2k - 1)27 %

For each point { € C and each horocycle hr for 0 < r < 1 at the point,
there exist sequences of these zeros lying interior to Q: and Q;- Thus
for each point in C, 0 € 00:: for 0 < r <1 and similarly for CQ}'. A
Blaschke product has a Fatou value of modulus one at any point of C
except for a set of measure zero. Let { be a Fatou point of B that has
the Fatou value a with ' a| = 1. If ¢ is a right horocyclic Fatou
point of B, then Cﬂt:is the set with the single element O for 0 < r < 1.
Since this contradicts the fact that qA is the set with the single ele-
ment a for each Stolz angle A at §, the set of right horocyclic Fatou
points of B ig of measure zero. By the corollary following Theorem 18,
F (f) has measure zero.

I(f) and Iw(f) also need not be metrically equivalent. Dragosh
(1, Theorem, p.41) constructs a function £(z) holomorphic in D such that

évery point of C is a horocyclic Plessner point of f and almost every

point of C is a Fatou point of f£.
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Lemma 6: If f(z) is an arbitrary function from D into W, then for any

set H*(eie) for which there exists a disk 0} at eie containing H*(eie)
CH*(f,eie) is contained in CI(f,eie) except for a set on C which is of

measure zero and of first category. (Dragosh, 2, Lemma 6, p.67)

Proof: Much of the proof of this lemma is analogous to the proof of
Lemma 5. We replace Stolz angles by horocyclic angles and the region G
by a region Gw, which is defined as follows; 1let P be a perfect no-

where dense subset of C and H (eie) be a fixed horocyclic angle,
r1,r2,r3

then G¥ is the union of all of the H 's for e © in P. According
rl,rz,r3

to Bagemihl (3, Lemma 1) GY is composed of finitely many simply con-
nected subregions Gw,..., : having as their respective boundaries the
w

rectifiable Jordan curves Jl,..

at almost every point e ® e cN J

.,J. . So the tangent to JX for 1 Sn<k

€ &g

coincides with the tangent to C.

=]

We must now show that except for a set of measure zero contained in the
set C F\J:, each horocyclic angle H at eie has a terminal portion which
lies in G: because the tangent to H at eie also coincides with the tan-
gent to C.

In order to verify the last statement, we will first show that if
P is a perfect nowhere dense subset of [b s 1:], then for almost every
point pe P for which a sequence of open intervals (an,bn) in [0, 1] -P
converges to p, Ian-pl/(bn-an) tends to positive infinity. If E is any
Leb398Ue measureable set in R1 for which the upper and lower limits of
the quotient

meas (EN(x -8§,x+38))
26

are equal, then their common value is called the metric density of E at

X. According to Hobson (p.194), in our case the metric density exists
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and is equal to 1 at almost every point P € P. Let p € P be a point
with metric density equal to 1 and suppose that the sequence

{ (an , bn) } converges to p from the right. Then

meas(P N (p,b )) meas(PM (p,a ))
. n”’ _ . n
lim meas(p,b ) = lim meas(p,a ) =1
n—>oo >“n n—>o P,a,
meas (PN (p,bn))
and lim —_— 1,
n —>eo (an-p)-l- (bn-an)
meas (PN (p’bn))
Since Pﬁ(p,bn)= Pﬁ(p,an) R lim P — 1.
n —> o n P

Also since meas(PM (p,bn)), a - p and bn - a are each greater than |
zero, these conditions imply that lim[(bn - an)/(an - p)] approaches
zero. Consequently (an - p)/(bn - an) —+>+to, and in general

|2y~ ]/ (b, -a ) >+,

Now we will show that except for a set of measure zero contained in
the set CﬂJZ, each horocyclic angle H(eie) for eie € JZ has a terminal
portion which lies in G:. By means of a bilinear transformation L(z),
it is possible to map D onto the upper half plane and to prove this re-
sult there. Let P be a nowhere dense set on the finite interval I on
the real axis and {(an,bn)} CI - P. We now choose circles C1 :

2 2
(x - an)2+ (y - R)2= R2 and sz(x - bn)2+ (y - r)” = r” where

0 <R <rgR, <Ry <R LR, (3)

We choose r and R in this manner so that the two horocycles hl,1 and h,_.2

forming part of H, are mapped by L(z) onto circles of the form C,

1°T2>%3
and CZ as e'0 ranges over PC C. At the left and right endpoints of
each interval in I - P we construct the circles Cl and 02 respectively.

We will now prove that at almost every point p € P and for any sequence
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of arcs with elements (an,bn) in I - P converging to P, the point
(xn,yn) € Cln 02 closest to p lies interior to any given circle tangent
to the x-axis at p for at most a finite number of n's. Our method of
proof will be to show that if the previous condition holds, then
|an - pl/(bn—an) tends to positive infinity. By the previous para-
graph this limit is valid at almost every point of P. Suppose there
exists a point p € P for which every sequence of open intervals in
[0,1] - P converging to p satisfies the condition 'an - p'/(bn - an)
tends to infinity, but for which there exists a sequence of elements
(an,bn) such that the point (x,y,) € Cll"lc2 lies interior to a given
circle for an infinite number of n's. Without loss of generality, we
assume that p = 0. So we are assuming that there exists a circle :
o+ @y - 9)2 = 0% such that xi iy = p)z < 0% for infinitely many n.
Since |an|/(bn - an) tends to infinity and signum (an) = signum (bn),
'bn + anI/(bn - an) also tends to infinity.

Let L1 denote the line which passes through the points of inter-

section of C1 and CZ‘ L1 satisfies the equation

2
c-apir -0 -® - [woppiroen-f] =0

or R .
R ey + (bn + an)/z‘
n n

Therefore
? I + )
% =5 v, (b +a)/2.

By solving Equation (4) and the equation for C1 simultaneously for Ya?
we have
2 2

R-r a2+ R =R,
(bn o PRI, a)/2 an) (6%

which can be rewritten as
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2 2 2,
yn(R - 1) /(bn - an) + (bn - an) /yn =R+ r - Yy

As Yy approaches 0 from the right, we have Yo = ()((bn- an)z) where O
indicates the order of the function. So Yo < K(bn - an)2 for 0 < K and
n sufficiently large. Substituting Equation (4) into the condition

2 2 2
+ -
X (yn p)" < p~ we have
- + +
bR .3 y +(R-1) bn 2h) + bn Y 2_1_+y < 20p, (5)
n %n n b -a 2 y n
n n n
The left-hand side of this inequality is greater than

bn-'.an bn+ an21
(R-r)(b -a)+( 2 ) Y_
n n

n

which by Condition (3) and the condition for Y, is greater than

+ + + b_+a

O WA Y SO |

- - 2 K -a
32 bn an 2 K(bn-an)z bn an 3 (n n

Since Ibn + an|/(bn - a) tends to infinity, the lower bound on
2 2 2
Inequality (5) also tends to infinity. Hence X + (yn -p)" < p° can

hold at most for a finite number of n's.

Theorem 19: If £(z) is an arbitrary function from D into W, then for
any point { € C,C, is contained in C, for every Stolz angle A and every
horoeyclic angle at { except for a set on C which is of measure zero
and of first category. (Dragosh, 2, theorem &4, p.68)

C, is not

Eroof: 1f { is a point where CA is not contained in CH’ then ‘A

Contained in C; for some Stolz angle A at §. So this theorem follows

immediately from Lemma 6.
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Theorem 20: If f is a arbitrary function from D into W, then almost
every horocyclic Fatou point of f is a Fatou point of f and almost
every Plessner point of f is a horocyclic Plessner point of £f.

(Dragosh, 2, Corollary 2, p.68)

Proof: If { € Fw(f), then there exists a horocyclic angle H({) at ¢
and a point w € W such that CH is the set containing only the point w.
From Theorem 19, it follows that CA also contains only the point w for
almost every point { € Fw(f) o

If { € I(f), then Cy = W. According to Theorem 19 Cy is contained
in C; for almost every point { € C. So C; = W for almost every point

in I(f).

ORICYCLIC CLUSTER SETS

Oricycles are another type of special subsets of D which have been
studied in the field of cluster sets. Let { be any point on C and U({)
denote the inscribed disk at { such that U = {z: lz - ptl <1- D} where
?is a constant such that 0 < p < 1. Then the oricyclic cluster set is
defined to be Co(f,() = QCU(f")‘ A UU-singular point is any point
§ € C such that there exists a pair of inscribed disks U' and U" for
which Cuu(f,f) ¥ CU,.(f,(). Let V be any open angle with vertex at {.
Then a VV-gsingular point is any point of C such that there exists a pair
of angles V' and V" for which Cy, (£,8) # Cyu(£,8). The set of all
U (or VV) -singular points is called the UU (or VV) -gingular set
and is denoted by E (£) (or Eyy(£)). A U (or GV -singular polnt is
any point ¢ € C for which there exists a U (or V) for which Cy # C(£,8)

(or C, # C(£,£)). The GU (or GV) -singular set is denoted by Eg;(£)
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(ox EGV(f)). A UV-singularity is defined analogously.

For any ¢ > 0 let N¢($) denote the neighborhood consisting of ele-
ments z such that Iz -t | < €. Suppose we are given a set E in C and a
point { on C. Let r({,€) = r({,¢,E) be the largest of the lengths of
arcs contained in N, NC and not intersecting E. Then for any a, 0 <
@< 1, the set E is said to have porosity (@) at { if ﬁ(r(f,é))‘/f >0
as € > 0. E is said to have porosity (a) on C if each point ¢ in E has

porosity (a@). A set which is a countable sum of sets of porosity (a)

is called a g-porosity (a) set.

Yanagihara (1) has shown that E_. and EUV are G&a sets and of

uu
o-porosity for some @ (Theorems 22 and 23) while Dolgenko (1) has shown

that EVV is a G&c set and E v is an F  set (Theorems 21 and 24).

G

Theorem 21: If £(z) is an arbitrary function, not necessarily single-

e —— —————

valued, then E is of Gsa type and of o-porosity for some a.

Vv
(Dol‘éenko, 1, Theorem 1, p.3)

Proof: Let {an} denote a sequence consisting of all rational numbers
between -T/2 and /2, and let {D—n.} be a sequence consisting of all

closed circles in W - {00} having rational radii r and centers at the

points a_ with rational coordinates. If { € C, then V denotes the

b

open angle of size a with vertex at { and with bisector forming an an-
P

gle % with the interior normal to C at {. We define E _  to be the

»ro

set of all points { € C such that if z € D, p(z,C) < 1/p, and for z in
Vp’q, the values of £f(z) lieatadistance > r from D, where r is
the radius of D—n' For m,n,s,k any positive integers, let Fn,m,k,s be

the get of all points { € C for which the set
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{f(z) iz is fn DNV and 1/(35)<p(z,C)<1/s}

has points in common with the disk q Then each En ara is closed and
>P>
it = oo
each Fn,m,k,s is open on C. We set Fn,m,k = ua Skir_Fn’m’k’s .

We will now show that EVV = ). Suppose

u u F E
n,p q,m,k (¢ n,m,k n n,p,q
{ e Evv(f). Then there exist angles V' and V" such that Cyr ¥ Cyn -

Suppose CV‘ - CV" # ¢. Then we can choose m and k such that Vm kD V.
>
So CV K = CV" 7# ¢ and there exists a disk q such that for some p and q
m,

Du ncv # ¢ and .t"(Du,CV )i Sru.

m,k P>q

Consequently we can find positive integers p and q such that if z is in

Vp B and p(z,C) < 1/p, then p(i,f(z)) > 4tu. Let n denote the index
s
of the disk qwhich has the same center as q and radius A 2ru. So

O, E(2)) > T, if zdsin Vo and P(2,0) < 1/p. Due to the choice of
E‘, there exists a sequence of elements % in Vm,k which approaches ¢
and a corresponding sequence of elements £(2) which approaches a point
ae i So for an infinite set of positive numbers, there exist points
%2 in V for 1/(3s) < p(£,C) < 1/s such that E and {f(k’)} are not

s

disjoint. Thus { € U F for all t and is therefore also in
s=t n,m,k,s

F
n,m,k"

N d E . Then by the definition of

low suppose { € Fn,m,k an Gesid

D j i is in F , it is in

En,p,q’ Cvp’q and D are disjoint. Since { is i i
F for an infinite number of s's. From the definition of
n,mk,s

D disjoint and so G is
and Dn are not a Vm,k

¥ b
n,m,k,s’ it follows that Cvm,k

not equal to CV
P>q R
We will now show that Eyy is o-porous. Suppose on the contrary

sts a po wi not 0-porous with
d E hich is t Tous
ere exist int in F an
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respect to C. Then the angle Vm close to its vertex is covered by a

k
3
union of angles v’ for n in F and E . So by the definition
’ n,m,k n,p,
of E at points z in V which are sufficiently close to the point,
n,p,q m, k

the values of f(z) are at a distance 2 r from 5;. Therefore Cy . and
m

b

D_are disjoint and the point is not in F and E . Thus
n n,m,k n,p,q

Fn,m,k r‘En,p,q is porous on C and EVV is e¢-porous.
This theorem is closely related to the Collingwood Maximality
Theorem (Collingwood, 3), which states that for an arbitrary single-
valued function f(z) defined in D and any Stolz angle A with vertex at
{ qa(f,() = C(f,{) except for a set of first category. It is also re-
lated to Theorem 14 which states that for an arbitrary single-valued

function f(z) defined in D the outer angular cluster set CA = QA ex-

cept for a set of measure zero.

Theorem 22: If f(z) is an arbitrary function, then EUU is of Gga type

and of o-porosity for some @. (Yanagihara, 1, Theorem 1, p.424)
The proof of this theorem is quite similar to that of Theorem 21.

Theorem 23: If £(z) is an arbitrary function, then EUV is of de type

and of g-porosity (a) . (Yanagihara, 1, Theorem 2, p.425)

Yanagihara (1, Theorem 4, p.426) has shown that there exists a

bounded holomorphic function f£(z) for which E,, is of measure 21. For

example, we pick an inscribed disk u(l) = {z: IZ - P' <1- ﬂ} for

0 <P < 1. Then there exists a constant b such that an arc A = {Z=

reie ‘g =bVl-r } is contained in U(1). In addition we choose t
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oQ

such that 0 < tn < 1, is strictly increasing to 1 and Z\/l - tn<oo.
n=1

Let

k k
n

n
f(z) =12 ‘ktn
(tnz) R |

where the integers kn are determined by kn = [31T/bV1 - tn] + 1. This

o0
product converges because X 1kn(l - tn) is finite. For every point
=

(e C, U({{) contains an infinite number of zeros of f(z) and CU contains
0, but £(z) has angular limits of modulus 1 at almost every point of C.

T
hus EUV has measure 21T,

Theorem 24: For an arbitrary function, not necessarily single-valued,

EGV(f) is of F0 type and of first category. (Dolzenko, 1, Theorem 3, p.9)

The proof of this theorem uses much of the notation and style of

= . I
Theorem 21. As before each E D, is closed. EGV n,g,q En,p,q £

EGV is not of first category, then there would exist a set Eno,po,qo

such that on an open arc A contained in E » C(£,{) would be at
No ,po)qo

a distance at least r,, from Dn for any { in A, which contradicts the
° o

ropert ¢.
property that Eno,po’qonc(f,() #

SELECTOR OF ARCS

I' is called a selector of arcs if it is a correspondence which

associates with each point in C a nonempty collectionI of arcs at that

Point. If I is a selector of arcs, then the [-principal cluster set
igy - ie

of £ at a point e1® is defined to be the set Op (£,e77) Qc(f,e »)

vhere C(f,eie,c) denotes the arc cluster set of f at e ® along @ and
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the intersection is taken over all @ in I'(). If the intersection is
taken over all arcs at eie, then the notation H(f,eie) is used.

If u is any positive number and eieo is any point on C, then let
C, denote the set {eie €EC:0<« l~eie - eie°| < I‘} . For any function
f(z) defined in D, let Hr(f,eie",ﬂ) =u ﬂr(f,eie) where the union is
)

i *
over eV which ranges over all points in C, and let HI‘ denote the

closure of HI‘ in the Riemann sphere. Then the boundary p-principal

i . .
cluster set of f at e 6o is defined to be the set

BIL(£,e79%) = 0 ME(£,e™°, 0.
>0

If T contains all arcs at eie°, then the notation BII(f, eie°) is used.
For any subset S contained in D, a point eie € C is called almost

[-accessible through S if for every open set G with SCG CD there

exists an arc a € T such that a € G. This definition is abbreviated to

e'® is almost accessible through S in the case that T is the collection

of all arcs at e'® which is a point of C. Let E be contained in C and

.

Y be a correspondence which associates with each point in E an arc ‘Y(ele)
in P(eie). Let §(7,E) denote the relative closure in D of the set
$(7,E) = v 7(eie) where the union is over all eie in E. Then I is a
smooth selector of arcs if for every set E of second category in C and
every arc y, there exists a subarc AS C such that E is dense in A and
every point of A is almost I'-accessible through E(?,E).

If ' is a selector of arcs, then a new selector of arcs r* called
the completion of T is defined by {-a tq CB € F‘(eie)}. Finally I is

called an admissible selector of arcs if I'* is a smooth selector of arcs.

The theorems which we prove in this section will lead to the major

result stated in Theorem 29 that if f is a continuous function in D,
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then H(f,ele) = BII(f,ele) and ﬂx(f,ele) = BHX (f,eie) where X denotes

the collection of all chords at e © except for a set of first category.

Theorem 25: If f is an arbitrary complex-valued function defined in D
and I is any selector of arcs, then there exists a selector of arcs r,
such that for each e © € c, Po(ele) is a finite or countable subset of

l‘(ele) and “I’ (f,ele) = Np (f,ele). (Gresser, 2, Theorem, 7, p.ll)
o

Proof: Let y be any arc of I'. Then BY =W - CY(f,ele) is open in W.

So U BY =W - Op(f, eie) and by the Lindelof covering property there
Yer ,
i

is a countable subcovering with elements BYn of W -II.(f, e e). Conse-

v ig ioy = R 16y =m0
quently U B, =W - N.(f, e 9) and O (f,e ) = N C, (f,e”7) = Op(fe™).
=1 'n r r =1 Yn o

Theorem 26: If f(z) is an arbitrary complex-valued function defined in
i i
D and I is any selector of arcs, then nr(f,ele) - Bnr(f,e 6) for all
. ig .
except for at most a countable number of points e 0 in C. (Gresser,2,

Theorem 4, p.6)

Proof: For any positive integer j, let Tj be a finite collection of
compact neighborhoods on W which cover W and such that using the usual

metric for W, we have diameter (G) < 1/j for G any subset of Tj'

for each

Choosing a finite number of G's for each j, we let Tj = }’, Gn,j

. . , i
J and define P to be {ele €C: "r(f’eie) ¢ B Mp(f,e 9)}, het

(i ) ig ¢}.
P .—{eeeP.annnr(f,e ) 7

n,] ’

Each Gn . 1s contained in W - B ﬂr(f,eie) for each positive integer J.
J

i . 1g
If &0 ¢ P, then there exists a point w € Mp(f,e ) such that
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wgB ﬂr(f,ele) which is closed in W. Thus there exist n and j such

igy - ig =
that w € Gn 3 N BlIr(f,e ) = ¢. Therefore e v ¢ Pn I and P U P

> > n,J naj.
Now we wish to show that each Pn j is at most countable. 1In

b

order to show this, we fix j and n, and let e'f e Pn i If 9 is not

an isolated point of Pn It then there exists a sequence {{k} of points

b

. ig . ¢
in Pn,j that converges to e V. Since each {k € Pn,k’ Gn,j(\llr(f,fk)#

for each positive integer k. So for each © >0 Gn 3 ] nr‘f‘(f,ele,u) # 0.

b

Let{uk} be a decreasing sequence of positive real numbers which con-

verges to zero. Then

G .NBH (feie)=R(G r\ﬂ*(:‘?eie#))a“l5
l‘l,j r H k=1 nj F bl ’k

b

. i
because W is compact. This contradicts the assumption that e e Pn i
b

So each eie € P . is an isolated point and the set P is at most
’

countable.

Theorem 27: Let f be defined in D and I' be a selector of arcs. If G

———————

i i
is any open subset of W such that for some et ¢ C, GMB Hr(f,e e) e,
i
then there exists a sequence {(j} of points in C which converges to e 0
such that GN Hr(f,(.) # @ for each j. (Gresser, 2, Lemma 5, p.8)
J

. ig
This theorem follows easily from the definition of Ilr(f,e ).

LEEEE.Z: Let f be continuous in D and I' be an admissible selector of
X i
arcs. For each point eie € C, let B be an arc in I'(e e). Then

Brhif,eie)EE CB(f,eie) except for at most a set of first category.

(Gresser, 2, Lemma 6, p.8)
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Proof: Suppose the lemma is false. Then the set P denotes the set of
points eie € C for which B Hr(f,eie) g CB(f,eie) is of second category
in C. Let € be an arbitrary positive number and S(eie,e) denote the set
of all points in W whose spherical distance from CB(f,eie) does not
excéed €. Since CB(f,eie) is closed in W, it follows that for each
point eie € P there exists an e(eie) > 0 such that BHF(f,eie) - S(ei’ie) # o,
Let {ej} be a decreasing sequence of positive numbers which converges to
zero and Pj = {eie € P: Bﬂr(f,eie) - S(eie,ej) # ¢}. Since P = u Pj and
is of second category, there exists a J such that PJ is of second cate-
gory. We choose a finite collection {Gl,...,Gm} of open sets each of
diameter < eJ/l;. For u < m let PJ(#) = {eie €P,: Gﬂ(BHP- S(eie, €)# ¢}.

Since P, is a union of the PJ(#)'S and P_ is of second category, there

J

exists an M such that PJ(M) is of second category.

J

For two subsets A and B of W, let a be any point in A and b be any
point in B. Then the spherical distance X(A,B) between the sets A and B
is defined to be the infimum of the spherical distances between points

a and b, From the definition of PJ(#) it follows that X(G,,, cﬂ)zseJ/a
for any point ei‘e in PJ(M). According to Theorem 27 every point eie in
PJ(M) is a limit point of the set Q = {eie € C: GMﬂl'Ir(f,eie) # 4’}.

We will now show that X(GM’CB) > BeJ/4 is valid for a subarc of C
which violates the definition of Q. For each eie € PJ(M) let ‘r(eie) be
a terminal subarc of g such that f(‘Y(eie)) - S(eie, e /4). 1f S denotes
the set u¥( eie) where the union is over e10 ¢ PJ(M), then x(GM,S) ?_CJ/Z
Since X(GM,Cﬁ(f,eie)) _>_3eJ/4 for eie € PJ(M). From the continuity of

£, X(GM’E) 2 CJ/Z where S denotes the relative closure in D of S. Let

G be an open set such that f(§)§G and x(GM,G) _>_eJ/4. By the continuity

of f, the set U = f-l(G) is open in D and contains S. Since I' is an
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admissible selector of arcs, there exists a subarc ACC such that each
point of A is almost I'*-accessible through S for I'* the completion of T.
So for every point e.ie € A, there exists an arc ace I‘*(eie) such that
aCU. Thus by the definition of U, C(f,a)CG for eie € A. Since a is
a terminal subarc of 8, an arc in I‘(eie), the two arc-cluster sets are
the same. Therefore, Hr(f,eie)ga for eie € A and X(GM’HI‘) 7,€J/4,

a contradiction to the definition of Q.

Theorer 28: Let f be a continuous function in D and I be an admissible
selector of arcs. Then Hr(f,ele) = BIII,(f,ele) for nearly every point

e'® ¢ c. (Gresser, 2, Theorem 8, p.1ll)

Proof: According to Theorem 25 for each e16 € C there is a finite or

ig ig
countable subset of I'(e' V), say a.j(e )¢ such that

. 0 . i

M (£,e'% = A c(£,e',a, (9.
If the set {a.(eie)} is finite, we repeat one of the arcs infinitely
]
i i

often. For each j, let Py denote the set {ele e C:BII & Caj(f’e 9)}_
By Lemma 7 each of the sets Pj is of first category in C. Therefore

i i
the set P = i)ol Pj is of first category and BIIF(f,ele) c Hr(f,e ®) for

; j
o0

€ C - P. The proof is completed by using Theorem 26.

igy = ig
Theorem 29: 1If f is a continuous function in D, then I(f,e ©) = BH(t, )

and nx(f’eie) = BHx(f,eie),where x denotes the collection of all chords

i .
at e 6, except for at most a set of first category. (Gresser, 2,

Theorem 9, p.11)
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Proof: In order to apply Theorem 28 we must show that A(ele) the col-
lection of all arcs at e1e is an admissible selector of arcs. Let E be

a second category subset of C and A(e'®) € A(eie) for each e1® ¢ E.

For any positive integer j, we define Ej {ele € E: A intersects the

o0
circle lzl =1 - 1/j} . Then E = u_ E, and so there exists an N such

j=1 3

that EN is of second category on C. Therefore, there is an open subarc
ACC such that EN is dense in A. Let S =u )\(eie) where the union is
taken over e:'Le € EN. Let G be an open set such that Eg GCD. We let
eieo be an arbitrary point in A and D0 be an open disk centered at
eie" having radius r £ 1 - 1/N. Let {{n} be a sequence of distinct
points in EﬁDo which converges to eie°. Then for each n, let )\n be
the component of )\(In)(”\ D, which forms a terminal subarc of )\({n). We
will show that there is a component Go of GﬂDO such that lnSGo for
infinitely many n. Let )\nk be a subsequence of )\n'S which converges to
a limit set L. 1If LﬂDOﬁD # ¢, let z € LF\DOOD. Then z € gﬂDo so
that z is contained in some component Go of GﬁDo. Since z € L(’\Go and
Go is open, it follows from the definition of limits that there exists
an M such that Goﬁ)\ # ¢ for all k >M. Thus since )\n_k is a connected
subset of GﬂDO, )\nkg G, for all k >M. So suppose LﬂDoﬂ D= ¢. Let
el0 € LﬂENﬂDo and @ be the component of }\(eie)ﬁDo which forms a
terminal subarc of }\(eie) . By the definition of convergence, there
exists an M such that aN )\nk # ¢ for all k > M. Since o is a connected

subset of GND » als contained in a component GO of GﬂDo. Furthermore,
0

)\nk is a connected subset of GﬂDo. So )\nkgGo for k > M. Therefore,

t
We have established that there exists a component G, of'GﬁD0 such tha

)\ngGo for infinitely many n.
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For each positive integer k let Dk denote the open disk centered

at ei°° having radius (1 - 1/N)/k. Now we will construct a sequence

{Gk} of open connected subsets such that G2G,2G and each G, CD, .

1 k= "k
1f e ® € Dk’ let ak denote the component of a(\Dk which forms a terminal
subarc of a. If e © ¢ D, we let ok = ¢. Let {{m} be a sequence of

iy

2e -

distinct points in EN which converges to e Since there exists a

component Go such that )\n_C_ Go for infinitely many n, we can select an

infinite subset T1 of {)\({m)} and a component G, of GﬂDl such that

¢ # al(:—Gl for each a € Tl. Inductively we can define sequences {Gk}

and {Tk} for each positive integer k such that Gk is a component of
k
6D, {AG 2T, 2T ¢ #a“CG for each @€ T . We fix k and

ngak, and ak+1§G

2

let Tk+1-C-Tk' Since ¢ # @

that Gk'i'lmck # ¢. But Glc*'l "+l

and Gk is a component of Gka which intersects Gk+1’ Gk‘*‘lsck'

Finally using the Gk's which are arcwise connected, it is possible to

i i
construct an arc at e 90 which lies in G. Consequently A(e e), the

k1 and akEGk, it follows

i d
C GND, g_GﬁDk. Since Gk‘*‘l is connecte

collection of all arcs at eie is an admissible selector of arcs.

Now we will prove that the theorem is true for X, the collection
of all chords at eie. Let (Aj} be a countable collection of closed
Stolz angles at eie" = 1 such that each chord at eie° is contained in
at least one of the A.'s. For each positive integer j, let Aj (eie) be

the closed Stolz angle at el® ¢ C obtained by rotating AJ. about the

i .
origin. Then for each j and each eie e C, let xj(e 9) be the collection

i
of all chords at eie which are contained in Aj(e e). By an argument

i
completely analogous to that for A(e %, X; is an admissible selector

of arcs. Consequently by Theorem 28 for each j there exists a set Ej

igy - le 0cc-k,.
of first category in C such that Bl'Ixj(f,e 9)—ij(f,e ) for e "€ j
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Since an(f,ele)EBij(f,ele) for each j and e'® € C, we have

1
BII, (f,e e)Enxj(f,eie) for e¥ e ¢ - Ej. The set E ﬁl E. is of

)

first category in C. So Bﬂx(f,ele)snx‘(f,ele) for e e ¢ - E.
J

Finally by Theorem 26 Hx(f,ele)Ean(f,ele) except for at most a

countable number of points in C, since BII, S -ﬁlnx = Iy for efec-k.
1% J

THEOREMS FOR SPECIAL TYPES OF FUNCTIONS

As one might expect, there are numerous theorems relating to the
theory of cluster sets which are only valid for special types of func-
tions. In the remaining sections of this chapter we will consider some
of the more important results for various types of functions including

those which are continuous, light interior and locally univalent.

Continuous Functions

The set of curvilinear convergence of a function f is defined to
be the set {x € C: there exists an arc y at x and a point p in some

metric space such that zl_].)mx £(z) = P}~
z ey

Theorem 30: If f is a continuous function from D into W, then the set

of curvilinear convergence of f is a FmS set. (McMillan, 1, Theorem 5,

p.302)

First we wish to define special subsets F(n,j,k) of D. For each
- +
positive integer n let {A(n,j)} =1 be an enumeration of the open disks
each having its center at b, a point of W whose stereographic projection

has rational real and imaginary parts and such that the set
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{z € D: (f(z),b) < 4‘“} contains points arbitrarily close to C. For

each pair of natural numbers n and j, let {D(n,j,k)} be an enumeration
of the components of the nonempty open set f_l(A(j,n))n{l - 1/n<|z|<1 }
Then F(n,j,k) is defined to be D(n,j,k) N A where A is the set of curvi-
linear convergence of f. Let N denote the set of points eig € C for

which there exist an n > 1 and integers jl, j2, kl, k2 with the follow-
ing properties. If eie € F(n’jl’kl) nF(n,jz,kz), then either E(n,jl)ﬂ

Z(n,jz) = ¢ or there exist j_,k' and k" with k' # k" such that

A, DU Bn,j)enm-1,5),
D(m, 3,k € D(a-1,5,,k"),

D(n,,,k)) €D(n- 1,5 ,k".

Then Theorem 30 is proved by verifying that N is countable and that
N(.UF(n,j,k)) - (NUN')cAcn (U F(n,j,k)) where N' is the countable
n j,k n j,k

set of points of A that are not two-sided accumulation points of A.

An analytic arc is an arc described by parametric equations x= 7¥(t),
¥ = ¥(t) for 0 < t < 1 where the functions Y and ¥ can be represented in
some neighborhood of t for 0 < t < 1 by a power series with real coef-
ficients and throughout this neighborhood at least one of the deriva-
tives ¥' and ¥' is nonzero.

Let t)» t, and t; be Jordan arcs contained in Du{p}. If there
ty and t, in D U{p} such that ey, tycty and

5
is a Jordan curve and t6 = {p} is contained in the

exist Jordan arcs >

tgcty, where t, Ut

4775
then t

bounded region whose boundary is r'l»U ts, 3 is said to be between

t; and ty.
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Theorem 31: If f is a continuous function from D into W and P €EC,

then there exist analytic arcs , Band Y each ending at p such that

@) € (£,9) = C(£,p), Cgl£,p) = Cyy (£,p) and G, (£,p) = Cy (£,p),
(B) @, B andyare mutually disjoint except for their common
endpoint p and

(C) o lies between B and Y.

(H.T.Mathews, 2, Theorem 1, p.1265)

Proof: We may assume without loss of generality that p = 1. Let

{wi}irl be a countable dense subset of C(f,1). Then there exist in D

sequences ¢ z, , such that z,., — 1 as j— ® and f(z,.) = w.. From
1] 1] ij s

the zij's we form a sequence {z} such that z, — 1, Real ( zj) <

Real ( ZJ.+1) and v, is the limit of a subsequence of f(zj)}. We pick

open disks E. . in D sufficiently small so that f assumes only

1 Eps
values close to f(zj) and with centers 2152951t respectively such that
Real (a) < Real (b) for each a e Ej and b € Ej+1' In addition if {xj}

is any sequence with x, € E,, then xj —> 1 and each wj is the limit of
a subsequence of {f(xj)}. Let Lj denote that part of the vertical line
passing through zj that lies in D - Ej and L denote the slit disk

D'lJ.J Lj' Then L is a simply connected domain and so by the Riemann map-
ping theorem there exists a conformal mapping ¥ of D onto L. Moreover,
it may be assumed that, when extended to the boundary, ¢ takes -1 and 1
onto themselves. If g is the image under ¥ of the real line segment
[‘1’1], then ¢ is an analytic arc ending at 1. Since @ must pass
through each disk Ej’ Cu(f,l) = Cc(£f,1).

Let A denote the set of all points q on C such that 0 < arg (Q)gT/4.
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According to Gross (1, pp.248 - 250) there exists an arc & ending at 1
such that & lies between O and A and if {Zj} is any sequence of points
lying between & and A such that zj —> 1 and f(zj) —> w, then w € CBI'
Let A\ be an arc in D joining a point on & to a point on A so that the
domain A bounded by &, \ and a subarc of C is a Jordan domain containing
1 in its closure. Let h be the restriction of f to A. Then C(h,1)=

= CBl(f,l). Since the preceding paragraph can be extended to Jordan
domains, by conformal mappings there exists in A an analytic arc B end-
ing at 1 such that CB(h,l) = C(h,1). Thus Cﬁ(h,l) = CBl(f,l). The arc

Y can be constructed in a similar manner.

If ay and a, are asymptotic paths of an arbitrary function f:D— W
for the values a; and a2 respectively, then d(al,az) denotes the infi-
mum of rational numbers & such that some disk A, whose diameter is ©
and whose center has a stereographic projection with rational real and
imaginary parts, has the properties (i) {al,az}cA and (ii) a and a,
are eventually in the same component of f-l(A)n{l -6 <|Z'<1}~ Any
path B = z(t) for 0 < t < 1 such that Iz(t)' —> last— 1is
eventually in the subset S<D provided that there exists a £ for
0< t < 1 such that z(t) e S whenever £ <t < 1%

If f is a continuous function from D into W, then two asymptotic
paths o, and q, are equivalent, denoted by a;~Q, if and only if
d(ul,uz) = 0. Let C* denote the set of equivalence classes of asymp-
totic paths determined by the relation ~ and [o.] denote the element of
C* to which the asymptotic path o belongs. For [al], [az] in C*, set
n([al],[uz]) = d(al’uz)' For each [a] € C*, let v[a] denote the limit

value of f on . Then both v[a] and » are well-defined.
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Theorem 32: The metric space (C*,p) is separable and complete.

(McMillan, 1, Theorem 1, p.300)

Proof: In order to show separability we need to define a countable
dense set D*¥. This can be done in the following manner. We choose a
disk A whose center has a stereographic projection with rational real
and imaginary parts and whose diameter is a rational number §. If for
some point in A there exists an asymptotic path which is eventually in
the component U of the set f'l(A) n{l -6 < |z| < 1}, then we pick one
such asymptotic path and denote it by a(U). Then D* is defined to be
the set of all [a(U)] where a(U) is defined. So D* is countable and
dense.
o
Suppose {[an]}n:l is a Cauchy sequence of elements in C*. By con-

n]} is a Cauchy sequence

dition (i) in the preceding definitions, {p [a
in W. So {V[cc ]} must converge to some point a € W. Let Aj}be a se-
n
quence of disks such that each one has a rational radius and a center
whose stereographic projection has rational real and imaginary parts,
©
and the Aj's satisfy the conditions AjDAj*H for j > 1 and jglAj —{a}.
Let 6]. denote the diameter of A,. Then for each j there exists a com-
ponent Uj of f_l(A,) n {]_ = |z| < 1} and a positive integer n; such
J d
that if n > nj, then o is eventually in each Uj' Since Uj 2 Uj+1 for
i > 1, there exists a boundary path a that is eventually in each Uj'

Since 'ﬁlAj = {a}, a is an asymptotic path of f for the value a and

ol ) = 0 e = =
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M-Topology for Continuous Functions

Suppose f is a continuous complex-valued function defined in D.
Then we let T(p) denote the set of all Jordan arcs contained in DU,‘p}
and having one endpoint at p, and let Gf(P) = {Ct(f’p) tt e T(p)}. In
order to define the metric M, we choose two nonempty closed sets A and
B in W and set M(A,B) = max(z\:xd(a,B), lixgd(A,b)) where d(wl,wz) is
the chordal distance between v and Wy Then this metric M topologizes
the set Gf(p) with what is called the M-topology.

Any sequence {tn}of Jordan arcs in T(p) is said to be a directed

sequence if for each positive integer n, the arc t lies between tn

ntl
and toe

In this section we will include some of the results of Belna and
Lappan related to the M-topology. For example, if f is a continuous
function in D and p € C is not an ambiguous point of f, then Gf(p) is

compact in the M-topology (Theorem 33, below). Additional results for

normal functions will be included in Chapter II.

Theorem 33: Suppose f is a continuous function in D and p is a point in

Cwhich is at the same time not an ambiguous point of f£. Then Gf(p) is

a compact set in the M-topology. (Belna and Lappan, 1, Theoreml,p. 211)

Proof: Suppose 6.(p) is not compact in the M-topology. Then there

exist a sequence of continua {Kn} and a continuum K such that Kné Gf(p)
for each positive integer n, K # Gf(p) and M(Kn,K) — 0. For each po-
sitive integer n, let Hn = {z eD: d(f(z),Kn) < 1/n and IZ‘P|< 1/“}-

i . t_€T(p)
Since Kn € Gf(p), there exist a component G of H and an arc t (p
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such that Ctn(f,p) =K and €< Gnu{p}.
Suppose Gnn Gn_'_1 # ¢ for each n. There exists a Jordan curve

£, € T(p) such that t, passes through the consecutive Gn and such that
M(.f(to—ncn-),l(n) —> 0. But then Cto(f’P) = K in violation of the as-
sumption K ¢ Gf(P)' Therefore, there exists an integer n such that
cnn Gn+1 = ¢. For this integer n the boundary of the component Gn con-
tains a set L such that LUip} is a closed connected set. Since f is

uniformly continuous on each compact subset of D, there exists a se-

quence {sj} of points on L such that Sj —> p and such that for each

point z on any rectilinear segment [Sj’sj"'l] the condition d(f(z),Kn) > L
1/2n is satisfied. Some subset of the union of segments [sj’sj"'l] con-
stitutes an element of T(p). Since Cs(f,p)ﬂct (f,p)=Cs(f,p)nKn=¢,

n

P is an ambiguous point of f.

Corollary: Let f be a continuous function in D and E be the set of
points p for which Gf(p) is not compact in the M-topology. Then E is a

countable set. (Belna and Lappan, 1, Corollary 1, p.212)

This corollary follows immediately from Theorem 33 and the

Bagemihl Ambiguous Point Theorem (Theorem 4).

Theorem 34: Suppose f is a continuous function in D and p € C. If {tn}
is a directed sequence of arcs in T(p) such that Ctn(f’l’) =K and if K
is a continuum such that M(Kn,K) —> 0 but K ¢ Gf(P): then there exists
a directed sequence of arcs {sk}in T(p) and ¢ > 0 such that for each
is between t“k

integer k > 0 there exists an integer o > 0 such that 8

and t, £ .88)
o, and d(C ,p),K) > e¢. (Lappan, 11, Lemma 13 P
1 (¢ sk(
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Proof: We will prove this theorem by assuming that it is false and then
showing that we obtain a contradiction. If this theorem is false, then
for each positive integer k there exists an integer Nk such that for
each § > 0 which is sufficiently small, n > Nk implies that all of the

sets tnn{z €iD; lz-p' <5} lie in the same component of {z €D

and each § > 0

d(£(2),K) < 1/k, |z-p| < 5}. Therefore, for each n > N

there exists a Jordan arc L leading from a point of t, toa point of

ty4y Such that qnc{z eD:lz-pl < 5 and d(£(2),K) < 1/k}. So we may
choose a subsequence {tnk} of {tn} such that “k > Nk for each positive
integer k. Then for each k there exists a Jordan arc P leading from a
point on t“k to a point on Y such that pkc{z €D: |z-p| < 1/k and
d(£(2),K) < l/k}, and the portion t of tnk between the terminal point
of P _q and the starting point of p, satisfies the relationship
M(f(tll,l() < 1/k. Without loss of generality we may assume that Py
meets t, and t in exactly one point each. Then letting t be the
k b -

Jordan arc obtained by splicing together all of the arcs tl’( and p,, we

have Ct(f’P) = K contradicting the hypothesis K ¢ Gf(p).

Theorem 35: Suppose f is a continuous function in D and p is a point

in C such that Gf(p) is not compact in the M-topology. Then there exist
directed sequences {c }and {Sn} of arcs in T(p), € > 0 and a continuum
n

K such that if K = C, (f,p) and L_= Cg (£,p), then for each n >0
n n n n

MK ,K) < 1/n, d(L ,K) > ¢ and the arc s is between t, and £ .

(Lappan, 11, Lemma 2, p.89)

Proof: Let{tn}be a sequence of arcs in T(p) satisfying the conditions

t
Ctn(f,p) = K, and M(K ,K) < 1/n where K ¢ Gf(p). If the arcs are no
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mutually disjoint, they can be shortened individually so that an infi-
nite subset of the shortened arcs are mutually disjoint. If this was
not true, there would exist an arc t € T(p) where t is contained in the
union of the tn's and Ct(f,p) = K which contradicts the assumption on K.
Now we can choose a directed subsequence of the tn's. In addition we
can select an appropriate continuum K since Gf(P) is not compact. So

the conclusion of this theorem follows from Theorem 34.

Light Interior Functions

A function f from D into W is called a light interior function if
f is a continuous open map which does not take any continuum into a
single point. It has been shown that f has a factorization f = goh
where h is a homeomorphism of the unit disk onto itself or onto the
finite complex plane and g is a nonconstant meromorphic function. ‘
Let A(f) denote the set of all eie for which there exists an as-
ymptotic path of £ in D which includes e'® in its end and let 4,0
denote the set of all eie for which there exists an asymptotic path of
f in D which ends at the point eie. For any homeomorphism h of D onto
D, we define B(h) to be the set of all eie for which there exists an as-
ymptotic path of h in D with end E and eie is contained in the interior

of E.

M&: Suppose f is a light interior function with factorization

f=goh. If A(g) is dense on C, then A(f) UB(h) is dense on C. Fur-

thermore, if A (g) and A (h) are demse on C, then A (£) UB(h) is dense
P |4

on C. (J. Mathews, 1, Theorem, p.79)
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Proof: We will prove this theorem by assuming that it is false and show

that we have a contradiction. Let the arc (WI,WZ)CC - A(f) be arbi-

trary and [gl,gz]C(\yl,\yz) with 0 < g, - gy <2m. Let I} and I, be Jordan
10y

i ie
arcs inD ending at e and e % respectively with l'lﬂ r2 = {(0}. Then h

maps the domain A bounded by I‘1 UI‘2 and the arc [el,ezj onto a domain Al

in D.
Case (i) [Alﬁ c] = Crl(h,el)ucrz(h,ez).

Then there exist a point ei(1 € Crl(h,el)ﬂcrz(h,ez) and sequences
(z“) and (z[‘]) in T and T, respectively with h(z) — el and h(zr") —
eia‘ Let A be a Jordan arc at eie which passes consecutively through
the points h(zl), h(zi), h(zz), h(zl;),.... According to Collingwood
and Cartwright (Lemma 1, p.93), either [SI,GZ]CCA(h-l,a) or [0,,01+2r]
(ot CA(h-l,a). Therefore, either (el,ez)cs(h) or (65,07+2m) CB(h) and
(yysup) N BCh) # 0.

Case (ii) [Elﬂ c]D Crl(h,el) UCrZ(h,ez), with a proper inclusion.

Then E = [Zln C]-[Crl(h,el) Ucrz(h,ez)] is a nonempty open subarc
of C. Let e® be in bothEandA(g). Then e'® is in the end of an
asymptotic path A of g. But C(h'l,a)c[el,ezj so that h™l(4) is an
asymptotic path of f whose end intersects [67,02]. Therefore, [01,0,] N
A(f) # ¢, a contradiction.

Consequently both cases lead to contradictions. Since (WI’WZ) was
arbitrary A(f) UB(h) is dense on C. The second part of the theorem is

proved similarly.
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Locally Univalent Functions

Any function f(z) meromorphic in D is called locally univalent if
£(z) has at most simple poles and £'(z) # 0. The function has Koebe
arcs if there exist curves J“CD such that for some a < B < a + 2T and
some constant c which is possibly o

1) Jn intersects the radii argz =a and argz =B for each n,

(ii) |z|— 1 for z € J, as n—>o,

(iii) |f(z)~c‘ < e for z €J as n—>co

For any set G, the boundary of G is denoted by 9G.
Theorem 37: Let f(z) be a meromorphic locally univalent function with-
out Koebe arcs. Then £(z) has three distinct asymptotic values on each

arc of C. (McMillan and Pommerenke, Theorem, p.31)

Proof: Suppose that there exists an arc A of C on which there is at

most one asymptotic value. So we may assume without loss of generality
that £(z) has no finite asymptoti¢ value on A. Let d(z) denote the
radius of the largest disk around f(z) having no branch points on the
Riemann image surface F. Since f is locally univalent there is a boun-
dary point on the periphery of this disk. Seidel and Walsh (p.133) have
shown that d(z) < (1 - Izlz)'f'(z)' for 'zl < 1. There exists a se-
quence {zn) converging to some interior point ¢ of A such that f'(z) is
bounded. Consequently d(z ) —> 0. Assume £(z ) —> c where c is pos-
sibly c. Let Pn be the pre-image of the segment on F from f(zn) to the
nearest boundary point bn‘ Thus f(z) — bn for z € Pn as ,zl — 1.

Since there are no Koebe arcs, Pn ends at a point, say gn. ,f(z) -

f(zn)l < d(zn) — 0, f(zn) —> ¢ and By { for z € Pn as n—> oo,
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Then gn—-) t because there are no Koebe arcs on which £(z) — c.
Therefore, f(z) has the finite asymptotic value bn at Ln e A.

Now suppose there are no asymptotic values on the arc A except O
and . From the preceding paragraph it follows that 0 and o are asymp-
totic values on a dense subset of A. Let a € A be a point at which
there is the asymptotic value 0. Hence there is a path P ending at a
such that £(z) — 0 as z—> a for z € P. Let G(A) denote the component
of {z 3 lf(z)l < A, A > 0} that contains the part of P near a. Then
CNAG(\) CA for small positive A because there are no Koebe arcs on
which £(z) — 0. For such a value of A, G(A) does not contain any as-
ymptotic path for values # 0, but it does contain the path P on which
f(z) — 0. Since the Riemann image surface F does not contain branch
points it follows that f(z) maps G(A) onto a copy of the universal
covering surface of {0 < |w' < \A}. This construction can be performed
infinitely often to obtain disjoint domains GkCD that are mapped by
f(z) onto the universal covering surface of (0 < lwl <Ak). In addition
this construction can be arranged so that a lies on a fixed closed
subarc A' of A. Let Hk denote the maximal domain that contains Gk and
is mapped by f£(z) onto the universal covering surface of {0 < |w] < Pes
Py Bkk)A Since F is of hyperbolic type, pk<°°. So there exists an asymp-
totic value which is not 0 and o at ;k ecn Hk By assumption gk ¢ A.
Because of the local univalence, the domains Hk are disjoint. It may
be assumed that 2% —>p where 0 < p < . Since gk £ A and a € AY;
there exist arcs of 6Hk that converge to an arc of A - A' and on which
‘f(z)f —> p as k —> «. This contradicts the fact that f£(z) has both 0

and ® as asymptotic values on a dense subset of A.
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Holomorphic Functions

For any point ¢ in C, let h(f,y) denote the chord at ¢ which makes
the angle y, -T/2 < < 7/2, with the radius h({,0) drawn through { and
let A(; "l’l"ll2) denote the angle at t between the chords h(g,wl) and
h(;,wz). For any two points zy and z, belonging to D, we let U(zl,z2)
be the non-Euclidean hyperbolic distance between them. If f(z) is a

holomorphic function and S is any set contained in D, then

TR T P LT O ole
ze S 1+If(z)l

Using this notation in Theorem 38, we are able to obtain sufficient
conditions for a holomorphic function to be a constant function.
Let {z_} be a sequence of points such that z €D and lim ‘z , g S
n N n—>o! B
Then the zn's are called a P-sequence for a meromorphic function f(z)
in D if for any real sequences (ev) and (LV) having the properties
0 iti i =
<€pp <€, for any positive integer v, vl_l:nmev 0, 1<« Lv < Lv+1
and lim L, = e, there exists a subsequence {z, } such that for every v
V=>oc0 v
the function f(z) takes in the disk {z:0(z,z; ) < ev) all values of w
v
in |wi < Lv with the possible exception of a set whose diameter is

less than 2/L .
v

Theorem 38: Let f(z) be holomorphic in D and y be an arc contained in
C. Suppose there exists a set A of second category on y such that at
every point t € A there exists a chord h({,y) containing a sequence of

points (zn) satisfying the following conditions:
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() Ndm g =t
n —>oo L

(ii) nl.i-.)mmt}(z“,zn_*.I) < o0

(1i1) o é c(zn}(f,g)

(1) MRCEA,V50,) < o for ) <y <y,
(v) There exists a value a€ W and a set N metrically dense in Yy
such that for every { €N, ae C (f,t) for at least one
h(g,¥)

YR

Then f(z) = a. (Krishnamoorthy, 1, Theorem 7, p.99)

Proof: Let { be an arbitrary point of A. We assume that t is a Pless-

ner point, which will lead to a contradiction. In every angle

A((,\yl,wz) there exists a sequence of points [z“,,A) with lim Z, A =L

Ve
along which the sequence [f(z“, A)) —>o. From these sequences, we can
B

: ' PR (P ;i '
choose a sequence of points (zv) with vl_].)mmzv t along which (f(zv))-b £
in such a way that there is a corresponding sequence of points (;V} on
h(¢,y) such that 1imo(Zz _,2z') = 0. By the application of

v V'V
condition (ii) we can choose a subsequence [znv) of (z,} so that
‘ll_i)mb° U(znv,’iv) < . So we have two sequences (znv] and (z:,] tending to
€ such that lim (z, ,2z') < and lim f£(z!) = o« while the sequence
v oo a4 v oo ¥
(£(z; )} is bounded. According to Gavrilov (1), there exists a p-
v

sequence (Ev] for the function £(z) lying in the non-Euclidean segments
joining the corresponding pairs of points Zn, and z",. After some messy
calculations involving bounds on |£'(z)|/(1+ |£(2)[?) , condition (iv)

is violated. So ¢ cannot be a Plessner point.
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According to a theorem of Meier (Collingwood and Lohwater, Theorem
8.9, p.154), nearly all points of A are Meier points. For each Meier
point, C(f,t) is a proper subset of W. So by Fatou's Theorem there
exists a subarc Yo of Y around ¢ with the property almost all of its
points are Fatou points. Let FYo(f) denote the set of Fatou points on
il Then the set NO = NN 1-“\(O is a set of Fatou points whose linear
measure is positive and its angular limit is a. From the Lusin-Privalov
Theorem (Noshiro, 1, p.60), f(z) = a.

& where a is an integer > 4.

[o0]
Theorem 39: Let g(z) = || |1-
e 51

1v="a
. 1) 2mil/a’
Let A, ., denote the disk with center at the zero z, = |l-——]e
i1 3,1 =

for 1'= 0,1,.,,,,:«1j -1 and radius 1/(jzaJ). Then there exists a jo such

that for all j > d5 the interiors of the disks (AJ. 1-] are disjoint, and
B

). (Krishnamoorthy, 1,

©
g(z) > o uniformly as z —1 within D- (U lIJ,AJ ?
i= >

Jo
Theorem 1, p.94)

Proof: Let z e D - (cﬁ A, 1.) and z, near C. Then there exists a k
= o =3 s
o

such that 1 - a-ks |Zo| Z1 - a-k-l. We will decompose g(z) into four

products P P, and PA which we will specify below in order to

1 P20 B3

obtain a lower bound of |g(zo)|. Let

k-1 z
P (2) = 1‘|’§1 -(———.

k-1 =
I‘i<=o>l=ﬂ1 1-( o | =
M

1-a™]
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k
a
Let Py(2) = 1 - (—z_—k) , which is holomorphic in the whole complex
1=sa

plane. Then |P2(z)| has its minimum in D - < zleo Aj 1.) on one of the
= B

)
circles Ak,l' enclosing its zeros. Therefore, =
k
Sk da ¥
-1 (ez""%+ = ) -1[~]
k@ -1)
kt+1 kt1
(z)a Fé()|'(z°)al c,
Letting P,(z) = 1 - o , we have ZNIS g - e
3 l-ak 1 o o3 k-1 (k+1)2
o | g al
The last factor PA(Z) must then be —ﬂ 11 -| -j) Then
kt+2 1-a
j 0 j
@ z_ \a _"k-1\a
[,z | =TT 1-( ‘j,) > 31(1_3_) E and
k2| \1-a™] kt2 1-a7J
v R | T R L
3 < 4(1 - a )a < be . Consequently
1-a

u=2

® jok-1\ @ vt
[2,(z)| > TT(I - 4e7® =T (1 - be = C,>0. Therefore,
2

C k-1
|g(z )l 2 2—1—2 (el -2/a 1) which approaches ao as k —.
Kt

Lappan (13) has recently used Theorem 39 to construct an example
of two analytic functions f£(z) and g(z) such that the spherical distance

X(£(z),g(2z)) =0 uniformly as |z| = 1 and £(2) £ g(z). Let

H(z)

2 i
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where s is a positive integer greater than 4. Using Theorem 39's nota-
tion and conclusion we have that H(z) is ananalytic functioninD such
oo
that H(z) = co uniformily as Izl — 1 in D - (U UA, ). We now want
Fie 3 JI»
to construct an analytic function K(z) in D such that K(z) — eo uni-

formly as (z] > 1 in ‘Ul‘Aj N and such that K(z) has no zeros in D.
Js 2 g
. = j 2.9 so-1
For j 22 let D, = (z: 1zl < 1-(1/s)d -2 )) and A, = Ty A L.
iz 5 i < (1/5) 2/(i°s7)) = U Cy i

By the Runge approximation theorem (Hille, 1, p.303), there exists a
sequence of polynomials (Pj(z)} such that for each integer j > 2

j 4 ovd j
B2 | < (1/2)7 for 2 € D) and |By(2) + o) +.. % By (2) - §| < (1/D)

o0
for z € AJ_. Setting L(z) = I Pj(z)‘ we have that L(z) is an analytic
j=2

function in D and that for each j 2 2, |L(2) - jl <1 for z e 4. Then
K(z) = exp(L(z)) has the properties that K(z) = oo uniformly as |z|— 1
in j‘,)l'AJ'»l. and that K(z) has no zeros in D. In addition |H(z)|2 +
'K(Z)IZ — o uniformly as Izl = 1. Let f(z) = H(z)/l((z) and g(z) =
(H(2) - 1)/K(z). Then £(2) and g(z) are analytic functions in D,

) £ 5(2) and x(£(2),8(2) = 1Tl 7+ Tk AT + Taa 17T

So X(f(2),g(z)) > O uniformly as |z| = 1.







CHAPTER IT
NORMAL FUNCTIONS

SUFFICIENT CONDITIONS FOR A FUNCTION TO BE NORMAL

A family F* of functions f defined in a region 2 is said to be
normal if every sequence [fn) of functions in F* contains a subsequence
[fnk) which either converges uniformly or tends uniformly to~on each compact
subset of 2. A function f(z) is called normal in a simply connected
region if the family {£(S(z))} is normal where S (z) denotes an
arbitrary conformal map of Q onto itself.

Noshiro (1, pp.87-88) cites the following conditions for a function

to be normal.

Theorem 1: A non-constant function £(z), meromorphic in D, is normal

if and only if q(£(2))ld(2)| < Kdo(z) holds at every point of D where

a(f(z)) = J_f'_@)_l_ 2 (z):= _liiil_z and K is a fixed positive cons-
1+ e 1-1z

tant. (Lehto and Virtanen, 1)

Corollary: A non-constant function meromorphic in D is normal if and
only if q(£(5(0)) is bounded for all conformal mappings S. (Lehto and

Virtanen, 1)
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Theorem 2: Let f(z) be meromorphic in D, A(r,f) denote the spherical
area of the Riemannian image of the disk |z| < r and L(r,f) denote the
spherical length of the image of the circumference Izl = r. If
A(r,£(S(2)) < KL(r,£(S(2)) for 0 < r < 1 where S(z) denotes an arbitrary
conformal mapping of D onto itself and K is a fixed constant independent

of S and r, then f(z) is normal in D. (Ahlfors, 1)

Theorem 3: Let f(z) be meromorphic in D and Al’ Az,..., Aq for q 2-3 be
mutually disjoint closed Jordan domains on the Riemann sphere. For
10525030505 1e # denote the minimum of the numbers of sheets of
islands of R above Aj where R is the covering surface gen:rated by £(z).
If there is no island of R above Aj, then A4 = 4o, If jgl(l-%) 2025

J
then f£(z) is normal in D. (Ahlfors, 1)

Corollary: A function f£(z) meromorphic in D is normal if one of the
following conditions is satisfied:
(i) £(z) omits three values in D,
(ii) the covering surface F has no univalent island above five mu-

tually disjoint Jordan closed domains on W.

(Ahlfors, 1)

Other mathematicians have proved additional criteria for a function

to be normal. These include the following results.

Theorem 4: A complex-valued function £(z) in D is normal if and only if

'
for each pair of sequences (z } and (z3} in D such that 0(z ,z) = 0

the convergence of (f(z_)} to a value @ € W implies the convergence of
n
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[f(z"\)) to a. (Bagemihl and Seidel, 2, Lemma 1, p.10)

Since a normal function must be continuous, this theorem follows
from a well-known result that a family of continuous functions in D is
normal if and only if the functions are equicontinuous on each compact

subset of D. (Hille, 1, Theorem 15.2.2, p.244)

The sum of two analytic normal functions need not be normal as the
next example will show. However, Theorem 6 will give a sufficient
condition for the sum of two meromorphic functions to be normal.

In order to construct two analytic normal functions whose sum is
not normal (Lappan, 1, Theorem 3, p.190), we will first show that if
£(z) is a normal holomorphic function in D, then for any two sequences

5 lim 0 = i i
(z,) and (2!} in D such that 0(z,52)) <M, o', £(z) =e 1fn1_1)mwf(zn)
=, If this conclusion is false, then without loss of generality we
may assume that lim £(z') = 0. Let S (2) =(z + z))/(1 + 2!2). Since
n — o n n n
Sn(Z) is a linear transformation of D onto itself, the sequence of
functions (f(Sn(z))) forms a normal family. Since il_i)mmf(sni(())) =0,
the limit of the sequence (f(Sni(z))), which we will denote by F(z),
must be holomorphic in D. So there exists a positive constant L such
that |F(z)| < L in the disk 0(0,2z) < M. Then there exists a positive
integer N such that f(Sni(z)) <L+ 1 for all ng > N and all z in the
= " o=
disk 0(0,z) < M. However, setting z " = S, (Zn)’ we have U(U,Zn )
= " =f f So
U(Sn(O),Sn(zn"))— c(zr‘l,zn) < M and f(S“(zl_l )) (Zn)
lim f W 1 to .
i_}‘“‘” (s“i(zni>) must be equa
Now we will let f£(z) denote a normal holomorphic function which is

D h
unbounded in D, and we will construct a Blaschke product Bf(z> in 0 sue
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that g(z) = f(z)Bf(z) is not normal. Let (zn"] be a sequence of points
)
in D such that 1lim f(z_ ") = e and T (1 -Iz "])< ., We pick a subse-
n—»oe 1 n=1 n
quence (zn) of [zn"] such that for each j <n, c(zj,zn) > 3(n- j)M'
where M' > M, the constant in the preceding paragraph. Then we choose

g lml -z

n=1 Zn 1-7Z z°

' ' =M =

a sequence (zn) such that c(zn,zn) M' and Bf(z)
= = = '
So Bf(zn) 0 and g(zn) 0. Since nl_i.:xmf(zn) o0, nl_i:\wf(zn) also
equals oo, ‘Bf(zx'l)!Za> 0 by comparison with the Blaschke product in Example
4 of Bagemihl and Seidel (2, p.11). So 1lim g(z') =e and g(z) is not normal.
n— o n

Finally we define h(z) = sé(Bf(z) -2)f(z) and G(z) = £(z) th(z). By direct

verification h(z) is normal, and G(z) =l;f(z)Bf(z).

A holomorphic function £(z) in D is uniformly normal if, for each
M > 0 there exists a finite number K > 0 such that for each z, € D,

U(z,zo) < M implies that ’f(z) - f(zo)‘ < K. If (zn) and {:r'l] are two

sequences of points in D such that G(Zn,z['l) — 0, then {zn] is close to

(zx;}’ or (zn] and (z[’l) are called close sequences.

Lemma 1: Suppose f(z) is meromorphic in D and there exist two close

sequences (zn] and [zi;) such that f(zn) —>a and f(zr") — B witha#B.
Then for each complex number &6 with possibly two exceptions, there
exists a sequence {zlf] close to a subsequence of (zn} such that f(z£)=6.

(Lappan, 3, Theorem 4, p.44)

Proof: Let Sn be a linear transformation of D onto itself mapping 0

into z, and let Fn(z) = f(Sn(z)). Since S;l(zr;) —> 0, no subsequence of
(Fn(z)] converges continuously at z = 0 and no subsequence of (Fn(z)) is
4 normal family in any neighborhood of z = 0. Suppose this lemma is

false. Then there exists a neighborhood N of z = 0 and three complex
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numbers a, b and c such that for each n in an increasing sequence of

positive integers, Fn(z) omits a, b and ¢ in N. However, by a theorem

of Montel (Hille, 1, Theorem 15.2.8, p.248), this subsequence of func-

tions is a normal family in N.

Theorem 5: A uniformly normal function is normal. (Lappan, 3, Theorem

8, p.46)

Proof: Let f be uniformly normal and (zn) be a sequence of points in D
such that (f(zn)) converges to a value a which may be infinite. Given
M > 0 there exists K > 0 such that for each n o(z,zn) < M implies that
|£(2) - f(zn)’ < K. If a=o, then £(z!) >e. If a is finite, then

(f(zr'l)) is bounded. So there exist three complex numbers 8 4=1,2,3)

such that there is no subsequence (an-) of {zn} having the property
i
that there exists a sequence (ZE} close to (Z“k-] such that (aﬁ} con-
i

verges to 61' So from the contrapositive of Lemma 1, f(z"l) — a, and

by Theorem 4, f(z) is normal.

Theorem 6: If f(z) and g(z) are uniformly normal functions in D, then

h(z) = £f(z) + g(z) is uniformly normal. (Lappan, 3, Theorem 9, p.46)

Proof: If M> 0 is given, then there exist constants K; and Kg such

that for each z € D, 0(z,2,) < M implies ’f(z) - f(zo)' < Kg and

/g(z) - g(zo)l < Kg. Let K = Kg + Kf‘ Then for each z, €D, 0(2,20) <M

implies [(£(z) + g(2)) - (£(z,) + 8(z,) | < K.
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Theorem 7: If u and v are harmonic functions such that f£(z) =u(z)
+ iv(z) is uniformly normal, then u and v are both normal.

(Lappan, 4, Theorem 6, p.158)

Proof: Let (Sn) be a sequence of conformal mappings of D onto itself.

Let Z{e= Sn(O) and M > 0 be given. Then the family [F“(z) = f(Sn(z)

- f(zn)} is uniformly bounded in {z € D :0(z,0) < P;/Z]‘ A subsequence

(Fnk) can be chosen so that it converges uniformly on each compact sub-
set of D. So (u(znk)) converges to a limit which may be either finite

or infinite. Since Fn(O) = 0 for each positive integer n, F(z)=

k
th 31k = e | SR G s is finit
en k_x)mwu(snk(z)) U(z) k_})n-xmu(znk) k.;mwu(z"k) is finite,

lim Fnk(z) is a holomorphic function in D. If F(z) = U(z)+iV(z),
e

then u(Snk(z)) converges uniformly on each compact subset of D to
U(z) + k1_%>|:|wu(z“k) while if k]._i)rnwu(znk) =00 u(Snk(z)) converges uni-
formly to o on each compact subset of D. Therefore, u(z) is normal.

Similarly v(z) is also normal.

A special type of uniformly normal functions consists of the Bloch

functions. A function f which is analytic in D is called a Bloch func-

tion if £(0) = 0 and it satisfies one of the following conditions:
(i) zSéJdef(z) < oo where dg(z) denotes the radius of the largest
single-valued disk with center f(z) on the Riemann surface f(D).
(ii) zs:pl)(l - Iz'z)lf’(z)l < co-
(iii) £(y(z)) - £(y(0)) where y(z) =cl—z+—‘ziz 3 ,d <1, Jjcl <1, form a
finitely normal family where oo is not allowed as a limit function.
(iv) there exists aunivalent analytic function g(z) inD such that

f(z) =\ logg'(z) for some constant A > 0.
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Theorem 8: The above four conditions are equivalent. (Pommerenke, 1, p.79)

(i) => (ii): For any 2 € D we form

z'F 2y
£*(z) = [f(1_+71z)- f(zl)] [(1 =

d4g(z))

Proof:

zl‘z)f‘(zl)].

So
S PR IEeN 1

(ii) => (i): From Schwarz's Lemma (Hille, 1, Theorem15.1.1,p.235)
df(z)s (1- | l%lf'(z)’ for |z| <1 whenever f is analytic in D

(ii) <= (iii): This follows from Montel's Theorem (Hille, 1,
Theorem 15.3.1, p.251) and the fact that (1-|z%) le' ()] is

invariant under y.
-2l @ =2 - 125 |58, whieh 1o

(iv) = (ii):
p.351)

bounded. (Hille, 1, Lemma 17.4.1,

: s, b i2
(ii) = (iv): 'qup (1-2) ),g (z)’ < o, which implies g(z) is

univalent by Nehari (1).

If f(z) is analytic in D and f'(zo)/ 0 for z, €D, then the maxi-

mal domain containing z, that is mapped by f(z) one-to-one onto a
single-valued domain starlike with respect to f(zo) is called the Gross

star domain G(zo) of f. Rays of G(zo) are defined to be the preimages
If R is a ray of G(zo) then

of the rays of the starlike image domain
to a point 2z € D where

either R is a Jordan arc in D that goes from z
£'(2;) = 0 or R is a Jordan arc in D except for its endpoint e 0 e C

where f(z) has an asymptotic value.
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Lemma 2: If £(z) is analytic in D and without Koebe arcs, then for any
0

point e'® ¢ C either f(z) has an asymptotic value at e'® or diameter

G(z) >0 as z—> B, (Pommerenke, 1, Theorem 7, p.90)

Proof: Suppose G(z)-40. Thenwe have [zn]—>eie withdia G(zn) >/ro >0. So
there exist rays Rn of G(zn) such thatdia Rn>/ro. We have two cases.

(i) There exists a subsequence (nk) and some r, 0 < r < T, such
that min (lz |: Iz-eiel o o Rnk) — 1 as k >o. Then some subarcs

6

n, converge to an open arc A of C that has e'® as an endpoint. In
k 8 [

addition f(R['Ik) is either a line segment or a half line. We claim that

f(zo) is analytic on Ao' We may assume without loss of generality that
the endpoints of the segments f(RI‘lk) converge respectively to the points
w' and w" in W. Furthermore, we may assume that the directions of the
segments f(RT'lk) converge. So as o > f(Rr'Ik) converges to a recti-
linear segment L joining w' and w'" (which may be the same point). By a
suitable linear transformation we can make L a real segment or a single
point. Let §1 and CZ be distinct points on A0 and choose points zt‘1 and
z‘r; on R‘!‘k such that zr'l—>§1 and z) —,. Without loss of generality we
may assume that the corresponding sequences of points f(zl‘1) and f(z;)
converge. Neither of these limits can be « since f(z) maps Rl'.‘k
one-to-one onto f(R"‘k) and f(z) has no sequence of Koebe arcs for o.
Therefore, by replacing Ao by its arc between ;1 and CZ we may assume
that L is bounded. We will now show that f£(z) is bounded in a neigh-
borhood of each point of Ao' Suppose on the contrary that there exists
a point §3 € Ao and a sequence of points zj € D such that Zj —>§3 and
f(zj) —>c. Let Lj denote the half-line (Tf(zj) : T>1) and let A, be

3

the component of the preimage f-l(Lj) that contains Zj' We choose z].'s
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such that £'(z) 4 0 on Aj. Then Aj is a simple curve tending at one
end to a point of C. For all sufficiently large j, Lj does not inter-
sect Uf(Rr“k) because L is bounded. So f(z) has a sequence of Koebe arcs
for «, a contradiction. Consequently f(z) is analytic on Ao and has an
asymptotic value at eie‘
(ii) We can find ¢ € D such that a subsequence of Rn comes arbi-
trarily close to cy- If (i) does not hold, we can also find c, € D
with 0 < Icz = eie] < |c1 = eie!/Z and such that another subsequence of
Rn comes arbitrarily near to cy- After continuing this process of
taking subsequences we finally take the diagonal sequence. So we have
points ck e D with ck - eie as k - o such that for each fixed k, Rn
comes arbitrarily close to €) @8 0 —co. Since f(Rn) is a line segment
or a half-line, all the points W = f(ck) lie on the same line L. The
points ck are all distinct since f£(z) is not constant. Since £(z) maps

Rn one-to-one onto f(Rn), w, converges monotonically along L to a limit

k

Vo Let Dk be a disk around e such that diameter f(Dk) = 0 as k = .

For each k, we choose o and a subarc Ak of &‘k from 8 € Dk to bk €

Dk*'l' Then Al + [al’bl] + [az,bz] + ... may be assumed to be a Jordan
6

arc that lies in D except for its endpoint et f(Ak) converges to

[wk-l’wk]' Since b T M and diameter Dk — 0, f(z) has an asymptotic

value w_at e*9.

o
Theorem 9: Every Bloch function in D has finite or infinite angular
limits on an uncountably dense subset of C. (Pommerenke, 1, Theorem 8,

p.91)

Proof: Since every Bloch function is normal, every asymptotic value
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is an angular limit. Let A be an arc of C. Suppose there exists an

® of A where there is no asymptotic value. By Lemma 2

interior point ei
there exists a Gross star domain G(zc) such that Boundary G(zo) (=7
The number of rays of G(zo) has the power of the continuum and only
countably many of them can end at points where the derivative is equal
to 0. All others end on C. Therefore, it is sufficient to prove that
any two distinct rays end at distinct points of C. Let Rl and R2 be
different rays of G(zo) with endpoints ;1 and gz in C. Since af(z) + b

is also a Bloch function, we may assume that the half-lines or segments

f(Rl) and f(RZ) lie on different sides of the line (Realw = Real f(zo)).
f(z)

So the normal function e tends to different limits along R, and RZ'

) |
Consequently 51 # ;2.

Theorem 10: Suppose F(z) is the Blaschke-Quotient expressed in the form

. Siig a I a -2 00 bn
B =8, (/8,0 = a: ( = z)/nl;x1 5

l-a
n= n

o 0
where L (1- 12 ') <o and L (1- lb l) < . If the set of limit

n=1 n n=1 n
points of the an's is disjoint from the set of limit points of the b“'s,

then F(z) is normal. (Cima, 1, Lemma 1, p.769)

Proof:

[ - BBy 1 - w)) [B@]a- =0 B@ja - b
B, 12 + 15,02 12 B, 12+ Ib, (2|2

ie

b;"dnl(z) ‘2-{— le(z) 12) >1as z—> e~ in D and \Bi(z)l(l- 1z1) for

1=1,2 is bounded for |z] < 1 according to Seidel and Walsh (1). So

— |B,(2)B)(2) - B!(2)B,(2) i
o IL~2_—1__Z_I _lzlz) < o as z=+e'® in D ana

I8, (2 2 + Ipy(2)1?
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I8, (2)B,(2) - Bi(Z)Bz(Z), clazl

laz| =
S s '31<z)]2+,32(z)‘2 S teia

the condition in Theorem 1.

CLUSTER-SET THEOREMS FOR NORMAL FUNCTIONS

The following theorem of Lehto and Virtanen is one of the first

important results in the theory of cluster sets of normal functions.

Theorem 11: Let f(z) be a normal meromorphic function in D. If f(z)

has an asymptotic value @ at a point z, on C along a Jordan curve lying
in D, then f(z) possesses the angular limit a at Zy (Lehto and

Virtanen, 1, Theorem 1, p.49; Nashiro, 1, Theorem 6, p.86)

Bagemihl and Seidel have proved many other cluster-set properties
of normal functions. These include conditions for f(z) to be identi-

cally constant and conditions for f£(z) to have a limit at a point.

Theorem 12: Let f(z) be a normal meromorphic function in D which omits
the finite or infinite value c and let (zn) be a sequence of points in
D which converges to a point ¢t eC. If there exists a positive number

M i i =
such that for every m, 0(z ,z ;) <M and if n1_1;nmf(zn) c, then £(z)

has the angular limit c at ¢. (Bagemihl and Seidel, 2, Theorem 1, p.4)

z+t 2z
n

Proof: The family of functions gn(z) =ik ﬁ_i—z) for n any positive
n

integer is normal in D and lim gn(O) = c. So the functions (gn(z))
n >0
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converge uniformly on every compact subset of D to c. Let S be the

compact subset lzl < A where 1 > A > tanhM. Since c(zn,zn+1) < M, the
+

non-Euclidean circle An with center z, and radius equal to % logH

contains the point z in its interior. lim f(z) = c when z is re-

ntl z >t
stricted to the union of the interiors of the circles An. In particular
this relation holds if z lies on the polygonal line formed by joining

the points 2, and 2 41 by a Euclidean line for all n. So f(z) possesses

the angular limit c at { by Theorem 11.

A boundary path is a simple continuous curve z = z(t) (0 <t < 1)

in D such that |z(t)| =1 as t 1. The initial point of the boundary
path A is the point z(0) and the end E of A is the set of limit points
of A on C. In order to decide when two boundary paths are "close toge-

ther" % = i y i (/ = i
er", we let Dl(Al’AZ) [1_1;\11 sup U(z(t),\z),Dz(\l,Az) tl‘ﬂnl sup

z(t)eA1 z(t)sA2

o(z(t) ,Al) and D*(AI’AZ) =, sup(D‘f(Al,Az),Dg(Al,Az)).

If P is a prime end of D, (qn) is a chain belonging to P and d“ is
the subdomain of D defined by q, and containing q ,,, then ﬂd_n= ﬂ;t'l
for (qul) any equivalent chain. The set I(P) = ﬁEn, which is invariant
in the equivalence class of chains constituting P, is called the
impression of the prime end. Two distinct prime ends of D can have the
same impression. For example, if the domain D is obtained by deletion
of an end-cut y from the unit disk, then each interior point of y cons-

titutes the impression of exactly two prime ends.

Theorem 13: Let f(z) be a non-constant meromorphic function in D that

tends to C along a boundary path A whose end E contains more than one
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point. Then given €>0 there exist boundary paths Al and AZ whose ends
are contained in E such that A, Al and AZ are mutually exclusive;
D*(AI’AZ) <€; and f(z) ->c along Al, but not along Az. (Bagemihl and

Seidel, 1, Theorem 1, p.264)

Proof: Let G =D - A. The initial point of A is the impression of one
prime end of G whereas every other point of A is the impression of two
prime ends of G. If E is the impression of a prime end of Pand E = C,
then E is the impression of only P, but if Ef C, then E is the impres-
sion of P and of another prime end P'in G.

If E= C, we map G onto D in a one-to-one conformal manner so that
the initial point of A and the prime end P correspond respectively to
the points -1 and 1. Let F(z) denote the image of f(z) under the con-
formal mapping. Since f(z) % c, there exists a sequence of points in G
tending to C on which f(z) ==b # c. So there is a sequence of points in
D tending to the point 1 on which F(z) = b and there exists a segment S
in D bounded by a suitable arc and chord of C both having an endpoint at
1 that contains infinitely many points of this sequence. F(z) —c as
z—1 along C but not as z—1 on S. Consequently from an argument of
Lehto and Virtanen (1, pp.49-52), given € > 0 there exist two disjoint
boundary paths Ai and Aé in D whose ends are the point 1 such that
D*(AI,AZ) < € and F(z) - c along Ai but not along A‘Z, So under the
original mapping of G onto D there exist boundary paths Ay and A2 that
lie in G and satisfy the conditions of the theorem.

If E # C, then we map G onto D one-to-one conformally so that the
initial point of A and the prime ends P1 and Pz correspond respectively

to the points -1, -i and i. Let F(z) again denote the image of £(z)
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under this conformal mapping. Let A, A1 and A2 denote the open subarcs
of C which, when described once in the positive direction, have the
respective initial and terminal points -i and i, -1 and -i, i and -1.
Under this conformal mapping A corresponds to the arc C-E while A1 and
A2 each corresponds to A minus its initial point. Therefore, as the
point i or -i is approached along A, the inverse of the mapping function
approaches an end point of E. Then this limit is approached as z—i or
-i on the set {Izl < 1, Real (z) >A}. Since £(2z) £ c,according to
Privalow (1, p.207) there exists a sequence of points in G tending to
an interior point of E on which f(z)— b # c. So there exists a se-
quence of points (zn) tending to i or -i satisfying the conditions:
Real (zn) <0 for n any positive integer and F(zn) —b as n >w. In add-
ition F(z) - c as z— -i along Al‘ The rest of the proof is the same as

above.

Theorem 14: Suppose that f(z) is a normal meromorphic function in D and
that A and A, are boundary paths for which D*(Al"\z) is finite. If
f(z) - c along A, then £(z) - c along A,. (Bagemihl and Seidel, 1,

Theorem 3, p.266)

Proof: Assume c is finite. If c=c, then we will look at the normal

meromorphic function 1/£(z). If this theorem is false, then there

exists a number c' possibly e, different from ¢ and a sequence of points
'

(Zn] on A,

is finite, there exists a positive number M and a sequence of points

such that 1im |z'|l = 1 and 1lim £(z') = c¢'. Since D*(A. ,A,)
filSveor I iy bl il 12572

{z_ } on A, such that 1lim |z | =1 and g(z_,z') <M for n any positive
n n —>o0 n n n

3k
integer. The family of functions [f(Sn(z))) where Sn(z)= (z+zn)/(1+inz)
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is normal in D. As n —>c, f(Sn(O)) = f(zn) —c. Since c is finite,
there exists a subsequence [f(Snk(z))) which, as k -, converges uni-
formly to a meromorphic function F(z) on the closed disk A in D whose
center is the origin and whose non-Euclidean radius is M. For all suf-
ficiently large values of k, S;;(l\l) intersects every circle 0(0,z) = L
with L < M. Since f(z) = c along AI’ F(z) = c. However, U(z“k’z"‘k) <M
so that S;li'(z",k) e A and since f(zr'lk) —>c' #cas k>w, F(z) £c, a

contradiction.

If a normal meromorphic function £(z) in D tends to a limit

Corollary:

along a boundary path whose end contains more than one point, then f£(z)
is identically constant. (Bagemihl and Seidel, 1, Corollary 1, p.266)

In the section on Locally Univalent Functions in Chapter I we de-

fined Koebe arcs of f(z).
arc A of C is a sequence of Jordan arcs (Jnl in D such that

(i) for some sequence [en) satisfying the conditions 0 <e <1
for n any positive integer and € —0 as n —>o, Jn lies in

the sn—neighborhood of A,

(ii) every open sector A of D subtending an arc of C that lies
strictly interior to A has the property that, for all but at

most a finite number of n's, the arc Jn contains at least one

Jordan subarc lying wholly in A except for its two end points
which lie on distinct sides of A.

Let f(z) be a normal meromorphic function in D. If f(z)—c

Theorem 15:
along a Koebe sequence of arcs (Jn), then it is identically equal to c.
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(Bagemihl and Seidel, 3, Theorem 1, p.l10)

Proof: Assume ¢ = 0. If c is a finite non-zero complex number, then we
replace £(z) by £(z)-c; or, if c = o, we replace £(z) by 1/£(z).

Let [Jn) be the given sequence relative to an arc A. We define an
arc B = {z :lz, s 8 q < argz < qz) to be strictly interior to A. We

denote by A the open sector of D with vertex at the origin and vertex
angle B subtending the arc B. There is no loss in generality in assum-
ing that for every n the arc Jn contains a Jordan subarc rn lying

r(12) which lie on the

wholly in A except for its endpoints P[(ll) and P

id ’ = min = max

sides s) and 5, of A. We set r = ™ r,'? and R zery'?! for n any

positive integer. Then lim r, = 1im R, = 1. Now we define a Jordan
n—>oo n—>oo

Let 'z, - Rn intersect s; respectively at

curve Kn for each n. and s,
the points Q'fl) and QrED' If Bn is the open arc of |z|

in A and B: is the complementary arc, then we define Kn to be the union

= R_which lies
n

(Dy(1) (2),(2) " . ;
£ % =
oLubs Qn Bn’ P[1 Qn and I‘n4 An argument involving harmonic mea
sure shows that if D is mapped conformally onto the interior of Kn by
2R on(w) where on(O) = 0, then for n sufficiently large the arc {1 is

the image of an arc S on C having a length at least 7 times the harmonic

measure w(O,Bn,{z s lzl< Rn])~
Since f(z) -0 along the Koebe sequence {(J_}, lim £(¢_(w)) = 0O
0" n—>o0 a

uniformly on S. From Lehto and Virtanen (1, p.64), [f(on(w))] tends to

zero uniformly on every compact subset of D.

Suppose there exists a point zo € D for which f(zo) is not zero.
By the definition of a Koebe sequence relative to A, z_is in the inter-
= «a:(z) denote the in-

ior of each Kn for n sufficiently large. Let w
* = ici
Then f(on(on(zo))) f(zo) for n sufficiently

verse of z = on(w).
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large. Since (f(Gn(w))] —0 uniformly on every compact subset of D but

£(z) # 0, lim |o*(z )| = 1. However, if p is fixed so that |z I<p<1,
o n—poo 0 O ()

then according to Schwarz's Lemma lo:(zo)l < |zoI/ﬂ < 1 for n suffi-

ciently large, a contradiction.

Theorem 16: Let f(z) be a normal function in D that omits the value w
If

which is either finite or infinite and let A be an open subarc of C.
the set of Fatou points of f(z) on A is of measure zero, then A contains

a Fatou point of f(z) at which the corresponding angular limit of f(z)

is w. (Bagemihl, 1, Theorem 1, p.3)

If f(z) were bounded in some neigh-

Proof: Assume w is co. Let ¢ € A.

borhood of ¢, then by a simple extension of Fatou's Theorem, the set of

Fatou points of f(z) on A would be of positive measure, which is con-
trary to the hypothesis. So f(z) is unbounded in every neighborhood of
t. Hence there exists a number & > 0 such that the region H= DN {z
,Z = §! < &) satisfies the conditions that HN CC A and f(z) is un-
Consequently there exists a sequence of points (zn} in D

<...<

bounded in H.
2

such that z —¢ and M_ = |£(z )| > as n>eo where 1 <M <M
n n n 1

For n any positive integer, let Vn be the open set of points

M
<o
Let Rn denote the component of Vn that

in D for which le(z)|>m - 1.

contains z- If(z)' e 1 at all boundary points of Rn that lie in

D. By the maximum principle, Enﬂc is non-empty. Suppose the diameter
. min i

Let i ZERnlzl. Since f(z)

of Rn does not tend to zero as n —>oo.
1 and there exists a Koebe se-

omits oo in D b; i lim
y assumption, Sy |

quence of arcs along which f(z) —>c, a contradiction of Theorem 15.

Thus there exists a natural number N such that RNC H.
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We want to show that f(z) is unbounded in G1 = RN' Let Gf be the
smallest simply connected region containing G1 and z = ¢(w) be a func-
tion that maps D conformally onto Gf. The set B* = E}ric is non-empty.

We denote by Bf the set of all points of B* that are accessible from GT.

Let ¢*(e ") = r%iTl o(re'") for every u for which the limit exists. By

Fatou's Theorem this limit exists at almost every point of C. The set

E. = {eiu :|¢*(eiu)l = 1} is a Borel set and hence measurable. In addi-

1
iu

tion Bf = (o*(e™™) : eV eE We want to show that the function g(w) =

1}'
f(¢(w)) is unbounded in D. Assume not.
Suppose m(El) > 0. Let EO denote the Borel set of positive measure

which is the subset of E. consisting of all the points for which g(w)

1
possesses a radial limit and Bg be the image of E0 under the mapping
z = ¢(w). From an extension of Lowner's Theorem (Tsuji, 1, p.322), Bg

is a measurable subset of B¥* with m(Bg) > 0. Let goeng. Then there

1
exists a path in Gf terminating at go’ and this path is the image under
z = ¢(w) of a path in D that terminates at a point etUo e Eo' ¢*(eiu°) =

§o and g(w) has a radial limit at eiu°; therefore, f(z) tends to a limit

along a path in Gf terminating at { . Since f(z) is normal in D, go is
a Fatou point of £(z) (Theorem 11). Because go was an arbitrary point
of Bg, a set of positive measure, we have contradicted the hypothesis
that the set of Fatou points of f(z) on A is of zero measure.

Suppose m(El) = 0. Since every boundary point of Gf is a boundary
point of G1 and |f(z)| = MN - 1 at all boundary points of RN that lie in
D, the Fatou values of g(w) are equal in modulus to My - 1 almost every-
where on C. The representation of g(w) by its Poisson Integral shows
that |g(w) | g M, - 1 throughout D. so l£(2) | <My -1 =L throughout

G, = Ry which is contrary to the way Ry was defined.
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Therefore, g(w) is unbounded in D and so f(z) is unbounded in G’i‘

and Gl' The open set of points of G, at which If(z)l > L+ 1 is non-

1
empty. Let G2 denote a component of this set and f(z) is unbounded in
G2 as before. A continuation of this process yields a sequence of
nested subregions G1 o) G2 D ... of H. Now we choose z1 € Gl’ 2, € G2 -
(zl}, 235(}3- (21’22)’“" anGn— [zl,zz,...,zn_l},.,. and join z) to
zy by means of a Jordan arc J1 lying in Gl. In addition we join z, to
Zq by a Jordan arc "Z lying in G2 and having no point except 2z, in com-
mon with J

PEREEN join z, to Z 4+ by a Jordan arc Jn lying in Gn and

having no point except 2, in common with Jl U J2 {1 SRR 7 So

NETERTE

Its end lies on C

P= ‘['jl J, is a path in D with initial point z.
o

because nl_i:‘w Z‘T‘E{I‘;lf(z)|= oo and f(z) omits ® in D. According to the
Corollary following Theorem 14, the end of P is a single point { e C.
Since £(z) is normal in D, ¢ is a Fatou point of f(z) with the corres-
ponding value e by Theorem 11.

In conclusion if w is finite, we then define F(z) = f(—z)l: . From
the proof above, A contains a Fatou point of F(z) with the corresponding
angular limit . So this is a Fatou point of f(z) with the angular

limit w.

A hypercycle is the locus of points whose non-Euclidean distance

from a given non-Euclidean straight line is constant.

Theorem 17: Let £(z) be a normal meromorphic function in D that omits
the finite or infinite value w. If there exists a sequence (zn) having
at least the limit points o and B on C and a constant M such that

(2,52 41) <M for every n and l_ll_i‘.:nmf(zn) =c, then ¢ # w and £(z) = c.
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(Bagemihl, 1, Theorem 2, p.4)

Proof: Assume ¢ = w. Then by an argument in Theorem 12's proof, there
exists an asymptotic path P in D whose end contains the arc af such that
zl_i;nl £f(z) = w. According to the Corollary following Theorem 14, this
:milies that £(z) = w, a contradiction.

Assume f(z) Z c. If the set of Fatou points is of measure zero,
then by Theorem 16, since f(z) omits w, £(z) has a Fatou point on the
arc @B at which the corresponding angular limit of f(z) is w. If the
set of Fatou points is of positive measure, then by a theorem of
Privalow (Noshiro, 1, Theorem 2, p.72), f(z) has a Fatou point { on the
arc gB at which the corresponding angular limit of f(z) is d # c.

Let y be an angle such that 0 < y < 47 and M < log tan (37 + 5v)
where M is the constant in the statement of this theorem. Let A be the
subregion of D determined by the two hypercycles that form the angles y
and -y at ¢ with the diameter of C joining ¢ and -¢. In a neighborhood
of ¢ every point of A lies in a symmetric Stolz angle of opening 2y. So
zl-?éf(zh a#c. Since M f£(z)=c, the points z for all suffi-
ciently large n do not lie in A. Since every point of gf is a limit
point of (zn}, for infinitely many n the points z, and z 4, lie on op-
posite sides of A. Every boundary point of A that lies in D is at the

non-Euclidean distance ylog tan (¥ + %y) from the diameter of C joining

-t and t . Therefore, for infinitely many n, U(zn’zn'f'l) 7 log tan (4 +

%Y) > M, a contradiction.
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SUBHARMONIC NORMAL FUNCTIONS

One special class of normal functions, the subharmonic normal
functions, have the property that for any u for which J‘Tlu(reie) I =0(1),
u has Fatou points almost everywhere on C.

A continuous function u(x,y) not identically equal to zero is sub-
harmonic if and only if it satisfies either of the following mean-value

inequalities for each circular disk in D:

1 2m P
u(xo,yo) < omdl u(xo‘f' ecose,yo"' esind) d6 ,

1_sr p2m :
u(xo,yo) = nrsz’ J“o u(x0+ @ cosp ,yo+ esing)e de dg -

If u(x,y) has continuous second partial derivatives in D, then it is
subharmonic if and only if

On = >0
>
ax? 6y2

at every point of D.

Theorem 18: If u is normal and subharmonic in D and

IMure™® lao = o)

for 0 < r < 1, then u has Fatou points with finite Fatou values almost

everywhere on C. (Meek, 1, Theorem, p.314)

Proof: According to Littlewood (1, Lemma 3, p.390) u has the represen-
tation u = v + u* where v has the property that if we(z) is harmonic in

= = lim = 7
1z) < e <1 and We = uon |z| =@, then e—»le(z) v(z) and u* is a

non-positive subharmonic function in D with u*(rele)—> 0 as r »>1 for
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almost all & € [0,27). 1In addition by a theorem of Tsuji (1, Theorem

1V.16, p.147) v has Fatou points corresponding to finite Fatou values

almost everywhere on C.

Let E denote the set of points on C at which u* has radial limit

zero and v has a finite Fatou value. For any B, 0LB< /2, andelee E,

let H(eie,ﬁ) denote the open set in D bounded by the hypercycles from

-eie to e1e making angles B and -B respectively with the diameter

through ele and -ele. We pick a sequence [zn}:;l c H(ele,B) such that

zn —>eie as n —» oo,

For each positive integer n, we denote the non-Euclidean straight

line which passes through z and is perpendicular to the radius oele,

0<e<1, by En' Because of the invariance of the metric O under one-
to-one conformal mappings of D onto itself, it can be shown that each of
the bounding hypercycles of H(ele,B) is at a hyperbolic distance

0(0,tanB/2) from the diameter between eie and -e'". Therefore, for

each positive integer n, eneie, the point of intersection of En with

eeie, satisfies the relation O(OHeie,zn) £ 0(0,tanB/2). For each

positive integer n,§ (w) = (w + oneie)/(l + ene-lew) is a one-to-one

conformal mapping of D onto itself.

Since u is normal, there exists a subsequence, also denoted by

{U(Sn)}gzl, which converges uniformly or diverges uniformly on the com-

pact set K = {w:0(0,w) < 0(0,tanB/2)}. Since u(s (0)) = U(eneie) =

v(('neie) + u*(eneie) —> v(08), the Fatou value at eie, the subsequence

cannot diverge uniformly on K. So the subsequence converges uniformly

on K to a subharmonic function U.
We have u(Sn(nO) < v(Sn(w)) for w € K and any positive integer n.

o0
Since eie is a Fatou point of v, {V(Sn))n=1 converges uniformly on K
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to v(®) and U(w) < v(8) for w € K. But U(0) = nl_if‘m““n(m) = v(8) and
by the Maximum Principle for subharmonic functions U(z) = v(6) in K.
So u has Fatou points almost

Furthermore, E has linear measure 21.

everywhere on C.

Corollary A: Any normal subharmonic function on D which is bounded

above has Fatou points with finite Fatou values almost everywhere on C.

(Meek, 1, Corollary 1, p.316)

Proof: If u is normal, subharmonic and bounded above in D, then v= e

is also normal, subharmonic and bounded in D. In addition every Fatou
point of v is a Fatou point of u. So u has Fatou points almost every-
where on C. By Arsove (1, Theorem B, p.260), a subharmonic function
bounded above on D has finite radial limits almost everywhere on C.

Consequently u has finite Fatou values almost everywhere on C.

Corollary B: If u is normal, subharmonic, bounded below and admits a
harmonic majorant v on C, then u has Fatou points with finite Fatou
values almost everywhere on C. (Meek, 1, Corollary 2, p.316)

Proof: Without loss of generality we may assume that 0 < u(z) for zeD.

Then 0 < .f:”u(re"9>de\< Ij"’v(rele)de = 2mv(0) for 0 S r<1. So

Theorem 18 applies.

In order to generalize Theorem 18, the following questions must be
answered: Must a normal subharmonic function in D have any Fatou points

on C? If so, is this set dense on C?
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BOUNDARY BEHAVIOR OF NORMAL FUNCTIONS

1f A is any Stolz angle at ele, we define HA(f,ele) =f)C. (f,ele)
T
where 7 is any simple continuous curve in A and iA(f,ele)= N int RA*(f,ele)
A*
where RA*(f,ele) is the range of f in any Stolz angle A% that strictly
contains A.
A function f has the n-segment property for any integer n > 2 if
there exist n chords I‘l, e l"n terminating at ele such that Cr(f,ele)ﬂ...
1
ﬂCr(f,ele) = ¢. In this section it will be shown that for any normal
n

. " x i6 p
meromorphic function f in D the set of points e~ at which f possesses

the n-segment property is of first category and measure 0 on C.

Theorem 19: If f is normal and meromorphic in D, then for any e1e € C
and any symmetric Stolz angle % of opening 20 at ele,
" " )
¢, (5,10 - &, (5,61, (£,e19.
AN A 7Y
a [+ a
(Rung, 1, Theorem 1, p.44)
Proof: Let ¢ be any arbitrary point in N (f,ele) - ’ﬁA (f,ele). Then
a
d 5 : ) Ly 210 lim 4

there exists a sequence lzn] in Aa with nl—lflmz" e and 5 _me(zn) =c.

Let LA be the unique point on the diameter of C from eie to e—ie for
which U(zn,wn) equals the non-Euclidean distance of z, to this diameter.
For any B satisfying o < B < m/2, let HB denote the region bounded by
the two hypercycles symmetric in this diameter that form the angles B

and -B with it. If BI is chosen so that a < Bl < B, then there exists

a positive integer N such that n > N implies

U(zn,wn) < ¥ log cot()m- %ﬁ1)= M (1)
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because

ey 1 31 a
A < L GLa
nllm G(zn,wn) <3 log cot(h Z)

+ v,
T;ﬁ) for any positive integer n. Since £
n

is normal, there exists a subsequence {gnk] which converges uniformly in

We define g“(g) = £

any compact subset of D to g. We also define another sequence [gk) by

bk + ¥ eM -
==xT Kk <& _- .
the equations z“k 1+"—'ﬂk§k . Because of (1) I§k| M1 K, and
so for any accumulation point ¢, of (.;k), |g0| < K. Let [;P) be a sub-

sequence of (Ek] tending to Co' Then the continuous convergence of [gnk)

pl_i;nmf(znp) =.8(5,) ="e:

implies that lim (E5)"=
P g“p Cp
Let D* be any fixed non-

We want to show g(f) =c. Suppose not.

Euclidean open disk with center go which is contained in the open disk

le -1 e 1At T8
I;' <3 o where M* = EIOgCONZ‘E)‘

e +1

Let 7 be any point in D*. By Hurwitz's Theorem (Carathéodory, 2, p.195)
there exists an integer K and a sequence of points [3k) in D* that tend
to 3 such that gnk(gk) = g(3) for all k > K . For the points X =

+ W, W, i = " 16
(g )/ (143,70 ) for which k2K , £(x) = g(3). So g(g)e&e(f,e Ve
Since g( ¢ ) #c, ceﬁA (f,ele), a contradiction. Consequently g(f) =c,

a
which implies that f tends uniformly to c on the sequence of non-

Euclidean disks with centers Vg and radii M. Each disk intersects both

boundary segments of Aa; so CEHA(f,ele).
3

In Chapter I we defined K(f) to be the set of points ¢ e C for which
CAI(f,g) = CAZ(f,g) for any pair of Stolz angles at ¢ and the outer an-

gular cluster set CA(f’C) to be the union of all cluster sets CA(f,g)

for A any Stolz angle at ¢.
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Theorem 20: If f is normal and meromorphic in C and ¢ € K(f), then, for

any Stolz angle A and any chord () terminating at { and making the
angle o for -m/2<a<T/2 with the radius at ¢, CA(f'§)=C\y(cc)(f’O'

(Rung, 1, Theorem 2, p.48)

A
Proof: First we want to show that the set C\U(u)(f’o =£ch*(f’§)’ where
A% is any Stolz angle containing y(a), is contained in C‘l’(a)(f,g). Let
A
ceC‘V(Q)(f,g) and (An] be a sequence of Stolz angles at { containing

oo
i i =) =
y(a) and satisfying the conditions An A and nglAn y(@). For each

1
positive integer n, let (zén)) be a sequence contained in An such that
(n) (n) =, (n)

Zk —> ¢ and f(zk ) =>c. We select a sequence (wn an } so that
[#-t| < 1/n and If(wn) 2 c| < 1/n. The non-Euclidean distance of w_ to
y(@) tends to 0 as n —o. If ¢, is the point on y(o) at which this dis-

tance is assumed, then c(wn,gn) —~0. By a result of Bagemihl and

Seidel (2, Lemma 1, p.10), f(gn) —>c as n—>o. So ceC

W(a)(f,g). Since
CW(R)(f,;)scw(a)(f,g), C\Ha)(f,g) = Cw(a)(f,g)-
The condition t € K(f) says that for any two Stolz angles Al and Az,

CAl(va) = CAz(f,g). So if t e K(f), from the preceding paragraph, we

have that CA(f,t) = cw(a)(f,;) = 0@ B0

Theorem 21: If f is meromorphic in D and its range of values R(f) is

equal to the Frontier of R(f), then, for each teC, CA(f,g) = QHA(f,g)

where A varies over all Stolz angles at t. (Rung, 1, Theorem 3, p.49)

Proof: From the hypothesis there exist three values that f assumes at
most a finite number of times in D. So f is normal by a result of Lehto

and Virtanen (1, p.54). Since Interior RA(f,Q) = ¢ for any { and any
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symetric Stolz angle at ¢, Theorem 19 implies CA(£,() =Ia(f,¢). If
Al and AZ are any two Stolz angles at {, then let A3 be a symmetric

Stolz angle that contains A, and AZ' Because of the definition of

1
TW(£,0) and Cp (£,6) =Ta (£,0), it follows that Cay(£,0) = Tay(£,0);

therefore, XCA(E’O L (A\%(f,g) where A varies over all Stolz angles at .

A function f possesses the n-segment property at { if there exists
n chords I‘l,..., l‘n at t such that crk(f,;)ﬂcrj(f,g) =o¢ for 1< kg,

l1<j<nandk?j.

Theorem 22: Let f be a normal meromorphic function in D. For any inte-
ger n > 2, the set of all points { at which f possesses the n-segment
property is a set of first category and measure zero on C. (Rung, 1,

Theorem 5, p.50)

Proof: Let S(f) denote the set of all ¢ at which f possesses the n-

segment property. Then S(f) NK(f) = ¢ by Theorem 20 since the cluster
set along any chord lying in A and terminating at a point of K is
CAC£,8) . Since K(f) is a residual set of measure 2 on C (Theorem 17,

Chapter I), S(f) is of first category and measure zero on C.

Suppose Y is any boundary arc of D and that 0 < r < ®. Then we
define the set J(Y,r) = {zeD:0(z,Y) < r). If d, denotes the diameter
of C ending at 7eC, then a boundary arc y = z(t) at 7 approaches 7 in
2 non-tangential manner whenever there exists some 0 § to < 1 and some
0 < r < oo such that z(t) e J(dg,r), t > t,- The set of all non-tangential

boundary arcs at 7 will be denoted by A(7). Finally we define the sets
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*
nu YeA( )cv(f ,7) and H Ly, l_)(f T) = V*(f,'r) where Y * ranges

over all boundary arcs at 7 that lie in J(v,r).

Theorem 23 states that for any normal function f in D, any vy, v' €

' = =
A(r) and any r, r' > 0, nJ('v,r)(f’T) HJ(V',r‘)(f’r) Hu(f,T). In
order to prove this theorem we will need the following two lemmas.

Lemma 3: Suppose f is a normal function in D and Ye A(7). Let B(z,a) =
{zeD:0(z,2z") < a} and Zf(w,a) = LZJ'B(Z',a) where the union is taken
over all z'e D such that f(z') = w. If we CY(f,r) and there exists an
a > 0 such that yn Zf(w,a) = ¢, then we Cy.(f,r) for any y'e A(7).

(Lappan and Rung, 1, Lemma 1, p.257)

Proof: Since we Cv(f,‘r), there exists a sequence (zn) on Y such that

z —7 and f(zn)—> w as n—>o. Let sn(g) = i:zfz‘_n for |§| < 1 and

£(s ({)) 8, (t) for any positive integer n. Because of the normalcy
of f, there exists a convergent subsequence (gnk(c)]. If g(t) denotes
the limit function, then g(0) = 11"‘ Snk(o)— 1_:" f(z, )= w; but, for
|k| < tanh a, the equation gnk(g) = w is not satisfied for any value of
k. So by Hurwitz's Theorem (Caratheodory, 2, p.195) g(¢) =w. So for
any fixed 0 < a' < e, f >w as z -7 on the set kE)IB(znk,a'). Ify'%e
A(7), then y' HB(an,a') # ¢ for suitable values of a' > 0 and any posi-

tive integer k. Therefore, we CY.(f,T) .

Lemma 4: Let f be normal in D. Suppose for some 7e&C and for every
Positive integer n, a set of distinct points {EEH)], i=1,2,...,m, with
the following properties exists:

(1) For some r > 0 and all n, 3{“) €J(d,,1);
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(ii) Bin)—» T as n —o;
(1ii) uczi(“),zi(:i) <K for i=1,2,...,m -1, with K =0 as n >o;

(iv) there exists a positive number A independent of n such that
o(3§“),3,§,:)) >A>0;
(v) f(zi“)> =wfori=1,2,...,m andn=1,2,.

Then wEC,v(f,'r) for all ye A(r). (Lappan and Rung, 1, Lemma 2, p.258)

Proof: As in the previous lemma, we set £(S_(t)) = g (¢) for any inte-
ger n where now Sn(g) = (¢ + Z;n))/(l + S;n)g). Again we denote the
convergent subsequence by (gnk(g)) and the limit function by g(f).
Since gnk(o) = f(3;nk)) —>w as n >, g(0) = w. We want to show that
the set of points t' such that g(f{') = w which also lie in |§| < tanhA=
B is infinite.

Suppose there exists a ring R, 0 < r'< ‘l;' | SESBowleh  eF Ferlly
which contains none of the points t'. For any fixed n, the set {31(11) 5
. 1’2""’an is transformed by S;‘l(z) onto a set of points we call

(§§n) = 1’2"“’mn) which have the properties:

g (n) _ (n) :
1" ¢ =0 and |§m“ | > B;
i (n) ,(n) i= -1;
(EELD) c(§i ’gi‘fl) < Kn for i 1,2,...,mn 13
111" (n)y - G
(CELRD} gn(gi Y=y afor 1 =152 eom
There must be at most a finite number of (Em for i = 1,2,...,mn

and any positive integer n within R. Otherwise this set would have a
limit point go and by continuous convergence of gn(g) to g(t), g(;o) =w,
a contradiction of the definition of R. So there exists a positive
integer N such that for n > N no point of the form cin) for 1= 132wy
m lies in R. If 0, > N is chosen so that 1(“1 <0(0,r") - 0(0,r'), this
violates the properties (i') — (iii') and the definition of R.
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Consequently g(¢t) =w in D and the rest of the proof is the same as the

last part of Lemma 3.

Theorem 23: If f(z) is normal in D, vy and Y' are any two arcs in A(7),
1 - =
and r and r' > 0, then HJ(Y,r)(f’T) HJ(y',r')(f’T) Hu(f,f)-

(Lappan and Rung, 1, Theorem 1, p.259)

Proof: Using the same notation as in the statement of Lemma 3, we let
B(z',a) = {z € D:0(z,z') < a} and Zf(w,a) = g,B(z',a) where the union is
taken over all z'e D such that £f(z') = w. Then for any fixed curve
vye A(r) and fixed r > 0, let Z%(w,l/n) = Zf(w,l/n) N J(y,r) for n any
positive integer.

Suppose Yy N Z%(w,l/n) = ¢ for some n. Then the conclusion of this
theorem follows immediately from Lemma 3.

Now suppose y N Z%(w,l/n) # ¢ for every n. Then for each n we de-

' , , (n) .. _ . .
compose Zf(w,I/n) into its components (Yi c i 1,...,_)n where 1 < Jn\<

). Assume for each n there exists at least one component Yg:) whose
boundary meets both y and the boundary of J(y,r). Then there exists a
finite set of points {3§n) i j= 1,...,hn} with the properties:
(i) Z{H) eJ(d,,x);
(ii) 3fn) — 7 as n —> o}
(iii) G(3§n),3§:i)< 2/n for j=1,...,hn-1;
(iv) 0(3§n),y) < 1/n and O(Zt(,[[:), Frontier J(y,r)) <1/n which imply

O(ZEn),Zé:) ) >r-2/n;
(v) f(3j(n)) = w for j= 1,...,hn and n any positive integer.
If n, is chosen such that 2/no < r/2, then for n zn the condi-

tions of Lemma 4 are satisfied with A=r/2 and K = 2/n. So the
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conclugsion of this theorem follows.
(no)

Finally we assume that there exists an n, such that no Yi for

= 1,...,jno has a boundary which meets both ¥y and the boundary of

J(y,r). Let V denote the union of all of the components of Z%(w,l/no)

that meet y and also v itself. Since this is a connected set lying

entirely in J(y,r), VNC={r). There exists a subset B of Frontier V
which is a boundary arc approaching r within J(y,r) and Bf)Z%(w,l/no) =

¢. Since wezCB(f,r), this theorem's conclusion follows from Lemma 4.

HOROCYCLIC PROPERTIES OF NORMAL FUNCTIONS

In Chapter I we proved properties of horocycles of arbitrary func-

tions. In this section we will prove other properties of horocycles

which only hold for normal functions. Here we will use some of the

same definitions and notations as we used previously. In addition we

will use the following definitions.

An admissible tangential arc at a point { €C is an arc y at { for

which there exists a sequence [Hrl(n),rz(n),r3(n)(§)] of nested right or
nested left horocycles at { with n¥£ﬂm(r2(n> - rl(n)) = 0 and each
member of the sequence contains some terminal subarc of y. Then
HTw(f’g) = Q CY(f,g) where the intersection is taken over all admis-
sible tangential arcs y at (.

Any point ¢ € C that is both a Plessner point and a horocyclic Ples-

sner point of f is called a generalized Plessner point of f.

Let Qr(g) denote the interior of the horocycle hr(g). Then the

Rrimary-tangential cluster set of f at ¢ is defined to be the set

Col£-0) = 0<§‘J<1 CQr(ﬁ)(f’g)'
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For any function f :D —>W, a primary-tangential pre-Meier point is any

point ¢ € C such that [Ip (£,¢) = Co(f,6) © W, where C denotes proper in-
W

clusion. The term '"pre-Meier" is used because the condition

L D= C D CNfrlcres)land a1
hl‘ hr
is fulfilled at each primary-tangential pre-Meier point of f, and this

is a necessary condition for apoint e Cto be a horocyclic Meier point.

If it is also true that Cﬂ(f,g) = C(f,t) C W, then ¢ is actually a horo-

cyclic Meier point of f. We will show in Theorem 25 that if f is any

normal meromorphic function in D, then almost every point teC is either

a primary-tangential pre-Meier point or a point at which [ITw(f,;) =W.

Lemma 5: If f(z) is a normal meromorphic function in D and CEKw(f),

the set of points on C such that cH1<f,;) = CHZ(E,Q) for any pair of

horocyclic angles Hy and H,), then HTw(f,C) = Cy(f,6) for Cy(f,t) the

outer horocyclic angular cluster set. (Bagemihl, 2, Lemma 4, p.16)

Proof: Let gellp (£f,t). Then aeCo(f,t) for every admissible tan-
== T, (-8 (¢

gential arc A at t. By definition there exists a horocyclic angle H at
y g

{ which contains a terminal subarc of y. Since Cy(£,f) < CH(f,g), ae

Cyl,0).
Now suppose o € CU(f,g). Let Yy be any admissible tangential arc at
t. since te Kw(f), aeCH(f) for every horocyclic angle H at . There-

for i i ' lim 1 =
e, there exists a sequence of points {zn] in D where aErnEl t and

nl_f)mmf(zl;) = a such that for an appropriate sequence of points [zn] on
with lim = lim Y= i
Y h a t, we have n—>oo0(zn’zn) 0. By Theorem 4 this

implies that f(zn) —0 as n—>ow, and q € C-Y(f,g). Since y was an
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arbitrary admissible tangential arc at ¢, L'tEHTw(f,g).

Theorem 24: Suppose f(z) is a nonconstant normal meromorphic function
in D and the set of asymptotic values A(f) is of harmonic measure zero.
Then there exists a residual subset S of C of measure 27 such that for

every teS, I[I. (£,t) = W. (Bagemihl, 2, Theorem 9, p.17)
Tw

Proof: According to Theorem 15, Section I, almost every Plessner point
of £ is a horocyclic Plessner point of f; therefore, by Plessner's Theo-
rem (Collingwood and Cartwright, 1, Theorem 8.2, p.147) almost every
point of C is either a Fatou point or a point which is both a Plessner
point and a horocyclic Plessner point. Since f is nonconstant and A(f)
is of harmonic measure zero, Privalow's Theorem (1, p.210) implies that
the set of Fatou points of f is of measure zero. Consequently the set
of horocyclic points Iw(f) is of measure 2T. A horocyclic analogue of
Collingwood's Theorem (1, Theorem 3, p.382) implies that Iw(f) is also
residual on C. If gelw(f), then CU(f’O = W. Since Iw(f) QKw(f),
HTw(f,;) = Cy(£,t) by Lemma 5. This theorem is nmow valid by setting

S = Iw(f) 2

Theorem 25: If f£(z) is a normal meromorphic function in D, then almost

every point feC is either a primary-tangential pre-Meier point of f or

a point at which I'IT (f,¢) = W. (Dragosh, 2, Theorem 10, p.76)
W

Proof: For any point tecC, Cl(f,g), the inner angular cluster set,
satisfies CI(f,g) SCU(f,C) ‘;Cﬂ(f,g). An approach similar to that used

to prove Lemma 4, Section I, shows that C,(f,t) SC_(£f,t) at almost ever
Q 1 .
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point £ € C. So at almost every point te€C, Cu(f,g) = CI(f,g) = Cﬂ(f,g).
Since Kw(f) is of measure 21 (Theorem 18, Section I), Lemma 5 implies
that HTw(f,g) 1 CQ(E,Q) at almost every point teC. This theorem now

follows because at every point { € C, either CQ(f,g)CW or CQ(f,Q) =W

A FUNCTION THEORETIC CHARACTERIZATION OF NORMAL MEROMORPHIC FUNCTIONS

Let H®denote the algebra of holomorphic functions bounded in D.
In the study of the behavior of these function near the boundary, it is
helpful to compactify D in such a way that each of them has a continuous
extension to the compactification. Let M be a compact Hausdorff space
such that it contains D as a dense subset. Each feH®™ can be extended
to a continuous function f on M and each pair of distinct points in M
can be separated by one of the functions £. By Carleson's Corona Theo-
rem (1), Mis the maximal ideal space of H®. Let B = M/D denote the
ideal boundary of D. If S is any subset of D, then we set B(S) = S/D
where S denotes the closure of S in M.

Two points my and m, in M are in the same Gleason part if there
exists a constant ¢, 0 < ¢ < 2, such that %(ml) - %(mz) < c for feH®
and Ifl < 1. This is an equivalence relation and we denote by P(m) the
Gleason part of the point meM. If SC D, then P*(S) =uy(P(m) : meB(S)}
for the set of Gleason parts generated by S. Each Gleason part P(m)
consists of either a single point or the image of a one-to-one analytic
map of an open disk into M (Hoffman, 1 and 2). We say that m is a
regular point if P(m) contains more than one point and denote the set of
all regular points in M by G. 1In Theorem 26 we will show that f is normal
inDif and only if f admits a spherically continuous extension to G.

For any subsets S and T in D, we define the pseudometrics:
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(i) HO(S,T) =inf{e:SC{z:0(z,T) <€}, TC{z:0(2,S) <€}} where
0(z,z') denotes the hyperbolic distance between z and z';
(ii) H(S,T) = i;}fuo(sn{|z|>r],Tn{|z.>r]);

(iii) A(S,T) = info(sn{izi>r},TNn{lzI>1r}).
r

Lemma 6: If S and T are subsets in D, then B(S) = B(T) if and only if

H(S,T) = 0. (Brown and Gauthier, 1, Theorem 1, p.367)

Proof: Suppose H(S,T) = 0 and me B(S). Let [x)\] be any net in S that
converges to m. We choose y)\ € T such that O(x)\,yk) < 20()5\,T). Since
'X)\l —>1 and H(S,T) = 0, it follows that O(X)\,y)\) —-0. So {yh] con-
verges to m and B(S) C B(T). By a similar argument we obtain the
inclusion B(T) C B(S). Therefore, B(S) = B(T).

Conversely, suppose H(S,T) > 0. Then we may choose a Blaschke se-

|>5>o

quence {z } in S such that, for each positive integer n, Hll—
and o(zn,T) >a > 0. From Cima and Colwell (1, p.796) l::ld Kerr-Lawson
(2, p.532) it follows that the Blaschke product B associated with the
zn's is bounded away from zero on T. Consequently ﬁ(m) # 0 for each

meB(T). Since {zn] C S, there is a point me B(S) such that ﬁ(m) =

So B(S) # B(T).

Lemma 7: If S and T are subsets of D, then GNB(S)NB(T) # ¢ if and

only if \(S,T) = 0. (Brown and Gauthier, 1, Theorem 3, p.368)

Proof: Suppose A(S,T) = 0. We choose two sequences [z } and [zr'l] such

that [z } €S and (z'}eT o(z 2 'y < 1/n, and I'I Il = zk' >6>0, n>0.
n

Let i
et m be in B({zn}). We pick a subsequence [zn()\)} of {zn) that

g
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2 ' '
converges to m . Since n(A)>o and U(Zn(x),zn()‘))‘)o, (Zn()\)] converges
to m. By Hoffman (1, p.75), m is in G. So GNB(S) NB(T) # ¢.

The converse follows immediately from Hoffman (1, p.75).

Theorem 26: A function f is normal in D if and only if f admits a

spherically continuous extension to the set G of regular points of M.

(Brown and Gauthier, 1, Theorem 4, p.368)

Proof: First we will show that if me€G, then Cf(m) is a singleton

Suppose on the contrary there exist two distinct values vy and v, in

Cf(m) with spherical distance x(wl,wz) = € > 0. For each neighborhood
V of m, we choose two points z, and z"] in DNV such that X(f(zv),wl) <
€/3 and x(f(z\'[),wz) < e/3. Let S= (zv) and T = (z",). Then me B(S) N
B(T) NG and Lemma 7 implies that A(S,T) = 0. By uniform continuity of
f, we can pick z € S and z)€ T so that 0(21’22) < & where & is chosen
so small that x(f(zl),f(zz)) < €/3. Soe= x(wl,wz) =< x(wl,f(z)) #*
X(f(zl),f(zz)) + x(f(zz,wz) < €, a contradiction. Therefore, Cf(“‘) is
a singleton for me G and we set %(m) = Cf(m).

1f | is not continuous at m, then for some € > 0, each relative
neighborhood VN G of m contains a point m, such that x(E(mV),E(m)) > €.
There exists a z, € VND such that x(f(zv),%(mv)) < €/2. So the net
(zv) converges to m, but X(f(z),%(m)) > €/2, a contradiction.

Conversely, if f is not normal, then according to Lappan (3,
Theorem 1, p.155) there exist two sequences (zn) and (z"l) and an € > 0
such that for each n > 0, U(Zn,zr'l)——>0 but x(f(zn),f(zl;)) > €. We may

Zk_Zn
n =
k#n|1'=nzk

assume that the sequence (zn) satisfies the condition |36>0.

So by Hoffman (1, p.75) B([zn])CG. Since U(Zn,z;‘)—-)(), H([zn),(z;‘]) =0,
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and B([zn)) = B((ZI‘I}) C G by Lemma 6. Suppose meB((zn]). Then for any

. ' 3
subnet [zn()\)) converging to m, we also have (zn(}\)} converging to m.
. ' N 5
Since X(f(zn(x)),f(zn(l))) > €, the cluster set Cf(m) is not a singleton.
Theorem 27: If f is a normal meromorphic (holomorphic) function in D
and £ is the extension of f to the set G of regular points of M, then on
each nontrivial Gleason part, f is either meromorphic (holomorphic) or

identically equal to infinity. (Brown and Gauthier, 1, Theorem 5, p.369)

Proof: Let meG. Then for any a€D converging to m, Ly (z) = i:—%l
converges pointwise to Lm, a one-to-one mapping of D onto P(m).
(Hoffman, 1, p.75) We will prove that fo Lm is a meromorphic (holomor-
phic) function. We pick a fixed point z, in D and assume that fo Lm(zo)
is finite. Furthermore, we may suppose that a lies in some neighborhood
of m for which fe L(1 is uniformly bounded. For if f"La is not uni-
formly bounded in some neighborhood of g there exist sequences (zn]
and [an) such that N o and fo Lan(zn)—rm . Since f is normal,
{fo Lun) is a normal family of functions. Consequently it contains a
subsequence which converges uniformly on compact subsets to a function g
meromorphic in D or to «. Since feo Lun—>w s g(zo) is infinite; however,
{fo Ly ) is uniformly bounded at z_, a contradiction. The family {foL, )
converges to fo L, pointwise. Since {foLly ) is uniformly bounded in a
neighborhood of z,» fo Lm is holomorphic in a neighborhood of zo.

1f fo Lm(zc)= e , we look at the family of functions (1/foLg ].
The family {feLy } is normal and so it is equicontinuous. Since the
spherical metric is invariant when taking reciprocals, the family of

reciprocals {1/foly )} is equicontinuous and thus normal. U‘foLm(zo)=0,







106

and, from the previous argument for the finite case, 1/f°Lm is holomor-
phic in a neighborhood of Zy. Therefore, for each point z€D, E°Lm is
either meromorphic (holomorphic) at z or identically infinite in a
neighborhood of z. Consequently %“Lm is either meromorphic (holomor-

phic) in D or identically infinite.

We will now give an example of a normal meromorphic function f such
that for each meM/G, Cf(m) = Rf("‘) = W. Let f be a Schwarz triangle
function (Carathéodory, 1, Part 7, pp.173-194) whose initial triangle

is strictly interior to the unit circle. It is well-known that f is a

normal function. Let a be any point on W, and let [zn] be the preimages
of a. Since each triangle has the same finite p-diameter, there exists
an € > 0 such that an e-neighborhood of [zn) covers D. By a result of
Hoffman (1, Corollary, p.84), B({z_}) D M/G. Therefore, a€R.(m) for
each meM/G. It is an open question whether for each meM/G the cluster
set is always equal to W. If this is true, then Theorem 27 is also

sharp for holomorphic functions.

NORMAL HOLOMORPHIC FUNCTIONS

In this section we will continue to use the same definitions and
notations used in the section of Chapter I which discusses the M-
topology for arbitrary functions. Here we will show in Theorem 30 that
if f(z) is a normal holomorphic function, then Gf(p) is compact in the
M-topology. First of all we will prove in Theorem 28 that any function
£(z) which is normal and holomorphic in D belongs to the class EP_ This
class consists of the holomorphic functions f in D that have the pro-

perty that for each pair of arcs ty, tp € T(p) along which £(z)— as
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z—>p, £(z) is unbounded on each path t between £ and €y

Theorem 28: 1If f is a holomorphic normal function in D, then for each

peC, £ is in the class Ip. (Lappan, 11, Theorem 3, p.91)

Proof: Suppose p€C and ® is an asymptotic value of f at p along two

disjoint paths t, and £, in T(p). If t is any path in T(p) between t

1

and t2, then by a remark of Lehto and Virtanen (1, p.53) f(z) - as

1

z—>p along t.

Theorem 29: If peC and fe Ip, then f may have at most two finite

asymptotic values at p. (Lappan, 11, Theorem 4, p.91)

Proof: Suppose f has three distinct finite asymptotic values al, a2 and

1 I:2 and t3 in T(p)

ay at p so that there exist three disjoint arcs t
such that £(z) —>a; as z>p along the ti's. Then there exist paths 1
and 1, in T(p) such that a is between t and tit1 and f(z) >~ as z —>p
along a; for i = 1, 2. (Remark, MacLane, p.7) So £, is between a and

q, and f is bounded on tye Therefore, félp.

Lemma 8: If peC and f is a holomorphic function in D which is bounded
in a neighborhood of p relative to D, then Gf(P) is compact in the M-

topology. (Lappan, 11, Theorem 1, p.89)

Proof: Suppose Gf(p) is not compact in the M-topology. According to
Theorem 35 in Chapter I, there exist directed sequences {tn) and (sn}

of arcs in T(p), a number € > 0, and a continuum K such that letting
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Kn:cfn(f")) and Ln=Csn(f,p),we have, for any n>0, M(Kn,l() < 1/n,
d(Ln,K) > €, and L is between t, and E 4 Without loss of generality
we may assume that all of the arcs s, and £ originate at the origin,
terminate at p a’nd no pair of arcs have any points in common except 0
and p. Finally we assume M(Kn,l() < €/2 for all n. Let An be the region
It should

bounded by t Ut and A[’] be the region bounded by s,Us

ntl otl’

be noted that An and AI'l are bounded in the complex plane. Since
2 - '
s,-(0,p)CA_ and ¢ - {0,p}JCA!, L C CAn(f,p) and Kyp © Gpl(£,0) -

According to Collingwood and Lohwater (1, Theorem 5.2.1, p.91),

i u =K U
Frontier CAn(f'P) @ Ctn(f’P) Ctn+1(f’P) K UK

Frontier CA;](f,p) [ Csn(f,p) U Csn+1(f,p) = L..'U. 7,

Since M(Kk,l() < €/2 and d(Lk,K) > € for every positive integer k,
there exists a point LAC L,V Ln_‘_1 such that 1@ |>sup(|w| : d@w,K) <e/2}.
If woeLn, then the fact that Ln is contained in a bounded set whose
boundary is Knu Kn+1 leads to the existence of a point wlsKnU K“_’_1 such
that |w1| > ¥

ol " However, d(wl,K) < €/2 violates the choice of wo. If

Wo€L 41> then there is a similar contradiction. So Ke Gf(P).
Lemma 9: Let f be holomorphic in D and pe C. Suppose further (cn) is
a directed sequence of arcs in T(p), K = Ctn(f,p) for n >0, and K is a
continuum such that M(I(n,l() ~—0. Then one of the following must hold:
(1) KeGu(p);
(ii) ocoeK;
(iii) there exists a, between q; and q, in T(p) such that f— o on 1

and 9,38 z—>p and fisboundedong,. (Lappan, 11, Lemma 3, p.90)
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Proof: Suppose K¢ Gf(p), o ¢ K and each K is bounded. We want to show
that (iii) holds. Let An be the region bounded by €Uty If there
exists an integer N such that f is bounded in each region An for n > N,
then Ke Gf(P) because the proof of Lemma 8 only required that f be
bounded on a union of three consecutive regions An. Since we are as-
suming K¢ Gf(p), there exist positive integers n, and n, with n, > ng
such that f is unbounded in A“l and Anz. So there exist paths 1 and a3
in T(p) such that q; - {p} C Anl, 43° {p) C %2’ and f(z) > as z > p
along a; and a5- Letting q, = t“z’ we have qu(f,p) = an which is

bounded. So f is bounded on a, which is between a; and a3-

Theorem 30: If peC and feIp, then Gf(p) is compact in the M-topology.

(Lappan, 11, Theorem 5, p.91)

Proof: 1If Gf(p) is not compact in the M-topology, then according to

Theorem 35 in Chapter I, there exist directed sequences (tn) and (sn) of

arcs in T(p), a number € > 0 and a continuum K such that letting Kn =

Ce (£,p) and L = Cs, (£,P) 5 we have that for each positive integer n,

M(Kn,K) < 1/n, d(Ln,l() > e and s is between t and € .- We may assume

that M(K ,K) < €/2 for each n. Since fel , =€ K by Lemma 9. Then
n

there exists a bounded set L such that LnC L for each n and d(L,K) > €.

Let A“] be the set bounded by s Usipr- f must be unbounded in A['l for

each n since K ) C Cpr(£,p), Fromtier CA‘I‘(f,p) cL, U L and o is in
n

the same component of the complement of L U L ., as K 41 Thus for

each n, f has « as an asymptotic value at p along a path q such that

i and f is
o= {p) C Ar']- So s 4q is between q_ and q_ 4 for every n

b 8
ounded on s ... So f ¢ Ip
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Corollary: If f is a normal holomorphic function in D, then Gf is com-

pact in the M-topology.
This corollary follows immediately from Theorems 28 and 30.

NORMAL HARMONIC FUNCTIONS

In this paragraph we will show in Theorem 33 that a harmonic normal
function has Fatou points on a dense subset of C and in Theorem 34 that
a harmonic normal function which does mot have +o asa Fatou value has

a set of Fatou points possessing positive measure.

Theorem 31: If u is a harmonic normal function in D which omits the
value a and if u(z) — a along a non-tangential boundary path P, then u

has a as a Fatou value. (Lappan, 5, Theorem 2, p.154)

Proof: Suppose a is finite. Since u omits a, we may assume that u(z) >

a for every z in D. Let A be an angle containing P and { denote the

vertex of A. If {z )} is a sequence of points in & such that zn—>§,
n

there exists a real number M and a sequence of points [zl‘\] in P such

5 Z ' = h B
that c(zn’zr'l> < M. Setting Sn(z) (z + zn)/(l znz), we have a sul

sequence of (u(sn(z))) converging uniformly in {z:0(2,0) <M + 1} to a

harmonic function U(z). But u(Sn(O)) = u(zr") and so U(0) = a while

U(z) > a for zeD. It follows from the minimum principle for harmonic

functions that U(z) = a. So u(zn) >a and a is a Fatou value of u.

Suppose a= +co. Defining Sn, z_ and zr'\ as above, we have U(0) = co.

However, since {u(S (2z))} is a normal family, there exists a neighbor-
n

hood N of 0 such that u(Sn(z)) > 0 for n sufficiently large and z€eN.
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It follows from Harnack's Inequality (Ahlfors, 1, Theorem 6, p.183) that
U(z) = o for ze N. Consequently U(z) = e« for zeD. Therefore, u(z)—>o

and oo is a Fatou value of u. If a = -, the argument is similar.

Lemma 10: If u is a harmonic normal function in D and v is a harmonic

.
conjugate of u, then f(z) = eu(z) iv(z) is a holomorphic normal function

in D. (Lappan, 7, Lemma 1, p.110)

Proof: Let a and b be two complex numbers such that lal 7 |bl and let
[zn) be any sequence of points in D such that f(zn) —a. Then u(zn) -
ln' al where 1n0 = -0 and lnoeo = +oo. If (z[’l) is another sequence of
points in D such that c(zn,zr") —0, then by Theorem 4, u(z[") —1na]|
since u is normal. Therefore, |f(zr'l)[ —>|a[ and f(z[‘l) #b. Using the
contrapositive of Lemma 1, we conclude that f is normal.

i u(z)+iv(z)
Theorem 32: Let u be a harmonic normal function in D and £ = e 3

Then every Fatou point of f is a Fatou point of u. (Lappan, 7, Theorem

1, p.111)
Proof: If ¢ is a Fatou point of f with Fatou value a, then f(z) > a

and u(z) - In a as z —  from inside each Stolz angle at {. So ¢

is a Fatou point of u.

Theorem 33: The set of Fatou points of a harmonic normal function in D

is a dense subset of C. (Lappan, 7, Theorem 2, p.111)

Proof: Let £(z) = *(PTIV(2)  since £ is a holomorphic normal
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function, the set of Fatou points of f is dense on C according to Bage-
mihl and Seidel (3, Corollary 1, p.l16). So by Theorem 32, the set of

Fatou points of u is also dense on C.

Theorem 34: If u is a harmonic normal function in D such that u does
not have +o as a Fatou value, then the set of Fatou points of u has
positive linear measure on C. (Lappan, 7, Theorem 3, p.111)

eu(z)*‘iv(z)

Proof: Let f(z) = Since u does not have tw as a Fatou

value, f does not have e as a Fatou value. Consequently according
to Bagemihl and Seidel (3, Theorem 3, p.15) the set of Fatou points of
f has positive measure on C. So by Theorem 32, the set of Fatou points

of u has positive measure on C.
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CHAPTER IIL

CLASS A FUNCTIONS

INTRODUCTION

Let f(z) be holomorphic and non-constant in D. For any complex
number a, including o, let Aa denote the set of points { e C such chat
f(z) has the asymptotic value a at t. Let A% = ;J A, and A' = A¥UA .

afoo

Then f£(z) belongs to Class A if and only if f is holomorphic and non-

constant in D and A' is dense on C.
Let B* denote the set of points ¢ € C such that there exists
an arc ' in D ending at { on which l f| is bounded on I' by some finite

constant M. In general M varies as [' and { vary. Set B' = B* U Aoc.

Then f(z) belongs to Class B if and only if f is holomorphic and non-

constant in D and B' is dense on C.

Since A* C B* and A' C B', Class A C Class B.

Now let S be any subset of D. For each i>0,0<r<1, let Si be
the components of SN {r<jz|<1}. Let bi(ﬁ =dia Si(r) and &(r) = Slixp Ei(r)

with 6(r) =0 if no S,(r) exists. S ends at points of C if and only if
i enss

6(r) 4 0 and r4 1. For any constant A 0 the level set LS(A) is given

by LS(A) = {z: 'f(z)] = A}, and a level curve LC(A) is any component of

LS(\). £(z) belongs to Class L (Class L*) if and only if £(z) is holo-

morphic and non-constant in D and every level set LS(\) (every level

curve LC(A)) ends at points of C.
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In 1963 G.R. MacLane published a monograph (1) which contains many
important properties of Class A functions. The purpose of his paper
was to derive results about the asymptotic values of functions £(z)

holomorphic in D. We list some of these conclusions below.

Theorem 1: A=B=L C L* and the inclusion is proper. (MacLane, 1,

Theorem 1, p.10)

PROPERTIES OF CLASS A FUNCTIONS

Theorem 2: If feA and Yy is an arc of C such that A, NY=¢, then A* N
Y has the power of the continuum and is of positive measure. (MacLane,

1, Theorem 2, p.l4 and Theorem 11, p.25)

A tract {D(e),a} associated with the finite value a is a set of
non-empty domains D(€), one for each € > 0, such that
(i) D(e) is a conponent of the open set {z: |z| <1, |£(2) -a|<e)
(1) <0u< €, < €, implies D(e)) C D(e,)
(iii) N D(e) = o.

€>0
If a = o, the only change in the above definition is to replace If(z) -al

<eby |f(2)] > 1/e.
Let K = ND(e). Then K is a non-empty, connected closed subset of C
and is called the end of the tract. If K is an arc, it is called an arc-

tract. A tract is a global tract if and only if K is the entire circum-

ference C and for each arc Y C C there exists a sequence of arcs (Y]
such that Y, C D(1/n) and Y5 Y This last condition is important
since Theorem 5 is untrue without some condition of this type in the

definition of global tracts.
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1f {D(e),a} is a tract and r:z = y(t), 0< t <1,is a continuous
curve in D such that y(t) € D(e) for 1 - 8(e) < t < 1, then I belongs to

{p(e),a}.

Theorem 3: Let feA and [Y“] be a sequence of distinct simple arcs in D
which tend to the arc y of C with the property that zieninlf(”l =un—>oc
as n—o. Then f has {D(€),»} with end K such that yCK and for any ¢ € K
there is a curve T € {D(€) ,e0} which ends at {. At any interior point of K the
only asymptotic values come from this tract.

(MacLane, 1, Theorem 3, p.15)

Theorem 4: Let feA and let {D(e),a) for a # c be a tract of f£. Then

the end of this tract is a single point. (MacLane, 1, Theorem 4, p.18)

Theorem 5: Let feA. Then
(i) f has a global tract if and only if f is unbounded and all
level curves of f are compact;
(ii) f has a global tract if and only if f is unbounded on every
curve I' in D on which |z| = 1.

(MacLane, 1, Theorem 6, p.18)

Theorem 6: If feA and S is any Borel set on the sphere, then A(S) is

measurable. (MacLane, 1, Theorem 10, p-22)

SUFFICIENT CONDITIONS FOR f €A

Theorem 7: Each one of the following conditions is a sufficient condi-

tion for feA:
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(i) £ is a holomorphic, non-constant function in D such that there
exists a set Sy C [0,21] that is dense in [0,2n] such that
fol(l AL, log+ |f(reie)| dr < « for € Sg;
(ii) f is a holomorphic, non-constant function in D such that
jol(l - r)m(r)dr < « where m(r) =%‘Jf"10g{f(reie>|de, ogr<l;
(iii) f is a holomorphic, non-constant function in D such that

Iol(l - r) logM(r)dr <o where M(r) is the maximum modulus of f.

(MacLane, 1, Theorem 14, p.36 and following discussion)

It is important to notice that in condition (i) no uniformity is

implied. All that is required is that each individual integral converges.

Theorem 8: Let £(z) be non-constant and expressible in the form f(z) =
oo

by anzn for |z| < 1 and let A be a constant such that 0 <) < 2/3 and

o

10g+|an| <o for n> N. Then feA. (MacLane, 1, Theorem 16, p.42)

£(z) belongs to the Class N if and only if f is holomorphic, non-

constant in D and normal.

Theorem 9: NC A. Also, if feN, then (i) given teC, f has at most
one asymptotic value at t. If f has the asymptotic value a at {, then i

has the angular limit a at §; (ii) £ has no arc-tracts. (MacLane, 1,

Theorem 17, p.43)

This theorem contains the Bagemihl and Seidel results in Chapter IT,

Theorems 4, 12 and 1l4.
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BARTH'S GENERALIZATIONS OF MACLANE'S RESULTS

In order to generalize MacLane's Results, Barth defined classes Am,
Bm, Lm and L; which differ from MacLane's classes A, B, L and L* only in
the replacement of the word "holomorphic'" with the word "meromorphic" in
the appropriate definitions. Theorem 12 shows that AmC Bm and LmC Bm.
However, there are examples to show that no other inclusion relation-

ships exist among the classes A , B and L . Let LS(\) = {zeD: [£(2)| =1).

Theorem 10: Let feAm and (Vn] be a sequence of disjoint simple arcs in
D that tend to the arc Y of C with the property that there exists a com-
plex number a such that

suplf(z) »al = un—>0 as n—>o if a # oo,
Yn

inflf(2)|= py —was no>oeif a=o
Vn

Then f has an arc tract {D(e),a} with end K such that Y C K and such

that for each point ¢ € K some curve I' belonging to {D(e),a} ends at ¢.
At any interior point of K, the only asymptotic values come from this
tract. If fe Lm’ the preceding conclusions are true for a = oo,

(Barth, 1, Theorem 1, p.323)

L1007
Proof: First we assume that feLm and a=w. Lety={e :0ag0< 8l

'
and t be an interior point of Y. We choose a',B' such that a <a’ <

argt < B' < B. Let S(a',B') denote the sector {a' < argz <B' for |z|<1}

s ) Lol
and let V"l c v, be a cross-cut of S(a',B') joining a point of argz= Q

to a point of argz= B'. By using a subseq of v, if ary, we

: ' '
may assume that each Y contains a cross-cut of Yz and that Y1
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separates Vl; from | z| = 1 within S(a',8'). Let E_ denote the subdomain
of S(a',B') which is bounded by y[‘],yr"ﬂ and two intervals on the bound-
ary radii of S(a',B'). For A\, a fixed constant greater than zero, we
choose N(A) such that for n > N(A) no Y intersects LS(A). Let the
components of LS(A) N En be denoted by p(n,i), for 1 <ig 0. For sim-
plicity we pick A so that LS(\) has no multiple points. Since ieLm,
the maximum diameter p(n,i) for n > N(\) approaches zero. So for n>/N1,
any curve p(n,i) which intersects the radius R = {argz= argt} is a
Jordan curve contained in En' Therefore, any interval of R in En on
which | £(z)| < A may be replaced by an arc of a level curve p(n,i). By
making a finite number of such replacements for any one n, we obtain a
curve I'()) such that Zl_i;"‘l Zie“;()‘)|f(z)[ =\

We will now construct I'. Let )\nT © be given. Let Q be the in-
tersection of R with Yr‘: having max |z|, and let I’()\k,n) be the portion of
T(\) joining Q to ¢. We define I'= I'(\;) from z = 0 to Q; where nj
is chosen so that |argz-argt| < 1/2 and |£(2)] Z\, for zel(h,y5np)5
to Qn where n_ > n is

1 B p-1

chosen so that |argz-argt)] < 1/2P and |£(2)| 2%, for 2e PO omy )

and for any integer p > 1, I'= r()\P) from an_

So ' >t and f(z) - on TI.

Now we assume that ¢ is an endpoint of y. Let (gn] be a sequence
of interior points of Y with gn—>g and r, be a curve ending at { on
which f . By using a construction similar to the one given above,
we can construct a curve I' tending to t on which £ —-co.

Each asymptotic path I to an interior point t of Y intersects all
Y 's for n > N. So there exists an integer N' such that all y for

n > N' belong to the same domain D(e€) for | £(z)] > 1/e. Thus all

paths belong to the same tract {D(e),©}. If the end K of this tract
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contains Y as a proper subset, then we can choose arcs Yr‘n C D(1/n) such
that Yx'l—>y' = K. Since Yr“ and Y' satisfy the same hypotheses as Yo and
Y, it follows that if teK, then there exists a curve T belonging to
{D(€) ,00} which tends to ¢.

If feAm and a = co, then LS(A) N S(a,B) must also end at points of
C for all A\ > 0. For if this were not true, there would exist a )\1 >05
a subarc A of Yy and a sequence of continuous arcs (An) compact in D such
that An (o LS()‘].) for all n and An—>A as n—>co. Let ¢ be any interior
point of A. Each curve ending at { must cross all but a finite number of

the A's andY 's. Therefore, f cannot have an asymptotic value at (,
n n

contradicting the assumption feAm.

Finally, if a is finite, we define the function 1/(f - a) and use

the above proofs.

Theorem 11: If fel and Y = [e19 1q <6 <B,a#8) is a subarc of C

such that no level curve of f ends at any point of Y, then exactly one

of the following two statements is valid.

(i) For each interior point ar® (@ < ¢ <B) of Y, there exists a

i =
continuous curve [‘(em) C D ending at e % and such that f is

i
bounded on (1<kJ<B I'(e ¢). Furthermore, f does not have « as

an asymptotic value at any interior point of Y.

(ii) There exists an arc-tract {D(e),*} of f with end K such that

Y<K
(Barth, 1, Theorem 2, p.324)

Proof: Let S(a,B) denote the sector (z: |z| <1 and @ < argz < B)}. We

pick O‘n) so that 0 <X, A, > as n = and LS()\n) has no multiple
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points. Since feL , each LCO‘n) is either a closed Jordan curve or a
crosscut of D. Suppose O is not a pole of f. If O is a pole, we may
pick a different point close to O which is not a pole and repeat the
following argument using this new point. We choose N such that Oe {z:
lfl < )‘N)' For any n > N, let A()\n) denote the component of {z :‘f' <)‘n)
that contains 0. Since fELm and no level curve ends at any point of Y,
at least one of the following statements is valid for any n > N.
(iii) there exists a Tn C Boundary A()\n) such that Tn is a cross-
cut of the sector S(a,B) that joins a point of argz =a to
a point of argz =8.
(iv) Boundary A()‘n) ¥
If (iii) is true for all n > N, then Tn—->Y and so by Theorem 10, f has
an arc tract {D(€),o} with end KC Y. So (ii) holds.
Now suppose there exists some n = M for which (iv) holds. Let ¢ =
eto for o < ¢ < B be any arbitrary point of Y. By (iv) ¢ € Boundary
A()\M). Since fe L. and no level curves of f end at points of Y, there

exists a 6 > 0 depending on { such that each component of Boundary AO‘M)

having non-empty intersection with the set {z z- I;l < &,|z| <1} is
a closed Jordan curve contained in S(a,B). Since the diameter of the
set LS(\) N (z:1-€ < |z| <1} >0 as € >0, 0 and t may be connected
by a continuous curve I‘(eiw) CAayY Ut

The last part of (i) is proved by observing that the existence of
the asymptotic value o at t implies that LS(\) ends at t for all )‘>)‘M’
which is a contradiction.

Theorem 12: A C B and L_C B_. (Barth, 1, Theorem 3, p.325)
m m m m
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Proof: Since the generalized definitions and notations include "mero-
morphic functions' instead of only "holomorphic functions", A'= A¥UA
where A% = UwAa and B= B*U A . So A*C B* and A' C B'. Conse-

at
quently A/ C B .

Now we want to show that LmC Bu\' Let feLm and Y = (eie rag egﬁ}
be any subarc of C. We will show that there exists a continuous curve
ending at some point of Y on which f is bounded or else a continuous
curve ending at some point of y on which f has the asymptotic value oo.
If a level curve of f ends at a point of Y, we are done. So suppose
not. Then Theorem 11 holds and either there exists for every interior
point eie, @ < 6 < B, a continuous curve [(6) C D that ends at eie on
which f is bounded or there is an arc-tract {D(e),«} with end K con-

taining Y. In the first case we are finished; in the second case by

Theorem 10, f has the asymptotic value « at each point of Y.

The Schwarz triangle function is an example of a function f such
that fe Bm and feLm, but féAm‘ This shows that B ¢ Am and LmQ A
We will now construct a function f such that féAm, fe Bm, but
£4L . (Barth, Example 2, p.326) Let {r ) denote a sequence of posi-

tive numbers which are strictly increasing to 1. For n > 1, let

ci =izl = rn)

n
DS [|z|<rnJ

= = b = s
En— {z: n$|z|$ T4 and argz =2km/2"} for k=0,1, >

For n> 1, let F_ = UE 1 U Cn. Two sequences of functions
n n-

n-1
(fn(z)) and {R (z)} are now defined inductively.
n

D. = = . N
We define fl(z) and Rl(z) on D1 so that f1 = Rl(z) =1/2 ext we
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construct fz(z) so that it is continuous on F, and

fz(z) = fl(Z) on El’

fz(z) = 5/4 on Cy»
fz(z) is linear on each component of El'
F2 is closed and it divides the plane into a finite number of regions.
In addition fz(z) is continuous on F2 and analytic on the interior of

Fz. Therefore, by a remark in Mergelyan's paper (1, p.24) there exists

a rational function R,(z) such that ™MaX If (z) -R (z)‘ < 2"4. In gen-
2 zer 2 2

eral suppose that fn(z) is spherically continuous on Fn and that

fn(z) = le(z) onD .,
R on C_,

Y n,
f(2) =1+ (12 *

fn(z) is linear on each component of En—l‘

By using a remark of Mergelyan (1, p.24) we can find a rational function

R (2) such that M8X £ () -R (2)] <22, A straightforvard calcula-
n zan n n

tion shows that [Rn(z)] converges to a meromorphic function R(z) in D.
In order to show that R(z) éLm, it is sufficient to prove that for
each n some component of {z: IR] = 1} separates c, and C .- This is

- -n-1
shown by verifying that |R(z) - 1+ (D" n)l <2

for zeC_. Fur-
n
thermore, f ( the limit of [fn(z)}) has the asymptotic value 1 on each
radius of the form {z:0< |zl < 1 and argz=2""k} for n > 0 and k = 0,
1,...,2" 1. Since these radii are demse, feA , £cB and f¢L .
Barth has established some sufficient conditions for a function to

be a member of A . Theorem 14 shows that the conditions of Theorem 74
m

can be generalized to meromorphic functions.







123
Theorem 13: Let g and h be holomorphic in D and let g/h be nonconstant.

Suppose g€ A, h is bounded and f = g/h. Then feAm and 1/feA .
m

(Barth, Theorem 6, p.331)

Proof: Let Y be any subarc of C. We will show that there exists a
point ¢ €y and a curve ending at t on which f tends to a limit as
lz] >1. First suppose Ap(g) Ny # ¢. Then there exist a point tey
and a curve I ending at t on which g e as |z| - 1. Consequently,
since h is bounded, f -~ as |z| -1 on T and f has the asymptotic value
e at .
Now suppose A_(g)(1 Y = ¢. If g is bounded in some neighborhood of
a point ¢ on Y, then f has an asymptotic value at ¢ by the Fatou Theo-
rem (Fatou, 1). So suppose zlﬂngsup,g(z)l = o for all {e€y. Under
these hypotheses MacLane (1, p.26) has shown that there exists a AC D
with the following properties:
(i) A is a simply connected Jordan domain, bounded by crosscuts [
of D on which |g| = \ for some A > 0 and by a nonempty subset
F of y.
(ii) Ig(z)[ < N where Nis a positive integer for all zeA.
(iii) There exists a nonempty subdomain A' of A such that A < | g(2)|
< N for all zed'.
Based on an argument of MacLane (1, p.27) for the proof of Theorem 2 of
this chapter, it can be shown that f has asymptotic values at some

points of y. Consequently fea and 1/f is also in A .

We are now ready to generalize the conditions (i), (ii) and (iii)

in Theorem 7 to obtain sufficient conditions for meromorphic functions







124
to be in A . (Barth, 1, p.332) Let f be meromorphic in D.
Condition (i') Suppose there exists a complex number a, possibly
eo,and a set © dense on [0,27] such that the Nevan-

linna counting function N(r,a) = 0(1) (Nevanlinna,
1

1) and Iol(l -1) logh o
f(re™) - a

dr < o for ge@ if

a#oe. If a=co, then j(')l(l—r) Iog+lf(rele)!dr <o, fE@.
Condition (ii') Suppose there exists a complex number a, possibly

w, such that N(r,a) =0(1) and [ (1-D)m(r,a)dr < o
A .
f(rele) -a

&

where m(r,a)=#j'°zn log d0 if a%o and

1 p2m,  + i@
== de.
m(r,o0 Zﬂfo log )f(re )| ]
1
Condition (iii') Suppose N(r,a)=0(1) and [(1-r)T(r)dr <eo where
T(r) is the Nevanlinna characteristic of f.

1 + %
Since Condition (ii') implies that j; (1-1) log dr<oo if aFoeo

i®

f(re )-a

and fl(l—r) log+ If(reie),dr<m in the case a=e, Condition (ii') implies
)

Condition (i'). By Nevanlinna's First Main Theorem (Nevanlinna, 1,

p.168), it can be shown that Condition (iii') implies (ii').

Theorem 14: If f is meromorphic and nonconstant in D and satisfies one

of the preceding conditions (i'), (ii') or (iii'), then fEAm. (Barth,

1, Theorem 7, p.333)

Proof: Since Condition (iii') implies Condition (ii') which in turn
i i i i 35 ose
implies (i'), it is sufficient to show that (i') implies feA . Supp

a = o0, Let B(z) denote the Blaschke product
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- 2ze
B(z) = 2 I Ikl—_"‘
1 1 - bz

where ) is the order of the pole at z = 0 and the rest of the poles of f

ip
are denoted by bk = Ibk'e k with a pole of order u appearing u times

among the bk's. Then the function g(z) = B(z)£(z) is holomorphic in D

and 3 8 S
S0 1ogtg(xet®)] ar = S0 108 Bre ®) £(re™®)| ar
< J;]'(l-r)log+lB(reie)|dr + j;l(l—r)log"'lf(reie) Idr for g ee®.
So

.fc"l(l—r) 1og+|g(reie)|dr < fol(l—r) log+lf(rele) Idr for o
since |B(z)l < 1. Therefore,

j(‘)l(l-r)log"'fg(rele)ldt < o for ge@©

and ge A by Theorem 7. Thus f = g/B and fEAm by Theorem 13.

If a # oo, the argument above implies that 1/(f-a) EAm and so feAm.

ALGEBRAIC OPERATIONS OF CLASS A FUNCTIONS

In Theorem 16, Brannan and Hornblower prove that Class A functions
are not closed under the operations of addition and multiplication. 1In
fact every nonconstant, holomorphic function in D can be written as the
sum or the product of pairs of functions in Class A. Furthermore, Barth
and Schneider (1, Theorem, p.121) have constructed after much work an
example of a function £ in Class A such that eféA. However, if feA

and f has no arc-tracts, then efEA (Theorem 17).
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Barth and Schneider (3) have recently shown that the product of a
function in A with a bounded holomorphic function is not necessarily in
A. First they construct a function f(z) which is holomorphic and non-
zero in D and which is approximately equal to n on certain subsets [‘n of
D if n is even and approximately equal to 1 if n is odd. Much notation

is required in order to specify these rn’s. Let (rn] be a sequence of

real numbers such that 0 < F<r<...<r <. 41 and such that
L < T/4n. Furthermore, let (on,k] denote the set of angles
e 2mk/2" for n any positive integer and k = 1,2,...,2“-1. The
B
angles en k's are defined as follow:
>
R B e ot |
(A1) 0y 1 =05 3 85, 01 5 8370,

(iii) 1in general, after the en k's have been defined for k=1,...,2"-1,
s

the 9 's for k= 1,...,2“-1 are defined in the only pos-

o+, k

sible way such that all the 6 's for m=1,2,...,0tl and

sk
k= 1,2,...,2“-1 with the same second index are equal. Finally
ntl

8 _.n 0 3 2 2
the en+1’k 8 For k=i2 525 0052 1 are defined in such a
way that 6,41 o0 T Cneq,1 ¢ Py ont T o3 0 P onee T
Outl,s 3 ot 3 Oy oma ] T Oy omhag -

With the above notation, many subsets of D are defined as follow:

E o= zox  +3/6(x - x ) <xgr #3400y ), |y] s =T/4n)

where z = x + iy.

= 5 < i i 2
Y. {z:]zl rn] Interior En

= = T =
an,i A[O,rn,rn+ 3/8(rn+1 rn)] n S[O,on’i,on’i] where Ala,r',r']

{z:r' glz-al<r") and S[a,0',0"]= (2 :0'g arg (z-a) g6" ).

= AL0,ra* 5/8(x 4y - ra) 7] 0 8100 ue T
n_j n-1_
2 2 2 1
YnU(igl u‘n,i)U( iL=J 3 B\1-1,1

Bn,i
o

) for n>2 and f1=Y1Ual,1.
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This function f(z), which Barth and Schneider comnstruct, is not in A.
It is bounded away from zero on a countable set of asymptotic paths (un)
which are tangent to those radii ending at a countable dense subset (t“]
of C. According to Privalow (p.214), there exist nonzero functions
analytic and bounded in D which have radial, and hence angular, limit
zero on any pre-assigned subset N of C of measure zero. Let b(z) be the
particular function obtained when N = ﬁlcn. h(z) = w(z)/b(2) is in
n=
Class A since lim h(z) =w for each a_ while w(z) =h(z) 'b(z) ¢ A.
z € a, L
[z]—>1
Recently Tse (1) has shown a condition which holds whenever a pro-
duct of a bounded holomorphic function and a Class A function is not in
Class A.
If f(z) is a meromorphic function in D, then we define Ff(l() {or
F‘E(K)] for 0 < K < o« to be the set of Fatou points of £(z) on C at which

the Fatou values are greater than [or less than] K in absolute value.

Theorem 15: If b(z) is a bounded holomorphic function in D and if
£(z) e A, but £(z)b(z) ¢ A, then Fb(O) is of first category in some

subarc of C. (Tse, 1, Theorem, p.68)

Proof: Let A _(fb) denote the set of points { for which {€C and fb has
© as its asymptotic value. Let B*(fb) denote the set of points { such
that t € C and there exists an arc T in D ending at { on which [fl is
bounded by some finite constant. So Bo = B*(fb) U A _(fb). Since
£(2)b(z) ¢ A= B, there exists a subarc Y of C such that By Ny=¢. By
definition Fb(O) Mey~= E[Fh(l/n) N y. We will show that Fb(()) Ny is

of first category. Suppose on the contrary it is of second category.
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Then there exists an L 0 such that Fb(l/n) Ny is of second category.
So at each point gst(llno)ﬂY, the radial cluster set of b(z) does
not contain the value 0. By Collingwood (2, Lemma 1) there exists a
number M' > 0 such that |1/b(z)| < M' in a neighborhood U of a subarc B
of y. Therefore,

0< 1/M' <|b(2)| cM<e, éY)

in U where M is the bound of b(z) in D. Since f(z) € A, Bfﬂ B# o. By
(1) Efb N B # ¢, which contradicts the condition By Ny =2¢. Conse-

-quently Fb(O) N Y is of first category.

A set of points on C is of second category evenly on C if it is of

second category on each subarc of C.

Corollary: Let f(z) and g(z) both be in A and Ff(O) n F‘g‘(oo) be of se-

cond category evenly on C, then f(z)g(z) e A. (Tse, 1, Corollaryl, p.68)

This follows from Theorem 15 and Collingwood (2, Lemma 2).

Theorem 16: Any nonconstant function R(z) holomorphic in D can be re-
presented as the sum and as the product of pairs of Class A functions.

(Brannan and Hornblower, 1, Theorem 1, p.86)

Proof: We define u(r) = M(r,R(z))/(1l - 1) where M(r,R(z)) denotes the
maximum modulus of R. According to Hormblower (1) there exists a non-
constant, nonzero function f(z) € A which, on a dense set of radii, tends
to zero faster than 1/u(r) and tends to « faster than u(r). Then

1 . 2
r3‘:1[11(rele)/f(rele)] = 0 on a dense set of 6's and R(z)/f(z) €A.
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Thus R(z) can be written as the product of R(z)/f(z) and f(z). In addi-
tion, R(z) can also be written as the sum of [R(z)+£(z)] and [-f(2)]
since rl_i’mI[R(reie)"'f(reie)] = o on a dense set of 6's implies that
[R(z) +f(z)] €A and £(z) €A implies that [-f(z)] €A.
Theorem 17: Any nonconstant function M(z) meromorphic in D may be re-
presented in each of the following three ways:

(i) the quotient of two holomorphic functions in A,

(ii) the product of a function in A and a function in Am n Lm,

(iii) the sum of two functions in Amﬂ Lo
(Brannan and Hornblower, 1, Theorem 2, p.86)
Proof: According to Heins (1, p.14) any meromorphic function in D can be
represented in the form M(z) = fl(z)/fz(z) where fl and f2 are holo-
morphic in D. Consequently we construct the nonzerc holomorphic func-
tion f(z) = max{M(z,f ),M(z,fz)]/(1~r) in A.

Then M(z) = (fl/f]/(fz/f] where fllf and fz/f are nonconstant holo-
morphic functions in D, which according to Hormblower (1) have 0 as a
radial limit on a dense set of radii. So fllf and fz/f are both in A.

In addition M(z) = fl/f . f/fZ where f1/f is again in A. Since
f/f2 has © as a radial limit on a dense set of radii, f/fzeAm. Fur-
thermore, f/f2 eLm because no level set LS(\) for \ finite can end on an
arc of D.

Finally M(z) = £/f, + £/£,[(£,/£) -1]. On the same dense set of
radii f/f.Z and fl/f have radial limits o and O respectly. So on this

dense set of radii (fl/f) -1 has radial limit -1 and the radial limit of

f/fZ[(fl/f) -1] is infinite.
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If feA and has no arc tracts, then efeA. (proof by

Theorem 18:

MacLane in Barth and Schneider, 1, Theorem M, p.120)

Proof: Let Yy be any subarc of C. If f has the finite asymptotic value
a at t ey, then ef has the asymptotic value e? at t. So we can assume
that f has only the asymptotic value o« at points of Y. Let { be any one |
of these points in the interior of y. We choose a tract T(€) so that
!f' > 1/€ near t and _I?éTﬂ CC Y. We alsopick zoeT(e) and consider

the Riemann surface over the w-plane corresponding to T(e). Thereisad,

0<®<m/4, such that sector {w: -6 <arg(w-f(zo)) <6} or {w: 1T-6<arg(w-f(z(2)<

&} does not intersect {w:|wI< é} . Denote the sector Sand find a 6 such

that the ray {w:w= f(zo)'l'elet, 0 £ t < oo} is contained in S and such

that the ray can be lifted into the Riemann surface corresponding to
T(e). Consequently Real f—> o on the preimage I' of this ray. So

ef—>0 or  on [.

CALCULUS PROPERTIES OF CLASS A FUNCTIONS

vMacLane (2) and Barth and Schneider (2) have investigated the ques-
tion, "If fe A, then what are sufficient conditions for f£'eA or
J;Zf(.f)df € A?" The latter have also studied similar conditions for
functions in Class Am.

Let J denote any domain bounded by a Jordan curve K and lying in C.
Then A[J] is the set of nonconstant functions f holomorphic in J with

asymptotic values at every point of a set of points SC K with S dense

on K. If a is a finite asymptotic value along an arc T such that w
£(z) maps I one-to-one onto a linear segment, then we say that this

asymptotic value is linearly accessible. The set of linearly accessible

T
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points is denoted by Af.

Lemma 1: Let f(z) be holomorphic in any arbitrary domain A in the com-

plex plane. Suppose b # = is a boundary point of A and po(z), pl(z),

, P,.1(2), a(2) are given functions holomorphic in some disk & =
{|z-b| < roj. Let [':z= y(u), 0 <u <1, be a continuous curve suci
that (1) = b and I'- y(1) C AN Ao = A'. 1f [ satisfies the three
properties:

(i) rs :z=y (u), 0 gugs, is rectifiable for any s <1,
(ii) the function ¢(z) = f(n)(z)+:r§: pm(z)f(m)(z)+q(z) for zeA'
satisfies ¢(y (u)) =X # © as u 4 1,
(iii) either (a) T is rectifiable or (b) 01(‘J1(U))=0(\tf(u)) - q(y(u))

is of bounded variation on [0,1],

then f has a finite asymptotic value on I. (MacLane, 2, Lemma, p.273)

Proof: Consider the differential equation
I Lty o)
w2+ T p (2)w(2) = 0(2) ~q(z)  for zed! @
m=o M

where ¢ is the function defined in (ii). Then £(z) is a solution in A'.
Let A* denote the component of A' which contains T-y(1) where (1) is

understood to be A. Let gl(z), ey gn(z) be a set of linearly indepen-
dent solutions of the homogeneous differential equation associated with
Equation (2). The functions g; are holomorphic in Ao. By variation of

parameters the solution of Equation (2) is given by

o
f(z>=m§1(am+J“: b (O6(e) -q(]dt) g (2)  for zea*

where a=y(0) and am are constants. hm are functions holomorphic in Ao.
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In Case (iii) (a), the integrand is continuous on T and

B, = Jo b () [e(e) -a(©)]ar = [Zh_(£) ¢ (t) dt

has the finite asymptotic value
1
Bml = Jo b Gy (W) [oCy (W) -qCy (W) dy (u).

In Case (iii) (b), let H;(z) = hm(z) in Ao. Then
Bp™ Jroq (£)dH (£) =0, (2DH (2) -0 ()H (a) - [7H (£)do, (t).
Each of the first two terms has a finite asymptotic value on I'. Also
SO0 do) = [5H (4D do; (r(0) = [B (4 ())de ) (y(w))

because Hm(w(u)) is continuous on [0,1] and ¢1(W(U)) is continuous and

of bounded variation on [0,1].

Theorem 19: Suppose f(z) is holomorphic and nonconstant in D. Let
&% = {(Jz-1) < r), n be a positive integer and po(z), v pn~1(z), q(z)
be holomorphic functions in A*. Let A= A* (1 D and

1

6 (z) = f(n)(z) + n§ pm(Z)f(m)(z) + q(z) for zeA.

m=0
If ¢ e A[A] and there exists a finite constant c¢ such that ¢1(z) = ¢(z) -

q(z) # c, then fe A[A] and A*(f), the set of finite asymptotic values,

is dense on A* N C. (MacLane, 2, Theorem 1, p.275)

Proof: Since A* can be replaced by a smaller disk contained in A% with
its center on C, it is sufficient to show that f possesses a finite

asymptotic value at one point on A*(C,
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Let E denote the subset of points { on C such that for each point

{ there exists a neighborhood U§ = {iz-gl < r}N D and a Jordan arc J

£

such that ¢(z) maps U, into the complement of J In a similar manner

g ¢
E1 is defined using ¢1 = ¢(t) - q(t) instead of ¢. We set E2 = E LJEl.
Suppose A* | C contains points of E2. By shrinking A* we may as-
sume A* | C is contained in EZ’ From a simple generalization of Fatou
(1) both ¢ and ¢1 have finite angular limits almost everywhere since
o(z) - ¢1(z) = q(z) has angular limits almost everywhere. Using the

notation in the proof of Lemma 1, we see that Bm has finite angular

limits almost everywhere. So f also has finite angular limits almost

everywhere on A*N C. From a theorem of Privalow (1, p.210) the asymp-
totic values assumed by f(z) on any interval A* (| C contained in E2 form
a set containing a closed set of positive harmonic measure. Consequently
this set must be infinite. If E2 is dense on A* 1 C, we are finished.

So we now assume that A% N C is contained in the complement of E2.
According to MacLane (1, Theorem 7, p.l19) each asymptotic tract of ¢1
must end at a single point because ¢1 omits the value c. Suppose that

the asymptotic values of ¢1 are bounded by a finite constant M. We

choose two distinct points Cl and §2 on A*¥ (1 C at which ¢1 has asymptotic

values and join §1 and CZ by a curve ' C A which is an asymptotic path
at both Cl and §2. Then ¢1 is bounded on T and we denote the bound by
B. Let G be the domain bounded by [ and part of A* N C. If ¢1 is
bounded in G, then the arc CICZ is contained in E2, a contradiction. So
we pick a value v such that W, = ¢1(zo) for some z €G and IWO] >
max(B,M). Then by the lifting argument of MacLane (1, p.l3, Section 2),
21 has an asymptotic value a at some boundary point of G on C satisfying

the condition e > a > ,wbl > M, a contradiction. Therefore, we now assume
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that o1 has two asymptotic values along I', whose magnitudes are greater
than 2|c|, where c is the constant defined above. So ‘QI— cl >8>0 on
T. Since [N omits fewer values in G than a Jordan arc, there exists a
2, €G such that |¢1(zl) - | < 6. By the lifting argument of MacLane (1,
p.13, Section 2), there exists I‘I C G ending at a point of &A% N C such
that el(z) maps [ one-to-one onto a linear segment. By Case (iii) (b)

of Lemma 1, f has a finite asymptotic value on 1‘1.

Special cases of Theorem 19 show that for any positive integer n

e £ €A ana £ # ¢, then feA and A*(f) is dense on C.

Theorem 20: Let feA and £(z) # c, where ¢ is some finite constant.

Then A’lr is dense on C. (MacLane, 2, Theorem 5, p.278)

Proof: We may assume without loss of genmerality that ¢c=0. Let Y be an
arbitrary arc of C. First we suppose that there is an interior point
of Y such that lim inf|£(z)| = 0. From MacLane (1, Theorem 11 and its
2

corollary, pp.25 - 28) we can find a crosscut [ of C from glsv to gzev
with the properties that f has nonzero asymptotic values on [ at both 6
and 52 and f is in the open arc from ;1 to CZ‘ Let A be the domain
bounded by I' and the open arc from ;1 to ;2. lf(z)i >2m>0on . We
pick a point zoeA such that If(zo)|< m. By the lifting argument of
MacLane (1, p.13, Section 2), the ray [f(zo),O) produces a linear asymp-
totic value at a point in the arc joining gl to CZ'

If there is no interior point { of Yy such that zl_i;“tinflf(z)] =30
then by shortening Yy if necessary we can find a neighborhood U of y such

that |£(z)| zm > 0 for all zeU. By the Riesz-Riesz Theorem f(z) has
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finite asymptotic values on a dense set of points of Y. So there exists
a crosscut l'1 of U with the properties that 1‘1 ends at distinct points
§3 and 1:4 of v, f has finite asymptotic values on 1’1 at both ends, and
the image of I'1 by w = £(z) is a polygonal curve P on the Riemann sur-

face onto which f maps U. If the curve has only a finite number of

sides, we are finished. So we assume P has an infinite number of sides
in both directions. Let P* denote the projection of P in the w-plane.

Suppose that every neighborhood N in the w-plane contains a subset
SN with the power of the continuum such that each point in SN is the
image of only a finite number of points in D. Let a be a finite asymp-
totic value of f at an interior point of Y. By choosing € small enough
the set {zeD: |f(z) = a| < €} = D(e,a) is bounded by curves in D on
which f takes values on a square with center at a and sides of length €
(denoted by Q(e,a)) and interior points of Y. We choose 0 < € <€ so
that a point we SQ(e,a) lies on the boundary of Q(El,a). Let w = f£(z)
map D onto the Riemann surface over the w-plane, and let A(el,a) denote
the lifting of D(el,a). The part of the boundary of A(sl,a) which lies
over Q(el,a) can contain no closed curves because otherwise D(el,a)
would be relatively compact in D. Thus each boundary component over
Q(El,a) will be an open polygonal arc containing only a finite number of
segments since w 1is on the boundary of Q(el,a). The last segment of
any such polygon produces a linearly accessible asymptotic value of f at
some interior point of Y.

Now we assume that there exists a value v, which f£(z) assumes infi-
nitely many times in A and that v, is not an asymptotic value of §3 or

5 ia g @
tz,' We choose any ray R from LA to a point v = me ~ where a is picked

so that R is a positive distance from the asymptotic values of §3 and
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€4’ R is not parallel to P*, and there are no branch points of the Rie-
mann surface over R. We consider all the liftings of R into the Riemann
surface starting at each of the infinitely many points over LA The
liftings will be unique because R does not contain the projection of any
branch points. Some of the liftings may stop at points of P giving as-
ymptotic values at points of I‘l, but two distinct liftings cannot stop
at the same point of P. Since R is a positive distance from the asymp-
totic values of §3 and gA, R intersects P* in only a finite number of

points. So this lifting process gives a countably infinite number of

finite asymptotic values with at most a finite number corresponding to

points of I‘l.

The theorem of McMillan and Pommerenke (Theorem 37, Chapter I)
generalizes some of the results of MacLane (2) since any function feA
for which £'(z) # 0 is also a meromorphic locally univalent function
without Koebe arcs. For example if f(z) is meromorphic locally univalent
without Koebe arcs and a is a finite asymptotic value of f at ¢ eC, then
either a is a linearly accessible asymptotic value in the tract {D(e),a)
or there is an infinite sequence of numerically distinct linear asymp-
totic values [an} occurring at a point ;neC such that a —>a and 6o ¢

Another result is that if f£'eA and f'(z) # 0, then f possesses at least

three numerically distinct asymptotic values since feA by Theorem 19.
For n > 1, any function f meromorphic in D and any z e D, we define

the "nth integral of f" as
(-0) £n-1
F (2z) = % J‘; 4’ J‘; f(En)dindEn_lu-dfl

where the El.‘s are dummy variables. In order to eliminate the statement,
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"If £'(z) is nonconstant," in our theorems, we define the Class A* to be
the union of all functions in Class A and the constant functions.
Theorem 21: If f is holomorphic in D and satisfies the integral part of
Condition (ii) of Theorem 7, then f'eA*. (Barth and Schneider, 2,

Theorem 1, p.4)

Proof: First suppose f(0) = @ # 0. Using the notation

21 "
m(r,f) = #j; loﬁlf(rele)]de,

we have
m(r,f') = m(x, £ (£'/£)) < m(x,f) + m(r,£'/£).

According to the "logarithmic derivative lemma'" of Nevanlinna theory

(Hayman, 1, p.36)

e
n(r, £/£) <4logm(R, ) + 4log+(log+~—‘f(1o)l) +5log R+ 61°g+R-}—r +1ogt %+14

where 0 < r < R < 1. Suppose r > 1/2 and let R = (r+1)/2. Then
e, £Y/E) < 410g+m((1+1)/2,f) +6 log+ (2/(1-r)) + K

where K is a constant that depends on a, but not on f. Therefore,

1 1 1
fo(l—r)m(r,f')drgfo(l—r)m(r, Hdr+ fc(l-r)[6lo;é+ K]dr

1
+ 4{)2[1 - (x+1)/2]10g+m(i,-(r"1),f)dr.

Because of the hypotheses of this theorem, all the integrals on the
right hand side of the last inequality are finite. Consequently f'

satisfies the integral part of Condition (ii) of Theorem 7. So f'eA*.

Actually the previous proof demonstrates that if f and f' are
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nonconstant and f satisfies Condition (ii) of Theorem 7, then f' satis-

fies it also. So we have the following Corollary.

If £ is holomorphic in D and satisfies Condition (ii) of

Corollary a:
Theorem 7, then f(n)(z) €A* for all n> 0. (Barth and Schneider, 2,

Corollary 1, p.6)

If f is holomorphic and normal in D, then f(n)(z) € A* for

Corollary b:
n> 0. (Barth and Schneider, 2, Corollary 2, p.6)

Proof: According to MacLane (1, p.44) if f is holomorphic and normal in
D, then m(r,f) < Cllog(l/(l»r)) G C2 where C1 and C2 are constants.

Hence f satisfies Condition (ii) of Theorem 7.

Theorem 22: If f is holomorphic in D and satisfies
(1-1)log(1l/(1l-r))m(r, £f)dr < oo,

then f and F(_l)(z) e A*, (Barth and Schneider, 2, Theorem 2, p.7)

Proof: Since the integral condition in this theorem's hypothesis is
stronger than the integral part of Theorem 7's Condition (ii), f e A%,
In order to establish that F(-l)(z) € A*, we will use the theorem of
Hayman (2, Theorem 2) which states that if F(z) is holomorphic in [z|<R,

£(z) =F'(z) has bounded characteristic and F(0)=0, then for 0 < r <R

i
n(r,F) g (1+Flog L) m(R, £).

Let R= (r+1)/2 where 0 < r < 1. Since f(z) is bounded in
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|z| < (r+1)/2 we can use the theorem of Hayman to obtain the inequality

n(r, D) € 1+ (1) Tog(4/(1 - £)m((x +1)/2,5) .

Consequently

D D )
J; (1-r)m(r,F )dr < j‘; (1-v)m((r+1)/2,f)dr

L
> %—;foz[l-(l“‘l) /2] (lom])m((ﬁl)ﬂ,f)dr.

Because of the hypotheses of this theorem, both of the above integrals
of the right hand side of the inequality are finite. Consequently F(_l)

satisfies the integral part of Condition (ii) of Theorem 7. So F(_De A¥,

Theorem 21 and 22 may be generalized to meromorphic functions f for
which the Nevanlinna counting function N(r,f) = 0(1). Let A‘: denote the

union of the functions of Class Am and the constant functions.

1
Theorem 23: If f is meromorphic in D, N(r,f) =0(1), and j("(],—r)T(r,f)dr
*
< o0, where T(r,f) is the Nevanlinna characteristic of £, then f' eAm.

(Barth and Schneider, 2, Theorem &4, p.ll)

Since T(r,f) = m(r,f) + 0(1) and T(r,f') = m(xr,£f') + 0(1), this
proof is completely analogous to that of Theorem 21.
Theorem 24: If f and F(_1> are meromorphic in D, N(r,f) = 0(1) and
fol(l-r)1og(1/(1-r))r(r,f)dr Lot

then £ and F*l(2) € A*. (Barth and Schueider, 2, Theorem 5, p.12)
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The proof of this theorem is quite similar to that of Theorem 22
where the meromorphic form of Hayman's Theorem (2, Theorem 2) replaces

the holomorphic one.
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