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ABSTRACT

MEASUREMENT OF TRANSIENT RESPONSE

OF A

CENTRAL CRACK TO A TENSILE PULSE

BY

Abdurahman Ahmed Sukere

The goal of this investigation was to study the

behavior of a crack in a stress wave environment. The

crack was approximated by electromachined slots in the

center of thin aluminum specimens. A tensile impact

apparatus has been developed for generating a plane ten-

sile pulse with a ramp function profile. The amplitude and

rise-time of the pulse were fairly repeatable. Dynamic

displacements along the crack surface were measured using

a laser interferometric displacement gage. The data

were analyzed within the bounds of linear elastic fracture

mechanics to estimate the dynamic stress intensity factor.

The experimental results for the dynamic crack displace-

ments were found to oscillate, a phenomena attributed to

the cancellation and reinforcement of the incident waves

by the various scattered waves. Analytical and numerical

solutions compare favorably with the short time experi-

mental results; i.e., with results for a time regime

corresponding to the time it takes for the first scattered



Abdurahman Ahmed Sukere

P wave to travel from a crack tip to the nearest boundary

and back. The comparison of the long time finite element

solution with experimental is not good. The descrepancy

may be attributed to the imperfect experimental wave front,

the influence of which could not be isolated for this time

regime.



ACKNOWLEDGEMENTS

I wish to extend a sincere thanks to Professor

W.N. Sharpe, Jr., for his guidance and patience throughout

the research program and for the experience and motivation

provided by his research investigations. To Professor

M.A. Medick, my gratitude for his encouragement and

suggestions. Sincere thanks are also due to the other

members of my guidance committee, Professor G.E. Mase and

Professor L.J. Segerlind.

I would also like to thank Mr. D. Childs and Mr.

R. Jenkins for assistance in constructing the apparatus.

ii



TABLE OF CONTENTS

Chapter

I. INTRODUCTION

II. EXPERIMENTAL TECHNIQUES

2.1 TENSILE PULSE GENERATING SYSTEM AND

INSTRUMENTATION

A. Background

B. General Description and Principle

of Operation

C. Tensile Impact Apparatus

D. Loading Machine

E. Strain Pulse Measuring and

Recording System

2.2 SPECIMEN GEOMETRY AND PREPARATION

A. Material Properties

B. Specimen Geometry

C. Specimen Preparation

2.3 DISPLACEMENT MEASUREMENT

A. Basics of the Interferometric

Displacement Gate

B. The IDG for Dynamic Displacement

C. Relationship Between Displace-

ment and Stress Intensity Factor

D. DiSplacement Measuring and

Recording System

2.4 PROCEDURES

A. Preliminary Checks

B. Eccentricity of Loading

C. Testing Procedure

iii

Page

10

10

10

12

14

21

23

28

28

30

30

32

32

37

40

43

44

44

49

50



Page

III. ANALYSIS OF CRACK RESPONSE TO LONGITUDINAL

PLANE WAVES OF NORMAL INCIDENCE 53

3.1 ANALYTICAL CONSIDERATIONS 53

A. Equations of Elasticity in Two

Dimensions 53

B. Formulation of the Problem 58

C. Solution of the Problem 61

3.2 EXPERIMENTAL DATA CONSIDERATIONS 65

A. Strain Time History of the

Incident Wave 65

B. Dynamic Separation of Crack Faces 66

C. Dynamic Stress Intensity Factor 68

D. Dynamic Crack Profile 73

IV. RESULTS AND COMPARISON WITH THEORY 75

4.1 EXPERIMENTAL RECORDS 75

4.2 GENERAL CRACK BEHAVIOR 82

4.3 CORRELATION WITH ANALYSIS 93

4.4 COMPARISON WITH FINITE ELEMENT 96

V. SUMMARY AND CONCLUSIONS 102

LIST OF REFERENCES 105

iv



LIST OF FIGURES

Schematic of the experimental setup

Schematic of the tensile impact apparatus

Tensile pulse generating system

Close-up of projectile and tup assemblies

Schematic of hyge shock tester

Strain gage potentiometer circuit

Stress-strain of type 2219 aluminum

Schematic of the specimens

Schematic of the IDG

General view of the experimental setup

Photograph of the displacement measuring

instrument

Notations used in measuring crack profile

Strain signal trigger circuit

Strain gage locations on the specimen

before and after machining the slot

Observed strain reSponse at various

locations of the Specimen without the slot

Geometry for generalized plane stress

Geometry of the problem

Experimental records for crack displace-

ment at Xl (a/b = 0.54)

Results of crack tip opening displace-

ment for the trimmed specimen showing the

displacement associated with each fringe

pattern

v

Page

15

16

17

19

22

24

29

31

33

38

39

41

45

47

48

54

59

67

69



Local rectangular stress components

Experimental records for crack displace-

ment at X3 (a/b = 0.167)

Experimental records for crack displace-

ment at X2 (a/b = 0.167)

Experimental records for crack displace-

ment at Xl (a/b = 0.167)

Variations of displacement at X with

time for specimen with a/b = O. 67

Variations of displacement at X with

time for specimen with a/b = 0.167

Variations of displacement at X1 with

time for specimen with a/b = 0.167

Variation of dynamic stress intensity

factor with time for specimen with

a/b = 0.167

Variations of dynamic stress intensity

factor with time for specimen with

a/b = 0.54

Crack profile at three different time

steps

Comparison of experimental dynamic

k-calibration data with theoretical

static results

Input pulse at location 2; experimental

points and ramp function approximation

Comparison of analytical and experi-

mental results for the dimensionless

mode I stress intensity factor

Finite element model

Comparison of finite element and experi-

mental results for the dimensionless

mode I stress intensity factor

vi

Page

70

76

77

78

83

84

85

87

90

91

92

94

95

98

99



Figure Page

4.15 Comparison of finite element and experi-

mental results for the normalized dis-

placement at the center lOO

vii



CHAPTER I

INTRODUCTION

Since the time of Griffith's [1] original idea

(1920) that fracture of a brittle material is the result

of the growth of inherent minute cracks or flaws, a series

of technological problems of braod public interest has

stimulated interest in the field of fracture mechanics.

The U.S. Liberty ship episodes from 1940 to 1945 provide

a vivid example. During that period more than 250 serious

failures to ship hulls occurred due to factors associated

with brittle fracture. These problems led to the modifica-

tion of the Griffith idea, extension of the idea to metals

and fatigue fracture, and the introduction of the concept

of a critical stress intensity factor as a criterion for

crack growth.

Research in this area has been greatly accelerated,

resulting in a profusion of publications. This is because

of fracture mechanic's past successes, ever increasing de-

mand and because of the support and impetus provided by

various governmental and industrial agencies.

For the most part, the physical systems which have

been studied are quasi-static. In view of the fact that

structures such as pipe lines, gun barrels, submarine hulls

1



and reactor components are subjected to dynamic loads

that may be tensile in nature before or after reflection

from interfaces, there are many fracture problems which

cannot be viewed as being quasi-static and for which the

inertia of the material must be taken into account. How—

ever, there are relatively few solutions available for the

stresses in a cracked elastic solid subjected to dynamic

loading. The primary reason for this is the extreme com-

plexity of elastodynamic crack problems.

A comprehensive review of the literature regarding

application of elastodynamics to the determination of

stress intensities and to brittle fracture will not be

undertaken here. In fact several very good and complete

reviews have become available recently, among them those

of ErdOgan [2], Achenbach [3], [4], Sih [5] and Freund [6].

For the purpose of pertinence to the present work the

literature concerned here relates to the class of

elastodynamic problems that deals with a stationary crack

subjected to time-dependent loads. The brief discussion

that follows, also excludes solutions of idealized prob-

lems of cracks subjected to vertical shear (SV waves) waves

and horizontal shear (SH waves) waves.

The stationary crack solutions which have been

obtained can be put in one of two categories, depending on

whether the applied load is periodic or transient. In the

former category, significant progress has been made by Sih



and Loeber [7], who obtained effective solutions involving

the interaction of wave length with crack size. Among the

solutions of the latter category are the analysis of the

scattering phenomenon of plane waves due to the presence

of a semi-infinite crack by de Hoop [8], and Nuismer and

Achenbach [9].

Mue [10], and Ang [ll] exPlored transient problems

in which a semi-infinite crack appears instantaneously in

a uniformly stressed elastic medium. Their work was later

extended by Baker [12], to the case where the crack pro-

pagates at a constant velocity after it has suddenly

appeared. Equivalent problems have also been studied by

Broberg [l3] and Freund [14]. It is well to note that the

mathematical formulation of the problems stated in

References [10, ll, 12] are equivalent to the specification

of a uniform impact loading on the surfaces of the crack.

Furthermore, the running crack solutions of References

[9, 12] can be reduced to stationary crack solutions by

considering the crack velocity to be zero.

Transient problems for a finite length crack were

explored by Papadopoulos [15], Thau and Lu [16], Ravera,

Embley and Sih [l7], and Chen and Sih [18]. The study in

Reference [15] is qualitative in nature in that attention

is focused on the closure of crack surfaces rather than

obtaining quantitative results which characterizes the

elastic fields in the vicinity of the crack tip.



Of particular interest to the present study is the

work of Thau and Lu [l6]. Thau and Lu used the Wiener-

Hopf method to study the diffraction of a plane dilational

wave of arbitrary profile and arbitrary angle of incidence

by a finite stationary line crack in an infinite medium.

They derived explicit expressions for the normal dynamic

stress intensity factor, kl(t), and shear dynamic stress

intensity factor, k2(t). The numerical results reported,

which are exact for two crack transit times, are however

only for the case of an incident Heaviside step stress

pulse. Presented also in their study is the time history

of the separation of crack surfaces at various points along

the crack. Among the notable findings is the dynamic over-

shoot in k1 and k2 of about 30 percent compared with

static values for the same loading.

The finite dimensions of the cracked specimen have

been taken into account numerically by Chen [19], who

used the finite difference method and by Anderson, Aberson

and King [20], Glazik [21] and Aoki, et al. [22], who used

the finite element method. Again the stress pulse was of

the step variety, and References [19] and [20] report a

dynamic normal stress intensity factor, k1(t), which is

close to three times the static counterpart.

A substantial number of experimental studies have

been conducted to investigate fracture dynamics phenomena.

The studies in this field can be classified into two



categories according to the quantity intended for measure—

ment. One category deals with a phenomenological in-

vestigation where the measured quantities of interest are

magnitudes of pulse causing fracture, locations and types

of fracture, velocity of running cracks and pulses gen-

erated due to sudden fracture. The other is concerned

with an elastodynamic analysis where the measured quantities

pertain to the transient strain or stress field near the

crack tip.

The earliest work on the phenomenological type of

experimental analysis was carried out by J. Hopkinson [23].

Hopkinson measured the strength of steel wires when they

were suddenly stretched by a falling weight. The next

significant investigation was carried out by B. Hopkinson

[24], who detonated an explosive charge in contact with a

metal plate. In this work, B. Hopkinson demonstrated the

effect of "spalling" or "scabbing," which occurs when

the compressive pulse generated by the explosive is re-

flected at the opposite side as a tensile pulse. More

recently a very extensive investigation of this nature was

carried out by Rinehart and Peterson [25]. Detailed des-

criptions of these and similar investigations can be found

in a recent survey by Kolsky and Rader [26]. Roberts and

Wells [27], Schardin [28], and Clark and Irwin [29]

measured crack velocities in various materials. Later

Kolsky [30] measured pulses generated by a brittle fracture



for the cases of Hertzian, simple tensile and flexural

fractures.

The existing experimental works on fracture

dynamics which are based on elastodynamic analysis are

very few. Most of these studies were carried out by the

methods of dynamic photoelasticity. Among the early

works reporting the transient stress field surrounding a

propagating crack for a statically loaded specimen are

References [31-33]. In a later work Bradley and Kobayashi

[34] made a study to correlate stress intensity factor

with crack velocity. In 1969 Sommer and Soltesz [35]

determined the dynamic stress intensity factor for an

edge crack in a plate of Araldite B subjected to wave

motions generated by a travelling air shock wave. Later

Smith and Knauss [36] determined the critical stress in-

tensity factor resulting from a stress wave loading for

edge cracked Homalite 100 plates. The dynamic loads were

applied directly to the crack surfaces by electromagnetic

means. More recently Costin, Duffy and Freund [37] de-

termined the fracture toughness for round bar steel speci-

mens with prefatigued circumferential notches loaded to

failure by rapidly rising tensile pulses. The wave motions

were generated by explosive detonations and the pulses had

a rise time of 35 to 40 microseconds at the fracture site.

In 1978 Theocaris and Katsmanis [38] examined the behavior

of notched plexiglas specimens under stress pulses created

from an air-gun impact. In that investigation, plexiglas



plates of dimensions 300 x 40 mm and thickness 4 mm, and

sawn notches of width 0.2 mm, and varying length (4, 6 and

10 mm) were impacted at one end by a steel sphere of

diameter 10 mm. Using the method of caustics with a high-

Speed Cranz-Schardin camera, they determined the stress

intensity factor and crack velocity of a running crack.

Furthermore they made an attempt to correlate stress in-

tensity factor and crack velocity and crack velocity and

normalized crack length. However to the author's knowledge

at present there are no experimental publications dealing

with the interaction of a tensile stress pulse with a

central crack in a thin strip. Furthermore, the studies

of References [37] and [38], which have close relevance

with the present investigation, lack an accurate deter-

mination of the loading applied to the plates.

Thus, the objectives of the present study are:

1. To develop experimental techniques for

accomplishing a quantitative study of the

elastodynamic stress fields in the vicinity

of a stationary crack tip. These include a

technique to generate a plane longitudinal

tensile stress pulse in a plate with reason-

able dimensions and a technique to measure

dynamic crack displacement.

2. For a finite plate with a central crack, to

study some aspects of the interaction of a



step-like tensile stress pulse with a crack

that has neighboring boundaries. These in-

clude the time history of the separation of

crack surfaces and the dynamic normal stress

intensity factor.

3. To evaluate existing theory.

4. To provide some basic experimental data which

can be used to guide future theoretical work.

The practical significances are:

1. To help upgrade fracture mechanics considerations in

the design of structures and machine components by

accounting for dynamic effects.

2. To help better understand geological failures such as

mining operations, earthquakes and the interaction of

ground shocks with faults in the earth's lithosphere.

The experimental techniques developed for this

investigation are discussed in Chapter II. The first

section describes the tensile pulse generating system and

the instrumentation. The specimen geometry and prepara-

tion are described in section two. Also discussed in this

chapter are the basics of the interferometric displacement

gage (IDG), relationship between crack displacement and

stress intensity factor, and the procedures used in the

experimental work.

In Chapter III the theory of the dynamic response

of a central crack to a tensile pulse in a plate is reviewed.



The data reduction procedure is also discussed here. The

analytical work is based upon a two dimensional theory of

elasticity for the case of generalized plane stress. The

mode I dynamic stress intensity factor and the dynamic

separation of crack surfaces were computed by employing

the Duhamel superposition integral in conjunction with

short time results, for Heaviside step loading, obtained

by Thau and Lu [16]. The experimental work which takes

into account the influence of the boundaries neighboring

the crack was carried out using the IDG technique.

The results for the dynamic crack behavior are

discussed in Chapter IV. It is believed that the results

presented herein are the first experimental data on the

dynamic response of a central crack with neighboring

boundaries.

Chapter V, which summarizes the findings of this

investigation, concludes the thesis.



CHAPTER II

EXPERIMENTAL TECHNIQUES

2.1 TENSILE PULSE GENERATING SYSTEM AND INSTRUMENTATION

A. Background

Tensile impact tests have been performed by many

investigators, most of the tests being performed to de—

termine the effects of loading rate on such prOperties

as yield strength, energy absorption, reduction in area

and elongation. The earliest work in this field was per-

formed by J. Hopkinson [23] and Mason [39], both of whom

applied tensile stress pulses to wires by means of a

falling tup. Ginns [40] used a spring mechanism type

loading machine to apply a sudden load and attempted to

measure the stress with a resistance—pressure gage. Brown

and Vincent [41], developed a pendulum type impact

machine and used piezoelectric crystals to measure stress.

Clark [42], Mann [43] and Nadi and Manjoine [44] all used

versions of a high Speed rotary impact machine. The

impact was applied by two hammers mounted on a heavy fly-

wheel which was rotated by a variable speed direct current

motor. At a predetermined speed the hammers were allowed,

by means of a trigger mechanism, to engage an anvil

fastened to the bottom of the specimen.

10
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Clark and Wood in a paper of 1949 [45] described

the construction of a new type of a tensile impact

machine in which the load is applied pneumatically and

reaches a maximum in times as short as 5 milliseconds. In

1959 Austin and Steidel [46] developed an explosive impact

tensile tester.

All of the above-mentioned techniques suffered

one or more of the following problems: distortion of the

pulse due to vibration, non-axial loading and long rise

time. The difficulty of axial loading may be adequately

overcome, if care is taken, in tests involving compression

impact, but when a tensile load has to be applied the

problem is more difficult.

Various attempts have been made to reduce the

effect of non-axial impact. One solution [47] has been to

use a hollow cylindrical specimen fixed at one end and

impacted at the other by'a bullet which has travelled down

its length. The requirement of a Specialized design of

Specimen makes this technique undesirable. Harding et a1.

[48] developed an apparatus in which a tensile stress

(strain) pulse was obtained by reflection of the loading

wave which produced a compression impact on a tubular

weighbar fastened to the tup, so that the eccentricity of

tensile loading is improved to that of a compression impact

test. With this loading machine they were able to pro—

duce loading pulses as short as 25 microseconds which
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could have been improved if the impact had been at the

tup, since the travel in the weighbar contributes to the

deterioration of the rise-time of the compression pulse.

Later on, Harding [49] developed a magnetic load-

ing machine in which the tup was accelerated away from a

coil when a capacitor bank was discharged through the coil.

This produced loading pulses with rise-times as short as

5 microseconds. The main problem with this technique is

the large transient electrical field associated with the

discharge. He allowed the pulse to travel for 60 micro-

seconds before it reached the specimen so that the

transient would die out and resistance strain gages could

be used.

More recently, 1977, Costin et al. [37] developed

an explosive impact tensile tester which is an adaptation

of the Klosky pressure bar. The tensile pulse was pro-

duced by detonating an explosive charge on a loading head

attached to the end of the bar by a large bolt. Reflec-

tion of the compressional wave from the back face of the

loading head produced a tensile pulse in the bolt, which

was transmitted to the end of the bar. The rise time

measured at the incident gage was 20 to 25 microseconds

and that at the site of interest was 35 to 40 microseconds.

B. General Description and Principle of Operation

Because the primary interest of the present in-

vestigation was the response of the impingement of plane
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stress waves on a crack, it was necessary to devise an

apparatus that would generate plane waves over a

relatively large area representing one edge of the speci-

mens.

As noted in the preceeding section the tensile

pulse generating devices used to date are designed for

round bar specimens, which makes the problem of non-axial

impact relatively easy. Thus it became apparent that the

strain-wave generation devices currently in use were either

unsuitable or too expensive a venture to adapt for this

investigation. It was then decided to design and con-

struct a new type of a tensile impact apparatus that would

satisfy the following criteria:

1) Capable of generating plane tensile stress waves that

resemble a Heaviside step function, to facilitate

comparison with theory.

2) Capable of allowing the input pulse to reach its maxi-

mum before reflected waves from the boundary of reason—

able size specimens reach the crack, i.e. the rise-time

of the pulse should be on the order of 10 microseconds

or less.

3) Capable of producing repeatable pulses.

4) Should have provisions that would enable the amplitude

of the pulse to be varied.

5) Should have provisions to make specimens accessible

for optical measurement.
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6) Should be inexpensive to build, and

7) Should be easy to operate.

The major components of the pulse generating

system were the loading machine and the tensile impact

apparatus. A schematic representation is shown in

Figure 2.1. The loading machine has an attached loading

assembly that accelerates a projectile which rides down

a launch tube and impacts a tup. During contact, com-

pression waves travel away from the impacting interface in

both the projectile and the tup. Meanwhile, a tensile

wave travels through the specimen away from the tup.

Since the projectile is shorter in length in comparison

with the tup, when the wave reflected (as tensile) from

the end of the projectile reaches the interface, the pro-

jectile is thrown back. Thus, the length of the projectile

determines the duration of the "square" pulse. Brass was

chosen for the material of the impactor and the tup on

account of its low stress wave velocity, and their

respective length dimensions were chosen to give the

necessary pulse duration. A detailed discussion of the

construction of apparatus is given in the following two

sections.

C. Tensile Impact Apparatus

The arrangement and dimensions of the tensile impact

apparatus are shown in Figures 2.2, 2.3, and 2.4. The

apparatus consisted of four main components; a launch tube,

a loading assembly, a projectile assembly and a tup.
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The launch tube was a commercially available cold-

drawn seamless steel tube with an inner diameter of

15.240 i 0.058 cm, an outer diameter of 17.78 cm and a

length of 152 cm. This launch tube was supported securely

in steel pillow blocks constructed from an "I" beam. The

blocks were in turn supported by a 183 cm long "I" beam

which was bolted to the floor. Due to lack of a lathe

large enough to handle the size of the tube no attempt was

made to bore it for a more precise clearance. Three ports,

which were later fitted with quartz windows, were cut in

the tube to allow optical measurements on the specimen.

Additional two ports were cut in to allow access to the

inside of the tube. Furthermore, a collar was welded on

one end of the launch tube to attach the tup.

The loading assembly is an extension of the load-

ing machine. This unit consists of two parallel

aluminum rods threaded onto aluminum circular plates on

either sides, one of which was threaded onto the piston

shaft of the loading machine, the other left free to apply

the accelerating force on the projectile assembly when in

contact. The spacing between the loading assembly and the

tup was such that the projectile was in free motion within

the launch tube just prior to impact.

The projectile assembly (see Figure 2.4), which

was supported within the bore of the launch tube, con-

sisted of a rectangular C Shaped brass impactor, a
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cylindrical aluminum supporting and guiding structure, and

a steel end plate which held the impactor and the cylinder

together. The impactor and the supporting cylindrical

structure were designed with provisions to allow optical

measurement on the Specimen. Some lubrication was applied

to allow free sliding of the projectile in the bore of

the launch tube.

The tup (see Figure 2.4) consisted of a two piece

rectangular brass with serrations to grip the specimen,

two clamping brackets, and a steel end plate that bolts

onto the launch tube. The dimensions and materials of

the impactor and the tup were chosen partly to permit the

recording of strain pulses without interference from re-

flections arriving from the ends of the tup or impactor

for the test duration.

The launch tube was aligned longitudinally by

making careful measurements with respect to parts of the

loading machine. The diameter of the projectile assembly

was chosen to closely fit the bore of the launch tube.

The ends of the impactor and the tup, which were to be in

contact at impact, were carefully turned in a lathe and

finished with emery paper in order to reduce lateral

friction. To further assure substantial simultaneity of

contact throughout the surface of contact there was the

provision for inserting shims between the brass bar and

the end of plate of the tup.
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D. Loading Machine

The projectile assembly was accelerated by means

of a commercial Hyge Shock Tester, Type HY-3422, manu-

factured by Consolidated Electrodynamics Corporation. The

tester is shown in Figure 2.3 and a schematic is shown in

Figure 2.5. The piston diameter is 7.62 cm and the full

stroke is 42.55 cm.

The acceleration of the piston is achieved in the

following manner: A given set pressure is applied to

chamber B by means of compressed nitrogen. This pressure

acts over the full area of the piston, pushing it against

a ring seal at C. A load pressure is then applied to

chamber A, this pressure being restricted to a smaller

area of the piston by the ring seal thus causing a smaller

force to act on this side of the piston. When the load

pressure reaches a magnitude of 4.2 times that of the set

pressure, the forces acting on the piston become equal.

If additional load pressure is applied, the seal at C is

broken and the load pressure expands over the entire face

of the piston causing a large acceleration.

The acceleration is regulated by a conical pin

which regulates the amount of gas supplied to the piston

face during the initial part of the acceleration. The

acceleration is aided by a hydraulic fluid which occupies

approximately one-half of the volume of chamber B. The

deceleration is accomplished by a pin which gradually
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closes the area of the escape orifice D through which the

hydraulic fluid is forced. The system is controlled from

a separate control panel which contains pressure gages and

control valves.

E. Strain Pulse Measuring and Recording System

Resistance strain gages change resistance when

they are subjected to a strain. A potentiometer circuit

converted the resistance change into a voltage change.

Calibration factors then determined the strain from the

voltage change.

The Specimens were instrumented with foil strain

gages type ED-DY-062AA-350, manufactured by Micro-Measure-

ments. The distortion of the pulse introduced by the

0.157 cm gage length was considered negligible since the

gage length was small in comparison with the rising portion

of the pulse. The resistance of this gage as given by the

manufacturer was 350 ohms : 0.4 percent and the gage factor

was 3.16 i 2.0 percent. The circuit voltage was supplied

byaisix volt battery, and the voltage was recorded before

each test by means of a voltmeter connected in parallel

with the battery.

The potentiometer circuit is shown in Figure 2.6.

A ballast resistor, Rb' is in series with the strain gage,

Rg. For any fixed supply voltage, Eb’ the maximum sensitiv-

ity of the circuit will occur when Rb = R9. The coupling

capacitor, CC, prevents the passage of direct current to
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the recording instrument. Thus, this circuit will only

respond to dynamic strains or the dynamic components of

combined strains.

By Ohm's Law the current in the circuit is

I = Eb/(Rb + Rg) (2.1)

and the voltage across the gage is

E = I R (2.2)

Substituting Equation (2.1) into Equation (2.2), gives

the voltage across the strain gage as

Eg = EbRg/(Rb + Rg)

Applying a strain to the gage changes the gage resistance

to R + AR .

9 9

The current then becomes

I = Eb/(Rb + R9 + ARg) (2.3)

and the voltage across the gage becomes

E + AB = I(R + AR ) (2.4)

9 9 9 9

Substituting Equation (2.3) into Equation (2.4) gives the

new voltage across the gage as

E R + ARb( g g)

(R + R + AR )

b g 9

 

E + AB = (2.5)

9 9

Successive algebraic operations on Equation (2.5) give
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E + AEg EbRg(l + ARg/Rg)/{(Rb + Rg)[1 + Rg/(Rb + Rg)]}

ER1+ARR

_b9( 9/9)

(R +R)

9 9

 

[1 - (ARg/(Rb + Rg))

2 2
+ (ARg/(Rb + Rg)) - (ARg/Rb + Rg)) +...]

=E-l9-Eg-[1+ARR R(R +R)-AR2R/R(R +12)2

RbRg 9b'9 b 9 9b 9 b 9

+AR3Rb/R (R +R)3-...] (2.6)
9 9 b 9

The first term on the right hand Side of Equation

(2.6) is Eg which is the DC component of the voltage

across R9. The remaining terms are then the dynamic com-

ponent of the voltage across the gage. Since the coupling

capacitor will only pass the dynamic component of the

voltage, we have as a circuit voltage

E0 = AEg (2.7)

Thus Equations (2.6) and (2.7) give

E R

2 bRb g _

E0 [1 ARg/(Rb + R9)
2

(Rb + Rg)

 

2 2
R R + R -... 2.8+ g/< b g) 1 < )

Typical foil strain gages subjected to elastic

strains have the following values:

R9 = 120 or 350

AR < 20

9
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Therefore, the higher order terms in Equation (2.8) can

be neglected;this results in an error in E0 of less than

one percent. The output voltage for foil gages is then

B = EbRbARb

0 2
(Rb + Rg)

Two Tektronix preamplifiers were used to amplify

(2.9) 

the signals from the potentiometric circuits. Tektronix

Tyep 1A7A plug-in preamplifier was used for the upper trace

signal. This is a high gain differential preamplifier

with a vertical sensitivity to 10 microvolts per centi-

meter and a frequency response from DC to l megahertz.

The lower trace signal was amplified with the use

of a Tektronix Type lAl dual-trace plug-in preamplifier.

Both channels of the Tektronix Type 1A1 plug-in-unit had a

vertical sensitivity to .005 volts per centimeter. In

order to pick up the low-level strain signals Channel 1

was used as a wide band AC-coupled 10X preamplifier for

Channel 2 by connecting Channel 1 and Channel 2 in cascade

with coaxial cable meant for this purpose. The resulting

output noise level was reduced by inserting a low-pass

filter between the Channel 1 signal output and the

Channel 2 input.

The preamplifiers were mounted in a Tektronix Type

551 dual bean oscilloscope which permitted the Signals

from two gage stations to be displayed at the same time

with one horizontal sweep of the beams. The sweep speed
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could be varied from 0.1 microsecond per centimeter to

five seconds per centimeter. The input impedance of the

oscilloscope was one M0. This value was much greater than

the strain gage resistance. Therefore, the effect of the

oscilloscope impedance on the output of the potentiometer

circuit was negligible. The sc0pe was triggered by means

of a delayed trigger signal from the Tektronix Type 555

oscilloscope.

A record of the oscilloscope trace was obtained

by using a Tektronix camera system type C-12 with Polaroid

Land film type 47. Using an open shutter at a setting of

f1.9 and an oscilloscope sweep speed of 5 microseconds/

centimeter a clear picture of each trace was recorded.

2.2 SPECIMEN GEOMETRY AND PREPARATION

A. Material Properties

The specimen material was Type 2219 aluminum 1/8

inch (3.2 mm) thick furnished by NASA-Lewis. The specimen

was oriented so that the rolling direction was parallel

to the loading direction. The stress-strain curve from

an ASTM specimen with the same orientation is shown in

Figure 2.7. This curve was obtained using an Instron test

machine and foil gages on the specimen. Another specimen

was instrumented with foil gages in the longitudinal and

transverse directions to obtain Poisson's Ratio. From

these data, the elastic properties are determined to be:
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Figure 2.7. Stress-strain of type 2219 aluminum.
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Elastic Modulus 70 1 1G Pa

Poisson's Ratio 0.33 i 0.01

B. Specimen Geometry

A schematic of the specimen is given in Figure 2.8.

The dimensions of the plate Specimen were determined by

three considerations. The maximum thickness was governed

by the desire to reduce geometric disperson to negligible

proportionsiknrthe frequencies contained in the stress

pulse. The lateral dimensions are chosen to produce

reasonable levels of strain relative to electrical noise

and to yield an essentially plane wave front for this type

of excitation away from the impact point. Furthermore,

the intention to compare results with previous static

measurements of crack behaviors forced the selection of

Specimen with dimensions 0.32 cm x 7.62 cm x 20.32 cm.

C. Specimen Preparation

A slot nominally 12.5 mm long was electromachined

in the plate Specimen. The thickness of the Slot was

measured at five positions along the slot - at the ends

(x1 and x5), the middle (x3) and the quarter-points

(x2 - x4) as indicated in Figure 2.8. The data on the

slot geometry are measured to be

tl = .314 mm, tl .307 mm, t| = .313 mm,

1 X2 X3

.320 mmfl

II .290 mm, tlx

s
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The preparation and maintenance of the specimen

surface is critical for generating useable fringe patterns

since the patterns are degraded by stray reflections

surrounding the indentations. A flat surface was attained

on the Specimen by first sanding with 320, 400, and 600

grit metallurgical paper and then polished with 1 micron

and finally 0.3 micron alumina paste following standard

metallurgical procedures.

The reflective indentations were applied to the

Specimen surface with a Vicker's hardness tester using the

100 p weight. The crosshairs in the x-y micrometer stage

of the microhardness tester allow placement of the indenta-

tion in the desired locations to within : 2 microns if care

is taken.

2.3 DISPLACEMENT MEASUREMENT

A. Basics of the Interferometric Displacement Gages

Shallow reflective indentations are pressed into

the polished surface of the Specimen on either Side of a

crack or slot as shown in Figure 2.9. When coherent light

impinges upon the indentations, it is diffracted back at

an angle (do) with respect to the incident beam shown

shcematically in Figure 2.9. Since the indentations are

placed close together, the respective diffracted beams

overlap, resulting in interference fringe patterns on

either side of the incident laser beam.
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Figure 2.9. Schematic of the IDG.
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In observing the fringe pattern from a fixed posi-

tion at the angle do, fringe movement occurs as the dis—

tance (d) between the indentations changes. Application

of a tensile load, causing the distance between the in-

dentations to increase, results in positive fringe motion

towards the incident beam. Conversely, the removal of the

tensile load results in negative fringe motion away from

the incident beam.

The intensity, I, of the fringe pattern is given

by [50]. [51]

 

I = I 51“ 8 coszg (2.10)
0 2

B

where

B = %fl (sin do - sin a)

0

and

In these equations, I0 is the maximum intensity at the

center of the pattern, W is the width of an indentation

side, d is the spacing between indentations, A0 is the

wave length of light, and a and do are defined in

Figure 2.9. In Equation (2.10) the c052: term is

modulated by the more slowly varying sinZB/B2 term since

W << d.

If one now fixes the observation position at do

and monitors the intensity changes as d changes, Equation

(2.10) becomes
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.. 21:9.-
I — Iocos (A0 Sln do ) (2.11)

The intensity has a minimum whenever

sin a0 = (m + g), m = 0, :1, :2, :3,...

A0

Using this as a basis one can then write the re-

lationship between the indentation spacing and the fringe

order shown schematically in Figure 2.7 as

d Sln do = mko (2.12)

Here m is the fringe order, and a the angle

0

between the incident and reflected beams, thus defining

the zeroth fringe order.

The relationship between the change of indentation

spacing (6d) and the change in fringe order (6m) is given

by

6mlo

Sin a
0

5d = (2.13)

It is this relation that serves as the basis of the IDG.

Fringe motion can be caused by rigid body motion

as well as relative displacements. When the specimen moves

parallel to its surface and along a line between the in-

dentations, one fringe pattern moves toward the incident

beam, and one moves away. Therefore, averaging the fringe

motions eliminates the rigid body motion, and one should

calculate the displacement from:
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A 6m + 6m
_ 0 l ‘2

5d * 3373‘ 7 > (”4)

This component of rigid-body motion is present in every

ordinary system for loading Specimens, so that it is very

important that it be averaged out. Other rigid-body motions

(e.g., one perpendicular to the specimen surface) are not

averaged out and can lead to errors. In carefully aligned

testing machine this components of rigid-body motion can

be made small, eliminating the need for corrections.

Using typical values of A0 = 0.6328 microns

(He-Ne laser) and do = 42°, the calibration constant

AO/sin a0 is 0.95 microns. In other words, when one

complete fringe shift has been observed, the corresponding

displacement is about one micron.

The gage consists of two reflecting indentations.

These are applied with a Viker's harness tester which,

with its diamond indentor, permits the accurate applica-

tion of high quality pyramidal indentations. These in-

dentations are typically 25 microns long on each side and

can be placed as close as 25 microns to the edge of a crack.

The sensitivity of the displacement measurement is

determined by the quantity lo/sin a in Equation (2.14)
0

and by the capability of measuring fractions of a fringe

shift. For large displacements the measuring of one-half

of a fringe shift is sufficiently sensitive since this

refers to a displacement half a micron.
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A very small 6m can be resolved if one has a

record of the absolute intensity variation at a position

on the pattern about one-half the distance between a

maximum and minimum.

B. The IDG for Dynamic Displacement

The technique for dynamic interferometric displace-

ment measurement described here is essentially similar to

that used previously by Sharpe [52]. A schematic of the

setup for the dynamic displacement measurement is given

in Figure 2.1, and photographs are shown in Figures 2.10

and 2.11. Convenience of the arrangement necessitated the

use of a mirror to direct the laser beam onto the indenta-

tions; it is important that this mirror not only has a

high reflectivity but also be flat in order to preserve

the coherence of the laser beam. A dielectric mirror with

a reflectivity of 99.7 percent that is flat to 1/10 wave

length was used. The three point adjusting feature on the

mirror guarantees the easy adjustment of the light field

on the indentations.

With this technique one simply monitors the fringe

shift of each pattern by a photomulitplier tube whose

window is covered except for a thin slit with a width less

than the width of a fringe in a pattern. As the fringes

pass over this slit, the intensity seen by the photo-

multipler tube varies and, in the ideal case, the output

signal is a sine wave. Adjusting the fringe pattern so
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that the static signal from the photomultiplier tube is

midway between maximum and minimum and observing the posi-

tion of the nearest bright or dark fringe relative to the

slit, permits one to determine whether the displacement

signal corresponds to a relative separation or closing of

the indentations.

C. Relationship Between Displacement and Stress Intensity

Factor

The mode I stress intensity factor, k is the1'

linear elastic fracture mechanics parameter which ade-

quately characterizes crack behavior near the tip in many

materials. With reference to Figure 2.12 the y-direction

displacement (Uy) associated with the opening mode crack

tip stress field is given by [53]

U = £1.
y G

L _

(%;)2 sin % [2 - 20 - cos2 %] (2.15)

where

G = shear modulus

v = Poisson's ratio

r,0 = Polar coordinates referred to the crack tip

c
l

ll 0, for plane strain

= v/(l + v) for plane stress

For the present case where plane stress conditions pre-

vail the crack opening (U3) near the tip may be given

as

l 2 2 0]
1+0 2 (2.16)

N
|
C
D

._ Ll:-
U ( fl) Sln
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Examining Equation (2.16) it is obvious that with

the knowledge of elastic constants G and v, and care—

ful measurements of r,8, and the vertical separation of

crack surfaces near the tip one can determine the mode I

stress intensity factor. In fact, such measurements have

been made with great success by many researchers.

Adams [54] used a photographic technique to measure

the relative displacement of identifiable surface markings

astride a fatigue crack and only 76 microns apart. His

technique, though somewhat laborious, could be used to ob-

tain k. Elber [55] developed an accurate clip gage with

gage length of 1.27 mm that could be used for k-calibra-

tions of larger specimens. Dudderar and Gorman [56] made

k measurements in thin PMMA sheet specimens using holo-

graphic interferometry tomeasure the displacement per-

pendicular to the sheet. Their technique is applicable

only to thin transparent models. Sommer [57] and Crosely

et a1. [58] measured the crack displacements inside glass

models by optical interferometry and used them to deter-

mine k. The advantage of interior displacement measure-

ments near the crack tip is offset by the transparency

requirement of the specimen. Evans and Luxmore [59] used

the laser speckle method to measure inplane displacements

on the specimen surface. A brittle plastic specimen was

used, but the technique works on metals as well. Sharpe

and Grandt [60, 61], Macha, Sharpe and Grandt [62],
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Sharpe [63], [64] used a laser interferometric technique

to measure crack surface displacements. This technique

which is adapted for the present research program can be

used to measure displacements of 0.02 microns at 50 microns

from the crack tip. Further details of the technique

are given in section B.

The hitch to the measurement of the stress in-

tensity factor is the requirement of a technique capable

of measuring small displacements very near the crack tip.

As a rule of thumb the displacement relations given in

Equation (2.16) are regarded to be sufficiently accurate

within a distance a/lO from the crack tip, where "a" is

half the crack length [65].

D. Displacement Measuring and Recording System

The photomultiplier tubes used were Amperex Type

XP-lll7 with a divider circuit load resistance of 1k and

an operating voltage of 1500V. The output from each photo-

multiplier tube was fed into a Tektronix Type 53/54 D

plug-in preamplifier. These are high gain differential

amplifiers with a vertical sensitivity of l mv and a

frequency response from .35 to 2MC.

The two plug-in preamplifiers were mounted in a

Tektronix Type 555 dual beam oscilloscope. The output

from each photomultiplier tube was thus recorded

simultaneously on separate channels of the oscilloscope.

The sweep speed of the oscilloscope could be varied from
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0.1 microseconds/cm to five seconds/cm. The sweep was

triggered by a differentiated signal from a foil strain

gage mountedcnithe tup about 0.64 cm from the impacting

interface. A schematic of the triggering circuit is shown

in Figure 2.13 [66].

A Tektronix Type 0 operational amplifier unit was

used in the differentiator circuit. The unit consisted of

three parts: a vertical preamplifier and two Operational

amplifiers. The vertical amplifier was such that it can

be used either as an independent oscilloscope preamplifier

or to monitor the output of either of the operational

amplifiers. The Operational amplifiers could be used for

applications involving integration, differentiation as

well as many others. Besides having provisions for select-

ing input and feedback impedances, Ci and R fromf:

several values, the Type 0 unit had an internal circuitry

to limit high frequency reSponse.

A record of the oscilloscope trace was obtained

by using a Tektronix camera system type C-12 with Polaroid

Land film, type 47. Using an open shutter at a setting of

f1.9 and an oscilloscope sweep rate of 5 microseconds/cm

a clear picture of each trace was recorded.

2.4 PROCEDURES

A. Preliminary Checks

In order to check the applicability of the plane

stress assumption, we can consider simple normal impact
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Figure 2.13. Strain signal trigger circuit.
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of a free-ended rectangular plate. A schematic of an

instrumented Specimen prior to machining the slot is

shown in Figure 2.14a. The consiStance of the plane

stress assumption is implied by the magnitudes of the

response of gages 2 and 12 in Figure 2.15. Also, Figure

2.15b shows that there is little bending; note that the

gages are separated by one inch in the longitudinal

direction. The signals in Figure 2.15 show a longer

rise-time than the later results as they were taken during

development of the impact apparatus.

Dispersion, induced by finiteness of geometry,

will alter the rise time and amplitude of a propagating

step wave. The desire to generate a tensile pulse with a

short rise time necessitated the use of a flat ended

impactor for the present investigation. A flat ended

impactor produces a pulse with a short rise time so that

the shorter wave length components are more significant

and therefore, according to the Pockhammer-Chree theory

as discussed by Davies [67] , the dispersive effects are

greater. This phenomena poses a problem. Due to the

presence of a slot in the specimen one cannot measure the

input pulse at the slot. On the other hand one can

measure the pulse at a location one inch before the slot

and assume dispersion to be negligible. The validity of

this assumption is implied by the response of gages 2 and

12, which cover the region of interest, as shown in
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Figure 2.15. Observed strain response at various

locations of the specimen without the

slot.
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Figure 2.14a. Note that even though the change in

amplitude and rise time are negligible the oscillations

in the pulse are indicative of some dispersive effects.

An air-cushion between the impactor and the tup

would increase the strain pulse rise-time in the specimen.

In order to eliminate the air-cushion, the tensile impact

apparatus was designed such that a vacuum could be drawn

in the launch tube. Great care was taken in sealing the

launch tube. Even then leakage was unavoidable. Tests

with slightly reduced launch tube pressures showed no

improvement of the strain pulse rise time. The attempt

to draw a vacuum in the launch tube was then discontinued.

B. Eccentricity of Loading

Since the primary objective of the present in—

vestigation was to study the response of the interaction

of a longitudinal wave of normal incidence with a crack,

particular care was taken to reduce the eccentricity in

the apparatus. Further provision was made to check the

planarity of the pulse during the actual test by observing

if gages such as one and three in Figure 2.14b respond

simultaneously to the wave front. It was then found that

the axiality problem was worse than expected - a few per-

cent of all impacts being axial to within two microseconds.

Another problem observed during the course of testing was

an occasional vertical non axial impact. This, in most

cases was a result of bolts loosening in the tup or the

projectile assembly.
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Testing Procedure

The potentiometric strain gage circuits, the

amplifiers, the oscilloscopes, the laser and photomultiplier

power supplies were turned on at least one—half hour before

a test was performed in order to obtain nearly steady

state operating conditions.

2)

3)

The procedure adopted in testing was as follows:

The oscilloscopes with plug-in preamplifiers were

calibrated for amplitude by means of the square-wave

calibrator output incorporated in the oscilloscope.

The sweep rate of the oscilloscope was calibrated with

one, five and fifty microseconds timing marks from a

time mark generator. These calibrations were per-

formed against a graticule-scale over the face of the

cathode ray tube.

The test specimen was carefully mated with the tup

assembly. The bolts in the clamping brackets were

tightened to secure the test specimen which is now

sandwiched between the two brass bars of the tup

assembly. The entire assembly was then mounted on the

end of the launch tube and the projectile assembly

pulled back and aligned against the accelerating

assembly.

The incident laser beam was aligned so that the in-

dentations are illuminated at the beginning of load-

ing and throughout the test. This is done using the
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adjusting screws on the mirror directing the beam.

The specimen reflects a portion of the incident

beam on the laser head. In order to insure the per-

pendicularity of the incident beam the reflection on

the laser head was used as a guide in adjusting the

laser position.

The photomultiplier tubes were positioned so that the

fringe patterns fall on the windows. This was

accomplished using the travelling stages which

angularly orient the photomultiplier tubes. Further

adjustments were made by rotating the windows of the

photomultiplier tubes so that the fringes are parallel

to the slits.

The oscilloscopes were set on single sweep lockout so

that the entire test was recorded on one sweep. This

required a sweep rate of five microseconds/cm. The

sweep for the fringe motion record was triggered by a

signal from a strain gage mounted about a quarter of

an inch behind the impacting interface. The type 551

oscilloscope was triggered using a delay triggering

signal from the Type 555.

The vertical gain adjustments of the amplifiers were

set as desired in accordance with the particular test.

A set pressure was applied to the forward chamber of

the Hyge unit and locked in.

The camera shutters were opened and held open until

after the Hyge unit fired.
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The Hyge load pressure was gradually increased until

firing.

The load pressure was released and the Hyge piston

was retracted to be ready for the next test.

The potentiometric strain gage circuit voltage was

read and recorded.

The projectile assembly was pulled back and aligned

for the next test.

The procedure 3 through 12 was repeated for the

three sets of indentations.



CHAPTER III

ANALYSIS OF CRACK RESPONSE TO LONGITUDINAL PLANE

WAVES OF NORMAL INCIDENCE

3.1 ANALYTICAL CONSIDERATIONS

A. Equations of Elasticity in Two Dimensions

Consider the problem depicted in Figure 3.1. The

plate which is assumed isotropic linear elastic has the

width 2b, where b >> h. The displacement components are

U , U

x y’

tively. Since the plate is thin and free from stresses

and U2 in the x, y and 2 directions respec-

at surface 2 = :h, we assume

0 = 1 = T = 0 (3.1)

In the absence of body force, integrating the

three-dimensional stress equation of motion across the

thickness of the plate, and ignoring transverse inertia

as well as the integrations across the thickness of the

plate of the transverse shear stresses, give

2
Bo 8T 3 U

_l‘. __XY= X

8x + By D 2
at

2 (3.2)

8T 80 3 U

xy + x = y

-——‘ ——— 0
3x 3y at2
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Figure 3.1. Geometry for generalized plane stress.
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In these equations the field variables represent

averages across the thickness of the plate, and p is

the mass density. A Similar averaging process gives the

average field variables for the stress-strain relations

and strain-displacement relations as

Cij = Aekkéij + Zueij

1:3 = 1:2:3 (3.3)

= L

81] 2mid + Ujpl)

where A and n are the Lame's constants and 6ij is

the Kronecker delta.

From Hooke's Law it follows that 633 is related

to all + 622 by

E =—4_U (34)

33 A + 2U k,k ‘

Substitution of (3.4) into the expression for the stress

yields

_ ZuA

OaB - A + 2p UkykdaB + uwouB + U8.a)
(3.5)

(118 = 112

which may be expanded as

2 BUX 3U

oX — p Cp[§—— + v 3y ]

C2 3U aux

O'y - O Cp[_13+ \) W] (3.6)

3U SD

= 2 —X _Y.

Txy p Cslay + 3x I
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where,

C2 = 4U(X + U)

P 0(K + 2h)

2 _ _ . , .

Cs — u/o v — POisson 3 ratio

By substituting Equation (3.6) into Equation (3.2)

the displacement equations of motion for a thin plate

are reduced to

(c2 - c2)vv-E + c2 26 = E (3.7)
p s s

where U is the displacement vector having two com-

ponents, UX and Uy in x and y directions, respec-

tively. The symbol V represents the gradient operator

in two dimensions. The dot over the displacement U

denotes the time derivative, and V2 is the two—dimensional

Laplacian Operator.

Let 5 be a unit vector normal to the median

plane of the plate. By introducing a scalar displacement

potential ¢ and a vector displacement potential

w = Em and taking

6 = v¢ + VXE (3.8)

which may be expanded as

(3.9)

>
4

0
)

X

2:
):

a
:
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Equation (3.7) can be reduced to two scalar wave equations

G "
S
t

II

B
.

(3.10)

(3.11)<
l

€
- II

6

 

give

2 2

_ ' 2 3 ¢ 3 p

ox — A V ¢ + 2 Y‘Tfi axay)

3x

0 =A'2-a-——V¢+2u(J—z -i2—‘L) (3.12)
Y axay Bxay

_ _32 32¢
Txy-U + yz)

3x

where,

A. = ZAU

A+2p

Equations (3.7) are Poisson's equations Of ex-

tensional vibration Of thin plates and constitute the

dynamical counterpart of the equations Of generalized

plane stress. They are the zero-order approximation of

the three dimensional equation Of elasticity as the dis-

placement components are assumed to be independent Of

the thickness coordinate of the plate. As pointed out

by Mindlin [68], the zero-order equations do not contain

the simple thickness modes, hence they are limited to

frequencies well below the frequencies of the thickness-

stretch and symmetric thickness-shear modes which are
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w = [(n/h)(x + Zu)/o]%. w = (ZN/h)(u/p)% (3.13)

respectively, where h is the thickness of the plate.

In addition, because of the omission of the low-frequency

portions of the complex branches of general waves in a

plate, the equations require the wave length to be large

in comparison with the thickness of the plate. Thus the

approximation is valid when the frequency is less than

cS/h and when the wave length is longer than nh.

For an impact loading the approximate solutions

can be expected to be valid at some distance from the

edge, based on the Observation that in the far field the

low frequency-long waves contributions of the lowest mode

dominates the contribution of the other modes.

B. Formulation of the Problem

Consider an isotropic linear-elastic plate con-

taining a crack. A rectangular coordinate system x, y,

z is oriented as shown in Figure 3.2, so that the z

axis coincides with one edge of the crack. For a plane

tension-stress wave propagating in the positive y-direc-

tion into the initially undisturbed material UX = 0 and

only one wave potential ¢(y,t) is required to describe

the wave motion.

As the incident plane wave impinges on the crack

the path of the wave propagation is changed and the crack,

when excited by the otherwise undisturbed wave, acts as
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a secondary source which emits waves outward from itself.

The deviation Of the wave from its original path is known

as diffraction, and the Spawning of secondary waves from

the crack is known as scattering. In the equations that

follow superscripts i and s indicate incident and

scattered waves respectively.

The incident plane wave normal to the crack may

be represented as

i

(25 f(t - y) (3.14)

ti = o (3.15)

where f is identically zero when its argument is nega-

tive, but otherwise is an arbitrary waveform. Thus the

initial time for the problem is when the wave reaches

the crack, y = 0. Ahead of the advancing plane front

the plate is undisturbed.

Substitution Of Equations (3.14) and (3.15) into

(3.12) gives the stresses Of the incident longitudinal

plane waves as

041) = (K2 - 2)f" (3.16)

0(1) = Kzf" (3.17)
y

where the elastic constant K2 = (:52)2 takes the value

2/(1 - v) in this case and primes Indicate differentia-

tion with respect to the argument. To compare the

analytical results with experiment, f" will be chosen

to approximate the pulse generated experimentally.
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Since both Equations (3.14) and (3.15) are al-

ready solutions of the wave equations, the main burden

{15(8)
of the analysis is to determine the potentials

(s)
and w of the scattered wave field. The scattered

waves which are added to the incident waves to form the

total field are determined from Equation 3.12 and the

boundary conditions

ogi)(x,0) + o;s)(x,0) = 0 -2a < x < o

. (3.18)

T;;)(x,0) + 1;?)(x,0) = 0 -2a < x < 0

which specify that the crack surfaces are separated and

free Of traction.

C. Solution of Problem

In the preceeding section we described the prob-

lem Of the diffraction of an arbitrary transient plane

wave by a crack normal to the propagation direction. Al-

though the solution of this problem is not known, the

analytical results for a similar problem with a step

function stress profile have been Obtained by many re-

searchers; a brief review Of which was given in Chapter

I. Thau and Lu [16] considered a plane dilational wave

of arbitrary profile impinging on a stationary line crack

at an arbitrary angle. They used the generalized Wiener-

Hopf technique, which yields an iteration series solution

that is exact for a finite time which increases with each
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increasing order Of iteration. They present explicit

expressions for the dynamic normal and shear stress in-

tensity factors at each crack tip as a function of time,

angle of incidence and Poisson's ratio. Furthermore,

they present numerical results for the dynamic normal and

Shear stress intensity factors which are exact for two

crack transit times and the dynamic crack surface separa-

tion at several points that is exact for one crack tran—

sit time. These numerical results are for an incident

wave with a step function stress profile. In this analysis

the material was considered linear-elastic, homogeneous,

isotropic, and infinite so that conditions Of plane strain

prevail.

According to the theory of elastodynamics, a

plane strain solution can be transformed into a plane

stress solution by merely changing the ratio of wave

speeds K = 2(1 - v)/(l - 20) of the plane strain solu—

tion to K = 2/(1 ~ v). In other words, the analytical

results of the diffraction of a plane step-longitudinal

wave by a crack in an unbounded elastic medium may be

utilized to Obtain the solution for the corresponding

diffraction problem in a thin plate. The value of

Poisson's ratio measured for the test specimen was

v = 0.33 which corresponds to a plane strain 0 = 0.25.

Thus, the results of the mode I stress intensity factor

and the crack surface separation for v = 0.25 in Figures
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3 and 2 of reference [16] can be used as an influence

function to determine the theoretical stress intensity

factor and crack displacement by a wave with an arbitrary

time variation.

Let Us(x, t - t') denote the vertical separation

of the crack faces at a point x on the crack at time

t due to a unit step stress pulse which strikes the

crack at time t' and Ua(x,t) to be that for an

arbitrary stress pulse. The experimentally generated

stress pulse has a rise time form given by f(t), deter-

mined experimentally from strain measurement, then

elastodynamic theory predicts a vertical separation Of

the crack faces Ua(x,t) given by Duhamel's integral:

t
_ . .§_ _

Ua(x,t) - [0 f(t ) at Us(x, t t)dt (3.19)

Use Of (3.19) requires that an accurate means of deter-

BUS

at

close in the time interval (0,t). Thau and Lu [16] give

mining is available, and that the crack does not

theoretical evidence of this assumption.

Noting that aUS(x, t - t')/at = -aus(x, t - t')/at',

(3.19) may be integrated by parts to Obtain

t

%E7 f"(t')Us(x,t - t')dt'

(3.20)

Ua(x,t) = f(0)US(t) + [0

Equation (3.20) permits use of plots Us(x,t) directly

provided that df/dt can be accurately determined from

the experiment.
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A similar use of the principal of superposition

may be employed to determine the normal stress intensity

factor due to an arbitrary f(t)

t

'
0
)

akl(t) = f(0)skl(t) + I Skl(t - t') , f(t')dt'
3 r

.
-

0

(3.21)

where Skl(t) and akl(t) are the normal stress in-

tensity factors due to a unit step stress wave and an

arbitrary stress pulse respectively.

Plots of Us(x,t) for normal incidence are given

in Reference [16] on page 744 (where it is denoted by

héo) for various values Of x). These values are valid

for one crack transit time. The plots Of skt(t) given

in Reference [16] on page 745 are valid until the first

scattered longitudinal wave travels to the other crack

tip and back again.

In order to evaluate the foregoing integrals

numerically it was necessary to plot the tension-stress

(strain) pulse f(t) and the influence functions

Us(x,t) and sk1(t) on a common time scale. Reference

(0) _ 2aT
hT - u ,

where K210 is the normal stress associated with in-

[16] gives Us(x,t) in terms Of the ratio

cident wave, and Skl(t) in terms Of the ratio

Sk1(t)/K210/§, where KZTO/E is the static stress in-

tensity factor. Furthermore, both Us(x,t) and sk1(t)

as a function of dimensionless absissa ct/z, where c

is the velocity of propagation Of the wave, 2a is the
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crack length, and t is the time after the wave reaches

the crack. For this analysis the value Of Cp, measured

velocity Of propagation Of the wave, was substituted

for C.

The results of this analysis are compared with

the experimental results in Chapter IV.

3.2 EXPERIMENTAL DATA CONSIDERATIONS

A. Strain Time History of the Incident Wave

Measurements of the strain-pulse amplitude and

rise-time were taken from the photographic records using

a Pye two-dimensional traveling micrOSCOpe accurate to

0.01 millimeter. The relation between the change of

resistance produced in a foil gage and the strain due to

an applied load is given by

AR R = F 3.22g/ g e ( )

where F is the gage factor and e is the applied

strain. The strain can be determined from the strain

gage potentiometer-circuit output-voltage by the use Of

Equations (2.9) and (3.22). Multiplying the right hand

side Of Equation (2.9) by Rg/Rg and applying Equation

(3.22) we have

 

E = =—» 2 F E e (3.23)

(Rb + R9)

The readings from the photographic records with

the use of the travelling microscope were used to
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determine the amplitude deflection Of the strain-pulse

trace. The value of E0 was then calculated with the

following equation.

E = AeG (3.24)

where A8 is the trace deflection in divisions and Ge

is the oscilloscope vertical-amplifier gain in volts per

division.

The strain-pulse rise-time was calculated with

the following equation

t = A G (3.25)

The readings from the photographic records with the use

of the travelling micrOSCOpe were used to determine the

rise-time deflection, A in divisions, of the strain
t

pulse trace. The oscilloscope horizontal-amplifier

gain was Gt in seconds per division.

The strain time history so obtained could be con-

verted to stress time history with the use of stress

strain relations.

B. Dynamic Separation of Crack Faces

The dynamic displacements at various locations

of the crack were determined using fringe motion records.

A typical photograph Of the recorded signals from an

impact test is Shown in Figure 3.3. The upper trace

records the fringe pattern of the left-hand-side pattern
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a. Strain-time history of the input pulse.
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‘ 5H5

b. Oscilloscope photograph of fringe pattern Signals

Figure 3.3. Experimental records for crack displacement

at Xl (a/b = 0.54).
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(pattern furthest from the impact interface), and the

lower trace records the motion Of the right—hand-side

pattern.

Fringe motion, 5m, values Of 0,%,1,l%... were

read from the photographic records and the corresponding

times (times at which maxima and minima occur) were

read with the PYE two-dimensional measuring microscope.

Once this was done for both traces Equation (2.13),

which is

Ao

5d=m35m

was used to calculate displacement both for the upper and

lower fringe patterns. The upper and lower fringe

pattern displacement time curves were then plotted. The

crack displacement is the average at a given time between

these curves. The results of a typical displacement

measurement are given in Figure 3.4 which was calculated

from Figure 3.3.

C. Dynamic Stress Intensity Factor

Using Westergaard's method the elastostatic

stresses at a point near the crack tips for the configura-

tion shown in Figure 3.5 can be written as

2 f..(e) (3.26)- E
' 00(2r) 13

0..

13

where:
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— - . g . 3e 2

fx(6) - (l Sln 2 Sln -§)cos 2

_ o 6 0 36 e

fy(6) — (l + Sln 7 Sln —§)cos 3

_ _ . 8 g 38

fxy(6) - fyx(0) - Sin 7 cos 2 cos —5

i.e. for r << a.

Defining the mode I stress intensity factor

1’

k1 = lim (2hr)20 (x,0)

x+0 y

which for finite domains take the form

k1 = 00(na)%F(a/b)

where

F(a/b) — a factor which can be considered

as a finite-width correction to

the infinite domain problem.

Then Oij can be written as

k

l
o.. = ——————-f.. e .2713 (an);5 13‘ ) (3 )

Upon expansion

k

0' = _].'_t f (e)

X (2NI)2 X

k

l

o = -——-—— f (6)
L

y (2hr)2 y

k

XY (2 )/2 XY

0 for plane stress

02 =

v(o + o ) for plane strain

X Y
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If the crack under consideration is subjected to

a longitudinal wave of normal incidence, the remote tensile

stress, 0, is replaced by oof(t) where 00 is the ampli-

tude of the pulse. Thus, the components of stress and

displacement near the crack tip become time dependent.

We may consider that the local stress distribution in

terms of the space variables, r and 9 (see Figure 3.5)

remains the same for all time, and that the only dif-

ference between a static and dynamic stress intensity

factors is the time dependence.

Sih, Embley and Ravera [17] give components Of

dynamic stress in the neighborhood of a stationary crack

 

 

as

k (t)

oX = l L cos 2 [l - sin 4%1 sin 1%911 +...

(2a) 2

k (t)
l 6 (6) . (6)

o = ————; cos — [l + Sln ——— Sln ———] +... (3.28)

y (2a)2 2 2 2

k (t)

Txy = 7%;72 cos igl sin 1%1 cos (:6) +...

where

k1 = 00(a)%F(a/b)

Comparisons of each of these expressions with expressions

in Equation (3.26) Show the similarity. Thus, the

dynamic stress intensity factor may be defined in a manner

analogous to the elastostatic theory
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kl(t) = 00(na)%F(a/b)[l + A(a,b,c,t)] (3.29)

where,

00 - amplitude Of stress pulse

F(a/b) - finite width correction factor

A(a,b,c,t) - correction factor for the dynamic effect

Note that the time varying correction factor for the

dynamic effects, A(a,b,c,t), is dependent on the stress

history, the crack length, the wave speed and the geometry

of the Specimen.

The dynamic crack Opening near the tip for the

case of plane stress is then given as

k (t)
,0 _ l r k . 6 2 2 6

2[——(l+v) ‘ COS 2]
 

+... (3.30)

It is this equation, measurement of the time vary-

ing crack Opening U3(t) and the polar coordinates r,6

(see Figure 3.5), that was used to calculate the dynamic

stress intensity factor k1(t).

D. Dynamic Crack Profile

The dynamic crack profile at various times was

determined from experimental data. The measure of crack

displacement at various locations (near the tip, a

quarter crack length from the tip, and at half the crack

length from the tip) for a given time step as read from

displacement-time curves determined in a manner described

in section B was used. These values were then used to
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plot a curve of crack displacement versus distance from

crack tip. The process was repeated for several time

steps. Thus resulting a dynamic crack profile.



CHAPTER IV

RESULTS AND COMPARISON WITH THEORY

4.1 EXPERIMENTAL RECORDS

The experimental records for strain pulses and

corresponding fringe motion Signals at x3, x2 and x1

are shown in Figures 4.1, 4.2, and 4.3. The time scale

reads from left to right in these photographs.

Strain pulse records for three tests are Shown in

Figures 4.1a, 4.2a, and 4.3a. The upper trace in each

record is the output from gage station two at the center-

Of the specimen while the lower trace is from gage station

three at the side. The first upward-going portion of the

traces are the initial tension pulses produced by the

impact. The first dip in the trace is due to the reflected

wave from the free surface Of the crack. The slight devia-

tions in the amplitudes can be attributed to two factors.

One is the variation of the impact velocity. The launch

tube clearance was .05 cm, and the Hyge was always fired

at a set pressure Of .04 MPa. However, the air flow

past the impactor could cause the impact assembly to inter-

mittently graze the side Of the launch tube. This may

have resulted in an intermittent friction force acting on

the impact assembly that would change the impact velocity
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.05mv

gage 2

gage 3

a. Strain-time history of the input pulse.

LH pattern

50mv

RH pattern

 

I 1‘ 505

b. Oscilloscope photograph of fringe pattern signals.

Figure 4.1. Experimental records for crack displacement

at X3 (a/b = 0.167).
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gage 2 05mv

gage 3

F ‘ 5us.

a. Strain-time history of the input pulse.

LH pattern

50mv

RH pattern

 

b. Oscilloscope photograph Of fring pattern signals.

Figure 4.2. Experimental records for crack displacement

at X2 (a/b = 0.167).



78

gage 2

gage 3

 

a. Strain-time history of the input pulse.

50mv

LH pattern

RH pattern

 

b. Oscilloscope photograph of fringe pattern signals.

Figure 4.3. Experimental records for crack displacement

at X1 (a/b = 0.167).
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between tests. The other factor is that the impacting

interface experienced a slight plastic deformation from

each impact. This caused the impacting interface to

deviate from smooth surfaces, thereby causing variations

in the pulse amplitude and rise-time.

A critical examination of the time at which the

strain pulses of gage stations two and three reach their

maximum for a given test suggests a slight curvature in

the wave front. It is interesting to note that similar

wave front curvatures are present to some degree in all

the full field dynamic photoelastic fringe patterns which

have been Obtained for longitudinal impact of rectangular

bars. Curvatures of the leading edges are Observed in the

pictures Of Durelli, et al. [69], [70] and Feder et a1.

[71].

Figures 4.1b, 4.2b, and 4.3b are photographs of

recorded Signals for fringe pattern at test stations x3,

x2, and x1 respectively. For each photograph the upper

trace records the fringe pattern of the left-hand-side

pattern (pattern furthest from the impact interface), and

the lower trace records the right-hand-side pattern.

The initial displacement of the indentations is

caused by the leading edge of the wave front which travels

at the elastic wave velocity in the Specimen. On the right-

hand signal, the fringe motion due to relative displace-

ment is Opposite that due to rigid body motion, whereas
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for the left-hand one they add together. This results in

a delay in time for the right-hand signal to move from its

zero position, but the left-hand signal moves as soon as

small displacement signals arrives.

The starting time for the strain pulse is taken

to be the first deviation from the zero level Of the upward-

going signal at station two, i.e. t0 in Figures 4.1a,

4.2a, and 4.3a. The Small disturbances before tO are

caused by imperfections Of the impacting faces; the load—

ing mechanism doesn't generate a perfect ramp, but gen-

erates a precursor pulse and a main pulse. Station two

is one inch ahead of the crack; therefore, the starting

time for fringe motion measurements is 5 microseconds

later, i.e. tl in Figures 4.1b, 4.2b, and 4.3b.

Ideally, the output Signals from the photo-

multiplier tube would be sine waves about an unchanging

zero position. This does not occur because Of the degrada-

tion of the fringe pattern due to reflections from

irregular crack surfaces. The result is a pattern with

streaks running through it.

The initial displacement of crack surfaces is

small, but it increases as the wave front peak begins to

arrive, as indicated by the increase in the fringe fre-

quency. As the frequency increases, the amplitude de-

creases because of the limited frequency response of the

system. This is of course, of no consequence to displace-

ment measurement as long as the fringe peak can be
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distinguished. The amplitude may also change as the

indentations move within the incident laser beam.

The two abrupt changes Of fringe signals in each

record are due to reversals of displacement. There can

be a certain ambiguity in the interpretation of this

displacement interferometer data because, from the fringe

record alone, there is no way Of knowing whether or not an

abrupt change in fringe signals is due to a single reversal

or a double reversal. However, in practice, it is nearly

always possible from the boundary conditions of the experi-

ment to say with confidence how many displacement reversals,

if any, there will be in the data, and at about what time

they should occur.

The first abrupt change in the fringe Signals takes

place at about 15 microseconds from the first deviation

from zero Of the fringe patterns (t2 in Figures 4.1b, 4.2b,

and 4.3b) while the second takes place at about 24 micro-

seconds. Based on specimen boundary conditions 12.5 micro-

seconds from tl correspond to the time it takes for the

scattered waves to travel from the crack tip to the nearest

boundary and back to the tip while 20 microseconds corres-

pond tO the arrival time Of the reflection from the free

end of the Specimen. This would then suggest that the

abrupt changes in the fringe signals that take place at

15 microseconds from t2 are due to a double reversal.
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4.2 GENERAL CRACK BEHAVIOR

The results of typical displacement measurements

are given in Figures 4.4, 4.5, and 4.6 which were cal-

culated from Figures 4.1b, 4.2b, and 4.3b respectively.

Two time scales are plotted here to Show the effect of the

precursor pulse and the main pulse.

The oscillations in displacement-time curves may

be attributed to scattering phenomena from the crack tips

and the boundary surfaces. Both effects have been con-

sidered in the literature. Sih, Embley and Ravera [17],

who considered the problem of the diffraction of stress

waves by a crack in an infinite medium, established that

a damped oscillation should appear in the Rl(t) -vs- t

curve. This is, Of course also true for a displacement-

time curve. Chen [19] numerically analyzed the problem

Of a central crack in a finite bar and recognized the

oscillations in the E1(t) -vs- t curve as being caused

by the cancellation and reinforcement Of the incident

waves by various scattered waves. Furthermore, Chen in-

troduced the time marks I, R, P and S (used in Figures

4.4, 4.5, and 4.6) to identify the oscillations in the

kl(t) -vs- t curve. The symbols I, R, P, and 8 thus,

denote the time-of-arrival at the crack tip Of the

longitudinal wave (I) and the subsequent Rayleigh wave

(R) from the other tip and the nearest boundary reflec-

tions of pressure (P) and shear (S) waves respectively.
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Subscripts l or 2 on these symbols indicate association

with the first or second arrival of the longitudinal wave.

As can be noted from Figures 4.4, 4.5, and 4.6

the results Obtained here have the same general behavior

as the kl(t) -vs- t or displacement-time curve Of

Reference [19]. Note that no experimental evidence exists

for the high frequency oscillation that might be caused

by the plate thickness, perhaps because of the length of

the recording time.

Equation (3.30) and the crack tip displacement

results were used to compute the mode I dynamic stress in-

tensity factor, kl(t), for various values of times after

the arrival of the wave front at the crack. The normalized

mode I dynamic stress intensity factor, R1(t) =

k1(t)/°max(fla)% is plotted against time in Figure 4.7.

AS might naturally be expected the qualitative character-

istics of the curve are similar to those of the crack dis-

placements. Thus the time marks I, R, P and 8 may be

used again to identify the oscillations in the kl(t) -vs-

t curve as being caused by the cancellation and reinforce-

ment of the incident waves by various scattered waves.

The experimental result shows a kl(t) dynamic overshoot

of 170% in contrast to numerical results Of about 175% of

Reference [19] which consider a Heaviside step loading of

a crack in a steel bar with a/b ratio of 0.24 and Poisson's

ratio of 0.3. The normalized static stress intensity

factor, kl' which is plotted in Figure 4.7 for comparison
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purposes, is computed using the formula in Reference [68]

k

R = —-—l——-= F(a/b)

1 0(fla)

(1 — 0.025 (a/b)2 + 0.06 (a/b)4] /Sec %%W
2

II

where,

a - half crack length

b - half the width of the specimen

AS mentioned earlier, Thau and Lu [16] have shown

that the mode I dynamic stress intensity factor for a

Heaviside step loading of a finite crack in an infinite

solid is 30% greater than the analogous static value. They

also establish that this phenomena is due to the scattered

Rayleigh waves. During the time period when the scattered

waves from the boundary surfaces have not arrived, the

initial response of a finite crack with neighboring

boundaries should be identical to the response of a finite

crack in an infinite plate subjected to an identical load-

ing. Thus, if the specimen is such that the nearest

boundary to the crack tip is sufficiently larger than the

crack length the initial peak of the curve would represent

the maximum response of a crack in an infinite plate.

The experimental results give a dynamic overshoot of

kl(t) of 27% in contrast to 35% obtained by Chen [19] for

a Heaviside step loading of a bar having properties equi-

valent to that Of steel.
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Figure 4.8 shows the El(t) -vs- t curve for a

Specimen with dimensions 2a = 1.25 cm, 2b = 2.34 cm and

experimental data shown in Figure 3.3.

The crack profile for several time steps is shown

in Figure 4.9. In this figure the normalized vertical

displacement, n/fib, is plotted vs. the normalized distance,

x/a, from the crack tip. The normalized static displace-

ment at the center Of the crack is computed using the

formula in Reference [72] which is

60 = g2 {—0.071 — 0.535 (a/b) + 0.169 (a/b)2 +

0.020 (a/b)3 - 1.071 ln (1 - a/b)]_1__

(a/b)

where,

n = Uy (t) /Omax.

no Uy(t)/Omax. at the center of the crack

The determination of k1 as a function of crack

length for a particular geometry is referred to as k-calibra-

tion. In recent years many geometries have been thoroughly

studied by experimental, analytical and numerical means,

for elastostatic loading conditions. The present in—

vestigation can give an estimate Of the trend of the

k-calibration for the elastodynamic loading condition,

although such an estimate strictly applies only for

identical loading. The experimental data for

k .
kl(t)max/omax(na) for two geometries as compared to
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theoretical k-calibration for the elastostatic case is

shown in Figure 4.10. The comparatively long rise time

for the narrow specimen is likely to influence the

magnitude of kl(t)max.°

4.3 CORRELATION WITH ANALYSIS

The normalized mode I stress intensity factor,

kl(t), for various times after the arrival Of the wave

front at the crack, was determined using Equation 3.21.

It should be noted that in Equation 3.21, f(0) = 0, there-

fore

t
~ _ 3f(t') ~ _ . .
kl(t) _ Jo at' skl(t t )dt

In evaluating the foregoing integral, the experi-

mental input pulse at location 2 was approximated by a

ramp function time-varying force with a rise-time

tR = 4.2 microseconds as shown in Figure 4.11. The step

response, Skl(t)' in Reference [16] was approximated by a

ninth-order polynomial (least square fit). Also used in

the evaluation was Cp = 200,000 in./sec., which was ob-

tained from the experiment. The appropriate integration

was then carried out by a simple numerical technique.

The result of the comparison is Shown in Figure

4.12. The experimental result here represents the re-

sponse during the time interval before the arrival of the

reflected scattered waves from the nearest boundary.
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F(t)

 

 

 

  
Time .(microseconds)

Figure 4.11. Input pulse at location 2; experi-

mental points and ramp function

approximation.
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[Thau & Lu] o'

   
Time (microseconds)

Figure 4.12. Comparison Of analytical and experimental

results for the dimensionless mode I stress

intensity factor.



96

Also note that the theoretical result is shifted to omit

the premature experimental response due to disturbance

leading the pulse front.

As can be seen from Figure 4.12 the analytical

result based on the work of Thau and Lu appear to do a

good job Of predicting the quantitative behavior of the

experimental result. The deviations may be attributed to

a number of reasons:

1. The ramp function pulse used in the analytical computa-

tion is an approximation Of the actual pulse.

2. The states of stress and deformation are not truly

two dimensional as assumed in the analytical com-

putations.

3. The existence of a slight curvature to the wave front

might add to the discrepancy.

4. Errors may have arisen in the digitizing and curve-

fitting process.

4.4 COMPARISON WITH FINITE ELEMENT

King et a1. [20], have reported finite element

analyses Of similar elastodynamic crack problems. Their

analysis was carried out using a singularity element

capable of mixed mode deformation and by simulating the

incident wave by applying a step function time varying

finite element equivalent of uniform stress at one end

of the finite element model.
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Professors King, Anderson, and Shreeves of Georgia

Tech provided an analysis Of this experiment. The finite

element model they used is depicted in Figure 4.13. The

model is a uniform grid model composed of 127 nodes, 200

ramp function time varying strain triangles, and one

eight-node crack tip singularity-element. Constraints

against horizontal displacement on the left edge Of the

model are dictated by symmetry of the problem with respect

to a vertical axis through the center Of the crack. A

plane wave is induced by uniform loading on the upper

edge of the model. In an effort to represent the behavior

of the experimental model, the dimensions and the material

properties for the finite element model were selected to

correspond to that of the experimental model. The experi—

mental pulse was approximated by a ramp function time

varying force with a rise-time of five microseconds. The

details of the finite element analysis may be found in

Reference [20].

Figures 4.14 and 4.15 Show comparisons of the finite

element approximation with experimental results for the

normalized mode I stress intensity factor and the nor-

malized crack displacement at the center respectively. The

finite element approximation and the experimental results

show fairly good agreement for the short time results. It

must be noted here that the short time experimental results

have been corrected for the influence of the disturbance

leading the wave front.
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Figure 4.13. Finite element model.
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Although the qualitative behavior of the long time

results seem to be similar, as evidenced by the curve

shapes in Figures 4.14 and 4.15, the experimental results

are not strictly comparable. The long—time experimental

response is the sum effect Of the "ramp" forcing function

and the reflection from the lateral boundaries of the

diffracted waves resulting from the impingement on the

crack Of the disturbance leading the wave front. This

somewhat exaggerates the quantitative values of the long

time experimental results. Also causing quantitative

deviations may be the following reasons:

1. The ramp function time varying force used in the

numerical computations is an approximation of the

actual pulse. .

2. The existence Of a slight curvature to the wave front

might add to the discrepancy.

Even though the quantitative values Of the experi-

mental curves may be somewhat exaggerated for reasons

mentioned above, the finite element approximations are

felt to under estimate the maximum stress intensity factor.



CHAPTER V

SUMMARY AND CONCLUSIONS

An apparatus that generates a plane tensile pulse

in a plate with finite dimensions was developed. The

pulse had an approximate shape Of a ramp function with

a rise—time of about five micro-seconds and a undisturbed

flat top of about 30 micro-seconds. This loading apparatus

was used in conjunction with the interferometric displace-

ment gage (IDG) technique to study the dynamic response

Of a central crack in a finite plate subjected to

longitudinal waves. The experiments were conducted for

two different widths Of the specimens. Three different

sites along the faces Of the crack were used to measure

the displacements. Displacement-time curves were plotted

for each site and points were taken from these curves to

plot the crack profile for various time steps. Further-

more, the displacement-time result for the crack tip was

used to compute the mode I dynamic stress intensity factor,

k1(t).

The tensile impact apparatus generated a main

pulse, which approximates a ramp function, and a precursor

pulse. The precursor pulse may have been caused by imper-

fections of the impacting interfaces. The amplitude and

102
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rise-time Of the main pulse were fairly repeatable. Con-

sidering the difficulty of constructing such an apparatus,

the financial and facility constraints at the time, the

loading mechanism has proven to be satisfactory for the

present investigation. Furthermore, the new apparatus

has advantages over other techniques due to its simplicity,

versatility, safety and low cost.

The interferometric displacement gage technique

was successfully used in measuring dynamic crack displace-

ments. Besides being easy to use the technique also proved

to have the following definite advantages: satisfactory

resolution, ease of specimen preparation and convenience

of data recording.

The displacement-time and the normalized mode I

dynamic stress intensity factor, Rl(t), curves were found

to oscillate, a phenomena attributed to the cancellation

and reinforcement of the incident waves by various

scattered waves. It was also found that the dynamic over-

shoot Of El(t) is 170% in contrast to Chen's numerical

solution of 175% which corresponds to a Heaviside step

function loading of a bar with Poisson's ratio of 0.3 and

a/b = 0.24.

The analytical computations of k1(t), were carried

out by employing the elastodynamic counterpart of the

theory Of generalized plane stress and the principle of

superposition in time. The experimental results show good
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agreement with analytical computations based on the results

of Thau and Lu.

The finite element solutions provided by King

et a1. [73] compare favorably with the Short time experi-

mental results, i.e., with results for a time regime

corresponding to the time it takes for the first scattered

longitudinal wave to travel from a crack tip to the nearest

boundary and back. The comparison Of the long time results

is not good. The descrepancy may be attributed to:

 the imperfect experimental wave front the influence of

which could not be isolated for this time regime, and some

ambiguity in fringe interpretation.

The dynamic stress intensity factor, in general,

depends on the shape of the pulse, the wave length Of the

pulse, the crack length, the Specimen geometry, and the

Poisson's ratio Of the material. In the present study

emphasis was put on a particular ramp function type Of

pulse and a particular rectangular geometry of Specimen.

The development of an experimental technique for generating

pulses Of varying pulse shapes appears to be very desirable.

Studies Of the diffraction Of a plane pulse by multiple

normal cracks, by a single Oblique crack, or by a combina-

tion of oblique and normal cracks appear to be a fruitful

area for future investigators.



LIST OF REFERENCES

 



10.

LIST OF REFERENCES

Griffith, A.A., "The Phenomena of Rupture and Flow

in Solids", Phil. Trans. Roy. Soc. Lond. A221,

1920, pp. 163-194.

 

Erdogan, F., "Crack Propagation Theories", Fracture,

Vol. 2, H. Liebowitz (ed.), Academic Press, New

York, 1968, pp. 498-586.

Achenbach, J.D., "Wave Propagation, Elastodynamic

Stress Singularities, and Fracture", Theoretical and

Applied Mechanics, (W.T. Koiter, ed.) North Holland,

Amsterdam, 1976, p. 71.

 

 

Achenbach, J.D., "Dynamic Effects in Brittle

Fracture", Mechanics Today, (5. Nemat-Nasser, ed.),

Pergamon, New York, 1972, p. l.

 

Sih, G.C., "Some Elastodynamic Problems Of Cracks",

Int. J. Fracture Mech., 4, 1968, pp. 51-68.
 

Freund, L.B., "The Analysis of Elastodynamic Crack

Tip Stress Fields", Mechanics Today, (S. Nemat-

Nasser, ed.), Pergamon, New York.

 

Sih, G.C., and Loeber, J.F., "Wave Propagation in

an Elastic Solid with a Line of Discontinuity or

Finite Crack", Quarterly of Applied Mathematics,

Vol. 27, 1969, pp. 193-213.

 

de Hoop, A.G., Representation Theorems for the Dis-

placement in an Elastic Solid and Their Application

to Elastodynamic Diffraction Theory, Doctoral

Dissertation, Techniche Hoceshcool, Delft, 1958.

Nuismer, R.J., Jr., and Achenbach, J.P., "Dynamically

Induced Fracture", J. Mech. Phys. Solids, Vol. 20,

1972, pp. 203-222.

 

Maue, A.W., "Die Entspannungswelle bie plOtzlichem

Eingeschnitt eines gespannten elastichen KOrpers",

z. angew. Math. Mech., 34, 1954, pp. 1-12.
 

105



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

106

Ang, D.D., "Some Radiation Problems in Elasto-

dynamics", Dissertation, Calif. Inst. Tech.,

Pasadena, Calif., 1958.

Baker, B.R., "Dynamic Stresses Created by a Moving

Crack", J. Appl. Mech., 29, 1962, pp. 449-458.
 

Broberg, K.B., "The Propagation Of a Brittle Crack",

Arkiv for Fysik, 18, 1960, pp. 159-192.
 

Freund, L.B., "Crack Propagation in an Elastic

Solid Subjected to General Loading -- I. Constant

Rate Of Extension", J. Mech. Phys. Solids, VOl. 20,

1972, pp. 129-140.

 

Papadopoulos, M., "Diffusion of Plane Elastic Waves

by a Crack, with Application to a Problem of Brittle

Fracture", J. Australian Math. Soc., 3, 1963,

pp. 325-339.

 

Thau, S.A., and Lu, T.H., "Transient Stress In-

tensity Factors for a Finite Crack in an Elastic

Solid Caused by a Dilatational Wave", Int. J. Solids

Structures, 7, 1971, p. 731.

 

 

Sih, G.C., Embley, G.T., and Ravera, R.S., "Impact

Response of a Finite Crack in Plane Extension",

Int. J. Solids Structures, 8, 1972, pp. 977-993.
 

Chen, E.P., and Sih, G.C., "Transient Response Of

Cracks to Impact Loads", Mechanics Of Fracture 4,

Elastodynamic Crack Problems, G.C. Sih (ed.),

Noordhoff, Leydon, 1977, pp. 1-57.

 

Chen, Y.M., "Numerical Computation of Dynamic Stress

Intensity Factors by a Lagrangian Finite-Difference

Method (The Hemp Code)", Eng. Fracture Mech., 7,

1975, p. 653.

 

Anderson, J.M., Aberson, J.A., and King, W.W.,

"Finite Element Analysis Of Cracked Structures sub-

jected to Shock Loads", Computational Fracture

Mechanics, E.F. Rybicki, ed., ASME, New York, 1975.

 

 

Glazik, J.L., Jr., Numerical Analysis of Elasto-

dynamic Near-Tip Stress Fields for Stationary and

Propagating Cracks, Ph.D. Dissertation, Northwestern

University, Evanston, Ill., 1976.

 

 

 



22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

107

Aoki, 8., Kishimoto, K., Kondo, H., and Sakata, M.,

"Elastodynamic Analysis Of Crack by Finite Element

Method Using Singular Element," Int. Journ. of

Fracture, 14, 1978, pp. 59-68.

 

Hopkinson, J., "On the Rupture Of Iron Wire by a

Blow", Original Papers by the Late John HOpkinson

II, B. Hopkinson (ed.), Cambridge University Press,

Cambridge, 1901, pp. 316-320.

 

Hopkinson, B., "The Effects Of the Detonation of

Guncotton”, Scientific Papers, Cambridge Univ.

Press, Cambrdige, 1921.

 

Rinehart, J.S., and Pearson, J., "Behavior Of Metals

under Impulsive Loads", Amer. Soc. for Metals, 1954.

Kolsky, H., and Rader, D., "Stress Waves and

Fracture", Fracture, Vol. 1, H. Liebwitz (ed.),

Academic Press, New York, 1969, pp. 553-569.

Roberts, D.K., and Wells, A.A., "The Velocity of

Brittle Fracture", Engineeripg, 1954, pp. 820-822.
 

Schardin, H., "Velocity Effects in Fracture",

Fracture, B.L. Averbach, D.K. Felbeck, G.T. Hahn,

and D.A. Thomas (ed.), John Wiley & Sons, New York,

1959.

Clark, A.B.J., and Irwin, G.R., "Crack Propagation

Behaviors", Exp. Mech., 6, 1966, pp. 321-330.
 

Kolsky, H., "The Stress Pulses Propagated as a

Result of the Rapid Growth of Brittle Fracture",

Eng} Fracture Mech., 5, 1973, pp. 513-522.
 

Wells, A.A., and Post, D., "The Dynamic Stress

Distribution Surrounding a Running Crack -- a Photo-

elastic Analysis", Proc. SESA, 16, 1958, pp. 69-92.
 

Pratt, P.L., and Stock, T.A.C., "The Distribution of

Strain about a Runnign Crack", Proc. Roy; Soc. Lond.,

A285, 1964, pp. 73-82.

 

Kobayashi, A.S., Bradley, W.B., and Selby, R.A.,

"Transient Analysis in a Fracturing Epoxy Plate with

a Central Crack", Proc. Int. Conf. on Fracture,

Sendai, Japan, 1965.

Bradley, W.B., and Kobayashi, A.S., "An Investigation

of Propagating Cracks by Dynamic Photoelasticity",

Exp. Mech., 10, 1970, pp. 106-113.
 



108

Sommer, E., and Soltesz, U., "Crack-Opening-Dis-

placement Measurements Of a Dynamically Loaded Crack",

Eng. Fracture Mech., 2, 1971, pp. 235-241.
 

Smith, G.C., and Knauss, W.G., "Experiments on

Critical Stress Intensity Factors Resulting from

Stress Wave Loading", Mech. Res. Comm., 2, 1975,

pp. 187-192.

 

Costin, L.S., Duffy, J., and Freund, L.B., "Fracture

Initiation in Metals Under Stress Wave Loading Con-

ditions", Fast Fracture and Crack Arrest, ASTM STP627,

G.T. Hahn and M.F. Kanninen (eds.), Amer. Soc. Test.

Mater., 1977, pp. 301-318.

 

Theocaris, P.S., and Katsmanis, F., "Response Of

Cracks to Impact by Caustics", Eng. Fracture Mech.,

10, 1978. Pp. 197-210.

 

Mason, W., "The Yield of Steel Wire Under Stresses

of Very Small Duration", Proc. Instn. Mech. Eng.,

Lond., Vol. 128, 1934, p. 409.

 

Ginns, D.W., "The Mechanical Properties Of Some

Metals and Alloys Broken at Ultra High Speeds",

J. Inst. Met., Vol. 61, 1937, p. 61.
 

Brown, A.F.C., and Vincent, N.D.G., "The Relation

between Stress and Strain in the Tensile Impact

Test", Proc. Instn. Mech. Epgrs. Lond., Vol. 145,

1941, p. 126.

 

Clark, D.S., "The Influence of Impact Velocity on

the Tensile Characteristics Of Some Aircraft Metals

and Alloys", N.A.C.A. Technical Note NO. 868, 1942.

Mann, H.C., "High-Velocity Tension -- Impact Tests",

Proc. Amer. Soc. Test. Mater., Vol. 36, Part 2,

1936, p. 85.

 

Nadai, A. and Manjoine, M.J., "High-Speed Tension

Tests at Elevated Temperatures", J. Appl. Mech.,

Vol. 8, 1941, p. A-77.

 

Clark, D.S. and Wood, D.S., "The Time Delay for the

Initiation of Plastic Deformation at Rapidly Applied

Constant Stress", Proc. Amer. Soc. Test. Mater., Vol.

49, 1949, p. 717.

 

Austin, A.L. and Steidel, R.F., Jr., "A Method for

Determining the Tensile Properties of Metals at High

Rates of Strain", Proc. Soc. Exp. Stress Anal., Vol.

17, 1959, PP. 99-114.

 



47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

109

Hunt, D. Le M., "Very High Speed Yield of Mild Steel

in Tension", N.C.R.E. Report No. R427A, 1961.

Harding, J., Wood, E.O., and Campbell, J.D.,

"Tensile Testing of Materials at Impact Rates of

Strain", J. Mech. Engr. Sci., Vol. 2, NO. 2, 1960,

pp. 88-96.

 

Harding, J., "Tensile Impact Testing by a Magnetic

Loading Technique", J. Mech. Engr. Sci., Vol. 7,

NO. 2, 1965, pp. 163-176.

 

Jenkins, F.A., and White, H.E., "Fundamentals Of

Optics", McGraw-Hill, New York, 1957.

 

Sharpe, W.N., Jr., "Interferometric Surface Strain

Measurement", Int. J. of Nondestructive Test., Vol.

3, 1971, pp. 56-76.

 

Sharpe, W.N., Jr., "Dynamic Strain Measurement with

the Interferometric Strain Gage", Exp. Mech., Vol.

10, 1970, pp. 89-92.

 

Paris, P.C., and Sih, G.C., "Stress Analysis Of

Cracks", Fracture Toughness Testing and Its Applica-

tions, ASTE STP381, Amer. Soc. Test. Mater., 1965,

pp. 30-81.

 

Adams, N.J.I., "Fatigue Crack Closure at Positive

Stresses", Eng. Fracture Mech., Vol. 4, 1971, pp.

593-595. .

 

Elber, W., "The Significance of Fatigue Crack

Closure", Damage Tolerance in Aircraft Structures,

ASTM STP 486.

 

Dudderar, T.D., and Gorman, H.J., "The Determination

of Mode I Stress-Intensity Factors by Holographic

Interferometry", Exp: Mech., Vol. 13, NO. 4, 1973,

pp. 145-149.

 

Sommer, E., "An Optical Method for Determining the

Crack-Tip Stress Intensity Factor", Eng. Fracture

Mech., Vol. 1, 1970, pp. 705-718.

 

Crosely, P.B., Mostovoy, S., and Ripling, E.J., "An

Optical-Interference Method for Experimental Stress

Analysis of Cracked Structures", Eng. Fracture Mech.,

Vol. 3, 1971, pp. 421-433.

 



59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

110

Evans, W.T., and Luxmore, A., "Measurement of In-Plane

Displacements Around Crack Tips by a Laser Speckle

Method", Eng. Fracture Mech., Vol. 6, 1974, pp. 735-

743.

 

Sharpe, W.N., Jr., and Grandt, A.F., Jr., "A Laser

Interferometric Technique for Crack Surface Displace-

ment Measurements", Proc. 20th Int. Instr. Symp.

Instr. Soc. Amer., Albuquerque, N.M., 1974.

Sharpe, W.H., Jr., and Grandt, A.F., Jr., "A Pre-

liminary Study of Fatigue Crack Retardation Using

Laser Interferometry to Measure Crack Surface Dis- 5

placements", ASTM STP 601, Amer. Soc. Test. Mater., :

1976, pp. 302-320.

 Macha, D.E., Sharpe, W.N., Jr., and Grandt, A.F., Jr., L

"A Laser Interferometric Method for Experimental _

Stress Intensity Factor Calibration", ASTM STP 601, V

Amer. Soc. Test. Mater., 1976, pp. 490-505.

Sharpe, W.N., Jr., "A New Biaxial Strain Gage",

Review f ien ' ' en 3 Vol. 41, NO. 10,

1970, pp. 1440-1443.

Altiero, N.J., and Sharpe, W.N., Jr., "Measurements

Of Mixed-Mode Crack Surface Displacements and Com-

parison with Theory", Final Report on NASA grant

NSC-3101, 1978.

Kobayashi, A.S., "Experimental Techniques in Fracture

Mechanics", Iowa State Univ. Press, Ames, Iowa, 1973.

 

 

Ranganath, S., "An Improved Method of Triggering

Oscilloscopes for Dynamic-strain Measurements",

Exp. Mech., Vol. 13, 1973, pp. 397-400.

Davies, R.M., "A Critical Study Of the Hopkinson

Pressure Bar", Phill Trans. Roy. Soc._§ond., Ser. A,

Vol. 240, 1948, pp. 375-457.

Mindlin, R.D., "An Introduction to the Mathematical

Theory of Vibrations of Elastic Plates", U.S. Army

Signal Corps Eng. Laboratory, Fort Manmouth, N.J.,

1955.

Dally, J.W., Riley, W.F., and Durelli, A.J., "A

Photoelastic Approach to Transient Stress Problems

Employing Low-Modulus Materials", £3 Appl. Mech.,

Vol. 26, Trans. ASME, Vol. 81, Series E, 1959,

pp. 613-620.



70.

71.

72.

73.

111

Durelli, A.J., and Riley, W.F., "Research Studies of

Stress Waves in Earth and Model Earth Media", AFSWC

Tech. Report 60-4, Contract AF 29(601)ll67, Project

1080, Task 10801, Armour Research Foundation, 1959,

pp. 96-116.

Feder, J.C., Gibbons, R.A., Gilbert, J.T., and

Offenbacher, B.L., "The Study Of the Propagation Of

Stress Waves by Photoelasticity", Proc. Soc. Exp.

_§press Anal., 14, 1956, pp. 109-117.

Tada, H., Paris, P., and Irwin, G., "The Stress

Analysis of Cracks Handbook," Del Research Corpora-

tion, Hellertown, Pa., 1973.

King, W.W., Anderson, J.M., and Shreeves, personal

communication.

 



803

(twill)
93 031431

 


