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SHASHIKALA B. SUKHATME ABSTRACT

This thesis consists of two parts in which two different problems
are treated. Part | deals with some nonparametric tests for location
and scale parameters in 8 mixed mode! of discrete and continuous varia-
bles. In Part Il we consider asymptotic theory of modified Cramér-

Smi rnov test statistics in parametric case.
The following problem is studied in Sections 1 - 6 which constitute

Part 1. Let 2, , ..., 2, with Z; = (x,, Y') be independent observa-

N
tions from a bivariable population. Assume that the random variable

X takes only two values | and O with probabilities p and 1 - p
respectively. Let P(Y < y|Xa j) = Fj(y) , J=0, 1. Weconsider
the problem of testing the hypothesis H: l-‘l - Fo against the alterna-
tive A: F, ¢ Fo where F, and F, are assumed to have the same
functional form except that they differ elther in the location or the
scale parameter. Two sample median test and Wilcoxon test have been
considered for testing the differences in location while two sample
rank test and run test are studied for the differences in scale. The
problem has also been generalized to the case when the rendom variable
X has a multinomial distribution. In the case when p is unknown, the
test statistics are modified by replacing p by Its usual estimator
and we investigated whether the tests based on the modified statistics
are asymptotically distribution-free.

In Part Il consisting of Sections 7 - 10 , we consider the follow-

ing problem. Let x', ceey xn be n Independent observations with a
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continuous distribution function G(x) . For testing the hypothesis

H: G(x) = F(x, 8) where the functional form of F Is known, but the
value of © € I, an open interval in R! s unknown, Darling modified
Cramér-Smi rnov uﬁ test by replacing © by Iits estimate 3; obtalned
from the sample. He obtained the asymptotic distribution of the modi-
fied test statistic under the hypothesis and studied its properties.

in this part we extend Darling's results to the case when €@ = (9', 9,)
is a point belonging to an open interval in Rz . We obtain the asymp-
totic distribution of the modified Cramér-Smirnov test statistic under
the hypothesis. The limiting distribution is found to depend on the
properties of the estimators of (e,, 02) . Two different cases are
considered according as the estimators are superefficient or reguler,
jointly efficlent in the sense defined by Cramér. As the characteristic
function of the limiting distribution is the Fredholm determinant of a
symmetric, bounded, positive definite kernel of a particular form,
methods of finding the Fredholm determinants of such kernels are given.
Lastly we study the k-sample Cramer-Smirnov test in parametric case

for testing the hypothesis of goodness of fit and investigate its

asymptotic distribution under the hypothesis.
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Part |

NONPARAMETRIC TESTS FOR LOCATION AND
SCALE PARAMETERS IN A MIXED MODEL OF DISCRETE AND CONTINUOUS VARIABLES

1. Introduction

Let 2, ..., Z  where Z = (x', Y') be N independent observations
from a bivariate distribution. We assume that the random variable X
takes only two values, | and O with P(X= 1) =p and P(X = 0) =
| -p=gq. Let the conditional distribution of Y given X= j (J = 0, 1),
be P(Y<y | Xmj)m Fj(y) . The problem considered is that of testing
the hypothesis H: F, = F, against the alternative A: F, f Fo *

We divide the observations Z', ceey Z" into two groups aécord!ng
83 the observed value of X is 1 or 0. Let U, Uy, ..., U, (n > 0)

and v,, coey denote those values of Y for which the corresponding

vN-n
X is observed tobe | and O , respectively. Since U|, coey un and
\l', Vz, ceny V“_“ are independent, the problem of testing the hyp&thcsis
H is equivalent to the problem of testing the hypothesis that the two
independent samples come from the same population. However, the problem
differs from the usual two sample problems in that, the number of observa-
tions in each of the two samples is a random variable.

in what follows, we assume that l-'l and Fo are absolutely con-
tinuous, having density functions F; and F(', , respectively. We
further assume that F‘ and Fo have the same functional form except
that they differ either in the location or in the scale parameter.

Several two sample nonparametric tests have been proposed for test-

ing the differences in location, especially those by Wilcoxon (1],
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Mood (2], Wald and Wolfowitz [3], and Lehmann [4]. More recently some
nonparametric tests have been proposed for testing differences in dis-
persion by Mood [5], Sukhatme [6, 7], and Kamat (8].

in Section 2 we consider the median test and in Section 3, the
two sample Wilcoxon test, with reference to the problem considered here.
in Section 4 we generalize the median test to a c-sample problem, In
Section 5 we consider Mood's rank test for fostlng differences in dis-
persion, and Section 6 |s devoted to the run test. For convenience of
exposition, the cases where p [s known or unknown are treated sepa-
rately. In the former, both the exact and asymptotic properties are
investigated. In the latter case, the various test statistics are mod-
ified by replacing p by Its usual estimstor ?: » and we investigate
whether the test based on the modified statistics is asymptotically

distribution-free.

2. Two Sample Median Test ‘
Without any loss of generality we assume that the sample size M

is odd, say N= 2k + 1. Let W denote the median of the combined
sample of U;'s and vj's , and let m be the number of U"s which

are less than W . The hypothesis H: F, = F, Is rejected, If m s

0
either too large or too small. First consider the case when the distri-
bution of X is known, I.e. when p Is known. In Section 2.1, the

exact distribution of m is derived and In Section 2.2, its limiting dis- |
tribution both under the liypothosls and the alternative is obtained. The

consistency of the test is proved In Section 2.3, and its asymptotic ef-

ficlency



with respect to the corresponding parametric test based on the correla-
tion coefficlent is determined in Section 2.4.. The case when p is not

known Is dealt with in Section 2.5, where it Is shown that the test

based on the statistic (m - kp) IJPI:;Q?‘— is asymptotically distribution-

free.

2.1 Joint send Margina] Distributions of m and W .
Henceforth f(-) denotes the probability density function of the
random variables written in the parentheses. Ve first prove the fol low-

ing lemma which glves joint distribution of m and V¥ .

Lesma 2.1.1. The joint distribution of m and W is

(2 + 1)¢ [p Fy()]™oFo ()]

(Z.I.I) f(-, ';) = Y (k..).f PY

[1-p F (@ - q Fo®]1" [p Fj(3) + q FAGA] ,
m=0,1, 2, .c., k «

Proof. Observing that n is a binomial random variable b(N, p) , we

have

(2.1.2) f(n, m, W) = f(m, W|n) f(n) ,
where

(2.1.3)  to) = () 8" Q"

and from Mood [2],



(20‘0") f(., ';'“) = 'n m—\ &-Yn N-,«,-&,,m
ml [ p(w)] [:-—F’N/_, - (N-m] [F ()] [‘(-g(m] e
ml (n-m- l)l (k”m)f(l\/-ﬂ"'b+‘nt}l

N-w- e
—m n-m
L R D-Rend | (Nl LR J ko) el
) {m-mI] [k-)) ( N-m-ktm-1))

To obtain f(m, W) , sum (2.1.2) over all admissible values of n , re-
calling that N= 2k + |,
" k-m
I CpRea] [qRe]
"F(Al'x“): '/-) = ‘ ! ° = X

ml (k-m)) ki

n-m- u n-RIM
7\ m p, -n-k+M

JE T T S T
Z_» (n-m-1)l (N—n-—l«-r‘m)'

hz=m+i
_ N-n-k+m-)
,1{ P-™M N-7- b\*m - ,fv\" /o
LS W Ty T e o Dol g
o (n-m) (N-m- ~kam=1)]

. wetira] Losed ]

'MZ (e ml kl

[ - pF ) - aF@1 (pF} ) + aFg(] - ||
Under the hypothesis H: F, = F,, (2.1.1) reduces to,

(2.1.5)  flw, ¥ = L P ek pr@I PG

.-o’ I’ .0" ko

~)
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Yo obtain the marginal distribution f(m) integrate (2.1.5) over the
domein O <F(W) <1 :

(2.1.6)  fm) = (X) p" ™,

so that m is a binomial random variable b(k, p) . The marginal dis-
tribution f(w) is obtained by summing (2.1.5) over m :

(@ = 2 @k 1F@ @), @ <i<w .

2.2 Asymptotic Distributions
Let g denote the median of the distributionof Y , l.e. § is

the root (assumed unique) of the equation
(2.2.1) Pﬁ(@) + Q‘o(g) =1/2.

As before let m denote the number of u' 's that are less than ﬁ »
the sample median of the combined sample of 0"5 and V,'s . The folk

J
lowing theorem gives the asymptotic joint distribution of m and g .

Theorem 2.2.1. Let
s mMEE g2 ()
J NoF (%)
where § satisfies (2.2.1). Assume that in some neighbourhood of
the density function fl(x) - F"(x) (1 = 0, 1) has a continuous de-
rivative. Then the asymptotic joint distribution of (v, v) Is bi-
variate normal with zero mean vector and covariance metrix 2 = (ou)

given by



o = oie qE() 4 PLPIE®) 12k F ]
J 2RO [t 1 40]"

)

2
C.z¢6t(n) = _—
S R sy
b -ﬁ/f} ( -1 ?'- ('2)

J2bE) [bf,(é,nczf (4)%

Proof. Throughout this proof for simplicity write P‘(g) =F, and
f'(g) = f, - The joint probability density function of m and W Is
given by (2.1.1). Substitution of expressions for v and n in (2.1.1)

yields
™ k.on ™ k-
c- Nt -
£m %)= Nk o Tk *i'} F (%4 \;} :
(2.2.2) ; ﬁm,{,k'm_“)k:,[.(@ ] }_-0(3 ;?:J X
k
e 7 e 7
L "’“f(?*%)“?'(tr*m)]x

Expand F'(‘%*?f\,‘) in Taylor's series about fj

Fig+) = f}f‘ﬂ_," -77—); =01,
VN VN

¢ p)

PR L) -6 ) = 4 ?_;(Pﬁ,-rﬁfo7-o(;2vf) :



7=

Using these expansions in (2.2.2) and noting that N =2k + | , we get

~y_ § N (2k)! Kl ™ k-m
’&("’)W)'{ k!:[_?:kj i""" ol (2bF) (29F) } X

ml (k-m
-{)_i-r 32)] [_l \7___5 )J)(

!
|- ”L (bf rqf )+o( % f{kﬁ(wl)-fﬂ(‘ad )

SETATENBINS

Let S = ,{(v, w: a<v<b, c_<_quf vhere a, b, ¢, d, are
finite. Now using Stirling's formula for n! we have

VK VT

Az does not depend on 7 and due to convergence of binomial distribu-

tion to normal, uniformly in S we have

2
~ | v_) .
R e (7%

Now consider

log A; = ("Pf"l""’ "F|) log I+3'-£Fi_-—r€(7)

+ (k-upfl-v 'bf‘) lo’(l-rﬁ.fe_,a—d%i))

N f
+ kios(/—::::i(é\i-’. ) I
AN

o1

(o]



Using series expansion for log (1 + x) it is seen that for all (v,q) ¢ S

2 - A - ) o
R T g 1LE 1C’_\‘ , e 7
'o’ A3 - % | __i' " = a +4 2 .,'E -+ ) 5 +:“;.‘; “(‘ { ..?J,_ —#r \'—"-O"‘ ;
L / K B I / L o - , ) e
o ,I A

Using continuity of f, at % it follows that for all values of m and

W for which (v, ) ¢ S

N / 2o .)-j_s" y 0Ty - e
.f_://,.y“ \,-// (/\I |’_c_¢.', T /\/ 2/’t - »’.; / _’:_; . :/ )"l[uuf‘é s
N ET I 7., & = ‘ T
: o v R
l\ N
.
. ce— .
" o o + - Loy
R R T A .
:-’ P ‘; ;l “
, 2
~
Now after meking the transformation from (m, W) —> (v, ) we get
P.a<v<b,c< <d-
A
//‘.f'f P Lo ‘ f . T > . ya
! i r , 1: - ! PN ) ~ -
f‘J RV ‘-’ , ~/[~' :‘ '/f/ < ~ —+ ¢ {_r: PR - /
7 ’ - J vt i -
Tt Y = . —
/ rd
§o T ! o N N - [
’ ~ ,’b[“_,__ 4wt ,L,~"\ i T i A,
Ce— . 4 i e ’ /
v", ;“4[’ - KL N ~ -

; f(": ﬂ)‘“ﬂ ’

<L

Hence P. a<v<hb, c<qgd; —>

is the density function of the bivariate normal distribu-

\

vhere f(v, 4)
tion stated in the theorem. ||
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Remark. (It follows from the sbove theorem, that when the hypothesis
| H: F‘ -Fo is true, 04, = 0, so that v and n are asymptotically

independent. v is asymptotically 97 (0, q) and n is asymptotically
A0, 1me(4)) .

2.3 Consistency of the Test
Consider a two sided test of the hypothesis H: F, = Fo against

F| p Fo , for which the critical region is glven by

| (w-kp) / (kpa)'/2

lim
N—>® "oa ta

I(t ) is the standardized normal distribution function. Then the power

|>t - The sequence t, . Is chosen so that
»

’ mn t, satisfies 1 -§(t) =a/2, and

of the test is given by

(k|71

o Plotwa o, kb(muE)

Qe o

EEEAIER SN T A

mokbED g b kRO-2ECR) T
2[kpg )il 20EaR(y) 2ka7/5(%;5(,,<>

If F'(g)flIZ,tmmrmmdns 1,a N—>ow , and hence

the test is consistent.
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For alternatives Fl>F (F' <l-'o) we reject H If m is
too large (small), and prove in a similar menner that the test is cone

sistent If F'(g) >1/2, (rl(g) <1/2) .

2.4 Asymptotic Efficiency of the Test
Definition: Given two tests of the same size of the sams statis-

tical hypotheses, the relative efficiency of the first test with respect
to the second is given by the ratio "z"‘n , where " is the sample
size of the first test required to achieve the sams power for a given
alternative, A , as is achieved by the second test with respect to A,
when using a sample of size ny - For a sequence of alternatives
changing with n in such a way that as n —> @ the power of the cor-
responding sequences of the tests converge to some number less then |,
the rolatln‘ asymptotic efficiency of the first test with respect to the
second Is defined as the limit of the corresponding ratios n,/n, .

Let F, (y) = Fo(y - 0) , then M: Fi=F is equivalent to
H: 0= 0. For alternatives 0> 0 , we evaluate the relative asymp-
totic efficiency of the median test with respect to the corresponding
parametric test when F, and Fo are normal, with means B and Ho »
2. Then Fyy) = F () If snd-
only if k; =u, , which is squivalent to p = ¢ (X, Y) = 0, where

respectively, and a common variance ¢

Va is the correlation coefficient between X and Y , Tate [I11].
Let 0= (4 - uy)/o, then we are testing the hypothesis 0 = 0
a’olnst. 0>0. The test is based on the sample correlstion coeffi-
clent r , defined by



N — S—
) Z— - NXY

X
[;_ ‘ “_x) 2(7;—7)”]'/2'

Tate [11] proved that r

is asymptotically normally distributed with
asymptotic mesan and variance given by

(2.4.1) “e(') =- 0( 2; G:Zr) 4(1+ b9 - Bz(élvq t)
+pg 6%, 4NCi+pge)?
The critical region for this test is given by rr > t". a’ vhere
{:".,af Is such that  llm by gty end J)=t-a.
The power of the test is given by

Bye(0) = Py Y‘> Ena JZ—I- i" /“9(”)> 'elfl,’d—\/;—;/w’g()")
O (1) e

In" gz ()

Since r is asymptotically normelly distributed,

lim  AL(0) = I-T( lim e (W () )
N — e “\NMN o

VN7 ag(r)

p .
Now for a sequence of alternatives J 0“. .

where
/ - -_—
o' -a'/?if"" 8'>0 lim ‘l/:’ T (/) =1
" N ? » ". - o : / "_‘ G" -—‘,
and



N _
v = L XY - NXy

Zpil“‘t-"")??i(r;-?)‘]'/z’

Tate [11] proved that r is asymptotically normally distributed with

asymptotic mean and variance given by

2; O;QZr) 4(1+ b9 6" ez(ém 1)

4N(I+b@e")

(2.6.1)  ug(r) = o(

I+pg 6%

The critical region for this test is glven by rr > t". a’ vhere
14

[} - -
{tn',af Is such that N'-'-‘-;o ‘n',a ta and I(ta)" Qa.

The power of the test is given by

ﬂ;.“) - P‘{r> LNI“ f:l*%i Y"-—/"(B()") 7 {',:,Id‘—j'\?./w,e(y—) |
V' o) N 63 (t) °

Since r is asymptotically normally distributed,

o tyea - W ugln)
") l'_;. p'h(‘) 1 T (N' J ao(r) )

Now for a sequence of alternatives jo,'.. - where

~

/ - -
o'y, = 8' /iN' ,8°>0, lim U/ N gy (f) =1
0 { ‘ [}
N' —> - N —

and
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I
LS AR S
Therefore

.‘I.Z LK) ..(O'Q) L (’t + b'f.; ) .
(2 ) N _:> wa" L] -{ a

Now for the median test under consideration the critical region

for testing H: 6 = 0 , against the alternative 0> 0 , is given by

(m - kp)/Kpq <ty o vhere '_'_'_;o‘n,a - -té with § (- t) =a.

The power of the test is obtained from

=T
v
I
v C

———— !

\
A S P —i b = NBE(4)- kb )
- 0_} o= Rt / T /o,‘, ) ‘_M_,/_

h o <o N ‘
‘e ! - y ar ’ A 5
- ‘. / /’9 ( n )

where
/ - L . ;7 -
< b N2 S S RV E P A S
(20“.3) :-.\/rld', A ,\; ,: E; /ér B .«'/“yf" a2 - /‘(r - r.’ 4 = -~ : e ..._’ ’ -t te ‘e . /—:l_
[ /- Lt [ -~ e - r -
. 2r ‘% c, !L_‘,_ (9 ,/;_J“ 72 Pa
- o v -5
8y Theorem 2.2.1
\\
/.‘ r] ,.'.-_...:. (1\ o /g ) . . \'
lm  p(0) = Flm i LTI LR
N—>oo N O () /
" s/

( : -
For a sequence of alternatives (0, - , with 6, =8/ (N ,
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>0, lim ;%— = | . Also since fs satisfies
N —> oo 0"

ol G - 0) + oF (%) = 172,

dy . bh(%-6)

de  ph(4-62+94(%)
Hence for the sequence {0.}

Q2_
WeE (4-5IR) = Np[Ea)+ 200 (b=1) *"(%"ﬂ

so that
e MBEGYRI= kb sfe) R
N—> 0;)(%)
N
which ylelds

(2.4.4) lim B0 = 9 (- ta+afo(§)fz;§ ) .

N —> o0

The two sequences {’n} and {o,".j will be the same If N'/N =8'2/s2 .

F 2.4.2) and (2.4.4) it i the 1 B.(0) = i Bl.(0',,
rom ( ) and ( ) it is seen t"_;m,.(,,)“_;mﬂ'(.)

only if 8°'/8 = {2 fo(fx) . Hence the required efficiency Is given
by oM, 1) = 2f2(4) = 1T .

2.5 Case When p is Unknown
The theory developed so far is not applicable when p in unknown.

The usual estimate for p is 5 = n/N , and we consider the test based
on the statistic (m-kp) l~(k$&)”z . We now show that the test based



-

on this statistic is asymptotically distribution free.

Theorem 2.5.1. Under the hypothesis H: F, = F, , the statistic
(n-kp) / (kQ)'/% is asymptotically normally distributed with mesn

zero and varience 1/2 .

Proof. Since plimp = p, by an application of Slutsky’s theorem
(9, p- 255], plim (“Ipq)‘lz =] . Hence the limiting distribution of
(m - lfp)lf‘lq'v& is the sams as that of (m = kp)// kpq . Vrite

mokl - mokb _ k(F-P) _ T -T. .
Jkpq Vkpg {kpa, - =

The asymptotic joint distribution of (1", ‘l’z) is bivariate norma!
%(ot 2 ) with Z - (0"') where 0" - | » 0‘2. 02' = 022. 1/2 .
Hence the required result follows. ||

3. Two Semple Wilcoxon Test

As before, let 2, = (x,, Y') s I 1, 2 «ccy N, be N independ-
ent observations from a bivariate population, where X assumes only two
values, | and O with probabllities p and q= | - p respectively.

The test statistics may then be defined as,
N

U = L . Z_ H(z":zl)

J
N N(N”)C:’C_J:l

where

<v,,

U

1, If X'OI,RJ-O and Y

ﬂ(l,. zj) -
0, otherwise .
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If Upp Ups ooey Un denote those Y observations for which the corres-
ponding values of X are observed to be | , and V', Vz, ceey V“_n
the remsining observations on Y , then M(N-1) U, is the total nusber
of pairs (u,, VJ)‘ such that U, <vj « The hypothesis H: F, = Fo
Is rejected If ﬁ“ Is either too large or too small.

In Sections 3.1 and 3.2 we obtain the mean and variance of ﬁ' ,
and the exact sampling distribution of ﬁ" under the hypothesis. The
ssymptotic distribution of ﬁ" , both under the hypothesis and the al-
ternative, In the case when p Is known, is obtained in Section 3.3.
In Section3.h we prove consistency of the test, and in Section 3.5 find
its asymptotic efficiency. Lastly, Section 3.6 deals with the case when
p Is unknown, where it is shown that the test statistic, with p re-
placed by its estimate P , does not yield an asymptotically distribution-

free test.
3.1 Mean and Variance of ﬁ"

(3.1.1) ep(ﬁn) - 5’ u(z', zj) - r{x, =1, le- 0 and Y, <vj}

= pix =1, xj-o} P{Y <l =1, xj.o}
= 00 [F 0 eyl -
To compute the variance of ﬁ" , write ﬁ' as

N-YY o,

A 22 Py

J"I =|

1]

(3.1.2) U
N

where
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1, if u<v,
'(") v) =
0 , otherwise .

Squaring (3.1.2), and taking expected values, ws obtain the conditional

moment :
. N-n m
(3.1.3) NZ(N—I)LE—;(U,;!?] =k ZZ?‘(’
Pgzi =
N-n m N-mon
tEZ 7 HUN)H, PEL 2. 4114
Pz ¢ jkey skt

.,E Z S fCU v)/‘( r?k
/L;‘#Y’—

= nN-n) P{ U; < \ﬁwr hCﬂ*')(N'n)P{U¢4 Y‘[, ({4 \;

+'}1(N—n)(N—Y]'l) P{ ULA\? ) UL'4 Vk }
£ 3 Ca) (Won) (Wone1) P 2 V. U, < \{‘j
= m(N-»n) j;,-'q;:; -,t—w(n-l)(N’h)jEzdf‘;

7z

+ n(N-n) (W-n _1)5 [i- mldﬁ'qt M (n-1) (N—n)(N-n-/)[Sf"dfg] ‘



Since n has a binomial distribution, b(N, p) ,

(3.1.4) En(N-n) = N(N-1)pq , En(n-1) (N-n) = N(N-1) (N-2)pZq ,
En(N-n) (N-n-1) = N(N-l)(ll-l)pqz ’
En(n-1) (N-n) (N-n-1) = N(N-1) (N-2) (N-3)p%q? .

Using (3.1.3) and (3.1.4), the unconditional moment is

W00 52 = W01 2E(E, G2|] = NN-1Dpa [ 7 aF, + w(-1) (v-22pa [ Fler,
- 2
+ u(u-l)(n-z)pqz f [I-Folzdl-" + N(N-1) (N-2) (u-3)p2q2[ f F dF,

Hence

(3.1.5) a: @) = wthy [f FydF, + (N-2)p f rfdro + (N-2)q f (I-Fo)zdl-"

2
- 2pq(28-3) \/ f F.'dFo):’ .

In particular, under H: F, =F,, (3.1.1) and (3.1.5) reduce to

(3.1.6)  E(G,[H) = (pa)/2,
(3.1.7) a: (0,11 -iﬁ:'[y L"L“-ED' - ‘(%‘-.2' Pq’i‘

3.2 Distribution of 5"

Define
(3.2.1) L N(N-1) I'l“ - : number of pairs (Z', Zj) such that
. .
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T" takes values 0, 1, ..., k , where k = max n(N-n) = [Nzllt] , and

(x] denotes the largest integer < x . Let T . = denote the value
t4

of Tn when n is fixed. Clearly T“’”.n takes values O, 1, 2, ...,

n(N-n) , and

(3.2.2) P{T f} Zp{ﬂafﬂxex 5=, N-n nof X’5=0
and 'T -‘ﬁ"f

= z (PP AT et [

Mann and Whitney [12] have shown that the probability P {jn Nen" t%
14

satisfies the following recurrence relation:

.2. —_1h = = -
(3.2.3) P{ 1;\,,\,_“_%_ = %.?{7; t}fL_ﬁP{ - N.n =
Substituting (3.2.3) in (3.2. 2) we get

628 P =t}= rZ AP g 7T, ot

~vn-l
JrcLZ_( e T a7

= pPIT.Ft Z e {0}
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(3.2.4) Is a recurrence relation for P'(Th = t. , from which we can
L s

find the distribution of T” for all N . It is easy to prove by in-

duction from (3.2.4) that,

(3.2.5) P Ty = 0! m z e, for all N .

The probability distribution of T obtained by using (3.2.4) is given

below for N= 2, 3, 4, 5.



P *pPa+tgq
N= 2 1 rq
2 o
o P3+p2q+n2+q3
! p2q + pa
ve3 2 pzq*nz
3 0
0 P"+p3q+rzqz*pq3+q"
1 p’qﬂ»q *N’
N=b 2 PBq*qu +M’
3 psq*p2q2+rq3
4 p2q?
0 ps+pq+v3qz+p2q34n"*qs
! #'a + 1% + p2d + pa’
2 p'a + 2°q7 + 2% + pa’
NeS5 3 p'a + 20%q% + 2% + pa’
b _“q+2pq +2pzq3+pq"
S ’3 ‘_qu;
6 3q *rq3




-21-

3.3 Asymptotic Distribution of U,
Let Z,, ...,2, be N independent and identically distributed ran-

dom variables; let #(z_, 2 , .cc2_.), 8$<N, be a real valued
| °‘z a'
symmetric function of its arguments. Hoeffding [13] defines a U-statis-

tic as follows:

(303") U(Z', ceey z") -

) Z O(zal,zaz, ceey za) ’

(

where C“ means that the summation is over all combinations,
(a', Ggy o0) as) , of s Integers chosen from (1, 2, ..., N) ; and
proves the following theorem on the asymptotic normality of a U-statis-

tic,

Theorem 3.3.1. (Hoeffding)

Let Zl, ceey Z“ be independent and identically distributed random
variables. Let U(z,, ... z")v be & U-stetistic. If
€ [O(za", za’))2 <o , then as N —> @ , the limiting distribution
of (U. - El!") / o(U") is (o, 1) .
Clearly ﬁ" is & U-statistic and hence [0" - E'(I'!")] / o'(l'lu) is
ssymptotically 9, (0, 1) , both under the hypothesis H as well as

under the alternative.

3.4 Consistency of the Test
Consider the two-sided test of the hypothesis H: F| - Fo against

A: F, § Fy, with critical region, |[ii' - s'ﬁnl / a'(ﬁ") | > tya

mum{tu’a is chosen so that lll-'-;o tll,a' t, where t,



satisfles | -I (tn) = /2 . The powsr of the test is given by

-,{ -/7/‘ ) “.TI'(UN) /:‘

Lo

|
? ‘l

‘>
— -
f'?r
/-'/’

- i A ' s K / ; / R
g | - ity

\
T
————
-
{
'
- »P\'
~
L.
\
<
~L
Y
-~
!
~

Proceeding as In Section 2.3, if fF'dFo $ 1/2 , the power tends to
1, 8 N—>m , and hence the test is consistent. In & similar menner

it can be verified, that the test is consistent when F' >F, or

0

F‘<Fo.

3.5 Asymptotic Efficiency of the Test

We now find the asymptotic efficiency of the test based on U,
with respect to the parametric test based on the sample correlation co-
efficient between X and Y , described in Section 2.4. We have seen

in Section 3.3 that U, Is asymptotically normally distributed both

N
under the hypothesis and the alternative. Proceeding as in Section 2.4
it can be proved that the required relative asymptotic efficiency is

given by

i
ffoz(y)dv}
-
! - 3pq 4T(1 - 3p9)

(3.5.1) o(ﬁ", r) =

The asymptotic efficiency given by (3.5.1) is a meximum, namely 3/7
when pq=1/4 , and is a minimum, namely 3/477 when pq= 0 .



3.6 Case When p is Unknown

We now estimate p by its usual estimate 'i- a/N and consider
the test based on the statistic, [l'l' - Eiﬁ"] / af(ﬁ") , where Ea(ﬁu)
and °$".’n’ are obteined by replacing p and q by p and G, re-
spectively, In (3.1.6) and (3.1.7). It is interesting to note that this
test is not asymptotically distribution-free, in thet it depends on the

distribution of X .

Theorem 3.6.1. Under the hypothesis H: F, = Fo » the limiting distri-

bution of the statistic [t'i - EA(l'J")] / oo\(l'ln) , |s normal with mean

2 4
zero and variance ] I - i— {T-:-;-E!a—

Proof. Because plim ; = p , by an application of Slutsky's theorem, we

obtain plim (pG/pq) 1/2

Hence by a theorem of Cramer [9, p. 254], it follows that the asymptotic

= | , which implies that plim as((-l") = c'(ﬁu) .

distribution of [ﬁ" - Eiwﬂ)l/"ﬁ(ﬁn) is the same as that of
(v, - saﬁ,.]/o'(ﬁ“) . Write
U,- E(U o
Sl ST @) B4,
Py b

( N) /_ N) (—_ )

‘ b a4

Since “\-pq-(i‘-v)ﬂ-zp)-(é‘-p)z.mb!vo




- — -~ - —_ Il
_ B H =N / e - 3
(3.6.1) 'f'i A ‘f:}; - PR, (k- b) (-2 }5’
o T - - T T s e e
e o "b(’J/\/ £ _t_).(:_._. ‘; '\'4":---'—/_ "'.lf\'--_'l}.b:;; ‘,./
SMUN-L LT L DU
;i 4
( P -
-+
) "—‘,'(, - ~ /‘ L
:--‘f F/Z B ."N__f_{ _ L / f//
- \
i /( ’ é / - X

As (VN (P -9)1/[Pq Is bounded in probability and piim [p=pl= o0,

the third term in (3.6.1) tends in probability to zero. B8y !looffdtng's,
Theorem (13, Theorem 7.2] the asymptotic joint distribution of the first
two terms in (3.6.1) is bivariate normel 17 (0, 7 ) where 5 = (au)

with o), =1 and o), = 0y = 0y = [3(1 - 22)2/(40(1 - 3pq)] . This
proves the theorem. ||

h. c_- Sample Problem

Let 2= (v, Xps Xy eoey Xc) have a (c + 1) variate distribution,
where Xj =0 or 1,

C
jZ'xj--l, P{X,-lf-pj, "{";'°_§T" a4 = 1-p, ond

B
s
»

r{v Syl xe- g - Fi) , J=1,2 ..., c. The distribution
functions l-", ceey Fc are absolutely continuous. On the basis of N
ln‘.’.ﬂ‘.ﬂt observations 2' = (Y', !", Xz‘, ceey Xc') i= " 2, soey N »
the hypothesis nc: F‘ - .o m Fc is to be tested. For this purpose

P
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divide the observations Zl R zz, veey zn into c sets according as
Xj' = ) » J = l’ 2’ esey € o Let U‘“, sz, coey anj(nj >0 for
c

esch j , Z nj-N) denote those Y
J=1

"s for which the corresponding
xj‘ = | . The problem then reduces to that of testing the hypothesis
that the ¢ independent samples of -jl" (=1, cccyn, , jm1,
eeey €) come from the same distribution, where the sample sizes
Ny eeep A are random varisbles having a multinomial distribution
with parameters Pys Pgs =oos P *

Ve assume that the Fj's differ only in location. Let Fj(y) -
Fly + Gj) y J=»1,2 .., c for some arbitrary choice of real numbers
9', 92, coey oc o« Clearly Oj = 0 for all J yilelds the hypothesis
H e * Further we denote by n"
Fj(y) - F(y + oj/{i) » J=1,2 <., c, and for some pair

(i, ) 6, $ OJ . It is known that the median test is sensitive to

the hypothesis that specifies that

translation-type alternatives, so in this Section we generalize the two
sample median test developed in Section 2 to the c-sample problem under

consideration.

4.1 c-Sample Median Test

Let W denote the median of the combined sample of U”'s

(i=1,2 cecn, , jm=l,2 «cc ¢c) and " the number of UJ'.S

~J
(1 =1, 2 '““j) that are less than W . VWe assume N = 2k + 1 .
c

Clearly Z 'j = k . The test statistic proposed for testing the
j=!



" hypothesis ”c: Fl - l»'z - .0 = Fc » ®may then be defined as

Ga.1) 1 =

[

4

<
—
~

’ \
[ k

\, ~;/ I‘,‘ s
(‘00'02) / = —— ( - v .

. )
, .
N —— - ]
Iz /: ; /
J " ~ L, ,
.

- e \

where Apj - njl N, when p, 9, --) P, ore unknown. The test con-
sists In rejecting the hypothesis H_ If n(H) ls'clthor too large or
too small. Note that M defined by (4.1.1) is different from the sta-
tistic defined for usual c-sample median test, e.g., see Andrews [Ii4].
In Section 4.2 we find joint distribution of m, ..., m_ and W
and in Section 4.3 the limiting distribution of M . In Section 4.4 the
relative asymptotic efficiency of the median test based on M with re-
spect io the corresponding parametric test based on multiple correlation
coefficient is evaluated. Section 4.5 deals with the case when |
Pys> Pgs oocs P T unknown and gives the asymptotic distribution of

A

M under the hypothesis Hc s from which we conclude that the test based

A

on M is asymptoticelly distribution-free.

€

4.2 Joint Distribution of m, My, coop, M and

Lommas 4.2.1. The joint distribution of My, My, cooy M.

rd

and W is



(4.2.1) f(u', my cees M, w)

o
I —_ }
o e p
) ! — E -— - - —
Lo ! L, K | . . .-
—— - ST ~ f - B T . / e N A «
c L i . ,‘ M 1‘:,_‘ ! ' /)
e . - .
Jloml
“ o ,' o ]
- ) L3
-
c

where Mys ooy M is a partition of k , ij =Kk .
J=l

Proof. As in Section 2.) the conditional probability density of

My Mgy ooy M and W for fixed values of Nys eoes N is

-’
4.,2.2 f(m m, W
( Y X3 ) ( " eeoy c, ln" "2’ soey ﬂc)
. - ="
L3 i - P - :
r o e woilyr e LT .
= ' Pl Bl i -7
s B Poe oot L) 7 - )
Co =y SR —_

Ny Mgy oooy N have the multinomial distribution 77 (N; Pis Pps ooy ’pc)

given by
. A v . i Z
("0203) ,‘:‘i '& ’l"_:) .I~_; . . .- . ' - T _4_'.'..'.4,, e - L }v .. ..f;‘ -
’ .{1{(“ 'l'.’[ .14, ' ‘ v
Hence using (4.2.2) and (4.2.3) we obtain
f(.‘, .z, coey c ;')
= z . f(.l, .2’ coe, .c, wll n', ﬂz, eoey ﬂc) f(a', “2, coey ﬂc)

nl,nz’QQan



~ . , - . -~ "o
! - : L —_ !
A o« — ! - < . - . -
INE <. f':» 7 N 7-,'. -0, . har LA L —, ,
= _ A LRSS S N
- s . N, e ! _/ ’ B ras
77 - . i IC- { - r Iy —- -/ P e T e - - — g
.1_‘1.'('1 A - Ay ’ Y. r P 3 . "’ (R
S * L=
-’ _—
, e
e IR
/l / ! - | HE
! <, - a !
A KR )
| ~ - ———

where for each | the summation is over all partitions ("l’ Ny ooy nc)

of N such that n 2w+ >m(j$ 1), which gives the re-

i » Ny
quired distribution (4.2.1). ||

Summing (4.2.1) over Wy My, ooy m. we obtain the merginal

distribution
!
, - ¢ "1‘( .- < I
} ’Nll — - ,}‘1{ ) — — K
gl = ML S eni -7 s / S LB
R T .1—., /,‘;,, y
. e 12 * fmp T — ”'"-, .
v v -

Under nc: F' - Fz ® o0 = Fc = F , Iintegration over the domein

0 SFj(w) <1, in (4.2.1) ylelds the distribution of My My, coe, M3

l l o » :7'{‘

y
.

' N .
+{m, m . v, e " - ]L ‘ "
(4.2.4) ( PR e/ A O

[
-

which is the multinomial distridbution 7 (k; Pps <o 'c)



4.3 Asymptotic Distribution of M
We first prove the following lemma which gives the limiting joint

~
distribution of m,, m,, ..., m ad W.

Lemma 4.3.1. Let
. m - N .: fi . N o \ﬁ/ ’
\‘3. el __-”‘__.;6”)» ) » J - ', 2’ ecey [ ’ / = \‘r‘,:. l\ ,A/ - {'l/?
—_—— L | .
S A R
;//AIL-F.»';'(Jl
J

(4.3.1) Z ’F (£) = 1/2.
J=!

Assume that in some neighbourhood of 43 the density function
Fj'(y)'- fj(y) (j =1, 2, .co, c) has a continuous derivative. Then

the asyup‘totlc Joint distribution of Vis Ypr coes ¥ and q s

c-1
c-variate normal distribution with zero mean vector and covariance

metrix S given by g"--'\-(x'j) where

pF (%)
k“ - ' +* ' ( ) » l - " 2, LXX¥) (C - l) »
Pe'c' '
. . e o
o ST
;o= Bt “ S |
& (r - o —_— -—'v -— // >, ‘;
{. f.,' ‘f' ' ‘ -
Lo’ L
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A
r—_— P ~ et e

2 ) . .
Vol [T RIS LTT e
-— A - — —— ,’,' a
LC 1 ’ - . . - 4
L //' f./}‘ .

e r- .

Proof. Throughout this proof for convenience set F, = F'(g) and

f, - f‘('ﬁ) . Using Taylor's expansion about % :

S ‘. r Y ) [PTe O ,
F.(-N/ = . “:‘ ! - Fe o ! PR TH - S .
r, Pl " v/ / ’

- - '
C R . -
~ R ES R Lo -\ '
‘ - - i~ v - "’ ¢ . ~ .T. - . ;
o J ‘ — r/

r s 1! -— -,
o~ ) .! i ‘.‘. .o P ! /7— {.“) ', ¢
(“0302) f(.|, .2, eo ey Dc, ') L -\) k" ‘LI, ‘}:L |' ’.C 4 4 - ¢
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Note that vy satisfy the relation

c

@3.3) ) vJeF =0
im]

Now consider the region S defined by

s - 1) (v" ceey vc-|, ,'): " Sv' Sb‘, .zsvz sbz g oveey .c S'.sbc% .
-
~/

Using Stirling's approximation for n!

F o ”N °
' VT
A, is independent of n and because of convergence of multinomial dis-

tribution to multivariate normal distribution, uniformly in S

-—

“ -
™ =y
booo em) (peR) L (wkKE) /)
1
C-1 (_‘ f
Lo ' v— R . s\\ (’
g"."-; P vt. ::/)&hﬁ _rq,;/”_ ))i:é. hb,,—:’j l ‘
.’ Cle ‘:LJ."' PCE :l
Now consider

[ 4
log A, = ) (v, /Np,F, + Wp.F)log/ 1+ +: (7)) +
A ‘Z-'l i i1 ( Jiﬁ' +o(L)



+ k los[l- %é, "’JEL - °(%1)J

Using series expansion for log (1 + x) it follows that, uniformly in
S

log A, = - L __(___ —r?_(Z,Lf)’] Z'>7VF(__ + o(1),

Using the continuity of f, we have, uniforaly in S

c s
7f('m,)'mz)-- )'mc)(;'v) ~) N(gﬁ: FL')[HT(?.TF) (zb F)ﬂ_(;k/, F] X

e, .

Hence as in Theorem 2.2.) it follows that

P a,<v,<b, 8a,<v,<by, ..., 8. <n<h

b, b b
2 c
: f J ' f -'f(v') Vi, " ))C”“7)CIV,CI‘>’2--»4‘D(’?/7 p)
a| G‘L Gc .
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where f(v', s Vel n) is the probability density function of the

multivariste normal distribution described in the present theorem. ||

Corollary. Under the hypothesis H_, the set (v', coey 'c-l) and ¢
are asymptotically Independent.
The following lemma gives the asymptotic joint distribution of

Vis cves Yooy and n under the hypothesis "N which specifies thet

- ‘i -
Fj(y) F(y +n> , J=1,2 ceey €.

Lemme 4.3.2. Under the hypothesis H“ the asymptotic joint distribution

of (v., ceer Veoyo n) is c-variate normal distribution given by

,.;‘,(v“v”. ..)1/2_1)7) = #£21> R )/
P Y e
.
- - - ———
-' ! N _; "~<\ N L+ .' /.‘)" \.‘, — N . ,’/J:’!l
exp = ' A7 Lt N AR OR R
—— (. l C { :»J " aJ/_’

Proof. It Is similar to that of Lemws 4.3.1. ||

Now we are In & position to obtain the limiting distribution of M

defined by (4.1.1) under the hypothesis H“ .

Theorem 4.3.1. Under the hypothesis H, the asymptotic distribution of

N
2M s noncentral ")(,2 with ‘c-1, degrees of freedom and noncentrality

parameter



@3 A = 2(e0(5))? X )0 - §?

J=1
c
where 6 = z p.0, .
JJ
J=1
Proof. Write
.m.._ ‘L")' ot — f\.“‘[;’- [:.L"‘ /_"(‘ ' ’ ,( L; -—//F /5/ , | c
U'L' el - T - / S 2
PR It
(i I ‘ F: ¢ P'

Under the hypothesis H" using Lemmas 4.3.2 it follows that the asymp-~
totic joint distribution of (“l’ Uyy ooy "c) is c-variate normel with

means u; = O,F'(%)[p, , and covariance matrix S

b

- (0' j) of rank
(c-1) where

o= -p)/2 01=1,2 ...,c, o = -.,f"i;'ij /12,1idjel,2 ..., c.

Hence noting that
c

Z ) [Taj =0 it follows that the limiting distribution of
J=!

; ol o
M - 2/—. '4[14” +Lu _,,~r is X:_‘o.),mrc

G —
7

., 0
— ,],4-

ke
A s "m bY (‘.030“)0 “



L. Asymptotic Efficiency

Let Fj(y)-F(yd-Oj) » then H. s true when Oj-O. We now
find the relative asymptotic efficiency of the c-sample median test with
respect to the corresponding parametric test, when Fj(j =l, 2, ¢ss, €)
is & normal distribution with mean °j and variance 02 . The hypothesis
M, is true if and only If /*3“" T (Oikin, Tate [15))
vhere fv(x" ceey xc) is the multiple correlation coofflclont between

Y and X . Let R denote the sample multiple correlation cosfficient

- J
U..-(E.”w)/N > “J'*"'(%Lﬁ")/i g
then
C 2
3 _ =
T? —8:1‘ ‘t"nj(uj; U')
SN (O ATy
Also :,L g
p* _ Z[f%’-@)ﬁf"j/"”g‘
YO, %) a g SN ’
e L] )
c a
hare & = ) wo, -
-

Following Fisher [16] it is sesn that under the hypothesis

0
LW Fj(y) = F (x 4‘/_%) , J =1, 2 <oy c, the asymptotic distribution
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of M-c)T /(-1 is X 20" distribution whers the non-
centrality paramster Iis given by
C
. E: 22 , 2
AN = pj(ej -0 /q . Also it is proved (Theorem 4.3.1) that
Jsl
the limiting distribution of 24 is ‘X 2 (\) , where noncentrality

parameter A\ is given by

c
A = 2[?'(% )]z Z 'j“j - 5)2 . Following Andrews [14], Hannan [17],
el

since the two test statistics are asymptotically distributed as a non-
central ’/(,z variate with the sams number of degrees of freedom, the
asymptotic relative efficiency is given by the ratio of the two non-
centrality parameters, i.e. the efficiency is found to be

o, M) = 2(F (42 - T

4.5 Case When Pys Pps o5 P Are Unknown.

in this case we estimete ’ by Apj - njlll sy J=1,2 oy ¢
and consider the test based on M defined by (4.1.2). It is interest-
ing to note that the test of Hc based on ﬁ is asymptotically distri-

bution free.

Theorem 4.5.1. Under the hypothesis Hc, loﬁ is asymptotically distri-

buted as a8 % 2 variable with c-l1 degrees of freedom.
\'/'1 '

L 7 ;o7 7 J , h R P}

Sy ( [P A (R & e

. W___ L - - S e __’:_,_- -_ (/C,'/,P,'./ K .
/ e S P

N T 'E. '\_" r/ F’o
‘/- ‘_l

Proof. Vrite

V. —



let v= (Vl, vz’ seey vc) and 'v. (", wz, cooy 'c) » then vew »
where D is a diagonal matrix with ﬁ; /( ?’J as its diagonal
elements. Since plim 3) =P, , It follows that plim ( [.T /fa ) »1
and hence the matrix D converges in probability (element-wise) to
identity matrix. An application of a lemme of Chiang [18, Lemma 1]
ylields that the vectors v and w have the same limiting distribution.
ha e - [(2k + 1)p, - k(p, - J(2k e
it is seen that the asymptotic distribution of w is c-variate norme!

with zero mesn vector and covariance metrix 2 = (au) of rank ¢ - 1

with g = (1 -p)fh, jal,2° " c, and c,j--f;,?;lu,
[

idjml, 2 c. Noting that ZJ_ . converges in probs-
j=!

bility to zero as N —> @ , the asymptotic distribution of

V', Vz, ooy Vc_' l‘ "m w

fvyy ecep v __,) = ! X
] | (mh-l)/zu,‘» E-l)/z"l:lz

’\

eyb-—’)r / V"/H-”\TLZ VHPJ‘_

h:. ¢ '{/ = T, Pc
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Hence
c-l A c-1 —
Wi = & z vf <l + ;'—) + Z vl'j \/--f-—'-—;;
il Pe )=l Pe

has the asymptotic distribution stated in the theorem. ||

5. Rank Test for Dispersion
Let 2,, Z,, -..) 2, where Z = (x‘, Y') » be N independent
observations from a bivariate population. We assume P{x - lg -p,
Pix = 0} =a=(1-p); PIr<y|xej)=Fily), J=0 1.
Let U, Uy, oo U, (n > 0) be those Y observations for which the

corresponding X observations are 1 , and Vis coes v“_n be the

remaining Y observations. Let " denote the renk of the ith

ordered U observation in the combined semple of U's and V's .
For testing the hypothesis MN: F| - Fo against the alternatives that

F, and F

1 0
based on the statistic,

differ only in the scale paramster, we consider the test

which Is known to be sensitive for such alternatives. H is rejected
iIf W is either too large or too smell.

In Sections 5.1 and 5.2, the mean, and variance of W , and the
limiting distribution of W are obtained, when p s known, while in
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Section 5.3 we deal with the case when p in unknown.

5.1 Mean and Variance of w'
Write N(') = N(N-1) -+ (N-r+1) . Since n is a binomlial random
variable b(N, p) ,

H v N-T /7.,;,)
n S Ni# b = i N
oy E[ 77 ent ) = S ey Fq® N

First we find the mean and variance of W under the hypothesis

H: F =Fg . It has been proved by Mood [S], that the conditional mo-

ments of W for fixed n are,
e, (Vln) = n(n3-1) 112, c:(\ﬂn) = niN-n) (#+1) (N24) 7 180 .

Hence, using (5.1.1),

(5.1.20  E,() = E(E,(W]n)] = wnl-1) /12,
elaz(wu)] = paN(¥2-1) (W2-4) / 180 .

To find oy (ND we note that % (ub - E[az(wln)] +0 [E (W|n)] . Hence
(5.1.3) a:(\l) = paN(¥2-1) (382-7) / 240 .

Let,

T f [Fo(v)l'[F,(v)lde,(v) .
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To obtain Ep(\l) under the alternative note that

n

(5.1.4) W= Z r? - (N+1) 'i r

and use the following results proved by Sukhatme [ 7],

/Z n | - n(N-n) Mo * [n(nel)) /7 2,

\l-l /

E( Z rf n) = 3n(N-n) M, +-n(n-u)‘2)uzo + Zu(z)(lt-n)ll” +%n(a+l)(‘2nﬂ) .

Eln(ne1)] = Npq + Kop2 + p ,
and “‘ﬂ’ (50'0.)’

Eln(ne1) (2n41)]) = E[2003) + 9n (D) 4 6n) = (33 w on(Dp2 46 up,

[ i
(50'05) EP f‘ = E ( I ) - “(2)M'°* i [m + ” P ’ h] ?
im] L]

(5.1.6) €, z r'z - E|E (Z .-f ,JJ - 3pan{n ‘”2"(3)"20
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After using (5.1.5), (5.1.6) we get

’

(5.1.7) £, ".(i rf) - (w1) ‘,(Z rQ . 1!511-2-:'..

-p Nn=1)2 + 2 p N(N-1) (N-2)[12 po), + 6 a® My = 6 Qi g+ 207-3p].

5.2 Asymptotic Distribution of W
We observe that,

N-n n
el Z oy, y)) ¢ Z o, v
j.' Jom)

1, iIf x<y,
where #(x, y) =

0, otherwise.

o]

. M- -IQ" 7 1
e [2_ 40 1 }_M&j
J=i

k=i

[i=r —/
)’:’ oo
L+ 2 : ?’\"I',U;) . Z P Y5 %)

i___v J"”‘ ‘_1' w_ ‘(‘.‘.’ —
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After defining
I, If u<w and v<w,

.(u' v’ ") - '\'
' 0, otherwise ,

we can write
- I+32_y5(v u)+3Z¢ U)*ZY(JJ/(;U)*
g J#k=
r2 U 12Ty, W)
kE2
Observing that

n.
il #(-Uk)ui) = (t:—l))
k=/

and

%' = ! -
,f;]’(%“k,%) = () ((-2)

we can write from (5.1.4)

ri-onm
iz = (-2 /;_ , / (1)* ?2_ * J) k) ‘)

"/“" ——
CH S 4k=1
?-
f + , 4 .' (_"_{:’__!«I‘/ .

™ /V‘n
: Vi o+ g
" Z};j;; S A O U ) 4 e e U st
o1 T

\\A !\\1/“

R B

Now define three functions H, K and L as
{1, If X, =0, X. =1 and Y, <Y

Wz, 2)) = 4 ? i * % R
. 0, otherwise.

-
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1, If X, =0, X =0, X

f =1 and Y‘<Yk,Y<Y

k J

0, otherwise.

llfx-ox-lx-landv<¥¥<v
L(z‘,zj,zk).{' 157 » %k i kK )
0, otherwise.
Clearly,
(N-7) N
vty = 2 HIZLT
J’:; = Cf;!-'”
n N7 N
S S . N Z L7
..2; Y(\g,vk)u,_)— K(ZJ’;}}( ,Z‘) 3
e j#k (‘{j#k-l
. f r
iy / iy - N | /=
z ‘Z- f/{'l L y(-} g / L_\LJ‘Zk’ ZL/
N 174l
; ,J,.
and hence,
_ _(,) _(2—) __.(3)
W _NN-) D - U
6.2 3 LN T W T

{1-.4(,1.,- Dlan+i, ‘*37\('\"“) é(”*’)‘ﬂ(n“L
A3

where G,‘." , ﬁ,“z) , ﬁ.‘.’) are U-statistics defined by,



H

”) - __J_____'_ ‘} (")‘ }
i IV(N"’\JQ{T,
N
-t ’ 1t \
oL S Ky,
r {"\,r\—; (,"‘ ';t:'_‘;-, 4
1‘.1 k=
. N
—2) > - -
U™ E L(z. = ~
H ! ~ ]2 < U L .
A | !)(J’ )/‘ . '
R Kl

Theorem 5.2.1. Let T = HII’ . The asymptotic distribution of
(T - E’(T))lcp(f) is 9.,(0, 1) both under the hypothesis as well as the

alternative.

Proof. Observe that the second term of (5.2.1) converges in probabillty
to p(lbpz- 6p + 3)/12 . By Hoeffding's t.h.on- (13, Theorem 7.2] it
follows that the asymptotic Joint distribution of ﬂ.(.') , i,‘.” , 6,(.3)

is trivariate normal. The required result follows by an application of
a theorem of Cramer [9, p. 254). ||

5.3 Case when p I3 Unknown

Here we estimste p by 'p\- n/N and consider the test based om
[T - €N /las(T) , where ES(T) and o(T) are cbtained from (5.1.2)
and (5.1.3) by replacing p by p aad q by a . It is Interesting
to note that this test is asymptotically distribution-free.

Theorem 5.3.1. Under the hyppthosls H: Fy=Fy, the asymptotic dis-
tribution of [T - EXT1/a)(M 15 N(0, W) .
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Proof. Since plimp = p , the limiting distribution of [T - E;(T)llaa('r_)
is the same as that of [T - E;(Y)]/o’('l') . Also

T - E~(T _ E(T o SRR A
3.0 5T N e N ¥ S P A A A
(‘;(T) 0‘/;(7) /jI; ’T)

Note that after wsing expressions for E»’\(T) R E.(T) and 0’(1’) , b In
(5.3.1) can be written as

p—e -’ L
¢ !n K A _
J‘f -4 "/'f‘

b = ‘l*“,/.'..c ::/.\*fC.
Cb/T)

where ¢ eonvorjos in probability to zero. WNote that a and b' are
Jointly asymptotically normelly distributed with mean vector zero and co-
variance metrix = = (o)) with oy =1, g, = 0y =0y, =509 .

Hence the theorem follows. ||

6. Two Semple Run Test

As before let Z, = (X;, ¥) , §i=1,2 ..c; N be N independent
observations from a bivariate population where X assumes only two values
1 and zero with probabilities p and | - p = q respectively; and let
r{vgy | x-jj =F) G=0,1) . Let U}, Uy «ee, U (n>0) be
those Y observations fro which the corresponding X observations are
one, and V', veey vﬂ-n
the hypothesis H: F, (y) = Fo(y) , combine the two samples of U's and

be the remaining Y observations. For testing

V's and arrange them in the order of megnitude. Here we consider the
test based on d , the total number of runs of U's end V's . The
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hypothesis H is rejected If d is too smell. Mood [19] has given the
exact sampling distribution of d under the hypothesis H when p Is
known and further proved that under the hypothesis H , the asymptotic
distribution of [d - 2Mpq) /[2Y Npq(l - 3pq)] 1s 7U(0, 1) . These
results are obtained by other authors, ses, for example, Wishart and

Hirshfeld [20], Iyer [21].

Here we consider the case when p Is unknomm. Estimete p by Its
usual estimator P = n/N and consider the test based on
(d - 2841/(2 /W31 - 3p3)] . It is proved in the following theorem
that this test is not asymptotically distribution-free in that the
limiting distribution of the statistic depends on p .

Theorem 6.1. Under the hypothesis H: Fi = Fo the asymptotic distribu-

tion of (d - MIZ[‘MGU -3pq) ] is normal with mean zero and
variance 1| - (1 - 2p)z/(l - 3pq) -

Proof. As in Theorem 3.6.1 the asymptotic distribution of

o ——— —

(¢ - 2”68)/2-[—!;&(!“- 3pq) s the sams as that of A(d - 24pq) /2 [ Npq() - 3pq) .
Since pq - pa = (p - p)(1 - 2p) - (¢ - 9% we can write

» , — . IS ‘\7.
P d =13 _ i’b’f’}{{‘j;‘m Lt PP

/

— 4 e

(6.1)

—— e e

2npOoss  ANpR(I=3pY) NSk TR

It can be shown that the asymptotic joint distribution of the first two
terms in the above expression is 7, (0,3 ) with covariance matrix

D m (°Ij) where g =1, 0);= 0y =0y, = (- Zp)z/(l - 3pq) . Also
noting that the 3rd term in (6.1) converges in probability to zero the

required theorem follows. ||
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Part I

ASYMPTOTIC THEORY OF MODIFIED CRAMER-SMNIRNOV
TEST STATISTICS

7. Introduction

Let X, .., X, be n independent observations (random variables)
from a population with continuous distribution function G(x) . For
testing the hypothesis Hy: G(x) = F(x) where F(x) Is some specified
distribution function the following test was proposed by Cramér (1],
Smirnov (2] and Von Mises [3]. The test statistic w> is defined as

u: = n f [F“(x) - F(")]z‘F(") ’

where F (x) denotes the empirical distribution function of the sample
l.e. F“(x) = v/n , v being the Mr of X, (121, 2, ..., n) that
are less than x s =00 <x<+00 ; and the hypothesis "0 is rejected
for large values of u: . Properties of th.is test have been studied by
various authors. Cramér in (4] suggested the ides of- extending the
theory of u: test to the case when the distribution function F(x) s
not eouplo‘toly specifled, but depends on certain psrameters that must be
estimated from the sample. This étmslm was investigated by Darling
[5] in the case when F(x) depends on one parameter. He considered the
following problem. Let I "be an open Interval on the.rul line R!

and assume that for every point 0 ¢ I, F(x, 0) is a distribution
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function. For testing the hypothesis H,: G(x) = F(x, 6) , whare the
functional form of F Is known but the panntor. ] ‘ls unknown, the
sodified w2 criterion Is defined as

. A Nt
- ~ RN o -
4 noyo gy - F(x,ﬁ,/fJf
J — 'r. 7 ’ -

“In

(g &
\.4,)‘/”) 5
-

where Sn is an estimete of O obtained from the sample. The hypothesis
n, Is rejected for large values of cfﬂ o Under certain regularity
condi tions the asymptotic distribution of c‘zn is obtained in [S]. The
limiting distribution depends on the proporttos‘of the estimator Sn .
Now assume that T Is an open set In Rz » the two dimensional
Euclidean space, and for every point 0 = (0‘, Oz) ¢TI, F(x, 0) is a
distribution function. Let § = (6, , 6,) be an estimate of 0.
For testing the hypothesis H: G(x) = F(x, 6) for some unspecified

0 e T consider the test based on the statistic
+002

s A
Cj‘ - /nf CE,‘CX)'F(X)éﬂ)] dF(x) Gn) .

—w
The hypothesis H is rejected if c: is sufficiently large. Kac,
Kiefer and Wolfowitz [6] considered the modified Cramér-Smirnov test
based on c: when F(x, 0) Is a normal distribution N(x, u, ¢2) where
both the mean u and the variance az are unknowmn. Using the sample
mean end the sample variance as estimstes of u and cz they derived
the asymptotic distribution of the test criterion. The methods used in
the derivation do not seem to be general enocugh to obtain the limiting

distribution when F(x, 0) is any arbitrary distribution function.
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The object of this paper is to investigate the limiting distribution

2

of Cn when F(x, 0) Is an arbitrary distribution function involving

two unknown parsmeters and satisfying certain resularity conditions. As

in one parameter case it will be seen that the asymptotic distribution

" A
of C: does depend on the properties of the estimators O'n, e

h L]
limiting distribution of Clz‘ is derived by suitably combining the

The

techniques of Darling and those of Kac, Kiefer and Wolfowitz (6].

We also study the modification of k-sample Cramer-Smirnow test for
testing the hypothesis of goodness of fit. The k-sample problem is as
follows. Let n (=1, 2, ..., k) be fixed positive Intagers; and
xj‘(l -1, 2 ..., " s J= 1, .cc, k) be independent random varisbles
having unknown continuous distribution functions cj(x) « Lot T be an
open interval In R! 350 that for every @ ¢ I, F(x, 6) Is a distribu-
tion function. For testing the hypothesis H,: 6, (x) » szx) = oo m
G, (x) = F(x, 8)) , for some specified @, ¢ I, Kiefer [7] has considered
various tests particularly k-sample Cramer-Smirnov test. The test
statistic Is defined as

4 +6e L . 2

2 ¥
Ny AR [%5“ — O, 6,)JdF(%,8,)
-0 J=y

where n stands for the vector n = (n), ..., n) , and F‘?)(x) is
the empirical distribution function of the jth sample, that Is
Fg)(x) = (llnj) (number of xj‘ <x, I=l, 2 ..., "j] . The hypoth-
esis is fcjectod for large values of u'nz. Kiefer has obtained the

limiting distribution of u'nz under the hypothesis H_ and has also



tabulated it.

in this paper we consider the problem of testing the hypothesis
Hys G'(x) -t Gk(x) = F(x, 6) , when the functional formof F is
known but @ ¢ I 1s unknown. To test the hypothesis H the k-sample

Cramér-Smirnov test statistic is modified as

.- ny s -/ »
SR A A4 ‘-‘m’_/j' S

where N = Z “j , and O, is an estimate of © obtained by pooling

together all the k samples. The hypothesis nk

is sufficiently large. Under certain regularity condition the limiting

is rejected If C"'z

distribution of C'> is obtained when the hypothesis H, Is trus. As
in the case of one sample problem the asymptotic distribution depends on
the properties of the estimstor 3,. « These results can be extended to
the case when the dtstrlbutlon function F lnvol.vas two paramsters
0', Oz by using methods similar to those employed in one sample problem.
In Sections 8 and 9 we investigate the limiting distribution of the
modi fied Cramér-Smirnov test statistic C: under the hypothesis H in
the case of one ssmple problem. Section 8 gives the asymptotic distribu-

A Pl
tion of C: when the estimators O', Oz are superefficient. In

Section 9 the asywptotic distribution of C2 is derived when 8, 9,
sre jointly efficient in the sense of Cramér [4]. The characteristic
function of the limiting distribution Is the Fredholm deteminant of @
symmetric positive definite kernel of a particular fofu. Theorems

qQ.5.1 and 9.5.2 give methods of obtaining the Fredholm determinant as-
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sociated with such kernels. In Section 9.6 we study some properties of
c: test and constdcf some consequences of the theory developed. In

Section 10 we study the k-sample Cramér-Smirnov test in parametric case
and investigate its asymptotic distribution when the hypothesis “k is

true.

8. The Cramér-Smirnov Test in the Two-Parameter Case.

8.1 Let X;s Xpy ooy X be n independent observations from a con-
tinuous distribution function G(x) . Assume that for every point

0= (o', 92) belonging to an open interval 1 in r? , F(x, 0) is an
absolutely continuous distribution function. For testing the hypothesis
H: G(x) = F(x, 8) where the functional form of F Is known but 0 is

unspeci fied, the modified Cramér-Smirnov test criterion Is defined as
40 2
7 A A
(8.1.1) C, = nf [F;w-F(x,ey.)J dF (x,8,)
<60

N )
where Sn - (O'n, 02“) is an estimate of O obtained from the sample.

The hypothesis H Is rejected if c: is sufficiently large.

In the present section we consider the problem of finding the

2

asymptotic distribution of C- when 9, , 6, are superefficient esti-

mators and also discuss the case when 31 o’ 32" are regular estimators.

8.2 Case when 9, and 02 are Superefficient Estimators.
A
Henceforth for simplicity we write O' as 0' and 02“ as 92 .

Suppose that the hypothesis H (s true. Let © denote the true unknown



paramster vector, and f(x, 6) be the probability density function cor-

responding to F(x, 6) . u: is defined as

400 “%
2 oem | [Fo- FUoua]dres) .

—

(8.2.1)

Let X, X5, e, X' be a rearrangement of the sample X, X,, --., X

so that x"<xi<...<x;. Then > and c: can be written as,

n
see (4]

m ) 2
1 ] / (2-‘:",)
— O (X' 9 - e —
(8.2.2) “, in + ,é L Feres) m /
- A / CD) e
2 e ) = (2=t
(8.2.3) C, = L+ 2 [ Fexes,) ~

1 =1

A
Theorem 8.2.1. Assume that © and F(x, 6) satisfy:

() Na nE@ -0) a0, 1e1,2.
n —> o

(ii) For e, 0'e¢T ,

|F(x, 8) - F(x, 8')| < A(x) 8(e, ©') ,

where 8(0, 0') = [(9, - o] )2 + (0, - 9 )21112

for some Ao < ®, where probability is according to the true distribution

, and P (Az(x) > Ao) -0

2 2
F(x, 6) - Then C_ o uw_ +8 , where plim 38 =0.
nonon n—>o0 "
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Proof. This theom is a direct amloguo of Theorem 2.1 of [5] and can
be proved in a slnllar menner. ||

Remark. When conditions (i) and (ii) of Theorem 8.2.1 are satisfied,

2 2

the asymptotic distribution of c“ and w are the same.

A N
8.3 Case when Y 02 are Regqular Estimators.

In general, condition (i) of Theorem 8.2.1 is not satisfied, 3o now
we consider the case of regular estimetion, Cramér (4, p. 479], where

A
Var(O‘) > A'/n , (I =1, 2) for some positive A; - In many cases the
estimates 3, are such that plim n'f2 -8

(3' - 0') = 0 for soms
n—>a ,

8 such that >8>0 . The following lemme which is a direct extension

of Lesma 3.1 of (5] treats such cases.

Lomwa 8.3.1. If
(1) for >8>0 plim n'/2"%@ -0)=0, 1=1,2;

n—> o

. for almost all x

(if) /a F(x, 9)/ 0. ix)

(iir') -1\3-2 o« 8)/ < M (%)
. ! [ 7



where the functions - (x), nz(x), 'lz(")' h‘(x), "2(") are square
integrable, independent of © and do not depend on the exceptional set.
Then,

PR
22 ®* Q
(8.3.1) G, = G 1o,
where
-4 3 ~,,;
2.
* ( Fr“ - . < <5 |
eJe = 9 I = ‘/()_ i"./” -.:'j- 2 }‘(7 :/ < ¥ T Llx

@32 C =) [Sreit A

N
= -

and plim 6"-0.
n —> o

Proof. Expand F(x, 8) and f(x, ) in a Teylor's series about the

true value 0 :

rlz 5 )= F(e)+ 2 CBZ”@J){a« F’(x)s)
' L= 08,
)

N " A
- v 4 Lad / - $ -
+ L ;l(é% 0c )9, m () +2(6-6,)(8,6,)g m, (x

where l"l.‘ <1, lq'zl <13

ZA
A by NS - A PA L . -
P ) = A 280 ) L ey ey s

’

Substitution of these expressions in (8.1.1) yields



2 L 2 A Z
(8.3.3) _ = nj [_‘Fn(x)- F(x,6)=3( "L“SZ)-@- Flx, e’)]{f(xle) Ay
' et~ ¢) . l:='/ 39[

4 T .
& - A A ‘
+‘%f [(&:89mu) 20 —9,)(@2_-%)773—,1/{1);}74’(,55)6(,(

409 N
% =t 95;
= oA 2- A A , |
[ é (8:78:) 9. mx )+2(6-6,) (8" 91)% s F6¢,6)dx

400

— = A 3/
N nj {[rh(x)—F(X,G% > (68:)2_F(x,8) -
o L=l 39{:

/4

(2-(9“9) q,‘m’x)-rlw ~6, /(68 )q,mu).-

p——

}__Z(@c -9:)5: b (x }4,(
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Using the assumptions (1) - (iv) and that sup ann(x) - F(x, 0)| is
x

bounded in probability, Kolmogorov [8], we find that each term except
the first one in (8.3.3) tends in probability to zero a8 n —> @ .
Hence the lesma follows. ||

Thus by Lemma 8.3.1 the problem of finding the asymptotic distribu-
tion of C2 1Is equivalent to finding that of C'2. |

Now consider some transformations which are basic in the following
work. Let |

(8.3.4) wuws=F(x, 0, = F(X,, 0) j=1,2, ..., n.

"]
J
By this transformation x is defined implicitly as & function of u and
@ , except possibly at a denumsrable set of values of u , at which x
can be defined arbitrarily so as to meke the function monotone non-

decreasing. Define

S Y . -r\ [ [ i'.\ R < ":_ v
(8.3.5) Sy m o me BOGE) S L=,

and the function ’t(x) as

1, If x<t ,
P (x) = é
fo, if x?.t .

(

Then we can write

FK,X) -
i

n m .
- ‘] {\u.'/j
R TC RS SR

L
m s



where u's are defined by (8.3.4) .

If Gn(u) = (1/n) (number of uj's less than u) and

- I ";~ g —-L—
(8.3.6) Zn-"'-" ERE N 4,,(“)" "‘_-] v [ 71) < }/4\4‘}) L,]

then using (8.3.1), c: can be written as

| 2 | 2
@37 . = é Yn(u)a(g + 5),, ,
where

Y N\
(8.3.8) Y laro= /,’/; a - Z \[Y? ( 9‘ - &E)j‘.(“)
=

Aly] ,

and plim an-o.
n —> @

The limiting form of the stochastic process Yn(u) defined by
(8.3.8), required to obtsin the asymptotic distribution of Cn “is gliven
by the Lesms 8.3.2 below. This is an extension of Lemma 3.2 of [5] to
the present case. Also note that Lemms 3.2 of [5] is proved under some-
what different conditions than those of the following lemma. For the
time being consider the one parameter case studied by Darling. After
writing E zn(u) \,—ui(an - 0) in a suitable form Darling arrived at the
following two conditions. (Conditions (4) snd (6) of Lemma 3.2 of (5]).

1) lim n E(é; -0) =0, Ii.e. 3n is "weakly unblased”.
n—>am
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2) lim nuE.;;(an-O)F(X',O)<u?' = h(u) , 0<u<l, and
n —> 00 - s

h(0) « h()) =0 .
Instead of assuming the above two conditions for each of the estimators
;‘ we make assumption (iv) of the following lemma. There is an example
of a distribution function F(x, 6) for which @ Is not weakly un-

biased but at the same time lim E 2 (u) /n (0 - ) = h(u) exists
n —> o

and has the required properties. It will be seen in Section 9.6 that

for the normal distribution N(x, u, az) the estimate

n
s - () /n) Z (x‘ - ;)2 for oz is not weakly ﬁnblascd but at the
j=l

sams time lim E Zn(u) in (sz - az) exists.
n —> 00

Lemma 8.3.2. |If

)
- ¢
O = Pyodu+d , whe lim 8 =0, (i.e. ke
() 3 ét‘) " re LA e. we ma

the othlons (1) - (iv) of Lemma 8.3.1)

Gi) & (3, - 6,) 1Is a sum of independently and identically distributed

random variables,

(i11) the asymptotic joint distribution of ( /n (6' - 0,) s N (32 - Oz))

is norme! with mean zero and nonsingular covariance matrix > = (o”) ’



(iv) lim E Zn(u) [n (8‘ - 9;) = hi(“) , 0<u<l, h'(o) - h‘(l) =0,
n—>ao

i=1,2,
Then Yn(u) converges in distribution to a Gaussian process Y(u) , with

mean zero and covariance function /(u, v) geiven by

(8.3.9) “(u, v) = min(u, v) - uv - g, (u)h (v) - g, (V)h, (u) - g,(u)hy(v)
2

- 9,(Vh,y(w) + Z o ;% (u)gj(v) , 0<u, v<l.
i, j=l

Proof. The stochastic process Z'n(u) converges in distribution to a8

Gaussian process which has mean zero and covariance function

(8.3.10) K(u, v) = min(u, v) - uv, 0<wu, v<1!,

see for example (9]. Under the assumption (i1i) the asymptotic distribu-
2

A
tion of Z n (9l - 9')9l (u) s normal with mean zero and variance
‘-‘ r
2
Z aug'(u)gj(v) . By multidimensional central limit theorem it fol-
i, j=!
lows that Yn("’ given by (8.3.8) converges in distribution to @
Gaussian process with mean zero. To find the covariance function we

have /A (u, v) = E(Y (W)Y (V)
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2

- E(z (W2 (v) -E<Zn(o) ZVT' (3, - 0,)9,(V)>
i=]

2

- € (z,,(v) 'Z-'(a o, - 9,)9,(U)>

/ \

2 2
+ E (ZG (6, - Ol)g'(u))/ ZJR (6, - 8,)s;(v) /} .

'.' \ '-l /

Under the assumptions (i) - (iv) as n > o , /%(u, v) tends to
F(u, v) given by (8.3.9) and the lomma follows. ||

9. Limiting Distribution of C> - Case of Efficient Estimetors

9.1 In this Section we obtain the lialtlng distributions of c: defined
by (8.1.1) when the estimators 3,, 82 are regular, jointly efficient
(or asymptotically jointly efficient) in the sense defined by Cramer

(4, pp. 490-495]. It will be seen in Section 9.3 that the asymptotic
distribution of C: is the distribution of the random variable

t
(:2 - f Yz(u) du , where Y(u) is a Gaussian process with mean zero
0

and covariance function f (u, v) defined by (9.3.1). Section 9.5 gives
two methods of finding the Fredholm determinant (F.D.) of the kernel

#(x, y) which is required to obtain the characteristic function of the
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limiting distribution. Lastly Section 9.6 deals with some properties of

C: test and derives the results of [6] as a special case of the results

given in this section

9.2 Case of Efficient Estimators

Fol lowing Cramér if we make a transformation from (x', Xps o) xn)

-9(0', 02’ %', ceey ’?n-z) ”h.ve

, ,r , ~
If e|, 92 are regular efficient estimators then h(%., coey ’%n_zlo', 02)

is Independent of 9', 92 and ¢ is such that

2.1 5 IR {8_ z. .', —. . A —
(9 ) ;‘5,‘ €\/j‘j : L” .ot £ ' /(lx(e‘).. 9?—)

10,73 1‘;_.((’ 9) t '11(92_ 2.)

(9.2.2)

A A
where "lj may depend on O‘, 92 but are independent of e,, 92 .

From (9.2.1), (9.2.2) differentiating each of them w.r.t. 6,, 8, and

taking expectations we obtain
(9-2.3) k = mF _3 L,f(x e) k, —wE(éL ]f(x,@

1 2:’

k - = 'Y)E( —-fof}wf(x 9/ ¢ (c]f(x)@)) .
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Multiply (9.2.1) and (9-2.2) by (8, - 8,) , (6, - 0,) respectively

and take expectations to obtain
A ~n A
(9.2.4) k"Var(Ol) + "|z°°"(°|’ Oz) - |
N A A
(9.2.5) kZ'cov(Oz, 9') + kzzv:r(oz) -1.

The covariance matrix ) = ("lj) of (8', 82) is nonsingular if and

only if

2 - [_E_éo UMP(/ \“;; .] Xf))] + 1.

E(i S "/‘ { ) ( (uf()( s)"‘

If rz = | , covariance matrix of Ol, 92 is singular and Ol and 02

are linearly dependent. As they are unblased estimates of o' and 02
it follows that 9‘ is a linear function of 92 and then we are es-
snetially in a single paramster case. So henceforth we assume that

241 . Nowdefine

5 feaf (X 5.2 jw-f(x,f))
[ E <~.a—-- -{( ('f(x)f))‘.'ﬁnz'/__c . [cjf;(x) &2]'/2‘
ol \ e
.
(9°2-7) G = (;"q‘ - j




o - C‘: Q—-— __L_..* : —e— C”l: CVZI: 's*‘U;G—L_
R (7 )E(S e fix )

2

With this notation from (9.2.1), (9.2.2) we have

"
g
A Q ~ ~ . . N
P . - /Y, C o o P .
(9.2.8) P . ’ ' — ‘67 Z ,;E/__,. chv{ N Xj7<9)‘f ':Lz- 2 .:.-—- an-j— (XJ)S) 5
2 Y‘ P ‘Y\ = >
sy = G 22 ol O Ty 2 Lo UK
- ) bt w———— — "y ; . ':, i v
(90 209) ( 2- - 4,'\' J':" | CEL h j:‘, ')\(1' <

For efficient estimators conditions (i) and (iv) of Lemma 8.3.1 are
satisfied by assumptions of Cramér and we further assumes that (il) and

(111) hold. Now let
(9.2.10) /}",(u) = a‘g‘(u) where g, (u) is defined by (8.3.5) .

The limiting form of the process Y"(u) given by (8.3.8) is obtained in

A
the following lesma when 3‘, 92 are efficient estimators.

A [a)

Lemma 9.2.1. lf Ol, 92 are regular, unbiased, jointly efficient esti-
mators of ), 6, , then the process Yn(u) given by (8.3.8) has mean

zero and covarisnce function



(9.2.11)  p(u, v) = min(y, v) - uv - ¥, (WK (v) - §, () §5(v)
- rg WY - e () e (W),

where (}'(u) are defined by (9.2.10) and have the following properties.

() f[(ja(,)_] clq_.. l/(/ ’) (2_)) Q?u) ;,) (u~-v~/(/ r?

Proof. From (9.2.8) and (9.2.9) it is seen that condition (il) of Lemma
8.3.2 is satisfied. Since the asymptotic joint distribution of

Jn (3' -9), Vn (5\2 - 6,) is normal N(o, 2) where the covariance
matrix > = (aU) is given by (9.2.7), the coﬁdltion (i11) of Lemma 8.3.2

Is satisfied. Let h, (u) = E(Z (u) V' (8, - 6,)) . Then procesding as

in Lemms 3.3 of [5] we can show that h;n(u) =n E&(O’; - e‘)|r(x‘, Q) = u}-
-néE (3' -9) . As 3‘ is an unbiased estimator of o »
nE (3‘ - Ol) = 0 and hence in the present case using (9.2.8) h;“(u).
can be written as

/ AN "o
,&';u) =1 E«{( 5 Z : L, ,').(;') +.97_2:Z 9. éof#(?&:’Q)IF(X,)E):H

[ J ;— .
g J=1 ; ’T)Jy,,‘{

-~

Since X' Xz, ces, X are independently and identically distributed,

E(‘ (oof()( Q)IF’Y e): ) g'_,_h {0x.8)

J?

for j=2,3, ..c,n and I =1, 2. Also as r(x,, ) =u is & con-

dition on X, ,
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. ) . ~ , 2 — 2 .
E(:0,_‘((.?£(X,)9)/FU‘,).f,. ; =-u)-- _O (oo (X)e), c= 1,

ok
9

Hence
< Ny
/- 7. L - fear (X6
,{‘ (4! . \'f‘ _:6’“ [(",;:; f» { X) 9) —-‘- o’:—— .".' l {. ))
M o, ‘ ol
Similarly,

-

h! (u) = %9 log (X, 8) + C_ .2. los f£(x, 0) -
n 2 56, - 5e,

As h;n(u)(i a1, 2) is independent of n we omit the subscript n .
From (§.3.5)
ojw) = L D flx, 0) = O logflx, 8, i=1,2, which

frx,5) 95 &
gives

2/ ! 2
" C { - ry e )
G (u)+ C,. A.’u)) }')1(‘) 7

/
(9.2.12) h (=6

integrating (9.1.12) and noting g'(l) - g'(o) =0 we get

/i‘/u\.‘ ~ - (L)’f(.r o, ) \ b"’l
(.23 A 8 g 0T oy v 4
Thus, condition (iv) of Lemma 8.3.2 Is satisfied. Substitution of (9.2.13)

in (8.3.9) yields (9.2.11), which proves first part of the lemma. Now

(1) and (2) follow as



| ’i.. / 7(
oL ERCH R,
fretaitu = 400 i
] - ——— - ——— -
5 S R R T |=r*
(l Y- 7 t \ ;:Z-.("_‘/'? (X)‘/)

E ('::/: ((- Q‘ff\/ \ﬂ)’-f:)'a& ‘(05 f (XJF'y
4! ) o

S

? _—

, 3 A - - !__..Y_’l - - e ?-: ._,_,,: S {/l
[E' ( SRt f,f(x,s)) E (%Q&-cj{(x)s)]
LR o

= - »‘/(/—rz) . | /|

2
9.3 Limiting Distribution of C_

The following theorem proves that C: converges in distribution to

1
Cz = f Yz(u)du , where Y(u) , 0<u< ! Iis a Gaussian process
0
with mean zero and covariance function /0(u, v) defined by (9.2.11).

Also note that we have not made any suxiliary assumptions on the function

(5),(0) used by Derling (5, p. 9].

A
Theorem 9.3.1. |If ’5', 02 are regular, unblased jointly efficlient

estimators, then

- , , 2
.[r‘\n‘ P{ Ci < U jf = Pﬁ flyzu)du 4xf
N=r& - o ‘

where Y(u) is a Gaussian process with mean zero and covariance function
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(9.3.1)  Alu, v) = min(y, v) — uv - o7 (u) 91 (v) = Wylu) Gy(v)

Sr Y, - rp (MY, 0<u, v

Proof. Note that the functions Lj?‘(u) defined by (9.2.10) are continu-

ous and (g'(u) € Lz(o, 1), i=1, 2. By Leams 9.2.! the process

Yn(") given by (8.3.8) converges in distribution to a Gaussian process

Y(u) which has mean zero and covariance function /0(0, v) defined by

(9.3.1). write /’(u, v) as P (u, v) = min(u, v) - uv - ‘l(u).'(v) -
-'z(u).z(v) , where

9,0 = JO - F W, and #yu) =g )+ §,00 .

By a method similar to that used in [6, pp. 195-197] we can get a Kac-
Siegert representation, [10] for Gaussian process Y(u) with mean zero
and covariance function /(u, v) and show that the sample functions of
the process Y(u) are continuous with probability one. Hence an applica-
tion of Donsker’s Theorem [11] gives the required result. ||

The characteristic function of the random variable
/
2 2
C - f >/ Fu) v[u

\ is given by, see [9],
]

"/2.

{ L
(9.3.2) exp (it ‘//,4 ’/" __..*.E‘ - 21 )
{ [ 5‘ ) = /M )

J=1

where ‘{“j f are the elgen values of the kernel /0 (u, v) defined by

(9.3.1) 1i.e. roots of the integral equation



1
o(u) = uj; f(uQ v) s(v) dv .

The expression on the right hand side of (9.3.2) is nothing but

(p (2 It)]"/2 , where D(u) denotes the Fredholm determinant (F.D.)
assoclated with the kernel /(u, v) . Thus to obtain the characteristic
function of the limiting distribution we have to find the F.D. of the

kernel /’(u, v) . VWe find this characteristic function in Section 9.5.

9.4 Case of Maximum-likelihood Estimators k

Assume that all the conditions of Cramér [4, pp. 500-504] are satis-
fled. These conditions imply those of the Lemmas 8.3.1 and 8.3.2 except
possibly condition (iv) of the latter. We assume that condition. Then
by arguments similar to those used by Darling [5, Section 5] in the case
when 8', 32 are maximum likelihood estimators, the asymptotic distribu-

tion of C: is given by Theorem 9.3.1.

9.5 Fredholm Determinant of the Kernel £§x, y)

This section glves two methods of finding the F.D. of positive

definite kernels of special form which enable us to get the characteristic

function of the limiting distribution of c: .

Theorea 9.5.1. Let
(9.5.1) /0 (x, y) = K("o y) - ., (x) .I(Y) - .z(x) .2(7) ’ 0<x,y<1,

be a positive definite kernel, where K(x, y) is a bounded symmetric,

positive definite kernel over the unit square 0<x, y <1 and
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" (x) e Lz(o, 1), i=1, 2. Let the kernel K(x, y) have simple
eigen values 0 <A, <A, < ... and fl(x) s f2(x) ... be the corres-
ponding normalized eigen functions of K(x, y) , also let dl(x) be

the Fredholm determinant (F.D.) associated with K(x, y) . Define

! i
— ~ N A - r N N ‘. \," '_ .,
(90502) dJ - { K(X)‘g(x)'{x‘ ) !{%, b ‘)U ﬂf;(?‘/')j./?{ /L’)') j-,JZ p

)
(9.5.3) CE (9) = 'i ‘1;.!'%7::?:'3’ C()t )

(9.5:4)  Pi(x, v) = K(x, y) - §,(x) $;(y) , 1=1,2.

l.et{ } ({X ) and )\f;(x)} (,\5 f;‘;x)}) denote respectively

the eigen values (in the order of magnitude) and the corrospoudlng nor-
malized eigen functions of the kernel f' (x, y) (fz(x, y)) : a (a ) ,
aj (pj ") be defined as in (9.5.2) with f; replaced by f* (f“'*)

Also define

1. >
(9:5:5)  P(x) = If)Z : P(A,J—r?«Z_P JAT A,
Jjz I'Z/} ‘ yxl")\/) J

Py (}.)( ().) are obtained by replacing Bj( a.) by Bj (0 ) in
P,(\ (P, (A) . Then the F.0. D(\) associated with the kernel £l )

is gliven by



(9:5:6) DO = d;(0) P,00) P5 () = d,(8) P00 B O -

Proof. We prove that D(\) = d'().) P‘(x) P‘;’ (\) . Since /a(x, y) is
s positive definite kernel, /l(x, y) being the sum of two positive
definite kernels Is also positive definite. By theorem 6.2 of [5], the
F.D. D‘().) of the kernel /"(x, y) is D'().) - d'().) P O\) . Now we
proceed to show that the F.D. associated with f(x, y) is o(\) = 0, () P

The integral equation
|
(9.2.7) gle) = A j [K(’l,g}-"{"(':()"{;(y)'ﬂrl(x)ﬂrf\f)jgty)dy
(i

can be written as

|
(9.5.8) g(x) = -ACllg)'Yl(g)’f}é‘f;“;y)gﬂ”"l .

Then we have
*
(9.5.9) 9(x) = —“9)2—-'-——“"’ 2 *)\ )
j=i - A/X

see, [12, p. 228]. As g appears on both sides of (9.5.9) it is not a
solution of (9.5.8). Multiplying both sides of (9.5.9) by Qz(x) and

integrating we obtain

x
z‘@[‘*kz' —-La-/—; , (e cltg)E(A)zo,

(x) .
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This implies that either g 1is such that cz(g) =0 or A Is a zero
of Py(\) . When X ¥ i} ¢,(3) 40, because If c,(g) =0, (9.5.8)
is a homogeneous equation with a non zero solution for A ¢ i’; . There-
fore, only for those values of A\ , which are elther zeros of P;.(A) or
are eigen values of the kernel f'(x, y) , the equation (9.5.8) can

have a solution i.e. X Is a zeroof D,(\) F3(n) . l?;o.) is

i’.; « Also

analytic except for possible simple poles at A =
D, (0) F3(0) = 1 .

To prove that D, (A) F,(\) is the F.D. of the kernel pP(x, y)
we have to show that for any zero A\ = X\ of D'().) P;(x) there exists
a solution g(x) of the integral equation (9.5.8) such that

|
fﬁz(x) dx = 1. In the course of the proof of Theorem 6.2 of [5] we

0

observe that the zeros of D,(\) are either simple or double. Let X
be a zero of D,(\) P';(x) . We have to consider the following three

cases.
() x4 i; ;
- * <3
(it) A=, , where xj is a simple zero of o'().) : pj =0.
- X% *
(111) N =, , mcrq )‘j is a double root of D'().) say
*x 5% o ->*
o R LU B P

*- x*
Note that in case (I1) it is necessary that pj = 0, because if ’j 40,
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A cannot be a zero of D(\) . Similarly in case (iii) it is necessary
+ *-
In case (i) since X is not a zero of D,(A\) , it is such that

>, -
rz(x) =0 . Then

o2 Yo
= p %
(9:5.100 §(x) = |2 L Fx) Z
5 =3 I (/-A/)\J*)

is the solution of (9.5.8). As p(x, y) Is symmetric X is real.

Also since
*/ oo p* 2
P:.()\)=Z _L_.;> 7 0 , forreal A, X\
J’:' ")/)\J.

is o simple zero of P:(x) . Thus for any X\ under case (i) g(x)
given by (9.5.10) satisfies (9.5.8).

in case (I1) we have two subcases. (a) X\ is such that D, (\) =0,
l’-;—():) 40 . Inthis case N is a simple zero of o'().) l;;-(x) and
fT(x) satisfies (9.5.8). (b) |If o,(i) =0, Pq;(i) =0, 0 (\) l;;(x)
has a double root at X -;.: . In this case f-;(x) and g(x) given
by (9.5.10) are solutions of (9.5.8).

In case (ii1) if X 1Is such that D,(X) = 0, and ?;(i) 40, X
is a double root of D, ) l:;(x) and f*(x) R ;'(x) satisfy (9.5.8).
If N is & zero of Pz(x) and also O, ()\) =0 then N is a triple
zero of D, 0) Pz(x) f (x) , j_._‘(x) and g(x) given by (9.5.10)

are the solutions of (9.5.8).
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Thus for each zero of D,(A) I?;(x) we obtain solutions of appro-
priate multiplicity to the equation (9.5.8). Hence D(\) = d'(x) P'(x) P';-().)
is the F.D. associated with £ (x, y) . Writing the equation (9.5.7) as

!
ge2) = -/\C,(g)qv,(x) + 7\£ é(z)y)g(y)d«, 5

and proceeding in the same manner as above we can show that
o(\) = d,\) P,0\) l?:*-(h) . This proves the theorem. ||

Even i f Theorem 9.5.1 gives a method of obtaining the F.D. of
f(x, y) , the method requires the laborious task of finding the eigen
values and eigen functions of two kernels, namsly K(x, y) and fl(x, y)
or /02(:(, y) . The following theorem which is a generalization of
Theorem 6.2 of Darling [5], avoids the above mentioned difficulty by
giving an expression for the F.D. of ﬁ(x, y) for which only the elgen
values and the eigen functions of the kernel K(x, y) are needed. The

proof of the theorem was suggested by Professor Gopinath Kalllanpur.

Theorem 9.5.2. Let
/0()(, Y) = K(X, Y) - ’] (‘) .l (Y) - ’2(") ’z(Y)

by a positive definite kernel as described in Theorem 9.5.1. Then the
F.D. of the kernel ,D(x, y) is given by

(9.5.1) OO = 4,00 ,

where



(9.5.12) A () =

W) P00

il
N
M3
[y
C®
>
‘-
>

(9.5.13) QN

Proof. Write the integral equation (9.5.7) as
]
(9.5.14)  glx) = —A [C,(gw’,u) +clzg)"r{ﬂ]-r)jK(v,‘f)gty)dy .
[5)
Then

(9.5.15) 3(1)- )C(q

ey
U
|
>

Multiply (9.5.15) by .‘ (x) and .2(::) rospctlv?ly and integrate to
obtain
(9.5.16) "c|(g) PO + cy(9) V) = O,

c.(g) Q(\) + 62(9) Pz(x) = 0.

(9.5.16) Is a system of homogeneous equations in c,(g) , c,(g) and has
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a non-zero solution If and only if AD) =0 . If A ¢ xj both ¢, (9)
and cz(g) cannot be zero, becsuse c, (9) = c,(g) = 0 implies that the
equation (9.5.14) is homogeneous which cannot have non-trivial solution
unless d'().) = 0 . Therefore the equation (9.5.14) has a solution only
when either A\ Is such that A(\) =0 or A Is a zero of d'().) .

To prove that D(\) = d'().) A(\) is the F.D. of the kerne! Px, y)
we show that

(9:5.17) 4,00 AN = d,() P, () Fi0) = d, () P00 Br ) -

It is sufflclent to prove that zeros of d, 0\)Ao0) and d, () P, 0) Pz().) -
d (x) Pz(}.) P ().) are the same. If A is a zero of d (\) thon itis

a zero d,(x)A(x) , d'().) P'().) on‘) and also of dl(x) Pz()u) P-:*(A) .
Suppose that X is a zero of A() and d,(\) 40 . Since AQR) =0
there exists a solution (c‘(g) R cz(g)) of (9.5.16) so that at least

one of ¢, (g) 1 =1, 2, isnot zero. Without any loss of generality

assume c'(g) 4 0 . From the integral equation

9()() = =) C,(CJ)"{;(X) + }\{/2(7)7)9(7)6/7 wre Awe

% X ¥
_ , X %
9(7() oo —,\C'(Q)Z o(J -f,(x) .
Jeo 1/

AN
Multiply this by " (x) and integrate to obtain < (9)?, \) =0.

Since c,(9) f o, P.:(*(i) = 0, which implies that d,(i)rz(i)?;*(i) 0.

Thus we have proved that if A is a zero of dl().)A().) it is a zero of



XK
d,(k)i"(k)"' ) -
Now we prove that a zero of the right haM side of (9.5.17) is a

zero of dl@.)A(}.) . Here the following three cases arise.

Case (i) N # N

By Schwarz's inequality Q(A) = 0 and hence AD) = 0.

and N is such that r‘(i)-o, Pz(i)-o.

Case (ii) A X, PN 40, P,(X) = 0 . In this case also
Schwarz's inequality yields Q(X) = 0, hence AQR) = 0 . Similarly
when P () =0, P ()40, AK)=0.

Case (i11) Xér , P, (X)¥0, P,(X) ¥ 0. Since idxj both
c'(g) ’ cz(g) cannot be zero. Because if c, (g) = cz(g) = 0 equation

(9.5.14) is homogeneous which cannot have a solution unless A= A’j .

Without any loss of generality assume cz(g) 4 0 . Then from (9.5.16),
ey (1 - R RIP, K] = 0. As cyle) 40,
Qz(i) - P.(i)?z(}:) , ;nd N is a zeroof A() .

Hence a zero of d'().)Pz(x)P-):f().) is a zero of dl(x)A(k) . This

completes the proof. ||
Corollary 1. If ’l (x) = f.(x) /ria , ’2(x) - fn(x) /J—i" , then

(0,2)
D)) = J_T[ (1- 7/)\J')

j#m
Proof. In this case Q(\) = 0 and P‘b.) -X, / ().m -,

P,0N) =/ (\, = N) ; hence the result follows. ||



Corollary 2. The F.D. of the kerne!l /(x, y) defined by (9.3.1) is

DIAN) = 2imlA AN, whevt
VA~

0o 2 st 2 ‘)
1+ A=) — ,/\W it
=AYy ; - 1L
AN = T =1 Ty
: © 2 ® 2‘
AR Al ) ()
N e v

| I
with a = ﬁ‘f q'(x)sln(mx)dx , bJ - n! (gz(x)sln(njx)dx ,

(]

j-‘,z,...

proof. write §,(0) = 001 -2 , 000 =g 60 + §y00) ,
then (9.3.1) reduces to

Plx, v) - min(x, y) = xy - §; ()9, () - $,()4,0y) -
Also for the kernel K(x, y) = min(x, y) - xy
x = 42, £ () = V2 sia(mx) , 4,00 = (sin3) /{%

Substitution of aj = f( - rz) 'j ’ Bj =r 'j +b, , and

4,0 = (sind® ) /Y% in (9.5.11) yields the required result. ||




9.6 Soms Properties of c: Test and Applications.
Cumulants of the limiting dlstrlbut!on:' As in [9] it follows

that the cumulants % of the asymptotic distribution of C: are given
by

-

w .
(9:6.1) % = 21-1(1-_,)! 2 —/LuT L, )=l
"

where {“j} are eigen values of /0(u, v) . On account of Mercer's

theorem [13] K; can also be obtained from
2J-! ' ’
=227 - Atu,uddu
"j =) off ) ’

where fj(u, v) is the Jjth interate of the kernel f(u, v) i.e.
]

Pl v) = plu, V), /j(u. V) = f ,0 (u, ) p(s, v)ds .
o J-!
Hence the mean and the variance of the limiting distribution are obtained

{
IC, = f f/u,u)c(u
0

/ 2 ] '
| 2 -
—6— jg@l(tl)c[u—{ sz(u)c/u 7_7‘}0‘ Ep,(tc)(fllca)cj(,lj

b

[
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vl
K, = sz [vnin(u)v)—uv—cy,/u)?‘(v)—tyz(u)tf(v)—'r-cf(u)qw)-'
0o + ' s
R
-Hg'(v)Lglu)_] dudv
P

0,1
2
= 41} . ,_(/q_é_)_w(,_p)gg GnQv)gurg (u) dudv

wt1-r) [ [ g Furduc—{ fvrg o J
- ) foa_ Vg cw - O(/-\/)Lg'(v)ou(f,(u)du v

y v l |
- <ov(f>(/—\/)ga;cv)§> ugz(u)oluolv- lérg(:—v)tglcv)gu (f.(u)c(qd\l .

When OI, 6, are both known, the Cramér-Smirnov test based on u:

is used for testing the hypothesis 6(x) = F(x, ) . The limiting dis-

tribution of u: is the distribution of the random variable

1
w = f vz(u)du , where W(u) is a Gaussian process with mean zero
0 .

and covariance function min(u, v) - uv . Using Kac-Siegert representa-

tion [10] for the process W(u) , uz can be written as

00
2 .
&)z‘.—_ Z(Gj/ﬁj 2’) , where G', Gz, «+. &are independently normally dis-
S

tributed with mean zero and variance ! .



When © 02 are unknown the limiting distribution of C: is the

"

|
distribution of the random variable 2 - f Yz(u)du , where Y(u)
0

is a Gaussian process with mean zero and covariance function ,0(u, v)

oo
given by (9.3.1). ¢® can be expressed as 2 - Z(G} / uj) , where
J=l '
{”jg are eigen values of /D(u, v) end G, G, , --- are Independently

normally distributed with mean zero and variance 1 .
Note that @, (x) 4, (y) + §,(x) 9,(y) + ro,(x) G,{y) + ry,(y) ¢,(x)

is a positive definite kofnel. Hence by maximum-minimum property of
eigen values, [13, 14] it follows that the weights ',".i in (:2 are not

greater than the weights ll—n'zjz in .2

. In the case when t'(x) and
’2(x) are functions of the special form as described in Corollary 1 of
Theorem 9.3.2, the number of terms in the infinite product for D(\) s
reduced by 2 . This is analogous to reduction of degrees of freedom in
the usual 7(.2 theory.

The cumulants of the distribution of .2 are
[~
J
.j‘°) - 271G Z(l /nzrz) , while those of C2 are given by
r=|

(9:6.1). Since /7752 2 1My 9 > g -

Scale and Location Parameters: A test is said to be asymptotically

parameter-free if its limiting distribution under the hypothesis is in-
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dependent of the unknown parameters. The c: test under investigation
will be asymptotically parsmeter-free if f(u, v) , the covarlance

function involved in the asymptotic distribution of C , does not de-
pend on the unknown parameters ©,, 8, in Flx, o, 8,) . The follow-

ing theorem shows that when O, is a location paremeter and O, a

2
n

test is asymptotically parameter-free. In the case when the distribution

scale parameter, /(u, v) Is independent of 8, &, and hence the C

depends on only one unknown parameter 6 , Darling has shown that if 6
is the scale parameter or the location parameter the modified Cramér-

Smirnov test Is asymptotically parameter-free.

Theorem 9.6.1. If the distribution function F Is such that
defined by (9.3.1) is Independent of 9, o, .

Proof .

‘f(?,@) - H’(z(—ég,) _ _.L.A( Z_’__(EI__) , /‘/(-n(e
N .

b, 5,

2 +00 wy
el 0m) = L (it

..‘-OO / 2.
E(.é%.llxj:f(x)p))l = _é.;.: L{[vh(y)]/k(y)}dy ——é} 5

PR

and
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40
N ’ 2—
E(s%‘¢ejf(x)g),%;Dj,f(x,eyz _é_;f{y[hw]/m)}dy .
‘ L g0

S’ «‘ /[A(V))/k(y>}dy

_.rl

ﬂ: [“(Y)]/Iw(?)}d'/j)[ “y[hfm/my) Jj'/z.

Using these results

is independent of 6,, 0, -

+ 6
‘?(u)(g(v) k(H(u)]k[HCv)]}/(l~r‘)f ([h'(\l)f/h(‘{))d‘j} )
glwy (v) ={H'(u)n'tv)hl'.ﬂ'(v)] k[ch)]}/i(: r)f(mm\,)]/m,)dy j

*+H {cv)h[H (wlh(H (v)J

Y= T MJ‘ {[h(v)]/h"f)}d",/“ {[x,h(?))/h(ﬁ)}/‘f ]f

w1 tuyh [H )] hIH )]

V000§ (L .
Yy = 7~ %){[f {[h(w)]?/ls(‘{)}dj[j {[\,’L,(t{)]yhlq) d? Jg/z__ .

are independent of @, 0, and hence the result. ||
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Case of Normal Distribution: In case F(x,.e) is » normal distri-

bution N(x, u, cz) with unknown mean i and variance cz , we estimate

p by x= (1/n) Z X » and 02 by 2 - (1/n) z (x‘ -i)z . In
j=ml i=l

this case r, af R °§ defined by (9.1.6) and (9.1.7) are found to be

r=0, af-oz, 02-20“. Now we compute t?'(u), gz(u) required

to obtain P (u, v) given by (9.3.1). Let Yj - (Xj -u/o, j=1,

2, coey o Y, ooy Yn is a sample of n Independent observations

')
from N(y, 0, 1) . Let 0<u<! and

-"E'_Vl — v | )
¢(4) = —i;[—- e ; f(g):jw 49(1)d7() \T(“)"{Y: u:?(y)% .

Now we find h, (v) , hz(u) as

h(w) = lim E(\J"ZI“‘)Y)_.LM ’Y\UE{\,,\/ LT (w)- YmEJ

-7 n70
= lm {ouE[Y ]7,<J«LJ} ¢(j(u)).
m— 00

htuy= lim £ JTvZ(V)(swt)j

Nn-2¢

= |im [,,u E.{(si-—n)/\/'cjzw}-— nu E(Sl.,,)]

n-—2%

- lim s"“ y'éj_[uﬂ = J—(H)4’(T(M)) .

A A%
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Hence Using af-'. 02-2, G (u) = h(u)/o, , | =1, 2 we obtain
(mﬂﬂmmanWh#JMNmn,m

Plu, v) = ain(u, v) - w - $(w) $QCw)) - HLAD g (5()) $Go(v)) -

This was obtained in [6] by quite a different method.

10. k-Sample Cramer-Smirnov Test in the Parametric Case

10.) In Sections 8 and 9 we considered Cramér-Smirnov test for one
sample problem when the functional form of the underlying distridution
wes known but the parameters on which it depended were wnknown. In
this Section we propose to study the modification of k-sample Cramér-
Smirnov test in paramstric case.

tet X, (1=1,2 .cc,n, j=1,2 ..., k) be independent random
varisbles with continuous distribution function Gj (x) . For every
0 ¢ I, an open interval in R'_ let F(x, 6) be an absolutely continuous
distribution function. For testing the hypothesis M, : G, (x) = Gz(x) -
e o om Gk(x) = F(x, 0) , when the functional form of F is known
but O Is unknown, consider the test based on the statistic

+060 k

. S
() . .
gy Coo=Jf nl fijw - FOt, 8] dF (4,€)

-0 jz

k

where N = z " ns= (n', Nys +oey "k) R F:j)(x) is the empirical
J=1
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distribution function of Jjth sswple, and 6, Is an estimate of @

N
obtained from the pooled sample. The hypothesis nk is rejected if
C;z is too large. The aim of this section is to find the asymptotic

distribution of C€!° under the hypothesis H, . Here also, methods
used in [S] and [6] are employed. Throughout this chapter it is assumed
that when N —> o0 esch “j-»w (J-', 2, coey k) and

] (n,/N) = ists.
"-;o nj .j ax )

We note that the asymptotic distribution depends on the properties
N\
of the estimator 9" and the characteristic function of the limiting

distribution given in Section 10.4 involves aj's .

10.2 Case When 6, _is s Superefficient Estimetor

Suppose the hypothesis nk is truse. Let © be the true unknown
value of the parameter and f(x, 6) be the probability density function
corresponding to F(x, 6) . k-sample Cramér-Smirnov test statistic

u"‘z is defined as ,

I)_ 400 k __(J.) _ q | d
w, = f Z’”J'[ }:n‘(n - f—(y,(s)j flx,6>d« .
.._Oa ./.:" J

Let xj',, x}z s seey xj'nj be a rearrangement of the jth sample

xj,, sz, cooy xj“j $0 that xj' <x}2< o oo <xj'“j . Then u;

2

and c".z can be written as



T k k 7 4 ( ’ 2
N - -
an et 5 o
j:l J /=i Iz J
[ WMo
L R 7
;2 - - } ‘I A '
('0.2.2) C‘)’7 = Z_ ,?’—n. + 2_ Z LF(/“"BN)— Q'( ')] .
j.:' J ‘/':' 'z 'L'nJo

. _
Theorem 10.2.1. Let 6, and F(x, ©) satisfy

(i) tim NE@G, -0)2a0,
N —> oo
(11) For 0, 0 €T

|F(x, 8) - F(x, 8')]| € A(x)|® - 0'| ,

where A is such that P{Az(x)>Ao§ =0 for some A) <o , where

the probability is according to true distribution F(x, ©) .

(i1i) lim njlﬂ-aj , J=1, 2, «ioi, k.
N —>
Then c,'.z-u"'2+a" where lim B, =0 .
N —> o

Proof. This theorem can be proved in a meanner analogous to that of

Theorem 2.1 of Darling [5]. ||

_Remark. Under the conditions of Theorem 3.2.1 the limiting distribution

of C"'z is the same as that of “'.‘2 which is given in [7].
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Al

10.3 Case When O"

be a regular estimator in the sense of Cramér [4, p. 479].

is & Regular Estimator.

~

Let ON

In this case v:r(an) > A/N for soms positive A . In general even if
assumption (i) of Theorem 10.2.1 may not be true, in many cases we shall

have for some B8 such that 1/2>8 >0 lim N'lz'b(é\ -6)=0.
N —> @ N

The following lemma ensbles us to write c"‘z in @ suitable form that

will be useful in obtaining the limiting distribution.

Lesma 10.3.1. Let

(1) lim (nj/N) -9, j=1,2 ., k.
N —> o

(i1) For 1/2>8>0 lim n'/z'b(gn-e)-o.
N —> oo

For almost all x and all 06 ¢TI

(i11) e F(w,&)l &G x)
29 °
2 Z gt
(iv) /,55.{?(7)5){ 9‘x)

where go(x) » 9 (x) are integrable functions and also independent of

the exceptional set. Then

.2 [] 2
('°o3o|) c" = c" + 6" K}
where plim 6'. =0, and
N—D> o



(3 400k
1 X - A _._"L
(10.3.2) Cn - J Z'njL[;,(x)—/-‘(z,&)—(s}v'»g-)_a_\r(x)[,i.};\,?)m{ ‘.
wJ:I J LS

AN
Proof. Expand F(x, 3&) and f(x, e") in a Taylor's series around

the true value 0 : _
A A A 2
F(x,5,) = F(X;@)f(SN«@)tG\g,F(Y)g)*—?I:( 668,91, 18,1¢1,
B2, 9,) = 400,8) + (6,-6)4,9,%) , 141<] .

Substitution of these expressions in (10.1.1) yields,

2 k + O (j) i . ' \ )
(10.3.3) C; = .ijfLF;vJ"‘)’”")”"GN’”;E; F(r,a)]fm,mdx
Jor T

k $ o
+) (“j/q)f (@N'&)lt\olgz(w)-f(z)@)dx
' 0

)7
k +9° 0 B ) . |
’ZW{ [E,.(")"H”)Q)'“N"9)«‘5;””)33(”’,{9) Aofjom)e(z)o)dm
J:‘ J*O) J e& '
k + 14) z,
- -(8 - = -6)a g irdxy
_'_Z'nj.fco[}:;(x) Fly,s) (eN @)}%I’(X)BB(GN &) ’3I>(



L o .
+3 (mj0)f (5078700500 dx

z
k 400 .

_ ijf [ﬁ({()ﬂ‘[:/r}g)_(év,g)b%r'f/)gﬂ(éN'eonA‘go/x)jrx)cl( .
s
By an application of Kolmogorov's theorem, [8] under the assumptions (i) -
(iv) of the lemma it follows that all the terms except the first oncin
(10.3.3) converge in probability to zero and hence the result follows. ||

Lesma 10.3.1 reduces the problem of finding the asymptotic distri-
bution of €!2 to obtaining that of €'*% given by (10.3.2).

The following transformations will be used in the sections to fol-
low. As in Section 8.3 let u = F(x, 0) , “jl = r(xj‘, Q) . Define
as before tt(x) =1 if x<t, Qt(x) =0, If x>t . Then with
probabllity one we have

7y g
(j) . —J_ u (U"
F,.o0 = # . \rx(xjf) = m; 2—-/)‘:/4 J‘)
J J L:‘ J Ty
Also set

s Ly Tl ][ g ]
T

(10.3.5) 31»«) = a_%. F(J';&),



Observe that g(u) is in general a function of © . Employing these

transformations, C"‘z can be written as

z A el gy L2,
(10.3.6) c'o= 0 L s ol o
Jl:, o 7
J

where plim 8
N —> o

"-O, and

() (§)) ~
(10.3.7) vnj (u) = an (v) - ﬁ:l (o, - O .

The following lemma gives the limiting form of the stochastic process

Y'(‘j)(u) . We note that this lemma is analogous to Lemma 3.2 of (5]
J
which is proved under somewhat different assumption. For comparison of

these one mey refer back to comments before Lemms 8.3.2.

Lomma 10.3.2. Assume that

(i) Cr"z can be written as in (10.3.6) ,

(i) VN (8, - ©) Is asymptotically normally distributed with
mean zero and variance az >0 .
i e € @) /5y Gy - @) = ajhlu) , where h(u) is
N —> oo J
such that h(1) = h(0) = 0, and a, = lim (nj/n) .

J N —>

Theﬁ the stochastic process Y"‘j)(u) given by (10.3.7) comnrges. in
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distribution to a Gaussian process Yj (u) which has mean zero and co-

varisance function
(10.3.8) fj(u, v) s ain(u, v) - uv - ajg(v)h(u) - ajg(u)h(v) + ajazg(u)g(v) .

Proof. It Is known that the process Z'('n (u) converges in distribution
to a Gaussian process Zj (u) which has mesn zero and covariance function
K(u, v) = min(u, v) - uv , see [9]. From the assumption that

lim (n,/N) =

s 8 and (I1) It follows that Ji} (6‘“ - 0) Is asymp-
N—> o

totically 7 (o, ajaz) « Hence the process ng)(u) converges in dis-

tribution to a Gaussian process Yj (v) which has mean zero and the as-

sumption (i11) ylelds that

lim /’(j)(u) = |im E[Y'(.j)(u) Y'(.j)(v‘)]- le("’ v)
J J

"j -—> ® nj "j —> 00

given by (10.3.1) and hence the result. ||

To find the limiting distribution of c: the estimetor 0. Is

N
speclalized further in the next section.

10.4 Case of Efficient Estimetor

Suppose that 6‘“ is an unblased, regular efficient estimator in
the sense of [4]. Further we assums that éraﬁr's'condltlm (&, pp. 477-
489) are satisfied and also conditions (i) and (1i1) of Lemma 10.3.1
are fulfilled. Let
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k ’nf 5 \ 'L:’,
L= _H_JI ‘f(){}'(~}t9> and 0 = [E(;}%@gf(’()@))"] .

]! €

Since sn is an efficient estimator,
k
(10.4.1) _g.{.z(é‘N»@) = 2 Z log f(le, @) , and variance of
J5r = '

([N (0, - 0)) =c?, is independent of N .
To obtain g(u) defined by (10.3.5) we proceed as in [5]. Write

— W A oA ) .
A‘n}(.u): 3 ér}.[u)‘/;j(QN—@): t’B%'”Z“f’J”j()]“’?j'ut /&N’&)
(=

Since under the hypothesis M, , Y (i=1, 2 ..., Jar J= 1 2
seey k) are independently identically distributed each having uniform

distribution on unit interval, hn(u) can be written as

J
A A
hn}"’ =nu E {(On - O)Iu” <u} - nyu E (0" -0) .

By Lemma 3.3 of [5] and due to unbiasedness of ; using (10.4.1) we

N
have

h;}u) - Ei(a\" - O)Iu"- u} =



2 f J %
= 7 { “§> g7 (Xj,0) [uyy = ¢
v — ¢

= -
-

Since c?— log f(X 510 6) are independently identically distributed when
the hypothesis nk is true and U= is a condition on x" ’

(104.2) B0 = 5'1_“21__ (»j)e(w)ﬂ)
J N

From ('00305) and ('00“02)

‘wWe L .3 f,o-él f(,e--—-—U A(“)
9'(u) sy Te (x, 8) = g log flx ) % j

which gives after integration and noting g(0) = g(1) = 0, that

lim h“(u) =g ajg(u)

N—>m j
Hence
,aj(.,, v)= lim f(j)(u v)

"j -—> 00

- lim [E(ZU)(u)ZU)(v) - g(v)h (u) - 9(0)" (V)

J->o j

+ g(u)g(v) E n, o, - 97
= ain(u, v) - uv - azajg(u)g(v) .

Thus In the case when &, s an efficient estimator Lemma 10.3.2 yields,
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A
Lemsa 10.4.1. If % is an efficient estimator, the stochastic process

Y:j)(u) given by (10.3.7) converges in distribution to a Gaussian
J .

process Yj (u) with mean zero and covariance function /3(u, v) de-

fined by

(10.4.3) fi‘(u, v) = min(u, v) - uv - ajtg(u)g(v) , where
(10.4.4) (g(u) = ag(u) .

Now we are in a position to find the asymptotic distribution of c;z .

It is interesting to note that the characforlstlc function of the limit-
ing distribution of c;z involves the proportions (s 's) In which the
jth population Gj is sampled. Further it might be observed that the

2

limiting distribution of w'" obtained by Kiefer Is independent of

aj's .

A
Theorem 10.4.1. If 0"

,.l.';;{c:'z <x}- r{i f' vf(«)d.-q} ,

J-l 0

is an unbiased efficient estimator

where Yj (W( =1, 2, cse, k) are mutually independent Geussian pro-
cesses with zero means and covariance function loj (u, v) given by

(10.4.3).

Proof. Observe that (g(u) defined by (10.4.4) is a continuous function
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and (ju Lz(o, 1) « Let {xk} be the eigen values and %fk(u)j
the corresponding normalized eigen functions of the kernel

K(u, v) = min(u, v) = uv . Let

I @
2 2
(10.4.5) aj - .[(f(u) fj(n)du , « -jzl xj aj .

By Lemma | of Kac, Kiefer, Wolfowitz, as fj(u, v) is a covarience
function ‘j 02 <1 . Let W(u) denote Kac-Siegert representation of a
Gaussian process with mean zero and covariance function K(u, v) . Then

proceeding as in [6], It can be verified that

(- J0 - e dl) = '
(10.4.6)  ¥/(w) = W(w) - - J g (u) z M O f W) f, (v ,
lo=1

0

is a representation of a Gaussian process Vj (u) which has mean zero and
covariasnce function pj (u, v) given by (10.4.3). Since the sample
functions of the process W(u) are continuous with probability one, and
‘ 0o
by an application of Lemma 2 of (6], Z akfk(u) converges uniformly to
lom
Lg(u) , the sample functions of Yj (u) are also continuous with proba-

bility one. By Donsker's theorem [11] the required result follows. ||
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Now we obtain the characteristic function of the limiting distri-

bution of c"‘z . Let uj (t) denote the characteristic function of
|

f Y}(u)du , then the characteristic function M(t) of the asymptotic
0

distribution of C‘:Z is glven by

k

(10.4.7) M(t) = H Hj(t) .
J=1

- Let %"jr} denote the eigen values of the kernel Pj (u, v) . Then

Mj(t) is given by ,

' (s ) . -1/2 y
_2it - -1/2
Hj(t) .»1;11 (l “T.-) Foj(ZIt)] ,

where DJ (\) is the F.D. associated with the positive definite kernel
/01 (u, v) . The F.D. d'(x) of the kernel K(u, v) = min(u, v) - uv
is d,(\) = (sin(X) /Y and its eigen values A, and eigen functions
fr(x) are \_ = -nzrz R fr(x) = (2 sinfrrx) . Then by Theorem 6.2

of (5] we have

a
o2
oj(x) = ﬂ{_:TJ"T' (_Hasz-,—-_—{-ﬁ——‘/ » MNEN



and a = J2 fq(x) sinfrex)dx , r=1, 2, ... Putting A = 2it

the characteristic function of the limiting distribution is obtained
from (10.4.7). The characteristic function depends on % i.e.,

the proportion in which jth population is sampled.
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