FOURTH -ORDER CENTRIFUGAL DISTORTION COEFFICIENTS FOR . NONLINEAR TRMTOMIC MOLECULES . Thesis for the Degree of Ph. D” MICHIGAN STATE UNIVERSITY I ‘ DAVID ALLAN SUMBERG 1972 .4— ._ 1..er ”"11 Michigan State University This is to certify that the thesis entitled FOURTH-ORDER CENTRIFUGAL DISTORTION COEFFICIENTS FOR NONLINEAR TRIATOMIC MOLECULES presented by DAVID A. SUMBERG has been accepted towards fulfillment of the requirements for Ph .D; degree in PHYS IQS mmGfiW Major professor X- - *2‘ - Datew ”3' I: {A ”I ‘ a ’3‘; 0-7639 Y “BINDING IV. C'SDNS QIJIIIMK BlNllERY INC. IRAIY BINDERS ABSTRACT FOURTH-ORDER CENTRIFUGAL DISTORTION COEFFICIENTS FOR NONLINEAR TRIATOMIC MOLECULES BY David A. Sumberg In this dissertation the molecular vibration—rotation Hamilton- ian of Darling and Dennison is expanded in the formulation of Nielsen, Amat, and Goldsmith and specialized to the case of the most general (XYZ-type) nonlinear triatomic molecule. Expressions are derived for the ten fourth-order centrifugal distortion coefficients in terms of the full set of cubic anharmonic potential constants and those fundamental molecular constants which specify the equilibrium geometry and the normal modes of vibration. These expressions are specialized to the case of the XYx-type molecule and are found to be consistent with previously published work. FOURTH-ORDER CENTRIFUGAL DISTORTION COEFFICIENTS FOR NONLINEAR TRIATOMIC MOLECULES BY David Allan Sumberg A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Physics 1972 6—73” $2.0 In mama/Ly 06 my motile/L mm Wu Sumng ii ACKNOWLEDGMENTS I would like to express my sincere appreciation to Dr. Paul M. Parker for suggesting this problem, for his guidance, for his patience, and, above all, for his warm friendship during the years I have spent at Michigan State University. I would also like to thank my wife, Lois, for her constant encouragement and her endless patience during the period in which this work was undertaken, and for helping to maintain the grammatical integrity of this thesis. iii TABLE OF CONTENTS LIST OF TABLES AND FIGURES CHAPTER III. IV. VI. VII. VIII. INTRODUCTION DEVELOPMENT OF THE GENERAL VIBRATION-ROTATION HAMILTONIAN II.1 Darling-Dennison Vibration-Rotation Hamiltonian II.2 Watson's Simplification of the Vibration-Rotation Hamiltonian II.3 Development of the Hamiltonian EQUILIBRIUM GEOMETRY, NORMAL COORDINATES, AND MOLECULAR PARAMETERS III.l Equilibrium Geometry and Normal Coordinates III.2 Molecular Parameters GENERALITIES OF THE CONTACT TRANSFORMATION TECHNIQUE FOR FOURTH-ORDER CALCULATIONS THE FIRST CONTACT TRANSFORMATION FOR THE XYZ-TYPE MOLECULE SECOND CONTACT TRANSFORMATION FOR THE XYZ-TYPE MOLECULE THE FOURTH-ORDER CENTRIFUGAL DISTORTION COEFFICIENTS VII.l General Expressions for the XYZ-Type Molecule VII.2 Specialization to the Case of XYX-Type Molecules VII.3 Determinable Combinations of Constants SUMMARY LIST OF REFERENCES iv Page vi 20 20 28 34 40 49 62 62 68 71 72 74 APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX 1. THE FOURTH-ORDER CENTRIFUGAL DISTORTION CONSTANTS ¢i FOR XYZ MOLECULES THE COEFFICIENTS (:fxss, APPEARING IN H2 AND IN O R 1 TH OUGH @10 COEFFICIENTS OF THE S-FUNCTION APPEARING IN $1 THROUGH $10 THE COEFFICIENTS a APPEARING IN i[S, HO]R AND I ¢ N 1 THROUGH @10 THE COEFFICIENTS Y APPEARING IN i[S, H0]v AND IN $1 THROUGH @10 Page 76 84 85 86 88 LIST OF TABLES AND FIGURES Table Page 8 l. The Coefficients t: Introduced in Eqs. (III-85)-(III-87) 30 2. Abbreviated Notation for the Distinct Fourth-Order Centrifugal Distortion Constants O 54 aBYGEn .. .aBa a8. 3. The Nonvanishing Coefficrents aS , Css" and (ASS,) for XYX 69 Figure l. Equilibrium Geometry of the Nonlinear XYZ-Type Molecule 21 vi I . INTRODUCTION In recent years considerable improvements in experimental techniques and the high resolution obtainable in infrared spectroscopy have necessitated taking into account terms in the vibration-rotation Hamiltonian that are of higher order of approximation in the energy than the second. In cases such as the nonlinear XYX-type molecule, in order to account for experimentally observed results in a satisfactory manner, it is necessary to include such terms as fourth- order centrifugal distortion coefficients even for low values of the total angular momentum quantum number J.1 The vibration-rotation Hamiltonian of diatomic molecules has long been treated to fourth and even higher orders, and Amat and his co-workers2 have considered this problem extensively for the case of the linear triatomic molecule. It is natural, then, to proceed to nonlinear triatomic molecules of the HDO-type as well as of the H O-type as the next feasible case for 2 complete compilation of fourth-order vibration-rotation coefficients. The general vibration-rotation Hamiltonian of asymmetric rota- tor molecules has been developed by Chung and Parker3 in the Nielsen- Amat-Goldsmith4 formulation of the Darling-Dennison Hamiltonian through the consideration of symmetry restrictions imposed by the asymmetric rotator point group. Recently, a form of the Darling-Dennison Hamiltonian has been given by Watson5 that greatly simplifies the expansion of this Hamiltonian. However, even with this simplification, the general formulation of Amat-Nielsen-Goldsmith6-9 is unnecessarily complicated to apply in the case of the asymmetric rotator, principally because of its inclusion of degenerate normal modes which are absent in molecules of this type. Therefore, instead of working with the general formulation, we start with the Darling- Dennison vibration-rotation Hamiltonian in Watson's simplified form, but specifically written for the XYZ-type molecule. This Hamiltonian is then expanded and subjected to two successive contact transformations of the Van Vleck type. Within the framework of the work by Chung and Parker3 the Hamiltonian is further simplified through extensive rear- rangements based on angular momentum commutation relations. The re- sulting Hamiltonian is, for a given vibrational state, a power series in the angular momentum components. By using an extended version of Watson's theorys, the Hamiltonian can then be related to experimental results in a manner which allows one to obtain meaningful fits to high— resolution experimental data. The principal aim of this thesis was the calculation of expres- sions for the ten fourth-order centrifugal distortion coefficients of the XYZ-type molecule. These were obtained in a form which exhibits extensive cyclic and algebraic regularities. They were reduced to and compared with the known expressions for the XYX-type moleculelo' 11 and found to be consistent with this previous work. II. DEVELOPMENT OF THE GENERAL VIBRATION-ROTATION HAMILTONIAN II.l DarlingrDennison Vibration-Rotation Hamiltonian For any theoretical calculation of vibration-rotation energy levels of a molecule it is necessary to have a suitable quantum me- chanical Hamiltonian as a starting point. The Hamiltonian of a mol- ecule may be considered to be composed of an electronic part as well as a vibration-rotation part. The Born-Oppenheimer approximation allows separation of the electronic motion from the nuclear motion to a high degree of accuracy, and therefore affords the possibility of writing the total wave function as a product of an electronic and a vibration-rotation wave function. Since we are not concerned with the electronic level structure, only the vibration-rotation Hamilton- ian is of interest. The general vibration-rotation Hamiltonian of a molecule has been studied extensively.12 Essentially, the derivation is based on classical considerations of the vibrational and rotational kinetic energies transcribed to the proper quantum mechanical operator form. In the following discussion we begin with the Darling- Dennison Hamiltonian for a polyatomic molecule: 1 -/2 1 1 H = kuéfa 8(Pa - paluasu (PB - p8)u4 p -y p + Hu‘is pgu “pgu4 + V - (II’l) The symbols a,B take the values x, y, z and refer to a set of body- fixed coordinates attached to the equilibrium configuration of the molecule with the origin at the center of mass of the molecule. The equilibrium and instantaneous positions of the i-th nucleus along the axes x, y, and z in this coordinate system are denoted by aoi and oi , respectively. The displacement of the i-th nucleus from its position of equilibrium is denoted by: +' - I I (II 2) In Eq. (II-I) Pa is the a-th component of the total angular momentum referred to the body-fixed axes and can be expressed solely in terms of the Euler angles and derivatives with respect to these angles. Thus, the Euler angles are the rotational coordinates of the problem. The vibrational coordinates to be used in this equation are the normal coordinates Qs' which have been substituted in favor of the oi. The transformation between the oi and the QS is given by: a Jfiiai = 2521393 ' (II-3) . . a . . where m1 is the mass of the l-th nucleus, 218 are coeffic1ents of the transformation, and Q8 is the normal coordinate of the s-th normal mode. The vibrational momentum p; conjugate to the normal coordinate QS is defined as: _ -- §_. _ p; - 1M3Qs. (II 4) The internal angular momentum component pa is defined by: pa = ZsAzp; a ISIS-anst-P; ’ (II-5) where a _ B Y _ B Y a _ a . Cs's Zi<£is'£is £15213.) Css' I GIBIY cyclic (II-6) a - 8 Y _ B y AS - ZS'Ziu'is'p'is giszis')Qs' a O - ZSICSISng I GIBIY CYCllC. (II 7) From Eq. (II-6) it can be seen that the Coriolis coupling coefficients, a I C85,. are zero when s = s . One now defines effective moments and products of inertia, Ida and I& , respectively, as follows: B I = _ a 2 II- aa Iaa 2isms) ’ ( 8) a B ' = -I + A A II- IaB as 2s s s ' a # B ( 9) where = 2 2 _ Ida Zimi(si + vi) . a a B i V (II 10) Ice = ' imiaiBi ' a I B . (II-ll) Ida and IaB are instantaneous moments and products of inertia. The reciprocal effective inertia tensor and its determinant are defined: r II _II _II I xx xy xz -1 u = _II I “I. II I (II-12) I J W W W I I 'I I "I l I ‘ zx zy 22} -1 (H) = (1') . (II-l3) p = det (u) = ——1—-——- ' (II‘l4) det[I') “as = uII+YI&B + Iéyl§8) , a ¢ 8 # Y (II-15) = I I _ l2 _ uaa M1881YY IBY) , a # B # Y- (II 16) The tensor (1') is called the effective inertia tensor. If the compo- nents of the effective rotational angular momentum, Pa - pa , and the components of the angular velocity, ma , are written as column vectors, then: (P - p) = (mm . Finally, V is the vibrational potential energy, and it is a function only of the normal coordinates QS. II.2 Watson's Simplification of the Vibration-Rotation Hamiltonian By commuting out n from the first two terms of Eq. (11-1) the Darling-Dennison Hamiltonian takes the form: :11 ll Iza,B(Pa - pa)uaB(PB - p8) + gZSPEZ + U +'v (II-l7) where C! II 1/ -1/ 1 4 2 - P - 1 ‘4 P P + 7 ‘ * X ua8( ) 62811 P811 8 “ PB 1 1/4 -1/4 + 42.514 [pg , u 1p; . (II-18) Here, use has been made of the fact that Pa operates only on the Euler angles and thus commutes with all quantities in H except PB and Py' It has been customary in applications of Eq. (II-l7), for instance in Goldsmith et al's treatment6-9 of higher-order contribu- tions to the molecular vibration-rotation energy, to start by intro- ducing the power series expansion of pa and u in terms of the normal 6 coordinates,and from these expansions to evaluate U to the desired . . 5 . . . degree of approximation. However, Watson has shown that it is simpler in the long run to use the commutation relations and the properties of the “a tensor to evaluate U directly, without expansion. This proce- B dure yields the simple result that: l 2 = -— . II- 9 U 8 M 2a pad ( l ) With this, Eq. (II-l7) takes the form: = 1 _ _ 1 _.l_ 2 H 62a,B(Pa pa)uoB(PB p8) + 625p; 8 M Zoned + V ' (II-20) This constitutes Watson's simplification of the Darling-Dennison Hamiltonian and will be the starting point for our expansion in the normal coordinates. II.3 Development of the Hamiltonian In this section the Watson form of the molecular vibration- rotation Hamiltonian will be expanded to fourth-order of approximation in the energy and terms of various orders identified and written out explicitly. As a first step in this derivation we write Eq. (II-20) as: = 1 - 1 7 H éZaIBuaBPaPB éXoIB(pauaB + uoBPo)PB + éiaBpauaBpB l - g hzfauaa + 9223 p;2 + V - (II-21) The terms of Eq. (II-21) represent, in succession, the pure rotational energy, the Coriolis coupling energy, the first correction to the Coriolis energy, the second correction to the Coriolis energy, the vibrational kinetic energy, and the potential energy of vibration. We begin the expansion by writing the effective moments and products of inertia in terms of normal coordinates. Substituting the appropriate form of Eq. (II-2) for oi , Bi , Yi into Eqs. (II-10) and (II-ll), and using Eq. (II-3) to introduce the normal coordinates gives: _ a a8 a8 = IaB - Iaaéae + 2s as Qs + 23,5' Ass'Qst' a, B x,y,z (II-22) where 2 2 13a = Xi mimei + Y01" a # s a y (II-23) 13.8 = -Zi miaoiBoi , (II-24) aa _ B Y a8 "‘ ZZi/{n-i(Boi£iS + YOi'Q'iS) I a # B 5‘ Y (II-25) GB _ _ B a _ as - Zi/fii‘aoizis + 8012.15) , a 7‘ B 7‘ Y (II 26) 10 “a = B B y y _ Ass' Zi(£is£is' + zisgis') ' a I B I Y (11 27) GB _ _ a B _ Ass' - Xi £15 is' ' a f B . (II 28) Substitution of Eqs. (II-22) and (II-7) into Eqs. (II-8) and (II-9) gives: I = o as as I IaB IooaaB + 2s as Qs + Zs,s'(Ass') Qst' (II-29) where a8 , _ a8 _ a B _ (Asst) - ASS. ZS" CSSIICSISII ' (II 30) In the above, a,B:Y = x,y,z have been taken as the axes of the coordi- nate system in which the equilibrium inertia tensor is in diagonal form (principal axis system), and I; = O for a f B. B We continue with the expansion of Eq. (II—21) by writing “a8 as a power series in the normal coordinates. This is permissible, because the “a depend on the components of the effective inertia B tensor which, as we have just shown, are functions of the normal coor- dinates. Furthermore, displacements in the normal coordinates are assumed to be small. The “a then take the form: 8 — _ o o 08 a8 uaB - uBa - (l/IoaIBB)[Q(O) + is C(l)s Qs a8 08 + Zs,s' 9(2)ss'Qst' + Zs,s',s" 9(3)ss's"Qst'Qs" a8 + ss's"s 9(4) II IQSQSIQSIIQSHI + ...] XS’SI'SH'SHI (II-31) where the various quantities Q are the expansion coefficients. With the help of Eq. (II-31) the terms of Eq. (II-21) can be expanded as ll follows: y _ 1 GB 0 o 22a,8 uaBPaP8 - 428,8[Q(0) /Ia HIBBlp P8 1 (18 o o o + 428’8Zs[9(1)s /I 88 1881QM P P8 + %X8 828 S.[Q(2>; B./I 88188] X Q8Q8.P8PB + IZG,BZS,S. 8.[9(3>:: Su/Igalg81Q8Q8.quP8PB 1 (181° + 620823 S. S" SnI[Q(4)sSISuSnI/I aa I881QS QS 'QS "Q5 "'P aPB + ..... (II-32) _.g(pauas + Msp )P8 = -. m2 [9(0)“ B/I°8 I° 81p 8P8 kid 82$ [9(1):B/I°a 1° 1 [p8Qs + QspalP 88 B I SC 08 o o . Za,828,s'[m2)ss'/IoaIBB] [ponQs' + Qst'palps 1/ (18 o o --2XQBXSS.S.IQ<3> . "/18 ”I 81 [p Q HQ .98. + QSQS.QS.p81P8 SS S + ooooo (II-33) = e28IQ(OI“B/I°8 I° lpap 1 62a,8 pa“asps 88 PB + 428,828[Q(1):B/1°H188Ip Q SP8 1 a8 0 O O... — + éXa,BZS,S'[9(2)SS'/IaaIBB]paQSQS'pB + (II 34) _.l. 2 = _ l. 2 G“ o 2 _ l. 2 0a 8 M {a uaa 8 M 28 9(0) /‘Iaa’ 8 M 2828(e(1>s / 12 o 2 _ i. 2 “a o 2 .. _ (Ida) JQS 8 M Zazs,s'[9(2)ss'/(Iaa) JQst' + (II 35) gig sz = gig p;2 , (II-36) Finally, the potential energy can be expanded as the Taylor series _ av , 1 32v a'a', V ‘ V° + Zs[3aé] “s + les,s'[3aéaaé,] S S 1 33v +— " ' one. 3125,5',s"[3a'8a',3a'"] asas'as" + s s s o a 1/ 2 ‘ 22$ Ast + Zsss'ss"'Kss's"Qst'Qs" + EssslssllésllI KSSIS'ISIIIQSQSIQSHQS"| + .... (II-37) The zero order (denoted hereafter by 0(0) ) term in Eq. (II-32) is the rotational kinetic energy for the rigid rotator with the nuclear frame- work of the molecule in the equilibrium position. Appealing to exper- iment, the leading term of Eq. (II-33) is known to be of 0(1); also, the leading terms of Eq. (II-34) and (II-35) are of 0(2). The first term of Eq. (II-35) is constant and may be discarded, as it shifts all energies by an equal amount. Equation (II-36) is the vibrational energy which is of 0(0). The Taylor series expansion of V, Eq. (II-37), is taken about the equilibrium positions of the nuclei. The total force at the equilibrium position, [532} , must be zero, and the S O l3 constant V° has no physical significance and may be set equal to zero; V is then rewritten as a function of the normal coordinates with AS being the square of the s-th normal frequency, and the sets of coeffi- cients K are the force constants in the various orders of the expansion. Equation (II-21) appears impossible to evaluate in closed form. We therefore arrange the Hamiltonian in orders of magnitude = + + + + + ... I - H H0 H1 H2 H3 H4 , ( I 38) and apply the methods of perturbation theory. The leading term of a particular expansion (II-32) - (II-37) is assigned to the order indicated by the discussion following Eq. (II-37), and the subsequent terms are assigned to successively higher orders of approximation. We also introduce dimensionless operators ps and q5 which are given by .0 II p (As/M2)"QS (II-39) ’0 ll (”Z/X )%P* (II-40) S S and the following notation: QB (2(1)S IaaIBB E [as- s] (II-41) a8 Q(2)35' 1° 1° aa 88 a [a8; 55'] (II-42) “(3)323" 1° 1° aa 88 [a8; 33'5"] (II-43) a8 83.328". E [aB;SS'S"S"'] . (II-44) I I aa 88 9(4) 14 As a matter of convenience in future calculations we introduce symmetrization of the above coefficients through the following definitions: [aB; ss']' = ([dB; 53'] + [dB; s's])/(l + 65 ) (II-45) SI [08; SS'S"]' = ([a8; 58'8"] + [08; SS"S'] + [a8; 5'33"] + [a8; s's"s] + [a8; s"ss'] + [a8; s"s's])/ [(1 + 638, + 6 )-(l + 65 )] (II-46) ss" '5" [a8; SS'S"S"']'= ([aB; SS's"S"'] + [as; SS'S"'S"] + [a8; ss"s's"'] + [a8; ss"s"'s'] + [a8; ss"'s's"] + [a8; ss"'s"s'] + Ids; s's"ss"'] + [a8; s's"s"'s] + Ids; s's"'ss"] + [a8; s's"'s"s] + [a8; s"s"'ss'] + [a8; s"s"'s's] + Ids; s'ss"s"'] + [a8; s'ss"'s"] + Ids; s"ss's"'] + [d8; s"ss"‘s'] + Ids; s"'ss's"] + [a8; s"'ss"s'] + Ids; s"s'ss"'] + [a8; s"s's"ss] + [a8; s"'s'ss"] + [a8; s"'s's"s] + Ids; s"'s"ss'] + [a8; s"'s"SS'])/ 15 )(1 + a + 6 ...)<1 + 63.3.”). I SIS" S's (1+6 +6 u slll 35 SS (II-47) According to the above scheme,the Hamiltonian, regrouped into terms of the same order of magnitude, takes the form: CB II b Bfapg/I;a+ +% M23 A;(p§/M2 + q: ) (II-48> _ a 3' H1 - za, st (1)Xs qs P aPB + Eazs,s' (1)xs qsps'Pa + XS€S.\SAS'}\S") KSS'S" thSS.'S" I (II 52) H = 2 Z aBX q SSq .P up 2 a.B 5&5' (2) 58' B ax s" + Zaisss'm" (2) Xss' 2(qsqs'Ps" + pansqs,)P s" "I + 23$S' 33"33" I (2) x35. 41(q SSqS'P ups nu + pS "PS "qu qS u) ESSS'SSHSSH' (2) xsslsusul q Sq s'qsuqsuu _ _. 2 I0 _ 8” 2a 1/Iaa (II 53) where OLBX = h [aB; ss'] , (II-54) (2) ss' 2(Asls,)4 l6 A Z a s" _ _ k s" l B . B . ' (2)xss' - M ZB[ASAS,] l + ass,[cs's"[a8'sl + Cssu[aB.s ]] (II-55) Z a a a a Xs"s"' = Z 1 ASNASIII Cssncsnsnu + Cslsucssul (2) ss' a I° A A , (1 + 5 ')(1 + 5 n n.) dd 3 5 ss 8 s (II-56) ”8 Z (2)XSS'SHS"' = [ASAS'ASIIASH'] KSS'SHSH' = hC kSS'SHS"l (II-57) H = “5 3 Za,BZsss'ss" (3)xss's" qsqs'qs"PaPB Z Z a Sfll l( a S$S'\1 2a B£~" m X 22 M = ml + m2 + m3 , (III-4) the equilibrium coordinates, with the origin at the center of mass, are £01 a (m3a - m2b)/M , (III-5) £02 = [m3a + (ml+ m2)b]/M , (III-6) E03 = -[(ml + m2)a + mzbl/M , (III-7) §°l a (m2 + m3)c/M , (III-8) §02 = -m1c/M , (III-9) §°3 = -mlc/M , (III-10) E = E ' o . (III-11) °1 °2 ' z°3 = Transformation to the principal axes system of the equilibrium inertia tensor is accomplished by taking xOi = §°icos6 + §°isin6 , (III-12) y°i = -x°isin6 + §°icose , (III-13) zoi = 201 - o , (III-l4) where the angle of rotation 6 is given through tan 26 = T/Q , ' (III-15) with T = 2m1c(m3a — mzb) , (III—l6) Q = m (m + m )a2 + m (m + m )b2 3 l 2 2. 1 3 2 - ml(m2 + m3)c + 2m2m3ab . (III 17) The transformation gives for the equilibrium coordinates in the prin- cipal axes system x {(m a - mzb)cose + (m2 + m3)o-sin6}/M , (III-18) °l 3 x c*sin6}/M , (III-19) 02 {[m3a + (ml + m3)b]cose - m 3 x = - {[(ml + m2)a + m2b1cose + m C'sin6}/M , (III-20) °3 l + m3)c°cose}/M , (III-21) Yol ' {(m3a - m2b)51n6 - (m2 23 = - + + ' + . - Y°2 {[m3a (ml m3)b]sin6 mlc cose}/M , (III 22) = + + . — o .- y03 {[(ml m2)a m2b1s1n6 mlc cose}/M , (III 23) z°l = 202 = 203 = O , (III-24) o g _ o _ I _ Ixx 2(Izz I ) , (III 25) 1° = iao + I') (III-26) yy 2 22 ' ° = ° + I° = + + 2 - Izz Ixx yy [9 2m1(m2 m3)c ]/M , (III 27) with 2 2 2 1/2 I' = t[(T + 9 )/M ] . (III-28) Denoting instantaneous position coordinates by xi , yi , and 21 , we have that 21 a 22 = 23 a 0 because of the absence of out-of-plane vibrations, and the nontrivial Eckart conditions24 are given by mlxl + m2x2 + m3):3 = O , (III-29) + a .- mlyl + mzy2 m3y3 O , (III 30) {i mi(x°iyi - inxi) = o . (III-31) Intermediate coordinates u, v, w are now introduced as follows: u = x2 - x3 , (III-32) v = y1 - (mzy2 + m3y3)/(m2 + m3) , (III-33) w = x1 - (mzx2 + m3x3)/(m2 + m3) . (III-34) In conjunction with the Eckart conditions, these give xl - (u/ml)w , (III—35) a: ' — - x2 (I: /m2)u [ll/(m2 + m3)]w . (III 36) _. _ I _ _ x3 — (u /m3)u [Ll/(m2 + m3)]w , (III 37) Y1 = (u/ml)v (III-38) :- .I II _ Y2 (u Y/m2)u + (ua/m2)v + (u /m2)w . (III 39) a .. I _ _ ll _ Y3 (u Y/m3)u (HS/m3)V .(u /m3)w , (III 40) 24 with u = [ml(m2 + m3)]/M . u' = m2m3/(m2 + m3) , u" a mlyol/x23 , a = ' x13/"23 ' B = ' x12/x23 ' Y = y23/x23 = -tan6 , where x12 = xol - x92 = - b cose + c sine , xl3 = xOl - x03 8 a cose + c sine , x = x - x = (a + b)cose , The kinetic energy of vibration l .2 .2 .2 = — + ‘I' can be expressed in terms of the intermediate coordinates as 1 - - t T = 3' (m) (U) ((0) I where (A) = (u v w), t denotes the tranSpose, and (u) is the 3 symmetric matrix with elements “11 = u'(1 + yz) , “22 = u2[(l/m1) + (aZ/mz) + (82/m3)] . u33 = u + (u"2/u').. “12 = u21 = u"'Y . “13 = u31 = u"Y r u23 - U32 = u"u"'/u' , where u"' = - mlx01/x23 = uu'[(a/m2) + (B/m3)] (III-41) (III-42) (III-43) (III-44) (III-45) (III-46) (III-47) (III-48) (III-49) (III-50) (III-51) (III-52) X 3 (III-53) (III-54) (III-55) (III-56) (III-57) (III-58) (III-59) 25 The most general harmonic potential energy expressed in the intermediate coordinates and invariant under the point group symmetry of the molecule (Clh) is v = (w)(k)(m)t , (III-60) nus: where (w) = (u v w) and (k) is the 3 x 3 symmetric matrix of potential constants with elements kll' k , k , k = k 33 12 21' k I k "k = k 13 31 23 32° The transformation from intermediate to normal coordinates Q5, 22 s = 1,2,3, is of the form u = {5 nlst , s = 1,2,3, (III-61) v = Z n Q s = 1,2,3, (III-62) s Zs s ’ w = 28 n3st , s = 1,2,3, (III-63) where the nS,S are obtained through solution of the secular equation I A(u) - (k)| = o (III-64) and each n , can be expressed as n , = N , /N where N , is the co- s s s s s s s s 3 factor of the s'-th element of any row (e.g., the first one) of the determinant, Eq. (III-64), with A a As , the s-th root of Eq. (III-64). The quantity N8 is determined such that - l. '2 '2 '2 - T _ 2 (Q1 + Q2 + Q3) , (III 65) Which requires that 2: 2’ + N5 Zs'=l,3 [us's'Ns's Zs"7€s' us's"Ns'st"s The harmonic portion of the potential energy becomes 1 2 2 2 = — + '- V 2 (AlQl 2292 + A3Q3), (III 67) and the normal frequencies, in radians per second, are Al, A2, and A3 The As can be specified in closed form as the roots of the general cubic equation. These expressions are, however, rather cumbersome and 26 of limited practical use,as ordinarily it is the three roots As for which numerical values are known and the potential constants kij for which numerical values are sought. As there are three AS and six distinct potential constants ki , the problem is underdetermined and 3 additional information about the potential constants must be developed through intercomparison of isotopically substituted species and through information derived via the second-order parameters of the Hamiltonian. Thus if it is the AS which are to be regarded as known, it appears that the relations between the coefficients of the cubic equation and the symmetric functions of its roots are potentially more useful than the expressions for the roots because the former relations are considerably simpler than the latter. Theory of equations shows that the three roots As of the cubic equation 3 2 + + = - C3X + C21 ClA CO 0 (III 68) are related to the coefficients Cn through — CZ/C3 = A1 + A2 + A3 , (III-69) + Cl/C3 = AlA2 + A2A3 + A3Al , (III-70) - CO/C3 = A1A2A3 . (III-71) For the problem under study we find that C3 = det (u) , (III-72) .. _ (2) _ C2 - ZsXs' Css' kss' ' (III 73) _ (1) _ Cl - Zszs' Css' uss' ' (III 74) CO = - det (k) , (III-75) (2) (l) where C , is the cofactor of p , of (u), C , is the cofactor of k , ss ss ss 55 27 of (k), and where the double sums are unrestricted. Since a simple, closed form solution of the secular equation cannot be written down, the transformation coefficients nS need to I be retained explicitly in what follows. The normal vibrations problem is here set up in such a way (with s - l specifying the XY bond stretching mode, 5 = 2 the bending mode, and s = 3 the YZ bond stretching mode) that specializing the results of this and the _ following section to XYX will reduce these directly to the results of Chung and Parkerlo, Yallabandi and Parkerll, and Chan, Wilardjo, and Parker.25 28 III.2 Molecular Parameters The coefficients 2:5, a = x, y, z, of the transformation from instantaneous position to normal coordinates are defined by Eq. (II-3) and can be constructed for the XYZ-type molecule with the aid of Eqs. (III-35) - (111-40) and (III-61) - (III-63). In this manner one determines that 2:3 = (u/mf)n3s , (III-76) 22s = (“'/m§)nls - [me/(mz + m3)]n3s (III-77) 2:8 = -(u'/m'§)nls - tum’j/(m2 + m3>1n3s : (“148’ £15 = (u/m?)n28 , (III-79) 22s = (u'Y/m§)nls + (ua/mEMZs + (u"/m§)n3s I (III-80) figs = - (u'y/m§)nls - (“B/m§)n25 - (u"/m%)n3s I (III-81) £2 = £2 = £2 = 0 (III-82) Knowing the 2:8, one can construct the Coriolis constants, :23, , from Eq. (II-6). These are all zero when a = x or y. The nonvanishing C:s' with the upper index suppressed, are the following: - n ) + u"'(n n C = - c = -u(n ss' s's 2sn33' Zs'nBS ls 25' ‘ nls'nZS) I u (nlsnBS' ‘ nls'n3s)' s # s'. (III-83) There are thus three distinct nonvanishing Coriolis constants, viz., :12 = - C21, :13 - - :31, and :23 = - :32, and these obey the sum 29 rule7,19,26 2 2 2 = - O I a8 a8 0 For the XYZ-type molecule the quantities as and (ASS,)', introduced in Eqs. (II-29) and (II-30) for the instantaneous moments and products of inertia, take the following form: xx xx xx xx = + + - as t]- nls t2 nZS t3 n3s , (III 85) yy _ YY yy yy - aS - tl nls + t2 n25 + t3 n3S , (III 86) 22 _ zz zz zz = xx yy _ aS - tl nls + t2 n25 + t3 n3S aS + as , (III 87) XY _ KY KY XY = YX _ aS — t1 nls + t2 nZS + t3 n3s as (III 88) with the coefficients t:8 as summarized in Table 1. All other a:8 vanish. The nonvanishing (A::,)'and (A::,)'are given by YY I = YY . (Ass') (As's) = Ayy ' = All? ss 5 s = I + _ u nlsnls' 1m3sn3s' ' (III 89) zz zz zz (A11>' = (c23)2. (A22)' = (:13)2, (A33>' = (:12)2, (III-90) zz , _ _ zz , = zz , = _ (A12) ‘ C13C23’ (A13) C12:23' (A23) C12513' (III-91) xY . _ YX . = XY 3 YX (Ass') (As's) Ass' As's = _ I II I + I! (n Y nlsnls' + u nlanS' u n1snss.' + . III- 2 u n3sn23') ( 9 ) In Eqs. (III-90) and (III—91) we have used A::, = 685,. 30 B Table l. The Coefficients t: Introduced In Eqs. (III-85)-(III-87) - 2 4. xx 2m2m3(a b)s1n 6 yy 2m2m3(a + b) cose t1 = (m + m )cose t1 = (m + m ) 2 3 2 3 + txx _ 2ml(m2 m3” tyy _ 0 2 M cose 2 xx _ _ yy = t3 - 2mly°l tane t3 2mlx°l tzz = 2m2m3(a + b) a txx + tyy txy = 2m2m3(a + b) Sine 1 (m2 + m3) cosB 1 l 1 (m2 + m3) zz _ xx xy = t2 - t2 t2 0 2m (m a - m b) zz = 1 3 2 _ xx yy xy _ _ t3 M cosG t3 + t3 t3 2m1y°l x and y01 are as given by Eqs. (III-18) and (III-l9) 31 Direct computation of (A::,)' yields the very complicated expression xx , _ xx , _ xx = xx (Ass') (As's) Ass' As's 2 2 = I 2 2 1 L... g.— H Y nlsnls' + u m + m nZSnZS' 1 2 3 uII2 + __... III u' n3sn3s' p Y(nlans' nls'nZS) + u"Y(nl n3s' nls'nBS) uIIuIII + . - + u, (nanBs' n28,n3s) (III 93) For 5 = 3' use of this expression can be avoided by taking advantage . l9 . ad . of the sum rule of Oka and Morino , Viz., 2a Ass = 2, which upon application to XYZ gives that XX I _ _ YY I = _ For 3 # s' Amat and Henry27 have shown that XX (Ass' )I = -(A::,)' , (III-95) and thus Eqs. (III-94) and (III-95) can be combined to give (A::.)' + (Ayy )' = SS, 558, (III-96) Amat and Henry have also shown that the following simple relations exist between the a:8 and the (A::,): ad , = 1_ cy ay 0 _ (Ass') 4 2y as aS'/IYY , (III 97) a8 , Ba 1 ay BY ay By '=— + o - (ASS') + (ASS,) 4 fy' SS IV. GENERALITIES OF THE CONTACT TRANSFORMATION TECHNIQUE FOR FOURTH-ORDER CALCULATIONS and H as The contributions to the energy from H 3, 4 IHIH 1 2 discussed in Chapter II may be evaluated by the usual methods of per- turbation theory. The zero order energy is computed from the zero order part of the Hamiltonian, H , while the first order correction to O the energy: E1' is computed from the diagonal matrix elements of H1 The off-diagonal elements of H contribute only to the second and high- 1 er order corrections. However, the perturbation is complicated by the myriad of terms in H , H2, H , and H4, and it is therefore highly de- l 3 sirable to transform the Hamiltonian to a more convenient form. Such a form can be attained by subjecting the Hamiltonian to a contact . 28 transformation , H' = THT-l = H6 + AHi + AZHé + "" (IV-1) where A is a parameter of smallness. With a suitably chosen unitary operator T the off-diagonal elements of Hi can be made to vanish, while the zeroth order terms and the diagonal matrix elements of the first order term of the Hamiltonian remain intact. The zero order eigenfunctions are then the correct eigenfunctions to first order when the zero order energy is non- degenerate. Since there are no off-diagonal matrix elements of H' the 1! 34 35 evaluation of second order corrections to the energy is effectively reduced to a first order perturbation calculation. We shall let the unitary transformation operator be of the form T = exp(iAS). The transformed Hamiltonian is then given by: H' = THT-l = (1 + iAs - -:—-AZS2 - %-1A3S3 + ~-- ) 2 3 .I. x (H0 + AHl + A H2 + A H + ) 3 x (1 - iAs - i—Azs2 + é-‘A3S3 + --). (IV-2) Equating coefficients of like powers of A one obtains H6 - H0 (IV-3) Hi = Hl + i[S, HO] (IV-4) . _ - _.£ _ H2 — H2 + 1[S, H1] 2[s, [S, H0]] (IV 5) In general n (i)n'k n-k “I: = Lao W5 , Hk} (IV-6’ where (0) _ {s , Hn} = Hn (IV-7) (1) = {S I Hn} — [SI Hn] (IV 8) (2) z _ {S I Hn} — [SI [8. Hnll (IV 9) The partial Hamiltonians which will be needed in subsequent calculations are = H (IV-10) 36 I= ' I- H1 H1 + i[S, HO] ( v 11) H' = H + l-i[s H + H'] (IV-12) 2 2 ' 1 1 H' = H + i[S H ] - 518 [s H + l-H']] (IV-13) 3 3 ’ 2 3 ' ' 1 2'.1 In the.above it should be noted that Eq. (IV-4) has been solved for [8, HO] = i(H1 - Hi) and substituted into the expressions for H5 and Hi. In general we have (2) Hn = Hn + i[S, Hn-ll' (IV-l4) (2) _ I_. (3) Hn_l - Hn-l + 2 i[S, Hn-2]' (IV 15) ' (m) 1 . (mm = + — _ Hn Hn m i[S, Hn-l ] , (IV 16) where Hém) = HO for all values of m. The required transformed first- order Hamiltonian Hi is obtained if S is chosen such that ' = - * ° _ 1[S, H0] (H1 + {a paPa/Iaa) (IV 17) where * a — _ pa Zszo + ZS11 SI ASII a8 ZS..<1+6..+6...> I: a..k... ”3/25 ss s s ss's " IaaIBB 5 es s l I A8 + As, - ZASH‘ __ 4 + 2H Z5"”5’5" (As - As")(As, - As") ;: s.::. .8. +c:. S.c§s. o o , “7-27) (1 + 68 s)IaaIBB L2 ’/2 /2’ (A A IA IIA III) 1 + 68 SIII + 6 I III = 2Hc Z s s s" s s s 2 III 68 M S 88.8" l..+ SS" + 68.3" 1 1 1 c“. .. (xix .A .Aé..>1 . s s + Z s s s 3 10 8513" S". G ' n "3 aa 3 s s l + 6 I II + 6 II III Ca III . s s s s . ss. 1 + 5 ' ... 6 " Io Signs"! 3 s s cc 1 1 1 (A A4.A..A”"... )4 1+6 ...+6.. + s s s' as s s S". G II III 1 + 6 I + 6 II I es 3 es s s a C I III 3%- SS..S... , ad ' a ’4. "C ZS"'(1 + 6SSIII + 6SISIII) (CSIISIII) (ASHASH') 26 I III + (A II - A III) (A + A II - A III) ss 5 s s s s s k G I III(A II - A III) Io ss's". as s s s cc AS". 14 - TIC ZS"'( 1 + 688".)(1 + ass" + 68"SH') (r) SI 46 1/2 a A "(A II - A III - X ) C I III III 1 . S S S S . S S _ TTC 2 ( S )4 (1 + 6 ,) ,, 1° ss"'s" s'” A 58 SS 8 0101 (1 + 6 )(1 + 5 + 6 ) A1/2 (A A A ) . SISIII SIS" SIIISII . S" S" SI 8'” 1 + 6 I G I III II SS 8 S S C! . Cssnn k (V-29) Io SISIIISII I 0101 SIISII I a 4.".2c2 Z IIII(l + 6 IIII+ 6 )(1 + 6 II "n+6 III S SS S S S ) SSI M SISIIII sIIII P (ASIIASIIIASIIII) 2 G n u. n" ksSISIIIIkslISIIIsIIII I (v-30) S S S Y III III = r III III + r II I III + r III I II + r I II III SS S S SS S S SS 8 S SS S S S S SS + P I III II + P II III I I (V-31) S S SS S S SS with P I u "I = - "Czh Z an (1 + 5 nu + 6 I nu)(1 + 6 u an SS S S S SS S S S S + (S III IIII)(1 + 6 II + 6 III + 5 I II + 6 I III S S SS SS S S S S Ag A A A _1 SIIII( sIIII - SII - SIII) + 6 "6 I III) SS S S G II III IIII S S S k I IIII k II III IIII ° (v-32) SS S S S S Appendix 5 contains the nonzero y necessary for calculating the fourth- order centrifugal distortion coefficients. Substitution of Eqs. (II-53), (V-19), and (V-23) into Eq. (V-9) gives the once-transformed form of h' , 47 GBYG aByYs hé = Za,8.y,6 (2)Y PGPBPYPG + Xa,8.yzs (2) PsPaPBPY a8 ss' a8 + Za,BXsfis'( (2)Y psps' + (2)Yss'qsqs')PaPB a ss's" + {afsfis.fis. (2)Y 9598.95. Pa a S" l + ZQZS:S';S" (2)YSS' 2(qsqslpsu + pansqsn) Pa + Z Ysusn'liq q p p + p p q q ) SES';S":S"' (2) ssl 2 8 SI SI! sIII SII sIII 8 SI + Zsfs'isufis'” (2)YSSISIISIII qsqslqsuqsnl ' (v-33) where aBy6 aByd (2) Y Y I (V-34) aByYs = aByys + aByas (2) , (v-35) (gfyss' = asyss' + aBass' ' (V-36) (;§Yss' = (:fxss' + “3153- + “8°55- , (V-37) (2?Yss's" = GYSS'S" ' (v-38) (2?Y:;' (2?x:;' + GY:;' . (V-39) (2)Y:;?"' = (2)X:;?"' + 1:2?"8 . (v-40) (2)Yss's"s"' = (2)Xss's"s"' + YSS'SHSHI ° (V-4l) Similarly, the once-transformed form of h; is given by . _ 08Y5 h3 _ Za,8,y,dzs (3)Ys qs PaPBPypd aBy s'll + Za'B'YZSIS' (3)Ys 2 (qsps' + ps'qs) PGPBPY 48 a8 SIS" i + ZQIBZSIS'ES" (3)YS 2 (qspslpsfl + Pslpsllqs) POPS a8 + Zaszsfs.fs. (3)Yss.s. qsqs.qs. PaPB a SISIISII I1 + Zazs;slfsllfsfll (3)Ys 2(qsp8IpsllpslIl+ PSIPSIIPSIIIqS)Pa a sIII 1 + XGZSESISSII;SIII(3)Ysslsll 2(quSIqSIIPSIII + PSIIIququSII)Pa Z sISIISIIISIIII l( S;S':S"§S"'ES"" (3) S 2 qustsIIpsIIIPSIIII s" I 5" II + pSIpsIIpSIIIpsIIIIqS) + ZSESIESII;SIIIESIIII (3)¥SSISII 1 2 (qsq8.qs.ps..ps.. + ps..ps..qsqs.qs.) ZSESIESIIESIIIESIIII (3)YSSISIISIIISIIII qsqslqansnlqsllu + {S mars qs. (v-42) The coefficients (3)Y are not listed explicitly, because they will not enter into the final expression for the fourth-order Hamiltonian. VI. SECOND CONTACT TRANSFORMATION FOR THE XYZ-TYPE MOLECULE In order to cast the Hamiltonian into a form suitable for energy calculations to the fourth order of approximation, it is neces- sary to perform a second contact transformation on the once-transformed Hamiltonian H' so that the twice-transformed Hamiltonian will be diag- onal to second order in all vibrational quantum numbers. Regrouping terms in Eqs. (IV-21) to (IV-25) according to true orders of magnitude, the twice-transformed Hamiltonian takes the following general form: h5 = h6 = HO (VI-l) hi = hi = o (VI-2) h; = hé + i[Z, Ho]v (VI-3) h; = hé + i[z, HO]R + i[E, hi]v (VI-4) h; = h; + i[Z, hiJR + %-1[z, hé + hSJV . (VI-5) The operator 2 is determined by requiring the commutator -i[£, HO]v to be of a form such that the vibrationally off-diagonal matrix elements of h' will be removed in (VI-3). This 2 function can be shown to take 2 . 29 the follow1ng form : z = “BYE q P P P S S a 20.8.st B Y 49 50 a8 3' l + Z01,825,3' zs 3(qsps, + ps'qs) PaPB a + Zazsfs'fs" zss's" qsqs'qs" Pa a s's" 1 + 20.28533" 25 3 Z3. ass s 768 s' [; enl' = 16 28 s.(1 + ass.){s [< ) en en 3.6n (2 (2)xss' + Yss' + 3 ass') ens s' y6 y6 g_y6 + ( )(2 (2)xss' + Yss' + 3 0‘ss')] an ass 3' y6 76 + ”S [( )(2 (2)xss' + Yss' y6s s' an + 08 y6o‘S s') + ( (2)x ss' Yss' )(2 GB ass,)]} . (VI-l9) nun) nun: The paBYG have been studied by M. Y. Chan30 and are found to be of the form is raBy6(vs + 1/2). However, because they are extremely complex and not germane to our argument, their explicit form will be 53 omitted. A detailed discussion of the coefficients occurring in h; has been given by Chung and Parker.3 From Eq. (VI-15), the point group symmetry of the molecule, and the properties of a28 for the case of planar molecules (i.e., aza - aga xz 3 ayz s s and a = 0), it follows that there are 13 possible nonzero coefficients T In addition, there are 47 pasY6 and 729 O aBy6' 3,33 aBy6en' that 15 of the paBYG and 105 of the 0 have It has been shown a6y6en matrix elements that lie inside the Wang's diagonal block531, custom- arily denoted by E+, E-, 0+, 0-. It has been shown3 that these matrix elements therefore contribute to the energy in the fourth order; the remaining 32 paBY5 and 624 0 fall outside the Wang's blocks and aBy6en from this it can be shown3 that they contribute only to eighth order in the energy. These latter terms can therefore be discarded. An abbreviated notation for the 105 ea8y6en that are retained is given in Table 2. In this notation O is abbreviated as e , G as O , xxxxxx 1 YYYYYY 2 etc. Considerable simplifications in the Hamiltonian result from application of the commutation relations [Pa’ P ] a - ihPY and a B judicious redefinition of coefficients.32 The transformed Hamiltonian consists of three terms of the second power in P with coefficients A, B, C, six terms of the fourth power in P with coefficients Ti' and ten terms of the sixth power in P with coefficients 61. The 61 will be calculated in the next chapter. The basic Hamiltonian to be used for a given vibrational state can then finally be written a332 H = H2 + H4 + H6 + H6a , (VI-20) where 54 Table 2. Abbreviated Notation for the Distinct Fourth-Order Centrifugal Distortion Constants O aBYGen 1 Oa8y6en l OaBY6en l (xxxxxx) 41 (xxzzxx) 2 (YYYYYY) 42 (xzxxzx) 3 (222222) 43 (zxxxzx) = (xzxxxz) 4 (xxyyyy) = (yyyyxx) 44 (zxxxxz) 5 (yyxxyy) 45 (zxzxxx) = (xxxzxz) 6 (yxyyxy) 46 (xzxzxx) = (xxzxzx) 7 (xyyyxy) = (nyYYX) 47 (zxxzxx) - (xxzxxz) 8 (xyyyyx) 48 (xzzxxx) - (xxxzzx) 9 (xyxyyy) = (yyyxyx) 49 (xxzzzz) = (zzzzxx) 10 (yxyxyy) - (yyxyxy) 50 (zzxxzz) 11 (XYYXYY) = (YYXYYX) 51 (zxzzxz) 12 (yxxyyy) = (yyyxxy) 52 (xzzzxz) = (zxzzzx) 13 (yyxxxx) = (xxxxyy) 53 (xzzzzx) 14 (xxyyxx) 54 (xzxzzz) = (zzzxzx) 15 (xyxxyx) 55 (zxzxzz) = (zzxzxz) 16 (yxxxyx) - (xyxxxy) 56 (xzzxzz) = (zzxzzx) 17 (yxxxxy) 57 (zxxzzz) = (zzzxxz) 18 (yxyxxx) = (xxxyxy) 58 (xxyyzz) - (zzyyxx) l9 (xyxyxx) = (xxnyX) 59 (yyzzxx) = (xxzzyy) 20 (yxxyxx) - (xxyxxy) 60 (zzxxyy) - (yyxxzz) 21 (xyyxxx) = (xxxyyx) 61 (xyyzzx) - (xzzyyx) 22 (yyzzzz) - (zzzzyy) 62 (yzzxxy) = (yxxzzy) 23 (zzyyzz) 63 (zxxyyz) - (zyyxxz) 24 (zzzzyz) 64 (yxxyzz) - (zzyxxy) 25 (yzzzyz) = (zyzzzy) 65 (xyxyzz) = (zzyxyx) 26 (yzzzzy) 66 (zyyzxx) - (xxzyyz) 27 (yzyzzz) = (zzzyzy) 67 (yzyzxx) = (xxzyzy) 28 (zyzyzz) = (zzyzyz) 68 (xzzxyy) . (yyxzzx) 29 (yzzyzz) = (zzyzzy) 69 (zxzxyy) - (yyxzxz) 30 (zyyzzz) = (zzzyyz) 7O (xyyxzz) = (zzxyyx) 31 (zzyyyy) - (yyyyzz) 71 (yxyxzz) - (zzxyxy) 32 (YYzzyy) 72 (yzzyxx) = (xxyzzy) 33 (YZYYZY) 73 (zyzyxx) = (xxyzyz) 34 (zyyyzy) - (yzyyyz) 74 (zxxzyy) - (yyzxxz) 35 (zyyyyz) 75 (xzxzyy) - (yyzxzx) 36 (zyzyyy) a (yyyzyz) 76 (yxyzzx) = (xzzyxy) 37 (yzyzyy) = (yyzyzy) 77 (xyxzzy) = (yzzxyx) 38 (zyyzyy) - (yyzyyz) 78 (zyzxxy) = (yxxzyz) 39 (yzzyyy) a (yyyzzy) 79 (yzyxxz) - (zxxyzy) 4O (zzxxxx) a (xxxxzz) 80 (xzxyyz) = (zyyxzx) Table 2 (cont'd.) 55 1 eaBy6en l eaBy6en 81 (zxzyyx) =_(xyyzxz) 94 (xzyyxz) a (zxyyzx) 82 (yxyzxz) = (zxzyxy) 95 (yxzzyx) = (xyzzxy) 83 (zyzxyx) = (xyxzyz) 96 (zyxxzy) = (yzxxyz) 84 (xzxyzy) = (yzyxzx) 97 (zyxyzx) = (xzyxyz) 85 (xzyxzy) = (yzxyzx) 98 (yxzyzx) - (xzyzxy) 86 (yxzyxz) = (zxyzxy) 99 (zyxzxy) = (yxzxyz) 87 (zyxzyx) - (xyzxyz) 100 (yzxyxz) = (zxyxzy) 88 (yzxxzy) 101 (zxyzyx) = (xyzyxz) 89 (zxyyxz) 102 (xyzxzy) = (yzxzyx) 90 (xyzzyx) 103 (xyzyzx) = (xzyzyx) 91 (xzyyzx) 104 (yzxzxy) = (yxzxzy) 92 (yxzzxy) 105 (zxyxyz) = (zyxyxz) 93 (zyxxyz) H = A P2 + B P2 + c P2 , (VI-20) 2 x y z = 6 u u 2 2 2 2 2 2 H4 TlPx + TZPY + T3Pz + T4(Psz + PzPy) + T5(Psz 2 2 2 2 2 2 _ + PxPz) + T6(PxPy + Pypx), (VI 22) = 6 6 6 2 u u 2 2 6 H6 61px + 62py + 6392 + 64(Pxpy + pypx) + 65(Pypx + PHPZ) + 6 (Psz + P“P2) + 6 (P2P“ + PHPZ) x y 6 y z z y 7 z y y z + 6 (P2P“ + PHPZ) + 6 (PZP“ + PHPZ) 8 z x x z 9 x z z x 2 2 2: 2 2 2 _ + ].0(PxP2=Py + PszPx) , (VI 23) H =D(PP +PP)+3‘-r (P3P +PP3)+lT (P3P 6a x y y x 4 10 x y y x 4 11 y x 3 l. 2 2 _ + PxPy) + 4 T12(PxPzPy + PszPx). (VI 24) The coefficients T now appear with numerical subscripts. These merely 1'11! Ill-I'll] 56 take the place of the more cumbersome notation T The coefficients 3 aBy6' of the P2 terms are the effective rotational constants, equal to equilibrium rotational constants, l/(Zlga), of 0(0) plus second-order centrifugal distortion corrections to the equilibrium constants, 1, plus second-order vibrational corrections, 6. There are also terms of 0(4). More explicitly: A = 1/(21;x) + {i=1 0,: (vs + %) - %M2r9 + 0(4), (VI-25) B = 1/(21;y) + 22:1 0,: (vs + -:-) - §n219 + 0(4), (VI-26) c = 1/(2122) + {i=1 a: (v + %) + 341219 + 0(4), (VI-27) where a: = (g?xss + Gays + n2(“°yss). (VI-28) Other terms in Eqs. (VI-20) to (VI-22) are given by: n = 23 [ xyx + ny + M2(xyyss)1(v§ + %p s=l (2) ss 33 1 2 ' 2'“ (T10 + Tll ' 2 T12) ' (VI-29) l 2 T1 = K (1:1 + pl) + M (1511 , (VI-30) _ 1 2 T2 - z-(IZ + p2) + M 012 , (VI-31) l 2 T3 = Z-(T3 + p3) + M 013 , (VI-32) l * 2 T4 = Z-(r4 + p4) + M 614 , (VI-33) 1 * 2 T5 = 2 (T5 + ps) + M 015 , (VI-34) 1 * * 2 T6 = Z‘(T6 + 96) + M Q16 , (VI-35) 57 where the Ti are the centrifugal distortion coefficients of 0(2), pl * t to p3, 64 to p6 are the vibrational corrections to T of 0(4), and 6 11 to 616 are the rotational corrections to T of 0(4). The terms pl to * . 3 p6 are merely the pafiy6 redefined , and the terms 611 to $16 are not the subject of the present investigation, and their forms will be * * 'k * omitted. The quantities T6, 64, ps, and p6 are defined as T6 = T6 + 2 19 , (VI-36) * = + + -]-‘- + ~1- (VI-37) 04 D4 D7 2 p10 2 p11 ' * = + + l- + l- (VI-38) p5 D5 D8 2 p12 2 p13 ' * = + + i- + i- (VI-39) D6 06 O9 2 p14 2 p15 ' Finally, the coefficients of the P6 terms are the fourth-order centrif— ugal distortion coefficients, 6 to 6 l 10, which are the subject of this dissertation. After an extensive rearrangement of terms the coeffi- cients are found to be given by32: 03 = 83 , (VI-42) ¢ =6+§6 +§6+6 +%0+0 +6 +6 +6, 4 4 5 6 7 8 9 10 11 12 (VI-43) l 1 1 ¢5 = 013 + 2 614 + 2 615 + 016 + 2 017 + 918 + O + O + G I (VI-44) 58 1 1 l ¢6 ’ 622 + 2 923 + 2 024 + 25 + 2 026 + 027 + 028 + 029 + 030 , (VI-45) 1 l 1 $7 ’ 031 + 2 032 + 2 933 + 34 + 2 035 + 635 + 637 + 038 + 039 , (VI-46) 1 l 1 ¢8 ' 040 + 2 041 + 2 042 + 43 + 2 044 + 045 + 046 + 047 + 048 , (VI-47) 1 1 1 ¢9 ‘ 049 + 2 0so + 2 051 + 52 + 2 053 + 054 + 055 + 056 + 057 , (VI-48) ¢lo = 058 + 059 + 060 + 661 + 662 + 063 + 064 + 065 + 666 + 067 + 968 + 969 + 070 + 071 + 072 + 073 + 074 + 075 + 076 + 077 + 078 + 079 + 980 + 981 + 982 + 983 + 084 1 l l 1 + 085 + 986 + 087 + 2 688 + 2 089 + 2 090 + 2 691 + 2-0 + l-G + 0 + 0 + 0 + 0 + 0 + 0 2 92 2 93 94 95 96 97 98 99 + 0100 + 9101 + 0102 + 0103 + 0104 + 0105 ' (VI'49’ A full discussion of 61 to 610 is given in the following chapter. An alternate form of the Hamiltonian called the "H-form"ll'32, which considerably reduces the computation of matrix elements, is ex- pressed in powers of P2 and P2 (where P2 a Px + Py H2 = A * P2 + B * P2 (-146)x (~M6)y+(c- 2 2 + Pi) and is given by: 3 * 2 2 M6 z , (VI-50) 59 * 4 * 2 * 4 * 2 2 2 H = M P + M P2P + M P + M P P - P 4 1 2 z 3 z 4 ( x y) i: * + M [ P2(P2 - P2) + (P2 - P2)P2] + M [(P2 - P2)2 5 z x y x y z 6 x y l 4 2 2 4 2 2 5 2 - 2 (P - 2P Pz + P2) + M (P 2 Pz)] , (VI—51) 6 4 2 2 4 6 4 2 2 H6 - H1 P + H2 P Pz + H3P Pz + H4 Pz H5 P (Px - Py) 2 2 2 2 1 6 4 2 2 4 + - - —- - + H6[P (Px Py) 2 (P 2P Pz P P2) 2 4 5 2 2 2 2 2 2 2 2 2 + - - + - + - h (P 2 P Pz)] H7{P [Pz(Px Py) (Px Py)Pz]} 4 2 2 2 2 4 2 2 2 2 + H8[P2(Px - Py) + (Px Py)Pz] + H9{[PZ(Px - Py) + (P2 - P2)2P2] - (P4P2 - 2P2P4 + P6) x y z z z z 2 2 2 5 4 2 2 3 + - - + - - 2 M (P P2 2 Pz)} H10(Px Py) , (VI 52) where * 2 2 H + 3 M1 — Ml + M (- Hl - H2 - 6 H9), (VI-53) * 2 2 M2 - M2 + M (.1 H1 + 6H2 + H6 - 20H9) , (VI-54) * 2 2 M3 - M3 + M (- 10Hl - 5H2 + 0H9), (VI-55) * * 2 M5 - M5 + M ( 2H5 + 4H7 + 2H10), (VI-57) * 2 4 2 6 I 58 M6 - M6 + M ( Hl + H2 - H9) , (V - ) with M - 2-(T + T ) + l-T (VI-59) 1 8 1 2 4 6 ' M - - 2-(T + T ) + (T + T ) - l-T (VI-60) 2 ‘ 4 l 2 4 5 2 6 ' «H61 kflh‘ nbhd 5 l—6'(1 + (132) + 15 3 3 - 16 (41 + 42) - 8 (44 + ¢5) + 4 (¢7 + 48) 1 + —-¢ 4 (T1 + T2) + (T1 - T2) . #JP' (Tl + T2) - (T 1 1 0 - T2) I T 3 kflh‘ GHPJ 60 - (T4 + T5) + 1 2'(T4 ' T5) ' (44 + ¢5) , l 4 T I 15 3 16 (41 + P2) + 8 (44 + 45) + (46 + 49) 3 + 4 ($7 + ¢8) 3 8 (¢1 ' ¢2) ‘ 3 §'(¢1 + ¢2) - 3 ' 8 (¢1 ‘ ¢2) .41 16 1 + 2 (¢7 ' ¢8) 3 l 2 (¢7 + P8) - 2 Q + hJP' bJP' 10 ' GNP! ((1)—(D), (44 + 45) , (VI-61) (VI-62) (VI-63) (VI-64) (VI-65) (VI-66) (VI-67) (¢4 + ¢5) - (¢6 + ¢9) (VI-68) (VI-69) (VI-70) l 1 Z (<14 - <15) - 3 (<17 - <18) , (VI-71) 1 1 (¢1 ‘ ¢2) ' 8 (¢4 ' ¢5) ’ 2 I (¢ 6 _ ¢9) (VI-72) 61 3 1 1 H9 - - 16 (41 + 42) + 8 (44 + 45) + 4 (47 + 48) _ l. q) (VI-73) 4 10 ’ H =1“, -¢)+l<¢ -) (VI-74) 10 8 1 2 4 4 5 ° The equivalence of the H-form of the Hamiltonian to the ¢-form can be verified by direct substitution of Eqs. (VI-53) to (VI-74) into Eqs. (VI-50) to (VI-52) and by rearranging the resulting expressions to the form Specified by Eqs. (VI-21) to (VI-23). Here, the last term H6a was omitted; the justification for this will be given later. VII. THE FOURTH-ORDER CENTRIFUGAL DISTORTION COEFFICIENTS VII.1 General Expressions for the XYZ-Type Molecule In this chapter explicit expressions will be given for the ten fourth-order centrifugal distortion coefficients 4 to ¢ As will 1 10' be discussed in greater detail later, 4 , ¢ 43, and four combinations 1 2’ of the remaining seven ¢i can be determined from experiment. The principal information of interest obtainable from these coefficients concerns the cubic potential constants kss's"' which, it will be re- called, are the coefficients appearing in the anharmonic portion V3 of the Taylor series expansion of the potential energy in dimensionless normal coordinates. For XYZ this takes the form: 3 3 3 2 V ‘ hc (k111 q1 + k222 q2 + k333 q3 + k112 qlqz 2 2 2 2 + k113 q1‘13 + k122 q1‘12 + k223 q2q3 + k133 q1‘33 + k 2 + k ) (VII-l) 233 q2q3 123 q1q2q3 ' with the dimensionless normal coordinates qS defined by _ .214 - qs- (As/M) QS , (VII 2) and for V3 in ergs the kss's" are in cm-l. It should be noted from (VII-1) that for XYZ there are ten cubic potential constants. Yet, 62 63 only seven 41 or combinations thereof are determinable experimentally. Thus, even in principle, not enough information is available to deter- mine the full set of cubic potential constants from the fourth-order centrifugal distortion constants alone. However, cubic potential con- stants also appear in the coefficients a: which specify the second-order vibrational corrections to the equilibrium rotational constants. Full use of both the a: and the 4i thus opens the possibility of obtaining a complete, consistent, and accurate set of cubic potential constants. Furthermore, it is observed23 that the a: do not contain those poten- tial constants kss's" for which 5 # s' # 5". Therefore, for XYZ the cubic potential constant k is obtainable only through a determination 123 of the 41. For XYx there are six cubic potential constants, and in principle the full set can be obtained either from the 41 or from the a:. The basic equations for the 4i are found by substituting the apprOpriate Oi, as constructed from Eqs. (VI-16) to (VI-l9) and Table 2, into Eqs. (VI-40) to (VI-49). In this way one finds the expressions for Q to P 0 given in Appendix 1. Next,it is necessary to substitute 1 l . . as s z from Appendixes 2, 3, 4, and S the expres31ons for the S , Sss' , GB aBY s as aBy s as . . (2)Xss,, Y r Yss" a , and ass,. While this task appears hopelessly complex, we found that by judicious and extensive regrouping and redefining of terms, the ¢i can be expressed in suprisingly compact form. Introducing the definitions as = 08 3/4 - bs aS /As , (VII 3) a8 a8 B8 = as /As , (VII-4) _ a8 a8 48 _ (BC)aB - B :23 + 32 g31 + 33 £12 , (VII 5) 64 the following expressions were obtained: _ 1/2 06 xx ¢l - ("C/4M Ixx) 2855.53" (bybszsfl) kSS'S" 3_ xx xx , + 8 is S, 3:338, (ASS,) , (VII- 6) _ % .6 yy yy yy 4?2 - (no/4K Iyy) Zsfs'fs" (bs bs'bs") kss's" 2. yy yy yy . _ + 8 2s,s' BS 88' (Ass') ' (VII 7) k O6 22 22 22 ¢3 _ (WC/4M Izz) Zst'fs" (be s'bs") kss's" 1 2 1 zz 2 + 2 (BC)ZZ - 8 25 (BS ) . (VII-8) _ 2 .2 .4 yy yy xx yy yy 44 — (He/8M Ixnyy) Xsfs'fs" (ngbs,bs" + bs,bs b8" + bxbeYbyy + 4byybx¥be + 4by¥bxybe + 4by¥bx¥bxy) s s s s s s s s s s s s . _§_ YY YY xx u xx YY XY xY kss's" + 16 Zs,s'{Bs Bs'(Ass') + 2(Bs Bs' + 28s 35') o _ o o W l xy yy xy l xy 1 ._l M (Ass') + 4Bs Bs'[(Ass') + (As's) ]} + 12 122 A8 + AS' xy yy xy yy ' is... Css- 7:77: (B. 38' + 35.3. >, (VII-9’ 4 = (WC/8M%I°ZI°4) 2 (bYbexbxx + bYbexbxx 5 yy xx sis'fs" s s' s" s' s s" + bYXbxfbxx + 4bxxbx¥bx¥ + 4bx¥bebXX + 4bxfbx¥bxy) S S S S S S S S S S 8 S - k u + —3- ,{Bxxsxx(AYY,)' + 2(BYYBxx + zaxYBxY) ss's 16 5,5 5 8' es s s' s s' ' Io _ IO . xx 1 XY xx xY ! XY u 1 xx (Ass') + 4Bs Bs'[(Ass') + (As's) ]} + 12 I22 xxx XXX (BSYBS, + BS¥BS ), (VII-10) 1 (WC/8K6I°2 ° YY I 4) Z , " (byybz‘szz + bYszzbzfi 22 $53 :3 S S S S S S 22 22 yy 1_ _ 1_ yy 22 bs"bs'bs ) kss's" + 2 (Bc)yy(Bc)zz 8 23 B5 B5 C _2_ zz zz yy , _ 1_ SS! 16 28,8' Bs Bs'(Ass') 6 s(2(2)x13 + y13) + ( s )( s )(2(2)x 23+ xxy23)} (1—1) _ ;_ 2 yy 12 yy yy yy2 yy yy 3 2 4 — 2 K {( s ) (2(2)x11 + 711) + ( S ) 2(2(2)x 22+ y22) + ( s ) -(2YYx +YYY 3312)+(YYS)(YYS)(2YYX +W )+(YYsl) (2) X33 (2) 12 Y12 yy yyx My yy2 yy3 yy yy _ ( s 3)(2(2)x13+ 13) + ( s )( s )(2(2)x23 + v23)} (1 2) _ _ 4_ 3 -% zzz s 2 _ 4_ 2 zzz 1 22 2 z zz 3 4 - 2 K 25:1 15 < y > 4 n {( H)[( s 2)( s ) + < $23)( 8 )1 + (zzz 2)[(z s 2)(zzs1) + (2323)(zzs3)1 + (zzzy 3)[(z sl 3)(zzsl) 4_ 1,2222{(zzsl)2(2 + 22 ) + (225 2)2 )(z 25 2’1} + (2) x11 Y11 z + ( 823 2 (2(2fx22+ zzy22)+ (zzs3)2(2(2)x 33 + zzy32> + ("51Hz zs2) zzx zz zz l zz ° (2(2)x 12 + Y12) + ( 5 )(z 25 3”20)" 13 + Y13)} + (2282Mzz s3 )(2(2)x 23 + zzv23) (193) 76 hJH bdhl + 77 122{(_yysl)2(2 xxX xxyll) + (yysz)z(2 xxX + xx (2) 11 + (2) 22 Y22) yy 3 2 xx xx yy 1 yy 2 xx xx ( S ) (2(2)X33 + Y33) + ( S )( S )(2(2)X12 + Y12) YY 1 YY 3 XX XX yy 2 yy 3 xx xx ( S )( S )(2223X13 + Y13) + ( S )( S )(2(2)X23 + Y23) xx 1 yy 1 xy 1 2 YY YY 2[( S )( S ) + 2( S ) ](2(2)X11 + Yll) 2[(xx82)(yy52) + 2(xysz)21(2 yyx + YY (2) 22 Y22) xx 3 yy 3 xy 3 2 yy yy 2[( S )( S ) + 2( S ) ](2(2)X33 + Y33) [(xxs1)(yysz) + (xxs2) + (“Ys3> + 2(xysl)21<(§fxll + xxy13> 2[(xxSZHny2) + 2(x3732)2]( xxx + xx ) (2) 22 Y22 xx 3 yy 3 xy 3 2 xx xx 2[( S )( S ) + 2( S ) 1((2)X33 + y33) xx 1 yy 2 xx 2 yy 1 xy 1 xy 2 xx xx [( S )( S ) + ( S )( S ) + 4( S )( S )1(2(2)Xl2 + 712) xx 1 yy 3 xx 3 yy 1 xy 1 xy 3 xx xx [( s )( s ) + ( s )( s > + 4( s )( s )1 2(23x33 + yl3) xx 2 yy 3 xx 3 yy 2 xy 2 xy 3 xx xx [( S )( S ) + ( S )( S ) + 4( S )( S )1 2(2)X23 + y23) 8(xysl)(xxsl)(2 xyx + xy ) + 8(xysz)(xxsz)(2 xyx + xy ) (2) 11 Y11 (2) 22 Y22 xy 3 xx 3 xy xy 8( s >( s )<2(2)x33 + y > 33 4t + ( S )( S )1 2(2)X13 + Y13 + xy 2 xx 3 xy 3 xx 2 xy xy 2 xy 4[( s )< s ) + ( s )( s )1 2(23x23 + y23 + 3- a23)} (1-5) 3 -% zzz s yyz s yyz s _ 1_ 2 zzz 1 z yy 2 M 25:1 AS < y )< y + 2 a > 2 M {( y )[( $12)( s > z yy 3 zzz 2 z yy 1 z yy 3 ( 813)( S )1 + ( y )[( $12)( 8 ) + ( 523)( S )1 zzz 3 z yy 1 z yy 2 ( Y )[( 813)( S ) + ( S23)( S )1} fi-M2{(szyl + g-sza1)[(zsl )(zzsz) + (251 )(zzs3)1 2 3 (YYZYZ + )(zz 3 S )1 (nhb yyz 2 z 22 1 z a )[( $12)( S ) + ( S23 (YYZY3 + g-sza3)[(zsl3)2(2 yyx + YY ) + (zzsl)(zzs2>(2 yyx + YY (2) 33 Y33 (2) 12 112) zz 2 22 3 (zzs1>(zzs3)<2 yyx + YY ) + ( s )( s )(2 yyx + YY ) (2) 13 Y13 (2) 23 Y23 2(YY51)(zle)(2(:2xll + zzyll) + 2(YYSZ)(ZZSZ)(2(:?X22 + zzYzz) 2(YYS3)(zzS3)(2(::X33 + zzy33) [(YYSl)(zzsz) + (yy82)(zzsl)](2(::x12 + zzle) [(YY81)(zzS3) + (yys3)(zzsl)](2(::xl3 + 22713) [(yysz)(zzs3) + (YYs3)(zzsz>1(2 22x + 22 >} (1-6) (2) 23 Y23 3 -% yyz s yyz s 2 K {8:1 AS [ Y + 2( a )1 $_ 2 yyz 1 2_yyz 1 z yy 2 z yy 3 4 M {I Y + 3( a )1[( 812)( S ) + ( $13)( S )1 yyz 2 é_yyz 2 z yy 1 z yy 3 + [ Y + 3( a )1[(.512)( S ) + ( S23)( S )1 yyz 3 g_yyz 3 z yy 1 z yy 2 + [ Y + 3( a )1[( $13)( S ) + ( $23)( S )1} _:L1_222{(yysl)2(2 zzX + zzyll) + (yysZ)2(2 zzX + 22 3 (2) 11 (2) 22 Y22 22x + 22 (2) 12 112) yy 3 2 22 zz yy 1 yy 2 ( S ) (2(2)X33 + y23) + ( S )( S )(2 22 22x + yy 1 yy 3 22 zz yy 2 yy 3 ( S )( S )(2 X + 713) + ( S )( S )(2(2) 23 y23 (2) 13 ’ 2(YYsl)(zzs1)<2 yyx + ylel) + 2(YY52>(zzs1)1<2 yyx + YY (2) 13 Y13) [(yysz)(zzs3) +1 + [xxzy3 + §4xxza3)1[(zsl3> + (2823)1} i’KZ {(xxsl)2(2 zzx + zzY ) + (xxSZ) 2 22 22 (2) 11 11 (2 x + (2) 22 Y22) xx 3 2 zz zz xx 1 xx 2 zz zz < s ) (2(23x33 + v33) + ( s )( s )(2(2)x12 + v12) zz xx 2 xx 3 22 22 ) + ( S )( S )(2(2)X23 + y23 (xxsl)(xxs3)(2 zzx + (2) 13 Y13 ) zsl)(2 xxx + xxYll) + 2(XXSZ)(ZZSZ)(2 xxx + xx xx 1 2 S )( (2) 11 (2) 22 Y22 2( ) xxSB) (zzSB) (2 xxX xx ) 2‘ (2) 33 + Y33 [(xxsl)(zzsz) + (xx52)(zzsl)](2 xxx + xx (2) 12 Y12) [(xxsl)(zzs3) + (xxs3)(zzsl)](2 xxx + xx (2) 13 Y13) 283) + (xxs3)(zz82)](2 xxx + xx )} xx 2 z [( S )( (2) 23 Y23 (1-8) 3 -% zzz s xxz s xxz s K {3:1 A3 ( v )< y + 2 a ) l 2 xxx 1 2 xx 2 z xx 3 g-n {( v )[( 512)< s ) + ( 513" s )1 + + + + + + + + + + (zzzY 2 )[( 251 zzz 3 ( 1 2 4 M 22 ( (“81Hzz s 3)(2 2( 2( [( [( [(xxs2)(z 283) + (xxs3><"sz)1(2 3 - h Zs=1 A xxsl)(zz xx83)(zz xxsl)(zz xxsl) (z y)[( 231 1'M2{[xxzyl + {(22 1 2 S3)2 (2 xxx 5 ) (2 S 3)(2 2)( 3)( §_xxz 3( + 4 xxz 2 3( xx 1 s ) + ( zs xxsl) + (ZS 4 xxz 3 '4 (2) + (2) x33 (2) S 1)(2 (2 (2 52) + ( 253) + ( xx x11+ XX Y33 XX x13 + Y 22 + ) X11 22 + ) X33 xxsz)(zz xxs3)(zz + [2(‘3’z 5) + (xyzas>'12} - fi-K2{tyyzvl + [yyzvz 23 23 1 z a )1[( $12 a)1[( le z a )1[( $13 Y11 l3 Y33 + §4YY232>11 + ("52Hzz s 3)(2 ) S 1)](2 S 1”Q 12 l xx83)] xx52)] 22 2 ( (22 (22 + + §4szal>lt1 )(zzs2)1} XX + Y22) XX Y12) XX ) (2) x23 Y23 22 + $2 )(2(2)zx 22 ) (1-9) l3)(""s3)1 23)(xxs3)1 + + ”(xx +[( +[(xx + + + + + 1 2 Z‘M {2[( 2(YYS1)(z 82 4 xxz l yy 2 2 +3( a)][(zlS 2H S)+(S1 4 xxz a2 [ v +3( )1[(zlszuyys1) +("1s2 [ Y + éixxz 3 z yy 1 z 3 a)][(813)( S) +(S2 1 xyzY l+ _( 3 4[ "YZ a1>'211[(s 4[xyzY 2 + :(xyza 2) 11(281 3 3 4IXYZY+ +§ + 2(1‘5’52 ) 21(2 (2) X22 + 2[(“s3>(yys3) + 2(1‘Ys3>21(2 (2) X33 x"s1HYYs3> + < $2“sz ) + ("x XX 25 1)(2(2)X 11 XX + Y33 yy 3 2( S)(Z Z3S)(2(2)x33 ) [(yys1)(zzs2) + (YYs2)("s1)1(2 (2) X12+ [(YYs1)(zzs3) + (YYs3)(“s1)1(2 (2) X13+ [(yysz)(zzs3) + (YYs3><"sz)1(2 (2) X23+ xy 2 z 2)( S) + ($13 2) + (""s1 3)(st1) + (252 (2) x11 51“ny > + (""s2 )(sz1) + 4<"Ys1)("Ys2)1<2 xxs3)(Ws1) + 4("Ys1)("ys3)1<2 s32>(YYS) + 4(st23)<"¥$)1(2 v11) + 2(YYSZHz §1(2 yyx + yyy 1 xx 1 z 1‘ S 1‘ (2) 12 12 [(xxs11(zzs3) + (xxs3>(zzs2)1(2 yyx + yy 1 (2) 13 Y13 xx 2 zz 3 xx 3 ~22 2 yy yy 11 s )1 s 1 + ( s >( s )](2(2)x23 + v23) xy 1 22 1 xy xy xy 2 22 2 xy xy 8‘ S )1 S )(2(2)x11 + Yll) + 81 S )1 5 112(21x22 + 122) xy 3 zz 3 xy xy 8( S )1 S )(2(2)x33 + 733) 1% xy 1 zz 2 xy 2 zz 1 xy xy 411 s )1 s 1 + < s )1 s )1 (2(2)x12 + out) y + 12 12 $5 xy 1 22 3 xy 3 zz 1 xy xy 4[( S )( S ) + ( S )( S )1 (2(2))!l3 + Y13 + ads) 13 $2 41 /3 4(I;x)21 a 2 3/4 0 2 yy yy 2 l/[2(M Al) (Iyy) 1 al 8 /4 2 3 O 2 yy 1/[2(M A3) (Iyy) J a3 / 1/[2 C xx 22\ 2 2 1 , 1 1 124(12 - 311) = 2°20 ‘ an (xxx) IzzL 11(11 12) ,1 1 134(13 - 311) = 202° ’= 8“ (Ixx) Izzk A10‘1 A3) 1 1 r11401 - 312) 8M’(I° ) I° 1 (1 - A ) yy 22L 2 2 1 r14 = 1 12 (12 - 311) c 2 o 2 o _ an (Iyy) 122‘ 11(11 12) 88 l k A 3A ( 1 - 3) 2 a22 (1 _ A ) C13 3 3 3 1 z (12 - 3A3) :2 a22 _ 23 3 3(A3 ’ A2) Z 1 31 ) ( 3 - 2“ C2 azz 23 2 2(A2 ' A3) 2 Al (A1 - 313) :2 13 A3(A3 - Al) 2 A2 (A2 313) :2 23 13(A3 - 12) 2 A3 (A3 - 312) z + £23 12(A2 - A3) 2 A1 (A1 - 3A3) z + 513 13(A3 - A1) ‘ - A2 (A2 3A3) :2 23 A3(A3 - A2) IN ¢ THROUGH ¢ 10 Z 3 XY 2 1 Y x z 2 y Y 3 Y 89 7/4 1 13 (13 - 311) z yy A3 (13 312) z yy 2 2 ‘13 a1 ' 523 a2 8H’(I;y) 122 11(11 - 13) 12(12 - 13) r 2 2 _ 1 1 (A1 - 3A2) 2 xy A1 (A1 3A3) 2 xy - -— 3- 2; a + r — g a 8K%(I° 1° 1° ) A (A - A ) 12 2 A (A - A ) 13 3 xx yy 22 L 2 2 1 3 3 1 r ”’4 _ 2 _ 1 12 (12 311) z axy _ 12 (12 313) z axYW 8M%(I° 10 1° ) 1 (1 - 1 ) C12 1 1 (1 - 1 ) C23 3 xx yy 22 1 1 l 2 3 3 2 r 2 _ 2 _ 1 13 (13 311) :2 axy + 13 (A3 312) CZ axy 2 o o o _ 13 1 _ 23 2 an (IxnyyIzz)L 11(11 13) 12(12 13) A 1 1 xx _ xx - wen”2 2a1 k111 (A2 3A1H2 k112 + (*3 3"1’533mk113 o 2 3/4 3/4 _ 3/4 _ (1xx) 1 ,Al 12 (12 411) A3 (13 411) J r A 1 YY _ YY _ YY my!”2 2a1 k111 (A2 3A1’az k112 + (*3 3"1W3 k113 o 2 3/4 3/4 _ 3/4 _ (xyy) 11 12 (12 411) 13 (13 411) , zz _ zz _ zz fiché 2a1 R111 (*2 3A1’32 k112 (A3 3A1’a3 k113 o 2 3/4 3/4 _ 3/4 _ (122) L A1 A2 (A2 4A1) A3 (A3 4A1) J 2 2 M (Al + 12)<;:2) (11 + 131(c:3> + + o 2 2 2 _ 2(122) A1 (A1 ’ A2) A1 (A1 *3) f ‘ x x flcflg 2a2xk222 + (*3 ' 3A2"“)30‘1‘223 + (*1 3A2’a1xk122 4 4 3 4 (I;x)2 123/ 133/ (13 - 412) 11 / (11 - 412) r 1 YY - YY - yy «0M6 2a2 k222 (*3 3}‘2”3 k223 + (*1 3"2W1 k122 4 4 3 4 (I;Y)2 123/ 133/ (13 - 412) 11 / (A1 - 412) J 22 22 22 ncn2 2a2 k222 + (*3 ' 3A2’33 R223 (*1 " 3"2"“1 R122 0 2 3/4 3/4 _ 3/4 _ (122) 12 13 (13 412) 11 (11 412) J 2 2 M (12 + 11)(c:2> (12 + 13)<;:3) + + o 2 2 _ 2 _ 2(122) 12 (12 11) 12 (12 13) 9O 2 (1112) (11 - 13)<12 o 2 - A3) (122) , r xx _ xx _ xx "of2 2a3 k333 + (*1 3A3’a1 k133 + (*2 3A3’a2 k233W o 2 3/4 3/4 . _ 3/4 _ (Ixx) 1 A3 11 .(11 413) 12 (12 413) 1r YY _ YY _ YY 1 «cf2 2a3 R333 (*1 3A3)al k133 + (*2 3A3)a2 k233 o 2 3/4 3/4 _ 3/4 _ (Iyy) 1 13 Al (11 413) 12 (12 413) J ,r zz _ zz _ zz 1 nché'zaB k333 (A1 3A3’a1 k133 + (*2 3A3’a2 k233 o 2 3/4 3/4 _ 3/4 _ (122) 1 13 11 (11 413) 12 (12 4A3) J z 2 z 2 + M (13 + Al)(§13) + (13 + A2)(§23) 2(1° )2 A 2(1 1 ) 1 2(1 - 1 ) 22 3 3 l 3 3 2 1 _ x __ _ _ 'rrcgri/2 (5A1 A2’a1xk112 (5A2 A1’a2‘xk122 G123+)‘3a3 A1 A2) xxk ' 02 3/4 A 1 + 1 3/4 1 1 + A 3/4 a3 123 Ixx A1 (4 1 ' 2) 2 (4 2 ‘ 1’ 2G123' 3 7 5 - - x + - - «ché[( A1 A3’3’10‘1‘113 + (5A3 A1’a3xk133 + G123 A2(A2 A1 A3’axxk ] 02 3/4 _ 3/4 _ 3/4 2 123 Ixx 11 (411 A3) A3 (413 11) 2G123 12 7 .. - _ _ flcflé (5A2 A3’32“}‘223 (5A3~A2)a:xk233 G123+}‘10‘1 A2 A3) xxk 02 3/4 + 3/4 + 3/4 a1 123 1xx 12 (412 - 13) 13 (413 - 12) 23123 11 1 _ YY _ YY _ _ wcx3[(511 A2’31 k112 + (5*2 A1’a2 k122 + G123+)‘30‘3 A1 A2’ayyk ] 02 3/4 _ 3/4 _ 3/4 3 123 Iyy 11 (411 12) 12 (412 Al) 2G123 13 , _ yy _ yy _ _ flcM4[(511 A3’a1 k113 + (5*3 A1’a3 k133 + G123+)‘20‘2 A1 A3’ayyk ] 02 3/4 _ 3/4 _ 3/4 2 123 1yy 11 (411 13) 13 (413 11) 2G123 12 1 _ YY _ YY - .. negé[(5*2 A3)a2 k223 + (513 A2)a3 k233 + 3123+11<11 12 131a k ] 02 3/4 _ 3/4 _ 3/4 1 123 IYY 12 (412 13) 13 (413 12) 2G123 11 1 _ zz _ zz - _ “C54[(511'12)a1 k112 + (5‘2 A1)a2 k122 + G123+A3M3 A1 A2’azzk ] 02 3/4 _ 3/4 _ 3/4 3 123 I22 A1 (4A1 12) A2 (4A2 A1) 2G123 A3 2 z z “(Alxz ' A3 ) C13 ‘23 91 , - zz _ zz _ .- zz = Trcyt/2 (5A1 A3’31 k113+(SX3 A1’a3 k133+ G123+}‘20‘2 A1 A3’azzk 13 02 3/4 3/4 _ 3/4 2 123 I22 A1 (4A1 A3) A3 (4A3 A1) 2G123 A2 2 z z _ M(1113 - 12 ) :12 C23 (A A )k (A - A )(A - A )(I° )2 1 3 l 2 3 2 22 1 - zz - zz ' _ _ zzY = myt/2 (5A2 A3’a2 k223+(5A3 A2’a3 k233+ G123+)‘10‘1 A2 A3’azzk 23 02 3/4 3/4 3/4 1 123 122 12 (4A2 A3) 13 (4A3 12) 25123 Al 2 z z 2 o 2 (A2A3) (A2 - Al)(A3 - A1)(Izz) 1 xY _ xy - xy ny _ Trczm/2 2a1 k111 + (*2 3A1’a2 k112 + (A3 3A1’33 k113 11 ‘ o a 3/4 3/4 _ 3/4 Ixnyy 11 12 (12. 411) 13 (13 411) 1 xY _ xY _ xY xyY a fiché 2a2 k222 + (*1 3)‘2)a‘1 k122 + (‘3 3A2233 k223 22 o 0 3/4 3/4 _ 3/4 _ Ixnyy 12 A1 (11 412) A3 (A3 412) 1 xy _ xy _ xy ny = new2 2a3‘k333 + (*1 3A3’a1 k133 + (*2 3A3’a2 k233 33 o 0 3/4 3/4 _ 3/4 - Ixnyy 13 11 (11 413) 12 (12 4A3) 1 _ XY _ xY _ _ xyy a "cflé‘ (5A1 A2)al k112 (5A2 A1)a2 k122+ 6123+A3(A3 Al A2)a k 12 o o 3/4 3/4 3/4 3 123 Ixnyy 11 (411 12) 12 (412 11) 2G123 13 2 - XY - XY - _ xy _ fiche (5A1 A3’a1 R113 (513 A1’33 k133+ G123+}‘20‘2 A1 A3’axyk 13 o o 3/4 _ 3/4 _ 3/4 2 123 In:yy 11 (411 A3) A3 (413 11) 23123 12 2 _ XY _ xY - _ ny = ngx’ (5A2 A3’32 k223+(5A3 A2’a3 k233+ G123+}‘1M1 A2 A3’axyk 23 o 0 3/4 _ 3/4 _ 3/4 1 123 Ixxlyy 12 (412 13) 13 (413 12) 2G123 11 M11171117117111!fiflflll4ljflfl71'lflflflfflitfilfl'E5