FOURTH -ORDER CENTRIFUGAL
DISTORTION COEFFICIENTS FOR .
NONLINEAR TRMTOMIC MOLECULES .
Thesis for the Degree of Ph. D”
MICHIGAN STATE UNIVERSITY I
‘ DAVID ALLAN SUMBERG
1972
.4— ._
1..er ”"11
Michigan State
University
This is to certify that the
thesis entitled
FOURTH-ORDER CENTRIFUGAL DISTORTION COEFFICIENTS
FOR NONLINEAR TRIATOMIC MOLECULES
presented by
DAVID A. SUMBERG
has been accepted towards fulfillment
of the requirements for
Ph .D; degree in PHYS IQS
mmGfiW
Major professor
X- -
*2‘ -
Datew
”3' I:
{A ”I ‘ a ’3‘;
0-7639
Y “BINDING IV.
C'SDNS
QIJIIIMK BlNllERY INC.
IRAIY BINDERS
ABSTRACT
FOURTH-ORDER CENTRIFUGAL DISTORTION COEFFICIENTS
FOR NONLINEAR TRIATOMIC MOLECULES
BY
David A. Sumberg
In this dissertation the molecular vibration—rotation Hamilton-
ian of Darling and Dennison is expanded in the formulation of Nielsen,
Amat, and Goldsmith and specialized to the case of the most general
(XYZ-type) nonlinear triatomic molecule. Expressions are derived for
the ten fourth-order centrifugal distortion coefficients in terms of
the full set of cubic anharmonic potential constants and those
fundamental molecular constants which specify the equilibrium geometry
and the normal modes of vibration. These expressions are specialized
to the case of the XYx-type molecule and are found to be consistent
with previously published work.
FOURTH-ORDER CENTRIFUGAL DISTORTION COEFFICIENTS
FOR NONLINEAR TRIATOMIC MOLECULES
BY
David Allan Sumberg
A THESIS
Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of
DOCTOR OF PHILOSOPHY
Department of Physics
1972
6—73” $2.0
In mama/Ly 06
my motile/L
mm Wu Sumng
ii
ACKNOWLEDGMENTS
I would like to express my sincere appreciation to Dr. Paul M.
Parker for suggesting this problem, for his guidance, for his patience,
and, above all, for his warm friendship during the years I have spent
at Michigan State University. I would also like to thank my wife,
Lois, for her constant encouragement and her endless patience during
the period in which this work was undertaken, and for helping to
maintain the grammatical integrity of this thesis.
iii
TABLE OF CONTENTS
LIST OF TABLES AND FIGURES
CHAPTER
III.
IV.
VI.
VII.
VIII.
INTRODUCTION
DEVELOPMENT OF THE GENERAL VIBRATION-ROTATION HAMILTONIAN
II.1 Darling-Dennison Vibration-Rotation Hamiltonian
II.2 Watson's Simplification of the Vibration-Rotation
Hamiltonian
II.3 Development of the Hamiltonian
EQUILIBRIUM GEOMETRY, NORMAL COORDINATES, AND MOLECULAR
PARAMETERS
III.l Equilibrium Geometry and Normal Coordinates
III.2 Molecular Parameters
GENERALITIES OF THE CONTACT TRANSFORMATION TECHNIQUE
FOR FOURTH-ORDER CALCULATIONS
THE FIRST CONTACT TRANSFORMATION FOR THE XYZ-TYPE
MOLECULE
SECOND CONTACT TRANSFORMATION FOR THE XYZ-TYPE
MOLECULE
THE FOURTH-ORDER CENTRIFUGAL DISTORTION COEFFICIENTS
VII.l General Expressions for the XYZ-Type Molecule
VII.2 Specialization to the Case of XYX-Type Molecules
VII.3 Determinable Combinations of Constants
SUMMARY
LIST OF REFERENCES
iv
Page
vi
20
20
28
34
40
49
62
62
68
71
72
74
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
1.
THE FOURTH-ORDER CENTRIFUGAL DISTORTION CONSTANTS
¢i FOR XYZ MOLECULES
THE COEFFICIENTS (:fxss, APPEARING IN H2 AND IN
O R
1 TH OUGH @10
COEFFICIENTS OF THE S-FUNCTION APPEARING IN $1
THROUGH $10
THE COEFFICIENTS a APPEARING IN i[S, HO]R AND
I ¢
N 1 THROUGH @10
THE COEFFICIENTS Y APPEARING IN i[S, H0]v AND
IN $1 THROUGH @10
Page
76
84
85
86
88
LIST OF TABLES AND FIGURES
Table Page
8
l. The Coefficients t: Introduced in Eqs. (III-85)-(III-87) 30
2. Abbreviated Notation for the Distinct Fourth-Order
Centrifugal Distortion Constants O 54
aBYGEn
.. .aBa a8.
3. The Nonvanishing Coefficrents aS , Css" and (ASS,)
for XYX 69
Figure
l. Equilibrium Geometry of the Nonlinear XYZ-Type Molecule 21
vi
I . INTRODUCTION
In recent years considerable improvements in experimental
techniques and the high resolution obtainable in infrared spectroscopy
have necessitated taking into account terms in the vibration-rotation
Hamiltonian that are of higher order of approximation in the energy
than the second. In cases such as the nonlinear XYX-type molecule,
in order to account for experimentally observed results in a
satisfactory manner, it is necessary to include such terms as fourth-
order centrifugal distortion coefficients even for low values of the
total angular momentum quantum number J.1 The vibration-rotation
Hamiltonian of diatomic molecules has long been treated to fourth and
even higher orders, and Amat and his co-workers2 have considered this
problem extensively for the case of the linear triatomic molecule. It
is natural, then, to proceed to nonlinear triatomic molecules of the
HDO-type as well as of the H O-type as the next feasible case for
2
complete compilation of fourth-order vibration-rotation coefficients.
The general vibration-rotation Hamiltonian of asymmetric rota-
tor molecules has been developed by Chung and Parker3 in the Nielsen-
Amat-Goldsmith4 formulation of the Darling-Dennison Hamiltonian
through the consideration of symmetry restrictions imposed by the
asymmetric rotator point group. Recently, a form of the
Darling-Dennison Hamiltonian has been given by Watson5 that greatly
simplifies the expansion of this Hamiltonian. However, even with this
simplification, the general formulation of Amat-Nielsen-Goldsmith6-9
is unnecessarily complicated to apply in the case of the asymmetric
rotator, principally because of its inclusion of degenerate normal
modes which are absent in molecules of this type. Therefore, instead
of working with the general formulation, we start with the Darling-
Dennison vibration-rotation Hamiltonian in Watson's simplified form,
but specifically written for the XYZ-type molecule. This Hamiltonian
is then expanded and subjected to two successive contact transformations
of the Van Vleck type. Within the framework of the work by Chung and
Parker3 the Hamiltonian is further simplified through extensive rear-
rangements based on angular momentum commutation relations. The re-
sulting Hamiltonian is, for a given vibrational state, a power series
in the angular momentum components. By using an extended version of
Watson's theorys, the Hamiltonian can then be related to experimental
results in a manner which allows one to obtain meaningful fits to high—
resolution experimental data.
The principal aim of this thesis was the calculation of expres-
sions for the ten fourth-order centrifugal distortion coefficients of
the XYZ-type molecule. These were obtained in a form which exhibits
extensive cyclic and algebraic regularities. They were reduced to and
compared with the known expressions for the XYX-type moleculelo' 11
and found to be consistent with this previous work.
II. DEVELOPMENT OF THE GENERAL
VIBRATION-ROTATION HAMILTONIAN
II.l DarlingrDennison Vibration-Rotation Hamiltonian
For any theoretical calculation of vibration-rotation energy
levels of a molecule it is necessary to have a suitable quantum me-
chanical Hamiltonian as a starting point. The Hamiltonian of a mol-
ecule may be considered to be composed of an electronic part as well
as a vibration-rotation part. The Born-Oppenheimer approximation
allows separation of the electronic motion from the nuclear motion to
a high degree of accuracy, and therefore affords the possibility of
writing the total wave function as a product of an electronic and a
vibration-rotation wave function. Since we are not concerned with
the electronic level structure, only the vibration-rotation Hamilton-
ian is of interest.
The general vibration-rotation Hamiltonian of a molecule has
been studied extensively.12 Essentially, the derivation is based on
classical considerations of the vibrational and rotational kinetic
energies transcribed to the proper quantum mechanical operator form.
In the following discussion we begin with the Darling-
Dennison Hamiltonian for a polyatomic molecule:
1
-/2
1 1
H = kuéfa 8(Pa - paluasu (PB - p8)u4
p -y p
+ Hu‘is pgu “pgu4 + V - (II’l)
The symbols a,B take the values x, y, z and refer to a set of body-
fixed coordinates attached to the equilibrium configuration of the
molecule with the origin at the center of mass of the molecule. The
equilibrium and instantaneous positions of the i-th nucleus along the
axes x, y, and z in this coordinate system are denoted by aoi and oi ,
respectively. The displacement of the i-th nucleus from its position
of equilibrium is denoted by:
+' - I I (II 2)
In Eq. (II-I) Pa is the a-th component of the total angular
momentum referred to the body-fixed axes and can be expressed solely
in terms of the Euler angles and derivatives with respect to these
angles. Thus, the Euler angles are the rotational coordinates of the
problem. The vibrational coordinates to be used in this equation are
the normal coordinates Qs' which have been substituted in favor of the
oi. The transformation between the oi and the QS is given by:
a
Jfiiai = 2521393 ' (II-3)
. . a . .
where m1 is the mass of the l-th nucleus, 218 are coeffic1ents of the
transformation, and Q8 is the normal coordinate of the s-th normal
mode. The vibrational momentum p; conjugate to the normal coordinate
QS is defined as:
_ -- §_. _
p; - 1M3Qs. (II 4)
The internal angular momentum component pa is defined by:
pa = ZsAzp; a ISIS-anst-P; ’ (II-5)
where
a _ B Y _ B Y a _ a .
Cs's Zi<£is'£is £15213.) Css' I GIBIY cyclic
(II-6)
a - 8 Y _ B y
AS - ZS'Ziu'is'p'is giszis')Qs'
a O
- ZSICSISng I GIBIY CYCllC. (II 7)
From Eq. (II-6) it can be seen that the Coriolis coupling coefficients,
a I
C85,. are zero when s = s .
One now defines effective moments and products of inertia, Ida
and I& , respectively, as follows:
B
I = _ a 2 II-
aa Iaa 2isms) ’ ( 8)
a B
' = -I + A A II-
IaB as 2s s s ' a # B ( 9)
where
= 2 2 _
Ida Zimi(si + vi) . a a B i V (II 10)
Ice = ' imiaiBi ' a I B . (II-ll)
Ida and IaB are instantaneous moments and products of inertia.
The reciprocal effective inertia tensor and its determinant are defined:
r II _II _II I
xx xy xz
-1
u = _II I “I. II I (II-12)
I J W W W I I
'I I "I l I
‘ zx zy 22}
-1
(H) = (1') . (II-l3)
p = det (u) = ——1—-——- ' (II‘l4)
det[I')
“as = uII+YI&B + Iéyl§8) , a ¢ 8 # Y (II-15)
= I I _ l2 _
uaa M1881YY IBY) , a # B # Y- (II 16)
The tensor (1') is called the effective inertia tensor. If the compo-
nents of the effective rotational angular momentum, Pa - pa , and the
components of the angular velocity, ma , are written as column vectors,
then:
(P - p) = (mm .
Finally, V is the vibrational potential energy, and it is a
function only of the normal coordinates QS.
II.2 Watson's Simplification of the Vibration-Rotation Hamiltonian
By commuting out n from the first two terms of Eq. (11-1)
the Darling-Dennison Hamiltonian takes the form:
:11
ll
Iza,B(Pa - pa)uaB(PB - p8) + gZSPEZ + U +'v (II-l7)
where
C!
II
1/ -1/
1 4 2
- P -
1
‘4
P
P + 7 ‘ *
X ua8( ) 62811 P811
8 “ PB
1 1/4 -1/4
+ 42.514 [pg , u 1p; . (II-18)
Here, use has been made of the fact that Pa operates only on the Euler
angles and thus commutes with all quantities in H except PB and Py'
It has been customary in applications of Eq. (II-l7), for
instance in Goldsmith et al's treatment6-9 of higher-order contribu-
tions to the molecular vibration-rotation energy, to start by intro-
ducing the power series expansion of pa and u in terms of the normal
6
coordinates,and from these expansions to evaluate U to the desired
. . 5 . . .
degree of approximation. However, Watson has shown that it is simpler
in the long run to use the commutation relations and the properties of
the “a tensor to evaluate U directly, without expansion. This proce-
B
dure yields the simple result that:
l 2
= -— . II- 9
U 8 M 2a pad ( l )
With this, Eq. (II-l7) takes the form:
= 1 _ _ 1 _.l_ 2
H 62a,B(Pa pa)uoB(PB p8) + 625p; 8 M Zoned + V '
(II-20)
This constitutes Watson's simplification of the Darling-Dennison
Hamiltonian and will be the starting point for our expansion in
the normal coordinates.
II.3 Development of the Hamiltonian
In this section the Watson form of the molecular vibration-
rotation Hamiltonian will be expanded to fourth-order of approximation
in the energy and terms of various orders identified and written out
explicitly. As a first step in this derivation we write Eq. (II-20) as:
= 1 - 1 7
H éZaIBuaBPaPB éXoIB(pauaB + uoBPo)PB + éiaBpauaBpB
l
- g hzfauaa + 9223 p;2 + V - (II-21)
The terms of Eq. (II-21) represent, in succession, the pure rotational
energy, the Coriolis coupling energy, the first correction to the
Coriolis energy, the second correction to the Coriolis energy, the
vibrational kinetic energy, and the potential energy of vibration.
We begin the expansion by writing the effective moments and
products of inertia in terms of normal coordinates. Substituting the
appropriate form of Eq. (II-2) for oi , Bi , Yi into Eqs. (II-10) and
(II-ll), and using Eq. (II-3) to introduce the normal coordinates gives:
_ a a8 a8 =
IaB - Iaaéae + 2s as Qs + 23,5' Ass'Qst' a, B x,y,z
(II-22)
where
2 2
13a = Xi mimei + Y01" a # s a y (II-23)
13.8 = -Zi miaoiBoi , (II-24)
aa _ B Y
a8 "‘ ZZi/{n-i(Boi£iS + YOi'Q'iS) I a # B 5‘ Y (II-25)
GB _ _ B a _
as - Zi/fii‘aoizis + 8012.15) , a 7‘ B 7‘ Y (II 26)
10
“a = B B y y _
Ass' Zi(£is£is' + zisgis') ' a I B I Y (11 27)
GB _ _ a B _
Ass' - Xi £15 is' ' a f B . (II 28)
Substitution of Eqs. (II-22) and (II-7) into Eqs. (II-8) and (II-9)
gives:
I = o as as I
IaB IooaaB + 2s as Qs + Zs,s'(Ass') Qst' (II-29)
where
a8 , _ a8 _ a B _
(Asst) - ASS. ZS" CSSIICSISII ' (II 30)
In the above, a,B:Y = x,y,z have been taken as the axes of the coordi-
nate system in which the equilibrium inertia tensor is in diagonal form
(principal axis system), and I; = O for a f B.
B
We continue with the expansion of Eq. (II—21) by writing “a8
as a power series in the normal coordinates. This is permissible,
because the “a depend on the components of the effective inertia
B
tensor which, as we have just shown, are functions of the normal coor-
dinates. Furthermore, displacements in the normal coordinates are
assumed to be small. The “a then take the form:
8
— _ o o 08 a8
uaB - uBa - (l/IoaIBB)[Q(O) + is C(l)s Qs
a8 08
+ Zs,s' 9(2)ss'Qst' + Zs,s',s" 9(3)ss's"Qst'Qs"
a8
+
ss's"s
9(4) II IQSQSIQSIIQSHI + ...]
XS’SI'SH'SHI
(II-31)
where the various quantities Q are the expansion coefficients. With
the help of Eq. (II-31) the terms of Eq. (II-21) can be expanded as
ll
follows:
y _ 1 GB 0 o
22a,8 uaBPaP8 - 428,8[Q(0) /Ia HIBBlp P8
1 (18 o o o
+ 428’8Zs[9(1)s /I 88 1881QM P P8 + %X8 828 S.[Q(2>; B./I 88188]
X
Q8Q8.P8PB + IZG,BZS,S. 8.[9(3>:: Su/Igalg81Q8Q8.quP8PB
1 (181°
+ 620823 S. S" SnI[Q(4)sSISuSnI/I aa I881QS QS 'QS "Q5 "'P aPB
+ ..... (II-32)
_.g(pauas + Msp )P8 = -. m2 [9(0)“ B/I°8 I° 81p 8P8
kid 82$ [9(1):B/I°a 1° 1 [p8Qs + QspalP
88 B
I
SC
08 o o .
Za,828,s'[m2)ss'/IoaIBB] [ponQs' + Qst'palps
1/ (18 o o
--2XQBXSS.S.IQ<3> . "/18 ”I 81 [p Q HQ .98. + QSQS.QS.p81P8
SS S
+ ooooo (II-33)
= e28IQ(OI“B/I°8 I° lpap
1
62a,8 pa“asps 88 PB
+ 428,828[Q(1):B/1°H188Ip Q SP8
1 a8 0 O O... —
+ éXa,BZS,S'[9(2)SS'/IaaIBB]paQSQS'pB + (II 34)
_.l. 2 = _ l. 2 G“ o 2 _ l. 2 0a
8 M {a uaa 8 M 28 9(0) /‘Iaa’ 8 M 2828(e(1>s /
12
o 2 _ i. 2 “a o 2 .. _
(Ida) JQS 8 M Zazs,s'[9(2)ss'/(Iaa) JQst' + (II 35)
gig sz = gig p;2 , (II-36)
Finally, the potential energy can be expanded as the Taylor series
_ av , 1 32v a'a',
V ‘ V° + Zs[3aé] “s + les,s'[3aéaaé,] S S
1 33v
+— " ' one.
3125,5',s"[3a'8a',3a'"] asas'as" +
s s s o
a 1/ 2 ‘
22$ Ast + Zsss'ss"'Kss's"Qst'Qs"
+ EssslssllésllI KSSIS'ISIIIQSQSIQSHQS"| + .... (II-37)
The zero order (denoted hereafter by 0(0) ) term in Eq. (II-32) is the
rotational kinetic energy for the rigid rotator with the nuclear frame-
work of the molecule in the equilibrium position. Appealing to exper-
iment, the leading term of Eq. (II-33) is known to be of 0(1); also,
the leading terms of Eq. (II-34) and (II-35) are of 0(2). The first
term of Eq. (II-35) is constant and may be discarded, as it shifts all
energies by an equal amount. Equation (II-36) is the vibrational
energy which is of 0(0). The Taylor series expansion of V, Eq. (II-37),
is taken about the equilibrium positions of the nuclei. The total
force at the equilibrium position, [532} , must be zero, and the
S O
l3
constant V° has no physical significance and may be set equal to zero;
V is then rewritten as a function of the normal coordinates with AS
being the square of the s-th normal frequency, and the sets of coeffi-
cients K are the force constants in the various orders of the expansion.
Equation (II-21) appears impossible to evaluate in closed form.
We therefore arrange the Hamiltonian in orders of magnitude
= + + + + + ... I -
H H0 H1 H2 H3 H4 , ( I 38)
and apply the methods of perturbation theory. The leading term of a
particular expansion (II-32) - (II-37) is assigned to the order
indicated by the discussion following Eq. (II-37), and the subsequent
terms are assigned to successively higher orders of approximation. We
also introduce dimensionless operators ps and q5 which are given by
.0
II
p
(As/M2)"QS (II-39)
’0
ll
(”Z/X )%P* (II-40)
S S
and the following notation:
QB
(2(1)S
IaaIBB
E [as- s] (II-41)
a8
Q(2)35'
1° 1°
aa 88
a [a8; 55'] (II-42)
“(3)323"
1° 1°
aa 88
[a8; 33'5"] (II-43)
a8
83.328". E [aB;SS'S"S"'] . (II-44)
I I
aa 88
9(4)
14
As a matter of convenience in future calculations we introduce
symmetrization of the above coefficients through the following
definitions:
[aB; ss']' = ([dB; 53'] + [dB; s's])/(l + 65 ) (II-45)
SI
[08; SS'S"]' = ([a8; 58'8"] + [08; SS"S'] + [a8; 5'33"]
+ [a8; s's"s] + [a8; s"ss'] + [a8; s"s's])/
[(1 + 638, + 6 )-(l + 65 )] (II-46)
ss" '5"
[a8; SS'S"S"']'= ([aB; SS's"S"'] + [as; SS'S"'S"]
+ [a8; ss"s's"'] + [a8; ss"s"'s']
+ [a8; ss"'s's"] + [a8; ss"'s"s']
+ Ids; s's"ss"'] + [a8; s's"s"'s]
+ Ids; s's"'ss"] + [a8; s's"'s"s]
+ [a8; s"s"'ss'] + [a8; s"s"'s's]
+ Ids; s'ss"s"'] + [a8; s'ss"'s"]
+ Ids; s"ss's"'] + [d8; s"ss"‘s']
+ Ids; s"'ss's"] + [a8; s"'ss"s']
+ Ids; s"s'ss"'] + [a8; s"s's"ss]
+ [a8; s"'s'ss"] + [a8; s"'s's"s]
+ Ids; s"'s"ss'] + [a8; s"'s"SS'])/
15
)(1 + a + 6 ...)<1 + 63.3.”).
I SIS" S's
(1+6 +6 u slll
35 SS
(II-47)
According to the above scheme,the Hamiltonian, regrouped into terms of
the same order of magnitude, takes the form:
CB
II
b
Bfapg/I;a+ +% M23 A;(p§/M2 + q: ) (II-48>
_ a 3'
H1 - za, st (1)Xs qs P aPB + Eazs,s' (1)xs qsps'Pa
+ XS€S.\SAS'}\S") KSS'S" thSS.'S" I (II 52)
H = 2 Z aBX q SSq .P up
2 a.B 5&5' (2) 58' B
ax s"
+ Zaisss'm" (2) Xss' 2(qsqs'Ps" + pansqs,)P
s" "I
+ 23$S' 33"33" I (2) x35. 41(q SSqS'P ups nu + pS "PS "qu qS u)
ESSS'SSHSSH' (2) xsslsusul q Sq s'qsuqsuu
_ _. 2 I0 _
8” 2a 1/Iaa (II 53)
where
OLBX = h [aB; ss'] , (II-54)
(2) ss' 2(Asls,)4
l6
A Z
a s" _ _ k s" l B . B . '
(2)xss' - M ZB[ASAS,] l + ass,[cs's"[a8'sl + Cssu[aB.s ]]
(II-55)
Z a a a a
Xs"s"' = Z 1 ASNASIII Cssncsnsnu + Cslsucssul
(2) ss' a I° A A , (1 + 5 ')(1 + 5 n n.)
dd 3 5 ss 8 s
(II-56)
”8 Z
(2)XSS'SHS"' = [ASAS'ASIIASH'] KSS'SHSH' = hC kSS'SHS"l
(II-57)
H = “5
3 Za,BZsss'ss" (3)xss's" qsqs'qs"PaPB
Z Z a Sfll l(
a S$S'\1 2a B£~"
m
X
22
M = ml + m2 + m3 , (III-4)
the equilibrium coordinates, with the origin at the center of mass, are
£01 a (m3a - m2b)/M , (III-5)
£02 = [m3a + (ml+ m2)b]/M , (III-6)
E03 = -[(ml + m2)a + mzbl/M , (III-7)
§°l a (m2 + m3)c/M , (III-8)
§02 = -m1c/M , (III-9)
§°3 = -mlc/M , (III-10)
E = E ' o . (III-11)
°1 °2 ' z°3 =
Transformation to the principal axes system of the equilibrium inertia
tensor is accomplished by taking
xOi = §°icos6 + §°isin6 , (III-12)
y°i = -x°isin6 + §°icose , (III-13)
zoi = 201 - o , (III-l4)
where the angle of rotation 6 is given through
tan 26 = T/Q , ' (III-15)
with
T = 2m1c(m3a — mzb) , (III—l6)
Q = m (m + m )a2 + m (m + m )b2
3 l 2 2. 1 3
2
- ml(m2 + m3)c + 2m2m3ab . (III 17)
The transformation gives for the equilibrium coordinates in the prin-
cipal axes system
x {(m a - mzb)cose + (m2 + m3)o-sin6}/M , (III-18)
°l 3
x c*sin6}/M , (III-19)
02 {[m3a + (ml + m3)b]cose - m
3
x = - {[(ml + m2)a + m2b1cose + m C'sin6}/M , (III-20)
°3 l
+ m3)c°cose}/M , (III-21)
Yol ' {(m3a - m2b)51n6 - (m2
23
= - + + ' + . -
Y°2 {[m3a (ml m3)b]sin6 mlc cose}/M , (III 22)
= + + . — o .-
y03 {[(ml m2)a m2b1s1n6 mlc cose}/M , (III 23)
z°l = 202 = 203 = O , (III-24)
o g _ o _ I _
Ixx 2(Izz I ) , (III 25)
1° = iao + I') (III-26)
yy 2 22 '
° = ° + I° = + + 2 -
Izz Ixx yy [9 2m1(m2 m3)c ]/M , (III 27)
with
2 2 2 1/2
I' = t[(T + 9 )/M ] . (III-28)
Denoting instantaneous position coordinates by xi , yi , and 21 , we
have that 21 a 22 = 23 a 0 because of the absence of out-of-plane
vibrations, and the nontrivial Eckart conditions24 are given by
mlxl + m2x2 + m3):3 = O , (III-29)
+ a .-
mlyl + mzy2 m3y3 O , (III 30)
{i mi(x°iyi - inxi) = o . (III-31)
Intermediate coordinates u, v, w are now introduced as follows:
u = x2 - x3 , (III-32)
v = y1 - (mzy2 + m3y3)/(m2 + m3) , (III-33)
w = x1 - (mzx2 + m3x3)/(m2 + m3) . (III-34)
In conjunction with the Eckart conditions, these give
xl - (u/ml)w , (III—35)
a: ' — -
x2 (I: /m2)u [ll/(m2 + m3)]w . (III 36)
_. _ I _ _
x3 — (u /m3)u [Ll/(m2 + m3)]w , (III 37)
Y1 = (u/ml)v (III-38)
:- .I II _
Y2 (u Y/m2)u + (ua/m2)v + (u /m2)w . (III 39)
a .. I _ _ ll _
Y3 (u Y/m3)u (HS/m3)V .(u /m3)w , (III 40)
24
with
u = [ml(m2 + m3)]/M .
u' = m2m3/(m2 + m3) ,
u" a mlyol/x23 ,
a = ' x13/"23 '
B = ' x12/x23 '
Y = y23/x23 = -tan6 ,
where
x12 = xol - x92 = - b cose + c sine ,
xl3 = xOl - x03 8 a cose + c sine ,
x = x - x = (a + b)cose ,
The kinetic energy of vibration
l .2 .2 .2
= — + ‘I'
can be expressed in terms of the intermediate coordinates as
1 - - t
T = 3' (m) (U) ((0) I
where (A) = (u v w), t denotes the tranSpose, and (u) is the 3
symmetric matrix with elements
“11 = u'(1 + yz) ,
“22 = u2[(l/m1) + (aZ/mz) + (82/m3)] .
u33 = u + (u"2/u')..
“12 = u21 = u"'Y .
“13 = u31 = u"Y r
u23 - U32 = u"u"'/u' ,
where
u"' = - mlx01/x23 = uu'[(a/m2) + (B/m3)]
(III-41)
(III-42)
(III-43)
(III-44)
(III-45)
(III-46)
(III-47)
(III-48)
(III-49)
(III-50)
(III-51)
(III-52)
X 3
(III-53)
(III-54)
(III-55)
(III-56)
(III-57)
(III-58)
(III-59)
25
The most general harmonic potential energy expressed in the intermediate
coordinates and invariant under the point group symmetry of the molecule
(Clh) is
v = (w)(k)(m)t , (III-60)
nus:
where (w) = (u v w) and (k) is the 3 x 3 symmetric matrix of potential
constants with elements kll' k , k , k = k
33 12 21' k I k "k = k
13 31 23 32°
The transformation from intermediate to normal coordinates Q5,
22
s = 1,2,3, is of the form
u = {5 nlst , s = 1,2,3, (III-61)
v = Z n Q s = 1,2,3, (III-62)
s Zs s ’
w = 28 n3st , s = 1,2,3, (III-63)
where the nS,S are obtained through solution of the secular equation
I A(u) - (k)| = o (III-64)
and each n , can be expressed as n , = N , /N where N , is the co-
s s s s s s s s 3
factor of the s'-th element of any row (e.g., the first one) of the
determinant, Eq. (III-64), with A a As , the s-th root of Eq. (III-64).
The quantity N8 is determined such that
- l. '2 '2 '2 -
T _ 2 (Q1 + Q2 + Q3) , (III 65)
Which requires that
2: 2’ +
N5 Zs'=l,3 [us's'Ns's Zs"7€s' us's"Ns'st"s
The harmonic portion of the potential energy becomes
1 2 2 2
= — + '-
V 2 (AlQl 2292 + A3Q3), (III 67)
and the normal frequencies, in radians per second, are Al, A2, and A3
The As can be specified in closed form as the roots of the general
cubic equation. These expressions are, however, rather cumbersome and
26
of limited practical use,as ordinarily it is the three roots As for
which numerical values are known and the potential constants kij for
which numerical values are sought. As there are three AS and six
distinct potential constants ki , the problem is underdetermined and
3
additional information about the potential constants must be developed
through intercomparison of isotopically substituted species and through
information derived via the second-order parameters of the Hamiltonian.
Thus if it is the AS which are to be regarded as known, it appears that
the relations between the coefficients of the cubic equation and the
symmetric functions of its roots are potentially more useful than the
expressions for the roots because the former relations are considerably
simpler than the latter. Theory of equations shows that the three
roots As of the cubic equation
3 2 + + = -
C3X + C21 ClA CO 0 (III 68)
are related to the coefficients Cn through
— CZ/C3 = A1 + A2 + A3 , (III-69)
+ Cl/C3 = AlA2 + A2A3 + A3Al , (III-70)
- CO/C3 = A1A2A3 . (III-71)
For the problem under study we find that
C3 = det (u) , (III-72)
.. _ (2) _
C2 - ZsXs' Css' kss' ' (III 73)
_ (1) _
Cl - Zszs' Css' uss' ' (III 74)
CO = - det (k) , (III-75)
(2) (l)
where C , is the cofactor of p , of (u), C , is the cofactor of k ,
ss ss ss 55
27
of (k), and where the double sums are unrestricted.
Since a simple, closed form solution of the secular equation
cannot be written down, the transformation coefficients nS need to
I
be retained explicitly in what follows. The normal vibrations
problem is here set up in such a way (with s - l specifying the XY
bond stretching mode, 5 = 2 the bending mode, and s = 3 the YZ bond
stretching mode) that specializing the results of this and the _
following section to XYX will reduce these directly to the results
of Chung and Parkerlo, Yallabandi and Parkerll, and Chan, Wilardjo,
and Parker.25
28
III.2 Molecular Parameters
The coefficients 2:5, a = x, y, z, of the transformation from
instantaneous position to normal coordinates are defined by Eq. (II-3)
and can be constructed for the XYZ-type molecule with the aid of Eqs.
(III-35) - (111-40) and (III-61) - (III-63). In this manner one
determines that
2:3 = (u/mf)n3s , (III-76)
22s = (“'/m§)nls - [me/(mz + m3)]n3s (III-77)
2:8 = -(u'/m'§)nls - tum’j/(m2 + m3>1n3s : (“148’
£15 = (u/m?)n28 , (III-79)
22s = (u'Y/m§)nls + (ua/mEMZs + (u"/m§)n3s I (III-80)
figs = - (u'y/m§)nls - (“B/m§)n25 - (u"/m%)n3s I (III-81)
£2 = £2 = £2 = 0 (III-82)
Knowing the 2:8, one can construct the Coriolis constants, :23, , from
Eq. (II-6). These are all zero when a = x or y. The nonvanishing C:s'
with the upper index suppressed, are the following:
- n ) + u"'(n n
C = - c = -u(n
ss' s's 2sn33' Zs'nBS ls 25'
‘ nls'nZS) I u (nlsnBS' ‘ nls'n3s)'
s # s'. (III-83)
There are thus three distinct nonvanishing Coriolis constants, viz.,
:12 = - C21, :13 - - :31, and :23 = - :32, and these obey the sum
29
rule7,19,26
2 2 2 = -
O I a8 a8 0
For the XYZ-type molecule the quantities as and (ASS,)', introduced
in Eqs. (II-29) and (II-30) for the instantaneous moments and products
of inertia, take the following form:
xx xx xx xx
= + + -
as t]- nls t2 nZS t3 n3s , (III 85)
yy _ YY yy yy -
aS - tl nls + t2 n25 + t3 n3S , (III 86)
22 _ zz zz zz = xx yy _
aS - tl nls + t2 n25 + t3 n3S aS + as , (III 87)
XY _ KY KY XY = YX _
aS — t1 nls + t2 nZS + t3 n3s as (III 88)
with the coefficients t:8 as summarized in Table 1. All other a:8
vanish. The nonvanishing (A::,)'and (A::,)'are given by
YY I = YY .
(Ass') (As's)
= Ayy ' = All?
ss 5 s
= I + _
u nlsnls' 1m3sn3s' ' (III 89)
zz zz zz
(A11>' = (c23)2. (A22)' = (:13)2, (A33>' = (:12)2,
(III-90)
zz , _ _ zz , = zz , = _
(A12) ‘ C13C23’ (A13) C12:23' (A23) C12513'
(III-91)
xY . _ YX . = XY 3 YX
(Ass') (As's) Ass' As's
= _ I II I + I!
(n Y nlsnls' + u nlanS' u n1snss.'
+ . III- 2
u n3sn23') ( 9 )
In Eqs. (III-90) and (III—91) we have used A::, = 685,.
30
B
Table l. The Coefficients t: Introduced In Eqs. (III-85)-(III-87)
- 2
4.
xx 2m2m3(a b)s1n 6 yy 2m2m3(a + b) cose
t1 = (m + m )cose t1 = (m + m )
2 3 2 3
+
txx _ 2ml(m2 m3” tyy _ 0
2 M cose 2
xx _ _ yy =
t3 - 2mly°l tane t3 2mlx°l
tzz = 2m2m3(a + b) a txx + tyy txy = 2m2m3(a + b) Sine
1 (m2 + m3) cosB 1 l 1 (m2 + m3)
zz _ xx xy =
t2 - t2 t2 0
2m (m a - m b)
zz = 1 3 2 _ xx yy xy _ _
t3 M cosG t3 + t3 t3 2m1y°l
x and y01 are as given by Eqs. (III-18) and (III-l9)
31
Direct computation of (A::,)' yields the very complicated expression
xx , _ xx , _ xx = xx
(Ass') (As's) Ass' As's
2 2
= I 2 2 1 L... g.—
H Y nlsnls' + u m + m nZSnZS'
1 2 3
uII2
+ __... III
u' n3sn3s' p Y(nlans' nls'nZS)
+ u"Y(nl n3s' nls'nBS)
uIIuIII
+ . -
+ u, (nanBs' n28,n3s) (III 93)
For 5 = 3' use of this expression can be avoided by taking advantage
. l9 . ad .
of the sum rule of Oka and Morino , Viz., 2a Ass = 2, which upon
application to XYZ gives that
XX I _ _ YY I = _
For 3 # s' Amat and Henry27 have shown that
XX
(Ass'
)I = -(A::,)' , (III-95)
and thus Eqs. (III-94) and (III-95) can be combined to give
(A::.)' + (Ayy )' =
SS, 558, (III-96)
Amat and Henry have also shown that the following simple relations
exist between the a:8 and the (A::,):
ad , = 1_ cy ay 0 _
(Ass') 4 2y as aS'/IYY , (III 97)
a8 , Ba 1 ay BY ay By
'=— + o -
(ASS') + (ASS,) 4 fy'
SS
IV. GENERALITIES OF THE CONTACT TRANSFORMATION
TECHNIQUE FOR FOURTH-ORDER CALCULATIONS
and H as
The contributions to the energy from H 3, 4
IHIH
1 2
discussed in Chapter II may be evaluated by the usual methods of per-
turbation theory. The zero order energy is computed from the zero
order part of the Hamiltonian, H , while the first order correction to
O
the energy: E1' is computed from the diagonal matrix elements of H1
The off-diagonal elements of H contribute only to the second and high-
1
er order corrections. However, the perturbation is complicated by the
myriad of terms in H , H2, H , and H4, and it is therefore highly de-
l 3
sirable to transform the Hamiltonian to a more convenient form. Such
a form can be attained by subjecting the Hamiltonian to a contact
. 28
transformation ,
H' = THT-l = H6 + AHi + AZHé + "" (IV-1)
where A is a parameter of smallness.
With a suitably chosen unitary operator T the off-diagonal
elements of Hi can be made to vanish, while the zeroth order terms and
the diagonal matrix elements of the first order term of the Hamiltonian
remain intact. The zero order eigenfunctions are then the correct
eigenfunctions to first order when the zero order energy is non-
degenerate. Since there are no off-diagonal matrix elements of H' the
1!
34
35
evaluation of second order corrections to the energy is effectively
reduced to a first order perturbation calculation.
We shall let the unitary transformation operator be of the form
T = exp(iAS). The transformed Hamiltonian is then given by:
H' = THT-l = (1 + iAs - -:—-AZS2 - %-1A3S3 + ~-- )
2 3 .I.
x (H0 + AHl + A H2 + A H + )
3
x (1 - iAs - i—Azs2 + é-‘A3S3 + --). (IV-2)
Equating coefficients of like powers of A one obtains
H6 - H0 (IV-3)
Hi = Hl + i[S, HO] (IV-4)
. _ - _.£ _
H2 — H2 + 1[S, H1] 2[s, [S, H0]] (IV 5)
In general
n (i)n'k n-k
“I: = Lao W5 , Hk} (IV-6’
where
(0) _
{s , Hn} = Hn (IV-7)
(1) =
{S I Hn} — [SI Hn] (IV 8)
(2) z _
{S I Hn} — [SI [8. Hnll (IV 9)
The partial Hamiltonians which will be needed in subsequent calculations
are
= H (IV-10)
36
I= ' I-
H1 H1 + i[S, HO] ( v 11)
H' = H + l-i[s H + H'] (IV-12)
2 2 ' 1 1
H' = H + i[S H ] - 518 [s H + l-H']] (IV-13)
3 3 ’ 2 3 ' ' 1 2'.1
In the.above it should be noted that Eq. (IV-4) has been solved for
[8, HO] = i(H1 - Hi) and substituted into the expressions for H5 and Hi.
In general we have
(2)
Hn = Hn + i[S, Hn-ll' (IV-l4)
(2) _ I_. (3)
Hn_l - Hn-l + 2 i[S, Hn-2]' (IV 15)
' (m) 1 . (mm
= + — _
Hn Hn m i[S, Hn-l ] , (IV 16)
where Hém) = HO for all values of m. The required transformed first-
order Hamiltonian Hi is obtained if S is chosen such that
' = - * ° _
1[S, H0] (H1 + {a paPa/Iaa) (IV 17)
where
* a — _
pa Zszo
+ ZS11
SI ASII a8
ZS..<1+6..+6...> I: a..k...
”3/25 ss s s ss's " IaaIBB 5 es s
l I A8 + As, - ZASH‘
__ 4
+ 2H Z5"”5’5" (As - As")(As, - As")
;: s.::. .8. +c:. S.c§s.
o o , “7-27)
(1 + 68 s)IaaIBB
L2 ’/2 /2’
(A A IA IIA III) 1 + 68 SIII + 6 I III
= 2Hc Z s s s" s s s
2 III 68
M S 88.8" l..+ SS" + 68.3"
1 1 1
c“. .. (xix .A .Aé..>1
. s s + Z s s s 3
10 8513" S". G ' n "3
aa 3 s s
l + 6 I II + 6 II III Ca III
. s s s s . ss.
1 + 5 ' ... 6 " Io Signs"!
3 s s cc
1 1 1
(A A4.A..A”"... )4 1+6 ...+6..
+ s s s' as s s
S". G II III 1 + 6 I + 6 II I
es 3 es s s
a
C I III
3%- SS..S... ,
ad '
a ’4.
"C ZS"'(1 + 6SSIII + 6SISIII) (CSIISIII) (ASHASH')
26 I III + (A II - A III) (A + A II - A III)
ss 5 s s s s s k
G I III(A II - A III) Io ss's".
as s s s cc
AS". 14
- TIC ZS"'( 1 + 688".)(1 + ass" + 68"SH') (r)
SI
46
1/2 a
A "(A II - A III - X ) C I III III 1
. S S S S . S S _ TTC 2 ( S )4
(1 + 6 ,) ,, 1° ss"'s" s'” A
58 SS 8 0101
(1 + 6 )(1 + 5 + 6 ) A1/2 (A A A )
. SISIII SIS" SIIISII . S" S" SI 8'”
1 + 6 I G I III II
SS 8 S S
C!
. Cssnn k (V-29)
Io SISIIISII I
0101
SIISII I a 4.".2c2
Z IIII(l + 6 IIII+ 6 )(1 + 6 II "n+6 III
S SS S S S
)
SSI M SISIIII sIIII
P
(ASIIASIIIASIIII) 2
G n u. n" ksSISIIIIkslISIIIsIIII I (v-30)
S S S
Y III III = r III III + r II I III + r III I II + r I II III
SS S S SS S S SS 8 S SS S S S S SS
+ P I III II + P II III I I (V-31)
S S SS S S SS
with
P I u "I = - "Czh Z an (1 + 5 nu + 6 I nu)(1 + 6 u an
SS S S S SS S S S S
+ (S III IIII)(1 + 6 II + 6 III + 5 I II + 6 I III
S S SS SS S S S S
Ag A A A
_1 SIIII( sIIII - SII - SIII)
+ 6 "6 I III)
SS S S G II III IIII
S S S
k I IIII k II III IIII ° (v-32)
SS S S S S
Appendix 5 contains the nonzero y necessary for calculating the fourth-
order centrifugal distortion coefficients.
Substitution of Eqs. (II-53), (V-19), and (V-23) into Eq. (V-9)
gives the once-transformed form of h' ,
47
GBYG aByYs
hé = Za,8.y,6 (2)Y PGPBPYPG + Xa,8.yzs (2) PsPaPBPY
a8 ss' a8
+ Za,BXsfis'( (2)Y psps' + (2)Yss'qsqs')PaPB
a ss's"
+ {afsfis.fis. (2)Y 9598.95. Pa
a S"
l
+ ZQZS:S';S" (2)YSS' 2(qsqslpsu + pansqsn) Pa
+ Z Ysusn'liq q p p + p p q q )
SES';S":S"' (2) ssl 2 8 SI SI! sIII SII sIII 8 SI
+ Zsfs'isufis'” (2)YSSISIISIII qsqslqsuqsnl ' (v-33)
where
aBy6
aByd
(2) Y
Y
I (V-34)
aByYs = aByys + aByas
(2) , (v-35)
(gfyss' = asyss' + aBass' ' (V-36)
(;§Yss' = (:fxss' + “3153- + “8°55- , (V-37)
(2?Yss's" = GYSS'S" ' (v-38)
(2?Y:;' (2?x:;' + GY:;' . (V-39)
(2)Y:;?"' = (2)X:;?"' + 1:2?"8 . (v-40)
(2)Yss's"s"' = (2)Xss's"s"' + YSS'SHSHI ° (V-4l)
Similarly, the once-transformed form of h; is given by
. _ 08Y5
h3 _ Za,8,y,dzs (3)Ys qs PaPBPypd
aBy s'll
+ Za'B'YZSIS' (3)Ys 2 (qsps' + ps'qs) PGPBPY
48
a8 SIS" i
+ ZQIBZSIS'ES" (3)YS 2 (qspslpsfl + Pslpsllqs) POPS
a8
+ Zaszsfs.fs. (3)Yss.s. qsqs.qs. PaPB
a SISIISII I1
+ Zazs;slfsllfsfll (3)Ys 2(qsp8IpsllpslIl+ PSIPSIIPSIIIqS)Pa
a sIII 1
+ XGZSESISSII;SIII(3)Ysslsll 2(quSIqSIIPSIII + PSIIIququSII)Pa
Z sISIISIIISIIII l(
S;S':S"§S"'ES"" (3) S 2 qustsIIpsIIIPSIIII
s" I 5" II
+ pSIpsIIpSIIIpsIIIIqS) + ZSESIESII;SIIIESIIII (3)¥SSISII
1
2 (qsq8.qs.ps..ps.. + ps..ps..qsqs.qs.)
ZSESIESIIESIIIESIIII (3)YSSISIISIIISIIII qsqslqansnlqsllu
+ {S mars qs. (v-42)
The coefficients (3)Y are not listed explicitly, because they will not
enter into the final expression for the fourth-order Hamiltonian.
VI. SECOND CONTACT TRANSFORMATION FOR THE XYZ-TYPE MOLECULE
In order to cast the Hamiltonian into a form suitable for
energy calculations to the fourth order of approximation, it is neces-
sary to perform a second contact transformation on the once-transformed
Hamiltonian H' so that the twice-transformed Hamiltonian will be diag-
onal to second order in all vibrational quantum numbers. Regrouping
terms in Eqs. (IV-21) to (IV-25) according to true orders of magnitude,
the twice-transformed Hamiltonian takes the following general form:
h5 = h6 = HO (VI-l)
hi = hi = o (VI-2)
h; = hé + i[Z, Ho]v (VI-3)
h; = hé + i[z, HO]R + i[E, hi]v (VI-4)
h; = h; + i[Z, hiJR + %-1[z, hé + hSJV . (VI-5)
The operator 2 is determined by requiring the commutator -i[£, HO]v
to be of a form such that the vibrationally off-diagonal matrix elements
of h' will be removed in (VI-3). This 2 function can be shown to take
2
. 29
the follow1ng form :
z = “BYE q P P P
S S a
20.8.st B Y
49
50
a8 3'
l
+ Z01,825,3' zs 3(qsps, + ps'qs) PaPB
a
+ Zazsfs'fs" zss's" qsqs'qs" Pa
a s's" 1
+ 20.28533" 25 3
Z3. ass s 768 s'
[; enl' = 16 28 s.(1 + ass.){s [< )
en en 3.6n
(2 (2)xss' + Yss' + 3 ass')
ens s' y6 y6 g_y6
+ ( )(2 (2)xss' + Yss' + 3 0‘ss')]
an ass 3' y6 76
+ ”S [( )(2 (2)xss' + Yss'
y6s s' an + 08
y6o‘S
s') + ( (2)x ss' Yss'
)(2
GB
ass,)]} . (VI-l9)
nun) nun:
The paBYG have been studied by M. Y. Chan30 and are found to
be of the form is raBy6(vs + 1/2). However, because they are extremely
complex and not germane to our argument, their explicit form will be
53
omitted. A detailed discussion of the coefficients occurring in h;
has been given by Chung and Parker.3
From Eq. (VI-15), the point group symmetry of the molecule, and
the properties of a28 for the case of planar molecules (i.e., aza - aga
xz 3 ayz
s s
and a = 0), it follows that there are 13 possible nonzero
coefficients T In addition, there are 47 pasY6 and 729 O
aBy6'
3,33
aBy6en'
that 15 of the paBYG and 105 of the 0 have
It has been shown
a6y6en
matrix elements that lie inside the Wang's diagonal block531, custom-
arily denoted by E+, E-, 0+, 0-. It has been shown3 that these matrix
elements therefore contribute to the energy in the fourth order; the
remaining 32 paBY5 and 624 0 fall outside the Wang's blocks and
aBy6en
from this it can be shown3 that they contribute only to eighth order
in the energy. These latter terms can therefore be discarded. An
abbreviated notation for the 105 ea8y6en that are retained is given in
Table 2. In this notation O is abbreviated as e , G as O ,
xxxxxx 1 YYYYYY 2
etc.
Considerable simplifications in the Hamiltonian result from
application of the commutation relations [Pa’ P ] a - ihPY and a
B
judicious redefinition of coefficients.32 The transformed Hamiltonian
consists of three terms of the second power in P with coefficients A,
B, C, six terms of the fourth power in P with coefficients Ti' and ten
terms of the sixth power in P with coefficients 61. The 61 will be
calculated in the next chapter. The basic Hamiltonian to be used for
a given vibrational state can then finally be written a332
H = H2 + H4 + H6 + H6a , (VI-20)
where
54
Table 2. Abbreviated Notation for the Distinct Fourth-Order
Centrifugal Distortion Constants O
aBYGen
1 Oa8y6en l OaBY6en
l (xxxxxx) 41 (xxzzxx)
2 (YYYYYY) 42 (xzxxzx)
3 (222222) 43 (zxxxzx) = (xzxxxz)
4 (xxyyyy) = (yyyyxx) 44 (zxxxxz)
5 (yyxxyy) 45 (zxzxxx) = (xxxzxz)
6 (yxyyxy) 46 (xzxzxx) = (xxzxzx)
7 (xyyyxy) = (nyYYX) 47 (zxxzxx) - (xxzxxz)
8 (xyyyyx) 48 (xzzxxx) - (xxxzzx)
9 (xyxyyy) = (yyyxyx) 49 (xxzzzz) = (zzzzxx)
10 (yxyxyy) - (yyxyxy) 50 (zzxxzz)
11 (XYYXYY) = (YYXYYX) 51 (zxzzxz)
12 (yxxyyy) = (yyyxxy) 52 (xzzzxz) = (zxzzzx)
13 (yyxxxx) = (xxxxyy) 53 (xzzzzx)
14 (xxyyxx) 54 (xzxzzz) = (zzzxzx)
15 (xyxxyx) 55 (zxzxzz) = (zzxzxz)
16 (yxxxyx) - (xyxxxy) 56 (xzzxzz) = (zzxzzx)
17 (yxxxxy) 57 (zxxzzz) = (zzzxxz)
18 (yxyxxx) = (xxxyxy) 58 (xxyyzz) - (zzyyxx)
l9 (xyxyxx) = (xxnyX) 59 (yyzzxx) = (xxzzyy)
20 (yxxyxx) - (xxyxxy) 60 (zzxxyy) - (yyxxzz)
21 (xyyxxx) = (xxxyyx) 61 (xyyzzx) - (xzzyyx)
22 (yyzzzz) - (zzzzyy) 62 (yzzxxy) = (yxxzzy)
23 (zzyyzz) 63 (zxxyyz) - (zyyxxz)
24 (zzzzyz) 64 (yxxyzz) - (zzyxxy)
25 (yzzzyz) = (zyzzzy) 65 (xyxyzz) = (zzyxyx)
26 (yzzzzy) 66 (zyyzxx) - (xxzyyz)
27 (yzyzzz) = (zzzyzy) 67 (yzyzxx) = (xxzyzy)
28 (zyzyzz) = (zzyzyz) 68 (xzzxyy) . (yyxzzx)
29 (yzzyzz) = (zzyzzy) 69 (zxzxyy) - (yyxzxz)
30 (zyyzzz) = (zzzyyz) 7O (xyyxzz) = (zzxyyx)
31 (zzyyyy) - (yyyyzz) 71 (yxyxzz) - (zzxyxy)
32 (YYzzyy) 72 (yzzyxx) = (xxyzzy)
33 (YZYYZY) 73 (zyzyxx) = (xxyzyz)
34 (zyyyzy) - (yzyyyz) 74 (zxxzyy) - (yyzxxz)
35 (zyyyyz) 75 (xzxzyy) - (yyzxzx)
36 (zyzyyy) a (yyyzyz) 76 (yxyzzx) = (xzzyxy)
37 (yzyzyy) = (yyzyzy) 77 (xyxzzy) = (yzzxyx)
38 (zyyzyy) - (yyzyyz) 78 (zyzxxy) = (yxxzyz)
39 (yzzyyy) a (yyyzzy) 79 (yzyxxz) - (zxxyzy)
4O (zzxxxx) a (xxxxzz) 80 (xzxyyz) = (zyyxzx)
Table 2 (cont'd.)
55
1 eaBy6en l eaBy6en
81 (zxzyyx) =_(xyyzxz) 94 (xzyyxz) a (zxyyzx)
82 (yxyzxz) = (zxzyxy) 95 (yxzzyx) = (xyzzxy)
83 (zyzxyx) = (xyxzyz) 96 (zyxxzy) = (yzxxyz)
84 (xzxyzy) = (yzyxzx) 97 (zyxyzx) = (xzyxyz)
85 (xzyxzy) = (yzxyzx) 98 (yxzyzx) - (xzyzxy)
86 (yxzyxz) = (zxyzxy) 99 (zyxzxy) = (yxzxyz)
87 (zyxzyx) - (xyzxyz) 100 (yzxyxz) = (zxyxzy)
88 (yzxxzy) 101 (zxyzyx) = (xyzyxz)
89 (zxyyxz) 102 (xyzxzy) = (yzxzyx)
90 (xyzzyx) 103 (xyzyzx) = (xzyzyx)
91 (xzyyzx) 104 (yzxzxy) = (yxzxzy)
92 (yxzzxy) 105 (zxyxyz) = (zyxyxz)
93 (zyxxyz)
H = A P2 + B P2 + c P2 , (VI-20)
2 x y z
= 6 u u 2 2 2 2 2 2
H4 TlPx + TZPY + T3Pz + T4(Psz + PzPy) + T5(Psz
2 2 2 2 2 2 _
+ PxPz) + T6(PxPy + Pypx), (VI 22)
= 6 6 6 2 u u 2 2 6
H6 61px + 62py + 6392 + 64(Pxpy + pypx) + 65(Pypx
+ PHPZ) + 6 (Psz + P“P2) + 6 (P2P“ + PHPZ)
x y 6 y z z y 7 z y y z
+ 6 (P2P“ + PHPZ) + 6 (PZP“ + PHPZ)
8 z x x z 9 x z z x
2 2 2: 2 2 2 _
+ ].0(PxP2=Py + PszPx) , (VI 23)
H =D(PP +PP)+3‘-r (P3P +PP3)+lT (P3P
6a x y y x 4 10 x y y x 4 11 y x
3 l. 2 2 _
+ PxPy) + 4 T12(PxPzPy + PszPx). (VI 24)
The coefficients T now appear
with numerical subscripts. These merely
1'11! Ill-I'll]
56
take the place of the more cumbersome notation T The coefficients
3
aBy6'
of the P2 terms are the effective rotational constants, equal to
equilibrium rotational constants, l/(Zlga), of 0(0) plus second-order
centrifugal distortion corrections to the equilibrium constants, 1,
plus second-order vibrational corrections, 6. There are also terms of
0(4). More explicitly:
A = 1/(21;x) + {i=1 0,: (vs + %) - %M2r9 + 0(4), (VI-25)
B = 1/(21;y) + 22:1 0,: (vs + -:-) - §n219 + 0(4), (VI-26)
c = 1/(2122) + {i=1 a: (v + %) + 341219 + 0(4), (VI-27)
where
a: = (g?xss + Gays + n2(“°yss). (VI-28)
Other terms in Eqs. (VI-20) to (VI-22) are given by:
n = 23 [ xyx + ny + M2(xyyss)1(v§ + %p
s=l (2) ss 33
1 2
' 2'“ (T10 + Tll ' 2 T12) ' (VI-29)
l 2
T1 = K (1:1 + pl) + M (1511 , (VI-30)
_ 1 2
T2 - z-(IZ + p2) + M 012 , (VI-31)
l 2
T3 = Z-(T3 + p3) + M 013 , (VI-32)
l * 2
T4 = Z-(r4 + p4) + M 614 , (VI-33)
1 * 2
T5 = 2 (T5 + ps) + M 015 , (VI-34)
1 * * 2
T6 = Z‘(T6 + 96) + M Q16 , (VI-35)
57
where the Ti are the centrifugal distortion coefficients of 0(2), pl
* t
to p3, 64 to p6 are the vibrational corrections to T of 0(4), and 6
11
to 616 are the rotational corrections to T of 0(4). The terms pl to
* . 3
p6 are merely the pafiy6 redefined , and the terms 611 to $16 are not
the subject of the present investigation, and their forms will be
* * 'k *
omitted. The quantities T6, 64, ps, and p6 are defined as
T6 = T6 + 2 19 , (VI-36)
* = + + -]-‘- + ~1- (VI-37)
04 D4 D7 2 p10 2 p11 '
* = + + l- + l- (VI-38)
p5 D5 D8 2 p12 2 p13 '
* = + + i- + i- (VI-39)
D6 06 O9 2 p14 2 p15 '
Finally, the coefficients of the P6 terms are the fourth-order centrif—
ugal distortion coefficients, 6 to 6
l 10, which are the subject of this
dissertation. After an extensive rearrangement of terms the coeffi-
cients are found to be given by32:
03 = 83 , (VI-42)
¢ =6+§6 +§6+6 +%0+0 +6 +6 +6,
4 4 5 6 7 8 9 10 11 12
(VI-43)
l 1 1
¢5 = 013 + 2 614 + 2 615 + 016 + 2 017 + 918
+ O + O + G I (VI-44)
58
1 1 l
¢6 ’ 622 + 2 923 + 2 024 + 25 + 2 026 + 027
+ 028 + 029 + 030 , (VI-45)
1 l 1
$7 ’ 031 + 2 032 + 2 933 + 34 + 2 035 + 635
+ 637 + 038 + 039 , (VI-46)
1 l 1
¢8 ' 040 + 2 041 + 2 042 + 43 + 2 044 + 045
+ 046 + 047 + 048 , (VI-47)
1 1 1
¢9 ‘ 049 + 2 0so + 2 051 + 52 + 2 053 + 054
+ 055 + 056 + 057 , (VI-48)
¢lo = 058 + 059 + 060 + 661 + 662 + 063 + 064 + 065 + 666
+ 067 + 968 + 969 + 070 + 071 + 072 + 073 + 074 + 075
+ 076 + 077 + 078 + 079 + 980 + 981 + 982 + 983 + 084
1 l l 1
+ 085 + 986 + 087 + 2 688 + 2 089 + 2 090 + 2 691
+ 2-0 + l-G + 0 + 0 + 0 + 0 + 0 + 0
2 92 2 93 94 95 96 97 98 99
+ 0100 + 9101 + 0102 + 0103 + 0104 + 0105 ' (VI'49’
A full discussion of 61 to 610 is given in the following chapter.
An alternate form of the Hamiltonian called the "H-form"ll'32,
which considerably reduces the computation of matrix elements, is ex-
pressed in powers of P2 and P2 (where P2 a Px + Py
H2 =
A * P2 + B * P2
(-146)x (~M6)y+(c-
2 2 + Pi) and is given by:
3 * 2
2 M6 z , (VI-50)
59
* 4 * 2 * 4 * 2 2 2
H = M P + M P2P + M P + M P P - P
4 1 2 z 3 z 4 ( x y)
i: *
+ M [ P2(P2 - P2) + (P2 - P2)P2] + M [(P2 - P2)2
5 z x y x y z 6 x y
l 4 2 2 4 2 2 5 2
- 2 (P - 2P Pz + P2) + M (P 2 Pz)] , (VI—51)
6 4 2 2 4 6 4 2 2
H6 - H1 P + H2 P Pz + H3P Pz + H4 Pz H5 P (Px - Py)
2 2 2 2 1 6 4 2 2 4
+ - - —- - +
H6[P (Px Py) 2 (P 2P Pz P P2)
2 4 5 2 2 2 2 2 2 2 2 2
+ - - + - + -
h (P 2 P Pz)] H7{P [Pz(Px Py) (Px Py)Pz]}
4 2 2 2 2 4 2 2 2 2
+ H8[P2(Px - Py) + (Px Py)Pz] + H9{[PZ(Px - Py)
+ (P2 - P2)2P2] - (P4P2 - 2P2P4 + P6)
x y z z z z
2 2 2 5 4 2 2 3
+ - - + - -
2 M (P P2 2 Pz)} H10(Px Py) , (VI 52)
where
* 2 2 H + 3
M1 — Ml + M (- Hl - H2 - 6 H9), (VI-53)
* 2 2
M2 - M2 + M (.1 H1 + 6H2 + H6 - 20H9) , (VI-54)
* 2 2
M3 - M3 + M (- 10Hl - 5H2 + 0H9), (VI-55)
*
* 2
M5 - M5 + M ( 2H5 + 4H7 + 2H10), (VI-57)
* 2 4 2 6 I 58
M6 - M6 + M ( Hl + H2 - H9) , (V - )
with
M - 2-(T + T ) + l-T (VI-59)
1 8 1 2 4 6 '
M - - 2-(T + T ) + (T + T ) - l-T (VI-60)
2 ‘ 4 l 2 4 5 2 6 '
«H61
kflh‘
nbhd
5
l—6'(1 + (132) +
15 3 3
- 16 (41 + 42) - 8 (44 + ¢5) + 4 (¢7 + 48)
1
+ —-¢
4
(T1 + T2) +
(T1 - T2) .
#JP'
(Tl + T2) -
(T
1
1
0
- T2)
I
T
3
kflh‘
GHPJ
60
- (T4 + T5) +
1
2'(T4 ' T5) '
(44 + ¢5) ,
l
4 T
I
15 3
16 (41 + P2) + 8 (44 + 45) + (46 + 49)
3
+ 4 ($7 + ¢8)
3
8 (¢1 ' ¢2) ‘
3
§'(¢1 + ¢2) -
3
' 8 (¢1 ‘ ¢2)
.41
16
1
+ 2 (¢7 ' ¢8)
3 l
2 (¢7 + P8) - 2 Q
+
hJP'
bJP'
10 '
GNP!
((1)—(D),
(44 + 45) ,
(VI-61)
(VI-62)
(VI-63)
(VI-64)
(VI-65)
(VI-66)
(VI-67)
(¢4 + ¢5) - (¢6 + ¢9)
(VI-68)
(VI-69)
(VI-70)
l 1
Z (<14 - <15) - 3 (<17 - <18) , (VI-71)
1 1
(¢1 ‘ ¢2) ' 8 (¢4 ' ¢5) ’ 2
I
(¢
6
_ ¢9)
(VI-72)
61
3 1 1
H9 - - 16 (41 + 42) + 8 (44 + 45) + 4 (47 + 48)
_ l. q) (VI-73)
4 10 ’
H =1“, -¢)+l<¢ -) (VI-74)
10 8 1 2 4 4 5 °
The equivalence of the H-form of the Hamiltonian to the ¢-form
can be verified by direct substitution of Eqs. (VI-53) to (VI-74) into
Eqs. (VI-50) to (VI-52) and by rearranging the resulting expressions to
the form Specified by Eqs. (VI-21) to (VI-23). Here, the last term
H6a was omitted; the justification for this will be given later.
VII. THE FOURTH-ORDER CENTRIFUGAL DISTORTION COEFFICIENTS
VII.1 General Expressions for the XYZ-Type Molecule
In this chapter explicit expressions will be given for the ten
fourth-order centrifugal distortion coefficients 4 to ¢ As will
1 10'
be discussed in greater detail later, 4 , ¢ 43, and four combinations
1 2’
of the remaining seven ¢i can be determined from experiment. The
principal information of interest obtainable from these coefficients
concerns the cubic potential constants kss's"' which, it will be re-
called, are the coefficients appearing in the anharmonic portion V3 of
the Taylor series expansion of the potential energy in dimensionless
normal coordinates. For XYZ this takes the form:
3 3 3 2
V ‘ hc (k111 q1 + k222 q2 + k333 q3 + k112 qlqz
2 2 2 2
+ k113 q1‘13 + k122 q1‘12 + k223 q2q3 + k133 q1‘33
+ k 2 + k ) (VII-l)
233 q2q3 123 q1q2q3 '
with the dimensionless normal coordinates qS defined by
_ .214 -
qs- (As/M) QS , (VII 2)
and for V3 in ergs the kss's" are in cm-l. It should be noted from
(VII-1) that for XYZ there are ten cubic potential constants. Yet,
62
63
only seven 41 or combinations thereof are determinable experimentally.
Thus, even in principle, not enough information is available to deter-
mine the full set of cubic potential constants from the fourth-order
centrifugal distortion constants alone. However, cubic potential con-
stants also appear in the coefficients a: which specify the second-order
vibrational corrections to the equilibrium rotational constants. Full
use of both the a: and the 4i thus opens the possibility of obtaining
a complete, consistent, and accurate set of cubic potential constants.
Furthermore, it is observed23 that the a: do not contain those poten-
tial constants kss's" for which 5 # s' # 5". Therefore, for XYZ the
cubic potential constant k is obtainable only through a determination
123
of the 41. For XYx there are six cubic potential constants, and in
principle the full set can be obtained either from the 41 or from the a:.
The basic equations for the 4i are found by substituting the
apprOpriate Oi, as constructed from Eqs. (VI-16) to (VI-l9) and Table
2, into Eqs. (VI-40) to (VI-49). In this way one finds the expressions
for Q to P 0 given in Appendix 1. Next,it is necessary to substitute
1 l
. . as s z
from Appendixes 2, 3, 4, and S the expres31ons for the S , Sss' ,
GB aBY s as aBy s as . .
(2)Xss,, Y r Yss" a , and ass,. While this task appears
hopelessly complex, we found that by judicious and extensive regrouping
and redefining of terms, the ¢i can be expressed in suprisingly compact
form. Introducing the definitions
as = 08 3/4 -
bs aS /As , (VII 3)
a8 a8
B8 = as /As , (VII-4)
_ a8 a8 48 _
(BC)aB - B :23 + 32 g31 + 33 £12 , (VII 5)
64
the following expressions were obtained:
_ 1/2 06 xx
¢l - ("C/4M Ixx) 2855.53" (bybszsfl) kSS'S"
3_ xx xx ,
+ 8 is S, 3:338, (ASS,) , (VII- 6)
_ % .6 yy yy yy
4?2 - (no/4K Iyy) Zsfs'fs" (bs bs'bs") kss's"
2. yy yy yy . _
+ 8 2s,s' BS 88' (Ass') ' (VII 7)
k O6 22 22 22
¢3 _ (WC/4M Izz) Zst'fs" (be s'bs") kss's"
1 2 1 zz 2
+ 2 (BC)ZZ - 8 25 (BS ) . (VII-8)
_ 2 .2 .4 yy yy xx yy yy
44 — (He/8M Ixnyy) Xsfs'fs" (ngbs,bs" + bs,bs b8"
+ bxbeYbyy + 4byybx¥be + 4by¥bxybe + 4by¥bx¥bxy)
s s s s s s s s s s s s
. _§_ YY YY xx u xx YY XY xY
kss's" + 16 Zs,s'{Bs Bs'(Ass') + 2(Bs Bs' + 28s 35')
o _ o
o W l xy yy xy l xy 1 ._l M
(Ass') + 4Bs Bs'[(Ass') + (As's) ]} + 12 122
A8 + AS' xy yy xy yy
' is... Css- 7:77: (B. 38' + 35.3. >, (VII-9’
4 = (WC/8M%I°ZI°4) 2 (bYbexbxx + bYbexbxx
5 yy xx sis'fs" s s' s" s' s s"
+ bYXbxfbxx + 4bxxbx¥bx¥ + 4bx¥bebXX + 4bxfbx¥bxy)
S S S S S S S S S S 8 S
- k u + —3- ,{Bxxsxx(AYY,)' + 2(BYYBxx + zaxYBxY)
ss's 16 5,5 5 8' es s s' s s'
' Io _ IO
. xx 1 XY xx xY ! XY u 1 xx
(Ass') + 4Bs Bs'[(Ass') + (As's) ]} + 12 I22
xxx XXX
(BSYBS, + BS¥BS ), (VII-10)
1
(WC/8K6I°2 °
YY
I 4) Z , " (byybz‘szz + bYszzbzfi
22 $53 :3 S S S S S S
22 22
yy 1_ _ 1_ yy 22
bs"bs'bs ) kss's" + 2 (Bc)yy(Bc)zz 8 23 B5 B5
C
_2_ zz zz yy , _ 1_ SS!
16 28,8' Bs Bs'(Ass') 6 s(2(2)x13 + y13) + ( s )( s )(2(2)x 23+ xxy23)} (1—1)
_ ;_ 2 yy 12 yy yy yy2 yy yy 3 2
4 — 2 K {( s ) (2(2)x11 + 711) + ( S ) 2(2(2)x 22+ y22) + ( s )
-(2YYx +YYY 3312)+(YYS)(YYS)(2YYX +W )+(YYsl)
(2) X33 (2) 12 Y12
yy yyx My yy2 yy3 yy yy _
( s 3)(2(2)x13+ 13) + ( s )( s )(2(2)x23 + v23)} (1 2)
_ _ 4_ 3 -% zzz s 2 _ 4_ 2 zzz 1 22 2 z zz 3
4 - 2 K 25:1 15 < y > 4 n {( H)[( s 2)( s ) + < $23)( 8 )1
+ (zzz 2)[(z s 2)(zzs1) + (2323)(zzs3)1 + (zzzy 3)[(z sl 3)(zzsl)
4_ 1,2222{(zzsl)2(2 + 22 ) + (225 2)2
)(z 25 2’1} + (2) x11 Y11
z
+ ( 823
2 (2(2fx22+ zzy22)+ (zzs3)2(2(2)x 33 + zzy32> + ("51Hz zs2)
zzx zz zz l zz
° (2(2)x 12 + Y12) + ( 5 )(z 25 3”20)" 13 + Y13)}
+ (2282Mzz s3 )(2(2)x 23 + zzv23) (193)
76
hJH
bdhl
+
77
122{(_yysl)2(2 xxX xxyll) + (yysz)z(2 xxX + xx
(2) 11 + (2) 22 Y22)
yy 3 2 xx xx yy 1 yy 2 xx xx
( S ) (2(2)X33 + Y33) + ( S )( S )(2(2)X12 + Y12)
YY 1 YY 3 XX XX yy 2 yy 3 xx xx
( S )( S )(2223X13 + Y13) + ( S )( S )(2(2)X23 + Y23)
xx 1 yy 1 xy 1 2 YY YY
2[( S )( S ) + 2( S ) ](2(2)X11 + Yll)
2[(xx82)(yy52) + 2(xysz)21(2 yyx + YY
(2) 22 Y22)
xx 3 yy 3 xy 3 2 yy yy
2[( S )( S ) + 2( S ) ](2(2)X33 + Y33)
[(xxs1)(yysz) + (xxs2) + (“Ys3> + 2(xysl)21<(§fxll + xxy13>
2[(xxSZHny2) + 2(x3732)2]( xxx + xx )
(2) 22 Y22
xx 3 yy 3 xy 3 2 xx xx
2[( S )( S ) + 2( S ) 1((2)X33 + y33)
xx 1 yy 2 xx 2 yy 1 xy 1 xy 2 xx xx
[( S )( S ) + ( S )( S ) + 4( S )( S )1(2(2)Xl2 + 712)
xx 1 yy 3 xx 3 yy 1 xy 1 xy 3 xx xx
[( s )( s ) + ( s )( s > + 4( s )( s )1 2(23x33 + yl3)
xx 2 yy 3 xx 3 yy 2 xy 2 xy 3 xx xx
[( S )( S ) + ( S )( S ) + 4( S )( S )1 2(2)X23 + y23)
8(xysl)(xxsl)(2 xyx + xy ) + 8(xysz)(xxsz)(2 xyx + xy )
(2) 11 Y11 (2) 22 Y22
xy 3 xx 3 xy xy
8( s >( s )<2(2)x33 + y >
33
4t + ( S )( S )1 2(2)X13 + Y13 +
xy 2 xx 3 xy 3 xx 2 xy xy 2 xy
4[( s )< s ) + ( s )( s )1 2(23x23 + y23 + 3- a23)} (1-5)
3 -% zzz s yyz s yyz s _ 1_ 2 zzz 1 z yy 2
M 25:1 AS < y )< y + 2 a > 2 M {( y )[( $12)( s >
z yy 3 zzz 2 z yy 1 z yy 3
( 813)( S )1 + ( y )[( $12)( 8 ) + ( 523)( S )1
zzz 3 z yy 1 z yy 2
( Y )[( 813)( S ) + ( S23)( S )1}
fi-M2{(szyl + g-sza1)[(zsl )(zzsz) + (251 )(zzs3)1
2 3
(YYZYZ + )(zz 3
S )1
(nhb
yyz 2 z 22 1 z
a )[( $12)( S ) + ( S23
(YYZY3 + g-sza3)[(zsl3)2(2 yyx + YY ) + (zzsl)(zzs2>(2 yyx + YY
(2) 33 Y33 (2) 12 112)
zz 2 22 3
(zzs1>(zzs3)<2 yyx + YY ) + ( s )( s )(2 yyx + YY )
(2) 13 Y13 (2) 23 Y23
2(YY51)(zle)(2(:2xll + zzyll) + 2(YYSZ)(ZZSZ)(2(:?X22 + zzYzz)
2(YYS3)(zzS3)(2(::X33 + zzy33)
[(YYSl)(zzsz) + (yy82)(zzsl)](2(::x12 + zzle)
[(YY81)(zzS3) + (yys3)(zzsl)](2(::xl3 + 22713)
[(yysz)(zzs3) + (YYs3)(zzsz>1(2 22x + 22 >} (1-6)
(2) 23 Y23
3 -% yyz s yyz s 2
K {8:1 AS [ Y + 2( a )1
$_ 2 yyz 1 2_yyz 1 z yy 2 z yy 3
4 M {I Y + 3( a )1[( 812)( S ) + ( $13)( S )1
yyz 2 é_yyz 2 z yy 1 z yy 3
+ [ Y + 3( a )1[(.512)( S ) + ( S23)( S )1
yyz 3 g_yyz 3 z yy 1 z yy 2
+ [ Y + 3( a )1[( $13)( S ) + ( $23)( S )1}
_:L1_222{(yysl)2(2 zzX + zzyll) + (yysZ)2(2 zzX + 22 3
(2) 11 (2) 22 Y22
22x + 22
(2) 12 112)
yy 3 2 22 zz yy 1 yy 2
( S ) (2(2)X33 + y23) + ( S )( S )(2
22
22x +
yy 1 yy 3 22 zz yy 2 yy 3
( S )( S )(2 X + 713) + ( S )( S )(2(2) 23 y23
(2) 13 ’
2(YYsl)(zzs1)<2 yyx + ylel) + 2(YY52>(zzs1)1<2 yyx + YY
(2) 13 Y13)
[(yysz)(zzs3) +1
+ [xxzy3 + §4xxza3)1[(zsl3> + (2823)1}
i’KZ {(xxsl)2(2 zzx + zzY ) + (xxSZ)
2 22 22
(2) 11 11 (2 x +
(2) 22 Y22)
xx 3 2 zz zz xx 1 xx 2 zz zz
< s ) (2(23x33 + v33) + ( s )( s )(2(2)x12 + v12)
zz xx 2 xx 3 22 22
) + ( S )( S )(2(2)X23 + y23
(xxsl)(xxs3)(2 zzx +
(2) 13 Y13 )
zsl)(2 xxx + xxYll) + 2(XXSZ)(ZZSZ)(2 xxx + xx
xx 1 2
S )( (2) 11 (2) 22 Y22
2( )
xxSB) (zzSB) (2 xxX xx )
2‘ (2) 33 + Y33
[(xxsl)(zzsz) + (xx52)(zzsl)](2 xxx + xx
(2) 12 Y12)
[(xxsl)(zzs3) + (xxs3)(zzsl)](2 xxx + xx
(2) 13 Y13)
283) + (xxs3)(zz82)](2 xxx + xx )}
xx 2 z
[( S )( (2) 23 Y23
(1-8)
3 -% zzz s xxz s xxz s
K {3:1 A3 ( v )< y + 2 a )
l 2 xxx 1 2 xx 2 z xx 3
g-n {( v )[( 512)< s ) + ( 513" s )1
+
+
+
+
+
+
+
+
+
+
(zzzY 2
)[( 251
zzz 3
(
1 2
4 M
22
(
(“81Hzz s 3)(2
2(
2(
[(
[(
[(xxs2)(z 283) + (xxs3><"sz)1(2
3
- h Zs=1 A
xxsl)(zz
xx83)(zz
xxsl)(zz
xxsl) (z
y)[( 231
1'M2{[xxzyl +
{(22 1 2
S3)2
(2 xxx
5 ) (2
S 3)(2
2)(
3)(
§_xxz
3(
+ 4 xxz 2
3(
xx 1
s ) + ( zs
xxsl) + (ZS
4 xxz 3
'4
(2)
+
(2) x33
(2)
S 1)(2
(2
(2
52) + (
253) + (
xx
x11+
XX
Y33
XX
x13 + Y
22
+
) X11
22
+
) X33
xxsz)(zz
xxs3)(zz
+ [2(‘3’z 5) + (xyzas>'12}
- fi-K2{tyyzvl
+ [yyzvz
23
23
1 z
a )1[( $12
a)1[( le
z
a )1[( $13
Y11
l3
Y33
+ §4YY232>11 + ("52Hzz s 3)(2
)
S 1)](2
S 1”Q
12
l
xx83)]
xx52)]
22 2
(
(22
(22
+
+ §4szal>lt1
)(zzs2)1}
XX
+ Y22)
XX
Y12)
XX )
(2) x23 Y23
22
+
$2 )(2(2)zx 22
)
(1-9)
l3)(""s3)1
23)(xxs3)1
+
+
”(xx
+[(
+[(xx
+
+
+
+
+
1 2
Z‘M {2[(
2(YYS1)(z
82
4 xxz l
yy 2 2
+3( a)][(zlS 2H S)+(S1
4 xxz a2
[ v +3( )1[(zlszuyys1) +("1s2
[ Y + éixxz
3 z yy 1 z
3 a)][(813)( S) +(S2
1
xyzY l+ _(
3
4[ "YZ a1>'211[(s
4[xyzY 2 + :(xyza 2) 11(281
3 3
4IXYZY+ +§ + 2(1‘5’52 ) 21(2
(2) X22
+ 2[(“s3>(yys3) + 2(1‘Ys3>21(2
(2) X33
x"s1HYYs3> + <
$2“sz ) + ("x
XX
25 1)(2(2)X 11
XX
+ Y33
yy 3
2( S)(Z Z3S)(2(2)x33 )
[(yys1)(zzs2) + (YYs2)("s1)1(2
(2) X12+
[(YYs1)(zzs3) + (YYs3)(“s1)1(2
(2) X13+
[(yysz)(zzs3) + (YYs3><"sz)1(2
(2) X23+
xy 2 z
2)( S) + ($13
2) + (""s1
3)(st1) + (252
(2) x11
51“ny > + (""s2 )(sz1) + 4<"Ys1)("Ys2)1<2
xxs3)(Ws1) + 4("Ys1)("ys3)1<2
s32>(YYS) + 4(st23)<"¥$)1(2
v11) + 2(YYSZHz
§1(2 yyx + yyy 1
xx 1 z
1‘ S 1‘ (2) 12 12
[(xxs11(zzs3) + (xxs3>(zzs2)1(2 yyx + yy 1
(2) 13 Y13
xx 2 zz 3 xx 3 ~22 2 yy yy
11 s )1 s 1 + ( s >( s )](2(2)x23 + v23)
xy 1 22 1 xy xy xy 2 22 2 xy xy
8‘ S )1 S )(2(2)x11 + Yll) + 81 S )1 5 112(21x22 + 122)
xy 3 zz 3 xy xy
8( S )1 S )(2(2)x33 + 733)
1%
xy 1 zz 2 xy 2 zz 1 xy xy
411 s )1 s 1 + < s )1 s )1 (2(2)x12 +
out)
y +
12 12
$5
xy 1 22 3 xy 3 zz 1 xy xy
4[( S )( S ) + ( S )( S )1 (2(2))!l3 + Y13 +
ads)
13
$2
41 /3 4(I;x)21 a
2 3/4 0 2 yy yy 2
l/[2(M Al) (Iyy) 1 al 8
/4
2 3 O 2 yy
1/[2(M A3) (Iyy) J a3
/
1/[2 C
xx 22\ 2 2 1
, 1
1 124(12 - 311)
= 2°20 ‘
an (xxx) IzzL 11(11 12)
,1
1 134(13 - 311)
= 202° ’=
8“ (Ixx) Izzk A10‘1 A3)
1
1 r11401 - 312)
8M’(I° ) I° 1 (1 - A )
yy 22L 2 2 1
r14
= 1 12 (12 - 311) c
2 o 2 o _
an (Iyy) 122‘ 11(11 12)
88
l
k A 3A
( 1 - 3) 2 a22
(1 _ A ) C13 3
3 3 1
z
(12 - 3A3) :2 a22
_ 23 3
3(A3 ’ A2)
Z 1 31 )
( 3 - 2“ C2 azz
23 2
2(A2 ' A3)
2
Al (A1 - 313) :2
13
A3(A3 - Al)
2
A2 (A2 313) :2
23
13(A3 - 12)
2
A3 (A3 - 312) z
+ £23
12(A2 - A3)
2
A1 (A1 - 3A3) z
+ 513
13(A3 - A1)
‘ -
A2 (A2 3A3) :2
23
A3(A3 - A2)
IN ¢ THROUGH ¢
10
Z 3
XY 2 1
Y
x z 2
y Y
3
Y
89
7/4
1 13 (13 - 311) z yy A3 (13 312) z yy
2 2 ‘13 a1 ' 523 a2
8H’(I;y) 122 11(11 - 13) 12(12 - 13)
r 2 2 _
1 1 (A1 - 3A2) 2 xy A1 (A1 3A3) 2 xy
- -— 3- 2; a + r — g a
8K%(I° 1° 1° ) A (A - A ) 12 2 A (A - A ) 13 3
xx yy 22 L 2 2 1 3 3 1
r ”’4 _ 2 _
1 12 (12 311) z axy _ 12 (12 313) z axYW
8M%(I° 10 1° ) 1 (1 - 1 ) C12 1 1 (1 - 1 ) C23 3
xx yy 22 1 1 l 2 3 3 2
r 2 _ 2 _
1 13 (13 311) :2 axy + 13 (A3 312) CZ axy
2 o o o _ 13 1 _ 23 2
an (IxnyyIzz)L 11(11 13) 12(12 13)
A
1 1 xx _ xx -
wen”2 2a1 k111 (A2 3A1H2 k112 + (*3 3"1’533mk113
o 2 3/4 3/4 _ 3/4 _
(1xx) 1 ,Al 12 (12 411) A3 (13 411) J
r A
1 YY _ YY _ YY
my!”2 2a1 k111 (A2 3A1’az k112 + (*3 3"1W3 k113
o 2 3/4 3/4 _ 3/4 _
(xyy) 11 12 (12 411) 13 (13 411)
, zz _ zz _ zz
fiché 2a1 R111 (*2 3A1’32 k112 (A3 3A1’a3 k113
o 2 3/4 3/4 _ 3/4 _
(122) L A1 A2 (A2 4A1) A3 (A3 4A1) J
2 2
M (Al + 12)<;:2) (11 + 131(c:3>
+ +
o 2 2 2 _
2(122) A1 (A1 ’ A2) A1 (A1 *3)
f ‘
x x
flcflg 2a2xk222 + (*3 ' 3A2"“)30‘1‘223 + (*1 3A2’a1xk122
4 4 3 4
(I;x)2 123/ 133/ (13 - 412) 11 / (11 - 412)
r
1 YY - YY - yy
«0M6 2a2 k222 (*3 3}‘2”3 k223 + (*1 3"2W1 k122
4 4 3 4
(I;Y)2 123/ 133/ (13 - 412) 11 / (A1 - 412)
J
22 22 22
ncn2 2a2 k222 + (*3 ' 3A2’33 R223 (*1 " 3"2"“1 R122
0 2 3/4 3/4 _ 3/4 _
(122) 12 13 (13 412) 11 (11 412) J
2 2
M (12 + 11)(c:2> (12 + 13)<;:3)
+ +
o 2 2 _ 2 _
2(122) 12 (12 11) 12 (12 13)
9O
2
(1112) (11 - 13)<12
o 2
- A3) (122)
, r xx _ xx _ xx
"of2 2a3 k333 + (*1 3A3’a1 k133 + (*2 3A3’a2 k233W
o 2 3/4 3/4 . _ 3/4 _
(Ixx) 1 A3 11 .(11 413) 12 (12 413)
1r YY _ YY _ YY 1
«cf2 2a3 R333 (*1 3A3)al k133 + (*2 3A3)a2 k233
o 2 3/4 3/4 _ 3/4 _
(Iyy) 1 13 Al (11 413) 12 (12 413) J
,r zz _ zz _ zz 1
nché'zaB k333 (A1 3A3’a1 k133 + (*2 3A3’a2 k233
o 2 3/4 3/4 _ 3/4 _
(122) 1 13 11 (11 413) 12 (12 4A3) J
z 2 z 2
+ M (13 + Al)(§13) + (13 + A2)(§23)
2(1° )2 A 2(1 1 ) 1 2(1 - 1 )
22 3 3 l 3 3 2
1 _ x __ _ _
'rrcgri/2 (5A1 A2’a1xk112 (5A2 A1’a2‘xk122 G123+)‘3a3 A1 A2) xxk
' 02 3/4 A 1 + 1 3/4 1 1 + A 3/4 a3 123
Ixx A1 (4 1 ' 2) 2 (4 2 ‘ 1’ 2G123' 3
7 5 - - x + - -
«ché[( A1 A3’3’10‘1‘113 + (5A3 A1’a3xk133 + G123 A2(A2 A1 A3’axxk ]
02 3/4 _ 3/4 _ 3/4 2 123
Ixx 11 (411 A3) A3 (413 11) 2G123 12
7 .. - _ _
flcflé (5A2 A3’32“}‘223 (5A3~A2)a:xk233 G123+}‘10‘1 A2 A3) xxk
02 3/4 + 3/4 + 3/4 a1 123
1xx 12 (412 - 13) 13 (413 - 12) 23123 11
1 _ YY _ YY _ _
wcx3[(511 A2’31 k112 + (5*2 A1’a2 k122 + G123+)‘30‘3 A1 A2’ayyk ]
02 3/4 _ 3/4 _ 3/4 3 123
Iyy 11 (411 12) 12 (412 Al) 2G123 13
, _ yy _ yy _ _
flcM4[(511 A3’a1 k113 + (5*3 A1’a3 k133 + G123+)‘20‘2 A1 A3’ayyk ]
02 3/4 _ 3/4 _ 3/4 2 123
1yy 11 (411 13) 13 (413 11) 2G123 12
1 _ YY _ YY - ..
negé[(5*2 A3)a2 k223 + (513 A2)a3 k233 + 3123+11<11 12 131a k ]
02 3/4 _ 3/4 _ 3/4 1 123
IYY 12 (412 13) 13 (413 12) 2G123 11
1 _ zz _ zz - _
“C54[(511'12)a1 k112 + (5‘2 A1)a2 k122 + G123+A3M3 A1 A2’azzk ]
02 3/4 _ 3/4 _ 3/4 3 123
I22 A1 (4A1 12) A2 (4A2 A1) 2G123 A3
2 z z
“(Alxz ' A3 ) C13 ‘23
91
, - zz _ zz _ .-
zz = Trcyt/2 (5A1 A3’31 k113+(SX3 A1’a3 k133+ G123+}‘20‘2 A1 A3’azzk
13 02 3/4 3/4 _ 3/4 2 123
I22 A1 (4A1 A3) A3 (4A3 A1) 2G123 A2
2 z z
_ M(1113 - 12 ) :12 C23
(A A )k (A - A )(A - A )(I° )2
1 3 l 2 3 2 22
1 - zz - zz ' _ _
zzY = myt/2 (5A2 A3’a2 k223+(5A3 A2’a3 k233+ G123+)‘10‘1 A2 A3’azzk
23 02 3/4 3/4 3/4 1 123
122 12 (4A2 A3) 13 (4A3 12) 25123 Al
2 z z
2 o 2
(A2A3) (A2 - Al)(A3 - A1)(Izz)
1 xY _ xy - xy
ny _ Trczm/2 2a1 k111 + (*2 3A1’a2 k112 + (A3 3A1’33 k113
11 ‘ o a 3/4 3/4 _ 3/4
Ixnyy 11 12 (12. 411) 13 (13 411)
1 xY _ xY _ xY
xyY a fiché 2a2 k222 + (*1 3)‘2)a‘1 k122 + (‘3 3A2233 k223
22 o 0 3/4 3/4 _ 3/4 _
Ixnyy 12 A1 (11 412) A3 (A3 412)
1 xy _ xy _ xy
ny = new2 2a3‘k333 + (*1 3A3’a1 k133 + (*2 3A3’a2 k233
33 o 0 3/4 3/4 _ 3/4 -
Ixnyy 13 11 (11 413) 12 (12 4A3)
1 _ XY _ xY _ _
xyy a "cflé‘ (5A1 A2)al k112 (5A2 A1)a2 k122+ 6123+A3(A3 Al A2)a k
12 o o 3/4 3/4 3/4 3 123
Ixnyy 11 (411 12) 12 (412 11) 2G123 13
2 - XY - XY - _
xy _ fiche (5A1 A3’a1 R113 (513 A1’33 k133+ G123+}‘20‘2 A1 A3’axyk
13 o o 3/4 _ 3/4 _ 3/4 2 123
In:yy 11 (411 A3) A3 (413 11) 23123 12
2 _ XY _ xY - _
ny = ngx’ (5A2 A3’32 k223+(5A3 A2’a3 k233+ G123+}‘1M1 A2 A3’axyk
23 o 0 3/4 _ 3/4 _ 3/4 1 123
Ixxlyy 12 (412 13) 13 (413 12) 2G123 11
M11171117117111!fiflflll4ljflfl71'lflflflfflitfilfl'E5