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ABSTRACT

A NUMERICAL METHOD FOR THE TREATMENT

OF KINKED CBRACKS IN FINITE BODIES

By

Ukhwan Sur

A displacement discontinuity method is developed for modelling
cracks in linear-elastic two-dimensional infinite domains. This method
is then coupled to the standard boundary-element method for the
treatment of cracks in finite two-dimensional regions. The hybrid
approach has been implemented on the computer and representative
results are presented. Problems studied include a variety of crack

shapes, including cracks with kinks.

The hybrid method is shown to be an effective technique for the
study of cracks of arbitrary shape in finite bodies. The ability of the
method to handle cracks with kinks is a distinct advantage over other
known approaches. Furthermore, the application of this method to crack
propagation problems possesses none of the computational problems

associated with other approaches.



ACKNOWLEDGEMENTS

I would like to express appreciation to those who have helped and
contributed to making this work a reality. This includes my advisor,
Dr. Nicholas J. Altiero, for his support, inspiration and assistance
through this period and Drs. John F. Martin, Larry J. Segerlind and
David Yen, members of my guidance committee. A final note of

appreciation must go to my wife, Oksoon, for her tolerance and

encouragement.

ii



PAGE

LIST OF TABLES. ..... ..t tiitiiitiiititneeaeeoneeoeeaeensasneanannnas iv
LIST OF FIGURES. ... ...ttt itiiietnereneeneeoneoneennsnsensnaneannnans v
CHAPTER 1  INTRODUCTION AND BACKGROUND...........0ttttunnnnnnnnns 1
CHAPTER 2  BOUNDARY ELEMENT FORMULATION.........cttntunnnnnnnnnnn 8
2.1 THE BOUNDARY INTEGRAL EQUATION METHOD.............. 8

2.2 NUMERICAL TREATMENT........ ..ottt reeennnnnnnn 12

CHAPTER 3  CRACK PROBLEMS: INFINITE DOMAIN...........ciiiuiiiennnns 24
3.1 THE DISPLACEMENT DISCONTINUITY METHOD.............. 24

3.2 NUMERICAL TREATMENT. ....... ...ttt eennnnnns 30

CHAPTER 4  CRACK PROBLEMS: FINITE DOMAIN............ccouiuiiveeannns 35

4.1 COUPLING OF BOUNDARY ELEMENT METHOD AND

DISPLACEMENT DISCONTINUITY METHOD.................. 35

CHAPTER 5 EXAMPLES AND DISCUSSION.........ccottiiiiiinnnnnnnnanees 40
5.1 EXAMPLES OF INFINITE DOMAIN CRACK PROBLEMS......... 40

5.1.1 STRAIGHT CRACK. ... .. i iiiiitiitiitiiieinannaeans 40

5.1.2 CIRCULAR ARC CRACK. ... .....ciiiiiiiinnnnannnnnns 46

S.1.3 KINKED CRACK. ...ttt iiiiiiiiiiittititiennnnnnnas 49

5.2 EXAMPLES OF FINITE DOMAIN PROBLEMS................. 57

5.2.1 STRAIGHT CRACK. .. ... 0ottt iiiinennnnnnnnnns 57

5.2.2 KINKED CRACK. . ... ittiiittiiiiteinneennnenannns 66

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS.............c00vueennn. 71
BIBLIOGRAPHY . ... ittt ittt ettt ettt e e e 73

TABLE OF CONTENTS



TABLE

LIST OF TABLES

Singular integrals............cciiititiiiiiiiiiiereneeeennnnnns 19
Displacement discontinuity along left half of a straight

crack in an infinite domain..................... ..o il 44
Stress intensity factors at tip A of a kinked crack

(g = 850 i 50
Stress intensity factors for an off-center straight crack..... 62

Stress intensity factors for an angled crack in a large plate.62

Stress intensity factors for an angled crack in a finite

iv



FIGURE Page
1.1 Crack propagation in an arbitrarily shaped body............... 7
2.1 Description of region of interest.................. ... ... ..., 9
2.2 Discretized model of region R............ ..., 13
2.3 Definition of vectors a and b............... .. i, 17
3.1 Source point and field point in an infinite plane............. 24
.2 Line defining a crack in the infinite plane................... 26

3.3 Equal and opposite crack surface tractions.................... 29
3.4 Descretized crack surface.............. ... ittt 30
4.1 Center cracked plate with tensile load........................ 36
4.2 Linear superposition of the boundary element and dispacement

discontinuity models............. ...ttt iiiiiiiiinnnnnns 37
5.1 Straight crack in an infinite domain.......................... 40
5.2 Dependence of c, on number of nodes........................... 41
5.3 Dependence of c, on location of transition node............... 43
5.4 Dependence of c, on number of nodes when transition nodes

Are USed. .. ...ttt ittt i ettt e 45
5.5 Circular arc crack............ciiiiiiiiiiiiinieerroaannnnns 46
5.6 SIFs for a circular arc crack under biaxial stress............ 47
5.7 SIFs for a circular arc crack under pure shear................ 48
5.8 Geometry of a kinked crack in an infinite plane............... 49
5.9 Mode I SIFs for an asymmetric kinked crack under uniaxial

R o - - T 53

LIST OF FIGURES



FIGURE Page

5.10 Mode II SIFs for an asymmetric kinked crack under uniaxial
-8 o of - - 54
5.11 SIFs for an asymmetric kinked crack under various biaxial

Lo o Lo & 18 o 1o « V- 2 55

5.13 Center-cracked test specimen............. ..ot 58
5.14 SIFs vs. a/b for center-cracked test specimen................. 59
5.15 An off-center straight crack............... ... .. . i i, 60
5.16 Angled crack in a large plate.............coiiiriinennnenennns 61
5.17 Angled crack in a finite plate............. ..., 64
5.18 Asymmetric kinked crack in a finite plate.................... 67
5.19 Anti-symmetric kinked crack in a finite plate................. 68
5.20 SIFs for an asymmetric kinked crack in a finite plate......... 69
5.21 SIFs for an anti-symmetric kinked crack in a finite plate..... 70

vi



INTRODUCTION AND BACKGROUND

The presence of cracks in a structure as shown in Figure 1.1
generally reduces the fatigue and static strength of the structure
because the stresses and strains are highly magnified at the crack tip.
It has been established that parameters deduced from linear elastic
fracture mechanics can be used to determine the stress and strain
magnification at the crack tip. These parameters, the stress intensity
factors (SIF), incorporate applied load levels, geometry, and crack
size in a systematic manner and may be evaluated from elastic stress
analysis using the finite element method (FEM) or the boundary element
method (BEM). The BEM is the numerical form of the "boundary integral

equation method" (BIEM).

The FEM has been used extensively to solve elastic plastic
problems in fracture mechanics. The FEM is very effective for solving
problems with material and geometric nonlinearities, dynamic effects
and inhomogeneities (e.g. boundaries, inclusions, interfaces). However,
FEM is not the most effective method for problems involving
singularities (e.g. mathematically sharp cracks) or localized events
such as point sources and sinks. For the analysis of a sharp crack, a
fine field discretization is needed near the crack tip to capture the
rapidly varying stress and displacement fields. Furthermore, analysis
of crack propagation necessitates constant re-defining of the finite

element topology which may present severe computational difficulties.



The main disadvantage of the FEM is that a domain discretization is
required to perform the analysis. The BEM involves discretization only
of the boundary of the structure and the governing differential
equation is solved exactly in the interior, leading to greater

accuracy.

The boundary integral equation method has also been developed and
extensively used for the analysis of problems in continuum mechanics.
This method reduces the order of the problem, basically by using the
divergence theorem of Gauss. However, the system matrix is full and
unsymmetric so the reduction in order may be achieved only
superficially. It is particularly effective for problems with
singularities and dominantly linear response, and for modeling infinite
domains. The method has also proven effective for the treatment of
material nonlinearities. Geometric nonlinearities are still under

study.

Several strategies have been proposed for the analysis of crack
problems using the boundary integral equation method. These methods
include representing the crack as a notch, symmetric crack modelling,
use of special Green’'s functions, and flat crack modelling.
Representing the crack as a notch or replacing the crack plane with
symmetric boundary conditions, i.e. symmetric crack modelling, removes
the singularity in the algebraic system of equations which is obtained
when the upper and lower crack surfaces are modelled in the same plane
[{1]. However, representation of the crack as a notch increases the
modelling error due to the notch opening and symmetric modelling is
limited to symmetric problems. The special Green’s function approach

[2-4,5) possesses the advantage that crack geometry and crack tip



singularities are fully embedded in the boundary equations, i.e. no
modelling of the crack surface is required. The disadvantage is that
some two-dimensional and all three-dimentional problems can not be
formulated using the special Green’s function approach [4]. Also,

complex arithmetic is required for the problems for which it does

apply.

Flat crack modelling represents the displacements along the crack
surface as the relative displacement between the two crack surfaces.
This scheme has two critical deficiencies as a mathematical model for
crack geometries, as pointed out by Cruse (4]. First, if there are no
tractions on the outer boundary and only crack surface loading, a
non-unique boundary integral equation is generated. Second, two unknown
displacement variables, i.e. the relative and total displacements,
exist along the crack. A possible solution for these problems is also
given by Cruse [4]. An extensive discussion of the special Green's
function and flat crack modelling techniques is given by Cruse [4]. The
success of the BIEM in linear elasticity has motivated many attempts at
application of this method to bodies containing cracks. These efforts
have been hampered by certain difficulties associated with treating the
two crack surfaces as "boundary" leading to an underdetermined system

of equations.

In addition to BIEM, an alternative approach, suggested in
[6,7,8), involves combining the boundary-integral equations of the two
crack surfaces into a set of equations associated with a single surface
integral. These new integral equations are precisely those obtained if
one models the crack as a continuous layer of edge dislocations. The

fact that a crack is equivalent to a continuous array of edge



dislocations has long been known [9]. Gol’dstein and co-workers
employed this fact to develop an integral equation model for
curvilinear cracks in an infinite plane subjected to arbitrary load.
This method has since been developed for treatment of in-plane cracks
of arbitrary shape. However, efforts to apply this technique to kinked

cracks have not been successful [34].

The more important purpose of this work is to consider the
behavior and characteristics of non-linear shaped cracks which are
kinked, a phenomenon generally observed in the macroscopic or

microscopic crack growth or propagation process.

Crack morphology seems to have significant meaning in crack
propagation and fatigue crack growth. The brittle crack propagation and
fatigue crack growth in the mixed mode loading state has received
considerable attention. Generally in these cases a crack does not

follow a straight path, but rather a curved or a kinked path.

Only a few reliable solutions for the stress intensity factors
(SIF) of non-linear shaped cracks have been obtained for special cases.
Some solutions for the stress intensity factors of non-linear shaped
cracks in the state of longitudinal shear were given by Sih [10],
Nakagama [11], and Smith et al. [12]. However analytic solutions for
the stress intensity factors of non-linear shaped cracks in
two-dimensional stress states which are more important to crack
morphology are difficult to come by. Generally in these cases, both the
stress intensity factors of mode 1 and mode 2 appear. For this reason,
the analysis is not easy and many interesting problems can be expected

to be found.



In this work we restrict our discussion to the problem of linear
and non-linear shaped cracks in the two-dimensional elastic stress
state. Recently, several experimental or numerical analyses for these
kinds of problems have been reported [13]. Anderson [l1l4] solves these
problems on the basis of Muskhelishvili’s method, but the value of his
numerical results are questionable [15,16]. Kitagawa [17] constructed a
general analytical method for determination stress intensity factors of
non-linear shaped cracks in an infinite isotropic homogeneous plate in
the two-dimensional elastic stress state. This method includes a
polynomial approximation and truncation procedure [18] of a conformal
mapping function. Also Kitagawa [17] obtained numerical results for

various cases.

When a crack is oriented asymmetrically, the new crack initiates
at an angle to the old one. The calculation of stress intensity factors
for kinked cracks is difficult and there have been many attempts at
their solution [19,20,21-24,25-28]. With most solutions, the analysis
is such that the limit for an infinitesimally small kink cannot be
obtained readily from the analysis for a finite kink. Recently, Lo [24]
has presented a convincing solution that models the crack as a
continuous distribution of dislocations, in a manner that can handle

both the finite and the infinitesimal kink within the same formulation.

A new model, suggested here, has very good features in comparison
with the edge dislocation model. This new set of integral equations is
precisely that obtained if one models the crack as a line of
displacement discontinuity. Knowledge of the edge dislocation

distribution leads directly to the relative crack surface displacements



and to a complete field solution since the edge dislocation
distribution is simply the derivative of the displacement discontinuity
along the crack surface. It is, however, more appealing to formulate
the equations in terms of the displacement discontinuity itself since
the dislocation distribution is singular at tips but the displacement
discontinuity is zero. The equations derived on this basis are,
however, not integrable, a fact which has discouraged progress in this
direction. An effort to develop a displacement discontinuity
formulation has been presented by Crouch [29] but his numerical
treatment results in modelling the crack as a discrete set of
dislocation dipoles, a rather cumbersome variation of the dislocation
density approach. Here, the displacement discontinuity is obtained
through a single formulation and this method can handle kinked cracks
very well. The displacement discontinuity method presented here is
based on the analytical solution to the problem of a discontinuity in
displacement over a finite line segment in an infinite elastic solid.
Physically, one may imagine a displacement discontinuity as a line
crack whose opposing surfaces have been displaced relative to one
another. This method is based on the notion that one can make a
discrete approximation to a continuous displacement discontinuity along

a crack.

An effective hybrid method has also been developed here to model
fracture problems in finite plane domains. This hybridization by
(incrementally) linear superposition combines the best features of two
component methods. Boundary elements are used to model the finite
domain while a continuous distribution of displacement discontinuity

(dislocation dipoles in two dimensions) are used to model the crack.



This method allows modelling of the crack "independently" of the

Boundary Element mesh.

X,1

original crack surface
-- propagation path

R boundary traction

T crack surface traction

X,

Figure 1.1. Crack propagation in an arbitrarily shaped body.



CHAPTER 2

BOUNDARY ELEMENT FORMULATION

2.1 THE BOUNDARY INTEGRAL EQUATION METHOD

For the plane boundary-value problem of linear elasticity
illustrated in Figure 2.1, the displacement at a point x on B is
related to the displacements and tractions at all other points on B by

Somigliana’s identity, i.e.

@y (X)uy(x) + JB(uc)i.J(x,i)uj(i)ds(i) - ]B(uR)LJ(x,i)tj(i)ds(i) (2.1)

where the integral on the left hand side is interpreted in the Cauchy
principal-value sense. The function (uc)i.J(x,i) is the displacement in
the 1 direction at x due to a unit displacement discontinuity applied
in the j direction at x in the infinite elastic plane and (UR)i.j(x’i)
is the displacement in the i1 direction at x due to a unit force

applied in the j direction at x in the infinite elastic plane. The

coefficients, aij’ depend on the character of the boundary at x (e.g.
aij -1/2 Sij at a smooth boundary point). As shall be seen, knowledge

of aij is not required.



x2‘

X = (X,, Xp)

Xy

Figure 2.1 Description of region of interest.



10

At a point x in R, the displacements and stresses can be

calculated from the equations

u, (x) = jB(uR)i.j(x,i)tj(i)dé - JB(uc)i.j(x,i)uj(i)dé (2.2)

05 (X) = jB(HR)ik.j(x,i)tJ(i)dé - JB(Hc)ik.j(x,i)uj(i)d§ (2.3)

where the influence functions (IIR)ik j(x,i) and (IIc)ik j(x,i) give the
stress components at x due to a unit force applied in the j direction

at x , and a unit displacement discontinuity in the j direction at x,

respectively, in the infinite plane.

At each point x on B and in each direction, either u,(x) or t

J J

is known. Therefore, eq. (2.1) can be used to solve for the unknown

(x)

values of uj(x) and tj(x), thus giving complete boundary information.

The displacements and stresses at any internal point can then be

determined by integration using eqs. (2.2) and (2.3).

It can be shown that, for plane stress, the influence functions

of eqs. (2.1), (2.2) and (2.3) are given by

(WR); 4 = [-(3-v)6,,1logp + (1+r)q q, ]/(87G)

(ue); 3 = [2(140) (Ayqs-Bpag) + (L-0)fyq, + (3+0)iyq,1/(4mp)
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(“°)1.2 - [2(1+v)(-ﬁzq:-ﬁ1q:) + (143v)n,q, + (3+v)n,q,]/(4xp)

(uc)z.l - [2(1+u)(-ﬁ,q:-ﬁ,q:) + (3+u)t'12q1 + (1+3u)ﬁlq2]/(hnp)
- s . s - -

(uc)z.2 = [2(1+v)(-n,q;+n,q,) + (1-v)n,q, + (3+v)n,q,]/(4xp)

[-2(1+)q; - (1-v)q,)/(4np)

(), 4 -
(MR) 5 4 = [2(10)a; - (34)a;1/(brnp)
(IR);, ; = [2(Iw)a; - (1+3w)a; )/ (4mp)
(IR)1y 5 = [2(140)q, - (143v)q; 1/ (bmp)
(IR);; 5 = [2(14)q; - (30)a;1/(4mp)
(IR),; 5 = [-2(1+)a; - (1-v)a;]/(4np)

2 - 2 _ 2
(Ie)yy 3 = G(L+w) [(1+4q,-8q; DA, + 24,q,(1-4a3)n,)/(2mp )

2 _ .
(nc)lz.l G(1+y)[(1-8q:q2)n2 + ZQ1Q2(1'AQ:)n1]/(2ﬂP2)

2 2 _ 2 _
(e)y; 1 = G(L+w) [(1-8q3a2)R, + 24,4, (1-4a;)R,)/(2mp )
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(n°)11_2 - (nc)xz_x

(Hc)xz'z - (Hc)zz_l

(Te) s 5 = G(L40) [(1+4a;-8q3); + 24,45 (1-4a3)R,1/(2mp ) (2.4)
where

/2

-2 - 21
p = [(x;-%;) + (X3-X%X3) ]
q, = (xl‘i1)/P qg = (xz‘iz)/P (2.5)

and n,, n, are the components of the outward-directed unit normal

vector at a point x on the boundary, G is the shear modulus and v is

[
Poisson s ratio.

2.2 Nuperical treatment

Eq. (2.1) can be solved numerically if the boundary B is

approximated by N straight segments, as shown in Figure 2.2.

For this model, eq. (2.1) can be written as
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Figure 2.2 Discretized model of region R.



14

“1j(n) “j(n) +a1 Ja (“°)1.j<x(n),i> uy (%) ds
a1 Jn(uR)i'j(x(n),i) £y (%) d3 (2.6)

The displacements and tractions on each segment m can be

approximated using shape functions so that

sy oy (m-1) (m)
uj(X) uy N, (§) + Yy N, (£)

e (x) = ¢, ™ (2.7)

b b

where
Ny (§) = (1-€)/2, No(§) = (1+€)/2

(m-1) (m)

x = N, (¢) x + Ny (€) x

ds = [(sy - s 1)/2] 46 = (As_/2) d¢ (2.8)

and £ is a local coordinate for the segment m with value -1 at node m-

1, value 0 at the center of the segment, and value 1 at node m.

Note that the order of of t,(x) in the interval is less that that

J

of uj(x). This model allows discontinuities of t_, (x) on the boundary

J

and it is consistent within elements, i.e. linear displacements and

constant tractions on each element.
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If eqs. (2.7) and (2.8) are substituted into eq. (2.6) the

following is obtained

2 ai?) uj(n) + Asn mgl Jm(uc)i.j(x(n),f)Nl(f)d5-u§m-1)

men+1

v ooy Bily oy ™ ON 080 @

= J

- 8s_ gljm(uR)i.j(x(n),f)dsot (m)

m= 3

or
" (n) _ (n) (m,n)  (m-1) (m,n)_ (m)
2 aij uj + mgl Ai.j uj + Eg% Bi.j uj
mn+1
(m,n) 3 (m)
- [l/clmglci.j Fy
n=1,........... ,N
where

" (n) " (n)
13 "oy

(n)

uj - uj(x

(n))

(2.9)
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Ag ™ = as ey ™ oN 0
B ™ = s ) ey, ™ 0N, 00a

e, ™™ - ry, o™ e

1.3

- (m) (m)
Fi.j - Asmtj .

Note that two of the integrals on the left side of eq. (2.9) have

been incorporated into the cofficients ai?).

Now we must compute the following integrals for m=1l,...,N :
Ai.J(“'“) - as_ Jil(uc)i.j(x(n),£)Nl(§)d§ men+1
By ™™ - asy ) iweyy ™ 0m (000 mn

(2.10)

1
¢y ™™ -6 )Ry =™ e)ae

where (uc)1 j and (uR)i j are given by eq. (2.4). To put (uc)i j and
(uR)1 j in the proper form, we require p, q,, q, n, and n, as

functions of £. Employing eq. (2.8), we have
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™.z - a; - bé (2.11)

where we have defined

a, - xi(n) i ;i(m)
and
(m) 7 (m)
bi- xi - xi

as shown in Figure 2.3.

(m)

< (@-1)

LY

Figure 2.3 Definition of vectors a and b.
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Then
R - aga, - 2abé+bb ¢
q; = (a;-by)/p q; = (az-by)/p (2.12)
and
n, = (2/Asm)-b2 n, - -(2/Asm)-b1.

The integrals given by eq. (2.10) can now be computed by Gaussian

quadrature except for the following special integrals

Ap ™ = asy Iy (™ om (o)a
M=T1
1
Ci.J(m’n) = G J-l(u'R)i.J(x(n)tf)dE
(2.13)
By ™™ = sy Jatwedy ™ oN (e
m=-n+1

1
¢y 3™ = el ™ e

A summary of those special integral calculations is shown in Table 2.1.
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Table 2.1 Singular Integrals

n:node number m:segment number

Condition Coefficients Value
nem-1,m c, (m-m) [(3-v)(1-logAs )8, . +(1+v)n,n, ]/ (4x)
’ 1.3 835p7%43 1™y
n=m A, l(m.n)_A2 2(m.n)
S 0
n=m-1 B, 1(m'n)'32 2(m.n)4

(m.n))

(m.n)__Az .

q (1-v)/(2%)

n=m-1 B, 2(m.n)__32 l(m.n)J
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Eq. (2.9) can also be written in matrix form as

[uc]{Gu} = [uR](F). (2.14)

This is a system of equations relating nodal displacements to
resultant segment forces. In order to solve a well-posed elasticity
problem, it is necessary to re-pose this system of equations in terms

of nodal forces. Therefore, a transformation

{F) = [T](F) (2.15)

relating the vector of nodal forces (F)} to the vector of segment forces

{F}, is introduced into the system (2.15). The simplest physical
interpretation of the transformation is to replace the segment forces
by nodal forces equal to the average of the segment forces adjacent to

each node, or

F,(W 2y (p(W 4 p(0HD) (2.16)
i i i
The form of [T'] for this transformation is
I 1 0 0 « « 0]
0 I I 0 0
[F]=1/2 |0 0 O I . 0
. . . . o o o (2.17)
I 0 0 O 1]
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where I is a 2x2 identity matrix.

For an odd number of nodes, the inverse of [T'] is

[(I -I I -1 ¢ ¢ o1

I I-I I o o -1

[F]" = |- I I -I s« oI (2.18)

[-I I -I I « o1

and eq. (2.14) becomes

[uc](Gu) = [WR][T]™ (F). (2.19)

It should be noted that, for an even number of nodes, {I'] has no
inverse.
We can obtain the diagonal 2x2 blocks of [uc] through a simple

observation. If we apply a rigid body displacement to the body (i.e.

1 2 N 1 2 N .
U = u; =....=U; , U, =Uu, =.... = u, ), this will generate no stress
so that (F} = (0) and it follows that

.

(ue) 9n-1)(2n-1)" g;%(“°)(2n-1)(2m-1)

(Ue) (2n-1)(2n ) g;%(uc)(Zn-l)(Zm )
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(Ue) (9n )(2n-1)" é;i(“)(zn ) (2m-1)

(uc)(zn ) (2n )- é}l(uc)(zn Y(2m )° (2.20)

After solving eq. (2.19), stresses and displacements can be
calculated anywhere in the body using a discretized form of eqs. (2.2)

and (2.3),1i.e.

GV 3 Jm(“c)i.j("(n)"-‘) u, (X) ds

1 J

+ ¥ Jm(uR)i.J(x(n),i) t,(x) ds (2.21)

3

TR Jm(“")ik.J("(n)'i) uy(x) ds

oy a0y % e ) a8 (2.22)

]

where i=1,2, k=1,2, ui(n) are the displacements at field point x(n),

(n)

and %5k are the stresses at x

(n) )

If eqs. (2.7) and (2.8) are substituted into eqs. (2.21) and

(2.22) the following is obtained
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u

R S T A R

J

dsy oy Jptuedy ™ N, (€)aguf™

m m=1 i

+

m m=1

dsy & J,(uR)i.j(x(“).e)de-tj(m) (2.23)

Q
1
'

I e SSPRNCLL N LR G ET RN

h

< osy 8 J@e) ™ ON, (6 aguf™

m m=1 3

+

(n) (m)
as, B o ™ agee (2.24)

3

Eqs. (2.23) and (2.24) can also be written in matrix form as

rufnzx)\

1 P - [uR*][P]'l(F} - [uc*}(cu) (2.25)

u™x),

{050 b = *1 e () - (me*]ceu) (2.26)

All the entries of the matrices [uR*], [uc*], [Hc*] and [HR*] are
calculated by numerical integration using Gauss-Legendre quadrature

( Conte and deBoor [36]).



CHAPTER 3

CRACK PROBLEMS: INFINITE DOMAIN

3.1 e Displacemen scontinuit ethod

Consider an infinite elastic plane in which there is a point, X,
at which some "source" of stress is located and a field point, x, at

which the stresses are to be computed. At each of these points, we will

be referring to small integral surfaces as shown in Figure 3.1

described by unit normals n, and n, respectively.

L3

Figure 3.1 Source point and field point in an infinite plane.

24
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Let us define functions x;, and x, at x such that

any an,
%911 7 3x, O22 = 5;:
(3.1)
an, dx,

g - -
12 .
ax, 9%,

If we now introduce displacement discontinuities of unit magnitude in

the x, and x, directions at x, we can obtain :
g(]_',!:) - 3 - 3 - -
(me)y 4 = 2%p [2nzq, + 2n,q; - n;q;-3n,q,])

G(]+!:) - s - s . -
(lc)1.2 - (Ic)z.x = [2n,q; -2n,q; -n;q;+n,q,]

(3.2)

s _ 8 _ .
-2n,q, +3n,q,+n,q,]

G(1+v) -
- 21l'p ['2n2ch

(1rc)2,.2

where (xc); ; = m®; at x due to a unit displacement discontinuity in
the i direction, at x in the infinite domain, etc.

Next consider a line of length £, as shown in Figure 3.2, across

which the displacement is discontinuous by amounts c,(s) and c,(s).
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x2 *

Figure 3.2 Line defining a crack in the infinite plane.
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Then, by superposition, we have at x :

LW Jg[(m)z_lcl + («c),.,cg]dé

73 = Jo [(xe); sy + (xe); 5¢,;]di

- +

(3.3)

where cy = uy - uy, i=1,2, and all integrals are interpreted in the

Cauchy principal-value sense.

Suppose that the line is a crack,

the surfaces of which are

subjected to equal and opposite tractions t;(s) and t,(s) as shown in

Figure 3.3. Then,
*
ty = -[oy1n; + o,,n,]

811'1 d)(z all dxl
o, &t &

dx,
T ds

and similarly

drx,

t2 = - 45

so that

x (s) = =) t](5)as i=1,2
(o]

(3.4)

(3.5)

(3.6)
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along the crack, and egs.(3.3) become

Jittre)y sey + (me); ge;1dd = -Jzocfdé

(3.7)

Jﬁ[(nc)l.zcl + (xc); 5c,)ds = -jzotjdé.

Thus, if tf(s) and t:(s) are given, eqs.(3.7) can be solved for c,(s)
and c,(s). Then the displacement discontinuities normal and tangential

to the crack surfaces are

c, = ¢y + cpny

(3.8)

ct - C2n1 - clnz.

Once <, and c, are known, we can readily compute the stress intensity

factors as follows

E , 2z
KIls-O -8 / € cn(e)

E 2z
KII|s-0 -8 / € ct(e)

(3.9)

E 2z
KIls-l -8 J e Sn(f-€¢)

K -EjaEc o

II|s-2

where ¢ << 2.



29

4
I

}

Figure 3.3 Equal and opposite crack surface tractions.



30

3.2 Numerical Treatment

Eq. (3.7) can be solved numerically if the crack surface is

approximated by N straight segments, as shown in Figure 3.4

X2

/v/\N
1 n

0

X,
Figure 3.4 Discretized crack surface.
For this model, eq. (3.7) can be written as
- - .- *
mgljm(xc)i.j(x(n),x)cj(x)ds - oW (3.10)
where x(n)is the mid-point of element n, n=1,..,N, and summation on

j is implied.
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The displscement discontinuities in each segment m can be

approximated using shape functions so that

ey(®) = N,c§m‘1)+ Nzcjm) (3.11)
vhere
N, (§) = (1-€)/2, N,(§) = (1+£)/2
1sées1
z =N, &) x®D 4N x™

(3.12)

ds = [(s -s_ 1)/2]+dé = [As_/2]-dé.

If eq. (3.11) and (3.12) are substituted into eq. (3.10) the

following is obtained

G §1[A(m-n)c(m-1) + B(m.n)c(m)] L))

m= i.] j 1.3 j i (3.13)
where
(m.n) (m.n)
Apy = JgNiDyyUee
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D = (78,0070 ) (redy =™ 00,

It is noted that cl(o) - cz(o) - °1(N) - c2(1‘1) - 0.

Note that the function (=xc) { j1s singular when the

integration variable £ approaches the mid point of node n. This is the
case when the element m is a neighbor of the node n. The resulting
singular integrals must be handled analytically. The singular integrals

for 1 = j reduce to

p{™™ - pfm™ - L

and the integrals involving 1 = j are zero.

Thus,

Ai?jn) - Bi?jn)_ 0 10§ (3.14)

whereas, for i=j

AED - A G20

(™™ - pmm_ At (3.15)

If eqs. (3.14) and (3.15) are substituted into eq. (3.13), the

following equations are obtained



and

where

¢(d+y) (n-1)  G(l+y) (n)

2x ©1

(m n) (m-1)
+Gg;§,1,JJ

2x

+w 3 [A(m -n) (m-1)
m=1

ot SN | ‘3

In matrix form, we have

[xc] (Gc) = {-w*).

2x °1

B(m .n) (m)

-3

G(1+v) (n 1) Qilizlc(n)
2x 2

+ "

33

‘3

m.n) (m)

‘3

] = -«

] =

Let the nodal force vector be given by

or

Tin) - [_”*(n+1) +

(T) = [T,)(-n")

,*(n)]

(3.16)

*(n)
1

(3.17)

_x:(n)

(3.18)

(3.19)
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where

[T,] = . . . o o . . (3.20)

is 2(N-1)x2N. Then

[Fz][nc](Ge) = (T}. (3.21)

This is the system of equations one needs to analyze a crack in the

infinite plane subjected to crack surface tractions.



CHAPTER 4
CRACK PROBLEMS: FINITE DOMAIN

4.1 ethod a eme n t

Model

Consider the problem (shown in Figure 4.1) of a center-cracked
plate with a boundary load R and a crack surface load, T. This problem
can be analysed using linear superposition, as shown in Figure 4.2.
Linear superposition allows representation of the actual problem as a

sum of a boundary element model and a crack model. The vector Rc is the

correction applied (only at the boundary) to the load vector R in the

BEM to account for the presence of a crack. The vector Tc is the

correction applied (only along the crack surface) to the traction
vector T in the crack model to account for the finite boundary of the
actual problem. What is now requied is force matching along the outer
boundary of the actual plate and traction matching along the crack
surface.

Using eq. (2.19), which was discussed in Chapter 2, the governing

boundary element equations for the center-cracked plate are given by

[uc]{u) = [uR][I‘]-l{R-Rc). (4.1)

35
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Figure 4.1. Center cracked plate with tensile load.
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Figure 4.2 Linear superposition of the boundary element and

displacement discontinuity models.
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This is a system of equations relating nodal displacements to resultant

nodal forces.

The load correction vector Rc can be written as a function of the

displacement discontinuity vector c using matrix [IIc]

{Rc) = [SN][Ic]{Gc) (4.2)

where [SN] is a normal matrix multiplied by the unit area. Combining

equations (4.1) and (4.2), gives

-1 -1
[uc](Gu} + [uR][T] [SN]{Ilc}{Gec) = [uR][T] (R}. (4.3)
The crack model is the result of modeling crack(s) in an infinite
medium using a continuous distribution of displacement discontinuity.

The discretized equations for the infinite plate with crack are given

by

-[Tz][rec]{Ge} = (T} -(T ). (4.4)
Using eq. (2.26) which was discussed in Chapter 2, the correction

vector Tc can be expressed as a function of the displacement vector u

using matrices [IIR] and [Ic]
o1
(Tc} = [SN][IIR][T] [R-Rc) -[SN][lc] {Gu}. (4.5)

Combining eqs. (4.4) and (4.5), we have
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(T) = [SN][IR][F]™ (R-R_) -[SN][He](Gu) -[I,]([re](Ge).  (4.6)

To eliminate vector Rc’ eq. (4.2) is substituted into eq. (4.6), so

that
[SN][Iec](Gu) + ([SN][IR][T]  [SN][Me] + [mc]}(Ge)

- [SN][nkllr]'l(R} -{T). 4.7)

Equations (4.3) and (4.7) result in a coupled matrix system.

fue] | [wRI[F] [sN]] [eu] [[wRI(TI™ | [01] [®
| «[hc] |
| |
| |
-------- |-emmmmmmeeenas S (RN I I (4.9)
| |
| 1 |
(sN)(c]| (SN)URRI(F)™| |Ge| |(SNI[RI- | -[1]| |T
i | [sN]+[T,)Ixe]] | ] Lim)” 4L

This is the system of equations needed to solve crack problems in
finite plane domains.

In equation (4.9) it is noted that the vector u represents the
continuous displacement field at the boundary element nodes, not the
total displacement field in the actual problem. However, the vector c
represents the displacement discontinuity only for the finite plate
with crack so that the vector c for the finite plate without crack is

always zero.



CHAPTER 5

EXAMPLES AND DISCUSSION

5.1 Examples of Infinite Domain Crack Problems

5.1.1 Straight crack

Here we employ the displacement discontinuity method to find a
numerical approximation of the relative normal displacement between the
two surfaces of a straight crack loaded uniaxially as shown in Figure
5.1. It can be shown that the solution to this problem is equivalent to
that due to uniform pressure applied to the crack surfaces. Altiero
[33] obtained the solution shown in Figure 5.2 by assuming linear
variation of the displacement discontinuity on each element and

computing integrals by using the trapezoidal rule.

Figure 5.1 Straight crack in an infinite domain.

40
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Since, in fracture mechanics problems, an accurate solution near
the crack tip is important, a more sophisticated approach is needed. In
this work the determination of crack tip stress intensity factors is
carried out using equally-spaced nodes except for additional
"transition” nodes near the crack tips. As an example, the pressurized
crack problem is analysed using additional nodes located at one-quarter
of the distance from the crack tip to the next adjacent node. The
quarter-point location was selected based on a trial-and-error
procedure. Figure 5.3 presents the comparison of the displacement

discontinuities (cn) for several cases of transition node locations. A

significant improvement in accuracy using quarter-point transition
nodes is evident. This remarkable improvement is not achieved by
increasing the number of degrees-of-freedom but merely by shifting of

the nodes nearest the crack-tips.

Two solutions to the problem of Figure 5.1, using quarter-point
nodes are shown in Figure 5.4 and Table 5.1. These results are plotted
in dimensionless form, valid for arbitrary values of crack length 2a
and shear modulus G. The first approximation was found by dividing the
length of the crack (2a) into 10 equal elements while the second was
found by dividing it into 20 equal elements. In both cases two
additional quarter-point nodes were added. Thus, the first
approximation involved 12 elements and the second involved 22 elements.

The discontinuities, c,» are assumed linear over each element. It

appears from Figure 5.4 that the displacement discontinuity method
underestimates the relative displacements between the crack surfaces,
but the results tend to the exact solution as N is increased. The

solution is symmetric about x = 1.
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Table 5.1 Displacement discontinuty along left half of a straight

crack in an infinite domain.

distance from analytical numerical solution [CRACK]
crack tip solution[33]
(12 elements) (22 elements)

0.025 0.4444 - 0.4373
0.050 0.6244 0.6150 -
0.100 0.8717 - 0.8660
0.200 1.2000 1.1926 1.1929
0.300 1.4282 - 1.4199
0.400 1.6000 1.5898 1.5916
0.500 1.7320 - 1.7239
0.600 1.8330 1.8213 1.8250
0.700 1.9078 - 1.9000
0.800 1.9595 1.9476 1.9518
0.900 1.9895 - 1.9823
1.000 2.0000 1.9880 1.9923
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5.1.2 Circular arc crack

Because an exact solution exists, the circular arc crack
subjected to uniform stress applied at infinity provides a simple check
on the accuracy of the numerical solution. This problem is shown in
Figure 5.5. The solution, given by Sih, Paris and Erdogan [30] was
obtained using the method of Mushkelishvili [31]. The solution obtained
by the present method and the exact solution are compared in Figures
5.6 and 5.7 for biaxial and shear stress loading at infinity. In both
cases the numerical solution for the displacement discontinuity is
accurate to within 2 %. The stress intensity factors are accurate to

within 1 & everywhere.

*f— —;» 13 nodes

on crack

surface

Figure 5.5 Circular arc crack.
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5.1.3 Kinked crack

We next consider the basic kinked crack problem shown in Figure

5.8. The branches are sharp cracks of length b; and b, inclined to the

plane of the original crack by angles a; and a,, respectively.

Figure 5.8 Geometry of a kinked crack in an infinite plane.
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(a) Asymmetric kinked crack

First, we consider a crack with a right side branch only as shown
in Figure 5.8, i.e. an "asymmetric kinked crack". the projected length,

2c, is defined by

2c = 2a + b,cos a;. (5.1)

The stress intensity factors at the crack tip A of the asymmetric
0
kinked crack are shown in Table 5.2 for a; = 45 and two values of b,.

These are normalized with respect to the stress intensity factors for a

straight crack with the crack length 2c projected along the direction

K K
perpendicular to the tensile axis, i.e. FlA o /mc and F2A - ;7££ .

The results in Table 5.2 are accurate to within 2 & as compared to the

exact values of Kitagawa [27].

Table 5.2 Stress intensity factors at tip A of a kinked crack

]
(ay = 45 ).
b,/(2a) F,,[27] F, , [CRACK] F,,[27] F,, [CRACK]
0.01 1.000 0.986 0.003 0.002

0.10 0.998 0.976 0.019 0.018
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The stress intensity factors at the crack tip B, FlB and FZB ,

normalized in the same manner, are shown in Figures 5.9 and 5.10. The
results for uniaxial normal stress load are compared with those of
Kitagawa, Yuuki and Ohira [27] . These results show that the numerical

solution is accurate to within 2 % for all kink angles considered.

Figures 5.9 and 5.10 show that, with an increase in the kink

angle, a,, the FIB value decreases and the absolute value of FZB

increases. Also Figures 5.9 and 5.10 show that the values of FlB and
FZB become almost constant as the value of b,/(2a) increases.

The problem of a main crack under a biaxial stress aligned with
the line of the crack has been chosen to illustrate the accuracy of the
numerical solution for a crack with a finite kink. The stress intensity

factors for a kink of lengh bl- 2a/10 are compared in Figure 5.11 with

the results presented by Kitagawa and Yuuki [26] (those results agree

with [24,25]). The agreement is good.

(b) Anti-symmetric kinked crack

Let us consider a crack model with two branches as shown in

Figure 5.8, i.e. an "anti-symmetric kinked crack".

The stress intensity factors Fl and F2 of the anti-symmetric
kinked crack are plotted in Figure 5.12 as a function of a,; for
different lengths b;,. These are normalized by the stress intensity

factors for a straight crack with the crack length 2a. It is seen from
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Figure 5.12 that unlike in the case of the symmetrically kinked crack,

F2 never changes sign.
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5.2 e n Problems

Here we employ the coupled model developed in chapter 4 to find

numerical solutions for some finite domain problems.

5.2.1 Strajght crack

(a) Central symmetric crack with tensile load (Mode I)

The results for the stress intensity factors (SIFs) of the crack
problem shown in Figure 5.13 are plotted in Figure 5.14. The length of
the crack is varied, while the boundary element mesh is maintained and
the same number nodes are used define the crack. With this coupled
model, it can be seen that good agreement with the analytical solution
of Isida [32] is obtained up to a ratio of a/b = 0.7. For a/b > 0.7,

the SIFa are slightly lower than the analytical values.

(b) Central unsymmetric crack with tensile load

The SIFs for the problem shown in Figure 5.15 are given in Table
5.3. Results agree well with the analytical solution given by Isida

[32].

(c) Angled crack in a large plate

The results for an angled crack as shown in Figure 5.16 are shown

in Table 5.4. Several angles of inclination are considered. As

expected, the results are very close to the analytical solution for an
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Figure 5.13 Center-cracked test specimen.
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Figure 5.15 An off-center straight crack.

b=2
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3 ch

13 nodes on crack surface

2a = /2
K = oJxa sinzﬂ
Kip = o/ra sinBecosp

Figure 5.16 Angled crack in a large plate.
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Table 5.3 Stress intensity factors for an off-center straight crack.

K K K, [COUPL]
— 1 —1 I
ojma_ LCOUPL] =770 [32] K, [32]
Tip 1 1.395 1.405 0.99
Tip 2 1.189 1.200 0.98

Table 5.4. Stress intensity factors for an angled crack in a large

plate.
K K K, + K, +
— 11 —1 —1I
angle(B) py [COUPL] o/na [CcOUPL] o/xa o/na
90 0.000 0.000 0.000 0.000
60 0.249 0.427 0.250 0.433
45 0.497 0.493 0.500 0.500
30 0.745 0.427 0.750 0.433
0 0.994 0.000 1.000 0.000

+ Analytical solution for an angled crack in an isotropic infinite

medium is given by

2
K, = o/xa sin B and Kip = o/ra sinB cosp.
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crack in an infinite medium, since the plate is very large compared

with the size of the crack.
(d) Angled crack in a plate

Results for the problem shown in Figure 5.17 are given in Table

o )
5.5. Excellent accuracy has been obtained for 45 and 90 cracks, for

which analytical results are available.
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Figure 5.17 Angled crack in a finite plate.
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Table 5.5. Stress intensity factors for an angled crack in a finite

plate.
angle(5) KI K KI KII KI[COUPL] KII

& o/xa o/xa o/xa o/xa K, (32) Kiq
[COUPL) [COUPL) [32) [32)

60 0.363 0.507  _ _ _ _

45 0.713 0.570 0.730 0.600 .98 .95

30 1.000 0.467  _ _ _

0 1.449 0.000 1.488 0.000 .97
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5.2.2 inked Crac

Because an exact solution does not exist, the kinked crack within
a finite body can not provide a simple check on the accuracy of the
numerical solution. Nevertheless, let us introduce some of numerical
results. Figure 5.20 presents results for an asymmetric kinked crack in
a finite body as shown in Figure 5.18 while Figure 5.21 presents
results for an anti-symmetric kinked crack as shown in figure 5.19. The
tendencies of the numerical results are very similar to those of such

cracks in infinite bodies, but have higher values.

Computer CPU times for the problems that have been presented here

were less than 10 sec for all cases using the Prime 750 computer.
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Figure 5.18 Asymmetric kinked crack in a finite plate.
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Figure 5.19 Anti-symmetric kinked crack in a finite plate.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

A hybrid method has been presented for the analysis of cracks of
arbitrary shape in finite two-dimensional regions. The method has been
applied to a number of problems and in all cases, demonstrated accuracy
to within 2%. The main advantage of this approach over other techniques
is its ability to handle cracks with kinks. Furthermore, only the
external boundary and crack needed to be discretized. Thus, analysis of
crack propagation problems would require only the addition of nodes to

the crack.

In all problems, equal subdivisions were used for numerical
treatment. Additionally quarter-point nodes were employed near crack
tips. When unequal subdivisions were used, results were not good. This
is a limitation of the technique which requires future attention. It is
not known at this time why unequal subdivisions do not perform well as

such numerical treatment is not precluded by the formulation.

The main advantage of this work is its potential for modelling
crack propagation. Unlike the finite element and boundary element
techniques, this technique does not require complete re-meshing at each
crack growth increment. Rather, it simply requires the addition of

meshes along the propagation path.
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Three-dimensional crack analysis has not developed as fully as
its two-dimensional counterpart because of greater complexities.
Consequently, very few exact analysis have been obtained. There are a
number of approximate solutions, commonly dependent on exact results to
some extent. It is felt that the method presented here could be
extended to three-dimensions without unresonable difficulty. What is
required are analogous "fundamental" solutions for the three-
dimensional infinite domain (Such solutions are available in the

literature) and a method for handling the integrated traction terms.
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