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ABSTRACT

ANUHERICALHETBODFORTHETREAMT

OF KINKED CRACKS IN FINITE BODIES

By

Ukhwan Sur

A displacement discontinuity method is developed for modelling

cracks in linear-elastic two-dimensional infinite domains. This method

is then coupled to the standard boundary-element method for the

treatment of cracks in finite two-dimensional regions. The hybrid

approach has been implemented on the computer and representative

results are presented. Problems studied include a variety of crack

shapes, including cracks with kinks.

The hybrid method is shown to be an effective technique for the

study of cracks of arbitrary shape in finite bodies. The ability of the

method to handle cracks with kinks is a distinct advantage over other

known approaches. Furthermore, the application of this method to crack

propagation problems possesses none of the computational problems

associated with other approaches.
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INTRODUCTION AND BACKGROUND

The presence of cracks in a structure as shown in Figure 1.1

generally reduces the fatigue and static strength of the structure

because the stresses and strains are highly magnified at the crack tip.

It has been established that parameters deduced from linear elastic

fracture mechanics can be used to determine the stress and strain

magnification at the crack tip. These parameters, the stress intensity

factors (SIF), incorporate applied load levels, geometry, and crack

size in a systematic manner and may be evaluated from elastic stress

analysis using the finite element method (FEM) or the boundary element

method (BEM). The BEM is the numerical form of the "boundary integral

equation method” (DIEM) .

The FEM has been used extensively to solve elastic plastic

problems in fracture mechanics. The FEM is very effective for solving

problems with material and geometric nonlinearities, dynamic effects

and inhomogeneities (e.g. boundaries, inclusions, interfaces). However,

FEM is not the most effective method for problems involving

singularities (e.g. mathematically sharp cracks) or localized events

such as point sources and sinks. For the analysis of a sharp crack, a

fine field discretization is needed near the crack tip to capture the

rapidly varying stress and displacement fields. Furthermore, analysis

of crack propagation necessitates constant re-defining of the finite

element topology which may present severe computational difficulties.



The main disadvantage of the FEM is that a domain discretization is

required to perform the analysis. The BEM involves discretization only

of the boundary of the structure and the governing differential

equation is solved exactly in the interior, leading to greater

accuracy .

The boundary integral equation method has also been developed and

extensively used for the analysis of problems in continuum mechanics.

This method reduces the order of the problem, basically by using the

divergence theorem of Gauss. However, the system matrix is full and

unsymmetric so the reduction in order may be achieved only

superficially. It is particularly effective for problems with

singularities and dominantly linear response, and for modeling infinite

domains. The method has also proven effective for the treatment of

material nonlinearities. Geometric nonlinearities are still under

study .

Several strategies have been proposed for the analysis of crack

problems using the boundary integral equation method. These methods

include representing the crack as a notch, symmetric crack modelling,

use of special Green's functions, and flat crack modelling.

Representing the crack as a notch or replacing the crack plane with

symmetric boundary conditions, i.e. symmetric crack modelling, removes

the singularity in the algebraic system of equations which is obtained

when the upper and lower crack surfaces are modelled in the same plane

[1]. However, representation of the crack as a notch increases the

modelling error due to the notch opening and symmetric modelling is

limited to symmetric problems. The special Green's function approach

[2-4,5] possesses the advantage that crack geometry and crack tip



singularities are fully embedded in the boundary equations, i.e. no

modelling of the crack surface is required. The disadvantage is that

some two-dimensional and all three-dimentional problems can not be

formulated using the special Green's function approach [4] . Also,

complex arithmetic is required for the problems for which it does

apply .

Flat crack modelling represents the displacements along the crack

surface as the relative displacement between the two crack surfaces.

This scheme has two critical deficiencies as a mathematical model for

crack geometries, as pointed out by Cruse [4]. First, if there are no

tractions on the outer boundary and only crack surface loading, a

non-unique boundary integral equation is generated. Second, two unknown

displacement variables, i.e. the relative and total displacements,

exist along the crack. A possible solution for these problems is also

given by Cruse [4]. An extensive discussion of the special Green's

function and flat crack modelling techniques is given by Cruse [4] . The

success of the BIEM in linear elasticity has motivated many attempts at

application of this method to bodies containing cracks. These efforts

have been hampered by certain difficulties associated with treating the

two crack surfaces as ”boundary" leading to an underdetermined system

of equations .

In addition to BIEM, an alternative approach, suggested in

[6,7,8], involves combining the boundary-integral equations of the two

crack surfaces into a set of equations associated with a single surface

integral. These new integral equations are precisely those obtained if

one models the crack as a continuous layer of edge dislocations. The

fact that a crack is equivalent to a continuous array of edge



dislocations has long been known [9] . Gol'dstein and co-workers

employed this fact to develop an integral equation model for

curvilinear cracks in an infinite plane subjected to arbitrary load.

This method has since been developed for treatment of in-plane cracks

of arbitrary shape. However, efforts to apply this technique to kinked

cracks have not been successful [34] .

The more important purpose of this work is to consider the

behavior and characteristics of non-linear shaped cracks which are

kinked, a phenomenon generally observed in the macroscopic or

microscopic crack growth or propagation process.

Crack morphology seems to have significant meaning in crack

propagation and fatigue crack growth. The brittle crack propagation and

fatigue crack growth in the mixed mode loading state has received

considerable attention. Generally in these cases a crack does not

follow a straight path, but rather a curved or a kinked path.

Only a few reliable solutions for the stress intensity factors

(SIF) of non-linear shaped cracks have been obtained for special cases.

Some solutions for the stress intensity factors of non-linear shaped

cracks in the state of longitudinal shear were given by Sih [10],

Nakagama [11], and Smith et a1. [12]. However analytic solutions for

the stress intensity factors of non-linear shaped cracks in

two-dimensional stress states which are more important to crack

morphology are difficult to come by. Generally in these cases, both the

stress intensity factors of mode 1 and mode 2 appear. For this reason,

the analysis is not easy and many interesting problems can be expected

to be found .



In this work we restrict our discussion to the problem of linear

and non-linear shaped cracks in the two-dimensional elastic stress

state. Recently, several experimental or numerical analyses for these

kinds of problems have been reported [13]. Anderson [14] solves these

problems on the basis of Muskhelishvili's method, but the value of his

numerical results are questionable [15,16] . Kitagawa [l7] constructed a

general analytical method for determination stress intensity factors of

non-linear shaped cracks in an infinite isotropic homogeneous plate in

the two-dimensional elastic stress state. This method includes a

polynomial approximation and truncation procedure [18] of a conformal

mapping function. Also Kitagawa [17] obtained numerical results for

various cases .

When a crack is oriented asymmetrically, the new crack initiates

at an angle to the old one. The calculation of stress intensity factors

for kinked cracks is difficult and there have been many attempts at

their solution [19,20,21-24,25-28]. With most solutions, the analysis

is such that the limit for an infinitesimally small kink cannot be

obtained readily from the analysis for a finite kink. Recently, Lo [24]

has presented a convincing solution that models the crack as a

continuous distribution of dislocations, in a manner that can handle

both the finite and the infinitesimal kink within the same formulation.

A new model, suggested here, has very good features in comparison

with the edge dislocation model. This new set of integral equations is

precisely that obtained if one models the crack as a line of

displacement discontinuity. Knowledge of the edge dislocation

distribution leads directly to the relative crack surface displacements



and to a complete field solution since the edge dislocation

distribution is simply the derivative of the displacement discontinuity

along the crack surface. It is, however, more appealing to formulate

the equations in terms of the displacement discontinuity itself since

the dislocation distribution is singular at tips but the displacement

discontinuity is zero. The equations derived on this basis are,

however, not integrable, a fact which has discouraged progress in this

direction. An effort to develop a displacement discontinuity

formulation has been presented by Crouch [29] but his numerical

treatment results in modelling the crack as a discrete set of

dislocation dipoles, a rather cumbersome variation of the dislocation

density approach. Here, the displacement discontinuity is obtained

through a single formulation and this method can handle kinked cracks

very well. The displacement discontinuity method presented here is

based on the analytical solution to the problem of a discontinuity in

displacement over a finite line segment in an infinite elastic solid.

Physically, one may imagine a displacement discontinuity as a line

crack whose opposing surfaces have been displaced relative to one

another. This method is based on the notion that one can make a

discrete approximation to a continuous displacement discontinuity along

a crack.

An effective hybrid method has also been developed here to model

fracture problems in finite plane domains. This hybridization by

(incrementally) linear superposition combines the best features of two

component methods. Boundary elements are used to model the finite

domain while a continuous distribution of displacement discontinuity

(dislocation dipoles in two dimensions) are used to model the crack.



This method allows modelling of the crack "independently" of the

Boundary Element mesh.

x2?

 

 
original crack surface

-- propagation path

R boundary traction

T crack surface traction 4

w

x1

Figure 1.1. Crack propagation in an arbitrarily shaped body.



CHAPTER 2

BOUNDARY ELDENT FORMULATION

2.1W

For the plane boundary-value problem of linear elasticity

illustrated in Figure 2.1, the displacement at a point x on B is

related to the displacements and tractions at all other points on B by

Somigliana's identity, i.e.

aij(x)uj(x) + JB(uc)1.j(x,x)uj(x)ds(x) - JB(uR)i.j(x,x)tj(x)ds(x) (2.1)

where the integral on the left hand side is interpreted in the Cauchy

principal-value sense. The function (uc)1.J(x,x) is the displacement in

the i direction at x due to a unit displacement discontinuity applied

in the j direction at i in the infinite elastic plane and (uR)1.j(x,x)

is the displacement in the 1 direction at x due to a unit force

applied in the j direction at i in the infinite elastic plane. The

coefficients, aij , depend on the character of the boundary at x (e.g.

aij - 1/2 613 at a smooth boundary point). As shall be seen, knowledge

of a is not required.

13



 

  
Figure 2.1 Description of region of interest.
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At a point x in R, the displacements and stresses can be

calculated from the equations

ui(x) - JB(uR)i_j(x,i)tJ(i)d§ - JB(uc)i.j(x,x)uj(x)ds (2.2)

aik(x) - JB(HR)1k.j(x,x)tj(x)ds - JB(Hc)ik.J(x,x)uj(x)ds (2.3)

where the influence functions (IIR)1k J(x,x) and (IIc)1k j(x,x) give the

stress components at x due to a unit force applied in the j direction

at i , and a unit displacement discontinuity in the j direction at :1,

respectively, in the infinite plane.

At each point x on B and in each direction, either u (x) or t

.l J

is known. Therefore, eq. (2.1) can be used to solve for the unknown

(X)

values of u:] (x) and tj (x), thus giving complete boundary information.

The displacements and stresses at any internal point can then be

determined by integration using eqs. (2.2) and (2.3).

It can be shown that, for plane stress, the influence functions

of eqs. (2.1), (2.2) and (2.3) are given by

(“R)1.k - [-<3-u>6,klogp + <1+v>qiqk1/(8«c>

(no)... - [2(1+u)<fi.q:-fi2q:> + <1-v>fi.q1 + <3+v>fi2q21/(4«p)



ll

_ 3 - 3 - -

(uc)1.2 - [2(1+u)(-n,q,-n,q2) + (l+3u)n2q1 + (3+v)n1q2]/(4Np)

(uc)2.1 - [2(1+y)(-fi2q:-fi,q:) + (3+u)fi,q, + (1+3u)fi,q,]/(a«p)

- 3 - 3 - -

(uc)2.2 - [2(1+u)(-n1q1+n2q2) + (l-V)n2q2 + (3+V)n1q1]/(4xp)

s

(HR)11.1 [‘2(1+V)Q1 ' (I‘V)Q1]/(43P)

(nR>.2.. - [2<1+u)q: - <3+v>q.1/<4«p>

(nR>22.. - [2<1+u)q: - <1+3u>q11/(4«p>

(HR).... - [2<1+u>q: - (1+3v)q21/(4«p>

(nR>.2.2 - [2<1+u>q: - (3+u>q11/<4«p>

3

(HR)22 2 ['2(1+V)Q2 ' (l‘V)Q2]/(4”P)

2 _ 2 _ 2

(Hc)11.1 G(l+u)[(l+4q1-8q: )n, + 2q1q2(l-4q1)n2]/(2xp )

22_ 2_ 2

(Hc)12.1 C(1+V)[(1'BQIQ2)U2 + 2Q1Q2(1'AQ1)H1]/(2WP )

22_ 2..

are)...1 C(1+v)[(1-8q1q2)n1 + 2q1q2<1-4q2>n21/<2«p2>
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(Hc)11.2 ' (Hc)12.1

(H°)12 2 ' (Hc)22.1

(Hc)22.2 - G(l+u)[(l+4q:-8q;)n2 + 2q1q2(l-4q:)nl]/(2np2) (2.4)

where

/2_ 2 _ 2 1

P - [(X1'x1) + (Xa'xz) ]

QI ' (xi'i1)/P Q2 ' (Xz'i27/P (2.5)

and 5,, H2 are the components of the outward-directed unit normal

vector at a point i on the boundary, G is the shear modulus and u is

I

Poisson 5 ratio.

2.2 Numerical treatment

Eq. (2.1)cnu1be solved numerically if the boundary B is

approximated by N straight segments, as shown in Figure 2.2.

For this model, eq. (2.1) can be written as



13

x2 4b

 

 
Figure 2.2 Discretized model of region R.
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(n) (n) (n) - - -
aij uj +mgl Jm (uc)1 J(x ,x) uj(x) ds

(n) - - -
- § Jn(“R)1 j(x ,x) tj(x) ds (2.6)
m-l

(n)
where u

J

n-l, ...... ,N, j-l,2.

are the displacements components at node n and

The displacements and tractions on each segment m can be

approximated using shape functions so that

uj(x) - uj(m-1)N1(€) + uj(“"N.<e>

- _ (m)
tj(x) tj (2.7)

where

N1(E) - (1-€)/2. N2(€) - (1+€)/2

(m-l) (m)
i - N1(£) x + N2(€) x

a; - [(sm - sm_1)/2] d5 - (Asm/Z) d5 (2.8)

and 6 is a local coordinate for the segment m with value -1 at node m-

1, value 0 at the center of the segment, and value 1 at node m.

Note that the order of of t (x) in the interval is less that that

J

of uj (x). This model allows discontinuities of t (x) on the boundary

J

and it is consistent within elements, i.e. linear displacements and

constant tractions on each element.
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If eqs. (2.7) and (2.8) are substituted into eq. (2.6) the

following is obtained

2 egg) uj(n) + Asn mgl Jm(uc)i.j(x(n),€)N1(€)dfou§m-l)

m+1

+ As“, E351“, (uc>,.J<x‘“’.e>N.<e>de-u (“03; J

§
- Asm m-lJm

(uR)1.J<x(“) mas-t, “'0

or

“ (n) (n) (m.n) (m-l) (mm) (m)
2 aij uj + mgl Ai.j uj + $§% Bi.j u.j

mfln+1

(mm) " (m)

' [l/GlmglciLJ F3

n-l, ........... ,N (2.9)

where
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A1_j(m’“) - Asmjn(uc>,_1<x‘“’.£>N,<£>de

31.j(mvn) - Astm(uc)i.j(X(n).€)N2(€)d€

(m.n)
01.3 - c Jams)i J<x‘“’.£)d€

“ (m) (m)
Fi.j - Asmtj .

Note that two of the integrals on the left side of eq. (2.9) have

(n)

13'
been incorporated into the cofficients a

Now we must compute the following integrals for m-l,...,N :

Ai.j(m»“) — Asm 1:1(uc)1.1(x(n).€)N1(€)d€ mvn+1

1

B, j<m’“’ - Asm Lune)i j(x(n).€)N2(€)d€ man

(2.10)

1

c1 j‘m'“) - c J_1<uR>,oj(x‘“’.e)de

where (uc)ij and (uR)1.1 are given by eq. (2.4). To put (uc)1 j and

(uR)1 j in the proper form, we require p,<;p q2,111and112as

functions of 5. Employing eq. (2.8), we have
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(n)
x -x - ai - bif

where we have defined

31 _ xi(n) _ ;1(m)

and

(m) ‘ (m)
bi- xi - xi

 

 I4

  

 

 

  

Figure 2.3 Definition of vectors a and b.

(2.11)
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Then

R - a a - 2a b 5 + b b 52
i i i i i i

q; - (al-bl)/p q: - (32'b2)/P (2.12)

and

n1 - (2/Asm)-b2 n2 - -(2/Asm)ob1.

The integrals given by eq. (2.10) can now be computed by Gaussian

quadrature except for the following special integrals

 

A1.J(m’“) - Asm J:.(uc>,.1(x‘“’.5)N.(e>de‘

l m-n

1

61.3%“) " G J-l‘m1.1(x(n)’€)d€ ‘

(2.13)

1

81.j(m’n’ - Asm J-.<uc),.J<x(“’.5)N2<s)dei

> m-n+1

1

c1 j‘m'“) - G J-.(uR),.j<x(“).£)d€ . 

A summary of those special integral calculations is shown in Table 2.1.
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Table 2.1 Singular Integrals

 

nznode number m:segment number

 

 

 

Condition Coefficients Value

n-m-l,m C1,]m'n) [(3-v)(l-logAsm)61j+(l+v)ninj]/(47r)

n-m A1 1(m.n)_A2 2(m.n)‘

> 0

n-m-l B1 1(m.n)_B2 (m.n)J

n-m A1 1‘(m.n)_.A2 1(m.n)‘

t (1-u)/(2«)

 n-m-l B1 2(m.n)__Bz 1(m.n)J
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Eq. (2.9) can also be written in matrix form as

[uc]{Gu} - [uR]{F}. (2.14)

This is a system of equations relating nodal displacements to

resultant segment forces. In order to solve a well-posed elasticity

problem, it is necessary to re-pose this system of equations in terms

of nodal forces. Therefore, a transformation

{Fl - [I‘]{F} (2.15)

relating the vector of nodal forces {F} to the vector of segment forces

(F) , is introduced into the system (2.15). The simplest physical

interpretation of the transformation is to replace the segment forces

by nodal forces equal to the average of the segment forces adjacent to

each node , or

F (n) - 1/2 [F(“) + F(“+1)]. (2.16)
i i i

The form of [F] for this transformation is

II I 0 0 - . 0.

0 I I 0 - - 0

[I‘]- 1/2 0 0 0 I . . 0

o e e o o e e (2.17)

[I 0 0 0 Id  
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where I is a 2x2 identity matrix.

For an odd number of nodes, the inverse of [F] is

[r]' - -1 1 I -I - . - I (2.18)

  L-I I-I I ---I_

and eq. (2.14) becomes

,1

[uCIIGul - [uRJIP] {F}. (2 19)

ILt should.be noted that, for an even number of nodes, [I1 has no

inverse.

We can obtain the diagonal 2x2 blocks of [uc] through a simple

observation. If we apply a rigid body displacement to the body (i.e.

1 2 N 1 2 N

u1 - u1 -.... - u1 , u2 - u2 -.... - u2 ), this will generate no stress

so that {F} - {0} and it follows that

(“°)(2n-1)(2n-1)' g§%‘“°)(2n-1)(2m-1)

-§
(“°)(2n-1)(2n )' 33%(“°)(2n-1)(2m )
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-E
‘“°’(2n )(2n-1)' g;g‘“°’(2n )(2m-1)

(uc)(2n )(2n )- $41ch2n )(2m ). (2.20)

.After solving eq. (2.19), stresses and displacements can be

calculated anywhere in the body using a discretized form of eqs. (2.2)

and (2.3),i.e.

u

101) - ’m211m(uC)LJ
(x(n),i) uj (i) d;

+m§1 Jm(uR)1.J(x(n),x) t (i) a; (2.21)
J

aik(“> - -mgl Jm(nc)1koj(x(n),i) uj(x) a;

+m§1 Jm(nR)1k.j(x(“),i) cj(i) a; (2.22)

where i-l,2, k-l,2, u1(n) are the displacements at field point x(n),

(n)
and 01k are the stresses at x

(n).

If eqs. (2.7) and (2.8) are substituted into eqs. (2.21) and

(2.22) the following is obtained
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u (m- 1)

1(n) ' - Asmg1Jm(uc)1.j(x(n).€)N1(€)d
€'uj

As § I(no), J<x(“’.e>N2<e)dsou(m)
m m-l j

+

m m-l
As § J (as), j H‘“’.e>d5-tj(m) (2.23)

(n) (n) . (m-l)

“1k - - Asm m2, Jm(nc),k_j(x .e)N.(£>de uJ

- As 5 Jm(nc).kj<x‘“).e)N2<e>d£-u‘m)
m m-l j

(x‘n).e)de-cj‘m’ (2.24)+

A8111 mil Jm<nR)ik.j

Eqs. (2.23) and (2.24) can also be written in matrix form as

ruanX)‘

4 > - [uR*][F]'1{F} - [uc*]{Gul (2.25)

  

(0,, 2x)» - [nR*1[r1"(Fi - [Hc*]{Gu} (2.26)

  

* *

All the entries of the matrices [uR ], [uc*], [Hc*] and [HR ] are

calculated by numerical integration using Gauss-Legendre quadrature

( Conte and deBoor [36]).



CHAPTER 3

CRACK PROBLEMS: INFINITE DOMAIN

3.1 The Displacement Discontinuity Method

Consider an infinite elastic plane in which there is a point, i,

at which some "source" of stress is located and a field point, x, at

which the stresses are to be computed. At each of these points, we will

be referring to small integral surfaces as shown in Figure 3.1

described by unit normals fl, and n, respectively.

X

 
Figure 3.1 Source point and field point in an infinite plane.
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Let us define functions «1 and a, at x such that

8x1 an,

011 ' 8x2 022 ' 5;:

(3.1)

an, dsz

a - -

12 -
8x1 8x2

If we now introduce displacement discontinuities of unit magnitude in

the x1 and x2 directions at i, we can obtain :

+ _ 3 _ 3 _ _

(“€71.1 ' -§é%;21[2n2q1 + 2n1q2 ' n2q1-3n1q2]

+ - s _ s _ _

(NC)1 2 ' (NC)2 1 ' 2np [2n1q1 -2n2q2 -n1q1+n2q2]

(3.2)

G(1+u) - 3 - 3 - -

(NC)2 2 ' 2wp [-2n2q1 -2n1q2 +3n2q1+n1q2]

where («c)1 1 - 1r1 at x due to a unit displacement discontinuity in

the 1 direction, at i in the infinite domain, etc.

Next consider a line of length 2, as shown in Figure 3.2, across

which the displacement is discontinuous by amounts c1(s) and c2(s).
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x2 I}

 

 
Figure 3.2 Line defining a crack in the infinite plane.
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Then, by superposition, we have at x :

2 -

*1 ' Jo[(FC)1.1¢1 + (*C)1.2C2]d5

t2 - Jf [(«c)2.1c1 + (sc)2.2c2]ds

- +

(3.3)

where c1 - ui - ui, i-l,2, and all integrals are interpreted in the

Cauchy principal-value sense.

Suppose that the line is a crack, the surfaces of which are

subjected to equal and opposite tractions t1(s) and t2(s) as shown in

Figure 3.3. Then,

t1 ' ’[011n1 + 012n2]

6K1 dX2 3'1 dxl

' ' a—x2 E + a, E

dxl

- ds

and similarly

dtz

t2 - - ds

so that

«1(3) - -J: t:(§)a§ 1-1,2

0

(3.4)

(3.5)

(3.6)



28

along the crack, and eqs.(3.3) become

J£[(1rc)1 1c1 + (arc)1 2c2]ds - -J: ttds

e a o

(3.7)

J:[(fic)1.2cl + (”C)2.202]dS - -J:ot:d§.

Thus, if t:(s) and. t:(s) are given, eqs.(3.7) can be solved for c1(s)

and c2(s). Then the displacement discontinuities normal and tangential

to the crack surfaces are

(3.8)

Ct - Cznl ' 61112.

Once cn and ct are known, we can readily compute the stress intensity

factors as follows

E 21

KIfis-O - 8 J c cn(€)

E 2i

KIlls-o ' 8 J e °t(‘)

(3.9)

E Z!

KIls-2 - 8 J c cn(£-€)

K % J %1 ct(£-e)
Ills-2 -

where 6 << 2.
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i
t

 

Figure 3.3 Equal and opposite crack surface tractions.
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3.2 Numerical Treatment

Eq. (3.7) can be solved numerically if the crack surface is

approximated by N straight segments, as shown in Figure 3.4

X2“

 
x1

Figure 3.4 Discretized crack surface.

For this model, eq. (3.7) can be written as

- - - *

mgljm(«c)i.j(x(n),x)cj(x)ds - '"1 (n) (3.10)

where x(n)is the mid-point of element n, n - 1,.. ,N, and summation on

j is implied.
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The displscement discontinuities in each segment m can be

approximated using shape functions so that

(m-l)

J

(m)
c (i) - Nlc + N2cj (3.11)

J

where

N1(€) - (1-€)/2. N2(€) - (1+€)/2

+ N,(e) x(m)

(3.12)

a; - [(sm-sm_1)/2]-d£ - [Asm/2]-d£.

If eq. (3.11) and (3.12) are substituted into eq. (3.10) the

following is obtained

Gm§1[A§?jn)c§m-l) + BiTjn)c§m)] — -n:(n) (3.13)

where

(m.n) (m.n)

Ai.j ' JmN‘Di.j d5

(m.n)
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93'5“) - [<sm-sm_1)/<2c)1~(«c)1.j(xm.5).

It is noted that c1(o) - c2(o) - c1(N) - c2(N) - 0.

Note that the function (ac) 1 J15 singular when the

integration variable 5 approaches the mid point of node n. This is the

case when.the element m is a neighbor of the node n. The resulting

singular integrals must be handled analytically. The singular integrals

for i - j reduce to

(m.n) _ (m.n) _ filial

D1.1 D2.2 4,5

and the integrals involving 1 # j are zero.

Thus,

Aifj“) - 3:33“)- o 1¢j (3.14)

whereas, for i-j

W - Asw- - L—gw

Bfifin) - B§T;“)- 1%fz). (3.15)

If eqs. (3.14) and (3.15) are substituted into eq. (3.13), the

following equations are obtained
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-91——Zlc (n 1) +§il_zlc (n)

2« cl 2« c1

(m. n)c (m- 1) (m n)c (m)

+63%[A1 J cJ + 311 cj ].

and

Qilizl (n-l) £11121 (n)- 2" c2 + 2‘ c2

(m n)c (m- 1) (m. n)c (m) _ _
fi§1n[A2 j cj + B221 cj ] f

where n-l, ..... ,N and c; ) - c§N)

In matrix form, we have

[no] {Gc} - {-x*l.

Let the nodal force vector be given by

Tin) _ [_"*(n+1) + «*(n)]

or

m - [I‘m-a")

(3.16)

*(n)

(3.17)

*(n)

2

0.

(3.18)

(3.19)
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where

[P2] - . . . . . . . (3.20)

  
is 2(N-l)x2N. Then

[P2][WCJIGc} - (T). (3.21)

This is the system of equations one needs to analyze a crack in the

infinite plane subjected to crack surface tractions.



CHAPTER 4

CRACK PROBID‘S: FINITE MAIN

4.1 o - , - o 30-1.04; ‘11‘1Heto ad 1 9_: eme t | _ n nt

Ml

Consider the problem (shown in Figure 4.1) of a center-cracked

plate with a boundary load R and a crack surface load, T. This problem

can be analysed using linear superposition, as shown in Figure 4.2.

Linear superposition allows representation of the actual problem as a

sum of a boundary element model and a crack model. The vector Re is the

correction applied (only at the boundary) to the load vector R in the

BEM to account for the presence of a crack. The vector Tc is the

correction applied (only along the crack surface) to the traction

vector T in the crack model to account for the finite boundary of the

actual problem. What is now requied is force matching along the outer

boundary of the actual plate and traction matching along the crack

surface.

Using eq. (2.19), which was discussed in Chapter 2, the governing

boundary element equations for the center-cracked plate are given by

[uclm - [uR] [Fl-llR-Rc}. (4.1)

35
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Figure 4.1. Center cracked plate with tensile load.
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* 1

Displacement

BEM Discontinuity Method

JFigure 4.2 Linear superposition of the boundary element and

displacement discontinuity models.
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This is a system of equations relating nodal displacements to resultant

nodal forces.

The load correction vector Rc can be written as a function of the

displacement discontinuity vector c using matrix [Hc]

{RC} - [SN][HC]{GCI (4.2)

where [SN] is a normal matrix multiplied by the unit area. Combining

equations (4.1) and (4.2), gives

_1 ,1

[UC]{6u} + [uRllrl [SN]{Hc}{Gc} - [uR][Fl {R}. (4.3)

The crack model is the result of modeling crack(s) in an infinite

medium using a continuous distribution of displacement discontinuity.

The discretized equations for the infinite plate with crack are given

by

-[r21[«c]{cci - {T} -(Tc}. (4.4)

Using eq. (2.26) which was discussed in Chapter 2, the correction

vector Tc can be expressed as a function of the displacement vector u

using matrices [HR] and [He]

(Tc) - [SNllflRlirl'ltR-Rc} -[SN1[nc](cu}. (4.5)

Combining eqs. (4.4) and (4.5), we have
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{T} - ISNIIHRIIr1'111-RCI -[SN][HC]{Gu} -[le{[WCI{Gc}. (4.6)

To eliminate vector Rc’ eq. (4.2) is substituted into eq. (4.6), so

that

ISNIIncIIcuI + {[SNIIHR][P]'1[SN][HCI + [welltccl

- ISNIInRIIrI’lIRI -{T). (4.7)

Equations (4.3) and (4.7) result in a coupled matrix system.

       

Inc] I IuRIIrI'1ISN1I "cu“ 'IuRIIrI'1 | IOII IA

| -IncI I

I I
I I

-------- |--------------- - ----------|----- - (4.9)

I I

I 1 I

ISNIIncII ISNIInRIIrI' ac [SN][HR]- I -[I] r

I I -[SNl+[F2][«c]_ I _ .IrI' I _ ._ 

This is the system of equations needed to solve crack problems in

finite plane domains.

In equation (4.9) it is noted that the vector 11 represents the

continuous displacement field at the boundary element nodes, not the

total displacement field in the actual problem. However, the vector c

represents the displacement discontinuity only for the finite plate

with crack so that the vector c for the finite plate witiunit crack is

always zero .



CHAPTER 5

EXAMPLES AND DISCUSSION

5.1 Examples of Infinite Domain Crack Problems

5.1.1 Straight crack

Here we employ the displacement discontinuity method to find a

numerical approximation of the relative normal displacement between the

two surfaces of a straight crack loaded uniaxially as shown in Figure

5.1. It can be shown that the solution to this problem is equivalent to

that due to uniform pressure applied to the crack surfaces. Altiero

[33] obtained the solution shown in Figure 5.2 by assuming linear

variation.of the displacement discontinuity on each element and

computing integrals by using the trapezoidal rule.

Figure 5.1 Straight crack in an infinite domain.
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Since, in fracture mechanics problems, an accurate solution near

the crack tip is important, a more sophisticated approach is needed. In

this work the determination of crack tip stress intensity factors is

carried out using equally-spaced nodes except for additional

“transition" nodes near the crack tips. As an example, the pressurized

crack problem is analysed using additional nodes located at one-quarter

of the distance from the crack tip to the next adjacent node. The

quarter-point location was selected based on a trial-and-error

procedure. Figure 5.3 presents the comparison of the displacement

discontinuities (on) for several cases of transition node locations. A

significant improvement in accuracy using quarter-point transition

nodes is evident. This remarkable improvement is not achieved by

increasing the number of degrees-of-freedom but merely by shifting of

the nodes nearest the crack-tips.

Two solutions to the problem of Figure 5.1, using quarter-point

nodes are shown in Figure 5.4 and Table 5.1. These results are plotted

in dimensionless form, valid for arbitrary values of crack length 2a

and shear modulus G. The first approximation was found by dividing the

length of the crack (2a) into 10 equal elements while the second was

found by dividing it into 20 equal elements. In both cases two

additional quarter-point nodes were added. Thus, the first

approximation involved 12 elements and the second involved 22 elements.

The discontinuities, cn, are assumed linear over each element. It

appears from Figure 5.4 that the displacement discontinuity method

underestimates the relative displacements between the crack surfaces,

but the results tend to the exact solution as N is increased. The

solution is symmetric about x - l.
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Table 5.1 Displacement discontinuty along left half of a straight

crack in an infinite domain.

 

 

 

distance from analytical numerical solution [CRACK]

crack tip solution[33]

(12 elements) (22 elements)

0.025 0.4444 - 0.4373

0.050 0.6244 0.6150 -

0.100 0.8717 - 0.8660

0.200 1.2000 1.1926 1.1929

0.300 1.4282 - 1.4199

0.400 1.6000 1.5898 1.5916

0.500 1.7320 - 1.7239

0.600 1.8330 1.8213 1.8250

0.700 1.9078 - 1.9000

0.800 1.9595 1.9476 1.9518

0.900 1.9895 - 1.9823

1.000 2.0000 1.9880 1.9923
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5.1.2 Circular arc crack

Because an exact solution exists, the circular arc crack.

subjected to uniform stress applied at infinity provides a simple check

on the accuracy of the numerical solution. This problem is shown in

Figure 5.5. The solution, given by Sih, Paris and Erdogan [30] was

obtained using the method of Mushkelishvili [31]. The solution obtained

by the present method and the exact solution are compared in Figures

5.6 and 5.7 for biaxial and shear stress loading at infinity. In both

cases the numerical solution for the displacement discontinuity is

accurate to within 2 %. The stress intensity factors are accurate to

within 1 % everywhere.

*f- -]~ 13 nodes

on crack

surface

l
l
—

N I
n
)

1

Figure 5.5 Circular arc crack.
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5.1.3 Enigma—Ck

We next consider the basic kinked crack problem shown in Figure

5.8. The branches are sharp cracks of length b1 and b2 inclined to the

plane of the original crack by angles a1 and a2, respectively.

   

Figure 5.8 Geometry of a kinked crack in an infinite plane.
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(a) Asymmetric kinked crack

First, we consider a crack with a right side branch only as shown

in Figure 5.8, i.e. an "asymmetric kinked crack". the projected length,

2c, is defined by

2c - 2a + blcos a1. (5.1)

The stress intensity factors at the crack tip A of the asymmetric

o

kinked crack are shown in Table 5.2 for al - 45 and two values of b1.

These are normalized with respect to the stress intensity factors for a

straight crack with the crack length 2c projected along the direction

K K

___1 ___LI.
perpendicular to the tensile axis, i.e. F1A also and F2A a/«c .

The results in Table 5.2 are accurate to within 2 % as compared to the

exact values of Kitagawa [27].

Table 5.2 Stress intensity factors at tip A of a kinked crack

 

 

0

(01 - 45 ).

bI/(Za) F1A[27] F1A[CRACK] F2A[27] F2A[CRACK]

0.01 1.000 0.986 0.003 0.002

0.10 0.998 0.976 0.019 0.018
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The stress intensity factors at the crack tip B, F113 and F2B ,

normalized in the same manner, are shown in Figures 5.9 and 5.10. The

results for uniaxial normal stress load are compared with those of

Kitagawa, Yuuki and Ohira [27] . These results show that the numerical

solution is accurate to within 2 % for all kink angles considered.

Figures 5.9 and 5.10 show that, with an increase in the kink

angle, (21, the F13 value decreases and the absolute value of F23

increases. Also Figures 5.9 and 5.10 show. that the values of F113 and

F23 become almost constant as the value of bl/(2a) increases.

The problem of a main crack under a biaxial stress aligned with

the line of the crack has been chosen to illustrate the accuracy of the

numerical solution for a crack with a finite kink. The stress intensity

factors for a kink of lengh bl- 2a/10 are compared in Figure 5.11 with

the results presented by Kitagawa and Yuuki [26] (those results agree

with [24,25]). The agreement is good.

(b) Anti-symmetric kinked crack

Let us consider a crack model with two branches as shown in

Figure 5.8, i.e. an ”anti—symmetric kinked crack".

The stress intensity factors F1 and F2 of the anti-symmetric

kinked crack are plotted in Figure 5.12 as a function of al for

different lengths b1. These are normalized by the stress intensity

factors for a straight crack with the crack length 2a. It is seen from
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Figure 5.12 that unlike in the case of the symmetrically kinked crack,

F2 never changes sign.
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5.2 e f n P o ems

Here we employ the coupled model developed in chapter 4 to find

numerical solutions for some finite domain problems.

5.2.1 Straight—91.8213

(a) Central symmetric crack with tensile load (Mode I)

The results for the stress intensity factors (SIFs) of the crack

problem shown in Figure 5.13 are plotted in Figure 5.14. The length of

the crack is varied, while the boundary element mesh is maintained and

the same number nodes are used define the crack. With this coupled

model, it can be seen that good agreement with the analytical solution

of Isida [32] is obtained up to a ratio of a/b - 0.7. For a/b > 0.7,

the SIFa are slightly lower than the analytical values.

(b) Central unsymmetric crack with tensile load

The SIFs for the problem shown in Figure 5.15 are given in Table

5.3. Results agree well with the analytical solution given by Isida

[32].

(c) Angled crack in a large plate

The results for an angled crack as shown in Figure 5.16 are shown

in Table 5.4. Several angles of inclination are considered. As

expected, the results are very close to the analytical solution for an
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Figure 5.13 Center-cracked test specimen.
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Figure 5.15 An off-center straight crack.
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Table 5.3 Stress intensity factors for an off-center straight crack.

 

 

K x x [COUPL]
___l_ __l_

aJna [COUPL] a/ra [32] K1 [32]

Tip 1 1.395 1.405 0.99

Tip 2 1.189 1.200 0.98

 

Table SJL Stress intensity factors for an angled crack in a large

 

 

plate.

K K K + K +

_7_I_ .___II_ ___I_ ___II_
angle(fi) a «a [COUPL] a/xa [COUPL] a/xa ajxa

90 0.000 0.000 0.000 0.000

60 0.249 0.427 0.250 0.433

45 0.497 0.493 0.500 0.500

30 0.745 0.427 0.750 0.433

0 0.994 0.000 1.000 0.000

 

+ Analytical solution for an angled crack in an isotropic infinite

medium is given by

K1

2

- ajna sin 6 and K
II

- a/«a sinfl cosfi.
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crack in an infinite medium, since the plate is very large compared

with the size of the crack.

(d) Angled crack in a plate

Results for the problem shown in Figure 5.17 are given in Table

0 o

5.5. Excellent accuracy has been obtained for 45 and 90 cracks, for

which analytical results are available.
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Figure 5.17 Angled crack in a finite plate.
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Table 5.5. Stress intensity factors for an angled crack in a finite

 

 

plate.

K K K K K COUPL K

an 1cm) _1_ _IL __1_ __1_1_ _11 1
g aJua alts aJxa aJaa KI [32] KII

[COUPL] [COUPL] [32] [32]

60 0.363 0.507 _ _ _ _

45 0.713 0.570 0.730 0.600 .98 .95

30 1.000 0.467

0 1.449 0.000 1.488 0.000 .97
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5.2.2 Kinked Crack

Because an exact solution does not exist, the kinked crack within

a finite body can not provide a simple check on the accuracy of the

numerical solution. Nevertheless, let us introduce some of numerical

results. Figure 5.20 presents results for an asymmetric kinked crack in

a finite body as shown in Figure 5.18 while Figure 5.21 presents

results for an anti-symmetric kinked crack as shown in figure 5.19. The

tendencies of the numerical results are very similar to those of such

cracks in infinite bodies, but have higher values.

Computer CPU times for the problems that have been presented here

were less than 10 sec for all cases using the Prime 750 computer.
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CHAPTER 6

GONGUUSIONS AND RECOMMENDKTIONS

A hybrid method has been presented for the analysis of cracks of'

arbitrary shape in finite two-dimensional regions. The method has been

applied to a number of problems and in all cases, demonstrated accuracy

to within 2%. The main advantage of this approach over other techniques

is its ability to handle cracks with kinks. Furthermore, only the

external boundary and crack needed to be discretized. Thus, analysis of

crack propagation problems would require only the additioniof nodes to

the crack.

In all problems, equal subdivisions were used for numerical

treatment. Additionally quarter-point nodes were employed near crack

tips. When unequal subdivisions were used, results were not good. This

is a limitation of the technique which requires future attention. It is

not known at this time why unequal subdivisions do not perform well as.

such numerical treatment is not precluded by the formulation.

The main advantage of this work is its potential for modelling

crack propagation. Unlike the finite element and boundary element

techniques, this technique does not require complete re-meshing at each

crack growth increment. Rather, it simply requires the addition of

meshes along the propagation path.
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Three-dimensional crack analysis has not developed as fully as

its two-dimensional counterpart because of greater complexities.

Consequently, very few exact analysis have been obtained. There are a

number of approximate solutions, commonly dependent on exact results to

some extent. It is felt that the method presented here could be

extended to three-dimensions without unresonable difficulty. What is

required are analogous ”fundamental" solutions for the three-

dimensional infinite domain (Such solutions are available in the

literature) and a method for handling the integrated traction terms.
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