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ABSTRACT

STRESS ANALYSIS OF THE ADHESIVE SCARF

JOINT BETWEEN DISSIMILAR ADHERENDS

by Pethinaidu Surulinarayanasami

This study determines the adhesive stress distribu-

tion in scarf joints between elastically-dissimilar adherends

(joined members). Results are presented for five scarf

angles; four levels of adherend dissimilarity; three levels

of adhesive flexibility in the range apprOpriate for the

bonding of metals and plastics; and for both tensile and

bending loading of the joint. The adherends are treated

using plane stress, and the adhesive is capable of resist-

ing shear, and normal stress perpendicular to its plane,

with strains assumed to be uniform through its (small)

thickness. Only linearly elastic behavior is considered.

The Rayleigh-Ritz method is employed to obtain the

extensive stress tables presented. Systems of 177 linear

equations are solved. This corresponds to the representa—

tion of each of the four components of displacement (two

elastic bodies) by the sum of all homogeneous polynomials

in x and y through the eighth degree. The convergence of

the solutions is examined, and the adhesive stress
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distributions are discussed exhaustively. Also tabulated

are those values of the adhesive combined stresses which

are critical for elastic design by some of the common failure

criteria. The use of these results in design is outlined.
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CHAPTER I

INTRODUCTION

1.1. General
 

The analysis of adhesive joints has growing impor-

tance because of the increasing application of adhesive in

industrial and aerospace technology. The applications are

usually inconspicuous, but vital to the performance of the

bonded objects, whether these be automobile brake linings,

the wings of a jet liner, or the ultra-high-strength sheet

metal rings of a solid-fuel rocket case. It is essential

to pay most attention to the adhesive stresses, because the

adhesive is usually the weakest material involved in the

joint. With proper design, however, the joint need not

necessarily fail in the adhesive.

The adhesive, of course, constitutes a fastening

medium between the two adherends (joined members). Some

types of adhesive can reasonably be idealized as linearly

elastic, and this assumption is used here. This hypothesis

is entirely unrealistic12 for many other adhesives, but

even for those with complex rheological behavior, the elas-

tic analysis may offer the designer useful guidance.



Adhesives are employed in many different joint con-

figurations,to bond such materials as metals, plastics, wood

and glass to themselves or to each other. The assumptions

of the present study make the results applicable primarily

to cases where the adherends are considerably more rigid

than the adhesive layer, e.g., the bonding of metals and

plastics. Some modification of the present approach is re-

quired to accommodate glue joints for wood. This might be

worthy of study, since the "finger joint" of wood technology

is quite similar in geometry to the one considered in this

thesis.

The commonest joint configuration is the "lap joint"

(Fig. la, next page), which is also the easiest one to manu-

facture. Most previous studies deal with this (see section

1.2, "Literature Review and Background of the Present Hypo-

theses"). Also of great technical importance is the "scarf

joint," with which the present thesis is concerned. The

scarf joint connects two bars or sheets on an inclined plane

(see Fig. 1b). The scarf angle is usually in the range of

10° to 30°. This joint has the advantage over the lap joint

of avoiding the bending action due to the offset of the two

members, when the loading is tensile, and the disadvantage

of being harder to make. The scarf joint presents a much

larger surface area of adhesive for bonding than the con-

ventional "butt joint" (Fig. 1c). The latter is the special

case when the "scarf angle" is 90°. A perfect butt joint
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Fig. 1d Double lap joint.



offers a purely tensile loading of the adhesive, but mis-

alignment (which is hard to avoid) can give rise to substan-

tial bending action and corresponding stress concentrations.

The scarf joint configuration, with the usual 10°-30° angle,

loads the adhesive largely in shear at a moderate stress

level.

This thesis follows up a previous study of the scarf

joint between identical adherends by investigating the case

of dissimilar materials. Prior work, discussed later (Sec.

1.2), indicates that the overall features of the adhesive

stress distribution may be obtained by treating the thin

adhesive layer as a complex elastic foundation. The latter

is assumed to be capable of transmitting shear stress, and

normal stress perpendicular to the plane of the adhesive

layer. Certain local "edge effects" (stress concentrations)

are neglected, as explained subsequently.

The complexity of the present problem, formulated

as a boundary-value problem of elasticity theory, appears

to preclude an exact solution. Accordingly, the Rayleigh—

Ritz method has been used, as the most appropriate for

finding answers expeditiously. The method of finite dif-

ferences is difficult to formulate for this problem, and

was abandoned after considerable investigation. An alter—

nate method, described in Muskhelishvili,4 involves the

use of the Sherman-Lauricella integral equation in the

complex plane. As utilized here, this approach seems to



require even more computer memory than the considerable

amount available in Michigan State University's CDC 3600

computer installation. Thus the method has not been en-

tirely successful, but the computations performed seem to

support the results of the Rayleigh-Ritz method.

1.2. Literature Review and Background of

the Present Hypotheses

 

 

This review is fairly brief because a number of

recent surveys are available.8’9’lo’12 Moreover, very little

of the work is immediately relevant to the present problem,

since it appears that only one previous analysis of scarf

jointshas been conducted. There is some literature12'16’

24’26’30 on experimental work for such joints, mostly from

the aerospace field and from wood technology. However most

of these involve tests to destruction and it is likely that

correlation with the present elastic analysis would only be

of the roughest sort.

The studies reviewed, however, serve to validate

some of the present hypotheses. They also indicate some of

the factors which are neglected in the present type of

analysis.

The literature of the "peel test" is not covered

here; see References (8,9,10). This test (to destruction)

is used for quality control in joint manufacture. It in-

volves large deformations of the adhesiVe and at least one

adherend. The latter is usually peeled off a drum to which



it has been bonded. Since many of the peel test analyses

involve the assumption of an elastic adhesive, they are

probably not even relevant to the actual peel test, much

less to the present study. For convenience, the various

past investigations which deal with the stress distribu-

tion in adhesive joints have been grouped as follows:

a) lap joints, b) scarf joints, and c) butt joints.

1.2.1 Lap Joints
 

It should be noted that all stress calculations

have neglected the adhesive layer thickness in consider—

ing the geometry of the problem. This reflects practice;

adhesive layers are usually very thin compared to the

thickness of the adherends. This sometimes fails to be

accurate in the case of the very thin sheets encountered

in aircraft construction, but most analyses are readily

modified to accommodate the necessary changes. Most theo-

retical work has been done on the stress distribution in

adhesive lap joints. One of the earliest investigators,

Volkersen,ll developed a one-dimensional, elastic-adhesive

theory by treating the adhesive joint as an approximate

substitute for (limiting case of) the multirow riveted lap

joint. He indicates in his analysis, after neglecting

the bending of adherends, that the largest adhesive

shear stress occurs toward the ends of the overlap region.

His analysis includes the case of dissimilar adherends,



and actually applies most accurately to symmetrical double

lap joints (Fig. 1d, p. 3), since these involve comparatively

little bending. N. A. de Bruyne's12 analysis is essentially

that of Volkersen. Hartman26 supported some of the theo-

retical investigations in his tests of double lap joints.

N. A. de Bruyne12 also argues persuasively for the advantages

of the bevelled (tapered) lap joint in reducing adhesive

shear stress concentration. Sazhin19 studied the tapered

lap joint analytically, and found that it leads to a hyper-

geometric differential equation. The problem is actually

solved using a variational method, but with very few terms

and without a discussion of convergence. His reported good

agreement with experiments is somewhat suspect, because the

experiments are not described and sound suspiciously like

ultimate strength tests (in the translation of the original

article). It would have to be coincidental that an elastic

analysis predicts the behavior of a test to destruction in-

volving the amount of inelastic behavior normally found in

adhesive joint failure tests. The tapered lap joint has

been investigated experimentally by Hartman,30 who observed

in tests that a tapered lap joint does have a moderately

larger ultimate load capacity than the uniform one.

Although the neglect of adherend bending and adhe-

sive normal stress reduces these analytical studies to just

one step above "dimensional analysis," they still offer

designers considerable guidance as to what to expect. Their



results also explain why adhesive lap joints invariably

start failing at the ends,even though, as elastic studies,_

they cannot be expected to be of much help in studying

ultimate strength tests. Nevertheless, these early studies

suggested ways of plotting strength test data so as to

minimize the total amount of experimental work required to

establish system properties (de Bruyne's'fioint factor").

Goland and Reissner13 published a considerably more

rigorous analysis. This included the effects of adherend

bending, inside and outside the joint, and appears to be

the first study to show that large "tearing stresses"

arise, concentrating at the ends of the joints. The latter

are direct stresses normal to the plane of the adhesive

layer. They considered two limiting cases, one of which is

relevant to a joint in which the adhesive is much more rigid

than the adherends. This applies for certain joints in wood,

paper, cardboard, and low modulus plastics. The other limit-

ing case is the one where the adhesive is much more flexible

than the adherends, as in metal-to-metal joints. Under this

hypothesis, and based upon a consideration of the strain

energies of the problem, they argue that it is sufficient

to consider only the adhesive shear stress, and the adhesive

direct stress normal to the adhesive 1ayer.. Most subsequent

work (including this thesis) has neglected the longitudinal

component of adhesive direct stress, essentially because of

the low modulus of the adhesive compared to the adherends.



Their second stress analysis problem was formulated

(with minor inconsistencies) as one of cylindrical bending

of thin plates (i.e., practically speaking, using elementary

beam theory). The first problem, not discussed here because

it applies primarily to joints in wood, used plane strain

theory. Exceptiknrthe Goland—Reissner stiff-adhesive (plane

strain) case, these investigations all model the adhesive as

a uniform elastic foundation capable of transmitting shear

(or shear and normal stress) from one adherend to the other.

Plantemal4 modified the Volkersen theory by consid-

ering the effect of bending deformation on the adhesive

shear stress, arriving at a refined shear stress concentra-

tion factor. However,the neglect of normal stress appears

undesirable, in View of the results of Goland and Reissner.

Cornell15 studied the brazed—tab fatigue specimen

as a lap joint. His work is closely related to that of

Goland and Reissner, although the geometry of the problem

is somewhat different. This study constitutes both an ex-

tension and a validation of their analysis. His assumption

that the two adherends act like beams and that the elastic

cement layer behaves like an infinite number of infinitesi-

mal shear and tension springs is simply a restatement of

the Goland-Reissner hypothesis. His "cement" was actually

a thin layer of braze compound, which perhaps cannot be

considered to be flexible enough, relative to metal ad-

herends, to qualify as "much more flexible" than the latter.
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His experimental work, however, indicates good agreement

with the analysis. This, in turn, simply indicates that

Goland and Reissner's energy argument for deciding when

the "elastic foundation" model for the adhesive layer will

break down is somewhat conservative. It can probably suc-

cessfully be used for stiffer adhesives than they indicate.

Cornell compared his analytical results for adhesive

stresses to photoelastic and brittle lacquer experiments.

His study was also one of the first to consider a

very significant factor which is entirely neglected in the

type of approach used by Goland and Reissner (and in the

present thesis). This is the "free-edge effect" at the

ends of the joint. The "free—edge effect" is the stress

disturbance caused by the complex boundary conditions at

the ends of the joint, where adherends and adhesive are

adjacent to a stress-free boundary, usually air. Figure 2

(next page), shows such a free boundary in terms of Cor-

nell's geometry. A proper consideration of this problem

is enormously complex from the point of view of elasticity

theory. This is further complicated by our ignorance of

the precise shape of the adhesive-air boundary in practical

situations, because the actual boundary shape depends upon

the details of the production process, the actual adhesive

used, etc. Moreover, the free-edge effect is significant

at the point where shear and normal stresses in the adhe-

sive usually take on their largest values, according
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to those approaches which ignore these local effects. As

Cornell puts it, the analysis neglecting the free-edge

boundary problem has a "built-in fillet," r > 0 in Fig. 2.

But whether r = n, 1.7n, 0.2m or any other value depends

very much upon manufacturing details. The value of r can

of course be investigated statistically for any particular

problem important enough to warrant the research costs.

We know, at least, that if the adhesive joint is a good

one, the fillet radius will be in the sense indicated.

This is because a proper bond requires low surface tension:

the adhesive must "wet" both of the adherends well.

In Cornell's work, his "adhesive" (brazes and

solders) in practice had a radius r about equal to n in

Fig. 2, and he bases his discussion on this observation.

Though he found fairly good agreement between supporting

experiments and the analysis, the main discrepancy was

precisely at the free edge. He points out that the stress

concentration factor becomes infinite if the tab and the

base bar form a right angle, i.e., if the radius of curva-

ture (r in Fig. 2) is zero. This is just another way of

saying that stress singularities must be expected at a 90°

boundary if shear stress is present on one side and an

adjacent edge is stress-free.

To better understand the local effects at free

edges, Mylonasl6 conducted photoelastic experiments on

transparent plastic layers bonded to "rigid" (steel) plates,



l3

simulating the ends of adhesive lap joints. In effect, his

work validates the neglect of free-edge effects, as far as

the interior of the joint is concerned. This is what we

would also expect from St.-Venant's Principle, since the

thickness of the adhesive is normally small compared to the

length of overlap. At the joint ends, however, Mylonas

finds that the stresses do vary across the thickness of the

layer and depend strongly on the shape of the free boundary

of the adhesive. He studied models having concave edges in

the shape of a circular arc (Fig. 3, p. 11), with ratios of

radius r to adhesive thickness n ranging from 0.5 (semicir-

cular edge) to w (straight edge). For the load sense shown,

he found that when r/n < 1.25 (e < 50°), the maximum stress

develops on the adhesive boundary but away from the adhesive-

adherend interface ("cohesive failure" expected in the ad-

hesive). For a larger radius, the highest stress level is

much larger and develops at the corner, A ("adhesive fail-

ure" expected). Generally speaking, his experiments show

that the local effects at the free edges are critically

dependent upon the shape of these edges.

Mylonas' study correlates well with an investiga-

tion, unrelated to adhesive joints, due to Williams.17 He

analyzed thin plates in extension, using generalized plane

stress, in order to estimate the strength of the stress

singularities which can be expected at the vertex of a

semi-infinite triangle (wedge) under various edge boundary
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conditions. A typical metal-to-metal joint involves a

"nearly-rigid" adherend bonded to a comparatively low—

modulus adhesive, so that Fig. 4 (p. 11) approximates the

local situation at the adherend-adhesive-air corner in

Mylonas' experiments. This corresponds to Williams'

boundary-condition case of one edge free and the other

edge fixed. He formulated an eigenvalue problem for the

rate-of-decay parameter A, of stress with distance r from

point A. All stresses behave as rA-l, and all displace-

ments as rx. The calculations give A as a function of 6,

the wedge angle. According to his results, no stress sin-

gularities arise for angles 8 less than 63°, but singulari-

ties do arise (for general loading) when 6 > 63°. This

trend is quite similar to what Mylonas found in his experi-

ments. The latter differ in that the steel plates only

approximate the ideal "rigid" boundary conditions of

Williams.

Misztal20 studied lap joints in flat sheets loaded

by shear flow perpendicular to the plane of the drawing in

Fig. la (p. 3). He assumed that the shear stress is uni-

form across the adhesive and adherend thickness, and they

deform only in shear, obtaining an adhesive shear stress

distribution similar to that of the Volkersen problem. He

also examined double lap joints of this type.

McLaren and MacInnes18 performed photoelastic ex-

periments on lap joints. They found Goland and Reissner's
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analytical results to be generally correct, observing an in-

crease in shear and "tearing" stresses towards the ends of

the joint. The shear stress, of course, obeys the actual

boundary conditions and drOps to zero at the ends. They also

studied the effect of adhesive-adherend contact angle at the

end of the joint, in tests similar to Mylonas'. In this

work the adherends are considerably more flexible than in

Mylonas' tests (although still stiffer than the adhesive).

As "8," the contact angle, is reduced to about 40°-50° or

less, the largest tensile stress moves out of the "leading

corner" (adherend—adhesive-air point, A in Fig. 3 (p. 11),

on the loaded side) to a point C on the adhesive-to-air

boundary. This supports both Mylonas and Williams quite

well, considering the somewhat different range of the elas-

tic constants. It is also noted by Mylonas, and by McLaren

and MacInnes, that the largest magnitude of stress occurs

at B (Fig. 5, p. 11), for the load sense of Figs. 3 and 5.

This is compressive in nature, but of course becomes ten-

sile if load F reverses. This is quite consistent with

Williams' analytical results, since the stress level ex-

ponent (A-l) in r)".1 increases with wedge angle. If AB in

Fig. 5 is straight and 6 is small enough to avoid stress

singularities in the adhesive wedge cornering at A, then

the obtuse adhesive wedge corner at B is surely large

enough for singular stress at B.
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Lubkin and Reissner21 produced an extensive analysis

of lap joints between thin, circular, cylindrical shells in

axial tension. The investigation was carried out using the

linear theory of axisymmetric bending and stretching of thin,

isotropic shells. It was again assumed that the adhesive

layer is elastic and considerably more flexible than the ad-

herends. The work is basically along the lines of the Goland

and Reissner approach, with due allowance for the new geome-

try. The paper contains considerable discussion of the

following: (1) effect of amount of overlap on adhesive

stress concentration values, (2) position of maximum adhe-

sive normal and shear stress, and (3) effect of flexibility

of adhesive layer on stress concentration values. An in-

structive comparison is made between tubular and flat-plate

lap joint theories.

Sherrerz2 has investigated the stress distribution

in lap joints when the adherends are dissimilar, as an ex—

tension of Goland and Reissner's analysis. He obtained a

series solution for the stresses in the joint, but had dif-

ficulties because of slow convergence. Sazhin19 also

studied the lap joint, apparently unaware that he was

duplicating the work performed by Goland and Reissner 20

years earlier-—at least he does not acknowledge priority.

1.2.2 Scarf Joints
 

Lubkin7 considered an adhesive scarf joint between

elastically-identical adherends, loaded in tension. With
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the assumption that the thickness of the adhesive is negli-

gibly small compared to the depth of the adherends, it is

found that the adhesive stress distribution is uniform from

end to end. Moreover, the uniformity of adhesive shear and

normal stress (both of the latter are considered here) is

independent of the scarf angle and of the thickness of ad-

hesive and adherend. The stresses themselves, of course,

depend on the scarf angle. This simple state of stress can

therefore be calculated directly from equilibrium considera-

tions. Its simplicity arises from the symmetry of the

identical adherends,and of the purely tensile load. (If

the loading is pure bending, for example, this symmetry is

lost and it can be shown that it is impossible for the ad-

hesive stress to vary linearly along the joint.) He pre-

sented results useful to the designer within the elastic

range. These can probably be applied in the "wood" range

of elastic constants also, because both of the adhesive

normal stresses have been takenjxux>account. Due to the

fortunate uniformity of the adhesive stresses along the

adhesive layer, it is possible to speculate that they remain

sensibly uniform when the adhesive no longer behaves elasti-

cally. The paper therefore had some success in correlating

actual failure tests, using what was originally intended to

cover only the elastic range. It is not to be expected

that the present thesis can be used in this manner, since

the stress distributions found here are generally not uni-

form along the joint.
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The present investigation is an extension of Lubkin's

work, covering the more complex case of dissimilar adherends.

COOper12 measured the adherend strains in a scarf

joint with an extensometer. He estimated a stress concen—

tration factor of 1.45 in a joint with a scarf angle of 6°

(identical adherends), but the definition of this factor is

not clear enough to permit a comparison with Ref. 7. Miiller24

and Hartman26 performed purely experimental work on scarf

joints tested to destruction. Hartman's work was correlated

with theory in Ref. 7.

1.2.3 Butt Joints
 

The "butt" joint is the name given to the special

case of the 90° scarf joint (Fig. 1c, p. 3). de Bruyne27

formulated a relation based on viscous flow theory to indi-

cate that,for very thin adhesive layers, the joint strength

is inversely proportional to its thickness. This is found

to have good agreement with experimental results, although

perhaps not for the theoretical reasons adduced. Shield,28

using limit analysis, investigated bounds on the joint

strength of a butt joint. Norris29 assumed that the adhe-

sive in the bond is isotropic, and that the strains in the

adhesive, parallel to the plane of the bond, are equal to

those in the adherends. He develOped a method for the de-

termination of the elastic properties of adhesives as

they actually exist in bonds. He substituted these properties
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in the formula for determination of the stress at which in-

stability becomes general throughout the bond, and this

stress is compared with the results of tests.

1.3. The Present Investigation
 

The purpose of this study is to obtain detailed in-

formation on the stress pattern in the adhesive of scarf

joints between elastically-dissimilar materials, for a

variety of parameters and loading conditions. The problem

is treated as one of plane stress, with the assumption (re-

flecting most practical cases) that the adhesive layer is

negligibly thin when compared to the adherends. A con-

siderable number of different approaches have been attempted;

only the relatively successful ones are reported.

As formulated here, the problem consists of finding

a set of unknown internal boundary conditions for two dif—

ferent plane elastic bodies of trapezoidal shape. It ap-

pears that the method of finite differences is not well

suited, partly because of the present complexity of shapes

and boundary conditions. Of itself, this is not so bad.

The major problem is that the model adopted for the adhesive

almost demands that the solution be carried out in terms of

displacements, which implies four Navier equations in two

adherends. Moreover, the nature of the Navier equations

is such that interlocking nets of node-points are required

in each elastic body. The primary method selected, there-

fore, is the Rayleigh-—Ritz method, a direct approach to
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variationally-formulated problems. There is no reason to

expect this to yield results inferior to the method of fi-

nite differences, and perhaps some reason to expect it to

be better.

In addition, the problem has been studied using an

elegant approach based upon the Sherman-Lauricella integral

equation in the complex plane.4 This method is so radi-

cally different in concept from the Ritz method that good

agreement would constitute an independent check on the re-

sults of the Ritz method. Unfortunately, just when agree-

ment appears to be getting good, the integral equation

formulation exceeds the capacity of the computer. It has,

therefore, not been pursued extensively.

The details of the method of analysis, including

the mathematical formulation of the problem and the various

parameters arising in the investigation, are given in Chap-

ter II. Chapter III is devoted to a discussion of the

checks used to validate the results.

1.4. Notation
 

The symbols used in this thesis are defined in the

text while they first appear. For convenience, they are

also listed here in alphabetical order, with English let-

ters preceding Greek letters. There are many symbols which

are common to both the Rayleigh-Ritz method and the integral

equation approach, but these occasionally represent slightly
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different quantities. A separate notation section is there-

fore given for the integral equation method in section 2.3.2.

The present section gives the list of all symbols common to

both methods, and conveying the same meaning. Other symbols

used in Chapters III and IV are also included here.

Subscripts l and 2 almost always represent quantities

defined for adherends l and 2, respectively. Figure 7, p. 26

shows many of the geometric quantities.

Am’n, B ,

I I

C , D = Coefficients of displacement functions

(ul,vl),(u2,v2) of lst and 2nd adherends,

respectively.

D = Coefficients of dimensionless displacement

functions (U1,V1),(U2,V2) of let and 2nd ad—

herend, respectively.

c = h(2 + cot a)(see Fig. 7).

C = 2 + cot a, (dimensionless value of c for

h = l).

E = Young's modulus.

E1,E2 = Young's moduli.

Ea = Young's modulus of adhesive.

F = Resultant axial tensile force per unit width

of adherend (Figs. 1-7).
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Shear modulus of adhesive.

Adherend half—thickness.

See Fig. 7.

Bending moment per unit width of adherend

(Figs. 6,7).

Highest order of homogeneous polynomials.

Coordinate directions (Fig. 7).

Adhesive normal stress (dimensionless).

Adhesive normal stress concentration factor.

N evaluated at xj'Yj°

Adhesive principal stresses.

s/h cot a = fraction of joint length along

adhesive interface, measured from midpoint

(origin).

Adhesive shear stress (dimensionless).

Adhesive shear stress concentration factor.

T evaluated at Xj’Yj'

Adhesive principal shear stress.

Adhesive octahedral shearing stress.

Strain energy of whole system, adhesive,

lst adherend, 2nd adherend.
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Dimensionless strain energy of whole system,

adhesive, lst adherend, 2nd adherend.

Displacement components in x- and y- direction.

Displacement components of adherends in x-,

y- directions.

Dimensionless displacement components in

X-, Y- directions.

Total potential energy of the system.

Coordinates.

x/h, y/h (nondimensional coordinates).

Coordinates of particular points along ad-

hesive interface.

Surface tractions in X-, Y- directions.

Poisson's ratio.

Poisson's ratios.

Scarf angle.

nEl/Ea h(l - vi) = relative stiffness of

adhesive and adherend l.

E2(1 - VI)/El(l - v3) = relative stiffness

of adherends.

Adhesive film thickness.

Total potential energy.
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I

(l - vi)0 /Elh2 = dimensionless total

potential energy.

Adhesive normal and shear strains.

External tensile stress loading adherends

(=F/2h), or outer-fiber value of bending

stress loading adherends ("MOh/I").

Usual components of stress.

ox(ic,y)/El = dimensionless end stresses

loading scarf joint system.

Adhesive normal stress.

Adhesive shear stress.

Miscellaneous
 

(Eq. 4.1.1).

Any one of the adhesive combined stresses

T .
N1' N2' T1' 0y

l/Ncom = OXO/Za°

.Any allowable (design) value for the adhe-

sive combined stresses.



CHAPTER II

METHOD OF ANALYSIS

This chapter further describes the physical problem

and the methods used to investigate it.

2.1. Formulation of the Problem
 

The scarf joint considered here is shown in Fig. 6

(p. 26). It consists of two elastic adherends, joined to-

gether by a thin film of adhesive along the inclined face.

The depth of the adherends away from the joint is uniform

and equal to 2h, while that of the adhesive is n, also uni-

form and assumed to be very small compared to 2h. The

values of Young's modulus and Poisson's ratio for adherends

l and 2 are El’ v1, and E2, v2. The adhesive is assumed to

be elastic, with Young's modulus Ea and shear modulus Ga.

The scarf angle is a, and the joint is subjected to either

tensile force F or bending moment M0, both per unit width.

These are typical loadings for this type of joint.

The actual geometry selected for the boundary is

shown in Fig. 7 (p. 26). The practical reason for using

an adhesive scarf joint is to increase the size of the ad-

hesive area, so that the adhesive--a weak material--can

25
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sustain lower stresses (stress concentration, of course,

can defeat this objective). For this reason a is usually

less than 25-30°. The lower limit, perhaps in the range

5—10°, is occasioned by the difficulty of manufacturing

straight, finely-tapered edges, especially in thin adherends.

The geometry chosen for the mathematical study of

the problem is inherently a compromise. Remote from the

joint, there is uniform tension parallel to x. Near the

joint, the stress pattern is greatly disturbed, except in

the case of identical adherend materials. It is therefore

judged important to allow a certain distance Ll for this

disturbance to reduce to the remote uniform bending or

tensile field, which is the ultimate end-boundary condi-

tion.‘ A trapezoidal shape for each adherend therefore

appears to be essential, if the problem is not to be ideal-

ized out of existence. The latter would be the case if.

only triangles adjacent to the adhesive interface were con-

sidered (L1 = 0). Conceivably, a parallelogram shape could

also be used.

As explained in the introduction, the present type

of study attempts only to describe the overall behavior of

the joint, and is admittedly imprecise at the free ends of

the adhesive. The adhesive-adherends-air boundary must

have a clearly-specified geometry before this complex local

problem can be attempted. Reasonable assumptions here de-

pend very much upon the actual materials used and precise
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manufacturing details. Some of the questions which must

then be asked are as follows: Was surplus adhesive wiped

off before curing? Machined off after curing? Left alone?

Did bonding pressure squeeze any adhesive out? Was there

enough adhesive initially? How much adhesive shrinkage was

there? At best, these can only be answered statistically,

in individual applications whose importance warrants the

expense. Nevertheless, the present type of study offers

the designer a comparative framework into which he can fit

empirically-determined constants (stress at yield, or some

such index) for his own particular case. It also offers

information about general trends, and the effects of varia-

tion of physical parameters.

It is assumed that the adhesive is very thin, and

quite flexible compared to the adherends in the metal-to-

metal joints at which this study is aimed. The adhesive

strains and stresses are therefore taken to be uniform

across its thickness, and the direct adhesive stress in

the joint axial direction (5 — direction in Fig. 7, p. 26)

is ignored. To justify this neglect, note that the adhe-

sive is assumed to have a much smaller Young's modulus than

that of the adherends. The model used for the adhesive is

thus that employed by most previous investigations, and

validated by the experiments of Cornell, Mylonas and others.

Essentially, it is an elastic foundation, capable of trans-

mitting shear as well as transverse normal stress. The
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chief discrepancy in treating the adhesive is the neglect of

the local free-edge effects at the ends of the boundary,

which is a proper subject of separate study. The idealized

problem thus consists of two two-dimensional elastic trape-

zoids with different elastic moduli, interacting with each

other through a complex elastic foundation, the adhesive

layer. The exterior boundary conditions (Fig. 7, p. 26)

are that the tOp and bottom surfaces of the system are free

of stress (oy = Txy = 0). In addition, the ends are loaded

by uniform tension (00) or pure bending with linear stress

distribution (-oO-y). The quantities sought are the unknown

adhesive shear and normal stress distributions, which con-

stitute a set of unknown interior boundary conditions.

This, plus the fact that we are dealing with two different

elastic solids of trapezoidal shape, accounts for the pecu-

liar difficulty of obtaining good solutions to this problem.

2.2. The Rayleigh-Ritz Method
 

Boundary-value problems in the linear theory of elas-

ticity may be solved using the Theorem of Minimum Potential

Energy in conjunction with the variational calculus. This

theorem states that: "Of all continuous (compatible) dis-

placement fields satisfying the given boundary conditions,

the actual, equilibrium state of displacement is such as to

minimize the total potential energy of the system." Thus,

the input to this theorem must be a compatible displacement
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field, satisfying (as forced conditions) internal continuity

and any prescribed displacements on the boundary. Then the

statement of the theorem itself furnishes the conditions of

equilibrium for the problem to which it is applied. For a

linear problem, it is known that the single stationary value

of total potential energy is a minimum, so that rendering it

stationary is equivalent to minimizing it.

In using this theorem, the total potential energy

is normally expressed in terms of displacements, which must

be differentiated to find the stresses when the latter are

sought. The loss of significance associated with differen-

tiation makes it desirable to work with other minimum prin-

ciples, in most cases where approximate stress solutions

are contemplated. Here, however, the stresses sought are

those in the adhesive, which will soon be expressed directly

as differences in the displacement of the adherends at the

adhesive-adherend interfaces. Since no differentiation is

required in the present case, the use of the Minimum Poten-

tial Energy Theorem appears to be quite appropriate.

The total potential energy 9' of a region R in

plane stress can be expressed as

Q = U + W 2.2.1

I I

where US is the strain energy and W is the potential energy

of the external forces:
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Here C represents that portion of the boundary where ex-

ternal forces are specified and displacements are not, and.

s. is an arc variable on the boundary C. of region R. The

notation is otherwise a standard one: u, v are displace-

ments, and Y, Y are the x- and y- traction components.

In terms of the calculus of variations, the equili-

brium content of the Theorem of Minimum Potential Energy

may be expressed as the vanishing of the first variation,

60' = 0. The Rayleigh-Ritz method is commonly used for

finding approximate solutions in such variational problems.

It consists of the following steps. First, select a set

of functions fi(x,y) which satisfy the necessary continuity

conditions and the essential or forced boundary conditions.

This set fi must be "complete" in the mathematical sense.

From the fi’ an "approximating sequence" on is constructed.

Form:

¢1 = fo + c1f1

¢2 = fO + lel + sz2 2.2.4

11

¢n = f0 + .2 cnfn
1-1
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where f0 is used to satisfy all forced boundary conditions

and the rest of the terms of on can therefore satisfy homo-

geneous conditions. The ci are undetermined parameters.

Next, these functions are inserted into the functional to

be rendered stationary (here, the total potential energy,

9'), and any necessary integration is carried out. Finally,

the functional is minimized with respect to the parameters

ci. Thus the best approximation possible within the family

of ¢n is obtained from the minimizing conditions

—'_= 0 i: 1,2,oooo,n 20205

In a linear problem with a quadratic functional, such as

the present one, the above procedure generates a symmetric

system of n simultaneous linear equations, if n parameters

(ci) are used. An approximate solution for the given prob—

lem is arrived at by substituting the values of the param-

eters thus determined into the assumed function ¢n° The

procedure is essentially the same if (as in the present

case) the functional being minimized depends upon several

functions (four displacement components for two bodies).

The critical question is always one of convergence.

It is necessary to check that the desired quantities ap-

proach a limit as n is increased, and to verify as well as

possible that this limit is theoretically the true solution

for the problem in question. It is also important to check
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that roundoff errors do not accumulate, in calculations

such as these, which may involve large numbers of equations.

Ideally, the approximating sequence in the Ritz

method consists of functions orthogonal over the region of

interest, to simplify the inevitable integrations. The pre-

sent problem involves two trapezoidal regions, and suitable

orthogonal functions are not easily found. They can be

constructed, but it seems more practical to trade simplicity

of computer programming and more equations against the sub—

stantial difficulties of constructing a set of orthogonal

functions. Accordingly, homogeneous xy-polynomials are

used below.

In assuming a purely polynomial solution, it is

recognized that no account is taken of the possibility of

stress singularities at the four adherend "wedge corners".

adjacent to the adhesive layer. Singular stresses do not

necessarily imply singular displacements, of course. If

the proper displacement variation corresponding to stress

singularities can be introduced as part of the assumed

Ritz function, relatively few equations must be solved.

Unfortunately, the eigenfunction method used by Williams17

does not seem to extend readily to the present case, which

is considerably more complex. Where he dealt with a single

wedge, the present problem involves two adjacent wedges

coupled by an elastic foundation of a complex type. It

appears that the elastic foundation model is too distant
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an idealization of an elastic solid to permit a treatment

along his lines. It has not been possible thus far to de-

duce the correct stress singularities (if any are present,

which the results show to be likely). As a result, very

large numbers of polynomial terms have had to be introduced,

in order to obtain good approximations for the locally-high

displacement gradients which accompany stress singularities.

Other variational methods have been considered,

principally the method of Kantorovich.3 This does not seem

well adapted to a trapezoidal region, because it appears to

require the solution of a large system of simultaneous,

ordinary differential equations with variable coefficients.

2.2.1 Derivation of Equations

Only the principal features are given here; addi-

tional details appear:h1Appendices A and B. Primes are

used at first to denote dimensional quantities, and are

later removed during the changeover to non-dimensional

variables.

The x- and y- displacements of adherend l are

vdesignated u 1 (respectively), and for adherend 2, as
1’

u2, v2 (Fig. 7). When resolved in the n- and s- direc-

tions along.adherend-adhesive interfaces, the displacement

components are referred to as u With the
nl’ usl' un2' usZ’

assumption that the two adhesive strains considered are

uniform across its thickness
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y = 32 2.2.6a 

(u -u )

e = “1 “2 2.2.6b
a 7]

 

(Huastrainenergy of the adhesive, U , is obtained by con-
sa

sidering an infinitesimal length ds along the inclined ad-

hesive face. The corresponding volume is = (n°ds) l,where

n is the thickness of the adhesive. Allowing for adhesive

transverse normal strain and shear strain, and integrating

along the joint from end to end:

s 2 2

. f 0 Eaea GaYa

sa

  

Substituting equations 2.2.6a, 2.2.6b for Ya' 8a into 2.2.7,

we obtain

U'—_E_ISOE(u -u)2+G(u - )2d

sa _ 2n -s a n1 n2 a 52 usl S

0 2.2.8

But

un1 - un2 = (vl - v2) cos a - (ul - uz) s1n a 2.2.9a

usZ - uSl = (u2 — ul) cos a + (v2 - V1) s1n a 2.2.9b

Substitution of equations 2.2.9a-b into 2.2.8 results in
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s

U. = —£- J[ O G (v — V') sin 2a + (u - u )2 cos 2a
2n a 2 1 2 1

. 2 2

+ 2(v2 - v1)(u2 - ul) cos a s1n a] + Ea[(v1 - v2) cos a

2 O 2 O

+ (u1 — uz) s1n a - 2(vl - v2)(ul - u2) s1n a cos d] ds

0 o s 0 2.2.10

Rearrang1ng and subst1tut1ng ds = dy/s1n a, we get

+h
' _ l 2 . 2 2

+ (v - v )2(E cos 2a + G sin 2a) + 2(u - u )(v - v )-

1 2 a a l 2 l 2

cos a sin a(G - E )] dy 2.2.11
a a

The remaining strain energy terms consist of two expressions

of the form 2.2.2, with subscripts appropriate for adherends

1 and 2.

On the exterior boundary, only tractions are speci-

fied: the top and bottom surfaces of the adherends are

stress-free, and the outer ends of the trapezoids are loaded

by either pure tension or pure bending. Thus there are no

forced conditions on displacement, other than the normal

requirement that the rigid displacement of the system be

properly specified. Therefore, using polynomials, the

four unknown displacements are taken in the (dimensional)

form

M M-m . nm ,

u = A x y 2.2.12a

mgo ngo m,n
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1E1 M-z'm .

v = B m n

1 m=0 n=0 m’nx y 2.2.12b

M M-m . m n

u2 = E Z Cm,nx y 2.2.12c

m—O n=0

% M-m ' m n
v = D x y 2.2.12a

2 m=0 n=0 m'“

Note that these double sums actually represent the sum of

all polynomials homogeneous in x and y, from a constant to

the highest order M. If the double sum went to M on both

upper limits, a great many additional terms would be in-

cluded. However, it is likely that these would contribute

little to accuracy, and difficulties with Ritz matrix con-

dition could well be anticipated. These displacement

functions are next substituted into the total potential

energy per unit width of joint in the z- direction. See

Appendix A for details; the main item omitted in the deri—

vation to this point is the potential energy of the external

loading.
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. y 3x 2(1 2 3

2 C)
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1 ”1 2 2 2

+ mlh [“11 ‘ u2’ (Ea 51“ 0‘ + Ga °°° °"

2 2 . 2
+ (v1 v2) (Ea cos a + Ga S1n a)

+ 2(ul - u2)(vl - v2) sin a cos a (Ga - Eaildy

+h +h

+ f Ox(-C:Y)ul(-C:Y)dy
'f 0X(CIY)u2 (CIY)dY

-h -h

c = 2h + h cot a 2.2.13

The double integrals, one for each adherend, are strain

energy expressions of the form 2.2.2; the next integral

represents the adhesive strain energy 2.2.11; and the last

two terms are the potential energy of the only nonvanish-

ing external tractions, cx(ic,y), at the end boundaries of

the joint.

The energy expressions are now converted to a non-

dimensional form. Let

111 V1

'11:?" Vi=h_

x - h , Y h

2.2.14

Bui = BUi . Sui = BUi

ex ex ’ 3y aY

3V = 3V1 . 8Vl = 8V

3x 3X ’ ay ay

I

00(Y) OX(:CIY) . w = (l - vi) -Q—§

1 E h
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The following dimensionless quantities are defined for com-

pact presentation of the long expressions which result.

They can all be calculated directly from the primary and

secondary parameters governing the physical problem.

 

 

 

 

32(1 - vi)

C = 2 + cot.a ; Y = 2

El(1 - v2)

(E s1n a + G cos 2a)
H = (l _ v2) a a h

l 1 El n-sin a

2.2.15

(E - G )
_ 2 h a

H2 — (1 v1) E E1 cos a

(E cos 2a + G sin 2a)

H = (1 - V2) a a r}
h 1 El n°s1n a

Substituting these quantities into the various energy ex—

pressions, we define a dimensionless total potential energy:

   

 

2
w = 1f 301) + avl + 2V eul evl + (1 - v1) BUl

’2‘ ® ex BY 1 ex BY 2 a

‘ evl)2 Y. auz 2 ev2 2 8U2 av2

+ ‘h‘ex dx C” + 2' Te + W + 2\)2 """ax """3Y

(1 - v2) 3U2 3V2 2 1 +1 2
+

—
2 BY + 52— dx dY + i’j:l H1(Ul U2)
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+ Hh(vl - v2) - 2H2(Ul — U2)(Vl — v2) dY

2 +1

+ (1 - v1)j:l 00(Y)U1(-C.Y)dY

2 +1

- (l - v1).j:l 00(Y)U2(C,Y)dY 2.2.16

The displacement functions of 2.2.12 a-d, in suitable

dimensionless form, are now taken as

M M-m n

U1 = Z 2 Am nxmy 2.2.l7a

m=0 n=0 '

M M-m n

v1 = 2 2 B me 2.2.l7b

m=0 n=0 m'n

% M-m m n

U = c x Y 2.2.17c

2 m=0 n=0 m,n

M M-m

v2 = Z 2 D xmyn 2.2.l7d

m=0 n=0 m,n

After substitution of these dimensionless displacements

and their derivatives, and the evaluation of all integrals,

the expression for total potential energy reduces to a sys-

tem with 2M(M + 1) - 3 degrees of freedom. These consist

of the 'generalized co-ordinates' (unknown parameters)

Am,n’ Bm,n' Cm,n and Dm,n' The term -3 appears because

plane rigid motion is suppressed by setting certain con-

stants to zero.

The values of Am,n’ Bm,n' Cm,n and Dm,n are deter-

mined at this stage by using the principle of minimum
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potential energy. The Ritz equations now take the form

 

2.2.18

 

These four relations yield four sets of linear equations.

On expansion, this produces as many equations as there are

undetermined coefficients. The detailed derivation of

these equations, which follow, is given in Appendix B:

 

 

3w
0:—

aAm,n

MM-k

km k+m-l .

= Z A - _ ¢ - (-C) f(n+j+l))
kgo j=0 k,j[k + m 1 ( 0

(1 - v‘) .
, 1 nj 2 _ _ k+m+l . _

+ 2 k+m+l(¢OCOta (C) f(n+j 1))

Vijm l — V1 kn a

+ H1°1 + Bk,j E‘I‘fi'+ 2* k + m °o °°t
 

- (-C)k+mf(n + j)

 

' H2¢1]‘ Ck,jH1¢1 + Dk,jH2¢1

2 +1 m n

+ (l - v1) jf 00(Y)(—C) Y dY 2.2.19

-1
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3w

aBm,n

 

  

bid MIR kn l-Vl mj H
A . v + ¢ .cot a

k=0 j=0 k,j[( l k + m 2 k + m 0

 

 

 

 

 

 

_ k+m . _ ‘ nj 2
( C) f(j + n4 Hzol] + Bk,j[k + m + 1 (oo cot a

(1-V)
k+m+l . 1 km

”('C’ f(n+3'l)+ 2 k+m-l(¢0

k+m-l .

- (-C) f(n + J + 1)) + Hh¢l] + Ck,jH2¢l

- Dk,th¢l 2.2.20

8w

acm,n

M M-k

-A .H +B .H

k=0 jéo k,3 1¢1 k,3 2¢1

km k+m-l .

+ Ck,j[yk + m _ l (C f(n + j + 1) - ¢0)

(l-V) .

+ Y 2 2 k +n% + l Ck+m+lf(n + j - l) - ¢0 cot 2 a)

 

k+m . m'
+ Hl¢l] + Dk,j[(c f(n+j) - ¢0 cot d)b'v2 E—fijfi

 + 1-v2 kn -Hd> —(1—v2)j+10(Y)CmYndY
Y 2 k + m 2 1 1 _1 0

2.2.21
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0 _ 8w
_ 35...

m,n

M M-k I .- kn

= A .H ¢ - B .H + C . v

1 - v .
2 m3 k+m . _ _

+ 2 k.+'HJ (C f(n + j) 60 cot a) H261]

nj k+m+l . _ _ 2
+ Dk,j[Yk + m + 1 (C f(n + j 1) 60 cot a)

l - v
+ - .

+ y 2 2 k +k$ _ 1 (Ck m lf(n + j - l) - ¢0)

+ Hh¢l] 2 2.2.22

The new symbols are defined below:

 f(R) = [l - (-1)R] = % : R odd
R

= 0 R even

¢0 = (cot d)k+m-lf(k + m + n + j)

$1 = (cot a)k+mf(k + m.+ n + j + 1)

It can be verified that these equations comprise a symmet-

ric system, in accordance with the general theory of the

Ritz procedure for quadratic functionals.

In equations 2.2.19 and 2.2.21 the integrals rep—

resent the loading conditions which are to be considered.

In case of purely tensile loading at the ends of the ad-

herends we take
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00(Y) = 00 = constant 2.2.23

and in pure bending:

with 00 also a constant. In the tensile loading case the

integral of equation 2.2.19 becomes

(1 - vi)00(-C)mf(n + 1) 2.2.25

Similarly, the integral of equation 2.2.21 reduces to

- (1 - vi)oO(C)mf(n + 1) 2.2.26

When there is pure bending, the integral of equation 2.2.19

becomes

- (1 - vi)oO-(-C)mf(n + 2) 2.2.27

and 2.2.21 results in

(1 - vi)oO(C)mf(n + 2) 2.2.28

In the computations o is always taken as unity, which means
0

that the resulting Ritz coefficients must be multiplied by

a factor oxO/El--see last line of equations 2.2.14-—to re-

store true (dimensional) stresses, displacements, etc. The

stress OX0 is the actual uniform tensile stress loading the

adherends, or the largest value of the bending stress load-

ing the adherends.

Of the undetermined displacement parameters Am n’

I

D . . _ . _
Bm,n' Cm,n’ and m,n,' three represent r1g1d body d1splace

ment choices which must be fixed to avoid a singular Ritz

matrix. These arbitrary choices are

3V1(0,0)

= 0ex 2.2.29‘Ul(0,0) = 0 ; Vi(0,0) = 0 ;
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These in turn require that A0 0 = 0, = 0 and B = 0.

I
B0,0 1,0

The corresponding rows and columns of the Ritz

matrix are deleted and the remaining parameters are evaluated

by solving the surviving system of simultaneous equations,

2.2.19-2.2.22. After obtaining the displacement coefficients,

the (dimensional) adhesive normal (on) and shear (Ins)

stresses are calculated using the strains of equations 2.2.6:

(uni - un2)
 

2.2.30

 

where (as before) usl' 1182 are the displacements of the two

adherends along the adhesive film at their respective inter-

faces and unl' un2 are the normal displacements at these

interfaces. These in turn come from the Ritz coefficients

via equations 2.2.9, 2.2.14 and 2.2.17. For user convenience,

the actual quantities tabulated later are stresses N and T,

corresponding to on and Ins for unit applied tensile load—

ing, or a bending moment producing an outer-fiber bending

stress of unity. Thus the dimensional form of 2.2.30 be-

comeS

In
?”

flvi - v2) cos a - (ul - u2) sin a] 2.2.3la

:
3

:
5

0

_ _2 _ - _
Tns — n [sz v1) s1n a + (u2 ul) cos a] 2.2.3lb
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and the dimensionless version is

'E h
a. _ _ _ .

N 2fiIfi [(V1 V2) cos a (U1 U2) s1n a] 2.2.32a

Gah

T EEK (V2 - V1) s1n a + (U2 - U1) cos a 2.2.32b

The factor (Bah/Elm) is a primary dimensionless parameter

of the tabulated results (discussed later), and the Ui’ Vi

are found from the Ritz coefficients using 2.2.17. Expli-

citly, the adhesive normal and shear stresses at points

(X.,Y.) along the inclined adhesive face are calculated

3 J

from the relations

Eah M M-m n

N = E_fi (Bm n--Dm n) cosa.— (Am n- Cm n) sina]XTY.

J 1 m=0 n=0 ’ ’ ’ ’ J 2

2.2.33a

Ga Eah If MEIR [

T. = —— ——— (D - B ) sin a + (C

j Ea Eln m=0 n=0 m,n m,n mn

— A ) cos a XTYS 2.2.33b

m,n J J

On the adhesive line, of course, Xj = Yj tan a: only one

variable is independent.

2.3. The Sherman-Lauricella Integral

Equation Approach

 

 

2.3.1 General
 

Integral equations are used quite effectively to

formulate many engineering problems. This method of attacking
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the fundamental boundary-value problems of plane elasticity

appears in several forms in Muskhelishvili4. The version

used here was initially devised by G. Lauricella5 and ex-

tended by D. I. Sherman.4 Its power appears in the lack of

restrictions on the unknown "weight" function, for which

only modest continuity requirements are specified. A

similar, real-variable, vector-integral-equation formula-

tion has been discussed by Massonet.6 A difficulty of the

present situation is that the integral equation in question

is complex, so that it represents two real, coupled,

Fredholm-type equations. Furthermore, this set must be

solved simultaneously in each of two regions having dif-

ferent elastic properties. Fortunately, the solution for

one region can be made to depend upon the solution for the

other. However, once solved, a lengthy numerical integra—

tion for displacements must be carried out to complete the

solution. In the present case, the results for both regions

must be maintained in computer storage at the same time.

The problem thus becomes one of computer capacity, and it

has been found necessary to relegate this elegant approach

to the role of an independent check on the Ritz procedure

used for most of the calculations.

Generally speaking, it is out of the question to

use analytical methods to solve a linear integral equation.

It is usually possible to obtain good answers by solving

a large number of simultaneous linear algebraic equations.
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The procedure is to write the equation at a set of nodal

points, suitably spaced along the boundary, carrying out

the integrations numerically.

2.3.2 Notation for Integral Equation

Method

The symbols used in the integral equation method

development are defined in the text where they first ap-

pear. For convenience, those symbols used exclusively for

the integral equation method are listed here in alphabeti—

cal order, with English letters preceding Greek letters.

The symbols having the same meaning in both the present

method and the Ritz method are listed in section 1.4. As

before, subscripts 1 and 2 normally distinguish quantities

defined for adherends l and 2. Bars over symbols have the

usual "complex conjugate" significance in this section, and

in associated appendices.

am, bm = Coefficients of dimensionless, self equili-

brated normal and shear stresses on adhesive

interface.

C2, D2 = Rigid-body translation constants, adherend 2.

f(t) fl(t) + if2(t).

f1(t),f2(t) Known real functions which depend upon the

prescribed external loading.

I = Total number of intervals on the boundary

of each adherend.
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l' 2' 3’

I4 = Number of intervals on the various boundaries

of each adherend.

K = I1 = number of intervals on inclined adhe-

sive face.

p(t), q(t) = Real and imaginary part of w(t).

Uil)' Vil)’

Uél), Vél) = Nondimensional displacement components due

to unit applied tensile load parallel to X,

in X- and Y-directions,for adherends l and

2 [part (1) contribution].

UiZ)’ V12)'

Uéz), Véz) = Same as item above, but part (2) contribu-

tion associated with self-equilibrated ad-

hesive stress system acting on adhesive

interface.

Xn, Yn = Given tractions on adherend l boundary, in

the X- and Y- directions.

s,t = Values of the complex variable X + iY on

adherend boundary.

S = Distance along the adhesive interface.

2 = X + iY = complex variable.

ul, “2 = Shear moduli of adherends.

On'cn,j = Dimensionless adhesive normal stress, and

same when evaluated at points Xj' Yj.
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Ins, Tns,j = Dimensionless adhesive shear stress, and

same when evaluated at Xj’ Yj.

6(2), w(z) = Analytic functions entering governing in-

tegral equation.

¢(t), w(t) = Boundary value of functions 6(2), 0(2).

x1 = (3 - v1)/(1 + v1) for plane stress.

w(t) = p(t)-+iq(t) = "density function" in defini-

tion of ¢(z).

w2 = Rigid-body rotation constant of adherend 2.

2.3.3 The Problem Analyzed by

Integral Equations

 

 

The adhesive scarf joint problem solved here is the

tensile loading case described in Section 2.2. All ex-

pressions are in the non-dimensional form ultimately used

there. The original boundary-value problem is decomposed

into two parts, (1) and (2). The first part consists solely

of the elementary solution for uniform tension parallel to

X in each member, due to a unit applied tensile stress, and

the uniform shear and normal stress on the adhesive boundary

required to equilibrate the applied stress. Part (2) is

then the wholly self-equilibrated residual problem for the

"difference" tractions on the adhesive-adherend interfaces,

now the only loaded boundary in each adherend. The adhesive

normal and shear stresses are still unknown at this stage,

and are taken to be polynomials in S, the distance along
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the interface, with coefficients to be determined ultimately

by the matching of two different expressions for the adhe-

sive stresses at a finite set of points along the adhesive-

adherend interface.

In terms of dimensionless quantities, the self-

equilibrated adhesive normal and shear stresses [part (2)

tractions] along the adhesive inclined face are assumed in

the form

K

0(2) = Z a Sm 2.3.1a
n m

m=l

K

1:2) — 2 bmSm 2.3.lb

m=l

with undetermined coefficients am, bm(m = 1,2,...K). Here,

S = Y csc a is the dimensionless distance along the inclined

adhesive-adherend boundary, measured from the origin of co-

ordinates. The dimensions of (am, bm) are "self-adjusting"

as used here, and need not be specified. The integer K is

chosen to be odd, as explained later. It would be simple

to introduce the appropriate wedge-corner singularities as

functions of S at this stage, if these could be determined.

Since this part of the solution is self-equilibrated

for force and moment, we constrain the unknown coefficients

accordingly. Applying the three static equilibrium condi-

tions for adherend l, the equations EFX = 0, 2FY = 0 and

ZMxy = 0 are used to el1m1nate the coeff1C1ents aK-l’ aK
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and b These are expressed in terms of the remaining
K-l'

total of (2K-3) unknown coefficients (Appendix C), so that

O(2) _ (K‘%)/2 a SZm-l _ (K + 2) (csc a)2m K-lSK]

n _ m-l 2 3 Zm-l (2m + I)

_ I I

(K-3)/2 2m K(csc a)2m-K+l K-l
+ Z a s - —— s 2.3.2a
m=l,2,3 2m 2m + l

(2) _ (K+l)/2 2m-l (K-3)/2 2m

Tns - Z me-lS + Z b2m S
m=l,2,3 m=l,2,3

K 2m-K+1 K-l
_ flm+ (CSC a) S 2.3.21)

The boundary conditions of the first fundamental problem

(all-traction case), in terms of unknown analytical func-

tions of a complex variable, ¢(z) and w(z), is of the fol-

lowing form4

¢(t) + t ¢'(t) + w(t) = f(t) 2.3.3

where

¢(t), w(t) = boundary values of functions

¢(z), 0(2)

f(t) = fl(t) + if2(t)

= i‘[(xn + iYn)ds 2.3.4

X ,Y = given tractions on the boundary in

the X- and Y— directions
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The functions fl(t) and f2(t) are known real func-

tions, which depend in a simple way upon the prescribed

external loading. Let w(t) be an unknown density function

("weight function") for points on the boundary. It is

assumed that w(t) has a derivative w'(t), which satisfies

a Halder's condition. The latter guarantees the continuity

of the functions ¢(z), ¢'(z) and w(z) up to the boundary.

The boundary condition 2.3.3 thus constrains the choice of

w(t); this constraint is the governing Sherman-Lauricella

integral equation of the problem.- Following Sherman,4 let

_ 1 w(s)
49(2) - mfmds 2.3.5a

W2) =fg_(sm-_J.-_..IM d3 2,3,5};

5 - z 2H1 s - 2

From equation 2.3.5a

A.

I

' l w(s)
o (z) = ——+jr——————— ds 2.3.6

n1 (S _ 2)

After using the Plemelj formulae for the boundary values

1

of Cauchy integrals, and an integration by parts in 2.3.6

I

for o (2), equation 2.3.3 becomes

w(t) + y-Tlr-{fmsm 10232:; — griffin g. I §= f(t)

2.3.7

 
 

This may be converted to two real equations by letting

s - t = rele 2.3.8

ls-tlH

II
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Here 8 is the angle between the vector 5 — t and the x-axis,

measured in the positive (ccw) direction. By equation

 

 

2.3.8:

5 - t .

s - E

i ' E = cos 28 + i sin 28 2.3.9b
s - t

Equation 2.3.5a becomes

w(t) + % j2w(s) - e2165(s) d8 = fl(t) + if2(t) 2.3.10

Further, writing

w(t) = p(t) + iq(t) 2.3.11

and separating real and imaginary parts, equation 2.3.10 may

be represented in the form of two real, coupled integral

equations:

p(t) + %:[Ip(s)(l - cos 26) - q(s) sin 28]d6 fl(t)

2.3.12

q(t) - %;[[p(s) sin 28 - q(s)(l + cos 26)]d6 f2(t)

2.3.13

Equations 2.3.12 and 2.3.13 are quite simple and readily

permit numerical solution. They were derived under the

assumption of a continuously-turning tangent for the boundary

contour. Muskheliskvili remarks that corners can be included

if the contour integrations are interpreted as Stieltjes in-

tegrals.
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The present contours have at least two critical cor—

ners per trapezoidal adherend, those along the inclined face.

In failing to interpret the integration in the Stieltjes

sense, the trapezoids are implicitly supplied with corner

radii which are, roughly speaking, comparable to the inter-

val size chosen for numerical integration. Omitting-the

Stieltjes interpretation (as in the numerical work here)

is probably equivalent to ignoring the singularities of the

problem, which is essentially what is done in choosing Ritz

trial functions which are exclusively XY—polynomials.

To perform the numerical integration, the bounda-

ries CD, DA, AB and BC of adherend 1 of the scarf joint

(Fig. 7, p. 26) are divided into 11’ I2, I3 and I4 inter-

vals, respectively. Care is taken to make I1 = K, the

number of points at which adhesive stress expression match-

ing will later take place. Before further discussion of

the numerical approach to these equations, the functions

fl(t) and f2(t) are evaluated. From equation 2.3.4

fl(t) = - Ynds ; f2(t) = [knds 2.3.14

x = _ <2) . _ (2)
where ‘n on Sln a Tns cos a 2.3.15a

Y = 0(2) cos a - T(2) sin a 2.3.15b

n n ns

Substituting equations 2.3.2a and 2.3.2b for 032) and Téi)

into 2.3.15a and 2.3.15b we obtain
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(K-1)/2 2m K+1J
_ _ S _ (K.+ 2) 2m-K-l S

f1(t) - COS a m_122 3 a2m_l [Zn— 751T].— (CSC a) m

— I I

+ (K-§)/2 a2m[§:m;+Il - 2m 5 I (csc a)2m-K+l SE]
m=1,2,3 _

(K+l)/2 S2m (K-3)/2 [:52m+l

+ sin a b §—— + b .—7——I

m=lI2I3 2m_1 m m=l,2,3 2m M

K 2m-K+l SK
_ ____1_2m+ (csc a) 7 2.3.16

(K-1V2 52m (K + 2) 2m-k—l sK+l
f (t) = - sin a a - (csc a)
2 m-l 2 3 2m-l 2m TEII_I— —K:I

" r I

+ (K-3V2 a [Szm+i _ K (csc a)2m _ K + 1 £5]

m=l,2,3 2m 2m + I 2m‘+ I K

(K+nyz S2m (K-mvz [Szm+1

- cos a -—- + b §——*‘I

m=l,2,3 2m-1 2“ m=l,2,3 2m m +

K 2 K+l SK
_. ..__._..._2m+ l (csc a) m. R— , 2.3.16

Since the superscript (2) stresses were subjected to the re-

quirements of overall equilibrium, fl and f2 must be con-

tinuous and it is possible to verify this directly from the

foregoing expressions. The numerical integration is per-

formed on the assumption that p and q vary negligibly in

the intervals into which the whole boundary is divided. The

p and q terms are extracted and the remaining integrals can

be evaluated analytically. Thus, carrying out the integra-

tions described, the two equations 2.3.12 and 2.3.13 are
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rewritten in the following form [use pj E p(tj), etc.]:

 

 

 

 

 

I sin 26 . - sin 26 .

p. + i Z P 9 - - 9 - - +Kl* -kl)
j n _ k +kj -kj 2

k—l

(cos 26 . - cos 26 .)

+kJ -.12 _
+ qk 2 ]— fij 2.3.18

I (cos 26 . - cos 26 .)

q- + i X p +k3 ‘k3 + q a . - e .
3 fl k=1 k 2 k +kj -kj

sin 26 . - sin 26 . '

+ +k3 2 ’k3 ] = fzj 2.3.19

where I = Il + 12 + I3 + I4 = total number of intervals

along the boundary,

i

eikj = arg (sk — t )

S: _ + Hk

k ‘ Sk ‘ 7T

Hk = length of the kth interval

flj' f23' = values of the function fl(t),

f2(t) at the jth node (center of

jth interval), t = t..

3

Upon completion of the numerical integration of

equations 2.3.18 and 2.3.19, we have a numerical matrix

relating the (pj,qj)(j = l,2,3,...,I) to the still unknown

adhesive stress coefficients (ak, bm)(k = l,2,3,...,K - 2;

m = 1,2,3,..., K - 3, K - 2, K).
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Having established this relation, the expression

for the non-dimensional components of displacement Uiz)

(2)

l
and V must now be developed.4 In terms of the functions

¢ and 6 defined previously:

 

 

(2)
l + iVi2)) = xl¢(z) — z¢'(z) - w(z) 2.3.202u1(U

where

Shear modulus of adherend 1.

X1 = (3 - vl)/(l + v1) for plane stress.

C II1 Poisson's ratio for adherend 1.

This equation can be reduced to a contour integration around

the boundary of the adherend (Appendix D):

 

X2“1(Ui2) + Win) = RH [pm _ p(t)] + i[q(s) - q(t)] gig—E

+ 3%Ij'[p(s) - p(t)] + i[q(s) - q(t)] 595 E

+ %—f[p(s) + iq(s)] 9919-43—5 +txl[p(t) + iq<t>1
r

+% [p(t) + iq(t)] - fl(t) - if2(t) 2.3.21

where

Uiz), Viz) = displacement components of adherend l.

a a(SIt) is the angle between the vector 3 - t and

the outward normal at s (unrelated to the scarf

angle a used elsewhere).

r = Is - tl 2.3.22
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The adjustment of the rigid—body displacement constants is

made later.

Equation 2.3.21 is integrated numerically using the

trapezoidal formula, with special treatment required at

various points, such as corners (Appendix D). The integra-

tion is carried out only for the displacements Uij)' Vii),

i.e., the X, Y- displacement components of adherend l at

h
the jt boundary node point (midpoint of jth interval), of

points (Xj, Yj) on the inclined adherend face. This es—

tablishes expressions for Uii) and Vii) in terms of quanti—

ties (pk,qk) at all the node points on the boundary, which

in turn still depend upon the unknowns (am, bm). Both

relations take the form of known numerical matrices. Note

that the only elastic constant affecting the right side of

2.3.21 is x1. Thus if both adherends have the same Poisson's

ratio, the right side of 2.3.21 serves for both. This assump-

tion is made in the calculations.

Next, using the numerical coefficient matrix which

relates (pj, qj) to the (ak, bk), the final displacements

of the adherend 1 can be expressed as a single, known numeri-

cal matrix multiplying a still unknown column vector of the

(ak, bk). Careful consideration of the geometry of the

second adherend with respect to the first adherend permits

us to use the results for the first adherend to write the

(2)

2
corresponding U and Véz) displacement expressions at an

equal number (I1 = K) of points on the inclined face.



60

The principal adjustment required, if we assume the same

Poisson's ratio on both sides, is for the different shear,

modulus. This affects only the left side of 2.3.21. Some

sign changes and "mirror" reflections of coordinates in

the origin are also required.

The displacement expressions corresponding to the

uniform unit tensile fields in each member [part (1) solu-

tions] are now superposed on those due to the self-equili-

brated distributions (superscript 2), to obtain the final

displacement expressions for the two adherends.

Rigid-body displacement constants must now be

established. This is done by arbitrarily suppressing all

translation and rotation at the origin, in the first

adherend. The first adherend's final displacement com-

ponents at the desired points (xj, Yj) along the adhesive

inclined face are thus taken as (Appendix E):

_ 0‘2.) 1 _ (2)

_ V(2) V1 _ (2)

where the terms involving Xj and -V1Yj represent the total

contribution of the uniform tensile field here. For the

second adherend, the solution itself must determine the

rigid-displacement constants (c2, D wz below)--see Appen-
2’

dix E:

U<2> 1 _
U2j= (Xj ,jY ) + g Xj+ C2 wZYj 2.3.243.
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\)

V”) _ .3. xV2j= J(XjYj ) E2 Yj+ D2 + wz j 2.3.24b

where Uéi), V23) are the displacements of adherends 2 at

node point j.

Because of the presence of the three rigid-body con-

stants C2, D2 and wz, the number of unknowns has increased

Allfrom the (2K - 3) quantities (a bk) to 2K (K = I
k’ l)“

unknowns are now evaluated by equating two different ex-

pressions for the adhesive normal and shear stress. The

total stresses are the sum of the part (1) and part (2)

contributions. Recalling that part (1) consists of a uni-

form unit tensile field, and using 2.3.1,

K

0 . = 0(12 + 0(2i = sin2 a + Z a S? 2.3.25a
n,j n,j n,j m=l m j

K

T . = 1(1) + T(2) = sin 6 cos a + 2 b S? 2.3.25b

ns,j Tnsrj TnSIj m=l m J

The sinusoidal terms are the adhesive stresses required to

equilibrate a unit tension parallel to X, and subscript j

indicates that the stresses are calculated at S = Sj' For

the part (2) summations, the equations actually used are

those of 2.3.2, which show clearly that only 2K - 3 unknowns

appear, not the 2K values (am, bm) implied above. The ver—

sion presented above is more compact and clearer, and con-

ceptually equivalent as long as it is understood that aK—l'

aK and bK-l are linearly related to the rest of the (am,

bm). The unknowns C2, D2, “2 do not appear explicitly in

2.3.25.
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The second expression for the stresses is developed

from equations 2.2.32, pn 46 rewritten to conform to the de-

mands of the present approach. These equations give the

adhesive stresses in terms of the relative displacements of

the adherends at the adhesive line. The subscript j implies

evaluation at S = Sj' or Xj = Y. tan a:

E h

_ a _ . — —

On,j - _fi_ [Ul,j U2j] Sln a [Vlj sz] cos a

.3.26a

Ga Eah

Tns,j = E;._fi—- [U2j - Ulj] cos a + [sz - Vlj] Sin a

2.3.26b

(The denominator factor of E has been removed from 2.2.32

1

because the U's and V's as defined in this section contain

the adherend moduli already.) Equations 2.3.24 show that

2' D2 “’2

as well as the 2K - 3 unknowns (am, bm) implied in 2.3.23

2.3.26 contain the unknown constants C explicitly,

- and 2.3.24. The equating of the stress expressions of

2.3.25 and 2.3.26 is therefore sufficient to determine the

2K unknowns, and hence the adhesive stresses.

2.4. Numerical Data Assumed in the

Calculations

 

 

There are a large number of dimensionless parameters

to investigate, so that it becomes necessary to divide them

into primary and secondary parameters. The latter are taken

as constant throughout the calculations. The primary
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parameters are the scarf angle (a); the relative stiffness

of the adherends (y); and the relative stiffness of adhe-

sive and adherends (B). Treated as secondary parameters are

the Poisson's ratios of the adhesive and of the adherends.

Even so, a great many cases must be studied in order to es-

tablish the overall behavior of the dissimilar-adherend

scarf joint.

Generally speaking, the parameters are chosen so

as to simplify interpolation in the results, either on a

linear scale or as equally-spaced values on a logarithmic

scale. First of all, reflecting the practical range, the

scarf angles are chosen as 5°, 10°, 20°, 30° and 40°. The

first and last values are probably outside the usual range,

but are explored for completeness and to facilitate

interpolation.

32(1 - vi)

The primary dimensionless parameter y = 

El(l - vi)

is a measure of the relative stiffness of the adherends.

The values selected are l, 2, 4 and 8; values much larger

than 8 are probably quite close to the case of one "rigid"

adherend. Adherend 2 is thus always the stiffer of the

two, except that when Y = l, we have a scarf joint with

identical adherends. The successive factors of 2 permit

interpolation with respect to this parameter at uniform

intervals on a logarithmic scale. We have taken the ad—

herends' Poisson's ratios to be 01 = 02 = 0.3 throughout
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the major part of the work. This value is intermediate

between typical steel and aluminum values.

The next primary dimensionless parameter is the

"elastothickness" parameter 8 = nEl/Eah(l - vi), which is

a measure of relative adherend and adhesive stiffness. As

used here, large 8 implies a relatively flexible adhesive.

Assuming metal adherends and typical adhesive thickness

and moduli for the metal-bonding range, the values for B

are set so as to permit interpolation on a logarithmic

scale: 8 = 4, 20 and 100. The dimensionless ratio

(Ea/Ga) of the adhesive's Young's modulus to the shear

modulus has been fixed at 8/3 in the present computations.

Referring to Fig. 7, the value of L1 is assumed to be 2h= 2

so that the uniform portion of each adherend has the same

length as its depth. In auxiliary calculations, this

length appeared to give the best overall check of the in-

put traction boundary conditions with the polynomial Ritz

functions used. It is possible, however, that another

choice might be better by some other criterion. This check

is described later.

When using the Ritz method, the Ritz matrix is in-

dependent of the type of loading used, so that it is ex-

pedient to introduce all types of loading considered at

the same time. Results are presented here for both pure

tension and pure bending.
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2.5. Computer Programs
 

The principal numerical results for this thesis were

obtained using the Ritz method of analysis, by means of a

computer program developed for the Control Data Corporation

3600 computer at Michigan State University. The program was

written in the 3600 Fortran source language. Various auxi-

liary programs were used to perform checks on the results,

described later.

A separate program was developed for the integral

equation approach. Both programs allow for full variation

of the dimensionless parameters of the problem, including

the effects of geometry, material properties and external

loading. Upon providing the few input data cards required,

the programs calculate and print the adhesive shear and

normal stresses at uniformly spaced points along the ad-

hesive's inclined face. In the case of the Ritz program,

the Ritz parameters are also punched on cards so that any

desired additional calculations can be performed later.

Stress distributions on the external boundaries of each

adherend are calculated from the approximate Ritz displace-

ment solution, in order to check against the known input

boundary conditions.

The format of the input parameters to be supplied

by the user of the program (and copies of the programs)

appear in Appendix F.



CHAPTER III

CRITERIA FOR ACCEPTABILITY OF RESULTS;

PARTIAL DISCUSSION OF RESULTS

3.1. General
 

In using the Rayleigh-Ritz procedure to arrive at

a solution for this problem, the validity of the results

always depends upon the convergence of the solution to the

correct limit. The few available results of the integral

equation method assume only a supporting role here: so

that Ritz solutions are the main ones to be checked for

acceptability. In this connection, the first and foremost

problem is to assess the convergence of the solution.

Since the accuracy acceptable for engineering pur-

poses varies with the demands of the particular problem,

it has been considered sufficient to state the indices of

accuracy used, and how the results behave in each case. It

is left to the reader to decide if this is sufficient for

his purposes.

It is worthwhile to note that in every case, the

analytical solution obtained by the Ritz method for the

case of identical adherends in tension verifies to high

accuracy the exact solution of Ref. 7. The identical-adherend

66
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bending solution reported here is new; it is readily shown

that the method of Ref. 7 cannot be extended to include the

case of the bending of identical adherends.

3.1.1 Stress Boundary Condition Check
 

For each trapezoidal adherend's external boundary,

the input traction conditions are known. The top and bot-

tom surfaces of the system are free of stress, and the

ends are loaded by uniform tension, or pure bending with

linear stress distribution. Therefore, the ability of the

approximate solution to reproduce these is a powerful pri—

mary check. This check has been performed for all Ritz

solution cases investigated.

In this regard, a more or less intermediate case

(a = 10°, 8 = 20, y = 4) is surveyed next for both tensile

load (Fig. 8) and bending load (Fig. 9). These figures

show the boundary traction error on the exterior boundaries,

in the form [(calculated stress, from solution) - (true

stress, from boundary conditions)]. The reference level

is unity, which is either the value of the uniform tensile

load or the maximum value of the applied bending stress.

All of the calculated results show these general patterns

of boundary-traction error distribution. From this it is

possible to select C, and E or F as the critical points,

respectively, in adherends l and 2. All other errors are

either smaller, or much smaller. Point C, in particular,
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invariably shows the largest error in the case of tensile

loading of the joint. For bending load, however, the larg—

est error occurs at point E for the smaller scarf angles

and at point F for the larger angles (invariably, the values

at E and F are comparable in level). The peaking of the

boundary stress errors at the points in question is quite

clearly linked to the neglect of singularities in the Ritz

trial functions.

The value of the boundary stress errors may be taken

as one measure of the merit of the results. In the parti-

cular problem of Fig. 8, the point -C error values for

tensile loading are -0.029 for shear and -0.005 for normal

stress. For Fig. 9--bending load-—the corresponding point

-E quantities are -0.063 for shear and —0.009 for normal

stress.

It is not immediately possible to carry out a com-

parison of the type just discussed on the adhesive-adherend

interface, since we have no "true adhesive stresses" to

serve as a reference level. The purpose of the thesis is

to find these unknown stresses. Something equivalent has

been devised, however, and is discussed in the next section.

In interpreting the present "index of merit" of the

calculations, the following should be borne in mind. The

desired results in this problem are the adhesive stresses

on the inclined boundary. These are calculated using equa-

tions 2.2.32 and 2.2.33, i.e., directly from member
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displacements. The latter are the direct output of the Ritz

method, in the form of the coefficients A B , etc. On
m,n’ m,n

the other hand, the boundary-stress distributions are much

more sensitive to error than the displacements, because these

stresses are found using derivatives of displacements. In

other words, we anticipate that the Ritz method will produce

displacements which are an order of magnitude more accurate

than the corresponding stress calculations. This makes the

boundary stress an overly-sensitive index, sometimes alarm-

ingly so. The convergence of the adhesive stresses them-

selves nevertheless appears to be quite good in most cases,

as will be seen later.

Speaking generally, then, if the user is satisfied

that the boundary stress error is small enough, he can surely

be satisfied that the corresponding adhesive stresses are

considerably better determined. And a boundary condition

error of 20% (0.2 on an applied load scale of unity) may

still mean that the corresponding adhesive stresses have

been determined to within a few percent. With this as a

background we examine Table 1.

Table 1 (next page) gives the largest errors in the

boundary stresses for those bending load cases having scarf

anglescx= 20°, 30° and 40°. These stresses have been cal—

culated at 21 equally-spaced points on each of the three

external boundaries of each adherend. To emphasize the

highly local character of large peak errors, when these
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occur, the numbers in parentheses give the value of the same

stress error at the point next to the peak. When the peak

is large, the gradient is always very steep. Errors in

boundary stresses are entered only when they exceed 0.10

(where 1.0 is the reference level for applied external

stress).

In all tensile load cases these errors are smaller

than 0.06, and for all bending cases with a = 5° or 10°,

they are less than 0.10. Hence they are not represented

in Table l at all.

The largest errors in the boundary stresses are

usually observed to be in the shear stresses on side GF

of adherend 2 (Fig. 9). For scarf angle a = 20°, the larg-

est error is 0.368 when 8 = 100, y = 8. The largest error

for a = 30° is found to be 0.526 when 8 = 20, y = 8. When

a = 40°, the largest value is 0.573 fore = 4 and y = 8.

These values are observed at the lower tip of the second ad-

herend, point F in Fig. 9. Note from Table 1 that the 0.368

error value for a = 20°, 8 = 100, y = 8 falls to 0.102 in

5% of the distance along GF from G--see value in parentheses.

Likewise, the 0.526 local peak for a = 30°, 8 = 20, Y = 8

drops to 0.151 in the same distance, and the a = 40°,

8 = 4, Y = 8 value of 0.573 falls to 0.164. It is to be

anticipated that these local stress errors are associated

with much smaller errors in the displacements of the region

in question. This, of course, will be revealed by the study
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of the convergence of the adhesive stresses themselves. It

seems possible to show by direct computation that the stress

error functions, separately, contribute displacement errors

which are quite small compared to the primary Ritz displace-

ments used to calculate the adhesive stresses. In effect,

this would establish the loose "order of magnitude" by

which the displacements are more accurately determined than

the stresses. However, this hardly seems to be worthwhile,

since the study of adhesive stress convergence effectively

does the same thing directly for the desired end product.

3.1.2 Comparison of Adhesive Stresses

Calculated Several Ways From the

Results

The adhesive shear and normal stresses reported

here are calculated from equations 2.2.32, i.e., by using

displacement differences. Displacement derivatives have

been used only to investigate the boundary stresses. It

was pointed out in the previous section that the error in

calculating adhesive stresses using derivatives is expected

to be much greater than when using differences in displace—

ments, since the Ritz method (as employed here) produces

accurate displacements, but less accurate strains and

stresses. We now suppose that the adhesive stress distri—

butionsfound using Eqs. 2.2.32 are "exact," and compare

them to the same stresses calculated from the displacement

derivatives of adherends l and 2. We would expect that the
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difference between the adhesive stress distributions, as

calculated the "exact" and the two "approximate" ways,

would be comparable to the boundary stress error. This

seems to be the case.

Table 2 (next page) shows the adhesive normal and

shear distribution (for a = 10°, 8 = 20, y = 4), calculated

three ways: using the displacement derivatives of adherend

l; of adherend 2;and from the differences of the adherend

displacements (eq. 2.2.32). The quantity S is the fraction

of the joint half-length, measured along the adhesive-

adherend interface from the origin (at the center). The

value S = -1.0 corresponds to points (C,F) in Figs. 8-9,

and S = 1.0 to (D,E). Table 2 gives results for tensile

and for bending load. It can be deduced from Table 2, by

subtraction, that the characteristic differences between

the more accurate and two less accurate methods are of the

same order of magnitude as the errors in the satisfaction

of the stress boundary conditions. The largest differences

occur at the ends of the adhesive joint, corresponding to

corners of the adherend trapezoids. These are also the

regions of discrepancy on the external boundaries. Such

discrepancies are inherent in any approach which fails to

account for the stress singularities associated with the

acute and obtuse wedge corners of the adherend trapezoids.
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3.1.3 Double-Precision Check of

Roundoff Errors

 

 

In order to check the roundoff error involved in

solving the present very large system of simultaneous equa-

tions, a few computer runs have been carried out using double

precision arithmetic on systems of 141 equations. This cor-

responds to a sum of homogeneous polynomials, for each of

the four displacements, up to and including all 7th-order

terms. In all cases checked (a = 10° and 30°, 8 = 4, Y = 2),

it was found that the numerically larger values of adhesive

normal and shear stress are affected by roundoff error only

in the sixth and seventh significant figures.

Consider, for example, the tension-loaded case of

30°: 8:4! Ya 2. The largest shear stress value at

S = -1.0 (point C or F of Fig. 7) changes from 0.4723434 (sin-

gle precision) to 0.4723424 (double precision). The normal

stresses are somewhat smaller than the shear stresses for

the angle a = 30°, but the roundoff contribution must still

be comparable to the values found for the shear stress level.

This is because the same imperfectly-determined Ritz coeffic-

ients are involved in all computations. At S = -1.0, the

normal stress changes from 0.2687167 (single precision) to

0.2687145 (double precision). Here also it is found that

the difference is in the sixth or seventh significant figures.

The final results presented here are for 8th-order

polynomials (177 equations). It is estimated that roundoff
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error might affect the numerically larger values in the

fourth to the sixth significant figure,depending upon the

parameters a, 8 and Y. A precise estimate of roundoff

error for 8th-order polynomials is not easily obtained,

because the required memory capacity for the double pre-

cision version of the program then exceeds the available

high—speed memory of the Control Data Corporation 3600

Computer. However, it does not really appear to be neces-

sary to make this check, since in most cases the 7th- and

8th-order (or 6th- and 8th-order) polynomial solutions

agree to sufficient significant figures for the latter to

be regarded as satisfactory.

Another measure of roundoff is obtainable from a

study of a few cases where an exact solution is available,

or where considerations of symmetry demand an odd function.

Any case involving tensile loading of identical adherends

1) should show adhesive stresses uniform along the(a

joint, and independent of the parameter 8 (this is discussed

further, later). From such cases, and from those bending

problems where a = 1, it is possible to estimate that

roundoff error accumulations for 8th-order polynomial Ritz

functions (177 equations) consistently affect a few units

in the fifth decimal place, ranging occasionally up to 1

unit in the fourth place. This roundoff contribution is

independent of the absolute size of the particular stress

tabulated. However, it represents a small error in the
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significant (i.e., numerically larger) values of any of the

tabulated stresses. It is quite clear that imperfect con-

vergence is a far more important source of error than round—

off accumulation. Roundoff error may make it impossible to

go to 9th-order polynomials, however, unless double preci-

sion arithmetic is used, or some effort is made to "purify"

the inverse of the Ritz matrix.

3.1.4 Convergence of the Approximating

Sequence

 

Convergence is studied primarily in the quantities

wanted as an end result, the adhesive stresses. From the

discussion of the preceding sections, this also amounts to

an examination of the convergence of the adherend displace-

ments. To do this, a number of cases are studied in which

the adhesive normal and shear stresses are obtained by

successively assuming displacement functions consisting of

the sum of all homogeneous polynomials through the 6th, 7th

and 8th degree. Considering that four displacements are

involved and subtracting the three rigid-body constants,

this amounts to solving 109, 141 and 177 simultaneous equa-

tions, respectively. Typical cases examined includef3= 20

(an intermediate level of flexibility), Y = 4 (a 4:1, or

substantial level of adherend dissimilarity), for a = 5°,

10°, and 303 in both tensile and bending load. The tensile

loading level here is a unit stress parallel to X, and the
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largest bending stress is also unity (Fig. 7). For tensile

load, and in most cases for bending load, it is found that

the adhesive stresses appear to approach a definite limit.

h—, 7th- and 8th-degree polynomials, theIn using 6t

larger magnitudes of stress are often so close to each other

that it is usually not practicable to represent them in

terms of tables.. Smaller values of stress, of course, are

not determined as well as large ones, but they are of less

significance precisely because they are small. Tables 3—8

will be used as the framework of this portion of the con-

vergence discussion. Most of the final tabulated results

have been treated along the lines of the three samples to

be discussed exhaustively in the rest of this section, but

in most cases only 6th- order and 8th-order polynomial re-

sults have been compared (not the full 6-7-8 sequences as

in what follows). In a few cases, only 8th-order results

are available. Thus the user usually has one or more in-

dices from which to judge for himself whether he considers

the adjacent Ritz solutions to be close enough for the re-

sults to be meaningful in his application.

Consider, as a successful example, the tensile load

case for the angle a = 30° (upper end of the practical angle

range), in Table 3 (next page). The largest shear stress

level is of order 0.45, and all orders of polynomial con-

sidered give the same stresses to three or more significant

figures, usually to better than 0.01%. There appear to be
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"random" differences in the fourth and fifth significant

figures. At some points in the table the stress level goes

down slightly with increasing polynomial order; at others,

up slightly; and in still others changes very little. For

example, at s = -l.0, the value goes from 0.45137 (for 6th-

order) to 0.45133 (7th-order) to 0.45131 (8th-order). At

S = 0.9, the trend is reversed, and the respective (6,7,8)

figures are 0.41696, 0.41700, 0.41702. At S = -0.6, there

are no changes at all in any of the figures given. These

changes can be shown to be systematic rather than random.

h-orderThe difference between the 7th- order and the 6t

solutions can be plotted to reveal a 7th-order polynomial.

of very small maximum amplitude, affecting only the last

significant figure of the five given in Table 3. In the

same way, the difference between the 8th-order and the 7th-

order solutions is an 8th-order polynomial of even smaller

maximum amplitude, affecting the last significant figure

to a somewhat smaller extent. All differences between adja-

cent polynomial solutions have this character, so that it

is only worthwhile to examine the larger differences.

These differences are invariably expressed as a percentage

of the highest-order solution, in the discussion which fol-

lows. Effectively, it seems fair to say that very good

convergence has been achieved for the shear stress in this

particular example.
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Another measure of convergence has also been examined.

It is difficult to inspect the small-amplitude "difference

polynomials" just described and decide how much the calcu-

lated shear or normal stress function has shifted as a whole

with increase in number of terms. To assess this shift,

the average shear or normal stress along the length of the

joint may be calculated by integration, and the values for

adjacent Ritz solutions compared. The most convenient way

to do this is to integrate the difference polynomial along

the length of the joint. This is a small quantity when

convergence is adequate, and its general order of magnitude

is about as informative as an accurate absolute value. This

index, therefore, has been computed directly from the tabu-

lated output data, using numerical integration and Simpson's

rule, rather than by analytical integration. A sample of

the "difference polynomials"is given later.

Thus, referring to Table 3, the average difference

in shear stress between the 7th-order and 6th-order results

7
is -2(10- ), and between the 8th-order and 7th-order is

2(10'6 ). For reference, the typical shear stress level is

about 0.43. The present index also seems to support the

assertion that practical convergence has been obtained for

the case under consideration. The fact that the (8-7) dif-

ference is larger than the (7-6) difference can probably

be ascribed to the rounding of figures to five, for the

purposes of tabulation. Some small contribution may also
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be present due to accumulated roundoff in the Ritz matrix

inversion, which is believed to have a small but measurable

effect in the case of 8th-order polynomials.

For this relatively large value of a, the adhesive

normal stress is smaller than, but still comparable to,

the shear stress. Generally speaking, in all calculations

it appears that the normal stress converges more slowly

than the shear stress, possibly as a result of different

physical mechanisms involved. Joint end-values are parti-

cularly uncertain, but these are not always the points of

greatest adhesive normal stress. This general behavior is

seen to a slight extent in Table 3, where three significant

figures are absolutely stable, but the fourth may vary as

much as 3.5 units as we sweep through the polynomial orders

6-7-8. Nevertheless, it still seems fair to say that good

adhesive normal-stress convergence has been achieved in

this particular example (other examples are not nearly as

favorable). The (7-6) normal stress difference averages

to -l(10-6) along the joint, while the (8-7) figure is

5(10-7), both to be compared to a typical normal stress

level of about 0.25. This index also implies that the

overall solutions are in good agreement, despite local

variations. Thus, even 109 equations deliver average

stresses which agree well with the average values for 141

and 177 equations. The index in question is perhaps a good

measure of overall equilibrium, but says very little about

the accuracy with which distributiomshave been determined.
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The tensile load case in Table 4 (a = 10°, 8 = 20,

Y = 4), page 83, shows the same general behavior. Here the

angle a = 10° is near the lower end of the practical range,

and the shear stress is much smaller than for<1 = 30° (Table

3). The shear stress agreement between 7th- and 8th-order

solutions is very good. This is particularly easy to see

in Table 4, because the "difference polynomials" have been

included in this table as a sample, under such headings as

105[7-6]. The normal stress is now 10 times smaller than

for the 30° case, and the slower rate of convergence always

observed for this stress component means that a good deal

more variation is found as the order of the polynomials is

increased. Over most of the joint, this still amounts to

th th
changes of less than 1% between 7 - and 8 -order results.

At or near the ends, as much as 5% change can be detected

in going from the 7th-order to the 8th-order solution (e.g.,

at the end s = 1.0). It must be remembered that the normal

stress at this point is not the largest value along the ad-

hesive joint, and also that it is always less than one-

quarter the size of the shear stress at the same point. A

modest uncertainty in its determination does not preclude

the general statement that satisfactory convergence seems

to have been achieved. This is particularly true if we

think in terms of the combined stress picture for the ad-

hesive, which will be dominated by the rather well-determined

and much larger shear stress. The (7-6) average adhesive
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shear stress difference for this case is -2(10-6 ), and the

(8-7) value is the same, both referred to average stresses

of about 0.17. The respective data for the normal stress

are -2(10-6) and 1(10"6 ), implying better overall "adjacency"

than the local variations at the joint ends might at first

appear to indicate.

The tensile load example of Table 5 (a = 5°, Y = 4,

B = 20) page 90, has been included here aS‘a particularly

poor example: the Ritz method is approaching the limits of

its effectiveness for simple polynomial inputs. (The 5°

angle is also probably smaller than normally attempted in

most technological applications, since such a scarf joint

is hard to make. It has been included primarily to see how

far we can push the Ritz method, particularly in connection

with bending--discussed later). The shear stress now falls

below 0.1 over most of the joint, which means that the

changes with polynomial order usually observed in the fourth

and fifth decimal place affect the third significant figure

rather than the fourth, as before. Nevertheless, the 7th-

and 8th-order shear stress results agree to better than

0.5% at all points, and better than 0.35% at all points

where the shear stress is large. This is considered to be

adequate convergence for most purposes. The corresponding

average-difference indices are -l(lO-6) for (7-6) and

-5(10-7) for (8-7), on a reference scale of about 0.09

average shear stress.



polynomials.
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Table 5.--Adhesive stresses for 6t

h th
_'7

- and 8th-order

 

  

 

 

 

50’ B = 20’ Y = 4 Tensile Loading

Shear Stress Normal Stress

6(109) 7(141) 8(177) 6(109) 7(141) 8(177)

0.13756 0.13785 0.13785 0.00121 0.00659 0.01201

0.12497 0.12484 0.12493 0.01327 0.01210 0.01019,

0.11441 0.11395 0.11410 0.01185 0.00923 0.00805

0.10625 0.10569 0.10573 0.00609 0.00478 0.00544

0.10043 0.10002 0.09988 0.00112 0.00192 0.00328

0.09667 0.09654 0.09624 -0.00083 0.00152 0.00242

0.09450 0.09466 0.09433 0.00050 0.00316 0.00319

0.09337 0.09375 0.09352 0.00417 0.00590 0.00525

0.09273 0.09320 0.09317 0.00872 0.00875 0.00794

0.09208 0.09249 0.09268 0.01270 0.01093 0.01042

0 0.09098 0.09126 0.09160 0.01499 0.01208 0.01203

0.1 0.08913 0.08925 0.08961 0.01507 0.01217 0.01247

0.2 0.08635 0.08635 0.08661 0.01312 0.01145 0.01183

0.3 0.08261 0.08256 0.08262 0.00990 0.01033 0.01054

0.4 0.07799 0.07796 0.07782 0.00665 0.00917 0.00915

0.5 0.07267 0.07269 0.07242 0.00464 0.00820 0.00807

0.6 0.06690 0.06694 0.06670 0.00481 0.00740 0.00737

0.7 0.06092 0.06090 0.06082 0.00705 0.00658 0.00668

0.8 0.05493 0.05477 0.05491 0.00948 0.00553 0.00553

0.9 0.04897 0.04880 0.04899 0.00757 0.00437 0.00412

1.0 0.04288 0.04329 0.04308 -0.00697 0.00411 0.00488

6,--Bending a = 30°, 8 = 20, Y = 4

0.05807 0.05899 0.05948 0.29183 0.28525 0.28131

0.05451 0.05538 0.05587 0.27289 0.27181 0.27144

0.04987 0.05046 0.05074 0.24611 0.24730 0.24808

0.04442 0.04466 0.04471 0.21350 0.21518 0.21598

0.03838 0.03830 0.03819 0.17770 0.17821 0.17865

0.03194 0.03163 0.03143 0.13798 0.13853 0.13863

0.02524 0.02477 0.02457 0.09780 0.09782 0.09775

0.01840 0.01790 0.01772 0.05759 0.05736 0.05729

0.01150 0.01106 0.01093 0.01834 0.01814 0.01820

0.00463 0.00432 0.00423 —0.01911 -0.01906 -0.01883

0 -0.00217 -0.00237 -0.00235 -0.05400 -0.05392 -0.05327

0.1 -0.00883 -0.00878 -0.00876 -0.08551 -0.08487 -0.08449

0.2 -0.01530 -0.01508 -0.01501 -0.11302 -0.11232 -0.11203

0.3 -0.02153 -0.02118 —0.02107 -0.l3579 -0.l3530 -0.13522

0.4 -0.02745 -0.02705 -0.02689 -0.15301 -0.15304 -0.15326

0.5 -0.03296 -0.03260 -0.03245 -0.16383 -0.l6461 —0.16514

0.6 —0.03797 -0.03775 -0.03767 -0.l6726 -0.l6879 -0.16956

0.7 -0.04253 -0.04236 -0.04241 —0.16214 -0.16408 -0.16490

0.8 -0.04589 -0.04624 -0.04646 -0.l4716 -0.l4860 -0.l4910

0.9 -0.04844 -0.04912 -0.04945 -0.12075 -0.12001 -0.ll957

1.0 -0.04973 -0.05065 -0.05083 -0.08110 -0.07544 -0.07309
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The adhesive normal stress is very small at this

angle, which is fortunate, for the Ritz process can hardly

be said to have converged. Only the leading figure can be

considered significant at many points, and at most of the

others there is uncertainty in the second significant fig-

ure. If it were of technical importance to determine the

adhesive normal stress very accurately, the present methods

would have to be abandoned in favor of other approaches.

The normal stress average differences here are 6(10-6)(7-6)

and 7(10-6)(8-7), where the reference level is about 0.012.

In general, bending load seems to place a far

greater strain on the capabilities of polynomial displace-

ment functions than tensile load, and convergence is not

always clearly established. The bending load case of Table

6 (a = 30°, 8 = 20, Y = 4), page 90, shows variations af-

fecting the second significant figure of the adhesive shear

stress as the order of polynomials is increased, where the

corresponding tensile load case is affected in the fourth

figure. Since both shear and normal stress change sign for

loading by moments, it seems useful to study convergence

for the numerically larger positive and negative values of

h- andstress only. The largest difference between the 7t

8th-order results occurs between S = -0.9 and S = -1.0,

and amounts to less than 0.9%; all other differences rep-

resent smaller percentages than this for stress values

above the magnitude 0.024 (where 0.059 is the largest
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absolute value). The normal stress pattern for this case

offers some novelty because larger normal stresses than

shear stresses are encountered for the first time. Compar-

ing polynomial orders 7 and 8 for the larger stress range

(above 0.119 where 0.28 is the maximum), it is found that

the differences are below 0.5% everywhere except at S = -l.0,

the joint end. (The difference at S = 1.0 is 3.2%, but this

is a point of rather small normal stress.) A difference of

1.4% is observed at the end S = -1.0, where the normal

stress level takes on its largest value, 0.281. This

probably can be characterized as adequate convergence, de-

pending upon the needs of the user. The average-difference

6
indices for shear stress are 1.4(10-5)(7-6) and 1.5(10- )

(8-7), where the largest stress value is about 0.06. The

5)respective results for normal stress difference are -3(10-

(7-6) and 1(10-5)(8-7), referred to a largest datum level

of 0.28.

The bending load case of Table 7 (a = 10°, 8 = 20,

y = 4), page 93, shows slightly better convergence of the

adhesive shear stress values than the preceding case. For

values larger than 0.04 (where 0.1 is maximum), the 8th-order

result never differs from the 7th-order result by more than

0.3%. The normal stress calculation convergence is inferior.

If attention is confined to values above 0.02 (where 0.04 is

the maximum), then the largest difference is less than about

2%. If the lower limit considered is 0.016, however,
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Table 7.--Adhesive stresses for 6th-, 7th- and 8th-order

polynomials.

Bending a = 10°, 8 = 20, Y = 4

Shear Stress Normal Stress

6(109) 7(141) 8(177) 6(109) 7(141) 8(177)

0.10148 0.10110 0.10098 0.00707 0.01379 0.01632

0.09122 0.09106 0.09104 0.02661 0.02599 0.02548

0.07998 0.08015 0.08030 0.03812 0.03587 0.03513

0.06780 0.06822 0.06843 0.04177 0.04030 0.04009

0.05486 0.05538 0.05554 0.03863 0.03847 0.03866

0.04150 0.04194 0.04196 0.03039 0.03115 0.03142

0.02809 0.02833 0.02821 0.01899 0.02002 0.02015

0.01502 0.01500 0.01479 0.00639 0.00715 0.00712

0.00268 0.00242 0.00219 -0.00565 -0.00542 -0.00549

-0.00860 -0.00903 -0.00920 -0.01574 -0.01599 -0.01595

0 -0.01857 -0.01905 -0.01911 -0.02293 -0.02342 -0.02320

0.1 -0.02708 -0.02745 -0.02739 -0.02677 -0.02715 -0.02682

0.2 -0.03391 —0.03418 -0.03402 -0.02734 -0.02737 -0.02710

0.3 -0.03921 -0.03928 -0.03909 -0.02519 -0.02478 -0.02478

0.4 -0.04305 -0.04292 -0.04278 -0.02123 -0.02054 -0.02094

0.5 —0.04560 -0.04533 —0.04530 -0.01661 -0.01600 -0.01669

0.6 -0.04711 -0.04681 -0.04689 -0.01247 -0.01240 -0.01298

0.7 -0.04784 -0.04766 -0.04770 -0.00974 -0.01048 -0.01043

0.8 -0.04809 -0.04811 —0.04821 -0.00882 -0.01009 -0.00917

0.9 -0.04808 -0.04830 -0.04828 -0.00921 -0.00968 -0.00884

1.0 -0.04797 -0.04819 -0.04810 -0.00914 -0.00576 —0.00873

Table 8.--Bending a = 5°, 8 = 20, Y = 4

0.09976 0.09976 0.09974 0.01232 0.01159 0.00826

0.08395 0.08392 0.08376 0.00704 0.00717 0.00831

0.06888 0.06894 0.06876 0.00652 0.00697 0.00761

0.05448 0.05462 0.05460 0.00739 0.00769 0.00732

0.04079 0.04095 0.04115 0.00781 0.00774 0.00707

0.02780 0.02800 0.02839 0.00704 0.00661 0.00622

0.01591 0.01593 0.01629 0.00504 0.00447 0.00448

0.00499 0.00491 0.00512 0.00223 0.00179 0.00201

—0.2 -0.00474 -0.00489 -0.00491 -0.00079 -0.00087 -0.00069

-0.01317 —0.01335 -0.01358 -0.00341 -0.00309 -0.00305

0 -0.02022 -0.02038 -0.02073 -0.00521 -0.00457 -0.00462

0.1 -0.02586 —0.02596 -0.02628 —0.00597 -0.00527 -0.00523

0.2 -0.03011 -0.03013 -0.03031 -0.00575 —0.00529 -0.00508

0.3 -0.03302 -0.03297 -0.03297 -0.00485 -0.00489 -0.00459

0.4 -0.03472 -0.03463 —0.03447 -0.00378 -0.00434 -0.00419

0.5 -0.03535 -0.03526 -0.03505 —0.00303 -0.00390 -0.00414

0.6 -0.03511 -0.03505 ~0.03492 -0.00303 -0.00371 -0.00420

0.7 -0.03420 -0.03420 -0.03421 -0.00378 -0.00372 -0.00418

0.8 -0.03283 -0.03288 -0.03298 -0.00466 -0.00369 -0.00332

0.9 -0.03120 -0.03124 -0.03130 -0.00403 -0.00320 -0.00224

1.0 -0.02948 -0.02936 -0.02938 -0.00113 -0.00169 -0.00426
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differences of about 4% can be observed, and the values for

end S = -1.0 differ by 15.5%. (Again, the stress level here

is only 40% of the maximum.) The shear stress difference

indices are 2(10-6)(7-6) and 3(10_6)(8-7), where 0.1 is the

maximum, while for normal stress the respective figures are

3(10-6) and -4.5(10-6), referred to a maximum of about 0.04.

The bending load case (a = 5°, 8 = 20, Y = 4) of

Table 8, page 93, is an example where the convergence is

quite good in the shear stress. The largest error is about

l/4%, if we consider stresses larger than about half the

maximum value. The 6th-order polynomial results, surpris-

ingly, seem to agree with the 7th-order results somewhat

h with the 7th. It is tempting to guessbetter than the 8t

that roundoff has affected the 8th-order results. However,

the Ritz matrix inverse is exactly the same for both the

bending and tensile loading. In the latter case the 7th-

order and 8th-order results are quite close. Hence, ques-

tions of convergence rather than of roundoff accumulation

seem to be involved here. Overall, the convergence of the

shear stress seems reasonably good. The average shear

stress difference indices are 3(10-7) for (7-6) and 7(10-7 )

for (8-7), referred to largest a shear stress of about 0.10.

The normal stress is very small for this case

(Table 8, p. 93). This is just as well, because the Ritz

method produces only one significant figure; at a few points,

even this is uncertain. The normal stress difference
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averages are 3(10_5) for (7—6) and -7(10-6) for (8-7), on

a scale of perhaps 0.008. Since the reference stress is

small, these are relatively larger average differences than

generally encountered before, so the index in question is

not completely insensitive to convergence. To summarize

the results, it appears that the Ritz procedure with x-y

polynomials produces results ranging from very good to

"acceptable," for all cases of tensile loading. The adhe-

sive shear stress is always more reliably determined than

the normal stress, but where the latter is not well deter-

mined, it is usually small enough to be of no great signif-

icance for the overall stress pattern. In tensile loading,

convergence seems to improve as the scarf angle increases,

while in bending, the trends seems to be opposite.

On the other hand, not all of the bending results

are reliable. It becomes necessary to put down some "figure

of merit" to characterize these cases for the user. These

have been chosen as the largest difference between the re-

sults for 7th-order and the 8th-order polynomial solutions,

expressed as a percentage of the latter, with attention

confined (usually) to the larger levels of stress. Where

7th-order data have not been computed (to limit the total

computer time involved), the 6th-order results are compared

to the 8th-order ones. This is a considerably rougher ver-

sion of the index.

The second index of merit is the average difference

between "adjacent" Ritz solutions. This consists of the
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average along the joint of the difference between the adhe-

sive stress calculated from the 8th-order and the 6th-order

polynomial solutions (7th-order substituted where available).

This index is provided for both the adhesive shear stress and

the normal stress. All of these indices are in App. F tables,

since there is no room to place them on the sheets tabulating

the raw results (Appendix F). As a supplementary warning to

the user, an asterisk is placed on each table in Appendix F

where the local error in the satisfaction of the stress

boundary conditions exceeds 0.1 on a scale of "largest applied

stress" = 1.0. As mentioned in section 3.1.1, this is a con—

siderably less reliable indicator than the "percentages" of

App. P. It may be of some interest to note how the boundary

stress error behaves as the order of the Ritz polynomials

is increased. The discussion here is confined to the vicinity

of the peak errors in the stress component showing the largest

error.

Consider, for example, the tension-loaded case cor-

responding to Table 4 (a = 10°, 8 = 20, Y = 4). The largest

shear stress boundary errors at C (Fig. 8) are —0.0256,

—0.0247 and -0.0246 for 6th-, 7th- and 8th-order polynomials

respectively. (The reference level is a largest applied

stress of unity.) This clearly indicates that the boundary

stress errors do not decrease very rapidly as the polyno—

mial order increases. What is interesting is that the

gradient down from the peak gets larger with polynomial
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order, i.e., the error effect becomes more localized. The

Ritz solution is attempting to conform to the local stress

singularity ignored in the analysis, as well as a polynomial

can while still satisfying the remaining boundary conditions

of a stress-free edge. Possibly, if the order of the poly-

nomials could increase greatly and a solution could still

be obtained, the error "spike" would grow to very large

values, but becomes very narrow.

The shear stress boundary condition errors for the

bending-load case at E (Fig. 9) are -0.0676 for the 6th-

order, -0.0654 for the 7th-order and -0.0629 for the 8th-

order polynomial. This indicates that the level of error

for the bending load case likewise does not decrease much

in magnitude as the degree of the polynomials used is in-

creased. As in the case of tensile loading, the significant

trend observed is a steeper gradient in the shear stress

boundary condition error with increasing polynomial order.

» At the same points, the normal stress CY is much

smaller and thus closer to the desired zero boundary values.

Its general behavior is similar. In the case of tensile

loading, the point-C values are -0.00343 (6th-order),

-o.00353 (7th-order), -o.oo337 (8th-order). For the bend-

ing load case, at E the values are -0.00999, -0.00946 and

th
-0.009l4 (6th-, 7 - and 8th-order polynomials respectively).
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3.1.5 Overall Equilibrium Check
 

As another check of the results, a few sample cases

have been examined for various aspects of overall equili-

brium. In one approach, this involves finding the resultant

forces produced on each of the four trapezoidal boundaries

of adherend l, and writing the three equations of static

equilibrium. In each case, the stresses used are the actual

ones produced by differentiating the polynomial solution,

not the exact input boundary conditions. On the inclined

adhesive interface, the stresses chosen are also the less

exact ones produced by differentiation, for consistency.

All integrations reported here are carried out analytically,

using the 8th-order polynomial solutions.

Since these calculations have the error level of

the stresses, which is substantially larger than that of

the displacements, no great perfection of the results is

anticipated. The integration process for finding resul-

tants may improve the situation somewhat, however. The

resultant forces should theoretically be zero, of course,

so that a reference level has to be devised to help evalu-

ate the numbers representing resultant force and moment.

For tensile loading of the adherends, the logical reference

level is the input force derived from the unit stress act—

ing on a member height of 2h = 2.0. The representative

length required for examining overall moment equilibrium

is somewhat more of a puzzle. As one possibility, it could
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be thought of as the adherend height 2h = 2, producing a

moment of 2(2) = 4 units. However, since error tractions

act on long sides of the adherends, as well as the short

sides, a better choice (perhaps) might be the average length

of the adherend in the X—direction, (2 + cot 6), making the

reference level for moment angle-dependent. The latter

length ranges to about 10 for the smallest a considered (5°),

producing a reference level for moment of 2(10) = 20; it is

2(3.73) = 7.5 for a = 30°.

For bending load, a suitable force and moment refer-

ence level are about as hard to choose. For moment, the

applied moment could be used. The input bending stress for

this case varies from +1 to -l as y ranges from -h to +h

(nondimensional Y goes from -1 to +1). The resultant force

from Y = 0 to 1 can be chosen as a reference level for

force (= l/2 unit). The corresponding applied moment is

then l/2(4/3) = 2/3. However, the argument about error

tractions acting on the long sides is just as valid here

as before, in which case the reference levels for moment

become angle-dependent values perhaps 0/2V2.0 = 1/4 as

large as those estimated for the tensile—loaded system.

With these uncertainties in mind, we examine a few sample

cases which have been tabulated below. The calculations

are carried out using the separate stress distributions for

adherends l and 2, in bending and tensile load. Also

tabulated are the resultants for the overall equilibrium
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of the two joined members, with the interior adhesive inter-

faces making no contribution at all.

Considering the tensile load case, with datum force

2.0, the force resultants tabulated seem generally good. No

error exceeds l/2% significantly, and most values are a good

deal smaller. Moment equilibrium discrepancies are compar-

ably small, in adherends l and 2 taken separately, if the

angle—dependent reference level criterion is adopted. For

example, the 10° (adherend 1) figure of 0.0537 is small on

a scale of 20, and not even too bad on the more conserva-

tive scale of 4 units. The "overall" columns seem to pro-

vide the same sort of error level also, but perhaps here

the moment reference level at 10° can be enlarged to 40,

since the largest dimension of the system doubled.

Bending-load force resultants are not quite as good,

for a reference level of 0.5, but this is to be expected

from the rather large boundary stress errors in Table l,

and the generally less satisfactory results observed for

the bending solution. Even so, no error is as large as

10% of the nominal datum level in either adherend considered

alone. This 10% level occurs for a = 30°, 8 = 20, Y = 4.

The Table 1 data for this case shows a largest stress error

of 0.428 (on a scale of unity, or 42.8%) in the shear

stress which directly affects the present error quantity.

Thus there appears to be some gain in the process of inte-

grating to resultants. The "overall" columns do not change

the pattern appreciably.
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Moment equilibrium in bending is again hard to in-

terpret because of the uncertainty regarding the reference

level. If the angle-dependent length is chosen, the refer-

ence level for moment becomes(1/2K10) = 5 for individual

adherends with a = 10°, and perhaps twice this for the over-

all case. On this Optimistic basis, even the worst cases

appear to be fairly satisfactory.

Another sort of overall check is possible, one

where significance should be very much greater. The tabu-

lated adhesive stresses of this thesis are presumably much

more accurate than the stresses calculated by differentiat-

ing displacements (discussed in Section 3.1.1). Therefore,

it is reasonable for us to test how well they hold the

25322 input boundary tractions in equilibrium. The trac-

tions are the pure tensile stress at the end of each ad-

herend, or the linearly-distributed stresses at the same

ends (bending load case). To be explicit, these should be

supplemented by the vanishing of stress at the top and

bottom of each adherend, and of the shear stress on the

extreme ends. Tabulated in Table 10, for the cases treated

in the preceding table, are the resultant forces and moment

produced when the "more exact" adhesive stress resultants

are equilibrated against the input forces and moments.
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Table 10.--Sample overall equilibrium checks

 

 

Either Adherend

 

 

 

a B Y X—Force Y-Force Moment

Tension*

10 20 4 0.0000055 0.0000054 0.000029

20 20 4 0.000025 -0.0000080 —0.0000005

30 20 4 -0.0000048 0.0000047 -0.0000004

Bending**

10 20 4 0.0000016 —0.0000025 0.00022

20 20 4 —0.0000025 0.0000017 0.00246

30 20 4 0.0000031 0.0000011 0.00631

 

4.0, orl
l

*Force reference = 2.0; Moment reference

larger, angle-dependent values.

**Force reference 2 0.5; Moment reference = 2/3

(applied) or angle-dependent from = l.85(30°) to 5(10°).

For results of this caliber, it is probably not im-

portant which of the many possible reference levels dis-

cussed before are used, with possible exception of the

moment imbalance for bending load. Even using the most

conservative reference level of 2/3, the applied moment,

the worst error is now less than 1% (a = 30°, 8 = 20,

Y = 4, bending). This, incidentally, is for a case show-

ing very large boundary—stress errors in Table 1. Whatever

else may be said about the precision with which the adhesive

stress curves are determined by the Ritz process, the
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overall resultants of these stresses seem to equilibrate

the input forces in satisfactory fashion.

3.2. Confirmation by the Integral

Equation Method

 

 

The approach outlined in Section 2.3 is quite com-

plex and radically different from the Ritz method. Any

reasonable degree of agreement between solutions obtained

these two ways constitutes a further useful check on the

present results. As noted before, the largest problem

which can be run in the high-speed memory of the CDC 3600

computer involves just enough boundary points to begin to

support the Ritz method. The character of the solution,

however, is such that it does not seem worthwhile to ex-

plore larger-sized problems, by attempting to utilize the

slow-speed computer memory. It appears that the integral

equation approach is more sensitive to the neglect of

wedge-corner singularities than the Ritz method.

This is seen in Figs. 10 and 11, comparing the ad-

hesive shear and normal stresses obtained by the Ritz and

the integral equation methods. Over most of the length of

the adhesive joint, the agreement is quite good. Near the

ends, the integral equation method shows large sudden de—

partures from the general trend of the curves (and from

the Ritz results). These are believed to be associated

with the neglect of stress singularities, or to treating

the sharp direction changes at the corners as continuously
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a 20°, 8 = 20, Y = 4

    

Integral Equation

  Ritz

 

 
 

  

0.30t

: i E 4

-l.0 -0.5 0 S E 0.5 1.0

Fig. 10 Shear stress (T) by Ritz and integral equation

methods.
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Fig. 11 Normal stress (N) by Ritz and integral equation

methods.
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turning tangents (which may amount to the same thing as

neglecting singularity stresses). It is considered pos-

sible (but not likely) that these effects would be reduced

if larger-sized problems could be explored. The overall

agreement is adjudged sufficient for us to be able to say

that the integral equation method does support the Ritz

method, despite the substantial differences in the two

approaches.



CHAPTER IV

ENGINEERING SIGNIFICANCE OF THE RESULTS

A considerable amount of discussion of the results

has necessarily taken place in Chapter III, with primary

emphasis on evaluating their quality. Here, attention is

centered on their physical and engineering significance.

When the scarf joint consists of elastically-dissimilar

members, which is the general case here, it becomes impor-

tant to take account of the sense of the applied loading.

Reversal of the loading may cause a numerically-smaller

stress component to become the critical one for design pur-

poses. In the following treatment of stress distributions,

we will assume that the loading is in the sense pictured

in Fig. 7, p. 26. The emphasis will then be on one set of

largest stresses, and these will form the basis for the

diagrams presented, and their discussion. If the loading

were reversed, a different set of largest stresses would

become the center of interest. This second discussion has

been omitted for brevity. The corresponding material

could be drawn from the raw data of Appendix F. When atten-

tion is finally focused on principal stresses and the design

aspects of the present results, the question of sense of

loading is taken into account properly.

107
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4.1 Adhesive Normal and Shear Stress

Distributions

 

 

The discussion here concerns the general character

of the adhesive normal stress (N) and shear stress (T) dis-

tribution calculations as a whole. Because of the large

number of cases studied, it is impractical to attempt to

plot and crossplot all of the results, and the discussion

is carried out in terms of representative sample cases.

Even here it has been necessary to reduce the presentation

of figures to a bare minimum, in order to keep the total

number within reasonable bounds.

Primary calculated results for all cases are tabu-

lated in Appendix F, and any desired crossplots may be

constructed from these. In addition, the computed Ritz

coefficients for each case are available in punched-card

form if any further processing of the raw data appears de—

sirable in the future. The stresses T and N are already

dimensionless quantities, in the sense that they are the

result of a unit applied stress. To recover actual, dimen-

sional adhesive stresses, the user must calculate for his

case the values of the parameters a, B and y. Their defini-

tions can be found in sections 1.4, 2.4 and section 4.3.

Interpolation three ways in the tables is then required.

Finally, he must multiply the tabulated values by a "load

stress." In the case of tensile loading of the joint, the

load stress is the actual tensile stress (0X0) in the
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adherends at points remote from the adhesive joint. For

pure bending, the "load stress" is the maximum value of

the bending stress 0 at remote points in the adherends

X0

(i.e., the usual "Mc/I").

This describes one use of the raw results; advice

on interpolation appears in Appendix F. For a discussion

of the physical significance of most of the data, however,

it is most useful to convert the raw dimensionless stress

distributions into an even more meaningful dimensionless

form: stress concentration distributions. A primary re-

sult of Ref. 7 is that in the case of tensile loading of a

scarf joint the adhesive normal and shear stresses are in-

dependent of adhesive properties and thickness, and uniform

along the joint. Hence they can be calculated from equili-

brium alone for each angle 6. Thus they comprise a con-

venient stress reference level for discussion of the

influence of adherend dissimilarity and other parameters--

the principal goal of this thesis. For tensile loading,

then, we take

where

sin a T = OX0 sin 6 cos a 4.1.2

are the identical-adherend results for tensile loading.

Equations 4.1.1 produce a stress concentration factor of

l, uniform along the joint and independent of the value of

B, for the case of identical adherends.



110

We continue to use the position variable "S," the

fraction of the joint half-length, to locate points along

the adhesive joint. Since the origin of the coordinate

system is fixed at the midpoint of the inclined joint

(S = 0 here), the location of (C,F) in Fig. 7 is S = -l.0,

and (D,E) correspond to S = 1.0. For bending, not covered

by prior theory, the stresses in the adhesive are neither

uniform along the joint nor linear, even for the case of

identical adherends. Moreover, even these distributions

are now B-dependent. Thus the treatment of bending does

not benefit greatly from the method of non-dimensionaliza-

tion now under discussion, and it will be handled differently.

To convert the "stress concentration factor" type

of dimensionless stress (N T0) back to dimensional form,
OI

it is necessary to multiply by NO or T as well as the
O I

II N

load stress CXO'

In discussing the results to follow, we attempt to

follow the rule that any behavior pattern pointed out holds

for other cases of similar type, unless otherwise noted.

The difference for other cases is thus one of degree, not

of general trend.

4.1.1 Case of Tensile Loading
 

Some representative samples of the adhesive shear

stress distribution TC defined in the preceding section

are plotted in the main portion of Fig. 12 (the smaller
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inset is mentioned later). This shows the stresses due

to tensile loading for scarf angle a = 10°, for B = 20 (an

intermediate level of adhesive flexibility), and for three

of the four values of the dissimilarity parameter: Y = l,

2 and 8 (essentially, ratio of adherend 2 Young's modulus

to that of adherend 1). Thus only the dissimilarity param-

eter Y changes. A curve is sometimes omitted, Y = 4 in

this case, when it is so close to another as to confuse the

diagrams. Figure 12 indicates that the shear stress is not

uniform when the adherends are dissimilar, with the depar-

ture from uniformity increasing smoothly as Y increases.

This seems reasonable on a physical basis. The omitted

curve for Y = 4 lies between the cases pictured for Y = 2

and Y = 8, but closer to Y = 8 than to Y = 2. This implies,

perhaps, that Y = 8 is probably rather near the limiting

case Y = m (adherend 2 "rigid"). Note that the largest

stress concentration factor is about 1.35, for Y = 8.

The largest shear stress for all cases of ten—

sile loading follows the pattern shown: it is always at

S = -1. This can be supported by physical reasoning, be-

cause of the simple model adopted here for adhesive

strains in terms of relative displacement of the ad—

herend-adhesive interfaces. At S = -l, adherend 2

has its smallest stiffness, because it has a sharp point.

It therefore deforms very readily. In the same region, ad-

herend 2 is at its stiffest and deforms less readily, by
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contrast. The situation is geometrically identical but

elastically different at the other end. Since the adhe-

sive acquires stress on the basis of relative displacements

of adherends, it follows that the local stiffness of tip

regions dominates end-region stress generation in the adhe-

sive. Flexible tips yield readily if the opposing member

displaces, and do not allow the local relative displacement

to become very large. The tip of adherend 2 is the stiffer

one whenever Y > 1, since Y = E2/E1 (essentially). Hence

the largest shear stresses are invariably found at this tip,

or S = -1. This reasoning should apply to bending load as

well as tensile load, and it is offered to account for the

asymmetry of the adhesive stresses when the adherends are

dissimilar. A few exceptions are discussed later, in con-

nection with bending load cases.

The same pattern is observed with a relatively more

flexible adhesive (8 = 100), except that there is much less

stress concentration and the adhesive shear stress is al-

most uniform along the joint for all values of y: TC 2 1.

This behavior is found in all prior studies of the stresses

in adhesive joints: a very flexible interlayer permits

smooth and uniform load transfer. On the other hand, a

relatively stiff adhesive layer (B = 4) results in a sub—

stantial exaggeration of the trends of Fig. 12, with the

largest shear stress concentration factor (for Y = 8) reach-

ing 1.84 at the same scarf angle. This number comes from

the tables in Appendix F, and can also be deduced from
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the small inset diagram in Fig. 12. The latter shows how

the maximum shear stress (TC)max’ which always occurs at

S = -l.0, varies with dissimilarity Y for the fixed value

8 = 20 of Fig. 12. Also shown are the behavior of (TC)max

for the other values of B at the same scarf angle, a = 10°.

This simply restates the foregoing discussion pictorially,

for the special case of the largest shear stress. The

similar diagrams which obtain for the other scarf angles

all appear in Fig. 13.

If dissimilarity Y is held fast, adhesive shear

stress concentration drops off rapidly with increase in

adhesive flexibility, B. This is seen in Fig. 14, for

a = 10°, Y = 4, and B = 4, 20, 100. No inset diagrams of

(TC)max are used here, because the rapid drop off of the

maximum shear stress with B is readily visualized from the

inset of Fig. 12 and the four parts of Fig. 13.

Figure 15 shows what happens to the adhesive shear

stress distribution T for intermediate B(=20) and Y(=4),C'

when the scarf angle a is varied. It is found that stress

concentration increases smoothly but suddenly when a is

reduced below 20° (30° and 40° curves conform to the pat-

tern, but are omitted for clarity). Remember, however,

that the absolute value of the shear stress T becomes very

small as a is made small. Therefore, the stress concen-

tration factor TC of about 1.59 for a = 5° is applied to

a reference stress of small magnitude, T0 = sin 6 cos a.
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This means that the halving of angle a from 10° to 5° has

a much larger effect on the stress magnitudes than the

change in local end-stress concentration from 1.59 to 1.28

exhibited at S = -1.0. Within the "manufacturable" range,

we are always gaining ground if we reduce the scarf angle,

apparently. Figure 15's trend applies to all other cases

of a-variation at constant B and Y. The inset diagram of

Figure 15 shows some typical variations of (TC)max with a,

for the constant B and Y of the main part of the figure,

and the two other sets of B and Y which give the worst

shear stress concentration in tensile loading.

The most obvious feature of the adhesive normal

stresses of Fig. 16 is their wavy pattern (case of a = 10°;

8 = 20; Y = 2,4,8). This phenomenon has been observed in

the results of prior studies21 and probably arises from the

very nature of the model used for the adhesive. The latter

has been treated as an elastic foundation. It is well

known that a uniform beam on an elastic foundation (which

adheres when the beam attempts to lift) will exhibit a

damped sinusoidal displacement pattern if the foundation

modulus is large enough. The present problem is complicated

by the fact that the "beams" are tapered, but this explana-

tion appears to account for the wavy distribution of normal

stress. When the "foundation modulus" decreases (B in—

creases here), the waves become longer and the effect less

noticeable. However, when 8 = 4 the waves shorten and the
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normal stress oscillates very rapidly. This occurs to such

a degree that high-order polynomial interpolation in the

stress distribution tables of Appendix F is sometimes re-

quired, because the 21 points at which the adhesive stresses

have been tabulated are not always sufficient to define the

normal stress curve properly for the user. Waviness is not

observed in shear stress distributions. A crude explanation

is as follows: Shear stress is governed by "axial" displace-

ment of the tapered adherend "beams" or, in another analyti-

cal formulation, by second-order differential equations for

displacement. Normal stress is governed by the bending of

these "beams," i.e., by fourth-order differential equations

in displacement. The latter can be expected to show damped

quasi-sinusoidal waves.

The dimensionless presentation of Figure 16, p. 117,

hides the fact that the normal stress is much smaller than

the shear stress when a is small, as in the 10° case plotted.

It should also be observed that increasing dissimilarity

(Y) causes an increase in the largest values of normal stress

(wave amplitude). Figure 16 also illustrates the difficulty

of stating where the peak normal stress is found. Often it

is at or near S = -1, but a secondary peak occurs in the

ranges S = 0 to 0.4 (considering all results, not just those

pictured). In many cases the differences between the peaks

are so small that imperfection of convergence, or even the

estimated roundoff error in the calculations, could affect
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In othera decision as to the location of Nm or (NC)
ax max“

cases, Nmax can be located fairly distinctly. For the

large value 8 = 100, the normal stress is often so nearly

uniform that the location of a peak value is of no great

significance.

For practical stress calculations, the significant

factor is the adhesive combined-stress situation. This

resolves the difficulty, because the relatively large ad-

hesive shear stress usually dominates all types of combined

stress of engineering interest, and its location is always

at S = -l. The uncertainty in N x does complicate any at—
ma

tempt to crossplot normal stress maxima. To aid the user,

Appendix F has an auxiliary table giving the values of

N .
max

The inset diagram in Figure 16 shows a plot of

(NC)max as a function of dissimilarity Y, for the values

8 = 20 and a = 10° governing the main part of the diagram.

Also shown is the curve for B = 4 (B = 100 is close to

NC 5 l, and is omitted). Remember that NC.has been nor-

malized with respect to N0 = sin 2 a, which tends to distort

the fact that 5° cases exhibit absolute stresses basically

l/4 as large as 10° cases (ignoring the stress concentration

effects exhibited in the inset). Values of (N are
C)max

plotted without regard to location S. Figure 17 furnishes

the same information as the inset diagram just mentioned,

for the other four scarf angles.
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Figure 18 shows (for fixed a = 10° and Y = 4) the

expected result that the normal stresses become much more

nearly uniform as adhesive flexibility B is increased.

Finally, Figure 19 shows that normal stress "waves" acquire

increasing amplitude (at constant B = 20, Y = 4) as scarf

angle a is reduced below 20° (same behavior as adhesive

shear stress). The 30° and 40° angles are scarcely distin-

guishable from N = l on this scale. Note once again that
C

the absolute stress level N goes down with a as sin2 a, so

that the modest effect of increasing stress concentration

is normally overwhelmed by the gross decrease in magnitude.

For example, the 5°, 10° and 20° intercepts on an N basis

(not N as in Figure 19), are actually 0.01201, 0.03881,C'

0.12285, respectively, from the tables in Appendix F. The

30° and 40° results are 0.25024 and 0.41293. Thus the

stress concentration type of presentation in this case re-

veals the increased amplitude of oscillation with decreas-

ing a, but distorts the picture of the magnitude of the

stresses.

Before going on to the discussion of the sample

bending load cases, one additional set of results is pre-

sented, for the case of the butt joint in tension (0 = 90°).

This puts in perspective the enormous influence which the ad-

hesive's relatively large flexibility exerts in the case of

metal-to-metal bonds. Figure 20 shows the adhesive normal

stress in a butt joint for the stiffest adhesive considered
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(B = 4), and the case of identical (Y = l) and maximally-

dissimilar adherends (Y = 8). It is apparent that the two

extremes differ very little. The comparatively flexible

adhesive readily accommodates the different lateral con—

tractions of the equally—stressed adherends, and indeed,

Figure 21 shows that it acquires very little shear stress

in doing so; the shear stresses are nearly linear functions.

This diagram covers the same two cases as Figure 20. Here

it is necessary to plot dimensionless shear stresses T

(actual magnitudes for adherend tensile stress = unity),

rather than T since T0 = 0 in this case. The latter isC’

the curve labeled Y = 1. Symmetry dictates that the adhe-

sive shear stress be an odd function of S for the butt

joint, and the normal stress an even function. It is easily

verified from first principles, by consideration of the

lateral displacements of the two axially-loaded adherends,

that this very small shear stress is of the correct order

of magnitude.

In view of the results, it is probably sufficient

to simply state here the maximum shear and normal stresses

for the butt joint cases omitted from the diagram (0 = 90°,

8 = 4):

Y = 2 : leaxl = 1.0011 leax‘ = 0.0126

at S = :1

Y = 4 : leax' = 1.0027 leaxl = 0.0196
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4.1.2 Case of Bending Load
 

The general conclusions from Chapter III are that

the Ritz method (as used here) finds adhesive normal

stresses with less certainty than shear stresses, and con-

verges better for tensile load than bending load. The

confidence level is therefore high for all tensile loadings,

especially in the shear stresses, which are the most sig-

nificant ones. It is less high for bending cases, particu-

larly for normal stresses. The discussion of the latter is

somewhat more tentative, because some of the trends observed

may be fictitious due to incomplete convergence.

4.1.3 Identical Adherends in Bending
 

Even for identical adherends (Y = 1) in pure bending,

we still have a two-parameter family of results to consider.

Adhesive flexibility (B) and scarf angle (a) are the param-

eters. The corresponding adhesive stresses must be plotted

as T- and N- type rather than as the more instructive con-

centration factors. This is because, unlike the case of

tensile loading, there is no analytical solution other than

the present one to serve as a reference level. To obtain

true, dimensional stresses from the figures to follow, or

the tables of Appendix F, multiply by the "load stress" OX0

of Section 4.1: the adhesive shear and normal stresses

tabulated and diagrammed are based on an outer-fiber bend-

ing stress ("MC/I"), remote from the joint, of unity. The
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bending moment per unit width of adherend, in the sense of

Figures 6 and 7, is then 2/3.

Eigure 22 shows the adhesive shear stress T for a

bending case with a = 10°, Y = 1 (identical members), and

B = 4, 20, 100. The roundoff error level seems to affect

about one unit in the fourth decimal place, or less, re-

gardless of the magnitude of the stress. A typical value

at S = 0, where an odd function should be zero, is 1(10-4)

units on a reference scale of unit applied stress. (This

is not bad roundoff for "one—pass" solution of 177 equa-

tions.) Within this error level, the tables and the figures

indicate that these stresses are odd functions of the dis-

tance parameter S. The odd property can also be deduced

from a consideration of the symmetries of the identical-

adherend case. It is evident that these stresses are not

linear functions of S, in general, but this was not really

to be expected, despite the linearity of the applied bend-

ing stress.

The shear stress maximum is always at S = :1. The

expected decrease of stress level with increase of adhesive

flexibility (8 increasing) is evident. It is interesting

that the stiffest adhesive (8 = 4) represents the straightest

line. It may be speculated that as the adhesive becomes

very stiff, the identical-adherend configuration approaches

the state of a single uniform beam, with the adhesive in-

terface behaving like the imaginary line one passes to
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calculate stresses under rotation of axes. That is, the

adhesive is "not there," and the stresses can be calcu—

lated from simple beam theory. This may not be too far

from the true situation when 8 = 4, for small angles 0,

since the largest shear stress (at S = :1) is 80% of the

theoretical value sin 0 cos a which one would calculate

from beam theory. As another indication that the present

physical interpretation may be a good one for a "stiff ad-

hesive," the tangent to the B = 4 curve of Figure 22, as

estimated over the interval 5 = -0.1 to S = 0, would pro-

ject to S = -l.0 as an intercept of 0.144. The value of

sin 0 cos a for a = 10° is 0.171. The behavior of the

normal stress distributions also supports this interpreta-

tion; these are discussed later. However, this explanation

must not be pushed too far, because there may be some ques-

tions about the validity of the adhesive model when the

adhesive is anything but relatively "flexible."

All identical-adherend shear stresses in the bending

case follow the general pattern of Figure 22, but the level

of stress changes with angle 0. Indeed the inset diagram

in Figure 22 shows that the maximum shear stress (at S = :1)

goes up with a and then falls off, if 8 is small to moderate,

but decreases uniformly with a if B is large (100, very

flexible).

The adhesive normal stress pattern for identical

adherends (Y = 1) also shows the odd-function behavior
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expected from symmetry. Otherwise, it is difficult to make

general statements about N, since the pattern keeps chang-

ing with the parameters. The explanations given below,

however, seem to account well enough for the calculated

behavior.

Figure 23 shows the normal stresses N for a = 10°;

Y = l; B = 4, 20, 100. Here the stiffest adhesive (8 = 4)

shows no oscillation, and the most flexible the largest

wave amplitudes. One would usually expect the "elastic

foundation" (adhesive) to be associated with shorter, larger-

amplitude waves as it gets stiffer, but the opposite trend

is seen here. In this case the maximum normal stress occurs

at the ends S = :1 for B = 4 only; it is found in the in-

terior for the other values of B.

It is likely that the oscillations of Figure 24 are

not solely related to the idea of a beam on an elastic

foundation, but that other mechanisms are also involved.

The following is offered as a possible interpretation of

the behavior observed. As in the case of the shear stresses,

for B = 4 (relatively stiff adhesive) the joint is not far

from being vanishingly thin and infinitely stiff (B = 0),

which we interpret as being the case of the homogeneous,

joint-free beam. In the latter situation, the "adhesive"

normal stress, calculated from elementary theory, should

be linearly distributed and have the largest value sin2 a

for the present unit "load stress." When 8 is allowed to
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have a finite elasticity, we must consider the mode of de—

formation of the adherends and adhesive. The adherends

are regarded as tapered beams in this argument, and since

they taper to a point, their bending stiffness drops off

rapidly as the tip is approached. In the vicinity of a

tip, the adjacent adherend beam has its maximum section

and is therefore very stiff. Adhesive normal stress is

developed by relative transverse displacement of the two

beams, one locally very stiff and the other very flexible.

When the adhesive itself is nothing but an imaginary line,

the linear stress distribution is of course transmitted

without difficulty. But when a flexible adhesive is pre-

sent, it is incapable of actually transmitting a linear

stress variation. This is because the beam tip is too

flexible to offer enough resistance to its full share of

the normal stress, precisely at the point where the latter

tends to take on its largest values. It is simply too com-

pliant, and displaces too readily. Relative to the stiff

adjacent member, the corresponding adhesive interface is

not displaced as much as a linear distribution of stress

would demand. Thus the normal stress simply falls off from

the sin2 a value. To satisfy moment equilibrium, a read-

justment of the adhesive stress distribution must take place.

It acquires larger values than the linear distribution in

the interior region of the joint, to compensate for the

dropoff at the tip. Following up on this model a little
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further, the more flexible the adhesive, the smaller the

normal stress which the joint end is likely to experience.

Loosely speaking, a softer "spring" (the adhesive) cannot

develop a given level of stress near the tip without de-

forming the tip more, which in turn requires higher trans-

verse stress level. Instead, the actual stress developed

falls off as adhesive flexibility 8 increases. The argu-

ment fails when the scarf angle increases to the point that

the elastic solids become compact bodies rather than slender

tapered beams. Then the load should be transferred as if

the two adherends were rigid bodies, at least when the ad—

hesive is very flexible. It follows that we should find

the adhesive normal stress almost linear along the joint,

at large scarf angles and large B. The transitional be-

havior from one model to the other should be smooth and

gradual.

This interpretation is supported by the relative

positions of the curves, and the calculated numbers. For

the stiffest adhesive in Figure 23 (B = 4), sin2 10° =

0.03022, yet the value of Nmax at S = -l is the somewhat

smaller 0.0252. To compensate for this, the convex-up

shape of the curve for B = 4 must develop. It starts out

from S = 0, where N = 0, with a slope which would project

to S = -l at a value Nmax = 0.045 (based on the interval

S = 0 to S = -0.1).
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Considering these data, the present argument implies

that B = 4 is not too far from the "rigid" condition, as in-

dicated at the start of the discussion. For the much greater

adhesive flexibilities B = 20 and B = 100, the effect des-

cribed should be increasingly exaggerated, and the central

region of the joint must transmit an increasing proportion

of the overall bending moment. In addition, as the value of

8 increases, the intercept at S = :1 drops off. The fore-

going mechanism, of itself, may or may not be sufficient to

make the maximum normal stress actually occur toward the

interior of the joint as adhesive flexibility increases.

It does seem sufficient to account for the curve for B = 4

in Figure 23. There is another mechanism operating which

may also have an effect: the "beam-on-an-elastic-founda-

tion" idea. The oscillatory behavior of the curves for

B = 20 and B = 100 may be associated with a superposition

of these two mechanisms.

The picture for a = 5° (not shown) is entirely

consistent with the first explanation attempted above, but

in this case there is also a very clear-cut indication of

wavy behavior in the curves for B = 20 and B = 100. As

the scarf angle increases, the adherends become less and

less like tapered beams. At a = 20° there is only a small

tendency for the curve for B = 4 (not shown) to exhibit

oscillations, and little evidence of it for the other

values of B, or for any values of B at larger scarf angles.



133

Where one would expect to see wavy behavior and it does not

actually occur, this may be due to a coincidence of param-

eters, a special gradient of the normal stress, or some

aspect of symmetry. It is later found that identical-

adherend cases often do not show expected oscillations, but

that the introduction of some dissimilarity brings them out

strongly.

Besides attempting to account for the shapes of the

calculated stress distributions, there is another point to

justify this lengthydiscussion. Some sort of explanation

is demanded by a situation which has occurred very rarely

in the adhesive joint literature (if at all): the increase

of a stress component as the flexibility of the adhesive 8

is increased. The trend is normally the opposite. Indeed,

the usual smoothing effect of increasing 8 may have its in-

fluence here, as yet a third mechanism interacting with the

"flexible tip" and "elastic foundation" interpretations.

The fourth factor is the question of Ritz process conver-

gence, which may be significant because the adhesive stresses

in bending load are not as well determined as for tensile

load. The fact remains that (in these calculations) the

maximum normal stress does appear to increase with adhesive

flexibility in some cases, as shown in the inset diagram of

Figure 24.

Figure 24 is for a = 30°, Y = l, and B = 4, 100; the

case B = 20 is not distinguishable from B = 100 on this scale.
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The interchange of shape of the stress distributions for

B = 4 and 100, between Figures 23 and 24, is noteworthy and

in line with the expectation that as 0 increases the large-

8 curves will begin to straighten out. The interchange

mentioned is another example of the difficulty of making

general statements about the normal stresses for bending

load. For an even larger scarf angle, a = 40° (not shown),

the pattern is similar but all curves are more nearly linear

in the interior of the joint, and the maxima are closer to

the ends S = i1. In this case the stresses for B = 100 are

almost linear from end to end, with no downturn at all.

Even the B = 20 curve has begun to straighten out.

The inset diagrams in Figure 24, incidentally, cross-

plot the values of Nmax/Sin 0 against a logarithmic scale of

adhesive flexibility B, for the various scarf angles. It

would theoretically be desirable to plot Nmax/sin2 a, but

then all values lie in the range 0.77 to 1.08 and the various

curves become quite confused. A plot in the present manner

separates them well. A plot of Nmax itself shows too large

a range to appear on a single diagram, since it varies essen-

tially as sin2 a.

Before leaving the case of identical adherends, the

bending of the butt joint configuration (a = 90°) should be

mentioned. For all values of B, with these compact adherend

shapes the adhesive normal stresses are perfectly linear and

are the same as those calculated from beam theory. This is

to be expected.
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The adhesive shear stress is identically zero, as

symmetry would demand.

4.1.4 Bending Load (General Case)

Here there is a full three-parameter family again:

a, B, Y all vary. Figure 25 illustrates the variation of

the shear stress for a = 20°, 8 = 20, and Y = l, 8. The

curves for Y = 2 and 4 fall smoothly between the Y = l, 8

values and are omitted for clarity. The stress curves be-

comes increasingly asymmetric as the dissimilarity (Y) in-

creases; it is an odd curve for identical adherends (Y = l).

The explanation of the asymmetry was taken up in section

4.1.1 and applies here also. According to the argument

there, we would normally expect the shear stress to be

largest at S = -1. This seems to hold for most of the re-

sults now under consideration. There are, however, a few

anomalous cases where the computations find Tm x slightly
a

larger at S = +1. These all have the following character:

scarf angle a is large (30°, 40° only), and adhesive flex-

ibility B is moderate (20) or large (100). In all such

cases, the adhesive normal stress is much larger than the

shear stress and the discrepancy is very small compared to

either the "load stress" of unity or the somewhat smaller

local value of normal stress. It is therefore felt that

the argument mentioned above remains valid, but that other

factors intrude to produce an opposing effect. These could
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= o = ° . =

Tmax a 5 B = 4 T ax a 10 '@——£———

0,2.
0.2?////,,,.——

20 20

0.1‘ A 0.1

/ 100 100

\

0 L 2 4% 0 i . ‘

J Y ..4 Y 8 l. 2 4 Y" 8

_ O

TTax 0:: 309, Tmax a - 40

0.2““ 0.2: B = 4

001‘” 20 0.1.?- 20

\’
'\ _—_—

.M 100__ \- 100 l
0 ,. ‘f —+ 5 0 3 °

1 2 4 Y 8 l 2 4 Y 8

Fig. 26 Maximum shear stress (Tm X) in bending load.
a



137

include roundoff error accumulation, another physical phe-

nomenon, or more likely, a question of convergence. It

should be emphasized that the effect is very small, what-

ever the source. For example, the Appendix F tables show

(a = 40°, 8 = 20, Y = 8) T = 0.0372 at S = -l, and

T = -0.0396 at S = l, where N = -0.2526. In bending, it

is not believed likely that the stresses are always so well

determined as to make a discrepancy of 0.0024 significant.

The extra curve in Figure 25 is for the same scarf

angle of 20°, but 8 = 4 and Y = 8. It is introduced to

show that on many diagrams, the effect of dissimilarity

(Y > 1) is to produce a curve of this concave-up character.

It is also interesting that an increase in dissimilarity Y

may produce a decrease in the largest shear stress level

(as in Figure 25), or sometimes an increase, or even no

appreciable change. This is seen in the inset diagram of

Figure 25, for a = 20° and the three values of 8. Thus

Tmax decreases uniformly with increase of adhesive flexi-

bility B, but has varying behavior with change of Y. Figure

26 shows the same information as the inset diagram of Figure

25 for the rest of the scarf angles, and produces similar

conclusions.

Figure 27 shows how the maximum shear stress in

bending varies with scarf angle a. Each diagram holds adhesive

flexibility B constant, and allows dissimilarity Y to vary.

The interaction is quite complex.
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The normal stresses in bending are shown in Figure

28, for a = 10°, 8 = 20, and Y = 1,2,4,8. The curve for

Y = l was discussed in the previous section; it represents

an odd function. For increasing adherend dissimilarity,

the curves become increasingly asymmetric. For Y > 1, all

show the largest stress Nm toward the end S = -l, but
ax

still on the interior of the joint. There is strong evidence

of oscillatory behavior, of "elastic foundation" type. All

this is to be expected, in the light of previous discussion:

for small scarf angles, wavy behavior is expected; Nmax tends

to be toward S = -l with the present elastic asymmetry; and

Nmax does not appear at the end of the joint for small scarf

angles and moderate to large adhesive flexibility. The dia-

gram shows that increase of dissimilarity raises the peak

value of Nmax’ Going to a larger value of adhesive flexi-

bility (B = 100, not shown) leaves the general pattern of

stress much the same. For a stiffer adhesive (8 = 4), the

curves are slightly different in character toward S -l.

2Figure 23 shows the Y = 1 case for B = 4, and the Y

curves for this value of B are somewhat similar (i.e., mono-

tomic increasing as 5 approaches -l). The latter two show

a slight upturn toward the end, with Nmax there. Only the

case of Y = 8 shows the downturn at S = -l, with a maximum

still on the interior of the joint. The inset diagram of

Figure 28 shows how N varies with dissimilarity Y. On
max

this small scale, the curves for B = 4, 100 are hard to
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distinguish and have been omitted. The trend with Y in

this inset holds for every case tabulated, but the slope of

the curve may become very small.

If a is reduced to 5° and the "tapered beams" become

more slender, the stress distribution for the stiff adhesive

(8 = 4) and identical adherends (Y = l) is roughly linear

and shows little waviness. As Y is increased to 2, 4, 8,

violent oscillations of increasing amplitude and rather

short wavelength are superimposed upon the Y = 1 case, and

the asymmetry of the stresses increases. Also at 5°, the

wavelength of the oscillations gets longer as B is in-

creased to 20 and 100 ("foundatiod‘becomes more flexible).

All this is much as one might expect, and this further in-

dicates that the identical adherend cases (Y = 1, Section

4.1.2) which show little evidence of waviness probably do

so as a result of special symmetry or a coincidence of

parameters. For a = 20°, 8 = 4 and 20, the stress distri-

butions (not shown) also have the general character of

Figure 28, although a gradual transition to new behavior

is observable. When adhesive flexibility is increased to

8 = 100, the normal stresses have evolved until they are

quite similar to Figure 29. The latter shows the normal

stresses for a = 30, B = 20, and Y = 1,2,4,8. For large

dissimilarity y, the maximum no longer occurs on the in-

terior of the joint, and thereis little evidence of elastic

foundation waviness. There is still asymmetry for Y > 1,
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of course, and all values of Nmax occur at or near S = -1.

Some of the curves are beginning to straighten out, a trend

anticipated in Section 4.1.2 for large scarf angles a and

moderate to large B. If B is reduced to 4 (not shown), the

pattern of Figure 29 still holds. However, for B = 100

(not shown), all curves are quite close to each other for

all Y, and nearly straight, with just a small tendency to

curve toward the ends. The large scarf angle a = 40° still

shows similarity to Figure 29 when 8 = 4 (stiff adhesive).

The stresses for the case of a = 40° with B = 20 behave

much like the Y = 8 case of Figure 29, but generally

straighter and with more sudden end changes in curvature.

Finally, for a = 40° and the large flexibility B = 100, the

transition is nearly complete. All curves are nearly linear

from end to end, independent of dissimilarity Y, as befits

"compact" adherends in bending with a highly flexible ad-

hesive. These features could largely be deduced from the

general discussion of the normal stresses in the case of

identical adherends.

For the bending of butt joints between dissimilar

adherends, it is still found that the adhesive normal stress

is the linear distribution one would calculate from elemen-

tary beam theory, to four or more significant figures.

When Y # 1, small shear stresses are induced in the adhe-

sive. The distributions are self-equilibrated and even in

S, as demanded by considerations of symmetry in geometry
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and loading. The largest such value found (8 = 4, Y = 8),

at S = i1, is 0.00851 for the unit "load stress" in bending.

Some of the other values of T are:

max

8 Y T
__ __ max

4 4 0.00725

4 2 0.00477

20 8 0.00178

20 4 0.00152

100 8 0.00036
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4.2. Adhesive Combined Stresses
 

Since the adhesive is in a known state of combined

stress (shear and one component of normal stress), we can

at every point find the corresponding maximum principal

stresses (N1,N2), the maximum shear stress T1’ and the

octahedral shear stress Toy' All of these are quantities

which commonly enter into engineering design criteria, in

one form or another. They are found by using the standard

relations:

 

2

 

 

 

N1 = N/2 + /QN/2)2 + T 4.2.1

N2 = N/2 - ./(II\I‘/2)2 + T2 4.2.2

T1 = f(N/z)2 + T2 4.2.3

Toy = /Q6T2 + 2N2)/9 4.2.4

The principal stress N N2 and is always the>
1:

governing tensile stress for tensile loading of the joint.

When the loading is compressive, N2 becomes the largest

tensile stress. For bending moments in the sense of Fig,

7, the N1 stress is the critical tensile value, and if the

moments are reversed, the N stress takes on this role.
2

From a design viewpoint, there is no need to examine

entire distributions of the combined stresses. Accordingly,

the largest values of the combined stresses have been ex-

tracted from the calculated distributions by suitable in-

terpolation techniques, and only these are tabulated. In
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Table 11 (next page), the signs given correspond to the

loading senses of Figure 7, p. 26. The "load stress" OX0,

labeled 00 in Figure 7, is always unity in Table 11.

The variation of the combined stresses is fairly

simple for tensile loading. Table 11 shows that all quan-

tities have the following behavior, with minor exception

ascribable to roundoff or other computational (rather than

physical) cause:

1. All increase monotonically with increase in dis-

similarity of the adherends, Y (at constant a, B).

2. All decrease monotonically with increase in adhe-

sive flexibility, B(at constant a, Y).

3. All decrease monotonically with decrease in scarf

angle a (at constant B, Y).

The last item indicates that the function of a scarf joint

is being accomplished (if the loading is tensile): as the

scarf angle decreases, the combined stresses which are

likely to be critical for failure decrease, which means

that‘more load can be applied‘for smaller scarf angles.

General statements cannot easily be made for bend-

ing load; there is a complex interaction of parameters.

To keep the length of the present discussion within reason-

able bounds, the bending problem will not be treated here.

The user may deduce all the necessary information from

Table 11.
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Table 11. --Maximum values of the combined stresses Nl T1

T0 Signs correspond to the loading sense of Fig.

7,yp. 26, with adherend 2 assumed to be the stiffer

one.

Tension Bending

a B Y N1 -N2 Tl Toy N1 -N2 T1 Toy

5 4 1 0.0907 0.0831 0.0869 0.0710 0.0853 0.0853 0.0818 0.0668

2 0.1450 0.1331 0.1390 0.1135 0.1318 0.1239 0.1278 0.1044

4 0.1971 0.1820 0.1895 0.1548 0.1745 0.1672 0.1708 0.1395

8 0.2343 0.2226 0.2284 0.1865 0.2061 0.1970 0.2015 0.1646

20 1 0.0907 0.0831 0.0869 0.0710 0.0728 0.0728 0.0670 0.0571

2 0.1215 0.1103 0.1159 0.0947 0.0921 0.0858 0.0889 0.0726

4 0.1440 0.1320 0.1380 0.1127 0.1040 0.0957 0.0998 0.0815

8 0.1591 0.1492 0.1541 0.1259 0.1085 0.0979 0.1032 0.0843

100 1 0.0907 0.0831 0.0869 0.0710 0.0469 0.0681 0.0457 0.0373

2 0.1041 0.0953 0.0997 0.0814 0.0485 0.0447 0.0466 0.0381

4 0.1127 0.1037 0.1082 0.0884 0.0468 0.0416 0.0442 0.0361

8 0.1188 0.1090 0.1139 0.0930 0.0415 0.0385 0.0400 0.0327

10 4 1 0.1868 0.1566 0.1717 0.1404 0.1557 0.1557 0.1431 0.1170

2 0.2532 0.2133 0.2332 0.1907 0.2034 0.1699 0.1867 0.1526

4 0.3035 0.2589 0.2812 0.2298 0.2341 0.1941 0.2141 0.1750

8 0.3421 0.2900 0.3161 0.2584 0.2452 0.2050 0.2251 0.1840

20 1 0.1868 0.1566 0.1717 0.1404 0.1080 0.1080 0.0990 0.0809

2 0.2171 0.1826 0.1999 0.1634 0.1142 0.0940 0.1041 0.0851

4 0.2384 0.1996 0.2190 0.1791 0.1095 0.0931 0.1013 0.0828

8 0.2538 0.2102 0.2320 0.1897 0.1048 0.0878 0.0941 0.0769

100 1 0.1868 0.1566 0.1717 0.1404 0.0464 0.0463 0.0425 0.0348

2 0.1968 0.1649 0.1808 0.1479 0.0514 0.0406 0.0380 0.0310

4 0.2025 0.1696 0.1861 0.1521 0.0536 0.0356 0.0332 0.0290

8 0.2051 0.1729 0.1890 0.1545 0.0573 0.0325 0.0335 0.0295

20 4 1 0.3852 0.2682 0.3267 0.2681 0.2443 0.2442 0.2067 0.1697

2 0.4519 0.3132 0.3826 0.3141 0.2618 0.1857 0.2238 0.1836

4 0.4979 0.3435 0.4207 0.3454 0.2710 0.1837 0.2245 0.1843

8 0.5222 0.3699 0.4460 0.3659 0.2878 0.1560 0.2174 0.1799

20 1 0.3852 0.2682 0.3267 0.2681 0.1463 0.1463 0.1013 0.0841

2 0.4076 0.2842 0.3459 0.2839 0.1537 0.1197 0.0976 0.0835

4 0.4183 0.2955 0.3569 0.2928 0.1645 0.1043 0.0978 0.0856

8 0.4218 0.3042 0.3630 0.2977 0.1875 0.0966 0.1052 0.0942

100 1 0.3852 0.2682 0.3267 0.2681 0.1028 0.1028 0.0548 0.0501

2 0.3901 0.2726 0.3314 0.2720 0.1121 0.0901 0.0585 0.0540

4 0.3923 0.2753 0.3338 0.2739 0.1317 0.0831 0.0676 0.0630

8 0.3932 0.2768 0.3350 0.2749 0.1572 0.0797 0.0796 0.0746
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Table 11 Continued.

Tension Bending

a B Y N1 -N2 Tl T0y N1 -N2 Tl T0y

30 4 1 0.5758 0.3257 0.4507 0.3727 0.3140 0.3140 0.2253 0.1873

2 0.6256 0.3566 0.4911 0.4060 0.3391 0.2526 0.2285 0.1926

4 0.6494 0.3821 0.5756 0.4257 0.3704 0.2150 0.2320 0.1998

8 0.6554 0.4046 0.5300 0.4367 0.4317 0.1947 0.2500 0.2214

20 1 0.5757 0.3257 0.4507 0.3727 0.2256 0.2255 0.1258 0.1129

2 0.5882 0.3363 0.4623 0.3821 0.2480 0.1949 0.1333 0.1215

4 0.5935 0.3432 0.4683 0.3869 0.2934 0.1778 0.1527 0.1412

8 0.5955 0.3475 0.4715 0.3894 0.3410 0.1693 0.1742 0.1625

100 1 0.5757 0.3257 0.4507 0.3727 0.2108 0.2107 0.1066 0.1000

2 0.5783 0.3282 0.4533 0.3748 0.2457 0.1950 0.1235 0.1161

4 0.5795 0.3296 0.4546 0.3758 0.2681 0.1868 0.1344 0.1265

8 0.5801 0.3303 0.4552 0.3763 0.2804 0.1826 0.1405 0.1323

40 4 1 0.7406 0.3274 0.5340 0.4467 0.4109 0.4109 0.2490 0.2167

2 0.7683 0.3476 0.5580 0.4662 0.4523 0.3445 0.2598 0.2306

4 0.7791 0.3636 0.5713 0.4766 0.5286 0.3047 0.2874 0.2608

8 0.7820 0.3750 0.5785 0.4820 0.6146 0.2837 0.3221 0.2970

20 1 0.7406 0.3274 0.5340 0.4467 0.3506 0.3506 0.1816 0.1683

2 0.7470 0.3334 0.5402 0.4517 0.4109 0.3160 0.2090 0.1954

4 0.7499 0.3369 0.5434 0.4542 0.4595 0.2977 0.2318 0.2176

8 0.7511 0.3389 0.5450 0.4555 0.4882 0.2884 0.2455 0.2308

100 1 0.7406 0.3274 0.5340 0.4467 0.3905 0.3905 0.1956 0.1843

2 0.7419 0.3287 0.5353 0.4478 0.4133 0.3786 0.2069 0.1949

4 0.7426 0.3294 0.5360 0.4483 0.4256 0.3724 0.2129 0.2007

8 0.7429 0.3298 0.5363 0.4486 0.4319 0.3693 0.2161 0.2037
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4.3. Construction of Designgurves for

Scarf Joints with LinearlyeElastic

Adhesives

 

 

If the adhesive is assumed to fail when a certain

combined stress attains some specified allowable value,

presumably determined empirically, it is possible to use

Table 11 in design. Let 2a be this allowable stress, whether

it is a maximum normal stress, a principal shear or an

octahedral shear. Designate the four combined-stress quan-

tities in Table 11, collectively, by Ncom‘ It is up to the

user to decide which "law of failure" he wishes to select,

and to determine the appropriate value of 2a for his chosen

law. Recall that the "load stress" 0
X0

tensile stress for tensile loading, or the maximum bending

is the actual applied

stress ("Mc/I"). Since Table 11 is constructed for OX0 = 1,

when the adhesive combined stress is equal to the "allowable"

we must have

2a = OXONcom 4.3.1

Since 2a is a known constant, the external loading 0 which
X0

the designer is allowed to introduce can be computed from

this equation. A dimensionless load quantity, convenient

for design, is

2 = oxo/Xa = l/Ncom 4.3.2

Curvesof X can readily be constructed from Table 11,

by crossplotting quantities as desired. It is always
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necessary to interpolate three ways in a, B, Y, since we have

tabulated a three-parameter family. Some sample "design

curves" are shown in Figure 30 for tensile loading. In one

diagram, N = Ncom 1’ in a second, NCom = N2; etc. The values

actually plotted are not 2 but 2 sin 0, since these particu—

lar samples are plotted against scarf angle a. The a-

dependence of 2 is such that the curves plot over a convenient

range of ordinates when multiplied by sin a or sin 0 cos a.

The parameters chosen represent a random sampling. Note

that all cases of Y = l are independent of B, a result from

Ref. 7. For actual design use, more extensive families of

curves would be needed, and systematic interpolation schemes

are necessary. It may prove simplest to interpolate directly

in Table 11, and not work with design curves at all.

For bending load, some of the curves can be plotted

on the sin OL/NC m basis of Figure 30, and others cannot, de-
0

pending upon the parameter values. The large-'8 cases in

particular show a very large peak near a = 10-15°, shifting

toward 20° for intermediate values of B. This implies that

certain scarf angles should be favored by designers in par-

ticular flexibility ranges. The device of using a log-log

scale permits a smoother plot with all curves treated on

the same basis; further study would probably reveal an even

better device. A few samples of the log-log plot for bend-

ing load are shown in Figure 31, for two failure criteria.
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The discussion of design is an appropriate place

to review the use of both Table 11 and the primary results

of Appendix F. It is necessary to align the geometry and

loading so that it coincides with Figure 7, p. 26, with

adherend 2 made the stiffer one. All tabulated quantities

assume that the applied loading has the sense of Figure 7.

The parameters

 

E1” E (l - V2)
_ _ 2 l

Eah(l ‘ V1) E1(l - V2)

are calculated, using the actual values. Interpolation is

then carried out as needed. The tabulated values of B

(4,20,100) and Y (1,2,4,8) are uniformly spaced on a loga-

rithmic scale, permitting 3- and 4—point Lagrangean inter-

polation formulas. The angles a = 5, 10, 20, 30, 40° permit

linear interpolation (omit 5°) or logarithmic interpolation

(omit 30°) by 4-point formulas.

The Poisson's ratios 01 = v = 0.3, together with
2

the ratio Ea/Ga = 8/3 (implying an adhesive Poisson's ratio

of 1/3), are inextricably incorporated into the Ritz matrix

and thus into all the results. To this extent the user

cannot make any adjustments. No calculations have been

performed, but the errors are not believed to be very large

if the user's Poisson's ratios differ slightly. To the ex-

tent that Poisson's ratio affects Y and B, it can be accounted

for exactly.
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CHAPTER V

CONCLUSIONS AND SUGGESTIONS FOR

FURTHER RESEARCH

5.1. Conclusions
 

The Rayleigh-Ritz method, all in all, appears to

have handled the present complex problem with quite good

results for the case of tensile loading, and fair to good

results for most of the bending load cases. It has been

possible to account for many of the phenomena observed in

the calculations by physical arguments, and the large range

of primary variables explored is probably adequate to give

the user a good idea of the overall adhesive stress distri-

bution for any case encountered in practice. The results

are valid for a linearly elastic adhesive only, but there

are enough adhesives for which this is a fair approximation

to make the present results useful. How to employ these

results in design has been outlined in sufficient detail

that the next stegsrequired are well within the grasp of

most stress analysts.

While most of the practical information a user

needs has been tabulated and analyzed here, any additional

data desired in the future may be calculated from the basic

154
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Ritz matrix coefficients for the two types of loading con—

sidered. The latter are available in punched-card form.

The computer program in Appendix G can be used for further

studies along the present lines, and with minor changes can

cope with other types of loading. It is easily possible to

alter some of the geometric assumptions about the shape of

the adherends.

The nature of the results indicates a large stress

disturbance in the adherends, at the ends of the scarf joint.

The singularities characteristic for the adherend shapes

have been activated by a formulation of the problem which

introduces a finite shear stress on the inclined adhesive

interface, but leaves the top and bottom adherend faces

("around the corner") stress free. Some alternate formula-

tion, which avoids this difficulty in a manner consistent

with the way scarf joints are actually manufactured, would

probably greatly improve the rate of convergence of the

Ritz method.

5.2. Future Research
 

Several interesting possibilities can be explored

within the present framework; these were not studied here

to keep the amount of computer time within reasonable

bounds. One useful item would be to examine the effects

of varying the Poisson's ratios of adherends and adhesive.

A few additional cases might also be computed to facilitate
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interpolation in the bending load problem for the smaller

scarf angles.

The most interesting research centers around the

stress singularities characteristic of the adherend-adhesive

corners at the joint ends. If these can be correctly de-

duced, it seems likely that the Ritz method's convergence

could be greatly accelerated, and far fewer equations would

be required to calculate any given case. This would open

the possibility of dispensing entirely with design tables

and curves. It would also make the Sherman-Lauricella in-

tegral approach a practical computing tool for this problem.

Another interesting study would circumvent the prob—

lem of stress singularities entirely, and yet still be a

practical computing tool for scarf joints in the practical

(lo-30°) range of scarf angles. This would be to treat each

adherend as a beam of variable cross section, in extension,

bending and shear. The adhesive model could be the same as

at present, and there would be little difficulty in allow—

ing for the component of adhesive normal stress not considered

here, in the simpler proposed problem. The latter could be

tested against the present results to delimit its range

of validity. An additional consideration motivating this

study is the following: it would be highly desirable to

have available a workable, simpler model of the scarf joint

for the purposes of studying adhesives with complex rheologi-

cal behavior.
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APPENDIX A

FORMULATION OF THE EXPRESSION FOR TOTAL

POTENTIAL ENERGY

For the case of plane stress, the strain energy per

unit width in each adherend takes the standard form

(1 = 1,2):

= H:—
2(l - v.i) A.

 

2 (avi 2 ani avi

+ _By + 2"1 _3x —ay

 

2

1

l - v. Sui avi

+

where A1 is the area of the ith adherend, the EJ.- and vi

are the usual elastic constants, and the ui and the vi are

(respectively) the x- and y- components of displacement.

The total potential energy of the scarf joint is

0 = U + U + U + W A-2

51 52 sa

I

where Usa = strain energy of the adhesive film

I

W = potential energy of the external forces

The strain energy of the adhesive is derived in Section 2.2.
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+h

1 2 . 2 2.
' =_ -Usa 20 sin a j:h [(ul u2) (Ea Sin 0 + Ga cos a)

+ ( - )(E 2 G ' 2 + 2( )(v1 v2 a cos a + a Sln 0) ul - 112 v1

- v2) Sln 0 cos 0 (Ga - Ea)] dy A-3

The only nonvanishing external loading consists of the pure

tensile or bending stress 0x(ic,y) on x::tc = ih(2 + cot a),

the extreme ends of the joint (Fig. 7, p. 26). The poten-

tial energy due to loading is thus

h h

W = ej:h 0X(c,y)u2(c,y)dy +-j:h 0X(-c,y)u1(-c,y)dy

A-4

This accounts for all terms needed for equation A-2, which

is the same as 2.2.13. Using the nondimensionalization of

2.2.14, the dimensionless total potential energy w of

2.2.16 is produced.



APPENDIX B

GENERATION OF RITZ EQUATIONS

The total potential energy expression in its dimen-

sionless form is given by equation 2.2.16, p. 39. The four

principal equations are derived from the following four

relations

 

 

 

  

§A_—_'— o B - 1

m,n

8w _ _
3B - 0 B 2

,n

8w
= 0 B - 3

BCm'n

3w
8D - 0 B - 4

,n

Note that Ul contains only Am,n' V1 contains only Bm,n' U2

only Cm,n and V2 only Dm,n°

300 f [(aul) a (3'11 (”1) a (3‘11)
=0= ——+\) .—

3Am,n 3X BAm,n 3X 1 BY aAm'n 8X

 

+

 

6U 6V 8 EU
1 l 1 1

'2- (1 ‘ Vl’(—ay + 'a—x" m— ('07-'de dY
m,n

+
-

-
-_1 H1(U1 U2) 5r— H2 (V1 V2) F—A ]dY

m,n m,n
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2 1 3U1(-C,Y)

+ (1 - 01).]:1 00(y) 3A dY B-5

m,n

 

Here and below, Q) and ® indicate integrations over ad-

3,n (:Zl)+ “1(xfi)n(§‘£

herends l and 2.

840 = 0 ___f Ravl

33mm BY

   

  

  

8U av avl
1 1 a l

+ 2 (l V»)(a ax )%n\3x)1)]dx dY

fl 8V1 8V1

+ l Hh(Vl - V2) fi— - H2(Ul " U2) 5T— dY

- m,n mln

B-6

  
 

 

a (302)

acm’n 0x

3w =~0 = er (302) a (002)+ v (av2

acmm 8x 00mm 8x 2 BY

3U
l 2 3 2

+ f (l - v2) (3?- + 5X’ 3cm n (BY ) dx dY

I

 

 )
m,n 2 2 BCm'n

2 +1 3U2(C,Y)

- (l - 02) f 00(Y) —-— dY B-7

-1 '
BCmn

3V2 av
30) 2

0D =0=YII(W’ 3Y)+"2(:x230m)”1;”
m,n ® D,mn

dX dY

1 3U2 SUZ

+11 -H1(Ul-U2) +H(Vl-V -——dY
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[1 3V2 3V2

+ - H (V - v + H (U -U ) —————' dY
_1 h 1 m,n 2 l 2 aDm,n

B-8

Substituting the explicit double sums for U1, V and their
1

derivatives into the equation B-S, it becomes

M M-k Y cot a .

0 = [1 fc [AAk . k m Xk+m-2 Yn+3

k=0 j=E0 -1 -c '3

. k+m-l n+j-l l _ n' A .Xk+mYn+j-2

+ v1 Bk,j 3 m x Y + 2 (1 v1) 3 k,

+ 1 (1 - v ) B k n xk‘Lm‘l yn+j'l] dx dY + J’1 H (A
2 l k,j -l l k,j

k+m n+j
- C . - H B . - . X Y d +

kpj) 2( kt] Dklj)] Y

2 l m n

+ (l - v1) j’ 00(Y)(-C) Y dY B-9

-1

In all the double integrals of equation B-9, inte-

gration is carried out first with respect to X. The result

 

is

M Mk 1 km k+m+n+j-l k+m-1
= 2 Z Ak . k~+ m _ 1 Y (cot a)

k=0 j=-0 '3

n+j _ k+m-l jm [ k+m+n+j-l k+m
Y ( C) l] + v1 Bk,j k + m Y (cot a)

(l - v1) .
_ n+3 l _ k+m n3 .

Y (C) ]+——2——Ak,jk+m+1
 

k+m+1 _ Yn+j-2 k+m+l]
(cot a)

.[Yk+m+n+j-l ('C)
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(l - v ) .
l nk k+m+n+3-l k+m

+ —2—' Em W [Y “3°“ °"

_ Yn+j_l (-C)k+m] dY + jrl H (A - C )
'1 l klj klj

k+m j+n
- H B . - D . Y

2( k.) k.3)] X M

2 l m n

+ (l - v1) 1’ 00(Y)(-C) Y dY B-lO

-1

Equation B-lO is now integrated with respect to Y. The

final equation is in the form

 

 

 

M M-k

km . k+m-l
0 = Z Z A . _ [ f(k+m+n+3) (cot a)

k=0 j=0 k,j k + m I

- (-c>k”‘“‘1 f(n+j+l)]

+ v B r:m_ f(k+m+n+') (cot mkm - (-C)k+m f('+n)
l krj + m J

A J

(1 - v ) .

1 DJ f . k+m+1
+ 2 ki-m-kl Ak,j[ (k+m+n+j) (cot a)

_ (_C)k+m+l f(n+j-JJ]

(l - v )
1 kn . k+m

+.____§_._ Bk,j k + m [ f(k+m+n+j) (cot a)

- (-c>k+m f(j+n) + H (A . - c .) - H (B .
1 k1: k.) _ 2 k.)

_ Dk j)](cot a)k+m f(k+m+n+j+1)

I

+

l

(l - vi) I. 00(Y)(-C)m Yn dY B-ll

—l
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where

0

ll 2 + cot a

f(R) _ l - (-l)R = 0 : R even

‘ R Z/R : R odd

Other quantities are now defined as follows

(cot on)k+m_l f(k+m+n+j)
¢o

(cot a)k+m¢l f(k+m+n+j+1)

After rearrangement, first set of Ritz equations, corres-

ponding to B—l, becomes

 

 

  

M M-k
_ km _ _ k+m-l .

0 - E .2 Ak,j[m (‘1’0 ‘ C) f‘n+3+1’)
k—O j—O

l - v .

1 n3 2 _ _ k+m+l ._
+ 2 k-Fm4-l (¢O cot a ( C) f(n+3 14

v jm l - v 4
l 1 kn

k+m .
- (-C) f(n+3) - H2¢l - Ck,jHl¢1 + Dk'jH2¢l

2 +1 n
+ (l - v1) Jf 00(Y)(-C)mY dY B—12

-1

Equation B-12 corresponds to 2.2.19. The other three basic

Ritz equations are derived similarly. Note that the fore-

going reflects the contribution of the Am,n coefficients

to the corresponding row of the final Ritz matrix. Each of

equations B-2 through B-4 makes a similar contribution, and

these appear in equations 2.2.20-2.2.22.



APPENDIX C

SELF-EQUILIBRATED POLYNOMIAL STRESSES

In equation 2.3.1, the part (2) contribution to the

adhesive normal and shear stresses is assumed to have the

form

, K

0(2) — Z a 5m c-1
n m

m=l

K m
Tns = X bmS C-2

m=l

,n undetermined coefficients am, bm. Here S is the di-

mensionless distance along the inclined adhesive boundang

or s/h in terms of Fig. 7, and is measured from the origin

of coordinates. From the diagram cited, S ranges from

-csca to csca. The integer K must be odd.

The purpose of this derivation is to eliminate

three coefficients from the set (am, bm), by enforcing the

requirement that C-l and -2 represent a wholly self-equili-

brated stress distribution. Of the three static equilibrium

conditions, the vanishing of the resultant force in the X-

direction (by integration and taking components) yields:
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csca

K m+l

m£1(am Sincx+ bm cos a) mjrl = O (m even) C-3

‘CSCG

Similarly, the vanishing of the Y- resultant gives

csca

K Sm+l

m£1(-am cos a + bm Sln a) 577I = O (m even) C-4

-csca

The vanishing of the resultant moment about the origin

produces:

CSCG

M

m

B
m H o (m odd) C-S

‘CSCG

After entering the limits, equations C-3 and C-4 may be

solved to obtain

m+lK

2 am £%§§£%—— = O (m even) C-6

m=l

K (csca)m+l
mil bm -fi—:fI——-= 0 (m even) C'7

After substitution of these two relations equation C-5

becomes

+1

2 (csca)m ‘_ 0 dd 8

an—T'T‘" (“‘0’ C“
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Equations C—6, C-7 and C-8 give the desired expressions for

 

 

eliminating aK-l’ bK-l and aK, respectively:

- - K K333 (CSCG)m-K+l C.,g

aK-l am m + l
m even

K-3 m-K+l
_ (csafi

bK-l ‘ K 2 bm m + 1 c-1o
m even

K-2 m-K

3K = - (K + 2) 2 am% C’ll

m odd

Expanding C-1 and C-2

K-2

1(2) — 2 b Sm + b SK-l + b SK c-12
ns m K-l K

m=l,2,3 ..

K—2

0(2) - a 8m + a SK.l + a SK C-l3
n m=l m K-l K

These become, after substitution from C-9, -10 and -11:

0(2) = (K'l%/2 a SZm-l _ (K + 2) 2m-K-lSK

n _ 2m-l m<csca>
m—l,2,3,...

+ (K—3 /2 a S2m _ K(caxnzm'k+lsK—l C-l4

_ 2m 2m + I

m—l,2’3,ooo

(K—3) 2

(2) (K+l)/2 2m-l / 2m

Tns = me-l S + g b2m S
m=l'2' 'ooo m=l,2' poo.

K(csca) 2m-K+l sK‘l]

- 2m + l 15

O

l

Equations C-14 and -15 are the same as 2.3.2.



APPENDIX D

DISPLACEMENT DETERMINATION FOR THE INTEGRAL

EQUATION APPROACH

The displacement components U1, V1 of the first

adherend are related to the analytic functions ¢(z), and

w(z) of the complex variable 2 = X + iY by the following

equation4

 

“'1—

Zulml + ivl) = xl¢(2) - 2¢ (2) - W(z) D-l

where

shear modulus

X1 = (3 - vl)/(l + v1) for plane stress

C ll1 Poisson's ratio

and the values of the functions ¢(z), 6(2) and W(z) are

defined below in terms of a "density function" w(t), pre-

sumed known at this stage. With the w(t) actually used,

(2)

l
the displacements calculated are the contributions U

and ViZ) of section 2.3.

 ¢(z) = 11““) ds D-2
Zni s- z
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' _ w(S) _
¢<z)—2mfs_zds D3

_ l d[ufls) l E'wks)

¢(z) - 2ni’ s-z d8 - 2niJ[ s—»z ds D-4

where all integrations are around the boundary of adherend

1. Substituting the limiting (boundary) values of the

functions ¢(z) and W(z) into equation D-l (Plemelj formulas):

 

x t '

2“1(U1 + iVl) = zéfsM-SI: ds + Ti; J h:is: d‘§

 

l w(s) d' _ s w (s) - _

+2nifs_ts Zfllf—T— d; D5

X

-

Adding and subtracting 2"1J[:(i) ds and 2%IJ[2Ktl.ds

’ s-t

  

respectively in the first and third integrals, and rearranging:

X ‘T——— _ _

2ul(U1 + iVl) = 2N%J{:€?L ds + 1%Ier (s) s E ds
g-

1 w(s) - w(t) .Xl ds

+2fif :_f +""2m::t)f—'s-t

  

 

t)
 

2%[39-3'2:—-w<t>J'—_s - ”‘6

But

 

w(t) d§ _ . _ th) ds

21d 3 ft- ‘ conlugate 0f [ W —s- t]

X1 ”(HIE—E331?

- w(t)/2 D-7

x1 w(t)/2 D-8
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]_ ' s—t—_ 1 . ' g-E

'mw(S)—-Eds— mconjfw(5)§T_t'ds

D-9

The terms of equation D-9 reduce, upon integration by

parts, to

  - —l+ con' E - E w(s)
2 3 s - t

 

_1 7—3- E-‘t‘ _
—-2—TT-i-J’ws (1(a) D10

since the first term vanishes. Let

  

s - t = re16

5 - E = re-16

5 ' E = e216 ; d i ' E =12e21ede
s - t s - t

The term in equation D-lO now becomes

%fw(s) e216d6 D-ll

But, from the basic integral equation of the problem, 2.3.14,

the expression of equation D-ll is also

1
w(t) + ?J{w(s)d6 - f(t) D-12

Upon substitution of relations D-7, D—8 and D-12 into equa-

tion D-6,



173

  

X
_

2u1(Ul + ivl) = 1 ”(5) ' w(t) d5 + 1 ‘[w(S) - w(t) ds

Zfiif s - t 2ni §'_‘E §¥E

+ %:[w(5)d6 - f(t) +%Xlw(t)+'%uflt) 0‘13

now write

w(s) = p(s) + iq(s) D-l4

and convert the integration in 6 to s by the relation

 

-36. _
de—FS-ds D15

Since4

33 = cos d

as r ’

d6 = COS a ds D-l6
r

where a is the angle between the vector 5 - t and the out-

ward normal at s (unrelated to the scarf angle a used

elsewhere).

After substitution of D—l4 and D-l6, equation D-13

becomes

X

2u1(Ul + iVl) = 32—13%] [9(8) - P(t)] + i[q(5) " q(t)] s-t
 

ds

3-3
Z—i—i—f [p(s) - p(t)] + itq<s> - q(t)]  

+ %;[[p(s) + iq(s)] £2%_3 ds +%xl[P(t)4-iqfifl]

4-%[:;Kt)+ iq(t)] - fl(t)- if2(t) D-17

For numerical integration to find the displacement components,

the boundaries AB, BC, CD and DA in Fig. 7 are divided into
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11’ 12, 13 and I4 intervals, respectively. Equation D—l7

is rewritten as a sum of integrals over each interval along

the boundary.

fl
?
“

2111(Ulj + iV .)

E . ]cos a'k

l] k=1f pk(s) +lqk(s)_—Lr.k ds - flj

J

i I

_ ' L ' _ __ ‘
lfzj +2Xl[pj + iqj] 2n kgljf [pk(s)

ds

p- +i[q<s)-q-] (x —-_--—
3] k 3 lsk tj

dE'

+ — + o + o O D-18__ t ) 35(1)J IqJ)

Sk j

where

I = I + I + I + I = total number of intervals
1 2 3 4

along the boundary of each adherend

pk(s), qk(s) = functions p(s), q(s) on the kth

interval

U -: Vlj = x,Y-displacement components of adherend
13

th
1 at j boundary node point (midpoint

of jth interval)

djk = angle between the vector sk - tj and the out-

ward normal at s

r. = S - t, ; . . = t. t.3k lk J| pjlqJ p( 3).q( 3)

Equation D-18 is symbolic of the numerical integra-

tion; the details had to be carried out differently because

of the nature of the integrand. Special treatment is
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required when k = j, and at the ends of each side of the

adherend. At all other points, the integration is by the

trapezoidal rule, from the center of each boundary interval

to the center of the next, or node to node. When k = j, the

last.integral term in D-18 is interpreted in terms of the

first derivatives of p and q (the nominal singularity is

removable). These are evaluated using a central difference

formula at the node points adjacent to 3k = tj.

For the half intervals at each end of each side,

the special treatment is as follows. Lagrange's three—

point interpolation formula is used to compute the values

of p and g at special points, such as the corners and ends

of the first and last interval along each side, in terms

of the values at the nodal points. The values of p and q

at corners of the adherend are evaluated by taking the

average of the extrapolated values for the corner from the

adjacent adherend sides. The derivative treatment is more

involved when j = k involves the end half-intervals, but

it is along similar lines.



APPENDIX E

RIGID BODY DISPLACEMENT CONSTANTS

The net displacement components U1, Vl of the first

adherend are

_ (l) (2)
Ul — U1 + U1

E-l

_ (l) (2)
V1 — Vl + Vl

where Uil), Vil) are the displacement components due to an

applied tensile stress parallel to X which is assumed to

be equal to unity, and Uiz), Viz) are the displacements due

to the self-equilibrated stresses of equations 2.3.1. In

terms of rigid translation constants C1, D1 and rotation

wl,

Um _ 1
l -EIX+Cl-wlY

E-2

\)Y

(1) __ 1
V1 — TI+Dl+w1X

The totals are thus

.1 _ (2)
Ul—E—l-X+Cl (13]_Y+U1

E-3

\)Y

__1 (2)
V1— _E +Dl+le+Vl
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An arbitrary rigid-body displacement choice is possible for

one adherend. Accordingly, adherend l is assumed not to

translate or rotate at the origin, or Ul(0,0) = O = Vl(0,0)

in equation E-3. Thus

C = - Ui2)(0,0) and D = - Vi2)(0,0)
l l

The suppression of rigid-body rotation, finally requires

ml = 0. Thus the net displacement components of the first

adherend are

- (2) x _ (2)
1 U1 4' a U1 (0:0)

_ (2) Y _ (2)
V1 — V1 - v1 E: Vl (0,0)

The displacement components of the second adherend, also

due to a unit applied tensile stress parallel to x, are'

(l) X
U2 - E; + C2 - (DZY

E-5

(1) Y
V2 V2 f; + D2 + (02X

The net displacement components of adherend 2, including

the contribution due to the self-equilibrated stresses of

equation 2.3.1 acting at the adhesive interface, can be

expressed as,

x (2)

2 E 2 “2Y + U2
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In section 2.3, it is noted that the last terms in

(2)

l
E-6 are constructed from U - Ui2)(0,0) and Viz) - Vi2)(0,0),

which appear in E-4. Actually, these expressions are sym-

bolic; the displacements in question are related by a numer—

ical matrix to still-undetermined coefficients (am, hm);

2K-3 in number. As explained in section 2.3, the main ad-

(2) (2)

2 2
justment required to construct U and V is simply to

multiply the numerical matrix by ul/sz, the ratio of

adherend shear moduli. Since it is assumed that both ad-

herends have the same Poisson's ratio, this is equivalent

to multiplying by El/EZ' Thus the factor l/El and l/E2

(2)
are actually present implicitly in U2 and véZ), but do

not appear explicitly in E-6.



APPENDIX F

TABLES OF STRESS DISTRIBUTIONS, AND

AUXILIARY TABLES

The primary results of this thesis are the follow-

ing tables. Table Fl gives adhesive normal stress distri-

bution (N), which acts perpendicular to the plane of the

adhesive layer, and the shear stress distribution (T). The

positive senses of these stresses are shown in Figure 7,

p. 26.

The tables are based on a uniform applied tensile

stress of unity, or a linearly-varying bending stress with

outer-fiber value unity. This unit stress corresponds to

00 = l in Figure 7; it also corresponds to the stress 0x0 = l

(a name used elsewhere in the text). It is also referred to

as the "load stress." The corresponding force resultants,

F and M0 in Figure 7, are positive as shown in the figure.

The stress distributions are tabulated against the

variable S, which is the fraction of the joint half-length,

measured from its center (the origin in Figure 7). At

joint end D in Figure 7, S = 1.0, and at joint end C, S =

-l.0. The cases covered include both tension and bending

load; for five scarf angles (a = S, 10, 20, 30, 40°); for

179
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three values of relative adhesive-adherend flexibility

(B = 4,20,100); and for four values of the dissimilarity

parameter (y = ratio of adherend stiffnesses = 1,2,4,8).

The tabulated stresses represent exact 8th-order polyno-

mials in S. Advice on interpolation (with respect to a,

B, y) appears in section 4.3.

To save the user the trouble of interpolating for

maximum values of the normal stress N, an auxiliary table

(F2) gives the maximum values Nm for every distribution
ax

in the primary tables. The shear stress maxima Tm are
ax

usually at S = -l.0, except for a few cases noted in the

main discussion of Chapter 4 (large a and medium to large

B, in bending).

Two auxiliary tables offer the user some assistance

in deciding for himself whether the present tables are

accurate enough for his purposes. In all cases tabulated

here, 177 Ritz equations have been solved by matrix inver-

sion, using a standard symmetric-matrix computer subroutine.

This solution is referred to as an 8th-order polynomial

solution. In many cases, a 7th-order solution is also

available for comparison (141 equations). In other cases,

only a 6th-order solution is available for comparison (109

equations). In some cases, no comparison is available.

Where available, the two solutions are compared in the

manner described in section 3.1.4. Thus one auxiliary

table in this Appendix (F3) gives the average difference
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between the 8th-order and the 7th-order solutions (averaged

over the length of the joint). The 8th-order is compared

to the 6th—order where no 7th—order result is available.

Another auxiliary table (F4) presents a much sharper

test of Ritz convergence. The primary tables of N and T

are examined for all stresses ranging from one-half the

largest value up to the largest value. The largest per-

h- and 7thcentage difference between the 8t —order results

is tabulated, for the "large-stress" range considered.

Orders 8 and 6 are compared where 7 is not available.

(The latter check is often not as favorable as one may

wish, because the 7th-order results are frequently quite

h-order ones when the 6th-order is stillclose to the 8t

far away.) Sometimes the "half-the-maximum" criterion

distorts the picture too favorably, and additional entries

in the auxiliary table show that by going a little below

half the maximum, a much larger difference may appear.
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Table Fl.--Adhesive normal and shear stresses.

ALPHA=5 DEGREES. BETA=4

GAMMA=1 GAMMA=2

TENSION SENDING TENSION SENDING

N T N T N T N T

.............................. ..............................

0.0076 0.0868 0.0071 0.0817 0.0119 0.1389 0.0079 0.1277

0.0076 0.0868 0.0066 0.0745 0.0097 0.1197 0.0098 0.1013

0.0076 0.0868 0.0060 0.0672 0.0075 0.1046 0.0064 0.0789

0.0076 0.0868 0.0054 0.0596 0.0061 0.0941 0.0039 0.0608

0.0076 0.0868 0.0047 0.0517 0.0056 0.0878 0.0034 0.0463

0.0076 0.0868 0.0040 0.0435 0.0055 0.0849 0.0038 0.0341

0.0076 0.0868 0.0033 0.0351 0.0056 0.0844 0.0039 0.0233

0.0076 0.0868 0.0025 0.0265 0.0059 0.0853 0.0032 0.0131

0.0076 0.0868 0.0017 0.0177 0.0064 0.0871 0.0016 0.0032

0.0076 0.0868 0.0009 0.0089 0.0072 0.0890 '0.0001 —0.0064

0 0 0.0076 0.0868 ‘0.0000 ‘0.0000 0.0082 0.0906 "0.0015 ”0.0154

0.1 0.0076 0.0868 “0.0009 ”0.0089 0.0093 0.0915 -0.0024 ’0.0236

0.2 0.0076 0.0868 “0.0017 ‘0.0177 0.0101 0.0915 ’0.0027 ‘0.0310

0.3 0.0076 0.0868 ”0.0025 ’0.0265 0.0105 0.0903 “0.0029 “0.0373

0.4 0.0076 0.0868 -0.0033 -0.0351 0.0101 0.0876 “0.0035 ‘0.0425

0.5 0.0076 0.0868 “0.0040 “000435 0.0091 0.0836 ”0.0046 ‘0.0465

0.6 0.0076 0.0868 “0.0047 "0.0517 0.0079 0.0782 *0.0058 “0.0491

0 7 0.0076 0.0868 ’0.0054 “0.0596 0.0069 0.0717 “0.0062 '0.0502

0.8 0.0076 0.0868 ”0.0060 “0.0672 0.0066 0.0646 -0.0049 ‘0.0496

0.9 0.0076 0.0868 ‘0.0066 ‘3.0745 0.0061 0.0570 ’0.0032 ‘0.0478

1.0 0.0076 0.0868 ‘0.0071 “0.0817 0.0025 0.0490 ’0.0071 “0.0461

GAMMA=4 GAMMA=8

...... .............. ....... ...... ......................

0.0151 0.1893 0.0073 0.1708 0.0117 0.2283 0.0091 0.2015

0.0114 0.1469 0.0131 0.1220 0.0145 0.1666 0.0149 0.1347

0.0063 0.1163 0.0065 0.0844 0.0039 0.1252 0.0069 0.0853

0.0032 0.0975 0.0023 0.0572 “0.0032 0.1026 0.0025 0.0507

0.0022 0.0883 0.0025 0.0375 -0.0036 0.0943 0.0034 0.0268

0.0028 0.0860 0.0046 0.0225 0.0005 0.0946 0.0059 0.0095

0.0042 0.0878 0.0056 0.0100 0.0058 0.0989 0.0064 "0.0041

0.0058 0.0913 0.0044 -0.0012 0.0099 0.1035 0.0038 -0.0154

0.0075 0.0949 0.0013 “0.0116 0.0123 0.1062 “0.0009 “0.0250

0.0092 0.0974 ‘0.0022 ‘0.0210 0.0132 0.1060 ‘0.0056 -0.0327

0.0 0.0108 0.0981 ‘0.0046 “0.0290 0.0136 0.1026 '0.0081 '0.0379

0.1 0.0122 0.0969 -000052 -000352 0.0140 0.0966 '0.0077 '0.0405

0.2 0.0130 0.0935 ’0.0043 ‘0.0393 0.0143 0.0883 “0.0052 -0.0406

0.3 0.0128 0.0881 ‘0.0031 '0.0415 0.0138 0.0786 ‘0.0026 -0.0388

0.4 0.0115 0.0809 "0.0029 "0.0422 0.0l20 0.0678 “0.0017 '0.0358

0.5 0.0092 0.0723 -0.0043 -0.0416 0.0086 0.0567 '0.0034 '0.0324

0.6 0.0068 0.0628 -0.0064 -0.0399 0.0048 0.0460 -0.0063 -0.0289

0.7 0.0052 0.0531 ”0.0068 “0.0372 0.0024 0.0363 ‘0.0068 “0.0251

0.8 0.0050 0.0440 ‘0.0036 “0.0333 0.0033 0.0282 ‘0.0023 -0.0209

0.9 0.0049 0.0355 0.0005 ‘0.0287 0.0049 0.0215 0.0032 “0.0164

1.0 “0.0010 0.0267 -0.0101 "0.0257 “0.0054 0.0138 '0.0129 -0.0144
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ALPHA=5 DEGREES. 8ETA=20

GAMMA=1 GAMMA=2

TENSION SENDING TENSION BENDING

S N T N T N T N T

.............................. .......................0......

“1.0 0.0076 0.0868 0.0056 0.0699 0.0113 0.1158 0.0063 0.0889

“0.9 0.0076 0.0868 0.0060 0.0651 0.0087 0.1086 0.0077 0.0777

“0.8 0.0076 0.0868 0.0057 0.0599 0.0081 0.1023 0.0065 0.0669

“0.7 0.0076 0.0868 0.0052 0.0544 0.0074 0.0971 0.0056 0.0565

“0.6 0.0076 0.0868 0.0049 0.0482 0.0064 0.0932 0.0053 0.0462

“0.5 0.0076 0.0868 0.0046 0.0415 0.0054 0.0905 0.0051 0.0360

0.0076 0.0868 0.0042 0.0341 0.0050 0.0890 0.0046 0.0258

0.0076 0.0868 0.0036 0.0262 0.0053 0.0884 0.0035 0.0157

0.0076 0.0868 0.0026 0.0177 0.0063 0.0883 0.0018 0.0058

0.0076 0.0868 0.0014 0.0089 0.0077 0.0885 “0.0002 “0.0036

0.0076 0.0868 0.0000 0.0000 0.0089 0.0887 “0.0020 “0.0123

0.0076 0.0868 “0.0014 “0.0089 0.0098 0.0884 “0.0034 “0.0201

0.2 0.0076 0.0868 “0.0026 “0.0177 0.0101 0.0876 “0.0042 “0.0268

0.3 0.0076 0.0868 “0.0036 “0.0262 0.0098 0.0862 “0.0045 “0.0324

0.4 0.0076 0.0868 “0.0042 “0.0341 0.0091 0.0840 “0.0046 “0.0369

0.5 0.0076 0.0868 “0.0046 “0.0415 0.0084 0.0812 “0.0046 “0.0404

0.6 0.0076 0.0868 “0.0049 “0.0482 0.0077 0.0778 “0.0047 “0.0430

0.7 0.0076 0.0868 “0.0052 “0.0544 0.0072 0.0739 “0.0048 “0.0446

0.8 0.0076 0.0868 “0.0057 “0.0599 0.0067 0.0697 “0.0045 “0.0455

0.9 0.0076 0.0868 “0.0061 “0.0651 0.0060 0.0652 “0.0040 “0.0457

1.0 0.0076 0.0868 “0.0056 “0.0699 0.0052 0.0607 “0.0045 “0.0455

GAMMA=4 GAMMA=8

.............................. ...... ......................

0.0120 0.1378 0.0083 0.0997 0.0099 0.1540 0.0106 0.1031

0.0102 0.1249 0.0083 0.0838 0.0120 0.1374 0.0090 0.0841

0.0080 0.1141 0.0076 0.0688 0.0064 0.1241 0.0103 0.0662

0.0054 0.1057 0.0073 0.0546 0.0010 0.1145 0.0109 0.0494

0.0033 0.0999 0.0071 0.0412 “0.0012 0.1081 0.0094 0.0337

0.0024 0.0962 0.0062 0.0284 0.0003 0.1043 0.0062 0.0194

0.0032 0.0943 0.0045 0.0163 0.0041 0.1020 0.0021 0.0067

0.0053 0.0935 0.0020 0.0051 0.0086 0.1004 “0.0019 “0.0041

“0.2 0.0079 0.0932 “0.0007 “0.0049 0.0124 0.0986 “0.0048 “0.0129

“0.1 0.0104 0.0927 “0.0030 “0.0136 0.0145 0.0961 “0.0064 “0.0196

0.0 0.0120 0.0916 “0.0046 “0.0207 0.0149 0.0927 “0.0066 “0.0244

0.1 0.0125 0.0896 “0.0052 “0.0263 0.0138 0.0881 “0.0059 “0.0274

0.2 0.0118 0.0866 “0.0051 “0.0303 0.0119 0.0826 “0.0048 “0.0290

0.3 0.0105 0.0826 “0.0046 “0.0330 0.0099 0.0764 “0.0039 “0.0294

0.4 0.0092 0.0778 “0.0042 “0.0345 0.0084 0.0698 “0.0035 “0.0290

0.5 0.0081 0.0724 “0.0041 “0.0351 0.0075 0.0629 “0.0035 “0.0280

0.6 0.0074 0.0667 “0.0043 “0.0349 0.0069 0.0562 “0.0037 “0.0267

0.7 0.0067 0.0608 “0.0042 “0.0342 0.0059 0.0497 “0.0033 “0.0251

0.9 0.0041 0.0490 “0.0022 “0.0313 0.0028 0.0373 “0.0012 “0.0211

1.0 0.0049 0.0431 “0.0043 “0.0294 0.0046 0.0314 “0.0036 “0.0189
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ALPHA=5 DEGREES. BETAleO

GAMMA=1 GAMMA=2

TENSION dENDING TENSION BENDING

S N T N T N T N T

.............................. .......................O......

“1.0 0.0076 0.0868 0.0024 0.0456 0.0088 0.0996 0.0039 0.0466

“0.9 0.0076 0.0868 0.0047 0.0432 0.0084 0.0977 0.0045 0.0430

“0.8 0.0076 0.0868 0.0044 0.0405 0.0080 0.0958 0.0052 0.0392

“0.7 0.0076 0.0868 0.0043 0.0375 0.0075 0.0942 0.0067 0.0350

“0.6 0.0076 0.0868 0.0051 0.0340 0.0068 0.0927 0.0083 0.0302

“0.5 0.0076 0.0868 0.0063 0.0299 0.0063 0.0914 0.0090 0.0249

“0.4 0.0076 0.0868 0.0072 0.0250 0.0061 0.0903 0.0083 0.0191

“0.3 0.0076 0.0868 0.0071 0.0195 0.0063 0.0894 0.0062 0.0129

“0.2 0.0076 0.0868 0.0057 0.0134 0.0069 0.0886 0.0029 0.0065

“0.1 0.0076 0.0868 0.0032 0.0068 0.0076 0.0879 “0.0009 0.0002

0.0 0.0076 0.0868 0.0000 0.0000 0.0084 0.0872 “0.0043 “0.0057

0.1 0.0076 0.0868 “0.0032 “0.0068 0.0089 0.0864 “0.0067 “0.0111

0.2' 0.0076 0.0868 “0.0057 “0.0134 0.0091 0.0855 “0.0078 “0.0157

0.3 0.0076 0.0868 “0.0071 “0.0195 0.0090 0.0845 “0.0076 “0.0197

0.4 0.0076 0.0868 “0.0072 “0.0250 0.0086 0.0833 “0.0064 “0.0229

0.5 0.0076 0.0868 “0.0063 “0.0299 0.0080 0.0819 “0.0049 “0.0254

0.6 0.0076 0.0868 “0.0051 “0.0340 0.0075 0.0805 “0.0037 “0.0274

0.7 0.0076 0.0868 “0.0043 “0.0375 0.0072 0.0790 “0.0031 “0.0289

0.8 0.0076 0.0868 “0.0044 “0.0405 0.0070 0.0774 “0.0032 “0.0302

0.9 0.0076 0.0868 “0.0047 -0.0432 0.0068 0.0758 “0.0033 -0.0311

1.0 0.0076 0.0868 “0.0024 “0.0456 0.0062 0.0742 “0.0019 “0.0319

GAMMA=4 GAMMA=8

...... ...................... ...... ......................

0.0090 0.1081 0.0052 0.0441 0.0098 0.1138 0.0030 0.0400

0.0091 0.1050 0.0046 0.0400 0.0090 0.1100 0.0078 0.0355

0.0079 0.1021 0.0078 0.0355 0.0066 0.1065 0.0131 0.0305

0.0063 0.0995 0.0109 0.0305 0.0047 0.1035 0.0152 0.0250

0.0052 0.0972 0.0119 0.0249 0.0040 0.1008 0.0134 0.0191

0.0049 0.0953 0.0105 0.0190 0.0046 0.0984 0.0086 0.0132

0.0054 0.0936 0.0069 0.0129 0.0061 0.0962 0.0024 0.0075

0.0065 0.0920 0.0023 0.0069 0.0079 0.0942 “0.0034 0.0022

0.0078 0.0906 “0.0023 0.0011 0.0095 0.0921 “0.0077 “0.0023

0.0090 0.0891 “0.0060 “0.0040 0.0106 0.0900 “0.0099 “0.0061

0 0.0098 0.0876 “0.0081 “0.0085 0.0110 0.0877 “0.0100 “0.0091

0.1 0.0102 0.0860 “0.00d6 “0.0122 0.0107 0.0853 “0.0086 “0.0112

0.2 0.0099 0.0841 “0.0078 “0.0150 0.0100 0.0827 “0.0064 “0.0128

0.3 0.0093 0.0821 “0.0063 “0.0172 0.0090 0.0800 “0.0043 “0.0138

0.4 0.0086 0.0800 “0.0046 “0.0188 0.0081 0.0773 “0.0028 “0.0144

0.5 0.0078 0.0778 “0.0033 “0.0200 0.0074 0.0745 “0.0021 “0.0148

0.6 0.0072 0.0754 “0.0026 “0.0208 0.0069 0.0717 “0.0019 “0.0151

0.7 0.0068 0.0731 “0.0024 “0.0213 0.0065 0.0689 “0.0019 “0.0152

0.8 0.0065 0.0707 “0.0022 “0.0217 0.0061 0.0662 “0.0014 “0.0152

0.9 0.0061 0.0683 “0.0019 “0.0219 0.0056 0.0634 “0.0009 “0.0151

1.0 0.0057 0.0659 “0.0023 “0.0220 0.0055 0.0607 “0.0024 “0.0149
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ALPHA=IO DEGREES.

18 5

GAMMA=1

TENSION SENDING

N T N T

0000000000000...00.000.000.000

000301 001709 000252 001425

000301 001710 000240. 001323

000301 001710 000228 001216

000302 0.1710 000215 001099

0.0302 0.1710 0.0200 0.0971

0.0302 0.1710 0.0181 000831

000302 001710 000156 000680

000302 0.1710 0.0125 000519

000302 001710 0.0087 000351

000302 001710 000045 000177

000302 001710 ‘000000 '000000

000302 001710 -000045 “000177

0.0302 001710 ‘000037 '000351

0.0302 001710 -000125 ‘000519

0.0302 001710 -000156 '000680

000302 001710 ‘000181 '000831

000302 001710 -000200 -000971

000302 001710 -000215 “001099

000302 001710 “000228 -001216

000302 001710 “000240 '001323

000302 001710 -000252 -001425

GAMMA=4

0.00.0 00000000000000.0000...

000446 0.2803 0.0400 0.2131

0.0420 002499 000332 001763

000302 002251 000308 301426

000188 002067 000292 001115

000123 001945 000261 000826

000120 001875 000210 000558

000167 0.1843 0.0140 0.0310

0.0242 0.1835 0.0060 000086

000325 001834 -000019 '000113

000394 001829 “000088 ’000285

000439 001812 '000140 “000428

000456 001776 -000173 '000541

000448 001719 “000189 "000625

000422 001642 “000191 “000681

000387 001547 -000185 -000713

000347 001438 -000176 ‘000725

000306 001319 ”000167 “000719

000260 0.1192 “000155 ‘000699

000210 0.1061 “000138 '000668

0.0166 000930 ‘000117 '000627

000170 000807 “000105 “000578

BETA=4

GAMMA=2

TENSION BENDlNG

N T N T

ooooooooo00.000000000000000...

000399 002324 000335 001859

000367 002158 000290 001608

000320 002016 000258 001372

000272 001904 000236 001146

0.0235 001823 000216 000928

0.0216 001771 000190 0.0715

0.0218 0.1743 000154 000506

000238 001734 000107 0.0303

0.0270 001736 000054 000108

000307 001743 -000003 '000077

000341 001748 ‘000058 '000249

0.0366 001746 ”000105 -000404

0.0379 001733 '000142 '000541

000379 001707 ’000168 “000657

000367 001665 ‘000183 -000751

000347 001609 ‘000190 ’000824

0.0320 001539 ”000192 “000876

000291 001456 -000190 -000909

000260 001364 ’000184 -000924

000232 001266 '000174 -000924

000211 001167 “000157 ‘000912

GAMMA=8

coo-0.0000000000000000.cocoon.

0.0520 003150 000402 0.2242

0.0417 002759 000409 001796

000206 002452 000415 001388

000053 002238 0.0381 0.1015

0.0012 002104 000302 000678

0.0074 002030 000190 0.0379

0.0198 0.1994 0.0068 000118

000336 001972 “000045 '000102

0.0452 001947 '000133 '000280

0.0523 001906 “000190 -0.0418

0.0543 001842 ”000217 -000516

0.0522 001754 “000218 ‘000579

0.0475 001645 '000203 -000611

0.0419 001519 “000183 -000619

0.0367 001384 ’000164 -000609

0.0323 001243 '000149 '000585

000279 001102 “000135 ~000552

000226 0.0962 “000120 "000512

000162 000824 -000097 -000468

0.0112 0.0692 “000075 -000418

000159 000572 ”000079 -000364
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ALPHA=10 DEGREESo BETA=20

GAMMA=1 GAMMA=2

TENSION SENDING TENSION BEND1NG

S N T N T N T N T

000000000000000000000000000000 000000000000000000000000000000

“100 000301 001710 000181 000985 000345 001991 000203 001036

“009 000301 001710 000173 300933 000340 001945 000190 000955

“008 000301 001710 000183 000876 000315 001902 000236 000868

“007 000301 001710 000207 000810 000286 001863 000288 000771

“006 000301 001710 000233 000731 000263 001830 000316 000661

000301 001710 000249 000640 000251 001803 000306 000540

000301 001710 000245 000533 000251 001781 000257 000409

000301 001710 000215 000414 000263 001763 000176 000273

000301 001710 000160 000283 000282 001747 000076 000136

000301 001710 000085 000143 000304 001733 “000027 000002

000301 001710 000000 “000001 000326 001718 “000121 “000125

001 000301 001710 “000085 “000143 000342 001703 “000193 “000241

002 000301 001710 “000160 “000283 000351 001685 “000237 “000343

003 000301 001710 “000215 “000414 000351 001664 “000253 “000431

004 000301 001710 “000245 “000533 000342 001639 “000243 “000503

005 000301 001710 “000249 “000640 000327 001611 “000216 “000560

006 000301 001710 “000233 “000731 000308 001579 “000182 “000604

007 000301 001710 “000207 “000810 000290 001545 “000151 “000636

008 000301 001710 “000183 “000876 000274 001509 “000132 “000660

009 000301 001710 “000173 “000933 000262 001471 “000126 “000678

100 000301 001710 “000181 “000985 000254 001433 “000123 “000692

GAMMA=4 GAMMA=8

000000 0000000000000000000000 000000000000000000000000000000

000388 002182 000163 001010 000436 002309 000125 000938

000351 002107 000255 000910 000323 002219 000396 000826

000293 002038 000351 000803 000237 002139 000512 000704

000243 001979 000401 000684 000193 002069 000499 000572

000216 001928 000387 000555 000189 002009 000396 000436

000215 001887 000314 000420 000215 001957 000243 000300

000235 001851 000201 000282 000261 001911 000076 000171

000270 001819 000071 000148 000312 001867 “000078 000052

000309 001790 “000055 000022 000360 001824 “000197 “000053

000346 001761 “000160 “000092 000395 001779 “000273 “000140

000 000373 001729 “000232 “000191 000413 001732 “000304 “000210

001 000387 001695 “000268 “000274 000414 001681 “000297 “000263

002 000387 001657 “000271 “000340 000400 001626 “000263 “000301

003 000374 001615 “000248 “000391 000375 001568 “000213 “000325

004 000352 001569 “000209 “000428 000344 001508 “000162 “000340

005 000324 001520 “000167 “000453 000311 001446 “000118 “000347

006 000296 001468 “000130 “000469 000280 001382 “000087 “000349

007 000270 001414 “000104 “300478 000253 001319 “000069 “000347

008 000249 001359 “000092 “000482 000231 001255 “000061 -000343

009 000234 001304 “000088 “000483 000214 001193 “000060 “000338

100 000223 001249 “000087 “000481 000204 001131 “000066 “000331
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ALPHA=10 DEGREES.
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GAMMA=1

TENSION BENDING

N T N T

000000000000000000000000000000

000301 001710 000077 000423

000301 001710 000088 000406

000301 001710 000153 000386

000301 001710 000231 000360

000301 001710 000295 000327

000301 001710 000327 000287

000301 001710 000322 000239

000301 001710 000279 000185

000301 001710 000206 000126

000301 001710 000109 000064

000301 001710 -000001 000000

000301 001710 -000109 ~000064

000301 001710 “000206 -000126

000301 001710 ~000279 ~000185

000301 001710 ~000322 -000239

000301 001710 ~000327 -000287

000301 001710 ~000295 ~300327

000301 001710 ~000231 -000360

000301 001710 -000153 -000386

000301 001710 -000088 -000406

000301 001710 -000077 -000423

GAMMA=4

0000000 0000000000000000000000

000329 001853 000061 000331

000308 001837 000276 000305

000294 001821 000388 000275

000286 001806 000418 000239

000283 001792 000384 000200

000285 001778 000305 000157

000289 001764 000199 000114

000296 001751 000082 000070

000304 001738 “000034 000028

000311 001724 “000136 “000012

000317 001711 -O00219 “000049

000321 001698 ~000274 “000082

000322 001684 -00O301 -000110

000321 001671 -O00299 -000134

000318 001656 ~000271 “000153

000311 001642 ~000222 ~000168

000304 001627 -000161 “000179

000295 001612 -000098 -000185

000286 001597 -000047 ~000189

000279 001582 “000083 “000192

000277 001567 -000048 ~000195

BETA=100

GAMMA=2

TENSION SENDING

N T N T

000000000000000000000000000000

000320 001801 000034 000380

000311 001791 000154 000358

000302 001780 000264 000332

000295 001770 000339 000300

000290 001761 000366 000262

000289 001752 000347 000218

000289 001743 000287 000169

000293 001735 000197 000119

000297 001727 000091 000067

000302 4001719 “000021 000015

000307 001711 “000125 “000035

000311 001703 “000213 “000082

000314 001694 “000275 “000125

000315 001686 “000307 “000163

000314 001677 “000308 “000196

000311 001668 “000278 “000224

000306 001659 “000224 “000245

000300 001649 “000156 “000261

000293 001639 “000089 “000272

000288 001629 “000047 “000280

000286 001619 “000061 “000288

GAMMA=8

000000000000000000000000000000

000322 001883 000234 000281

000297 001864 000430 000255

000284 001845 000483 000222

000280 001827 000442 000187

000282 001810 000346 000149

000288 001793 000222 000111

000296 001777 000090 000074

000305 001760 “000034 000038

000313 001744 “000140 000005

000319 001728 “000221 “000025

000324 001711 “000275 “000051

000326 001695 “000301 “000074

000326 001678 “000298 “000093

000323 001661 “000272 “000107

000317 001644 “000228 “000117

000309 001626 “000171 “000125

000300 001609 “000111 “000129

000290 001591 “000057 “000131

000281 001573 “000020 “000131

000275 001555 “000010 “000132

000273 001538 “000038 “000132
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ALPHA=20 DEGREES.

188

GAMMA=1

TENSION SENDING

N T N T

0.............o.....00......00

0.1170 0.3214 0.0752 0.2032

0.1170 0.3214 0.0766 0.1937

0.1170 0.3214 0.0833 0.1819

0.1170 0.3214 0.0888 0.1673

0.1170 0.3214 0.0899 0.1496

0.1170 0.3214 0.0854 0.1292

0.1170 0.3214 0.0754 0.1063

0.1170 0.3214 0.0607 0.0814

0.1170 0.3214 0.0424 0.0551

0.1170 0.3214 0.0218 0.0278

0.1170 0.3214 “0.0000 “0.0000

0.1170 0.3214 -0.0218 -0.0278

0.1170 0.3214 -0.0424 -0.0551

0.1170 0.3214 ~0.0607 -0.0814

001170 0.3214 -000754 “001063

-001170 0.3214 -0.0854 -O.1292

0.1170 0.3214 -0.0899 -0.1496

0.1170 0.3214 -0.0888 -0.1673

0.1170 0.3214 -0.0832 -0.1819

0.1170 0.3214 -0.0766 -0.1937

0.1170 0.3214 -0.0752 -0.2032

GAMMA=4'

.0...oo.............00......00

0.1544 0.4136 0.0815 0.2207

0.1260 0.3971 0.1250 0.1983

0.1071 0.3832 0.1403 0.1727

0.0971 0.3717 0.1345 0.1451

0.0943 0.3622 0.1143 0.1164

0.0969 0.3542 0.0853 0.0873

0.1031 0.3475 0.0524 0.0589

0.1112 0.3415 0.0194 0.0316

0.1197 0.3359 -0.0110 0.0061

0.1276 0.3303 -0.0370 -0.0172

0.1339 0.3246 -0.0574 ‘0.0379

0.1381 0.3184 -0.0718 -0.0558

0.1399 0.3116 ‘0.0802 -0.0709

0.1392 0.3042 ‘0.0829 -0.0830

0.1357 0.2959 -0.0807 -0.0922

0.1297 0.2869 -0.0744 “0.0989

0.1212 0.2770 -0.0651 -O.1030

0.1109 0.2663 “0.0544 ‘0.1051

0.1000 0.2548 ~0.0445 -0.1054

0.0904 0.2429 -0.0383 -0.1043

0.0858 0.2306 -0.0402 -0.1022

BETA=4

GAMMA=2

TENSION SENDING

N T N T

.......................0......

0.1387 0.3763 0.0760 0.2205

0.1275 0.3659 0.0945 0.2033

0.1170 0.3569 0.1075 0.1836

0.1092 0.3494 0.1113 0.1613

0.1047 0.3432 0.1054 0.1366

0.1035 0.3383 0.0911 0.1101

0.1050 0.3343 0.0704 0.0826

0.1084 0.3310 0.0458 0.0548

0.1129 0.3282 0.0197 0.0273

0.1179 0.3255 ”0.0059 0.0007

0.1225 0.3228 “0.0293 ‘0.0245

0.1264 0.3199 ‘0.0494 -000478

0.1292 0.3167 “0.0652 ‘0.0690

0.1303 0.3130 ”0.0762 -0.0878

0.1298 0.3087 ‘0.0821 -0.1039

0.1272 0.3037 -0.0829 -0.1172

0.1227 0.2979 “0.0790 “0.1277

0.1164 0.2912 '0.0714 -0.1354

0.1090 0.2838 “0.0622 -0ol405

0.1021 0.2757 -0.0547 “0.1433

0.0981 0.2671 ‘000549 '001445

GAMMA=8

..................o...J%......

0.1523 0.4395 0.1228 0.2086

0.1136 0.4198 0.1692 0.1830

0.0939 0.4034 0.1714 0.1542

0.0878 0.3896 0.1470 0.1243

0.0909 0.3780 0.1087 0.0945

0.0993 0.3678 0.0656 0.0658

0.1102 0.3587 0.0238 0.0389

0.1214 0.3502 “0.0130 0.0143

0.1315 0.3419 -000428 ‘000076

0.1394 0.3336 ‘0.0648 “0.0266

0.1446 0.3249 ‘0.0790 “0.0427

0.1469 0.3158 ”0.0860 “0.0556

0.1463 0.3060 "0.0867 “0.0656

0.1427 0.2956 “0.0823 '0.0727

0.1364 0.2845 “0.0739 -0.0773

0.1276 0.2728 '0.0629 ‘0.0797

0.1168 0.2604 -0.0509 -0.0803

0.1046 0.2475 ‘000396 ’000796

0.0924 0.2342 “0.0308 '0.0778

0.0823 0.2206 “0.0266 ‘0.0754

0.0777 0.2069 '0.0293 ’0.0722
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ALPHA=20 DEGREES.

189

GAMMA=1

TENSION SENDING

N T N T

..............................

0.1169 0.3214 0.0295 0.1002

0.1169 0.3214 0.0594 0.0964

0.1169 0.3213 0.0830 0.0910

0.1169 0.3213 0.0981 0.0838

0.1169 0.3213 0.1040 0.0750

0.1169 0.3213 0.1010 0.0647

0.1169 0.3213 0.0903 0.0531

0.1169 0.3213 0.0733 3.0406

0.1169 0.3213 0.0515 0.0274

0.1169 0.3213 0.0265 0.0138

0.1169 0.3213 -0.0002 '0.0001

0.1169 0.3213 -0.0265 '0.0138

0.1169 0.3213 -0.0515 -0.0274

0.1169 0.3213 -0.0733 -0.0406

0.1169 0.3213 -0.0903 -0.0531

0.1169 0.3213 -0.1010 -0.0647

0.1169 0.3213 -0.1040 “0.0750

0.1169 0.3213 ”0.0981 -0.0838

0.1169 0.3213 ”0.0830 “0.0910

0.1169 0.3213 “0.0594 ”0.0964

0.1169 0.3213 *0.0295 “0.1002

GAMMA=4 *

..............................

0.1228 0.3516 0.0935 0.0800

0.1172 0.3480 0.1273 0.0741

0.1140 0.3446 0.1362 0.0663

0.1127 0.3415 0.1280 0.0573

0.1126 0.3384 0.1089 0.0477

0.1133 0.3355 0.0833 0.0378

0.1147 0.3326 0.0546 0.0279

0.1162 0.3298 0.0253 0.0181

0.1179 0.3270 ‘0.0029 0.0086

0.1195 0.3242 “0.0287 “0.0005

0.1209 0.3215 -0.0509 ’0.0091

0.1219 0.3187 -0.0688 “0.0171

0.1225 0.3159 “0.0817 -0.0244

0.1226 0.3131 “0.0892 -0.0310

0.1220 0.3102 '0.0909 ’0.0367

0.1208 0.3073 ”0.0867 -0.0414

0.1188 0.3043 ‘0.0768 -0.0451

0.1161 0.3011 “0.0620 ’0.0477

0.1128 0.2979 -0.0439 ’0.0493

0.1091 0.2946 “0.0255 ‘0.0500

0.1053 0.2913 -0.0112 ‘0.0503

BETA=20

GAMMA=2 *

TENSION BENDING

N T N T

..............................

0.1234 0.3404 0.0456 0.0918

0.1192 0.3380 0.0891 0.0865

0.1163 0.3359 0.1119 0.0792

0.1146 0.3338 0.1184 0.0705

0.1138 0.3319 0.1125 0.0606

0.1138 0.3300 0.0974 0.0499

0.1143 0.3282 0.0761 0.0387

0.1151 0.3265 0.0510 0.0273

0.1161 0.3248 0.0241 0.0159

0.1173 0.3231 -0.0030 0.0045

0.1184 0.3215 -0.0286 -0.0066

0.1194 0.3198 -0.0516 -0.0172

0.1201 0.3181 -0.0708 -0.0272

0.1205 0.3164 -0.0850 -0.0365

0.1205 0.3146 -0.0935 -0.0450

0.1200 0.3128 -0.0955 -0.0524

0.1190 0.3109 “0.0904 ~0.0586

0.1173 0.3089 -0.0786 -0.0635

0.1151 0.3068 ~0.0608 -0.0671

0.1124 0.3046 -0.0393 ~0.0694

0.1095 0.3024 “0.0182 -0.0708

GAMMA=8

....... ......................

0.1176 0.3582 0.1580 0.0682

0.1136 0.3539 0.1652 0.0623

0.1119 0.3499 0.1529 0.0548

0.1119 0.3461 0.1288 0.0465

0.1129 0.3424 0.0983 0.0378

0.1145 0.3388 0.0654 0.0291

0.1164 0.3352 0.0327 0.0206

0.1184 0.3317 0.0022 0.0124

0.1202 0.3283 -0.0250 0.0046

0.1217 0.3248 -0.0480 -0.0028

0.1229 0.3214 -0.0662 -0.0096

0.1237 0.3180 -0.0793 -0.0157

0.1239 0.3145 -0.0871 -0.0212

0.1235 0.3110 -0.0894 -0.0259

0.1224 0.3075 -0.0863 -0.0299

0.1206 0.3040 -0.0781 -0.0329

0.1180 0.3003 -0.0654 -0.0351

0.1148 0.2966 -0.0494 -0.0364

0.1111 0.2928 '0.0321 “0.0370

0.1070 0.2889 ‘0.0164 ”0.0369

0.1031 0.2850 -0.0069 -0.0366



ALPHA=20 DEGREES.

GAMMA=1

TENSION

N
T

190

BENDING

N

T

BETA=100

GAMMA=2

TENSION

N
T

*

BENDING

N
T

0.1169 0.3214 0.0470 0.0324 0.1175 0.3261 0.0898 0.0260

0.1169 0.3214 0.0758 0.0310 0.1171 0.3256 0.1044 0.0245

0.1169 0.3214 0.0912 0.0286 0.1168 0.3251 0.1072 0.0224

0.1169 0.3214 0.0963 0.0258 0.1167 0.3247 0.1019 0.0198

0.1169 0.3214 0.0938 0.0225 0.1167 0.3242 0.0909 0.0170

0.1169 0.3213 0.0854 0.0190 0.1167 0.3237 0.0761 0.0141

0.1169 0.3213 0.0728 0.0154 0.1167 0.3233 0.0589 0.0112

0.1169 0.3213 0.0570 0.0116 0.1168 0.3228 0.0404 0.0082

0.1169 0.3213 0.0391 0.0078 0.1169, 0.3223 0.0212 0.0052

0.1169 0.3213 0.0199 0.0039 0.1171 0.3219 0.0021 .0.0023

0.0 0.1169 0.3213 “0.0002 0.0000 0.1172 0.3214 “0.0164 “0.0007

0.1 0.1169 0.3213 “0.0199 “0.0039 0.1173 0.3209 “0.0339 “0.0036

0.2 0.1169 0.3213 “0.0391 “0.0078 0.1173 0.3205 “0.0498 “0.0064

0.3 0.1169 0.3213 “0.0570 “0.0116 0.1174 0.3200 “0.0637 “0.0092

0.4 0.1169 0.3213 “0.0728 “0.0154 0.1174 0.3195 “0.0749 “0.0119

0.5 0.1169 0.3213 “0.0854 “0.0190 0.1174 0.3191 “0.0828 “0.0145

0.6 0.1169 0.3213 “0.0938 “0.0225 0.1173 0.3186 “0.0865 “0.0169

0.7 0.1169 0.3213 “0.0963 “0.0258 0.1171 0.3181 “0.0850 “0.0191

0.8 0.1169 0.3213 “0.0912 “0.0286 0.1168 0.3177 “0.0768 “0.0210

0.9 0.1169 0.3213 “0.0758 “0.0310 0.1164 0.3172 “0.0604 “0.0225

1.0 0.1169 0.3214 “0.0470 “0.0324 0.1157 0.3167 “0.0333 “0.0234

GAMMA=4 GAMMA=8

0....0.................t...... ..............................

0.1171 0.3286 0.1283 0.0209 0.1165 0.3299 0.1552 0.0176

0.1167 0.3279 0.1268 0.0196 0.1164 0.3290 0.1416 0.0164

0.1166 0.3271 0.1177 0.0177 0.1164 0.3282 0.1239 0.0148

0.1166 0.3264 0.1036 0.0156 0.1165 0.3273 0.1039 0.0130

0.1166 0.3257 0.0863 0.0133 0.1166 0.3264 0.0826 0.0112

0.1167 0.3250 0.0673 0.0110 0.1168 0.3256 0.0611 0.0092

0.1169 0.3242 0.0475 0.0086 0.1170 0.3247 0.0399 0.0072

0.1170 0.3235 0.0276 0.0062 0.1172 0.3239 0.0194 0.0052

0.1172 0.3228 0.0083 0.0039 0.1174 0.3230 0.0001 0.0032

0.1173 0.3221 “0.0102 0.0015 0.1175 0.3222 “0.0177 0.0012

0.0 0.1174 0.3214 “0.0273 “0.0008 0.1177 0.3214 “0.0338 “0.0007

0.1 0.1176 0.3207 “0.0427 “0.0030 0.1177 0.3205 “0.0478 “0.0026

0.2 0.1176 0.3200 “0.0561 “0.0053 0.1178 0.3197 “0.0596 “0.0045

0.3 0.1176 0.3193 “0.0672 “0.0074 0.1178 0.3189 “0.0689 “0.0063

0.4 0.1176 0.3185 “0.0753 “0.0095 0.1177 0.3180 “0.0752 “0.0079

0.5 0.1175 0.3178 “0.0801 “0.0114 0.1175 0.3172 “0.0782 “0.0096

0.6 0.1173 0.3171 “0.0810 “0.0132 0.1173 0.3164 “0.0774 “0.0111

0.7 0.1170 0.3164 “0.0770 “0.0149 0.1169 0.3155 “0.0721 “0.0124

0.8 0.1165 0.3157 “0.0673 “0.0163 0.1163 0.3147 “0.0615 “0.0135

0.9 0.1159 0.3150 “0.0504 “0.0173 0.1156 0.3138 “0.0446 “0.0143

1.0 0.1150 0.3142 “0.0249 “0.0178 0.1146 0.3130 “0.0202 “0.0147
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ALPHA=30 DEGREES.

191

GAMMA=1

TENSION SENDING

N T N T

cocoon-coo...coo-00.00.0000...

002501 004330 001227 002165

0.2500 0.4330 001668 002080

002500 004330 001928 001950

002500 004330 002018 001780

002500 0.4330 001960 001578

002500 0.4330 001782 001350

002500 004330 001515 001102

002500 0.4330 001183 000838

0.2500 0.4330 000809 000564

002500 0.4330 0.0410 000284

002500 004330 ‘000000 -000000

002500 004330 “000410 -000284

002500 004330 "000809 -000564

002500 004330 -001183 -000838

002500 004330 -001515 -001102

0.2500 0.4330 -Ool782 ”001350

002500 004330 -001960 “001578

002500 004330 “002018 -Ool780

0.2500 004330 -001928 -001950

0.2499 004330 ‘001667 -002080

002499 004330 *001226 ‘002165

GAMMA=4

0000000000000.0000000000000000

002671 004980 002484 001947

002499 0.4887 002834 001792

002409 0.4807 002787 001590

0.2374 004735 002486 001362

002377 004670 002037 001123

002403 004609 001517 000880

002442 004551 0.0977 000640

002486 0.4495 0.0452 000408

002530 004441 ”000037 000184

002571 004387 ‘000477 “000028

002606 004333 “000859 “000227

0.2633 004279 -001176 ”0.0412

002651 004224 -Ool425 “000580

002656 004168 ‘001600 -0.0731

0.2646 004110 -001692 “300863

002617 004050 ‘001697 “000974

002567 003986 ‘001610 ‘001061

002491 003919 "001433 '001126

0.2390 0.3847 -O.1180 -001166

002264 003770 -000879 -001183

0.2119 003688 ‘000589 -001179

BETA=4

GAMMA=2

TENSION SENDING

N T N T

ooooooooooooooooooooooocoo-coo

0.2690 0.4723 001612 002125

0.2558 004664 002179 0.1992

0.2475 0.4612 002383 001810

0.2430 004567 002324 001594

0.2413 004527 002085 001356

002416 004491 001730 0.1105

0.2432 0.4457 001307 000849

0.2455 0.4425 0.0854 0.0591

0.2482 0.4393 0.0397 0.0336

0.2510 0.4363 “000047 000085

0.2537 004333 ‘000465 ‘000158

0.2560 004302 ‘000845 ’000390

0.2579 004271 -001178 “000610

002592 004239 ‘001453 ‘000816

0.2595 004205 “001658 -001003

0.2586 004169 ’001779 ‘001170

002562 004131 “001802 -001313

002519 004089 ‘001716 -001429

0.2456 004043 -001516 -001515

0.2371 003993 '001215 ‘001571

0.2267 003937 '000847 ‘001594

GAMMA=8

ooooooooooooooooooooooo0000000

002508 005149 003633 001718

002390 005037 003499 001559

0.2346 0.4939 0.3082 0.1364

0.2351 004849 002509 001149

0.2385 004766 001871 000928

0.2435 004688 001229 000708

0.2491 004614 000621 000494

0.2546 004541 000070 000290

0.2595 0.4470 -0004l2 000098

002637 0.4400 “000819 ‘000081

0.2669 004330 ‘001148 ’000245

002690 004260 '001399 '000393

002698 004189 -001571 -000524

0.2690 004117 -001661 -000637

002665 004043 -001668 “000731

002619 003968 ‘001591 “000805

002549 003889 ‘001433 -000860

002454 003807 “001205 '000895

0.2332 0.3722 “000929 “000910

002188 003631 '000645 -000909

0.2031 003536 ‘000418 -0.0891
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ALPHA=3O DEGREES.

192

GAMMA=1

TENSION SENDING

N T N T

00.0.0.00000000000000.0000.coo

002500 0.4330 001281 000882

002500 0.4330 001750 000844

0.2500 0.4330 0.1971 0.0781

0.2500 004330 002007 000702

002500 004330 001906 000613

0.2500 0.4330 001706 000517

0.2500 0.4330 001433 000417

002500 004330 001112 000315

002500 0.4330 0.0758 000210

002500 004330 0.0383 000105

002500 004330 “000003 “000001

002500 004330 “000383 '000105

0.2500 0.4330 “000758 ‘000210

002500 004330 “001112 ’300315

0.2500 004330 '001433 '000417

0.2500 0.4330 “001706 ‘000517

002500 0.4330 “0.1906 “0.0613

002500 004330 ’002007 ”000702

002500 004330 “001971 “0.0781

0.2500 004330 “001749 -000844

002500 004330 '001281 ’000882

GAMMA=4 *

000.000.00000.0000000000000000

002502 004513 002813 000595

002491 004493 002714 000559

002485 004474 002481 000507

002484 004455 002160 000447

002487 004436 001787 000382

002491 0.4418 001386 000314

002496 0.4400 000978 000246

002501 004382 0.0573 0.0177

0.2507 004365 000182 000109

002512 004347 -000188 000042

002517 0.4329 “000533 ‘000023

002520 004311 “000845 ‘000088

002523 004294 ‘001120 “000150

002524 004276 -001352 ’000211

002523 004259 -001533 -000269

002519 004241 ’001651 “000324

002512 004224 -001696 '000377

002501 004206 ‘001649 “000424

0.2484 004189 ‘001491 “000465

002459 004170 -001196 '000495

002426 004151 “000731 “000508

BETA=20

GAMMA=2

TENSION SENDING

N T N T

ooooooooooooooooooooooo0000000

0.2520 004448 002078 000727

0.2504 0.4434 0.2282 0.0688

002495 004422 0.2274 0.0628

0.2490 004410 002119 000556

0.2489 004398 001865 000477

002490 004387 001546 000395

0.2492 0.4375 001189 000312

0.2495 0.4364 000812 000228

0.2499 004352 000430 000144

0.2503 004341 000051 0.0062

0.2507 004330 -000316 “000020

0.2510 004319 “000662 -000101

0.2513 004307 ’000982 -000180

0.2514 0.4296 “001267 '000257

002515 004285 ”001506 '000332

002514 004273 "001686 “000405

0.2510 004262 -001792 -000473

0.2504 004251 “001801 “000535

002493 004239 ’001687 '000590

0.2477 004227 '001415 -000631

002455 004214 ’000942 “000653

GAMMA=8 *

ooooooooooooooooooooooo000.000

002480 004549 003335 000505

0.2477 004525 003005 000472

0.2478 004502 002606 000428

002482 004479 002171 0.0378

0.2488 004457 001720 000323

002494 004435 001270 000266

0.2501 004414 000832 0.0208

0.2508 0.4392 000414 000150

002514 004371 000023 000092

002520 004350 ‘000338 000034

0.2524 004328 ’000665 ’000022

002528 004307 "000953 “000076

002529 004287 ‘001199 '000129

002529 004266 “001397 “000180

002526 004245 -001541 “000229

002521 004224 -001623 ‘000275

002511 004203 ‘001631 ”0.0318

0.2497 004183 “001553 -000357

002476 004162 “001371 '000390

002448 004140 ”001065 ‘000414

002409 004118 -000608 '000424
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ALPHA=3O DEGREES.

193

GAMMA=1

TENSION SEND1NG

N T N T

000000000000000000000000000000

002500 004330 002059 000234

002500 004330 002076 000223

002500 004330 001995 000204

002500 004330 001844 000181

002500 004330 001643 000155

002500 004330 001408 000129

002500 004330 001148 000103

002500 004330 000873 000077

002500 004330 000587 000051

002500 004330 000295 000025

002500 004330 “000003 000000

002500 004330 “000295 “000025

002500 004330 “000587 “000051

002500 004330 “000873 “000077

002500 004330 “001148 “000103

002500 004330 “001408 “000129

002500 004330 “001643 “000155

002500 004330 “001844 “000181

002500 004330 “001995 “000204

002500 004330 “002076 “000223

GAMMA=4 *

000000 0000000000000000000000

002500 004330 “002059 “000234

002499 004371 002673 000140

002499 004367 002434 000133

002499 004362 002167 000122

002499 004358 001882 000110

002499 004354 001587 000096

002500 004350 001286 000081

002500 004346 000984 000066

002500 004342 000684 000050

002501 004338 000388 000035

002501 004334 000099 000019

002501 004330 “000183 000003

002501 004326 “000456 “300013

002502 004322 “000717 “000029

002502 004318 “000965 “000045

002502 004314 “001196 “000062

002501 004310 “001405 “000079

002501 004306 “001587 “000096

002500 004302 “001732 “000114

002499 004298 “001827 “000130

002497 004294 “001856 “000143

002494 004290 “001794 “000150

SETA=100

GAMMA=2 *

TENSION SENDING

N T N T

000000000000000000000000000000

002501 004357 002444 000175

002500 004354 002303 000166

002500 004351 002106 000152

002499 004349 001870 000135

002499 004346 001609 000117

002499 004343 001332 000098

002500 004341 001045 000079

002500 004338 000754 000060

0025007 004335 000461 000040

002500 004333 000170 000021

002501 004330 “000118 000002

002501 004327 “000399 “000018

002501 004325 “000671 “000037

002501 004322 “000933 “000057

002501 004319 “001180 “000077

002501 004317 “001407 “000097

002501 004314 “001608 “000117

002500 004312 “001773 “000138

002500 004309 “001888 “000156

002498 004306 “001934 “000171

GAMMAze *

000000 0000000000000000000000

002497 004304 “001888 “000180

002498 004378 002799 000121

002498 004373 002505 000115

002498 004368 002200 000106

002499 004363 001888 000096

002499 004358 001574 000084

002500 004354 001261 000072

002500 004349 000951 000059

002501 004344 000647 000046

002501 004339 000350 000032

002501 004335 000061 000018

002502 004330 “000218 000004

002502 004325 “000486 “000010

002502 004321 “000741 “000024

002502 004316 “000981 -000039

002502 004311 “001203 “000054

002502 004307 “001403 “000069

002501 004302 “001575 “000085

002500 004297 “001710 “000101

002498 004293 “001795 “000116

002496 004288 “001815 “000128

002493 004283 “001744 “000134
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ALPHA=4O DEGREES.

194

GAMMA=1

TENSION SENDING

N T N T

00000..000.0.00..00.0.0..00..0

004132 0.4924 0.2509 0.2036

004132 004924 003089 001950

004132 0.4924 003303 001808

004132 004924 0.3250 001630

004132 004924 003007 001426

004132 004924 002635 001206

0.4132 004924 002177 000975

0.4132 004924 001667 0.0736

004132 004924 001125 000493

004132 004924 0.0566 000247

004132 004924 “000001 “000000

004132 0.4924 “0.0566 “0.0247

004132 004924 “001125 “000493

004132 004924 “001667 “0.0736

004132 004924 “0.2177 “000975

004132 004924 “002635 “001206

004132 0.4924 “003007 “001426

004132 004924 “003250 “001630

004132 004924 “003303 “001808

004132 0.4924 “0.3089 “001950

004132 004924 “002509 “002035

GAMMA=4 *

0.000.0..0.0.0.00.0.0.00.0000.

004155 005322 004823 001564

004105 0.5271 004615 001462

0.4082 0.5225 004165 001321

004078 005183 003569 001156

0.4085 005142 002898 000979

0.4100 0.5104 0.2200 300795

004117 005066 001508 000610

004135 0.5029 000841 000426

004154 004993 000211 000246

004170 004957 “000375 000071

004185 004921 “0.0912 “0.0098

004196 004885 “001396 “000262

0.4205 004850 “001821 “000418

0.4209 004814 “002180 “000566

0.4206 0.4778 “0.2461 “0.0705

004196 004742 “002650 “000835

004174 004705 “002726 “000952

0.4137 0.4668 “0.2666 “0.1056

004081 004629 “002443 “001140

003998 004587 “002028 “001199

0.3883 004541 “001388 “001224

BETA=4

GAMMA=2 *

TENSION BENDING

N T N T

.00000000000000000000000......

0.4207 0.5168 0.3589 0.1823

0.4147 0.5136 0.3869 0.1719

0.4114 0.5107 0.3791 0.1567

0.4098 0.5081 0.3473 0.1384

0.4094 0.5057 0.3006 0.1184

0.4098 0.5033 0.2452 0.0975

0.4106 0.5011 0.1854 0.0762

0.4116 0.4989 0.1243 0.0549

0.4128 0.4967 0.0637 0.0337

0.4140 ‘O.4945 0.0049 0.0129

0.4151 004923 “000515 “0.0076

0.4161 0.4902 “0.1047 “0.0276

0.4169 0.4880 “0.1540 “0.0470

0.4175 0.4858 “0.1986 “0.0658

0.4178 0.4837 “0.2371 -0.0837

0.4176 0.4814 “0.2675 -O.lOO7

0.4166 0.4791 “0.2874 “0.1165

0.4147 0.4768 “0.2934 “0.1306

0.4113 0.4742 "0.2816 “0.1425

0.4061 0.4715 “0.2469 “0.1513

0.3984 0.4684 “0.1835 -O.1558

GAMMA=8 *

OOOOOOOOCOCOCOCOOOCCCCO0......

0.4070 0.5415 0.5850 0.1349

0.4053 0.5354 0.5186 0.1255

0.4055 0.5297 0.4413 0.1130

004069 005244 003595 000988

0.4090 0.5194 0.2774 0.0834

0.4114 005146 001980 000675

0.4138 0.5099 0.1231 0.0514

0.4161 0.5053 0.0537 0.0355

0.4181 0.5007 “0.0097 0.0199

0.4199 0.4963 “0.0670 0.0047

0.4213 0.4918 “0.1179 -0.0099

0.4224 0.4874 “0.1620 “0.0237

0.4229 0.4830 -O.l993 -0.0369

0.4229 0.4786 “0.2289 “0.0492

0.4221 0.4743 “0.2498 “0.0606

0.4202 0.4699 “0.2610 “0.0712

0.4171 0.4654 “0.2608 “0.0806

0.4123 0.4609 “0.2475 “0.0888

0.4053 0.4562 “0.2193 “0.0953

0.3955 0.4513 “0.1745 “0.0997

0.3821 0.4459 “0.1112 “0.1012
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ALPHA=4O DEGREES.

195

GAMMA=1

TENS1ON SENDING

N T N T

..............................

0.4131 0.4924 0.3260 0.0696

0.4131 0.4924 0.3379 0.0664

0.4131 0.4924 0.3301 0.0610

0.4131 0.4924 0.3080 0.0543

0.4131 0.4924 0.2761 3.0470

0.4131 0.4924 0.2373 0.0393

0.4131 0.4924 0.1939 0.0315

0.4131 0.4924 0.1475 0.0236

0.4131 0.4924 0.0992 0.0157

0.4131 0.4924 0.0498 0.0078

0.4131 0.4924 ”0.0005 0.0000

0.4131 0.4924 ”0.0498 ”0.0078

0.4131 0.4924 -0.0992 -0.0157

0.4131 0.4924 -0.1475 ”0.0236

0.4131 0.4924 ”0.1939 ”0.0315

0.4131 0.4924 -0.2373 ”0.0393

0.4131 0.4924 ”0.2761 ”0.0470

0.4131 0.4924 ”0.3080 ”0.0543

0.4131 0.4924 ”0.3301 ”0.0610

0.4131 0.4924 ”0.3379 ”0.0664

0.4131 0.4924 ”0.3260 ”0.0696

GAMMA=4 *

..............................

0.4129 0.5026 0.4554 0.0432

0.4127 0.5015 0.4149 0.0410

0.4126 0.5005 0.3684 0.0378

0.4127 0.4994 0.3180 0.0339

0.4128 0.4984 0.2657 0.0296

0.4129 0.4974 0.2125 0.0249

0.4131 0.4964 0.1595 0.0201

0.4133 0.4953 0.1072 0.0153

0.4135 0.4944 0.0562 0.0103

0.4136 0.4933 0.0067 0.0054

0.4137 0.4923 ”0.0410 0.0005

0.4139 0.4913 ”0.0865 ”0.00 5

0.4139 0.4904 ”0.1295 ”0.0095

0.4140 0.4894 ”0.1696 ”0.0145

0.4140 0.4884 ”0.2062 ”0.0195

0.4138 0.4874 ”0.2382 ”0.0246

0.4136 0.4864 ”0.2646 ”0.0296

0.4132 0.4854 ”0.2833 ”0.0345

0.4126 0.4845 ‘0.2921 ”0.0390

0.4117 0.4834 ”0.2874 ”0.0426

0.4104 0.4824 ”0.2647 ”0.0446

BETA=20

GAMMA=2 *

TENSION SENDING

N T N T

..............................

0.4136 0.4937 0.4039 0.0536

0.4132 0.4930 0.3850 0.0509

0.4130 0.4924 0.3540 0.0468

0.4129 0.4917 0.3149 0.0417

0.4129 0.4911 0.2704 0.0361

0.4129 0.4904 0.2226 0.0302

0.4130 0.4898 0.1731 0.0242

0.4131 0.4892 0.1229 0.0182

0.4132 0.4990 0.0727 0.0121

0.4133 0.4983 0.0231 0.0061

0.4134 0.4976 ”0.0257 0.0001

0.4135 0.4970 ”0.0729 ”0.0059

0.4136 0.4963 -0.1185 ”0.0120

0.4136 0.4956 -O.1617 -o.01ao

0.4137 0.4950 ”0.2020 ”0.0241

0.4136 0.4943 ”0.2383 -0.0301

0.4135 0.4885 ”0.2693 ”0.0361

0.4133 0.4879 ”0.2928 ”0.0418

0.4129 0.4872 ”0.3063 ”0.0471

0.4124 0.4865 ”0.3061 ”0.0513

0.4115 0.4858 ”0.2871 ”0.0537

GAMMA=8 *

..............................

0.4123 0.5045 0.4854 0.0372

0.4123 0.5032 0.4320 0.0354

0.4124 0.5020 0.3763 0.0327

0.4126 0.5007 0.3195 0.0295

0.4128 0.4995 0.2627 0.0259

0.4130 0.4983 0.2065 0.0220

0.4133 0.4971 0.1516 0.0179

0.4135 0.4959 0.0982 0.0137

0.4137 0.4947 0.0468 0.0095

0.4138 0.4935 ”0.0025 0.0051

0.4140 0.4923 ”0.0495 0.0008

0.4141 0.4911 ”0.0940 ”0.0036

0.4142 0.4900 ”0.1355 ”0.0080

0.4142 0.4888 ”0.1738 ”0.0124

0.4141 0.4876 ”0.2083 —0.0169

0.4139 0.4865 ”0.2380 ”0.0215

0.4136 0.4853 ”0.2618 ”0.0260

0.4131 0.4842 ”0.2780 ”0.0305

0.4124 0.4830 ”0.2842 ”0.0346

0.4113 0.4818 ”0.2772 ”0.0378

0.4097 0.4806 ”0.2526 ”0.0396
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ALPHA=4O DEGREES.

196

GAMMA=1

TENSION BEND1NG

N T N T

..............................

0.4131 0.4924 0.3898 0.0164

0.4131 0.4924 0.3628 0.0156

0.4131 0.4924 0.3304 0.0143

0.4131 0.4924 0.2942 0.0126

0.4131 0.4924 0.2554 0.0109

0.4131 0.4924 0.2148 0.0090

0.4131 0.4924 0.1729 0.0072

0.4131 0.4924 0.1302 0.0054

0.4131 0.4924 0.0871 0.0035

0.4131 0.4924 0.0436 0.0017

0.4131 0.4924 ”0.0004 0.0000

0.4131 0.4924 ”0.0436 ”0.0017

0.4131 0.4924 ”0.0871 ”0.0035

0.4131 0.4924 ”0.1302 ”0.0054

0.4131 0.4924 ”0.1729 ”0.0072

0.4131 0.4924 ”0.2148 ”0.0090

0.4131 0.4924 ”0.2554 ”0.0109

0.4131 0.4924 ”0.2942 ”0.0126

0.4131 0.4924 ”0.3304 ”0.0143

0.4131 0.4924 ”0.3628 ”0.0156

0.4131 0.4924 ”0.3898 ”0.0164

GAMMA=4

...... ......................

0.4132 0.4946 0.4254 0.0096

0.4132 0.4944 0.3835 0.0091

0.4132 0.4941 0.3405 0.0085

0.4132 0.4939 0.2967 0.0077

0.4132 0.4937 0.2524 0.0068

0.4132 0.4935 0.2081 0.0058

0.4132 0.4933 0.1637 0.0048

0.4132 0.4930 0.1196 0.0037

0.4132 0.4928 0.0757 0.0026

0.4132 0.4926 0.0322 0.0015

0.4132 0.4924 ”0.0108 0.0004

0.4132 0.4922 ”0.0533 ”0.0007

0.4132 0.4920 ”0.0951 ”0.0018

0.4132 0.4918 ”0.1362 ”0.0030

0.4132 0.4915 ”0.1764 ”0.0043

0.4132 0.4913 ”0.2153 ”0.0056

0.4132 0.4911 ”0.2527 ”0.0069

0.4132 0.4909 ”0.2880 ”0.0082

0.4132 0.4907 ”0.3204 ”0.0094

0.4131 0.4904 ”0.3489 ”0.0104

0.4130 0.4902 ”0.3721 ”0.0110

BETA=100

GAMMA=2 *

TENSION SENDING

N T N T

..............................

0.4132 0.4938 0.4130 0.0120

0.4132 0.4937 0.3763 0.0114

0.4132 0.4936 0.3370 0.0105

0.4132 0.4934 0.2959 0.0094

0.4132 0.4933 0.2535 0.0082

0.4132 0.4931 0.2104 0.0069

0.4132 0.4930 0.1669 0.0056

0.4132 0.4928 0.1233 0.0043

0.4132 0.4927 0.0796 0.0029

0.4132 0.4926 0.0361 0.0016

0.4132 0.4924 ”0.0071 0.0003

0.4132 0.4923 ”0.0500 ”0.0011

0.4132 0.4921 ”0.0924 ”0.0025

0.4132 0.4920 ”0.1342 ”0.0039

0.4132 0.4918 ”0.1752 ”0.0053

0.4132 0.4917 ”0.2152 ”0.0068

0.4132 0.4915 ”0.2537 ”0.0083

0.4132 0.4914 ”0.2902 ”0.0097

0.4132 0.4912 ”0.3239 ”0.0111

0.4131 0.4911 ”0.3537 ”0.0122

0.4131 0.4910 ”0.3782 ”0.0129

GAMMA=8 *

..............................

0.4131 0.4950 0.4318 0.0083

0.4131 0.4947 0.3872 0.0080

0.4131 0.4944 0.3423 0.0074

0.4132 0.4942 0.2971 0.0068

0.4132 0.4939 0.2519 0.0060

0.4132 0.4937 0.2068 0.0052

0.4132 0.4934 0.1620 0.0043

0.4132 0.4932 0.1176 0.0034

0.4132 0.4929 0.0737 0.0025

0.4132 0.4927 0.0302 0.0015

0.4132 0.4924 ”0.0127 0.0005

0.4132 0.4921 ”0.0550 ”0.0005

0.4132 0.4919 ”0.0965 ”0.0015

0.4132 0.4916 ”0.1372 ”0.0026

0.4132 0.4914 ”0.1769 ”0.0038

0.4132 0.4911 ”0.2154 ”0.0049

0.4132 0.4909 ”0.2522 ”0.0062

0.4132 0.4906 ”0.2869 ”0.0074

0.4131 0.4904 ”0.3187 ”0.0085

0.4131 0.4901 ”0.3465 ”0.0095

0.4130 0.4899 ”0.3690 ”0.0100
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Table F4.--Largest difference between 8th- and 7th-order,

or 8th- and 6th-order polynomial solutions for

adhesive stresses.

Please note:

1. Differences are expressed as a percentage of the

8th-order results.

2. Omitted entries mean data not available--see

section 3.1.4 for the only information applic-

able to a = 5° cases.

3. The combination with [8-6] is designated by (*)

and is a pessimistic measure because [8-7] re-

sults are often substantially closer. [8—7] com-

bination appears in the table without (*).

4. The first value tabulated is the largest % dif-

ference for all stresses, from the largest ab-

solute value down to one-half of this maximum.

5. When there is a second error entry followed by

a value in parentheses, it means that if we ex-

tend our consideration to values a little less

than half the maximum, the error is larger, as

indicated. The number in parentheses shows how

far down one must go in the primary tables of

Appendix F to get this larger error. Interpreting

these items requires consultation of the primary

 

 

 

   

 

tables.

Tensile Loading

y=2 'y=4 y=8

a 8 Normal Shear Normal Shear Normal Shear

10° 4 10.4 0.24 5.7 -0.25 -7.8 0.50

-9.0

(.021)

20 '7;l* 0008* -8.5* —Ool3* -304 0.07

8.8

(.020)

100 -0.89* -0.006* -0.57* -0.005* 0.67* -0.005*

20° 4 2.2 -.069 1.38* 0.23* 5.5 0.10

0.21

(.207)
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Tensile Loading

 

 
 
 

 

 

 

a 8 Normal Shear Normal Shear Normal Shear

20° 20 0.2* 0.009* 0.43* -0.02* 0.49 -0.01

100 0.02 -0.001 0.02* 0.002* 0.01 0.001

30° 4 0.57* -0.06* 0.45 -0.05 0.54 -0.06

20 0.06* 0.003* -0.21* 0.02* -0.08* 0.004

100 -0.006* 0.000* -0.03* 0.001* -0.03* 0.002*

40° 4 0.32* 0.06* 0.14* -0.03* -0.41* 0.10*

20 -0.05* 0.006* -0.07* 0.01* —0.03 0.004

100 -.003* 0.000* -0.004* 0.000* - .005* 0.000*

Bending Load

10° 4 -2.6 0.15 -2.4 0.17 -9.7 0.16

8.3 0.22 -3.6 .35

(.016) (.082) (.189) (.102)

20 5.8* 0.77* 5.7* 0.42* 1.6 0.45

9.1

(.015)

100 -5.24* -0.60* -O.66* -0.16* 2.7* 0.50*

20° 4 7.7 0.28 -3.4* 0.37* -3.7 -0.34

20 1.4* 0.64* -3.9 0.73 2.9 0.96

100 2.5 -0.59

30° 4 -8.64* 1.1* -3.1 .071 -2.4 1.1

20 -2.4 0.81 -3.7* 2.4* 0.46 0.79

-3.1

(-.094)

100 1.3 1.5 -3.6* 5.1* 3.7* 5.4*

40° 4 -5.9* 2.6* -l.4 1.1 -2.01* 2.9*

20 -4.2* -4.4* -4.4 4.8 -1.8 1.9

100 -l.1* -5.7* -1.1* 6.3* -l.l* 6.7*
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Table F5.--Root-Mean-Square values for percentage differ—

ences between 8 -order and lower-order poly-

nomial solutions. (Table added in proof for

convenience of user.)

The largest value of T or N in Table F1 is located and

multiplied by 0.4; stresses smaller than this "cutoff"

value are ignored. The difference between the Table F1

values and the available lower-order solution (7th- or

6th-order) are expressed as a percentage of the Table F1

values. Then the root-mean-square quantities RMSN and

RMST are formed from these larger-stress percent

differences:

RMSN = [2(normal stress % differences)2/(No. differences

considered)]1/2

RMST is formed similarly. These are probably the best

available indices of merit of the primary results in Table

F1; Table F4 is useful but excessively conservative.

Omitted cases below: no comparison solutions available.

 

 

  

 

Tension Bending Tension Bending

a B y RMSN RMST RMSN RMST a B y RMSN RMST RMSN RMST

5° 20 4 13.81 0.25 19.13 0.26

10° 4 2 2.91 0.07 2.36 0.14 30° 4 2 0.19 0.01 2.63 0.61

4 3.65 0.15 9.29 0.12 4 0.16 0.02 1.07 0.50

8 3.61 0.33 3.47 0.20 8 0.20 0.03 0.99 0.68

20 2 1.80 0.04 5.46 0.38 20 2 0.02 0.00 0.69 0.51

4 2.44 0.08 16.12 0.64 4 0.07 0.01 1.40 1.75

8 2.29 0.04 5.97 0.31 8 0.02 0.00 0.34 0.53

100 2 0.22 0.00 1.95 0.33 100 2 0.00 0.00 0.44 0.85

4 0.14 0.00 0.42 0.18 4 0.01 0.00 1.15 2.86

8 0.17 0.00 0.31 0.12 8 0.01 0.00 1.21 2.79

20° 4 2 0.06 0.05 2.64 0.23 40° 4 2 0.11 0.03 2.36 1.67

4 0.89 0.13 2.16 0.53 4 0.04 0.01 0.54 0.67

8 1.37 0.08 1.42 0.24 8 0.13 0.05 1.00 1.77

20 2 0.07 0.01 0.94 0.54 20 2 0.01 0.00 1.37 2.81

4 0.11 0.01 1.18 0.39 4 0.02 0.00 1.38 2.87

8 0.14 0.01 1.03 0.56 8 0.03 0.00 0.54 1.15

100 2 0.01 0.00 0.67 0.28 100 2 0.00 0.00 0.37 3.34

4 0.02 0.00 0.52 0.20 4 0.00 0.00 0.36 3.26

8 0.03 0.00 0.41 0.12 8 0.00 0.00 0.36 0.34

 

 



APPENDIX G

COMPUTER PROGRAM

The main computer program used in this research

is given below. It is written in Fortran for the CDC 3600

computer. The dollar sign ($) is a legal statement sepa-

rator for this computer; each time you encounter it, put

what follows on a new card in writing for most other com-

puters. Because of space limitations, the various auxiliary

programs used in this research have had to be omitted here.

These include the program for the integral equation method,

and more detailed commentary on the main program.
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GO TO 4

3 A5180

4 PHII=AL3*CCC12

PHIO=AL4*CCCI3

CHIZ=AS3§CH11

CI6=AS3*CIO

C15=ASZ*C12

CH21=AS2*CH2

CH11=A$1*CHI

CI3=ASI*CII

IF (I3) 19920919

19 EI3=19/I3

GO TO 21

20 EI3=O

21 CONTINUE

EI32=EI3*095

MS=MM

NSaNN

MM=MM-1

NN=NN-1

IF(MS-1) 259390925

25 IF (MS‘L) 2793409330

27 IF (NS-1) 299390929

29 IF (Ns-L) 319340933

31 MMI:MS+MJ-2

NNl:NS+MJ—2

GO TO 350

33 MM1=MS+MJ-2

NN1=NS+MJ-3

GO TO 350

340 IFINS-l) 37093909373

330 MM1=MS+MJ-3

IF (NS'I) 31093909310

310 IF (Ns-L) 31593709320

315 NN1=NS+MJ-2

IF(MM1-NN1)1619161937O

320 NN1=N$+MJ-3

IF(MM1-NN1) 16191619370

350 IF(MM1-NN1) 16191619370

161 M$Y=IPOS(MM19NN1)

A(MSY)=(PHIO*CSQU-CH121*EN*(EJ*19/I1)+R3*EK*EM*EI32*(PHIO

l-CHII)+HH*PH11

370 IF(MM-NN) 17191719390

171 M5Y=IPOS(MM9NN)

A(MSY)=(PHIO-CHII)*EK*EM*EI3+(PHIO*CSOU"CH12)*R3*EN*EJ/(29*

111)+H1*PHII

390 CONTINUE

IF(MM2-NN2) 39193919392

391 MSY=IPOS(MM29NN2)
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540

550

560

565

580

590

600

208

MM2=MM+MJ*2-3

MM3=MM+MJ*3-3

MM=MM-1

C1=(-CHI)**ME

C3=CHI**ME

C55=(19-(-19)**NMP)*CI/ENP

C77=(19-(-19)**NMP)*C3/ENP

C11=(19-(-19)**NM )*C1/EN1

C33=(19-(-19)**NM )*C3/EN1

B(MM291)= RI*SME*C33

BIMM292)=—RI*SME*C77

8(MM391)=0

IFIMS-l) 54095909540

IFIMS-L) 55095809560

MM1=MS+MJ-2

GO TO 565

MMI=MS+MJ-3

BIMM911=RI*SME*C11*(-19)

8(MM92)=R1*SME*C55

BIMM19II=O

BIMM192)=O

GO TO 590

CONTINUE

B(MM9I)=RI*SME*C11*(-19)

BIMM92I=RI*SME*C55

CONTINUE

M1=M1+LO

RITZ COEFFICIENT SYMMETRIC MATRIX INVERSION

CALL SYMINV(NB)

CALCULATION OF DISPLACEMENT FUNCTION COEFFICIENTS

631

621

641

00 631 I9=I9NB

D0 631 K9=19M

X8(I99K9)=O

DO 621 18=I9NB

DO 621 J8=19NB

DO 621 K8=19M

IIB=IPOS(IB9J8)

X8(189K8)=X8(I89K8)+A(IIB)*B(J89K8)

DO 641 I7=19NB

DO 641 J7=19M

B(I79J7)=X8(I79J7)

CALCULATION OF ADHESIVE AND BOUNDARY STRESSES

705

DO 2000 M=192

Y(19I)=0

DO 790 J=19NB

IF (J-NH) 70597059710

II=J+1

Y(II91)=B(J9M)
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