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ABSTRACT

STRESS ANALYSIS OF THE ADHESIVE SCARF
JOINT BETWEEN DISSIMILAR ADHERENDS

by Pethinaidu Surulinarayanasami

This study determines the adhesive stress distribu-
tion in scarf joints between elastically-dissimilar adherends
(joined members). Results are presented for five scarf
angles; four levels of adherend dissimilarity; three levels
of adhesive flexibility in the range appropriate for the
bonding of metals and plastics; and for both tensile and
bending loading of the joint. The adherends are treated
using plane stress, and the adhesive is capable of resist-
ing shear, and normal stress perpendicular to its plane,
with strains assumed to be uniform through its (small)
thickness. Only linearly elastic behavior is considered.

The Rayleigh-Ritz method is employed to obtain the
extensive stress tables presented. Systems of 177 linear
equations are solved. This corresponds to the representa-
tion of each of the four components of displacement (two
elastic bodies) by the sum of all homogeneous polynomials
in x and y through the eighth degree. The convergence of

the solutions is examined, and the adhesive stress
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distributions are discussed exhaustively. Also tabulated
are those values of the adhesive combined stresses which
are critical for elastic design by some of the common failure

criteria. The use of these results in design is outlined.
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CHAPTER I

INTRODUCTION

l.1. General

The analysis of adhesive joints has growing impor-
tance because of the increasing application of adhesive in
industrial and aerospace technology. The applications are
usually inconspicuous, but vital to the performance of the
bonded objects, whether these be automobile brake linings,
the wings of a jet liner, or the ultra-high-strength sheet
metal rings of a solid-fuel rocket case. It is essential
to pay most attention to the adhesive stresses, because the
adhesive is usually the weakest material involved in the
joint. With proper design, however, the joint need not
necessarily fail in the adhesive.

The adhesive, of course, constitutes a fastening
medium between the two adherends (joined members). Some
types of adhesive can reasonably be idealized as linearly
elastic, and this assumption is used here. This hypothesis

is entirely unrealistic12

for many other adhesives, but
even for those with complex rheological behavior, the elas-

tic analysis may offer the designer useful guidance.



Adhesives are employed in many different joint con-
figurations, to bond such materials as metals, plastics, wood
and glass to themselves or to each other. The assumptions
of the present study make the results applicable primarily
to cases where the adherends are considerably more rigid
than the adhesive layer, e.g., the bonding of metals and
plastics. Some modification of the present approach is re-
quired to accommodate glue joints for wood. This might be
worthy of study, since the "finger joint" of wood technology
is quite similar in geometry to the one considered in this
thesis.

The commonest joint configuration is the "lap joint"
(Fig. la, next page), which is also the easiest one to manu-
facture. Most previous studies deal with this (see section
1.2, "Literature Review and Background of the Present Hypo-
theses"). Also of great technical importance is the "scarf
joint," with which the present thesis is concerned. The
scarf joint connects two bars or sheets on an inclined plane
(see Fig. 1lb). The scarf angle is usually in the range of
10° to 30°. This joint has the advantage over the lap joint
of avoiding the bending action due to the offset of the two
members, when the loading is tensile, and the disadvantage
of being harder to make. The scarf joint presents a much
larger surface area of adhesive for bonding than the con-
ventional "butt joint" (Fig. lc). The latter is the special

case when the "scarf angle" is 90°. A perfect butt joint
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offers a purely tensile loading of the adhesive, but mis-
alignment (which is hard to avoid) can give rise to substan-
tial bending action and corresponding stress concentrations.
The scarf joint configuration, with the usual 10°-30° angle,
loads the adhesive largely in shear at a moderate stress
level.

This thesis follows up a previous study of the scarf
joint between identical adherends by investigating the case
of dissimilar materials. Prior work, discussed later (Sec.
1l.2), indicates that the overall features of the adhesive
stress distribution may be obtained by treating the thin
adhesive layer as a complex elastic foundation. The latter
is assumed to be capable of transmitting shear stress, and
normal stress perpendicular to the plane of the adhesive
layer. Certain local "edge effects" (stress concentrations)
are neglected, as explained subsequently.

The complexity of the present problem, formulated
as a boundary-value problem of elasticity theory, appears
to preclude an exact solution., Accordingly, the Rayleigh-
Ritz method has been used, as the most appropriate for
finding answers expeditiously. The method of finite dif-
ferences is difficult to formulate for this problem, and
was abandoned after considerable investigation. An alter-
nate method, described in Muskhelishvili,4 involves the
use of the Sherman-Lauricella integral equation in the

complex plane. As utilized here, this approach seems to



require even more computer memory than the considerable
amount available in Michigan State University's CDC 3600
computer installation. Thus the method has not been en-
tirely successful, but the computations performed seem to
support the results of the Rayleigh-Ritz method.

l.2. Literature Review and Background of
the Present Hypotheses

This review is fairly brief because a number of

recent surveys are available.s’g'lo'12

Moreover, very little
of the work is immediately relevant to the present problen,
since it appears that only one previous analysis of scarf

jointshas been conducted. There is some literaturelz’ls'

24,26,30 on experimental work for such joints, mostly from
the aerospace field and from wood technology. However most
of these involve tests to destruction and it is likely that
correlation with the present elastic analysis would only be
of the roughest sort.

The studies reviewed, however, serve to validate
some of the present hypotheses. They also indicate some of
the factors which are neglected in the present type of
analysis.

The literature of the "peel test" is not covered
here; see References (8,9,10). This test (to destruction)
is used for quality control in joint manufacture. It in-

volves large deformations of the adhesive and at least one

adherend. The latter is usually peeled off a drum to which



it has been bonded. Since many of the peel test analyses
involve the assumption of an elastic adhesive, they are
probably not even relevant to the actual peel test, much
less to the present study. For convenience, the various
past investigations which deal with the stress distribu-
tion in adhesive joints have been grouped as follows:

a) lap joints, b) scarf joints, and c) butt joints.

1.2.1 Lap Joints

It should be noted that all stress calculations
have neglected the adhesive layer thickness in consider-
ing the geometry of the problem. This reflects practice;
adhesive layers are usually very thin compared to the
thickness of the adherends. This sometimes fails to be
accurate in the case of the very thin sheets encountered
in aircraft construction, but most analyses are readily
modified to accommodate the necessary changes. Most theo-
retical work has been done on the stress distribution in
adhesive lap joints. One of the earliest investigators,
Volkersen,ll developed a one-dimensional, elastic-adhesive
theory by treating the adhesive joint as an approximate
substitute for (limiting case of) the multirow riveted lap
joint. He indicates in his analysis, after neglecting
the bending of adherends, that the largest adhesive
shear stress occurs toward the ends of the overlap region.

His analysis includes the case of dissimilar adherends,



and actually applies most accurately to symmetrical double
lap joints (Fig. 1d, p. 3), since these involve comparatively
little bending. N. A, de Bruyne's12 analysis is essentially
that of Volkersen. Ha;tman26 supported some of the theo-
retical investigations in his tests of double lap joints.
N. A. de Bruyne12 also argues persuasively for the advantages
of the bevelled (tapered) lap joint in reducing adhesive
shear stress concentration. Sazhin19 studied the tapered
lap joint analytically, and found that it leads to a hyper-
geometric differential equation. The problem is actually
solved using a variational method, but with very few terms
and without a discussion of convergence. His reported good
agreement with experiments is somewhat suspect, because the
experiments are not described and sound suspiciously like
ultimate strength tests (in the translation of the original
article). It would have to be coincidental that an elastic
analysis predicts the behavior of a test to destruction in-
volving the amount of inelastic behavior normally found in
adhesive joint failure tests. The tapered lap joint has
been investigated experimentally by Hartman,30 who observed
in tests that a tapered lap joint does have a moderately
larger ultimate load capacity than the uniform one.

Although the neglect of adherend bending and adhe-
sive normal stress reduces these analytical studies to just
one step above "dimensional analysis," they still offer

designers considerable guidance as to what to expect. Their



results also explain why adhesive lap joints invariably
start failing at the ends, even though, as elastic studies, .
they cannot be expected to be of much help in studying
ultimate strength tests. Nevertheless, these early studies
suggested ways of plotting strength test data so as to
minimize the total amount of experimental work required to
establish system properties (de Bruyne's "joint factor").
Goland and Reissnerl3 published a considerably more
rigorous analysis. This included the effects of adherend
bending, inside and outside the joint, and appears to be
the first study to show that large "tearing stresses"
arise, concentrating at the ends of the joints. The latter
are direct stresses normal to the plane of the adhesive
layer. They considered two limiting cases, one of which is
relevant to a joint in which the adhesive is much more rigid
than the adherends. This applies for certain joints in wood,
paper, cardboard, and low modulus plastics. The other limit-
ing case is the one where the adhesive is much more flexible
than the adherends, as in metal-to-metal joints. Under this
hypothesis, and based upon a considerafion of the strain
energies of the problem, they argue that it is sufficient
to consider only the adhesive shear stress, and the adhesive
direct stress normal to the adhesive layer. Most subsequent
work (including this thesis) has neglected the longitudinal
component of adhesive direct stress, essentially because of

the low modulus of the adhesive compared to the adherends.



Their second stress analysis problem was formulated
(with minor inconsistencies) as one of cylindrical bending
of thin plates (i.e., practically speaking, using elementary
beam theory). The first problem, not discussed here because
it applies primarily to joints in wood, used plane strain
theory. Except for the Goland-Reissner stiff-adhesive (plane
strain) case, these investigations all model the adhesive as
a uniform elastic foundation capable of transmitting shear
(or shear and normal stress) from one adherend to the other.

Plantema14

modified the Volkersen theory by consid-
ering the effect of bending deformation on the adhesive
shear stress, arriving at a refined shear stress concentra-
tion factor. However, the neglect of normal stress appears
undesirable, in view of the results of Goland and Reissner.
Cornell15 studied the brazed-tab fatigue specimen
as a lap joint. His work is closely related to that of
Goland and Reissner, although the geometry of the problem
is somewhat different. This study constitutes both an ex-
tension and a validation of their analysis. His assumption
that the two adherends act like beams and that the elastic
cement layer behaves like an infinite number of infinitesi-
mal shear and tension springs is simply a restatement of
the Goland-Reissner hypothesis. His "cement" was actually
a thin layer of braze compound, which perhaps cannot be
considered to be flexible enough, relative to metal ad-

herends, to qualify as "much more flexible" than the latter.
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His experimental work, however, indicates good agreement
with the analysis. This, in turn, simply indicates that
Goland and Reissner's energy argument for deciding when
the "elastic foundation" model for the adhesive layer will
break down is somewhat conservative. It can probably suc-
cessfully be used for stiffer adhesives than they indicate.
Cornell compared his analytical results for adhesive
stresses to photoelastic and brittle lacquer experiments.
His study was also one of the first to consider a
very significant factor which is entirely neglected in the
type of approach used by Goland and Reissner (and in the
present thesis). This is the "free-edge effect" at the
ends of the joint. The "free-edge effect" is the stress
disturbance caused by the complex boundary conditions at
the ends of the joint, where adherends and adhesive are
adjacent to a stress-free boundary, usually air. Figure 2
(next page), shows such a free boundary in terms of Cor-
nell's geometry. A proper consideration of this problem
is enormously complex from the point of view of elasticity
theory. This is further complicated by our ignorance of
the precise shape of the adhesive-air boundary in practical
situations, because the actual boundary shape depends upon
the details of the production process, the actual adhesive
used, etc. Moreover, the free-edge effect is significant
at the point where shear and normal stresses in the adhe-

sive usually take on their largest values, according
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to those approaches which ignore these local effects. As
Cornell puts it, the analysis neglecting the free-edge
boundary problem has a "built-in fillet," r > 0 in Fig. 2.
But whether r = n, 1.7n, 0.2n or any other value depends
very much upon manufacturing details. The value of r can
of course be investigated statistically for any particular
problem important enough to warrant the research costs.

We know, at least, that if the adhesive joint is a good
one, the fillet radius will be in the sense indicated.
This is because a proper bond requires low surface tension:
the adhesive must "wet" both of the adherends well.

In Cornell's work, his "adhesive" (brazes and
solders) in practice had a radius r about equal to n in
Fig. 2, and he bases his discussion on this observation.
Though he found fairly good agreement between supporting
experimenté and the analysis, the main discrepancy was
precisely at the free edge. He points out that the stress
concentration factor becomes infinite if the tab and the
base bar form a right angle, i.e., if the radius of curva-
ture (r in Fig. 2) is zero. This is just another way of
saying that stress singularities must be expected at a 90°
boundary if shear stress is present on one side and an
adjacent edge is stress-free.

To better understand the local effects at free
edges, Mylonas16 conducted photoelastic experiments on

transparent plastic layers bonded to "rigid" (steel) plates,
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simulating the ends of adhesive lap joints. In effect, his
work validates the neglect of free-edge effects, as far as
the interior of the joint is concerned. This is what we
would also expect from St.-Venant's Principle, since the
thickness of the adhesive is normally small compared to the
length of overlap. At the joint ends, however, Mylonas
finds that the stresses do vary across the thickness of the
layer and depend strongly on the shape of the free boundary
of the adhesive. He studied models having concave edges in
the shape of a circular arc (Fig. 3, p. 1l1), with ratios of
radius r to adhesive thickness n ranging from 0.5 (semicir-
cular edge) to = (straight edge). For the load sense shown,
he found that when r/n < 1.25 (6 < 50°), the maximum stress
develops on the adhesive boundary but away from the adhesive-
adherend interface ("cohesive failure" expected in the ad-
hesive). For a larger radius, the highest stress level is
much larger and develops at the corner, A ("adhesive fail-
ure" expected). Generally speaking, his experiments show
that the local effects at the free edges are critically
dependent upon the shape of these edges.

Mylonas' study correlates well with an investiga-
tion, unrelated to adhesive joints, due to Williams.l7 He
analyzed thin plates in extension, using generalized plane
stress, in order to estimate the strength of the stress
singularities which can be expected at the vertex of a

semi-infinite triangle (wedge) under various edge boundary
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conditions. A typical metal-to-metal joint involves a
"nearly-rigid" adherend bonded to a comparatively low-
modulus adhesive, so that Fig. 4 (p. 1ll) approximates the
local situation at the adherend-adhesive-air corner in
Mylonas' experiments. This corresponds to Williams'
boundary-condition case of one edge free and the other
edge fixed. He formulated an eigenvalue problem for the
rate-of-decay parameter A, of stress with distance r from
point A. All stresses behave as rx_l, and all displace-
ments as rx. The calculations give A as a function of 6,
the wedge angle. According to his results, no stress sin-
gularities arise for angles 6 less than 63°, but singulari-
ties do arise (for general loading) when 6 > 63°. This
trend is quite similar to what Mylonas found in his experi-
ments. The latter differ in that the steel plates only
approximate the ideal "rigid" boundary conditions of
Williams.

Misztal20 studied lap joints in flat sheets loaded
by shear flow perpendicular to the plane of the drawing in
Fig. la (p. 3). He assumed that the shear stress is uni-
form across the adhesive and adherend thickness, and they
deform only in shear, obtaining an adhesive shear stress
distribution similar to that of the Volkersen problem. He
also examined double lap joints of this type.

McLaren and MacInnes18 performed photoelastic ex-

periments on lap joints. They found Goland and Reissner's
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analytical results to be generally correct, observing an in-
crease in shear and "tearing" stresses towards the ends of
the joint. The shear stress, of course, obeys the actual
boundary conditions and drops to zero at the ends. They also
studied the effect of adhesive-adherend contact angle at the
end of the joint, in tests similar to Mylonas'. In this
work the adherends are considerably more flexible than in
Mylonas' tests (although still stiffer than the adhesive).
As "96," the contact angle, is reduced to about 40°-50° or
less, the largest tensile stress moves out of the "leading
corner" (adherend-adhesive-air point, A in Fig. 3 (p. 11),
on the loaded side) to a point C on the adhesive-to-air
boundary. This supports both Mylonas and Williams quite
well, considering the somewhat different range of the elas-
tic constants. It is also noted by Mylonas, and by McLaren
and MacInnes, that the largest magnitude of stress occurs

- at B (Fig. 5, p. 1l1), for the load sense of Figs. 3 and 5.
This is compressive in nature, but of course becomes ten-
sile if load F reverses. This is quite consistent with
Williams' analytical results, since the stress level ex-
ponent (A-1l) in r>‘-l increases with wedge angle. If AB in
Fig. 5 is straight and 6 is small enough to avoid stress
singularities in the adhesive wedge cornering at A, then

the obtuse adhesive wedge corner at B is surely large

enough for singular stress at B.
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Lubkin and Reissner21 produced an extensive analysis
of lap joints between thin, circular, cylindrical shells in
axial tension. The investigation was carried out using the
linear theory of axisymmetric bending and stretching of thin,
isotropic shells. It was again assumed that the adhesive
layer is elastic and considerably more flexible than the ad-
herends. The work is basically along the lines of the Goland
and Reissner approach, with due allowance for the new geome-
try. The paper contains considerable discussion of the
following: (1) effect of amount of overlap on adhesive
stress concentration values, (2) position of maximum adhe-
sive normal and shear stress, and (3) effect of flexibility
of adhesive layer on stress concentration values. An in-
structive comparison is made between tubular and flat-plate
lap joint theories.

Sherrer22 has investigated the stress distribution
in lap joints when the adherends are dissimilar, as an ex-
tension of Goland and Reissner's analysis. He obtained a
series solution for the stresses in the joint, but had dif-

19 also

ficulties because of slow convergence. Sazhin
studied the lap joint, apparently unaware that he was
duplicating the work performed by Goland and Reissner 20

years earlier--at least he does not acknowledge priority.

1.2.2 Scarf Joints

Lubkin7 considered an adhesive scarf joint between

elastically-identical adherends, loaded in tension. With
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the assumption that the thickness of the adhesive is negli-
gibly small compared to the depth of the adherends, it is
found that the adhesive stress distribution is uniform from
end to end. Moreover, the uniformity of adhesive shear and
normal stress (both of the latter are considered here) is
independent of the scarf angle and of the thickness of ad-
hesive and adherend. The stresses themselves, of course,
depend on the scarf angle. This simple state of stress can
therefore be calculated directly from equilibrium considera-
tions. 1Its simplicity arises from the symmetry of the
identical adherends, and of the purely tensile load. (If

the loading is pure bending, for example, this symmetry is
lost and it can be shown that it is impossible for the ad-
hesive stress to vary linearly along the joint.) He pre-
sented results useful to the designer within the elastic
range. These can probably be applied in the "wood" range

of elastic constants also, because both of the adhesive
normal stresses have been taken into account. Due to the
fortunate uniformity of the adhesive stresses along the
adhesive layer, it is possible to speculate that they remain
sensibly uniform when the adhesive no longer behaves elasti-
cally. The paper therefore had some success in correlating
actual failure tests, using what was originally intended'to
cover only the elastic range. It is not to be expected

that the present thesis can be used in this manner, since
the stress distributions found here are generally not uni-

form along the joint.
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The present investigation is an extension of Lubkin's
work, covering the more complex case of dissimilar adherends.

Cooper12 measured the adherend strains in a scarf
joint with an extensometer. He estimated a stress concen-
tration factor of 1.45 in a joint with a scarf angle of 6°
(identical adherends), but the definition of this factor is
not clear enough to permit a comparison with Ref. 7. Miiller24
and Hartman26 performed purely experimental work on scarf

joints tested to destruction. Hartman's work was correlated

with theory in Ref. 7.

1.2.3 Butt Joints

The "butt" joint is the name given to the special
case of the 90° scarf joint (Fig. 1lc, p. 3). de Bruyne27
formulated a relation based on viscous flow theory to indi-
cate that, for very thin adhesive layers, the joint strength
is inversely proportional to its thickness. This is found
to have good agreement with experimental results, although
perhaps not for the theoretical reasons adduced. Shield,28
using limit analysis, investigated bounds on the joint
strength of a butt joint. Norris29 assumed that the adhe-
sive in the bond is isotropic, and that the strains in the
adhesive, parallel to the plane of the bond, are equal to
those in the adherends. He developed a method for the de-

termination of the elastic properties of adhesives as

they actually exist in bonds. He substituted these properties
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in the formula for determination of the stress at which in-
stability becomes general throughout the bond, and this

stress is compared with the results of tests.

1l.3. The Present Investigation

The purpose of this study is to obtain detailed in-
formation on the stress pattern in the adhesive of scarf
joints between elastically-dissimilar materials, for a
variety of parameters and loading conditions. The problem
is treated as one of plane stress, with the assumption (re-
flecting most practical cases) that the adhesive layer is
negligibly thin when compared to the adherends. A con-
siderable number of different approaches have been attempted;
only the relatively successful ones are reported.

As formulated here, the problem consists of finding
a set of unknown internal boundary conditions for two dif-
ferent plane elastic bodies of trapezoidal shape. It ap-
pears that the method of finite differences is not well
suited, partly because of the present complexity of shapes
and boundary conditions. Of itself, this is not so bad.
The major problem is that the model adopted for the adhesive
almost demands that the solution be carried out in terms of
displacements, which implies four Navier equations in two
adherends. Moreover, the nature of the Navier equations
is such that interlocking nets of node-points are required
in each elastic body. The primary method selected, there-

fore, is the Rayleigh —Ritz method, a direct approach to
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variationally-formulated problems. There is no reason to
expect this to yield results inferior to the method of fi-
nite differences, and perhaps some reason to expect it to
be better.

In addition, the problem has been studied using an
elegant approach based upon the Sherman-Lauricella integral
equation in the complex plane.4 This method is so radi-
cally different in concept from the Ritz method that good
agreement would constitute an independent check on the re-
sults of the Ritz method. Unfortunately, just when agree-
ment appears to be getting good, the integral equation
formulation exceeds the capacity of the computer. It has,
therefore, not been pursued extensively.

The details of the method of analysis, including
the mathematical formulation of the problem and the various
parameters arising in the investigation, are given in Chap-
ter II. Chapter III is devoted to a discussion of the

checks used to validate the results.

1.4. Notation

The symbols used in this thesis are defined in the
text while they first appear. For convenience, they are
also listed here in alphabetical order, with English let-
ters preceding Greek letters. There are many symbols which
are common to both the Rayleigh-Ritz method and the integral

equation approach, but these occasionally represent slightly
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different quantities. A separate notation section is there-
fore given for the integral equation method in section 2.3.2.
The present section gives the list of all symbols common to
both methods, and conveying the same meaning. Other symbols
used in Chapters III and IV are also included here.
Subscripts 1 and 2 almost always represent quantities
defined for adherends 1 and 2, respectively. Figure 7, p. 26

shows many of the geometric quantities.

Am’n, B '

] ]
C , D = Coefficients of displacement functions

m,n
(ul,vl),(uz,vz) of 1lst and 2nd adherends,

respectively.

D = Coefficients of dimensionless displacement
functions (Ul'vl)’(UZ’vz) of 1lst and 2nd ad-

herend, respectively.

c = h(2 + cot a)(see Fig. 7).

C = 2 + cot a, (dimensionless value of c for
h=1).

E = Young's modulus.

E,.E, = Young's moduli.

Ea = Young's modulus of adhesive.

F = Resultant axial tensile force per unit width

of adherend (Figs. 1-7).
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Shear modulus of adhesive.

Adherend half-thickness.

See Fig. 7.

Bending moment per unit width of adherend
(Figs. 6,7).

Highest order of homogeneous polynomials.
Coordinate directions (Fig. 7).

Adhesive normal stress (dimensionless).

Adhesive normal stress concentration factor.
N evaluated at Xj,Yj.
Adhesive principal stresses.

s/h cot a = fraction of joint length along
adhesive interface, measured from midpoint
(origin).

Adhesive shear stress (dimensionless).

Adhesive shear stress concentration factor.
T evaluated at Xj'Yj‘
Adhesive principal shear stress.

Adhesive octahedral shearing stress.

Strain energy of whole system, adhesive,

1st adherend, 2nd adherend.
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Dimensionless strain energy of whole systemn,

adhesive, lst adherend, 2nd adherend.

Displacement components in x- and y- direction.

Displacement components of adherends in x-,

y- directions.

Dimensionless displacement components in
X-, Y- directions.

Total potential energy of the system.
Coordinates.

x/h, y/h (nondimensional coordinates).
Coordinates of particular points along ad-
hesive interface.

Surface tractions in X-, Y- directions.
Poisson's ratio.

Poisson's ratios.

Scarf angle.
nEl/Ea h(l - vi) = relative stiffness of
adhesive and adherend 1.

2 2, _ . .
E2(1 - vl)/El(l - v2) = relative stiffness
of adherends.

Adhesive film thickness.

Total potential energy.
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]
(1 - vi)Q /Elh2 = dimensionless total
potential energy.

Adhesive normal and shear strains.

External tensile stress loading adherends
(=F/2h), or outer-fiber value of bending
stress loading adherends ("Moh/I").

Usual components of stress.

cx(ic,y)/El = dimensionless end stresses
loading scarf joint system.

Adhesive normal stress.

Adhesive shear stress.

Miscellaneous

(Eq. 4.1.1).

Any one of the adhesive combined stresses

T

l/Ncom = OXO/Za°

Any allowable (design) value for the adhe-

sive combined stresses.



CHAPTER II

METHOD OF ANALYSIS

This chapter further describes the physical problem

and the methods used to investigate it.

2.1. Formulation of the Problem

The scarf joint considered here is shown in Fig. 6
(p. 26). It consists of two elastic adherends, joined to-
gether by a thin film of adhesive along the inclined face.
The depth of the adherends away from the joint is uniform
and equal to 2h, while that of the adhesive is n, also uni-
form and assumed to be very small compared to 2h. The
values of Young's modulus and Poisson's ratio for adherends
1l and 2 are El’ Vi and E2, Vg The adhesive is assumed to
be elastic, with Young's modulus E and shear modulus Ga‘
The scarf angle is a, and the joint is subjected to either
tensile force F or bending moment Mg, both per unit width.
These are typical loadings for this type of joint.

The actual geometry selected for the boundary is
shown in Fig. 7 (p. 26). The practical reason for using

an adhesive scarf joint is to increase the size of the ad-

hesive area, so that the adhesive--a weak material--can

25
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sustain lower stresses (stress concentration, of course,

can defeat this objective). For this reason a is usually
less than 25-30°. The lower limit, perhaps in the range
5-10°, is occasioned by the difficulty of manufacturing
straight, finely-tapered edges, especially in thin adherends.

The geometry chosen for the mathematical study of
the problem is inherently a compromise. Remote from the
joint, there is uniform tension parallel to x. Near the
joint, the stress pattern is greatly disturbed, except in
the case of identical adherend materials. It is therefore
judged important to allow a certain distance L1 for this
disturbance to reduce to the remote uniform bending or
tensile field, which is the ultimate end-boundary condi-
tion. A trapezoidal shape for each adherend therefore
appears to be essential, if the problem is not to be ideal-
ized out of existence. The latter would be the case if
only triangles adjacent to the adhesive interface were con-
sidered (Ll = 0). Conceivably, a parallelogram shape could
also be used.

As explained in the introduction, the present type
of study attempts only to describe the overall behavior of
the joint, and is admittedly imprecise at the free ends of
the adhesive. The adhesive-adherends-air boundary must
have a clearly-specified geometry before this complex local
problem can be attempted. Reasonable assumptions here de-

pend very much upon the actual materials used and precise
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manufacturing details. Some of the questions which must
then be asked are as follows: Was surplus adhesive wiped
off before curing? Machined off after curing? Left alone?
Did bonding pressure squeeze any adhesive out? Was there
enough adhesive initially? How much adhesive shrinkage was
there? At best, these can only be answered statistically,
in individual applications whose importance warrants the
expense. Nevertheless, the present type of study offers
the designer a comparative framework into which he can fit
empirically-determined constants (stress at yield, or some
such index) for his own particular case. It also offers
information about general trends, and the effects of varia-
tion of physical parameters.

It is assumed that the adhesive is very thin, and
quite flexible compared to the adherends in the metal-to-
metal joints at which this study is aimed. The adhesive
strains and stresses are therefore taken to be uniform
across its thickness, and the direct adhesive stress in
the joint axial direction (s - direction in Fig. 7, p. 26)
is ignored. To justify this neglect, note that the adhe-
sive is assumea to have a much smaller Young's modulus than
that of the adherends. The model used for the adhesive is
thus that employed by most previous investigations, and
validated by the experiments of Cornell, Mylonas and others.
Essentially, it is an elastic foundation, capable of trans-

mitting shear as well as transverse normal stress. The
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chief discrepancy in treating the adhesive is the neglect of
the local free-edge effects at the ends of the boundary,
which is a proper subject of separate study. The idealized
problem thus consists of two two-dimensional elastic trape-
zoids with different elastic moduli, interacting with each
other through a complex elastic foundation, the adhesive
layer. The exterior boundary conditions (Fig. 7, p. 26)

are that the top and bottom surfaces of the system are free
of stress (cy = Txy = 0). In addition, the ends are loaded
by uniform tension (00) or pure bending with linear stress
distribution (—oo-y). The quantities sought are the unknown
adhesive shear and normal stress distributions, which con-
stitute a set of unknown interior boundary conditions.

This, plus the fact that we are dealing with two different

elastic solids of trapezoidal shape, accounts for the pecu-

liar difficulty of obtaining good solutions to this problem.

2.2. The Rayleigh-Ritz Method

Boundary-value problems in the linear theory of elas-
ticity may be solved using the Theorem of Minimum Potential
Energy in conjunction with the variational calculus. This
theorem states that: "Of all continuous (compatible) dis-
placement fields satisfying the given boundary conditions,
the actual, equilibrium state of displacement is such as to
minimize the total potential energy of the system." Thus,

the input to this theorem must be a compatible displacement
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field, satisfying (as forced conditions) internal continuity
and any prescribed displacements on the boundary. Then the
statement of the theorem itself furnishes the conditions of
equilibrium for the problem to which it is applied. For a
linear problem, it is known that the single stationary value
of total potential energy is a minimum, so that rendering it
stationary is equivalent to minimizing it.

In using this theorem, the total potential energy
is normally expressed in terms of displacements, which must
be differentiated to find the stresses when the latter are
sought. The loss of significance associated with differen-
tiation makes it desirable to work with other minimum prin-
ciples, in most cases where approximate stress solutions
are contemplated. Here, however, the stresses sought are
those in the adhesive, which will soon be expressed directly
as differences in the displacement of the adherends at the
adhesive-adherend interfaces. Since no differentiation is
required in the present case, the use of the Minimum Poten-
tial Energy Theorem appears to be quite appropriate.

The total potential energy Q' of a region R in

plane stress can be expressed as
Q =U_+ W 2.2.1

] ]
where Us is the strain energy and W is the potential energy

of the external forces:
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2 2
! E Ju oV ou ov
U=————fj’—+—)+2v——
S 2(1 - v2) R<.ax oy 9X 9y
y Q- fou o) 2.2.2
2 dy = 9ox 4 te

1
W = j’. (uX + vY) ds
C .

]
Here C represents that portion of the boundary where ex-

ternal forces are specified and displacements are not, and
s' is an arc variable on the boundary C' of region R. The
notation is otherwise a standard one: u, v are displace-
ments, and X, Y are the x- and y- traction components.

In terms of the calculus of variations, the equili-
brium content of the Theorem of Minimum Potential Energy
may be expressed as the vanishing of the first variation,
69' = 0. The Rayleigh-Ritz method is commonly used for
finding approximate solutions in such variational problems.
It consists of the following steps. First, select a set
of functions fi(x,y) which satisfy the necessary continuity
conditions and the essential or forced boundary conditions.
This set fi must be "complete" in the mathematical sense.

From the fi, an "approximating sequence" ¢ is constructed.

Form:

-
[

]
Hh
+
Q
Hh
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where fo is used to satisfy all forced boundary conditions
and the rest of the terms of ¢n can therefore satisfy homo-
geneous conditions. The c; are undetermined parameters.
Next, these functions are inserted into the functional to
be rendered stationary (here, the total potential energy,
Q'), and any necessary integration is carried out. Finally,
the functional is minimized with respect to the parameters
C; - Thus the best approximation possible within the family

of ¢n is obtained from the minimizing conditions
— = 0 i= 1,2,....,1'1 2.2.5

In a linear problem with a quadratic functional, such as
the present one, the above procedure generates a symmetric
system of n simultaneous linear equations, if n parameters
(ci) are used. An approximate solution for the given prob-
lem is arrived at by substituting the values of the param-
eters thus determined into the assumed function ¢n. The
procedure is essentially the same if (as in the present
case) the functional being minimized depends upon several
functions (four displacement components for two bodies).
The critical question is always one of convergence.
It is necessary to check that the desired quantities ap-
proach a limit as n is increased, and to verify as well as

possible that this limit is theoretically the true solution

for the problem in question. It is also important to check
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that roundoff errors do not accumulate, in calculations
such as these, which may involve large numbers of equations.

Ideally, the approximating sequence in the Ritz
method consists of functions orthogonal over the region of
interest, to simplify the inevitable integrations. The pre-
sent problem involves two trapezoidal regions, and suitable
orthogonal functions are not easily found. They can be
constructed, but it seems more practical to trade simplicity
of computer programming and more equations against the sub-
stantial difficulties of constructing a set of orthogonal
functions. Accordingly, homogeneous xy-polynomials are
used below.

In assuming a purely polynomial solution, it is
recognized that no account is taken of the possibility of
stress singularities at the four adherend "wedge corners".
adjacent to the adhesive layer. Singular stresses do not
necessarily imply singular displacements, of course. If
the proper displacement variation corresponding to stress
singularities can be introduced as part of the assumed
Ritz function, relatively few equations must be solved.
Unfortunately, the eigenfunction method used by Williamsl7
does not seem to extend readily to the present case, which
is considerably more complex. Where he dealt with a single
wedge, the present problem involves two adjacent wedges
coupled by an elastic foundation of a complex type. It

appears that the elastic foundation model is too distant
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an idealization of an elastic solid to permit a treatment
along his lines. It has not been possible thus far to de-
duce the correct stress singularities (if any are present,
which the results show to be likely). As a result, very
large numbers of polynomial terms have had to be introduced,
in order to obtain good approximations for the locally-high
displacement gradients which accompany stress singularities.
Other variational methods have been considered,
principally the method of Kantorovich.3 This does not seem
well adapted to a trapezoidal region, because it appears to
require the solution of a large system of simultaneous,

ordinary differential equations with variable coefficients.

2.2.1 Derivation of Equations

Only the principal features are given here; addi-
tional details appear in Appendices A and B. Primes are
used at first to denote dimensional quantities, and are
later removed during the changeover to non-dimensional
variables.

The x- and y- displacements of adherend 1 are
designated U, vy (respectively), and for adherend 2, as
u,, vV, (Fig. 7). When resolved in the n- and s- direc-
tions along adherend-adhesive interfaces, the displacement

components are referred to as u With the

nl’ Ys1’ Yn2’ Yg2°

assumption that the two adhesive strains considered are

uniform across its thickness
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(u - u_,)
y. = 32 sl 2.2.6a
a n

(u y - u_,)
e = nl n2 2.2.6b
a n

]
The strainenergy of the adhesive, Ugar is obtained by con-

sidering an infinitesimal length ds along the inclined ad-
hesive face. The corresponding volume is = (n-<ds) 1,where
n is the thickness of the adhesive. Allowing for adhesive
transverse normal strain and shear strain, and integrating
along the joint from end to end:

s 2 2
' f 0 Eaea GaYa

sa

Substituting equations 2.2.6a, 2.2.6b for Yar €4 into 2.2.7,

we obtain

s
U' = L j- ° E_(u - u )2 + G_(u - u )2 ds
sa 2n a' nl n2 a' s2 sl

-s
0 2.2.8
But
U -u,= (vl - v2) cos o - (ul - u2) sin o 2.2.9%a
us2 - uSl = (u2 - ul) cos o + (v2 - vl) sin a 2.2.9b

Substitution of equations 2.2.9a-b into 2.2.8 results in
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s

0
o1 w12 La 2 _h2 2
Usa = 3= jﬂ Ga[(v2 Vi) sin “a + (u2 ul) cos “a

. 2
+ 2(v2 - vl)(u2 - ul) cos 0 sin a] + Ea[(vl - vz) cos

2

v

a

ZL

2 . 2 .
+ (ul - u2) sin “a - 2(vl - v2)(ul - u2) sin o cos é] ds
. . . . 2,2,10
Rearranging and substituting ds = dy/sin o, we get
+h
v 1 2 L2 2
Usa = fﬁ—sm—a/_h [(ul T up) (Ey sin To+ G, cos Ta)
+ (v, - Vv )2(E cos 2a + G_ sin 2a) + 2(u; - u,) (v, -
1 2 a a 1 2 1
cos o sin a(Ga - Ea)] dy 2.2.11

The remaining strain energy terms consist of two expressions
of the form 2.2.2, with subscripts appropriate for adherends
1 and 2.

On the exterior boundary, only tractions are speci-
fied: the top and bottom surfaces of the adherends are
stress-free, and the outer ends of the trapezoids are loaded
by either pure tension or pure bending. Thus there are no
forced conditions on displacement, other than the normal
requirement that the rigid displacement of the system be
properly specified. Therefore, using polynomials, the
four unknown displacements are taken in the (dimensional)
form

M M-m 1 n

m
u, = A X'y 2.2.12a
mEO nZO m,n
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M M-m '
v, = ) ] B m n
1 m=0 n=0 m,nx Y 2.2.12b
M M-m .
- m n
m=0 n=0
% Mfm D _x"y" 2.2.12d
v, = Xy .2,
2 m=0 n=0 m,n

Note that these double sums actually represent the sum of
all polynomials homogeneous in x and y, from a constant to
the highest order M. If the double sum went to M on both
upper limits, a great many additional terms would be in-
cluded. However, it is likely that these would contribute
little to accuracy, and difficulties with Ritz matrix con-
dition could well be anticipated. These displacement
functions are next substituted into the total potential
energy per unit width of joint in the z- direction. See
Appendix A for details; the main item omitted in the deri-
vation to this point is the-potential energy of the external

loading.

Jv. |2 Ju. 3V
Q'= ff( +(H +2V1_8_1 _3_1_
2(l-v) Y X b4

(1 - vl) (aul Bvl)z] _[J'( 2
+ + dx dy +
2 oy oX 2(1 - v )
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1 +h 2 2 2
+ m -/:h [(ul - uz) (Ea sin o + Ga [e{0]] a)

2 2 .2
+ (vl v2) (Ea cos "o + Ga sin “a)

+ 2(ul - uz)(vl - v2) sin o cos a (Ga - Ea)]dy

+h +h
+ jﬁ ox(—c,y)ul(-c,y)dy - J[ Ox(C,y)uz(C,y)dy
~-h -h

c = 2h + h cot a 2.2.13

The double integrals, one for each adherend, are strain
energy expressions of the form 2.2.2; the next integral
represents the adhesive strain energy 2.2.11; and the last
two terms are the potential energy of the only nonvanish-
ing external tractions, ox(tc,y), at the end boundaries of
the joint.

The energy expressions are now converted to a non-

dimensional form. Let

ui Vi
i = w ¢ Vi TTw
3 i . = X
X =g ; Y = £
2.2.14
X oX ' Jy oY
X 3X ' 3y 3Y
o, (xc,y) 2 !
Q
oY) = X2 — " 5 = (1 - V)
0 E) 17 En?
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The following dimensionless quantities are defined for com-
pact presentation of the long expressions which result.
They can all be calculated directly fromthe primary and

secondary parameters governing the physical problem.

Ez(l-\)lz_)
C =2 + cot o ; ‘Y:_T.
El(l - vz)
(E_ sin 2a + G_ cos za)
H, = (1 - vZ) a h
1 1 El ne*sin o
2.2.15
(E_ - G_)
= (1 -y h_a a
H2 = (1 vl) n El cos a
(E_. cos “a + G_ sin 2a)
H = (1 v2) a a h
h 1 El nesin o

Substituting these quantities into the various energy ex-

pressions, we define a dimensionless total potential energy:

2 2
Y= 1 jj (aul) . avl . 20 U, avl . (1 - v,) 39U,
2 o) X Y 1 93X oY 2 oY

2

a_vl)2 Y 3u, 2 3v, 3u, 3V,
tax| [dXdY + 3 x| tlaw| t V23 W

2

1 [+ 2
dx 4y + ff-l Hl(U1 - Uz)

+ 2

(1 - vz)(aUz PAY

) 5% T 3%
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2

+ Hh(vl - V2) - 2H2(Ul - U2)(Vl - Vv,) |dy

2
2 +1
+ (1 - \)l)f_l 0, (¥)U, (-C,Y)aY
2 +1
- (1 - v)) ~/:1 g, (Y)U,(C,Y)aY 2.2.16

The displacement functions of 2.2.12 a-d, in suitable

dimensionless form, are now taken as

1T Ky
U, = A 2.2.17a
1 m=0 n=0 m,n
M M-m n
vi= 1 I B_ _X"Y 2.2.17b
m=0 n=0 m,n
bZd Mom m_n
u, = c. x"v 2.2.17c
2 n=0 n=0 m,n
M M-m
v, = 1 D _X™y" 2.2.174
m=0 n=0 m,n

After substitution of these dimensionless displacements
and their derivatives, and the evaluation of all integrals,
the expression for total potential energy reduces to a sys-
tem with 2M(M + 1) - 3 degrees of freedom. These consist
of the 'generalized co-ordinates' (unknown parameters)
Am,n’ Bm,n’ Cm,n and Dm,n‘ The term -3 appears because
plane rigid motion is suppressed by setting certain con-
stants to zero.

The values of Am,n' Bm,n’ Cm,n and Dm,n are deter-

mined at this stage by using the principle of minimum
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potential energy. The Ritz equations now take the form

2.2.18

These four relations yield four sets of linear equations.
On expansion, this produces as many equations as there are
undetermined coefficients. The detailed derivation of

these equations, which follow, is given in Appendix B:

0 W

aAm,n
M M-k
km k+m-1 .

= A . — b, — (=C) f(n + j + 14

kzo j£0 k'J[E *m=T ( 0

(1 - v.) .
1 nj 2 k+m+1 .
+ % ET— (¢0 cot “a - (-C) f(n + j IJ

+

v.Jjm 1 -v
i 1 kn
H1‘*’1] * By [(k e T B m)(% cot o

k+m

(-C) f(n + 3Jj)

- H2¢1]' Cx,3H1%1 * D, 38241

2 +1 n
+ (1 - vl)_/— oO(Y)(—C)mY dy 2.2.19
-1
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W
aBm,n
M M-k l-v .
kn 1l mj )(
A, L[V + ¢, cot o
k=0 =0 k,j[( lk+m 2 k +m 0
k+m_ . nj 2
- (-C)* e (5 + n)) - H2¢1] + Bk,j[E—T?-’nTI (¢o cot “a
(L - v,)
k+m+ 1 . 1 km .
- (=6 f(n+3'1))+ 3 k+m-1‘¢o
k+m-1 .
- (-C) £(n + § + 1)) + Hh¢l] + Ck,jH2¢l
dw
acm’n
M M-k
-A .H + B .H
Ko 3i0) k.3 1%1 * By, 5H%

km k+m-1 .
+ ck,j[Yk_+—m_-T (C f(n + J + 1) - ¢0)

(1 - v.) .
2 nj k+m+1
Ty y) K+m+ I (C

f(n+3j-1) - ¢0 cot 2 a)

k+m . m3
+ Hl¢l] + Dk,j[(c f(n+j) - ¢0 cot g’b'vz E—%—E

1-v +1
2 kn 2 n
+ Y ) - H2¢l] - (1 - vl)J[l GO(Y)CmY ay

k+m

2.2,21
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0 = Jw
= wo—
m,n
M M-k - kn
= A, _.H - B, .H + C, . v
Lo j£0 k,3%2% 7 Bx,3"n®1 * Ck,j Y( 2K +m
1-v .
2 mj k+m N _
+ 5 T (C f(n + j) ¢0 cot a H2¢l]

nij (Ck+m+l

—_ ) - - 2
+ Dk,j[Yk - f(n + j 1) ¢0 cot a)

1=V  knm (Ck+m-l

f YTk Fa-1 fn+3 -1 - ¢o)

+ Hh¢l] | 2.2.22

The new symbols are defined below:

£(R) = [+ - 1?] _

2
R ﬁ.Rodd
=0 R even
¢0 = (cot a)k+m-lf(k + m+ n+ j)
¢ = (cot a)k+mf(k +m+n+ 3j+1)

It can be verified that these equations comprise a symmet-
ric system, in accordance with the general theory of the
Ritz procedure for quadratic functionals.

In equations 2.2.19 and 2.2.21 the integrals rep-
resent the loading conditions which are to be considered.
In case of purely tensile loading at the ends of the ad-

herends we take
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oO(Y) =05 = constant 2.2.23

and in pure bending:

with 9 also a constant. 1In the tensile loading case the

integral of equation 2.2.19 becomes
(1 - v)o, (-0™E(n + 1) 2.2.25
Similarly, the integral of equation 2.2.21 reduces to
- @ - vHo @™ + 1) 2.2.26

When there is pure bending, the integral of equation 2.2.19

becomes
- (1 - vDHo,- (-0™E(n + 2) 2.2.27
and 2.2.21 results in
(1 - vHo (@)™ (n + 2) 2.2.28

In the computations o, is always taken as unity, which means

0
that the resulting Ritz coefficients must be multiplied by

a factor oxo/El--see last line of equations 2.2.14--to re-
store true (dimensional) stresses, displacements, etc. The

stress o is the actual uniform tensile stress loading the

X0
adherends, or the largest value of the bending stress load-
ing the adherends.

Of the undetermined displacement parameters A

m,n’

D e . _
Bm,n’ Cm,n’ and m,n,’ three represent rigid-body displace

ment choices which must be fixed to avoid a singular Ritz

matrix. These arbitrary choices are
avl(o,O)
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These in turn require that Ay o = 0, = 0 and B = 0.
’

Bo,0 1,0
The corresponding rows and columns of the Ritz
matrix are deleted and the remaining parameters are evaluated
by solving the surviving system of simultaneous equations,
2,2.19-2,.2,22. After obtaining the displacement coefficients,

the (dimensional) adhesive normal (on) and shear (Tns)

stresses are calculated using the strains of equations 2.2.6:

(unl - un2)

n a n

2.2.30

(u -u_,)
- =G s2 sl

ns a n

where (as before) Ugyr U , are the displacements of the two
adherends along the adhesive film at their respective inter-
faces and u s 9, are the normal displacements at these
interfaces. These in turn come from the Ritz coefficients
via equations 2.2.9, 2.2.14 and 2.2.17. For user convenience,
the actual quantities tabulated later are stresses N and T,

corresponding to o and T for unit applied tensile load-

ns

ing, or a bending moment producing an outer-fiber bending

stress of unity. Thus the dimensional form of 2.2.30 be-

comes
E_ i ]
o, = ﬁ_ ﬁvl - v2) cos o - (ul - uz) sin a‘ 2.2.31a
G, [ )
Tos = T fvz - vl) sin o + (u2 - ul) cos a_ 2.2.31b
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and the dimensionless version is

‘E.h [ }
— a - - - i
N = EIE .}Vl V2) cos o (U1 Uz) sin aJ 2.2.32a
Gah [ ]
T = EIH _(Vz - Vl) sin o + (02 - Ul) cos a‘ 2.2.32b

The factor (Eah/Eln) is a primary dimensionless parameter
of the tabulated results (discussed later), and the Ui’ Vi
are found from the Ritz coefficients using 2.2.17. Expli-
citly, the adhesive normal and shear stresses at points
(X.,Y.) along the inclined adhesive face are calculated

J° 3]
from the relations

E_h M M-m

a . n
N. = (B -D ) cosa - (A -C ) sina|xTy”
j Eln m=0 n=0 [ m,n m,n m,n m,n ] j q
2.2.33a
Ga Eah M M-m
T. = = |En PDm n " Bm n) sin o + (Cmn
J a 1 m=0 n=0 ’ !
n
- Am,n) cos a]X?Yj 2.2.33b

On the adhesive line, of course, Xj = Yj tan o: only one

variable is independent.

2.3. The Sherman-Lauricella Integral
Equation Approach

2.3.1 General

Integral equations are used quite effectively to

formulate many engineering problems. This method of attacking
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the fundamental boundary-value problems of plane elasticity
appears in several forms in Muskhelishvili4. The version
used here was initially devised by G. Lauricella5 and ex-
tended by D. I. Sherman.4 Its power appears in the lack of
restrictions on the unknown "weight" function, for which
only modest continuity requirements are specified. A
similar, real-variable, vector-integral-equation formula-
tion has been discussed by Massonet.6 A difficulty of the
present situation is that the integral equation in question
is complex, so that it represents two real, coupled,
Fredholm-type equations. Furthermore, this set must be
solved simultaneously in each of two regions having dif-
ferent elastic properties. Fortunately, the solution for
one region can be made to depend upon the solution for the
other. However, once solved, a lengthy numerical integra-
tion for displacements must be carried out to complete the
solution. In the present case, the results for both regions
must be maintained in computer storage at the same time.
The problem thus becomes one of computer capacity, and it
has been found necessary to relegate this elegant approach
to the role of an independent check on the Ritz procedure
used for most of the calculations.

Generally speaking, it is out of the question to
use analytical methods to solve a linear integral equation.
It is usually possible to obtain good answers by solving

a large number of simultaneous linear algebraic equations.
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The procedure is to write the equation at a set of nodal
points, suitably spaced along the boundary, carrying out
the integrations numerically.

2.3.2 Notation for Integral Equation
Method

The symbols used in the integral equation method
development are defined in the text where they first ap-
pear. For convenience, those symbols used exclusively for
the integral equation method are listed here in alphabeti-
cal order, with English letters preceding Greek letters.
The symbols having the same meaning in both the present
method and the Ritz method are listed in section 1l.4. As
before, subscripts 1 and 2 normally distinguish quantities
defined for adherends 1 and 2. Bars over symbols have the
usual "complex conjugate" significance in this section, and
in associated appendices.
an bm = Coefficients of dimensionless, self equili-

brated normal and shear stresses on adhesive

interface.

C2, D, = Rigid-body translation constants, adherend 2.
f£(t) = fl(t) + ifz(t).

£, () £, (8)

Known real functions which depend upon the
prescribed external loading.
I = Total number of intervals on the boundary

of each adherend.
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Il' IZ’ I3,

I, = Number of intervals on the various boundaries
of each adherend.

K = I; = number of intervals on inclined adhe-
sive face.

p(t), g(t) = Real and imaginary part of w(t).

U{l), V{l),

Uél), Vél) = Nondimensional displacement components due
to unit applied tensile load parallel to X,
in X- and Y-directions, for adherends 1 and
2 [part (1) contribution].

0{2)' V{z)'

Uéz), Véz) = Same as item above, but part (2) contribu-
tion associated with self-equilibrated ad-

hesive stress system acting on adhesive

interface.

Xn, Yn = Given tractions on adherend 1 boundary, in
the X- and Y- directions.

s,t = Values of the complex variable X + iY on
adherend boundary.

S = Distance along the adhesive interface.

z = X + iY = complex variable.

Hye Uy = Shear moduli of adherends.

On'on,j = Dimensionless adhesive normal stress, and

same yhen evaluated at points Xj’ Yj.



50

Ths’ Tns 3 = Dimensionless adhesive shear stress, and
’

same when evaluated at Xj' Yj.

$(z), V(z) = Analytic functions entering governing in-

tegral equation.

d(t), V() = Boundary value of functions ¢(z), V(z).
X1 = (3 - vl)/(l + vl) for plane stress.
w(t) = p(t) +ig(t) = "density function" in defini-

tion of ¢(2z).

w, = Rigid-body rotation constant of adherend 2.

2.3.3 The Problem Analyzed by
Integral Equations

The adhesive scarf joint problem solved here is the
tensile loading case described in Section 2.2. All ex-
pressions are in the non-dimensional form ultimately used
there. The original boundary-value problem is decomposed
into two parts, (1) and (2). The first part consists solely
of the elementary solution for uniform tension parallel to
X in each member, due to a unit applied tensile stress, and
the uniform shear and normal stress on the adhesive boundary
required to equilibrate the applied stress. Part (2) is
then the wholly self-equilibrated residual problem for the
"difference" tractions on the adhesive-adherend interfaces,
now the only loaded boundary in each adherend. The adhesive
normal and shear stresses are still unknown at this stage,

and are taken to be polynomials in S, the distance along
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the interface, with coefficients to be determined ultimately
by the matching of two different expressions for the adhe-
sive stresses at a finite set of points along the adhesive-
adherend interface.

In terms of dimensionless quantities, the self-
equilibrated adhesive normal and shear stresses [part (2)

tractions] along the adhesive inclined face are assumed in

the form
K
of2) = 7 4 g™ 2.3.1a
n m
m=1
K
(2) m
T = )] bs 2.3.1b
ns m=1 m

with undetermined coefficients an bm(m =1,2,...K). Here,
S = Y csc a is the dimensionless distance along the inclined
adhesive-adherend boundary, measured from the origin of co-
ordinates. The dimensions of (am, bm) are "self-adjusting"
as used here, and need not be specified. The integer K is
chosen to be odd, as explained later. It would be simple
to introduce the appropriate wedge-corner singularities as
functions of S at this stage, if these could be determined.
Since this part of the solution is self-equilibrated
for force and moment, we constrain the unknown coefficients
accordingly. Applying the three static equilibrium condi-

tions for adherend 1, the equations ZFx =0, ZFY = 0 and

ZMxy = 0 are used to eliminate the coefficients ag_1r ag
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and b These are expressed in terms of the remaining

K-1°
total of (2K-3) unknown coefficients (Appendix C), so that

L2 Kz g2m-l _ (K +2) . 0‘)2m-1<-1sx]
n m=1.2,3 2m-1 (Zm + 1)
= ’ ’
(K-3)/2 om K (csc oL)Zm--K+l K-1
+ z a2m S - 2——+——l— S 2.3.2a
m=1,2,3 m
(K+1) /2 (K-3)/2
Tr(:g) = b?.m—lszm_l + I Py 52"
m=l,2’3 m=l,2’3
K 2m-K+1_K-1
- 7mer (csc a) s 2.3.2b

The boundary conditions of the first fundamental problem
(all-traction case), in terms of unknown analytical func-
tions of a complex variable, ¢(z) and y(z), is of the fol-

lowing form4

o(t) + t o' (t) + v(t) = £(¢) 2.3.3
where
¢$(t), v(t) = boundary values of functions
¢(z), v(z)
£(t) = £,(t) + if,(¢)
= if(xn + iYn)ds 2.3.4
X _,Y = given tractions on the boundary in

the X- and Y- directions
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The functions fl(t) and fz(t) are known real func-
tions, which depend in a simple way upon the prescribed
external loading. Let w(t) be an unknown density function
("weight function") for points on the boundary. It is
assumed that w(t) has a derivative w'(t), which satisfies
a HOlder's condition. The latter guarantees the continuity
of the functions ¢(z), ¢'(z) and y(z) up to the boundary.
The boundary condition 2.3.3 thus constrains the choice of
w(t); this constraint is the governing Sherman-Lauricella

integral equation of the problem. Following Sherman,4 let

_ 1 w(s)
¢(2z) = Zﬂi.[.s —— ds 2.3.5a
- !
v (z) =fwzssds- 1_[sw (s) 44 2.3.5b
s - 2 21i) s - z e
From equation 2.3.5a
! _ 1, w(s)
(s - 2)

After using the Plemelj formulae for the boundary values
of Cauchy integrals, and an integration by parts in 2.3.6

]
for ¢ (z), equation 2.3.3 becomes

s-t s - t

w(t) + ﬁl-{fw(sm logZ== - ﬁ[m)d S-— = £(8)

2.3.7
This may be converted to two real equations by letting
s - t = rele 2.3.8

r=|s - tf
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Here 6 is the angle between the vector s - t and the x-axis,

measured in the positive (ccw) direction. By equation

2.3.8:
s - t ,
s - €
2 - % = cos 26 + i sin 26 2.3.9b

Equation 2.3.5a becomes

, 1
wlg) + T j’

Further, writing

w(s) - %1% (s)|ae

fl(t) + ifz(t) 2.3.10

w(t) = p(e) + ig(t) 2.3.11

and separating real and imaginary parts, equation 2.3.10 may
be represented in the form of two real, coupled integral

equations:

p(t) + %:[[p(s)(l - cos 20) - g(s) sin 26]d6 £, (t)

2.3.12

alt) - %l[[p(s) sin 26 - g(s) (1 + cos 26)]de6 £,(¢)

2.3.13
Equations 2.3.12 and 2.3.13 are quite simple and readily
permit numerical solution. They were derived under the
assumption of a continuously-turning tangent for the boundary
contour. Muskheliskvili remarks that corners can be included
if the contour integrations are interpreted as Stieltjes in-

tegrals.
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The present contours have at least two critical cor-
ners per trapezoidal adherend, those along the inclined face.
In failing to interpret the integration in the Stieltjes
sense, the trapezoids are implicitly supplied with corner
radii which are, roughly speaking, comparable to the inter-
val size chosen for numerical integration. Omitting the
Stieltjes interpretation (as in the numerical work here)
is probably equivalent to ignoring the singularities of the
problem, which is essentially what is done in choosing Ritz
trial functions which are exclusively XY-polynomials.

To perform the numerical integration, the bounda-
ries CD, DA, AB and BC of adherend 1 of the scarf joint
(Fig. 7, p. 26) are divided into Il' Iz, I3 and I4 inter-
vals, respectively. Care is taken to make I, =K, the
number of points at which adhesive stress expression match-
ing will later take place. Before further discussion of
the numerical approach to these equations, the functions

fl(t) and fz(t) are evaluated. From equation 2.3.4

fl(t) = - Ynds ; f2(t) =.I;nds 2.3.14
X = - (2) . _ . (2)

where 'n 9 sin a T,s COS o 2.3.15a
Y = 0(2) cos o - 1(2) sin a 2.3.15b
n n ns

Substituting equations 2.3.2a and 2.3.2b for 0;2) and Téi)

into 2.3.15a and 2.3.15b we obtain



fl(t) = =
+
+
£o(e) = -
+

Since the

56

(K-1)/2 2m v K+1
cos a z a S _ (K~+ 2) (csc a)Zm K-1 S
_ 2m-1 | 2m 2m + 1 K+1
m—l’2'3
(K-3) /2 2m + 1 - k
aZm[gm + 1 T 2m E T (csc a)Zm fed EE]
m=1,2,3
(K+%)/2 g2m (K-3) /2 [szm+1
sin a b + b
m=1,2,3 2m-12m 7 o .8 3 T2m| 2w
K 2m-R+1 sK
cin o (K‘%Vz N S (K +2) (oo o 20kl sK+l]
_ 2m-1 2m 2m + 1 K+1
m=1,2,3
\
(K-3)2 2m+1 _ K
2om [gm T - g (ese TR LS
m=1,2,3
(K+1)/2 g2m (K-3/2 . {Szm+1
cos a b —_—
m=1,2,3 2m-1 2m m=1,2,3 2m| Z2m + 1
K 2m-K+1 s&
-zm (CSC a) = K— 2.3.16

superscript (2) stresses were subjected to the re-

quirements of overall equilibrium, fl and f2 must be con-

tinuous and it is possible to verify this directly from the

foregoing expressions. The numerical integration is per-

formed on

the assumption that p and q vary negligibly in

the intervals into which the whole boundary is divided. The

p and q terms are extracted and the remaining integrals can

be evaluated analytically. Thus, carrying out the integra-

tions described, the two equations 2.3.12 and 2.3.13 are
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rewritten in the following form [use pj = p(tj), etc.]:

o L1 % 5 e ) sin 26+Kj,- sin 26__]{4i
3 T Lo |Px +k3j -kj 2
k=1
(cos 26,, . - cos 26 ,.)
+k 3 -kj’|_
. 1 % (cos 26+ki,- cos 26_kj) . 6 e
94 T, L Pk 2 I "+ -kj
k=1
sin 26,,. . - sin 20 . ’
+ +kJ —kJ ] = £, 2.3.19
2 2j
where I = I1 + 12 + I3 + I4 = total number of intervals
along the boundary,
etkj = arg (sk - )
s,
Sk T 5% T 7
= th .
H = length of the k interval
flj' f2j = values of the function fl(t),

fz(t) at the jth node (center of

jth interval), t = tj.

Upon completion of the numerical integration of
equations 2.3.18 and 2.3.19, we have a numerical matrix
relating the (pj,qj)(j =1,2,3,...,I) to the still unknown
adhesive stress coefficients (ak, bm)(k =1,2,3,...,K - 2;

m=1,2’3’¢o.’ K- 3, K- 2’ K).
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Having established this relation, the expression

for the non-dimensional components of displacement U{z)

(2)
1

and V must now be developed.4 In terms of the functions

¢ and Yy defined previously:

{2) + iV](_z)) = x 6(2) - 26 (z) - ¥(Z)  2.3.20

2ul(U

where

Shear modulus of adherend 1.

X; = (3 = v)/(1 + v)) for plane stress.

<
]

1 Poisson's ratio for adherend 1.

This equation can be reduced to a contour integration around

the boundary of the adherend (Appendix D):

X
2u1(U{2) + iV{Z)) = ﬁ}‘_‘f [p(s) - p(t)] + ilg(s) - q(v)] sdf .
+ %{f [p(s) - p(t)] + ilg(s) - q(¢)] -S'df =

+ %T-f[p(s) + iq(s)] Cﬁﬁrﬁ +3x, [P (£) + iq()]

+% [p(t) + iq(t)] - £,(8) - if,(¢) 2.3.21
where

U{z), V{z) = displacement components of adherend 1.

o al(s,t) is the angle between the vector s - t and
the outward normal at s (unrelated to the scarf
angle @ used elsewhere).

r= |s - t| 2.3.22
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The adjustment of the rigid-body displacement constants is
made later.

Equation 2.3.21 is integrated numerically using the
trapezoidal formula, with special treatment required at
various points, such as corners (Appendix D). The integra-
tion is carried out only for the displacements Uii), Vig),
i.,e., the X, Y- displacement components of adherend 1 at

th

the j boundary node point (midpoint of jth interval), of

points (xj, Yj) on the inclined adherend face. This es-
tablishes expressions for Uig) and Vii) in terms of quanti-
ties (pk,qk) at all the node points on the boundary, which
in turn still depend upon the unknowns (am, bm). Both
relations take the form of known numerical matrices. Note
that the only elastic constant affecting the right side of
2.3.21 is Xqe Thus if both adherends have the same Poisson's
ratio, the right side of 2.3.21 serves for both. This assump-
tion is made in the calculations.

Next, using the numerical coefficient matrix which
relates (pj, qj) to the (ak, bk), the final displacements
of the adherend 1 can be expressed as a single, known numeri-
cal matrix multiplying a still unknown column vector of the
(ak, bk). Careful consideration of the geometry of the

second adherend with respect to the first adherend permits

us to use the results for the first adherend to write the

(2)
2

equal number (Il = K) of points on the inclined face.

corresponding U and Véz) displacement expressions at an
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The principal adjustment required, if we assume the same
Poisson's ratio on both sides, is for the different shear
modulus. This affects only the left side of 2.3.21. Some
sign changes and "mirror" reflections of coordinates in
the origin are also required.

The displacement expressions corresponding to the
uniform unit tensile fields in each member [part (1) solu-
tions] are now superposed on those due to the self-equili-
brated distributions (superscript 2), to obtain the final
displacement expressions for the two adherends.

Rigid-body displacement constants must now be
established. This is done by arbitrarily suppressing all
translation and rotation at the origin, in the first
adherend. The first adherend's final displacement com-
ponents at the desired points (xj, Yj) along the adhesive

inclined face are thus taken as (Appendix E):

_ (2) 1, _ (2

Ulj = (X ,Yj) + E—l- XJ Ulj (0,0) 2.3.23a
_ (2) V1 _o(2)

Vlj = (X. ,Yj) - EI Yj Vlj (0,0) 2.3.23b

where the terms involving Xj and —lej represent the total

contribution of the uniform tensile field here. For the
second adherend, the solution itself must determine the
rigid-displacement constants (cz, Dy, w, below) --see Appen-

dix E:

0(® 1 )
Uy = Up5 (X. ,Yj) + £ Xj+ Cp = wy¥y 2.3.24a
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(2) V2
Vo, = V. (X, Y.) - =— Y.+ D, + X, 2.3.24b
23 23 ( J. j) E2 j 2 “2 j
where Uég), Vég) are the displacements of adherends 2 at

node point j.
Because of the presence of the three rigid-body con-

stants C2, D2 and Wy the number of unknowns has increased

from the (2K - 3) quantities (a

bk) to 2K (K = ). All

K’ 5
unknowns are now evaluated by equating two different ex-
pressions for the adhesive normal and shear stress. The
total stresses are the sum of the part (1) and part (2)
contributions. Recalling that part (1) consists of a uni-

form unit tensile field, and using 2.3.1,

K

o .= 452 Jgin? o 4 J a st 2.3.25a
n,j n,j n,j m=1 m j
(1) (2) ¥ L o
T . =T L+ T ., = sin a cos a + ] b_S. 2.3.25b
ns, j ns,j ns,j m"j

m=1

The sinusoidal terms are the adhesive stresses required to
equilibrate a unit tension parallel to X, and subscript j
indicates that the stresses are calculated at S = Sj‘ For
the part (2) summations, the equations actually used are
those of 2.3.2, which show clearly that only 2K - 3 unknowns
appear, not the 2K values (am, bm) implied above. The ver-
sion presented above is more compact and clearer, and con-
ceptually equivalent as long as it is understood that ag_1¢
agy and by_, are linearly related to the rest of the (a,

bm). The unknowns C2, D2, w, do not appear explicitly in

2.3.25.
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The second expression for the stresses is developed
from equations 2.2.32, p. 46, rewritten to conform to the de-
mands of the present approach. These equations give the
adhesive stresses in terms of the relative displacements of
the adherends at the adhesive line. The subscript j implies

evaluation at S = Sj’ or Xj = Yj tan a:

E_h
_ _a - ; - -
on,j = o [Ul,j U2j] sin a [Vlj sz] cos a
.3.26a
Ga Eah
, 5 e cmmma— . - . + ., - . i
Tns,J Ea o [U23 UlJ] cos o [sz VlJ] sin o

2.3.26b

(The denominator factor of E, has been removed from 2.2.32

1
because the U's and V's as defined in this section contain
the adherend moduli already.) Equations 2.3.24 show that

D

2.3.26 contain the unknown constants C explicitly,

2" T2 92
as well as the 2K - 3 unknowns (am, bm) implied in 2.3.23
and 2.3.24. The equating of the stress expressions of
2.3.25 and 2.3.26 is therefore sufficient to determine the
2K unknowns, and hence the adhesive stresses.

2.4. Numerical Data Assumed in the
Calculations

There are a large number of dimensionless parameters
to investigate, so that it becomes necessary to divide them
into primary and secondary parameters. The latter are taken

as constant throughout the calculations. The primary
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parameters are the scarf angle (o); the relative stiffness
of the adherends (y); and the relative stiffness of adhe-
sive and adherends (B). Treated as secondary parameters are
the Poisson's ratios of the adhesive and of the adherends.
Even so, a great many cases must be studied in order to es-
tablish the overall behavior of the dissimilar-adherend
scarf joint.

Generally speaking, the parameters are chosen so
as to simplify interpolation in the results, either on a
linear scale or as equally-spaced values on a logarithmic
scale. First of all, reflecting the practical range, the
scarf angles are chosen as 5°, 10°, 20°, 30° and 40°. The
first and last values are probably outside the usual range,
but are explored for completeness and to facilitate
interpolation.

2
Ez(l - vl)
The primary dimensionless parameter y =

E; (1 - v%)
is a measure of the relative stiffness of the adherends.
The values selected are 1, 2, 4 and 8; values much larger
than 8 are probably quite close to the case of one "rigid"
adherend. Adherend 2 is thus always the stiffer of the
two, except that when vy = 1, we have a scarf joint with
identical adherends. The successive factors of 2 permit
interpolation with respect to this parameter at uniform
intervals on a logarithmic scale. We have taken the ad-

herends' Poisson's ratios to be Vi =V, = 0.3 throughout
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the major part of the work. This value 1is intermediate
between typical steel and aluminum values.

The next primary dimensionless parameter is the
"elastothickness" parameter g = nEl/Eah(l - vi), which is
a measure of relative adherend and adhesive stiffness. As
used here, large B implies a relatively flexible adhesive.
Assuming metal adherends and typical adhesive thickness
and moduli for the metal-bonding range, the values for 8
are set so as to permit interpolation on a logarithmic
scale: B = 4, 20 and 100. The dimensionless ratio
(Ea/Ga) of the adhesive's Young's modulus to the shear
modulus has been fixed at 8/3 in the present computations.
Referring to Fig. 7, the value of Ly is assumed to be 2h= 2,
so that the uniform portion of each adherend has the same
length as its depth. 1In auxiliary calculations, this
length appeared to give the best overall check of the in-
put traction boundary conditions with the polynomial Ritz
functions used. It is possible, however, that another
choice might be better by some other criterion. This check
is described later.

When using the Ritz method, the Ritz matrix is in-
dependent of the type of loading used, so that it is ex-
pedient to introduce all types of loading considered at
the same time. Results are presented here for both pure

tension and pure bending.
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2.5. Computer Programs

The principal numerical results for this thesis were
obtained using the Ritz method of analysis, by means of a
computer program developed for the Control Data Corporation
3600 computer at Michigan State University. The program was
written in the 3600 Fortran source language. Various auxi-
liary programs were used to perform checks on the results,
described later.

A separate program was developed for the integral
equation approach. Both programs allow for full variation
of the dimensionless parameters of the problem, including
the effects of geometry, material properties and external
loading. Upon providing the few input data cards required,
the programs calculate and print the adhesive shear and
normal stresses at uniformly spaced points along the ad-
hesive's inclined face. In the case of the Ritz program,
the Ritz parameters are also punched on cards so that any
desired additional calculations can be performed later.
Stress distributions on the external boundaries of each
adherend are calculated from the approximate Ritz displace-
ment solution, in order to check against the known input
boundary conditions.

The format of the input parameters to be supplied
by the user of the program (and copies of the programs)

appear in Appendix F.



CHAPTER III

CRITERIA FOR ACCEPTABILITY OF RESULTS;

PARTIAL DISCUSSION OF RESULTS

3.1. General

In using the Rayleigh-Ritz procedure to arrive at
a solution for this problem, the validity of the results
always depends upon the convergence of the solution to the
correct limit. The few available results of the integral
equation method assume only a supporting role herei so
that Ritz solutions are the main ones to be checked for
acceptability. In this connection, the first and foremost
problem is to assess the convergence of the solution.

Since the accuracy acceptable for engineering pur-
poses varies with the demands of the particular problem,
it has been considered sufficient to state the indices of
accuracy used, and how the results behave in each case. It
is left to the reader to decide if this is sufficient for
his purposes.

It is worthwhile to note that in every case, the
analytical solution obtained by the Ritz method for the
case of identical adherends in tension verifies to high

accuracy the exact solution of Ref. 7. The identical-adherend
66
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bending solution reported here is new; it is readily shown
that the method of Ref. 7 cannot be extended to include the

case of the bending of identical adherends.

3.1.1 Stress Boundary Condition Check

For each trapezoidal adherend's external boundary,
the input traction conditions are known. The top and bot-
tom surfaces of the system are free of stress, and the
ends are loaded by uniform tension, or pure bending with
linear stress distribution. Therefore, the ability of the
approximate solution to reproduce these is a powerful pri-
mary check. This check has been performed for all Ritz
solution cases investigated.

In this regard, a more or less intermediate case
(o = 10°, B = 20, vy = 4) is surveyed next for both tensile
load (Fig. 8) and bending load (Fig. 9). These figures
show the boundary traction error on the exterior boundaries,
in the form [(calculated stress, from solution) - (true
stress, from boundary conditions)]. The reference level
is unity, which is either the value of the uniform tensile
load or the maximum value of the applied bending stress.
All of the calculated results show these general patterns
of boundary-traction error distribution. From this it is
possible to select C, and E or F as the critical points,
respectively, in adherends 1 and 2. All other errors are

either smaller, or much smaller. Point C, in particular,
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invariably shows the largest error in the case of tensile
loading of the joint. For bending load, however, the larg-
est error occurs at point E for the smaller scarf angles

and at point F for the larger angles (invariably, the values
at E and F are comparable in level). The peaking of the
boundary stress errors at the points in question is quite
clearly linked to the neglect of singularities in the Ritz
trial functions.

The value of the boundary stress errors may be taken
as one measure of the merit of the results. 1In the parti-
cular problem of Fig. 8, the point -C error values for
tensile loading are -0.029 for shear and -0.005 for normal
stress. For Fig. 9--bending load--the corresponding point
-E quantities are -0.063 for shear and -0.009 for normal
stress.

It is not immediately possible to carry out a com-
parison of the type just discussed on the adhesive-adherend
iﬁterface, since we have no "true adhesive stresses" to
serve as a reference level. The purpose of the thesis is
to find these unknown stresses. Something equivalent has
been devised, however, and is discussed in the next section.

In interpreting the present "index of merit" of the
calculations, the following should be borne in mind. The
desired results in this problem are the adhesive stresses
on the inclined boundary. These are calculated using equa-

tions 2.,2.32 and 2.2.33, i.e., directly from member
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displacements. The latter are the direct output of the Ritz

method, in the form of the coefficients A B etc. On

m,n’ "m,n’

the other hand, the boundary-stress distributions are much
more sensitive to error than the displacements, because these
stresses are found using derivatives of displacements. In
other words, we anticipate that the Ritz method will produce
displacements which are an order of magnitude more accurate
than the corresponding stress calculations. This makes the
boundary stress an overly-sensitive index, sometimes alarm-
ingly so. The convergence of the adhesive stresses them-
selves nevertheless appears to be quite good in most cases,
as will be seen later.

Speaking generally, then, if the user is satisfied
that the boundary stress error is small enough, he can surely
be satisfied that the corresponding adhesive stresses are
considerably better determined. And a boundary condition
error of 20% (0.2 on an applied load scale of unity) may
still mean that the corresponding adhesive stresses have
been determined to within a few percent. With this as a
background we examine Table 1.

Table 1 (next page) gives the largest errors in the
boundary stresses for those bending load cases having scarf
angles a = 20°, 30° and 40°. These stresses have been cal-
culated at 21 equally-spaced points on each of the three
external boundaries of each adherend. To emphasize the

highly local character of large peak errors, when these
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occur, the numbers in parentheses give the value of the séme
stress error at the point next to the peak. When the peak
is large, the gradient is always very steep. Errors in
boundary stresses are entered only when they exceed 0.10
(where 1.0 is the reference level for applied external
stress).

In all tensile load cases these errors are smaller
than 0.06, and for all bending cases with a = 5° or 10°,
they are less than 0.10. Hence they are not represented
in Table 1 at all.

The largest errors in the boundary stresses are
usually observed to be in the shear stresses on side GF
of adherend 2 (Fig. 9). For scarf angle a = 20°, the larg-
est error is 0.368 when g8 = 100, y = 8. The largest error
for ¢ = 30° is found to be 0.526 when g = 20, y = 8. When
o = 40°, the largest value is 0.573 forg = 4 and y = 8.
These values are observed at the lower tip of the second ad-
herend, point F in Fig. 9. Note from Table 1 that the 0.368
error value for o = 20°, 8 = 100, y = 8 falls to 0.102 in
5% of the distance along GF from G--see value in parentheses.
Likewise, the 0.526 local peak for o = 30°, B = 20, vy = 8
drops to 0.151 in the same distance, and the a = 40°,

B =4, vy = 8 value of 0.573 falls to 0.164. It is to be
anticipated that these local stress errors are associated
with much smaller errors in the displacements of the region

in question. This, of course, will be revealed by the study
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of the convergence of the adhesive stresses themselves. It
seems possible to show by direct computation that the stress
error functions, separately, contribute displacement errors
which are quite small compared to the primary Ritz displace-
ments used to calculate the adhesive stresses. In effect,
this would establish the loose "order of magnitude" by
which the displacements are more accurately determined than
the stresses. However, this hardly seems to be worthwhile,
since the study of adhesive stress convergence effectively
does the same thing directly for the desired end product.
3.1.2 Comparison of AdhesiQe Stresses

Calculated Several Ways From the
Results

The adhesive shear and normal stresses reported
here are calculated from equations 2.2.32, i.e., by using
displacement differences. Displacement derivatives have
been used only to investigate the boundary stresses. It
was pointed out in the previous section that the error in
calculating adhesive stresses using derivatives is expected
to be much greater than when using differences in displace-
ments, since the Ritz method (as employed here) produces
accurate displacements, but less accurate strains and
stresses. We now suppose that the adhesive stress distri-
butions found using Egs. 2.2.32 are "exact," and compare
them to the same stresses calculated from the displacement

derivatives of adherends 1 and 2. We would expect that the
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difference between the adhesive stress distributions, as
calculated the "exact" and the two "approximate" ways,
would be comparable to the boundary stress error. This
seems to be the case.

Table 2 (next page) shows the adhesive normal and
shear distribution (for o = 10°, B = 20, y = 4), calculated
three ways: using the displacement derivatives of adherend
1l; of adherend 2; and from the differences of the adherend
displacements (eqg. 2.2.32). The quantity S is the fraction
of the joint half-length, measured along the adhesive-
adherend interface from the origin (at the center). The
value S = -1.0 corresponds to points (C,F) in Figs. 8-9,
and S = 1.0 to (D,E). Table 2 gives results for tensile
and for bending load. It can be deduced from Table 2, by
subtraction, that the characteristic differences between
the more accurate and two less accurate methods are of the
same order of magnitude as the errors in the satisfaction
of the stress boundary conditions. The largest differences
occur at the ends of the adhesive joint, corresponding to
corners of the adherend trapezoids. These are also the
regions of discrepancy on the external boundaries. Such
discrepancies are inherent in any approach which fails to
account for the stress singularities associated with the

acute and obtuse wedge corners of the adherend trapezoids.



77

0€E9¥T"0 00TZT°0 S6VZT°0 08%20°0 88L00°0 82220°0 0°T
0VVET"0 ZYZET 0 OVO0ET" 0 LLZZ0°0 86520°0 T¥€20°0 6°0
S8TET"0 0TLET'O 06SET"0 T9€20°0 S¥620°0 €6920°0 8°0
89SET"0 LSOVYT 0 8ETVT 0 82920°0 05820°0 00L20°0 L0
S6ZYT"0 LOSYT"O 9L9%T"0 08620°0 01820°0 85620°0 9°0
€2TIST 0 S80ST°0 L6TST O TEEE0°0 LL6Z0°0 2 ZAX M S*0
6L8ST°0 6TLST O 069ST°0 6T9€0°0 YTEE0°0 12SE0°0 70
69%9T°0 TTEIT 0 6¥T9T"0 Z08E0°0 069€0°0 VYLED'O €°0
TL89T"0 98L9T°0 0LS9T°0 098€0°0 0L6€0°0 ZL8EOD"0 z°0
ZTZILT O ETTLT O 0569T°0 96L£0°0 ZS080°0 ZL8E0"0 1°0
0TELT O SOELT"0 Z6TLT 0 $69€0°0 006€0°0 TELED'O 0
T9VLT O ZYVLI O 909LT°0 TLEEOD"O PESED" 0 LSYE0*0 1°0-
L69LT 0 865LT°0 T06LT 0 €L0€0°0 LV0ED*0 S60€0°0 Z-0-
LEOST' 0 998LT°0 S6T8T"0 89L20°0 86520°0 66920°0 €°0-
8LY8T" 0 80€8T"0 60S8T "0 ¥6%20°0 €6T20°0 ¥SET0°0 v 0-
LL68T 0 GE68T 0 S988T°0 26220°0 ¥S020°0 8¥T20°0 S°0-
69%6T°0 8L96T°0 ¥8Z6T°0 80220°0 T6TZ0°0 6GTZ0°0 9°0-
9066T°0 L8E0Z'0 L8L6T O T0E2Z0°0 ¥LS20°0 82¥20°0 L°0-
ZTE0Z°0 1280Z°0 T8€02°0 15920°0 €80€0°0 S2620°0 8°0-
TL80Z°0 TL902°0 S90TZ°0 Z8EE0°0 S0S€0°0 TTSE0°0 6°0-
S¥022°0 Z6S6T°0 LT8TZ 0 6L9V0°0 ZZSE0°0 T88€0°0 0°1-
SAT3IRATISQ SAT3IRATISQ 90Uax=aJJITd SAT3IEATIS( SAT3IRATIS( 90UlI=aIJFTA S
Z pusIsypy T PUSIaypy Z puSIaypy T PUSIaYypy

Ss913S Ieays

SS2I13S TPWION

0 = ¢

0 BuTpeOT STTISUd

*sfkem 991yl pojeTnoTed S9SS9I3S SATSOUPY--°'Z OTgel



78

PCcLOT 0~ 926€0°0- 0T8¥0°0- 969T0°0- 60200° 0+ €L800°0- 0°T
696S0°0- 080S0°0- 8¢8¥0°0- ¥8L00°0- g€¢v10°0- $8800°0- 6°0
€9L€0°0- SG60S0°0- T28%0°0- 96500°0- 698T0° 0~ LT600°0- 8°0
vLZEOO- 9€LY0° 0~ 08L%¥0°0- 89800°0- SLETO*O0- €y0T0°0- L°0
S69€0°0- €6vv0°0- 689%0° 0~ OLETO®O- €00TO0°0- 86CT0°0- 9°0
09€v¥0° 0~ €8EV0°0~- 0ESy¥0°0- ST6TO0°0- STTTO0*0- 699T0°0- S0
008%0°0- 90€v0°0- 8LZVO0° 0~ L9€C0° 0~ TS9T0°0- ¥6020°0- P°0
PoLv0°0- €ETTvO0° 0~ 0T6€£0°0- 9€920°0- 0s€C0°0- 8L¥C0°0- €°0
06T¥0°0- 8L9€0°0- ¢ove0°0- GL920°0- 00620°0- 60L20° 0~ ¢°0
69TE0 0~ iv620°0- 6€LC0°0- L9%20°0- pSs0€0°0- 289¢0°0- T°0
9%€20°0- ¢06T0°0- TI16T0°0- T€220°0- 289¢0°0- 0ceeot0- 0
STS00°0- LL900° 0~ 02600°0- 0SETO0° 0~ 0LLTO®O- 96ST0°0- T°0-
- 6GL00°0 8%900°0+ 6T200° 0+ 06%00°0- 69%00° 0~ 6%500°0- Z°0-
€LB8TO°O €€6TO0°0 6LVTO0°0 8TS00°0 66600°0 ¢TLO0°O0 €°0-
€9820°0 €80€0°0 128C0°0 ¢Z910°0 ¥9€z0°0 ST1020°0 p°o-
898€0°0 cLOv0°0 96T¥0°0 LELZO'O 89€€0°0 ¢VTEO"O S°0-
890S0°0 8L6V0°0 $S5S0°0 9ZLE0°0 $€EB8EO0°0 998¢€0°0 9°0-
08590°0 666S0°0 €¥890°0 09€¥0°0 0ZLEO®O 600%¥0°0 L0~
98280°0 PSvL0°0 0€080°0 oLzZv¥o0°0 €9T€0°0 ETSEO0°O 8°0-
#8560°0 T9L60°0 ?0T60°0 18820°0 T11520°0 6%¥SC0°0 6°0-
$9060°0- PBEET O 8600T°0 SL900°0- 0cegCo0°0 €€9TO0°0 0°T-
SAT3IRATISQ ©OATIRATISQ SOU2I93ITd SATIRATISQ OSATIRATISQ SOUaI9IIIA S
Z puUSISUpY T PUSISYUPY Z pusISypY T PUSILUDY

$Ss913S Ieays SS9I3S TRWION

o= A 02 = ¢ o0T = © butpeo1 butpusg

— —

‘penuIluoD Z STqel



79

3.1.3 Double-Precision Check of
Roundoff Errors

In order to check the roundoff error involved in
solving the present very large system of simultaneous equa-
tions, a few computer runs have been carried out using double
precision arithmetic on systems of 141 equations. This cor-
responds to a sum of homogeneous polynomials{ for each of

h-order

the four displacements, up to and including all 7t
terms. In all cases checked (o = 10° and 30°, B = 4, vy = 2),
it was found that the numerically larger values of adhesive
normal and shear stress are affected by roundoff error only

in the sixth and seventh significant figures.

Consider, for example, the tension-loaded case of

o 30°, B =4, y =2, The largest shear stress value at

S

-1.0 (point C or F of Fig. 7) changes from 0.4723434 (sin-
gle precision) to 0.4723424 (double precision). The normal
stresses are somewhat smaller than the shear stresses for

the angle a = 30°, but the roundoff contribution must still
be comparable to the values found for the shear stress level.
This is because the same imperfectly-determined Ritz coeffic-
ients are involved in all computations. At S = -1.0, the
normal stress changes from 0.2687167 (single precision) to
0.2687145 (double precision). Here also it is found that

the difference is in the sixth or seventh significant figures.

h

The final results presented here are for 8*P_order

polynomials (177 equations). It is estimated that roundoff
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error might affect the numerically larger values in the
fourth to the sixth significant figure, depending upon the
parameters a, B and y. A precise estimate of roundoff
error for 8th-order polynomials is not easily obtained,
because the required memory capacity for the double pre-
cision version of the program then exceeds the available
high-speed memory of the Control Data Corporation 3600
Computer. However, it does not really appear to be neces-

th

sary to make this check, since in most cases the 7 - and

th-order (or Gth- and 8th—order) polynomial solutions

8
agree to sufficient significant figures for the latter to
be regarded as satisfactory.

Another measure of roundoff is obtainable from a
study of a few cases where an exact solution is available,

or where considerations of symmetry demand an odd function.

Any case involving tensile loading of identical adherends

(o 1) should show adhesive stresses uniform along the
joint, and independent of the parameter B (this is discussed
further, later). From such cases, and from those bending
problems where o = 1, it is possible to estimate that
roundoff error accumulations for 8th—order polynomial Ritz
functions (177 equations) consistently affect a few units

in the fifth decimal place, ranging occasionally up to 1
unit in the fourth place. This roundoff contribution is

independent of the absolute size of the particular stress

tabulated. However, it represents a small error in the
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significant (i.e., numerically larger) values of any of the
tabulated stresses. It is quite clear that imperfect con-
vergence is a far more important source of error than round-
off accumulation. Roundoff error may make it impossible to
go to 9th-order polynomials, however, unless double preci-
sion arithmetic is used, or some effort is made to "purify"

the inverse of the Ritz matrix.

3.1.4 Convergence of the Approximating

Seguence

Convergence is studied primarily in the quantities
wanted as an end result, the adhesive stresses. From the
discussion of the preceding sections, this also amounts to
an examination of the convergence of the adherend displace-
ments. To do this, a number of cases are studied in which
the adhesive normal and shear stresses are obtained by
successively assuming displacement functions consisting of
the sum of all homogeneous polynomials through the Gth, 7th
and Sth degree. Considering that four displacements are
involved and subtracting the three rigid-body constants,
this amounts to solving 109, 141 and 177 simultaneous equa-
tions, respectively. Typical cases examined includeB = 20
(an intermediate level of flexibility), vy = 4 (a 4:1, or
substantial level of adherend dissimilarity), for a = 5°,
10°, and 309 in both tensile and bending load. The tensile

loading level here is a unit stress parallel to X, and the
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largest bending stress is also unity (Fig. 7). For tensile
load, and in most cases for bending load, it is found that
the adhesive stresses appear to approach a definite limit.

In using 6th-, 7th— and 8th-degree polynomials, the
larger magnitudes of stress are often so close to each other
that it is usually not practicable to represent them in
terms of tables. Smaller values of stress, of course, are
not determined as well as large ones, but they are of less
significance precisely because they are small. Tables 3-8
will be used as the framework of this portion of the con-
vergence discussion. Most of the final tabulated results
have been treated along the lines of the three samples to
be discussed exhaustively in the rest of this section, but
in most cases only Gth- order and Bth-order polynomial re-
sults have been compared (not the full 6-7-8 sequences as
in what follows). In a few cases, only 8th-order results
are available. Thus the user usually has one or more in-
dices from which to judge for himself whether he considers
the adjacent Ritz solutions to be close enough for the re-
sults to be meaningful in his application.

Consider, as a successful example, the tensile load
case for the angle a = 30° (upper end of the practical angle
range), in Table 3 (next page). The largest shear stress
level is of order 0.45, and all orders of polynomial con-
sidered give the same stresses to three or more significant

figures, usually to better than 0.01%. There appear to be
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"random" differences in the fourth and fifth significant
figures. At some points in the table the stress level goes
down slightly with increasing polynomial order; at others,
up slightly; and in still others changes very little. For
example, at S = -1.0, the value goes from 0.45137 (for 6tb-
order) to 0.45133 (7th-order) to 0.45131 (Sth-order). At
S = 0.9, the trend is reversed, and the respective (6,7,8)
figures are 0.41696, 0.41700, 0.41702. At S = -0.6, there
are no changes at all in any of the figures given. These
changes can be shown to be systematic rather than random.
The difference between the 7th- order and the Gth-order

solutions can be plotted to reveal a 7th

-order polynomial
of very small maximum amplitude, affecting only the last
significant figure of the five given in Table 3. 1In the

same way, the difference between the Sth-order and the 7th-

order solutions is an 8th

-order polynomial of even smaller
maximum amplitude, affecting the last significant figure

to a somewhat smaller extent. All differences between adja-
cent polynomial solutions have this character, so that it

is only worthwhile to examine the larger differences.

These differences are invariably expressed as a percentage
of the highest-order solution, in the discussion which fol-
lows. Effectively, it seems fair to say that very good

convergence has been achieved for the shear stress in this

particular example.
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Another measure of convergence has also been examined.
It is difficult to inspect the small-amplitude "difference
polynomials" just described and decide how much the calcu-
lated shear or normal stress function has shifted as a whole
with incfease in number of terms. To assess this shift,
the average shear or normal stress along the length of the
joint may be calculated by integration, and the values fér
adjacent Ritz solutions compared. The most convenient way
to do this is to integrate the difference polynomial along
the length of the joint. This is a small quantity when
convergence is adequate, and its general order of magnitude
is about as informative as an accurate absolute value. This
index, therefore, has been computed directly from the tabu-
lated output data, using numerical integration and Simpson's
rule, rather than by analytical integration. A sample of
the "difference polynomials"is given later.

Thus, referring to Table 3, the average difference
in shear stress between the 7th-order and Gth-order results
is -2(10-7), and between the 8™-order and 7™P-order is

2(10”°

). For reference, the typical shear stress level is
about 0.43. The present index also seems to support the
assertion that practical convergence has been obtained for
the case under consideration. The fact that the (8-7) dif-
ference is larger than the (7-6) difference can probably

be ascribed to the rounding of figures to five, for the

purposes of tabulation. Some small contribution may also
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be present due to accumulated roundoff in the Ritz matrix
inversion, which is believed to have a small but measurable
effect in the case of Sth-order polynomials.

For this relatively large value of a, the adhesive
normal stress is smaller than, but still comparable to,
the shear stress. Generally speaking, in all calculations
it appears that the normal stress converges more slowly
than the shear stress, possibly as a result of different
physical mechanisms involved. Joint end-values are parti-
cularly uncertain, but these are not always the points of
greatest adhesive normal stress. This general behavior is
seen to a slight extent in Table 3, where three significant
figures are absolutely stable, but the fourth may vary as
much as 3.5 units as we sweep through the polynomial orders
6-7-8. Nevertheless, it still seems fair to say that good
adhesive normal-stress convergence has been achieved in
this particular example (other examples are not nearly as
favorable). The (7-6) normal stress difference averages
to -1(10"%) along the joint, while the (8-7) figure is
5(10-7), both to be compared to a typical normal stress
level of about 0.25. This index also implies that the
overall solutions are in good agreement, despite local
variations. Thus, even 109 equations deliver average
stresses which agree well with the average values for 141
and 177 equations. The index in question is perhaps a good
measure of overall equilibrium, but says very little about

the accuracy with which distributions have been determined.
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The tensile load case in Table 4 (o = 10°, B = 20,
Yy = 4), page 83, shows the same general behavior. Here the
angle a = 10° is near the lower end of the practical range,
and the shear stress is much smaller than for o = 30° (Table
3) . The shear stress agreement between 7th- and 8th—order
solutions is very good. This is particularly easy to see
in Table 4, because the "difference polynomials" have been
included in this table as a sample, under such headings as
105[7—6]. The normal stress is now 10 times smaller than
for the 30° case, and the slower rate of convergence always
observed for this stress component means that a good deal
more variation is found as the order of the polynomials is
increased. Over most of the joint, this still amounts to

h

changes of less than 1% between 7th- and gt -order results.

At or near the ends, as much as 5% change can be detected

in going from the 7th—order to the 8th

-order solution (e.g.,
at the end s = 1.0). It must be remembered that the normal
stress at this point is not the largest value along the ad-
hesive joint, and also that it is always less than one-
quarter the size of the shear stress at the same point. A
modest uncertainty in its determination does not preclude
the general statement that satisfactory convergence seems
to have been achieved. This is particularly true if we
think in terms of the combined stress picture for the ad-

hesive, which will be dominated by the rather well-determined

and much larger shear stress. The (7-6) average adhesive
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shear stress difference for this case is —2(10-6), and the
(8-7) value is the same, both referred to average stresses
of about 0.17. The respective data for the normal stress
are -2(10-6) and 1(10-6), implying better overall "adjacency"
than the local variations at the joint ends might at first
appear to indicate.

The tensile load example of Table 5 (a = 5°, y = 4,
B = 20) page 90, has been included here as a particularly
poor example: the Ritz method is approaching the limits of
its effectiveness for simple polynomial inputs. (The 5°
angle is also probably smaller than normally attempted in
most technological applications, since such a scarf joint
is hard to make. It has been included primarily to see how
far we can push the Ritz method, particularly in connection
with bending--discussed later). The shear stress now falls
below 0.1 over most of the joint, which means that the
changes with polynomial order usually observed in the fourth
and fifth decimal place affect the third significant figure
rather than the fourth, as before. Nevertheless, the 7th-
and Sth-order shear stress results agree to better than
0.5% at all points, and better than 0.35% at all points
where the shear stress is large. This is considered to be
adequate convergence for most purposes. The corresponding
average-difference indices are -1(10-6) for (7-6) and
-5(10-7) for (8-7), on a reference scale of about 0.09

average shear stress.
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Table 5.--Adhesive stresses for 6t

h_  ,th

Tensile Loading

- and 8th-order

Shear Stress Normal Stress
6(109) 7(141) 8(177) 6(109) 7(141) 8(177)
0.13756 0.13785 0.13785 0.00121 0.00659 0.01201
0.12497 0.12484 0.12493 0.01327 0.01210 0.01019.
0.11441 0.11395 0.11410 0.01185 0.00923 0.00805
0.10625 0.10569 0.10573 0.00609 0.00478 0.00544
0.10043 0.10002 0.09988 0.00112 0.00192 0.00328
0.09667 0.09654 0.09624 -0.00083 0.00152 0.00242
0.09450 0.09466 0.09433 0.00050 0.00316 0.00319
0.09337 0.09375 0.09352 0.00417 0.00590 0.00525
0.09273 0.09320 0.09317 0.00872 0.00875 0.00794
0.09208 0.09249 0.09268 0.01270 0.01093 0.01042
0 0.09098 0.09126 0.09160 0.01499 0.01208 0.01203
0.1 0.08913 0.08925 0.08961 0.01507 0.01217 0.01247
0.2 0.08635 0.08635 0.08661 0.01312 0.01145 0.01183
0.3 0.08261 0.08256 0.08262 0.00990 0.01033 0.01054
0.4 0.07799 0.07796 0.07782 0.00665 0.00917 0.00915
0.5 0.07267 0.07269 0.07242 0.00464 0.00820 0.00807
0.6 0.06690 0.06694 0.06670 0.00481 0.00740 0.00737
0.7 0.06092 0.06090 0.06082 0.00705 0.00658 0.00668
0.8 0.05493 0.05477 0.05491 0.00948 0.00553 0.00553
0.9 0.04897 0.04880 0.04899 0.00757 0.00437 0.00412
1.0 0.04288 0.04329 0.04308 -0.00697 0.00411 0.00488
6.--Bending o = 30°, B = 20, vy = 4
0.05807 0.05899 0.05948 0.29183 0.28525 0.28131
0.05451 0.05538 0.05587 0.27289 0.27181 0.27144
0.04987 0.05046 0.05074 0.24611 0.24730 0.24808
0.04442 0.04466 0.04471 0.21350 0.21518 0.21598
0.03838 0.03830 0.03819 0.17770 0.17821 0.17865
0.03194 0.03163 0.03143 0.13798 0.13853 0.13863
0.02524 0.02477 0.02457 0.09780 0.09782 0.09775
0.01840 0.01790 0.01772 0.05759 0.05736 0.05729
0.01150 0.01106 0.01093 0.01834 0.01814 0.01820
0.00463 0.00432 0.00423 -0.01911 -0.01906 -0.01883
0 -0.00217 -0.00237 -0.00235 -0.05400 -0.05392 -0.05327
0.1 -0.00883 -0.00878 -0.00876 -0.08551 -0.08487 -0.08449
0.2 -0.01530 -0.01508 -0.01501 -0.11302 -0.11232 -0.11203
0.3 -0.02153 -0.02118 -0.02107 -0.13579 -0.13530 -0.13522
0.4 -0.02745 -0.02705 -0.02689 -0.15301 -0.15304 -0.15326
0.5 -0.03296 -0.03260 -0.03245 -0.16383 -0.16461 -0.16514
0.6 -0.03797 -0.03775 -0.03767 -0.16726 -0.16879 -0.16956
0.7 -0.04253 -0.04236 -0.04241 -0.16214 -0.16408 -0.16490
0.8 -0.04589 -0.04624 -0.04646 -0.14716 -0.14860 -0.14910
0.9 -0.04844 -0.04912 -0.04945 -0.12075 -0.12001 -0.11957
1.0 -0.04973 -0.05065 -0.05083 -0.08110 -0.07544 -0.07309
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The adhesive normal stress is very small at this
angle, which is fortunate, for the Ritz process can hardly
be said to have converged. Only the leading figure can be
considered significant at many points, and at most of the
others there is uncertainty in the second significant fig-
ure. If it were of technical importance to determine the
adhesive normal stress very accurately, the present methods
would have to be abandoned in favor of other approaches.
The normal stress average differences here are 6(10-6)(7—6)
and 7(10-6)(8-7), where the reference level is about 0.012.

In general, bending load seems to place a far
greater strain on the capabilities of polynomial displace-
ment functions than tensile load, and convergence is not
always clearly established. The bending load case of Table
6 (o = 30°, B = 20, vy = 4), page 90, shows variations af-
fecting the second significant figure of the adhesive shear
stress as the order of polynomials is increased, where the
corresponding tensile load case is affected in the fourth
figure. Since both shear and normal stress change sign for
loading by moments, it seems useful to study convergence
for the numerically larger positive and negative values of

h_ and

stress only. The largest difference between the 7t
Bth-order results occurs between S = -0.9 and S = -1.0,
and amounts to less than 0.9%; all other differences rep-
resent smaller percentages than this for stress values

above the magnitude 0.024 (where 0.059 is the largest
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absolute value). The normal stress pattern for this case
offers some novelty because larger normal stresses than
shear stresses are encountered for the first time. Compar-
ing polynomial orders 7 and 8 for the larger stress range
(above 0.119 where 0.28 is the maximum), it is found that
the differences are below 0.5% everywhere except at s = -1.0,
the joint end. (The difference at S = 1.0 is 3.2%, but this
is a point of rather small normal stress.) A difference of
1.4% is observed at the end S = -1.0, where the normal
stress level takes on its largest value, 0.281. This
probably can be characterized as adequate convergence, de-
pending upon the needs of the user. The average-difference
)

(8-7), where the largest stress value is about 0.06. The

indices for shear stress are 1.4(10-5)(7-6) and 1.5(10°

3)

respective results for normal stress difference are -3(10"
(7-6) and 1(10-5)(8-7), referred to a largest datum level
of 0.28.

The bending load case of Table 7 (o = 10°, 8 = 20,
y = 4), page 93, shows slightly better convergence of the
adhesive shear stress values than the preceding case. For
values larger than 0.04 (where 0.1 is maximum), the Sth-order

result never differs from the 7th

-order result by more than

0.3%. The normal stress calculation convergence is inferior.
If attention is confined to values above 0.02 (where 0.04 is
the maximum), then the largest difference is less than about

2%. If the lower limit considered is 0.016, however,
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Table 7.--Adhesive stresses for 6t

Bending a = 10°, B = 20, vy = 4

h_  ,th

- and Bth-order

Shear Stress

Normal Stress

6(109) 7(141) 8(177) 6(109) 7(141) 8(177)
0.10148 0.10110 0.10098 0.00707 0.01379 0.01632
0.09122 0.09106 0.09104 0.02661 0.02599 0.02548
0.07998 0.08015 0.08030 0.03812 0.03587 0.03513
0.06780 0.06822 0.06843 0.04177 0.04030 0.04009
0.05486 0.05538 0.05554 0.03863 0.03847 0.03866
0.04150 0.04194 0.04196 0.03039 0.03115 0.03142
0.02809 0.02833 0.02821 0.01899 0.02002 0.02015
0.01502 0.01500 0.01479 0.00639 0.00715 0.00712
0.00268 0.00242 0.00219 -0.00565 -0.00542 -0.00549

-0.00860 -0.00903 -0.00920 -0.01574 -0.01599 -0.01595

0 -0.01857 -0.01905 -0.01911 -0.02293 -0.02342 -0.02320
0.1 -0.02708 -0.02745 -0.02739 -0.02677 -0.02715 -0.02682
0.2 -0.03391 -0.03418 -0.03402 -0.02734 -0.02737 -0.02710
0.3 -0.03921 -0.03928 -0.03909 -0.02519 -0.02478 -0.02478
0.4 -0.04305 -0.04292 -0.04278 -0.02123 -0.02054 -0.02094
0.5 -0.04560 -0.04533 -0.04530 -0.01661 -0.01600 -0.01669
0.6 -0.04711 -0.04681 -0.04689 -0.01247 -0.01240 -0.01298
0.7 -0.04784 -0.04766 -0.04770 -0.00974 -0.01048 -0.01043
0.8 -0.04809 -0.04811 -0.04821 -0.00882 -0.01009 -0.00917
0.9 -0.04808 -0.04830 -0.04828 -0.00921 -0.00968 -0.00884
1.0 -0.04797 -0.04819 -0.04810 -0.00914 -0.00576 -0.00873

Table 8.--Bending o = 5°, B = 20, vy = 4

0.09976 0.09976 0.09974 0.01232 0.01159 0.00826
0.08395 0.08392 0.08376 0.00704 0.00717 0.00831
0.06888 0.06894 0.06876 0.00652 0.00697 0.00761
0.05448 0.05462 0.05460 0.00739 0.00769 0.00732
0.04079 0.04095 0.04115 0.00781 0.00774 0.00707
0.02780 0.02800 0.02839 0.00704 0.00661 0.00622
0.01591 0.01593 0.01629 0.00504 0.00447 0.00448
0.00499 0.00491 0.00512 0.00223 0.00179 0.00201
-0.00474 -0.00489 -0.00491 -0.00079 -0.00087 -0.00069
-0.01317 -0.01335 -0.01358 -0.00341 -0.00309 -0.00305

0 -0.02022 -0.02038 -0.02073 -0.00521 -0.00457 -0.00462
0.1 -0.02586 -0.02596 -0.02628 -0.00597 -0.00527 -0.00523
0.2 -0.03011 -0.03013 -0.03031 -0.00575 -0.00529 -0.00508
0.3 -0.03302 -0.03297 -0.03297 -0.00485 -0.00489 -0.00459
0.4 -0.03472 -0.03463 -0.03447 -0.00378 -0.00434 -0.00419
0.5 -0.03535 -0.03526 -0.03505 -0.00303 -0.00390 ~-0.00414
0.6 -0.03511 -0.03505 -0.03492 -0.00303 -0.00371 -0.00420
0.7 -0.03420 -0.03420 -0.03421 -0.00378 -0.00372 -0.00418
0.8 -0.03283 -0.03288 -0.03298 -0.00466 -0.00369 -0.00332
0.9 -0.03120 -0.03124 -0.03130 -0.00403 -0.00320 -0.00224
1.0 -0.02948 -0.02936 -0.02938 -0.00113 -0.00169 -0.00426
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differences of about 4% can be observed, and the values for
end S = -1.0 differ by 15.5%. (Again, the stress level here
is only 40% of the maximum.) The shear stress difference
indices are 2(107%) (7-6) and 3(107°) (8-7), where 0.1 is the
maximum, while for normal stress the respective figures are
3(107%) ana -4.5(107%), referred to a maximum of about 0.04.
The bending load case (a = 5°, B = 20, vy = 4) of
Table 8, page 93, is an example where the convergence is
quite good in the shear stress. The largest error is about
1/4%, if we consider stresses larger than about half the
maximum value. The 6th-order polynomial results, surpris-
ingly, seem to agree with the 7th-order results somewhat

h with the 7th. It is tempting to guess

h

better than the 8t
that roundoff has affected the 8t -order results. However,
the Ritz matrix inverse is exactly the same for both the
bending and tensile loading. In the latter case the 7th-
order and 8th-order results are quite close. Hence, ques-
tions of convergence rather than of roundoff accumulation
seem to be involved here. Overall, the convergence of the
shear stress seems reasonably good. The average shear
stress difference indices are 3(10”') for (7-6) and 7(10” )
for (8-7), referred to largest a shear stress of about 0.10.
The normal stress is very small for this case
(Table 8, p. 93). This is just as well, because the Ritz

method produces only one significant figure; at a few points,

even this is uncertain. The normal stress difference
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averages are 3(10-5) for (7-6) and -7(10—6) for (8-7), on

a scale of perhaps 0.008. Since the reference stress is
small, these are relatively larger average differences than
generally encountered before, so the index in question is
not completely insensitive to convergence. To summarize
the results, it appears that the Ritz procedure with x-y
polynomials produces results ranging from very good to
"acceptable," for all cases of tensile loading. The adhe-
sive shear stress is always more reliably determined than
the normal stress, but where the latter is not well deter-
mined, it is usually small enough to be of no great signif-
icance for the overall stress pattern. 1In tensile loading,
convergence seems to improve as the scarf angle increases,
while in bending, the trends seems to be opposite.

On the other hand, not all of the bending results
are reliable. It becomes necessary to put down some "figure
of merit" to characterize these cases for the user. These
have been chosen as the largest difference between the re-
sults for 7th—order and the 8th-order polynomial solutions,
expressed as a percentage of the latter, with attention
confined (usually) to the larger levels of stress. Where
7th-order data have not been computed (to limit the total
computer time involved), the Gth-order results are compared
to the Sth-order ones. This is a considerably rougher ver-
sion of the index.

The second index of merit is the average difference

between "adjacent" Ritz solutions. This consists of the
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average along the joint of the difference between the adhe-
sive stress calculated from the Sth-order and the Gth—ordér
polynomial solutions (7th-order substituted where available).
This index is provided for both the adhesive shear stress and
the normal stress. All of these indices are in App. F tables,
since there is no room to place them on the sheets tabulating
the raw results (Appendix F). As a supplementary warning to
the user, an asterisk is placed on each table in Appendix F
where the local error in the satisfaction of the stress
boundary conditions exceeds 0.1 on a scale of "largest applied
stress" = 1.0. As mentioned in section 3.1l.1, this is a con-
siderably less reliable indicator than the "percentages" of
App. F. It may be of some interest to note how the boundary
stress error behaves as the order of the Ritz polynomials
is increased. The discussion here is confined to the vicinity
of the peak errors in the stress component showing the largest
error.

Consider, for example, the tension-loaded case cor-
responding to Table 4 (o = 10°, B8 = 20, y = 4). The largest
shear stress boundary errors at C (Fig. 8) are -0.0256,

-0.0247 and -0.0246 for 60—, 7th h

- and 8t -order polynomials
respectively. (The reference level is a largest applied
stress of unity.) This clearly indicates that the boundary
stress errors do not decrease very rapidly as the polyno-
mial order increases. What is intéresting is that the

gradient down from the peak gets larger with polynomial
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order, i.e., the error effect becomes more localized. The
Ritz solution is attempting to conform to the local stress
singularity ignored in the analysis, as well as a polynomial
can while still satisfying the remaining boundary conditions
of a stress-free edge. Possibly, if the order of the poly-
nomials could increase greatly and a solution could still
be obtained, the error "spike" would grow to very large
values, but becomes very narrow.

The shear stress boundary condition errors for the

bending-load case at E (Fig. 9) are -0.0676 for the Gth-

order, -0.0654 for the 7 P-order and -0.0629 for the 8%9-
order polynomial. This indicates that the level of error
for the bending load case likewise does not decrease much
in magnitude as the degree of the polynomials used is in-
creased. As in the case of tensile loading, the significant
trend observed is a steeper gradient in the shear stress
boundary condition error with increasing polynomial order.

| At the same points, the normal stress Oy is much
smaller and thus closer to the desired zero boundary values.
Its general behavior is similar. In the case of tensile
loading, the point-C values are -0.00343 (Gth-order),
~0.00353 (7*"-order), -0.00337 (8*P-order). For the bend-
ing load case, at E the values are =-0.00999, -0.00946 and

th

-0.00914 (Gth—, 7= and 8th-order polynomials respectively).
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3.1.5 Overall Equilibrium Check

As another check of the results, a few sample cases
have been examined for various aspects of overall equili-
brium. 1In one approach, this involves finding the resultant
forces produced on each of the four trapezoidal boundaries
of adherend 1, and writing the three equations of static
equilibrium. In each case, the stresses used are the actual
ones produced by differentiating the polynomial solution,
not the exact input boundary conditions. On the inclined
adhesive interface, the stresses chosen are also the less
exact ones produced by differentiation, for consistency.

All integrations reported here are carried out analytically,
using the Sth—order polynomial solutions.

Since these calculations have the error level of
the stresses, which is substantially larger than that of
the displacements, no great perfection of the results is
anticipated. The integration process for finding resul-
tants may improve the situation somewhat, however. The
resultant forces should theoretically be zero, of course,
so that a reference level has to be devised to help evalu-
ate the numbers representing resultant force and moment.

For tensile loading of the adherends, the logical reference
level is the input force derived from the unit stress act-
ing on a member height of 2h = 2.0. The representative
length required for examining overall moment equilibrium

is somewhat more of a puzzle. As one possibility, it could



99

be thought of as the adherend height 2h = 2, producing a
moment of 2(2) = 4 units. However, since error tractions
act on long sides of the adherends, as well as the short
sides, a better choice (perhaps) might be the average length
of the adherend in the X-direction, (2 + cot a), making the
reference level for moment angle-dependent. The latter
length ranges to about 10 for the smallest a considered (5°),
producing a reference level for moment of 2(10) = 20; it is
2(3.73) = 7.5 for a = 30°,.

For bending load, a suitable force and moment refer-
ence level are about as hard to choose. For moment, the
applied moment could be used. The input bending stress for
this case varies from +1 to -1 as y ranges from -h to +h
(nondimensional Y goes from -1 to +1). The resultant force
from Y = 0 to 1 can be chosen as a reference level for
force (= 1/2 unit). The corresponding applied moment is
then 1/2(4/3) = 2/3. However, the argument about error
tractions acting on the long sides is just as valid here
as before, in which case the reference levels for moment
become angle-dependent values perhaps (1/2//2.0 = 1/4 as
large as those estimated for the tensile-loaded system.

With these uncertainties in mind, we examine a few sample
cases which have been tabulated below. The calculations
are carried out using the separate stress distributions for
adherends 1 and 2, in bending and tensile load. Also

tabulated are the resultants for the overall equilibrium
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of the two joined members, with the interior adhesive inter-
faces making no contribution at all.
Considering the tensile load case, with datum force
2.0, the force resultants tabulated seem generally good. No
error exceeds 1/2% significantly, and most values are a good
deal smaller. Moment equilibrium discrepancies are compar-
ably small, in adherends 1 and 2 taken separately, if the
angle-dependent reference level criterion is adopted. For
example, the 10° (adherend 1) figure of 0.0537 is small on
a scale of 20, and not even too bad on the more conserva-
tive scale of 4 units. The "overall" columns seem to pro-
vide the same sort of error level also, but perhaps here
the moment reference level at 10° can be enlarged to 40,
since the largest dimension of the system doubled.
Bending-load force resultants are not quite as good,
for a reference level of 0.5, but this is to be expected
from the rather large boundary stress errors in Table 1,
and the generally less satisfactory results observed for
the bending solution. Even so, no error is as large as
10% of the nominal datum level in either adherend considered
alone. This 10% level occurs for o = 30°, B = 20, y = 4.
The Table 1 data for this case shows a largest stress error
of 0.428 (on a scale of unity, or 42.8%) in the shear
stress which directly affects the present error quantity.
Thus there appears to be some gain in the process of inte-
grating to resultants. The "overall" columns do not change

the pattern appreciably.
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Moment equilibrium in bending is again hard to in-
terpret because of the uncertainty regarding the reference
level. If the angle-dependent length is chosen, the refer-
ence level for moment becomes (1/2)(10) = 5 for individual
adherends with o = 10°, and perhaps twice this for the over-
all case. On this optimistic basis, even the worst cases
appear to be fairly satisfactory;

Another sort of overall check is possible, one
where significance should be very much greater. The tabu-
lated adhesive stresses of this thesis are presumably much
more accurate than the stresses calculated by differentiat-
ing displacements (discussed in Section 3.1.1). Therefore,
it is reasonable for us to test how well they hold the
exact input boundary tractions in equilibrium. The trac-
tions are the pure tensile stress at the end of each ad-
herend, or the linearly-distributed stresses at the same
ends (bending load case). To be explicit, these should be
supplemented by the vanishing of stress at the top and
bottom of each adherend, and of the shear stress on the
extreme ends. Tabulated in Table 10, for the cases treated
in the preceding table, are the resultant forces and moment
produced when the "more exact" adhesive stress resultants

are equilibrated against the input forces and moments.
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Table 10.--Sample overall equilibrium checks

Either Adherend

o B Y X-Force Y-Force Moment
Tension*
10 20 4 0.0000055 0.0000054 0.000029
20 20 4 0.000025 -0.0000080 -0.0000005
30 20 4 -0.0000048 0.0000047 -0.0000004
Bending**
10 20 4 0.0000016 -0.0000025 0.00022
20 20 4 -0.0000025 0.0000017 0.00246
30 20 4 0.0000031 0.0000011 0.00631
*Force reference =~ 2.0; Moment reference =~ 4.0, or
larger, angle-dependent values.
**Force reference = 0.5; Moment reference = 2/3

(applied) or angle-dependent from = 1.85(30°) to 5(10°).

For results of this caliber, it is probably not im-
portant which of the many possible reference levels dis-
cussed before are used, with possible exception of the
moment imbalance for bending load. Even using the most
conservative reference level of 2/3, fhe applied moment,
the worst error is now less than 1% (a = 30°, B = 20,

Y = 4, bending). This, incidentally, is for a case show-
ing very large boundary-stress errors in Table 1. Whatever
else may be said about the precision with which the adhesive

stress curves are determined by the Ritz process, the
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overall resultants of these stresses seem to equilibrate

the input forces in satisfactory fashion.

3.2. Confirmation by the Integral
Equation Method

The approach outlined in Section 2.3 is quite com-
plex and radically different from the Ritz method. Any
reasonable degree of agreement between solutions obtained
these two ways constitutes a further useful check on the
present results. As noted before, the largest problem
which can be run in the high-speed memory of the CDC 3600
computer involves just enough boundary points to begin to
support the Ritz method. The character of the solution,
however, is such that it does not seem worthwhile to ex-
plore larger-sized problems, by attempting to utilize the
slow-speed computer memory. It appears that the integral
equation approach is more sensitive to the neglect of
wedge-corner singularities than the Ritz method.

This is seen in Figs. 10 and 11, comparing the ad-
hesive shear and normal stresses obtained by the Ritz and
the integral equation methods. Over most of the length of
the adhesive joint, the agreement is quite good. Near the
ends, the integral equation method shows large sudden de-
partures from the general trend of the curves (and from
the Ritz results). These are believed to be associated
with the neglect of stress singularities, or to treating

the sharp direction changes at the corners as continuously
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Fig. 11 Normal stress (N) by Ritz and integral equation

methods.



106

turning tangents (which may amount to the same thing as
neglecting singularity stresses). It is considered pos-
sible (but not likely) that these effects would be reduced
1f larger-sized problems could be explored. The overall
agreement is adjudged sufficient for us to be able to say
that the integral equation method does support the Ritz
method, despite the substantial differences in the two

approaches.



CHAPTER IV

ENGINEERING SIGNIFICANCE OF THE RESULTS

A considerable amount of discussion of the results
has necessarily taken place in Chapter III, with primary
emphasis on evaluating their quality. Here, attention is
centered on their physical and engineering significance.
When the scarf joint consists of elastically-dissimilar
members, which is the general case here, it becomes impor-
tant to take account of the sense of the applied loading.
Reversal of the loading may cause a numerically-smaller
stress component to become the critical one for design pur-
poses. In the following treatment of stress distributions,
we will assume that the loading is in the sense pictured
in Fig. 7, p. 26. The emphasis will then be on one set of
largest stresses, and these will form the basis for the
diagrams presented, and their discussion. If the loading
were reversed, a different set of largest stresses would
become the center of interest. This second discussion has
been omitted for brevity. The corresponding material
could be drawn from the raw data of Appendix F. When atten-
tion is finally focused on principal stresses and the design
aspects of the present results, the question of sense of
loading is taken into account properly.

107
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4.1 Adhesive Normal and Shear Stress
Distributions

The discussion here concerns the general character
of the adhesive normal stress (N) and shear stress (T) dis-
tribution calculations as a whole. Because of the large
number of cases studied, it is impractical to attempt to
plot and crossplot all of the results, and the discussion
1s carried out in terms of representative sample cases.
Even here it has been necessary to reduce the presentation
of figures to a bare minimum, in order to keep the total
number within reasonable bounds.

Primary calculated results for all cases are tabu-
lated in Appendix F, and any desired crossplots may be
constructed from these. In addition, the computed Ritz
coefficients for each case are available in punched-card
form if any further processing of the raw data appears de-
sirable in the future. The stresses T and N are already
dimensionless quantities, in the sense that they are the
result of a unit applied stress. To recover actual, dimen-
sional adhesive stresses, the user must calculate for his
case the values of the parameters a, B and y. Their defini-
tions can be found in sections 1.4, 2.4 and section 4.3.
Interpolation three ways in the tables is then required.
Finally, he must multiply the tabulated values by a "load
stress." 1In the case of tensile loading of the joint, the

load stress is the actual tensile stress (oxo) in the
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adherends at points remote from the adhesive joint. For
pure bending, the "load stress" is the maximum value of

the bending stress o© at remote points in the adherends

X0
(i.e., the usual "Mc/I").

This describes one use of the raw results; advice
on interpolation appears in Appendix F. For a discussion
of the physical significance of most of the data, however,
it is most useful to convert the raw dimensionless stress
distributions into an even more meaningful dimensionless
form: stress concentration distributions. A primary re-
sult of Ref. 7 is that in the case of tensile loading of a
scarf joint the adhesive normal and shear stresses are in-
dependent of adhesive properties and thickness, and uniform
along the joint. Hence they can be calculated from equili-
brium alone for each angle a. Thus they comprise a con-
venient stress reference level for discussion of the
influence of adherend dissimilarity and other parameters--
the principal goal of this thesis. For tensile loading,

then, we take

No = N/N, T, = T/T, 4.1.1

where

sin” o T. =0 sin o cos o 4.1.2

0 X0

are the identical-adherend results for tensile loading.
Equations 4.1.1 produce a stress concentration factor of
1, uniform along the joint and independent of the value of

B, for the case of identical adherends.
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We continue to use the position variable "S," the
fraction of the joint half-length, to locate points along
the adhesive joint. Since the origin of the coordinate
system is fixed at the midpoint of the inclined joint
(S = 0 here), the location of (C,F) in Fig. 7 is S = -1.0,
and (D,E) correspond to S = 1.0. For bending, not covered
by prior theory, the stresses in the adhesive are neither
uniform along the joint nor linear, even for the case of
identical adherends. Moreover, even these distributions
are now B-dependent. Thus the treatment of bending does
not benefit greatly from the method of non-dimensionaliza-
tion now under discussion, and it will be handled differently.
To convert the "stress concentration factor" type
of dimensionless stress (NO, TO) back to dimensional form,
it is necessary to multiply by Ny or T,, as well as the
"load stress" 9%0°
In discussing the results to follow, we attempt to
follow the rule that any behavior pattern pointed out holds
for other cases of similar type, unless otherwise noted.
The difference for other cases is thus one of degree, not

of general trend.

4.1.1 Case of Tensile Loading

Some representative samples of the adhesive shear

stress distribution TC defined in the preceding section

are plotted in the main portion of Fig. 12 (the smaller
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inset is mentioned later). This shows the stresses due
to tensile loading for scarf angle a = 10°, for B = 20 (an
intermediate level of adhesive flexibility), and for three
of the four values of the dissimilarity parameter: vy =1,
2 and 8 (essentially, ratio of adherend 2 Young's modulus
to that of adherend 1). Thus only the dissimilarity param-
eter Y changes. A curve is sometimes omitted, y = 4 in
this case, when it is so close to another as to confuse the
diagrams. Figure 12 indicates that the shear stress is not
uniform when the adherends are dissimilar, with the depar-
ture from uniformity increasing smoothly as Y increases.
This seems reasonable on a physical basis. The omitted
curve for vy = 4 lies between the cases pictured for y = 2
and Yy = 8, but closer to vy = 8 than to vy = 2. This implies,
perhaps, that y = 8 is probably rather near the limiting
case y = «© (adherend 2 "rigid"). Note that the largest
stress concentration factor is about 1.35, for y = 8.

The largest shear stress for all cases of ten-
sile loading follows the pattern shown: it is always at
S = =1. This can be supported by physical reasoning, be-
cause of the simple model adopted here for adhesive
strains in terms of relative displacement of the ad-
herend-adhesive interfaces. At S = -1, adherend 2
has its smallest stiffness, because it has a sharp point.
It therefore deforms very readily. In the same region, ad-

herend 2 is at its stiffest and deforms less readily, by
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Fig. 13 (Tc)max in tensile loading.
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contrast. The situation is geometrically identical but
elastically different at the other end. Since the adhe-
sive acquires stress on the basis of relative displacements
of adherends, it follows that the local stiffness of tip
regions dominates end-region stress generation in the adhe-
sive. Flexible tips yield readily if the opposing member
displaces, and do not allow the local relative displacement
to become very large. The tip of adherend 2 is the stiffer
one whenever y > 1, since y = Ez/El (essentially). Hence
the largest shear stresses are invariably found at this tip,
or S = -1. This reasoning should apply to bending load as
well as tensile load, and it is offered to account for the
asymmetry of the adhesive stresses when the adherends are
dissimilar. A few exceptions are discussed later, in con-
nection with bending load cases.

The same pattern is observed with a relatively more
flexible adhesive (8 = 100), except that there is much less
stress concentration and the adhesive shear stress is al-
most uniform along the joint for all values of y: TC = 1,
This behavior is found in all prior studies of the stresses
in adhesive joints: a very flexible interlayer permits
smooth and uniform load transfer. On the other hand, a
relatively stiff adhesive layer (B = 4) results in a sub-
stantial exaggeration of the trends of Fig. 12, with the
largest shear stress concentration factor (for y = 8) reach-
ing 1.84 at the same scarf angle. This number comes from

the tables in Appendix F, and can also be deduced from
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the small inset diagram in Fig. 12. The latter shows how
the maximum shear stress (TC)max' which always occurs at

S = -1.0, varies with dissimilarity y for the fixed value

B = 20 of Fig. 12. Also shown are the behavior of (TC)max
for the other values of B at the same scarf angle, a = 10°.
This simply restates the foregoing discussion pictorially,
for the special case of the largest shear stress. The
similar diagrams which obtain for the other scarf angles
all appear in Fig. 13.

If dissimilarity y is held fast, adhesive shear
stress concentration drops off rapidly with increase in
adhesive flexibility, B. This is seen in Fig. 14, for
a = 10° y =4, and B = 4, 20, 100. No inset diagrams of
(

TC)max are used here, because the rapid drop off of the
maximum shear stress with B is readily visualized from the
inset of Fig. 12 and the four parts of Fig. 13.

Figure 15 shows what happens to the adhesive shear

stress distribution T for intermediate B(=20) and y(=4),

c’
when the scarf angle o is varied. It is found that stress
concentration increases smoothly but suddenly when o is
reduced below 20° (30° and 40° curves conform to the pat-
tern, but are omitted for clarity). Remember, however,
that the absolute value of the shear stress T becomes very

small as o is made small. Therefore, the stress concen-

tration factor TC of about 1.59 for a = 5° is applied to

a reference stress of small magnitude, TO = sin o cos a.
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Fig. 15 Shear stress concentration factor (TC) in tensile
loading.
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This means that the halving of angle o from 10° to 5° has
a much larger effect on the stress magnitudes than the
change in local end-stress concentration from 1.59 to 1.28
exhibited at S = -1.0. Within the "manufacturable" range,
we are always gaining ground if we reduce the scarf angle,
apparently. Figure 15's trend applies to all other cases
of a-variation at constant B and y. The inset diagram of
Figure 15 shows some typical variations of (TC)max with o,
for the constant B and y of the main part of the figure,
and the two other sets of B and y which give the worst
shear stress concentration in tensile loading.

The most obvious feature of the adhesive normal
stresses of Fig. 16 is their wavy pattern (case of a = 10°;
B =20; vy =2,4,8). This phenomenon has been observed in
the results of prior studies21 and probably arises from the
very nature of the model used for the adhesive. The latter
has been treated as an elastic foundation. It is well
known that a uniform beam on an elastic foundation (which
adheres when the beam attempts to 1lift) will exhibit a
damped sinusoidal displacement pattern if the foundation
modulus is large enough. The present problem is complicated
by the fact that the "beams" are tapered, but this explana-
tion appears to account for the wavy distribution of normal
stress. When the "foundation modulus" decreases (B in-
creases here), the waves become longer and the effect less

noticeable. However, when B = 4 the waves shorten and the
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118

normal stress oscillates very rapidly. This occurs to such
a degree that high-order polynomial interpolation in the
stress distribution tables of Appendix F is sometimes re-
quired, because the 21 points at which the adhesive stresses
have been tabulated are not always sufficient to define the
normal stress curve properly for the user. Waviness is not
observed in shear stress distributions. A crude explanation
is as follows: Shear stress is governed by "axial" displace-
ment of the tapered adherend "beams" or, in another analyti-
cal formulation, by second-order differential equations for
displacement. Normal stress is governed by the bending of
these "beams," i.e., by fourth-order differential equations
in displacement. The latter can be expected to show damped
quasi-sinusoidal waves.

The dimensionless presentation of Figure 16, p. 117,
hides the fact that the normal stress is much smaller than
the shear stress when a is small, as in the 10° case plotted.
It should also be observed that increasing dissimilarity
(y) causes an increase in the largest values of normal stress
(wave amplitude). Figure 16 also illustrates the difficulty
of stating where the peak normal stress is found. Often it
is at or near S = -1, but a secondary peak occurs in the
ranges S = 0 to 0.4 (considering all results, not just those
pictured). In many cases the differences between the peaks
are so small that imperfection of convergence, or even the

estimated roundoff error in the calculations, could affect
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a decision as to the location of Nm or (NC) In other

ax max’

cases, N .. can be located fairly distinctly. For the
large value B = 100, the normal stress is often so nearly
uniform that the location of a peak value is of no great
significance.

For practical stress calculations, the significant
factor is the adhesive combined-stress situation. This
resolves the difficulty, because the relatively large ad-
hesive shear stress usually dominates all types of combined
stress of engineering interest, and its location is always

at S = -1. The uncertainty in N X does complicate any at-

ma

tempt to crossplot normal stress maxima. To aid the user,
Appendix F has an auxiliary table giving the values of

N .
max

The inset diagram in Figure 16 shows a plot of

(Nc)max as a function of dissimilarity y, for the values

B = 20 and o = 10° governing the main part of the diagram.
Also shown is the curve for B = 4 (B = 100 is close to

NC = 1, and is omitted). Remember that Nc.has been nor-

malized with respect to N0 = sin 2 o, which tends to distort

the fact that 5° cases exhibit absolute stresses basically
1/4 as large as 10° cases (ignoring the stress concentration

effects exhibited in the inset). Values of (N are

C)max
plotted without regard to location S. Figure 17 furnishes
the same information as the inset diagram just mentioned,

for the other four scarf angles.
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Figure 18 shows (for fixed a = 10° and y = 4) the
expected result that the normal stresses become much more
nearly uniform as adhesive flexibility B is increased.
Finally, Figure 19 shows that normal stress "waves" acquire
increasing amplitude (at constant B = 20, y = 4) as scarf
angle o is reduced below 20° (same behavior as adhesive
shear stress). The 30° and 40° angles are scarcely distin-

guishable from N, = 1 on this scale. Note once again that

C
the absolute stress level N goes down with a as sin2 o, so
that the modest effect of increasing stress concentration
is normally overwhelmed by the gross decrease in magnitude.
For example, the 5°, 10° and 20° intercepts on an N basis

(not N as in Figure 19), are actually 0.01201, 0.03881,

c’
0.12285, respectively, from the tables in Appendix F. The
30° and 40° results are 0.25024 and 0.41293. Thus the

stress concentration type of presentation in this case re-
veals the increased amplitude of oscillation with decreas-
ing a, but distorts the picture of the magnitude of the
stresses.

Before going on to the discussion of the sample
bending load cases, one additional set of results is pre-
sented, for the case of the butt joint in tension (a = 90°).
This puts in perspective the enormous influence which the ad-
hesive's relatively large flexibility exerts in the case of

metal-to-metal bonds. Figure 20 shows the adhesive normal

stress in a butt joint for the stiffest adhesive considered
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Fig. 19 Normal stress cohcentration factor (NC) in tensile
loading.
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(B = 4), and the case of identical (y = 1) and maximally-
dissimilar adherends (y = 8). It is apparent that the two
extremes differ very little. The comparatively flexible
adhesive readily accommodates the different lateral con-
tractions of the equally-stressed adherends, and indeed,
Figure 21 shows that it acquires very little shear stress
in doing so; the shear stresses are nearly linear functions.
This diagram covers the same two cases as Figure 20. Here
it is necessary to plot dimensionless shear stresses T
(actual magnitudes for adherend tensile stress = unity),
rather than TC' since TO = 0 in this case. The latter is
the curve labeled y = 1. Symmetry dictates that the adhe-
sive shear stress be an odd function of S for the butt
joint, and the normal stress an even function. It is easily
verified from first principles, by consideration of the
lateral displacements of the two axially-loaded adherends,
that this very small shear stress is of the correct order
of magnitude.

In view of the results, it is probably sufficient

to simply state here the maximum shear and normal stresses

for the butt joint cases omitted from the diagram (o = 90°,
B = 4):
y = 2 : |Nmax| = 1.0011 ITmax| = 0.0126

at S = 1
Yy =4 leaxl = 1.0027 ‘Tmaxl = 0.0196
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Fig. 21 Shear stress (T) in tensile loading.
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4.1.2 Case of Bending Load

The general conclusions from Chapter III are that
the Ritz method (as used here) finds adhesive normal
stresses with less certainty than shear stresses, and con-
verges better for tensile load than bending load. The
confidence level is therefore high for all tensile loadings,
especially in the shear stresses, which are the most sig-
nificant ones. It is less high for bending cases, particu-
larly for normal stresses. The discussion of the latter is
somewhat more tentative, because some of the trends observed

may be fictitious due to incomplete convergence.

4.1.3 1Identical Adherends in Bending

Even for identical adherends (y = 1) in pure bending,
we still have a two-parameter family of results to consider.
Adhésive flexibility (B) and scarf angle (o) are the param-
eters. The corresponding adhesive stresses must be plotted
as T- and N- type rather than as the more instructive con-
centration factors. This is because, unlike the case of
tensile loading, there is no analytical solution other than
the present one to serve as a reference level. To obtain
true, dimensional stresses from the figures to follow, or
the tables of Appendix F, multiply by the "load stress" 90
of Section 4.1: the adhesive shear and normal stresses

tabulated and diagrammed are based on an outer-fiber bend-

ing stress ("Mc/I"), remote from the joint, of unity. The
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bending moment per unit width of adherend, in the sense of
Figures 6 and 7, is then 2/3.

Eigure 22 shows the adhesive shear stress T for a
bending case with a = 10°, vy = 1 (identical members), and
B =4, 20, 100. The roundoff error level seems to affect
about one unit in the fourth decimal place, or less, re-
gardless of the magnitude of the stress. A typical value
at S = 0, where an odd function should be zero, is l(10-4)
units on a reference scale of unit applied stress. (This
is not bad roundoff for "one-pass" solution of 177 equa-
tions.) Within this error level, the tables and the figures
indicate that these stresses are odd functions of the dis-
tance parameter S. The odd property can also be deduced
from a consideration of the symmetries of the identical-
adherend case. It is evident that these stresses are not
linear functions of S, in general, but this was not really
to be expected, despite the linearity of the applied bend-
ing stress.

The shear stress maximum is always at S = *1. The
expected decrease of stress level with increase of adhesive
flexibility (B increasing) is evident. It is interesting
that the stiffest adhesive (B = 4) represents the straightest
line. It may be speculated that as the adhesive becomes
very stiff, the identical-adherend configuration approaches
the state of a single uniform beam, with the adhesive in-

terface behaving like the imaginary line one passes to
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Fig. 22 Shear stress (T) in bending load.
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calculate stresses under rotation of axes. That is, the
adhesive is "not there," and the stresses can be calcu-
lated from simple beam theory. This may not be too far
from the true situation when B = 4, for small angles «,
since the largest shear stress (at S = *1) is 80% of the
theoretical value sin o cos a which one would calculate
from beam theory. As another indication that the present
physical interpretation may be a good one for a "stiff ad-
hesive," the tangent to the B = 4 curve of Figure 22, as
estimated over the interval S = -0.1 to S = 0, would pro-
ject to S = -1.0 as an intercept of 0.144. The value of
sin a cos a for a = 10° is 0.171. The behavior of the
normal stress distributions also supports this interpreta-
tion; these are discussed later. However, this explanation
must not be pushed too far, because there may be some ques-
tions about the validity of the adhesive model when the
adhesive is anything but relatively "flexible."

All identical-adherend shear stresses in the bending
case follow the general pattern of Figure 22, but the level
of stress changes with angle a. Indeed the inset diagram
in Figure 22 shows that the maximum shear stress (at S = 1)
goes up with a and then falls off, if B is small to moderate,
but decreases uniformly with o if B is large (100, very
flexible).

The adhesive normal stress pattern for identical

adherends (y = 1) also shows the odd-function behavior
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expected from symmetry. Otherwise, it is difficult to make
general statements about N, since the pattern keeps chang-
ing with the parameters. The explanations given below,
however, seem to account well enough for the calculated
behavior.

Figure 23 shows the normal stresses N for a = 10°;

Yy =1; B = 4, 20, 100. Here the stiffest adhesive (B = 4)
shows no oscillation, and the most flexible the largest

wave amplitudes. One would usually expect the "elastic
foundation" (adhesive) to be associated with shorter, larger-
amplitude waves as it gets stiffer, but the opposite trend

is seen here. In this case the maximum normal stress occurs
at the ends S = *1 for B = 4 only; it is found in the in-
terior for the other values of B.

It is likely that the oscillations of Figure 24 are
not solely related to the idea of a beam on an elastic
foundation, but that other mechanisms are also involved.

The following is offered as a possible interpretation of

the behavior observed. As in the case of the shear stresses,
for B = 4 (relatively stiff adhesive) the joint is not far
from being vanishingly thin and infinitely stiff (8 = 0),
which we interpret as being the case of the homogeneous,
joint-free beam. In the latter situation, the "adhesive"
normal stress, calculated from elementary theory, should

be linearly distributed and have the largest value sin2 o]

for the present unit "load stress." When B is allowed to
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Fig. 24 Normal stress (N) in bending load.
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have a finite elasticity, we must consider the mode of de-
formation of the adherends and adhesive. The adherends

are regarded as tapered beams in this argument, and since
they taper to a point, their bending stiffness drops off
rapidly as the tip is approached. 1In the vicinity of a
tip, the adjacent adherend beam has its maximum section

and is therefore very stiff. Adhesive normal stress is
developed by relative transverse displacement of the two
beams, one locally very stiff and the other very flexible.
When the adhesive itself is nothing but an imaginary line,
the linear stress distribution is of course transmitted
without difficulty. But when a flexible adhesive is pre-
sent, it is incapable of actually transmitting a linear
stress variation. This is because the beam tip is too
flexible to offer enough resistance to its full share of
the normal stress, precisely at the point where the latter
tends to take on its largest values. It is simply too com-
pliant, and displaces too readily. Relative to the stiff
adjacent member, the corresponding adhesive interface is
not displaced as much as a linear distribution of stress
would demand. Thus the normal stress simply falls off from
the sin2 a value. To satisfy moment equilibrium, a read-
justment of the adhesive stress distribution must take place.
It acquires larger values than the linear distribution in
the interior region of the joint, to compensate for the

dropoff at the tip. Following up on this model a little
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further, the more flexible the adhesive, the smaller the
normal stress which the joint end is likely to experience.
Loosely speaking, a softer "spring" (the adhesive) cannot
develop a given level of stress near the tip without de-
forming the tip more, which in turn requires higher trans-
verse stress level. Instead, the actual stress developed
falls off as adhesive flexibility B increases. The argu-
ment fails when the scarf angle increases to the point that
the elastic solids become compact bodies rather than slender
tapered beams. Then the load should be transferred as if
the two adherends were rigid bodies, at least when the ad-
hesive is very flexible. It follows that we should find
the adhesive normal stress almost linear along the joint,
at large scarf angles and large B. The transitional be-
havior from one model to the other should be smooth and
gradual.

This interpretation is supported by the relative
positions of the curves, and the calculated numbers. For
the stiffest adhesive in Figure 23 (B8 = 4), sin2 10° =
0.03022, yet the value of Nmax at S = -1 is the somewhat
smaller 0.0252., To compensate for this, the convex-up
shape of the curve for B = 4 must develop. It starts out
from S = 0, where N = 0, with a slope which would project

to S = -1 at a value Nmax = 0.045 (based on the interval
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Considering these data, the present argument implies
that B = 4 is not too far from the "rigid" condition, as in-
dicated at the start of the discussion. For the much greater
adhesive flexibilities B = 20 and B = 100, the effect des-
cribed should be increasingly exaggerated, and the central
region of the joint must transmit an increasing proportion
of the overall bending moment. In addition, as the value of
B increases, the intercept at S = *1 drops off. The fore-
going mechanism, of itself, may or may not be sufficient to
make the maximum normal stress actually occur toward the
interior of the joint as adhesive flexibility increases.

It does seem sufficient to account for the curve for B = 4
in Figure 23. There is another mechanism operating which
may also have an effect: the "beam-on-an-elastic-founda-
tion" idea. The oscillatory behavior of the curves for

B =20 and B = 100 may be associated with a superposition
of these two mechanisms.

The picture for a = 5° (not shown) is entirely
consistent with the first explanation attempted above, but
in this case there is also a very clear-cut indication of
wavy behavior in the curves for 8 = 20 and B = 100. As
the scarf angle increases, the adherends become less and
less like tapered beams. At a = 20° there is only a small
tendency for the curve for B = 4 (not shown) to exhibit
oscillations, and little evidence of it for the other

values of B, or for any values of B at larger scarf angles.
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Where one would expect to see wavy behavior and it does not
actually occur, this may be due to a coincidence of param-
eters, a special gradient of the normal stress, or some
aspect of symmetry. It is later found that identical-
adherend cases often do not show expected oscillations, but
that the introduction of some dissimilarity brings them out
strongly.

Besides attempting to account for the shapes of the
calculated stress distributions, there is another point to
justify this lengthydiscussion. Some sort of explanation
is demanded by a situation which has occurred very rarely
in the adhesive joint literature (if at all): the increase
of a stress component as the flexibility of the adhesive B
is increased. The trend is normally the opposite. Indeed,
the usual smoothing effect of increasing B may have its in-
fluence here, as yet a third mechanism interacting with the
"flexible tip" and "elastic foundation" interpretations.
The fourth factor is the question of Ritz process conver-
gence, which may be significant because the adhesive stresses
in bending load are not as well determined as for tensile
load. The fact remains that (in these calculations) the
maximum normal stress does appear to increase with adhesive
flexibility in some cases, as shown in the inset diagram of
Figure 24.

Figure 24 is for a = 30°, vy = 1, and B = 4, 100; the

case B = 20 is not distinguishable from B = 100 on this scale.



134

The interchange of shape of the stress distributions for

B = 4 and 100, between Figures 23 and 24, is noteworthy and
in line with the expectation that as a increases the large-
B curves will begin to straighten out. The interchange
mentioned is another example of the difficulty of making
general statements about the normal stresses for bending
load. For an even larger scarf angle, a = 40° (not shown),
the pattern is similar but all curves are more nearly linear
in the interior of the joint, and the maxima are closer to
the ends S = *1. 1In this case the stresses for B = 100 are
almost linear from end to end, with no downturn at all.
Even the B = 20 curve has begun to straighten out.

The inset diagrams in Figure 24, incidentally, cross-
plot the values of Nmax/Sin o against a logarithmic scale of
adhesive flexibility B, for the various scarf angles. It
would theoretically be desirable to plot Nmax/sin2 o, but
then all values lie in the range 0.77 to 1.08 and the various
curves become quite confused. A plot in the present manner
separates them well. A plot of Nmax itself shows too large
a range to appear on a single diagram, since it varies essen-
tially as sin2 a.

Before leaving the case of identical adherends, the
bending of the butt joint configuration (a = 90°) should be
mentioned. For all values of B, with these compact adherend
shapes the adhesive normal stresses are perfectly linear and
are the same as those calculated from beam theory. This is

to be expected.
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The adhesive shear stress is identically 2zero, as

symmetry would demand.

4.1.4 Bending Load (General Case)

Here there is a full three-parameter family again:
a, B, vy all vary. Figure 25 illustrates the variation of
the shear stress for a = 20°, B = 20, and vy = 1, 8. The
curves for y = 2 and 4 fall smoothly between the y =1, 8
values and are omitted for clarity. The stress curves be-
comes increasingly asymmetric as the dissimilarity (y) in-
creases; it is an odd curve for identical adherends (y = 1).
The explanation of the asymmetry was taken up in section
4.1.1 and applies here also. According to the argument
there, we would normally expect the shear stress to be
largest at S = -1. This seems to hold for most of the re-
sults now under consideration. There are, however, a few

anomalous cases where the computations find Th slightly

ax
larger at S = +1. These all have the following character:
scarf angle a is large (30°, 40° only), and adhesive flex-
ibility B is moderate (20) or large (100). In all such
cases, the adhesive normal stress is much larger than the
shear stress and the discrepancy is very small compared to
either the "load stress" of unity or the somewhat smaller
local value of normal stress. It is therefore felt that

the argument mentioned above remains valid, but that other

factors intrude to produce an opposing effect. These could
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include roundoff error accumulation, another physical phe-
nomenon, or more likely, a question of convergence. It
should be emphasized that the effect is very small, what-
ever the source. For example, the Appendix F tables show
(o = 40°, B = 20, y =8) T = 0.0372 at S = -1, and
T = -0.0396 at S = 1, where N = -0.2526. In bending, it
is not believed likely that the stresses are always so well
determined as to make a discrepancy of 0.0024 significant.

The extra curve in Figure 25 is for the same scarf
angle of 20°, but B = 4 and y = 8. It is introduced to
show that on many diagrams, the effect of dissimilarity
(y > 1) is to produce a curve of this concave-up character.
It is also interesting that an increase in dissimilarity Yy
may produce a decrease in the largest shear stress level
(as in Figure 25), or sometimes an increase, or even no
appreciable change. This is seen in the inset diagram of
Figure 25, for o = 20° and the three values of 8. Thus
Tmax decreases uniformly with increase of adhesive flexi-
bility B, but has varying behavior with change of y. Figure
26 shows the same information as the inset diagram of Figure
25 for the rest of the scarf angles, and produces similar
conclusions.

Figure 27 shows how the maximum shear stress in
bending varies with scarf angle o. Each diagram holds adhesive
flexibility B constant, and allows dissimilarity y to vary.

The interaction is quite complex.
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The normal stresses in bending are shown in Figure
28, for a = 10°, B = 20, and vy = 1,2,4,8. The curve for
Y = 1 was discussed in the previous section; it represents
an odd function. For increasing adherend dissimilarity,
the curves become increasingly asymmetric. For y > 1, all
show the largest stress Nmax toward the end S = -1, but
still on the interior of the joint. There is strong evidence
of oscillatory behavior, of "elastic foundation" type. All
this is to be expected, in the light of previous discussion:
for small scarf angles, wavy behavior is expected; Nmax tends
to be toward S = -1 with the present elastic asymmetry; and
Nmax does not appear at the end of the joint for small scarf
angles and moderate to large adhesive flexibility. The dia-
gram shows that increase of dissimilarity raises the peak
value of Nmax' Going to a larger value of adhesive flexi-

bility (B = 100, not shown) leaves the general pattern of

stress much the same. For a stiffer adhesive (B = 4), the

curves are slightly different in character toward S -1.

Figure 23 shows the Yy = 1 case for 8 = 4, and the ¥y 2

curves for this value of B are somewhat similar (i.e., mono-
tomic increasing as 5 approaches -1). The latter two show

a slight upturn toward the end, with Nmax there. Only the
case of y = 8 shows the downturn at S = -1, with a maximum
still on the interior of the joint. The inset diagram of

Figure 28 shows how N varies with dissimilarity y. On

ax
this small scale, the curves for B = 4, 100 are hard to
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Fig. 28 Normal stress concentration factor (NC) in
bending load.
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distinguish and have been omitted. The trend with y in
this inset holds for every case tabulated, but the slope of
the curve may become very small.

If o is reduced to 5° and the "tapered beams" become
more slender, the stress distribution for the stiff adhesive
(B = 4) and identical adherends (y = 1) is roughly linear
and shows little waviness. As Yy is increased to 2, 4, 8,
violent oscillations of increasing amplitude and rather
short wavelength are superimposed upon the y = 1 case, and
the asymmetry of the stresses increases. Also at 5°, the
wavelength of the oscillations gets longer as B is in-
creased to 20 and 100 ("foundatior becomes more flexible).
All this is much as one might expect, and this further in-
dicates that the identical adherend cases (y = 1, Section
4.1.2) which show little evidence of waviness probably do
so as a result of special symmetry or a coincidence of
parameters. For o = 20°, B = 4 and 20, the stress distri-
butions (not shown) also have the general character of
Figure 28, although a gradual transition to new behavior
is observable. When adhesive flexibility is increased to
B = 100, the normal stresses have evolved until they are
guite similar to Figure 29. The latter shows the normal
stresses for o = 30, 8 = 20, and y = 1,2,4,8., For large
dissimilarity y, the maximum no longer occurs on the in-
terior of the joint, and thereis little evidence of elastic

foundation waviness. There is still asymmetry for y > 1,
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of course, and all values of Nmax occur at or near S = -1.
Some of the curves are beginning to straighten out, a trend
anticipated in Section 4.1.2 for large scarf angles a and
moderate to large B. If B is reduced to 4 (not shown), the
pattern of Figure 29 still holds. However, for B = 100
(not shown), all curves are quite close to each other for
all y, and nearly straight, with just a small tendency to
curve toward the ends. The large scarf angle a = 40° still
shows similarity to Figure 29 when B = 4 (stiff adhesive).
The stresses for the case of a = 40° with B = 20 behave
much like the Y = 8 case of Figure 29, but generally
straighter and with more sudden end changes in curvature.
Finally, for o = 40° and the large flexibility B = 100, the
transition is nearly complete. All curves are nearly linear
from end to end, independent of dissimilarity y, as befits
"compact" adherends in bending with a highly flexible ad-
hesive. These features could largely be deduced from the
general discussion of the normal stresses in the case of
identical adherends.

For the bending of butt joints between dissimilar
adherends, it is still found that the adhesive normal stress
is the linear distribution one would calculate from elemen-
tary beam theory, to four or more significant figures.

When vy # 1, small shear stresses are induced in the adhe-
sive. The distributions are self-equilibrated and even in

S, as demanded by considerations of symmetry in geometry
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and loading. The largest such value found (B = 4, y = 8),
at S = %1, is 0.00851 for the unit "load stress" in bending.

Some of the other values of Tm are:

ax
i 1 Tmax
4 4 0.00725
4 2 0.00477
20 8 0.00178
20 4 0.00152

100 8 0.00036
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4,2, Adhesive Combined Stresses

Since the adhesive is in a known state of combined
stress (shear and one component of normal stress), we can
at every point find the corresponding maximum principal
stresses (Nl’Nz)' the maximum shear stress Tl’ and the
octahedral shear stress Toy' All of these are quantities
which commonly enter into engineering design criteria, in

one form or another. They are found by using the standard

relations:
N, = N/2 + /(N/2)% & T 4.2.1
N, = N/2 - /2% 4 1 4.2.2
T, = /(/2)° + 77 4.2.3
= /J(6T% + 28%) /9 4.2.4

T
oy

The principal stress N N, and is always the

>
l=

governing tensile stress for tensile loading of the joint.

When the loading is compressive, N, becomes the largest

2
tensile stress. For bending moments in the sense of Fig,
7, the Nl stress is the critical tensile value, and if the

moments are reversed, the N, stress takes on this role.

2
From a design viewpoint, there is no need to examine

entire distributions of the combined stresses. Accordingly,

the largest values of the combined stresses have been ex-

tracted from the calculated distributions by suitable in-

terpolation techniques, and only these are tabulated. 1In
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Table 11 (next page), the signs given correspond to the
loading senses of Figure 7, p. 26. The "load stress" °x0,
labeled % in Figure 7, is always unity in Table 1l.

The variation of the combined stresses is fairly
simple for tensile loading. Table 11 shows that all quan-
tities have the following behavior, with minor exception
ascribable to roundoff or other computational (rather than
physical) cause:

1. All increase monotonically with increase in dis-

similarity of the adherends, Yy (at constant o, B).

2. All decrease monotonically with increase in adhe-

sive flexibility, B(at constant a, Y).

3. All decrease monotonically with decrease in scarf

angle o (at constant B8, Y).

The last item indicates that the function of a scarf joint
is being accomplished (if the loading is tensile): as the
scarf angle decreases, the combined stresses which are
likely to be critical for failure decrease, which means
that more load can be applied for smaller scarf angles.
General statements cannot easily be made for bend-

ing load; there is a complex interaction of parameters.

To keep the length of the present discussion within reason-
able bounds, the bending problem will not be treated here.
The user may deduce all the necessary information from

Table 11.
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0.3901 0.2726 0.3314 0.2720 0.1121 0.0901 0.0585 0.0540
0.3923 0.2753 0.3338 0.2739 0.1317 0.0831 0.0676 0.0630

Table 11. ——Max1mum values of the combined stresses N
o . Signs correspond to the loading sense o% Flg.
7 yp. 26, with adherend 2 assumed to be the stiffer
one.
Tension Bending
a B vy N -N, T; TOY N, -N,, T, Toy
5 4 1 0.0907 0.0831 0.0869 0.0710 0.0853 0.0853 0.0818 0.0668
2 0.1450 0.1331 0.1390 0.1135 0.1318 0.1239 0.1278 0.1044
4 0.1971 0.1820 0.1895 0.1548 0.1745 0.1672 0.1708 0.1395
8 0.2343 0.2226 0.2284 0.1865 0.2061 0.1970 0.2015 0.1646
20 1 0.0907 0.0831 0.0869 0.0710 0.0728 0.0728 0.0670 0.0571
2 0.1215 0.1103 0.1159 0.0947 0.0921 0.0858 0.0889 0.0726
4 0.1440 0.1320 0.1380 0.1127 0.1040 0.0957 0.0998 0.0815
8 0.1591 0.1492 0.1541 0.1259 0.1085 0.0979 0.1032 0.0843
100 1 0.0907 0.0831 0.0869 0.0710 0.0469 0.0681 0.0457 0.0373
2 0.1041 0.0953 0.0997 0.0814 0.0485 0.0447 0.0466 0.0381
4 0,1127 0.1037 0.1082 0.0884 0.0468 0.0416 0.0442 0.0361
8 0.1188 0.1090 0.1139 0.0930 0.0415 0.0385 0.0400 0.0327
10 4 1 0.1868 0.1566 0.1717 0.1404 0.1557 0.1557 0.1431 0.1170
2 0.2532 0.2133 0.2332 0.1907 0.2034 0.1699 0.1867 0.1526
4 0.3035 0.2589 0.2812 0.2298 0.2341 0.1941 0.2141 0.1750
8 0.3421 0.2900 0.3161 0.2584 0.2452 0.2050 0.2251 0.1840
20 1 0.1868 0.1566 0.1717 0.1404 0.1080 0.1080 0.0990 0.0809
2 0.2171 0.1826 0.1999 0.1634 0.1142 0.0940 0.1041 0.0851
4 0.2384 0.1996 0.2190 0.1791 0.1095 0.0931 0.1013 0.0828
8 0.2538 0.2102 0.2320 0.1897 0.1048 0.0878 0.0941 0.0769
100 1 0.1868 0.1566 0.1717 0.1404 0.0464 0.0463 0.0425 0.0348
2 0.1968 0.1649 0.1808 0.1479 0.0514 0.0406 0.0380 0.0310
4 0.2025 0.1696 0.1861 0.1521 0.0536 0.0356 0.0332 0.0290
8 0.2051 0.1729 0.1890 0.1545 0.0573 0.0325 0.0335 0.0295
20 4 1 0.3852 0.2682 0.3267 0.2681 0.2443 0.2442 0.2067 0.1697
2 0.4519 0.3132 0.3826 0.3141 0.2618 0.1857 0.2238 0.1836
4 0.4979 0.3435 0.4207 0.3454 0.2710 0.1837 0.2245 0.1843
8 0.5222 0.3699 0.4460 0.3659 0.2878 0.1560 0.2174 0.1799
20 1 0.3852 0.2682 0.3267 0.2681 0.1463 0.1463 0.1013 0.0841
2 0.4076 0.2842 0.3459 0.2839 0.1537 0.1197 0.0976 0.0835
4 0.4183 0.2955 0.3569 0.2928 0.1645 0.1043 0.0978 0.0856
8 0.4218 0.3042 0.3630 0.2977 0.1875 0.0966 0.1052 0.0942
100 1 0.3852 0.2682 0.3267 0.2681 0.1028 0.1028 0.0548 0.0501
2
4
8

0.3932 0.2768 0.3350 0.2749 0.1572 0.0797 0.0796 0.0746
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Table 11 Continued.
Tension Bending
@ B v Ny N, Ty Toy Ny -N, T Toy
30 4 10.5758 0.3257 0.4507 0.3727 0.3140 0.3140 0.2253 0.1873
2 0.6256 0.3566 0.4911 0.4060 0.3391 0.2526 0.2285 0.1926
4 0.6494 0.3821 0.5756 0.4257 0.3704 0.2150 0.2320 0.1998
8 0.6554 0.4046 0.5300 0.4367 0.4317 0.1947 0.2500 0.2214
20 1 0.5757 0.3257 0.4507 0.3727 0.2256 0.2255 0.1258 0.1129
2 0.5882 0.3363 0.4623 0.3821 0.2480 0.1949 0.1333 0.1215
4 0.5935 0.3432 0.4683 0.3869 0.2934 0.1778 0.1527 0.1412
8 0.5955 0.3475 0.4715 0.3894 0.3410 0.1693 0.1742 0.1625
100 1 0.5757 0.3257 0.4507 0.3727 0.2108 0.2107 0.1066 0.1000
2 0.5783 0.3282 0.4533 0.3748 0.2457 0.1950 0.1235 0.11l61
4 0.5795 0.3296 0.4546 0.3758 0.2681 0.1868 0.1344 0.1265
8 0.5801 0.3303 0.4552 0.3763 0.2804 0.1826 0.1405 0.1323
40 4 1 0.7406 0.3274 0.5340 0.4467 0.4109 0.4109 0.2490 0.2167
2 0.7683 0.3476 0.5580 0.4662 0.4523 0.3445 0.2598 0.2306
4 0.7791 0.3636 0.5713 0.4766 0.5286 0.3047 0.2874 0.2608
8 0.7820 0.3750 0.5785 0.4820 0.6146 0.2837 0.3221 0.2970
20 1 0.7406 0.3274 0.5340 0.4467 0.3506 0.3506 0.1816 0.1683
2 0.7470 0.3334 0.5402 0.4517 0.4109 0.3160 0.2090 0.1954
4 0.7499 0.3369 0.5434 0.4542 0.4595 0.2977 0.2318 0.2176
8 0.7511 0.3389 0.5450 0.4555 0.4882 0.2884 0.2455 0.2308
100 1 0.7406 0.3274 0.5340 0.4467 0.3905 0.3905 0.1956 0.1843
2 0.7419 0.3287 0.5353 0.4478 0.4133 0.3786 0.2069 0.1949
4 0.7426 0.3294 0.5360 0.4483 0.4256 0.3724 0.2129 0.2007
8 0.7429 0.3298 0.5363 0.4486 0.4319 0.3693 0.2161 0.2037
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4.3. Construction of Design Curves for
Scarf Joints with Linearly-Elastic
Adhesives

If the adhesive is assumed to fail when a certain
combined stress attains some specified allowable value,
presumably determined empirically, it is possible to use
Table 11 in design. Let Za be this allowable stress, whether
it is a maximum normal stress, a principal shear or an
octahedral shear. Designate the four combined-stress quan-
tities in Table 11, collectively, by Ncom‘ It is up to the
user to decide which "law of failure" he wishes to select,
and to determine the appropriate value of za for his chosen

law. Recall that the "load stress" o is the actual applied

X0
tensile stress for tensile loading, or the maximum bending

stress ("Mc/1I"). Since Table 11 is constructed for o =1,

X0
when the adhesive combined stress is equal to the "allowable"

we must have

za = oXONcom 4.3.1

Since Za is a known constant, the external loading Oy Which
the designer is allowed to introduce can be computed from
this equation. A dimensionless load quantity, convenient

for design, is

L= 0g/ly = /Noop 4.3.2

Curvesof ] can readily be constructed from Table 11,

by crossplotting quantities as desired. It is always
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necessary to interpolate three ways in a, B, Y, since we have
tabulated a three-parameter family. Some sample "design
curves" are shown in Figure 30 for tensile loading. In one

diagram, N = N

com 15 in a second, Nco

m = N,; etc. The values
actually plotted are not ) but Z sin a, since these particu-
lar samples are plotted against scarf angle a. The oa-
dependence of 2 is such that the curves plot over a convenient
range of ordinates when multiplied by sin o or sin a cos a.
The parameters chosen represent a random sampling. Note
that all cases of y = 1 are independent of B, a result from
Ref. 7. For actual design use, more extensive families of
curves would be needed, and systematic interpolation schemes
are necessary. It may prove simplest to interpolate directly
in Table 11, and not work with design curves at all.

For bending load, some of the curves can be plotted

on the sin a/Nc m basis of Figure 30, and others cannot, de-

o
pending upon the parameter values. The large - B cases in
particular show a very large peak near a = 10-15°, shifting
toward 20° for intermediate values of B. This implies that
certain scarf angles should be favored by designers in par-
ticular flexibility ranges. The device of using a log-log
scale permits a smoother plot with all curves treated on
the same basis; further study would probably reveal an even

better device. A few samples of the log-log plot for bend-

ing load are shown in Figure 31, for two failure criteria.
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Max. Tensile Stress
(Tensile Loading)

002’
(Compressive Loading)
0 + t + 1 0 t + t +
5°10° 20° 30° 40° 5¢10° 20° 30° 40°
a o
sin a/Toy
1.5..
1.0
0.5
0.2+ Max. Shear Max. Octahedral
Shear :
0 ' ' ' 4 0 ) —- + +
5°10° 20° 30° 40° 5°10° 20° 30° 40°
a : o
Fig. 30 Elastic "design curves" in dimensionless form, for

various failure criteria (failure in Nl’ Nz, Tl'

Toy). Tensile or compressive load.

Max. Tensile Stress
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The discussion of design is an appropriate place
to review the use of both Table 11 and the primary results
of Appendix F. It is necessary to align the geometry and
loading so that it coincides with Figure 7, p. 26, with
adherend 2 made the stiffer one. All tabulated quantities
assume that the applied loading has the sense of Figure 7.

The parameters

En E, (1 - v
_ _ 2 1
B ————, ¥ = ——
E_h(1 - v]) E; (1 = v,)
are calculated, using the actual values. Interpolation is

then carried out as needed. The tabulated values of 8
(4,20,100) and y (1,2,4,8) are uniformly spaced on a loga-
rithmic scale, permitting 3- and 4-point Lagrangean inter-
polation formulas. The angles o = 5, 10, 20, 30, 40° permit
linear interpolation (omit 5°) or logarithmic interpolation
(omit 30°) by 4-point formulas.

The Poisson's ratios vV, =V, = 0.3, together with

2
the ratio Ea/Ga = 8/3 (implying an adhesive Poisson's ratio
of 1/3), are inextricably incorporated into the Ritz matrix
and thus into all the results. To this extent the user

cannot make any adjustments. No calculations have been

performed, but the errors are not believed to be very large
if the user's Poisson's ratios differ slightly. To the ex-

tent that Poisson's ratio affects y and B, it can be accounted

for exactly.
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B=4
Y=8

Max. Octahedral
0.5% Shear

50 10° . 20° 30° 40°

Max. Tensile Stress
(Moment Opposite Fig. 7)

5° 10°  20° 30°40°
a
Fig. 31 Elastic "design curves" in dimensionless form, for

two failure criteria (N2, To ). Bending loads in
two senses. Y



CHAPTER V

CONCLUSIONS AND SUGGESTIONS FOR

FURTHER RESEARCH

5.1. Conclusions

The Rayleigh-Ritz method, all in all, appears to
have handled the present complex problem with quite good
results for the case of tensile loading, and fair to good
results for most of the bending load cases. It has been
possible to account for many of the phenomena observed in
the calculations by physical arguments, and the large range
of primary variables éxplored is probably adequate to give
the user a good idea of the overall adhesive stress distri-
bution for any case encountered in practice. The results
are valid for a linearly elastic adhesive only, but there
are enough adhesives for which this is a fair approximation
to make the present results useful. How to employ these
results in design has been outlined in sufficient detail
that the next stepsrequired are well within the grasp of
most stress analysts.

While most of the practical information a user
needs has been tabulated and analyzed here, any additional

data desired in the future may be calculated from the basic

154
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Ritz matrix coefficients for the two types of loading con-
sidered. The latter are available in punched-card form.
The computer program in Appendix G can be used for further
studies along the present lines, and with minor changes can
cope with other types of loading. It is easily possible to
alter some of the geometric assumptions about the shape of
the adherends.

The nature of the results indicates a large stress
disturbance in the adherends, at the ends of the scarf joint.
The singularities characteristic for the adherend shapes
have been activated by a formulation of the problem which
introduces a finite shear stress on the inclined adhesive
interface, but leaves the top and bottom adherend faces
("around the corner") stress free. Some alternate formula-
tion, which avoids this difficulty in a manner consistent
with the way scarf joints are actually manufactured, would
probably greatly improve the rate of convergence of the

Ritz method.

5.2. Future Research

Several interesting possibilities can be explored
within the present framework; these were not studied here
to keep the amount of computer time within reasonable
bounds. One useful item would be to examine the effects
of varying the Poisson's ratios of adherends and adhesive.

A few additional cases might also be computed to facilitate
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interpolation in the bending load problem for the smaller
scarf angles.

The most interesting research centers around the
stress singularities characteristic of the adherend-adhesive
corners at the joint ends. If these can be correctly de-
duced, it seems likely that the Ritz method's convergence
could be greatly accelerated, and far fewer equations would
be required to calculate any given case. This would open
the possibility of dispensing entirely with design tables
and curves. It would also make the Sherman-Lauricella in-
tegral approach a practical computing tool for this problem.

Another interesting study would circumvent the prob-
lem of stress singularities entirely, and yet still be a
practical computing tool for scarf joints in the practical
(10-30°) range of scarf angles. This would be to treat each
adherend as a beam of variable cross section, in extension,
bending and shear. The adhesive model could be the same as
at present, and there would be little difficulty in allow-
ing for the component of adhesive normal stress not considered
here, in the simpler proposed problem. The latter could be
tested against the present results to delimit its range
of validity. An additional consideration motivating this
study is the following: it would be highly desirable to
have available a workable, simpler model of the scarf joint
for the purposes of studying adhesives with complex rheologi-

cal behavior.
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APPENDIX A

FORMULATION OF THE EXPRESSION FOR TOTAL

POTENTIAL ENERGY

For the case of plane stress, the strain energy per

unit width in each adherend takes the standard form

(i=1,2):
. E, aui) 2 (avi 2 Bui avi
u . = —_— + | =— + 2V, — ——
si 2(1 - v? A ox oy 1l 5x oy
i i
1l - vi aui avi 2
+ 5 5y + =z dx dy A-1

where Ai is the area of the ith

adherend, the Ei and vy
are the usual elastic constants, and the u, and the v, are
(respectively) the x- and y- components of displacement.

The total potential energy of the scarf joint is

Q@ =1U + U + U + W A-2

[}
where U
s

a strain energy of the adhesive film

W

potential energy of the external forces

The strain energy of the adhesive is derived in Section 2.2.
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+h
1 2 . 2 2,
L} - -
USa = EH-ETH_E_j:h [(ul u2) (Ea sin o + Ga cos ‘o)

2 .2
+ (vl - v2)(Ea cos a + Ga sin a) + 2(ul - u2)(vl

- v2) sin a cos o (Ga - Ea)] dy A-3

The only nonvanishing external loading consists of the pure
tensile or bending stress ox(tc,y) on x=¢c = th(2 + cot a),
the extreme ends of the joint (Fig. 7, p. 26). The poten-

tial energy due to loading is thus

' h h
W = -J’ o (c,y)u,(c,y)dy + j’ o,(-c,y)u, (-c,y)dy
-h -h

A-4
This accounts for all terms needed for equation A-2, which
is the same as 2.2.13. Using the nondimensionalization of
2.2.14, the dimensionless total potential energy w of

2.2.16 is produced.



APPENDIX B

GENERATION OF RITZ EQUATIONS

The total potential energy expression in its dimen-
sionless form is given by equation 2.2.16, p. 39. The four
principal equations are derived from the following four

relations

= = 0 B -1
m,n
ow _
¥ =0 B 2
m,n
ow
= = 0 B 3
m,n
ow
5D =0 B -4
N
Note that Ul contains only Am,n’ Vl contains only Bm,n' U2

only C m,n and v, only D m,n

ez - o =) [[[3) s (3 o (3] o (39)
m n X | 1\9%Y aAm'n oX
oU oV 0 oU
1 1 1 1
+ 5 (1 - \)l)(aY iyl by Y (BY )]dx dy

m,n

fl °Uy 30y
+ - - -
’

m,n
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2 1 aUl(-c,Y)
+ (1 - \)l) f_l co(y) Y day B-5

m,n

Here and below, @@ and (2) indicate integrations over ad-

herends 1 and 2.

dw =0=[ Ravl) 3 (3V1)+V(3U1’ 3 (3"1)
- Y |78, |3 1% |58 | 5%

’

U

oV AV
1 1 1l s [Va
ty - "1’(33{ * 3 ) 3B | 3% )]dx dy

J'l oV, oV,
Y PVt V2 s T HaU - U2 sE_

- m,n m'n
B-6
0 _ - Y_[ (auz) 3 (3U2)+ . (3"2) 3 (wz)
'c’cm'n 5% 1 3c | 3X 2 \3¥ | 3c |3
AU IV AU |
1 2 2 3 2
+ 7 1 =-vy) W"ax)ac (ay)dx‘“
m,n
1 3u, 3u,
+ J’-l —Hl(Ul - U2) m + H2 (Vl - V2) m dy
’ ’
) +1 3u,(C,¥)
- (1 - v f 0, (V) | 52— av B-7
_l m,n
W _ - j'j’(avz 3 v, .y U, 4 v,
35D _ Y 5Y | 3D. 5Y 2 |3x 50— |\ 3¢
m,n ) m,n m,n

U av) vV

1 2 2 5 2
+ 3 (1=, (aY * 3% | 3 n(ax)dXdY
’

day
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2) 7D 2) 3D

1 3V2 3V2
+f - Hh(vl -V —+ Hz(Ul"U =~ | dY
—1 m,n m'n

B-8

Substituting the explicit double sums for Uy Vl and their

derivatives into the equation B-5, it becomes

M M- Y cot a .
0 = f f [ k k m xk+m-2 Yn+3
k 0 j= o -1 L

. k+m-1 _n+j-1 1 _ nj a _xk+mYn+j-2
+ vy Bk,j j m X Y + 5 (1 =-v,) X,
1
1 _ k+m-1 n+j-l]
+ 5 (1 -v) Bk’j k n X Y dx dy + J:l [Hl(Ak'j
k+m _n+j
-C, .) - H (B, . =D, . X Y ay +
k,3) T B2 By, k.n’]
2 1 m _n
+ (1 - vi) f 0y, (Y) (=C)" ¥ ay B-9
-1

In all the double integrals of equation B-9, inte-

gration is carried out first with respect to X. The result

is
MoMk (1 km k+m+n+j-1 K+m-1
= Z 2 Ak . ﬁrl- Y (COt G)
k=0 j=0 rJ
_ 0+ti _~ kim-1 jm [ k+m+n+j-1 k+m
Y (-C) ] + vy Bk,j v = 1Y (cot a)
. (L - vy) .
_ yh+i-1 k+m] 1 n .
b (-C) +—2'—Ak,jE+m+I
. [Yk+m+n+3-l (cot a)k+m+l _ Yn+3—2 (_C)k+m+l]
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Equat

final

0 =
k
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(1 - v.) .
1 nk k+m+n+j-1 k+m
ﬁ_ Bk,j m [Y (Cot OL)
- yti-l (-C)k+m] dy + j'l H, (A -C, )
-1 1'%,3 k,j
k+m _3j+n
H, (B . = D . Y
2 k,3 k’J)} X dy
2 1 m _n
(1 - v7) o,(Y)(-C)" Y 4y B-10
1 -1 0
ion B-10 is now integrated with respect to Y. The
equation is in the form
M M-k
I 1 (A . W’r]:m—_I [ £ (k+mtn+j) (cot a)<¥™-1
=0 j=0 ]
(-c)k+m-1 f(n+j+14
jm . k+m k+m .
V1B, k_i_m [ £ (k+m+n+j) (cot a) - (-C) f(]+n)]
(1 - v,) .
1 nj £ . k+m+1
5 TS Ak,j[ (k+m+n+j) (cot a)
(_C)k+m+l f(n+j-lq
(1 - v,)
1 kn . k+m
—— Bk,j T [ f (k+m+n+3j) (cot a)

+

k+m .
(-C) f(]+n)] + [Hl (B 5 = € 5) - Hy(By |

m

Dy j)](cot a)k+ f (k+m+n+j+1)
’

1
(1L - \)i) f OO(Y) (-c)™ ¥" gy B-11
-1



166

where

C =2 + cot a

f(r) = L= (L _ ) 0 : R even
B R 2/R : R odd

Other quantities are now defined as follows

(cot a)k+m-l f (k+m+n+3j)

%0

¢, = (cot a) K™ £ (k+m+n+j+l)

After rearrangement, first set of Ritz equations, corres-

ponding to B-1, becomes

M M-k
_ km _ (_pyk+m-1 .
0 = E Z Ak,j[k_m (Cbo (-C) f(n+j+l))
k=0 3j=0
l-wv .
1 nj 2 _ (—eyktmtl s
*— K+m+ 1 (¢0 cot4 o (-C) f (n+j lﬂ
V,Jjm l -V
1 1l kn
+Hl¢l]+Bk,j (k+m+ 7 k+m||% °°t ¢
k+m .
- (=C) f(n+j)] - Hydy |- ck,jH1¢1 + Dk’jH2¢l
2 +1 n
+ (1 - Vi) jﬂ oO(Y)(-C)mY ay B-12
-1

Equation B-12 corresponds to 2.2.19. The other three basic
Ritz equations are derived similarly. Note that the fore-
going reflects the contribution of the A , coefficients

to the corresponding row of the final Ritz matrix. Each of

equations B-2 through B-4 makes a similar contribution, and

these appear in equations 2.2.20-2.2.22.



APPENDIX C

SELF-EQUILIBRATED POLYNOMIAL STRESSES

In equation 2.3.1, the part (2) contribution to the

adhesive normal and shear stresses is assumed to have the

form
K
o !2) ) a_s™ c-1
n m
m=1
X m
Ths = L.bS c-2
m=1

-h undetermined coefficients ans bm‘ Here S is the di-
mensionless distance along the inclined adhesive boundary,
or s/h in terms of Fig. 7, and is measured from the origin
of coordinates. From the diagram cited, S ranges from
-csca to csca. The integer K must be odd.

The purpose of this derivation is to eliminate
three coefficients from the set (am, bm), by enforcing the
requirementltﬁat C-1 and -2 represent a wholly self-equili-
brated stress distribution. Of the three static equilibrium

conditions, the vanishing of the resultant force in the X-

direction (by integration and taking components) yields:

l67



168

csco
K gm+l
mzl(am sina+ b cos a) =— =0 (m even) C-3
-csco

Similarly, the vanishing of the Y- resultant gives

csca
K Sm+l
mzl(-am cos a + b sin a) =—y =0 (m even) C-4
-csca

The vanishing of the resultant moment about the origin

produces:

csca

o
0
]
o

K
) m+2 (m odd) c-5
-CSsCa

After entering the limits, equations C-3 and C-4 may be

solved to obtain

K m+1

!oag (;Sia) =0 (m even) C-6
m=1

% (csca)m+l

) b &= =0 (m even) c-7
m=1

After substitution of these two relations equation C-5

becomes

m+1l
lesea) -6 (m oda) c-8
1 M om+ 2

e~ R
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Equations C-6, C-7 and C-8 give the desired expressions for

eliminating ag_q¢ bK-l and ags respectively:
K-3 m-K+1
a =-K ) a (csca) c-9
K-1 m m+ 1
m even
K-3 m-K+1
(csco)
bg.y = — K ) P m + 1 c-10
m even
K-2 m-K
ay, =-(k+2) ] a ig%ﬁ}-r- c-11
m odd
Expanding C-1 and C-2
K-2
(2) _ m K-1 K _
s = ) b S + by ;S + byS c-12
m=1,2,3...
K-2
(2) m K-1 K _
o L a S + ap S + ags C-13

These become, after substitution from C-9, -10 and -11:

.(2) _ (K'l%/z a g2m-1 _ (K + 2) 2m-K-1.K
n _ 2m-1 2m + 1) (csca)
m—l'2’3’aao
+ (K=3)72 a [SZm _ K(csca) 2m_k+lsK-l] c-14
n=1,2,3,... °® Zm +1
(K=-3)/2
(2) (R+1)/2 2m-1 V/ 2m
Tns = b2m—1 S + § b2m S
m=l’2' g o e m=l'2’ g oo
_ K(csca) 2m-K+1 SK-l] c-15
2m + 1 -

Equations C-14 and -15 are the same as 2.3.2.



APPENDIX D

DISPLACEMENT DETERMINATION FOR THE INTEGRAL

EQUATION APPROACH

The displacement components Ul' V1 of the first
adherend are related to the analytic functions ¢(z), and
¥ (z) of the complex variable z = X + iY by the following

equation4

2u (U] + iV)) = x 6(2) - z¢ (2) - V() D-1

where

shear modulus
X, = 3 - vl)/(l + vl) for plane stress

Poisson's ratio

<
]

and the values of the functions ¢(z), d(z) and y(z) are
defined below in terms of a "density function" w(t), pre-
sumed known at this stage. With the w(t) actually used,
the displacements calculated are the contributions U{z)

and V{z) of section 2.3.

_ 1 fw(s) -
¢u)-?gf;_z ds D-2

170



! _ 1 w (s) _
¢> (Z) = m s Z ds D-3

_ 1 fwlsi 1 Ew'(s)
¢(Z) = m s -z ds - m- ———s_ Z ds D-4

where all integrations are around the boundary of adherend
1. Substituting the limiting (boundary) values of the

functions ¢(z) and Y (z) into equation D-1 (Plemelj formulas):
. _ w(s) tw tw (s)
21Jl(Ul + lvl) - 2n1js-t 21r1 J s - t ds

+ l.jw(S) dE-LIE—“ﬂas D-5

2mi s -t 2m1 s - t

Adding and subtracting 21r1f (t) ds and —;—f
s -

respectively in the first and third integrals, and rearranging:

2u1(U1+1V) -mfw(s) ds +2—r-fw (S ;:—_t_dg
1 Juw(s) - w(t) 1 ds
+21r1j 'S—‘_?ﬁ+2niw(t)fs t
+ (J.)(t) = fg -ﬁw(t)‘rs fSt D_6

But

w(t) ds _ : w(t)
m—fy- T = conjugate of [ 2m1 fs = t]

- w(t)/2 D-7
X1 w(t{[s ést

X, w(t)/2 D-8
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1 ! s -t . — _ 1 . ' s -t
-2—1'[{ w(S)E-EdS— mconjfw(s)s_—tds

The terms of equation D-9 reduce, upon integration by

parts, to

S conj s -t w(s)
21 J s - t

= i%i'f‘”zss d(—z = E) D-10

since the first term vanishes. Let

s - t = rel®

5 -T=re?®
s -t _ G20 d(i = E)=12e21ede
s - t s - t

The term in equation D-10 now becomes
%f"‘(’” 5T e D-11

But, from the basic integral equation of the problem, 2.3.14,

the expression of equation D-11 is also

w(t) + %fw(s)de - £(t) D-12

Upon substitution of relations D-7, D-8 and D-12 into equa-

tion D-6,
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X -—
. _ l | w(s) - w(t) 1 w(s) - w(t) ds
24y (Uy +1vy) = ﬁ'i‘f s—t 98+ 21rif P I

+ %:[w(s)de - f(t) +%xlw(t)+ ¥ w(t) Dp-13

now write

w(s) = p(s) + iqg(s) D-14
and convert the integration in 6 to s by the relation

Ll

de = 5s ds D-15
Since4
08 _ cos a
oS r !
as = £25. 2% gg D-16
r
where o is the angle between the vector s - t and the out-

ward normal at s (unrelated to the scarf angle a used
elsewhere).

After substitution of D-14 and D-16, equation D-13

becomes
oy (U, + iv.) = L i (£)] 38
(U +ivy) = 5—= [ ([p(s) - p(t)] + ila(s) - qle)]l) s—=%
1 . ds
+ 2n1_[ [p(s) - p(t)] + il[g(s) - qg(t)] ==

+ %f[p(s) + iq(s)] Cof.—o‘ ds +%x; [P () + iq(t)]
+% [ p(e)+ ig(t)] - £,(£)- if, () D-17

For numerical integration to find the displacement components,

the boundaries AB, BC, CD and DA in Fig. 7 are divided into
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I, I,, I and I, intervals, respectively. Equation D-17
is rewritten as a sum of integrals over each interval along

the boundary.

. 1§ . cos %k
2111(Ulj + lvlj) T L pk(s)d-lqk(s) T ds - flj

3
p. (s)
1f[k

. ds
p.| + 1 [q (s) - q-] (X Tt
3] k Jj 1 Sy tj

. . i
- 1f2j +}5Xl[pj + 1qj] il 3

Il e~

k

a
= _ 3 ) +%(p, + iq)) D-18

where
I=Il+I2 3
along the boundary of each adherend

+ I, + 14 = total number of intervals

pk(s), qk(s) = functions p(s), g(s) on the kth

interval

Ulj' Vlj = X,Y-displacement components of adherend

h

1l at jt boundary node point (midpoint

of jth interval)

ajk = angle between the vector Sy ~ tj and the out-
ward normal at s

r., = |s, - t. H . . = t. t.

5k = sk = &l Py 4y = P(t),qlty)

Equation D-18 is symbolic of the numerical integra-
tion; the details had to be carried out differently because

of the nature of the integrand. Special treatment is
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required when k = j, and at the ends of each side of the
adherend. At all other points, the integration is by the
trapezoidal rule, from the center of each boundary interval
to the center of the next, or node to node. When k = j, the
last integral term in D-18 is interpreted in terms of the
first derivatives of p and q (the nominal singularity is
removable). These are evaluated using a central difference
formula at the node points adjacent to Sy = tj.

For the half intervals at each end of each side,
the special treatment is as follows. Lagrange's three-
point interpolation formula is used to compute the values
of p and q at special points, such as the corners and ends
of the first and last interval along each side, in terms
of the values at the nodal points. The values of p and gq
at corners of the adherend are evaluated by taking the
average of the extrapolated values for the corner from the
adjacen; adherend sides. The derivative treatment is more
involved when j = k involves the end half-intervals, but

it is along similar lines.



APPENDIX E

RIGID BODY DISPLACEMENT CONSTANTS

The net displacement components U;r vy of the first

adherend are

_ (1) (2)
19 +tU

- (1) (2)
v, =Vt o+ vy

where U{l), V{l) are the displacement components due to an

applied tensile stress parallel to X which is assumed to

be equal to unity, and U{z), V{Z)

are the displacements due
to the self-equilibrated stresses of equations 2.3.1l. 1In
terms of rigid translation constants Cl’ Dl and rotation

w

ll
(1) _ 1 )
Ul —-E—:IX+C1 wlY
E-2
v,Y
(1 _ _ "1
Vl = —EI + Dl + mlx
The totals are thus
_ 1 _ (2)
Ul—E—l'X+Cl wlY+Ul
E-3
v, Y
1 (2)
Vl— —E1+Dl+le+Vl
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An arbitrary rigid-body displacement choice is possible for
one adherend. Accordingly, adherend 1 is assumed not to
translate or rotate at the origin, or Ul(0,0) =0 = Vl(0,0)

in equation E-3. Thus

c, =-ui?,0 ana b, = - vi¥ (0,0)

1 1

The suppression of rigid-body rotation, finally requires
w, = 0. Thus the net displacement components of the first

adherend are

_(2) X (2)
Ul = Ul + q Ul (0,0)
E-4
o2y Y (2)
Vl = Vl vl EI Vl (0,0)

The displacement components of the second adherend, also

due to a unit applied tensile stress parallel to X, are

(1) X
U2 = E; + C2 - sz
E-5
(1) Y
V2 - \)2 E_ + D2 + wzx

The net displacement components of adherend 2, including
the contribution due to the self-equilibrated stresses of
equation 2.3.1 acting at the adhesive interface, can be

expressed as,

U,=2—+C, - w,Y+ U

X (2)
2 E 2~ Wt T Y

v
2 (2)
2 + w2X + V2

<
I
|
|
<
+
o
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In section 2.3, it is noted that the last terms in

E-6 are constructed from U{Z)

- u{® (0,0) ana v{? - v{(0,0),
which appear in E-4, Actually, these expressions are sym-
bolic; the displacements in question are related by a numer-
ical matrix to still-undetermined coefficients (am, bm);

2K-3 in number. As explained in section 2.3, the main ad-

justment required to construct Uéz) 52)

and V is simply to
multiply the numerical matrix by ul/u 2 the ratio of
adherend shear moduli. Since it is assumed that both ad-

herends have the same Poisson's ratio, this is equivalent

to multiplying by El/EZ‘ Thus the factor 1/E1 and l/E2
are actually present implicitly in U§2) and Véz), but do

not appear explicitly in E-6.



APPENDIX F

TABLES OF STRESS DISTRIBUTIONS, AND

AUXILIARY TABLES

The primary results of this thesis are the follow-
ing tables. Table Fl gives adhesive normal stress distri-
bution (N), which acts perpendicular to the plane of the
adhesive layer, and the shear stress distribution (T). The
positive senses of these stresses are shown in Figure 7,

p. 26.

The tables are based on a uniform applied tensile
stress of unity, or a linearly-varying bending stress with
outer-fiber value unity. This unit stress corresponds to
0y = 1l in Figure 7; it also corresponds to the stress Oxo = 1
(a name used elsewhere in the text). It is also referred to
as the "load stress." The corresponding force resultants,

F and M0 in Figure 7, are positive as shown in the figure.

The stress distributions are tabulated against the
variable S, which is the fraction of the joint half-length,
measured from its center (the origin in Figure 7). At
joint end D in Figure 7, S = 1.0, and at joint end C; S =
-1.0. The cases covered include both tension and bending

load; for five scarf angles (o = 5, 10, 20, 30, 40°); for

179



180

three values of relative adhesive-adherend flexibility
(B =4,20,100); and for four values of the dissimilarity
parameter (y = ratio of adherend stiffnesses = 1,2,4,8).
The tabulated stresses represent exact 8th-order polyno-
mials in S. Advice on interpolation (with respect to o,
B, Y) appears in section 4.3.

To save the user the trouble of interpolating for
maximum values of the normal stress N, an auxiliary table
(F2) gives the maximum values N for every distribution

max
in the primary tables. The shear stress maxima Tma are

X
usually at S = -1.0, except for a few cases noted in the
main discussion of Chapter 4 (large a and medium to large

B, in bending).

Two auxiliary tables offer the user some assistance
in deciding for himself whether the present tables are
accurate enough for his purposes. In all cases tabulated
here, 177 Ritz equations have been solved by matrix inver-
sion, using a standard symmetric-matrix computer subroutine.
This solution is referred to as an 8™-order polynomial
solution. 1In many cases, a 7th—order solution is also
available for comparison (141 equations). In other cases,

only a Gth

-order solution is available for comparison (109
equations). In some cases, no comparison is available.
Where available, the two solutions are compared in the
manner described in section 3.1.4. Thus one auxiliary

table in this Appendix (F3) gives the average difference
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th th

between the 8" -order and the 7 -order solutions (averaged

over the length of the joint). The Bth-order is compared

to the Gth-order where no 7th-order result is available.
Another auxiliary table (F4) presents a much sharper

test of Ritz convergence. The primary tables of N and T

are examined for all stresses ranging from one-half the

largest value up to the largest value. The largest per-

th_ and 7th

centage difference between the 8 -order results
is tabulated, for the "large-stress" range considered.
Orders 8 and 6 are compared where 7 is not available.

(The latter check is often not as favorable as one may
wish, because the 7th-order results are frequently quite
close to the 8th—order ones when the Gth-order is still
far away.) Sometimes the "half-the-maximum" criterion
distorts the picture too favorably, and additional entries

in the auxiliary table show that by going a little below

half the maximum, a much larger difference may appear.
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Table Fl.--Adhesive normal and shear stresses.

ALPHA=5 DEGREES, BETA=4
GAMMA =1 GAMMA=2
TENSION BEND ING TENSION BENDING
S N T N T N T N T
000000 0000000000000 00000000000 0000000000000 000000000000000 00
=160 00076 00868 060071 0e¢0817 060119 061389 060079 061277
~0e9 O0¢0076 060868 060066 060745 060097 061197 00098 06,1013
=0e8 O0¢0076 00868 060060 060672 060075 061046 060064 0,0789
=067 00076 060868 060054 060596 060061 00941 060039 060608
=0e6 00076 00868 060047 060517 060056 040878 060034 0,0463
—0e5S 060076 040868 060040 060435 060055 060849 00038 060341
—0ed4 00076 00868 00033 060351 0¢0056 060844 060039 060233
=0e3 00076 00868 0s60025 060265 060059 060853 060032 060131
—0e2 060076 040868 060017 060177 060064 060871 0«0016 0,0032
=0l 060076 040868 060009 060089 060072 040890 =0¢0001 -0.0064
0e0O 060076 00868 =060000 =060000 00082 060906 =060015 -0,0154
Oel 060076 0e0868 =060009 —=00C89 060093 060915 -00024 -0.,0236
Oe2 0e0076 060868 —060017 —0e0177 060101 0e0915 =040027 -0,0310
Oe3 060076 060868 =0e60025 =060265 060105 060903 =040029 =-0,0373
Oed4 04,0076 00,0868 =0,0033 =-0,0351 00101 060876 =0,0035 -0,0425
OeS 060076 040868 =060040 =0¢0435 060091 00836 —=0e0046 -0e0465
Oe6 0e0076 00868 =060047 =0e60517 060079 060782 =040058 -0.0491
O 7 060076 00868 =0e¢0054 =0e0596 060069 060717 —-060062 —0¢0502
0e8 060076 060868 =0e60060 =0e0672 040066 060646 =060049 =0,0496
0e9 060076 060868 =060066 =2.0745 06,0061 0e¢0570 =060032 -0.0478
10 060076 060868 =0e60071 =060817 060025 060490 =040071 —-040461
GAMMA=4 GAMMA=8
0000000000000 0000000000000 000 000000000000 000000000000000 00
—1s0 0460151 0e¢1893 060073 061708 060117 02283 060091 02015
—0e9 00114 Oel1469 060131 Oel220 0e0145 O0el666 060149 061347
—0e8B 060063 061163 060065 060844 00,0039 061252 06,0069 06,0853
—0e¢7 060032 060975 060023 060572 =040032 061026 000025 060507
=0e6 060022 060883 060025 060375 =0e0036 060943 060034 00268
—0eS 060028 060860 060046 060225 060005 060946 060059 060095
=0e4 060042 06,0878 040056 060100 00,0058 0,0989 060064 —-0+0041
—0e3 060058 060913 060044 =060012 060099 041035 00038 -0,0154
0e¢0075 00949 060013 =0e0116 060123 061062 =060009 =00250
060092 060974 =0,0022 =0.0210 0¢0132 061060 =060056 -0,0327
060108 060981 —0e60046 =060290 060136 061026 -060081 =0.0379
0¢0122 000969 =0e60052 =060352 060140 060966 =060077 =-0,0405
0¢0130 060935 =060043 =060393 060143 060883 =-0¢0052 -040406
060128 040881 =060031 =0e60415 06,0138 060786 =0,0026 -0,0388
060115 060809 =060029 =~060422 060120 060678 =00017 =-0,0358
060092 060723 -0e0043 =-040416 00,0086 06,0567 =-00034 -0,0324
040068 060628 =060064 =060399 00,0048 00,0460 =0,0063 -0,0289
060052 00531 =060068 =0e0372 060024 060363 -00068 -0.0251
060050 060440 =0,0036 =060333 00,0033 00,0282 =-0,0023 =-0,0209
0¢0049 060355 060005 =060287 060049 060215 060032 -0,0164
=0e0010 060267 =060101 =0e0257 =-0,0054 0,0138 =00129 -0,0144
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-1,0
-0.69
-0,8
-0.7
=046
—0e5S
‘004
=03
=042
-Ool
0.0
Oel
Oe2
Oe¢3
Oe4
Oe¢e5S
Oe6
Oe¢7
0.8
0e9
1,0

ALPHA=5 DEGREES,
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GAMMA=1
TENSION BEND ING
N T N T
0000000000000 000000000 00000000
060076 00868 00056 060699
060076 060868 060060 060651
0e0076 060868 060057 060599
0¢0076 060868 040052 060544
060076 0.0868 00049 06,0482
0e0076 060868 060046 060415
060076 060868 060042 060341
00,0076 00,0868 060036 060262
060076 060868 060026 060177
0e0076 040868 00014 00089
00076 00,0868 00,0000 0,0000
0.0076 00868 =00014 —-0.0089
0,0076 00,0868 ~0,0026 =00177
060076 00868 —-0,0036 ~0,0262
00076 00868 —-0.0042 -0,0341
0e0076 00868 =-060046 —-060415
0e0076 060868 =-0.0049 -0.0482
060076 00868 =0,0052 =0,0544
0e0076 040868 =0,0057 ~060599
0¢0076 00868 =0.0051 =-0,0651
0e0076 00868 =060056 —00699
GAMMA=4
00000000000 0c000000000000000 0
0.0120 0¢1378 0.0083 00997
00102 061249 00083 00838
0,0080 O0O.1141 0.0076 0.,0688
0¢0054 061057 060073 060546
0¢0033 060999 06,0071 0.0412
060024 060962 060062 040284
00032 060943 060045 060163
0e00S53 00935 060020 060051
060079 060932 =0.0007 —-00049
0¢0104 060927 -060030 -00136
O0e0120 060916 =-060046 =-060207
0¢0125 040896 -040052 =2,0263
0e0118 00866 -060051 -00303
060105 040826 -00046 =-00330
00092 060778 =040042 =-0,0345
0.0081 0e0724 -0.0041 =-0.0351
0e0074 00667 -060043 —-0e0349
060067 060608 =060042 =0.0342
0,0055 00,0549 =0,0033 -0,0330
0.0041 060490 -0.0022 =-0.0313
00,0049 0,0431 -0,0043 -0,0294

BETA=20
GAMMA=2
TENSION BENDING
N T N T
0000000000000 00000000000000000
060113 061158 00,0063 0,0889
060087 061086 060077 060777
0.0081 01023 060065 060669
060074 00971 060056 060565
040064 060932 060053 04,0462
0.0054 00,0905 00051 0.0360
00050 00890 060046 040258
0,0053 0,0884 00,0035 06,0157
00063 040883 00018 060058
00077 00885 —-0.,0002 =-0,0036
0,0089 0,0887 -00020 -0,0123
00098 00884 —-060034 -0,0201
0.,0101 0.0876 -0,0042 -0,0268
00,0098 00,0862 -00045 -0,0324
00,0091 00840 -040046 -0,0369
040084 040812 =060046 —-0,0404
0e0077 060778 =000047 -0.0430
060072 060739 -0.0048 -0,0446
060067 060697 —=000045 -0,0455
00060 060652 =060040 -0,0457
060052 060607 =060045 -0,0455
GAMMA=8
0000000000000 000000000000000 00
060099 061540 060106 00,1031
0e0120 0641374 060090 0.0841
00,0064 041241 00103 0,0662
060010 0el145 00109 060494
-0,0012 04,1081 00094 00,0337
0e0003 0e1043 060062 00,0194
00041 01020 060021 00067
00086 061004 =060019 —-00041
0¢0124 00986 =060048 -0,0129
0e0145 060961 =040064 -040196
0e0149 060927 =00066 —-040244
060138 00881 —060059 —-0.0274
0e0119 060826 =0640048 =-00290
060099 060764 -000039 -0.0294
060084 060698 =060035 =0,0290
060075 060629 —-060035 -0.0280
060069 00562 =060037 -060267
0e¢0059 060497 -060033 -0,0251
00,0043 040434 -0,0022 -0,0232
060028 00,0373 -0.0012 -0,0211
0.0046 00,0314 -0,0036 -0.,0189



-1,0
=0.,9
—0e8
=067
=046
-0.5
=0e4
-0.3
_0.2
=0l

060

Oel

002'

063
0¢84
0e5
0¢6
Oe7
0.8
0.9
160

-1.0
=049
-0,.,8
=067
-006
—065
-0.4
‘0.3
=042
‘0.1
060
Oel
0e2
Oe3
Oe4
065
0e6
Oe¢7
0.8
09
10

ALPHA=5 DEGREES,

184

GAMMA=1
TENSION SEND ING
N T N T
000000 cc00s0c00s0cccscsncsccoce
0e0076 040868 040024 000456
060076 00868 0.0047 06,0432
060076 00868 060044 06,0405
0e0076 00,0868 040043 06,0375
040076 00868 040051 00340
060076 00868 060063 00299
0460076 00,0868 00072 040250
060076 00868 040071 00195
00076 O0e0868 00057 00134
0e0076 00868 040032 000068
060076 00868 00000 DJ¢0000
0¢0076 00868 =-0.0032 =-0.0068
060076 00868 =-040057 =040134
0e0076 040868 —-040071 =-0.0195
060076 00868 =0.0072 -060250
0¢0076 00868 =0.0063 =-0.0299
0¢0076 060868 =0.0051 -0.0340
060076 060868 =060043 =00375
00,0076 00,0868 =0,0044 =0.0405
0.0076 0.0868 -00047 -000432
060076 060868 =-060024 =-0.0456
GAMMA=4
eesccee e0csce0ce000csccecssooe
0.0090 O.1081 00052 0e0441
00,0091 0.1050 0.0046 060400
040079 061021 00078 000355
060063 060995 060109 060305
060052 060972 060119 060249
060049 060953 060105 000190
040054 060936 040069 060129
0e0065 060920 060023 060069
0e0078 060906 —=00023 060011
060090 00891 -0.0060 =-0,0040
00098 060876 =-00081 =-0.0085
040102 00860 =-0.0036 =0.0122
060099 00841 =-0.0078 =-0,0150
060093 040821 —-0.0063 -0,0172
0+0086 0+0800 -0.0046 -0.0188
0e0078 060778 =0+0033 =-0.0200
0e0072 0e0754 =-040026 =0,0208
0¢0068 060731 =-0.0024 =-0.0213
060065 060707 =040022 =-0.0217
0.0061 060683 -0,0019 =-0.0219
00057 060659 =060023 -00220

BETA=100
GAMMA=2
TENSION BENDING
N T N T
e0c0cccccc00ss000000000000000 00
00088 060996 060039 060466
00,0084 060977 000045 00430
060080 060958 060052 060392
0¢007S 060942 00067 00,0350
00068 060927 060083 06,0302
060063 060914 000090 060249
0.,0061 00903 00083 04,0191
00,0063 00894 060062 00,0129
060069 040886 060029 000065
060076 00879 =000009 06,0002
060084 00,0872 -000043 =0,0057
060089 00864 =060067 —-0,0111
00,0091 00855 —-00078 -0,0157
0¢0090 0¢0845 —-00076 -0.0197
040086 060833 =0.0064 =-0,0229
060080 040819 =060049 -0,0254
0e007S 00805 =060037 =0e¢0274
060072 060790 =00031 =-0.0289
0e0070 0e0774 —=060032 -0,0302
060068 060758 —060033 -0,0311
060062 060742 =-040019 -0,0319
GAMMA=8
®ec00cccece000000000000000000 00
00098 061138 060030 04,0400
040090 06,1100 060078 00,0355
00066 01065 060131 00305
00047 041035 000152 00250
060040 001008 00134 0,0191
060046 00984 060086 00,0132
0.0061 0e¢0962 060024 060075
0¢0079 060942 -060034 0,0022
060095 040921 =-060077 =-0.0023
060106 04,0900 -00099 -0,0061
0.0110 0e0877 —=00100 -0,0091
0e0107 060853 =00086 -0.,0112
060100 00827 -060064 -0,0128
060090 00,0800 —-00043 -0,0138
0.,0081 060773 -0.0028 -0.0144
0e0074 060745 =0.0021 -0.0148
060069 060717 =-060019 =-0,0151
0e¢006S 060689 =060019 =-0,0152
000061 0¢0662 -060014 -0,0152
0¢0056 060634 =060009 -0,0151
O0e0055 060607 =060024 -0,0149



-1 .0
=069
=08
-0.7
-0.,6
"0.5
=04
=063
"'0.2
=0l
060
Oel
0,2
063
Oe¢4
O0e5S
0.6
Oe7
0.8
069
1.0

=1.0
=069
-0.8
=0.7
=046
=0e5
-0.4
-0,63
-0e2
-0l
0.0
Oel
062
063
Oe.4
0.5
Oe6
Oe¢7
048
069
1,0

ALPHA=10 DEGREES,

185

GAMMA=1]
TENSION BEND ING
N T N T
000000000000 0000000000g0000000
0.,0301 O0e1709 040252 041425
00301 Oel710 0¢0240. 061323
0.,0301 O0e¢1710 040228 0el1216
0¢0302 0el1710 060215 061099
060302 061710 060200 060971
0,0302 061710 0,0181 0,0831
00302 0e1710 O0«0156 00680
00302 061710 0.0125 00519
060302 061710 0.0087 040351
0¢0302 061710 040045 06,0177
060302 061710 =060000 =00000
0¢0302 061710 =-040045 -0,0177
00302 061710 =-040037 =-04.0351
060302 061710 =060125 =0640519
00302 0el710 =-040156 =-0.0680
00302 061710 —-0.0181 =-0.0831
00302 061710 =060200 =060971
0¢0302 061710 =0.0215 =06,1099
040302 061710 =-0.0228 -0e1216
0¢0302 061710 =00240 =-041323
0¢0302 001710 =0.0252 =0e1425
GAMMA=4
000000000000 000000000000000000
060446 062803 060400 062131
060420 062499 040332 061763
040302 062251 0.0308 Jdeld26
00188 062067 060292 001115
060123 061945 060261 0.0826
0e0120 061875 060210 040558
060167 061843 060140 06,0310
0¢0242 061835 060060 040086
060325 01834 —-0.0019 =-0.0113
060394 041829 =0.,0088 =-0.0285
060439 061812 =-00140 =-0.0428
060456 061776 =060173 =0,0541
0e0448 061719 =0.0189 =0.0625
060422 061642 =0,0191 ~-0,0681
0e¢0387 061547 =0.0185 =00713
0¢0347 01438 -0.0176 =-0.0725
060306 061319 =060167 -0.0719
000260 001192 -060155 -0.0699
0.0210 041061 -0.0138 -0.,0668
0e0166 060930 =060117 =0.0627
0e0170 060807 =00105 =00578

BETA=4
GAMMA=2
TENSION BENDING
N T N T
©00000000000000000000000000000
060399 02324 00335 0.1859
0¢0367 02158 060290 061608
060320 042016 060258 061372
060272 061904 060236 O06l1la6
00235 041823 00216 0,0928
0,0216 01771 00190 04,0715
060218 01743 060154 0.,0506
0.0238 041734 00107 00,0303
060270 061736 060054 06,0108
0e0307 061743 =-060003 =0,0077
00341 01748 —-040058 -0.0249
060366 061746 =00105 =-0.,0404
060379 061733 =0e0142 -0,0541
0e0379 061707 =-060168 =-060657
060367 061665 =00183 =-0,0751
00347 0¢1609 —-060190 =-0.0824
060320 061539 =0.0192 -0.0876
060291 0el1456 =060190 =0,0909
060260 061364 —-040184 -0.0924
0e0232 061266 —0¢0174 ~0.0924
0.0211 0el167 =060157 ~-060912
GAMMA=8
0000000000000 00000000000000000
060520 063150 060402 062242
0e0417 062759 060409 061796
00206 062452 060415 0.1388
00053 062238 000381 0.1015
060012 002104 060302 0.0678
0e0074 062030 060190 060379
00,0198 06,1994 0,0068 04,0118
0e0336 061972 —-060045 -0.0102
00452 061947 —-00133 ~-0,0280
060523 01906 =-0,0190 =0,0418
00543 01842 =0.0217 -04,0516
060522 061754 =00218 -0,0579
060475 061645 —=00203 =-0.0611
060419 061519 =0.0183 -0,0619
0e¢0367 061384 —-0e0164 -0.0609
060323 061243 =-060149 -0,0585
060279 061102 =-00135 =-0,0552
060226 060962 =-000120 -0,0512
0e0162 00,0824 =060097 -0,0468
0e0112 060692 -060075 -0.0418
0¢0159 060572 -060079 =-0,0364



=160
—0e9
—0.8
=07
-0.6
-0.5
=0.4
=063

1
(e 2N
o o
- N

0000000000
CVvmEO~NOULMPWN=O

Oel

O3
Oed
O0e5
0e¢e6
Oe7
Oe8
0.9
1.0

ALPHA=10 DEGREES.,

186

GAMMA=1
TENSION BEND ING
N T N T
000000 0000000000000 00000000000
0¢0301 O0e1710 00181 00985
00301 O0el1710 000173 Je0933
040301 O0el1710 00183 040876
0.0301 Oe¢l1710 040207 000810
0,0301 0e1710 060233 0,0731
0,0301 O0e¢l1710 060249 0.0640
00301 O0el1710 060245 (00533
0.0301 061710 00215 040414
0.0301 O0e¢1710 040160 00283
00301 0e1710 00085 0.0143
00301 0e1710 060000 =0,0001
0.,0301 O0el1710 =-0.0085 =0,0143
00,0301 Oe1710 =-0.0160 =-0,0283
00,0301 0e1710 =0e0215 =-040414
0+0301 O0el710 =0¢0245 =00533
00301 O0el710 -060249 =-0,0640
00301 O0el1710 =-060233 =-0.0731
00301 Oel1710 =00207 —-0.0810
0.0301 O0e¢l1710 =-0.0183 -0.0876
0.0301 O0e1710 =0e0173 =00933
00301 O0el1710 =040181 =-0.0985
GAMMA =4
000000 0000000000000 00000000000
00388 0.2182 060163 061010
0+0351 062107 060255 060910
060293 042038 0403351 00803
060243 061979 000401 00684
060216 041928 040337 060555
060215 041887 00314 060420
00235 041851 0.0201 0.0282
060270 061819 060071 00148
0¢0309 061790 —-040055 060022
060346 061761 -0.0160 =-0,0092
0e0373 061729 =00232 =-0,0191
060387 061695 =0.0268 =-0.0274
060387 061657 -060271 =0.0340
0e¢0374 061615 -0¢0248 —-00391
0e0352 01569 -040209 =-0e0428
0¢0324 01520 =00167 =-00453
00296 0e1468 =00130 =-040469
0460270 001414 =-0.0104 =2,0478
0e¢0249 061359 -060092 =0.0482
060234 06,1304 ~0.,0088 -0.,0483
00223 041249 ~0.0087 =-0.0481

BETA=20
GAMMA=2
TENSION BEND ING
N T N T
0000000000000 00000000000000000
0e¢0345 (041991 0e¢0203 001036
0e0340 01945 060190 060955
0e0315 061902 060236 000868
060286 001863 040288 0.0771
00263 041830 060316 060661
0.0251 01803 060306 060540
0.0251 Oes1781 060257 060409
0e0263 061763 060176 0,0273
0e0282 061747 060076 00,0136
00,0304 0e1733 =0.0027 0.0002
060326 061718 =-0,0121 =-0,0125
0.0342 0el1703 =040193 =-0,0241
Q0,0351 061685 =0,0237 =-0,0343
00351 Oel664 =0e60253 -06,0431
060342 061639 =-040243 -0.0503
060327 0el6ll =0,0216 -0,0560
060308 061579 =00182 -0.0604
060290 061545 =0,0151 =-0,0636
060274 061509 =0,0132 =0,0660
060262 001471 =-040126 -0.0678
0e0254 041433 =0,0123 =-0,0692
GAMMA=8
0000000000000 00000000000000000
060436 062309 060125 0,0938
00323 042219 040396 0,0826
060237 062139 060512 060704
0e0193 02069 060499 060572
060189 062009 060396 04,0436
060215 061957 060243 0,0300
0e.0261 Oel911 00076 000171
060312 061867 =060078 060052
060360 01824 -0,0197 -0,0053
000395 001779 -000273 -000140
0e0413 061732 -040304 -0,0210
0e0414 061681 -00297 -0.0263
0e0400 O0el626 —-060263 -0,0301
0e0375 001568 =00213 -0.0325
0e0344 0061508 =0e0162 -060340
0.0311 Oel446 —-040118 -060347
0e0280 01382 -060087 =-060349
060253 061319 =060069 =060347
0.0231 0el1255 =0e60061 -000343
060214 061193 -00060 -0,0338
060204 061131 -0,0066 -0,0331



-1,0
=069
-0e8
=067
=0e6
-0e5
=044
-003
-042
=01
0.0
Oe1l
0e2
063
Oe4
O0e¢5S
066
Oe7
0.8
0.9
160

-1.0
-0.9
—0.8
-007

-0.5

=0.1
0,0
Oel
0.2
063
Oe4
0e5S
046
Oe¢7
0.8
0.9
1,0

ALPHA=10 DEGREES,

187

GAMMA=1
TENSION BEND ING
N T N T
@000 00coe00ccs00000000000000 000
00,0301 0e1710 00077 00423
00301 O0e1710 0.0038 00406
040301 Oel710 0.0153 00386
0.,0301 Oel1710 00231 00360
0.0301 Oe1710 00295 00327
00301 Oel1710 00327 00287
00301 Oel1710 060322 00239
0.0301 Oel710 0e0279 00185
0,0301 Oe1710 00206 0.0126
00301 Oe1710 00109 00064
0.0301 Oel710 -0.0001 00000
00301 Oe1710 =060109 =0.0064
0.0301 0el710 =00206 =0.0126
00301 Oel1710 =060279 =0.0185
0.0301 Oel1710 =060322 -040239
00301 Oe1710 =040327 =-0,0287
00,0301 Oel710 =040295 =-2,0327
00301 Oel710 =0e60231 -00360
00,0301 Oel1710 ~-060153 =-0.0386
0.0301 O0e¢1710 =0.0088 -0.0406
00,0301 O0el1710 =060077 =-040423
GAMMA=4
©00000ecc0c0000000000000000000
0.0329 0.1853 00061 00331
0.,0308 0e1837 0.0276 00305
00294 0.1821 0.0388 00275
0.0286 0.1806 0.0418 00239
0.,0283 0,1792 0.0384 0.0200
040285 Oel1778 00305 060157
0.0289 Oel764 0.0199 0.0114
060296 Oel1751 0.0082 060070
0.0304 Oe1738 =0.0034 00028
00311 Oe1724 =060136 -0.0012
0,0317 Oel1711 ~00219 =0,0049
0.0321 0el1698 =0.0274 ~0.0082
0.0322 O0e1684 =-0.0301 =0,0110
0,0321 0e1671 —-040299 -0,0134
0.,0318 0el1656 =060271 —-0.0153
00311 O0e1642 =-0.0222 ~0.0168
0,0304 O0e1627 -0.0161 -0.0179
040295 0e1612 -0.0098 =-0.0185
0.0286 061597 =00047 -00189
0.,0279 Oel1582 =-00023 =-0,0192
060277 Oe1567 =-060048 =-00195

BETA=100
GAMMA=2
TENSION BENDING
N T N T
0000000000000 0000000000000000
00320 041801 00034 0.,0380
0.0311 Oel1791 Oe¢0154 0,0358
060302 01780 060264 00332
060295 061770 060339 06,0300
00290 O0.1761 060366 060262
00289 061752 00347 0.0218
060289 061743 00287 060169
060293 0e1735 060197 040119
060297 061727 06,0091 0.,0067
0e¢0302 061719 =-060021 0.0015
0e¢0307 O0el711 =00125 —-0,0035
0.0311 O0el1703 =-0e0213 -0,0082
060314 061694 =040275 =-0,0125
060315 061686 =060307 =-0.0163
060314 061677 -040308 -0.0196
00,0311 0el668 —-0,0278 =-0,0224
060306 061659 =-0e40224 -0,0245
0¢0300 0e1649 -060156 —-0.,0261
060293 061639 =-00089 —-0.0272
040288 061629 =0.0047 -0,0280
00286 041619 =0,0061 -0,0288
GAMMA=8
R Ry
040322 041883 000234 0.0281
060297 0el864 060430 06,0255
00284 041845 00483 04,0222
00280 041827 060442 0,0187
00282 04,1810 00346 0,0149
040288 061793 060222 060111
060296 01777 060090 06,0074
060305 0el1760 =060034 0,0038
00313 0el1744 -0.0140 06,0005
060319 041728 -0.0221 =-0.0025
060324 061711 -0,0275 -0,0051
060326 061695 -040301 -0,0074
060326 061678 =060298 =-0,0093
060323 0el661 —-060272 -0,0107
060317 O0el644 -060228 -0,0117
060309 061626 =-060171 =0,0125
0,0300 0¢1609 -0,0111 =-0,0129
060290 01591 =00057 —-0.0131
0.,0281 0el1573 -0,0020 -0,0131
060275 061555 =-060010 =-0,0132
00273 061538 =-00038 -0.,0132



-1.0
-069
=048
=067
=046
=045
-0.4
-0.3
'0.2
-O.l
060
Oel
0.2
063
Oe4
0e¢5
0.6
067
0.8
0.9
10

=160
"’0.9
—0+8
=047
-0.6
—0465
"0.4
“0.3
‘0.2
-0.1
0.0
Ol
O0e2
0.3
0.4
0,5
0.6
067
0.8
0.9
10

ALPHA=20 DEGREES,

188

GAMMA=1
TENSION BEND ING
N T N T
000000000000 cs0c0000000000000e
0el1170 063214 00,0752 062032
061170 0e3214 00766 01937
01170 O0e3214 0.0833 Oe1819
O0e1170 063214 0.0888 0.1673
O0e1170 063214 00899 061496
O0el1170 063214 00854 061292
0ell170 0e3214 060754 0641063
O0el1170 O0e3214 0.0607 0.0814
061170 063214 00424 00,0551
0e¢l1170 0e3214 00218 040278
O0el1170 0e3214 =0.0000 =0.0000
0e¢1170 063214 =-0.0218 =-0.0278
0e1170 063214 =-0.0424 =0,0551
0e¢1170 063214 =0.0607 =0.0814
O0e1170 063214 =-0,0754 =0.1063
‘001170 063214 =0.0854 =0e¢1292
01170 O0e3214 =060899 =-041496
0e¢1170 0643214 -0.0888 =-0.1673
0el1170 063214 ~-0.0832 -0.1819
01170 063214 =0.0766 -041937
061170 043214 =0,0752 =-0.,2032
GAMMA=4
0000000 c000c0cc00000000000000 00
O0e1544 064136 00815 062207
061260 063971 01250 041983
0.1071 0e3832 041403 061727
0,0971 0e3717 061345 061451
00943 03622 041143 0.1164
060969 063542 00853 0.0873
00,1031 0e3475 040524 040589
Oel1l112 063415 00194 0,0316
0e1197 063359 =0.0110 J¢0061
0e1276 03303 =0.0370 =-0.0172
00,1339 03246 =060574 =-00379
O.1381 O0e3184 -0.0718 =-0.0558
061399 063116 =-0.0802 =-0.0709
061392 063042 =-0.0829 =-0,0830
01357 062959 =00807 =0.0922
061297 04,2869 =-0,0744 -0,0989
0el1212 062770 =060651 =041030
061109 062663 =060544 =-0,1051
061000 0.2548 =0.0445 =-0,1054
060904 062429 =-00383 -0.1043
00858 02306 =0.0402 =-0.1022

BETA=4
GAMMA=2
TENSION BENDING
N T N T
0000000000000 00000000000000000
0el387 03763 060760 062205
061275 063659 060945 00,2033
0e1170 063569 061075 0,1836
061092 063494 061113 061613
0e1047 03432 061054 041366
0el035 03383 000911 O.1101
0el1050 03343 060704 0.0826
001084 063310 000458 06,0548
061129 03282 060197 0.,0273
O0ell79 063255 =-0640059 06,0007
061225 063228 —-00293 =0.0245
061264 063199 =-040494 -0,0478
061292 063167 -060652 =0,0690
0e1303 03130 =-0.0762 -0,0878
0.1298 043087 -040821 -0,1039
0.1272 0¢3037 =040829 =-0,1172
061227 062979 =060790 =0e1277
O0ell64 062912 =060714 -0,1354
0¢1090 02838 -040622 -0.1405
Oes1021 0e¢2757 =040547 -0,1433
0,0981 0e2671 =060549 -=0,1445
GAMMA=8
P
061523 04395 061228 042086
O0el136 064198 061692 0.1830
060939 064034 061714 041542
00878 043896 061470 041243
0¢0909 03780 01087 04,0945
060993 03678 060656 060658
061102 063587 040238 0.0389
0el214 063502 =-060130 06,0143
0el315 03419 -0,0428 -0,0076
O0e1394 03336 =0.0648 -0,0266
O0eld446 063249 =-060790 =-0,0427
O0eld469 03158 —-00860 —-0.0556
061463 063060 —-00867 —-0.0656
061427 062956 -00823 -0.0727
O0e1364 02845 -060739 =-0.0773
0el1276 062728 -060629 =-0,0797
Oell168 042604 -0.0509 -0,0803
061046 062475 —060396 =0,0796
00924 062342 =-0.0308 -0,0778
0e¢0823 062206 -0e0266 -0,0754
060777 062069 —060293 =-0,0722



-1,0
=049
-0,8
-0e7
-0466
-0.5
-0e4
-0e¢3
—0.2
0,0
Oel
0e2
0,3
O0e4
Oe5
066
Oe7
0.8
049
1,0

-1,0
-0.9
=0.8
-0e7
—066
-0.5
—0.4
_0.3
"002
=041l
060
Oel
O¢2
0e3
Oe¢4
0e¢5
066
Oe7
0.8
069
1.0

ALPHA=20 DEGREES.

18

9

GAMMA =1
TENSION BENDING
N T N T
0000 0090000000000 000000000000
0e1169 0.3214 040295 061002
0¢1169 043214 0.0594 0.0964
0¢1169 063213 0.0830 0.0910
0e1169 043213 0.0981 0.0838
0¢1169 043213 061040 060750
0e¢1169 043213 061010 0.0647
0e1169 043213 040903 0,0531
0e1169 043213 040733 J.0406
0e1169 063213 040515 0.0274
0e1169 03213 040265 00138
0¢1169 0e3213 -040002 =-0,0001
0e¢1169 03213 =-0.0265 -0.0138
0¢1169 0e3213 -0.0515 -0,0274
0e1169 063213 -0,0733 -0,0406
0el1169 063213 =0,0903 -0,0531
0e1169 043213 =041010 -0,0647
0e1169 0e3213 -041040 —-0.0750
0e1169 03213 -0.0981 -0.,0838
0e1169 043213 =0.0830 -00910
0e1169 043213 ~0.0594 -0,0964
0e¢1169 063213 =0.0295 =061002
GAMMA=4 .

000000 0000000000000 00600000000
001228 043516 040935 00,0800
0e1172 043480 061273 060741
0¢1140 043446 041362 060663
0e1127 043415 041280 060573
0¢1126 043384 041089 060477
061133 043355 040833 0.0378
0el147 043326 000546 0.0279
0e1162 0e3298 040253 0,0181
0el1179 043270 =-0.0029 00,0086
0¢1195 043242 =0.0287 -0.0005
0¢1209 063215 =0.0509 -0e0091
0¢1219 0e3187 ~0.0688 -0.0171
0¢1225 043159 -0.0817 -0.0244
0¢1226 043131 =0.0892 =0.0310
061220 00,3102 =-0+0909 =0,0367
061208 043073 -0.0867 -0.0414
0¢1188 043043 =0.0768 =060451
0e¢1161 043011 =040620 =-0.0477
0¢1128 062979 -040439 =0,0493
0e¢1091 062946 =0+0255 =0.0500
041053 06,2913 -0.0112 -0.0503

BETA=20
GAMMA=2 *
TENSION BENDING
N T N T
0000000000000 00000000000 00000
061234 03404 0600456 06,0918
0el192 043380 060891 00865
O0ell163 063359 061119 060792
Oell46 03338 001184 0,0705
061138 063319 061125 060606
0e¢1138 063300 060974 060499
O0e1143 03282 000761 0.0387
061151 063265 060510 06,0273
Oell6l 03248 060241 Oe0159
0el173 03231 =-060030 060045
Oell84 03215 =-00286 -0.0066
Oell94 (063198 -00516 =-0.0172
0.1201 0¢3181 =060708 =-0,0272
061205 063164 -00850 =-0,0365
0e1205 063146 -00935 =0,0450
0¢1200 063128 =0,0955 -=0,0524
0e1190 03109 =-060904 ~-0.0586
0ell73 063089 =00786 -0,0635
Oe1151 0¢3068 —-060608 =-0,0671
Oell1l24 063046 —-000393 =-0,0694
061095 03024 ~0.0182 -0,0708
GAMMA=8
0000000000000 000000000000000 0
Oell76 03582 001580 0,0682
O0el1136 063539 061652 00,0623
O0ell119 03499 061529 0,0548
061119 043461 0e1288 060465
0el1129 063424 000983 00,0378
Oelld4S 03388 060654 040291
Oellb64 063352 00327 060206
061184 063317 00022 04,0124
061202 03283 —-060250 060046
061217 043248 -000480 =-0.,0028
061229 03214 -00662 -0,0096
061237 063180 =060793 -0,0157
061239 063145 =-0.0871 =-0,0212
0e¢1235 03110 -00894 =-0,0259
0el1224 063075 —-000863 -0,0299
061206 063040 =0,0781 =-0,0329
0e¢1180 063003 =-060654 -0,0351
01148 002966 —-060494 -0,0364
Ol.1111 0e2928 -040321 =-0,0370
061070 02889 =0e0164 -0.0369
00,1031 02850 -0,0069 ~-0,0366



~-140
‘009
-0.8
=07
-0e6
=045
-0.4
-0e3
-0.2
"0.1
060
Ol
0.2
063
0.4
0e¢5
Oe¢6
Oe7
0.8
049
140

—l .0
-0e9
-0.,8
=067
=066
-0e5
-0,4
-0e3
-062
-0l
060
Ol
062
O0e3
Oe4d
065
066
Oe7
0.8
0.9
10

ALPHA=20 DEGREES.,

190

GAMMA=1
TENSION BEND ING
N T N T
000000 eccsccscescccscssscccoooe
Oell69 0e3214 060470 060324
O0el1169 063214 00758 040310
061169 03214 00912 040286
O0el1169 0e3214 00963 00258
01169 063214 00938 060225
O0el1169 063213 00854 00,0190
0el1169 063213 00728 060154
O0el1169 063213 00570 060116
001169 063213 060391 00078
Oel1169 063213 00199 060039
0e¢1169 063213 ~00002 060000
O0e1169 063213 =060199 =-00039
O0el1169 063213 =-00391 -0.0078
O0el1169 063213 =060570 -0e0116
061169 063213 =0.0728 =-0.0154
0e1169 063213 =0.0854 -0.0190
0e1169 063213 =0+0938 —-0.0225
Oel1169 0e3213 =060963 -0.0258
061169 063213 =0.0912 -0.0286
0e1169 063213 ~0.0758 -0.0310
O0e1169 03214 -0.0470 =-0.0324
GAMMA=4
I
Oell71 063286 041283 060209
0e1167 063279 061268 040196
Oell66 063271 O0ell77 00177
Oel1166 0.3264 01036 060156
Oel1166 063257 00863 00133
Oell167 03250 060673 060110
O.1169 03242 060475 060086
0el1170 03235 00276 060062
0el1172 063228 040083 06,0039
O0el1173 063221 -0.0102 06,0015
0el174 063214 =-0.0273 -0.0008
0e1176 063207 ~060427 -0,0030
O0e¢1176 063200 =-00561 -0.0053
01176 063193 =00672 -040074
O0ell176 063185 =060753 =0,0095
O0e¢1175 063178 =-0.0801 =-0.0114
O0e1173 03171 -0.0810 -0.0132
0e1170 03164 =060770 ~06,0149
O0e1165 063157 =060673 —-0.0163
O0e1159 063150 =0.0504 -0,0173
O0e1150 063142 =-0.0249 -0.0178

BETA=100

GAMMA=2 *

TENSION BENDING

N T N T
000000000000 00000000000000000
061175 043261 00898 0,0260
Oell71 03256 061044 060245
001168 043251 0e1072 04,0224
Oell67 003247 001019 0.0198
O0el1167 063242 060909 0.,0170
O0ell67 063237 060761 O.0141
O0ell67 03233 040589 060112
O0el168 063228 060404 0,0082
Oell69 063223 040212 0,0052
Oel171 0e3219 040021 00023
O0ell72 03214 ~060164 -0.0007
O0el1173 03209 —-060339 -0.0036
0el1173 03205 =040498 -0,0064
Oell74 063200 =-040637 -0.0092
Oell74 063195 =0,0749 =-0,0119
Oell74 063191 =00828 —-0.0145
061173 03186 =040865 -0.0169
Oell71 0e3181 =00850 =-0.0191
061168 03177 =040768 -040210
Oel164 03172 =-00604 -0.0225
061157 0e3167 —060333 -0,0234

GAMMA=8

00000 c0c0000000000000000000000
Oell65S 03299 061552 060176
Oell64 063290 061416 040164
Oell64 03282 061239 060148
0el1165 063273 01039 06,0130
061166 063264 040826 040112
061168 063256 040611 0.0092
Oell70 063247 060399 00072
0el1172 063239 060194 0,0052
O0ell174 063230 000001 00032
Oell175 063222 =060177 00,0012
0el177 063214 =00338 -0,0007
O0ell77 063205 =-060478 -0,0026
O0el1178 03197 —-060596 -0.0045
061178 03189 —-00689 -0.0063
Oell77 03180 —-060752 =0.0079
O0el1175 063172 =00782 =0,0096
Oell73 063164 =-0,0774 -0,0111
061169 063155 =060721 =-06,0124
O0ell63 0e3147 =060615 =0,0135
Oel156 063138 -00446 -0,0143
Oell46 063130 -060202 -0.0147



-1,0
—=0,9
=0.8
-0.7
=046
"'O.S
-0.4
“0.3
-0e2
-O.l
0.0
Ol
0.2
063
Oe¢4
0«5
046
Oe7
0.8
069
160

-1.,0
-0;9
-0,8
=067
=046
‘005
-0.4
=063
=062
=0l

0.0

Oel

O0e¢2

OO0 00O
e o o o
omeWw

o7
0.8
0,9
1.0

ALPHA=30 DEGREES,

191

GAMMA=1
TENSION BEND ING
N T N T
000000 ce00c0000000000000000 000
042501 0e4330 O0el1227 062165
062500 044330 041668 062080
0¢2500 064330 061928 061950
042500 0e¢4330 0¢2018 061780
062500 04330 061960 061578
062500 064330 O0e1782 041350
062500 064330 061515 061102
0¢2500 064330 01183 0.0838
062500 064330 0.0809 060564
062500 064330 00410 0.0284
062500 064330 =0.0000 =060000
062500 004330 =-0.0410 =-0.0284
02500 0e4330 =0.0809 =0.0564
062500 044330 -0.1183 -0,0838
062500 04330 -0e1515 =-0e61102
062500 064330 =0e1782 -001350
062500 064330 =0e1960 ~0e1578
02500 004330 =0.2018 -041780
062500 064330 =041928 =0.1950
0e2499 064330 =-061667 -0,2080
0e2499 064330 =0e1226 =0.2165
GAMMA=4 *
000000 sc00cce000000ec00c0so0e
0.2671 064980 0e2484 Oel1947
062499 04887 02834 061792
062409 00,4807 02787 061590
062374 064735 062486 061362
062377 064670 062037 061123
062403 064609 061517 00880
0e2442 064551 060977 060640
062486 004495 040452 040408
02530 0e4441 -0.0037 060184
02571 0e4387 =060477 —-040028
02606 04333 -00859 =-0.0227
062633 064279 =-0e1176 =-040412
02651 0e4224 -041425 -0.0580
062656 064168 =-061600 =0,0731
0e2646 064110 =061692 =-0,0863
0e2617 064050 =0e1697 -040974
062567 063986 ~-0e1610 -041061
0e2491 0e3919 =-041433 =0.1126
062390 043847 -0.1180 =-0.1166
02264 063770 =0.0879 -0,1183
062119 03688 =00589 =0,1179

BETA=4
GAMMA=2
TENSION BENDING
N T N T
0000000000 s0c00000000000000 00
062690 064723 0e1612 04,2125
02558 064664 062179 06,1992
0e2475 004612 062383 0,1810
0e2430 064567 062324 041594
0e2413 064527 042085 061356
0e¢2416 044491 0e¢1730 061105
0e2432 04457 041307 040849
02455 044425 040854 00,0591
042482 064393 040397 060336
0e2510 064363 =-00047 0,0085
0¢2537 064333 —-040465 -0.0158
0¢2560 064302 -040845 -0,0390
0e2579 064271 =0e1178 -0,0610
062592 064239 =-061453 =-0,0816
0e2595 004205 =-0e1658 =-0.1003
02586 064169 =0e1779 =-0,1170
0e2562 064131 —-01802 -0.,1313
0¢2519 044089 =0e1716 =-0.1429
0e2456 044043 =0,1516 -0,1515
0,2371 03993 =061215 =-0,1571
062267 03937 =-00847 =-0.1594
GAMMA=8 *
0000000000000 000000000000000 00
062508 065149 063633 0.1718
062390 065037 063499 04,1559
02346 064939 043082 04,1364
042351 0e4849 062509 061149
042385 064766 061871 00928
0¢2435 044688 061229 0,0708
0e2491 Oe4614 000621 0.0494
0e2546 044541 0¢0070 060290
062595 04470 =-000412 06,0098
062637 064400 -0,0819 =-0,0081
0e2669 04330 -0e1148 -0.0245
0e¢2690 004260 =0e1399 =0,0393
062698 064189 =0e1571 =0,0524
062690 064117 =0,1661 =-0,0637
062665 064043 =-001668 -0,0731
0e2619 03968 =-0¢1591 -=-0,0805
062549 (03889 =061433 -0,0860
0e2454 03807 =-041205 -0,0895
062332 03722 =-040929 =0,0910
042188 063631 -040645 -0,0909
0.2031 0¢3536 -0,0418 -0,0891



-160
-0.9
—068
=067
-0.6
‘0.5
-004
-0.3
=062
‘0.1
060
Oel
0¢2
0,3
Oe4
0e5S
Oe6
Oe7
0.8
0,9
10

192

ALPHA=30 DEGREES, BETA=20

GAMMA=1
TENSION BEND ING
N T N T
0000000000000 00000000 000000000
062500 064330 O.1231 0.0882
0¢2500 044330 061750 000844
0¢2500 064330 061971 0.0781
02500 044330 042007 040702
062500 064330 061906 060613
0e2500 064330 061706 060517
0e2500 064330 0641433 060417
062500 064330 061112 060315
062500 064330 060758 060210
042500 044330 040383 060105
0e¢2500 064330 —=0.0003 =-0.0001
062500 064330 -00383 =-0.0105
062500 064330 =-040758 =-0.0210
0e2500 064330 =-061112 =2.0315
062500 064330 =061433 =-0e0417
062500 064330 -061706 =0.0517
0¢2500 064330 =061906 =-04,0613
02500 0e¢4330 =062007 =-00702
062500 064330 =061971 =0.0781
0e¢2500 064330 =0.1749 =-0.0844
0¢2500 064330 -0e1281 =-0.0882
GAMMA=4 *
©00000000000000000000000000 000
02502 064513 062813 060595
0+2491 0¢4493 0e2714 00559
062485 044474 0.2481 00507
0.2484 0e4455 0e2160 0e0447
062487 004436 061787 00382
0.2491 0ed4418 01386 0.0314
062496 064400 00978 060246
042501 0e4382 060573 060177
062507 064365 00182 060109
0e¢2512 04347 =-0.0188 00042
062517 064329 —-0,0533 -0.0023
062520 064311 -0.0845 =-0.0088
062523 044294 =041120 =~0.0150
0.2524 064276 —-0601352 =0.0211
062523 04259 =0e1533 -0.0269
062519 064241 =0.1651 -0.0324
0e2512 0e4224 -0e61696 =-00377
02501 064206 =0e1649 =-0.0424
0¢2484 004189 =0.1491 -0.0465
062459 064170 =001196 =-0.0495
0e2426 004151 -0.0731 =0.0508

GAMMA=2 *
TENSION BENDING
N T N T
0000000000000 00000000000000000
042520 0ed4448 042078 000727
062504 044434 042282 0,0688
02495 0e4422 0e2274 0.0628
02490 0e4410 062119 06,0556
0e2489 (044398 061865 0.0477
0¢2490 04387 061546 060395
042492 0e4375 061189 06,0312
0e2495 044364 040812 0,0228
062499 (064352 060430 O0.0144
062503 044341 00051 00062
062507 064330 =060316 =-0,0020
062510 04319 —-0e0662 -0,0101
0.2513 0¢4307 =-0,0982 -0.,0180
0e2514 (064296 =0e41267 ~-0.0257
0e2515 04285 =061506 -0,0332
0,2514 064273 —-001686 —-0,0405
062510 064262 —-0e1792 -0,0473
0e2504 044251 =-0e1801 -0,0535
062493 064239 =-041687 -0,0590
062477 04227 =-0e1415 =-0,0631
0e245S5S 064214 -0e0942 —-0.0653
GAMMA=8 *
0000000000000 000000000000000 00
0.2480 0e4549 003335 060505
0e2477 04525 063005 060472
02478 064502 062606 000428
0e2482 064479 0.2171 0,0378
0e2488 064457 061720 0.0323
0e2494 (064435 061270 060266
0.2501 O0e4414 00832 00,0208
042508 064392 060414 0,0150
0e2514 064371 00023 06,0092
062520 0e4350 —-00338 0,0034a
O0e2524 004328 =-060665 —-060022
0e2528 04307 =060953 =0.0076
062529 064287 =061199 =-0,0129
042529 064266 —-061397 -0,0180
02526 064245 =0e1541 -0,0229
0.2521 0e4224 -0e1623 -0,0275
0.2511 0e4203 -0e1631 -0,0318
0e2497 04183 —-0e1553 -0.0357
02476 064162 —-041371 =-0,0390
0e2448 064140 -0,1065 -0,0414
0¢2409 04118 —000608 -040424



e o 0o o 0 o o
NoumeLHwhn=—oOo

OO0 000000 O0O0

o o
O @

160
—1.0
-0e9
=068
=0e7
~066
-0.5
-0.4
-0e3
‘0.2
=01

060

Oel

062

063

Oe4

065

0e6

Oe7

0.8

0e9

1,0

ALPHA=30 DEGREES,

193

GAMMA=1
TENSION BEND ING
N T N T
0000 ecccccscscc00c00000000000e
02500 0e4330 062059 00234
062500 064330 0e¢2076 060223
062500 06,4330 01995 00,0204
062500 064330 01844 0.,0181
062500 0644330 O0el643 060155
062500 04330 0e1408 040129
042500 04330 Oe1148 000103
062500 064330 00873 00077
062500 04330 040587 040051
02500 0e4330 00295 00025
062500 064330 =00003 060000
02500 0e¢4330 -060295 =-0.0025
0¢2500 064330 -040587 =-0.0051
062500 064330 =00873 ~0,0077
02500 0e4330 -0e1148 =-0.0103
0¢2500 064330 -001408 =-0.0129
0¢2500 0e4330 =0e1643 =-060155
02500 0e4330 =-0e1844 =0,0181
062500 064330 —-061995 =0.0204
062500 04330 =0e2076 =040223
GAMMA=4 *
XXX R R ms
0¢2500 04330 =-062059 =-00234
02499 064371 0e¢2673 040140
062499 04367 062434 00133
02499 064362 02167 0e0122
062499 044358 01882 060110
062499 064354 01587 060096
042500 0¢4350 0e1286 0.0081
062500 064346 000984 060066
0e2500 064342 00684 060050
02501 0e4338 00388 060035
0.2501 0e4334 00099 060019
0e2501 0e4330 —-00183 00003
02501 0e4326 -040456 =-),0013
0e2502 004322 =-060717 =040029
0¢2502 064318 —060965 =00045
02502 0e4314 ~0e1196 =0.0062
0.2501 0e4310 =-061405 -0,0079
02501 04306 =-01587 =0.0096
062500 064302 =0e1732 =-0.0114
062499 064298 =001827 =-040130
062497 064294 =-061856 =060143
0e2494 004290 =-0e1794 -060150

BETA=100
GAMMA=2 *
TENSION BENDING
N T N T

0000000000000 00000000000000000
042501 0e4357 0e2444 06,0175
0e2500 04354 062303 0,0166
02500 044351 02106 04,0152
062499 04349 041870 0640135
062499 (064346 061609 06,0117
062499 04343 061332 040098
0¢2500 064341 061045 06,0079
0e2500 064338 060754 060060
0e¢2500 064335 060461 0e¢0040
0e2500 04333 060170 060021
02501 0e¢4330 —-0e0118 060002
02501 064327 —-040399 -0,0018
062501 04325 —-060671 -0.0037
002501 0e4322 —000933 -0,0057
02501 0e4319 —-0,1180 -0,0077
02501 0e4317 =0e1407 -0.0097
0e2501 0e4314 —-0e1608 —-060117
0e2500 064312 —-0e1773 -0.0138
042500 04309 —-0.1888 =0.0156
0e2498 064306 —06¢1934 —-0.0171

GAMMA=8 *
0000000000000 0000000000000000 0
0e2497 04304 -0.1888 -0.0180
062498 064378 062799 060121
0¢2498 04373 062505 060115
0e2498 04368 062200 0e0106
0e2499 064363 001888 06,0096
062499 (04358 061574 00,0084
062500 044354 0e1261 040072
062500 04349 060951 040059
02501 0ed4344 040647 06,0046
0e2501 0e4339 060350 060032
042501 0¢4335 060061 0.0018
Oe2502 04330 =0¢0218 000004
0.2502 0¢4325 =-040486 -0,0010
0e2502 04321 -040741 -0,0024
0e2502 064316 =-060981 -0.0039
02502 064311 =-061203 =-0,0054
062502 064307 -061403 -0,0069
062501 04302 -0e1575 -0.0085
0¢2500 04297 —-0e1710 -0,0101
0e2498 064293 —-0e1795 —-0e0116
062496 044288 -041815 —-0,0128
0e2493 04283 —-0e1744 -0.0134



-1,0
=069
~-0e8
=067
=046
=065
=064
-0.3
=042
—0.1
060
Oel
042
0.3
Oe4
O0e5
066
Oe¢7
0.8
0e¢9
1.0

=160
=069
-008
=067
-0.6
=045
=0.4
=03
-0.2
-0.1
060
Ol
0.2
063
O.4
0e5
0.6
Oe¢7
0.8
069
1,0

ALPHA=40 DEGREES,
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GAMMA=1
TENSION BEND ING
N T N T
©000e0cc0cc00c0000000000000 000
0ed4132 064924 062509 062036
0ed4132 064924 0e3089 061950
044132 064924 043303 0.1808
0e4132 064924 063250 061630
0e4132 04924 043007 061426
04132 0.4924 0¢2635 041206
0e4132 064924 02177 060975
0e4132 004924 O0el1667 060736
0.4132 0e4924 061125 040493
0e4132 064924 060566 060247
0e4132 064924 =060001 -0,0000
0e4132 064924 =0,0566 ~0,0247
064132 0e4924 =0e1125 -0,0493
0e.4132 0e4924 ~0e616537 =-0640736
064132 064924 ~0e2177 -060975
064132 064924 =0e2635 =-0e1206
0e4132 0e4924 ~063007 =0e1426
0e4132 064924 =063250 =-041630
0e4132 004924 ~-063303 -0.1808
064132 004924 =-063089 =-061950
0e4132 004924 -062509 =0¢2035
GAMMA=4 *
©000000000c00000000000000000000
04155 0e5322 0.4823 Qe 1564
0e¢4105 065271 0e461S5S 0el462
064082 065225 064165 061321
0e4078 065183 063569 061156
044085 065142 02898 060979
064100 065104 02200 Je0795
O0ed117 05066 061508 060610
0e4135 065029 000841 00426
0e4154 064993 060211 00246
064170 064957 =060375 060071
0¢4185 064921 =060912 -0,0098
064196 004885 ~061396 -0,0262
064205 064850 =-0.1821 =-0.0418
0e4209 064814 =-02180 =0.0566
0e4206 064778 =0e2461 -0.0705
0e¢4196 064742 =-062650 —-00835
0Oe4174 0e4705 =0e2726 =-00952
064137 064668 ~062666 —-0+1056
00,4081 064629 =0e2443 -001140
03998 0e4587 —-02028 =-0e1199
043883 04541 -0.1388 -0.1224

BETA=4
GAMMA=2 *
TENSION BENDING
N T N T
€000 0000000000000 0000000000 00
064207 065168 063589 061823
0e4147 065136 063869 061719
0ed4114 065107 063791 Oe1567
04098 045081 0e3473 04,1384
0e4094 065057 063006 0,1184
04098 065033 062452 060975
Oe4106 065011 0e1854 060762
0e4116 064989 061243 0,0549
0e4128 064967 060637 0,0337
0e4140 064945 00049 06,0129
064151 04923 —-00515 -0,0076
Oes4161 04902 =-041047 -0,0276
0e4169 04880 =-061540 =-0.0470
O0ed4175 04858 =0e1986 -0,0658
0e4178 04837 -0e2371 -0,0837
0ed4176 004814 =062675 -0,1007
0e4166 04791 -02874 -=-0.1165
0e4147 004768 =062934 -0,1306
O0e4113 0e4742 —-0e2816 =-041425
064061 0e4715S =0e2469 -0,1513
0e3984 064684 -041835 =-0.1558
GAMMA=8 *
00 ccccs0cc0000000000000000000
064070 Oe5415 05850 Oe¢1349
064053 065354 065186 0.1255
0¢405S 05297 064413 00,1130
064069 0e5244 03595 0.0988
0¢4090 0e5194 00,2774 0,0834
Oed4114 065146 061980 00,0675
0ed4138 065099 001231 Oe0514
Oes4161 0e5053 060537 06,0355
O.4181 0e5007 =-060097 06,0199
0e4199 064963 =060670 06,0047
064213 064918 -0e1179 -0,0099
0e4224 04,4874 =-061620 =-0,0237
064229 04830 =0e1993 -0,0369
0e4229 064786 =0e2289 =-0,0492
004221 0e4743 -002498 -0.0606
064202 064699 -0e2610 -0,0712
064171 0e4654 —-02608 -0,0806
064123 064609 -042475 -0.0888
0e4053 064562 -02193 -0,0953
0e¢3955 064513 —-0e1745 -060997
03821 0e4459 —-0,1112 =-0,1012



- 0O00O0O0O0OO0O0OOO

OCVaIOINOOLMPWNM~—-O

|
-
[ ]
o

-0,9
-0.8
-0e¢7
~0,6
=045
-0s4
-0.3
=042
-001
0,0
Oll
062
0,63
Oe4
0.5
0e6
O0e¢7
0.8
0.9
140

ALPHA=40 DEGREES.,
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GAMMA=1
TENSION BEND ING
N T N T
0000000000000 00000000000000000
0e4131 064924 063260 060696
O0.,4131 064924 063379 040664
O0e+4131 0e4924 03301 0e0610
0.4131 064924 063080 06,0543
0.4131 064924 (042761 Je0470
Oe¢4131 0e4924 (062373 040393
064131 0e4924 001939 060315
0.4131 064924 061475 060236
04131 04924 060992 06,0157
0.4131 0e4924 00498 00078
00,4131 0e4924 —-0.0005 060000
0.4131 04924 =00498 =0.0078
0.4131 0e4924 -0,0992 =-0,0157
Oeqa131 064924 -061475 -060236
0.,4131 064924 =061939 =0,0315
00,4131 064924 =062373 -060393
0.4131 04924 =062761 ~-0.0470
064131 0e4924 ~043080 =00543
0e.4131 064924 =0e3301 =060610
0s4131 004924 =-063379 -0.0664
O0e¢4131 04924 -0e3260 =~0.0696
GAMMA=4 *
©00000000000000000000000000000
064129 05026 064554 060432
064127 065015 064149 000410
044126 05005 03684 00378
064127 064994 063180 06,0339
0e4128 064984 062657 060296
064129 064974 062125 060249
00,4131 0e4964 0¢1595 00201
04133 064953 01072 00153
0e4135 04944 000562 00103
0eQ136 064933 00067 060054
0e4137 064923 -000410 00005
0e4139 064913 -0.0865 =000 5
064139 064904 =061295 =060C095
0e4140 064894 =0.1696 -0.0145
0e4140 04884 =062062 -060195
0.4138 0e4874 =042382 -040246
0e4136 064864 =-062646 -060296
064132 064854 =-02833 -0.0345
064126 064845 =02921 =060390
O0e8117 064834 ~0e2874 -0.0426
0e41048 064824 =-062647 -0e60446

BETA=20
GAMMA=2 *
TENSION BENDING
N T N T
0000 0000000 000000000000 0%000000¢
Oe4d4136 0e4937 0e4039 00536
0e4132 044930 03850 00,0509
0e4130 064924 063540 0.0468
0e4129 064917 063149 0,04817
0e4129 064911 062704 00,0361
Oed129 0e4904 Qe2226 060302
0e¢4130 04898 06,1731 00,0242
0e4131 044892 061229 0.0182
0e¢4132 04990 060727 0.0121
0e4133 044983 000231 0.0061
0e4134 064976 —040257 060001
0e4135 064970 =060729 =-0,0059
0e4136 064963 -0.1185 -0,0120
0e4136 064956 -0e1617 -0.0180
0e4137 064950 —-042020 =-0,0241
0e4136 004943 -0,2383 -0,0301
04135 064885 -02693 =-0,0361
0e4133 0,4879 —-0.2928 -0,0418
0e4129 04872 —=0e3063 =-0,0471
0ed4124 044865 =0e3061 =-0.0513
0e4115 044858 =0e2871 =0,0537
GAMMA=8 .
000000000000 0000000000000 000° 00
0e4123 065045 044854 0,0372
0e4123 0e5032 0e4320 00354
0e4124 065020 063763 0,0327
0e4126 065007 063195 0,0295
04128 004995 062627 060259
04130 04983 062065 040220
0e4133 064971 061516 06,0179
0e4135 064959 000982 00,0137
0e4137 064947 040468 060095
0e4138 064935 —00025 060051
0e4140 064923 —-040495 00008
0e4141 0,4911 -0,0940 -0,0036
0e4142 064900 —-0e61355 —-0,0080
0e4142 00,4888 =-0,1738 -0.0124
0e4141 04876 —02083 =0,0169
0e4139 0.4865 -0.2380 -0.0215
0e4136 064853 -062618 =-0.0260
0e4131 0,4842 -0.2780 =-0,0305
0e4124 064830 —-0.2842 -0,0346
0e4113 064818 —-0e2772 -0+0378
064097 044806 —062526 —-0.0396



-160
=069
-0.8
-067
-0e6
-0.5
=044
-0e3
-0e2
=01
(o)PY 0]
Oel
0.2
0e3
Oe4
065
0,6
Oe7
Oe8
069
10

-1.0
=069
-0,8
-0.7
-0.6

=065

-0e4
-0.3
-0,2
-0.1
0.0
Oel
0.2
063
Oe4
065
O0e6
Oe7
0.8
069
160

ALPHA=40 DEGREES,
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GAMMA=1
TENSION BEND ING
N T N T
0000000000000 00000000000000000
O0e4131 064924 03898 040164
064131 00,4924 03628 040156
0.4131 0e4924 063304 0.0143
0e¢4131 064924 0e2942 Oes0126
O0e¢4131 04924 O0e25534 040109
0e.4131 0e4924 0e2148 000090
Oe.a4131 0e4924 O0el1729 060072
0.4131 0e4924 001302 00054
0eqa131 0e4924 00871 00035
064131 0¢4924 060436 060017
0e4131 04924 ~=0.0004 040000
Oea131 04924 =060436 =0.0017
0e¢4131 0e4924 ~0.0871 -0.0035
O0e¢4131 0e4924 ~001302 ~-0.0054
0e4131 0e4924 =0e1729 =-040072
064131 0¢4924 ~0.2148 =0.0090
O0e4131 04924 ~0e2554 =06,0109
Oe4131 064924 =0e2942 -0e0126
0e4131 064924 =0e3304 -060143
0.4131 064924 =043628 -2.0156
O0e4131 04924 =043898 =0.0164
GAMMA=4
esecee @000 c0ec0c00000ccccnoooe
0e4132 0e4946 044254 00096
0e4132 064944 043835 060091
0.4132 0s4941 03405 00085
0¢4132 064939 062967 060077
064132 064937 062524 060068
0e4132 044935 0.2081 0.0058
064132 064933 041637 0.0048
0.4132 044930 0el1196 (060037
064132 064928 060757 060026
04132 04926 040322 00015
0e4132 06,4924 -0,0108 06,0004
04132 064922 =-060533 =-0.,0007
0e¢4132 064920 =040951 =-0.0018
0e4132 044918 -061362 -0.0030
064132 064915 ~-0e1764 =0,0043
0684132 064913 «062153 =-0,0056
0e4132 064911 =062527 =00069
004132 04909 -02880 —-0.0082
Oe4132 0e4907 =0e3204 -00094
Oe¢4131 0e¢4904 =03489 -0.0104
044130 0e4902 =0e3721 =06.0110

BETA=100
GAMMA=2 *
TENSION BENDING
N T N T

0000 c000c0s0000000000000000 00
0e4132 04938 064130 0,0120
0e4132 064937 063763 060114
064132 064936 063370 06,0105
0e4132 064934 062959 06,0094
0e4132 064933 02535 060082
0e4132 044931 O0e2104 060069
0e4132 04930 01669 00056
0e4132 044928 041233 0.0043
0e4132 064927 060796 06,0029
0e4132 064926 0640361 00016
0e4132 064924 -0,0071 00003
064132 064923 =0¢0500 =-0.0011
0e4132 064921 —-040924 -0,0025
0e4132 04920 =-0e1342 -0,0039
0e4132 064918 =-0e1752 =-0,0053
0e4132 064917 =-0e2152 -0,0068
0e84132 064915 =062537 =-0,0083
0e4132 064914 =0e2902 -0,0097
0e4132 004912 -043239 -0.0111
0e4131 0e4911 —=0e3537 =-0,0122
Oe4131 0e4910 =0¢3782 -0.0129

GAMMA=8
000000000000 000000000000000 00
0e4131 064950 04318 00083
004131 0e4947 03872 06,0080
Oe4131 0e4944 (063423 00,0074
0e4132 064942 062971 0.0068
0e4132 064939 02519 0,0060
064132 04937 062068 060052
0e4132 064934 061620 00,0043
064132 04932 001176 040034
0e4132 04929 060737 06,0025
0e4132 064927 060302 0,0015
0e4132 064924 —-060127 060005
04132 064921 =-0.0550 -0.0005
0e4132 04919 =000965 -0.0015
0e4132 064916 -061372 -0,0026
064132 064914 =-061769 =-0,0038
0e4132 064911 =-062154 -0,0049
064132 064909 =0e2522 =-0,0062
0e4132 064906 —-0e2869 —-0,0074
0e4131 064904 =003187 -0.0085
0e4131 0e¢4901 -0e3465 -0,0095
064130 044899 —063690 =-0,0100
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Table F4.--Largest difference between 8th- and 7th-order,
or 8th- and 6th-order polynomial solutions for
adhesive stresses.

Please note:

l. Differences are expressed as a percentage of the
8th-order results.

2. Omitted entries mean data not available--see
section 3.1.4 for the only information applic-
able to o = 5° cases.

3. The combination with [8-6] is designated by (*)
and is a pessimistic measure because [8-7] re-
sults are often substantially closer. [8-7] com-
bination appears in the table without (*).

4, The first value tabulated is the largest % dif-
ference for all stresses, from the largest ab-
solute value down to one-half of this maximum.

5. When there is a second error entry followed by
a value in parentheses, it means that if we ex-
tend our consideration to values a little less
than half the maximum, the error is larger, as
indicated. The number in parentheses shows how
far down one must go in the primary tables of
Appendix F to get this larger error. Interpreting
these items requires consultation of the primary

tables.
Tensile Loading
Y=2 =4 Y=8
o B Normal Shear Normal Shear Normal Shear
10° 4 10.4 0.24 5.7 -0.25 -7.8 0.50
-9 .0
(.021)
20 -=7.1=* 0.08%* -8.5* -0.13%* -3.4 0.07
8.8
(.020)
100 -0.89* -0.006* -0.57* -0.005* 0.67* -0.005*
20° 4 2.2 -.069 1.38%* 0.23* 5.5 0.10
0.21

(.207)
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Table F4 (Continued)

Tensile Loading

Y=2 v=4

Y=8

o B Normal Shear Normal Shear

Normal Shear

20° 20 0.2% 0.009%* 0.43* -0,02*
100 0.02 -0.001 0.02% 0.002%

30° 4 0.57* -0.06* 0.45 -0.05
20 0.06* 0.003* -0.21%* 0.02*
100 -0.006* 0.000* -0.03* 0.001%*

40° 4 0.32% 0.06% 0.14* -0.03*
20 -0.05%* 0.006* -0.07% 0.01%*
100 -.003* 0.000* -0.004* 0.000%*

0.49 -0.01
0.01 0.001

0.54 -0.06
-0.08% 0.004
-0.03* 0.002*

-0.41%* 0.10%*
- .005* 0.000%

Bending Load

10° 4 =-2.,6 0.15 -2.4 0.17
8.3 0.22 -3.6
(.016) (.082) (.189)
20 5.8% 0.77% 5.7*% 0.42%

9.1
(.015)
100 -5.24* -0.60* -0.66* -0.16*
20° 4 7.7 0.28 -3.4* 0.37*
20 1.4% 0.64%* -3.9 0.73
100 2.5 -0.59
30° 4 -8.64%* 1.1% -3.1 .071
20 -2.4 0.81 -3.7% 2.4*
-3.1
(-.094)
100 1.3 1.5 -3.6* 5.1%
40° 4 -5,9*% 2.6% -1.4 1.1
20 -4,2%* -4.,4% -4.4 4.8
100 -1.1%* -5.7*% -1.1%* 6.3%

-9.7 0.16
.35

(.102)

1.6 0.45

-3.7 -0.34
2.9 0.96
-2.4 l.l
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Table F5.--Root-Mean-Square values for percentage differ-
ences between 8th-order and lower-order poly-
nomial solutions. (Table added in proof for
convenience of user.)

The largest value of T or N in Table Fl is located and
multiplied by 0.4; stresses smaller than this "cutoff"
value are ignored. The difference between the Table F1
values and the available lower-order solution (7th- or
6th-order) are expressed as a percentage of the Table F1l
values. Then the root-mean-square quantities RMSN and
RMST are formed from these larger-stress percent
differences:

RMSN = [](normal stress % differences)z/(No. differences
considered)]l/2
RMST is formed similarly. These are probably the best
available indices of merit of the primary results in Table
Fl; Table F4 is useful but excessively conservative.
Omitted cases below: no comparison solutions available.

Tension Bending Tension Bending
a B Y RMSN RMST RMSN RMST o B Y RMSN RMST RMSN RMST
5° 20 4 13.81 0.25 19.13 0.26
10° 4 2 2,91 0.07 2.36 0.14 30° 4 2 0.19 0.01 2,63 0.61
4 3.65 0.15 9.29 0.12 4 0.16 0.02 1.07 0.50
8 3.61 0.33 3.47 0.20 8 0.20 0.03 0.99 0.68
20 2 1.80 0.04 5.46 0.38 20 2 0.02 0.00 0.69 0.51
4 2,44 0.08 16.12 0.64 4 0,07 0.01 1.40 1.75
8 2.29 0.04 5.97 0.31 8 0.02 0.00 0.34 0.53
100 2 0.22 0.00 1.95 0.33 100 2 0.00 0.00 0.44 0.85
4 0.14 0.00 0.42 0.18 4 0.01 0.00 1.15 2.86
8 0.17 0.00 0.31 0.12 8 0.01 0.00 1.21 2.79
20° 4 2 0,06 0.05 2.64 0.23 40° 4 2 0.11 0.03 2.36 1.67
4 0.89 0.13 2.16 0.53 4 0.04 0.01 0.54 0.67
8 1.37 0.08 1.42 0.24 8 0.13 0.05 1.00 1.77
20 2 0.07 0.01 0.94 0.54 20 2 0.01 0.00 1.37 2.81
4 0.11 0.01 1.18 0.39 4 0.02 0.00 1.38 2,87
8 0.14 0.01 1.03 0.56 8 0.03 0.00 0.54 1.15
100 2 0.01 0.00 0.67 0.28 100 2 0.00 0.00 0.37 3.34
4 0.02 0.00 0.52 0.20 4 0.00 0.00 0.36 3.26
8 0.03 0.00 0.41 0.12 8 0.00 0.00 0.36 0.34




APPENDIX G
COMPUTER PROGRAM

The main computer program used in this research
is given below. It is written in Fortran for the CDC 3600
computer. The dollar sign ($) is a legal statement sepa-
rator for this computer; each time you encounter it, put
what follows on a new card in writing for most other com-
puters. Because of space limitations, the various auxiliary
programs used in this research have had to be omitted here.
These include the program for the integral equation method,

and more detailed commentary on the main program.
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PROGRAM RITZ
DIMENSION X(21)sY(450¢1)¢B(17702) ¢XB(177¢2)eXI(21)4Z(4541)4+C(45,1)
1eD(4541)4SIGO(21)eTAUO(21)eYA(21)eYB(21)4XA(21)4¢XB(21)BL(21),
2AL(21)¢SIGXA(21)+SIGXB(21)sTAVA(21)4+TAVB(21)4TAHLA(21)4+T12(21),
STAHUA(21)+TAHLB(21) ¢ TAHUB(21) +SIGYUA(21)4SIGYLA(21),SIGYUB(21),
4S1GYLB(21)
COMMON /1/ A(16000)

c PARAMETERS OF T8E JOINT
READ 1+14Ul 4 U2+HETAWHsSIGEEAG4SME
READ 880 4ALPHA
READ 880,4BETA
READ 880 ,GAMMA
HER=BETA $ UJ=GAMMA

Cc GEOMETRY OF THE JOINT
CCCCC=COT(ALPHA) $ CHI=2,4CCCCC $ XDIS1=CHI+CCCCC
G=1, $ MJU=0
DO 895 J=1,41

895 MJU=JU+MJ

NG=MJ*4
NE=zMJU+1+2
ND=MJ+1
NC=MJU+2
NB=MJ#4-3
NA=zMJU*2-3
NH=MJ-1
NI=MJU+1-2
NO=MJ-2
NP=MJU-3
L=1+1
NR=MJ*3-3
R1=1.-Ul»Ul
R2=1e.-U2%U2
R3=1.-Ul
R4=1,-U2
CcSQuU=CCCCcCxCCCCC
Hl=(1e/BETA)# (SINF (ALPHA)*#%#2+ (COSF (ALPHA)*%2/EAG) )/SINF (ALPHA)
H2=(1¢/BETA)*COSF (ALPHA)*(1e—(1e/EAG))
HH=(1 ¢ /BETA)# (SINF (ALPHA) ¥%¥2+EAG*¥COSF (ALPHA) %¥%#2) /(SINF (ALPHA) *EAG)
M1=0

C GENERATION OF RITZ MATRIX COEFFICIENTS
DO 499 MN =1,1
EM=MN-~1
L1 =1-=MN+1
DO 9495 NM = 1,L1
EN=NM-1



70

71
73

90

91
93

80

8l
83

N © o

N1=0

DO 150 KU = 1,1
EK=KJ-1
I1=KJ+MN=]
12=11=1

13=12-1
CCC12=CCCCCx#]12
CcCccl13=CCccl2scccc
CI1=CHI*%13
C12=C11%CHI
Cl10=Cl2*%CHI
CH1=(-CHI)®**I3
CH2==CHI #CH1
CH11=-CH2%#CHI

L2 = I-KJ+1

DO 100 UK = 1,4L2
MM=M1+NM

NN = N1+JUK
MM2=MM+MJ#2-3
MM3=MM+MU*3=-3
NN2=NN+MU*2-3
NN3=NN+MJU#3=3
L3 = KJI+UK+MN+NM
La=L3-1
J1=NM+UK=-1
J2=Jl-1

J3=J2-1

EJ=UK=1

IF (2%(J2/2)=-02)
AS2=0

GO TO 73
AS2=24/J2

CONT INUE

C

-3

71470471

IF  (2%(JU3/2)-J3) 91490,91

AS3=0

GO TO 93
AS3=2,/J3
CONT INUE

IF (2%(L3/2) -L3) 81.80,81

AL3=0

GO TO 83
AL3=2,/L3

CONT INUE
IF(2*%(L4as2)=-L4g)
AL4=0

GO TO 8
ALA4a=2,/L4

IF (2%(J1/2)-U1)
AS1=24/J1

64746

2¢342

204
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GO TO 4
3 AS1=0
4 PHI1=AL3%CCCl2
PHIO=AL4%#CCC13
CHI2=AS3%#CH11
Cl16=AS3%*C10
CIS5=AS2%#Cl2
CH21=AS2%#CH2
CHI1=AS1#%#CH1
CI3=zAS1%Cl11
IF (13) 19,20,19
19 EI3=1./13
GO TO 21
20 E13=0
21 CONTINUE
E132=E13#0.5
MS=MM
NS =NN
MM=MM-1
NN=NN-1
IF(MS=1) 254390+25
25 IF (MS-=L) 27+340,330
27 1IF (NS=1) 29,390,29
29 IF (NS-L) 314¢340,33
31 MM]1=MS+MJU-2
NN1=NS+MU-2
GO TO 350
33 MM] =MS+MU=2
NN1=NS+MU-3
GO TO 350
340 IF(NS—-1) 37043904370
330 MM]1 =MS+MJU-3
IF (NS=1) 310¢390,4,310
310 IF (NS-=L) 31543704320
315 NN1=NS+MU-2
IF(MM1=NN1)161,1614+370
320 NNI1=NS+MU-3
IF(MM1=NN1) 16141614370
350 IF(MM1-NN1) 16141614370
161 MSY=IPOS (MM]1 4NN1)
A(MSY)=(PHIO®CSQU=CHI2)¥EN¥(EJ*1¢/11)+RIHREKHKEMXE[32% (PHIO
1=CHI1)+HH®*PHI 1
370 IF(MM=NN) 171,4171+,390
171 MSY=1POS (MM4NN)
A(MSY)=(PHIO-CHI 1 ) ¥EK*EM*¥E I3+ (PHIO¥CSQU-CHI2) #*R3*¥EN®EJ/ (2%
111)Y+H1*PHI 1
390 CONTINUE
IF(MM2=NNZ2) 391+391,392
391 MSY=1POS (MM24NN2)
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A(MSY)SUJUREKHEMXE I3 (CI3-PHIO)+ENX¥EJX¥UJI*(RG*0eS/11)%(CI16-PHIO*
1CCCCCH*2)+H1%*PHI 1
392 CONTINUE
IF(MM3-NN3) 393,393,394
393 MSY=]IPOS(MM34NN3)
A(MSY)=UUXEJXEN¥(1e/11)% (CI6-PHIO®CCCCCH#*2)+UJREKREMRE(RG/2)*
lIEI3#(CI3-PHIO)+HH*PAI 1
394 CONTINUE
IF(12) 22423422
23 E12=0
GO TO 24
22 El2=14/12
24 1IF(MS=1) 237,53,237
237 IF(MS—=L) 239445447
239 IF(NS-1) 241+53,.,241
241 IF(NS-L) 43,46,448
43 MM] =MS+MU=2
NN1=NS+MU=-2
GO TO 49
45 IF (NS—-1) 444,53,444
44 [F (NS-L) 52+53+54
52 NNl =NS+MJ-2
IF(MM=NN1) 291,291,553
54 NN1=NS+MJU-3
IF(MM=NN1) 291 ,291,53
46 MMl =MS+MU-2
GO TO 51
47 MM]1=MS+MJU-3
IF (NS—=1) 55453455
SS IF(NS—-L) 56451,57
56 NN1=NS+MyU-2
GO TO 49
S7 NN1=NS+MU-3
GO TO 49
48 MM]1=MS+MJy-2
NN1=NS+MJU-3
49 IF(MM=NN1)291 4,291,292
291 MSY=1POS(MMyNN1)
A(MSY)=(PHIO#CCCCC-CH21 )%¥ (U1 #EJXEM+ (R3/2)*EK*EN)*EI2-H2#PHI 1
292 CONTINUE
S1 IF(MM1-NN) 401+401,53
401 MSY=IPOS (MM1 ¢NN)
A(MSY)=(PHIO*®CCCCC-CH21 ) # (U1 *¥EK*EN+(R3/2)#EJXEM) *E[2-H2%PHI 1
53 CONTINUE
IF(MM2-NN3) 353:353,354
353 MSY=1POS(MM2NN3)
A(MSY)=(CIS=PHIO®CCCCC) ¥ (UZ2¥UJXEUXEM+UI*(R4G/2) *EKXEN) #¥E] 2-H2%PHI 1
354 CONTINUE
IF(MM3-NN2) 355,355,356
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355 MSY=1POS(MM3,NN2)
A(MSY) = (UJRUZREKHENF+UI* (RG/2)XREIREM)IHEI2% (CIS-PHIO#CCCCC)I-H2%PHI 1
356 CONTINUE
IF(MS~-1) 455,490,455
455 IF(MM=NNZ2) 491 4,491,492
491 MSY=1POS(MM(NN2)
A(MSY)=—-H1#PHI1
492 CONTINUE
IF(MM=NN3) S501,4501,502
501 MSY=IPOS (MM,NN3)
A(MSY)=H2#PHI1
502 CONTINUVE
IF (MS-L) 46044904465
460 MM =MS+MyY-2
IF(MM1-NN2) 511,511,512
511 MSY=IPOS (MM1,NN2)
A(MSY)=H2#PHI1
512 CONTINUE
IF(MM1-=NN3) 521521522
521 MSY=IPOS(MM]1 (NN3)
A(MSY)=—HH*PHI 1
522 CONTINUE
465 MM] =MS+MU-3
IF(MM1-NN2) 531,531,532
S31 MSY=IPOS (MM1 ,NN2)
A(MSY)=H2#PHI 1
532 CONTINUE
IF(MM1-NN3) 541,541,490
S41 MSY=1POS (MM]1 ¢NN3)
A(MSY)==HH*PHI 1
490 CONTINUE
100 CONTINUE
150 N1=N1+L2
495 N1=0
499 M1=M1+L1
C LOAD TERMS FOR TENSION AND BENDING LOADING
M1=0
DO 600 MN =141
EM=MN-1
ME =EM
LQ=1+1-MN
DO S90 NM = 1,LQ
EN1=NM
NMP=NM+1
NM2=NM+2
EN2=NM2
ENP=NMP
MM=M1 +NM
MS=MM
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MM2=MM+MU*2=3
MM3=MM+MJ*3-3
MM=MM-1
520 Cl=(=CHI ) **ME
C3=CHI *#*ME
CS55=(le=(=1,)#%¥NMP)*C1 /ENP
C77=(le=(=1,)%#%NMP) *C3/ENP
Cll=(le=(=14)%%¥NM )*C1/EN1
C33=(le—=(=14)%%NM )XC3/EN1
B(MM2,1)= R1%#SME#C33
B(MM2,2)=-R1%SME*C77
B(MM3,1)=0
B(MM3,2)=0
IF(MS=1) 540,590,4540
540 IF(MS-L) 550+¢580,4560
550 MM1=MS+My-2
GO TO 565
560 MM1=MS+MJU-3
565 B(MMy1)=R1I*¥SME*#C11%(=1,)
B(MM,2)=R1#SME*C5S
B(MM1,1)=0
B(MM1,2)=0
GO TO 590
580 CONTINUE
B(MM4 1 )=R1I*SME*C11%(-1,)
B(MM,2)=R1%#SME*#C55
590 CONTINUE
600 M1=M1+LQ
RITZ COEFFICIENT SYMMETRIC MATRIX INVERSION
CALL SYMINV(NB)
CALCULATION OF DISPLACEMENT FUNCTION COEFFICIENTS
DO 631 19=1,NB
DO 631 K9=14M
631 X8(19+K9)=0
DO 621 18=14+NB
DO 621 J8=1+NB
DO 621 K8=14,M
118=1P0OS(18,JU8)
621 X8(18+KB)=X8(18+K8)+A(118)*¥B(J8+K8)
DO 641 17=1,4NB
DO 641 J7=1M
641 B(I17:sJ7)=X8B(17sJ7)
CALCULATION OF ADHESIVE AND BOUNDARY STRESSES
DO 2000 M=1,2
Y(141)=0
DO 790 J=1,,.NB
IF (J=-NH) 70547054710
70S I11=U+1
Y(I1e1)=B(JeM)



715
720

725
730

735
740
745

750

790

795

209

GO TO 790
Z(I1.1)=0

IF (J=N]) 715,715,720
11=0-NO

GO TO 730
Z(Le1)=0

IF (JU=NA) 725,725,735
11=0~NP
Z(1141)=B(JeM)
GO TO 790

IF (J=-NR) 740,740,745
I11=U=NA
C(llel)=B(JeM)
GO TO 790

IF (J-NB) 75047504790
I11=U-NR
D(I1s41)=B(J4M)
CONTINUE

K=1

DELX=0

DSX=0

DX1=0

DI=0O

NZ=NZ+1.
SIGO(K)=0
TAUO(K) =0
SIGXA(K)=0
SIGXB(K)=0
TAVA(K)=0
TAVB(K) =0
SIGYVUA(K)=0
SIGYUB(K)=0
SIGYLA(K)=0
SIGYLB(K)=0
TAHLA(K) =0
TAHUA(K) =0
TAHUB(K) =0
TAHLB(K)=0
SI1G(K)=0
TAU(K)=0
S1y(K)=0
X(K)==1e+DELX
AL(K)=-CHI+DSX
BL(K)=CHI-DSX
DELX=DEL X+ 1
X(11)=0.001
YA(K)=X(K)
YB(K)=YA(K)
XA(K)=-CHI +DX1
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XB(K)=CHI-Dx1
X1(K)==CCCCC+D1
IF(XI(K) ¢EQe 0) XI(K)=0,001
DX1=DXx1+XDIS1,/20.
DSX=DSX+(CHI-CCCCC) /20,
DI=DI+CCCCC/10.
MM=0
DO 825 MlI=1.1
LL=1+1-M]
MMN=MI-1
MT=M1=-2
EM=M]~1
DO 825 N=1.,LL
MNN=MI+N-2
MM=MM+1
NN=1
NT=N=2
EN=N-1
MN=MI~-1
NM=N-1
C ADHES IVE NORMAL AND SHEAR STRESS CALCULATIONS
XCOT=X(K ) *¥¥MNN#*#CCCCC#*#* AMN
SIGO(K)=SIGO(K)+((Z(MM¢NN)=D(MM¢NN) ) *COSF (ALPHA)~=(Y(MM{,NND~-C (MM
1oNN))#SINF(ALPHA) )#XCOT/(HER®*R1)
TAUO(K)=TAUO(K)+( (Z(MM¢NN)=D (MM NN) ) *SINF (ALPHA)+ (Y (MM,NN)~-C (MM
14NN) ) #COSF (ALPHA) )*¥XCOT/(EAGH*HER#*R1)
(o BOUNDARY STRESS CALCULATIONS FOR BOTH ADHERENDS
YANM=YA (K ) ##NM
YBNM=YB (K) #%NM
YANT=YA(K) #%NT
YBNT=YB(K) #%#NT
XIMT=YANM#®X] (K) **MT
XINT=YANT*X] (KK) #¥MN
XAYA=YANM* ( (=CHI ) #%¥MT)
YAXA=YANT* ( (=CHI ) ##MN)
XBYB=YBNM* (CHI %%MT)
YBXB=YBNT*(CHI#%¥MN)
AYA=AL (K)#¥MT* (—~H ) **NM
YAA=(—H) ®#¥NT*AL (K ) ##MN
BYB=BL (K) #¥MT #H¥%#NM
YBB=H®#*NT*BL (K ) *¥MN
XYA=XA(K) *¥MT 3% H¥*%¥NM
YXA=H®*¥NT#XA (K) *¥MN
XYB=XB(K) ¥¥MT* (=H) ¥#NM
YXB=(—=H)#®#NT#*XB (K ) *#MN
TAVA(K)=TAVA(K)+ (EN*YAXA*Y (MM NNH+EM/G*¥Z (MM NN) #XAYA)/(2eM(1e+U ))
SIGXA(K)=SIGXA(K)+ (EM®¥XAYA*Y (MM¢NN)/G+U1*EN¥YAXAXZ(MM4NN))1IR1
SIGXB(K)=SIGXB(K)+ (EM¥XBYB*#C (MM ¢45SN)/G+UZ2XEN*YBXB¥D (MM NN) ) ¥UJ/R2
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OTAVB(K)=TAVB(K)+ (EN*YBXB¥C (MM ¢NN)+EM/GX¥D (MM sNN) #¥XBYB)#¥UJ/ (2% (1 ¢+U
12))
SIGYLB(K)=SIGYLB(K)+(EN*YXB*#¥D (MM NN)+UZ2*¥EM¥XYB/G*¥C(MM(NN) ) #UJ/R2
SIGYLA(K)=SIGYLA(K)+(EN*YAA % Z(MMJNN)+Ul*EM*AYA #Y(MM4NN)/G)/R1
SIGYUA(K)=SIGYUA(K)+ (EN*¥YXA % Z(MM(NN)+ULl*EMEXYA #Y(MM{NN)/G)/R1
SIGYUB(K)=SIGYUB(K)+ (EN*YBB*D (MM NN)+UZ2*EM*¥BYB*#C (MM ,NN) /G) #UJ/R2
TAHLA(K)=TAHLA(K)+ (EN®#YAA%Y (MM (NN) +EM*¥AYAXZ (MM 4NN)/G)/(2e%(1e+Ul))
TAHLB(K)=TAHLB(K)+ (EN#YXB#C (MM (NN) +EM¥XYB*D (MM NN)/G) #UJ/ (2,
1%(14,+U2))
TAHUA(K)=TAHUA (K) + (EN*YXA#*Y (MM (NN)+EM*XYA*Z (MM (NN)/G)/(2e*(1e+Ul))
OTAHUB(K)=TAHUB (K )+ (EN*YBB*#C (MM NN)+EMX*BYB*D (MM NN) /G ) #UJ/2
1#(14+02))
825 CONTINUE

K=K+ 1

IF (K=22) 795,8264+826
826 CONTINUE

NGG=ALPHA%*180,/3.,133

AGG=NGG

PRINT 912.AGG+HERUJ I

DO 83S 11=14NB,.7

JJ=M

83SO0PRINT 836 +114JJeBlITeJJ) ¢BlII+1,JJ)¢B(lI+24JJ) B(lI+3,JUJ)B(l1+4a,
10J)eB(II454JJ)eB(I1+64JJ)

PRINT 840+ (X(K)+sSIGO(K) ¢ TAUO(K) sSIGXA(K) ¢SIGXB(K) 4 TAVA(K) s TAVB(K) o
1K=1,421)

PRINT 8454 (XA(K) s TAHUA(K) ¢SIGYUA(K) ¢K=1,21)

PRINT 850+ (XB(K) s TAHLB(K) ¢SIGYLB(K) ¢K=1,21)

PRINT 855, (AL(K) +TAHLA(K) ¢SIGYLA(K) 4K=1,421)

PRINT 8604+(BL(K)+sTAHUB(K) ¢SIGYUB(K) ¢K=1,21)

1 FORMAT (12+5E14.8/2E14.8)
836 FORMAT (2HB(sI3sHes12¢2H)=eT7E17e8)
840 FORMAT( 3XsHXs16Xs4HSIGO 116X +4HTAUO 16X +sSHSIGXA+16XeSHSIGXBs16Xs4aH
1TAVAW16Xs8HTAVB// /7777777 (3XsT(E176802X)))
845 FORMAT (29X ¢2HXA ¢ 36X +SHTAHUA ¢32XO6HSIGYUA+//7/(20Xe3(E17¢8420X)))
850 FORMAT (29X +2HXB+s36X+sSHTAHLB 32X +6HSIGYLBs///(20X¢3(E1768¢20X)))
855 FORMAT (29X +2HAL ¢ 36X eSHTAHLA 32X 6HSIGYLA +/// (20X e3(E17e8+¢20X)))
860 FORMAT (29X +2HBL +36X+sSATAHUB 32X +6HSIGYUB+/// (20X +s3(E178+:20X)))
880 FORMAT(E14.8)
912 FORMAT(1Xs6HANGLE=4F2¢0¢3X+SHBETA=4F3¢043X+6HE2/E1=¢F2¢0¢3X¢6HORDE
1R=412)
2000 CONTINUE
END
C FUNCTION FOR CONVERTING SYMMe MATRIX TO LINEAR FORM
FUNCTION IPOS(JK)
IF(J=K) 10,410,411
10 IPOS=(K¥(K=1))/2+J
RETURN
11 IPOS=(J*(J=-1))/2+K
END
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SYMMETRIC MATRIX
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INVERSION SUBROUTINE

SUBROUTINE SYMINV (N)
DIMENSION P(177)eQ(177)+IR(177)
COMMON/1/ A(16000)

Na4=(N*(N+1))/2
DO 10 1=1¢N

10 IR(1)=0

GRAND LOOP STARTS

DO 100 I=1.N
BIGAJJ=0,
DO 20 J=14N

IF (IR(J)eNELO)

M= (JU*(J+1))/2
Z=ABSF (A(M))

GOTO 20

IF (ZeLE.BIGAUJY) GOTO 20

BIGAJJ=Z
K=J

20 CONTINUE

IF (BIGAUJUeNE0Oe) GOTO 21

PRINT 6

6 FORMAT (19H MATRIX IS SINGULAR)

RETURN

PREPARATION OF ELIMINATION STEP 1

21 IR(K)=1

M= (K*(K+1))/2
Q(K)=1e/A (M)
P(K)=1e
A(M)=0e

L=K~1

IF (LeLE+sO) GOTO 35

M= (K¥(K-1))/2
DO 30 J=1.L
M=M+1
P(U)I=A(M)
Q(J)Y=A(M)*Q(K)

IF (IR(J)eNEEO)

Q(UY==Q(J)

30 A(M)=0.
IF (K+1=NeGTe0)
35 L=K+1

DO 45 J=L N

M=(JU¥(J=-1))/2+K

P(J)=A(M)

IF (IR(J)eEQeO)

P(J)Y==P(J)

Q(J)==A(M)*Q(K)
45 A(M)=0.
50 DO 100 J=14N

GOTO 30

GOTO SO

GOTO 47
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DO 100 K=J«N

M= (K¥(K=1))/72+J
A(M)SA(M)Y+P (J) *¥Q(K)
END OF GRAND LOOP
RETURN

END
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