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ABSTRACT

RATES OF CONVERGENCE IN SEQUENCE-COMPOUND SQUARED-DISTANCE

IDSS ESTIMATION AND TWO-ACTION PROBLEMS

BY

Vyaghreswarudu Susarla

We consider a sequence of repetitions of a statistical

decision problem which has the structure of one of the statistical

decision problems described below. These statistical decision prob-

lems will be referred to later on as component problems.

When the family of distributions 6’ is, (1) the family of

mevariate normal distributions with covariance matrix I and mean

9 in o = [‘9‘ s a], the problem is to estimate 9 with squared-

distance loss, (2) the family of F(a) distributions with scale

parameter 9 in ® 8 [a,b] where o.< a < b < m, the problem is

to estimate 9 with squared-distance loss and (3) same as (2) except

that the problem is a linear loss two-action problem. For any dis-

tribution G on @, let R(G) denote the Bayes risk in the com-

ponent problem.

§_= {fin} is a sequence of independent random.variables with

distributions {Pen} in :‘9. Let Gn be the empiric distribution

of 91,...,en. Let s be a positive integer and y be in (0,1).

All the orders stated here are uniform in the parameter sequences

.Q in 3 ®. >

When the component problem is described by (1), we ethbit

**

procedures ln , ln and oln’ which are functions of X1,...,§n,



Vyaghreswarudu Susarla

such that Dn(fi,y_**) = n'lzt; EH? - 93|2 - R(Gn)’ Dn(§,§_) and

”Jim are 0(n'1’ (“H"), ocn'(2‘1>v/<Zs+m)(1+v>)

- (3:1) /2 (s+m+1))

and

0(n respectively. Whenever m 2 5 and

**

(s-1)y(mH4) 2 2(23+m)(1+y), i. is better than i_ in the sense

**

that SUpiDn(§9i- )‘gj converges to zero at a faster rate than

sup{Dn(§)1f*)\§J does. Similar comparison has been given between

** **
i_ and 0?. The results stated above for 1_ and i' have been

extended to the case when the covariance matrix I is replaced by

021 (02 unknown) and the means an lie in lower dimensional sub-

spaces having the same dimension.

When the component problem.is given by (2), we exhibit a pro-

cedure W: such that Dn(§J1f) = 0(n-a/2(8+1)) when a,b and a

satisfy certain conditions. For the same set of conditions on a,b

and a, when the component problem is described by (3) with loss

function L, we define a procedure fin such that n-lfiq E L(9j,¢j) -

Men) = 0(n'S/2(S+1)).
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INTRODUCTION

In Chapter 1,.9 = {P9} is the family of m-variate normal

distributions with covariance matrix I and mean 9 in

O = [‘9‘ s a] and the component problem is squared-distance loss

estimation of e. In Chapter II,'0 is the family of f(a) dis-

tributions with scale parameter 9 in ® = [a,b] where

0 < a < b < m and the component problem is either squared-distance

loss estimation or a linear loss two-action problem. For any dis-

tribution G on @, let *G and R(G) denote the Bayes estimate

and the Bayes risk in the component problem.

The sequence-compound problem consists of a sequence of

repetitions of the component problemtwith the loss taken to be the

average of the component losses. 3.. {En} is a sequence of in-

dependent random variables with distributions, {Pe } in fir? and

the nth component decision §n depends only on §:,...,§n. With

Gn denoting the empiric distribution of 61,...,en, let

n

_ l(0.1) Dn(§_,§) - n jEIEEMejéjn - Men).

Dn(§3§) is known as the modified regret of 5,

Since the work reported here is a continuation of Gilliland

(1966, 1968) and Johns (1967), we describe some of the main results

contained in these references. All the orders stated below are

uniform in the parameter sequences concerned. For the purpose of

this introduction only, abbreviate 0(n-a) to order -a.
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When 6’ is the family of univariate normal distributions

with variance unity and mean 9 in [-a,+u] and the component

problem is squared-distance loss estimation, Gilliland (1966)

exhibited a procedure whose modified regret is order -1/5. When

‘9 is a certain family of discrete distributions and the component

problem is the linear loss two-action problem, Johns (1967) exhibited

a procedure whose modified regret is order -1/2. When 6' is a

certain discrete exponential family and the component problem is

squared-distance loss estimation, Gilliland (1968) exhibitadtwo pro-

cedures whose modified regrets are order -1/2.

Now we briefly describe the main results obtained in this

work. In Chapter I, the Bayes estimate against Gn_1 is

with p denoting the mixed density ‘pedGh_1, q denoting the

matrix of partial derivatives of p and indication of the evalua-

tion of both at En abbreviated by omission.

In section §1.2, we define ¢:* based on a divided difference

estimate of 5/5 whose Dn is order -(mfl4)-1. This generalizes

the result of Gilliland (1966) for 'm = 1 case.

In section §1.3, for each positive integer s and y in

(0,1), we define 1n based on kernel estimators for p and q

analogous to Johns and Van Ryzin (1967) estimates of ~‘pedG and

its derivative in empirical Bayes two-action problem in exponential

families and show Dn(§”!> is order -(s-1)y/(23+m)(1+y). For each

integer s > 1, we exhibit 0?“, specializing i_ but for the latter's

retraction to [5,m), whose Dn is order -(s-1)/2(s+m+1).



l
l
“
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2/m+4** -

In section §1.5, we show that Dn(9’i- ) 2 c n where

c is a constant depending on a- Hence, whenever m 2 5 and s

and y are such that (s-1)y(m+4) > 2(Zs+m)(1+y), i_ is better than

**

i in the sense that sup{Dn(§,§)‘§J converges to zero at a faster

**

rate than SUP{Dn(§Jl- )‘Q}. A similar comparison is made between

*4:

‘1 and 2%:

Section §1.6 extends the main results of sections §1.2 and

§1.3 to the case when the covariance matrix I is replaced by

021 (02 unknown) under the additional assumption that the means

lie in lower dimensional subspaces having the same dimension.

In Chapter II, as already indicated earlier, 6’ is the

family of F(a) distributions with sclae parameter 9 in

® = [a,b]. In section §2.1, the component problem is squared-

distance loss estimation. For each positive integer s, we define

V: based on kernel estimates for two densities and show that

Dn(§gif) is order -s/2(s+l) whenever a,b and a satisfy certain

conditions. In section §2.2, the component problem is linear loss

two-action. For each positive integer. s, we define 1n based on

kernel estimates for two densities and show that Dn(§’i) is order

-s/2(s+l) whenever a,b and a satisfy the conditions imposed on

them in section §2.1.

Throughout this work, we let Q and ¢ denote the standard

normal distribution and its density respectively. We suppress the

arguments of functions whenever it is convenient not to exhibit them.

Indulging in the abuse of notation, we let sets denote their own

indicator functions and, infrequently, are forced to let the value of

a function denote the function. For any measure n, we let u[f]

or pf denote ‘fdp.





CHAPTER I

RATES IN THE ESTIMATION PROBLEM FOR A FAMILY OF

m-VARIATE NORMAL DISTRIBUTIONS



§1.0 Introduction and Notation.

For fixed a < m and for fixed positive integer m,

let ‘9 = {Pe“e‘ s a} be the family of distributions with P9

denoting the mdvariate normal law with mean 9 and covariance

021, where I is the m X m identity matrix and 02 > 0.

We consider the following estimation probleunwhich will

be called the component problem hereafter. Based on an observa-

tion of a random vector R whose distribution Pe belongs to

‘9, the problem is to estimate 9 with squared-distance loss.

For any distribution G on the m-Sphere of radius a,

let and R(G) denote the Bayes estimate and the Bayes

q'G

risk versus G in the above estimation problem. Since the

problem considered here is the squared-distance loss estimation

problem, *6 is given by the conditional expectation of 9

given 5. If pe denotes the usual density of P9 wrt

Lebesgue measure on (Rmdgm), then the conditional expectation

of 9 given § is G[epe]/G[pe] which, can be expressed as

2

X +'o qG where qG is the vector of partial derivatives of

log G[pe] wrt the various coordinates of X. Hence,
N

2
.1 = + 0

We consider a sequence of component problems as des-

cribed above. That is, let {Kn} be a sequence of independent

random variables with Xn distributed as Fe belonging to 9

n

and the problem is to estimate every component of {9“} with

loss taken as the average of squared-distance losses in individual

n

components. For each n, let the product measure x Pi’ Where

i=1



Pi is an abbreviation for P8 , be denoted by En' Let

1

g = {gm} be a sequence-compound procedure (abbreviated to

procedure hereafter). For any parameter sequence g = {en}

and for any non randomized procedure §'= {gm}, define

1

n

- 2

(0.2) Dn(_€i,§> = n z gjugj - ejl 1 - R(Gn)
j=1

where Cn is the empiric distribution of 91,...,en. D (§,§)

is called the modified regret of the procedure g.

The orders stated in the results of sections §1.1, §1.2,

§1.3 and §1.4 are uniform in all parameter sequences g in

x [‘en‘ 5 a] and the order stated in section §1.6 is uniform

In all parameter sequences §_ belonging to X ([‘en‘ S a] 0 RE),

where, for each n, Eh is a d (d < m)-dime:sional subsPace of

Rm. To reduce the complexity of the statements of various re-

sults in this chapter, the range of the parameter sequences

will not be exhibited, but is understood to be as in the pre-

ceeding sentence. Henceforth, we use these conventions.

In section §1.1, we get an upper bound for ‘Dn(§,§)‘

under the assumption that g is in X [-a,+a]m and a useful

n

lemma, both results holding for each 0 . In section §l.2,

.-
** -___

we exhibit a procedure y_ for which Dn(§,yf*) = 0(n m+4)

when 02 = 1. In section §1.3, for each y > 0, we exhibit a

procedure i_ for which Dn(§,i) = 0(n-(%-Y)) again for

02 = 1. In section §l.4, for each positive integer s, we

- -l 2 +s+1

exhibit a procedure 0% for which Dn(§,o$) = 0(n (S )/ (m ))

for 02 = 1. Section §1.5 shows that



2

Dn(9,yf*) 2 c n m+4 for all n, where Q.= {0‘ and c is a

positive constant. Section §1.6 has two subsections. These

subsections extend reSpectively the main results of sections

§1.2 and §l.3 to the case when 02 is unknown and when, for

each n, en lies in fig intersected with m-sphere of radius a.

Let n denote the Lebesgue measure on (ngam). For

m

any two points u,v in R with coordinates u1,...,um,

m m

v1,...,vm respectively, let ‘u‘2 = 2 ui, “u“ = “E ‘ui‘

m i=1 1— _

and (u,v) = 2 uivi. The inequalities ‘u‘ s “u“ s,/m ‘u‘

i=1
m

will be used without further comment. Also, a vector in R

will be denoted by < > with the general coordinate of the

vector exhibited inside the brackets.

Let pn be an abbreviation for pe , the density of

n

Pe . For each n, let we be abbreviated by N“. Then,

n n

specializing (0.1),

(093) 1“ =§+Uq

where qn is the vector of partial derivatives of the function

n

log 2 pj wrt the coordinates of X.

j=1 "



 

 



§1.1 A Bound for the Modified Regret Dn(§’§)'

We state and prove two lenmas which are higher dimen-

sional generalizations of proposition 1 and corollary l of Chapter

I of Gilliland (1966) for the case of the family of normal distribu-

tions 9.

2 2

' -1
Lemma 1. PHE‘wn - ¢n_1‘] s z: e4° “ n for n > 1.

Proof. From W“ = Gn[9pe]/Gn[pe], the triangle inequality and

Jensen's inequality, reSpectively, it follows that

' n-1 ““1n

_ = -1 ' _ i

Mn $11-1! {5133113) (121131.) \jilmj 9“)ij

(1.1)
n ['1

-1 -2 -

S 2a pn( z pj) s 2a n pm 2 Pj -

i=11‘1

, -1 -2 -1
Since pnpj = exp 0 (en - ej, X - (9n +’9j)2 ):

-1 -2 2 -2 2
PnIPnPj ] = exp 0 ‘6n ' Gj‘ s exp 0 4a

which, when substituted in (1.1), completes the proof.

Lemma 2. If the procedure g' is in X [-a,+u]m, then, for

2 n

each a > O,

-1 n _1

‘Dn(§9§)‘ S 40 n jil£j[“§j ' ¢j_1H] +'O(n log n).

where to is an arbitrary decision rule taking values in

m

[-0,-1.0] 0

Proof. Inequalities (8.8) and(8.1l) of Hannan (1957) when

Specialized to the squared-distance loss estimation problem

here give the inequality



9

n

1 s
2

j=12jilvj_1 - eji 1.

n

(1.2) n .2123[‘¢j - ej‘ ] s R(Gn) s n

By bounding the term R(Gn) appearing in the defini—

tion (0.2) of Dn(§’§) above and below by using (1.2), we

2 2

obtain, by using the equality ‘a‘ - ‘b‘ = (a + b, a-b) for

a,b in Rm, the double inequality

n

(1.3) n'1 z Pj[(§._ + i

J

' 2 a ' s1 j j_1 ej t, ¢j_1>] s Dn<e.§)

-ln

s n z Pj[(§j +’tj - zej. sj - wj)].

j=1

Since, by assumption §j is in [-a,+u]m, ‘ej‘ s a

and V being the Bayes estimates reSpectively against

3’ *1-1’

G whose supports lie in m-sphere of radius a, are in

j’ Gj-l

m-Sphere of radius a, we obtain that the moduli of the Lth

coordinates of g + $1 - 29 and § - Zej are at
+

j J J *1-1

most 4a. Therefore, we obtain from (1.3) that

Eafifij-vfin-

n

-1
-l

(1.4) -Z+Q/n jilng‘gj - ‘j_1“‘_‘ s Dn(g_,§) s 40m 1

J

The triangle inequality applied to the rhs of (1.4)

and Lemma 1 will complete the proof of the lemma.

We use lemma 2 to obtain rates of convergence of the

modified regret of certain sequence-compound procedures to be

defined in later sections.
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** **

§l.2 A Rate of Convergence for Dn(§’!- ) with V Based

on a Divided Difference Estimator for the Derivative of

the log of a Density.

Some notation, which is similar to that of Gilliland

(1966) for m = 1 case, is required to define yf*. The

notation to be given below is for each n and will be used

also in section §1.6.1. We abbreviate by omission the dependency

on n of the functions to be defined below.

Let E. denote the average of the distributions of

X1,...,Xn_1. For each x in Rm with coordinates x1,...,xm,

m

let [3 = X I where I. = [x ,x +h] for j = l,...,m,

j=1j J mi J

and for L = l,...,m,[j = X I' where I! = I for j # L

and I£=IL+k=[xL+k,xL+k+h]. Let O<ksh.

For any distribution F on Rm, let t(F) denote the

vector valued function <k-llog (HJL/Ej)> from Rm to Rm

where H] and HJL

for L = 1,...,m reSpectively under F and any undefined

represent the measures of [j and [3

ratios are taken to be 1. We abbreviate t(E) frequently

by t hereafter.

* *

Let the function t(F ), where F is the empiric

*

distribution of x1,...,Xn_1, be denoted by t , Let x abbre-

viate Xn and X1,...,Xm denote the coordinates of X. Let

N

** 2 * * 2 *

(2.1) q, =tr'(X+ot (X)), t =tr(x+ot (X))

where tr' and tr stand for the coordinatewise retraction

to the intervals [-a,+a] and [-a - k - h, a + k +-h]

respectively.



11

With t abbreviating wn-l’ we have, since ‘V‘ s a

** * ** *

and V = tr'¢ , “t - V” s “I - NH. Therefore, by the

triangle inequality

(2.2) gm“ - IN] S 2mm" - (x + azuxmn + Pninx + oztoo - MH-

m

:
Lemma 3. For all x in R

(1) x + ozufux) e [-a - 13 - helm.

‘ ' h Sk¥h2 mh+k -

(2) ED 2 p<->'” exp - (M + --> where p
L o 02 2

is the density of F. at x and

(3) E‘s—HELEK—hexp%h-(‘XL‘ +q+k+h) for

Om

L = l,...,m where [3' = X I" With 1" = I. for 1 E L
L j=1 J J

and 13 = [XL’ XL + k +-h].

Proof. In this proof, let Fj denote the distribution of

Xj and ejl’°°"ejm denote the coordinates of ej.

Proof of (1). Let L be in {l,...,m}. Since the coordinates

of x are independent, we can express Ff] and F as

30!.

the products of univariate normal probabilities. Therefore,

by cancelling out the common terms in these products, we obtain

 

that

m Mo'ls -e +k+h)>-e(a'1(x ~e +k>>
j L = L if L 11L

F C] -1 -1
j @(o (XL ' 93!. +10) - M0 (XL - 91(1))

Applying Cauchy's mean value theorem (Graves (1946), p. 81) to

the rhs of this equality over (0,0-1h) with the function in

the denominator to be taken as 6(o-l(xL - ejL)) while that

in the numerator to be taken as §(O-1(XL - ej + k)). we
L

obtain, by using a2 - b2 = (a +-b)(a - b) for a,b in R1
9
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the existence of m in (0,1) such that

Fl]

_12L = - E. - E

FJD exp 02 (xx. 9J4. + 2 + wh)‘

Hence, since ‘ejL‘ s a,

F

exp -‘5- (x +-a 4"E +-h) S -i3L s exp k‘(a - x ).

2t 2 FC] 2 L
0 j 0

Since these bounds for FIVE/FIE are independent of

j, they also bound fijL/fij. These inequalities are equivalent

to (l) in view of the definition of t(F). Since L is

arbitrary the proof of (1) is complete.

Proof of (2). We temporarily abbreviate ”[S¢] by §(S)
 

for any 3 in 5‘“. Then, F [J = §(o-1(I - e + k))r1

Q(a-1(Ii - eji)). Hence, applying the mean value theorem

-1 -l

to <I>(o (Ii - eji)) for i 9‘ t and to Mo (IL - en + 10).

. . m
we obtain the ex1stence of <wi> in (0,1) such that

. - + h+
hm x' 91 “’1 61k

m

= _ 1 J L
chk, (a) 121¢( o )
 

where 61L = [i = L]. Hence, since - log(¢(u)/®(v)) = (u-v)(u+v)/2,

we obtain that

Fij m w.h + 6.,k

-02 108(‘fi‘L—) = )3 (w.h + 6 k)(x. - 9.. +4-7—y-‘fi-

(“)mpj i=1 1 1L 1 11

0

Hence, since the functions of mi appearing on the rhs of this

equality, being convex, attain their maxima at mi = 0 or 1,

we obtain that the rhs of the last equality is exceeded by

m h + b. k

.. _ .21..iglouks, eji + 5mm” v (<h + aukxxi eji + 2 >) 
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m h + 51 k

S 12101 + aukx‘xi‘ + ‘eji‘ +___L_2)

s (k +h)(“x“ +/moz +mh'2H‘).
 

Since this bound for -ozlog(Ff:k/(h/o)mpj) is independent

of j, it also bounds -azlog(fijk/(h/o)mp). Since this in-

equality is equivalent to (2), the proof of (2) is complete.

Proof of (3). Using the notation 6(8) for S in 16m

introduced in the proof of (2), we have

F113 =¢(o'1(1 -e. +k)) nuo‘la -e )) and FCJ' =
L L If; l—ML 1. jl j L

9(0-1(I" ‘ 9 )) H 9(O-1(I ‘ 9 )). Hence, applying the mean

L 3!. i541, 1 ji

- _ '1 n _
value theorem to 6(0 (IL 91L + k)) and Q(o (IL ejL))’

we obtain the existence of w, m' in (0,1) such that

p '1

Ff] = k :-h ¢(o (XL

Fiji, quads, - 9n + k + ooh»

- ' k
ejL_+ w ( +h))

Hence, since log(¢(u)/¢(v)) = (v-u)(v+u)/2, we obtain from the

above equality that

F U

2 _h__£t- . . L11 w_+w_1
a log kll FJJL - ((1 m )k +-(w - w )h)(xL-ejL + 2 k + 2 h).

Hence, since 0 < w, m' < l, we obtain from the above equality

that

2 h F '

a log Egg 5 (k-l-h)(‘xL‘ +0! + k-i-h).

Since this bound is independent of 1, it also bounds

2 _. ._

o log(h H:£/(k+h)HJL). This inequality is equivalent to (3).

Hence the proof of (3) is completed.
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Now we bound the integrals on the rhs of (2.2). The

method of bounding the first integral is essentially a gen-

eralization of that given in Chapter III of Gilliland (1966).

We get a simpler method of bounding this integral because of

the definition of ¢f* in (2.1). This definition of ¢**

differs from that of a similar function introduced by Gilliland

(1966). The method of bounding the second integral of the rhs

of (2.2) differs from that of Gilliland (1966). Let c ,c ,...

l 2

denote finite functions of 02. Let

K = {k‘O < k < (s + g'2(2a + 1))‘1}.

Lemma 4. If k is in K, then

* 2 k+h e _1_ 25

RIM - (x + o t(X))n] s c1(nk2hm+1) + C2(nh‘“ .

nggf. Since the 1hs is the sum of gn-integrals of the moduli

of the coordinates of y* - X - azt(X), the lemma will be proved

by showing that these integrals are bounded by rhs/m.

Let the dependency of t on X be suppressed and

X1,...,Xm denote the coordinates of X. We abbreviate in

this proof the Lth coordinates of ¢* and t by omission.

Let a' denote 2(a + k +’h).

Since ¢*, by definition (2.1), is the retraction of

XL +czt* to [-a - k - h, a + k + h] and Since XL + ozt,

by (l) of Lemma 3, is in [-a - §’- h,a], it follows that

H" - XL - ozt‘ s a' and ‘f - XL - czt‘ s 02‘t* - t‘.

Therefore,
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7'c 2 0" ‘k 2

Emily - X, - o t‘] -<- ‘Eflm - x, - c t‘ > quu

a' 2 *

(2.3) s g §n_1[o ‘t - t‘ > ujdu

a!

= g En-1[02(t* - t) > u]du

O 2 *

+ [a'£h_1[o (t - t) < u]du.

2 *

The main part of the proof bounds £n-1[° (t - t) > u]

f o < s ' d p [ 2 * f ' 0or _ u a an -n-1 a (t - t) < u] or -a s u <

by using the Berry—Esseen theorem. The rest of the proof shows

that the Pn-integral of m times the bound for the rhs of (2.3)

is exceeded by the bound in the lemma.

Let X be fixed until otherwise stated. Let

, = . = , a ds, [35, 6:3,]. as, [35, ea] n

2

= - R(tiulo )
(2.4) Yj(u) Sj bj e for ‘u‘ 561'.

Let the dependency of Yj on u be suppressed hereafter.

2 -3 3
Let a = Var(2Yj) and L = a z PJ‘Yj - Pij‘ where 3

stands for summation over 1 from 1 to n-l.

Sublemma. For ‘u‘ S a',

-2
kg (a+a'+‘xL‘)

2 E °

2__e

C4 (n-l)

 

‘P141ij 2 0] - Me 1213an s

(RIB)

Proof. With 3 denoting the Berry-Esseen constant, the Berry-

Esseen theorem (Loeve (1963), p. 288) implies that

-1

En-l[ij Z 0] - 9(6 ZPin)‘ is exceeded by BL. Hence, we

complete the proof of the sublemma by showing that L is

exceeded by B“1 times the bound of the sublemma. In order
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to get a bound on L, we first get a lower bound on 62.

By applying L1.A (see Appendix) to the Yj’ we

2

obtain a lower bound for B . We observe that Yj defined

by (2.4) takes three values; namely

2

(2.5) o, 1 and - ek<t+ul° )

with probabilities 1 - Fij - Ff], FjE‘L and Pi] respectively

where Fj is the distribution of X .

~J

Therefore, it follows by L1.A that

Var(YJ.) 2 (1 - Fle, - FjCl)(Fj[j(1 - Fjlj) +

e2k(t+u/o2)Fj[1L(1 _ Fj:k))°

Weakening this inequality by dropping the second term of the

above inequality, we obtain that VarCYj) 2

(1 - Fij - FI3)FIJL(1-qub)' ‘Hence, denoting by c: the

infimum

h/2 h 2 -1 k+h /2

inf {(1 - c]_h/go)m(1 - (¢]_;/:o)m t]f(k+;)/go)‘ h s k e K},

we obtain that

2

(2.6) VarCYj) 2 c3 FJENX

2

Therefore, since 6 = Z Var(Yj),

2 2 " ~

(2.7) B 2 c3 (n - 1) BL.
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Since 0 s u s a' and since azt S a - XL by (1) of

Lemma 3, the maximum of the values of ‘Yj‘ in (2.5) is exceeded

by

-2

(2.8) eko (m'fixt‘)

Therefore, the standardized range bound for L, with the

help of (2.7) and (2.8), gives that

k0-2(or+a'+‘XL‘)
2 e

Ls

- 8- 3.?
c3 (1'1 1) GEL)

 

In view of the remarks of the first paragraph of the

sublemma, we obtain the result of the sublemma by taking B.C3 C4

Before proceeding further, we note that it follows

from (2.5) and (2.8) that BY;

21<e'2 (aiu'i-‘XLD

is exceeded by

FJi
e

where [ZQ is defined in (3) of Lemma 3. Hence, since

2 2

-2 t

2 Zko (0+0! +|xL|) _
(2.9) B s (n-l) e Hji.

Now we proceed with the main part of the proof of the

*

lemma. Let 0 s u S 0'. Then the definitions of t and Yj

*

imply that [02(t - t) > u] s [ZYj 2 0]. Hence, by the sub-

*

lemma, it follows that £n_1102(t - t) > u] is exceeded by

(2.10) Q(B-12 Pij) + bound in the sublemma.

Since ekt = Rik/fij by the definition of t,
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_ _2 _ _

Z Pij = (n-l) H3L(1 - exp kc u) S -(n-l)ko 2 HJLU. There-

fore, by using the upper bound for B in (2.9), we obtain

’5
that 9(5-1}: Pij) s §(-((n-l)hmk2) fu) where f is the

positive solution of the equation

-2
_ 2ko (ain'i‘ X ) ..

(2.11) 0“ htn p131: e ‘ 9‘ £2 = (FOL 2

*

Therefore, since (2.10) is a bound for §h_1ch(t - t) > u],

we have, for O s u s a',

(2.12) Pn_1[oz(t*-t) > u] s §(-((n-l)hmk2)%f u) + bound in the

sublemma.

*

Now we consider bounding the probability Pn_l[02(t -t) < u]

*

for -a' s u < O. The definitions of t and Yj imply that

2 *

[o (t - t) < u] s [2 Yj S 0] = [2 - Yj 2 0]. Since the sub-

lemma continues to hold when 6j and bj in the definition

of Yj are replaced by -Ej and -oj respectively, we obtain,

by applying the sublemma to .2 1[2 - Yj 2 O], that
n-

2 * .
§n_1[g (t - t) < u] 13 at most

-1
(2.13) §(-B Z Pij) + bound in the Sublemma.

Again since 3 Pij = (n-1)th(1 ' exp kO-Zu) 2 -2-1(n-1)ko-2N:ku

where the inequality follows since ko-za' < l by the hypothesis

on k, we obtain, by using the upper bound 32 in (2.9) and the

definition of f in (2.11), that §(-B-12 Pij) is exceeded

by @(2-1((n-l)k2hm)$5f u). Therefore

§n_1[02(t* - t) < u] S §(%(n-l)k2hm)%f u) + bound in the Sublemma.
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Integrating this inequality wrt u on [-aJ,O) and

the inequality (2.12) wrt u on [0,af], then bounding their

a

first terms by using the inequality £§(-au)du S (2n) A(581

for any a > 0, we obtain, by using the inequality (2. 3), that

3 l . .
2ngg +20 (bound in theP [‘w* - X - ozt‘] s

“'1 ’9 fzn ((n-1>kh)f

sublemma).

Hence we complete the proof of the lemma by showing below that

the Pn-integrals of m(h(k+h)-1)%f-1 and m(nhm)% (bound in

the sublemma) are uniformly bounded in n.

By definition of f in (2.11), we have

k02(a+u W+‘X ‘)
-1 _ 2 4% hm %e

f - O (FDL_J) (PDL)

By bounding above (fijé/E:k)£ by using (3) of Lemma

3 and by bounding below fi:k/hm by using (2) of Lemma 3, we

get an upper bound for (h(k+h)-1)%f-1. ‘Weakening this upper

bound for (h(k-l-’n)ml)s‘;f-1 by using the fact that 0 < h S k.< 1/5,

we obtain that

e2:2-—-(3‘xL‘fi‘x“)

5 5%

 

_h_, 1 . C

(keh f 3

for some c5. Since (2n02)mp§ S exp(-o-%K‘x‘ - a)+)2) and

(2no2)mf>2 2 exp - (o'2(a + ‘x‘)2), we obtain that the above

upper bound for (h(k+h)-1)%f- is uniformly bounded hn Iland Pn-inte-

grable. Now by using (2) of Lemma 3, and the inequality

0 < h<k < 1/5, we obtain that (nhm)% (bound in the sublemma)

is exceeded by
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°-2(‘Xt‘ + WE‘LL)
e

C

6 pt

 

2 -2 + 2

for some c6. Again, since (2n02)mpn S exp - (o ((‘X‘ r a) ) )

and (2noz)m 52 2 exp - (c-2(a +-‘X‘)2), we obtain that the

hm/2 (bound in thePn~integra1 of the above upper bound for

sublemma) is uniformly bounded in n. This completes the proof

of the lemma.

The next lemma is a slight generalization of a particular

case of Cauchy's mean value theorem (Graves (1946), p. 81).

Lemma 5. For each j = l,...,n-l, i = l,...,m, let the func-

tions fji’ gji be real valued, continuous on [ai’bi] and

differentiable on (ai’bi) and let the derivative of gji be

finite and positive. Then there exist c1 in (a1,b1),...,cm

1n (am’bm) such that

  

b.

1 I
2 n fjiJai 2 n fji(ci)

b. - E n g' (c.)
1 ji 1

2 n sjiJai

where 3 stands for the summation over j from 1 through. n-l,

n stands for product over i from 1 through m and prime

over any function denotes its derivative.

Proof. Define the functions g1 and n1 on [a1,b1] as

follows.

m bi

5(X)=Ef (X) Hf]
1 jl i=2jiai

and

m b

n(x)=zg (x) m i
l jl i=2 ji]ai
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for x in [a1,b1].

With these definitions, we obtain that

b b

 

' 1

2 1T £11181 €118.

(2.14) 1 = —_L .

bi b1

2 n gji-Jai nl]a1

Since fjl and gjl are continuous on [a1,b1] and dif—

ferentiable on (a1,bl) for all j, so are g1 and n1.

Moreover, since the derivative of gji is finite and positive

for all j and i by assumption, so is the derivative of RI.

Hence, applying Cauchy's mean value theorem to the rhs of (2.14),

we obtain that there exists c1 in (a1,b1) such that

 

b.
1

2 " £31], §'<c >
(2.15) 1 = 1 1_T___.

bi “1(61)

2 " 8111a.
1

Now, we define g2 and n2 on [a2,b2] as follows.

m bi

_ I

i=3 i

and

m b,

..
1

o 0 9 ' '

for x in [a2,b2]. Then ltbeIIOZS that the ratio §1(c1)/H1(c1)

l O a a 2 2 .

is identically the ratio §2]32/fl2]az. Again, §2 and n2

are continuous on [a2,b2] and differentiable on (a2,b2)

Since szogjz are continuous on [a2,b2] and differentiable

on (a2,b2) for all j. Also, since the derivative of gji

is finite and positive for all j and i, the derivative of
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n2 is finite and positive. Therefore, again using Cauchy's

mean value theorem, the definitions of §2 and Hz and (2.15),

we obtain the existence of c2 in (a2,b2) such that

 

b.
1

’3 " £1118 we)
(2.16) 1 = 2 2

hi 112(C2)

E n gji]ai

Iterating the above procedure of obtaining (2.16) from

(2.15) (m-2) times, we obtain the result of the lemma.

We apply this lemma to prove the following lemma.

2
2

Lemma 6. ‘Lth coordinate of X +-a t - t‘ S k(1 +'gé9

2 o

+ h(l +-m Q7) for 1 = 1,...,m.

0

Proof. Let the dependency of t on X be suppressed and

abbreviate the indication of the Lth coordinates of t and

t by omission.

Let H abbreviate h- E: and eL denote the unit

vector in the Lth direction. Since t = k.1 (log H(X + k eL)

- log H(X)), by the mean value theorem, there exists 6 in

(0,1) such that

alog H

8 XL L

. 2 - .
Since t - X = a a log p/a XL’ the above equality

L

together with the triangle inequality implies that

2 2

(2.18) ‘xL + o t - t‘ s o (‘11‘ + ‘12‘)

where

10 - X+ek e4

(2.19) 11 = g—is—RJX

L

.
m
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and

(2.20) I=M(X+eke)ram(X+eke).
2 3X, 4. ax, L

By the mean value theorem, I1 = gk(azlog p/aXi)(X + 3*k eL)

for some 3* in (O,e). With ej1,...,9 denoting the

jm

coordinates of ej, we have

2
2 - 2(x-e)p 2(X-e)p02(1+02§log2)= t it 1_( t it if.

all,

  

2 P1 2 Pj

The rhs of this equality can be recognized as the conditional

variance of the Lth coordinate of X - 9 given X when the

pair (e,X) has the joint distribution resulting from Gn-l

on e and P6 on X for given 9. Hence, since the

Support of Gn-l is in the m-sphere of radius a, we obtain

that

2 21 ' 2

(2.21) O’ ‘chlg._2‘ S 1 +15 .

‘ X
G L 0

Hence

2 2

(2.22) o ‘11‘ s k(l +945).

0

We complete the proof of the lemma by showing that

02‘12‘ S h(1 +-maza-2) with the help of Lemma 5.

The definition of H gives

(2.23) (n-l)hmfl = z Fj D

where, since the coordinates of Xj are independent,

(xi-e, {HO/c

2.2 =( 4) Fj[3 n Q](xi'eji)/°
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Therefore,

(X '9. +h)/U (X -6..+h)/o

DH (XL jL i 1

Now we apply Lemma 5 to the ratio (aH/aXL)/H obtained

by using (2.23), (2.24) and (2.25) with the following iden-

" ‘ - = -1 ..
tification. For all j l,...,n--1, fji= gji 9(0 (y 931))

L'BQQJ10-9%» and

(ai’bi) = (c-1Xia 0.1(Xi + h)) for all 1. Then there exists

for i # L, ij = ¢(o 1(y-9jL)). gj

a o in (0,1)"1 such that

a_%25_fl.= g—%95—E (x + he).

5 t L

By subtracting 510g p/ax, and then applying the mean value

theorem to this function of h, we obtain the existence of h'

in (O,h) such that

- m 2 -

a XL 5 XL i=1 i axiaXL

For i # L, we obtain directly that

2 - - - - -
4 a 103 p = 2(9JL XL)€931 xi)EJ, 2(GJL xt)pj , 2(911 Xi)pi

 

 

 

X. X . .
a13L ij ZPJ EPJ

The rhs of this equality can be recognized as the i,Lth

element in the covariance matrix of 9 - X conditional on

X when the joint distribution of (9,X) results from Gn-l

on e and P9 on X for given 9. Hence, since the support

of Gn-l lies in m-sphere of radius a, it follows by Schwarz's

inequality that

S a for i # L.
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This inequality, together with (2.21) and (2.26),

implies that

2

oZP-i—ofi-Ii - LE-E—H s h(l +m9’—2-).

a L a L o

2
Thus, by (2.20), ‘12‘ s h(1 + mg 0-2) and the proof of the

lemma is complete. u

Before stating a theorem as a Corollary to Lemmas 2,

4 and 6, we make a remark on the proof of Lemma 6.

Remark 1. The method of proof of the lemma differs much from

that of Gilliland (1966) for m = 1 case. He has never used  ‘
7
’

.

the fact that the conditional variances and covariances are

uniformly bounded by explicit functions of a2. Moreover, the

constants multiplying k and h in the result of the lemma

are Specific functions of a while those of Gilliland are

complicated integrals. A proof similar to the proof obtained

by particularizing our proof to m = 1 is simpler than that

of Gilliland.

In the rest of the section, we let h and k depend

on n. We assume in the theorem to be stated below that

02 = l. The choices of h and k given in the following

theorem are optimal for the convergence to O of the expression

obtained by adding the right hand sides of Lemmas 4 and 6.

l 1

Theorem 1. If h = n m+4 , k = a n “H4 for a in [l,m)

 

**

and ¢ is defined by (2.1), then

1

gm“ - m = 0(n m“)
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and

l

D (93¢— ) = 0(n M).

Proof. The first result is a direct consequence of (2.2),

Lemmas 4 and 6 and the definitions of h and k. Since,

* , , m
18 In X [-a,+u] , the second result

n

follows from the first result and Lemma 2 with 02 = 1.

it

by definition ‘1
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§l.3 Rates Near 0(n-k) for Dn(§’i) with W Based on Kernel

Estimators for a Density and its Derivative

In this section, for each positive integer s and v

in (0,1), we exhibit a procedure 1_ belonging to a class of

procedures whose modified regret Dn(§9i) is

001- (s -1)v/(28+m)(1+v)
). The definition of 1_ depends on

kernel estimators for a density and its derivative. These

kernel estimators are similar to those defined by Johns and

Van Ryzin (1967) for estimating the unconditional density and

its derivative in the empirical Bayes two-action problem in

exponential families.

For L = O,l,...,m, let KL be bounded with

”[HUHSKL]:=S!CLS< G and for all nonnegative integers

t1....,tm,

m t

(3.1) M: n ujj KO] = 1 or 0 as E tj = O or in {l,...,s-l}

J=1

and, for 1 s L s m, ULKL satisfies (3.1) with 3 replaced

by 8'10

K and theirAs a result of these conditions on K0,..., m

intent, if f is a function on km with partials of order s

uniformly bounded by M, then the substitution of the sth order

Taylor expansion with Lagrange's form of the remainder shows

(3.2) ‘u[f KO] - f(0)\ s M COS

and if, in addition, all partials of f not involving the Lth

variable vanish at O,
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(3.3) ‘pEf KL] - fL(O)\ s MLcLS

where fL stands for the first partial of f wrt the Lth

variable.

The notation to be introduced below is defined for each

n. We abbreviate by omission the dependency on n of the func-

tions to be defined below. We let 2 denote summation over

j from 1 to n-l. Let 3,6 be positive. As in section

§1.2, let X abbreviate X“. Define

(3.4) sj<x> = e'mk0(e‘1<§j - x>), (n-1>§ = : fij

and a = <§L> where

- mfil l -l

3.5 - = . lth A =—1( .-x _< > (n 1>aL z aLJ w 6 qu<X) 2 L<1L5 <§J >>

-1

KL“ (35]. X))

where IL is the m X m identity matrix reduced by l/2 in the

Lth diagonal element.

Now we state and prove some lemmas which will be use-

ful in obtaining a rate of convergence for the modified regret of

a certain procedure 1_ to be defined in the latter part of the

section. let c1,c2,... denote finite functions of 02. In

the following lemmas, p, the average of the densities of

X1,...,Xn_1 and q, the vector of partial derivatives of p

are evaluated at X. We do not require the condition that

‘enl S a to prove lemmas 7 and 8.

IEEEELZ: 2;-lilfi - El] s c1 (es +‘((n-1)em)-%)-
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Proof. Since “[pj 6-mKo(€-1(o-X))] = ”[pj(x + e.)KO], its

absolute difference from pJ(X), by the uniform boundedness of

partials of order s of' pj and (3.2), is at most c2 es.

Hence

- - 8

(3-6) En_1[P] ‘ P‘ 5 C2 6 .

Let VX(§) denote the conditional variance of §

given X. Since

-2 2 -1 - ? - 2 - 2 2

ulpje mKO(e (. - x))] = e m ”[pj(X + e.)KO] s e m(Zno ) m/ ”[KO]

2

and ”[KO] < CO,

I -l

(3.7) vxm s c, (ax-1).”) .

Since for any random variable R, E‘R| 3 ‘ER‘ + Var%(R),

(3.6) and (3.7) will yield the bound in the lemma with

c1 = c2 V c3.

2 .. - _.

Since a ”qH/p s‘/m a + “X“ and since \9n\ S 0

implies that Ph[HXH] is uniformly bounded, the following

corollary is a direct consequence of Lemma 7.

Corollary 1. gn[nd“‘(§/p) - 1‘] s c4(es + ((n_1)€m)-%).

Lemma 8. Eh[“a - an] s c5(58-1 + ((n-l)6m+2)-%).

Proof. In this proof, we abbreviate by omission the indication

of the Lth coordinates of q and q. Since, by two usages of

the transformation theorem,

A = -1 1 . - .

nip]. 61“.] 6 u[KL(pj(X +1, 6) pj(X + 6 ))3.
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its absolute difference from the partial derivative of pj wrt

the Lth coordinate, by the uniform boundedness of partials of

order s of pj and (3.3), is at most c6 68-1. Hence,

(3.8) \P _1[§] - §| s c6 63‘1 .

Let Vx(é) denote the conditional variance of d

2 2 2

given X. By the inequality (a +-b) s 2(a +ib ) for a,b

1

in R and the transformations as above, we have

m+22 -1 2 1

uEpj(aLj) ] s (o ) uEKL(2 pj(x +-IL5-) + 2pj(x + 6-))]-

2

Hence, since ”[KL] < m,

(3.9) vxé) s c, ((n_1)5m+2)-1 .

Since for any random variable R, E‘R‘ S ‘ER‘ +-Var%(R),

inequalities (3.8) and (3.9) yield the bound in the lemma

c5 = C6 V c7.

Lemma 9. For any a in (0,1), there exists a finite function

2

of o , c8, such that

' a

Pn[p<B]$c88 .

Proof. With a z = x - an and therefore a'1|x - ejl s \z\ +

Zo-R1,

lx-e ‘2 1 -1 2
(3.10) pj(X) = c exp - -;;?J--2 c exp - §('Z| + 20 a)

-m/22

with c = (2fl0'> Let M be the minimum value of ‘Zl

for which rhs of (3.10) s 8' Since, for all t,

/2
P[|z|2/2 > t] s e'bt(1-b)'” for b in (0,1), we get from
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(3.10) that

a -1 2 2

_a _ _a _a -§(M+Zo‘ a) -bM /2 -m/2

6 Pulp < B] s B Pn[\z\ > M] s c e (l-b)

which is bounded in M for b > a.

Corollary 2. For any a in (0,1), there exists a function of
 

02, c9, such that

- - a

Pniuiluip < an s c, e
p

Proof. Since OZHaH/fi s,/E a + “X” and, therefore, has all

moments, Holders inequality yields, for any r > 1, the bound

r-l r l

r - r-l f, -

Pn [(11391) 1 P, [P < B]

P 1 _1_

for the lbs of the corollary. By Lemma 9, P:[p < B] S C; Br

9.

for b in (a,l). Choosing r such that a r = b, we get

the result of the corollary.

Henceforth, we take 6 to minimize the bound in Lemma

8. That is,

(3.11) 523+” = (In-1)-1 .

We also choose a to be such that

m2. _s-1

(3.12) 5 2 s e s a s .

Let B be defined by

81+Y = 68-1 for any y in (0,1).

With these choices for e, 6 and B, we define 1 as

follows. Let
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2

(3.13) w = tr'(X + o 1)

1
3
3
1
1
:
»
:

m

where tr' stands for retraction to [-a,+u] and for y in

1 I

R , let y = V V B-

In the following lemma, V is evaluated at X.

Lemma 10. For each positive integer s and y in (0,1), there

m+2 s-l

- 2
+m = (n-l) 1, 5 m s c s 6 andexists C10 such that if 523

1 -

B +Y = 68 1, then

5-1 x

28+m’ +Y for each n > 1 .EnUW - N] s aloe-1)

Proof. Since W lies in the m-sphere of radius a and w is

2::'
the retraction of X +'o q/p to [-a,+u]m, we have by using

'1

the inequality p 2 5

0‘wa _wsng.-21“$.5qu-§§'ns§-{ué-&\1+@l5-§'Hop p P p

Since \5 - 8" s ‘5 - 8‘ + a[5 < B], the result of the lemma

follows from the above inequality,Lemma 8, Lemma 7 and Corollary

2 and the hypothesis on. e, 5 and 5°

Now we state the main result of this section.

Theorem 2. If 02 = 1, the hypothesis of Lemma 10 is satisfied

and ‘1 is defined by (3.13), then

 5-1 .31.
'Zs+m 1

Dn(§31) = 0(n +Y ) .

Proof. Since i, by definition (3.13), lies in x [-a,+a]m,

'————- n

1 and Lemma 10.

2

the theorem is a consequence of Lemma.2 with o
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§1.4 Rates Near 0(n-k) for Dn(§,o$) where Oh, a Particular W

Let a = l and let 8 > 1 be a fixed integer throughout

this section. Letting 0* denote a specialization, less a retrac-

tion to [a,m), of the i. of section §1.3, with certain additional

assumptions on the kernels, we show that Dn(§,o$) = 0(n-(S-1)/2(m+s+1)).

We specialize § and a (defined by (3.4) and (3.5)

respectively) by setting a = 6 and denote their common value by

h. Let

(4.1) §=tr'(X+g)
O x

P

where tr' (as in previous sections §1.2 and §l.3) stands for re-

traction to the cube [-a,+a]m and any undefined ratios are taken

to be zero. Let h2 = X - X, v 3 h(u + 61/5) and Yj(u) = <YLj(U)>

J J

with

(4.2) Y (u)= 1x 01 -x -vK)oz,=h"‘+1q _hmv’f).
LJ 2 L L L 0 J Lj j

In the following lemma, y will be evaluated at X. let

c1,c2,... denote constants.

S -
Lemma 11. If K0,...,Km are bounded with u[uuu KL] - CLs < m,

KO satisfies (3.1) and 111

with 8 replaced by s-l and are such that for |u\ s 20,

K1,...,uml{m satisfy condition (3.1)

 

 

h S S a,

-c X‘ Var (Y ), Va R Z ) X

(4.3) CI e 2‘ s m L1 r( O 0 i 3 c3 eca‘ ‘,

h ¢<|X|>

then gn[now - 1H] s c5(((n-1)h28+m)% + 1 m+2 %)'

((11-1)h )
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Proof. Let the indication of the Lth coordinate of 0% and W

be abbreviated by omission. Since 0% lies in [-a,+a] and

since V lies in [-a,+a], it follows that \OW - 1‘ s 2a and

‘Ol - V‘ s ‘D| where

(4.4) D '

'
0
)
1
“
»
.

l

"
U

I
|
<
~

|

Therefore

20! 2a

(4.5) Eo-luol - M] s g gu_1[|n| > u]du = g 3.1-1“) > u]du

0

i-I £h_1[D < -u]du.

-20

The main part of the proof bounds the integrands of the

rhs of this inequality by using the Berry-Esseen theorem and (4.3).

The rest of the proof shows that the Ph-integral of a bound for

the rhs of (4.5) is at most the bound in the lemma.

With 82 = Var(z YLJ) and L - 3-33 PJ‘YLJ - PJYleB,

the standardized range bound for L, together with lhs inequality of

(4.3), the inequality

(4.6) M s h(3a + |xL|)

and the fact that K ,...,K are bounded, implies that

O m

c7 (1 + h(3a + |xL|))

(4.7) L s

c1((n-1)hm)?’¢”(\x‘)e

for ‘u‘ S 2a . 

-c21X‘/2

Let 0 s u s 20. Then the definitions of D in (4.4),

32Lj in (4.2) imply that [D > u] s [2: Y“ > 0] + [‘5 < 0]. The

Berry-Esseen theorem (Leave (1963), p. 288) and the triangle

inequality imply that 2n_1[IHzJ >'0] is at most
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+1 -1-
(4.8) M-(n-Dhmfle 1pu>+\¢(-<n-1>h““ a p u)

Y,)| + B L.
-l

-§(B 23ij

C M
Since rhs inequality of (4.3) implies that 52 s c3hm¢(‘x\)e A ,

the first term in (4.8) can be bounded above by replacing B by

this upper bound for 6. Also, by the equality

(4.9) (n-l)hm+1p u +-z ijcj = (nbl)hm+1(h-1v((p - p_[p])

+ gmli’c‘h - c3).

the lhs inequality in (4.3), the bounds (3.6), (3.8) and the in-

equality (4.6) imply that the second term in (4.8) is at most

c8((n-1>hzs*““>}5

:% 2

(1 +-h(3o +-|XL‘))

"czTillz
(4.10) 

WIXI)

Hence, with f defined as the positive solution of the equation

c4‘x‘ -2
(4.11) c3e ¢(‘X‘)f2 = p ,

we obtain that

(4'12)Eh-1[2Ytj> o] s ¢(-(n-l)hm+2)%f u) + (4.10) + B rhs of (4.7)

Now we consider -2a 5 u < O. The definitions of D in

(4.4) and YLj in (4.2) imply that [D < u] s [E YLj

[b s O]. The Berry-Esseen theorem and the triangle

< O] +

inequality imply that gn-1EEYLJ < 0] is at most

(4.13) o((n-1)hm+15'15 u) + |§((n-1)hm+la'lp u) - o(-e'lszYLj)\ + BL.
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c \X‘

Since the rhs inequality of (4.3) implies that 82 s c3hm¢(‘X\fe 4 ,

the first term in (4.13) is bounded by Q((n-l)hm+2)%f u) where f

is the positive solution of (4.13). The lhs inequality of (4.3), the

equality (4.9) and the bounds (3.6), (3.8) and (4.6) imply that

the second term of (4.13) is at most (4.10). Therefore,

_fl, 2)%f u) + (4.10) +-B rhs of (4.7).
m+

(4.14) P 1[2YLJ<03 s 2(((n-1)h

Integrating (4.12) wrt u over [0, 20] and (4.14) wrt u

over [-Za,0), then bounding their first terms by using the inequality

20

g Q(-At)dt s A.1 for A >10, we obtain.(since the corresponding Berry-

2a

Esseen, followed by normal tail bound, treatment of gn—l[§ S 0]du con-

tributes no more than 1+q2/8 times the rest) that §n_l[‘o$-¢|] is at most

2

l 1 m+2)% %’+'4a[(4.10) +'B rhs of (4.7)]}(2 + %—).

((n-l)h

 

Hence we complete the proof of the lemma by showing that the P -

c ‘Xl/Z n

. -l 2 -g

integrals of f and (l + h(3a + |XL\))e ¢ (‘X‘) are

uniformly bounded.

, 2 + 2 m-Z 2

Since (211)mpn S exp -((‘X‘ - a) ) and (Zn) p 2 exp -(a+1x‘) ,

we obtain from the definition of f in (4.11) that pnf"1 is at

most

c |X\/2

c8 ¢<<lxl - a>+>c”<|xl>e “

95(le + a)

 

which is u-integrable. Again by using the upper bound pn, we can

cz‘Xl/Z %

show that the Pn-integral of (1 + h(3a +-‘XL‘))e ¢ (‘X\) is

uniformly bounded. This ends the proof of the lemma.

Now we state the main result of the section.
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Tfiieorem 3. If the kernel functions K

-1/m+8+l

n

,...,K satisfy the conditions

m0
 

(of Lemma 11, h = a where 0 < a s s.1 and Oi. is de-

fined by (4.1), then

D (g, i) = 0(n-(s-l)/2(s-lm+l)).

n O

Egggf. Since 0% lies in X [-a,+a]m, the result of the theorem

is a direct consequence of Lgmma 11, the hypothesis on h and

Lemma 2.

Now we exhibit kernel functions K0,...,Km satisfying the

conditions of Lemma 11. We develop these kernels in m = 2 case for

the sake of simplicity of the notation.

Let [cij] be an a X a matrix whose ijth element is Cij'

For each pair of positive integers i,j, let Wi’j be the indicator

function of the south-west quadrant of (i,j) intersected with the

north-east quadrant of (0,0). We will determine [aij], [bijl]

and [bijz] with only finitely many entries different from zero

such that

(4.15) K = z 1i’1,1<1= )3 hi ni’j and K2= z; b. 114
0 . i l . . 1'2

13.1 j 13.1 j 1’] J

satisfy the conditions of Lemma 11.

For any two positive integers S, T, let [aijjs T denote

the modification of [aij] obtained by replacing aij by zero if

i > S or j > T. We note that for any two sets of distinct non-

negative integers, k1,...,kS and L1,...,LT, the vectors

k L k L

(4.16) [1 lj ST11S T,..., [i 81 T13 T are a basis for R



38

kL kL
.r.t_ . rt

(For 2 crtil J ] - [0] lff z Crtx y = O has the roots

{l,...,S} X {l,...,T}, which by iterative application of Descarte's

rule of signs requires the crt to vanish.) We use this fact to

show that certain norms are different from zero and to show that

certain coefficients are zero. The kernel conditions (3.1) on

K0 and K specialize to the following requirements on inner

1

products,

1 I = 1

(anol: [1111'sz = o 11 -3 2 3 +1. 3 5+1
1.] S LISLZD S £1 2

and

2 = =

(Eb 1 [11.1.1.2 > = L1 2’ L2 1
ijl’ J] 0 4SL1+LZSS+1

We choose [aij] for simplicity to be the

‘1 4’2
projection of [lj]s,s on L {[i j 15,3‘1 g L1,L2,

(4.17)

3 g L1 +~L2 3 3+1} divided by its squared norm,

and in order to satisfy the variance requirements (4.3), we take

b[bijl] to e

projection of [izj] on L [[iLlez |(L L ) # (2 l)

3,8 13,3 l’ 2 ’ ’

(4.18)

l 3 L1 3 s, 1 s L2 5 3} divided by its squared norm.

The squared norms are non-zero by the aforenoted linear

independence for (S,T) = (8,3). Mbreover, bSjl # 0 for some j

in {l,...,s} for, otherwise [bijll defined in (4.18) will lie

(s-1)s (s-l)s
in R and is orthogonal to a basis in R , hence is 0.

Let M = Max{j‘bSj * 0}. Interchanging i and j, we get a

solution for [bijZ] such that K2 satisfies the kernel condgtions

cultminating in (3.1).
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and K

1
With A denoting a bound of K0, K 2,

3 2

(4.19) V3r<¥Lj) s A2(§'+-v) En-ltgj E (X,X + sh) X (X,X +-sh)].

By the mean value theorem, the probability on the rhs of this in-

equality is szthj(X + §sh) for some g in the unit square.

Hence, factoring out h2¢(‘X\), the restriction h s s-la and

the inequality (4.6) show that the rhs of (4.19) is bounded by the

rhs of (4.3) for suitable c3 and c4.

Now we observe that YLJ defined by (4.2) takes finite

number of values including zero and Z-lbsM' The probability that

it takes the value zero is En-ID'Sj - x a! (0, sh) x (0, sh)] and

that it takes z-lbsM is gn_1[gj - x e (2(s-1)h,2sh) x ((M-l)h,Mh)].

Therefore by L1.A of the Appendix, we obtain that

(4.20) Var(Y1j) 2 c9 En-IEEj - X E (2(s-l)h, 23h) X ((M-l)h, Mh)].

By the mean value theorem, the probability on the rhs of this in-

2

equality is h p (X + §h) for some g in (2(s-l),25) X (M-1,M).

J

2 -

Hence, factoring out h ¢(|X|), the restriction h s 3 £1 shows

that the rhs of (4.20) is bounded below by (4.3) for Suitable c1

and c2 when L = 1. Similarly that Var(Y2.) is bounded by lhs of

J

(4.3) can be similarly proved.

By following the argument given above, we can show that

Var-(K0 o Zj) also satisfies inequality (4.3).
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**

§l.5 A Lower Bound for Dn(9,¢ ).
 

In this section, we use the notation of section §1.2

specialized to the 02 = 1 case. Let ,c denotec1 2,...

absolute constants. With

(5.1) 92 = (n-l)k2hm,

by using the Berry-Esseen theorem and Lemma 1 of the Appendix,

** 2 -2

we show that Dn(9’i' ) 2 c1 8 under certain conditions on 8.

Theorem 4. 1f 36% +ih) a a < m, B a m and yf* is defined

by (2.1), then

** 2 -2

Dn(_0_,y_ )2 c1 8 .

**

Proof. Let the first coordinate of 1n be abbreviated by

** *

W and let the indication of the first coordinate of t

be abbreviated by omission. As in section §l.2, let X, with

coordinates X ,...,X , abbreviate X . Our method of proof is
1 m ~n

**

to show that §h[[X1 > a]‘¢ |] ,exceeds the square-root of the

bound of the theorem. This completes the proof of the theorem

1 n ** 2 ** 2

E P and P 22 ** emu), | 1 1m, \ 1
2 **

2.1m, llzznitxlndlv n.
**

Since, by definition, \fi**| s a and since [‘W \ > u] =

** -

since Dn(9,l_ ) = n

*

[\Xl +~t | > u] for u < a, we obtain by Fubini's theorem

that

01 0'

(5.2) §n[\¢**\] = g gn[‘x1 + t*‘ > u]du 2 Ph[[x1 > a] _1[x1+t* > ujduj.
J's,
O

, m-l

Let x 1n (a,m) x R and u be in (0.0)

fixed until otherwise stated. As in section §l.2, let
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".= 611, .= x.<—i and6J [h 1] 5] [N] m]

~ t(u-xp
(5.3 Y. = 6 - 6 e .

) J j 1

With this definition of Yj’ we obtain that

*

(5.4) [x1 + t > u] = [8Y1 2 0]

where~3, as in sections §1.2, §1.3 and §1.4, denotes summation

over j from 1 to n-l. Note that X1 > 0 implies that

~ *

[ZYj 2 0, Z 5 = 0, 2 5 = 0] C [X1 + t > u] for u < a.

J 1

Since §1""’§n-l Y1,...,Yn_1.

Hence, with B denoting the Berry-Esseen constant, the

are i.i.d., so are

Berry-Esseen theorem and (5.4) give that

 
 

3

* (n-l)%P1Y1_%P1|Y1-P1Y1\

(5.5) P [x + t > u] 2 6H ) B(n- 1)
_11-1 1 SodoY

1 (so d.Y1)3

ek(u-X1)

The definition of Y1 gives that P‘Y1=Ffjl- Ff].

Hence, since the alternative expression for FIE /Fj[j in the

J L

proof of (2) of Lemma 3 when Specialized to the case

2 k
= ' = = ' = _ +._0' 3 L 1 gives that FlDl/FlD exp h(X1 2 +mh)

for some w in (0,1), we obtain that

k

k(u-X1) '.k(u + - + (oh)
2

(5.6) Ply1 = F1131 e (e - 1)

2 -k F1D1(U +-;+ h) for k< (0+4)-

where the inequality follows from the inequalities u < a < X1

and e'k - l 2 -x.

Applying IJJA.(See Appendix) to the random variable Y1,

we obtain, since Y1 takes value 1 with probability Ffjl’
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that Var (Y1) is at least (1 - F131 - FPWIDIO - FlCll).

Hence, Since (1 - F131 - Ffj) is bounded away from zero

for h < (a +-4)-1, we obtain that for some c2 > 0

2 -l

(5.7) Var (Y1) 2 c2 Ffjl for h < (a +-4) ,

Using (5.6), (5.7) and the definition of B in (5.1),

we obtain that, for k.< (a +'4)-1:

 

P Y

5 1 1 g_ k . m/2 a
o - 2 - + — = o(5 8) (n l) s.d.Y1 % (u 2 +-h)f With h f (Fill)

c
2

3

The standardized range bound for Pl‘Yl - PiY1‘3/(s.d.Y1) ,

(u-X1)k

with the help of the inequality range of Y1 s 1 + e s 2

since u < a < X1, (5.7) and the definition of 8, gives that,

for h < (a + 4)'1,

_ 3
Plhr1 P1Y1|

 

 

(5.9) 3 .<. 2k

(n-l)%(s.d.Y1) a czf

Integrating the inequality obtained by weakening (5.5)

with the help of (5.8) and (5.9) wrt u over (0,0), then

using the transformation B(u +~%'+-h)f = cgv in the first

integral, we obtain that

0'

12
C55 «Tl-:34") /'I:2

B 8 En-IEXI +'t* > ujdu 2 f2. I §(-v)dv - Zia, for k < (0+4)-1.

(Lg—mus: Cif

In view of (5.2), we complete the proof by showing that

the Pn-integral of the first term of the rhs of this inequality

on [x1 > a] converges to a positive constant while that of

the second term on X > a conver as to zero.
1 8
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Since f, defined in (5.8), converges to p1 and

Since Specialization of (2) of Lemma 3 to the case of

02 = L = l and n = 2 gives that f"1 is exceeded by

pit exp(HXH +,E§l) which is Pn-integrable on [X1 > a], it

follows by dominated convergence theorem and the hypothesis

on B that

B(a+%*h)/C: m

Pnux1 > o] 6(-v)dv] —. P1[[X1 > o] f %§(-v)dv] > 0

8(34h)f/c2 a(c2p1)-

and

Eli-q- Pn[[X1 > 0,ij .. o .

C2

The proof of the theorem is complete.

**

Now we make a remark concerning the procedures 1. ,

i and CL defined in sections §l.2, §l.3 and §1.4 reSpectively.

Remark 4. For the choice of h and k given in Theorem 1 of

section §l.2, we obtain by the theorem proved above that

2

Dn(9’&f*) 2 c n. “H4

for some c > 0.

For any y > 0, Theorem 2 of section §1.3 Shows that we

can define a procedure i_ such that Dn(§’i) = 0(n-(i-V)).

Hence, since y > 1/36 implies that k - y 2 Efiz- for m 2 5,

**

it follows that the procedure 1. is better than 1_ in the

sense that

sup Dn(fi’i) s c1 n-(%-Y) S c2 n m+4 s sup Dn(§,flf*)

where the sup is taken over all parameter sequences.
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For any positive integer S, Theorem 3 of section §l.4

Shows that we can define a procedure 0* Such that

-S/2(s+3))
Hence, if ms 2 5m + 8, the procedureDn(s.9_$_) = 0(n

A c ** .

Ow 18 better than 1. in the sense described above.
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§1.6 Extension of Results in Sections §1.2 and §l.3 to Constrained

Mean Vectors and Unknown Covariance Matrix

Let Y be a d-variate normal with mean w and co~

variance matrix 021. If m is assumed to lie in a lower

dimensional subspace E5 say of dimension m < d, then the

square of the projection of Y onto the subSpace orthogonal

to E’ has expectation 02(d-m) and variance 204(d-m). In

this section, this fact has been used to extend the results of

sections §l.2 and §1.3.

Let {En} be a sequence of independent random variables

with In distributed as d-variate normal with unknown covariance

matrix 021 and mean wn belonging to an m-dimensional subSpace

g; of Rd intersected with the d-sphere of radius a. While

stating the results of the present section in section §l.0, we

interchanged m and d in order to make proper references to

sections §1.2 and §1.3.

Let Bn be an orthogonal matrix whose first m columns

generate Eh. Let Xn and en denote the vectors formed by

the first m coordinates of 3; Zn and B; wn respectively

where B; is the transpose of Bn' Let (m-d)Zn denote the

square of the projection of Zn onto the subspace which is

orthogonal to Eh. Let E stand for expectation wrt the joint

distribution of X1,...,§n, 21,...,Zn.

This section is divided into two subsections. In the

first subsection, with the help of the procedure yf* defined

in (2.1), we exhibit a procedure 27* for which

-1/(mH4))
**

Dn(§JZ, ) == 0(n for each 02. In the second subsection,
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for each positive integer S and each v in (0,1), with

the help of the procedure 1_ defined by (3.13), we exhibit a

i, for which

n(§,i) = 0(n-(S-1)Y/(Zs+m)(1+y)) for each 02. Let 2 de-U

note summation over i from 1 to n.

**

§l.6.1 Definition of T_ and a Rate of Convergence for
 

**

Dn (2.1 >

In this subsection, we use the notation of section

§1.2. We require the following notation for each n, but, as

in earlier sections, we suppress the dependency on n of

the functions to be defined below.

** **

Define I. = {T j as follows,

22
** , 1 *

= + —- tr t(6.1) T tr (X n k )

where tr' (as in section §l.2) and tr)\ Stand for retractions

m

to [-o,+o]m and X [-k-IQXL‘ + o, + k + h), {1(‘xLl + a + k + h)]

L=1

respectively.

** a

Let T be the modification of T obtained by re-

- 1H: 2 *

placing n 1221 in the definition of T by a . Let T

be the modification of T obtained by replacing tr' in the

definition of T by retraction to the cube [-a',+u']m where

a' = a +-k + h. Let c1,c2,... denote finite functions of

2

O' o

c

Lemma 12 E\\T* - T“ s Tl .

n X

. , , 111

Proof. Since the distance between two p01nts retracted in R

to the same cube is at most the distance between the
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points and since xutrxt*“ S “X“ +'ma', we obtain that

1HT* - T“ S (HXH + ma')‘n-122i - 02‘. Since

(d-m)Zl/02,...,(d-m)Zn/o2 are i.i.d. x2 - random variables

with d-m degrees of freedom, application of Schwarz inequality

to the rhs of the last inequality and the fact that

E[(HXH + ma')2] is bounded by a finite function of 02 completes

the proof of the lemma.

l/ufl4_ -l/mfi4
Theorem 5. If h = n- , k = a n for a in [1,”):

_ **

12(m+4) = n (m+2) and T_ is defined by (6.1), then

1

Dn(§,Tf*) = 0(n-m*4 ) for each 02.

nggf. Let 02 be fixed. In the proof, we consider only those

n for which k < 02.

Since ‘W‘ S a and since T = tr'T*, it follows that

HT - Ml S \\T* ' TH and hence HTMr - 1H 5 HT“ - TH + HT" - N-

If the Lth coordinate of t* (its negative) > x(‘XL| +-a'),

then, since 1 < oz, T* and $* defined by (2.1) turn out

to equal a' (its negative). Hence, T* = 1*. Therefore the

last inequality, together with Lemas 12, 4 and 6 and the

definitions of 1, h and k, implies that EuT* - W“ =

-1 **

n /m+4). Since I. , by definition (6.1), takes values in0(

X [-a,+u]m, Lemma 2 and this order relation give the result of

n

the theorem.

§l.6.2 Definition of i. and a Rate of Convergence of Dn(§.i)
  

In this subsection, we use the notation of section §l.3.

We require the following notation for each n, but as in previous
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sections, we suppress the dependency on n of the functions to

be defined below.

Define i'= {T} as follows,

. 27- I
T = tr'(x +-—i tr 617))

n X.

P

where tr' (as in section §l.3) and trA stand for retractions

m

to [-a,+a]m and x [-1 1(|x | +-a), 1'1(\x | + a)] and

- 1 - (j=1 L L A

p = b V B ((3.13)). Let T be the modification of T

- a 2

obtained by replacing n 1221 in the definition of T by c .

* x

AS a consequence of replacing T by T, T of sub-

section 1.6.2 by T of this subsection and a' by a in the

proof of Lemma 12, we obtain the following lemma.

C

. 1
Lemma 13. EHT - T“ 3 —¥-.

n 1

Now we State and prove the main result of the Subsection.

Theorem 6. If the hypothesissoi Lemma 10 is satisfied, i. is

 

— -i
defined by (1.6.2) and 1 = n28+m +y , then

-8-1 .1.

Dn(§”i) = 0(fl 28+m 1+¥ ) for each 02.

2329;. Let 02 be fixed. In the proof, we consider only those

n for which 1 < 02.

If the Lth coordinate of T (its negative) > 1(‘XL1 + a),

then, Since 1 < 02, T and i defined by (3.13) turn out to

equal 0 (its negative). Hence T I $. Therefore the inequality

HT - v“ S “T - T“ + “I - w“, together with Lemmas l3 and 10 and

5-1 .;1_

the hypothesis of the theorem, gives that EHT - W“ = 0(n 28+m 1+v ).

Since, by definition, T is in [-a,+u]m, this order relation

and Lemma 2 complete the proof of the theorem.
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§2.0 Introduction and Notation

For 0 < a.< b < 2a < o and a > 2, let

9 a {9919 e [a,bj} be the family of distributions with P6

representing the F(a) distribution with scale parameter 9.

Let S be a positive integer.

Let {Xn} be‘a sequence of independent random variables

with Xn distributeddas P6 belonging to .9. Let

n

Kn = (X1,...,Xn), §'= {an} and Gn be the empiric distribution

of 91,...,en.

In section §2.1, we consider a sequence of estimation

problems each having the structure of the following component

estimation problem. Based on an observable random variable X

whose distribution Pe belongs to .9, the problem is to estimate

9 with squared-error loss. Let R(Gn) denote the Bayes risk

against CD in the estimation problem just described. Let

Q = {¢n} be a randomized sequence-compound procedure (abbre-

viated to randomized procedure hereafter). That is, for each

n, ¢n is a randomized function of X“. For any such 9, g

in x [a,b], let

n

n
-l 2

(0.1) D (m) = n z E|¢ - el - R(G)
n j=1 j j n

where E stands for expectation wrt the joint distribution of

all the random variables involved. In section §2.1, we exhibit

* * **

a randomized procedure 1’ = {Va} SUCh that Dn(§ai, ) =

n-s/2(s+l))
O( uniformly in all parameter sequences g in

X [a,b].
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In section §2.2, we consider a sequence of two-action

problems each having the structure of the following component

two-action problem. Based on an observable random variable

X whose distribution P6 belongs to «9, the problem is to

choose one of two possible actions a1 and a2 when the loss

functions correSponding to 81 and a2 are L(a1,e) = (e-c)+

and L(a2,e) = (e-c)' for some c in (a,b). Let R(Gn)

denote the Bayes risk against Gn in the two-action problem

described above. Then, in section §2.2, we exhibit a randomized

procedure 1 = {fin} such that the absolute value of Dn(§,$)

defined by

-1 n

(0.2) Dn(a,i) = n z mare) - R(G)
j=1 j I1

is 0(n-S/2(S+1)) uniformly in all parameter sequences Q

in X [a,b].

n

The orders stated in the results of both sections §2.1

and §2.2 are uniform in all parameter sequences g in

X [a,b]. Hence, in order to reduce the complexity of the

Statements of the results in this chapter, the range of the

parameter sequences will not be exhibited, but is understood

to be X [a,b].

n

We introduce some notation which is common to both

sections §2.l and §2.2. Let {in} be a sequence of i.i.d.

random variables with the density of 11 as (a-l)xg-2[O < 11 < l]

wrt Lebesgue meaSure p, on ((0,00), 5 n (0am))- Furthermore,

we assume that {kn} is independent of {Xn}. Define, for each

n, Yn = ann. Then, Yn has F(q-1) distribution with scale
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parameter en. We let 2 and 2' denote Summations over j

from 1 to n-1 and from 1 to s reSpectively.

Now we introduce some notation which is similar to that

introduced in section §l.4. Since the Vandermonde determinant

involved does not vanish, there exists a unique vector

d = (d1,...,ds) in R3 such that :18 + 0 and

l for L = l. .1 _ '6 3

(0'3) 2 di(1 - (i 1) ) 0 for L = 2,...,s.

For any h > O and any real valued function g on

(0,m), define

ism) = h'1<s(u+h) - 3(a)) for u > 0.

With P. and H. denoting the averages of the distributions of

X1,-..,Xn_1 and Y ,...,Yn_1. respectively and with X abbre-

l

viating Xn, let

(0-4) 11- = 2' dil F(x + (i-l)h)

and

(0.5) §'= z' dii fi(x +-(i-1)h).

* *

With F and H denoting the empiric distributions of

xl’,po,xn-1 and Y1’000,Yn-1, let

* *

(0.6) n = 2' d1; F (x +-(i-1)h)

and

* -k

(0.7) g = 2' d1; H (x + (i-l)h).
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Let p and q denote the densities of T(a) dis-

9 9

tribution with scale parameter 9 and Fug-l) distribution

inith scale parameter 6 reSpectively. Let 5 and 5 denote

the densities of P. and H. reSpectively. With pés) and

q(S)
9 denoting the sth order derivatives of p9 and q

reSpectively, we assume throughout this chapter that a is 3

s

(0.8) Sup {‘pé )\, \qés)‘ 1 a s e s b} < m.

Under this assumption (0.8), it follows from the con-

dition on d in (0.3) and (3.2) of Chapter I that

(0.9) \fi'- 5‘ s kzhs

and

(0-10) \E - {1| 5 15118

where k6 and k7 are constants.
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*

§2dl Estimation Problem. Rates of Convergence for Dn(§’£ )

x

with 1 Based on Kernel Estimators for a Density

In this section, under certain conditions on 65 we

Show that,for each positive integer s, the modified regret of

*

the procedure i (to be defined below by (1.2)) is

-s/2(s+1)

nO( ) when the component problem involved is the

estimation problem described in section §2.0. The method of

proving this rate of convergence is Similar to that of Theorem

3 of Chapter I.

Let w denote the Bayes estimate against in

Gn-l

the component estimation problem described in section §2.0. 5
 

Then W can be expressed as

(1.1) u = —%1H%LEL for u > 0.

°’ MU)

*

Define the procedure 1 as follows. Let

*_ _X_
(1.2) W — tr (a-l

:
3
s
r
n
s

V

where tr stands for retraction to [a,b]. Any undefined ratios

are taken to be zero.

Let K1,K2,... denote constants in this section. Let

E stand for the expectation wrt the joint distribution of the

random variables involved unless otherwise Specified. In the

following lemma, q, 5 are evaluated at X.

Lemma 1. If a > 2, b < 2a, (0.8) is satisfied and h is in

N'= {h‘O < h((a-1)a-1 V (a-Z)a-2) < ea-2F(a-l)a r 8-1} for some

r in (0,%), then
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5 + 23+l %

E[‘¢* - ((X)\] s K1((nh)- (nh ) ).

Proof. We have by the definition of conditional expectation

* 'k

(1.3) Bill - 1(x>l] = E[E[\l - l<X>|X11

where E["X] stands for the conditional expectation operation

given X.

*

Since w , by definition (1.2), is the retraction of

7': 3': .. ..

XE /(a-l)fl to [a,b] and since t(X) = Xq/(a-1)p, the Bayes

estimate against G whose support lies in [a,b], is in
n-l

[a,b], we have ‘¢* - t‘ S b-a and ‘w* - Y‘ S X(a-l)-1\D‘

 
where

* -

(1.4) D = S; - 3'-

0 p

We then have

*
b-a *

EE‘Y ' W(X)“X] S g PE‘W - Y‘ > ujdu

b-a -1

(1-5) SS PUD| > (a-l)x ujdu

b-a _1 o -1

= 1 FEB > 01-1)X u] +-f P[D < (o-l)x ujdu

o a-b

where P stands for the joint probability measure of

X1,...,Xn_1 and Y ..,Y

1"

The main part of the proof bounds P[D > (a-l)X-1u]

n-l'

for 0 S u S b-a and P[D < (a-l)X-1u] for a-b S u < O by

using the Berry-Esseen theorem. The rest of the proof shows  
that the expectation of a bound for the rhs of (1.5) is exceeded

by the bound in the lemma.
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Let X > 0 be fixed until otherwise stated. Let

(1.6) Zj(u) = z'di([x + (i-1)h < Yj < x + ihj

- ((a-1)X-1u + %9[X + (i-l)h < Xj < x + ihj)

p

for \u\ s b-a.

Let the dependency of Zj on u be suppressed. Let

82 = Var(£Zj) and L = B-3ZE‘ZJ - EZj‘B. Now we prove the

following Sublemma.

Sublemma. For any \u‘ S b-a and any constant k2 such that

‘di‘ S k2 for i = 1,...,S,

k2(1 + 2(a-1)x‘1b)

 L s g _ 1 .

k4((n-1)h) (1H(x+(s-1>h>>2

Proof. In order to obtain the result of the sublemma, we

need a lower bound for 52. This bound will be obtained by

applying L1.A (see Appendix) to the Zj'

Since Yj = ijj and Since the distribution of xj

is supported on (0,1), P[Yj 2 Xj] = 0 and hence Zj defined

by (1.6) takes 2-ls(s+5) + 1 values; namely,

0, di-dj((q-l)X-1u + %) for 1 S i S j S s,

(1.7) p

d1 for i = 1,...,8 and -di((a-1)X-1u + %) for i = 1,...

p

with nonzero probability.

The probability that Zj takes the value zero in (1.7)

is given by P[xj é (X,X + sh), Yj 4 (X,X + Sh)]. Since

 
 

,S.

 



57

e-uum S e.mmm for m > 0 and since a > 2 and ej > 2 by

assumption, we have

U

 xx+h = 1 x-hgh(“——j)'o’1 ejdP(Xj6(, s)] “Maj e u

8"(0’2) (1‘2

Sf73:133'((a1)a V (0;?) )Sh.

(1.8)
m__

= 1 X+Sh (u)w_2 ej

PLYJ. E (X,X + sh)] —-—1.(a_1)ej 111(8 du

-(a-2)
, e a-l a-Z

SW ((01-1) V (oz-2) )sh.

Therefbre, it follows by the hypothesis on h that

P[Xj E (X,X + sh)] and PEYj E (X,X + sh)] are exceeded by r.

Hence, since P(A n B) 2 P(A) + P(B) - l for any two events

A, B, we obtain that P[xj (E (X,X + sh), Yj 4 (X,X + sh)] > 1-2r.

Hence, since Zj takes the value dS With probability

P(X + (S-l)h < Yj < X + sh S Xj], we obtain by L1.A. that

(1.9) Var(ZJ.) 2 k§(P[X + (s-1)h < Yj < X + sh S Xj'j)

vahere k; = d:(1-2r) inf{1 - P(u + (s-l)h < Yj < u + sh]\u > 0, h E R3.

Vie observe that k3 # 0 since (18 # 0 and Zr < 1. Hence,

Since [x + (S-1)h <3!j < x +sh, xj - Yj 2 h] c [x + (s-l)h <

‘Yij < X + shS %] and since Xj - Yj and Yj are independent,

Vve: obtain that

2 .
Var(YJ.) 2 k3 in£{P[xj - Yj 2 hj\h e %}P[X + (s-l)h < Y], < x + sh].

Ufllerefore,

2 2 '-

(1.10) e 2 k4(n-l)h i H(X + (s-l)h)

to 2 _ 2 .
llere k4 - k3 1nf{P[Xj - Yj 2 h]\h 6 fl}.
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Since ‘u‘ S b-a and since xq/(a-1)p S b, the

maximum of the moduli of the values of'(-Z,)in.(l.7) is at

J

most

(1.11) k2(1 + 2(a-l)X-1b)

where k2 is the constant stated in the sublemma.

Therefore, the standardized range bound for L, together

with the help of (1.10) and (1.11), gives the result of the Sub-

lemma.

Proceeding with the prOof of the lemma, we obtain an

upper bound for 82. The definition of Zj in (1.6) and (1.11)

imply that

X+sh h

11x )

2 2 - 2
E zj s k2 (1 + 2(a-1)X 1b) (F + njji‘h"

where Fj and Hj are the distributions of Xj and Yj

2

respectively. Therefore, since 32 = 2 Var(Zj) S 2 Ezj, we

obtain that

2 - _ _

(1.12) 32 s k2(1 + 2(a-1)x 1b)2(n-l)(F];{+Sh + Hjifih).

Let 0 S u S b-a. Then the definitions of D in (1.4)

and Zj in (1.6) imply that [D > 03-1)X-1u] S [zzj > 0] + [n* S 0].

Hence, with b(L) denoting the bound in the sublemma and B

denoting the Berry-Esseen constant, by the Berry-Esseen theorem,

the sublemma and the triangle inequality, we obtain that

PD: Z > O] is exceeded by

j

-l -l- -1 -l-

(1.13) we (n-1)h(o-1)x p u) + lu-e (n-1)h(o-1)x p u)

- Q(g'1z Ezj)|+-B b(L).
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2

By using the upper bound for B in (l.12),we obtain

that

(1.14) 8-1(n-1)h(a-1)X-1p 2 ((n-l)h)%f

where f is the positive solution of the equation

(1.15) k§x2(1 + 2(a-l)x'1b)2(5j:+5h +-fij§+5h)£2 = h(a-l)2p2.

Since 2 EZj + (n-l)h(a-1)X-1p u = (n-l)h((a-1)X-1u

+ %)(B - '11) + E - a) for all lul s b-8 and X5/<a-1>I3 S b,

 
it follows from (0.9) and (0.10) that

I
n
“
.

J a

(1.16) \z Ezj + (n-l)h(o-1)x'15 u\ s (n-1)h‘°’+1(21<6b(o-l)x'l + K7)

for all ‘u‘ S b-a.

Therefore, it follows by the mean value theorem and the lower

bound for 82 in (1.10) that the second term in (1.13) is

exceeded by

((n-1)h2$+1)}5(21t6(o-1)x'1 +~K )

(1.17) 7

- %
kz(l H(X + (s-l)h))

Hence it follows from (1.13) and (1.14) that

(1.18) P[2 zj > 0] S ¢(-((n-1)h)%f u) + (1.17) + b b(L)

for 0 S u S b-a.

Let a-b S u < 0. Then the definitions of D in (1.4)

and zj in (1.6) imply that [D < (a-1)X-lu] S [z(-Zj) > 0] +

[n* s 0]. Hence, since the sublemma continues to hold if d

is replaced by -d, we have by the Berry-Esseen theorem, the   
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trviangle inequality and the sublemma that P[Z(-Zj) > O]

is exceeded by

(1.19) 6(3'1(n-1)h(o-1)x‘15 u) + |o(a'1(n-l)h(o-1)x’1u)

- “-34; Ezj)| + B b(L).

2

By using the upper bound for B in (1.12), we obtain

. . ’5 f
tlhatzthe first term of (1.19) is bounded by 0(((n-l)h) f u)

Mflneare f is the positive Solution of (1.15). By using (1.16)

(311:1 the lower bound for 82 in (1.10), we obtain that the second

téirnlof (1.19) is exceeded by (1.17). Hence, it follows from

 
(1 .19) that

P[D < (o-l)x'1u] s 9(((n~-1)h)SE f u) + (1.17) + B b(L)

for a-b S u < 0.

Integrating this inequality wrt u over [a—b,0) and

C118 inequality (1.18) wrt u over [0,b-a], then bounding their

ffirst terms by using the inequality :-a§(-Au)du S (211).15 A"1

fRDr A > 0, we obtain from (1.5) that

2 a; + 2(b-a) (1.17) + 2(b-a>B b(L).E1|l* - l<X>l|XJ s
«mm 15

In view of this inequality, (1.17) and the bound in

tlle sublemma, we continue the proof of the lemma by showing

that t'1 and (1 + x'1)(t h(x + (s-l)h))-% are uniformly

bounded and Pn-integrable.

h - -

= P(X +'eSh)/q(X + esh) for some

, -X+sh -X+s
Since ij /H]x

e in (0,1) by Cauchy's mean value theorem, Xd/(a-l)p 2 a,

and Since f is defined as the positive solution of (1.15),
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we (obtain that f“1 is exceeded by

k2 X (l + 2(a-1)X-lb)(1-{l]§+8h)%((1+ ((a-l)a)-1(X + ssh))%

 
(1.20)

hgp

. ‘“ +Sh - -l
Slnce a]: = sh q(X + fish) for some 0 < 6 < 1, (01-1)

_ _ _ _ _ _ 1-

q(X + ssh)/P(X) s b(x + s)“ 2/x°’ 1 and b 0’ e Va _<. 1“(o)X o’pj a

Ei‘cy e-X/b, the condition b < 2a implies that the expectation

(Df the upper bound (1.20) for £71 is uniformly bounded.

Since, by the mean value theorem, 5 H(X + (S~l)h) =

d (}{ + €(S-l)h) for some 6 in (0,1) and since

r-(C¥_1)ba-la 2 Xa-Ze-X/a a-la-ae-X/b
and P(a)pn S X , the con-

Cli.tions b < 2a and a > 2 ‘imply that the expectation of

)(-1(A H(X + (s-l)h))15 is uniformly bounded.

. w

The same notnod of bounding §n[n g 0] completes the proof.

Now we state and prove the main result of the section.

'rliis result is a consequence of Lemma 1, Theorem 2.1 and (2.5)

C)f Gilliland (1968).

Tflieorem 1. If a > 2, b < 2a, (0.8) is satisfied, h

-l/s+l
vn

- - - -1

wuh0<vuwnalvm4W2><¥2reAMrs mrwm r

iri (O,%) and if is defined by (1.2), then

Dn(9.ll> = 0(n‘s‘2(s+l)>.

3:522£° Since Pe(U) is exceeded by (P(a))'la'aua'
le-U/b

uIliformly in all e belonging to [a,b] and u[ua-187U/b] < m
3

it follows by Theorem 2.1 of Gilliland (1968) that

-1 n -1
l. E - X = 1< > n jgl [\lj(xj) yj_1( j)l] 0(n og n)
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where 0(n-110g n) is uniform in all parameter sequences g

in X [a,b]°

n

Since the inequality (2.5) of Gilliland (1968) continues

to hold when the ¢i mentioned there are randomized procedures

a-

and since 11 , by definition (1.2), takes values in [a,b], it

follows by (1.19) that

‘k -1 n * -1

‘Dn(_8_,i )1 S 4b n jEIEENJ - ¢j_1(Xj)H + 0(n log 11).

Hence the reSult of the theorem follows from Lemma 1 and the

definition of h in the statement of the theorem.
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92.2 Two-action Problem. Rates of Convergence for Dn(§,1)
 

with 1 Based on Kernel Estimators for a Density

In this section, under certain conditions on 65 we

Show that, for each positive integer s, the modified regret

of the procedure 1_ (defined below by (2.5) and (2.6)) is

0(n-S/2(S+1)) when the component problem involved is the two

action problem described in section §2.0. The method of proving

this rate of convergence is Similar to that of Johns (1967).

In this section, we make it a convention that the value

of any decision function iS the probability of taking action

a1. Define, for each n,

(2.1) Yn = (6n - C)Pn-

If R(Gn) denotes the component two-action problem described

in section §2.0, then

['1 n

R(cn) = inf bib a“1 2 VJ.) + a”1 z (ej - «0’.
6 j-l j=1

Hence, with mn defined by

1'1

(2.2) m = Z Y.3

n j=1 j

- n _-

(2.3) n R(Gn) = minim] 4.121(6)]. - c)

With E denoting the expectation operation, for any

randomized procedure i.= {fin}, the risk of using Wu to decide

about en is given by (an - c)E[$n] +(en - c) and hence

the average risk of using $1,...,¢n to decide about

91,...,9n respectively is given by
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1 n 1 n -
— E = +._ -

n jE1PEYj(U) [¢J\Xj UJ] n 121(93 C)

where E[$j‘X, = u] is a conditional expectation of lj

J

given Xj = u. Hence, it follows from (0.2) and (2.3) that

(u)E[1j\xj = u] + m;(u)].

n

(2.4) n Dn(a.1> = ulYllil l'”[j§2VJ

Let h > 0 be a function of n. We define

= f 11 .1 {mm} as o ows Let

(2.5) $1 = l

and, for n > 1,

* *

(2-6) ln = [XE /a-1 < c“ ]

* *

where n and g are defined by (0.6) and (0.7) reSpectively

and X is an abbreviation for Xn.

Let, for n > 1,

*

= _ 93. . *
(2.7) Sn-l (n 1)(a-l cn ) for u > 0

* *

where g and n are evaluated at Y1,...,Yn 1, u and

X1,...,Xn_1, u respectively.

*

(2.8) mn_1 = E[Sn_1] for u > 0

and

2 _
(2.9) Bn-l — Var(Sn_1) for u > 0.

Lemma 2. If a > 2, b < 2a, (0.8) is satisfied and h is in

-1 -2 -2 -
w'= {h|0 < h((a-1)a v (o-2)“ ) < e“ r(o-1)a r s 1} for some

0 < r < %, then

 
 



6S

*

 

m m

‘01V (9(‘ n-l) ‘ 9(‘ “2:19)]‘ 5 K1((n-l)h28+1)l5 for n > 1.

n Bn-l Bn-l

Proof. By the mean value theorem and the inequality ./2; ¢ S l,

we obtain that

 

 

* 1* lm _ m - m _ -m _
(2.10) ‘¢(_ n 1) _ ¢(_ n 1)‘ n l n l

6n-1 8n-1 /2n Bn-l

Since (0.8) is satisfied by the hypothesis, it follows

from (0.9), (0.10) and the definitions of m: 1 in (2.8) and

mn_1 in (2.2) that

(2.11) 1m* - m \ s (n-1)h3(-E—-k + c ).
n-1 n-1 a-l 6 k7

2

Now we get a lower bound for an 1. Let

(2.12) h Zj(u) = g'di(u(a-1)‘l[u + (i-l)h < Yj < u + ih]

- c[u + (i-1)h < Xj < u + ih]).

Then, since P[Yj 2 Xj] = 0, h Zj defined above takes

-1

2 s(s+5) + 1 values; namely,

-1

(2.13) 0, diu(a-l) - djc for 1 S i S j S s,

diu(a-l)-1 for i = 1,...,s and dic for i = 1,..,,S.

with nonzero probability. The probability that h 2 takes the

value zero in (2.13) is given by P[Xj E (u,u + Sh), Yj f (u,u + Sh)].

Then, it follows by the hypothesis on b, (1.8) and the in-

quality P(A n B) 2 P(A) + P(B) - l for any two events A

and B that this probability is at least l-2r > 0. Hence,
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Since h Zj takes the value (18 with probability

P[u + (s-1)h < YJ. < u + sh 5 xj], we have from L1.A. (see

Appendix) that

(2.14) Var(h 2]) 2 (l-2r)d: P(_u + (S-l)h < Y < u + sh s x]

. JJ

(1-- P[u + (s-l)h < Y < u + sh s x.])).
J J

Hence, since in£{1 - P[u +(s-,1)h 4 Yj < u + sh s ij| u > 0, '

ej 6 [a,b], h €_Nj >'0, by using the argument given to obtain

(1.10) from (1.9), we obtain that

(2.15) h 5:1 2 k:(n-l) Aim + (s-l)h).

 
Therefore, we have from (2.10) and (2.11) that _;;r

 

 

* 25+1 5 um _ m <<n-1>h > (k —_- + C)
(2.16) \9(- n 1) - 9(- “—n'l)‘ S _ 6 a; k7Bn_1 8,14 k2 (M101 + (s-1)h))

We have

(2.17) 30 P(a)‘yn‘ S (b + C) Ua-le-U/b.

By the mean value theorem,

(2.18) All-(u + (s-l)h) = &(u + eh) for some 6 in (3-1,5).

Hence, since

0.1 _ q-Ze-u/a

(2-19) b P(a-l)Q(U) 2 U

it follows by the hypothesis on h,

(2.20) ba-]T(a) t H(u + (s-1)h) 2 ua'ze'l'U/a.
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Since b < 2a the result follows from the

inequalities (2.16), (2.17) and (2.20).

[Rt

_-3 3
(2.21) Ln_1 — en_1 z E‘Zj - EZJ‘

where Zj is defined by (2.12).

Lemma 3. If the hypothesis of Lemma 2 is satisfied, then

-1 h '%“[‘Yn‘Ln-l] S K3((n ) ) for n > 1.

Proof. The standardized range bound for Ln-l’ together with

(2.15) and the fact that the umximum of the moduli of the values

of h Zj defined in (2.12) is at most

2 22 d d 1 '1( . ) max {\ 1|,...,\ S|}(u(o- ) + c),

implies that

max {\d1\,...,\ds|1(u(a-1)'1 + c)

%

 

Ln-l S 3 ‘-

k,((n-1>h> (1 no + (s-1)h))

Since b < 2a and or > 2 implies that the u-integral of the rhs

of the inequality obtained by weakening this inequality for

Ln-l by using (2.20) is uniformly bounded, the proof of the

lemma is complete.

Below, we get an upper bound for B§_1. We have by

the definition of h Zj in (2.12) and (2.22) that

2 2 2 -1 2 u+Sh u+Sh

h E2j s (max {‘d1\,...,|ds\}) (u(a-1) + c) (iju + Hjju )

where Fj and Hj are the distribution functions of X, and
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. . 2
Yj respectively. Therefore, Since 5 S EZ2 e ha e

n-l 2 j’ w V

2 - — h

(2.23) h28n_1 s (max {\dl‘,...,\ds‘})2(u(a-l) 1 + c)2(n-l)(F]:+S

-u+sh

+11]u ).

-1%
Lemma 4. ”[Bn-l] S k4((n-l)h ) for n > 1.

L

Proof. By (2.23) and the inequality (a+b)% S a2 +ib% for

a,b > 0, we have

 

- _ _._ +Sh

((n-1)h 1) 75n_1 s max {\d1\,...,\ds|}((h 1F]: )5

+ (h'lfijsfihfi).

By the mean value theorem h-lfj:+8h = s 5(x + ash)

and h-lfij:+8h = s 5(x + Ssh) for some 0 < 3,6 < 1. Hence,

since P(a)aQE S ua-le-U/b, F(a-l)aQ-1 a S ua-Ze-u/b and

ua'.2e.u/b is u-integrable, the result of the lemma follows.

The proof of the following theorem depends on Lemmas 2,3,4

euuipart of the method of proof of Theorem 1 of Johns (1967).

Theorem 2. For each positive integer s, if (0.8) is satisfied,

-l/s+l
na > 2, b < 2a, h = y where Y((a_1)a-l v (a_2)a-2) <

ea"2 P(a-1)a r S'1 for some 0 < r < 5 and l, is

defined by (2.5) and (2.6), then

Dn(§Jl) = 0(n-s/2(s+l)).

Proof. By (2.4) and the definition of i. in (2.5) and (2.6),

we have

(2.24) nlnnmm)‘ s ulhll] +‘ \ul 2 Yj(u>Eiljlxj = u] + mgom-
j=2
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To start with, we consider bounding the integrand of

the second term of the rhs of (2.24) on the set [mn > O].

Afterwards we consider the case when mh S 0. So, let mn 2 0

until otherwise Stated. Since m.n 2 0, we have by the defini-

tion of lj in (2.6) and Sj-l in (2.7) for j > 1 that

n _ n

(2.25) jEZYj(u)E[$j‘Xj = uj + mn(u) = jizyj(u)P[Sj_l < 0]

where P stands for the joint probability measure of all the

random variables involved.

By the triangle inequality,

[1

(2.26) | 22v. (u)P[Sj_1< 01‘ s 1Dl| + \Dzl + ‘D3I

J-

where

[11*

[l

(2.27) 01 = z yj (P[Sj_1< 0] - 9(--—1-)),

i=2 Bj--1

n

(2.28) D2 = z yjm- 4—)- -:—1'—1>)

i=2 BJ--1 SJ--1

and

n .1212.2 = -( 9) D3 ZYJ §( 511)

With B denoting the Berry-Esseen constant, the Berry-

Esseen theorem (Loave (1963), p. 288) gives

n

‘D1l S B jEZ‘vj‘LJ-l

Therefore, by Lemma 3,

n

(2.30) nun“ > 01101” a 1.3 22((j-1)h)-%.
j:
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By Lemma 2, we have

n

(2.31) ullmn > OllDzll S k1 jgz (<j-1>h25+l>5.

Replacing aj and sj by Yj and Bj in (2.6)

through (2.13) of Theorem 1 of Johns (1967), we obtain that

n y n ‘y,‘

(2.32) \D \ s¢(0) z -1——+ z ——1—+(e +5 )(A§(A) +2@(0)) --
3 j=2 Bj_1 3:2 j2 n 1 1 1 r"

where max X§(-X) = A1§(A1).

x>0 .

The lower bound for B§_1 in (2.15), the lower bound

 for b fiku + (s-l)h) in (2.20) and the upper bound for yj L

in (2.17), together with the conditions b < 2a and a > 2,

2 - _

imply that ”[Yj/Bj-I] S k5((j-l)h 1) t. Hence, since (2.17)

implies that ”[lyj‘] is uniformly bounded, it follows from

(2.32) and Lemma 4 that

n n

ullm > 0]\D3|] s k ( z ((1-1)h‘1)'5 + 2 l— + (nh‘1)¥ + 1).
n 8 j=2 j=2 j2

Hence (2.25) to (2.32) imply that

luttmn > 0]< z vj(U)E[l|Xj = u] + mg<u>)]\
j 2

n

= mum“ > 0] Ezyj(u)P[Sj_1 < 0]“

(2.33) n $5 n 2 1 5

s k9< z <<j-1>h>' + z ((3-1)h 3+ >
j=2 J=2

n n

- - 1

+- z ((j-l)h 1) a + 2 —§'+ (3)35 + 1).

i=2 i=2 1

Now we consider bounding the integrand of the second term

of the rhs of (2.24) on [mn < O]. For u in [mm s 0], we
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have by the definition of fij in (2.6) and Sj-l in (2.7) for

j > 1, we obtain that

n _ n

jEZYJ (u)E[$j‘Xj = u] + mn(u) = --Y1(u) - jEZYj (u)P[Sj_1 2 0].

Following the same argument we gave to bound

2; Vj(U)P[Sj_1 < O] by rhs of (2.33), we obtain that

1'1

mum“ < Oyjizijmwj‘xj = u] + m;(u))]‘ s rhs of (2.33) + uE‘yl‘].

Since (2.17) implies that “[‘y1‘] is uniformly bounded,

this inequality and (2.33), together with (2.24) and the hypothesis

concerning h, imply the result of the theorem.
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We apply the following lemma for obtaining lower bounds

for certain variances in Lemmas 4 and 11 of Chapter I and Lemmas

l, 2 and 3 of Chapter II. The inequality in the following lemma

 

is trivially true when p0 = 1.

Lemma 1.A. Let pO < l, p1,...,pi,... be a probability distribu-

tion on {O,l,...,i,...} and let 2 be the r.v. Z(i) = Z1 for

. . _ . 2 :4:

Specified 20 - 0,21,...,zi,... With 2 zipi < m. Let qi

abbreviate l - pi and let 1(X) = 2: Pi(1 — Xqi)-1. Then

I g from to #{i 2 l‘pi > O} as X t from O to l and
0

1 i. i 1

with Al the unique root of 1(X) = 1. Since 1(p0) s 1,

Proof. 1 g since each summand p,(l - )\q.)”1
_____ 1 l

with p1 > 0 g.

Since equality holds in the inequality when XI = l, we consider

below the case k1'< 1.

To prove the inequality when k1 < 1, let ¢(z) = Var(Z) -

2 . .
X1 2 2i piqi for z — (21,22,...). Denoting the first and second

partials wrt zj by *3 and wjj reSpectively,

¢j(Z) = 2Pj{(1-x1qj)zj - 2 z.p.} , w..(z) = 2(1-A1)quj-
11 J]

For j with pj > 0, W is, therefore, minimal wrt zj varia-

tion iff zj = (l‘quj)-IZ zipi. These conditions are satisfied

72
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\

iff, for some constant c, zj = c(l-)\1qj)-’1 for j with pj 2 O.

For such 2,

-22 _

¢(z) = C {2 Pi(1-xlqi) - 1 - x1 2 piqi(1-ilqi) 2} = 0

which yields the nonnegativity of W asserted by the lemma.
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