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ABSTRACT

RATES OF CONVERGENCE IN SEQUENCE-COMPOUND SQUARED-DISTANCE
LOSS ESTIMATION AND TWO-ACTION PROBLEMS

By

Vyaghreswarudu Susarla

We consider a sequence of repetitions of a statistical
decision problem which has the structure of one of the statistical
decision problems described below. These statistical decision prob-
lems will be referred to later on as component problems.

When the family of distributions & is, (1) the family of
m-variate normal distributions with covariance matrix I and mean
0 in @ = [\e\ < a], the problem is to estimate @ with squared-
distance loss, (2) the family of ['(¢) distributions with scale
parameter § in ® = [a,b] where 0 < a <b < », the problem is
to estimate @ with squared-distance loss and (3) same as (2) except
that the problem is a linear loss two-action problem. For any dis-
tribution G on @, let R(G) denote the Bayes risk in the com-
ponent problem.

X = {gn} is a sequence of independent random variables with
distributions {Pen} in X @. let G be the empiric distribution
of el,...,en. let s be a positive integer and vy be in (0,1).
All the orders stated here are uniform in the parameter sequences
9 in é ®.

When the component problem is described by (1), we exh:bit

ok
procedures *n , *n and o*n’ which are functions of El""’§n’



Vyaghreswarudu Susarla

such that Dn(g,y_**) = n-lzti E\Vj* - ejlz - R, D (8,8 and

Dn(ﬁ,cﬁ) are O(n"l/(m'f‘t)),O(n'(Z-l)'Y/(Zs-im)(l-ly)) and

-(8-1) /2 (s+m+1) )

O(n respectively. Whenever m 2 5 and

(s-1)y(m+s) 2 2(2s4m) (1+y), § 1is better than !f* in the sense
that sup{Dn(g,!f*)\Q} converges to zero at a faster rate than

sup{Dn(gﬁif*)\Q} does. Similar comparison has been given between

Fok
'R and oi' The results stated above for if* and § have been

extended to the case when the covariance matrix I 1is replaced by

021 (02 unknown) and the means en lie in lower dimensional sub-

spaces having the same dimension.

When the component problem is given by (2), we exhibit a pro-
cedure W: such that Dn(g,if) = O(n'°/2(8+1)) when a,b and «
satisfy certain conditions. For the same set of conditions on a,b
and g, when the component problem is described by (3) with loss
function L, we define a procedure Wn such that n-lzq E L(Gj,wj) -

R(Gn) - O(n-s/2(8+1)).
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INTRODUCTION

In Chapter I, @ = {Pe} is the family of m-variate normal
distributions with covariance matrix I and mean @ in
® = [|8] < o] and the component problem is squared-distance loss
estimation of @. In Chapter II, ¢ 1is the family of [ (¢) dis~-
tributions with scale parameter @ in ® = [a,b] where
0 <a<bc< o and the component problem is either squared-distance
loss estimation or a linear loss two-action problem. For any dis-
tribution G on @, let *G and R(G) denote the Bayes estimate
and the Bayes risk in the component problem.

The sequence-compound problem consists of a sequence of
repetitions of the component problem with the loss taken to be the
average of the component losses., X = {En} is a sequence of in-
dependent random variables with distributions [Pe } in é @ and

n

the nth component decision §n depends only on xl,...,xn. With

Gn denoting the empiric distribution of el,...,en, let
1 n
(0.1) D (&8 == jEIE[L(ej §] - R(G).

Dn(g”s) is known as the modified regret of E.

Since the work reported here is a continuation of Gilliland
(1966, 1968) and Johns (1967), we describe some of the main results
contained in these references. All the orders stated below are
uniform in the parameter sequences concerned. For the purpose of

this introduction only, abbreviate O(n-a) to order -a.
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When @ 1is the family of univariate normal distributions
with variance unity and mean @ in [-o,+r] and the component
problem is squafed-distance loss estimation, Gilliland (1966)
exhibited a procedure whose modified regret is order -1/5. When
@ 1s a certain family of discrete distributions and the component
problem is the linear loss two-action problem, Johns (1967) exnibited
a procedure whose modified regret is order -1/2. When & is a
certain discrete exponential family and the component problem is
squared-distance loss estimation, Gilliland (1968) exhibited two pro-
cedures whose modified regrets are order -1/2.

Now we briefly describe the main results obtained in this

work. 1In Chapter I, the Bayes estimate against G__, is

*n-l(gn) = §n +

L- T Y-T]

with p denoting the mixed density Ipedcn-l’ q denoting the
matrix of partial derivatives of ; and indication of the evalua-
tion of both at §n abbreviated by omission.

In section §1.2, we define #:* based on a divided difference
estimate of 6/5 whose D is order -0m+4)-1. This generalizes
the result of Gilliland (1966) for m = 1 case.

In section §1.3, for each positive integer s and v in
(0,1), we define $n based on kernel estimators for p and q
analogous to Johns and Van Ryzin (1967) estimates of _IpedG and
its derivative in empirical Bayes two-action problem in exponential
families and show Dn(ﬁ’i) is order -(s-1)y/(2s+4m)(l+y). For each
integer s > 1, we exhibit o'n’ specializing § but for the latter's

retraction to [B,»), whose D is order -(s-1)/2(s+m+l).
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Fok -2
In section §1.5, we show that Dn(Q»i ) 2cn frtd where

c 1is a constant depending on . Hence, whenever m =2 5 and s
and vy are such that (s-1)y(mts) > 2(2s+4m)(l+y), § is better than
*%
¥ in the sense that sup{Dn(Q,i)|§} converges to zero at a faster
Fok
rate than Sup{Dn(g,i )|Q}. A similar comparison is made between

*k
¥ and 0@ .

Se::ion §1.6 extends the main results of sections §1.2 and
§1.3 to the case when the covariance matrix I 1is replaced by
021 (az unknown) under the additional assumption that the means
lie in lower dimensional subspaces having the same dimension.

In Chapter II, as already indicated earlier, & 1is the
family of TI'(¢) distributions with sclae parameter @ in
® = [a,b]. 1In section §2.1, the component problem is squared-
distance loss estimation. For each positive integer s, we define
W: based on kernel estimates for two densities and show that
Dn(gﬁyf) is order -8/2(s+l) whenever a,b and o satisfy certain
conditions. In section §2.2, the component problem is linear loss
two-action. For each positive 1nteger~ s, we define Wn based on
kernel estimates for two densities and show that Dn(gji) is order
-8/2(s+1) whenever a,b and « satisfy the conditions imposed on
them in section §2.1.

Throughout this work, we let § and ¢ denote the standard
normal distribution and its density respectively. We suppress the
arguments of functions whenever it is convenient not to exhibit them.
Indulging in the abuse of notation, we let sets denote their own
indicator functions and, infrequently, are forced to let the value of
a function denote the function. For any measure p, we let p[f)

or uf denote Ifdp.



— — — — — —



CHAPTER I

RATES IN THE ESTIMATION PROBLEM FOR A FAMILY OF
m-VARIATE NORMAL DISTRIBUTIONS



§1.0 Introduction and Notation.

For fixed o < » and for fixed positive integer m,
let @ = {Pel|e| < a} be the family of distributions with Py
denoting the m-variate normal law with mean @ and covariance
021, where I 1is the m X m identity matrix and 02 > 0.

We consider the following estimation problem which will
be called the component problem hereafter. Based on an observa-
tion of a random vector X whose distribution Pe belongs to
#, the problem is to estimate @ with squared-distance loss.

For any distribution G on the m-sphere of radius ¢,
let ¢G and R(G) denote the Bayes estimate and the Bayes
risk versus G in the above estimation problem. Since the
problem considered here is the squared-distance loss estimation

problem, is given by the conditional expectation of @

*G
given X. 1If pe denotes the usual density of Pe wrt
Lebesgue measure on (RmJﬁm), then the conditional expectation
of o given X is G[epe]/c[pe] which, can be expressed as

2
X+o qG where qG is the vector of partial derivatives of

log G[pe] wrt the various coordinates of X. Hence,

2
(0.1) Vo =X +oq, -

We consider a sequence of component problems as des-
cribed above. That is, let (X ] be a sequence of independent
random variables with En distributed as Pe belonging to &
and the problem is to estimate every componen: of [en} with
loss taken as the average of squared-distance losses in individual

components, For each n, let the product measure P,, where

1 1

N x3

i



P, is an abbreviation for Pe , be denoted by En' Let
i

g = {gn} be a sequence-compound procedure (abbreviated to
procedure hereafter). For any parameter sequence § = {en}

and for any non randomized procedure g = {gn}, define

_ -1 2 Y
(0.2) D_(8,8) =n jilzjtléj 8,17 - R

. . . . . .
where Cn is the empiric distribution of 61,...,en. Dn(g’*)
is called the modified regret of the procedure §.

The orders stated in the results of sections §1.1, §1.2,
§1.3 and §l.4 are uniform in all parameter sequences § in

X [\e \ < o] and the order stated in section §1.6 is uniform
. n

in all parameter sequences § belonging to X ([\en\ <a)l NR)D>
n
where, for each n, Ry isa d (d <« m)-dimensional subspace of

Rm. To reduce the complexity of the statements of various re-
sults in this chapter, the range of the parameter sequences
will not be exhibited, but is understood to be as in the pre-
ceeding sentence. Henceforth, we use these conventions.

In section §1l.1, we get an upper bound for \Dn(g,g)\

under the assumption that g is in X [-a,+a]m and a useful
n
lemma, both results holding for each ¢ . 1In section §1.2,

*% *k - +4
we exhibit a procedure for which Dn(g,i ) = 0(n ™ )

when 02 = 1. 1In section §1.3, for each y > 0, we exhibit a

procedure § for which Dn(g,i) = O(n-(%-Y)) again for

GZ = 1. 1In section §l.4, for each positive integer s, we

-(s-1)/2 (m+s+1
exhibit a procedure § for which Dn(g,OW) = 0(n (s-1)/2(m ))

for 02 = 1. Section §1.5 shows that
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Dn(g,yf*) 2cn 4 for all n, where 0 = {0} and c¢ is a
positive constant. Section §1.6 has two subsections. These
subsections extend respectively the main results of sections
§1.2 and §1.3 to the case when 02 is unknown and when, for
each n, 8, lies in &; intersected with m-sphere of radius o.

Let  denote the Lebesgue measure on (RmJBm). For

m

any two points wu,v in R with coordinates UpseeesUos
m m
Vys...,V_ Tespectively, let |u‘2 = g ui, lull = = ‘ui‘
m m i=1 i=1 _
and (u,v) = Zuv. . The inequalities |u| < |jul| < /m |u]

i=1
m
will be used without further comment. Also, a vector in R

will be denoted by <« > with the general coordinate of the
vector exhibited inside the brackets.

Let P, be an abbreviation for pe , the density of
n
Pe . For each n, let VG be abbreviated by wn. Then,

n n
specializing (0.1),

(0.3) Vv, =X+ogq

where in is the vector of partial derivatives of the function
n

log T pj wrt the coordinates of X.
i=1 ~
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§1.1 A Bound for the Modified Regret Dn(g,g).

We state and prove two lemmas which are higher dimen-
sional generalizations of proposition 1 and corollary 1 of Chapter
I of Gilliland (1966) for the case of the family of normal distribu-
tions @&.

4o %? -1
Lemma 1. Pn[‘wn - wn-l|] < 2 e n for n > 1.

Proof. From § = Gn[epe]/Gn[pe], the triangle inequality and
Jensen's inequality, respectively, it follows that

- n-1 _qn-1

n
'1 [l
- = . . - 6.)p.
vy - ¥ooql p“(jilpj) (jEIPJ) \jEI(GJ WP
(1.1)
nooa S |
<20 p (L pj) <2np I Py -
3=1 3=1

. 1 -2 -1
Since P,Pj =expo (e, - 05> x - (e, + Oj)z )
p [ -1 - -2 -9 |2 -2 2
alPaPy 1 = exp o le, g7 = exp o 4o

which, when substituted in (1.1), completes the proof.
Lemma 2. If the procedure £ 1is in X [-a,+u]m, then, for

2 n
each ¢ >0,

-10 -1

where q,o is an arbitrary decision rule taking values in
m

["a"l'uj .

Proof. 1Inequalities (8.8) and (8.11) of Hannan (1957) when

specialized to the squared-distance loss estimation problem

here give the inequality
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n
-1 2 -1
(1.2) n z Ejtle ejl ] £RG ) sn

n 2
I IEU - 8,177
By bounding the term R(Gn) appearing in the defini-
tion (0.2) of Dn(g,g) above and below by using (1.2), we
obtain, by using the equality \a|2 - |b|2 = (a +b, a-b) for

a,b in Rm, the double inequality
-1 0
(1.3) n % gj[(é

J=1 + ‘vj-]. - Zejs §j - wj'l)] < Dn(ﬁ,ﬁ)

k|
-1t
<n zz[@j+¢j-2%,§j-wﬁ].

Since, by assumption §j is in [-a,+u]m, \ej\ < o
and ‘#j, Wj-l,

whose supports lie in m-sphere of radius «, are in

being the Bayes estimates respectively against

Gy» Gy

m-sphere of radius ¢, we obtain that the moduli of the 4th

coordinates of €, + wj - 29, and §j + *j-l - Zej are at

] h|
most 4. Therefore, we obtain from (1.3) that

n

-1 12 ,
(L.4)  ~bom jglzjt\\éj ¥l =D @0 < 4an Elzjt\\éj ¥l

i

The triangle inequality applied to the rhs of (1.4)
and Lemma 1 will complete the proof of the lemma.

We use Lemma 2 to obtain rates of convergence of the
modified regret of certain sequence-compound procedures to be

defined in later sectiomns.
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*k *k
§1.2 A Rate of Convergence for Dn(g,i ) with ¥ Based

on a Divided Difference Estimator for the Derivative of

the log of a Density.

Some notation, which is similar to that of Gilliland
(1966) for m = 1 case, is required to define if*. The
notation to be given below is for each n and will be used
also in section §1.6.1. We abbreviate by omission the dependency
on n of the functions to be defined below.

Let F denote the average of the distributions of

El"' ’§n-1‘ For each x in R with coordinates X seeesX s
m
let 0= x1I, where I_ = [x,,x +h] for j=1,...,m,
j=1 3 i 3
and for 4 =1,...,m, [0 = X I' where I' =1, for j #2¢

and 1' =1 +k=[xL+k,x4+k+h]. let 0 < k < h.

For any distribution F on Rw, let t(F) denote the
vector valued function <k-llog Oiqbﬁﬁj)> from Rm to Rm
where K] and F[%’ represent the measures of [J and [k
for £ =1,...,m respectively under F and any undefined
ratios are taken to be 1. We abbreviate t(fB frequently
by t hereafter.

Let the function t(F*), where F* is the empiric
distribution of X

*
~1,...,Xn_1, be denoted by t . let X abbre-

viate X, and xl,...,xm denote the coordinates of X. Let
*k . 2 % * 2 %
(2.1) ¥ =tr'X+o0t X)), § =trX +o0t X))

where tr' and tr stand for the coordinatewise retraction
to the intervals [-o,twv] and [-o =k - h, ¢ + k +h]

respectively.



11

With § abbreviating §__;, we have, since l¥] s o

*ok * *k *
and §y =tr'y , “¢ - #“ < Hw - w“. Therefore, by the

triangle inequality

@2 2OV -1 s 20" - @+ oCeef] + Ik + o't - 1.

m
>

Lemma 3. For all x in R

M) x +ot@E® € (-5 -ha",

= = hm (k+h) mh+k -
(2) 1, 2 P(T) exp - (lx|| + =) where p
1 o o2 2
is the density of F at x and

3) ﬁji < ﬁqt EEE exp E%E (|XL\ + o +k +h) for
(o)

m
£ =1,...,m where Q' = x 1" with I' =1, for j #1
and "= x + k + h1.
nd L= Dxpex ]
Proof. 1In this proof, let Fj denote the distribution of

. d ces .
xJ an ejl’ ,ejm denote the coordinates of g,

~

Proof of (1). Let £ be in {1,...,m}. Since the coordinates

of xj are independent, we can express Ffj and F as

[
the products of univariate normal probabilities. Therefore,

by cancelling out the common terms in these products, we obtain

that
-1 -1
FO, _ % 1("4, O ¥k +h) - i(" G “ B PO
FO - - _ - -
j ¢ (o (XL ejL +h)) - ¢(Co (xL ejL))

Applying Cauchy's mean value theorem (Graves (1946), p. 81) to
the rhs of this equality over (O,G-Ih) with the function in

the denominator to be taken as Q(o-l(xL )) while that

" 05
in the numerator to be taken as Q(o-l(xL - ejL + k)), we

obtain, by using a2 - b2 = (a +b)(a -b) for a,b in R1
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the existence of w in (0,1) such that

o]

|
Al ocep - K - k
FaEL A A

o]

Hence, since \ejL‘ < o,

F
k k fzk k
exp - = (XL +ao + > +h) < 70 < exp 73 (o - xL).
o h| c
Since these bounds for chk/Ffj are independent of
j, they also bound ﬁjb/ﬁj. These inequalities are equivalent

to (1) in view of the definition of t(;}. Since ¢ is

arbitrary the proof of (1) is complete.

Proof of (2). We temporarily abbreviate u[Sg] by &(S)

for any S in B". Then, FO, = Q(O-I(I -0, +tk)I
Q(c-l(Ii - eji)). Hence, applying the mean value theorem

-1 -1
to ¢(o (Ii - eji)) for i #4 and to §(o (IL - ej& + k)),

we obtain the existence of <mi> in (0,1)m such that

m x, -9

i~ 91
21¢( o

+wh +58 k
i iy

ro = (B )
(o}

it ;

where éiL = [i = 4]. Hence, since = log(p(u)/p(v)) = (u-v) (utv)/2,

we obtain that

FO m w.h +8, k
2 i Y AR - I S ©
-G log((E)tnp ) iEl(wih + siLk)(xi eji + 5 ).
o” ]

Hence, since the functions of w, appearing on the rhs of this
equality, being convex, attain their maxima at wy = Oor 1,
we obtain that the rhs of the last equality is exceeded by

m h+86,. k

- - i
iil(éuk(xi 053 t0,K/2) vV ((h+6,K)(x; -8y +—F=))
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h +68, k

m
1
< iEl(h +o,0(x| + |eji| +
+ k

< (k + h) (||| +/m o + 0 7

Since this bound for -ozlog(Ff:k/(h/o)mpj) is independent
of j, it also bounds -azlog(ﬁjc/(h/a)mﬁ). Since this in-
equality is equivalent to (2), the proof of (2) is complete.

Proof of (3). Using the notation §(S) for S in &g"

introduced in the proof of (2), we have

= -1 - - '=
FjDL ¢ (o (IL 9., +k)) NMé( (I 8,.)) and FO

je i#e, ji i1
9(0'1(12 - G )) 2 $(0 (I - ji)). Hence, applying the mean
irg
= -1 -
value theorem to 3 (o (IL - ejL + k)) and % (o (IL ejL))’

we obtain the existence of w, w' in (0,1) such that

ID k+h el (x - jL+w'(k+h)).
FH oo (xL- 8y, * k +wh))

Hence, since log(g(u)/¢(v)) = (v-u)(v+u)/2, we obtain from the

above equality that

'+ L
W lk + whw

o log o -‘E{‘ = (1 -0k + (@ - w')h)(xL-e

k+h Ff]

Hence, since 0 < w, w' < 1, we obtain from the above equality

+
je 2 2

that

2

g log —— k+h FjD < (k-ih)(‘x‘c‘ + o + k+h).

Since this bound is independent of j, it also bounds
ozlog(h fti/(k+h)ﬁjb). This inequality is equivalent to (3).

Hence the proof of (3) is completed.
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Now we bound the integrals on the rhs of (2.2). The
method of bounding the first integral is essentially a gen-
eralization of that given in Chapter III of Gilliland (1966).
We get a simpler method of bounding this integral because of
the definition of y + in (2.1). This definition of §
differs from that of a similar function introduced by Gilliland
(1966). The method of bounding the second integral of the rhs
of (2.2) differs from that of Gilliland (1966). Let ELSTEEE

denote finite functions of oz. Let

1

K=1{kl0<k< (5+0 22 + 1)) 1}

Lemma 4. If k 1is in K, then

% %

* 2 k+h 1
RV - @ +ocan|] = 1D t O

Proof. Since the lhs is the sum of gn-integrals of the moduli
of the coordinates of v* -X - azt(x), the lemma will be proved
by showing that these integrals are bounded by rhs/m.
Let the dependency of t on X be suppressed and
Xl,...,xm denote the coordinates of X. We abbreviate in
this proof the fth coordinates of ¢* and t by omission.
let o' denote 2(a¢ + k + h).
Since **: by definition (2.1), is the retraction of
Zt* 2

X +0o to [~ -k -h, o +k+ h] and since XL +o0t,

1

by (1) of Lemma 3, is in [-o - % - h,a], it follows that
*

V- x, - ot sa' and |y -x, - o%t] < o7l - e

Therefore,
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a'
En_l[W* - X, - 02t|] < t[;gn_l[\v* - X, - ozt\ > u]du

a' 9. %
(2.3) < l{ gn_l[o |t - t] > uldu
a'
= g gn_l[oz(t* - t) > uldu
0 2 %
+ [a.gn-l[° (t - t) < uldu.

2 *
The main part of the proof bounds gn_l[o (t -t) >u]
for 0 <us<qg' and P [ 2(t:* -t)<u] for -¢'<u<O
o P _1lo o4
by using the Berry-Esseen theorem. The rest of the proof shows
that the Pn-integral of m times the bound for the rhs of (2.3)
is exceeded by the bound in the lemma.

Let X be fixed until otherwise stated. Let
= . = . and
By < lxy eg) by (% € e

2
(2.4) Yj(U) = Ej - bj ek(t+u/a ) for |u] so'.

Let the dependency of Yj on u be suppressed hereafter.
Let 52 = Var(zy,) and L= 3'3 b 1>j\1rj - Pij|3 where
stands for summation over j from 1 to n-1.

Sublemma. For ‘u‘ <a',

ko-z(or'irx'ﬂx{’\)

3 s )

2 e

o - b
|2, (2, 2 01 - 267z Y| o

(HJL)
Proof. With B denoting the Berry-Esseen constant, the Berry-
Esseen theorem (Loeve (1963), p. 288) implies that

gn_l[ij z 0] - Q(a-lszYj)| is exceeded by BL. Hence, we

complete the proof of the sublemma by showing that L is

exceeded by B-1 times the bound of the sublemma. In order
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to get a bound on L, we first get a lower bound on 52.

By applying L1.A (see Appendix) to the Yj’ we
2
obtain a lower bound for g . We observe that Yj defined

by (2.4) takes three values; namely

2
(2.5) 0, 1 and - ef(tt/o")

with probabilities 1 - F}JL - F}j, FJJL and Ffj respectively

where Fj is the distribution of X,.

~]
Therefore, it follows by L1.A that

Var(Yj) 2 (1 - quc - Ff])(Ffj(l - Ff]) +

2
2k(t+u/c”)
Weakening this inequality by dropping the second term of the
above inequality, we obtain that Var(Yj) 2
1 - FJE%,- Ff])Fij(l-qub)' Hence, denoting by c§ the

infimum

h/2 h/20 m-1 _ (k+h)/2
inf {(L - @]_élgc)m(l - (@]_;/ga)m @]f(k+;;/go)| h < k € K},

we obtain that

2
(2.6) Var(Yj) z cq qub°
Therefore, since 52 =g Var(Yj),
2 2 =
(2.7) B 2cq (n - 1) HJL.
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Since 0 < u < o' and since czt <o - X, by (1) of

1

Lemma 3, the maximum of the values of \Yj\ in (2.5) is exceeded

by

-2
(2.8) RESNCL b PP

Therefore, the standardized range bound for L, with the

help of (2.7) and (2.8), gives that

RU-Z(G*“'+\3¢\)

2 e

BTN
ey (-1 ¥,

L <

In view of the remarks of the first paragraph of the

sublemma, we obtain the result of the sublemma by taking cq

Before proceeding further, we note that it follows

from (2.5) and (2.8) that EY;

zm'z(m'ﬂxL\)

is exceeded by

: 5

where E£ is defined in (3) of Lemma 3. Hence, since

Bz =y vVar(Y.) <% EYZ,
3 3
2ko-2(a+u'+1XL|) _
0,

(2.9) 8% < (n-1) e -

Now we proceed with the main part of the proof of the
*
lemma. Let O s u < a'. Then the definitions of t and Y
*
imply that [oz(t -t) >u] < [ZYj 2 0]. Hence, by the sub-

*
lemma, it follows that En_l[oz(t - t) > u] is exceeded by
(2.10) @(s'lz Pij) + bound in the sublemma.

Since ekt = ﬁqc/ﬁ] by the definition of t,
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£ RY = (n-D) B QL - exp ko 2u) < -(n-1)ko > Fju. There-
fore, by using the upper bound for B in (2.9), we obtain
that Q(B-lz Pij) < @(-((n-l)hmkz)%fu) where f 1is the

positive solution of the equation

4 m =

-2
2ko (ot '+H|X, D _
(2.11) o h'HJ e ‘ L‘ £ = (HJL)Z.

*
Therefore, since (2.10) is a bound for gn_lLoz(t - t) >ul,

we have, for 0 s u < o',

(2.12) gn_l[oz(t*-t) >u] < Q(-((n-l)hmkz)%f u) + bound in the

sublemma.

*
Now we consider bounding the probability gn_l[az(t -t) < u]

*
for -a' < u < 0. The definitions of t and Yj imply that

2
o (t* -t) <u] =[x Yj < 0] =[z -Y, 2 0]. Since the sub-

3
lemma continues to hold when Ej and 6, in the definition
of Yj are replaced by -Ej and -aj respectively, we obtain,
by applying the sublemma to P l[z - Yj 2 0], that
n-

2 %
gn_l[g (t -t) <u] is at most

-1 ¥ P.Y ) + bound in the sublemma.

Again since I PY, = (n-1)F, (L - exp ko 2u) » -Z-I(n-l)ko_zit%F
where the inequality follows since ko-za' < 1 by the hypothesis

on k, we obtain, by using the upper bound 32 in (2.9) and the

definition of £ in (2.11), that &(-g”% PjY.) is exceeded

by 3(2 Yn-1)k?h™*f u). Therefore

gn_l[oz(t* -t) <u] s @(%(n-l)kzhm)%f u) + bound in the sutblemma.



19

Integrating this inequality wrt u on [-a',0) and

the inequality (2.12) wrt u on [O,aJ], then bounding their
af
first terms by using the inequality gﬁ(-au)du < (2m) % -1

for any a > 0, we obtain, by using the inequality (2.3), that

* 2 3 1 . .
En_lt\w - XL o t‘] < — R + 2¢' (bound in the

/20 ((a-1)kh™ s

sublemma).

Hence we complete the proof of the lemma by showing below that:

the P_-integrals of m ) D! andm@™ ¥ (bound in
the sublemma) are uniformly bounded in n.

By definition of f in (2.11), we have

) mn’ ko2 (arhr +|x \)
g1 =o2 (__L)’s( h )%
ﬁj& ﬂj

By bounding above (ﬁq&/ﬁjc)% by using (3) of Lemma
3 and by bounding below EijL/h"' by using (2) of Lemma 3, we

get an upper bound for (h(kﬁh)-l)%f-l. Weakening this upper

bound for (h(k+h)"1)35f.1 by using the fact that 0 < h < k < 1/5,

we obtain that

) 2(3| , L HIXID
3 ed

Shsl
G’ £°5°Cs 3

. 2. m 2 -2 + 2
for some Cg- Since (2no ) P, € exp(-o ((‘Xl - o) ) ) and
2 m-2 -2 2
(2ng”) P 2 exp - (0 (¢ + |X|)"), we obtain that the above
upper bound for (h(k+h)-l)%f- is uniformly bounded in n and Pn-inte-
grable. Now by using (2) of Lemma 3, and the inequality
0<h < k< 1/5, we obtain that (nh )¥ (bound in the sublemma)

is exceeded by
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o2 lx, | + gk
e

C
6 -
p’s
2 -2 4+ 2
for some Cee Again, since (chz)mpn <sexp - (o ((X] - a)))
and (Znoz)m 52 > exp - (o'z(a + \x\)z), we obtain that the
m/2

Pn-integral of the above upper bound for h (bound in the

sublemma) is uniformly bounded in n. This completes the procf
of the lemma.

The next lemma is a slight generalization of a particular
case of Cauchy's mean value theorem (Graves (1946), p. 81).
lemma 5. For each j =1,...,n-1], i = 1,...,m, let the func-

tions be real valued, continuous on [ai,bi] and

£i1 B4
differentiable on (ai’bi) and let the derivative of gji be

finite and positive. Then there exist ¢ in (al,bl),-~-,c

1

m

in (am,bm) such that

b,
i
T fji]ai T fji(ci)

= L]
. 1bi Tw gji(ci)
8yila,
i
where ¥ stands for the summation over j from 1 through. n-1,
m stands for product over i from 1 through m and prime

over any function denotes its derivative.

Proof. Define the functions §; and M, on [al,b1] as

follows.
m bi
E,(x) =T £f.,(x) £, ]
1 j1 i=2ji a,
and
m b

Nh(x) =zg..(x) NIg !
1 jl =2 jijai
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for x in [al,blj.

With these definitions, we obtain that

b b

i 1
Lm fji]a1 gI]a
(2.14) 1= 1,
by b
zm gji]ai nljal

Since fjl and gjl are continuous on [al,bl] and dif-
ferentiable on (al,bl) for all j, éo are §; and T+
Moreover, since the derivative of gji is finite and positive
for all j and i by assumption, so is the derivative of nl.
Hence, applying Cauchy's mean value theorem to the rhs of (2.14),

we obtain that there exists ¢y in (al’bl) such that

b,
£ i
il gl
(2.15) -
b, TMi(c,)
i 1'71
T 8yila
i
Now, we define €, and T, on [az,bZ] as follows.
m bi
- ’
= i
and

m b,
- 1

N e . ] )
for x in [a,,b,]. Then 1tbfollo:s that the ratio gl(cl)/ﬂl(cl)
. . . 2 2 .
is identically the ratio §2]a2/ﬂ2]82. Again, £, and 1,

are continuous on [az,bz] and differentiable on (az,bz)

since sz’ng are continuous on [az,bz] and differentiable
on (az,bz) for all j. Also, since the derivative of gji
is finite and positive for all j and 1i, the derivative of
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M, 1is finite and positive. Therefore, again using Cauchy's

mean value theorem, the definitions of gz and “2 and (2.15),

we obtain the existence of ¢, in (az,bz) such that

b,
1
Emfiida glcey
(2.16) = 2 .
by Ty(ey)
Lm gji]ai

Iterating the above procedure of obtaining (2.16) from
(2.15) (m-2) times, we obtain the result of the lemma.

We apply this lemma to prove the following lemma.

2
Lemma 6. ‘Lth coordinate of X + ozt - ¢| < k1 + gf)
2 o
+h(@l +m gf for £ =1,...,m.
o

Proof. Let the dependency of t on X be suppressed and
abbreviate the indication of the gth coordinates of ¢ and
t by omission.

Let H abbreviate h-mﬁj and eL denote the unit
vector in the gth direction. Since t = k-1 (log H(X + k eL)
- log H(X)), by the mean value theorem, there exists ¢ in
(0,1) such that
(2.17) e =208 H o ey,

3 XL 1

Since § - XL = 02 3 log E/a XL’ the above equality

together with the triangle inequality implies that

2 2
(2.18) |xt +ot -yl <o (1| +]1,D
where
- X+ek e
- alo 4
(2.19) L ={x X

1
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and
(2.20) I=a£g—H(X+eke)-al—°5—E(x+gke).
Z 3 X L 3 X, 4

By the mean value theorem, 11

fOr some e* i.n (0’6). With ejl’..o’e

= gk(azlog ﬁlaxi)(x + e*k eL)

denoting the

jm
coordinates of ej, we have
2 2 at1g 5 E®, - 0,0%  E(, -8 b
g (1 +0 a_fg_z) = TP = ( TP ) .
3 X, 3 j

The rhs of this equality can be recognized as the conditional
variance of the gth coordinate of X - § given X when the

pair (8,X) has the joint distribution resulting from Gn-l

on @ and P on X for given @. Hence, since the

e

support of Gn-l is in the m-sphere of radius «, we obtain

that
232108 B 2
(2.21) o \3—25—1’4 <1 +°42— .
5 X
0 L (o]
Hence
2 2
(2.22) o 11,] < k@ +%).
(o)

We complete the proof of the lemma by showing that
o’|1,| sh( + mo2o"2) with the help of Lemma 5.

The definition of H gives

(2.23) (n-1)h™H = ¢ F, O

where, since the coordinates of X, are independent,

(xi-ej /e
(2.24) F,O=n Q](xi-eji)/c )
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Therefore,

(x,-9, +)/o X.-9..+h) /o
a): N 4 it i Vji
(2.25) o(n-Dh" - =73 4] L mey,. b
X, (xL en)/o i1 (X, eji)/g

Now we apply Lemma 5 to the ratio (aH/aXL)/H obtained
by using (2.23), (2.24) and (2.25) with the following iden-

. N : - - = = -1 -
tification. For all j = 1,...,n-1, fji gji d(c "(y-6 i))

i) By
(ai’bi) = (c-lxi, o'l(xi + h)) for all i. Then there exists

3

for 141, £, =gl (0 = 8(c 7 (y-0;,)) and

a & in (0,1)™ such that

3 logH _p log p

>X, 2K

(X + hg).

By subtracting gjlog E/BXL and then applying the mean value
theorem to this function of h, we obtain the existence of h'

in (0,h) such that

- o 2 -
(2.26) B}ltogﬂ - L;°5—E=h z 613)(—10%—2 (X + h's).
3 &y 3 &y g=1 - %A%,

For i # 4, we obtain directly that

2 5 = - - -
4 5 log p _ £, xL)ggji Xi)Pi _ Z(8,;, X{')pj . G X.)p.

The rhs of this equality can be recognized as the i,{th
element in the covariance matrix of @ - X conditional on

X when the joint distribution of (9,X) results from Gn-l
on @ and Pe on X for given 9. Hence, since the support

of G,_; lies in m-sphere of radius q, it follows by Schwarz's

inequality that
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This inequality, together with (2.21) and (2.26),

implies that

- 2
OZ\a_E&_ﬂ . a.ﬁs_q < h(l +m°f_2),
o KL 3 XL o

Thus, by (2.20), |12\ <hQ@ + mazo-z) and the proof of the
lemma is complete.

Before stating a theorem as a Corollary to Lemmas 2,
4 and 6, we make a remark on the proof of Lemma 6.
Remark 1. The method of proof of the lemma differs much from
that of Gilliland (1966) for m = 1 case. He has never used
the fact that the conditional variances and covariances are
uniformly bounded by explicit functions of az. Moreover, the
constants multiplying k and h in the result of the lemma
are specific functions of o while those of Gilliland are
complicated integrals. A proof similar to the proof obtained
by particularizing our proof to m =1 1is simpler than that
of Gilliland.

In the rest of the section, we let h and k depend
on n. We assume in the theorem to be stated below that
02 = 1. The choices of h and k given in the following

theorem are optimal for the convergence to O of the expression

obtained by adding the right hand sides of Lemmas 4 and 6.
1 1

Theorem 1. If h =n mrth » k=an s for a in [l,»)

*k
and is defined by (2.1), then
1

U™ - ¥ll] = o ™




26

and
1

D_(8,4") = o ™).

Proof. The first result is a direct consequence of (2.2),

Lemmas 4 and 6 and the definitions of h and k. Since,

* m
is in X [-o,+y] , the second result

n
follows from the first result and Lemma 2 with 02 = 1.

*
by definition
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§1.3 Rates Near O(n-%) for Dn(g,i) with § Based on Kernel

Estimators for a Density and its Derivative

In this section, for each positive integer s and ¥
in (0,1), we exhibit a procedure § belonging to a class of
procedures whose modified regret Dn(g,i) is

O(n-(s-l)v/(28+m)(1+Y)).

The definition of §{ depends on
kernel estimators for a density and its derivative. These
kernel estimators are similar to those defined by Johns and
Van Ryzin (1967) for estimating the unconditional density and
its derivative in the empirical Bayes two-action problem in
exponential families.

For ¢ =0,1,...,m, let KL be bounded with

u[“unsKL] =S!C£S< ® and for all nonnegative integers

Eyserest s

m ¢t
(3.1) ul @ ujj K

=1 or 0 as g tj =0 or in {1,...,s-1}
j=1

o)

and, for 1 <4 < m, ULKL satisfies (3.1) with s replaced
by s-1.

As a result of these conditions on K "Km and their

0’..
intent, if f is a function on Rm with partials of order s
uniformly bounded by M, then the substitution of the sth order

Taylor expansion with Lagrange's form of the remainder shows

(3.2) |wlE K] - £(0)| < M Cos

and if, in addition, all partials of f not involving the fgth

variable vanish at O,
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(3.3) WlE K] - £, O] sMc,

where f& stands for the first partial of f wrt the fgth

variable.

The notation to be introduced below is defined for each
n. We abbreviate by omission the dependency on n of the func-
tions to be defined below. We let ¥ denote summation over
j from 1 to n-l. let ¢,6 be positive. As in section
1.2, let X abbreviate §n' Define
(3.4) B0 = ¢ My ®) - 0, DB =T B

and § = <5L> where

(3.5) (n-1)5L=zaU with ™ i

=1 "l . -
qu(X) =3 KL(Ibé (fj X))

-1
KL(G (’fj X))

where IL is the m X m identity matrix reduced by 1/2 in tte
4th diagonal element.

Now we state and prove some lemmas which will be use-
ful in obtaining a rate of convergence for the modified regret of
a certain procedure § to be defined in the latter part of the
section. Let CysCpsece denote finite functions of 02. In
the following lemmas, B, the average of the densities of
51”"’§n-1 and i, the vector of partial derivatives of 5
are evaluated at X. We do not require the condition that

‘enl < o to prove lemmas 7 and 8.

%

temma 7. P 018 - p|] s ¢y (¥ + (@-DeMHTH.
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Proof. Since u[pj e-mKO(e-l(.-x))] = p[pj(x + e.)KO], its

absolute difference from pj(x), by the uniform boundedness of

partials of order s of pj and (3.2), is at most c, es.
Hence

= - ]
(3.6) PPl -p|<c, e .

Let Vx(ﬁ) denote the conditional variance of 5

given X. Since

2m 2 -1

- - 2 - 2
u[pje Ko(e (- -X)]) =c¢ " u[Pj(X + e-)KO] < e m(Zno

-m/2 2

)™ 2ulK))
2

and p.[KO] < o,

3.7) V() s ey (-DEMTTL

Since for any random variable R, E|R| = |ER| + Var%(R),
(3.6) and (3.7) will yield the bound in the lemma with
c1 = c2 \% c3.
2 - = -
Since ¢ ||q||/p < /m o + ||X|| and since \en\ < o
implies that Pn[HXH] is uniformly bounded, the following

corollary is a direct consequence of Lemma 7.

Corollary 1. Bn[H5H|(§/5) -1 s ca(es + ((n-l)em)—%)-
Leama 8. OIS - a2 e 6°t + (@-ne™H7H.

Proof. 1In this proof, we abbreviate by omission the indication
of the fth coordinates of q and gq. Since, by two usages of

the transformation theorem,

a = -1 -1 0 - .
u[Pj qw‘] 6 p.[KL(Pj(X +1,78°) pj(x + 6.0,
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its absolute difference from the partial derivative of pj wrt
the f4th coordinate, by the uniform boundedness of partials of

order s of pj and (3.3), is at most € 68-1. Hence,

~ - s-1
(3.8) |B,108] - a] = g 8°71 .
Let Vx(é) denote the conditional variance of é
2 2 2
given X. By the inequality (a +b) < 2(a +b ) for a,b

1
in R and the transformations as above, we have

2 m2 -1 21 .
u[pj(atj) 16 ) WK GPX+T8) +2p,&+6))]

3

2
Hence, since “[KL] < o,

3.9) vx(ﬁ) <c, ((n-1)6m+2)

-1

Since for any random variable R, E|R| s |ER| + Var%(R),
inequalities (3.8) and (3.9) yield the bound in the lemma
cg = Cg V oy

Lemma 9. For any a in (0,1), there exists a finite function

2
of o, Cg>» such that
[- a
Plp<B] <cgB.

Proof. With ¢Z =X - @  and therefore o-l‘x - ej\ < |z| +
1

20~ o,

2
(3.10) Pj(X) c exp - 2o > c exp - 2(|Zl + 20 @)
with ¢ = (anz)-mlz. let M be the minimum value of ‘Zl

for which rhs of (3.10) < 8. Since, for all ¢,

P{|z|2/2 >t] < e""(l-b)"“/2 for b in (0,1), we get from
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(3.10) that

- 2 2
'%(M+20 la) -bM /2

B - Pn[; <g) g’ pllz| >M) <c e (1-b) "

which is bounded in M for b > a.

Corollary 2. For any a in (0,1), there exists a function of

02, Cgs such that
all- - a
plldls < gy < e
|4

Proof. Since ozninlﬁ </mqo+ ||X|| and, therefore, has all

moments, Holders inequality yields, for any r > 1, the bound

r-1 _ _r 1
P’ a1y P [p< 8]
P

1 1
r

for the lhs of the corollary. By Lemma 9, PE[; < B8] = g Br

b

for b in (a,l). Choosing r such that a r = b, we get

the result of the corollary.

Henceforth, we take § to minimize the bound in Lemma

8. That is,
-1
(3.11) ) = (n-1) .

We also choose ¢ to be such that

2 s-1
(3.12) 62 scs6° .
let B be defined by
1+y s-1 )
B =5 for any vy in (0,1).

With these choices for ¢, § and B, we define { as

follows. Let

/2
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2

(3.13) §=tr'X+o0 I,

'o’} Yo O

m
where tr' stands for retraction to [-o,+] and for y in

1 U
R, let y' =y VB.
In the following lemma, §y is evaluated at X.

Lemma 10. For each positive integer s and vy in (0,1), there
m+2 s-1

——

exists 10 such that if 528+m = (n-1)'1, 8 o< e <6 2 and

1 -
6t = 6571 then

s-1 Y
2s4m 1ty for each n>1 .

B - vl = e

Proof. Since § 1lies in the m-sphere of radius o and § is
2 .z 2
the retraction of X + o0 §/p to [-a,+u]m, we have by using

T
the inequality D 28

o - ol s 1 - =2 -
P P

- NN Y-N]

B < 008 - d Kby - 5,

Since \B - 5" < \ﬁ - 5‘ + 3[5 < B], the result of the lemma
follows from the above inequality, Lemma 8, Lemma 7 and Corollary
2 and the hypothesis on‘ €, & and B.

Now we state the main result of this section.
Theorem 2. If 02 = 1, the hypothesis of Lemma 10 is satisfied

and § 1is defined by (3.13), then

s-l vy
“2s4m 1
D_(8,§) = o **T™ MY,y |
Proof. Since §, by definition (3.13), lies in «x [-a,+u]m,
B n

1 and Lemma 10.

2
the theorem is a consequence of lemma 2 with ¢



33

§1.4 Rates Near O(n-%) for Dn(g,oﬁ) where 0@, a Particular

Let 02 =1 and let 8 > 1 be a fixed integer throughout

this section. Letting o‘ denote a specialization, less a retrac-

tion to [B,»), of the § of section §1.3, with certain additional
-(s-1) /2 (s +1)

assumptions on the kernels, we show that Dn(§,°§) = 0(n

We specialize P and § (defined by (3.4) and (3.5)
respectively) by setting ¢ = § and denote their common value by
h. Let
“.1) =er'x+ 3

o =

P
where tr' (as in previous sections §1.2 and §1.3) stands for re-
traction to the cube [-a,+u]m and any undefined ratios are taken

to be zero. let hz, =X. -X, v=h(u+ ﬁb/ﬁ) and Yj(u) =Y | (u)>

h| 3 13
with
1 m+1 m
4.2 = (3K oI - -vKkK Z, = - %
4.2) Y @ = GK oL -K -vK)oz =h" g b ..
In the following lemma, y will be evaluated at X. Let
CI’CZ"'° denote constants.
s =
Lemma 11. If KO,...,Km are bounded with p[“un KL] = cLs < o,
KO satisfies (3.1) and u].l(l,...,t.xml(.ln satisfy condition (3.1)
with s replaced by s-1 and are such that for |u| < 20,
h < S-la,
-c,|X| var (v,,), var(X. 0 z,) c, | x|
%.3) c, e 270 ¢ - 14 0 i cy € 4t
h g (|x])
2s4m_% 1
then B (|| § - ¥|[] 5 cg(((-Dh**™ 7 4 w25

((m-1)h""")
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Proof. Let the indication of the fth coordinate of o@ and

be abbreviated by omission. Since oi lies in [-o,+] and

since § lies in [-a,+r], it follows that \O$ -y| s 20 and

| ¥ - ¥| < |p| where

(4.4) D =

> ck’-QN
]
LN ] Ie. '

Therefore

2a

2
(4.5) gn_1[|o‘ -y]7 < J(; B _,LIp| > uldu = g 2 _,[D > uldu

rhs

The

the

the

0
+-I gn-l[D < =-uldu.
“ 2

The main part of the proof bounds the integrands of the
of this inequality by using the Berry-Esseen theorem and (4.3).
rest of the proof shows that the Pn-integral of a bound for
rhs of (4.5) is at most the bound in the lemma.

With 32 = Var (T Y and L = 5'33 PJ‘YLJ - PjYUP,

Ly

standardized range bound for L, together with lhs inequality of

(4.3), the inequality

(4.6) lvl| < h@a + ‘XLD

and the fact that Ko,...,Km are bounded, implies that

4.7) L <

Y

c; (1 +hGa + ‘XL\))

for ul < 2o .
e, (a-Dh™ ¥ (x| yec2IXI /2 .

Let 0 < u € 20. Then the definitions of D in (4.4),

L3 in (4.2) imply that [D >u] < (g YLJ >0] + [§ < 0]. The

Berry-Esseen theorem (Loeve (1963), p. 288) and the triangle

inequality imply that gn_l[ZYLj > 0] 1is at most
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“.8)  s¢-a-DE" N W + e -@-un™ T u)

-2 L pyY)| +B L

33
2 m C[“x‘

Since rhs inequality of (4.3) implies that B° < cjh o(|x])e s

the first term in (4.8) can be bounded above by replacing 8 by

this upper bound for g. Also, by the equality

¢.9  (-1E™S w4y BJY, - TN - ) [p])

+ En_].[a] = q)’
the lhs inequality in (4.3), the bounds (3.6), (3.8) and the in-
equality (4.6) imply that the second term in (4.8) is at most

cg ((n-1)n 7% %

E 5D e

(1 +h@Gax + |X,|))
-c2[X[72

(4.10)

Hence, with f defined as the positive solution of the equation

e, lxl

(4.11) cqe ¢(\x|)f2 52,

we obtain that

(A.lZ)gn-l[zYLj> 0] < Q(-(n—l)hm+2)%f u) + (4.10) + B rhs of (4.7)

Now we consider -2o < u < 0. The definitions of D in

(4.4) and Y£j in (4.2) imply that [D < u] < (& Y{'j

(P < 0]. The Berry-Esseen theorem and the triangle

< 0] +

inequality imply that zn-lthLj < 0] 1is at most

(4.13) @((n-1)hm+le'15 u) + |§((n-1)hm+13'15 u) - @(-a'lzijLj)\ + BL.
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c lX\
Since the rhs inequality of (4.3) implies that BZ < c3hm¢(]x\je 4 s

m+2)%

the first term in (4.13) is bounded by & ((n-1)h f u) where f

is the positive solution of (4.13). The lhs inequality of (4.3), the
equality (4.9) and the bounds (3.6), (3.8) and (4.6) imply that

the second term of (4.13) is at most (4.10). Therefore,

2, %
(4.14) fn-1[2Y41<°] < 3(((m=-1)h""°)%f u) + (4.10) + B rhs of (4.7).

Integrating (4.12) wrt u over [0, 20] and (4.14) wrt u

over [-2¢,0), then bounding their first terms by using the inecquality

29

£ $ (-At)dt < A-1 for A > 0, we obtain (since the corresponding Berry-
20

Esseen, followed by normal tail bound, treatment of gn_l[ﬁ < 0]du con-

tributes no more than l4n’/s times the rest) that gn_1[|o¢-¢|} is at most
2

{ - m+2)% % + 4o (4.10) + B rhs of (4.7)]}(2 + ).

((n-1)h
Hence we complete the proof of the lemma by showing that the P -
-1 c2|X|/2 -3 n
integrals of f = and (1 + h(3a + |gc|))e o ~(|x|) are

uniformly bounded.
. 2 + 2 -2 2
Since (Zn)mpn <exp -((|X] -a))" and m)"p° = exp -@Hx])

we obtain from the definition of f in (4.11) that pnf-1 is at

most
+ c,|x|/2
cg 8((|X| - @ )0 (|x)e
o(IX] + o)
which is p-integrable. Again by using the upper boTnT/ P> We can
c |xi/2
show that the P -integral of (1 + h(3 + |xL|))e 2 ®%(\x\) is

uniformly bounded. This ends the proof of the lemma.

Now we state the main result of the section.
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Theorem 3. If the kernel functions K
-1/mis+1
n

0,...,Km satisfy the conditions
of Lemma 11, h = a where 0O < a < s-1 and oi is de-

fined by (4.1), then

b (9, §) = 0(ﬂ—(s-1)/2(s+m+1)).

n (0]

Proof. Since OG lies in X [-a,+a]m, the result of the theorem
is a direct con;EAuence of L:mma 11, the hypothesis on h and
Lemma 2.

Now we exhibit kernel functions Ko,...,Km satisfying the
conditions of Lemma 11. We develop these kernels in m = 2 case for
the sake of simplicity of the notation.

Let [cij] be an o X » matrix whose ijth element is ¢

i

ij

For each pair of positive integers 1i,j, let be the indicator

function of the south-west quadrant of (i,j) intersected with the
north-east quadrant of (0,0). We will determine [aij]’ [bijlj
and [bijZ] with only finitely many entries different from zero

such that

= i j =
(4.13) Ko = T a,, 7, K = I

bijl'ji’j and K. = 3 b, . 3
i’j l’j i

satisfy the conditions of Lemma 11.

For any two positive integers S, T, let denote

(3505 1
the modification of [aij] obtained by replacing aij by zero if

i>8 or j >T. We note that for any two sets of distinct non-

negative integers, kl""’k and Ll,...,LT, the vectors

S

k, 4 k., 2.
1 . S, T . ST
(4.16) (i) I]S,T,..., (i 7y ]S,T are a basis for R .
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kr Lt kr Lt
(For % crt[l i -1 =[0) iff ¢ c Xy = 0 has the roots

{(1,...,8} x {1,...,T}, which by iterative application of Descarte's
rule of signs requires the e to vanish.) We use this fact to
show that certain norms are different from zero and to show that
certain coefficients are zero. The kernel conditions (3.1) on

KO and Kl specialize to the following requirements on inner
products,

=y =1

1 - 72
1 54,1,4,2, 3 < {,1 +L2 < s+l

tt, 1t
Cag ) U5 =

and
2 =2 =1
G Y2y =y L0
ij1de 1] 0  4spy+a,ssHl
We choose [aij] for simplicity to be the
projection of [lj]s,s on , {[1 7] ]s,sll S 4ty
(4.17)

3 < Ll + LZ < s+1} divided by its squared norm,
and in order to satisfy the variance requirements (4.3), we take
[bijl] to be
projection of [izj] on . {[iLlez |2y # (2,1)
5,8 ]s,s 1’72 2
(4.18)

1< L1 <8, 1< 1, < s} divided by its squared norm.

The squared norms are non-zero by the aforenoted linear

independence for (S,T) = (s,s). Moreover, bsjl # 0 for some j
in {1,...,s} for, otherwise [bijI] defined in (4.18) will lie
in R(s-l)s and is orthogonal to a basis in R(s-l)s’ hence is 0.

Let M = Max{j\bsj # 0}. Interchanging i and j, we get a

solution for [bijZ] such that K, satisfies the kernel cond .tions

cultminating in (3.1).
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With A denoting a bound of Ky» K, and K

1 2’

3 2
(4.19)  Var(y,,) < A2G + v B (X € (XX +sh) X (X,X + sh)].

By the mean value theorem, the probability on the rhs of this in-
equality is szthj(x + Esh) for some € in the unit square.
Hence, factoring out h2¢(|x\), the restriction h < s-la and

the inequality (4.6) show that the rhs of (4.19) is bounded by the
rhs of (4.3) for suitable ¢y and Ce

Now we observe that YLj defined by (4.2) takes finite
1

number of values including zero and 2~ by

it takes the value zero is gh_l[gj - X ¢ (0, sh) x (0, sh)] and

. The probability that

that it takes z‘lbsM is B _,[X; - X € (2(s-1)h,2sh) x ((M-Dh,M0)].

Therefore by L1.A of the Appendix, we obtain that

(4.20)  var(y;;) = cg B (X,

j - X € (2(s-1)h, 2sh) x ((M-1)h, Mh)].

By the mean value theorem, the probability on the rhs of this in-
2

equality is h pj(x + Eh) for some € in (2(s-1),2s) X (M-1,M).

Hence, factoring out h2¢(|x‘), the restriction h < s-la shows

that the rhs of (4.20) is bounded below by (4.3) for suitable °y

and <, when ¢ = 1. Similarly that Var(Yz.) is bounded by lhs of
J

(4.3) can be similarly proved.

By following the argument given above, we can show tha:

Var(K0 o Zj) also satisfies inequality (4.3).
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*%
&1.5 A Lower Bound for Dn(g,v ).

In this section, we use the notation of section §1.2
specialized to the 02 =1 case. Let cl,cz,... denote

absolute constants. With

.1) 82 = (n-1)k°n®,

by using the Berry-Esseen theorem and Lemma 1 of the Appendix,
*% 2 -2

we show that Dn(g,i ) 2 c, B under certain conditions on 8.

Theorem 4. 1f B(% +h) ~a<w, 8- o and yf* is defined

by (2.1), then

ok 2 -2
Dn(g’l ) 2 Cl B .

*k

Proof. Let the first coordinate of v, be abbreviated by

*k *

('} and let the indication of the first coordinate of t

be abbreviated by omission. As in section §l1.2, let X, with
coordinates xl,...,xm, abbreviate xn. Our method of proof is

dok
to show that gn[[xl > a]|ly |] exceeds the square-root of the
bound of the theorem. This completes the proof of the theorem
-1 D *k 2 *x 2
P and P 2

2 *k
PN = 220X, > o0l

*%k
Since, by definition, ‘t**l <a and since [|y | >u] =

*k
since Dn(g,i ) =n

*
[\xl +t | >u] for u < a, we obtain by Fubini's theorem

that

ok e * o *
¢.2) plly |1= g BU|x; +t| >uldu 2P [[x; > a]% B _,[x;#" > u]du].

Let X in (a,») X 8™l and u be in 0,0)

fixed until otherwise stated. As in section §1.2, let
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= [§j €1, 5j = [Ej €7 and

- k(u-Xl)
(5.3 Y. =68, -6, ¢ .
) 7% 70
With this definition of Yj’ we obtain that
*
(5.4) [x, +t >u] = (z¥y 2 0]

where §, as in sections §1.2, §1.3 and §l.4, denotes summation

over j from 1 to n-1. Note that Xl > o implies that

~ *
[ng 20,6, =0,zc6, =0]¢€ [Xl +t >u] for uc<a.

3

3
Since §1,...,X

are i.i.d., so are Y
~n-1

LT AT

Hence, with B denoting the Berry-Esseen constant, the

Berry-Esseen theorem and (5.4) give that

% 3
(n-1)*P.Y \Y -PY |
(5.5) P _[x, + e > ul] = &( Ll - B@-1) % 1 1
_Tl-l 1 S.d.Y
1 (s.d. Yl)
k(u-X )
The definition of Y1 gives that P Y = Ffjl Ff]-

Hence, since the alternative expression for F ] /F[] in the

A
proof of (2) of Lemma 3 when specialized to the case
2 k
= 3§ = = i = - +-—
o =j=4=1 gives that F[1,/F 0= exp - k(X; + = + wh)
for some ¢ in (0,1), we obtain that
k
k(u-xl) -k(u + 5 + wh)

2
(5.6) P)Y, =F[ e (e - 1)

> -k Fl[jl(u +-;(+ h) for k< (ats)

where the inequality follows from the inequalities u < o < X1
and e—)‘ -1= -\
Applying L1.A (see Appendix) to the random variable Yys

we obtain, since Y1 takes value 1 with probability Ffjl’
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that Var (Yl) is at least (1 - Ffj1 - Ffj)Ffjl(l - Ffjl)‘
Hence, since (1 - Ffjl - Ffj) is bounded away from zero

for h< (@ + 4)-1, we obtain that for some <, >0

2 -1
G.7) var (Y;) z ¢, F, for h< (@ +4) .

Using (5.6), (5.7) and the definition of g 1in (5.1),

we obtain that, for k< (¢ + 4)-1,

P.Y
5 _ 11 B k . m/2 %
. - 2 - + = .
(5.8) (n-1) s.d.Yl I (u 2 + h)f with h " °f (Ffj1)
c
2 3
The standardized range bound for PI‘Y1 - PiY1\3/(s.d.Y1) ,
(u-Xpk
with the help of the inequality range of Y, < l +e 1 < 2

since u < o < Xl, (5.7) and the definition of 8, gives that,

for h < (o + 4)'1,

i 3
P, lY,-P Y| . 2k

(n-l)%(s.d.Yl)3 8 cgf

(5.9)

Integrating the inequality obtained by weakening (5.5)

with the help of (5.8) and (5.9) wrt u over (0,y), then

using the transformation B8(u +'% + h)f = czv in the first

integral, we obtain that

%
R (cr*;'l'h)/cz

o

8 lg P [x + & >ujauzg [ 8 (~v)dv - 3‘3 for k < (@)L
(‘E‘-fh)f/c;“ c;f

In view of (5.2), we complete the proof by showing that
the Pn-integral of the first term of the rhs of this inequality

on [xl > o] converges to a positive constant while that of

the second term on [X; > a] converges to zero.
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Since f, defined in (5.8), converges to Py and
since specialization of (2) of Lemma 3 to the case of
02 =) =1 and n =2 gives that f-l is exceeded by
-% m+1 .
Py exp (||x|| + —E-) which is Pn-integrable on [Xl > o], it

follows by dominated convergence theorem and the hypothesis

on B that

B (crtsth) fe .
P [[X) > 0] \ §(-v)dv] - 1>1[[x1 > o J‘ -%Q(-v)dv] >0
B(E‘H’l)f/cz a(CZPI)
and
%‘f’- P[(x; >a)f] »0 .
€2

The proof of the theorem is complete.

Now we make a remark concerning the procedures if*,
§ and Om defined in sections §1.2, §1.3 and §1.4 respectively.
Remark 4T_ For the choice of h and k given in Theorem 1 of

section §1.2, we obtain by the theorem proved above that
2

*k mHs
D (0¥ )2zcn

for some c¢ > 0.

For any vy > 0, Theorem 2 of section §1.3 shows that we
can define a procedure § such that Dn(g,i) = O(n-(%-v)).
Hence, since vy > 1/36 implies that % - y 2 ;%Z for m=5,

ok
it follows that the procedure § is better than y in the

sense that
sup Dn(g,i) s n'(%'Y) < ¢, n s < sup Dn(g,y%*)

where the sup is taken over all parameter sequences.
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For any positive integer s, Theorem 3 of section §l.4

shows that we can define a procedure o‘ such that
-s/2(s+3))

Hence, if ms = 5m + 8, the procedure

Dn(ﬁ’i) = 0(n

. *k
N s better than § in the sense described above.
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§1.6 Extension of Results in Sections §1.2 and §1.3 to Constrained

Mean Vectors and Unknown Covariance Matrix

Let Y be a d-variate normal with mean ® and co-
variance matrix 021. If w 1is assumed to lie in a lower
dimensional subspace g, say of dimension m < d, then the
square of the projection of Y onto the subspace orthogonal
to R has expectation oz(d-m) and variance 2ca(d-m). In
this section, this fact has been used to extend the results of
sections §1.2 and §1.3.

Let {Y } be a sequence of independent random variables
with Y distributed as d-variate normal with unknown covariance
matrix 021 and mean w belonging to an m-dimensional subspace
R, of Rd intersected with the d-sphere of radius «o. While
stating the results of the present section in section §1.0, we
interchanged m and d in order to make proper references to
sections §1.2 and §1.3.

Let Bn be an orthogonal matrix whose first m columns
generate R . Let X and Bn denote the vectors formed by
the first m coordinates of B; Y and B; w ~ respectively
where Bé is the transpose of B . Let (m-d)z_ denote the
square of the projection of Xn onto the subspace which is
orthogonal to Eh. Let E stand for expectation wrt the joint
distribution of 51,...,§n, Zl""’zn'

This section is divided into two subsections. 1In the
first subsection, with the help of the procedure if* defined
in (2.1), we exhibit a procedure 1** for which

-1/(mﬁ4))

Foke
Dn(ﬂal, ) = 0(n for each 02. In the second subsection,
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for each positive integer s and each vy in (0,1), with
the help of the procedure § defined by (3.13), we exhibit a

i, for which
9,1 = O(n'(s'l)Y/(28+m)(1+Y))

w)

n for each 02. Let Y de-

note summation over i from 1 to n.

Jk
§1.6.1 Definition of T and a Rate of Convergence for

**%
D_ (8.4 )

In this subsection, we use the notation of section
§1.2. We require the following notation for each n, but, as
in earlier sections, we suppress the dependency on n of
the functions to be defined below.

*ok ek
Define T = (T } as follows,

Tz
(6.1) T = (X + -n—1 tr)\t*)

where tr (as in section §1.2) and trx stand for retractions

to [-a,*]" and :1[')‘-1(‘)(&‘ +qa +k +h), "-qux,l +a +k+h))
respectively. e

Let T be the modification of T** obtained by re-
placing n'lzzi in the definition of T** by 02. Let T*

be the modification of T obtained by replacing tr' in the

definition of T by retraction to the cube [-a',+u']m where

o' = o +k +h. Let CpaCoseee denote finite functions of
2
g .
c
Lema 12.  E|r - || < - .
n-)\

m
Proof. Since the distance between two points retracted in R

to the same cube is at most the distance between the
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points and since xntrxt*“ < ||X|| + mx", we obtain that

kHT* - 1| < (x| + ma')\n'lzzi - 02|. Since
(d-m)ZI/oz,...,(d-m)Zn/c2 are i.i.d. xz - random variables

with d-m degrees of freedom, application of Schwarz inequality
to the rhs of the last inequality and the fact that

EC(\x|| + my')Z] is bounded by a finite function of 02 completes

the proof of the lemma.

1/t -1/m+4

Theorem 5. If h =n"
12(m+4) - n-(m+2)

s k=an for a in [1l,x),

ek
and T is defined by (6.1), then
1

Dn(g,Zf*) =0(n w4 ) for each oz.

Proof. Let 02 be fixed. 1In the proof, we consider only those
n for which ) <« 02.

Since |§y| <o and since T = tr'T", it follows that
Iz - ¥ll = iz - ¥l and hence [T - y|| < [T - 7| + 77 - g
If the gth coordinate of t* (its negative) > 1(‘XL| + "),
then, since )\ < oz, T* and t* defined by (2.1) turn out
to equal ' (its negative). Hence, T* = ¢*. Therefore the
last inequality, together with Lemmas 12, 4 and 6 and the
definitions of %, h and k, implies that E“T* -4 =

-1/mt4
n

ok
0¢( ). Since T , by definition (6.1), takes values in

X [-a,+u]m, Lemma 2 and this order relation give the result of
n
the theoren.

§1.6.2 Definition of i and a Rate of Convergence of Dn(g,i)

In this subsection, we use the notation of section §1.3.

We require the following notation for each n, but as in previous
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sections, we suppress the dependency on n of the functions to
be defined below.
Define % = {T} as follows,
Tetr'®+—=er, D)
n 1
P

where tr' (as in section §1.3) and try stand for retractions

m
to [-a,+u]m and X [-\ 1(|X | + a), x-l(\x | + @)] and
-1 - L=1 1 1 R
P =pPVB (3.13)). Let T be the modification of T

obtained by replacing n'lzzi in the definition of T by cz.

* A
As a consequence of replacing T by T, T of sub-
section 1.6.2 by T of this subsection and @' by o in the

proof of Lemma 12, we obtain the following lemma.

°1

Lemma 13.  E||T - T|| < 4
n-\

Now we state and prove the main result of the subsection.

Theorem 6. If the hypothesissg{ Lemma 10 is satisfied, i is

J84m - %
defined by (1.6.2) and % = n2®™ "™ 7 then
s-1 oy
D (8,1 = o(n "™ M) for cach o

Proof. Let 02 be fixed. 1In the proof, we consider only those

n for which ) < 02.

If the gth coordinate of T (its negative) > x(\XL\ + o),
then, since )\ < 02, T and § defined by (3.13) turn out to
equal o (its negative). Hence T = §. Therefore the inequality
Hi -yl = H% - T|| +||§ - ¥||, together with Lemmas 13 and 10 and

s-1_ _v

the hypothesis of the theorem, gives that E|T - ¥l = o 2s+m Lty ).

Since, by definition, T 1is in [-a,+a]m, this order relation

and Lemma 2 complete the proof of the theorem.




CHAPTER 11

RATES IN THE ESTIMATION AND TWO-ACTION PROBLEMS
FOR A FAMILY OF SCALE PARAMETER T'(a) DISTRIBUTIONS
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§2.0 Introduction and Notation

For 0<ca<b<2a<wow and g > 2, let
e = {pe\e € [a,b]} be the family of distributions with Pe
representing the T['(¢) distribution with scale parameter §.
let s be a positive integer.

Let {X } be'a sequence of independent random variables
with X distributed’as Pen belonging to &. Let
Kn = (xl,...,xn), 8= [en} and Gn be the empiric distribution
of 91,...,en.

In section §2.1, we consider a sequence of estimation
problems each having the structure of the following component
estimation problem. Based on &n observable random variable X
whose distribution Pe belongs to @, the problem is to estimate
§ with squared-error loss. Let R(Gn) denote the Bayes risk
against G, in the estimation problem just described. Let
@ = {¢n} be a randomized sequence-compound procedure (abbre-
viated to randomized procedure hereafter). That is, for each

N oy is a randomized function of gn. For any such g, 8

in x [a,b], let
n

-1 ° 2
z Elg \

0.1) D@ <o el - o

- R(Gn)

where E stands for expectation wrt the joint distribution of

all the random variables involved. 1In section §2.1, we exhibit
* * *k

a randomized procedure y = {*n} such that Dn(g,i ) =

n-s/2(s+1))

0( uniformly in all parameter sequences § in

x [a,b].
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In section §2.2, we consider a sequence of two-action
problems each having the structure of the following component
two-action'problem. Based on an observable random variable
X whose distribution Pe belongs to ¢, the problem is to
choose one of two possible actions a and a, when the loss
functions corresponding to a, and a, are L(al,e) = (e-c)+
and L(a,,6) = (6-c)  for some c¢ in (a,b). Let R(Gn)
denote the Bayes risk against Gn in the two-action problem

described above. Then, in section §2.2, we exhibit a randomized

procedure § = {Wn} such that the absolute value of Dn(g,ﬁ)

defined by
-1
0.2) D&Y =0 IEL(;»0,) - RE)
j=1 j n
is o(n-s/2(3+1)) uniformly in all parameter sequences §
in % [a,b].
n

The orders stated in the results of both sections §2.1
and §2.2 are uniform in all parameter sequences § in
x [a,b]. Hence, in order to reduce the complexity of the
:tatements of the results in this chapter, the range of the
parameter sequences will not be exhibited, but is understood
to be x [a,b].

nWe introduce some notation which is common to both
sections §2.1 and §2.2. Let [xn} be a sequence of i.i.d.
random variables with the density of 11 as (a-l)kz-z[o <A < 1]
wrt Lebesgue measure p on ((0,»), 8 N (0,»)). Furthermore,

we assume that {xn} is independent of {xn}. Define, for each

n, Y

n ann. Then, Yn has T['(x-1) distribution with scale
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parameter 8 . We let ¥ and L' denote summations over j
from 1 to n-1 and from 1 to 8 respectively.

Now we introduce some notation which is similar to that
introduced in section §l.4. Since the Vandermonde determinant
involved does not vanish, there exists a unique vector

d = (d),..0,d ) in R® such that d_#0 and

1 for ¢ 1

] L - l’ = =
(0.3) L7 - DY) =g for 4 =2,...,s.

For any h > 0 and any real valued function g on

(0,0), define

A g() = h~1(8(“*h) - g(u)) for u > 0.

With F and H denoting the averages of the distributions of
Xl,...,xn_1 and Yl""’Yn-l" respectively and with X abbre-

viating X, let

(0.4) M==z'dh F(X + (i-1)h)
and
(0.5) g =g d;b H(X + (i-1)h).

* *
With F and H denoting the empiric distributions of

xl’,g-,xn-l and Yl’oo-’Yn-l’ let

* *
(0.6) n =g diA F (X + (i-1)h)

and

(0.7) ¢ =1 d b H (X + (i-Dh).
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Let pe and qe denote the densities of [ (¢) dis-
tribution with scale parameter @ and T['(¢-1) distribution
with scale parameter § respectively. Let p and q denote
the densities of F and H respectively. With pés) and
qés) denoting the sth order derivatives of Pg and q

respectively, we assume throughout this chapter that ¢ is 3

(0.8) sup {\pés)\, \qés)‘ | a <8 <b} <w.

Under this assumption (0.8), it follows from the con-

dition on d in (0.3) and (3.2) of Chapter I that

(0.9) In - 5| = Kkhb®
and
(0.10) g - al = kh®

where k6 and k7 are constants.
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*
§2.1 Estimation Problem. Rates of Convergence for Dn(§,¢ )

*
with ¢ Based on Kernel Estimators for a Demsity

In this section, under certain conditions on &, we
show that, for each positive integer s, the modified regret of
*
the procedure y  (to be defined below by (1.2)) is

n-s/2(5+1)

0( ) when the component problem involved is the

estimation problem described in section §2.0. The method of
proving this rate of convergence is similar to that of Theorem
3 of Chapter I.

Let § denote the Bayes estimate against Gn-l in

the component estimation problem described in section §2.0.

Then ¢ can be expressed as

.

1.1 = -2 £ 0.
( ) ¥ -1 or u >

~

p(u)

*
Define the procedure § as follows. Let

(1.2) Vo e (X

a-1

j* rﬁ‘*
~

where tr stands for retraction to [a,b]. Any undefined ratios
are taken to be zero.

Let Kl,Kz,... denote constants in this section. Let
E stand for the expectation wrt the joint distribution of the
random variables involved unless otherwise specified. 1In the
following lemma, i, p are evaluated at X.
Lemma 1. If o > 2, b < 2a, (0.8) is satisfied and h is in
% = (h]0 < h(@-D* v @2%7) < e r@-Dar s} for some

r in (0,%), then

—
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B - v 0[] = K (@) 7F + @n2th %)

Proof. We have by the definition of conditional expectation

(1.3) Bl - yo0 |1 = EEL)Y - 00 1x7]

where E[~lX] stands for the conditional expectation operation
given X,

Since ¢*, by definition (1.2), is the retraction of
xg*/(a-l)n* to [a,b] and since yX) = Xi/(a-l)ﬁ, the Bayes

estimate against G whose support lies in [a,b], is in

n-1
[a,b], we have |¢* - y| <b-a and |¢* -y = X(a-l)_llD|

where
* -
(1.4) D=5 -9,
i P
We then have
- b-a *
ELly” - vy ||x] S[E Py - y| > ujdu
b-a -1
(1.5) sg PL|D| > (a-1)X "u]du
b-a -1 0 -1
= I P(D > (a-1)X "u] +~f P[D < (¢-1)X "uldu
o a-b

where P stands for the joint probability measure of
Xl’..l’xn-l and Yl’...’Yn-ll
-1
The main part of the proof bounds P[D > (¢-1)X "u]

for 0 <u <b-a and P[D < (a-l)x-lu] for a-b s u< 0 by

using the Berry-Esseen theorem. The rest of the proof shows
that the expectation of a bound for the rhs of (1.5) is exceeded

by the bound in the lemma.
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Let X > 0 be fixed until qtherwise stated. Let

(1.6) Zj(u) =g'd (X + (i-Dh < Yj < X + ih]

- ((oz-l)x'lu + %)[x + (i-1h < XJ. < X + ih])
p

for \u\ < b-a.

Let the dependency of Zj on u be suppressed. Let
82 = Var(zzj) and L = 5'32E\Zj - Ezj\3. Now we prove the
following sublemma.

Sublemma. For any \u\ < b-a and any constant k2 such that

\dil < k2 for i=1,...,s,

k(1 + 2 (@-1)x" 1b)
<

L y L - A
k, ((-1)h) % (h HEX+(s-1)h))

Proof. 1In order to obtain the result of the sublemma, we

2
need a lower bound for B . This bound will be obtained by

applying L1.A (see Appendix) to the Zj'
Since Yj = ijj and since the distribution of kj

is supported on (0,1), P[Yj = Xj] = 0 and hence Zj defined

by (1.6) takes 2_ls(s+5) + 1 values; namely,

0, di-dj((q-l)x-lu + %) for 1 <i< jss,

(1.7) P _
di for i =1,...,8 and -di((a-l)x—lu + %) for i =1,...,s.

P

with nonzero probability.
The probability that Zj takes the value zero in (1.7)

is given by p[xj ¢ (X,X + sh), Y, ¢ (X,X + sh)]. Since
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e Uu™ < e ™™ for m >0 and since o > 2 and ej > 2 by

assumption, we have
u

+ sh)] = —— e “ y*~ 1% d
P[xj € (X,X + sh)] r(a)e e u
"(Cl’ 2) a-2
r(O’ l)a ((a 1) V (Q’l:z) )Shy
(1.8) X+sh Y

- 1 U Qr 2 ]
P[YJ. € (X,X + sh)] T@-Do. 1)ej )[ e du

e-(cr-z)

s fa ((a-l)"‘l v @2 ?)sh

Therefore, it follows by the hypothesis on h that

P[xj € (X,X +sh)] and p[yj € (X,X + sh)] are cxceeded by r.
Hence, since P(A n B) =z P(A) + P(B) - 1 for any two events

A, B, we obtain that P[xj ¢ (X,X + sh), Yj ¢ (X,X +sh)] > 1-2r.
Hence, since Zj takes the value ds with probability

P{X + (s-1)h < Y, < X + sh < Xj'_], we obtain by L1.A. that

j

(1.9) Var(Zj) = kg(P[X + (s-1)h < YJ. < X + sh < xj])

where kg = dZ(l-Zr) inf{l - Plu + (s-1)h < Yj <u + sh]\u >0, h € ¥}.

We observe that L # 0 since ds #0 and 2r < 1. Hence,

Since [X + (s-1)h <Yj < X + sh, xj - Yj 2h]c[X+ (s-1)h <

Yj < X + sh = ] and since Xj - Yj and Yj are independent,

We obtain that

var(y) = k§ inf{PX, - ¥, 2 h]lh € ¥}P[X + (s-1)h < ¥ < X+ sh].

Therefore,
2 2 -
(1.10) 8" = k, (n-Dh A HE + (s-1)h)
2 2,
Where ky = ky inf{P(X; - Y, 2 h]|h € ¥}.
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Since |u| < b-a and since xi/(a-l)ﬁ < b, the
maximum of the moduli of the values of (-Z ) in (1.7) is at
J

most
.11) ky(L + 2(@-DX b

where k2 is the constant stated in the sublemma.

Therefore, the standardized range bound for L, together F
with the help of (1.10) and (1.11), gives the result of the sub-
lemma.

Proceeding with the proof of the lemma, we obtain an
upper bound for az. The definition of Zj in (1.6) and (1.11) -
imply that

E zj < k§ a+ 2(a-1)X_1b)2(Fj']§+Sh + nj];(*sh)

where Fj and Hj are the distributions of Xj and Yj
respectively. Therefore, since 52 =3 Var(Zj) <z EZ?, we

obtain that

2 - - -
112) g% s+ 20X B D Flp e R

Let 0 < u < b-a. Then the definitions of D in (1.4)
. -1 *
and Zj in (1.6) imply that [D > (¢-1)X "u] s [zzj >0]+ [N <o0].
Hence, with b(L) denoting the bound in the sublemma and B
denoting the Berry-Esseen constant, by the Berry-Esseen theorem,
the sublemma and the triangle inequality, we obtain that

P[£ Z, > 0] is exceeded by

h|
-1 -1- -1 -1-
(1.13) (-8 (n-1h(x-1)X p u) + |§(-p" (n-1)h(a-1)X p u)

-3 87 EZj)|+B b(L).
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2
By using the upper bound for B in (1.12),we obtain

that
(1.14) B'l(n-l)h(a-l)x'lﬁ > ((n-l)h)%f

where f 1is the positive solution of the equation

(115 exia + 2(a-1)X-1b)2(Ej§+Sh +-ﬁj§+8h)f2 = h(e-1) 5%,

Since I EZ, + (n-1)h(a-1)x°1§ u = (n-1)h((a-1)x'1u

- ]
+ %)(5 -T) +E -q) for all |u| < b-a and Xq/(a-1)p < b,

it follows from (0.9) and (0.10) that

(1.16) |z Bz, + (n-l)h(a-l)x'lﬁ u| < (n-1)hs+1(zx6b(a-1)x'l +K,)

for all |u| < b-a.

Therefore, it follows by the mean value theorem and the lower
bound for 32 in (1.10) that the second term in (1.13) is

exceeded by

((n-l)h25+1)%(2k6(a-1)x-1 +K.)

(1.17) 7

T 3
k, (b HX + (s-1)h))
Hence it follows from (1.13) and (1.14) that

%

(1.18) Pz z, > 0] < &(-((-Dh)*f u) + (1.17) + b b(L)

h|

for 0 < u < b-a.

Let a-b < u < 0. Then the definitions of D in (1.4)
and Zj in (1.6) imply that [D < (a-l)x-lu] < [Z(-Zj) > 0] +
[n* < 0]. Hence, since the sublemma continues to hold if d

is replaced by -d, we have by the Berry-Esseen theorem, the
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triangle inequality and the sublemma that P[E(-Zj) > 0]

is excecded by

(1.19) @ Ln-Dhe-DX % w + |e@ m-Dh@-1)x "l

- e(-8"s EZ;)| + B b(L).

By using the upper bound for 32 in (1.12), we obtain
that the first term of (1.19) is bounded by Q(((n-l)h)%f u)
where f is the positive solution of (1.15). By using (1.16)
and the lower bound for 82 in (1.10), we obtain that the second

texrm of (1.19) is exceeded by (1.17). Hence, it follows from

(1 .19) that

P{D < (a-l)X-lu] < <§(((n~1)1’1)!5 f u) + (1.17) + B b(L)

for a-b < u < 0.

Integrating this inequality wrt u over [a-b,0) and
the inequality (1.18) wrt u over [0,b-a], then bounding their
b-a
first terms by using the inequality [E $ (-Au)du < (2m) %

for A > 0, we obtain from (1.5) that

E[H’ - w(x)”x] S—_T+ 2(b-a) (L.17) + 2(b-a)B b(L).
((n-1)h)°f

In view of this inequality, (1.17) and the bound in
the sublemma, we continue the proof of the lemma by showing
that £ ' and a + x'l) b HEX + (s-l)h))-% are uniformly
bounded and P -integrable.

+sh

— X+sh — - -
Since F]x /H]§ = p(X + e¢sh)/q(X + esh) for some

€ in (0,1) by Cauchy's mean value theorem, Xc;/(o(-l)l.a 2 a,

and since f 1is defined as the positive solution of (1.15),
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we obtain that f-1 is exceeded by

k, X (1 + 2(a-1)x'1b)(;ﬁx*sh)%((1+ (@-1)a) T (X + esh))?
(1.20) -2 X

h}éﬁ

. —_X+s - -1
Since u]; h =sh q(X + §6sh) for some 0 < § < 1, (o-1)

QX + esh)/p(X) < bX + )2 2/l and b™@ o "X/a

1-
< T@X %p, <
a " e-x/b

k|
, the condition b < 2a implies that the expectation
of the upper bound (1.20) for f-l is uniformly bounded.
Since, by the mean value theorem, A ﬁ(x + (s-1)h) =
q (X + ¢(s-1)h) for some ¢ in (0,1)

1" (Q-l)ba_l(; > xd'ze'X/a

and since

- -x/b
and T(G)Pn < x¥ 1a-ae X/ , the con-

ditions b< 2a and o > 2 'imply that the expectation of

X-I(A HEX + (S-l)h))l5 is uniformly bounded.

: *
The same n<i{nod of bounding %[n < 0] completes the proof.

Now we state and prove the main result of the section.

This result is a consequence of Lemma 1, Theorem 2.1 and (2.5)

of Ggilliland (1968).

]

Theorem 1. If o > 2, b < 2a, (0.8) is satisfied, h Yn'l/s+1

- - - -1
with 0 « Y((ot-l)a 1 Vv (a-2)°’ 2) < e 2 T(@-1ar s for some r

in (0,5 and y  is defined by (1.2), then
D (8.4 = o@ = @EH),

Proof. Since pe(u) is exceeded by (I‘(c,y))nla.olucy—leuu/b

uniformly in all @ belonging to [a,b] and p[ua-le—U/b] < o,

it follows by Theorem 2.1 of Gilliland (1968) that
(1. )

10 -1
E - X = 1
n jEl [\wj(xj) yj_l( J.)|] O(n” "log n)
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where O(n-llog n) 1is uniform in all parameter sequences §

in x [a,b].
n
Since the inequality (2.5) of Gilliland (1968) continues
to hold when the 5 mentioned there are randomized procedures

*
and since § , by definition (1.2), takes values in [a,b], it

follows by (1.19) that
Ip (s y_*)\ < 4bnt ; EL| * . &) +0(n'11o n)
n = =1 ¥y ¥y B e

Hence the result of the theorem follows from Lemma 1 and the

de finition of h in the statement of the theorem.
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2.2 Two-action Problem. Rates of Convergence for Dn(g,ﬁ)

with § Based on Kernel Estimators for a Density

In this section, under certain conditions on &, we
show that, for each positive integer s, the modified regret
of the procedure § (defined below by (2.5) and (2.6)) is
O(n-s/2(5+1)) when the component problem involved is the two
action problem described in section §2.0. The method of proving
this rate of convergence is similar to that of Johns (1967).
In this section, we make it a convention that the value
of any decision function is the probability of taking action

a;. Define, for each n,

(2.1) Yo = (8, = ©)Pg,-

1f R(Gn) denotes the component two-action problem described

in section §2.0, then

10 . -
R(Cn) = inf u{é6 n " g Yj] 4+n "% (ej -c) .
6 j=1 j=1
Hence, with m defined by
n

(2.2) m = ¥ Y.

n j=1 j

- n -

(2.3) nR@G,) = -u[mn] + I (ej - ©)

3=1
With E denoting the expectation operation, for any

randomized procedure § = {@n}, the risk of using %n to decide

about @ is given by (8 - )E(§ ] + (e, - c)” and hence

the average risk of using Wl,...,ﬁn to decide about

el,...,en respectively is given by
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1

n 1 n _
JE{@[Yj(U)E[Vj\Xj =u]]+ - I (9, - ¢

=1
where E[mj\xj =u] 1is a conditional expectation of wj
given Xj = u. Hence, it follows from (0.2) and (2.3) that

(u)ij\xj =u] + m;(u)].

n
(2.4) nD (8,1 =ulv¥;]1+ LL[jEij

Let h >0 be a function of n. We define

i = {wn} as follows. Let

(2.5) §,=1

and, for n > 1,

(2.6) ¥, = (xe" /a-1 < cn*]

* *
where T and § are defined by (0.6) and (0.7) respectively
and X 1is an abbreviation for Xn.

Let, for n > 1,

*
= (n-1) (S5 - ¥
(2.7) Sn—l (n 1)(0-1 ch) ) for u>0
* *
where g and T  are evaluated at Yl""’Yn-l’ u and
Xl""’xn-l’ u respectively.
* -—
(2.8) m o1 = E[Sn_I] for u>0
and
2 _
(2.9) Bho1 = Var(Sn_l) for u > 0.

Lemma 2. If o > 2, b < 2a, (0.8) is satisfied and h is in
-1 -2 -2 -
¥ = (h]0 < h(@-D¥ "V @2*) < e®“ r@@-Dar s} for some

0<r< %, then
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*
m m
luly @ (- 221y - 5¢- 22by)q) < 1(1((n-1)hzs+1)AE for n > 1.
n Bn-l Bn-l

Proof. By the mean value theorem and the inequality /E; ¢ s 1,
we obtain that

* *

m - m - |m - -m - ‘
(2.10) le(- = Ly - ac- —Ll)l < ——_“—l—-ri .
Bn-1 Pa-1 ' v2me

Since (0.8) is satisfied by the hypothesis, it follows

from (0.9), (0.10) and the definitions of n in (2.8) and

n-1
m _; in (2.2) that
2.11) lo* . -m | < @Dk +c k)
n-1 " -1 a-1 %6 k).

2
Now we get a lower bound for Bn 1 Let

(2.12) h Zj(u) = z'di(u(a-l)-l[u + (i-1)h < Y, <ut ih)

- cfu + (i-Dh < Xj < u + ih]).

Then, since P[Yj 2 xj] =0, h Z, defined above takes

3
2-ls(s+5) + 1 values; namely,

(2.13) o, diu(cv-l)-1 - djc for 1 <i<j<s,

diU(cv-l)'1 for i=1,...,8 and dic for i=1,..,,s.

with nonzero probability. The probability that h Z takes the
value zero in (2.13) is given by P{Xj ¢ (u,u + sh), Y ¢ (u,u + sh)].
Then, it follows by the hypothesis on h, (1.8) and the in-

quality P(A N B) 2 P(A) + PB) - 1 for any two events A

and B that this probability is at least 1-2r > 0. Hence,
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since h Zj takes the value ds with probability

Plu + (s-1)h < Yj < u + sh < xj], we have from L1.A. (see

Appendix) that

(2.14) var(hz.) = (1-2r)d§ Plu + (s-1)h < ¥

<u +sh <X
3 j]
(1- - Plu + (s-1)h < Yj < u + sh < Xj])).
Hence, since inf{l - P{u + (s-1)h ¢ Yj <u +sh g Xj]\ u >0, !:

ej € (a,b], h € ¥} > 0, by using the argument given to obtain
(1.10) from (1.9), we obtain that

(2.15) h ai_l 2 k;(n-l) b H(u + (s-1)h).

Therefore, we have from (2.10) and (2.11) that —"

m* 2s+1 %

- m ((-DhTH 2 (k, 2= + K c)
(2.16)  |a(- = Ly - a(- A2hy| < = 0o ; 3
Ba-1 Pa-l k, (h B + (s-Dh))
We have
(2.17) a¥ T@|y,| = ® +¢) @ Lemulb,

By the mean value theorem,

(2.18) A H(u + (s-1)h) = q(u + ch) for some ¢ in (s-1,s).

Hence, since

- - o-2 -u/a
(2.19) b¥ 1F(a-1)q(u) su- ©

it follows by the hypothesis on h,

(2.20) b1 (o) b H(u + (s-1h) = y@-2g"1mu/a
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Since b < 2a the result follows from the
inequalities (2.16), (2.17) and (2.20).

let
‘3

_ -3
(2.21) L ,=8.,Z E\zj - EZ

3

where Zj is defined by (2.12).

Lemma 3. If the hypothesis of Lemma 2 is satisfied, then
-1)h) "%
by, L 1] < Ky ((n-1)h) for n > 1.

Proof. The standardized range bound for Ln—l’ together with

(2.15) and the fact that the maximum of the moduli of the values

of h Zj defined in (2.12) is at most

2.22 d d p!
(2.22) max {| 1|,...,\ Sl}(ucy- )+ <),
implies that

max {|d;],..0,ld | @Dt + o)
%

Ln-l = X, -
k, ((n=-1D)h) “(} H(u + (s-1)h))

Since b <« 2a and g > 2implies that the p-integral of the rhs
of the inequality obtained by weakening this inequality for
Ln_1 by using (2.20) is uniformly bounded, the proof of the

lemma is complete.

Below, we get an upper bound for B:-l' We have by
the definition of h Zj in (2.12) and (2.22) that
2 2 2 -1 2 u+sh ut+sh
h Ez] < (max {\d1|,...,|ds\}) (u(e-1) = +c¢) (Fj]u +H )

where F and Hj are the distribution functions of X, and

3
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Yj respectively. Therefore, since Bi-l <z EZ?, we have
2 2 2 - u+tsh
(2.23) hs. < (max {]d ], )4 | DD Ly )2(n- 1) ()]
+;{']U+Sh
k -1.%
Lemma 4. p[an_l] < 4((n-l)h ) for n > 1.
% % %

Proof. By (2.23) and the inequality (a+b) < a” 4+ b~ for

a,b > 0, we have

+sh
((n-1)h~ ) %B .1 S max {|d1\,...,\d | J(h™ lF]“ %
+ 1H]u+sh %
By the mean value theorem h IF]U+Sh = s p(X + esh)
and h-lﬁj =8 q(x + 6sh) for some 0 < ¢,5 < 1. Hence,

a-le-u/b

since T(@a"p < u , Tla-Da® 1 § < u® %™/ ang

ua-Ze-u/b is w-integrable, the result of the lemma follows.

The proof of the following theorem depends on Lemmas 2,3,4
and part of the method of proof of Theorem 1 of Johns (1967).
Theorem 2. For each positive integer s, if (0.8) is satisfied,

o>2,b< 2, h=y n-l/s+1 where y((a-l)“'l v (o,-z)""z) <

-1

2 F@-lars for some 0 <r< ¥ and § is

defined by (2.5) and (2.6), then
Dn(g,i) = O(n‘S/2(8+1)) .

Proof. By (2.4) and the definition of § 1in (2.5) and (2.6),

we have

(2.24) n|p (@D < ully;|] + |ul = vy EF,|x; = v + m (u)]].
j=2
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To start with, we consider bounding the integrand of
the second term of the rhs of (2.24) on the set [mn > 0].
Afterwards we consider the case when m < 0. So, let m 20

until otherwise stated. Since m 2 0, we have by the defini-

tion of $j in (2.6) and Sj-l in (2.7) for j > 1 that
n - n
(2.25) jizyj(u)E[$j|Xj =u] +m () = jEzyj(u)P[sj_1 < 0]

where P stands for the joint probability measure of all the
random variables involved.

By the triangle inequality,

n
(2.26) |j§2Yj(U)P[Sj_1 <01} = |pj| + |p,| + |p,]
where
%

. 231y,

(2.27) D, = £ v.(P(S. ,< 0] - a(- ,
1 j=2 J j-l ] Bj“l
*

n m m
(2.28) D, = I y;@C g - e )

j=2 j-1 j-1
and

n m
(2.29) D, = £y, 8(- =1y,
3 j=2Yj sj-]_

With B denoting the Berry-Esseen constant, the Berry-
Esseen theorem (Loeve (1963), p. 288) gives
n
Ip,| =B jEZ‘leLj-l'

Therefore, by Lemma 3,

n
(2.30) wl{m > 01\D1|] S Iy 82((j-1)h)-%.
j=




70

By Lemma 2, we have

a 2s+1 %
(2.31) wllm > 0]\D2|] Sk L ((-Dh )%,
Replaci . and s, b and . in (2.6
eplacing o, an PR AR BJ (2.6)
through (2.13) of Theorem 1 of Johns (1967), we obtain that
n n

2
Y ‘A
(2.32) D] < 4(0) T TI—+ £ 4 B +8)(ARA) + 25(0))
=2 P31 g=2 g

where max x%(-x) = AIQ(AI).
x>0 ,

The lower bound for in (2.15), the lower bound

2
Bj-l
for L E(u + (s-1)h) in (2.20) and the upper bound for Yj
in (2.17), together with the conditions b < 2a and o > 2,

imply that u[y?/aj_lj < ks((j-l)h-l)-%. Hence, since (2.17)
implies that u[‘yj‘] is uniformly bounded, it follows from

(2.32) and Lemma 4 that

o ¥y, 2 1
wlln > 0100,]] < k(2 (G-DR"H™F 4 5 Lo+ @n bk 4y,
n 8 =2 j=2 j2

Hence (2.25) to (2.32) imply that

lullm, > 01C T v, EL§|X; = u] +m @)

]
n
= \u[[mn > o]jEZYJ(U)P[Sj'l < 0]]‘
N : y 2s+1 %
< k(L (G-Dh) "+ I ((3-Dh" )
j=2 j=2
n _ n
+ 2o hH e e B a.
j=2 =2 j

Now we consider bounding the integrand of the second term

of the rhs of (2.24) on [mn < 0]. For u in [mn < 0], we

[
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have by the definition of ﬁj in (2.6) and S__ in (2.7) for

j-1
j > 1, we obtain that

n n
jgzvj WELF|X; = u] +m (0) = -y @) - Ezyj @ B[S, = 0.
= j_

Following the same argument we gave to bound

2; Y; (B[S, ; < 0] by rhs of (2.33), we obtain that

n
\u[[mh < o](jisz(u)E[wjlxj = u)] + m;(u))]‘ < rhs of (2.33) + u[‘yl\].
Since (2.17) implies that p[‘yl‘] is uniformly bounded,

this inequality and (2.33), together with (2.24) and the hypothesis

concerning h, imply the result of the theorem.
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We apply the following lemma for obtaining lower bounds
for certain variances in Lemmas 4 and 11 of Chapter I and Lemmas
1, 2 and 3 of Chapter II. The inequality in the following lemma

is trivially true when = 1.

Po
Lemma 1.A. Let Po < 1, PpovesaP s be a probability distribu-

tion on {0,1,...,i,...} and let Z be the r.v. 2Z(i) = z, for

e - . 2
specified zg = 0,21,...,21,... with g zipi < o. Let ¢q

i

abbreviate 1 - P; and let I()\) = 2? pi(l - xqi)-l. Then

1§ from q, to #{iz= l\pi >0} as At fromO to 1 and
var(z) = z 22
r M EE P9

with kl the unique root of I()\) = 1. Since I(po) <1,

1% Por

Proof. 1 § since each summand pi(l - )\qi)“1

ith .
wi P >0 3
Since equality holds in the inequality when kl = 1, we consider
below the case kl < 1.

To prove the inequality when *1 <1, let §(z) =Var(z) -

2
kl T zi pP.qd for =z = (zl,zz,...). Denoting the first and second

ii

partials wrt Zj by wj and wjj respectively,

wj(Z) = zpj{(l-quj)zj = 2 2.p.} > wjj(Z) = 2(1-k1)quj'

11

For j with pj >0, §y is, therefore, minimal wrt zj varia-

tion iff Zj = (l-xlqj)'lz zipi. These conditions are satisfied
72
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~

iff, for somec constant «c, zj = C(l‘qu )—1 for j with pj > 0.

3

For such =z,
w<z)=c2{2p(1-xq)'2-1-x T p.q (l-xq)'2}=0
i 1% 1 i'i 171

which yields the nonnegativity of ¢ asserted by the lemma.
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