
ANALYTECAL AND GRAPHICAL ENGINEERENG

ECONQMLC ANALWIS A3 AWHED TO THE

CGMPRESSDN REFRIGERATIQN SYSTEM AND

ALMS? CGMFQNERTS

Thesls for “10 Degree of pH. D.

MiCHEGAN SMTE UNK‘IERSITY

George E. Suttan

1957



THFSES

This is to certify that the

thesis entitled

Analytical and Graphical Engineering

Economic Analysis as Applied to the

Compression Refrigeration System and

Allied Components

presented by

George E. Sutton

has been accepted towards fulfillment

of the requirements for

Ph.D. (169,661,, 14.13.

Majéf professor

 

Date Nay 111, 1957
 

0-169



ANALi'i'ICAL AND

GRAPHICAL ENGINEERING ECONOMIC ANALYSIS

AS APPLIED TO THE COMPRESSION REFRIGERATION SYSTEM

AND ALLIED COMPONENTS

by .
f.s‘

George Eé'Sutton

A THESIS

Submitted to the School for Advanced Graduate Studies of

Michigan State University of Agriculture and

Applied Science in partial fulfillment of

the requirements for the degree of

DOCTOR or PHILOSOPHY

Department of Mechanical Engineering

1957



Copyright by

George Edwin Sutton

1959



 

 

 

 



Analytical and Graphical Engineering

Economics as applied to the Compression

Refrigeration System and Allied Components

By George E3 Sutton

ABSTRACT

The methods currently available to engineers for selection of

mechanical equipment such as air ducts, refrigeration piping, etc.

are limited, generally, to published taoles of vague origin.

A number of equations are developed relating size to operating

and owning costs. These are minimized to produce the optimum size

for minimum annual cost.

A systematic approach to graphical solution of equations is

developed in order to generalize the solutions at cost equations.

Linimizing of equations in one, two, and three variables is

discussed.

Applications of these methods are made to the following: Insulation;

Condenser water Rate; Water piping; Discharge, Suction and Liquid Lines;

Air Ducts; and Tubular Heat Exchangers.

The results indicate that the use of generalized tables for pipe

sizing, etc. should be discouraged, and that graphical solutions should

be used whenever possible in order to produce the most economic selection.

The study of tubular heat exchangers indicates a trend toward a

large number of very small tubes, with Reynolds' Numbers in the transition

range between laminar and turbulent flow. As a consequence, more study

is needed of the character of flow and neat transfer in such small tubes.
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Introduction

The sizing and selection of mechanical equipment has

long been based upon experience and Judgement, neither of

which is an easily obtainable commodity. Practice has

shown the minimum size consistent with effective Operation.

Admittedly, this practice, based upon experience, yields

the lowest first cost consistent with Operable equipment.

It can be shown, however, that, in many cases, the operating

cost is so high that the total owning and operating cost of

the equipment over a period of years is far greater than if

the economic size were chosen by analytical means.

There is another strong reason for examining critically

present methods of selection. Many references show

tabulated sizes, particularly in the case of pipe, which will

yield, according to previous practice, the economic system.

These data are often based upon prices of some years past.

The cost of electric power has remained essentially

constant over many years, while material and installation

costs have practically tripled since 1926. These facts

would tend to indicate that, in many cases, smaller sizes

than previously selected are now Justified economically.

The technique of minimizing cost by differentiation of

a total cost equation is beset by two disadvantages. First,

the equation representing total cost must be derived. Such

an equation may, however, be derived approximately, if not

exactly, for most applications by use of some ingenuity and

1
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reasonable approximations.

The second disadvantage lies in the usual apprehension

of engineers toward higher mathematics. This may be due,

largely, to the lack of stress placed upon practical aspects

of mathematics in scholastic courses and in the practice of

engineering.

It is the aim of this treatise to provide a guide to

methods of setting up the equations of total cost, and then

show how to solve for the economic sizes or quantities.

Although the title indicates, correctly, that the apparatus

treated relate to the compression refrigeration system, the

methods deveIOped may be applied with equal ease to many

other engineering systems.

In many cases, assumptions are made necessary. These

will be clearly indicated as such. The primary value of

the literature search in connection with this work has been

in providing bases for these necessary assumptions.

It is believed that graphical solutions, because of

their simplicity and generality, offer a valuable

contribution. Graphical techniques will be discussed in

detail prior to discussion of Specific equations.



Chapter I Graphical Techniques

A graph, as used in this work, is defined as a plot of

the behavior of some function with variation Of a primary

variable. The most common graphs encountered in engineering

work are linear scale, semi-logarithmic scale, and log-log

scale. Nomographs and alignment charts are not graphs as

herein defined, but, more properly, form another class of

charts.

Linear scales and semi-logarithmic scales have the

primary disadvantage that few functions plot as straight

lines on them. Log-log scale graphs are advantageous in

that any single-termed function, regardless of the number

of multiplying and dividing parameters contained and the

powers to which the parameters or variables are raised,

will plot as a straight line. In addition, multiplication

and division may be readily performed. Addition and

subtraction of functions may also be performed, but less

readily.

Log-log graphs are simply plots on special paper, having

a logarithmic scale on both abscissa and ordinate. The

simplicity encountered with base ten logarithms will be

utilized here throughout.

A change of one cycle upward or to the right represents

a multiplication by ten, while a change of one cycle

downward or to the left produces division by ten. This

decimal characteristic allows much freedom in using such

1



graphs for calculation.

To illustrate the technique of solving an equation of

two single-termed functions, consider the following example:

ab 2 d2

C

where a, b, and c are parameters. That is, they may vary

with other conditions, but are not functions of the primary

variable, d. The equation may be rewritten:

ab

cd

which is of the form:

fl(d) z f2(d)

Thus, for given values of a, b, and c, the solution occurs

:d. 

when flzrfe. Figure 1-1 shows a plot of f1(d) and f2(d)

against values of d. Since fl is a function of d raised

to the -1 power, the slope is -l and, since f2 is a function

of d to the1'l power, the slope is+—l. The intersection

of the lines representing the two functions will occur at

the value of d which produces equality of the two functions,

which is the solution of the equation. In this case, the

values chosen were: a, 10; b, 10; and c, l; which produces

a solution d equal to 10.

In order to generalize, or to provide for other values

of a, b and c, the graph may be extended to facilitate

calculation of the term %9 , for all values of a, b, and c

encountered in the particular problem. Let the ranges of

the parameters be chosen as follows:
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l
b

0.1 S a 10

105. bilOO

1 _<_ c5100

For these ranges of the parameters, the minimum solution

for d is 0.1 and the maximum is 31.5. This represents

2% cycles range for d. Thus a solution area required is

then 2% by 2% cycles. Prior to demonstration of the method

of computing the operating area, that is, the area required

to compute the value of fig , it will be necessary to examine

the operations of multiplication and division in more

detail.

As previously mentioned, multiplication and division

may be performed by vertical movement, which results in

addition or subtraction of logarithms. Figure 1-2

demonstrates the operations involved in computing 2% .

Starting with log a, progressing downward, each cycle

progressed represents division by 10. Thus division by c

may be achieved by prOgressing downward to log 0 and then

vertically to any chosen unity. The procedure is simplified

if all multiplicands are arranged above a certain unity, and

all divisors arranged below the same unity as shown in

Figure 2. Further multiplication by b is achieved by

progressing upward vertically to log b. The equation

representing these Operations is:

log a - log c+log b =log 295%

Further movement along the lines of slope -1 produces
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division by 10 for each cycle. However, since the decima

is arbitrary, due to the uniformity of the cycles, the value

at the right ordinate of Figure 2 may be chosen as

log ‘15%%553 or log %2 , or any other decimal value. The

only requirement is that the other functions in the equation

agree in decimals with the first.

From observation of the operations, an arbitrary rule

may be derived for determining the number of cycles,

horizontal and vertical, required for a given operation.

Assigning the unity scale as shown, multiplication of "a" by

1 requires na cycles, vertical and horizontal, where na is

the range of a in cycles. The division by c requires no

cycles, horizontal and vertical. Multiplication by b requires

no additional cycles vertically, but requires nb cycles

horizontally. It is obvious, then, that the space required

will be equal to the sum of the n cycles horizontally, but

only the sum of the n's for the maximum range multiplier and

maximum range divisor will be required vertically.

For the example chosen, the requirements would be

Na'+ Nb-+ Nc = 2-+ 1 + 2 = 5 Horizontal

Na-+ Nc == 2 + 2 = 4 Vertical

The total for the operation and solution becomes 7% by 6%

cycles, provided the orientation is as shown. That is, if

the solution area is not allowed to overlap the operation

area. Experience will show that some overlapping may be

tolerated, thus reducing the total space requirements.

Figure 1-3 shows the total operation and solution.
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The example shown is for a= l, b==10, c==lO. This

illustrates, perhaps, the simplist method of locating the

scale in the solution area. These values were chosen such

that the solution for d would be 1. Thus the two lines

representing the functions must intersect at the ordinate

representing 1 as the value of d. The minimum area would

be utilized if the function equal to d were moved to the

heavy dashed line shown, which represents an overlapping of

two cycles. The total area could thus be reduced to 5% by

5 cycles. This reduction is difficult to predict in advance

of actually laying out the graph, however.

A simplification may be made in scale location which

will reduce crowding of scales. Since horizontal movement

has the same effect as vertical movement, one scale may be

placed along the upper abscissa. If the parameter chosen is

the primary one, such as flow rate, tonnage, etc., the effect

of this parameter upon the solution becomes readily apparent.

Figure 1-4 shows the rearrangement of Figure 3 into this

pattern.

Such methods result in a graph which may be used to

solve the equation for all values of the parameters within

the chosen ranges. In the simplicity of such solutions lies

the major value of the system.

Solutions which require the use of more complex

parameters may be implemented in equally simple ways. The

most generally encountered type involves parameters and

variables raised to powers other than unity.
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10

With such exponential parameters, it is deemed simplest

to treat the parameter with its exponent as a new variable

raised to unity power. Thus if a2 were to be a part of the

function, a2 would be plotted on the scale, with values of

“a”inscribed so that the location of values of "a" would

automatically produce a2. Since log a2 is equal to 2 log a,

the scale length would be twice the range of "a".

If the primary variable appears at any other power

than unity, the solution may be handled in two ways. First,

the operation may take place at a lepe equal to the power.

Second, the variable and its exponent may be treated in the

same way as the parameters discussed in the previous para-

graph, whereupon the new variable is the variable raised to

the appropriate power. The latter system will be used in

this treatise.

As an example of this technique, consider the equation:

239; d3

c

which may be rewritten as:

2
a b - d1‘5

cal-05

Let the parameters have the same ranges as previously. The

required operations area will now be, using the upper scale

for u '0:

Horizontal: (2)+(2)-*l+’2='7

Vertical: 24-1= 3

 

2

The range of d3 is from (O ll0él01 ; 0.001 to

 

2

Lloll(1oo).=10,000 which represents values of d1°5 of
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0.0315 to 100. Thus the solution will require 3% cycles.

The total area will be a maximum of 10% by 6% cycles.

Figure 1-5 shows the graph for solution of this equation.

It has been shown that any equation consisting of two

single-termed functions may be readily handled by graphical

means. For three or more terms, the equations are somewhat

more difficult to solve. Consider the equation:

gB-Ie::cd

The solution requires that the sum of two functions of d

and a parameter "e" be equal to another function of d.

Computation of the two functions is readily carried out by

previously demonstrated methods. Determining the sum of

function of d and the parameter e, which produces another

function of d, is not so readily performed on log-log

graphs. Note that the sum is a two-termed function, and

does not plot as a straight line.

In general, the equation to be solved is:

fl(d)+ f2(d) = f3(d)

or==log(fl+-f2)= log f3

but: log(f1+ r2): log fl(1+ :3.)

l

f
: 10 f + 10 (l+‘ 281 a T1)

This operation is easily carried out with a pair of dividers.

Figure 1-6 shows the method. The dividers are set between

f2 and f1, which measures the log £2. If they are reset

with the lower leg on any unity, f1 they may be extended

by one unit, which gives log(l+-;§ ). Resetting the lower

1
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leg on f1, the upper point will rest on the point at which

the ordinate is log (fl+ f2), as shown in the derivation.

As a numerical example, assume f2: 12 and fl: 6.

Setting the dividers between them, and then placing the leg

on any unity, the span will show an upper reading of 2,

which indicates the span to be log 2. Extending the upper

leg to 3 will cause the span to be log 3. Adding this to 6

will give log (6)(3) or log,18. Nets that the sum of 12

and 6 is l8, so the solution is correct.

For subtraction of two functions, the method is

essentially the same, since:

log (f2 - f1) =log fl[-§.—2- - l]

1

fr

: + 3- _

The calculation is made as before, except that the divider

span is reduced by one unit, rather than expanded as before.

The example chosen for graphical solution,

ilug-re: cd

is shown on Figure 1-7. The ranges of the parameters are:

10 9 a 5100

0.1 $ b 5:10

1 5 e 6 100

10 6 c 3 100

In this case the additive term is a constant for a given

solution. Let the values of the parameters be:

a :10, b=1, 0 =10, e =100

for simplicity. The solution for these values will be

slightly greater than ten, since: (%fl+10310*

In order to insure correct results, the scales of
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f1, f2, and f3 must be known. These may be arbitrarily

chosen, but must be identical. If they are arbitrarily

chosen, the location of the scale for the primary variable,

d, may be found by taking the case where e=.O, whence:

AggiOd; d= 1

This automatically locates the scale for c.

The previous discussion provides ample techniques for

the solutianof practically any equation of four or less

terms. Since no equations have thus far been encountered in

this work which necessitated use of more than three terms,

no further development is deemed necessary.



Chapter II Minimizing of Equations

. In general, differentiation of a function with respect

to a variable, and setting this derivative equal to zero

will give the value of the variable which will produce

either a maximum or a minimum of the function. Equations

for total cost of a mechanical component may usually be

written as the sum of two functions of the primary variable,

one being the annual owning cost and the other being the

annual operating cost. These are usually a direct function

and a reciprocal function, both of which are smooth con-

tinuous functions. The maximums will occur in such cases at

infinite and zero values of the primary variable, and there

will be only one minimum.

As a simple example of such an equation, consider the

following:

— 13.Ct‘ Ad+ d

It is desired to compute the value of d which will produce

a minimum total cost. Differentiating, and setting the

derivative equal to zero:

dot B
.__.: A - :

dd 52 O

This is the equation which must be solved for the value of

d which will produce a minimum cost. The solution is as

./E

d' A

In the case of two independent variables, the partial

follows:

derivatives of the function with respect to each of the two

17
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variables may be set to zero, and the equations produced thus

solved simultaneously to yield the solution for the values of

the variables to produce either a maximum or a minimum. The

same reasoning as applied to a single variable indicates that

the solution will yield a minimum.

As an example, consider an equation:

ct: AL3d - B(Ld+ L3)

The solution is as follows:

act.) . 2 .. 2

(3L d Bid. (1 B( 9L )

act)- 3.. g(5.5L..AL BLO

AL3=BL

ii

and: 3A(IT32<-B(d+-3—)

3 Ed:ade-S.2

2 Bd=3 K2,A (182

If the two variables are not independent, the previous

method will generally not lead to a solution. In this case

the total differential of the function must be set to zero

and the differential equation solved. The total differential

of a function may be written as follows:

do, = (9%Md1” (%E§)L dd

Consider the general equation:

f(L,d) = r1 (L,d)-r r2 (L,d)



l9

Differentiating, and setting the total differential equal to

Zero 3

ar.[(afi)d. (Lf2)d]dL+[(§_a.f3-)L+((af2)L ]dd- 0

This may be written, symbolically:

M d Ld-N d d

The test for exactness of a differential equation is:

$4-939.

ad" oL

Applying this test:

32f1 62f2 5% 321‘s

m * amaj= am + 37:.

In practically all the cases encountered in Mathematics the

order of differentiation has no effect, so that, generally

the equality will exist in the previous expression.

The method of solution for an exact differential

equation is as follows:*

F(L. d)-A] MdL+/d[1¢- H/LMdLJdd Const.

Applying this to the general equation:

F(L,A)”Afl L39] dL-I-[d{[3:l 6:2-iii/11:33:“; 3%) <11) dd

; Const.

 

* Kells, L. M., Elementary Differential Equations, McGraw-

Hill: New York, 1947, pp 44-46.
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d

F(d.L)= 1‘ +f2+ éfi bfa- a f dd
1 [{m—tfi‘] '35 1* 2]}

= 1‘14. f2+fdiafl +af2 -bfl _ are dd

3’ d a d ‘S‘c'i 35"

= fl-o-f2 = Constant

This has the same form as the original equation with

the function set equal to some undetermined constant. With

no additional conditions, the value of the constant cannot

be determined by elegant methods, but may be determined by

successive approximations if necessary.

If any constraint on the system is known, the method

of Lagrange* offers a solution. For two or more variables

this method is applicable.

As in the previous case, assume that the function

Ct (d,L) is given, and that the constraint is:

G(d,L) = constant

Lagrange's method consists of minimizing the combined function:

F :Ct(d,L)+ Y G(d,L)

where Y is an arbitrary constant, called Lagrange's multiplier.

Differentiation of the function yields two equations,

with the constraint furnishing the additional equation

necessary to complete the system of simultaneous equations.

The system is:

F -

(“at °
F -

(7)6 o

G(d,L) :1 Const.

g—Aglggggg;§§lggl3§, A.E. Taylor, Ginn and Co., Boston,

 

1955. pp 198—201
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Solution of this system may yield multiple results,

which may be maxima, minima, or neither. Classification

may be achieved by the following:*

 

Let:

2

A. 32%(61. b) B ,gectgapz ’ c,act(a.b) D: B2 _ AC

ad2 ’ adaL a1? ’

where (a,b) are the values of (d,L) found as a solution of

the system. A

If: D<O and A70, Ct is a maximum

D<0 and A70, Ct is a minimum

D 70 neither a maximum or minimum

D t0, no conclusion may be drwn.

For the case of three variables, consider the case:

= C(N,L,d)

with the constraint:

G(N,L,d) = constant

Let one solution of the system of equations be (a,b,c). The

 

 
 

 

   

determinant:

a?C(a,b,c) - /4 320(Qngc) 20(a,b,c)

a N2 a N3L 3 N 2d

2 2
a cga,b,c2 a C(a.b.0) aacgg bio)

9L 3N a L2 A a L a d =0

sectabm) sewing aEC(a.bicl -/I
adaN adaL ad2  
 

* Advanced Qalculus, A. E. Taylor, Ginn and Co., Boston,

19559 pp 232-5
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will yield three roots for A . If all roots are positive,

(a,b,c) is a minimum; if all are negative, a maximum. If

the signs of the roots are mixed, neither a maximum or

minimum exists at (a,b,c).

Similar extensions may be made to a larger number of

variables, but, since these seldom appear in engineering

economics, they will not be discussed here.



Chapter III Equations not suitable for Graphical Solutions

There arise several situations which produce equations

which involve a number of terms, but a relatively few

variables, or parameters. Often, these lend themselves

better to numerical solution than to graphical, particularly

if the solution is to be carried out by successive

approximations. An important example of this class of

situations is the field of economic insulation thickness.

(a) Insulation of Walls:

The cost of owning and "operating" an ordinary wall may

be interpreted as the sum of the cost of the wall and the

cost of heating and/or refrigeration. In the case of a wall

of known construction, the economics of addition of

insulation may be treated mathematically.

The cost per year of the insulation may be determined

by dividing the installation and maintenance cost by the

number of years representing the expected life of the

Installation. Let “A" represent the cost per year per board

foot of insulation. Let "U" represent the overall coefficient

of heat transfer of the wall without insulation; Bh, the

cost of heat per 1000 BTU and Be, the cost of refrigeration

per 1000 BTU. Assuming that the addition of insulation will

not alter appreciably the heat transfer characteristics of

the other materials, the heat transfer per square foot may

be written:

2. ‘4— 1

j? [.LJ"7Z]¢J
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where: x sthickness of insulation, inches.

k==conductivity of insulation BTU/hr-sq ft-OF/ft.

At- temperature difference between inside air and

outside air, oF

The cost of cooling may be written:

Co : Fc(8750) A130

1000

U 12k

where Fc is the fraction of time that cooling is required,

4‘ /year-sq ft .
 

on an annual basis, 8760 being the hours per year.

For heating, the “degree-day“ offers a convenient means

of computing heating requirements. The number of degree-days

is defined as the product of (days/yr. )(650F - tavg ), the 65°

reference being chosen as the average temperature at which

no heating will be required. Thus the expression:

8760 Fh 4 th re: 24D

where D: degree-days. Many publications list representative

figures for various localities.*

The heating cost may be expressed as:

- 24 Bh D

1000[% 4- 132?]

The total cost per year for insulating one square foot

may be written:

8760 Bc Fc Atc + 24 Eh D

l x
1000 [5 em;

Note that A is not cons ant for all values of x.

CtzAX+
 

 

* ASHAE Guide, American Society of Heating and Air Conditioning

Engineers, Inc., New York, 1956, pp. 451-4.
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Differentiating with respect to x, and setting to zero:

51.9. - A _[8760 13ch Ate + 24 she

dx - l x “2'.—
12,000k [fi- +155]

 

 

1 x 8760BF At 4.24‘0

U*T§k‘f °° ° Eh 

 

 

12000 Ak

x :l2k I 8760 Bch A tc + 24 Bid" _ ———1§k

12,000 Ak

From the standpoint of graphical solution, this equation

is rather complex. It is not unusually difficult to solve

by ordinary algebraic means, however.

It is interesting to note that values of "U" for many

composite walls are tabulated in various publications. The

1956 ASHAE Guide pp 190-200 lists many such values for

walls, roofs, etc.

As an example of the use of the derived equation,

consider an 8 inch concrete block wall, with % inch plaster,

furred, with metal lath. Table 8, page 191 of the 1956

ASHAE Guide gives U: 0.34 BTU/hr-ftz-OF. for this wall.

Page 452 of the same reference indicates that D::6982 for

Lansing, Michiga . Page 280 also indicates that the design

air temperature for this locality is 89°F. Using a design

interior temperature of 78°,zitc= 11°F. Cooling costs will

be of the order of l/3¢ per 1000 BTU, and heating costs of

the order of 1/4¢ per 1000 BTU. Using glass wool as the

insulating material, for which the R value, according to the

above reference, is 0.27 BTU/hr-sq ft-OF/in4::l2k. ’The

cost of such insulation is approximately l¢ per year per
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board foot. Estimating the use factor for air conditioning,‘

FC, to be 0.2, the solution for the economic thickness of

insulation is:

l __.

z .2 J(8760 1 3 0.2 11 + 24 2 _ 0.2

X 0 7 —TM"A12000'}%1)(0.0"225) —’£0.3

2642254- 41,895; 0.27

0'27 r 270 —30.1:

 

 

= 3.615 - 0.795

= 2.82 inches

Thus, it is obvious that a structure which is to be "year-

round" air conditioned, should be insulated with two to

three inches of insulation. Note that a basic structure of

higher insulating value, or lower U value, will require less

insulation, as shown by the subtracting factor, l2k/U.

If the structure is not to be cooled, this factor may

be eliminated from the equation. This would also decrease

the economic thickness of insulation.

Low temperature storage units require much more

insulation, primarily due to the higher temperature

difference, higher use factor, and low refrigeration

efficiency. Consider the case of a room, contained within

a space at an average temperature of 75°F.. which is to be

maintained at -10°F. Assuming the structural components to

be of negligible thermal resistance; that the use factor is

0.7; and that the refrigeration cost is 2/3¢ per 1000 BTU,

the economic thickness will be, for the same insulation

used previously:
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[860 23 0.7 85

0°27 L :(1%}000}é1)(0.02%§7‘

8.50 inches

 

>
4 u

(b) Pipe Insulation.

Pipe insulation is usually carried out by one of two

means: First, pre-cast insulation, available in incremental

thicknesses; and second, by paste insulation which may be

applied in the desired thickness, and allowed to harden in

place. The equation for cost may be simplified if the cost

may be expressed in terms of the volume of the insulation,

say in cents per year per cubic foot. It may be further

simplified if the thermal resistance of the pipe or duct is

negligible, and only the effect of film resistances and of

the insulation need be considered. In most cases, the

thermal resistance of the interior film is also negligible

with respect to that of the insulation and the exterior film.

Utilizing the above simplifications, the cost of

insulation may be expressed as:

2 2
01:1: L7T(do - <11)

(4) 141;
 

where: d0 =the unknown outside diameter of the insulation,

inches.

d1..the inside diameter of the insulation, inches.

A = cost of insulation, cents per year per cubic foot

L =.length of pipe, feet.

The heat transfer may be written, using the above

simplifications:
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fl'IUAtm

1' 12 1 do
3' + 1n __]

d h Zk
[“O 0 d1

where: tm::the logarithmic mean temperature difference

 

between the interior fluid and the outside air.

ho: exterior film conductance, BTU/hr-ft2-OF.

The cost of heating or cooling may be written as:

Bh,c 11" L Atm (8760) F

 

  

Ch,c 12

1000 -—- -ln d0

[.dhole< H;

where: Eh: use factor

and the tot-l cost2is:

C Afi(d02 «112) L 8.76TPBFu LAtm

1': T4) 144 4'

page 1“ 2-3]

Differentiating with respect to do' and setting to zero:

as 27TAd L 1.... . o _ 8.767rB Fu LAtmfg-2011+ __

 

 

 

ddo " W ° “0 0
l2 ‘* 1 in do 2

h k
[C1002 d1

12

[don *ailc' 1“ 3-]
0 d1 (4)(J44)(8.76) BFu‘Atm

d1 12 z — 2 Ad

[1:3, - ozfio 0

Since the equation contains the logarithm, it can be

solved only by some form of successive ap roximation, and

does not lend itself to graphical solution.
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Chapter IV: Simple Graphical Solutions

Many cost equations may be written as equations

involving one independent variable only, or reduced to

such equations by approximations. Such were the equations

developed in Chapter III. These may or may not lend

themselves to graphical solution. Two such situations,

peculiar to refrigeration and air conditioning, are treated

in this chapter.

(a) Economic Condenser Water Rate

Temperatures may be measured more easily and less

expensively than flow rates. For a given fluid, rate of flow,

and rate of heat transfer the temperature rise in the

condenser will be constant. Thus, the solution for the

economic temperature rise suggests itself.

Assuming a well designed condenser,(see Chap.VI) the only

effects produced by varying the condenser water flow rate

would be to change the cost of water, and to change the

condensing pressure and temperature in the refrigeration cycle.

The latter would create a change in compressor work, thus

directly affecting the cost of operation of the compressor

motor.

Water costs may be simply described as:

 

w

c”: :050/

where:

wf, rate of flow, lb/hr

A =.cost of water, cents/1000 gallons
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«Azdensity of water, lb/gallon

For any refrigeration cycle, the rate of water flow may

be expressed as a function of the Operating conditions of

the system. The heat dissipated in the condenser, per pound

of refrigerant is:

He: (In/7g) (tc-ts)+Qr

where:

m =work per degree temperature difference between

condensing temperature and suction temperature, °F.

77: overall compressor efficiency for the Open system or

combined motor and compressor efficiency for a

hermetic system.

t =condensing temperature, 0F.
c

tscsuction temperature, °F.

Qr=refrigeration effect, the heat absorbed in the

evaporator per pound of refrigerant.

The rate of refrigerant flow will be:

- 12000 T

where T = tons

Since the heat absorbed by water must equal the heat given

up by the refrigerant in the condenser; using the average

specific heat of water as l BTU/lb.-°F:

wfw (tc-tw’ ) wfr HO: wa A tw

W
[(%)(tc-ts)+ Qr]

=weight of flow of water, lb/hr

where:

wa

tw’:;inlet water temperature plus the terminal

temperature difference.
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Solving for the water flow rate:

“1‘“ %§%%%_%;> U727”) (to-ts“ Qr]

Thus, the cost of water is:

_ A 12000 ‘I' (m) J
W ‘ (10094) Qrztc"'t'w/ ) (tC'ts)+ Qr

The work required is:

Wk=Wfr m(tc-t8)

__12000 T m (to-ta)

Qr

and the cost of work is:

ka , B(l2000)T m(tc-t3)

7° (Buffer

 

 

where:

.B= cost of electricity, cents/KW-hr

3413==conversion factor, BTU to Kw-hr

?Q=overall motor-compressor efficiency

The total operating cost becomes:

CT8(T0%07) }%%2—2—_%w/) [(%))(tc‘ts)+ Q.\]4-7+4W'EL‘B"1203224c't )

= 128201. {1000/a (13‘?th [(m (tH't8)+Q1’-‘]7W73 it }

Using methods outlined in Chapter II, the minimum cost

 

condition may be determined as follows:

d Ct- 12000‘I' tc-tw )(7?EL”??? ('33-’°5“er
“atc 1000/ (to4“; )2

W
.__s___ (mytc’tw) - (1:CM... > - (tw’-t. >JQr +
1000/{6? (ta-tw’ )2 70B3 15
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A I!) (twl-ts) 4» Q]? - B m

1000/ [(1 (‘4th j - 37.0.7.313

(A tw)2 : A(3413) 70 [(2) (tw’ "ts)+ Qr]

1000 B/m 7 0

Using an average density of water as 8.33 lb/gallon, the

equation becomes:

2 _ 41 A (1’!) ’
(Atw) - (8-3—38) 77‘ 1:7? (13w “'03) + bur

B “m

with A tw in 0F.

 

This equation is completely general, regardless of the

refrigerant, for a single stage system. Table 4-1 shows

the values of Qr and‘N7for Dichlorodifluoromethane for

various condensing and suction temperatures, assuming 90

superheat at the suction inlet and 9° subcooling at the

condenser outlet. Figure 4-1 shows a plot of Qr with

to and ts,



Table 4-1

VARIATION OF REFRIGERQTIOI‘I EFFECT WITH OPERATION CONDITIONS

 

 

 

 
 

 

 

(0F) (0F) (BTU/lb) (BTU/lb-OF) (BTU/lb)

—40 80 18.47 0.15592 50.59

90 19.80 .15251 48.15

100 20.92 .1494} 45.76

110 22.11 .14740 43.31

120 23.21 .14506 40.82

130 24.30 .14294 38.31

-20 80 14.61 0.14610 52.96

90 15.83 .14391 50.52

100 17.05 .14192 48.13

110 18.16 .13969 45.66

120 19.24 .1374} 43.19

130 20.52 .1554? 40.68

0 80 11.30 0.14125 55.23

90 12.49 .13878 52.79

100 15.69 .13690 50.40

110 14.79 .15445 47.93

120 15.85 .13208 45.56

130 16.90 .15000 42.95

+ 20 80 8.09 0.13485 57.65

90 9.29 .13271 55.21

100 10.46 .15075 52.82

110 11.56 .12844 50.35

120 12.60 .12600 47.88

150 15.65 .12409 45.37

-r40 80 5.15 0.12785 59.90

90 6.34 .12680 57.46

100 7.49 .12485 55.07

110 8.59 .12271 52.60

120 9.65 .12038 50.13

130 10.66 .11844 47.52
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The terminal temperature difference will be essentially

constant for a given condenser design. Thus, the economic

temperature rise of the water appears to be primarily a

function of inlet water temperature and suction temperature.

It would appear, then, that the water flow rate should be

controlled by a valve sensitive to this temperature

difference, rather than to condensing pressure.

Unfortunately, the form of the equation renders it

difficult to adapt to graphical solution. However, by

certain appr ximations, another form of equation may be

derived which may be readily solved by graphical methods.

If all other parts of the cycle are assumed to be

unaffected by slight changes in condensing pressure, the

part of the work affected is:

m (Zitw)

The water flow rate may be further simplified by using Hc

to indicate the amount of heat to be dissipated in the

condenser per pound of refrigerant, and treating it as a

parameter, rather than a variable. The water cost would

then be:

- 12000 T H A .

C“'(W) “1800 48—1233) ———-—-‘fT H°
/ . “irAt‘w

The cost of the variable part of the work is:

Wk

9,. 3413 7,,
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Thus :

 
 0 T , +

8—530 Q'I‘Atw 3413 Qr 776

: 12000T_ + B m 413w

BBUZEW 52313 7?,

Minimizing:

I

my 12000 T - A He B m ]._._... a 0: ———-———- +
d Atw Qr 8530 (41mg 32:13 7].

 

(At )2:34137?‘A HQ 3 A e H
w 8330 B m (0.411) _§Z_ fig



37

In order to use a plot of this equation effectively,

values of Hc/m must be known. This ratio is a function of

the refrigerant used, the suction and condensing

temperatures, and the isentropic compression efficiency.

Table 4-2 shows values of this function for various

isentropic efficiencies, suction and condensing temperatures

for Dichlorodifluoromethane.

It should be noted that the variation within a given

isentropic efficiency is slight. Considering the data for

7? of 0.9, the maximum variation about a mean value of

481.08 is 5.93%. Taking the square root reduces this

variation with respect to Atw to 2.96%. This is of the

order of accuracy of plotting numbers on logarithmic graph

paper with 2é-inch cycles. Thus, the final equation to be

plotted is:

A1
(Atw)2= c B

with the values of 0 being:

Figure 4-2 shows the solution of this equation for a

typical 10 ton system.



Table 4-2

Hc/m

 

 

t t ’71

5 c 0.7 0.8 0.9

-40 30 500.13 478.69 461.99

90 501.87 478.63 460.57

100 506.26 481.23 461.75

110 508.14 481.34 460.52

120 510.00 481.39 459.19

130 510.84 481.95 456.90

-20 80 505.34 487.47 473.37

90 508.16 488.57 473.28

100 510.57 489.15 472.45

110 512.56 489.87 471.33

120 514.30 489.27 469.84

130 514.58 487.78 466.97

0 80 505.27 491.04 479.93

90 508.94 492.87 480.40

100 511.03 493.13 479.25

110 513.65 494.01 478.69

120 516.35 494.92 478.27

130 516.08 492.92 474.84

4.20 80 513.31 502.56 494.25

90 516.01 503.50 493.78

100 518.24 504.02 492.85

110 520.55 504.52 491.98

120 522.86 505.00 491.11

130 522.77 503.10 487.87

1-40 80 522.41 515.26 509.67

90 524.61 515.69 508.68

100 526.88 516.14 507.81

110 528.64 516.18 506.40

120 530.74 516.45 505.32

130 530.65 514.61 503.02

515.06 496.37 481.08
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The latter simplification leads to slightly higher

values of (it. However, since the total cost equation

contains the primary variable to only the first power, the

minimum is not sensitive. Figure 4—3 shows a plot of total

cost versus temperature rise of the condenser water. It can

be seen that there is little difference in total cost for a

value ten degrees different from the optimum. However,

this difference, of the order of 0.26, on an hourly basis

will amount to a considerable difference during the course

of a year. A variation of 15 - 20° inlfit would add

approximately 10% to the total yearly cost.
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(b) Air Ducts

The equation for cost of owning and operating air ducts

may be reduced to one in which diameter is the independent

variable. Rectangular ducts may be reduced to an equivalent

diameter for equal capacity and pressure loss? so that

solution for the economic diameter will lead, through proper

conversion, to the economic rectangular section.

The cost of material and fabrication may be expressed as

a function of the area of the sheet metal involved, say in

cents per square foot. The owning cost would be, then:

Co -'- W cents/year
12

where:

A = ¢/sq.ft.-year

L = length, feet

d : diameter, inches

The value of cost, A, is a discontinuous function, since

it increases abruptly with a change in allowable minimum

gauge. This variation can be expressed, awkwardly, as a

function of diameter, but it is so insensitive when

so expressed, that it adds little to the accuracy of the

calculations. Thus, it will be treated here as a parameter.

The pressure loss in a duct may be expressed as:

r 1...,/v2
2

AP; 2 8c 0 1b/ft 

 

* A.S.H.A.E. Guide, American Society of Heating and Air

Conditioning Engineers, New York, 1956, pp 737-9.



#3

where:

f: friction factor

Le= equivalent length of straight duct, feet

V: velocity, feet per second

J”=density, pounds per cubic foot

D: diameter, feet

The velocity may be expressed in terms of diameter, rate of

flow, and density, as follows:

V: -3%X- feet/second

where:

Q==rate of flow, cubic feet per minute.

A: area of flow, square feet.

Substituting this in the pressure loss equation:

f La!” 9 f L,,/Q2

ZXP‘W2 D 0A '-§—-——-2
50 7 00 chA

The friction factor may be accurately approximated,

over reasonable ranges, by a function of Reynolds' Number.

For Reynolds' Numbers between 104 and 106, a good approx-

imation is:*

- 0.2 g 0.2/10-2

(R°)O.2 D6.2v0.2/002

 

where:

.A(:viscosity, lb./foot-hour

V = velocity, feet per hour

 

*Thermodynamics of Fluid Flow, Newman A. Hall, Prentice Hall,
 

New York, 1951, pp 30-1.
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D = diameter, feet

/0= density, pounds per cubic foot

Substituting the value of velocity in terms of area:

v=;§%9— feet/hour

f _ (021/r 0°2A°°2

- Do.2(6o)o.2Qo.a/oo.2

Substituting this value of f in the pressure loss equation.

A1: =(O.2)Le flQl.8/O.
8/9 0,2

(2)sc (60)2-2 91.2 A1.8

‘3 210828c (60)2'2 Dl.a[H2D ]

(o 2)(4)1.8Le/’o.§/90.2 Q1.8 ’ 2

. 2 2 1 8 4 8 lb/ft
23c (60) ° (77) ' D '

Since the pressure drop is usually quite small in

comparison to the total pressure in ducts of reasonable

length, the process of flow may be approximated as a

constant volume process, so that the work will be:

wk zé—Ii— ft-lb/lb.

 

In

The cost of producing flow is then:

Cw 1‘ BAP wf _ cents/hour

7o A778)(3413)

where:

B -cost of electricity, cents per kilowatt-hour

\
IWf flow rate, pounds per hour

overall fan efficiency
0

bllt: Wf :60 Q/
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Thus the annual work cost is:

8760 BF

“Wk ‘ 313 77 7"“ 6% P

(0.2)(4)1-8 1.6/0.8/1 0.2 Q2.8 (8760)

ch (60)1.2(77)l.8 (34.3)(778)170 94-8 cents/year
 

where:

Fuzzuse factor, fraction of time system is in use.

Expressing diameter in inches, and flow rate as Q/lOOO, a

number of more convenient magnitude:

: 4.422 x 106 Bpufl (9.9/4, 0.2 Le

(Q/lOOO)2’9 cents/year
Wk 70 (14.8

C
 

The total cost of owning and Operating the duct is:

4.422x106 BFu /0.8/,o.2 Le

77 O d&.8

Minimizing cost with respect to diameter, in accordance with

_ AL7Td

 (Q/lOOO)2'8 cents/year

the methods discussed in Chapter II:

dCT ALTT 2.123 x 107 BFuPO'B/‘ma L. w 2 8

15‘0: 12 770 (153 (41/1000)
 

 

d5-8= 8.106x107 BFuPO‘BfiO'e Le (Q/1000)2'8

A720 ('17)

The group of factors:

8.106 x 107 /0'8/”°°2

is a function of operating conditions only, and primarily

of temperature only at low pressures. These may be combined

as ¢(t)' so that the equation becomes:

d5'8 = 4%) B F11 (Le) (c/1000)2°8 

p
.

’70
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The factor ¢(t) is shown in Table 4-3 for various

temperatures at atmospheric pressure.

The cost factor A should include cost of insulation,

since the relative cost of heat loss for various size ducts

has not been previously considered. As an approximation,

a large duct may be treated as a flat surface for purposes

of estimating the economic insulation thickness.

For example, consider a duct which is to carry 3000

cubic feet per minute of air at 60°F. in a room at 80°F.

Using mineral wool, the economic thickness is approximately:

x=o,2 (8760 13 0.2 20 - 0.2

7 J (120!0'0" ;:(0L.0"'2‘)‘§'_125 “311,5

r l .19“

 

The same costs were used as in the example of Chapter 111(3).

Thus the thickness of insulation used would probably be

1 inch. The cost per square foot of duct surface would thus

be increased by approximately l¢ per year over metal and

fabricating costs.

The approximate cost of metal and fabrication is 2¢ per

year per square foot, so the total cost factor A will be

approximately 3¢ per year per square foot. Using B==2¢ per

kilowatt-hour, Fh==0.7, and.'?fl-O.3, the solution for straight

duct (£3 = 1) is:

L d- 26.78 inches.

Figure 4-4 shows the effect of diameter upon total

cost for the example.ch0sen. It should be noted that the

curve is quite flat for about three inches of diameter, but



Table 4—3

VARIATION OF ¢(t) WITH TEMPERATURE

 

(3F) (lb/ff—hr) (lb/id) ¢ (t)

40 0.043 0.0793 5.688 x 106

60 0.044 0.0765 5.540 x "

80 0.045 0.0734 5.395 x "

100 0.046 0.0708 5.265 x "

120 0.047 0.0684 5.144 x "

140 0.044 0.0661 5.047 x "

160 0.050 0.0640 4.948 x "

180 0.051 0.0620 4.853 x "

200 0.052 0.0601 4.735 x "
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Variation of cost with duct diameter

FIGURE 4-4
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increases above and below these values rather rapidly. Thus,

the choice of diameter is rather critical. A choice two

inches on either side of the economic diameter will result

in less than four per cent increase in total cost, while a

choice four inches on either side results in approximately

ten per cent increase in total cost.

Figure 4-5 shows the solution of the previous example.

This offers the general solution for pressures not differing

appreciably from atmospheric. 4

There are many other mechanical systems which may be

treated in the manner shown in this chapter, but their

presentation would be a repetition of similar procedures.

If the equation for total cost can be reduced to a pair of

functions of one variable, the methods illustrated should

serve to lead to a general graphical solution.
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Chapter V. Simple Graphical Solutions with Incremental

Variable - Pipe Sizing

Selection of pipe for minimum cost operation does not

differ essentially from selection of air duct size, except

that pipes are available only in standard incremental sizes.

Some difficulty is encountered in expressing the cost

of pipe as a function of diameter. However, a good

approximation may be made by assuming that the cost may be

expressed as "A" cents per foot per inch in diameter per year.

As before, the cost is the sum of the owning costs and

Operating costs. The owning cost is:

Op: ALd cents/year

The operating cost is the cost of forcing the fluid through

the pipe. The pressure drop due to friction may be expressed

as:

A 1P= fL. / V2 #/ft2

2613

where:

f = friction factor

L = equivalent length, ft.

P.- density, lb/ft3

V =velocity, ft/sec.

D =diameter, ft.

The work required, since the change in fluid volume is small,

is very nearly:

wk g A? — 1%; ft-lb/lb
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The friction factor, f, may be approximated, as in the

case of ducts, by:

a

' (Rab

so that the work is:

b 2-b .
- a1! LV __

"k - agnpbwsooyb/b ft #/#

In most cases, the work is done directly or indirectly

by electric motors, so that the work cost may be related to

electric costs. On a yearly basis, the work cost is:

(8760) B Pu wfflb Le v2"b

CWK‘ . b 17b b
(341J)(778)(2s)(36oo) 7°12 /’

 

where :

B selectric costs, ¢/kw-hr.

Fa: use factor, fraction of time system is in use.

Wf - weight of flow, pounds/hr.

o : overall pumping efficiency

The velocity is related to the weight of flow, flow

area and density by:

2

Wf 1/AV: ff DV 

 

4W 4w
V: ____2f ft/hr - 1'

fVD ' /fi62(3600) ft/sec

._ -b
Wk‘ (8760) a s Fu wffl'b L,(4)2 ‘3 wf2

(3600)2(3413)(778)(28)7o DMD/27,24: D4-2b
 

:. (8760)(4)2‘b(12)5‘b amen/(b L wf3'b

(3600)2(3413)(778)(zgme-b 70/2 <15“D
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In order to determine the value of a and b, the charts

on pages 30 and 31 of Thermodynamics of Fluid Flow, by

Newman Hall, Prentice Hall, New York, 1951, were used, as

well as other references. The values will be discussed for

each case.

The total cost, in cents per year, is as follows:

m + (8760)(4)2'b(12) 5"basrugb L,wf3"b

2 2-b ' 2 S—b

(3600) (3413)(778)(2s)7T 70/ a

Minimizing, with respect to diameter:

ct.
 

 

(L°t}AL_ (5-b)(8760)(4)2-b aBFuflbLe wa-b(12,5;b

(3600)2(3413)(77g)77-2-
b 70/2 d 6—}:

M Q; = (5-b)(8750)(4)2'b(12)5'baBF
u’qu°wf3-b

(3600)2(3413)(778)(25)(77)2-b
/2 L (12.522

This may be written:

 

3-b

¢(EE) BFu wf Equation 5-1

L —' ‘73
d T

h 3

w m (amazeomf'b (12)5"°/(‘°

(8600)2 (3413) (778) (25) 7r 2"? 2

Note thati¢ is a constant times a factor which is a function

of the operating conditions only, and may be evaluated with

respect to temperature and pressure.

This equation is valid for all systems involving only

direct work which may be chargeable to electric power, or

fuel cost, and in which the work may be accurately approximated

,4?

as 73—3 Special cases applying this general equation, as



54

well amz<3ther situations will be considered in the remainder

of this chapter.

(b). Water Piping

Since steel pipe is used extensively for water service,

the ikurtors a and b may be approximated as 0.185 and 0.23

respectively. The general equation may be applied, since

'this 1J3 a simple problem of balancing pumping costs against

pipe costs. Thus: .

4, _lawnsvso)(4)1'7711s24~77<ammo-23

'(aeoo)2(3413><77s)(64.4) 1-77

Jig; (7.526 x 10"?)

The general equation (S-l) becomes:

2.77
A(12.885=¢ BFu wf (.112)

L7? 2 .885
d

Figure 5-1 shows the solution plot for this equation.

Approximate values of "A" are shown as a curve on the pipe

cost scale. It should be treated as an approximation

only, since the values of cost for a given diameter vary

from locality to locality and year to year. In addition,

variation of the number of fittings for a given length will

cause a variation in the unit cost. One method of approximation

which yields reasonable results is to assume that the cost

of fittings varies directly as the number of equivalent feet

for pressure loss calculations. This assumption can be

shown to be fairly accurate for an average number of fittings.

The result of this assumption is to cause the ratio Le/L to

be equal to unity.
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The value of "A" can, thus, be estimated with good

accuracy, by calculating the total cost of fittings and

pipe for an average run; adding an installation cost; and

dividing by diameter in inches and by the expected life in

years.

Table 5-1 shows the calculation of 47with temperature,

at atmospheric pressure. Since there is only a negligible

change in viscosity and density for liquid water under the

influence of higher pressures, a liberal extension of the

use of this table for higher pressures is Justified.

The example shown is for a flow of‘3000 pounds per hour

of water at 40°F., with an electric cost of 2¢ per kilowatt

hour, a pump efficiency of 0.7 and a use factor of 0.9.

Figure 5-2 shows the effect upon total cost of choosing

oiiher diameters for this example with an equivalent length

of? 100 ft. Note the effect of choices smaller than the

economic size.

If the water is supplied at an initial pressure, so that

Iluuping is not required, the economic size of pipe is the

Shhallest which will pass the required weight of flow

111Lillizing the available pressure. Using the pressure drOp

e"quation:

2
AP .- fie-‘e.a": ”“2

fL v2

‘ ‘31s?— ”“2



TABLE 5-1

@(t) for Water Piping

57

“75.?” 8:32:73, (has 4"“

32 4.33 62.42 2.706 x 1610

40 3.75 62.42 2.617

50 3.17 62.38 2.522

60 2.71 62.34 2.436

70 2.37 62.27 2.368

80 2.08 62.17 2.305

90 1.85 62.11 2.247

100 1.65 61.99 2.197

110 1.49 61.94 2.157

120 1.36 61.73 2.119

130 1.24 61.54 2.089

140 1.14 61.39 2.059

150 1.04 61.20 2.027

160 0.97 61.01 2.008

170 0.91 60.79 1.994

180 0.84 60.57 1.971

190 0.79 60.35 1.957

200 0.74 60.13 1.942



T
o
t
a
l

c
o
s
t

(
c
e
n
t
s
/
y
r
.
)
 isoo I

 
  

  

 

 
   

 

 

 
 

 

 

 

  
  

 
 

 

      
 

  

 

 

 

            

ISO

l 3

i400 _.___......

IZOO 1

l

IOOO

l
800 T

i

i, /

600
//

\PL/

200

.1L .3. l. l. J.
‘3 2 4 ' 4 '2 2 22

Nominal diameter

(in.)

FIGURE 5-2

Variation of cost with diameter

 



‘where:

f :friction factor

Le=:length, equivalent

‘20: density, #/ft3

V: velocity, ft/sec

D =diameter, feet

d =diameter, inches

Using the previous approximation for the friction

factor:

AP: o.185//°-23 lag/V2

. (0.185)(12)0-23 fl0.23
Le/0.77 v1.77

245 (3500)0.23 al.23

fa flfldat3600)

: (0.185) (576)1-77(12)0-23
/9 0.23Lewf1.77

248 (3600)2 77‘ 1077/ alt-77

 

 

ft/sec

ASP
 

Thus:

c14.77= (0.185)(576)1-77(12)°-23/( 0-23L,wf1-77

24s (3600)2 rr 1'77 /4 1>

: -7 flo.23 1.. £1.77

[(3.317 x 10 ) 7—] AP

L. (W137

¢ A4,—

 

 

 

Table\512 shows the values of ¢>for various temperatures.

Figure 5—3 shows the solution of this equation. The

example shown is for 2000 pounds per hour of water at #OoF,

with an available pressure loss of 20 pounds per square inch.



TABLE 5-2

@(t) for Water Flow with Given Pressure Loss

WategF‘gemp . 4’ (t)

32 8.38 x 10-9

40 8.12

50 7.82

60 7.56

70 7.34

80 7.11

90 6.93

100 6.78

110 6.62

120 6.51

130 6.40

140 6.29

150 ' 6.18

160 6.10

170 6.03

180 5.95

190 5.88

200 5.80
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(c) Compressor Discharge Lines-Dichlorodifluoromethane.

Assuming that the effect of pressure loss in the

compressor discharge line is only to increase compressor

work, with no appreciable change in efficiency, the general

equation may be used. I

In this case, copper tubing is in fairly general use,

so that the values of a and b used in determining the average

value of the friction factor should be 0.0653 and 0.228

respectively“. For these values, the solution becomes:

. 2 ,

 

(3600)2(3413)(778)(297157727L/202-885

However, the weight of flow may be related to the tonnage of

the system by the relationship:

 

2Owf=1130rT

The equation, thus becomes:

8 255.} PT

.1772

Ad2.886 _, (255.3)2°772(4.772)(8760) (4)1~772r12)4-77fl.06531551ev 7m.

' (3600)2(3418)(778)(25) 7’1.772,L/2d2.886

01":

2.886 Le BF T2'772
M = 4’ -- J "682.6

L 77 a

4); (6.2863 x 104)

where:

I2.772 A 0.228

,4 2

Values of4are shown in Table 5-3. The solution of the

 

”nation is shown in Figure 5-4. The example shown is for

“Refrigeration and Air Conditioning, R.C. Jordan and

G.B. Priester, Prentice-Hall, New York, 1949, p. 151.
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Tem
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-20
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~40
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0
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-40

~20

20

~40

~20

20

40

~40

~20

20

40

$(t) for Discharge Lines

Suction

go
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¢(t)

1.423

1.208

1.024

8.511

7.394

1.284

1.068

8.970

7.53

6.491

1.157

9.389

7.772

6.447

5.457

1.056

8.522

7.086

5.962

5.023

9.823
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6.390
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a condensing temperature of 110°F, a suction temperature of

00F, a.system size of 2 tons, a use factor of 0.8,

B =2¢/kw~hr, 7o :. 0.8 and the curve shown for values of A.

(d) Suction Lines

In the case of suction lines, the general equation is

not applicable, since a secondary effect exists. A loss of

pressure in the suction line due to friction results in a

lower density at the intake of the compressor. Thus, the

speed of the compressor must be increased in order to

restore the capacity to that of a system with no loss of

pressure in the Suction line. This results in an increase

in friction losses in the moving parts of the compressor.

If it may be assumed, with small changes in speed, that

the volumetric efficiency is essentially constant, then:

52.8.;
N1 ,02

where:

N :speed, revolutions per minute

,0: density, pounds per cubic foot

Since the pressure loss is essentially throttling

(constant enthalpy), it may be treated as a constant

temperature process with the resulting relationship:

£3 38
: JP/1 1

Thus:

N2 P1 . P1



66

The friction losses in the mechanical parts of the compressor

are essentially proportional to the rotative speed. Thus:

3:2. - f3...
wfl ' P1~AP

P
Awfawi» 'Wf :Wf 1 _]'w AP

where:

 

Wf : friction work

The mechanical efficiency is defined as:

Indicated work _ Indicated work

7m '-' Total work " Indicated work+ friction

thus:

Friction work , (l-7Zm) Indicated work

(1_ ) m(tc-t)

711131

awf: (1.07m )m(tc~t ) :1“*3..ij

The total work due to pipe friction is:

ASP

“k - W770 + <1- 77m) ch-tdsfifi-

 

l (l- 7 ) m(tc~t )

AP[‘7‘78'W + 771121151 “441378

where:

?L:overall efficiency

71: isentropic efficiency

2
AP: flbflv

2gD

and

f a 0.0653
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A P— (0.0653)(L
°)/v2fl0.22

8

28D D0.228V0
.228/0.2

28(36OO)
0.228
 

 

 

 

 

 

0.0653 Le f0.772v1.772/90.228(12)1.228

: 28 (11.228 (3600) 0.228

v; E; = (2835;?)320: (576) ft/sec

AP}122Ler1.772T1..772/q0228
2

f6 4.772 #/ft

where:

r: 47/refrigeration effect (BTU/#)

Le: equivalent length, feet. '

T = tons

A :viscosity, #/ft-hr

/. density, #/rt3

Thus:

"1: : 3.122 I.1.772,qo.228 T1.7721,e 1 _,_(1'7?mm(tcjts)]

/ 84-772 778%,(21-82H771 )

The annual cost is:

; (255.3)(8760)(3.122)3Fu
r2.779490228132372L

e

(3413) / a4772

(1- 27 ) m (t ~t )

x 71'3‘—77/1: m c s

c 2 . l. 2

. 77191., 3.122 r1 77,40 228LeT 77 )

Cwk
 

 

 

The total annual cost is.
O 228

2. 772 T2 .772L Y

a . ALdX+4723”)(8760M
B..122)131=‘y1 r fl Le

3413/ d4772 J

+(1'77m) m (to~t8)

773 70/ 17(1’- 3.122 PT{7.72/40228L1.1.772 )

u.--...-

P 647 772
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Minimizing:

d0
2 2 0.22 2 .772L

3&9 .0 .AL .. [(8760H3..122)(25;.3)(4.
.7727881ur .77“fl 8T1:--.I_”€::/

3413/85772

(17m) m (t ~ts)

[767 e W
 

71[1,1_3122 r1. 772/90..2281‘3 T1. 772 ]

[(141772

+ (8760)(3.122)(25F
,3)Bpur2.772Le 12373:]

 
 

X [fd3.772£Pl/p£4.772_3.123 I.1.772/’O'228T1'772L.](1-7m)m(tc-1=s)

_[_1-77m) m (tc~ts)/d4772]P1 /d3772(4.772)

”II/P1 d4.772 _ 3122 I,1.“772/90.228 T1. 772 Le] 2

 

 

o = AL ..[(8760)(3.122)(256.3)(4.772)sFu r2°772L°T20772 ]

(3413) /c15-772

x [.18__ * <1-7/m) m (to-ts) _ (4.7721(21- P)(1-7m)m(tc~ts)

7‘ P1 ~21? (Pl-AP)2

 
 

 

(4.772)(1-77m) m (to-47.5)]

(P1~ A P)2

 

Ad2°885 =[(8750)(3.122)(253.3)(4.772)BFuL
, r2-772T2.772j

3413 fld2-886

#2187}? ,_ (4.772)(1->/m) m (to-t8) 21]

(P1 “A102
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If AP is small compared to P1:

Ad2.886:[(8760)(3.1.2.2)(255.3)(4.'7"72)13~5~ul,e r2.772T2.772]

3413 /d2-885

 

(4.772>(1 -77 ) m (t-t8)
X :11[73757374 P ]

AC12.886 = $513er.2) T2.772

d2.886

where: ¢:[l§7602(3.1221(2§§./3)(4.7.721/02281'2'772]

1 4.772 (1- ) (t -t )
X[77W+ an1 m c 8/

2762/(400228 r. 20772 __ +(4.772)(1-7m )m(tcc-ts)-/

: —WW 1/4 77 79/' P1

Note that ¢ is a function only of the operating

 

 

conditions, and is, thus, a parameter rather than a variable.

Table 5-4 shows this parameter for various suction and

condensing temperatures.

Figure 5-5 shows the graphical solution of the equation.

The example is for a 5 ton system Operating at 100°F condensing

and.40°F suction, with an electric cost of 2¢/KW-hr., a use

factor of 0.8, a compression efficiency of 0.8 and a ratio

of length to equivalent length of 0.8. The choice would be

1% inch nominal tubing.

Note the increased effect of Operating conditions on

the economic line size, compared to that upon the discharge

line selection.



TABLE 5-4

4} (t) for Suction Lines

Suction Condensing (p )

Tom . Tem . (t

(°F7 (°F§

-40 80 3.288

90 3.950

100 4.721

110 5.776

120 6.970

130 8.704

-20 80 0.938

90 1.123

100 1.345

110 1.623

120 1.967

130 2.390

0 80 0.303

90 0.362

100 0.434

110 0.523

120 0.628

130 0.779

20 80 0.0986

90 0.119

100 0.146

110 0.172

120 0.207

130 0.252

40 80 0.0372

90 0.0449

100 0.0542

110 0.0655

120 0.0791

130 0.0961

70



 

 

 

Suction line sizing

FIGURE 5—5
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(e) Liquid Line SiZing-Dichlorodifluoromethane

Here, the problem is similar to that of service water

piping, where a given pressure may be dissipated. In this

case, the amount of subcooling obtained in the condenser or

receiver, represents the maximum pressure differential which

may be dissipated without obtaining flashing in the expansion

valve.

The pressure equivalent of subcooling depends upon the

condensing temperature and the number of degrees of subcooling.

Figure 5-6 shows this relationship in terms of feet of head.

If a vertical rise exists between the condenser and the expansion

valve, this must be subtracted from the equivalent rise to

give the not head available for pipe friction loss.

The relationship between subcooling and head is

sufficiently near linear that only small error is obtained

by assuming linearity, that is:

AH = A Atsub

at any given condensing temperature.

 

 

Also:

7 ' /2 4.772

d

so that:

Ali/2

1.772
: ¢ Lo '1'

 

AH
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The values of (Dfor various operating conditions are shown

in Table 5-5.

Figure 5-7 shows the solution of the equation.

It should be noted that undersizing of the line will

produce flashing at the expansion valve. Thus it is

advisable to choose the size above the solution if the

solution falls between two nominal sizes.



TABLE 5-5

4m.) for Liquid Lines

Suction Condensing

Tem . Tem . @(t)

(0F (0F

-40 80 4.045 x 10-4

90 4.523

100 4.692

110 4.895

120 5.125

-20 80 3.731 x 10'4

90 4.154

100 4.291

110 4.458

120 4.638

130 6.044

0 80 3.463 x 10-4

90 3.842

100 3.945

110 4.091

120 4.219

130 5.620

20 80 3.210 x 10-4

90 3.550

100 3.639

110 3.749

120 3.863

130 4.972

40 80 2.999 x 10'4

90 3.307

100 3.380

110 3.469

120 3.562

130 4.643

75



TABLE 5-5

$(t) for Liquid Lines

Suction Condensing

Tem . Tem . (Wt)

(077 (OF

—40 80 4.046 x 10-4

90 4.523

100 4.692

110 4.895

120 5.125

130 6.826

—20 80 3.731 x 10'4

90 4.154

100 4.291

110 4.458

120 4.638

130 6.044

0 80 3.463 x 10-4

90 3.842

100 3.945

110 4.091

120 4.219

130 5.620

20 80 3.210 x 10-4

90 3.550

100 3.639

110 3.749

120 3.863

130 4.972

40 80 2.999 x 10-4

90 3.307

100 3.380

110 3.469

120 3.562

130 4.643

75
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Chapter VI: Tubular Heat Exchanger

The determination of the length, diameter, and number

of tubes for a tubular heat exchanger is somewhat more

complex than problems previously discussed, particularly

from the difficulty in assessing owning costs.

Assume that the cost of the shell and tubing can be

expressed as:

01 :AlNLd

and that the cost of making the end connections can be

expressed as:

02==A2N

The cost of friction is the same as in previous piping

problems, assuming cOpper tubing, except that the number of

tubes is not necessarily one.

As before (see Pages 51-2):

"k =%‘-%3 ft-lb/lb

: I‘wav2

2gD

(0.0653) wav2

(33,0.228 26D

(0.0653)/’r0'228 L wt. vii-77?-

72% (3600)0.2287f1.772/o0.228 131.2be

but v = W: __ Wf 4

‘ 3500/“ " 3600/N n02

ft-lb/hr

 

 

 

Substituting this value of v

; (0,0553y/40.228 L Wf2'772 (4)1.772

(28)(3600)27/ 1-772/2 “1.772 D4.772

 "k

77
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Thus:

=(0.0653)(4)1'772(8760)(l2)4.772/40.228wa2.772

7] (28)(3600)2(3413)(778)771-775/2 1715772 84-772

For the sake of generality, let:

 

 

L

cwk ‘91 d4.772N1.772

Thus, the total cost may be expressed as:

c e A NLd1+A Natl» L

t 1 2 1 d4.772N1.772 (6-1)

Two constraints apply to the system. First, all of

the variables must have values greater than zero. Second,

the heat balance must be satisfied. writing the heat balance:

- : UNIVdL
chAt - UAAtm T- Atm (6-2)

where:

Ni. 3 weight of flow, #/hr.

0 = specific heat, BTU/lb-o

OFA t = temperature change of fluid,

U: overall coefficient of heat transfer, BTU/hr-ft2-0F

zitmz-logarithmic mean temperature difference, OF.

It is assumed that the ratio U/hi, where 111 is the

heat transfer coefficient at the interior surface of the

tubes, can be approximated from knowledge of similar systems,

and U is the overall coefficient, defined as:

U:= 1
resistances

U can then be expressed in terms of N, L, and d as follows:

0. h1 = 1%; 0.023%[R°]0.8[P1j0.4

f
l
“



where:

%%¥?, dimensionless

—§Z , dimensionless

008 UO8/O.8 004'fioe4

U :: LL 0.023) [E f3 V j C

.6 0.8 0.4 0.8

t Ml l"-—-—lD0.2

where:

Re: Reynolds Number

0

Pr"Prandt1 Number

Thus:

  

K; conductivity of fluid, BTU/hr-ftB—OF/ft

c :: specific heat, BTU/lb-OF

fl: density, 1b/rt3

v = velocity, ft/hr

,4/:viscosity, lb/ft-hr

D : diameter, ft.

 

but:

My: wf 4 _ 7714576)

/A '7/Ner‘r’5 .fo/‘dz

and:

u.- 3%.. (0.03)(12,0.2(4)0.800
.4K0.6wfo.8

1 (3600)0-8(25)°-8770-8
N0-8d1.8/90.4

Substituting for U in Equation 6-2 and simplifying:

 

N0.2 L

(10.8 : ¢2

This is the form of the second constraint.

Using Lagrange's method, as given in Chapter II:

at“) _ A m + _ 1.772 01L 0.2 XL
- 1 Ag 4’ ::

(3N le N237214.772 No.8do.8 O
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(1)11172772L d5-776 +12rte-77%“7721.772¢lL 0. 23ml.“9721,13 972.0

:A Nd no. 2

)g(-%)N1d 15+W2
+W = 0

(3d,) N1L:A1NL' 4772 61; 0.8 {mo-2

(3) A1172'772d5'772 .. 4.772 451 .. 0,8 XN1-97283-972 . 0

These three equations, and the second constraint:

NO'2L é

d0.8 :

form a system of four simultaneous equations in N, L, d, and

b’ . Combining (2) and (3):

71* {N1.972d3.972 = 4.772% _ 0.8N1.972d3.972

1.8 X N1°972d3°772 = -5.772 4’1

X- -3.267¢1

"N1.972:3}972
 

Substituting this value in (2):

2.772 5.772 -A117 (1 + 431 - 3.267 ¢1 -

N2'772d5'772 : 2.267 91

A1

Substituting this expression in (1):

2.267 ¢ L +2.267 414
1 2 .. 1.772 L + 0.2) -3.267 )L: 0
 

-0.158 (film-2.267 4’1 42

 

d Al '7 0

Ld - —
0.153 A1 ' 14348 3'1“
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Combining this equation, and the constraint:

 

 

 

 

 

 

 

  

 

 

(10.8

L : ¢2 N002

Ld= 14.348 32. ¢ 9.1;?

A1 ' 2 110-2

140-2: ¢2A1 (11.8

(14.348)A2

N: ¢2Al 5 d9

174.348 A2

But:

N2.772d5.772 : 2.267 £21

A1

(15.772: 2.267 81

A1N2‘772

.- 2-2574>1 14.348 A2 ”'86 1

Al 4929-1 d24.948

<130.72 : 2.267% 14.348 A2 13-86

A1 ¢2A1

0.0 26 0.

d _, (2-257) 3 451 0326 19.34812 0-4512

A10.0326 2A1

0.0326 0.4512
- 3.416 $11 12

0.4838 0.4512

A1 4’2

L _, 14.348 12

Ald

and

N :
 

(¢2Al ) 5 (19

14.348 A2

5 5

1.650 x 10-5 ¢2 A1 d9

A25
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These are left in this form by intent, since the

solution for d will not necessarily yield a nominal diameter.

Thus, the nominal diameter nearest the ideal should be used

in the equations for L and N.

In order to examine these results, consider as an example

the following:

Water at an average temperature of 60°F.

Wt =3600 lb/hr.

At. _ 1 7: 0.8

Atm . F11: 0.8

A1. 2(tube cost) a 13.72¢/in-ft-year

A2: 1 cent/tube-year

hi

- D -1

U -2 ft

B = 2¢/Kw-hr

From the previous chapter:

(pl;- .0653 (8760)(4)1-772(12)4-772 BFu fi0.228wf2.772

(3600)2 (3413)(778)(2g)77‘1o77277/02

fi0.228 Wf2.772

 

3.652 x 10-8 B Eu
 

 

 

We
and

(0.023)(12)°-2 (4)0-8 x0-6 {1— Atm

0.6 0.4

‘ 1553 0 {3‘6 “1"” Bi 4.1"».
K ’ U At

m
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For water at 60°F:

j... 2.71 lb/ft-hr

/= 64.34 1b/rt3

K = 0.344 BTU/hr-ftZ-oF/ft

c = 1.000 BTU/lb-oF

For these values:

(1)1. 0.160

$2 = 45.43

d g(3.416)(0.16O)O'0326(1)O'4512

(13.72)°-4838 (45.43)°-‘*512

= 0.1804 inches

This is smaller than commercially available 1/8 inch

nominal copper tubing, which has, for type K, an inside

diameter of 0.185 inches. If 1/8 inch were used:

_ 14. 48 1 -
L - ET3T7§7%éT%887_ - 5.65} ft.

m 2 (1.65 x 10’5)(g5.43)5(13.72)5 (0,186)9

(1)

and

42 tubesH

Assuming the same conditions, with

W: = 360,000 lb/hr

01: 5.589 x 104

¢ 2 -‘ 114.1

d.: 13.416)(8.559 x 10510.0326 (120.4512

(13.72)0-4838 (114,1)0.4512

; 0.1805"



This is almost identical to the previous result. Thus

L would have the same value, and:

5
114.1 1 . 2 9

(109.1)5 (0.185)9

4,120 tubes

A check of Reynold's numbers indicates, for the first

case: Re==2644, and for the second case: Re: 2693. For

both cases, the flow should be laminar, rendering the use

of the McAdams equation for heat transfer invalid. In

addition, there has been little study of heat transfer in

the diameter range encountered here, so that the validity

may also be challenged on that count.

The assumption was made that'Ei may be approximated in

liquid-liquid heat exchangers, using larger tubes. In the

case of liquid-gas the ratio would be of the order of 100.

The effect of a change to this ratio would be to reduce d to

approximately one seventh of the values found for liquid-

1iquid for the same rate of flow. The number of tubes would

'be increased by a factor of approximately (1)9 (50)5, or

'78. The length would be increased by about77 to l.

Doubt as to the validity of the assumption of Bi

:notwithstanding, the trend of solutions is obviouslg

toward a large number of very small tubes. Since the

ZflPoblem of support of such tubes is a difficult one, the

(Knnpact heat exchanger composed of expanded and/or corrugated



plates appears to offer a step in the right direction.

Keys and London* have performed studies of compact

exchangers, but the tubes used were fairly large compared to

the solutions found in the examples previously offered in

this chapter.

It is obvious that, until a general equation for

corrective heat transfer is evolved, there can be no general

solution for the economic configuration of heat exchangers.

In each category, the empirical equation which most nearly

fits the situation should be used to evaluate the expression:

0 = %-1- hi(N,L,d)

The solution for a minimum cost can then be carried out by

the methods of this chapter.

 

* Compact Heat Exchangers, W.M. Keys and A.L. London,

National Press, Palo Alto, Calif., 1955.



Chapter VIIi Summary

The preceeding work has opened many opportunities for

further study and re-examination of proper choices in such

components as ducts, piping, etc. The methods developed

are not limited to the problems discussed, but have

widespread application in the field of engineering economics.

It is hoped that the methods are so presented as to enable

engineers to make use of them in their own applications.

A summary of the results is included in this chapter.

(a) Effect of choice other than economic size.

The general behavior of the total cost with the primary

variable is easy to deduce from the cost equation in the

case of the single variable.

In the case of condenser water, the variable appears

as (st and (£%—), so that the variation of cost for choices

above and below the optimum will be lines with equal slopes

on logarithmic paper. Thus the minimum would not be

expected to be sensitive to changes in the variable.

Figure 4-3 shows a typical cost curve for this type

equation.

The form of the cost equation for planar insulation is

of the same form in the variable,thickness, so similar

results would be expected. However, for cylindrical insulation,

the first term involves the variable to the second power

and the second term involves the first power and the

logarithm. The generalized equation for the variable part

86
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of the cost is:

CTV:¢1 (102 +¢2 do

C d 1n d

0 o

 

The latter term varies approximately as the reciprocal

logarithm, so that it would not be sensitive. In this case,

oversizing would be more expensive than undersizing, since

the first term is in the square of the variable.

Flow problems may be reduced to an equation of the

type:

CT =¢ld 1'43...—

<14.

Oversizing will approach a first power increase but

undersizing will approach approximately a 4.8 power, or very

steep, increase. Figure 5-2 shows a typical variation with

an equation of this type.

With a four-dimensional equation such as that for a heat

exchanger, it is virtually impossible to determine by

inspection the effect of varying any one of the variables, since,

in this case, they are not independent. It would be necessary to

investigate each by successive trials.

(b) Comparison with published tables.

This is not meant to be a reflection on any individual

or individuals, since the tables to which referred are of

unknown origin. Many tables have been reproduced so often

as to lose all reference to their origin.
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Each of the situations discussed previously will be

compared to available data.

(1) Insulation.

No tables have been encountered covering economic

thickness of insulation. A nomograph for the solution

of economic pipe insulation was found *. The form of

equation used is unknown, and comparisons have not

been made.

(2) Air duet sizing.

There are two possible bases of comparison:

pressure loss and velocity.

For the parameters used in the example on Figure

4-4, the following holds:

Diameter Velocit Friction loss

CFM (inches) (ft/min.1 (in.water/100 ft)

300 9.5 ' 608 0.13

3000 27 754 0.028

10000 53 553 0.008

These velocities are within the ranges recommended for

residences.**

(5) Condenser Water.

No tables or charts comparable to that deve10ped

have been encountered. However, the equation used is

similar to that of Jordan and Priester,*** and gives

comparable results.

 

*Fundamentals of Power Plant Engineering, George E. Hemp,

National Press, Millbrae,Calif.. 1949, p. 197

 

** ASHAE Guide, 1956, p. 747 and 735.

*** Refrigeration and Air ConditiOning, R. C. Jordan and G. B.

Priester, Prentice-Hall, New York, 1948, P 244-5.
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(4) Water Piping.

Perry* gives a nomograph for generalized flow,

derived from a more simplified equation. The results

are near those obtained from Figure 5-1, but not so

accurate.

(5) Discharge Lines.

Using Figure 5-4, and the parameters used in the

example shown, the following is a comparison, for a

condensing temperature of JOSOF, with Table A.26, Jordan

and Priester**:

Line Size Tons Capacity Tons Capacity

(Nominal (Fig. 5-4) (Jordan & Priester)

type K)

3/8 103 "‘

1/2 2.2 1.43

3/4 5.1 2.97

l 8.0 5.05

1 1/4 14.9 7.72

1 1/2 22 10.92

2 39 19.2

2 1/2 61 32.2

3 93 51.5

3 1/2 135 72.0

4 180 95.8

The higher capacity shown from Figure 5-4 may be

partially explained by the fact that the additional

work imposed upon the compressor is such a small fraction

 

3 Chemical—Engineers Handbogg, John H. Perry, McGraw~Hill,

fiEfi"15fE,.195o, pp 384-6.

**,§g§riggration and gig Conditioning, R. C. Jordan and

G.B. Priester, Prentice—Hall, New Ybrk, 1943, p. 491.
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of the total work as to be of minor importance compared

to the cost of the tubing.

The increased cost of pipe compared to the

relatively stable cost of electricity may also be one

contributing factor to the increase in apparent capacity.

It should be noted that the cost of electricity

used was 2¢/Kw;hr. If electricity is more costly, these

capacity values will be reduced, and vice versa.

(6) Suction Lines.

Comparing the results of Figure 5-5 with the

same table:

Tube Size Tons Capacity Pressure drop per

(nominal) (105° Condensing 100 ft.(psi) for

40° Suction) comparable capacity,

. Jordan a Priester

3/8 0.27 2

1/2 0.45 2

3/4 1.0 2

l 1.65 1

1 1/4 3.0 0.6

1 1/2 4.4 0.8

2 7.7 0.7

2 1/2 13 0.6

3 18 <0.5

3 1/2 26 <o.5

4 36 0.6

Thus, the results are comparable. However, for low

suction temperatures, the secondary effect considered

herein leads to larger sizes. Table 12-5 of Jordan

and Priester give factors by which to multiply capacities

at + 40° suction to correct for other suction temperatures.
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An approximate comparison is shown below:

ts

(0F) f (Fig. 5-5) f (Jordan & Priester)

40 1.00 1.00

20 0.68 0.86

o 0.5 0.74

-20 0.26 0.56

-40 0.16 --

Even though the cost of pipe has increased,

consideration of the secondary effect tends to lead to

larger pipe sizes.

(7) Liquid Lines.

Since this solution is not an economic one, comparison

is only useful to verify validity.

(8) Heat Exchangers.

No data were encountered with which to compare results.

It is important to note that "rules of thumb" should be

avoided in choosing piping or tubing sizes. The solutions

for economic size are so readily carried out that there

should be no good reason for developing any such rules.

(0) Future Work.

In order to utilize this presentation effectively,

accurate costs are required. More consideration should be

given to this factor than most organizations expend.

The problems associated with flow seem to have been

well explored, so that no further work appears necessary in

this field.
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The problem of heat exchange has by no means been

solved, but only an approach to the problem offered. The

results of this preliminary study tend to indicate a

necessity for considerable study in the realm of very small

passages, tubular and otherwise, both with respect to

friction and heat exchange.

In addition to the applications considered in this

treatise, there are many applications of the graphical

methods to solution of equations, as well as the methods of

minimizing equations, to other fields of interest. It is

hOped that these methods, and their presentation herein,

will prove valuable to engineer: in all fields, as well as

lead to better design for economy in many systems.
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