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Analytical and Graphical Engineering
Economics as applied to the Cormpression
Refrigeration System and Allied Components

By George E."3utton

ABSTRACT

The methods currently available to engineers for selection of
mechanical equipment such as air ducts, refrigeretion piping, etc,
are limited, generally, to published taoles of vague origin,

A number of equations are developed relating size to operating
and owning costs, These are minimized to produce the optimum size
for minimum annual cost.

A systematic approach to graphical solution of equations is
developed in order to generalize the solutions at cost equations,

linimizing of equations in one, two, and three variaoles is
discussed,

Applications of these methods are made to the following: Insulation;
Condenser Vater Rate; Water piping; Discharge, Suction and Liquid ILines;
Air Ducts; and Tubular Heat Exchangers.

The results indicate that the use of generalized tables for pipe
sizing, etc. should be discouraged, and that graphical solutions should
be used whenever possible in order to produce the most economic selection.

The study of tuobular heat exchangers indicates a trend toward a
large nurwer of very small tuoes, with Reynolds' Numvers in the transition
range opetween laminar and turoulent flow, As a consequence, more study

is needed of the character of {low and neat transfer in such small tubes.

P \l é;%
U\)}‘c" Mﬂf ) ' g A ’g--

MaJor Professor




Copyright @ 1957
George E. Sutton



Acknowledgzements

The author wishes to express his gratitude for the
capaole leadership and ingenuity exercised by Professor
Donald J. Renwick, and for the apt guidance of the
committee: Dre. James T, Anderson, Professor L. C. Price,
Dr, Co Ps Wells and Dr, }ax Rocers,
Cratitude must also be expressed to the Covernment of
the United States for the financial aid through the G, I,
Bill of Rights (PL 550) and the Naval Air Reserve, as well
as to Michipan State University and the Department of }echanical
Fngineering for part time employment, all of which made the
pursuit of the degree financially possible,
It would oe impossible to enumerate all those who, currently,
as vell as in years past, have, throurh their direct aid or

forbearance, made this work possible,



Analytical and

Graphlical Engineering Economic Analysis

as Applied to the Compression Refrigeration System

PAGE

1 Chapter I

17 II
23 II1I

29 IV

50 \'f

and Allied Components

by
George E.” Sutton

CONTENTS

Introduction
Graphical Techniques
Minimizing of Equations
Equations not Sultable for Graphical
Solutions

(a) Economic Thickness of Insulation,

Walls
(b) Economic Thickness of Insulation,
Plpe

Simple Graphicel Solutions

(a) Economic Condenser Water Rate

(b) Air Duct Sizing
Sinple Grarhical Solutions with Incremental
Varlable

(a) General Pipe Sizing

(b) Water Fiping

(c) Discharge Lines

(d) Suction Lines

(e) Liquid Lines



Contents, Page 2.

PAGE CONTENTS
76 Chapter VI Equations with Three Varilables
(2) Simple Heat Exchangers
85 VII Summary
(e) Effect of Choice Other Than Economic
(b) Comparison with Published Tables
(c) Future Work
93 Bibliography



Page
33

38
47
57
60
63
70
75

TABLES
Title

Variation of Refrigeration Effect
with Operating Conditions

Ho/m for various Operating Conditions
®(t) for air

¢(t) for Water Piping

¢(t) for Flow with Given Prescure Loss
¢(t) for Discharge Lines

$(t) for Suction Lines

$(t) for Liquid Lines



Page

12

13
15

34

39

41

48

50

FIGURES

1-1

1-3

1-4

1-5

1-6
1-7

4-2

4-3

4o4

45

Title

Solutlon of the Equation
£1(d) =£5(d)

Solution of the Equation
a= 2B
c

Solution of the Equation
ab
d *cd

Solution of the Equation

. ab
cd

Solution of the Equation
2

a ? s al.5

cd™*

Addlition of Functions

Solution of the Ecuation

b
%— +e =cd

Refrigeration Effect Versus
Operation Conditions

Economic Condenser Water
Temperature Rise-

Variation of Operating Cost with
Condenser Water Temperature Rise

Variation of Cost with Diameter -
Ducts

Alr Duct Sizing



Figures (Cont)
Page
55
58
61

64
71
73
76

5«1
5«2
5=3

S5-4
5-5
5-6
5=7

Title
Economic Water Pipe Size
Variation of Cost with Diameter

Water Pipe for Specified
Pressure Loss

Discharge Line Sizing

Suction Line Sizing

Head Equivalent of Subcooling
Liquid Line Sizing



Introduction

The sizling and selection of mechanical equipment has
long been based upon experilence and Jjudgement, nelther of
which is an ecslly obtaincble conmodity. Practice hes
shown the minimum size consistent with effective operation.
Admittedly, this practice, based upon experience, yields
the lowest first cost consistent with operable equipment.

It can be shown, however, that, in many cases, the operating
cost i1s so high that the total owning and operating ocost of
the equipment over a period of years is far greater than if
the economic size were chosen by analytical means.

There 1s another strong reason for examining critically
present methods of selectlion. Many references show
tabulated sizes, particularly in the case of pipe, which will
yield, according to previous practice, the economic system.
These data are often based upon prices of some years past.

The cost of electrlic power has remalned essentially
constant over many years, while material and instzllation
costs have practically tripled since 1926. These facts
would tend to indicate that, in many cases, smaller sizes
than previously selected are now Justifled economically.

The technique of minimizing cost by differentiation of
a total cost eguation 1s beset by two disadvantages. First,
the equatlon representing totzal cost must be derived. Such
an equation may, however, be derived approximately, if not
exactly, for most applications by use of some ingenuity and

i
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reasonable approximations,

The second dlsadvantege lies 1n the usual apprehension
of engineers toward higher mathematics. This may be due,
largely, to the lack of stress placed upon practical aspects
of mathematics in scholastic courses 2nd in the practice of
engineering,

It is the aim of this treatise to provide a guide to
methods of setting up the ecuatlions of total cost, and then
show how to solve for the economic sizes or quantities,
Although the title indicates, correctly, that the apparatus
treated relate to the compression refrigeration system, the
methods develored may be aprlied with egual ease to many
other engineering systems,

In many cases, assumptions are made necessary., These
will be clearly indicated as such. The primary value of
the literature search in connectlion with this work has been
in providing bases for these necessary assumptlons.

It 1s believed that graphical solutions, because of
their simplicity and generality, offer a valuable
contribution. Graphlicel techniques will be discussed in

detall prior to discussion of speciflic equatlons.,



Chapter I Graphical Technigues

A graph, as used in this work, 1s defined as a plot of
the behavior of some function with variatlon of a primary
variable. The most comron graphs encountered in engineering
wvork are linear scale, seml-logarithmic scale, and log-log
scale. Nomographs and alignment charts are not graphs as
herein defined, but, more properly, form another class of
charts.

Linear scales and semi-logarithmic scales have the
primary disadvantage thot few functions plot as straight
lines on them. Log-log scale graphs are advantageous in
that any single-termed functlion, regardless of the number
of multiplying and dividing parameters contained and the
powers to which the parameters or variables are ralsed,
will plot as a straight line, 1In addition, multiplication
and division may be readily performed., Addition and
subtraction of functions may elso be performed, but less
readily.

Log~log graphs are simply plots on special paper, having
a logarithmic scale on both abscissa and ordinate. The
simplicity encountered with base ten logarithms will be
utilized here throughout,

A change of one cycle upward or to the right represents
a multiplication by ten, while a change of one cycle
downward or to the left produces division by ten. This

decimal characteristic allows much freedom in using such

1



graphs for calculation.
To 1llustrate the technique of solving an equation of

two single-termed functions, consider the followlng example:

ab - d2
c

where a, b, and ¢ are parameters. That 1s, they may vary
with other conditions, but are not functions of the primary
varliable, d. The eguation mey be rewritten:

ab
cd

which 1s of the form:
£1(d) = £,(d)

Thus, for given values of a, b, and c, the solution occurs

-d

when f; = f,. Figure 1l-1 shows = plot of fl(d) and f2(d)
against values of 4. Since fl is a function of 4 reilsed

to the =1 power, the slope 1s -1 and, since f2 1s a function
of d to the+ 1 power, the slope 1s+1l, The intersectlon

of the lines representing the two functions will occur at
the value of d which produces eguality of the two functions,
which is the solutlion of the equation. In this case, the
values chosen were: a, 10; b, 10; and ¢, 1; which produces

a solution d equal to 10.

In order to generalize, or to provide for other values
of a, b and ¢, the graph may be e::tended to facilitate
calculation of the term %9 s, for all values of a, b, and c
encountered in the particular problem. Let the ranges of

the parometers be chosen as follows:
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0.1 £a =10

10 £ b £ 100

1 = c £100
For these ranges of the parameters, the minimum solution
for d is 0,1 and the maximum 1s 31.5. This represents
2% cycles range for d. Thus a solution area required is
then 2% by 2% cycles. Prior to demonstration of the method
of computing the operating arez, that is, the area required
to compute the value of 2% » 1t will be necessary to examine
the operations of multiplicatlion and division in more
detall.

As previously mentloncd, multiplicatlion and division
may be performed by vertical movement, which results in
addition or subtractlon of logorithms. Flgure 1-2
demonstrates the operations involved in computing 2% .

Starting with log a, progressing dovnward, each cycle
progresced represents division by 10. Thus division by ¢
may be achleved by rprogressing dowmward to log ¢ and then
vertically to any chosen unity. The procedure is simplified
if 2ll multiplicands are crranged above a certain unity, and
all divisors arranged below the same unity as shown in
Figure 2. Further multiplication by b 1s achleved by
progres=ing upward vertlically to log b. The ecuation
representing these operatlons 1s:

ab

log a - log ¢c +1log b =1log =

Further movement along the lines of slope =1 produces
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division by 10 for ecchh cycle, Howvever, siunce the decima

is arbitrary, due to the uniformity of the cycles, the value
at the risht ordlnate of Flgure 2 may be chosen as

log Tﬁ%%ﬁﬁ? or log %E , or any other decimal value. The
only reculrement is thot the other functions in the eguation
agree 1in decimals with the first.

From observation of the operations, :n ardbitrary rule
mey be derived for determining the nuuwber of cycles,
horizontal and vertical, recuired for a given operation.
Assigning the unity scale as shown, multiplication of "a" by
1 requires n, cycles, vertical and horizontal, where n, is
the range of a in cycles. The divislon by ¢ reguires n,
cycles, horlzontal and vertical. Multiplication by b requires
no additional cycles vertically, but requires ny cycles
horizontally. It 1s obvious, then, that the space required
will be equal to the sum of the n cycles horizontally, but
only the sum of the n's for the maximum range multiplier and
maximum range divisor will be requilred vertically.

For the exczmple chosen, the requirements would be

Ng+ Np+ N = 2+ 1+ 2= 5 Horlzontal
Nyt Ny = 2+ 2= 4 Vertical
The total for the operatlon and solution becomes T3 by 6%
cycles, provided the orientzatlion i1s as shown. That 1s, if
the solution area 1is not ecllowed to overlap the operation
area, Experience will show that some overlapping may be
tolerated, thus reducing the total space reguirements,

Figure 1-3 shows the total operation and solution.
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The example shown ig for a-1, b=10, ¢ =10, This
illustrates, perhaps, the simpllst method of locating the
scale in the solution area., These values were chosen such
that the solution for d would be 1. Thus the two lines
representing the functlons must intersect at the ordinate
representing 1 a2s the value of 4. The minimum area would
be utilized if the function equal to 4 were moved to the
heavy dashed line shown, which represents an overlapping of
two cycles, The total area could thus be reduced to 53 by
5 cycles. This reduction is difficult to predict in advance
of actuzally laying out the graph, however,

A simplification may be mazde in scale location which
w1ll reduce crowding of scales. Since horizontal movement
has the same effect as vertical movement, one sczle may be
nlaced along the upper abscissa, If the parzmeter chosen is
the primary one, such as flow rate, tonnage, etc., the effect
of this parameter upon the solution becomes readily apparent.
Figure 1-4 shows the rearrangement of Figure 3 into this
pattern.

Such methods result in a graph wnich may be used to
solve the equation for all values of the parameters within
the chosen ranges. In the simplicity of such solutions lies
the major value of the system.

Solutions which reguire the use of more complex
parameters may be limplemented in egually simple ways. The
most generally encountered type involves parameters and

variables raised to powers other than unity.
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With such exponential parameters, it 1s deemed simplest
to treat the par-meter with its exponent =2s a new variable
raised to unity power. Thus if a2 were to be 2 part of the
function, a2 would be plotted on the scale, with values of
"a”inscribed so that the location of values of "a" would
automatically produce a®, Since log a2 is equal to 2 log a,
the scale length would be twice the range of "a".

If the primary variazble appears at zay other power
then unity, the solution may be handled in two ways. First,
the operation may take plazce at a slope equal to the power,
Second, the variable and its exponent may be treated in the
same vay as the parameters discussed in the previous para-
graph, whereupon the new variable 1s the variasble raised to
the approprilate power. The latter system will be used in
this treatise.

As an example of thlis technique, consider the =quation:

EEE: a’
c
which may be rewritten as:

2
acb - gl.5
cdl .5

Let the parameters have the same ranges as previously. The
required operations area will now be, using the upper scale
for "a":
Horizontal: (2)+(2)+1+2=7
Verticel: 2+1=3
The range of 43 is from (Q;l%g_é_l_‘l). - 0,001 to

2
(1011(100) =10,000 which represents values of al.5 or
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0.0315 to 100, Thus the solution will reguire 3% cycles,
The total area will be a meximum of 10% by 6% cycles,
Figure 1l1l-5 shows the graph for solution of this equation.
It has been shown that any equation consisting of two
single-termed functions may be readily handled by graphical
means., For three or more terms, the equations are somewhat

nore difficult to solve. Consider the equation:

ab _
a——-fe_Cd

The solution reguires that the sum of two functions of d

"wan

end a paraueter

-

e" be equal to another functlion of 4.
Computation of the two functions 1s readily carried out by
previously deronstrated methods. Determining the sum of
function of d and the parameter e, which produces another
function of d, is not so readlly performed on log-log
graphs., Note that the sum is a two-termed function, and
does not plot as a stralght line,
In general, the equation to be solved is:
£1(a) + £5(d) = £3(d)
or::log(flf-f2)= log f3

but:  log(fy+ fp)= log £ (1+ _:_g)

1
' g
= log £+ log(l+ =2
g Ty 3 I,_l)

This operation 1is easlly carried out with a palr of dividers.
Figure 1-6 shows the method. The dividers are set between
fo and {3, which measures the log fg. If they are reset
with the lower leg on any unity, f1 they may be extended

by one unit, which gives log(l+ ;2 ). Resetting the lower
1
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leg on I, the upper point will rest on the point at wnich
the ordinate is log (f1+ f5), as shown in the derivation.

As a numerical erample, assume fp =12 and fy= 6.
Setting the dividers between them, and then placing the leg
on any unity, the spzn will show an upper rezding of 2,
which indicates the span to be log 2. Extending the upper
leg to 3 will ccuse the span to be log 3. Adding this to 6
will give log (6)(3) or log 18. Note that the sum of 12
and 6 1is i8, so the solution is correct.

For subtraction of two functions, the method 1is

escentially the same, since:

log (f2 - fl) = log fl[gg - l]
1

] f2
= log fl*'los (Ti - 1)
The czlculztion 1is made as before, except that the divider
span 1s reduced by one unit, rather thun expanded as before,
The example chosen for graphical solution,

2§+e=cd

is shown on Figure 1-7. The rznges of the parameters are:

a %100
b £10
e %100
c £ 100

10
0.1
1
10

ININIA o

In this case the additive term is a constant for a given
solution. Let the values of the parameters be:

a=10, b=1l, ¢ =10, e =100
for simplicity. The solution for these values will De
slightly greater than ten, since: (%Q +10< 10"

In order to insure correct results, the scales of
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i, fp, 2nad f3 must be known., These may be arbitrarily
chosen, but must be identical. If they are arbitrarily
chosen, the location of the scale for the primary variable,

d, mzy be found by taking the cnse where e : 0, whence:

.:.'-_g.led; a=1
This automatically locates the scale for c.

The previous discussion provides ample techniques for
the solutiondaf practically any eczucation of four or less
terms. Since no ecuations have thus far becn encountered in

this work which necescitated use of more than three terms,

no further developunent 1s deemed necessary.



Chapter I1 Mlnimizing of Ecgueatlons

In general, differentiation of a function with respect
to & variable, and setting this derivative ecual to zero
will give the value of the variable vhich will produce
elther a maximum or a minimum of the function., Equations
for total cost of a mechanlcal component may usually be
vritten as the sum of two functions of the primary varlable,
one being the annual owning cost and the other being the
annual operating cost. Thecse are usuzlly a direct function
and a reciprocal function, both of which are smooth con-
tinuous functions. The maximums will occur in such cases et
infinite and zero values of the primary verisble, and there
vwill be only one minimum.

As a simple example of such an equation, consider the
following:

- ad+ B
Cy = Ad + 3

It 1s desired to compute the value of d which will produce
a minlmum total cost. Differentiating, and setting the

derivative ecual to zero:

dCy B
gz =Ah -0
Thls is the equation which must be solved for the value of

d which will produce a minimum cost. The solution is as

-].li
qa: A

In the case of two independent variables, the partial

follows:

derivatives of the function with respect to each of the two

17
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veriables may be set to zero, and the equations produced thus
solved simultaneously to yleld the solution for the values of
the variables to produce either 2 maximum or a minimum. The
same reasoning as applied to a single variasble indicates that
the solution will yield a minimum.
As an example, consider an equation:
Ct : AL4 - B(Ld+ L3)

The solution is as follows:

act) 212 2129 .
(é-L——d—BALd B(d+3L=)= 0

actJ_ 3 _ pr=
(EL_AL BL= O

AL’ = BL
.| B
L_J_:_
and: 3A(I§)2-B(d+3%)
B2
3 Bd = Bd + 33
. = B2 3
23&-31, ds

If the two variables are not independent, the previous
nethod wlll generally not lead to a solution., In this case
the total differential of the function must be set to zero
and the differentizl equation solved. The total differential
of a function may be written as follows:

dCy = (%%)dau (%‘%)L ad
Consider the general equatlon:

£(L,d) = £, (L,d)+ £, (L,)
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Differentiating, and setting the total differentizl equal to

Z2ero:

o (058 ] 58 (650, J -

Thls may te written, symbollically:
MdL+Nd4dad

The test for exactness of a differentiel equation is:

QM _ oN

31~ oL
Apolying this test:

201 a2 ] i st
o + 3] - [aa'axl, + Soi

In practiczlly all the cases encountered in Mathematlics the
order of differentiation hns no effect, so that, generclly
the equality will exist in the previous exprression.
The method of solution for an exact differentizl
equetion is as follows:#%#
F(L,d)= f MaLe f [N -2 LMdLJdd - Const.

Applying this to the general equqtion:

afy | dfp drryt af afl 5f2]
F(Ld)/ 1 _ﬁ] dL+/{[§d_l+8TE_ a aL aLj ad

= Const.

% Kells, L. M., Elementary Differentiel Equations, McGraw-
Hill, New York, 1947, pp 44-46,
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a
F(d,L)z f1+ fo+ o0f1 ofr]- ) £ ad
vere [0 3] e )

d
dd 34da 3dd »d
= fl+'f2 ¢ Constant

This hcs the same form as the origlinal equatlion with
the function set ecuzl to some undetermined constant. Wwith
no additional condlitions, the value of the constant cannot
be determined by elegant methods, but may be determined by
successive approximations if necessary.
If any constralnt on the system 1s known, the method
of Lagrange® offers a solution. For two or more variables
this method 1s applicable,
As in the previous case, ascsume thet the function
C, (4,L) 1s given, and that the constraint is:
G(d,L) = constant
Lagrange's method consists of minimizing the combined function:
F <0 (d,L)+ ¥ G(3,L)
wvhere ¥ 1s an arbitrery constant, called Lagrenge's multiplier,
Differentiation of the function ylelds two equatilons,
with the constraint furnishing the additional equation
neces:ary to complete the system of simultaneous equations.,

The system 1is:
Fl .
‘&),;0
Fl _
(—f)d'o

G(d,L) = Const.
% Advenced Calculus, A.E. Taylor, Ginn and Co., Boston,

1955, Pp 198-201
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Solution of thls system may yileld multiple results,
which may be mazxlma, minime, or neither., Classiflication

iray be achleved by the following:#

Let:
2
2 Ct(a,b)
A FCtla,b) 5 .2%0:(a,b) | c22Ct(a D= B2 - AC
242 ’ oddl 212 ’

where (a,b) are the values of (d,L) found os a solution of
the system.
If: D<O and A>0, Cy 1s a maximum
D<0O and A»0, C¢ is a minimum
D>»0 nelther a maximum or minimum
D =0, no conclusion may be dravn.
For the case of three varlables, consider the case:
¢ = ¢(N,L,d)
with the constralnt:
G(N,L,d) = constant

Let one solution of the system of equations be (a,b,c). The

determinant:
9%¢(a,bye) _ ) 22%¢(e,b,c) 2¢(a,b,c)
JN° d N2L ON-d
2 2nf .
2°¢(a,b,¢) 25C(a,b,c) _ 22¢(a,b,c)
9L ON 3 12 A a{ Y =0
32C(3-,b10) azc(a:bsgl aec(a’blc) _/’
3d oN 24doL 2 g2

* Advanced Calculus, A. E. Taylor, Ginn and Co., Boston,
1955, pp 232-5
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will yleld three roots for A o« If all roots are positive,
(2,b,c) 1s a minimum; if 2ll are negative, a maximum. If
the signs of the roots are mixed, neither a maximum or
minimun exists at (a,b,c).

Similar extensions may be made to a larger number of
variables, but, since these seldom appear in englneering

economics, they wlll not be discussed hers,



Chapter III Equations not suitaeble for Graphical Solutions

There arlise several situations which produce eguations
which involve a number of terms, but a relatively few
variables, or parameters, Often, these lend themselves
better to numerical solution than to graphical, particularly
1f the solution 1is to be carried out by successive
approxlmations. An importent example of this class of
situations is the field of economic insulatlion thickness,
(2) 1Insulation of Walls:

The cost of owning and "operating" an ordinary wall mey
be interpreted as the sum of‘the cost of the wall and the
cost of heating and/or refrigeration. In the case of a wall
of known construction, the economics of addition of
insulation may be treated mathematic2lly.

The cost per year of the insulation may be determined
by dividing the instzllation and malntenance cost by the
number of years representing the expected life of the
instzallation, Let "A" represent the cost per year per board
foot of insulation. Let "U" represent the overall coefficient
of heat transfer of the wall without insulation; B, the
cost of heat per 1000 BTU and B,, the cost of refrigeration
per 1000 BTU. Assumling that the addltion of 1lnsulation will
not alter appreciably the heat transfer characteristics of
the other materials, the heat transfer per square foot may

be written:

?L%J
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where: x =thickness of linsulation, inches,
k = conductivity of insulation BTU/hr-sq ft-°F/ft.
At* temperature difference between inside alr and
outside air, °F

The cost of cooling may be written:
Cc = Be F (8760)Atc

1000
U 12k

where F, is the fraction of time that cooling is required,

¢ /year-sq ft.

on an annual basis, 38760 being the hours per year,

For heating, the "da:gree-day" offers o convenient means
of computing heating requirements. The number of degree-days
is defined as the product of (days/yr.)(65°F - tavg. ), the 65°
reference being chosen as the average temperature at which
no heating will be required. Thus the expression:

8760 Fy, Aty = 24D
where D= degree-days. Maony publicatlons list representative
figures for various localities.#*

The heating cost may be expres:ed as:

24 B, D
1000[%...-1—"2-1-{:1
The total cost per year for insulating one square foot

may be written:
8760 B¢ F, at, + 24 By D

1 X
1000 [ﬁfm

Ct e AX +
Note that A 1s not consga.nt for all values of x.

# ASHAE Guide, Amerlcan Soclety of Heating and Alr Condltioning
Engineers, Inc., New York, 1956, pp. 451-4,



25

Differentiating with respect to x, and setting to zero:
dc _ , _[B760 BeF, Atc + 24 ByD
dx - 1 x 12
12,000k [f-, +f2'k]

1 x 8760 BoFoAt, +24ByD
U*ﬁk‘f ot et

12000 &k
. =10k ’ 8760 BFe A to + 24 BpD 1_UQL
12,000 AL

From the standpoint of graphlical solution, this equation
is rather complex., It 1s not unusually difficult to solve
by ordinary algebraic means, however,

It 1s interesting to note that values of "U" for many
composite walls are tzbulated In varlous publications, The

1956 ASHAE Guide pp 190-200 lists many such velues for

walls, roofs, etc.

As an example of the use of the derived equation,
consider zn & inch concrete block wall, with % inch plaster,
furred, with metal lath., Table 8, page 191 of the 1956
ASHAE Guide gives Uz 0.34 BTU/hr-ft2-OF, for this wall.

Page 452 of the same rcference indicates thot D =6982 for
Lonsing, Michigan. Poge 280 also indicites that the design
air temperzture for this locality is 89°F. Using a desipgn
interior temperature of 78°,A&tc= 11°F. Cooling costs will
be of the order of 1/3¢ per 1000 BTU, and heating costs of
the order of 1/4¢ per 1000 BTU. Using glass wool 28 the
insulating material, for which the k value, according to the
above reference, is 0.27 BTU/hr-sq ft-oF/in. = 12k, The

cost of such insulation 1s approximately 1lg per year per
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boera foot. Estimating the use factor for air conditioning,
F., to be 0,2, the solutlion for the economic thickness of

insulation is:

R (8760)(1/3)(0.2)(11) + (24) (% 2) 0.2
* °'27j ‘?'TL(‘L%_)'laooo 1 (0!.0_)__’1_)_&,.1}@21225 - —20,3

645+ 41,892 _ 0.27
: 0.27 [ SEpd 0.34

3.615 - 0.795
2.82 inches

Thus, it is obvious that a structure which is to be "“year-
round" air conditioned, should be insulated with two to
three linches of insulatlion. Note that a basic structure of
higher 1lnsulating value, or lower U value, will reguire less
insulation, as shown by the subtracting factor, 12k/U.

If the structure 1s not to be cooled, this factor may
be eliminated from the equation. This would also decrease
the economic thickness of insulation.

Lov temperature storacge units reguire much more
insulation, primarily due to the hlgher temperature
difference, higher use factor, and low refrigeration
efficlency. Consider the case of a room, contained within
e spoce at an average tempercture of 75°F., which 1s to be
meintiined at -10°F. Assuming the structural components to
pe of negliglible thermal resistence; that the use factor 1is
0.7; and that the refrigeration cost is 2/3¢ per 1000 BIU,
the economlic thickness will be, for the same insulation

used previously:



27

8760) (2 3;%0.%)(85)
X =0.271[L;Z(T%§560 1)(0.0225

= 8,50 inches

(b) Pipe Insulation.

Pipe insulation is usually carried out by one of two
means: First, pre-cast insulation, avallable in incremental
thicknesses; and second, by paste insulation which may be
aprlied in the desired thickness, and 2llowed to harden in
place., The equation for cost may be simplified if the cost
nay be expressed in terms of the volume of the insulation,
say 1in cents per year per cublc foot. It may be further
simplified if the therm2l resistance of the pipe or duct is
negligible, ond only the effect of film resistances and of
the insulation need be considered., In most cases, the
thermal resistance of the interior film 1s also negligible
wvlth respect to that of the insulation and the exterior film,

Utilizing the above simplifications, the cost of
insulation zmay be expressed as:

2 2
Cr=A LT (4, - 44°)

(&) 15%

vhere: d, = the unknown outside diameter of the insulation,
inches.

dis the inside dlameter of the insulation, inches.
A = cost of insulation, cents per year per cubic foot
L = length of nipe, feet,

The heat transfer may be written, using the above

simplifications;
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TrLAt
?z 12 »
[dh +Zkln—°-_7

where: tm=.the logarithmic mean temperature difference

between the interlor fluild and the outside air,
h,= exterior film conductance, BTU/hr-ft2-OF,
The cost of heating or cooling may be written as:

By,c T L Aty (8760) F,

Ch,c 12 1
1000[—— 1in %
dho 2k H—
vhere: F, - use factor
and the total cost 1s:
e . AT(a2 - 4,2 L u.76‘ﬂ‘B Fy LAt
t &) 15 [ ]
dy

Differentiating with respect to d,, and setting to zero:

ac 29TAd,. L =12 dy
ac . o . 8.76MBE, Lat [d ht —

TN € i) ° Xl =0
13 1 2
doh, *2k n S0
2
[_dl_h" tk 1n —9-J
olg dy (4)(144)(B.76) BF, Atn
di 12 = : 2 Ad
[E, = ozﬁo °

Since the equatlion contalns the logarithm, 1t can be
solved only by some form of successive cpuroximation, and

does not lend itself to graphical solution.
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Chepter IV: Simple Graphlical Solutlons

Many cost ecuatlions may oce written as ejuations
involving one independent variable only, or reduced to
such eguations by aprroximations., Such were the ejuations
developed in Chapter III. These may or may not lend
themselves to graphiczl solution. Two such situations,
pecullar to refrigeration and air conditioning, are treated
in this chapter.

(z) Economic Condenser Water Rate

Temperatures may be measured more easlly and less
expensively than flow rotes. For a glven fluld, rate of flow,
and rate of heat transfer the temperature rise in the
condenser will be constant., Thus, the solution for the
economlc temperature rise suggests 1tself,

Assuming a well designed condenser, (see Chap.VI) the only
effects produced by varying the condenser water flow rute
would be to change the cost of water, end to change the
condensing pressure and temperature in the refrigeration cycle,
The latter would create a change in compressor work, thus
directly affecting the cost of operation of the compressor
motor.

Water costs may be simply described as:

C... AWf
w—
10007

where:
We = rate of flow, 1b/hr
A = cost of water, cents/1000 gallons
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,/Zdensity of water, 1lb/gallon

For any refrigeration cycle, the rote of water flow nay
be expressed as a function of the operating conditions of
the system. The heat disslpated in the condenser, per pound
of refrigerant 1is:

Hg = (m/;z ) (te-tg)+Qp
where:

m = work per degrees temperature difference between
condensing temperature and suction temperature, OF.

ﬁ7= overall comprescor efficiency for the open system or
combined motor and compressor efficiency for a
hermetic system.,

t,.=condensing temxperature, °F,

c
tg=suction temperature, OF,

Qp:=refrigeration effect, the heat absorbed in the
evaporator per pound of refrigerant.

The rate of refrigerant flow will be:

- 12000 T

where T = tons
Since the heat absorbed by water must equal the heat given
up by the refrigerant in the condenser; using the average

specific heat of water as 1 BTU/1b.-OF:

we, (to=t/ )= wp, H - We, Aty
= 12900 T [(E)(tc"ts)+ QI‘J
kr 7

= welght of flow of water, 1lb/hr

where:

wa

tw/=.1n1et water temperature plus the terminzl
temperature difference.
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Solving for the water flow rate:
12000 T

NI = Gelte=ty” ) [(7?’) (to-te) + o |

Thus, the cost of water 1is:

CW:( 16050) Soltets’ ) [( ) (te-ts)+ &

The work required is:

Wi =we, m(te-tg)
__12000 T m (tc-ts)
Qr
end the cost of work 1s:

Cyk = B(12000)T m(te-tg)
7 (3313)er

where:
B= cost of electricity, cents/KW-hr
3413 = conversion factor, BTU to KW-hr
?g=overall motor-comprescor efficiency

The total operating cost becomes:

CT’( 657) Goltetu’) [(7;) (tC‘tB)*‘*] _(T_r,_nlzocl)gr%m teta)
- {1008/“ =7 [(m (¢ 'ts)*‘QI_‘] 77:‘{'3%2‘3'"}

Using methods outlined in Chapter II, the minimum cost

condlition may be determined as follows:

d Ct _ 12000 T tc-tw/) [/ ) (te-tg) +Qr]
a t¢ 1000/’ (4b‘tw )2 '

7/, 3 13)}

1ooo {‘7}""34’" ) = (temty/) - (7=t s)]- Qr+'T3%'v‘?a=o
(te-ty” )2 1
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I S 7.1‘) (ty/-ts) + G . B M
1000 2 [ (% e ] 2

(4 ty)2 %gg?;}m [(F) o tore ]

Using an average density of water vs 8.33 1b/gzllon, the
equation becomes:
m /
At,)2 - (4L A 7 (—)(t. “tg) + Q
( w) ( 30) Eon 7 w ~tsg r
with A ty in °F,

This ejuation is completely general, regardless of the
refrizerent, for a single stoge system, Table 4-1 shows
the values of Qp and 77 for Dichlorodifluoromethane for
various condensing and suction temper:tures, assuming 9°
superheat at the suction inlet and 9° subcooling at the
condenser outlet. Flgure 4-1 shows a plot of Qn with



Table 4-1
VARIATION OF REFRIGERATION EFFECT WITH OPERATION CONDITIONS

(°F) (°F) (BTU/1b) (BTU/1b-°F) (BTU/1b)
-40 80 18.47 0.15392 50.59
90 19.30 15231 48,15

100 20.92 14943 45,76

110 22,11 14740 43,31

120 23.21 14506 40,82

130 24.30 14294 38,31

-20 80 14,61 0.14610 52.96
9u 15.83 14391 50.52

100 17.03 14192 48,13

110 18.16 .13969 45,66

120 190.24 13743 43.19

130 20,32 .13547 40,68

0 80 11.30 0.14125 55.23
90 12.49 .13878 52.79

100 13.69 .13690 50.40

110 14.79 13445 47.93

120 15.85 .13208 45,56

130 16.90 .13000 42,05

+ 20 &0 8.09 0.1%483 57.65
90 9.29 13271 55.21

100 10.46 .13075 52,82

110 11.56 12844 50.35

120 12.60 .12600 47,88

130 13.65 .12409 45,37

+ 40 80 5.15 0.12785 59.90
90 634 .12680 57 .46

100 7 .49 .12483 55.07

110 8.59 12271 52.60

120 9.63 .12038 50.13

130 10.66 11844 47.62
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The terminal tenperature difference will be escentlally
constent for a glven condenser design. Thus, the econonic
temperature rise of the water apvears tc be primarily a
function of inlet water tewperature and suction temperature,
It would avpear, then, thot the water flow rete should be
controlled vy a valve sensitive to this temperature
difference, rather than to condensing pressure,

Unfortunately, the form of the equation renders it
difficult to adapt to graphical solution. However, by
certelin aprroximeations, another form of equation may be
derived which may be rezdlly solved by graphical methods.

If 211 other parts of the cycle are as-umed to be
unaffected by slight chenges in condensing pressure, the
part of the vwork affected is:

n (Aty)
The water flow razte may be further simplified by uslng Hg
to indicate the zmount of heat to be dissipated in the
condenser per pound of refrigerant, and treating it as a
paerameter, rother than a variable., The water cost would

then be:

=[12 ;
c, = 1_%%13) Hy A =(1233) AT H,
w 1000/ 8. —""‘Qr At
The cost of the variable part of the work is:
C/wk= 12000 T B maty
Qp 3413 7(0




36

Thus:
_ 12000 T A Hg + 12000 T B mAty
4 330 Qpraty 3413 Qp 7s
- 12000 12000 T + Bm Aty
8336 4 E:w 3413 qe
Minimizing:

/
ap . 120007 - AH; B m ]
daty Qr 8330 (4 t,)2 + "31[1'3"'7?" 2

(at,)? - 2403 1s Am fe . (0.411) AT (Eﬁ)
B m

8330 B
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In order to use z plot of this eguation effectively,
values of H,/m must be known. This ratio is a function of
the refrigerant used, the suction and condensing
temperatures, and the lsentroplc compression efficiency.
Table 4-2 shows values of thls function for various
isentropic efficiencies, suctlion and condensing temperatures
for Dichlorodifluoromethane,

It should be noted that the variation within a given
isentroplc efficiency is slight. Considering the data for
7? of 0.9, the maximum varlation about a mean value of
481.08 1s 5.93%. Tzking the square root reduces this
varlation with respect to At to 2.96%. This i1s of the
order of accuracy of plotting numbers on logarithmic graph
paper with 2% inch cycles. Thus, the final equation to be

plotted 1s:
A7
(Atw)2=C 5

with the values of C belng:

Figure 4-2 shows the solution of this equation for a

typlcal 10 ton system.



Table 4-2

H./m
tg te o N1
0.7 0.8 0.9
-40 30 500,13 4786.69 461,99
90 501.87 478,63 460.57
100 506.26 481.23 461.75
110 508.14 481,34 460,52
120 510.00 481.39 459.19
130 510.84 481,95 456,90
-20 80 505.34 487.47 47337
90 508.16 488,57 473.28
100 510.57 489.15 472,45
110 512,56 489.87 471,33
120 514.30 489,27 469 .84
130 514.58 487.78 466.97
0 80 505.27 491,04 479,93
90 506,94 492,87 480.40
100 511.03 493,13 479.25
110 513.65 494,01 478.69
120 516.35 494,92 478,27
130 516.08 492,92 474,84
+ 20 80 513.31 502,56 494,25
90 516.01 503.50 493.78
100 518,24 504,02 492,85
110 520,55 504,52 491,98
120 522.86 505,00 491,11
130 522,77 503.10 487.87
+ 40 80 522,41 515.26 509.67
90 524,61 515.69 508.68
100 526.88 516.14 507.81
110 528,64 516.18 506 . 40
120 530.74 516 .45 505.32
130 530.65 514,61 503.02
515.06 496.37 481.08
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The latter simplification leads to slightly higher
values of At. However, since the total cost equation
contains the primary varizble to only the first power, the
minimum is not sensitive, Figure 4-3 shows a plot of total
cost versus temperature rise of the condenser water. It can
be secn that there is little difference in total cost for a
value ten degrees different from the optimum. However,
this difference, of the order of 0.2¢, on an hourly basis
will amount to a considerable difference during the course
of a year, A variatlon of 15 - 20° in At would add

approximately 10% to the total yearly cost,
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(b) Alr Ducts

The equation for cost of owning and operating alr ducts
may be reduced to one in which diameter 1s the 1lndependent
variable, Rectangular ducts may be reduced to an equivalent
diameter for equal capaclity and pressure loss¥ so that
solution for the economic diameter will lead, through proper
conversion, to the economlc rectangular section.

The cost of material and fabrication may be expressed as
e function of the area of the sheet metal involved, say in

cents per square foot. The owning cost would be, then:

Co = A—Lfgli cents/year
where:
A - ¢/Sq.ft.-year
L - length, feet
4 = dlameter, inches

The value of cost, A, 1s a discontinuous function, since
it increases abruptly with a change in allowable minimum
gauge. This variation can be expressed, awkwardly, as a
function of dlameter, but it is so insensitive when
s0 expressed, that it adds little to the accuracy of the
calculations., Thus, i1t will be trected here as a parameter,

The pressure loss in a duct may be expressed as:

£ Le pV2

2
AP- T 5. D 1b/ft

% A.,8.H.A.E. Guide, American Society of Heating and Air

Conditioning Engineers, New York, 1956, pp 737-=9.
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where:
f: friction factor
Le - equivalent length of strailght duct, feet
V= velocity, feet per second
/”=dpnsity, pounds per cublc foot
D - diameter, feet
The veloclty méy be expressed in terms of diameter, rate of

flow, and density, as follows:

V- —B%I—_ feet/second

where:
Q = rate of flow, cubic feet per minute.
A : area of flow, square feet,

Substituting this in the pressure loss eguation:
T L/ £ Le £Q°
AP:=7 gD [60A PTG
8¢ 7200 goDA
The friction factor may be accurately approximated,
over reasonable ranges, by a function of Reynolds' Number.

For Reynolds' Numbers between 104 end 106, a good aprrox-

imation 1is:#
0.2 0,2 40.2

" (Re)0i2 © D0.2y0.2£0.2
where :
M :=viscosity, 1b./foot-hour

V = velocity, feet per hour

*Thermodynamlcs of Fluid Flow, Newman A. Hall, Prentice Hall,
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D= diameter, feet
A= density, pounds per cublc foot

Sutstituting the value of velocity in terms of ares:
V- -6%9— feet/hour

(0‘2)/r 002A0.2

f-

Substituting this value of f in the pressure loss ecuation:

(2)g, (60)2-2 ple2 1.8

(O.Q)Le Ql.8 / 0.9/( 0.2
9] 2108
28c (60)2'2 Dl.g[HzD_/

(0.2) (4)1+81, /f0-340.2 1.8
2g, (60)2+2 (77)1.8 ph.8

1b/fte

Sincc the pressure drop is usually quite sin2ll in
comparison to the total rreczure in ducts of reasonable
length, the process of flow may be approximated as a
constant volume process, so that the vork will be:

W =25 £t-1p/1b,

2
The cost of producing flow is then:
Cwy = BAP We cents/hour
o ALT78)(3413)
where:

B = cost of eleciricity, cents per kilowatt-hour
Wg = flow rate, pounds per hour
o = Overall fan efficliency

but: We =60 Q/”
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Thus the annual work cost is:

3760 BF.
S < TETsTCITEY Y %% F

_ (o, 2)(4)1-8 Lo 0.8 4 0.2 o2, 8 (8760)
2ge (60)1.2( 77)1:8 (34, 3)(778)70 D8 cents/year

where:
Fu=use factor, fractlon of time system is in use.
Expressing diameter in inches, and flow rate as Q/1000, a

number of more convenient magnitude:

_4.422 x 106 BF, P 09402 1,

C = 2.9
Wy 75 rn: (Q/1000) cents/year
The total cost of owning and operating the duct is:
. ALTa | 4.422x100 BF, /O-840.2 2.
Cp~ T12 + 7? - da g (Q/looo) cents/year

Minimizing cost with respect to diameter, in accordance with
the methods discussed in Chapter II:

aCp  ALT  2.123 x 107 BR, A0-8/40.2 1 -
33 *0° 12 7o 8 (Q/1000)

a5+8 < 8,106x107 BF, P 0-84 0.2 (L°) (Q/1000)%°8
A;zo ra
The group of factors:
8.106 x 107 A 0+8# 0.2
is a function of operating conditions only, and primarily

of temperature only at low pressures, These may be combined

as (P(t), so that the equation becomes:

5.8 BF
@ = B(t) 2 (

o L

L.) (@/1000)2+8
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The factor'¢(t) is shown in Table 4-3 for verious
temperatures at atmospheric pressure,

The cost factor A should include cost of insulation,
csince the relative cost of heat loss for various size ducts
has not been previously considered., As an approximatlon,

a large duct may be treated as a flat surface for purposes
of estimating the economic insulatlion thickness,

For example, consider a duct which is to carry 3000
cubic feet per minute of ailr at 60°F. in a room at 80°F.

Using mineral wool, the economlc thlckness is approximately:

X=0.2 (8760)(1/3)(0.,2)(20) _ 0.2
T J (1 20%04%0‘ .Lo‘z'—)'*—lzs '—621. 5

= 1 ] 19“

The same costs were used as in the example of Chapter III(a).
Thus the thickness of insulation used would probably be

1l inch, The cost per sqguare foot of duct surface would thus
be increased by apvroximately l¢ per year over metal and
fabricating costs.

The approximate cost of metal and fabrication is 2¢ per
year per square foot, so the total cost factor A will be
approximately 3¢ per year per square foot. Using B=2¢ per
kilowatt-hour, F, =0.7, and.'?% 0.3, the solution for straight
duct (Le . 1) 1s:

- ds 26.78 inches.

Figure 4-4 shows the effect of dlameter upon total

cost for the example chosen. It should be noted that the

curve 1s quite flat for about three inches of diameter, but



Table 4=3
VARIATION OF $(t) WITH TEMPERATURE

(3F) (1b/1{:-hr) (Wﬁ;) p )

40 0.043 0.0793 5.688 x 106
60 0.044 0.0763 5.540 "
80 0.045 0.0734 5.395 x "
100 0.046 0.0708 5.265 "
120 0.047 0.0684 S5.144 x "
140 0.044 0.0661 5.047 "
160 0.050 0.0640 4,948 "
180 0.051 0.0620 4.833 x
200 C.052 0.0601 4.733 "
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increases above and below these values rather rapidly. Thus,
the choice of diameter 1is rather critical. A choice two
inches on either slde of the economic diameter will result
in less than four per cent increase in totesl cost, while a
cholce four inches on either slde results in approximately
ten per cent increase in total cost.

Figure 4-5 shows the solution of the previous example.
This offers the general solution for pressures not differing
appreciably from atmospheric. |

There are many other mechanlical systems which may be
treated in the manner shown in this chapter, but their
presentation would be a repetition of'similar procedures,
If the equation for total cost can be reduced to a2 pair of
functions of one variable, the methods 1llustrated should

serve to lead to a general_graphical solution,
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Chapter V. Simple Graphicel Solutions with Incremental
Varlable - Pipe Sizing

Selection of pipe for minimum cost operation does not
differ essentially from selection of air duct size, except
that plpes are avalilable only in standard incremental sizes,

Some difficulty 1s encountered in expressing the cost
of pipe as a function of diameter, Howvever, a good
aprroximation may be mede by assuming that the cost may be
expressed as "“A" cents per foot per inch in diameter per year,

As before, the cost i1s the sum of the owning costs and
operating costs. The owning cost 1s:

Cp - ALd cents/year
The operating cost is the cost of forcing the fluld through
the pipe. The prescsure drop due to friction may be expressed

Ap.Tle A V2 4 py2
2gD

where:

f=friction factor

L = equivalent length,ft.

P- density, 1b/ft>

V =velocity, ft/sec.

D diameter, ft.
The work reguired, since the change in fluid volume 1s small,

is very nearly:

w, . AR . fLV2 ft-1b/1b
ks S5 TR /
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The friction factor, f, may be approximated, as in the

case of ducts, by:

_a
(Re )P
go that the work is:

b 2-b
_aM> LV -

In most cases, the work 1s done directly or indirectly
by electric motors, so that the work cost may be related to
electric costs. On a yesrly basls, the work cost 1is:

ow. . (8760) B Ry We 4 ° Le y2-b
k (3413)(778)(25)(3600)b70D1%/b

where:
B s electric costs, ¢/ku-hr,
Fy = use factor, traction of time system 1s 1n use,
Wy - weight of flow, pounds/hr,
° - overall pumping efflciency
The veloclity is related to the weisht of flow, flow
area and density by:
Wy - pav: L7 D2V

P
4w 4w
Ve 2L, ft/nr £
—==2 - £t
Ve P 7 D2(3600) /sec

Thus:
oW, + .(8760) a B F, Wey® Lyg(4)3°P Wy
(3600)2(3413)(778)(28)7/ D1*Bp2p2-0 ph-20

2-b

. (8760)(4)2-P(12)5-P aBF, 4° L W;7~P
(3600)2(3413)(778)(25)7f2-b70 /2 45-b
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In order to determine the value of a and b, the charts

on pages 30 and 31 of Thermodynamics of Fluid Flow, by

Newman Hall, Prentlice Hall, New York, 1951, were used, as

well as other references. The values will be discussed for

each case,

The total cost, in cents per year, is as follows:

aLa , (8760) (4)2-P(12) 5=PaBr, 4P LeWs P
(3600)2(3413)(778) (28) TT 2P, p%a>~P
Minimizing, with respect to dlameter:

Cy, -

( %): AL _ (5-D)(8760)(4)2°° aBR Y Le »Arf:‘5"b(1.°.)5_'-b
(3600)2(3413) (778) 2P g7 p2 a ©-P
6-b _ (5-b)(8760)(4)2-P(12)7~PabF, 4L W 5P
A = 5 6=b
(3600)2(3413) (778) (2g) (77)3-B2 2 1, a2
This may be written:

6=-b 3=b
a3 = ¢(&) BF, Wf Equation 5-1
L 77 6-Db
d

vhere:

b - (5-b)(8760) (4)2P (12)5"P 4°
(8600)2(3413) (778) (2g) T 2-Pp 2

Note that ¢ 1s a constant times a factor vwhich is a function
of the operating conditions only, and may be evaluated with
respect to temperature and prescure,

This ecuation is valid for all systems involving only

direct work which may be chargeable to electric power, or

fuel cost, and in which the work may be accurctely approximated

AP
as 77-. Special cases applying this general eguation, as
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well os other situzations will be conslidered in the remainder

of this chapter,

(b). Water Piping

Since steel pipe is used extensively for water service,
the factors a and b may be epproximated as 0,135 and 0.23
respectively. The general equation may be apprlied, since

this 18 a simple problem of balancing puunping costs against

pire costs. Thuss

b (4.77)(8760) (4) 277 (12)*+77(.185) 4 ©+23
T (3600)2(3413)(778) (64.4) 17T

:/‘L%é (7.526 x 10=7)

The general eguation (5-1) becones:
2 77
Ad2.885=¢ BFy ( )

Figure 5-1 shows the solution plot for this ecusation.

Arproximate values of "A" are shown us a curve on the pire

cost scale, It should be treated as an approximation

only, since the values of cost for a given diameter vary

from locality to locallity and yecr to year., In sddition,
variation of the number of fittings for = given length will
cause a variation in the unit cost. One rethod of approximation
which ylelds reasonable results 1s to ascume that the cost

of fittings varies directly as the number of equivalent feet

for pressure loss calculations. Thils assumptlon can be

shown to be fairly szccurcte for an average number of fittings.

The result of this ascumption is to cause the ratio Le/L to
be equal to unity.
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The value of "A" con, thus, be estincted with good
accuracy, by cclculating the total cost of fittings ond
pipe for an average run; adding an installation cost; =nd
dividing by diameter in inches and by the expected llife in
years.,

Table 5-1 chows the calculation of ¢7w1th temperature,
at atmospheric pressure. Since there is only a negligible
change 1n viscosity and density for liquid water under the
influence of higher pressures, a liberal extension of the
use of this table for higher prescures 1s justifled,

The example shown 1s for a flow of 3000 pounds per hour
of water at 40°F., wlth an electric cost of 2¢ per kilowatt
hour, a pump efficiency of 0.7 and a use factor of 0.9.

Figure 5-2 shows the effect upon total cost of choosing
other diameters for this example with an equivalent length
oXf 100 ft., Note the effect of choices smaller than the
economic size,

If the water is supplied at an initial pressure, so that
Puumping is not required, the economic size of pipe is the
Smallest which will pass the required weight of flow

Utilizing the available pressure., Using the pressure drop

eqQuation:
fLe A V2 2
AP - 4
Zgp— /Tt
2
. fL PZD #/1n2
fL / V°



TABLE 5-1
¢(t) for Water Piping

B e 7 SR 5 B A
32 4,33 62,42 2.706 x 10°
40 3.75 62,42 2,617
50 3.17 62.38 2,522
60 2,71 62.34 2.436
70 2,37 62.27 2,368
80 2.08 62.17 2.305
90 1.85 62,11 2.247

100 1.65 61.99 2,197
110 1.49 61.94 2.157
120 1.36 61.73 2,119
130 1.24 61.54 2.089
140 1.14 61.39 2.059
150 1.04 61.20 2,027
160 0.97 61.01 2,008
170 0.91 60.79 1.994
180 0.84 60.57 1.971
190 0.79 60.35 1.957
200 0.74 60.13 1.942

57



Total cost
(cents/yr)

1800

|sooﬁ
! |
1400 ﬁ#V S S
1200
1000
|
800 —
600 ///
400 \\ //
\L___—/
200 = L , , ,
32 30 3 2 2]
Nomino‘lingiameter
FIGURE 5-2

Variation of cost with diameter




where:
f :-friction factor
Le = length, equivalent
P . density, #/ft>
V- velocity, ft/sec
D *diameter, feet

4 -diameter, inches

Using the previous aprroximation for the friction

factor:
ap. 0.1854°°23 1 py2

vae¥e _ We(576)
A" pra?(3600)

AP . (0.185)(576)1'77(12)0'23/‘( 0.23Lewfl.77
24g (3600)2 77177 2 a*<T7

ft/sec

Thus
d4.77 - (0.185) (576)1077(12)0.23ﬂ 0.23L°wf1077

24g (3600)2 7 1:TT AP
0.23 Wel 77
= [(3.317 x 10-7)/? Lo We7- 7

—7— AP

Le (Wf)l.77
¢ =1

Table 5-2 shows the valuea of ¢)for various temperatures,
Flgure 5-3 shows the solution of this equation. The
example shown 1s for 2000 pounds per hour of water at 40°F,

with an avallable pressure loss of 20 pounds per square inch,



TABLE 5-2
@(t) for water Flow with Given Prescure Loss

Wat?gF§emp. ¢(t)
32 .38 x 10~9
40 8.12
50 7.82
60 7.56
70 7.34
80 7.11
90 6.93

100 6.78
110 6.62
120 6.51
130 6.40
140 6.29
150 | 6.18
160 6.10
170 6.03
180 5.95
190 5.88
200 5.80
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(c) Compressor Discharge Lines-Dichlorodifluoromethane.

Assuming that the effect of pressure loss in the
compressor discharge line 1s only to increase coumpressor
work, with no appreciable change in efficiency, the general
equation may be used. .

In this case, copper tubing is in fairly general use,

80 that the values of a and b used in determining the average
value of the friction factor should be 0,0653 and 0,228

respectively¥#. For these values, the solution becomes:

2a2.886 _ (4.772)(8760) (4)1TT2(12)4TT2 () ooomypp 1 ,-228y 2772

Le/('
(3600)2(3413)(778)(2g) 71772 7L/2d2.886

However, the weight of flow may be related to the tonnage of

the system by the relationship:
12,000 rT

We SSgE——= 1 255.3 T

The equetion, thus becomes:
2.772

4324886 _ (255.3)2-T72(4,772) (8760) (4)1-772(12)4-772(,0653) B, LeV 7o
(3600)2(3418) (778) (2g) 71 T72p1, p 292086

rs

2.886 Le BF, T2.772
Ad = 4) i =2 2,886
7 a
where:
2.772 /¢ 0.228
2 2

Values of¢are shown in Table 5-3. The solution of the

$ - (6.2863 x 10%) T

¢quation i1s shown in Figure S5-4, The example shown is for

*Refrigeration and Air Conditioning, R.C. Jordan and

@.B. Priester, Prentice-Hall, New York, 1949, p. 151.
62



TABLE 5-3
¢(t) for Discharge Lines

Condensing Suction
Temp. Temp, ¢(t)
(oF) (OF
80 -40 1.423 x 10~2
-20 1.208 x 10-2
0 1.024 %
20 8.511 x 10=2
40 7.394 "
90 40 1.284 x 10-2
-20 1.068
) 8.970 x 10=)
20 7.53 x 10=J
40 6.491 x 10~3
100 -40 1.157 x 10-2
-20 9.389 x 10-3
0 7.772 x 10-3
20 6. 447 x 10=D
40 5.457 x 10-3
110 -40 1.056 x 10-2
-20 8.522 x 10-J
0 7.086
20 5.962
40 5.023
120 -40 9.823 x 10-3
-20 7.992
0 6.390
20 5.272
40 4,451
130 =40 8.836 x 10~3
-20 6.830
0 5.900
20 4,779
40 4,007

63



(tons)

System capacity

10400} asn

|

3
P}

il
8

1
2 5
Nominal tube diameter
(inches)

M|

I
© < o~

(14-myy/s4uag)
400 214403|3

o ©

= o

LEITEILTIVE)
uoissaidwog

FIGURE 5-4

Discharge line sizing







65

a condensing temperature of llO°F, a suction temperature of
O°F, a system size of 2 tons, a use factor of 0.8,

B = 2¢/kw=hr, 7/0 =0.8 and the curve shown for values of A,

(@) Suction Lines

In the case of suction lines, the general equation 1s
not applicable, since a secondary efrfect exists. A loss of
pressure in the suction line due to friction results in a
lower density at the intake of the compressor. Thus, the
speed of the compressor must be increased in order to
restore the capacity to that of a system with no loss of
pressure in the Suction line. This results in an increase
in ériction losses in the moving parts of the compressor,

If it may be assumed, with sm2ll changes in speed, that

the volumetric efficlency l1s essentially constant, then:

2 AL
Ny 2

where:

N =« speed, revolutions per minute

J = denslty, pounds per cubic foot

Since the pressure loss is escsentially throttling
(constant enthalpy), 1t may be treated as a constant

temperature process with the resulting relationship:

£1 - R
Thus:
No By, By
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The friction losses in the mechanical parts of the compressor
are essentially proportional to the rotative speed. Thus:

b B
We, - TPp-ar

P
A Wo = Wf - Wf - Wf 1 - _ AP
f 2 1l 1 P——'—l_AP = wfl PO- AP

where:

wf - friction work

The mechanical efficlency 1s defined es:

Indicated work _ Indlcuted work
7m = Total work = TIndicated work+ friction

thus:

Friction work - (l—77m) Indicated work

(1-77 ) m(te-t,)
T ?1

Pl' A P]

The total work due to pipe friction is:

(1-77 )m(t -tg)

AP
s T, * 07w g CetR g
(1- 7)) mlt, -tg)

s AuPlzfﬁgai;;;‘

where
7L=overall efriciency
‘71:1sentropic efficiency
but:
2
AP = f LQ/TV
2gD
and

£ o 0.0653
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A p. (0.0653)(L,) P VEAO-225

0.0653 Lo PO TT2y1+T72 40,228 (1 ,,1.228

U]

2g dl.228 (3600) 0.228
Ve . (253.3) r T (576)
V- y /ﬂ‘d2 3600 ft/sec
AP-3122L°r1772 ple772 4 0.228 ,
/d 5,772 #/ft
vhere:
r: 47/refrigeration effect (BTU/#)
Le - equivalent length, feet,
T = tons
& -viscosity, #/ft-hr
. density, #/ft>
Thus:
W, . 3122 T1:TT2H0:228 o1 T2, [, S Tmintee-t, )]
4,772
fa 77£;ﬂ/z,(1> -AP) (%71 )

The onnual cost is:
. (255.3)(8760)(3.122)BF, r.2.772/4'0.2.28T2.772L

e
(3413) / a%.772

(1-77,) m (te-ty)
X + m c “s
778 7. 77, (2, - 3.122 r1T124 0,228 g1.TT2

I

P qhaTT2

c

'S

The total annual cost is: 0.208 2
2.772 772 ]
G v ALd ,,_[(2553)(8760)(3 .122)BF, r2-T72A°- L,

3413 p q*eT72 J
+ ) m (be-ty)
8 / 7 (P _/.182 r .-72/;0 228L TI (2 )

T p g4.772
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Minimizing:

dc Oohdu 0772

-a»d—'"- <0 = AL - [(u?bO)(B 132)(25,.9)(4 773)BF rce 772/, T i/
3413/d5 772

(l" m) m (tc"ts)

77[ 3,122 pl.772 40.228;  ¢l.772 ]

{7

4 (€760)(3.122) (25%.3)BF,r2+T72L, T2.772_]
3413 P q%-772

X [/’ a’+T72 ['p) pat-T723.122 rl-772/70-22%1-772Le](1-’?m)m(tc-ns)

- [1-77m) m (tc-ts)/d4.772JPl/d3.772(4.772)

by [/Pl a%-T72 _ 3 100 pleT72 f0.228 41.772 Le] 2

0 - aL - | (8760)(3.122)(255.3)(4.772)BF, 1‘2'772L°T2°772 ]
(3413) L3772
X [_lg__ . (1-7m) m (te-tg) _ (4.772)(Py- P)(1-7)m(tc-tg)
T Py -4F (P;-4AP)2

(4.772)(1-77,) m (tc_tsj
(P,- A P)?

232.886 =[(8760)(3.122)(255.3)(4.772)135\“1,' r2.772T.'e.7'/':aj
3413 £ q=-886

x[%ﬁ]?/’ g (A772)(1-7,) m (t-t,) Pl-]
(Pl "A P)2
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If AP is smzall compared to Pl:

Aq2+886 _ [(8760)(3.122)(255.3)(4.772)BFuL, r2.772T2.772]
3413 P q2+880

4 (&772)(1 -77,) m (tc-ts)]

<[ 7ia7+ -
AG2.886 - 4; / } p2.772

32.686

where @.— 18760)(3.122)(255._3)(4.772)/0-228 ree772
wnere: 3413/

1 4,772 (1=77_ ) m (t.-t.)
‘XZFTﬁ§2E;,+ P37m o c s-//

9762 AM0+228 . 2,772 [7? F(4.772) (177 (2 -ts)j
Yz 5%/ 7

Note that ¢ 1s a function only of the operating

conditions, and 1is, thus, a parameter rather than a varilable,
Table 5-4 shows thls parameter for various suction and
condensing temperatures.

Figure 5-5 shows the graphical solution of the eguation.
The example is for a 5 ton system operating at 100°F condensing
and 40°F suction, with an electric cost of 2¢/KW-hr., a use
factor of 0.8, a compression efficiency of 0.8 and a ratio
of length to equivalent length of 0.8. The choice would be
1% inch nominal tubing.

Note the increased effect of operating conditions on
the economic line size, compaered to that upon the dlscharge

line selection.



TABLE 5-4
4} (t) for Suction Lines

Suction Condensing
Temp. Temp. ¢(t)
(°F (°F)
-40 80 3.288
90 3.950
100 4,721
110 5.776
120 6.970
130 8.704
-20 80 0.938
90 1.123
100 1.345
110 1.623
120 1,967
130 2.390
Y 80 0.303
90 0.362
100 0.434
110 0.523
120 0.628
130 0.779
20 80 0.0986
90 0.119
100 0.146
110 0.172
120 0.207
130 0.252
40 80 0.0372
90 0.0449
100 0.0542
110 0.0655
120 0.0791
130 0.0961
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(e) Liquid Line Sizing-Dichlorodifluoromethane

Here, the provlem is similar to that of servlice water
riping, where & given pressure mey be dissipcted. 1In this
case, the amount of subcooling obtained in the condenser or
recelver, represents the maximum prescure differential which
may be dissipated without obtalning flashing in the expansion
valve,

The pressure equivalent of subcooling depends upon the
condensing temperature and the number of degrees of subcooling.
Figure 5-6 shows this relationship in terms of feet of head.

If a vertical rise exlsts between the condenser and the expansion
valve, this must be subtracted from the egquivalent rise to
give the net head available for pipe frictlion loss.

The reletionship between subcoollng and head 1is
sufficiently near linear that only small error 1s obtained
by assuming linearity, that 1s:

AH =AAtg,,

at any glven condensing temperature,

Also:
772 pl.T72 40,228
A . 4B 3.122 L, rl.772 p1.772 40
a
8o that:
d40772 - 3.122 I_,o r10772 T 10772/ 00228
AR /?
1.772
: ¢ Le T

AH
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The values of (Dfor various operating conditions are shown
in Table 5-5.

Figure 5-7 shows the solution of the equation.

It should be noted that undersizing of the line will
produce flashing at the expansion valve. Thus it is
advisable to choose the slze above the solutlon if the

solution falls between two nominal sizes,.



Suction

Tem
(°F

-40

-20

20

40

?.

TABLE 5-5
$(t) for Liquid Lines

Condensing
Temp.
(OF

80
90
100
110
120
130

80
90
100
110
120
130

80
90
100
110
120
130

80
90
100
110
120
130

80
90
100
110
120
130

75

d(t)

4,046 x 10=4
4,523
4,692
4,895
5.125
€.826

3.731 x 10-4
4,154
4,291
4,458
4.638
6.044

3,463 x 10-4
3.842
3.945
4,091
4,219
5.620

3,210 x 10-4
3.550
3.639
3.749
3.863
4,972

2.999 x 10~4

4,643



Suction
Temp.
(oF)

-40

-20

20

40

TABLE 5-5
$(t) for Liquid Lines

Condensing
Temp.
(°F

80
90
100
110
120
130

80
90
100
110
120
130

80

90
100
110
120
130

80
90
100
110
120
130

80
90
100
110
120
130

75

d(t)

4,046 x 10-4
4,523
4,692
4,895
5.125
6.826

3.731 x 10~4
4,154
4,291
4,458
4,638
6.044

463 x 10-4

.210 x 10-4

2.999 x 104
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Chapter VI: Tubular Heat Exchanger

The determination of the length, dlameter, and number
of tubes for a tubular heat exchanger 1s somewhat more
complex than problems previously discussed, particularly
from the difficulty in assessing owning costs.

Assume that the cost of the shell and tubing can be
expressed as:

C, =4;N14d
and that the cost of making the end connections can be
expressed as:

C, = AN

The cost of friction is the same as in previous piping
problems, assuming copper tubling, except that the number of
tubes is not necessarily one.

As before (see Pages 51-2):

W =§%%E ft-1b/1b
_ fLWgv2
2gb
(0.0653)  LwgVe
(Rz)0.228 2gD
(0.0653) 40+228 1 w, y1.772
28 (3600)0.228,;1.772/0.228 prec<®

but v- Ve _ W 4
| 3600 A T 3600 /N 7702

ft-1b/hr

Substituting this value of V
. (0.0653)/‘0.228 L wf20772 (4)1.772
(28)(3600)27 177202 y1.T72 ph.772

Wy

T
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Thus

- (0.0653) (4)** 772 (8760) (12) 4+ 772 40.2281y 2. 772
7 (25)(3600)2(3413)(778)771.776/2 N1+772 q%.772

For the sake of generality, let:

L
Ovic =y = 5 7ol 112

Thus, the total cost may be expressed zs:

Ct= AJNLA L AN + O L
te A TV Agrarie (6-1)

Two constraints apply to the system. First, all of

the variables must have values greater than zero, Second,
the hezt balance must be satisflied, Writing the heat balance:
- - UN 74L
where:
Wp - weight of flow, #/hr,
C = specific heat, BTU/1b-°

Op

At = temperature change of fluid,
U: overall coefficlent of heat transfer, BTU/hr-ft2-OF
Atp- logarithmic mean temperature difference, °F.
It is assumed that the ratio U/h,, where h, is the
heat transfer coefficient at the interior surface of the
tubes, can be approximzted from knowledge of similar systems,

and U is the overall coefficient, defined as:

-1
resistances

U can then be expressed in terms of N, L, and 4 as follows:

u;%i- hy - %; 0,023 K (0] 0.8 [pr]o.4
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where:
Re = Reynolds Number = 2}-/, dimensionless
Pr ~ Prandtl Number - 9.1_{1 , dimensionless

Thus:
0.8 U.8/008 004ﬁ004
v-U (0,023)[§ f) v j c

- \U KO~6/0080004 v0.8
= EEI (0.023) /‘1 0L DT:E-

where:

K - conductivity of fluid, BTU/hr-ft2-CF/ft
C = specific heat, BTU/1b-OF
_P= density, 1b/ftd

V = velocity, ft/hr

Af = viscosity, 1b/ft-hr

D - diameter, ft.

but :
v-Wg Vg4 _ We(576)

PAI PN pugal

and:
Us B (0.03)(12)0+2(4)0+8¢04g0+6y 0.8
3 (3600)0.8(25)0.87;0.8 NO'8d1°8/9°°7i

Substituting for U in Equation 6-2 and simplifying:

N0-2 1,
o - 2

This is the form of the second constraint.

Using Logrange's method, as given in Chapter II:

QF)  ALd A, - 1772 QL 0,2¥L
= Al Ap + 8 =




€0

oF -ana, &1 YNO.2
)

(%‘g) N,L = AN - 4.772 L 0.8 Y1NO-2
1 NL1.772g5e772 = d1°8

(3) &N2:77235:772 _ 4 772 @, - 0.8 ¥N1+97243-972 = o

1

These three equations, and the second constraint:

40+8

form a system of four simult:neous equations in N, L, 4, and

¥ . Combining (2) and (3):
.+ ¥N1.97243.972 = 4,772 0, - 0.881-9723-972

1.8 X N1.972d3o772 : =5,772 ¢1

x _ -3.267¢ 1
 NL.97243.972

Substituting this value in (2):
2.77235.772 -
A N2-TT2g +tP, -3.267¢, = 0
A
Substituting this expression in (1):

2,267 §.L+2.267 P1a
1 2 _ 1.7724.L +(0.2)(-3.2674, )L= 0

—— = 0
d 44
< 20267 AQ

14 , Ao
m s 14,348 Ii
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Combining this equatlon, cnd the constraint:

408
L = ¢2 N002
A 1.8
Ld = 14.348 22 _ a--"
Al - ¢2 NO.2
NO.2 $oay 418
N. by 5 49
12358 &5
But:
N2T7245+772 . 2 267 _Q.L
A
45-T72 . 2.267 04
N2 TT2
- 2-267¢1 14,348 A2 13.86
230,72, 2.26781 14,348 4] 13.86
A (PN
.. (2.267)09326 P 10.0326 19.348 Ay 0.4512
Al0.0326 oAy
0.0326 , 0.4512
| 3.416 4); A
0.4838 ¢ 0.4512
A o,
L s 14348 A
A,d
and

N :(¢2A1 ) 5 d9
14,348 A,

5,5
= 1.650 x 10-6 _._____¢2 ! a9

A25
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These a2re left in this form by intent, since the
solution for d will not necessarlly yleld a nominal diameter.
Thus, the nominel diameter nearest the 1deal should be used
in the equations for L and N.

In order to examine thece results, consider as an example
the following:

Water at an average temperature of 60°F,

We 23600 1b/hr.

A—t- - 1 7= 0.8
Atm - Fu= 0.8

Al' 2(tube cost) = 13.72¢/in-ft-year
Ay: 1 cent/tube-year

hi

— -1

g =2 It

B = 2¢/Kw=hr

From the prevlious chapter:
¢1f'°0653 (8760)(4)1°772(12)4°772 BFu‘/qo‘228Wf2'772
(3600)2 (3413)(778)(28)771-77277/2
r0.228 Wf2.772

77

(3600)0+8(25)0.8 0.8 0.6 40.4 y 0.2
(0.023)(12)0+2 (4)0+8 0.6
-5 4192 We0e2  hy A4

0,6 -
K A

3,652 x 10-8 B Fy

and

©
(¥

CI’_P‘
D>
ctict
B

= 1.563
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For water at 60°F:
_A=2.71 1b/ft-hr
A: 64,34 1b/1t3
K = 0,344 BTU/hr-ft2-°F/ft
C=1.000 BTU/1b-°F
For these values:
@4 0.160
bo = 45.43
s (3.416)(0.160)0+0326 (1)0.4512
(13.72)0+4838 (45,43)0.4512
: 0.1804 inches

This 1s smaller thaen commercially available 1/8 inch
noninal copper tubing, which has, for type K, an lnside
diameter of 0.185 inches. If 1/8 inch were used:

_ (14.348)(1 )
L= éi?:%ﬁ’%é:%égj— = 5.653 ft.

(1.65 x 10'6)(25.43)5(13.72)5 (0.136)9
(1)

42 tubes

and

N

U]

Assuming the same conditions, with
We = 360,000 1b/hr
$,:5.589 x 104

o114

4 s (3.416)(8.559 x 105)%:9326 (4)0.4512

: 0.1805"




This 1s almost identical to the previous result, Thus

L would have the same value, and:

5
ill4.1£§lé.22! 9

(109.1)° (0.185)°
4,120 tubes

A check of Reynold's numbers indicates, for the first
case: Re =2644, and for the second case: Re : 2693, For
both cases, the flow should be laminar, rendering the use
of the McAdams equation for heat transfer invalid. In
addition, there has been little study of heat transfer in
the diameter range encountered here, so that the validity
may also be challenged on that count.

The assumption was made that 21 may be approximated in
liquid-1liquid heat exchangers, using larger tubes., In the
case of liquid-gas the ratio would be of the order of 100.
The effect of a change to this ratio would be to reduce 4 to
approximately one seventh of the values found for liquid-
1liquid for the same rate of flow. The number of tubes would
be increased by a factor of approximately (1)9 (50)3, or
7%. The length would be increased by about77 to 1.

Doubt as to the valldity of the assumption of 21
notwithstanding, the trend of solutions 1s obviouslg
toward a large number of very small tubes., Since the

Problem of support of such tubes 1s a difficult one, the

compact heat exchanger composed of expanded and/or corrugated



plates appears to offer o step in the right direction.

Kays and London®* have performed studies of compact
exchangers, but the tubes used were fairly large compared to
the solutions found in the examples previously offered in
thls chapter,

It is obvious that, until a general equation for
corrective heat transfer 1s evolved, there can be no general
solution for the economic configuration of heat exchangers.,
In each category, the empirical equation which most nearly
fits the situation should be used to evaluate the expression:

Uz Uh_i' h, (N,L,d)
The solution for a minimum coest can then be carried out by

the methods of this chapter,

# Compact Heat Exchangers, W.M, Keys and A.L. London,

Natlional Press, Palo Alto, Calif., 1955.



Chapter VII Summary

The preceeding work has opened many opportunities for
further study and re-examination of proper cholces in such
components as ducts, piping, etc. The methods developed
are not limited to the problems discussed, but have
widespread application in the field of engineering economics,
It is hoped that the methods are so presented as to enable
engineers to make use of them in their own applications.

A summary of the results is included in this chapter.

(a) Effect of choice other than economic size.

The general behavior of the total cost with the primary
variable 1s easy to deduce from the cost equation in the
case of the single variable,

In the case of condenser water, the variable appears
as At and (é%-), so that the variation of cost for choices
above and beloz the optimum will be lines with equal slopes
on logarithmic paper. Thus the minimum would not be
expected to be sensitive to changes in the varilable,

Figure 4-3 shows a +typical cost curve for this type
equation.

The form of the cost equatlion for planar insulation is
of the same form in the varlable,thlickness, so simllar
results would be expected., However, for cylindrical insulation,
the first term involves the variable to the second power
and the second term involves the first power and the

logarithm. The generalized equation for the variable part

86
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of the cost 1s:

2
Cr, - # % ) IO
C d, Ind_

The latter term varles approximately as the reciprocal
logarithm, so that it would not be sensitive., In this case,
oversizing would be more expensive than undersizing, since
the first term is 1n the square of the variable,

Flow problems mey be reduced to an equation of the
type:

Cop - ¢1d + d__2__ -
PUN:

Oversizing will approach a first power increase but
undersizing will approach approximetely a 4.8 power, or very
steep, increase, Figure 5-2 shows a typlcal variation with
an egquation of this type.

With a four-dimensional eguation such as that for a heat
exchanger, it 1s virtually impossible to determine by
inspection the effect of varying any one of the variables, since,
in this case, they are not independent. It would be necessary to

investigate each by successive trials,

(b) Comparison with published tables,

This is not meant to be a reflection on any individual
or individuals, since the tables to which referred are of
unknown origin., Many tables have been reproduced so often

as to lose all reference to their origin.,
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Each of the situations dlscussed previously will be
compared to avallable data.
(1) Insulation.

No tables have been encountered covering economic
thickness of insulation. A nomograph for the solutlon
of economic pipe insulation was found #. The form of
egquation used 1is unknown, and comparisons have not
been made.,

(2) Air duct sizing.

There are ti'o possible bases of comparison:
pressure loss and veloclty.

For the parzueters used in the example on Figure

4-4, the following holds:

Diameter Velocit Friction loss
CFM (inches) (ft/min, (in.water/100 ft)
300 9.5 608 0.13
3000 27 754 0,028
10000 53 653 0.008

These velocities are within the ranges recommended for
residences,*”
(3) Condenser Water,

No tables or charts comparable to that developed
have been encountered., However, the equatlon used 1s
similar to that of Jordan and Priester,##% and gives

comparable results.

# Fundamentals of Power Plant Engineering, George E. Remp
National Press, Millbrae, Calif., 19E9,’p. 197 ’

#% ASHAE Guide, 1956, p. T47 and T735.

#%% Refrigeration and Alr Conditioning, R.C. Jordan and G.B.
Priester, Prentice-Hall, New York, 1948, P 244-5,
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(4) Wwater Piping.

Perry#* gives a nomograph for generalized flow,
derived from a more simplified equation. The results
are near those obtained from Figure 5-1, but not so
accurate,

(5) Discharge Lines.

Using Figure 5-4, and the parameters used in the
example shown, the following is a comparison, for a
condensing temperature of 105°F, with Table A.26, Jordan

end Priesterid#:

Line Size Tone Capaclty Tons Capacity
(Nominal (Fig. 5-4) (Jordan & Priester)
type K)
3/8 1.3 ———
1/2 2.2 1.43
3/4 S5el 2,97
8.0 5.05
1 1/4 4,9 T.T2
11/2 22 10.92
2 39 19.2
2 1/2 61 32,2
3 93 51.5
3 1/2 135 72.0
4 180 95.8

The higher capacity shown from Figure 5-4 may be
partially explained by the fact that the additional

work imposed upon the compressor is such a small fraction

# Chemical Engineers Handbook, John H. Perry, McGraw-Hill,
New York, 1950, pp 304=6.

*# Refrigeration and Alr Conditioning, R. C. Jordan and
G.B., Priester, Prentice-Hall, New York, 1943, p. 491.




90

of the total work as to be of minor importance compared
to the cost of the tubing.

The increased cost of pipe compared to the
relatively stable cost of electricity may also be one
contributing factor to the lncrease in apparent capacity.

It should be noted that the cost of electricity
used was 2¢/KW-hr, If electricity is more costly, these
capacity values will be reduced, and vice versa,

(6) Suction Lines.
Comparing the results of Filgure 5-5 with the

same table:

Tube Size Tons Capacity Pressure drop per
(nominal) (105° Condensing 100 ft.(psi) for
40° suction) comparable capacity,
, Jordan & Priester
3/8 0.27 2
1/2 0.45 2
3/4 1,0 2
1l 1.65 1
11/4 3.0 0.6
11/2 4.4 0.8
2 TT 0.7
2 1/2 13 0.6
3 18 <0.5
3 1/2 26 <0.5
4 36 0.6

Thus, the results are comparable, However, for low
suction temperatures, the secondary effect considered
herein leads to larger sizes., Table 12-5 of Jordan

and Priester give factors by which to multiply capacities

at + 40° suction to correct for other suction temperatures,
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An spproximate comparison is shown below:

ts
(°F) f (Fig. 5-5) f (Jordan & Priester)
40 1,00 1.00
20 0.68 0.86
0 0.5 0.74
=20 0.26 0.56
=40 0.16 -

Even though the cost of pipe has increased,
consideration of the secondary effect tehds to lead to
larger pipe sizes.

(7) Liquid Lines,

Since this solution is not an economic one, comparison
is only useful to verify validity.
(8) Heat Exchangers,

No data were encountered with which to compare results.

It is important to note that "rules of thumb" should be
avoided in choosing piping or tubing sizes., The solutions
for economic size are so readlly carried out that there

should be no good reason for developing any such rules.

(¢c) Future Work.

In order to utilize this presentation effectively,
accurate costs are required., More consideration should be
given to this factor than most organizations expend.

The prbblems associated with flow seem to have been
well explored, so that no further work appears necessary in

this field.
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The problem of hezt exchange has by no means been
solved, but only an approach to the problem offered. The
results of this preliminary study tend to indicate a
necessity for considerable study in the realm of very small
passages, tubular and otherwise, both with respect to
friction and heat exchange.

In addltior to the applications considered in this
treatise, there are many applications of the graphical
methods to solution of equations, as well as the methods of
minimizing ejuations, to other fields of interest. It 1s
hoped that these methods, and their presentation herein,
willl prove valusble to engineers in all fields, as well as

lead to better design for economy in many systems,
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