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ABSTRACT

MULTIVARIATE GAUSSIAN RANDOM FIELDS: EXTREME VALUES,
PARAMETER ESTIMATION AND PREDICTION

By
Yuzhen Zhou

Motivated by the wide applications of multivariate Gaussian random fields in spatial
modeling, we study the tail probability of the extremes, the inference of fractal indices and
large covariance modeling of multivariate Gaussian random fields. First, we establish the
precise asymptotics for the extremes of bivariate Gaussian random fields by applying the
double sum method. The main results can be applied to bivariate Matérn fields. Second, we
study the joint asymptotic properties of estimating the fractal indices of bivariate Gaussian
random processes under infill asymptotics, which indicates that the estimators are asymp-
totically independent of the cross correlation in most cases. Third, we define a framework
to couple high-dimensional and spatially indexed LiDAR signals with forest variables using
a fully Bayesian functional spatial data analysis, which is able to capture within and among
LiDAR signal /forest variables association within and across locations. The proposed mod-
eling framework is illustrated by a simulated study and by analyzing LiDAR and spatially

coinciding forest inventory data collected on the Penobscot Experimental Forest, Maine.
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Chapter 1

Introduction

1.1 Multivariate Gaussian random fields

Before presenting the motivation and main work of this thesis, I would like to give the formal
definitions of random fields, real valued Gaussian random fields and multivariate Gaussian
random fields (see, e.g., [AT07]).

A random field is a stochastic process indexed by a parameter space, which could be a

subset of Euclidean space RNV, Formally, it is defined by

Definition 1.1.1 (Random fields). Let (€2, F,P) be a complete probability space and 7" be
a topological space. Denote by RT be the space of all real-valued function on 7. Then,
a measurable mapping X : Q — R7T is called a real-valued random field. Measurable
mappings from 2 to (RT)d ,d > 1, are called multivariate random fields or vector-valued

random fields.

Hence, X (w) is a univariate (or multivariate) function and X (w,t) its value at t. We
usually omit w and write the random field at t € T" as X (¢).

A real-valued Gaussian random field is a random field X indexed by a parameter space
T whose finite dimensional distributions of (X (t1), ..., X (t5)) " are multivariate Gaussian for

each n € N and each (t1,...,t,) € T™. The distribution of X is determined by its mean and



covariance functions, that are

Let X be the vector-valued random fields taking values in R?. Denote by X = (X1, ... Xg) "
where Xj is its ¢th coordinate process. X is called multivariate Gaussian random fields if for
any vector o € R%\ {0}, Zgzl a; X;(t) is a real-valued Gaussian random field. The distribu-

tion of X is determined by its vector-valued mean and matrix-valued covariance functions,

that are u(t) == (E(X1 (), E(X2()), ... E(X ()T and

Cr1(s,t) Cra(sit) -+ Cpq(s;t)
COV(X<S)7X(Z§)) _ CQlFS,t) ngfs,t) CQdFS,t) |
Cai(s,t) Cga(s,t) -+ Cgals,t)

where Cj;(s,t) := Cov(X;(s), X;(t)), 4,5 =1,2,....d.

1.2 Overview

This work is motivated by the factor that there is an increasing need for analyzing multi-
variate spatial datasets [GDFG10, Wac03]. There is a rich literature on modeling univariate
spatial data [Cre93, Ste99]. However, in the multivariate setting, model specification is
more challenging because we also wish to capture cross-covariance among outcomes and

sites [GDFG10, CW11, BCG14].

Multivariate Gaussian random fields are a good candidate model to characterize the co-



variance structure of the multivariate spatial datasets. [GKS10] introduced the full bivariate
Matérn field X(t) = (X1(t), X2(t)), which is a R2-valued, stationary Gaussian random field
on RY with zero mean and matrix-valued Matérn covariance functions. As spatially corre-
lated error field, this model was applied to probabilistic weather field forecasting for surface
pressure and temperature over the North American Pacific Northwest.

While the multivariate Gaussian random fields are widely used in spatial modeling, it
raises many interesting problems in the aspects of both theory and modeling. In this work, we
focus on three topics in this area: the tail probability of the extremes, the joint asymptotics
of fractal indices under infill asymptotics, and large covariance modeling with Gaussian
predictive processes. The rest chapters show the details of these three problems.

In Chapter 2, we study the tail probability of the extremes for a class of bivariate spatial
model, i.e., P(maxseAl Xi(s) > U, MaXpe A, Xo(t) > u), as u — oo. Applying the double
sum method [Pit96, Ans06], we establish an explicit form for the tail probability of double
extremes for the bivariate field. We found that the area where the cross correlation attains its
maximum has highest chance to cause extreme events. Also, the smoothness of the surface
for each component affects extreme probability.

In Chapter 3, we study the joint asymptotics of the fractal indices for bivariate Gaussian
random processes. We want to see how the cross dependence structure would affect the
efficiency of the estimators. The fractal index of each component is estimated respectively
by the increment-based method [CW00, CW04]. We established the joint asymptotics of
the bivariate estimators under infill asymptotics, which indicated that the estimators are
asymptotically independent of the cross correlation in most cases.

In Chapter 4, we define a framework to couple high-dimensional and spatially indexed

LiDAR signals with forest variables using a fully Bayesian functional spatial data analysis.



This modeling framework allows us to capture within and among LiDAR signal /forest vari-
ables association within and across locations. However, the computational complexity of such
models increases in cubic order with the number of spatial locations and the dimension of the
LiDAR signal, and the number of forest variables—a characteristic common to multivariate
spatial process models. To address this computation challenge, we proposed an approxi-
mated model by employing the modified Gaussian predictive processes [BGFS08, FSBG09]
twice, both in locations and in heights.

We end the introduction with some notation. For any t € R, |t| denotes its [?>-norm. An
integer vector k € ZV is written as k = (k1,...,ky). For k € ZN and T e Ry = [0,00), we
define the cube kT, (k+ 1)T] := H‘g\il[k‘iT, (kj + 1)T]. For any integer n, mesp(-) denotes
the n-dimensional Lebesgue measure. An unspecified positive and finite constant will be

denoted by Cj. More specific constants are numbered by C,Co, . ...



Chapter 2

Tail asymptotics for the Extremes of

Bivariate Gaussian Random Fields

Let {X(t) = (X1(t), Xo(t)) T, t € RV} be an R?-valued continuous locally stationary Gaus-
sian random field with E[X(¢)] = 0. For any compact sets Ay, As C RV, precise asymptotic

behavior of the excursion probability

]P’( max X1(s) > u, max Xo(t) > u), as u — 00
s€Aq tcAs

is investigated by applying the double sum method. The explicit results depend not only on
the smoothness parameters of the coordinate fields X; and Xo, but also on their maximum

correlation p.

2.1 Introduction

For a real-valued Gaussian random field X = {X(t), t € T}, where T is the parameter
set, defined on probability space (2, F,P), the excursion probability P{sup;cr X (t) > u}
has been studied extensively. Extending the seminal work of [Pic69], [Pit96] developed a
systematic theory on asymptotics of the aforementioned excursion probability for a broad

class of Gaussian random fields. Their method, which is called the double sum method, has



been further extended by [CLO6] to non-Gaussian random fields and, recently, by [DHJ14]
to a non-stationary Gaussian random field {X(s,t), (s,t) € R?} whose variance function
attains its maximum on a finite number of disjoint line segments. For smooth Gaussian
random fields, more accurate approximation results have been established by using integral
and differential-geometric methods (see, e.g., [Adl00], [ATO07], [AW09] and the references
therein). For Gaussian and asymptotically Gaussian random fields, the change of measure
method was developed by [NSY08] and [Yak13]. Many of the results in the aforementioned
references have found important applications in statistics and other scientific areas. We refer
to [ATW10] and [Yak13] for further information.

However, only a few authors have studied the excursion probability of multivariate ran-
dom fields. [PS05] and [DKMR10] established large deviation results for the excursion prob-
ability in multivariate case. [Ans06] obtained precise asymptotics for a special class of non-
stationary bivariate Gaussian processes, under quite restrictive conditions. [HJ14] recently
derived precise asymptotics for the excursion probability of a bivariate fractional Brownian
motion with constant cross correlation. The last two papers only consider multivariate pro-
cesses on the real line R with specific cross dependence structures. [CX14] established a
precise approximation to the excursion probability by using the mean Euler characteristics
of the excursion set for a broad class of smooth bivariate Gaussian random fields on RY. In
the present chapter we investigate asymptotics of the excursion probability of non-smooth
bivariate Gaussian random fields on RY, where the methods are totally different from the
smooth case.

Our work is also motivated by the recent increasing interest in using multivariate ran-
dom fields for modeling multivariate measurements obtained at spatial locations (see, e.g.,

[GDFG10], [Wac03]). Several classes of multivariate spatial models have been introduced



by [GKS10], [AGS12] and [KN12]. We will show in Section 2 that the main results of this
chapter are applicable to bivariate Gaussian random fields with Matérn cross-covariances
introduced by [GKS10]. Furthermore, we expect that the excursion probabilities considered
in this chapter will have interesting statistical applications.

Let {X(t),t € RV} be an R%-valued (not-necessarily stationary) Gaussian random field

with E[X(t)] = 0. We write X(t) £ (X1(t), X2(¢)) " and define

Tij(s, t):= E[XZ(S)X](t)], 1,7 =1,2. (2.1.1)

Throughout this chapter, we impose the following assumptions.

i) ri(s,t) = 1 —¢|t — s|% + o(|t — s|*), where a; € (0,2) and ¢; > 0 (i = 1,2) are

constants.
i) |rji(s,t)| < lforall [t —s|>0,i=1,2.
iii) r12(s,t) = ro1(s,t) := r(|t — s|). Namely, the cross correlation is isotropic.

iv) The function r(-) : [0,00) — R attains maximum only at zero with 7(0) = p € (0,1),
i.e., [r(t)] < p for all t > 0. Moreover, we assume 7/(0) = 0,7”(0) < 0 and there exists

n > 0, for any s € [0,7], 7"(s) exists and continuous.

The cross correlation defined here is meaningful and common in spatial statistics where
it is usually assumed that the correlation decreases as the distance between two observations
increases (see, e.g., [GDFG10], [GKS10]). We only assume that the cross correlation is twice
continuously differentiable around the area where the maximum correlation is attained, which

is a weaker assumption than that in [CX14] who considered smooth bivariate Gaussian fields.



For any compact sets Ay, Ay C RV, we investigate the asymptotic behavior of the fol-

lowing excursion probability

]P’< max X1(s) > u, max Xo(t) > u), as u — 00. (2.1.2)
s€eAq teAq

The main results of this chapter are Theorems 2.1 and 2.2 below, which demonstrate that
the excursion probability (2.1.2) depends not only on the smoothness parameters of the
coordinate fields X7 and Xs, but also on their maximum correlation p. The proofs of
our Theorems 2.1 and 2.2 will be based on the double sum method. Compared with the
earlier works of [LP00], [Ans06] and [HJ14], the main difficulty in the present work is that
the correlation function of X7 and Xy attains its maximum over the set D := {(s,s) : s €
A1NAs} which may have different geometric configurations. Several non-trivial modifications
for carrying out the arguments in the double sum method have to be made.

This work raises several open questions. For example it would be interesting to study
the excursion probabilities when {X(t), ¢t € RV} is anisotropic or non-stationary, or taking
values in R? with d > 3. In the last problem, the covariance and cross-covariance structures
become more complicated. We expect that the pairwise maximum cross correlations and the
size (e.g., the Lebesgue measure) of the set where all the pairwise cross correlations attain
their maximum values (if not empty) will play an important role.

The rest sections in this chapter are organized as follows. Section 2.2 states the main
theorems with some discussions. We provides an application of the main theorems to the
bivariate Gaussian fields with Matérn cross-covariances introduced by [GKS10] in Section
2.3. We state the key lemmas and provide proofs of our main theorems in Section 2.4. The

proofs of the lemmas are given in Section 2.5.



2.2 Main Results and Discussions

We recall the Pickands constant first (see, e.g., [Pic69, Pit96]). Let x = {x(t),t € RV} be
a (rescaled) fractional Brownian motion with Hurst index /2 € (0, 1), which is a centered
(0%

Gaussian field with covariance function E[x(¢)x(s)] = [¢t|* + |s|* — |t — s]“.

As in [LP00] and [Ans06], we define for any compact sets S, T ¢ RV,

Hu(S,T) = /OOO e’ - P(itelg (x(®) = [t|*) > s, ig% (x(t) — [t]Y) > s) ds. (2.2.1)

Let Hy(T) = Ho (T, T). Then, the Pickands constant is defined as

H, = lim Ha([O’T]N)

AT TN (222)

which is positive and finite (cf. [Pit96]).
Before moving to the tail probability of extremes of a bivariate Gaussian random field, let
us consider the tail probability of a standard bivariate Gaussian vector (£, n) with correlation

p- It is known that (see, e.g., [LP00])
P > u,n>u) =Y(u,p)(1+o0(1)), as u — oo,

where

(1+p)* ( u? )
VU(u,p) = ——F———=exp | — .
() 2mu2/1 — p? L+p

The exponential part of the tail probability above is determined by the correlation p. As

shown by Theorems 2.2.1 and 2.2.2 below, similar phenomenon also happens for the tail



probability of double extremes of {X(t),t € RN }, where the exponential part is determined
by the maximum cross correlation of the coordinate fields X and Xo.

We will study double extremes of X on the domain A; x A9 where Aj, As are bounded
Jordan measurable sets in RY. That is, the boundaries of Aq and As have N-dimensional
Lebesgue measure 0 (see, e.g., [Pit96], p.105). We only consider the case when Ay N Ag # (),
in which the maximum cross correlation p can be attained.

If mesn(Ap N Ag) # 0, we have the following theorem.

Theorem 2.2.1. Let {X(t),t € RN} be a bivariate Gaussian random field that satisfies the

assumptions in Section 2.1. If mesn(A; N Ag) # 0, then as u — oo,

]P’(maxXl( ) > u, maxXg t) > )
SEAl 2

NN

@2

:(27T)7]§(—7“”(0)) %Cl Cy (2.2.3)

mesn (A1 N Az2)Hay Hoq

2 .2 2,2
~N(atay =D N tag—1)

x (1+p) U (u, p)(1 +o(1)).

If mesn (A1 N Ag) = 0, the above theorem is not informative. We have not been able to

obtain a general explicit formula in the general. Instead, we consider the special cases

N N
A1 = Al,M X H [Sj,Tj] and AQ = AQ,M X H {Tj, Rj], (2.2.4)
j=M+1 M+1

where Aq py and Ag py are M dimensional Jordan sets with mesys(Aq pr N Ag pr) # 0 and
S; <T; <Rj,j=M+1,...,N,0< M < N—1. For simplicity of notation, let mesg(-) = 1.
Our next theorem shows that the excursion probability is smaller than that in (2.2.3) by a

factor of uM .

Theorem 2.2.2. Let {X(t),t € RV} be a bivariate Gaussian random field that satisfies the

10



assumptions in Section 2.1, and let Ay, Ay be as in (2.2.4) with mespr(Ay pr 0V Ag pr) > 0.

Then as u — o0,

IP’( max X1(s) > u, max Xo(t) > u)

SEAl tEAQ
N N
M _2N-M 5= 55 2.2.5
— @02 (= (0) T T el Hoy Hoymesyy (Agag 0 Ag ag) (2.2.5)
IN-M-2N_2N N2 42 o
X (1+p) a1~ ay MG g, p)(1+ 0(1)).

Remark 2.2.3. The following are some additional remarks about Theorems 2.2.1 and 2.2.2.

e The excursion probability in (2.1.2) depends on the region where the maximum cross

correlation is attained. In our setting, the maximum cross correlation p is attained on

D :={(s,s) | s € AN As}.

e For Theorem 2.2.2, let us consider the extreme case when M = 0, i.e., Aj N Ay =
2
{(T1,...,Tn)}. The exponential part still reaches —ﬁ—p, although the maximum cross

correlation p is attained at a single point.

e To compare our results with [Ans06], we consider a centered Gaussian process {X(t) =
(X1(2),X2(t)",t € R} and Ay = Ay = [0,7]. In our setting, the cross correlation
attains its maximum on the line D = {(s,s) | s € [0,7]}, while in [Ans06] it only

attains at a unique point in [0, 7] x [0, T] because of the assumption C2. This is the

2

reason why the power of u in our settings is a1

+al2—3instead0fo%+a%—4in

[Ans06].

e Even though Theorem 2.2.2 only deals with a special case of Ay, As with mesy (A N
As) = 0, its method of proof can be applied to more general cases provided some

information on Ay and Asg is provided. The key step is to reevaluate the infinite series

11



in Lemma 2.4.5.

2.3 An example: positively correlated bivariate Matérn

fields

In this section, we apply Theorems 2.2.1 and 2.2.2 to bivariate Gaussian random fields with
the Matérn correlation functions introduced by [GKS10].

The Matérn correlation function M (h|v,a), where a > 0, > 0 are scale and smoothness
parameters, is widely used to model covariance structures in spatial statistics. It is defined
as
1—-v

M(h|,q) = i(y)

(a|h|)” Ky (alhl), (2.3.1)

where K, is a modified Bessel function of the second kind. In [GKS10], the authors introduce
the full bivariate Matérn field X (s) = (X1(s), Xa(s)) ", i.e., an R%-valued Gaussian random

field on RYV with zero mean and matrix-valued covariance functions:

Olh) = Cri(h) Cia(h) | (232)

Co1(h) Caa(h)

where C;;(h) := E[X;(s + h)X;(s)] are specified by

Cr(h) = ofM(hlvi,a1), (2.3.3)
Coa(h) = o3M(h|vy, az), (2.3.4)
Ci2(h) = Ca1(h) = poroaM(h|v12,a12). (2.3.5)

12



According to [GKS10], the above model is valid if and only if

201 2v
2 o Dlv + N/2)T(vp + N/2) D(v19)?  ay tay ?

B I'(v1)0(r2) Ly + N/2)2 4112
2 2\2v19+N
t 12
X inf (aly + 1) .
t>0 (a% + t2)V1+N/2(a% + t2)u2+N/2

(2.3.6)

Especially, when a; = ag = a9, condition (2.3.6) is reduced to

2 _ D+ N/2)0(vy + N/2)  D(v1p)®
N L (1)L (v) [z + N/2)%

(2.3.7)

in which case the choice of p is fairly flexible.

Here we focus on a standardized bivariate Matérn field, that is, we assume o1 = 09 = 1,
a1 = ao = ajg = 1 and p > 0. Moreover, we assume v, € (0,1) and vy > 1. In this case,
the bivariate Matérn field {X(t), t € RV} satisfies the assumptions in Section 2.1.

Indeed, Assumption i) in Section 2.1 is satisfied since

M (hlvi,a) = 1= cift|i + o [t[*"7),

where ¢; = ;51(1{(_#?)”) (see, e.g., [Ste99], p. 32). Assumption ii) holds immediately if we
7

use the following integral representation of M (h|v,a) (see, e.g., [AS72], Section 9.6)

2I'(v +1/2) [*°  cos(a|h|r)
M(h|v,a) = W/ﬂ mdr. (2.3.8)

Assumption iii) holds by the definition of cross correlation in (2.3.5). For Assumption iv),

we only need to check the smoothness of M (h|v,a). By another integral representation of

13



M (h|v,a) (see, e.g., [AST2], Section 9.6), i.e.,

. 21_2y(a|h|)2y o —alh|r,.2 v—1/2
M(hlv,a) = T T 1/270) /1 e (re—=1) dr,

one can verify that M (h|v,a) is infinitely differentiable when |h| # 0. Meanwhile, M” (0|v, a)
exists and is continuous when v > 1 which can be proven by taking twice derivatives to the
integral representation in (2.3.8) w.r.t. |h|. So Assumption iv) holds.

Applying Theorem 2.2.1 to the double excursion probability of X (s) over [0, 1]N , we have

IP( max_  Xi(s) >wu, max Xg(t)>u>

sef0,1)V tefo,1]V
N N
N _N 97 205 ~N(f 441
= (2m) 2 (~C15(0)) 7011/1 02V2 (1+p) s )H2y1H2u2

xu V1 V2 1)\I/(u,,o)(l—i-o(l)), as u — 00.

Secondly, when the two measurements are observed on two regions which only share part
of boundaries, we use Theorem 2.2.2 to obtain the excursion probability. For example, if

X1 (s) are observed on the region [0, 1]V and Xa(s) on [0, 1]V =1 x [1,2], then as u — oo,

]P( max__ X1(s) > u, max Xo(t) > u)
se[0,1]V te]0,1]V —1x[1,2]
N N
—1 _N+1 TS 1-N(-L4+ 1 4
= (2m) 2 (_0112( ) 2 01V102V2<1+P) (Vl "2 )H2V1H21/2

14



2.4 Proofs of the main results

The proofs of Theorems 2.2.1 and 2.2.2 are based on the double sum method [Pit96] and
the work of [LP00]. Since the latter deals with the tail probability P(maXtG[Tl,TQ] X(t) >
Uy MAXye [y 7y X(t) > u) of a univariate Gaussian process {X (t),t € R}, their method is
not sufficient for carrying out the double sum method for a bivariate random field.

The lemmas below extend Lemma 1 and Lemma 9 in [LP00] to the bivariate random
field {(X1(t), Xo(t)) ", t € RNV}, Moreover, we have strengthened the conclusion by showing
that the convergence is uniform in certain sense. This will be useful later for dealing with
sums of local approximations around the regions where the maximum cross correlation is
attained. The details will be illustrated in the proof of Theorem 2.2.1 (see, e.g., (2.4.10),
(2.4.21)). In the following lemmas, {X(t), t € RV} is a bivariate Gaussian random field as

defined in Section 2.1.

Lemma 2.4.1. Let s, and t,, be two RN _valued functions of u and let T, =ty — Sy. For

any compact sets S and T in RN, we have

IP( max X1(s) > u, max Xo(t) > u)

sEsu+u_2/alS tetu+u_2/0‘21f
1/aq 1/ag
_ (1+p)? I a4 S )y ¢ °T (2.4.1)
- 5 a1 2 a2 2 o
2my/1—p ar a5
(I+p)™ (1+p)2
2 u?
xu ?exp | ————— | (14 o0(1)),
p< 1+r<mr>) el

where o(1) — 0 uniformly w.r.t. 7, satisfying |7, < Cv/logu/u as u — oo.

Lemma 2.4.2. Let sy, ty, and 7, be the same as in Lemma 2.4.1. For allT >0, m,n € ZN,
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we have

IP( max X1(s) > u, max Xo(t) > u,
sesy+u—2/1 0,11V tety+u—2/22 0,71V
max X1(s) > u, max Xo(t) > u>
sesutu 2/ mT,(m+1)T) tety+u~2/ 2T, (n+1)7]
2 1 1
040 e (c/ o, TN ey, (m + 1>T])
on /1 — 22 1 2 2
2/ 1 —p“u (14 p)@l (1+p)o1
1/ag N lag
¢y 20,71 ¢/ *InT,(n+ 1)T]
X Ha2< 2 5 2 - (1+0(1)), (2.4.2)
(1+p)“2 (1+p)“2

where Hy(+,-) is defined in (2.2.1) and o(1) — 0 uniformly for all s, and t, that satisfy

70| < Cy/logu/u as u — oo.

Now we are ready to prove our main theorems.

Proof of Theorem 2.2.1. Let Il = Ay x Ao, §(u) = C'v/logu/u, where C is a constant whose

value will be determined later. Let
D={(s,t)€ll: |t —s| <d(u)}. (2.4.3)

Since

(.
<o

SE)JED{Xl(S) > u, Xo(t) > u)}) < P(;reli}i X1(s) > u, gi); Xo(t) > u)

U {X1<s>>u,X2<t>>u>})+P( U {X1<s>>u,xz<t>>u>}),
s,t)eD

( (s,£)ell\D
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it is sufficient to prove that, by choosing appropriate constant C', we have

P U (X0 > 000 > )

(s,t)eD
N N
N N &= &% _N(2 2 2.4.4
= (2m)Z (—"(0) ey 2 (1 p) 8 Vmesy (41 0 Ay) 240

2,2 4
X HoyHaogu aptag )‘If(u,p)(1+0(1)), as u — 00
and

P (Uppemoti(s) > w Xolt) > w}) nis

U—00 P (U(s,t)eD{Xl(s) > u, Xo(t) > u)})

_2
We prove (2.4.4) first. For any fixed T'> 0 and ¢ = 1,2, let d;(u) = Tu % and, for any

k= (k1,....ky) € ZV, define

) N
A 2 T lkydi(u). (kj + Ddy(u)] = [kdi (), Ok + 1)ds(w). (2.4.6)
j=1
Let
C={01): A x AP D £} and ¢©= {1 A x AP ey 247)

It is easy to see that

17



Thus the LHS of (2.4.4) is bounded above by

P U 156006 > 0 X0 > w})

(s,t)eD
< > ( max Xi(s) > u, max Xs(?) >U) (2.4.8)
khec Sseall real?

= ZIP’( max  Xi(s) >u,  max Xg(t)>u).

(kDec S sekdy (w)+al) teldy(u)+A %)

Let

Tk := ldo(u) — kdj (u)
(2.4.9)

= (lhda(u) — krdy(u), ..., Iyda(u) — kndi(u)).

For (k,1) € C, |mal < 6(u) + vV N(dqi(u) + do(u)) < 26(u) for all u large enough, since
di(u) = o(6(u)) and da(u) = o(d(u)), as u — oo. Hence, by applying Lemma 2.4.1 to the

RHS of (2.4.8), we obtain

(1+p)a2
u2
X exp| ———— 2.4.10
oy ) 2410
1/ N /o2 N
m”<1 0.7} )mg<2 = )wumu+w»
(1+p)°1 (14p)"2
ex —u2 ! !
><(k%:ec p{ (1+T(|Tk1\) 1+P>}’
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where the global error function y(u) — 0, as u — co. The uniform convergence of (2.4.1) in
Lemma 2.4.1 guarantees that the local error term o(1) for each pair (k,1) € C is uniformly
bounded by ~y(u).

The series in the last equality of (2.4.10) is dealt by the following key lemma, which gives

the power of the threshold u in (2.4.4).

Lemma 2.4.3. Recall the set C defined in (2.4.7). Let

By = Y exp{—u2<1+r1|7_kl|)—1ip>}. (2.4.11)

(k,)eC
Then, under the assumptions of Theorem 2.2.1, we have

h(u) = m)N2(—"(0) N2 (1 4 )N TP mes  (Ar 1 Ag)

2,2
X uN(O‘lJrO‘? 1)(1 +o(1)), as u— oo. (2.4.12)

Moreover, if we replace C in (2.4.11) by C° defined in (2.4.7), then (2.4.12) still holds.

We defer the proof of Lemma 2.4.3 to Section 2.5 and continue with the proof of Theorem

2.2.1. Applying (2.4.12) to (2.4.10), we obtain

P U 100> 0 X0 > w))

(s,t)eD
/ey N
N N 0,7
< (2m) 2 (=r"(0))" 2 (14 )N TN mesy (A1 N Ag)Ha, % (2.4.13)
(1+p)™
1/ag 0. TNV N2 2
X Hag M a8 g, p) (1 4+ 7 (),
(1+p)"2
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where vq(u) — 0, as u — oco. Hence,

P (Uspen{Xi(s) > u Xo(t) > u)})

lim sup

2,2
U—00 uN(a1+a2 1)\I/(u,p)
8o mon—3% N 2.4.14
< (2m) T (—r"(0) T (14 p)Nmesy (A1 N Ag) (24.14)
1/ay N 1/ag N
—2N gl [0> T] ) [07 T]
x T Ha1 5 Ha2 B
(14 )71 (1+p)72

The above inequality holds for every T" > 0. Therefore, letting 7" — oo, we have

P (Usgen{Xi(s) > u Xo(t) > u)})

lim sup I < (2m) 2 (=r"(0)) 2
NN CN(242
x e Ley? (14 p) Nt tas 1)mesN(A1 N Ag)Hay Hay. (2.4.15)

On the other hand, the lower bound for LHS of (2.4.4) can be derived as follows. Let
B={(k1¥X.1): (k1) #¥.1), (k1)K 1) ec}. (2.4.16)

By Bonferroni’s inequality and symmetric property of B, the LHS of (2.4.4) is bounded below

by

(U 000> x> 0}

(s,t)eD

> Yy 1@( max Xi(s) > u, max Xg(t)>u)

TN teal?
1
~5 Z IP’( max Xi(s) > u, max Xo(t) > u, (2.4.17)
(k,Lk' 1)eB SGAS) teA@
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max Xi(s) >u, max Xo(t) > u)

SEAS,) teAE,Q)

2% -3,

Since C° and C are almost the same, a similar argument as in (2.4.10)~ (2.4.15) shows that

31 is bounded from below by

1/ N
N N /10, 7]
" N —2N 1 ’
£1 2 (2m) T (—(0)) 2 (1 + p)V mesy (Ay 1 ATV gy [ 21
(14 p)™
1/ag N
¢y 710,77 N(Z+2 -1
X Hay | 22— | T2, p) (1 = 9a(w), (2418
(14 p)“2
where yo(u) — 0, as u — o0o. Hence, letting T — oo, we have
N N
) N N & 55
lim inf 55— 1 > (27) 2 (—"(0)) 70?1 052
U—r00 N(07+07_1)
w22 U (u, p) (2.4.19)
CN(242
x (1+p) Nt tag 1)mesN(A1 N Az2)Hay Hay-

Next, we consider Yo in (2.4.17). To simplify the notation, we let

I(k,1,¥.1) ::IP’( max Xi(s) >wu, max Xo(t) > u,
seA(l) teA(Q)
k 1
max Xi(s) > u, max Xo(t) > u)

SGAS) teAf,Q )

Form = (myq,...,my) € ZV, let

Hoc(m) 2 Hy,

)

(Cl/a[o,T]N HmT, (m + 1)T]) . (2.4.20)

1+p)a (149

2
@
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Rewriting o and applying Lemma 2.4.2, we obtain

1 ! q/
ey X (X 4 X ¢ X k)
kDeC * Ve Ve (K )V)e
K=k V#l K+#kV=1 K#kI'#l

2

(1+p)*(1 + 73(u Z T () ( 3 /

= € k1 Hal cl ) %a2702 (l — l)
Amy/1 = p?u? (k,])eC

(k' 1)ec
K/ =k, I/#1
+ Ha2’02 (O) Z Halacl (k/ - k) + Z %al,cl (k, - k)HO{2’62 (l/ — l))
(k" 1)ec (' 1)eC
K +k,I'=1 K/ £k I £l

2
1+p)%(1
§< +p)( +73 Z e 14 ‘Tk1| (Hal,cl(O)ZHO‘QaCQ(n)

Amy/1 = p? (k1)eC

+ Hageg(0) D Hagey(m)+ D Hal,cl(m)HQQ,cz(n)), (2.4.21)

where y3(u) — 0, as u — oo. According to the uniform convergence of (2.4.2), the local
error term o(1) for each pair (k/,1') € C is bounded above by v3(u) . To estimate Hq c(+),

we make use of the following lemma, whose proof is again postponed to Section 2.5.

Lemma 2.4.4. Recall Ho () defined in (2.4.20). Let ig = argmax;<;<y|m;|. Then there

exist positive constants C1 and Ty such that for all T > T,

Ha(0) < O TV (2.4.22)
N1

Ha,e(m) < CI1T7 2, when [m; | = 1; (2.4.23)
ON _817(‘ igl~ DT

Heoe(m) < C1T*Ve 8( +0)? , when [m;| > 2. (2.4.24)
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Consequently,

No1
> Haelm) <72 (2.4.25)

Applying Lemmas 2.4.3 and 2.4.4 to the RHS of (2.4.21), we obtain

5 < 00(1+P)2(1+73(U))T : 2

e 5 ()
N 47t/ 1 — p2u? L+ 7(|mal)

(k,))eC

—_

(1+ p)Vmesy(A; N AT~ 2

o ATt ar Vg ) (14 ya(u), (2.4.26)

where y4(u) — 0, as u — oco. By letting u — oo and T" — oo successively, we have

by
lim sup I 21 = 0. (2.4.27)
v Nartay Yy, p)
By combining (2.4.17), (2.4.19) and (2.4.27), we have
P (UpnentXi(s) > u Xo(t) > w)})
pat MZrZ
sy, p)
D) by
> lim inf L — lim sup 5 2 (2.4.28)

i 2,2
U—00 uN(Oq_'_OéQ 1)\If(u,p)

N N
(0%

N -3 a1
2(=r7(0)) Zep ey (14 p)

2 2
> (2r) “Naytay b

It is now clear that (2.4.4) follows from (2.4.15) and (2.4.28).

Now we prove (2.4.5). Define
Y(s,t) := X1(s) + Xa(t), for (s,t) € II\ D. (2.4.29)
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For x = (s1,11),y = (s9,t9) € I\ D, let |x — y| = \/|s1 — 2|2 + |t1 — t2|2. Then we can
verify that

ElY (z) — Y(y)|? < Cplo — y/™0(@1:02) v y € 1T\ D. (2.4.30)

By applying Theorem 8.1 in [Pit96], we obtain that the numerator of (2.4.5) is bounded

above by

IP’< U {X1(s) > u, Xo(t) > u)}) <P ( max Y(s,t) > 2u>
(s,)2\D (s,t)elI\D
2N 2

<chd4+mmwbw)wp - “ : (2.4.31)
- 1+ max(s pemp (|t — s])

Since r(|t — s|) = p + 17""(0)|t — 5]2(1 + o(1)) and 7(-) attains maximum only at zero, we

have

1

t—sl) < p—~(—="(0))6*(u 2.4.32
el =) < p = 5(r"0)62) (2.432)
for u large enough. So (2.4.31) is at most
Q42N 2
Cou +min(a1,o¢2) exp u
1
1 +p—5(=r (
< C u_1+min(205\1[?a2) exp u? ) (U)U2 (2.4.33)
> 00 1 +p 4.
IN
27‘(‘\/ 1-— C() 1—’_mln (a1,29) (1+p) ( p)
u+m

where the inequality holds since x—ly > % + ;yZ,V:U > y. Compare (2.4.33) with (2.4.4), it is



easy to see (2.4.5) holds if and only if

2N —"(0) o 2 2
1 — C Nl—+—-1 2.4.34
* min(ag, ag)  3(1+ p)2 = ( + ) ( )

Hence, by choosing the constant C' satisfying

2
“= {3(—1;(8; <N<min(jl,042) e 0% - 0432) " 1)

we conclude (2.4.5). O

1
2

, (2.4.35)
_|_

Proof of Theorem 2.2.2. From the proof of Theorem 2.2.1, we see that the exponential de-
caying rate of the excursion probability is only determined by the region where the maximum

cross correlation is attained. In the case of mesy (A1 N Ag) =0 but A; N Ay # (), the expo-

u2

nential part, e 117, remains the same. Yet, the dimension reduction of A; N Ay does affect

the polynomial power of the excursion probability, which is determined by the quantity

hw) = exp{‘“2<1+r1\fk11)_1ip>}

(k,))eC

in Lemma 2.4.3. Under the assumptions of Theorem 2.2.2, the set C and the behavior of

h(u) change. We will make use of the following lemma which plays the role of Lemma 2.4.3.

Lemma 2.4.5. Under the assumptions of Theorem 2.2.2, we have

h(u) = 20) M2 (" (0)MP2N (14 )N =M 72N ey (Ay ar 0 Ag ar)

MAN(Z+2 -
u

X R )(1 +o0(1)), as u — oo. (2.4.36)
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Moreover, if we replace C with C° defined in (2.4.7), then the above statement still holds.

The rest of the proof of Theorem 2.2.2 is the same as that of Theorem 2.2.1 and it is

omitted here. ]

2.5 Proof of Lemmas

For proving Lemma 2.4.1, we will make use of the following

Lemma 2.5.1. Let s, and t,, be two RN _valued functions of u and let T, := ty — Sy. For

any compact rectangles S and T in RV, define

Eu(s) == u(Xq(sy + u_2/0‘15) —u)+x, VseES,

Nu(t) == u(Xo(ty + u_2/a2t) —u)+y, VteT (2.5.1)

and for any t € RV, let

a1
1+p’

colt|*2
1+p’

£(t) = vern(t) (2.5.2)

n(t) == /caxa(t)
where x1(t), xa(t) are two independent fractional Brownian motions with indices a1 /2 and
ao/2, respectively. Then, the finite dimensional distributions (abbr. f.d.d.) of (&u(-),nu(+)),
given X1(sy) =u—2, Xo(ty) = u— 2, converge uniformly to the f.d.d. of (£(-),n(-)) for all

sy and ty, that satisfy |m,| < Cv/logu/u. Furthermore, as u — oo,

x Y
P >z, t) > ‘X =u——, Xo(ty) =u——
(max6uts) > wmana(®) > | X1(su) = u— 2. Xa(t) =~ )

— P(réleagg(s) > m,rggﬂgcn(t) > y), (2.5.3)
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where the convergence is uniform for all sy and ty, that satisfy |7,| < Cy/logu/u.

Proof. First, we prove the uniform convergence of finite dimensional distributions. Given
Xi(su) =u—2, Xo(ty) = u— %, the distribution of the bivariate random field (&,(-), 7u(-))
is still Gaussian. Thanks to the following lemma (whose proof will be given at the end of this
section), it suffices to prove the uniform convergence of conditional mean and conditional

variance.

Lemma 2.5.2. Let X(u, ) = (X1(u,7), ..., Xn(u, 7)) be a Gaussian random vector
with mean p(u,7y) = (1 (W, 7)oy pin(u, 7)) T and covariance matriz X(u, 7,) with entries
0ij(u, Tu) = Cov(X;(u, Tu), Xj(u,7u)), 0,5 = 1,2,...,n. Similarly, let X = (X1,... X)) T
be a Gaussian random vector with mean = (p1, ..., in) and covariance matricz ¥ = (Uij)?,jzl‘

Let Fyu(-) and F(-) be the distribution functions of X (u,,) and X respectively. If

Jim max | (u, ) = w5l =0,

ulggo H%X 0 (u, 7u) — 035l =0, i,5=1,2,...,n, (2.5.4)

then for any x € RV,

lim max |Fy(z) — F(z)| = 0. (2.5.5)

U—00 Ty

We continue with the proof of Lemma 2.5.1 and postpone the proof of Lemma 2.5.2 to
the end of this section. Recall that, for two random vectors X,Y € R"" their covariance is
defined as Cov(X,Y) := E[(X — EX)(Y —EY)'] and the variance matrix of X is defined

as Var(X) := Cov(X,X). The conditional mean of (&,(t),n,(t)" given Xi(sy) = u —
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7, Xo(ty) =u— 2, is
E Eult)
Uu(t) %
-1
+ Cov Eult) | X1(su) ar X1 (s0) "
Mu(t) Xo(tu) Xo(ty) u—

—u? u r11(su + u_2/a1t, su) (T — u_2/0‘1t])
= +Tjﬁmﬂ5 ) 2
(|7 +u” /a2t]) ooty + u” Jagg, te)

Lk IR

—ul 4y

X( 1 mmn>(ug)

rllml) 1 -t

- ( " ) ’ (2.5.6)
as(u)

where
oy () = - PO (s T/ su)) — e (r(fra — w7 = r(irul)
1 1+ (7))
(@ — yr(|7ul)) (1 = 711 (50 + w2/t 5,))
1—72(|7)
(y — 2r(|7u]) (r(|7u]) = r(|7 — u=2/1¢]))
+ 1_ T2(|Tu\) (2.5.7)

and

agf) = — L= roatu w72/ b)) = w(r(r w202t = r(|ral)
L+ r(|7ul)
L W ar(rul)) (L = raa(tu + w201 1,)
1= r2(|mul)
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L = yr(r))(r(7ul) = rlimu + U_Z/O‘%D).

2.5.8
1= 2 (fm) (255
Applying the mean value theorem twice, we see that for u large enough,
rlr+ a0 = r(ml)l < a2 max ' (s)]
s is between
|| and \Tu+u_2/at|
< |u_2/at| . max ' (s)]
|s|<2C/logu/u
< |u_2/at| . max |s| - max | (t)]
|s|<2CV/logu/u [t]<]s]
< 2Ct[v/logu - y -2/, max ' (t
4 \tISQC\/@/u| Wl
< AC|"(0)[|t|\/Tog u - w12/, (2.5.9)

where the second inequality holds because of u=2/® = o(y/Tog u/u), as u — oo and the last
inequality holds since r”/(+) is continuous in a neighborhood of zero. Thus (2.5.9) implies

that, as u — oo,

Clr(Jmy 4w 2)) — r(|ru)| < 4C1" (0|t Tog u - u! =2/ — 0, (2.5.10)

where the convergence is uniform for all s, and ¢, that satisfy |7, < Cv/logu/u. We also

notice that for s = 1,2 and all s € RN,

1 —ry(s+ w20, s) = ciu"2[t]% + o(u™?), as u — oo. (2.5.11)
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By (2.5.6), (2.5.10), and (2.5.11), we conclude that, as u — oo,

p| @@ | Xl =u=g ) _Clﬂjl (2.5.12)
mlt) | Xolt) =u—1 -3

where the convergence is uniform w.r.t. s, and ¢, satistying |7,| < C/logu/u.

Next, we consider the conditional covariance matrix of (&,(t) — &u(s), nu(t) — nu(s)) .

Eu(t) = uls) X1(su)
Var

Mu(t) = Nu(s) Xo(tu)

o ( Eult) — €uls) ) e (( 6ult) — €uls) ) | ( X (s ))

Mu(t) = 1u(s) Mu(t) = 1u(s) X (tu)
1 T
ovar [ O [ [ S TEE b . (25.13)
Xo(tu) Nu(t) — Nu(s) Xo(tu)

Let hy(t,s) :=r(|7y +u=2/%2t — u=2/%15|). Applying (2.5.10) and (2.5.11), we obtain

( Eult) — Euls) )
Var
nu(t) - TIu(S)

2U2<1 —r11(sut u2(hu(t7t) — hu(s,t)
w2/t S, Sy + u*2/0‘1t)) —hy(t,s) + hy(s, s))

w2 (hy(t, ) — hy(s,t) 2u%(1 — rog(ty+
—hu(t, s) + hu(s, s)) —2/025 ¢, + u—2/2t))
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_ ( 2cq|t — s|*1(1+0(1)) o(1) ) (25.14)

o(1) 2co|t — 5]*2(1 4 o(1))

where o(1) converges to zero uniformly w.r.t. 7, satisfying |7,| < Cv/logu/u, as u — oo.

Also, we have

Con Eu(t) — &uls) X1 (su)
Mu(t) = 1u(s) Xo(tu)

wlrin(su+u=2/01su)  u(r(fm —u/01e))
—r11(su+ w05 s0)) (| —um0s])
U(r(|7_u +U_2/062t|) U(TQQ(tu +U_2/a2t,tu)
—r(l7u +u/02))) —raa(ty +u” 25, 1)
o(1) o(1)
- ’ (2.5.15)
o(1) o(1)
as u — 00, and
-1
X u 1 . 3
var| O S D) e
-T Tu
X2{t) —r(lrul) 1

By (2.5.13) — (2.5.16), we conclude that as u — oo,
uwl(t) —&u X1 (s 2cq|t — 5|1 0
Var Eu(t) — uls) ‘ 1(su) . cift — s| @51
Mu(t) = 1mu(s) ) Xo(tu) 0 29[t — 5|2
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where the convergence is uniform w.r.t. 7, satisfying |7,| < C'v/logu/u. Hence, the uniform
convergence of f.d.d. in Lemma 2.5.1 follows from (2.5.12), (2.5.17) and Lemma 2.5.2.

Now we prove the second part of Lemma 2.5.1. The continuous mapping theorem (see,
e.g., [Bil68], p. 30) can be used to prove (2.5.3) holds when s, and ¢, are fixed. Since we

need to prove uniform convergence w.r.t. s, and t,, we use a discretization method instead.

Let
flu,z,y) = P(Igggéu(S) >z, maxnu(t) >y ’
X1 (s0) = u — g Xo(ty) = u — %) (2.5.18)
and
flz,y) = P(I;leaécﬁ(s) > x, rtne%l}“(n@) > y). (2.5.19)

Without loss of generality, suppose that S = [a, b]N and T = [, d]N , where a < b,c < d. For

any 6 € (0,1), let m = V%“J, n= Ld%CJ and let

Sm = {Sk | Sk = (:Bkl, ey :EkN), k = (/{51,...,]{3]\[) S {0,1,...,m+ 1}N},

7;1 = {tl | ] = (yll’ ey le>, 1= (ll, ,lN) € {0, 1,...n+ 1}N},
where z;,y; are defined as

a=x0<21 < <Tm <Tyg1 =0, v;=a+1i0,0=0,1,...,m,

c=y<y1 < <Yn<yp+1=d, yy=c+1i6,i=0,1,...,n. (2.5.20)
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Then [a, b x [¢,d]N can be divided into d-cubes with vertices in Sy, x Tr,.

The function f(u,z,y) in (2.5.18) is bounded from below by

SESm

fona5.9) = B s 64(5) > o, () > v |
teTn

X1 (s0) = u — g Xo(ty) = u — %) (2.5.21)

and is bounded from above by g n(u, x,y) which is defined as

xXr
Xl(su) =u-— E7X2(tu> =Uu-— %)

IP( max &, (s) > x — €, in%x_xnu(t) >y—e€

s€ESm E'/n

+P(max§u(s) > x, max Euls) <x—e¢

X1(sy) =u— g,Xg(tu) =u— Q)

seS seSm, U
T Y
+ P maxn,(t) >y, maxn,(t) < —E‘X Sy) =u——, Xo(ty) =u—=
(1mgenat0) > v () < v = e Xasu) = = 2 Xo(t) = ¥ )
2 frn(u,x — €y —€) + smn(u,x,y) + tmn(u, z,y), (2.5.22)
where € > 0 is any small constant. Let
fmn(z,y) = IP’( max {(s) > z, maxn(t) > y) (2.5.23)
s€Sm teTn

Since the finite dimensional distributions of (&,(+),n,(+)) converge uniformly to those of

(€(+),n()), we have

lim max fmn(u,z,y) — fmpn(z,y)| = 0. 2.5.24
S o 2,0) = ) (25.24)
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The continuity of the trajectory of (£(-),n(-)) yields

i fnn(e,y) = f(z,). (2.5.25)

m—o0
n—oo

By (2.5.24) and (2.5.25), we conclude

lim lim max Imn(u,z,y) — f(z,y)] = 0. 2.5.26
o By T P = D) e

Let us consider the conditional probability sy, n(u,z,y) in (2.5.22).

Sm,n(u7 x, y)

Xi(sy) =u— g, Xo(ty) =u— ¥ )

u

< ]P’( max |&u(s) — &u(t)]| > €

|s—t[<d

<lg ( max [€u(s) — Eu(t)] ‘Xl(su) —u— % Xo(ty) = u — Q)

€ |s—t|<o U

1
= EEPU(BIEﬁ)é&‘x(S) - x(t)]), (2'5'27)

where P, is the probability measure on (C(S), B(C(S)) defined as

Py(A) = P(gu(-) cA ] X1(50) = u — g,xg(tu) —u— % )

for all A € B(C(S)) and z(-) is the coordinate random element on (C(S), B(C(S)), Py), i.e.,

z(t,w) = w(t), Yw € C(S) and t € S. Consider the canonical metric

1/2

dus, 1) : = [, (12(5) = 2(t)) |

= [ (l6u(e) ~ €02 | Xalo) =u— £ Xp(ta) =u - £)]

u
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By (2.5.17), we have

du(s,t) < 2y/c1ls — t|*1/2 (2.5.28)
2
for u large enough and all sy, t, such that |7,| < Cv/logu/u. If we choose v = (2\6@> “r

then dy(s,t) < e for all t,s € S with |t — s| < 7. Hence
Ny, (S, ) < Ce 2N/o1, (2.5.29)

where Ny, (S, €) denotes the minimum number of dy-balls with radius € that are needed to

cover S. By Dudley’s Theorem (see, e.g., Theorem 1.3.3 in [AT07]) and (2.5.28), we have

2Vﬁi6a1/2
Ep, ( s |z(s) — :c(t)|) < K/O \/mde, (2.5.30)

where K < oo is a constant (which does not depend on ¢) and, thanks to (2.5.29), the last
integral goes to 0 as 0 — 0 (or, equivalently, as m — co,n — 00). By (2.5.27) and (2.5.30),

we conclude that

lim limsup max s u,z,y)| = 0. 2.5.31
P sty ) 2530

A similar argument shows that

lim limsup max tmn(u, z,y)| = 0. (2.5.32
e B < V) )

Since

’f(u,$,y> - f(xay)| S ‘fmm(u,%,y) - f(x,y)\ + |gm,n(u,$,y> - f(:v,y)\

< fmn (w2, y) = f(@9)| + [fmn (v, 2 — €y —€) = f(x =€,y — €|
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+f(x—ey—e€) — flz,9)| + [smn(u, z,y)| + [tmn(u, z,v), (2.5.33)

we combine (2.5.26), (2.5.31) and (2.5.32) to obtain

1' y Ly - 5 S - G - - )
liggs;p|Tu‘§én;f;@|/u\f(u:vy) fy)| < |flxr—ey—e€) — flz,y)

+ lim limsup max <|f w2, y) = f(x,9)] + [smn(u,z,v)|
TTrLljgg u—00 |7y |<Cy/logu/u mn |+ [sm,n

(s, )|+ | (0, = €y =€) = fl@ = €.y = )]

= ’f(l'—E,y—E)—f(SC,y)l.

Since the last term — 0 as € | 0, we have completed the proof of the second part of the

lemma. O]
Now we are ready to prove the main lemmas in Section 3.

Proof of Lemma 2.4.1. Let ¢(a,b) be the density of (X7(sy), XQ(tu))T, ie.,

2 2
é(a,b) = L exp {—la — 2r(|rul)ab+b } . (2.5.34)

2m/1T— r2(|r) 2 1—r2(|rl)

By conditioning and a change of variables, the LHS of (2.4.1) becomes

IP’< max X1(s) > u, max Xo(t) > u)

sEsu+u_2/alS tetu—i—u_Q/O‘ZT
= / IP’( max X1(s) > u, max Xo(t) > u ‘ X1(su) =u— f,

R s€5u+u72/0‘1§ tetu+u72/o‘2’]1‘ u

Xo(ty) =u— y)qb(u - E,u - y)u_dedy
u u u
! e ( v ) £, 2,9)8(u, 2, y)dad (2.5.35)

= XP\ —~ 77V~ U, T,y u,r,y)aray, s

2m/1 — r2(| 7| u? L+r(lmul) ) Jr2
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where f(u,z,y) is defined in (2.5.18) with &,(-), 7y (-) in (2.5.1), and where

¢(u’ x? y)

=on{ - T (2=l - i)}

Since Max - <o flogu/u |7(|Tu]) — p| — 0 as u — oo, it is easy to check that

~ +y

s
max d(u,x,y) —eltr

|7 |<Cvlogu/u

— 0, as u — oc.

(2.5.36)
Recall Hq(+) in (2.2.1) and f(z,y) in (2.5.19). Since £(-), n(-) are independent, and

2

{g(t),teRN}i{(1+p)[><1((1\/+c_1p>“1t>— (1€>Oztal},teRN ,
{n(t)teRN}ﬁ{(1+p)[xg((1\/i)c“22t)— (1\/?/))&2%%},156@ ,

where = means equality of all finite dimensional distributions, we have

oty
/R? f(x,y)elTrdedy

x Y
:/61+PIP’<maX§(S) >x>dm/ 61+P]P’(maxn(t) >y>dy
R seS R

teT
1/oz1S 1/a2T
— (14 p)?Ha, (61—2>Ha2 (02—2> (2.5.37)
(1+p) (1+p)2

By (2.5.35) and (2.5.37), to conclude the lemma, it suffices to prove

- oty
f<u7 Z, y)¢(u7 L, y) - f(ZE, y)e I+p

lim max
U—=0 JR2 |7y | <Cv/Iogu/u

dxdy = 0. (2.5.38)
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Firstly, applying Lemma 2.5.1 together with (2.5.36), we have

B 4y
max flu,z,9)du, z,y) — fla,y)elTP| =0, as u — oo. 2.5.39
|Tu|<Cv/log u/u ( i )= Itny) ( )

Secondly, as in [LP00], we can find an integrable dominating function g € L(R?) such that

for u large enough,

T+Y

Wy flu2,9)o(u, 2, y) — [z, y)e TP | < g(z,y). (2.5.40)

Therefore, (2.5.38) follows from the dominated convergence theorem. This finishes the proof.

]

Proof of Lemma 2.4.2. We first claim that for any compact sets S and T, the identity
holds. Indeed, if we let X = sup;es(x(t) — [t|*) and Y = super(x(t) — |£|%), then

Ho(S) + Ho(T) — Ho(SUT) = E(e¥) + E(e¥) — E(emax(XY))

=E(eXlxoyy) T E( 1 xsyy) = E(e™Y)) = H,y(S,T).

Now let T1 = [0, 7], Ty = [mT, (m + 1)T] and T3 = [nT, (n + 1)T]. Consider the events

A= max Xi(s)>up, B= max X1(s) >u p,
s€sy+u~2/1Ty s€sy+u 2/ 1Ty

C= max Xo(t)>up, D= max Xo(t) > u
tety+u— 22Ty tety+u~2/02T,
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It is easy to check that the LHS of (2.4.2) is equal to

P(AnBNCND,)
=[P(ANC)+P(BNC)—-P(AUB)N(C)]
+[P(AND)+P(BND)—-P((AUB)ND)]

— [P(AN (C U D)) +P(BN(CUD)) —P((AUB) N (CUD)). (2.5.42)

2 2 2/a
Let R(u) = _(4p)” -2 ( “—) and gq,c = (1+0)% . By Lemma 2.4.1, we have

u “exp | — A
o /1—p2 1+r(|mu) Cl/a

P(ANC) = R(u)Ha, <£> Hay ( b ) (1+7(w),

Qal,cl

P(BNC) = R(u)Hq, <&> Ha, ( & ) (1 472(u)),

Qal,q

where, for i = 1,2,3, v;(u) — 0 uniformly w.r.t. 7, satisfying |7,| < Cv/logu/u, as u — co.

These, together with (2.5.41), imply

P(ANC)+P(BNC)—-P((AUuB)NC)

:R(u)Ha2< T )Hal( T T )(1+0(1)). (2.5.43)

dag,co aq,er dag,eq

Similarly, we have

P(AND)+P(BND)—-P(AUB)ND)

:R(U)HQQ( s )HOq( T T )(1+0(1)) (2.5.44)

daq,cp Goaq,cq
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and

P(AN(CUD))+P(BN(CUD))—P((AUB)N (CUD))

= R(u)Ha, (Tl UT?’) Ha, ( T T ) (1+o(1)). (2.5.45)

dog,co dogseq dagseq

By (2.5.42) — (2.5.45), we have

P(AnBNCND,)

:R(U)Hoq< o ; b )HaQ,CQ <i’ & >(1+0(1))»

daq,c1 Gaq,cq dag,co dag,co

which concludes the lemma. O

Proof of Lemma 2.4.5. Let f(|t|) = Recall 7 defined in (2.4.9) and |ng| < 26(u),

1
14+r(Jt]) "

when u is large. By Taylor’s expansion,

F(Imal) = £0) + 5 7" Olnal (1 + a(w),

/!
where f(0) = % 17(0) = (1: (;)2) and, as u — 00, Y] (u) converges to zero uniformly w.r.t.

all (k,1) € C. Therefore, for any € > 0, we have

> e 3" O+ Inal® < ¥ 31O 1= |ngl? (2.5.46)
(k,)eC (kDeC

when u is large enough. For a > 0, let

2 2
h(u,a) := Z e~ Inal”, (2.5.47)



In order to prove (2.4.12), it suffices to prove that

N
lim o d (w)dd (w)h(u, a) = (g) 2 nesy(Aq N Ag). (2.5.48)

U— 00

To this end, we write

uNd (u)d) (w)h(u, a)

N “udo (1) —k ;udy (u))?
- L SRR g )N ). (@25.49)
Uk ec
Let

1 _ Cali—sl2

plu) =5 D min e (udy (1) (udy ()Y,
(k,))eC (s,t)GuAf{ ) qu§ )

1 2
aw)=—x > max e (udy ()N (ud ()

Y (k,)eC (s,t)euAl({ ) quf )

It follows from (2.5.49) that

plu) < uNd) (w)d) (u)h(u,a) < q(u), (2.5.50)
and
< —alt=sl” g5 < 2.5.51
p(U) - U_N seudy teudy € tds < q(u) ( 9.5 )
[t—s|<C+/logu

Observe that

1 —alt—s|? 1 —ajz|?
u_N//SEUAl,tEUAQ e~ dtds = ulN | JyeuAy ztycudy el dxdy
[t—s|<C+/logu |z] <C/logu
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1

2
_ 1 e—aiwdx/ L cuds (e
uN Ji<oyiogu RN EuAIN(udg—x)}

2
. e~ all das/ 1 N dz
/:E|§C’\/@ RN (Z€AIN(Ag—z/u)}

N
2 —
— mesy (A1 N Ag)/ e~ gy = <z> 2 mesy (A1 N Ap), (2.5.52)
RN a

as u — 00, where the convergence holds by the dominated convergence theorem. Indeed,
Jpv 1 cAyn(Ay—z/u)}dz is bounded by max, .y mesy (A1 N (A2 — €)) uniformly for |z| <
C+/log u when u is large enough.

It follows from (2.5.50)—(2.5.50) that, for concluding (2.5.48), it remains to verify
D(u) == q(u) — p(u) — 0, as u — oo. (2.5.53)

Define

~

D= {(s,t) € Ay x Ay |t — s| < d(u) + VNdy (u) + \/NdQ(m}. (2.5.54)

By the definition of € in (2.4.7), we sce that D C [y 1)ec Al((l) X A§2) C D. Since d(u) =
o(0(u)) and da(u) = 0(d(u)) as u — oo, the set D is a subset of D := {(s,t) € A} x Ay :
|t —s] <26(u)} when u is large.

Write D(u) in (2.5.53) as a sum over (k,1) € C. To estimate the cardinality of C, we

notice that

meSQN(ﬁ) = //GA e 1{|t—s|§26(u)}d5dt (2.5.55)
seAaq, 2

_ / / dydz < K §(u)", (2.5.56)
rl<25(u) Jye Ay —a)
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for all u large enough, where K = 2N +17xN/2p—1(N/2) max|| <1 mesy(A1N(Az—¢)). Hence,

for large u, the number of summands in (2.5.49) is bounded by

mesay (D) < Ko(u)N

k1) | (k,])eC} < = '
#{(kD) [ (k1) €C} meson (AL x AP dY ()} (w)

(2.5.57)

—ZT

Next, by applying the inequality e™* —e ¥ <y — z for y > x > 0 to each summand in

D(u), we obtain

—alt—gl2 o]
€a|t sl 6a|t s|

max min
(s,t)euAl((l) quP) (s,t)euAl((l) quF)

<a max It —s)? — min It — s|?
(s,t)euAl({l) XuA§2) (s,t)EuAl({l) qu%Q)

= amax ([t — s| + [t1 — s1]) (|t — s| — [t1 — s1]), (2.5.58)

where the last maximum is taken over (s,t,s1,t1) € uAl(j) X uAfQ) X uAl({l) X uA}Q)
Since |t — s| < 20(u) for all (¢,s) € uAl({l) X uA%Q) when w is large, the inequality

||t — s| = [t1 — s1]| < [t — t1] + |s — s1| implies that (2.5.58) is at most
4aV/Nu?5(u) (dy (u) + do(u)) (2.5.59)

when w is large enough. By (2.5.59) and (2.5.57), we can verify that

U N
D(u) < ! %&Lmu%(u)(dl(m + da(u)) (udl(u))N(ud2(u))N
dy’ (u)dy (u
< C (logu)TJrl(ul_o‘l1 + ul_o‘%) — 0, as u— oc.
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Therefore (2.5.48) holds. Similarly, we can check that the same statement holds while chang-

ing the set C to C°. m

Proof of Lemma 2.4.4. Inequality (2.4.22) holds immediately by Lemma 6.2 in [Pit96]. Hence
we only consider the case when m # 0. Suppose that {X(t),t € RN} is a real val-
ued continuous Gaussian process with E[X (¢)] = 0 and covariance function r(¢) satisfying
r(t) =1 — [t|* + o(]t|*) for a constant « € (0,2). Applying Lemma 6.1 in [Pit96], we see

that for any S > 0,

IP’< max X(t) > u, max X(t) > u)
teu—2/)0,5)N teu2/¥mS,(m+1)8]

— IP( max  X(t) > u) +IP>( max X(t) > u)

teu—2/)0,5)N teu=2/*mS,(m+1)8]

— IP’( max X(t) > u))
teu=2/([0,5)NU[mS,(m+1)S])

— (Ha([o, SINV) + Ho(ImS, (m +1)8]) — Ha ([0, 8]V U [mS, (m + 1)5]))

L2
X 27me (14 o0(1))
_1,2
= H,([0,5)Y, [mS, (m + 1)9)) ——c 2 (1+0(1)), as u— oo, (2.5.60)

where the last equality holds thanks to (2.5.41).
On the other hand, by applying Lemma 6.3 in [Pit96] and the inequality infse[o,l] N tefmmet]

|s —t| > [m,| — 1 (recall that i is defined in Lemma 2.4.4), we have

IP( max X(t) > u, max X(t) > u)
teu2/a[0, 5N teu™2/mS,(m+1)S]

1 _1,2 1
< CpSHN —— 72" exp <—§(|mi0| - 1)@5@) (2.5.61)

2mu

44



for all u large enough. It follows from (2.5.60) and (2.5.61) that

1
Ho([0, 51V, [mS, (m + 1)S]) < G52V exp (—§<|mi0| - 1)@5@) | (25.62
which implies (2.4.24) by letting S = _d/er_
h (1+p)2/@"

When ]mi0| = 1, the above upper bound is not sharp. Instead, we derive (2.4.23) in
Lemma 2.4.4 as follows. For concreteness, suppose that g = N and mpy = 1. By applying

Lemmas 6.1 - 6.3 in [Pit96], we have

IF’( max X(t) > u, max X(t) > u)
teu2/a[0 5N teu=2/mS,(m+1)S]

max X(t) > u)

9,(mj+1)S]x[S,5+V/5))

<(
t€u72/0‘(1_[§\7:711 [m
+ IP( max X(t) > u, max X(t) > u)
teu—2/2[0,5)V teu—%wnﬁi 1 m8.(mj+1)S]x[S+/5.28+V/S))
1 1,2 1.2 1 2
<oVt gpeeN L g xS
2mu V21U

1
e 2 (2.5.63)

for u and S large. Hence, when [mj,| =1, we have

N N-3
Hn ([0, 5], [mS,(m+1)S]) < CpS™ 2 (2.5.64)
1
for large S. This implies (2.4.23) by letting S = (104_2%.
Notice that
#{meZV | max |mi|=k}=2k+1)N —@2k-1)N, k=12, .. (2.5.65)
1<i<N
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By (2.4.23), (2.4.24) and the fact [7° aNe= 0y ~ %TNe_aT as T — oo, we have

Z Ha,c(m) = Z Z Ha,c(m)

m#0 k=1 |m; [=k
N N-1 > N Ni--2N < Q(k—l)aTa
<CoBN =TV 24+ Cy Y [k + )Y — 2k — )NV 8(140)
fe=2

S

1 o0
< CO(3N - 1)TN_7 + C'oTQN/ Ne 8(1+p)?
1

o 1
de < CoTN ™2

for T large enough. This completes the proof of Lemma 2.4.4.

]

Proof of Lemma 2.4.5. The proof is similar to that of Lemma 2.4.3. Indeed, we only need

to modify (2.5.49) and (2.5.55) in the proof of Lemma 2.4.3. For any y = (y1,...,yn) € RN

and 1 <i < j < N, let y;.; = (¥;,---,¥;).- On one hand, with a different scaling, h(u,a) in

(2.5.49) has the following asymptotics:

1 2
ON—M ;N N N _
2N MG ) (wh(e, @) = —y Aewlm%e el gy
|z[<Cv/Togu
1 —a|x2(/
uM ¢ 1 — dy1. v
uM Jip1<cyTogau M WL €uAy p(udy pr = 0p)}

N
X lg,. T v uR—z Ay ) d
H /R {yj€uS;uTjNulj—ajuRk;—a ]} y]) x
Jj=M+1

N
2
= e~alz] il </ 1 dzq. )da:
/xISC\/logu 1 = {2;>0} \ Jpar “{z10€41 (Ao pp—zy g /w) } 1M

j=M+1

—a|zy./]2 N Ea——
— mespr (A1 N Az pr) € LMV dxq.pr H rje Jdr,
R j=M+170

= oM=NG M2 M2=Nyyos) (A1 pp 0 Ag ap), (2.5.66)

as u — 0o0. On the other hand, when u is large enough, mesgn (D) defined in (2.5.55) can
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be bounded from above by

mesgn(D) = //GA ved 1{|t,8|§25(u)}dsdt
€A1, 2

N
dy1:M> Tiley ~oyde
/|x|§25(u) /yl;MEAl,Mﬂ(AzM—xl:M) H t=0)

j=M+1
N
= 6(u)2N‘M/ / dy1: zjly, ~0yd2
|z|<2 ( yl:MEALMQ(AZM*ZLM(S(U)) >jg+1 {ZJ }
< K o(u)?N-M, (2.5.67)

N
where K = max)<; mes (A1 a0 (Ao —€)) f|2|§2 szM—i—l Zj1{2j>0}dz.
By (2.5.66) and (2.5.67), (2.4.36) can be obtained through the same argument in the

proof of Lemma 2.4.3. We omit the details. O]
We end this section with the proof of Lemma 2.5.2.

Proof of Lemma 2.5.2. Let fyr,(-) and f(-) be the density function of X(u,7,) and X,

respectively. It suffices to prove that for all z € RYV,

/{ }f(y) max f?;g():g) - 1‘dy — 0, as u — 00, (2.5.68)
y<z Tu

where {y < @} = T} (—o0, z;).

First, we will find an upper bound for maxr,, | fu,n, (v)/f(y) — 1|. For any € > 0, define

D7) = (7)) 1, o= < (S0, 7) — 3)

el ) = (ex(t,m))ict,n = = (o) = o).
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By Assumption (2.5.4), there exists a constant U > 0 such that for all u > U,
H,}%X |H’j<u7 TU) - luj| <€ H,}%X |Uij<u>7'u> - UZ]| <€, lvj = 17 s N

which implies |7;;(u, 7u)| < 1 and [e;(u, )| < 1 for u > U.
Let 71 = (vij)i j=1,..n be the inverse of ¥.. When € is small, the determinant of X(u, 74,)

satisfies
12 (u, 70)| = |5 + eDu, )| = |2](1 + etr(S710(u, 7,)) + O(e2)),

where O(€?)/€? is uniformly bounded w.r.t. 7, for large u (see, e.g., [MNO7], p. 169). Hence
we have

‘ [2(u, 7))

ST 1‘ < 2etr(S7IT(u, 7)) < 26 - (2.5.69)

]
Since |v;;(u, )| < 1, Vi,j = 1,...,n for large u, as € — 0, the inverse of %(u,7,) can be

written as
¥ (u, Tu>_1 . GZ_lf(u, TU)E_l + 0(62),

where O(€?) /€2 is a matrix whose entries are uniformly bounded and independent of 7, for

large u (see, e.g., [Mey00], p. 618). Hence,

A,y (y) = — % [(y — g, 7)) TS ) (y — g ) — (y — ) TSy — )
= =) (— e () O~ )
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tee! (u,m) (BT = 2T (u, 7)) 2T+ O(2)) (y — )

1
— 5626T(u, Tu) (Z_l — X0, )2+ 0(62))6(u, Tu,)-

Since |;;(u, 7u)| and |e;(u, 7,)| are uniformly bounded by 1 w.r.t. 7, for all u > U, we derive

that for any y € RN ,
max |du, 7, (y)] = 0, as u — oo. (2.5.70)
u

By (2.5.69) and (2.5.70), for y € RY,

f ~1/2
ma | 2470 W) | e feduma @) EC TG0 (2.5.71)
mw | f(y) Tu 2|—1/2
If we could further find an integrable function g(y) on RV,
furu(y)
f(y) max | —*“ — 1| < g(y), 2.5.72
() e [ £17 ) (25.72)

then (2.5.68) holds by the dominated convergence theorem.
Given a constant Cp, let A; = {<aij)znj:1 e RNVxN | max; j |ai7j] < Cp}, by =

{(b)i, € RN | max; |b;| < Cp}. Then there exist constants Co, C3, such that
" Az| < Cox'm, bz <C3+a'x, VaeRN VA€ ApVbe by
Hence, there exists a constant Cy > 0 such that

|y ()] <Caely — ) ' (y — ) + Cie, (2.5.73)
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By (2.5.69) and (2.5.73), for small € and large u, there exists a constant K such that

Fuzuly)
fy)

T
Tu

_ 1‘ < K604€(y—ﬂ)
On the other hand, for all y € RV

Fly) < @m) 251230 ),
where A is the minimum eigenvalue of ¥. If we choose € < ﬁ and define
)

9(y) = (zw)—n/2|z|—1/2e—%<y—u y=h)( K eCacl—m) T (y—n) 4. 1),

then (2.5.72) holds and hence we have completed the proof.
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Chapter 3

Joint asymptotics of estimating the
fractal indices of bivariate (Gaussian

random processes

Characterizing the dependence structure of multivariate random fields plays a key role in
multivariate spatial model setting. Usually, the covariance structure for each component of
multivariate processes is highly related to the smoothness of the surface. The estimation
of smoothness parameters in univariate model has been studied extensively. Yet, there is
few work in the multivariate case. In this chapter, we first give a short review on the
increment-based estimator introduced by Kent and Wood [KW97] and apply it to estimating
the fractal indices (smoothness parameters) of bivariate Gaussian processes. Then, under
the infill asymptotics framework, we investigate the joint asymptotics of the estimators and

study how the cross dependence structure would affect the performance of the estimators.

3.1 Introduction

The fractal or Hausdorff dimension of a random process, is a measure of roughness of its
sample path. It is an important parameter in geostatistics modeling. Estimating the fractal

dimension of a real valued Gaussian and non-Gaussian process has been an attracting prob-
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lem in the last decades. Hall and Wood [HW93] studied the asymptotic properties of the
box-counting estimator for the fractal dimension. The variogram method was introduced
by Constantine and Hall [CH94]. Kent and Wood [KW97] developed the increment-based
estimators for stationary Gaussian random process, which indicated improved performance
under infill asymptotics (that is asymptotic properties of statistical procedures as the sam-
pling points grow dense in a fixed domain [CSY00, Cre93]). Chan and Wood extended the
method to Gaussian and a class of non-Gaussian random fields on R? (see, e.g., [CW00],
[CWO04]). Zhu and Stein [ZS02] expanded the work of [CWO00] by considering the two-
dimensional fractal Brownian surface. We refer to [GSP12] for further information on this
topic.

On the other hand, multivariate (vector-valued) Gaussian random fields have been pop-
ular in modeling multivariate spatial datasets (see, e.g., [GKS10]). Usually, the fractal
dimension for each component of the multivariate Gaussian random fields varies from each
other. It is natural to employ the increment-based methods by Kent and Wood to estimate
the fractal dimension for each component. Yet, the joint asymptotic property of the estima-
tors would be non-trivial, since the cross covariance structure might affect the performance
of the estimators, that is the covariance among components of multivariate Gaussian random
fields. In this work, we study the joint asymptotic properties of estimating fractal indices
for bivariate Gaussian random processes under infill asymptotics. The rest of the chapter is
organized as follows. We define the bivariate Gaussian random processes in Section 3.2 and
introduce the increment-based estimators in Section 3.3. Section 3.4 states the main results
on the joint asymptotics of the bivariate estimators. We give an example in Section 3.5. The

proofs of our main results are given in Section 3.6.
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3.2 The bivariate GGaussian random processes

Let {X(t) £ (X1(t), X2(t))",t € R} be a bivariate stationary Gaussian random field with

mean EX(¢) = 0 and matrix-valued covariance function

C11(t) Cra(t)

Ca1(t) Coaft)

C(t) =

where Cj;(t) := E[X;(s)X;(s +1)], i = 1,2. Further, we assume that

C11(t) = oF — cqp]t]™1L + o([t|11),
Coa(t) = 0§ — ca0|t]| 22 + o([t|22),

Cr2(t) = C21(t) = poroa(l — c12[t|*12 + o [t|*12)), (3.2.1)

with a1, 99 € (0,2), 01,09 > 0, p € (—1,1) and ¢;1,¢99,¢19 > 0. The fractal dimensions
for X1 and Xy are 2— a1 and 2 — a9 respectively (see, e.g., [AdI81] Theorem 8.4.1). Hence,
we study the estimation and inference of a1 and asg9 instead.

Let F11, Fo9 and F}9 be the corresponding spectral measure of C11(-), Co2(:) and C1a(-).

By Tauberian Theorem (see, e.g., [Ste99]), we have

Fyj(w,00) ~ Cij(0) = Cyj(1/x) ~ o] ™0, i, = 1,2.

According to Cramer’s theorem ([Yag87], [CD09] and [Wac03]), a valid covariance func-

tion for X(¢) should satisfy

(F12(B))? < F11(B)FPy(B), VB € B(R).
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Hence, it is necessary to add the following restriction to (a1, a9, a12), i.e.,

< aq9. (3.2.2)

3.3 The increment-based estimators

Assume that X are observed regularly on [0, 1]. Specifically, we have n pairs of observations
(X1(2), X2(2)), (X1(2), X2(2)), ..., (X1(1), X2(1)). Kent and Wood [KW97] introduced the
increment-based method to estimate the fractal dimension of a real valued locally self-similar
Gaussian process. We apply their methods to estimate the fractal indices for each component
of the bivariate Gaussian process (i.e., a1, a292). In Section 3.3.1, we give a review for the
definition of the dilated filtered discretized processes and study the asymptotic properties
of the covariance of the bivariate dilated filtered discretized processes. In Section 3.3.2, the

GLS estimators for the fractal indices (a1, aQQ)T are introduced.

3.3.1 The dilated filtered discretized processes

Definition 3.3.1 (Increment of order p). For J € Z™ and p € Z" U0, a finite vector

a={a; }3-]:_ 7 1s an increment of order p if

J J
Z j"a; = 0 for all integer r € [0, p] and Z ijrlaj # 0. (3.3.1)
j=—J j=—J

Definition 3.3.2 (Dilation of a). For an increment a = {a; }‘j]:_J, the finite vector a® is
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called the dilation of a for integer u > 1 if for —Ju < j < Ju,

ay, if j =j'u
J
aj = (3.3.2)

0, otherwise.
Definition 3.3.3 (Dilated filtered discretized process). For n,m > 1, define the dilated
filtered discretized process Y'.(-) by

Ju Lk
Y'Y ()= nii/?2 E ay z(j—>, i=1,2,u=1,2,..m, and j =1,2,...,n. (3.3.3)
n

We give two examples in the following.

e First-difference increment: p =0 and J =1 witha_1 =0,a9g = —1,a; = 1. Then,

the dilated filtered discretized process is

Vi) =0 3 <XZ~ (j Z “) _X; (%)) , (3.3.4)

where 1 =1,2,u=1,2,...,m, and j = 1,2,...,n.

e Second-difference increment: p =1 and J =1 witha_1 = 1,090 = —2,a; = 1.

Then, the dilated filtered discretized process is

Vi (h) = 0 (Xi (j . “) _92X; (%) X (j Z “)) , (3.3.5)

where 1 =1,2,u=1,2,...,m, and j = 1,2,...,n.

Next, we consider the covariance of Y,",,i = 1,2. The marginal covariance function (see,
7
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e.g., [KW97]) for V", is

g h+k—j
opii(h) =BV (DY, (U + k)] =n%i y afapCy; (—n ])
3k
CZZZa ap|h + k — j|“i —UO“(h), as n — oo. (3.3.6)
7,k
Especially,
VarlY,';(1)] = 0,,'4;(0) — 0(75;(0) = const. - ui (3.3.7)
The cross covariance between Y''; and Y, is given by
a11+a22 h+k—j
T (h) = B (DY o0+ )] = Y jeic (i)
a11t+a99 ol h+k— _
= —cpon 2 Z alal) TJ + o(n®11/2ta92/2-a19)
Jk
0, if w < @12
— 0(2(h) = (3.3.8)
Especially,
0, if w < 12

Covl[Yy'1 (1), Yy'a (D] = 012(0) — 0(12(0) = a1 +a99

const. -u 2 ajpta
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Therefore, if (o171 + a92)/2 < @19, the covariance of (Y,!'1(1), Y, 5(l + h)) T satisfies

» i n,2

Yo ogai(h) 0

Var — ’ , as n — 00.

Yol + h) 0 oy (h)

If (11 + a92)/2 = aj9 the covariance of (Y, (1),YVo(l + h) T satisfies

» T n,2

o) o511(h) o(2(h)

Var — , as n — 00.

Yy o(l+h) 0399(h) (9 (h)

3.3.2 The GLS estimators for (aj;, )’

Define
Zy i G) = (G0, G = 1,2,0m,
and
1 n
Zni=—> 20
j=1
where i = 1,2, u =1,2,...,m. By (3.3.7), it is easy to see that
Zi B Auii i =1,2.
where A;,7 = 1,2 are constants and hence

log Z}f,l’ ~ a;; logu + log A;.
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Recall the GLS estimator in [KW97]. Let

Ul = (log Z!

ng

Llog ZIM) T, X = (log1,1og2, ... logm) " (3.3.16)

and 1 be the m-vector of 1. The generalized least square estimator ¢;;,72 = 1,2 is determined

by minimizing
(U(z) A1 — OéiiX)TW<U(i) — A1 — a;; X), (3.3.17)

with respect to «;; and A;. Hence, we have

@TwyxTwy) - ATwx)aTwy) (3.3.18)
Ay = (1TW1)(XTWX) _ (1TWX)2 .O.

e If IV is chosen as identity matrix, the GLS estimator is reduced to ordinary least square

(abbr. OLS) estimator.

e A good choice of the weighted matrix W in (3.3.17) is the inverse matrix of the covari-
ance of U@, Let Q) = {wgw, u,v =1,...,m} be the covariance matrix of U(i), which

will be specified at the end of Section 3.4.

3.4 Asymptotic properties

In this section, we study the properties of the estimators (41, &QQ)T under infill asymptotics.
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3.4.1 Variance of 7, and asymptotic normality

Let us introduce the notation first. Let

Zni = <Zrlt,i>Z7%,iv )T{fi)T,i =12 (3.4.1)
and
7 71T 7T \T

We apply the method of derivation in Section 3 of [KW97] to the bivariate processes. Re-

call that Cov(Y,".(1),Y,Y (I + h)) =

TN,

Y .(h),i,j = 1,2. Using the fact that, if (U,V) ~

n,tj

Normal(0,0,1,1,¢), then Cov(U2,V?) = 2¢2, we obtain

Cov(ZY (1), Zy (1 + 1)) = 2ot (h)? i, § = 1,2. (3.4.3)
Further,
n—1
w = Cov(Z8,, 20 ) = = > (1 - @) x 2(04% 5 (h))? (3.4.4)
n,2g - n,1 N, n n n,i.J : Bt
h=—n+1

Let @, ;; = ( %zfij,u, v=1,2,...,m) be the m x m covariance matrix of Z, ; and ij,z',j =

1,2. So the covariance matrix of Z, can be written as

Q511 P12

®, 10 Dy 00
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In order to study the asymptotic properties of ®,,, we begin with the asymptotic behavior
of a}l“;j(h) for all n > |h| as |h| — oo. First of all, it is necessary to make some mild

strengthening of Assumption (3.2.1), denoted here by (Ag). For ¢ > 1, consider the regularity

conditions on the gth derivative of Cj;(t), say (Ag), for Vt # 0,

!
O (1) = —sgn(t) 71U pa11—a 4 (401179,
H (a11 —q)!

q 0220422! . B
CL) (1) = —sen(0)t R i o2 7),

c12012! | ae— oo
ci ) = é?)(t)z—sgn(t)qpamﬁm 1274 4 o([¢|01279)), (3.4.6)

where sgn(t) = 1if ¢t > 0 and sgn(t) = —1if £ < 0.

The theorems below extend Theorem 1 and Theorem 2 in [KW97] to the bivariate case.

Theorem 3.4.1. If the increment a has order p > 0 and the condition (Ag,19) holds, then

o™ (h) = O(|h|%i=2P=2) as |h| — oo uniformly for n > |h|,i=1,2, (3.4.7)

1%
and

oy tag o
opiia(h) = n*1/2H022m020(|p 127 72) = O(p =2 P

),

as |h| — oo uniformly for n > |hl. (3.4.8)

By [KW97], we’'ve known using increment with order p = 1 will achieve more efficiency.

So we’ll consider the convergence of variance when p = 1. Let gbg;‘;j =2 Zﬁ“;_oo(aggj(h))%
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Do = ((bg}’ij,u,v =1,2,...,m), and

Q511 Po,12
Qg := (3.4.9)

P12 Po,22

Theorem 3.4.2. [f the condition (Ay) holds and 0 < aq1,a99 < 2, then

n®, — ®g, asn — oo, (3.4.10)

where the entry of ®g is an absolutely convergent series.

Theorem 3.4.3. If the condition (A4) holds and 0 < a1, 99 < 2, then

nY2(Zy — B[ Zn]) & Nop(0,®p), asn — oo, (3.4.11)

3.4.2 Linear estimators of (aj;, )’

To describe the asymptotic properties of the estimators of (all,agg)T, it is necessary to
specify the remainder term in the assumption (3.2.1). Suppose that, for some 11, S22, 12 >

0,

C11(f) = 0F — en[t]°11 + O(j¢| 11+,
Caa(t) = 03 — canlt]*22 + O(Jt|°22*722),

Cra(t) = Co1(t) = poyoa(l — e1o)t] ™12 + O([t|*12H12)), (3.4.12)
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Here, we will study the asymptotic properties of a more general estimators (see, e.g., [CW00]),

that is

m
i = Lyglog Zy, i=1,2, (3.4.13)

u=1

where Ly j,u=1,2,...,m,1 = 1,2 are any fixed numbers such that

m m
d Lyi=0and ) Ly logu=1. (3.4.14)
u=1 u=1

It is easy to check that the GLS estimator (3.3.18) is an example of the above estimators.
Three theorems below illustrate the asymptotic properties of (é11, dg) ' by studying the

bias, mean square error matrix and asymptotic normality.

Theorem 3.4.4 (Bias). For the &;;,1 = 1,2 defined above, we have

Elaj; — i) = O(n™Y) + O(n=Pii), i = 1,2. (3.4.15)

T

Theorem 3.4.5 (Mean square error matrix). Let & = (&1, &92) ' and o = (aq1, agg)T. If

a1] + a9 = 219, we have

On~ Y +0mn 211 O(n~1) + O(n—P11—F22
E[(a—a)a—a)']= )+ Ol ) )+ Ol ) (3.4.16)

O(n=1) +0(n="11=F22) O(n~1) + O(n=2922)

If a11 + @99 < 2a19, we have

E[(@ —a)(@—a)']
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o(n~! nil*ﬁ
O(n1) + O(n=2511) (W) + O
+0(n~17522) + O(n—P11-P22)
_ (3.4.17)
o(n~1 n_l_ﬁ
(n=") +O( 11) O(n=1) + O(n=2522)

+O0(n~17P22) 4 O(n—P11-F22)
Finally, we show the asymptotic normality of the &. We introduce the notation first. Let

VA VAL

U 7,0 n,% 1 m
Tnﬂ' - ]EZU ] 3 n, (Tn 0 aTn z) )
n,1

Li = (Ll,i7 ---aLm,i)Ta L (Ll 2/00 zz( ) mz/a() 1 (0))T7 L= 172-

Theorem 3.4.6 (Asymptotic normality). Assume that 511, P22 > %, Vn(a—a) follows the

asymptotic properties below.

- 1
a1y —an VL] Tt + 0p(1) + O(nP1172)
vn - E (3.4.18)
Go2 — a2 ALY Ty + 0p(1) + O(n~"22+2)
where
VnL{ T,
A () (3.4.19)
\/ﬁLng 2
with

Li®p11L1 L{ ®12Ly
Sy = . (3.4.20)
Ly ®g 1Ly Ly ®g29Lo

Especially, if all 922 < a9, dp 12 = Po 21 = 0 and hence \/_L1 n,1 and \/_LQ n,2 are
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asymptotically independent.
Remark:

e By Theorem 3.4.6, the covariance matrix of U () in Section 3.3.2 can be specified as

follows.
Wit = E[log Zﬁf’z log 257 ] & ngbn St (U%%ZU;}L?M) O m/( (1)“;10_(1)11;%) (3'4'21)
Hence, wi'” is chosen as follows, which is the same as that in Kent and Wood [KW97].

=2 Z (1= [Rl/m)ol% (h) /ol (0) ot (0). (3.4.22)

h=—n+1

3.5 An example: the bivariate Matérn field on R

Recall the definitions of bivariate Matern fields and Mateérn correlation functions introduced

in Section 2.3. For m € Z, when m < v < m + 1, we have the following expansion.

M(h|v,a) = Zb B2 — b|h|?Y + o([t]P" ),
7=0

where by, ..., by, are constants and b = #&_)) (see, e.g., [Ste99], p. 32).
14

Let m = 0. We see that Assumption (3.2.1) is satisfied and the power ;; in Assumption
(3.4.12) is 2 — 2v5, 4,7 = 1,2. Next, we consider the derivatives of the Matérn correlation
21 v

function. WLOG, assume that a = 1 and M, (h) := M (h|v,1). Denote by x, = To) We

see that k,,1 = (2v) 1 ky. Recall that the derivative of the Bessel function of the second
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kind K satisfies the following recurrence formula.

K'(2) = —Kpi1(2) + ZKV(Z). (3.5.1)

Hence,

My (h) = sgn(h)(kyv|h]"~ Ky (b)) + ki h[VK(|B])

= sgn(h) 2y |h) LKL (|h]) — s BV K1 (|R]))

= 2 - sgn(h)(|h| "1 (My(h) — M, 11(h)))

= —2ub-sgn(h) AL+ o[ ). (3.5.2)
Similarly,

M/(h) = (2v — D)sgn(h)|h| =M} (h) — 2v - sgn(h)|h|~ M., (h)
= —20(2v — Db sgn(h) |72 + o(|h|?72),
M (h) = (20 — 2)sgn(h)| B "ML (B) — 20 - sgn(h)|h| " ML, 1 (B),

= —20(2v — 1)(2v — 2)b- sgn® (h) |13 + o( || 7%),

Miq)(h) =2v—q+ 1)Sgn(h>’h’71M£qil)(h) —2u - sgn(h)]hrlM(q*l)(h)

v+1
b(2v)! _ _
= 2 s (A2 o), (353)

Hence, Assumption (3.4.6) is satisfied. Now we can apply Theorem 3.4.4 ~ 3.4.6 to bivariate
Matérn process.

Theorem 3.5.1 (Bias). For the nonsmooth bivariate Matérn process with 0 < v11,1v99 < 1,
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the bias of Uy; 1is

B0 — vii] = O(n™ ") + O(n~ %)) i = 1,2. (3.5.4)

Theorem 3.5.2 (Mean Square Error Matrix). Let v = (vq1, I/QQ)T and v = (D11, ﬁgg)T. For

the nonsmooth bivariate Matérn process with 0 < vq11,199 < 1, if v11 + v99 = 2119, then

E(o —v)(0—v) "

O(n~1) + O(n~40=711)) O(n~1) + O(n=41-112))

- (3.5.5)
O(n~1) + O(n=40=712)) O(n=1) + O(n=4(17722))
If v11 + 99 < 2v19, we have
E(p —v)(0—v)'
O(n~1) + O(n~417111) o(n™1) + O(n—22-r11-v22))
- (3.5.6)

o(n™1) + 0(n227v117v22)) O(n~1) + O(n~ 40711

Theorem 3.5.3 (Asymptotic normality). For the nonsmooth bivariate Matérn process with

3
0<wi,ve2 <7,

U1 — v
NG 4 N0, 3), (3.5.7)

V99 — 199
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where

L{®g11L1 L{ @121y
EV = y (35.8)

Ly gLy Ly ®g29Lo

= . . . +
and Li = (L1,3/045(0), ..., Ly i /og i (0)) 7,0 = 1,2 Especially, if U522 < vyy, g 19 =

@21 = 0 and hence 011 and 99 are asymptotically independent.

3.6 Proof of the main results

Proof of Theorem 3.4.1. (3.4.7) comes directly from the proof of Theorem 1 in [KW97]. We

+h—j

are going to prove (3.4.8). First of all, expand Clg(h ) in a Taylor series about h/n to

the (2p + 2)th order to obtain

a11+a92 h+k—j
opa(h) =n"2 ajapCa <%)

i,k
2p+1
O411+0422 ) [ h
> S el (4)
r=0 jk
a11+a22 Z 2p+2 C(2p+2) h_;;j
2p+2 'n2p+2 12 n
7.k
2 2 *
2p+2 Nn2p+2 712 n )’ o
Jik

where h,’:j lies between h and h + k — j. Since |k — j| < (v +v)J < 2mJ, h;‘;j < 2|h| for all
|h| > 2m.J. Combining the condition (A9, 9) satisfied, for all [h| > 2m.J and all n > |h| we

have

@11+ m
|Un 12(h)] < 00"375-|h’a12_2p_2 no 2 12 < const.|h| =2
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Proof of Theorem 3.4.2. The proof is very similar as that in [KW97]. Let

(h) = (1 N %) (op%5(h)?, |k <n

0, otherwise.

duv' .

n,1)

(3.6.2)

By (3.3.6) and (3.3.8), we have d“%.(h) — 00 (h) as n — oo. By Theorem 3.4.1 and p = 1,

n,ij

we know

nij(h) < const.|h| "%,

Since i + ajj — 8 < —4, Y p2_ d¥ j(h) is bounded by a summable series. Therefore,

(3.4.10) can be concluded by dominated convergence theorem. O]

Proof of Theorem 3.4.3. By the Cramér-Wold theorem, it is equivalent to prove that for

V’y = (71,17 "'7777?,,1771,27 "'7’Ym,2>—r S R2m7

02T (Zy — ElZn]) % N(0,4T ®g), as n — oo, (3.6.3)

First, we introduce the notation. Let ~; := (714, ...,ym,i)T,i =1,2 and

. T T T T T T\T
Iy, = diag(y; , 71 s V1502572 ,...,721) ) (3.6.4)
n t;;nes n t;;nes

So I'y, is a 2mn x 2mn matrix including n copies of 1 and 79 on the diagonal. Let

Yoi(d) = (Vi) Vi), Vi) i = 1,2,5 = 1,2, ..,m, (3.6.5)
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and

Wa = (Y, 1(1),Y,1(2), .. Y, 1(n), V,[5(1), Y, 5(2), ... Y, Lo (n)) T (3.6.6)

n, n,1 n, n,2

where W), is a 2mn dimensional vector.

Then, we have
Sn £ 0! ?y T (Zy —ElZa)) = 0~ 2OV Tu W — EW TaWa)).  (3.6.7)
Let
Vo = E[W, W, ], (3.6.8)
be the covariance matrix of Wy,. For 1 <iy,i19 < 2,1 < 71,72 <n,1 < k1, ko <m, let

I = (il — Dmn+ (j1 — D)m + kq,

lo = (io — )mn + (jo — 1)m + ko,

So the (I1, (o) entry of W, is
ky k1kg

Valln,l2) = B[Y, ; (71)Y,,5, (G2)] = 0,13 3, (2 = j1)- (3.6.9)

— _1 1 1 1
Let W, = V,, 2W,, and A,, = 2n~ 2V,2T'V,2. Then we have

1 — N N —
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It is easy to see Wn ~ Nopmn(0, 1) where [ is the identity matrix. There exists an orthogonal
matrix Q such that QT A,Q is a diagonal matrix whose diagonal entries are eigenvalues
of Ap, denoted by A, j,7 = 1,2,...,2mn. Also, U = QWn ~ Noyn(0,1). Therefore, for

V0 < minj<j<omn A, 5, the cumulant generating function of 3 W Aan is given by

n]’

O T A T 01 0 s~2mn 2
logE[e2"Vn AnWn] _ jog R[e2V @ AU | = logE[e2 Zi=1 "]
1 2mn
=—5 D log(1—0M). (3.6.11)
j=1

So the cumulant generating function of .5y, is given by

2mn
1
kn(0) 2 log E[e?5n] = -5 > " (log(1 = 0y ) + 0, ) (3.6.12)
j=1

As the proof of Theorem 3.2 in [KW95], it is sufficient to prove that

2mn

Z)\ - — 0, as n — oo. (3.6.13)

First of all, let’s prove why (3.6.13) ensure the asymptotic normality of Sj. The argument

is very similar as that in [KW95]). Applying Taylor’s expansion to log(1 — 0, ;) at 6 = 0,

we obtain
2 2mn 3 2mn 4 2mn
—444
Z/\ny+_z/\ Z( = OnjAng) " Ans (3.6.14)
Jj=1
where ), ; is between 0 and 6. Let’s consider the term 3 Zan ;- 1t follows from (3.6.9)
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that

+ Z /\2’] — —tr (A2) = itr((VnFn)Q)

2mn 2mn

_% 5SS (Vi) (1) (VaT ) (I, 1)

SR
2mn 2mn

:% >0 Valla, 12)Ta(le, o) Va(la, 11T (11, 1)

2 ; S - k1k 92
:E . Z Z . Z 71{171.17]{2 9 (0'77,121%2 (]2 - ]1)) ) (3615)

where

lh=01—Dmn+ (1 —Dm+k,1<ip <2,1 <51 <n, 1<k <m,

lp = (ig = D)mn+ (jo — I)m + ko, 1 <ipg <2,1 < jo <n, 1 < kg <

On the other hand,

®p11 Ppao 7
T T T n, n,
v Py = (71,72 )
Q12 Dy 00 72

2

m
k1ko
=2 > Vi sin Y2y Py i

i1, i2=1 k1,ko=1

Z Z Z Vkq i1 Vkg o [Z’;LLZZ%J]

Zl i9=1kq,kg=1j1,jo=1
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2 m n
2 k1k . 2
ey Z Z Z 71?171'17762,2‘2(071,1@'1%2(]2—Jl))~ (3.6.16)
i11,09=1 k1,ko=17j1,j9=1

Hence, by (3.6.15),(3.6.16) and Theorem 3.4.2, we have

2mn

1
5 E /\%,j =~ T (n®p)y = 7 Dgy, as n — oo. (3.6.17)
j=1

Next, let’s consider the second term in (3.6.14). By (3.6.13), we have

2mn Zl[
max |\, | < PN — 0, as n — oo, 3.6.18
1§j§2mn’ nil < (; ”’]) ( )
which implies
2mn 2mn
3 2
Zl Al 1§5_nga2xmn | Al Zl Anj — 0, asn — oo. (3.6.19)
J= J=

Finally, let’s consider the third term in (3.6.14). By (3.6.18), we know § := sup,,>1 maxj<;<2mn
|An,j| is positive and finite. If we restrict attention to |0 < %5_1, we have (1 —Gn’jkn,j)_zl <

16 and hence for 6 € (—%571, %5*1),

2mn
D> (1= Any) HAL; =0, asn — oo, (3.6.20)
j=1

Therefore, by (3.6.17),(3.6.19) and (3.6.20), for V0 € (=451, 3671), we have

92
kn(0) = 57" @07, (3.6.21)
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which is sufficient to prove
S = 0!y T (Zy — EZ]) 5 N(0,7"@07), asn = oc,

Now we only need to prove (3.6.13).

tr(&d) = Str((Val)*)

16 &
:ﬁ Z (Vnrn)(lb l2)(VnFn)(l2a lS)(VnFn)(ZSa l4)(VnFn)(l47 ll)
I1,l9,....14=1
16
:m Z Z 7%1,i17k2,i27k3,i3’7k4,i4
i seeesig =1 k] ooy =1
n
> 0, U =050 (s = d2)ay S Ga = da)oyt b (1 —da), (3.6.22)
jl,...,j4=1
where l = (i — D)mn + (jr — 1)m + ky,r =1, ...,4. Let
An(kl, ceey k4, Z]_, ceey 714)
n
= ) Un}il% (J2 — Jl)aniﬁg(m - J2)0ni-3%4 (Ja —J3)o,, Z411(J4 —J1)
jl,...,j4=1
n
k1k kok kak kqk
= Y an}i1§2(hl)an?i;;g(h2)an?i3%4(h3) n%l(m + hg + h3), (3.6.23)
jl""7j4:1
where hi = ji—H - ]Z,Z = 1, 2, 3.
Given hq, hg and hg fixed, the cardinality of the set
#{(1: 92, 74) | 1 <1, ja <} <. (3.6.24)
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Hence,

|An(k:1, v kg iq, Z4)|
k1k kok kak kak
=" Z |an,1i1%2<h1>an32%3(h2)0ni‘3%4(h?»)anflm%l (h1+ho+h3)]  (3.6.25)

Further, by Theorem 3.4.1, we have

’An(kla ceey k47 ila L3 24)‘

Vipip Vi lirl

3 n—1
Sconst.nH Z h, 2

r=1 hr:—n+1

3 o0 Yipiy ai?‘—i—li?”‘-l-l
y T o 4

—0(n). (3.6.26)

The last equality holds since a“é“" + Zr+%zr+1 —4 < —2. Therefore, by (3.6.22) and

(3.6.26), we have

tr(A%) =0~ 1) =0, as n — .

Proof of Theorem 3.4.4. Recall that

77U 71U
T Zn,i EZn,i

TV, — 7 3.6.27
n, EZ;LLLZ ( )
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If

1
Toil <€< 3, (3.6.28)
by Taylor expansion, we have
1
log(1 +T%;) = T; — §(T#,i)2 + R (3.6.29)
2
where |R%’Z-| < &(T};);)7. Hence,
1 2 1 2
Ellog(1 + T, )] = E[T5,; — 5(T5,)" + Byl = —5E(T0,)" + BR;, 5, (3.6.30)
and
2 -1
B[Ry, 1, 1Ty 51 < & < SE[(T)7 [T ;1 <€l =0(n7). (3.6.31)
By Lemma 3.6.1, we obtain
m
> LyiEflog(1+ T ), [T > €] = o(n™1), (3.6.32)
u=1
and hence
m
> LIRS 1 |T5 | > €]
u=1
= 1
< LyB[[log(1+ T + T + §(T#,i)2v |Tyil > €]
u=1
= 0. (3.6.33)

5



Therefore,

> Ly Ellog(1+Tr )] = On™1).

u=1

On the other hand, by assumption (3.4.12), we have

]EZ;f,Z' = o%.(0) = const.u™ii(1 + O(n_ﬁii))7

7,10
and hence

m
Z Ly logEZy ; = ayilogu + O(n~Pii)

u=1

by (3.4.14).

Therefore, by (3.6.34) and (3.6.36),

m

E[d;; — a;] = E [ > Lyillog Z s — agilogu) | = O(n~ ') + O(n”Pii).

u=1

Proof of Theorem 3.4.5.

E(&i; — ai;)?

m m
= Z Z Ly ;i Ly iE(log Z}f’i — aj;logu)(log Zg,i — aj;logv)

x (log(1 + T3, ;) + log EZ;’L’Z- — ay; logv)
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(3.6.36)
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m m
=Y ) Ly Ly Ellog(1+ Ty ;) log(1+ T ;)]

u=1v=1

+
NE
NE

Ly,iLy iElog(1 + T} ;) (log ]EZZJ- — ;i logv)

)

|
—_

u=1v=1

_|_
NE
NE

Ly,iLy,i(log EZy ; — avj logu)Elog(1 + T} ;)

)

i
_
S
I
_

+
NE
NE

Ly i Ly i(log EZ;L‘J- — aj; logu)(log EZ;{’Z- — a;; logv) (3.6.38)

<
I
—_
<
I
—_

By (3.6.34) and (3.6.36), we have

m
> LyiLy Elog(1+ T ;) (log EZY ; — agilogv) = O(n~ i)

NE

<
I
—_
<
I
—_

Ly, i Ly i(log EZ;{J' — ;i logu)Elog(1 + Tquj,z’) = O(n_l_ﬁii)

NE
NE

<
I
—_
<
I
—

Ly, i Ly i(log EZ}{’Z' — ay; log u)(log EZ%J — ayilogv) = O(n~2Pii). (3.6.39)

NE
NE

<
Il
—
<
Il
—

Next, we study the first term in the right hand side of (3.6.38). First,

Eflog(1 + 1)) log(1 + T} ;). |Thy | < & 1T ;1 < €]
2 2
=E[(Ty; = 1/2(T3 ) + Ry )Ty s = 1/2(T} )7 + Ry, ), [T | < & 1T ] < €]
1 2
=E[T T i | Th | < & Tyl < €] — §E[T#,¢(T;§,i) ATh | < & 1T < €]

n,0" N,

1
+E[TY Ry Tl < &10Th 1 < €] - §E[(Tﬁ,i)2Ts,i7 T3 < &l < €]

niftn s
+ iE[(Tﬁ,i)2(Tﬁ,i)2a Tl < & 1T < €] — %E[(T;ﬁiﬂRz,p T5 < &l < €]
+E[R T T < & T | < €] — %E[R%(Tg’i)% Tl < &|Th ] < €]
+E[R, Ry 1T < & Ty ] < €] (3.6.40)
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By Theorem 3.4.2, we have

E[T%.T?.] = O(n™Y).

TL’L nz

Hence, we have

E[T#,i(Tﬁ,i)z] = 0(”_1)aE[<T#,i)2(T7g,i>2] =o(n )
B[Ry Ry 3 T < &1T0 | < €] =o(n™h),

7,1 nw

E[Ry Ty i 1 Tail < & 1T < €] = o(n™ 1),

7,0 nw

2 -1
E[RY (TY )2 1T | < &, |TY ;] < €] = o(n™)

Therefore,

Ellog(1+ Ty ) log(1+ Ty ), | Ty sl < & 1T | < €] =0 .

Second, by Lemma 3.6.1,

Eflog(1 + 757 ;) log(1 + T ), | Ty 31 > & 1T 5 < €]
< [log(1 = §)[E[[log(1 + T )|, [T > €]

= o(nh).

Similarly,

Ellog(1 + Ty ;) log(1 + Ty 5), [Ty s < &[T 41 > €]
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< [log(1 — &)[E[log(1 + T3 )|, T3, ;| > €]

=o(nh). (3.6.45)
Finally, by Lemma 3.6.1,

< <Euog2<1 + T, T > )Y (Ellog(1 + T2,), T2 ;| > €])1/?

=o(n™h). (3.6.46)
Therefore,
Eflog(1+ Tp ;) log(1+ T3 ;)] = O(n™ ). (3.6.47)
By (3.6.39) and (3.6.47), we have
E(a;; — aji)> = O(n™ Y + O(n=2Pii), i = 1,2 (3.6.48)
2

Next, we study the cross term E(G11 — aq1)(qo2 — a92). Similarly as E(d;; — a4)?,

E(d11 — a11)(Go2 — a92)

m m
Z Z Ly, 1Ly 2E(log Zn 1 — a11 log u)(log ZU,Q — 9o logv)
1

u=1lwv
m

>,

u=lwv

m m
+ > >  LuiLyaElog(1+ Ty 1) (log EZ}) 5 — agglogv)

u=1v=1

NgE

Ly Ly 2E[log(1 + Ty 1) log(1 + T, 5)]
1
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m m
+ Z Z Ly 1Ly o(log ]EZ}{A —aq logu)Elog(1 + T 5)

u=1v=1

m m
+ 3 Y LuiLyp(logEZ)Y | — ap1logu)(logEZ) o — agglogv). (3.6.49)

u=1v=1

So we only need to find the order of >0 1 > 1 Ly 1Ly 2E[log(1 + T ) log(1 + TV ,)].

Case 1: If w = 19, by Theorem 3.4.2 and (3.3.11),

m m
D LuiLy2Bllog(l+ Ty 1) log(1+ Ty 5)] = O(n™ ), (3.6.50)
u=1lv=1
and hence
E(@n — 0511)(6422 — a22) = O(n_l) + O(n_ﬂ11_622),i = 1, 2 (3.6.51)

Case 2: If Oé%;ﬂ < a3, by Theorem 3.4.2 and (3.3.10),

m m
Y > LuaLyElog(1+ Ty ) log(1 + T )] = o(n™ 1), (3.6.52)

u=1lv=1

and hence

E(d11 — a11) (G2 — ag9)

—o(n™ ) + O+ O(n~1P22) 4 O(n=F11-F22), (3.6.53)

80



Proof of Theorem 3.4.6.

m
V(s — agi) = v/n Y Ly(log Z}t ; — o log u)
u=1
m m
=/n Z Lyglog(1+ 1Ty ;) +Vn Z Ly i(logEZ ; — ayilogu)
u=1 u=1
n 1
=V Y Ly T (1 + el ) + O(n i 2)
u=1

m
o1
=VL] Ty + VY LT e+ O(n™Pi%2), (3.6.54)
u=1

where e;“‘m — 0 if T#ﬂ. — 0.
By Theorem 3.4.3, we have
L{Tu1 | 4

N ’ — N(0,X%,), (3.6.55)
L;ng

where

L{®g 1Ly L{®g19Ly
S = . (3.6.56)
Ly ®091L1 Lg ®20Lo

Especially, if w < aq2, P12 = Pp21 = 0 and hence LITn,l and L;—Tn’z are asymp-

totically independent.

Since \/nLy ;T

; convergence to normal distribution and e ; — 0 as n — oo, we have
b

VnLy T} ien i = op(1) and hence v/n 30t Ly ;T s o = op(1). Therefore,

1T n,g o n,i

|
Vilég; — agg) = VL] Ty i+ 0p(1) + O(n” it 2). (3.6.57)
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Lemma 3.6.1. Show that for any fived k € 7,

m
N Ly Ellogh(L + T2,), [T, | > €] < en!/2emVn, (3.6.58)

u=1

where ¢ 1s a constant.

Proof of Lemma 3.6.1. By Holder’s inequality, we have

Ellogh(1+T3t), T3 ;| > &) < BY?[log? (1 + T )IPY2 (1T > €). (3.6.59)

First, we find a upper bound for P(|T" .| > ).

Let U = (Uy,...,Uy) where Uj; i N(0,1). Let Yy, = (Y*,(1),...,Y,',(n)). Denote by
Let Ay, = diag(\;) where \;,i = 1,...,n are the

O.UU,

Var(Yn) = 3n = (0350 — k)] j—q-

eigenvalues of ;. Then we have

1 1
Y.y, £ 2uTAU. (3.6.60)
n

su L
Zn,i -
n

Denote by ||Ap||2 and ||An||p the lo norm and Frobenius norm of A, respectively. Indeed,

n
_ . _ 2
[ Anll2 = 8 A, [AnllF = E 1 v (3.6.61)
j:

It is easy to see nEZY . = EU T ApU = tr(Ay) and hence tr(Ay)/n — C3u®i where Cs is a
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constant. Further, Since

Inl = tr(A3) = tr(=2) = D" (o1l — )2

j=Lk=1
and
n
2
gu” = VGT(Z:{ i) = n2 Z (U%%z(] — k),
j=1,k=1
we have

2 -
||An||F: 9 nu’“ ¢Ozz
Applying Hanson and Wright’s inequality [HWT71], we have

P(\ Ty | > &) =P(UT AU — tr(An)| > tr(An)€)
Sexp{—min( 1 tT(An)7C2§ (tr(Apn)) )}
||An||2 |AnHF

where C'1, Cy are positive constants independent of A, n and &.

Since ||Anll2 < ||An]|F and ||Ay, ||F/n — 2¢0 ;i» we have

tr(An) _ tr(An)/n qu i 12 /0 asn 00,
Tally ~ Y Thallyf s < ¥ 2000 5™ Y, as
and
(tr(Ap))? — 202y 20
—HAnH% 2 (gbO zz)
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Hence, when n — oo, (3.6.65) decays exponentially with rate \/n, specifically,

< VOO0l eV

P(|T5 ;1 > €) , as m — 00. (3.6.68)

Second, we prove the upper bound of E logzk(l + T}, i) It is easy to see that
Elog? (1 + T, ;) < 2" 1(Elog™* Z!; +10g®* EZ} ). (3.6.69)
For any fixed k € Z*, there exists ¢y, such that log% r < xQ, Vz > ¢j.. Since EZ%Z- — C'qu%ii,

E(log®* Z1 s 21 s > ) S E(Z ) = (BZ2 ) + Var(Z)!;) — Cqu®ii. (3.6.70)

n,1
So E(log2k Z;ff’i; Z%,i > ¢;;) is uniformly bounded and we only needs to check E(log2¥ Zﬁ,i; ZTILL,Z' <
Ck)-

Let U2

— mi . 2
in = Minj<;<p U7 For n large,

. 1 tr(A 1 y
Zyi=~ > ONUE > T(n n) U2, > 5cgu%szmn 20U, (3.6.71)
1=1
Let f,(z) be the density function of Ul’%lin’ that is
2n  _ 1 2 n—1
fn(x) = P(Ur%lm €drx) = \/—2_7Te z/2 (2 /\f \/%e 4 /2dy> d. (3.6.72)
T

It is casy to check that f,(z) < 2. Hence, when n is large, we obtain

V2r

E<10g2k A Z%,z < Ckz) < E(IOng (OUIQnin); Ur2nin

n,%)

< 1/0)
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L 2n 1
log?k(C z)dr < /10 2k ydy < en. 3.6.73
/Oogw)fn()_mOOgyy_ (3.6.73)

By (3.6.69), (3.6.70) and (3.6.73), we obtain Elog2¥(1 + Tyi) < cn and hence when n is

large,

Eflog" (1 + T,), |T2,] > €] < ent/2e=eV™, (3.6.74)
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Chapter 4

A Bayesian functional data model for
coupling high-dimensional LiDAR and
forest variables over large geographic

domains

Recent advances in remote sensing, specifically Light Detection and Ranging (LiDAR) sen-
sors, provide the data needed to quantify forest variables at a fine spatial resolution over
large domains. We define a framework to couple high-dimensional and spatially indexed
LiDAR signals with forest variables using a fully Bayesian functional spatial data analysis.
The proposed modeling framework is illustrated by a simulated study and by analyzing Li-
DAR and spatially coinciding forest inventory data collected on the Penobscot Experimental

Forest, Maine.

4.1 Introduction

Linking long-term forest inventory with air- and space-borne Light Detection and Ranging
(LiDAR) datasets via regression models offers an attractive approach to mapping forest

above-ground biomass (AGB) at stand, regional, continental, and global scales. LiDAR data
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have shown great potential for use in estimating spatially explicit forest variables, including
AGB, over a range of geographic scales [AHVT09, BMFT13, FBM11, IDUA13, MMT11,
Naesll, NNRT13]. Encouraging results from these and many other studies have spurred
massive investment in new LiDAR sensors, sensor platforms, as well as extensive campaigns
to collect field-based calibration data. For example, ICESat-2—planned for launch in 2017—
will be equipped with a LiIDAR sensor able to gather data from space at unprecedented spatial
resolutions [AZBT10]. As currently proposed, ICESat-2 will be a photon-counting sensor
capable of recording measurements on a ~70 cm footprint [[CE15]. The Global Ecosystem
Dynamics Investigation LIDAR (GEDI) will be an International Space Station mounted
system capable of producing 25 m diameter footprint waveforms and is scheduled to be
operational in 2018 [GED14]. One of GEDI’s core objectives is to quantify the distribution
of AGB at a fine spatial resolution. NASA Goddard’s LiDAR, Hyper-spectral, and Thermal
(G-LiHT) imager is an air-borne platform developed, in part, to examine how future space-
originating LiDAR, e.g., ICESat-2, GEDI, or other platforms, may be combined with field-
based validation measurements to build predictive models for AGB and other forest variables
[AAWN13, CCNT13].

In order to effectively extract information from these high-dimensional massive datasets,
we need a modeling framework to capture within and among LiDAR signal /forest variable
association within and across locations. However, the computational complexity of such
models increases in cubic order with the number of spatial locations and the dimension of the
LiDAR signal, and the number of forest variables—a characteristic common to multivariate
spatial process models. In this chapter, we propose a modeling framework that explicitly:
1) reduces the dimensionality of signals in an optimal way (i.e., preserves the information

that describes the maximum variability in response variable); 2) propagates uncertainty
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in data and parameters through to prediction, and; 3) acknowledges and leverages spatial
dependence among the derived regressors and model residuals to meet statistical assumptions
and improve prediction.

The rest of this chapter is organized as follows. Section 4.2 gives a review on Gaussian
predictive process and modified Gaussian predictive process. The join model that coupling
the LiDAR signal and the forest variables is proposed in Section 4.3. In Section 4.4, we
complete the hierarchical specifications and outlines the Gibbs sampler for fitting the model.
Spatial predictions for forest variables are derived in Section 4.5. Section 4.6 illustrates with

simulation and forestry data analysis.

4.2 Preliminary: Modified Gaussian predictive process

A Gaussian random field {w(s),s € D c RN} is usually used to model the residual of
spatial point referenced data. Let Cy(s,t;6) := Cov(w(s), w(t)) be the covariance function
of w(-) with parameters §. Assume that the data are observed in n locations, say, s1, ..., Sn.
Estimating the parameters always needs inverting a n X n covariance matrix, which involves
O(n3) flops. When the sample size n is very big, it is computationally very expensive and
even infeasible.

To address this issue, [BGFS08] introduced the Gaussian predictive process model, which
is a degenerate Gaussian random field obtained by projecting the parent random field to a
lower-dimensional subspace. Specifically, by choosing a set of “knots” S = {s],...,s;'} C D,

they defined the Gaussian predictive process

w(s) = E(w(s)|w(s]), ..., w(s})). (4.2.1)
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Let c(s;0) = [C’w(s,s;f;ﬁ)];:l and C*(0) = [C’w(s;-‘,s;k-)];jzl. The covariance function of

w(s) can be derived directly from its parent process, that is

Cov(iw(s), w(t)) = ¢ (s:0)C* 1 (B)c(t; ). (4.2.2)

Inverting the corresponding covariance matrix only requires O(m"Q) flops with r << n.
[FSBGO09] pointed out that the predictive process underestimates the variance of the

parent random field w(s) since Vs € D,

Var(w(s)) — Var(w(s)) = Var(w(s)|w(s]), ..., w(s}))

= Cu(s,s:0) — ¢! (s;0)C* 1 (B)c(s;0) > 0. (4.2.3)

As a consequence, the nugget variance in spatial regression model is usually overestimated
by absorbing the variability dropped by the predictive process. To remedy this problem,
[FSBGO09] proposed the modified Gaussian predictive process by adding a Gaussian

noise to the predictive process. Specifically, they defined

w(s) = w(s) + €(s), (4.2.4)

where €(s) ind N(0,Ciy(s,5;0) — " (s;0)C*1(0)c(s;0)) is a spatially independent Gaus-
sian random field with varying marginal variance. Hence, the modified Gaussian predictive

process has the same marginal variance as the parent process.
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4.3 The model

Let D C R2 be a spatial domain and let s be a generic point in D. At location s, the outcome
variable y(s) denotes the above-ground biomass. Let x € [0, M] C RT be the height from
the ground with M the maximum height. At location (s, ), the outcome variable z(s, x)
denotes the strength of LiDAR signal.

Assume we've observed both y and z at a set of locations § = {s1,...,sp}. For each
location s;, z is measured at height x1, x9, ..., x,. Moreover, we observed the LiDAR signal

z in many other locations where y have not been measured.

4.3.1 Modified Gaussian predictive model for z

The signal z(s,z) can be modeled as follows,
2(s,x) = py(s,x; B) + u(s, x) + €;(s, x), (4.3.1)

where pi is the mean function, u(s, z) is the random effect which is a Gaussian random field
on R3 and e, (s, z) is the nugget effect.

Assume that the nuggets effect €, (s, z) Ny (0,72(x)), which means the variance of the
nugget is independent across locations.

Denote by Cy(s,t, x,y; 0y) := Covlu(s, x), u(t,y)] the covariance function of random effect
u. We approximate the parent model by modified Gaussian predictive processes within
locations. Assume that {z7, ..., x;; } are the height knots at every location. Let

u*(s) = (u(s,z7), ...,u(s,x’;;))T,
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whose covariance at location s is given by

Cu(sasax?xi;eu) Cu(sasax?x;;;eu)
C’U(8787x§7x>1k;0u) Cu(susalg,x**;gu)
Vu*(s) (Ou) = N , (4.3.2)
C’u(s,s,x;;,:cf;eu) Cu(s,s,x;;,a:;:;;ﬁu)
and let
f(s,2;04) = (Cul(s, s, x,27;64), ...,Cu(s,s,a:,m:;*;@u))T. (4.3.3)
xr

So the modified Gaussian predictive process model for z within locations is

2(s,0) = pa(s, 23 B) + f T (5,25 00) Vo (Bu)u* () + € (s,), (4.3.4)
where
esiw) P ON(O,53(s, 7 04) + (), (4.3.5)
with
Ga(s, 4 0u) = Culs, 5, 2,2:0u) = f 1 (5,23 0)Vu( ) (0u) f(5,250u). - (43.6)
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4.3.2 Joint model of y and 7

Denote by
2(s, 1) ex(sy21) f1(s,215600)
Z(s) = 2(s, x2) () = €x(s;w2) F(s:0,) = (s, 22; 6u) |
2(s, Tng) €x(s;Tny) F1 (s, 20y 00)
and
pz(s,x1; B)
1iz(s; 8) = S
112(8; Tng; B)

At location s, we couple the LiDAR signal Z and the above-ground biomass y through the
modified predictive processes u*(s). The joint model for y and Z is given below,
-1
260\ _ [ watsi) | [ FesoVato@a) 0 ) [ &(5)
y(s) puy(531) oy L)\ vls) ey(s)

(4.3.7)

where oy, € ]R”;, ty is the mean function of y, v(s) is the random effect and €y is the nugget
effect. Assume that v, €, are independent of u and €. v(-) is a Gaussian random field on R?
ind

and €y(s) ~ N(O,Tg).

When the number of locations n is big, model estimation and prediction is computation-
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ally inefficient. So we use the modified Gaussian predictive process to approximate the joint
model for y and Z by choosing the spatial knots. Let {s7,s5, ..., s;’;;} and {t],t5, ..., t;;?;} be
the spatial knots for signal Z and y respectively.

First, we approximate the spatial random effect u*(s). Let u* = (u*T(sik), - u*T(sZE))T

and G« (s;0,) T be the nf x nn} block matrix with (1, j)-th block being the cross covariance

Cx (s, s;‘f;Qu) = Cov[u*(s),u*(s¥)], j =1,2,..,n}, that is

Gu*(s;eu)—r = (Cyx (8,875 0u), Cyx (8, 85;04), ..., Cyux (s, s%;@u)). (4.3.8)

Denote by V,x(6y) the nink x nynk block matrix whose (7, j)-th block is C\x (s, s;; ). We

approximate u*(s) by the modified Gaussian predictive process below,

1*(s) = Gyur(s10u) VL Ou)u™ + €0 (s), (4.3.9)
where
€+ (5) ~ N(0,2, x(s;6y)), (4.3.10)
with
S (8500) = (5,81 0u) — Gl (55.00) " VL G (5104). (4.3.11)

ES

y vector whose j-th element is

Next, we approximate v(s). Let gy(s;6,)" be the 1 x n

Cy(s, 335;9@) = Cov[v(s),v(s’;)] and denote by V,«(0y) the ny x ny matrix whose (i, j)-th
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%
77

element is Cy (s s;k-; 0y). v(s) is approximated by
5(5) = gul5300) TVEL 000" + eu(s), (4312
where €,(s) ~ N(0,02(s;6,)) with
03(5100) = Cu(s,5100) — gu(5;00) V.21 (00) g0 (51 60). (4.3.13)

Therefore, Z(s) in (4.3.7) can be approximated by

Z(s) = pz(s; B) + F(s; QU)VUQ%S)WQQ*(S) +ez(s)

£ 1y (s;8) + H(s; 0y)u™ + ez(s), (4.3.14)

where

H(s;0u) == F(s; 9u>Vu;%8)(9u)Gu* (Ou; S)Tvutkl (Ou),

2(5) = F(s: 0V, (Bu)ey(5) + €7(5) ~ N(0, De 5 (5)),
with

De,(s) = F(s; HU)VUZ%S)(%)Eu*(s; QU)VUQ%S)(GU)F(S; 0u) " + @52 (55 (s, 25 0u) + 72 (7).
Also, y(s) defined in (4.3.7) can be approximated by
w*(s) +0(s) + €y(s)

y(s) = py(s;n) +a
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= py(s,m) + 1(s;00)u™ + J(8;00)0™ + ey(s), (4.3.15)

where
I(5:0u) = 0 Gy (5:00) TV (0u), T (5100) = gu(s300) TV (0),
ey(s) = ay ey (s) + eo(s) + ey(s) ~ N(0,07,(5)), (4.3.16)
with
02, (5) = any Sy (s 0u)au + o3 (55 00) + 75 (4.3.17)

So our final model for Z and y can be rewritten as

Z(s) pz(s; ) H(s;6u) 0O u’ ez(s)
_ n n . (4.3.18)

y(s) fy(s3m) I(5;0y)  J(s;0y) v* ey(s)

Let Xz(s) € R"*P and Xy(s) € RY be the predictors for the signal Z and y respectively.

Assume that py(s; ) = X}(s)ﬁ and 11y(s;n) = Xy(s) 'n. Then,

Z(s) Xz(s)'8 H(s;0y) 0 u* ez(s)
— + + . (4.3.19)

y(s) Xy(S)TU I(s;60u) J(s;0y) v* ey(s)
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4.3.3 Specification of the random effect of Z and y

e Covariance function for u(s,z): [Gne02| introduced a class of nonseparable sta-

tionary covariance function for space-time model on R? x R. Specifically, when d = 2,

C(s1, 82521, 29) = o’ < cllsi—s )V
ST 27T (v) (alay — 222% + 1)2T7 \ (alzy — o2 +1)7/2

X K,,(( cllsi—s | ) (4.3.20)

a|z — wo|2F + 1)7/2

Here, we use a simplified version to model the covariance of u(s, z) by fixing k = 1,v =

%,6 =0, ie.,

2
4 clls1—s2|
Cu(s1, 89,11, x9;0y) = Y exp(— 4.3.21
ul 2 (alry — zof? + 1) (alwy — xo|? +1)7/2 ( )

where 6, = (02,a,7,¢),02,a,¢ > 0 and v € [0,1].

e Covariance function for v(s): We employ the exponential covariance function

for v(s), i.e.,
Co(s1,59:00) = o2 exp{—dy || s1 — 52 ||}, (4.3.22)

where 0, = (02, dy).
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4.4 Bayesian implementation and computational issue

4.4.1 Data equation

For fitting the final model in (4.3.19), we form the data equation in this section. Denote by

9 == (gu,ev). Let

o= [ 29 ) pie [ H0 0 E
y(s) I(s;0u)  J(s;00) n
X ()T 0 u* ez(s
X(s) = z(s) wt e(s) = z(s)
0 Xy(s)—r v* ey(s)

The data model for (4.3.19) can be written as

O(s;) = X(s;)b+ B(si; 0)w* +e(s;),i =1,2,...,n.

The matrix form of the above model is

O =Xb+ BO)w* +e,

where
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Here,

e v ]\[(O7 De),
where
Dy(s1) O -0
0 DO(SQ) - 0
De — s
0 0 .-+ Dylsn)
with
D¢, (si) O
Dosi)=| 4 i=1,2,..n.
0 Ugy(sl)
And
w* ~ MVN(0,%,,%),
where

0 V'U* (01})
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4.4.2 Prior specification and full conditional sampling

Denote by € all the parameters in the model, which is

Q= {8, n,au, 0,72, 72(;),i = 1, .., na}. (4.4.10)

First, let us complete hierarchical specifications. The priors for all the parameters are

given as follows.

B ~ N(0,diag(10%)), 1 ~ N(0, diag(10%)), ay; ~ N(0,diag(10%)),i = 1,...,nf,
0',3 ~ IG<2, bo’u),'y ~ U(O, 1), a U(O, a/maz), C ~ U(O, Cmagg),
05 ~ 10(27 bO'U)a Oy ~ U(_ 10%(0-05)/d5,max; - log(o-()l)/ds,mm);

T2(2;) ~ I1G(2,br,) i = 1,2, ... ng, 7 ~ 1G(2,by). (4.4.11)

We assign large enough numbers for a;q, and ¢q2- The specification of hyperparam-
eters for ¢y follow from [RB13], where d yin, dsmaz are minimum and maximum distance
across all the locations. bs,,, by, br,, and bTy are assigned from the empirical semivariogram

(see, e.g., [BGFS08]).

Denote by © := Q\ b = (o, 0, 72(z;), 7'5) We can integrate out the random effect w*

and obtain the marginalized likelihood,

[010,b] ~ MV N(Xb, B(0)S,+B " (8) + De). (4.4.12)

99



So the posterior distribution of the model is

[©,6| 0] o« MVN(Xb, B(9)S,,«B' (8) + D) x [0] x [b]. (4.4.13)

Model fitting employs a Gibbs sampler with Metropolis steps.

1. Update b= (5,1)". Let

T T g 0
iy = (1gs ) 5 Sojg = B(0)E,xB " (0) + De, and 3 = (4.4.14)
0 Xy
The full conditional density for b is
510, 6] ~ Ny, y.): (4.4.15)

where

-1 Ty—1 y\—1 —1 Ty—1
Sy = (55 + X TE510X) 7 and ), = Sy (55 'y + X TS5100)  (4.4.16)

2. Update ©. We employ the block random walk Metropolis method to sample ©.

e Support on R. We’'ll do some log-type transformation to make sure the support
of all the parameters is (—o0,00). Specifically, for the parameters with Inverse

Gamma prior, we just do the log-transformation, i.e.,

52 =logo?,52 =logo?,72(x;) = log 72(x;), and %5 = log 75. (4.4.17)
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For the parameters with uniform prior, we do the logit-transformation. Specifi-

cally,

v by — (bv,min ~ a
¢’U = IOg , & = lOg )
¢v,mam — Py max — a

% = log (L) &= log <;) (4.4.18)
1=~ Crmax — C

where ¢v,min = - log(0‘05)/ds,ma1:7 v, maz = — 10g<0-01)/ds,min-

e Log-likelihood of ©. Denote by © the parameters of © after transformation.

Given O, b, the log-likelihood of © is proportional to

log p(©]0,b)
1 1 a2,
Ty—1 Uyt
x = 5 log [Spjal = 5(0 = Xb) 155160 — Xb) — Z; 22,
1=
nx
— aguff% — aav@% — ary Z 7:,22(1'1) - anﬁﬁ
=1
ng
) ) ) _ =2
- baue_au - bo’ve_gv o bTZ Z e’z ) — bTye K
=1
447+ e+ do—2log (1+eM)(1+e)(1+eT)(1+e))  (44.19)

Remarks: The inverse of ZO|Q are evaluated by applying Sherman-Woodbury-Morrison

formula (see, e.g., [Har97]), which only requires inverting a matrix with dimension (njn? +

*

Ty

) X (nyznZ +ny). Specifically,

25|19 — (D¢ 4+ B(0)S,,+« BT (6)) 7!

=Dt~ D7 BO) (s} + BT(0)D7'B(9)) ' BT ()DL (4.4.20)
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4.5 Predictions

In this section, we do the mapping of y to the locations where the signals Z have been
observed through prediction. Section 4.5.1 states the procedure to predict both y and Z at

new locations. Then, we derive the prediction of y given Z are known in Section 4.5.2.

4.5.1 Predictions for y and Z at new locations

Assume that there are no observations of y and Z at locations s, ..., §,, but there are records
of predictors X at those locations.

Let O = (07(51),07(39),...,07(5,))". Our goal is to find the conditional distribution
of O given all the observations.

We stack the data in a different way so as to separate z and y. Denote by

N

>
N

o

0= X = , (4.5.1)
J 0 Xy
where
Z(51) y(31) Xz(31) Xy(31)
Z = : = L Xz = : Xy = : . (45.2)
Z(5m) y(5m) X7(5m) Xy(gm)
It is easy to check that
X Solg Ch A
0~ N b, @ oo | (4.5.3)
. N N )
0 X T on o
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where X2 ol0 is the covariance matrix of O and OO ol is the cross-covariance matrix between

O and O. Therefore, we can obtain the conditional distribution of O given O and £,

where
Y T -1 'y B B T
Folo = Xb+ CO,O|QEO|Q(O - Xb) = (“Z|O’ Hglo)
Soo Do
. 1 4 727 “Zj
010 = ¥ola ~ Coop>oleCo00 = | : (4.5.5)

Usually, Bayesian prediction proceeds by sampling from the posterior predictive distri-

bution

§(0[0) = [ p(OI0.Vp(I0)iS (45.6)
In this case, for each posterior sample of €2, we draw a corresponding O by (4.5.4).

4.5.2 Predictions for y given Z are observed

Assume that there is no observation of y at locations §q, ..., §;,, but there are records of the

signal z and predictors X at those locations. Our goal is to find the conditional distribution

of y given all the observations.

By (4.5.4), we can figure out the conditional distribution of § given Z,0 and Q,

[912,0,9] ~ N(ugp., Z51.); (4.5.7)
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where

. T y-1l/7_
gl = kglo 22,5572 — hz0)

T w1
5~ 55555 5 (4.5.8)

The Bayesian prediction proceeds by sampling from the posterior predictive distribution
W712,0) = [ p(i12.0.0p(0/0. 2)ig (45.9)

Since we sample parameters () only given the information of O due to computing burden by

adding massive size of Z, we approximate the posterior predictive distribution as follows,

p(§Z,0) ~ /p(g|Z, 0, )p(2|0)ds. (4.5.10)

In this case, for each posterior sample of 2, we draw a corresponding ¢ by (4.5.7).

4.6 1illustrations

We conduct simulation experiments and analyze a large forestry dataset to assess model
performance with regard to learning about process parameters and predicting y at new
locations. Posterior inference for subsequent analysis were based upon three chains of 30000
iterations (with a burn-in of 5000 iterations). The samplers were programmed in C++ and
leveraged Intel’s Math Kernel Library’s (MKL) threaded BLAS and LAPACK routines for
matrix computations. The computations were conducted on a Linux workstation using two

Intel Nehalem quad-Xeon processors.
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4.6.1 Simulation experiments

We simulate the data on the regular lattices in the domain

[0,4] X [074] X [0,5] (4.6.1)
—_— ~—
location s height =

from joint model (4.3.7) with full spatial Gaussian process (GP) where n = n% = ny = 400
and n, = 50.

We hold out 25% of data by randomly sampling from the 400 spatial locations. In this
study, we choose full knots for y, i.e., ”Z = 300. We fit the following models from the training
data: i) the joint model with full knots n} = 300; ii) the joint model with n} = 200 knots;
iii) the joint model with n} = 100 knots; iv) the joint model with n} = 50 knots. Then, we
do predictions for y at the holdout locations for each model.

Parameter estimates and performance metrics for the four models with varying spatial
knots for z are provided in Table 4.1. We just listed the estimates of 1, oy, and the random
effect 6. Larger value of DIC suggest the joint models with fewer knots do not fit the data
as well as full knots. Yet, the coefficients «; which are used to extract information from the
signal Z are estimated quite well in each case. The last row in Table 4.1 shows computing
times in hours for one chain of 30000 iterations reflecting on the enormous computational
gains of predictive process models over full GP model.

Table 4.1 also indicates that the joint model with full knots for Z has the smallest
root mean square prediction error (RMSPE) and smallest mean interval width in terms of
predicting y given Z are known. Yet, there is no big difference when we reduce the number
of knots for Z. Figure 4.1 shows the 95% credible intervals for predicting 100 holdout

under each model.
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Figure 4.1 Predicted y given Z are known. Top left: n} = 300 (full knots); top right:
n} = 200; bottom left: n} = 100; bottom right: n} = 50. Any red point on the blue line

represents the case when the predicted y is equal to the true y.
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Table 4.1 Parameter credible intervals, 50% (2.5%, 97.5%) and predictive validation. Entries
in italics indicate where the true value is missed.

Parameter True Results for the following numbers of knots
value n* =300 (Full GP) n* =200 n* =100 n* =50
n 20 20.45(19.06,21.85)  20.86(19.58,22.11) 20.44(19.28,21.58)  20.5(19.59,21.41)
aq 2 -1.83(-2.04,-1.63)  -1.81(-2.05-1.58)  -1.98(-2.35-1.57)  -1.82(-2.27,-1.29)
a9 0 0.12(-0.16,0.37) 0.03(-0.28,0.33) 0.34(-0.14,0.79) 0.3(-0.32,1.07)
as 2 2.07(1.77,2.35) 1.91(1.59,2.25) 1.7(1.26,2.16) 1.69(1.13,2.41)
Qay 1 1.07(0.8,1.33) 1.11(0.83,1.39) 1.13(0.72,1.53) 1.27(0.7,1.87)
o3 5 4.85(4.61,5.09) 4.9(4.64,5.17) 4.97(4.6,5.33) 4.98(4.59,5.37)
o2 0.2 0.19(0.18,0.2) 0.19(0.18,0.2) 0.2(0.19,0.21) 0.19(0.18,0.2)
a 12 12.91(11.22,15.11) 13.17(11.16,17.44)  12.21(10.64,14.87) 11.92(10.54,13.93)
5y 0.9 0.86(0.78,0.94) 0.83(0.67,0.92) 0.9(0.79,0.98) 0.91(0.82,0.96)
c 5 5.63(4.92,6.43) 5.79(5.02,6.58) 5.44(4.69,6.22) 6.04(5.2,7.04)
o2 05 0.41(0.1,1.09) 0.29(0.09,0.93) 0.29(0.1,1.08) 0.43(0.1,1.91)
ov 2 3.63(0.91,7.25) 7.83(3.59,9.85) 8.03(1.2,9.48) 6.08(2.63,9.54)
PD 74.96 82.02 77.14 79.95
DIC 28989.64 29226.99 29487.41 29661.21
RMSPE 4.65 4.96 5.26 5.42
95% CT cover % 90 88 88 89
95% CI width 19.70 20.73 21.80 22.54
Time 153.3 h 80.3 h 27.0h 13.8 h

4.6.2 Forest LIDAR and biomass data analysis

4.6.2.1 Data description and preparation

This dataset was collected on the Penobscot Experimental Forest, Maine. The signals z(s, z)

are observed at 26286 locations.

At each location, there are 126 measurements equally

distributed above ground within [0, 37.5] meters. Among all the locations, there are 451

locations where biomass y is observed. Figure 4.2 below shows roughly how the data look

like.

Since the heights of trees are usually smaller than 29.1m at the observed area, there

is no signal when the height is above 29.1m at most locations. We first cut the signal at

29.1m. Then, we coarsen the signal within [0,29.1]m by averaging every two consecutive

measurements and use them to fit Z. The dimension of signals at each location is set to
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Figure 4.2 Left: Interpolated y, the small points o indicate where y’s are recorded; Right:
Signal Z measured at the big red disc marked on the left graph.

ng = 45. Meanwhile, we sum up the signals above 29.1m at each location and denote by
Xy,1(s), which is non-zero if the height of tree exceeds 29.1 meters at s . Tall trees usually
indicate a large amount of biomass y. So we consider X, 1(s) as the covariate of y across

locations. In this study, we do not have other covariates to model Z and y. Hence, we only

assume the mean of Z(s) and y(s) are X}(s)ﬁ = {B;};*, and XyT(s)n = m +n2Xy.1(s)

respectively. In addition, for numerical stability, we scale the magnitude of the biomass y

and the signal Z, i.e., y — y/100 and z — 100z.

4.6.2.2 Results

We holdout 25% of data by randomly sampling from the 451 spatial locations. The number
of height knots is set to n}. = 5 and they are evenly distributed across the height. We then
choose the same spatial knots for Z and y and fit the following models from the training

data: i) the joint model with full knots n* = 339; ii) the joint model with 200 knots; iii) the

108



joint model with 100 knots; iv) the joint model with 50 knots. Finally we do predictions for
holdout y and check the prediction performance.

Parameter estimates and performance metrics are provided in Table 4.2. According to our
model framework, «,, are used to characterize the relationship between signal and biomass.
We see that a9, a3 and ay are significant. a9 and ag correspond to signals at relatively
lower height than oy does. Usually, strong signals away from ground indicate big biomass.
That’s why ay is positive while ap and a3 are negative.

Table 4.2 Parameter credible intervals, 50% (2.5%, 97.5%) and predictive validation.

Parameter Results for the following numbers of knots
n* = 339 (Full GP) n* = 200 n* =100 n* =50
i 1.05(0.89,1.23) 1.06(0.72,1.39) 1.05(0.54,1.55) 1.05(0.82,1.29)
79 0(-0.04,0.03) 0.01(-0.02,0.03) 0.03(0,0.06) 0.05(0.02,0.07)
aq -0.19(-0.61,0.29) -0.06(-0.23,0.28) 0(-0.17,0.21) 0.06(-0.08,0.19)
ag -0.11(-0.17,-0.05) -0.13(-0.19,-0.07)  -0.16(-0.22,-0.1)  -0.12(-0.2,-0.03)
asg -0.09(-0.15,-0.02) -0.11(-0.16,-0.04) -0.14(-0.19,-0.07)  -0.06(-0.13,0.01)
ay 0.09(0.05,0.12)  0.06(0.03,0.11) 0.05(0,0.1) 0.11(0.05,0.17)
as 0.05(-0.09,0.16) 0(-0.12,0.12) -0.04(-0.17,0.1) -0.05(-0.17,0.07)
o2 0.19(0.18,0.21) 0.18(0.17,0.2) 0.18(0.17,0.19) 0.19(0.17,0.2)
a 1.1(1.02,1.18) 1.13(1.05,1.2) 1.19(1.12,1.27) 1.12(1.05,1.19)
~y 0.99(0.97,1) 1(1,1) 0.99(0.99,1) 0.99(0.99,1)
c 8.21(7.56,8.91) 8.18(7.59,8.83) 7.08(6.63,7.63) 5.88(5.51,6.32)
012, 0.07(0.05,0.09) 0.15(0.11,0.18) 0.19(0.14,0.31) 0.09(0.06,0.12)
o 4.38(2.94,6.26) 1.48(1.21,1.83) 0.89(0.88,0.89) 1.86(1.4,2.75)
135) 86.98 73.90 82.30 80.95
DIC 19111.42 19034.37 18969.00 19253.65
RMSPE for y 0.32 0.33 0.34 0.36
95% CI of y cover % 83 81 80 79
95% CI of y width 1.45 1.17 1.18 1.24
Time 147 h 67.94h 31.94 h 6.37 h

Table 4.2 also indicates that the joint model with full knots has the similar RMSPE and

mean CI width as those with reduced number of knots. Figure 4.3 shows the 95% credible

intervals for predicting 112 holdout y under each model, from which we see that reducing

the number of knots does not affect the prediction of y very much.
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Figure 4.3 Predicted y given Z are known. Top left: n* = 339 (full knots); top right:
n* = 200; bottom left: n* = 100; bottom right: n* = 50. Any red point on the blue line
represents the case when the predicted biomass is equal to the observed biomass.
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