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ABSTRACT

MULTIVARIATE GAUSSIAN RANDOM FIELDS: EXTREME VALUES,
PARAMETER ESTIMATION AND PREDICTION

By

Yuzhen Zhou

Motivated by the wide applications of multivariate Gaussian random fields in spatial

modeling, we study the tail probability of the extremes, the inference of fractal indices and

large covariance modeling of multivariate Gaussian random fields. First, we establish the

precise asymptotics for the extremes of bivariate Gaussian random fields by applying the

double sum method. The main results can be applied to bivariate Matérn fields. Second, we

study the joint asymptotic properties of estimating the fractal indices of bivariate Gaussian

random processes under infill asymptotics, which indicates that the estimators are asymp-

totically independent of the cross correlation in most cases. Third, we define a framework

to couple high-dimensional and spatially indexed LiDAR signals with forest variables using

a fully Bayesian functional spatial data analysis, which is able to capture within and among

LiDAR signal/forest variables association within and across locations. The proposed mod-

eling framework is illustrated by a simulated study and by analyzing LiDAR and spatially

coinciding forest inventory data collected on the Penobscot Experimental Forest, Maine.
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Chapter 1

Introduction

1.1 Multivariate Gaussian random fields

Before presenting the motivation and main work of this thesis, I would like to give the formal

definitions of random fields, real valued Gaussian random fields and multivariate Gaussian

random fields (see, e.g., [AT07]).

A random field is a stochastic process indexed by a parameter space, which could be a

subset of Euclidean space RN . Formally, it is defined by

Definition 1.1.1 (Random fields). Let (Ω,F ,P) be a complete probability space and T be

a topological space. Denote by RT be the space of all real-valued function on T . Then,

a measurable mapping X : Ω → RT is called a real-valued random field. Measurable

mappings from Ω to (RT )d, d > 1, are called multivariate random fields or vector-valued

random fields.

Hence, X(ω) is a univariate (or multivariate) function and X(ω, t) its value at t. We

usually omit ω and write the random field at t ∈ T as X(t).

A real-valued Gaussian random field is a random field X indexed by a parameter space

T whose finite dimensional distributions of (X(t1), ..., X(tn))> are multivariate Gaussian for

each n ∈ N and each (t1, ..., tn) ∈ Tn. The distribution of X is determined by its mean and
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covariance functions, that are

µ(t) := E(X(t)), C(s, t) := Cov(X(s),X(t)).

Let X be the vector-valued random fields taking values in Rd. Denote by X = (X1, ..., Xd)
>

where Xi is its ith coordinate process. X is called multivariate Gaussian random fields if for

any vector α ∈ Rd \{0},
∑d
i=1 αiXi(t) is a real-valued Gaussian random field. The distribu-

tion of X is determined by its vector-valued mean and matrix-valued covariance functions,

that are µ(t) := (E(X1(t)),E(X2(t)), ...,E(Xd(t)))
> and

Cov(X(s),X(t)) =



C11(s, t) C12(s, t) · · · C1d(s, t)

C21(s, t) C22(s, t) · · · C2d(s, t)

...
...

. . .
...

Cd1(s, t) Cd2(s, t) · · · Cdd(s, t)


,

where Cij(s, t) := Cov(Xi(s), Xj(t)), i, j = 1, 2, ..., d.

1.2 Overview

This work is motivated by the factor that there is an increasing need for analyzing multi-

variate spatial datasets [GDFG10, Wac03]. There is a rich literature on modeling univariate

spatial data [Cre93, Ste99]. However, in the multivariate setting, model specification is

more challenging because we also wish to capture cross-covariance among outcomes and

sites [GDFG10, CW11, BCG14].

Multivariate Gaussian random fields are a good candidate model to characterize the co-
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variance structure of the multivariate spatial datasets. [GKS10] introduced the full bivariate

Matérn field X(t) = (X1(t), X2(t)), which is a R2-valued, stationary Gaussian random field

on RN with zero mean and matrix-valued Matérn covariance functions. As spatially corre-

lated error field, this model was applied to probabilistic weather field forecasting for surface

pressure and temperature over the North American Pacific Northwest.

While the multivariate Gaussian random fields are widely used in spatial modeling, it

raises many interesting problems in the aspects of both theory and modeling. In this work, we

focus on three topics in this area: the tail probability of the extremes, the joint asymptotics

of fractal indices under infill asymptotics, and large covariance modeling with Gaussian

predictive processes. The rest chapters show the details of these three problems.

In Chapter 2, we study the tail probability of the extremes for a class of bivariate spatial

model, i.e., P
(

maxs∈A1
X1(s) > u,maxt∈A2

X2(t) > u
)
, as u → ∞. Applying the double

sum method [Pit96, Ans06], we establish an explicit form for the tail probability of double

extremes for the bivariate field. We found that the area where the cross correlation attains its

maximum has highest chance to cause extreme events. Also, the smoothness of the surface

for each component affects extreme probability.

In Chapter 3, we study the joint asymptotics of the fractal indices for bivariate Gaussian

random processes. We want to see how the cross dependence structure would affect the

efficiency of the estimators. The fractal index of each component is estimated respectively

by the increment-based method [CW00, CW04]. We established the joint asymptotics of

the bivariate estimators under infill asymptotics, which indicated that the estimators are

asymptotically independent of the cross correlation in most cases.

In Chapter 4, we define a framework to couple high-dimensional and spatially indexed

LiDAR signals with forest variables using a fully Bayesian functional spatial data analysis.
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This modeling framework allows us to capture within and among LiDAR signal/forest vari-

ables association within and across locations. However, the computational complexity of such

models increases in cubic order with the number of spatial locations and the dimension of the

LiDAR signal, and the number of forest variables—a characteristic common to multivariate

spatial process models. To address this computation challenge, we proposed an approxi-

mated model by employing the modified Gaussian predictive processes [BGFS08, FSBG09]

twice, both in locations and in heights.

We end the introduction with some notation. For any t ∈ RN , |t| denotes its l2-norm. An

integer vector k ∈ ZN is written as k = (k1, ..., kN ). For k ∈ ZN and T ∈ R+ = [0,∞), we

define the cube [kT, (k + 1)T ] :=
∏N
i=1[kiT, (ki + 1)T ]. For any integer n, mesn(·) denotes

the n-dimensional Lebesgue measure. An unspecified positive and finite constant will be

denoted by C0. More specific constants are numbered by C1, C2, . . . .
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Chapter 2

Tail asymptotics for the Extremes of

Bivariate Gaussian Random Fields

Let {X(t) = (X1(t), X2(t))>, t ∈ RN} be an R2-valued continuous locally stationary Gaus-

sian random field with E[X(t)] = 0. For any compact sets A1, A2 ⊂ RN , precise asymptotic

behavior of the excursion probability

P
(

max
s∈A1

X1(s) > u, max
t∈A2

X2(t) > u

)
, as u→∞

is investigated by applying the double sum method. The explicit results depend not only on

the smoothness parameters of the coordinate fields X1 and X2, but also on their maximum

correlation ρ.

2.1 Introduction

For a real-valued Gaussian random field X = {X(t), t ∈ T}, where T is the parameter

set, defined on probability space (Ω,F ,P), the excursion probability P{supt∈T X(t) > u}

has been studied extensively. Extending the seminal work of [Pic69], [Pit96] developed a

systematic theory on asymptotics of the aforementioned excursion probability for a broad

class of Gaussian random fields. Their method, which is called the double sum method, has
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been further extended by [CL06] to non-Gaussian random fields and, recently, by [DHJ14]

to a non-stationary Gaussian random field {X(s, t), (s, t) ∈ R2} whose variance function

attains its maximum on a finite number of disjoint line segments. For smooth Gaussian

random fields, more accurate approximation results have been established by using integral

and differential-geometric methods (see, e.g., [Adl00], [AT07], [AW09] and the references

therein). For Gaussian and asymptotically Gaussian random fields, the change of measure

method was developed by [NSY08] and [Yak13]. Many of the results in the aforementioned

references have found important applications in statistics and other scientific areas. We refer

to [ATW10] and [Yak13] for further information.

However, only a few authors have studied the excursion probability of multivariate ran-

dom fields. [PS05] and [DKMR10] established large deviation results for the excursion prob-

ability in multivariate case. [Ans06] obtained precise asymptotics for a special class of non-

stationary bivariate Gaussian processes, under quite restrictive conditions. [HJ14] recently

derived precise asymptotics for the excursion probability of a bivariate fractional Brownian

motion with constant cross correlation. The last two papers only consider multivariate pro-

cesses on the real line R with specific cross dependence structures. [CX14] established a

precise approximation to the excursion probability by using the mean Euler characteristics

of the excursion set for a broad class of smooth bivariate Gaussian random fields on RN . In

the present chapter we investigate asymptotics of the excursion probability of non-smooth

bivariate Gaussian random fields on RN , where the methods are totally different from the

smooth case.

Our work is also motivated by the recent increasing interest in using multivariate ran-

dom fields for modeling multivariate measurements obtained at spatial locations (see, e.g.,

[GDFG10], [Wac03]). Several classes of multivariate spatial models have been introduced
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by [GKS10], [AGS12] and [KN12]. We will show in Section 2 that the main results of this

chapter are applicable to bivariate Gaussian random fields with Matérn cross-covariances

introduced by [GKS10]. Furthermore, we expect that the excursion probabilities considered

in this chapter will have interesting statistical applications.

Let {X(t), t ∈ RN} be an R2-valued (not-necessarily stationary) Gaussian random field

with E[X(t)] = 0. We write X(t) , (X1(t), X2(t))> and define

rij(s, t) := E[Xi(s)Xj(t)], i, j = 1, 2. (2.1.1)

Throughout this chapter, we impose the following assumptions.

i) rii(s, t) = 1 − ci|t − s|αi + o(|t − s|αi), where αi ∈ (0, 2) and ci > 0 (i = 1, 2) are

constants.

ii) |rii(s, t)| < 1 for all |t− s| > 0, i = 1, 2.

iii) r12(s, t) = r21(s, t) := r(|t− s|). Namely, the cross correlation is isotropic.

iv) The function r(·) : [0,∞) → R attains maximum only at zero with r(0) = ρ ∈ (0, 1),

i.e., |r(t)| < ρ for all t > 0. Moreover, we assume r′(0) = 0, r′′(0) < 0 and there exists

η > 0, for any s ∈ [0, η], r′′(s) exists and continuous.

The cross correlation defined here is meaningful and common in spatial statistics where

it is usually assumed that the correlation decreases as the distance between two observations

increases (see, e.g., [GDFG10], [GKS10]). We only assume that the cross correlation is twice

continuously differentiable around the area where the maximum correlation is attained, which

is a weaker assumption than that in [CX14] who considered smooth bivariate Gaussian fields.
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For any compact sets A1, A2 ⊂ RN , we investigate the asymptotic behavior of the fol-

lowing excursion probability

P
(

max
s∈A1

X1(s) > u, max
t∈A2

X2(t) > u

)
, as u→∞. (2.1.2)

The main results of this chapter are Theorems 2.1 and 2.2 below, which demonstrate that

the excursion probability (2.1.2) depends not only on the smoothness parameters of the

coordinate fields X1 and X2, but also on their maximum correlation ρ. The proofs of

our Theorems 2.1 and 2.2 will be based on the double sum method. Compared with the

earlier works of [LP00], [Ans06] and [HJ14], the main difficulty in the present work is that

the correlation function of X1 and X2 attains its maximum over the set D := {(s, s) : s ∈

A1∩A2} which may have different geometric configurations. Several non-trivial modifications

for carrying out the arguments in the double sum method have to be made.

This work raises several open questions. For example it would be interesting to study

the excursion probabilities when {X(t), t ∈ RN} is anisotropic or non-stationary, or taking

values in Rd with d ≥ 3. In the last problem, the covariance and cross-covariance structures

become more complicated. We expect that the pairwise maximum cross correlations and the

size (e.g., the Lebesgue measure) of the set where all the pairwise cross correlations attain

their maximum values (if not empty) will play an important role.

The rest sections in this chapter are organized as follows. Section 2.2 states the main

theorems with some discussions. We provides an application of the main theorems to the

bivariate Gaussian fields with Matérn cross-covariances introduced by [GKS10] in Section

2.3. We state the key lemmas and provide proofs of our main theorems in Section 2.4. The

proofs of the lemmas are given in Section 2.5.
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2.2 Main Results and Discussions

We recall the Pickands constant first (see, e.g., [Pic69, Pit96]). Let χ = {χ(t), t ∈ RN} be

a (rescaled) fractional Brownian motion with Hurst index α/2 ∈ (0, 1), which is a centered

Gaussian field with covariance function E[χ(t)χ(s)] = |t|α + |s|α − |t− s|α.

As in [LP00] and [Ans06], we define for any compact sets S,T ⊂ RN ,

Hα(S,T) :=

∫ ∞
0

es · P
(

sup
t∈S

(
χ(t)− |t|α

)
> s, sup

t∈T

(
χ(t)− |t|α

)
> s
)
ds. (2.2.1)

Let Hα(T) = Hα(T,T). Then, the Pickands constant is defined as

Hα := lim
T→∞

Hα([0, T ]N )

TN
, (2.2.2)

which is positive and finite (cf. [Pit96]).

Before moving to the tail probability of extremes of a bivariate Gaussian random field, let

us consider the tail probability of a standard bivariate Gaussian vector (ξ, η) with correlation

ρ. It is known that (see, e.g., [LP00])

P(ξ > u, η > u) =Ψ(u, ρ)(1 + o(1)), as u→∞,

where

Ψ(u, ρ) :=
(1 + ρ)2

2πu2
√

1− ρ2
exp

(
− u2

1 + ρ

)
.

The exponential part of the tail probability above is determined by the correlation ρ. As

shown by Theorems 2.2.1 and 2.2.2 below, similar phenomenon also happens for the tail
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probability of double extremes of {X(t), t ∈ RN}, where the exponential part is determined

by the maximum cross correlation of the coordinate fields X1 and X2.

We will study double extremes of X on the domain A1 × A2 where A1, A2 are bounded

Jordan measurable sets in RN . That is, the boundaries of A1 and A2 have N -dimensional

Lebesgue measure 0 (see, e.g., [Pit96], p.105). We only consider the case when A1 ∩A2 6= ∅,

in which the maximum cross correlation ρ can be attained.

If mesN (A1 ∩ A2) 6= 0, we have the following theorem.

Theorem 2.2.1. Let {X(t), t ∈ RN} be a bivariate Gaussian random field that satisfies the

assumptions in Section 2.1. If mesN (A1 ∩ A2) 6= 0, then as u→∞,

P
(

max
s∈A1

X1(s) > u, max
t∈A2

X2(t) > u

)
= (2π)

N
2 (−r′′(0))−

N
2 c

N
α1
1 c

N
α2
2 mesN (A1 ∩ A2)Hα1Hα2

× (1 + ρ)
−N( 2

α1
+ 2
α2
−1)

u
N( 2

α1
+ 2
α2
−1)

Ψ(u, ρ)(1 + o(1)).

(2.2.3)

If mesN (A1 ∩A2) = 0, the above theorem is not informative. We have not been able to

obtain a general explicit formula in the general. Instead, we consider the special cases

A1 = A1,M ×
N∏

j=M+1

[Sj , Tj ] and A2 = A2,M ×
N∏

M+1

[Tj , Rj ], (2.2.4)

where A1,M and A2,M are M dimensional Jordan sets with mesM (A1,M ∩ A2,M ) 6= 0 and

Sj ≤ Tj ≤ Rj , j = M+1, . . . , N, 0 ≤M ≤ N−1. For simplicity of notation, letmes0(·) ≡ 1.

Our next theorem shows that the excursion probability is smaller than that in (2.2.3) by a

factor of uM−N .

Theorem 2.2.2. Let {X(t), t ∈ RN} be a bivariate Gaussian random field that satisfies the
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assumptions in Section 2.1, and let A1, A2 be as in (2.2.4) with mesM (A1,M ∩ A2,M ) > 0.

Then as u→∞,

P
(

max
s∈A1

X1(s) > u, max
t∈A2

X2(t) > u

)
= (2π)

M
2 (−r′′(0))−

2N−M
2 c

N
α1
1 c

N
α2
2 Hα1Hα2mesM (A1,M ∩ A2,M )

× (1 + ρ)
2N−M−2N

α1
−2N
α2 u

M+N( 2
α1

+ 2
α2
−2)

Ψ(u, ρ)(1 + o(1)).

(2.2.5)

Remark 2.2.3. The following are some additional remarks about Theorems 2.2.1 and 2.2.2.

• The excursion probability in (2.1.2) depends on the region where the maximum cross

correlation is attained. In our setting, the maximum cross correlation ρ is attained on

D := {(s, s) | s ∈ A1 ∩ A2}.

• For Theorem 2.2.2, let us consider the extreme case when M = 0, i.e., A1 ∩ A2 =

{(T1, ..., TN )}. The exponential part still reaches − u2

1+ρ , although the maximum cross

correlation ρ is attained at a single point.

• To compare our results with [Ans06], we consider a centered Gaussian process {X(t) =

(X1(t), X2(t))>, t ∈ R} and A1 = A2 = [0, T ]. In our setting, the cross correlation

attains its maximum on the line D = {(s, s) | s ∈ [0, T ]}, while in [Ans06] it only

attains at a unique point in [0, T ] × [0, T ] because of the assumption C2. This is the

reason why the power of u in our settings is 2
α1

+ 2
α2
− 3 instead of 2

α1
+ 2

α2
− 4 in

[Ans06].

• Even though Theorem 2.2.2 only deals with a special case of A1, A2 with mesN (A1 ∩

A2) = 0, its method of proof can be applied to more general cases provided some

information on A1 and A2 is provided. The key step is to reevaluate the infinite series
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in Lemma 2.4.5.

2.3 An example: positively correlated bivariate Matérn

fields

In this section, we apply Theorems 2.2.1 and 2.2.2 to bivariate Gaussian random fields with

the Matérn correlation functions introduced by [GKS10].

The Matérn correlation function M(h|ν, a), where a > 0, ν > 0 are scale and smoothness

parameters, is widely used to model covariance structures in spatial statistics. It is defined

as

M(h|ν, a) :=
21−ν

Γ(ν)
(a|h|)νKν(a|h|), (2.3.1)

where Kν is a modified Bessel function of the second kind. In [GKS10], the authors introduce

the full bivariate Matérn field X(s) = (X1(s), X2(s))>, i.e., an R2-valued Gaussian random

field on RN with zero mean and matrix-valued covariance functions:

C(h) =

 C11(h) C12(h)

C21(h) C22(h)

 , (2.3.2)

where Cij(h) := E[Xi(s+ h)Xj(s)] are specified by

C11(h) = σ2
1M(h|ν1, a1), (2.3.3)

C22(h) = σ2
2M(h|ν2, a2), (2.3.4)

C12(h) = C21(h) = ρσ1σ2M(h|ν12, a12). (2.3.5)

12



According to [GKS10], the above model is valid if and only if

ρ2 ≤ Γ(ν1 +N/2)Γ(ν2 +N/2)

Γ(ν1)Γ(ν2)

Γ(ν12)2

Γ(ν12 +N/2)2

a
2ν1
1 a

2ν2
2

a
4ν12
12

× inf
t≥0

(a2
12 + t2)2ν12+N

(a2
1 + t2)ν1+N/2(a2

2 + t2)ν2+N/2
.

(2.3.6)

Especially, when a1 = a2 = a12, condition (2.3.6) is reduced to

ρ2 ≤ Γ(ν1 +N/2)Γ(ν2 +N/2)

Γ(ν1)Γ(ν2)

Γ(ν12)2

Γ(ν12 +N/2)2
, (2.3.7)

in which case the choice of ρ is fairly flexible.

Here we focus on a standardized bivariate Matérn field, that is, we assume σ1 = σ2 = 1,

a1 = a2 = a12 = 1 and ρ > 0. Moreover, we assume ν1, ν2 ∈ (0, 1) and ν12 > 1. In this case,

the bivariate Matérn field {X(t), t ∈ RN} satisfies the assumptions in Section 2.1.

Indeed, Assumption i) in Section 2.1 is satisfied since

M(h|νi, a) = 1− ci|t|2νi + o(|t|2νi),

where ci =
Γ(1−νi)

22νiΓ(1+νi)
(see, e.g., [Ste99], p. 32). Assumption ii) holds immediately if we

use the following integral representation of M(h|ν, a) (see, e.g., [AS72], Section 9.6)

M(h|ν, a) =
2Γ(ν + 1/2)√

πΓ(ν)

∫ ∞
0

cos(a|h|r)
(1 + r2)ν+1/2

dr. (2.3.8)

Assumption iii) holds by the definition of cross correlation in (2.3.5). For Assumption iv),

we only need to check the smoothness of M(h|ν, a). By another integral representation of
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M(h|ν, a) (see, e.g., [AS72], Section 9.6), i.e.,

M(h|ν, a) =
21−2ν(a|h|)2ν

Γ(ν + 1/2)Γ(ν)

∫ ∞
1

e−a|h|r(r2 − 1)ν−1/2 dr,

one can verify that M(h|ν, a) is infinitely differentiable when |h| 6= 0. Meanwhile, M ′′(0|ν, a)

exists and is continuous when ν > 1 which can be proven by taking twice derivatives to the

integral representation in (2.3.8) w.r.t. |h|. So Assumption iv) holds.

Applying Theorem 2.2.1 to the double excursion probability of X(s) over [0, 1]N , we have

P
(

max
s∈[0,1]N

X1(s) > u, max
t∈[0,1]N

X2(t) > u
)

= (2π)
N
2 (−C ′′12(0))−

N
2 c

N
2ν1
1 c

N
2ν2
2 (1 + ρ)

−N( 1
ν1

+ 1
ν2
−1)

H2ν1
H2ν2

×uN( 1
ν1

+ 1
ν2
−1)

Ψ(u, ρ)(1 + o(1)), as u→∞.

Secondly, when the two measurements are observed on two regions which only share part

of boundaries, we use Theorem 2.2.2 to obtain the excursion probability. For example, if

X1(s) are observed on the region [0, 1]N and X2(s) on [0, 1]N−1 × [1, 2], then as u→∞,

P
(

max
s∈[0,1]N

X1(s) > u, max
t∈[0,1]N−1×[1,2]

X2(t) > u

)

= (2π)
N−1

2 (−C ′′12(0))−
N+1

2 c

N
2ν1
1 c

N
2ν2
2 (1 + ρ)

1−N( 1
ν1

+ 1
ν2
−1)

H2ν1
H2ν2

×uN( 1
ν1

+ 1
ν2
−1)−1

Ψ(u, ρ)(1 + o(1)).
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2.4 Proofs of the main results

The proofs of Theorems 2.2.1 and 2.2.2 are based on the double sum method [Pit96] and

the work of [LP00]. Since the latter deals with the tail probability P(maxt∈[T1,T2]X(t) >

u, maxt∈[T3,T4]X(t) > u) of a univariate Gaussian process {X(t), t ∈ R}, their method is

not sufficient for carrying out the double sum method for a bivariate random field.

The lemmas below extend Lemma 1 and Lemma 9 in [LP00] to the bivariate random

field {(X1(t), X2(t))>, t ∈ RN}. Moreover, we have strengthened the conclusion by showing

that the convergence is uniform in certain sense. This will be useful later for dealing with

sums of local approximations around the regions where the maximum cross correlation is

attained. The details will be illustrated in the proof of Theorem 2.2.1 (see, e.g., (2.4.10),

(2.4.21)). In the following lemmas, {X(t), t ∈ RN} is a bivariate Gaussian random field as

defined in Section 2.1.

Lemma 2.4.1. Let su and tu be two RN -valued functions of u and let τu := tu − su. For

any compact sets S and T in RN , we have

P
(

max
s∈su+u−2/α1S

X1(s) > u, max
t∈tu+u−2/α2T

X2(t) > u

)

=
(1 + ρ)2

2π
√

1− ρ2
Hα1

 c
1/α1
1 S

(1 + ρ)
2
α1

Hα2

 c
1/α2
2 T

(1 + ρ)
2
α2


× u−2 exp

(
− u2

1 + r(|τu|)

)
(1 + o(1)),

(2.4.1)

where o(1)→ 0 uniformly w.r.t. τu satisfying |τu| ≤ C
√

log u/u as u→∞.

Lemma 2.4.2. Let su, tu and τu be the same as in Lemma 2.4.1. For all T > 0, m,n ∈ ZN ,
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we have

P
(

max
s∈su+u−2/α1[0,T ]N

X1(s) > u, max
t∈tu+u−2/α2[0,T ]N

X2(t) > u,

max
s∈su+u−2/α1[mT,(m+1)T ]

X1(s) > u, max
t∈tu+u−2/α2[nT,(n+1)T ]

X2(t) > u

)

=
(1 + ρ)2

2π
√

1− ρ2 u2
e
− u2

1+r(|τu|) Hα1

(
c
1/α1
1 [0, T ]N

(1 + ρ)
2
α1

,
c
1/α1
1 [mT, (m + 1)T ]

(1 + ρ)
2
α1

)

× Hα2

(
c
1/α2
2 [0, T ]N

(1 + ρ)
2
α2

,
c
1/α2
2 [nT, (n + 1)T ]

(1 + ρ)
2
α2

)(
1 + o(1)

)
, (2.4.2)

where Hα(·, ·) is defined in (2.2.1) and o(1) → 0 uniformly for all su and tu that satisfy

|τu| ≤ C
√

log u/u as u→∞.

Now we are ready to prove our main theorems.

Proof of Theorem 2.2.1. Let Π = A1×A2, δ(u) = C
√

log u/u, where C is a constant whose

value will be determined later. Let

D =
{

(s, t) ∈ Π : |t− s| ≤ δ(u)
}
. (2.4.3)

Since

P
( ⋃

(s,t)∈D
{X1(s) > u,X2(t) > u)}

)
≤ P

(
max
s∈A1

X1(s) > u, max
t∈A2

X2(t) > u

)

≤ P
( ⋃

(s,t)∈D
{X1(s) > u,X2(t) > u)}

)
+ P

( ⋃
(s,t)∈Π\D

{X1(s) > u,X2(t) > u)}
)
,
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it is sufficient to prove that, by choosing appropriate constant C, we have

P
( ⋃

(s,t)∈D
{X1(s) > u,X2(t) > u)}

)

= (2π)
N
2 (−r′′(0))−

N
2 c

N
α1
1 c

N
α2
2 (1 + ρ)

−N( 2
α1

+ 2
α2
−1)

mesN (A1 ∩ A2)

×Hα1Hα2 u
N( 2

α1
+ 2
α2
−1)

Ψ(u, ρ)(1 + o(1)), as u→∞

(2.4.4)

and

lim
u→∞

P
(⋃

(s,t)∈Π\D{X1(s) > u,X2(t) > u)}
)

P
(⋃

(s,t)∈D{X1(s) > u,X2(t) > u)}
) = 0. (2.4.5)

We prove (2.4.4) first. For any fixed T > 0 and i = 1, 2, let di(u) = Tu
− 2
αi and, for any

k = (k1, . . . , kN ) ∈ ZN , define

∆
(i)
k ,

N∏
j=1

[kjdi(u), (kj + 1)di(u)] = [kdi(u), (k + 1)di(u)]. (2.4.6)

Let

C = {(k, l) : ∆
(1)
k ×∆

(2)
l ∩ D 6= ∅} and C◦ = {(k, l) : ∆

(1)
k ×∆

(2)
l ⊆ D}. (2.4.7)

It is easy to see that

⋃
(k,l)∈C◦

∆
(1)
k ×∆

(2)
l ⊆ D ⊆

⋃
(k,l)∈C

∆
(1)
k ×∆

(2)
l .
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Thus the LHS of (2.4.4) is bounded above by

P
( ⋃

(s,t)∈D
{X1(s) > u,X2(t) > u)}

)

≤
∑

(k,l)∈C
P
(

max

s∈∆
(1)
k

X1(s) > u, max

t∈∆
(2)
l

X2(t) > u

)

=
∑

(k,l)∈C
P
(

max

s∈kd1(u)+∆
(1)
0

X1(s) > u, max

t∈ld2(u)+∆
(2)
0

X2(t) > u

)
.

(2.4.8)

Let

τkl := ld2(u)− kd1(u)

= (l1d2(u)− k1d1(u), ..., lNd2(u)− kNd1(u)).

(2.4.9)

For (k, l) ∈ C, |τkl| ≤ δ(u) +
√
N(d1(u) + d2(u)) ≤ 2δ(u) for all u large enough, since

d1(u) = o(δ(u)) and d2(u) = o(δ(u)), as u → ∞. Hence, by applying Lemma 2.4.1 to the

RHS of (2.4.8), we obtain

P
( ⋃

(s,t)∈D
{X1(s) > u,X2(t) > u)}

)

≤ (1 + ρ)2(1 + γ(u))

2π
√

1− ρ2 u2
Hα1

c1/α1
1 [0, T ]N

(1 + ρ)
2
α1

Hα2

c1/α2
2 [0, T ]N

(1 + ρ)
2
α2


×

∑
(k,l)∈C

exp

(
− u2

1 + r(|τkl|)

)

= Hα1

c1/α1
1 [0, T ]N

(1 + ρ)
2
α1

Hα2

c1/α2
2 [0, T ]N

(1 + ρ)
2
α2

Ψ(u, ρ)(1 + γ(u))

×
∑

(k,l)∈C
exp

{
−u2

(
1

1 + r(|τkl|)
− 1

1 + ρ

)}
,

(2.4.10)
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where the global error function γ(u)→ 0, as u→∞. The uniform convergence of (2.4.1) in

Lemma 2.4.1 guarantees that the local error term o(1) for each pair (k, l) ∈ C is uniformly

bounded by γ(u).

The series in the last equality of (2.4.10) is dealt by the following key lemma, which gives

the power of the threshold u in (2.4.4).

Lemma 2.4.3. Recall the set C defined in (2.4.7). Let

h(u) :=
∑

(k,l)∈C
exp

{
−u2

(
1

1 + r(|τkl|)
− 1

1 + ρ

)}
. (2.4.11)

Then, under the assumptions of Theorem 2.2.1, we have

h(u) = (2π)N/2(−r′′(0))−N/2(1 + ρ)NT−2NmesN (A1 ∩ A2)

× uN( 2
α1

+ 2
α2
−1)

(1 + o(1)), as u→∞. (2.4.12)

Moreover, if we replace C in (2.4.11) by C◦ defined in (2.4.7), then (2.4.12) still holds.

We defer the proof of Lemma 2.4.3 to Section 2.5 and continue with the proof of Theorem

2.2.1. Applying (2.4.12) to (2.4.10), we obtain

P
( ⋃

(s,t)∈D
{X1(s) > u,X2(t) > u)}

)

≤ (2π)
N
2 (−r′′(0))−

N
2 (1 + ρ)NT−2NmesN (A1 ∩ A2)Hα1

c1/α1
1 [0, T ]N

(1 + ρ)
2
α1


×Hα2

c1/α2
2 [0, T ]N

(1 + ρ)
2
α2

 u
N( 2

α1
+ 2
α2
−1)

Ψ(u, ρ)(1 + γ1(u)),

(2.4.13)
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where γ1(u)→ 0, as u→∞. Hence,

lim sup
u→∞

P
(⋃

(s,t)∈D{X1(s) > u,X2(t) > u)}
)

u
N( 2

α1
+ 2
α2
−1)

Ψ(u, ρ)

≤ (2π)
N
2 (−r′′(0))−

N
2 (1 + ρ)NmesN (A1 ∩ A2)

× T−2NHα1

c1/α1
1 [0, T ]N

(1 + ρ)
2
α1

Hα2

c1/α2
2 [0, T ]N

(1 + ρ)
2
α2

 .

(2.4.14)

The above inequality holds for every T > 0. Therefore, letting T →∞, we have

lim sup
u→∞

P
(⋃

(s,t)∈D{X1(s) > u,X2(t) > u)}
)

u
N( 2

α1
+ 2
α2
−1)

Ψ(u, ρ)

≤ (2π)
N
2 (−r′′(0))−

N
2

× c
N
α1
1 c

N
α2
2 (1 + ρ)

−N( 2
α1

+ 2
α2
−1)

mesN (A1 ∩ A2)Hα1Hα2 . (2.4.15)

On the other hand, the lower bound for LHS of (2.4.4) can be derived as follows. Let

B = {(k, l,k′, l′) : (k, l) 6= (k′, l′), (k, l), (k′, l′) ∈ C}. (2.4.16)

By Bonferroni’s inequality and symmetric property of B, the LHS of (2.4.4) is bounded below

by

P
( ⋃

(s,t)∈D
{X1(s) > u,X2(t) > u}

)

≥
∑

(k,l)∈C◦
P
(

max

s∈∆
(1)
k

X1(s) > u, max

t∈∆
(2)
l

X2(t) > u

)

− 1

2

∑
(k,l,k′,l′)∈B

P
(

max

s∈∆
(1)
k

X1(s) > u, max

t∈∆
(2)
l

X2(t) > u, (2.4.17)
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max

s∈∆
(1)

k′

X1(s) > u, max

t∈∆
(2)

l′

X2(t) > u

)

, Σ1 − Σ2.

Since C◦ and C are almost the same, a similar argument as in (2.4.10)∼ (2.4.15) shows that

Σ1 is bounded from below by

Σ1 ≥ (2π)
N
2 (−r′′(0))−

N
2 (1 + ρ)NmesN (A1 ∩ A2)T−2NHα1

c1/α1
1 [0, T ]N

(1 + ρ)
2
α1


×Hα2

c1/α2
2 [0, T ]N

(1 + ρ)
2
α2

 u
N( 2

α1
+ 2
α2
−1)

Ψ(u, ρ)(1− γ2(u)), (2.4.18)

where γ2(u)→ 0, as u→∞. Hence, letting T →∞, we have

lim inf
u→∞

Σ1

u
N( 2

α1
+ 2
α2
−1)

Ψ(u, ρ)

≥ (2π)
N
2 (−r′′(0))−

N
2 c

N
α1
1 c

N
α2
2

× (1 + ρ)
−N( 2

α1
+ 2
α2
−1)

mesN (A1 ∩ A2)Hα1Hα2 .

(2.4.19)

Next, we consider Σ2 in (2.4.17). To simplify the notation, we let

I(k, l,k′, l′) := P
(

max

s∈∆
(1)
k

X1(s) > u, max

t∈∆
(2)
l

X2(t) > u,

max

s∈∆
(1)

k′

X1(s) > u, max

t∈∆
(2)

l′

X2(t) > u

)
.

For m = (m1, . . . ,mN ) ∈ ZN , let

Hα,c(m) , Hα

(
c1/α[0, T ]N

(1 + ρ)
2
α

,
c1/α[mT, (m + 1)T ]

(1 + ρ)
2
α

)
. (2.4.20)
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Rewriting Σ2 and applying Lemma 2.4.2, we obtain

Σ2 =
1

2

∑
(k,l)∈C

( ∑
(k′,l′)∈C
k′=k,l′ 6=l

+
∑

(k′,l′)∈C
k′ 6=k,l′=l

+
∑

(k′,l′)∈C
k′ 6=k,l′ 6=l

)
I(k, l,k′, l′)

=
(1 + ρ)2(1 + γ3(u))

4π
√

1− ρ2 u2

∑
(k,l)∈C

e
− u2

1+r(|τkl|)
(
Hα1,c1(0)

∑
(k′,l′)∈C
k′=k,l′ 6=l

Hα2,c2(l′ − l)

+Hα2,c2(0)
∑

(k′,l′)∈C
k′ 6=k,l′=l

Hα1,c1(k′ − k) +
∑

(k′,l′)∈C
k′ 6=k,l′ 6=l

Hα1,c1(k′ − k)Hα2,c2(l′ − l)

)

≤(1 + ρ)2(1 + γ3(u))

4π
√

1− ρ2u2

∑
(k,l)∈C

e
− u2

1+r(|τkl|)
(
Hα1,c1(0)

∑
n6=0

Hα2,c2(n)

+Hα2,c2(0)
∑
m6=0

Hα1,c1(m) +
∑

m6=0,n6=0

Hα1,c1(m)Hα2,c2(n)

)
, (2.4.21)

where γ3(u) → 0, as u → ∞. According to the uniform convergence of (2.4.2), the local

error term o(1) for each pair (k′, l′) ∈ C is bounded above by γ3(u) . To estimate Hα,c(·),

we make use of the following lemma, whose proof is again postponed to Section 2.5.

Lemma 2.4.4. Recall Hα,c(·) defined in (2.4.20). Let i0 = argmax1≤i≤N |mi|. Then there

exist positive constants C1 and T0 such that for all T ≥ T0,

Hα,c(0) ≤ C1T
N ; (2.4.22)

Hα,c(m) ≤ C1T
N−1

2 , when |mi0
| = 1; (2.4.23)

Hα,c(m) ≤ C1T
2Ne

− c
8(1+ρ)2

(|mi0 |−1)αTα

, when |mi0
| ≥ 2. (2.4.24)
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Consequently, ∑
m∈ZN \{0}

Hα,c(m) ≤ C1T
N−1

2 . (2.4.25)

Applying Lemmas 2.4.3 and 2.4.4 to the RHS of (2.4.21), we obtain

Σ2 ≤
C0(1 + ρ)2(1 + γ3(u))

4π
√

1− ρ2u2
T 2N−1

2
∑

(k,l)∈C
exp

(
− u2

1 + r(|τkl|)

)

≤ C0(2π)
N
2 (−r′′(0))−

N
2 (1 + ρ)NmesN (A1 ∩ A2)T−

1
2

× uN( 2
α1

+ 2
α2
−1)

Ψ(u, ρ)(1 + γ4(u)), (2.4.26)

where γ4(u)→ 0, as u→∞. By letting u→∞ and T →∞ successively, we have

lim sup
u→∞

Σ2

u
N( 2

α1
+ 2
α2
−1)

Ψ(u, ρ)

= 0. (2.4.27)

By combining (2.4.17), (2.4.19) and (2.4.27), we have

lim inf
u→∞

P
(⋃

(s,t)∈D{X1(s) > u,X2(t) > u)}
)

u
N( 2

α1
+ 2
α2
−1)

Ψ(u, ρ)

≥ lim inf
u→∞

Σ1

u
N( 2

α1
+ 2
α2
−1)

Ψ(u, ρ)

− lim sup
u→∞

Σ2

u
N( 2

α1
+ 2
α2
−1)

Ψ(u, ρ)

(2.4.28)

≥ (2π)
N
2 (−r′′(0))−

N
2 c

N
α1
1 c

N
α2
2 (1 + ρ)

−N( 2
α1

+ 2
α2
−1)

mesN (A1 ∩ A2)Hα1Hα2 .

It is now clear that (2.4.4) follows from (2.4.15) and (2.4.28).

Now we prove (2.4.5). Define

Y (s, t) := X1(s) +X2(t), for (s, t) ∈ Π \ D. (2.4.29)
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For x = (s1, t1), y = (s2, t2) ∈ Π \ D, let |x − y| =
√
|s1 − s2|2 + |t1 − t2|2. Then we can

verify that

E|Y (x)− Y (y)|2 ≤ C0|x− y|min(α1,α2), ∀x, y ∈ Π \ D. (2.4.30)

By applying Theorem 8.1 in [Pit96], we obtain that the numerator of (2.4.5) is bounded

above by

P
( ⋃

(s,t)∈Π\D
{X1(s) > u,X2(t) > u)}

)
≤ P

(
max

(s,t)∈Π\D
Y (s, t) > 2u

)

≤ C0u
−1+ 2N

min(α1,α2) exp

(
− u2

1 + max(s,t)∈Π\D r(|t− s|)

)
. (2.4.31)

Since r(|t − s|) = ρ + 1
2r
′′(0)|t − s|2(1 + o(1)) and r(·) attains maximum only at zero, we

have

max
(s,t)∈Π\D

r(|t− s|) ≤ ρ− 1

3
(−r′′(0))δ2(u) (2.4.32)

for u large enough. So (2.4.31) is at most

C0u
−1+ 2N

min(α1,α2) exp

(
− u2

1 + ρ− 1
3(−r′′(0))δ2(u)

)

≤ C0u
−1+ 2N

min(α1,α2) exp

(
− u2

1 + ρ

)
exp

(
−

1
3(−r′′(0))δ2(u)u2

(1 + ρ)2

)

=
2π
√

1− ρ2C0

(1 + ρ)2
u

1+ 2N
min(α1,α2)

− −r
′′(0)

3(1+ρ)2
C2

Ψ(u, ρ),

(2.4.33)

where the inequality holds since 1
x−y ≥

1
x + y

x2 ,∀x > y. Compare (2.4.33) with (2.4.4), it is
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easy to see (2.4.5) holds if and only if

1 +
2N

min(α1, α2)
− −r′′(0)

3(1 + ρ)2
C2 < N

( 2

α1
+

2

α2
− 1
)

(2.4.34)

Hence, by choosing the constant C satisfying

C >

[
3(1 + ρ)2

−r′′(0)

(
N
( 2

min(α1, α2)
+ 1− 2

α1
− 2

α2

)
+ 1

)
+

]1
2
, (2.4.35)

we conclude (2.4.5).

Proof of Theorem 2.2.2. From the proof of Theorem 2.2.1, we see that the exponential de-

caying rate of the excursion probability is only determined by the region where the maximum

cross correlation is attained. In the case of mesN (A1 ∩A2) = 0 but A1 ∩A2 6= ∅, the expo-

nential part, e
− u2

1+ρ , remains the same. Yet, the dimension reduction of A1 ∩A2 does affect

the polynomial power of the excursion probability, which is determined by the quantity

h(u) =
∑

(k,l)∈C
exp

{
−u2

(
1

1 + r(|τkl|)
− 1

1 + ρ

)}

in Lemma 2.4.3. Under the assumptions of Theorem 2.2.2, the set C and the behavior of

h(u) change. We will make use of the following lemma which plays the role of Lemma 2.4.3.

Lemma 2.4.5. Under the assumptions of Theorem 2.2.2, we have

h(u) = (2π)M/2(−r′′(0))M/2−N (1 + ρ)2N−MT−2NmesM (A1,M ∩ A2,M )

× uM+N
(

2
α1

+ 2
α2
−2
)
(1 + o(1)), as u→∞. (2.4.36)
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Moreover, if we replace C with C◦ defined in (2.4.7), then the above statement still holds.

The rest of the proof of Theorem 2.2.2 is the same as that of Theorem 2.2.1 and it is

omitted here.

2.5 Proof of Lemmas

For proving Lemma 2.4.1, we will make use of the following

Lemma 2.5.1. Let su and tu be two RN -valued functions of u and let τu := tu − su. For

any compact rectangles S and T in RN , define

ξu(s) := u(X1(su + u−2/α1s)− u) + x, ∀ s ∈ S,

ηu(t) := u(X2(tu + u−2/α2t)− u) + y, ∀ t ∈ T (2.5.1)

and for any t ∈ RN , let

ξ(t) :=
√
c1χ1(t)− c1|t|α1

1 + ρ
, η(t) :=

√
c2χ2(t)− c2|t|α2

1 + ρ
, (2.5.2)

where χ1(t), χ2(t) are two independent fractional Brownian motions with indices α1/2 and

α2/2, respectively. Then, the finite dimensional distributions (abbr. f.d.d.) of (ξu(·), ηu(·)),

given X1(su) = u− x
u , X2(tu) = u− y

u , converge uniformly to the f.d.d. of (ξ(·), η(·)) for all

su and tu that satisfy |τu| ≤ C
√

log u/u. Furthermore, as u→∞,

P
(

max
s∈S

ξu(s) > x,max
t∈T

ηu(t) > y
∣∣∣ X1(su) = u− x

u
,X2(tu) = u− y

u

)
→ P

(
max
s∈S

ξ(s) > x,max
t∈T

η(t) > y

)
, (2.5.3)
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where the convergence is uniform for all su and tu that satisfy |τu| ≤ C
√

log u/u.

Proof. First, we prove the uniform convergence of finite dimensional distributions. Given

X1(su) = u− x
u , X2(tu) = u− y

u , the distribution of the bivariate random field (ξu(·), ηu(·))

is still Gaussian. Thanks to the following lemma (whose proof will be given at the end of this

section), it suffices to prove the uniform convergence of conditional mean and conditional

variance.

Lemma 2.5.2. Let X(u, τu) = (X1(u, τu), . . . , Xn(u, τu))> be a Gaussian random vector

with mean µ(u, τu) = (µ1(u, τu), ..., µn(u, τu)> and covariance matrix Σ(u, τu) with entries

σij(u, τu) = Cov(Xi(u, τu), Xj(u, τu)), i, j = 1, 2, . . . , n. Similarly, let X = (X1, . . . , Xn)>

be a Gaussian random vector with mean µ = (µ1, ..., µn) and covariance matrix Σ = (σij)
n
i,j=1.

Let Fu(·) and F (·) be the distribution functions of X(u, τu) and X respectively. If

lim
u→∞

max
τu
|µj(u, τu)− µj | = 0,

lim
u→∞

max
τu
|σij(u, τu)− σij | = 0, i, j = 1, 2, . . . , n, (2.5.4)

then for any x ∈ RN ,

lim
u→∞

max
τu
|Fu(x)− F (x)| = 0. (2.5.5)

We continue with the proof of Lemma 2.5.1 and postpone the proof of Lemma 2.5.2 to

the end of this section. Recall that, for two random vectors X, Y ∈ Rm, their covariance is

defined as Cov(X, Y ) := E[(X − EX)(Y − EY )>] and the variance matrix of X is defined

as Var(X) := Cov(X,X). The conditional mean of (ξu(t), ηu(t))> given X1(su) = u −
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x
u , X2(tu) = u− y

u , is

E

 ξu(t)

ηu(t)

∣∣∣∣∣∣∣
X1(su) = u− x

u

X2(tu) = u− y
u

 = E
( ξu(t)

ηu(t)

)

+ Cov


 ξu(t)

ηu(t)

 ,

 X1(su)

X2(tu)



Var

 X1(su)

X2(tu)



−1 u− x

u

u− y
u



=

 −u2 + x

−u2 + y

+
u

1− r2(|τu|)

 r11(su + u−2/α1t, su) r(|τu − u−2/α1t|)

r(|τu + u−2/α2t|) r22(tu + u−2/α2t, tu)



×

 1 −r(|τu|)

−r(|τu|) 1


 u− x

u

u− y
u



,

 a1(u)

a2(u)

 , (2.5.6)

where

a1(u) =− u2(1− r11(su + u−2/α1t, su))− u2(r(|τu − u−2/α1t|)− r(|τu|))
1 + r(|τu|)

+
(x− yr(|τu|))(1− r11(su + u−2/α1t, su))

1− r2(|τu|)

+
(y − xr(|τu|))(r(|τu|)− r(|τu − u−2/α1t|))

1− r2(|τu|)
(2.5.7)

and

a2(u) =− u2(1− r22(tu + u−2/α2t, tu))− u2(r(|τu + u−2/α2t|)− r(|τu|))
1 + r(|τu|)

+
(y − xr(|τu|))(1− r22(tu + u−2/α1t, tu))

1− r2(|τu|)
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+
(x− yr(|τu|))(r(|τu|)− r(|τu + u−2/α2t|))

1− r2(|τu|)
. (2.5.8)

Applying the mean value theorem twice, we see that for u large enough,

|r(|τu + u−2/αt|)− r(|τu|)| ≤ |u−2/αt| · max
s is between

|τu| and |τu+u−2/αt|

|r′(s)|

≤ |u−2/αt| · max
|s|≤2C

√
log u/u

|r′(s)|

≤ |u−2/αt| · max
|s|≤2C

√
log u/u

(
|s| · max

|t|≤|s|
|r′′(t)|

)
≤ 2C|t|

√
log u · u−1−2/α · max

|t|≤2C
√

log u/u
|r′′(t)|

≤ 4C|r′′(0)||t|
√

log u · u−1−2/α, (2.5.9)

where the second inequality holds because of u−2/α = o(
√

log u/u), as u→∞ and the last

inequality holds since r′′(·) is continuous in a neighborhood of zero. Thus (2.5.9) implies

that, as u→∞,

u2|r(|τu + u−2/αt|)− r(|τu|)| ≤ 4C|r′′(0)||t|
√

log u · u1−2/α → 0, (2.5.10)

where the convergence is uniform for all su and tu that satisfy |τu| ≤ C
√

log u/u. We also

notice that for i = 1, 2 and all s ∈ RN ,

1− rii(s+ u−2/αt, s) = ciu
−2|t|αi + o(u−2), as u→∞. (2.5.11)
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By (2.5.6), (2.5.10), and (2.5.11), we conclude that, as u→∞,

E

 ξu(t)

ηu(t)

∣∣∣∣∣∣∣
X1(su) = u− x

u

X2(tu) = u− y
u

→
 −c1|t|

α1
1+ρ

−c2|t|
α2

1+ρ

 , (2.5.12)

where the convergence is uniform w.r.t. su and tu satisfying |τu| ≤ C
√

log u/u.

Next, we consider the conditional covariance matrix of (ξu(t)− ξu(s), ηu(t)− ηu(s))>.

Var


 ξu(t)− ξu(s)

ηu(t)− ηu(s)


∣∣∣∣∣∣∣
X1(su)

X2(tu)



= Var

 ξu(t)− ξu(s)

ηu(t)− ηu(s)

− Cov


 ξu(t)− ξu(s)

ηu(t)− ηu(s)

 ,

 X1(su)

X2(tu)




× Var

 X1(su)

X2(tu)


−1

Cov


 ξu(t)− ξu(s)

ηu(t)− ηu(s)

 ,

 X1(su)

X2(tu)



>

. (2.5.13)

Let hu(t, s) := r(|τu + u−2/α2t− u−2/α1s|). Applying (2.5.10) and (2.5.11), we obtain

Var

 ξu(t)− ξu(s)

ηu(t)− ηu(s)



=



2u2(1− r11(su+ u2(hu(t, t)− hu(s, t)

u−2/α1s, su + u−2/α1t)) −hu(t, s) + hu(s, s))

u2(hu(t, t)− hu(s, t) 2u2(1− r22(tu+

−hu(t, s) + hu(s, s)) −2/α2s, tu + u−2/α2t))


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=

 2c1|t− s|α1(1 + o(1)) o(1)

o(1) 2c2|t− s|α2(1 + o(1))

 , (2.5.14)

where o(1) converges to zero uniformly w.r.t. τu satisfying |τu| ≤ C
√

log u/u, as u → ∞.

Also, we have

Cov


 ξu(t)− ξu(s)

ηu(t)− ηu(s)

 ,

 X1(su)

X2(tu)




=



u(r11(su + u−2/α1t, su) u(r(|τu − u−2/α1t|)

−r11(su + u−2/α1s, su)) −r(|τu − u−2/α1s|))

u(r(|τu + u−2/α2t|) u(r22(tu + u−2/α2t, tu)

−r(|τu + u−2/α2s|)) −r22(tu + u−2/α2s, tu))



=

 o(1) o(1)

o(1) o(1)

 , (2.5.15)

as u→∞, and

Var

 X1(su)

X2(tu)


−1

=
1

1− r2(|τu|)

 1 −r(|τu|)

−r(|τu|) 1

 . (2.5.16)

By (2.5.13) – (2.5.16), we conclude that as u→∞,

Var


 ξu(t)− ξu(s)

ηu(t)− ηu(s)

∣∣∣∣ X1(su)

X2(tu)

→
 2c1|t− s|α1 0

0 2c2|t− s|α2

 , (2.5.17)
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where the convergence is uniform w.r.t. τu satisfying |τu| ≤ C
√

log u/u. Hence, the uniform

convergence of f.d.d. in Lemma 2.5.1 follows from (2.5.12), (2.5.17) and Lemma 2.5.2.

Now we prove the second part of Lemma 2.5.1. The continuous mapping theorem (see,

e.g., [Bil68], p. 30) can be used to prove (2.5.3) holds when su and tu are fixed. Since we

need to prove uniform convergence w.r.t. su and tu, we use a discretization method instead.

Let

f(u, x, y) := P
(

max
s∈S

ξu(s) > x, max
t∈T

ηu(t) > y
∣∣∣

X1(su) = u− x

u
,X2(tu) = u− y

u

)
(2.5.18)

and

f(x, y) := P
(

max
s∈S

ξ(s) > x, max
t∈T

η(t) > y
)
. (2.5.19)

Without loss of generality, suppose that S = [a, b]N and T = [c, d]N , where a < b, c < d. For

any δ ∈ (0, 1), let m =
⌊
b−a
δ

⌋
, n =

⌊
d−c
δ

⌋
and let

Sm :=
{
sk | sk = (xk1

, ..., xkN
), k = (k1, ..., kN ) ∈ {0, 1, ...,m+ 1}N

}
,

Tn :=
{
tl | tl = (yl1 , ..., ylN

), l = (l1, ..., lN ) ∈ {0, 1, ..., n+ 1}N
}
,

where xi, yi are defined as

a = x0 < x1 < · · · < xm ≤ xm+1 = b, xi = a+ iδ, i = 0, 1, . . . ,m,

c = y0 < y1 < · · · < yn ≤ yn+1 = d, yi = c+ iδ, i = 0, 1, . . . , n. (2.5.20)
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Then [a, b]N × [c, d]N can be divided into δ-cubes with vertices in Sm × Tn.

The function f(u, x, y) in (2.5.18) is bounded from below by

fm,n(u, x, y) := P
(

max
s∈Sm

ξu(s) > x, max
t∈Tn

ηu(t) > y
∣∣∣

X1(su) = u− x

u
,X2(tu) = u− y

u

)
(2.5.21)

and is bounded from above by gm,n(u, x, y) which is defined as

P
(

max
s∈Sm

ξu(s) > x− ε, max
t∈Tn

ηu(t) > y − ε
∣∣∣X1(su) = u− x

u
,X2(tu) = u− y

u

)
+ P

(
max
s∈S

ξu(s) > x, max
s∈Sm

ξu(s) ≤ x− ε
∣∣∣X1(su) = u− x

u
,X2(tu) = u− y

u

)
+ P

(
max
t∈T

ηu(t) > y, max
t∈Tn

ηu(t) ≤ y − ε
∣∣∣X1(su) = u− x

u
,X2(tu) = u− y

u

)
, fm,n(u, x− ε, y − ε) + sm,n(u, x, y) + tm,n(u, x, y), (2.5.22)

where ε > 0 is any small constant. Let

fm,n(x, y) := P
(

max
s∈Sm

ξ(s) > x, max
t∈Tn

η(t) > y

)
. (2.5.23)

Since the finite dimensional distributions of (ξu(·), ηu(·)) converge uniformly to those of

(ξ(·), η(·)), we have

lim
u→∞

max
|τu|≤C

√
log u/u

|fm,n(u, x, y)− fm,n(x, y)| = 0. (2.5.24)
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The continuity of the trajectory of (ξ(·), η(·)) yields

lim
m→∞
n→∞

fm,n(x, y) = f(x, y). (2.5.25)

By (2.5.24) and (2.5.25), we conclude

lim
m→∞
n→∞

lim
u→∞

max
|τu|≤C

√
log u/u

|fm,n(u, x, y)− f(x, y)| = 0. (2.5.26)

Let us consider the conditional probability sm,n(u, x, y) in (2.5.22).

sm,n(u, x, y)

≤ P
(

max
|s−t|≤δ

|ξu(s)− ξu(t)| > ε
∣∣∣X1(su) = u− x

u
, X2(tu) = u− y

u

)
≤ 1

ε
E

(
max
|s−t|≤δ

|ξu(s)− ξu(t)|
∣∣∣X1(su) = u− x

u
, X2(tu) = u− y

u

)

=
1

ε
EPu

(
max
|s−t|≤δ

|x(s)− x(t)|
)
, (2.5.27)

where Pu is the probability measure on (C(S),B(C(S)) defined as

Pu(A) := P
(
ξu(·) ∈ A

∣∣∣ X1(su) = u− x

u
,X2(tu) = u− y

u

)
,

for all A ∈ B(C(S)) and x(·) is the coordinate random element on (C(S),B(C(S)), Pu), i.e.,

x(t, ω) = ω(t), ∀ω ∈ C(S) and t ∈ S. Consider the canonical metric

du(s, t) : =
[
EPu

(
|x(s)− x(t)|2

)]1/2
=
[
E
(
|ξu(s)− ξu(t)|2

∣∣∣ X1(su) = u− x

u
,X2(tu) = u− y

u

)]1/2
.
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By (2.5.17), we have

du(s, t) ≤ 2
√
c1|s− t|α1/2 (2.5.28)

for u large enough and all su, tu such that |τu| ≤ C
√

log u/u. If we choose γ =
(

ε
2
√
c1

) 2
α1 ,

then du(s, t) < ε for all t, s ∈ S with |t− s| < γ. Hence

Ndu(S, ε) ≤ Cε−2N/α1 , (2.5.29)

where Ndu(S, ε) denotes the minimum number of du-balls with radius ε that are needed to

cover S. By Dudley’s Theorem (see, e.g., Theorem 1.3.3 in [AT07]) and (2.5.28), we have

EPu

(
max
|s−t|≤δ

|x(s)− x(t)|
)
≤ K

∫ 2
√
c1δ

α1/2

0

√
logNdu(S, ε) dε, (2.5.30)

where K < ∞ is a constant (which does not depend on δ) and, thanks to (2.5.29), the last

integral goes to 0 as δ → 0 (or, equivalently, as m→∞, n→∞). By (2.5.27) and (2.5.30),

we conclude that

lim
m→∞
n→∞

lim sup
u→∞

max
|τu|≤C

√
log u|/u

|sm,n(u, x, y)| = 0. (2.5.31)

A similar argument shows that

lim
m→∞
n→∞

lim sup
u→∞

max
|τu|≤C

√
log u|/u

|tm,n(u, x, y)| = 0. (2.5.32)

Since

|f(u, x, y)− f(x, y)| ≤ |fm,n(u, x, y)− f(x, y)|+ |gm,n(u, x, y)− f(x, y)|

≤ |fm,n(u, x, y)− f(x, y)|+ |fm,n(u, x− ε, y − ε)− f(x− ε, y − ε)|
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+ |f(x− ε, y − ε)− f(x, y)|+ |sm,n(u, x, y)|+ |tm,n(u, x, y)|, (2.5.33)

we combine (2.5.26), (2.5.31) and (2.5.32) to obtain

lim sup
u→∞

max
|τu|≤C

√
log u|/u

|f(u, x, y)− f(x, y)| ≤ |f(x− ε, y − ε)− f(x, y)|

+ lim
m→∞
n→∞

lim sup
u→∞

max
|τu|≤C

√
log u/u

(
|fm,n(u, x, y)− f(x, y)|+ |sm,n(u, x, y)|

+ |tm,n(u, x, y)|+ |fm,n(u, x− ε, y − ε)− f(x− ε, y − ε)|
)

= |f(x− ε, y − ε)− f(x, y)|.

Since the last term → 0 as ε ↓ 0, we have completed the proof of the second part of the

lemma.

Now we are ready to prove the main lemmas in Section 3.

Proof of Lemma 2.4.1. Let φ(a, b) be the density of (X1(su), X2(tu))>, i.e.,

φ(a, b) =
1

2π
√

1− r2(|τu|)
exp

{
−1

2

a2 − 2r(|τu|)ab+ b2

1− r2(|τu|)

}
. (2.5.34)

By conditioning and a change of variables, the LHS of (2.4.1) becomes

P
(

max
s∈su+u−2/α1S

X1(s) > u, max
t∈tu+u−2/α2T

X2(t) > u

)

=

∫
R2

P
(

max
s∈su+u−2/α1S

X1(s) > u, max
t∈tu+u−2/α2T

X2(t) > u
∣∣∣ X1(su) = u− x

u
,

X2(tu) = u− y

u

)
φ
(
u− x

u
, u− y

u

)
u−2dxdy

=
1

2π
√

1− r2(|τu|)u2
exp

(
− u2

1 + r(|τu|)

)∫
R2
f(u, x, y)φ̃(u, x, y)dxdy, (2.5.35)
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where f(u, x, y) is defined in (2.5.18) with ξu(·), ηu(·) in (2.5.1), and where

φ̃(u, x, y)

:= exp

{
− 1

2(1− r2(|τu|))

(x2 + y2

u2
− 2(1− r(|τu|))(x+ y)− 2r(|τu|)

xy

u2

)}
.

Since max|τu|≤C
√

log u/u |r(|τu|)− ρ| → 0 as u→∞, it is easy to check that

max
|τu|≤C

√
log u/u

∣∣∣∣φ̃(u, x, y)− e
x+y
1+ρ

∣∣∣∣→ 0, as u→∞. (2.5.36)

Recall Hα(·) in (2.2.1) and f(x, y) in (2.5.19). Since ξ(·), η(·) are independent, and

{ξ(t), t ∈ RN} d
=

{
(1 + ρ)

[
χ1

(( √c1
1 + ρ

) 2
α1 t
)
−

∣∣∣∣∣(
√
c1

1 + ρ

) 2
α1 t

∣∣∣∣∣
α1 ]

, t ∈ RN
}
,

{η(t)t ∈ RN} d
=

{
(1 + ρ)

[
χ2

(( √c2
1 + ρ

) 2
α2 t
)
−

∣∣∣∣∣(
√
c2

1 + ρ

) 2
α2 t

∣∣∣∣∣
α2 ]

, t ∈ RN
}
,

where
d
= means equality of all finite dimensional distributions, we have

∫
R2
f(x, y)e

x+y
1+ρ dxdy

=

∫
R
e
x

1+ρP
(

max
s∈S

ξ(s) > x
)
dx

∫
R
e
y

1+ρP
(

max
t∈T

η(t) > y
)
dy

= (1 + ρ)2Hα1

(
c
1/α1
1 S

(1 + ρ)
2
α1

)
Hα2

(
c
1/α2
2 T

(1 + ρ)
2
α2

)
. (2.5.37)

By (2.5.35) and (2.5.37), to conclude the lemma, it suffices to prove

lim
u→∞

∫
R2

max
|τu|≤C

√
log u/u

∣∣∣∣f(u, x, y)φ̃(u, x, y)− f(x, y)e
x+y
1+ρ

∣∣∣∣ dxdy = 0. (2.5.38)
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Firstly, applying Lemma 2.5.1 together with (2.5.36), we have

max
|τu|≤C

√
log u/u

∣∣∣∣f(u, x, y)φ̃(u, x, y)− f(x, y)e
x+y
1+ρ

∣∣∣∣→ 0, as u→∞. (2.5.39)

Secondly, as in [LP00], we can find an integrable dominating function g ∈ L(R2) such that

for u large enough,

max
|τu|≤C

√
log u/u

∣∣∣∣f(u, x, y)φ̃(u, x, y)− f(x, y)e
x+y
1+ρ

∣∣∣∣ ≤ g(x, y). (2.5.40)

Therefore, (2.5.38) follows from the dominated convergence theorem. This finishes the proof.

Proof of Lemma 2.4.2. We first claim that for any compact sets S and T, the identity

Hα(S) +Hα(T)−Hα(S ∪ T) = Hα(S,T) (2.5.41)

holds. Indeed, if we let X = supt∈S(χ(t)− |t|α) and Y = supt∈T(χ(t)− |t|α), then

Hα(S) +Hα(T)−Hα(S ∪ T) = E
(
eX
)

+ E
(
eY
)
− E

(
emax(X,Y ))

= E
(
eX1{X<Y }

)
+ E

(
eY 1{X≥Y }

)
= E

(
emin(X,Y )) = Hα(S,T).

Now let T1 = [0, T ]N , T2 = [mT, (m + 1)T ] and T3 = [nT, (n + 1)T ]. Consider the events

A =

 max
s∈su+u−2/α1T1

X1(s) > u

 , B =

 max
s∈su+u−2/α1T2

X1(s) > u

 ,

C =

 max
t∈tu+u−2/α2T1

X2(t) > u

 , D =

 max
t∈tu+u−2/α2T3

X2(t) > u

 .
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It is easy to check that the LHS of (2.4.2) is equal to

P(A ∩B ∩ C ∩D)

= [P(A ∩ C) + P(B ∩ C)− P((A ∪B) ∩ C)]

+ [P(A ∩D) + P(B ∩D)− P((A ∪B) ∩D)]

− [P(A ∩ (C ∪D)) + P(B ∩ (C ∪D))− P((A ∪B) ∩ (C ∪D))]. (2.5.42)

Let R(u) =
(1+ρ)2

2π

√
1−ρ2

u−2 exp
(
− u2

1+r(|τu|)

)
and qα,c =

(1+ρ)2/α

c1/α
. By Lemma 2.4.1, we have

P(A ∩ C) = R(u)Hα1

(
T1

qα1,c1

)
Hα2

(
T1

qα2,c2

)
(1 + γ1(u)),

P(B ∩ C) = R(u)Hα1

(
T2

qα1,c1

)
Hα2

(
T1

qα2,c2

)
(1 + γ2(u)),

P((A ∪B) ∩ C) = R(u)Hα1

(
T1 ∪ T2

qα1,c1

)
Hα2

(
T1

qα2,c2

)
(1 + γ3(u)),

where, for i = 1, 2, 3, γi(u)→ 0 uniformly w.r.t. τu satisfying |τu| ≤ C
√

log u/u, as u→∞.

These, together with (2.5.41), imply

P(A ∩ C) + P(B ∩ C)− P((A ∪B) ∩ C)

= R(u)Hα2

(
T1

qα2,c2

)
Hα1

(
T1

qα1,c1

,
T2

qα1,c1

)
(1 + o(1)). (2.5.43)

Similarly, we have

P(A ∩D) + P(B ∩D)− P((A ∪B) ∩D)

= R(u)Hα2

(
T3

qα2,c2

)
Hα1

(
T1

qα1,c1

,
T2

qα1,c1

)
(1 + o(1)) (2.5.44)
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and

P(A ∩ (C ∪D)) + P(B ∩ (C ∪D))− P((A ∪B) ∩ (C ∪D))

= R(u)Hα2

(
T1 ∪ T3

qα2,c2

)
Hα1

(
T1

qα1,c1

,
T2

qα1,c1

)
(1 + o(1)). (2.5.45)

By (2.5.42) – (2.5.45), we have

P(A ∩B ∩ C ∩D)

= R(u)Hα1

(
T1

qα1,c1

,
T2

qα1,c1

)
Hα2,c2

(
T1

qα2,c2

,
T3

qα2,c2

)
(1 + o(1)),

which concludes the lemma.

Proof of Lemma 2.4.3. Let f(|t|) = 1
1+r(|t|) . Recall τkl defined in (2.4.9) and |τkl| ≤ 2δ(u),

when u is large. By Taylor’s expansion,

f(|τkl|) = f(0) +
1

2
f ′′(0)|τkl|2(1 + γkl(u)),

where f(0) = 1
1+ρ , f ′′(0) =

−r′′(0)

(1+ρ)2
and, as u→∞, γkl(u) converges to zero uniformly w.r.t.

all (k, l) ∈ C. Therefore, for any ε > 0, we have

∑
(k,l)∈C

e−
1
2f
′′(0)(1+ε)u2|τkl|

2
≤ h(u) ≤

∑
(k,l)∈C

e−
1
2f
′′(0)(1−ε)u2|τkl|

2
(2.5.46)

when u is large enough. For a > 0, let

h(u, a) :=
∑

(k,l)∈C
e−au

2|τkl|
2
. (2.5.47)
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In order to prove (2.4.12), it suffices to prove that

lim
u→∞

uNdN1 (u)dN2 (u)h(u, a) =
(π
a

)N
2 mesN (A1 ∩ A2). (2.5.48)

To this end, we write

uNdN1 (u)dN2 (u)h(u, a)

=
1

uN

∑
(k,l)∈C

e
−a
∑N
j=1(ljud2(u)−kjud1(u))2 · (ud1(u))N (ud2(u))N . (2.5.49)

Let

p(u) :=
1

uN

∑
(k,l)∈C

min

(s,t)∈u∆
(1)
k
×u∆

(2)
l

e−a|t−s|
2
· (ud1(u))N (ud2(u))N ,

q(u) :=
1

uN

∑
(k,l)∈C

max

(s,t)∈u∆
(1)
k
×u∆

(2)
l

e−a|t−s|
2
· (ud1(u))N (ud2(u)N .

It follows from (2.5.49) that

p(u) ≤ uNdN1 (u)dN2 (u)h(u, a) ≤ q(u), (2.5.50)

and

p(u) ≤ 1

uN

∫
s∈uA1,t∈uA2
|t−s|≤C

√
log u

e−a|t−s|
2
dtds ≤ q(u). (2.5.51)

Observe that

1

uN

∫∫
s∈uA1,t∈uA2
|t−s|≤C

√
log u

e−a|t−s|
2
dtds =

1

uN

∫∫
y∈uA1,x+y∈uA2
|x|≤C

√
log u

e−a|x|
2
dxdy
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=
1

uN

∫
|x|≤C

√
log u

e−a|x|
2
dx

∫
RN

1{y∈uA1∩(uA2−x)}dy

=

∫
|x|≤C

√
log u

e−a|x|
2
dx

∫
RN

1{z∈A1∩(A2−x/u)}dz

→ mesN (A1 ∩ A2)

∫
RN

e−a|x|
2
dx =

(π
a

)N
2 mesN (A1 ∩ A2), (2.5.52)

as u → ∞, where the convergence holds by the dominated convergence theorem. Indeed,∫
RN 1{z∈A1∩(A2−x/u)}dz is bounded by max|ε|<1mesN (A1 ∩ (A2 − ε)) uniformly for |x| ≤

C
√

log u when u is large enough.

It follows from (2.5.50)–(2.5.50) that, for concluding (2.5.48), it remains to verify

D(u) := q(u)− p(u)→ 0, as u→∞. (2.5.53)

Define

D̂ :=
{

(s, t) ∈ A1 × A2 : |t− s| ≤ δ(u) +
√
Nd1(u) +

√
Nd2(u)

}
. (2.5.54)

By the definition of C in (2.4.7), we see that D ⊆
⋃

(k,l)∈C ∆
(1)
k ×∆

(2)
l ⊆ D̂. Since d1(u) =

o(δ(u)) and d2(u) = o(δ(u)) as u → ∞, the set D̂ is a subset of D̃ := {(s, t) ∈ A1 × A2 :

|t− s| ≤ 2δ(u)} when u is large.

Write D(u) in (2.5.53) as a sum over (k, l) ∈ C. To estimate the cardinality of C, we

notice that

mes2N (D̃) =

∫∫
s∈A1,t∈A2

1{|t−s|≤2δ(u)}dsdt (2.5.55)

=

∫
|x|≤2δ(u)

∫
y∈A1∩(A2−x)

dydx ≤ K δ(u)N , (2.5.56)
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for all u large enough, where K = 2N+1πN/2Γ−1(N/2) max|ε|≤1mesN (A1∩(A2−ε)). Hence,

for large u, the number of summands in (2.5.49) is bounded by

#{(k, l) | (k, l) ∈ C} ≤ mes2N (D̃)

mes2N (∆
(1)
k ×∆

(2)
l )
≤ K δ(u)N

dN1 (u)dN2 (u)
. (2.5.57)

Next, by applying the inequality e−x − e−y ≤ y − x for y ≥ x > 0 to each summand in

D(u), we obtain

max

(s,t)∈u∆
(1)
k
×u∆

(2)
l

e−a|t−s|
2
− min

(s,t)∈u∆
(1)
k
×u∆

(2)
l

e−a|t−s|
2

≤ a

 max

(s,t)∈u∆
(1)
k
×u∆

(2)
l

|t− s|2 − min

(s,t)∈u∆
(1)
k
×u∆

(2)
l

|t− s|2


= amax

(
|t− s|+ |t1 − s1|)(|t− s| − |t1 − s1|

)
, (2.5.58)

where the last maximum is taken over (s, t, s1, t1) ∈ u∆
(1)
k × u∆

(2)
l × u∆

(1)
k × u∆

(2)
l

Since |t − s| ≤ 2δ(u) for all (t, s) ∈ u∆
(1)
k × u∆

(2)
l when u is large, the inequality∣∣|t− s| − |t1 − s1|

∣∣ ≤ |t− t1|+ |s− s1| implies that (2.5.58) is at most

4a
√
Nu2δ(u)

(
d1(u) + d2(u)

)
(2.5.59)

when u is large enough. By (2.5.59) and (2.5.57), we can verify that

D(u) ≤ 1

uN
K(δ(u))N

dN1 (u)dN2 (u)
4a
√
Nu2δ(u)

(
d1(u) + d2(u)

)(
ud1(u)

)N(
ud2(u)

)N
≤ C0(log u)

N+1
2
(
u

1− 2
α1 + u

1− 2
α2
)
→ 0, as u→∞.
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Therefore (2.5.48) holds. Similarly, we can check that the same statement holds while chang-

ing the set C to C◦.

Proof of Lemma 2.4.4. Inequality (2.4.22) holds immediately by Lemma 6.2 in [Pit96]. Hence

we only consider the case when m 6= 0. Suppose that {X(t), t ∈ RN} is a real val-

ued continuous Gaussian process with E[X(t)] = 0 and covariance function r(t) satisfying

r(t) = 1 − |t|α + o(|t|α) for a constant α ∈ (0, 2). Applying Lemma 6.1 in [Pit96], we see

that for any S > 0,

P
(

max
t∈u−2/α[0,S]N

X(t) > u, max
t∈u−2/α[mS,(m+1)S]

X(t) > u

)

= P
(

max
t∈u−2/α[0,S]N

X(t) > u

)
+ P

(
max

t∈u−2/α[mS,(m+1)S]

X(t) > u

)

− P
(

max
t∈u−2/α([0,S]N∪[mS,(m+1)S])

X(t) > u)

)

=
(
Hα([0, S]N ) +Hα([mS, (m + 1)S])−Hα([0, S]N ∪ [mS, (m + 1)S])

)
× 1√

2πu
e−

1
2u

2
(1 + o(1))

= Hα([0, S]N , [mS, (m + 1)S])
1√
2πu

e−
1
2u

2
(1 + o(1)), as u→∞, (2.5.60)

where the last equality holds thanks to (2.5.41).

On the other hand, by applying Lemma 6.3 in [Pit96] and the inequality inf
s∈[0,1]N, t∈[m,m+1]

|s− t| ≥ |mi0
| − 1 (recall that i0 is defined in Lemma 2.4.4), we have

P
(

max
t∈u−2/α[0,S]N

X(t) > u, max
t∈u−2/α[mS,(m+1)S]

X(t) > u

)

≤ C0S
2N 1√

2πu
e−

1
2u

2
exp

(
−1

8
(|mi0

| − 1)αSα
)

(2.5.61)
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for all u large enough. It follows from (2.5.60) and (2.5.61) that

Hα([0, S]N , [mS, (m + 1)S]) ≤ C0S
2N exp

(
−1

8
(|mi0

| − 1)αSα
)
, (2.5.62)

which implies (2.4.24) by letting S = c1/αT

(1+ρ)2/α
.

When |mi0
| = 1, the above upper bound is not sharp. Instead, we derive (2.4.23) in

Lemma 2.4.4 as follows. For concreteness, suppose that i0 = N and mN = 1. By applying

Lemmas 6.1 - 6.3 in [Pit96], we have

P
(

max
t∈u−2/α[0,S]N

X(t) > u, max
t∈u−2/α[mS,(m+1)S]

X(t) > u

)

≤ P
(

max
t∈u−2/α(

∏N−1
j=1 [mjS,(mj+1)S]×[S,S+

√
S])

X(t) > u

)

+ P
(

max
t∈u−2/α[0,S]N

X(t) > u, max
t∈u−2/α(

∏N−1
j=1 [mjS,(mj+1)S]×[S+

√
S,2S+

√
S])

X(t) > u

)

≤ C0S
N−1

2
1√
2πu

e−
1
2u

2
+ C0S

2N 1√
2πu

e−
1
2u

2
e−

1
8S
α/2

≤ C0S
N−1

2
1√
2πu

e−
1
2u

2
(2.5.63)

for u and S large. Hence, when |mi0
| = 1, we have

Hα([0, S]N , [mS, (m + 1)S]) ≤ C0S
N−1

2 (2.5.64)

for large S. This implies (2.4.23) by letting S = c1/αT

(1+ρ)2/α
.

Notice that

#{m ∈ ZN | max
1≤i≤N

|mi| = k} = (2k + 1)N − (2k − 1)N , k = 1, 2, ... (2.5.65)
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By (2.4.23), (2.4.24) and the fact
∫∞
T xNe−axdx ∼ 1

aT
Ne−aT as T →∞, we have

∑
m6=0

Hα,c(m) =
∞∑
k=1

∑
|mi0 |=k

Hα,c(m)

≤ C0(3N − 1)TN−
1
2 + C0

∞∑
k=2

[(2k + 1)N − (2k − 1)N ]T 2Ne
− c

8(1+ρ)2
(k−1)αTα

≤ C0(3N − 1)TN−
1
2 + C0T

2N
∫ ∞

1
xNe

− c
8(1+ρ)2

xαTα

dx ≤ C0T
N−1

2

for T large enough. This completes the proof of Lemma 2.4.4.

Proof of Lemma 2.4.5. The proof is similar to that of Lemma 2.4.3. Indeed, we only need

to modify (2.5.49) and (2.5.55) in the proof of Lemma 2.4.3. For any y = (y1, ..., yN ) ∈ RN

and 1 ≤ i ≤ j ≤ N , let yi:j = (yi, ..., yj). On one hand, with a different scaling, h(u, a) in

(2.5.49) has the following asymptotics:

u2N−MdN1 (u)dN2 (u)h(u, a) ≈ 1

uM

∫∫
y∈uA1,x+y∈uA2
|x|≤C

√
log u

e−a|x|
2
dxdy

=
1

uM

∫
|x|≤C

√
log u

e−a|x|
2
(∫

RM
1{y1:M∈uA1,M∩(uA2,M−x1:M )}dy1:M

×
N∏

j=M+1

∫
R

1{yj∈[uSj,uTj ]∩[uTj−xj,uRj−xj ]}dyj

)
dx

=

∫
|x|≤C

√
log u

e−a|x|
2

N∏
j=M+1

xj1
{
xj>0

}(∫
RM

1{
z1:M∈A1,M∩(A2,M−x1:M/u)

}dz1:M

)
dx

→ mesM (A1,M ∩ A2,M )

∫
RM

e−a|x1:M |
2
dx1:M

N∏
j=M+1

∫ ∞
0

xje
−ax2

j dxj

= 2M−NπM/2aM/2−NmesM (A1,M ∩ A2,M ), (2.5.66)

as u → ∞. On the other hand, when u is large enough, mes2N (D̃) defined in (2.5.55) can
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be bounded from above by

mes2N (D̃) =

∫∫
s∈A1,t∈A2

1{|t−s|≤2δ(u)}dsdt

=

∫
|x|≤2δ(u)

(∫
y1:M∈A1,M∩(A2,M−x1:M )

dy1:M

) N∏
j=M+1

xj1{xj>0}dx

= δ(u)2N−M
∫
|z|≤2

(∫
y1:M∈A1,M∩(A2,M−z1:Mδ(u))

dy1:M

) N∏
j=M+1

zj1{zj>0}dz

≤ K δ(u)2N−M , (2.5.67)

where K = max|ε|≤1mesM (A1,M ∩ (A2,M − ε))
∫
|z|≤2

∏N
j=M+1 zj1{zj>0}dz.

By (2.5.66) and (2.5.67), (2.4.36) can be obtained through the same argument in the

proof of Lemma 2.4.3. We omit the details.

We end this section with the proof of Lemma 2.5.2.

Proof of Lemma 2.5.2. Let fu,τu(·) and f(·) be the density function of X(u, τu) and X,

respectively. It suffices to prove that for all x ∈ RN ,

∫
{y≤x}

f(y) max
τu

∣∣∣∣fu,τu(y)

f(y)
− 1

∣∣∣∣dy → 0, as u→∞, (2.5.68)

where {y ≤ x} =
∏N
i=1(−∞, xi].

First, we will find an upper bound for maxτu |fu,τu(y)/f(y)− 1|. For any ε > 0, define

Γ(u, τu) = (γij(u, τu))i,j=1,...n :=
1

ε
(Σ(u, τu)− Σ)

e(u, τu) = (ei(u, τu))i=1,...n :=
1

ε
(µ(u, τu)− µ).
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By Assumption (2.5.4), there exists a constant U > 0 such that for all u > U ,

max
τu
|µj(u, τu)− µj | < ε, max

τu
|σij(u, τu)− σij | < ε, i, j = 1, . . . , n,

which implies |γij(u, τu)| ≤ 1 and |ei(u, τu)| ≤ 1 for u > U .

Let Σ−1 = (vij)i,j=1,...,n be the inverse of Σ. When ε is small, the determinant of Σ(u, τu)

satisfies

|Σ(u, τu)| = |Σ + εΓ(u, τu)| = |Σ|(1 + εtr(Σ−1Γ(u, τu)) +O(ε2)),

where O(ε2)/ε2 is uniformly bounded w.r.t. τu for large u (see, e.g., [MN07], p. 169). Hence

we have

∣∣∣∣ |Σ(u, τu)|
|Σ|

− 1

∣∣∣∣ ≤ 2ε|tr(Σ−1Γ(u, τu))| ≤ 2ε
∑
i,j

|vij |. (2.5.69)

Since |γij(u, τu)| ≤ 1, ∀i, j = 1, ..., n for large u, as ε → 0, the inverse of Σ(u, τu) can be

written as

Σ(u, τu)−1 = Σ−1 − εΣ−1Γ(u, τu)Σ−1 +O(ε2),

where O(ε2)/ε2 is a matrix whose entries are uniformly bounded and independent of τu for

large u (see, e.g., [Mey00], p. 618). Hence,

du,τu(y) :=− 1

2

[
(y − µ(u, τu))>Σ−1(u, τu)(y − µ(u, τu))− (y − µ)>Σ−1(y − µ)

]
=− 1

2
(y − µ)>

(
− εΣ−1Γ(u, τu)Σ−1 +O(ε2)

)
(y − µ)
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+ εe>(u, τu)
(
Σ−1 − εΣ−1Γ(u, τu)Σ−1 +O(ε2)

)
(y − µ)

− 1

2
ε2e>(u, τu)

(
Σ−1 − εΣ−1Γ(u, τu)Σ−1 +O(ε2)

)
e(u, τu).

Since |γij(u, τu)| and |ei(u, τu)| are uniformly bounded by 1 w.r.t. τu for all u > U , we derive

that for any y ∈ RN ,

max
τu
|du,τu(y)| → 0, as u→∞. (2.5.70)

By (2.5.69) and (2.5.70), for y ∈ RN ,

max
τu

∣∣∣∣fu,τu(y)

f(y)
− 1

∣∣∣∣ = max
τu

∣∣∣edu,τu(y) |Σ(u, τu)|−1/2

|Σ|−1/2
− 1
∣∣∣→ 0, as u→∞. (2.5.71)

If we could further find an integrable function g(y) on RN ,

f(y) max
τu

∣∣∣∣fu,τu(y)

f(y)
− 1

∣∣∣∣ ≤ g(y), (2.5.72)

then (2.5.68) holds by the dominated convergence theorem.

Given a constant C0, let AI := {(aij)ni,j=1 ∈ RN×N | maxi,j |ai,j | ≤ C0}, bI :=

{(bi)ni=1 ∈ RN | maxi |bi| ≤ C0}. Then there exist constants C2, C3, such that

|x>Ax| ≤ C2x
>x, |b>x| ≤ C3 + x>x, ∀x ∈ RN ,∀A ∈ AI ,∀b ∈ bI .

Hence, there exists a constant C4 > 0 such that

|du,τu(y)| ≤C4ε(y − µ)>(y − µ) + C4ε, (2.5.73)
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By (2.5.69) and (2.5.73), for small ε and large u, there exists a constant K such that

max
τu

∣∣∣∣fu,τu(y)

f(y)
− 1

∣∣∣∣ ≤ KeC4ε(y−µ)>(y−µ) + 1

On the other hand, for all y ∈ RN ,

f(y) ≤ (2π)−n/2|Σ|−1/2e−
λ
2 (y−µ)>(y−µ),

where λ is the minimum eigenvalue of Σ. If we choose ε < λ
2C4

and define

g(y) := (2π)−n/2|Σ|−1/2e−
λ
2 (y−µ)>(y−µ)(KeC4ε(y−µ)>(y−µ) + 1),

then (2.5.72) holds and hence we have completed the proof.
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Chapter 3

Joint asymptotics of estimating the

fractal indices of bivariate Gaussian

random processes

Characterizing the dependence structure of multivariate random fields plays a key role in

multivariate spatial model setting. Usually, the covariance structure for each component of

multivariate processes is highly related to the smoothness of the surface. The estimation

of smoothness parameters in univariate model has been studied extensively. Yet, there is

few work in the multivariate case. In this chapter, we first give a short review on the

increment-based estimator introduced by Kent and Wood [KW97] and apply it to estimating

the fractal indices (smoothness parameters) of bivariate Gaussian processes. Then, under

the infill asymptotics framework, we investigate the joint asymptotics of the estimators and

study how the cross dependence structure would affect the performance of the estimators.

3.1 Introduction

The fractal or Hausdorff dimension of a random process, is a measure of roughness of its

sample path. It is an important parameter in geostatistics modeling. Estimating the fractal

dimension of a real valued Gaussian and non-Gaussian process has been an attracting prob-
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lem in the last decades. Hall and Wood [HW93] studied the asymptotic properties of the

box-counting estimator for the fractal dimension. The variogram method was introduced

by Constantine and Hall [CH94]. Kent and Wood [KW97] developed the increment-based

estimators for stationary Gaussian random process, which indicated improved performance

under infill asymptotics (that is asymptotic properties of statistical procedures as the sam-

pling points grow dense in a fixed domain [CSY00, Cre93]). Chan and Wood extended the

method to Gaussian and a class of non-Gaussian random fields on R2 (see, e.g., [CW00],

[CW04]). Zhu and Stein [ZS02] expanded the work of [CW00] by considering the two-

dimensional fractal Brownian surface. We refer to [GŠP12] for further information on this

topic.

On the other hand, multivariate (vector-valued) Gaussian random fields have been pop-

ular in modeling multivariate spatial datasets (see, e.g., [GKS10]). Usually, the fractal

dimension for each component of the multivariate Gaussian random fields varies from each

other. It is natural to employ the increment-based methods by Kent and Wood to estimate

the fractal dimension for each component. Yet, the joint asymptotic property of the estima-

tors would be non-trivial, since the cross covariance structure might affect the performance

of the estimators, that is the covariance among components of multivariate Gaussian random

fields. In this work, we study the joint asymptotic properties of estimating fractal indices

for bivariate Gaussian random processes under infill asymptotics. The rest of the chapter is

organized as follows. We define the bivariate Gaussian random processes in Section 3.2 and

introduce the increment-based estimators in Section 3.3. Section 3.4 states the main results

on the joint asymptotics of the bivariate estimators. We give an example in Section 3.5. The

proofs of our main results are given in Section 3.6.
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3.2 The bivariate Gaussian random processes

Let {X(t) , (X1(t), X2(t))>, t ∈ R} be a bivariate stationary Gaussian random field with

mean EX(t) = 0 and matrix-valued covariance function

C(t) =

 C11(t) C12(t)

C21(t) C22(t)



where Cij(t) := E[Xi(s)Xj(s+ t)], i = 1, 2. Further, we assume that

C11(t) = σ2
1 − c11|t|α11 + o(|t|α11),

C22(t) = σ2
2 − c22|t|α22 + o(|t|α22),

C12(t) = C21(t) = ρσ1σ2(1− c12|t|α12 + o(|t|α12)), (3.2.1)

with α11, α22 ∈ (0, 2), σ1, σ2 > 0, ρ ∈ (−1, 1) and c11, c22, c12 > 0. The fractal dimensions

for X1 and X2 are 2−α11 and 2−α22 respectively (see, e.g., [Adl81] Theorem 8.4.1). Hence,

we study the estimation and inference of α11 and α22 instead.

Let F11, F22 and F12 be the corresponding spectral measure of C11(·), C22(·) and C12(·).

By Tauberian Theorem (see, e.g., [Ste99]), we have

Fij(x,∞) ∼ Cij(0)− Cij(1/x) ∼ |x|−αij , i, j = 1, 2.

According to Cramer’s theorem ([Yag87], [CD09] and [Wac03]), a valid covariance func-

tion for X(t) should satisfy

(F12(B))2 ≤ F11(B)F22(B), ∀B ∈ B(R).
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Hence, it is necessary to add the following restriction to (α11, α22, α12), i.e.,

α11 + α22

2
≤ α12. (3.2.2)

3.3 The increment-based estimators

Assume that X are observed regularly on [0, 1]. Specifically, we have n pairs of observations

(X1( 1
n), X2( 1

n)), (X1( 2
n), X2( 2

n)), ..., (X1(1), X2(1)). Kent and Wood [KW97] introduced the

increment-based method to estimate the fractal dimension of a real valued locally self-similar

Gaussian process. We apply their methods to estimate the fractal indices for each component

of the bivariate Gaussian process (i.e., α11, α22). In Section 3.3.1, we give a review for the

definition of the dilated filtered discretized processes and study the asymptotic properties

of the covariance of the bivariate dilated filtered discretized processes. In Section 3.3.2, the

GLS estimators for the fractal indices (α11, α22)> are introduced.

3.3.1 The dilated filtered discretized processes

Definition 3.3.1 (Increment of order p). For J ∈ Z+ and p ∈ Z+ ∪ 0, a finite vector

a = {aj}Jj=−J is an increment of order p if

J∑
j=−J

jraj = 0 for all integer r ∈ [0, p] and
J∑

j=−J
jp+1aj 6= 0. (3.3.1)

Definition 3.3.2 (Dilation of a). For an increment a = {aj}Jj=−J , the finite vector au is

54



called the dilation of a for integer u ≥ 1 if for −Ju ≤ j ≤ Ju,

auj =


aj′ , if j = j′u

0, otherwise.

(3.3.2)

Definition 3.3.3 (Dilated filtered discretized process). For n,m ≥ 1, define the dilated

filtered discretized process Y un,i(·) by

Y un,i(j) := nαii/2
Ju∑

k=−Ju
aukXi

(
j + k

n

)
, i = 1, 2, u = 1, 2, ...,m, and j = 1, 2, ..., n. (3.3.3)

We give two examples in the following.

• First-difference increment: p = 0 and J = 1 with a−1 = 0, a0 = −1, a1 = 1. Then,

the dilated filtered discretized process is

Y un,i(j) := n
αii
2

(
Xi

(
j + u

n

)
−Xi

(
j

n

))
, (3.3.4)

where i = 1, 2, u = 1, 2, ...,m, and j = 1, 2, ..., n.

• Second-difference increment: p = 1 and J = 1 with a−1 = 1, a0 = −2, a1 = 1.

Then, the dilated filtered discretized process is

Y un,i(j) := n
αii
2

(
Xi

(
j − u
n

)
− 2Xi

(
j

n

)
+Xi

(
j + u

n

))
, (3.3.5)

where i = 1, 2, u = 1, 2, ...,m, and j = 1, 2, ..., n.

Next, we consider the covariance of Y un,i, i = 1, 2. The marginal covariance function (see,
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e.g., [KW97]) for Y un,i is

σuvn,ii(h) := E[Y un,i(l)Y
v
n,i(l + h)] = nαii

∑
j,k

auj a
v
kCii

(
h+ k − j

n

)

→ −cii
∑
j,k

auj a
v
k|h+ k − j|αii , σuv0,ii(h), as n→∞. (3.3.6)

Especially,

V ar[Y un,i(l)] = σuun,ii(0)→ σuu0,ii(0) = const. · uαii (3.3.7)

The cross covariance between Y un,1 and Y vn,2 is given by

σuvn,12(h) := E[Y un,1(l)Y vn,2(l + h)] = n
α11+α22

2
∑
j,k

auj a
v
kC12

(
h+ k − j

n

)

= −c12n
α11+α22

2
∑
j,k

auj a
v
k

∣∣∣∣h+ k − j
n

∣∣∣∣α12
+ o(nα11/2+α22/2−α12)

→ σuv0,12(h) ,


0, if

α11+α22
2 < α12

−c12
∑
j,k a

u
j a
v
k|h+ k − j|α12 , if

α11+α22
2 = α12.

(3.3.8)

Especially,

Cov[Y un,1(l), Y un,2(l)] = σuun,12(0)→ σuu0,12(0) =


0, if

α11+α22
2 < α12

const. · u
α11+α22

2 , if
α11+α22

2 = α12.

(3.3.9)
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Therefore, if (α11 + α22)/2 < α12, the covariance of (Y un,1(l), Y vn,2(l + h))> satisfies

V ar

 Y un,1(l)

Y vn,2(l + h)

→
 σuv0,11(h) 0

0 σuv0,22(h)

 , as n→∞. (3.3.10)

If (α11 + α22)/2 = α12 the covariance of (Y un,1(l), Y vn,2(l + h))> satisfies

V ar

 Y un,1(l)

Y vn,2(l + h)

→
 σuv0,11(h) σuv0,12(h)

σuv0,12(h) σuv0,22(h)

 , as n→∞. (3.3.11)

3.3.2 The GLS estimators for (α11, α22)
>

Define

Zun,i(j) := (Y un,i(j))
2, j = 1, 2, ..., n, (3.3.12)

and

Z̄un,i :=
1

n

n∑
j=1

Zun,i(j), (3.3.13)

where i = 1, 2, u = 1, 2, ...,m. By (3.3.7), it is easy to see that

Z̄un,i
p−→ Aiu

αii , , i = 1, 2. (3.3.14)

where Ai, i = 1, 2 are constants and hence

log Z̄un,i ≈ αii log u+ logAi. (3.3.15)
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Recall the GLS estimator in [KW97]. Let

U (i) = (log Z̄1
n,i, ..., log Z̄mn,i)

>, X = (log 1, log 2, ..., logm)> (3.3.16)

and 1 be the m-vector of 1. The generalized least square estimator α̂ii, i = 1, 2 is determined

by minimizing

(U (i) − Ai1− αiiX)>W (U (i) − Ai1− αiiX), (3.3.17)

with respect to αii and Ai. Hence, we have

α̂ii =
(1>W1)(X>WY )− (1>WX)(1>WY )

(1>W1)(X>WX)− (1>WX)2
(3.3.18)

• If W is chosen as identity matrix, the GLS estimator is reduced to ordinary least square

(abbr. OLS) estimator.

• A good choice of the weighted matrix W in (3.3.17) is the inverse matrix of the covari-

ance of U (i). Let Ω(i) = {ωuvi , u, v = 1, ...,m} be the covariance matrix of U (i), which

will be specified at the end of Section 3.4.

3.4 Asymptotic properties

In this section, we study the properties of the estimators (α̂11, α̂22)> under infill asymptotics.
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3.4.1 Variance of Z̄n and asymptotic normality

Let us introduce the notation first. Let

Z̄n,i = (Z̄1
n,i, Z̄

2
n,i, ..., Z̄

m
n,i)
>, i = 1, 2. (3.4.1)

and

Z̄n = (Z̄>n,1, Z̄
>
n,2)>. (3.4.2)

We apply the method of derivation in Section 3 of [KW97] to the bivariate processes. Re-

call that Cov(Y un,i(l), Y
v
n,j(l + h)) = σuvn,ij(h), i, j = 1, 2. Using the fact that, if (U, V ) ∼

Normal(0, 0, 1, 1, ξ), then Cov(U2, V 2) = 2ξ2, we obtain

Cov(Zun,i(l), Z
v
n,j(l + h)) = 2(σuvn,ij(h))2, i, j = 1, 2. (3.4.3)

Further,

φuvn,ij := Cov(Z̄un,i, Z̄
v
n,j) =

1

n

n−1∑
h=−n+1

(
1− |h|

n

)
× 2(σuvn,ij(h))2. (3.4.4)

Let Φn,ij = (φuvn,ij , u, v = 1, 2, ...,m) be the m×m covariance matrix of Z̄n,i and Z̄n,j , i, j =

1, 2. So the covariance matrix of Z̄n can be written as

Φn :=

 Φn,11 Φn,12

Φn,12 Φn,22

 . (3.4.5)
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In order to study the asymptotic properties of Φn, we begin with the asymptotic behavior

of σuvn,ij(h) for all n > |h| as |h| → ∞. First of all, it is necessary to make some mild

strengthening of Assumption (3.2.1), denoted here by (A0). For q ≥ 1, consider the regularity

conditions on the qth derivative of Cij(t), say (Aq), for ∀t 6= 0,

C
(q)
11 (t) = −sgn(t)q

c11α11!

(α11 − q)!
|t|α11−q + o(|t|α11−q),

C
(q)
22 (t) = −sgn(t)q

c22α22!

(α22 − q)!
|t|α22−q + o(|t|α22−q),

C
(q)
12 (t) = C

(q)
21 (t) = −sgn(t)qρσ1σ2

c12α12!

(α12 − q)!
|t|α12−q + o(|t|α12−q)), (3.4.6)

where sgn(t) = 1 if t > 0 and sgn(t) = −1 if t < 0.

The theorems below extend Theorem 1 and Theorem 2 in [KW97] to the bivariate case.

Theorem 3.4.1. If the increment a has order p ≥ 0 and the condition (A2p+2) holds, then

σuvn,ii(h) = O(|h|αii−2p−2), as |h| → ∞ uniformly for n > |h|, i = 1, 2, (3.4.7)

and

σuvn,12(h) = nα1/2+α2/2−α12O(|h|α12−2p−2) = O(|h|
α11+α22

2 −2p−2),

as |h| → ∞ uniformly for n > |h|. (3.4.8)

By [KW97], we’ve known using increment with order p = 1 will achieve more efficiency.

So we’ll consider the convergence of variance when p = 1. Let φuv0,ij = 2
∑∞
h=−∞(σuv0,ij(h))2,
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Φ0,ij = (φuv0,ij , u, v = 1, 2, ...,m), and

Φ0 :=

 Φ0,11 Φ0,12

Φ0,12 Φ0,22

 (3.4.9)

Theorem 3.4.2. If the condition (A4) holds and 0 < α11, α22 < 2, then

nΦn → Φ0, as n→∞, (3.4.10)

where the entry of Φ0 is an absolutely convergent series.

Theorem 3.4.3. If the condition (A4) holds and 0 < α11, α22 < 2, then

n1/2(Z̄n − E[Z̄n])
d−→ N2m(0,Φ0), as n→∞, (3.4.11)

3.4.2 Linear estimators of (α11, α22)
>

To describe the asymptotic properties of the estimators of (α11, α22)>, it is necessary to

specify the remainder term in the assumption (3.2.1). Suppose that, for some β11, β22, β12 >

0,

C11(t) = σ2
1 − c11|t|α11 +O(|t|α11+β11),

C22(t) = σ2
2 − c22|t|α22 +O(|t|α22+β22),

C12(t) = C21(t) = ρσ1σ2(1− c12|t|α12 +O(|t|α12+β12)). (3.4.12)
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Here, we will study the asymptotic properties of a more general estimators (see, e.g., [CW00]),

that is

α̂ii =
m∑
u=1

Lu,i log Z̄un,i, i = 1, 2, (3.4.13)

where Lu,i, u = 1, 2, ...,m, i = 1, 2 are any fixed numbers such that

m∑
u=1

Lu,i = 0 and
m∑
u=1

Lu,i log u = 1. (3.4.14)

It is easy to check that the GLS estimator (3.3.18) is an example of the above estimators.

Three theorems below illustrate the asymptotic properties of (α̂11, α̂22)> by studying the

bias, mean square error matrix and asymptotic normality.

Theorem 3.4.4 (Bias). For the α̂ii, i = 1, 2 defined above, we have

E[α̂ii − αii] = O(n−1) +O(n−βii), i = 1, 2. (3.4.15)

Theorem 3.4.5 (Mean square error matrix). Let α̂ = (α̂11, α̂22)> and α = (α11, α22)>. If

α11 + α22 = 2α12, we have

E[(α̂− α)(α̂− α)>] =

 O(n−1) +O(n−2β11) O(n−1) +O(n−β11−β22)

O(n−1) +O(n−β11−β22) O(n−1) +O(n−2β22)

 (3.4.16)

If α11 + α22 < 2α12, we have

E[(α̂− α)(α̂− α)>]

62



=



O(n−1) +O(n−2β11)
o(n−1) +O(n−1−β11)

+O(n−1−β22) +O(n−β11−β22)

o(n−1) +O(n−1−β11)

+O(n−1−β22) +O(n−β11−β22)

O(n−1) +O(n−2β22)


(3.4.17)

Finally, we show the asymptotic normality of the α̂. We introduce the notation first. Let

Tun,i =
Z̄un,i − EZ̄un,i

EZ̄un,i
, Tn,i = (T 1

n,i, ..., T
m
n,i)
>,

Li = (L1,i, ..., Lm,i)
>, L̃i = (L1,i/σ

11
0,ii(0), ..., Lm,i/σ

mm
0,ii (0))>, i = 1, 2.

Theorem 3.4.6 (Asymptotic normality). Assume that β11, β22 >
1
2 ,
√
n(α̂−α) follows the

asymptotic properties below.

√
n

 α̂11 − α11

α̂22 − α22

 =

 √nL>1 Tn,1 + op(1) +O(n−β11+1
2 )

√
nL>2 Tn,2 + op(1) +O(n−β22+1

2 )

 , (3.4.18)

where

 √nL>1 Tn,1√
nL>2 Tn,2

 d−→ N(0,Σα), (3.4.19)

with

Σα =

 L̃>1 Φ0,11L̃1 L̃>1 Φ0,12L̃2

L̃>2 Φ0,21L̃1 L̃>2 Φ0,22L̃2

 . (3.4.20)

Especially, if
α11+α22

2 < α12, Φ0,12 = Φ0,21 = 0 and hence
√
nL>1 Tn,1 and

√
nL>2 Tn,2 are
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asymptotically independent.

Remark:

• By Theorem 3.4.6, the covariance matrix of U (i) in Section 3.3.2 can be specified as

follows.

ωuvi = E[log Z̄un,i log Z̄vn,i] ∝ nφuvn,ii/(σ
uu
n,iiσ

vv
n,ii)→ φuv0,ii/(σ

uu
0,iiσ

vv
0,ii). (3.4.21)

Hence, ωuvi is chosen as follows, which is the same as that in Kent and Wood [KW97].

ωuvi = 2
n−1∑

h=−n+1

(1− |h|/n)σuv0,ii(h)/σuu0,ii(0)σvv0,ii(0). (3.4.22)

3.5 An example: the bivariate Matérn field on R

Recall the definitions of bivariate Matèrn fields and Matèrn correlation functions introduced

in Section 2.3. For m ∈ Z, when m < ν < m+ 1, we have the following expansion.

M(h|ν, a) =
m∑
j=0

bjh
2j − b|h|2ν + o(|t|2m+2),

where b0, ..., bm are constants and b =
Γ(1−ν)

22νΓ(1+ν)
(see, e.g., [Ste99], p. 32).

Let m = 0. We see that Assumption (3.2.1) is satisfied and the power βij in Assumption

(3.4.12) is 2 − 2νij , i, j = 1, 2. Next, we consider the derivatives of the Matérn correlation

function. WLOG, assume that a = 1 and Mν(h) := M(h|ν, 1). Denote by κν = 21−ν
Γ(ν)

. We

see that κν+1 = (2ν)−1κν . Recall that the derivative of the Bessel function of the second
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kind Kν satisfies the following recurrence formula.

K ′ν(z) = −Kν+1(z) +
ν

z
Kν(z). (3.5.1)

Hence,

M ′ν(h) = sgn(h)(κνν|h|ν−1Kν(|h|) + κν |h|νK ′ν(|h|))

= sgn(h)(2νκν |h|ν−1Kν(|h|)− κν |h|νKν+1(|h|))

= 2ν · sgn(h)(|h|−1(Mν(h)−Mν+1(h)))

= −2νb · sgn(h)|h|2ν−1 + o(|h|2ν−1). (3.5.2)

Similarly,

M ′′ν (h) = (2ν − 1)sgn(h)|h|−1M ′ν(h)− 2ν · sgn(h)|h|−1M ′ν+1(h)

= −2ν(2ν − 1)b · sgn2(h)|h|2ν−2 + o(|h|2ν−2),

M
(3)
ν (h) = (2ν − 2)sgn(h)|h|−1M ′′ν (h)− 2ν · sgn(h)|h|−1M ′′ν+1(h),

= −2ν(2ν − 1)(2ν − 2)b · sgn3(h)|h|2ν−3 + o(|h|2ν−3),

· · ·

M
(q)
ν (h) = (2ν − q + 1)sgn(h)|h|−1M

(q−1)
ν (h)− 2ν · sgn(h)|h|−1M

(q−1)
ν+1 (h)

= − b(2ν)!

(2ν − q)!
2νb · sgnq(h)|h|2ν−q + o(|h|2ν−q). (3.5.3)

Hence, Assumption (3.4.6) is satisfied. Now we can apply Theorem 3.4.4 ∼ 3.4.6 to bivariate

Matérn process.

Theorem 3.5.1 (Bias). For the nonsmooth bivariate Matérn process with 0 < ν11, ν22 < 1,
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the bias of ν̂ii is

E[ν̂ii − νii] = O(n−1) +O(n−(2−νii)), i = 1, 2. (3.5.4)

Theorem 3.5.2 (Mean Square Error Matrix). Let ν = (ν11, ν22)> and ν̂ = (ν̂11, ν̂22)>. For

the nonsmooth bivariate Matérn process with 0 < ν11, ν22 < 1, if ν11 + ν22 = 2ν12, then

E(ν̂ − ν)(ν̂ − ν)>

=

 O(n−1) +O(n−4(1−ν11)) O(n−1) +O(n−4(1−ν12))

O(n−1) +O(n−4(1−ν12)) O(n−1) +O(n−4(1−ν22))

 (3.5.5)

If ν11 + ν22 < 2ν12, we have

E(ν̂ − ν)(ν̂ − ν)>

=

 O(n−1) +O(n−4(1−ν11)) o(n−1) +O(n−2(2−ν11−ν22))

o(n−1) +O(n−2(2−ν11−ν22)) O(n−1) +O(n−4(1−ν11))

 (3.5.6)

Theorem 3.5.3 (Asymptotic normality). For the nonsmooth bivariate Matérn process with

0 < ν11, ν22 <
3
4 ,

√
n

 ν̂11 − ν11

ν̂22 − ν22

 d−→ N(0,Σν), (3.5.7)

66



where

Σν =

 L̃>1 Φ0,11L̃1 L̃>1 Φ0,12L̃2

L̃>2 Φ0,21L̃1 L̃>2 Φ0,22L̃2

 , (3.5.8)

and L̃i = (L1,i/σ
11
0,ii(0), ..., Lm,i/σ

mm
0,ii (0))>, i = 1, 2. Especially, if

ν11+ν22
2 < ν12, Φ0,12 =

Φ0,21 = 0 and hence ν̂11 and ν̂22 are asymptotically independent.

3.6 Proof of the main results

Proof of Theorem 3.4.1. (3.4.7) comes directly from the proof of Theorem 1 in [KW97]. We

are going to prove (3.4.8). First of all, expand C12
(h+k−j

n

)
in a Taylor series about h/n to

the (2p+ 2)th order to obtain

σuvn,12(h) = n
α11+α22

2
∑
j,k

auj a
v
kC12

(
h+ k − j

n

)

= n
α11+α22

2

2p+1∑
r=0

∑
j,k

auj a
v
k

(k − j)r

r!nr
C

(r)
12

(
h

n

)

+ n
α11+α22

2
∑
j,k

auj a
v
k

(k − j)2p+2

(2p+ 2)!n2p+2
C

(2p+2)
12

(h∗kj
n

)

= n
α11+α22

2
∑
j,k

auj a
v
k

(k − j)2p+2

(2p+ 2)!n2p+2
C

(2p+2)
12

(h∗kj
n

)
, (3.6.1)

where h∗kj lies between h and h+ k − j. Since |k − j| ≤ (u+ v)J ≤ 2mJ , h∗kj ≤ 2|h| for all

|h| ≥ 2mJ . Combining the condition (A2p+2) satisfied, for all |h| ≥ 2mJ and all n > |h| we

have

|σuvn,12(h)| ≤ const.|h|α12−2p−2 · n
α11+α22

2 −α12 ≤ const.|h|
α11+α22

2 −2p−2.
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Proof of Theorem 3.4.2. The proof is very similar as that in [KW97]. Let

duvn,ij(h) :=


(

1− |h|n

)
(σuvn,ij(h))2, |h| < n

0, otherwise.

(3.6.2)

By (3.3.6) and (3.3.8), we have duvn,ij(h)→ σuv0,ij(h) as n→∞. By Theorem 3.4.1 and p = 1,

we know

duvn,ij(h) ≤ const.|h|αii+αjj−8
.

Since αii + αjj − 8 < −4,
∑∞
h=−∞ duvn,ij(h) is bounded by a summable series. Therefore,

(3.4.10) can be concluded by dominated convergence theorem.

Proof of Theorem 3.4.3. By the Cramér-Wold theorem, it is equivalent to prove that for

∀γ = (γ1,1, ..., γm,1, γ1,2, ..., γm,2)> ∈ R2m,

n1/2γ>(Z̄n − E[Z̄n])
d−→ N(0, γ>Φ0γ), as n→∞, (3.6.3)

First, we introduce the notation. Let γi := (γ1,i, ..., γm,i)
>, i = 1, 2 and

Γn = diag(γ>1 , γ
>
1 , ..., γ

>
1︸ ︷︷ ︸

n times

, γ>2 , γ
>
2 , ..., γ

>
2︸ ︷︷ ︸

n times

)>. (3.6.4)

So Γn is a 2mn× 2mn matrix including n copies of γ1 and γ2 on the diagonal. Let

Yn,i(j) := (Y 1
n,i(j), Y

2
n,i(j), ..., Y

m
n,i(j))

>, i = 1, 2, j = 1, 2, ..., n, (3.6.5)
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and

Wn = (Y >n,1(1), Y >n,1(2), ..., Y >n,1(n), Y >n,2(1), Y >n,2(2), ..., Y >n,2(n))>, (3.6.6)

where Wn is a 2mn dimensional vector.

Then, we have

Sn , n1/2γ>(Z̄n − E[Z̄n]) = n−1/2(W>n ΓnWn − E[W>n ΓnWn]). (3.6.7)

Let

Vn = E[WnW
>
n ], (3.6.8)

be the covariance matrix of Wn. For 1 ≤ i1, i2 ≤ 2, 1 ≤ j1, j2 ≤ n, 1 ≤ k1, k2 ≤ m, let

l1 = (i1 − 1)mn+ (j1 − 1)m+ k1,

l2 = (i2 − 1)mn+ (j2 − 1)m+ k2,

So the (l1, l2) entry of Wn is

Vn(l1, l2) = E[Y
k1
n,i1

(j1)Y
k2
n,i2

(j2)] = σ
k1k2
n,i1i2

(j2 − j1). (3.6.9)

Let W̃n = V
−1

2
n Wn and Λn = 2n−

1
2V

1
2
n ΓV

1
2
n . Then we have

Sn =
1

2
(W̃>n ΛnW̃n − E[W̃>n ΛnW̃n]) (3.6.10)
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It is easy to see W̃n ∼ N2mn(0, I) where I is the identity matrix. There exists an orthogonal

matrix Q such that Q>ΛnQ is a diagonal matrix whose diagonal entries are eigenvalues

of Λn, denoted by λn,j , j = 1, 2, ..., 2mn. Also, U , QW̃n ∼ N2mn(0, I). Therefore, for

∀θ < min1≤j≤2mn λ
−1
n,j , the cumulant generating function of 1

2W̃
>
n ΛnW̃n is given by

logE
[
e
θ
2W̃
>
n ΛnW̃n

]
= logE

[
e
θ
2U
>(Q>ΛnQ)U ] = logE

[
e
θ
2
∑2mn
j=1 λn,jU

2
j
]

=− 1

2

2mn∑
j=1

log(1− θλn,j). (3.6.11)

So the cumulant generating function of Sn is given by

kn(θ) , logE[eθSn ] = −1

2

2mn∑
j=1

(log(1− θλn,j) + θλn,j) (3.6.12)

As the proof of Theorem 3.2 in [KW95], it is sufficient to prove that

tr(Λ4) =
2mn∑
j=1

λ4
n,j → 0, as n→∞. (3.6.13)

First of all, let’s prove why (3.6.13) ensure the asymptotic normality of Sn. The argument

is very similar as that in [KW95]). Applying Taylor’s expansion to log(1− θλn,j) at θ = 0,

we obtain

kn(θ) =
θ2

4

2mn∑
j=1

λ2
n,j +

θ3

6

2mn∑
j=1

λ3
n,j +

θ4

8

2mn∑
j=1

(1− θn,jλn,j)−4λ4
n,j , (3.6.14)

where θn,j is between 0 and θ. Let’s consider the term 1
2

∑2mn
j=1 λ

2
n,j . It follows from (3.6.9)
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that

1

2

2mn∑
j=1

λ2
n,j =

1

2
tr(Λ2

n) =
2

n
tr((VnΓn)2)

=
2

n

2mn∑
l1

2mn∑
l2

(VnΓn)(l1, l2)(VnΓn)(l2, l1)

=
2

n

2mn∑
l1

2mn∑
l2

Vn(l1, l2)Γn(l2, l2)Vn(l2, l1)Γ(l1, l1)

=
2

n

2∑
i1,i2=1

m∑
k1,k2=1

n∑
j1,j2=1

σ
k1k2
n,i1i2

(j2 − j1)γk2,i2
σ
k2k1
n,i2i1

(j1 − j2)γk1,i1

=
2

n

2∑
i1,i2=1

m∑
k1,k2=1

n∑
j1,j2=1

γk1,i1
γk2,i2

(
σ
k1k2
n,i1i2

(j2 − j1)
)2
, (3.6.15)

where

l1 = (i1 − 1)mn+ (j1 − 1)m+ k1, 1 ≤ i1 ≤ 2, 1 ≤ j1 ≤ n, 1 ≤ k1 ≤ m,

l2 = (i2 − 1)mn+ (j2 − 1)m+ k2, 1 ≤ i2 ≤ 2, 1 ≤ j2 ≤ n, 1 ≤ k2 ≤ m.

On the other hand,

γ>Φnγ = (γ>1 , γ
>
2 )

 Φn,11 Φn,12

Φn,12 Φn,22


 γ1

γ2


=

2∑
i1,i2=1

m∑
k1,k2=1

γk1,i1
γk2,i2

φ
k1k2
n,i1i2

=
1

n2

2∑
i1,i2=1

m∑
k1,k2=1

n∑
j1,j2=1

γk1,i1
γk2,i2

E[Zun,iZ
v
n,j ]
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=
2

n2

2∑
i1,i2=1

m∑
k1,k2=1

n∑
j1,j2=1

γk1,i1
γk2,i2

(
σ
k1k2
n,i1i2

(j2 − j1)
)2
. (3.6.16)

Hence, by (3.6.15),(3.6.16) and Theorem 3.4.2, we have

1

2

2mn∑
j=1

λ2
n,j = γ>(nΦn)γ → γ>Φ0γ, as n→∞. (3.6.17)

Next, let’s consider the second term in (3.6.14). By (3.6.13), we have

max
1≤j≤2mn

|λn,j | ≤
( 2mn∑
j=1

λ4
n,j

)1
4
→ 0, as n→∞, (3.6.18)

which implies

∣∣∣∣ 2mn∑
j=1

λ3
n,j

∣∣∣∣ ≤ max
1≤j≤2mn

|λn,j |
2mn∑
j=1

λ2
n,j → 0, as n→∞. (3.6.19)

Finally, let’s consider the third term in (3.6.14). By (3.6.18), we know δ := supn≥1 max1≤j≤2mn

|λn,j | is positive and finite. If we restrict attention to |θ| ≤ 1
2δ
−1, we have (1−θn,jλn,j)−4 ≤

16 and hence for θ ∈ (−1
2δ
−1, 1

2δ
−1),

2mn∑
j=1

(1− θn,jλn,j)−4)λ4
n,j → 0, as n→∞. (3.6.20)

Therefore, by (3.6.17),(3.6.19) and (3.6.20), for ∀θ ∈ (−1
2δ
−1, 1

2δ
−1), we have

kn(θ)→ θ2

2
γ>Φ0γ, (3.6.21)
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which is sufficient to prove

Sn := n1/2γ>(Z̄n − E[Z̄n])
d−→ N(0, γ>Φ0γ), as n→∞,

Now we only need to prove (3.6.13).

tr(Λ4
n) =

16

n2
tr((VnΓn)4)

=
16

n2

2mn∑
l1,l2,...,l4=1

(VnΓn)(l1, l2)(VnΓn)(l2, l3)(VnΓn)(l3, l4)(VnΓn)(l4, l1)

=
16

n2

2∑
i1,...,i4=1

m∑
k1,...,k4=1

γk1,i1
γk2,i2

γk3,i3
γk4,i4

·
n∑

j1,...,j4=1

σ
k1k2
n,i1i2

(j2 − j1)σ
k2k3
n,i2i3

(j3 − j2)σ
k3k4
n,i3i4

(j4 − j3)σ
k4k1
n,i4i1

(j1 − j4), (3.6.22)

where lr = (ir − 1)mn+ (jr − 1)m+ kr, r = 1, ..., 4. Let

∆n(k1, ..., k4, i1, ..., i4)

:=
n∑

j1,...,j4=1

σ
k1k2
n,i1i2

(j2 − j1)σ
k2k3
n,i2i3

(j3 − j2)σ
k3k4
n,i3i4

(j4 − j3)σ
k4k1
n,i4i1

(j4 − j1)

=
n∑

j1,...,j4=1

σ
k1k2
n,i1i2

(h1)σ
k2k3
n,i2i3

(h2)σ
k3k4
n,i3i4

(h3)σ
k4k1
n,i4i1

(h1 + h2 + h3), (3.6.23)

where hi = ji+1 − ji, i = 1, 2, 3.

Given h1, h2 and h3 fixed, the cardinality of the set

#{(j1, j2, ..., j4) | 1 ≤ j1, ..., j4 ≤ n} ≤ n. (3.6.24)
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Hence,

|∆n(k1, ..., k4, i1, ..., i4)|

≤n
∑

|h1|,|h2|,|h3|≤n−1

|σk1k2
n,i1i2

(h1)σ
k2k3
n,i2i3

(h2)σ
k3k4
n,i3i4

(h3)σ
k4k1
n,i4i1

(h1 + h2 + h3)| (3.6.25)

Further, by Theorem 3.4.1, we have

|∆n(k1, ..., k4, i1, ..., i4)|

≤const.n
3∏
r=1

n−1∑
hr=−n+1

h

αirir
2 +

αir+1ir+1
2 −4

r

≤const.n
3∏
r=1

∞∑
hr=−∞

h

αirir
2 +

αir+1ir+1
2 −4

r

=O(n). (3.6.26)

The last equality holds since
αirir

2 +
αir+1ir+1

2 − 4 < −2. Therefore, by (3.6.22) and

(3.6.26), we have

tr(Λ4
n) = O(n−1)→ 0, as n→∞.

Proof of Theorem 3.4.4. Recall that

Tun,i =
Z̄un,i − EZ̄un,i

EZ̄un,i
. (3.6.27)
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If

|Tun,i| ≤ ξ ≤ 1

2
, (3.6.28)

by Taylor expansion, we have

log(1 + Tun,i) = Tun,i −
1

2
(Tun,i)

2 +Run,i, (3.6.29)

where |Run,i| ≤ ξ(Tun,i)
2. Hence,

E[log(1 + Tun,i)] = E[Tun,i −
1

2
(Tun,i)

2 +Run,i] = −1

2
E(Tun,i)

2 + ERun,i, (3.6.30)

and

E[|Run,i|, |T
u
n,i| ≤ ξ] ≤ ξE[(Tun,i)

2, |Tun,i| ≤ ξ] = O(n−1). (3.6.31)

By Lemma 3.6.1, we obtain

m∑
u=1

Lu,iE[log(1 + Tun,i), |T
u
n,i| > ξ] = o(n−1), (3.6.32)

and hence

m∑
u=1

Lu,iE[|Run,i|, |T
u
n,i| > ξ]

≤
m∑
u=1

Lu,iE[| log(1 + Tun,i|+ |T
u
n,i|+

1

2
(Tun,i)

2, |Tun,i| > ξ]

= O(n−1). (3.6.33)
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Therefore,

m∑
u=1

Lu,iE[log(1 + Tun,i)] = O(n−1). (3.6.34)

On the other hand, by assumption (3.4.12), we have

EZ̄un,i = σuun,ii(0) = const.uαii(1 +O(n−βii)), (3.6.35)

and hence

m∑
u=1

Lu,i logEZ̄un,i = αii log u+O(n−βii) (3.6.36)

by (3.4.14).

Therefore, by (3.6.34) and (3.6.36),

E[α̂ii − αii] = E
[ m∑
u=1

Lu,i(log Z̄un,i − αii log u)

]
= O(n−1) +O(n−βii). (3.6.37)

Proof of Theorem 3.4.5.

E(α̂ii − αii)2

=
m∑
u=1

m∑
v=1

Lu,iLv,iE(log Z̄un,i − αii log u)(log Z̄vn,i − αii log v)

=
m∑
u=1

m∑
v=1

Lu,iLv,iE(log(1 + Tun,i) + logEZ̄un,i − αii log u)

× (log(1 + T vn,i) + logEZ̄vn,i − αii log v)
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=
m∑
u=1

m∑
v=1

Lu,iLv,iE[log(1 + Tun,i) log(1 + T vn,i)]

+
m∑
u=1

m∑
v=1

Lu,iLv,iE log(1 + Tun,i)(logEZ̄vn,i − αii log v)

+
m∑
u=1

m∑
v=1

Lu,iLv,i(logEZ̄un,i − αii log u)E log(1 + T vn,i)

+
m∑
u=1

m∑
v=1

Lu,iLv,i(logEZ̄un,i − αii log u)(logEZ̄vn,i − αii log v) (3.6.38)

By (3.6.34) and (3.6.36), we have

m∑
u=1

m∑
v=1

Lu,iLv,iE log(1 + Tun,i)(logEZ̄vn,i − αii log v) = O(n−1−βii)

m∑
u=1

m∑
v=1

Lu,iLv,i(logEZ̄un,i − αii log u)E log(1 + T vn,i) = O(n−1−βii)

m∑
u=1

m∑
v=1

Lu,iLv,i(logEZ̄un,i − αii log u)(logEZ̄vn,i − αii log v) = O(n−2βii). (3.6.39)

Next, we study the first term in the right hand side of (3.6.38). First,

E[log(1 + Tun,i) log(1 + T vn,i), |T
u
n,i| < ξ, |T vn,i| < ξ]

=E
[
(Tun,i − 1/2(Tun,i)

2 +Run,i)(T
v
n,i − 1/2(T vn,i)

2 +Rvn,i), |T
u
n,i| < ξ, |T vn,i| < ξ

]
=E
[
Tun,iT

v
n,i, |T

u
n,i| < ξ, |T vn,i| < ξ

]
− 1

2
E
[
Tun,i(T

v
n,i)

2, |Tun,i| < ξ, |T vn,i| < ξ
]

+ E
[
Tun,iR

v
n,i, |T

u
n,i| < ξ, |T vn,i| < ξ

]
− 1

2
E
[
(Tun,i)

2T vn,i, |T
u
n,i| < ξ, |T vn,i| < ξ

]
+

1

4
E
[
(Tun,i)

2(T vn,i)
2, |Tun,i| < ξ, |T vn,i| < ξ

]
− 1

2
E
[
(Tun,i)

2Rvn,i, |T
u
n,i| < ξ, |T vn,i| < ξ

]
+ E

[
Run,iT

v
n,i, |T

u
n,i| < ξ, |T vn,i| < ξ

]
− 1

2
E
[
Run,i(T

v
n,i)

2, |Tun,i| < ξ, |T vn,i| < ξ
]

+ E
[
Run,iR

v
n,i, |T

u
n,i| < ξ, |T vn,i| < ξ

]
(3.6.40)
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By Theorem 3.4.2, we have

E[Tun,iT
v
n,i] = O(n−1). (3.6.41)

Hence, we have

E[Tun,i(T
v
n,i)

2] = o(n−1),E[(Tun,i)
2(T vn,i)

2] = o(n−1)

E
[
Run,iR

v
n,i, |T

u
n,i| < ξ, |T vn,i| < ξ

]
= o(n−1),

E
[
Run,iT

v
n,i, |T

u
n,i| < ξ, |T vn,i| < ξ

]
= o(n−1),

E
[
Run,i(T

v
n,i)

2, |Tun,i| < ξ, |T vn,i| < ξ
]

= o(n−1) (3.6.42)

Therefore,

E[log(1 + Tun,i) log(1 + T vn,i), |T
u
n,i| < ξ, |T vn,i| < ξ] = O(n−1). (3.6.43)

Second, by Lemma 3.6.1,

E[log(1 + Tun,i) log(1 + T vn,i), |T
u
n,i| > ξ, |T vn,i| < ξ]

≤ | log(1− ξ)|E[| log(1 + Tun,i)|, |T
u
n,i| > ξ]

= o(n−1). (3.6.44)

Similarly,

E[log(1 + Tun,i) log(1 + T vn,i), |T
u
n,i| < ξ, |T vn,i| > ξ]
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≤ | log(1− ξ)|E[| log(1 + T vn,i)|, |T
v
n,i| > ξ]

= o(n−1). (3.6.45)

Finally, by Lemma 3.6.1,

E[log(1 + Tun,i) log(1 + T vn,i), |T
u
n,i| > ξ, |T vn,i| > ξ]

≤ (E[log2(1 + Tun,i), |T
u
n,i| > ξ])1/2(E[log(1 + T vn,i), |T

v
n,i| > ξ])1/2

= o(n−1). (3.6.46)

Therefore,

E[log(1 + Tun,i) log(1 + T vn,i)] = O(n−1). (3.6.47)

By (3.6.39) and (3.6.47), we have

E(α̂ii − αii)2 = O(n−1) +O(n−2βii), i = 1, 2 (3.6.48)

Next, we study the cross term E(α̂11 − α11)(α̂22 − α22). Similarly as E(α̂ii − αii)2,

E(α̂11 − α11)(α̂22 − α22)

=
m∑
u=1

m∑
v=1

Lu,1Lv,2E(log Z̄un,1 − α11 log u)(log Z̄vn,2 − α22 log v)

=
m∑
u=1

m∑
v=1

Lu,1Lv,2E[log(1 + Tun,1) log(1 + T vn,2)]

+
m∑
u=1

m∑
v=1

Lu,1Lv,2E log(1 + Tun,1)(logEZ̄vn,2 − α22 log v)
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+
m∑
u=1

m∑
v=1

Lu,1Lv,2(logEZ̄un,1 − α11 log u)E log(1 + T vn,2)

+
m∑
u=1

m∑
v=1

Lu,1Lv,2(logEZ̄un,1 − α11 log u)(logEZ̄vn,2 − α22 log v). (3.6.49)

So we only need to find the order of
∑m
u=1

∑m
v=1 Lu,1Lv,2E[log(1 + Tun,1) log(1 + T vn,2)].

Case 1: If
α11+α22

2 = α12, by Theorem 3.4.2 and (3.3.11),

m∑
u=1

m∑
v=1

Lu,1Lv,2E[log(1 + Tun,1) log(1 + T vn,2)] = O(n−1), (3.6.50)

and hence

E(α̂11 − α11)(α̂22 − α22) = O(n−1) +O(n−β11−β22), i = 1, 2 (3.6.51)

Case 2: If
α11+α22

2 < α12, by Theorem 3.4.2 and (3.3.10),

m∑
u=1

m∑
v=1

Lu,1Lv,2E[log(1 + Tun,1) log(1 + T vn,2)] = o(n−1), (3.6.52)

and hence

E(α̂11 − α11)(α̂22 − α22)

= o(n−1) +O(n−1−β11) +O(n−1−β22) +O(n−β11−β22). (3.6.53)
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Proof of Theorem 3.4.6.

√
n(α̂ii − αii) =

√
n

m∑
u=1

Lu,i(log Z̄un,i − αii log u)

=
√
n

m∑
u=1

Lu,i log(1 + Tun,i) +
√
n

m∑
u=1

Lu,i(logEZ̄un,i − αii log u)

=
√
n

m∑
u=1

Lu,iT
u
n,i(1 + eun,i) +O(n−βii+

1
2 )

=
√
nL>i Tn,i +

√
n

m∑
u=1

Lu,iT
u
n,ie

u
n,i +O(n−βii+

1
2 ), (3.6.54)

where eun,i → 0 if Tun,i → 0.

By Theorem 3.4.3, we have

√
n

 L>1 Tn,1

L>2 Tn,2

 d−→ N(0,Σα), (3.6.55)

where

Σα =

 L̃>1 Φ0,11L̃1 L̃>1 Φ0,12L̃2

L̃>2 Φ0,21L̃1 L̃>2 Φ0,22L̃2

 . (3.6.56)

Especially, if
α11+α22

2 < α12, Φ0,12 = Φ0,21 = 0 and hence L>1 Tn,1 and L>2 Tn,2 are asymp-

totically independent.

Since
√
nLu,iT

u
n,i convergence to normal distribution and en,i → 0 as n → ∞, we have

√
nLu,iT

u
n,ien,i = op(1) and hence

√
n
∑m
u=1 Lu,iT

u
n,ie

u
n,i = op(1). Therefore,

√
n(α̂ii − αii) =

√
nL>i Tn,i + op(1) +O(n−βii+

1
2 ). (3.6.57)
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Lemma 3.6.1. Show that for any fixed k ∈ Z+,

m∑
u=1

Lu,iE[logk(1 + Tun,i), |T
u
n,i| > ξ] ≤ cn1/2e−c

√
n, (3.6.58)

where c is a constant.

Proof of Lemma 3.6.1. By Holder’s inequality, we have

E[logk(1 + Tun,i), |T
u
n,i| > ξ] ≤ E1/2[log2k(1 + Tun,i)]P

1/2(|Tun,i| > ξ). (3.6.59)

First, we find a upper bound for P(|Tun,i| > ξ).

Let U = (U1, ..., Un) where Ui
iid∼ N(0, 1). Let Yn = (Y un,i(1), ..., Y un,i(n)). Denote by

V ar(Yn) := Σn = (σuun,ii(j − k))nj,k=1. Let Λn = diag(λi) where λi, i = 1, ..., n are the

eigenvalues of Σn. Then we have

Z̄un,i =
1

n
Y >n Yn

d
=

1

n
U>ΛnU. (3.6.60)

Denote by ||Λn||2 and ||Λn||F the l2 norm and Frobenius norm of Λn respectively. Indeed,

||Λn||2 = max
1≤j≤n

λj , ||Λn||F =

√√√√ n∑
j=1

λ2
j . (3.6.61)

It is easy to see nEZ̄un,i = EU>ΛnU = tr(Λn) and hence tr(Λn)/n→ C3u
αii where C3 is a
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constant. Further, Since

||Λn||2F = tr(Λ2
n) = tr(Σ2

n) =
n∑

j=1,k=1

(σuun,ii(j − k))2, (3.6.62)

and

φuun,ii = V ar(Z̄un,ii) =
2

n2

n∑
j=1,k=1

(σuun,ii(j − k))2, (3.6.63)

we have

||Λn||2F =
n2

2
φuun,ii �

n

2
φuu0,ii. (3.6.64)

Applying Hanson and Wright’s inequality [HW71], we have

P(|Tun,i| > ξ) = P(|U>ΛnU − tr(Λn)| > tr(Λn)ξ)

≤ exp

{
−min

(
C1ξ

tr(Λn)

||Λn||2
, C2ξ

2 (tr(Λn))2

||Λn||2F

)}
(3.6.65)

where C1, C2 are positive constants independent of Λn, n and ξ.

Since ||Λn||2 ≤ ||Λn||F and ||Λn||2F /n→
1
2φ

u
0,ii, we have

tr(Λn)

||Λn||2
=
√
n
tr(Λn)/n

||Λn||2/
√
n
&
√

2C3u
αii(φuu0,ii)

−1/2√n, as n→∞, (3.6.66)

and

(tr(Λn))2

||Λn||2F
� 2C2

3u
2αii(φuu0,ii)

−1n. (3.6.67)
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Hence, when n→∞, (3.6.65) decays exponentially with rate
√
n, specifically,

P(|Tun,i| > ξ) ≤ e
−
√

2C1C3u
αii(φuu0,ii)

−1/2ξ
√
n
, as n→∞. (3.6.68)

Second, we prove the upper bound of E log2k(1 + Tn,i). It is easy to see that

E log2k(1 + Tn,i) ≤ 22k−1(E log2k Z̄un,i + log2k EZ̄un,i
)
. (3.6.69)

For any fixed k ∈ Z+, there exists ck such that log2k x ≤ x2,∀x > ck. Since EZ̄un,i → C3u
αii ,

E(log2k Z̄un,i; Z̄
u
n,i > ck) ≤ E(Z̄un,i)

2 = (EZ̄un,i)
2 + V ar(Z̄un,i)→ C2

3u
2αii . (3.6.70)

So E(log2k Z̄un,i; Z̄
u
n,i > ck) is uniformly bounded and we only needs to check E(log2k Z̄un,i; Z̄

u
n,i ≤

ck).

Let U2
min = min1≤i≤n U2

i . For n large,

Z̄un,i =
1

n

n∑
i=1

λiU
2
i ≥

tr(Λn)

n
U2

min ≥
1

2
C3u

αiiU2
min , CU2

min. (3.6.71)

Let fn(x) be the density function of U2
min, that is

fn(x) := P(U2
min ∈ dx) =

2n√
2π
e−x/2

(
2

∫ ∞
√
x

1√
2π
e−y

2/2dy
)n−1

dx. (3.6.72)

It is easy to check that fn(x) ≤ 2n√
2π

. Hence, when n is large, we obtain

E(log2k Z̄un,i; Z̄
u
n,i ≤ ck) ≤ E

(
log2k (CU2

min

)
;U2

min ≤ 1/C
)

84



∫ ck

0
log2k(Cx)fn(x)dx ≤ 2n√

2πC

∫ 1

0
log2k ydy ≤ cn. (3.6.73)

By (3.6.69), (3.6.70) and (3.6.73), we obtain E log2k(1 + Tn,i) ≤ cn and hence when n is

large,

E[logk(1 + Tun,i), |T
u
n,i| > ξ] ≤ cn1/2e−c

√
n. (3.6.74)
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Chapter 4

A Bayesian functional data model for

coupling high-dimensional LiDAR and

forest variables over large geographic

domains

Recent advances in remote sensing, specifically Light Detection and Ranging (LiDAR) sen-

sors, provide the data needed to quantify forest variables at a fine spatial resolution over

large domains. We define a framework to couple high-dimensional and spatially indexed

LiDAR signals with forest variables using a fully Bayesian functional spatial data analysis.

The proposed modeling framework is illustrated by a simulated study and by analyzing Li-

DAR and spatially coinciding forest inventory data collected on the Penobscot Experimental

Forest, Maine.

4.1 Introduction

Linking long-term forest inventory with air- and space-borne Light Detection and Ranging

(LiDAR) datasets via regression models offers an attractive approach to mapping forest

above-ground biomass (AGB) at stand, regional, continental, and global scales. LiDAR data
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have shown great potential for use in estimating spatially explicit forest variables, including

AGB, over a range of geographic scales [AHV+09, BMF+13, FBM11, IDUA13, MMT11,

Næs11, NNR+13]. Encouraging results from these and many other studies have spurred

massive investment in new LiDAR sensors, sensor platforms, as well as extensive campaigns

to collect field-based calibration data. For example, ICESat-2—planned for launch in 2017—

will be equipped with a LiDAR sensor able to gather data from space at unprecedented spatial

resolutions [AZB+10]. As currently proposed, ICESat-2 will be a photon-counting sensor

capable of recording measurements on a ≈70 cm footprint [ICE15]. The Global Ecosystem

Dynamics Investigation LiDAR (GEDI) will be an International Space Station mounted

system capable of producing 25 m diameter footprint waveforms and is scheduled to be

operational in 2018 [GED14]. One of GEDI’s core objectives is to quantify the distribution

of AGB at a fine spatial resolution. NASA Goddard’s LiDAR, Hyper-spectral, and Thermal

(G-LiHT) imager is an air-borne platform developed, in part, to examine how future space-

originating LiDAR, e.g., ICESat-2, GEDI, or other platforms, may be combined with field-

based validation measurements to build predictive models for AGB and other forest variables

[AAWN13, CCN+13].

In order to effectively extract information from these high-dimensional massive datasets,

we need a modeling framework to capture within and among LiDAR signal/forest variable

association within and across locations. However, the computational complexity of such

models increases in cubic order with the number of spatial locations and the dimension of the

LiDAR signal, and the number of forest variables—a characteristic common to multivariate

spatial process models. In this chapter, we propose a modeling framework that explicitly:

1) reduces the dimensionality of signals in an optimal way (i.e., preserves the information

that describes the maximum variability in response variable); 2) propagates uncertainty
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in data and parameters through to prediction, and; 3) acknowledges and leverages spatial

dependence among the derived regressors and model residuals to meet statistical assumptions

and improve prediction.

The rest of this chapter is organized as follows. Section 4.2 gives a review on Gaussian

predictive process and modified Gaussian predictive process. The join model that coupling

the LiDAR signal and the forest variables is proposed in Section 4.3. In Section 4.4, we

complete the hierarchical specifications and outlines the Gibbs sampler for fitting the model.

Spatial predictions for forest variables are derived in Section 4.5. Section 4.6 illustrates with

simulation and forestry data analysis.

4.2 Preliminary: Modified Gaussian predictive process

A Gaussian random field {w(s), s ∈ D ⊂ RN} is usually used to model the residual of

spatial point referenced data. Let Cw(s, t; θ) := Cov(w(s),w(t)) be the covariance function

of w(·) with parameters θ. Assume that the data are observed in n locations, say, s1, ..., sn.

Estimating the parameters always needs inverting a n×n covariance matrix, which involves

O(n3) flops. When the sample size n is very big, it is computationally very expensive and

even infeasible.

To address this issue, [BGFS08] introduced the Gaussian predictive process model, which

is a degenerate Gaussian random field obtained by projecting the parent random field to a

lower-dimensional subspace. Specifically, by choosing a set of “knots” S = {s∗1, ..., s
∗
r} ⊂ D,

they defined the Gaussian predictive process

w̃(s) = E(w(s)|w(s∗1), ..., w(s∗r)). (4.2.1)
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Let c(s; θ) = [Cw(s, s∗j ; θ)]
r
j=1 and C∗(θ) = [Cw(s∗i , s

∗
j )]

r
i,j=1. The covariance function of

w̃(s) can be derived directly from its parent process, that is

Cov(w̃(s), w̃(t)) = c>(s; θ)C∗−1(θ)c(t; θ). (4.2.2)

Inverting the corresponding covariance matrix only requires O(nr2) flops with r << n.

[FSBG09] pointed out that the predictive process underestimates the variance of the

parent random field w(s) since ∀s ∈ D,

Var(w(s))− Var(w̃(s)) = Var(w(s)|w(s∗1), ...,w(s∗r ))

= Cw(s, s; θ)− c>(s; θ)C∗−1(θ)c(s; θ) ≥ 0. (4.2.3)

As a consequence, the nugget variance in spatial regression model is usually overestimated

by absorbing the variability dropped by the predictive process. To remedy this problem,

[FSBG09] proposed the modified Gaussian predictive process by adding a Gaussian

noise to the predictive process. Specifically, they defined

ẅ(s) = w̃(s) + ε̃(s), (4.2.4)

where ε̃(s)
ind∼ N(0, Cw(s, s; θ) − c>(s; θ)C∗−1(θ)c(s; θ)) is a spatially independent Gaus-

sian random field with varying marginal variance. Hence, the modified Gaussian predictive

process has the same marginal variance as the parent process.
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4.3 The model

Let D ⊂ R2 be a spatial domain and let s be a generic point in D. At location s, the outcome

variable y(s) denotes the above-ground biomass. Let x ∈ [0,M ] ⊂ R+ be the height from

the ground with M the maximum height. At location (s, x), the outcome variable z(s, x)

denotes the strength of LiDAR signal.

Assume we’ve observed both y and z at a set of locations S = {s1, ..., sn}. For each

location si, z is measured at height x1, x2, ..., xnx . Moreover, we observed the LiDAR signal

z in many other locations where y have not been measured.

4.3.1 Modified Gaussian predictive model for z

The signal z(s, x) can be modeled as follows,

z(s, x) = µz(s, x; β) + u(s, x) + εz(s, x), (4.3.1)

where µz is the mean function, u(s, x) is the random effect which is a Gaussian random field

on R3 and εz(s, x) is the nugget effect.

Assume that the nuggets effect εz(s, x)
ind∼ N(0, τ2

z (x)), which means the variance of the

nugget is independent across locations.

Denote by Cu(s, t, x, y; θu) := Cov[u(s, x), u(t, y)] the covariance function of random effect

u. We approximate the parent model by modified Gaussian predictive processes within

locations. Assume that {x∗1, ..., x
∗
n∗x
} are the height knots at every location. Let

u∗(s) = (u(s, x∗1), ..., u(s, x∗
n∗x

))>,
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whose covariance at location s is given by

Vu∗(s)(θu) :=



Cu(s, s, x∗1, x
∗
1; θu) · · · Cu(s, s, x∗1, x

∗
n∗x

; θu)

Cu(s, s, x∗2, x
∗
1; θu) · · · Cu(s, s, x∗2, x

∗
n∗x

; θu)

...
. . .

...

Cu(s, s, x∗
n∗x
, x∗1; θu) · · · Cu(s, s, x∗

n∗x
, x∗
n∗x

; θu)


, (4.3.2)

and let

f(s, x; θu) := (Cu(s, s, x, x∗1; θu), ..., Cu(s, s, x, x∗
n∗x

; θu))>. (4.3.3)

So the modified Gaussian predictive process model for z within locations is

z(s, x) = µz(s, x; β) + f>(s, x; θu)V −1
u∗(s)(θu)u∗(s) + ε∗z(s, x), (4.3.4)

where

ε∗z(s;x)
ind∼ N(0, σ̃2

u(s, x; θu) + τ2
z (x)), (4.3.5)

with

σ̃2
u(s, x; θu) = Cu(s, s, x, x; θu)− f>(s, x; θu)V −1

u∗(s)(θu)f(s, x; θu). (4.3.6)
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4.3.2 Joint model of y and Z

Denote by

Z(s) =



z(s, x1)

z(s, x2)

...

z(s, xnx)


, ε∗Z(s) =



ε∗z(s;x1)

ε∗z(s;x2)

...

ε∗z(s;xnx)


, F (s; θu) =



f>(s, x1; θu)

f>(s, x2; θu)

...

f>(s, xnx ; θu)


,

and

µZ(s; β) =



µz(s, x1; β)

µz(s, x2; β)

...

µz(s, xnx ; β)


.

At location s, we couple the LiDAR signal Z and the above-ground biomass y through the

modified predictive processes u∗(s). The joint model for y and Z is given below,

 Z(s)

y(s)

 =

 µZ(s; β)

µy(s; η)

+

 F (s; θu)V −1
u∗(s)(θu) 0

α>u 1


 u∗(s)

v(s)

+

 ε∗Z(s)

εy(s)

 ,

(4.3.7)

where αu ∈ Rn∗x , µy is the mean function of y, v(s) is the random effect and εy is the nugget

effect. Assume that v, εy are independent of u and εz. v(·) is a Gaussian random field on R2

and εy(s)
ind∼ N(0, τ2

y ).

When the number of locations n is big, model estimation and prediction is computation-
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ally inefficient. So we use the modified Gaussian predictive process to approximate the joint

model for y and Z by choosing the spatial knots. Let {s∗1, s
∗
2, ..., s

∗
n∗z
} and {t∗1, t

∗
2, ..., t

∗
n∗y
} be

the spatial knots for signal Z and y respectively.

First, we approximate the spatial random effect u∗(s). Let u∗ = (u∗T (s∗1), ..., u∗T (s∗
n∗z

))>

and Gu∗(s; θu)> be the n∗x×n∗xn∗z block matrix with (1, j)-th block being the cross covariance

Cu∗(s, s
∗
j ; θu) := Cov[u∗(s), u∗(s∗j )], j = 1, 2, .., n∗z, that is

Gu∗(s; θu)> = (Cu∗(s, s
∗
1; θu), Cu∗(s, s

∗
2; θu), ..., Cu∗(s, s

∗
n∗z

; θu)). (4.3.8)

Denote by Vu∗(θu) the n∗xn
∗
z×n∗xn∗z block matrix whose (i, j)-th block is Cu∗(s

∗
i , s
∗
j ; θu). We

approximate u∗(s) by the modified Gaussian predictive process below,

ũ∗(s) = Gu∗(s; θu)>V −1
u∗ (θu)u∗ + εu∗(s), (4.3.9)

where

εu∗(s) ∼ N(0,Σu∗(s; θu)), (4.3.10)

with

Σu∗(s; θu) = Cu∗(s, s; θu)−Gu∗(s; θu)>V −1
u∗ Gu∗(s; θu). (4.3.11)

Next, we approximate v(s). Let gv(s; θv)
> be the 1 × n∗y vector whose j-th element is

Cv(s, s
∗
j ; θv) := Cov[v(s), v(s∗j )] and denote by Vv∗(θv) the n∗y × n∗y matrix whose (i, j)-th
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element is Cv(s
∗
i , s
∗
j ; θv). v(s) is approximated by

ṽ(s) = gv(s; θv)
>V −1

v∗ (θv)v
∗ + εv(s), (4.3.12)

where εv(s) ∼ N(0, σ2
v(s; θv)) with

σ2
v(s; θv) = Cv(s, s; θv)− gv(s; θv)>V −1

v∗ (θv)gv(s; θv). (4.3.13)

Therefore, Z(s) in (4.3.7) can be approximated by

Z(s) ≈ µZ(s; β) + F (s; θu)V −1
u∗(s)(θu)ũ∗(s) + ε∗Z(s)

, µZ(s; β) +H(s; θu)u∗ + eZ(s), (4.3.14)

where

H(s; θu) := F (s; θu)V −1
u∗(s)(θu)Gu∗(θu; s)>V −1

u∗ (θu),

eZ(s) = F (s; θu)V −1
u∗(s)(θu)εu∗(s) + ε∗Z(s) ∼ N(0, DeZ (s)),

with

DeZ (s) = F (s; θu)V −1
u∗(s)(θu)Σu∗(s; θu)V −1

u∗(s)(θu)F (s; θu)> +⊕nxj=1(σ̃2
u(s, xj ; θu) + τ2

z (x)).

Also, y(s) defined in (4.3.7) can be approximated by

y(s) ≈ µy(s; η) + α>u ũ
∗(s) + ṽ(s) + εy(s)
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, µy(s, η) + I(s; θu)u∗ + J(s; θv)v
∗ + ey(s), (4.3.15)

where

I(s; θu) = α>uGu∗(s; θu)>V −1
u∗ (θu), J(s; θv) = gv(s; θv)

>V −1
v∗ (θv),

ey(s) := α>u εu∗(s) + εv(s) + εy(s) ∼ N(0, σ2
ey(s)), (4.3.16)

with

σ2
ey(s) = α>u Σu∗(s; θu)αu + σ2

v(s; θv) + τ2
y . (4.3.17)

So our final model for Z and y can be rewritten as

 Z(s)

y(s)

 =

 µZ(s; β)

µy(s; η)

+

 H(s; θu) 0

I(s; θu) J(s; θv)


 u∗

v∗

+

 eZ(s)

ey(s)

 . (4.3.18)

Let XZ(s) ∈ Rnx×p and Xy(s) ∈ Rq be the predictors for the signal Z and y respectively.

Assume that µZ(s; β) = X>Z (s)β and µy(s; η) = Xy(s)>η. Then,

 Z(s)

y(s)

 =

 XZ(s)>β

Xy(s)>η

+

 H(s; θu) 0

I(s; θu) J(s; θv)


 u∗

v∗

+

 eZ(s)

ey(s)

 . (4.3.19)
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4.3.3 Specification of the random effect of Z and y

• Covariance function for u(s, x): [Gne02] introduced a class of nonseparable sta-

tionary covariance function for space-time model on Rd ×R. Specifically, when d = 2,

C(s1, s2;x1, x2) =
σ2

2ν−1Γ(ν)(a|x1 − x2|2κ + 1)δ+γ

(
c ‖ s1 − s2 ‖

(a|x1 − x2|2κ + 1)γ/2

)ν
×Kν

(
c ‖ s1 − s2 ‖

(a|x1 − x2|2κ + 1)γ/2

)
(4.3.20)

Here, we use a simplified version to model the covariance of u(s, x) by fixing κ = 1, ν =

1
2 , δ = 0, i.e.,

Cu(s1, s2, x1, x2; θu) :=
σ2
u

(a|x1 − x2|2 + 1)γ
exp

(
− c ‖ s1 − s2 ‖

(a|x1 − x2|2 + 1)γ/2

)
(4.3.21)

where θu = (σ2
u, a, γ, c), σ

2
u, a, c > 0 and γ ∈ [0, 1].

• Covariance function for v(s): We employ the exponential covariance function

for v(s), i.e.,

Cv(s1, s2; θv) = σ2
v exp{−φv ‖ s1 − s2 ‖}, (4.3.22)

where θv = (σ2
v , φv).
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4.4 Bayesian implementation and computational issue

4.4.1 Data equation

For fitting the final model in (4.3.19), we form the data equation in this section. Denote by

θ = (θu, θv). Let

O(s) =

 Z(s)

y(s)

 , B(s; θ) =

 H(s; θu) 0

I(s; θu) J(s; θv)

 , b =

 β

η



X(s) =

 XZ(s)> 0

0 Xy(s)>

 , w∗ =

 u∗

v∗

 , e(s) =

 eZ(s)

ey(s)

 (4.4.1)

The data model for (4.3.19) can be written as

O(si) = X(si)b+B(si; θ)w
∗ + e(si), i = 1, 2, ..., n. (4.4.2)

The matrix form of the above model is

O = Xb+B(θ)w∗ + e, (4.4.3)

where

O =


O(s1)

...

O(sn)

 , B(θ) =


B(s1; θ)

...

B(sn; θ)

 , e =


e(s1)

...

e(sn)

 , X =


X(s1)

...

X(sn)

 . (4.4.4)
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Here,

e ∼ N(0, De), (4.4.5)

where

De =



D0(s1) 0 · · · 0

0 D0(s2) · · · 0

...
...

. . .
...

0 0 · · · D0(sn)


, (4.4.6)

with

D0(si) =

 DeZ (si) 0

0 σ2
ey(si)

 , i = 1, 2, ..., n. (4.4.7)

And

w∗ ∼MVN(0,Σw∗), (4.4.8)

where

Σw∗ =

 Vu∗(θz) 0

0 Vv∗(θv)

 (4.4.9)
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4.4.2 Prior specification and full conditional sampling

Denote by Ω all the parameters in the model, which is

Ω = {β, η, αu, θ, τ2
y , τ

2
z (xi), i = 1, ..., nx}. (4.4.10)

First, let us complete hierarchical specifications. The priors for all the parameters are

given as follows.

β ∼ N(0, diag(104)), η ∼ N(0, diag(104)), αu,i ∼ N(0, diag(104)), i = 1, ..., n∗x,

σ2
u ∼ IG(2, bσu), γ ∼ U(0, 1), a ∼ U(0, amax), c ∼ U(0, cmax),

σ2
v ∼ IG(2, bσv), φv ∼ U(− log(0.05)/ds,max,− log(0.01)/ds,min),

τ2
z (xi) ∼ IG(2, bτz ), i = 1, 2, ..., nx, τ

2
y ∼ IG(2, bτy). (4.4.11)

We assign large enough numbers for amax and cmax. The specification of hyperparam-

eters for φv follow from [RB13], where ds,min, ds,max are minimum and maximum distance

across all the locations. bσu , bσv , bτz , and bτy are assigned from the empirical semivariogram

(see, e.g., [BGFS08]).

Denote by Θ := Ω \ b = (αu, θ, τ
2
z (xi), τ

2
y ). We can integrate out the random effect w∗

and obtain the marginalized likelihood,

[O |Θ, b] ∼MVN(Xb,B(θ)Σw∗B
>(θ) +De). (4.4.12)
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So the posterior distribution of the model is

[Θ, b |O] ∝MVN(Xb,B(θ)Σw∗B
>(θ) +De)× [Θ]× [b]. (4.4.13)

Model fitting employs a Gibbs sampler with Metropolis steps.

1. Update b = (β, η)>. Let

µb = (µβ , µη)>, ΣO|Ω = B(θ)Σw∗B
>(θ) +De, and Σb =

 Σβ 0

0 Ση

 (4.4.14)

The full conditional density for b is

[b|O,Θ] ∼ N(µ|·,Σb|·), (4.4.15)

where

Σb|· =
(
Σ−1
b +X>Σ−1

O|ΩX
)−1

and µb|· = Σb|·
(
Σ−1
b µb +X>Σ−1

O|ΩO
)

(4.4.16)

2. Update Θ. We employ the block random walk Metropolis method to sample Θ.

• Support on R. We’ll do some log-type transformation to make sure the support

of all the parameters is (−∞,∞). Specifically, for the parameters with Inverse

Gamma prior, we just do the log-transformation, i.e.,

σ̃2
u = log σ2

u, σ̃
2
v = log σ2

v , τ̃
2
z (xi) = log τ2

z (xi), and τ̃2
y = log τ2

y . (4.4.17)

100



For the parameters with uniform prior, we do the logit-transformation. Specifi-

cally,

φ̃v = log

(
φv − φv,min
φv,max − φv

)
, ã = log

(
a

amax − a

)
,

γ̃ = log

(
γ

1− γ

)
, c̃ = log

(
c

cmax − c

)
, (4.4.18)

where φv,min = − log(0.05)/ds,max, φv,max = − log(0.01)/ds,min.

• Log-likelihood of Θ̃. Denote by Θ̃ the parameters of Θ after transformation.

Given O, b, the log-likelihood of Θ̃ is proportional to

log p(Θ̃|O, b)

∝− 1

2
log |ΣO|Ω| −

1

2
(O −Xb)>Σ−1

O|Ω(O −Xb)−
n∗x∑
i=1

α2
u,i

2σ2
αi

− aσuσ̃
2
u − aσv σ̃

2
v − aτz

nx∑
i=1

τ̃2
z (xi)− aτy τ̃

2
y

− bσue
−σ̃2

u − bσve
−σ̃2

v − bτz
nx∑
i=1

e−τ̃
2
z (xi) − bτye

−τ̃2
y

+ ã+ γ̃ + c̃+ φ̃v − 2 log
(
(1 + eã)(1 + ec̃)(1 + eγ̃)(1 + eφ̃v)

)
(4.4.19)

Remarks: The inverse of ΣO|Ω are evaluated by applying Sherman-Woodbury-Morrison

formula (see, e.g., [Har97]), which only requires inverting a matrix with dimension (n∗xn
∗
z +

n∗y)× (n∗xn
∗
z + n∗y). Specifically,

Σ−1
O|Ω = (De +B(θ)Σw∗B

>(θ))−1

= D−1
e −D−1

e B(θ)
(
Σ−1
w∗ +B>(θ)D−1

e B(θ)
)−1

B>(θ)D−1
e . (4.4.20)
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4.5 Predictions

In this section, we do the mapping of y to the locations where the signals Z have been

observed through prediction. Section 4.5.1 states the procedure to predict both y and Z at

new locations. Then, we derive the prediction of y given Z are known in Section 4.5.2.

4.5.1 Predictions for y and Z at new locations

Assume that there are no observations of y and Z at locations s̃1, ..., s̃m, but there are records

of predictors X at those locations.

Let Õ = (O>(s̃1), O>(s̃2), ..., O>(s̃m))>. Our goal is to find the conditional distribution

of Õ given all the observations.

We stack the data in a different way so as to separate z and y. Denote by

Õ =

 Z̃

ỹ

 , X̃ =

 X̃Z 0

0 X̃y

 , (4.5.1)

where

Z̃ =


Z(s̃1)

...

Z(s̃m)

 , ỹ =


y(s̃1)

...

y(s̃m)

 , X̃Z =


XZ(s̃1)

...

XZ(s̃m)

 , X̃y =


Xy(s̃1)

...

Xy(s̃m)

 . (4.5.2)

It is easy to check that

 O

Õ

 |Ω ∼ N


 X

X̃

 b,
 ΣO|Ω C

O,Õ|Ω

C>
O,Õ|Ω Σ

Õ|Ω


 , (4.5.3)
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where Σ
Õ|Ω is the covariance matrix of Õ and C

O,Õ|Ω is the cross-covariance matrix between

O and Õ. Therefore, we can obtain the conditional distribution of Õ given O and Ω,

[Õ|O,Ω] ∼ N(µ
Õ|O,ΣÕ|O), (4.5.4)

where

µ
Õ|O = X̃b+ C>

O,Õ|ΩΣ−1
O|Ω(O −Xb) , (µ

Z̃|O, µỹ|O)>,

Σ
Õ|O = Σ

Õ|Ω − C
>
O,Õ|ΩΣ−1

O|ΩCO,Õ|Ω ,

 Σ
Z̃Z̃

Σ
Z̃ỹ

Σ>
Z̃ỹ

Σỹỹ

 . (4.5.5)

Usually, Bayesian prediction proceeds by sampling from the posterior predictive distri-

bution

p(Õ|O) =

∫
p(Õ|O,Ω)p(Ω|O)dΩ (4.5.6)

In this case, for each posterior sample of Ω, we draw a corresponding Õ by (4.5.4).

4.5.2 Predictions for y given Z are observed

Assume that there is no observation of y at locations s̃1, ..., s̃m, but there are records of the

signal z and predictors X at those locations. Our goal is to find the conditional distribution

of y given all the observations.

By (4.5.4), we can figure out the conditional distribution of ỹ given Z̃, O and Ω,

[ỹ|Z̃, O,Ω] ∼ N(µỹ|·,Σỹ|·), (4.5.7)
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where

µỹ|· = µỹ|O + Σ>
Z̃ỹ

Σ−1
Z̃Z̃

(Z̃ − µ
Z̃|O)

Σỹ|· = Σỹỹ − Σ>
Z̃ỹ

Σ−1
Z̃Z̃

Σ
Z̃ỹ
. (4.5.8)

The Bayesian prediction proceeds by sampling from the posterior predictive distribution

p(ỹ|Z̃, O) =

∫
p(ỹ|Z̃, O,Ω)p(Ω|O, Z̃)dΩ (4.5.9)

Since we sample parameters Ω only given the information of O due to computing burden by

adding massive size of Z̃, we approximate the posterior predictive distribution as follows,

p(ỹ|Z̃, O) ≈
∫
p(ỹ|Z̃, O,Ω)p(Ω|O)dΩ. (4.5.10)

In this case, for each posterior sample of Ω, we draw a corresponding ỹ by (4.5.7).

4.6 illustrations

We conduct simulation experiments and analyze a large forestry dataset to assess model

performance with regard to learning about process parameters and predicting y at new

locations. Posterior inference for subsequent analysis were based upon three chains of 30000

iterations (with a burn-in of 5000 iterations). The samplers were programmed in C++ and

leveraged Intel’s Math Kernel Library’s (MKL) threaded BLAS and LAPACK routines for

matrix computations. The computations were conducted on a Linux workstation using two

Intel Nehalem quad-Xeon processors.
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4.6.1 Simulation experiments

We simulate the data on the regular lattices in the domain

[0, 4]× [0, 4]︸ ︷︷ ︸
location s

× [0, 5]︸︷︷︸
height x

(4.6.1)

from joint model (4.3.7) with full spatial Gaussian process (GP) where n = n∗z = n∗y = 400

and nx = 50.

We hold out 25% of data by randomly sampling from the 400 spatial locations. In this

study, we choose full knots for y, i.e., n∗y = 300. We fit the following models from the training

data: i) the joint model with full knots n∗z = 300; ii) the joint model with n∗z = 200 knots;

iii) the joint model with n∗z = 100 knots; iv) the joint model with n∗z = 50 knots. Then, we

do predictions for y at the holdout locations for each model.

Parameter estimates and performance metrics for the four models with varying spatial

knots for z are provided in Table 4.1. We just listed the estimates of η, αu and the random

effect θ. Larger value of DIC suggest the joint models with fewer knots do not fit the data

as well as full knots. Yet, the coefficients αi which are used to extract information from the

signal Z are estimated quite well in each case. The last row in Table 4.1 shows computing

times in hours for one chain of 30000 iterations reflecting on the enormous computational

gains of predictive process models over full GP model.

Table 4.1 also indicates that the joint model with full knots for Z has the smallest

root mean square prediction error (RMSPE) and smallest mean interval width in terms of

predicting y given Z are known. Yet, there is no big difference when we reduce the number

of knots for Z. Figure 4.1 shows the 95% credible intervals for predicting 100 holdout y

under each model.
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(b) n∗z = 200
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(c) n∗z = 100
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Figure 4.1 Predicted y given Z are known. Top left: n∗z = 300 (full knots); top right:
n∗z = 200; bottom left: n∗z = 100; bottom right: n∗z = 50. Any red point on the blue line
represents the case when the predicted y is equal to the true y.
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Table 4.1 Parameter credible intervals, 50% (2.5%, 97.5%) and predictive validation. Entries
in italics indicate where the true value is missed.

Parameter True Results for the following numbers of knots

value n∗ = 300 (Full GP) n∗ = 200 n∗ = 100 n∗ = 50

η 20 20.45(19.06,21.85) 20.86(19.58,22.11) 20.44(19.28,21.58) 20.5(19.59,21.41)
α1 -2 -1.83(-2.04,-1.63) -1.81(-2.05,-1.58) -1.98(-2.35,-1.57) -1.82(-2.27,-1.29)
α2 0 0.12(-0.16,0.37) 0.03(-0.28,0.33) 0.34(-0.14,0.79) 0.3(-0.32,1.07)
α3 2 2.07(1.77,2.35) 1.91(1.59,2.25) 1.7(1.26,2.16) 1.69(1.13,2.41)
α4 1 1.07(0.8,1.33) 1.11(0.83,1.39) 1.13(0.72,1.53) 1.27(0.7,1.87)
α5 5 4.85(4.61,5.09) 4.9(4.64,5.17) 4.97(4.6,5.33) 4.98(4.59,5.37)

σ2
u 0.2 0.19(0.18,0.2) 0.19(0.18,0.2) 0.2(0.19,0.21) 0.19(0.18,0.2)
a 12 12.91(11.22,15.11) 13.17(11.16,17.44) 12.21(10.64,14.87) 11.92(10.54,13.93)
γ 0.9 0.86(0.78,0.94) 0.83(0.67,0.92) 0.9(0.79,0.98) 0.91(0.82,0.96)
c 5 5.63(4.92,6.43) 5.73(5.02,6.58) 5.44(4.69,6.22) 6.04(5.2,7.04)

σ2
v 0.5 0.41(0.1,1.09) 0.29(0.09,0.93) 0.29(0.1,1.08) 0.43(0.1,1.91)
φv 2 3.63(0.91,7.25) 7.83(3.59,9.35) 8.03(1.2,9.48) 6.08(2.63,9.54)

pD 74.96 82.02 77.14 79.95
DIC 28989.64 29226.99 29487.41 29661.21

RMSPE 4.65 4.96 5.26 5.42
95% CI cover % 90 88 88 89
95% CI width 19.70 20.73 21.80 22.54

Time 153.3 h 80.3 h 27.0 h 13.8 h

4.6.2 Forest LiDAR and biomass data analysis

4.6.2.1 Data description and preparation

This dataset was collected on the Penobscot Experimental Forest, Maine. The signals z(s, x)

are observed at 26286 locations. At each location, there are 126 measurements equally

distributed above ground within [0, 37.5] meters. Among all the locations, there are 451

locations where biomass y is observed. Figure 4.2 below shows roughly how the data look

like.

Since the heights of trees are usually smaller than 29.1m at the observed area, there

is no signal when the height is above 29.1m at most locations. We first cut the signal at

29.1m. Then, we coarsen the signal within [0, 29.1]m by averaging every two consecutive

measurements and use them to fit Z. The dimension of signals at each location is set to
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Figure 4.2 Left: Interpolated y, the small points ◦ indicate where y’s are recorded; Right:
Signal Z measured at the big red disc marked on the left graph.

nx = 45. Meanwhile, we sum up the signals above 29.1m at each location and denote by

Xy,1(s), which is non-zero if the height of tree exceeds 29.1 meters at s . Tall trees usually

indicate a large amount of biomass y. So we consider Xy,1(s) as the covariate of y across

locations. In this study, we do not have other covariates to model Z and y. Hence, we only

assume the mean of Z(s) and y(s) are X>Z (s)β = {βi}nxi=1 and X>y (s)η = η1 + η2Xy,1(s)

respectively. In addition, for numerical stability, we scale the magnitude of the biomass y

and the signal Z, i.e., y → y/100 and z → 100z.

4.6.2.2 Results

We holdout 25% of data by randomly sampling from the 451 spatial locations. The number

of height knots is set to n∗x = 5 and they are evenly distributed across the height. We then

choose the same spatial knots for Z and y and fit the following models from the training

data: i) the joint model with full knots n∗ = 339; ii) the joint model with 200 knots; iii) the
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joint model with 100 knots; iv) the joint model with 50 knots. Finally we do predictions for

holdout y and check the prediction performance.

Parameter estimates and performance metrics are provided in Table 4.2. According to our

model framework, αu are used to characterize the relationship between signal and biomass.

We see that α2, α3 and α4 are significant. α2 and α3 correspond to signals at relatively

lower height than α4 does. Usually, strong signals away from ground indicate big biomass.

That’s why α4 is positive while α2 and α3 are negative.

Table 4.2 Parameter credible intervals, 50% (2.5%, 97.5%) and predictive validation.

Parameter Results for the following numbers of knots

n∗ = 339 (Full GP) n∗ = 200 n∗ = 100 n∗ = 50

η1 1.05(0.89,1.23) 1.06(0.72,1.39) 1.05(0.54,1.55) 1.05(0.82,1.29)
η2 0(-0.04,0.03) 0.01(-0.02,0.03) 0.03(0,0.06) 0.05(0.02,0.07)
α1 -0.19(-0.61,0.29) -0.06(-0.23,0.28) 0(-0.17,0.21) 0.06(-0.08,0.19)
α2 -0.11(-0.17,-0.05) -0.13(-0.19,-0.07) -0.16(-0.22,-0.1) -0.12(-0.2,-0.03)
α3 -0.09(-0.15,-0.02) -0.11(-0.16,-0.04) -0.14(-0.19,-0.07) -0.06(-0.13,0.01)
α4 0.09(0.05,0.12) 0.06(0.03,0.11) 0.05(0,0.1) 0.11(0.05,0.17)
α5 0.05(-0.09,0.16) 0(-0.12,0.12) -0.04(-0.17,0.1) -0.05(-0.17,0.07)

σ2
u 0.19(0.18,0.21) 0.18(0.17,0.2) 0.18(0.17,0.19) 0.19(0.17,0.2)
a 1.1(1.02,1.18) 1.13(1.05,1.2) 1.19(1.12,1.27) 1.12(1.05,1.19)
γ 0.99(0.97,1) 1(1,1) 0.99(0.99,1) 0.99(0.99,1)
c 8.21(7.56,8.91) 8.18(7.59,8.83) 7.08(6.63,7.63) 5.88(5.51,6.32)

σ2
v 0.07(0.05,0.09) 0.15(0.11,0.18) 0.19(0.14,0.31) 0.09(0.06,0.12)
φv 4.38(2.94,6.26) 1.48(1.21,1.83) 0.89(0.88,0.89) 1.86(1.4,2.75)

pD 86.98 73.90 82.30 80.95
DIC 19111.42 19034.37 18969.00 19253.65

RMSPE for y 0.32 0.33 0.34 0.36
95% CI of y cover % 83 81 80 79
95% CI of y width 1.45 1.17 1.18 1.24

Time 147 h 67.94h 31.94 h 6.37 h

Table 4.2 also indicates that the joint model with full knots has the similar RMSPE and

mean CI width as those with reduced number of knots. Figure 4.3 shows the 95% credible

intervals for predicting 112 holdout y under each model, from which we see that reducing

the number of knots does not affect the prediction of y very much.
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(b) n∗ = 200
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(c) n∗ = 100
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(d) n∗ = 50

Figure 4.3 Predicted y given Z are known. Top left: n∗ = 339 (full knots); top right:
n∗ = 200; bottom left: n∗ = 100; bottom right: n∗ = 50. Any red point on the blue line
represents the case when the predicted biomass is equal to the observed biomass.
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