


THESIS

math“ I

Mchlzau State

University

 

This is to certify that the

dissertation entitled

Infinitely divisible measures on

multi;Hilbertien spaces and a

Levy-Ito decomposition

presented by

Milan J. Merkle

has been accepted towards fulfillment

of the requirements for

Ph - D - degree in _S.ta_tis_tj_cs_

waits/ask
Major professor '

V. Mandrekar

 

 

Date—AugusL1._1384_

MSU is an Affirmative Action /Equul Opportunity Institution
042771

 



 

 

 

}V1ESI_J RETURNING MATERIALS:

Place in book drop to

LlBRARJES remove this checkout from

.‘nnuzyn-IL. your record. FINES will
   

be charged if book is

returned after the date

stamped below.

 

 
  
 



INFINITELY DIVISIBLE MEASURES 0N

MULTI-HILBERTIEN SPACES AND

A LEVY-ITO DECOMPOSITION

By

Milan J. Merkle

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree Of

DOCTOR OF PHILOSOPHY

Department of Statistics and Probability

1984



2;
.

_
.
¢
"
‘
_
:

J
Q
C

r
“

3
1
7
‘
? ABSTRACT

INFINITELY DIVISIBLE MEASURES ON

MULTI-HILBERTIEN SPACES AND

A LEVY-ITO DECOMPOSITION

By

Milan J. Merkle

In this work, we give a representation of infinitely divisible (ID) laws

on duals of multi-Hilbertien spaces and discuss the convergence. These

results give a unified approach to the existant work on infinitely di-

mensional Hilbert spaces and on nuclear spaces. The convergence of ID

laws can be used to prove the weak convergence of homogeneous processes

with independent increments. This is applied to a problem from Neuro-

biology, and the results obtained are generalization and improvement of

a recent work of G. Kallianpur [16]. The last chapter is devoted to

the processes with independent increments on duals of multi-Hilbertien

spaces. Levy-Ito decomposition on Hilbert spaces is Obtained.
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0. INTRODUCTION

The infinitely divisible laws (ID) in the context of infinite-

dimensional Hilbert spaces were studied by S.R.S. Varadhan ([23]). For

the case of nuclear spaces, a Lévy-Khinchine representation was given by

Fernique [6]. Our purpose here is to give a representation of ID laws

on a multi-Hilbertien space and discuss the convergence. These results

give unified approach to Varadhan's and Fernique‘s work and extend

Fernique's work to include convergence of ID laws. Such a unified ap-

proach for Bochner theorem for multi-Hilbertien spaces is recently given

by K. IuJLI4J. Our results are based on arguments of Fernique for the

representation and Levy continuity theorem for the multi-Hilbertien spaces.

We note that the method Of Fernique for the Lévy continuity theorem

in nuclear spaces fails in the multi-Hilbertien spaces due to an example

of Sazonov (cf. 2.1.2).

The convergence of ID laws can be used to prove the weak convergence

Of additive (homogeneous independent increments) processes. This is

shown in the context of an example from Neurobiology. This work includes

and improves recent work of G. Kallianpur [16]. In fact, our work is

applicable to wider class Of examples.

The last chapter is devoted to the Levy-Ito decomposition of infinite-

dimensional processes with independent increments (PII). We are unable

at this point to prove this theorem for general multi-Hilbertien spaces.

In fact, as the reader can see, the results seem to need some work even

for the Hilbert space case. However, for the additive processes, such a

decomposition follows from the relation of convolution semigroups to ID

laws. This, along with the convergence of the related processes, is

studied in Chapter 3. Clearly, the results there allow us to extend the
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work of Kallianpur to multi—neuronal models.

The convergence of P11 in this context remains an open problem.

But our decomposition is the basic technique needed for this study. In

future work we intend to study this problem as a generalization of a

recent work of Jacod (ZNV 63, 109-136, 1983).



1. PRELIMINARIES

1.1. Vector Spaces and Seminorms

R(N) will denote the set of real (natural) numbers. Throughout this

 

work the phrase "vector space” will mean a real vector space.

Let E be a vector space. A real-valued function p defined on E is

called a seminorm if for all x, x1, x2 e E and a 6 R :

(i) P(X) 3 0

(ii) P(aX) = lalP(X)

(iii) P(X1 + x2) f_P(X1) + P(X2) . and

(IV) p(x) > O for some x .

A seminorm p on E is called a Hilbertien seminorm if
 

(Vxl, x2 6 E) P2(X1 + x2) + P2(X1 - x2) = 2(P2(X1) + P2(X2))

For a Hilbertien seminorm p we define a symmetric bilinear form p(o, -)

on E by A

2<
2

p(xls X2) =%(p (X1+ X2) ' p X1 " X2))

p(xl, x2) is called the inner product corresponding tg__p_.

A seminorm p is said to be separable if there is a countable set D<: E

such that for each x E E and a positive, there exists a d in D such

that p(x - d).: e .

1.2 Operators on Hilbert Spaces

Let Hi (i = 1, 2) be separable real Hilbert spaces with norms fl.“

and inner products <-, '>i . Let A be a linear mapping from H1 to

H2 .
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A is a compact operator if for every x in H
 

1 :

(1) Ax = Z tn<x, en>hn

n

where O < tn + 0 , and en , hn are orthonormal sets in H1 and H2

respectively.

A is a Hilbert-Schmidt operator if (1) holds and

(2) Xt2<oo

n

A is a nuclear operator if (1) holds and

3 t so( ), g n <

Let H1 = H2 = H . Operator A is said to be a trace class operator if
 

(4) §i<Aen’ en>l < m

for any orthonormal basis {en} in H .

For a linear mapping A : H + H we define the adjoint mapping A* by
 

* = *

(5) <A x1, x2> <x1, A x2>

*

We say that A is self-adjoint if A = A
 

A is said to be positive (non-negative definite) if

(6) .1. aiaj <xi, ij> .2 O

In]

for every finite set Of complex numbers {ai}?=1 and {xi}?=1 a finite

subset of H .

In the following theorem we give a summary of some well-known facts (see,

for example [9], Chapter 1.)

Theorem 1. (i) If A and B are Hilbert-Schmidt Operators, then AB



is a nuclear Operator.

Conversely, every nuclear Operator is a product of two Hilbert-Schmidt

operators.

(ii) A compact positive Operator A : H + H is nuclear if

and only if it is a trace operator.

(iii) If A is nuclear (or Hilbert-Schmidt) Operator, then

A* is an operator of the same type.

(iv) If A : H + H is a positive nuclear operator then

A15 is positive Hilbert-Schmidt Operator.

(v) A positive compact operator A : Ht+ H has the

representation.

Ax = E tn <x, en>en

where en is an orthonormal basis for H consisting of eigenvectors

of A and tn , O < tn l O are eigenvalues of A , Aen = tn en .

(vi) Let H and H2 be Hilbert spaces and A : H1 + H2
1

be a linear mapping. A is a Hilbert-Schmidt operator if and only if

v 2

Z. ”Aenuz < 00

n

for at least one (equivalently: for all) orthonormal basis {en} in H1 .

A is nuclear Operator if and only if

§|<Aen,en>2. < m ,

In the following section we describe multi-Hilbertien spaces, following

Ito [14].

1.3. Multi-Hilbertien Spaces
 

Let E be a vector space.

The family of all separable Hilbertien seminorms on E will be denoted



by Biti-

It is easy to see that if P, P1,...,pn e HSN then for every positive

c , cp e HSN and (pi + ... + p§)% E HSN .

For p, q e HSN we define the relation 3 : p 2 q if and only if

p(x) §_cq(x) for some c e R and all x e E .

Let Ep denote E with topology given by the seminorm p .

Let ker p = {x e E : p(x) = 0} . Then Ep/ker p is a pre-Hilbert space;

its completion ED is a Hilbert space.

If p s q then the identity map E + E can be extended to a continuous

linear Operator E2 + E . Notice that i (x) = x on E ,

1M : P ms

and the indices p, q are just pointing the topology for completion.

Define the relation < ___ : p < q if and only if p 3 q and i

__ HS HS '3")

is a Hilbert-Schmidt operator.

In view of Theorem 3.1.(vi), p < q if and only if

2P2(en) < 0°

where {en} is an orthonormal basis in Eq

Let P = {pd}jed be a subfamily of HSN on E such that

(i) If p e P and p S q or q t p then q 6 P

(ii) If P9q E P , p(xn) + 0 , x is q-Cauchy then q(xn) + O .
ll

Define a locally convex topology T on E by its neighborhood basis

at zero:

I . ' ' 1

(1) tx E E . pj1(x) < 1, ... ,pjk(x) < 1 , 31, ... ,Jk 6 J.

k = l, 2, ....
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The topology 1 given by (1) is called a multi-Hilbertien topology
 

generated by P

Space E with a multi-Hilbertien topology T , (E, T) is called a multi-

Hilbertien space.
 

If a multi-Hilbertien topology T is generated by P = {pj} we will
JEJ

' = .1.often write T {pJ’JEJ

If T ‘ “’fljea

a countably Hilbert space. In this case, without loss of generality, we

where J is a countable set. we say that (E, T) is

 

may assume

(2) pl < p2 < p3 < ...

L

For, if not, then the topology given by qj = (pi + pg + ... + p?)2 ,

j = 1, 2, ... coincide with the topology given by {pi} and {qj}

satisfies condition (2).

In a countably Hilbert space we will use notations En, En, E5 , rather

than EP , etc. ...

D

If the topology 1 is given by countably many norms {pn} (i.e. ker pn =

{0}) , then we can define a metric d by

L.

n 1+Pn(x1-x2)

(3) d(x1. x2)

E is said to be complete if (E, d) is complete.

E is complete if and only if ([27])

(4) E = p E

pn

We say that (E,t)is a nuclear space if for every D E T there is a q E T such
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that péécq. Notice that, by Theorem 3.1.(i), E is nuclear if and only if

for every P E T there is a q 6 T such that ip q is nuclear operator.

A nuclear space in which condition (4) holds is called a nuclear Fréchet
 

SEBCE.

Suppose that {e3}:=1 is a complete orthonormal basis is En ,

n = 1, 2, ... .

Then E is a nuclear space if and only if for every n = 1, 2, ... there

is an m > n such that (Theorem 3.1.(vi)).

(s) g p§<eg) <

Example. Let C”(R) be the set of all infinitely differentiable func-

tions defined on R . The Schwartz space s is a locally convex subspace

of Cm(R) , topology defined by norms qn(f) = max sup l(1+t2)nf(n)(t)l.

O<k<n t

It can be shown that this topology is equivalent to the one given by

Hilbertien norms:

E L

pn<f> = (1 r (1+t2)”|f(k)(t)l2dt)2
k=O R

Let r = {pn}:1 . Then (s, r) is a nuclear space, with

En = {f E Cm(R) : pn(f) < ac} and the inner products:

n

pn(fl, f2) = ; é (1+t2)" f1(k)(t) f2(k)(t)dt

Remark. A separable Hilbert space H is nuclear if and only if

dim H < w .

Let now (E, T) be a multihilbertian space, I = {pj} We say that

jet]

a set Bc: E is bounded if for each 3 6 J the set of numbers



{p.(x) : X E B}

is bounded.

1.4 Dual Spaces
 

Let (E, T) be a multi-Hilbertien space. The set of all (T-) continuous

linear functionals on E is denoted by E; (or E' if there is no con-

fusion about the topology on E ).

If F e E' , x 6 E, then F evaluated at x is denoted by <F, x> .

In this dual notation it is understood that for fixed F (or x), <F, x>

is a function of x (or F). Also, <F, x> separates points in both

E and E' . The strong topology on E' is given by seminorms

HFHB = SUP [<F, x>l , B-bounded set in E .

X63

Let E' denote the topological dual of Ep . E6 is a Hilbert space

p

with the norm p(F) = sup [<F, x>| .

P( X):1

We have E' = U E' .

P p

In the strong topology, E' is an inductive limit of {E6}p€T_[14J.

If T is countable, the set A is bounded (compact) in E' if and only

if it is bounded (compact) in some E5 , p E T [81.

1.5 Measures on dual spaces
 

Let E' be a topological dual of a topological vector space E .

Let A be a given Borel set in Rn . Let

(1) Z={FEE':(<F,x>,<F,x1 2>, ... , <F, xn>) e A}

Set Z defined by (1).for some x1, ... ,xn €.E is called the cylinder

n O

 

set with base A and generating elements x1, ... ,x
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Another approach to defining a cylinder set is the following:

Let Y be a finitely dimensional subspace of E . Let Y0 denote the

annihilator of Y , i.e., the set of all F E E' such that

<F, x> = O for' x E Y

Consider the factor space E'/YO. It is isomorphic to Y‘ , thus

finitely dimensional. Let Ac: E'/YO be a Borel set. The set of all

F E E' which are carried into elements of A by the natural mapping

E' + E'/YO is called the cylindar set with base A and generating
 

subspace YO .
 

These two definition are equivalent and define the same object ([9]).

Note that a cylinder set may have more than one representation in terms

of base and generating subspace.

It is easy to see that the cylinder sets form an algebra of'sets—c lin-

der algebra.
 

By a cylinder set measure in E' we mean a nonnegative function M
 

defined on the cylinder algebra with the following properties:

(i) If 2:321. where zin Zj=P if i763“, andall z}. are

i=1

generated by the same set x1, ... ,xn , then M(Z) = E M(Zi) .

i=1

(ii) For any cylinder set Z , M(Z) = inf M(U) , where U runs

through all open cylinder sets containing Z .

Let M be a cylinder set measure. For Y CIE a finite dimensional

subspace we define

(2) MY“) = M(Z)

where A is a Borel set in E'/YO and Z is the cylinder with base A
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and generating subspace YO. So, (2) defines a Borel measure on E'/YO

which is regular, i.e.

(3) MY(A) = 13f M(U)

where U runs through all open sets containing A .

Measures MY are compatible in the following sense. Let Y1<: Y2 .
 

Let T be the natural mapping E'/Y3‘+ E'/Yi . Then

(4) MY1(A) = MY2(T'1(A))

Conversely, if the system of measures {MY} is given, satisfying condi-

tion (3) and (4), then there is a unique cylinder set measure M such

that (2) holds for every Y .

If M is a cylinder set measure, then for disjoint cylinder sets

n n

1, ... ,Z , we have M( U Z.) = Z M(Z.) , which follows from (i)

n i=1 ‘ i=1 1

and the fact that for finitely many cylinder set there always exists a

Z

common generating set. However, a cylinder set measure may not be

countably additive. If it is so, then it can be extended to a measure

on cylinderci-algebra C, which is defined to be the smallest o-algebra
 

that contains cylinder algebra.

We say that the measure M is a probability measure if M(E') = 1 .
 

Let now E be a countably Hilbert space. Then ([14]) the cylinder

o-algebra Z coicides with the Borel<:-algebra generated by the strongly

open sets. Every probability measure on E' is regular.

Let (E, T) be a multi-Hilbertian space.

A probability measure P on (El, E) is called separable if there exists

a countably Hilbert topology r' c:*: such that



12

P(E'T.) =1

A probability measure P on E' is called infinitely divisible (ID)
 

if, for every n e N , P can be represented as n-th convolution power

of some other probability measure Pn . In terms of random variables,

X is an ID random variable if for every n e N it can be represented as

a sum Of n independent identically distributed (iid) random variables.
 

We say that the sequence Mn Of measures converges weakly to a measure

M (Mn = M) if for every continuous bounded real function f defined

on E' we have, as n + w :

é'f(F)dMn(F) .+ £.f(F)dM(F)

For a measure M on E' we define its characteristic functional as a
 

complex-valued function defined on E by

f(x) = f ei<F’X>dM(F) .
EI

The characteristic functional Of an ID random variable will be called

an ID characteristic functional
 

A set M Of measures on E' is said to be (weakly) relatively compact
 

if every sequence Mn in M contains a weakly convergent subsequence.

A set M of measures on E' is called pigpp if for every 5 > 0 there

is a compact set K such that M(KC) < e for every M 6 M . A result

in [30] confirms the validity of Prohorov's theorem in E' , i.e., a

sequence Mn of separable probability measures is relatively compact if

and only if it is tight.
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We observe that a sequence of separable measures Mn is weakly con-

vergent to a measure M if and only if it is relatively compact and the

sequence fn of characteristic functionals fn of Mn converges point-

wise to the characteristic function f of M . This follows from the

fact that characteristic functional determines the measure uniquely.

Example: (Gaussian measures) Let C be a complex valued bilinear func—

tion defined on E x E , satisfying C(x, x)“: O , C(xl, x2) = Clxz, x1),

continuous in both arguments, and non-degenerate (C(x, x) = O =1x = 0)

Let Y be a n-dimensional subspace of E . We define a measure gY:

1

9Y(A) = n J exp (‘%‘ C(y. NW

(21%

where dy is the Lebesgue measure in Y corresponding to the inner

 

product C .

Finitely dimensional Euclidean space Y with inner product C is

isomorphic to Y' which is isomorphic to E/YO . Therefore, there is

natural isomorphism TY between Y and E'/YO .

Now define a measure GY on E'/YO by

_ -1

(2) eY(e) - gymY (8))

Now we have a set of finite dimensional measures. It can be shown [9]

that (2) defines a compatible set of measures; thus, a cylinder set

measure G on E' is determined. We call it centered Gaussian cylinder
 

measure .

If E is a nuclear space, every cylinder measure is countably additive,

therefore it can be extended to cylinder<3-algebra.

In the case of general countably Hilbert space, a sufficient condition

for countable additivity of G is that for some n , the identity map-
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ping from En into EC is Hilbert-Schmidt operator, where EC is

E topologized by the norm C%(x, x)

The characteristic functional of centered Gaussian measure G defined

as above is

PM = exp <-% co. m

The function C is called covariance and, as we have seen,it uniquely
 

determines a centered Gaussian measure.

If C is not non-degenerate, i.e., if for all x in some linear subspace

X we have C(x, x) = O , then C is nondegenerate on E/X , so a

Gaussian measure G1 on X0 can be constructed following the procedure

defined above. Then we define a Gaussian measure on E' by

C(A) = G1(A 0 x0)

Finally, if G is a centered Gaussian measure, ‘%= the measure that

gives mass 1 to some element F of E' , then a noncentered Gaussian

measure is defined by (SF * G , where * denotes the convolution.

The characteristic functional of noncentered Gaussian measure <fi; * G is

f(x) = eXP(i<F, x> - % C(x, X))

Gaussian measure is an infinitely divisible measure.

 



2. REPRESENTATION OF ID LAWS

2.1. I(r)--Topology and Bochner's Theorem
 

1. Definition. Let (E,r) be a multi-Hilbertien space. We denote by

1(1) the Hilbert-Schmidt topology induced by all those Hilbertien semi-

norms which are < to some seminorm in T , i.e.

HS

(1) 1(1) = {g e HSN : q < in for some p e 1}

HS

(Recall that, by the convention in 1.3., (1) means that I(T) is generated

by the set of seminorms on right hand side.)

If E is a Hilbert Space, then I(t)-topology coincides with so called

S-topology which is proven to be of importance in studying characteristic

functionals. In fact, there is a complete analogy between the role of

S-topology in Hilbert spaces and the role of I(t)-topology in dual spaces.

2. Notation. Let (H, |

   

)' be a separable Hilbert space. Let T, TH’

TN, 5, be topologies defined by:

  

T = {I'll

TH = {p : p(x) = flAx” , A is a Hilbert—Schmidt operator}

TN = {p : p(x) = <Ax, x>% , A is a positive nuclear operator}

5 = {p : p(x) = <Ax, x>%, A is a positive compact, trace

class operator}

Operators A in the definition of S-topology are usually called

S-operators.

15
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= S = 1(1)3. Lemma. TH TN

Proof. Let us first show TH = Let A be a Hilbert-Schmidt Oper-TN .

ator. Let p(x) = “Ax” . Then p2(x) = <Ax, Ax> = <A*Ax, x> , and A*A

is nuclear by Theorem 1.2.1. Conversely, let A be a positive nuclear

operator. Again by Theorem 1 2.1., A% is positive Hilbert-Schmidt

operator; so p(x) = <Ax, x> = ”Agxu

TN = 5 follows from Theorem 1.2.1.(ii)

To show I(r) = TH , let pA(x) = “Ax“ , where A is a Hilbert-Schmidt

operator. Then pA(x) 3 NA“ - :1in and z P§(e1.) = 2 ”Ab,“2 < .. ,

so PA :5 T . So, TH c: UT)

Conversely, if P 6 1(1) , P fig T , then P(x) 3_ c ~Hx“ for some

c > O . There is a map A : Hp + H such that p(x) = flAxH and

E “Aeiflz = Z P2(ei) < w , so A is a Hilbert-Schmidt Operator.

Let (D, F, P) be a probability space. In the space of random variables

defined on it introduce the topology by the following neighborhood basis

at zero:

(8) U(eni) = {X : P(on [X(w)| : a) < D}

The Obtained topological space we shall denote by LO(Q, F, P) . From

(8) it follows that Xn + O in L if and only if Xn + O in P-proba-
O

bility. Without difficulties we can prove that Xn + O in L0 if and

only if E(min (lek, 1)) + O for every k > O , and if and only if

X

E(1+|X
) + O .

Here X = Y if and only if X = Y a.e. [P], i.e. we are considering

equivalence classes.
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4. Definitions. Let (E,T) be a multi-Hilbertian space.
 

(i) By a random linear functional we mean a linear mapping X:(E,T) +

H3(D, F, P) .

(ii) A random linear functional X is called separable if there exists

a countable Hilbertien topology 1': T such that X e E‘T. E E'T

(iii) A random linear functional X is called regular if for every

x E E , X(X)(w) = <Xw, x> where Xw 6 E; for every w .

(iv) Random linear functionals X and Y are said to be equivalent

if, for every x in E , P(X(x) = Y(x)) = 1 .

(v) We say that X is a version of Y if P(X(x) = Y(x) for all

x E E) = 1 .

5. Theorem [14]. A random linear functional X has a t-regular

separable version if and only if X is I(t)-continuous (i.e. if the

mapping X: (E,I(r)) + H>(Q’ F, P) is continuous).

6. Theorem (Ito, [14]--Generalized Bochner's theorem)

Let (E,t) be a multi-Hilbertien space.

Let f be a complex-valued function defined on E such that

(i) f is positive definite,

(ii) f(0) = 1 .

(iii) f is I(t)-continuous at O .

Then

(iv) f is the characteristic function of a separable probability

measure P on E’ .

Conversely, (iv) implies (i), (ii) and (iii).

7. Remark. If E is a Hilbert space, then by Lemma 3, I(T) = S ,

so Theorem 8 reduces to a well-known result of Sazonov [261. On the
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other hand, when E is a nuclear space, thus 1(1) = r , this result is

given in [20].

In the next section, we generalize Lévy's continuity theorem to multi-

Hilbertien spaces.

2.2 Continuity theorem
 

The convergence of characteristic functions on real line implies con-

vergence Of corresponding probability measures. In infinitely dimensional

spaces we have to impose some conditions for relative compactness.

1. Theorem{[23], Ch. V1). Let H be a Hilbert space.

Let {Pk} be a sequence of probability measures on H , and fk the

corresponding sequence of characteristic functionals.

{Pk} is relatively compact if and only if for every e > O , and for

every k = 1, 2, ...

(i) There exists a S-operator Sk such that

1 - Refk (x) §_<Skx, x> + E

(ii) spp Z (Skei’ 9i) < w

l

o o o o V -

(111) lim sup_é <Skei’ ei> — O ,

N k l-N

where {e1} is an orthonormal basis in H .

2. Example.(Sazonov, [26]) It is well known that, on real line, a

convergent sequence Of characteristic functions is equicontinuous.

This example shows that it is not true in a Hilbert space. However, as

shown in Meyer's paper [20], it remains true in a nuclear space.



Let 1/i2j2 if l#J

tij = 2 19 j = 19 2, '

1/i if l=J

Then

(1) 321 tjj < C < w

(2) lim sup 2 t1 = O

N i j=N J

(3) z sup t-- = m

i=1 i ‘3

Define operators Sk , k = 1, 2, ... by Skek = tkj ej , where ej ,

j = 1, 2, ... is an orthonormal basis in an infinitely dimensional

Hilbert space H . Let Pk be probability measures on H with

characteristic functions fk(x) = exp ('%-<Skx, x>) , k = 1, 2, ...

By Theorem 1, (2) and (3) imply weak convergence Of fk .

Suppose now that {fk} is equicontinuous at O in S(=I(T))-topology.

Then for every 2 > 0 there is an S-operator 58 such that

<Sax, x> < 1 implies 1 - fk(x) < c , for all k . By definition

of fk it follows <Skx, x> < ri(e) whenever <Skx, x> < 1

for all k , n(e) + O . Let t6 j = <n (e)S€ej, ej> .

3

For every real r , if <n(e)SErej, rej> = rzth j < n(e) , then

2 . . 2

<S€rej, rej> < 1 , but then r t€,j <ii(e) implies r tkj <ri(c)

for all k . Since r is arbitrary, it follows tkj < tE j for all k .

Since SE is an S-operator we have 2 t8 j < m , which then implies
j 3

Z sup t < w , and this contradicts (3). SO, fk is not I(T)-

k k..i

equicontinuous.
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3. Example. This example is to show that in the infinitely dimensional

Hilbert space, the convergence of characteristic functionals does not

imply convergence Of corresponding measures.

Let tij be any set of real numbers satisfying

(4) tij + ”j as i +-m , J = 1, 2, ...

(5) O < tij-i 1

(6) lim sup .) tjj > O

N+m i J=N

For an orthonormal sequence {e1} in H , define the operators Sk and

S by Skej = tkjej ; Sej = uj , J, k = 1, 2, ...

By (4) we have <Skx, x> + <Sx, x> for every x in H . Define

ik(X) = exp t~% <Skx, x>} and f(x) = exp {-%-<Sx, x>} . Then clearly

fk(x) + f(x) for every x . But by (6), the corresponding sequence of

measures is not weakly convergent.

Until further notice, E will denote a milti-Hilbertien space, with

topology T .

4. Theorem.

Let Mk be a sequence of separable probability measures on E', let

fk be the corresponding sequence of Characteristic functionals. Assume

the following:

(i) There is a function f , 1(t)-continuous at O , such that

(7) fk(x) + f(x) , for every x in E .

(ii) For every 8 > 0 there is a sequence of I(T)-seminorms pk and

a 7-seminorm q such that lfi< HS q for every k and
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(8) 1- Re fk(x) _<_ e + pi(x)

(9) SEP i PE (ea) < w

(10) lim sup 02° pi (e1) = O ,

N k i=N

where {8i} is an orthonormal basis in Eq .

Then there is a separable probability measure M on E' such that

Mk a M .

Conversely, if Mk = M , where M is a separable probability measure,

then (7)-(10) hold.

Proof. Assume (7)-(10). By Theorem 1, the set of measures induced by

Mk in Eq is relatively compact. So there exists a q-compact (thus

t-compact) set K such that Mk(KC) < 1 - c .

So, Mk is a tight sequence for which fk(x) + f(x) pointwise.

By Theorem 1.5, there is a separable probability measure M such that

f is the characteristic functional of M ; thus Mk = M .

Conversely, let Mk = M . Then there is a compact set K ggEl. such

that M (KC)< 8/2 for every k = 1, 2, ... .
k

For every x and every k we have

1 - Re fk(x) f (1 - cos <F,x>)de(F)

I
A f (1 - cos <F,x>)de(F) + e

K

%-r <F,x>2de + e

K

I
A

K is compact in E;. ; so there is a q such that K is compact in

Eq .
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2 _ 1 2
Let pk(X) - §-£ <F,x> dMK(F) .

If {ei} is an orthonormal basis in Eq then

F)dMK(F) < 1-sup 552( 2
FEK

Epidei) =7} l: 2(E) < e

because a is bounded on K , being a continuous function. Also we have

2 -

Pk(x) 5 qzlx) .1. £q2(F)de(F) _<_ c - q2(X) .

so pk Esq , for every k . Thus, (8) and (9) are proved .

To prove (10) note that

E pE(ei) = g f <F,ei>2de(F)

i=N N K

5_ sup 2 <F,e1.>2 + O , as N +-m ,

FEIC N

by compactness of K .

5. Corollary. Let fk , k = 1, 2, ... , be a sequence Of character-

istic functionals of separable probability measures Mk , k = 1, 2, ...

on E' , which is I(t)-equicontinuous at O , i.e., there is a semi-

norm p in 1(r) such that for every 5 > 0 there is a o>~o so

that for all k = 1, 2, ... we have:

(11) p(x)_<_5=1-Ref(x):e.

Then {Mk} is a relatively compact sequence.

Proof. Assume (11). Then conditions (7)-(10) are satisfied for

P = %-- p , k = l, 2, ... , and q such that p < q . Then from
k

HS

the proof of Theorem 4 it follows that {Mk} is relatively compact.

6. Remark. Theorem 4 and Corollary 5 remain true for any sequence of

finite separable measures Mn such that sup Mn(E;.) < m .
n L
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2.3. Infinitely divisible probability measures

Let (E,T) be a multi-Hilbertian space.

We have defined infinitely divisible probability measures in Chapter

1. By Theorem 1.5., a separable probability measure on E' is uniquely

determined by its characteristic function, so we have

1. Theorem. Let M be a separable probability measure on E‘ , with
 

the characteristic function f . M is an ID measure if for every n

there is a characteristic function fn such that s

(12) f"(x) = f(x) .

for every x in E .

The following theorem can be proved in the same way as for the real ran-

dom variables.

2. Theorem. (i) ID characteristic functional never vanishes.
 

(ii) If f is an ID characteristic functional, then fS

is ID characteristic functional, for every 5 > O .

(iii) The sum of finite number of 1D random variables is ID.

(iv) Neak limit of ID measures is an ID measure; moreover,

if only fk + f pointwise, and fk are ID character-

istic functionals, then f is an ID characteristic

functional.

3. Examples. (i) Let

(13) f(x) = exp tirel<F’X>aN(P) - 1) ,

where M is a separable probability measure on E‘ , and C any real

number.

The function defined by (13) is positive definite, I(t)-continuous and
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f(0) = 1 . So, by Theorem 1.5 it is the characteristic functional of a

separable probability measure on E'-Poisson measure. It satisfies (12),

so it is ID measure.

(ii) Let

(14) f(x) = exp(i<F,x> - %-p2(x)) ,

where F is a fixed element in E' , p is a I(t)-seminorm. By Bochner‘s

theorem there is a unique separable probability measure on E' determined

by (14)--Gaussian measure. It is clearly an ID measure. In Chapter 1,

the construction of a Gaussian measure, starting from cylinder measures

is given.

4. Theorem. A function g is the logarithm of an ID characteristic

functional f (of a separable probability measure on E' ) if and only

if

(15) 9(0) = O

(16) g is I(t)—continuous at O , and

for all finite sets of complex numbers

..
v _

_ . 1

AI - {ai}ieI such that iél’ai - 0 , and xI _ {XIIIEI

Xi E E , we have

(17) Z aiajg(Xi - Xj) :_0

i,jeI

.Epppf. The assertion follows directly from the Theorem 1.5. In fact,

(17) is the consequence of positive definiteness of f and Schoenberg's

theorem [19], (16) follows from I(t)-continuity of f , and (15) from

f(0) = 1 .

5. Remark. Making an appropriate choice of AI and XI in (17), one
 

can show that for every x E E
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(18) Re g(x) §_O

(19) g(-X) = 6117'.

6. Theorem. The class of ID Characteristic functionals coincide with the
 

class of Poisson characteristic functionals and their pointwise limits.

Proof. By Example 3 and Theorem 2, Poisson characteristic functionals and

their limits are ID.

Conversely, let f be an ID characteristic functional.

Then for all x in E ,

n(f1/"(x) - 1) +109 f(x) (n ....)

l/n
so, f(x) = lim exp (n(f1/n(x) - 1)) . By Theorem 1, f is a char-

n

acteristic functional of some separable probability measure Mn , so

fl/n(x) = rel<F’X>dMn(F)

and

f(x) = lam exp n f (ekF’X> - 1)dMn(F) ,

which is a limit of Poisson characteristic functionals.

Now we give some elementary inequalities that will be used later.

7. Lemma. For any real t,s :

(i) |eit-1| §_2 min (t2,1) §_2 min (t,1)

(ii) lelt-i-itl i t2/2

(iii) 1 - sin t/t _3 c - min (t2,1)

(iv) )(elS-is) — (alt-it): : ls-t
 

Proof: elementary.
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8. Notation. For q 6 1 define the following quantity (finite or not)
 

(20) _ E(F) = sup [<F,x>]

4(X)gl

Let M be a positive separable measure on E'-{O} such that

(21) ,1 min (32(E), 1)dM(F).< a .

E-{O}

For a G in E' and r 6 1(1) define

(22) 9(X) gEG.r.M.qJ(X)

.-. i<G,x> - r2(x) + f(ei<F’X>- 1 - i<F.x> - 1£4(F):IJ)dM(F>

Function defined by (22) will be referred to as gEG,r,M,q] or only 9 .

He will also use the following notation:

(23), h(F,x) = ei<F’X> - 1 - i<F,x> - 116(F):11

9. Lemma. 9 is I(1)-continuous at 0 .

Proof: G e E' implies G e E5 for some p e 1 .

Let {ei} be an orthonormal basis in ED .

2
Then 2 <G,ei> = 5(6) , thus l<G,x>| is a 1(1)-continuous seminorm,

so i<G,x> is I(1)-continuous.

Since r 6 1(1) , it remains to show the 1(1)-continuity of the integral

in (22). We have:

( 1<F’X> - 1 - i <F,x>)dM(F)(24) fh(F,x)dM(F) = . (ekF’X> - 1)dM(F) +~r e

4(F):1

~J

q(F)>1

Let us show that both terms above are I(1)-continuous.

- 1)dM(F)l 5.1 min (<F,x>2,1)dM(F)

I q(F)>1

Restricted to the set where E(F)>1, M is a positive finite measure;
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let M(E(F)>1) = m . By separability of M , there is a topology <5

determined by an increasing family of seminorms qn such that EA i E3 .

n

So, for given 5 we can find n such that

M(F E E'qn) E {5/2

i.e., if {ek} is qn-orthonormal basis:

M()<F e >2 = 0P) < 5/23 k _ a

Let r = r(c) be a real number such that

(26) M(Z<F,ek>2 _>_ r) 5 c/2 .

Then, with Fk = <F,ek> , we have

(27) f min(<F,x>2,1)dM '5 f <F,x>2 - 11) FE < r1dM(F)

P(F)>1 4(F)>1

+ f 11) FE 3 r3dM(F) .

2 .. 2 ._ 2 2 -
Let p (e,x) - p (x) - f <F,x> - 112 Fk < rJdM(F)

R(F)>l

Then ) p2(ek) < r . m ; so p is an I(1)-seminorm ; by (25) and (27)

we have

) x (e‘<F”‘> - 1)dM(F)) 3 p2(x) + e .

fi(F)>1

so the first term in (24) is I(1)-continuous.

By Lemma 7.(ii):

ei<F,x>

(28) l f 2

5(F)<1

- 1 - i <F,x>)dM(F)[ 5_ %IO(F;FIX>

<

dM(F) .

Now, by definition of 5 , it follows

l<F1X>| .5 5(F)Q(X) .

so by the assumption (21), the right hand side of (28) is finite. Moreover,

F) <on the set where 6( 1 , we have F 6 EA , so the expression on the
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lefthand side of (28) is 1(1)-continuous.

10. Corollary. 9 is logarithm of an ID characteristic functional of a
 

separable probability measure on E'

Proof. We shall use Theorem 4. Condition (15) is satisfied; (16) follows

from Lemma 9 and (17) can be easily checked.

11. Lemma. For given q e 1 , there is 1-1 correspondence between
 

functions 9 defined by (22) and triplets [G, r, M] .

Proof: Let t e R . We have

  

i<F,tx>_ i<F,tx>-1

)Ree 2 1I_<_ )9 2 Igmin (<F,x>2. 2/t2).
t t

5 2O (X) - min (52(F). 1) .

for a large enough t .

So, by dominated convergence theorem,

1'2 - { (e‘<F'tX>- 1) - dM(F) + O as t ......

q F)>1

Similarly,

if2 - { (eKF’tX> - 1 - i<F,tx>) dM(F) + O as t ....

'c‘i F)_<_1

So, we have

2 _ . -2
r (x) - lim - Reg(tx) - t (3 O by (18)) ,

t-mo

which shows that r is uniquely determined by g .

Let now x,y 6 E . The following formula holds:

 

(29) f (1 - cos<F,y>)ei<F’X>dM(F) = r2(y) + g(x) - g(x+y) : g(x-y) .
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We shall show that M is uniquely determined by (29).

For x = O and y being fixed, we have from (29) that the measure N

defined by

(30) dN = (1 - cos<F,y>)dM

is a positive finite measure on El (more precisely, its extension to E')

Since N has a I(1)-continuous characteristic functional, it follows

that N is a separable finite measure, uniquely determined by (30). So,

M is uniquely determined by N on any set on which 1 - cos<F,y> is

bounded away from O . Since y runs through E , by regularity we

conclude that M is uniquely determined. Finally, G is determined by

M, q and r , from (22).

The following two lemmas are proved in 161, in a different context:

12. Lemma. Let f be an ID characteristic functional.
 

1/n
Let fn = f Suppose that, for some c > O and some p 6 1(1),

p < q , we have:

HS

(31) p(x) : 1 = 1 - f(x) 1 e .

Then

(32) n(l-Re fn(x)) §_8c(1+p(x)) , for all x , and

(33) 1' min (q2(F), 1)dun 3 482: , for all n ,

where Un is the measure that corresponds to nfn .

13- _Lemma- Let Q = {F: q(F):1} - {O} . Let K(F,x) =

_ ~-2 i<F,x> ,
. .

- q (F)(e ' 1 ‘ l <F,X>) . Let Mn be a sequence of pOSitive

finite measures on Q , such that Mn(Q)-: 1 and f K(F,X)dMn(F)
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converges pointwise to a function w(x) . Then there is a positive

separable measure M0 on Q , such that MO(Q):1 and an 1(1)-seminorm

r , such that w(x) = -r2(x) + f K(F,x)dMO(x) .

14. Theorem. Let g be the logarithm of an ID characteristic functional
 

of a separable probability measure on E' . Suppose q e 1 such that

there is a p 6 1(1), p < q , and

HS

(34) P(x) 3 1 = 19(X)l.: e .

for some 3 , 0 < c < %—.

Then there is a triplet LG, r, M] satisfying conditions of Notation 8,

such that g = gLG,r,M,q1. This representation is unique.

Epppf, Let g = log f , where f is an ID characteristic functional of

a separable probability measure on E' . Let fn = nfl/n .‘ Let Q be

as in Lemma 13. We have log f = g = lam n(fl/n-l) . Let Pn be the

measure corresponding to fn . Let Un be Pn restricted to Q : let

Vn be Pn restricted to QC-{O}. Denote by an and V" the correspond-

ing characteristic functionals. Let f(x) = 1-Z . Then, as n+w we have

in(0) - fn(x) n(I - 11/"(x)) = n(1 - (1-2)1/”)

n(1 - (l-fii) é *2 -

so we conclude that {fn} is equicontinuous at O . Now we have:

A

fn(O) - Re E(x) = (On(O) - Re On(x)) + (Vn(O) - Re Vn(x)) ,

and by On(O) - Re On(x) > O , we conclude that

fn(0) - Re fn(x) < e = Vn(O) - Re Vn(x) < e

A

i.e., V is equicontinuous at O .
n

By (34) and Lemma 12 we have
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(35) . Vn(E') = Pn(QC - {0}) 5 485: ,

so by Corollary 2.5. and Remark 2.6. it follows that Vn is relatively

compact. Let V be a measure such that V". = V for some subsequence

n' . Then Vn' - Vn(0) + V - Vn(0) pointwise. By (34) and Lemma 12,

2
(36) f5 dUn. 5 486

By inequality 2.7.(ii) we have, for every x in E:

We”:x> - 1 - i<F,x>)dUn1(F)I

2

i f<F’2x> dUnI(F)

.3 12 e q2(x) .

 

Now let wn(x) = f(eKF’X> - 1 - i<F,x>)dUn. .

The above inequality shows that wn(x) is bounded for every x ;

therefore, there is a function w(x) such that for every x ,

w (x) + w(x) , for some subsequence n" .n"

We have obtained so far:

g(x) = lim n(fn(x) - 1)

n

= 11W ((Qn"(X) ‘ Gn"(0)) + (Unu(x) ‘ Unu(o)))

n

= (V(x) - V(O)) + w(x) + i lim f <F,x>dUn”(F)

n

V(x) - V(O) + w(x) + i<GO,x> .

By Lemma 13, we have that there is a r 6 1(1) , a separable measure

M0 on Q such that

w(x) = -r2(x) + f(ekF’X> - 1 - i<F,x>) . 5'2(F)dMO

To conclude the proof, define G by

<G,x> = <G , x> + f <F,x> dV(F)

0 any
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and define measure M on E'-{O} to be M0 on O and V on QC-{O} .

Clearly, the condition (21) is satisfied and g = gEG,r,M,q].

Uniqueness is proved in Lemma 11.



3. CONVERGENCE OF ID LAWS AND HOMOGENEOUS PROCESSES

WITH INDEPENDENT INCREMENTS

3.1. Convergence of IO laws
 

 

1. Definition. We say that a sequence of 1(1)-seminorms {pn} is

compact if there exists a 1-seminorm t such that pn < t for all n

HS

and, for an orthonormal basis {e1} in Et , we have:

(1) sup 2 P2(e ) < w

. °° 2

2 lim su e. = O( ) N nP iZN Pn( 1)

2. Theorem. Let Pn and P be separable ID probability measures on
 

E' with the characteristic functionals gn = gnth, rn, Mn’ q] and

g = gtearsquj 0 Then Pn : P if and only if

(3) lim G = G
n n

(4) Mn = M on every set {F: E(F) > c}

(5) The sequence {tn} of 1(1)-seminorms defined by

t§(x) = riot) + NI <F,x>2dMn(F)

n(F)§1

is compact,

(6) for every x , lim Tim' %- f <F,x>2dM (F) + r (X) = r2(x)

5+0 n+w E(F)<e

Proof. Assume the conditions above. Then for every x in E

(7) gn(x) = i<Gn,x> + ; (eKF’X> - 1 - i<F,x> - 1[q(F):11)dMn(F)

E(F):€

+ ~f (el‘F’x> - 1 - i<F,x>)dMn(F) - r§(x) .

4(F):e

Now we let new to obtain that first term in (7) converges to i<G,x>

33
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and the second term to the corresponding expression with M . Now we take

care of the remainder. Use inequality 2.3.7.(ii) and note that if

|a| < |b| then la-cl < l-b-cl , for a,b,c complex numbers. So we

have

(8) { (ekF’X> - 1 - i<F,x>)dMn(F) - rim + r2(><)l 5

: l-vlg {<F,x> dMn(X) - rim + r2(x)l .

Letting now a + O , and using (6) we have that for every x in E ,

gn(x) + g(x) , so then characteristic functionals fn converge point-

wise to the characteristic functional f of the measure M .

The condition (5), together with inequalities in the proof of Lemma 2.9.,

provides condition (ii) of Theorem 2.4. SO, by Theorem 2.4., we conclude

that Pn = P .

Conversely, let Pn = P . Using Theorem 2.4. and the proof of Theorem 5.5.

of [23] we obtain conditions (3)-(6).

3.2. Homogeneous processes with independent increments

Let T be a finite or infinite interval on the real line, starting at O .

1. Definition. (i) A process with independent increments is a family

of random variables {X(t)} defined on a probability space (9, F, P),
tel"

such that for every t1,...,t (O < t < ... < tn), the random variables
n -— 1

X(t0) a X(t1) ' X(tO) s --- 9 x(tn) " X(tn_1)

are independent.

(ii) {X(t)} ‘tET' is said to be a homogeneous process
 

if the distribution of random variable X(t) - X(S)(S < t) depends 0”
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t - s only.

A connection between homogeneous processes with independent increments

and ID laws is immediate. Let t E‘T be fixed. By Definition 1,

XiéF) - X((k33 t) are iid random variables (k = 1, ..., n) , and

 

n

X(t) - X(O) = Z X(%%) - X((k13)t) is an ID random variable. Therefore,

k=1

every increment of a homogeneous process with independent increments is

an 10 random variable. Let P be the distribution of X(t) - X(O) ,
t

and Q be the distribution of X(O) . It is easy to see that

Pt+s = Pt* p 5

group of convolutions. So, the distribution of X

and P0 = 60 (Dirac distribution), so {Pt}tET is a semi-

t is obtained as

Pt*(1; with some additional work it can be shown ([1]) that all finitely

dimensional distributions of the process Xt are determined by the semi-

group {Pt} and Q .

Let now {Xt} be a E'-valued process, and let f be the characteristic
t

functional of Xt . Until further notice assume that {Xt} is a homo-

geneous process with independent increments.

By independence we have:

(1) ft+S(X) = ft(X) - fS(X) .

In a particular case when ft(x) is, for every x , continuous at t = O,

we have an especially simple relation.

1. Theorem. Suppose that for every x in E , ft(x) is continuous
 

at t = O . Then

(2) f

Proof: Let s + O for fixed t in (1) to show that f is continuous
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for every t . The only continuous solutions of (1) are functions of the

form

(3) ft(x) = exp t g(X) .

for some 9 . This proves (2).

Suppose now that f1 is the characteristic functional of a separable

probability measure on E' . Then (2) completely determines the process.

If X(O) = O with probability 1, then for every t, Xt is an ID random

variable; by (3) and results in Chapter 2, we know the form of ft(x),

and by Theorem 1.2. we have necessary and sufficient conditions for weak

convergence.

Note that f1 is an ID characteristic functional.

3.3. An Example
 

In this section we present the solution to a problem in real line, which

arises in a stochastical model of neuronal activity. This is an improve-

ment and a generalization of results of Kallianpur [16] and Tuckwell [29].

We also discuss a possiblity Of a generalization to infinitely dimensional

spaces.

Let us first recall some facts about real valued ID random variables.

Let X be a random variable with the characteristic function f , and

its logarithm g . Suppose that Var X < m . Then 9 is represented

in the form

-2
(1) g(x) = ti + f(eiux - 1 - iux)u dK(u) ,

where K is distribution function Of some finite measure on R . The

representation (1) is unique and we write 9 = gIG,K1 . Xn = X if and

only if Kn(u) + K(u), for every u E R , and Gn + G .
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If X is normal with mean m and the standard deviation S , then

2
G = m and K(u) = S . ltu > 0]

If X is generalised Poisson, i.e., if

-A k

(2) P(X=a+kh)=%—- ,k=O,1,2,...

then G=a+>\h; k(u)=Xh2-1[t:h]

Let Ykn(t) k = 1, 2, ..., p , n = 1, 2, ... be independent Poisson

processes with parameters Akn ; let Ekn , k = 1, 2, ..., p ,

n

n = 1, 2, ... be real numbers, 0 §_t §_T < m .

Define

pn

(3) Nn(t) = Z 5k” Ykn(t)

k-l

— _ -1
(4) Nnm - (Nn(t) - ENn(t)) on ,

pn pn 2 p

where ENn(t) - t . E Ekn an , on - ( Z Ekn 1k")

k-l k—l

Then for Nn(1) we have the representation:

2 . _

pn Akn Ekn 1f u - €kn

(5) Gn = g )‘kn Ekn a kn(u) =

0 otherwise ,

where kn is the point mass function;

(U)
K = X k (v) .
n YE“ n

Similarly, Nh(1) has the representation: 6

- 2 . _ ku
(ckn/O’n) °Akn If U - -5n—

(6) G” = 0 ; kn(U) =

0 otherwise

The interest is to investigate the limit behavior Of Nn(t) and Nh(t) .

Let W(t) be a standard Brownian motion and let X(t) be the Poisson
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process with independent increment whose distribution is given by (2)

with At in place of A .

1. Theorem. In order that Nb =»W (in the space D(O,T)) 9 it is nec-

essary and sufficient that for every 5 > O :

(7) X (eknfisn)2 Akn + 0 (n + 00)

kzlekn/on[>e

2. Theorem. In order that Nn = X (in D(O,T)) it is necessary and

sufficient that, for every 2 > O :

p11

(8) X Akn Ekn + a + Ah

k=1

2
(9) Z an Ekn + O (n +rw)

k:lckn-h[>e

ph

(10) E Akn + A , for some X .

k=1

Proof of Theorem 1
 

Let us first prove the convergence of one dimensional distributions.

Without loss of generality set t = 1 (otherwise we may take Aknt in

place of 1k”) . By (6), we have to show that (7) is equivalent to

(11) E Hem/on) - (em/on)2 hm -» 1(0)

as n + w , for all bounded continuous functions on R . So, assume (11)

and let, for 5 fixed,

1 if IULiE

f€(u) = C if u = 0

linear in (—c,e)

-: Z fc(€kn/On) ° (Ekn/dn)2 Ak T 0 ’

2
Then 2 (ekn/on) A. k n

kn

kzlekn/Onl > e
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and (7) is proved.

Assume now (7) and let f be a bounded continuous function. SO for every

u , [f(u)] : M and for every ‘n there is an e such that

f(O) — n < f(u) < f(O) +11 if u 6 (-€, 8) . From (7) it follows

I; f(ekn/On)(€kn/Gn)2 )‘kn ' “0” -<- n . Z (elm/On)2 Akn +

l
k: cknflj .5 cn l

+2M Z (Ekn/On)2)‘kn+n

kikh/°n|>5

Since n is arbitrary small, it proves (11).

The convergence of finite dimensional distributions follows by indepen-

dence of increments: firstly we have (Nh(t1), Nh(t2) - Nh(t1)) =

(W(t1), W(t2) - W(t1)) by one-dimensional result; then it follows

(Nn(t1). ~n(t,)) = (Nn(tl). Nn(t1) + (Nn(t2) - Nh(t1))) = (w(tl), w(t2)).

and for higher dimension by induction.

Finally, to show tightness, note that, for t1.i t1: t2 :

—- —- 2 —- - 2 _ —- - 2 —- —- 2

E((Nn(t) - Nn(11)) (Nn(t2) - Nn<t11 ) - E(Nn(t) - Nn(t1)) E(Nn(t,) - Nn(t))

_ 2

so by Theorem 15.6. in Billingsley [4], we have that N; is tight and

Nn = W .

Proof of Theorem 2. Note that (9) and (10) together imply
 

pn
2 2

(11) Z A e + Ah
k=1 kn kn

Condition (8) implies Gn =1G ; so we have to Show Kn = K , i.e., for

every bounded continuous f :

(12) 2 f(ckn)Akn CE” + f(h)Ah2

But (12) follows easily from (9) and (11). Assume now (12). Then (9)
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and (10) can be proved choosing appropriate f (see the proof of Theorem

1.) This proves one-dimensional convergence. The rest of the proof is

same as in Theorem 1. Note that h is determined by (9), A is deter-

mined by (10) and then a is determined by (8).

The origin of problems considered here is the following: In the absence

of external stimulation, the membrane potential is in the form of im—

pulses of small magnitude arriving at a large number of synaptic sites

according to independent Poisson processes (see [101), so it can be re-

presented by Nn(t) . If conditions Of Theorem 1 are satisfied, then

the diffusion approximation is valid, and the membrane potential can be

approximated by the solution V(t) of stochastic differential equation.

(13) dV(t) = (-AV(t) + B)dt +<3dW(t) ,

where W is the standard Wiener process. Suppose that we want to gener-

alize (13) to infinite dimensions. Then we replace A by a bounded oper-

ator; Nn(t) becomes a process with independent increments in an infinite-

ly dimensional space. Due to some technical consideration, we may wish

to investigate the problem in the Schwartz space of distributions, or

on a general multi-Hilbertian space. The convergence results in the

previous chapter, the relation between ID laws and homogeneous processes

with independent increments give all the necessary techniques needed to

extend the example to infinite dimension in exactly similar manner. This

was the main motivation for the previous results.

We now investigate purely mathematical questions related to the indepen-

dent increment processes in the next chapter.



4. PROCESSES WITH INDEPENDENT INCREMENTS

4.1. Pppperties of paths
 

Let E be a countably Hilbert complete space.

Let (D, F. P) be a measure space, and let Xt , 0.: t.: T be a random

process with independent increments, defined on D and taking values

in E' .

1. Definition. We say that Xt is a Lévyprocess if
 

 

(i) t + <Xt, x> is continuous in probability for every x and

(ii) X.(w) e D(EO,T1, E‘) for almost every w .

(iii) Xo(w) = O for almost every w .

In what follows we shall consider Lévy processes only. Also, we shall

assume that (ii) and (iii) hold for every «1, which is not a loss of

generality.

From Definition 1, it follows that for each x , <Xt, x> is a real

valued Lévy process, continuous in probability (see Ito [13] for the

definitions on the real line).

By a jump (or a strong jump) of X(w) at time t we mean the difference
 

Xt(w) - Xt-(od if it is not zero.

By a weak jump of X(w) at time t at the point x we mean

<Xt(w) - Xt_(o) if it is not zero.

Clearly, X has a strong jump at t if and only if X has at least one

weak jump at t .

2. Lemma. 1f xS + x in E' (as s + t), then there is some m such

that x and XS belong to E$ for 5 close enough to t , and xS + x

41
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in Em .

Proof. Suppose not. Then, for xS + x , there exists a sequence xn

k

1 Go I _
such that xnk e Enk and nk + . Then xnk + x , and xnk 6 Enk con

tradicts Theorem 34 in [81, for sequences.

3. Lemma. If T < w and Xt(w) E D([O,t],E') , then for every w

there is a norm q 6 1 , such that Xt(w) belongs to EA for all t

in [0,T1 .

Proof. By the Definition 1, for every t > O we have

lim X(w) = X(‘”) .
s+t s t-

s<t

Then by Lemma 2, there is an .9t and a norm qt such that for

s E (t-ct, t) we have Xé“) 6 EA . For t = O we have Xé“) = O ,

t

and, by right continuity X(w) + O as s + O , s > O . So, again by
S

Lemma 1, there is an so such that X£”) belongs to some space Eqé

for all x in [0, co].

By compactness, there is a finite cover Oi , 1 < i < n , such that all

points in 0i belong to the space Eqé . But then all Xt for

belong to the space Eq' = Eq' U ... LJEq'.
n

t e [0,T] = 01 U 02 U ... U On

4. Lemma. Suppose T < w and suppose that, for every .x E E , the

<X (w)
t 9

a constant M such that for every x , the function <X£w), x> has at

number of jumps of x> , O :_t §_T is finite. Then there is

most M jumps in [O,T] (w is fixed).

Proof. Let fT(x) be the number Of jumps of <Xt’ x> up to time T .

For each .x e E , fT(x) is finite. Let us now prove that fT is

lower semicontinuous, i.e., if xn + x then



43

(1) lim f (x ) > ft(x) .

It clearly suffices to show that, whenever <Xt, x> has a jump of size

>11 then, starting with some nO all functions <Xt’ xn> have a jump

0f size >n .

Suppose now that <X, x> has a jump of amount >‘n at time t .

By assumption lim XS = XS_ .

s<t

s+t

By Lemma 2, there is a norm q such that

(2) E(Xs - Xt-) < e if s E [t-c, t) for some a .

Clearly, it suffices to Show (1) for q(x) < 1 only. So, assume xn + x

and q(xn) < 1 and q(x) < 1 . Then we have from (2):

(3) |<Xs, xn - Xt-’ xn>| < e , s 6 [t-e, t) .

By 1-continuity of Xt and Xt- we have

(4) |<Xt. Xn> - <Xt, x>| < c for n:_nO

(5) |<Xt-’ xn> - <Xt-’ x>| < c for n-: nO .

Then from (3), (4) and (5) it follows:

(<X > - <Xt’ xn>i > n - 3c ,
t-’ xn

and the assertion (1) follows by arbitrarity Of e .

By Osgood's theorem [12], page 62, , there exists a 1-norm p such that

lft(X)l < M/2

for all x in Br(z) = {x: p(z-x) < r} , for some 2 e E2 and r > O .

The function fT(x) has the following properties:
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(6) ..fT(x + y) _<_ fT(X) + fT(y)

(7) fT(CX) = fT(X)

which follow immediately from the definition of f So, we deduce:T o

tT(x) iT((p'1(x) . rx + z - z) - p(x) - r'l)

fT(P'1(x) - rx + z - 2)

f (P'1(x) - rx + z) + fT(-z)

I
A T

< M .

5. Lemma. If T < w , then Xt has only countably many jumps.

Proof. See Remark 3.3.

4.2. A decomposition of E'-valued processes.
 

Let E be a countably Hilbert complete space.

Let E5 = E' - {O} . Denote by C the cylinder (= Borel) o-algebra of

E' , and by B the Borel o-algebra of sets in T5 x E5 , where To

will denote the interval (O,T1 , for T finite or infinite.

Let 8* be the class of all sets A in B such that for some a > O

and some x1, x2, ..., xk E E we have

1 1
(1) A c:(O,a) x (F: |<F,x1>I > 3"°"’ [<F,xk>l > 51 .

Let Xt be a process with independent increments.

Let, for an to fixed, I(w) = {t: Xt f Xt_} and 3(a) = {(t,11Xt), t 6

1(a)} , where (ext = Xt - Xt- . Define the set function N by

N(A) = N(A,afl = number of points in A O J(w)

N(A) is a finite random variable for A 6 8* . The completed cylinder

o-algebra generated by Xu - Xv , s < u , v §_t will be denoted by Bst(X)‘
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2. Lemma. 1f Aes" and Ac(s,t1xE5 then N(A) is BSt(X)-measur-

able.

Proof. Let E(s, t, x1,...,xk, a1,...,ak) = E(s, t, x, a) =

(s,t1 x {F e E : <F,x1> > a1 ,..., <F,xk> > ak} ,

where O §_s < t < T , a = (a1,...ak) 6 Rk

k

, ai > O for 1 §_i §_k ,

x = (x1,...,xk) e E

Let Q be a countable dense subset of (s,t], including t . We have:

{N(E(s,t,x,a))_: 1} = {for some u 6 (s,t1, <Xu - Xu , x1>

k

= U n U n {<Xr' - X , xi> .3 a + 15} E Bst(x)

p q r.r'eO i=1 p
(s+1)/p5r<r3t

r'-r<1/q

Now we have

{N(E(s,t,x,a)) _>_ k +1}= u {N(E(s,t,x,a)) _>_ k}

rleHs,t]

n {N(E(r,t.x,a)) > 1} .

so, by induction, {N(E(s,t,x,a)) 3 k} 6 Egt (X) , thus N(E(s,t,x,a))

is Bst(X)-measurable.

Let 0 denote the class of all sets A in B such that N(A n E(s,t.x,a))

is E;t(x)-measurable. Since N(A n E(x,t,x,a)) is a bounded measure in

A , it follows that D is a Dynkin class. By measurability of

N(E(s,t,x,a)) we conclude that the class

M = {(s,w) X {F e E': <F,xj> .3 bj} , j = 1 ,..., n , n 6 N ,

0 < s < w , -m < bj < w}



46

belongs to D .

M is a multiplicative class that generates B ; so, by Dynkin's theorem

N(A n E(s,t,x,a)) is Bst(X)-measurable for every A in B .

Now if we define E'(s,t,x,a) = (s,t] x {F e E' : <F,x1> .3 -a1,...,

<F,xk> §_ -ak} we similarly conclude that N(A n E'(s,t,x,a)) is

8gt(X)-measurable, for every A in B .

Finally. if A e 8* and A c:(s,t1 x E; . then for some a and X we

have

A = A n E(s,t,x,a) u A n E’(s,t,x,a) ,

so N(A) = N(A n E(s,t,x,a)) + N(A n E'(s,t,x,a)) is

8gt(X)-measurable.

Let Bc c: 8 denote the algebra of all sets of the form: Borel set in

TO x cylinder set in E5 .

3. Lemma. (i) For A e 3* , N(A) is Poisson distributed with a finite

parameter.

(ii) For A 6 BC , N(A) is either identically equal to w

(a.s.) or is Poisson distributed with finite parameter.

Proof. Let A(t) = A n (O,t1 x EO , A e 8*

Let N(t) = N(t,w) = N(A(t),w) .

Clearly, N(t,m) is a right continuous step function in t , increasing,

with jumps of amount 1. From Lemma 2 and

N(t) - N(s) = N(A(t) - A(s)) = N(A n (s,t1 X ES) ,

it follows that N(t) is a real Lévy process with independent increments.

For every t fixed we have
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P(N(t) - N(t') e O) 3 P(xt - xt- ,1 O) = O ,

so N is continuous in probability.

So, by results about real processes, N(t) is a Poisson process.

For sufficiently large t , A = A(t) , N(A) = N(A(t)) and so N(A)

is Poisson distributed.

Let A 6 BC . Then there is an increasing sequence An 6 8* such that

An i A .

Then N(A) = lam N(An) . N(An) is Poisson random variable with expecta-

tion An , say. A is increasing sequence. If lim An = m , then for

n +00

every k ,

-1 k .

P(N(A):k) 5 P(N(An) <k) = e n-) Jig/j: + O ,

i=0

so N(A) = m almost surely.

If lgm An = A < w , then N(A) is Poisson with parameter A .

Recall that (Section 1), if Xt is an E'-valued Lévy process with

independent increments, then for every x , <Xt, x> is a real Lévy

process with independent increments. Let BX(TO x R0) denote cylinder

sets in TO x RO that depend on x only. If A e Bx(to>< R0) then

the number Of strong jumps of X that take place in A is equal to the
t

number of jumps of the real process <Xt, x> that take place in A .

Denoting by N(x, A) the number of jumps of <Xt, x> in A we have the

following:

4. Lemma. If A e BX(TO>< R0) , then N(A) = N(x, A) .

Let n(A) = E(N(A,w)) . Rewriting the Lévy-Ito decomposition for real

processes, and using Lemma 3, we have
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5. Theorem. For every x in E <Xt, x> = Zt(x) + Yt(x) ,

where Zt(x) is a Gaussian process with independent increments, and

Yt(x) is given by

Yt(x) = lim ( f f <F,x> dN(s,F) + f f <F,x> dn (S.F))

k+w O<sgt O<sgt

11
|<FIX>|2p p sI<F,X>|_<_1

6. Remark. The decomposition in Theorem 5 is not a decomposition in E' ,

because the process Yt , and consequently Zt may not be linear in x .

In the following section we shall prove the complete decomposition in a

separable Hilbert space. The general problem remains open.

4.3. A Ler-Ito decomposition
 

Let H be a real separable Hilbert space. We assume that Xt is a H-

valued Lévy process with independent increments, and t 6 [O,T], where

T is finite or infinite.

1. Theorem. Let n > O . If Xt e D([O,T1,H) then X has only finitely

many jumps of the norm bigger than n on any finite subinterval of [0,T1.

Epppf. Let us first prove the theorem on [O,T], T < m . Let A be the

class of all points in [O,T] such that there are only finitely many jumps

of the norm > n in [0,t) . Let s = sup {t : t e A} . By continuity of

X at O , and by X0 = O , there is a neighborhood U = (O,c) such that

”Xt” < n/2 for t e U . Then for u,v e U , ”X - Xv“ fi-qu“ + ”Xv” f_n ,
u

so there is no jump in U of size > n . Thus 5 > O . Suppose s < 1 .

Then again, there is a neighborhood (5, s+c) in which X does not have

jumps exceeding n in the norm; so 5 = T . The above proof goes through

if EO,T3 is replaced by an arbitrary finite interval.
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2. Theorem. If X e D([O,T], H) , then X has only countably many

jumps.

Proof. Immediate by Theorem 1.

3. Remark. If E is a countably Hilbert space, and Xt an E'=valued

Lévy process, it is proved in Lemma 1.2. that for w fixed, Xt(w)

belongs to a Hilbert space. SO, Theorem 2 holds for E' .

4. Lemma. Let F = {Bst’ s<t, s,t e T} be an additive family of sub-

o-algebras on H , i.e.,

(i) B v B = B a.s.,
st tn sn

(11) {Bt0t1. Bt1t2 ,..., Bt t } 15 independent for t0 < t1 ...<tn.

Let Xt be a Lévy process with values in H , Yt a real valued Lévy

process of Poisson type, such that with probability one there are no

conmon jump times for X and Yt . Assume that both X and Yt are
t t

adapted to F , i.e., Xt - XS as well as Yt - YS is Est-measurable.

Then Xt and Yt are independent.

Ppppf. If there are no common jump points for Xt and Yt , then for

every x , there are no common jump points for real processes <Xt’ x>

and Y . Then by Ito's fundamental lemma <Xt, x> and Yt are inde-

pendent. By a trivial extension of this argument, all finite dimensional

processes (<Xt, x1> ,..., <Xt’ Xk>) are independent of Yt , and this

gives the result.

5. Lemma. A Lévy process Xt whose sample functions Xt(w) are con-

tinuous a.s. is a Gaussian process.

Proof. By finite dimensional case, all finite-dimensional distributions
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of Xt - XS are Gaussian. Therefore, for every s,t , Xt - XS is a

Gaussian process.

6. Lemma. If a Lévy process Xt is Gaussian, then its sample functions

are continuous almost surely.

Proof. Let X be a Gaussian Lévy process. Then for every x , <Xt’ x>
t

is a Gaussian process, so <Xt’ x> is a.s. continuous (null sets de—

pend on t ) .

By separability of H , there is a countable dense set D = {x1,x2,...} .

Then there is 91 czo , such that for every w E 91 and every xi 6 D ,

<Xt(w), xi> is continuous, and P(Ql) = 1 .

Now fix aJE DI . We want to show that for every x 6 H , <Xt(w), x>

is continuous. Since Xt is a Lévy process, there is a neighborhood U

of t such that “xs(o)” < M if s e U , for some M . Then, let

6 > D be given, and let xi 6 I) be such that ”x - xj“ < e . Let

s e u be such that <XS - Xt’ xj> < c .

Then

I<XS-Xt, x>| .3 I<XS-Xt, xj>I + |<Xs-Xt, x-xj>I .3

< e + 2M8 ,

which shows continuity of <Xt’ x> .

Now, since for every x , <Xt(w), x> is continuous, it follows that

Xt(w) is continuous for all m 6 DI .

7. Notation. I(w) {t : Xt(w) # Xt - (w)}

{(t, AXt(w)) 9 t E I(w)}

AXt(m) = Xt(w) - Xt_(w)

T = T - {O} ; HO = H - {O} .

C
;

A

8 V

I
I
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B = B(TO x H0) is the class of all Borel subsets of Tb x HO .

B* = 8*(TO x H0) is the class Of all sets A c:B such that

Ac(O,a)x{FeH : IIFII>%}, for some a>O.

By Theorem 1, for A c:B* , A r)J(o) is a finite set. Let

N(A) = N(Asw) denote the number of points in A n J(w)

The proofs of thtefollowing two lemmas are almost identical to those of

2.2. and 2.3. and therefore are omitted.

8. Lemma. If A e 8*(T0 x HO) and A c:(s,t] x HO , then N(A) is

Bst(x) measurable.

9. Lemma. For A e B(TO>< HO) , N(A) is either Poisson distributed or

identically = m .

If A e 8* , then N(A) is Poisson with a finite parameter.

Now consider for every x e H and A e 8*:

S(A,x) = S(A,x,co)' = 2 M (w), X> ‘ <xt-(w): X>}

(t,AXt)eA
t

<F,x>

(taF)E A n J(w)

Clearly, for A E 8* we have

k-1 k
(1) . S(A,x) = lim :5N(A n {F : <F,x> e (_, -1}

”*n k n n n

= f f <F,x> dN(t,F)

(t,F)EA

Define also S(A) = S(A,w) = Z AXt

(t,theA

This sum is finite, so we have S(A,x) = <S(A), x> .

10. Lemma. Lemma 8 holds for S(A,x) and S(A) in place of N(A) .
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Proof. For S(A,x) clear from relation (1). Then for S(A) it follows

from

S(A) = 0E1 <S(A), ei>ei

1:

where {e1}:=1 is an orthonormal basis in H .

'I:

Set now A(t) = A n [0,t] x HO , A 6 B

H(t,A) = X - S(A(t)) .
t

11. Lemma. H(t,A) is a Lévy process independent of the process N(A(t)).

Proof. Immediate, by Lemmas 4, 8 and 9. D

The following three lemmas can be proved the same way as for real processes

(see [13], Section 1.6.5.

12. Lemma. Let A1 ,..., An 6 8* be disjoint. Then the following

processes are independent:

l’l

N(Al(t)) ,..., N(An(t)) . H(t, p A.) .

13. Lemma. Lemma 12 holds for S in place of N .

14. Lemma. Let A An be disjoint sets in B . Then1 ,...,

N(Al) ,..., N(An) are independent.

Now for A e 8* set

_ , k k+1
Amk(x) - {(s,F) e A n {F . <F,x> E Qfi,-7fi-J}

Then

(2) <S(A),x> = f f <F,x> dN(s,F) = lim 2 %-N(Amk(x))

A m—w° k

Let EN(A) = n(A) .

15. Lemma. If A e 3* , then
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E e' = exp f ; (em;X> - 1)dn(s,F)

A

Proof.

For each m,k , N(Amk(x)) is Poisson distributed with parameter

n(Amk(x)) . 50,

k
1 exp -",-n— N(A k(x)) = exp ((‘Tn'i- 1) n(Amk(x)))

By relation (2),

lim E exp (i gig-N(Amkum

*“ k

E exp i<S(A),x>

= lim {1 E exp (%§-N(Amk(x)))

mew k

ik

= lim [7 exp ((em_- 1) n(Amk(x)))

m+w k

13.

= lim exp (2 (e m - 1) n(Amk(X)))

m—1Po k

exp f f (ekF’X> - 1) dn(s,F) .

A

From the above we obtain

16. Lemma. If A E 8* is included in {(s,F) : “F” < m} for some

m < w , then

E <S(A),x> = f f <F,x> dn(s,F)

A

Var <S(A),x> = f f <F,x>2 dn(s,F)

A

17. Remark. If (O,t1 x {F : “F” > c} (e > 0)

belongs to 6*(TD>< HO) , we have

f f dn(s,F) < w ,

O<sgt

in)»

because N on sets in 8* is Poisson with finite parameter n .
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18. Lemma. For every x 6 He,

(1‘) I I <F,x>2 dn(s,F) < ..
O<sst

llFlle

(ii) I I IIFII2 dn(s,F) < e.

O<sst

Hfflil

Proof. (i) Let E8 = {(s,F) : O < s 5_t , c <uFu<ll , c > O . Then

E8 6 BI and, by Lemma 15,

E e1<S(Ec)’X> = exp I I (ekF’X> - 1) dn(s,F) .

O<sst

e<iiFiis1

By Lemma 13, the processes S(E€(s)) and XS - S(E€(s)) are independent.

Thus, S(EE) and Xt - S(EE) are independent, and

E el<Xt,X> = E el<S(E€),x> . E ei<Xt-S(E€),x>

So, we have

IE ei<Xt,x>! )5 ei<S(E€),x>l

I
A

= exp I I (cos <F,x> - 1) dn(s,F)

O<s<t

€<HFH£1

If “x” 5,1 and “F“ 5_1 , then I<F,x>| §_1 ; in that case we have

cos <F,x> :3 1 - <F,x>2/4 . SO, for every x such that ”x” §_1 :

IE e1<xt’X>I .3 exp { -.ff <F,x>2

O<sgt

earns

dn(s,F)}

Letting c + O , taking logarithm and dividing by “x“ , we have that

for every x e H :

-

' U E

(3) HXH 2 f f <F,x>2 dn(s,F) :_-log IE e1<xt’X>/NXII

O<sg¢

IlFllil < co

9
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where the last inequality follows from the fact (one-dimensional) that

characteristic function of <Xt,x> , being an ID, never vanishes. This

proves (i).

The proof of (ii) will be given in Theorem 22.

19. Notations and some facts.

Set

S1(t,x) = Sl(t,x,w) = f f <F,x> dN(s,F)

O<s5t

llFllzl

= S((O,t] x {F : IF”_: 1} , x)

= <X " X g X) s

O<§gt s 5'

II3XSII_>1

Sk(t,x) = Sk(t,x,w) f f <F,x> dN(s,F) , k > 1 .

O<sgt

1 I 1

till (Ft-:1

Define Sl(t) = 2 ext , and Sk(t)- analogously.

O<sst

llexsllzl

Clearly, for k.: 1 , Sk(t) e H and <Sk(t), x> = Sk(t,x) .

Define also

k

Tk(t,x) = Tk(t,x,w) = Sl(t,w,x) + jZZ Sj(t,x,w) - ESj(t,x,w)

= f f <F,x> dN(s,F) - f f <F,x> dn(s,F) .

O<sgt 0<S$t

F >1 k 1II II / F_<_IIFII51

Using previous results, it can be shown that Sn(t), n = 1, 2, ... , are

independent Lévy processes. By Lemma 18(i), E(Sk(t,x)) is continuous

in t ; so Tk(t,x) is a Lévy process for every k and x .
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Using Komogorov's inequality (see1131 Section 1.7.2.) we have the following

20. Theorem. For every x 6 II, we have the following decomposition:

(4) <Xt(o),x> = Zt(x,w) + lim ( f f <F,x> dN(s,F)

k-rPP O<s5t'

llFllzl/k

+ f.f <F,x> dn(s,F)) ,

O<sst

i- : (IF)! :1

where, for every x , Zt(x) is a continuous Lévy process (thus Gaussian),

and independent on N .

Now we can prove the following theorem on a decomposition in Hilbert space.

21. Theorem. Let Xt be a Hilbert space-valued Lévy process. Let

N(A,w) be the number of jumps of Xt(w) in A , and let n(A) = EN(A) .

Then N and n are measures on H and we have:

(5) X = Z + Y

where Z is a Gaussian random process in H , Y is an H-valued
t t

random process, independent on Z defined by
t ,

<Yt(w),x> = lim { f1” <F,x> dN(s,F) + [.1 <F,x> dn(s,F)}

k-wo O<sgt O<s_<_t

' F i>1 k 1 1

I) )- / (3.: HP)! 5.1

Proof. For t) and k fixed, the term after the "lim" in (4) is linear

in x . Notice that

f f <F,x> dN(s,F)

O<sgt

IIFII_>_1/k

is continuous in x , as a finite sum of continuous terms.

For the other term, we have
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I I I <F,x> dn(s,F)) .5 fix“ ° I I “F“ dn(s,F)

O<s<t O<s<t

i—szmu is. (in<1

5. “X” ° n((O. t] x {F: -%< IIFu_< 1),

so this is also continuous in x .

Then, by Banach-Steinhaus theorem, the limit in (4) defines a continuous

linear operator in H , call it Yt(w) .

Thus, Zt = X - Yt is also in H , and, since <Z ,x> is continuous
t

in t for every x , it foolows that Z

t

t is also continuous. Then,

by Lemma 5, Zt is Gaussian on H . Zt and N are independent by

Lemma 4.

For a Lévy process Xt decomposed as in previous theorem, we define

x v

I
I

E<Zt,x>

<

(
‘
8
'

A

X

v

I Var <Zt,x> ,

where Zt is Gaussian process defined by (5).

For fixed t , M is linear and continuous in x ; Vt is an I(n-H)-
t

seminorm.

The functions M , V and the measure dn(s,F) are called (following
t t’

Ito), the three components of Xt .

22. Theorem. Let X be a Lévy process with three components Mt’ V
t t’

Then the characteristic function of X - X , t2 > t1 is given by

t2 t1

. 1
(6) f (x) = exp { i <M - M , x> - —-(V (x) - V (x))

1,12 t2 t1 2 t2 t1

+ I I (eI<F’X> 4 1 - i<F,x> . ltnrug11) dn(s,F)}

t1<s<t2

F f O

n .
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and is subject to an infinitely divisible distributions. Also,

(7) I I IIFIIZ dn(s,F) < e .

O<sgt

llFlle

Proof. It suffices to prove (6) for t2 = t , t1 = O .

By Theorem 20, we have

<Xt,x> = <Zt,x> + lim Tk(t,x) ,

k—ioo

and these two terms are independent. So,

i<Xt,x> l<Zt,X>

E e = E e . E lim e

k-tco

' T (t x)
_ . Vt 1k’
- exp (i<mt,x> - —%—l) ~Aim E e

By previous lemmas we have

i Tk(t,x)

i<T (t,x)> .

E e k = exp i I f (eKF'X> . 1{IIFII_<_1}) dn(s,F)}

O<sgt

“F (121/ k

which proves (6).

To prove that this is an infinite divisible characteristic function,

notice that in the finite-dimensional case we have (ii) of Lemma 18

trivially satisfied, and therefore, by results in Chapter 2, (6) is an

ID characteristic function. By Mandrekar-Zinn theorem 2.8. in [181, we con-

clude that (6) is an ID characteristic functional of a probability mea-

sure in H . By Theorem 2.3.14, we have (7).
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