MSU LIBRARIES —_ RETURNING MATERIALS: Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped beIow. ‘1‘.“ 1 -' ‘chy A CRITIQUE OF VARIOUS THEORIES’ ABILITY TO PREDICT THE THERMODYNAMICS 0F INORGANIC SOLUTES IN PURE LIQUID METALS by James Hughlon Tate A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Chemical Engineering 1986 ABSTRACT A CRITIQUE OF VARIOUS THEORIES’ ABILITY TO PREDICT THE THERMODYNAMICS OF INORGANIC SOLUTES IN PURE LIQUID METALS by James Hughlon Tate Various theories exist which can be used to calculate the solubility or the activity of inorganics dissolved in liquid metal. This thesis critiques four theories by comparing theory predictions with experimental data. ’ Each theory contains a free parameter. Correlations were generated for the free parameters by using experimental data to back calculate the free parameters. The correlations were in turn used to predict values which were compared to the experimental data. A large amount of experimental data was gathered. A surface tension theory of the authors (1) was found to give the best results when calculating the activity coefficient of oxygen or carbon in pure liquid transition metals. The quasi-chemical solution theory of Guggenhiem (2) was found to give the best results when calculating the activity coefficient of oxygen or carbon in pure liquid metals other than the transition metals. The quasi-chemical theory was best for calculating the activity coefficient of hydrogen and nitrogen in any pure liquid metal. The regular solution theory of Hilderbrand (3) and the interaction energy theory of Lee and Johnson (4) was found to be inadequate. l) Tate "A Critique of Various Theories’ Ability to Predict the Thermodynamics of Inorganic Solutes in Pure Liquid Metals” Masters Thesis Michigan State University, Department of Chemical Engineering 1986 2) Guggenhiem ”Mixtures" Oxford University Press Oxford 1952 3) Hilderbrand and Scott ”The Solubility of Non-electrolytes” 3rd edition, Van Nostrand Reinhold, NY 1950 4) Lee and Johnson (1&EC Fundamentals) 1969, vol 8, page 726 TABLE OF CONTENTS List of Figures...................................iii Introduction......................................I The Regular Solution Theory.......................3 Quasi-Chemical Solution Theory Developement.......12 Lee and Johnson Theory Developement...............23 Emi and Pehlke Theory Deve10pement................42 Surface Tension Theory Developement...............49 Correlations Found................................61 Comparisons of Theory Predictions with Experimental Data.....................79 Conclusions.......................................86 Appendix A Computer Code and Print Outs...................89 Appendix B Experimental Data..............................243 Appendix C Experimental Techniques........................282 BibliograthOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOO0......299 ii Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure 10 ll Nab Nab Nab Nab Nab Nab Nab Nab LIST OF FIGURES Predicted by the Regular Solution Theory for Metal-Carbon Systems........65 Predicted by the Regular Solution Theory for Metal-Oxygen Systems........66 Predicted by the Regular Solution Theory for Metal-Hydrogen Systems......66 Predicted by the Regular Solution Theory for Metal-Nitrogen Systems......68 Predicted by the Quasi-Chemical Theory for Metal-Carbon Systems........69 Predicted by the Regular Solution Theory for Metal-Oxygen Systems........70 Predicted by the Quasi-Chemical Theory for Metal-Hydrogen Systems......71 Predicted by the Quasi-Chemical Theory for Metal-Nitrogen Systems......72 Solute Radius Predicted by the Surface Tension Theory for Metal-Carbon Systems........73 Solute Radius Predicted by the Surface Tension Theory for Metal-Oxygen Systems........74 Solute Radius Predicted by the Surface Tension Theory for Metal-Hydrogen Systems......75 iii Figure 12 Solute Radius Predicted by the Surface Tension Theory for Metal-Nitrogen Systems......76 Figure 13 Quasi-Chemical Solution Predictions for Metal-Carbon Systems...82 Figure 14 Quasi-Chemical Solution Predictions for Metal-Oxygen Systems...83 Figure 15 Surface Tension Theory Predictions for Metal-Carbon Systems...84 Figure 16 Surface Tension Theory Predictions for Metal-Oxygen Systems...85 Figure 17 Electrochemical Cell...........................289 iiii INTRODUCTION This report derives predictive correlations for activity and solubility of carbon, hydrogen, nitrogen, and oxygen in pure liquid metals. Four theories are considered as starting points. Experimental data are then used to generate correlations relating the free parameter in each theory to physical quantities. The theory with the best predictive ability is determined by comparing predictions to experimental data. The theories under consideration are: the interaction energy theory of Lee and Johnson (51), the regular solution theory of Hilderbrand (28), the quasi-chemical solution theory of Guggenhiem (25), and a surface tension theory of the authors. Correlations from Lee and Johnson’s interaction energy theory predict the solute solubility ratio. i.e. atom fraction I pressure. Correlations from the regular solution and quasi-chemical solution theories predict the solute activity coefficient. Correlations from the surface tension theory predict the solute maximum solubility. Of course, the activity coefficient and maximum solubility are interrelated, For carbon, hydrogen, nitrogen, and oxygen in pure liquid metals the solute activity equals the reciprocal of the solute maximum solubility. Also, at these concentrations, the dissociation pressure equals that for a pure compound. The solubility data used here represents the entire contents of the three volumes of ”Constitution of Binary Phase Diagrams”, the two volumes of ”The Handbook of Binary Phase Diagrams”, Chemical Abstracts 2 from 1900 through 1983, and the Metals Abstracts through 1983. The Regular Solution Theory The regular solution theory was developed by Hilderbrand (28). The derivation presented is based on work found in a book by Lupis (57). The lattice energy (E) of a mixture of A and B can be modeled as the sum of binary interactions energies: H1) E - NaaUaa + NbbUbb + NabUab Where Naa, Nbb, and Nab are the number of A-A, B-B, and A-B interactions. Uaa, Ubb, and Uab are the energies of said interactions. The total number of interactions involving an A particles is: H2) ZaNa 8 2Naa + Nab Where 2a is the coordination number, or number of nearest neighbors, of an A particle. Na is the number of A particles in solution. The multiplication of Naa by two in equation H2 arises from A-A pairs being counted twice, once for each A particle involved. Similarly for 8 particles: H3) ZbNb - 2Nbb + Nab Combining equations H1, HZ, and 33 to eliminate Naa and Nbb: HA) E - ZaNaUaa/Z + ZbNbUbb/Z + Nab(Uab - Uaa/Z - Ubb/2) The factors ZaNaUaa/Z and ZbNbUbb/Z can be modeled as the energy of pure A and B. The factors are thus replaced by Ea and Eb. Replacing (Uab - Use/2 - Ubb/2) with the Uab, equation H4 becomes: H5) E = Ea + Eb + NabWab Degeneracy is the number of configurations a system can occupy at an energy level. The degeneracy of randomly positioned particles is given by Denbigh (16): 86) g - N! INale! 5 Where N is the total number of particles in solution. The probability that an arbitrary site will be occupied by an A particle is the mole fraction of A; Xa. The probability that a B particle will occupy an adjacent site is simlilarly Xb. The probability that both occupations will occur at the same time is XaXb. Since the molecules can be placed A-B or B-A, the probability that the two adjacent sites can be occupied by an A and B particle is 2XaXb. Multiplying by the total number of pairs yields the number of A-B pairs: Nab - 1/2 (ZaNa + ZbNb) * ZXaXb If the coordination numbers of A and B particles are assumed equal: H7) Nah I ZNaNb/N The partition fuction of a system is (Denbigh (1.6)): “L H8) Q - qa qfim exp (-Ei / kT) Where Q is the patition function of the entire system. qa and qb are the partition functions of the individual A and B particles. gi and E1 are the degeneracy and energy of the system at energy level i. k and T are Bolztmans constant and temperature. The summation in equation H8 is over all possible energy levels. Under the regular solution theory, the system is confined to one state, the random one. Thus it is also confined to one energy level. The summation in equation H8 can thus be removed. Combining the resulting equation H8 with equations H7, H6, and H5: H9) Q - (N! / Nale!) ng qr” exp [ -(Ea + Eb + ZNaNbWab/N) / kT] From statistical thermodynamics: G = ~lenQ Thus: 7 H10) G - -kT In (N! / NaiNb!) + Ea + Eb + ZNaNbWab / N + Na 1n qa + Nb 1n qb If the terms in equation H10 which refer to the pure substances are removed, the free energy of mixing results: H11) c“ - -kT In (N! / NaiNb!) + ZNaNbWab/N + Na 1n qa + Nb 1n qb Using the result that lnX! a Xlnx - X G“ - kT (Na 1n Na - Na + Nb 1n Nb - Nb - N ln N + N) + ZNaNbWab/N + Na ln qa + Nb ln qb H12) cM - kT (Na ln Xa + Nb 1n Xb) + ZNaNbWab/N + Na 1n qa + Nb 1n qb Changing equation H12 to a per mole basis: 313) c: - RT (Xa 1n Xa + Xb ln Xb) + ZXaXbWab + Xa 1n qa + Xb 1n qb 8 If the terms in equation H13 which relate to the ideal solution are removed, the excess free energy of mixing results: 1114) G: - ZWabXaXb Partial molar qauntities can be calculated from mixture molar quantities (Denbigh (16)): H15) Ya - Ym + (1 - Xa) (de / an) Where Ym is a molar quantity of the mixture, and Ya is a partial molar quantity of susbstance A. The partial excess molar free energy of A is: f 6 H16) c, - cm + (1 - Xa) (do; / an) - ZWabXa (1 - Xa) + (1 - Xa) (ZWab - ZZWabXa) 2. =- ZWab (1 - 2Xa + Xa) 1 H17) G 3 ZNabXb Partial molar excess free energy can be related to the activity coefficient (Lupis (57)): E H18) sa- kT 1n 1 a Where Xb is the activity coefficent of A. Combining equations H17 and H18: 1119) In Ya - zwabx: / kT Calculation Scheme Equation H19 of the derivation reads: 10 H20) 1n Xa - zwabxfi / kT Where Ya is the activity coefficient of the solute. z is the coordination number or number of next nearest neighbors of the solute. Xb is the concentration of the solvent. T is temperature. k is Boltzmans constant. Wab is the change in pair wise interaction energies for the reaction: H21) 1/2 A-A + 1/2 B-B 3 A-B Equation H20 can be solved for Wab: 1122) Wab =- RT 1n Ya / x: z Note that the ideal gas law constant R, has been substituted for k in equation H22. This changes the units of Wab to energy per mole. Xa, Xb, and T are available from experimental data. The reference state for the activity coefficient; Xa, of the regular solution theory is set by equation H20. As the concentration of the solvent; Xb, goes zero, the solute activity coefficient goes to one. The coordination number of the solute; Z, is a function of the ll solvent-solute lattice structure. Data on the structure of individual solvnet-solute lattice were not analyzed. 2 was assumed a constant for each solute. The coordination numbers used: oxygen six, nitrogen six, carbon four, and hydrogen one. Discussion System energies are modeled as due to the interaction energies of pairs (equation H1 and H5). The scheme ignores the effect of next nearest neighbors on particle interactions. This calculation scheme is lacking for liquid metal systems where electron delocalization is the rule. The degeneracy is defined as being calculated from an assumption of randomly distributed particles (equation H6). For this assumption to hold the interaction energies of solute-solute, solute-solvent, and solvent-solvent pairs should be of the same order. Also, the solvent and solute should occupy the same lattice positions, thus they should be of the same size. The solvent and solute must also have the same coordination number (equation H7), this requirement puts more need on the solvent and solute of having the same size. Quasi-Chemical Solution Derivation The quasi-chemical solution theory was developed by Guggenhiem (25). The derivation presented is based on work found in Lupis (57). The quasi-chemical solution theory is simlilar to the regular solution theory presentd in the previous sections. Both were designed for binary solutions. For a solution of A and B, equations H1 through H4 of the regular soultion theory devlopement are valid for the quasi- chemical solution devlopement. The developements split when defining degeneracy. The degeneracy of the regular solution is based on an assumption of randomly positioned particles. The degeneracy of the quasi-chemical solution is based on an assumption of randomly postion pairs. The degeneracy of the quasi- chemical solution can thus be expressed: GI) gi - 1/2 ZN! / (Naa! Nbb! [(Nab/2)!]z) Where N, Naa, Nbb, and Nab are the number A and B particles, A-A pairs, B-B pairs, and A-B pairs respectively. 2 is the coordination number of A and B particles. The term [(Nab/Z)!] squared arise from the distinguishability of A-B and B-A pairings. Equation H1 over estimates the degeneracy as all pairs are not independent. If an A-A pair is adjacent to a B-B pair, two A-B pairs are necessarily produced. To account for this over counting, the factor h is introduced: 12 13 62) g - hgi Where h is calculated by use of the degeneracy of a random arrangement. This is expressed by equation H6 of the regular solution derivation: G3 {go - N! / NaiNb! a h a» 1/2 ZN! / (Nada: Ngb! [(NaB/Z)!]2 ) Where the superscript o designates values predicted by regular solution model. Solving equation G3 for h, and then using this value of h in equation 82 yields: 7. Naoaiwb°b1C(Maob /23l]__ * ’U! 4 =1 ___._. G) 9 was! «1..., r. cw.» /2.>I,]2‘ uaz M! The second group of terms on the right side of equation 64 is the regular solution theory degeneracy, which assumes a solution of 14 randomly positioned particles. The first factor on the right side of equation 64 can be then be thought of as a correction factor. Using equation H3 of the regular solution derivation, equation 64 trnasforms to: (Web. - Va Mai)‘. (Vaéwb- Va “ab 3! 6!: I I / |* (l/gztUa-Va.Uab).(/21Nb'/a Nab). 65) [(NJ ANI— [(Mah/Z)!]z Ma! Mb, As seen in the regular solution theory the free energy of a system is given by: 66) G - -kT ln(g exp(-E/kT)) Where E is the energy of the system, k is Bolztmans constanst, and T is temperature. Using equation H1 of the regular solution theory developement with equation 66 yields: 15 67) 6 =- -kT 1n 2g exp ( -(Ea + Eb - NabWab) / kT) Removing the terms in equation 67 which relate to the pure substances results in the free energy of mixing: M 68) G = -kT In fig exp (-NabWab / RT) The summation in equation 68 can be replaced by the maximum term of the summation. The maximum term is found from the derivative equation: 69) d (3 exp (-NabWab / kT)) / d Nab) - 0 0r equivalently: 610) d (ln g - NabWab / kT) I d Nab - 0 g is defined by equation 65. In taking the derivative of g in 16 equation 610 only terms which are a function of Nab need be retained: 611) d ( -1n ((1/22Na - 1/2Nab)!) - 1n ((1/22Nb - l/2Nab)!) - 21n ((Nab/Z)!) - NabWab/RT ) l d Nab - 0 Using the result that: d(lnX!) = d(XlnX - X) = lnx dX 1/2 In (l/2ZNa - 1/22Nab) + 1/21n (l/ZZNb - 1/2Nab) - 1n (1/2Nab) - Wab/RT = O (:12) (1/2Nab)7' / NaaNabb - exp (-2Wab / kT) Note that the left side if equation 612 defines the equilibrium constant for the reaction: 613) AA + BB 8 AB + BA Thus: 17 614) (1/2Nab)z / NaaNbb - K - exp (-de16 / RT) - exp (-2Wab / kT) Where de16 is the free energy of the reaction in equation 613. From equation 614, Wab and delG can be related: 615) de16 / R - 2Wab / k Equation 612 can then be written: 616) (1/2Nab) I ( (1/22Na - 1/2Nab)(1/22Nb - l/2Nab) ) = exp (-2Wab / kT) Or: 617) LNab” + ZNabN + 2‘ NabNb .. 0 Where L - exp(ZWab/kT) - 1. Applying the quadratic formula to equation 618 yields the roots: 18 618) Root 8 ZN / 2L * (‘1 + (1 + 4LXaXb)M1 ) Note only the positive root has been retained. A negative root would yield a negative value of Nab, which would have no physical meaning. The square root function is approximated by: I 619) (1+x)/2 -1+xl2+x2‘/8+..... Equation 618 thus becomes: Root - Nab - ZN I 2L * (-l + (l + 4LXaXb/2 - 161.2 Xa‘ sz l8)) 620) Nah I ZNaNb/N * (1 - 1XaXb) Equation 620 discribes the value of Nab which will yield the maximum value of the expression g exp(-NabWab/kT) in equation 68. ZNaNb/N is the number of A-B pairs as predicted by the regular solution theory (equation H7 of the regular solution theory developement). Equation 620 can thus be written: 19 (:21) Nab =- Nab" (1 - LXaXb) Where Ngb is the number of A-B pairs as predicted by the regular solution theory. From equation 621 is is seen that if L is positive Nab is greater than NAB. For L to be positive, Wab and in turn delG, must be positve. Thus if the reaction to form A-B pairs from A-A pairs and B-B pairs is exothermic, the number of A-B pairs predicted by the quasi-chemical theory is greater than the number predicted by the regualr solution theory. Equation 620 can be substituted in equation 64 to obtain a new expression for g. After long calculations, the excess free energy results: 622) c'E / kT - l/ZZXb 1n (1 + L) + 1/22Lsz + 1/22L2Xb1- 21.2 (1/4 + 5/3L) x1;I Using equation H14 of the regular solution theory: a 623) of . a: + (1 - Xa) dam / an 20 Since d(Xa) - d(l-Xb) a -d(Xb) equation 623 transform to: E E E (:24) Ga. - cm -Xb dGm Ide Equation 622) thus yeilds: 625) 1n Ya - of / RT - 1/2z1.xb1 - 21.sz + 3/4zL’Xb" (1 + 20/31.) Calculation Scheme Equation 625 of the derivation reads: 2- 626) In X3 = 1/22LXb - z1."x1>a + 3/azL‘Xb" (1 + 20/31.) 21 Where 35 is the activity coefficient of the solute. Xb is the solvent concentration. z is the solute coordination number. L is defined: 627) L - exp (2Wab / kT) - 1 Where k is Boltzmans constant. T is temperature. Wab is defined in the same manner as for the regular solution theory. k can be repaced with the ideal gas law constant. This will make the units of Wab energy per mole. Equation 626 can be written: 628) 5211b”? + (3/4211b" - zx§)L"+ 1/22szL - 1n xa = o Xb and X a can be obtained from experimental data. 2 is assumed constant (see regualr solution theory calculation scheme). Equation 628 can be solved for L by using synthetic devision. L can be used in equation 627 to calculate Wab. The reference state for the activity coefficient for the quasi-chemical theory is defined by equation 626. As the concetration of the solvent goes to zero the activity coefficient of the solute goes to one o 22 Discussion As in the regular solution theory, the quasi-chemical solution theory models system energies as due to first order interaction energies (equations H1 and H5 of the regular solution derivation). The effect of next nearest neighbors on interaction energies is ignored. The degeneracy of the quasi-chemical solution is defined as being calculated from the assumption of a solution of randomly distrubited pairs (equation 61). This scheme allows for preferred pairs. The interaction energies of the solute-solute, solute-solvent, and solvent-solvent do not have to be of the same order. But the solvent and solute should be of the same size. Equation 61 requires that the solvent and solute have the same coordination number. Lee and Johnson Theory Developement The following is based on work found in Lee (51). The chemical potential of a solute particle is given by (Fowler (22)): 1.1) /. - - 5/51 - RT 1119? + kT 1n (Ns/V) Where /ak[, 7g , and Z? are the chemical porential, potential energy, and total partition function of the solute. Note that 2% has a reference value of zero in the gas state. V is the volume of solution; N5 is the number of solute particles; k is the boltzman constant; and T is the absolute temperature. Note that: L2) Ns / V - # of solute molecules / volume of solution Ns / V . # of solute molecules / # solution molecules * average molecular volume of solution molecules Ns/V-Xs/V'avesoln 23 24 Assuming that the average molecular volume of all solution molecules is equal to the molecular volume of solvent molecules fifl): L3) Ha I v - X8 / v'l The chemical potential can be modeled: 1.4) W; =Ed+W(r)+g Where Ed is the work of discharging the interaction energies of the solute molecule when removed from the gas phase. W(r) is the energy required to create a hole in the pure solvent. g is the energy required to put the solute in the hole. The solute and solvent are modeled as not interacting; g is zero. Ed is modeled: L5) Ed - Ei + p delV Where E1 is the reversable work of disharging the interaction energies of the solute molecule in the gas phase. p delV is the work required 25 to change the volume of the solute molecule on going from gas state to a liquid state. E1 is modeled using the dispersive portion of the Lennard-Jones (6-12) potential energy function: 6 6 L6) Ei - 463 as Z-(l/r) Where Es is the maximum energy of dispersion betweeen gas molecules. as is the collision diameter of the solute gas molecule. r is the radial distance between molecules. Summing over all molecules, equation L6 becomes: 00 L7) Ei =- 453 ase 5 (4111'?er dr / r6) 05 Where 98 is the density of the solute in the gas phase. Integration yields: L8) E1 = -(16/3)11 68 as6 ()8 The second factor on the right side of equation L5 is given by: 26 L9) p delV - p (4 Tress/3 - T‘s) Where VB is the molecular volume of the solute molecule in the gas phase. Combining equations L9, L8, and L5: L10) Ed =- (-l6/3)‘W€s aszgs + p (411'883/3 - V's) Using the ideal gas law to transform equation L10: 1.11) Ed =- -16‘n'Es 882 p / (3111*) + 4uaa’p / 3 - kT Riess (90) models W(r) of equation L4: L12) d(N(r)) - p4-rrr1dr + €8n’dr 27 Where p is pressure, r is the radius if the cavity created, and 4213 the surface tension of the solvent. The first term on the right side of equation L12 is the work of expanding the cavity. The second term on the right is the work done in overcoming the surface tension of the solvent in creating the cavity. Intergrating: L13) W(r) = (4/3)flrtp + 477'r2G’ To account for curvature on surface tension, a film thickness parameter (5 ) must be added to L13: 1.14) W(r) - (4/3)7rr7'p + 41714.9(1 - (2 5/1») Film thickness parameters are difficult to measure or model. This reduces the usefulness of equation L14 for this work. The film thickness paramater will not be used in this work. Reiss (90) references developement of the film thickness parameter. Reiss (92) in another work states that the probability of creating a cavity of radius L; which does not contain the center of a 28 solvent molecule, is related to work required to create the cavity: L15) RHO(L) I exp (-W(L) / kT) Where RHO(L) is the probability of creating the cavity and W(L) is the work required to create the cavity. For cavities of radius less than or equal to of the radius of the solvent molecule, the pobability that said cavity will contain the center of a solvent molecule is (4/3)flL39- . Where L is the radius of the cavity and is the number density of the solvent. It follows that the probability the cavity does not contain the center of a solvent molecule is: L16) RHO(L) - 1 - (4/3)-n L39 Combining equation L15 and L16: 1.17) 11(1.) = —kT ln (1 - (4/3)Trr39) Equation L17 thus discribes the work required to create a cavity of radius less than or equal to the radius of the solvent molecule. This reduces the usefulness of equation L17. 29 Reiss (90) in another work models the factor W(r) by a polynomial expansion: L18) W(r) I K3r3 + K2r1 + Klr + K0 Comparison of equation L18 and L14 yeilds: 1.19) K3 - (4/3)rrp Reiss then calculates the remaining constants of equation L18 by comparing equations L17 and L18 and their derivatives at the point where the radius of the cavity equal the radius of the solvent. Comparing equations L17 and L18: 2 .3 3 L20) [(0 + Klal + K2a1 + [(331 I ~kT 1n (1 - 4ffal Q / 3) Where a1 is the radius of the solvent molecule. Taking derivatives: 30 L21) K1 + 2K2a1 + 31(3a1z I k: (1 / <1 - (Io/awe 1.13)) * meal” L22) 2K2 + 6K331 I kT { (1 .1 (l - (4/3)1TPa13)2) * 161I%a1q + M961 * (1 / (1 - (Mame e113» } With the simplifications: L23A) K3 = 41Tp / 3 L233) y I 41Tpa13/ 3 Equation L23 transforms to: 2. 7. 124) K2 . (kT / 2a1 ) * { 9(y / (1 - y)) + 6y / (1 - y) } - 417pa1 Combining equations L21 and L23 with the aforementioned 31 simplifications: 1.25) K1 - (-kT / a1) * { 9(y I (1 -y))1+ 3y / (1 -y) 1+ 41Tpa13 Similarly, equation L20 yields: L26) K0 I -kT ln (1 - y) + kT (4.5 (y / (1 - y))2) - 4N'pa13 / 3 Combining equations L18, L24, L25, and L26: 1.27) W(r) - ~11 1n (1 - y) + 111 (4.5 (y / (1 - m“) - 4flpa13/ 3 (r/al)kr{9>"‘+ 3y / <1 - yn 417pa12 r - 4flpa1r7‘ + (4/3)1rpr3 + The radial measure terms (r and a) in equation L27 are of order E-8. Thus the pressure (p) terms in equation L27 are of order E-20. y is defined by equation L23B. The number density factor (9) is of order E23. Thus y is of order E-l. The pressure terms in equation L27 can thus be eliminated to yield: 32 W(r) I -kT 1n (1 - y) + 4.5kT (y / (1 - y))2 «r/H)U<9o/<1-wf+3y/u-yn +(r / :11)"L kT (4.5 (y / (1 - y))“ + 3y l (1 - y)) Combining this short form of equation L27 with equations L1, L3, L4, and L11 yields: 1? 1. L28) l/V: I - kT ln (1 - y) + 4.5kT (y / (l - y)) 4r/u>u<9w/(1-wf+3y/u-yn «r/mfkrus + 16fl€s aszp / (3kT) + 47ras3p / 3 -kT + kT 1117; + kt ln (Xs lrl) As in equation L27, the pressure terms in equation L28 can be removed by unit analysis. Note that this simplification effectively reduces equation L11 to: L29) Ed I -kT 33 The chemical potential of a ideal gas molecule is given by (Fowler (22)): 7 L30) #5 - -kT 1n Cf; + kT 1n (Ps / kT) Where ‘g.is the partition function of a lone solute gas molecule. Note that the term flis the same in equations L1, L29, and L30. P3 is the partial pressure of the solute. At equilibrium: 1.31) ,us. Equations L30 and L28 combine to yield: L32) ln (Ps / Xs) I -1n (1 - y) + 4.5 (y / (l - y))z - 1 +ln (RT [111) -111112 Cancn+PafioN 49 50 The standard state (L4:) obtained from extrapolation in Figure 81 refers to a pure solution of solute, but with the solute molecules in the same configuration as when in an infinitly dilute solution. This is an hypothetical state. At low solute concentrations the curve of solute chemical potential vs concentration follows the dashed line use to find /u:1 In this region the solute chemical potential is given by: * 82) fla I/Ua + RT 1n Xa Where Xa is the solute concentration. If equation 82 is followed up to the maximum concentration of the solute: max 46 B3) /A4a I /A(a + RT 1n Xmax max Where [Its is the chemical potential of the solute at its maximum solubility while Xmax is that maximum solubility. At maximum solubility the solute is in equilibrium with its vapor and with its precipitate. Thus: 51 Where/Man is the chemical potential of the solute in its precipitate. Chemical potential can be expressed in terms of moler enthalpy and entropy: X -w U 85)/.( Ih-Ts ;/.LIh-Ts Where h is moler enthalpy and s is moler entrapy. Combining equations 83, B4, and 85: Inax *1 a' -* 86) RT lnXmaxI As -,L(a I [la-Iota * D * I hU - h - T (s - s ) The term (sU - s") in equation 86 is the change in entropic energy of the solute on going from the reference state to a precipitate. If entropic energies are modeled as due to random motion in a box, any change in entropic energy is equivalent to changing the size of the box. Box size would be dictated by the molecules sorrondings. The surrondings of the solute in the reference state woulb be solvent molecules, since the reference state is extrapolated 52 from an infinitly dilute solution. For solutions of non metals dissolved in liquid metals the liquid metal solvent will carry positive charge due to electron delocalization; the non metal solute will carry a negative charge for the same reason. Thus the size of the box occupied by the solute in the reference state solution would be small. The size of the box occupied by the solute in a solid precipitate will also be small. If we assume the box sizes are of the same order, the term (sEr - a“ ) becomes zero. Note that the random motion in a box model of entropy ignores the effect of degeneracy. The solute in liquid solution has freedom of movement and can occupy more positions. The solute in the precipitate is locked into a lattice. Thus sI‘should be larger than 3*, with a corresponding increase in Xmax. Enthalpic energy can be modeled as an intrinsic portion to temperature and pressure only plus an external portion due to interactions with surrondings. These interactions can in turn be modeled as surface tension interactions between adjacent non-bounded molecules and bond energies of bonded atoms. Thus the enthalpy of the solute in the precipitate is: a a 87) h I SA Navo [6's - B’al + E0 + hint Where hint is the intrinsic energy of the solute. Et’is the bond energy of any complex formed involving the solute. 0’ a and 19’s are the surface tension of the solute and of the solute surrondings. SA is the surface area of solute exposed to the surrondings. Navo is Avogodro’s 53 number. The solute will precipitate as a pure crystal or as a solute-solvent complex. In the former the solute surrondings is other solute atoms. Thus the term (6's - 19’s) is zero. If the precipitate is a solute-solvent complex the term (196 - tin) can be again be assumed zero. Surface tension between bonded atom are defined as zero and surface tension between solute-solvent complexes is assmumed zero. Thus for pure or hetro solute precipitates: c: n as) h - 1:m + 11111: The enthalpy of the solute in the reference state can be written: 11 «- 4- 89) h ISANavol0'b-5'aI-I-E +hint Where <9 b and 6’s are the surface tension of the solvent and solute. 8* is the bond energy of any complex formed involving the solute. hint is the intrinsic energy of the solute. SA is the surface area of solute exposed to solvent particles. Combining equations 89, 88, and 86 yields: 54 *’ U 810) -RTlnXmaxISANavo IO'b- 0‘s] +E -E Note that hint has droped out of equation 810. This is because it is the internal energy of the solute atom, dependent only on temperature and pressure. Calculation Scheme Equation 810 of the derivation reads: 1» 1311) - RT ln Xmax . SA Navo | (2b - 29'a| + 1: - 11 Xmax is the maximum solubility of the solute. 3b is the surface tension of the solvent, obtainable from the CRC Handbook of Chemistry and Physics (page F25). (9’ a is the surface tension of the solute. T is temperature. R and Navo are the ideal gas law constant and avogodro’s number. SA is the surface area of the solute which is touched by solvent particles which the solute in question is not bonded to. EU and 12* are the change in enthalphic energy of the solute on 55 going from an unassociated solute atom to a solvent-solute complex in the solid precipitate and in the liquid solution respectively. Equation 813 shows two free flaoting parameters: the surface area term SA and the surface tension of the solute, (0a). The solute surface tension will be assumed zero. This will allow calculation of the surface area term SA For organic-metal solution, the complex would be a organic-metal complex. E a and 8*“ are thus the enthalphy of formation of the organic-metal complex. Enthalphy of formation data is defined as an energy that must be added to a system to create the complex. Thus: 0 ‘K‘ 812) E I del Hf ; E I del Hf Where del Hf is the enthalphy of formation of the organic-metal complex. del Hf data can be obtained from the CRC Handbook of Chemistry and Physics (page D45 and D67). del Hf data for some systems was not *- found. For these systems E" and E were assumed zero. Calculation Scheme #1 It is logical to assume that the complex formed by the solute and solvent in the liquid solution is the same as the complex formed by 56 the solvent and solute in the solid precipitate. Thus the terms Eta and EJ‘are equal. The solute can be modeled as existing in a partially bounded state. This can be expressed mathamatically: *- - RT 1n Xmax - SA Navo | 67b| + FRAC * E” - 3 Or: 313) - 11 la Xmax . SA Navo | EYbI - (1 - FRAC) del 31 Where FRAC is the fractional existance of the solute in solution as the organic-metal complex. Equation 813 can be solved for the surface area of the solute touched by solvent particles which the solute is not bonded to: 314) SA a (- RT 1n Xmax + (1 - FRAC) del Hf) / (Navo | 6Vbl) If the solute is assumed spherical, the radius of the solute can be calculated from the surface area: 57 315) SA - 4111-"1 V2 316) r - (SA/411’) Where r is the radius of the solute atom in the liquid solution. Note that the above derivation does not take into account that the exposed surface area of the solute will be decreased by the solute’s ”fractional” existence in a complex. Calculation Scheme #2 Calculation scheme 2 ignores the bound energy factors in equation 811. This is equivalent to calculation scheme one with FRAC equal one. The resulting equation is: 817) - RT ln Xmax I SA Navo I fibl Equation 817 can be solved for the surface area of the solute: 58 818) SA I - RT 1n Xmax I (Navo I O’bl) Using equations 815 and 816 the results of equation 818 can be used to calculate the radius of the solute atom in solution. Discussion In developement of equation 83 of the surface tension theory development section, the activity of the solute is assumed equal to the solubility of the solute over the entire solubility range of the solute. It is important to note that this is not equivalent to assuming an ideal solution. This assumption is equivalent to assuming that the activity coefficient is constant over the entire solubility range of the solute. The acticity coefficient is a measure of the deviation from the reference state. The reference state in turn is a set deviation from the ideal state. Thus assuming that the activity coefficient is constant assumes that the deviation of the solution from the ideal state is constant, that the environment of the solute is constant over the entire solubility range of the solute. At low solute concentration this assumption seems valid. As the solute concentration rises, and 59 the solute paticles begin to affect each others environment, the assumption of a constant activity coefficient is suspect. The surface tension of the solute is assumed zero to allow calculation of the surface area term SA (see equation 811 above). This could be a significant error if the solute surface tension varies with the solvent. The assumption was made to aid calculation. The surface tension calculation scheme section shows how to calculate the surface area of the solute from experimental data (eqautions 814 and 818). Note that the areas defined by these equations are the surface area of the solute touched by solvent particles the solute is not bonded to. This area cannot be the entire surface area of the solute. Picture a rack of pool balls just before the break and a basket of apples. The objects rest against each other at points. The apples would mash against each other, thus the apples would have more area of contact than the pool balls. To model the percentage of solute surface area that could be touched, one must decide how soft the solute particles would be. This, combined with the lattice structure of solution and the relative positioning of the solvent and solute, would allow calculation the area of contact between solute and solvent. Equation 816 above should read: r - (SA * 110111: / 1.11)": Where MORE is the amount that the surface area supplied from the 60 surface tension theory should be increased to account for the fact that the solute cannot be touched on all of its surface by other particles. Correlations Found Regular Solution Theory Figures 1 through 4 show the attempts made at finding a correlation involving Wab, the free parameter of the regular solution theory. All of the graphs are weak, with the exception of the results for carbon with transition metals in Figure 1. For carbon in pure liquid transition metals Figure 1 predicts the correlation: Wab I 0.98858 * T + 361.98 where T is temperature. Quasi-Chemical Solution Theory Figures 5 through 8 show the attempts made at finding a correlation involving Wab, the free parameter of the quasi-chemical solution theory. Figures 5 through 8 show that Wab correlates well with temperature. The correlations predicted by Figures 5 through 8: Wab I 0.38889 * T + 94.444 61 62 Wab I 0.34316 * T + 76.421 Wab I 0.49412 * T + 60.000 Wab I 0.33929 * T + 21.429 Where the equations are for carbon, oxygen, hydrogen, and nitrogen in pure liquid metals respectively. A natural question is why would a interaction parameter such as Wab (defined by equation HS in the regular solution derivation section) would have such a strong dependance on temperature. An interaction energy parameter should be a function of the solute and the solvent. Figures 5 through 8 suggest that Wab is a function of temperature alone. Lee and Johnson Theory The Lee and Johnson theory was found to be unusable. The use of experimental data in the calculations lead to the square root of a negative number. See the Lee and Johnson theory derivation for more complete explination. 63 Surface Tension Theory Figures 9 through 12 show the attempts made at finding a correlation involving the solute radius, the free parameter for the surface tension theory. Figures 9 through 12 were generated from surface tension calculation scheme two. Figures 9 and 10 show that the surface tension calculation scheme two predicts a solute radius for carbon and oxygen with transition metals. It cannot be determined from Figures 11 and 12 if surface tension theory will predict a solute radius for nitrogen and hydrogen with transition metals. There is not enough data. Surface tension calculation scheme one was found unusable. The enthalpy of formation (del Hf) of the solute-solvent complex is an input to the calculations (see equation 814 of the surface tension theory derivation). del Hf is a large negative number for almost all systems. The factor - RT ln(Xmax) + FRAC * del Hf is negative for almost all systems if FRAC is set to one. This negative feeds into the calculations where a negative surface area results from equation 814 . Various values of FRAC were tried. Setting FRAC equal to 0.02 allowed all the experimental data to be mathamatically viable. Unfortunetly this led to results that were worse than when the enthalpy 64 factor was not taken into account (surface tension theory calculation scheme 2). The enthalpy factor seems a logical inclusion in the derivation of the surface tension model. A manner in which to include it in the mathamatics of the surface tension model was not found in this investigation. Wab *E-Z Calories I gmole 65 W @ <::) Key: 0 - transition D - non transition ?0 a??? 1L0 (a ’1 17. - 2.0 28 ‘10 Temperature *E-2 Kelvin Figure 1 Wab Predicted by the Regular Solution Theory for Metal-Carbon Systems Wab *E-2 Calories I gmole 30 60 40 .210 66 Key: 0 - transition 0 - non transition 1E? ‘1 /2 20 28 Temperature *E-2 Kelvin Figure 2 Wab Predicted by the Regular Solution Theory for Metal-Oxygen Systems Wab *E-2 Calories I gmole 43' 470 ;flO 67 Key: 0 - transition C? - non transition ’0 /1/ Temperature *E—2 Kelvin Figure 3 Wab Predicted by the Regular Solution Theory for Metal-Hydrogen Systems Wab *E-Z Calories / gmole 5'0 30 .70 68 Key: 0 - transition :53 C1 - non transition I7. .2 I 35 Temperature *E—2 Kelvin Figure 4 Wab Predicted by the Regular Solution Theory for Metal-Nitrogen Systems Wab *8-2 Calories I gmole 69 ' If Key: @ 0 - transition C1 - non transition @ /4/ /6> I? 376’ 36 Temperature *E-Z Kelvin Figure 5 Wab Predicted by the Quasi-Chemical Solution Theory for Metal-Carbon Systems Wab *E—2 Calories I gmole 7O 0 - transition (::) U — non transition /0 Cs . /o 6719 ;?<> Temperature *E-2 Kelvin Figure 6 Wab Predicted by the Quasi-Chemical Solution Theory for Metal-Oxygen Systems Wab *E—2 Calories I gmole 71 I0 Key: 0 - transition [3 - non transition E Na ;2 lo /3 Temperature *E-2 Kelvin Figure 7 Wab Predicted by the Quasi-Chemical Solution Theory for Metal-Hydrogen Systems Wab *8-2 Calories I gmole 72 /0 Key: 0 - transition U - non transition 1’ E] (E /;? 20 376’ Temperature *E—2 Kelvin Figure 8 Wab Predicted by the Quasi-Chemical Solution Theory for Metal-Nitrogen Systems Temperature *E-2 Kelvin 4o .30 :90 /C’ 73 Key: 0 - transition @ U - non transition Ii 1 M 14. E 1001 /.0 /.8 137.6 Solute Radius Angstrom Figure 9 Solute Radius Predicted by the Surface Tension Theory for Metal-Carbon Systems Temperature *E-Z Kelvin ‘28 .9/ M. (:> Key: 6g:> O - transition g C] - non transition 8 LEI IE3 19,8? /.9’ .910 Solute Radius Angstrom Figure 10 Solute Radius Predicted by the Surface Tension Theory for Metal-Oxygen Systems Temperature *E-2 Kelvin 75 /3 (a Key: 0 - transition ;__ 3'0 D - non transition //.! \ g (:29 as /. 6 6716’ Solute Radius Angstrom Figure 11 Solute Radius Predicted by the Surface Tension Theory for Metal-Hydrogen Systems Temperature *E—2 Kelvin 76 31 Key: 0 - transition @ D - non transition 2+ @ 5-1" /? w a; L) ? // /5" Solute Radius Angstrom Figure 12 Solute Radius Predicted by the Surface Tension Theory for Metal-Nitrogen Systems Comparison of Theory Predictions with Experimental Data Surface Tension Theory The surface tension theory showed the best predictive abilities for carbon or oxygen with transition metals. The comparison of theory predictions with experimental data is shown in Figures 15 and 16. The systems in Figures 15 and 16 are examples of systems that showed good, fair, or poor fits in Figures 9 and 10. carbon with cobalt and oxygen with copper are example of good fit systems. The calculated maximum solubility for these systems are off by a factor two and three respectively. chromium with oxygen is an example of a fair fir system. The calculated value is off by a factor of four. carbon with titanium and oxygen with titanium are examples of poor fit systems. Their calculated values are off by five and four hundred respectively. Quasi-Chemical Solution Theory The quasi-chemical solution theory showed the best results for all other systems. The comparison of theory predictions with experimental data is shown in Figures 13 and 14. The systems aluminum with carbon, barium with oxygen, and copper with oxygen are examples of systems which show good fits in Figures 5 and 6. They calculated values of the activity coefficient are off by a factor of two for all three systems. bismuth with carbon and antimony with oxygen are 79 80 examples of systems with fair fits in Figures 5 and 6. Their calculated values are off by a factor of forty and twenty respectively. Copper with carbon and nickel with oxygen are examples of systems with poor fits in Figures 5 and 6. Their calculated values are off by a factor of seven hundred and two hundred. It is evident, from Figures 5, 6, 13, and 14 that small deviations in Wab produce large deviations in the predicted values of the activity coefficient. Example, the bismuth-carbon data entry at 1100 degrees Kelvin is only slightly off in Figure 5, but the predicted activity coefficient is off by a factor of eighty. The reason for this weakness can be seen by inspecting the key equaton for the quasi-chemical theory, equation 625 of the quasi-chemical derivation: 2 4 (1) 1n Xa = (1/2) ZAXbZ- 211 1133 + (3/4) 21 Xb (1 + 201 / 3) A - exp (2Wab / 11) - 1 Where (a is the solute activity coefficient. 2 is the solute coordination number. R is the ideal gas law constant. T is temperature. For most systems the solubility of oxygen and carbon is small. The solvent concentration (Xb) is close to one. Thus the activity coefficient is mainly a function of Wab. Equation (1) shortens to: 81 (2) 1n a I K1 * exp (Wab I T) + K2 * (exp (Wab I T))2 + K3 * (exp (Wab I T))a+ K0 Where K1, K2, K3, and K4 are constants at low solute concentrations. Equation (2) explains why small deviations in Wab produce large deviations in the activity coefficient. ln (1 I Xmax) la? /0 82 Key: 0 - experimental l/ C] - calculated \ B) . < 1:) \\ CHI \ a ( \o ,3! El ®\@ I ?' /€/ 97/ Temperature *E-2 Kelvin Figure 13 Quasi-Chemical Solution Predictions for Metal-Carbon Systems ln (1 I Xmax) Key: /69 0 - experimental U - calculated 7AY' C / L‘\ <; y/) {11 5b ' \Q a\\\ ‘( \s K. ‘1 /o /6 33 Temperature *E-2 Kelvin Figure 14 Quasi-Chemical Solution Predictions for Natal-Oxygen Systems 1n (1 / Xmax) 84 Key: 91.4 G O - experimental D - calculated 3.6 \ \1 1 I 1 El \\\\\ ’;'\ . c.74\.\ T" b I E 2.0 1 E1 /i J/ 2% Temperature *E-Z Kelvin Figure 15 Surface Tension Theory Predictions for Metal-Carbon Systems 1n (1 I Xmax) 85 Key: /0 0 - experimental [31- calculated 5157 N1 5.0 E\ (1.1 \‘\ (9“(/1‘ C)\\‘I\\\13 (:r \\\\3 G 25 B \ 81 ‘1 [r 2.7 Temperature *E-2 Kelvin Figure 16 Surface Tension Theory Predictions for Metal-Oxygen Systems Conclusions The surface tension theory showed to be the best for the isolated case of Carbon or Oxygen with transition metals. A logical question is whether the surface tension theory will prove to be the best for all solutes with transition metals. The amount of data for Nitrogen and Hydrogen was insufficient to draw any conclusions. The surface tension theory is the theory of choice for further study. The results, unlike the quasi-chemical theories correlation of temperature and interaction energy, makes sense. The solute should have a radius in solution which is different than the radius the solute has normally. This solution radius would be a function of the solvent lattice, solvent-solute interaction energy, and the availability of free electrons for the solute to absorb or possible lose. It is logical that the solute radius in the transition metals showed such a single value; the chemistry of the transition metals is very similar. The results for the other periodic groups might be brought into shape further work with energy factors 8* and ED . The quasi-chemical solution theory proved to be the best theory for all Systems other than Carbon or Oxygen with transition metals. The correlations produced by the quasi-chemical theory are good, but the theory does showsa weakness in using correaltion predicted free parameter values to calculate the activity coefficient. The natural log of the activity coefficient is a function of the exponential of the free parameter. Figures 5 through 8 show the correlation between 86 87 quais-chemical free parameter, a solute-solvent interaction energy parameter Wab, and temperature. It is difficult to understand why Wab would correlate so well with temperature. Energy of interaction between the solvent and solute should be a function of solvent-solute bond energy, the lattice energy of the solvent, and the type of lattice the solvent forms. The regular solution theory was surpassed in predictive abilty for all systems by the surface tension theory or the quasi-chemical theory. The regular solution theory did predict a valid correlation for Carbon with transition metals. The theory proposed by Lee and Johnson proved ineffective. But it must be stressed that the theory is ineffective with the calculation scheme used. See the Lee and Johnson theory derivation for a detailed analysis. A theory by Emi and Pehlke was developed but not critiqued against experimental data. The theory requires data which was not easily found or modeled. The theory looks good. It would be worth the time to investigate it futher. Carbon proved to a solute quite susceptable to modeling. In each theories output it showed the best grouping. Possible this could be due to Carbon being more like a metal than the other solutes. Carbon systems would have simpler chemistry. If this analysis is true, the theories, or there derivatives, should hold more closly for me tal-metal systems . 88 VOLUME I I APPENDICES Appendix A Computer Code and Print Out This appendix contains the computer code used and the raw results generated by the the code. The computer used was an Apple 2e. The language is Applesoft Basic. Computer code inputs and outputs: Lee and Johnson code.................................91 inputs - solvent radius (cm) solvent density (gmole/cm**3) temperature (degrees Kelvin) solute solubility ratio (atom fraction I atm ** (0.5) output - solute radius (cm) Regular solution and Quasi-chemical code.............94 inputs - solute coordination number solute maximum solubility (atol fraction) temperature (degrees Kelvin) output - interaction energy (cal/gmole) Surface tension code.................................100 inputs - temperature (degrees Kelvin) solute maximum solubility (atOpm fraction) 89 Print outs: Regular Surface 90 solvent surface tension (dyne/cm) output - solute radius (cm) and Quasi-chemical solution theories Carbon.......................................105 Hydrogen.....................................132 Nitrogen.....................................l4l oxygeUOOOOOOO00.0.0000...0.0.00.0000000000000148 tension theory Carbon.......................................179 Hydrogen.....................................202 Nitrogen.....................................210 oxygenOOOOOOOOOOOOOO..0O00.0.0000000000000000216 91 ]LIST 10-500 10 REM Lee and Johnson program 20 REM 30 REM VARAIBLE LIST 40 REM A - A........INTERNAL CONSTANT 50 REM 8 - 8........INTERNAL CONSTANT 60 REM C - C........INTERNAL CONSTANT 70 REM CH - CHK......USED FOR INTERNAL CHECK 80 REM D - D........INTERNAL CONSTANT 90 REM D3 - 03.......CONTROL CHARACTER 100 REM DE - DETR.....DETERMINATE OF QUADRATRIC 110 REM IS - IS.......INPUT FILE 120 REM KH - KH.......EXPERIMENTAL SOLUBILITY RATIO at frac / atm‘2 130 REM ME - MET......LOOP INDEX 140 REM MS - MS.......NAME OF METAL 150 REM NA - NAVO.....AV06ADROS NUMBER molecules I mole 160 REM ND - NDSET....NUMBER OF DATA SETS 170 REM NM - NMET.....NUM8ER OF METALS WHICH HAVE METAL FOR A SOLUTE 180 REM NP - NPNT.....NUM8ER OF DATA POINTS FOR A METAL-SOLUTE 190 REM PF - PF.......PACKIN6 FRACTION 200 REM PI - PI.......THE CONSTANT PI 210 REM PN - PNT......LOOP INDEX 220 REM OS - O$.......OUTPUT FILE 230 REM R6 - R6.......IDEAL GAS CONSTANT cm“3 - atm I gmole - degree K 240 REM RH - RHO......SOLVENT DENSITY mole / cm‘3 250 REM RS - RSOLV....RADIUS OF THE SOLVENT 260 REM R1 - R1.......POSSIBLE SOLUTION cm 270 REM R2 - R2.......POSSIBLE SOLUTION cm 280 REM SO - SOL......LOOP INDEX 290 REM TM - TMP......TEMPERATURE degree 6 300 REM 310 REM Set constants 320 REM 330 R6 I 82.05 340 PF I .6 350 PI I 3.141593 360 NAVO I 6.023E23 370 REM 380 REM Set input and output files 390 REM 400 OS I "LAC3.0TP” 410 IS I "K.DATA” 420 DS I CHR$ (4) 430 PRINT D$”MON C,I,0” 440 PRINT D$”OPEN ”;O$ 450 PRINT D$"DELETE ";O$ 460 PRINT D$”OPEN ”;O$ 470 PRINT D$”OPEN ”;IS 480 REM 490 REM 500 PRINT D$;”WRITE ”;O$ 92 ]LIST 510-1000 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650 660 670 680 690 700 710 720 730 740 750 760 770 780 790 800 810 820 830 840 850 860 870 880 890 900 910 920 930 940 950 960 970 980 990 PRINT ” LAC THEORY OUTPUT” PRINT ” ” REM REM Start calculations REM FOR SOL I 1 TO 4 READ NMET H IF NMET I 0 THEN GOTO 1350 REM REM REM FOR MET I 1 TO NMET PRINT D$"READ ”;I$ INPUT M$,NDSET,RHO REM REM Calc solvent radius REM RSOLV I (PF * 3 I (4 * PI * NAVO * RHO)) “ .33333333 REM PRINT D$;"WRITE ";03 FOR I - 1 TO 6 PRINT " " NEXT 1 PRINT " SOLUTE #”;SOL;” METAL ”;M$ PRINT " " REM REM FOR SET - 1 To NDSET PRINT D$;”READ ”;I$ INPUT A$,NPNT PRINT D$;”WRITE ";0$ PRINT ”INPUT FROM ”;A$ REM REM REM FOR PNT - 1 TO NPNT PRINT D$;"READ ”;I$ INPUT KH,TMP PRINT D$;”WRITE ”;O$ REM REM Check if data obeys equation L47 of REM Lee and Campbell calculation scheme REM CHK I 2.71828 ‘ ((5 * PF + 4) I (2 * PF + 4) + L06 ((1 - PF) I R6 I RHO)) IF KH < (CHK / TMP) 0010 1010 PRINT ”THIS DATA SHOULD NOT WORK” REM REM Calc coefficients of equation L35 of REM Lee and Campbell calculation scheme 1000 REM LIST 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350 1360 1370 1380 1390 1400 ]PR#1 ]PR#0 1010-1500 93 I PF I (l - PF) (4.5 * D ‘ 2 + 3 I D) I (RSOLV ‘ 2) I - (9 * D 2 2 + 3 * D) I RSOLV I LOG (RH * RG * TMP * RHO I (1 - PF)) + 4.5 * D “ 2 - 1 REM REM Check if determinate is less than zero REM IF (8 ‘ 2 - 4 * A * C) < 0 THEN GOTO 1130 REM R1(PNT) I ( - 8 + (B ‘ 2 - 4 * A * C) ‘ 0. 5) I2 -RSOLV R2(PNT)I(-B-(B‘2-4*A*C)‘0.)IZ A-RSOLV GOTO 1140 R1(PNT) I - 999 REM PRINT ” TEMPERATURE: ”;TMP PRINT “ SOLVENT DENSITY: ”;RHO PRINT " SOLUBILITY RATIO:”;KH PRINT ' ” NEXT PNT PRINT " ' PRINT ”OUTPUTS” FOR I I 1 TO NPNT IF R1(I) I - 999 THEN GOTO 1260 'PRINT " POSSIBLE SOLUTIONS: ";R1(I);" ”;R2(I) GOTO 1270 PRINT ” NO SOLUTIONS...UNA8LE T0 SOLVE QUADRATIC” NEXT I PRINT ” ” PRINT ” ” REM REM REM NEXT SET NEXT MET NEXT SOL PRINT D$;"CLOSE ”;0$ PRINT D$;”CLOSE ";I$ PRINT D$;”NOMON 6,1,0” DATA 17, 0, ll, 4 END OU>U I ]LIST 10-500 10 20 30 40 50 60 70 8O 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 REM REM REM REM REM REM REM REM ED REM REM REM REM REM REM REM REM REM REM REM REM REM 94 Regular solution and Qausi-chemical solution calulation programs VARAIBLE LIST AC - ACSOL..ACTIVITY COEFF OF THE SOLUTE BE - BE.....OUTPUT FROM REGULAR SOLUTION THEORY CH - CHK....NEXT VALUE CALC CA - CA.....MULTIPLIER OF THE CUBED TERM IN THE CUBIC TO BE SOLV CB - CB.....MULTIPLIER OF SQUARED TERM IN CUBIC CC CD D3 DE LA IT I I$ ME M3 NM NP YSTEM REM REM REM REM REM REM REM REM ND 03 PA PT PN QB QC R1 R2 RG SE SO SL SP ST TM XS ZE ZS CC.....MULTIPLIER OF LINEAR TERM IN CUBIC CD.....CONSTANT IN CUBIC D$.....CONTROL D DETR...DETERMINATE OF QUADRATIC TO BE SOLVED LAM....FIRST ROOT FOUND ITER...INCREASE IN LAM PER ITERATION I......LOOP INDEX I$.....NAME OF INPUT FILE MET....METAL LOOP INDEX M3.....NAME OF METAL NMET...NUMBER OF METALS FORA SOLUTER HAS DATA NPNT...NUMBER OF DATA POINTS FOR A SPECIFIC METAL-SOLUTE S NDSET..NUMBER OF DATA SETS 03.....NAME OF OUTPUT FILE PTH....FLA6 PTH....LOCAL FLAG PNT....INDEX IN DATA POINTS LOOP Q8.....COEFFICIENT QC.....CONSTANT IN QUADRATIC EQUATION R1.....ROOT OF CUBIC R2.....ROOT OF CUBIC R6....IDEAL GAS LAW CONSTANT SET....LOOP INDEX SOL....SOLUTE NUMBER SLTE...CONCENTRATION F0 THE SOLUTE at frac SP.....SPREAD ON OUTPUT STR....VALUE 0F STARTING CALCULATED STARTING POINT TMP....TEMP degree 6 XSLV...CONCENTRATION OF THE SOLUTE at frac ZERO...REMAINDER AFTER LONG DEVISION - ZSOL...COORDINATION NUMBER OF THE SOLUTES E1, E2, E3..POSSIBLE SOLUTIONS cal/gmole Set input and output files 450 OS I ”RQ.OTP" 460 IS I ”AC.DATA" CHR$ (4) 480 PRINT D$;”MON C,I,O” 490 PRINT D$;”0PEN ”;O$ 500 PRINT D$;”DELETE ";os 470 DS I LIST $00 - 1000 95 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650 660 670 680 690 700 710 720 730 740 750 760 770 780 790 800 810 820 830 840 850 860 870 880 890 900 910 920 930 940 950 960 970 980 990 PRINT DS;”OPEN ”;O$ PRINT D$;”OPEN ";I$ REM REM Set constants REM RG I 1.987 REM REM Print output header REM _ PRINT D$;”WRITE ”;OS PRINT ” REGULAR SOLUTION AND QUASI—CHEMICAL SOLUTION RESULTS PRINT ” ' PRINT ”UNIT KEY:” PRINT "TEMPERATURE - DEGREE K” PRINT ”Wab - CA;IGMOLE" PRINT ” ” PRINT " ” PRINT ” " FOR SOL I 1 TO 4 READ ZSOL(SOL),NMET IF NMET I 0 THEN GOTO 2290 PRINT D$;”WRITE ”;O$ PRINT " ” PRINT ” ” FOR MET I 1 TO NMET PRINT D$;"READ ”;I$ INPUT M$,NDSET PRINT D$;”WRITE ”;0$ PRINT ” ” PRINT PRINT PRINT PRINT PRINT PRINT REM REM FOR SET I 1 TO NDSET PRINT D$;”READ ”;I$ INPUT A$,NPNT PRINT D$;”WRITE ”;O$ PRINT ”INPUT FROM ";A$ REM REM REM FOR PNT I 1 TO NPNT PRINT D$;”READ ”;IS INPUT ACSOL,SLTE,TMP XSLV I 1 - SLTE SOLUTE #";SOL;” METAL ”;M$ 1000 REM LIST 1010 - 1500 96 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350 1360 1370 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500 REM Begin quais-chemical calculation REM REM Calculate coeffs in cubic defined by equation REM 628 of quasi-chemical calculation scheme REM CA I 5 * ZSOL(SOL) * XSLV ‘ 4 CB I 3 / 4 * ZSOL(SOL) * XSL ‘ 4 - ZSOL(SOL) * XSL ‘ 3 CC I 1 l 2 * ZSOL(SOL) * XSLV ‘ 2 CD I - LOG (ACSOL) REM REM Normalize coeffs REM CB I CC I CD I CA- REM REM Solve for first root by iterative loop technique REM LAM I - 1 ITER I 1 STR I CA * LAM ‘ 3 + CB * LAM ‘ 2 + CC * LAM + CD IF ABS (STR) < .001 GOTO 1550 PTH I 0 IF STR < 0.0 THEN PTH I 1 REM REM REM LAM I LAM + ITER CHK I CA * LAM ‘ 3 + CB * LAM ‘ 2 + CC * LAM + CD IF ABS (CHK) < .001 GOTO 1550 IF PTH I 1 GOTO 1400 REM REM WHEN PTH EQUALS ONE, THE STARTING POINT HAS LESS THEN ZERO REM REM IF CHK > 0 THEN GOTO 1290 GOTO 1440 REM IF CHK < 0 THEN GOTO 1290 REM REM Overshot reset LAM REM LAM I LAM - 2 * ITER 9889 9992 HLm< -1mmLMI -1 ITER - ITER I 10 GOTO 1220 REM REM REM LIST 1010 - 1500 97 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350 1360 1370 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500 REM Begin quais-chemical calculation REM REM Calculate coeffs in cubic defined by equation REM G28 of quasi-chemical calculation scheme REM CA I 5 * ZSOL(SOL) * XSLV ‘ 4 CB I 3 / 4 * ZSOL(SOL) * XSL ‘ 4 - ZSOL(SOL) * XSL “ 3 CC I 1 / 2 * ZSOL(SOL) * XSLV ‘ 2 CD I - LOG (ACSOL) REM REM Normalize coeffs REM CB I CC- CD I CA- REM REM Solve for first root by iterative loop technique REM LAM I - 1 ITER I 1 STR I CA * LAM “ 3 + CB * LAM ‘ 2 + CC * LAM + CD 000g DUO \\\\ 9992 IF ABS (STR) < .001 GOTO 1550 PTH I 0 IF STR ( 0.0 THEN PTH I 1 REM REM REM LAM I LAM + ITER CHK I CA * LAM ‘ 3 + CB * LAM ‘ 2 + CC * LAM + CD IF ABS (CHK) < .001 GOTO 1550 IF PTH I 1 GOTO 1400 REM REM WHEN PTH EQUALS ONE, THE STARTING POINT WAS LESS THEN ZERO REM REM IF CHE > 0 THEN GOTO 1290 GOTO 1440 REM . IF CHK < 0 THEN GOTO 1290 REM REM Overshot reset LAM REM LAM I LAM - 2 * ITER IF LAM < - 1 THEN LAM = - 1 ITER I ITER I 10 GOTO 1220 REM REM REM LIST 1510-2000 98 1510 1520 1530 1540 1550 1560 1570 1580 1590 1600 1610 1620 1630 1640 1650 1660 1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 REM ***FIRST ROOT OF CUBIC FOUND **** REM REM Calc coeff of square REM QB I CB + LAM QC I CC + LAM * QB ZERO I CD + QC * LAM DETR I QB ‘ 2 - 4 * QC REM REM Solve square REM IF DETR < 0 GOTO 1710 IF DETR I 0 GOTO 1780 R1 - ( - QB + DETR * (0.5)) l 2 R2 - ( - QB - DETR “ .5) / 2 PRINT ”ROOT ARE ”;R1;R2;LAM GOTO 1870 REM REM REM PRINT "ONE ROOT ONLY, EQUALS ”;LAM R1 - - 2 R2 - - 2 GOTO 1870 REM REM REM R1 . - QB I 2 PRINT ”ROOTS ARE: ”;R1;LAM R2 I - 2 GOTO 1870 REM REM REM REM Calculate Hab values REM E1(PNT) I 0 E2(PNT) I 0 E3(PNT) - 0 IF R1 < - 1 GOTO 1920 El(PNT) I LOG (R1 + 1) * RG * TMP / 2 IF R2 < - 1 GOTO 1940 E2(PNT) - LOG (R2 + 1) * RG * TMP I 2 E3(PNT) - LOG (LAM + 1) * RG * TMP / 2 PRINT D$;”WRITE ";os REM REM REGULAR SOLN CALC: REM BE(PNT) I LOG (ACSOL) * RG * TMP I XSLV ‘ 2 I ZSOL(SOL) REM LIST 2010-2500 99 2010 REM 2020 PRINT ' TEMPERATURE: ”;TMP 2030 PRINT ' SOLUTE ACTIVITY COEFF: ":ACSOL 2040 PRINT " SOLUTE CONCENTRATION ”;SLTE 2050 PRINT " SOLUTE COORDINATION NUMBER: ”;ZSOL(SOL) 2060 PRINT ” ” 2070 NEXT PNT 2080 REM 2090 REM 2100 PRINT "OUTPUT" 2110 FOR I I 1 TO NPNT 2120 PRINT " QUASI-CHEMICAL PREDICTIONS OF Wab: ”;E1(I);” ";E2(I);" ”;E3(I) 2130 NEXT I 2140 SP I (E3(NPNT) - E3(1)) / E3(1) * 100 2150 IF SP ( 0 THEN SP I - SP 2160 PRINT ” SPREAD ON OUTPUT: ";SP 2170 PRINT ” ” 2180 PRINT ” ” 2190 FOR I 1 TO NPNT 2200 PRINT " REGULAR SOLUTION PREDITIONS 0F Wab: ";BE(I) 2210 NEXT I 2220 SP I (BE(NPNT) - BE(1)) / BE(1) * 100 2230 IF SP ( 0 THEN SP I - SP 2240 PRINT " SPREAD ON OUTPUT: ';SP 2250 PRINT ” ” 2260 PRINT ” ” 2270 NEXT SET 2280 NEXT MET 2290 NEXT SOL 2300 PRINT D$;”CLOSE ”;I$ 2310 PRINT D$;'CLOSE ”;O$ 2320 PRINT D$;”NOMON C,I,O” 2330 END 2340 DATA 2, 0 2350 DATA 4, 0 2360 DATA 6, 0 2370 DATA 6, 9 ]PR#0 100 ]LIST 10 - 500 10 20 30 40 50 60 70 80 90 100 130 140 150 160 170 180 190 200 205 210 220 230 240 250 260 270 280 290 300 310 340 350 360 380 400 410 420 430 440 450 460 470 480 490 500 REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM REM BUX THEORY CALC VARIABLE LIST - A. o o o o o OCONS FOR DELTA H CALC - Bo o o o o o o CONS FOR DELTA H CACL - Co 0 o o o o OCONS FOR DELTA H CALC CE - CEC......CONV FACTOR erg/cal CH - CHOICE..I0 FOR CALC FROM EXP DATA; I1 FOR PREDICTIONS EC - ECOM....DELTA H cal/gmole DH - DH......CONS FOR DELTA H CALC I - I.......CONS FOR DELTA H CALC IN - IN......LOOP INDEX LA - LAST....NUMBER OF POINTS DATA TABLES ME - MET.....LOOP INDEX MN - MNUM....METAL NUMBER NA - NAVO.....AVOGODROS NUMBER molecule/mole NC - NC.......NUMBER OF ATOMS IN SOLUTE-SOLVENT COMPLEX ND - NDSET...NUMBER OF DATA SETS NM - NMET....NUMBER OF METALS SOLUTE HAS DATA FOR NP - NPNT....NUMBER OF DATA POINTS FOR A METAL-SOLUTE RA - RAD(4)...SOLUTE RADIUS cm RC - RC.......CALC SOLUTE RADIUS WITHOUT ECOM RE - RE.......CALC SOLUTE RADIUS USING ECOM RG - RG.......IDEAL GAS CONSTANT cal/gmole [degree C PE - PE......PERCENT ERROR ON XMAX PREDICTION PI - PI......THE CONSTANT PI PN - PNT.....LOOP INDEX SE - SET....LOOP INDEX T1 - T1......INDEPENDENT VARIABLE DATA TABLE T2 - T2......DEPENDENT VARIABLE DATA TABLE TH - THMET....METAL SURFACE TENSION dyne/cm TM - TMP......TEMPERATURE degree C XC - XC......CALC MAX SOLUBILTY XM - XMAX.....SOLUTE MAXIMUM SOLUBITY at frac AS - AS......NAME AUTHOR FOR DATA SET D3 - D3......CONTROL D IS - 13......NAME OF INPUT FILE MS - M3......NAME OF METAL OS - O$......NAME OF OUTPUT FILE S$ - S$......NAME OF SOLUTE TS - T3......NAME OF TABLE INPUT FILE LIST 510-1000 101 510 520 525 530 550 560 570 580 590 600 610 615 620 630 640 650 660 670 680 690 700 705 710 720 730 740 750 760 770 780 790 800 DS I CHRS (4) OS I ”BUXC.OTP" IS I "XC.DATA” READ CHOICE PRINT D$;”MON C,I,O” PRINT D$;'OPEN ”;0$ PRINT D$;”DELETE ”;O$ PRINT D$;”OPEN ”;0$ PRINT D$;”OPEN ”;I$ REM REM GOTO 750 REM FOR PREDICTIVE PURPOSES ONLY IF CHOICE I 0 THEN GOTO 740 T3 I "TABLE.DAT” PRINT D$;"OPEN ”;T$ PRINT D$;"READ ";T$ INPUT LAST REM FOR IN I 1 TO LAST INPUT T1(IN),T2(IN) T2(IN) I T2(IN) * 10 ‘ ( - 8) NEXT IN REM REM REM PRINT D$;”READ ”;I$ INPUT S$,NMET REM REM REM REM SET CONSTANTA 850 RC I 1.987 860 870 880 890 900 910 920 940 950 960 970 980 990 NAVO I 6.023E23 PI I 3.141593 CEC I 4.184E7 REM REM REM REM START CALCULATIONS REM REM REM IF NMET I 0 THEN GOTO 2060 REM REM 1000 PRINT D$;"HRITE ";os LIST 1010-15000 102 1010 1020 1030 1040 1050 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350 1360 1370 1380 1390 1400 1410 1420 1430 1450 1460 1465 1470 1480 1490 1500 PRINT ' BUX THEORY OUTPUT” PRINT ” " PRINT ”UNITS KEY:' PRINT ” RADIUS - CM” PRINT ” SOLUBILITY AT FRAC” PRINT ” TEMPERATURE DEGREE C” PRINT ” SURFACE TENSION DYNE/CM” REM REM REM FOR MET I 1 TO NMET PRINT D$;”READ ';I$ INPUT M$,NDSET INPUT DH,A,B,C,I,NC REM REM REM REM REM PRINT D$;”WRITE ”;O$ FOR IN I 1 TO 6 PRINT " ' NEXT IN PRINT ' OUTPUT FOR "3S$;” AND METAL ”;M$ PRINT ' ” FOR SET I 1 TO NDSET PRINT D$;"READ ”;I$ INPUT A$,NPNT PRINT D$;”WRITE “30$ PRINT ”INPUT FROM ”;A$ REM REM REM FOR PNT I 1 TO NPNT PRINT D$;“READ ”;I$ INPUT XMAX,TMP,THMET REM REM REM IF CHOICE I 0 THEN GOTO 1840 REM REM GOTO 1765 REM THIS WILL SEARCH A TABLE REM REM REM T1 ARE THE INDEPDENT OR SEARCHED TABLE VALUES LIST 1510-2000 103 1510 REM IT IS ASSUMED THEY STARTS SMALL AND GETS LARGER 1520 REM 1530 REM RAD IS THE DEPENDENT OR OUTPUT TABLE VALUES 1540 REM 1550 REM INPUTS 1560 REM NUMBER OF TABLE VALUES 1570 REM THE TABLE VALUES 1580 REM THE VALUE TO BE SEARCHED FOR 1590 REM 1600 REM 1610 REM 1620 IF TMP > T1(1) THEN GOTO 1650 1630 RAD(SOL) - T2(1) 1640 GOTO 1760 1650 IF TMP < T1(LAST) THEN GOTO 1680 1660 RAD(SOL) - T2(LAST) 1670 GOTO 1760 1680 IN - 1 1690 IN - IN + 1 1700 IF TMP > T1(IN) THEN GOTO 1690 1710 REM 1720 REM 1730 RC(PNT) - T2(IN) + (TMP - T1(IN)) / (T1(IN - 1) - T1(IN)) * (T2(IN - 1) - T2(IN)) 1740 REM 1750 REM 1760 REM 1765 RC(PNT) - 0.5E - 8 1770 xc(PNT) - 2.7128 * ( - 4 * PI * RC(PNT) - 2 * NAVO * THMET / (RC * T MP * CEC)) 1780 PE(PNT) - (XMAX - xc(PNT)) / XMAX * 100 1790 ECOM - 0 1800 GOTO 1868 1810 REM 1820 REM 1830 REM 1840 ECOM - DH + A / 2.303 * LOG (TMP) + B * 1E - 3 * TMP * 2 + C * 1E5 / TMP + I * TMP 1845 IF ECOM - 0 GOTO 1868 1850 ECOM - ECOM / NC 1860 RE(PNT) - (CEC * ( - RG * TMP * LOG (XMAX) + ECOM) / THMET A NAVO / 4 / PI) ‘ 0.5 1865 GOTO 1870 1868 RE(PNT) - o 1870 RC(PNT) - (CEC * ( - RG * TMP * LOG (XMAX)) I THMET / NAVO / 4 / PI ) ‘ 0.5 1930 REM 1940 REM 1950 REM 1960 PRINT D$;”HRITE ”;O$ 1970 PRINT " TEMPERATURE: ”;TMP 2000 PRINT " SOLUTE MAXIMUM SOL: ”;XMAX LIST 2010-2500 104 2010 .2020 2030 2040 2050 2060 2070 2080 2090 2100 2110 2120 .2130 2140 2150 2160 2170 2180 2190 2200 2210 2215 2220 2230 2240 2250 2260 2310 2320 2330 2340 2350 2360 2370 2380 2390 ]PR#0 PRINT ” METAL SURFACE TENSION: ";THMET PRINT ' ” NEXT PNT REM REM REM PRINT ' ' PRINT ”OUTPUT” IF CHOICE I 0 THEN GOTO 2180 REM REM FOR IN I 1 TO NPNT PRINT ” CALC MAX SOLUBILTY: ”;XC(IN) NEXT IN PRINT " ” REM REM FOR IN I 1 TO NPNT PRINT ” SOLUTE RADIUS N/ECOM: ";RC(IN) NEXT IN REM GOTO 2310 PRINT ” ” FOR IN I 1 TO NPNT PRINT ” SOLUTE RADIUS W/ECOM: ”;RE(IN) NEXT IN REM PRINT ' ” PRINT ” “ NEXT SET NEXT MET PRINT D$;”CLOSE ”;O$ PRINT D$;”CLOSE "31$ PRINT D$”NOMON 0,1,0” DATA 1 END 105 REGULAR SOLUTION AND QUASI-CHEMICAL SOLUTION RESULTS WITH MAXIMUM SOLUBILITY DATA AS INPUT UNIT REY: SOLUBILITY - AT FRAC TEMPERATURE - DEGREE R Uab - CA;/GMOLE SOLUTE CARBON METAL ALUMINUM - NONE?? INPUT FROM HANSEN TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Wab: SPREAD ON OUTPUT: REGULAR SOLUTION PREDITIONS OF Wab: REGULAR SOLUTION PREDITIONS OF Wab: REGULAR SOLUTION PREDITIONS OF Wab: REGULAR SOLUTION PREDITIONS OF Wab: 12.178035 SPREAD ON OUTPUT: 1070 454.545455 2.2E-03 4 1270 322.580645 3.1E-03 4 1370 285.714286 3.5E-03 l; 1470 140.84507 7.1E-03 4 0 0 527.179973 0 O 616.463392 0 0 659.984406 0 0 682.758767 29.5115143 3266.90309 3666.84154 3875.57241 3664.74769 106 SOLUTE CARBON METAL ANTIMONY - NONE INPUT FROM HANSEN TEMPERATURE: 1330 SOLUTE ACTIVITY COEFF: 297.619048 SOLUTE CONCENTRATION 3.36E-03 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 1540 SOLUTE ACTIVITY COEFF: 144.7178 SOLUTE CONCENTRATION 6.91E-O3 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 1600 SOLUTE ACTIVITY COEFF: 104.602511 SOLUTE CONCENTRATION 9.56E-O3 SOLUTE COORDINATION NUMBER: 4 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: 42.341071 0 O 6 QUASI-CHEMICAL PREDICTIONS OF Uab: O O 716.229428 0 O 7 QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 13.8245378 31.141755 REGULAR SOLUTION PREDITIONS OF Wab: 3788.51239 REGULAR SOLUTION PREDITIONS OF Wab: 3858.83093 REGULAR SOLUTION PREDITIONS OF Uab: 3767.64622 SPREAD ON OUTPUT: .550774632 SOLUTE CARBON METAL BISMUTH - NONE INPUT FROM GRIFFITH TEMPERATURE: 570 SOLUTE ACTIVITY COEFF: 36363.6364 SOLUTE CONCENTRATION 2.75E-05 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 670 SOLUTE ACTIVITY COEFF: 29239.7661 SOLUTE CONCENTRATION 3.42E-05 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 770 SOLUTE ACTIVITY COEFF: 24937.6559 SOLUTE CONCENTRATION 4.01E-05 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 870 107 SOLUTE ACTIVITY COEFF: 22026.4317 SOLUTE CONCENTRATION 4.54E-05 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 970 SOLUTE ACTIVITY COEFF: 19960.0798 SOLUTE CONCENTRATION 5.01E-05 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 1070 SOLUTE ACTIVITY COEFF: 19157.0881 SOLUTE CONCENTRATION 5.22E-05 SOLUTE COORDINATION NUMBER: 4 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 84.4205684 O 327.169194 0 382.322288 0 437.228577 0 492.546102 0 547.523979 0 603.367288 OOOOOO REGULAR SOLUTION PREDITIONS OF Uab: 2973.58734 REGULAR SOLUTION PREDITIONS OF Wab: 3422.7427 REGULAR SOLUTION PREDITIONS OF Wab: 3872.76662 REGULAR SOLUTION PREDITIONS OF Wab: 4322.11677 REGULAR SOLUTION PREDITIONS OF Wab: 4771.48608 REGULAR SOLUTION PREDITIONS OF Uab: 5241.58658 SPREAD ON OUTPUT: 76.2714857 SOLUTE CARBON METAL CERIUM - NONE - S.T. GUESS INPUT FROM GTE TEMPERATURE: 870 SOLUTE ACTIVITY COEFF: 3.92156863 SOLUTE CONCENTRATION .255 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 1070 SOLUTE ACTIVITY COEFF: 3.33333333 SOLUTE CONCENTRATION .3 SOLUTE COORDINATION NUMBER: 4 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: O 0 373.770054 QUASI-CHEMICAL PREDICTIONS OF Wab: O O 474.763393 108 SPREAD ON OUTPUT: 27.0201796 REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: SPREAD ON OUTPUT: 22.741283 1064.02441 1305.99721 SOLUTE CARBON METAL CHROMIUM - NONE - UNSURE S.T. DATA INPUT FROM HANSEN TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Wab: 1750 7.35294118 .136 l: 1830 6.66666667 .15 4 1950 5 .2 l. 2080 3.33333333 .3 l; 716.504143 749.258618 812.452136 9 0 0 O O 22.904541 0 O O 0 SPREAD ON OUTPUT: 28.8065882 REGULAR SOLUTION PREDITIONS OF Wab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Wab: REGULAR SOLUTION PREDITIONS OF Uab: SPREAD ON OUTPUT: 9.27193009 INPUT FROM GTE TEMPERATURE: SOLUTE ACTIVITY COEFF: 1800 2323.34227 2386.96424 2435.94086 2538.76094 6.89655173 SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Wab: 0 O 0 SPREAD ON OUTPUT: 15.833116 REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Wab: REGULAR SOLUTION PREDITIONS OF Wab: SPREAD ON OUTPUT: 3.14747793 0 736.975689 0 795.786451 0 853.661905 2361.92046 2385.97284 2436.26139 SOLUTE CARBON METAL COBALT - Co3C - DENSITY IS GUESS INPUT FROM HANSEN - CHECKS WITH ONE SOURCE TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: 12.8904583 SPREAD ON OUTPUT: 1620 8.33333333 .12 4 1720 7.57575758 .132 l. 1820 6.99300699 .143 l: 60.077317 45.164308 0 O 6 0 0 701.956376 0 0 7 REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: 110 2203.31906 2296.37017 2394.12749 SPREAD ON OUTPUT: 8.66004567 SOLUTE CARBON METAL COPPER - NONE INPUT FROM HANSEN TEMPERATURE: 1370 SOLUTE ACTIVITY COEFF: 188679.245 SOLUTE CONCENTRATION 5.3E-O6 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 1570 SOLUTE ACTIVITY COEFF: 125944.584 SOLUTE CONCENTRATION 7.94E-O6 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 1770 SOLUTE ACTIVITY COEFF: 37735.849 SOLUTE CONCENTRATION 2.65E-05 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 1970 SOLUTE ACTIVITY COEFF: 6289.30818 SOLUTE CONCENTRATION 1.59E-O4 SOLUTE COORDINATION NUMBER: 4 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Wab: O O 818.061503 QUASI-CHEMICAL PREDICTIONS OF Wab: 0 O 928.911505 QUASI-CHEMICAL PREDICTIONS OF Nab: 0 O 1016.93298 QUASI-CHEMICAL PREDICTIONS OF Wab: 0 0 1073.91148 SPREAD ON OUTPUT: 31.2751519 8267.24509 9158.94761 9266.32292 8562.12965 REGULAR SOLUTION PREDITIONS OF Nab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: SPREAD ON OUTPUT: 3.56690235 111 SOLUTE CARBON METAL GERMANIUM - NONE - S.T. UNSURE DUE TO HIGH TEMPS INPUT FROM SCARCE TEMPERATURE: 3000 SOLUTE ACTIVITY COEFF: 75.1879699 SOLUTE CONCENTRATION .0133 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 3100 SOLUTE ACTIVITY COEFF: 39.2156863 SOLUTE CONCENTRATION .0255 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 3200 SOLUTE ACTIVITY COEFF: 21.2765958 SOLUTE CONCENTRATION .047 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 3300 SOLUTE ACTIVITY COEFF: 12.0048019 SOLUTE CONCENTRATION .0833 SOLUTE COORDINATION NUMBER: 4 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: .356035701 0 0 QUASI-CHEMICAL PREDICTIONS OF Wab: 0 0 0 O 0 0 REGULAR SOLUTION PREDITIONS OF Wab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Wab: SPREAD ON OUTPUT: 26.6828443 1346.32869 1339.80839 1339.51922 1351.1221 6612.5922 5949.66739 5351.60207 4848.16452 SOLUTE CARBON METAL HAFNIUM - NONE - S.T. UNSURE INPUT FROM HANSEN TEMPERATURE: 2480 SOLUTE ACTIVITY COEFF: 10.5263158 SOLUTE CONCENTRATION .095 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: 112 2820 6.66666667 .15 l. 3160 3685 3.33333333 .3 4 1012.12315 1154.59525 1316.5891 1458.51783 0 0 0 0 0 O 0 0 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 SPREAD ON OUTPUT: 61.5465109 1635.04963 REGULAR SOLUTION PREDITIONS OF Wab: REGULAR SOLUTION PREDITIONS OF Wab: REGULAR SOLUTION PREDITIONS OF Wab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: SPREAD ON OUTPUT: 27.0338748 3540.59637 3678.27276 3947.4734 4162.45664 4497.75676 INPUT FROM GTE TEMPERATURE: 2630 SOLUTE ACTIVITY COEFF: 20 SOLUTE CONCENTRATION .05 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 3110 SOLUTE ACTIVITY COEFF: 14.2857143 SOLUTE CONCENTRATION .07 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 3680 SOLUTE ACTIVITY COEFF: 6.6666666? SOLUTE CONCENTRATION .15 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 4080 113 SOLUTE ACTIVITY COEFF: 3.33333333 SOLUTE CONCENTRATION .3 SOLUTE COORDINATION NUMBER: 4 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: O 0 1097.4861 QUASI-CHEMICAL PREDICTIONS OF Wab: 0 0 1279.46277 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 1506.70585 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 1810.31275 SPREAD ON OUTPUT: 64.9508592 REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Wab: REGULAR SOLUTION PREDITIONS OF Wab: SPREAD ON OUTPUT: 14.8336645 4336.60046 4749.99524 4800.01552 4979.87723 SOLUTE CARBON METAL IRON - Fe3C INPUT FROM TURKOGAN TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE : SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT 1570 5.39083558 .1855 b 1670 5.13347022 .1948 4 1770 4.91400491 .2035 A 1870 4.72589792 .2116 A QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: 0 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 0 QUASI-CHEMICAL PREDICTIONS OF Wab: SPREAD ON OUTPUT: 20.6115748 50.020701 94.701159 38.612318 84.000204 NNO‘O‘ REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: 17.19141 SPREAD ON OUTPUT: 114 1980.51451 2093.01437 2206.51558 2320.99288 INPUT FROM .GRIGOROVICH - Fe-GRAPHITE EQUIL TEMPERATURE: 1420 SOLUTE ACTIVITY COEFF: 5.84795322 SOLUTE CONCENTRATION .171 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 1710 SOLUTE ACTIVITY COEFF: 5 SOLUTE CONCENTRATION .2 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 2300 SOLUTE ACTIVITY COEFF: 4 SOLUTE CONCENTRATION .25 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 2600 SOLUTE ACTIVITY COEFF: 3.33333333 SOLUTE CONCENTRATION .3 SOLUTE COORDINATION NUMBER: 4 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: 0 O 585.12413 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 712.458027 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 986.644413 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 O 1153.63068 SPREAD ON OUTPUT: 97.15999 REGULAR SOLUTION PREDITIONS OF Uab: 1812.71869 REGULAR SOLUTION PREDITIONS OF Uab: 2136.13275 REGULAR SOLUTION PREDITIONS OF Uab: 2815.77949 REGULAR SOLUTION PREDITIONS OF Uab: 3173.45117 SPREAD ON OUTPUT: 75.065838 INPUT FROM GIRGOROVICH - Fe3C-Fe EQUIL TEMPERATURE: 1420 SOLUTE ACTIVITY COEFF: 5.84795322 SOLUTE CONCENTRATION .171 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 1500 SOLUTE ACTIVITY COEFF: 5 SOLUTE CONCENTRATION .2 SOLUTE COORDINATION NUMBER: 4 115 TEMPERATURE: 1670 SOLUTE ACTIVITY COEFF: 4 SOLUTE CONCENTRATION .25 SOLUTE COORDINATION NUMBER: 4 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: O O 585.12413 QUASI-CHEMICAL PREDICTIONS OF Uab: O 0 624.963181 QUASI-CHEMICAL PREDICTIONS OF Uab: O 0 716.389639 SPREAD ON OUTPUT: 22.4337884 REGULAR SOLUTION PREDITIONS OF Uab: 1812.71869 REGULAR SOLUTION PREDITIONS OF Uab: 1873.80066 REGULAR SOLUTION PREDITIONS OF Uab: 2044.50076 SPREAD ON OUTPUT: 12.7864334 SOLUTE CARBON METAL LITHIUM - NONE INPUT FROM ADAMS TEMPERATURE: 570 SOLUTE ACTIVITY COEFF: 95.2380953 SOLUTE CONCENTRATION .0105 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 670 SOLUTE ACTIVITY COEFF: 58.8235294 SOLUTE CONCENTRATION .017 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 770 SOLUTE ACTIVITY COEFF: 42.5531915 SOLUTE CONCENTRATION .0235 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 870 SOLUTE ACTIVITY COEFF: 33.3333333 SOLUTE CONCENTRATION .03 SOLUTE COORDINATION NUMBER: 4 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 259.037404 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 296.429452 QUASI-CHEMICAL PREDICTIONS OF Uab: O O 334.275103 QUASI-CHEMICAL PREDICTIONS OF Wab: O O 373.208973 SPREAD ON OUTPUT: 44.0753217 REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: 22.2344438 SPREAD ON OUTPUT: INPUT FROM HANSEN TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION 116 1317.65305 1403.40957 1504.5367 1610.62588 680 62.5 .016 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 830 SOLUTE ACTIVITY COEFF: 50 SOLUTE CONCENTRATION .02 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 970 SOLUTE ACTIVITY COEFF: 31.25 SOLUTE CONCENTRATION .032 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 1070 SOLUTE ACTIVITY COEFF: 19.2307692 SOLUTE CONCENTRATION .052 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 1170 SOLUTE ACTIVITY COEFF: 10.989011 SOLUTE CONCENTRATION .091 SOLUTE COORDINATION NUMBER: 4 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 58.768433 01.718792 63.512479 14.227397 45.80707 79.034198 00°00 00°00 ##J-‘ww REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: SPREAD ON OUTPUT: 16.867976 1442.61219 1679.4428 1769.99568 1748.57619 1685.95167 INPUT FROM HANSEN TEMPERATURE: SOLUTE ACTIVITY COEFF: 1010 20 SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: O QUASI-CHEMICAL PREDICTIONS OF Uab: 0 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 QUASI-CHEMICAL PREDICTIONS OF Uab: O SPREAD ON OUTPUT: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: 18.2394904 SPREAD ON OUTPUT: 117 .05 4 1055 10 .1 4 1070 6.66666667 .15 4 1090 5 .2 4 0 421.468046 0 430.560452 0 438.091104 0 454.139912 7.75192002 1665.38649 1489.77611 1395.65669 1361.62848 SOLUTE CARBON METAL MANGANEESE - Mn3C - S.T. UNSURE INPUT FROM HANSEN TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION 1620 3.79362671 .2636 4 1720 3.67647059 .272 4 1820 3.57653791 .2796 SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab QUASI-CHEMICAL PREDICTIONS OF Uab QUASI-CHEMICAL PREDICTIONS OF Wab QUASI-CHEMICAL PREDICTIONS OF Wab. 17.314604 SPREAD ON OUTPUT: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: 15.2785085 SPREAD ON OUTPUT: INPUT FROM HANSEN TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: 118 4 1870 3.48675035 .2868 4 O 0 700.157933 0 O 748.898793 0 0 794.771037 0 0 821.387507 1978.61151 2098.93477 2220.06661 2280.91384 1500 17.5438597 .057 4 1565 6.66666667 .15 4 1590 5 .2 4 1610 4 .25 4 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 11.0334164 0 0 622.02093 O 0 640.759419 0 O 662.460973 0 0 690.651089 REGULAR SOLUTION PREDITIONS OF Uab: 2400.41043 REGULAR SOLUTION PREDITIONS OF Uab: 2041.31095 REGULAR SOLUTION PREDITIONS OF Uab: 1986.2287 119 REGULAR SOLUTION PREDITIONS OF Uab: SPREAD ON OUTPUT: INPUT FROM HANSEN TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: 17.8871405 1580 3.77358491 .265 4 1620 3.67647059 .272 4 1720 3.57142857 .28 4 1870 3.42465754 .292 4 1971.04565 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 20.8034118 0 0 683.88576 0 0 705.358165 0 0 752.202987 0 0 826.157331 REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Wab: SPREAD ON OUTPUT: 18.2346738 1929.41959 1976.90368 2098.06057 2281.24296 SOLUTE CARBON METAL MOLYBDENUM - M02C - S.T. UNSURE INPUT FROM RUDY TEMPERATURE: 2470 SOLUTE ACTIVITY COEFF: 5.88235294 SOLUTE CONCENTRATION .17 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 2600 SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION 120 5 .2 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: 2700 4 .25 4 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 13.7993999 1017.78634 1083.26951 0 O 0 O O O 1158.23475 REGULAR SOLUTION PREDITIONS OF Uab: 3155.96214 REGULAR SOLUTION PREDITIONS OF Uab: 3247.92115 REGULAR SOLUTION PREDITIONS OF Wab: 3305.48027 SPREAD ON OUTPUT: 4.73764049 SOLUTE CARBON METAL NICKEL - N13C INPUT FROM HANSEN TEMPERATURE: 1620 SOLUTE ACTIVITY COEFF: 10.3092784 SOLUTE CONCENTRATION .097 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 1720 SOLUTE ACTIVITY COEFF: 9.61538462 SOLUTE CONCENTRATION .104 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 1820 SOLUTE ACTIVITY COEFF: 9.00900901 SOLUTE CONCENTRATION .111 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 1920 SOLUTE ACTIVITY COEFF: 8.47457627 SOLUTE CONCENTRATION .118 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 2020 SOLUTE ACTIVITY COEFF: 8.06451613 SOLUTE CONCENTRATION .124 SOLUTE COORDINATION NUMBER: 4 121 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 24.4900016 REGULAR SOLUTION PREDITIONS OF Wab: REGULAR SOLUTION PREDITIONS OF Wab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: SPREAD ON OUTPUT: 18.5500312 0 O 6 0 0 7 O 0 741.568343 0 0 7 0 0 8 61.144959 00.82283 82.313857 23.05937 2302.50391 2408.82239 2514.65205 2620.11778 2729.6191 SOLUTE CARBON METAL NIOBIUM - NONE - S.T. UNSURE INPUT FROM KIMURA TEMPERATURE: 2610 SOLUTE ACTIVITY COEFF: 7.40740741 SOLUTE CONCENTRATION .135 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 2880 SOLUTE ACTIVITY COEFF: S SOLUTE CONCENTRATION .2 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 3110 SOLUTE ACTIVITY COEFF: 4 SOLUTE CONCENTRATION .25 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 3280 SOLUTE ACTIVITY COEFF: 3.33333333 SOLUTE CONCENTRATION .3 SOLUTE COORDINATION NUMBER: 4 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 36.1902844 1068.61475 1199.92931 1334.11484 0 0 0 0 0 0 0 0 1455.34947 122 REGULAR SOLUTION PREDITIONS OF Uab: 3469.88006 REGULAR SOLUTION PREDITIONS OF Uab: 3597.69727 REGULAR SOLUTION PREDITIONS OF Uab: 3807.42358 REGULAR SOLUTION PREDITIONS OF Uab: 4003.43071 SPREAD ON OUTPUT: 15.3766308 SOLUTE CARBON METAL PLUTONIUM - NONE INPUT FROM HANSEN TEMPERATURE: 1275 SOLUTE ACTIVITY COEFF: 20 SOLUTE CONCENTRATION .05 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 1420 SOLUTE ACTIVITY COEFF: 10 SOLUTE CONCENTRATION .1 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 1550 SOLUTE ACTIVITY COEFF: 6.66666667 SOLUTE CONCENTRATION .15 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 1650 SOLUTE ACTIVITY COEFF: 5 SOLUTE CONCENTRATION .2 SOLUTE COORDINATION NUMBER: 4 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 532.051246 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 579.522124 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 O 634.617954 QUASI-CHEMICAL PREDICTIONS OF Uab: O 0 687.4595 SPREAD ON OUTPUT: 29.2092641 REGULAR SOLUTION PREDITIONS OF Wab: 2102.34433 REGULAR SOLUTION PREDITIONS OF Uab: 2005.19628 REGULAR SOLUTION PREDITIONS OF Uab: 2021.74567 REGULAR SOLUTION PREDITIONS OF Uab: 2061.18073 SPREAD ON OUTPUT: 1.95798573 123 SOLUTE CARBON METAL RHENIUM - NONE - S.T. UNSURE INPUT FROM HUGES TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab QUASI-CHEMICAL PREDICTIONS OF Uab QUASI-CHEMICAL PREDICTIONS OF Uab. QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: 5.05871217 SPREAD ON OUTPUT: 2770 5.91715977 .169 4 2870 5 .2 4 2970 4.34782609 .23 4 3040 4 .25 4 : 0 0 1139.58581 : 0 0 1195.76289 ' O 0 1256.76331 0 0 1304.08653 14.4351318 3542.52005 3585.20527 3657.08006 3721.72594 SOLUTE CARBON METAL SILVER - NONE INPUT FROM HANSEN TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: 1930 9259.25926 1.08E-04 4 2005 4444.44445 124 SOLUTE CONCENTRATION 2.25E-O4 SOLUTE COORDINATION NUMBER: 4 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: 0 O 1065.35289 QUASI-CHEMICAL PREDICTIONS OF Uab: O 0 1081.45015 SPREAD ON OUTPUT: 1.51097874 REGULAR SOLUTION PREDITIONS OF Uab: 8758.31363 REGULAR SOLUTION PREDITIONS OF Uab: 8369.44185 SPREAD ON OUTPUT: 4.44003019 SOLUTE CARBON METAL SODIUM - NONE INPUT FROM SALZANO TEMPERATURE: 850 SOLUTE ACTIVITY COEFF: 61312.0785 SOLUTE CONCENTRATION 1.631E-05 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 970 SOLUTE ACTIVITY COEFF: 27063.5995 SOLUTE CONCENTRATION 3.695E-05 SOLUTE COORDINATION NUMBER: 4 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: 0 O 494.022116 QUASI-CHEMICAL PREDICTIONS OF Uab: O O 552.425519 SPREAD ON OUTPUT: 11.8220221 REGULAR SOLUTION PREDITIONS OF Uab: 4654.78494 REGULAR SOLUTION PREDITIONS OF Wab: 4918.07248 SPREAD ON OUTPUT: 5.65627723 INPUT FROM HANSEN TEMPERATURE: 420 SOLUTE ACTIVITY COEFF: 16129.0323 SOLUTE CONCENTRATION 6.2E-05 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 570 SOLUTE ACTIVITY COEFF: 11111.1111 SOLUTE CONCENTRATION 9E-05 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: 125 770 8196.72132 1.22E-04 4 970 6944.44445 1.44E-04 4 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Wab: SPREAD ON OUTPUT: 125.098438 0 235.65134 O 316.260058 0 423.279563 0 5 0 0 0 0 30.447486 REGULAR SOLUTION PREDITIONS OF Uab: 2021.58503 REGULAR SOLUTION PREDITIONS OF Uab: 2638.19227 REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: 110.899113 SPREAD ON OUTPUT: 3447.7134 4263.50491 SOLUTE CARBON METAL TANTALUM - NONE TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE : SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT INPUT FROM HANSEN - UNSURE PHASE DIAG 3070 12.5 .08 4 3150 10 .1 4 3305 6.66666667 .15 4 3455 5 .2 4 126 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 1256.95298 QUASI-CHEMICAL PREDICTIONS OF Uab: O 0 1285.55964 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 1353.16925 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 1439.49853 SPREAD ON OUTPUT: 14.522862 REGULAR SOLUTION PREDITIONS OF Uab: 4550.79515 REGULAR SOLUTION PREDITIONS OF Uab: 4448.14667 REGULAR SOLUTION PREDITIONS OF Uab: 4310.88351 REGULAR SOLUTION PREDITIONS OF Wab: 4315.98753 SPREAD ON OUTPUT: 5.1597054 INPUT FROM GTE TEMPERATURE: 3120 SOLUTE ACTIVITY COEFF: 8.33333333 SOLUTE CONCENTRATION .12 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 3255 SOLUTE ACTIVITY COEFF: 6.66666667 SOLUTE CONCENTRATION .15 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 3450 SOLUTE ACTIVITY COEFF: 5 SOLUTE CONCENTRATION .2 SOLUTE COORDINATION NUMBER: 4 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 1271.26002 QUASI-CHEMICAL PREDICTIONS OF Uab: O O 1332.6977 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 1437.41532 SPREAD ON OUTPUT: 13.0701271 REGULAR SOLUTION PREDITIONS OF Uab: 4243.42929 REGULAR SOLUTION PREDITIONS OF Uab: 4245.6659 REGULAR SOLUTION PREDITIONS OF Uab: 4309.74152 SPREAD ON OUTPUT: 1.56270376 SOLUTE CARBON METAL TITANIUM - TIC INPUT FROM GTE TEMPERATURE: 1920 SOLUTE ACTIVITY COEFF: 66.6666667 SOLUTE CONCENTRATION .015 SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: 127 1950 20 .05 2020 10 .1 4 2115 6.66666667 .15 4 2320 5 .2 4 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 12.9784971 55.56964 13.725435 24.390628 65.946435 66.609721 scoooooooo REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: 3215.35015 REGULAR SOLUTION PREDITIONS OF Uab: 2852.46231 REGULAR SOLUTION PREDITIONS OF Uab: 2758.70457 REGULAR SOLUTION PREDITIONS OF Wab: 2898.14502 4128.43486 SPREAD ON OUTPUT: 29.8003935 INPUT FROM HANSEN TEMPERATURE: 2110 SOLUTE ACTIVITY COEFF: 20 SOLUTE CONCENTRATION .05 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 2210 SOLUTE ACTIVITY COEFF: 10 SOLUTE CONCENTRATION .1 SOLUTE COORDINATION NUMBER: 4 TEMPERATURE: 2350 SOLUTE ACTIVITY COEFF: 6.66666667 SOLUTE CONCENTRATION .15 SOLUTE COORDINATION NUMBER: 4 128 TEMPERATURE: 2490 SOLUTE ACTIVITY COEFF: 5 SOLUTE CONCENTRATION .2 SOLUTE COORDINATION NUMBER: 4 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 17.82482 REGULAR SOLUTION PREDITIONS OF Wab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: SPREAD ON OUTPUT: 10.5963278 0 O 0 0 0 0 0 0 880.492651 901.93232 962.162706 1037.43888 3479.17375 3120.76322 3065.2273 3110.5091 SOLUTE CARBON METAL URANIUM - UC2 - S.T. UNSURE INPUT FROM HANSEN TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: 1670 20 .05 4 1870 10 .1 4 2030 6.66666667 .15 4 2170 5 .2 4 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: 696.882809 763.173502 831.144806 0 0 0 O 0 O O 0 904.113403 SPREAD ON OUTPUT: 29. REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: 1.55770536 SPREAD ON OUTPUT: 129 7367923 2753.65885 2640.6458 2647.83465 2710.76496 SOLUTE CARBON METAL VANADIUM - NONE - S.T. UNSURE INPUT FROM STORMS - CHECKED BY TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: O QUASI-CHEMICAL PREDICTIONS OF Wab: 0 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 QUASI-CHEMICAL PREDICTIONS OF Uab: O 21. SPREAD ON OUTPUT: ONE SOURCE 1920 6.89655173 .145 4 2000 5.98802395 .167 4 2120 5 .2 4 2250 4.34782609 .23 4 O 786.107402 0 822.805642 0 883.281296 0 952.093416 1149283 REGULAR SOLUTION PREDITIONS OF Uab: 2519.38183 REGULAR SOLUTION PREDITIONS OF Uab: 2562.55398 REGULAR SOLUTION PREDITIONS OF Uab: 2648.30494 REGULAR SOLUTION PREDITIONS OF Uab: 2770.5152 SPREAD ON OUTPUT: 9.96805513 130 SOLUTE CARBON METAL VOLFRAM - WC - S.T. UNSURE INPUT FROM HANSEN TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: O QUASI-CHEMICAL PREDICTIONS OF Uab: 0 22.7803026 SPREAD ON OUTPUT: REGULAR SOLUTION PREDITIONS OF Wab: REGULAR SOLUTION PREDITIONS OF Uab: 18.8669423 SPREAD ON OUTPUT: 3070 2.5 .4 4 3350 2 .5 4 492.06165 O 1 0 1831.95781 3881.56662 4613.89955 SOLUTE CARBON METAL ZIRCONIUM - ZrC - S.T. GUESSED FROM T1 DATA INPUT PROM HANSEN TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: 2100 20 .05 4 2270 14.9253731 .067 4 2670 6.99300699 .143 4 3070 3.62318841 131 SOLUTE CONCENTRATION .276 SOLUTE COORDINATION NUMBER: 4 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 876.3197 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 935.374489 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 O 1093.18061 QUASI-CHEMICAL PREDICTIONS OF Wab: O O 1338.6644 SPREAD ON OUTPUT: 52.7598202 REGULAR SOLUTION PREDITIONS OF Uab: 3462.68478 REGULAR SOLUTION PREDITIONS OF Wab: 3501.51958 REGULAR SOLUTION PREDITIONS OF Uab: 3512.26396 REGULAR SOLUTION PREDITIONS OF Uab: 3745.39171 SPREAD ON OUTPUT: 8.16438536 132 SOLUTE HYDROGEN METAL CALCIUM - CaH2 INPUT FROM HANSEN TEMPERATURE: 1235 SOLUTE ACTIVITY COEFF: 20 SOLUTE CONCENTRATION .05 SOLUTE COORDINATION NUMBER: 2 TEMPERATURE: . 1250 SOLUTE ACTIVITY COEFF: 10 SOLUTE CONCENTRATION .1 SOLUTE COORDINATION NUMBER: 2 TEMPERATURE: 1270 SOLUTE ACTIVITY COEFF: 6.66666667 SOLUTE CONCENTRATION .15 SOLUTE COORDINATION NUMBER: 2 TEMPERATURE: 1320 SOLUTE ACTIVITY COEFF: 5 SOLUTE CONCENTRATION .2 SOLUTE COORDINATION NUMBER: 2 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 639.463609 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 636.862842 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 O 651.577739 QUASI-CHEMICAL PREDICTIONS OF Uab: O 0 690.465388 SPREAD ON OUTPUT: 7.97571263 REGULAR SOLUTION PREDITIONS OF Uab: 4072.77686 REGULAR SOLUTION PREDITIONS OF Uab: 3530.27514 REGULAR SOLUTION PREDITIONS OF Uab: 3313.05419 REGULAR SOLUTION PREDITIONS OF Uab: 3297.88916 SPREAD ON OUTPUT: 19.0260287 SOLUTE HYDROGEN METAL LANTANUM - NONE INPUT FROM PETERSON - S.T. IFFY TEMPERATURE: 1200 SOLUTE ACTIVITY COEFF: 20 SOLUTE CONCENTRATION .05 SOLUTE COORDINATION NUMBER: 2 TEMPERATURE: 1210 SOLUTE ACTIVITY COEFF: 10 SOLUTE CONCENTRATION .1 133 SOLUTE COORDINATION NUMBER: 2 TEMPERATURE: 1220 SOLUTE ACTIVITY COEFF: 6.66666667 SOLUTE CONCENTRATION .15 SOLUTE COORDINATION NUMBER: 2 TEMPERATURE: 1240 SOLUTE ACTIVITY COEFF: 5 SOLUTE CONCENTRATION .2 SOLUTE COORDINATION NUMBER: 2 TEMPERATURE: 1300 SOLUTE ACTIVITY COEFF: 3.33333333 SOLUTE CONCENTRATION .3 SOLUTE COORDINATION NUMBER: 2 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Wab: 0 0 621.341158 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 O 616.483231 QUASI-CHEMICAL PREDICTIONS OF Uab: O 0 625.925072 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 648.619001 QUASI-CHEMICAL PREDICTIONS OF Uab: O 0 724.246986 SPREAD ON OUTPUT: 16.5618882 REGULAR SOLUTION PREDITIONS OF Uab: 3957.35403 REGULAR SOLUTION PREDITIONS OF Uab: 3417.30633 REGULAR SOLUTION PREDITIONS OF Uab: 3182.61899 REGULAR SOLUTION PREDITIONS OF Uab: 3098.01709 REGULAR SOLUTION PREDITIONS OF Uab: 3173.45117 SPREAD ON OUTPUT: 19.8087625 SOLUTE HYDROGEN METAL LITHIUM - L1H INPUT FROM HANSEN TEMPERATURE: 760 SOLUTE ACTIVITY COEFF: 20 SOLUTE CONCENTRATION .05 SOLUTE COORDINATION NUMBER: 2 TEMPERATURE: 920 SOLUTE ACTIVITY COEFF: 10 SOLUTE CONCENTRATION .1 SOLUTE COORDINATION NUMBER: 2 TEMPERATURE: 960 SOLUTE ACTIVITY COEFF: 6.66666667 134 SOLUTE CONCENTRATION .15 SOLUTE COORDINATION NUMBER: 2 TEMPERATURE: 1090 SOLUTE ACTIVITY COEFF: 5 SOLUTE CONCENTRATION .2 SOLUTE COORDINATION NUMBER: 2 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: O QUASI-CHEMICAL PREDICTIONS OF Uab: 0 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 SPREAD ON OUTPUT: 44.8878644 0 393.516067 0 468.731052 0 492.531204 0 570.157025 REGULAR SOLUTION PREDITIONS OF Uab: 2506.32422 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 2 O 0 3 0 0 3 O O 3 REGULAR SOLUTION PREDITIONS OF Wab: 2598.2825 REGULAR SOLUTION PREDITIONS OF Nab: 2504.35592 REGULAR SOLUTION PREDITIONS OF Uab: 2723.25696 SPREAD ON OUTPUT: 8.65541415 INPUT FROM BUBBERTY TEMPERATURE: 470 SOLUTE ACTIVITY COEFF: 2439.02439 SOLUTE CONCENTRATION 4.1E-04 SOLUTE COORDINATION NUMBER: 2 TEMPERATURE: 550 SOLUTE ACTIVITY COEFF: 471.698113 SOLUTE CONCENTRATION 2.12E-03 SOLUTE COORDINATION NUMBER: 2 TEMPERATURE: 650 SOLUTE ACTIVITY COEFF: 106.609808 SOLUTE CONCENTRATION 9.38E-03 SOLUTE COORDINATION NUMBER: 2 TEMPERATURE: 750 SOLUTE ACTIVITY COEFF: 35.8422939 SOLUTE CONCENTRATION .0279 SOLUTE COORDINATION NUMBER: 2 TEMPERATURE: 870 SOLUTE ACTIVITY COEFF: 13.4952767 SOLUTE CONCENTRATION .0741 SOLUTE COORDINATION NUMBER: 2 99.956159 30.213353 64.698503 98.446238 135 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 444.80786 SPREAD ON OUTPUT: 48.2909575 REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: SPREAD ON OUTPUT: 28. INPUT FROM ADAMS TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: 0149306 900 8.54700855 .117 2 950 5.31914894 .188 2 SPREAD ON OUTPUT: 7.76223377 REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: SPREAD ON OUTPUT: 2.76931781 SOLUTE HYDROGEN METAL URANIUM INPUT FROM HANSEN TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT 0 0 3644.85724 3378.28639 3072.60861 2822.17896 2623.75301 458.541246 4 O 0 94.13429 2460.55999 2392.41927 PLUTONIUM - PuH2 - DENSITY DATA BASED ON 970 20 .05 2 1070 13.3333333 .075 2 QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: 8.92219053 SPREAD ON OUTPUT: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: .604487015 SPREAD ON OUTPUT: SOLUTE HYDROGEN METAL INPUT FROM HUBBERTY TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: 136 0 502.25077 0 5 0 0 47.06254 3198.86118 3218.19788 POTASSIUM - NONE 400 151285.93 6.61E-06 2 500 4807.69231 2.08E-04 2 600 483.091788 2.07E-03 2 700 93.457944 .0107 2 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Wab: SPREAD ON OUTPUT: 37.2835778 REGULAR SOLUTION PREDITIONS OF Wab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: SPREAD ON OUTPUT: 31.9754819 INPUT FROM ARNIL’DOV - RUSSIAN 84.357376 60.558397 90.375979 0 2 0 326.108028 0 3 0 3 4739.82341 4213.18533 3699.32053 3224.24203 137 TEMPERATURE: 570 SOLUTE ACTIVITY COEFF: 558.659218 SOLUTE CONCENTRATION 1.79E-03 SOLUTE COORDINATION NUMBER: 2 TEMPERATURE: 670 SOLUTE ACTIVITY COEFF: 95.2380953 SOLUTE CONCENTRATION .0105 SOLUTE COORDINATION NUMBER: 2 TEMPERATURE: 770 SOLUTE ACTIVITY COEFF: 25.9067358 SOLUTE CONCENTRATION .0386 SOLUTE COORDINATION NUMBER: 2 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: O O 344.691321 QUASI-CHEMICAL PREDICTIONS OF Web: 0 0 373.64558 QUASI-CHEMICAL PREDICTIONS OF Uab: O O 403.223201 SPREAD ON OUTPUT: 16.9809554 REGULAR SOLUTION PREDITIONS OF Uab: 3594.97999 REGULAR SOLUTION PREDITIONS OF Uab: 3097.64051 REGULAR SOLUTION PREDITIONS OF Uab: 2693.612 SPREAD ON OUTPUT: 25.0729627 SOLUTE HYDROGEN METAL SODIUM - NaH INPUT FROM McCLURE TEMPERATURE: 530 SOLUTE ACTIVITY COEFF: 5265.92944 SOLUTE CONCENTRATION 1.899E-04 SOLUTE COORDINATION NUMBER: 2 TEMPERATURE: 630 SOLUTE ACTIVITY COEFF: 763.941941 SOLUTE CONCENTRATION 1.309E-O3 SOLUTE COORDINATION NUMBER: 2 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: O 0 346.493201 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 385.724056 SPREAD ON OUTPUT: 11.3222582 REGULAR SOLUTION PREDITIONS OF Uab: 4513.77078 REGULAR SOLUTION PREDITIONS OF Uab: 4165.96456 SPREAD ON OUTPUT: INPUT FROM ADDISON TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Uab: 12.6529432 SPREAD ON OUTPUT: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: 138 7.70544697 520 12112.4031 8.256E-05 2 593 7843.13725 2 O 0 348.183469 0 0 392.238925 4858.05575 5284.44738 SPREAD ON OUTPUT: 8.77700163 INPUT FROM HUBBERTY TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: 400 537634.408 1.86E-06 2 500 16583.7479 6.03E-05 2 600 1636.66121 6.11E-04 2 700 312.5 3.2E-03 2 0 0 291.615761 0 0 337.569059 0 0 377.884374 0 0 413.013275 SPREAD ON OUTPUT: 41.6292704 139 REGULAR SOLUTION PREDITIONS OF Uab: 5243.6863 REGULAR SOLUTION PREDITIONS OF Uab: 4827.09377 REGULAR SOLUTION PREDITIONS OF Uab: 4416.7822 REGULAR SOLUTION PREDITIONS OF Uab: 4020.77698 SPREAD ON OUTPUT: 23.3215577 SOLUTE HYDROGEN METAL STRONTIUM - SrH2 INPUT FROM HANSEN - SCENY PHASE DIAG TEMPERATURE: 1050 SOLUTE ACTIVITY COEFF: 20 SOLUTE CONCENTRATION .05 SOLUTE COORDINATION NUMBER: 2 TEMPERATURE: 1065 SOLUTE ACTIVITY COEFF: 10 SOLUTE CONCENTRATION .1 SOLUTE COORDINATION NUMBER: 2 TEMPERATURE: 1080 SOLUTE ACTIVITY COEFF: 6.66666667 SOLUTE CONCENTRATION .15 SOLUTE COORDINATION NUMBER: 2 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 543.673513 QUASI-CHEMICAL PREDICTIONS OF Uab: O O 542.607141 QUASI-CHEMICAL PREDICTIONS OF Uab: O 0 554.097605 SPREAD ON OUTPUT: 1.91734389 REGULAR SOLUTION PREDITIONS OF Uab: 3462.68478 REGULAR SOLUTION PREDITIONS OF Uab: 3007.79442 REGULAR SOLUTION PREDITIONS OF Uab: 2817.40042 SPREAD ON OUTPUT: 18.635377 SOLUTE HYDROGEN METAL URANIUM - UH3 - UNSURE S.T. DATA INPUT FROM HANSEN TEMPERATURE: 1400 SOLUTE ACTIVITY COEFF: 3.44827586 SOLUTE CONCENTRATION .29 140 SOLUTE COORDINATION NUMBER: 2 TEMPERATURE: 1470 SOLUTE ACTIVITY COEFF: 3.003003 SOLUTE CONCENTRATION .333 SOLUTE COORDINATION NUMBER: 2 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 773.592606 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 O 840.470233 SPREAD ON OUTPUT: 8.6450706 REGULAR SOLUTION PREDITIONS OF Wab: 3415.51169 REGULAR SOLUTION PREDITIONS OF Uab: 3609.71838 SPREAD ON OUTPUT: 5.68602025 SOLUTE NITROGEN METAL INPUT FROM HANSEN TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: 141 CALCIUM - Ca3N2 1050 52.631579 .019 6 1110 20 .05 6 1150 10 .1 6 0 0 403.314427 0 0 402.122956 0 0 404.650152 SPREAD ON OUTPUT: .331187177 REGULAR SOLUTION PREDITIONS OF Wab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: SPREAD ON OUTPUT: 24.4005749 1432.0449 1220.18416 1082.61771 SOLUTE NITROGEN METAL CHROMIUM - DELTA H DATA FOR CrNZ - DENSITY DATA FOR CrN - UNSURE S.T. INPUT FROM HUMBERT TEMPERATURE: 1960 SOLUTE ACTIVITY COEFF: 5.81395349 SOLUTE CONCENTRATION .172 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 2000 SOLUTE ACTIVITY COEFF: 6.41025641 SOLUTE CONCENTRATION .156 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 2040 SOLUTE ACTIVITY COEFF: 7.04225353 SOLUTE CONCENTRATION .142 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: 142 2080 7.75193798 .129 6 2130 8.84955753 .113 6 96.48514 05.133292 17.814183 30.438302 47.996915 00000 00000 NNNNO‘ SPREAD ON OUTPUT: 7.39596183 REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Wab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: 17.2977388 SPREAD ON OUTPUT: 1666.55263 1727.4834 1791.29062 1859.47986 1954.82855 INPUT FROM HANSEN - 1$T SAMPLE EXPOSED TO AIR - 2ND TO HYDROGEN TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Wab: 0 QUASI*CHEMICAL PREDICTIONS OF Wab: 0 1900 13.5501355 .0738 6 1920 8.10372771 .1234 6 0 675.164166 0 674.25074 SPREAD ON OUTPUT: .135289455 REGULAR SOLUTION PREDITIONS OF Uab: 1911.75025 REGULAR SOLUTION PREDITIONS OF Uab: 9.43868335 SPREAD ON OUTPUT: 1731.3062 SOLUTE NITROGEN METAL INPUT FROM ADAMS TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Uab: 20. SPREAD ON OUTPUT: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: 13. SPREAD ON OUTPUT: INPUT FROM ADAMS TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT 143 LITHIUM - L13N - DENISITY DATA GUESS 500 800 1.25E-03 6 600 168.067227 5.95E-03 6 700 54.9450549 .0182 6 O 0 223.121702 0 0 247.235548 0 O 269.348577 7182333 1109.63264 1030.43686 963.486689 1706607 570 1333.33333 7.5E-04 6 670 149.253731 6.7E-03 6 770 26.6666667 .0375 6 870 15.3846154 .065 6 144 QUASI-CHEMICAL PREDICTIONS OF Web: 0 0 260.46925 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 274.318729 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 O 284.244263 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 310.96553 SPREAD ON OUTPUT: 19.3866568 REGULAR SOLUTION PREDITIONS OF Uab: 1360.2864 REGULAR SOLUTION PREDITIONS OF Wab: 1125.69525 REGULAR SOLUTION PREDITIONS OF Uab: 903.777566 REGULAR SOLUTION PREDITIONS OF Uab: 900.825673 SPREAD ON OUTPUT: 33.7767638 INPUT FROM HANSEN TEMPERATURE: 520 SOLUTE ACTIVITY COEFF: 5000 SOLUTE CONCENTRATION 2E-04 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 620 SOLUTE ACTIVITY COEFF: 169.491525 SOLUTE CONCENTRATION 5.9E-03 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 720 SOLUTE ACTIVITY COEFF: 153.846154 SOLUTE CONCENTRATION 6.5E-O3 SOLUTE COORDINATION NUMBER: 6 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Wab: O 0 249.868406 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 O 255.476733 QUASI-CHEMICAL PREDICTIONS OF Uab: O O 295.26384 SPREAD ON OUTPUT: 18.1677367 REGULAR SOLUTION PREDITIONS OF Uab: 1467.30431 REGULAR SOLUTION PREDITIONS OF Uab: 1066.43097 REGULAR SOLUTION PREDITIONS OF Uab: 1216.53623 SPREAD ON OUTPUT: 17.0903935 SOLUTE NITROGEN METAL MOLYBDENUM - M02N - DENSITY GUESS - S.T. UNSURE INPUT FROM HERMAN TEMPERATURE: 2090 SOLUTE ACTIVITY COEFF: 5 145 SOLUTE CONCENTRATION .2 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 2180 SOLUTE ACTIVITY COEFF: 4 SOLUTE CONCENTRATION . .25 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 3250 SOLUTE ACTIVITY COEFF: 3.33333333 SOLUTE CONCENTRATION .3 SOLUTE COORDINATION NUMBER: 6 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: 0 O 747.032135 QUASI-CHEMICAL PREDICTIONS OF Uab: O O 800.25783 QUASI-CHEMICAL PREDICTIONS OF Uab: O 0 1235.16611 SPREAD ON OUTPUT: 65.3431021 REGULAR SOLUTION PREDITIONS OF Uab: 1740.55261 REGULAR SOLUTION PREDITIONS OF Uab: 1779.24617 REGULAR SOLUTION PREDITIONS OF Uab: 2644.54264 SPREAD ON OUTPUT: 51.9369551 SOLUTE NITROGEN METAL SILICON - $13N4 - DENSITY GUESS INPUT FROM SCARCE TEMPERATURE: 2000 SOLUTE ACTIVITY COEFF: 1333.33333 SOLUTE CONCENTRATION 7.5E-04 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 2200 SOLUTE ACTIVITY COEFF: 370.37037 SOLUTE CONCENTRATION 2.7E-03 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 2500 SOLUTE ACTIVITY COEFF: 75.1879699 SOLUTE CONCENTRATION .0133 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 2700 SOLUTE ACTIVITY COEFF: 31.9488818 SOLUTE CONCENTRATION .0313 SOLUTE COORDINATION NUMBER: 6 146 TEMPERATURE: 2900 SOLUTE ACTIVITY COEFF: 15.3139357 SOLUTE CONCENTRATION .0653 SOLUTE COORDINATION NUMBER: 6 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: O 0 913.927194 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 946.583557 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 982.111443 QUASI-CHEMICAL PREDICTIONS OF Web: 0 0 1004.09034 QUASI-CHEMICAL PREDICTIONS OF Wab: O 0 1036.55177 SPREAD ON OUTPUT: 13.417324 REGULAR SOLUTION PREDITIONS OF Uab: 4772.93472 REGULAR SOLUTION PREDITIONS OF Uab: 4332.47388 REGULAR SOLUTION PREDITIONS OF Uab: 3673.66233 REGULAR SOLUTION PREDITIONS OF Uab: 3300.85816 REGULAR SOLUTION PREDITIONS OF Uab: 2999.61824 SPREAD ON OUTPUT: 37. SOLUTE NITROGEN METAL INPUT FROM HANSEN 1535876 TITANIUM - TIN TEMPERATURE: 2330 SOLUTE ACTIVITY COEFF: 20 SOLUTE CONCENTRATION .05 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 2484 SOLUTE ACTIVITY COEFF: 10 SOLUTE CONCENTRATION .1 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 2565 SOLUTE ACTIVITY COEFF: 6.66666667 SOLUTE CONCENTRATION .15 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 2830 SOLUTE ACTIVITY COEFF: S SOLUTE CONCENTRATION .2 SOLUTE COORDINATION NUMBER: 6 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: 44.095935 0 O 8 O 0 874.044328 0 0 9 02.545774 147 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 1011.53155 SPREAD ON OUTPUT: 19.8360884 REGULAR SOLUTION PREDITIONS OF Uab: 2561.28747 REGULAR SOLUTION PREDITIONS OF Uab: 2338.45425 REGULAR SOLUTION PREDITIONS OF Uab: 2230.442 REGULAR SOLUTION PREDITIONS OF Uab: 2356.82483 SPREAD ON OUTPUT: 7.98280713 148 SOLUTE OXYGEN METAL ANTIMONY - Sb203 INPUT FROM JACOB TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: 1000 5586.59218 1.79E-04 6 1100 1760.56338 5.68E-04 6 1175 847.457628 1.18E-03 6 82.352015 0 O 4 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 508.16551 0 0 5 QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 26.568763 9.16690436 REGULAR SOLUTION PREDITIONS OF Wab: 2858.37052 REGULAR SOLUTION PREDITIONS OF Uab: 2725.52642 REGULAR SOLUTION PREDITIONS OF Uab: 2629.74892 SPREAD ON OUTPUT: 7.99831919 SOLUTE OXYGEN METAL BARIUM - B302 INPUT FROM HANSEN TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: 1000 5.98802395 .167 6 1170 4.73933649 .211 6 1370 3.6101083 .277 6 149 TEMPERATURE: 1520 SOLUTE ACTIVITY COEFF: 3.14465409 SOLUTE CONCENTRATION .318 SOLUTE COORDINATION NUMBER: 6 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: 0 O 355.349561 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 420.625966 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 O 511.353797 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 585.896048 SPREAD ON OUTPUT: 64.8787875 REGULAR SOLUTION PREDITIONS OF Uab: 854.184659 REGULAR SOLUTION PREDITIONS OF Wab: 968.410202 REGULAR SOLUTION PREDITIONS OF Uab: 1114.20963 REGULAR SOLUTION PREDITIONS OF Uab: 1239.92051 SPREAD ON OUTPUT: 45.1583684 SOLUTE OXYGEN METAL BIMUTH - B10 INPUT FROM GRIFFITH TEMPERATURE: 670 SOLUTE ACTIVITY COEFF: 30120.4819 SOLUTE CONCENTRATION 3.32E-05 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: ' 770 SOLUTE ACTIVITY COEFF: 6622.51655 SOLUTE CONCENTRATION 1.51E-O4 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 870 SOLUTE ACTIVITY COEFF: 2114.16491 SOLUTE CONCENTRATION 4.73E-04 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 970 SOLUTE ACTIVITY COEFF: 813.00813 SOLUTE CONCENTRATION 1.23E-03 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 1020 SOLUTE ACTIVITY COEFF: 546.448088 SOLUTE CONCENTRATION 1.83E-03 SOLUTE COORDINATION NUMBER: 6 OUTPUT 150 QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 31.2113944 REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: SPREAD ON OUTPUT: 6.61401169 SOLUTE OXYGEN METAL CALCIUM - DELTA H FOR CaO - DENSITY FOR C302 INPUT FROM HANSEN TEMPERATURE: 1110 SOLUTE ACTIVITY COEFF: 666.666667 SOLUTE CONCENTRATION 1.5E-03 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 1620 SOLUTE ACTIVITY COEFF: 10 SOLUTE CONCENTRATION .l SOLUTE COORDINATION NUMBER: 6 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 15.9052902 REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: SPREAD ON OUTPUT: 36.3860303 O O 0 O O O 0 O O O 0 0 0 0 2288.40885 2244.21187 2208.01635 2157.79515 2137.05322 4 5 2397.39615 1525.07886 SOLUTE OXYGEN METAL CESIUM - C820 INPUT FROM ADAMS 340.959774 373.761269 405.16418 433.470899 447.378074 91.805775 70.02891 151 TEMPERATURE: 320 SOLUTE ACTIVITY COEFF: 5.07614213 SOLUTE CONCENTRATION .197 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 420 SOLUTE ACTIVITY COEFF: 4.40528634 SOLUTE CONCENTRATION .227 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 520 SOLUTE ACTIVITY COEFF: 3.90625 SOLUTE CONCENTRATION .256 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 620 SOLUTE ACTIVITY COEFF: 3.73134329 SOLUTE CONCENTRATION .268 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 720 SOLUTE ACTIVITY COEFF: 3.28947369 SOLUTE CONCENTRATION .304 SOLUTE COORDINATION NUMBER: 6 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab' QUASI-CHEMICAL PREDICTIONS OF Uab QUASI-CHEMICAL PREDICTIONS OF Uab. QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 139.665207 0 O 0 0 0 0 0 O 0 O 114.378126 152.154632 191.957165 230.145108 274.124573 REGULAR SOLUTION PREDITIONS OF Wab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: 423.901945 REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Wab: 266.992463 345.160458 504.574741 586.101788 SPREAD ON OUTPUT: 119.519975 SOLUTE OXYGEN METAL CHROMIUM - Cr203 INPUT FROM HANSEN - CHECKS ONE SOURCE TEMPERATURE: 2100 SOLUTE ACTIVITY COEFF: 50 SOLUTE CONCENTRATION .02 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT 152 2173 33.3333333 .03 6 2373 25 .04 6 2473 20 .05 6 QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: 0 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 0 QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 11. 4592743 0 803.792211 0 811.074307 0 869.476497 0 895.900965 REGULAR SOLUTION PREDITIONS OF Wab: 2832.79508 REGULAR SOLUTION PREDITIONS OF Wab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: SPREAD ON OUTPUT: 4.03533299 SOLUTE OXYGEN METAL COBALT - COO INPUT FROM HANSEN TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: 1720 118.063754 8.47E-03 6 1760 50 .02 6 1820 25 .04 6 2681.90808 2744.77097 2718.48237 153 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: O O 694.005721 QUASI-CHEMICAL PREDICTIONS OF Uab: O 0 673.654425 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 666.85513 SPREAD ON OUTPUT: 3.91215667 REGULAR SOLUTION PREDITIONS OF Uab: 2764.35123 REGULAR SOLUTION PREDITIONS OF Uab: 2374.15207 REGULAR SOLUTION PREDITIONS OF Uab: 2105.13408 SPREAD ON OUTPUT: 23.8470837 INPUT FROM HANSEN - FROM RUSSIAN TEMPERATURE: 1820 SOLUTE ACTIVITY COEFF: 142.857143 SOLUTE CONCENTRATION 7E-03 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 1920 SOLUTE ACTIVITY COEFF: 100 SOLUTE CONCENTRATION .01 SOLUTE COORDINATION NUMBER: 6 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: O 0 745.164308 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 767.063784 SPREAD ON OUTPUT: 2.93887876 REGULAR SOLUTION PREDITIONS OF Wab: 3032.93227 REGULAR SOLUTION PREDITIONS OF Wab: 2987.60474 SPREAD ON OUTPUT: 1.49451178 SOLUTE OXYGEN METAL COPPER - CUZO INPUT FROM PARLEE TEMPERATURE: 1223 SOLUTE ACTIVITY COEFF: 143.061517 SOLUTE CONCENTRATION 6.99E-03 SOLUTE COORDINATION NUMBER: 6 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: 0 O 500.734038 SPREAD ON OUTPUT: 0 REGULAR SOLUTION PREDITIONS OF Uab: 2038.60997 SPREAD ON OUTPUT: 0 154 SOLUTE OXYGEN METAL COPPER - Cu20 - DIFF DELTA H USED HERE INPUT FROM HANSEN TEMPERATURE: 1373 SOLUTE ACTIVITY COEFF: 43.4782609 SOLUTE CONCENTRATION .023 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 1473 SOLUTE ACTIVITY COEFF: 14.9253731 SOLUTE CONCENTRATION .067 SOLUTE COORDINATION NUMBER: 6 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Wab: O 0 520.879381 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 525.475223 SPREAD ON OUTPUT: .88232345 REGULAR SOLUTION PREDITIONS OF Uab: 1796.92424 REGULAR SOLUTION PREDITIONS OF Uab: 1514.75428 SPREAD ON OUTPUT: 15.7029412 SOLUTE OXYGEN METAL GALLIUM - Ga203 INPUT FROM ALCOCK TEMPERATURE: 1050 SOLUTE ACTIVITY COEFF: 58139.5349 SOLUTE CONCENTRATION 1.72E-05 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 1150 SOLUTE ACTIVITY COEFF: 14245.0143 SOLUTE CONCENTRATION 7.02E-05 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 1250 SOLUTE ACTIVITY COEFF: 4366.81223 SOLUTE CONCENTRATION 2.29E-O4 SOLUTE COORDINATION NUMBER: 6 155 1350 1594.89633 6.27E-04 6 TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab QUASI-CHEMICAL PREDICTIONS OF Uab QUASI-CHEMICAL PREDICTIONS OF Uab QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 14.4016844 REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Wab: REGULAR SOLUTION PREDITIONS OF Uab: SPREAD ON OUTPUT: 13.4673052 INPUT FROM STEVENSON TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: 1023 15174.5068 6.59E-05 6 1123 5555.55556 1.8E-O4 6 TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: 1223 2403.84615 4.16E-O4 6 TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: 1323 1661.12957 6.02E-O4 6 TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT O O O O O O O O 5 5 5 6 3814.88352 3642.94294 3471.3009 3301.12151 43.673513 72.148287 97.578848 21.971657 10.194408 41.681313 71.837314 09.532224 QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 19.470581 O‘U'UIU! 3262.02474 3207.8839 3155.61021 3252.78598 REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab 156 SPREAD ON OUTPUT: .283221816 SOLUTE OXYGEN METAL GERMANIUM 6802 INPUT FROM JACOB TEMPERATURE: 1230 SOLUTE ACTIVITY COEFF: 1047.12042 SOLUTE CONCENTRATION 9.55E-04 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 1330 SOLUTE ACTIVITY COEFF: 421.940928 SOLUTE CONCENTRATION 2.37E-O3 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 1400 SOLUTE ACTIVITY COEFF: 240.384615 SOLUTE CONCENTRATION 4.16E-O3 SOLUTE COORDINATION NUMBER: 6 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: O 0 555.877844 QUASI-CHEMICAL PREDICTIONS OF Wab: 0 0 575.675988 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 588.774961 SPREAD ON OUTPUT: 5.91804792 REGULAR SOLUTION PREDITIONS OF Uab: 2837.94369 REGULAR SOLUTION PREDITIONS OF Uab: 2675.13612 REGULAR SOLUTION PREDITIONS OF Wab: 2563.02935 SPREAD ON OUTPUT: 9.68709634 SOLUTE OXYGEN METAL HAFNIUM - HfOZ - S.T. UNSURE INPUT FROM KARNILOV - RUSSIAN TEMPERATURE: 2570 SOLUTE ACTIVITY COEFF: 3.33333333 SOLUTE CONCENTRATION .3 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 2670 SOLUTE ACTIVITY COEFF: 2.85714286 157 SOLUTE CONCENTRATION .35 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 2770 SOLUTE ACTIVITY COEFF: 2.5 SOLUTE CONCENTRATION .4 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 2860 SOLUTE ACTIVITY COEFF: 2.22222222 SOLUTE CONCENTRATION .45 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 2950 SOLUTE ACTIVITY COEFF: 2 SOLUTE CONCENTRATION .5 6 SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Wab: O O 976.731352 QUASI-CHEMICAL PREDICTIONS OF Uab: O 0 1057.81148 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 1152.28875 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 1258.06523 QUASI-CHEMICAL PREDICTIONS OF Wab: 0 0 1382.98854 SPREAD ON OUTPUT: 41.5935442 2091.22295 2197.08513 2334.84029 2500.15179 2708.65745 REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Wab: REGULAR SOLUTION PREDITIONS OF Wab: SPREAD ON OUTPUT: 29.525044 SOLUTE OXYGEN METAL INDIUM - In203 INPUT FROM JACOB TEMPERATURE: 920 SOLUTE ACTIVITY COEFF: 2551.02041 SOLUTE CONCENTRATION 3.92E-04 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 1000 SOLUTE ACTIVITY COEFF: 990.09901 SOLUTE CONCENTRATION 1.01E-03 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 1100 SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: 158 369.00369 6 31.3049 0 0 4 QUASI-CHEMICAL PREDICTIONS OF Uab: O O 450.671619 0 0 4 QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 73.291778 9.7348484 REGULAR SOLUTION PREDITIONS OF Uab: 2391.80821 REGULAR SOLUTION PREDITIONS OF Uab: 2288.9444 REGULAR SOLUTION PREDITIONS OF Uab: 2164.92635 SPREAD ON OUTPUT: 9.48578843 SOLUTE OXYGEN METAL IRON Fe(.947)O...WUSTITE TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION INPUT FROM URIDT - CHECKS ONE SOURCE 1820 159.235669 6.28E-03 6 1920 102.354145 9.77E-03 6 1970 84.0336134 .0119 SOLUTE COORDINATION NUMBER: 6 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: 0 O 747.55765 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 O 768.33929 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 780.482628 SPREAD ON OUTPUT: 4.40433972 REGULAR SOLUTION PREDITIONS OF Nab: 3094.78801 REGULAR SOLUTION PREDITIONS OF Uab: 3001.30556 REGULAR SOLUTION PREDITIONS OF Uab: 2960.97029 SPREAD ON OUTPUT: 4.32397041 159 SOLUTE OXYGEN METAL LEAD - PbO INPUT FROM RAPP TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Uab: 1050 2906.97674 3.44E-O4 6 1150 1000 lE-O3 6 SPREAD ON OUTPUT: 4.87986939 REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: SPREAD ON OUTPUT: 5.00688927 INPUT FROM HANSEN TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: 670 7692.30769 1.3E-04 6 770 3846.15385 2.6E-O4 6 870 1724.13793 5.8E-04 6 970 854.700855 1.17E-03 6 1070 429.184549 2.33E-03 6 0 0 0 0 494.849972 518.998005 2774.97014 2636.03046 160 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 41.9066573 REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: 0 0 326.852328 0 0 366.688845 0 0 401.369621 0 O 434.699319 0 4 O 63.825213 1985.90815 2106.06263 2149.66487 2173.6385 2158.06442 SPREAD ON OUTPUT: INPUT FROM HANSEN TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT 8.66889381 870 5000 2E-O4 6 970 1666.66667 6E-04 6 1030 1000 1E-O3 6 QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 11.1930945 0 0 418.049064 0 O 446.898154 0 0 464.841691 REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Wab: 3.82687994 SPREAD ON OUTPUT: INPUT FROM ALCOCK TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: 2454.91298 2385.94538 2360.96641 780 13513.5135 7.4E-05 6 870 3144.65409 SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: 11.3595941 SPREAD ON OUTPUT: 161 6 970 735.294117 1.36E-03 6 0 O 3 0 0 4 0 0 4 REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: SPREAD ON OUTPUT: INPUT FROM CHARLE - GERMAN TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Uab: 13.481266 1000 578.034683 1.73E-03 6 1100 199.600798 5.01E-03 6 1143 _ 133.868809 7.47E-O3 6 0 O 4 0 0 4 0 O 4 SPREAD ON OUTPUT: 5.70253779 REGULAR SOLUTION PREDITIONS OF Wab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: SPREAD ON OUTPUT: 10.9691367 87.595997 11.630632 31.625329 2457.26514 2321.79882 2125.99469 39.882947 64.967438 2113.4048 1948.83933 1881.58254 162 SOLUTE OXYGEN METAL LEAD - PbO - NEV DELTA a INPUT FROM RAPP TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT 1250 408.163265 2.45E-03 6 1350 182.815356 5.47E-03 6 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 540.245319 QUASI-CHEMICAL PREDICTIONS OF Wab: 0 0 558.934998 SPREAD ON OUTPUT: 3.45948003 REGULAR SOLUTION PREDITIONS OF Wab: 2500.81876 REGULAR SOLUTION PREDITIONS OF Uab: 2354.26492 SPREAD ON OUTPUT: 5.86023431 INPUT FROM HANSEN TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT 1170 202.42915 4.94E-03 6 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 487.471282 SPREAD ON OUTPUT: REGULAR SOLUTION PREDITIONS OF Uab: 2078.07087 SPREAD ON OUTPUT: INPUT FROM CHARLE - GERMAN TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT 1240 53.4759358 .0187 6 1340 28.9017341 .0346 6 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 476.295133 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 O 495.576663 163 SPREAD ON OUTPUT: 4.04823172 REGULAR SOLUTION PREDITIONS OF Uab: 1696.93004 REGULAR SOLUTION PREDITIONS OF Uab: 1601.69607 SPREAD ON OUTPUT: 5.61213311 SOLUTE OXYGEN METAL LITHIUM - L120 INPUT FROM ADAMS - 7 TEMPERATURE: 570 SOLUTE ACTIVITY COEFF: 10101.0101 SOLUTE CONCENTRATION 9.9E-05 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 670 SOLUTE ACTIVITY COEFF: 2049.18033 SOLUTE CONCENTRATION 4.88E-04 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 770 SOLUTE ACTIVITY COEFF: 602.409638 SOLUTE CONCENTRATION 1.66E-03 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 870 SOLUTE ACTIVITY COEFF: 235.294118 SOLUTE CONCENTRATION 4.25E-03 SOLUTE COORDINATION NUMBER: 6 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 280.489205 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 311.60631 QUASI-CHEMICAL PREDICTIONS 0F Wab: 0 0 339.201038 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 365.315356 SPREAD ON OUTPUT: 30.2422159 REGULAR SOLUTION PREDITIONS OF Uab: 1740.83172 REGULAR SOLUTION PREDITIONS OF Uab: 1693.5435 REGULAR SOLUTION PREDITIONS OF Wab: 1637.66096 REGULAR SOLUTION PREDITIONS OF Uab: 1586.80806 SPREAD ON OUTPUT: 8.84770549 INPUT FROM ASTM SPEC TECH PUBL TEMPERATURE: 520 SOLUTE ACTIVITY COEFF: 104166.667 164 SOLUTE CONCENTRATION 9.6E-O6 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 570 SOLUTE ACTIVITY COEFF: 48780.4878 SOLUTE CONCENTRATION 2.05E-05 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 670 SOLUTE ACTIVITY COEFF: 15384.6154 SOLUTE CONCENTRATION 6.5E-05 SOLUTE COORDINATION NUMBER: 6 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 22.1624695 REGULAR SOLUTION PREDITIONS OF Wab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Wab: SPREAD ON OUTPUT: 7.52868789 SOLUTE OXYGEN METAL MANGANEESE INPUT FROM HANSEN TEMPERATURE: 1670 SOLUTE ACTIVITY COEFF: 1557.6324 SOLUTE CONCENTRATION 6.42E-04 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 1770 0 O 273.525021 0 0 293.790332 0 0 334.14492 1989.67054 2037.8179 2139.46663 - MnO SOLUTE ACTIVITY COEFF: 1070.66381 SOLUTE CONCENTRATION 9.34E-04 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 1870 SOLUTE ACTIVITY COEFF: 763.358779 SOLUTE CONCENTRATION 1.31E-03 SOLUTE COORDINATION NUMBER: 6 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 8.59824295 0 0 767.313685 0 0 801.037218 0 0 833.289181 165 REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: 4121.41438 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Uab: 11.6315068 SPREAD ON OUTPUT: SPREAD ON OUTPUT: 1.24732351 INPUT FROM JACOB TEMPERATURE: 1500 SOLUTE ACTIVITY COEFF: 5586.59218 SOLUTE CONCENTRATION 1.79E-04 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 1600 SOLUTE ACTIVITY COEFF: 2336.4486 SOLUTE CONCENTRATION 4.28E-04 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 1700 SOLUTE ACTIVITY COEFF: 1084.5987 SOLUTE CONCENTRATION 9.22E-04 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 1800 SOLUTE ACTIVITY COEFF: 546.448088 SOLUTE CONCENTRATION 1.83E-03 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 1900 SOLUTE ACTIVITY COEFF: 297.619048 SOLUTE CONCENTRATION 3.36E-03 SOLUTE COORDINATION NUMBER: 6 00000 REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: SPREAD ON OUTPUT: 15.8469947 4070.64033 4096.7562 0 723.528023 0 747.11777 0 769.357779 0 789.490718 0 807.685234 4287.55577 4113.37141 3941.93658 3771.27039 3608.10704 166 SOLUTE OXYGEN METAL NEODYNIUM - Nd203 - UNSURE S.T. & PHASE INPUT FROM HANSEN TEMPERATURE: 1300 SOLUTE ACTIVITY COEFF: 20 SOLUTE CONCENTRATION .05 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 1400 SOLUTE ACTIVITY COEFF: 10 SOLUTE CONCENTRATION .1 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 1470 SOLUTE ACTIVITY COEFF: 6.66666667 SOLUTE CONCENTRATION .15 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 1540 SOLUTE ACTIVITY COEFF: 5 SOLUTE CONCENTRATION .2 SOLUTE COORDINATION NUMBER: 6 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 470.954814 QUASI-CHEMICAL PREDICTIONS OF Wab: 0 0 492.617577 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 517.248456 QUASI-CHEMICAL PREDICTIONS OF Wab: 0 0 550.444731 SPREAD ON OUTPUT: 16.8784595 REGULAR SOLUTION PREDITIONS OF Uab: 1429.04451 REGULAR SOLUTION PREDITIONS OF Wab: 1317.96938 REGULAR SOLUTION PREDITIONS OF Uab: 1278.265 REGULAR SOLUTION PREDITIONS OF Wab: 1282.51245 SPREAD ON OUTPUT: 10.2538485 SOLUTE OXYGEN METAL NICKEL - N10 - (1620-1725) INPUT FROM URIEDT TEMPERATURE: 1620 SOLUTE ACTIVITY COEFF: 24509.8039 SOLUTE CONCENTRATION 4.08E-05 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 1720 167 SOLUTE ACTIVITY COEFF: 10493.1794 SOLUTE CONCENTRATION 9.53E-05 SOLUTE COORDINATION NUMBER: 6 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: O O QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 SPREAD ON OUTPUT: 3.39785536 19.581303 8 847.429489 REGULAR SOLUTION PREDITIONS OF Uab: 5422.65488 REGULAR SOLUTION PREDITIONS OF Wab: 5274.69767 SPREAD ON OUTPUT: 2.7285015 SOLUTE OXYGEN METAL NICKEL - N10 (1725-2000) INPUT FROM URIEDT TEMPERATURE: 1820 SOLUTE ACTIVITY COEFF: 4926.10838 SOLUTE CONCENTRATION 2.03E-O4 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 1920 SOLUTE ACTIVITY COEFF: 2506.26566 SOLUTE CONCENTRATION 3.99E-04 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: . 1970 SOLUTE ACTIVITY COEFF: 1831.50183 SOLUTE CONCENTRATION 5.46E-04 SOLUTE COORDINATION NUMBER: 6 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: O 0 874.539422 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 900.114574 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 O 911.307239 SPREAD ON OUTPUT: 4.20424927 REGULAR SOLUTION PREDITIONS OF Uab: 5126.61855 REGULAR SOLUTION PREDITIONS OF Uab: 4980.40658 REGULAR SOLUTION PREDITIONS OF Uab: 4906.75466 SPREAD ON OUTPUT: 4.28867273 INPUT FROM KIMORA TEMPERATURE: 1730 SOLUTE ACTIVITY COEFF: 93.457944 SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 168 .0107 6 1830 42.3728814 .0236 6 88.855553 0 0 6 0 0 693.011477 .603308567 REGULAR SOLUTION PREDITIONS OF Uab: 2656.16129 REGULAR SOLUTION PREDITIONS OF Uab: 2381.6004 SPREAD ON OUTPUT: 10.3367553 SOLUTE OXYGEN METAL NIOBIUM - Nb204 INPUT FROM HANSEN TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: 2640 20 .05 6 2590 10 .1 6 2545 6.6666666? .15 6 2480 5 .2 6 56.400545 11.342517 0 0 9 O 0 9 QUASI-CHEMICAL PREDICTIONS OF Uab: O 0 895.508381 0 O 8 QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 86.430476 7.3159796 169 REGULAR SOLUTION PREDITIONS OF Uab: 2902.05962 REGULAR SOLUTION PREDITIONS OF Uab: 2438.24336 REGULAR SOLUTION PREDITIONS OF Uab: 2213.05064 REGULAR SOLUTION PREDITIONS OF Uab: 2065.34473 SPREAD ON OUTPUT: 28.831761 SOLUTE OXYGEN METAL PLUTONIUM - Pb02 INPUT FROM HANSEN TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION 1700 10 .1 6 1920 5 .2 SOLUTE COORDINATION NUMBER: 6 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: O O 598.178486 QUASI-CHEMICAL PREDICTIONS OF Wab: O O 686.268756 SPREAD ON OUTPUT: 14.726419 REGULAR SOLUTION PREDITIONS OF Wab: 1600.3914 REGULAR SOLUTION PREDITIONS OF Uab: 1598.97656 SPREAD ON OUTPUT: .0884053514 INPUT FROM HANSEN TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: 1685 20 .05 6 1815 10 .1 6 1930 6.66666667 .15 6 2040 170 SOLUTE ACTIVITY COEFF: 5 SOLUTE CONCENTRATION .2 SOLUTE COORDINATION NUMBER: 6 OUTPUT ' QUASI-CHEMICAL PREDICTIONS OF Uab: O 0 610.429893 QUASI-CHEMICAL PREDICTIONS OF Uab: O 0 638.643501 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 O 679.108517 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 O 729.160553 SPREAD ON OUTPUT: 19.4503351 REGULAR SOLUTION PREDITIONS OF Uab: 1852.26154 REGULAR SOLUTION PREDITIONS OF Uab: 1708.65317 REGULAR SOLUTION PREDITIONS OF Uab: 1678.2663 REGULAR SOLUTION PREDITIONS OF Uab: 1698.9126 SPREAD ON OUTPUT: 8.2790112 SOLUTE OXYGEN METAL POTASSIUM - K20 INPUT FROM ADAMS TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: 370 416.666667 2.4E-03 6 470 149.253731 6.7E-03 6 570 68.4931507 .0146 6 670 27.027027 .037 6 770 11.4942529 .087 6 820 8.33333333 171 SOLUTE CONCENTRATION .12 SOLUTE COORDINATION NUMBER: 6 OUTPUT QUASI-CHEMICAL QUASI-CHEMICAL QUASI-CHEMICAL QUASI-CHEMICAL QUASI-CHEMICAL PREDICTIONS OF Uab: PREDICTIONS OF Uab: PREDICTIONS OF Uab: PREDICTIONS OF Uab: PREDICTIONS OF Uab: 60.150463 92.432541 22.393977 47.329424 72.012592 QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 000000 000000 NNNNHH 87.961254 79.806694? REGULAR SOLUTION PREDITIONS OF Uab: 742.706838 REGULAR SOLUTION PREDITIONS OF Uab: 789.666817 REGULAR SOLUTION PREDITIONS OF Uab: 821.677222 REGULAR SOLUTION PREDITIONS OF Uab: 788.799032 REGULAR SOLUTION PREDITIONS OF Uab: 746.989099 REGULAR SOLUTION PREDITIONS OF Uab: 743.506842 SPREAD ON OUTPUT: .107714577 SOLUTE OXYGEN METAL SCANDIUM - Sc203 TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: INPUT FROM KUPRASHVILI - RUSSIAN - CHECKS ONE SOURCE 1830 2.94117647 .34 6 2070 2.7027027 .37 6 2270 2.5 .4 6 17.680851 0 O 7 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 835.227816 0 0 9 QUASI-CHEMICAL PREDICTIONS OF Uab: 44.29439 SPREAD ON OUTPUT: 31.5758096 REGULAR SOLUTION PREDITIONS OF Uab: 1500.91004 REGULAR SOLUTION PREDITIONS OF Uab: 1717.24577 172 REGULAR SOLUTION PREDITIONS OF Uab: 1913.38897 SPREAD ON OUTPUT: 27.4819227 SOLUTE OXYGEN METAL SILICON - $102 - THO UIDELY DIFFER SOURCES INPUT FROM HANSEN TEMPERATURE: 1650 SOLUTE ACTIVITY COEFF: 4.16666667 SOLUTE CONCENTRATION .24 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 1770 SOLUTE ACTIVITY COEFF: 3.33333333 SOLUTE CONCENTRATION .3 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 1850 SOLUTE ACTIVITY COEFF: 2.5 SOLUTE CONCENTRATION .4 SOLUTE COORDINATION NUMBER: 6 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: 0 O 602.29757 QUASI-CHEMICAL PREDICTIONS OF Uab: 0 0 672.690464 QUASI-CHEMICAL PREDICTIONS OF Wab: 0 0 769.579128 SPREAD ON OUTPUT: 27.7739055 REGULAR SOLUTION PREDITIONS OF Wab: 1350.09012 REGULAR SOLUTION PREDITIONS OF Uab: 1440.25861 REGULAR SOLUTION PREDITIONS OF Uab: 1559.36987 SPREAD ON OUTPUT: 15.5011686 INPUT FROM ARKHAROV - RUSSIAN TEMPERATURE: 1688 SOLUTE ACTIVITY COEFF: 25125.6281 SOLUTE CONCENTRATION 3.98E-05 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 1873 SOLUTE ACTIVITY COEFF: 1023.54145 SOLUTE CONCENTRATION 9.77E-04 SOLUTE COORDINATION NUMBER: 6 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: O O 853.983481 QUASI-CHEMICAL PREDICTIONS OF Uab: O O 845.289793 173 SPREAD ON OUTPUT: 1.01801588 REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: SPREAD ON OUTPUT: 23.9503393 5664.13422 4307.55486 SOLUTE OXYGEN METAL SODIUM - N820 INPUT FROM ADAMS TEMPERATURE: 370 SOLUTE ACTIVITY COEFF: 250000 SOLUTE CONCENTRATION 4E-O6 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 470 SOLUTE ACTIVITY COEFF: 25641.0256 SOLUTE CONCENTRATION 3.9E-05 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 570 SOLUTE ACTIVITY COEFF: 5405.40541 SOLUTE CONCENTRATION 1.85E-O4 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 670 SOLUTE ACTIVITY COEFF: 1869.15888 SOLUTE CONCENTRATION 5.35E-04 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 770 SOLUTE ACTIVITY COEFF: 854.700855 SOLUTE CONCENTRATION 1.17E-03 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 820 SOLUTE ACTIVITY COEFF: 617.283951 SOLUTE CONCENTRATION 1.62E-03 SOLUTE COORDINATION NUMBER: 6 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 82.3083569 98.713984 38.060292 74.592052 10.354705 45.070594 62.272199 OOOOOO OOOOOC UUU’NNH 174 REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: SPREAD ON OUTPUT: 14.9392993 INPUT FROM HANSEN TEMPERATURE: 520 SOLUTE ACTIVITY COEFF: 4166.66667 SOLUTE CONCENTRATION 2.4E-04 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 645 SOLUTE ACTIVITY COEFF: 2000 SOLUTE CONCENTRATION 5E-O4 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 705 SOLUTE ACTIVITY COEFF: 1000 SOLUTE CONCENTRATION 1E-03 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 805 SOLUTE ACTIVITY COEFF: 400 SOLUTE CONCENTRATION 2.5E-O3 SOLUTE COORDINATION NUMBER: 6 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Wab: QUASI-CHEMICAL PREDICTIONS OF Uab: SPREAD ON OUTPUT: 40.1350189 0 0 QUASI-CHEMICAL PREDICTIONS OF Wab: 0 0 0 0 0 0 REGULAR SOLUTION PREDITIONS OF Wab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Wab: SPREAD ON OUTPUT: 11.7872622 SOLUTE OXYGEN METAL TIN - Sn02 1522.98476 1580.25719 1623.06486 1673.27862 1725.46562 1750.50801 248.273407 299.577826 318.168342 347.917985 1436.00966 1625.19656 1616.00128 1605.27589 175 INPUT FROM PARLEE TEMPERATURE: 1223 SOLUTE ACTIVITY COEFF: 176.678445 SOLUTE CONCENTRATION 5.66E-03 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 1523 SOLUTE ACTIVITY COEFF: 45.4545455 SOLUTE CONCENTRATION .022 SOLUTE COORDINATION NUMBER: 6 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: O O 505.552486 QUASI-CHEMICAL PREDICTIONS OF Uab: O O 578.81784 SPREAD ON OUTPUT: 14.4921361 REGULAR SOLUTION PREDITIONS OF Wab: 2119.61748 REGULAR SOLUTION PREDITIONS OF Uab: 2012.60383 SPREAD ON OUTPUT: 5.04872471 INPUT FROM ALCOCK TEMPERATURE: 810 SOLUTE ACTIVITY COEFF: 76923.0769 SOLUTE CONCENTRATION 1.3E-05 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 870 SOLUTE ACTIVITY COEFF: 24390.2439 SOLUTE CONCENTRATION 4.1E-05 SOLUTE COORDINATION NUMBER: 6 TEMPERATURE: 970 SOLUTE ACTIVITY COEFF: 4830.91788 SOLUTE CONCENTRATION 2.07E-04 SOLUTE COORDINATION NUMBER: 6 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: O 0 422:743447 QUASI-CHEMICAL PREDICTIONS OF Uab: O O 440.145515 QUASI-CHEMICAL PREDICTIONS OF Uab: O 0 465.506358 SPREAD ON OUTPUT: 10.1155706 REGULAR SOLUTION PREDITIONS OF Uab: 3017.98525 REGULAR SOLUTION PREDITIONS OF Uab: 2910.75869 REGULAR SOLUTION PREDITIONS OF Uab: 2726.06981 SPREAD ON OUTPUT: 9.67252713 INPUT FROM RAPP TEMPERATURE: 1020 SOLUTE ACTIVITY COEFF: 2061.85567 SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: 176 4.85E-O4 6 1120 549.450549 1.82E-03 6 1220 182.149363 5.49E-03 6 74.385725 0 0 4 QUASI-CHEMICAL PREDICTIONS OF Uab: O 0 491.238669 0 0 5 QUASI-CHEMICAL PREDICTIONS OF Uab: 05.111627 SPREAD ON OUTPUT: 6.47698715 REGULAR SOLUTION PREDITIONS OF Uab: 2580.29994 REGULAR SOLUTION PREDITIONS OF Wab: 2348.56102 REGULAR SOLUTION PREDITIONS OF Uab: 2126.15264 SPREAD ON OUTPUT: 17.6005625 SOLUTE OXYGEN METAL TITANIUM - T10 INPUT FROM HANSEN TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: 2085 20 .05 6 2135 10 .1 6 2180 6.66666667 .15 6 2205 5 .2 6 OUTPUT QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: QUASI-CHEMICAL PREDICTIONS OF Uab: 177 SPREAD ON OUTPUT: 4.3421172 REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Wab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: SPREAD ON OUTPUT: 19.879989 0 0 O 0 0 O 0 0 755.339067 751.241804 767.075941 788.136774 2291.96754 2009.90331 1895.6583 1836.32465 SOLUTE OXYGEN METAL URANIUM - U02 - S.T. UNSURE INPUT FROM HANSEN TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: TEMPERATURE: SOLUTE ACTIVITY COEFF: SOLUTE CONCENTRATION SOLUTE COORDINATION NUMBER: OUTPUT 1380 120918.984 8.27E-O6 6 1470 105374.078 9.49E-06 6 1670 70921.9858 1.41E-05 6 1870 51282.0513 1.95E-05 6 2070 34482.7586 2.9E-05 6 2270 20161.2903 4.96E-05 6 QUASI-CHEMICAL QUASI-CHEMICAL QUASI-CHEMICAL QUASI-CHEMICAL QUASI-CHEMICAL QUASI-CHEMICAL SPREAD ON REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: REGULAR SOLUTION PREDITIONS OF Uab: SPREAD ON 178 PREDICTIONS OF Uab: PREDICTIONS OF Uab: PREDICTIONS OF Uab: PREDICTIONS OF Uab: PREDICTIONS OF Uab: PREDICTIONS OF Uab: OUTPUT: 56.751024 OUTPUT: 39.3254053 0 0 728.313503 0 0 773.234194 0 0 869.618682 0 0 964.943987 0 0 1057.10632 0 0 1141.63887 5348.41984 5630.25472 6177.35672 6716.43113 7162.82336 7451.70762 179 Surface Tension Theory output OUTPUT FOR CARBON AND METAL ALUMINUM - NONE?? INPUT FROM HANSEN TEMPERATURE: 1070 SOLUTE MAXIMUM SOL: 2.2E-03 METAL SURFACE TENSION: 813 TEMPERATURE: 1270 SOLUTE MAXIMUM SOL: 3.1E-03 METAL SURFACE TENSION: 783 TEMPERATURE: 1370 SOLUTE MAXIMUM SOL: 3.5E-03 METAL SURFACE TENSION: 768 TEMPERATURE: 1470 SOLUTE MAXIMUM SOL: 7.1E-03 METAL SURFACE TENSION: 753 OUTPUT CALC MAX SOLUBILTY: .178022114 CALC MAX SOLUBILTY: .246497082 CALC MAX SOLUBILTY: .279901839 CALC MAX SOLUBILTY: .312385119 SOLUTE RADIUS N/ECOM: 9.40547641E-09 SOLUTE RADIUS N/ECOM: 1.01445137E-08 SOLUTE RADIUS N/ECOM: 1.05263806E-08 SOLUTE RADIUS N/ECOM: 1.03001728E-08 OUTPUT FOR CARBON AND METAL ANTIMONY - NONE INPUT FROM HANSEN TEMPERATURE: 1330 SOLUTE MAXIMUM SOL: 3.36E-O3 METAL SURFACE TENSION: 350 TEMPERATURE: 1540 SOLUTE MAXIMUM SOL: 6.91E-03 METAL SURFACE TENSION: 342 TEMPERATURE: 1600 SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: OUTPUT CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: 180 335 .550053554 .603849582 .621526583 1.54188894E-08 1.56862047E-08 1.56190736E-08 OUTPUT FOR CARBON AND METAL BISMUTH - NONE INPUT FROM GRIFFITH TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: OUTPUT CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: 570 2.75E-05 362 670 3.42E-05 360 770 4.01E-05 357 870 4.54E-05 353 970 348 1070 343 .236325548 .29509456 .348851637 .397874628 .442684556 181 CALC MAX SOLUBILTY: .482813377 SOLUTE RADIUS N/ECOM: 1.34768553E-08 SOLUTE RADIUS N/ECOM: 1.44989138E-08 SOLUTE RADIUS N/ECOM: 1.54872242E—08 SOLUTE RADIUS N/ECOM: 1.64533988E-08 SOLUTE RADIUS N/ECOM: 1.74112478E-08 SOLUTE RADIUS N/ECOM: 1.83812947E-08 OUTPUT FOR CARBON AND METAL CERIUM - NONE - S.T. GUESS INPUT FROM GTE TEMPERATURE: 870 SOLUTE MAXIMUM SOL: .255 METAL SURFACE TENSION: 1020 TEMPERATURE: 1070 SOLUTE MAXIMUM SOL: .3 METAL SURFACE TENSION: 1000 OUTPUT CALC MAX SOLUBILTY: .0697363813 CALC MAX SOLUBILTY: .119694376 SOLUTE RADIUS N/ECOM: 3.57805019E-O9 SOLUTE RADIUS N/ECOM: 3.76169527E-09 OUTPUT FOR CARBON AND METAL CHROMIUM - NONE - UNSURE S.T. DATA INPUT FROM HANSEN TEMPERATURE: 1750 SOLUTE MAXIMUM SOL: .136 METAL SURFACE TENSION: 1720 TEMPERATURE: 1830 SOLUTE MAXIMUM SOL: .15 METAL SURFACE TENSION: 1700 TEMPERATURE: 1950 182 SOLUTE MAXIMUM SOL: .2 METAL SURFACE TENSION: 1680 TEMPERATURE: 2080 SOLUTE MAXIMUM SOL: .3 METAL SURFACE TENSION: 1640 OUTPUT CALC MAX SOLUBILTY: .107262933 CALC MAX SOLUBILTY: .121231472 CALC MAX SOLUBILTY: .141294685 CALC MAX SOLUBILTY: .166806653 SOLUTE RADIUS N/ECOM: 4.72194106E-O9 SOLUTE RADIUS N/ECOM: 4.73622E-09 SOLUTE RADIUS N/ECOM: 4.52984313E-09 SOLUTE RADIUS N/ECOM: 4.09544847E-09 INPUT FROM GTE TEMPERATURE: 1800 SOLUTE MAXIMUM SOL: .145 METAL SURFACE TENSION: 1705 TEMPERATURE: 1910 SOLUTE MAXIMUM SOL: .2 METAL SURFACE TENSION: 1689 TEMPERATURE: 1990 SOLUTE MAXIMUM SOL: .25 METAL SURFACE TENSION: 1673 OUTPUT CALC MAX SOLUBILTY: .116306003 CALC MAX SOLUBILTY: .134177337 CALC MAX SOLUBILTY: .148142165 SOLUTE RADIUS N/ECOM: 4.73206829E-09 SOLUTE RADIUS N/ECOM: 4.47118208E-09 SOLUTE RADIUS N/ECOM: 4.255883E-09 ss OUTPUT POR CARBON AND METAL COBALT — Co3C - DENSITY Is CUE INPUT FROM HANSEN - CHECKS WITH ONE SOURCE TEMPERATURE: 1620 SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: OUTPUT CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: .12 1880 1720 .132 1855 1820 .143 1830 .0716502962 .0863203477 .101887004 183 SOLUTE RADIUS N/ECOM: 4.47978208E-09 SOLUTE RADIUS N/ECOM: 4.54133105E-09 SOLUTE RADIUS N/ECOM: 4.60938899E-09 OUTPUT FOR CARBON AND METAL COPPER - NONE INPUT FROM HANSEN TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: OUTPUT CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUB ILTY: 1370 1300 1570 7.94E-06 1282 1770 2.65E-05 1265 1970 1.59E-04 1247 .115862269 .156492968 .197236299 .237451619 184 SOLUTE RADIUS N/ECOM: 1.18582574E-08 SOLUTE RADIUS N/ECOM: 1.2568683E-08 SOLUTE RADIUS N/ECOM: 1.27265706E-08 SOLUTE RADIUS N/ECOM: 1.2319783lE-08 OUTPUT FOR CARBON AND METAL GERMANIUM - NONE - S.T. UNSURE DUE TO HIGH TEMPS INPUT FROM SCARCE TEMPERATURE: 3000 SOLUTE MAXIMUM SOL: .0133 METAL SURFACE TENSION: 330 TEMPERATURE: 3100 SOLUTE MAXIMUM SOL: .0255 METAL SURFACE TENSION: 320 TEMPERATURE: 3200 SOLUTE MAXIMUM SOL: .047 METAL SURFACE TENSION: 310 TEMPERATURE: 3300 SOLUTE MAXIMUM SOL: .0833 METAL SURFACE TENSION: 300 OUTPUT CALC MAX SOLUBILTY: .778913588 CALC MAX SOLUBILTY: .790991394 CALC MAX SOLUBILTY: .802484369 CALC MAX SOLUBILTY: .813432872 SOLUTE RADIUS N/ECOM: 2.07696163E-08 SOLUTE RADIUS N/ECOM: 1.97591221E-08 SOLUTE RADIUS N/ECOM: 1.86195168E-08 SOLUTE RADIUS N/ECOM: 1.73288493E-08 OUTPUT FOR CARBON AND METAL HAFNIUM - NONE - S.T. UNSURE INPUT FROM HANSEN \ V TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: OUTPUT 185 2480 .095 1600 2820 .15 1560 3160 .2 1530 3400 .25 1500 3685 .3 1480 CALC MAX SOLUBILTY: .230979527 CALC MAX SOLUBILTY: .284641434 CALC MAX SOLUBILTY: .33294923 CALC MAX SOLUBILTY: .367110306 CALC MAX SOLUBILTY: .4016145 SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: INPUT FROM GTE TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: OUTPUT 6.33054709E-O9 6.13752167E-09 6.04252315E-09 5.87496036E-09 5.73825192E-09 2630 .05 1580 3110 .07 1535 3680 .15 1480 4080 .3 1440 CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: 186 .255489575 .325921683 .401117013 .448577268 7.40089451E-09 7.69289477E-09 7.19819877E-09 6.12125621E-09 OUTPUT FOR CARBON AND METAL IRON - Fe3C INPUT FROM TURKOGAN TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: OUTPUT CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: 1570 .1855 1840 1670 .1948 1820 1770 .2035 1800 1870 .2116 1780 .0698059965 .0841268478 .0992702754 .115084184 3.97361364E-09 4.06039816E-09 4.14684185E-09 4.23338693E-09 INPUT FROM .GRIGOROVICH - Fe-GRAPHITE EQUIL TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: 1420 .171 1830 TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: OUTPUT 187 1710 .2 1785 2300 .25 1725 2600 .3 1680 CALC MAX SOLUBILTY: .0535445944 CALC MAX SOLUBILTY: .0933841283 CALC MAX SOLUBILTY: .1 82034699 CALC MAX SOLUBILTY: .23045937 SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: INPUT FROM GIRGOROVICH - TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: OUTPUT 3.87979375E-09 4.1152805E-09 4.50588891E-09 4.52401208E-09 Fe3C-Fe EQUIL 1420 .171 1730 1500 .2 1745 1670 .25 1775 CALC MAX SOLUBILTY: .0628325556 CALC MAX SOLUBILTY: .0711896616 CALC MAX SOLUBILTY: .0894367283 SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: 3.9903513E-09 3.89823854E-O9 3.78503735E-O9 188 OUTPUT FOR CARBON AND METAL LITHIUM - NONE INPUT FROM ADAMS TEMPERATURE: 570 SOLUTE MAXIMUM SOL: .0105 METAL SURFACE TENSION: 386 TEMPERATURE: 670 SOLUTE MAXIMUM SOL: .017 METAL SURFACE TENSION: 370 TEMPERATURE: 770 SOLUTE MAXIMUM SOL: .0235 METAL SURFACE TENSION: 354 TEMPERATURE: 870 SOLUTE MAXIMUM SOL: .03 METAL SURFACE TENSION: 338 OUTPUT CALC MAX SOLUBILTY: .214770916 CALC MAX SOLUBILTY: .285258046 CALC MAX SOLUBILTY: .351952554 CALC MAX SOLUBILTY: .413765424 SOLUTE RADIUS N/ECOM: 8.59680605E-09 SOLUTE RADIUS N/ECOM: 9.002421E-09 SOLUTE RADIUS N/ECOM: 9.46643497E-09 SOLUTE RADIUS N/ECOM: 9.95692342E-09 INPUT FROM HANSEN TEMPERATURE: 680 SOLUTE MAXIMUM SOL: .016 METAL SURFACE TENSION: 372 TEMPERATURE: 830 SOLUTE MAXIMUM SOL: .02 METAL SURFACE TENSION: 346 TEMPERATURE: 970 SOLUTE MAXIMUM SOL: .032 METAL SURFACE TENSION: 322 TEMPERATURE: 1070 SOLUTE MAXIMUM SOL: .052 METAL SURFACE TENSION: 306 TEMPERATURE: 1170 SOLUTE MAXIMUM SOL: .091 METAL SURFACE TENSION: 290 189 OUTPUT CALC MAX SOLUBILTY: .288634177 CALC MAX SOLUBILTY: .387950628 CALC MAX SOLUBILTY: .470473965 CALC MAX SOLUBILTY: .522264571 CALC MAX SOLUBILTY: .569498454 SOLUTE RADIUS N/ECOM: 9.11198243E-09 SOLUTE RADIUS N/ECOM: 1.01527825E-08 SOLUTE RADIUS N/ECOM: 1.06720529E-08 SOLUTE RADIUS N/ECOM: 1.06562488E-08 SOLUTE RADIUS N/ECOM: 1.03062789E-08 INPUT FROM HANSEN TEMPERATURE: 1010 SOLUTE MAXIMUM SOL: .05 METAL SURFACE TENSION: 316 TEMPERATURE: 1055 SOLUTE MAXIMUM SOL: .1 METAL SURFACE TENSION: 309 TEMPERATURE: 1070 SOLUTE MAXIMUM SOL: .15 METAL SURFACE TENSION: 306 TEMPERATURE: 1090 SOLUTE MAXIMUM SOL: .2 METAL SURFACE TENSION: 303 OUTPUT CALC MAX SOLUBILTY: .491320232 CALC MAX SOLUBILTY: .514131755 CALC MAX SOLUBILTY: .522264571 CALC MAX SOLUBILTY: .531841125 SOLUTE RADIUS N/ECOM: 1.02553864E-08 SOLUTE RADIUS N/ECOM: 9.29262086E-09 SOLUTE RADIUS N/ECOM: 8.53614845E-09 SOLUTE RADIUS N/ECOM: 7.97466471E-09 OUTPUT FOR CARBON AND METAL MANGANEESE - Mn3C - S.T. UNSURE INPUT FROM HANSEN 190 TEMPERATURE: 1620 SOLUTE MAXIMUM SOL: .2636 METAL SURFACE TENSION: 1090 TEMPERATURE: 1720 SOLUTE MAXIMUM SOL: .272 METAL SURFACE TENSION: 1070 TEMPERATURE: 1820 SOLUTE MAXIMUM SOL: .2796 METAL SURFACE TENSION: 1050 TEMPERATURE: 1870 SOLUTE MAXIMUM SOL: .2868 METAL SURFACE TENSION: 1040 OUTPUT CALC MAX SOLUBILTY: .21690522 CALC MAX SOLUBILTY: .243404967 CALC MAX SOLUBILTY: .269704275 CALC MAX SOLUBILTY: .28273523 SOLUTE RADIUS N/ECOM: 4.66546829E-09 SOLUTE RADIUS N/ECOM: 4.79461133E-09 SOLUTE RADIUS N/ECOM: 4.92579693E-09 SOLUTE RADIUS N/ECOM: 4.96664993E-09 INPUT FROM HANSEN TEMPERATURE: 1500 SOLUTE MAXIMUM SOL: .057 METAL SURFACE TENSION: 1114 TEMPERATURE: 1565 SOLUTE MAXIMUM SOL: .15 METAL SURFACE TENSION: 1103 TEMPERATURE: 1590 SOLUTE MAXIMUM SOL: .2 METAL SURFACE TENSION: 1096 TEMPERATURE: 1610 SOLUTE MAXIMUM SOL: .25 METAL SURFACE TENSION: 1092 OUTPUT CALC MAX SOLUBILTY: .185092247 CALC MAX SOLUBILTY: .201720384 CALC MAX SOLUBILTY: .208941305 CALC MAX SOLUBILTY: .214250597 SOLUTE RADIUS N/ECOM: 6.50918022E-09 SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: INPUT FROM HANSEN TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: OUTPUT 191 5.43751162E-09 5.06423421E-09 4.73819283E-09 1580 .265 1094 1620 .272 1090 1720 .28 1070 1870 .292 1040 CALC MAX SOLUBILTY: .207476706 CALC MAX SOLUBILTY: .21690522 CALC MAX SOLUBILTY: .243404967 CALC MAX SOLUBILTY: .28273523 SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: OUTPUT FOR CARBON AND METAL MOLYBDENUM - M020 - S.T. UNSURE INPUT FROM RUDY TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: 4.58993427E-09 4.61025907E-O9 4.7409357E-09 4.93079338E-09 2470 .17 1065 2600 .2 1090 2700 .25 192 METAL SURFACE TENSION: 1110 OUTPUT CALC MAX SOLUBILTY: .375546342 CALC MAX SOLUBILTY: .38587368 CALC MAX SOLUBILTY: .393056411 SOLUTE RADIUS N/ECOM: 6.71867489E-09 SOLUTE RADIUS N/ECOM: 6.49372544E-09 SOLUTE RADIUS N/ECOM: 6.08599379E-09 OUTPUT FOR CARBON AND METAL NICKEL - N13C INPUT FROM HANSEN TEMPERATURE: 1620 SOLUTE MAXIMUM SOL: .097 METAL SURFACE TENSION: 1800 TEMPERATURE: 1720 SOLUTE MAXIMUM SOL: .104 METAL SURFACE TENSION: 1780 TEMPERATURE: 1820 SOLUTE MAXIMUM SOL: .111 METAL SURFACE TENSION: 1760 TEMPERATURE: 1920 SOLUTE MAXIMUM SOL: .118 METAL SURFACE TENSION: 1740 TEMPERATURE: 2020 SOLUTE MAXIMUM SOL: .124 METAL SURFACE TENSION: 1720 OUTPUT CALC MAX SOLUBILTY: .0801552768 CALC MAX SOLUBILTY: .0953075868 CALC MAX SOLUBILTY: .111188431 CALC MAX SOLUBILTY: .127649652 CALC MAX SOLUBILTY: .144558299 SOLUTE RADIUS N/ECOM: 4.80248627E—09 SOLUTE RADIUS N/ECOM: 4.90134016E-09 SOLUTE RADIUS N/ECOM: 4.99687888E-O9 SOLUTE RADIUS N/ECOM: 5.08942612E-09 193 SOLUTE RADIUS N/ECOM: 5.18925906E-09 OUTPUT FOR CARBON AND METAL NIOBIUM - NONE - S.T. UNSURE INPUT FROM KIMURA TEMPERATURE: 2610 SOLUTE MAXIMUM SOL: .135 METAL SURFACE TENSION: 1994 TEMPERATURE: 2880 SOLUTE MAXIMUM SOL: .2 METAL SURFACE TENSION: 1978 TEMPERATURE: 3110 SOLUTE MAXIMUM SOL: .25 METAL SURFACE TENSION: 1932 TEMPERATURE: 3280 SOLUTE MAXIMUM SOL: .3 METAL SURFACE TENSION: 1898 OUTPUT CALC MAX SOLUBILTY: .176343251 CALC MAX SOLUBILTY: .21013241 CALC MAX SOLUBILTY: .243887083 CALC MAX SOLUBILTY: .268643209 SOLUTE RADIUS N/ECOM: 5.36568544E-09 SOLUTE RADIUS N/ECOM: 5.07345249E-09 SOLUTE RADIUS N/ECOM: 4.95094094E-O9 SOLUTE RADIUS N/ECOM: 4.78057945E-09 OUTPUT FOR CARBON AND METAL PLUTONIUM - NONE INPUT FROM HANSEN TEMPERATURE: 1275 SOLUTE MAXIMUM SOL: .05 METAL SURFACE TENSION: 500 194 TEMPERATURE: 1420 SOLUTE MAXIMUM SOL: .1 METAL SURFACE TENSION: 485 TEMPERATURE: 1550 SOLUTE MAXIMUM SOL: .15 METAL SURFACE TENSION: 475 TEMPERATURE: 1650 SOLUTE MAXIMUM SOL: .2 METAL SURFACE TENSION: 465 OUTPUT CALC MAX SOLUBILTY: .410348181 CALC MAX SOLUBILTY: .460335967 CALC MAX SOLUBILTY: .498537012 CALC MAX SOLUBILTY: .527226618 SOLUTE RADIUS N/ECOM: 9.16020036E-O9 SOLUTE RADIUS N/ECOM: 8.60527059E-09 SOLUTE RADIUS N/ECOM: 8.24612337E-09 SOLUTE RADIUS N/ECOM: 7.92019717E-09 OUTPUT FOR CARBON AND METAL RHENIUM - NONE - S.T. UNSURE INPUT FROM HUGES TEMPERATURE: 2770 SOLUTE MAXIMUM SOL: .169 METAL SURFACE TENSION: 2780 TEMPERATURE: 2870 SOLUTE MAXIMUM SOL: .2 METAL SURFACE TENSION: 2760 TEMPERATURE: 2970 SOLUTE MAXIMUM SOL: .23 METAL SURFACE TENSION: 2740 TEMPERATURE: 3040 SOLUTE MAXIMUM SOL: .25 METAL SURFACE TENSION: 2720 OUTPUT CALC MAX SOLUBILTY: .102324039 CALC MAX SOLUBILTY: .112550524 195 CALC MAX SOLUBILTY: .123007479 CALC MAX SOLUBILTY: .131031863 SOLUTE RADIUS N/ECOM: 4.41112363E-09 SOLUTE RADIUS N/ECOM: 4.28752736E-09 SOLUTE RADIUS N/ECOM: 4.18308918E-09 SOLUTE RADIUS N/ECOM: 4.12537518E-09 OUTPUT FOR CARBON AND METAL SILVER - NONE INPUT FROM HANSEN TEMPERATURE: 1930 SOLUTE MAXIMUM SOL: 1.08E-O4 METAL SURFACE TENSION: 800 TEMPERATURE: 2005 SOLUTE MAXIMUM SOL: 2.25E-04 METAL SURFACE TENSION: 787 OUTPUT CALC MAX SOLUBILTY: .390035565 CALC MAX SOLUBILTY: .410011059 SOLUTE RADIUS N/ECOM: 1.55572486E-08 SOLUTE RADIUS N/ECOM: 1.53312512E-08 OUTPUT FOR CARBON AND METAL SODIUM - NONE INPUT FROM SALZANO TEMPERATURE: 850 SOLUTE MAXIMUM SOL: 1.631E-05 METAL SURFACE TENSION: 157.9 TEMPERATURE: 970 SOLUTE MAXIMUM SOL: 3.695E-05 METAL SURFACE TENSION: 146.9 OUTPUT CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: INPUT FROM HANSEN TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: OUTPUT CALC MAX SOLUBILTY: 196 .655768189 .708936077 2.5530899E-08 2.72072698E-08 420 6 o ZE-OS 197.5 570 9E-05 183.7 770 1.22E-O4 165.3 970 1.44E-04 146.9 .343659548 .480930839 .614088755 .708936077 CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: SOLUTE RADIUS N/ECOM: 1.50435376E-08 SOLUTE RADIUS N/ECOM: 1.78186173E-08 SOLUTE RADIUS N/ECOM: 2.14728955E-08 SOLUTE RADIUS N/ECOM: 2.532937E-08 OUTPUT FOR CARBON AND METAL TANTALUM - NONE INPUT FROM HANSEN - UNSURE PHASE DIAG TEMPERATURE: 3070 SOLUTE MAXIMUM SOL: .08 METAL SURFACE TENSION: 2155 TEMPERATURE: 3150 SOLUTE MAXIMUM SOL: .l METAL SURFACE TENSION: 2140 197 TEMPERATURE: 3305 SOLUTE MAXIMUM SOL: .15 METAL SURFACE TENSION: 2110 TEMPERATURE: 3455 SOLUTE MAXIMUM SOL: .2 METAL SURFACE TENSION: 2080 OUTPUT CALC MAX SOLUBILTY: .203024896 CALC MAX SOLUBILTY: .213713905 CALC MAX SOLUBILTY: .234540028 CALC MAX SOLUBILTY: .254756178 SOLUTE RADIUS N/ECOM: 6.28669338E-O9 SOLUTE RADIUS N/ECOM: 6.10154218E-09 SOLUTE RADIUS N/ECOM: 5.71314554E-O9 SOLUTE RADIUS N/ECOM: 5.41892145E-09 INPUT FROM GTE TEMPERATURE: 3120 SOLUTE MAXIMUM SOL: .12 METAL SURFACE TENSION: 2146 TEMPERATURE: 3255 SOLUTE MAXIMUM SOL: .15 METAL SURFACE TENSION: 2120 TEMPERATURE: 3450 SOLUTE MAXIMUM SOL: .2 METAL SURFACE TENSION: 2080 OUTPUT CALC MAX SOLUBILTY: .209648532 CALC MAX SOLUBILTY: .227778266 CALC MAX SOLUBILTY: .2542518 SOLUTE RADIUS N/ECOM: 5.81889799E—09 SOLUTE RADIUS N/ECOM: 5.65637702E-09 SOLUTE RADIUS N/ECOM: 5.41499896E-09 OUTPUT FOR CARBON AND METAL TITANIUM - T1C INPUT FROM GTE 198 TEMPERATURE: 1920 SOLUTE MAXIMUM SOL: .015 METAL SURFACE TENSION: 1600 TEMPERATURE: 1950 SOLUTE MAXIMUM SOL: .05 METAL SURFACE TENSION: 1594 TEMPERATURE: 2020 SOLUTE MAXIMUM SOL: .1 METAL SURFACE TENSION: 1580 TEMPERATURE: 2115 SOLUTE MAXIMUM SOL: .15 METAL SURFACE TENSION: 1561 TEMPERATURE: 2320 SOLUTE MAXIMUM SOL: .2 METAL SURFACE TENSION: 1520 OUTPUT CALC MAX SOLUBILTY: .150643046 CALC MAX SOLUBILTY: .156182112 CALC MAX SOLUBILTY: .169204387 CALC MAX SOLUBILTY: .18703853 CALC MAX SOLUBILTY: .225786465 SOLUTE RADIUS N/ECOM: 7.44017933E-09 SOLUTE RADIUS N/ECOM: 6.34465527E-09 SOLUTE RADIUS N/ECOM: 5.68641261E-09 SOLUTE RADIUS N/ECOM: 5.31354689E-O9 SOLUTE RADIUS N/ECOM: 5.19448739E-09 INPUT FROM HANSEN TEMPERATURE: 2110 SOLUTE MAXIMUM SOL: .05 METAL SURFACE TENSION: 1562 TEMPERATURE: 2210 SOLUTE MAXIMUM SOL: .1 METAL SURFACE TENSION: 1542 TEMPERATURE: 2350 SOLUTE MAXIMUM SOL: .15 METAL SURFACE TENSION: 1514 TEMPERATURE: 2490 SOLUTE MAXIMUM SOL: .2 METAL SURFACE TENSION: 1486 OUTPUT 199 CALC MAX SOLUBILTY: .186096532 CALC MAX SOLUBILTY: .204978847 CALC MAX SOLUBILTY: .231455334 CALC MAX SOLUBILTY: .257805808 SOLUTE RADIUS N/ECOM: 6.66707891E-09 SOLUTE RADIUS N/ECOM: 6.02067491E-O9 SOLUTE RADIUS N/ECOM: 5.6872429E-O9 SOLUTE RADIUS N/ECOM: 5.4426545E-09 OUTPUT FOR CARBON AND METAL URANIUM - UC2 - S.T. UNSURE INPUT FROM HANSEN TEMPERATURE: 1670 SOLUTE MAXIMUM SOL: .05 METAL SURFACE TENSION: 1455 TEMPERATURE: 1870 SOLUTE MAXIMUM SOL: .1 METAL SURFACE TENSION: 1425 TEMPERATURE: 2030 SOLUTE MAXIMUM SOL: .15 METAL SURFACE TENSION: 1401 TEMPERATURE: 2170 SOLUTE MAXIMUM SOL: .2 METAL SURFACE TENSION: 1380 OUTPUT CALC MAX SOLUBILTY: .138209657 CALC MAX SOLUBILTY: .177127093 CALC MAX SOLUBILTY: .208543214 CALC MAX SOLUBILTY: .235865975 SOLUTE RADIUS N/ECOM: 6.14556225E-O9 SOLUTE RADIUS N/ECOM: 5.7610892E-09 SOLUTE RADIUS N/ECOM: 5.49489926E-09 SOLUTE RADIUS N/ECOM: 5.27242999E-09 200 OUTPUT FOR CARBON AND METAL VANADIUM - NONE - S.T. UNSURE INPUT FROM STORMS - CHECKED BY ONE SOURCE TEMPERATURE: 1920 SOLUTE MAXIMUM SOL: .145 METAL SURFACE TENSION: 1980 TEMPERATURE: 2000 SOLUTE MAXIMUM SOL: .167 METAL SURFACE TENSION: 1974 TEMPERATURE: 2120 SOLUTE MAXIMUM SOL: .2 METAL SURFACE TENSION: 1960 TEMPERATURE: 2250 SOLUTE MAXIMUM SOL: .23 METAL SURFACE TENSION: 1937 OUTPUT CALC MAX SOLUBILTY: .0960974796 CALC MAX SOLUBILTY: .106258309 CALC MAX SOLUBILTY: .122458462 CALC MAX SOLUBILTY: .141503312 SOLUTE RADIUS N/ECOM: 4.53518452E-O9 SOLUTE RADIUS N/ECOM: 4.46295373E-O9 SOLUTE RADIUS N/ECOM: 4.37280783E-09 SOLUTE RADIUS N/ECOM: 4.33032637E-09 OUTPUT FOR CARBON AND METAL WOLFRAM - WC - S.T. UNSURE INPUT FROM HANSEN TEMPERATURE: 3070 SOLUTE MAXIMUM SOL: .4 METAL SURFACE TENSION: 2490 TEMPERATURE: 3350 SOLUTE MAXIMUM SOL: .5 METAL SURFACE TENSION: 2426 OUTPUT CALC MAX SOLUBILTY: .158455073 CALC MAX SOLUBILTY: .193030301 .— 201 SOLUTE RADIUS N/ECOM: 3.5226504E-O9 SOLUTE RADIUS N/ECOM: 3.24244874E-O9 OUTPUT FOR CARBON AND METAL ZIRCONIUM - ZrC - S.T. GUESSED FROM T1 DATA INPUT FROM HANSEN TEMPERATURE: 2100 SOLUTE MAXIMUM SOL: .05 METAL SURFACE TENSION: 1553 TEMPERATURE: 2270 SOLUTE MAXIMUM SOL: .067 METAL SURFACE TENSION: 1528 TEMPERATURE: 2670 SOLUTE MAXIMUM SOL: .143 METAL SURFACE TENSION: 1468 TEMPERATURE: 3070 SOLUTE MAXIMUM SOL: .276 METAL SURFACE TENSION: 1408 OUTPUT CALC MAX SOLUBILTY: .186418296 CALC MAX SOLUBILTY: .216763253 CALC MAX SOLUBILTY: .28683433 CALC MAX SOLUBILTY: .352839707 SOLUTE RADIUS N/ECOM: 6.67050636E-09 SOLUTE RADIUS N/ECOM: 6.6414467E-O9 SOLUTE RADIUS N/ECOM: 6.23341173E-09 SOLUTE RADIUS N/ECOM: 5.5526501E-09 202 OUTPUT FOR HYDROGEN AND METAL CALCIUM - CaH2 INPUT FROM HANSEN TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: OUTPUT CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: 1235 .05 320 1250 .1 319 1270 .15 318 1320 .2 315 .428483589 .433997657 .440874269 .458158868 1.12692074E-08 9.95522072E-O9 SOLUTE RADIUS N/ECOM: 9.12260947E-09 SOLUTE RADIUS N/ECOM: 8.60700759E-09 OUTPUT FOR HYDROGEN AND METAL LANTANUM - NONE INPUT FROM PETERSON - S.T. TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: IFFY 1200 .05 1600 1210 .1 1595 1220 .15 1590 203 TEMPERATURE: 1240 SOLUTE MAXIMUM SOL: .2 METAL SURFACE TENSION: 1585 TEMPERATURE: 1300 SOLUTE MAXIMUM SOL: .3 METAL SURFACE TENSION: 1575 OUTPUT CALC MAX SOLUBILTY: .0127642323 CALC MAX SOLUBILTY: .0134127394 CALC MAX SOLUBILTY: .0140827491 CALC MAX SOLUBILTY: .015285342 CALC MAX SOLUBILTY: .0190109928 SOLUTE RADIUS N/ECOM: 4.96781615E-09 SOLUTE RADIUS N/ECOM: 4.38029711E-09 SOLUTE RADIUS N/ECOM: 3.99863844E-09 SOLUTE RADIUS N/ECOM: 3.7189189E-09 SOLUTE RADIUS N/ECOM: 3.30387128E-09 OUTPUT FOR HYDROGEN AND METAL LITHIUM - L1H INPUT FROM HANSEN TEMPERATURE: 760 SOLUTE MAXIMUM SOL: .05 METAL SURFACE TENSION: 352 TEMPERATURE: 920 SOLUTE MAXIMUM SOL: .1 METAL SURFACE TENSION: 320 TEMPERATURE: 960 SOLUTE MAXIMUM SOL: .15 METAL SURFACE TENSION: 312 TEMPERATURE: 1090 SOLUTE MAXIMUM SOL: .2 METAL SURFACE TENSION: 290 OUTPUT CALC MAX SOLUBILTY: .219827676 CALC MAX SOLUBILTY: .320561721 CALC MAX SOLUBILTY: .345411035 CALC MAX SOLUBILTY: .418858902 SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: INPUT FROM HUBBERTY TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: OUTPUT 204 8.42888924E-09 8.52727272E-O9 8.00735537E-O9 8.15144772E—O9 470 4.1E-04 400 550 386 650 370 750 .0279 354 870 .0741 343 CALC MAX SOLUBILTY: .0618102423 CALC MAX SOLUBILTY: .1 CALC MAX SOLUBILTY: .1 00708119 55383689 CALC MAX SOLUBILTY: .213561087 CALC MAX SOLUBILTY: .275398915 SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: INPUT FROM ADAMS TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: OUTPUT 1.00330186E-08 9.81595019E-09 9.49203432E-09 9.12643228E-09 8.51486854E-O9 900 .117 334 950 .188 326 205 CALC MAX SOLUBILTY: .297053854 CALC MAX SOLUBILTY: .325493894 SOLUTE RADIUS N/ECOM: 7.96900129E-O9 SOLUTE RADIUS N/ECOM: 7.3141746E-09 OUTPUT FOR HYDROGEN AND METAL PLUTONIUM - PuHZ - DENSITY DATA BASED ON URANIUM INPUT FROM HANSEN TEMPERATURE: 970 SOLUTE MAXIMUM SOL: .05 METAL SURFACE TENSION: 545 TEMPERATURE: 1070 SOLUTE MAXIMUM SOL: .075 METAL SURFACE TENSION: 520 OUTPUT CALC MAX SOLUBILTY: .159177539 CALC MAX SOLUBILTY: .204014774 SOLUTE RADIUS N/ECOM: 7.65283763E-09 SOLUTE RADIUS N/ECOM: 7.65148764E-09 OUTPUT FOR HYDROGEN AND METAL POTASSIUM - NONE INPUT FROM HUBBERTY TEMPERATURE: 400 SOLUTE MAXIMUM SOL: 6.61E-06 METAL SURFACE TENSION: 89.19 TEMPERATURE: 500 SOLUTE MAXIMUM SOL: 2.08E-O4 METAL SURFACE TENSION: 82.66 TEMPERATURE: 600 SOLUTE MAXIMUM SOL: 2.07E-03 METAL SURFACE TENSION: 76.13 206 TEMPERATURE: 700 SOLUTE MAXIMUM SOL: .0107 METAL SURFACE TENSION: 69.6 OUTPUT CALC MAX SOLUBILTY: .482239884 CALC MAX SOLUBILTY: .582320773 CALC MAX SOLUBILTY: .660331052 CALC MAX SOLUBILTY: .72237269 SOLUTE RADIUS N/ECOM: 2.42392722E—O8 SOLUTE RADIUS N/ECOM: 2.37337677E-08 SOLUTE RADIUS N/ECOM: 2.31303707E-08 SOLUTE RADIUS N/ECOM: 2.2389101E-08 INPUT FROM ARNIL’DOV - RUSSIAN TEMPERATURE: 570 SOLUTE MAXIMUM SOL: 1.79E-O3 METAL SURFACE TENSION: 78.09 TEMPERATURE: 670 SOLUTE MAXIMUM SOL: .0105 METAL SURFACE TENSION: 71.56 TEMPERATURE: 770 SOLUTE MAXIMUM SOL: .0386 METAL SURFACE TENSION: 65.03 OUTPUT CALC MAX SOLUBILTY: .638838315 CALC MAX SOLUBILTY: .7051503 CALC MAX SOLUBILTY: .75863344 SOLUTE RADIUS N/ECOM: 2.25201818E-08 SOLUTE RADIUS N/ECOM: 2.16468939E-08 SOLUTE RADIUS N/ECOM: 2.05737855E-08 OUTPUT FOR HYDROGEN AND METAL SODIUM - NaH INPUT FROM McCLURE TEMPERATURE: 530 SOLUTE MAXIMUM SOL: 1.899E-O4 METAL SURFACE TENSION: 187.4 207 TEMPERATURE: 630 SOLUTE MAXIMUM SOL: 1.309E-03 METAL SURFACE TENSION: 178.2 OUTPUT CALC MAX SOLUBILTY: .314580092 CALC MAX SOLUBILTY: .396460847 SOLUTE RADIUS N/ECOM: 1.63155577E-08 SOLUTE RADIUS N/ECOM: 1.6055895E-08 INPUT FROM ADDISON TEMPERATURE: 520 SOLUTE MAXIMUM SOL: 8.256E-05 METAL SURFACE TENSION: 188.3 TEMPERATURE: 593 SOLUTE MAXIMUM SOL: 1.275E-04 METAL SURFACE TENSION: 181.6 OUTPUT CALC MAX SOLUBILTY: .305924076 CALC MAX SOLUBILTY: .367270147 SOLUTE RADIUS N/ECOM: 1.68876678E-08 SOLUTE RADIUS N/ECOM: 1.79343623E-08 INPUT FROM HUBBERTY TEMPERATURE: 400 SOLUTE MAXIMUM SOL: 1.86E-O6 METAL SURFACE TENSION: 199.3 TEMPERATURE: 500 SOLUTE MAXIMUM SOL: 6.03E-05 METAL SURFACE TENSION: 190.1 TEMPERATURE: 600 SOLUTE MAXIMUM SOL: 6.11E-04 METAL SURFACE TENSION: 180.9 TEMPERATURE: 700 SOLUTE MAXIMUM SOL: 3.2E-03 METAL SURFACE TENSION: 171.7 OUTPUT CALC MAX SOLUBILTY: .195989991 CALC MAX SOLUBILTY: .288352943 CALC MAX SOLUBILTY: .373007918 208 CALC MAX SOLUBILTY: .448301991 SOLUTE RADIUS N/ECOM: 1.70554563E-08 SOLUTE RADIUS N/ECOM: 1.6754253E-08 SOLUTE RADIUS N/ECOM: 1.64197947E-O8 SOLUTE RADIUS N/EOOM: 1.60390013E-08 OUTPUT FOR HYDROGEN AND METAL STRONTIUM - SrH2 INPUT FROM HANSEN - SCEWY PHASE DIAG TEMPERATURE: 1050 SOLUTE MAXIMUM SOL: .05 METAL SURFACE TENSION: 282 TEMPERATURE: 1065 SOLUTE MAXIMUM SOL: .1 METAL SURFACE TENSION: 283 TEMPERATURE: 1080 SOLUTE MAXIMUM SOL: .15 METAL SURFACE TENSION: 285 OUTPUT CALC MAX SOLUBILTY: .415425564 CALC MAX SOLUBILTY: .419307612 CALC MAX SOLUBILTY: .421837111 SOLUTE RADIUS N/EOOM: 1.10689131E-O8 SOLUTE RADIUS N/ECOM: 9.75602297E-09 SOLUTE RADIUS N/ECOM: 8.88628486E-O9 OUTPUT FOR HYDROGEN AND METAL URANIUM - UH3 - UNSURE S.T. DATA INPUT FROM HANSEN TEMPERATURE: 1400 SOLUTE MAXIMUM SOL: .29 METAL SURFACE TENSION: 1495 TEMPERATURE: 1470 209 SOLUTE MAXIMUM SOL: .333 METAL SURFACE TENSION: 1485 OUTPUT CALC MAX SOLUBILTY: .0304161809 CALC MAX SOLUBILTY: .0367283218 SOLUTE RADIUS N/ECOM: 3.56833063E-09 SOLUTE RADIUS N/ECOM: 3.45779081E-09 210 OUTPUT FOR NITROGEN AND METAL CALCIUM - C83N2 INPUT PROM HANSEN TEMPERATURE: 1050 SOLUTE MAXIMUM SOL: .019 METAL SURFACE TENSION: 329 TEMPERATURE: 1110 SOLUTE MAXIMUM SOL: .05 METAL SURFACE TENSION: 326 TEMPERATURE: 1150 SOLUTE MAXIMUM SOL: .1 METAL SURFACE TENSION: 324 OUTPUT CALC MAX SOLUBILTY: .358846533 CALC MAX SOLUBILTY: .382654602 CALC MAX SOLUBILTY: .39791329 SOLUTE RADIUS N/ECOM: 1.17871674E-08 SOLUTE RADIUS N/ECOM: 1.05849198E-08 SOLUTE RADIUS N/ECOM: 9.47474746E-09 OUTPUT FOR NITROGEN AND METAL CHROMIUM - DELTA H DATA FOR CrN2 - DENSITY DATA FOR CrN - UNSURE S.T. INPUT FROM HUMBERT TEMPERATURE: 1960 SOLUTE MAXIMUM SOL: .172 METAL SURFACE TENSION: 1664 TEMPERATURE: 2000 SOLUTE MAXIMUM SOL: .156 METAL SURFACE TENSION: 1656 TEMPERATURE: 2040 SOLUTE MAXIMUM SOL: .142 METAL SURFACE TENSION: 1648 TEMPERATURE: 2080 SOLUTE MAXIMUM SOL: .129 METAL SURFACE TENSION: 1640 TEMPERATURE: 2130 211 SOLUTE MAXIMUM SOL: .113 METAL SURFACE TENSION: 1630 OUTPUT CALC MAX SOLUBILTY: .062233054 CALC MAX SOLUBILTY: .0666534614 CALC MAX SOLUBILTY: .0711960028 CALC MAX SOLUBILTY: .0758555304 CALC MAX SOLUBILTY: .0818366158 SOLUTE RADIUS N/ECOM: 4.77225089E-O9 SOLUTE RADIUS N/ECOM: 4.96454324E-09 SOLUTE RADIUS N/ECOM: 5.15171448E—09 SOLUTE RADIUS N/ECOM: 5.34136242E-O9 SOLUTE RADIUS N/ECOM: 5.59428039E-O9 INPUT FROM HANSEN - IST SAMPLE EXPOSED TO AIR - 2ND TO HYDROGEN TEMPERATURE: 1900 SOLUTE MAXIMUM SOL: .0738 METAL SURFACE TENSION: 1676 TEMPERATURE: 1920 SOLUTE MAXIMUM SOL: .1234 METAL SURFACE TENSION: 1672 OUTPUT CALC MAX SOLUBILTY: .0558426432 CALC MAX SOLUBILTY: .0579399062 SOLUTE RADIUS N/ECOM: 5.69696332E-O9 SOLUTE RADIUS N/ECOM: 5.13724582E~O9 OUTPUT FOR NITROGEN AND METAL LITHIUM - L13N - DENISITY DATA GUESS INPUT FROM ADAMS TEMPERATURE: 500 SOLUTE MAXIMUM SOL: 1.25E-O3 METAL SURFACE TENSION: 390 TEMPERATURE: 600 SOLUTE MAXIMUM SOL: 5.95E-O3 METAL SURFACE TENSION: 374 212 TEMPERATURE: 700 SOLUTE MAXIMUM SOL: .0182 METAL SURFACE TENSION: 368 OUTPUT CALC MAX SOLUBILTY: .0779842498 CALC MAX SOLUBILTY: .130182474 CALC MAX SOLUBILTY: .179151631 SOLUTE RADIUS N/ECOM: 9.70228831E-O9 SOLUTE RADIUS N/ECOM: 9.50261636E-09 SOLUTE RADIUS N/ECOM: 9.1491775E-09 INPUT FROM ADAMS TEMPERATURE: 570 SOLUTE MAXIMUM SOL: 7.5E-04 METAL SURFACE TENSION: 386 TEMPERATURE: 670 SOLUTE MAXIMUM SOL: 6.7E-03 METAL SURFACE TENSION: 370 TEMPERATURE: 770 SOLUTE MAXIMUM SOL: .0375 METAL SURFACE TENSION: 354 TEMPERATURE: 870 SOLUTE MAXIMUM SOL: .065 METAL SURFACE TENSION: 338 OUTPUT CALC MAX SOLUBILTY: .109155262 CALC MAX SOLUBILTY: .164264071 CALC MAX SOLUBILTY: .222298808 CALC MAX SOLUBILTY: .280624795 SOLUTE RADIUS N/ECOM: 1.08032831E-08 SOLUTE RADIUS N/ECOM: 9.97815086E-O9 SOLUTE RADIUS N/ECOM: 8.85706763E-O9 SOLUTE RADIUS N/ECOM: 8.79090756E-O9 INPUT FROM HANSEN TEMPERATURE: 520 SOLUTE MAXIMUM SOL: 2E-O4 METAL SURFACE TENSION: 394 TEMPERATURE: 620 SOLUTE MAXIMUM SOL: 5.9E-03 METAL SURFACE TENSION: 378 213 TEMPERATURE: 720 SOLUTE MAXIMUM SOL: 6.5E-03 METAL SURFACE TENSION: 362 OUTPUT CALC MAX SOLUBILTY: .0838870775 CALC MAX SOLUBILTY: .136129046 CALC MAX SOLUBILTY: .193108846 SOLUTE RADIUS N/ECOM: 1.11118199E-08 SOLUTE RADIUS N/ECOM: 9.61635802E-09 SOLUTE RADIUS N/ECOM: 1.04890507E-08 OUTPUT FOR NITROGEN AND METAL MOLYBDENUM - M02N - DENSITY GUESS - S.T. UNSURE INPUT FROM HERMAN TEMPERATURE: 2090 SOLUTE MAXIMUM SOL: .2 METAL SURFACE TENSION: 985 TEMPERATURE: 2180 SOLUTE MAXIMUM SOL: .25 METAL SURFACE TENSION: 1008 TEMPERATURE: 3250 SOLUTE MAXIMUM SOL: .3 METAL SURFACE TENSION: 1220 OUTPUT CALC MAX SOLUBILTY: .214056308 CALC MAX SOLUBILTY: .220383874 CALC MAX SOLUBILTY: .292930546 SOLUTE RADIUS N/ECOM: 6.12456891E-O9 SOLUTE RADIUS N/ECOM: 5.73864148E-09 SOLUTE RADIUS N/ECOM: 5.93544777E-09 214 OUTPUT FOR NITROGEN AND METAL SILICON - SI3N4 - DENSITY GUESS INPUT FROM SCARCE TEMPERATURE: 2000 SOLUTE MAXIMUM SOL: 7.5E-O4 METAL SURFACE TENSION: 700 TEMPERATURE: 2200 SOLUTE MAXIMUM SOL: 2.7E-O3 METAL SURFACE TENSION: 680 TEMPERATURE: 2500 SOLUTE MAXIMUM SOL: .0133 METAL SURFACE TENSION: 650 TEMPERATURE: 2700 SOLUTE MAXIMUM SOL: .0313 METAL SURFACE TENSION: 630 TEMPERATURE: 2900 SOLUTE MAXIMUM SOL: .0653 METAL SURFACE TENSION: 610 OUTPUT CALC MAX SOLUBILTY: .31829045 CALC MAX SOLUBILTY: .363860687 CALC MAX SOLUBILTY: .427237108 CALC MAX SOLUBILTY: .4661751 CALC MAX SOLUBILTY: .502578998 SOLUTE RADIUS N/ECOM: 1.50271963E-08 SOLUTE RADIUS N/ECOM: 1.44977102E-08 SOLUTE RADIUS N/ECOM: 1.35094648E-08 SOLUTE RADIUS N/ECOM: 1.27700481E-O8 SOLUTE RADIUS N/ECOM: 1.19371429E-O8 OUTPUT FOR NITROGEN AND METAL TITANIUM - TiN INPUT FROM HANSEN TEMPERATURE: 2330 SOLUTE MAXIMUM SOL: .05 METAL SURFACE TENSION: 1518 TEMPERATURE: 2484 SOLUTE MAXIMUM SOL: .1 METAL SURFACE TENSION: 1486 215 TEMPERATURE: 2565 SOLUTE MAXIMUM SOL: .15 METAL SURFACE TENSION: 1472 TEMPERATURE: 2830 SOLUTE MAXIMUM SOL: .2 METAL SURFACE TENSION: 1419 OUTPUT CALC MAX SOLUBILTY: .118724025 CALC MAX SOLUBILTY: .141323311 CALC MAX SOLUBILTY: .153039098 CALC MAX SOLUBILTY: .193972531 SOLUTE RADIUS N/ECOM: 7.10684687E-09 SOLUTE RADIUS N/ECOM: 6.5021595E-O9 SOLUTE RADIUS N/ECOM: 6.02588117E-O9 SOLUTE RADIUS N/ECOM: 5.93775833E-O9 216 OUTPUT FOR OXYGEN AND METAL ANTIMONY - Sb203 INPUT FROM JACOB TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: OUTPUT CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: 1000 l a 79E’04 370 1100 365 1175 358 .298135388 .33779324 .369147252 1.60044491E-08 1.57286733E-08 1.55906038E-08 OUTPUT FOR OXYGEN AND METAL BARIUM - B802 INPUT FROM HANSEN TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: OUTPUT 1000 .167 255 1170 .211 250 1370 .277 245 1520 .318 237 217 CALC MAX SOLUBILTY: .434281657 CALC MAX SOLUBILTY: .497134049 CALC MAX SOLUBILTY: .557145038 CALC MAX SOLUBILTY: .60050071 SOLUTE RADIUS N/ECOM: 8.78033063E-O9 SOLUTE RADIUS N/ECOM: 8.94327844E-O9 SOLUTE RADIUS N/ECOM: 8.87971006E-09 SOLUTE RADIUS N/ECOM: 8.98394739E-O9 OUTPUT FOR OXYGEN AND METAL BIMUTH - B10 INPUT FROM GRIFFITH TEMPERATURE: 670 SOLUTE MAXIMUM SOL: 3.32E~05 METAL SURFACE TENSION: 360 TEMPERATURE: 770 SOLUTE MAXIMUM SOL: 1.51E-O4 METAL SURFACE TENSION: 357 TEMPERATURE: 870 SOLUTE MAXIMUM SOL: 4.73E-04 METAL SURFACE TENSION: 353 TEMPERATURE: 970 SOLUTE MAXIMUM SOL: 1.23E-O3 METAL SURFACE TENSION: 348 TEMPERATURE: 1020 SOLUTE MAXIMUM SOL: 1.83E-O3 METAL SURFACE TENSION: 346 OUTPUT CALC MAX SOLUBILTY: .17248214 CALC MAX SOLUBILTY: .219483917 CALC MAX SOLUBILTY: .265237297 CALC MAX SOLUBILTY: .309297132 CALC MAX SOLUBILTY: .329718085 SOLUTE RADIUS N/ECOM: 1.45198194E-O8 SOLUTE RADIUS N/ECOM: 1.44375104E-08 SOLUTE RADIUS N/ECOM: 1.43968803E-08 SOLUTE RADIUS N/ECOM: 1.43232327E-08 SOLUTE RADIUS N/EOOM: 1.42867751E-08 218 OUTPUT FOR OXYGEN AND METAL CALCIUM - DELTA H FOR CaO - DENSITY FOR C802 INPUT FROM HANSEN TEMPERATURE: 1110 SOLUTE MAXIMUM SOL: 1.5E-03 METAL SURFACE TENSION: 326 TEMPERATURE: 1620 SOLUTE MAXIMUM SOL: .1 METAL SURFACE TENSION: 300 OUTPUT CALC MAX SOLUBILTY: .382654602 CALC MAX SOLUBILTY: .545687126 SOLUTE RADIUS N/ECOM: 1.55944207E-08 SOLUTE RADIUS N/ECOM: 1.16865981E-08 OUTPUT FOR OXYGEN AND METAL CESIUM - C820 INPUT FROM ADAMS TEMPERATURE: 320 SOLUTE MAXIMUM SOL: .197 METAL SURFACE TENSION: 67.75 TEMPERATURE: 420 SOLUTE MAXIMUM SOL: .227 METAL SURFACE TENSION: 63.05 TEMPERATURE: 520 SOLUTE MAXIMUM SOL: .256 METAL SURFACE TENSION: 58.35 TEMPERATURE: 620 SOLUTE MAXIMUM SOL: .268 METAL SURFACE TENSION: 53.65 TEMPERATURE: 720 219 SOLUTE MAXIMUM SOL: .304 METAL SURFACE TENSION: 48.95 OUTPUT CALC MAX SOLUBILTY: .500325541 CALC MAX SOLUBILTY: .612005459 CALC MAX SOLUBILTY: .692792318 CALC MAX SOLUBILTY: .753495362 CALC MAX SOLUBILTY: .800618201 SOLUTE RADIUS N/ECOM: 9.18058744E-09 SOLUTE RADIUS N/ECOM: 1.04161576E-08 SOLUTE RADIUS N/ECOM: 1.1549024E-08 SOLUTE RADIUS N/ECOM: 1.2928527E-O8 SOLUTE RADIUS N/ECOM: 1.38700967E-08 OUTPUT FOR OXYGEN AND METAL CHROMIUM - Cr203 INPUT FROM HANSEN - CHECKS ONE SOURCE TEMPERATURE: 2100 SOLUTE MAXIMUM SOL: .02 METAL SURFACE TENSION: 1610 TEMPERATURE: 2173 SOLUTE MAXIMUM SOL: .03 METAL SURFACE TENSION: 1600 TEMPERATURE: 2373 SOLUTE MAXIMUM SOL: .04 METAL SURFACE TENSION: 1590 TEMPERATURE: 2473 SOLUTE MAXIMUM SOL: .05 METAL SURFACE TENSION: 1580 OUTPUT CALC MAX SOLUBILTY: .0814604775 CALC MAX SOLUBILTY: .0899642126 CALC MAX SOLUBILTY: .111739947 CALC MAX SOLUBILTY: .123719979 SOLUTE RADIUS N/ECOM: 7.48653386E-O9 SOLUTE RADIUS N/ECOM: 7.2325886E—O9 SOLUTE RADIUS N/ECOM: 7.2641667E-O9 SOLUTE RADIUS N/ECOM: 7.17659433E-O9 220 OUTPUT FOR OXYGEN AND METAL COBALT - COO INPUT FROM HANSEN TEMPERATURE: 1720 SOLUTE MAXIMUM SOL: 8.47E-O3 METAL SURFACE TENSION: 1855 TEMPERATURE: 1760 SOLUTE MAXIMUM SOL: .02 METAL SURFACE TENSION: 1845 TEMPERATURE: 1820 SOLUTE MAXIMUM SOL: .04 METAL SURFACE TENSION: 1830 OUTPUT CALC MAX SOLUBILTY: .0293766981 CALC MAX SOLUBILTY: .0324259074 CALC MAX SOLUBILTY: .0372984734 SOLUTE RADIUS N/ECOM: 6.97092786E-O9 SOLUTE RADIUS N/ECOM: 6.40239158E-O9 SOLUTE RADIUS N/ECOM: 5.92987644E-O9 INPUT FROM HANSEN - FROM RUSSIAN TEMPERATURE: 1820 SOLUTE MAXIMUM SOL: 7E-03 METAL SURFACE TENSION: 1830 TEMPERATURE: 1920 SOLUTE MAXIMUM SOL: .01 METAL SURFACE TENSION: 1810 OUTPUT CALC MAX SOLUBILTY: .0372984734 CALC MAX SOLUBILTY: .0458014329 SOLUTE RADIUS N/ECOM: 7.36232755E-09 SOLUTE RADIUS N/ECOM: 7.32516738E-09 221 OUTPUT FOR OXYGEN AND METAL COPPER - Cu20 INPUT FROM PARLEE TEMPERATURE: 1223 SOLUTE MAXIMUM SOL: 6.99E-03 METAL SURFACE TENSION: 1310 OUTPUT CALC MAX SOLUBILTY: .0300916688 SOLUTE RADIUS N/ECOM: 7.13419739E-O9 OUTPUT FOR OXYGEN AND METAL COPPER - Cu20 - DIFF DELTA H USED HERE INPUT FROM HANSEN TEMPERATURE: 1373 SOLUTE MAXIMUM SOL: .023 METAL SURFACE TENSION: 1290 TEMPERATURE: 1473 SOLUTE MAXIMUM SOL: .067 METAL SURFACE TENSION: 1280 OUTPUT CALC MAX SOLUBILTY: .0462772682 CALC MAX SOLUBILTY: .0582931772 SOLUTE RADIUS N/ECOM: 6.64086525E-O9 SOLUTE RADIUS N/ECOM: 5.84531378E-09 OUTPUT FOR OXYGEN AND METAL GALLIUM - G3203 INPUT FROM ALCOCK TEMPERATURE: SOLUTE MAXIMUM SOL: 1050 lo 72E-05 METAL SURFACE TENSION: 642.5 TEMPERATURE: SOLUTE MAXIMUM SOL: 1150 7 0 023-05 METAL SURFACE TENSION: 632.4 TEMPERATURE: SOLUTE MAXIMUM SOL: 1250 2.29E-O4 METAL SURFACE TENSION: 622.3 TEMPERATURE: SOLUTE MAXIMUM SOL: 1350 METAL SURFACE TENSION: 612.2 OUTPUT CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: INPUT FROM STEVENSON TEMPERATURE: SOLUTE MAXIMUM SOL: .135140914 .165518421 .196252998 .226896477 1023 METAL SURFACE TENSION: 645 TEMPERATURE: SOLUTE MAXIMUM SOL: 1123 1.8E-04 METAL SURFACE TENSION: 635 TEMPERATURE: SOLUTE MAXIMUM SOL: 1223 METAL SURFACE TENSION: 625 TEMPERATURE: SOLUTE MAXIMUM SOL: 1323 6.02E-O4 METAL SURFACE TENSION: 615 OUTPUT CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: SOLUTE RADIUS N/ECOM: 1.2950759E-08 .127166971 .157317295 .187961057 .218612516 1.40331989E-08 1.38216484E-08 1.35989958E-O8 1.33650867E-08 223 SOLUTE RADIUS N/ECOM: 1.29420881E—08 SOLUTE RADIUS N/ECOM: 1.2935435E-08 SOLUTE RADIUS N/ECOM: 1.32369747E-O8 OUTPUT FOR OXYGEN AND METAL GERMANIUM GeOZ INPUT FROM JACOB TEMPERATURE: 1230 SOLUTE MAXIMUM SOL: 9.55E-04 METAL SURFACE TENSION: 670 TEMPERATURE: 1330 SOLUTE MAXIMUM SOL: 2.37E-03 METAL SURFACE TENSION: 600 TEMPERATURE: 1400 SOLUTE MAXIMUM SOL: 4.16E-03 METAL SURFACE TENSION: 550 OUTPUT CALC MAX SOLUBILTY: .168356365 CALC MAX SOLUBILTY: .228649965 CALC MAX SOLUBILTY: .276659041 SOLUTE RADIUS N/ECOM: 1.18415789E-08 SOLUTE RADIUS N/ECOM: 1.21318461E-08 SOLUTE RADIUS N/ECOM: 1.23806968E-08 OUTPUT FOR OXYGEN AND METAL HAFNIUM - HfOZ - S.T. UNSURE INPUT FROM KARNILOV - RUSSIAN TEMPERATURE: 2570 SOLUTE MAXIMUM SOL: .3 METAL SURFACE TENSION: 1590 TEMPERATURE: 2670 SOLUTE MAXIMUM SOL: .35 METAL SURFACE TENSION: 1580 224 TEMPERATURE: 2770 SOLUTE MAXIMUM SOL: .4 METAL SURFACE TENSION: 1570 TEMPERATURE: 2860 SOLUTE MAXIMUM SOL: .45 METAL SURFACE TENSION: 1560 TEMPERATURE: 2950 SOLUTE MAXIMUM SOL: .5 METAL SURFACE TENSION: 1550 OUTPUT CALC MAX SOLUBILTY: .132180321 CALC MAX SOLUBILTY: .144345132 CALC MAX SOLUBILTY: .156630671 CALC MAX SOLUBILTY: .167949861 CALC MAX SOLUBILTY: .179321971 SOLUTE RADIUS N/ECOM: 4.62338141E-O9 SOLUTE RADIUS N/ECOM: 4.41436593E-09 SOLUTE RADIUS N/ECOM: 4.2139569E-09 SOLUTE RADIUS N/ECOM: 4.00999337E-09 SOLUTE RADIUS N/ECOM: 3.80663532E-09 OUTPUT FOR OXYGEN AND METAL INDIUM - In203 INPUT FROM JACOB TEMPERATURE: 920 SOLUTE MAXIMUM SOL: 3.92E-04 METAL SURFACE TENSION: 570 TEMPERATURE: 1000 SOLUTE MAXIMUM SOL: 1.01E-03 METAL SURFACE TENSION: 500 TEMPERATURE: 1100 SOLUTE MAXIMUM SOL: 2.71E-O3 METAL SURFACE TENSION: 486 OUTPUT CALC MAX SOLUBILTY: .131796885 CALC MAX SOLUBILTY: .194871358 CALC MAX SOLUBILTY: .235719503 225 SOLUTE RADIUS N/ECOM: 1.17927624E-O8 SOLUTE RADIUS N/ECOM: 1.23098805E~08 SOLUTE RADIUS N/ECOM: 1.21222983E-O8 OUTPUT FOR OXYGEN AND METAL IRON Fe(.947)0...UUSTITE INPUT FROM WRIDT - CHECKS ONE SOURCE TEMPERATURE: 1820 SOLUTE MAXIMUM SOL: 6.28E-03 METAL SURFACE TENSION: 1795 TEMPERATURE: 1920 SOLUTE MAXIMUM SOL: 9.77E-03 METAL SURFACE TENSION: 1785 TEMPERATURE: 1970 SOLUTE MAXIMUM SOL: .0119 METAL SURFACE TENSION: 1780 OUTPUT CALC MAX SOLUBILTY: .0397199269 CALC MAX SOLUBILTY: .0477942015 CALC MAX SOLUBILTY: .0520593745 SOLUTE RADIUS N/ECOM: 7.51462534E-O9 SOLUTE RADIUS N/ECOM: 7.39489738E-09 SOLUTE RADIUS N/ECOM: 7.33952575E-09 OUTPUT FOR OXYGEN AND METAL LEAD - PbO INPUT FROM RAPP TEMPERATURE: 1050 SOLUTE MAXIMUM SOL: 3.44E-O4 METAL SURFACE TENSION: 420 TEMPERATURE: 1150 SOLUTE MAXIMUM SOL: 1E-O3 METAL SURFACE TENSION: 415 226 OUTPUT CALC MAX SOLUBILTY: .270270353 CALC MAX SOLUBILTY: .307173218 SOLUTE RADIUS N/ECOM: 1.47984137E-08 SOLUTE RADIUS N/ECOM: 1.45002913E-08 INPUT FROM HANSEN TEMPERATURE: 670 SOLUTE MAXIMUM SOL: 1.3E-O4 METAL SURFACE TENSION: 445 TEMPERATURE: 770 SOLUTE MAXIMUM SOL: 2.6E-04 METAL SURFACE TENSION: 440 TEMPERATURE: 870 SOLUTE MAXIMUM SOL: 5.8E-O4 METAL SURFACE TENSION: 435 TEMPERATURE: 970 SOLUTE MAXIMUM SOL: 1.17E-O3 METAL SURFACE TENSION: 430 TEMPERATURE: 1070 SOLUTE MAXIMUM SOL: 2.33E-03 METAL SURFACE TENSION: 425 OUTPUT CALC MAX SOLUBILTY: .113901893 CALC MAX SOLUBILTY: .154270697 CALC MAX SOLUBILTY: .194871358 CALC MAX SOLUBILTY: .234580578 CALC MAX SOLUBILTY: .272760282 SOLUTE RADIUS N/ECOM: 1.216475E-08 SOLUTE RADIUS N/ECOM: 1.25966901E-O8 SOLUTE RADIUS N/ECOM: 1.27952526E-08 SOLUTE RADIUS N/ECOM: 1.29333516E‘08 SOLUTE RADIUS N/ECOM: 1.29474644E-O8 INPUT FROM HANSEN TEMPERATURE: 870 SOLUTE MAXIMUM SOL: 2E-04 METAL SURFACE TENSION: 435 TEMPERATURE: 970 SOLUTE MAXIMUM SOL: 6E-04 METAL SURFACE TENSION: 430 227 TEMPERATURE: 1030 SOLUTE MAXIMUM SOL: 1E-03 METAL SURFACE TENSION: 427 OUTPUT CALC MAX SOLUBILTY: .194871358 CALC MAX SOLUBILTY: .234580578 CALC MAX SOLUBILTY: .257698244 SOLUTE RADIUS N/ECOM: 1.36787569E-08 SOLUTE RADIUS N/ECOM: 1.35579941E-08 SOLUTE RADIUS N/ECOM: 1.35287145E-08 INPUT FROM ALCOCK TEMPERATURE: 780 SOLUTE MAXIMUM SOL: 7.4E-05 METAL SURFACE TENSION: 439 TEMPERATURE: 870 SOLUTE MAXIMUM SOL: 3.18E-O4 METAL SURFACE TENSION: 435 TEMPERATURE: 970 SOLUTE MAXIMUM SOL: 1.36E-O3 METAL SURFACE TENSION: 430 OUTPUT CALC MAX SOLUBILTY: .158675993 CALC MAX SOLUBILTY: .194871358 CALC MAX SOLUBILTY: .234580578 SOLUTE RADIUS N/ECOM: 1.36245349E-08 SOLUTE RADIUS N/ECOM: 1.33011629E-08 SOLUTE RADIUS N/ECOM: 1.27883906E-08 INPUT FROM CHARLE - GERMAN TEMPERATURE: 1000 SOLUTE MAXIMUM SOL: 1.73E-O3 METAL SURFACE TENSION: 428 TEMPERATURE: 1100 SOLUTE MAXIMUM SOL: 5.01E-03 METAL SURFACE TENSION: 423 TEMPERATURE: 1143 SOLUTE MAXIMUM SOL: 7.47E-O3 METAL SURFACE TENSION: 421 OUTPUT 228 CALC MAX SOLUBILTY: .246617731 CALC MAX SOLUBILTY: .284283499 CALC MAX SOLUBILTY: .299769366 SOLUTE RADIUS N/ECOM: 1.27754897E-08 SOLUTE RADIUS N/ECOM: 1.22997597E-08 SOLUTE RADIUS N/ECOM: 1.20843782E-O8 OUTPUT FOR OXYGEN AND METAL LEAD - PbO - NEW DELTA H INPUT FROM RAPP TEMPERATURE: 1250 SOLUTE MAXIMUM SOL: 2.45E-03 METAL SURFACE TENSION: 410 TEMPERATURE: 1350 SOLUTE MAXIMUM SOL: 5.47E-O3 METAL SURFACE TENSION: 405 OUTPUT CALC MAX SOLUBILTY: .342038266 CALC MAX SOLUBILTY: .374842484 SOLUTE RADIUS N/ECOM: 1.41887432E-08 SOLUTE RADIUS N/ECOM: 1.38095052E-08 INPUT FROM HANSEN TEMPERATURE: 1170 SOLUTE MAXIMUM SOL: 4.94E-O3 METAL SURFACE TENSION: 420 OUTPUT CALC MAX SOLUBILTY: .309083268 SOLUTE RADIUS N/ECOM: 1.27472022E-O8 INPUT FROM CHARLE - GERMAN TEMPERATURE: 1240 SOLUTE MAXIMUM SOL: .0187 METAL SURFACE TENSION: 416 TEMPERATURE: 1340 SOLUTE MAXIMUM SOL: .0346 METAL SURFACE TENSION: OUTPUT CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: OUTPUT FOR OXYGEN AND METAL LITHIUM - L120 INPUT FROM ADAMS - 7 TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: OUTPUT 229 411 .333767332 .366697635 1.14142447E-08 1.09758083E-08 570 9 o 9E-05 386 670 4.88E-O4 370 770 1.66E-O3 354 870 4.25E-O3 338 CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM SOLUTE RADIUS N/ECOM: .109155262 .164264071 .222298808 .280624795 1.22293063E-O8 1.23153116E-08 : 1.23665602E-08 1.24255104E-08 INPUT FROM ASTM SPEC TECH PUBL TEMPERATURE: SOLUTE MAXIMUM SOL: 520 9.6E-06 METAL SURFACE TENSION: 394 230 TEMPERATURE: 570 SOLUTE MAXIMUM SOL: 2.05E-05 METAL SURFACE TENSION: 386 TEMPERATURE: 670 SOLUTE MAXIMUM SOL: 6.5E-05 METAL SURFACE TENSION: 370 OUTPUT CALC MAX SOLUBILTY: .0838870775 CALC MAX SOLUBILTY: .109155262 CALC MAX SOLUBILTY: .164264071 SOLUTE RADIUS N/ECOM: 1.29419101E-08 SOLUTE RADIUS N/ECOM: 1.32324483E-08 SOLUTE RADIUS N/ECOM: 1.38478944E-08 OUTPUT FOR OXYGEN AND METAL MANGANEESE - MnO INPUT FROM HANSEN TEMPERATURE: 1670 SOLUTE MAXIMUM SOL: 6.42E-O4 METAL SURFACE TENSION: 1080 TEMPERATURE: 1770 SOLUTE MAXIMUM SOL: 9.34E-04 METAL SURFACE TENSION: 1060 TEMPERATURE: 1870 SOLUTE MAXIMUM SOL: 1.31E-O3 METAL SURFACE TENSION: 1040 OUTPUT CALC MAX SOLUBILTY: .120600948 CALC MAX SOLUBILTY: .141027142 CALC MAX SOLUBILTY: .16217619 SOLUTE RADIUS N/ECOM: 1.11737939E-08 SOLUTE RADIUS N/ECOM: 1.13115308E-08 SOLUTE RADIUS N/ECOM: 1.14497828E-08 INPUT FROM JACOB TEMPERATURE: 1500 SOLUTE MAXIMUM SOL: 1.79E-04 METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: OUTPUT CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: 1114 1600 4.28E-O4 1094 1700 9.22E-04 1074 1800 1054 1900 3.36E-03 1034 .0881128092 .106839146 .126641406 .147304497 .168634638 231 1.12965187E-08 1.11625768E-08 1.10233132E-08 1.08739697E-08 1.07220499E-08 SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: SOLUTE RADIUS N/ECOM: OUTPUT FOR OXYGEN AND METAL NEODYNIUM - Nd203 - UNSURE S.T. & PHASE INPUT FROM HANSEN TEMPERATURE: 1300 SOLUTE MAXIMUM SOL: .05 METAL SURFACE TENSION: 688 TEMPERATURE: 1400 SOLUTE MAXIMUM SOL: .1 METAL SURFACE TENSION: 678 TEMPERATURE: 1470 SOLUTE MAXIMUM SOL: .15 METAL SURFACE TENSION: 668 232 TEMPERATURE: 1540 SOLUTE MAXIMUM SOL: .2 METAL SURFACE TENSION: 658 OUTPUT CALC MAX SOLUBILTY: .177102865 CALC MAX SOLUBILTY: .205149384 CALC MAX SOLUBILTY: .226199724 CALC MAX SOLUBILTY: .24720508 SOLUTE RADIUS N/ECOM: 7.88519322E-O9 SOLUTE RADIUS N/ECOM: 7.2267062E-O9 SOLUTE RADIUS N/ECOM: 6.77175473E-O9 SOLUTE RADIUS N/ECOM: 6.43232399E-09 OUTPUT FOR OXYGEN AND METAL NICKEL - NIO - (1620-1725) INPUT FROM WRIEDT TEMPERATURE: 1620 SOLUTE MAXIMUM SOL: 4.08E-05 METAL SURFACE TENSION: 1800 TEMPERATURE: 1720 SOLUTE MAXIMUM SOL: 9.53E-05 METAL SURFACE TENSION: 1780 OUTPUT CALC MAX SOLUBILTY: .0264035455 CALC MAX SOLUBILTY: .0338800124 SOLUTE RADIUS N/ECOM: 9.99567406E-O9 SOLUTE RADIUS N/ECOM: 9.91305396E-O9 OUTPUT FOR OXYGEN AND METAL NICKEL - N10 (1725-2000) INPUT FROM URIEDT TEMPERATURE: 1820 233 SOLUTE MAXIMUM SOL: 2.03E-04 METAL SURFACE TENSION: 1760 TEMPERATURE: 1920 SOLUTE MAXIMUM SOL: 3.99E-04 METAL SURFACE TENSION: 1740 TEMPERATURE: 1970 SOLUTE MAXIMUM SOL: 5.46E-O4 METAL SURFACE TENSION: 1730 OUTPUT CALC MAX SOLUBILTY: .0422985836 CALC MAX SOLUBILTY: .0516022064 CALC MAX SOLUBILTY: .0565655932 SOLUTE RADIUS N/ECOM: 9.82722893E-09 SOLUTE RADIUS N/ECOM: 9.7396765E-09 SOLUTE RADIUS N/ECOM: 9.69386586E-09 INPUT FROM KIMORA TEMPERATURE: 1730 SOLUTE MAXIMUM SOL: .0107 METAL SURFACE TENSION: 1778 TEMPERATURE: 1830 SOLUTE MAXIMUM SOL: .0236 METAL SURFACE TENSION: 1758 OUTPUT CALC MAX SOLUBILTY: .034680328 CALC MAX SOLUBILTY: .0431901492 SOLUTE RADIUS N/ECOM: 6.96385033E-09 SOLUTE RADIUS N/ECOM: 6.54504834E-09 OUTPUT FOR OXYGEN AND METAL NIOBIUM - Nb204 INPUT FROM HANSEN TEMPERATURE: 2640 SOLUTE MAXIMUM SOL: .05 METAL SURFACE TENSION: 1990 TEMPERATURE: 2590 234 SOLUTE MAXIMUM SOL: .1 METAL SURFACE TENSION: 2000 TEMPERATURE: 2545 SOLUTE MAXIMUM SOL: .15 METAL SURFACE TENSION: 2009 TEMPERATURE: 2480 SOLUTE MAXIMUM SOL: .2 METAL SURFACE TENSION: 2021 OUTPUT CALC MAX SOLUBILTY: .0849652463 CALC MAX SOLUBILTY: .0799992164 CALC MAX SOLUBILTY: .0756252806 CALC MAX SOLUBILTY: .0695670867 SOLUTE RADIUS N/ECOM: 6.6070913E-09 SOLUTE RADIUS N/ECOM: 5.72303118E-09 SOLUTE RADIUS N/ECOM: 5.13788889E-09 SOLUTE RADIUS N/ECOM: 4.65761065E-09 OUTPUT FOR OXYGEN AND METAL PLUTONIUM - Pb02 INPUT FROM HANSEN TEMPERATURE: 1700 SOLUTE MAXIMUM SOL: .1 METAL SURFACE TENSION: 460 TEMPERATURE: 1920 SOLUTE MAXIMUM SOL: .2 METAL SURFACE TENSION: 445 OUTPUT CALC MAX SOLUBILTY: .412694172 CALC MAX SOLUBILTY: .468563667 SOLUTE RADIUS N/ECOM: 9.66800292E-09 SOLUTE RADIUS N/ECOM: 8.73355594E-09 INPUT FROM HANSEN TEMPERATURE: 1685 SOLUTE MAXIMUM SOL: .05 METAL SURFACE TENSION: 462 TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: OUTPUT CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: 235 1815 .1 450 1930 .15 443 2040 .2 437 .407868881 .444435694 .472004889 .496255995 SOLUTE RADIUS N/ECOM: 1.0955037E-08 SOLUTE RADIUS N/ECOM: 1.01000445E-08 SOLUTE RADIUS N/ECOM: 9.52812782E-09 SOLUTE RADIUS N/ECOM: 9.08437101E-O9 OUTPUT FOR OXYGEN AND METAL POTASSIUM - K20 INPUT FROM ADAMS TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: 370 91.15 470 84.62 570 .0146 78.09 670 .037 71.56 770 .087 65.03 236 TEMPERATURE: 820 SOLUTE MAXIMUM SOL: .12 METAL SURFACE TENSION: 61.76 OUTPUT CALC MAX SOLUBILTY: .446742146 CALC MAX SOLUBILTY: .554943588 CALC MAX SOLUBILTY: .638838315 CALC MAX SOLUBILTY: .7051503 CALC MAX SOLUBILTY: .75863344 CALC MAX SOLUBILTY: .781649039 SOLUTE RADIUS N/ECOM: 1.64001149E-08 SOLUTE RADIUS N/ECOM: 1.74753525E-08 SOLUTE RADIUS N/ECOM: 1.84088028E-08 SOLUTE RADIUS N/ECOM: 1.84134167E-08 SOLUTE RADIUS N/ECOM: 1.78209605E-08 SOLUTE RADIUS N/ECOM: 1.75845633E-08 OUTPUT FOR OXYGEN AND METAL SCANDIUM - Sc203 INPUT FROM KUPRASHVILI - RUSSIAN - CHECKS ONE SOURCE TEMPERATURE: 1830 SOLUTE MAXIMUM SOL: .34 METAL SURFACE TENSION: 1600 TEMPERATURE: 2070 SOLUTE MAXIMUM SOL: .37 METAL SURFACE TENSION: 1560 TEMPERATURE: 2270 SOLUTE MAXIMUM SOL: .4 METAL SURFACE TENSION: 1520 OUTPUT CALC MAX SOLUBILTY: .057283469 CALC MAX SOLUBILTY: .0850110274 CALC MAX SOLUBILTY: .111898826 SOLUTE RADIUS N/ECOM: 3.68147072E-O9 SOLUTE RADIUS N/ECOM: 3.80675173E—O9 SOLUTE RADIUS N/ECOM: 3.87695862E-O9 237 OUTPUT FOR OXYGEN AND METAL SILICON - $102 - TWO UIDELY DIFFER SOURCES INPUT FROM HANSEN TEMPERATURE: 1650 SOLUTE MAXIMUM SOL: .24 METAL SURFACE TENSION: 735 TEMPERATURE: 1770 SOLUTE MAXIMUM SOL: .3 METAL SURFACE TENSION: 723 TEMPERATURE: 1850 SOLUTE MAXIMUM SOL: .4 METAL SURFACE TENSION: 711 OUTPUT CALC MAX SOLUBILTY: .232932478 CALC MAX SOLUBILTY: .262881631 CALC MAX SOLUBILTY: .28448919 SOLUTE RADIUS N/ECOM: 5.93213981E-09 SOLUTE RADIUS N/ECOM: 5.68995991E-09 SOLUTE RADIUS N/ECOM: 5.11742038E-09 INPUT FROM ARKHAROV - RUSSIAN TEMPERATURE: 1688 SOLUTE MAXIMUM SOL: 3.98E-05 METAL SURFACE TENSION: 732 TEMPERATURE: 1873 SOLUTE MAXIMUM SOL: 9.77E-04 METAL SURFACE TENSION: 708 OUTPUT CALC MAX SOLUBILTY: .242102604 CALC MAX SOLUBILTY: .290432322 SOLUTE RADIUS N/ECOM: 1.60196867E-08 SOLUTE RADIUS N/ECOM: 1.41916974E-08 238 OUTPUT FOR OXYGEN AND METAL SODIUM - N820 INPUT FROM ADAMS TEMPERATURE: 370 SOLUTE MAXIMUM SOL: 4E-O6 METAL SURFACE TENSION: 202.1 TEMPERATURE: 470 SOLUTE MAXIMUM SOL: 3.9E-05 METAL SURFACE TENSION: 192.9 TEMPERATURE: 570 SOLUTE MAXIMUM SOL: 1.85E-04 METAL SURFACE TENSION: 183.7 TEMPERATURE: 670 SOLUTE MAXIMUM SOL: 5.35E-O4 METAL SURFACE TENSION: 174.5 TEMPERATURE: 770 SOLUTE MAXIMUM SOL: 1.17E-O3 METAL SURFACE TENSION: 165.3 TEMPERATURE: 820 SOLUTE MAXIMUM SOL: 1.62E-O3 METAL SURFACE TENSION: 156.1 OUTPUT CALC MAX SOLUBILTY: .167531969 CALC MAX SOLUBILTY: .261209459 CALC MAX SOLUBILTY: .34849695 CALC MAX SOLUBILTY: .426611855 CALC MAX SOLUBILTY: .495510484 CALC MAX SOLUBILTY: .53651831 SOLUTE RADIUS N/ECOM: 1.58096757E-08 SOLUTE RADIUS N/ECOM: 1.64831766E-08 SOLUTE RADIUS N/ECOM: 1.71156376E-08 SOLUTE RADIUS N/ECOM: 1.78243656E-O8 SOLUTE RADIUS N/ECOM: 1.85852489E-08 SOLUTE RADIUS N/ECOM: 1.92546908E-08 INPUT FROM HANSEN TEMPERATURE: 520 SOLUTE MAXIMUM SOL: 2.4E-04 METAL SURFACE TENSION: 188.3 TEMPERATURE: 645 SOLUTE MAXIMUM SOL: 515-04 239 METAL SURFACE TENSION: 176.8 TEMPERATURE: 705 SOLUTE MAXIMUM SOL: 1E-03 METAL SURFACE TENSION: 171.9 TEMPERATURE: 805 SOLUTE MAXIMUM SOL: 2.5E-03 METAL SURFACE TENSION: 162.1 OUTPUT CALC MAX SOLUBILTY: .305924076 CALC MAX SOLUBILTY: .407969548 CALC MAX SOLUBILTY: .450441938 CALC MAX SOLUBILTY: .517556948 SOLUTE RADIUS N/ECOM: 1.59004477E-08 SOLUTE RADIUS N/ECOM: 1.74523812E-08 SOLUTE RADIUS N/ECOM: 1.76404019E-08 SOLUTE RADIUS N/ECOM: 1.80782469E-08 OUTPUT FOR OXYGEN AND METAL TIN - Sn02 INPUT FROM PARLEE TEMPERATURE: 1223 SOLUTE MAXIMUM SOL: 5.66E-03 METAL SURFACE TENSION: 470 TEMPERATURE: 1523 SOLUTE MAXIMUM SOL: .022 METAL SURFACE TENSION: 440 OUTPUT CALC MAX SOLUBILTY: .284510988 CALC MAX SOLUBILTY: .388697241 SOLUTE RADIUS N/ECOM: 1.21611544E-O8 SOLUTE RADIUS N/ECOM: 1.20462463E-08 INPUT FROM ALCOCK TEMPERATURE: 810 SOLUTE MAXIMUM SOL: 1.3E-05 METAL SURFACE TENSION: 525 240 TEMPERATURE: 870 SOLUTE MAXIMUM SOL: 4.1E-05 METAL SURFACE TENSION: 519 TEMPERATURE: 970 SOLUTE MAXIMUM SOL: 2.07E-04 METAL SURFACE TENSION: 509 OUTPUT CALC MAX SOLUBILTY: .120033641 CALC MAX SOLUBILTY: .142100597 CALC MAX SOLUBILTY: .179722116 SOLUTE RADIUS N/ECOM: 1.38080813E-08 SOLUTE RADIUS N/ECOM: 1.36383456E-08 SOLUTE RADIUS N/ECOM: 1.33253849E-O8 INPUT FROM RAPP TEMPERATURE: 1020 SOLUTE MAXIMUM SOL: 4.85E-04 METAL SURFACE TENSION: 504 TEMPERATURE: 1120 SOLUTE MAXIMUM SOL: 1.82E-O3 METAL SURFACE TENSION: 494 TEMPERATURE: 1220 SOLUTE MAXIMUM SOL: 5.49E-03 METAL SURFACE TENSION: 484 OUTPUT CALC MAX SOLUBILTY: .198657021 CALC MAX SOLUBILTY: .236295952 CALC MAX SOLUBILTY: .27318434 SOLUTE RADIUS N/ECOM: 1.30247447E-08 SOLUTE RADIUS N/ECOM: 1.25344819E-08 SOLUTE RADIUS N/ECOM: 1.20044915E-08 OUTPUT FOR OXYGEN AND METAL TITANIUM - T10 INPUT FROM HANSEN TEMPERATURE: 2085 SOLUTE MAXIMUM SOL: .05 241 METAL SURFACE TENSION: 1568 TEMPERATURE: 2135 SOLUTE MAXIMUM SOL: .1 METAL SURFACE TENSION: 1558 TEMPERATURE: 2180 SOLUTE MAXIMUM SOL: .15 METAL SURFACE TENSION: 1548 TEMPERATURE: 2205 SOLUTE MAXIMUM SOL: .2 METAL SURFACE TENSION: 1541 OUTPUT CALC MAX SOLUBILTY: .085452841 CALC MAX SOLUBILTY: .0919174643 CALC MAX SOLUBILTY: .0980193585 CALC MAX SOLUBILTY: .101685204 SOLUTE RADIUS N/ECOM: 6.61477206E-09 SOLUTE RADIUS N/ECOM: 5.88716816E—09 SOLUTE RADIUS N/ECOM: 5.41718356E-O9 SOLUTE RADIUS N/ECOM: 5.02948451E—09 OUTPUT FOR OXYGEN AND METAL URANIUM - U02 - S.T. UNSURE INPUT FROM HANSEN TEMPERATURE: 1380 SOLUTE MAXIMUM SOL: 8.27E-O6 METAL SURFACE TENSION: 1500 TEMPERATURE: 1470 SOLUTE MAXIMUM SOL: 9.49E-06 METAL SURFACE TENSION: 1485 TEMPERATURE: 1670 SOLUTE MAXIMUM SOL: 1.41E-05 METAL SURFACE TENSION: 1455 TEMPERATURE: 1870 SOLUTE MAXIMUM SOL: 1.95E-05 METAL SURFACE TENSION: 1425 TEMPERATURE: 2070 SOLUTE MAXIMUM SOL: 2.9E-05 METAL SURFACE TENSION: TEMPERATURE: SOLUTE MAXIMUM SOL: METAL SURFACE TENSION: OUTPUT CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: CALC MAX SOLUBILTY: 242 1395 2270 ‘ o 96E-05 1365 .0285741907 .0367283218 .0578595802 .0827047384 CALC MAX SOLUBILTY: .110332597 CALC MAX SOLUBILTY: SOLUTE RADIUS SOLUTE RADIUS SOLUTE RADIUS SOLUTE RADIUS SOLUTE RADIUS SOLUTE RADIUS N/ECOM: N/ECOM: N/ECOM: N/ECOM: N/ECOM: N/ECOM: .139900832 1.08748581E-08 1.12139018E-08 1.18665315E-08 1.25029777E-08 1.30497592E-08 1.34555084E-08 Appendix B Experimental Data This appendix contains the experimental data used to analyze the theoretical equations. The appendix contains solute activity coefficient data, solute maximum solubility data, and solute solubility ratio data (concentration over the square root of pressure). The data is grouped by metals which are in alpabetical order. An exmaple of a data entry will best serve to explain the format used: J=* Parlee TMS AIME 1976 Vol 227 p245 7 0 0 0 1000 ’K - 6.754 K801 1000 ’K - 1.34E-3 Xmax 1000 ’R - .01 Xsol - 1.24E-4 ACSOL The j-* signifies the solute. If the * is l the solute is Hydrogen, 2 for Carbon, 3 for Nitrogen, and 4 for Oxygen. Parlee is the author of the book or article. TMS AIME is the magazine (Transactions of the Metal Society of AIME). 1976 is the year of publication, Vol 227 is the volume of the magazine, and p245 is the page number of the article. The second row contains information in the form of four numbers uich are keys. The first number tells what kind of experimental 243 244 technique was used to measure solubility data. The second number tells what kind of experimental technique was used to measure activity coefficient data. The third number tells the convention of the activity coefficient. The fourth number tells if there is anything special about the entry. The keys are explianed below. The third, fourth, and fifth lines contain data. ’K signifies degrees Kelvin for all three lines. Rsol signifies solubility ratio data in units of atom fraction devided by the square root of atmospheres. Xmax signifies maximum solubility data in units of atom fraction. ACSOL is activity coefficient data. ACSOL is unit less. Xsol is solubility data for the ACSOL activity coefficient data. Explination of Solubility Experiment Key 0 - No solubility data given 1 - Hot volume technique 2 - Quenching technique 3 - Incipient melting of solids of known content 4 - Henries law technique, specific to Parlee article 5 - Calculation scheme, specific to Otsuka 6 - Melting technique, specific to Scarce 7 - Technique not reported 8 - Henries law technique, specific to Rapp 9 Evolution of gas during melting of a solid sample 10 - EMF technique 245 Explination of Activity Coefficient Experiment Key 0 I No activity coefficient data given H I EMF technique N I Ploting of pressure verses solubility data, specific to Kor 3 - Computed from free energy and solubility ratio data § I Equilibrium of Hydogen and Methane vapor, specific to Turkdogan Explination of Activity Coefficient Convention Key 0 - No activity coefficient data given 1 - Activity Coefficient equals one at solute infinite dilution Explination of Unusual Data Key C I Nothing unusual about the data H I Solubility data given at one atmosphere only 2 - unsure of units of data 3 sample exposed to Hydrogen, specific to Nitrogen data measurements 4 - activity coefficient data generated by Otsuka and fellow workers 5 - Unusual phase diagram, may not apply well to theory of 246 surface tension theory 6 - Something strange about article, but unable to put a finger on it 9 - Unsure of activity coefficient convention A few non-standard abreviations were used for titles. They are: IAN Metal - Izv Akad Nauk SSSR, Metal TMS AIME - Trans Metal Soc AIME Hansen (1) "Constitution of Binary Phase Alloys" Hansen (2) - ”Constitution of Binary Phase Alloys, lst Supplement” Hansen (3) - ”Constitution of Binary Phase Alloys, 2nd Supplement” GTE ”The Handbook of Binary Phase Diagrams” Volume 1 & 1'1 3'2 970 ‘K - 1070 1170 1270 970 ‘K - 1070 1170 1270 1070 ‘K - 1270 1370 247 ALUMINUM Hansen (2) - 39 0 1 1.51E-5 ksol 2.96 5.25 8.46 Bircumshaw, Trans Faraday Society 0 1 1.567E-6 ksol 5.574E-6 1.057E-5 2.004E-5 Hansen (3) - 18 O O .0022 Xmax - 813 dyne/cm .0031 783.5 .0035 768.5 1935 V0131 p51 ALUMINUM j - 1 Hansen (2) - 39 7 0 0 1 970 ‘K - 1.51E-5 ksol 1070 2.96 1170 5.25 1270 8.46 1 - 1 Bircumshaw, Trans Faraday Society 1935 V0131 p51 1 0 0 l 970 ‘K - 1.567E-6 ksol 1070 5.574E-6 1170 1.057E-5 1270 2.004E—5 j = 2 Hansen (3) - 18 2 0 0 0 1070 ‘K - .0022 Xmax - 813 dyne/cm 1270 .0031 783.5 1370 .0035 768.5 1470 .0071 753.5 247 WHHWflWWm*fimm*W************************************* ANTIMONY j - 2 Hansen (1) - 378 7 0 O O 1330 ‘K - .00336 Xmax - 350 dyne/cm 1540 .00691 342 1600 .00956 335 J - 4 Stevenson J Electrochem Soc 1981 vol 130 p47 5 1 l 9 has Bismuth, Gallium 8 Indium data also ACSOL - 5.97E5 * exp(-25020/T) Xsol - 3.96E-2* exp(-2503/T) T I 1023-1223 ‘R 0L.» O‘LJ- asks. -4 =4 1023 ’K - 1123 1223 970 ’K - 1070 1100 6 1073 ‘K - 1 1073 ’K - 1123 1173 1223 0 L0g(Xmax) 1000 ’K - 1100 1175 248 .00338 X801 - .0000143 ACSOL .00420 .000126 .00504 .000778 Otsuka Metal Trans 1979 Vol 10B p565 1 4 has Lead data also .01 X801 - 5.34E-5 ACSOL .01 2.63E-4 Otsuka Metal Trans 1981 Vol 12B p616 1 6 agrees with Otsuka data above Otsuka Metal Trans 1981 Vol 128 p455 1 4 .01 Xsol - 1.19E-4 ACSOL Stevenson J Chem Thermo 1972 V01 11 p627 3 0 article has Bismuth data also .0327 1.31 .0446 1.68 .0868 1.95 NOTE - NOT USED - incorrect reference state for regular solution and quasi-chemcial model Jacob Z Metalk 1979 Vol 70 p366 O 0 = -5500/T + 1.754 T - 1000-1175 ’K .000179 Xmax - 370 dyne/cm .000568 365 .00118 358 249 BARIUM j - 1 Franzen J Less Common Metals 1978 p65 1 O 0 O 1008 ’K - 6.789 ksol 1053 4.783 1113 2.895 1188 1.944 1223 1.627 j - 4 Hansen (2) - 152 7 0 0 0 1000 ‘K - .167 Xmax - 255 dyne/cm 1170 .211 250 1370 .277 245 1520 .318 237 HWH*fi***m*****m**iflmwm*flfl*m****HW***W******* BISMUTH j = 2 Griffith J American Chemical Society 1953 Vol 75 p1832 2 0 0 0 570 ‘K - 2.75E-5 Xmax - 362 dyne/cm 670 3.42 360 770 4.01 357 870 4.54 353 970 5.01 348 1070 5.22 343 j - 4 Same article and Technique as above Log(Ut Frac) . -3400/T - 0.53 T 8 670-1020 ‘K Equation written in units of weight fraction. Data below in atom fraction. 670 ‘K - 3.322E-5 Xmax - 360 dyne/cm 770 1.515E-4 357 870 4.729E-4 353 970 1.231E-3 348 1070 1.828E-3 346 j - 4 Fitzner Z Metalk 1980 V01 71 p178 250 0 l 1 O ln(ACSOL) - -125315 [(RT) + 13.87 [R T - 950-1150 ‘K NOT USED - no data on solubility of Oxygen found or recorded 7?? j - 4 Stevenson J Electrochem Soc 1981 Vol 130 p47 5 1 1 9 has Antimony, Gallium and Indium data also ACSOL - 157.59 * exp (-11488/T) T - 1023-1273‘K Xsol - 0.34 * exp (-6406/T) 1023 ‘K - .000649 Xsol - .00209 ACSOL 1148 .00128 .00608 1273 .00222 .019 j - 4 Otsuka Metal Trans 1981 Vol 12B p427 O 6 l 4 article has Germanium data also 970 ‘K - .01 Xsol - 1.80E-3 ACSOL 1070 .01 5.85E-3 1170 .01 1.55E-2 j I 4 Stevenson J Cehm Thermo 1972 V01 11 p627 6 l 3 0 articel has Antimony data also 1073 ‘K - 1.54E-4 Xsol - .250 ACSOL 1123 1.93 .416 1173 2.63 .466 1223 3.42 .683 NOT USED - reference state not in agreement with that of the regular solution and quasi-chemical WHWMW***WWW”**HWW i=1 7 0 1235 ‘K - 1250 1270 1320 CALCIUM Hansen (2) - 241 0 0 .05 Xmax - 320 dyne/cm .10 319 .15 318 .20 315 Hansen (1) - 403 251 7 0 0 0 1050 ‘K - .019 Xmax - 329 dyne/cm 1110 .05 326 1150 .10 324 j - 4 Hansen (2) - 244 7 0 O 0 1110 ‘K - .0015 Xmax - 326 dyne/cm 1620 .10 300 ******************************************************************************* CERIUM 3-2 GTE 7 0 O 2 870 ‘K - .355 Xmax - 1020 dyne/cm 1170 .300 1000 NOTE - surface tension data almost total guess ******************************************************************************* CESIUM j - 4 Adams J Less Common Metals 1975 Vol 42 pl 7 0 O 0 also has Lithium data 320 ‘K - .197 Xmax - 67.75 dyne/cm 420 .227 63.05 520 .256 58.35 620 .268 53.65 720 .304 48.95 **************************t**************************************************** CHROMIUM j - 1 Heinstein Trans Metal Soc AIME 1963 Vol 227 p285 1 0 0 1 has Cobalt, Iron, and Nickel data 252 2180 ‘K - 3.3E-3 ksol 1750 1830 1950 2010 2080 1800 1850 1910 1990 1960 2000 2040 2080 2130 \K- .113 Might contains Gibbs free energy data Hansen (1) - 352 0 0 unsure of surface tension data .136 Xmax - 1720 dyne/cm .150 1700 .200 1680 .250 1660 .300 1640 GTE 0 0 unsure of surface tension data .145 Xmax - 1705 dyne/cm .170 1695 .200 1689 .250 1673 Humberty Trans Metal Soc AIME 1960 Vol 218 p1076 0 0 has Iron 8 Nickel data also unsure surface tension data .172 Xmax - 1664 dyne/cm .156 1656 .142 1648 .129 1640 1630 Hansen (1) - 539 0 0 unsure surface tension data .0738 Xmax - 1676 dyne/cm .1234 1672 sample exposed to air sample exposed to Hydrogen Kalinyuk I.A.N. Metal 1974 Vol 1 0 0 p18 log (Xmax) I 0.5 * log(pressure in Pascal) - 4.69 + 2950/T T I 1973-2488 ‘K NOT PROCESSED - found late Might have Gibbs free energy data Hansen (1) - 547 O 0 253 2100 ‘R - .02 Xmax - 1610 dyne/cm 2173 .03 1600 2373 .04 1590 2473 .05 1580 Believe heat of formation data also given. Checks with Trans Metal Soc Vol 203 p253 * COBALT j = 1 Weinstein Trans Metal Soc AIME 1963 Vol 227 p285 1 0 0 1 has Chromium, Iron, 8 Nickel data 1870 ‘K - .00128 ksol 1970 .00148 2070 .00172 Might contain Gibbs free energy data. Checks with Busch Trans Metal Soc AIME 1960 Vol 218 p490 j I 2 Hansen (2) - 211 2 0 0 0 log (Xmax) I -1093.8/T - .245 T = l620-1820‘K 1620 ‘K - ,120 Xmax - 1880 dyne/cm 1720 .132 1855 1820 .143 1830 Checks with Turkdogan J Iron Steel Inst (London) 1956 Vol 182 p274 j I 3 Pehlke Trans Metal Soc AIME 1966 Vol 236 p28 Either lost data or above is useless reference 1 I 4 Hansen (1) - 487 7 O 0 0 1720 ‘K - .00847 Xmax - 1855 dyne/cm 1760 .020 1845 1820 .040 1830 j I 4 Hansen (2) - 327 254 7 0 O 4 1820 ‘K - .0070 Xmax - 1830 dyne/cm 1870 .0088 1820 1920 .0103 1810 Taken by Hansen from Russian Source *WWWWW COPPER j I l Parlee Metal Trans 1970 Vol 1 p5377 7 0 O 1 also has Nickel data 1923 ‘K - 9.08-4 ksol j I 1 Hansen (1) - 587 l 0 0 O 1400 ‘K - 3.43E-4 ksol 1510 4.57 1619 5.11 1690 6.86 Checks with Bever Trans Metal Soc AIME 1942 ????? Bever also has Tin data. j I 1 Degtyaren I.A.N. Metal 1970 Vol 4 p42 1 0 1 1 Solubility predictions; as far as I can tell (article translated from Russian), the data from this article is extremely different the other three sources. The data from this source was NOT USED. 1 I 2 Hansen (1) - 353 2 0 O 0 1370 ‘K - 5.30E-6 Xmax - 1300 dyne/cm 1570 7.94E-6 1282 1770 2.65E-5 1265 1970 1.59E-4 1247 j I 4 Otsuka Metal Trans 1981 Vol 128 p501 0 1 1 4 1370 ‘K - .01 X801 - .1323 ACSOL 1470 .01 .2047 255 1550 .01 .2816 Checks with: Fitzner Metal Tech 1973 p273 Wilder Trans Metal Soc AIME 1966 Vol 236 p1035 Jacob Trans Inst Mining 8 Metal 1971 Vol 80 pC32 Kalkarni Metal Trans 1973 Vol 4 p1713 3 I 4 Rapp Metal Trans 1973 Vol 4 p61 7 0 O 1 NOT USED - data contained within did not correspond well with other data found. j I 4 Hansen (1) - 487 0 0 0 0 1373 ‘K - .023 Xmax - 1290 dyne/cm 1473 .067 1280 j I 4 Parlee High Temp Sci 1982 Vol 15 p55 7 0 O 0 1223‘K - .00699 Xmax - 1310 dyne/cm WWW*WW*WW ERBIUM j I 4 Hansen (2) - 402 7 0 0 5 1800 ‘K - .20 Xmax 1900 .25 2150 .30 NOT USED - screwy phase diagram and a total lack of surface tension data. WWW GALLIUM j I 4 Alcock J Less Common Metals 1977 Vol 53 p211 2 0 O 0 log (Xmax) I -7380/T + 2.264 T I 1050-1400 ‘K 256 10g (ksol) I -11514/T + 1.474 T I 1050-1400 ‘K 1050 ‘K - 2.89E-10 ksol - 1.72E-5 Xmax - 642.5 dyne/cm 1150 2.60E-9 7.02E-5 632.4 1250 1.64E-8 2.29E-4 622.3 1350 7.91E-8 6.27E-4 612.2 3 I 4 Stevenson J Electrochem Soc 1980 Vol 130 p47 5 1 1 4 has Antimony, Bismuth 8 Indium data ACSOL I 27450 I exp (-30943/T) T I 1023-1273 ‘K Xsol I 5.26 * exp (-22528/T) 1023 ‘K - 6.59E-5 X801 - 2.006E-9 ACSOL 1123 1.80E-4 2.965E-8 1223 4.16E-4 2.822E-8 1273 6.02E-4 7.622E-8 W**WW**W**WHWWW**WW“*W 3‘1 0 GERMANIUM Petrushevski Izv V.U.Z. Chern Metal 1976 Vol 6 p5 0 0 4 log (Xsol) I 0.5 log (Hydrogen pressure in Pascal) - 750/T - 4.97 T I 1770-1970 ‘K 1770 ‘K - 3.73E-4 ksol 1870 3.82 1970 3.89 Might contain Gibbs free energy data. Scarce J Chem Phys 1957 Vol 30 p1551 0 0 0 has Silicon data also surface tension data unsure due to high temp log (Xmax) I -26316/T + 6.895 T I 3000-3400 ‘K 3000 ‘K - .0133 Xmax - 330 dyne/cm 3100 .0255 320 3200 .0470 310 3300 .0833 300 Otsuka Met Trans 1981 Vol 12B p427 1 1 0 1230 ‘K - .01 X801 - 4.58E-5 ACSOL 1330 .01 2.66E-4 257 j I 4 Jacob Metal Trans 1977 Vol 8B p669 2 0 0 0 log (Xmax) I ~6470/T + 2.24 T I 1233-1400 ‘K 1230 ‘R - 9.55E-4 Xmax - 670 dyne/cm 1330 2.37E-3 600 1400 4.16E-3 550 Wfimfit**mmmmmt HAFNIUM j I 2 Hansen (3) - 145 7 0 0 5 surface tension data unsure 2480 ‘K - .095 Xmax - 1600 dyne/cm 2820 .15 1560 3160 .20 1530 3400 .25 1500 3685 .30 1480 j I 2 GTE 7 0 0 5 surface tension data unsure 2630 ‘R - .05 Xmax - 1580 dyne/cm 3110 .07 1535 3680 .15 1480 4080 .30 1440 j I 4 Karnilov I.A.N. Neorg Mater 1965 Vol 1 p1778 7 0 0 0 2570 ‘K - .30 Xmax - 1590 dyne/cm 2670 .35 1580 2770 .40 1570 2860 .45 1560 2950 .50 1550 mmmmmmmmmnm INDIUM j I 4 Otsuka Metal Trans 1980 Vol 11B p313 0 1 1 4 258 970 ‘K - .01 X801 - 1.53E-7 ACSOL 1070 .01 1.19E-6 1170 .01 6.48E-6 j I 4 Otsuka Metal Trans 1981 Vol 12B p455 O 1 1 4 1070 ‘K - .01 - 2.62E-2 NOT USED - does not compare well with other data 1 I 4 Stevenson J Electrochem Soc 1980 Vol 130 p47 5 1 1 9 has Antimony, Bismuth, 8 Gallium data ACSOL I 54.598 exp (-19213/T) T I 1023-1273 ‘K Xsol I 3.287 exp (-9443/T) 1050 ‘K - 4.08E-4 Xsol - 6.17E-7 ACSOL 1150 8.93E-4 3.03E-6 1250 1.72E-3 1.15E-5 j I 4 Jacob J Less Common Metal 1977 V01 52 p279 2 0 0 0 log (Xmax) I -4726/T + 1.73 T I 920-1100 ‘K 920 ‘K - 3.92E-4 Xmax - 510 dyne/cm 1000 1.01E-3 500 1100 2.71E-3 486 WW”WW*RWWWW IRON j I 1 Weinstein 1963 Vol 227 p285 1 0 0 1 has Chromium, Cobalt, & Nickel data also 1810 ‘K - 1.25E-3 ksol 1910 1.43 2000 1.60 2100 1.77 Checks with: Busch Trans Metal Soc AIME 1960 Vol 218 p490 Gunji Trans Natl Res Inst for Metals 1964 Vol 6 p202 Parlee Metal Trans 1970 Vol 1 p5377 Pehlke Metal Trans 1974 Vol 5 p399 259 j I 1 Lakomski Dokl Akaud Nauk S.S.S.R 1960 Vol 147 p628 1 0 O 2 1950 ‘K - 1.924E-3 ksol 2300 1.83 2580 1.31 2730 1.06 1 I 2 Turkogan Acta Metal 1956 Vol 4 p396 7 0 0 0 log (Xmax) I -560/T - 0.375 T I 1570-1870‘K 1570 ‘K - 0.1855 Xmax - 1840 dyne/cm 1670 0.1948 1820 1770 0.2035 1800 1870 0.2116 1780 Has interesting ideas on the calculation of Carbon activity. Did not investigate the ideas. j I 2 Grigorovich I.A.N. Neorg Mater 1963 V01 1 p1764 7 0 0 0 1420 ‘K - .171 Xmax - 1870 dyne/cm 1710 .200 1812 2300 .250 1694 2600 .300 1634 Above for graphite - Iron equilibrium conditions 1420 ‘K - .171 Xmax - 1870 dyne/cm 1500 .200 1854 1670 .250 1820 Above for Fe3C - Fe equilibrium conditions 3 I 3 Busch Tran Metal Soc AIME 1960 Vol 218 p490 1 0 O 1 has Hydrogen-Iron data which checks with four other sources (above) also has Cobalt data 1870 ‘K - 1.576E-3 ksol j I 3 Parlee Trans Metal Soc AIME 1958 p86 1 0 O 1 1770 ‘K - 1.7OE-3 ksol 1870 1.75 1970 1.81 2070 1.87 260 2170 1.93 Checks with Humberty Trans Metal Soc AIME 1960 Vol 218 p1076 Pehlke Trans Metal Soc AIME 1960 Vol 218 p1088 3 I 3 Dodd Trans Metal Soc 1961 Vol 221 p233 2 0 0 1 1820 ‘R - 1.60E-3 ksol j I 3 Chem Abstacts 1975 abstract #100266h 7 0 O 1 1700 ‘R - 1.05E-3 ksol 1800 1.28 1900 1.53 3 I 3 Uda Trans Natl Res Inst Metals 1968 Vol 10 p21 2 0 0 0 2470 ‘K - 2.145E-3 ksol j I 4 Nriedt Trans Metal Soc AIME 1955 p477 7 0 0 0 Nickel data also 1820 ‘K - 6.28E-3 Xmax - 1795 dyne/cm 1870 8.03E-3 1790 dyne/cm 1920 9.77E-3 1785 dyne/cm 1970 1.19E-2 1780 dyne/cm Checks with ????? Ian Otd Tekhn Nauk 1957 Vol 8 p120 W‘k‘k‘k'k*‘k‘k'k‘k‘k*************I*'k********‘A'***************************************** LANTATHANUM j I 1 Peterson J Phys Chem 1966 Vol 70 p2980 1 0 0 0 surface tension data very unsure 1200 ‘K - .05 Xmax - 1600 dyne/cm 1210 .10 1595 1220 .15 1590 1240 .20 1585 1300 .30 1575 1350 .40 1565 1-1 261 LEAD Opei Trans Metal Soc AIME 1951 p244 Either bad reference or lost data 5-4 0 1 1070 ‘K - 1170 1270 1320 3-4 8 0 log (Xmax) = -5600/T + Otsuka Metal Trans 1 4 1979 Vol 103 p565 has Antimony data also .01 X801 - 9.42E-4 ACSOL .01 20928-3 .01 7.38E-3 .01 1.13E-2 Rapp High Temp Science 1972 Vol 4 p437 0 0 1.87 T = 1050-1350 ‘K 1050 ‘K - 3.44E-4 Xmax - 420 dyne/cm 1150 1250 1350 1-4 10 O 780 870 970 670 770 870 970 1070 1170 870 970 1030 1.00E-3 415 2.45E-3 410 Alcock Trans Faraday Soc 1964 Vol 60 p822 0 0 7.40E-5 Xmax - 439 dyne/cm 3.18E-4 435 1.36E-3 430 Hansen (3) - 563 0 O 1.30E-4 Xmax - 445 dyne/cm 2.60E-4 440 5.80E-4 435 1.17E-3 430 2.33E-3 425 4.94E—3 420 Hansen (1) - 1065 O 5 2.00E-4 Xmax - 435 dyne/cm l e DOE-'3 430 427 262 j I 4 Charle Z Phys Chem 1976 Vol 99 p199 0 O 0 0 in German log (Xsol) I 0.5 log (pressure in Pascal) + 6260/T - 5.33 T I 1000-1340 ‘K log (Xmax) I -5060/T + 2.30 T I 1000-1143 ‘K log (Xmax) I -4450/T + 1.86 T I 1143-1340 ‘K 1000 ‘K - 2.08E-1 ksol - 1.73E-3 Xmax - 428 dyne/cm 1100 1.18E-1 5.01E-3 423 1143 ::::::: 7.47E-3 421 1143 ::::::: 9.26E-3 421 1200 7.33E-2 ::::::: ::: 1240 ::::::: 1.87E-2 416 1300 4.91E—3 ::::::: ::: 1340 ::::::: 3.46E-2 411 Might have Gibbs free energy data *********************************‘k*****************WWH**WW*** 760 ‘K - 920 960 1090 i=1 7 O LITHIUM Hansen (2) - 498 0 0 .05 Xmax - 352 dyne/cm .10 320 .15 312 .20 290 Hubbersty J Less Common Metal 1979 Vol 49 p253 0 0 has Potassium 8 Sodium data also 10g (Xmax) I -2308/T + 1.523 (for Hydrogen) T I 470-820 ‘K log (Xmax) I -2873/T + 2.321 (for Dueterium) T I 550-750 ‘K 470 ‘K - 550 650 750 870 jI183 s 0 Hydrogen Dueterium 4.10E-4 Xmax - ::::::: Xmax - 400 dyne/cm 2.12E-3 1.25E-3 386 9.38E-3 7.96E-3 370 2.79E-2 3.09E-2 354 7.41E—2 ::::::: 343 Adams J Less Common Metals 1975 Vol 42 p325 0 0 has Potassium 8 Sodium data also log (Xmax) I -2308/T + 1.523 (for Hydrogen) T I 520-775 ‘R log (Xmax) I -2036/T + 1.168 (for Nitrogen) T I 470-705 ‘K 263 Hydrogen data duplicates Hubbersty data above. 500 600 700 3.1929 7 0 900 950 570 670 770 870 970 1000 680 830 970 1070 1170 3-253 \I o 1010 1055 1070 1090 520 620 720 \K- 1.25E-3 Xmax - 390 dyne/cm 5.95E-3 374 1.82E-2 358 4 Adams J Less Common Metal 1975 0 0 Hydrogen 1.17E-1 Xmax - 334 dyne/cm 1.88E—1 326 Carbon Nitrogen Oxygen 1.05E—2 Xmax - 7.50E-4 Xmax - 9.90E—5 1.7OE-2 6.70E-3 4.88E-4 3.00E-2 6.50E-2 4.25E-3 ::::::: 1.15E-l ::::::: ::::::. 2.10E-1 .:::::: Hansen (2) - 219 O O 1.16E-2 Xmax - 373 dyne/cm 2.00 346 3.20 322 5.20 306 9.12 290 Hansen (2) - 582 0 0 Carbon 5.00E-2 Xmax - 316 dyne/cm 1.50E-1 306 2.00E-1 303 Nitrogen 2.00E-4 Xmax - 394 dyne/cm 6.50E-3 362 For Nitrogen: Vol 42 p1 Xmax - 386 370 354 338 322 319 dyne/cm Astm Special Tech Publication 1960 Vol 272 p195 0 O 264 520 ‘R - 9.6OE-6 Xmax - 394 dyne/cm 570 2.05E-5 ° 386 620 3.74E-5 378 MAGNESIUM j I 1 Hansen (2) - 500 7 0 0 0 950 ‘K - 1.00E-3 ksol 1000 1.3OE-3 1050 1.37E-3 mmmuwmmmmmfim MANGANEESE j I 1 Hansen (1) - 785 1 0 0 1 1530 ‘R - 2.94E-3 ksol j I 1 Levin Tran Ural Politech Inst 1974 Vol 231 p86 0 O 0 1 log (Xsol) I 0.5 * log (pressure in Pascal) - 1590/T - 4.40 T I 1623-1718 ‘K 1620 ‘K - 3.78E-4 ksol 1720 4.00E-4 j I 2 Hansen (3) - 148 - 2 0 0 0 unsure of surface tension data log (Xmax) I -37S.8/T - 0.347 T I 1620-1870 ‘K 1620 ‘K - .2636 Xmax - 1090 dyne/cm 1720 .2720 1070 1820 .2796 1050 1870 .2866 1040 I 2 Hansen (1) - 368 NEI- 0 0 0 265 1500 ‘K - .057 Xmax - 1114 dyne/cm 1565 .150 1103 1590 .200 1096 1610 .250 1092 j I 2 Hansen (2) - 220 2 0 0 0 1580 ‘R - .265 Xmax - 1094 1620 .272 1090 1720 .280 1070 1870 .292 1040 j I 3 Kor Metal Trans 1978 Vol 98 p97 2 2 1 9 log (ksol) = -2071/T + 0.16 1570 ‘K - 6.93E-2 ksol 1670 8.32 1770 9.77 1570 ‘K - .02 Xsol - 1.09 ACSOL 1570 .06 1.30 1570 .10 1.55 1670 .02 1.13 1670 .06 1.43 1670 .10 1.82 1770 .02 1.16 1770 .06 1.54 1770 .10 2.06 ACSOL data NOT USED - unsure of reference state j I 3 Goken Trans Metal Soc 1961 Vol 221 2 0 O 1 Not sure exactly what is measured J I 4 Hansen (3) - 503 2 0 O 0 1670 ‘R - 6.42E-4 Xmax - 1080 dyne/cm 1770 9.34E-4 1060 1870 1.31E-3 1040 p200 266 j I 4 Jacob Metal Trans 1981 Vol 123 p675 8 O O 0 log (Xmax) I -9070/T + 2.3 T I 1500-1900 ‘K 1500 ‘R - 1.79E-4 Xmax - 1114 dyne/cm 1600 4.28E-4 1094 1700 9.22E-4 1074 1800 1.82E-3 1054 1900 3.36E-3 1034 WWW MOLYBDENUM j I 2 Rudy Trans Metal Soc AIME 1967 Vol 239 p 1247 3 0 O 0 unsure surface tension data 2470 ‘K - .17 Xmax - 1065 dyne/cm 2600 .20 1090 2700 .25 1110 j I 3 Herman J Less Common Metal 1978 V01 58 p85 0 0 0 O 2200 ‘K - 7.57E-3 ksol 2400 8.08 2600 8.54 2800 8.96 2090 ‘K - .20 Xmax - 985 dyne/cm 2180 .25 1008 3250 .30 1200 j I 3 Domke Scripta Metal 1974 V01 8 p289 2 0 0 1 2920 ‘K - 8.42 ksol NOTE - Herman; above, stated that quenching was an unsatisfactory technique for the Nitrogen-Molbdenum system as it gave a ”spongy” solid. Herman used some kind of calculation technique. Domke; above, used quenching. He quenched in liquid Nitrogen. Herman did not specify his quenching agent. The data of Domke Dokl Akad Nauk SSSR 1969 Vol 184 p398 was ignored as it did not agree with the data of Herman and Domke. j I 4 Kozina I.A.N. SSSR Metal 1970 Vol 1 p56 7 0 0 0 267 3000 ‘R - 1.71 ksol ksol drived a calculation scheme which was not understood. ifihk**************************************************************************** NEODYNUM j I 4 Hansen (2) - 653 7 0 0 5 unsure surface tension data 1300 ‘K - .05 Xmax - 688 dyne/cm 1400 .10 678 1470 .15 668 1540 .20 658 ‘******************************************************************************* NICKEL j I 1 Parlee Metal Trans 1970 V01 1 p5377 7 0 0 1 has Silver data also 1923 ‘K - 2.54E-3 ksol j I 1 Neinstein Trans Metal Soc AIME 1963 Vol 227 p285 1 0 0 1 has Chromium, Cobalt, & Iron data also 1800 ‘K - 2.27E-3 ksol 1900 2.43 2000 2.60 Checks with Busch Trans Metal Soc AIME 1960 Vol 218 p60 1 I 2 Hansen (3) - 151 2 0 0 2 1620 ‘K - .097 Xmax - 1800 dyne/cm 1720 .104 1780 1820 .111 1760 1920 .118 1740 2020 .124 1720 j I 3 Humberty Trans Metal Soc AIME 1960 Vol 218 p1076 1 0 O 1 has Chromium 8 Iron data also 268 1870 ‘R - 2.10E-5 ksol believe netal exposed to Hydrogen during experimental runs 1 I 4 Hriedt Trans Metal Soc AIME 1955 p477 2 O 0 0 has Iron data also 1620 ‘R - 4.08E-5 Xmax - 1800 dyne/cm 1720 9.53E-5 1780 1820 2.03E-4 1760 1920 3.99E-4 1740 1970 5.46E-4 1730 j I 4 Kemori J Chem Thermo 1981 Vol 13 p 313 2 1 1 4 1n (Xmax) I -25080/T + 9.960 T I 1722-1859 ‘K 1730 ‘R - .0107 Xmax - 1776 dyne/cm 1830 .0236 1736 Note large difference between Hriedt and Kemori results. Why ??? 1730 ‘K - .01 Xsol - .247 ACSOL 1830 .01 .324 WWW*H*W NIOBIUM j I 1 Lokomski Dokl Akaud Nauk SSSR 1965 Vol 165 p1091 2 O 0 2 - 2900 ‘K - .0115 ksol 3000 .0110 3100 .0106 Duplicated in Lakomski I.A.N. Metal 1968 Vol 4 p28 j I 2 Kimura Trans Japan Inst Metal 1961 Vol 2 p98 3 0 0 0 unsure of surface tension data 2610 ‘K - .135 Xmax - 1994 dyne/cm 2880 .200 1978 3110 .250 1932 3280 .300 1898 Checks with GTE j I 3 Revyakin I.A.N. Metal 1968 p28 7 0 0 O has Tantalum & Vanadium data also 2800 ‘R - .733 ksol 269 j I 4 Hansen (2) - 263 3 0 O 5 2640 ‘R - .05 Xmax - 1990 dyne/cm 2590 .10 2000 2545 .15 2009 2480 .20 2021 PALLADIUM j I 1 Ralinyuk Zh Fiz Khim 1980 vol 54 p2815 2 O O O 1870 ‘K - 9.40E-3 ksol 2363 7.52 WW“H**WW*HWWWW* PLUTONIUM j I 1 Hansen (2) - 504 7 0 0 0 970 ‘K - .050 Xmax - 535 dyne/cm 1070 .075 ' 520 j I 2 Hansen (2) - 225 7 0 0 0 1275 ‘K - .05 Xmax - 500 dyne/cm 1420 .10 485 1550 .15 475 1650 .20 465 j I 4 Hansen (2) - 689 7 0 0 0 1685 ‘R - .05 Xmax - 462 dyne/cm 1815 .10 450 1930 .15 443 2040 .20 437 J ' 4 Hansen (3) - 568 270 7 0 0 0 1700 ‘K - .10 me - 460 1920 .20 445 POTASSIUM j I 1 Hubbersty J Less Common Metal 1979 Vol 49 p253 7 O 0 0 has Lithium 8 Sodium data also log (Xmax) I -2994/T + 2.305 T I 400-700 ‘K 400 ‘K - 6.61E-6 Xmax - 89.19 dyne/cm 500 2.08E-4 82.66 700 1.07E-2 69.60 j I 1 Arnil’dov I.A.N. Metal ???? 1 0 0 0 log (Xmax in weight frac) I -2930/T + 0.8 T I 600-770 ‘K log (saturation pressure in mm Hg) I -5860/T + 11.3 570 ‘K - 1.79E-3 Xmax - 78.09 dyne/cm 670 1.05E-2 71.56 770 3.86E-2 65.03 Proposes a value for ksol which is constant over a temperature range. 320 to 720 ‘K - 14.2 Height Z Hydrogen / (pressure in mm Hg) ‘ 1/2 3 I 4 Adams J Less Common Metal 1975 Vol 42 p325 7 0 0 0 470 6.70E-3 84.62 770 8.80E-2 65.03 820 1.20E-1 61.76 j I 4 Leffler J Phys Chem 1964 Vol 68 p2882 9 0 0 O 775 ‘K - e 640 xmax 875 .536 975 .632 271 NOT USED - data is strange. RHENIUM j I 2 Hughes J Less Common Metal 1959 Vol 1 p 377 2 0 0 0 unsure of surface tension 2770 ‘K - .169 Xmax - 2780 dyne/cm 2870 .20 2769 2970 .23 2740 3040 .25 2720 W*HWWW*MW**W**WW* SCANDIUM j I 4 Ruprashvili I.A.N. Neorg Mater 1969 Vol 5 p2123 3 0 0 0 surface tension data is guess 1830 ‘K - .34 Xmax - 1600 dyne/cm 2070 .37 1560 2270 .43 1520 Checks with GTE. WWWWflWWWWWWW* SILICON j I 1 Kostina I.A.N. Neorg Mater 1970 Vol 6 p117 1 0 0 l 1800 ‘K - 1.99E-2 ksol 1900 2.93 2000 4.16 2100 5.71 2200 7.62 j I 2 Laplev Izv Vuz Chern Metal 1974 Vol 8 p13 0 0 0 O in Russian delta Gibbs free energy (jlmole) I -115520 + 37.30 * T 1688-2270 ‘K j I 3 Scarce J Chem Phys 1957 Vol 30 p1551 6 0 O 0 2000 ‘R - 7.508-4 Xmax - 700 dyne/cm 2200 2.7OE-3 680 272 2500 1.33E-2 650 2700 3.13E-2 630 2900 6.53E-2 610 J ' 4 Hansen (3) - 572 7 0 0 0 1650 ‘R - .24 Xmax - 735 dyne/cm 1770 .30 723 1850 .40 711 j I 4 Arkharow Ukr Rhim Zhur 1974 Vol 40 p129 0 0 O 0 in Russian 1688 ‘K - 3.98E-5 Xmax - 732 dyne/cm 1873 9.77E-4 708 WWHHWHW*WWW SILVER 3 I 1 Parlee Metal Trans 1970 Vol 1 p5377 7 0 0 1 has Nickel data also 1282 ‘K - 2.37E-5 ksol 1587 8.41E-5 1973 2.04E-4 j I 2 Hansen (1) - 11 7 0 0 0 1930 ‘K - 1.08E-4 Xmax - 800.2 dyne/cm 2005 2.25 787.1 1 I 4 Otsuka Metal Trans 1981 Vol 128 p501 0 1 0 9 1270 ‘K - .01 Xsol - 47.67 ACSOL 1370 .01 53.11 1470 .01 58.64 NOT USED - unsure of standard state 1 I 4 Hansen (1) - 37 7 O O 1 1210 ‘K - 2.15E-2 ksol 1825 1.35E-2 hot—A. HLA. \lu N“ I 1 I 1 -2 273 2130 1.01E-2 2440 3.37E-3 Checks with Parlee Trans Metal Soc AIME 1965 Vol 233 p1918 SODIUM McClure J Phys Chem 1965 Vol 69 p 3542 0 0 0 log (weight percent) I -2800/T + 2.20 T I 475-630 ‘K 475 ‘K - 4.92E-5 Xmax - 183.2 dyne/cm 530 1.9OE-4 187.4 630 1.31E-3 178.2 Addison J Cehm Soc London 1965 p116 0 0 0 log (weight percent) I -5021/T + 6.211 T I 520-593 ‘K 520 ‘K - 8.26E-5 Xmax - 188.3 dyne/cm 570 5.80E-4 183.7 593 1.28E-4 181.7 Hubbersty J Less Common Metal 1979 Vol 49 p253 0 0 0 has Lithium & Potassium data also log (Xmax) I -3019/T + 1.818 T I 400-700 ‘R 400 ‘K - 1.86E-6 Xmax - 199.3 dyne/cm 500 6.03E-5 190.1 600 6.11E-4 180.9 Williams J Phys Chem 1957 Vol 61 p379 0 0 0 600 ‘K - 1.60E-3 Xmax - 180.9 dyne/cm 660 1.00E-2 175.4 720 4.00E-2 169.9 Salzano Nuclear Tech 1972 Vol 13 p289 0 0 0 log (weight fraction) I -2440/T - 2.30 T I 850-970 ‘K 850 ‘K - 1.61E-5 Xmax - 150 dyne/cm 970 3.70 147 274 j I 2 Hansen (2) - 222 7 0 0 . 420 ’K - 6.20E-5 Xmax - 197.5 dyne/cm 570 9.00E-5 183.7 970 1.44E-4 146.9 1 I 4 Hansen (2) - 248 7 0 0 520 ‘K - 2.40E—4 Xmax - 188.3 dyne/cm 645 5.00E-4 176.9 750 1.50E-3 167.1 805 2.50E-3 162.1 j I 4 Adams J Less Common Metal 1975 Vol 42 p325 7 0 0 0 has Lithium & Potassium data also 370 ‘K - 4.06E-6 Xmax - 202.1 dyne/cm 470 3.90E-5 192.9 570 1.85E-4 183.7 670 5.34E-4 174.5 770 1.17E-3 165.3 820 1.62E-3 156.1 MWHWW*W“**“WHW**WWWW*MW*WW STRONTIUM j I 1 Peterson J Less Common Metal 1980 Vol 72 p251 1 0 0 0 1070 ‘K - 2.61 ksol 1170 1.52 1 I 1 Hansen (3) - 409 7 0 0 5 1050 ‘K - .05 Xmax - 282 dyne/cm 1065 .10 283 1095 .20 287 TANTALUM 275 1-2 GTE 7 0 0 O 3120 ‘R - .12 Xmax - 2146 dyne/cm 3255 .15 2120 3450 .20 2080 j I 2 Hansen (1) - 381 3 0 0 5 3070 ‘K - .08 Xmax - 2155 dyne/cm 3150 .10 2140 3305 .15 2110 3455 .20 2080 j I 3 Revyakin I.A.N. Metal 1968 p28 7 O 0 0 has Niobium and Vanadium data 3310 ‘K - .383 ksol W‘k‘kfim'k'k‘k****H******************************************************* TELLURIUM j I 4 Otsuka Metal Trans 1980 Vol 11B p119 0 l l 4 820 .01 2.69E-2 276 THALLIUM j I 4 Otsuka Metal Trans 1980 Vol 11b p313 0 1 1 4 973 ‘K - .01 Xsol - 1.66E-3 Acsol 1173 .01 1.15E-2 THORIUM j I 2 Hansen (2) - 231 7 0 0 5 1900 ‘K - .07 Xmax 2010 .10 2270 .15 2490 .20 NOT USED - phase diagram is unusual, surface tension data is non-existant WWW TIN j I 1 Parlee Metal Trans 1970 Vol 1 p5377 7 0 O 1 has Nickel 8 Silver data also 1282 ‘K - 4.58E-6 ksol 1587 4.30E-5 1923 2.23E-4 j I 1 Bever Trans Metal Soc Aime 1942 ????? 1 0 0 1 1273 ‘K - 4.24E-6 ksol 1373 9.54E-6 1473 2.17E-5 1573 3.76E-5 j I 1 Hansen (1) - 796 7 0 0 1 277 670 ‘K - 4.66E-5 ksol 830 6.04E-5 980 7.42E-5 1070 9.86E-5 1170 1.48E-4 1280 1.55E-4 j I 4 Alcock Trans Faraday Soc 1965 Vol 61 p443 EMF 0 0 O 810 ‘K - 1.30E-5 Xmax - 525 dyne/cm 870 4.10E-5 519 970 2.07E-4 509 j I 4 Rapp Metal Trans 1072 Vol 3 p3239 8 0 O 0 log (Xmax) I -15098/T + 9.775 T I 1020-1220 ‘K log (ksol) I 20131/T - 2.825 1020 ‘K - 4.85E-4 Xmax - 504 dyne/cm 1120 1.82E-3 494 1220 5.49E-3 484 ksol values NOT USED as they are huge j I 4 Parlee High Temp Sci 1982 V01 15 p55 7 0 0 0 1223 ‘K - 5.66E-3 Xmax - 470 dyne/cm 1523 2.20E-2 440 j I 4 Otsuka Metal Trans 1981 V01 12B p427 O 1 1 4 970 ‘K - .01 Xsol - 4.03E-7 ACSOL 1070 .01 3.07E-6 1170 .01 1.66E-S Checks with Fitzner Z Metallk 1981 p512 j I 4 Nover Trans Inst Min Met C 1972 Vol 81 p063 Found late NOT PROCESSED. Has max solubility and Gibbs free energy data. 278 TITANIUM 1-2 GTE 7 0 O 5 1920 ‘K - .015 Xmax - 1600 dyne/cm 1950 .050 1594 2020 .100 1580 2115 .150 1561 2320 .200 1520 j I 2 Hansen (1) - 384 7 O O 0 2110 ‘K - .05 Xmax - 1562 dyne/cm 2210 .10 1542 2350 .15 1514 2490 .20 1486 j I 3 Levinski I.A.N. Neorg Mater 1974 V01 10 p1628 7 0 0 1 2280 ‘K - 5.070 ksol 2430 4.285 2610 4.194 2750 2.712 1 I 3 Hansen (1) - 990 7 0 0 5 2330 ‘K - .05 Xmax - 1518 dyne/cm 2484 .10 1486 2565 .15 1472 2830 .20 1419 j - 4 Hansen (1) - 1069 3 0 0 5 2085 ‘R - .05 Xmax - 1568 dyne/cm 2135 .10 1558 2180 .15 1548 2205 .20 1541 verifies Kornilov Dokl Akaud Nauk SSSR 1963 Vol 150 p313 the phase diagram proposed in Hansen. information than Hansen in the solid regions. Rornilov shows more 1400 ‘K - 1470 1670 ‘K - 1870 2030 2170 2270 ‘K - 2465 2640 2740 1380 ‘K - 1470 1670 1870 2070 2270 279 URANIUM Hansen (1) - 803 O 1 unsure surface tension data 6.66E-3 ksol - .290 Xmax - 1498 dyne/cm 6.91 .333 1485 Hansen (1) - 7?? 0 0 unsure surface tension data .05 Xmax - 1455 dyne/cm .10 1425 .15 1401 .20 1380 Hansen (3) - 534 O 1 .05 ksol .10 .15 .20 Hansen (2) - 700 0 0 unsure surface tension data 8.27E-6 Xmax - 1500 dyne/cm 9.49E-6 1485 1.41E-5 1455 1.95E-5 1425 2.90E-5 1395 4.96E-5 1365 “WWW 1920 ‘R - 2000 2120 2250 VANADIUM Storms High Temp Science 1973 Vol 5 p276 O 0 .145 Xmax - 1980 dyne/cm .167 Xmax - 1974 .200 1960 .230 1937 Checks with GTE 280 j I 3 Revyakin I.A.N. Metal 1968 p28 7 0 0 0 has Niobium & Tantalum data also 2200 ‘K - 1.72 ksol HOLFRAM j I 2 Hansen (3) - 237 2 O O 5 unsure surface tension data 3070 ‘K - .40 Xmax - 2490 dyne/cm 3350 .50 2426 WW“WW*WW***MW* ZIRCONIUM j I 2 Hansen (1) - 239 7 0 0 0 2100 ‘K - .050 Xmax - 1553 dyne/cm 2270 .067 1528 2670 .143 1468 3070 .276 1408 j I 3 Levinski Zh Fiz Khim 1974 Vol 48 p845 7 0 0 1 2170 ‘K - 85.7 ksol 2270 73.4 2390 43.6 Data taken from phase diagram given for system pressure equals one PSIA. j I 4 Hansen (1) - 709 7 0 0 5 surface tension data guessed from Titanium data 2173 ‘K - .41 Xmax - 1543 dyne/cm 2470 .48 1498 2670 .54 1468 YTTRIUM 281 j I 2 Carlson Trans Metal Soc AIME 1968 Vol 242 p846 3 O O 0 1800 ‘K - .025 Xmax - 1718 dyne/cm 1820 .050 1715 1850 .075 1712 1890 .100 1706 2016 .150 1688 2170 .200 1662 j I 4 Hansen (2) - 707 7 0 0 5 surface tension data guessed from Hafnium data 1720 ‘K - .454 Xmax - 1730 dyne/cm 2220 .500 1655 282 Appendix C Experimental Techniques This appendix contains a review on the various experimental techniques encountered during data gathering. This appendix is not intended as a critique on the experimental techniques. It is intended as a brief introduction to the experimental techniques most commonly used. Hot Volume Method A popular method of measuring solubility data during the 1920’s - 1970’s was the Sieverts or hot volume method. The technique is simple in theory: melt a sample of metal in the presence of a pure gas and determine gas absorbtion by monitering changes in gas pressure. The problems of the hot volume method are well reviewed by Gunji (26). One problem is absorbtion of liquid metal by the crucible and absorbtion of metal gas by the experimental chamber wall. Another crucible/chamber material related problem is chemical reaction between crucible/chamber material and liquid metal, gaseous metal, or any metal-solute complex. If absorbtion and reaction data are available, these problems can be minimized. To equate pressure to molor amounts requires a volume factor, in this case the volume of the reaction chamber. The volume must be known at experimental temperatures with the liquid metal in the chamber. This volume is known as the 'hot volume”. The hot volume is recorded by pumping known amounts of inert gas into the chamber and recording 283 the pressure. A problem in recording the hot volume is that there are fixed heat sources in the reaction chamber. This will lead to thermal gradiants. If the chamber is inefficiently designed there could exists dead spaces or areas of the chamber which are significantly below the average temperature of the chamber. Gunji measured the hot volume of an efficiently designed chamber using Argon and Helium. The hot volume measured using Argon was 1-22 smaller than the that measured using Helium. Argon has a larger thermal conductivity. Care should be taken to avoid dead spots within the reaction chamber and to use an inert gas of the same relative thermal conductivity as the experimental gas. Lastly the assumption of insolubility of the inert gas in the liquid metal should be accounted for if false. During experimental runs the liquid metal will be free to vaporize. This will cause an array of problems from reaction between gaseous metal and solute gas to depletion of the liquid metal. But time must allowed for the gas absorbtion to achieve equilibrium. A similar method involves melting of pure metal-solute complex and measuring the gas evolved. When melted, the sample will dissociate into a saturated liquid metal-solute solution and liquid metal-solute complex. An equilibrium will be reached where the pressure of the solute gas is equal to the dissociation pressure of the metal-solute complex. At this point if gas is withdrawn from the reaction chamber, metal-solute complex will dissociate to re-establish equilibrium. When gas is withdrawn from the chamber and the pressure does not return to the metal-solute complex dissociation pressure, all complexs have dissociated into a saturated solution of liquid metal and solute. With 284 knowledge of the amount of gas withdrawn, the hot volume of the chamber, and the amount of metal-solute complex put in the chamber the maximum solubility of the solute can be calculated. Quenching Technique Quenching involves equilibrating a pure liquid metal sample with a pure solute gas. The resulting metal-solute solution is rapidly frozen or quenched. The resulting solid is then analyzed to determine the solute concentration. The various techniques for analyzing the the solid solutions will not be reviewed here. While liquid, the metal can react with the crucible material. To avoid contamination resulting from reactions of metal or metal-solute complex with the crucible it is wise to grind off the outer layer of the solid sample obtained from quenching. The solid sample should be split and analyzed across its width. This will insure that time was allowed for the entire sample to reach equilibrium. A unique problem with the quenching technique is the evolution of solute from the sample during solidification. Herman (27) states that quenching is unsatisfactory for Molybdenum-Nitrogen systems. Herman states the Molybdenum-Nitrogen produce a spongy solid when quenched. Domke (17) conducted quenching experiments on the Molybdenu-Nitrogen systems. His results compare favorable with the 285 results of Herman which were generated from a calculation scheme. Domke quenced in liquid Nitrogen, insuring a rapid solidification. Herman did report his quenching method. The quenching technique can be use for measuring the solubility of Carbon in liquid metals. Melt the metal in a graphite crucible. Allow time for the graphite to dissolve into the liquid metal. To avoid quenching and analyzing the entire sample a portion of the liquid metal-solute solution can withdrawn by a syringe, and quenced therein. The syringe material is then dissolved away by a chemical reagent. Uda (110) found that the solubility of Nitrogen in quenched Iron was significantly higher for arc melted samples as Opposed to sample levitated in Nitrogen gas streams. Uda attributed the higher solubility to an activation of the Nitrogen molecule when exposed to the welding arc. Melting Technique The melting technique involves the melting of a sample. The sample is made by mixing a known quantity of powdered metal and powdered metal-solute, then compressing the mixture into a solid pellet. The temperature at which the pellet begins to melt and pellet 286 compostion marks a point on the solidus line of the solute-metal phase diagram. The temperature at which the entire pellet melts and the pellet composition marks a point on the liquidus line of the solute-metal phase diagram. A unique advanatage is that this technique can he ran backwards and forwards repeatidly. A related technique calls for Optically fixing the line of liquid-solid interface in a partially melted pellet. The pellet is then quenched. The two portions are physically seperated and analyzed. This allows for determination of solidus and liquidus points of the phase diagram. Water Vapor Calculation Scheme The following calculation scheme was found in Tankins (106) and Jacob (38). If Hydrogen and Oxygen gass are present over a liquid metal-Oxygen solution the fallowing reactions must be at equilibrium: 1) H1<8> + 9 : 310(8) 2) Elm + 1/2 02(3): nzo Where '9 refers to the Oxygen dissolved in the liquid metal. The 287 equilibrium constants corresponding to the above reactions: 3) K - ”no 1 I { [PM] [1(0) x(o)l }- K’ / 21(0) '/2 4) K*-[PH101/{[P 11:0,] 1 “2. Where P H20 is the partial pressure of water vapor, X(0) , X(O) are the activity coefficient and concentration the Oxygen dissolved in the liquid metal. The equilibrium constant K*- is a well defined quantity. If the partial pressures of Hydrogen and water vapor and the concentration of Oxygen dissolved in the liquid metal are known Henry’s law constant can be calculated: , l/ 5) K henry I K*/ K’ I X(O) / [P 01111 No mention was made of the effect of Hydogen or water vapor dissolved in the liquid solution. 288 Electromotive Force Technique A battery is composed of a liquid solution with electrodes at opposite ends, when the electrodes are connected via a conducting material 8 electrical circuit is completed. The solution and the electrodes must be of a certain type. The solution usually contains a least two ions. One ion transfering electrons to one electrode, the other ion transfering electrons away from the other electrode. Thus a current flows. If an external voltage or electromotive force (EMF) is applied to the battery, the current can be made to run in the opposite direction, thus ”charging" the battery. The battery principle is the basic principle used in the EMF techique. A typical apparatus for electromotive force experiments is shown in Figure 17. The electrodes are the liquid metal-solute solution and the Platinum surronding the cell holding the liquid solution. The cell wall is made of an electrolyte pourous to the solute. At the Platinum electrode solute in the gas will convert to ionic form. The ion will migrate across the electrolyte wall to the liquid solution. There the ion will convert to a non-charged solute species. Thus a circuit is completed, and of course the circuit can run in reverse. The solute concentration is assumed uniform in both the liquid solution and in the gas surronding and within the pourous Platinum electrode. The solute chemical potential is therefore uniform within the liquid solution and the gas. Any gradiant in the solute chemical potential is thus assumed wholey contained within the electrolyte cell wall. 289 Cw‘f‘efit Source, ANT—(’9‘! Hmmetel‘ Voneter‘ I. i «Cirgwt ~,__._——. .7 1 ix, 1 fuJo Sane: j i } Elec+r011+e [{ 1 4“: I /C|rcwt Li 1 one. ' l . ; 1 1: ! Liquid Mei‘o} \W-WAMMM '1»me ' ]25/ 777'; Q’ngif 7, \ A \ K m \ ///j //[7[7f//// ./'/.//7// .1” [AZ/Z MW“ $.7va WOT/[INN r\ [J :‘A\\\\\\\ Pourous 7me F\a+1num E lec‘h‘od e. Fig u re 1 7 Elecfrochemicar Ce” 290 Experiments are conducted by applying an external EMF to the experimental cell which will pump electrons into the Platinum electrode. At the Platinum electrode the gaseous solute (G) undergoes the following reaction: 6) 1/2 62(3) + ’ne' :3- G“- Where 7\ is the valence number of the solute. The solute ion (G n-) diffuses through the cell wall to the liquid solution. There the following reaction occurs to complete the electrical circuit: 7) GIN-:9 +’71e- Where .Q is the solute in the liquid solution. By pumping electrons into the Platinum electrode, solute is pumped into the liquid solution, Reversing the direction of electron motion pumps solute out of the liquid solution. The following sections will show how this technique can be used to measure the activity of the solute in liquid solution. Activity Measurements 291 The following derivation of mathamatics used to discribe a EMF cell is based on work found in Rapp (87). Within the cell wall the following equilibrium equation should hold at all points: 8) 1/2 61+‘ne- ‘3 6’". Equation 8 generates the equation: é ‘— 9) 1/2/u62 +'nWe— Won— Where /“(r; is the chemical potential of the solute within the cell wall. “2" and W b'fl" are the electrochemical potential of the excess electrons and of the solute ions within the cell wall. Electrochemical potential can be expressed: 10) Wi-lui + 211?? Where fii is the chemical potential, 21 is the valanec number, F is Faradays constant, and ¢is the local electric potential. The current flow due to ion diffusion (Iion) is given by Wagner (112): 292 11) Iion - (710:: A / (21?) t (d vé'n-I dx) Where the term (EVion A) will be shown to be related to current flow resistance. Equation 11 and 9 can be combined to yeild: altar F 4.77414;- : dX 12) (1/1) GUM} a... H Integrating equation 12 form X-O to X-l, or from the outer surface of the cell wall to the inner surface: II II 13) 1/2l/1C; ‘flal + fllWe' - we'] = 2 lion JZion F- Note that variables with double prime superscript refer to conditions at the outer surface of the cell wall while non-prime variables refer to conditions at the inside surface of the cell wall. Ilion is expressed: X: 1 14) flion - (l/A) S dx / aion X‘0 293 Combining equations 13 and 10: II ll 15) -’nl,ue- +251“? ‘fle"ze‘F?]' (1/2) [,q” -/,( ]- 2 Iionflion F 61 51 Where ,ae- is the chemical potential of excess electrons. If we make the assumption: 16) fled. /’18’ Equatoin 15 reduces to: (Note that Ze- - -1) I! 17) 70 - (p - (1 / (2nF)) * [Maui-#5] - Iion [lion 2 1' Where ‘? is electrical potential. Q - ¢ is thus the electromotive force applied to the experimental cell. Equation 17 can thus be written: 18) E -E - Iionflion 294 Where iris external EMF applied to the cell and E is the internal EMF, measurable if a voltmeter were attached to the Platinum electrode and to the liquid metal solution (circuit 1 of Figure 17). If the applied EMF is zero it can be seen: 19) .51 ion 8 Rcell Where Rcell is the resistance of the electrolyte cell wall to ionic motion. The resistivity should be independent of the solute activity. The chemical potential of a diatomic susbstance (Gz ) is defined: 0 20) [162 -/Jél + 2RT 1n a(G) WhereI/lb: is the chemical potential at a chosen reference state. a(G) is the activity of the substance relative to the reference state. If the reference state of the solute at the inner and outer surfaces of the cell wall are chosen to be the same, equations 17, 18, 19, and 20 combine to yeild: 295 21) 6 - m / (n m In (a(G)”/ a(G)) - Iion Rcell Chasing the reference state to be pure gaseous solute at one atmosphere pressure: I 22) E - (RT / (7717)) In (P2177 a(G)) - Iion Rcell As stated earlier, when the cell internal EMF equals the applied EMF, the ionic current goes to zero. Thus at steady state, equation 22 transforms to: V 7. 23) 6 - (RT/ (mm In (Pzzl 8(6)) The activity of the solute can be calculated from equation 23 when the applied EMF and the partial pressure of the solute in the gas phase is known at steady state. Solubility Measurements 296 When an EMF is applied to the cell, an ionic current will flow to drive the cell internal EMF to equal the applied EMF. When the internal EMF equals the applied EMF equilibrium is achieved and the current falls to zero. The total quantity of electric charge (Qion) which flows while waiting for steady state is: T 24) Qion - 3 lion dt - 1F Nb & Where T is the time required for the internal and applied EMFs to reach equilibrium, while N b is the number of solute molecules transferred. The concentration of the solute in the liquid solution after current has flowed can be expressed: 25) c2-(c1 M +N6)/(MT +N -r c.) Where Cl and CZ are the concentrations of the solute in the liquid solution before and after current flow. M1. is the total moles of liquid solution before current flow. If solute concentrations are low, equation 25 can be expressed: 26) CZ-Cl-Nb/Mu aIQion/(7'IFM|__) 297 Where "i. is the moles of liquid metal solution. This allows the calculation of the solute concentration after applying an external EMF to the cell. As the applied EMF is raised the solute concentration rises in the liquid solution. When the solute reaches its maximum solubility, the internal EMF will have reached its maximum value. If the applied EMF is increased above this maximum internal EMF, the ionic current will not fall to zero. Solute will continue to be pumped into the liquid solution where it will produce solute gass or precipitate. Thus the maximum solubility can be measured by raising the applied EMF until the current does not fall to zero. The above discussion hold exactly for an ideal electrochemical cell. A real cell requires certain corrections. The following review is based on Otsuka (70). An ideal electrolyte cell wall should be permeable to solute ions, should be a non-conductor, and should not release or entrap solute ions. If the ectrolyte is conductive to electricity, a conductive current (Ic) must be subtracted from the measured current to obtain a true ionic current (Iion). The conductive current is measurable. When the internal EMF reaches equilibrium with the applied EMF, the current does not fall to zero. This steady state current is the conductive current. Subtracting the conductive current from the 298 measured current yeilds the true ionic current. If the electrolyte cell wall releases or entraps solute ions this must be accounted for. Otsuka measured a true ionic current for experimental runs designed to pump solute out of a pure liquid metal. Otsuka concluded that the ionic current generated was a result of pumping solute ions out of the electrolyte wall. It was assumed that these solute ions would move from the cell wall into the liquid solution during a pump in experiments. Thus the quantity of electricity obtained from the pump out experiments on a pure liquid metal is subtracted from the measured quantity of electricity flow (Qion in equaton 26) for normal experimental runs. It was found that this "false” ionic current is proportional to the applied EMF. B IBLIOGRAPHY Bibliography 1) Addison, Pulham, and Roy (J Chem Soc) 1959, 116 2) Alcock and Belford (Trans Faraday Soc) 1964, 60, 822 3) Alcock and Belford (Trans Faraday Soc) 1965, 61, 443 4) Alcock and Jacob (J Less Common Metal) 1977, 53, 211 5) Bircumshaw (Trans Faraday Soc) 1935, 31, 1439 6) Blander, Grimes, Smith, and Watson (J Phys Chem) 1959, 63 7) Bradley, Leitnaker, Horne (High Temp Science) 1982, 15, 187 8) Burylev (Russian Journal of Physical Chem) 1962, 36, 1202 9) Burylev (Russian Journal of Physical Chem) 1969, 43, 761 10) Busch and Dodd (Trans Metal Soc of AIME) 1960, 218, 483 11) Buxbaum (J Less Common Metals) 1984, 97, 27 12) Buxbaum (Seperation Sci and Tech) 1983, 1251 13)Carlson and Paulson (Trans Metal Soc of AIME) 1968, 242, 846 14) Dantzer and Kleppa (J Chem Phys) 1980, 73, 5259 15) Degtyarev, Linchevskly, and Chursin (Izv Akaud Nauk Metal) 1970, 4, 42 16) Denbigh ”The Principles of Chemical Equilibrium” 4th edition Cambridge Unversity Press New York, N.Y. 1981 16) Dodd and Goksen (Trans Metal Soc of AIME) 1961, 221, 233 17) Domke and Fohberg (Scipta Metall) 1974, 8, 289 18) Eckert, Smith, Irwin, and Cox (AICHE J) 1979, 273 19) Fiztner and Moser (Metals Tech) 1979, 273 20) Fiztner, Shih, and Liang (Z Metallk) 1981, 512 299 300 21) Fiztner (Z Metallk) 1980, 179 22) Fowler ”Statistical Mechanics” 2nd Edition Cmbridge, University Press 1936 23) Grigorovich (Ivz Akad Nauk SSSR, Neorg Mater) 1965, 1, 1764 24) Goken (Tran Metal Soc of AIME) 1961, 221, 200 25) Guggenhiem "Mixtures" Oxford University Press Oxford 1952 26) Gunji, Matoba, and Ono (Trans National Research Inst Metals) 1964, 6, 202 27) Herman (J Less Common Metals) 1978, 58, 85 28) Hilderbrand and Scott ”The Solubility of Non-electrolytes“ 3rd edition, Van Nostrand Reinhold, N.Y. 1950 29) Hill and Johnson (Tran Metal Soc of AIME) 1961, 221, 622 30) Hughes (J Less Common Metal) 1959, l, 377 31) Humbert and Elliot Trans Metal Soc of AIME) 1960, 218, 1076 32) Horz (High Temp - High Pressure) 1971, 3, 565 33) Jacob and Alcock (Metal Trans) 1972, 3, 1913 34) Jacob and Fitzner (J Less Common Metal) 1977, 52, 279 35)Jacob, Fitzner, Alcock (Metal Trans B) 1977, 88, 669 36) Kalinyuk and Lakomsky (Izv Akud Nauk Metal) 1968, 4, 28 37) Kalinyuk (Russian Journal of Phys Chem) 1980, 54, 11 38) Kemori, Katayama, and Kozuka (J Chem Thermodynamics) 1981, 13, 313 39) Kimura and Sasaki (Japan Inst of Metal) 1961, 2, 98 40) Kiukkola and Wagner (J Electrochem Soc) 1957, 382 41) Kor (Metal Trans B) 1978, 98, 97 42) Kornilov and Glazova (Dokl Akad Nauk SSSR) 1963, 150, 313 301 43) Kornilov and Glazova (Izv Akad Nauk SSSR, Neorg Mater) 1965, 1, 1778 44) Kostina, Baum, and Kurichkin (Izv Akad Nauk SSSR, Neorg Mater) 1968, 6, 117 45) Kozina, Revyakin, and Samarin (Ivz Akad Nauk Metal) 1970, 46) Kulkarni (Metal Trans) 1973, 4, 1713 47) Kunze, Schurmann, and Parlee (Metal Trans) 1970, 1, 281 48) Kuprashvili and Naumkin (Ivz Akad Nauk SSSR, Neorg Mater) 1969, 5, 2123 49) Lakomskii (Dokl Akad Nauk SSSR) 1962, 147, 628 50) Lakomskii and Kalinyuk (Dokl Akad Nauk SSSR) 1965, 5, 1091 51) Lee and Johnson (1&EC Fundamental) 1969, 8, 726 52) Leffler and Wiederhorn (J Phys Chem) 1964, 68, 2882 53) Levinski (Russian Journal Phys Chem) 1974, 48, 486 54) Levinski (Izv Akaud Nauk SSSR, Neorg Mater) 1974, 10, 1628 55) Lin and Chang (Metal Trans B) 1977, 85, 293 56) Lupis and Elliot (Acta Metal) 1966, 14, 1019 57) Lupis ”Chemical Thermodynamics of Materials” Elshivier Publ Co. New York, N.Y. 1983 58) McClure and Halsey (J Phys Chem) 1965, 69, 3542 59) Moore and Underwald (J Chem Phys) 1964, 40, 2639 60) Moroni, Calcway, Veleckis, Yonco (Int Conf on Liquid Metal TechnolOgy, Champion, PA) May 3-6, 1976 61) Nateson and Kassner (Nuclear Tech) 1073, 19, 46 62) Odgen, Shmidit, and Barlett (Trans Metal Soc AIME) 1963, 227, 1458 63) Opie and Grant (Trans AIME Journal of Metal) 1951, 244 64) Otsuka and Kozuka (Metal Trans B) 1979, IOB, 565 65) 66) 67) 68) 69) 7o) 71) 72) 73) 74) 75) 76) 77) 78) 79) 80) 81) 82) 83) 84) 85) 86) 87) 302 Otsuka, Kozuka, and Sano (Metal Trans B) 1980, 11b, 313 Otsuka and Kozuka (Metal Trans B) 1980, 11B, 119 Otsuka, Kozuka, and Sano (Metal Trans B) 1981, 12B, 427 Otsuka and Otsuka and Otsuka and Parlee and Parlee and Parlee and Parlee and Parlee and Pehlke and Pehlke and Pehlke and Pehlke and Pehlke and Pehlke and Parlee and Pehlke and Kozuka (Metal Trans B) 1981, 123, 455 Kozuka (Metal Trans B) 1981, 128, 501 Kozuka (Metal Trans B) 1981, 128, 616 Kashyap (Trans Metal Soc AIME) 1958, 86 Sacris (Trans Metal Soc AIME) 1965, 233, 1918 Shah (Trans Metal Soc AIME) 1968, 242, 869 Sacris (Metal Trans) 1970, 1, 3377 El-Naggar (High Temp Science) 1971, 3, 138 Elliot (Trans Metal Soc AIME) 1960, 218, 1088 Blossey (Trans Metal Soc AIME) 1966, 236, 28 Emi (Metal Trans) 1970, l, 2733 Blossey (Metal Trans) 1971, 2, 3157 Jones (Metal Trans) 1971, 2, 2655 Emi (Acta Metal) 1972, 20, 381 Depuydt (Metal Trans) 1972, 3, 525 Boorstein (Metal Trans) 1974, 5, 399 Peterson and Staatmann (J Phys Chem) 1966, 70, 2980 Peterson and Nelson (J Less Common Metals) 1980, 72, 251 Podgurski and Davis (Trans Metal Soc AIME) 2964, 230, 731 Rapp and Ramanarayanan (Metal Trans) 1972, 3, 3239 88) Rapp, Szwarc, and Oberg (High Temp Science) 1972, 4, 347 89) Rapp, Oberg, Friedamn, and Boorstein (Metal Trans) 1973, 90) Reiss, Frisch, Helford, Lebowitz (J Chem Phys) 1960, 32, 303 91) Reiss, Frisch, and Lebowitz (J Chem Phys) 1959, 31, 389 92) Reiss, Mayor, and Katz (J Chem Phys) 1961m 35, 820 93) Rudy, Windisch, Stosick, and Hoffman (Trans Metal Soc AIME) 1967, 239, 1247 94) Rushbrooke ”Intoduction to Statistical Mechanics” Oxford, London 1958 95) Salzano and Newman (Nuclear Tech) 1972, 13, 289 96) Scace and Slack (J Cehm Phys) 1959, 30, 1551 97) Schober and Carl (Scripta Metal) 1977, 11, 397 98) Schober, Pesch, and Wenzl (Scripta Metal) 1982, 16, 307 99) Stevenson and Hahn (J Chem Thermodynamics) 1979, 11, 627 100) 1981, 15, 55 101) 130, 47 102) 103) 430 104) 1973, s, 276 105) 28, 83 106) 230, 820 107) 108) 109) 10, 21 110) 111) Stevenson, Heshmatpour, and Parlee (High Temp Science) Stevenson and Heshmatpour (J Electroanal Chem) 1981, Stevenson and Heshmatpour (Metal Trans B) 1982, 13b, 53 Storms, Calkin, and Yencha (High Temp Science) 1969, 1, Storms, Lowe, Baca, and Griffith (High Temp Science) Tamura, Kurata, and Odani (Bull Chem Soc Japan) 1955, Tankins, Gocken, and Belton (Tran Metal Soc AIME) 1964, Tankins and Gocken (High Temp Science) 1972, 4, 393 Turkdogan, Leake, and Masson (Acta Metall) 1956, 4, 396 Uda and Wada (Trans National Research Inst Metals) 1968, Walter and Chandler (Trans Metal Soc AIME) 1965, 233, 762 Wagner ”PRocess Int Comm Electrochem Therm Kinetics 304 (CITCE), 7th Meeting” Lindau, 1955 Butterworth Scientific Pub1., London 1957 112) Weinstein and Elliot (Trans Metal Soc AIME) 1963, 227, 285 113) Wilder (Trans Metal Soc AIME) 1966, 236, 1035 114) Wriedt and Chipman (Trans AIME, Journal of Metals) 1966, 477