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ABSTRACT

A GALLIUM-ARSENIDE MAGNETOSTATIC

SURFACE-WAVE AMPLIFIER

By

Jeffrey P. Tate

An analytical treatment of the interaction between slow magneto-

static waves and drifting carriers in a ferrite-semiconductor structure

is presented in the absence of the magnetostatic approximation. The

analysis of a GENERAL layered structure involving two metal plates is

also included. Relevant dispersion relations are evaluated numerically.

Dispersion results are optimized by variation of device parameters. The

optimized solutions are analyzed under convective instability criteria.

Gain is possible theoretically under specific device conditions.
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1. INTRODUCTION

The objective of this paper is to investigate the feasibility for

amplification of magnetostatic waves in a ferrite-semiconductor composite

structure. The mechanism for amplification is based on the interaction

of the slow wave with drifting carriers. These phenomena have been stud-

ied by several investigators, both theoretically and experimentally.

The results however, have been inconclusive.

The existence of magnetostatic waves has been verified by numerous

investigators. A representative sample of the contributions made in

this area includes:

(1) Damon and Esbach (1960) who investigated theoretically the existence

of volume and surface modes of a thin ferrite slab. Dispersion

relations were developed in the magnetostatic limit [1].

(2) (1968) Brundle and Freedman experimentally verify the existence

of propagating magnetostatic waves using group time delay measure-

ments [2].

(3) (1970) Seshadri performed an analysis for the verification of wave-

number and group velocity. The property of nonreciprocal propa-

gation for magnetostatic waves in a metal backed ferrite slab was

presented for the first time [3].

(4) Merry and Sethares [4] observed magnetostatic waves at frequencies

of up to 15 gigahertz (1973).

(5) Kawasaki et. al. observed Ferrite-Air and Ferrite-Metal modes.

High correlation with theoretical dispersion characteristics was

I



also observed (1974) [5].

It has been shown through experiments that many signal processing

tasks in the microwave frequency range can be performed using these slow

waves. In 1973, Vaslow observed group time delay as a function of the

externally applied magnetic field. The application of magnetostatic

surface waves for variable time delay was then explored [6]. Various

devices were also studied by Adam and Collins, e.g. the nondispersive

and tapped delay lines which employ magnetostatic surface waves [7]

Presently signal processing tasks can be performed using surface

acoustic wave devices. The technology however, has a useful upper limit

of two gigahertz due to transducer fabrication complexity and the magni-

tude of propagation losses. Owens states that Yttrium Garnet (YIG) de-

vices show losses of approximately 12 db/uS versus 100 dbAJS for devices

using SAW technology [8]. Merry and Sethares also found that magneto-

static surface waves exhibit lower loss than SAWS above four gigahertz

[9].

0f principle importance for potential signal processing applications

is the effect on the slow wave dispersion relation of a metal plate

placed a finite distance from the ferrite surface. Bongianni (1971)

provides experimental dispersion relations which show the effects on

magnetostatic wave propagation characteristics [10]. Theoretical and

experimental results have shown that dispersion curves of almost arbi-

trary shape can be obtained with optimal plate spacing [11, 12].

Due to the effects on YIG magnetostatic wave dispersions, the pre-

sence of a metal plate in the ferrite-semiconductor geometry has also

been studied extensively. Vashkovskiy et. al. theoretically investi-

gated the effect of a metal-air-YIG spacing on gain and bandwidth of



an amplifier using drifting carriers in semiconductors [13]. The key

point is the optimization of bandwidth and gain by maximizing the region

of synchronous interaction for carriers and magnetostatic waves. Ex-

perimental analyses of magnetostatic wave/carrier interaction have also

been performed by several groups, however no significant work has oc-

curred involving the use of metal plates.

The excitation of ferrite magnetostatic waves can be broken into

three basic groups:

(1) Magnetostatic Surface Waves (MSSN), where

A

Exii =n
O

(2) Magnetostatic Forward Volume Waves (MSFVN), where

A

+

+ _

(k x HO) - n - O

(3) Magnetostatic Backward Volume Waves (MSBVN), where

+ + _

k x HO - O

The surface or volume characteristic of the waves is determined by the

i +

orientation of the external static magnetic field H0 in relation to the

direction of propagation. This is illustrated in Figure 1. The waves

studied in this report are of the surface type. This means that the wave

energy is concentrated on one surface of the ferrite slab. This condition

is satisfied if the slab thickness is greater than a wavelength in the

transverse direction as shown in Figure 2. Forward and backward waves

are also useful in signal processing and devices have been developed

using these propagation modes [14-16], but we restrict this investigation

to surface modes.

If the ferrite technology continues to mature in a manner similar

to that experienced in acoustics, then a means for the amplification

of surface magnetostatic waves would be most useful. Theoretical anal-

ysis of magnetostatic wave interaction with drifting carriers has been



 

2
2
/

v
0

Figure 1. The three basic forms of magnetostatic wave propagation;

(a) MSSN (b) MSFVN (c) MSBVN.



 

   
 

  

2
1
‘
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”
-

kd << 1 kd >> 1

(a) (b)

Figure 2. The effect of slab thickness on the mode character of the

magnetostatic wave. The above sketch shows the transverse

variation of wave field intensity.
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performed by various researchers. Bini et al. have provided an

"energetic approach" to describe the mechanism of energy transfer

from drifting carriers to the slow waves. Analysis of a thin ferrite

slab adjacent to a semiconductor half space was conducted. The develop-

ment of a single surface model employing two semi-infinite half spaces

was also presented. A bandwidth of 17 kilohertz for possible amplifi-

cation was theoretically predicted; while for the thin slab, bandwidths

should reach several hundred megahertz [17-20]. Awai and co-workers

also performed numerical analyses of a finite YIG slab over InSb. Net

amplification was predicted for the case of drifting carriers [21].

In bulk acoustic wave amplifiers a piezoelectric material adjacent

to a semiconducting medium is used. The surface acoustic wave amplifier

however, uses a thin film of semiconductor material in close proximity

to the surface acoustic, or Rayleigh, wave. Because of the presence

of an acoustic wave, close proximity without actual contact is required

for the wave/carrier interaction to take place. This restriction can

present difficulty in the manufacturing of these devices. This does

not hold for the magnetostatic wave device. The YIG and semiconductor

can be in direct physical contact. The device shall be referred to as

a Magnetostatic Surface Wave Amplifier (MSSNA). It is anticipated that

this device will operate up to about 10 gigahertz. Adam states however,

that MSSN devices in general are narrowband at these frequencies, ex-

hibiting approximately 300 megahertz of operating bandwidth [22].

This paper shall provide a thorough analysis of the MSSNA in the

absence of the magnetostatic approximation. 0f major importance is the

velocity relationship between the carriers and magnetostatic waves. The

conditions for which amplification is observed are inconclusive at pre-

sent. Many reserachers have stated that the drifting carriers must



7

travel faster than the propagating magnetostatic wave. Kawasaki et al.

state however, that even when the drift velocity is less than the phase

velocity of the wave a reduction in losses is observed [23]. It is the

author's belief that eventhough the carriers may possess a velocity

greater than the slow wave phase velocity, some degree of synchronism

must exist for energy transfer to occur.

This report shall also seek to determine the optimum geometry which

will promote the desired synchronism for practical bandwidth and gain

operation of the MSSWA. Some ideas regarding the implementation of this

new geometry will also be discussed.



2. THE FERRITE SEMICONDUCTOR COMPOSITE STRUCTURE

In the analysis of the MSSN amplifier an understanding of the fun-

damental mechanisms on which potential amplification is based would be

helpful. In this chapter the basic ideas behind ferrimagnetic reso-

nance and the excitation of surface magnetostatic waves are discussed.

The interaction of these waves with drifting carriers is also covered.

The object is to present a qualitative description of this interaction

as a foundation for detailed study of the MSSW amplifier dispersion re-

lations in Chapter 3.

2.1. Ferrimagnetic Resonance
 

Ferro - and ferrimagnetic resonance effects are based on interaction

of magnetic dipoles with magnetic fields. A spinning electron constitutes

such a dipole. The magnetic moment associated with this spin motion is

given by

E = Y(sh) (2 1-1)

where Y = -IeI/m is the gyromagnetic ratio. The value sh is the electron

spin angular momentum [24].

In the presence of a static magnetic field of magnitude Ho’ a torque

is experienced by the spinning electron. This torque is due to the time

rate of change of the spin angular momentum. This can be written as

d(Sh) = + T -
dt “0 “s x H0 (2.1 2)

which when (2.1-1) is used becomes

d-fis .) ->

a? = YS(lJS X HO) (2.1-3)

where Y5 = UOY and Do is in the z-direction [25]. The motion described

by (2.1-3) is of a precessional nature. The spinning electron precesses

8



+

.4

  /
(b) 

Figure 1. Illustration of the precessional motion for; (a) an electron

in a static magnetic field and (b) a spinning top in a con-

stant gravitational field. After B. Lax and K.J. Button.
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about the static field in a manner similar to a top in the presence of

a gravitational field. The torque relationship in the latter case is

g% = to x B (2 1-4)

where ”0 is the precession frequency and E is the angular momentum [26].

A similar term can be developed for the electron and is given by

w = Y H (2.1-5)

This expression shows that electron precession frequency is determined

by the strength of the applied field. The development of we is given

in [27]. In Figure 1 the two cases are shown, where the angle 60 is

the precession angle.

0n the macroscopic level we are interested in the total magneti-

zation of the ferrite system and the interaction it has with magnetic

fields. The magnetization is defined as the magnetic moment per unit

volume, so that M0 = NES where N is the density of dipoles. Now we may

write (2.1-3) as

+

d + +

__ = YS(MO X H ) (2.1‘6)

0

dt 0

with Do again in the z-direction. This equation describes the lossless

case which is characterized by perpetual motion. The lossy case will

be treated separately. It should be noted that M0 and BO are nearly

parallel in the first approximation [28]. This becomes significant in

the analysis to follow.

If an alternating component of the magnetic field is introduced,

the magnetization and field expressions become

M = M0 + mert (2.1-7)

A = A. + fieJmt (2.1-8)1

where Hi and MO represent the static magnetic field and magnetization.



ll

 

3
+

3
+

 
 

+

<e—. >>h

Figure 2. The rf and dc field and magnetization components. Note that

h can be either circularly polarized or linearly polarized.
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The rf components are D and i respectively. The field fii’ called the

static internal magnetic field is actually the vector sum of the external

dc field and the components due to anisotropy and demagnetizing effects.

For simplicity, we will assume a single crystalline ferrite slab that

is infinite in extent. Under these conditions the above effects can

be neglected and mi = NO.

+ +

The expressions for H and M are substituted into (2.1-6) to obtain

9.

mi? = who x i + En’ x HO) (2.1-9)

where time-harmonic dependence (ejwt) is implied. This is the linearized

small signal approximation, where second order rf and dc terms are ig-

nored [29]. The time variation of i as given by (2.1-9) is therefore

a function of the first order interaction between dc and rf terms. The

manner in which the rf magnetization changes with time determines the

variation of the precession angle 90. In Figure 2 these field and mag-

netization components are shown. It should be noted that since m is

perpendicular to Do that 6 must be also in order to obtain the most ef-

ficient energy transfer. If this spatial relationship between Ho and

h is not satisfied, energy transfer does result, but at a reduced ef-

ficiency. This occurs for values of m not equal to mo [30]. Figure

3 illustrates three cases; zero rf field, non-zero rf field at resonance

and outside of resonance. Notice that an oscillatory motion occurs for

M due to the nonresonant condition [31]. The oscillation shown is ex-

aggerated for the purposes of illustration. In practice this "wobble"

by the precessing magnetization would be noticeable only at very high

values of the driving rf field and for frequencies not equal to do.

In order to illustrate this precession in more detail, consider

a rotating coordinate system. This system rotates about the field HQ

with angular velocity Er. The equation of motion becomes
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dMO +

a? = YSMO X (Y H + 1») (2.1-10)

which is the same as (2.1-6) in the stationary reference frame if H0

is replaced by

+ +

H = H -eff 0 (2.1-11)

If an alternating field is introduced, e.g. one which is circularly

polarized with frequency a? the equation of motion is

3% = YS (N x [fieff + h(t)]) (2.1—12)

where h(t) = hert and the new effective field is

..)

Heff

)

= 2 (H - a ) + yh(t) (2.1-13)

Ys

with 2 and 9 indicating the z and y directions respectively. The field

component h(t) is stationary in the rotating frame [32].

When the magnetization experiences this effective field there is

precession about both Ho and h(t) in the stationary reference frame.

In most cases, h(t) is small compared to H0 so that the precession due

to the rf component is ignored. Figure 4 gives an illustration of this

total motion and also shows the variation of 60 for precession about

86 due to the phase relationship between h(t) and M.

The mechanism which governs the variation of and 90 is the torque

3
+

3
+

created based on the spatial relationship between (t) and Do as men-

tioned above. The phase relationship between h(t) and M is also very

important in determining this torque. In order to promote growth in

the precession angle the component h(t) must precede m(t) by a quarter

period [33]. If this condition is not met then there are regions where

zero or negative torque can result. The negative torque gives rise to
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Figure 4. The resultant motion of M due to the precession about Heff

as shown by the dotted path. After R.F. Soohoo.
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precessional damping. Note again Figure 4. When a positive torque is

produced, it is directed in a downward fashion and tends to increase

the precession angle 60. This effect is similar to that experienced

by the precessing top as shown in Figure 5.

The system described above does not account for losses which would

relax the precessional motion. There are three forms for the phenome-

logical equation of motion in which the losses are included [34]. They

are:

(1) The Landau - Lifshiftz form

= y (M x H) - ———— [M x (M x H)] (2.1-14)

where A is the damping coefficient with units of frequency

(2) The Bloch - Bloembergen form

__I = y (M x E) - ._;1 (2.1-15)
dt 5 T T

2

dM M - M
__z = t t z 0 (2.1-16)

dt YS(M X H)z - T1

where MT and MZ are the transverse and z-directed components of the mag-

netization. The constants 11 and 12 are related to the relaxation of

the precessional motion. We cover this below in more detail.

(3) The Gilbert form

dM _ + + a + dM (2.1-17)
d—t-YS(MXH)+ TMXa-E

where a is the damping coefficient.

The Landau - Lifshiftz form is used most often in ferrimagnetic

resonance and is incorporated in this paper. It should be noted that

the various forms are equivalent for the case of small rf signals pro-

vided i2 = l/wa and a2<<1 [35]. Therefore, for the purposes of illus-

tration we will examine the Bloch - Bloembergen form in more detail.
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If we look at the case of zero dc and rf fields we obtain

dMZ = - (MZ - M0) (2.1-18)

EH7 T1

EMI = - fl. (2.1-19)

dt T2

where M2 and MT.are as defined previously. The solutions to these equa-

tions are

_ -t/T
MZ — M0 -AMe 1 (2.1-20)

MT = MTOe't/T2 (2.1-21)

where AM = MO-MZ is assumed positive at time t=0. Based on these ex-

pressions we expect M0 to spiral inward to the z-axis in the absence of

external excitation. This is shown in Figure 6. The losses which pro-

duce this motion must be overcome to obtain a net gain in the system.

The loss term is most commonly included in the development of the

permeability tensor Hi This tensor relates magnetic induction 8 to the

+ + +

field intensity H in ferrimagnetic materials. In general, B and H pos-

sess both dc and rf components. One form for this tensor is

 

u -JK 0

‘3’: “o jK u 0 (2-1-22)

0 O 1

where

”0 “m (2 1 23)

o

and

wwm

K = - ——- (2.1-24)

“02 _w2

where “nijs the saturation magnetization frequency, a constant of the

system. This form for the permeability tensor results if the external
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dc field is in the z direction. Other forms for p are given in Appendix

A. The losses are included by replacing mo in the above expressions

with

wo' = wO-j(1/T) (2.1-25)

which can also be written as

610’ = wO-j%YSAH. (2.1-26)

The parameters T and AH are the precession relaxation time and the ferri-

magnetic resonance linewidth respectively. Notice that AH is inversely

proportional to the relaxation time. Ferrites with lower values of AH

are therefore not as lossy as materials with broader resonance linewidths.

Typical values for AH in materials such as Yttrium Iron Garnet (YIG) are

on the order of one oersted. This gives a relaxation time of approxi-

mately 10'7 seconds. [36].

2.2. Spin and Magnetostatic Waves
 

Two forms of wave energy in ferrites will be discussed as they relate

to propagation. These waves are distinguished by the relationship of

their wavelengths to the magnetic dipole spacing. This will determine

if exchange field effects between neighboring dipoles will be included.

.The exchange interaction gives rise to the effect which causes adjacent

electron spins to precess in phase with each other. The formulation

for incorporating this effect into the analysis is covered in Appendix

A.

Magnetostatic waves are slow, dispersive waves which possess k

values of less than 104 cm_1. This gives rise to large wavelengths with

respect to the dipole spacing. Because of this, the exchange field

interaction is small compared to the macroscopic magnetization field

interaction [37].
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Figure 8. The basic coordinate system for description of wave propaga-

tion. The slab is assumed infinite in the xz plane.
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The spin wave regime corresponds to wavenumber values larger than

4 cm'l. These are very high frequency waves so the exchange inter-10

action is comparable to the macroscopic effects. For this reason, these

waves are referred to as spin exchange waves [38]. A third major regime

of wave propagation exists, the electromagnetic region. These waves

are not examined here because their phase velocities are too great for

interaction with drifting carriers [39]. Figure 7 shows a diagram of

the dispersion relation which governs the electromagnetic, magnetostatic

and spin wave regimes of propagation.

To provide a conceptual picture of wave propagation in ferrites

let us consider several cases. Suppose we are given the following co-

ordinate system for our sample as shown in Figure 8. Assume the ferrite

is magnetized in the y—direction as shown. A uniform rf field is applied

in a system where exchange interaction is assumed strong. This effect

causes all dipoles to precess in phase as shown in Figure 9. If h(t)

is varied uniformly then all dipoles will experience the same variation

in 60 but will continue to precess in phase. Now let us suppose the h(t)

is nonuniform in the z direction. This causes a variation in 90 along

the sample as shown in Figure 10. Notice that as time increases, there

is no movement of the wave in the direction of propagation and that

neighboring dipoles are still in phase.

If exchange forces are ignored, i.e., we expand to the macroscopic

level, two things occur; first, we must consider the precession of the

magnetization vector instead of individual dipoles. Secondly, the phase

of neighboring magnetization vectors is independent. This case is shown

in Figure 11 where the rf field is assumed uniform in magnitude along

the sample. The phase of adjacent M vectors differs depending on the

position of the propagating wave. This is acceptable on the macroscopic
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in phase.
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Figure 10. A standing spin-exchange wave of wavelength A; (a) t = t ,

o

(b) t = t1>tO and (c) t = t2>t1.
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Figure 12. Generalized travelling magnetostatic

wave of wavelength A; (a) t = t ,
o

(b) t = t1 > to and (c) t = t2 > t].
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level since the wavelength is so much larger than the dipole spacing.

In practice an rf disturbance will give rise to both amplitude and

phase variations in the precessing magnetization vectors as the wave

propagates. The complete description of this wave motion has not been

clearly stated in the literature for the macroscopic case. We will inter-

pret this motion in the following manner for an rf disturbance which is

nonuniform. The propagation is determined by variation of both 60 and

the phase position of the vector M. These two components of the motion

are in phase with each other. This means a particular value of 90 corre-

sponds to a given phase poSition in the precession cycle [40]. A single

wavelength will be defined using two corresponding points along the

sample with the same value of 60 and relative phase positions. This is

illustrated in Figure 12.

The waves we are concerned with are surface magnetostatic waves.

They are characterized by a concentration of wave energy on one face of

the ferrite slab. Recall that the thickness of the sample is important

in determining the degree of wave energy concentration on a single sur-

face. The propagation of these waves is highly nonreciprocal. The di—

rection of propagation, applied dc field and the outward pointing normal

from the ferrite surface form a right hand coordinate system [41]. This

means R x HO will point away from the ferrite surface. The dispersion

curves for these waves along with the forward and backward volume modes

are given in Figure 13 [42].

2.3. The Semiconductor Carrier Wave System

The drifting of carriers in semiconductor material is basic to the

amplification mechanism for magnetostatic waves. A geometry contain-

ing a slab adjacent to the ferrite is used. This is in contrast to mag-

netic semiconductors such as CdCrZSe4. It has been determined that the
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resistivity must be reduced in these materials by several orders of mag-

nitude before they can be useful in amplifier applications [43].

The carriers drift at a constant velocity, uo, which is on the order

of 2 x 107 cm/s. In order to keep the level of heating reasonable in

these devices, high mobility semiconductors, such as GaAs, are used. Since

the ferrite is adjacent to the semiconductor, the surface wave can pene-

trate as long as the carrier density is not too great. Typical values

15 to 1020 cm'3.in the literature range from 10 The fields associated

with this wave interact with the drifting carriers through the Lorentz

force. This is given by

+ ->

F : ”0 X hm(t), (2.1-27)

where hm(t) is the rf component of the magnetostatic wave. The inter-

action is a Hall effect motion which is transverse to the dc drift motion

of the carriers. This is shown in Figure 14.

The Hall field developed from this motion interacts with the magnet-

ostatic wave, also shown in the figure. We will call this field compon-

ent hs(t). This component must have the correct phase relationship with

m(t) in order to promote the desired amplification. The amplification

results if the system losses can be overcome by the torque created from

the interaction of hs(t) and m(t). One must be careful to distinguish

between hm(t), the rf component of the magnetostatic wave and hs(t) due

to the rf Hall motion of the drifting carriers. The introduction of

hm(t) causes the variation of 60 in phase with the wave propagation.

The field hs(t) is introduced to provide for the wave amplification.

Because it is the drifting carriers which drive the amplification

in the MSSWA, a distinction between this device and the Traveling Wave

Tube amplifier should be made. In the latter case the modulation of
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Figure 14. Interaction of a drifting electron in GaAs with the pre-

cessing+M vector in the ferrite. Note that u0 >> Vyl

(i.e., 00 not to scale).
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carrier motion is collinear with the overall dc drift motion. This gives

rise to the carrier bunching or space charge wave from which signal am—

plification is obtained [44]. In the MSSWA the modulation is transverse

to the dc carrier motion. Also of key importance is the fact that the

space charge wave is weakly damped and inertia dominated in the TWT.

The MSSWA, in contrast exhibits collision dominated waves whose normal

modes are highly damped [45].

In this chapter the basic ferrimagnetic resonance interaction has

been described. An illustration of carrier interaction with magneto-

static waves has also been discussed in order to provide an overview of

the mechanisms of wave amplification. This gives the reader a foundation

for the study of different dispersion relationships which describe the

amplifier geometries of interest in this report.



 

3. ANALYSIS OF THE MSSWA

3.1. Relevant Properties of Magnetostatic Surface Waves 

In this section the properties of magnetostatic surface waves are

addressed in more detail. The literature on this topic is extensive

and some controversy does exist [46, 47]. Here, we wish to present a

detailed study of the effects of certain parameters such as slab thick-

ness and metal plate spacing on the character of the dispersion rela-

tions.

The first case we examine is that of an unbounded ferrite slab of

thickness d. The surface or (Damon-Esbach) mode has the property that

wave energy is concentrated near one face of the ferrite as was stated

in Chapter 2. The dispersion relation is affected by the thickness of

the slab. It has been shown theoretically that the group velocity of

the lowest order surface mode is dependent only on this parameter [48].

This effect tends to increase the velocity as d increases as shown in

Figure 1(a). In order to maintain the velocity of the wave at reason-

able values for amplification purposes, we conclude that a thinner slab

is best. Recall that the drift velocity of carriers in GaAs reaches a

practical maximum of 2 x 107 cm/s. A range of values for k in a ferrite

of thickness d = 10pm is given in Figure 1(b).

The second case involves a metal plate adjacent to one face of the

ferrite slab. This is shown in Figure 2. The wave on the top face is

the Damon-Esbach wave treated above. This wave is also referred to as

a Ferrite-Air (FA) mode. The wave on the lower face is called the

Ferrite-Metal (FM) mode or Seshadri wave [49]. Notice that the FM mode

has a larger passband. It has also been speculated that this mode is

more lossy than the FA mode [50—52]. The resonance for the FM mode

34
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Figure l. (a) Variation of dispersion curve for an unbound ferrite

slab as a function of slab thickness. (b) a typical

dispersion case.
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(1)

occurs at m0 + AM whereas the FA mode resonance is observed at m0 + -§—.

These resonances are approached more quickly as d+m. Therefore, in

order to support a propagating mode with a finite passband a slab of

finite thickness is required.

Now we consider the ferrite slab separated by a finite distance

from the metal ground plane. The surface wave on the face opposite to

the ground plane is just the FA mode of before. This wave is only

slightly perturbed by the metal. We examine this more later. The wave

on the bottom face is a hybrid mode referred to as a Ferrite-Air-Metal

(FAM) mode. The spacing of the ground plane can create some interesting

changes in the FAM dispersion curve. For spacings small compared to a

wavelength the mode is basically the FM type. This wave is transformed

into a FA mode as the ferrite to metal gap becomes very large. It is

for intermediate values, such as Ad = 1pm, that the dispersion shows an

interesting change. A region in the dispersion occurs where the group

velocity goes to zero. The forward waves then become backward waves

with negative group velocity as k is increased. This is shown in Figure

3.

If the gap between ferrite and metal is held constant as slab thick-

ness is varied, the effects on both FA and FAM modes can be assessed.

In the FA case, the variation in thickness gives rise to the same modi-

fications in the dispersion as when the metal plate is absent. The FAM

mode shows a more significant change over the same range of thickness

values. The variation in d creates a dispersion curve which has a zero

group velocity regime similar to the case treated above for variations

in the ferrite-metal gap. Note Figure 4. In the limit as d+w a complete

backward wave results as shown in Figure 5 for the frequency range (AA,

wB) [53]. This result is not conclusive however; some authors have
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predicted that only a nonpropagating mode occurs at wB as d is increased

without limit [54]. The dispersion curve for the FAM mode is summarized

in Figure 6, where only the mode closest to the metal surface is con-

sidered. Unlike the FM mode, this wave is thought to have lower loss

than the Ferrite-Air mode. This result was found by experiment [55]

but the reliability is questionable.

In Figure 7 we show the effects of two metal plates on the disper—

sion relations. Notice in case (a) when A=B that the dispersion curve

shows a backward wave being transformed into a D-E mode as the spacing

is increased. This is significantly different from the dispersion curve

behavior of the FAM mode in the case of one metal plate alone. In the

case of AfB shown in Figure 7(b) the maximum cutoff frequency can occur

for +k or -k depending on the relationship between A and B. If A>B e.g.

the upper cutoff occurs for -k because the metal is closer to the lower

face of the ferrite slab [56]. This is especially evident in the case

of Figure 8 where B=0 and A is finite.

A word should be said about the nonreciprocal nature of wave prop-

agation in ferrite slabs. In the case of an ungrounded slab this shows

up as one face being preferred for propagation from input to output

based on the k x H0 relationship. Notice however, that the waves which

propagate in the +k and -k directions have the same properties i.e. both

are FA modes. In this sense the propagation might be thought of as re-

ciprocal. If a metal plate is introduced, then one face will support an

FA mode while the other side supports the FM mode. Recall that these

modes are fundamentally different, e.g. the passband of the FM mode being

larger. For a given transducer configuration and orientation of the

static field Do, the propagation of the FA and FM modes is determined

+ ->

using the k x H0 relationship. If the input ports are switched the
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signals detected would be different i.e. the propagation is non-

reciprocal [57]. This is most important if you are operating below the

cutoff for the FA mode and the conditions are such that this mode is re-

quired for detection at the output port. Figure 9 summarizes these re-

marks.

In the case of a FAM mode the nonreciprocity disappears when the

ferrite to metal gap is above a certain value. This has been observed

experimentally [58].

To summarize this section, we see that the dispersion relations for

ferrite wave propagation are very sensitive to the variation of slab

thickness, and the proximity of metal plates. The dispersion curves

tend to stay within the passbands defined by AA, ”B and AC as shown in

the diagrams. The variation in these curves provides the basis for

achieving optimal gain and bandwidth operation when the amplification

mechanism is introduced. The extreme degree of variability can also

help to explain some of the controversy that exists in the literature.
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3.2. Description of Amplifier Geometries
 

In the last section a foundation was developed for the understand-

ing of basic MSSW properties. It is the goal of this section to de-

scribe the geometries which will be encountered in our analysis of pos-

sible amplification of the magnetostatic waves. This will lead to the

actual derivation of the relevant dispersion relations.

The actual MSSWA device might be fabricated as in Figure 10. The

dielectric spacer between the YIG and GaAs serves as a tuning mechanism

or as a region for exciting the MSSW's and subsequently detecting them.

Because the interaction between the drifting carriers and the magneto-

static wave is based on the penetration of the wave in the semiconductor,

the dielectric helps determine the strength of this interaction. We will

check this later. It should be noted however that the YIG conductivity

is sufficienty low so that it can be in direct contact with the GaAs and

cause no problems. The top metal plate (called the gate) is used to

counterbalance the dc Hall force due to the drift of carriers in the

presence of the static HO field. This force would cause a large varia-

tion in the semiconductor carrier density in the x-direction. If H6=Hoy .

the drifting electrons would accumulate on the GaAs-mylar interface.

The presence of the metal tends to provide for a uniform background car-

rier density when a balancing E-field is applied. Recall that the metal

plates also significantly effect the dispersion relation for the system.

This is of course accounted for in the analysis. The overall effect of

the gate and heat sink will depend on their separations from the region

of interaction i.e. the GaAs-Dielectric-YIG region.

Before analysing the case depicted in Figure 10, we will study sim-

pler models to develop a complete understanding of the interaction. We

will begin with the first four cases illustrated in Figure 11. This
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Figure 10. Illustration of the GENERAL case geometry.
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first model is shown in Figures 11(a) and (b). Part (a) is referred to

as the YIG-Dielectric-Semi (YDS) case. Note that the interaction is as-

sumed to be confined to the interface between the ferrite and semicon-

ductor. The YIG and semiconductor are treated as half spaces here. If

the gap thickness is reduced to zero, the YDS case becomes SINGLE-SURFACE

as shown.

The next model as shown in Figures 11(c) and (d) refers to a finite

YIG slab separated from a semiconductor (GaAs) half-space. This case

will be called YIGSLAB-GAP. Again, if the gap is allowed to vanish a

limiting case is obtained. This model is referred to as YIGSLAB. If a

metal plate is included a finite distance from the YIG we obtain the case

in 11(e) called GATE. Finally the general case, which we denote as

GENERAL will consider the complete device shown previously in Figure 10.

To gradually build up to the general case, each model will be ana-

lyzed in turn. This will be done to develop the appropriate dispersion

relations. These relationships will lead to dispersion polynomials which

are developed in Appendix B. It is these polynomials that are analyzed

numerically to determine the feasibility of amplification for a particu-

lar model. Appendix C will develop the relevant approximations that

are made in order to obtain these polynomials. The differences in ap-

proach of some key investigators in this area are discussed in detail

in Appendix E.



'
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3.3. Derivation of Ferrite Transverse Wavenumber
 

Basic to the operation of the MSSWA is the rate of decay for the

magnetostatic wave energy in the plane transverse to the direction of

propagation. In the analysis developed here we are concerned with the

variation of the field strength in the x-direction. This is assumed to

have a general form of eYX where Y is the transverse wavenumber. The

splane wave propagation variation is also used so that in general the

field components have the form

E, H a e'j(kz'wt)er (3.3-1)

Note that Re(v) can be positive or negative depending on boundary con-

ditions. The wavenumbers v and k are assumed to be complex in general.

In this section the transverse wavenumber for the TE mode of mag-

netostatic waves in the YIG is derived. This is denoted as Yf. We be-

gin with Maxwell's curl equations

-> . <—> +

V X E = -pr0p°H (303'2)

-> . ->

V X H - JweocrfE. (3.3-3)

The latter equation is used in the form shown because the YIG is assumed

to have zero conduction current i.e. o=0. By substituting in the tensor

form for u we obtain for a coordinate system in Figure 12

u 0 -jSK HX

VXE =-dwu0 O 1 O H (3.3-4)

JSK 0 u HZ

where S = i 1 determines the orientation of HO along +y or -y. The above

3

expression upon expansion becomes with-gy— = 0

jkEy = -jwpn(pHX-jSKHZ) (3.3-5)

-jkEX —YEZ = -jw110Hy (3.3-6)

YEy = -jwu0(jSKHX + uHZ) (3.3-7)
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Figure 12. The coordinate system for derivation of transverse wave-

numbers Yf and VS. Note that 3/3y+0.



53

The expansion of the second curl equation yields with —%y— = 0.

ijy = jwefEX (3.3-8)

-ijX—YHZ = jweny (3.3-9)

YHy = jwesz (3.3-10)

Notice that the TE and TM modes are uncoupled for this case. This is

observed because three of the equations relate to H2’ HX and E only,

Y

while the other equations relate to E2, EX and Hy. 0f further importance

is the fact that the TM mode is not directly coupled to the spin para-

meters u and K of the ferrite. This indicates that the TM mode of the

magnetostatic wave does not interact directly with the spin system.

Note also that due to the small signal assumption the component Hy is

much smaller than the dc field HO and therefore has negligible effect.

For these reasons we neglect the TM field components. Manipulation of

the equations involving the TE components yields.

. 2 2 2 -
J(k -k0 p)Hx + (kY-kO SK)HZ - 0 (3.3-11)

j(-Yk-k 2SK)H + (-Y2-k 2 )H = 0 (3 3-12)
0 x o u z '

which in determinantal form is

. 2 2 2

3(k -k0 p) kY-kO SK

= 0, (3.3-13)

. 2 2 2

-J(Yk+ko SK) -(v +kO u)

  
The solution of this determinant yields the transverse wavenumber which

is:

k

2 O (Kz-uz) (3.3-14).
< l

_
<

_
h

I

7
?

+

where k02 = wzpoef. For YIG, cf a 11. The expression obtained above

for Yf agrees with that obtained by Bini et al. [59].

For reference purposes, if a similar analysis is carried through
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using the TM component equations the following results:

2( 2 2

if TM) = k -k0 . (3.3-15)

This shows us explicity that the transverse variation does not involve

the spin system (note the absence of K and p.) Therefore, we see that

the YIG appears as a simple dielectric for fields of TM mode configura-

tion.
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3.4. Derivation of Semiconductor Transverse Wavenumber
 

In this section, vs, the transverse wavenumber for the TE mode in

the semiconductor is derived. The electrons drift with a constant speed

Lb in the +2 direction. Note again Figure 12. Starting with Maxwell's

curl equations again, the manipulation proceeds as follows.

vaxE = -jwu0VxH (3.4-1)

which becomes

2+

v(v-E) - VZE = -jwp 3 + k E (3.4-2)
0 S

where ks2 = wzpoes in the semiconductor and for GaAs the relative permitti-

vity is Ers = 12. Continuing we have

2+ 2
V(V-E) - V E - ks E = -jwp03 (3.4-3)

and if we write the electric field components,

E = Exlx + Eyly + Ezlz' (3.4-4)

Then we obtain

v(v.E) = Y(YExl-jkEzl)x - jk(yEx1-jkEzl)2 (3.4-5)

and

2* _ “ 2 “ 2 “ 2 _ 2 2 +
V E _ XV EXI + yv Eyl + ZV E21 - (Y -k )E (3.4-6)

so that the left hand side of (3.2-3) becomes

.e. . " 22++

Y(YEX1-JkEzl)x -Jk(YEx1-JkEzl)Z + (k -Y )E-kSE. (3.4-7)

If we note that charge density and velocity possess both dc and rf terms

we obtain for the right side of (3.4-3)

+ A

u _ o +

-quOJ - -quo(oov1 + OIUOZ) (3-4-8)

where the second order rf, and dc terms are ignored. Now using Poissons'

equation we note that

p1 = cS(V°E) = eS(YEX1-jkEzl) (3.4-9)

so that (3.4-8) becomes

'quoJ = -3wuooov1-jwuoesu0(YEX1-jkEzl)z (3.4-10)

Note that we can write the first term in the above expression as
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-jprpOVl = -jpr(-|e|no)V1 (3.4-11)

0r

2

-jw 3 :' ks lelno V (3 4'12)

“opo 1 3 w as 1' °

Therefore equation (3.4-3) becomes

. k [eln
2+ . ks

. A - o S ) 0 + 4-

w

  

This expression is written in final form by expressing V1 in terms of

the electric field of the TE mode. This comes from the phenomelogical

equation of motion as follows

jwV + V-VV = -nE-n(V x B) -vV - VTZ -§9— (3.4-14)

o

where n = |e|/m* and v is the collision frequency. The term vT is the

thermal velocity. Then we have

a A A A

_-

-> + 3

V°VV -[vx1 ——— + (u0+vzl) 32 ] vX1 x + Vyly + (u0+vzl)z (3.4-15)
8X

_—_-jkuovl
(3.4-16)

where V1 = V - u02. Thus we have for (3.4-14) by rearranging terms,

2

. + _ ++ VT

[v + j(w-kuo)] v1 --nE - n(va) + TETfi; A (3.4-17)

with

A = [Yx-jkz]eS(YEX1-jkEzl). (3.4—18)

We now work on the V x 8 term in Equation (3.4-17). The velocity

and field terms can be written as

A

+

v = uoz + v1 (3.4-19)

B = SBOy + B1 (3.4-20)
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for the case we are studying. This gives for the cross-product term

in matrix form

  

$2 9 2

v x B = vx1 vyl vzl (3.4-21)

_Bx1 SBo+By1 B21_

Because we are considering only the TE case, only the terms involving

Eyl in Equation (3.4-13) are retained. This gives us

2
A k |e|n .

(kZ-yz-kSZ)Ey1y = j(—%—) (: 6 0 )vyly (3.4-22)
S

 

and thus only the y component of 31 is required from Equation (3.4-14).

Which gives 2

 

A A + + V

[V + JDIVyly = -nEy1y -n(v x B) I; + h T A|y (3.4-23)

The third term on the right-hand side does not possess a y component and

therefore will not contribute. The (V x 8) term becomes

(V x s) (9 = yuoaxl (3.4-24)

to give

[v + JDIVYI = -nE -nuOBx1 (3.4-25)
yl

where D =w -kuo. Note that the term in brackets is sometimes referred

to as 5. Therefore, in the semiconductor for the TE mode case we have

. 2

_ JkS (lelnol) -nEy-nu0BX (3.4—26)

E

s

  (kZ-Yz-k52)E -
y u) \)

where the subscripts on field components have been dropped. Recall that

the Ey and Bx terms represent small signal rf components. These are

again related using Maxwell's equation as

k

8x = - a Ey (3.4-27)

so that (3.4-26) becomes
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- 2 2 2 -k52 lelno k
()(k -Y —kS )Ey - J(—w-) Es [-nEy +r1uO I} Ey] (3.4-28)

 

I

where recall that n = 1%£. This equation is simplified to give the

following

, 2
k (I)

.Y2 4,524.18 = -J-(S—o-) (3.4-29)
(L) C

I
I
E
I

'k

where w2 = n0|e[2/esm which is the square of the plasma frequency.

 

P

. 2 .

Solv1ng for Y yields

kw .-_

2 = 2_ 2 2 .50 v-ww

YSEMI ‘ Ys - k 'ks + J( m ) [v2 + a2] (3.4-30)

This reduces to the final form of

2 2 2 k 2 (3431); ° S - .-

TOF tYpical values of the variables involved. The term we = wpz/v is

the dielectric relaxation frequency.

The final Equation (3.4-31) is the same expression as stated by

Bini et. al. [60] and used by Awai et. al. [61]. It is interesting to

note that Awai obtained his expression from Vural [62], or the text by

Vural and Steele [63]. This is important because the expressions given

by Vural are for helicon waves which are TEM and propagate in the di-

rection of the dc magnetic field (i.e. k is along 8 which is given by

302.) Therefore it appears that YSZ is the same for our TE case and

the TEM case of Vural and Steele. This punctuates a general problem

in this area of research i.e. the use of previously derived expressions

without a thorough check of their validity and applicability to the

investigator's special case. With the errors as mentioned in Appendix

E, sign problems for instance, the situation can become confusing at

best. The fact that our YSZ expression is the same as the TEM helicon

case is somewhat coincidental. If the orientation of H0 is changed



59

this no longer holds true. It should also be noted that the presence

or absence of the dc static field has an effect on the TM modes [64].
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3.5. Derivation of YIG-Dielectric-Semiconductor (YDS)
 

Dispersion Relations 

In the previous sections the transverse wavenumbers for both ferrite

and semiconductor were derived. We must now proceed to the development

of the dispersion relations which are used to model the device geometry

and propagation characteristics. This section will deal with the YDS

model and the limiting case referred to as SINGLE-SURFACE, This latter

case occurs in the limit as the dielectric thickness is reduced to zero.

The ferrite and semiconductor regions are represented by semi-infinite

half spaces. The geometries are as shown in Figure 13.

In the analysis of TE waves it is possible to begin with either

HZ or Ey as the assumed field generating component without a loss of

generality. As long as Maxwell's equations are satisfied, the solutions

obtained are acceptable. In the first two regions we have

Region (1)

st

Ey = Ale (3.5-1)

jv Y X
_ _s S _

HZ — mu Ale (3.5 2)

0

Region (2)

E = B ekx + B e‘kx (3 5-3)
y 1 2 '

_ Jk kx -kx
HZ - E Ble - Bze (3.5-4)

where Equations (3.5-2) and (3.5-4) are obtained from Maxwell's v x E

expression. The fields in Region (3) require more detail. In the

ferrite recall that

V X E = -jpr]-I°H (3.3-5)

which yields
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(a) YDS and (b) SINGLE-SURFACE geometries for developmentFigure 13.

of dispersion relations.
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-3E

-—g% = —jwp0[uHx-jSKHZ] (3-5'6)

BE
4:... .

.-

32 quOLJSKHX+uHZI (3.5 7)

..).

Whereas the equation V x H = jweoerfE Yields

BHX 3H

.___ -.__z = - -32 3x Jweoerny (3.5 8)

If the Expressions (3.5-6) and (3.5-7) are used to relate Ey and

HZ we obtain

3E

_ __y= _. 2_ 2
SKkEy—u ax jwu0(K u )Hz (3.5-9}

which is derived by multiplying (3.5-6) by jSK and (3.5-7) by u. The

above results when you subtract the two expressions. If we were to use

(3.5-6), (3.5-7) and (3.5-8) the result which relates Ey and H2 appears

different. We begin by differentiating (3.5-6) with respect to z.

 

-92Ey _ aHx . aHZ
_;;?_ - -quo u .3; - 35K 82 (3.5-10)

If aHx/az is substituted for in (3.5-10) using (3.5-8) the following

is obtained

2 2 . 3HZ 3Hz

k Ey = (1) HOEOEY‘TUE)’ - quou “'8‘; ‘ (DUOSK _32- (3.5-11)

The two expressions (3.5-9) and (3.5-11) seem to relate E and H2 in

y

in different ways. It will be shown later that both lead to identical

results for the dispersion equations. The interim equations however

do not seem to be equivalent. If we begin with (3.5-9) we obtain for

 

the fields

-fo

Ey = Cle (3.5-12)

SKk-py ‘Y X

HZ = ; Cle f (3.5-13)

qu (K -u )
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where Ey is again the assumed generating component. In order to derive

the dispersion relation the boundary conditions must be satisfied at

all interfaces. We equate the tangential components because they must

be continuous at the interface in our case. Therefore we match (3.5-1)

and (3.5-2) with (3.5-3) and (3.5-4) at x = 0. Equations (3.5-3) and

(3.5-4) are matched with (3.5-12) and (3.5-13) at x = d. For brevity

we do not match Hxl,for this condition will be satisfied if the previous

boundary conditions (i.e. on Ey and H2) are satisfied. Also we approxi-

mate Yf by k which simplifies the algebra but produces negligible error.

The following equations result

A1 - 31 - 32 = 0 (3.5-14)

YSAl - kBl + kBZ = 0 (3.5-15)

Blekg + 32e'kg - Cle‘kg = 0 (3.5-16)

(KZ-p2)B1ekg - (KZ-p2)32e‘k9 + (SK-u)cle"k9 = 0 (3.5-17)

2
If we let the term (K - p2) = D and express the system of equations as

a matrix, the following results

    

1' " '1

1 -l -1 O 1 A1

Y -S k k 0 B1 - 0

0 ekg e-kg -e-kg B2

L. 0 Dekg -D€-kg (SK-“)9-kg ., _ C1 .1

(3.5-18)

By setting the determinant equal to zero we obtain the following upon

expansion

e-Zkg . (rs+k) [SK-n+0]

(VS-k) [SK-u-D]

 

(3.5-19)

In the limit as g + 0 we obtain

(KZ-p2)YS + (SKk-kp) = 0 (3.5-20)
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which is the dispersion relation for the single surface limit.

At this point we demonstrate the apparent differences one obtains

when choosing equations (3.5-11) versus (3.5-9). Let us consider the

single surface case outright. Note again that the general field varia-

tion is e'3(kz'wt)eYx for the problem under consideration. In Region (1)

we assume

YSX

E = Be (3.5-21)

y

which gives

JYS

= -—— E (3.5-22)
Z (1)110 y

where the real part of Ys is greater than zero for x < 0 in order to

satisfy boundary conditions.

In Region (2) we have

-fo

Ey = Ae (3.5-23)

which gives when equation (3.5-9) is used

 

 

(SKk‘UYf) 'fo

H = Ae (3.5-24)

z . 2 2

qu0(K -u )

and for reference

H = Ae (3.5-25)
x 2 2

wuo(K -u )

If we match the tangential components at the boundary the following

dispersion relation is obtained

YS(K2-u2) + (SKk-urf) = 0 (3 5-26)

which is just the result previously found in Equation (3.5-20) where

yf was approximated as k.

The dispersion relation can be determined in another manner as well.

If we assume that HZ is the generating component. This gives
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st

HZ = ale (3.5-27)

and

-jwu Y X

_ o s ‘
Ey - Y ale (3.5 28)

s

and in Region (2)

‘fo

HZ = bze (3.5-29)

which gives us Ey and HX from Equation (3.5-11) as

-qu (uv +kSK) "Y X

E = ————9———f—————— b e f (3.5-30)

Y 2 2 2

(k0 u-k )

and

. 2
j(kO SK+Yfk) -fo

HX - 2 2 2e (3.5—31)

(kO u-k )

where again k02 = wzuoeoerf' The tangential components are again matched

at x = 0 to yield

(kozu-kz) - ys(uvf+SKk) = 0 (3.5-32)

At first glance, Equations (3.5-26) and (3.5-32) do not look equiva-

lent. If we equate them, however, an identity results. This is most

easily shown by solving both equations for Y5 and equating the resulting

expressions. This gives

2 2
k0 U'k = UYf'kSK (3.5-33)

pr+kSK K2_u2

OY‘

k02p(K2-p2) = pZYfz-pzk2 (3.5-34)

k 2

k02u(K2-u2) = usz2+—%—(K2-u2)]-u2k2 (3-5-35)

which yields after simplification

2 2 2 _ 2 2 2

k0 11(K '11) ' k0 “(K '11 ) Q.E.D. (3-5‘36)
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Therefore we see that although the forms of the dispersion relation

can appear to be different, they are actually identical results. This

is especially important when comparing the various forms of the dispersion

found in the literature.





67

3.6. Derivation of YIGSLAB and YIGSLAB-GAP Dispersion Relations

In the last section the development of YDS and the limiting case

SINGLE-SURFACE were covered. In this section the dispersion relations

for the YIGSLAB-GAP and its limiting case YIGSLAB are derived. The ge-

ometries are shown again in Figure 14. Listing the fields in all regions

 

 

we obtain:

Region (1)

YSX

Ey = “1‘e ‘ (3.6-1)

-Y Y x

_ J S S

-

HZ — (pp Ale
(3.6 2)

Region (2)

y 1 2
.

H = ‘ik— (B ekx - B e_kx) (3 6-4)

2 (11110 1 2
.

Region (3)

fo -fo

Ey = C1e + (329 (3.6-5)

— 'jk kX
—kx

HZ — wuoD [Cle (SK + u) + Cze (Sk-u)](3.6-6)

where equation (3.5-9) was used to obtain Hz, and Yf 5 k.

Region (4)

Ey = Dle (3.6—7)

 
D e (3.6-8)

The field components are evaluated at x=0, x=g and x=g+d. Match-

ing these components at the boundaries and solving as shown in previous

sections yields the following dispersion equation
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Figure 14. (a) YIGSLAB-GAP and (b) YIGSLAB geometries for development

of dispersion relations.
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Y +k

[e'Zkg - Y:_k ] [(5K+u)(sn<-u-o)e'2kd + (u-Sk)(SK+u-D)]

 

Y +k

-D [e'Zkg + 7—ST] [(SK-u-D)e'2kd-(3K+u-D)]= o (3.6-9)

5

Equation (3.6-9) is the dispersion relation for the YIGSLAB-GAP

model. The limiting case for 9+0 is best obtained by returning to the

system determinant and setting e -2kg = 1. A simplified version of this

determinant is

 

  

-2kg Ys+k -1 _e-2k9
e - Y -k

s

Y +k

-2kg S ] _ _ -2k9 = 0
D[e +F (SK'HJ) (U SK)€

o (SK+u-D) (Sk-u-o)e'2k(9+d) (3°6‘10)

The solution of the determinant is

 

e-de :

(SK-u-D) [D vs+k(u+SK)]

Recall that D = (K2 -u2).

We now show an alternative method for developing eqn. (3.6-11).

This involves using the standard decomposition of Maxwell's equations

in free space,

 

 

 

  

H = ___l____ -k _EE£ _ ~ E 8E2 (3.6-12)

x k2_k 2 J ax J“ 0 By J

a

_ 1 . 3H2 . aEZ

Hy - _;§:;_§_ [.Jk.7i7.+-Jueo ax J (3.6-13)

a

aE 3H

EX = k2 k12 [Jk 3X2 +jmu0 2] (3.6-14)
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3E 8H

=_1_ - _2-_~ _2 _
Ey 2 2 [ Jk 8y qu0 3X ] (3.6 15)

where ka2 = “250“0 for air. For the YIGSLAB case i.e. 9+0, we find the

fields in all regions as before. Starting with region (4), the air re-

gion we have

H = b e-Y4X (3.6-16)

and this gives .

_ 4 —Y x
X - m2- b4e 4 (3-6'17)

o _

where Re (v4) > O is assumed. The electric field component is then

given by

jwu Y _

E = ——‘fl b e Y4X (3.6-18)
y 2 2 4

k -ka

In order to determine Y4, Maxwell's curl equations are again used

to yield

JkEy = -jquHX (3.6-19)

_Y4Ey = _jwu0HZ

(3.6-20)

and

-ijX + Y4HZ = jweoEy (3.6—21)

Setting the resulting determinant to zero yields

2 2 2

Y4 = k -ka (3.6-22)

and since we are in the slow wave regime, k2 >> k 2, so that
a

(3.6-23)

and thus for decay of the field intensity as x+m we choose the positive

root i.e. Y4 = k. This gives for the fields in Region (4)

_ -kx

HZ — b4e (3.6—24)
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_ . -kx

HX — -Jb4e (3.6-25)

qu
_ o -kx

_
Ey - k b4e (3.6 26)

In Region (3) if H2 is the assumed generating component again

Y x FY x

_ f f
HZ - a3e + b3e (3.6-27)

If the Equation (3.5-11) is used as in the YDS section we find that

jwuo fo -fo

Ey = —2——2- [(mf - kSK)a3e -(uYf+kSK)b3e ] (3.6-28)

k p-k
o

and a1$O (k23K- fk) (k2SK+ k)Y +Y

H = a3efx [j( 2)3]+bH’Yf[(: 1‘ ](3.6-29)
X 2"k2)

k0 u

In Region (1), the GaAs semiconductor, we have

st

HZ = ble (3.6-30)

=J_k stHX Y5 b1e (3.6-31)

and

~qu Y X

= o S _
y Y5 ble (3.6 32)

 

 

and are given by 2

k 2 2
yfz= five—(Kw)

or 2 2

w -(w +w)

ny = k2 + k02 2 m o 2 (3.6-33)

w +w0wm-w

and k

YSZ = k2 - kSZ + j<ws)wcm
(3.6-34)

where Q = (w-kuo). Also recall that k, kS and k0 are the general, semi-
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conductor and ferrite propagation constants for the z directed magneto-

static wave respectively.

If we now match tangential components at all boundaries we obtain

the final result of

[y (”Y + SKk) + k2] [k + (uv -SKk)]
s f f

= 2 (3.6-35)

[YS(uYf - SKk) - k ] [-k + (uyf + SKk)]

for the dispersion equation of the YIGSLAB model. Notice that (3.6-35)

e -2de

and (3.6-11) appear to be different relations. A detailed analysis shows

however, that the two expressions are indeed equivalent.





73

3.7. The GENERAL Case Dispersion Relation

The dispersion relations for four simpler models were developed

in order to provide a foundation for this final case. In this section

the GENERAL dispersion relation is presented. The algebraic manipula-

tions required for this relation are very similar to those used in the

previous sections. The fields in all regions are determined and boundary

conditions at each interface are applied. For reference the geometry

for this case is shown in Figure 10. Upon expansion of the matrix for

this case the following relation results:

2k(di+d) 3d k

2e e S [(A3+2) - A3e‘2k51[e'2k9<x1-1> + (x1+1>1

[(A2_1) _ e2kdi(A2+1)] - 2e2kdie3kds [(A3+2) _ A3e‘2k5]

[e-2k9(A2+1)+(A2-1)] [(A1+1) - edej(A1-1)] + e2k(d1.+d)ekdS

(l-edes) [e'2k9(A1-1)+(A2+1)] [(x3+2)(A2-1) + edeiA3(1+A2)]

{[(A3+2)-A3e-2k6] _ 2ekdS -2(ekd5e’2k6) }_ e2kd1ekdS

(1-e2kds) [e'2k9(x2+1) + (AZ-1)] [(A1+1> (x3+2) + e2kdlx3<xl-1)J

{[(x3+2) - x392k5] - 2ekds - 2(ekdse‘2kg)) = 0 (3.7-1)

where the following definitions apply

A1 = u - SK (3.7-2)

A2 = p + SK (3.7-3)

x3 = #2 [SA + 88k] (3.7-4)
k
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and from the geometry the thicknesses are as shown.

The GATE model is analyzed as a special case of the GENERAL model.

The principle difference is that the GaAs region for the GATE model is

semi-infinite and therefore no heat sink is included. The importance

of this case is in investigating the effect of the single metal plate

on the YIG-GaAs dispersion but with a model somewhat simpler than GENERAL.

The heat sink of the GENERAL geometry is incorporated because any practi-

cal design of this device must account for the heating created in the

GaAs region due to drifting carriers. The following conditions are used

in the GENERAL model to simulate the GATE geometry:

(1) The semiconductor region is allowed to be as thick as possible

for the thin slab approximation (i.e. kdS 5 1.75.); see Ap-

pendix C.

(2) The insulator between the GaAs and the heat sink is as large

as possible.

These two conditions provide for a semiconductor region that appears

semi-infinite in the transverse plane.

This chapter has been devoted to the analyses of device geometries

and the development of the corresponding dispersion relations. The ap-

plication of certain approximations (see Appendix C) will allow the de-

velopment of dispersion polynomials for numerical analysis. The evalua-

tion of numerical results is covered in the next chapter.



4. EVALUATION OF NUMERICAL DISPERSION RESULTS

In this chapter the numerical results of the various dispersion

relations outlined in Chapter 3 are evaluated. This is done by develop-

ing approximate dispersion polynomials as set forth in Appendix B and

using the computer for a numerical solution. We feel that this method

will generate a more accurate set of results than perturbational methods.

4.1. Evaluation Procedure for Numerical Results

The procedure for the evaluation of the numerical solutions is as

follows: (1) determine all roots for a given set of parameters, (2)

optimize possible growing roots by examining the behavior of the roots

under varying conditions, and (3) determine the behavior of optimized

growing roots under the Bers-Briggs criteria.

The numerical analysis of dispersion polynomials is handled by a

subroutine in the MSU computer library called ZPOLY. This subroutine

will numerically solve complex polynomials up to 49th degree. The roots

should follow the criteria below: (1) kr and ki must be positive, (2)

3 4
kr must be between 10 and 10 cm'l, (3) ki must be between 1% and 10%

of kr'

The second part of the procedure involves the evaluation of the

results based on changes in relevant parameters. Notice that we have

not as yet determined if the root(s) are physically realizable as growing

root(s). At this stage we wish to obtain geometries which will optimize

the root(s) in question. The following is a list of the parameters which

we seek to optimize:

(1) d is the thickness of the YIG material in all cases studied.

(2) g is the thickness of the dielectric region separating the YIG and

GaAs regions. It is instrumental in determining the strength of
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interaction between the carriers and the magnetostatic wave.

(3) n0 is the carrier density in the GaAs region.

(4) :0 is the carrier drift velocity. This is important based on syn-

chronism arguments.

(5) R0 is the static magnetic field intensity applied to the device.

AH is the ferromagnetic resonance linewidth of the YIG material.

A

0
3

v

(7) di is the spacing from the top metal plate to the YIG material in

the GENERAL case.

(8) b is the spacing from the bottom metal plate to the GaAs material in

the GENERAL case.

The optimization of these parameters is done not only with the idea

of maximizing gain and bandwith, but also to account for practical con-

cerns such as semiconductor heating and the manufacturing of the actual

device geometry.

The last part of the evaluation involves the determination of the

physical applicability of possible growing roots. This is done using the

Bers-Briggs criteria for convective instabilities. A convective insta-

bility is defined as one in which the energy flow of the magnetostatic

wave and the carrier drift motion are in the same direction. This in-

stability is spatial in nature. The transfer of energy between the two

modes occurs when the carriers move faster than the wave. Under near-

synchronous conditions the carriers lose energy to the wave and we have

an instability. If the energy flows are in opposite directions, then a

nonconvective or temporal instability occurs. This effect is demon-

strated in the Backward Nave Oscillator [65].

In order to determine if a convective instability does in fact exist

we use the Bers-Briggs criteria. This approach is based on the principal

of causality and the initial value problem. It essentially studies the



J
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asymtotic response of the system to a signal bounded both in space and

time [66]. The practical usefulness of this criteria is in testing for

the presence or absence of convective instabilities. A routine was de-

veloped to implement the Bers-Briggs criteria on the computer using the

following steps [67]:

(1) Using existing programs which contain the complex dispersion poly-

nomials we set a fixed frequency.

(2) A loop is used to step mi (the imaginary part of w) from -10 to -10

(3) The roots of complex k are examined to determine if k1 (the imaginary

part of k) has a change of sign. This means we have a convective

instability which convects energy in the +2 direction. Recall that

we are considering roots that correspond to growth in the +2 direc-

tion. Therefore, any roots chosen for the Bers-Briggs test must

have k1 greater than zero prior to application of the criteria.

4.2. Evaluation of YDS and SINGLE-SURFACE

The dispersion polynomial for SINGLE SURFACE was analyzed using

data sets from various researchers. This was done based on the fact

that Bini et al. state that the single surface model can be used to sim-

ulate the interaction which occurs even in more complex geometries. The

carrier density was varied over a range from 1015cm'3 to 1020cm'3.

Drift velocities range from 7 x 106cm/s to 8 x 107cm/s. Semiconductor

materials were InSb, GaAs and Ge. The principal researchers checked

were Bini, Yamada, Chang and Matsuo, Awai, Vashkovskii and finally,

Lukomskii. In all cases, there was no root observed which satisfies the

stated criteria for roots to be selected. In the case of SINGLE SURFACE,

the main problem was that k1 was too large i.e., greater than O'lkr'

This would give rise to corresponding gain values that are not realizable

12

. 'P'FT' .
n ._
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physically [68]. In the cases where ki was in range, kr was not, so that

the root does not represent a slow magnetostatic wave.

In order to handle the above concerns, the YIG and Semiconductor

regions are separated by a finite distance 9. In this case again no slow

wave with realizable positive gain was observed. This agrees with state-

ments made by Awai et al., that a geometry in which the YIG and semicon-

ductor appear infinite cannot support a slow magnetostatic wave [69].

We conclude from this that a more complex geometry is required in order

to observe a growing root which is realizable by experiment.

4.3. Evaluation of YIGSLAB and YIGSLAB-GAP 

The next order of complexity results if the YIG material has a

finite thickness. Figure 1 shows the variation of ijl with frequency

where d1 is the parameter. Notice that as d, is increased the loss will

decrease. The lkil is plotted because for lower values of carrier den—

sity, net gain was not observed. The value of kr ranges from 1300 to

7500 for the root observed. Gain is observed for YIGSLAB if the carrier

17cm'3. Values above this level are notdensity is increased above 10

practical however, for two reasons: (1) The semiconductor begins to

function as a metal with the associated losses and (2) It is difficult

to effectively dope GaAs so that it contains such a high level of car-

riers [70].

The case illustrated in Figure 1 is for the so-called thin slab

approximation i.e., kd i 1.75. In the case of thick slabs where

kd > 1.75 no slow wave was observed. This ties in with the previous

discussion because the YIG again appears to be infinite.

Notice in Figure 1 that as d is changed, the bandwidth over which

a slow, magnetostatic wave is present also varies. The peak value is
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Figure 2. k1 vs. frequency with YIG thickness as parameter for

YIGSLAB-GAP case.
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at d = 1.5u as is shown. In all subsequent studies this value of YIG

thickness is used.

If a gap is present (e.g., g = 1.0“) we notice a small increase

in loss as shown in Figure 2. It was also observed that for practical

values of n0 an increase in the gap thickness does not significantly

affect the k, value. The increase observed is based on the strength

of interaction between the drifting carriers and the magnetostatic wave.

For this reason the gap is set to zero in remaining cases.

A word about the values of d and 9 that were selected. These values

(d 1.5u and g = 0.0u) were picked because they provide the best com-

promise for possible gain, bandwidth and accuracy of study. The concern

for accuracy is based on the thin slab approximation where kd i 1.75. If

d = 1.5u e.g., then the maximum value of kd obtained is 1.126 when

k = 7500 at 3.7 gigahertz. Therefore, it is possible that values of d

greater than 1.5u could be used. The problem is that as d is increased

the bandwidth decreases because kr values are decreasing. This is evi-

denced by the fact that at 1.5u the band of possible roots extends from

2.0 GHz to 3.7 GHz, whereas at 4.0u the band is from 3.3 to 3.7 GHz.

The effect on k, is the major concern when 9 is varied. Once g is

greater than 1.0u however, the values of k, are virtually unchanged.

Therefore, a gap can be present for the purposes of signal excitation

and detection but the gain will be improved if g = 0.0u.

The variation of ki as a function of frequency with u0 as parameter

is shown in Figure 3 for the lossless case. Notice that as U0 is in-

creased ki increases as well. This also agrees with the work stated

by Awai et al. The introduction of losses (i.e. AH # 0) produces a sig-

nificant reduction however, when the carriers are drifted at the maximum

36 for GaAs of 2 x 107cm/s. This is shown in Figure 4. Since YIG films
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Figure 5. k1 vs. frequency with HO as parameter for the YIGSLAB case.
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of highest quality may still possess AH values in the tenths of Oersteds,

a geometry which provides for more gain at practical drift velocities

is called for.

The variation of k1 due to changes in 00, the static field is shown

in Figure 5. Notice that as 00 is increased, the value of ki decreases

slightly. The passband for wave propagation in the ferrite is shifted

upward as RC is increased. It is important to note that for possible

operation above 5.0 GHz the static field must be greater than 1000 0e,

a fairly large field.

4.4. Evaluation of the GENERAL CASE
 

The introduction of metal plates serves three purposes: (1) to

tailor the magnetostatic dispersion relation for the improvement of

gain, (2) to provide a close to uniform carrier density in the GaAs re-

gion by counteracting the dc Hall-effect created by the static field 00,

and (3) to provide a means for reducing the heat generated by the drift-

ing carriers.

The geometry for the optimized YIGSLAB case is used with the excep-

tion that the GaAs region has a thickness dS = 1.0p. This value is used

because we want the heat generated to be reasonable. It is also a prac-

tical thickness from a fabrication standpoint.

The variation of k1 versus frequency with d1 as parameter is shown

in Figure 6. This graph shows that gain is improved if the metal plate

is closer to the YIG region. This agrees with work as stated by

Vashkovskiy et al. [71]. The lower metal plate is also close to the

GaAs region. Studies show that if b is greater than 0.2 the root disap-

pears. This result is especially significant because none of the litera-

ture shows this case (thin semi region with metal plate) as having been

examined in detail.
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If one examines the effect of losses we see a significant change

from the YIGSLAB case. With values of AH as great as 0.5 0e the k1 is

not significantly decreased over most of the frequency band from 3.2

to 3.7 GHz. This is shown in Figure 7. We believe the reason for this

lies in the modification of the dispersion curve based on the presence

of the two metal plates.

In Figure 8, ki as a function of frequency with 00 as parameter

is shown. Notice that in the GENERAL case, positive k, values now occur

if 00 is less than 2 x 107cm/s. This contrasts with the YIGSLAB case.

If 00 is increased from 1 x 107cm/s to 2 x 107cm/s, there is now a signi-

ficant decrease in the ki values (and hence the gain). This would tend

to support the argument that the carriers and wave must be near synchro-

nism. If the carriers are moving much faster than the wave, the gain

is decreased and eventually lost. Further illustration of this is shown

in Figure 9 where k1 versus uO is shown.

In Figure 10, the effect of the static field variation on the GENERAL

case is shown. Notice that in this case a peak in the k1 values is ob-

seved for H0 = 750 De.

The GATE geometry was to be studied as a special case of the GENERAL

configuration. This was to be achieved by allowing the GaAs region to

be as large as possible for the thin slab approximation. It was dis-

covered though that the lower plate plays a crucial part in obtaining

net possible gain and therefore must be close. From a practical stand-

point as well, the GaAs region should be as thin as possible to reduce

heating loss. For these reasons the GATE geometry was not analyzed

separately.

Finally, one must test the observed root to see if it gives rise

to a convective instability using the Bers-Briggs criteria. This is
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shown in Figure 11. As indicated, the root is in fact “growing" since

it experiences a change in sign. Therefore, energy is being convected

in the +2 direction.

This chapter has provided an evaluation of relevant dispersion re-

sults for the MSSWA. The criteria for the selection, evaluation and

testing of possible growing roots is covered. This includes the Bers-

Briggs criteria for convective instabilities. The geometry which will

provide for optimal gain and bandwidth is presented. Trends which show

the effect of certain parameters on gain and bandwidth behavior are also

discussed.





5. SUMMARY AND CONCLUSION

5.1. Summary
 

The interaction of slow magnetostatic waves with drifting carriers

in a layered ferrite-semiconductor structure has been studied in detail.

The variation of the YIG-GaAs dispersion relation for different geome-

tries has been modelled. The dispersion relations have been derived

without the magnetostatic approximation. Using approximations for trans-

verse wavenumber in the ferrite and semiconductor as well as an exponen-

tial approximation the dispersion polynomials were derived. Numerical

evaluation of these polynomials was performed using a Fortran subroutine.

The solutions of the dispersion polynomials were optimized with respect

to certain device parameters. Possible growing roots were tested under

the Bers and Briggs criteria for convective instabilities. Gain is pre-

dicted theoretically for the MSSWA.

5.2. Conclusion
 

The dispersion relations for geometries from a simple SINGLE-SURFACE

to a more complex GENERAL layered structure have been theoretically ana-

lyzed. The results show that the YDS and SINGLE-SURFACE geometries will

not support a slow magnetostatic wave. In the case of YIGSLAB and

YIGSLAB-GAP, the following conclusions were drawn:

(1) The YIG region must be of finite thickness with respect to a wave-

length in the transverse direction.

(2) Gain is improved if there is no gap between the YIG and GaAs

regions, i.e., g = 0.

(3) Gain is obtained for velocities less than 2 x 10 7cm/s only if

carrier density is greater than 1018cm‘3.
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For practical values of carrier density, Gain increases as YIG

thickness increases in general.

Bandwidth decreases as YIG thickness increases.

The case of a GENERAL layered structure yields the following:

The presence of the two metal plates is essential in order to ac-

hieve gain for practical carrier densities and drift velocities.

The GaAs region must be of finite thickness with respect to a wave-

length in the transverse direction if metal plates are present.

AH can be 0.5 0e and the gain is still significant over the fre-

quency band of interest.

The gain decreases significantly for 00 greater than 2 x 107cm/s.

Maximum gain occurs for H0 = 750 De.

The results of the Bers and Briggs criteria indicates that a con-

vective instability is present. Due to the inconclusive nature of ex-

perimental results presented in the literature, we conclude that further

investigations of the MSSWA using optimized parameters should be con-

ducted.



APPENDICES





APPENDIX A

BASIC ANALYSIS AND DEFINITIONS

The form for the permeability tensor 0*for a ferrite when the static

magnetic field is along the +2 axis is:

u jk 0 “xx
l-ny

“yy

Uzy

0 . (A.1)

“zz

Often the signs of off-diagonal terms are different in the litera-

ture. This issue and the errors which can result are addressed in [72].

If the orientation of 00 is changed, the tensor is also modified. As

an example, if 00 = Hey the following cyclic change in subscripts is

made; 2 replaces y, y replaces x and x replaces z to yield:

  

u u u
[ yy yz yx

“ - Uzy uzz uzx -

- uxy uxz uxx J   

-> A

For H0 = Hox; z replaces x, x replaces y, y replaces z in the Equation

(A.2) to give:

  

1 0 0

‘3 = 0 0 JK

0 -jK 0

. 1
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If we replace K by SK, then we can orient the static field along the

:z axis by setting S = :1 in the above tensor. For our case, where H0

is directed along the :y axis, the permeability tensor is:

p 0 451(—

1 0 . (A.4)fi
t 11

O

jSK O 0

. J  

where recall that 0 and K are given by

(Dowm

(A) 2-032

O

(A) O.)

K = 2°23 (A.6)

(A) '0)

Some helpful definitions of important parameters are given below:

0.)0 precessional angular frequency of spins about H0.

w = Ys(4nMs), the saturation angular frequency. This is a

constant of the system. The value is 3.096 x 1010

rad/sec if 4hus = 1760 0e.

._ g e = ' ' : =Ys - —§$;l— 00 gyromagnetic ratio 2.8 MHz/0e

2h(2.8 x 106) rad/0e for the electron.

Notice that in general the precession angular frequency can be

written as:

.1 2 2
mo YsHi + JEYSAH + wexa k (A.7)

OY‘

 = Y H i--‘=Y AH + Y D “2 “ ‘(SK 2 (A 8)
mo 5 i + ‘2 s s 2 °
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where again Hi is the static internal dc field given by:

— H (A.9)
i 0 DM A

The terms H0, HDM and HA represent the external applied field, the de-

magnetizing field and the anisotropy field respectively. The latter

two components must be accounted for if the slab dimensions are finite

with respect to a wavelength and the slab is not fabricated from single

crystalline material.

The parameter represented by AH is the ferrimagnetic resonance

linewidth. This term gives a measure of the wave attenuation in the

ferrite sample. It is inversely proportional to the precessional re-

laxation time. This gives a measure also of the degree of heating that

occurs within the ferrite due to energy dissipated by a wave in lossy

material. As the value of AH is increased, the losses which tend to

relax the spin precession increase. This explains the decrease in the

relaxation time T. Typical values can range from .3 to 7 oersteds in

YIG films. For our analysis we would like to use films with AH values

of approximately 1 oersted.

If the wave energy is of high enough frequency, the exchange field

effects must be accounted for. This can take two forms:

22

(1) wexa k (A.10)

2

u-(SK)
(2) YSD [_—7I—_—_] (A.11)

where the parameter 0 is a phenomelogical, inhomogeneous exchange con-

9 Oe-cm for YIG. Recall

1

stant with a value of approximately 4.4 x 10-

4cm-that in the magnetostatic regime i.e. k g 10 exchange effects can

be neglected. Another loss parameter can also be found in the litera-

ture. This is designated as A and is related to the jéAH term in the

Landau-Lifshitz loss formulation which is used in this report.
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In this report, the units are those normally encountered in the

literature and for reference we include some conversion factors

40M (in Gauss) x 79.5 = M 34E$Iflifl— (A.12)

H(in 0e) x 79.5 = H Emflélflifl— (A.13)

. -4 _ 2
8(10 Gauss) x 10 - B Wb/m (A.14)

The above notation conforms to that given by Collin [73], Johnson [74],

Ramo, Nhinnery and Van Duzer [75] and Beam [76]. It also appears to

conform with the work due to Bini et al. [77] and also to that by Matsuo

and Chang [78].

Finally, it should be noted that the analysis included in this re-

port assumes that a/ay + 0 i.e. that the problem is a two dimensional

one. This is done for simplicity; the TE and TM modes then become un-

coupled [79].





APPENDIX B

DERIVATION OF DISPERSION POLYNOMIALS

B.1. Dispersion Polynomial for YDS
 

From Section 3.3, the dispersion relation for the YDS case was de—

 

 

veloped as

Y _
e-2kg = ( S + k)[SK u + 0] (3.1-1)

(YS ' k)[5K - u - D]

where

A1 = SK - u + D (B 1-2)

A2 = SK - u - D (8.1-3)

0 = K2 - 112 (B 1-4)

If an exponential approximation is used then,

- - 2 2 N (k)
e 2kg = 12 129k + 492k2 : 0l(k)' (8.1-5)

12 + 129k + 49 k 1

Solving for YS yields

<81+1>
Y = k B 1-65 (31-1) < >

where

A N1

81 = —.
(B.1'7)

D
1 1

The proper approximation for Y5 is,

: §fl
ys - k + k + SB . (B.1-8)

where SA and SB are defined in Appendix C. This gives us the following

for (8.1-6).

lOO
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+ 1)

- 1)’

SA (3_ 1
k +-—E + $8 — k ( (B.1-9)

Bl

Since A1 and A2 are constant with respect to 9, Bl will vary as N1 and

D The exponential approximation (see Appendix C) requires the con-1.

sideration of two cases. They are for kg 1 1.75 and kg 1 1.75.

Case I kg 3 1.75

For this case

2 2

  

 

 

N1 = 12 - 129k + 49 k (0.1-10)

0 — 12 + 12 2 2 -1 - gk + 49 k — N1 + 249k (3-1-11)

We write

A N N

_ _§ 1 = 1 -

B1 ’ A1 N1 + 24gk ‘ A3 N1 + 249k (3'1 12)

so that

81 + 1 - A3N1 + N1 + 249k (8 1 13)

B1 -1 A3N1 - N1 - 249k -

or

B1 + 1 = N1(A3 + 1) + 249k (8.1-14)

B1 - 1 N1(A3 - 1) - 24gk

This gives, for (B.1-9) after multiplying both sides by k:

N (A + 1) + 249k
2 _ 2 1 3

+ + -
. 'k SBk SA k N (A - 1) _ 249k (8 1 15)

l 3

If we cross-multiply and expand the LHS and RHS of (B.1-15), we

obtain

2 3
(A3 - 1) le + (A3 - 1) leBk + (A3 - 1) NISA - 249k

2 _ 2 3
-24gSBk - 24gSAk — (A + 1) N k + 24gk . (B.1-16)

3 1

Further expansion yields
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2 3)

-2N1k2 + (A3 - 1) SBle + (A3 - 1) SAN1 - 48gk3 - 24gSBk

- 24gSAk = 0

-2(12k2 - 12gk3 + 492k4) + (A3 - 1) 53 (12k - 129k2 + 49 k

+(A3 -1) SA (12-1ng + 492k2) - 489k3 - 24gsek2 - 24gSAk = 0.

This expression is rearranged to obtain

(8.1-17)

(-8gz)k4 + [249 + 492 (A3 - 1) so - 48g]k3 +

2 2
[-24 - 129 (A3 - 1) 50 + 49 (A3 - 1) SA - 249$B]k +

[12 (A3 - 1) SB - 129 (A3 -1) SA - 24gSA]k + [125A (A3 -1)] = 0.

which is the YDS dispersion for thin gap spacings.

Case II kg 3 1.75

In this case we have

N E8 = 0.11072
1

D1 = 2kg

so that the expression for B1 becomes

 

B1 = A3 2&3

and

01 + 1 A3EB + 2kg

01—i‘1 ' A3EB - 2kg

or for (8.1-6), we have

A3EB + 2kg

A3EB - 2kg°

2 2
 

k + 58k + SA = k

Upon expansion the following expression results

(8.1-18)

(B.1-19)

(8.1-20)

(8.1-21)

(8.1-22)

(B.1-23)
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A3EBk2 + A3EBSBk + A3EBSA - 29k3 - ZgSBk2 - ZgSAk

= A3EBk2 + 29k3 (3.1-24)

The dispersion relation for the case of thick spacings is therefore,

3

(-49)k + (A 2353 — 2953 - A EB)k + (A EBSB - ZgSA)k +
3 3

(A3EBSA) = 0. (8.1-25)
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(B.

B.2. Dispersion Polynomial for SINGLE-SURFACE (EXACT vs)

The dispersion relation for the SINGLE-SURFACE case is given

by

2 2 _

Ys (K - u ) + (SKk - UYf) - 0

or

Y : “Yf - SKk

s K2 _ 2

squaring both sides

Y 2 :(“Yf - SKk)2

s 2 2 2

(K - )

Recall that

k 2

2 _ 2 2 . 5

Y5 - k - ks + 1(;—) 0C (a - ku )

and

2 2 w2 - (mm + w0)2
K - 0 = 2 2 = D

0) “(.0

0

so that

02x 2 = quf2 - zuvaKk + (Skk)2

k 2

02) 2 = uztkz + —9- D] - ZUSKY k + (Kk)
S 0 f

let Yf 5 k so that

02x52 é 02k2 + ukOZD - ZuSKk2 + (Kk)2

= k2(02 + K2) + 0k020 - 208Kk2

= (02 - 20SK + K2)k2 + 0k020

again

2-1)

.2-2)

.2-3)

.2-4)

.2-5)

.2-6)

.2-7)

.2-8)

.2-9)

.2-10)
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2 2 2

DZYSZ = (u - SK) k + Pko D

using the expression for Ys gives

k 2

02 [k2- kSZ + j(--(-:-) 00C(u) -kuo)] = (U -SK)

2 .
k

02k2 - 02k 2 + i( ) A (u) - kuo)02= (11 -SK)

e
l
m

S C

which yields

k 2

k +0k00

k +0k00

(8.2-11)

(8.2-12)

(8.2-13)

[02 - (11 - 5102])(2 -[j(—i) wcuoDZ k {021252 - j(k—:) Acaoz +

2
uko D]: O

8.3. Dispersion Polynomial for SINGLE—SURFACE (Approximate YS)

 

Again for the SINGLE-SURFACE dispersion we have

YSD = uYf - SKk

and if Y Z k then
f

YSD = (u - SK)k

The expression for YS is

 

 

k 2

2 2 . s
YS=k-kS+J(—E)wc(w‘kuo)

é k2 + '(EEN; ( - ku )
J 0) (”cm 0

if k2 >> ks2 which is true for a slow wave

2 2
(1(2) 00C(w- kUO)k

2 . w '
Y5 = k + J k2

2
k 00 (01- ku)

=k2[1+j(-§;)
C k2 0]

Then by the complex root approximation we have

(8.2-14)

(8.3-1)

(8.3-2)

(8.3-3)

(8.3-4)

(8.3-5)

(8.3-6)



 

 

 

 

 

2
k w (w - ku )

L -_S_ C 0
.-

Ys - k[],+'J( m ) , 2 ] (8.3 7)

2k

so that the original dispersion becomes

2
k u) (w-ku)

k [1 + j(—§-) C 2 ° ] 0 = (A - SK)k (8.3-8)
(Ll

2k

kS 2 wc(w - kuo) ( _ SK

[1 + j1‘5 ) 2 1: u 0 (3'3‘9)
2k

ks 2 A (A - ku ) + 2k2 = £—:—§E— 2k2 (8 3-10)
J (- ) c O D '

. ks 2 “c 0 - SK‘ 2

J(-; ) —7 (w - kUO) =[:*——5-— -1] k (8.3-11)

Which in final form is

k 200 k 2010)

0 - SK 2 .[ s 011 ] . s c _1. -11). +1(-,-,) —. . .- (7)—.- -o W)

8.4. Dispersion Polynomials for YIGSLAB and YIGSLAB-GAP

The dispersion relation for YIGSLAB-GAP was found to be

-2kg Y5 + k -2kd
e -(Y _ k (SK + u)(Sk - u -D)e +

5

Y + k
_ _ _ -2kg ( s )

(ll SK)(SK + U 0)] 0|}: i" W]

[SK - u - 0)e'2kd - (SK + h -0)] (8.4-1)

Using the exponential approximation for the thin slab/gap case,

after considerable algebra we obtain,
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5
[2f4(b3- b1+b2 -b0)]k6 + [2f3(b1-b3) + 293(b0-b2) -2$Bf4(b0+b1)]k

{2[f2(b3-b1) + 92(b2-b0) - SAf4(b0+b1)] - S8[f3 (bo+b2+b3 bl) +

g3(b1+b3+b2-b0)]}k4+ {2[f1(b1-b3) + 91(80b()1 - SA[f3 (bo+b2+b3--b

3
_ I+ g3(b1+b3+b2-O-b )] SB[f2 (bO+b2- b3+b1) + gZ,b1+b3— b2+bO )]}k +

{2[f0 (--b1+b3+b2 -bO)] - SA[f2 (b0+82- b3+b1) + 92(b1+b3-b2+bo)]

2
-SB[f1(b0+b +b -b1) + 91(b +b +b -bO)]} k + {SAN1 (bO+b2+b3- b1) + 91

2 3 1 3 2

(b +b +b -bO)] + 2[SBfO(bO+b
1 3 2 )1} k + [254i0(b0+b1)1 = 0 (8.4-2)

1

In the case of kd and kg being greater than 1.75 we obtain

[8gd(b3-b1)]k4 + [4gb(b -b0) + 4SBgd(b -b2 + [258(b -bO)gEB
3 1)1k 2

dEB + 4SA(b -b1)gd]k2 + [25A(b -b0)gEB -2$A(b +b-2$B(b +b 3 2 1 3)
1 3)

dEB - SB(bo+b2)(EB)2]k - [SA(EB)2(bO+b2)] = 0 (8.4-3)

where again the following definitions hold

E8 = 0.1172

d = YIG slab thickness

9 = spacing between YIG and GaAs

The terms b0, b1, b2, b3 are expressions which are related to the

YIG magnetostatic wave parameters. They are defined as

(8.4-4)

(8.4-5)
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b2 = -a2a4N1N2 (8.4-6)

b3 = -a3a5 (3-4-7)

where

a1 = SK - u + D (8.4-8)

a2 = SK - u - D (8.4-9)

a3 = SK + u - D (3.4-10)

a4 = SK + p (8.4-11)

a5 = u - SK . (8.4-12)

We represent the exponentials as

N

e‘de = D—2 (8.4-13)

2

N

e'2kg = fil- (3.4-14)

1

similar to the previous section. The terms f1, f2, f3 and f4 are re-

lated to the exponential terms N1, D1, N2 and D2 from multiplication

operations that result from the simplification of (8.4-1). The same

holds true for 91’ 92 and 93. These are not included for brevity since

they can be readily obtained.

In order to obtain the polynomial for the YIGSLAB case the spacing

between the YIG and GaAs regions goes to zero. This produces the follow-

ing conditions.

The following polynomials result for the two separate cases,

Case I kd i 1.75
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{2tf2(b3-b1) + 92(b2-b0)]} k4 + {2Ef1(b1-b3) + 91(b0-b2)]

3-53[f2(b0+b2-b3+b1) + 92(b1+b3-b2+b0)]} k +{_2[f0(-b1+b3+b2-b0)]

-SA[f2(bO+b2—b3+b1) + 92(b1+b3-b2+b0)] - SB[f1(bO+b2+b3-b1) + 91

2

(”1+b3+b2‘bo)] )k T 1SA[f1(bo+b2+b3‘b1) +91(b1+b3+b2'bo)] +

ZSBfO(bo+b1) )k + [23Af0(b0+b1)] = 0. (3.4-15)

Cast II kd 3 1.75

The dispersion polynomial in this case is,

[-2$BEB(b +b3)d]k2 - [ZSAEB(b +b ) + SB(EB)2(b0+b2)]k +
1 1 3

[SA(EB)2(b0+b2)] = 0. (8.4-16)

8.5. Dispersion Polynomial for the GENERAL case
 

The algebraic manipulations for the GENERAL case are exceedingly

long. For this reason only the dispersion in its final symbolic form

will be given. The method used in the development of previous polynomials

was used here, as well as the following approximations:

y 5 k (only in exponents) (8.5-1)

5 k (8.5-2)

Using the above information along with the dispersion relation for

GENERAL developed in Chapter 3, the following polynomial results for the

case of thin slabs and gap spacings,
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+ M 1517 16
k k + M k + M

T17 T16 T15

11 10 9 M k8 +
k +M k + T8

+ M T9
k + M k

T11 T10

7 6 5 4 3 2 1 _
MT7k + MT6k + MTsk + MT4k + MT3k + MTzk + Mle - 0 (3.5-3)

The coefficients of this polynomial depend in a complicated way on YIG

parametersS, K and u, as well as the thicknesses of the various layers

which make up the device.

A separate dispersion polynomial for GATE was not developed due

to the similarity of this case with others which were studied. In order

to analyze the GATE model, the following conditions were applied to the

GENERAL case:

(1) The semiconductor region is allowed to be as thick as possible for

the thin region approximation.

(2) The gap between the GaAs and the heat sink is as large as the ap-

proximation will allow.

These conditions provide for a semiconductor region that appears semi-

infinite in the transverse plane which is the basic difference between

the GATE and GENERAL geometries.





APPENDIX C

COMPLEX RO0T AND EXPONENTIAL FUNCTION APPROXIMATION

In the derivation of certain dispersion polynomials, it is necessary

to use vs or yf which cannot be expressed exactly since they depend on

k, which is to be found. It is possible, however, to obtain YSZ and

Yfz, and these are in general complex quantities. Thus, an approximation

to the complex square root is required in order to obtain workable dis-

persion polynomials.

The exponential approximation is also discussed. This is because

the general form of the more complex relations is e-X. An appropriate

choice for this approximation is important because we want to restrict

the function e-X to positive values.

C.1. Complex Root Approximation
 

Here we look at the square root of a complex number

2 = A + jB

MAG z = (A2 + 32)% (c.1-1)

ANG z = tan-1(B/A) (c.1-2)

If B << A, then

tan'l(B/A) é B/A (c.1-3)

and

_ 2 2 % 1
MAG z - (A + B ) - A (c.1-4)

ANG z é B/A (c.1-5)

so for the /7,

/A (C.1-6)

B/2A (C.1-7)

MAG /7

ANG /Z
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In rectangular form you have

_ B -- __B__ -/Z — /A cos(fi)+ JSln(2A) (C.18)

and for B << A again, we have

v7&5"|:1+3(‘2'%‘)] (c.1-9)

because we recall that

cos (%)é cos 0 = 1 (c.1-10)

sin (§%—) 5 _%A (c.1-11)

Now we obtain Yf the transverse wavenumber in the ferrite.

k

2 = k2 + —9— (k2 - 112) (c.1-12)

Recall that when losses are included in the YIG, mo becomes complex and

  

 

  

 

therefore (K2 - p2) is also complex. We write

(Kt - U2) = D, + 10, (c.1-13)

Thus

- k 2

Yfz = k2 1 + -9§ (K2 - p2) (C.1-14)

pk

- 2 2
k D k D.

= k2 1 + 0 r + j 0 ‘ (c.1-15)
2 2

_ pk pk

hence

kOZDr kOZDi 1/2

Yf = k 1 + 2 + J 2 (C.1-16)

pk pk

1/2

' kozor Di
; k (1+ > <1+j—) (C.1-17)

. 2 2D

_ pk Y‘

 

 
k D o. .

g k (1+ 0 2r)(1 + J- 751)] (C.1-18)

211k Y‘



 

 



so that finally

Yf

D

k[:1 + j 751 ]

Y‘
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For the semiconductor we have,

2

Y5

then

k2 ' k52 + MES—1)“)

k2[1 +j(—(B

2

(m
C

- kuo)

Upon taking the square root we have

75 5 W[:1+ J

or

is é W{:+J [()Z

5 k[:1 + é? +

k

: §fl
YS - k + k + $8

where 2

k

s ”cm

5A=J(‘t) ‘2—

2

k w

__- _5.. A.)

In order to

k = kr + jki and that

C.2.

 

k
r

w (w-ku )
\ C0

>> k.,
1

Description of the Exponential Approximation

 

 

obtain (C.1-19) and (C.1—25), we assume that

(Cl-19)

.1-20)

.1-21)

.1-22)

.1-23)

.1-24)

.1-25)

.1-26)

.1-27)

The exponential function is approximated by the first few terms

of the continued fraction expansion [79] and has the form
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e“x = 1 + 12X 2 (0.2-1)

12 - 6x + x

or

2

e-x = 12 + 6x + x = p(x) (C.2-2)

12 - 6x + x2

This approximation does not allow e'x to become negative as e'x =

1 - x would when [x] > 1. Because we are searching for x = 2kd, we

cannot check the magnitude of x in any step of the analysis. A sketch

of Equation (C.2-1) and l/x is shown in Figure C-l. We will use (C.2-2)

when x i 3.5 (i.e., kd, kg i 1.75). Thus, the thicknesses of concern

are less than .279A for reasonable accuracy. For larger values, we let

e.X = E2. The solution of this equation for x = 3.46 gives a value for

EB of 0.11072.

With the above approximations, we can determine the dispersion poly-

nomials for the various geometries of concern in this report.
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e.X ‘\\
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i
i)

2 /§ = 3.46

Figure C-l. Comparison of the_§ontinued fraction expansion approxima-

tion to l/x for e



APPENDIX D

YIGSLAB PASSBAND CALCULATION

The starting equation is the dispersion relation for this model.

We will take the limits of n0+0, n +w, to model the extreme cases of

o

the GaAs being a dielectric or a prefect conductor. In the first limit

(i.e., the dielectric case), if we let vf = Ys é k, then

e-de = [u + SK + 1][u - SK + 1]

[u - SK - 1][u + SK - 1]

 (D.1)

Notice that the expression is invariant with the sign of S; thus,

-2kd _ [u + K + 1][p ‘ K + 1]

e ' [u - K - 1][u + K - 1]

 
(D.2)

We now take the limit of the above expression as k+0 and k+w. If

k is assumed pure real (i.e., we examine the lossless case), then for

k+O after considerable algebra, we have

N
I
H

A

O (
A
,

V

w E wA Y[HO(HO + 4WMS)]

l
l

r
'
fi

E E

The terms mm, MS and H0 are defined in Appendix A.

For a representative bias field HO = 500 De, where

41rMS = 1760 Oe we find

wB = 2.43 x 1010rad/sec

wA = 1.87 x lOlorad/sec
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which gives a frequency passband f8 5 fA of 888 megahertz.

In the limit as n0+w, ys+jm, the original dispersion gives

[YS(U + $K)][u - SK + 1]
 

 

 

e'de = (0.6)

[Ys(u - SK)][u + SK - 1]

(u + SK)(u - SK + 1)

‘ (u - SK)(u + SK -1) (0'7)

02 - K2 + 0 + SK (0 8)

02 - K2 - 0 + SK °

For k+0,

w2 = w 2 + w m (D.9)
O O m

0)"

0 = (DA (0.10)

Therefore, in the limit as k+0, the

or the metal cases. For k+0 we set

 

let

02 - K2 - 0 + SK # 0

Using 2

2 _ K2 = m2 - (mm + wO)

“ 2 _ 2
(.00 (.0

 

which for positive w implies that S

Thus,

value of m is ”A for the dielectric

the numerator of (0.8) to zero and

(0.11)

(0.12)

(0.13)

(0.14)

= +1.
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w E w = w + m (0.15)

for the case of S = +1 only. As a check for Equation (0.15), if this

is substituted into Equation (0.11) we have

000 f o (0.16)

which always holds. Therefore, (0.15) is correct. Therefore, the mode

for which I x Hoy points away from the YIG exists up to mo + mm. Our

geometry is given in Figure 01.

For the geometry shown, this wave must propagate in the +Z-direction,

and its energy is concentrated along the YIG-GaAs interface. If the

wave is to travel in -Z (for S = +1 still) it must propagate along the

YIG-air surface.

In this report we will restrict ourselves to the k >0 case. We examine

only the wave moving in the +Z-direction in detail.

If we allow S = -1, the mode of concern propagates on the YIG-air

surface. Since S f -1 for the passband edge given in (0.15), we must

investigate the complete dispersion equation for -k. Setting k = -k,

the dispersion yields

2 2

ede = “2 ' K2 + u + SK (0.17)

p - K - p + SK

 

For k+oo we have

2 2
u - K - u + SK = O (0.18)

and

02 - K2 + 0 + SK f 0 (0.19)

Using Equation (0.18) gives

2

Sm 2 3w

(0 + 431.) = (00 + Tm) (D20)

Now the -k wave must travel on the upper surface. Since E x fio must
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point away from the YIG, we must let S = +1. If this is used in (0.20),

we obtain

wm 3mm

00 + _4 = :(wo + T)
(0.21)

or

(L)

- : _m.

w : wB mo + 2

Therefore, the -k wave at the YIG-semiconductor surface must have S = -1.

Therefore, for S = -1, the +k wave must be concentrated on the YIG-air

surface. For wave propagating in the +Z direction we assume the genera-

tor is at the left edge in Figure 01 and a matched termination exists on

the right edge so that no reflections are possible. For S = -1, the

passband TS (wA, 08) and the wave is on the YIG-air surface. When S = +1,

the passband is (wA, wC) and the wave is on the YIG-GaAs interface.

Figure 01 provides a summary for the n0+0 case. Figure 02 gives a sum-

mary for n0+m along with representative numerical values. The reader

should be careful to distinguish between ”C in the YSZ expression (the

conductivity frequency) and the upper cutoff wc referred to in this ap-

pendix.
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YIG

Figure 0-1. Passband of dispersion behavior and propagation orienta-

tion for the dielectric case.
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:+1

n0+w GaAs

H = 500 0e 0 = 8.796 x 109

0 10 0 10
“A = 1.87 x 10 rad/sec mm = 3.096 x 10

08 = 2.43 x 1010 f0 = 1.4 GHz

“c = 3.98 x 1010 fn = 0.49 GHz

fC = 6.33 GHz

fB = 3.86 GHz

fA = 2.9 GHz

Figure 0-2. Passband summary for the metal case.



APPENDIX E

REVIEW OF PREVIOUS RESEARCH

E.1. Review of work by Bini, et al.
 

This work is presented in references [80-83]. Bini obtains the

growth factor k, by using an approximate formula that iS the ratio of

power and/or energy terms; thus, the name "energetic analysis approach".

In the first paper [84], the fields were obtained by first assuming the

carrier density in the semiconductor is zero. This is his "cold mode"

approach. The introduction of carriers in subsequent calculations was

assumed to be a small perturbation. In the subsequent papers, it was

not clear when nO was finite or zero during particular calculations.

They predicted active coupling only for MSSW (surface waves) stating

that volume waves did not look promising. These surface waves are TE

and £3: 0 i.e., no space charge. The interaction is derived from the

G x 8 term in the Lorentz force equation. They assume a single boundary

(YIG-SEMI interface) supports a slow surface wave. The passband is be-

tween fA and f8 and it occurs when k x RO points away from the YIG.

Their eq. (14) in [85] is the basic "single-surface“ dispersion which

they study in detail. The letter [86] in 1977 did not use the ”cold

mode” concept. The YIG was a thin film with thickness h~x. Bini assumes

YIG losses can be directly subtracted from the gain. In the third paper

[87] in 1978, a slab is considered at the beginning of the paper. The

complexity of the resulting dispersion was noted and a mapping technique

to track roots was discussed. Subsequently, they returned to the llsingle

surface" case and obtained approximate results in this limit. For no

YIG loss (AH = 0), they find both weak and strong interaction regions.
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The weak regime is for low conductivity; the strong for large conduc-

tivities. In the weak regime, the gain increases with 0, whereas in

the strong one, it decreases with increasing 0. Thus, an optimum carrier

14cm'3) .
density was predicted. (For GaAs, this corresponds to n0”10

When loss was introduced, the gain, and bandwith for gain, decreased. A

lower limit on 0 occurs now, which means that practically only the strong

regime is feasible. Thus, the optimum value for no calculated when

AH = 0, will not be realized in practice. We now summarize in more

detail.

1. They say all experiments conducted have used thick YIG samples, thus,

the "single-surface” model should apply. The semiconductors used

were Ge and InSb.

 

2. For single-surface, the gain occurs quite close of f8, where wb =

2"f8 = 00 + 43—. The bandwidth is about 17 kHz when AH = o and about

9 kHz when AH = 10 0e.

3. We question this result since Bini says AH gets very large near f

or f ; so is AH = 10 0e a realistic value to assume? With no loss,

the gain goes to infinity at f8.

4. He calculates loss contributions under the condition nO = O i.e.,

”cold mode” again.

5. In the first paper, Equations (11) and (12) are in error; it is not

clear how, or if this jeopardizes some of the results.

6. Says one cannot use the magnetostatic limit V x H = O as this yields

zero net power flow.

7. For single-surface, the approximate growth constant is

V 00

. 0 C

Bi‘Br(Vp ') w A

  

8. For a finite slab

00 V

_ C 0

81—h 10(Vp -1)A1

9. For the film thin (h i A)

 

Bl~ h



 

 



10.

11.

12.

13.

14.

15.

16.

17.

18.
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Notice the approximations in Items 7-9 are independent of h, directly

proportional to h, then inversely respectively. Thus, a trend is

not at all evident.

The carriers and wave energy are in the same direction for gain,

and v > v .

0 C

Says loss reduction of Bi is

 _ AH

Bim 'Y 2v

U) 2-102

_ 8
v9 - h m

but how is this developed?

They did not use the Bers-Briggs criteria as it would be complicated

due to their numerical scheme. Instead, they used the direction

of the Poynting vector. It was not clear if actual or cold mode

fields were used; and no calculations were presented.

They pointed out several serious errors in previous theoretical

treatments.

a) Vural [88], Robinson [89], had vp and v0 in opposite directions,

so only an evanescent mode was studied!

b) Kawasaki et al. [90] chose the wrong root; i.e., it becomes

unbounded at infinity.

After studying the thick slab case (h>>x) in detail, they conclude

slabs Should not be used; only thin films seem feasible. However,

only the letter [91] addressed this case!

 

The bandwidth for thin films (~30) was ~200 MHz at 3-4 GHz.

Their comments on the existing experimental results were quite in-

formative.

a) Vural [92] saw electronic gain; whereas Szustakowski [93] under

very similar conditions observed no interaction!

b) The experimental data (obtained from pulsed conditions) is not

suitable for comparison with theory.

c) Vaskovskii's [94] data are unclear Since the measurement fre-

quency is out of the passband for the proposed modes!

The predicted 10 kHz bandwidth (for h>>x, single surface) clashes

with reported data, since the spectrum is about 10 MHz wide about

the carrier (0.205ec pulse widths).





19.

20.

21.

22.

23.

24.

25.

125

Surprisingly they claini”all the theoretical work has now been com-

pleted"; and "subsequent analysis is not needed."

They state all reported experimental results are questionable; and

we agree.

Concludes Shat the device must be a thin film operated in pulsed

mode at 77 K with excellent heat sinking.

Since the magnetic saturation occurs at tens of microwatts, low

power applications are the only foreseeable ones.

Surprisingly, the Hall-effect that would accumulate the surface

was not mentioned at all. No balancing bias plate was envisioned.

2 2
We agree with their expressions for Yf and Y5 , but not necessarily

with some of the approximations for YS.

The llidle modes" introduced are not clear at all; are they evane-

scent modes?
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E.2. Review of Awai et al.

1. The case analyzed is YIGSLAB; an optimum carrier density is predicted.

The gain increases for increasing frequency [95].

2. They mention that there is no mode (slow) at the interface of an in-

finite half-space of YIG on a dielectric. They reference Damon and

Eshbach for this result. Therefore, the work by Robinson et al.

is in jeopardy.

3. Notice Bini mentioned Robinson's error of u0 and vp in opposite di—

rections. However, now we see the single-surface concept of Bini is

also in jeopardy, since no "cold mode" actually exists.

4. Therefore, Awai used a finite slab. A slow mode exists with or with-

out the carriers. Assumes AH = 0 always.

5. Used u0 = 8 x 107cm/sec, which is not realizable. Finds ki~1-1OO

-1 . 17
cm . Says optimum n0 occurs for n0~10 .

6. Used the BerS-Briggs criteria to verify actual convective instability.
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Review of Lukomskii et al.

Finds gain for 40 YIG on 200 InSb at 3.5 GHz. AH = 0.4 0e, no =

3 x 1015. Says heating reduces operation to pulse mode only, and

pulse width should be less than 50 sec, for a temperature rise of

10°C [96].

They state for a film of YIG of thickness a,

2

U.)

(1)2 = 1002 + -2—(1-e'2ka)

2

_ mm -2ka
v — ——— ae

9 4w 2
(A)

Notice if at00 (for Single surface), wztwoz + —%— and vg+0; Thus

no passband.

States YIG films ~50 can have AH~0.5-1.0 Oersted, but T = 3000K.

Says AH>1 reduces gain to zero, in general. Lower HO widens the

bandwidth and shifts it to lower frequencies. ‘

States the experimental data are probably due to current filament

formation; thus, the apparent amplification may be just reduced

damping.

The gain calculated assumes ki~10cm-1.





E.4.

10.

11.
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Review of Vashkovskii et al.

They are one the experimentalists. They found reduced loss by about

8 dB with Ge during the pulse. The YIG was 10000 thick [97].

They say that measurements of delay time vs Ho show that a surface

wave is present. This does not agree with our results, however.

Bini mentions the passband descrepancy! '

When uO and vp are in opposite directions, only attenuation occurs.

The results are not very clear or conclusive.

They analyze the case we called GATE. They state the presence of the

metal gate always enhances the gain. The separation between the YIG

and bias plate alters the gain and bandwidth.

The dispersion is practically independent of the carrier density no,

but is sensitive to the plate position.

They employed the Bers-Briggs test, as well as including losses via

AH.

They chose u0 = 5 x 107cm/sec. which is not realizable.

Best gain occurs when the gate is directly against the YIG.

Best gain-BW for b = 0, d f 70 (d = YIG thickness) (b = gate sepa-

ration). The ki~1 to 2 cm

Says absolute (oscillation) instability is possible by using the

Bers-Briggs conditions.
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E.5. Review of Yukawa et al.

1. They analyze a YIG slab between two semiconductor Slabs and this

structure between two metal plates [98].

2. They find gain for the special case of a 100 semiconductor and a

1000 YIG slab with metal on both sides. For n0 1015-1016, ki~1-10.

(But u0 = 8 x 107cm/sec)

3. They predict absolute instability in some conditions.
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E.6. Review of Schlomann

1. Explains in detail the Hall-effect action that causes the magneto-

static wave to grow [99].

2. Analyses a "single surface model" almost (the semiconductor is a

slab). Assumes real I and complex 3.
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E.7. Review of Shapiro
 

1. He assumes a single surface geometry [100].

+

2. Assumes k is real but 3 complex; hence only oscillation is sought.
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Recall Bini mentions their incorrect root choice.

They point out that the additional H0 due to the current pulse was

not included in analysis of previous experiments; thus, the variation

of delay with or without the current pulse does not necessarily imply

The analysis used a YIG slab, and a semiconducting slab and metal

They obtain the dispersion for this case, but simplify it, and ul-

The experiment used YIG with AH : 0.5 Oersted, and 9000 thick.

The input power was less than 0.1 mW to prevent saturation. The

measurements were pulsed at 4.1 GHz. Room temperature conditions

The measured attenuation implied AH = 0.7 Oersted.

A peculiar situation occurs in Figure 2 of the paper. For the value

of HO given, the lower cutoff frequency for the surface waves is

about 4.65 GHz. However, the measurement frequency (center) was

4.1 GHz. This implies that a volume wave was being generated and

detected. No other author has mentioned this problem. Bini men-

tioned a similar situation occurred in Vashkovskii's work.

Electronic gain occurred when the holes drifted with the wave. At-

tenuation when drifted in opposite direction. The maximum magnitude

of this gain was 3 dB at field strength of 2 KV/cm.

Was there real gain or reduced damping due to current filament pro-

duction? Lukomskii made this statement in reference to Vashkovskii's

The initial insertion loss when the Ge was placed on the YIG was

The experimental values for interaction were only poorly reproduc-

In defense of Comment #11. If the interaction was due to filament

production, then why does the direction of drift make a difference?

Item #10 shows the interaction is not reciprocal.

E.8. Review of Kawasaki et al.

1.

2.

gain [101].

3. Their experiment using Ge showed gain.

4.

on the YIG face.

5.

timately reach the single surface limit.

6.

The semiconductor was 3000 thick.

7.

prevailed.

8.

9.

10.

11.

experiments with Ge.

12.

25-30 dB.

13.

able.

14.

15. In response to the previous item, we can easily see that holes drift-

ing to the right (With the wave) are pushed away from the YIG, and





16.

17.

18.
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de-damping is possible. When drifted to the left, they are pushed

toward the YIG and cause more loss.

A verification of interaction was instituted by replacing the Ge

with a copper plate. No change in attenuation was observed for

either polarity of potential applied to the copper.

They state reduced insertion loss even for carriers drifting slower

than wave. (This again sounds like filament production).

They mention most authors find gain for 00 about 108cm/sec; an un-

realizable condition.

  





E.9.
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Chang, et al.
 

10.

11.

12.

The first paper [102] looked at the intersection of dispersion curves

for a semiconductor rod in an annular YIG wrapped in metal. The

U0 i 5 x 108cm/sec was used. A backward branch of the dispersion

was used. The thermal velocity is set to zero.

The next paper finds dispersion curves versus carrier density. The

carriers do not drift. AH = 0 [103].

A fifth order polynomial is found in w. Anticipates lowest damping

occurs for n0~1017cm'3. The YIGSLAB model is used here.

The next several papers analyze special cases of the GENERAL model.

They supposedly let various gaps+m; but with assumed terms such

as

-fx

0- = a. e + bje+fx

the bi term blows up! How this is handled is not clear [104-105].

They obtain ki~1-10 near 4 GHz but u0~5 x 107 to 1 x 108cm/sec,

which is unrealizable.

They get best gain when the gap between the semiconductor and YIG

goes to zero.

The next paper covers the GATE case. They use u0 = 108cm/sec. The

values found for Ki~1o‘Z-1o1 [106].

Increasing AH (from 0 to 1 0e) reduces gain and raises the value

of the low frequency wherein gain starts. This shift was about

2 GHz.

The next paper develops an energy analysis for the interaction.

They use a GATE model [107].

Their energy expression is applicable for the case of small loss

(nearly transparent media). We question this transparency assump-

tion, since the carrier stream is very lossy. During the change

from loss to gain, however, the system can be considered low loss;

hence transparent.

15 7
Here they use nO = 10 and U0 = 2 x 10 cm/sec. This is one of

the few calculations where realizable parameter values were used.

Gain is lost when AH = 4 0e, but here u0 = 108cm/sec. For u0 =

2 x 107, AH = 0.05 apparently reduces the gain to zero; this is

for the YIG energy concentrated on the face away from the semi-

conductor.
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14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
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The next paper treats the GENERAL model but without the bias plate.

Their signs for S = :1 appear to be confused [108].

They plot the threshold velocity versus AH. If we assume 00 j

2 x 107cm/sec, then AH :- 1.0 0e or the gain is lost.

The values for k. before AH reaches 0.4 are about 1 to 3 cm'l. The

gain increases mdnotonically as 00 increases. States this is unique

to the MSSWA.

This condition of ki increasing monotonically with 00 was also found

by Awai et al.

They finally perform a calculation wherein most parameters are

reasonable.

2 x 107cm/sec00 =

AH = 0.2 0e

Ho = 600 Oe

semiconductor thickness, 50

insulator between semiconductor and heat Sink, .010

YIG thickness, 100

nO a 2 x 1015

They found ki~0'5 to 3 cm—l.

Finally, the experimental results were published in 1982; the first

paper was published in 1968 [109].

The experimental parameters are

Ga As: no = 8.1 x 1015 YIG: AH = 0.5 0e

“e = 6 x 103 thickness = 900

thickness = 800

They state the previous experiments used YIG slabs that were too

thick 500-10000; and Ge, which has a low saturated drift velocity.

The references are to Vashkovskii, Szustakowski, and Kawasaki.

Therefore, only four groups have performed experiments.

Surprisingly, they used spacers between the slabs. No metal plates

were used. The parameters for the spacers are, thickness = 65-1550,

polyimide, tan a = 10'3

Using pulsed signals at 4.2 GHz, they were able to completely recover

(to within 2-3 dB) the insertion loss. The I.L.~10-38 dB. Pin =

7 dBm.





24.

25.

26.
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The reported data was for the 650 spacer. The GaAs loading loss

was ~17 dB. Apparently, the spacers were used.

The repetition rate was several tens of hertz to keep heating low.

They state the next experiments will use thin epitaxial GaAs YIG

films.

Note they obtained interaction when the electrons were closest to

the YIG by the Hall deflection. Thus, the concept of de-damping

definitely was not occuring as could be assumed in the previous

experiments.
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E.10. Review of Spector

1. It appears he treats the forward and backward volume mode cases only.

The only conclusion is that gain occurs when uo>vo. A rather inter-

esting conclusion is drawn about the role of collisions. Whenx2+0,

the carriers and spin system cease to interact in a manner wherein

energy exchange occurs. The material is a ferromagnetic semicon-

ductor [110].
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E.11. Review of Vural
 

1. This paper appeared in 1966. Here spin and helicon waves are consid-

ered. H0 and drift are collinear; thus, the system is considerably

different from our cases [111].

2. They point out several descrepancies between their work (with Bloom)

and that of Akhiezer et al.
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