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ABSTRACT

A GALLIUM-ARSENIDE MAGNETOSTATIC
SURFACE-WAVE AMPLIFIER

By
Jeffrey P. Tate

An analytical treatment of the interaction between slow magneto-
static waves and drifting carriers in a ferrite-semiconductor structure
is presented in the absence of the magnetostatic approximation. The
analysis of a GENERAL layered structure involving two metal plates is
also included. Relevant dispersion relations are evaluated numerically.
Dispersion results are optimized by variation of device parameters. The
optimized solutions are analyzed under convective instability criteria.

Gain is possible theoretically under specific device conditions.
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1. INTRODUCTION

The objective of this paper is to investigate the feasibility for
amplification of magnetostatic waves in a ferrite-semiconductor composite
structure. The mechanism for amplification is based on the interaction
of the slow wave with drifting carriers. These phenomena have been stud-
ied by several investigators, both theoretically and experimentally.

The results however, have been inconclusive.

The existence of magnetostatic waves has been verified by numerous
investigators. A representative sample of the contributions made in
this area includes:

(1) Damon and Esbach (1960) who investigated theoretically the existence
of volume and surface modes of a thin ferrite slab. Dispersion
relations were developed in the magnetostatic limit [1].

(2) (1968) Brundle and Freedman experimentally verify the existence
of propagating magnetostatic waves using group time delay measure-
ments [2].

(3) (1970) Seshadri performed an analysis for the verification of wave-
number and group velocity. The property of nonreciprocal propa-
gation for magnetostatic waves in a metal backed ferrite slab was
presented for the first time [3].

(4) Merry and Sethares [4] observed magnetostatic waves at frequencies
of up to 15 gigahertz (1973).

(5) Kawasaki et. al. observed Ferrite-Air and Ferrite-Metal modes.

High correlation with theoretical dispersion characteristics was

1



also observed (1974) [5].

It has been shown through experiments that many signal processing
tasks in the microwave frequency range can be performed using these slow
waves. In 1973, Vaslow observed group time delay as a function of the
externally applied magnetic field. The application of magnetostatic
surface waves for variable time delay was then explored [6]. Various
devices were also studied by Adam and Collins, e.g. the nondispersive
and tapped delay lines which employ magnetostatic surface waves [7]

Presently signal processing tasks can be performed using surface
acoustic wave devices. The technology however, has a useful upper limit
of two gigahertz due to transducer fabrication complexity and the magni-
tude of propagation losses. Owens states that Yttrium Garnet (YIG) de-
vices show losses of approximately 12 db/us versus 100 db/us for devices
using SAW technology [8]. Merry and Sethares also found that magneto-
static surface waves exhibit lower loss than SAWs above four gigahertz
[9].

O0f principle importance for potential signal processing applications
is the effect on the slow wave dispersion relation of a metal plate
placed a finite distance from the ferrite surface. Bongianni (1971)
provides experimental dispersion relations which show the effects on
magnetostatic wave propagation characteristics [10]. Theoretical and
experimental results have shown that dispersion curves of almost arbi-
trary shape can be obtained with optimal plate spacing [11, 12].

Due to the effects on YIG magnetostatic wave dispersions, the pre-
sence of a metal plate in the ferrite-semiconductor geometry has also
been studied extensively. Vashkovskiy et. al. theoretically investi-

gated the effect of a metal-air-YIG spacing on gain and bandwidth of



an amplifier using drifting carriers in semiconductors [13]. The key
point is the optimization of bandwidth and gain by maximizing the region
of synchronous interaction for carriers and magnetostatic waves. Ex-
perimental analyses of magnetostatic wave/carrier interaction have also
been performed by several groups, however no significant work has oc-
curred involving the use of metal plates.

The excitation of ferrite magnetostatic waves can be broken into
three basic groups:

(1) Magnetostatic Surface Waves (MSSW), where

~

> >
k x Ho =n

(2) Magnetostatic Forward Volume Waves (MSFVW), where
> > ~
(k x Ho) *n=0

(3) Magnetostatic Backward Volume Waves (MSBVW), where

> >

k x H0 =0

The surface o} volume characteristic of the waves is determined by the
orientation of the external static magnetic field ﬁo in relation to the
direction of propagation. This is illustrated in Figure 1. The waves
studied in this report are of the surface type. This means that the wave
energy is concentrated on one surface of the ferrite slab. This condition
is satisfied if the slab thickness is greater than a wavelength in the
transverse direction as shown in Figure 2. Forward and backward waves
are also useful in signal processing and devices have been developed
using these propagation modes [14-16], but we restrict this investigation
to surface modes.

If the ferrite technology continues to mature in a manner similar
to that experienced in acoustics, then a means for the amplification

of surface magnetostatic waves would be most useful. Theoretical anal-

ysis of magnetostatic wave interaction with drifting carriers has been
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Figure 1. The three basic forms of magnetostatic wave propagation;
(a) MSSW (b) MSFVW (c) MSBVW.
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Figure 2. The effect of slab thickness on the mode character of the

magnetostatic wave. The above sketch shows the transverse
variation of wave field intensity.
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performed by various researchers. Bini et al. have provided an
"energetic approach" to describe the mechanism of energy transfer

from drifting carriers to the slow waves. Analysis of a thin ferrite
slab adjacent to a semiconductor half space was conducted. The develop-
ment of a single surface model employing two semi-infinite half spaces
was also presented. A bandwidth of 17 kilohertz for possible amplifi-
cation was theoretically predicted; while for the thin slab, bandwidths
should reach several hundred megahertz [17-20]. Awai and co-workers
also performed numerical analyses of a finite YIG slab over InSb. Net
amplification was predicted for the case of drifting carriers [21].

In bulk acoustic wave amplifiers a piezoelectric material adjacent
to a semiconducting medium is used. The surface acoustic wave amplifier
however, uses a thin film of semiconductor material in close proximity
to the surface acoustic, or Rayleigh, wave. Because of the presence
of an acoustic wave, close proximity without actual contact is required
for the wave/carrier interaction to take place. This restriction can
present difficulty in the manufacturing of these devices. This does
not hold for the magnetostatic wave device. The YIG and semiconductor
can be in direct physical contact. The device shall be referred to as
a Magnetostatic Surface Wave Amplifier (MSSWA). It is anticipated that
this device will operate up to about 10 gigahertz. Adam states however,
that MSSW devices in general are narrowband at these frequencies, ex-
hibiting approximately 300 megahertz of operating bandwidth [22].

This paper shall provide a thorough analysis of the MSSWA in the
absence of the magnetostatic approximation. Of major importance is the
velocity relationship between the carriers and magnetostatic waves. The
conditions for which amplification is observed are inconclusive at pre-

sent. Many reserachers have stated that the drifting carriers must



7
travel faster than the propagating magnetostatic wave. Kawasaki et al.

state however, that even when the drift velocity is less than the phase
velocity of the wave a reduction in losses is observed [23]. It is the
author's belief that eventhough the carriers may possess a velocity
greater than the slow wave phase velocity, some degree of synchronism
must exist for energy transfer to occur.

This report shall also seek to determine the optimum geometry which
will promote the desired synchronism for practical bandwidth and gain
operation of the MSSWA. Some ideas regarding the implementation of this

new geometry will also be discussed.



2. THE FERRITE SEMICONDUCTOR COMPOSITE STRUCTURE

In the analysis of the MSSW amplifier an understanding of the fun-
damental mechanisms on which potential amplification is based would be
helpful. In this chapter the basic ideas behind ferrimagnetic reso-
nance and the excitation of surface magnetostatic waves are discussed.
The interaction of these waves with drifting carriers is also covered.
The object is to present a qualitative description of this interaction
as a foundation for detailed study of the MSSW amplifier dispersion re-

lations in Chapter 3.

2.1. Ferrimagnetic Resonance

Ferro - and ferrimagnetic resonance effects are based on interaction
of magnetic dipoles with magnetic fields. A spinning electron constitutes
such a dipole. The magnetic moment associated with this spin motion is
given by
U, = Y(sh) (2.1-1)

where Y = -|e]/m is the gyromagnetic ratio. The value sh is the electron
spin angular momentum [24].

In the presence of a static magnetic field of magnitude Ho’ a torque
is experienced by the spinning electron. This torque is due to the time

rate of change of the spin angular momentum. This can be written as

dlsh) _ 3 «# (2.1-2)

dt 0 S 0

which when (2.1-1) is used becomes

[«

>
u

(%]

= v (fg x ﬁo) (2.1-3)

a
o+

where Y_ = uyY and ﬁo is in the z-direction [25]. The motion described

by (2.1-3) is of a precessional nature. The spinning electron precesses

8
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(a) (b)

Figure 1. Illustration of the precessional motion for; (a) an electron
in a static magnetic field and (b) a spinning top in a con-
stant gravitational field. After B. Lax and K.J. Button.
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about the static field in a manner similar to a top in the presence of

a gravitational field. The torque relationship in the latter case is

gg =3, x B (2.1-4)

where wy is the precession frequency and E is the angular momentum [26].
A similar term can be developed for the electron and is given by

w =YMH (2.1-5)

This expression shows that electron precession frequency is determined
by the strength of the applied field. The development of wy is given
in [27]. In Figure 1 the two cases are shown, where the angle eo is
the precession angle.

On the macroscopic level we are interested in the total magneti-
zation of the ferrite system and the interaction it has with magnetic
fields. The magnetization is defined as the magnetic moment per unit
volume, so that ﬁo = N:S where N is the density of dipoles. Now we may

write (2.1-3) as

.
;:'—0 = v (M x H) (2.1-6)

with ﬁo again in the z-direction. This equation describes the lossless
case which is characterized by perpetual motion. The lossy case will
be treated separately. It should be noted that ﬁo and ﬁo are nearly
parallel in the first approximation [28]. This becomes significant in
the analysis to follow.

If an alternating component of the magnetic field is introduced,
the magnetization and field expressions become

>

=i+ fedut (2.1-7)

ﬁi + hedvt (2.1-8)

>
H

where ﬁi and ﬁo represent the static magnetic field and magnetization.



1

v

3v

>
-— > h

Figure 2. The rf and dc field and magnetization components. Note that

T
h can be either circularly polarized or linearly polarized.
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The rf components are A and m respectively. The field ﬁi’ called the
static internal magnetic field is actually the vector sum of the external
dc field and the components due to anisotropy and demagnetizing effects.
For simplicity, we will assume a single crystalline ferrite slab that

is infinite in extent. Under these conditions the above effects can

be neglected and ﬁi = ﬁo'
The expressions for ﬁ and ﬁ are substituted into (2.1-6) to obtain

>

. > > > >
Jum = YS(MO X h+mx HO) (2.1-9)

where time-harmonic dependence (ejwt) is implied. This is the linearized

small signal approximation, where second order rv and dc terms are ig-

nored [29]. The time variation of m as given by (2.1-9) is therefore

a function of the first order interaction between dc and rf terms. The

manner in which the rf magnetization changes with time determines the

variation of the precession angle 8- In Figure 2 these field and mag-

netization components are shown. It should be noted that since mis

perpendicular to ﬁo that h must be also in order to obtain the most ef-

ficient energy transfer. If this spatial relationship between ﬁo and

h is not satisfied, energy transfer does result, but at a reduced ef-

ficiency. This occurs for values of w not equal to u, [30]. Figure

3 illustrates three cases; zero rf field, non-zero rf field at resonance

and outside of resonance. Notice that an oscillatory motion occurs for

ﬁ due to the nonresonant condition [31]. The oscillation shown is ex-

aggerated for the purposes of illustration. In practice this "wobble"

by the precessing magnetization would be noticeable only at very high

values of the driving rf field and for frequencies not equal to Wy -
In order to illustrate this precession in more detail, consider

a rotating coordinate system. This system rotates about the field ﬁo

with angular velocity Er. The equation of motion becomes
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>
SH0 + wr) (2.1-10)

which is the same as (2.1-6) in the stationary reference frame if H0
is replaced by

(2.1-11)

If an alternating field is introduced, e.g. one which is circularly

polarized with frequency ®, the equation of motion is

o e >
T = s M x [Hoge + h(E)]) (2.1-12)
where F(t) = ﬁejwt and the new effective field is
Ropr = 2 (g = . )+ yh(t) (2.1-13)
Ys

with z and ¥ indicating the z and y directions respectively. The field
component h(t) is stationary in the rotating frame [32].

When the magnetization experiences this effective field there is
precession about both ﬁo and K(t) in the stationary reference frame.
In most cases, h(t) is small compared to ﬁo so that the precession due
to the rf component is ignored. Figure 4 gives an illustration of this
total motion and also shows the variation of 60 for precession about
go due to the phase relationship between ﬁ(t) and ﬁ.

The mechanism which governs the variation of m and 60 is the torque

oY 3¥

created based on the spatial relationship between h(t) and ﬁo as men-
tioned above. The phase relationship between ﬁ(t) and M is also very
important in determining this torque. In order to promote growth in
the precession angle the component E(t) must precede m(t) by a quarter
period [33]. If this condition is not met then there are regions where

zero or negative torque can result. The negative torque gives rise to
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> >
Figure 4. The resultant motion of M due to the precession about Heff
as shown by the dotted path. After R.F. Soohoo.



16

DIRECTION OF ®
APPLIED FORCE

=

Figure 5. The effect of a positive torque on a spinning top. Note
that eol > 602.
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precessional damping. Note again Figure 4. When a positive torque is

produced, it is directed in a downward fashion and tends to increase
the precession angle 8y This effect is similar to that experienced
by the precessing top as shown in Figure 5.

The system described above does not account for losses which would
relax the precessional motion. There are three forms for the phenome-
logical equation of motion in which the losses are included [34]. They
are:

(1) The Landau - Lifshiftz form

=y (M x H) - —— [Mx (Mx H)] (2.1-14)

where x» is the damping coefficient with units of frequency

(2) The Bloch - Bloembergen form

dMm M
Ty mxf - _T (2.1-15)
dt S T T

2 .
dM M_ - M
—z VY z 0 (2.1-16)
dt YS(M X H)z - T

where MT and MZ are the transverse and z-directed components of the mag-
netization. The constants 8 and T, are related to the relaxation of
the precessional motion. We cover this below in more detail.
(3) The Gilbert form
M _ > o

at = Ys(MxH) £ -

(2.1-17)

o.lo.
e =<4

M x
where o is the damping coefficient.
The Landau - Lifshiftz form is used mocst often in ferrimagnetic
resonance and is incorporated in this paper. [t should be noted that
the various forms are equivalent for the case of small rf signals pro-
vided T, = 1/uwa and a2<<1 [35]. Therefore, for the purposes of illus-

tration we will examine the Bloch - Bloembergen form in more detail.
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If we look at the case of zero dc and rf fields we obtain

dMZ = - (MZ - Mo) (2.1-18)
dt Tl
E!I = - TI_ (2.1-19)
dt )
where MZ and MT are as defined previously. The solutions to these equa-
tions are
- -t/ -
MZ = M0 -AMe 1 (2.1-20)
- -t/ -
MT MToe (2.1-21)

where AM = MO-Mz is assumed positive at time t=0. Based on these ex-
pressions we expect ﬁo to spiral inward to the z-axis in the absence of
external excitation. This is shown in Fiqure 6. The losses which pro-
duce this motion must be overcome to obtain a net gain in the system.
The loss term is most commonly included in the development of the
permeability tensor . This tensor relates magnetic induction B to the
>

> >
field intensity H in ferrimagnetic materials. In general, B and H pos-

sess both dc and rf components. One form for this tensor is

u  =jK 0
™= by | 3K u 0 (2.1-22)
0 0 1
where
0 “m (2.1-23)
=1 + 1=
uo=1 - 2_w2
0
and
wwm
K=- —: (2.1-24)
0,2 -l

where w o is the saturation magnetization frequency, a constant of the

svstem. This form for the permeability tensor results if the external
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0

Figure 6. The Variation of the magnetization vector M in the absence
of external excitation. After R.F. Soohoo.
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dc field is in the z direction. Other forms for u are given in Appendix
A. The losses are included by replacing w, in the above expressions
with

wy" = wo-j(l/T) (2.1-25)

which can also be written as

wo' = wo_j%YSAH. (2.1-26)

The parameters T and AH are the precession relaxation time and the ferri-
magnetic resonance linewidth respectively. Notice that AH is inversely
proportional to the relaxation time. Ferrites with lower values of AH
are therefore not as lossy as materials with broader resonance linewidths.
Typical values for aH in materials such as Yttrium Iron Garnet (YIG) are
on the order of one oersted. This gives a relaxation time of approxi-

mately 1077 seconds. [36].

2.2. Spin and Magnetostatic Waves

Two forms of wave energy in ferrites will be discussed as they relate
to propagation. These waves are distinguished by the relationship of
their wavelengths to the magnetic dipole spacing. This will determine
if exchange field effects between neighboring dipoles will be included.
‘The exchange interaction gives rise to the effect which causes adjacent
electron spins to precess in phase with each other. The formulation
for incorporating this effect into the analysis is covered in Appendix
A.

Magnetostatic waves are slow, dispersive waves which possess k
values of less than 104 cm'l. This gives rise to large wavelengths with
respect to the dipole spacing. Because of this, the exchange field
interaction is small compared to the macroscopic magnetization field

interaction [37].
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Figure 7. Dispersion curve schematic of three principal wave regions:
(a) Electromagnetic, (b) Magnetostatic, and (c) Spin-exchange.
The angle 6 is for the direction of propagation in relation
to the Z axis. After B.A. Auld.



22

pd

v

FERRITE

z

Figure 8. The basic coordinate system for description of wave propaga-
tion. The slab is assumed infinite in the xz plane.
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The spin wave regime corresponds to wavenumber values larger than

4 cm'l. These are very high frequency waves so the exchange inter-

10
action is comparable to the macroscopic effects. For this reason, these
waves are referred to as spin exchange waves [38]. A third major regime
of wave propagation exists, the electromagnetic region. These waves

are not examined here because their phase velocities are too great for
interaction with drifting carriers [39]. Figure 7 shows a diagram of

the dispersion relation which governs the electromagnetic, magnetostatic
and spin wave regimes of propagation.

To provide a conceptual picture of wave propagation in ferrites
let us consider several cases. Suppose we are given the following co-
ordinate system for our sample as shown in Figure 8. Assume the ferrite
is magnetized in the y-direction as shown. A uniform rf field is applied
in a system where exchange interaction is assumed strong. This effect
causes all dipoles to precess in phase as shown in Figure 9. If h(t)
is varied uniformly then all dipoles will experience the same variation
in 8 but will continue to precess in phase. Now let us suppose the h(t)
is nonuniform in the z direction. This causes a variation in eo along
the sample as shown in Figure 10. Notice that as time increases, there
is no movement of the wave in the direction of propagation and that
neighboring dipoles are still in phase.

If exchange forces are ignored, i.e., we expand to the macroscopic
level, two things occur; first, we must consider the precession of the
magnetization vector instead of individual dipoles. Secondly, the phase
of neighboring magnetization vectors is independent. This case is shown
in Figure 11 where the rf field is assumed uniform in magnitude along
the sample. The phase of adjacent ﬁ vectors differs depending on the

position of the propagating wave. This is acceptable on the macroscopic
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Figure 9. Magnetic dipoles in a ferrite slab under strong exchange
interaction; (a) h = 0, (b) h # 0. A1l dipoles precess
in phase.
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Figure 10. A standing spin-exchange wave of wavelength x; (a) t =t _,
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Figure 11. A travelling magnetostatic wave of wavelength x; t = to’
(b) t = t1>t0 and (c) t = t2>t1. Exchange is ignored here.
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Figure 12. Generalized travelling magnetostatic

wave of wavelength x; (a) t = to,

(b)t-t]>toand()t=t2>t].
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Figure 13. (a) Dispersion curves for the three forms of magnetostatic
wave propagation jn ferrites. (b) Orjentation of the surface
wave for a given Ho'
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level since the wavelength is so much larger than the dipole spacing.
In practice an rf disturbance will give rise to both amplitude and
phase variations in the precessing magnetization vectors as the wave

propagates. The complete description of this wave motion has not been

clearly stated in the literature for the macroscopic case. We will inter-
pret this motion in the following manner for an rf disturbance which is
nonuniform. The propagation is determined by variation of both o, and
the phase position of the vector M. These two components of the motion
are in phase with each other. This means a particular value of 90 corre-
sponds to a given phase position in the precession cycle [40]. A single
wavelength will be defined using two corresponding points along the
sample with the same value of eo and relative phase positions. This is
illustrated in Figure 12.

The waves we are concerned with are surface magnetostatic waves.
They are characterized by a concentration of wave energy on one face of
the ferrite slab. Recall that the thickness of the sample is important
in determining the degree of wave energy concentration on a single sur-
face. The propagation of these waves is highly nonreciprocal. The di-
rection of propagation, applied dc field and the outward pointing normal
from the ferrite surface form a right hand coordinate system [41]. This
means k x ﬁo will point away from the ferrite surface. The dispersion
curves for these waves along with the forward and backward volume modes

are given in Figure 13 [42].

2.3. The Semiconductor Carrier Wave System

The drifting of carriers in semiconductor material is basic to the
amplification mechanism for magnetostatic waves. A geometry contain-
ing a slab adjacent to the ferrite is used. This is in contrast to mag-

netic semiconductors such as CdCr25e4. It has been determined that the
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resistivity must be reduced in these materials by several orders of mag-
nitude before they can be useful in amplifier applications [43].

The carriers drift at a constant velocity, Ugs which is on the order
of 2 x 107 cm/s. In order to keep the level of heating reasonable in
these devices, high mobility semiconductors, such as GaAs, are used. Since
the ferrite is adjacent to the semiconductor, the surface wave can pene-
trate as long as the carrier density is not too great. Typical values

15 to 1020 cm'3.

in the literature range from 10 The fields associated
with this wave interact with the drifting carriers through the Lorentz
force. This is given by

> >

F=u, xh (t) (2.1-27)

where Em(t) is the rf component of the magnetostatic wave. The inter-
action is a Hall effect motion which is transverse to the dc drift motion
of the carriers. This is shown in Figure 14.

The Hall field developed from this motion interacts with the magnet-
ostatic wave, also shown in the figure. We will call this field compon-
ent Fs(t). This component must have the correct phase relationship with
ﬁ(t) in order to promote the desired amplification. The amplification
results if the system losses can be overcome by the torque created from
the interaction of Fs(t) and E(t). One must be careful to distinguish
between ﬁm(t), the rf component of the magnetostatic wave and ﬁs(t) due
to the rf Hall motion of the drifting carriers. The introduction of
ﬁm(t) causes the variation of 8, in phase with the wave propagation.

The field ﬁs(t) is introduced to provide for the wave amplification.

Because it is the drifting carriers which drive the amplification
in the MSSWA, a distinction between this device and the Traveling Wave

Tube amplifier should be made. In the latter case the modulation of
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VARIATION OF TORQUE
DUE TO hS AND hm.

Figure 14. Interaction of a drifting electron in GaAs with the pre-
cessing M vector in the ferrite. Note that u, >> Vyl

(i.e., U  not to scale).



33
carrier motion is collinear with the overall dc drift motion. This gives
rise to the carrier bunching or space charge wave from which signal am-
plification is obtained [44]. In the MSSWA the modulation is transverse
to the dc carrier motion. Also of key impcrtance is the fact that the
space charge wave is weakly damped and inertia dominated in the TWT.
The MSSWA, in contrast exhibits collision dominated waves whose normal
modes are highly damped [45].

In this chapter the basic ferrimagnetic resonance interaction has
been described. An illustration of carrier interaction with magneto-
static waves has also been discussed in order to provide an overview of
the mechanisms of wave amplification. This gives the reader a foundation
for the study of different dispersion relationships which describe the

amplifier geometries of interest in this report.



3. ANALYSIS OF THE MSSWA

3.1. Relevant Properties of Magnetostatic Surface Waves

In this section the properties of magnetostatic surface waves are
addressed in more detail. The literature on this topic is extensive
and some controversy does exist [46, 47]. Here, we wish to present a
detailed study of the effects of certain parameters such as slab thick-
ness and metal plate spacing on the character of the dispersion rela-
tions.

The first case we examine is that of an unbounded ferrite slab of
thickness d. The surface or (Damon-Esbach) mode has the property that
wave energy is concentrated near one face of the ferrite as was stated
in Chapter 2. The dispersion relation is affected by the thickness of
the slab. It has been shown theoretically that the group velocity of
the lowest order surface mode is dependent only on this parameter [48].
This effect tends to increase the velocity as d increases as shown in
Figure 1(a). In order to maintain the velocity of the wave at reason-
able values for amplification purposes, we conclude that a thinner slab
is best. Recall that the drift velocity of carriers in GaAs reaches a
practical maximum of 2 x 107 cm/s. A range of values for k in a ferrite
of thickness d = 10um is given in Figure 1(b).

The second case involves a metal plate adjacent to one face of the
ferrite slab. This is shown in Figure 2. The wave on the top face is
the Damon-Esbach wave treated above. This wave is also referred to as
a Ferrite-Air (FA) mode. The wave on the lower face is called the
Ferrite-Metal (FM) mode or Seshadri wave [49]. Notice that the FM mode
has a larger passband. It has also been speculated that this mode is

more lossy than the FA mode [50-52]. The resonance for the FM mode
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Figure 1. (a) Variation of dispersion curve for an unbound ferrite

slab as a function of slab thickness.
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dispersion case.
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occurs at W, + wy whereas the FA mode resonance is observed at Wy + - -

These resonances are approached more quickly as d+=. Therefore, in
order to support a propagating mode with a finite passband a slab of
finite thickness is required.

Now we consider the ferrite slab separated by a finite distance
from the metal ground plane. The surface wave on the face opposite to
the ground plane is just the FA mode of before. This wave is only
slightly perturbed by the metal. We examine this more later. The wave
on the bottom face is a hybrid mode referred to as a Ferrite-Air-Metal
(FAM) mode. The spacing of the ground plane can create some interesting
changes in the FAM dispersion curve. For spacings small compared to a
wavelength the mode is basically the FM type. This wave is transformed
into a FA mode as the ferrite to metal gap becomes very large. It is
for intermediate values, such as Ad = lum, that the dispersion shows an
interesting change. A region in the dispersion occurs where the group
velocity goes to zero. The forward waves then become backward waves
with negative group velocity as k is increased. This is shown in Figure
3.

If the gap between ferrite and metal is held constant as slab thick-
ness is varied, the effects on both FA and FAM modes can be assessed.

In the FA case, the variation in thickness gives rise to the same modi-
fications in the dispersion as when the metal plate is absent. The FAM
mode shows a more significant change over the same range of thickness
values. The variation in d creates a dispersion curve which has a zero
group velocity regime similar to the case treated above for variations

in the ferrite-metal gap. Note Figure 4. In the limit as d»~ a complete
backward wave results as shown in Figure 5 for the frequency range (wA,

wB) [53]. This r<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>