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ABSTRACT

FINITE DISPLACEMENT BEHAVIOR OF PRESTRESSED
AND UNPRESTRESSED ARCH-FRAMES
By

Mostafa Tavakoli

The behavior of prestressed and unprestressed arches is studied.
The possible means of achieving better design through cables or end
couples is also examined.

The arch being studied is approximated by a series of bars
connected by rotational springs. The axial deformations occur in the
bars which are incapable of bending. The bending is taken by the
springs at the nodes.

The reactions and the rotation or the moment at the left support

are guessed as initial values. The equilibrium equations are written
at each node and the forces and moments at each element and node are
found. The method proceeds to the right end where errors in horizontal
and vertical displacements and either moment or rotation may occur.

Having the errors and the initial values, the latter are improved by

Newtonian iteration and the calculations are iterated until convergence

is achieved.
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The method is capable of taking into account both symmetrical and
unsymmetrical force application, physical properties, geometry, and
deformations.

The method is applied to several problems with known solutions and
the results are compared in Chapter 3; these include the buckling of a
half circle arch with a concentrated load at the crown, a straight beam
with a distributed load over half of the span, a quarter circle arch
with the distributed vertical and radial load over the entire span, and
the non-prismatic arch under uniform load over the entire span. The
results obtained compare favorably ﬁith the known solutions presented
in the literature.

In Chapter 4 the two principal problems of this thesis are
investigated: the effect of wind load and the combination of arch and
cables at different positions; and prestressed arches with concentrated
load at the crown and uniform load over the entire and half of the
span. It is concluded that the cables do not reduce the crown
‘ displacement except under the wind load. Prestressing the arch is also
not effective in achieving a better design.'

The method of extrapolation to reduce the need for a large number

of elements was used and proved to be effective.
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CHAPTER I

INTRODUCTION

1.1 General

Arches are among the oldest forms of structures and devices that
have been used for many centuries. Bows as a hunting device and a
weapon have been used since the ancient times. The sport of modem
archery started even before the 13th century (12).

Arches have had other important applications. In many cases such
as bridges, buildings, decorative structures, mechanical bodies, and
the approximation of shells by a series of arches, they have formed a
major structural component. In lightweight structures, arches are
being used, sometimes in connection with cable nets or fabric covering.
For ease in erection, these arches are sometimes made from initially
straight bars, bent into an arch shape, secured at the ends by clamping
or pinning, and then loaded.

It is this extensive application of the arch-frames that motivated
this investigation.

This thesis is concerned with the behavior of an arch under large
enough loads to produce large deflections. The study is done using a
finite number of discrete elements to approximate the arch. This
method makes it possible to consider problems such as arches with

variable section where the application of exact methods would be
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difficult, if possible. Even if {t was possible, to solve the problem

using the methods available in statics and mathematics would be often

not easy.
In this investigation, a rigid bar spring node model is used.

Both axial deformations, taken by the bars, and rotations, taken by the

springs at the nodes are allowed. Using the equilibrium equations and

Newton's algorithm, an iteration procedure is developed to find the

forces and moments in all elements and nodes. The final configuration

is also found. The model has been used to solve the following problems

for which known solutions are available:

1. The symmetric and unsymmetric behavior of a half circle arch,

pinned at the ends and loaded at the crown with a concentrated load

applied vertically.

2. A straight beam, pinned at the supports and subjected to a

uniform load over half of the span.

3. A parabolic arch with variable moment of inertia under uniform

load over the entire span.

4. A quarter circle arch pinned at the ends and loaded radially

or vertically over the entire span.
The problems investigated in Chapter 4 are as follows:

e A circular arch pinned at the ends, supported by cables at

different positions and loaded horizontally or vertically.
2. Circular arcs with various initial spans prestressed into-an

arch with a fixed span, s, then pinned at the ends and loaded. A

straight bar was also prestressed into arches with different spans,

fixed at the ends and loaded.
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3. A straight bar prestressed Into an arch by an axial force,
fixed at the ends, and then loaded with 3 different loadings;
concentrated at the crown, uniform over the entire span, and uniform

over half of the span. The results are compared with the unprestressed

parabolic fixed arch with the same span and the same loadings.

The program written is in BASIC and was run with the TRS-80

micro-computer.

Included as the appendices of the thesis are; the main computer

program, the method used to improve the initial values, a computer
program used to find the peak values of the load-displacement curves,

and an alternative method for 2-dimensional problems and methods to

solve 3-dimensional problems which did not lead to satisfactory

results.

1.2 Related Past Works

The buckling of curved structures has been investigated by many
researchers. Austin (1) has summarized the state of the knowledge of
the in-plane bending and buckling of arches. Austin and Ross (3) have
compared numerical procedures for elastic analysis of arches by large
deflection, 2nd order and classical theories using repeated numerical
integrations similar to the Newmark procedure for beams and beam-

columns. Following Watwood and Harts (40), Gallert and Laursen (14)

have used equilibrium models to study an elastic arch of arbitrary

geometry and loading by a finite element method based on a mixed

variational principle. They removed the restriction of prior

satisfaction of equilibrium on the trial set of unknowns, i.e., the
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stress field was directly obtained by analysis. Using the variational
approach, Schreyer and Masur (33) wrote the equilibrium equations in
radial and tangential directions to find the equations of buckling load
and load-displacement curves for a clamped arch loaded by a
concentrated force at the apex. They concluded that the symmetric snap_
through buckling always governs. Kerr and Soifer (20) gave an analysis
of the effect of linearizing the prebuckling state for clamped shallow
arches, overestimating the snap-through load. Using Koiter's initial
post buckling theory, Dym (11) considered a symmetric buckling from a
linear prebuckling stage and its postbuckling aftermath.

Oran and Bayazid (29) analysed the stability of uniformly loaded
circular arches without the assumption of shallow and inextensional
arch and showed that the critical load (both limit and bifurcation) can
be expressed in terms of a combined problem parameter in the form of
asymptotic formulas. Sheinman (35) has developed a numerical procedure
modifying Newton's method and by finite difference based on large
deflection, small strain, and moderately small rotations. The
equilibrium equations admit shear deformation and geometric
imperfection.

Using the Newton-Raphson method to solve non-linear equilibrium
equations, Wood and Zienkiewicz (45) have worked on geometrically
non-linear analysis of elastic in-plane oriented bodies in a total
Lagrangian coordinate system, developing a paralinear isoparametric
element. A non-linear elastic finite element for a beam initially
curved in one plane but deformable in the three dimensional space has

been presented by Wen and Lange (42). In this work the quadratic and
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linear eigenproblems were formulated to calculate the in-plane and out
of plane buckling loads of arches. Wen and Rahimzadeh (43)
investigated non-linear elastic frames including arches, approximated
by a series of finite elements and using different coordinate systems
such as Euler and Lagrange (small rotations and updated).

Other studies of interest include, Ojalvo and Newman (28), Ojalvo
and Demuts (27), Bathe and Bolourchi (4), Chajes (5), DaDeppo and
Schmidt (9), Dawe (8), Wempner and Patrick (41), Yamada and Ezawa (47),
Harrison (16), and Sabir and Lock (32).

The survey article by Schmidt and DaDeppo (34) provides additional
historical comments and a more complete bibliography than that

undertaken here.

1.3 Notations

The following symbols have been used in this investigation:

A = Cross Sectional Area of Each Element;

A = Cross Sectional Area of Cables;

AD= Axial Deformation of Each Element;

AF= Axial Force in Each Element;

CB= Combined Components of the Axial Forces of the Pair of Cables in
the Plane of the Arch;

CD= Cable Axial Deformation (Positive if Compression);

CF

Cable Axial Force;
CH= Horizontal Component of CB;
CL= Cable Original Length;

CN= Cable Final Length=CL-CD;
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CV= Vertical Component of CB;

E = Modulus of Elasticity of Each Hemb;r;

Ec’ Modulus of Elasticity of Cables;

GR= Guessed Value for Rotation of the First Element;

HL= Applied Horizontal Load at Each Node;

I = Moment of Inertia of Each Member;

L = Element Length;

LF= Load Factors of the Distributed Horizontal Load;

M = Moment of Each Node;

M .7 Maximum moment;

M= Prestressing Moment at Each Node (When Ba} is Prestressed By
Couples Applied at the Ends);

N = Number of Elements;

P = Concentrated Applied Load;

Pb= Bifurcation Load (Where Unsymmetric Buckling May Occur);

Pc= Critical Load (Maximum P on the Symmetric Part of Load-Vertical
Displacement of the Crown Curve);

PL= Limit Applied Load After Which the Deflection of Crown Gets Larger
By Adding Cables;

R=Radfus of the Arch;

SC= The Angle Between the Two Neighboring' Elements, Unless:Otherwise
Specified;

SF= The Shear Force fn Each Element;

Vb= Vertical Displacement of the Crown Corresponding to Bifurcation
Load;

Vc= Vertical Displacement of the Crown Corresponding to the Critical






Load;
VL= Applied Vertical Load at Each Node;

Vertical Displacement of the Crown Corresponding to the Critical

Eil

Distiuted Load;

Distributed Load Per Unit Length;

W=

Bifurcation W (Hheré Unsymmetric Buckling May Occur);

W = Critical W ( Max. w on The Sym. Part of Load-Displ. Curve);

W,= Radial Distributed Load Per Unit Length That Changes Direction to
Stay Normal to the Arch During and After Deformation;

Hmrzﬁadial Distributed Load Per Unit Length That Does Not Change

Direction and Stays Radial;

X = X- Coordinate of Each Node;

Y = Y-Coordinate of Each Node;

A6= Rotation of Each Element;

6 = Angle between the Element and a Vertical Line , Measured

Clockwise From The Vertical;

9 =
ne+A6.






28

CHAPTER II
THEORY AND FORMULATION
2.1 Physical Model and Assumptions Made

The arch is modeled as a combination of rigid bars and rotational
springs. The bars are considered to have axial elastic properties, but
are incapable of bending. The rotations are taken by the springs at
the nodes (Fig. 1).

It is also assumed that the material is isotropic and linearly
elastic. No shear deformations are allowed.

Fig. 2 illustrates the forces and moments on a typical bar and a
typical node. On the first node and element there are also the
horizontal and vertical reactions in the positive x and y directions,
respectively. The applied horizontal load is considered to be positive
if in the positive x direction. The positive applied vertical load is
in the negative y direction. For a fixed support a moment also exists
at the support.

If the forces and moments on the element (or node) i-1 are known,
the forces and moments on element (or node) i can be found using the
following equilibrium equations at node i.

SF(1)=-AF (1-1))5 in(SC)+SF(1-1)Cos(SC)+HL(1)Cos(8)+VL(1)S1n(8) (a)
AF(1)=AF (1-1)Cos(SC)+SF(i-1)Sin(SC)+HL(1)Sin(8)-VL(1)Cos(8)  (b) (2.1)

AD(1)=AF (1)L(1)/E(1)I(1) {c)
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M(1i)=M(1i-1)+SF(1-1)L(i-1) (d)
A6(1)=M(i){L(i)/ZE(i)I(1)+L(i-1)/2 E(i—l)l(i-l)} (e)

Axial deformation and rotation of a node are shown in Fig. 3 in
the positive sense.

As with most finite element solutions, taking more elements leads
to a better accuracy.

The results obtained using this model agree well with the ones
previously obtained by others. Table 1 shows the results for a
cantilever beam loaded at the free end with a vertical downward load.
As can be seen, with extrapolation between 6, 8 and 10 elements exact
results (23) are obtained. The 4, 6 extrapolation differs from the
exact value by only .06%. The 4, 6, 8 and 10, 20 extrapolations are
more accurate than the solution with 100 elements.

Fig. U4 shows the results for a cantilever beam with end couple.
The results are very good again compared with the exact ones.

The effectiveness of this model and the procedure used will be
compared with some other previously worked out models and procedures

later in the next chapter.
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Fig.1. Modeling The Arch

SF(1)
6(i)

o

SF(i M(i1) Ry
(%(i) ‘j’d{l)

SF(i-1)

F( i-1)

Fig.2. Typical Bar And Node

N
L(i Node 1 -1
\/ AD(i)=AL(1)

Fig.3. Sign Convention For Axial Deformation And Rotation
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Table 1 - Comparison of Results For Cantilever Loaded At The End

2.2 Procedure

X y
# of elements free end free end | slope (free end)
y 60.3019 73.3951 1.20618
6 60.8407 72.2761 - 1.21116
8 61.018 71.8834 1.21298
10 61.098 71.7018 1.21383
20 61.2028 T71.4597 1.21498
100 61.2358 71.3823 1.21535
4,6 61.27174 71.3809 1.21514
4,8 51.2567 71.3795 1.21525
6,8 51.24596 71.3785 1.21532
8,10 61.24022 71.37896 1.21534
10,20 61.23773 71.37900 1.21536
4,6,8 61.23736 71.3777 1.21538
6,8,10 61.23700 71.37921 1.21535
bxact (23) 61.237 71.379 1.21537
ref. (13) H4el. |61.29 71.91 1.223
ref. (13)10e1.J 61.25 71.46 1.221

)

The procedure used in satisfying the boundary conditions for a

frame is the so-called "shooting method".

It starts out with assuming

values for the unknowns at the left support of the arch under any

loading condition (Fig. 5).

Ay

/ load

v

Fig. 5,

Arch Under General Load

The final configuration of the arch after
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loading is to be determined. The assumed unknowns would include
reactions and rotation (for pinned end) or moment (for fixed end).
Having this information and using formulas 2.1, we can find the forces
and deformation of the next element and moment and rotation of the next
node and proceed to the right support. We will end up with certain
values for the x and y displacements and moment (for pinned end) or
rotation (for fixed end) which are the errors (if not equal to zero).
Having the initial guessed values and the final errors and using
Newton's algorithm (appendix A), we improve the initial values and
iterate until convergence is achieved, i.e., the errors are within
acceptable range. In Newton's algorithm, to find the derivative of
f(x,y,z) representing each one of the 3 errors at the right support
with respect to say, x representing one of the 3 initial values, we

find f(x,y,z) and then f(x+Ax,y,z), Ax being a small increment in x.

Then 0f(,y,2) _ _f(x+Ax,y,2)-f(x,y,2) (2.2)
vx A%

Ax=.01 has given the best results in all cases.

A listing of the computer program is given in appendix C. Fig. 6
shows the flow chart of the program.

In the process of inputting data, variable thickness, properties,
shape, element length, and loading can be allowed for. The uniform
loading is assumed to be lumped at the nodes. Components of the loads
at the nodes in x and y directions are input.

A double precision program has also been used and the results have

not changed significantly from the ones using single precision.
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It should also be noted that the choice of the initial values may
change the speed of convergence significantly. Another point to
consider is that a set of initial values intended for one case of
equilibrium, such as symmetric, may lead to another equilibrium
configuration, such as unsymmetric. With a little experience, one will
have a feeling of what the initial values for a better and a faster

convergence in the right direction should be.
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CHAPTER III
CASES WITH KNOWN SOLUTIONS
The following cases have been studied.
3.1 Arch With Concentrated Load at the Crown
A simply supported half circle arch with a concentrated vertical

downward load at the crown was considered (Fig. 7).

Fig. 7, The Arch of Case 3.1

The program was run for different initial guesses, all leading to
the same results. Convergence was fast, except at the loads very close
to the critical load. To overcome this problem a third degree curve
fitting was taken passing through 4 neighboring points on both sides
of the peak value. The 4 points had already been found using the
program. So the equation of the curve was written. If the coordinates
of the 4 points are (xlgl), (x2, ¥2), (x3, ¥3), and (x4 , y;) then the

coefficients of the third degree polynomias can be found as follows:






-17-

) R o o 1

3" 22 1
yal %2 X% e (3.1)
y3 xg X3 x3 1

3 2
Y, X X %, 1i_1 d

32
a xé_ X% X3 1 Y1
bl _ % 4 e B (3.2)
c x x% x3 1 bL

2

a b ox ow Y g

Knowing the coefficients, the peak value can be determined by solving
the following equation for x and finding the corresponding y. The

program to do so is listed in appendix B.

dy/dx = 3ax? + 2bx+c

The bifurcation load was determined by approximating the symmetric and
the unsymmetric branches of the load-displacement curve by two
polynomials passed through determined points on the branches and then
solving for the intersection of these two curves.

Fig. 8 shows the load vs. crown vertical displacement curve. The
reference curve (15) is also plotted.

Figs. 9-11 show the deflected shapes of the arch under different
loads for 4, 6, and 8 elements, respectively. Fig. 12 shows the
deflected shapes of a 20 element arch with different properties.

Table 2 compares the results obtained using this method and other
references. The % differences in results are also shown. In this
table:

Pc = critical load (peak value on the symmetric part of load-

displacement curve)
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Pb = bifurcation load (load at which unsymmetric buckling may occur)

V_ = displacement of the crown corresponding to Pc

P
Table 2 - Comparison of Results For Case 3.1
2 2 Z Ditrerence
No. of PR PR | Yo [T1n p RTEX Tn P R/EL | Tn VIR
enent EI EI R < P
468168 4,68 ] 6.8 ]4,6,8] 6.8
4. | 4.66 |6.960|.82
6 5.335 |8.075|.78
8 5.600 | 8.915(.765
6,8 5.940 |10.00].75
f,6,8 5.960 [10.32.75
(15)50E1. [5.875 (10.15[.75 [ 1.454 1.11% [1.67% | 1.48% 0z oz
(42)16E1. |6.766 11.924 12.21% -
(21) 6.540 . 8.8774 9.17%
(43) 5.700 4.567 4.21%

Fig. 8 is for the arch with E=200, 1:108, A=105, and R=5000.
Table 2 corresponds to the same arch. For an arch with different
properties (E=1.04x107, 1=6.21x107%, A=.0775,R=10), the values for 4,
6, and 8 elements shown in Table 2 did not change significantly.

It should be noted that the results are for a much fewer number of
elements than many others.

The larger difference with two of the references in Table 2 is

mainly due to the difference in assumptions. In reference (42) the

weakening effect of bending deformations on the axial stiffness is
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neglected. The displacement of the structure is assumed to increase
linearly with the applied load until buckling occurs. The assumptions
in reference (21) were based on the cross sections being inextensional.
Although the term involving the cross sectional area does not appear in
the dimensionless term PRZ/EI, the effect of the area is significant in
many cases (42). The present study is not based on any of the above
assumptions.

The 3 f)oint Richardson's extrapolation has been done using the
following formula:

né “g nﬁ

Af 5oy + Ae
2::32 2 225509 2 2 25, 2. 2
(nf-nc)(ng-ni) (ng-n}) (ng-ng) (nf n0) (ng-n)
(3.3)
where Ag, A;, and A, are the values corresponding to LY R and n
number of elements, respectively. For a 2 point extrapolation the
following formula has been used:
2 2
n n.
A= Ap gt - Ao (3.4
(ng-nd) (ng-ng)

The energy can also be checked. For a body in equilibrium the
energy due to the external forces should be equal to the internal
energy. The external energy due to load p is equal to the area under
the load-displacement curve from load=0 to the point corresponding to
p. This area can easily be found by approximating the curve by some
straight lines. The internal energy would be equal to:

Internal Energy = 1/25H(1)06(1)+AF (1)AD(1)) (3.5)
Using Fig. 8, the external emergy for a load of 7000 (before the

peak value on the curve) would be equal to 1.507376x10 7 and the
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A——A Rref. (15)
B—8 8 Elenents
©——© 6 Elements
s ©——O 4 Elements

108 Points on the curves do not

0

Fig. 8.

R = 5000 I=
E = 200 A = 105 represent data points. they are
there to distinguish between the
; 4 qurves. t +
i2 4 .6 .8 1.0 Ve/r

Load - Deflection curve for case 3.1
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internal energy is equal to 1.5152700x107. There is a 0.52%
difference. For a load of 6000,‘(on the curve passed the peak value)
the external and internal energy and the percentage difference are
equal to 2.9865619x107, 2.9924650x107 and 0.2%, respectively. These
were all for the 8 element case. Therefore the external energy and
internal energy are equal, which confirms again that the configurations
obtained are the equilibrium configurations.

We see that the model and procedure work very well for this case.

3.2 Half Span Loaded Beam

A simply supported beam with a horizontal restraint at the end was
loaded uniformly over half of the span. Table 3 shows the results for
different w using different numbers of elements. The values for 6
divisions seem to be away from the normal accuracy. This is possibly
because of the length of elements not being exactly entered as 100/6 in
the data for computer program. In the data, instead of 100/6 the
length was taken as 16.6667 which caused the difference in the length
of 16.6667x6=100.0002 3 difference = .0002.

The .0002 extension results in the axial force of
(.0002) (EA/L)=.2 which may have caused the difference. As can been
seen in Table 3, using double precision did not change the results
significantly.

With no horizontal restraint at the end (referred to as the exact
results in Table 3).
v -.651042x10"2 wL4/EI (a)

center
(b)

M -.0625 wi’
center (3.6)
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For a small load (W=1) the results from Table 3 are about 1%

Table 3 - Results for Case 3.2

of Wzl w=10 W=50
eaent Yeanten "Cg t.e]r H Ve " H VC H C H
[ .675847 617.67 -10.788 4.50753 4052.U6 -4BL.128 9.74334 8325.3 | -2310.28
6 65850 618.179  -10.3143 §.43921 4095.93 -481.573 9.63835 8416.02] -2322.75
8 .652249 618.178 -10.4073 u.u1n94 4111.76 -480.591 9.60u18 8453.8 | -2326.2
10 649421 618.243 -10.353 4.40383 4119.42 -480.04 9.58889 8472.48] -2327.6
20 .645630 610.327 -10.2903 4.3890 4129.79 -479.271 9.56896 8498.47] -2329.29
5,6 .644630 618,573
4,8 644383 618,349 -10.2804 4.368404 4131.53 ~U79.412 9.55779 8496.63% <-2331.51
6,8 684206 618.183
8,10 .684393 618.359 -10.2565
10,20 644366 618.35( -1026.94 4.38400 -479.019 -479.015 9.56232 8507.13 -2329.85
,6,8 644066
,8,10 .64ku498
,10,20 .644361 618.314 -10.2719
4,8,10 .644395 618.36 1 -10.2519
Doudble Precision
] .6758516810 | 617.677459 |-10.7873779 4,5075603]4052.450 -484.1294 9.74332 8325.3049 | -2310.279
8 .652249%4 618.179029 |-10.4063318 4.41490 fu111.7507 | -480.5910 9.6041376 8853.76837] -2326.211
59488 S177 91654 220 9 6840¢<
Ll,e .64438207  [618.34622 410.279316 4,3840216 4131.51762 |-479.41165 9.5577409 8496.5895 }2331.5228
Exact [.651042 625 one end on roller l
aif 1.02% Y.05%
4,8,10 Le10Q
E=10
I=100
A=10
different from the exact ones obtained using formulas 2.6.

— -

Of course

the non-linearity causes a swmall horizontal reaction which makes the

two cases (Table 3 and formulas 3.6) slightly different.

3.3 Distributed Load

load over the entire span was considered (Fig. 13).

First a quarter circle with pinned ends and a vertical distributed
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6
E=4.176x10

1=2.03125
A=2.7

Fig. 13,Quarter Circle with Vertical Distributed Load

The loads on the two half lengths of the two elements adjacent to
each node were taken as the concentrated load at that node.

Fig. 15 shows W-V, curve where Vc=vértica1 displacement of the
crown. Fig. 16 shows some deflected shapes of the arch. Let W, be
the point where the symmetric and unsymmetric curves meet (buckling
load), W. be the critical load which is the max. value of w
corresponding to the symmetric curve, and Vi and Vp be the
corresponding vertical displacements of the crown. Table 4 compares
the results obtained using this and other methods. As shown with
extrapolation between 6 and 8 elements, the maximum difference between

this and other procedures is about 2%.






-28-

Table 4- Comparison of The Results for Quarter Circle With
Vertical Distributed Load

2 2 Difference_With 3
No. of E1. wpR /E]| AT Hie v R /EI Vb/R vm/R
6 |15.27 25.55( .0125 | .0845
8 [15.5 26.98( .0127 | .0875
6,8 |15.78 28.83 .0130 | .091%4
42)8E1. [15.43 [1% 1% 2%
2) 15.62 |2% . 1% 1%

Next a quarter circle with pinned ends and radial distributed load

was considered (Fig. 14).

E=107,1=.8789x10"2
A=.1875

Fig. 14, Quarter Circle With Radial Distributed Load

The load may or may not stay normal to the arch. It was again
distributed among nodes as concentrated loads. Fig. 17 shows the load
displacement curves for 8 and 10 element arch.

Table 5 compares the results for the case when the load stays
normal to the arch. With extrapolation between 8 and 10 elements the
difference is 6% from the one obtained by Wen and Lange(42) and .4%

from that obtained by Timoshenko (37).
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Table 5- Comparison of Results for Quarter Circle,Radial Dist. Load
No. of wy R ) Z Difference With "NR
Elements | 30EI |g g1.] 10 E1.| 8,10 30EL
8 470 - - - .503
10 .480 - - - .51 N=Normal to Arc
8,10 .498 - - - .522
{42)16E1. 25291 | 13% 10% 63 NN=Not Normal
[37) .50 63 43 .4 to Arch

The deflected shapes are shown in Fig. 18 (a and b).
As can be seen, this case corresponds to one of the many modes of
vibration. Fig. 18 (c and d) also shows the deflected shapes for 2

other modes of vibration. The corresponding load deflection curves are
shown in Fig. 19.

3.4 Nonprismatic Parabolic Arch

The buckling of a nonmprismatic parabolic arch, pinned at the
ends and subjected to a uniform loading on a horizontal projection over
the entire span was investigated for two different variations of the
cross sectional area. In both cases the moment of inertia at a cross
section is I=Ic sec § (3.7) where Ic=the moment of inertia at the
crown ; 0: the angle between the tangent to the arch axis and the

horizontal (Fig. 20).
L 22 ¥ T T X 39

T g

iy o

20 =]

Fig. 20, Parabolic arch Under Uniform Load
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The two variations of the cross sectional area are:

A =101

A =10,0001

The rise-span ratio is taken as 0.5, that of a half circular arch.

The nodes were taken in such a way that they were on the arch axis and
the lengths of the elements were equal.

Fig. 21 illustrates the deflected shapes of the arch. The load-
crown vertical displacement curves are shown in Fig. 22. For the
parabolic arch with uniform load, the axial forces are the main cause
of displacement. As can be seen, the curves for the symmetric case do
not have a decreasing segment. For the case of A=10,000 I, the
symmetric curve is very close to a vertical line. The large cross
sectional area causes small axial deformations and small displacement.

The critical values of the axial compressive force at the quarter
points of the span can be expressed by the following equation, as is
done by Austin (1).

P x e (3.8)

2/
where
S = one half the length of the arch axis;
x = a coefficient.
The horizontal component of the thrust at buckling can be
expressed as

s Fﬂc_ (3.9
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L = span length; and
P = a coefficient.

The values of «x and P obtained using this method are compared with
the reference (1) values in Table 6. The 3 point extrapolation gives a
very good set of results, specially for the case of A=10I. Part of the
difference in the results can be due to the possible difference in the
form of the variation of the cross-sectional area which is not
specified in the reference literature.

Table 6 - Comparison of the Results for Non-Prismatic Arch

No. of A=10 T A=10% 1 A=10 I ookt
Elements [« T Diff. Diff. p E[piE.
b2/ Ref. / Ref. / Ref. W/ Ref.

6 h1.423] 1.70 11.078 | 4.66 |14.522 3.19 [14.325 4.50
8 |11.52¢ .83 n1.277 2.95 [14.788 1.41 |14.58224 2.79
10 fi1.552| .59 h1.3252] 2.54 |14.866p .89 |14.830% 1.07
6,8,10 N1.572p .41 [11.3423] 2.34 [14.94 .ho 15.14721 3.15

ref.(1) J11.62 - .62 - 15.0 - 15.0
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CHAPTER IV
EFFECTS OF CABLES AND PRESTRESSING
4.1 Cable Supported Arches
A slight modification in the program used for case 3.1 makes it
possible to apply it to the cable supported arches. To keep it an in-
plane problem, two cables, identical in property, length, and strength
but on two opposite sides of the arch and symmetric with respect to the

plane of the arch were attached to any desired node (Fig. 23).

l vD
BD
BD

Fig. 23, a) Projection on a ¢ b) Projection of Cables in
Horizontal Plane The Plane of Arch
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The symmetry would allow us to find the in-plane component of the
axial force caused by extension in each cable and double it to find the
total force due to the pair of cables on the node to which the cables
are attached. The components of the cables axial forces in the
direction perpendicular to the plane of the arch would be equal in
magnitude but opposite in direction, therefore they cancel.

In the modified program, if there are any cables at a node, the
coordinates of the node are found as if the cables did not exist.

Having the new coordinates and VD (Fig. 23), new CC can be found.

2 2.1/2
ce=[vp + y(1)] 4 (4.1)
The new length of each cable is then equal to
2,1/2 (4.2)

CN=(CC2+ BD 7)
So if CL = the original length of the cable, the change of length for
each cable is (compression is positive)

CD= CL-CN (4.3)

Now, if E cand A are the cable modulus of elasticity and cross-
sectional area,respectively, the axial force in each cable would be

CF=CD-E -A_ /CN (h.4)
[ c

If cp = the angle between the cable and the arch plane, the components

of CF of the two symmetric cables in the plane of the arch would be

CB=2(CF) Cos (CP) (4.5)
Then CV and CH, the components of CB in vertical and horizontal
directions are

(4.6)

CV=-(CB) Sin(BK)
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CH=(CB) Cos (BK) (4.7)
These are added to the applied vertical and horizontal loads.

Having new forces, moment and axial deformation of the
corresponding node and element can be found leading to the new
coordinates of the node. Then, we proceed to the next node.

Note that cables are useless when compressed so they should be
allowed to work in tension only.

To examine the effect of cables, a pinned-ends half circle arch
with vertical and horizontal (wind) loads was studied.

With a vertical load at the crown and 16 elements, the program was
tested for a set of weak cables. The critical load of 10.0 and the
displacements agree well with the previously obtained results (in Table
2). Then the same arch with 4 elements and a set of strong cables at
nodes 2 and 4 was studied,Fig. 24 shows the load-vertical deflection
(of the crown) curves for cables with different cross sectional area or
modulus of elasticity. As can be seen when the cables are strong, the
pattern,in which after the critical load (right half of the curve)
decreasing the load would increase the deflection, may not exist.
Displacements are smaller and the critical load is bigger than without
cables. When the cables are too strong, the corresponding node tends
to stay where it was before loading. The neighboring nodes will be
displaced large amounts,causing discontinuity,and therefore making
convergence very hard or impossible. Fig. 25 shows the deflected
arch.

The 4 element arch can not be a good representation of the problem

because the arch together with the cables acts as a truss type







42—
structure. For this reason an eight bar arch was considered.

The cables helped the structure by decreasing the deflection up to
a limit load, EL , smaller than, but close to the critical load, as can
be seen from Fig. 26. At P= PL,the cables cause an increase in the
crown deflection up to a certain load after which the cables go into
compression. Changing the position of the base of the cables did not
improve it very much.

It was thought that this increased deflection was caused by the
fact that for a large cross sectional area and after a certain
deformation occurs, not much axial deformation is possible (compared
with rotations) so the crown starts deflecting more as we add the
cables. But with different cross sectional areas,the basic pattern
still was unchanged (Figs. 26 and 27 ) . However, it was noticed
that the change in geometry due to the cables, for loads greater than
Bi.’ increased the horizontal reaction causing larger moments therefore
larger deflection as we add the cables.

As the number of elements increases, PL gets closer to the
critical load. As seen in Fig. 26, for 8 elements

PL/Pc- 6.1/8.915=,6842
and for 12 elements P /P = 8.7/9.71=.896

Fig. 27 shows the deflected shapes of the arch with 8 and 12
elements. Figs. 28 and 29 show that changing the position of the bases
of the cables or properties of the arch does not change the general
behavior of the arch much. Figs. 30 and 31 show that with more cables
the same pattern still exists (deflection of the crown increases with

cables after a certain load { ).






43—

One of the main applications of éables is when wind forms an
important part of the loads. Therefore, we now examine the behavior of
the arch-cable combination under wind load.

The horizontal component of the wind on a circular arch is more
important. For this reason, the horizontal load was considered even
though it is just a matter of inputting the magnitudes of the vertical
components as the vertical loads in the computer program to take into
account the total effect of the wind loads.

A pair of concentrated loads were applied first. The two loads
were equal in magnitude and opposite in direction, applied on two sides
of the arch at the same position relative to the two supports to make
it a symmetric problem. As expected,the lower part of the arch moves
in and the upper part (including the crown) moves outward (Fig. 32).

The horizontal uniform load was distributed as concentrated loads
among the nodes according to half of the total vertical length of the
two elements adjacent to each node. These ratios are called wind load
factor (LF). To increase the horizontal load, LF of each node is
multiplied by a constant number. For 12 element arch the load factors
for nodes 1-7 are 12.94, 25, 22.415, 18.7, 13.385, 6.825, and 1.785
(Radius of the half circle arch = 100).

Fig. 33 shows the LF - crown displacement (vertical and
horizontal) curves without cables. The curve for LF - horizontal
displacement of node 4 in a 12 element arch is also shown in Fig. 33.
Node 4 follows the same f:attem in terms of horizontal displacements
except that they are bigger than the horizontal displacements of the

crown for a certain load.







.

In Fig. 34 the LF - horizontal displacement curves with and
without cables are shown. The load is scaled on the horizontal axis
for a better illustration. The curves tend to approach a horizontal
limit. Fig. 35 shows the deflected shapes of the arch for different
loads, with and without cables.

As can be seen from Figs. 33 and 34, attaching cables would help
the arch have less displacements and a greater horizontal limit of LF-
displacement curve.

Therefore, when horizontal (or wind) loads are applied, cables are

effective and useful.
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E
Load=0 6——g Original
’ e—— o5 w/o cables
0—0 wi
Load=2000 with cables
—O= T
- 502090
2d=»300
P
E =5000
c
* -~
A =1.0
c.
0 B |
Load=0 90 20,90
Load=2000!
A B o Original
-5 o— o W/o cables
o———o0 With cables
P
Load=2800 E =1000
c
A =0.5
c

For (a) and (b)
R=100, E=29000,I1=102, A=10.8

Fig. 27, Deflected Shapes of Arch, Different Number of Elements
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4.2 Prestressed Arch

A straight bar may be bent into an arch, then fixed and loaded.
To take the effect of this prestressing into account, we have to find

the prestressing moment, Mo, and add it to the moments at the nodes.

=)
Fig. 36, Prestressing The Straight Bar Into An Arch
If n=number of elements, then the angle between element i+l and i
would be TW/n (Fig. 36). To form this angle,the prestressing moment Mo
is applied.
w =T EL (4.8)
o n L

Then if GR=rotation of the first element due to the applied load, the

moment at node 1 is

(4.9)
M(l)=M°+(GR)'%I-§
For a typical node i, if SF=shear force
M(1)=M(i-1)+SF(i-1) L(i-1) ’ (4.10)

Because M jis included in M(i), AO(1) in Fig. 3 would now include
SC also.

Note that for an unprestessed arch with fixed ends, at node 1 we
will still have a rotation,GR, in the first half of element one which
is lumped at node one. But this GR is related to the moment at the

first node through the following formula:
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El
M(1)=(GR)—L7§' (4.11)
The rest of the program is the same as for the pinned end arch

except the error term in the right support corresponding to rotation is

EM= M(n+l)- Mo-[ﬁh(n)?g(nineg;z,] (4.12)

where

Bu(n)=0(n)+60(n) (Fig. 3)

An 8 element arch was studied. As shown in Figs. 37 and 38,
fixing the supports will not help increasing the critical load compared
with pinned supports but will reduce the displacements significantly.

Prestressing the arch will not change the forces and displacements
but it will change the moments at the nodes. With different modulus of
elasticity of the archythe same behavior was observed.

Next,a fixed length bar was bent into arches with different
central angles (x) and span s. It was then fixed at the two ends and
loaded vertically at the crown with a load of 500. Table 7 shows the
resulting maximum moment for U4, 6, and extrapolation between 4 and 6
elements. The length of the straight unloaded bar is 5000 VT =
15707.9633.

The optimum case is when prestressing starts decreasing the
maximum moment in absolute value sense. The optimum value for « is
shown in Table 8 which is obtained using Table 7.

As can be seen at x{14.1, the max, prestressed moment is émaller in

absolute value than the max, non-prestressed moment for the load = 500.
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fable 1- Nax. Momenc for Scralxhe 8ar Benc Inca Arch Vich F-200,1<10°

A=10®, Load=300

Max. NomPrestressing Homent Max. Prestressing Moment
4l ac| 6ell ac
4.6 “ el ac 6 el ae

o [lend gedgis nodes 2,4 | nodes 2.¢ b
des.
180 | -361367 [ -d81801 | -d9s1¢8.2 | «.3ses2es | «.22677€6 [e.12273e6
120 | -169780 | -)85876 | -398752.8 | 2.9¢48£6 | 2.8602266 |2.792536E6)
90 | -382609 | -293219 | -<o1707 2.26613€6 | 2.1885€6  |2.127996€6|
0 [ -583679 | -4926¢1 | -419810.6 /| 1.0083766 | 901374 815775.2
25 | -723218 | -3¢0393 | -194139 952391 Al6362 137898.8
2) | -857666 - - 955124 - -
22,13 -972¢35 - - 972604 - -
32.¢ - -976455 - - 973131 -
20 = b - 169)5¢ -
7.7 - - 817869 -
17.7 - - 818620 g
7.5 - -857532 - 2 [ 32513) =

Table 8 - Optimum « for the Prestressed Arch of Table 7.

No. of Optimum Max. Non- Max. Pre.
Elements in Degrees Prestressed | Prestressed
Homent Homent

5 22.17 -972435 972408

6 17.7 5 -818899 818620
4,6 w124 -696070.2 695592.8

Finally,circular arcs of fixed length of 150 and varying chord lengths,
S,¥as prestressed into arches with a span of 100.Then the ends were pinned and
the arch was loaded at the crown with a vertical load. Tne prograam
used fs the same as the one used for problea I, except in the data
Processing the coordinates of the nodes of the arches with different
Spans were inputted and the span was set equal to 100 for all arches in
the calculations.

Fig. 39 shows the max moments for 6 and 8 element arches. Fig. %0
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is obtained using Fig. 39 to plot the absolute values of the max,

moments vs. the original. span. From this, Table 9 was obtained.

This shows that the values of s for which the maximum .moment is the

lowest,are 111.14 and 122.79 for the loadSof 1000 and 2000,respectively.

The corresponding values of moment are 5975 and -1385Q,respective1y.

Table 9 - Optimum Span and Max, Moment for the Prestressed Arch of

Fig. 40
Optimum Span Optimum Max. Moment
No. of
Elements Load=1000 Load=2000 Load=1000 Load=2000
- ‘ .
6 110 120.5 7077 -17100 ,
8 110.5 121.5 6595 -15680
6,8 111.4 122.79 5975 -13854
-_— ~d

4.3 Prestressing by Axial Force
In section 4.2 an arch prestressed by moments applied at the ends

was studied. In this section, a study is made of a straight bar

compressed axially to form an arch.Then the arch is fixed-at the ends and loaded

(Fig.#l).?or the comparative unprestressed case, a parabdbolic arch is

approximated by a set of elements whose ends are located on the

parabola with the same span as the prestressed arch. Ratios of H/L

=0.125, 0.375, and 0.5 were used. The locations of the nodes were found

using a trial and error method to solve a set of equations resulting

from setting the lengths of the elements equal. For the prestressed

case,an initially straight dbar was used with a length equal to the

number of elements times the length of each element as found in the

parabolic unprestressed case. Then the program was run for the
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straight bar (9=90 for all elements) with a unit load at the crown.
If this small load is not applied, the vertical reaction would be equal
to zero and in the iteration procedure a division by zero would result.
After convergence, the new shape is loaded and the program run to give

the final prestressed loaded shape, axial forces, and moments.

L. L ]

Fig. 41 - Prestressed Arch, By Axial Force

The load vs. vertical crown displacement curves are shown in Figs.
42-.50 for 3 different loadings: vertical concentrated load at the
crown, uniform load over the entire span, and uniform load over half of
the span. Three ratios of H/L were studied: 0.125, 0.375, and 0.5.
Figs. 54 and 55 show the deflected shapes. These figures also show the
curves and shapes corresponding to the parabolic arch with the same
span, non-pretressed and fixed at the ends. As can be seen from these
figures, prestressing the arch causes greater displacements and smaller
buckling loads (Table 10). Table 10 and Fig. 52 also show that the
maximum axial forces corresponding to the loading conditions stated in
Fig. 51 get larger with prestressing. This would be expected since the

prestressing process produces an initial force.

The moment diagrams for certain loads smaller than the buckling
load are shown in Fig. 51. Again, prestressing increases the maximum
moments. For these loads the moments for 8 and 10 elements are within
less than 7% difference. These are shown in Table 11.

It can be seen that the non-prestressed arch is more desirable.

Thus, although there may be constructional advantages in forming






-67-
lightweight curved frames by using an initially straight bar, the
moments and axial forces are greater than for an initially curved bar
with the same loadings and the same span.

Note that the loads in Table 10 for concentrated loads correspond
to the peak values of the symmetrical load-displacement curve,since the
bifurcation to an unsymmetrical mode could not be found.This agrees- with
Masur's results (33) that the symmetric case always governs. Therefore,

the peak values of the symmetrical part of the curves are entered in

the table. However, as shown in Pig. 42, unsymmetric equilibrium modes

were found. These do not correspond to bifurcation loads found in the

pinned end arch and will not lead to finding the buckling loads.

It should also be noted that the peak values and the bifurcation

loads were found using the polynomial process described in section

3.1,
Fig.53 compares the unloaded shapes of the non-prestressed arch

and the prestressed parabolic one.

Table 10- Buckling Loads

H/L [Loading Condition| Buckling Load

EL? Concent.& gL Uniform
I E1

Non-Prest, Prest.,

T (a) 51,57 37.51

5 (b) 193.15 78.65

: (c) 128.15 100.00
T (a) T7748.95 738792 7

375 (b) 222,10 93.50

: (c) 132.05 107.92
(a) 722797 22,50

12 (b) 6. 50 60.55

. (c) 75.30 70.50

(a) Crown Concentrated (b) Uniform Over Entire Span
(c) Uniform Over Half of The Span



-68-

[

—aamo. 189S° (4 | 1 62500 ELono* €580 £0610° 96910°] £69101 00°2¢ 8JoJTUn
s21°
SL02°L [SE60°L |$S°S 0°0 08.20° h§920°| Er6201 11000°}11000°} 11000 00°gy wJoJjyun
URGJO 3%
£€20°¢ 2E6°1 16E°y 60°n LE6GEL° Jo2ont® LgONL ] 9€250°| 6LES0° 654501 o00°'g PoItJI L0OUVO)
. uveds jywy
RESS BLet SN N6z $2001° EnSoL°| ngEot $6510°] L2510°) 115109 00° &2 uJojyun
SLE"
ont §° bL9s°’ oL°¢ 0°0 66920° lingzo° 91920° 10000° | 10000° 100001:--00° 09 WJojyUn
TTORSIS YV
EE9L L Jsels |96°9 6L°t €2nste figlnte| oznnt® £0550° | L9550°| £09501 00°9L  peivajwoucy
JALN EL9E° | o0°€ (4343 L€190° J65290° L2£90°| 29L10° 00910°] 229101 o00°gx uJojtup,
o kreds L 33 Y7 ﬂ.n
$69S°  Boist |gpe 0°0 L99%0° E€9n0°| €0980°| 10000° 10000°1 10000Y 00°AkK wJojyu
unoJo q®
n2S0°t  EL9* | lg'w 16°1 HEE6L" 19661 | n2E02*| Snss0° fLn50°] LhyS0Y 00°21t Pe3 ¥ LB DuOY
sodd ELL 20 -._ou«cm
360y -Uoy 88 yy =UoN oL’ ot ' oL'e ol 132/.1
*JYun TO/S @«.w. pocseusseg POsE 8a38 8 ag-UoN .coomou 8urpeo] 1
Eoocow \m Hu\~.: 30 9dAL | —
L) O.M *J3up «._w\x SIUSEOH oUI JO wenTwy ceqy *xwy pwori©y R
TBIXY Bl . *3Wwou0d Yy ».:-ﬁocm

$00J07 TRIXY puv s3wEoy cxwy - 11 etqvy






q @d104 Tefxy £q Buyssaiysaag
§'0 = J ‘PEOT P23BIUADUCY 103 §IAIND JuawedeTdsTQ - peoT  ‘zh' 814
H/?,
91 er WP o g 9* " [4 0
f= + + t t

-69-

S3U2WATE 8 ‘00T=V ‘T°0=I *,0T=3

8—o u«uuueﬁam* pessaiisaig

Loummm— -} £ S T T
2883138214-U0)
6——o 9Ta3oumig Peegeiiseid-uon

0Z=1 _

A @ pmw.auzozv
oFTO0qRIRg

]

13/771d







-70-

$°0=T/H ‘ueds a1jjuy 1940 PEOT WIOFFU) 103

92103 TefXY Aq Burssaaisaig
§2AIn) jJuawaderdsyq - peoy ¢y ‘814

b)
1 v L v v o
)
T 0%
M@
T 08
SIUdWATY 8 ‘00T=V ‘T‘0=1 ¢,0T=3
mw 01
' © mdsua pessailsaig mw
o——-0 *wmig mm
8 8 ‘umig 1 oot
Aw mw - posSsailsaag-uoyN
A.vwouaucozwoaﬁonmuwm
“« 5 1 D ooz
H
MAXITAT AR







22104 TeTXy £q Bupssaiisaig ‘S 0=1/H

®43 3O 3ITeH 13AQ peoq WI0JTUn I03 seainy JuduedTedstq -

‘uedg

PBOT "4y *B1g

=\u> 0'T N 9 o 0
— t } t t 0
- 0%
D
!
~
r
1
T 08
T 0zt
S3UBWATZ g ‘QQTay ‘T°0=1 .nofm

o9 P3ssa13saxg-uoy
O——9p PosSsailsaig

A.pmmumncoﬂ STToqe1Rg
0Z=1
~ I
JExxa

13/¢1b







92103 TeIXV £q Burssaiisaig
‘SLE'0=T/H ‘PEOT Pa3IBIU2DUCY 103 83AINY Juawaderdsyq - peoT ‘Gy *81g

B}
¢TI _H/ A 0T # ® i G
S S N U -
0
0T
1
N 0z
o~
|
83U2WATE g ‘00T=Y ‘OT°0=I ¢ 0T=3
[ o€
I Passai1lsaig-uoN ¢ ukg
&———o Passa1lsaig ¢ wkg
(& aww.ﬁ::O# ) 9TT0oqeieRg oY
02=1
3 I
d

13/71d







2108 TeFXY £q Buysseaysaig
‘SLE*0~1/H ueds 2173uz 1940 peo] wzoz

FUn 107 S2AIn) JuswedeTdstq - peoT -9 81
/3,
P [ S A 0’1 9 9 z 0
[}
oy
S3UAWATY 8 ‘00T=V ‘OT‘0=I ¢ (0T=3 + 08
A
& & 8 “uksug pessai3sag
o— ukg L
¢ T 0Z1
e———6  -meu
e ‘ukg [ PPSSe13sR1g-UON
A.pmw.aéoE
0Z=1 g 2 00t
S~ >
L . . s
(14

13/¢1b




‘SLE"O~T/H ‘ueds sy3 3o jTeH 1aap PBOT wWwIojyun 103

g

0°1
|

'e
1
T

?2104 TEIXV £q Buysseiisaig

83AIn) JuduwedeTdsyg - peo] “ty ‘814

@.
t

1
3
o~
1
83UsWATI g ‘00T=V ‘0T'0=1 ‘(0T=3
— P28sailsazg-uoy
o0—90 pessaixysaig
(3sexd-uoy pITOqEIRg
02=1
I o
bITTTTT

0z1

13/¢1b




_75-

‘S2T*0~1/H peot P33BI3U90U0) 103

9904 Teyxy £q Burssaizsazyg

83AIN) Juswederdsyq - PEOT  *gh' 83
2
o 21 01 8 9 v 0
=y . _ 0
—= 0T
[ oz
S3UWITT § 00TV 0T*0-I *,07mz
p2893138914-u0y 4 o¢
wuuwuuuwwum REELLCS

0Z=1

e

oy

13/71d







Gl . 99104 TeFXV Aq Bursseajsaig
STT°0=1/H ‘ueds @21F3ug 19A0 peOT WIOFTup 103 8aAIN) jJuswedeTdsTq - peo] ‘64 8F4

H/2
/24 g 9° v e 0
+ t + 0
S3USWATT 8 ‘00T=Y ‘OT'0=I ‘,0T=2 ]
& ufg
.Ehmﬂ: vwmmﬂkumwhmlﬁaz
1
0
108
B O—© ws

T Q -uksug passailsalg

(*3s2ad-uoy) QSMMHE . Toet
o

b EITIF T

091







22104 TeIXVy £q Buyssaizsaig

‘SZT°0=1/HuRds 243 Jo jTeH 1aaQ peoq WIOFFUN 103 $IAIND JuPWROETASTQ - peoT ‘g *STd

z:1 01 8 9° v 2 0
1 t i t t } 0
Ton
SIUSWBT § ¢ QOT=V* OT'=I‘ 0=a
, ol o8
o~
[N POSS2135914~UO)
>~—e

vuwguumwum oTa33umuisup

( .amwyn;:oﬁ dFToqeIRg Tout
0Z=1
/w\ Hx

b{TTT Y

I 09T

Ly o YO






-78-

4 p f 28%0Z- 0TZLI-
" . . . . 0%6TY 69€T-
> B B B
S 7)) (7)) (%) 7 VIAAY) 9¢TOT
mm 809%2T y8921
= Z€€S9 SZ8YYy- 259.6 0°8¢~ 09£8TT 80T~
T9€STT TS%9 4T1L%0T S 0°0¢- L9TS6 %8621~
. o
0€00T = 9/802 4881M0T - 0°T- S004L o T8%01-
SH Safe e
0LYe o 6059 €LLT 0°€E 89499 S o941
LzgLz> 2 N @ T982Z-  lgpTrzd @0°¢¢ 01S8 D "€T18T
: : 8 g\ & 8 P\ s
m A m . (=W V] (=%
> 8 T 5 A 5
y /CLLLS= 6%8¢~
1600% 8y TS~
: : : : 7988TT
.m, ,m, g g 69€22
. ©@ «@ LSSTST 2920¢
A Z80¢€8 v4%92¢- 299€0T 0 TT- SOL8TT L2z~
o
! TY6TZT Z%89 19%011 "0° 6~ %9TLL 820¢-
~
e %9T60T T6ENT YEELOT 0'¢- 8Y%99 9062~
%0025 0TEE 64595 S*6 6€T09 T€SS
zsm.mv o L voy91- 1859z mm_, 0°ST 8£99 o N.NNNQ
o & . 'Y
& m,wfw a P PR R o T

=107, 1=.10, A=100, 8 Elements, Parabolic Arch (For Non-prest.

S51. Moment Diagrams, Prestressing by Axial Force



-79-

4
B
[75]
)| czose
L T2€9$
~J
nw TS91S
68 nﬁm
o
€800T >

Prest.

Sym.

Se81Z-
909

6S€0T
9LSS
| AZAS G

nprest.

S8TET

CLTLT

rest.

£, £
2 w
Le9oL  |o°g9z-
p098s  |0°sL1-
111443 0°€€
O L
S 0°€6T
F 0°£91
A —— )
&
2]
o
=
[« %

68712

7 L8042~
L9117

L1079
§S09¢
TTL6S
6E92¢
00T8T

6576

2st.

1:::400&

rest.

00592~
1t

699L1
69TLT
9ETI-
9.88T-
6918T-
Lze
08zo€

Fig. 51. Continued






-80-

: : . . ETY6T | €090T
B, B & B,
2 2 2 @ n9812 62TTT
€1852 Lot
L6zLe yTOTT
" 2T6EY 6L0LT 202.8 11589 TSLST 78€6
wﬁ 0£S9Y 204TE TTIL6 L0%08 85692 L8521
w : €eoey Y041€ 0£860T €9€96 L1867, 659LT
= 046 T6€0€ ogzzr |  {Z [preett 68TEE 4 90622
P g ]
o o O /O
(=] o o~ N
s X s f\ X m@
< -
B B
| B : . : 86TTZ | sssor
& 8 5 3 1992 18281
096Y¢ LE96T
|6YETE T€6LT
“ $5662 82ZL1 8EOLY 09LT€ 248:14 LSEET
< €LSTE 96102 n98YS Y6STY L80Se 8€L22
= n0LLT €£002 v9929. se%zs o9y 685€¢
=
vzl | 85 SLS6T Ove8 S 08EZ9 |,/ pac 3 hL0YY
- S, . = 9 : —! 8 3
& o o & & o S ] o o &
o MY 8 9 ) 3 9 ﬂ % 9
A g & o T~ o . ]

» I=0.10,.A=100, 8 Elements, Parabolic Arch (For Non-prest. case)

52. Axial Force Diagrams, Prestressing by Axial Force
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CHAPTER V
CONCLUSIONS AND FUTURE STUDY

5.1 The Problem Summary and Conclusions

The elastic non-linear behavior of arches has been investigated
using a rigid bar-spring node physical model. The influence of bending
and axial deformation has been included. The load displacement curves
and the deflected shapes for a variety of loads and for fixed and
pinned supports have been obtained. The effect of cables at different
positions has also been studied. Prestressing a straight bar into’
circular arches with different spans, and also circular arches with
different spans into a half circle arch has been investigated. The
results obtained are in good agreement with the known solutions, when
such solutions are available.

For a pinned end arch with a concentrated load at the crown and a
pinned support beam with a distributed load over half of the span, the
results are in errors by less than 5% and in most cases about 1%
compared with the ones obtained by others. The error for a quarter
circle arch loaded radially or vetically is about 1%. The results for
a non-prismatic parabolic arch with uniform load over the entire span
are with less than 4.5% error with the previously obtained solutions.

Prestressing a straight bar by axial fofce to form an arch fixed
at the ends results, in general, in lower buckling loads and greater

forces in the arch and therefore does not achieve a better design.






-86-

This was studied for a concentrated load at the crown and a uniform

load over the entire or half of the span. Attaching the cables to the

arch loaded vertically does not help the arch at loads near the

critical load. However, cables are effective and useful for the

horizontal loads.As summarized in Tables 7-9 (Section 4.2),a study was
made of oircular arcs of a fixed length but initially with different
radiil .and chord lengths and then prestressed into arches of the same
span.It was found that this technique can reduce the maximum moment

in the final..located arch. The optimum initial length was found to

vary depending on the load,being greater for larger loads.

Based upon theserasaits it may be concluded that the model and

procedure uséd are accurate and that it is not necessary to take more

than 10 elements, eleven nodes, when two or three ;';oint extrapolation

is employed to produce good results. Sometimes this extrapolation

gives more accurate results than when 100 elements are used. The

method is also economical. All the work to solve the two dimensional

problems was done using a TRS-80 micro-computer.

It should also be noted that using this model, variable geometry

and elastic properties can be accounted for. A case in which the

moment of inertia was not constant was studied in this thesis.
5.2 Future Studies

Several additional problems are suggested by the work done here.

These include the determination of shear effects. If Sgi) is the shear

deformation in element i perpendicular to the element axis,lumped at
node 1,then ‘88_(i-1 )-‘%%‘} where A8 (i-1 )=thé- rotation of node i-1 due
to the: shear’ deformation and L(i)=the length of element 'i.Then 068( i-1)

would be added to the bending rotation at node i-1 to obtain the total
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rotation at node i-1. The effect of variation in geometry and elastic
properties.can also be studied. A slight change in the program will
make it possible to be used to investigate the- behavior of arches with
a combination of different support and loading conditions.

The space arch under in-plane and out-of-plane loading may be
studied using the same model extended to 3 dimensions. Torsion could
be taken by torsional springs at the nodes. Several approaches have
been tried as explained in Appendix E, but none of them has led to
satisfactory results.

The non-elastic behavior o aréhes can also be studied by

modifying the program used for this thesis.
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APPENDICES

A. Newton's Algorithm

The Newton's algorithm can be used to improve the initial values
in an iterative manner.

For three simultaneous non-lineaf equations

f(a,b,c)=0 (a)
g(a,b,c)=0 - ()  (A.1)
h(a,b,c)=0 . (c)

if aO’bO' and c, are approximate solutions, then better solutions may

bea, b, and ¢ , where
1 1 1

~=1
3t A, f
211 |%o| [*ag o kg fo
: 28 > ‘
bi(f = bg p- %g—g— -sb-g- -’6-%8- 8o (A.2)
c c dhg 2h dh,
L ° 230 260 >C0_ "o

where
fo=f (30’50’30)
g0=g(ao’b0’ co)

h0=h(ao,b0,c0)

The equivalent terms may be evaluated numerically by three
successive repetitions of the chain analysis. That is, the functions
for 8,
can be calculated, f,g, and h represent the three error terms

y and ho corresponding to the three initial values a,b, and ¢

corresponding to a,b, andc, respectively. It should be noted that f,g,

and h would include other parameters such as the ones corresponding to
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2ometry and elastic propertics.

In the next chain of analysis, a small increment pAa is given to
ne value of a,and fl,gi,and h1 ’ the corresponding values of f,
, and h are found. Similarly, (g,s,hz)and (t;, S,%)
sorresponding to the increments Ab and Ac can be computed. Then using
the approximation of formula (2) in section (2.2) of the thesis
regarding the derivatives of the functions, we find the improved values

of a,b, and ¢, 1., aj bl, and cl, respectively.

sy oy [ 270 5370 (o
1l 0 Aa Ab AcC
blL = Jbo > - gl_go gz-go 83—80 g
A.
ba Ab Ac L (A.3)
¢ h_~h h_-h h_-h h
cy =0/ 1 0 2 0 3 0 0
| ba ADb sc _

The procedure may be used to improve a set of more than three

initial values using a larger matrix.
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omputer Program Listing to Find the Peak Value of Load-
isplacement Curve

The following symbols have been used:

Displacement of the 4 points determined from the load-
displacement curve (data), I=1, 2, 3, 4.

splacement value of the peak point with positive determinant in
the solution of the quadratic equation resulting from setting
dy/ dx=0

splacement value of the peak point with negative determinent in
the solution of the above equation;

terminant of the equation dy/dx=0;
ak load value corresponding to DM;
ak load value corresponding to DN;

Coefficients of the polynomial, I=1, 2, 3, 4.
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4 t;sl +INTERPOLATION TO FIND MAX. LOAD OF LOAD-DISPL. CURVE USING 3RD DEGREE POLYNONIAL®
HEFHHT I T I RN

3 LPRINT CHR$(27)*Q*
1200 R4

1205 DIN ACR,R),B(R,R) ,0(R) ,P(R),S(R)

1210 PRINT*INPUT D(1); I=1 TO 4°

1220 INPUT DC1),D¢2),D¢3),D(4)

1230 PRINT*INPUT LOADS P(1);1=1 TO 4°

1240 INPUT P(1),P(2),P(3),P(4)

1258 FOR 1=1 TO R

1260 AC1,1)=1

120 AC1L,2=(D)

1280 AC1,3)=0C1)(2

1290 ACTL=D(DI3

1295 LPRINT*AC";1;°,0)=";AC1,1);A(1,2);4¢1,3) A1, )
1M NDT T

1310 LPRINT*DCI) ,(1=1 TO 4) =*;0(1);0(2);0(3);0(4)
1320 LPRINT*PCI) ,(1=1 TO 4) =*;P(1);P(2);P(3);P(4)
1330 FOR I=1 T0 R .
1348 B(1,1)=]

1350 NEXT |

538 FOR J=1 TO R

532 FOR 1=J TO R

534 IF ACT,d) 00 THEN 1542

5% NOT1

538 LPRINT® SINSULAR MATRIX®

S48 60TO 1839

542 FOR K=1 TO R

44 T=AWJ,X)

546 ACJ,K=ACT,K)

S48 AC1,K)=T

550 T=B(J,K)

552 B(J,K)=B(1,K)

554 B(1,K)=T

556 NEXT K

558 E=1/A(J,J)

560 FOR K=1 TO R

2 AG,K=E(I,K)
64 BCJ,O=ERB(J,K)

66 NEXT K

68 FOR =1 TO R

70 IF L=J THBN 1582

72 E=-AL)

74 FOR k=1 T0 R

6 AL XL, K)HEAW,K)
'8 B(L,K)=B(L,K)+E*B(J,K)
W NEXT K

2 NEXT L

4 NDXT J

& LPRINT*MATRIX INVERSE®

8 FOR 1=} T0 R

8 LPRINT*I=";1;*:*;8(1,1);8(1,2);B¢1,3);B(1,4)






-92-

1592 NEXT |

1594 FOR I=§ TO R

1595 SC1)=8

1596 FOR k=1 TO R

1598  SC1)=S¢1)+B(1,X)8P(K)

1600 NEXT X

Ny .

1684 LPRINT*COEF, MATRIX®

1688 LPRINT

1408 FOR 1=1 TO R

1618 LPRINT*I=*;1;° , SC1)=*;S(])

1614 NEXT 1

1658 PRINT®IF DISPL. OF ANOTHER LOAD, PRINT 1°:INPUT OL
1848 IF DLOI THEN 1710

1678 PRINT®UMAT DISPL.2*

1680 INPUT OP

1698 PP=5(1)45(2)30P+S(3)2(DP(2)45¢4)2(DP[3)
1695 LPRINT

1788 LPRINT®DP=";0P;°PP=" ;PP S
1718 PRINT®JF ANOTHER DISPL., PRINT 2°::INPUT AN
1720 IF A2 THRN 1628

1730 0T=5(2)(2-315(1)25(3)

1732 IF DT<0 THEN 1755

1734 D=(-5(2)+SQR(DT))/(315¢1))

1234 DN=(-5(2)-S0R(0T))/(315(1))

1748 R=5(4)#S(3)a0t{+S(2) 2 C0H[2) +S(4) 8 (D[ 3)

1742 PN=S(5)4S¢3)30N+SC2 ) 2 (DN 2) +S(4) #(DN[3)

1750 LPRINT*W POSITIVE SQR(OT)s DH=°;0{;* P4=";P
1752 LPRINT*W NECGATIVE SQR(DOT): D= ON;°PN=* ;PN

1754 6070 1748
1755 LPRINT DETERMINANT TO CALCIRATE DHAX IS NEGATIVE®

760 LPRINT eanassasnnun i i  RRE RN RN RERRRRRRRNENRIRERERNRRNENINE®

1838 END
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C. Listing of the Main Computer Program

A simple modification will make it possible to use this program
for a fixed end arch prestressed by axial force.

The following symbols have been used (other symbols have been
defined in Section 1.3):

BD = The Horizontal Distance Between the Cable Base and the Plane of
the Arch;

CE = Cable Modulus of Elasticity;

CM = Cable Cross Sectional Area;

EA = Element Cross Sectional Area;

EI = Element Moment of Inertia;

EH = Error in Horizontal Displacement of the Right Support;

EL = Element Length;

EM = Error in Moment or Rotation of the Right Support;

EP = Error Limit Allowed;

EV = Error In Vertical Displacement of the Right Support;

GH = Guessed Value of the Horizontal Reaction of the Left Support;

GV = Guessed Value of the Vertical Reaction of the Right Support;

GR = Guessed Value of the Rotation of the Right Support;

HN = Final Horizontal Load at a Node Including the Effect of Cables;

IC = Allowed Number of Iterations;

ID = 1 If Cable Base to the Left of the Node, and Any Other Number
Otherwise;

IE = 1 If No Cable For the Node, and Any Other Number Otherwise;

LN = Final Element Length After Axial Deformation;

NE = Number of Elements;

NN = Number of Nodes;

R = Radius of the Half Circle Arch;

RI = Rise of the Right Support With Respect to the Left Support;

SC = Slope Change of Each Element

SM = Final Slope Change of Each Element

TC = The Change In Slope Between Elements (I-1) and I;

TH = Original Angle Between the Element and the Vertical;

TN = Final Angle Between the Element and the Vertical (After Rotation);

VD = Horizontal Distance Between the Cable Base and the Node Where the
Cable is Attached to;

VN = Final Vertical Load at a Node Including the Effect of Cables;

VV = Horizontal Distance Between the Left Support and the Node Where
the Cables are Attached to;

XL = Arch Span;

XM = Moment at each Node;

XN = Final X-Coordinate of the Node;

YN = Final Y-Coordinate of the Node;
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1 PRINT®"PROG.(MTTHESIS) jARCH W/ CHOICE OF PINNED OR FIXED
ENDS;CABLES; & PRESTRESSING"

S PRINT"NON-LINEAR BEHAVIOR: ARCH-FRAME: RIGID BAR MODEL-
VERSION‘V’-SP*"

6 PRINT®"IF FIXED ENDS, TYPE 1":INPUT F

7 PRINT"IF PRESTRESSED, TYPE 1":1INPUT P

10
12
15

16

17
20
21
22
25
30
35
40
41
42
43

44
45
Se
55
48
85
76

75
77
78
79

86

81
82
83
84
85
86
90
?S

100

INPUT*NUMBER OF ELEMENTS® ;NE
NN=NE+1
DIM ELCNE) ,THC(NE) ,ECNE) ,EI(NE) ,ACNE) ,ULCNN) ,HL(NND ,
XNCNND , YNCNND , TNCNE) ,AFCNE) , SFCNE) ,ADCNE) ,LNCNE) ,
XMCNND , TCCNND ,HECNN+1) JVECNN+1) ,MECNN+1)
DIM BDCNN)D ,UDCNN) ,CLCNN) , CDCNND , CECNN) , CMCNND , CF(NND
TECNND , IDCNND ,UNCNND , HNCNND
DIM EACNE)
INPUT"ERROR LIMIT-EPS® ;EP
PRINT®IF SEMI-CIRCULAR ARCH,TYPE 1°*:INPUT AC
IF AC=1 GOTO 41
PRINT® INPUT ELEMENT LENGTH,ANGLEC(THETA) ,MODULUS,I,A"
FOR I=1 TO NE
PRINT I: INPUT ELCI),THCI),ECI),EICI),EACI)
NEXT 1: GOTO 45
INPUT*RADIUS" ;R:PRINT"FOR EACH ELEMENT, INPUT E, 1 & A"
FOR I=1 TO NE
PRINT I: INPUT E(I),EICI),EACI):TI=3.1415927/NE:
ELCI)=2%R*SINCT1/2)
THCI)=TI*CI-.5) :NEXT 1
PRINT®* INPUT NODE LOADS- VERTICAL, HORIZONTAL®
FOR I=1 TO NN
PRINT I:INPUT VLCI), HLCI)
NEXT 1
FOR U=1 TO 3
PRINT® INPUT SPAN,RISE,NO.OF ITERATIONS,GUESS VERT.R,
HOR.R,ROTATION
INPUT XL,RI,IC,GV,GH,GR
HB=GH: UB=GV: RB=GR
FOR I=1 TO NN:UNCI)=ULCI) :HNCI)=HL(I)
NEXT 1
I1=1:XNC1>=6:YNC1)=08:TCC1)>=0:N=0:1X=0
IF F=1 GOTO 82 ELSE 86
IF P=1 GOTO 83 ELSE 84
MO=CEC1)*EIC1)#(TH(2)-TH(1)))/EL(1) :GOTO 85

‘MO=0

XM(1)=MO+GR*(E(1)*EI(1)#2/EL(1)) :GOTO 98
XM(1)=8
TNC(1)=TH(1)+GR
SN=SIN(TN(1)) :CS=COS(TN(1))
AF(1)=((GV-UN(1))#CS) + ((GH+HN(1) ) #SN)

105 SF(1)=((UN(1)-GV)#SN) +((GH+HN(1))*CS)
116 AD(1)=(C(AF(1)*EL(1)))/(E(1)*EA(1))
115 ULWN(1)=EL(1)-AD(1)

156  XN(2)=LN(1)%#SN1YN(2)=LN(1)%*CS






151
152
153
154

155
156

157

158
159

160
161
162
163

165
170
171

172
173
175
180
181

182
183
184
185
190
195
200
285
210
215
228
221
222
224
225
230
231

232
233
235
2490
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IF IX<>8 GOTO 155
PRINT®*PRINT 1 IF NO CABLES FOR NODE 1":INPUT IE(1)
IF IEC1)=1 GOTO 162
PRINT" INPUT BD(1),UDB(1),CL(1),CAC1),CMEC1) " INPUT
BD(1),UD(1),CLC1),CM(1),CEC1)
IF 1EC1)=1 GOTO 162
W=UD(1)-XN(1) :BK=ATNC(ABS(YN(1) /W) :CC=SAR((W) *
CWD+C(YNCT) ) #CYNC1)) ) :CN=SQRC(CC)#(CCI+(BD(1) ) *
(BD(1)))
CD(1)=CL(1)-CN:CF(1)=C((CD(1))*(CEC1))*(CM(1)))/(CN):
BC=(BD(1))/(CN) : CP=ATN(BC/SQR(~BC*BC+1)) :CB=2%(CF(1))
#(COS(CP))>:1F CD(1)>8 GOTO 162
CH=-(CB) #(COS(BK)) : CU=-(CB) *(SIN(BK) ) :UNC(1)=VUL(1)+CV:
HN(1)=HL(1)+CH
AFC(1)=C(GV-UNC1))*CS) + ((GH+HN(1) ) %¥SN) : SF(1)=C(UN(1)~-
GV) #SN) + ( (GH+HN(1) ) %CS)
ADC1)=CC(AF(1)*ELC(1)))/C(EC1)*EAC1)) :LNC1)=ELC1)-ADC(1)
XNC2)=LN(1)%¥SN:YN(2)=LN(1) *CS
FOR 1=2 TO NE:J=1-1:K=1+1
PRINT"I=";1;"SF(J)=";SF(J);"LNCI)=";LNCJ) ; "XM(J)=";
XMCJ)
TCCI)=THC(I)=-THC(J)
SC=((SF(JI*¥LN(J)/2.8 +XM(J))*LNCJ))/C(ECII*EICI))
IF F=1 GOTO 172 ELSE 173
IF P=1 GOTO 175
TNCID)=TNC(J)+TC(I1)>+SC:GOTO 1880
TNCI)=TN(J)+SC
CA=COS(TN(I)) :SA=SINC(TN(I))
IF F=1 GOTO 182 ELSE 185
IF P<>1 GOTO 185
CS=C0S(SC) : SN=SIN(SC)
GOTO 190
CS=COS(TC(1)+SC) : SN=SIN(TC(1)+SC)
AF(I)=AF(J) #CS+SF(J) #*SN+HN(I) ¥SA-UN(I) *CA
SF(1)=-AF(J) #*SN+SF (J) *CS+HN(I) #CA+UN(1) *SA
XMCI)=XM(J)+SF(J) *LNCJ)
ADCID)=CAF (1) *ELCI))/CECI) *EACT))
LNCI)=ELCI)-ADCI)
ST=C(SFCI)*#LNC(I)/2.8+XMCI) ) *#LNCI))/CECI)*EIC]))
SM=XMCI) #(LNCID) +LNCJ) I/ CECII ¥EICII+ECTII *EICI))
1IF F=1 GOTO 222 ELSE 224
IF P=1 GOTO 225
TNCI)=TNC(J)+TCC(I)+SM:GOTO 230
TNCII=TN(J)+SM
CA=COS(TNCI)) :SA=SINC(TNC(I))
IF F=1 GOTO 232 ELSE 235
IF P<>1 GOTO 235
CS=COS(SM) : SN=SIN(SM) :GOTO 248
CS=COS(SM+TC(1)) : SN=SINC(SM+TC(1))
AF(1)=AF(J) #*CS+SF(J) #SN+HN( 1) #SA-UNC( 1) *CA




245
250

255
240
261
262
263
264
265
266
287
268

269

278
271
272
273
274

275

276
277
278
279
280

281
282
283
284

285
284
287

288
289
290
291
292
293
295
300
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SECII=-AF (J) KSN4SF (J) XCSHHNCI) %CAUNCT) xSA
XMCI)=XM(J)+SF(J) *LN(
AD(I)B(AF(X)*EL(I))/(E(l)lEA(l))
LNCI)=ELCI)-ADCI)

PRINT*LNC* ;1;°)=";LNCI)

XNCKI=XNCI)+LNCT) #SA
YNCK)=YNCI)+LNC1) %CA
IF IX<>8 GOTO 270

PRINT*PRINT 1 IF NO CABLES FOR NODE  *;I
INPUT IECI)

IF 1EC1)=1 GOTO 288

PRINT*PRINT BDCI),UDBCI),CLCI),CACI) ,CMECI) " : INPUT

BD(I),UDC1),CLCI) ,OMCI) ,CECT)

PRINT*PRINT 1 IF CABLE BASE TO THE LEFT OF THIS NODE":

INPUT 1DCI1)

IF IECI)>=1 GOTO 288
IF IDCI)>=1 GOTO 273
W=UDCI)-XNCI) :GOTO 274
WU=XNCI)-UDCI)
BK=ATNC(ABS(YNCI)) /W) : CC=SARC (W) ¥ (W) + (YNCI) ) *
CYNCID)) :CN=SGRCCCC) % (CC)+(BDCI))*(BD(1)))
CDCI)=CLCI)=CN:CF(I>=C(CDC(I>)*(CECI))*(CMCI)))/(CN)
1BC=(BD(1))/(CN) : CP=ATN(BC/SQR(-BC*BC+1) ) :CB=2%
(CFCI))>*(COS(CP)):IF CD(I1)>8 GOTO 288
IF ID(I1)>=1 GOTO 278
CH=~-(CB) #(COS(BK)) : GOTO 279
CH=(CB) *(COS(BK))
CU=-(CB) *CSIN(BK) ) :UNCI)=UL(I)+CVU:HNCI)=HLCI>+CH
AFCI)=AF (J) *CS+SF(J) *SN+HN( 1) #SA-UN( 1) *CA:SF(1)=—
AF (J) #SN+SF(J) ¥CS+HN( 1) ¥CA+UNC 1) ¥SA
XMCI)=XM(J) +SF(J) *LNCJ) :ADCI)=CAF (1) *ELCI) ) /CECI) %
EACI)) :LNCI)=EL(I1>-ADCI)
SM=XM(I) #C(LNCI) +LNCJ) ) /CECII *ET CII+ECIIXEICI) ) 2
TNCI)=TNCJ) +SM+TCCI)
CA=COSCTNC(1)) :SA=SINCTNC1) ) : CS=COSCSM+TC(1)) : SN=
SINCSM+TC(1))
AFC1)=AF(J) *CS+SF(J) ¥SN+HNC 1) ¥SA-UNC 1) ¥CA:SF(1)=—
AF (J) *SN+SF(J) *CS+HN( 1) *CA+UN( 1) ¥SA
XMCT)=XM(J) +SF(J) *LNCJD)
ADCI)=CAF(I)*ELCI))/CECI)*EACI)) :LNCI)=ELCI)-ADCI)
PRINT*LNC® ;1;%)=";LNCI) :XNCKI=XNCI)+LNCI) ¥SA: YN(K)=
YNCI)+LNCI) *CA
NEXT 1
NW=NN=1 1 XMCNND =XMCNW) + SF C(NW) *LNCNW)

EH=XL-XNCNN) : EV=RI -YN(NN) : EM=XM(NN)

IF F<>1 GOTO 293

EM=XM(NN) - (MO-(TNCNE) ~TH(NE) > #(ECNE) *E1 (NE) #2/EL(NE) )

IX=1
IF(ABS(EH)-EP)>@ GOTO 318 ELSE 388
IF(ABS(EV)-EP)>8 GOTO 318 ELSE 385
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IFCABS(EM)-EP)>»8 GOTO 318 ELSE 496
IF (N)=8 GOTO 315 ELSE 340
IFCII-1C)<B GOTO 322 ELSE 3146
PRINT"CYCLE NO.";I1;"ERROR H="3EH;"ERROR V=";EV;
"ERROR M="3;EM
PRINT"GH=";GH;" GU=";G6V;" GR=";GR
PRINT"DOES NOT CONVERGE AT CYCLE";!11
PRINT" » o * % * » *"
GOTO 4960

PRINT®"CYCLE NO."3I1;* ERRORH=";EH;" ERRORV=";EV;

* ERRORM=";EM

PRINT"GH="3;GH;"* GU=";6V;" GR=";G6R
PRINT"DOES NOT CONVERGE AT CYCLE";II
PRINT"+ + + 4+ + + + + +°
N=N+1

HE(N)=EH:VE(N)=EV:ME(N)=EM
IF(N-1)>8 GOTO 365 ELSE 355
GH=1.01%GH

GOTO 81 .

IF(N-2)>>86 GOTO 385 ELSE 378
GVU=1.01%GV

GH=GH/1 .01

GOTO 81

IF(N-3)>>8 GOTO 465 ELSE 396
GR=1.01#%GR

GV=GV/1 .01

GOTO 81

GR=GR/1 .01

REM-JACOBIAN CORRECTION

Al1=(HE(2)-HE(1))/¢(.B81%GH) : AZ2=(VE(2)-VE(1))/(.01#GH)
A3=(ME(2)-ME(1))/¢.01%GH): BI=(HE(3)-HE(1))/(.01%GV)
B2=(VE(3)-VE(1))/(.81%GV): B3=(ME(3)-ME(1))/(.01%GV)
C1=(HE(4)-HE(1))/(.B81%GR): C2=(VE(4)-VE(1))/(.01%GR)

C3=(ME(4)ME(1))/(.01%GR)

P1=B2#C3-C2%#B3: P2=B1%*C3-C1#*B3

P3=B1i #C2-B2%Ci1: Q1=A2%C3-C2*A3

Q2=A1 #C3-Cl1 #¥A3: Q3=A1#C2-C1*A2

R1=A2%#B3-B2#¥A3: R2=A1%B3-Bl *A3

R3=A1%B2-A2%B1
PRINT*A1=";Al1;"P1=";P1;"Bi=";B1;"Q1=";Q1;"C1=";C1;
*Ri=";R1

DT=A1%P1-Bl#Q1+C1 *R1

GH=GH-((P1#HE(1)-P2%VE(1)+P3*#ME(1))/DT)

GU=6GV-((-Q1 *HEC(1)+Q2%VE(1)-Q3*ME(1))>/DT)

GR=GR-((R1#HE(1)-R2%#VE(1)+R3*ME(1))/DT)

N=0: II=11+1: GOTO 81

PRINT®"CYCLE NO.";I1;"ERROR H=";EH;"ERRORV=";EV;

* ERRORM=" ; EM

PRINT*GH=";GH; *GV=" ; GV ; "GR=" ; GR

STOP

PRINT® % % % #% % % % % % % * »"
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PRINT*EL.N8" ;TAB(18) "AXIAL F* ;TAB(28) "SHEAR F*;
TAB(38)"END M*;TAB(40) "AXIAL DEF.";TAB(52)
*THETA FINAL®
FOR I=1 TO NE
PRINT 1;TAB(18) AF(I);TAB(20)SF(I);TAB(38IXM(I);
TAB(48)AD(I) ;TABC(52) TNCI)
NEXT 1
FOR I=1 TO NE
IF_IECD)=1 GOTO 525
PRINT*I=";1;TAB(18)"CABLE AX. DEFORM.=*;CD(I);TAB(10)
"CABLE AX.FORCE=";CF(1)1G0TO 524
PRINT"I=";1;TAB(15)“NO CABLES FOR THIS NODE*
NEXT I
PRINT"NODE NO.* ;TAB(12) *X-COORD" ; TAB(24) *Y-COORD" ;
TAB(36) "END M*
FOR I=1 TO NN
PRINT 1;TABC12)XNCI) ;TABC24)YNCI) ;TAB(36)XM(I)
NEXT 1
PRINT*TO OUTPUT RESULTS TO PRINTER, TYPE 1*
INPUT 2
IF 2=1 GOTO 558 ELSE 545
PRINT"1F DIFFERENT LOAD OR ERROR LIMIT,TYPE 2°:
INPUT DL

IF DL<>2 GOTO 548
INPUT*NEW ERROR LIMIT=";EP: GOTO 45
NEXT U
END
LPRINT®"ELEMENT LENGTH THETA E 1 A"
FOR I=1 TO NE

LPRINT I;TABC18)ELCI);;TAB(28)TH(I) ;TAB(3B)E(I);
TAB(48)EICI) ;TAB(SBIEACI)
NEXT 1
LPRINT*INITIAL GUESSES- GH=";HB;"GV=";VUB;"GR=";RB
LPRINT" *= * *"

LPRINT "EL.NO.";TAB(18)"AXIAL F";TAB(28)"SHEAR F";
TAB(38)"END M";TAB(48) "AXIAL DEF.";TAB(S52)"THETA FINAL"
FOR I=1 TO NE

LPRINT I;TAB(18) AF(I);TAB(28)SF(I) ;TAB(38)XM(I);
TABC(48)ADCI) ;TAB(S2)TNCI)
NEXT 1
FOR I=1 TO NE

IF 1ECI)=1 GOTO 419
LPRIN"I=";1;TAB(18)"CABLE AX.DEFORM.=";CD(I);TAB(10)
“CABLE AX.FORCE=";CF(I):G0TO &20
LPRINT"I=";1;TABC(15)"NO CABLES FOR THIS NODE"
NEXT 1
LPRINT"NODE NO." ;TAB(18)"X-COORD" ;TAB(208) "Y-COORD" ;
TAB(38) "END M";TAB(48)"VUL" ; TAB(S58) "HL"

FOR I=1 TO NN

LPRINT I;TABC18)XNCI);TAB(20)YNC(I) ;TAB(38)XM(I)
TAB(48)VL(I) ;TAB(SBIHLCI)
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435 NEXT 1 3
637 LPRINT"EPS=" }EP;"GHF=" jGH; ®*GUF="jGV; "GRF=" jGR}; "CYCLES="
311 -
438 LPRINT®SINGLE PRECISION-VERSION‘V’®:IF F<>1 GOTO 641

639 IF P<>1 GOTO 441
4408 LPRINT"PRE-STRESSED ARCH-MOMENT=" ;MO

641 GOTO 545
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D. Alternative Method For 2-D Problems

An+ alternative method for a 2 dimensional arch and rigid bar-spring
node model was also developed (31).
In this method the displacements u,v in x and y directions ,
respectively, are originally assumed. Then if ®=zangle between the
displaced element and horizontal axis x,~=rotation of the element;

the moment M, shear force s, and axial force N would be

M(1y=- EDIA) [-y(i)-m)] ®.1)
L(1)
N(y= ERAW) 4peh) (0.2)
L)
where

2
AD(1)=-L(1)+ ,ﬁ,(i)Cos@(i)] +u(i)-u(1-1)} 2+{L(1)Sin[¢(1)] v (1)-v(i-1)}

o (D.3)

(1)-v(i-D] Cos[®(1)) - [u(1)-U(E-1)] sinfe (1))

\4
~(i)=Arctan II
l[n(1)+ u(1)-u(i-1)) Cos(® (1)) +[v(1)-v(i-1)] Sin[e(1)

Assuming u and v and having the above formulas, the féxpée[‘s),
moments, rotations, and axial deformations can be found. Then we see
1f§_1rx=o and 2ry=o (the equilibrium equations at each node) within an
acceptable range of error

SF =-N(1)Cos (@(1)+ ~ (1)) +N(4+1) Cos [® (1+1)+¥(1+1)] -5 (1) Sin [®(1)+
A,(i)]+S(1+1)Sin[_zy(i+1)+"(i+1)]+P(i)Sin&(i)J (D.5)

SF =-N(1)Sin[@(1)+¥(1)) +N(i+1)Sin [@(i+1)+¥(i+1) +S(i)Cos [¢(i)+
4 (1) -S(i+1)Cos [@(1+1)+1(i+1)) -P(i)Cos(€ (1))  (D.6)

where
P=load applied at the node and.

€ =the angle between P and the vertical axis.
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(1)

S(1)

N(1) { x

Fig. 55, Typical Mass Point, Forces, and Moments

If convergence is not 3atisfied,£he initial guesses for u and v are
improféd using Newtonsalgorithm,and the process is repeated until convergence
is achieved; that is,the equilibrium equations are satisfied.

This method has not led to a satisfactory result for the model

used.

E. Space Arch
In space arches the same rigid bar-spring node model was used. A

basic difficulty exists now because of the fact that the rotational
displacements about the three dimensional axes are not commutative.
The final configuration of a body depends on the sequence of rotations.
That is, when rotated about say,x , then y and finally z, the body
will not be in the same place necessarily as when rotated about say, Yy,
then x and finally z axes. The addition of twist makes space arches
more complicated than the plane arches.However, if rotations are small,
they are commulative and can be added as vectors. Therefore, the arch

can be studied under a small load causing small displacements. The
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coordinate system will be updated and the new configuration will be the

reference one for the next load increment. The procedure continues
until the last load increment is applied and the corresponding
configuration is then the one corresponding to the final cumulative
applied load which may not be small. This method of updated
coordinatesa is used for 3-D arches.

To study this problgxp, other than the assumptions made in the 2-D
case, it 1is also assumed that no shear deformations are allowed and
that the first and last elements are in one plane and stay in that
plane. The latter becomes more of a reality if we make the two
elements small enough. .

The iteration procedure is as follows (7 and 39);

(a) Guess the initial values for the reactions in x, y,and 2z
directions, Rx, Ry and Rz, moment vectors in local s and t directions,
M; and MT, and finally Dy, the change in 0(y which is the angle between

the first element and y axis. S is the longitudinal axis (Fig. 56)

+1

x
Fig. 56. Local and Global axes (Space Arch)
(b)If T=direction cosines of the local axes r,s, ad t with respect
to x,y, and z,and P and Q are applied forces in (x,y,z) and (r,s,t)

coordinate systems, respectively and R is the reaction vector, then
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{a(} = [T){p+r} (E.1)
AD(1)=Q_(1)L(1)/E(1)A(1)
For a pinned ends arch M‘t(l)=0 s0;

-1
Hx ,0
Hy =[T] M (E.2)
M M
z T
(c) Having the displacements that we find from the forces and

moments in step b, final coordinates of node 2 can be found. From then
on with an iterative manner we find the rotations about the three local
axes having the moments and forces in the provious element (or node).
Then the new transformation matrix is found. To do so if we let E be

the consines of the angles between element i before and after rotations

about the three local axes, then

(T r]l: 5 E) ['ro;!lcl (E.3)

We can also find F, the transformation matrix from the local axes

of element i-1 to the local axes of element i

(F=[r) T -0) (E.4)

(d) Find the new moments and forces due to the applied loads and

the forces and moments in element or node i-1.

{ Q=08 {o-D] +[T(W)] {p(1)] (E.5)
M_(i-1)-Q_(1-1)L(1-1)
{M}=[F] M _(1-1) (E.6)

N (1—1)+Qr(1-1)L91-1)
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(e) Find the axial deformation AD and also P(i), a(1) and ¥(1),
the twist and rotations about the two local axes t and r, respectively.
P(i)=Ms(i)L(1)/2Gj(1)+Ms(i—l)L(i—1)/ZGj(1-1)
where Gj = torsional property of the element
ec(1)=M, (1) [L(D+L(1-1)) /[E(-1)T, (1-1)+E(H)I{1)] (E.7)
(1) =M (D [L()HL(1-1)] / (BE(1-1) I (1-1)+E(1) I (1)) (E.8)
where I rand It are the moments of inertia with respect to the local r
and t axes, respectively.

The new transformation matrices, moments, and forces can be found
doing one more iteration.

(f) Having the final deformation, the final coordiantes of node
i+l can be calculated.

(g) Proceed to the next element. At the end, the 6 errors at the
right support are the three displacements in x, y, and z directions,
change in the angle with x axis, & , moment about x (coincident with
the local r axis) and B(n-1) - M (n+1) L(n)/2Gj(n) where n=number of
elements. P(n+l) is the total twist. To find B(n+l) we find the
components of B(i) on the s axis of the last node and add them. Here,
due to the small size of the displacements, P was treated as a vector
perpendicular to the plane of the node.

(h) Having the errors and the guessed initial values,we improve
the latter using Newton's algorithm with a 6x6 matrix. The iteration
continues until convergence is satisfied. Then the displaced arch is
set as the reference configuration and after updating the coordinate

system,the procedure will be repeated for the next increment of load

-
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until the last load increment has been taken care of.

It should be noted that the small rotations have been taken by
others (43) as less than 15?

The method was tried for 2 dimensional loads and arch but the
values obtained were not satisfactory.

Other methods have also been used to solve the 3-D problem
including a method using the principle of minimum potential energy.
The principle states (7) that among all displacement configurations
that satisfy internal compatibility and kinematic boundary conditions,
those that satisfy the equations of equilibrium make the potential
energy a stationary value. If the stationary value is a minimum, the
equilibrium is stable.

To apply the principle to the arch problem, after having the
coordinates of all nodes, we assume the displacements of each node.
From the original and final coordinates of the nodes, we find the
bending and torsional rotations,o(i),y(i),and B(i) and alsoithe axial

deformation of each element, AD(i). Then if

K, =EI /L (a)
KB=EIU/L : (b)
K =Gj/L © )
K,=EA/L (d)

the total potential energy is equal to

e o 2 2 n
U—l/Zng(i)u (14K (1)p%1>+1<5(1)6 (1)]+215f<1)m%1)} (E.10)
and the element (i, j) of the stifness matrix would be
K(1,3)= 225
Du(i)dud)
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where u(i) and u(j) are the displacements of the i th and j th degrees

of freedom. To compute the derivatives of u we can use the method
developed in case I of this chapter.

From the above formulationstwo procedure s can be developed. The
steps for the first one are as follows:

(a) Assume initial values for all displacements of all nodes

(b) Find rotations and axial deformations

(¢) Find the total potential energy, U

(d) Test for convergence. That is, see if U is a minimum. If

§%g=0 within acceptable error range for all u(i) then convergence is
satisfied. We have the final configufation. If not, go to step (e)

(e) Having the initial values and errors and using tﬁé Newton's
algorithmywe improve the initial values and go back to step (b).

The second procedure includes the following steps:

(a) Assume initial values for u(i), forming displacement vector D
which includes three displacemetns and three rotations about the three
global axes for each node.

(b) Find the rotations and axial deformations.

(c) Find the stiffness matrix,K, which is the second derivative of
the total potential energy.

(d) Find the force vector due to the displacements

F = =KD (E.11)

(e) Find the unbalanced force

Fu = F+4P (E.13)
Where P is the vector of the applied forces.

(f) Find the displacements due to the unbalanced force D
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(E.14)
(g) Test for convergence. If not satisfied go to step (h).

(h) Find the new displacement vector
DnewPo1d+Dy (E.15)
and go back to step (b).

To test convergence, one way is first to compute

E = ‘u/ug (E.16)
Where T is the value of the specified type of deformation of each node
due to unbalanced forces and u; is the maximum initial value for that
type of deformation. If ty is,say, the value of the displacement in x
directtondue to the unbalanced forces,then up will be the maximum value
of the displacement in x direction of all nodes in the original
assumption (step a). We find the 6 maximum values for E corresponding
to the 6 types of deformations. If these 6 values are within
acceptable range of error then convergence is satisfied.

The above two methods using potential energy have not led to a
convergence with a set of satisfactory results.

Projecting the arch onto the three perpendicular planes was also
considered to deal with the problem. The space arch was projected onto
xoy, xoz, and yoz planes. Each one was treated as an in-plane problem.
Moments and forces on the element were found combining the moments and
forces of each component. Compatibility was forced to be satisfied by
geometrical relationships such as the fact that the sum of the squares
of the three direction consines is equal to one.

This method did not work due to the fact that we cannot take the

projection of properties such as moments of inertia, find the efects,
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and then combine them to get the effect caused on the element in space.



=109~

BIBLIOGRAPHY

Austin, W.J., "In-Plane Bending and Buckling of Arches", Journal
of Structural Division, ASCE, Vol. 97, ST 5, May 1971, pp.
1575-1592.

Austin, W.J., and Ross, T.J., "Elastic Buckling of Arches Under
Symmetrical Loading", Journal of Structural Division, ASCE,
Vol. 102, No. ST5, May 1976, pp. 1085-1095.

Austin, W.J., Ross, T.J., Tawfik, A.S., and Volz, R.D., "Numerical
Bending Analysis of Arches," Journal of Structural Division,
ASCE, Vol. 108, No. ST4, April 1982, pp. 849-868.

Bathe, K.J. and Bolourchi, S., "Large Displacement Analysis of
Three-Dimensional Beam Structures," International Journal
for Numerical Methods in Engineering, Vol. 14, April 1979,
pp. 961-986.

Chajes, A., "Post-Buckling Behavior"; Journal of Structural
Division, ASCE, Vol. 109, No. 10, October 1983, pp.
2450-2462.

Conway, H.D., and Lo, C.F., "Further Studies on the Elastic
Stability of Curved Beams," International Journal of
Mechanical Sciences, Vol. 9, No. 10, October 1967, pp.
707-718.

Cook, R.D., Concepts and Applications of Finite Element Analysis,
John Wiley and Sons, 1974.

Dawe, D.J., "Numerical Studies Using Circular Arch Finite
Elements," Computers and Structures, Vol. 4, 1974, pp.
729-740.

DaDeppo, D.A., and Schmidt, R., "Sidesway Buckling of Deep
Circular Arches Under a Concentrated Load," Journal of
Applied Mechanics, ASME, Vol. 36, June 1969, pp. 325-327.

Dill, E.H., "General Thin Shell Displacement Strain Relations,"
Proceedings of the Uth United States National Congress of
Applied Mechanics, Vol.1, 1962, pp. 529-530.

Dym, C.L., "Bifurcation Analysis For Shallow Arches," Journal of
Engineering Mechanics Division, ASCE, Vol. 99, EM2, April
1973, pp. 287-301.

Encyclopaedia Britannica, Knowledge in Depth, Vol. 1, 1980.



13.

.

15.

16.

17.

18.
19.

21.

22.

23.

24,

25,

-110-

Fuji, F., "A Simple Mixed Formulation For Elastica Problems,"
Computers and Structures, Vol. 17, No. 1, 1983, pp. 79-88.

Gallert, M., and Laursen, M.E., "Formulation and Convergence of a
Mixed Finite Element Method Applied to Elastic Arches of
Arbitrary Geometry and Loading", Computer Methods in Applied
chhanics and Engineering, Vol. 7, No. 3, March 1976, pp.
285-302.

Harrison, H.B., "Post-Buckling Behavior of Elastic Circular
Arches", Proceedings of,the Institute of Civil Engineers,
London, England, Vol. 65, June 1978, pp. 283-299.

Harrison, H.B., "In-Plane Stability of Parabolic Arches", Journal
of Structural Division, ASCE, Vol. 108, ST1, Jan. 1982, pp.
1 95“205 .

Huddleston , J.V., "Finite Deflections and Snap-Through of High
Circular Arches", Journal of Applied Mechanics, Vol. 35, No.
4, December 1968, pp. 763-T69.

Hornbeck, R.W., Numerical Methods, Quantum Publishers, Inc., 1975.

Janssen, G.J., "A Nonlinear Dynamic Analysis of Line
Structural Members", Ph.D. Thesis, 1968, Michigan State
University, Michigan.

Kerr, A.D and Soifer, M.T., "The Linearization of the Prebuckling
State and Its Effect on the Determined Stability Loads,"
Journal of Applied Mechanics, Vol. 36, No. 4, December 1969,
pp. T75-783. '

Langhaar, H.L., Boresi, A.P., and Carver, D.R., "Energy Methods of
Buckling of Circular Elastic Rings and Arches", Proceedings
of the Second U.S. National Congress of Applied Mechanics,
1954, pp. 437-443.

Lee, L.H.N., and Murphy, L.M., "Inelastic Buckling of Shallow
Arches™, Journal of the Engineering Mechanics Division, Vol.
9”, EM1, Febo 1968, ppo 225-239.

Mattiasson, K., "Numerical Results From Large Deflection Beam and
Frame Problems Analysed By Means of Elliptic Integrals",
International Journal of Numerical Methods in Engineering,
Vol. 17, No. 1, January 1981, pp. 145-153.

Nemat-Nassar, S., Variational Methods in the Mechanics of Solids,
Pergamon Press, 1980.

Noor, A.K and Peters, J.M., "Penalty Finite Element Formulations
of Curved Elastica", Journal of the Engineering Mechanics



26.

27.

28.

29.

30.

31.

32.

330

34.

35.

36.

37.

-111-
Division, ASCE, Vol. 110, No. 5, 1984, pp. 694-712.

Nordgren, R.P., "On Finite Deflection of an Extensible Circular
Ring Segment", International Journal of Solids and
Structures, Vol. 2, No. 2, April 1966, pp. 223-233.

Ojalvo, M., Demuts, E., and Tokarz F., "Out of Plane Buckling of
Curved Elements™, Journal of the Structural Division, ASCE,
Vol. 95, ST10, October 1969, pp. 2305-2316.

Ojalvo, I.U., and Newman, M., "Buckling of Naturally Curved and
Twisted Beams", Journal of the Engineering Mechanics
Division, ASCE, Vol. 94, EM5, October 1968, 1067-1087.

Oran, C., and Bayazid, H., "Another Look at Buckling of Circular
Arches", Journal of the Engineering Mechanics Division, ASCE,
Vol. 104, EM6, December 1978, pp. 1417-1432,

Oran, C., "General‘Imperfeetion Analysis in Shallow Arches",
Journal of the Engineering Mechanics Division, ASCE, Vol.
106, EM6, December 1980.

Rymers, P.C., "Application of a Discrete Element Model to the
Study of the Static and Dynamic Stability of Beams, Arches,
and Rings", Ph.D. Thesis, 1968, Michigan State University,
Michigan.

Sabir, A.B., and Lock, A.C., "Large Deflection, Geometrically
Nonlinear Finite Element Analysis of Circular Arches",
International Journal of Mechanical Sciences, Vol. 15, 1973,
pp. 37-47.

Schreyer, H.L., and Masur, E.F., "Buckling of Shallow Arches",
Journal of the Engineering Mechaniecs Division, ASCE, Vol. 92,
EMY, August 1966, pp. 1-19.

Schmidt, R., and DaDeppo, D.A., "A Survey of Literature on Large
Deflection of Non Shallow Arches, Bibliography of Finite
Deflections of Straight and Curved Beams, Rings, and Shallow
Arches", Industrial Mathematies, Vol. 21, Part 2, 1971, pp.
91-114.

Sheinman, I., "Large Deflection of Curved Beam With Shear
Deformation", Journal of the Engineering Mechanics Division,
ASCE, Vol. 108, EM4, August 1982, pp. 636-647.

Sokolinikoff, I.S., Mathematical Thoery of Elasticity, Second
Edition, McGraw-Hill Book Company, NY, 1956.

Timoshenko, S.P., and Gere, J.M., Theory of Elastic Stability,
Second Edition, McGraw-Hill Book Company, NY, 1961.




38.

39.

4o.

41,

y2.

43.

4y,

45.

46.

47.

=112~

Timoshenko, S.P., and Woinowsky-Krieger, S., Theory of Plates and
Shells, Second Edition, McGraw-Hill Company, NY, 1959.

Wang, Chu-Kia, Matrix Methods of Structural Analysis, Second
Edition, American Publishing Company, Madison, WI, 1970.

Watwood, V.B., and Hartz, B.J., "An Equilibrium Stress Field Model
for Finite Element Solutions of Two Dimensional Elasto Statie
Problems", International Journal of Solids and Structures,

No. 4, (1968). pp. 857-873.

Wempner, G.A., and Patrick, G.E., "Finite Deflections, Buckling
and Post-Buckling of an Arch", Proceedings of the Eleventh
Midwestern Mechanics Conrerence, Vol. 5, Iowa State
University, August 1969, pp. 439-450.

Wen, R.K., and Lange, J. "Curved Beam Element For Arch Buckling
Analysis", \Journal of the Structural Division, ASCE, Vol.
107, ST11, November 1981, pp. 2053-2069.

Wen, R.K., and Rahimzadeh,J. "Non-linear Elastic Frame Analysis
by Finite Element",Ph.D.. Thesfs,1981, Michigan State.
Bniversity, . Michlgan. )

Wolde-Tinsae, A.M., and Assaad, M.C., "Non-linear Stability of
Prebuckled Tapered Arches", Journal of EM Division ASCE, Vol.
110, No. 1, January 1984, pp. 84-94,

Wood, R.D., and Zienkiewicz, 0.C., "Geometrically Non-linear
Finite Element Analysis of Beams, Frames, Arches, and
Axisymmetric Shells", International Journal of Computers and
Science, Vol. 7, No. 6, December 1977, pp. 725-735.

Wunderlich, W., Stein, E., and Bathe, K.J., "Non-linear Finite
Element Analysis in Structural Mechanics", Proceedings of the
Europe - U.S. Workshop, Ruhr Universitat Bochum, Germany,
July 28-31, 1980.

Yamada , Y., and -Ezawa , Y,. "On Curved Finite .Elements
. for the Analysis of Circular -Arches '}, .. Incernational
Journal for Numerical Methods in Engineering, Vol. 11, 1977
ppo 1635-1651 .



@
3
<
=
o
@
@
I
>
z
3
w
<
@
F
g
£




