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ABSTRACT

FINITE DISPLACEMENT BEHAVIOR OF PRESTRESSED

AND UNPRESTRESSED ARCH—FRAMES

BY

Mostafa Tavakoli

The behavior of prestressed and unprestressed arches is studied.

The possible means of achieving better design through cables or end

couples is also examined.

The arch being studied is approximated by a series of bars

connected by rotational springs. The axial deformations occur in the_

bars which are incapable of bending. The banding is taken by the

springs at the nodes.

The reactions and the rotation or the moment at the left support

are guessed as initial values. The equilibrium equations are written

at each node and the forces and moments at each element and node are

found. The method proceeds to the right end where errors in horizontal

and vertical displacements and either moment or rotation may occur.

Having the errors and the initial values, the latter are improved by

Newtonian iteration and the calculations are iterated until convergence

is achieved.



Mostafa Tavakoli

The method is capable of taking into account both symmetrical and

unsymmetrical force application, physical properties, geometry, and

deformations.

The method is applied to several problems with known solutions and

the results are compared in Chapter 3; these include the buckling of a

half circle arch with a concentrated load at the crown, a straight beam

with a distributed load over half of the span, a quarter circle arch

with the distributed vertical and radial load over the entire span, and

the non-prismatic arch under uniform load over the entire span. The

results obtained compare favorably with the known solutions presented

in the literature.

In Chapter 4 the two principal problems of this thesis are

investigated: the effect of wind load and the combination of arch and

cables at different positions; and prestressed arches with concentrated

load at the crown and uniform load over the entire and half of the

span. It is concluded that the cables do not reduce the crown

‘ displacement except under the wind load. Prestressing the arch is also

not effective in achieving a better design.'

The method of extrapolation to reduce the need for a large number

of elements was used and proved to be effective.
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.CHAPTER I

INTRODUCTION

1.1 General

Arches are among the oldest ferms of structures and devices that

have been used for many centuries. Bows as a hunting device and a

weapon have been used since the ancient times. The sport of modern

archery started even before the 13th century (12).

Arches have had other important applications. In many cases such

as bridges, buildings, decorative structures, mechanical bodies, and

the approximation of shells by a series of arches, they have fermed a

major structural component. In lightweight structures, arches are

being used, sometimes in connection with cable nets or fabric covering.

For ease in erection, these arches are sometimes made from initially

straight bars, bent into an arch shape, secured at the ends by clamping

or pinning, and then loaded.

It is this extensive application of the arch-frames that motivated

this investigation.

This thesis is concerned with the behavior of an arch under large

enough loads to produce large deflections. The study is done using a

finite number of discrete elements to approximate the arch. This

method makes it possible to consider problems such as arches with

variable section where the application of exact methods would be
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difficult, if possible. Even if it was possible, to solve the problem

using the methods available in statics and mathematics would be often

not easy.

In this investigation, a rigid bar spring node model is used.

Both axial deformations, taken by the bars, and rotations, taken by the

springs at the nodes_are allowed. Using the equilibrium equations and

Newton's algorithm, an iteration procedure is developed to find the

forces and moments in all elements and nodes. The final configuration

is also found. The model has been used to solve the following problems

for which known solutions are available:

1. The symmetric and unsymmetric behavior of a half circle arch,

pinned at the ends and loaded at the crown with a concentrated load

applied vertically.

2. A straight beam, pinned at the supports and subjected to a

uniform load over half of the span.

3. A parabolic arch with variable moment of inertia under uniform

load over the entire span.

u. A quarter circle arch pinned at the ends and loaded radially

or vertically over the entire span.

The problems investigated in Chapter U are as follows:

1. A circular arch pinned at the ends, supported by cables at

different positions and loaded horizontally or vertically.

2. Circular arcs with various initial spans prestressed into an

arch with a fixed span, 3, then pinned at the ends and loaded. A

straight bar was also prestressed into arches with different spans,

fixed at the ends and loaded.
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3. A straight bar prestressed into an arch by an axial force,

fixed at the ends, and then loaded with 3 different loadings;

concentrated at the crown, uniform over the entire span, and uniform

over half of the span. The results are compared with the unprestressed

parabolic fixed arch with the same span and the same loadings.

The program written is in BASIC and was run with the TBS-80

micro-computer.

Included as the appendices of the thesis are; the main computer

program, the method used to improve the initial values, a computer

program used to find the peak values of the load-displacement curves,

and an alternative method for 2-dimensional problems and methods to

solve 3-dimensional problems which did not lead to satisfactory

results.

1.2 Related Past Works

The buckling of curved structures has been investigated by many

researchers. Austin (1) has summarized the state of the knowledge of

the in-plane bending and buckling of arches. Austin and Ross (3) have

compared numerical procedures for elastic analysis of arches by large

deflection, 2nd order and classical theories using repeated numerical

integrations similar to the Newmark procedure for beams and beam-

columns. Following Watwood and Harts (#0), Gallert and Laursen (1#)

have used equilibrium models to study an elastic arch of arbitrary

geometry and loading by a finite element method based on a mixed

variational principle. They removed the restriction of prior

satisfaction of equilibrium on the trial set of unknowns, i.e., the
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stress field was directly obtained by analysis. Using the variational

approach, Schreyer and Masur (33) wrote the equilibrium equations in

radial and tangential directions to find the equations of buckling load

and loadodisplacement curves for a clamped arch loaded by a

concentrated force at the apex. They concluded that the symmetric snap.

through buckling always governs. Kerr and Soifer (20) gave an analysis

of the effect of linearizing the prebuckling state for clamped shallow

arches, overestimating the snap-through load. Using Koiter's initial

post buckling theory, Dym (11) considered a symmetric buckling from a

linear prebuckling stage and its postbuckling aftermath.

Oran and Bayazid (29) analysed the stability of uniformly loaded

circular arches without the assumption of shallow and inextensional

arch and showed that the critical load (both limit and bifurcation) can

be expressed in terms of a combined problem parameter in the form of

asymptotic formulas. Sheinman (35) has developed a numerical procedure

modifying Newton's method and by finite difference based on large

deflection, small strain, and moderately small rotations. The

equilibrium equations admit shear deformation and geometric

imperfection.

Using the Newton-Raphson method to solve non-linear equilibrium

equations, Wood and Zienkiewicz (#5) have worked on geometrically

non-linear analysis of elastic in—plane oriented bodies in a total

Lagrangian coordinate system, developing a paralinear isoparametric

element. A non-linear elastic finite element for a beam initially

curved in one plane but deformable in the three dimensional space has

been presented by Wen and Lange (#2). In this work the quadratic and
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linear eigenproblems were formulated to calculate the in-plane and out

of plane buckling loads of arches. Wen and Rahimzadeh (#3)

investigated non—linear elastic frames including arches, approximated

by a series of finite elements and using different coordinate systems

such as Euler and Lagrange (small rotations and updated).

Other studies of interest include, OJalvo and Newman (28), Ojalvo

and Demuts (27), Bathe and Bolourchi (#), Chajes (5), DaDeppo and

Schmidt (9), Dawe (8), Nempner and Patrick (#1), Yamada and Ezawa (#7),

Harrison (16), and Sabir and Look (32).

The survey article by Schmidt and DaDeppo (3#) provides additional

historical comments and a more complete bibliography than that

undertaken here.

1.3 Notations

The following symbols have been used in this investigation:

A:: Cross Sectional Area of Each Element;

A = Cross Sectional Area of Cables;

AD: Axial Deformation of Each Element;

AF: Axial Force in Each Element;

CB: Combined Components of the Axial Forces of the Pair of Cables in

the Plane of the Arch;

CD: Cable Axial Deformation (Positive if Compression);

CF: Cable Axial Force;

CE: Horizontal Component of CB;

CL: Cable Original Length;

CN: Cable Final Length=CL-CD;
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CV: Vertical Component of CB;

E = Modulus of Elasticity of Each Member;

Modulus of Elasticity of Cables;

GR: Guessed Value for Rotation of the First Element;

HL: Applied Horizontal Load at Each Node;

H H.Moment of Inertia of Each Member;

Element Length;I
"

l
l

LF: Load Factors of the Distributed Horizontal Load;

M = Moment of Each Node;

htmaf Maximum moment;

M): Prestressing Moment at Each Node (When Bar is PreStressed By

Couples Applied at the Ends);

N = Number of Elements;

Concentrated Applied Load;'
0

I
I

Bifurcation Load (Where Unsymmetric Buckling May Occur);’
6

l
l

Critical Load (Maximum P on the Symmetric Part of Load-Vertical‘
0

l
l

Displacement of the Crown Curve);

'
V

I
I

Limit Applied Load After Which the Deflection of Crown Gets Larger

By Adding Cables;

R=Radius of {he-Arch;

SC= The Angle Between the Two Neighboring'Elements,-Unless:0therWi8€

"Specified;

SF= The Shear Force’in Each Element;

‘5: Vertical Displacement of the Crown Corresponding to Bifurcation

Load;

2:: Vertical Displacement of the Crown Corresponding to the Critical
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Load;

VL: Applied Vertical Load at Each Node;

Vertical Displacement of the Crown Corresponding to the Critical

B
l
l

Distiuted Load;

Distributed Load Per Unit Length;1
:

n

W = Bifurcation W (Where Unsymmetric Buckling May Occur);

Critical W ( Max. w on The Sym. Part of Load—Displ. Curve);1
'
:

l
l

W - Radial Distributed Load Per Unit Length That Changes Direction to

2
'

Stay Normal to the Arch During and After Deformation;

WNN=Radial Distributed Load Per Unit Length That Does Not Change

Direction and Stays Radial;

x = x- Coordinate of Each Node;

Y = Y-Coordinate of Each Node;

AG: Rotation of Each Element;

6 = Angle between the Element and 3 Vertical Line 0 Measured

Clockwise From The Vertical;

6 =
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CHAPTER II

THEORY AND FORMULATION

2.1 Physical Model and Assumptions Made

The arch is modeled as a combination of rigid bars and rotational

springs. The bars are considered to have axial elastic properties, but

are incapable of bending. The rotations are taken by the springs at

the nodes (Fig. 1).

It is also assumed that the material is isotropic and linearly

elastic. No shear deformations are allowed.

Fig. 2 illustrates the forces and moments on a typical bar and a

typical node. On the first node and element there are also the

horizontal and vertical reactions in the positive x and y directions,

respectively. The applied horizontal load is considered to be positive

if in the positive x direction. The positive applied vertical load is

in the negative y direction. For a fixed support a moment also exists

at the support.

If the forces and moments on the element (or node) i-1 are known,

the forces and moments on element (or node) i can be found using the

following equilibrium equations at node i.

SF(i):-AF(i—1))Sin(SC)+SF(i-1)Cos(SC)+HL(i)Cos(6)+VL(i)3in(6) (a)

AF(i)=AF(i-1)Cos(SC)+SF(i-1)Sin(SC)+HL(i)Sin(6)-VL(i)Cos(8) (b) (2.1)

AD(1)=AF(1)L(1)/E(1)I(i)
(e)
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M(i)=M(i-1)+SF(i-1)L(i-1) (d)

06(1)=M(i) { L(i)/2E(i)I(i)+L(i-1)/2 E(i—1)I(i—1)} (e)

Axial deformation and rotation of a node are shown in Fig. 3 in

the positive sense.

As with most finite element solutions, taking more elements leads

to a better accuracy.

The results obtained using this model agree well with the ones

previously obtained by others. Table 1 shows the results for a

cantilever beam loaded at the free end with a vertical downward load.

As can be seen, with extrapolation between 6, 8 and 10 elements exact

results (23) are obtained. The #, 6 extrapolation differs from the

exact value by only .061. The #, 6, 8 and 10, 20 extrapolations are

more accurate than the solution with 100 elements.

Fig. # shows the results for a cantilever beam with end couple.

The results are very good again compared with the exact ones.

The effectiveness of this model and the procedure used will be

compared with some other previously worked out models and procedures

later in the next chapter.
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Fig.1. Modeling The Arch

SF(i)

M(i+1) [{FUL)

\
6(1)

Ages

 

SF(i-1)

Fin-1)

Fig.2. Typical Bar And Node

  \ép(

L(i Node 1 ' i

\/ AD(i)=AL(i)

Fig.3. Sign Convention For Axial Deformation And Rotation
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Table 1 - Comparison of Results For Cantilever Loaded At The End
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2.2 Procedure

 

 

x y

'l of elements free end free and slope (free end)

8 60.3019 73.3951 1.20618

6 60.8807 72.2761. 1.21116

8 61.018 71.8838 1.21298

10 61.098 71.7018 1.21383

20 61.2028 71.8597 1.21898

1oo 61.2358 71.3823 1.21535 1

8,6 61.27178 71.3809 1.21518 3

8,8 61.2567 71.3735 1.21525 2

6,8 51.28596 71.37 5 1.21532 2 ,

8,10 61.28022 71.37896 1.21538 PL /EI 5

10,20 61.23773 71.37900 1.21536

#,6,8 61.23736 71.3777 1.21538

6,8,10 61.23700 71.37921 1.21535

xact (23) 61.237 71.379 1.21537

cf. (13) #el. 61.29 71.91 1.223

ef. (13)10e1. 61.25 71.86 1.221 J 

The procedure used in satisfying the boundary conditions for a

frame is the so-called "shooting method". It starts out with assuming

values for the unknowns at the left support of the arch under any

loading condition (Fig. 5). The final configuration of the arch after

AU’

/ load

Arch Under General Load

 V

x

Fig. 5.
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loading is to be determined. The assumed unknowns would include

reactions and rotation (for pinned end) or moment (for fixed end).

Having this information and using formulas 2.1, we can find the forces

and deformation of the next element and moment and rotation of the next

node and proceed to the right support. We will end up with certain

values for the x and y displacements and moment (for pinned end) or

rotation (for fixed end) which are the errors (if not equal to zero).

Having the initial guessed values and the final errors and using

Newton's algorithm (appendix A), we improve the initial values and

iterate until convergence is achieved, i.e., the errors are within

acceptable range. In Newton's algorithm, to find the derivative of

f(x,y,z) representing each one of the 3 errors at the right support

with respect to say, x representing one of the 3 initial values, we

find f(x,y,z) and then f(x+Ax,y,z), Alt being a small increment in x.

Then LD§(X.y.2) = f(X+AX.y.2)-f(X.y,2) (2'2)

‘bx Ax

Ax:.01 has given the best results in all cases.

A listing of the computer program is given in appendix C. Fig. 6

shows the flow chart of the program.

In the process of inputting data, variable thickness, properties,

shape, element length, and loading can be allowed for. The uniform

loading is assumed to be lumped at the nodes. Components of the loads

at the nodes in x and y directions are input.

A double precision program has also been used and the results have

not changed significantly from the ones using single precision.
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It should also be noted that the choice of the initial values may

change the speed of convergence significantly. Another point to

consider is that a set of initial values intended for one case of

equilibrium, such as symmetric, may lead to another equilibrium

configuration, such as unsymmetric. With a little experience, one will

have a feeling of what the initial values for a better and a faster

convergence in the right direction should be.
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CHAPTER III

CASES WITH KNOWN SOLUTIONS

The following cases have been studied.

3.1 Arch With Concentrated Load at the Crown

A simply supported half circle arch with a concentrated vertical

downward load at the crown was considered (Fig. 7).

Fig. 7. The Arch of Case 3.1

The program was run for different initial guesses, all leading to

the same results. Convergence was fast, except at the loads very close

to the critical load. To overcome this problem a third degree curve

fitting was taken passing through # neighboring points on both sides

of the peak value. The # points had already been found using the

program. So the equation of the curve was written. If the coordinates

of the # points are (xlyl), (x2, y2), (X3, y3), and (x4 , Y4) then the

coefficients of the third degree polynomias can be found as follows:





-17-

 

3"1 H Xi X1 1
3 2

yz Kg Kg X2 1
(3.1)

y3 = x3 x3 x3 1

3 2 j
y f4 x4 x4 1 d

-3 2 - -1

x1 x1 x1 1 Y1

3 x2 x 1 y

= “g g 2 2 (3.2)

C X3 X3 X3 1 Y3

2

d _§2 x x4 9 Y4 
Knowing the coefficients, the peak value can be determined by solving

the following equation for x and finding the corresponding y. The

program to do so is listed in appendix B.

dy/dx = 3ax2 + 2bx+c

The bifurcation load was determined by approximating the symmetric and

the unsymmetric branches of the load-displacement curve by two

polynomials passed through determined points on the branches and then

solving for the intersection of these two curves.

Fig. 8 shows the load vs. crown vertical displacement curve. The

reference curve (15) is also plotted.

Figs. 9—11 show the deflected shapes of the arch under different

loads for #, 6, and 8 elements, respectively. Fig. 12 shows the

deflected shapes of a 20 element arch with different properties.

Table 2 compares the results obtained using this method and other

references. The S differences in results are also shown. In this

table:

Pc : critical load (peak value on the symmetric part of load-

displacement curve)
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Pb = bifurcation load (load at which unsymmetric buckling may occur)

Vp = displacement of the crown corresponding to Pc

FIahle 2 u comparison of Results For Case 3.1

' 2 2 A Z Ditrer nce

v - ~ —
No. of PbR PCR 9 1n p Rl/EI In P RS/EI In v /R

Elements E1 151 R b _ t p

 

 

 

4 6 8 6 8 4.6.8 6,8 4,6,8 6.8
 

4 ~ 4.66 6.960 .82

6 5.335 8.075 .78

8 5.600 8.915 .765

,86 5.940 10.00 .75

4,6,8 5.960 10.32 .75

(15)50E1. 5.875 10.15 .75 1.45% 1.112 1.672 1.482 02 OZ

(42)16E1. 6.766 11.92% 12.212
-

(21) 6.540 . 8.872 9.172

(43) 5.700 4.56% 4.21%           
 

Fig. 8 is for the arch with 5:200, 1:108, A=105, and stooo.

Table 2 corresponds to the same arch. For an arch with different

properties (E:1.O#x107, I:6.21x10_6, A:.0775,R:10), the values for #,

6, and 8 elements shown in Table 2 did not change significantly.

It should be noted that the results are for a much fewer number of

elements than many others.

The larger difference with two of the references in Table 2 is

mainly due to the difference in assumptions. In reference (#2) the

weakening effect of bending deformations on the axial stiffness is
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neglected. The displacement of the structure is assumed to increase

linearly with the applied load until buckling occurs. The assumptions

in reference (21) were based on the cross sections being inextensional.

Although the term involving the cross sectional area does not appear in

the dimensionless term PRZ/EI, the effect of the area is significant in

many cases (#2). The present study is not based on any of the above

assumptions.

The 3 point Richardson's extrapolation has been done using the

following formula:

4

n? A ni A n:

A= Af -—-——-———-*-4- - i--*'-—-———- + c'-—jr-——————-——-
2 2 - 2 2_ 2 2_ 2 _ 2 2_ 2

(“f"nc)(n¥—ni) (nf ni)(ni nc) (nf nc)(ni no)

(3.3)

where Af, Ai, and Ac are the values corresponding to nf ,ni, and nC

number of elements, respectively. For a 2 point extrapolation the

following formula has been used:

2 n2
n

A= Af —2—f—. — Ac—;—~2—— (3.11)

(nf—ng) (nf—nc)

The energy can also be checked. For a body in equilibrium the

energy due to the external forces should be equal to the internal

energy. The external energy due to load p is equal to the area under

the load-displacement curve from load=0 to the point corresponding to

p. This area can easily be found by approximating the curve by some

straight lines. The internal energy would be equal to:

Internal Energy = 1/2211(1)Ae(1)+AF(1)AD(1)) (3'5)

Using Fig. 8, the external energy for a load of 7000 (before the

peak value on the curve) would be equal to 1.507376x107 and the
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49y———————7£5 Ref. (15)

E}——-—-———E3 8 Elements

GP——--———<3 6 Elements

e———e 4 Elements

Points on the curves do not

  

 
 

R = =

E = 200 A = 105 represent data points. they are

. there to distinguish between the

1 1 times! 1 1

o .2 .4 6 .8 1.0 vc/R

Fig. 8, Load — Deflection curve for case 3.1





4
.

R
=

s
o
o
o

I
=
1
0
3

E
=

2
0
0

A
=
1
o
5

O
r
i
g
i
n
a
l

'
C
}
'
-
"
_
—
"
"
‘
<
>

S
y
m
m
e
t
r
i
c

C
>
"
"
"
“
"
“
4
3

a
—
a

U
n
s
y
m
m
e
t
r
i
c

-21-

 
3
.
1
,

4
E
l
e
m
e
n
t
s

F
i
g
.

9
,

A
r
c
h

D
e
f
l
e
c
t
e
d

S
h
a
p
e
s
,

C
a
s
e

  





R
=
5
0
0
0

I
=
1
0
8

E
-
Z
O
O

A
=
1
0
5

+

O
r
i
g
i
n
a
l

C
)
—
—
—
—
—
—
—
—
—
<
3

S
y
m
m
e
t
r
i
c

C
*
—
‘
—
—
—
—
‘
-
*
3

U
n
s
y
m
m
e
t
r
i
c
H

     
   

-22-

 

C
a
s
e

3
.
1
,

6
E
l
e
m
e
n
t
s

A
r
c
h

D
e
f
l
e
c
t
e
d

S
h
a
p
e
s
.

 



R
=
5
0
0
0

I
=
1
0
8

E
=
2
0
0

A
=
1
0
5

#
-

O
r
i
g
i
n
a
l
O
—
O

C
>
-
—
-
-
-
-
<
D

L
o
a
d
e
d

-23-

 
 

C
a
s
e

3
.
1
,

8
E
l
e
m
e
n
t
s

D
e
f
l
e
c
t
e
d

S
h
a
p
e
s
,





R
=
l
O

E
=
1
0
.
4
x
1
0
6

I
=
6
.
2
1
x
1
0
-
6

A
=
.
0
7
7
5

.

O
r
i
g
i
n
a
l

C
>
—
-
—
-
-
4
3

1
9
3

°
D
e
f
l
e
c
t
e
d
,

S
y
m
.

C
>
—
—
—
—
—
—
A
D

5
“
"
‘
u
0
‘
3
‘
k

l
e
f
l
e
c
t
e
d

,
U
n
s
y
m
.
H

c
-

   
   

—28-

 
 

 

F
i
g
.

1
2
.

A
r
c
h

D
e
f
l
e
c
t
e
d

S
h
a
p
e
s
,

C
a
s
e

3
.
1
,

2
0

E
l
e
m
e
n
t
s





 

-25-

internal energy is equal to 1.5152700x107. There is a 0.52:

difference. For a load of 6000, (on the curve passed the peak value)

the external and internal energy and the percentage difference are

equal to 2.9865619x107, 2.9928650x107 and 0.2:, respectively. These

were all for the 8 element case. Therefore the external energy and

internal energy are equal, which confirms again that the configurations

obtained are the equilibrium configurations.

We see that the model and procedure work very well for this case.

3.2 Half Span Loaded Beam

A simply supported beam with a horizontal restraint at the end was

loaded uniformly over half of the span. Table 3 shows the results for

different w using different numbers of elements. The values for 6

divisions seem to be away from the normal accuracy. This is possibly

because of the length of elements not being exactly entered as 100/6 in

the data for computer program. In the data, instead of 100/6 the

length was taken as 16.6667 which caused the difference in the length

of 16.6667x6:100.0002=§ difference = .0002.

The .0002 extension results in the axial force of

(.0002) (EA/L)=.2 which may have caused the difference. As can been

seen in Table 3, using double precision did not change the results

significantly.

With no horizontal restraint at the end (referred to as the exact

results in Table 3).

-2

v =.651042x10 wL4/EI (a)

center

(b)

M -.0625 wL2

center (3.6)
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For a small load (Wzl) the results from Table 3 are about 11

Table 3 - Results for Case 3.2

 

  

 

 

 

     

 

 
  
 

    

of ":1 ":10 Hgso

a "CgtJr H VC "C H vC M(3 H

I .675887 617.67 -1o.788 1.5075: 9052.56 -h8".128 9.7933" 8325.3 -231o.28

6 .658501 618.17 -1o.3183 1.13921 1095.93 -181.s73 9.63835 8916.02 .2322.75

8 .652219 618.17 -10.u073 u.u1u9i u111.76 -180.591 9.60u18 8u53.8 -2326.2

10 .689821 618.28 .10.353 1.9038. 8119.82 -880.0" 9.58889 8872.h8 -2327.6

20 .685630 610.32 -10.2903 8.38901 8129.79 -879.271 9.56896 3u93,u1 -2329.29

8,6 .688630 618.57

u,8 .618383 618.31 -1o.280u “.3880: 1131.53 -u79.u12 9.55779 8u96.6 -2331.51

6.8 .6811206 618.18

8.10 .688393 618.35 -1o.2565

10,20 .9183“ 618.35 4026.911 11.38801 $79.01? -879.015 9.56232 3501,13 43329.35

,6,8 .688066

,8,10 .68’1898

110.20 .688361 618.38 -1o.2719

‘.8.10 .688395 618.36 -10.2519

Double Precision

I .6758516810 617.677159 10.7873779 9.5075603 8052.150 -1au.129u 9.71332 8325.3019 -231o.279

8 .6522h9hfl 618.179029 10.8063318 8.81890 8111.750? -980.5910 9.6081376 8053.76837 -2326.211

59888 5177 916511 220 9 681105

8,8 .68838207 L618.3u6gg 10.279316 1.3810216 8131.51762 -879.n1165 9.5577909 8u96.5895 .2331.5228

Exact .6510’42 | 625 one md on roller T

dif 1.022 1.063

8.8.10 | Ls1og

, 5:10

1:100

1:10

different from the exact ones obtained using formulas 3
J-

6- Of course

the non~linearity causes a small horizontal reaction uhicfli makes the

two cases (Table 3 and formulas 3.6) slightly different-

3.3 Distributed Load
 

load over the entire span was considered (Fig. 13).

First a quarter circle with pinned ends and a vertixzal distributed
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6

E=4.l76x10

I=2.03125

A=2.7

 

Fig. 13,Quarter Circle with Vertical Distributed Load

The loads on the two half lengths of the two elements adjacent to

each node were taken as the concentrated load at that node.

Fig. 15 shows w-vc curve where Vc=vertical displacement of the

crown. Fig. 16 shows some deflected shapes of the arch. Let Nb be

the point where the symmetric and unsymmetric curves meet (buckling

load), WC be the critical load which is the max. value of w

corresponding to the symmetric curve, and Vb and Vm be the

corresponding vertical displacements of the crown. Table N compares

the results obtained using this and other methods. As shown with

extrapolation between 6 and 8 elements, the maximum difference between

this and other procedures is about 21.
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Table 4- Comparison of The Results for Quarter Circle With.

Vertical Distributed Load

  

 

 

J 7 Di fpronr With 3o. of £1. wbR IEI 631, RP] 6.8 ch /EI Vb/R Vm/R

6 15.27 25.55 .0125 .0885

8 15.5 26.98 .0127 .0875

6,8 15.78 28.83 .0130 .091”

(“2)851. 15.33 1’ 11 2%

(2) 15.62 2’ . 11 1’           

Next a quarter circle with pinned ends and radial distributed load

was considered (Fig. 1H).

E=107,I=.8789x10—2

A=.l875

 

Fig. 14. Quarter Circle With Radial Distributed Load

The load may or may not stay normal to the arch. It was again

distributed among nodes as concentrated loads. Fig. 17 shows the load

displacement curves for 8 and 10 element arch.

Table 5 compares the results for the case when the load stays

normal to the arch. With extrapolation between 8 and 10 elements the

difference is 61 from the one obtained beren and Lange(42) and .AZ

from that obtained by Timoshenko (37).
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Table 5- Comparison of Results for Quarter Circle,Radial Dist. Load
J ‘ _

 

 

 

      

No. of "N R3 . 1 Difference With “NN

Elements 3031 8 £1. 10 El. 8,10 3051

8 .870 - - - .503

10 .880 - - - ~51 N=Normal to Arch

8,10 .898 — - - .522

Luz)16£l. .5291 13$ 10: 61 NN=Not Normal

L37) .50 6: 11% .111 ,0 Arch 
 

 
The deflected shapes are shown in Fig. 18 (a and b).

As can be seen, this case corresponds to one of the many modes of

vibration. Fig. 18 (c and d) also shows the deflected shapes for 2

other modes of vibration. The corresponding load deflection curves are

shown in Fig. 19.

3.” Nonprismatic Parabolic Arch

The buckling of a nonprismatic parabolic arth, pinned at the

ends and subjected to a uniform loading on a horizontal projection over

the entire span was investigated for two different variations of the

cross sectional area. In both cases the moment of inertia at a cross

section is I=Ic sec 0 (3.7) where Ic=the moment of inertia at the

crown; 0: the angle between the tangent to the arch axis and the

horizontal (Fig. 20).

 

 

 

I!“ J. J, .1, lfiq

c6

10
Ic=.1

5:107

kegs 20 ~1

Fig. 20, Parabolic arch Under Uniform Load
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The two variations of the cross sectional area are:

A :10 I

A =10,000I

The rise-span ratio is taken as 0.5, that of a half circular arch.

The nodes were taken in such a way that they were on the arch axis and

the lengths of the elements were equal.

Fig. 21 illustrates the deflected shapes of the arch. The load-

crown vertical displacement curves are shown in Fig. 22. For the

parabolic arch with uniform load, the axial forces are the main cause

of displacement. As can be seen, the curves for the symmetric case do

not have a decreasing segment. For the case of A=10,000 I, the

symmetric curve is very close to a vertical line. The large cross

sectional area causes small axial deformations and small displacement.

The critical values of the axial compressive force at the quarter

points of the span can be expressed by the following equation, as is

done by Austin (1).

P = m—Ele— (3.8)

e 2

where

S = one half the length of the arch axis;

x : a coefficient.

The horizontal component of the thrust at buckling can be

expressed as

EI

He= P

where

 C (3.9)

L2
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L = span length; and

P = a coefficient.

The values of x and 8 obtained using this method are compared with

the reference (1) values in Table 6. The 3 point extrapolation gives a

very good set of results, specially for the case of A=1OI. ,Part of the

difference in the results can be due to the possible difference in the

form of the variation of the cross—sectional area which is not

specified in the reference literature.

Table 6 — Comparison of the Results for Non-Prismatic Arch

 

 

No. of A=10 I A=1o4 I A=10 I A=lr4 T

Elements u ZDiff;. ' Diff. Diff. F I Diffu .

/ Ref. / Ref~ P F/ Ref. W/ Ref.

 

6 11.823 1.70 11.078 8.66 18.522 3.19 18.3252 8.50

8 11.521 .83 11.277 2.95 18.788 1.81 18.5822 2.79

10 11.552 .59 11.3252 2.58 18.8665 .89 18.8301 1.07

6,8,10 11.5725 .81 11.3823 2.38 18.98 .80 15.8721 3.15 
ref.(1) 11.62 - 11.62 - 15.0‘ - 15.0         
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CHAPTER IV

EFFECTS OF CABLES AND PRESTRESSING

8.1 Cable Supported Arches

A slight modification in the program used for case 3.1 makes it

possible to apply it to the cable supported arches. To keep it an in-

plane problem, two cables, identical in property, length, and strength

but on two opposite sides of the arch and symmetric with respect to the

plane of the arch were attached to any desired node (Fig. 23).

   
 

 

Fig. 23. a) Projection on a b) Projection of Cables in

Horizontal Plane The Plane of Arch
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The symmetry would allow us to find the in-plane component of the

axial force caused by extension in each cable and double it to find the

total force due to the pair of cables on the node to which the cables

are attached. The components of the cables axial forces in the

direction perpendicular to the plane of the arch would be equal in

magnitude but opposite in direction, therefore they cancel.

In the modified program, if there are any cables at a node, the

coordinates of the node are found as if the cables did not exist.

_Raving the new coordinates and VD (Fig. 23), new CC can be found.

cc=[yD2+ y(i§Jl/2 (8.1)

The new length of each cable is then equal to

CN=(CC2+ BD 2)“2 (8.2)

So if CL = the original length of the cable, the change of length for

each cable is (compression is positive)

CD= CL-CN (”'3’

Now, if E(:and A(:are the cable modulus of elasticity and cross-

sectional area,respectively, the axial force in each cable would be

CF=CD-E -A /CN ("'8)

C C

If CP = the angle between the cable and the arch plane, the components

ofCF of the two symmetric cables in the plane of the arch would be

CB=2(CF)Cos(CP) ("'5)

Then CV and CH, the components of CB in vertical and horizontal

directions are

(8.6)
CV=-(CB) Sin(BK)
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CH=(CB) Cos(BK) (“-7)

These are added to the applied vertical and horizontal loads.

Having new forces, moment and axial deformation of the

corresponding node and element can be found leading to the new

coordinates of the node. Then, we proceed to the next node.

Note that cables are useless when compressed so they should be

allowed to work in tension only.

To examine the effect of cables, a pinned-ends half circle arch

with vertical and horizontal (wind) loads was studied.

with a vertical load at the crown and 16 elements, the program was

tested for a set of weak cables. The critical load of 10.0 and the

displacements agree well with the previously obtained results (in Table

2). Then the same arch with 8 elements and a set of strong cables at

nodes 2 and 8 was studied.Fig. 28 shows the load-vertical deflection

(of the crown) curves for cables with different cross sectional area or

modulus of elasticity. As can be seen when the cables are strong, the

pattern,in which after the critical load (right half of the curve)

decreasing the load would increase the deflection, may not exist.

Displacements are smaller and the critical load is bigger than without

cables. When the cables are too strong, the corresponding node tends

to stay where it was before loading. The neighboring nodes will be

displaced large amounts,causing discontinuity,and therefore making

convergence very hard or impossible. Fig. 25 shows the deflected

arch.

The 8 element arch can not be a good representation of the problem

because the arch together with the cables acts as a truss type
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structure. For this reason an eight bar arch was considered.

The cables helped the structure by decreasing the deflection up to

a limit load, 2‘, smaller than, but close to the critical load, as can

be seen from Fig. 26. At P: g ,the cables cause an increase in the

crown deflection up to a certain load after which the cables go into

compression. Changing the position of the base of the cables did not

improve it very much.

It was thought that this increased deflection was caused by the

fact that for a large cross sectional area and after a certain

deformation occurs, not much axial deformation is possible (compared

with rotations) so the crown starts deflecting more as we add the

cables. But with different cross sectional areas,the basic pattern

still was unchanged (Figs. 26 and 27 ) . However, it was noticed

that the change in geometry due to the cables, for loads greater than

Bi? increased the-horizontal reaction causing larger moments therefore

larger deflection as we add the cables. V

As the number of elements increases, PL gets closer to the

critical load. As seen in Fig. 26, for 8 elements

PL/Pc= 6.1/8.915=.6842

and for 12 elements PL/Pc= 8.7/9.71=.896

Fig. 27 shows the deflected shapes of the arch with 8 and 12

elements. Figs. 28 and 29 show that changing the position of the bases

of the cables or properties of the arch does not change the general

behavior of the arch much. Figs. 30 and 31 show that with more cables

the same pattern still exists (deflection of the crown increases with

cables after a certain load 1.)°
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One of the main applications of cables is when wind forms an

important part of the loads. Therefore, we now examine the behavior of

the arch-cable combination under wind load.

The horizontal component of the wind on a circular arch is more

important. For this reason, the horizontal load was considered even

though it is just a matter of inputting the magnitudes of the vertical

components as the vertical loads in the computer program to take into

account the total effect of the wind loads.

A pair of concentrated loads were applied first. The two loads

were equal in magnitude and opposite in direction, applied on two sides

of the arch at the same position relative to the two supports to make I

it a symmetric problem. As expected,the lower part of the arch moves

in and the upper part (including the crown) moves outward (Fig. 32).

The horizontal uniform load was distributed as concentrated loads

among the nodes according to half of the total vertical length of the

two elements adjacent to each node. These ratios are called wind load

factor (LF). To increase the horizontal load, LF of each node is

multiplied by a constant number. For 12 element arch the load factors

for nodes 1-7 are 12.98, 25, 22.815, 18.7, 13.385, 6.825, and 1.785

(Radius of the half circle arch = 100).

Fig. 33 shows the LF - crown displacement (vertical and

horizontal) curves without cables. The curve for LP - horizontal

displacement of node 8 in a 12 element arch is also shown in Fig. 33.

Node 8 follows the same pattern in terms of horizontal displacements

except that they are bigger than the horizontal displacements of the

crown fbr a certain load.
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In Fig. 38 the LF - horizontal displacement curves with and

without cables are shown. The load is scaled on the horizontal axis

for a better illustration. The curves tend to approach a horizontal

limit. Fig. 35 shows the deflected shapes of the arch for different

loads, with and without cables.

As can be seen from Figs. 33 and 38, attaching cables would help

the arch have less displacements and a greater horizontal limit of LF-

displacement curve.

Therefore, when horizontal (or wind) loads are applied, cables are

effective and useful.
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Fig. 27. Deflected Shapes of Arch, Different Number of Elements
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8.2 Prestressed Arch

A straight bar may be bent into an arch, then fixed and loaded.

To take the effect of this prestressing into account, we have to find

the prestressing moment, Mo, and add it to the moments at the nodes.

 
Fig. 36, Prestressing The Straight Bar Into An Arch

If n=number of elements, then the angle between element 1+1 and i

would be “/n (Fig. 36). To form this angle ,the prestressing moment M0

is applied.

M anal-EL (11.8)

o n L

Then if GR=rotation of the first element due to the applied load, the

moment at node 1 is

(8.9)

M(l)=Mo+(GR)-%l§

For a typical node i, if SFzshear force

M(i)=M(i-1)+SF(i-1) L(i-1) ‘ (8.10)

Because M C)is included in 14(1), 50(1) in Fig. 3 would now include

SC also.

Note that for an unprestessed arch with fixed ends, at node 1 we

will still have a rotation,GR, in the first half of element one which

is lumped at node one. But this GR is related to the moment at the

first node through the following formula:
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E1

M(1)=(GR)-f7§ (8.11)

The rest of the program is the same as for the pinned end arch

except the error term in the right support corresponding to rotation is

m1= M(n+1)- Mo—[qq(n)-.—0(n)][%] (”'12)

where

9N(n)=0(n)+80(n) (Fig. 3)

An 8 element arch was studied. As shown in Figs. 37 and 38,

fixing the supports will not help increasing the critical load compared

. with pinned supports but will reduce the displacements significantly.

5 Prestressing the arch will not change the forces and displacements

but it will change the moments at the nodes. With different modulus of

elasticity of the arch ,the same behavior was observed.

Next,a fixed length bar was bent into arches with different

central angles (0:) and span 3. It was the) fixed at the two ends and

loaded vertically at the crown with a load of 500. Table 7 shows the

resulting maximum moment for 8, 6, and extrapolation between 8 and 6

elements. The length of the straight unloaded bar is 500017 :

15707.9633.

The optimum case is when prestressing starts decreasing the

maximum moment in absolute value sense. The optimum value for 0: is

shown in Table 8 which is obtained using Table 7.

As can be seen at 06418.1, the max. prestressed moment is smaller in

absolute value than the max.non-prestressed moment for the load = 500.
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fable 1- Mal. Noncnc (or Strllxht lar lent Into Ace» With £-100.l-l0a

4-193, Load-500’

 

 

 

        
 

 

 

Max. Non~'res;ressing Nonenl Max. Prestressing Hench!

1- cl. u 6 61. at

4.0 4 :1. ll 6 cl. at

(x 3.3410 3 nod! 4’ nodes 2.‘ nodes I.‘ ".

deg.

180 -)6l)67 -3§1801 ‘ -398148.2 4.3568256 4.2267366 L.12271E6

120 -169780 -385876 -398752.8 2.9‘45E6 1.86022E6 2.792556z6

90 -382609 -393219 -401707 2.2641356‘ 1.!!85E6 2.l27996£6

30 = -583679 -492641 -419810.6 ' 1.00817E6 901374 815777.:

25 - -723215 -540395 -194139 952391 ' «16562 707898.a

23 -857666 - - 955124 - - -

22.1 -972435 - - 972404 - -

22.1' -976455 - - 973131 -

20 - -651833 - - 169356 -

17.71 - ~817271 - - 817869 -

’17.1_ - -817271 - - 818620 -

17.5 - -851532 - - 837945 . -

Table 8 - Optimum x {or the Prestressed Arch of Table 7.

No. 0! Optimum flax. Non- flax. Pre.

Elements in Degrees Prestressed Prestressed

Moment Houent

I: 22.17 -972!13S 972W!

6 17.7 -818899 818620

41.6 111.1211 -696070.2 695592.8     
 

Finally.circular arcs of fixed length of 150 and varying chord lengths.

s.was prestressed into arches with a span of 100.Then the ends were pinned and

the arch was loaded at the crown with a vertical load. The program

used is the same as the one used for problem I, except in the data

Processing the coordinates of the nodes or the arches with different

Span: were inputted and the span was set equal to 100 for all arches in

the calculations.

F18- 39 shows the max moments for 6 and 8 element arches. Fig. 40
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is obtained using Fig. 39 to plot the absolute values or the max.

moments vs. the original. span. From this, Table 9 was obtained.

This shows that the values of s for which the maximum moment is the

lowest,are 111.19 and 122.79 for the loadtof 1000 and 2000,respectively.

The corresponding values of moment are 5975 and -13854,respective1y,

Table 9 - Optimum Span and Hax.Moment for the Prestressed Arch of

 

 

  

   

Fig. 90

~ Optimum Span Optimum Max. Homent

No. of

Elements Load:1000 Load=2000 Load:1000 Load=2000

6 110 120.5 7077 -171oo I ,

8 110.5 121.5 6595 -15680

6,8 111.11 122.79 5975 -13854

_. _ 4.   
 

9.3 Prestressing by Axial Force

In section 9.2 an arch prestressed by moments applied at the ends

was studied. In this section, a study is made or a straight bar

compressed axially to term an archJThen the arch is fixed at the ends and loaded

(Fig.91).For the comparative unprestressed case, a parabolic arch is

approximated by a set of elements whose ends are located on the

parabola with the same span as the prestressed arch. Ratios of H/L

=0.125, 0.375. and 0.5 were used. The locations of the nodes were found

using a trial and error method to solve a set of equations resulting

from setting the lengths or the elements equal. For the prestressed

case,an initially straight bar was used with a length equal to the

number or elements times the length or each element as found in the

parabolic unprestressed case. Then the program was run for the
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straight bar (0:90 for all elements) with a wait load at the crown.

If this small load is not applied, the vertical reaction would be equal

to zero and in the iteration procedure a division by zero would result.

After convergence, the new shape is loaded and the program run to give

the final prestressed loaded shape, axial forces, and moments.

afll—
1‘ L ;1

I‘

Fig. 111 - Prestrbssed Arch, By Axial Force

The load vs. vertical crown displacement curves are shown in Figs.

fl2-50 fer 3 different loadings: vertical concentrated load at the

crown, uniform load over the entire span, and unifbrm'load over half of

the span. Three ratios of H/L were studied: 0.125, 0.375, and 0.5.

Figs. 5" and 55 show the deflected shapes. These figures also show the

curves and shapes corresponding to the parabolic arch with the same

span, non-pretressed and fixed at the ends. As can be seen from these

figures, prestressing the arch causes greater displacements and smaller

buckling loads (Table 10). .Table 10 and Fig. 52 also show that the

maximum axial forces corresponding to the loading conditions stated in

Fig. 51 get larger with prestressing. This would be expected since the

prestressing process produces an initial force.

The moment diagrams for certain loads smaller than the buckling

load are shown in Fig. 51. Again, prestressing increases the maximum

moments. For these loads the moments for 8 and 10 elements are within

less than 7‘ difference. These are shown in Table 11.

It can be seen that the non-prestressed arch is more desirable.

Thus, although there may be constructional advantages in ferming
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lightweight curved frames by using an initially straight bar, the

moments and axial ferces are greater than fer an initially curved bar

with the same loadings and the same span.

Note that the loads in Table 10 for concentrated loads correspond

to the peak values of the symmetrical load-displacement curve,since the

bifurcation to an unsymmetrical mode could not be found.This agrees with

Hasur's results (33) that the symmetric case always governs. Therefore,

the peak values of the symmetrical part of the curves are entered in

the table. However, as shown in Pig. #2, unsymmetric equilibrium modes

were found. These do not correspond to bifurcation loads feund in the

pinned end arch and will not lead to finding the buckling loads.

It should also be noted that the peak values and the bifUrcation

loads were feund using the polynomial process described in section

3.1.

Fig.5} compares the unloaded shapes of the non-prestressed arch

and the prestressed parabolic one.

 

 

  

 

 

Table 10- Buckling Load§

37L 'Loading Condition Buckling Load"3 “‘

_L? Concent.&.3£_'Uniform

I EI

NOD’PTQSCe Prest.f

h (a) g 51.57 37,5f

5 (b) 193.15 73,55

° (c) 128.15 100 00

,____,_ (Z) - 48.95 “' 38792 “

375 (b) 222.10 93.50

' (c) 132.05 107.92

--~d’ (a) F " 22.97 22.50 '”'

125 (by 64.50 60.55

' (c) 75.30 70,50      
 (a Crown Concentrated (byfiUniform Over Entire Span

(c) Uniform Over Half of The Span
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51” IMoment Diagrams, Prestressing by Axial Force

=I107, I=.10, A=lOO, 8 Elements, Parabolic Arch (For Non-prest}
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JFig. 51. Continued
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52. Axial Force Diagrams, Prestressing by Axial Force
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CHAPTER V

CONCLUSIONS AND FUTURE STUDY

5.1 The Problem Summary and Conclusions

The elastic non-linear behavior of arches has been investigated

using a rigid bar-spring node physical model. The influence of bending

and axial deformation has been included. The load displacement curves

and the deflected shapes for a variety of loads and fOr fixed and

pinned supports have been obtained.’ The effect of cables at different

positions has also been studied. Prestressing a straight bar into'

circular arches with different spans, and also circular arches with

different spans into a half circle arch has been investigated. The

results obtained are in good agreement with the known solutions, when

such solutions are available.

For a pinned end arch with a concentrated load at the crown and a

pinned support beam with a distributed load over half of the span, the

results are in errors by less than 51 and in most cases about 11

compared with the ones obtained by others. The error for a quarter

circle arch loaded radially or vetically is about 1%. The results for

a non-prismatic parabolic arch with uniform load over the entire span

are with less than 4.51 error with the previously obtained solutions.

Prestressing a straight bar by axial force to form an arch fixed

at the ends results, in general, in lower buckling loads and greater

forces in the arch and therefore does not achieve a better design.
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This was studied for a concentrated load at the crown and a uniform

load over the entire or half of the span. Attaching the cables to the

arch loaded vertically does not help the arch at loads near the

critical load. However, cables are effective and useful for the

horizontal loads.As summized in Tables 7-9 (Section 4.2),a study was

made of circular arcs of afixed length but initially with different

radii .and chord lengths and then“ prestressed into arches of the 'same

spanJ‘t was found that this technique canreduce the maximum moment

in the final-located arch. The optimum initial length was found to

vary depending on the load,being greater for larger loads.

Based upon these results it may be concluded that the model and

procedure used are accurate and that it is not necessary to take more

than 10 elements, eleven nodes, when two or three point extrapolation

is employed to produce good results. Sometimes this extrapolation

gives more accurate results than whm 100 elements are used. The

method is also economical. All the work to solve the two dimensional

problems was done using a TBS-80 micro-computer.

It should also be noted that using this model, variable geometry

and elastic properties can be accounted for. A case in which the

moment of inertia was not constant was studied in this thesis.

5.2 Future Studies

Several additional problems are suggested by the work done here.

These include the determination of shear effects. If Sgt) is the shear

deformation in element 1 perpendicular to the element axis ,lumped. at

node 1.then '06é(i-1)-% where A68(i-1)=thé~rotation of node i-l due

to the sheaf" deformation and II( i)=the length of element‘ ‘i‘.Then 668(1-1)

would be added to the bending rotation” at node i-l to obtain the total
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rotation at node i-l. The effect of variation in geometry and.elastic

properties;can also be studied. A slight change in the program will

make it possible to be used to investigate the-behavior of arches with

a combination of different support and loading conditions.

The space arch under in-plane and out-of-plane loading may be

studied using the same model extended to 3 dimensions. Torsion could

be taken by torsional springs at the nodes. Several approaches have

been tried as explained in Appendix E, but none of them has led to

satisfactory results.

The non-elastic behavior or arches can also be studied by

modifying the program used fer this thesis.
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APPENDICES

A. Newton's Algorithm

The Newton's algorithm can be used to improve the initial values

in an iterative manner.

For three simultaneous non-linear equations

f(a,b,c)=0
(a)

g(a,b,c)=0 . 4 (b) (A.1)

h(a,b,c)=0 ' (C)

if a0,bo, and co are approximate solutions, then better selutions may

be a , b , and c , where

1 l l

    

f \ -O-l

fig 'bfo ‘ofo

a1 Lo bag ‘obo Eco f0

g‘ 2.8 b ,
4b1r=<b0 -%58— $38— $8- 2’0 (A.2)

c c 2mg 3h bhg

. 14 L 0 330 ‘053‘ secs ho 
where

fo=f(ao.bo,c0)

h0=h(a0,b0,c0)

The equivalent terms may be evaluated numerically by three

successive repetitions of the chain analysis. That is, the functions

f0, 3 , and h corresponding to the three initial values a,b, and c

0 0

can be calculated,f,g, and h represent the three error terms

corresponding to a,b, andc, respectively. It should be noted that f,g,

and h would include other parameters such as the ones corresponding to
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eom'etry and elastic properties.

In the next chain of analysis, a small increment Aa is given to

he value of a,and f1,g1.and h1 , the corresponding values of f,

;, and n are found. Similarly, (r2. 5' n?) and (g, g. kg)

sorresponding to the increments Ab and Ac can be computed. Then using

the approximation of formula (2) in section (2.2) of the thesis

regarding the derivatives of the functions, we find the improved values

of a,b, and c, 1., a1, b1, and c1, respectively.

 

 

  

 

  

_ _ :1

a -. 7f1‘f0 .232- _f_3_f_9_ f0

11 O A a A b A c

6 a Ab A c '

c h —h h —h h -h h

61‘ 0 1 o 2 0 3 o o

[_Aa Ab AC 4  

The procedure may be used to improve a set of more than three

initial value s using a larger matrix.
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Egmputer Program Listing to Find the Peak Value of Load-

[isplacement Curve

The fellowing symbols have been used:

:Displacement of the 4 points determined from the load-

displacement curve (data), 1:1, 2, 3, 4.

.splacement value of the peak point with positive determinant in

the solution of the quadratic equation resulting from setting

dy/ dx=0

.splacement value of the peak point with negative determinent in

the solution of the above equation;

:terminant of the equation dy/dxzo;

:ak load value corresponding to DH;

:ak load value corresponding to DN;

Coefficients of the polynomial, 1:1, 2, 3, 4.
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l tggjm'lmenmnm TO FIND W. 1040 OF [MD-DISH. CURVE USING 3RD DEGREE MWIAL'

'NIH!!!"lllllllfllfllllIll"lulu"!!!"lllllfllllllllllfllflllllllflllfllfll'

3 1mm 01231271'11'

1211 11:4 '

1215 1111 A(R,R),B(R,R),D(R),P(R),$(R)

1211 PRINT'INPUI 0411; 1:1 10 4-

1221 1112111 o¢11.0<21.0<31,0<41

1231 mmumn 10405 241nm 1o 4'

1241 11m P(1),P(2),P(3),P(4)

1251 1011 1:1 10 11

1261 A(1,1)=1

1271 411,2)=0<11

1291 A(I,3)=D(I)[2

1291 A(I,4)=D(l)l3

1295 LPRINI'A(';I;',J)=';A(1,1);A(l,2);A(l,3);A(I,4)

1311 14911 1 .

1311 LPRINT'D(I),(1=I 10 4) =-;o<11;0121;0131;o(41

1321 17111111-2111,<1=1 10 41 95111512154315“)

1331 1011 1:1 10 11 .

1341 8(1,11=1

1351 11m 1

1531 m J=1 10 11

1532 roe 1:1 10 11

534 1r 411.1101 THEN 1542

536 11911 1 ,

538 LPRINT'SJNBUIAR mmx'

541 6010 1831

542 1011 11:1 10 R

544 1:40.111

546 museum

548 1111.1):1

551 1:11am

552 8(1,10=8(1,10

554 au,10=1

556 11911 x

558 emu,»

561 1011 11:1 10 11

162 A(J,K)fElA(J1K)

E64 B(J,K)=£IB(J,K)

'66 new 1

‘68 508 1:1 10 11

71 IF 1:1 11181 1582

72 624111.11

74 roe 11:1 10 11

76 A(L,X)=A(L,K)4EIA(J,K)

'8 B1L,K)=B(L,K)1EIB(J,K)

11 “11911 x

12 11911 1

:4 14m .1

6 mam-1mm IMRSE'

8 1011 1:1 10 11

1 1211m'1=';1;-:-;8(1.11;8(1,21;311,31;8<1,41
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1592 NEXT 1

1594 909 1:1 10 1

1595 sum

1596,1111! e1 10 1

1593 5611:51114811.x1-9<x1

1611 NEXT 11

1612 NEXT 1 .

1614 199811-6869. 11419119

1616 LPRINT

1618 989 1:1 10 9

1611 un1m~1s°;1;- , sue-35111

1614 NEXT 1

1651 991111-19 11591. 09 911011169 LMD, 991m ram 01

1661 19 01411 11184 1711

1671 99111116141 81591.2-

1681 1119111 09

1691 99:511145121119456311109121151411609131

1695 1991161

1711 199111189959;'99=°;99

1:11 991141'19 911811169 11591., 991111 ram 911

1721 19 911:2 11181 1671

1731 01412112315111.5131

1732 19 om 11184 1755

1734 M=(-S¢2)9SOR(DT))I(3IS(1))

1736 secs5121-58910111/13-51111

1741 P11=$(WS(3)IMOSCZ)!(W2)9$(1)U(M3)

1742 89511145131101454211191121456311101131

1751 1991111917 POSITIVE 'SOR(DT): 01=';01;° 91mm

1752 199110-117 NEGATIVE 5891011: cream-91mm

I754 8010 176.

I755 [PRINT'DETEMIW TO CALCIUWE MAX [5 NEGATWE'

I76. mmf'munuunlnnulnnunnuuuuunuuunun'

|830 END
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Listing of the Main Computer Program

A simple modification will make it possible to use this program

for a fixed end arch prestressed by axial force.

The fo1lowing symbols have been used (other symbols have been

defined in Section 1.3):

BD

CE

CM

EA

EI

EH

EL

EM

EP

EV

GH

GV

GR

HN

IC

ID

IE

LN

NE

NN

R

RI

SC

SM

TC

TH

TN

VD

VN

VV

XL

XM

XN

YN

The Horizontal Distance Between the Cable Base and the Plane of

the Arch;

Cable Modulus of Elasticity;

Cable Cross Sectional Area;

Element Cross Sectional Area;

Element Moment of Inertia;

Error in Horizontal Displacement of the Right Support;

Element Length;

Error in Moment or Rotation of the Right Support;

Error Limit Allowed;

Error In Vertical Displacement of the Right Support;

Guessed Value of the Horizontal Reaction of the Left Support;

Guessed Value of the Vertical Reaction of the Right Support;

Guessed Value of the Rotation of the Right Support;

Final Horizontal Load at a Node Including the Effect of Cables;

Allowed Number of Iterations;

1 If Cable Base to the Left of the Node, and Any Other Number

Otherwise;

1 If No Cable For the Node, and Any Other Number Otherwise;

Final Element Length After Axial Deformation;

Number of Elements;

Number of Nodes;

Radius of the Half Circle Arch;

Rise of the Right Support With Respect to the Left Support;

Slope Change of Each Element

Final Slope Change of Each Element

The Change In Slope Between Elements (I—1) and I;

Original Angle Between the Element and the Vertical;

Final Angle Between the Element and the Vertical (After Rotation);

Horizontal Distance Between the Cable Base and the Node Where the

Cable is Attached to;

Final Vertical Load at a Node Including the Effect of Cables;

Horizontal Distance Between the Left Support and the Node Where

the Cables are Attached to;

Arch Span;

Moment at each Node;

Final X-Coordinate of the Node;

Final Y-Coordinate of the Node;
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I PRINT'PROG.(HTTHESIS);ARCH W/ CHOICE OF PINNED OR FIXED

ENDS;CABLES; & PRESTRESSING'

5 PRINTfNON-LINEAR BEHAVIOR: ARCH-FRAME: RIGID BAR MODEL-

VERSION’U’-SP'

6 PRINT'IF FIXED ENDS, TYPE I'IINPUT F

7 PRINT'IF PRESTRESSED, TYPE I‘IINPUT P

10

I2

15

16

I7

28

21

22

25

38

35

48

41

42

43

44

45

so

55

60

65

7a

75

77

78

79

80'

81

82

83

84

85

86

90

95

180

INPUT'NUMBER 0F ELEMENTS';NE

NN=NE+1

DIM EL(NE),TH(NE),E(NE),EI(NE),A(NE>,UL(NN>,HL(NN),

XN<NN),YN(NN),TN(NE>,AF(NE),SF(NE>,AD(NE),LN(NE>,

XM<NN>,TC(NN),HE(NN+1),VE(NN+1),ME<NN+1)

DIM BO<NN>,vD(NN),CL(NN),CD(NN),CE(NN),CM(NN),CF(NN),

IE(NN>,ID(NN),UN(NN),HN(NN)

DIN EA(NE)

INPUT'ERROR LIMIT-EPS';EP

PRINT'IF SEMI-CIRCULAR ARCH,TYPE I':INPUT AC

IF AC=I GOTO 41

PRINT'INPUT ELEMENT LENGTH,ANGLE(THETA) ,MODULUS,I,A'

POR I=1 TO NE

PRINT I: INPUT EL(I) ,TH(I), E11). EI<I>. E411)

NEXT I: 6010 45 -

INPUT'RADIUS';R1PRINT'F0R EACH ELEMENT, INPUT E. I a A”

FOR I=1 TO NE

PRINT 1: INPUT E(I),EI(I),EA(I):TI=3.I415927/NE:

EL(I)=2*R*SIN(TI/2)

TH(I)-TI*(I-.5):NEXT I

PRINT'INPUT NOOE LOADS- VERTICAL, HORIZONTAL'

FOR 1=1 T0 NN

PRINT 1:1NPUT VL(I),HL(I>

NEXT I

FOR U=1 T0 3

PRINT'INPUT SPAN,RISE,N0.0F ITERATIONS,GUESS UERT.R,

HOR.R,ROTATION

INPUT X1,R1.1c,ev.OH.GR

HB=GH3 UB=GV9 RB=GR

FOR I=1 TO NN:VN(I)=VL(I):HN(I)=HL(I>

NEXT 1

II=1:XN<1)=O:YN<1>=e:Tc<1>=a:N=e:Ix=e

IF P=1 GOTO 82 ELSE 86

IF P=1 OOTO 83 ELSE 84

H0=(E(1)*EI(1)*(TH(2)-TH(1))>/EL(1):GOTO es

.MO=O

XM(I)=MO*GR*(E(I)*EI(I)*2/EL(I)):GOTO 98

XM(I)3O

TN(I)=TH(I)+GR

SN=SIN<TN(I)):CS=COS(TN(I))

AF(I)=((GU-UN(I))*CS)+((GH+HN(I))*SN)

105 SF(I)-((UN(I)-GU)*SN)+((GH+HN(l))§CS)

110 AD(I)=((AF(I)§EL(I)))/(E(l)§EA(I))

115 LN(I)-EL(I)-AD(I)

150 XN(2)-LN(I)*SN1YN(2)-LN(I)*CS



 



151

152

153

154

155

156

157

158

159

168

161

162

163

165'

178

171

172

173

I75

188

181

182

183

184

185

198

195

288

285

218

215

228

221

222

224

225

238

231

232

233

235

248
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IF IX<>8 GOTO 155

PRINT'PRINT 1 IF NO CABLES FOR NODE 1':INPUT IE(1)

IF IE(1)=I GOTO 162

PRINT'INPUT 80(1),VDB(1),CL(1),CA(1),CME(1)':INPUT

BD(1),VD(1),CL(1);CM(1),CE(1)

IF IE(1)=1 GOTO 162

UU=VD(1)-XN(1):BK=ATN(ABS(YN(1))/VV):CC=SOR((UV)*

(VV)+(YN(1))*(YN(1))):CN=SOR((CC)*(CC)+(BD(1))*

(BD(1)))

CD(1)=CL(1)-CN:CF(1)=((CD(1))*(CE(1))*(CM(1)))/(CN):

BC=(BD(1))/(CN):CP=ATN(BC/SOR(-BC*BC+1)):CB=2*(CF(1))

*(COS(CP)):IF CD(1)>8 GOTO 162

CH=-(CB)*(COS(BK)):CV=-(CB)*(SIN(BK)):VN(I)=VL(1)+CU:

HN(1)=HL(1)*CH

AF(1)=((GV-UN(1))*CS)+((GH+HN(1))*SN):SF(I)=((VN(1)-

GV)*SN)+((GH+HN(1))*CS)

AD(1)= ((AF(1)*EL(1)))/(E(l)*EA(1)): LN(1)=EL(1)-AD(1)

XN(2)=LN(1)*SN:YN(2)=LN(1)*CS

FOR 1=2 TO NE: J=I-1: K;I+1

PRINT'I=';I;'SF(J)=';SF(J);'LN(J)=';LN(J);'XM(J)=';

XH(J)

TC(I)=TH(I)-TH(J)

SC=((SF(J)*LN(J)/2.8 +XM(J))*LN(J))/(E(J)*EI(J))

IF F=1 GOTO 172 ELSE 173

IF P=1 GOTO 175

TN(I)=TN(J)+TC(I)+SC:GOTO 188

TN(I)=TN(J)+SC

CA=COS(TN(I)):SA=SIN(TN(I>)

IF F=1 GOTO 182 ELSE 185

IF P<>I GOTO 185

CS=COS<SC):SN=SIN(SC)

GOTO 198

CS=COS(TC(I)+SC):SN=SIN(TC(I)+SC)

AF(I)=AF(J)*CS+SF(J)*SN+HN(I)*SA-UN(I)*CA

SF(I)=-AF(J)*SN+SF(J)*CS+HN(I)*CA+VN(I)*SA

XM(I)=XM(J)+SF(J)*LN(J)

AD(I)=(AF(I)*EL(I))/(E(I)*EA(I))

LN(I)=EL(I)-AD(I)

ST=((SF(I)iLN(I)/2.8+XM(I))*LN(I))/(E(I)*EI(I))

SM=XM(I)*(LN(I)+LN(J))/(E(J)*EI(J)+E(I)*EI(I))

IF F=1 GOTO 222 ELSE 224

IF P=1 GOTO 225

TN(I)=TN(J)+TC(I)+SM:GOTO 238

TN(I)=TN(J>+SM

CA=COS(TN(I)):SA=SIN(TN(I))

IF F=1 GOTO 232 ELSE 235

IF P<>1 GOTO 235

CS=COS(SM):SN=SIN(SM):GOTO 248

CS=COS<SM+TC(I)):SN=SIN(SM+TC(I))

AF(I)=AF(J)*CS+SF(J)*SN+HN(I)*SA-UN(I)*CA
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245 SF(1)=-AF(J)*SN+SF(J>*CS+HN(I)*CA+VN(I)*SA

258 XM(I)=XM(J)+SF(J)w<J>

255 AD<I>=<AF(I)*EL(I))/(E(I)*EA(I))

268 LN<I>=EL<I)-AO<I)

261 PRINT'LN(';1;')=';LN(I)

262 XN<K>=XN<I>+LN(I)*SA

263 YN(K)=YN(I)+LN(I)*CA

264 IF IX<>8 SOTO 278

265 PRINT'PRINT 1 IF NO CABLES FOR NOOE ';I

266 INPUT IE(I)

267 IF IE<I>=I SOTO 288

268 PRINT'PRINT BD(I),VDB(I),CL(I),CA(I),CME(I)':INPUT

80(1),vO<I>,CL<I>,CM<I>,CE(I)

269 PRINT-PRINT 1 IF CABLE BASE TO THE LEFT OF THIS NODE':

INPUT 10(1)

278 IF IE<I>=I SOTO 288

271 IF ID(I)=1 SOTO 273

272 UU=VD(I)—XN(I):GOT0 274

273 VV=XN(I)-VD(I)

274 BK=ATN<ABS<YN(I))/VV):CC=SQR((VV)*(UV)+(YN(I))*

(YN(I))):CN=SQR((CC>*(CC)+<BD(I>)*(BD<I)))

275 CD(I)=CL(I)-CN=CF(I)=((CD(I))*(CE(I))*<CM(I)))/(CN)

:BC=(BD(I))/(CN):CP=ATN(BC/SQR(-BC*BC+1)):CB=2*

(CF(I))*(COS(CP)):IF CO<I>>8 SOTO 288

276 IF ID(I)=1 SOTO 278

277 CH=-(CB)*<COS(BK)):GOTO 279

278 CH=<CB)*(COS(BK))

279 CU=~<CB)*(SIN(BK)):VN(I)=UL(I)+CV:HN(I)=HL(I)+CH

288 AF(I)=AF(J)*CS+SF(J)*SN+HN(I)*SA-VN(I)*CA:SF(I)=-

AF(J)*SN+SF(J)*CS+HN(I)*CA+VN(I)*SA

281 XM(I)=XM(J)+SF(J)*LN(J):AD(I)=(AF(I)*EL(I))/(E(I)*

EA<I>>=LN<I>=EL<I>~AO<I>

282 SM=XM<I)*(LN(I)+LN(J>)/(E(J)*EI(J)+E(I)*EI(I))I

TN(I)=TN<J)+SM+TC(I)

283 CA=COS<TN<I>>:SA=SIN<TN<I>>:CS=COS<SM+TC<I)>:SN=

SIN<SM+TC<I>>

284 AF(I)=AF(J)*CS+SF(J)*SN+HN(I>*SA-vN(I)*CA:SF(I)=—

AF(J)*SN+SF(J)*CS+HN(I)*CA+VN(I)*SA

285 XM(I)=XM(J)+SF(J)*LN(J)

286 AD(I)=(AF(I)*EL(I))/(E(I>*EA(I>): LN(I)=EL<I>-AO<I)

287 PRINT' LN(';I;')=';LN(I)1XN(K)=XN(I)+LN(1)*SA.YN(K)=

YN(I)+LN(I)*CA

288 NEXT I

289 Nw=NN-1:XM(NN>=XM(Nw)+SF<Nw)*LN(Nw)

298 EH=XL-XN(NN):EV=RI-YN(NN):EM=XM(NN)

291 IF F<>1 SOTO 293

292 EM=XM(NN)-(H0-(TN(NE)-TH(NE))*(E(NE)*EI(NE)*2/EL(NE>))

293 1X=I

295 IF<A8S<EH>-EP>>8 SOTO 318 ELSE 388

388 IF(ABS(EV)-EP))8 GOTO 318 ELSE 385





385

318

315

316

317

318

319

328

322

325

338

335

348

345

358

355

368

365

378

375

388

385

398

395

488

485

418

415

428

425

438

435

448

445

458

455

468

462

465

478

475

488

485

498

495

498

588
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IF(ABS(EM)-EP)>8 GOTO 318 ELSE 498

IF (N)=8 OOTO 315 ELSE 348

IF(II-IC)(8 SOTO 322 ELSE 316

PRINT'CYCLE NO.';II;'ERROR H=';EH;'ERROR V=';EV;

'ERROR N=-;EM

PR1NT'GH=';GH;' GU=';GU;' GR=';GR

PRINT'DOES NOT CONVERSE AT CYCLE';II

PRINT'* ’5‘) N 1* «I 1! 1!"

SOTO 498

PRINT'CYCLE N0.';II;' ERRORH=';EH;' ERRORU=-;Ev;

' ERRORM=';EM

PRINT'GH=';GH;' GU=';GU;' GR=';GR

PRINT'DOES NOT CONVERSE AT CYCLE';II

PRINT"? 4» + + + + + + +"

N=N+1

HE(N)=EH:UE(N)=EV:ME(N)=EH

IF<N-1)>8 SOTO 365 ELSE 355

GH=1.81*GH

SOTO 81 .

IF<N~2>>8 SOTO 385 ELSE 378

GU=1.01*GU

SH=SH/I.81

SOTO 81

IF<N-3>>8 SOTO 485 ELSE 398

GR=1.81*GR

SU=Sv/1.81

SOTO 81

SR=SR/1.81

REM-JACOSIAN CORRECTION

A1=(HE(2)-HE(1))/(.81*GH): A2=(UE(2)-VE(1))/(.81*6H)

A3=(ME(2)-HE(1))/(.81*GH): BI=(HE(3)-HE(1))/(.81*GV)

B2=(VE(3)-UE(1))/(.81*GU): B3=(ME(3)-NE(1))/(.81*GU)

C1=(HE(4)-HE(1))/(.81*GR): C2=(UE(4)-UE(1))/(.OINGR)

CS=(ME(4)-ME(1))/(.81*GR)

P1=82*CS-C2*B3: P2=81*03-CI*B3

F3=BI*C2-B2*CI: OI=A2*03-CZ*A3

02=A1*03-01*A3: Q3=A1*02-C1*A2

R1=A2*83-82*A3: R2=A1*B3-BI*A3

R3=A1*82-A2*81

FRINT'A1=';A1;'P1=';P1;'BI=';BI;“01=';01;’CI=';C1;

“R1=';R1

DT=A1*P1-BI*OI+CI*R1

GH=GH-((P1*HE(1)-P2*UE(1)+P3*ME<1))/DT>

GU=GV~<<~GI§HE<1)+02*UE(1)-03*ME(1))/DT)

GR=GR-((R1*HE(1)-R2NE(1)+R3*ME(1))/DT)

N=01 II=II+11 GOTO 81

PRINT'CYCLE NO.';II;'ERROR H=';EH;‘ERRORv=';EU;

'ERRORM=";EM

PRINT‘GH=';GH;'GU=';GU;'GR=';GR

STOP

PR1NT'414111414111414141114141'





585

: 518

515

528

522

523

524

525

526

527

538

535

548

541

542

543

545 _

546

547

548

549

558

555

568

565

578

575

688

685

618

615

616

617

618

619

628

621

625

638
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PRINT'EL.N8';TAB(18)'AXIAL F';TAB(28)'SHEAR F';

TAB(38)'END M';TAB(48)'AXIAL DEF.';TAB(52)

'THETA FINAL'

FOR I-l TO NE

PRINT I;TAB(18) AF(I);TAB(28)SF(I)ITAB<38>XM(I);

TAB(48)AD(I);TAB(52)TN(I)

NEXT I

FOR I=1 TO NE

IF IE(I)=1 GOTO 525

PRINT'I=';I;TAB(18)'CABLE AX. DEFORM.=';CD(I);TAB(18)

'CABLE AX.FORCE=';CF(I)IGOTO 526

PRINT'I=';I;TAB(15)'NO CABLES FOR THIS NODE'

NEXT I

PRINT'NODE NO.‘;TAB(12)'X-COORD';TAB(24)'Y-COORD';

TAB(36)'END M'

FOR I=1 TO NN

PRINT I;TAB(12)XN(I);TAB(24)YN(I);TAB(36)XM(I)

NEXT I

PRINT'TO OUTPUT RESULTS TO PRINTER, TYPE 1'|

INPUT 2 _

IF Z=1 GOTO 558 ELSE 545

PRINT'IF DIFFERENT LOAD OR ERROR LIMIT,TYPE 2':

INPUT DL

IF DL<>2 GOTO 548 V

INPUT'NEw ERROR LIMIT=';EP: GOTO 45

NEXT U

END

LPRINT'ELEHENT LENGTH THETA E I A'

FOR I=1 TO NE

LPRINT I;TAB(18)EL(I);TAB(28)TH(I);TAB(39)E(I);

TAB<40>EI(I);TAB(50)EA(I)

NEXT I

LPRINT'INITIAL GUESSES- GH=';HB;'GU=';UB;'GR=';RB

LPRINT' 5 l *-

LPRINT 'EL.N0.';TAB(10)'AXIAL F';TAB(28)'SHEAR F';

TAB(38)'END M';TAB(40)'AXIAL DEF.';TAB(52)'THETA FINAL'

FOR I=1 T0 NE

LPRINT I;TAB(18> AF(I);TAB(28)SF(I);TAB(38)XM(I);

TAB<48>AD<I>;TAB(52)TN(I)

NEXT I

FOR I=1 T0 NE

IF IE(I)=1 GOTO 619

LPRIN'I=';I;TAB(10)'CABLE AX.OEFORM.=';CD(I);TAB(18)

'CABLE AX.FORCE=';CF(I):GOT0 628

LPRINT'I=';I;TAB(15)'NO CABLES FOR THIS NODE'

NEXT I

LPRINT'NODE N0.';TAB(18)'X-COORD';TAB(20)'Y-COORD';

TAB<30)'END M';TAB(48)'UL';TAB(SO)'HL'

FOR 181 T0 NN

LPRINT I;TAB(IO)XN(I);TA8(28)YN(I);TAB(38)XM(I);

TAB<48)UL(I);TAB(56)HL(I)
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635 NEXT I .

637 LPRINT'EPSB'3EP3'GHF3'IGH3'GUFB'IGUI'GRFB'IGR;'CYCLES='

111 . ~

638 LPRINT'SINGLE PRECISIm-VERSIW’U"1IF FOI SOTO 641

639 IF P<>1 GOTO 641

648 LPRINT'PRE-STRESSED ARCH-MOMENTB'IHO

641 GOTO 545
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D. Alternative Method For 2-D Problems

Ann alternative method for a 2 dimensional arch and rigid bar-spring

node model was also developed (31).

In this method the displacements u,v in x and y directions ,

respectively;are originally assumed. Then if<r=angle between the

displaced element and horizontal axis x,»v=rotation of the element;

the moment M, shear force 5. and axial force N would be

rumbw [Mn—4(1)] (11.1)

L(i)

u(1)= ELM—($114311) (v.2).

L(i)

where

 

I 2

AD(i)=-—L(i)+ ’fi.(1)cos[¢(i)] +u(1)—u(1—1)} 2+{L(i)51n[¢(1)]+v(i)-v(1-I)]

and (D.3)

[[v(i)—v(i-l)] Cos[<1>(i)] — [u(i)~u(i-1)] 31n[¢(1)]

rv(i)=Arctan

1[L(i)+ u(i)-u(i—l)] COS[¢(i)] +[v(i)—v(i—l)] Sin[47(i)

Assuming u and v and having the above formulas, the fggkég,

moments, rotations, and axial deformations can be found. Then we see

'ifsz=oandfiyy=o (the equilibrium equations at each node) within an

acceptable range of error

51x=—N(i)Cos(f(i)+’T(i)]+N(i+1)CosE?(i+1)+*(i+l)]--s(1)sinE8(i)+

D.54(1)]+s(i+1)51n[¢(i+1)+1(i+1)] +P(i)sing(i)J

2F =-N(i)Sin[47(i)+1’(i)]+N(i+l)Sin[9(i+1)+‘1‘(i+l) +s(i)Cos[6(i)+

17(1) —S(i+1)CosEP(i+l)+’Y(i+l):| —P(i)Cos[E:(i)] (D.6)

where

P=load applied at the node and.

é=the angle between P and the vertical axis.
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(1)

3(1)

  

 

>X

Fig. 55. Typical Mass Point. Forces. and Moments

If convergence is not satisfied.the initial guesses for u and v are

improved using Newtod?algorithm.and the process is repeated until convergence

is achieved; that is,the equilibrium equations are satisfied.

This method has not led to a satisfactory result for the model

used.

E. Space Arch

In space arches the same rigid bar-spring node model was used. A

basic difficulty exists now because of the fact that the rotational

displacements about the three dimensional axes are not commutative.

The final configuration of a body depends on the sequence of rotations.

That is. when rotated about say.x . then y and finally 2. the body

will not be in the same place necessarily as when rotated about say. y.

then x and finally z axes. The addition of twist makes space arches

more complicated than the plane arches.Rowever, if rotations are small.

they are commulative and can be added as vectors. Therefore. the arch

can be studied under a small load causing small displacements. The
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coordinate system will be updated and the new configuration will be the

reference one for the next load increment. The procedure continues

until the last load increment is applied and the corresponding

configuration is then the one corresponding to the final cumulative

applied load which may not be small. This method of updated

coordinatesa is used for 3-D arches.

To study this problem, other than the assumptions made ha the 2-D

case, it is also aesumed that no shear deformations are allowed and

that the first and last elements are in one plane and stay in that

plane. The latter becomes more of a reality if we‘make the two

elements small enough. .

The iteration procedure is as follows (7 and 39);

(a) Guess the initial values for the reactions in x, y’and z

directions, Rx, R and R2. moment vectors in local s and t directions,

1% and MT. and finally DY, [the change in DC), which is the angle between

the first element and y axis. S is the longitudinal axis (Fig. 56)

+1

  
 

X

Fig. 56. Local and Global axes (Space Arch)

(b)If T=direction cosines of the local axes r,s, ad t with respect

to x,y, and z.and P and Qare applied forces in (x,y,z) and (r.s,t)

coordinate systems, respectively and R is thereaction vector, then
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{Q(1)}- [T]{P+R} (8.1)

AD(1)=QS(1)L(1)/E(1)A(l)

For a pinned ends arch M%(1)=0 so;

“x 710

M¥}=[T] M (8.2)

M2 MT

(8) Having the displacements that we find from the forces and

moments in step b. final coordinates of node 2 can be found. From then

on with an iterative manner we find the rotations about the three local

axes having the moments and forces in the provious element (or node).

Then the new transformation matrix is found. To do so if we let E be

the consines of the angles between element 1 before and after rotations

about the three local axes, then

18:81 11.1.. 83>

We can also find F, the transformation matrix from the local axes

of element 1-1 to the local axes of element 1

[F]=[T(i))[T-l(i-l)] (3.4)

(d) Find the new moments and forces due to the applied loads and

the forces and moments in element or node i-l.

{Q}=IIJ{Q(1-1)}+[1(1)]19(1)} (8.5)

Mr(i-l)-Qt(i-1)L(ivl)

(M}=[8] Ms(i—l) (8.6)

t(1-1)+Qr(I-1)L91-1)



-Iou-

(8) Find the axial deformation AD and also 8(1), 1(1) and 3(1),

the twist and rotations about the two local axes t and r, respectively.

p(1)=MS(1)L(i)/2cj(1)+Ms(1—1)L(i-.-1)/21;j(1—1)

where 63 = torsional property of the element

or(i)=Mt(i)[L(i)+L‘(i-l)] /[E(i-1)It(i-l)+E(i)I£i)J (8.7)

3(1)=Mr(i)[L(1)+L(1—1)]/[8(12-1)Ir(1—1)+8(1)Ir(i)] (8.8)

where I rand a: are the moments of inertia with respect to the local r

and t axes, respectively.

The new transformation matrices, moments, and forces can be found

doing one more iteration. -

(f) Having the final deformation, the final coordiantes of node

i+1can be calculated.

(8) Proceed to the next element. At the end, the 6 errors at the

right support are the three displacements in x, y, and 2 directions,

change in the angle with x axis, K , moment about x (coincident with

the local r axis) and P(n-1) - q; (n+1) L(n)/ZGj(n) where n=number of

elements. B(n+l) is the total twist. To find p(n+1) we find the

components of B(i) on the 5 axis of the last node and add them. Here,

due to the small size of the displacements, p was treated as a vector

perpendicular to the plane of the node.

(h) Having the errors and the guessed initial values,we improve

the latter using Newton's algorithm with a 6x6 matrix. The iteration

continues until convergence is satisfied. Then the displaced arch is

set as the reference configuration and after updating the coordinate

system,the procedure will be repeated for the next increment of load
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until the last load increment has been taken care of.

It should be noted that the small rotations have been taken by

others (43) as less than 15?

The method was tried for 2 dimensional loads and arch but the

values obtained were not satisfactory.

Other methods have also been used to solve the 3-D problem

including a method using the principle of minimum potential energy.

The principle states (7) that among all displacement configurations

that satisfy internal compatibility and kinematic boundary conditions,

those that satisfy the equations of equilibrium make the potential

energy a stationary value. If the stationary value is a minimum, the

equilibrium is stable.

To apply the principle to the arch problem, after having the

coordinates of all nodes, we assume the displacements of each node.

From the original and final coordinates of the nodes, we find the

bending and torsional rotations,m(i),3(i),and B(i) and alSOIthe axial

deformation of each element, AD(i). Then if

RX=ELx/L (a)

K6=E18/L ‘ (b)

K =Gj/L (c) (E°9)

KA=EA/L (d)

the total potential energy is equal to

n _ 2 2 n

U=1/2¥§:%M(1)8 (i)+K (i)PIi)+K6(i)§ (i)]+zi§f(i)AD%i)} (E.10)

and the element (1, J) of the stifness matrix would be

K(i,j)=;°—2—1'-

'bU(i)bU(J)



-106-

where u(i) and u(J) are the displacements of the i th and J th degrees

of freedom. To compute the derivatives of u we can use the method

developed in case I of this chapter.

From the above formulation,two procedure 8 Can be developed. The

steps for the first one are as follows:

(a) Assume initial values for all displacements of all nodes

(b) Find rotations and axial deformations

(c) Find the total potential energy, 0

(d) Test for convergence. That is, see if U is a minimum. If

PSI-i=0 within acceptable error range for all u(i) then convergence is

satisfied. We have the final configuration. If not, go to step (e)

(e) Having the initial values and errors and using the Newton's

algorithm,we improve the initial values and go back to step (b).

The second procedure includes the following steps:

(a) Assume initial values for u(i), forming displacement vector D

which includes three displacemetns and three rotations about the three

global axes for each node.

(b) Find the rotations and axial deformations.

(c) Find the stiffness matrix,K, which is the second derivative of

the total potential energy.

(d) Find the force vector due to the displacements

F = -KD (E.ll)

(8) Find the unbalanced force

F = F+P (E.l3)
1.1

Where P is the vector of the applied forces.

(f) Find the displacements due to the unbalanced force D
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-1

Du = K Fu (E.14)

(3) Test for convergence. If not satisfied go to step (h).

(h) Find the new displacement vector

D =D01d+DU (E.15)
new

and go back to step (b).

To test convergence, one way is first to compute

E = tu/uIn (E.16)

Where tu is the value of the specified type of deformation of each node

due to unbalanced forces and “m is the maximum initial value for that

type of deformation. If tu is,say, the value of the displacement in x

directrendue to the unbalanced forces,then um will be the maximum value

of the displacement in x direction of all nodes in the original

assumption (step a). We find the 6 maximum values for E corresponding

to the 6 types of deformations. If these 6 values are within

acceptable range of error then convergence is satisfied.

The above two methods using potential energy have not led to a

convergence with a set of satisfactory results.

Projecting the arch onto the three perpendicular planes was also

considered to deal with the problem. The space arch was projected onto

xoy, xoz, and yoz planes. Each one was treated as an in-plane problem.

Moments and forces on the element were found combining the moments and

forces of each component. Compatibility was forced to be satisfied by

geometrical relationships such as the fact that the sum of the squares

of the three direction consines is equal to one.

This method did not work due to the fact that we cannot take the

projection of properties such as moments of inertia, find the efects,
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and then combine them to get the effect caused on the element in space.
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