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ABSTRACT

UNIFORMLY ACCURATE NUMERICAL SOLUTIONS

TO DIFFERENTIAL EQUATIONS USING EXTRAPOLATION

AND INTERPOLATION

BY

Richard Allan Rogers

In this work we are concerned with numerical methods

for solving ordinary differential equations. We consider

those methods that have asymptotic error expansions involving

all powers of hq, where h is the steplength and q is

a fixed integer. The process of extrapolation can be employed

with such methods to obtain highly accurate solutions at

grid points belonging to the coarsest mesh. In Chapter I

we develop the "pullback interpolation method". This method

combines extrapolation with Hermite interpolation of the

coefficient functions for the asymptotic error expansion to

produce a highly accurate solution at all grid points of the

finest mesh. When q is l or 2 pullback interpolation

yields uniform accuracy at all grid points of the finest

mesh.

In Chapter II the pullback interpolation method

is modified so as to be applicable to boundary value

prdblems. In addition, an elementary proof of the stability

Of V. Pereyra's finite difference scheme for solving two

Point boundary value prdblems is given.
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G In Chapter III we consider difference differential

equations with constant retardation. The methods of Chapter I

are shown to be applicable to first order delay equations.

Because of the presence of the delay term, the uniform accur-

acy obtained through pullback interpolation is indispensible

for these problems.

A finite difference scheme for directly solving

second order delay equations is constructed and analyzed

in Chapter III. The global discretization error is shown to

have an asymptotic error expansion in even powers of the

s teplength.
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INTRODUCTION

In this section we will discuss some standard tech-

niques for obtaining numerical solutions to first order

initial value problems. The process of refining computed

solutions by means of extrapolation will be explained. We

will also consider the question of uniform accuracy of the

computed solution.

Consider the first order initial value prdblem

X'(t) f(t,x(t) ),

(1)

x(a) a. a<tib.

We will assume that (1) has a unique solution w(t) which

depends continuously on the initial condition x(a) = a.

Conditions on f(t,x(t)) which will guarantee this are well

known and are given in Chapter I.

The majority of procedures for solving (1) numerically

are based on discretization. As such, they yield an approx—

imate solution to (1) on a discrete point set contained in

[a,b]. we will only consider the case where the discrete

points are equally spaced in [a,b]. In this case the discrete

point set can be conveniently represented as a grid

G = [tn=a+nh:n=O,l, ...,N},

where the parameter h = b§a and is called the steplength. 
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The theoretical solution to (1) will be denoted by

m(t) and the approximate numerical solution will be denoted

by X(tn,h) for each grid point tn.

A computational method for determining X(tn+k'h)

which takes the form of a linear relationship between

X(tn+j'h) and f(tn+j’x(tn+j'h))' j=O,l,...,k 18 said

to be a linear k-step method. The class of all such methods

is referred to as the class of linear multistep methods.

Three of the simpler multistep methods are Euler's

rule (sometimes called the Euler—Cauchy method), the trapezoid

rule and Gragg's modified midpoint rule.

Euler's rule is summarized by the equation

(2) X(t h) = X(tn,h)+hf(tn,X(tn,h)), n=O,1,...,N—l.
n+l'

Equation (2) exhibits how the approximate solution at tn+l

is obtained given that one has already obtained an approx-

imate solution at tn. Since information is required only

at the preceeding grid point in order to obtain an approx-

imate solution at the next grid point, Euler's rule is

a one-step method. To initialize or start the method requires

one piece of information which is given by the initial con-

dition in (1). That is, take X(to,h) = x(a) = a. Since

everything on the right hand side of (2) is known when we

are trying to compute X(t h), the relationship (2) is
n+l'



 

  

m



explicit and Euler's rule is an explicit multistep method.

The trapezoid rule is given by

(3) X(t h) =X(tn,h) +%[f(tn,x(tn,h)) + f(t (t h))],
n+1' n+l'X n+l’

n=O,1,...,N-l.

This is again a one-step method and is initialized by taking

X(t0,h) = x(a) = a. However, the right hand side of (3) is

not completely known. Indeed, when trying to compute the sol-

ution at tn+1 the term f(tn+l'x(t h)) is unknown
n+1'

because it involves the solution we are trying to compute.

Whenever f(t,x(t)) is linear in x(t), and in some other

special cases, equation (3) can be solved explicitly for

X(t h). However, in general this is not possible and the
n+l'

trapezoid rule is said to be an implicit multistep method

because of this behavior. When (3) cannot be solved explic-

itly for X(t h) a root finding procedure or functional
n+l'

iteration can be used to find the solution.

The midpoint rule is an explicit two-step method

defined by

(4) X(tn 2.1:) =X(tn,h) +2hf(t (t h)), n=o,1,...,N-2.
+ n+l'X n+l'

To compute X(tn 2,h) we need to know both X(tn,h) and
+

X(t h). Thus, the midpoint rule requires two starting
n+l'

values X(t0,h) = a and X(tl,h). The second of these can

be determined in a variety of ways.
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Gragg's modification of the midpoint rule [11,12]

is Uwofold. First, to obtain the additional starting value

use Euler's rule. That is,

X(t1,h) = d-+hf(a,a).

Second, at the grid point tN==b use a smoothing procedure

to make the computed solution more stable. The smoothing

procedure consists of averaging three computed solutions

and is similar to a device originally employed by Milne and

Reynolds [20,21]. Gragg's modified midpoint rule is formally

given by

X(tlflfl =c1+5hf(a,a):

(5) X(t h) =X(tn,h) +2hf(t (t h)), n=o,1,...,N-1:
n+2' n+1’X n+l'

l l
X(b,h) =71IX (t h) +-2-x (tN,h) +Zx (t h).

N-l' N+l’

The three numerical methods given by equations (2)

(3) and (5) have an important similarity. Each has an

asymptotic error expansion that involves all powers of hq

for a fixed integer q. That is, for Euler's rule, the trap—

ezoid rule, and Gragg's modified midpoint rule, the computed

solution satisfies

(6) X(t ,h) = co(t ) + 2e (t )hqk.
n n k=1 k n

The functions ek(t) are independent of h and q is a

fixed integer. For Euler's rule q=l and for the trapezoid
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rule and Gragg's modified midpoint rule q=2. The expansion

(6) for Gragg's modified midpoint rule is only valid at

tN==b while for the other two methods (6) is valid at all

grid points tn. The expansion (6) is valid only when

f ec°°[[a,b] x (-oo,co)].

If f has only a finite number of continuous deri-

vatives, a truncated version of (6) is valid, namely

M

. _ qk q(M+l)

(6 ) X(tn.h) — CNtn) +k§lek(tn)h + 0(h ).

The notation 0(hj) means that the function being suppressed

behaves like a constant multiplied by h3 as h-eo. Formally,

we say that g(t) = 0(h3) if -L1£%LL §;C as h-+O, where

h

C is a constant. The length, M, of the expansion (6')

depends on q and the number of continuous derivatives of f

that exist.

The existence of asymptotic expansions of the form

(6) or (6') for Euler's rule, the trapezoid rule and Gragg's

modified midpoint rule was originally proved by Gragg [11,12].

Stetter [31] and Pereyra [24] have also studied the existence

of such expansions. Gragg's results for Euler's rule and the

trapezoid rule are presented in more detail in Chapter I.

The existence of such expansions is important because

numerical methods which have error expansions of the form

(6) or (6') are amenable to extrapolation. Basically, the
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process of extrapolation is a means of combining several

computed solutions, each of low accuracy, in such a manner

as to obtain a computed solution with high accuracy.

Extrapolation is not a recent development, dating

back to at least 1654 when Huygens [14] used it to improve

Archimedes polygonal approximation to v. Extrapolation was

first systematically studied by Richardson [29] early in this

century and has often been referred to as either Richardson

extrapolation or the deferred approach to the limit, the

latter being the title of Richardson's 1927 paper. An

excellent survey article on extrapolation and its applications

has been written by Joyce [l6].

Extrapolation,vflmn1applied to Obtaining an accurate

solution to a differential equation.i£5most easily explained

as follows: Let HZ>O be a fixed basic steplength and

suppose an accurate solution to (l) is desired at the point

a-FH. Define a sequence of steplengths hk==H/2k

k=O,l,...,K and grids

k _ . . ._ k
Gk — {ti — a+ihk. i—O,l,...,2 }.

All grids contain a and a-+H and the grids are nested

With Gk<:Gk+l Vk. On each grid Gk compute a numerical

solution to (1) using a method which has an asymptotic error

expansion of the form (6') with MT>K. At a-+H we have

I<+]. computed solutions X(tN,hk) for k=O,l,...,K.



 

 

 

)3").

‘ J

J. ft.

(.0 (.p

r
f

,
1

(
D

'
1
1

no....9‘ (

m...
Irn



Extrapolation is the process of forming a linear combination

of these K-kl solutions in such a manner so as to eliminate

the first K error terms of the expansion (6'). That is,

constants ck are determined so that

K

(7) '2': c X(a+H. > = Cp(b) +o(Hq(K+1’).
k=0 k h‘k

Aitken [1.] and Neville [22] independently devised

an iterative scheme by means of which extrapolation can be

performed without explicit computation of the constants ck

in (7). The convergence of this iterative scheme under

suitable hypotheses was established by Gragg [11,12].

(K+1)

Note that in order to obtain 0(Hq ) accuracy

at a grid point you must have K+l computed solutions avail—

(K+1)

able to work with. Thus, extrapolation will yield 0(Hq )

accuracy only at the point a+H which is common to all grids

Gk' Extrapolation can be performed at other grid points.

Hq(K+l))

However, it will not yield 0( accuracy at these

points. For instance, using the fact that GkCIGk+1 Vk.

extrapolation will yield 0(HqK) accuracy at the midpoint

H

a-eiu At other grid points, extrapolation will yield even

less accuracy.

Lindberg [19] has developed a method based on

extrapolation and Lagrange interpolation which can be used to

Obtain 0(Hq(K+1)-1) accuracy all at grid points of the finest

grid G

K
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In Chapter I we present what we have termed "the

pullback interpolation method". It utilizes extrapolation

and Hermite interpolation to obtain 0(Hq(K+1)) accuracy

at all points of the finest grid when q=l or 2. The first

four sections of Chapter I are devoted to develOping the method

and establishing a theoretical basis for it. In Section 5

Lindberg's method is presented and compared with pullback'

interpolation both theoretically and numerically. Extensive

numerical tests were performed and these results are also

presented in Section 5 of Chapter I.

The focus in Chapter I is entirely on first order

ordinary differential equations. In Chapter II we consider

two point boundary value problems of the form

x"(t) = f(t,x(t).x'(t)).

(8)

x(a) = A, x(b) = B.

Pereyra [24.25.26.27,28] has developed a finite difference

scheme which yields an approximate solution to (8) that

has an asymptotic error expansion of the form (6') with q=2.

Pereyra's results are summarized in Chapter II and

pullback interpolation is modified so as to be applicable to

boundary value problems of the form (8). In addition, in

Section 2 of Chapter II, we present a new proof of the
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stability of Pereyra's difference scheme. In comparison

to Pereyra's proof,cnnx;is considerably more elementary.

In Chapter III we consider the numerical solution

of difference differential equations with constant retard-

ation. First order equations

x(t) = f(t.X(t).X(t-r))

are analyzed in Section 1 and pullback interpolation is

shown to be a viable solution technique for these prdblems.

Numerical results are presented to support this contention.

The remainder of Chapter III is devoted to the

develOpment and analysis of a finite difference method for

directly solving second order equations of the form

(9) x(t)-+f(t,x(t),x(t-r),x(t),x(t-r)) = o.

The approximate solution to (9) is shown to have an asymptotic

expansion of the form (6') with q=2. A modification of

pullback interpolation is shown to be applicable.
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CHAPTER I

THE PULLBACK INTERPOLATION METHOD

FOR INITIAL VALUE PROBLEMS

Section 1. Statement of the Problem
 

In this chapter we consider the first order initial

value problem.

Y'(t) f(t.y(t))

(l)

y(a) = a aétgb.

We shall assume that f(t,y(t)) is a continuous function

of t and satisfies a uniform Lipschitz condition with

respect to its second argument. Under these assumptions

it is well known (see Keller [17]) that (1) has a unique

solution, m(t), which depends Lipschitz continuously on

the initial data y(a) = a. y(t) may be either a scalar-

valued or a vector-valued function. If y(t) is vector—

valued then f(t,y(t)) will be a vector—valued function

of the variable t and the vector y(t) and (1) will be

a system of first order differential equations. This case

also arises when we reduce a mth order differential

equation to a system of m first order differential

equations. The standard technique for accomplishing this

can be found in Lambert [18]- The numerical methods to

be considered for solving (1) will work for either the

10
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scalar or vector-valued case. In the vector-valued case

extrapolation and the pullback method, to be explained in

this chapter, can be done independently for each component

of the solution vector to obtain a refined solution. Since

the same work is done for each component, one at a time,

without using any results involving other components. the

refinement process appears well suited to implementation

on a parallel processing computer such as ILLIAC IV (see

Corliss [ 5]).

Turning our attention to the numerical solution of

(1), let h>O be a fixed basic steplength and for each

k=O,l,...,K define steplengths hk = h/2k and grids

k k . . k
Gk — [t..ti — a+1hk, 1—O,l,...2 }.

2k+l points; all grids contain the two points t3 = a and

k . .
t — a+h, and the grids are nested, that is, Gk CLGk+1Vk.
2k

Each grid Gk contains

In what follows we shall be concerned with methods

for the numerical solution of (l) on the grids Gk which

give an approximation, Y(t§,hk), to the theoretical sol-

. k .

ution, m(ti), such that the error has an asymptotic expan-

sion

(2) y(tk h > - (tk) + :3: jqe (tk) + o( (“*1”)
1' k “9 i jzlhk j i hk

for each i=O,l,...,2k and for each k=O,l,...,K. The

coefficient error functions, endt)' are independent of

hk' for each k, and q is a fixed integer (usually 1 or 2)



0
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peculiar to the method being employed. The exact length

of the expansion (2) will depend on both the method being

employed and the number of derivatives of f(-,-) which

exist. In general, (M+1)q continuous derivatives of

f(t,y(t)) with respect to t are required for an expansion

with M error terms. This is equivalent to the theoretical

solution m(t) having (M+1)q+1 continuous derivatives.

As mentioned before, Gragg [11,12], Pereyra [24],

and Stetter [31] have investigated the existence of such

expansions. Examples of methods which yield such error

expansions are Euler's method (q=l), the usual generalization

of the trapezoid rule (q=2) and Gragg's modified midpoint

rule (q=2). An important result obtained in each of the

above mentioned studies is that the coefficient error

functions em(t) satisfy an inhomogeneous linear variational

equation on agtgb, of the form

I

em(t) — J(t)em(t) ll

U
0

8

(3)

II .
0

3 II H 3em(a)

The arguments of the inhomogeneous terms, bm(-), involve

the theoretical solution m(t), previous error functions

e1,...,em_1, the function f(t,y(t)), and various derivatives

thereof. The differentiability of the various error

functions depends on the differentiability of f(t,y(t)).

The left hand side of (3) is the Frechet derivative of (l),



 

 

 
 

grid

of 1
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considered as a differential operator, operating on em(t).

Alternately, J(t) is the Jacobian of f(t,y(t)) evaluated

at the theoretical solution, ¢(t), of (l). The left hand

side of (3) may be obtained formally by assuming y(t)

depends on a parameter 1, differentiating (l) with respect

I O

to this parameter and setting em = %%f and em =

If we compute the numerical solution of (l) on the

grids Gk k=O,l,...,M using a method which has an expansion

of the form (2), we may then employ extrapolation to obtain

a solution Y(a+h) = wia+h) + O(h(M+l)q). However we are

not able to obtain comparable accuracy at the intermediate

points. For instance, using extrapolation, the solution

at the midpoint satisfied Y(atg) = m(a+%) + 0(th). And,

as the following example illustrates, we cannot interpolate

several extrapolated values to obtain a solution with equi—

valent accuracy.

Example 1: y' = y2; y(0) = .2.- ogt_<_3.

The theoretical solution to this problem is

®(t) = §%?-. Using the trapezoid rule and extrapolation

with h=1, M:3 we compute the solution, Y(t), at the

points t=l,2, and 3 by resolving the same problem three

times with initial conditions determined by the computed

solution at t=1 and 2. The results are given in

Table 1 below.
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A variety of interpolation schemes are possible

for determining the solution at intermediate grid pohits.

Two such are summarized in Table 2 below. L(t) is the

Lagrange cubic interpolation polynomial for the data

(t,Y(t)) given in Table l and H(t) is the quartic

Hermite interpolation polynomial for the same data with

the added condition Y'(O) = (Y(O))2 = (.2)2 = .04.

TABLE 1

t cp (t) Y(t) Wt) - Y(t)

0 .200 000 000 .200 000 000 0

1 .250 000 000 .250 000 000 0

2 .333 333 333 .333 333 330 3 x 10"9

3 .5000 000 000 .499 999 762 2.38 x 10'7

TABLE 2

t. wlt) L(t) ®(t)-L(t) H(t) wtt)-H(t)

%-.222222222 .223958320 -1.736x10’3 .222395831 —1.736x10-4

%-.285714285 .284375013 1.339x10'3 .285312506 4.018x10'4

§-.400000000 .403124923 --3.125x10"3 .401562434 —1.562x10"3

As an examination of Tables 1 and 2 quickly

reveals, neither of the interpolation schemes gives accuracy

that is comparable to that of the computed solution.
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In the next section we will present and analyze

the pullback interpolation method. It is based on a .

Hermite interpolation scheme for approximating the error

functions em(t) successively, beginning with the last

term of the error expansion. The details are worked out

for a general expansion of the form (2). However in

practice q is usually either one or two and the reader

may find it helpful to bear this fact in mind.
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Section 2. The Pullback Interpolation Method

Still assuming that our numerical method and the

problem at hand are such that the expansion (2) is valid,

we now take K = M. At the point t = a+h<EGO we have the

M+1 computed solutions and error expansions

M

(4) Y(t,hk) = w(t) + Zihgqej(t) + 01h;

3:

M+1)q), k=O,l,...,M.

Equation (4) can be regarded as a system of M+1 poly-

nomial equations in h. Since the hk's are distinct these

polynomials are linearly independent and (4) may be solved

as a matrix system for the unknown vector

(w(t).e1(t).e2(t),...,eM(t))T.

In matrix form (4) is given by

(4') AU = Y + E

where

C q 2g (M-1)q Mqu
1, ho, ho , . . ., ho , ho

q 2q (M-llq Mq
A = 1! hll hl I ' . ° ' hl I hl

q 2q (M-l)q Mq
Ll'lhr hM , .. . hM , hM _J  

is (M+1) x (M+1); and U,Y and E are (M+1) X l

vectors given by



 

 

D1_\
(fir



l7

      

r 1 r '

rCp(t)‘i Y(t,h0) 0(héM+l)qyi

el(t)l Y(t,hl) O(h£M+l)q)

U = . : Y = . ; and E =

respectively.

Define (A,I) to be the (M+1) x 2(M+l) matrix

obtained by adjoining the identity matrix to A. A

standard theorem from linear algebra (see Cullen [ 6])

tells us that if (A,I) is row equivalent to (1,3) ——

denoted by (A,I) ~ (I,B) —— then B = A-l.

Since A is nonsingular we can find a sequence

of elementary row Operations such that (A,I) ~'(D,C)

where D is the diagonal matrix whose (j,j) entry is

h‘j-1)q, j=l,...,M+1. Moreover, since V k hk = h/2k.

the row operations which accomplish this reduction are

independent of h, in that each involves multiplication

or division by a constant only. (D,C) can be further

1) by dividing the jth row by h(3-1)q.reduced to (I,A-

Multiplying both sides of (4') by A.1 we have

1 ll — . .

Y + A E. The vector U 18 the prec1seU = A5 AU = A’

solution to the system (4) and the vector A-lY is the

numerical solution we can obtain. The vector A-lE is

the vector of errors for the numerical solution.
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Now vk hkgh, so we can write

    

r- ‘1 r' a

0(héM+l)q) 0(h(M+l)q)

0(h{“”’q’ 0(h(M+1)q)

E = =

0(héM+l)q 0(h(M+l)q)

L b _ A

Since each component of the jth row of A-1 has a factor

of h-(j-l)q and this is the only dependence of these

entries on h, the jth component of A—lE is

0(h(M+l)q-(j-l)q) = 0(h(M’j+2)q). Thus our computed

solution 25% = (S(t),'él(t),é'2(t),...,'é’M(t))T will be

equal to the precise solution U = (cp(t),el(t),e2(t),...,eM(t))T

with an error of magnitude

A-lE = (O(h(M+l)q).O(th).O(h(M-l)q)....,O(hq))T.

It should be emphasized that what we actually

Obtain when computing a: solution to (4) is the vector

A‘lY which is only an approximation to the actual solution

U. This can be conveniently summarized by saying the

solution to (4), (m(t),el(t),...,eM(t))T, is known with

accuracy (0(h(M+l)q),O(th),...,O(hq))T.

Since eM(a) = O and m(a) is known exactly:

we can Obtain efi(a) exactly from (3). That is,

eM(a) = 0 implies that efi(a) = bM(a). To evaluate
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bM(a) requires knowledge of higher order derivatives of

m(t), J(t), f(t,m(t)) and the errors em(t), m=l,...,M—l,

evaluated at the point t=a, all of which are available

to us. These derivatives may be obtained by successively

differentiating (l) and (3) with respect to t. The

details will be worked out for specific methods later in

this chapter.

Thus we know eM(a) and efi(a) exactly and we

know eM(a+h) to 0(hq). Construct PM(t) the Hermite

interpolating polynomial of degree 2 to the above three

pieces of data. It is well known that the error in this

Hermite interpolation is 0(h3). Thus, since eM(a+h) is

known to 0(hq) we have PM(s) = eM(s) + 0(h3) + oniq).

NOW"Vk=1,...,M, hk<h implies hk<(hy' where y is

any positive integer and therefore O(h£)::0(hy). Thus

Vk=l,...,M and Vs 6[a,a+h] we have

Mq Mq BM
(5) hk PM(S) = hk eM(S) + Oih )

where BM 5 min((M+l)q, Mq+3). Note that for qg3

BM = (M+l)q.

Proceeding to the grid G1. let t be any

point in G1\GO (since GO contains 20-kl = 2 points

and G contains Zl-el = 3 points, there is only one
1

such t, namely t = a-kh/Z). Since the grids are nested

this: t.€Gk 'Vk=l,...,M and we have the M computed

solutions and error expansions



 

(6) mm.

Substituting

0f M lineal

unknown vectc

(7) Y(t'hk)
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M—l .

(6) Y(t.hk) = o(t) + . hflqej(t) + hfiqu(t) + OlhfiM+l)q)

J=1

for k=l,...,M.

Substituting (5) into (6), we obtain the following system

of M linearly independent equations in h for the

unknown vector (cp(t),el(t),...,eM_l(t))T

Mq “'1 'q (M+1) BM
(7) Y(t’hk) - hk PM(t) = co(t) + 2 hi ej(t)+ 00']. q) + 001 )

i=1

M-l . B

= co(t) + .231 hflqejfi) + 0(h M),

J:

k=l,...,Mr

because 5M S_(M+l)q and hk < h.

Solving (7) we obtain the solution vector

(cp(t),e1(t),...,eM_l(t))T with accuracy

6 B - 6 -2q 6 -(M-l)q

(oth M).O(hM ). om“ >,..., om” ))T

We now have the following information about eM_1(s).

For t = a+h EGO we know eM-l(t) with accuracy 0(h2q)

and for t = a+h/2 6G1\GO we know eM_l(t) with accuracy

(6 -(M-1)q
0(h M )

As before eM_1(a) = O and we can deter-

m1ne eM_1(a) exactly. Thus we can construct PMF1(S)

the Hermite interpolation polynomial of degree three

interpolating these four data points. Since the error

of interpolation will be 0(h4) and hk<h we have

vs €[a,a+h],
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(e) héM-l)qPM-1(S) = héM—l)qu-l(s) + 0(h(M-l)q+4)

B

+ o(h‘“+1’q) + o(h M)

(M-l)q BM-l
= hk eM-l(S) + 0(h )I

where BM—l min (BM,(M—1)p+4). Here we have used the

fact that BM«£ (M+1)q. We note that for q 3.2,

BMel = (M+l)q.

Proceeding by induction, suppose PM(s), PM_1(s),

...,PM_J(S) for J < M—l have all been constructed, where

Vj=0,l,...,J, PM_j(s) is a Hermite interpolation poly—

nomial of degree 23+1 with

(M-j)q _ (M-j)q BM—j
(9) hk PMej(S) — hk eM_j(s) + 0(h ) vs €[a,a+h].

The numbers BM-j are defined by

(M-j)q + 23 + 2), j=l,...,J,

and BM 15 defined by (5). Note that BM-j S-BM-j+l V3.

Let t be any pOint in GJ+l \ GJ. Since

GJ+1 contains 2J+1 + 1 points and GJ contains 2J + 1

points there are 2J+1 — 2J = 2J such points. Since

J+l \GJ 18 also an element of

Gk for k=J+2,J+3,...,M. Thus at each such t we have

GRCGk-i-l Vk each tEG

the following system of M-J linearly independent equations

in h:



 

(ll) Y(t.hk)
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(11) Y(t ) %; (M'j)qp (t)
'hk . hk Maj

3:0

M-J-l . J B .

= om + E 1.1%. (t) +o(b.£M+l’q) + 2001 M'3)
':l 3 '=0
3 J

M-J-l . B

= w(t)-+ Z) hflqe-(t)i-O(h M’J), k=J+1,J+2,...,M:

i=1 3

since BM—J g-BM-J+1 g_... g_BM_1 S-BM-S (M+l)q. Solving

the system (11) for the unknown (w(t),el(t),...,eM_J_1(t))T,

we obtain the solution with accuracy

6 _ B _ -q B _ -2q 6 -(M—J-l)q

meJLomMJ).MhMJ LnnomMJ H?

From solv1ng (11) at each p01nt 1n GJ+1 \ GJ we

obtain knowledge of eM_J_1(t) at 2J points with

BM_J—(M-J-l)q

accuracy 0(h ). From our work on G we
0

know eM_J_l(a+h) with accuracy O(h<M+l)q-(MPJ-l)q)

J+2)q).
O(h< From our work on G1 \ GO we know

BM-(M-J—1)q

eM_J_l(a+h/2) with accuracy O(h ). By our

inductive hypothesis Vj < J, we have obtained knowledge

j . . .
of eM_J_l(t) at 2 p01nts in GJ+1\Gj *w1th accuracy

BMFJ-(MeJ-l)q

0(h ). Thus we know

J j J+1 J+1 .

e (t) at l + 232 = l + 2 — l = 2 points
M—J—l ._

3—0

with varying accuracies. In addition we also have

eM_J_1(a) = O and we can determine eM_J_1(a) exactly.



 

 

and we know 6

Thus we have k

interpolation I

above data. T

J+1

5012 +2) an.

(12) hlire-J4).

where .52.
P M-J— l

the error in ir 
5(..iM‘J‘1)q+2J*

mint-'nEM-J-l) qn

since 3

M~J i (

Hence b

PQl

l ',M‘l

G]

' and (1O) a

r

On the

Exbres

. Sign

:59 the CO



23

1
Thus we have knowledge of (t) at 2J+ +1 points

eM-J-l

and we know eM_J_l(a). Construct PM_J_1(s) the Hermite

J+1

interpolation polynomial of degree 2 +1 based on the

above data. The error of interpolation will be

J+1

0(h2 +2) and Vs €[a,a+h],

(M-J—l)q _ (M—J-1)q BM—J-i
(12) bk PM_J_l(s) — hk eM_J_1(S) + o(h ).

where aM—J—l is determined in the following manner:

J+1

the error in interpolation is héM-J-1)q0(h2 +2)

1+

2).

J+

OKh(M-J-l)q+2 2) and the error in the given data is

_ _ B _.-(M-J—l)q _ _

min({hfin J l)qo( M 3 )}g=0' héM J l)qo(h(J+2)q))

e .

= min ((oni M'Jngzo. 0(h(M+1)q))

B

= min (o(h M'J). o(h(M+l)q))*

B
= 0(h M-J)

since B < (M+1)q Thus B = min (b (M—J—l)q+2J+l+
M-J — ' M—J—l M—J'

Hence by induction we can determine PM_j(s) for

j=O,1,...,M—1 such that PMej(s) has degree 23—1 and

(9) and (10) are valid for j=O,l,...,M—l.

On the last grid G we have the following

M

expression for m(t) for each t.€GM\GM_l.

*see the comment following (11)



 

[13) Y(t,hM
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_. (M- DC:
(13) Y(t,hM) jZ):hM PM_ j(t)

M-l B .

= cp(t) + o<hb§M+1’q) + 20(h JM‘3)
i=0

61

= «J(t) + OH)

since B1£P233"SPMS(M+1)Q°

To obtain the final solution, Y(t), at all grid

points in G the finest grid, we proceed as follows.
MI

For t = a+h, Y(t) is the first component, g(t), of

the computed solution to the system (4). For

t<EGM \ GM-l’ Y(t) is the solution of (13). For any

M

t'EGMpl' s1nce kLng = GM and the Gk s are nested,

there exists an index J, depending on t, such that

t EGJ+1 \GJ. The solution at this t, Y(t), will be

the first component, E(t), of the computed solution to

the system (11).

Since 61 is the smallest of the Bj's, the

solution Y(t) constructed above satisfies

31
(14) Y(t) = cp(t) + O(h ).

Before we examine the Bj's in detail we should

point out that the pullback method does not require use

of the iterative scheme of Aitken and Neville to perform

extrapolation. In the pullback method extrapolation is
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actually accomplished when we solve the various matrix

systems.

It should also be pointed out that the matrices

for the systems (11) are "nested" in the sense that the

matrix for the Jth system is an easily obtained sUb-

matrix of the (J-1)st system. Thus we need only define

the matrix for (4) and the others can be obtained by

progressively deleting rows and columns of this matrix.

Specifically, recall that the matrix for the

system (4) - the case j=O - is given by

’ q 2q (M-l)q Mq‘
1, ho, hO , . . . . ., hO , hO

q 2q (M—l)q Mq
l, h1' h1 I o o o o o, hl , hl

(15)

. s 2q (M-1)q Mq
_1, INF hM , . . . .., hM , hM_J  

The matrix for the system (7) - the case j=1 - is given by

" q 2q (M-1)qq
1' h1, hl ' o o o o o, hl i

q 2q (M—1)q
1' h2' h2 I 0 o o o o, h2

. q 2q (M—l)q

_1, 15V hM , . . . . H hM J  
This matrix can be obtained from (15) by deleting the

first row and the last column of (15).
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For general J the matrix of the system (11)

is given by

I

F q 2q (M—J-l)q
1' hJ+1' hJ+l' . . . ., hJ+1

q 2q (M-J-llq

1' hJ+2' hJ+2' ' ° ° " hJ+2

q 2q (M—J—l)q
L_l, hM, hM , , hM A  

which can easily be obtained by deleting the first J+1

rows and the last J+1 columns of the matrix (15).

Consequently, when using the pullback technique

it is only necessary to define one matrix.

For large M the Vandermonde matrix (15) is

known to be ill-conditioned. BjOrck and Pereyra [2 ]

have developed an efficient algorithm for solving such

Vandermonde systems, which can be utilized for solving our

system.

Turning our attention to the Bj's, we shall

examine the cases q=l and q=2 in detail in the next

section.
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Section 3. The Pullback Method for q=1 and 2

we will need the following rather obvious lemma.

1
Lemma 1. a) Let f(x) -2x + 2X+ then Vx€[1,¢), f(x)22.

l
b) Let g(x) —x + 2X+ then Vxe[l,m), g(x)22.

Proof. a) f'(x) = -2 + 2X+l1n2>-2+2x20 for x21.

Hence on [1,«) f(x) is a monotone increasing function

with f(1) = 2 and therefore f(x).2 2.

b) g(x) = f(x) + x 2_f(x) 2_2 by part a) since

x is positive. Cl

Our previous inductive argument has established

the validity of equation (10) for j=l,...,Mel. From

this and (5) we can conclude for q=2 that

BM = min((M+l)2,2M+3) = (M+l)2

(16)

= min(B (M-j)2 + 23 + 2), j=l,...,M—l:
BM-j M-j+l'

and for q=1 that

BM = min(M+1,M+3) = M~+ 1

(17)

= min(B Mrj + 2j + 2). j=l,...,Mpl.

BM-l M-j+l'

Theorem 1. For q=1 and 2 we have

BM-j = (M+1)ql 3:031, OOOIM-lo
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Proof. The proof is by induction on j. From (16)

and (17) we have BM = (M+l)q and for j=1 we have

BM—l min(BM,(M-l)q + 2 + 2)

min((M+l)q,(M-l)q + 2 + 2)

(M+l)q.

Assume BM-j = (M+l)q where l<j<M-l. Then by

(16) and (17)

BM—(j+1) = BM-j-l = min(BM_jv(M-j-1)q + 2j+1 + 2)

min((M+l)q,Mq-qj + 2J+1 - q + 2)

from our inductive assumption. By Lemma 1 -qj + 23+1.2 2

for q=1 or 2 and Obviously -q + 2.2 0. Thus for

q=1 or 2

(M+1lq S.Mq + 2 S.Mq - qj + 2J+1 - q + 2

which establishes that B = (M+l)q. C]

M - (j+l)

Theorem 1 shows that for the cases q=1 and 2

the pullback interpolation method yields the same accuracy

at every point of the finest grid as that Obtained by

extrapolation at the endpoint, a+h.

If M is large then the polynomials P P etc.;0! 1'

will be of high degree and "Runge's phenomenon“ may destroy

the accuracy of our computed solution. This can be
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circumvented to some degree by using lower degree poly-

nomials. Examining the proof of Theorem l'we see that the

limitation on the accuracy we can Obtain is the accuracy

to which we know Thus for large M and j 'weeM—j'

need only interpolate on enough points to guarantee

accuracy comparable to that of our data. This will not

affect the overall accuracy of our scheme and may avoid

"Runge's phenomenon".

Before we can actually compute the polynomials

P we need to know e' (a). The method fer determining
M—j M-j

e$(a) is given in the next section but at this point a

few more comments on the actual implementation of the

pullback method are in order

In the case where y(t) = (y1(t)...,y‘(t)) is

an fi-dimensional vector, the functions Y(t,hk). ¢(t)

and ej(t) are themselves L—dimensional. Consequently

the applicable system - (4), (7) or (11) - must be

solved L times, once for each component of the vectors.

Also a complete set of interpolation polynomials PM-j

must be computed for each component. We again wish to

point out the potential for using parallel processing

computers in this case.

There are cases where y is L—dimensional and

not all the above work is required. Specifically, suppose
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the L—dimensional prOblem resulted from reducing an 1th

order differential equation to a system of 1 first

order differential equations. Furthermore, suppose that

one is interested only in the solution to the original

equation and not in its various derivatives.

If the solution is desired on [O,h] then one

need utilize the pullback technique on the first component

of the solution vector only. If the solution is desired

on [O,b] where b>h the standard procedure is to solve

the problem (1) on [O,h], then solve the same differential

equation on [h,h+h] using the computed solution at h

as the initial condition for the new prOblem. This procedure

may be repeated as many times as necessary to reach b.

In this latter case, the system (4) must be

solved 2 times since we need to know all the derivatives

at h accurately. However the other systems and the

polynomials PM—j need to be computed only for the first

components of the vectors.
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Section 4. Determination of e$(a)

In order to construct the Hermite polynomials,

PM-j' of the previous section it is necessary to first

determine efiyj(a). The method for computing e$(a)

is given in this section. The actual computations are

carried out for m=1,...,4 and examples are given.

In order to make effecient use of Gragg's [11.12]

results, we will follow his notation. The examples given

are for the case when y is l-dimensional. This sim—

plifies the actual computations. However,1flmatheory is

valid for, and will be presented for, the general t-dim-

. l L
enSional case, y=(y ,...,y ).

Denote by J the Jacobian matrix of f, evaluated

at the theoretical solution w,

Bftt.gn(t)) a<t<b
J(t) BY _ _

and define symmetric k-linear Operators f(k)(t,m(t)),

agtgb,by

é . 0 2% akflgcoun ‘1 ‘k(k) _
f (t:CP(t))Yl---Yk — ]_ ° =1 1'1 5‘ y]. °°°Yk

1 4k by ...ay

L

for k=2,3,...

fck)(t,cp(t))yl...yk is the kth Fréchet deri-

vative of f(t,m(t)) operating on the vectors yl...yk.

In the case where y is l-dimensional, J(t) is the



 

 

w
W’.
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first partial with respect to y of f and f(k)(t,¢(t))yl..

(k)

_ .____(_1_CL(_L . ' k_ B fay: t )yl...yk, that is, f( )(t,Cp(t))ylo--Yk

is the kth partial of f with respect to y multiplied

by Yl""’yk' The yj's are functions of t on which

f(k)(t,m(t)) Operates.

Let

(18a) eO(t) E w(t)

and, for m=l,2,..., let em(t) satisfy

e$(t) = J(t)em(t) + am(t) + bm(t)

(18b)

emh)==o agtib,

where

m ( k+1)
(18c) am(t> = - Zakem‘jk (t)

k=1

and

(18d) Zlbm(t)zm a Z) fi%f(k)(t.m(t))(m23em(t)zm)k.

m=l k=2 ' =1

The integer q and the constants ak are determined

from a generating function

(18e) A(z) = Zlakzqk

k=O

Gragg [11,12] has shown that both Euler's rule

and the trapezoid rule have asymptotic error expansions of

the form (2) with the coefficient functions determined by

.Yk
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(18). For Euler's rule the generating function is

a) Z

l k _ e -1

For the trapezoid rule

 

_ 2 .2(20) A(z) — z tanh<2>

_ __1.§_2 _2__§4____17(_z_)6 ___62(28

' 1 3(2) + 15(2) 315 2 + 2835 2)

_ + 1:1)“+122“(22”—1)n (§)2n-l i ...

(2n): ”n 2

. th .
where Bn is the n Bernoulli number.

From (18a) eo(t) E m(t) and from (1)

m'(t) = f(t,m(t)). m(a) = a; therefore we can find higher

order derivatives of e0(t) at t=a by successively

computing total derivatives of f and evaluating them

at t=a:

dp’lf(t.m(t1)

l

(p) _ (p)
(21) e (a) = (a) =

O m dtp- t=a,

p=l,2,...

From (18b) ei(t) = J(t)el(t) + a1(t) + b1(t)

and from (18d) bl(t) E 0. Using (18c), we find

 

al(t) = -a1eo(qk+l)(t). Thus

dp‘1[J(t)e (t)]

(p) _ l (qk+p)

The second term on the right of (22) is known from (21)

and since J(t) is known, the first term on the right
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can be computed because it involves only lower order

derivatives of e1(t).

Proceeding inductively we assume that all derivatives

of e0,e1. . - at the point t=a can be evaluated,.'e.

j-l

then from (18b)

83(t) = J(t)ej(t) + aj(t) + bj(t)

so that

dp‘1[J(t)ej(§)]

dtp—1 t=a

 

(23) egp)(a) = +agp'l1t)

J —a

+bgp'l1t)‘

t=a t-

 

Let us now consider each term on the right of (23) in

turn.

The derivatives of ej(t) appearing in

dP'1[J(t)e.(t)]

11 y are all of order less than p and can be
 

dtp'

evaluated at t=a successively from the lowest to the

highest. Also J(t) and all its derivatives can be

computed. Thus, the first term on the right of (23)

is known.

From (18c) we see that aj(t) depends on various

derivatives of the error functions e0,e1,...,ej_1 all

of which are known at the point t=a by our inductive

hypothesis. Consequently agp-l)(t) t=a is known.
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Finally, bj(t) can be determined by collecting

the proper coefficients of zj on the right hand side

of (18d). bj(t) will depend on various Frechet derivatives

of f Operating on various error functions. The Frechet

derivatives can be computed. The error functions appearing

as arguments of the Frechet derivatives are from the

collection eo,el,...ej_1. This is easily seen by Observing

that the outer sum on the right hand side of (18d) begins

with k=2, which precludes the possibility of ej(t)

I

appearing as an argument of a Frechet derivative in the

expression for bj(t).

Once bj(t) is determined it is necessary to

find its (p-l)st derivative. The Frechet derivatives

can be differentiated with respect to t and evaluated

at t=a and the derivatives of the error functions are

known at t=a by our inductive hypothesis. Thus,

bgp-1)(t) t=a can be computed and equation (23) is valid.

Actually, equation (23) can be expressed entirely

/

in terms of eO(t), J(t), the Frechet derivatives and

various derivatives of these functions evaluated at t=a.

This will be done later for the case q=1.

Theoretically, at least, we can Obtain e$(a)

for any m=O,1,... . Computationally, the larger m is,

the more complicated the expression to be evaluated. As we
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shall see, the computations Of ei(a), eé(a) and eé(a)

are fairly easy to perform for q=1 or q=2. In addition,

e4(a) is reasonable.

We consider the cases q=1 and q=2 separately.

In what follows we will use a superscript in parentheses

to denote differentiation with respect to t. The sole

exception to this notation will be that f(k)

to denote the kth Frechet derivative of f.

will continue

Assuming the validity Of (18), with q=1, (18c)

and (18e) become

(18c)' amu) = —k2ake§j;1’(t)

and

(18e)' A(z) = {501ka

k=O

respectively.

From (18b), with t=a, we have e£1)(a) = am(a) + bm(a).

However, since em(a) = O, Vm, we can conclude from (18d)

that bm(a) = 0, Vin. Thus,

(24) ergl) (a) = am(a)

For m=1 a1(t) = -a1e(2)(t), so that

(25) aip)(a) = —aleép+2)(a) for any p.
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In particular, we have

ei1)(a) = -a
e(2)
1eO (a).

91511)

(26)

In order to determine (a) for m=2,3,4 we

will need the second through fourth derivatives of el(t)

evaluated at t=a. TO obtain these we proceed as follows:

differentiating (18b) with m=1, we Obtain

d[J(t)el(t)]

 

 

 

e{2)(t) = dt + a{1’(t) + bf1’(t).

Now b1(t) a o and al(t) = aleeéz)(t ). Therefore

(27a) (2) (t) = d[J(::el(t)]-ocaleeté”( )

J(l) (t)el(t) + J(t)e](_1) (t) - Alen) (t).

Since e1(a) = o and e{1)(a) = —a1eeéz)(a ) we have

(27b) e{2)(a) = —a1J(a)e(2)(a ) — aleé3)(a)

= -al[eé3)(a) + J(a)eéZ)(a)].

Differentiating (27a) we have

(28a) e{3)(t) = d2[J(t):1(t)]-«xleé4)(t )

dt

J‘Z)(r)el(r)+2J(1’(t)e{1’(r)+J(r)e{2’(t)

e(4)
aleo (t)

by Liebnitz's rule. Using (26), (27b) and e1(a) = O,

we can evaluate (28a) for t=a and Obtain
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-2J(l)(28b) ef3)(a) (a)ale(2)(a)-J(a)al[e(3)(a)+J(a)e(2)(a)]

e(4)
0180 (a)

= -a1{[2J(1)(a)+(J(a))2]e(2)(a)+J(a)e(3)(a)+e(4)(a)}.

Differentiating (28a) we have

d3[J(t)el(t)]

dt3

e(5)
le0 (tt)

 

(29a) el(t) - a

J(3)(t)el(t)+3J(2)(t)e(l)(t)+3J(l)(t)e{2’(t)

+J(t)e{3)(t)-a1fa (5)(t).
0

Using (26), (27b), (28b) and el(a) = O we have

(29b) ei4)(a) = -3a J(2)(a)e(2)(a)-3a1 J(l)(a)[eé3)(a)+J(a)eé2)(a)l
l

-alJ(a){[2J(l)(a)+(J(a))2]eéZ)(a)+J(a)eéB)(a)

e(4) (5)(a )
(a)}-—ale0

(2) (2)= -e1{[3a (a)+5J(a>J(1’(ar+qun)3 ]e (a) +

[3J(1)(a)+(J(a))2]eé3)(a)+J(a)eé4)(a)+eé5)(a)}.

Note that all expressions for the derivatives of el

evaluated at t=a involve only the derivatives of eO

and the derivatives of J with respect to t. The

derivatives of J with respect to t are a straight-

forward calculation and the derivatives of eO can be

Obtained by successively differentiating and evaluating

)
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the original equation (1).

(2) e(3)
For m=2: a2(t) = -d1e1(t)-OL2 (t) so that

(30) asp)(a) = -a1e{p+2)(a) - azeeép+3)(t) for any p.

In particular using (24) and (27b) we have

(31) eél)(a)==a2(a) =a1ee12)(a)-a2eé3)(a)

a1[e(3)(a)+J(a)e(2)(a)]-a2eé3)(a)

= (01-a2)e(3)(a )+aiJ(a)e(2)(a)

Now erfll) (a) for m=3,4 will require knowledge

of the second and third derivatives of e2(t) evaluated

at t=a. Differentiating (18b) with m=2, we Obtain

d[J(t)e2(t)]+
a(l) (1)

 

(2) _
(32) e2 (t) - dt (12) + b2 (t).

From (18d) we have

(33) b2(t> = éf (”(t cp(t))e1(t)e1(t)

implying that

 

(2)

bzmm =11-df $5019) e1(t)e1(t) + f(2)(t,cp(t))e1(t)ei(t).

Note that f(2)(t,m(t)) fyy(t,m(t)) for the one dimen-

sional problem. Since e1(a) = O we can conclude that

(1) _
b2 (a) — o.
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Using (30). (31) and e2(a) = O we have

e§Z)(a) = J(a)e§1)(a) + a§1)(a)

= —alJ(a)e{2)-Q2J(a)eé3)(3)-(119;:3)(a)"a (£4) (a)
26

—a1(e{3)(a)+J(a)e{2)(a))-a2(eé4)(a)+J(a)eé3)(a))

Hence, e§Z)(a) can be expressed in terms Of derivatives

Of eo(a) by using (27b) and (28b),

e52)(a) = ai{[2J(1)(a)+(J(a))2]eéZ)(a)+J(a)eéB)(a)+eé4)(a)

+(J(a))2eéZ)(a)+J(a)eé3)(a)]-d2(eé4)(a)+J(a)eé3)(a)).

Collecting terms involving the various derivatives of

eO(a), we have

(34) e§2’(a) = (mi-a2)eé4)(a)+(2ai-a2)J(a)eé3)(a)

+2ai[J(l)(a)+(J(a))2]eéz)(a).

Differentiating (32) again, we have

d2[J(t)e2(t)]

2
 e53)(t) = +a§2)(t)+b§2)(r).

dt

By differentiating (33) twice and using e1(a) = O, we

find that b2(2) (a) = if”) (a,cp(a))e1(_1) (a)e{1) (a). From

(2

2 )(a)=wclei4)(a)-azeés)
(a) and since e2(a) = O

(30) . a

we have



41

(1) (2) (4)
(a)-a1e1 e(s)(a)e53)(a) = 2J(1)(a)e2 (a)+J(a)e2 (a)-a

2e

(1)
+f‘2)(a,e(a))el (1)(a).(a)e1

Substituting for eél)(a), e52)(a), e14)(a) and eil)(a)

from equations (31), (34), (29b) and (26) respectively,

we have

e53)(a) = 2(a12 -d2)J(l)(a)eé3)(a)+2a{2)J(a)J(1)(a)eéZ)(a)

+(e12 —<12)J(a)e(4)(a)+(2c1(2)—a2 )(J(a))2e(3)(a )

+(2c3L12 [J(a)J(1)(a)+(J(a))3 ]e(2)031 )

(2)
2 [3J (a)+5J(a)J(1)(a)+(J(a))3]e(2)(a)

+a 2 [3J(1)(a)+(J(a))2]eé3)(a)+aiJ(a)eé4)(a)
l

2 eés)(a)-azeés)(a)

+0. 2 f(z) (a,cp(a))e(§2) (a)e(§2) (a).
1

Collecting on the derivatives Of e0(a), we have

(35) e§3’(a) = (ei—a2)eés’(a)+(2n§-e2)J(a)eé4’(a)

+[(5ai-2a2)J(1)(a)+(3di-a2)(J(a))2]eé3)(a)

+ai[3J(2)(a)+9J(a)J(1)(a)+3(J(a))3]eéz)(a)

+<12f(2 )(a, cp(a))e(§2) (a)ec()2) (a).

With m=3 from (18c)' we have
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a3(t) = -a1e2(2)(t)-a2e(3)(t)-U3 e(4)(t) so that

(36) a§p)(a) = —dle§p+2)(a)-a2e£p+3)(a)-a03eeép+4)(a)

for any p. From (24) we have

e§1)(a) = a3(a) = -a1ee(2)(a)-OL2e(3)(a)-OL3 e(4)(a).

Substituting (34) and (28b) for e52)(a) and e13)(a)

respectively, we have

e§1)(a) = -a1(ai-a2)eé4)(a)—d1(2di—a2)J(a)eéB)(a)

3 J(1)
1[ (a)+(J(a)) 2]e”’ (a)-2a

J(1)
+a o (a)+(J(a)) 2]e(2)(a )

l 2[2J

e(4 )

1 2 e0
(3) (4)(a).NJ(a)e (a)+aa (a)-OL3 e

+(1&1 2

Combining like derivates Of eO(a), this becomes

(37) e(1)(a) = (2d1a -al-d3) e(4 )(a)+2(a1aa2-a1)J(a)eO

+[(ala -2ai)(J(a))2+2(a1a -aM)J(1)( )]e(2)(a )-
2 2

Differentiating (18b) with m=3, we have

d[J(t)e3(t)]

dt

 e§2’(t) = +a§1)(t)+b§1)(t).

From (18d), b3(t) = é-f(3)(t,w(t))el(t)el(t)e1(t) +

f(2)(t,w(t))e1(t)e2(t) so that b§1)(a) = O as
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a(1)
el(a) = e2(a) = 0. Substituting for (t) and using

e3(a) = O, we have

e§2)(a) = J(a)e§1)(a)-aleé3)(a)-a2e(4)(a)-a3e(5)(a).

Substituting (37). (35) and (29b) into this equation yields

8(2) (4) Ze(3)
(a)+2(ala2-a3)(J(a))(a) = (Zola -ai—a3 )J(a)eO (a)

2

(l) (2)
+[(alaz-2ai)(J(a))3+2(a -a3)J(a)J (aa)]e0 (a)

1G2

+(ala2—ai)eé5)(a)+(ala2-2a(3))J(a)eé4)(a)

+[(2a a 3 J(l)(a) (3)1 2-50. (a ))+(a1a2[3al)(J(a)) ]e0

3 3 (2)

1[3J
_ J2( )l(a)+9J(a)J( ’(a)+3(J(a>]e (a >

3 (2)
—a1f (a m(a))e(2’

(2) e(5 )(a )
(a)eO 2e0(a)+ala

OLC11C12J(a)e(4 )(a)+a1a2[3J(1)(a)+(J(a))2 ]e(3)(a)

a2[3J(2)(a)+5J(a)J(l)(a)+(J(a))3]eéZ)(a)-a3eé5)(a).

This can be rewritten as

(2)
(38) e3 (a) = 2(ala2 -al-(13 )e(5) (a)+(4ala —3ai-a3 )J(a)e(4)(a )

2

+[5(a1a2-ai)J(l)(a)+(4ala -5ai)(J(a))2]eé3)(a)
2

(3)(a)+(7a a -llal)J(a)J(1)(a) +

3

+[3(alaz—al)J l 2

(2a -SGi)(J(a))3]eéZ)(a)
1&2

-Gif(2)(a.w(a))eé2)(a)e32)(a).
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Finally for m=4 we have

eil) (a) - 9(2)_ a4(a) = ale3 (a)-a2e(3)(a)——a3e(4)(a)--a4e(5)(a).

Using (38), (35) and (29b), this can be written as

ala2)e35)(a)+(3a§+a a -4a§a2)J(a)e(4)(a >e(1)(a.) -— 2(a% l 3
1m1&3-

+[5(a§-aia2)J‘1’<a>+(5a§—4aia2>(J(a>>2 Je‘3’<a >

(2)
+[3(ai-aia2)J (a)+(llai-7aia2)J(a)J(l)(a)+

(Sui-2ai02)(J(a))3]eé2)(a)

4 (2)
+alf (a, m(a)) e(2)

(2)(a)
(a)eO

+(a3-aia2)eéS)(a)+(a§-2aia2)J(a)eé4)(a)

+[(2a§-5aia2)J(l)(a)+(G§-3Giaz)(3(a))2 ]e(3)(a >

-a2a2[3J(2)(a)+9J(a)J(l )(a)+3(J(a))3 ]e(2)(a)

—aia2f(2)(a,w(a))eé2)(a)eé2)(a)

e(5)
103 60 J(a)e(4)(a)+a (a)+aa

la 3

+a1a3[ J(l)(a)+(J(a))2 ]+(J(a))e(3)(a )

a3[3J(2)(a)+5J(a)J(1)(a)+(J(a))3]eé2)(a)

e(5)

"O‘e4o (a)

Rearranging terms, we get



 

(1) ._
(39) e4 (L

TO SU

can be used t   
e4 Ha) reSp.

Step 1

Step 2

Step3 e(l)
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(39) 9:1)(3) = (ZOE-Baia2+3a103+d2-a4 )eé
s)(a )

4 2 2 4

+(3a1-6ala +2a1d3+a22)e( )(a )

+[(Sa4—10aza +3d a +2a§)J(l)

12 13 (a)+

204-0.

121“
(sag—7a +a§)(J(a )) 21e‘3’(a >

3

2 (2) 4 2
+[3(a4l-2a1a2+ala3)J (a)+(lla1-l6a1a2 +

(1)(a)+(5a4-5a2a +01a3)(J(a)) 3]e(2) (a)Sala3)J(a)J l 1 3

+(d4-aid2)f(2)(a,w(a))eé2)(a)e32)(a).
1

To summarize, equations (26), (31), (37) and (39)

e‘l’ (1’(a>. e§1’(a)can be used to determine (a), e2 and

ei1)(a) respectively. A computationally more effective

recursive procedure for q=1 is given in Table 3 below.

TABLE 3

Step 1 Compute eél)(a), eéz)(a), eé3)(a), e34)(a). eés)(a)....

Step 2 Compute J(a). J(l)(a), J(2)(a),

e(2)
Step 3 e11’(a) = a1eO (a )

eiZ) (a) = J(a)e{1) (a)-ale(3) (a)

ef3’(a) = 2J‘1’(a)e{1)(a)+J(a)e{2’(a)-a1e(4’<a)

e{4’(a) = 3J(2)(a )e‘1’(a)+3J(1’(a)e(2)(a)+J(a)e‘3)(a )

e(S)

O“5'10 (a)



W
}

 

 
Step 5 e (1

(2

e3

Step 6 (
e

4

Tab

computatlo
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TABLE 3 continued

Step 4 e§1)(a) = —a1e{2)(a)-a2eé3)(a)

e§2)(a) = J(a)e§1)(a)—a1e{3’(a)—a2eé4)(a)

— 2J (a)ee§3’(a) — (1) (1)(a)+J(a)e§2’(a)—a1e{4)(a)

I azee35)(a)+f‘2)(a.m(a))e{1’<a)e{1’(a)

Step 5 e§1)(a) = alee52)(a)—d2e(3)(a) -a3e(4)(a)

e§2)(a) = J(a)e(l )(a)-d1e53)(a)—a2e(4)(a)-a3e(5)(a)

Step 6 eil)(a) = alee§2)(a)—aze£3)(a) ~a3ei4)(a)-a4eés)(a)

Table 3 lists the equations necessary for the

(1)(a),...,eil)(computation of e1 a) for a method which

satisfies (18) with q=1. Of course, Table 13 can be

continued. Each new error function, whose first derivative

at t=a is to be computed, requires one additional computation

at each step of the table and the addition of one more step

to the table. The only computations in Table 3 which are not

simply the result of plugging in formulae are those in steps

1 and 2. and the computation of various Frechet derivatives

as they become necessary.



 

 Toi

I

92(1) (a), egl

in example 1

Bample 2 :

the solution

 
From equatiox

ru1e. In th

tap 1: eél

Step 2.

J(
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To illustrate the use of Table 3 we compute e{1)(a),

(1) (1)

92 3

in example 1 using a numerical method for which q=1.

(a), e (a) and eél)(a) for the differential equation

Example 2: Suppose we are using Euler's rule to compute

the solution to

y’=y2: y(O)=.2; ogpgl.

From equation (19) we have that dk = Tii%77' for Euler's

rule. In this case Table 3 becomes

Step 1: eél)(o) = (Y(OH2 = .040000

e32)(2) = 2y(O)y(l)(O) = .016000

eé3)(0) = 2[y(O)y(2)(O)+(y(l)(0))2] = .009600

eé4)(0) = 2[y(O)y(3)(O)+3y(l)(0)y(2)(0)] = .007680

e55) (0) = 2[y(O)y(4) (O)+4y(l) (on/(3) (o)+3(y(2) (0))2]

= .007680

Step 2: J(O) = 2y(o) = .400000

J(l)(O) = 2y(1)(0) = .080000

J(2)(l) = 2y(2)(0) = .032000



 

 
Step 3: e{‘

(‘

e1

e;

e{‘

Step 4; e;

(

e2

(

‘32

Step 5. (

- e

3

(

e3

StEp 6- (

° e

4

It

180 note t

functiOn
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Step 3: e{1)(0) = -.008000

e{2)(0) = -.008000

e{3)(0) = -.008520

e{4)(0) = -.oo9936

Step 4: e(l)(0)2 = .002400

e52)(0) = .001810

e53)(0) = .006076 since f(2)(a,w(a)) = 2.

Ste - (l) -p 5. e3 (0) — -.OO7950

e§2)(0) = -.oo4882

Ste 6- (l) -p . e4 (0) — .0017780

It should be emphasized that the computations in

Steps 1 and 2 are performed by the user not by the machine.

Also note that the signs on the derivatives of the error

functions alternate in precisely the same manner as the signs

of the errors for Euler's rule.

Turning our attention to the case q=2, we assume

(18) is valid with q=2 so that (18c) and (18e) become



 

(18c) "

and

(18e) "

In

anaIOgous

abOUt the
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m

u _ e(2k+1)

(18c) am(t) - 31:31 em“k (tt)

and

(18e)" A(z) = 2: 22k

k=oOlk

In order to construct a table for the case q=2

ana10gous to Table 3 we will need to collect more information

about the functions bm(t) for m=1,...,4. From (18d) we have

b1(t) a O

b2(t) = iff‘2’(t w<t>>e1(t>e1<t>

(40) b3(t> = if ‘3’(t w(t>)e1(t>e1(t)e1(t>+f‘2’(t.m(t)>e1(t)e2(t)

b4(t> = 24f‘4’(t.w(t)>e1(t)e1(t)e1(t>e1(t)+—f(3’<t.m(t>)

e1(t)e1(t)e2(t>+f‘2’(t.w(t>)e1<t)e3<t)

+%f(2) (t.¢P(t) )e2(t)e2 (t) .

Since our goal is to produce a table for evaluating

e(l)(a )....,eé1)(a) we examine what information will be

necessary to determine e4 a). From (18b) with m=4 we

have

(1)
e4 (a)=a4(a)

since e4(a) = b4(a) = O. From (18c)" we can conclude

e§1)(a) = -alee§3)(a)-d2e£5)(a)-a3e{7)(a)-d4eoe(9)(a).



f

 

In genera

P
em(a)

Thus in .

to deter

(7)

91 (a)

given be

function

Zero, I;

therefOI

(3)

b2

(4)

b2
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In general, by (18b) we see that

dp-1[J(t)em(t)]
 

82(a) = + amp-l)(t)‘*b£p-l)(t): m=1.....4.

dtp‘l

we need to know b§2)(a):

(a) we need bé4)(a); and to determine

Thus in order to determine

.15)

e§3)(a)

to determine

(7) (6) .
e1 (a) we need bl (a). The necessary computations are

given below. To simplify the notation, the arguments of the

functions are suppressed.

Since b1(t) a 0 all derivatives of bl(t) are

zero. From (40), b2(t) = %f(2)(t.¢(t))e1(t)e1(t) and

therefore:

(2)

bunt) — 1—1—1df e .42) em
2 ’ 2 dt e1 1 ee11

b(2)(t) _ .1. 2313.123 8 e +2(13(2))(131(1(1)+f(2)e6(2)
2 ' 2 dtz 1 1 ee1 1 ee1 1 V

e1(1)e (1)
+f( e1

3 (2) (2)

(3) _ 1. d f (2) (2)e e(1) dif 2 e(2)

b2 (t) ‘ 3' dt3 elel+3(f ee1 1 *3 dt ee11

+3 «113121e11)e11)+3f(2)e11)eze12)+1.})eele13)

(4) __1. d4f(2) d3f(2) e(1) d2f(2) (1) (1)

b2 (t) ’ 3' dt4 e191+4 dt3 ee1 1 +6 dtz e1 e1

931121. (2) 21.112161613) dfg1(2)) (1) (2)
+6 dtz elel +4 dt +12 dt e:L el

+3,1.(2)e12)e12)+11f(2)e11)e13)1:9) e14)

”1

Using the fact that e1(a) = O we can obtain



 

10(1)

(2)
b2

(41) b”)

Us

have

Q'

an
Qe
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O
‘ A H

A m

l O

b(2)(a) - f(2)(a.CP(a))e(1) (a)e(1)(a )

 

 

 

2

(41) 132(3) (80 = 3[f(2) (a.CP(a))e(l) (a)e(Z) (a)

df(2) u: mm) (1) (1)

+ dtl e1 (a)el (a)]
t=a

2 (2)

(4) d f Lt.@(t)) (l) (1)
b (a) = 6 e (a)e (a)
2 dt2 t=a l l

dfu) (t 2112)) (1) (2)
+12 dtJ. e1 (a)el (a)

t=a

+3f(2)(a w(a))e(2’(a)e(2)(a )+4f(2)

(a.w(a))e{1)(a)e{a)(a).

Using the definition of b3(t) given in (40), we

 

have

(1) 1 df‘3’ 1 (3) (1) (2) (1)
b ()-a "Er-919191715 916191 ”f ) 9192

(2) (1) (2) e(1)
+ f el e2+f ele2

2 (3) (3)
(2) l f 91.1:— em (3) e(1)9(1)

b3 (t) ‘ 6 dtz $19191+ dt e19181 +fee1 e1

2 (2) (2)
(3) (2) d f df (1)

“‘Ef 919191 + ‘13” “3192+2 T e1 e2

(2)
df (l)+f(2) (2) (2) e(1) 62(1) e(2)

+2 T ele2 e1 e2+2f +f( eel2 .

Since e1(a) = e2(a) = O, at t=a we have



 

<

b3

(42)

t

b3

V

evaluatir

Step 1:

Step 2:

Step 3:
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b3(1) (a) = O

(42)

b§2)(a) 22(2)(a.w(a))e{1)(a)e§1)(a).

We can now summarize the computations involved for

(l)(a).....eil)(evaluating el a) when q=2.

TABLE 4

Step 1: Compute eél)(a), eéz)(a)....,eé8)(a), e(9)(a)....

Step 2: Compute J(a), J(1)(a),...,J(5)(a),...

Step 3: e{1)(a) = 18(3)(a)

e{2)(a) = J(a)e{1)(a)-oleé4)(a)

ef3’(a) = 2J‘1’(a)e‘“ (a)+J(a)e(2)(a)-o1eé5’(a)

e{4)(a) = 3J(2)(a)e{1)(a)+3J(1)(a)e{2)(a)+J(a)e{3)(a)

e(6)

3

efs’ (a) = k2 @110" (a)e{4‘k’ (a)—ole(7) (a)
=0

4

e{6’(a) = k2:(:)J‘k’(a)e{S‘k)(a)-a1ee(8)(a)

=0

5

ei7)(a) = k2)<:)J(k)(a)e{6-k)(a)-olee(9)(a)

=0



 

Step 4:

Step 5;

 

A
i
A

A
A

I



Step 4:

Step 5:

b2”) (a)

b52)(a)

bé3)(a)

13(4) (a)

eél)(a)

e(2)(a)

e53)(a)

e54)(a)

e(5)(a)

TABLE 4

O

f(2 )(a
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continued

(1)
@(a)))e1 (a))ef1)(a)

3[f(2) (a,cp(a))el(1) (a)elQ) (a)

MmNtmo1

f(2)

+ 12

dt t=a

(t ¢(t))

dt2 t=a

df‘2)(t.mlt))

dt

e{1)(a)e{1)(a)]

e{1’(a)e{1)(a)

ef1)(a)e{2)(a)

t=a

+3f‘2’(a.w(a))e{2’(a)e{2’(a)

+4f(2)(a.®(a))e{l)(a)e{3)(a)

e(3)
-Cll

J(a)e§l)

2J(l)(a)e2(l)(a)+J(a)e§2)(a)-dlel

e(7)

0‘2 e0

I
l
t
q
m

e(8)

O‘2 eo

I
l
t
j
w

e(9)

0‘92o

(a)-a2 e

(a)_%e(4)

(a)+b§2)(a)

“@ch

(a)+b:§3) (a)

(new

(a)+b§4’(a)

(a)-o e

(5)(a)

(

2 o

(a)-o e

6)

(7)

l l

(a)

(5)(a)

(6)(a)
(a)-a1e1

(a)
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TABLE 4 continued

Step 6: b§1)(a) = o

13:52) (a) = 2f(2) (a.cp(a))e{1) ( we?) (a)

Step 7: e§1)(a) = olee53)(a) -o2e{5)(a)-a3 e(7)(a)

e§2) (a) = J(a)e3(l) (a)-dle 2(4) (a)--a2em) (a)-—a eéa) (a)

e§3)(a) = 2J(1)(a)e§1)(a)+J(a)e§2)(a)

—alee55)(a)-a2e{7)(a)——a3ee(9)(a)+b§2)(a)

Step 8: e§1)(a) = alee§3’(a)--Q2eWé5)(a) e(7)(a)-d4e(9)(a)

Table 4 can be continued. Each new e£1)(a) to be

computed will require two additional computations at each

existing step of the table and the addition of two new

steps to the table. One new step will contain the computations

of b£_1(a) for p=l and 2 and will preceed the step

where eéii(a) is computed. The other new step will be the

(l)(a).computation of em

(1)
Example 3: Compute el (a)...-.eél)(a) for the equation

y‘ = y : y(0) = .2: ogt_<_l when the trapezoid rule is
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used as the numerical method for solving the problem.

The generating function for the coefficients in (18)

for the trapezoid rule is given by (20). Specifically,

_ _1_ -_i_ _:;l_7_._1_ -__6_2_,_1_
a1 ‘ ‘ 2' 0‘2 ‘ 120' 0‘3 ' 315 26 and 0‘4 “ 2835 28'

If the computations in Table 4 are performed for this

example the results are: ef1)(a) = .0008: eél)(a) = .000032:

6
e§1)(a) = 1.3867 x 10- : and eé1)(a) = 6.229 x 10-

As is apparent, the computation of eé1)(a) for

nu24- becomes quite involved, particularly when q=2.

However, there are applications (see Section 1 of Chapter 3)

of the pullback method with M5;4 which are more accurate

than other methods currently available.
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Section 5. Numerical Results for Initial Value PrOblems
 

In this section the pullback method and the method

due to Lindberg [19] are compared theoretically and numerically.

Since Lindberg's approach is conceptually and notationally

quite different from ours, a discussion of his method is

included. we will confine the discussion initially to the

case M=4 and q=2 as this will suffice to point out the

differences between the methods. Unfortunately, Lindberg's

notation and that used here are in some instances in complete

Opposition to one another. The differences will be pointed

out in footnotes.

Let h:>O be the basic steplength and for k=O,l,...,4

define steplengths hk = h/2k and grids Gk % {tE=a+ihk:

A

i=0,...,2k}. In addition, let h = h/24 = h/l6*.

Assume that the numerical method being employed to

solve the problem (1) is such that the expansion

(43) Y(t§.hk) = cp(t}i()+el(t}i()}5i+e2(t]i‘)h:+e3(tis)h:+e4(t]i<)h:+o(h%0)

is valid for each i=0,l,...,2k and for each k=O,l,...,4.

Lindberg's method is as follows. Number all grid

points according to their order of occurrenceimithe finest

A

*In Lindberg's paper h is taken to be the basic steplength

and hk=2kfi‘ k=O,l,...,4. Thus the grids GR and steplengths

hk are numbered in the Opposite order.



57

grid, obtaining t =a,tl,...,t16=a+h. At each ti
0

perform as many extrapolations as possible and denote the

A

computed solution after n extrapolations as Yn+l(ti'h)'

Thus at t we can perform 4 extrapolations obtaining
16

Q a A A

Yl(t16.A). Y2(t ), Y3(t h),..., Y5(tl6.h) where
16' 16'

Y1(t16,h) is the solution computed with the numerical

. A 4
method: 1.e., Y1(ti,h) = Y(ti,h4). At t8 we can perform

3 extrapolations: at t4 and t 2 extrapolations
12'

t and t l extrapolation.and at t , t 10 14,

2 6'

A

According to Lindberg each Yj(t,h) satisfies the

relationship

CN’C) + EEK]. Vev(t)h

v-J

A

(44) Yj(t,h)

where for each j

j-l 22p_22v

(45) Khv = H. ——3—-—-

J p=l 2 p--l

The goal here is to define Y5 at all points of the

finest grid. Initially YS is known only at the two points

A

to=a and t16=a+h=a+l6h. At each of these points form

A A A8 "10 . .
Y5(t,h)-Y4(t,h) = —Xa4e4(t)h +O(h ) by (44). Via linear

interpolation obtain an 0(hlo)* approximation to

A

- 44e4(t8)h8. Add this approximation to Y4(t8.£) to

A

obtain Y5(t8,£3+o(hlo). At the next stage form the

*This will be discussed in some detail later.
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A A

differences Y5(t,h)—Y3(t,h) at the points t=tO,t8 and

_ , 6 , 8
t16- By (44). Y5(t,Q)—Y3(t.Q)—-A33e3(t)Q —A34e4(t)fi

+o(hlo). Using quadratic Lagrange interpolation obtain

3 . . , 6 8
an 0(9 ) approx1mation to -A33e3(t)fi -X34e4(t)fi at

t=t4 and t=t12 which is added to Y3(t,h) at these points

to obtain Y5(t,Q) for t=t and t=t However Y5(t,fi).
4 12'

t=t4,t12, is only an 0(h9) approximation to m(t). This

process is continued until Y5 has been defined at all

ti' i=O,...,16. The result, according to Lindberg is

Y5(ti,fi)=w(ti)+0(fig) for i=1,...,7 and 9,...,15 while

A A

Y5(ti,h)=m(ti)+o(hlo) for i=8 and 16.

Now the pullback interpolation method will yield

0(hlo) accuracy at all ti's and Lindberg's method yields

0499) at most ti's. Since ‘£=h/16 it looks as if Lindberg's

method is of higher accuracy. This is not so for the following

reasons: First, Lindberg presents the error analysis for

extrapolation in terms of the smallest stepsize available,

h. The '0' notation is designed to be information-

supressing and the remainder terms in extrapolation which are

said to be OKhB) are actually of the form Chag(t)

where C and B are constants and g(t) is a continuous

function of t. On a closed t interval g(t) will be

bounded and we can write Cth (t) _<_CohB = 0(h6) . We could also

write Chfig(t) = éfiag(t)5;éofi6 = 0(fi6) by defining

A A

C = 166C. The prOblem here is the fact that CO will be
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quite large compared to CO. When the error in extrapolation

is expressed in terms of the largest or basic steplength,

h, the constant C will be smaller than 1. If this same

error is expressed in terms of the smallest stepsize, Q.

the constant 8 will be of the form (45) and is larger

than 1. In fact, when expressing the error in terms of the

smallest stepsize we are unable to prove the convergence of

the Aitken-Neville extrapolation scheme; indeed, an analysis

of (45) shows that the constants kkaw as the stepsizes

hk40.

Secondly, the magnitude of the constant 6 is

further increased in Lindberg's analysis when interpolation

is performed. Recall that Lindberg expresses the error

in interpolation in terms of the smallest stepsize also.

This means that at the first step when Lindberg is

performing linear interpolation to - 44e4(t)h8 at the

points t0 and tl6 he obtains the error

(t—to)(t-t )
l6 (2)

2! K
e (§)h8 where t "§<(t44 4 O\‘ Lindberg

16'

A

calls this error 0(hlo); to do this one must interpret

A

the maximum of (t-to)(t—tl6) as being ofhz). The

maximum occurs at the midpoint t8 and is easily seen to be

2 2A2

C§>2 = gr-= lézh—u To call this 0(h2) further increases

the size of the constant being suppressed. Note that in the

error analysis for the pullback method, (g)2 is inter-

preted as -1-h2 =O(h2) which causes the constant to decrease.
4
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When Lindberg claims an error of the form 0(93)

and the pullback method claims OKhB), the inequality,

0(hB) _<_ 00/16), holds when the constants CO and 30

are taken into account. Thus OKth) in actuality is

A

smaller than 0(h9) and the pullback interpolation method

yields a more accurate solution.

This increase in accuracy is due solely to the fact

that we are using Hermite interpolation with the additional

data e£1)(a). In fact, if the pullback interpolation

method is changed so that Lagrange interpolation is used

the results are identical to Lindberg's. In this case

on?) a 0096).

Let's examine the differences between using Hermite

and Lagrange interpolation when q=2 for arbitrary M.

For j=O, we know eM(t) at two points with

accuracy oXhZ). Let PM(t) be the Hermite polynomial

constructed as outlined and let LM(t) be the Lagrange

interpolation polynomial for these two data points. We have

Pu“) = eM(t)+O(h3)+O(h2) and LM(t) = eM(t)+o(h2)+o(h2)

where the first '0' term is the error in interpolation and

the second is the error in the given data. 'Thus both

PM(t) and LM(t) are Olhz) approximations to eM(t).

When LM(t) is used numerically, as it is in Lindberg's

method, the solution at the midpoint of the interval is,
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in most instances, less accurate than the solution which can

be obtained by just performing extrapolation (see the examples

concluding this section). This phenomenon,MflfixfliLindberg

calls attention to in his paper, does not occur when

PM(t) 15 used.

For j=1, we know e 1(t) at three points with

m-

accuracy 0(h4). In this case, PM_l(t) = eM_1(t)4-O(h4)

4 _ 4 _ 3 4

+001 ) — eM_1(t) +O(h ) and LM-l(t) - eM_1(t) +0(h ) +G(h )

= eM_l(t)+-O(h3). Here it is the error in interpolation

which determines the final accuracy so that there is a real

gain when Hermite interpolation is used.

The situation is the same when j=2, that is,

PM_2(t) = eM_t(t) +0016) +0016) while LM_2(t) = (t)
eM—Z

+ 00h5)4-o(h6). Again the error in interpolation dominates

and Hermite interpolation yields higher accuracy.

For any jyg3, it is the error to which we know

eM_j(t) that dominates, since for j;33 we have

23+l > 2j+2. The last inequality can be established by a

proof similar to that of Lemma 1. Thus the advantages of

using Hermite interpolation occur when j=O,l and 2.

We now examine some examples of results Obtained

using the pullback interpolation method when numerically

solving first order initial value problems. All numerical

computations were done on the CDC 6500 installation at
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Michigan State University. Calculations were done in single

precision floating point arithmetic yielding l4 accurate

decimal places.

The first example in this section is a continuation

of Example 2, Section 4.

Example 4: Solve y'=y2, y(O)=.2, Qitgl using Euler's

method and pullback interpolation with M=4.

The basic stepsize is taken to be h=l and, since

M=4, the finest grid, G consists of 1? equally spaced4!

points in [0,1]. That is,

G4 = (ti: ti=0+1 h/l6, 1=O,l,...,l6}.

The theoretical solution is y(t) = l/(S-t) and the

numerical results are reported in Table 5 below. Table 5 is

constructed to exhibit the error in the solution computed

by Euler's rule and the error in the solution computed by

pullback interpolation at each grid point of G4. In each

case the error is the computed solution minus the theoretical

solution.
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TABLE 5

Error using Euler Error using pullback

10

ll

12

13

14

15

16

-3.15 10‘ .01 10'

—6.53 10‘ 2.97 10’

-1o.11 10‘ 8.47 10‘

—13.93 10’ 13.16 10‘

—17.99 10' 14.87 10‘

-22.31 10' 13.26 10‘

-26.92 10’ 9.17 10'

-31.82 10‘ 3.62 10’

-37.05 10’ -2.01 10'

-42.63 10' —6.58 10'

-48.58 10' -8.92 10'

-54.93 10' -8.26 10'

-71.71 10’ —4.97 10'

—68.95 10‘ -l.26 10‘

-76.68 10' - .54 10‘

—84.96 10’ -3.30 10'
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The results given in Table 5 can be quickly summarized

by noting that Euler's method can guarantee only two accurate

digits at all grid points of G while the pullback method
4

can guarantee 5 accurate digits.

Pullback interpolation based on Euler's rule with

M=4 was also used to compute the solution to yH=y2,

y(0) = .2 with basic stepsizes of h=l/2 and h=l/4.

In the first case the solution is computed on [0,1/2]

and in the second case the solution is computed on [0,1/4].

The results are summarized in Table 6 below. The first two

columns are the results for h=1/2 and the last two are

the results for h=l/4. Table 6 is arranged to exhibit the

correspondence between grid points for the two different

mesh sizes.
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TABLE 6

h=bQ h=y4

i Error using pullback i. Error using pullback

0 0 0 0

1 .15 x 10'10

1 1.96 x 10"10 2 11.93 x 10’10

3 33.93 x 10‘10

2 189.25 x 10"10 4 50.92 x 10'10

5 55.90 x 10‘10

3 532.79 x 10"10 6 147.10 x 10'10

7 27.94 x 10'10

4 817.32 x 10"10 8 3.45 x 10"10

9 21.15 x 10"10

5 905.78 x 10‘10 10 40.66 x 10"10

11 50.02 x 10"10

6 777.95 x 10"10 12 45.84 x 10'10

13 29.33 x 10‘10

7 486.78 x 10’10 14 9.12 x 10’10

15 1.17 x 10‘10

8 110.79 x 10"10 16 .40 x 10'10

9 269.05 x 10"10

10 571.77 x 10"10

11 718.91 x 10"10

12 657.64 x 10'10

13 408.36 x 10’10

14 108.33 x 10"10

15 26.89 x 10'10

16 32.13 x 10-10
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As can be seen by examing Table 5 and Table 6 the

smaller the basic steplength is the more accurate are the

computed solutions. This is in agreement with results for

exprapolation (see Lambert [18] and Gragg [11,12]).

Example 5: Solve y'=y, y(O)=l, ogtgl using the trapezoid

rule, and pullback interpolation with M:4. Using a basic

steplength of h=l we again obtain the solution at 17

equally spaced points in [0,1]. The theoretical solution

of this equation is y(t)=et and the error reported is the

computed solution minus the theoretical solution. The results

of Example 5 and the next example will be presented simul-

taneously in Table 7.

Example 6: Solve y'=-sin t, y(O)=1, 03631 using the

trapezoid rule and pullback interpolation with M=4. The

basic steplength is taken to be h=l and the grids are the

same as in Example 5. The theoretical solution is given by

y(t)=cos(t).
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TABLE 7

Error in pullback Error in pullback

N
F
4

O
+
4

W

10

11

12

13

14

15

16

for y'=y with h=l for y'=-sin t with h=l

0 0

.12 x 10-10 - x 10-13

.48 x 10"10 — x 10-13

1.05 x 10"10 — x 10'“13

1.70 x 10"10 - x 10'13

2.30 x 10’10 - x 10"13

2.74 x 10‘10 - x 10’13

2.94 x 10.10 O. x 10'-13

2.90 x 10"10 - x 10"13

2.65 x 10'10 - x 10"13

2.34 x 10.10 - x 10-13

2.11 x 10’10 x 10"13

2.16 x 10'10 1. x 10'13

2.63 x 10"10 2. x 10"13

3.57 x 10"10 3. x 10'13

4.86 x 10-10 2. x 10”13

6.13 x 10'10 -2. x 10'13



The equations in examples 5 and 6 were solved in the
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same manner with a basic stepsize of h=l/2 to obtain

solutions at 1? equally spaced points in [0.1/2]. The

fireesstnlts of these computations are presented in Table 8.

H
0
?
”

10

ll

12

13

14

15

16

TABLE 8

Error in pullback

for y'=y with h=l/2

N
@
0
1
4
:
-

O

X

10-13

10'13

10-13

10-13

10-13

10-13

10—13

10—13

10-13

10-13

10-13

10-13

10-13

10"13

10—13

10—13

Error in pullback

=—sin t with h=l/2for y'

0

X

10-14

10-14

10-14

10-14

10'14

10-14

10"14

10—14

10-14

10-14

10-14

10-14

10-14

10-14

10—14

10-14
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As the results presented in Table 7 and Table 8

so vividly indicate, pullback interpolation will yield

uni form accuaracy at all grid points of the finest grid.

Lindberg in [19] presents numerical results

obtained when solving y'=y, y(O)=l, on [0,1] using the

trapezoid rule and his interpolation method. The largest

error Lindberg obtains is at t5 and has magnitude l6xlO-lo.

Examining Table 7 we see that the largest error produced for

this equation when using the pullback method is the error

in extrapolation at the endpoint, tl6=1. The magnitude of

this error is 6.13xlO-lo.

In the next series of examples extrapolation,

Lindberg's method and pullback interpolation are compared

numerically.

Example 7: Solve y'=y2, y(O)=l, ogtgl using the trapezoid

rule . Choosing a basic steplength of h=l and M=3, the

solution is computed first by using extrapolation as often

as is possible at each grid point of the finest grid,

G3 = {ti: ti=0+i h/8, i=O,l,...,8}. Secondly, the solution

is Computed on G3 by using Lindberg's method as described

earlier in this section. Lastly, the solution is computed

on G3 using pullback interpolation. All errors are

given as the computed solution minus the theoretical solution.

The results are presented in Table 9.
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TABLE 9

Error using

pullback

Error using

Lindberg's method

Error in the best

i. extrapolated value

(1 -0 0 0

1 1.7 x 10'.6 .8 x 10-10 - .4 x 10-10

2 -1.0 x 10’8 -26.7 x 10'10 —3.0 x 10’10

3 5 9 x 10"6 -30.3 x 10‘10* —4.7 x 10’10

4 3.7 x 10'10 - 5.9 x 10'10 -1.9 x 10'10

5 1.2 x 10'5 22.0 x 10-10 3.7 x 10'10

6 -5.3 x 10‘8 23.9 x 10'10 6.2 x 10'10*

7 1.9 x 10-5* - 4.0 x 10—10 .8 x 10-10

8 -1.5 x 10‘10 - 1.5 x 10'10 —1.5 x 10"10

*greatest absolute error for the method

Example 8: Solve y'=-sin t. Y(0)=1. 053131 using the

trapezoid rule. We again take h=l and M=3 and compute

Solutions using extrapolation, Lindberg's method, and

IplllJLIxack interpolation. The results are given in Table 10-
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TABLE 10

Error in the best Error using Error using

i extrapolated value Lindberg '3 method pullback

0 0 0 0

1 1.02 x 10"5 178.36 x 10’10 9.46 x 10’10

2 - 4.22 x 10"8 37.54 x 10'10 6.33 x10-10

3 9.05 x 10"5 - 47.24 x 10"10 — 2.47 x 10'10

4 9.96 x 10'10 - 9.23 x 10’10 .37 x 10'10

5 24.62 x 10‘5 31.70 x 10-10 4.92 x 10‘10

6 —36.48 x 10‘8 - 63.15 x 10'10 —17.54 x 10"10

7 46.76 x 10‘5* -239.94 x 10‘10* -62.65 x 10‘10*

8 .96 x 10‘10 - .96 x 10'10 - .96 x 10'10

*greatest absolute error for the method

Comparing the results in Example 7 and Example 8,

we see that the solutions obtained with both Lindberg's

method and the pullback interpolation method,

mediate grid points

the best extrapolated values.

t.,

1

i=1, ...,7,

at the inter-

are more accurate than

The pullback interpolation

method is the most accurate of all, being almost a full

decimal place better than Lindberg's method at all inter-

mediate grid points.

As mentioned before, one drawback to Lindberg's

method is that his results at the midpoint of the interval

are no better, and in fact often worse, than the results
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obtained by just performing extrapolation. This phenomenon

does not occur when the pullback interpolation method is

used, as a comparison of the errors at t4 in Table 9 and

Table 10 clearly demonstrates.

Examining Table 10 we note that the pullback method

is dramatically less accurate at t7 than it is at all

other grid points. In an attempt to explain this behavior we

computed the following example.

Example 9: Solve y'=-sin(t), y(0)=l on Qgtgl/Z. The

only difference between this example and Example 8 is that we

now take h=l/2 as the basic stepsize. The results are

presented as

TABLE 1 1

Error in the best Error in Error in

i extrapolated value Lindberg's method pullback

O O O O

1 6.36 x 10‘7 71.71 x 10'12 3.89 x 10‘12

2 —6 62 x 10"10 15.02 10'12 2.55 x 10'12

3 5.71 x 10"6 —19.21 10'12 —1.15 x 10"12

4 -3.92 x 10"12 — 3.87 10"12 .03 x 10'12

5 1.58 x 10‘5 12.74 10"12 1.99 x 10'12

6 -5 89 x 10‘9 —25.85 10‘12 —7.54 x 10"12

7 3.07 x 10'5* —98.l4 10'12* -26.90 x 10’12*

8 —1.1 x 10‘13 .11 10"12 - 11 x 10"12

*greatest absolute error for the method
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Once again t7 is the least accurate solution for

all three methods. The only reasonable explanation which

suggests itself is that the solution (xx; t is changing

very rapidly (relative to its behavior on the rest of the

interval) between t7 and t8. This behavior is compen-

sated for by extrapolation at t8, but since no extrapolation

is done at t no correction is possible there.

7

From these examples it appears that pullback

 -_-
7
.
_
s

I

I
I

interpolation is quite sensitive to the accuracy to which

we know the solution at the intermediate grid points and

the type of equation we are solving. Thus it appears that

it is the error in the original data and not the error in

interpolation that is determining the overall accuracy of

the method.

We next examine what happens when we solve the same

equation on intervals [a,b], [b,c] and [c,d] using the

last computed solution as initial data for the next interval.

Example 10: Solve y'=y2, y(0)=l, 03tg3/2 ‘by computing

the solution on intervals of length L/2 and using the com-

puted solution at the endpoint of the previous interval as

the initial data for the equation on the next interval.

The method of solution on each interval will be the trapezoid

rule and pullback interpolation with M=3. The results are

presented as Table 12.
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TABLE 12

[0.1/2] [1/2.1] [1.3/2]

i Error i Error i Error

0 0 0 0 0 0

1 - 01 x 10’12 1 56 x 10‘12 1 1.13 x 10‘12

2 - 55 x 10‘12 2 -1 20 x 10'12 2 -4 39 x 10'12

3 - 74 x 10"12 3 -1 95 x 10"12 3 —6 93 x 10"12

4 .13 x 10"12 4 .27 x 10'12 4 - 64 x 10’12

5 1.59 x 10’12 5 4.19 x 10'12 5 11.24 x 10’12

6 2.21 x 10'12* 6 5.85 x 10‘12* 6 16.07 x 10'12*

7 94 x 10’12 7 2 39 x 10"12 7 5.04 x 10"12

8 56 x 10'12 8 1 13 x 10‘12 8 .84 x 10"12

*greatest absolute error

Some deterioration in the accuracy of the computed

solution for larger t can be observed in Table 12. This

can be partly attributed to an accumulation of roundoff

errors and partly to the sensitivity of the pullback method

to the accuracy of the data it receives.

If we compare the first two columns of errors in

Table 12 to the results given in Table 9, we see that in

terms of greatest absolute error it is better to take a

smaller basic steplength and solve the prOblem several times

in succession. However, we should point out that this can

be quite expensive computationally.
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Also, note that the largest absolute error always

occurs at the same relative position of the three grids,

namely at t6. This is further support for our contention

that the nature of the equation and the accuracy of the data

points used when interpolating are the factors which control

the overall accuracy of the pullback method.

In each example computed using the trapezoid rule the

largest error in the pullback method has occurred to the right

of the midpoint. This is no coincidence. The trapezoid rule

yields more accurate solutions at grid points nearer the init-

.ial point and consequently extrapolation will be more accurate

in the first half of the interval. Also, when we perform

Hermite interpolation we have an extra data point at the

initial grid point. All of these factors combined make it

reasonable to expect that the largest errors will be produced

to the right of the midpoint. Thus, a solution computed

using pullback interpolation should be most reliable in the

first half of the interval on which the solution is computed.

Note that the largest error in Lindberg's method

can occur in the first half of the interval, as an examination

of Table 9 reveals. This is due to the fact that it is the

error in interpolation which determines the overall accuracy

of Lindberg's method.

In summary, pullback interpolation coupled with the

trapezoid rule will yield highly accurate solutions at all
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grid points. In fact, if the solutions obtained with the

trapezoid rule and extrapolation are sufficiently accurate,

pullback interpolation will yield uniform accuracy at all

grid points.

Pullback interpolation coupled with Euler's rule

is not recommended as a viable solution technique. Euler's

rule is simply not accurate enough to enable pullback

interpolation to operate effectively.



CHAPTER II

TWO POINT BOUNDARY VALUE PROBLEMS

Section 1. The Problem and Its Discretization
 

In this chapter we will consider two point boundary

value problems of the form

x"(t)-f(t,x(t) ,x' (t)) = 0

(l)

x(a) = A, x(b) = B.

1

We assume that f(t,x,x') 6C [[a,b] x(-”.”) X(-”.”)].

f(t,y,z) is uniformly Lipschitz continuous in y and z,

0 < e < g;- and [€515;K where K is a constant. Under

these assumptions (see Keller [17]) problem (1) has a

unique solution which we will denote by 0(t).

The continuous problem (1) will be denoted by

(1') F(x) = 0.

The operator F(x) 2 x"(t) — f(t,x(t),x'(t)) maps the

Banach space of twice continuously differentiable functions

defined on [a,b] into C[a,b].

To obtain a discrete version of (1), let n;12 be

any natural number, define h=(b-a)/n and form the uniform

mesh [tk=a+ih}ril=O in [a,b]. The discrete problem is then

given by

77  
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X. -2X.+X. X. -X.

144. 5. l l _ f(t.,X., 1+1 1—1) _ 0, 1:1, ,n-l,

h 1 1 2h

(2)

X0 = A, Xn = B,

where we have introduced the notation Xi==X(ti). Problem

(2) may be thought of as a nonlinear system of equations in

En”l with the unknown being the vector (Xl'°"'Xn-1)T'

The solution to (2) will be denoted by X(h) and we

introduce the Operator notation

(2') Fh(X) = 0

for problem (2).

In order to set up the correspondence between the

continuous and discrete prOblems we will need to define a

space discretization Operator wh' Thus, let z(t) be an

arbitrary function defined on [a,b] and define ”h acting

on 2 by

mhz mh(2(t)) = (2(t1).....2(tn_1

E (21,...,zn_l

Note that mnz is the vector in En.l whose components

are obtained by evaluating 2 at the grid points.

Problem (1) and the discretization (2) have been

studied by Pereyra [24,27]. Stetter [31] and Pereyra [26,28]

ihave also studied the special case of (1) when x' is

not present in the equation.
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To formalize what is meant by convergence of the

discrete solution X(h) to the continuous solution 0(t)

we have the following definition (see Lambert [18] and

Pereyra [28]).

Definition 1: We shall say that the discrete solution X(h)
 

converges discretely to the theoretical solution 0(t) if

and only if

(3) iig\\x(h)—%m][(h) = o,

where “'“(h) is the maximum norm on En-l.

The subscript (h) will be omitted from the norms

throughout the remainder of this chapter. We should point

out that Pereyra in [27] utilizes a different norm than

the one we have used here. while in his earlier work [24] he

uses the maximum norm.

Typically, discrete convergence depends on the two

properties of consistency and stability of the discrete Operator

Eh in (2'). In formulating the definitions of these concepts

xMe have followed the approach of Pereyra [25.28].

Definition 2: The Operator Fh is said to be consistent of

<arder p:>0 if, for each solution 0(t) of (l) and for all

h_<_ ho we have

(4) [[13th n = 0011”) .
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Definition 3: The operator Fh is stable if for any pair
 

of discrete functions U and W and for all hfiho there

exists a constant CI>0, independent of h, such that

(5) \[U-WH _<_ 0]]Fh (U)-Fh (w) \\.

The standard result for discrete Operators, that

consistency and stability imply discrete convergence, is

valid here. This theorem, in the context of linear multistep

methods for ordinary differential equations, is originally

due to Dahlquist [8,9]. For completeness we present Pereyra's

statement of this result and briefly summarize his proof.

Lemma 1 (Pereyra [ ]): If Fh is stable then it is locally

invertible around mhm and the inverse mapping is locally

Lipschitz continuous for all hiiho:

Proof: Let Bh = B(mhm,p), be the Open ball of radius p

centered at whm, where p::0 is independent of h. If

U,W¢=B then stability implies that Fh is one—to-one

h

on Bh’ for otherwise we can violate (5). Therefore

thBh4Fh(Bh) is a bijection, implying that Fgl exists on

Fh(Bh). If X,Y€EFh(Bh) then we can write (5) as

\\F;11(X) 41:1 (Y) ]]_<_C]\X-Y]]. C]

Theorentld (Pereyra.[25 28]): Assume (1) has a unique solution
 

w and Ph is stable on Bh E 8(whm,p) for all hi3h0°
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Let Fh be consistent of order p with P. Then there

exists an h02>0 such that:

(a) thgfio there exists a unique solution X(h)

for the discrete problem Fh(X) = 0, and

(b) the solution satisfies

(6) “X(h)-whch = 0(hp).

Equation (6) can be summarized by saying the solutions are

(discretely) convergent of order p.

Proof: By Lemma 1, Fh is a homeomorphism between its domain

Eh and its range Rh 5 Fh(Bh) thgho. Brouwer s Invariance

of Domain Theorem implies Fh

onto the interior of- Rh and the boundary onto the boundary.

maps the interior of Bh

If v {—88 stability implies that g: []Fh(V)-Fh(whtp) Hh,

and therefore by letting V vary over 68 we see that
h

B(Fh(mhcp),%) ash.

Consistency implies “Fh(whw)“ = 0(hp) and therefore

“Fh(mh®)u * O as h"0- Thus, there exists h such that
oého

R ./ fl .

\\Fh(whcp)\\<c VhJSO and O€B(Fh(whcp). C). But Fh ls

one-to-one and onto and therefore there exists a unique

X(h) CB such that Fh(X(h)) = 0.
h

Stability implies that

“X(h)—when“ g C\\Fh(X(h))-Fh(uhcp) \\ = C]]Fh(whco) \] = 0(hp). [:1

Thus, in order to establish the discrete convergence

of the numerical solution to the theoretical solution it suffices
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to show the numerical method is both consistent and

stable.

The usual technique for proving that Eh is

consistent is to examine the local truncation error at each

grid point ti' The local truncation error Th(ti) is

obtained by applying F to the discretization of the theor-

  

h

etical solution and evaluating the result at ti' Formally

(7) _ _
_ m<ti+1) 24(ti)+w(ti_l) - f(t (t ) w(ti+1) w(ti_

‘ 2 i'cp i ' 2h
h

for i=1,...,n-l.

If we assume that f(t,y,z) has M total derivatives

with respect to t on [a,b], then by expanding Fh(wh®)(ti)

in a Taylor series about 0(ti) it can be shown that the

local truncation error ¢h(ti) satisfies

M

 

_ 2k 2 (2k+2) _ ,

(8) ¢h(ti) — F(c;>)]t + 23h [(2k+2): 4 (ti) 92k( ))

1 k—l

+ O(h2M+2),

where ti is any grid point in [a,b]. The functions

92k are obtained from

M 2k _ M. :1 3kf ,

(9) 23h 92k(°) ' 'ET' k }
k=1 k=l ' az t.,cp(t.).cp'(t.))

1 1 1

M 2j .
h (23+l) k

{jEi(2j+l): 9 (ti)] '

by rearranging the right hand side in powers of h.

)
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For instance ,

92“) = 3‘L fig] (ti,cp(ti).cp' (tin'pm‘ti’

and

94") = EL ‘65:] (ti,cp(ti).cp' (tin'pm (ti)

+ ~51- i-f- (343- cp”(ti))2.

az (ti,cp(ti).cp'(ti))

 

Because equations (8) and (9) are well-known we have

not given the details for constructing them. The reader

interested in more detail is referred to [27] or the work

in Section 2.1 of Chapter 3.

By observing that f(cp) :- 0, equaticn (8) implies

that fh(x) is consistent of order 2.

In the next section we establish the stability of the

finite difference operator Fh'
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Section 2. Stability

In this section we will investigate the stability

of the discrete scheme (2) . The fact that (2) is stable in

the uniform norm has been proven by Pereyra [24]. The proof

given by Pereyra uses the theory of monotone Operators and is

 

quite technical in nature. We present here a simple and I

direct proof of the fact that Fh is stable.

F

In what follows we will be considering vectors V a

which prOperly belong to En+l. However we will restrict

these vectors to the (n—l) - dimensional subspace consisting

of all vectors in Eml whose first and last components are

given by the boundary conditions in (2) . That is, all vec-

tors will have the form V = (A,Vl.....Vn_1.B)T. and we

will regard Fh as an Operator on V = (V1.....V _1) 6E

Let U and W be any two vector in E . For

2 S... i Sn-Z the ith component of Fh(U)-Fh(W) is given by

(10) [Fh(U)-Fh(W)]i

 

 

  

= h'2(Ui+l-2Ui+ui_l) — f(ti,Ui.Ui+£;Yi'l)

- h'2(wi+l-2wi+wi_l) + f(ti,wi,wi+£;Yi'l)

= h‘2[ (Ui+1'wi+1) ’2 (Ui'wi)+(Ui-1‘Wi—1)

_ [f(ti'Ui'Ui+12:Ji-l)_f(ti’wi'wi+12-:i-l)J
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Using the Mean Value Theorem for continuous functions

of? two variables (see Widder [33]) and regarding

  

  

V‘ -V° V. -V-

1+1 1—1 . 1+1 1-1

f(tii'vi' 2h ) as a function of Vi and 2h ,

we can obtain

U0 -U0 w. -Wa

1+1 1—1 1+1 1-1 I

 

= fy(ti,ai.fii)(Ui-wi)+fz(ti,ai,Bi)-

 
  

   

i:
(”i+1'Ui-1 _ Wi+1’Wi—1) I)

2h 2h

whe1:e3

1 = -( 2a) ai wi + 8i(Ui wi)

and

(121)) B _ wi+1'wi—1 + e (”i+1'Ui-1 _ Wi+1'Wi-1)

i ‘ 2h i 2h 2h

With 0/ 9 <1.

Substituting (11) into (10) we have

(13) [Fhun-Fhfln]i

= h"2 (U. -w 2
1-1 i-l )

)-2h'2(Ui—wi)+h' (U
i+1-Wi+l

1

' fy(ti'o'i'BiHUi‘WiH2h fz(ti’ai'Bi)(Ui-l-Wi-l)

—-:-L-f (t a BHU -W)2h 2 i' i' i i+1 i+1

h
h‘2[(1+-2—

fz(ti'ai'6i))(Ui-l-wi—l)
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2

h

+(1"2'fz(ti'0‘i'f5i”(”i+1’wi+1)]°

For i=1 and i=n-l we get similar expressions except the

terms multiplying (UO-WO) and (Un-Wh) are identically

zero in the respective equations because UO 5 W0 and

Un E Wn 'by our earlier convention.

If we write (13) for i=1,...,n-l as a matrix system

we obta in

(14) Fh(U)-Fh(W) = Mh(U.W)(U-W).

VVhere ”H1ULVW is an (n-l) x(n-l) matrix whose rows are

given by

[ (U W)] =h-2(-2-h2f (t O B ) 1----1| f (t on B ) 0 0)

M11' 1 yl'l'l' 221'1'1""°"

[Mh(U,W)]i-—h (0,...,0,l+2 fz(ti,ai,Bi), 2 h fy(ti,ai,Bi),

l-h-f (t a B ) O O)
2 z i' i' i ' ”"'

for i=2,...,n-2, and

'2(O,...,O,1+l‘- f
[Mh(U"m]n-l=h 2 z(tn-l'an-l'Bn-l)’

2
’Z-h fy(tn-l'an-1'Bn-l) ) I

With the nonzero entries for the ith row, 2_;i;;n-2, occuring

in the (i-1)st, ith and (i+l)st positions. The arguments

Qi and Bi are given by (12).
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Taking norms in (14) we have

\\Fh<u>-Fh<w> u = Wm (M) u .

Multiplying both sides of this equation by W, using

the linearity of Mh(U,W), and noting that

  

 

fl“ has norm one, we have for all U7=’W

[\Fh (u) -Fh (w) H \[Mh(U,W) (U—W) \\ !.

])U-WH = “II-W)] _

= “Mh(U,W)“%E¥““ El

2 inf (U,W) Z .

\\Z\\=1 “Mb \\

Thus, if “Mh (U,W) Z \] is bounded below by a constant C,

independent of h, for all vectors Z belonging to the

unit ball in En—l we can write

[\Fh (U)—Fh (w) ]] 2 c\\U-w\\.

which proves that Fh is stable.

To establish that ][Mh(U,W)Z[] is bounded below we

PrOceed as follows:

let h0 = 2/K and define

a . =

l r
o
|
:
3
‘

fz(ti.ai.Bi)

arua

b. =
1 fy(ti,ai.ffii)

for each i=1,...,n-1.
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For any h (ho, because of our hypotheses on fy and fz,

and Bi>e>0 for all i, l_<_ign-1.we see that [a1] <1

In this notation the matrix Mh(U,W) is given by

 

_ '2 2 .
[NLh(UIW)]l, - h (-2-h blll-alloooo-oo)o P

— -2 2 P. -

[M-h(UIw)]i. — h (OI-o-oool+aio’2‘h bi,1-ai,O,...,O) '

r7
for 2;i_<_n-2; and 1"

[ (U M] = h‘2(0 0 l+a -2-h2b ) J
Mh ' n-1- '°°°' ' n-1' n-1 °

Now let Z = (Zl"°"zn-1) be any unit vector

in En"1 with respect to the maximum norm on En-l. This

means that at least one component of Z has absolute value

one and no component of Z has absolute value larger than

one.

Suppose Z1 = 1, then the first component of

Mn (U,W)Z has absolute value

-2 2 -2 2
h ]-2-h b14(1-a1)zz];3h (\2+h bl\-\l-a1] ]z21)

:>h'2(2+h2b "2)Zz))
l

211-2(24-h2b1 -2)
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We have used the facts that b11>0. [a1\<:1 and \zz]:gl

in making the above estimates.

Similarly.1Lf Zn-l = 1 then the last component of

Mh(U,W)Z has absolute value larger than 6.

Suppose Zi = l where 2_<_i_<_n-2, then the ith

component of Mh(U,W)Z has absolute value

-2-h2b.+(l-a.)Z.
1 1

h—2](l+ai)zi_ 1+1)
1

-2 2
4,h (2+h bi-](1+ai)Zi_l+(l-ai)zi+l[)

\ -2 2

4-h (2+h bi‘()Zi—1+Zi+1)+)ai) )Zi—l‘zi+1‘))

h‘2(2+h2

\
,

I
V

bi’()Zi-1+Zi+1)+)Zi-1’Zi+1)))

h'2(2+h2

I
V bi-Z)

The next to last inequality is valid for the following reason.

Consider the expression

[0+B]-+]0-8] with \0]5;1, \B]g;l.

Squaring we obtain

(15) (0+8)2+2]02—82]+(0-8)2 = 202+282+2\02-821.

If a2 = 82 then this is trivially 3.4 so without loss of

generality we can assume 02 > 82. In this case equation (15)

becomes
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(]a+B]+]a-B])2 = 2a2+282+202-282 = 402 g_4.

Thus for any two real numbers a and B .with \a]5;l

and [B] :1 we have

[9831+ ]a—B] g 2.

Therefore, for any unit vector Z, some component

of DQIULVHZ has absolute value larger than c. This implies

that UMh(U,W)Z“Z>e and consequently

inf \‘1 (u w)z\\ \ e
uz\\=1‘”h ' 1- '

With this our proof of stability is complete. In

order to obtain the desired result we quite explicitly

assumed that 0<<e<iggu The formal hypothesis given by

Pereyra in [24] is that 0 g_%§u However, he implicitly

assumes that 35- is bounded away from zero in his proof

of stability. Thus our proof is as general as Pereyra's,

and considerably more elementary.

Since the Operator F is both consistent and stable
h

we can apply Theorem 1 to conclude that the discrete scheme

(2) has a unique solution, X(h), which converges discretely

to the theoretical solution, w(t), of problem (1).
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Section 3. The Numerical Method
 

In this section we will summarize the results of

Pereyra [24.27] and Stetter [31] concerning the global

discretization error for the method (2). Using the results

obtained by these authors we will develOp a pullback inter-

polation scheme for solving boundary value problems of the

form (1).

The global discretization error for the numerical

method (2) is defined to be

X (h) - mhcp.

Both Pereyra [24.27] and Stetter [31] have presented a general

theorem which, when applied to our problem, becomes

Theorem 2. (Pereyra, Stetter):
 

Let F and Fh have M+1 continuous Frechet deri-

vatives. Then for sufficiently small h the glObal dis-

cretization error satisfies

M

(16) X(h)-whet) = ZIhZRmhekun +0(h2M+2).
k:

The functions ek(t) are independent of h and satisfy the

linear two point boundary value problem

e];(t)-fz(t.cp(t) .cp' (t) )e];(t)—fy(t,cp(t) ,cp' (t) )ek(t) =bk(° ) ,

(17)

ek(a) = 0, ek(b) = O.

The functions bk depend on previous error functions
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. . . . /

e1,...,ek 1’ various derivatives of m, and various Frechet

derivatives of F.

We will prove an analogous theorem in Chapter 3 and

the reader interested in details can refer to either Section 2.3

of the next chapter or to the aforementioned papers.

To set up the numerical method, define stepsizes

b—a

 

hk = —k:1' for k=O,l,...,M and construct the uniform grids

2

k , ._ k+l -

Gk — [ti—a+1hk.1—0,l,...,2 ] c [a,b].

Using the numerical method (2), compute a solution vector

X(hk) on each grid Gk'

The computation of X(hk) for each k requires us

to solve a system of 2k+1—l equations. These equations

will be nonlinear whenever f is nonlinear in either x or

x'. In the nonlinear case we must use a root finding procedure

to solve the system (e.g. Newton's method). In the linear

case, the matrix is tridiagonal and can be easily solved using

an LU decomposition and back substitution (see Isaacson

and Keller [15]).

Once the solution vectors X(hk) for k=O,l,...,M

have been obtained, extrapolation can be performed to Obtain

gM+2) approximation to 0(t) at t==égéa This has

been studied by Pereyra. As was the case for initial value

an 0(h

problems, extrapolation at other grid points does not yield

comparable accuracy.
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The task of implementing a pullback interpolation

2M+2)

0

GM is simplified in this case. This is due to the fact that

from (17) we now have two pieces of information available

scheme for obtaining 0(h accuracy at all grid points of

to us concerning each of the error functions ek, namely,

ek(a) = ek(b) = 0. Recall that for initial value problems I.—

only one piece of information was readily available concerning

ek. Most of the effort involved in implementing pullback t

interpolation for initial value problems was expended in ;[
 

obtaining an approximation to efi at the initial point.

However, by using the boundary conditions ek(a) = 0 and

ek(b) = 0, we will have enough data points to enable Lagrange

interpolation to yield accuracy comparable to that of our data

(see the discussion in Section 5 of Chapter 1).

Thus a pullback interpolation scheme based on

Lagrange interpolation can be devised for solving boundary

value problems of the form (2).

b-a

At tw=—§—-Ea+ho we solve an (M+1) X(M+l) system

to obtain the solution vector (m(t),el(t),...,eM(t)) ‘with

2M+2
accuracy (0(h ), 0(th),...,0(hg)). Thus we know

0

eM(a) = eM(b) = 0 exactly and eM(a+hO) with accuracy

0(hg). Construct LM(s), the second degree Lagrange inter-

polating polynomial to the above data. Then

_ 2 3 . . . .
LM(s) — eM(s)4-o(ho)4-o(ho). The first 0. term is the

error in the initial data and the second is the error in

interpolation.
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Notice that we are using a sharper order estimate

for the error of interpolation than was utilized in Chapter 1.

It is well known that when performing interpolation on equally

spaced pointstflmzerror is of order a power of the stepsize

(see Isaacson and Keller [15]). However, in Chapter 1, when

interpolating on the three points a, a-tgy and a+h we

referred to the error as being 0(h3). Actually. this error

is 0((%)3)<;0(h3), so we were quite generous in our error

estimates.

In order to show that pullback interpolation for solving

2M+2

0

grid points of the finest grid, we must use the sharper

boundary value problems yields 0(h ) accuracy at all

estimate for the error in interpolation when interpolating

to e When interpolating to the other error functionsM.

we can again be 'generous' and interpret the error as being

in terms of hO which will be larger than all the other step-

sizes.

The details for constructing the pullback inter-

polation scheme for boundary value prOblems are nearly iden-

tical to those given in Chapter 1. The exceptions are

knowledge about e}; is replaced by ek(b) = O and we have

one more data point each time we interpolate. Therefore.

2M+2) accuracy atpullback interpolation will yield 0(h

all grid points of the finest grid when used in conjunction

with the numerical method (2) for solving two point boundary

value problems of the form (1).

 



CHAPTER III

THE NUMERICAL SOLUTION OF DIFFERENCE DIFFERENTIAL

EQUATIONS WITH CONSTANT RETARDATION

Section 1. First Order Equations

In this section we will be concerned with difference

differential equations of the form

(1) x(t) = f(t,x(t),x(t-r)), r>0, t>0.

Since r >0, (1) is an equation of retarded type. For

brevity, we will sometimes refer to (l) as a delay differ-

ential equation.

This equation and variants of it occur frequently in

mathematics. For instance, Lord Cherwell is credited by

Wright [34] for using the equation

x(t) = -ox(t-l)(l+x(t))

in the study of the application of probability methods to

the theory of asymptotic prime number densities. Cunningham

[ 7] uses a variant of this equation as a growth model to

describe a fluctuating pOpulation of organisms under certain

conditions. Cooke and Yorke [44] use a variant of (l) as

an economic model for the growth of capital stock.

Because of the presence of the delay term x(t—r)

in (1), it is necessary to know the solution at time t-r

to Obtain a solution at time t. Therefore to solve (l) on

the interval (0,r], it is necessary to specify the solution

95
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on [-r,0] by means of an initial function, 0(t). A

solution of (l) with initial value 0 is a continuous function

which agrees with w(t) for t E[—r,0] and satisfies (1)

for t;>0. The solution for tj>0 will also be denoted by

w(t). I

The usual method of obtaining the theoretical sol-

ution to (l) is called "the method of steps". A continuous

 
initial function m(t) is specified on [-r,0] and the

i]

initial value problem

int) f(t.X(t).CO(t-r))

(2)

x(O) 49(0). ogtgr

is solved. Denoting the solution to (2) by ¢(t), the process

is repeated on intervals of length r to obtain a solution,

m(t), defined on [-r,.).

In general, the solution 0(t) will have jump

discontinuities in various derivatives at the multiples of r,

zero included. In terms of smoothness of the solution,

the worst possible situation is that a jump discontinuity

will occur in the (k+l)st derivative of 0(t) at the pohit

kr for k=O,l,... . By adding conditions on 0(t) for

t.e[-r,0] these jump discontinuities can be avoided to

some extent. For instance, if we require that the left hand

derivative of w(t) at t=0, w'(0-), exists and satisfies
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$‘(0-) = f(0.X(0).w(-r)):

then the jump discontinuity at kr is in the (k+2)nd

derivative for k=O,l,... . By imposing similar conditions

on the initial function we can force the jump discontinuities

to occur at whatever derivative of the solution we desire.

For f to have n continuous total derivatives with

respect to t on (O,r] it is necessary that m(t) be n

times continuously differentiable on [—r,0]. In this case

the solution will be n+1 times continuously differentiable

on (O,r]. However» without the added conditions discussed

above on the left hand derivatives of 0(t) at t=0 there

will still be a discontinuity in the first and all higher

order derivatives of the solution at t=0.

Note that as we proceed to the right using the method

of steps to solve (l) we gain differentiability of the

solution provided we do not lose any differentiability of f.

That is, if f is n times continuously differentiable with

respect to each of its arguments on L—a,m) and the initial

function is n times continuously differentiable on [-r,0],

then the solution to (1) will be n+k times continuously

differentiable for t €((k-l)r,kr], k=l,2,...

In order to insure the existence of a unique solution,

0(t), to (1) which is continuous on [-r,W) we will make the

following assumptions (see Hale [13]):

 



98

(i) the initial function m(t) is continuous on [-r ,0];

(ii) f(t,u,v) is a continuous function of each of its

arguments:

(iii) f(t,u,v) satisfies uniform Lipschitz conditions

with respect to u and v.

Under these hypotheses we can also show that the sol-

ution to (1) depends continuously on the initial function

0(t) (see Hale [13]).

In order to obtain a numerical solution of (l) we

shall require more stringent conditions on f and the initial

function. These conditions will be stated as they become

necessary.

To solve (l) numerically, given an initial function

m(t) on [-r,0], define F(t,x(t)) s f(t,x(t),m(t—r)) and

numerically solve the initial value prOblem

x(t) F(t.X(t))

(3)

MO) 42(0). ogtgr.

To solve (3) numerically we select a basic stepsize

h in such a manner that r is an integer multiple of h:

i.e., r = Nh for some integer N:>O. The reason for this

restriction on h will become apparent later.
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As in Chapter 1 we define stepsizes hk = h/2k

. _ k_. .._ k
and grids Gk — [ti—lhk. i—O,l,...,2 ] for k=O,l,...,M.

We assume that the numerical method employed to solve (3)

is such that an asymptotic expansion of the form

k _ k M k jq (M+1)q

(4) X(ti'hk) — 428:1) + 3:31 ej(ti)hk +001k )

. . k k .

is valid at each ti for every hk. Here, X(ti'hk) is

the numerical solution to (3) at the grid point t: obtained

with stepsize hk and 0(tt) is the solution to (l) at t:.

The existence of an expansion (4) will, in general,

require the existence of (M+l)q continuous derivatives of

the solution w(t). This wil be assured if we assume that

f(t,u,v) has (M+l)q-l continuous derivatives with respect

to each of its arguments and that the initial function ¢(t)

is (M+1)q-l times continuously differentiable on [-r,0].

If the numerical method used to solve (3) is such that

q=1 or 2, then we can proceed as in Chapter 1 to obtain a

numerical solution X(t) which satisfies

X(t) = cp(t) + 0(‘h(M+l)q).

This relationship will be valid for all t belonging to the

finest grid, GM'

The presence of jump discontinuities in derivatives

of the solution at multiples of the delay r does not affect
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the applicability of the pullback interpolation method.

The reason for this is that the pullback interpolation method

employs derivatives that are computed using the differential

equation at the initial point. Since the differential

equation is valid only to the right of the initial point all .

derivatives considered in Chapter 1 are right hand derivatives l—J

at the initial point. If f(t,x(t),x(t-r)) has M total

derivatives with respect to t and ®(t) has M right —_45

 hand derivatives at t==—r, the solution of our delay differ— Li

ential equation will have M right hand derivatives at zero

and therefore at all other multiples of r also. These

derivatives can be computed by differentiating the differen-

tial equation in the same manner as was done in Chapter 1.

Repeating the solution procedure for the problem,

x(t) F(t,x(t))

X(h) XUU. hgtgzm

(M+1) q)

we can obtain an 0(h solution to (l) at the points

{h+ihM: i=0, 1, . . . , 2M] .

If we repeat the above procedure N times we will

have a computed solution, X(t), satisfying

(5) X(t) = wt) +O(h(M+l)q)

for all t such that
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t.€[jh+ihM:i=O,l,...,2M, j=0,1,...,N-l]=[ihM:i=O, ,...,N2M}

C [O,r].

Let's examine what happens when we now try to obtain

a solution to (l) on [r.2r]. Suppose t is any grid

point in [r,2r]; because GkCGM Vk, t can be represented

as t=r+ihM where 05;13;N2M. Since t.€[r,2r], t-r €[O,r]

and in order to solve (l) we must be able to evaluate

0(t-r). Using the above representation of t, we can write

M

t-r = r+ihM-r = ihM with O_<_igN2 . This is a grid point

in [O,r] and by (5) we have

(6) w(t-r) = x(ihM) + 0(h(M+l)q).

It is easy to see that there is a 1—1 correspon-

dence between grid points in [r,2r] and grid points in

[O,r]. This fact and equation (6) emphasize the importance

of the pullback method for obtaining numerical solutions to

difference differential equations. No numerical method is

any more accurate than the data it receives and the solution

of (l) on [r,2r] requires the solution on [O,r] as data.

The uniform accuracy guaranteed by (6) means that the entire

process used to obtain the solution on [O,r] can be repeated

to obtain a solution on [r,2r].

Because normal extrapolation without pullback

interpolation produces a solution whose accuracy varies

from grid point to grid point, it is not an effective pro-

cedure for this problem.

'
m
—
-
‘

.
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Extrapolation has been used to obtain solutions to

problems of the form (1). Feldstein [10] has developed

two algorithms based on Euler's rule that have (partial)

asymptotic expansions of the form

(7) X(t) = co(t) + e(t)h + 0(h2).

An expansion of the form (7) justifies the use of one

extrapolation.

Cooke and List [3 ] have develOped an algorithm

which they call the "modified Euler-Feldstein" algorithm

which can be used to solve delay equations with non-constant

retardation. They indicate that a sketch of a proof that

their method has an eXpansion of the form (7) has been

supplied by John Hutchison. However, neither the proof

nor its sketch is contained in [3 ].

When using the "Euler—Feldstein" or the "modified

Euler—Feldstein" algorithm the basic stepsize h is taken

to be quite small (usually r/l6 or smaller) and the

prOblem is solved on several grids with stepsizes h/2k.

Extrapolation is performed at all multiples of the basic

stepsize. The retarded term x(t-r) is obtained by using

the solution in the previous interval that was computed

using the same stepsize with which one is now working.

This procedure appears to work well in practice

but is computationally quite expensive since the basic
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stepsize is so small. Also, the existence of an eXpansion

of the form (7) is not sufficient justification for using

more than one extrapolation.

Of course, systems of delay equations can be solved

numerically by generalizing the above procedure in the I

obvious manner. A more interesting prOblem is the equation

x(t) = f(t,x(t),x(t-rl),x(t-r2), ...,x(t-rn)) .

 
where riZ>O is a rational number for i=1,...,n. The

same numerical procedure will work for this problem provided

the basic stepsize is chosen in a manner which insures that

the information required by the delayed terms is available.

Without loss of generality, assume the delays r. are
i

ordered : ogrlgr 2 g . . . . g rn. Let d be the least common

multiple of the denominators of the ri for i=1,...,n,

then with h=l/d this equation may be solved in the same

manner as (1). This choice of the basic stepsize insures

that each ri will be an integer multiple of the smallest

stepsize employed and therefore t-ri will be a grid point

at which the solution is known Vi whenever t itself is

a grid point.

We close this section with two numerical examples.

Example 1: Solve x(t) = —x(t-l), 05;t5;3, numer-

ically for the initial function m(t) = t2 on [-1,0].
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Here, the delay is r=l and the theoretical solution is

 

 

  

given by

r 3
-Lt-l3) -1 ogtgl

(t-2)4+4t-9
mu)=< 12 igtgz

-(t-3)5-10t2+65t-96 , /

k 60 Zet\3

Note that 0(t) is given by a polynomial on each subinterval.

To compute a numerical solution on [0,3], we first

solve the equation numerically on [0.1] using the trape-

zoid rule, extrapolation and pullback interpolation with

Ms3. The finest grid G contains nine equally spaced
3

points in [0,1]. Denote the computed solution at these

nine points by Xl(t). Using X1(t) as the (discrete)

initial function we next solve the same equation on [1,2]

in the same manner to Obtain X2(t). This procedure is

repeated a third time to obtain X3(t) on [2,3].

The computations of ei(t), eé(t) and eé(t) at

the initial points 0,1 and 2 are greatly simplified

for this problem. One factor contributing to this simpli-

fication is that the Jacobian J(t). is identically zero.

The second factor is that all derivatives of the solution

m(t) at the points 0,1 and 2 can be eXpressed in terms

of the derivatives of the initial function cp(t)=t2 at
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=-1 and the computed solution at smaller multiples of

r=l. In fact, by noting that for any k=O,l,2,... and for

any j.>k we have x(j)(kr) = x(j-1)((k-l)r) it is easily

seen that x(3)(kr) = x(J-k-1)(-r). While, if jjgk, then

x(j)(kr) = x((k-j)r).

The numerical results are presented as Table L3. The

error given is the computed solution minus the theoretical

solution. Each column of Table L3presents the errors at

 

t t . . t contained

0' 1’ ' ’ 8

in the interval indicated by the heading of the column.

the nine equally spaced grid points

TABLE 13

i Error on [0,1] Error on [1.2] Error on [2.3]

0 0.0 0.0 x 10"13 -1.5 x 10'13

1 0.0 x 10'13 - .3 X 10"13 0.0 x 10"13

2 0.0 x 10'13 - .4 x 10'13 .2 x 10"13

3 0.0 x 10"13 - .5 x 10"13 .3 x 10"13

4 0.0 x 10’13 - .6 x 10'13 .4 x 10"13

5 0.0 x 10"13 - .8 x 10"13 .5 x 10'13

6 ' 0.0 x 10‘13 -1.0 x 10"13 .6 x 10"13

7 0.0 x 10'13 —1.3 x 10'13 .7 x 10"13

8 0.0 x 10'13 -1.5 x 10"13 .8 x 10'“13

due to the limitations of machine accuracy and the particular

The errors reported in Table L3are almost entirely
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routine used to compute the Hermite interpolating polynomials.

Only the first twelve digits can be absolutely guaranteed

to be accurate and to twelve decimal places all errors are

zero: This is not particularly surprising, since the trape-

zoid rule and extrapolation yield extremely good results I

when the theoretical solution is a polynomial, as it is in —1

this case.

 Example 2: Solve x(t) = -x(t-l), 05;t§;3 numerically for ;i

the initial function 0(t) = et on [—l,O]. The differen-

tial equation is the same as that in Example 1. The theor-

etical solution for this initial function is given by

 

{-e(t"1)+1+e":L 0_<_t-_<_1

wt) = ( e‘t'2)-(l+e‘l) (t-l) 1_<_tg_2

(t—3) -1 t2 -1
k—e +(l+e )T-2(1+e )(t-l) 2_<_t_<_3

In this case the solutions are not polynomials.

The same numerical method was used to compute the

solution as was used in Example 1. The results are presented

as Table 14.
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TABLE 14

1 Error on [0,1] Error on [1,2] Error on [2,3]

0 0.0 -1.2 x 10‘10 - 7 2 x 10"10

1 -5.3 x 10"10 4.5 x 10’10 -12 8 x 10'10

2 -3.2 x 10-10 3.0 x 10’10 -11 2 x 10'10

3 2.3 x 10’10 -2.6 x 10"10 - 5 6 x 10"10

4 .7 x 10"10 -1.2 x 10 1° - 7 0 x 10 10

5 -2.4 x 10"10 2.1 x 10"10 -10.2 x 10"10

6 12.0 x 10"10 —12.7 x 10'10 4.7 x 10"10

7 42.4 x 10—10 -46.7 x 10 10 38 9 x 10"10

8 —1.2 x 10‘10 - 7.2 x 10'10 .3 x 10"10

Since the theoretical solution is not a polynomial,

the computed solution is not as accurate as the computed

solution in Example 1. However, we do Obtain eight reliable

decimal places at all grid points, which is comparable to

the accuracy that extrapolation yields at the endpoints

1, 2 and 3.

Also, it should be noted how stable the numerical

results are. There is very little deterioration in the

accuracy of the computed solution as we move to the right.

Thus, extrapolation and pullback interpolation appears to

be a viable solution technique for first order delay equations.
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Section 2. Second Order Equations

For the remainder of this chapter we will be working

with the second order difference differential equation of

retarded type

(8) x(t) + f(t,x(t),x(t-r), x(t),x(t-r)) = 0. r50. t>0.

By writing (8) as a system of two first order equations

and imposing conditions (i), (ii) and (iii) of Section 1

or the more general conditions of Sansone [30] on this system

we can insure the existence of a unique solution to (8) which

depends continuously on the initial data (see Hale [13] and

Norkin [23]).

In either case, f is assumed to be a continuous

function of its arguments. For our purposes it is enough to

assume the existence of a unique solution to (8) for tI>O

whenever we are given a continuously differentiable function

m(t) on [-r,O].

To solve (8) theoretically, the method of steps can

again be used. The analysis of the behavior of the solution

to (8) is completely analogous to that given for first order

equations in Section 1 of this chapter. Accordingly, we will

not go into this in detail. When specific aspects of the

theoretical solution become important they will be mentioned.

If (8) is written as a system we can of course use

the method discussed in Section 1 to solve this system.

 

“
u
s
e
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The rest of this chapter will be devoted to an investigation

of a direct method for solving (8) which does not involve

reducing it to a system of first order equations.

 

We introduce the notation I

3-.—‘1!

(8') F(x) = O

for the continuous Operator defined by (8) and we will refer .5

to (8) as the continuous problem. ;[

For ease in referring to partial derivatives we will

refer to equation (8) as

x(t) + f(t,u,v,y,z) = O.

In setting up a discrete analog of (8) we actually

get two slightly different problems; one when we are trying

to obtain the solution on [O,r] and the second when we seek

a solution on an interval of the form [(L—l)r,Lr] with

L:>l. The version of the problem for the interval [O,r]

is a special case of the version for the general interval

[(L-1)r,Lr] and will be explained in the subsection on

implementing the algorithm (see section 2.4). Thus until

further notice we will concern ourselves with the discrete

analog of (8) on the interval [(L-l)r,Lr] with L:>l.

Let R2>l be any given natural number and define

. _ . R
h — r/R. Form the uniform mesh [ti-(L-l)r+ih]i=_(R+1).
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We assume the solution has already been obtained at the

grid points ti for '=-(R+l),-R,...,O and we denote this

solution by w(ti).

Setting Xi = X(ti). the discrete problem corresponding

to (8) is given by

 
 

Xi+1“2Xi+Xi-1 +f(t x x Xi+1’Xi-1 Xi+1-R‘Xi—1-R) _ 0

h2 i' i' i-R' 2h ' 2h ‘ '

(9)
i=0,1,...,R-17

X . = t .), '=O,l,...,R+1._3 w( _3 J

The discrete problem (9) will be denoted by

(9 ) Fh(X) = 0.

Since )g_. is known for j=O,...,R+l, this may be thought

of as a (in general) nonlinear system of equations in ER

with the unknown being the vector (X1,...,XR)T. The solution

to (9) will be denoted by X(h).

Since each equation in (9) taken in the order

i=O,l,...,R-l introduces only one unknown, we can solve the

system uniquely by forward substitution. In general, the non-

linear nature of f will necessitate the use of a root finding

procedure (e.g. Newton's method) to solve each equation.

We will adopt the same space discretization operator

wh that was utilized in Chapter 2. That is, for any

continuous function z(t) on [—r.”)
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T

(2(t1).....2(tR))

:
5 N A I
: II

)T.(21,...,zR

We will continue to use the definitions of discrete

convergence, consistency and stability (definitions 1, 2

 

and 3 respectively) that were adOpted in Section 1 of fl_

Chapter 2.

The proofs of Lemma 1 and Theorem 1 in Section 1 :3”!

 
of Chapter 2 are valid in this setting. In fact, Pereyra

mentions in [28] that these results are not truly tied up

to the two—point boundary value problem.

In order to establish the existence and discrete

convergence of a unique solution X(h) to (9) we will

again show that (9) is consistent and stable.

In order to prove that Fh is stable we have to make

some restrictive assumptions about the equation (8). These

assumptions are necessary for our proof of stability to be

valid. However, we believe that F is stable for a much
h

larger class of functions f(t,u,v,y,z) than what we are

able to establish.
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Section 2.1. Consistengy,
 

Let 0(t) denote the theoretical solution to the

continuous prOblem, (8). If we apply the operator Fh

defined by (9) to the discretization of cp(t) we obtain

what is known as the local truncation error, T

  

 

h u.

Formally
q._J

Th(ti) E Fhmhw) (ti)

9(t. )-zw(t.)+w(t. ) . ’1
= 1+1 1 1-1 ‘3

cp(ti+1)""’(ti--1) m(ti+l-R)-m(ti—l-R))

2h ’ 2h

where ti is any grid point i=1,...,R.

If Th(ti) = 0(hp) Vi then we obviously have

that our method is consistent of order p. Instead of

investigating (10) directly we let x(t) be any sufficiently

differentiable function and investigate Fh(“h¥)(ti)' If

we make the "localizing" assumption that no previous

truncation errors have been made, we may use Taylor's Theorem

repeatedly to obtain an asymptotic expansion for

Fh(mhx) (ti) .

Let ti be any grid point, i=1,...,R. If

x(t) has Ml+2 derivatives at ti we can write

2

(11) x(ti+1) = x(ti)+hx'(ti)-+%Tx"(ti)

M +1

1 j . M+2

+2 l'1.---.-x(3)(t.)+c}(h l )
j=3 j. i



113

 

 

and

1 hz( 2) X(ti-l) = x(ti)—hx (ti) +-2—:-x"(ti)

M +1 . .

l _ j j . M +2

+ Z) _L_1.l'__11_ x(j) (t.)+0(h 1 ).
._ j. 1
3—3

Using (11) and (12) we have

(13) x(ti+l)-2x(ti)+x(ti_l)

2

11 M

[71’] 2k 2[¥l]+2

=h”[hx"(t.HZ gT<-,-x(2k)(t.)+o(h 2 ))
. i

k=2

K 2k-2

= x"(t. )+2 2255-" (2") (t. )+G(h2K

k=2 '

M1
where [-] is the greatest integer function and K = [3?].

Expanding f(°,',°,y,°) in a Taylor series about

x(t. )-x(t. )

X'(ti) where y = 1+12h 1-1 we obtain

(14) f(‘p'o'pYo°) = f(‘l'1'1X'(ti)l°)+fy(°I°I'oX'(ti)l')(Y-x.(ti))

 

(y—x'(ti))2

+fyy(°’°'°’x'(ti)'°)
2:

M2 j .

+Z___a.—f
(y-x'(ti))]

J- J u
j=3 BY [(‘I'I'IX (ti-)0.)

M2+l

+O[(Y-X'(ti)) ]o

'where M2+l is the number of partial derivatives of

f(t,u,v,y,z) with respect to y which exist.

[
_
fl
fl
l
'

 

W
;
_
_
‘
“
“
“
‘
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Using (11), (12) and the definition of y, we obtain

K h2j+l

1
= 2h[2hX' (t.1)+2jE£ 723:1TT(ti )+O(h

(15) y-x'(ti) — 2h {x(tfl

2K+1 .

M} (ti)

K 2j
2 h

j=1 (2j+l):

x(2j+l)(ti)+o(h2K).

Substituting (15) in (14), we have

f(".'.'Y'.) = f(‘o'0'0X.(ti)o')+fy(°r°o'IX.(ti)I').

K 21 -h (23+1) 2K

[1:31 (2‘j+1")': X (tiHMh H

K 23'
+%_f (°,°,°,X'(ti)p°)[ Z (2?+1):X

(21+1)
(t. )+0(h

yy j=1 1 '

2

+21—1—5f 1.

. .l.IX'(ti)l.)

(2j+1) 2k)}k

(ti)+0(h

2j . M +1

K 2j . M +1
h 2K 2

BUt ”({jE] (2j+1): X )1 )

M +1

0( 0(h2)+0(h2K) } 2 } = 04h ), and for any i=1,...,M2.

we have, from the binomial theorem,

 

2K)]2
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K 2j 0 K 2j o

h (23+1) 2K 2 _ h (23+1) z

{jEi (2jt1): x (tiHMh )} ‘ (jEQ (2j+1): X (ti))

+0(h2K) .

Consequently we can write

(16) f(.’.'.,y'.) = f(.,.,.,x'(ti),.)+fy(.,.,.,x'(ti),.) -

K 2j .
h (23+1)

jg: (2j+1): x (ti)

M k

k:

k=2 BY (°'°'.'X'(ti)l.)

N

K 2j
Z: h (2j+1) k

[j=1(2j+1): x (ti)}

2M2+2

+0(h ) + 0(h2K) .

Next, expand f(.,.,.,x'(ti).z) and its partial derivatives

with respect to y as functions of z in Taylor series about

x' (ti-r) and then set 2 = 1+1-R 2h l-l—R to obtain

(17) f(‘o'I'IX'(ti)Iz) = f(‘l’r .IX'(ti)IX'(ti-r))

+ fz('a '1 .IX' (ti)oX' (ti-1.)) (z-X. (ti-r))

M

 

3 L

+ 21.17: 5
i=2 ' 02 (-,-,-,x'(ti),x'(ti-r))

(z-x'(ti-r))‘

M3+1

+O([z-x'(ti-r)] ).
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In the same manner, for m=l,...,M2, we can obtain

m emf
(18) = m

Oy ('o’p'ax.(ti)oz) BY ('I'o°oX'(ti)IX.(ti-r))

 

am+lf

+ m
(z-X'(ti-r))

BzBY [(4 w n XTti).X'(ti-r))

M

3 1 am+£f

' 1

+52 7::- azlaym‘(.,.'.,xu(ti)'xn(ti_r))(z-X (ti-r))

M3+l

+G([z-x'(ti-r)]
);

where M3+1 is the number of partial derivatives of f(t,u,v,y,z)

with respect to 2 which exist.

Since ti-r E ti-R' an expansion similar to (15)

 

O

is valid for z-x'(ti-r). Introducing the notation gyf

for the function f we can, in direct analog to (16), rewrite

(l7) and (18) as

m

a f amt
(19) — I = —__ u I

aym ('I'I°IX (ti)lz) Oym ('o'o°ox (ti)'x (ti-r))

M

3 m+£

+ Z){i%.ilisl%] 1°

b=l ‘ 62 By (°,-,-,x'(ti),x'(ti-r))

K 2j .
h (23+l) z

{3.31 72—3757 X (ti-r”

2M +2

+001 3 ) + 0(h2K).

for m=O,1,...,M2.
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Combining equations (16) and (19), we have

f(',',°,Y,Z) = f(-,-,-,x'(ti),x'(ti-r))

M l. K 2
 

 

 
 

 

3 j .
1 a f - h (21+l) z

23 --.- { —---—rx (t.—r))

L11 1” 02‘ ('I'l'lx.(ti)lx.(ti-r))j=l(23+l). 1 1

2M +2

0(h 3 > + 0(h2K) 1

K 23 . I :5f
h (23+1)

fi('l'o'lx'(ti)lx'(ti-r))j§1(2j+l): X (ti) ‘3!

M3 1 1+1.

( Z:[7F'0 f 1'

”=1 az‘ay ( .-.-.x-(ti>.x'(ti-r>)

K 2j . K 2j -
h (23+l) _ L . h (23+l)

[E3 (2j+1): X (ti r” 7 Z: (2j+1): X (ti)
3-1 j—l

2M +4

0(h 3 ) + 001””)

M M

2: lug i akuf -. [ . ]

k=2 1" L20 ‘° 1 X]
Oz BY (.I.I.IX'(ti)IX'(ti-r))

K 2j . K 2j .
h (23+l) L h (23+l) k

[‘13 - .X (t.-r)])'(Z————-X (12.)) }

j=lz23+1)' 1 j=l(2k+l): 1

2M +2 2M +2

0(h 2 ) + 0(h 2 ) + 0(h2K).

Combining equations (13) and (20), and evaluating

all derivatives at (ti,x(ti). x(ti-r),x'(ti),x'(ti—r)) we

can write Fh(uhx)(ti) as
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X(t )- 2 (ti )+x(t.

 

 
 

 

Fh(mhx)(ti) a “1 hz “’1 +f(t. xi(t ) x(ti_R)

X(ti+1)‘X(ti—i) X(ti+1-R) X(ti-1-R))

2h ' 2h

2k-2

= x"(ti)+21:82};---2--———k).x(‘7‘}‘)(ti)+c3(112K

+ f(tilx(ti)ox(ti‘r)IX'(ti)oX'(ti-r))

M

3 L 2] .
;L_§_£ h (23+1) _ L

+ 1:31 L: 321 (321 (2j+1)’ (ti X”

M M3 .

2 k+ L 23 .
l 0f h (23+l)

+ Z —.-{[ Z -——-(Z . .x (t.-r))]

k=1 k' [=0 azi'ayk j=1 (23+1)

K 2j
h (23+1)

[:13 (2j+1)’ (t H )
j—l

2M +2 2M +2

+ 0(h 2 ) +0(h 3 ) +0<h2K

Define M = min(K-1,M2,M3); then, reindexing, we have

2k-2

(21) Fh(th) (ti) = 19(th )+23212—157"x‘ZX’ (ti)

M L M 2j
J. a f h (23+1) L

+ Z —T— (Z ' I X (t 17))

L=1 L 62L :1 (23+1) i

M M k+L M 21'
l 0 f h (23+1) L

+z—.—{[2 (23 . . (t rHJk=1 k [:0 azLayk j 1 (234-1

M 2j .
h (23+l) k

[151W X (tl)] }
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If we regroup (21) in powers of h we obtain

M O

I _ 2] (’) 2M+2

(21 ) Fh(whx) (ti) — F(x) (ti)+j_2;3l gzj x,ti+0(h ) I

where the arguments of the functions gzj(-) involve various

derivatives of x evaluated at ti and ti-r, and various

partial derivatives of f(t,u,v,y,z) with respect to y

and/or 2 evaluated at (ti,x(ti-r),x'(ti),x'(ti—r)). For

instance

 

92") = 113x”) (ti) +33:— X(B) (ti-r) +3.5. X(3) (ti))

and

2

g4(°) = 'é'ZTX(6) (ti) +31..— 1 2 5; (X(3)(ti-r
))2

° ° (3:) 82

To obtain the local truncation error for the discrete

prOblem (9), by (10) we need only take x(t) to be the

theoretical solution m(t) of problem (8) and use either

equation (21) or (21'). Thus,

M .
_ 2] . 2M+2

(22) Th(ti) — F(Cp) (ti) +j§lh 92j( ) cp,t.+0(h )

from equation (21').

To establish the consistency of our discrete Operator

we need only note that F(w) E 0. Consequently
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th(ti) = 0(h2) for every grid point ti, i=1,...,R.

our discrete Operator is consistent of order 2.

Thus
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Section 2.2. Stability
  

In this section we investigate the stability of the

discrete scheme (9). The first part of the analysis is done

 for the general method and is analogous to the work done in

Section 2 of Chapter 2.

3‘2

In investigating the stability of the discrete

problem (9), it is convenient to view Fh as a function .

from ER to ER. The domain of Fh will consist of vectors 5] “a

_ T R
V — (V1,...,VR) (SE . Of course, Fh

the initial conditions

 
continues to have

v_j = o(t_j), j=O,l,...,R+1.

When considering the jth component of Fh(V) we will

suppress the (constant) first, third, and fifth arguments of

f(t,u,v,y,z) and write

 f(t V V 31:51.2. Vj-R-Vj-z-R)

j-l' j-l' j-l-R' 2h ' 2h

v.-v._2

= f('rv' I'I _J___J____’ ')

j-l 2h

Note that the jth component of Fh(V) is obtained from the

(j-l)st equation in (9) for j=l,...,R.

Let U,W ‘be any two vectors in ER with Uaiw.

l”

The cases j=1 and j=2 are considered individually

h
later. For 3gj=_<_R the jt component of Fh(U)-Fh(W) is
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given by

(23) [Fh(Y)-Fh(W)]j

= h-2(U -2U +U )+f(- U - 21:31:; -)j_2 j_l j I j_lI I 2h I

_h-2 (w -2W +w )+f ( , w , Yfli .)
j_2 j-1 j I j_lI I 2h I

_ -2
— h [(U. -W._2)-2(Uj_1-Wj_l)+(Uj-Wj)]

 

3-2 J

U.—U._2 w.—w._2

+f(°IUj_lI°I 2h I.)-f(.le_ll.l 2h I.)°

Proceeding as in Chapter 2, we use the Mean Value

Theorem for continuous functions of two variables (Widder [33])

to obtain

(24) f(.yu_ ";L_j:g..)_f(.fiq. . _j__i:Z .)
J-l’ 2h I 3.1! I 2h I

= fu( Iajl IBjI ')(Uj_1-WJ_1)

+f ( a , B ,)(Eifli_Zj_—XJ:£)

y ' j' ’ 3’ 2h 2h '

where

25 . = w. + . U. —W( a) a] 3-1 83( 3_1 _1)

and

W.-W._-2 U.-U._2 W.-W._2

(25b) 6 = _J__J_+ 9.(_J___L.___.J_.J—)'

3 2h. 3 2h 2h

Substituting (24) into (23) we have for

nggn
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(26) [15h (U)—Fh (w) ]j

= h—2

1 1
+ f ( Ia'l 06°: )(Uj-Wj) _2th(.'O’j'.'Bj'°

)'

(Uj_2-Wj_2)

2h

ha h“2[ (1--2-fy(-.a '°'Bj’ '” (”j-2‘Wj-2)J'

)+ (‘2+h2fu(' Iajl 'fijl ' )) (Uj_1-w
j-l

h
+ (1 +§fy(-,a ..8j. .)) (Uj-Wj)].

1'

For j=1 and 2 we can reason in the same manner

to obtain

(27) [icm—Fhm 11 h’2 (1 +§fy(o.a1.-.81..)) (Ul-Wl)

and

-2 2
(28) [Fh(U)-Fh(W)]2 h [(-2+h fu(-,02,-,f32,-)(U1-Wl)

h

+(1 +§fy(.0a2I 'IBZI ’) (UZ‘W2)].

The functions 01,81,02, and 62 are given by

(29a) 91 = ”(to) 5 WC.

W -W U -W

_ 1 -1 1 1

(30a) (12 = Wl + 92 (Ul—Wl).
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and

W -W U -W

_ 2 0 2 2

with O< 81<l and O<Bz<l.

Writing (26), (27) and (28) as a matrix system we

Obtain

(31) Fh(U) - Fh(W) = Mh(U.W) (U-W)

 

where Mh(U,W) is an R.xR matrix whose rows are given by:

[Mh(U.W) ]1. =h'2(1 +3§fy(-.01.-Bl.-),0,0,...,0);

(32) [M}1(UIW) ]2. =h-2 (-2+h2fu(°Ia2I 'BZI ') I1 +-}zlfy(.la20 .le ’)I

_ -2 .9 , , ,
[%(U'W) ]j. h (0' O 0 0,0,1 2fY( 'aj’ Bj' )'

2 h

"2+h fu( Iajl IBjI')I1+2fy('IajI°IBjI‘)I

O,ooo,0)

for 3gj_<_R:

with the non-zero entries for j_23 occurring in the (j-2)nd,

(j-l)st and jth positions. The arguments aj and Bj for

j=l,...,R are given by the apprOpriate equation (25). (29)

or (30). Note that since R = r/h the dimensionality of

Mh(U,W) depends on h.
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Since Mh(U,W) is not diagonally dominant, as it

was forboundary value problems, we are not able to prove

directly that Mh(U,W) is bounded below. However, we do

have the following equivalent formulation of the concept of

 stability. "I

Suppose Mh(U,W) has an inverse Mil(U,W) that is

bounded above in norm, independent of h. Then we can write y

(3]J as 9] ‘fi

U-w = Mgl (U,W) (Fhun -Fh(W) >.

 

Taking norms and using the fact that the norm of a product

is less than or equal to the product of the norms, we have

“U-W“ S \WIWM) \) \\Fh(U)-Fh(W) \\ S C\\Fh(U)-Fh(W) \\  
where C is the bound on “MQI(U,W)“. This inequality is

precisely the definition of stability given in Section 1 of

Chapter 2.

The norm inequality we have used is valid as long as

we use the matrix norm induced by our vector norm. Since we

are working with the maximum vector norm on ER. the induced

matrix norm is the maximum absolute row sum (see Isaacson and

Keller [15]).

We are also unable to prove directly that

“M;1(U,W)“ is uniformly bounded above. However, we are able

to establish this fact with some additional hypotheses on f.
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For notational convenience we will assume that r=l.

This is a rescaling of the delay interval and has no effect

on any of our results. We will also write the dimensionality

of the matrix system (34) as n ER=l/h.

The special case for which we will prove stability F1

is given by the following assumptions:

 
ii = ...;

By ‘ 0' +.

(33)

.

—2 < -K<-§-—E<—O<O,

where 0 (EC are positive constants.

Write bi = fu(°”1i'°'Bi'°)' Then the assumptions

(33) imply that bi is negative for all i: in fact,

(34) —K < bi < -0.

Rewriting the matrix Mh a Mh(U,W) given in (32)

in terms of bi and n and imposing the assumptions (33),

we obtain
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”- 1 . o . o , o . 07

b2

-2 +7, 1 I O I O p o

n

b3

]- I "’2 +-—_l ]- I O I

2

n

_ 2 b

M'h-n O I l I ‘2 +—'4-I l I

2

n

l, ’2 + 2‘1, 1! O

n

bn

b O O, 1' -2 +7; 1 o

n .J

Define

. -_1_ .
O I 4! O I O o O

-l

O , 0 , Z, O

1 -1 °
Sh- 2 O I O I O I Z

n

° 0

-1
O I O I z

n n-1 n-2 n-3 2 l

L_4n‘2 4n2 4n 4:12 4n2 4n2j  



 

 

then

r -1---—b‘°‘2 4n2

-_1.
4

O

Sth =

O

‘ 4n4

write

(35) Sth =

with

F1 b2

3*“?
4n

1_ .

4

Th = O I

—(n--l)b2

. 4n4

where I is the

h
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z I O ‘ ‘ O .

L331. -l
2 4n2 4 .

-l ° _1_-_.b_n_
4 2 4n2

n- b

( 2) 3 . 2bn-l bn

4n4 4n4 4n4 '

.. Th

1

Z I O o o o o o o

1.33.. l
2 4n2 4

. l l+iri .
( 2 b 4 2 4n2

n- ) 3 -2b -1 -bn 1

4 p o
I _—_'

-

4n 4n4 4114

n xn identity matrix.

I

b
u
d

O

"
l

5
0
‘

A
)
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Because of (34), for n sufficiently large (h

sufficiently small) we have

 

  0 i’“ 1 6'33
4n 4n

for i=2,...,n. Therefore the first through (n-l)st rows

of Th all have absolute row sum less than l--2:-.

4n

All entries of the last row of T are positive,
h

so the absolute row sum of the nth row is

-l
1 1 n

1--—-———-—— Zib .

4n2 4n i=1 “+1'1

n-l

l l

=l———+-—-—Zi\b .\
4n2 4n4 i=1 n+1-1

n-l

_<_l--l§+'—lZ'K Zi

4n 4n i=1

=1____]_.§_+Knn:ll).

4n 8n

Let 6 = 2-KZ>O, then

4n 8n 8n

>—l-2-(2-K)

8n

=_§._

8n2

Therefore,

n-l

1 1 - 1 Kala-ii
1--2--—-z>?lbn+1-i.<.1- --2-- 2

4n 4n i=1 4n 8n

6
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Thus,

5
\T H _<_ max (l--g-—, 1—-—-)

\ b 4n2 8n2

= 1.. 
- 6

min (O,-0.

4n2 2

Consequently, for all n “Th“ < 1. This implies

by a well known theorem in linear algebra (see Varga [32]

or Isaacson and Keller [15]) that (Ih"Th)-1 exists and

moreover

(36) (I -T)-1 < 1 .
)) h h “_m

Sh is easily seen to be invertible by observing that

it is row equivalent to Ih' Therefore Mh must be nonsingular

and from (35) we have

-1 _ -l
(37) “11 — (Ih-Th) Sh'

Taking norms in (37) and using the norm inequality

(36), we can write

(38) \uw;1\\_<_ “uh-Thrlu - ushu

ushu

1- Th

 

. 1 . 5
Since “Th“-S 1--4n2 min (0,3), we have

1 .. “Th“ 2 1 _ (1 - if, min (0.31))

 

min (0,59) .

4n

.1.
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But

n
1 l .

[\S H = max —. --- 21)

b 4n2 4n4 i=1

= max ( l 1 njn+l))

4n2 4n4 2

= -l’- max (1, 95%)

4n

= __1_

4n2

Finally, using the above estimates in (38), we have

1

"‘2'
-1 4n

HM}. H _<_ 1 , 5 = —L3-.
7111111 (0:3) min(0,2)

4n

Since this is independent of n, and therefore of h, we can

conclude that “MRI“ g_C: where C is a finite constant

independent of h.

Thus F is stable and Theorem 1 of Chapter 2 allows
h

us to conclude that (9) has a unique solution X(h) which

converges discretely to w(t).

Clearly, the assumptions (33) are required by our

method of proof. We believe that there is nothing inherent

to the Operator Fh

but at this time we are unable to construct one.

In the next section we will return to the study of

the general operator Fh' without the assumptions (33), and

examine its global discretization error.

-
4
.
3
2
:
“
.

 

which would prevent a more general proof,
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Section 2.3. The Global Discretization Error
 

In this section we investigate E(h)!EX(h)—mhw,

the global discretization error for our numerical method.

Assuming the discrete convergence of our method, we know

 that E(h)-90 as h-+O. We seek more information as to the

nature of E(h) as a function of h. Ideally we would like

E(h) to have an asymptotic expansion in even powers of h.

That is, we would like to show that Vt E [ (L-l)r,Lr] .

 

M

(39) E(h) = %(k21ek(t)h2k) +0<h2M+2)

with the functions ek(t) independent of h. Equivalently,

‘we want to show how to determine ek(t) for k=l,2,...,M and

t.€[(Lrl)r,Lr] so that

M

(40) S(h) a E(h)-wh( Zlek(t)h2k) = 0012””).
k:

If we write

M

u(h) = Zek(t)h2k

k=1

then we can rewrite (40) as

S(h) = E(h) - mh(u(h)).

Let I = Fh(wh(w+u(h))), then since Fh(X(h)) = O we have

\\I\\ = \\Fh(wh(q>+u(h)>) - Fh(x(h))\\.

Using the linearity of wh and the stability of Fh' we

can write
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“I“ 2215 “X00 - whcp- whum \\

=-}; “E(h) - mhuon \\

= $— nsm “-

Consequently, if we can show how to choose ek(t)

2K+2)

for k=l,...M so that “I“ = 01h then (40) will be

valid and we will have the desired asymptotic expansion.

Theorem 1. Let Fh(V) have Mi-l continuous FrEChet deri-

vatives with respect to V. Then,

1% thwhek(t) +O(h2M+2)

X(h) - cp =

m“ k=l

where the vectors whek(t) are solutions of

‘41) WW) whek = My

The vectors uth will be defined in the proof.

Proof. Expand I = Fh(wh(¢+u(h))) in a Taylor series

about the vector ufim to get

M

(42) I = FhwhmHFfiNth) whu(h)+k§2 El;- Erik) (whee) (whufll) ]k+RM+1°

Here Fék)(uhw) is the kth Fréchet derivative of Rh

evaluated at whm. The remainder term RM+1 involves

[g(h)]M+1 which is o(h2M+2) and therefore R is
M+1

2M+2
04h ).
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Fh(whm) is the vector of local truncation errors

for the discrete Operator Fh‘ By equation (22) each component

of Fh(whm) is given by

M .

_ 2] . 2M+2
Th(ti) — F(o)(ti) + jEfih g2j( )‘¢:t1+0(h ).

Using the space discretization wh' we can write

(43) Fh(thP) = wh'rh

M .
23 2M+2

Map)??? wh(gzj(o)1.p>+ om >.

2M+2
Here we have used the linearity of wh' Also, the 0(h )

term in (43) is understood to be a vector each of whose

2M+2)
components is 0(h

O and substituting (43) intoNoting that F(o)

(42), we obtain

M .

(44) I = j§1h23%92j("‘co + Filmhcpmhum

(R)
5‘15- Fh (mhco)[whu(h) ]k + 003””).P

4
3

+

k 2

Using the definition of g(h), it is immediate that

2
the coefficient of h in (44) is

whgz + Fi‘whw’ whey

In order to eliminate this term from the expansion (44),

define thl = —whgz and take “hel to be the solution of

Ffimhq’) whel = th1°
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With whel so determined we can write (44) as

M .

I: 73112] wh92j+F' (whtp)wh(j:322jhe

j=2

1.1“); (whcp)[whu(h) ]k + 0mm”).

3
.
.
.
»

ll
3

;
:

Collecting the terms involving h4 we have

F(2)
1'14 ”01194 + F' (mhfo)h4whezi- (mhcp)h2 L“r1e11"2""t~1€31'

Define B = g F(22)( o) e e and obtain e
“’h 2 “*n 4" mh “’h 1%1wh 2

by solving

F111(0‘)hq))u’)heZ = th2

Substituting whez in the expression for I we can eliminate

the terms involving h4.

Suppose whe1,whe2,...,wheJ have all been determined

as solutions to equations of the form (41), so that the

expression for I is

2j

I = 23 h g + F'( m) (h)
j-—J+l wh 2j( .))m wh ”h”

(k) k
+ Z) . F ( w)[ (h)

k=—J+1k1"h wh whu ]

JM

+ 2 62k( )h2k + 0012“”) .

k=J+l

The arguments of the functions sz(-) involve various error

. . I . .

vectors whej for J=l..-..J and various Frechet derivatives
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Féj)(wh¢) for j=2,...,J. If

t
fi
Q

%?Féj) (thP) [ mth) ]j

j 2

is expressed as a power series in h2 then for k=J+l,...,JM

the function G2k(') can be obtained as the coefficient of

th in this expansion.

Collecting terms that include h2J+2 we have

2J+2 2J+2

"1192323r1 +G2J+2 ( )h +F'(““hcp)""hea'H'

Because the function G2J+2 includes only the error vectors

whel""’wheJ as arguments of the various Frechet derivatives

it contains, we are able to define thJ+l as

thJ+1 = ’“h92J+2"G2J+2'

Therefore, we can determine wheJ+l as the solution to

I (1) =

Fh( hm)wheJ+l thJ+l‘

Hence by induction Theorem 1 is valid. D

Thus the global discretization error will have an

expansion of the form (39) provided Fh(V) has M+1 continuous

Fréchet derivatives and we can solve equations of the form

(41) .

In the finite dimensional case, the Fréchet derivative

of a discrete differential Operator Fh(V) is just the

JacObian matrix of the operator considered as a vector-valued

 



137

function of the R—dimensional vector V = (V1,...,VR)T. For

our particular difference operator defined by (9) the jth

row of the JacObian matrix is obtained by computing the

partials with respect to the components of V of equation

(9) with i=j—l.

We will denote the jth row of Ffi(V) by [Ffi(V)]j .

Introducing the notation

fk(v) _ f( v v Vk+l-vk-1 Vk+1—R’Vk-1—R)

‘ tk' k' k-R’ 2h ' 2h
 

 

and using it for the partial derivatives of f(t,u,v,y,z),

we can write Fh(whw) as

[Ffi(whw)]1, = h'2(1-+§f;(whw).o,...,0);

[Ffi(wh@)]2. h-2(-2+h2f:(u%¢0.l‘tgf;(wh¢).0....,O);

and for 3_<_ng.

I _ -2 b. j-l _ 2 j-l

.11 j—l
1+2fy (whcp).o,...,o)

with the non zero entries in the jth row for 3_<_ng

occurring in the (j—2)nd, (j-1)st and jth positions.

Since Fh(whw) is lower triangular, it will be

nonsingular provided none of the diagonal entries vanish.

For any j the (j,j)th entry of Ffi(wh¢) is
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This will be non zero provided

:
w
'
l
k
J

(45> fym ,1

If we assume that fy(t,u,v,y,z) is bounded, then as h-+O

the left hand side of (45) is bounded while the right hand side

diverges to -w. Thus for sufficiently small h, (45) will

be valid and Ffi(whw) will be nonsingular. Consequently,

the equation (41) will be uniquely solvable.

Now let us consider the system of equations

(46) Fh(u%¢)ufiek = O

in more detail. The jth equation in (46) is given by

2

h-2 (1 - 121—£34 (thP) )ek (tj_2) +h‘2 (-2+h fg‘l (when) )ek (tj_1)

-2 :1. j—1 _
+h (1+2fY (thpHekuj) — o.

Equivalently, we can write this as

ek(tjf2)-2ek(tj_l)+ek(tj)
j-l

(47) h2 + fy (wh
 

cp) ek (13)—e? (tj-z)
2h

j-l _
+ fu (mhcp) ek (tj-l) — O.

This equation is the discrete analog of

(48) e]g(t) + fy(cp)e};(t) + fu(CP)ek(t) = 0

at t=tj_1. where fy(w) = fy(t,m(t).¢(t—r),¢'(t),w (t—r)).

Equation (48) is the linear variational equation associated
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with the continuous Operator F(x) = O and is often denoted

by F'(Cp)ek = 0.

By examining the first and second equations in (46)

we see that ek(t_l) = ek(to) = O. In fact, since

E(h) E X(h)-whm and we have taken X_j = w(t_j) for all '1

1

j=0,1,...,R+l we must have ek(t_j)==o Vk and Vj==O,...,R+l. “...

One method for obtaining (48) is to let h-OO in V

 (47). If we do this, the points t_j become dense in the b1

interval [(L-2)r,(L—l)r] and we therefore must have

0ek(t) 50 on [(L-2)r,(L-l)r]. This implies that ei(t)

on [(L—2)r,(L-l)r]. Since the solution to (48) will have a

continuous first derivative, we see that the discrete problem

(47) with the initial conditions ek(t_1) = ek(to) = O corres-

ponds to the continuous prOblem (48) with the initial con-

ditions ek(t0) = ei(to) = 0.

Consequently, the vectors “hek in (41) are actually

discretizations of differentiable functions ek(t) which

satisfy

(48') e§(t)+fy(m)ei(t)+fu(w)ek(t) = Bk(')

ek(to) = e];(t0) = 0.

To summarize, we have established that the global

discretization error has an asymptotic expansion in even powers

of h:
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M

X(h) (ti) = cp<ti> +k§16k<ti)h2k + 003””).

Moreover, the functions ek(t) are independent of h and

satisfy ek(to) = ek(to) = O.

In the next section we will discuss the implementation

of this method and the modifications necessary to obtain a .1

solution on [O,r].

 



141

Section 2.4. Implementing the Second Order Method

In order to obtain a numerical solution to

(8) £(t)+f(t.x(t).x(t-r).x(t).k(t-r)) = o, r:>o

on [O,r], some modifications of the discrete method are  
needed. The first modification is based on the fact that E]__F

on [O,r] we have more information available to us concerning 1

the behavior of the theoretical solution than we do later.

 
To obtain the theoretical solution to (8) on [O,r] {3

we start with a given initial function m(t) whose derivative

m'(t) is known on [—r,O]. The extra information we have

in this case is knowledge of ¢'(t). This is incorporated

into the discrete version of (8) as added initial conditions.

Let R:>O be any given natural number and define

h==r/R. Construct the uniform grid {ti=0+ih)§=—R' Since

we are given ¢(t) and ¢'(t) for t.€[-r,0] 'we may

define a discrete version of (8) for t.€[O,r] by

‘ZX'+Xi—1 Xi+i'Xi-1
X.

1+ 1
' _ ._ - .

2 + f(ti'xi'wi-‘R' 2h 'mi-R) _ 00 1-0. 1' o o O'R 1,

1
  

GPi-R = cp(ti-R) E Cp(ti'r)'

' ' t - -= - .w (ti-R) a o ( i r), 1 O,l,...,R 1.6 I

7
1

ll

X l_1 - w(t_1) a w(4h).

X

I

O — Cp(to) E cp(O).
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The other modification that we must make is based on

the fact that the theoretical solution to (8) will, in general,

not have a continuous second derivative at the origin.

X'+1‘2X1+Xi-1

Since the expression 2 for i=0 in

h

(49) is an approximation to the second derivative of the sol-

ution at t=0 ‘we must take steps to insure that the second

derivative exists and is continuous at t=0. However, we

want to accomplish this in such a manner that the initial

information X X_1, m._R and w i-R for i=O,l,...,R—l

O' i

is not altered.

One way of accomplishing this is to modify the given

initial function m(t). Select. e<:O such that -h<:e<(0

and define a new initial function $(t) by using an inter-

polating polynomial in place of m(t) on [c,O]. More

precisely, let H(t) be the fourth degree Hermite interpolating

polynomial which satisfies P(e) = m(e). P'(e) = m'(e).

P(O) = cp(0). P'(O) = CP'(O) and P"(O) = f(O.CP(O).cp(-r).

¢'(O).w'(-r)). Define a new initial function E(t) on

[-r.0] by

CP(t) —rg_tge

(50) E(t) =

HR) 6 gtgo.

By construction E(t) will be continuously differentiable

on [—r,O] and since $"(o) = f(o,o(o),o(—r),w'(o),o'(-r)). the

second derivative of the solution obtained with the initial

 

 

i
l
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function Q will be continuous at t=0. Now $(t) agrees

with w(t) for -r5;t5;e and also for t=O. This includes

all points in [-r,O] at which initial information is needed

in (49). Since, as mentioned earlier, the solution to (8)

depends continuously on the initial function, the use of

E(t) in place of m(t) will not radically alter the character

of the solution to (8). It will however make (49) a reason-

able discretization for (8).

Note that, as we move to the right solving (8) with

the method of steps, we gain differentiability of the solution

(see the discussion for first order equations in Section 1

of this chapter). Thus the solution to (8) will have a

continuous second derivative for all t:>O and the approx-

. . Xi+1‘2Xi+Xi—1 . . . .
imation 2 w111 not cause any difficulties at

h

other multiples of r.

The proof that the discrete prOblem (49) is consistent

is a special case of Section 2.1. The only difference is that

now we are using the actual value of ¢'(t-r) instead of an

approximation. This will simplify the expression for the

local truncation error but does not alter the fact that the

truncation error has an asymptotic expansion in even powers

of h. Also, note that the proof of stability with the added

hypotheses (33), and the analysis of the gldbal discretization

error given for (9) carry over directly to (49).

 

 

:2:
.
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Using the appropriate discrete scheme, (9) or (49), we

can compute a solution to (8) whose global discretization

error has an asymptotic expansion in even powers of h.

Since the coefficient error functions in this expansion are

independent of h. extrapolation can be performed to obtain  
a more accurate solution.

 

Let R be any natural number and let h0 = r/R be

the basic steplength. For each k=l,...,M define

= h /2k = -£—- Define grids b
bk 0 k ' Gk Y

2 R

Gk -—- {.t§:t]i‘=o+ihk,i=-2kR,-2kR+1, . . .,o, 1, . . .,2kR] for k=0, 1, . . .M.

As before, the grids Gk are nested; Gk<:Gk+l'

Given an initial function m(t) such that w(t)

and m'(t) are continuous on [—r,O], select 3:10 such

that -hM<’e<ZO. With this 6 define a new initial function,

again denoted by w, as in (50).

On each grid Gk compute the solution X(hk) to

(49). Denoting the solution to (8) on [O,r] also by w(t)

we know from our previous work that

2M+2 k“23' k
= h ej(ti)+0(hk ), for i=1,...,2 R.

_ k

(51) [X(hk) ]i — wti) + '23

j 1

If R=l, then we can use pullback interpolation as

described in Chapter 1 to obtain a solution, X(h), which  
satisfies
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2M+2

(52) [X(h)]i = cp(ti) + who )

for each. t.i EGM. Actually the pullback interpolation method

does not involve as much work in this case as it does for first

order initial value problems. This is so because from (48')

we have ej(O) = O for j=l,...,M. Therefore we do not have

to go through all the work of constructing a table analogous

to Table 4 of Chapter I to obtain e3(O).

If R;;2, then we can obtain uniform accuracy at

all grid points of G without using any information about
M

e5(O). The reason for this is that with R::2 we have

enough data points at each stage to do Lagrange interpolation

with accuracy comparable to that of the data points. That is,

when performing Lagrange interpolation to accomplish the

pullback with R¢;2, it is the accuracy to which we know the

error functions that dominates (see the discussion in Section 5

of Chapter 1). Thus we do not need to do Hermite interpolation

in this case and therefore the information about ej(O) is

superfluous.

Once the solution X(h), satisfying (52),is obtained

we can use the discrete method (9) to Obtain a numerical

solution on [r,2r]. This process, theoretically at least,

can be repeated indefinitely on intervals of length r, to

obtain a solution which is 0(h2M+2) O
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It should be noted however, that when using (9) to

solve (8) on intervals of the form [(L-l)r,Lr], L;gl, the

initial data is taken from the computed solution on the

previous interval. Since the initial data will not be precise

2M+2)) an accumulation(the error in the initial data is 0(h

or errors is unavoidable. Of course, this also occurs when

any numerical method is used on successive intervals.

A variety of other schemes, based on (9), (48) and

pullback interpolation, to solve (8) are possible. We could,

for instance, use (49) and pullback interpolation on [O,ho]

to obtain a solution. Then by modifying the initial con—

citions in (49) we could repeat this procedure on [ho,2ho].

Repeating this R times we would have the solution on all

of [O,r]. We could then follow the same format, using (9)

in place of (49), to obtain a solution on [r,2r], etc.

We do not make a comparison of these schemes here.

In the next section we will merely exhibit some numerical

examples computed using the first described solution tech-

nique.
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Section 2.5. Numerical Results for Second Order Equations

This section consists of two examples. The first of

these is

Example 3: Solve x(t) = X(t-l), Oj;t3Ll numerically for

the initial function m(t) = 12(t+l)2-+24 on [-l,O]. The

method of solution is the discretization (49), extrapolation

and pullback interpolation with four grids. The steplengths

employed are hk = 1/2k for k=O,...,3 and the grids are

_ k _ . . ._ k
Gk _ {ti _ o-+ihk. l—O,l,...,2 }

for k=O,...,3.

Note that the initial function ¢(t) satisfies

m(-l) = m"(O-), so the second derivative of the solution is

continuous at the origin. Thus, the initial function does

not need to be modified as in (50) for this example.

The theoretical solution is given by

m(t) = t4.+12t2-+24t-+36

for t €[O,l]. The numerical results presented in Table 15

are for the nine equally spaced points in [0,1] which

belong to the finest grid G3. The error reported is once

again the computed solution minus the theoretical solution.
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TABLE 15

i Error

o 0.0

1 0.0 x 10‘12

2 -.23 x 10"12

3 -.23 x 10'12

4 -.23 x 10"12

5 - 23 x 10'"12

6 -.23 x 10'12

7 0.0 x 10'12

8 0.0 x 10"12

The high accuracy of the numerical solution in this

example is due to the fact that the theoretical solution is

a low degree polynomial. Thus, extrapolation and consequently

pullback interpolation are quite accurate in this case.

This accuracy is not to be expected for more general equations

as the following example illustrates.

Example 4: Solve x(t) + %x(t) - %x(t—w) = O on [O,w]

for the initial function cp(t) = l-sin t, —7Tgt_<_O. This

example is from Norkin [23] and the theoretical solution is

also given by cp(t) = l-sin t, ogtgw. Thus, the second

derivative of the solution is continuous at the origin and

no modification of the initial function is required.

 

 



149

The method of solution is to use (49), extrapolation

and pullback interpolation with four grids to Obtain a num-

erical solution on [O,W/4]. Using this numerical solution

as initial data, the discretization (9), extrapolation and

pullback interpolation with four grids is employed to obtain

a solution on [%3%J. This process is repeated twice more

to Obtain numerical solutions on [%u%gj and [%¥,w]. On

each interval of length w/4 the stepsizes used are

hk = Trk for k=O,...,3. Thus, on each Of the four sub—

4-2

intervals the finest grid contains nine equally spaced points

 

which we number as t .,tO"° 8'

The accuracies Of the numerical results are reported

as Tablele‘with the error being computed in the usual manner.
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TABLE 16

Error on [O,TT/4] Error on [IT/4,7T/2]

0.0 .5 x 10'8

15.9 x 10‘8 - 1.0 x 10"6

37.6 x 10‘8 — 4 5 x 10'6 ‘a

30.2 X lo-8 - 6.4 X 10"6 l~—E"

— 1.6 x 10-8 - 6.6 x 10"6 ,

-33.2 x 10"8 — 6.7 x 10"6 ~—%

~40 O x 10"8 - 8.4 x 10'6 uj

-l7.l x 10'8 -ll.5 x 10‘6

.5 x 10"8 -11.9 x 10—6

Error on [Tr/2,3Tr/4] Error on [3TT/4,TT]

-11.9 x 10'6 -27.2 x 10‘6

-l3.7 x 10'6 -28.6 x 10'6

-18.7 x 10‘6 —31.9 x 10'6

-21.2 x 10"6 -33.2 x 10‘6

-21.0 x 10'6 -32.4 x 10‘6

-2o.6 x 10"6 -31.4 x 10‘6

—22.6 x 10"6 -32.0 x 10'6

-26.6 x 10‘6 -34.4 x 10'6

-27.2 x 10"6 -34.1 x 10’6
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The accuracy Of the computed solution is considerably

higher on the first subinterval than on the last three sub-

intervals. Also the errors are steadily increasing at a

very low rate over the last three subintervals. This suggests

an accumulation of truncation errors.

This accumulation is to be expected for the following

reason. For a linear equation, the discretizations (9) or

(49) are similar to a well known linear multistep method

for solving second order initial value problems (see Lambert

[18]). The only difference is the manner in which the

discretizations are initialized. The stability theory for

linear multistep methods for solving second order equations

predicts an accumulation Of truncation errors. Thus, based

on comparisons with similar methods, our numerical results

are consistent with how our method should behave.

Note that the equation x(t) + %x(t) - %X(t-W) = O

is not covered by our proof Of stability. Yet the numerical

results seem to indicate that the method is stable when

applied to this equation. Consequently, we again reiterate

our belief that stability is valid for a much larger class

Of functions than our proof indicates.
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