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ABSTRACT

UNIFORMLY ACCURATE NUMERICAL SOLUTIONS
TO DIFFERENTIAL EQUATIONS USING EXTRAPOLATION
AND INTERPOLATION

By

Richard Allan Rogers

In this work we are concerned with numerical methods
for solving ordinary differential equations. We consider
those methods that have asymptotic error expansions involving
all powers of h9, where h is the steplength and q is
a fixed integer. The process of extrapolation can be employed
with such methods to obtain highly accurate solutions at
grid points belonging to the coarsest mesh. In Chapter I
we develop the "pullback interpolation method". This method
combines extrapolation with Hermite interpolation of the
coefficient functions for the asymptotic error expansion to
produce a highly accurate solution at all grid points of the
finest mesh. When q is 1 or 2 pullback interpolation
vyields uniform accuracy at all grid points of the finest

mesh.

In Chapter II the pullback interpolation method
is modified so as to be applicable to boundary value
Problems. In addition, an elementary proof of the stability
Of V. Pereyra's finite difference scheme for solving two

Point boundary value problems is given.
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(j In Chapter III we consider difference differential

equations with constant retardation. The methods of Chapter I

are shown to be applicable to first order delay equations.

Because of the presence of the delay term, the uniform accur-

acy obtained through pullback interpolation is indispensible
for these problems.

A finite difference scheme for directly solving

s econd order delay equations is constructed and analyzed

in Chapter III. The global discretization error is shown to

have an asymptotic error expansion in even powers of the

s teplength.
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INTRODUCTION

In this section we will discuss some standard tech-
niques for obtaining numerical solutions to first order
initial value problems. The process of refining computed
solutions by means of extrapolation will be explained. We
will also consider the question of uniform accuracy of the

computed solution.

Consider the first order initial value problem

x'(t)

f£(t,x(t)),
(1)

x(a) a, a<tcb.

We will assume that (1) has a unique solution ®(t) which
depends continuously on the initial condition x(a) = a.
Conditions on f(t,x(t)) which will guarantee this are well

known and are given in Chapter I.

The majority of procedures for solving (1) numerically
are based on discretization. As such, they yield an approx-
imate solution to (1) on a discrete point set contained in
[a,b]. We will only consider the case where the discrete
points are equally spaced in [a,b]. In this case the discrete

point set can be conveniently represented as a grid

G = {tn=a+nh:n=0,l, «..,N},

where the parameter h = Eﬁi and is called the steplength.
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The theoretical solution to (1) will be denoted by
¢o(t) and the approximate numerical solution will be denoted

by X(tn,h) for each grid point t -

A computational method for determining X(tn+k'h)
which takes the form of a linear relationship between
X(tn+j‘h) and f(tn+j'x(tn+j'h))' j=0,1,...,k 1is said

to be a linear k-step method. The class of all such methods

is referred to as the class of linear multistep methods.

Three of the simpler multistep methods are Euler's
rule (sometimes called the Euler-Cauchy method), the trapezoid

rule and Gragg's modified midpoint rule.
Euler's rule is summarized by the equation

(2) X(t h) = X(tn,h)+hf(tn,x(tn,h)), n=0,1,...,N-1.

n+1l’

Equation (2) exhibits how the approximate solution at t o

is obtained given that one has already obtained an approx-
imate solution at tn. Since information is required only

at the preceeding grid point in order to obtain an approx-
imate solution at the next grid point, Euler's rule is

a one-step method. To initialize or start the method requires
one piece of information which is given by the initial con-
dition in (1). That is, take X(to,h) = x(a) = a. Since
everything on the right hand side of (2) is known when we

are trying to compute X(t h), the relationship (2) is

n+l1l’






explicit and Euler's rule is an explicit multistep method.
The trapezoid rule is given by

h
(3)  X(t,,;.h) =X(t ., h) +S[E(t ,X(€ ,h)) + £(t . X(t . 0)],

n+1’ n+l’

n=0,1,...,N-1.

This is again a one-step method and is initialized by taking
X(to,h) = x(a) = a. However, the right hand side of (3) is
not completely known. Indeed, when trying to compute the sol-

ution at tn+1 the term f(tn+1,x(t h)) is unknown

n+l’
because it involves the solution we are trying to compute.

Whenever f(t,x(t)) is linear in x(t), and in some other
special cases, equation (3) can be solved explicitly for

X(t »h). However, in general this is not possible and the

n+l

trapezoid rule is said to be an implicit multistep method
because of this behavior. When (3) cannot be solved explic-

itly for x(tn+1,h) a root finding procedure or functional

iteration can be used to find the solution.

The midpoint rule is an explicit two-step method

defined by

(4) X(tn 2,h)==X(tn,h)+2hf(t (t h)), n=0,1,...,N-2.

+ n+l” X (10

To compute X(t ,h) we need to know both X(tn,h) and

n+2

X(t h). Thus, the midpoint rule requires two starting

n+l’
values X(to,h) = a and X(tl,h). The second of these can

be determined in a variety of ways.
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Gragg's modification of the midpoint rule [11,12]
is twofold. First, to obtain the additional starting value

use Euler's rule. That 1is,
x(tl,h) = o+ hf(a,a).

Second, at the grid point tN==b use a smoothing procedure
to make the computed solution more stable. The smoothing
procedure consists of averaging three computed solutions

and is similar to a device originally employed by Milne and
Reynolds [20,21]. Gragg's modified midpoint rule is formally

given by
X(tl,h)==a-khf(a,a);

(5) X(t h) =x(tn,h) + 2hf (t (t h)), n=0,1,...,N-1:

n+2’ n+1'X n+l’

1 1

X@Jﬂ=%x(t h) +3X (tg,h) +3X (tg, 1 h).

N-1° N+1’

The three numerical methods given by equations (2)
(3) and (5) have an important similarity. Each has an
asymptotic error expansion that involves all powers of h9
for a fixed integer q. That is, for Euler's rule, the trap-
ezoid rule, and Gragg's modified midpoint rule, the computed

solution satisfies

= < gk
(6) X(t ,h) = o(t) + e (t )=,
k=1
The functions ek(t) are independent of h and q 1is a

fixed integer. For Euler's rule g=1 and for the trapezoid
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rule and Gragg's modified midpoint rule qg=2. The expansion
(6) for Gragg's modified midpoint rule is only wvalid at
tN==b while for the other two methods (6) is valid at all
grid points tn. The expansion (6) is valid only when

£ ec”[[a,b] x (-=,=)].

If £ has only a finite number of continuous deri-
vatives, a truncated version of (6) is valid, namely

M

The notation G(hj) means that the function being suppressed

behaves like a constant multiplied by hd as h-o. Formally,

we say that g(t) = o(hj) if lﬂi§ll <C as h=0, where

h
C 1is a constant. The length, M, of the expansion (6')
depends on q and the number of continuous derivatives of £

that exist.

The existence of asymptotic expansions of the form
(6) or (6') for Euler's rule, the trapezoid rule and Gragg's
modified midpoint rule was originally proved by Gragg [11,12].
Stetter [31] and Pereyra [24] have also studied the existence
of such expansions. Gragg's results for Euler's rule and the

trapezoid rule are presented in more detail in Chapter I.

The existence of such expansions is important because
numerical methods which have error expansions of the form

(6) or (6') are amenable to extrapolation. Basically, the
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process of extrapolation is a means of combining several
computed solutions, each of low accuracy, in such a manner

as to obtain a computed solution with high accuracy.

Extrapolation is not a recent development, dating
back to at least 1654 when Huygens [14] used it to improve
Archimedes polygonal approximation to w. Extrapolation was
first systematically studied by Richardson [29] early in this
century and has often been referred to as either Richardson
extrapolation or the deferred approach to the limit, the
latter being the title of Richardson's 1927 paper. An
excellent survey article on extrapolation and its applications

has been written by Joyce [16].

Extrapolation, when applied to obtaining an accurate
solution to a differential equation, is most easily explained
as follows: Let H>O be a fixed basic steplength and
suppose an accurate solution to (1) is desired at the point
a+H. Define a sequence of steplengths ‘nk==H/2k

k=0,1,...,K and grids

k]'

Gk= {t];=a+l}l.k: i=olll""2

All grids contain a and a+H and the grids are nested
with Gk<:Gk+1 Vk. On each grid Gk compute a numerical
solution to (1) using a method which has an asymptotic error
expansion of the form (6') with M>K. At a+H we have

K+1 computed solutions X(tN'hk) for k=0,1,...,K.
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Extrapolation is the process of forming a linear combination
of these K+ 1 solutions in such a manner so as to eliminate
the first K error terms of the expansion (6'). That is,
constants c), are determined so that

K
(7) ¥ e X(at+H,h) = @(b) + o@md K1)y
Kook h

Aitken [ 1] and Neville [22] independently devised
an iterative scheme by means of which extrapolation can be
performed without explicit computation of the constants Cy

in (7). The convergence of this iterative scheme under

suitable hypotheses was established by Gragg [11.,12].

Note that in order to obtain O(Hq(K+l)) accuracy
at a grid point you must have K+1 computed solutions avail-
able to work with. Thus, extrapolation will yield G(Hq(K+1))
accuracy only at the point a+H which is common to all grids

Gk' Extrapolation can be performed at other grid points.

Hq(K+1))

However, it will not yield o accuracy at these

points. For instance, using the fact that Gk(:Gk+1 vk,

extrapolation will yield O(HqK) accuracy at the midpoint

a-b%. At other grid points, extrapolation will yield even

less accuracy.

Lindberg [19] has developed a method based on

extrapolation and Lagrange interpolation which can be used to

Hq(K+1)—l

obtain o ) accuracy all at grid points of the finest

grid GK'
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In Chapter I we present what we have termed "the
pullback interpolation method". It utilizes extrapolation

and Hermite interpolation to obtain G(Hq(K+1))

accuracy
at all points of the finest grid when g=1 or 2. The first
four sections of Chapter I are devoted to developing the method
and establishing a theoretical basis for it. 1In Section 5
Lindberg's method is presented and compared with pullbacK
interpolation both theoretically and numerically. Extensive

numerical tests were performed and these results are also

presented in Section 5 of Chapter I.

The focus in Chapter I is entirely on first order
ordinary differential equations. In Chapter II we consider

two point boundary value problems of the form

x"(t) = f(t,x(t),x'(t)),
(8)

x(a) = A, x(b) = B.

Pereyra [24,25,26,27,28] has developed a finite difference
scheme which yields an approximate solution to (8) that

has an asymptotic error expansion of the form (6') with g=2.

Pereyra's results are summarized in Chapter II and
pullback interpolation is modified so as to be applicable to
boundary value problems of the form (8). In addition, in

Section 2 of Chapter II, we present a new proof of the
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stability of Pereyra's difference scheme. In comparison

to Pereyra's proof, ours is considerably more elementary.

In Chapter III we consider the numerical solution
of difference differential equations with constant retard-

ation. First order equations

x(t) = £(t,x(t),x(t-r))

are analyzed in Section 1 and pullback interpolation is
shown to be a viable solution technique for these problems.

Numerical results are presented to support this contention.

The remainder of Chapter III is devoted to the
development and analysis of a finite difference method for

directly solving second order equations of the form

(9) X(t) + £(t,x(t),x(t-r),%(t),%(t-r)) = O.

The approximate solution to (9) is shown to have an asymptotic
expansion of the form (6') with g=2. A modification of

pullback interpolation is shown to be applicable.
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CHAPTER 1

THE PULLBACK INTERPOLATION METHOD
FOR INITIAL VALUE PROBLEMS

Section 1. Statement of the Problem

In this chapter we consider the first order initial

value problem.

y' (t) f£(t,y(t))

(1)
y(a) =a ait<b.

We shall assume that £(t,y(t)) 1is a continuous function
of t and satisfies a uniform Lipschitz condition with
respect to its second argument. Under these assumptions
it is well known (see Keller [17]) that (1) has a unique
solution, ¢o(t), which depends Lipschitz continuously on
the initial data y(a) = a. y(t) may be either a scalar-
valued or a vector-valued function. If y(t) 1is vector-
valued then £(t,y(t)) will be a vector-valued function
of the variable t and the vector y(t) and (1) will be
a system of first order differential equations. This case
also arises when we reduce a mth order differential
equation to a system of m first order differential
equations. The standard technique for accomplishing this
can be found in Lambert [18]. The numerical methods to

be considered for solving (1) will work for either the

10
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11

scalar or vector-valued case. In the vector-valued case
extrapolation and the pullback method, to be explained in
this chapter, can be done independently for each component
of the solution vector to obtain a refined solution. Since
the same work is done for each component, one at a time,
without using any results involving other components, the
refinement process appears well suited to implementation

on a parallel processing computer such as ILLIAC 1V (see

Corliss [ 51]).

Turning our attention to the numerical solution of
(1), let h>0 be a fixed basic steplength and for each
k=0,1,...,K define steplengths hk = h/2k and grids

k].

k .k . . . .
G = {ti.ti = a+ih , i=0,1,...2 Each grid G contains

2k+l points; all grids contain the two points tg = a and
tk = a+h; and the grids are nested, that is, Gk (=4 Gk+1Vk.

2k

In what follows we shall be concerned with methods
for the numerical solution of (1) on the grids G, which
give an approximation, Y(t?,hk), to the theoretical sol-

ution, w(t?), such that the error has an asymptotic expan-

sion

(2) Y(tk h, ) = (tk) + % ]qe (tk) + O( (M+1)q)
ikt T j=1 ™ i hye

for each i=0,l,...,2k and for each k=0,1,...,K. The

coefficient error functions, em(t), are independent of

hk' for each k, and q 1is a fixed integer (usually 1 or

2)
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12

peculiar to the method being employed. The exact length

of the expansion (2) will depend on both the method being
employed and the number of derivatives of £f(-,-) which
exist. In general, (M+l)g continuous derivatives of
f(t,y(t)) with respect to t are required for an expansion
with M error terms. This is equivalent to the theoretical

solution (t) having (M+1l)g+l continuous derivatives.

As mentioned before, Gragg [11,12], Pereyra [24],
and Stetter [31] have investigated the existence of such
expansions. Examples of methods which yield such error
expansions are Euler's method (g=1), the usual generalization
of the trapezoid rule (g=2) and Gragg's modified midpoint
rule (g=2). An important result obtained in each of the
above mentioned studies is that the coefficient error
functions em(t) satisfy an inhomogeneous linear variational
equation on a<t<b, of the form

o

em(t) - J(t)em(t)

i
o’

(3)

!
°
3
1
°
=

em(a)

The arguments of the inhomogeneous terms, bm(-), involve

the theoretical solution o(t), previous error functions
eys---s€ 1, the function f£(t,y(t)), and various derivatives
thereof. The differentiability of the various error
functions depends on the differentiability of f£(t,y(t)).

The left hand side of (3) is the Frechet derivative of (1),
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13

considered as a differential operator, operating on em(t).
Alternately, J(t) 1is the Jacobian of f£(t,y(t)) evaluated
at the theoretical solution, ¢(t), of (1). The left hand
side of (3) may be obtained formally by assuming y(t)

depends on a parameter )\, differentiating (1) with respect

5

4 o
to this parameter and setting e, = %%r- and e, =

Q

X"
If we compute the numerical solution of (1) on the

grids Gk k=0,1,...,M using a method which has an expansion

of the form (2), we may then employ extrapolation to obtain

a solution Y(a+h) = ¢(a+h) + G(h(M+l)q). However we are

not able to obtain comparable accuracy at the intermediate

points. For instance, using extrapolation, the solution

at the midpoint satisfied Y(a#%) = m(a+%0 + O(th). And,

as the following example illustrates, we cannot interpolate

several extrapolated values to obtain a solution with equi-

valent accuracy.
Example 1: y' = y2; y(0) = .2; o<t<3.

The theoretical solution to this problem is

o (t) = 3%—'f Using the trapezoid rule and extrapolation

t
with h=1, M=3 we compute the solution, Y(t), at the
points t=1,2, and 3 by resolving the same problem three
times with initial conditions determined by the computed

solution at t=1 and 2. The results are given in

Table 1 below.
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14

A variety of interpolation schemes are possible
for determining the solution at intermediate grid points.
Two such are summarized in Table 2 below. L(t) 1is the
Lagrange cubic interpolation polynomial for the data
(t.Y(t)) given in Table 1 and H(t) 1is the quartic
Hermite interpolation polynomial for the same data with

the added condition Y'(0) = (Y(O))2 = (.2)2 = .04.

TABLE 1
t o (t) Y(t) o(t) - Y(t)
0 .200 000 000 .200 000 000 0
1 .250 000 000 .250 000 000 0
2 .333 333 333 .333 333 330 3 x 1072
3 .5000 000 000 .499 999 762 2.38 x 10~/

TABLE 2
t w(t) L(t) P(t)-L(t) H(t) o(t)-H(t)
% .222222222 .223958320 -1.736X10"° .222395831 -1.736X10-3
% .285714285 .284375013 1.339X10°3 .285312506 4.018Xx10~ %
% .400000000 .403124923 -3.125X10"° .401562434 -1.562X10" >

As an examination of Tables 1 and 2 quickly
reveals, neither of the interpolation schemes gives accuracy

that is comparable to that of the computed solution.
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In the next section we will present and analyze
the pullback interpolation method. It is based on a .
Hermite interpolation scheme for approximating the error
functions em(t) successively, beginning with the last
term of the error expansion. The details are worked out
for a general expansion of the form (2). However in
practice q 1is usually either one or two and the reader

may find it helpful to bear this fact in mind.
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Section 2. The Pullback Interpolation Method

Still assuming that our numerical method and the
problem at hand are such that the expansion (2) is valid,
we now take K = M. At the point t = a+h EGO we have the

M+l computed solutions and error expansions

M+l)q)

M .
(4) Y(t.h) = o(t) + _Zihiqej(t) + o X=0,1,...,M.

J:
Equation (4) can be regarded as a system of M+l poly-
nomial equations in h. Since the hk's are distinct these
polynomials are linearly independent and (4) may be solved
as a matrix system for the unknown vector

(@(t).e) (t) ey (), ... ey (t)T.

In matrix form (4) is given by

(4') AU = Y + E
where
i qd .29 (M-1)q , Mgn
1, hg, heS, L., g , hg
q 429 (M-1)q ,Mq
A 1, h{, ny%, . . .. h) . hy
a .29 (M-1)qg Mg
L1, hg Byt .. hy . hy j

is (M+l) x (M+l): and U,Y and E are (M+l) x 1

vectors given by
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r n r n
[ o) | Y(t,h) O(héM+l)q)
e, (t) Y(t,h,) G(h{M+l)q)
U = H Y = ) ; and E =
(M+1)qg
respectively.

Define (A,I1) to be the (M+l) x 2(M+l) matrix
obtained by adjoining the identity matrix to A. A
standard theorem from linear algebra (see Cullen [ ¢ ])
tells us that if (A,I) 1is row equivalent to (I,B) —

denoted by (A,I) ~ (I,B) — then B = a~t.

Since A 1is nonsingular we can find a sequence
of elementary row operations such that (a,I) ~ (D,C)
where D 1is the diagonal matrix whose (j,j) entry is
n(3-1a, j_1, ..., M+l. Moreover, since V k h, = h/2%,
the row operations which accomplish this reduction are
independent of h, in that each involves multiplication
or division by a constant only. (D,C) can be further

1) py dividing the 3N row by nii-Dq,

reduced to (I,A™
Multiplying both sides of (4') by a~1 we have

1 1

1 Y + A "E. The vector U is the precise

U=A AU = A~
solution to the system (4) and the vector A"y is the
numerical solution we can obtain. The vector A-lE is

the vector of errors for the numerical solution.
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Now Vk h <h, so we can write

p-o(hémﬂ)q)ﬂ - o(h (M+1)q)ﬁ
O(h{M+l)q) O(h(lvu—l)q)
E = =
_O(hb(dlqﬂ)q | O(h(M+l)q)

Since each component of the jth row of A—l has a factor

of h-(J—l)q and this is the only dependence of these

entries on h, the jth component of A-lE is

G(h(M*l)q'(j_l)q) = G(h(M-j+2)q). Thus our computed
solution a~ly = (é(t),él(t),éz(t),...,EM(t))T will be
equal to the precise solution U = (cp(t),el(t),ez(t),...,eM(t))T

with an error of magnitude

2 le = o™V omM), o™V, |, 6md))T.

It should be emphasized that what we actually
obtain when computing a solution to (4) is the vector
A-lY which is only an approximation to the actual solution
U. This can be conveniently summarized by saying the

solution to (4), (@(t),el(t),...,eM(t))T, is known with

accuracy (O(h(M+l)q).O(th),---.O(hq))T-
Since eM(a) = 0 and o(a) 1is known exactly:
we can obtain eﬁ(a) exactly from (3). That is,

eM(a) = O 1implies that eh(a) = bM(a). To evaluate
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bM(a) requires knowledge of higher order derivatives of
o(t), J(t), £(t,p(t)) and the errors em(t), m=1,...,M-1,
evaluated at the point t=a, all of which are available

to us. These derivatives may be obtained by successively
differentiating (1) and (3) with respect to t. The
details will be worked out for specific methods later in

this chapter.

Thus we know eM(a) and eﬁ(a) exactly and we
know eM(a+h) to G(hq). Construct PM(t) the Hermite
interpolating polynomial of degree 2 to the above three
pieces of data. It is well known that the error in this
Hermite interpolation is G(h3). Thus, since eM(a+h) is
known to O(hq) we have PM(s) = eM(s) + G(h3) + omY).
Now Vk=1l,...,M, hk<h implies hk<hY where v 1is

any positive integer and therefore G(hg):iG(hY). Thus

Vk=1,...,M and Vs €[a,a+h] we have
Mq Mg Pu
(5) hk PM(S) = hk eM(S) + 0(h )
where BM = min((M+1)g, Md+3). Note that for qg<3
BM = (M+1l)q.

Proceeding to the grid Gl' let t be any
point in Gl\GO (since G0 contains 20-+1 = 2 points
and G, contains 21-+1 = 3 points, there is only one
such t, namely t = a+h/2). Since the grids are nested

this t €g Vk=1,...,M and we have the M computed

solutions and error expansions
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M-l
(6 Ylem) = ot + T hpde  (t) + mey (6) + omM 9
J:

for k=1,...,M.

Substituting (5) into (6), we obtain the following system

of M 1linearly independent equations in h for the

unknown vector (cp(t),el(t),...,eM_l(t))T
D v(en) - ¥ (1) = o) + D ni%. ()4 oMY O(hBM>
oy hy Py =9 521 b ey (hy
M-1 . B
- ot) + © hi%.(t) + om ™,
o ( 4 hy ej( (
k=1, ..., M,

because £y < (M+l1)g and h < h.

Solving (7) we obtain the solution vector
(w(t).el(t).-..,eM_l(t))T with accuracy
B B Bu-29 By (M=1)gq
M M M M
(Gt ., oM ), oM )oeu. O(h )T

We now have the following information about eM_l(s).
For t = a+h GGO we know eM_l(t) with accuracy G(hzq)

and for t = a+h/2 EGl\GO we know e, ,(t) with accuracy

(B,-(M-1)g
om ™ )

As before eM_l(a) = O and we can deter-
mine eM_l(a) exactly. Thus we can construct PM_l(s)
the Hermite interpolation polynomial of degree three
interpolating these four data points. Since the error

of interpolation will be O(h4) and hk<h we have

Vs €[a,a+h],
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(8) héMel)qPM-l(s) - héM—l)qu_l(s) + o(h(M-l)q+4)

B
+ on™MDay | sm Y

(M-1)q

B
ne Ve, () + om M

) ’

where 6M—l min (BM,(M-I)p+4). Here we have used the

fact that BM < (M+l)g. We note that for q < 2,

By = (M+1)q.
Proceeding by induction, suppose PM(s), PM-l(S)'
...,PM_J(s) for J < M-1 have all been constructed, where

Y j=0,1,...,J, PM_j(s) is a Hermite interpolation poly-

nomial of degree 2j+l with
N . B .
M- M- M-
(9) hé J)qu_j(s) = hé J)qu—j(s) + o(h J) Vs €[a,a+h].

The numbers 6M—j are defined by

. s j ‘

(10) BM_J = min (B, 3417 (M=-j)q + 2° + 2), 3=1,...,J,
and BM is defined by (5). Note that BM-j < 6M—j+l Yj.
Let t be any point in Gyl \ G;. Since
GJ+1 contains 2J+l + 1 points and GJ contains 2J + 1

points there are 2J+l - 2J = 2J such points. Since
G, €6,y Vk each t €Gyq \GJ is also an element of
Gk for k=J+2,J+3,...,M. Thus at each such t we have

the following system of M-J 1linearly independent equations

in h:
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(1) Y(th) - h{“‘”qp 5(0)
M-J-1 . B
= o)+ T %, (o) rom™la T om ™)
j=1 j=0
M-J-1 . B
=o(t)+ Z nl% () +om ™), x=g+1,042,...
j=1 )
since BM—J :-BM-J+1 < oee £ BM—l < BM < (M+l)g. Solving
the system (11) for the unknown (m(t),el(t),...,eM_J_l(t))T,
we obtain the solution with accuracy
B Bu_1—4 Bu_ 129 By~ (M=J-1)q
(emh ), stn ™I, s ™I ), L, o ™Y T

From solving (11) at each point in Gys1 \ Gy we

obtain knowledge of eM_J_l(t) at 27 points with

M T -(M-J-1)q
). From our work on GO we

(M—J—l) q)

accuracy ©¢(h

know e (a+h) with accuracy G(h(M+l)q_

M-J-1

O(h(J+2)q). From our work on G1 \ GO we know

6M-(M-J-l)q
eM_J_l(a+h/2) with accuracy 0©¢(h ). By our

inductive hypothesis Vj < J, we have obtained knowledge

J - . .
of e, ;5 ,(t) at 2° points in GJ+1\Gj with accuracy
Py_g~ (M-J-1)q
¢(h ).  Thus we know
J ] J+1 J+1 .
eM_J_l(t) at 1+ 227 =1+2 -1=2 points

j=0
with varying accuracies. In addition we also have

eM_J_l(a) = 0 and we can determine eM_J_l(a) exactly.
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1

Thus we have knowledge of (t) at 2J+ +1 points

eM-J-1

and we know eM_J_l(a). Construct PM_J_l(s) the Hermite
J+1

interpolation polynomial of degree 2 +1 Dbased on the

above data. The error of interpolation will be

J+1
O(h2 +2) and Vs €[a,a+h],
(M-J-1)g L (M=J-1)g Pm-g-1
(12) hy Py_g-1(s) = hy ey_g-1(s) + o
where Py ;  1is determined in the following manner:

J+1
the error in interpolation is h]EM-J-l)qO(h2 +2)

(M-0-1) q+2 142

o(h ) and the error in the given data is
min({hiM'J-l)qo(hBM'j_(M—J_l)q)}g=o, héM—J—l)qo(h(J+2)q))

= min ((6(h M'j)}gzo, omMl)a),

~ min (ot ™), om®™a)).

~ om ™)
since B, ; < (MHl)q. Thus B, -, = min (8, ;, (M-J-1)g+2”

Hence by induction we can determine P for

M_j (S)

j=0,1,...,M=1 such that PM_j(s) has degree 2.1 ana

(9) and (10) are valid for j=0,1,...,M-1.

On the last grid GM we have the following

expression for o(t) for each t EGM\GM_l.

*see the comment following (11)

)1

1,

2).



\J

(13) Y(t.hM
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M-1 )
(M-j)q
_Z hy PM_j

(13) Y(t,h,)
M j=0

(t)

M-1 By -
= o) + o™V 4+ T om M)
j=0

1
= @(t) + 0(h )

since E1£ﬁ23°"iﬁM£(M+l)Q-

To obtain the final solution, Y(t), at all grid

points in G the finest grid, we proceed as follows.

M’
For t = a+h, Y(t) 1is the first component, o(t), of

the computed solution to the system (4). For

t €Gy \ Gy_1- Y(t) 1is the solution of (13). For any
M
t eGM—l' since kthk = GM and the Gk s are nested,

there exists an index J, depending on t, such that

t€Gy,y

the first component, o(t), of the computed solution to

\GJ. The solution at this t, Y(t), will be

the system (11).

Since Bl is the smallest of the Bj's, the

solution Y(t) constructed above satisfies
P1
(14) Y(t) = o(t) + 6(h 7).

Before we examine the Bj's in detail we should
point out that the pullback method does not require use
of the iterative scheme of Aitken and Neville to perform

extrapolation. In the pullback method extrapolation is
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actually accomplished when we solve the various matrix

systems.

It should also be pointed out that the matrices

for the systems (l11l) are "nested" in the sense that the

matrix for the Jth system is an easily obtained sub-

matrix of the (J-1)st system. Thus we need only define

the matrix for (4) and the others can be obtained by

progressively deleting rows and columns of this matrix.

system (4) - the case

(15)

Specifically, recall that the matrix for the

1, 1, h2d

o e e e e,
q 2q

1, hl, hl ’ .« e e e ey
q 2q

1, hM' hM . e e e e ey

The matrix for the system (7) - the
q 2q

ll hll hl ’ . . . . L]
q 2q

1, h2, h2 ’ ’
q 2q

1, hM, hM , e e e e e,

b

j=0 - is given by

(M-1)g Mg )
hO ‘ hO

(M-1)qg Mq
hl ’ hl

(M-1)q Mg
hy, , h

M _
case Jj=1 - is given by

(M-1)q ]

hy
(M-1)g

h2
(M-1)q

hy

This matrix can be obtained from (15) by deleting the

first row and the last column of (15).
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For general J the matrix of the system (11)

is given by

i q 2gq (M—J—l)qﬁ
1, hl,i- hii1 .., hi.1

q 2q (M-J-1)q
1, hJ+2, hi o e e e, hJ+2

q 2q (M-J-1)q
_1, hy hy™ C e e ., hy )

which can easily be obtained by deleting the first J+1

rows and the last J+l1 columns of the matrix (15).

Consequently, when using the pullback technique

it is only necessary to define one matrix.

For large M the Vandermonde matrix (15) is
known to be ill-conditioned. Bjorck and Pereyra [ 2 ]
have developed an efficient algorithm for solving such
Vandermonde systems, which can be utilized for solving our

system.

Turning our attention to the Bj's, we shall
examine the cases qg=1 and qg=2 1in detail in the next

section.
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Section 3. The Pullback Method for g=1 and 2

We will need the following rather obvious lemma.

Lemma 1. a) Let f£f(x) = -2x + 2**1  then Vxe[l, =), £(x)>2.
b) Let g(x) = -x + 2x+1 then Vxe€[l,=), g(x)>2.
Proof. a) f£f'(x) = =2 + 2x+lln 2 > =2 + 2x 20 for x > 1.

Hence on [1l,«) f£f(x) is a monotone increasing function

with £(1) = 2 and therefore f(x) > 2.

b) g(x) = £(x) + x > £(x) > 2 by part a) since

X 1is positive. O

Our previous inductive argument has established
the validity of equation (10) for 3j=1,...,M-1l. From

this and (5) we can conclude for g=2 that

Py = min((M+1)2,2M+3) = (M+l)2
(16) .
By = Min(By s,y (M-3)2 + 27 + 2), j=1,...,M-1;

and for qg=1 that

BM = min(M+1,M+3) =M + 1

(17)

= min (B j + 23 + 2), j=1,...,M-1,

Pu-1 M~j+1’M’

Theorem 1. For g=1 and 2 we have

BM—j = (M+1)q' J=O' 1, oo.,M-lo
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Proof. The proof is by induction on j. From (16)

and (17) we have B, = (Mt+l)q and for j=1 we have
M

Pma1 min(BM.(M-l)q + 2 + 2)

min((M+l)qg, (M-1)gq + 2 + 2)

(M+1)q.

Assume BM-j = (M+l)q where 1<j<M-1l. Then by

(16) and (17)
Bue(341) = Byojo1 = NGBy 5. (M-3-1)q + P2 TIPS

min((M+1)q,Ma-qj + 2971 - q + 2)

from our inductive assumption. By Lemma 1 -gj + 2J+l

> 2
for g=1 or 2 and obviously =-g + 2 > O. Thus for

qg=l or 2
(Mrl)g < Mg + 2 < Mg - g + 29% - g+ 2
which establishes that B = (M+l)q. O

M - (j+1)

Theorem 1 shows that for the cases g=1 and 2
the pullback interpolation method yields the same accuracy
at every point of the finest grid as that obtained by

extrapolation at the endpoint, a+h.

If M is large then the polynomials PO' Pl' etc.;

will be of high degree and "Runge's phenomenon" may destroy

the accuracy of our computed solution. This can be
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circumvented to some degree by using lower degree poly-
nomials. Examining the proof of Theorem 1 we see that the
limitation on the accuracy we can obtain is the accuracy
to which we know eM—j' Thus for large M and j we
need only interpolate on enough points to guarantee
accuracy comparable to that of our data. This will not

affect the overall accuracy of our scheme and may avoid

"Runge's phenomenon".

Before we can actually compute the polynomials
PM-j we need to know e&_j(a). The method for determining
eﬁ(a) is given in the next section but at this point a
few more comments on the actual implementation of the

pullback method are in order

In the case where y(t) = (yl(t)...,y‘(t)) is
an A-dimensional vector, the functions Y(t.hk). p(t)
and ej(t) are themselves f-dimensional. Consequently
the applicable system - (4), (7) or (11) - must be
solved £ times, once for each component of the vectors.
Also a complete set of interpolation polynomials PM-j
must be computed for each component. We again wish to

point out the potential for using parallel processing

computers in this case.

There are cases where y 1is {-dimensional and

not all the above work is required. Specifically, suppose
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the A-dimensional problem resulted from reducing an Lth
order differential equation to a system of 4 first
order differential equations. Furthermore, suppose that
one is interested only in the solution to the original

equation and not in its various derivatives.

If the solution is desired on [O,h] then one
need utilize the pullback technique on the first component
of the solution vector only. If the solution is desired
on [0O,b] where b>h the standard procedure is to solve
the problem (1) on [O,h], then solve the same differential
equation on [h,h+h] wusing the computed solution at h
as the initial condition for the new problem. This procedure

may be repeated as many times as necessary to reach b.

In this latter case, the system (4) must be
solved £ times since we need to know all the derivatives
at h accurately. However the other systems and the
polynomials PM_j need to be computed only for the first

components of the vectors.
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Section 4. Determination of e&(a)

In order to construct the Hermite polynomials,
PM-j' of the previous section it is necessary to first
determine eﬁPj(a). The method for computing eé(a)
is given in this section. The actual computations are

carried out for m=1l,...,4 and examples are given.

In order to make effecient use of Gragg's [11,12]
results, we will follow his notation. The examples given
are for the case when y 1is 1l-dimensional. This sim-
plifies the actual computations. However, the theory is
valid for, and will be presented for, the general A4-dim-

ensional case, y=(y1,...,yz).

Denote by J the Jacobian matrix of £, evaluated

at the theoretical solution ¢,

_(tot) L iep
ay S Y

J(t)

and define symmetric k-linear operators f(k)(t,w(t)),
alt<b, by

4 L k 4 ‘k
: o f(t t)) 1
T e A

(x) _
£ (t,cp(t))yl...yk = cee ¥y
1=t A=l 1...ay"‘k

L

for k=2,3,...

fck)(t,cp(t))yl...yk is the k™

Fréchet deri-
vative of f£f(t,p(t)) operating on the vectors Yye- Yy

In the case where y is 1l-dimensional, J(t) is the
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first partial with respect to y of f and f(k)(t.w(t))yl-

(k)

3 _f(t,o(t) . i

2 fai t )yl...yk, that 1is, f(k)(t,q:)(t))yl...yk
y

is the kth partial of f with respect to y multiplied
by Yyereoeo Yo The yj's are functions of t on which

f(k)(t,m(t)) operates.

Let

(18a) eo(t) = op(t)

and, for m=1l,2,..., let em(t) satisfy
eé(t) = J(t)em(t) + am(t) + b (t)

(18b)
%Jﬂ =0 ait<b,

where

(18c) () = - T o e THD) ()

c o (8) = = 2 oyeny

and

(189) Tb_()2" = T )—}.-f(k)(t,m(t))(mz en ()2 ).
m=1 k=2 7° =1

The integer q and the constants o, are determined
from a generating function

(18e) A(z) = % opz3¥
X=0

Gragg [ 11, 12] has shown that both Euler's rule
and the trapezoid rule have asymptotic error expansions of

the form (2) with the coefficient functions determined by

- Yy
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(18) . For Euler's rule the generating function is
© 4
1 k _e"-1

For the trapezoid rule

_ 2 z
(20) A(z) = = tanh(2>

- 1rz\2 | 2 (z\4 _ 17 (z\6 _ _62 (z\8

i 3(2) + 15(2) 315(2) + 2835(2)

) L {=1) n+l,2n ,2n (£>2n—1 F ...
(2n) ! n 2
) th )
where Bn is the n Bernoulli number.
From (18a) eo(t) = o(t) and from (1)

o' (t) = £(t,o(t)), owl(a) = a; therefore we can find higher
order derivatives of eo(t) at t=a by successively
computing total derivatives of f and evaluating them

at t=a:

p-1
1) e P (a) = o) (a) - SELL@(O)  po g,

atP-1 t=a,

From (18b) ei(t) = J(t)el(t) + al(t) + bl(t)

and from (18d) bl(t) = 0. Using (18c), we find

al(t) = -aleo(qk+1)(t). Thus
P La(t)e, (t)]
(p) _ 1 (gk+p)
(22) ey (a) = dtp'l ‘t=a_al o (a).

The second term on the right of (22) is known from (21)

and since J(t) 1is known, the first term on the right
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can be computed because it involves only lower order

derivatives of el(t).

Proceeding inductively we assume that all derivatives

of egreyr - at the point t=a can be evaluated,

Je.
j-1
then from (18b)

ei(t) = J(t)ej(t) + aj(t) + bj(t)

so that

p-1
d [J(t)ej_(t) ] ‘a .(p-l)(t)
aeP~1 t=a J

(23) eép)(a) =

J

+b(p'1%t)‘ )
t=a t=a

Let us now consider each term on the right of (23) in

turn.

The derivatives of ej(t) appearing in

aP'l[J(t)ej(t>]
atP-1

are all of order less than p and can be

evaluated at t=a successively from the lowest to the
highest. Also J(t) and all its derivatives can be
computed. Thus, the first term on the right of (23)

is known.

From (18c) we see that aj(t) depends on various

derivatives of the error functions eo,el,...,ej_1 all

of which are known at the point t=a by our inductive

hypothesis. Consequently agp—l)(t) t=gq 1S known.
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Finally, bj(t) can be determined by collecting
the proper coefficients of zj on the right hand side

of (184). bj(t) will depend on various Fréchet derivatives
of f operating on various error functions. The Fréchet
derivatives can be computed. The error functions appearing
as arguments of the Freéhet derivatives are from the
collection eo,el,...ej_l. This is easily seen by observing
that the outer sum on the right hand side of (18d) begins
with k=2, which precludes the possibility of ej(t)

/
appearing as an argument of a Frechet derivative in the

expression for bj(t).

Once bj(t) is determined it is necessary to
find its (p-1l)st derivative. The Frechet derivatives
can be differentiated with respect to t and evaluated
at t=a and the derivatives of the error functions are
known at t=a by our inductive hypothesis. Thus,

bgp-l)(t) t=a ©Can be computed and equation (23) is valid.

Actually, equation (23) can be expressed entirely
7/
in terms of eo(t), J(t), the Frechet derivatives and
various derivatives of these functions evaluated at t=a.

This will be done later for the case qg=1.

Theoretically, at least, we can obtain eé(a)
for any m=0,1,... . Computationally, the larger m 1is,

the more complicated the expression to be evaluated. As we
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shall see, the computations of ei(a), eé(a) and eé(a)
are fairly easy to perform for qg=1 or g=2. 1In addition,

e&(a) is reasonable.

We consider the cases q=1 and =2 separately.

In what follows we will use a superscript in parentheses

to denote differentiation with respect to t. The sole

(k)

exception to this notation will be that £ will continue

to denote the kth Freéhet derivative of f£.
Assuming the validity of (18), with g=1, (18c)

and (18e) become

m
' - (k+1)
(18c) a (t) = - Zage 7" (t)
k=1
and
(18e) ' A(z) = E)akzk
k=0
respectively.
From (18b), with t=a, we have eél)(a) =a_(a) + Db _(a).
However, since em(a) = 0, Vm, we can conclude from (184d)

that bm(a) =0, VYm. Thus,

(24) el (a) = a_(a)
For m=1l al(t) = -aleéz)(t), so that
(25) a{p)(a) = -aleép+2)(a) for any p.
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In particular, we have

(1) (2)
€

(26) 185 (a).

(a) = -a

In order to determine for m=2,3,4 we

eél)(a)
will need the second through fourth derivatives of el(t)
evaluated at t=a. To obtain these we proceed as follows:

differentiating (18b) with m=1l, we obtain

e{z)(t) ) d[J(téil(t)] . a{l)(t) . b{l)(t).
Now by(t) =0 and a;(t) = -ajel?) (t). Therefore
(27a) (2) (¢ = d[J(;lel(t)] ayel?) (e)

g1 (tley (t) + J(t)e](_l) (t) - Ay (3) (t).
since e (a) =0 and e{M(a) = -a,e{?) (a) we nave
(27b) el (@) = a3(@efP (@) - 0l (a)
= o (el @) + s@efP (@)1,

Differentiating (27a) we have

(28a) e{3)(t) = dZ[J(:Lzl(t)] @1 é4)( )

7 (e, (+20 (el (431 efP (o)

o (4)
ajeq (t)

by Liebnitz's rule. Using (26), (27b) and el(a) = 0,

we can evaluate (28a) for t=a and obtain
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(28b) e{3)(a) = -2J(l)(a)a (2)(a) J(a)a (e (3)(a)+J(a)e(2)(a)]
aed (a)
= o, (201 (@) +(3(@)) 21e§P (@)1+3(@)e 3 ()4l (a)).

Differentiating (28a) we have
d3[J(t)e1(t)] _(5)
3 @18 (8)

(29a) el(t)

dt
4(3)

(3)

+T(t)e; (t)-aleo(s)(t)-

Using (26), (27b), (28b) and el(a) = 0O we have

(29Db) e{4)(a) -3a1J(2)(a)eéz)(a)-3alJ(l)(a)[ (3)(a)+J(a)e(2)(a)]

—ay3(a) (1201 (@) +(3(2))21e?) () +3 (@) e (a)

+eé4)(a ]—aleés)(a)

= -al{[3J(2) (a)+5J(a)J(1) (a)+(J(a))3]e(()2) (a) +
33 @ +3@) 21 @) +3(@r1ef @1+ ().

Note that all expressions for the derivatives of ey

evaluated at t=a involve only the derivatives of €5

and the derivatives of J with respect to t. The
derivatives of J with respect to t are a straight-

forward calculation and the derivatives of €5 can be

obtained by successively differentiating and evaluating

)
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the original equation (1).

For m=2; a2(t) = -, (2)(t)-a e(3)(t) so that
(30) aép)(a) = -ale{p+2)(a) - azeép+3)(t) for any p.

In particular using (24) and (27b) we have

(31) e?fl) (a) =a,(a) = -a;e {2) (a) azeé3) (a)
1[9(3)(3)+J(a)eé2)(a)]-azeé3)(a)
= (a -a, )e(3) (a) +a J(a)e(z)(a)

Now eél)(a)for m=3,4 will require knowledge
of the second and third derivatives of ez(t) evaluated
at t=a. Differentiating (18b) with m=2, we obtain

d[J(t)e, (t)]
(32) e2(2)(t) - 2 + az(l) t) + bz(l) (t) .

From (18d) we have
1_(2)
(33) b,y (t) = 3£ (£, 0(t))e; (e (1)

implying that

(2)
p{ () = 248 (Lalt)) o (r)e (6) + £02) (e, 0(e))e ()e](t).

2
Note that f(2)(t,m(t)) = fyy(t,w(t)) for the one dimen-
sional problem. Since el(a) = O we can conclude that
b(l)(a) = 0.

2
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Using (30), (31) and ez(a) = 0 we have

eéz)(a) = J(a)eél)(a) + aél)(a)

= ‘QlJ(a)e{Z)-azJ(a)eé3)(a)—ale{3)(a)-a2eé4)(a)

-al(e{3)(a)+J(a)e{2)(a))-az(eé4)(a)+J(a)eé3)(a))

Hence, eéz)(a) can be expressed in terms of derivatives

of eo(a) by using (27b) and (28Db),
el (a) = o220 () +(3(a)) 216} (@) +7(a) e 3 (a) +e*) (a)
+(@)?ef? (@ +3(a)1el?) () )-a, (el (a)+3(a) P (a)).

Collecting terms involving the various derivatives of

eo(a). we have
(34) ez(Z) (@) = (O‘i'az)ec()‘” (a)+(2ai'az)J(a)eé3) (a)
+202[5 1 (a)+ (3 (2)) 216§ (a) .

Differentiating (32) again, we have

a®[a(t)e, (t)]
2

e§3)(t) = +a§2)(t)+b§2)(t).

dt
By differentiating (33) twice and using el(a) = 0, we

find that b§2)(a) = f(z)(a,w(a))eil)(a)eil)(a). From

(2)

2 (a)=-ale{4)(a)-a2eés)(a) and since e2(a) =0

(30), a

we have
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(4)

e§3)(a) = 2J(1)(a)ezu)(a)-!-J(a)ez(Z)(a)-ale1 (5)(a)

(a) - -a,eq
+f(2)(a,m(a))e{l)(a)el(l)(a).

Substituting for eél)(a). e§2)(a). e{4)(a) and e{l)(a)

from equations (31), (34), (29b) and (26) respectively,

we have
ef¥(a) = 2(0,? -0) 0 (@) 3 (@) +20{P 5 (a) sV () e P (a)
+(a,? o) 3@ el () + (20?0 ) (32)) e (a)
+(2a12 [J(a)J(l)(a)+(J(a)) e (2)(a)
2 130 (@) 453(2) 3V (@) + (32?18 (a)

+a,? 1300 (@) +(3(2)) 216§ (@) a2 (@) e (a)

1l
2 eés)(a)—azeéS)(a)

2 f(2)(a,m(a))eéz)(a)eéz)(a).

Collecting on the derivatives of eo(a), we have

(35) e§3)(a) = (G -Q )e(S)(a)+(2a -a )J(a)e(4)(a)
+[(5a§-2a2)J(1)(a)+(3ai-a2)(J(a))z]eé3)(a)
131351 (@)493(2)5 M (@143 (30201 % 1ef? (@)

+a§f‘2’(a,w(a))eéz’(a)eéz’(a).

With m=3 from (18c)' we have
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a3(t) = -a,e 52)(t) -a e(3)(t)—u e(4)(t) so that
(36) agp)(a) = —ale§p+2)(a)—a2e{p+3)(a) —azel e (P*4) ()

for any p. From (24) we have

e (2) (3)

egl)(a) = a3(a) = -a,e, (a)-azel (a) - -ajeq

(4)(a).

Substituting (34) and (28b) for eéz)(a) and e{3)(a)

respectively, we have

(1) (a) = -Cll(a -a, )e(4) (a) - a1(2a )J(a)eé?’) (a)

17%2

~20315 M (a)+ (32 2168 ()

1(
a2[2J(l)(a)+(J(a))2]eé2)(a)

(4)

(4)
1%2%0 (a).

a J(a)e(3)(a)+a 380

+a g (a) -a

Combining like derivates of eo(a), this becomes

37 eV (a) = (20,0,-a3-a,)ef? (a)+2(00,-0) 3(a) el ()
+[(ala2-2ai)(J(a))2+2(ala2-ai)J(l)( )]e(z) (a)

Differentiating (18b) with m=3, we have

d[J(t)e3(t)]
dt

e§2)(t) - +a§1)(t)+b§1)(t).

From (18d), b, (t) = 1 f(3)(t,m(t))el(t)el(t)el(t) +

6

f(Z)(t,w(t))el(t)e2(t) so that bgl)(a) = 0 as



43

el(a) = e2(a) = 0. Substituting for agl)(t) and using

e3(a) = 0, we have

el (a) = s(@eM (1-a el (@)-a,e () (a)-ase % (a).

162 2€1

Substituting (37), (35) and (29b) into this equation yields

(4) 2 (3)

e§2)(a) = (2ala2 ai-a )J(a)e

(a)+2 (aga,-03) (3(a)) %e?’ (a)

(1) (2)

+[(ala2—2ai)(J(a))3+2(ala2-ai)J(a)J (a)]e (a)

+(a1 5~ i)eés)(a)+(ala2-2a{3))J(a)eé4)(a)

+[(2a70,-503) 31 (@) + (a0, [3a3) (7 (a)) 21e 8 (a)

(2)

31352 @+95()0 M) (a) 435 (a) Pe§? (a)

3 (2)

-ajf (a, w(a))e(z)

(2) e (5)

(a)+al 2€0 (a)

(a)eq
oLzJ(a)eé‘l)(a)+<:1]_0L2[3J(1)(,-:1).|.(J(a))2]e(g3)(a)
+a,0,[35?) (@) +453(2) M (@) +(5(a)) 216§ (@) -a e ) (a) .

This can be rewritten as

(38) e(2)(a) = 2(aja,- (5)(a)+(4a a -3a3-a3)J(a)eé4)(a)

1 ajleq 1%

+[5(aq0,-02) 5 (a) + (40 a,-503) (3(a)) 2]e§?) (a)

1%2
+[3(aja z-al)J(B)(a)+(7ala2-llai)J(a)J(l)(a) +
Qaaéﬁ”ﬂﬂ)huNw

—aif(Z)(a.w(a))eéZ)(a)eéz)(a).
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Finally for m=4 we have

(2)

aje, e(3)(a)-a e(4)(a) -a, (5)(a)

(a) —a

eil)(a) = a4(a) = 5

Using (38), (35) and (29b), this can be written as

aiaz)eéS)(a)+(3ai+a a '4Giaz)J(a)eé4)(a)

eil)(a) = 2(ai+a Qa 1%3

1737

+[5(Qi-aia2)J(1)(a)+(Sai—4aia2)(J(a))z]eé3)(a)

+(3(at-02a) 5 () + (12a3-7020,) () 31 () +
(Sa —2ala ) (J(a)) ]e(Z)(a)
+ate? @,0())el? (a)ef? (@)

+(a§ alaz)e(s)(a)+(a 2a 1% )J(a)e(4)(a)

+[(2a§-5aia2)J(l)(a)+(a§—3aia2)(J(a)) ]e(3)(a)
a2, (332 (a) 495 ()3 (2) 43 (3(2)) 3 1e P (a)

0.2(1

a2a,£?) (@, 0@)ef? (@)ef? (a)

2

o (5)
1%3%0

L)

+a (a)+ala J(a)e(4)(a)

+a1a3[ (a)+(J(a)) ]+(J(a))e a)

o, (37 (@) 455210 (@) +(3(2)) 3 1e{?) (a)

o (5)
azes (@)

Rearranging terms, we get



(1)

(39) N (
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(39) eil)(a) = (2ai-3aia2+3ala3+a2-a )eéS)( )

+(3ai-6aia2+2ala3+a )e(4)( )

+[(5a§—10aia +3a.a +2a§)J(l)(a) +

2 173

(507-70> agtal) (3(a))?1ef?) (a)

la+a

271

2 20, +

4
+[3(al-2a 1%

a +ala3)J(2)(a)+(llai—l6a

2

(1)

(a) +(5a3-5a2a 40 a,) (3(a)) 2 Tef?) (a)

Sala3)J(a)J 1%3

+(al-ala2)f(2)(a w(a))e(z)(a)e(z)( ).

To summarize, equations (26), (31), (37) and (39)

can be used to determine e{l)(a), eél)(a), egl)(a) and

eél)(a)

respectively. A computationally more effective

recursive procedure for g=1 1is given in Table 3 below.
TABLE 3

Step 1 Compute eél)(a). eéz)(a). eé3)(a), eé4)(a), eéS)(a)....

Step 2 Compute J(a), J(l)(a), J(2)(a),

Step 3 e{l)(a) = -a,e éZ)( )
e{z) (a) = J(a)efl) (a)-a;e (3) (a)

e{3)(a) = 2J(1)(a)e{l)(a)+J(a)e{2)(a)-a (4)(a)

(4) (a)

3J(2)(a)e{1)(a)+3J(l)(a)e{Z)(a)+J(a)e{3)(a)



1

Step4 e
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TABLE 3 continued

e(Z)(a)—a (3)(a)

Step 4 eél)(a) -ajey

ef? (@ = s@elt (a)-a el (a)-a el (a)
e§3)(a) = ZJ(l)(a)eél)(a)+J(a)e§2)(a)-ale{4)(a)

: (5)( )+f(2)(a w(a))e(l)(a) (1) a)

%2%0
Step > eél)(a) = (2)(3)-0 e(3)(a) —G3€4 (4)(a)
ef?(a) = s@elt (@)1-a;efP (a)-a,e () (a)-a e (a)
(1) () o (2) (3)

Step 6 ae, (a) - -a,e;”" (a)- -ase, (4 )(a) -a,e éS)( )

Table 3 lists the equations necessary for the

(1)(a)...

computation of e; .,eél)(a) for a method which
satisfies (18) with g=1. Of course, Table 3 can be
continued. Each new error function, whose first derivative

at t=a 1is to be computed, requires one additional computation
at each step of the table and the addition of one more step

to the table. The only computations in Table 3 which are not
simply the result of plugging in formulae are those in steps

1 and 2. and the computation of various Frechet derivatives

as they become necessary.
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To illustrate the use of Table 3 we compute e{l)(a),
eél)(a), egl)(a) and eél)(a) for the differential equation

in example 1 using a numerical method for which g=1.

Example 2: Suppose we are using Euler's rule to compute

the solution to

y'=y’; y(0)=.2; oO<t<l.

From equation (19) we have that Qy = TE%TTT for Euler's

rule. In this case Table 3 becomes

Step 1: eél)(o) (v (0))? = .040000

(1)

eéz)(Z) = 2y(0)y () (0) = .o16000
eé3)(0) = 2[y @)y ? (@) +(y* (0127 = .o09600

el (0) = 21y (@y® (@+3y M 0y P (0)] = .007680

P 1) = 21y @y *) 01 +ay P 01y B (0143 (v (0112

= .007680
Step 2: J(0) = 2y (0) = .400000
s (0) = 2y(1)(0) = .080000
3@ (1) = 29 (0) = .032000
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Step 3: e{l)(o) = -.008000
e{?) (0) = -.008000
6{3)(0) = -.008520
e (0) = -.009936
Step 4: eél)(o) = .002400
eéz)(O) = .001810
e§3)(0) = .006076 since f(Z)(a.w(a)) = 2.
Step 5: eél)(O) = -.007950
eéz)(o) = -.004882
Step 6: eél)(o) = .0017780

It should be emphasized that the computations in
Steps 1 and 2 are performed by the user not by the machine.
Also note that the signs on the derivatives of the error
functions alternate in precisely the same manner as the signs

of the errors for Euler's rule.

Turning our attention to the case g=2, we assume

(18) is wvalid with g=2 so that (18c) and (18e) become



(18c) "

and

(18e) "

In
analogous

about the
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(18c) " () = = Doy e 5 (0)
and
(18e) " A(z) = Sa z2K

k=0ak

In order to construct a table for the case g=2

analogous to Table 3 we will need to collect more information

about the functions bm(t) for m=1,...,4. From (18d) we have
bl(t) =0
_ 1.(2)

(40) by (t) = 230 (e, 0(t))e; (eg (e (0)+£2) (£, 0(t)) e (e, (t)

L (£, 0(e)) e, (e (e (e, (014223 (£,0(8))

b4(t)
eq(the) (e, (0)+£ %) (t,0(t))e) (t)e, (¢)

+ 262 (e, 0(8))e, (e, ().

Since our goal is to produce a table for evaluating
e{l)(a),...,eél)(a) we examine what information will be
necessary to determine eél)(a). From (18b) with m=4 we

have
st (a)=a, (@)

since e4(a) = b4(a) = 0. From (18c)" we can conclude

o (3) (9)

eél)(a) = -0 ey (a)-a2e§5)(a)-a3e{7)(a)-a4eo (a).
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In general, by (18b) we see that

aPta(te (t)]

ef;(a) = + arflp'l) (t) +bxflp'l) (t); m=1,...,4.

atP~1
(3)(a)

Thus in order to determine e, we need to know b(z)(a):

3
to determine eés)(a) we need bé4)(a); and to determine
e{7)(a) we need b{G)(a). The necessary computations are

given below. To simplify the notation, the arguments of the

functions are suppressed.

Since bl(t) = 0 all derivatives of bl(t) are

zero. From (40), b2(t) = %f(z)(t,m(t))el(t)el(t) and

therefore;

(2)
b (e = 2AUETD (@) (D)

=32 a& 4141 1)
2. (2)
10+ £y e
at
re@ oD (1
3.(2) (2)
(3),,, _ 1 &°f (2),(2) (1), &%) _(2)
b, (t) =3 P eje+3(£°77) eje, ' +3 T3 e eg
(2)
b3 LE) (D (1) 56(2) (D) (2 (D) [3)
4_(2) 3.(2) (2)
(4) 1 gl a3s (U, i (1) _(1)
by (t) = & TE— e e a4 SE— 6 E— e
2 2 a4 121 23 C1°1 2 Sl °1
o 22 ), ae®) e ¢ as?) (2
2 121 dt a1 €1
+3f(2)e{Z)e{2)+4f(2)e{1)e{3)+f(2)ele{4).

Using the fact that el(a) = O we can obtain



(1)

L (2)

(3)
(41) b,

b (4)

Us
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S
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(@) = £ @.e@)el (@elt (a)

(@) = 3£ (@ o@)el (@ef? (a)

(2)
df (attcht)) el(1) (a)e(l) (a) ]
t=a
(o) = £ a1 (D),
dt2 t=a 1 1
ar?) (t,0(t)) (1), _(2)
+12 dé e (a)e (a)

t=a
+3£ 2 (a,0(a))e{? (a)e{?) (a) +ae (D
(a,p(a) )e](_l) (a)e{a) (a).

Using the definition of b3(t) given in (40), we

€ déf) R e e

e eMe 1) (1)

5 2dft(23) f1°1%1* dfd(:) ereref )+t et efV
2o e el 9—%)— eje,+2 d—fd(j—)- e,

+2 Qfa(:—) ereiVae@e(De 4oe( (D (1)e(2)g (2,

el(a) = ez(a) = 0, at t=a we have



(42)

b

evaluatir

Step 1.

Step 2.

Step 3,
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o)

bgl)(a)
(42)

{2 (a) = 26/ (a,00a))efP (@1eft ().

We can now summarize the computations involved for

(1) (a),.

evaluating e ..,eil)(a) when g=2.

TABLE 4

(8)

Step 1: Compute eél)(a), eé2)(a),...,eo (a), e(g)

(a),...

(5)

Step 2: Compute J(a), J(l)(a),...,J (a),..

Step 3: e{l)(a) = (3)(a)

e{Z)(a) = J(a)e{l)(a)-aleé4)(a)

(2) (5) (a)

e{3)(a) = 2J(1)( )e(l)(a)+J(a)e (a)-a

e (@ =35 @e{ (1435 @efP () +3@1e P (a)

o (6)
“1%0

3
e{S)(a) = kZ)(ﬁ)J(k)(a)e{4-k)(a)—a (7)(a)
=0

(a)

4
e{6)(a) = kZ)(i)J(k)(a)e{S-k)(a)-a (8)(a)
=0

5
e @ = 2 ()% @ef (a1-ayes” (2
=0



Step 4:

Sg

‘ep 5.
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TABLE 4 continued

Step 4: bél)(a) =0

(2)

b{? (a) = £ (a0 (@elV (a)

a)el

b2(3) (a) = 3[f(2) (a,cp(a))el(l) (a)e{Z) (2)

(2)
JAE 77 (to(t)) efl)(a)efl)(a)]

dt t=a

2.(2)
p{ (a) = e E (L)) (D) (D),

dt2 t=a

(2)
+ 1249f %ﬁ;@it)) t=ael(l)(a)e{Z)(a)

+3f(2’(a,m(a))e{2)(a)e{Z)(a)

+ag(2) (a,p(a) )e{l) (a)e{” (a)

Step 5: eél)(a) = —ale{3)(a)-a (5)(a)

62(2) (a) = J(a)ez(l) (a)_a (4) (a)_a e(6) (a)
el (a) = 200 (@ eft (a1+3(are?) (@) -a,e ™ (a)

a,e é7)(a)+b(2)( )

(8)
*2%0

e (a) = E}(ﬁ)J(k)(a)e§4-k)(a)-ale{7)(a)

(a)+b(3)(a)

a,e ég’(a)+b§4’(a)
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TABLE 4 continued

Step 6: bél)(a) =0

b{? (@) = 2602 (a,vtaneft (a)eft) (@)

Step 7: eél)(a) - -ale§3)(a)-a2e(5)(a)—a e(7)(a)
e(2)(<’:1) = J(a)egl)(a)-a (4)(a) - e(e)(a) ~a, (8)(a)

) (a) = 20 a)e{M (a)43(2)e{?) a)

€3
: a,e?) (a)-a,e{") (a)-0 e f?) () 0 {?) (a)
Step 8: eél)(a) = -a,e 53)(a) -ae éS)(a) -a e(7)(a) -a, (9)(a)

Table 4 can be continued. Each new eél)(a) to be
computed will require two additional computations at each
existing step of the table and the addition of two new
steps to the table. One new step will contain the computations
of bp_l(a) for p=1 and 2 and will preceed the step
where (1)(a) is computed. The other new step will be the

(l)(a).

computation of en

Example 3: Compute e(l)(a),... él)(a) for the equation

y =y°: y() = .2; 0<t<1 when the trapezoid rule is
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used as the numerical method for solving the problem.
The generating function for the coefficients in (18)

for the trapezoid rule is given by (20). Specifically,

__ L _ 1 _ 17 . 1 _ 62 1
°17 7120 % TTor %3 7315 C 6 2™ % T 2835 E

If the computations in Table 4 are performed for this

example the results are: e{l)(a) = .0008; eél)(a) = .000032:;

6

egl)(a) = 1.3867 x 10 °; and eél)(a) = 6.229 x 10

As is apparent, the computation of eél)(a) for
m >4 becomes quite involved, particularly when g=2.
However, there are applications (see Section 1 of Chapter 3)
of the pullback method with M<4 which are more accurate

than other methods currently available.
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Section 5. Numerical Results for Initial Value Problems

In this section the pullback method and the method
due to Lindberg [19] are compared theoretically and numerically.
Since Lindberg's approach is conceptually and notationally
quite different from ours, a discussion of his method is
included. We will confine the discussion initially to the
case M=4 and g=2 as this will suffice to point out the
differences between the methods. Unfortunately, Lindberg's
notation and that used here are in some instances in complete
opposition to one another. The differences will be pointed

out in footnotes.

Let h >0 Dbe the basic steplength and for k=0,1,...,4
define steplengths hk = h/2k and grids G, = {t?=a+ihk:
h/24

A
i=0,...,2%}. 1In addition, let h = = h/16*.

Assume that the numerical method being employed to

solve the problem (1) is such that the expansion

(43)  Y(t5.h) = o(th) +e; () nee, () ntte, () nlre, (N2 +om©)

is valid for each i=O,1,...,2k and for each k=0,1,...,4.

Lindberg's method is as follows. Number all grid

points according to their order of occurrence in the finest

A
*In Lindberg's paper h 1is taken to be the basic steplength
and hk=2kﬂ k=0,1,...,4. Thus the grids Gk and steplengths
hk are numbered in the opposite order.
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grid, obtaining t =a+h. At each ti

o=a,tl,...,t16

perform as many extrapolations as possible and denote the

A
computed solution after n extrapolations as Yn+1(ti'h)'

Thus at t16 we can perform 4 extrapolations obtaining
A A
,ﬁ), Y, (t A, ¥, (t . h) ..., Y (. h) where
Y, (t ) is the solution computed with the numerical

16’
A
method: i.e., Yl(ti’h) = Y(tg,h4). At t8 we can perform

3 extrapolations; at t4 and tlz' 2 extrapolations

and at t., t t and t

2 6 14° 1 extrapolation.

10

A
According to Lindberg each Yj(t,h) satisfies the

relationship

44) t 1/:) ) % )},1\2\’
( v (Eh) = olt) + TXjpe (t

where for each j

The goal here is to define Y at all points of the

5
finest grid. 1Initially Y is known only at the two points
A
ty=a and t16=a+h=a+16h At each of these points form
A A ’\10 s

Ys(t,h)-Y4(t,h) = xﬁ4 4(t)h +6(h by (44). Via linear
interpolation obtain an o(hl * approximation to

“X44 4(t )h . Add this approximation to Y (te,ﬁ) to

obtain Ys(t8,£)+o(h . At the next stage form the

*This will be discussed in some detail later.
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A A
differences Ys(t,h)-Y3(t,h) at the points t=t,, tg and

_ g 6 . 8

t1- By (44), v (t,h) -y, (.=, e, (00FCx, e, (0

+o(hlo). Using quadratic Lagrange interpolation obtain
3 . . . 6 8

an O(Q ) approximation to -h33e3(t)ﬁ —K34e4(t)ﬁ at

t=t4 and t=t12 which is added to Y3(t.h) at these points
to obtain YS(t,ﬁ) for t=t, and t=t,;,. However Ys(t,ﬁ),
t=t4,t12, is only an G(hg) approximation to ¢o(t). This

process is continued until Y5 has been defined at all
ti’ i=0,...,16. The result, according to Lindberg is
Ys(ti,ﬁ)=w(ti)+o(ﬁ9) for i=1,...,7 and 9,...,15 while

A A
Ys(ti,h)=cp(ti)+o(hlo) for i=8 and 16.

Now the pullback interpolation method will yield
o(hlo) accuracy at all ti's and Lindberg's method yields
O(ﬁg) at most ti‘s. Since £=h/16 it looks as if Lindberg's
method is of higher accuracy. This is not so for the following
reasons: First, Lindberg presents the error analysis for
extrapolation in terms of the smallest stepsize available,
ﬁ. The 'G' notation is designed to be information-
supressing and the remainder terms in extrapolation which are
said to be G(ha) are actually of the form Cth(t)
where C and B are constants and g(t) is a continuous
function of t. On a closed t interval g(t) will be
bounded and we can write Cth (t) _<_CohB = o(ha) . We could also
write Cth(t) = éﬁag(t)g;éoﬁa = O(ﬁB) by defining

A A
C = 16BC. The problem here is the fact that Co will be
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quite large compared to Co- When the error in extrapolation
is expressed in terms of the largest or basic steplength,

h, the constant C will be smaller than 1. If this same
error is expressed in terms of the smallest stepsize, ﬁ,

the constant 8 will be of the form (45) and is larger

than 1. 1In fact, when expressing the error in terms of the
smallest stepsize we are unable to prove the convergence of
the Aitken-Neville extrapolation scheme; indeed, an analysis

of (45) shows that the constants 4+ as the stepsizes

kk
hk*O.

Secondly, the magnitude of the constant e is
further increased in Lindberg's analysis when interpolation
is performed. Recall that Lindberg expresses the error
in interpolation in terms of the smallest stepsize also.
This means that at the first step when Lindberg is
performing linear interpolation to - 44e4(t)l/§18 at the
points t and t16 he obtains the error

0]

(t-t,) (t-t

)
- 57 16 X44e£2)(§)%8 where t <E<t

16° Lindberg

A
calls this error O(hlo): to do this one must interpret
A
the maximum of (t-to)(t—t16) as being G(hz). The

maximum occurs at the midpoint t8 and is easily seen to be

2 22
C%)Z = %r = 164h . To call this O(hz) further increases

the size of the constant being suppressed. Note that in the

error analysis for the pullback method, (%)2 is inter-

preted as a]-'-hz =G(h2) which causes the constant to decrease.
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When Lindberg claims an error of the form G(QB)
and the pullback method claims G(hB), the inequality,
o(hB) S.G(QB), holds when the constants o and éo
are taken into account. Thus o(hlo) in actuality is

A
smaller than o(hg) and the pullback interpolation method

yields a more accurate solution.

This increase in accuracy is due solely to the fact
that we are using Hermite interpolation with the additional
data eél)(a). In fact, if the pullback interpolation
method is changed so that Lagrange interpolation is used
the results are identical to Lindberg's. In this case

om?) = ottd).

Let's examine the differences between using Hermite

and Lagrange interpolation when g=2 for arbitrary M.

For 3j=0, we know eM(t) at two points with
accuracy o(hz). Let PM(t) be the Hermite polynomial
constructed as outlined and let LM(t) be the Lagrange
interpolation polynomial for these two data points. We have
Py(t) = ey (t)+0(h°)+0(h®) and L, (t) = e, (t)+o(h®) +on?)
where the first 'O' term is the error in interpolation and
the second is the error in the given data. Thus both
PM(t) and LM(t) are G(hz) approximations to eM(t).
When LM(t) is used numerically, as it is in Lindberg's

method, the solution at the midpoint of the interval is,
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in most instances, less accurate than the solution which can
be obtained by just performing extrapolation (see the examples
concluding this section). This phenomenon, which Lindberg
calls attention to in his paper, does not occur when

PM(t) is used.

For j=1, we know eM 1(t) at three points with

accuracy o(h?) . In this case, Py_1(t) = eM_l(t)4-O(h4)
4 4 3 4
+0(h7) = e, ;(t) +0(h7) and L, ,(t) = e, ;(t) +0(h”) +0(h")

= eM_l(t)+-G(h3). Here it is the error in interpolation

which determines the final accuracy so that there is a real

gain when Hermite interpolation is used.

The situation is the same when Jj=2, that is,
_ 6 6 . _
Py (t) = ey (t) +0(h7) +0(n”) while L, ,(t) = e, . (t)
+ o(hs)-roth). Again the error in interpolation dominates

and Hermite interpolation yields higher accuracy.

For any Jj >3, it is the error to which we know

eM_j(t) that dominates, since for Jj >3 we have
2741 > 2j+2. The 1last inequality can be established by a
proof similar to that of Lemma 1. Thus the advantages of

using Hermite interpolation occur when Jj=0,1 and 2.

We now examine some examples of results obtained
using the pullback interpolation method when numerically
solving first order initial value problems. All numerical

computations were done on the CDC 6500 installation at
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Michigan State University. Calculations were done in single
precision floating point arithmetic yielding 14 accurate

decimal places.

The first example in this section is a continuation

of Example 2, Section 4.

Example 4: Solve y'=y2, y(0)=.2, 0it<l wusing Euler's

method and pullback interpolation with M=4.

The basic stepsize is taken to be h=1 and, since

M=4, the finest grid, G consists of 17 equally spaced

41
points in [O,1]. That is,

G, = [ti: t;=0+i h/16, i=0,1,...,16}.

The theoretical solution is vy (t) = 1/(5-t) and the
numerical results are reported in Table 5 below. Table 5 is
constructed to exhibit the error in the solution computed

by Euler's rule and the error in the solution computed by
pullback interpolation at each grid point of G4. In each
case the error is the computed solution minus the theoretical

solution.
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TABLE 5

Error using Euler Error using pullback

10
11
12
13
14
15
16

-3.15 x 10~ .01 x 10~

-6.53 x 10~ 2.97 x 10°
-10.11 x 10~ 8.47 x 10~
-13.93 x 10~ 13.16 x 10~
-17.99 x 10~ 14.87 x 10
-22.31 x 10~ 13.26 x 10~
-26.92 x 10~ 9.17 x 10~
-31.82 x 10~ 3.62 x 10~
-37.05 x 10~ -2.01 x 10~
-42.63 x 10~ -6.58 x 10
-48.58 x 10~ -8.92 x 10~
-54.93 x 10~ -8.26 x 10~
-71.71 x 10~ -4.97 x 10~
-68.95 x 10 -1.26 x 10
-76.68 x 10~ - .54 x 10~
-84.96 x 10 -3.30 x 10




64

The results given in Table 5 can be quickly summarized
by noting that Euler's method can guarantee only two accurate
digits at all grid points of G4 while the pullback method

can guarantee 5 accurate digits.

Pullback interpolation based on Euler's rule with
M=4 was also used to compute the solution to yH=y2,
y(0) = .2 with basic stepsizes of h=1/2 and h=1/4.
In the first case the solution is computed on [0,1/2]
and in the second case the solution is computed on [0,1/4].
The results are summarized in Table 6 below. The first two
columns are the results for h=1/2 and the last two are
the results for h=1/4. Table 6 is arranged to exhibit the
correspondence between grid points for the two different

mesh sizes.
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TABLE 6
h=1/2 h=1/4
i Error using pullback i Error using pullback
0 0 0 0
1 .15 x 10710
1 1.96 x 10°1° 2 11.93 x 10710
3 33.93 x 10°1°
2 189.25 x 10~ 1° 4 50.92 x 10°1°
5 55.90 x 10" 1°
3 532.79 x 107 1° 6 47.10 x 10°1°
7 27.94 x 10710
4 817.32 x 10°1° 8 3.45 x 10710
9 21.15 x 1010
5  905.78 x 10~1° 10 40.66 x 10-1°
11  50.02 x 1071°
6 777.95 x 10~ :° 12 45.84 x 10~ 1°
13 29.33 x 10719
7  486.78 x 10 ° 14 9.12 x 10°1°
15 1.17 x 10°1°
8 110.79 x 10~ 1° 16 .40 x 10710

9 269.05 x 10

10 571.77 x 10~

11 718.91 x 10

12 657.64 x 10

13 408.36 x 10

14 108.33 x 10

15 26.89 x 10~ 1°

16  32.13 x 10°1°
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As can be seen by examing Table 5 and Table 6 the
smaller the basic steplength is the more accurate are the
computed solutions. This is in agreement with results for

exprapolation (see Lambert [18] and Gragg [11,12]).

Example 5: Solve y'=y, y(0)=1, 0<t<l using the trapezoid
rule, and pullback interpolation with M=4. Using a basic
steplength of h=1 we again obtain the solution at 17
equally spaced points in [0,1]. The theoretical solution

of this equation is y(t)=et and the error reported is the
computed solution minus the theoretical solution. The results
of Example 5 and the next example will be presented simul-

taneously in Table 7.

Example 6: Solve y'=-sin t, y(0)=1, O<t{l wusing the
trapezoid rule and pullback interpolation with M=4. The
basic steplength is taken to be h=1 and the grids are the
same as in Example 5. The theoretical solution is given by

y(t)=cos (t).
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Error in

for y'=y

.12
‘48
1.05

1.70

0]

X
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TABLE 7

pullback
with h=1

3.6
2.9

-2.1

0]

X

Error in pullback
for y'=-sin t with h=1

10-13

10-13

10—13

10—13

10-13

10713

10-13

10—13

10-13



68

The equations in examples 5 and 6 were solved in the
same manner with a basic stepsize of h=1/2 to obtain
so 1 utions at 17 equally spaced points in [0,1/2]. The

re s ults of these computations are presented in Table 8.

TABLE 8
Error in pullback Error in pullback

i for y'=y with h=1/2 for y'=-sin t with h=1/2
o 0 0

1 0.0 x 10713 ~0 x 1071

2 2 x 10713 -1 x 10714

3 .4 x 10713 -1 x 107t

4 .6 x 10713 -1 x 10714

5 .9 x 10713 -0 x 10714

6 1.0 x 10743 -1 x 107t

7 .7 x 10713 —0 x 10714

8 .3 x 10713 -1 x 1071°

9 - .4 x 1013 -1 x 10714

10 - .9 x 10713 -1 x 107t

11 ~1.4 x 10713 -1 x 10714

12 ~1.7 x 10713 -2 x 10714

13 -1.8 x 10713 —2 x 10714

14 -1.4 x 107143 -2 x 10714

15 - .9 x 10713 -3 x 1071

-13 -14

16 - .6 x 10 -3 x 10



69

As the results presented in Table 7 and Table 8
so wividly indicate, pullback interpolation will yield

un i form accuaracy at all grid points of the finest grid.

Lindberg in [19] presents numerical results

ob ttained when solving y'=y, y(0)=1l], on [0,1] using the

txr apezoid rule and his interpolation method. The largest

ex xror Lindberg obtains is at t. and has magnitude 16 x 10710,

E>xamining Table 7 we see that the largest error produced for

tlhhi s equation when using the pullback method is the error
irmx extrapolation at the endpoint, t16=l' The magnitude of
thhis error is 6.13 x 10~ 10,

In the next series of examples extrapolation,

Lindberg's method and pullback interpolation are compared

numerically.

Example 7: Solve y'=y2, y(0)=1, O0<t<l wusing the trapezoid

rule . Choosing a basic steplength of h=1 and M=3, the

soluation is computed first by using extrapolation as often
as i s possible at each grid point of the finest grid,
Gy = {ti: ti=o+i h/8, 1i=0,1,...,8}. Secondly, the solution

is Computed on G, by using Lindberg's method as described

earlier in this section. Lastly, the solution is computed

on G3 using pullback interpolation. All errors are
given as the computed solution minus the theoretical solution.

The Yesults are presented in Table 9.
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TABLE 9

Error in the best Error using Error using
i extrapolated value Lindberg's method pullback
o 0 0 0
1 1.7 x 107 .8 x 10710 - .4 x 10710
2 -1.0 x 1078 -26.7 x 10710 -3.0 x 1071°
3 5.9 x 10°° -30.3 x 1071°* -4.7 x 10710
4 3.7 x 10°1° - 5.9 x 10710 ~1.9 x 10°1°
5 1.2 x 107° 22.0 x 1071° 3.7 x 10°%°
6 -5.3 x 1078 23.9 x 10710 6.2 x 107 0"
7 1.9 x 107" - 4.0 x 1071° 8 x 10710
8 -1.5 x 10°1° - 1.5 x 10°1° -1.5 x 1071°

*grea test absolute error for the method

Exampile 8: solve y '=-sin t, y(0)=1, O<t{l using the
trapezoid rule. We again take h=1 and M=3 and compute
SO lutions using extrapolation, Lindberg's method, and

Pullback interpolation. The results are given in Table 1O.



71

TABLE 10

Error in the best Error using Error using

i extrapolated value Lindberg's method pullback
0 0 0
1.02 x 10> 178.36 x 10~1° 9.46 x 107 1°
- 4.22 x 1078 37.54 x 107 1° 6.33 x 107 1°
9.05 x 107> - 47.24 x 10°° - 2.47 x 10710
9.96 x 107° - 9.23 x 1071° .37 x 107 1°
24.62 x 107° 31.70 x 10710 4.92 x 10710
~36.48 x 107 - 63.15 x 100°  _17.54 x 107 1°
46.76 x 107>  -239.94 x 1071%"  _62.65 x 1071°"
96 x 1001° - 96 x 1071° - .96 x 10710
*greatest absolute error for the method

Comparing the results in Example 7 and Example 8,
we see that the solutions obtained with both Lindberg's
method and the pullback interpolation method, at the inter-

mediate grid points ti' i=1l,...,7, are more accurate than

the best extrapolated values. The pullback interpolation
method is the most accurate of all, being almost a full
decimal place better than Lindberg's method at all inter-

mediate grid points.

As mentioned before, one drawback to Lindberg's

method is that his results at the midpoint of the interval
than the results

are no better, and in fact often worse,
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obtained by just performing extrapolation. This phenomenon
does not occur when the pullback interpolation method is
used, as a comparison of the errors at t4 in Table 9 and

Table 10 clearly demonstrates.

Examining Table 10 we note that the pullback method
is dramatically less accurate at t7 than it is at all
other grid points. In an attempt to explain this behavior we

computed the following example.

Example 9: Solve y'=-sin(t), y(0)=1] on O0O<t<l/2. The
only difference between this example and Example 8 is that we
now take h=1/2 as the basic stepsize. The results are

presented as

TABLE 11

Error in the best  Error in Error in
i extrapolated value Lindberg's method pullback

0 0 0 0
1 6.36 x 107/ 71.71 x 10”12 3.89 x 10~ 12
2 -6.62 x 1071° 15.02 x 10”12 2.55 x 10712
3 5.71 x 107° ~19.21 x 10 %2 ~1.15 x 10712
4 -3.92 x 10712 - 3.87 x 10712 .03 x 10712
5 1.58 x 107° 12.74 x 10”12 1.99 x 10”12
6 -5.89 x 1072 ~25.85 x 10”12 -7.54 x 10712
7 3.07 x 107°* ~98.14 x 1071%* -26.90 x 10-12*
8 -1.1 x 10713 - .11 x 10712 - .11 x 10712

*greatest absolute error for the method
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Once again t7 is the least accurate solution for
all three methods. The only reasonable explanation which
suggests itself is that the solution <cos t 1is changing
very rapidly (relative to its behavior on the rest of the
interval) between t and tg- This behavior is compen-
sated for by extrapolation at tg, but since no extrapolation

is done at t7 no correction is possible there.

From these examples it appears that pullback
interpolation is quite sensitive to the accuracy to which
we know the solution at the intermediate grid points and
the type of equation we are solving. Thus it appears that
it is the error in the original data and not the error in
interpolation that is determining the overall accuracy of

the method.

We next examine what happens when we solve the same
equation on intervals [a,b], [b,c] and [c,d] wusing the

last computed solution as initial data for the next interval.

Example 10: Solve y'=y2, y(0)=1, 0<Kt<{3/2 by computing
the solution on intervals of length 1/2 and using the com-
puted solution at the endpoint of the previous interval as
the initial data for the equation on the next interval.

The method of solution on each interval will be the trapezoid
rule and pullback interpolation with M=3. The results are

presented as Table 12.
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TABLE 12
[0,1/2] (1/2,1] [1,3/2]

i Error i Error i Error
0 0 0 0 0 0
1 - .o1x10 2 1  sex10? 1 1.13 x 10712
2 - .55 x 102 2 -1.20x10°Y% 2 _4.39 x 10712
3 - .74x101% 3 -1.95x1012 3 -6.93 x 10712
4 .13x102 4 27x10'? 4 - .64 x 10712
5 1.59x 1002 5 4.19x 1002 5  11.24 x 10712
6 2.21 x 1007%" 6 s5.85 x 10°1%* 6  16.07 x 10°12*
7  94ax1012 7 239x10'2 7 s5.04 x 1012
8 .s6x10°'? 8 1.13x 10712 g .84 x 10”12

*greatest absolute error

Some deterioration in the accuracy of the computed
solution for larger t can be observed in Table 12. This
can be partly attributed to an accumulation of roundoff
errors and partly to the sensitivity of the pullback method

to the accuracy of the data it receives.

If we compare the first two columns of errors in
Table 12 to the results given in Table 9, we see that in
terms of greatest absolute error it is better to take a
smaller basic steplength and solve the problem several times
in succession. However, we should point out that this can

be quite expensive computationally.
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Also, note that the largest absolute error always
occurs at the same relative position of the three grids,
namely at tg- This is further support for our contention
that the nature of the equation and the accuracy of the data
points used when interpolating are the factors which control

the overall accuracy of the pullback method.

In each example computed using the trapezoid rule the
largest error in the pullback method has occurred to the right
of the midpoint. This is no coincidence. The trapezoid rule
yields more accurate solutions at grid points nearer the init-
.ial point and consequently extrapolation will be more accurate
in the first half of the interval. Also, when we perform
Hermite interpolation we have an extra data point at the
initial grid point. All of these factors combined make it
reasonable to expect that the largest errors will be produced
to the right of the midpoint. Thus, a solution computed
using pullback interpolation should be most reliable in the

first half of the interval on which the solution is computed.

Note that the largest error in Lindberg's method
can occur in the first half of the interval, as an examination
of Table 9 reveals. This is due to the fact that it is the
error in interpolation which determines the overall accuracy

of Lindberg's method.

In summary, pullback interpolation coupled with the

trapezoid rule will yield highly accurate solutions at all

-



76

grid points. In fact, if the solutions obtained with the
trapezoid rule and extrapolation are sufficiently accurate,
pullback interpolation will yield uniform accuracy at all

grid points.

Pullback interpolation coupled with Euler's rule
is not recommended as a viable solution technique. Euler's
rule is simply not accurate enough to enable pullback

interpolation to operate effectively.



CHAPTER II

TWO POINT BOUNDARY VALUE PROBLEMS

Section 1. The Problem and Its Discretization

In this chapter we will consider two point boundary

value problems of the form

x"(t)-£f(t,x(t),x'(t)) =0

(1)
x(a) = A, x(b) = B.

1
We assume that f£f(t,x,x') €C [[a,b] x (-=,®) x (-=,=)],

f(t,y,z) 1is uniformly Lipschitz continuous in y and z,

f

0 < €K< Y

and \%f\i;K where K 1is a constant. Under

these assumptions (see Keller [17]) problem (1) has a

unique solution which we will denote by o(t).
The continuous problem (1) will be denoted by
(1") F(x) = O.

The operator F(x) = x"(t) - £(t,x(t),x'(t)) maps the
Banach space of twice continuously differentiable functions

defined on [a,b] into C[a,b].

To obtain a discrete version of (1), let n>»2 be
any natural number, define h=(b-a)/n and form the uniform
mesh [tk=a+ih]?=o in [a,b]. The discrete problem is then
given by

77
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X. -2X.+X. X. -X.
i+l i Ti-1 i+l Ti-1, _ _
hz - f(tilxil 2h ) o, 1‘11 ln-ll
(2)
XO = A, Xn = B,
where we have introduced the notation Xi==X(ti). Problem

(2) may be thought of as a nonlinear system of equations in

En-1 with the unknown being the vector (Xl""'xn-l)T'
The solution to (2) will be denoted by X(h) and we

introduce the operator notation
(2') F (X) =0
for problem (2).

In order to set up the correspondence between the
continuous and discrete problems we will need to define a
space discretization operator Wy - Thus, let z(t) Dbe an
arbitrary function defined on [a,b] and define W acting

on z by

= - T
wz = w(z() = (z(t),....z2(t ;)
= T
- (zll . nzn_l) .
Note that w2z is the vector in "1 uhose components

are obtained by evaluating 2z at the grid points.

Problem (1) and the discretization (2) have been

studied by Pereyra [24,27]. Stetter [31] and Pereyra [26,28)

have also studied the special case of (1) when x' 1is

not present in the equation.
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To formalize what is meant by convergence of the
discrete solution X(h) to the continuous solution ®(t)
we have the following definition (see Lambert [18] and

Pereyra [28]).

Definition 1: We shall say that the discrete solution X(h)

converges discretely to the theoretical solution o(t) if

and only if

(3) %_i’g\\x(h)—whco\\(h) = 0,

where “'H(h) is the maximum norm on E" L.

The subscript (h) will be omitted from the norms
throughout the remainder of this chapter. We should point
out that Pereyra in [27] utilizes a different norm than
the one we have used here, while in his earlier work [24] he

uses the maximum norm.

Typically, discrete convergence depends on the two
properties of consistency and stability of the discrete operator

Fp in (2'). In formulating the definitions of these concepts

we have followed the approach of Pereyra [25,28].

Definition 2: The operator Fh is said to be consistent of

order p>0 if, for each solution ®(t) of (1) and for all

h < ho we have

(4) Iy, (@ || = omP).
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Definition 3: The operator Fp is stable if for any pair

of discrete functions U and W and for all h<h, there

exists a constant C >0, independent of h, such that

(5) \\U-W\\ <¢C “Fh (V) "Fh (W) “

The standard result for discrete operators, that
consistency and stability imply discrete convergence, is
valid here. This theorem, in the context of linear multistep
methods for ordinary differential equations, is originally
due to Dahlquist [8,9]. For completeness we present Pereyra's

statement of this result and briefly summarize his proof.

Lemma 1 (Pereyra [ ]): 1If 1% is stable then it is locally
invertible around w,® and the inverse mapping is locally

Lipschitz continuous for all h<hg.

Proof: Let B, = B(whcp,p), be the open ball of radius p
centered at W, P- where p >0 1is independent of h. If

U,WE€B then stability implies that Fy is one-to-one

h
on Bh’ for otherwise we can violate (5). Therefore

. - . . . -1 .
Fh:Bh4Fh(Bh) is a bijection, implying that Fh exists on

Fh(Bh). If X,YEFh(Bh) then we can write (5) as
-1 -1
" (X)) -F " () | <clx-¥|l. ©

Theorem 1. (Pereyra [25 28]): Assume (1) has a unique solution

¢ and Fh is stable on Bh = B(thP.P) for all h_(_ho.
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Let Fh be consistent of order p with F. Then there

exists an ﬁoj>0 such that:

(a) vh<h there exists a unique solution X(h)

0]
for the discrete problem Fh(X) = 0, and
(b) the solution satisfies
(6) |x(h)-w ol = o(nP).

Equation (6) can be summarized by saying the solutions are

(discretely) convergent of order p.

Proof: By Lemma 1, Fh is a homeomorphism between its domain
B and its range Rh = Fh(Bh) th;ho. Brouwer's Invariance
of Domain Theorem implies Fh maps the interior of Bh

onto the interior of - Rh and the boundary onto the boundary.

o : : P _
If V€dB,, stability implies that £ < [[F (V)-F, (0@ ||
and therefore by letting V vary over th we see that
L
B(Fh(mhcp),c) CR -
Consistency implies |[F (g ®) | = o(hP) and therefore

“Fh(whw)“ + 0 as h=0. Thus, there exists Eog;ho such that
£ < L .

“Fh(whw)“ <& Vh;lﬁo and O ¢B(F, (w®), g). But F_ is

one-to-one and onto and therefore there exists a unique

X(h) ¢B such that Fh(x(h)) = 0.

h
Stability implies that
Ix () -w @l < CliFy, (X(0))-Fy (o || = cllF (o || = oP). p

Thus, in order to establish the discrete convergence

of the numerical solution to the theoretical solution it suffices
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to show the numerical method is both consistent and

stable.

The usual technique for proving that Fy is
consistent is to examine the local truncation error at each
grid point t.. The local truncation error Th(ti) is
obtained by applying Fy to the discretization of the theor-

etical solution and evaluating the result at t, . Formally

™ (t) = Fp(go (t))

(7) Ot )20t )+ (t, ) ot ) -o(t;

1

= h2 - f(ti,cp(ti). >R

If we assume that f(t,y,z) has M total derivatives
with respect to t on [a,b], then by expanding Eh(ghw)(ti)
in a Taylor series about w(ti) it can be shown that the

local truncation error Th(ti) satisfies

M
_ 2k 2 (2k+2) .
+ O(h2M+2),
where ti is any grid point in [a,b]. The functions
g are obtained from
Moox M1 3¥e ,
(9) 2Zh ng(.) = (v —= }
k=1 k=1 7" a3z {t.,o(t.),v'(t.))
i i i
M 23 .
h (23+1) k
(Z@5emr @ ()17

by rearranging the right hand side in powers of h.

)
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For instance,

Hh

= L 3f m
920 = 37 22| (.00, 00 (£, P (Es)

and

H

d

= L of (5)
94 () = 53 z|(t:i,cp(ti),ep'(ti))“p (t;)

2
+ oL L (37 @7t )2
Y (ticcp(ti)om' (ti)) *

Because equations (8) and (9) are well-known we have
not given the details for constructing them. The reader
interested in more detail is referred to [27] or the work

in Section 2.1 of Chapter 3.

By observing that £(9) = 0, equatian (8) implies

that fh(x) is consistent of order 2.

In the next section we establish the stability of the

finite difference operator Fy -
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Section 2. Stability

In this section we will investigate the stability
of the discrete scheme (2). The fact that (2) is stable in
the uniform norm has been proven by Pereyra [24]. The proof
given by Pereyra uses the theory of monotone operators and is
qui te technical in nature. We present here a simple and

direct proof of the fact that Fh is stable.

In what follows we will be considering vectors V

l. However we will restrict

whi ch properly belong to g™t

thes e vectors to the (n-1) - dimensional subspace consisting

of a1 1] vectors in En+l whose first and last components are

given by the boundary conditions in (2). That is, all vec-

tors will have the form VvV = (A,V )T

1,...,V 1,B , and we

n-
1

will regard F;, as an operator on V = (Vl,...,vn_l) cE"T
Let U and W be any two vectorec in L. For

2< i <n-=2 the itl’l component of Fh (U)-Fh(w) is given by

(1o)  (r (-F (W]

= 0F (U120 405 ) - f(ti'Ui'Eii%ggi:l)
- n~? (W, q=2W +W, 1) + f(ti,wi,ﬁ%-;lli'—l)
= DTIL(U W) =2 (U W)+ (0 - )

P ICRR g e S UPTOL £ i 0
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Using the Mean Value Theorem for continuous functions
of two variables (see Widder [33]) and regarding

Vit1 Vi- Vit1 Vi

1
£(t .V, 2h 2h

) as a function of Vi and

we can obtain

U W

i+1 Vi1
2h

i+179;

>h )

-1

Pt E5 e 5 S TS Wi 5
2h 2h

vhere

(12a) a; = W:.L + 91 (Ui-wi)

and

W. -W. U. -U. W. -W.

12 _ i+l i-1 i+l "i-1 i+l i-1
(12B) gy o T % oo h )

with o< g, <Il.
Substituting (11) into (10) we have

(13)  [(m( - F W]

= h % (U, ,-w 2 )

i-1""i (U417

-2 -
)=2h T (U =W, ) +h (U 4 -W Ly

1
- fy(tl'al'[al) (Ul-wl) +'2—h fz(tl.al.ﬁl) (Ul-l-wl-l)

1
- onf (ty 0y By) (U - Ws4y)

R+ e (0800 (U W )

v
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2
+(-2-h fy(ti,ai,Bi) ) (Ui-Wi)

h
7 £, (500500 (U5 1-W; 00 0

+(1 - i

For i=1 and 1i=n-1 we get similar expressions except the

terms multiplying (U -—WO) and (Un-wn) are identically

(0]
zero in the respective equations because Uy =W, and
Un = wn by our earlier convention.

If we write (13) for i=1l,...,n-1 as a matrix system

we obtain
(14) Fp (U)=Fp (W) = M_(U,W) (U-W),

where M.h(U,w) is an (n-1) x (n-1) matrix whose rows are

given by

) 2 h
[M.h(U,W)]l—h (-2"h fy(tl'alpal)ll—z fz(tl’allsl)’o'...'O)'

-2 h —7-h2
[Mh(U,w)]i—h (0,...,0,1+2 fz(ti,ai.ﬁi), 2-h fy(ti’ai’Bi)'

1-2 ¢ (t.,a.,8.),0 0)
2 TzVoitTirrif e
for 1i=2, .,n-2, and
-2 h

(M (UwW] _y=h°(,....0,1+5 £ _(t _y.a _;.B. 7).

2
-2-h fy(tn_loan_lo Bn-—l) ) '

With the nonzero entries for the ith row, 2:1i<n-2, occuring
in the (i-1)st, ith and (i+l)st positions. The arguments

@, and Bi are given by (12).
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Taking norms in (14) we have

Iy () =y 50 | = ot (0 ) (00 | -

Multiplying both sides of this equation by TEJ%T“' using

the linearity of Mh(U'W)' and noting that

“3—:%“ has norm one, we have for all U#W
lEy () -Fp (W | M (U, W) (U-W) || !
fu-w] - To=wT
= I, (0 Wl ;]

2 ine) @z,

Thus, if |M (U,W) 2| is bounded below by a constant C,

independent of h, for all vectors 2Z belonging to the

unit ball in En-l we can write

\Ey (U) -Fp (W) || > clu-w]|,
which proves that Fy is stable.

To establish that |M_ (U,w)z| is bounded below we

Proceed as follows:
let ho = 2/K and define

h
a. = nh a
1 2 fz(ti' i'ai)

b, =
i fy(ti,ai,Bi)

for each i=1,...,n-1.
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For any h <ho. because of our hypotheses on fy and fz'
we see that |a;|<1 and B, >e>0 for all i, 1<ign-1.
In this notation the matrix Mh(U,w) is given by

[M(U,W)]l. = h_z(-z-h2bl'l-al'O'ooo'o); l

h-z(o,---o0:1+a-,—2—h2b.,l-a.,0,...,O)
1 1 1

(M, (U, W) ]

for 2 i {n-2; and

2 2
(©,...,0,1+4a__;,-2-h“b__,).

(M (U.W)] . =h"

Now let 2 = (Zl, ""Zn—l)T be any unit vector

p-l o Lith respect to the maximum norm on L1, rhis

in E
means that at least one component of 2 has absolute value

one and no component of Z has absolute value larger than

One.

Suppose Zl = 1, then the first component of

M'h (U,W)Z has absolute value
-2 2 -2 2
h “|-2-h"b +(1-a )2z, | 2h “(|2+h bl\ - |1-a,) |2, 1)

-2 2
>h™“(2+h"p, - 2]z, 1)

>h”2 (2+h%n) -2)
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We have used the facts that by >0, |a;|<1 and |z, 11

in making the above estimates.

Similarly, if 2, _y = 1 then the last component of

Mh(U,W)Z has absolute value larger than e.

Suppose Z; = 1 where 2<ifgn-2, then the ith

component of Mh(U,W)Z has absolute value

-2 2
h™“|(1+a;) 2z, _;-2-h"b,+(1-a;)2Z; |
h"2(2+0%b - | (142, )2, - +(1-a)zZ. . |)
= i i’%i-1 i’%i+1
> n2 (2+0%p -(lz, _+z. \+la. | lz. -2, ., 1))
= i i-1"%1+1 i i-1"%i+1
> h™2 (2+n%b -(lz, _+2 |+12; _y-2..,1))
= i i-17%41 i-17%i+1
> W7 (2+40°p, -2)

The next to last inequality is valid for the following reason.

Consider the expression

la+f | + la-B| with |a| <1, |B]|<1.
Squaring we obtain
(15) (a+B)2+21u2-U2\+(a—ﬁ)2 = 2a2+2ﬁ2+2\a2-621.

1f o = ﬁz then this is trivially { 4 so without loss of

generality we can assume a2 > 62. In this case equation (15)

becomes
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(la+g |+]a-B )2 = 2a2+28%+20%-2p2 = 4a? < 4.

Thus for any two real numbers a and B with J|a|<1

and 1513}. we have
lu+B | + la-B| < 2.

Therefore, for any unit vector 2Z, some component
of Mh(U,WE: has absolute value larger than e. This implies
that HMh(U,w)Z“:>e and consequently
inf e (uwz| > e
Iz =1 M 1Y < €
With this our proof of stability is complete. 1In

order to obtain the desired result we quite explicitly

assumed that O<fe~a%§. The formal hypothesis given by
Pereyra in [24] is that O g.%é. However, he implicitly
assumes that %5 is bounded away from zero in his proof

of stability. Thus our proof is as general as Pereyra's,

and considerably more elementary.

Since the operator F is both consistent and stable

h
we can apply Theorem 1 to conclude that the discrete scheme
(2) has a unique solution, X(h), which converges discretely

to the theoretical solution, ®(t), of problem (1).
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Section 3. The Numerical Method

In this section we will summarize the results of
Pereyra [24,27] and Stetter [31] concerning the global
discretization error for the method (2). Using the results
obtained by these authors we will develop a pullback inter-
polation scheme for solving boundary value problems of the

form (1).

The global discretization error for the numerical

method (2) is defined to be

X(h) - Wy, ®-

Both Pereyra [24,27] and Stetter [31] have presented a general

theorem which, when applied to our problem, becomes
Theorem 2. (Pereyra, Stetter):

Let F and Fy have M+1 continuous Fréchet deri-
vatives. Then for sufficiently small h the global dis-

cretization error satisfies

M
(16) X(h)-u o = Zthkwh(ek(t)) +omM?),
k=

The functions ek(t) are independent of h and satisfy the

linear two point boundary value problem

ef (£)-£, (£,0(t) @' (£)) ey (£)-£, (£, 0(t) . ©' (£) ey (£) =Dy (+),
(17)

ek(a) = 0, ek(b) = O.

The functions bk depend on previous error functions
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. . . . z
€ys -+, _q+ Various derivatives of ¢, and various Frechet

derivatives of F.

We will prove an analogous theorem in Chapter 3 and
the reader interested in details can refer to either Section 2.3

of the next chapter or to the aforementioned papers.

To set up the numerical method, define stepsizes

hk = 3%%% for k=0,1,...,M and construct the uniform grids

2

k+1
)

k . .
fti=a+1hk:1=0,l,...,2 c [a,b].

Sk

Using the numerical method (2), compute a solution vector

X(hk) on each grid Gk'

The computation of X(hk) for each k requires us
to solve a system of 2k+l—l equations. These equations
will be nonlinear whenever f is nonlinear in either x or
X'. In the nonlinear case we must use a root finding procedure
to solve the system (e.g. Newton's method); In the linear
case, the matrix is tridiagonal and can be easily solved using

an LU decomposition and back substitution (see Isaacson

and Keller [15]).

Once the solution vectors X(hk) for %k=0,1,...,M
have been obtained, extrapolation can be performed to obtain
an o(h2M+2) approximation to ®(t) at t==§%23 This has

(0]

been studied by Pereyra. As was the case for initial value
problems, extrapolation at other grid points does not yield

comparable accuracy.
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The task of implementing a pullback interpolation

2M+2)

scheme for obtaining o(ho accuracy at all grid points of

GM is simplified in this case. This is due to the fact that
from (17) we now have two pieces of information available

to us concerning each of the error functions ey namely,
ek(a) = ek(b) = 0. Recall that for initial value problems
only one piece of information was readily available concerning
e - Most of the effort involved in implementing pullback
interpolation for initial value problems was<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>