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ABSTRACT

ON PROPERTIES OF A CLASS OF SYSTEMS OF

DIFFERENTIAL EQUATIONS AND CORRESPONDING HIGHER—

ORDER DIFFERENTIAL EQUATIONS

by Robert Hampton Roge rs

Procedures have recently been presented for formulating

time-(loniain models of linear and nonlinear systems in the form

(1

El—t—Xi '— {i (X
1,... 1’1

This set of n differential equations is referred to as the normal

system or state model. Procedures for determining the solution

of the system and hence analyzing the. system performance presently

employ analog computers, digital computers, and/or functions of

Inatrices. The Choice, of mathematical procedures to apply in the

design of a particular physical system varies from problem to prob-

lem. However, in all Cases the objective. is to gain information or

knowledge pertaining, to the inter-relationship of the system parameters

to the system performance.

A knowledge of this inter-relationship is obtained in the

thesis by formally developing the. mathematical properties which

relate the parameters in the normal system of linear and a class of

nonlinear differential equations to the parameters in an r-order

(r<_ n) differential equation.
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The mathematical foundation of the thesis is established

by developing the mathematical properties which relate the solution

of the normal system to the solution of an r-order (r E n) differential

equation obtained from the system. This development is based on

deriving the r-order equation from the normal system by means

of a certain nonsingular transformation. In this development,

conditions on the parameters of the normal system are determined

so that an n-order differential equation is obtained from the system.

In the proof of these results a technique for formulating a nonsingular

transformation is given which allows the determination of the solution

of the normal system in terms of the solution of an n-order dif-

ferential equation.

The mathematical properties developed in the thesis

are applied in the formulation of methods for the design of physical

systems. The design methods necessitate constructing : (l) a

function y(t) from the specification of a desired system performance

and (2) a normal system of differential equations having the function

as a component of the system solution.

Two methods of constructing the linear system, to

have a specified solution, are given. One method consists of

determining the coefficients and initial conditions of the normal

system in terms of the coefficients and initial conditions of an n-

order differential equation. A second method relates the coefficient

matrix in the normal system directly to the specified solution y(t)

by means of a certain matrix transformation. If the normal system

is nonhomogeneous then an explicit formula is given for determining

the nonhomogeneous part of the system in terms of the specified



Abstract 3 Robert H. Rogers

solution y(t). Similar results are developed for constructing a

special class of nonlinear differential equations having a specified

solution.

The design methods, proposed in the thesis, are

illustrated in the design of amplifiers and oscillators in the time-

domain.
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I. INTRODUCTION

 

The design of a physical system to meet a given

performance specification necessitates decisions based on a

knowledge of the inter-relationship of the system components

(parameters) to the system performance. A major portion of

any design procedure is devoted to the process of relating the

system parameters to the system performance.

Brown“), Wirth(2), Koenig, Tokad, and Kesavan(3)

have recently presented methods of formulating the mathematical

model of a physical system into the form

dx.__ . -_WITfi<X1P ,,,xn,t),1_l,2,. . .,n. (1.1)

The set of differential equations (1. l) is commonly referred

to as the normal system, the linear form of this system will be
 

denoted by

X : AX + Q(t) (1.2)

where X' : [xl,x. , . . . ,xn] , A : [aij] a square matrix of order

n, Q'(t) : [ql(t), q2(t), . . . , qn(t)] and the prime denotes the

transpose.

One method of approaching the design problem, when

presented with a mathematical model of the system in the normal

form, is to view the system performance as one specified com-

ponent xi(t) of the vector solution. Then relate the parameters

1



in the normal system to the system performance xi(t). One technique

of obtaining these parameter-solution relationships (design equations)

is to (1) convert the normal system into a higher-order differential

equation in Xi by a reduction method such as the one proposed by

Murray and Miller [4, p. 126], and (2) determine the inter—relation-

ship of the system performance xi to the system parameters in the

higher-order differential equation. An obstacle to obtaining the

desired parameter-solution relationships by this technique is that

the reduction method may convert the normal system into a differen-

tial equation of r-order, where the number r is less than the number

of equations in the normal system, i.e. r _<_ n. Moulton [5, p. 9]

presents, as an example, a normal system of three equations which

converts into a second—order equation in any component, xi. In

seeking these parameter-solution relationships, many questions have

arisen concerning the mathematical properties which relate the

normal system (1.1) to an r-order (r E n) differential equation

1' dy dr-l

:f(y,——,.. .,—-———y; t) (1.3)
dtr dt dtr-1

 

obtained from the system.

The objective of this thesis is to develop the math-

ematical properties which relate the normal. system (1.1) to an

r-order (rin) differential equation (1. 3). The mathematical

properties, thus obtained, are to afford new tools for the design

of electrical networks.

When the mathematical model has the linear form (1. 2)

certain questions arise as to how the solution of the normal system

is related to the solution of the r-order (r_<_n) equation (1. 3) obtained

from the system.



Coddington and Levinson [6,p. 21] as well as others

[7, p. 33] have applied the nonsingular transformation

ixll i—y 1

(1)
x y

2 z . (1.4)

(“-1)

txnl -y -    
to the normal system (1. 2), where matrix A has the special

form of a companion matrix (2. 2. 4) and Q'(t) : [0, O, . . . , O,qn(t)]

to obtain an n-order differential equation. The n-order equation

obtained from the system by the transformation (1.4) is referred

to by Coddington and Levinson as "associated" with the system.

The nonsingular transformation (1.4) thus specifies the manner in

which the solution of the normal system and the solution of the n-

order differential equation associated with the system are related.

A generalization of this (nicept of the associated differential

equation is required in Chapter II (homogeneous) and Chapter III

(nonhomogeneous) to develop the general mathematical properties

which link the solution of the normal system (1. 2) to the solution of

the r-order differential equation obtained from the system.

The later parts of Chapters 11 and III develop techniques

for relating the parameters in the system (1.2) to one specified

component xi(t) of the vector X(t) solution. The parameter-solution

relationships developed in these sections have not been formally

investigated and made available to the network designer until now.

These relationships, as shown in Chapter V, offer new tools for the

design of electrical networks.



In Chapter IV mathematical relationships are developed

which relate the solution of a class of nonlinear systems (1.1)

to a solution of an n-order differential equation (1. 3), obtained

from the system. A portion of the results obtained in Chapter IV

are applied to the design of tunnel-diode amplifiers and oscil-

lators in Chapter V. The design equations obtained in Chapter V

are shown to be a generalization of results obtained by Kim [8, p.416]

by a different Inethod.
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II.

DIFFERENTIAL EQUATIONS AND ASSOCIATED

HIGHER ORDER DIFFERENTIAL EQUATIONS

.1 Introduction

 

The general mathematical properties that relate the

solution of the normal system

     

j —' .. r-

(X1 “‘11 8112 . . . aln x1l

d X2 a21 a22 ' ' ° aZn X2

3 :

L xn J Lanl an2 annJ _ XnJ 

where the entries are constants or in symbolic form

(2.1.1)*XZAX

to the solution of the r-order (r<n) homogeneous differential

 

equation

r r r-i

(3—1; 2 1: ai d rd" (2.1.2)

(it izl dt

obtained from the system are developed as a result of deriving

the r-order equation from the system by means of the transformation

(2.1.3)

,x 1, Y' : [o,o,...,o,y,y(l,)...,yfr'Do,o,...01.whereX : [xl,x2,... n

 

The number indicates the section and the number of the

Thus (2.1. 1) indicates Sec. 2.1,

:1:

equation in the section.

Eq. 1.

5



6

and the -1 superscript indicates the inverse of matrix C.

In the investigation of the general solution properties

a number of problems have arisen for which the solution will be

of interest to the system designer.

System design methods are proposed in Chapter V that

necessitate constructing: (1) a function y(t) from the specification

of a desired system performance and (2) a normal system (2.1.1)

having the function y(t) as a component of the system solution, X(t).

The construction of the normal system (2. 1.1) to have

the component y(t) as a solution necessitates a knowledge of how the

component y(t) is related to : (1) the solution of the normal system

X(t) and (2) the aij entries in matrix A in the normal system.

It is shown in the development of this chapter that these

parameter-solution relationships can be obtained by viewing the

function y(t) as the solution of the r-order differential equation

(2.1.2).

In Section 2. Z, the solution of the normal system is

shown to be related to the solution of the r-order differential

equation by the transformation (2. l. 3). The formal development

of this transformation allows the system designer to establish the

initial conditions on the normal system in terms of the specified

component y(t). In this development it is shown that y(t) is the

component of the system solution denoted by xn(t).

The problem of relating the ajj entries in the matrix

A in the normal system (2.1. l) to the solution y(t) is developed in



Section 2. 3. One method requires constructing the r-order dif-

ferential equation to have the specified solution y(t), and then re -

lating the coefficients aj j = 1, 2, . . . ,r of the r-order differential

equation to the entries a” in the normal system. A second method

relates the coefficient matrix A in the normal system (2.1.1)

directly to the specified solution y(t) by means of a certain matrix

transformation.

The parameter-solution relationships formally developed

in this section are referred to as design equations when applied to

system design in Chap. V.

2. 2 Systems of First Order Homogeneous Differential Equations
 

and Associated Higher Order Differential Equations
 

In this section it is shown that when the r-order equation

(2.1. 2) is obtained from the normal system (2. 1. 1) by a nonsingular

transformation of the form (2.1. 3), that the solution of the system and

the solution of the r-order equation are linked by two well-defined

properties.

Property (a) The solution of the r-order equation is

given by r entries in some row of matrix triple product

CFmD when C, F and D are nonsingular and each column

m

of F is a solution of the normal system.

m

. . -1

Property (b) A solution of the system is given by C Y

where Y is a VECtOI‘ containing the solution and derivatives

of the solution of the r-order differential equation.
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The r-order equation defined by Properties (a) and (b) is said to

be "associated" with the system. These properties are stated

mathematically by the. following definition;

Definition 2. 2. 1: Consider the homogeneous system of differential
 

equations :

)< 2: 1A}( (2.22.1)

where A : [a..] , X' : [xl,x1] 2,...,x].
II

An r—order homogeneous differential equation

 

 

(2. 2. 2)

I

is associated with (2. 2.1) if,

(a) for Fm a fundamental matrix* of (2. 2. 1), there exists

non-singular matrices C and D such that the (i,i ), (i, i+l), . . . ,

(i, i+r-—1) entries in CEnD, for some i, i: 1, Z, . . . , n, are a

fundamental set of (2.2. 2) and

(b) for yl, yz, . . . , yr a fundamental set of (2. 2. 2), the

-1 . (r-D
vectors C Yj where Yj : [O’O’°”'O’-\:j'yj"”’ yj 0,0,...,0],

j z 1, Z, . . . , r, are r linearly independent solution on the open

interval I defined by I : [tzt < t < t2], t and t are constants, of
1 1 2

(2.;a.1).

 

* For the definitions of terminology and notations used

throughout, see Appendix A.



The mathematical properties specified in Def. 2. 2.1

are first encountered in Thm. 2. 2.1 when a transformation of the

form (2.1.3) is applied to a normal system (2. 2.1) to obtain a

set of s differential equations, lisinmf the form (2. 2. 2). This

set of s, higher-order differential equations, are ascertained to

be associated with the system.

Before proving the existence of a set of 5 higher—

I

order differential equations of the form (2. 2. 2) associated with

the system (2.2.1), some basic relationships must be established

between a fundamental matrix of the system (2. 2.1) and a funda-

mental matrix of the transformed system (2. 2. 3). Lemma 2. 2.1

follows immediately from results established in Thm. 2. 2 [6, p. 69].

Lemma 2. 2.1:. If Fm is a fundamental matrix of the
 

system (2.2. l) and Y : CX, where C.1 exists, then CFm is a

fundamental matrix of

Y = CAC’IY (2.2.3)

Proof: Let fj, j : 1,2, . . . ,n be the j-column of Fm

Since fj is a solution on I of (2. 2.1) and (2. 2. 3) is obtained by sub-

stituting X : C_1Y in (2. 2.1), ij is a solution of (2.2.3) on I.

Since C and Fm are nonsingular by hypothesis, CFm is nonsingular.

The lemma follows .
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Lemma 2. 2. 2: Suppose CAC-l of Lemma 2. 2.1 is
 

  

,

[B1 0 ... o

0 2B . o

CAC—l: Z

0 o B
L a

where Bi is of order ri, i : 1, 2, . . . , 8. There exists a nonsingular

matrix D such that a fundamental matrix of Y1 : BiYi’ i : 1, 2, ..., s

where Y' : [Yl', Y', . . . . Y' ]. is the submatrix of CFmD consisting
2 . s .

1—1 1-1 1

of the entries in rows er+1, :3 r‘j + 2, . . . , 23 r. and columns

i-l 1—1 3:1 1 3:1 3:1

Er.+1, Er.+2,...,2 r..

j:1 3 j=1 3 J31 J

; Proof: If Ci is a fundamental matrix of Yi :: BiYi’ 1?..1, 2, . . . ,s,

then a fundamental matrix of (2.2. 3) is

  

c ... 0e1 0

o o . o
_ 2

Gig. ..

o o .. . o,

h S-d

By Lemma 2. 2.1 CFm is a fundamental matrix of (2. 2. 3).

Therefore, by Thm. A. 1, there exists a nonsingular matrix D

such that

G : CF D
ls m

i-l i-1

Since the entries in Gi are the entries in rows )3 r.+l, 2: r.+2, . . . ,

i 31-1 1-1 1 j:1 J jzl J

E r. and columns 23 r.+ l, E .r.+2.,...,3 r. of CF D, the lemma

.2 j ._1j ,m J g" m

J l J- J~l J~1

follows .
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Theorem 2. 2. 1: There exists a set of s, homogeneous
 

differential equations, l_<_ s <n of order ri, i = l, 2, . . . , s,

5

associated with the system (2. 2. 1) such that E ri : n.

i=1

Proof: Substitute X : C—lY in (2. 2. 1) so that (2. 2.3)

results where

  

B1 0 o)

CAC—l: 0 B2 . 0

L0 0 B-

4 b‘

and

[o 1 0 o ‘

O 0 l 0

Bi:

0 0 O 1

a'r.r. ar.r.-—1 ar.r.-2 ' ° ' ar.1

L 1 1 1 l 1 l l .4  
It has been shown [9, p.49] that such a transformation exists.

For any subset of equations of (2. 2. 3) of the form

Y. : B.Y. (2.2.4)
1 1 l

wh r .' z . . . . . . . . .
e 6 Y1 [yil’y12’ ’yiri], calculate ri—l successn'e derivatives

of the first row of (2. 2. 4) eliminating each time from the right hand

side the first derivatives of in’ y by means of the last

i

ri-l equations of (2.2.4). This process results in

i3’ yir



    
Substituting (2. 2. 5) into (2. 2.4) gives,

   

['(l) 1 F
Yil 0 0 O

(2)
yil 0 0 l .

(r-D

yill O 0 0

(ri)

.Yll ar.r. ar.r.-l a'r.r.-2

: ..1 L 1 1 1 1 1 1

The last row of (2.2. 6)

r1 r

d yil .}

r : 2" arj

(it i jzl i

1 - 1

[Yil y11

(l)

yi1 in

(ri-l)

[Yil ’ yiri

   

 

(2.2.5)

1 r 7

0 yil

(1)

0 yil

(2)
V11 (2.2.6)

1

(rf'l)

aril yil

1 L 1

r.-j

d 1 y11

r.-j (2.2.7)

dt 1

is associated with (2. 2.1). For if Fm is a fundamental matrix of

(2. 2.1), by Lemmas 2. 2.1 and 2. 2.2 andthe initial part of the

proof, there exists nonsingular matrices C and D such that a sub-

matrix of CFmD, Gi’ (Lemma 2. 2. 2)is a fundamental matrix of

(2. 2.4). By (2.2. 5) and (2.2. 6) each entry in row one of Gi is a

1 solution on I of (2. 2. 7) and the j-row of Gi is the j-l derivative of

the first row forj : 1,2,... ,ri. From Thm. A.2, since the



l3

determinant of Gi is the Wronskian of solutions on I of (2. 2. 7)

and since Gi is nonsingular, the entries in row one of Qi are a

fundamental set of (2. 2. 7).

If yl,y2, . . . ,yr is a fundamental set of (2.2. 7), by

i

(2. 2. 6) and (2. 2. 5), ri linearly independent solutions on I of (2. 2. 4)

(r.-l)

are [yj,y;l), , yj1 ]' , j: 1,2,... , ri. This implies that the

1) ff” .
vectors Y3: 0,...,0, .,(. ,...,. ,0,....0, 21,2,...,r.J [ YJ YJ YJ . 1 J 1

. . . . -l
are ri linearly independent solutions on I of (2. 2. 3). Since X :C Y,

ri linearly independent solutions on I, of (2. 2.1), are C-R’j, j: 1, 2,...,ri.

Therefore, (2. 2. 7) is associated with (2. 2.1). Corresponding to

each matrix Bi’ of order ri, i 2 1,2, . . . ,3, there exists an associated

differential equation of order ri. Since matrix A is of order n, then

s

E ri : n.

i:1

Theorem 2.2.1 establishes that, (2. 2.1), an arbitrary

system of n differential equations explicit in the first derivative ,

may be converted into a set of s, lfsfin, homogeneous differential

5

equations of order ri, i: 1,2, . . . ,s, where E ri : n (ri may be

i:l

less than n). This is a generalization of results found by Murray

and Miller [4, p.129].

In Theorem 2. 2. 2 which follows , the matrix product

CAC"1 is assumed to have the form of a set of 5,1:S_<_n: companion

matrices Bi’ i : 1,2, . . . ,s as in the proof of Thm. 2. 2.1. It is

then proved that the zeros of the characteristic equation of (2.2. 2)

an r-order differential equation, associated with a system of n

homogeneous differential equations, are also zeros of the character-

istic equation of (2. 2. l) the system of differential equations. These
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properties are obtained by applying well-known results from

matrix algebra.

Theorem 2. 2. 2: Suppose
 

  

r r r-j

dr X = 3 d, x (2.2.8)

dt j.—.1 3 dt 3

is associated with

as in the proof of Thm. 2.2. 1. Then if 1. o is a zero of L0.) :

r

(-l)r [Kr - Z a). r-J] then 1.0 is also a zero of det [A-X I] :

i=1 3

Pr___o__of: By the method of the proof of Thm.2. 2.1

det [CACl — XI]=:[1| det i — RI]. By Lemma [6, p.88], the

r. r. r. r.-j

characteristic polynolmlial for Bi is det [Bi- XI] = (-l) 1D. 1- 211an 1 ],

1:]- _1

Since C is nonsingular, the zeros of det [A - XI] = 0 and det [CAC -)\I] : 0

are the same. .Therefore if x0 is a zero of L( ) it also must be a

zero of det [A - kl] : 0.

Corollary 2. 2. 1: With the same hypothesis and r : n,
 

a}. is (-l)‘]+1 times the sum of the principal minors of orderj of A.

Proof: This follows from Thni. 2. 2.2, Thm. A. 3 and
 

the fact that the coefficient of X n in det [A - XI] is (—l)n

Corollary 2. 2.1 provides an explicit relationship between

the coefficients aj j : l, 2, . . . ,n of (2. 2. 8) where r : n and coefficients

aij of A in (2.2. 9). However, these results are only applicable when

it is known that CAC”l has the form of a companion matrix.



15

From a practical standpoint, the existence Thm. 2. 2.1

might at first be considered to be of academic interest only. How-

ever, in the proof of that theorem, a new method for converting a

system of n equation (2. 2.1) into a higher-order differential

equation by transform techniques is given, i.e. X : C_1Y (Thm. 22]).

Before the transform technique can be applied the practical problem

of determining a transformation of the type X : C-lY which converts

the system into an r-order differential equation, must be solved.

A transformation of the form

_ , ..

x, -1 .511)
: G

x X(n—l)

- n- L“ _.    
where G is a nonsingular matrix, is determined in the following:

Consider the system X : AX (2. 2. l) partitioned as

.—

X A A X
(1 l 11 12 1

df = (2. 2.10)

x11 A21 ann Xn

, _ _ ‘ ‘ . y .1.
where Xl — [XI’XZ’ . . . ’xn-l]° Take 11 lsuccessne derivatn es

of A X : —a x + x the last row in (2. 2.10) eliminate each

21 l nn n n

time the first derivative of the vector Xl by means of X1: All Xl +

Alzxn the first row in (2. 2. 10). This formulation results in the

following matrix form:



l6

        

V ' F ' _ '1 ‘1A21 x1) aim 1 0 0 o [xn

A A x -A A -a l 0 0 X(l)
21 ll 2 = 21 12 nn n

3 n—2 ' _ n—3 4 n-5 2(n-1)

AZIAll [Kn—g [AllAllAlz $219111 A12 "P21A11A12m ‘ann lj __"n J

This last equation can be written in symbolic form as

13xl : de (2.2.11)

where the 1 row of (2.2.11) is

1.1 _ 1—2 0 (1—2) (1—1) (1)

A'21A11 X1 ‘ “A21A11 A12Xn'” ’ ° ‘ A21“"11‘A‘12Xn ‘ annxn + xn

1: 1,2, . . . ,n-l. By attaching ones and zeros to (2.2. 11) form

0 1 “x U x)

‘ 1 = [ ‘1‘, (2.2.12)

B 0 x P

n

whereU:[l,0,0,....O].

If B”‘1 exists, the coefficient matrix on the left

side of (2. 2. 12) is nonsingular. The coefficient matrix on the right

side of (2.2.12)

is nonsingular, since matrix L is lower triangular with ones on

the main diagonal, det (L) : 1. Let

G = = L“ B (2.2.13)
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If the aij entries of matrix A of the system (2. 2. l) satisfy the

condition det (B) f 0 then Blnll exists in (2. 2. l3) and the matrix

C defined by (2. 2.13) is nonsingular. This result is stated by

the following le mma:

Lemma 2. 2.3: If, corresponding to the normal system
 

(2. 2.1) the aij entries of the matrix A satisfy det (B) i 0, where

the i—row of matrix B is

 

[a a . . . a ] a a a 7 1-1
n1 112 n,n-l ll 12 l,n-l

i

[Sn-1,1 an-l,2 ° ' ' an-l,n-l

1: 1:2: ' :n‘l:

then there exists a nonsingular matrix C such that

X : OX (2. 2.14)
d

(1) (n—l)
., xn ].I ..

where Xd — [xn,xn , ..

Lemma 2. 2. 3 is a significant result of this section

with respect to application. In the technique for constructing the

nonsingular transformation (2. 2. 14) it is shown that the condition

det (B) 3! 0, on the aij entries of the matrix A, must be satisfied for

the existence of the transformation matrix C. Theorem 2. 2. 3

establishes that the transformation (2. 2. l4) converts the normal system

into an n-order differential equation which is associated with the

system. The hypothesis of the theorem necessitates the same

conditions on the aij entries of matrix A in the system (2. 2.1) as

specified by the hypothesis of Lemma 2. 2. 3.
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Theorem 2. 2. 32 If det (B) )4 0, where matrix B is
 

defined in the hypothesis of Lemma 2. 2. 3, then there exists an n-

order differential equation associated with the system (2. 2. 1),

Proof: For X : AX, there exists a nonsingular matrix

C such that Xd 2- GX by Lemma 2. 2. 3. Substituting X : G-le into

(2. 2.1) results in

-1
Xd — GAG Xd (2.2.15)

The last row of (2. 2.15) is an n-order differential equation associated

with (2. 2.1). For if Fm is a fundamental matrix of (2. 2.1), by

Lemma 2. 2.1, GFm is a fundamental matrix of (2. 2.15). By (2. 2.14),

the entries in the first row of GFm are solutions on I of the n-order

differential equation in (2. 2. 15). In addition, the entries in the j—row

of GFm, j = 2, 3, . . . ,n are the j-l derivatives of the entries in the

first row. Therefore, the determinant of GFm is the Wronskian of

solutions on I of the n-order differential equation in (2. 2.15) and since

G and Fm are nonsingular, GFm is nonsingular. It follows from

Thm. A. 2 that the entries in the first row of (3Fm are also a fund-

amental set for the n-order differential equation in (2. 2.15).

Suppose yl,‘y2, ,yn is a fundamental set for the n—order

differential equation of (2. 2. 15). Then the matrix YJ! : [y., y(.l), ...,yfl-D],

J J

j : l, 2, ,n is composed of n linearly independent vector solutions of

(2. 2. 15). Since substitution of Xd: GX of Lemma 2. 2. 3 into (2. 2.15)

results in (2. 2.1) the vectors G-le, j : 1,2, . . . ,n are n linearly in-

dependent solutions on I of (2. 2.1). The theorem follows.



 (
1
.
-
I
5
5
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The proof of Thm. 2. 2. 3 suggests a new method of

deriving n—order differential equations. If the coefficients aij of

matrix A (2. 2. l) satisfy the condition det (B) if 0 of Lemma 2. 2. 3,

then an n-order equation can be formed by substituting X : C:- le

into X : AX. The n-order equation is the last row of the resulting

system of equations (2.2. 15). Note that the coefficients appearing

in the n-order equation have not been given explicitly in terms of

aij entries of matrix A.

Techniques for obtaining the higher order differential

equation presented by Moulton [5, p. 6] and others [4, p.126] do not

include the nonsingular transformation, X : G-lxd, nor do other

methods restrict the final equation to one of n-order. Moulton,

for example, presents a system of three equations which converts

into a second order equation in any variable.

Corollary 2. 2. 3 has been included to illustrate

a class of system models X : AX which can be converted into an

n-order differential equation, that is associated with the system.

Note, in the proof of the corollary, how the coefficients aij of

matrix A are subjected to the test of det (B) 14 0 (Lemma 2. 2. 3).

This test establishes the existence of an n-order homogeneous ‘

differential equation associated with the system model.

Corollary 2. 2. 3: Suppose matrix A of the system
 

(2.2.1) is .- _

all 0 . .o 0 aln

0A Z 0 5:122 61211

O O O a

n—ln

anl anZ . . . ann-l ann
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where aii distinct i = 1,2, . . . , n and anj 1‘ O for j : 1,2, . . . ,n.

Then there exists an n-order homogeneous differential equation

associated with the system (2. 2.1).

Proof: That det (B) )f 0 follows from the fact that
 

the i-row of matrix B is

—,i-l

bi — [anl anZ ann-l] C111 0 0 W

i—l
0 a22 . O

i-l

O O an-ln-l  
and the refore

det(B):det[b' b' b']: a a— ...a

l’ 2’ ’ n nan nn-l[

l

I
1..

(J.

l l l

‘11 322'” an-ln-l

 
i
[a

I'D-2 ail—2 an-2

11 22 cn-ln—l

: anl ar12 . . . ann-l |i>j| (aii - ajj) which by hypothes1s 18

not zero. Therefore the corollary follows.

2. 3 Additional Properties of Associate Differential Equations

 

The mathematical properties established in Sec. 2.2

are applied in the development of mathematical techniques for

relating the aij entries in matrix A of (2.1.1) to a specified solution

of (2. 1.2), associated with the system. The techniques developed

here relate the aij entries in matrix A of the system (2.1.1) to

one specified component xi of the vector X of the system.
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The relationship between the aij entries of matrix A

in the system (2. 3. 2) and a specified solution to the r—order dif-

ferential equation (2.3.1), associated with the system, is established

from the solution properties specified in Def.. 2.2. 1.

Theorem 2. 3.1: If yl,y2, . . . ,yr is a fundamental set for

dr r 1 r

__>:1_ ... 2: a. —__—.‘1,] (2.3.1)
dt j:1 3 dt 3

and (2. 3.1) is associated with

X : AX (2.3.2)

“here A : [an] , X' : [Xl’XZ’ . . . ,x ]. Then there exists an

1.1

explicit relation between the r2 entries of A and the entries of C

and Yj’ j : 1,2,. . . ,r, (Def. 2.2.1 for notation).

Since (2. 3.1) is associated with (2. 3. 2) the

vectors C-le where Y' : [0,. .. ,y’j»Y§l).. . . , ’(jr—l),0,. . . ,0].

Proof:
 

j : 1,2, . , r are r linearly independent solutions on I of (2. 3. 2).

, Y ] and F be the (nonsingular) submatrix
r r

of F containing the columns [y., yll), . . .

m J J

> = YLctF [1,Y2,...

’ (gr-1)]: j: 1,2,...,1'.

Since the matrix C-lFm satisfies (2.3. 2),

Multiplying the above equation on the right by [0, Fltl, 0] results

in a system of equations in the following form:
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where Cil is the set of columns of C.1 corresponding to the

position of the entries in F (F ) in F (F ). Since the columns

r r m m

of C11 are linearly independent, there exists a nonsingular sub-

matrix, C;l, of C11 or order r. Multiplication on the right by

Cr results in a system of equations which contains a subset of

equations in the form

A = (2 Fr}? c (2.3.3)

Since Ar is square and therefore contains rZ entries of A, the

theorem follows .

Corollary 2. 3.1: With the same hypothesis and r : n.
 

A 2 c F. F c (2.3.4)

Proof: This is a direct consequence of Thm. 2. 3.1.

 

 

The matrix Fm as specified in (2. 3. 4) is

  

yl yz o . . yn j

(l) (l) (1)

F ; yl Y2 . . . yn

In .......
(Z. 3. 5)

(11—1) (n—l) . . . (n—l)

It is proved in the following corollary that FmF-rrli

has the special form of a companion matrix.
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Corollary 2. 3. 2: With the same hypothesis and r : n

the F F-1

m m

 

of Cor. 2. 3.1 is

fo 1 o o

. -1 o o 1 ... o

Fmsz ....... (a3t)

o o 0 1

bn bn-l bn-Z bl_  

Proof: Let T represent the companion matrix on the

right of (2. 3. 6). Consider the matrix product T Fm. If the n

equations

(1) y(n—l) _ '(n)

bnyl+bn-ly1 +... +blyl - yl

(1) (11-1) _ (11) ‘
bn y‘2 + bn_ly2 + . . . + blyZ — y‘2

.(1) ,(11-1) _ ',(n)

bnyn+bn~1yn + +blyn — yn

are satisfied then T F : F

m m

The above system of n equations in matrix form is

      

_ _ _

y1 Sf1 "' YYPDW bn T Vii

. (n-D (D)

y2 y2 y2 baa. 2 Y2 (2 3 7)

....... (n-l) : 6])

[in yn ° ' ° yn bl Lyn

_ 2 1 1

From Thm. A. 2, Fm is nonsingular. Since the matrix on the

left of (2. 3.7) is F51, the lemma follows.
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Corollary 2. 3.1 establishes a relationship (2. 3.4)

for determining the aij entries of the matrix A in (2. 3. 2) in terms

of one specified component xi(t) of the vector X(t) of (2. 3. 2).

When Thm. 2.2.3 is applied to Cor. 2. 3.1 it is determined that if

the aij entries in matrix A satisfy det (B) l 0 then the vector com-

ponent xn(t) of X(t) in the system (2. 3. 2) can be specified as consisting

of n linearly independent parts. This specification in turn restricts

the a.lj entries of matrix A by

Azo'lir F‘lo (2.3.8)
m m

Equation (2. 3. 8) is a principal result of this section and is referred

to as a "design equation" when applied to the design of linear

oscillators in Chapter V.

The results of Cor. 2. 3.1 are extended one step

further in Cor. 2. 3. 2 by proving the matrix product .FmFr-nl in

(2. 3.4) or (2. 3. 8) to have the form of a companion matrix (2. 3. 6).

An important consequence of this, which is applied in Thm. 2. 3. 2,

is that the matrix products CACE1 (2. 3. 4) and GAG-1(2. 2.15),

(2. 3. 8) have the form of a companion matrix. This implies that

the characteristic polynomial of matrix A, det [A - XI] must be equal

to the minimum polynomial [10, p. 149] of a matrix A.

Gantmacher [10, p. 159] shows that the matrix C in

the similarity transformation CAC”1 , which produces the companion

matrix, is not unique. Faddeeva [11, p. 201] presents a method

developed by Danilevsky which brings a matrix A into companion

matrix form by means of (11-1) similarity transformations. The
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primary difference in the method for obtaining the companion matrix

in this thesis and other methods is that here it is obtained under

specified conditions det (B) i 0 on the aij entries of matrix A by

a particular matrix product GAG-l, which has the desired form of

a companion matrix. This is not the case in the other methods

which have beenestablished for the primary purpose of bringing

the characteristic determinant det [A - X I ] of a matrix A into

polynomial form. What is even more significant in the development

of this thesis is the presentation of the transform in the form

X : G-l Xd (Lemma 2. 2. 3) which links the solution of an n-order

differential equation (2. 3. 9) to the solution of the system of dif-

ferential equatiom(2. 3. 2). The result of GAG.1 having the form of a

companion matrix is applied in the following theorem.

Theorem 2. 3. 2: If det (B) 75 0, where matrix B is
 

defined in the hypothesis of Lemma 2. 2. 3, then

:
3

:
5

:
3 I

H

 

(2.3.9)——x:2‘,a.

nn -1

dt 1

Where aj is (-1)j+l times the sum of the principal minors of order

j of A, is associated with

x : AX (2.3.10)

1.where A : [aij] and X' : [xl,x2,. . . ,xn

Proof: Theorem follows from Cor. 2. 3. 2 and

Thm. 2.2.3.
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Theorem 2. 3. 2 provides a simple, yet effective

procedure for establishing a mathematical relationship between

the aij entries of the matrix A in the system (2. 3.10) and the

aJ. entries in the n-order equation (2. 3. 9). If the matrix A is

given and det (B) 34 0, or if matrix A contains arbitrary entries \

and det (B) i 0 is specified, then the mathematical relationships

are given in the theorem. The results of Thm. 2. 3. 2 provides

a new tool for system design in a later section.

Equation (2. 3. 8) is the result of specifying only one

component xn in the vector X of the system (2. 3.10). On the

other hand, Thm. 2. 3. 2 relates only the aij entries of the matrix

A in the system (2. 3.10) to the a]. entries in the n—order equation

.(2. 3. 9). The additional step of relating the aij entries to the

specification on xn is made possible by the following theorem.

Theorem 2. 3. 32 Given the n—order differenial
 

equation

 

n n n-j

97x: :3 a. dn_ x (2.3.11)

dt j:1 3 dt 3

k kit

(1) If a solution on I of (2.3.11) is y(t) : f.) Pm _l(t) e (B.2)

1:1 1

then aj, j : 1,2, . . . ,n is given by (B. 1.1), (B. 1.2) a.i : -bj

for m. : 1 for all i.

1 r kit

(2) If a solution on I of (2. 3.11) is y(t) = E cie , where cifio,

1:1

and 1‘1 )4 0 and distinct, thenr coefficients of (2. 3.11) are given

by (B. 1.4) where a‘j : -bj.
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m at

(3) If a solution of I of (2. 3.11) is y(t) : Z) cie 1 cos (wit +61) and

1:1

2m : r, then r coefficients of (2. 3.11) are given by (B. 1.4)

where a. : -b..

J J

Proof: The theorem follows from the general form

of solution given in (B. 2) .

 

Theorem 2. 3. 3 establishes parameter-solution

relationships between the coefficients aj of (2. 3. 11) and a specified

solution. In (2) it is interesting to note (Thm. B. 1. 2) that if a

solution with r linearly independent parts is specified, r coefficients

of the n—order differential equation can be expressed in terms of the

remaining n -r coefficients .

Theorems 2. 3. 2 and 2. 3. 3 are sufficient to interrelate

the aij entries of the matrix A of the normal system (2. 3.10) and

the component xn(t) of the vector X(t) in the system (2.3.10).

These mathematical relations are referred to as "design equations"

when applied to system design in Chapter V.



III. PROPERTIES OF SYSTEMS OF NONHOMOGENEOUS
 

DIFFERENTIAL EQUATIONS AND ASSOCIATED
 

HIGHER-ORDER DIFFERENTIAL EQUATIONS
 

3 . 1 Introduction
 

Mathematical properties parallel to those in Chapter II

are developed for relating the solution of the nonhomogeneous

system

x -.- AX +Q(t) (3.1.1)

, 1 _ 1 _.
where X _ [Xl’XZ’ . . . ,xn], Q (t) _ [ql(t),q2(t), . . . ,qn(t)],

A : [aij] to the solution of the r—order(rf_n) differential equation

r-i

d

i r-i

dt

 

 

y +F(t) (3.1.2)

For instance. the problem of determining a transformation of

the form

x : c'1[Ys - L‘1H(t)] (3.1.3)

where X' : [Xl’XZ’ . . . ’Xn]’ Y‘S : [0, 0, . . . ,0, y,y(l), . . . ,y(r-l),0, 0,...,0],

H(t) is a vector function of t, and C and L are nonsingular matrices,

which links the solution of the normal system (3. l. l) to the solution

of the r-order equation (3. l. 2), is encountered. The solution of this

problem will allow the system designer to determine the initial

condition of the physical system in terms of one component Xi(t)’

Of the system solution X(t).

28
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In contrast to the problems considered in Chapter II,

a new problem that arises in this section is that of formulating the

vector Q(t), of the normal system (3.1.1), in terms of one component

xi of the vector solution, X. These parameter—solution relation-

ships are illustrated in the design of amplifiers in Chapter V.

3.2 Systems of First-Order NonhomOgeneous Differential

 

Equations and Associated Higher-Order Differential

 

Equations

Properties parallel to those in Chapter II are developed

here for the nonhomogeneous system (3. 2. 1). For instance in

Thm. 3. 2. 1 it is proved by applying a transformation of the form

(3. 1. 3) to a nonhomogeneous system, that there exists a set of s

differential equations, 1:s_<_n, of the form (3. 2. 2) "associated"

(Def. 3. 2.1) with the system. In Thm.3. 2. 2 conditions on the aij

entries of matrix A in the normal system are given so that there

exists a differential equation of n-order associated with the system.

In the proof of these results a technique for formulating a trans-

formation of the form (3.1. 3) is given (Lemma 3. 2. 2).

Definition 3. 2.1 provides a concise description of the

mathematical properties existing between the normal system

and the r-order equation associated with the system. These

properties are clarified in the theorems of this section.
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Definition 3. 2.1: Consider the system of n non-
 

homogeneous equations,

X :AX +Q(t) (3.2.1)

where A :[aij1’ X' : [x1.x2, - . . ,Xn], Q'(t) =[ql(t)..-.qn(t)].

qi(n)(t), i : l, 2, . . . ,n is continuous for all t on the open interval I

defined by I : [t: t1 < t < t2], where t1 and t2 are constants.

An r-order nonhomogeneous differential equation

I'

dy

r .

dt 1

+ F(t) (3.2.2)

  

r

"E a.

l

is associated with (3. 2.1) if:

(a) The homogeneous part of (3. 2. 2) is associated

(with nonsingular matrices C and D and row i) with the homogeneous

part of (3. 2. l) and

(b)l.For X'(t) : [xl(t),x2(t), . . . ,xn(t)] the solution of

(3. 2.1) on I such that X(to) : 0, t0 on I, then row i of CX(t) is the

solution of (3. 2. 2.) on I which is zero at to,

2. For y(t) the solution of (3. 2. 2) on I such that

Y(J)(t0) = 0. forj = 0,1,... ,r-l, tO on I, and

l r-i--1pr_iJrl r—l r

. D f . t + 23 P. D f .t ,J (>,_ ,1) J()r_3()
1—

0 j:0

(3. 2. 3)

where

_ .1 1‘1 'PfiD)_D +lk,k-1D +lk,k_ZD +...+1k’k_j,
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. j -

d
D] ___.__,., 13:1) 3“ Zplip) -

-1 -l .
then C [Ys(t) - L H(t)] 18 the solution of (3.2.1) which, when

evaluated at to, is the zero vector, where L.1 : [1..] and
1

1 l .-Y (t) : [0,0, . . . ,0,y(t),)()(t) y(rb(t),0, . . . ,0],
bY—d

ate): [0,0, ,.,o,g(n,1[”(n +£Zn),

l

fl(r-Z)(t) + f (r'3)(t) +2 +fr_l(t),0,...,0].

Definition 3. 2- Z? An r—order homogeneous differential
 

equation

'
1

’
1

 

Cl ._ ' dr-l

dt 1 1 1 dtr-l

is associated with (3. 2.1) if (a) and (b) of Def. 3. 2.1 are satisfied.

The mathemtical properties specified in Def. 3. 2.1

are first encountered in Lemma 3. 2.1 which follows. The lemma

presents a normal system of the form (3. 2.1), with the coefficient

matrix in the form of a companion matrix, that converts into an n—order

differential equation associated with the system.
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Lemma 3. 2. 1: Suppose matrix A of the system(3. 2.1) is

 

 

To 1 0 07

0 0 l 0

A z . (3.2.4)

0 0 0 1

an an—l an-2 al 
Then there exists an n-order differential equation, associated with

the system (3. 2.1).

Proof: Determine the n-l successive derivatives of the

first row of (3. 2.1) eliminating each time from the right hand

,x1 by means of the last

 

the first derivatives of x2,x3, . . .

  

side,

n-l original equations. This process results in

X1 : X + Ql(t)
(3.2.5)

, 1_. (l) (fl-l) I-
where X1_[Xl’xl ,... ,xl ], X - [xl,x2,... 'Xn] and

, _ (1) (11-2) (11-3)

010:) ~ [0. qltt). ql(t) + (12199”wa (t) + C12 (0 + + qn_1(t)]

and

dn n dn-j n—l

n x1: '23 a. 11..xl+ E P.(D) qn_.(t) (3.2.6)

(it j:1 Jdt J j—_-0 J 3

where P.(D) :DJ -a1D‘]- -a DJ.2 -...-a.,j 1,2,. ,n-l,

1 . Z 1

dJ

PO(D) : 1 and DJ :

dt‘]

That the homogeneous part of (3. 2. 6) is associated with

the homogeneous part of (3. 2.1), with C and D unit matrices and i :1

follows by an argument similar to that used in the proof of Thm. 2. 2.1.
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If X'(t) = [xl(t),x2(t),...,xn(t)] is the solution of (3.2. 1)

on I such that X(to) : 0, t0 on I, then by the method of construction of

(3. 2. 5) and (3. 2. 6), xl(t), the first entry of X(t), is the solution on

I of (3. 2. 6) such that xl(t0) : 0. Therefore if (3. 2. 6) is homogeneous,

the lemma follows.

Suppose (3. 2. 6) is nonhomogeneous and let y(t) be the

solution of I of (3. 2. 6) such that y(J)(tO) : 0 for j : 0, 1,2, . . . ,n-l
’

tO on I. It has been shown [4, p. 134] that such a solution exists.

0'1 n-l

For F(t) : Z) P.(D) q .(t), form F(t) 2 E P.(D) f .(t), which

j:0 J “'21 j30 J 11".]

is a special case of (3.2.3) with 1.. : 0 for i i j and 1.. = l for i :

k-2 . 1’] 11

1,2,...,n, such that z Djfil. (t ) = o, t onIandk = 2,3,...,n.
j:0 ~-j o o

This can always be done, since if fi(t0) : 0, 121,2, . . . ,n-1,

n-1

F(t) : fn(t) : 2'3 Pj(D) qn_j(t). Consider the transformation of

i=0
variables xl(t) : yl(t) and

Y(t) = AY(t) + 131(1) (3.2.7)

where Y'(t) : [yl(t),y2(t), . . . ,yn(t)], F'l(t) : [fl(t),f2(t), . . . ,fn(t)]

and A is given by (3. 2.4). The solution of (3.2. 7) is Y(t) : Ys(t) - Fll(t)

where YS:(t) : [y(t),y(lltl..... ,y(n_l)(t)] and

1 __ (l) - (II-Z)

F11“) .. [O,£l(t),f (t) +12(t),...,fl

and Y(to) : Ys(to) - Fll(to) : 0 for to on I since Ys(t0) : 0 and

(t) + fg1'3)(t) +. . . + fn_l(t)]

Fll : 0 for to on I. This implies the lemma.

Corollary 3. 2.1: With the same hypothesis and if
 

n-l

1; Pj(D) qn-j(t) : 0 then there exists an n-order homogeneous differential

1:0
equation associated with (3. 2.1).
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Proof: This follows from the method of formulating

(3. 2. 6) in the proof of Lemma 3. 2.1.

A review of the salient features in the proof of Lemma 3. 2.1

will lay the foundation for the theorems which follow. First, a

nonsingular transformation of the form (3.1. 3) is determined

(3. 2. 5 in Lemma 3.2.1). This transformation relates the solution

of the system to the solution of the higher-order differential

equation (3. 2. 6) .

Property (a) of Def. 3.2.1 is established in the same

manner in which the results of Thm. 2. 2.1 were established.

In Property (b)1 of Def. 3. 2.1, the first row in the vector

CX is the solution of the higher-order equation (3. 2. 6). In the

lemma, matrix C is the unit matrix and the first entry in the

vector Ql(t) is zero.

To satisfy Property (b)2 of Def. 3. 2.1, it must be

pointed out that there exists a solution of the higher-order equation

with the property y(j)(to) : 0,j : 0,1,2, . . . ,n-l. Next, it must be

demonstrated that the nonhomogeneous part, F(t). of the higher -

order equations, can be put into the form specified in (3. 2. 3) in

such a way that it satisfies the conditions at tO specified in (3. 2. 3).

It is shown in Lemma 3. 2. 1 that F(t) can always be put into the

desired form to meet the specified conditions t : to. The reason for

this last condition will become clear in the proof of Thm. 3. 3.1

which follows late r .
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It may be noted at this point the condition at tO on F(t)

forces the vector L-ll-i(t) in the transformation (3.1.3) to be zero

at to. In Lemma 3. 2.1 this requires F to) to be zero. Similar
11(

operations are applied in Thm. 3.2. l which follows to prove the

existence of a set of s differential equations,1< s< n, of order ri

associated with the system.

Theorem 3. 2.1: There exists a set of s differential
 

equations, l< s< n,of order ri, 1: 1,2, . .. ,5, associated with the

5

system (3.2.1) such that :7 r1: n.

i=1

Proof: Consider the transformation X : C—IY on
 

(3. 2.1) which is used in the proof of Thm. 2. 2.1. For this case

the transformed system of equations is

i' = CAc'lY + con) (3.2.8)

and

Y1: BiYi + Fin) (3.2.9)

where Bi,i : 1,2, . . . ,s, is of the form of (3.2.4). By Lemma 3. 2.1

there exists an ri—order differential equation (3. 2. 6), n : ri,

associated (with matrices C and D and row i) with (3. 2. 9). That the

homogeneous part of this differential equation is associated with the

homogeneous part of (3. 2.1) follows by an argument similar to that

of the proof of Thm..2.2. 1.

If X(t) is the solution of (3. 2.1) such that X(to) : 0, t0 on

I, then CX(t) is the solution of (3. 2. 8) which is zero at to.

The vector [yil(t)ay12(t)f . .inri(t)]' whgrcl: the component yij(t),

1: 1,2,. .. , s, j: 1,2,... ,ri, is the E rp + j entry in CX(t),

p=l
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is the solution of (3. 2.8) which when evaluated at to’to on I, is

zero. Therefore yi t) is the solution of the ri-order differentiall(

equat1on, (3.2.6), n : ri, for wh1ch yil(t0) :: 0.

If (3. 2. 6) , n : ri, is nonhomogeneous, then by an

argument similar to that of the proof of Lemma 3.2.1 (see proof

for notation), the solution of (3. 2.9) is Y(t) : Ys(t) - F(t) which

is zero at to, tO on I. Appending zeros to the vectors expressing

this solution of (3. 2. 9) results in the solution of (3. 2. 8) which is

zero at to. Since the solution of (3. 2.1) is X : C-lY, the ri-order

differential equation established by Lemma 3. 2. l is associated with

(3. 2.1). The theorem follows since the above argument applies

5

for all i, i: 1,2,...,s and E ri: n.

irl

 

In Theorem 3. 2.1 it is established that the normal system

(3. 2.1) converts into a set of s differential equations, l_<_s_<_n,of

order ri. This is an extension of results found by Murray and Miller

[4, p. 129] and others [5, p. 6]. In addition to this, from a

practical viewpoint, the proof of the existence theorem affords a

new method of determining a solution of a system in terms of a

solution to a higher-order differential equation, i. e. X : C-lY.

The problem of formulating a nonsingular transformation, of the

form applied in the theorem is the subject of the following discussion:



Consider the normal sysaem X : AX + 0(1), partitioned as

d
21'? - + (3.2.10)

      

As in the proof of Lemma 2.2.3, take n-l successive derivatives

of the last row in (3. 2.10), eliminate each time the first derivative of

the vector X by means of the first row in (3. 2.10). This formulation
1

results in the following (n-l) relations:

‘1
“
i
t
s
?
?
?
“
“
“
*
r
—

f
.
.
A

        

—A l - v _ 1 o o 01 P '
21 X1 -ann Xn

= - ‘ - o . (1)
A21AM X2 ; A21A1H2 ann l O xn +

1011-2 I -5 :(n-l)

- - 1
A2113111 xn—l A213111A12 AZIAllA12 AzfdllAlz “m Xn 1

_. ._ _ L— - l_

to

-qn(t)

-3 n-3

-q:1a(t)+ AZlA‘il (2(1“ )+ ..+ AZlAll Ql(t)

  
This last equation can be written in symbolic form as

13x1: de — 02(1) (3.2.11)

where the 1 row of (3. 2.11) is

i- o M (1-1) (1)

AZlAllX :AZIAilzlA 12X11 ° ° ° -A21A11A12Xn -annxn + X11

+ (1:1—1)“) + AzlAleli-2)(t) + ... + AZIAl 2
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and i : 1,2, . . . ,n-l. Let (3. 2.11) be bordered with ones and zeros

to form

0 1 X1 U [Xd] - 0

: (3.2.12)

B 0 x

n

1

P- [‘QZ(t)_

where U :- [l,0,0,. .. ,0].

-l . . . . .

If B ex1sts, the coeff1c1ent matrix on the left Slde of

(3. 2.12) is nonsingular. The coefficient matrix

also defined in Lemma 2. 2. 3 is nonsingular, since matrix L

is lower triangular with ones on the main diagonal, det (L) a l.

 

Let

-1

U] 0 1'[ 1

_ )_ -
G~ —L Bll (3.2.13)

p B o]

and

O

Qd(t)=

sz

If the aij entreis of matrix A of (3. 2.1) satisfy the condition det (B) 15 0

then Bi; exists and the matrix G defined by (3. 2.13) is nonsingular.

These results are stated by Lemma 3. 2. 2 which follows.

Lemma 3.2. 2: If corresponding to (3.2. l), det(B) )4 0,
 

then there exists a vector Qd(t) and nonsingular matrices G and L

such that



X = GX+L'le(t) (3.2.14)

where matrix B is defined in the hypothesis of Lemma 2. 2. 3

an“)... ..(n-l) 1.and X' : [x
nd n ' '

Lemma 3. 2. 2 is one of the significant results of

this section. The lemma is, in a sense, an existence theorem.

That is, if the aij’entries of matrix A in the normal system (3. 2.1)

satisfy the condition det (B) ,4 0 then there exists a nonsingular

transformation (3. 2. l4). Identical conditions on the aij entries in

the homogeneous systems were found (Lemma 2. 2. 3) for the

transformation (2. 2.14) to exist. Theorem 3. 2. 2 shows that the

transformation (3. 2. 14) does convert the normal system into an

n-order differential equation which is associated with the system.

Theorem 3. 2. 22 If det (B) )4 0, where matrix B is
 

defined in the hypothesis of Lemma 2. 2. 3, then there exists an

n-order differential equation associated with the system (3. 2.1).

Proof? Substituting the transformation (3. 2.14) into the system

(3.2.1) results in

. -1 -1 -1 _1.
Xd : GAG Xd - GAG L Qd(t) + L Qd(t) + GQ(t) (3.2.15)

Whe[:’lo (t +GQt ]' —- [f (t f(l(t) +£ (t 1"”) + 18“” +
d) (l ‘ 11 )’11 12 )"°"11(° 12

+ flnm] [151]:
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+ f12(t),... ,fma(t)+f(n23)(t)+... H (t)]
, 1)

Q(1(tlo'f((911t)'1(11 11 l,n-l

_ ‘ i-2 ._
and fll(t) — qn(t), fli(t) — AZlAll Ql(t), 1 — 2,3,. . . ,n. The last

row of (3.2.15) is,

 

n n n—i n—l n--i- l

9—n—xn — 2 .4i d mi xn - >3 ai z P‘?’i+l(D) 11 _._.(t) +

dt 1:1 dt 1:1 3'20 “ 1 J [

n-l p“ LU

£0 J.(D) £1,11_J.(t) (3.2.16)

”
fi
:
.
'
7
m
-
.
-
-
-
.
-
-
-
-
—
~
.
—
:

‘

an n-order differential equation associated with (3. 2. l), where PfiD) is

given after (3. 2. 3) and L”1 = [lij1' F01; by an argument similar

to that of the proof of Thm. 2. 2. 3, the homogeneous part of (3. 2. 16)

is associated (with matrices G and row one) with the homogeneous

part of (3. 2. 1)

If X'(t) : [xl(t),xz(t), . . . ,xn(t)] is the solution of (3. 2. 1)

such that X(to) : 0, t0 on I, then the corresponding solution of (3. 2.15)

is given by (3. 2.14). The first entry of Xd(t) which is the first

entry of CX(t) (since L”1 is lower triangular) is the solution of

(3. 2. 15) which is zero at to. Therefore if (3. 2.16) is homogeneous,

the the orem follows .

For the case of (3. 2.15) nonhomogeneous the method of the

last part of the proof of Lemma 3. 2.1 is used. That is for

n-2 n—i-2 . A‘ni'J2 n-l n+1-i

F(t)=- :a,: P““111mm,, elm-La .P__nli<D>q<t>
1:1 j:0 1:1

'ZPIRD)A21A1AHJZQ + P: _1(D) qn(t) (3.2.17)

+j:o
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n-l n-i-l -i+l n-l n

form F(t) = - z a. 2 P“. (D) f ..(t) + z P.(D) f .(t) such

i=1 1 j=0 J n-l-J j:0 J n-j

k—2

that 23 PhD) f .(t ) = 0 for t on I, k : 2,3,. . . ,n. Consider
j:0 j k-l-j o o

the transformation of variables xn(t) : y(t) and

l
l13‘1c2du) + L" Fl(t) (3.2.18)Y(t) = GAG"1Y(t) - GAG"

n~l)
where Y'(t) [y(t), y(1)(t),..- ,y( m]. Dam = [0.£(t).£,”’(t) + f2(t).

[fin-2)“) + ...+ fn_l(t)], Fl'(t): [fl(t),f(l)(t)+fz(t),... ,il(n’1)(t) +

. + fn(t)]. Substituting (3.2.14) into (3. 2.18) results in (3. 2. l)

sinceQ'(t) :' [f1(t),f2(t), ,fn(t)] (GI—1L-l )' . Therefore if y(t) is

the solution on I where y(to) : 0 and y(J)(tO) : 0, j : 1,2, . . . ,n--l,tO

l

od(t)]

where Xci(t) : [y(t),y(l)(t), . . . , y(n-1)(t).] such that X'(to) : O.

on 1, then the solution of (3.2. 1) is X(t) —.— G'l[xd(t) - 1.’

The theorem follows .

The determination and application of the nonsingular

transformation of Lemma 3. 2. 2 and Thm,3. 2. 2 are unique to this

thesis. The technique used in the proof of Thm. 3. 2. 2 offers not

only a new method of formulating an n-order differential equation,

but even more important a closed form relationship X : G-le-L-IQAtH

linking the solution of an n-order equation (3. 2. 16) to the solution of

the normal system (3. 2.1). Methods of obtaining higher-order

equations presented by Moulton [5, p. 6] and others [4, p. 126] do

not consider a transformation of the above type (3. 2.14) and as a

result do not restrict the final equation to one of n-order. The

restriction of the final equation to one of n-order and the transformation
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in the special form (3. 2.14) are important features in the design of

electrical networks proposed in a later section.

A review of the main features of Thm. 3. 2. 2 shows

that if the: aij entries of matrix A in the normal system (3. 2.1)

satisfy the conditions det (B) :4 0, then the system converts into the

n-order differential equation (3. 2.16). This n-order equation, which

is associated with the system (3. 2.1), is the result of long and

 

difficult derivations, i.e. the last row of (3. 2.15). However, now

‘
q
.
.
;
?
£
;
'
:
fi
:
.
-
a
l

t
u
n
a
:
A
D
P

that this derivation has been sucessfully performed for the general

case it is no longer necessary to go through the complete process

of substituting the transformation (3. 2.14) into the system (3. 2.1)

and obtaining the last row of the resulting system, to arrive at the

n—order equation (3.2.16). It is, however, necessary to determine

some of the components of the n—order equation. The ai, i : 1,2, . . . ,n

components in (3. 2.16) are determined by applying Thm. 2. 3. 2

as being (--l)i+l times the sum of the principal minors of order 1

of matrix A in (3. 2.1). Closer examination of the nonhomogeneous part

of the n—order equation (3. 2. 16) shows the only derivation yet to be

made is [...-l : [ lij ], where the matrix L is defined in the results

of Lemma 3. 2. 2. This later derivation is relatively simple since the

matrix L is lower triangular with ones on the main diagonal.

An additional result of Th‘m. 3. 2. 2 is the formulation

of the vector

1 l
I ._ . ' 7 1

Q (t) — [fl(t), f2(t), ..., fn(t)] (G L ) .

of the normal system (3.2.1) in terms of the components fl(t),f(t),...,fn(t)

in the nonhomogeneous part F(t) of the n-order equation (3. 2. 2). The
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formulation of the vector Q(t) is referred to as a "design equation"

when applied to the design of amplifiers in a later section.

3. 3 Additional Properties of Associated Differential Equations
 

Mathematical properties established in Sec. 3. 2, which

P

relate the solution of the normal system (3. 1. 3) to the solution of

the r-order equation (3.1.2) associated with the system, are

fi
-
f
l
-
B
F
A
J
-
a

-
.
-
.
3
t
-
‘
-
-

.
.

(
.
.
.
!

-

applied in this section. In the following development the coefficient

‘1
1.

;

matrix A and the vector Q(t) in the normal system are related to

the solution y(t) and the nonhomogeneous part F(t) of an n-order

differential equation (3.1. 2) associated with the system.

Theorem 3. 3.1: Suppose y1(t), y2(t), . . . ,yn(t) is a
 

fundamental set of the homogeneous part of (3. 3. l) and y(t) is the

solution on I: [t[ > to of

 

dn .n n-j

”7:: z 2: a. n_ x+F(t) (3.3.1)

dt 32:1 3 dt 3

such that y(J)(tO) : 0, t0 on I, j : 0,1,. . . ,n—1 and (3.3.1) is

associated With

>
4

1I AX +Q(t) (3.3.2)

then

C-l

> H

- -1
Fm(t) Fm (t) C

(3. 3. 3)

em = me git-(Fm Y(t))



 

 

 



44

WhereFrnU) :[fij(t)1v fij(t) :ygl-1)(t), i, j : 1,2, . . . ,n and

Y(t) : C"l [Ys(t) - L-l H(t)] (see Def. 3. 2.1 for notation).

Proof: By hypothesis, and Cor. 2.3.1 (3.3.3) of

conclusion follows .

If Fm(t) is a fundamental matrix for X : AX then, by [

Thm. 3.1 [6, p.74]

 

W
r
—

_
“

t

Y(t) me] Fljnlm) Q(s)ds

t

O

t on I, is that solution of (3. 3. 2) satisfying Y(to) : 0. Application

of "Leibnitz Rule" (Thm. A. 4) to

t

d -1 V __ d —1
2175...“) Y(t) ) NEE]: Fm(s)Q(s) ds)

0

results in n relations,

Q(t) — F (t) ——d (F-1(t) Y(t )
~ m dt m )

Since the n-order equation (3. 3.1) is associated with the system

(3. 2.2) then Y(t) : c'1[
1

Ys(t) - L- H(t)] is the solution of (3. 3.2)

which, is zero when evaluated at t0, t0 onl .

In Theorem 3. 3.1, if y(t) is replaced by xn(t) and

the restriction det (B) i 0 (as defined in the hypothesis of Lemma 2. 2. 3)

is added to the hypothesis of the theorem, then the relationships



A = 6'11?“ F-IG (3.3.4)
m m

d —1

are obtained. The solution of the normal system (3. 3. 2) is given

in this restricted situation i.e. det (B) i 0, by the vector

(t) - L-1H(t)] (3.3.6)

where XC'1(t) : [x (t), x(1)(t), . . . ,x(n-l)(t)], matrices G and L

n n n

are determined as in the discussion proceeding Lemma 3. 2. 2,

and 11(t) is determined as specified in Def. 3. 2.1 where r : n.

The relationship (3. 3.4) has been discussed in Chapter II.

"
E

'
i
i
l
l
l
f
fi
fi
'
”
"
"

._
.
.



IV, ON A CLASS OF SYSTEMS OF NONLINEAR DIFFERENTIAL
 

EQUATIONS AND CORRESPONDING REDUCED DIFFERENTIAL
 

EQUATIONS
 

4. 1 Introduction
 

In the design of tunnel-diode amplifiers and oscillators.

the state models of these systems have taken special forms. By

divorcing the parameters, in these mathematical models from the

parameters associated with a particular physical system, the class

of systems

  
        

_ .. .. — _. a P ..l r' _

x1 all alp—l a1p+1 an.“ ’f1 {1(Xp) ‘11“)

d I XI“
_._ : a a a a x + f x + t

dt xp pl pp-l pp+l in p+l p( p) qp( )
. i .

- g )

an‘ _anl anp—l dnp+l an“- _xn 2 tin(xp)d [final

or in symbolic form

X : AlXOp + l\(xp) + on) (4.1.1)

results.

The problem of relating the solution of the system (4.1. 1)

to the solution of the n-order differential equation

 

dn n—l C1n-j

dt p j=1 J dt 3 p p

by means of a nonsingular transformation is encountered, as in

Chapters II and III.

46
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The additional problem of relating a specified solution,

BO + Bl sin(wt+¢), to the parameters in the n—order equation (4.1. 2)

where T(xp.) is a polynomial of m—order is considered. The solution

of this problem will assist in the design of an amplifier or oscillator

when the system contains a nonlinear component whose characteristics

can be approximated by a polynomial of order m.

{
1
'

'
c
‘
v
a
m
p
—
—

4. 2 Formulation and Solution of Reduced Nonlinear
 

Differential Equations
 

‘
h
t
‘
fl
fi
’
-

3

Conditions are given on the normal system (4.1.1)

for the existence of a nonsingular transformation (4. 2. 3). The

transformation, when it exists, reduces the system (4.1. l) to an

n-order "reduced" (Def. 4. 3.1) differential equation (4.1. 2). The

transformation in turn relates the solution of the normal system to

the solution of the n-order reduced differential equation.

First consider the problem of formulating a nonsingular

transformation.

Let the normal system X : AlXOn + N(xn) + Q(t), (4. l. 1)

be partitioned as

d X1 [A11 [X1] F12(Xn) Q1“)

a—t- : ) + +

xn 1! A21 fn(xn) qua)

F (4. 2. 1)

As in the proof of Lemmas 2. 2. 3 and 3. 2. 2, take n-l successive

derivatives of the last row in (4. 2. l) and eliminate the first deriva-

tive of the vector X each time by means of the first row in (4. 2. l).

1

This formulation results in
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,(i) _ i-1 (i-l) o (i_2) 1.)

"n “A21A11 X1 +fn (xn) +£21A11F12 (an +°'+A21A11F12(Xn)

(1—1) 0 (i—Z) 1-2
+ qn +A21A1101 + +A21All Ql(t)

for i : 1,2,. . . ,n-l. These n-l relations in matrix form are

_
-

L‘
.‘
r
.
.
"
—

x = BX +2 (x1, t) (4.2.2)

H 0
.
.

y
.
.
.

H H

"
"
t
l
‘
“

:.
“
H
.
-

l n-l
whereXl'd : [xil ),... ,fol )] and XI:[X1’X2"" ’Xn-l]'

Let (4. 2. 2) be bordered with a one and a zero to form

       

x [o 1; x1 _ o P
n . 1

e +

_ded __ B 0_] __ xn - _Zl(xn’t).(

This last equation can be written in symbolic form as

Xd : BllX + Z(Xn, I.)

If in addition, the aij entries in Inatrix A1 of the system (4. l. 1)

satisfy the condition det (B) )4 0 then B11 exists. These results

are. stated by the following lemma.

Lemma 4. 2.12 If corresponding to the system (4.1.1) with
 

p = n, det (B) if 0 where matrix B is defined in the hypothesis of Lemma 2.2.3,

then there exists a vector Z(xp, t) and a nonsingular matrix B11,

such that
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xd :BllX + Z(xp. t) (4.2.3)

where X' : [x ,x(l),. .. , X(n-l) ] .

d p p p

Lemma 4. 2.1 states that if the aij entries of matrix Al

in the normal system (4.1.1) satisfy the midition det (B) ;€ 0 then

there exists a nonsingular transformation (4. 2. 3). The transfor-

mation determined in the lemma is the main part of the Def. 4. 2.1.

The definition supplies an operational technique for determining,and

hence defining,the n—order equation obtained from the normal system.

Definition 4. 2. l: The nonlinear differential equation
 

obtained as the last row of the system of differential equations

—1

11

in (4.1.1) is the reduced differential equation corresponding to

generated by substituting X : B [X - Z(xp, t)] , of Lemma 4.2.1,
(1

(4.1.1).

Consider as an example, the two normal systems in

Theorems 4. 2.1 and 4. 2. 2 that convert to a reduced differential

equation.

Theorem 4. 2.1: If the matrix A1 of the system (4.1.1)
 

with p : n is
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f- -!

c 0 O111 0

00 a22 0

A1 =

O O an-ln—Z an—ln--1

Lanl an2 ° ° ' ann -z ann- 1.

where aii distinct i = 1,2, . ,n-1 and anj :5 0 for j : 1,2, . . . ,n—l,

then there exists an n-order reduced differential equation corres-

ponding to (4.1.1).

Proof: The proof is similar to that of Cor. 2. 2. 3

 

and therefore has been omitted.

Theorem 4. 2. 2: If matrix A of the system (4. 1.1)
 1

with p : l is

-' '1

1 0 o

o 1 0

Al :

o 0 1

En-l an-2 "' a1   
Then there exists an n—order reduced differential equation,

11 11-1 n-j n-1 n-1

-—-—x : 2: a X1+ :3 Pj(D)fn_J(x1)+_Z Pj(D) qn_j(t)

at“ l j:1 Jdtn'J j:0 3:0

 

corresponding to (4.1.1), where Pj(D) : DJ-alDJ-l-a DJ-2-. . . -aj,PO(D) :l

2

d‘]

dtJ

and Dj ::
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Proof: Application of the procedure used in the proof

of Lemma 4. 2.1 (calculate n-l successive derivatives of the first

row of (4.1.1) eliminating x ,x , . . . ,xn) results in

2 3

Xd : X + 7.(xl, t) (4.2.4)

where (B of Lemma 4 2 l is the unit matrix) X' - [x X”) X(n-D]. ll . . . d — 1,1 ,..., 1 ,

' ' <1) (1)
X : [xl.x2. - - . .an. Z (X1. t) = [0.fl(xl) + ql(t).f1(x1)+fz(xl)+ql(t)+q2(t).- - - .

n-2 n-2

f(l )(x1) + ...+fn_l(x1)+q(l )(t)+...+qn_l(t)]. The theorem

“
W
W
/
/

i
t
"
s
a
w

follows by substituting (4. 2.4) into (4. 1.1).

Lemma 4. 2. l is one of the important features of this

section. The lemma is in a sense, an existence theorem. That is,

l in the system (4.1.1) satisfy the

condition det (B) J 0, then there exists a nonsingular transformation

if the aij entries of matrix A

(4. 2. 3). Identical conditions on the aij entries have been found

for the transformation to exist, when the normal system is linear.

Theorem 4. 2. 3 shows that the transformation (4. 3. 3)

converts the normal system (4.1.1) into an n-order reduced

differential equation .

Theorem 4. 2. 3: Consider the system (4.1.1) with p : n,
 

det (B) 7! 0, where matrix B is defined in the hypothesis of Lemma 2. 2. 3.

Then there exists an n—order reduced differential equation

dn 2:1 dn‘J n‘l n-l

—-—n xr1 : .2, a. 11-J xn + Z Pj(D)fln_J(xn) + E P.(D)qln_.(t)

dt 1:1 J dt j:0 j:.-0 J J

 

(4.2. 5)
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-2 ,_
where 111(11n)._ f1(11111)’1l(11) A21A11F12(xn)1_ 2,3,... ,n,

1-2

C1,,(t)— qn(t) q,,(t)- AZlAllQl(t)1: 2,3, . . . ,n, corresponding

to the system (4.1.1).

Proof: Substituting the transformation (4. 2. 3) into the

system (4.1.1) results in

- -1 -1 , -

Xd ‘ B11’1‘1B X1(1'13’11’11‘1B 211%") 1 13111“an 1 B110“) +26%”)

(4.2.6)

, , 1 (n-l)
whereX :[xn,X1d]:[xn,x:1),...,xn ].

d

. (1) <1)

[8,,N<x > + B,,Q<t> +2(xn.t)]'=fx,[,,()+q,,<t>. ,,(x) +f,,<xn>+q,,(t)+q,2<t),

(11111“) (11--1)(
lnn(x ) 111111 t)+...+qln(t)], Zl'(xn,t) -:

° )

[f,,<xn) + q,,(r>. f‘,1J,<:n) + f,2<x1+ q[,’(t> + q,,<t.) ..

f(1111-2) . ' (n— 2)

(xn)+ .+ f,n_,(.xn)+q,, (t)+ +q,,,_,(t)] and

> _ T ' _ .1-Z ' I -— _

111(11n) _ 111(11n)’ 111(Xn1— A211111111112(11n)1 — 2’ 1 1 1 ’n’q1111)" q11(1)’

ll

i-Z .

C111“) — A21All Ql(t) 1 2,3, . . . ,n. The theorem follows

since (4.2. 5) is given by the last row of (4. 2. 6).

The determination (Lemma 4. 2. 2) and application

(Thm. 4. 2. 3) of the nonsingular transformation Xd : B111 Z(xp,t) as

defined in the results of Lemma 4. 2.1 are unique to this thesis.

The technique employed in the proof of Thm. 4. 2. 3 offers not only

a new method of formulating the n-order differential equation, but

also of equal importance,a closed form relationship
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-l

X .-:Bll

(4.1. 2) to the solution of the normal system (4.1. 1). This last

[Xd-Z(xn,t)] which joins the solution of the n-order equation

property is demonstrated by Thm. 4. 2. 4, which follows.

Theorem 4. 2. 42 If (4. 2. 5) is the reduced differential

 

equation corresponding to the system (4.1.1) and xp(t) is a solution

on I of (4.1. 2) then

[Xd(t) - Z(xp,t)] (4.2.7)

where Xe“) = [xp(t),x:)1)(t),... ,xp (0], z'(xp,t) =

(1) (1)

[0,fll(xp,t) + qll(t),fll(xp,t) +flz(xp,t)+qll(t) + q12(t),...,

fanl‘zhxpm) +. . .+ {In-1(Xp’1) + q(lnl112)(t)+...+ qln_l(t)] is a

solution of the system (4.1.1) on I.

Proof: By Definition 4. 2.1 the last row of (4. 2. 6) is

(4. 2. 5). By substituting (4. 2. 3) where X and Z(xp,t) are defined
d

after (4. 2.7), in (4. 2. 6), (4.1.1) results Since dezBXq3+ 21(xp,t),

l __ . ’1'
N<111’1)11[fll(xp1t)’flz(xp’1)’1 11’fln(1\ ,t)] (B11) and

P

Q'(t) : [qll(t)’q12(1)’1 . . ’qln(t)] (B11)' . Thus if xp(t) is a solution

of (4.2. 5) on 1, then X21“) = [xn(t),X'ld(t)] = [xn(t),x1(11),...,xfln-l)(t)]

is a solution of (4. 2. 6) on I, which implies that (4. 2.7) is a solution

Of (4.1.1) on I.

4. 3 A Relationship Between the Parameters and a Solution

"- 

of a Class of N-Order Nonlinear Differential Equations

 

Nonlinear differential equations of the form (4. l. 2),

where T(xp) is a polynomial, are considered in what follows.



54

A relationship between the parameters and a solution in the form of

B0 + Blsin(;ot + ¢) of this class of differential equations is obtained.

The parameter-solution relationships determined in

Thm. 4. 3.1 are referred to as design equations when applied in

Chapter V to the design of tunnel-diode amplifiers and oscillators.

Before considering the details of the theorem, reference should be

made to Thm. C. l in the appendix. In Thm.C. l the nonlinear pa rt

Pl’n-1(D) f(y) of (4. 3.1) is derived for f(y), a polynomial of order

m.

Theorem 4. 3. 1: If y(t) : BO +Blsin(;ut + (0), BO :/ O, is
 

a solution on I: It) >tO of

 

  

n n dn-i

V 2.3a. _ y+P _ (D)f(y) +F(t) (4.3.1)
dtn 1:1 1 dt11 1 l,n l

- J
. . _ n-1 n-2 n-3 J_ d _

\xherc pl'n-1(D) — D 11dlD -dZD -...-dn_l,D _?,P1,0(D)—l

m .

and f(y) : z (1.39, a $0,170): q + q sin(;st + 9) where s>0
ij J m o 1

then

(1) qo : 1an Bo + dn-l bo

n .

(2) q cosG : B uncos(§l+ ¢) -B '> a .6111 “(1111)“ + (D) -L b

l l 2 11:11 1 2 l l

n .

(31 q sine = B wnSiI1(1—1—E—+ (a) — B v a an’lsihU—“fll + 91) —s b
l l 2 11:11 i 2 l l

(4) bS:O,S;£O,l s=2jor2j-1.

Where b and b . are defined in the results of Lemma C.2 and

2j 23-1

Ll’ Sl are defined in the results of Thm. C. l.
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Proof: Since y(t):BO + Bl sin(wt + (6) is a solution of

dn n dn-i

(4.3.1) on I. [11 >10 , :11? (130+Blsih(st+¢)) : 1131111dtn’1 (Essen/11+?!» +

pl,n-1(D) f(BO+B151n(wt+¢)) + q0 + q181n(wt+9).

Calculating the indicated derivatives, and applying the

conclusion of Thm. CL this equation reduces to

n

 

In . r31 _ V 'n-i . (n-i)1r _ _ . ‘ .

[Blu Sin( 2 +¢) ijlaiBlsg s1n( Z + ¢) Slbl q181118]c0s tot +

[B wncos(-1-1-T—r+ ¢) - ‘1“1 a B '..111-1cos((241—111-T + Q5) - L b - c056] sin 't +
1 2 1:11 1 1 2 1 1 q1 “’

k k

n-lbo - anBO-qO 423 Mijj cos 2):..1t -.Z‘, ij2j sin ijt -

171 1:1

r r

2 Lb. sin 21-ltt-E S.b. cos 21-l't20.

1:2 121-1 (J )111'=2 121-1 (J b

Grouping the coefficients of cos wt, sinwt, cos ijt, sin ijt, cos(Zj—l);ot,

sin(2j-l)wt and constants, and equating each group to zero results in

(l), (2), and (3) conclusions of the theorem and the following

relations:

M.b.:O N.b.:0 ‘:l,2,...,k
121 .121 J

:0 SbL1 . . _ :0

1121-1 J 21-1

j:2,3,...,r.

Since Mj(2jt.1) is a polynomial in 231;.) of order n-l , n_> l, with

coefficients not all zero, M.(2j;.1)bZj : Oj : 1,2, . . . ,k for :1) >0,

J

. : O for J : 1,2, . . . ,k. The theorem follows byimplie S that bZJ

aPplying the same argument. to Lj((2j-l)u1)b2j_l.



56

 

 

 

Corollary 4.3.1: pr - qf 0, 2,4,. . . ,B1£0 then

(1) Boan : .q0 + dn-lbo

—[Wlsir1((—'------11-2q)Tr + 9)) " W2 cos((niqh + m]

(2) a :

p wn-p Sin (p-czmr

 

[wlsin((n'p)1T + (D) - W cos (Ln-11)-TL + (0)]

 

 

2 2 2

(3) a 1 n- I - hr
q w p sin 1.9—.—

2

q . b

_ l n n-rr v ’n—i (n-i)1r l

where, W1 ——B—c058 - w cos(—5+ ¢) + .., ai.» cos( 2 +¢)+L1T3——

l s l

q . b

_ l . n . nn V n-1 . (II-1hr 1
W2 — -B-—l- 31110 - to 51n(—Z—+¢) + 1; aim 5111(-——Z——— +93) + 51 33—1

1‘, is the sum over all i f p, q.

s

Proof: This is a direct consequence of Thms. 4. 3.1

and hence the proof is not included.

Consider as an example of Cor. 4. 3.1 with n : 2

 

(l) B0212 : —q0 +dlb0

”b1 q1
(Z) 3133-]: + {9B1 Sln(¢ - 9)

(3)a r-w2+d El-:1-—1-cos(6-(l))
2 1 B1 B1

and from the results of Lemma C. 2 with m : 3 ( the derivation

following LEITIIDB. C . 2)

B2

_ 2 1 2 3 2
b0_aO+BOal+02(BO+—2—)+Boa3(Bo+-2-Bl)

2 3 2
b1- B1[al+ 2012130 + .13(3B0 +7,— 131 ) ].
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The importance of the parameter—solution relationships

(I), (2) and (3) in Thm. 4. 3.1 will be demonstrated when they are

applied to arrive at design equations , in the design of tunnel—diode

amplifiers and oscillators .

A notable feature of the n-order differential equation

(4.3.1) s at the. nonlinear part f(y) is a polynomial of order m.

This r-_ suits in b0 and b in equation (I), (2), (3) and (4) of
l,

Thm. 4.3.1, being nonlinear in the specified B0 and B11 When the

pol 'nomial f(y) is of order m = 3 then b0 and b are given in the
1

example following Cor. 4. 3.1.

1
3
1
.

‘
’



V. 'ON DESIGN METHODS AND EXAMPLES
 

5. 1 Introduction

 

Design methods, which require the construction of a

normal system of differential equations having a specified solution,

are presented here. These methods are based on a portion of the

mathematical properties developed in the preceding sections of

this thesis.

To exhibit that the design methods apply equally well

to a very large class of physical systems, the methods are applied

to a normal system of equations whose parameters have been divorced

from those of a particular physical system.

The approach to the design is to View the system perfor-

mance as one specified component xi(t) of the vector solution, X(t),

of the normal system. Then, by mathematical techniques developed

in the preceding sections, the mathematical relationships which

must be satisfied between the parameters in the normal system and

the specified solution xi(t) are determined.

5. 2 Oscillator Design
 

Methods of oscillator design in terms of complex frequency

n (12’13). Fromdomain equationdLaplace Transforms) are well-know

Chapter II, the development of Theorems 2.3. 2, 2. 3. 3 and Cor. 2. 3.1

(Eq. 2. 3. 8) provides some new tools which can be applied to oscillator

design in the time domain.
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The linear oscillator is assumed to take the mathe-

matical form of a normal system of linear homogeneous differential

equations. If y(t) is to represent the oscillator response then y(t)

must be a non—constant solution of the normal system for all time

t, t > 0. In addition, there must exist a constant? > O and time

tO > 0 such that l-

[y(t + nto) — W + (n+11t01l < 6 (5.2.1)

forallt>Tandn:O,1,2,... 37.

‘
3
,

The number tO in (5. 2.1) is called the period of

oscillation. The smallest values of T, To, for which (5.2.1)

is satisfied, is the rise time of the oscillator. The amplitude

of oscillation is lim Max y(t)

n-u-oo nt0< t < (n+1)tO

Two methods of designing an oscillator which has a

specified frequency of oscillation, amplitude of oscillation and rise

time are presented. Method 5.2.1 illustrates the results obtained

in Theorems 2. 3. 2 and 2. 3. 3 whereas, Method 5. 2. 2 applies the

results of Cor. 2. 3.1(Eq. 2. 3. 8).

Method 5.2.1: Oscillator Design

k X .t

(a) Construct y(t) _—_— 23 Pm _l(t) e 1 , tZO, from the

1:1 i

specifications.

(b) Apply Thm. 2.3.3 to y(t) of (a) and thereby

determine the coefficients 1131' j : 1,2, . . . ,n of

n n n-j

'51—'17)" ) 1: E Elm—E171??— (5.2.2)

dt j:l Jdt J

in terms of y(t).
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(c) Relate the aj j : 1,2, . . . ,n entries to the aij

entries in matrix A of the system

X : AX (5.2.3)

where X' : [x1,x ,x ] , A - [ai21 . . . n _ .] by applying

J

Thm. 2'. 3. 2.

(d) Relate the initial condition y(J)(t ) : C. ,
o J+l

j : 0,1, . . . ,n-l to the initial condition on the system

(5. 2. 3) by

X::Cf xd (5.2nn

,x ] , Xé:[xn,x1(11), . . . ,xg11l)] and
) '-—whereX .- [xl,x2,... n

matrix G is defined in the results of Lemma 2. 2. 3.

Method 5. 2. 2: Oscillator Design

(a) Construct y(t) as in (a) Method 5.2.1.

(b) Form the matrix Fm frmn a fundamental set of y(t),

i.e. if y1,yZ. . .yn is a fundamental set of (5.2.2) then

r .

,(11 ,(11 ,(11
F = 31 32 "' yn (5.2.3
m . . . . . . .

- -l n—l

- .J  
(c) Determine the coefficient matrix A of the normal system

(5. 2. 3) as

-l

‘1 1‘ o. u;2.m
m

AzG F

n1

where matrix G is defined in the results of Lemma 2.2. 3.
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((1) Determine the initial conditions for the normal system

as in (d) of Method 5.2.1.

The parameter-solution relationships obtained by either 1

of these two methods when associated with the parameters in

J
.
l
—
-
—
'
.
-
-

'

1

systems of differential equations corresponding to known network 1

configurations are referred to as design equations.

L
.

vi
z-

J"
'-

The basic steps of the proposed design methods are

illustrated in the examples that are itemized to correspond to the

design method being applied.

Example 5. 2. 12 (Method 5. 2.1) Specifications require
 

an oscillator with a frequency of oscillation f : 111/217 , aplitude of

oscillation c and a "small" rise time.

(a) A possible y(t) is

1111 .th X3t

y(t) : cle + cze + C36 (5.2.7)

Ce‘jw ce11j¢ . .

where C1 = T1 c2 :———2——-—, 111: + Jw,)\2 : -J;o and X3 : 413, where

:11, c, ¢,o.3 are real and positive anda3 is as large as possible.

(b) The coefficients aj of (5. 2. 2) for n : 3 as given

in the results of Thm.. 2. 3. 3

2
(->\ X +)\ X 112131-1111

azlfll‘flz‘“ 12131 2 3 3 E1‘2:

(5.2.8)
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(c) Proceeding as indicated in (c) of Method 5. 2.1

the condition, det (B) i 0, in the hypothesis of Thm. 2. 3. 2 must

be satisfied. For this condition

d“ (B) : 331(a33a32+a31a121’332322) ”a32(a33a31+a31a11+a32a21)’1 O

the third-order equation (5. 2. 2), n = 3, is associated with the normal

 

system (5. Z. 3) and hence the a, entries (5. 2. 8) are related to the

J

aij entries of matrix A in (5. 2. 3) by I

+ z - : ,‘.

811111 8L22 ‘333 C13 a1 ,

( a -a a +a a a a +a a a a )- "2-

' 8‘11 22 2112 1133 3113 2233 32 2:3 ““"" ’ a2 12‘

2 (5. 2.9) ..

det (A) :- 413(1) ‘—‘ a3 ’

(d) In addition, for det (B) if 0, the initial conditions

as specified by (5. 2. 4) are -l

1 1 1 0 0 1 1 .., .1» 1

x2 I 8‘31 332 a33 ’1 1

+ + + + ..
LX3 8L331131 a131‘8‘11 a32321 al338132 a31811211328122 2135;131:113 a325‘23J Ly     

are in symbolic form —1

X(t ) = G x (t ). (5.2.10)
0 d 0

Any physical system which has a mathematical model in

the normal form (5. 2. 3), with parameters satisfying the design

equations (5. 2. 9) and (5. 2.. 10), will have a Specified response y(t);

where normal system x3(t) = y(t) specified. Note, when y(t) is given

the solution of the normal system is implied by (5. 2.10). The para-

meter-solution relationships (5. 2.9) and (5. 2.10) are further illustrated

when applied in the design of a "Colpitts Oscillator".
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1A normal system of equations corresonding to the

Colpitts Oscillator

 

 

 

j: -

1 -:'

1111"

 

-—-+--———- - — ... ~~..

Figure 5.2.1

where gm, (1 and rp are well-known tube parameters is

      

1 "‘ '1 - -1

11v o 0 Cl v,

Cl 1 L1

£1— v — - gm '1 .1..— V
dt C2 C2 Czrp C2 C2 (5.2.11)

1 .1. Li :3. 1

g L _J L L L L _ L- L _

Specifying that det (B) = Lit—12 i 0. Method 5. 2.1 applies and

rpCZL

the 11ij entries in the coeffieient matrix (5. 2.11) are related to the

specifications (design equations) by (5. 2. 9) as

 

  

l + B- a.
C r L 3

2 p

1 1 l R _ 2

LC 1' LC 1’ LC“ ‘ T ‘ .3 (5‘2‘121
1 2 2 p

gm + 1 .. ((1 +1) (I f

(:1ch clchr cl'CZLl-p 3
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and the system (5. 2. 11) initial conditions are related to the

specifications by (5.2.10) as

X(to) : o‘lxdno)

,(21
whereX':[VC,V ,I , L

1 C2

determined from (5.2.10).

1 _ (1)

131’ Xd ‘ [11:1
] and the matrix G is

Note, in the normal system (5. 2.11) lL(t) : y(t), any

other component of the system model could have been specified

similarly by starting with the desired component in the last row

(provided det (B) i 0).

Example 5. 2. 2: (Method 5. 2. 2) Specifications require
 

an oscillator with a response as given by (a) of Ex. 5.2.1 where

c3 :: O.

(a) y(t) is given by (a), in Ex. 5.2.1, with c3 : O.

(b) The matrix Fm as specified by Method 5. 2. 2, is

’1‘1t 1.213

e e

_, (5.2.13)

Frn — X t X t

X e l x e Z

L l 2   

(c) The matrix A of the normal system is determined

from (5. 2.6). First, the conditions on the aij entries

of matrix A in system (5. 2. 3) for matrix C to exist are

stated, i.e. det (B) 74 0. In the case of system (5. 2. 3)

where n 2: 2, det (B) = a f 0 is required. Second,
21

formulate the matrix C as in proof of Lemma 2. 2. 3 as

-
.
“
.
.
‘
.
‘
|
H
.
"
—

 



 

G

11

21
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21

 

f—azzflt 1+>t 2 -)\,\—a

l 2

. , . -1° —1 .‘
Finally the matrix product G FmFm G is

(d) The specified initial conditions are derived from

(5. 2. 4) as

 

Hence, the final mathematical model for the oscillator, as

fi

111(10)

  

 

 

[1

 .—

determined from the specification of y(t), is

..-

:1
dt

 
where aZl

Note, the specified y(t) corresponds to x

1

 

_

 

‘21

a

22

21

‘1...) *3

a21

a22

2

22 3

 

FI-

 )—

Z(

X

l

y(gQ

(mo)

 _1

 c—i

(5.2.14)

 

(5.2.15)

(5.2.16)

(5. 2.17)

i O, and the initial conditions are given in (5.2. 16).

t) in the normal system.

The parameter—solution relationships (5. 2.16) and (5. 2.17) are

applied in the design of a "negative resistance
ll

oscillator.



 



of equations

 

 

 

 

1
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Consider the following network and corresponding System

  
(5. 2.18)

To impose the mathematical restrictions (5. 2.16), (5. 2.17), on the

parameters of the physical system requires; first l/L a! 0 then

and finally

 L

 

IL(tO)

 .1  

Note in this case IL(t) : y(t).

Example 5. 2. 3:

specifications on y(t) are given by (5. 2. 7).

2R2

w) 1(1)

~I7'IT—1

y(to)

   9n )
1_ O -

(5. 2.19)

(5.2.20)

(Method 5. 2. 2) Suppose the

Fm (5. 2. 5) determined from y(t) is

 

X t

 

The fundamental matrix

(5. 2. 21)
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For det (B) at 0 as specified in (c) of Example 5. 2.1 the calculation

 
 

A : o'lfi‘ F11G (5.2.6) is
I‘D 1T1

F'

o 1 o 11

-1
A e— o 0 0 1 o

. .. +”1‘11 21‘3 (X 1X Z+1. 11‘ 3+X 21‘ 3) >11 )1 2+7) 3

L 2

(5.2.22)

where the Inatrix G is given in (5. 2. 10). Design equations for the

Colpitts Oscillator are obtained in this case by letting X l:+J';11,

X 2 : -j:.1, X 3 : -o.3 and relating matrix A (5.2. 22) to the coefficient

matrix of (5. 2. 11). The initial conditions are related to the Colpitts

Oscillator system of equations the same as in Ex. 5. 2.1. Note the

companion-matrix form of F F11 in (5. 2. 22).
m m

5. 3 Amplifier Design
 

Methods of amplifier design in terms of complex

frequency-dmnain equations (Laplace Transforms) are well-known

(12,13) . , ‘ . ,

. To illustrate the results of Theorems 3. 2. 2 and 3. 3.1

developed in Chapter III, two methods of amplifier design in the

tilne-domain are given.

The mathematical model of the amplifier is assumed

to take the form of a normal system of linear nonhomogeneous

differential equations (5. 3. 4). The nonhomogeneous part of system,

(rector Q(t), is assumed to contain a component of the form qi(t):qisin(1...t+0)

.. > O, which can be associated with the amplifier input.
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If y(t) is to represent the amplifier response then y(t) is a nonconstant

solutio'l of the normal system for all time t, t > 0. In addition there

is a constant 6 > 0 and time tO > 0 such that

ly<t +1.10)- y(t +(n+11t01 l < 6 (5.3.1)

for allt>T and n: 0,1,2,...

The number tO is called the period of the amplifier

response and the smallest value of T, To which satisfies (5. 3.1)

is the transient time of the amplifier. The gain Gm of the amplifier

is the usual steady-state peak output divided by peak input, denoted

Inathematic ally by

lvlax y(t)

C1m : Nlax qi(t) (5' 3' 2')

for t > T. The amplifier bandwidth denoted by b will be

(all-:1?) _<__ b. If y(t) : yt(t) + yS(t), and yt(t) satisfies the homogeneous

part of an n-order differential equation (5. 3. 3) where r : n then yt(t)

is called the transient response of the amplifier.

Two methods of designing an amplifier which has a

specified response y(t) are presented. Method 5. 3. 1 illustrates the

results of Thm. 3. 2. 2, whereas Method 5. 3. 2 applies the results

of Thm. 3. 3.1. The first part of Methods 5. 3.1 and 5. 3. 2 have been

given previously in Methods 5. 2.1 and 5. 2. 2.

1N_/I_ethod 5. 3.1: Amplifier Design
 

(a) Construct y(t) = yt(t) + yS(t), t > 0, from the specifications,

k 1.- t—
1

where y (t) : E P (t) e , t > 0, is the transient

t 1:1 rni-l —

response of the amplifier.
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(b) Apply (b) and (c) of Method 5. 2. 1, to relate yt(t) to the

aij entries in matrix A of the homogeneous system (5. 2. 3).

(c) Determine the nonhomogeneous part F(t) of the n-order

(d)

 

 

equation

(1n n n-i

n : Z: a. “_1 y +F(t) (5.3.3)

dt J12]. J (it

by a theorem frozn Sec. B. 2.

Formulate the nonhomogeneous part, vector Q(t), of

the normal system

)1( : AX+Q(t) (5.3.4)

where X1 1' [X1,X2,o .. 1X11] , Q1(t) : [ql(t)9q2(t)9"' yqn(t)]:

A : [aij]’ by letting

Q‘(t) : [f1(t), ..., 111(1)] (of1 L’11' (5.3. 5)

as determined in Thm. 3. 2. 2. Matrices G and L

are formulated in the proof of Lemma 3. 2. 2. Parameters

fl(t), f2(t), ...,fn(t) are the components of the nonhomo-

geneous part F(t), (5. 3. 3) and satisfy Def. 3. 2.1, Eq.(3. 2.3).

Relate the initial conditions y(J)(tO), j : 0,1, . . . ,n-l

to the initial conditions on the normal system (5. 3.4) by

x : o‘lxd (5.3.6)

which is defined in the results of Lemma 2. 2. 3.



70

Method 5. 3. 2: Amplifier Design
 

(a)

(b)

(C)

((1)

Construct y(t) as in (a) Method 5. 3.1.

Form the matrix Fm from a fundamental set of (a)

as in (b), Method 5. 2. 2.

Determine the nonhomogeneous part F(t) of the n-order

equation (5.3. 3) as in (c) Method 5.3.1.

Determine the matrix A and vector Q(t) in the normal

system (5. 3. 4) as

A .—. (3’11? F11 o
m 111

d -1 (5.3.7)

om Fm 3mm X(t) 1

where notation is defined in (3. 3.4), (3. 3. 5) and (3. 3. 6).

The initial condition on the normal system will be the

same as in (e) Method 5.3.1.

The parameter-solution relationships obtained by either

of these two methods when associated with the parameters in systems

of differential equations that correspond to known networks con-

figurations, are referred to as design equations.

The basic steps in design Method 5. 3.1 are illustrated

by an example that is itemized in correspondence to the design

method.

Specifications require an amplifier with a transient

response yt(t) : cle-atsinmt + (D) and gain Gm for a frequency range

.<...
u) “0&2
1___
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(a) A possible y(t) is

y(t) : cle-a1+c2e-atsin(u1t + ¢) + Blsinwt (5, 3.8)

where c1,cz,a.,:.1, and B1 are real non—zero constants.

(b) First the coefficients a). J : l, 2,3 of (5. 3. 3) are

related to yt(t) as in (b) Method 5. 2.1. Next specifying det (B) i 0

(as in (c) Method 5. 2.1) the a]. coefficient are related to the aij

1

entries in matrix A of (5.3.4) as :

a11132211333:“3“1‘1511 j

-(a a -a. 21 +21 a -a a +2.. "1 -a a ): -(3a2+w2) :a
1122 2112 1133 3113 2233 32 23 2

det (A) : — a(o.2+u12) : a3, (51319)

(c) Proceeding as indicated by Method 5. 3.1, a possible

F(t) for the third—order equation (5. 3. 3) is found in Thm. B. 2. 3

where In : l and n = 3 as

F(t) 2: ql sin(;..1t + 8) (5. 3.10)

 

2' 30:13

0. —2w

where ql : B (1)/(302.1); + (2:11 -o.111) , 8 : tan-1

1

(d) The nonhomogeneous part, Q(t), of the normal system

(5. 3.4) is related to the nonhomogeneous part, F(t), of (5. 3. 3),

n : 3, by

-l -l

Q'(t) : [fl(t),f (t),f3(t)] (G L )' (5.3.11)

k-2

where 23 P1.1(D) f .(t ) : 0, t on I, k : 2,3,
j:0 J k—l-J 0 O

as specified in Def. 3. 2.1. This specification requires



K
1

[
\
1

that the components of F(t) satisfy

(t )= 0
2

pom) f1110) ‘1' fl 0

3 3
pom) 12(10) + 121(1)) fl(t0) : (D + £3Z)fl(to) : 0

Let fl(t) : fa(t) : 0, f3(t) : qlsin(a. t+ 6). The matrix G is specified

by (5. 2.10) and matrix L.1 : [flij] is determined,as in the proof of

Lemma 3. 2. 2,as

  

r l o 03

L'1 ~ a l 0 (5 312)_ 33 . .

az+a a +a a a 1

_ 33 31 13 32 23 33 J

The vector Q(t) (5. 3.11) can now be calculated as

 

 

r r _ 3' . ‘1
'1 a3zq1 s1n(...t+ 9)

ql(t) d

a31q1 sin(<‘«t+ 9)

Q(t) : q2(t) : d (5.2.13)

q3(t) 0     
where d : a3l(a3111112+a32a22)1 1132(113111111 11321121)‘

(e) Finally the specified initial conditions y(J)(tO) : Cj+l

.1 = 0,1,2, are related to the normal system by X(to) : G111Xd(t0) , as

implied by (5. 2.10).

Any physical device having a mathematical model in

the normal form (5. 3. 4), with parameter-solution relationships

as specified in (5. 3. 9), (5. 3.13) and (5. 2.10) will contain the
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specified function y(t) as a component of its vector solution, in

this case x3(t) : y(t). These parameter-solution relationships

(design equations) are applied to the design of an amplifier.

The normal system (5. 3.14) corresponds to the network

shown in Figures 5. 3.1,

        

 

 

 

 

    

 

F ‘ " 1 —1 " ” ‘ ' “
V1 0 C_1 C—l V1 0

d -1 -(rp+R4) 0 "H e (t)

I = — I +
Elf 4 L4 L4 4 L4

—R

l 3
1 _._ O _— I O

1.. 3 ... _L3 L3 .1 ... 3 .1 b _1

(5.3.14)

R4 L4

MM +~

1 L3.
+f111 Cl __ o

R

e 3

g

1 v

Figure 5.3.1

If det(B) : ——21—— i 0, Method 5. 3.1 applies, and the

L3Cl

relationship between the entries in (5.3.14) and apecifications

(design equations) (5. 3. 9), (5. 3.13) and (5. 2.10) are

(rp+R4) 3

+——— :31
L4 1.
 

 





74

 

 

R

l 1 1 3 2 2

——(——— + ——-) + (r +R )2 30 + 61 (5. 3-15)
C1L4 L3 L3L4 4

-(R +r +R)

3 p 4 — (1(c1 +1.12)

L31114Cl

Ll}. — ‘ ,L4 eg(t) _ L3Clql Sln(61t+ 9).

The initial conditions for the system (5. 3. 3) are

'1 , (1) (3) 1
G [y(to). Y (to). y (to) ].

The gain and frequency (bandwidth) are related by the

ratio of y(t) and eg(t), from (5. 3.15), as

‘1‘ . (5.3.16)
G : - _

1n 2 . 2 2

L3L4C1a V(3aw) + (263 - c1 )

Note, in the system (5. 3.14) where 13(t) is the current

through L3, 13(t) : y(t). Any other solution component of the normal

8 ystem could have been specified similarly by starting with the

desired component in the last row.

Nonlinear Amplifier and Oscillator Design

The mathematical properties developed in Thm. 4. 3.1

and the process specified in Def. 4. 2.1 for reducing the normal

Sys tem (4.1.1) to an n-order differential equation of the form (4.1. 2)

a 1’8 used in forming a method of designing nonlinear amplifiers and

oscillators in the tilne-domain.
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The mathematical models of the nonlinear amplifiers

and oscillators are characterized by a discussion similar to that

afforded the linear amplifier if the word "linear" is replaced by

"nonlinear". In addition, it is assumed tint the nonlinear oscillator

contains only constant entries in the nonhomOgeneous part of its

niathelnatical model.

Suppose an amplifier (or oscillator) is to be designed with

a specified response y(t). A method of obtaining a normal system

of nonlinear differential equations which has a solution satisfying

the specification is:

(a) Construct y(t) from the specifications.

(b) Apply Thm. 4. 3.1 to relate y(t) to (I) the

coefficient a), j = l, 2, . . . , n, (2) nonlinear part

f(y), and (3) the nonhomogeneous part F(t) of the

n-order equation (4. 3.1).

(c) Construct the reduced differential equation from

the normal system (4.1.1) by the method specified

in Def. 4. 2. l. Equate the coefficients and

parameters determined in (b) to corresponding

parameters aj j : l, 2, . . . , n-l, F(t) and T(xn)

of the reduced differential equation.

(d) Relate the specified initial condition y(j)(t0)

j = 0,1, . . . , n-l, to the initial condition on the

normal system (4. 1.1) by means of the nonsingular

tr ansfor mati on

-1

XzB11[Xd

as formulated in tre proof of Lemma 4. 2.1 and

- Z(xn, t)] (5.4.1)

applied in Thm.. 4. 2. 4.
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This method is illustrated on a general system of

equations to obtain parameter-solution relationships which

are then applied in the design of a tunnel-diode amplifier and

oscillator.

Specifications require an amplifier with a gain Gm

for frequency range wl_< :11 < 1“”2 .

(a) A possible y(t) is

y(t) : BO + Blsin(63t + (D) (5.4. 2)

the same y(t) is suitable as an oscillator response where B1 is

the amplitude of oscillation and f : 6.1/211' the frequency of oscillation.

(b) The coefficients ai, i : 1,2, the parameters T(y)

and F(t) of . 2 .

d2 a dZ-l
“‘2 y = 2: 1 ..,—T y + T(y) + F(t) (5.4.3)

dt 1:1 dt

are related to y(t) by

 

-bl q

al:'—B— + NB 5111(¢-9)

l l

d b q
2 l 1 1 _‘

8.2—“:3.) ‘11—‘15.— -:—B— COS (9 -¢) (5.4.4)

1 l

m j

T(y) = Pl,n-1(D) f(y) = (D-dl) .3 ajy

1:0

2 d1b1 ql
F(t) : dlbO—BO[—61 1111-6—1— — B—icosw -¢)] + qls1n(tot + 6).

The notation will be found in Thm.4. 3.1 and Cor. 4. 3.1. Note, the

nonlinear part T(y) is a polynomial of order m. The b0 and b1, are

defined in the results of Lemma C. 2 and have the form of the b0 and

b1 in the discussion after Cor. 4. 3.1, namely, they are nonlinear in

the specified Bo and B11



«
J

«
J

(c) Construct the reduced nonlinear differential

equation corresponding to the normal system

(1 1‘ '1 1) '- ‘1 '- T

X1 a11 {le {11"2) (1119

+

d

Eff
+ (5.4.5)

        
X2 a21 f2("2) ‘12“)

L - L

as specified in Def. 4. 2.1.

First, specify the condition det (B) : aZl i 0, formulate

Xd : Bllx + Z(xn, t) as in the proof of Lemma 4. 2.1 for this

C2188

(5.4.6)

       
)1; a 0 x f2(xz) + (12(1)

Solve (5.4. 6) for the vector X. Substitute the vector X

(5.4. 6) into the system (5.4. 5) to obtain

      

(5.4.7)

px21 10 1 11 x23 1— 0 G

d

at 7' ‘1

LX2_ L0 a114 (_xz Lazlflb‘zl‘L‘D‘H11f21x21+a21q1m+pfilll(12(1),,

the last row of which is the reduced differential equation. Equating

the coefficients of the reduced equation to corresponding parts in

(5- 4.4) provides the desired parameter-solution relationships

(de sign equations).

Coefficients of matrix A12

 

.131 q

all—T3— +(B sin(¢-9) (5.4.8)

1 l

321: 2121"0

 



Coefficients of vector N(x2)2

 

b q b

2 .

fl(XZ)——-——[-a3 413—1- —’B1 Slli(¢-8))——l— -

21 l ... l l

ql
B” cos (0 - (0)] y

1

m 1
f (x ) _ 1) a y

2 2 :0

Coefficients of vector Q1(1)1

 

 

1 b1 ‘1 .

qltt) 2;; - (~B—l - ”Bl Slum - e) ) b0 ..

Bo[‘”1' (3113-1 - :31 sinw - e) ) :13}. -

l 1 1

25-1; Cos (0 -¢)] + ql sin («t + 98

qz(t) = 0.

Where b0 and bl’ as defined in the results of Lemma C. 2, are

nonlinear in the specified B0 and B11 It is important to note the

s ystem parameters (5. 4. 8) have been obtained for the case where

the nonlinearity is a polynomial of order m. The effect of the non-

l inearlity is apparent in b0 and b1 which contain the specified B0

. . m
rand B1 and powers of these constants up to and including B0 and

m

Bl

(d) Finally the initial conditions for the normal system

(5. 4. 5) as obtained from (5.4. 6) are

n1

1 . v '

x100) = 3: [y(to) - £0 aj 1”](t0)]

(5.4.9)

xz(t0) = y(to)
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Any physical device having a mathematical system of

equations in the normal form (5. 4. 5), with parameter-solution

relationships (design equations) as specified in (5.4. 8) and (5.4. 9)

will contain the specified response y(t) as a component of its vector

5 olution (in this case x2(t) : y(t) ). The parameter-solution relation-

ships (design equations) (5. 4. 8) and (5. 4. 9) are applied in the following

to the design of a particular physical system.

A normal system corresponding to the tunnel-diode

11 etwork of Figure 5.4.1 is

 

 
 

 

       
 

 

1'— F _ .. " 7 " ' ”r “

: 1 1 _5 _._1. 1—1 r o ‘5“)

1 L L L L
l L

1
d I

_ 1 -
(it i — + +

1 1 O 1 , 11(11c) 0

i 1c C 1 1c C

L 11 7 ‘iL ‘1 F ‘ h "‘ (5.4.10)

1

__ - L

—l|—— C

f _-

(VC) T R

  

  

Figure 5. 4.1

The tunnel diode characteristic is assumed to be

3 2 ' . '2 '3
f(xC) —. (ng-hvo + IO) + (-g + 3h\O)\C - 3h\10\-C + hxc

(5.4.11)

“"hich is the idealized-tunnel-diode characteristic



8O

 

 

 

I

P

I

o

I
v

wlaere:

I +I v +\

I = p 11 x : 1

o 2 ’ o 2

_3 (Ip-IV) h- 2(IO-IV)

112‘ "'v‘” 11 (r-vHr—r)7
p 1v o 1v1p

Ip and v are the peak current and voltage, IV and vV

a re the valley current and voltage. The inter - relationship between

tlae entries in (5.4. 8), (5.4. 9), (5.4.10) and (5.4.11) are determined

  

 

  

 

  

 

as

_ G (6)

T1} :11: 1 wG ““111'91
m

(5.4.12)

_-_1_ __ C[_w2 _ (Gd1e) + sin(¢—O)) Gd(e) _ cos(e - (3)

L " C the.“ " c c.
m m

-f(\'c) : ‘3 a. \j

C £0 3 C

V (t) __ G (e) . _ 2

5L :c{_é( 21; +Slnigme) ) [(-g +7”:- hB1)e+he3+IO]-

G (e) - _ G (e) q

m



where: Gd(e) : g + 3heZ

f2w/21rande2B -V .

O O
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3 2

+3}— hBl, Gain Gm r ql/Bl frequency

The initial conditions on the normal system

are then

H C B o cos(mto+ m + f((VO'i' e) + B
ILUO) 1 sin(totO + G ))

  

l

VC(tO) : (v0 + e) + Bl sin (auto + Q5). (5.4.13) :

The oscillator design equations (ql :: 0) are:

23 _ Gd‘e’
L " C

2

G,(e)
Z

i —. c [a + “2 1

C

v C} (e)
g - d 3

_L. : Ci —E-z- [(-g+—ZlBl)e+he +1 ]+

Z

[Z Gd(e) \ (5.4.14)

It is important to note that three design equations

are presented in (5.4. 12) and (5.4.14) . The addition of the

equation for VS(t)/L in (5.4.12) and (5.4.14) is unique to this

thesis. In addition, the nonlinear function (a function of operating

point e , and a function of the specified Bl) Gd(e) is a generalization

of the results of Kim [8, p.416], who obtained by a different method

Gd(e) where e z: 0. The generality presented in this design technique

is apparent after examining parameter-solution relations (5. 4. 8).

The parameter-solution relationships (5.4. 8) as viewed

from the application point of view are a function of operating point and

a tunnel-diode characteristic which is approximated by a polynomial

of m-order.



VI. C ONCLUSION

 

The first parts of Chapters II and III develop the

mathematical properties which relate the solution of the normal

system of linear differential equations (1. 2.) to the solution of an

r-order (r i n) differential equation, (1, 3). The foundation of

this development is presented in the proofs d Theorems 2. 2.1 and l

3. 2.1. It is proved in these theorems, by applying a transforma-

tion of the form

...1 _

X=C [YS-L1H(t)] (6.1)

‘
l
’
b
.
'
-
’
-
—
—
—
“
’
:
-
—

-
;

'
x

z
:

.
'

_
A
.

l

4
|

. l -l

where X' = [Xl' x2, . . . , Xn] and Y5' = [0, 0, . . . , O, y, y( ),..., y(r ), 0, 0, ...,0]

to the normal system (1. 2), that there exists a set of s differential

equations, 1 E s _<_ n, of r-order associated with the system. These

results are extended in Theorems 2. Z. 3 and 3. Z. Z.

In Theorems 2. Z. 3 and 3. 2.. 2 conditions on the aij

entries of matrix A in the normal system (1. Z) are given so that

there exists a differential equation of n-order associated with the

system. In the proof of these results a technique for formulating

a transformation of the form (6.1), r = n, is given. Note, the

mathematical properties developed in these theorems allow the

determination of the solution of a normal system in terms of the

solution to the r-order (r < n) differential equation associated with

the system.
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Additional mathematical relationships are developed

in the later parts of Chapters 11 and III to interrelate the parameters

in the normal system (1. 2.) to the solution of the r—order (r: n) dif—

ferential equation associated with the system. These relationships

provide the mathematical tools for relating the system parameters

to a component xn(t) of the system solution X(t).

The usefulness of the mathematical properties developed

in Chapters II and III are demonstrated in design methods

and examples of Chapter V. One method, which illustrates some

paramete r-solution relationships developed in Chapter II, has two

basic steps: (1) Construct (Thm. Z. 3. 3) an n-order homogeneous

differential equation which has a specified solution, xn(t). (2) Relate

the coefficients (Thm. Z. 3. Z) and the initial conditions, transformation

(6.1) where r:n and H(t) : 0, of the n-order differential equation to

the coefficients and initial conditions of a normal system of differential

equations .

In another design method of Chapter V some particularly

interesting results which were developed in Thm. 3. 3.1 of Chapter III

are applied. The coefficient matrix A and the vector Q(t) in the normal

system (1. 2), (3.1.11) are related to a solution xn(t) and the nonhomo-

geneous part F(t) of the n-order differential equation (3.1. 2) by an

expression of the form

A = G-l'E.‘ F ’10
m m
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This design method is completed by determining the initial condition

on the normal system by means of a transformation (3. 3. 6), of the

form (6.1).

Patterned after the linear case, it is proved in

Chapter IV that under certain conditions (hypothesis of Thin. 4. Z. 3)

a class of nonlinear differential equation (4.1.1) can be transformed

into an n-order "reduced" (Def. 4. 3.1) differential equation. A

solution of the reduced differential equation and a solution of the

corresponding nonlinear system are shown (in the proof of Thm. 4. 2.4)

to be related by

X : BllX + [.(xp, t)

(1) (n-l)
I 3 ' -— r I __

\xhcre xd _. [xp,xp ,...,xp ], x _ [xl,xz,...,xn], and B11 and

the vector Z(xp, t) are defined in the proof of Lemma 4. 2.1. These

results are applied in the design of tunnel-diode amplifiers and

oscillators in Chapter V.

The criteria det (B) i 0 as defined in the hypothesis of

Lemma 2. 2.. 3 was proved necessary for a transformation of the

form (6.1), rzn, to exist. This criteria is thus found in the

mathematical tools applied to the five design methods of Chapter V.

The development of other criteria for the existence of the transfor—

mation (6. 1) would be a useful extension of the results presented

here.
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APPENDIX A
 

THEOREMS AND DEFINITIONS FROM REFERENCES

Definition A. 1: The m n-dimensional vectors j:1,2,...,1n
 

111
E

. i:1

Ci constant, implies Ci : O, i : 1, 2,. . . ,m,m <n.

are said to be "linearly independent" if the identity CiXi : 0, where

 

Definition A. 2'. A set of functions yj(t), j -_; 1, 2, . . . ,r, is said

to be "linearly independent" over the open interval 1 : [t2 tl<t<t2]

r

where t1 and t2 are constants, if the identity 3 C.y.(t) : O for all t

1:1
onIimplies Cj : 0, j : 1,2,...,r..

 

Definition A. 32 A set of functions yj(t) , j : 1, 2, . . . , r,

which are linearly independent solutions of the r-order equation

(2. 1. 2) on I, is called a ”fundamental set" of (2.1. 2).

Definition A.4: If Fm is a matrix whose 11 column are n
 

linearly independent solutions on I of (2. 1. l), the normal system

X : AX, then Fm is called a "fundamental matrix. "

Theorem A. 1: [6, p.70] If 11 is a fundamental matrix of (2.1.1)
 

the normal system X : AX and D a(comp1ex) constant nonsingular

matrix, then HD is again a fundamental matrix of (2.1.1). If H1

and H2 are fundamental matrices then H1 : HZDZ. where D2 is

nons ingula r .

86

-
1
-

.
.
-

u
t
.
.
-

1
.
.
!
“

?
,
.
_
_
-





87

Theorem A. 22 [7, p.47] The r-order homogeneous dif—
 

ferential equation (2. 1. 2) always has a fundamental set (Def. A. 3)

of precisely r solutions. A set of r solutions of (2. 1. 2) on I constitutes

a fundamental set if and only if its Wronskian

Y1 YZ yr ‘1

1 l 1ya) YE) Y1.)

VWYI’ yZ, . . . , yr)”:

  
y(Ir-1) y(Zr-1) (r-l)

— —

is nonsingular (WfO) for some tO on I.

Theorem A. 31 [14, p. 215] The coefficients of X r in the
 

characteristic polynomial of matrix A, det [A-XI]is (-1)r times

the sum of the principal minors of order n—r of matrix A, where

A 7: [aij] is of n-order and I is the unit matrix. In particular, the

coefficient of X n is (-1)11 and the constant term in the characteristic

polynomial is det (A).

Leibnitz‘s Rule: [15, p. 219] Let the function f(x,t) be
 

continuous and have a continuous derivative in a domain of the x-t

plane which includes the rectangle a<x_<_b, tl< t< t2. Then for

t1<t<t2
"
r
a
w

c
l
m
u
l
b



88

Theorem A.42 [15,p. 220] Let the function f(x, t)
 

satisfy Le ibnitz ' 5 rule . In addition, let the functions a(t) and b(t)

be defined and have continuous derivatives for t < t < t .

 

1 2

Then

b(t) b(t)

Ei’lf f(x,t) dx : f[b(t),t] 533%) - f[a(t),t] (133),, 3% x,t)dx

a(t) a(t)



APPENDIX B
 

SOLUTIONS OF CERTAIN DIFFERENTIAL EQUATIONS
 

The design techniques developed in this thesis require

that a specified system performance characteristic be considered a

solution of an n-order differential equation. This necessitates a

knowledge of the inter-relationship of the solution of an n—order

differential equation to the coefficients of the n-order differential

equation.

The n-order homogeneous differential equation

  

y (B. 1)

is known [7, p. 65] to have the general solution

k X.t

y(t) = z Pm__1(t) e 1 (3.2)

where (a) Pm _l(t) is a polynomial in t of degree mi-l,

1

(b) x i’ i : 1,2, . . . ,k are the distinct zeros of the polynomial

n . k

L(,\) : Xn- 2; ai xn-l : 0 each of multiplicity mi and (c) )3 mi : n.

1 1:1

 

dn n n—i

—-—-—-y: E a. _. y+F(t) (B.3)

at“ 1:1 1 d1“ 1

is known [6, p. 87] to have the solution

Y(t) = yh(t) + yp(t) (B-4)
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()0

n Wk(s)

where (a) yh(t) satisfies (B 3),(b) yp(t) : 2) ¢i(t) W( ) F(s)ds

i::1

t

o

and (1) ¢i(t)’ i: 1,2, . . . ,n, is a fundamental set for(B. 3)when F(t) : 0.

(2) W(s) is the Wronskian 01(13. l)and (3) Wk(s) is the determinant

obtained from the Wronskian (2) by replacing the k—column by

(0,0,1).

When Xi in (B. 2) are distinct, i: 1, 2, . . . ,n, then

the particular solution y(t), y(to) : 0, t0 on I can be expressed by

n X .t -X .s

y(t) : 2 Aie 1 F(s)e (15 (13.5)

1:1

 

n+i

where Ai : (-1)

n 2 p >i >j > 0

B. 1 Inter-relationships of Coefficients of N—Order
 

Polynomial to Zeros of Polynomial
 

The design methods of Chapter V necessitate a knowledge

of the relationships between the coefficients and a solution of an n-order

homogeneous differential equation. This information is supplied in

Thm. 2. 3. 3 as a result of deveIOping the relationships between the

coefficients and zeros of an n-order polynomial.

.
.
.
_
-

e
.

K
,
.
‘
6
'
,

1
‘
”
.

'
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0

Theorem B.l.1: If.\.

1

n . k
n .-

 

L()\) : X n+3 b.)\ J, of multiplicity mi, '>‘ mi : n, then

j: 1 J i=1

blz-(rl+r2+... +rn)

b2: (r1r2+...+ rlrn+rgr3 +...+r2rn+...+r

n-l

bn :2 (-1)n(r1r2 . . . r)
11

1j

where ri = .\ ., i :

'
fi
M

1

Proof. By hypothesis

11

14K)::Xr1+ :3 batn'J

1:1 J
m m m

l 2 k

= X—X — -( l) (1,12) ...(x xk)

j-1 1-1 J

Ifr.=)\.wherei: E m +1, E m +2,...,Sm andj=1,2,...,k

l J p=1 p p—1 p psi

then

L()x) — ()x -rl) . . (,\ -rm )(\-r +1). .(,\ “rm+1n)' .(X—rn)

1 l 2

—).n + + + )xn'l+( r + +r r +r r +_ —(rl r2...r. r12... 1n 23...

+ + + )1” 1 W r )
r2rn n-lrn ' - 1.1 2" Iin

This implies the theorem.

1'

I]

.,kisazeroof

(3.1.1)

j-

1711-1, Z) 111 +2,..., Zm,j:1,2,...,k.

P p= P

l
.
.
-

-
”
A
u
x
—
0
-
x
”
.

I

.
‘
.
r
"

a
.

.
«
u
-
l

‘
.

.
7
1
”

.
1
!



Corollary B. 1.13 Ifxi, 1:1,2,... , n are distinct
 

 

n .

roots of L(>\) : kn + E b.)\ n-J then

1:1

bl:-()\l+)\2.
.+)\n)

b2:+(xlx2+...+xlxn+xzx3+ +x2xn+ +xn_lxn)

(B. 1.2)

n

bn .. (—1) (1.112 kn).

Proof: This is a direct consequence of Thm. B.-1..1.

Theorem B. 1. 2: If hi, 1: 1,2, . . . ,r are distinct non

n .

zero, zeros of L()\) : Kn + :3 b.>\n-J, then r coefficients of L(>\),

1:1
b., b are explicitly related (B. 1.4) to the remaining

J j+1""’b_j+r-l

n—r coefficients.

Proof: By hypothesis

1']. .

L()\.)=)\I.1+ :3 1).).‘1'3
1 1 . J 1

I 3:1

:0 fOI‘l: 1,2,...,1‘.

This system is written in matrix form as

Va : L

',_ ,-_ n_ n-i _ n__v

wherea _ [bj,bj+1,...,bj+r_l], -[ x1 .Ssbixl tr :bixr

Sis the sum over all i, i #3, j + 1,.. . , j+r~1 and

s

n-i ],



 

[- n-j n-j-l n~j~r+l~
X1 '\1 X1

n—' n-'-l ..'..

V; )(23 x23 ngr“ (13.1.3)

Xn-j x n-j—l \n—j-r+l

_ r r ' r _ 

Forj : 1, r :2 n (B. 1.3) is the Vandermonde matrix [16, p. 85].

Forr<n

det (V) 2: k V1

where k I [Kill-J-r-H, Xn-J-r+l
n—j-r+1]

Z ,.. .,Xr , V (X.-)\j).

1:8:r:i>j 1

V1 is the Vandermonde determinant [14, p.47] which is non—zero

since Xi )4 \j Therefore

a: V L (B.1.4)

which implies the theorem.

B. 2 Solutions of N-Order Nonhoxnogeneous Differential

 

Equations

The relationships between the coefficients and a

solution of an n-order nonhomogeneous differential equations are

now determined. Formulas are given such that if a solution is known,

some or all of the coefficients of a corresponding differential equation

are specified. The relationships determined are for particular solutions

in the form of power series, linear combinations of exponential

functions and linear combinations of sine and cosine functions. The

results of this section are applied in the design methods of Chapter V.

q
.
.
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m .

Theorem B.Z. 1: If y(t) : 2: BjtJ is a solution on I:

1:0

It) >t _. of

O

n n n-j

d . .
_._; : Z dn x+F(t) (B.2.1)

dt j:l J dt

IT] .

where F(t) : E q.t.J then

jso J a

(14m)I (fin-l)! , j! , )

qj T j+n —T]"____ j+n-ld1—H°-j~! Bjdn :-

(13.2.2) 1

wherej20,1,...,1n,Bk:0,k>m. .j

m

Proof: By hypothesis y(t) : E B tJ is a solution of

1:0

(B. 2.1)0111:' )t) >t0, therefore

n m . n n-1 m . .

dn (:Bch): 2 ai dn_i(._,B.tJ)+ eqJ

dt j:0 J 1:1 dt j:0 J ij J

dr 1T1 - In ._r

Since r (z: B.tJ) —_ :3 (j) 0-1)... (j-r+l) tJ .

dt er J Jso

m '-n m '-n+i

:: B.(j)(j-l)(j-Z)...(j—n+l)tJ : Eai :3 B.(j)(j-1)...(j-n+i+1)t‘]

J's—.0 J isljso J

m . IT] .

+ a E B.tJ + 13 q.t‘].

“ 1:0 J 1:0 J

Grouping the coefficients of like powers of t and equating each to

zero the theorem follows.

Corollary B. 2.12 If Bin of hypothesis of Thm. B..2.1 is
 

not zero then
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(1) a . ,an are explicitly expressed ina ..

n-m’ n-m+1'

terms of q0,ql,. . . ,qm, for m<n-1

(2) a ,a ,an are explicitly expressed in terms of1 2,...

q0.ql, .. . ,qn], for m : n+1

(3) ayaz, . . . ,an are explicitly expressed in terms of

qm_n+1~ qm—n+2’ . . . ,qm, for m >n-1.

Proof: The system of equations (B. 2. 2) in matrix form

is

Ma : q

, 3 1_ A. I: _ .. ..
uherea _[an-m’ n-m+1"°°’dnJ’ q [qo,..., qm] for m<n 1,

1_ ' t- _ ._ : ..a — [al,az,...,an), q - [ q0,..., qm] for m n 1, and

a' : [al,a2,.. . ,an], q' : [_qm-n+1"" ,—qm] for m >n-1.

The coefficient matrix M is upper triangular in each case and has

(m! B )n
m

a nonzero determinent equal to Tm-11+1)'7n1-11+2)‘ (m), for m : n, 

+1

(ml B )n (m! )m

m form>n and m form<n-1.

0.’ ll 2! m.‘ — U! l.‘ ml

 

 

This itnplies the corollary.

 

m [.1 .t

Theorem B. 2. 22 If y(t) : E Bje J is a solution on

{Ti-:1 11 .t

1:. (t) >t of (B. 2.1) where F(t) : E q. e J, then
0 j=1 J

‘ n n n-i
. = B. . - E a. . B.2.3qJ J61, 1:1 1 1iJ ) ( )
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m 11.t

Proof: By hypothesis y(t) : L Bje J is a solution

jifl

of (B. 2. 1) on 11 (t) >tO , therefore,

n m 11.t 11 11-1 m 11.t m (1 t

dn(EB.eJ):z,aldn_i(>_3B.eJ)+Eqe

dt j:l J 1:1 dt j:l 1:1 J

r m 11.t m r at

Since ( Z} B.e J ) z E (1 . B. e J , grouping the coefficients of

dt (.1 J j:1 J J

(.1.t

C J of the above equation results in

nu n n n-) 1‘1 't

2 (B11. - B. B aiu. - q.) 9 J ._. 0.

Since this is true for all (t) >to, the theorem follows.

Corollary B.2.3Z If Bj i 0, “j i 0 and pi i (ij for i, j : 1,2,...,m,
 

then m coefficients of (B. 2. 3) aj, are explicitly
aj+1’ ' ° ’ ’aj+m-1

related (B. 2. 5) to the remaining n—m ai's.

Proof: Consider the system of m,m < n, equations

(B. 2. 3) written in matrix form

 

Va : L

-q .

1 n n-i
l_ l_ \j‘

Wherea ”[aj’aj+1""'aj+m-1J’ “[BIJJ‘11 ; ait‘l

_qn1+ n +V‘a n—i] V‘ i‘the um over alli if’ '+l

Bn J‘Lm "S’ ipm ’: b S : .11.] w”.

1

j + 111-1 and



97

  

nj n-j-l n—'-1n+1

“1 “1 "‘ “1 J

V: (3,2,4)

n—j n-j-l n-j-m+1

Hm 1n m

Since det (V) : pill-J-nhkl u3_J-Jn+l . . . u:;J_m+l l I (111—11.),

m: i >j J

and by hypothesis (ii i 0 , Hi I. “j therefore det (V) ;f 0. This

implies the conclusion since,

 

 

a = v‘1 1. 03.2.5)

m

Theorem B. 2. 3: If y(t) : BO + E B. sin(w.t+¢.) is a

j--- 1 Jm J J

solution on 12 )t] >tO of (B. 2.1) and F(t)-_ q0 + 23 q. sin(w. t+9 .) then

i=1 J

(l) qo : _an Bo

n n'i (fl-1)“ ¢

nrr E are. cos( . + .)
2 .cosB. —B cos —-—+ ¢ B. . 1 2(>qJ J JsJ. < ) 31:1 1 J

(3) q.sin9. —_.B can sin(—-—+ fl.) -B. Ea ...i.-i sin1((1—--———J21)" + (5.)

J J J J jiT‘l 1J J

where j : 1,2,... ,m.

 

 

IT]

Proof: By hypothesis y(t): BO + E Bj sin(o.)Bjt+¢j) is

i=1

a solution of (B. 2.1) on II It] >t0, therefore

dn J m n dn—i m

(B + E B. sin(w.t+¢)) : :3 a. (13+ 2: B.sin(o1t+¢j ) ) +

or“ O j=l J J 1:1 1 d1“‘1 0 jzl J J

m

+2 .sinr.t+8..qo J21 qJ (»J J)
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Calculating the indicated derivatives, this equation is,

m

  

n . nTr 1hr .
E B.'-.8111——+¢. cos .t+cos —— +¢. smut

n-l m n-i (n—i)1r (n—i)1T

: E a.B + :3 13.9.). [Sid + ¢.)coso.1t+cos( + ¢.)sinto.t]

1:1 1 0 j:1 J J 2 J J 2 J J

m

+a B +a 2 B. [sin¢. cos w.t+cos ¢.sin oo.t] +

n O n jil J J .J J

n

+ E . sin 9. cos .t + . cos 0. sin ' .t .

qo J-___1(q1 J ”J qJ J ”1)

Grouping the coefficients of sin Lujt and the coefficients of cos (11.1.

and equating each to zero results in the theorem.

m m

IfrtzB +EB.co'¢.sin'.t+23B.sin¢.cos'.t

JJ) 0 2-1 1 D J ”1 -..l J 1 "”1
J- J—

m

is the solution on I: It] >tO of (B.2. l) and F(t) : q0 + :3 qj cos OJ sinogjt +

131 J l

E q. sin Oj cos will then in a manner similar to that of the proof of Thm.

   

B.2.3

(I) qo : "311130

11 n17 n n i (n 1)1T

2 .cosB. :B.cosf).'.cos—,—- Sanson- cos —

J J qJ J J J[”J 2- ,21 1 J 2 J

- B. sine. [..i1 sinm- E aoJJ'J sin (11-1)“ ]
j j j 2 :1 1 j 1 2

n nTr n n i (n i)

3 .sinG. : B. cosO. (.sin—r- E a.w.- sin - 1T( ) qJ J J J [...J 2 1:1 2 l

n 1 . ( .)

+ B. sin 9. [an COS 21- S 21.;31-1 5 11-1 W ]

j j j 2 :1 1 2
i .

:
3
?
E
y

'
V

‘
A

:
L
i
”

a
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r
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.
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Corollary B.2.5: Ifm:1,p—q¢ 0, 2,4,...,ool£O,

 

 

 

 

 

 

 

Bl f 0 then

(I) Boan : -qo

‘lF sin((—n—_—CJJ-TL + ¢ ) - F cos ((n-q)1r + ¢ )]

(2) a I 1 2 1 2 2 1

p con-q sin (*1)-wa

l) 2

[F sin((n——-—E—1 + (J ) — F cos ((n-phr + (11 )]

q

n-q . (1)-th
o 1 Sin 2

“Jth F _ qlcosel In n17 + (J + V , Jn-i (n-i)1r ¢

ere, 1— *E—T— " “’1 C05 (’2— 1) Z dial cos(—T— + l)

qlSillel n o n"
n_i . (n_i)Tr

F2 *T 0J1 SUN-‘2' +¢lJ + Egaitol sm( 2 +¢l)

:1“, IS the sum over all i. iJJP: (1°

3

Proof: This is a direct consequence of Thm. B.2. 3

 

for m :1.

c
o
a
t

.
-
t
r
‘
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APPENDIX C
 

ON A SPECIAL INTER-RELATIONSHIP OF AN M-ORDER

 

POLYNOMIAL TO A SINE FUNCTION

 

The derivation of P1 1

as defined in the proof of Thm. 4. 3.1 is developed in this

,n-lJDJf1Bo + B si11(wt + (21))

 

  

Appendix.

m .

Lemma C.1: IfT(y):.‘_Ia.yJ,c1 ¢0andyzy +y
.130 j 111 1 2

then

where L : [(1 a . . u ] Y' : [l y y‘3 ym ] and
' o' 1’ °’ m ’ 1 ’ 1 ’ 1 ’ ’ 1

O
f. (O) o 0 o

1) 1

Jaio 111 O 0

Y2: 2 2 2 2 (C. 2)

,. l ) yl ) l l 02 O 2 1 2

m.m
. J '111-1Jm' Jm-2 (m) (In)

y210 V2 1; ’2 2 H14

Proof! By hypothesis

m . m . 31 .

T(y) :: aJ.<y,+y,)J : 2; aJyJZ<1+—.—- )J

Using the binomial theorem

n1 . j j! yl r

T(y): E €1.sz . , (—f—) Jr<j<m

1:0 J ZrzoJJ’r“ r' 12 " ‘
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j 111,.

= Z aYJ '23 (J1) (--)

J—o J r:0 Y2

m .

J 1+ 1+
: Z + . . ( . +

NH J
umyz (JJJJYI

The lemma conclusion follows by writing this equation in matrix

 

form

T(y) : L Y2 Y1

where Ll, Y2 and Y1 are defined in the lemma conclusion.

m .

Lemma C.2: If T(y) : Z aij, aj £0, and y(t) :

1:0
Blsm(:;t-t+0)+BO, BO 7‘. 0, then for L : [00,a 1’ . . . ,am], 61> : out + (J,

n1/2 n1/2

T(y, t) : LRlReYe 2.1.2) szcos 2_]<I> + jTl b2j_ls‘1n(2,j-l)<1>

where m is even, Ye' : [1, sin <I>, cos 2CD, . . . ,Cos m<I>]

 

 

5 (3) o o o o “

B13.) 11) o o o

Rf 33131 B01?) o o

B%"ll%“1 BS“ (‘1‘) 5:14:13) 12:1 0 E

BM“) BS“ 1?) BS“ 53‘) 3.1.31) (:11) J
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f— _

1 o o o 0 ‘

0 B1 0 0 0

Bit) 43513
0 0 0

2 .2 2

Bil i)
l 0 _ 0 0 0

i .a2
J C O

l

J Brln—l'iii-l m—l 11—

: "T'J 1B1 101
' 0 2m"; 0 . . . _1m—I 0

11 n1 1

Rm, m J -lelILJ) +Bm m) 1

1 m/zl 0 2 o — 1 0 J

L ”“4: 2111-1 2111—1 J

2 o

_1

111-1 1114-1
and 2 _2_.._

T(y,t) : LRlRoYo : L hzjc052j<1> + L sz_18111(2j-1)<I>

J:.0 J 1

where n1 is odd, Y5 : [1. sin<I>. cos 2<I>, . . .. sin m<I>] and R0 2 Re

with 111 '— rn -1..

0

Proof: Set yZ : BO a11dy1:sin (I) in (C ..1). It is well-

known [17, p. 82] that for k even

 

, B1112) Bk k/Z , 1‘

yk - l k/ + T1 V (—1)\ k cos 2v<I>

1 .2k 2‘1 v.1 '2" "

and for k odd

Bk ...—k“; k

1 J \ k-l
)1 1 EFT-T Z: (-1)' T _\, sin (2\'+1)<I>.



10.3

The len1ma follows by writing (C. 1) in ter111s of the

auox'o deflned quanutles (Y2: R1 and errRe Ye or ROYO).

The following, relation, is an example of Lemma C. 2.

for rn r1 5,

 

 

 

 

2 B1 3 3 2
T(Y't):[°o+a1Bo+°2(Bo+T)+a3(Bo+§B0Bl)]+

E

B [ +211 B +0. B2 3B2 ~' 05 ”$7101 20 3(3 0+3 1)]s1n('.,1t+ ) 1

3

Bi .

-_Z_[az+3a3 BO]COS 2(wt+¢)
is“;

B: 1
—a3 71— sin 3(wt + (D) .

1T1 .

Theorem C. 12 If f(y) : E Q.yJ,Q i O, and y(t) 2 B + B sin(wt+¢).
ij J m o 1

then R

an-1(D) f(BO+B151n(,Jt+¢)) 'dn-lbo + jfleijjcos ZJwt +

k r r

v T . .1 S, «.1 ._ ,1 ._ ‘
:, 1\jb2j51n 2J.,1t + .1, ij2j_ls1n(2_] l)..,t + .1, Sjb2j—1COS(2J 1)Lut

J 1 _]--l J--1

1» p (D) — Dn’l d Dn-Z d Dn‘3 d Dj~ dj p (D) -« 1
“”9 1.11-1 " ‘ 1 ’ a ‘°°°' n-l' 71:3“ ' 1’0 “ ’

r11 111-1 r11+1

k : r z— for m even, k : r : for 111 odd and.

2 2 2

. n-l .. (n—1)Tr n—l . n—i-l . (11—i—l)1T
Mj _- (23:11) cos(2J¢ +——Z———-) - 13 di(2_]w) cos(23¢+ ————5--——- )

1:1 “

11-1 (11-1) 11 l Il-i-l (ll-1-1)

N. : 4,232.0) sin(2j¢+ 1T) + :; d.(2jw) sin(2j¢ +—————1 )
J 2 1:1 1 2

. n—l .. (n-l)1r n-l . n—i-l .

LJ- = [(ZJ-l)w] COS((8J-l)¢ + -—§-—) - 3 d1 [(2)-1M] cos((ZJ-lW +

1.21

1-'—1(121 hr)
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SJ. _—_ [(2j—1)w]n-lsin((2j-l)¢ + “z ) - 2: di[(2j-1)w]“’i‘bum—1W +

(n-irl)fl

a )

Proof: The theorem follows by determining

 

P n-1(D) f(BO+Blsin(wt+¢)) which is equal to
1

u u

le_l(D) (jEOszcos 23¢ +j§1sz_l 5111(23-1) CD)

by Ler11111a C. 2.

W
”

‘
“
"
“
"

’
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.
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