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ABSTRACT

ON PROPERTIES OF A CLASS OF SYSTEMS OF
DIFFERENTIAL EQUATIONS AND CORRESPONDING HIGHER -
ORDER DIFFERENTIAL EQUATIONS

by Robert Hampton Rogers

Procedures have recently been presented for formulating

time-domain models of lincar and nonlinear systems in the form

i\'. - f. (X
1

X , X 3t). 1o 1,200,

" 77n

This set of n differential equations is referred to as thie normal

system or state model. Procedures for determining the solution

of the system and hence analyzing the svstem performance presently
employ analog computers, digital computers, and/or functions of
matrices. The choice of mathematical procedures to apply in the
design of a particular physical system varies from problem to prou-
lem. However, in all cases the objective is to gain information or
knowledge pertaining to the inter-relationship of the system parameters
to the system performance.

A knowledge of this inter-relationship is obtained in the
thesis by formally developing the mathematical properties which
relate the parameters in the normal system of linear and a class of
nonlinear differential equations to the parameters in an r-order

(r<n) differential equation.
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The mathematical foundation of the thesis is established
by developing the mathematical properties which relate the solution
of the normal system to the solution of an r-order (r < n) differential
equation obtained from the system. This development is based on
deriving the r-order equation from the normal system by means
of a certain nonsingular transformation. In this development,
conditions on the parameters of the normal system are determined
so that an n-order differential equation is obtained from the system.
In the proof of these results a technique for formulating a nonsingular
transformation is given which allows the determination of the solution
of the normal system in terms of the solution of an n-order dif-
ferential equation.

The mathematical properties developed in the thesis
are applied in the formulation of methods for the design of physical
systems. The design methods necessitate constructing : (1) a
function y(t) from the specification of a desired system performance
and (2) a normal system of differential equations having the function
as a component of the system solution.

Two methods of constructing the linear system, to
have a specified solution, are given. One method consists of
determining the coefficients and initial conditions of the normal
system in terms of the coefficients and initial conditions of an n-
order differential equation. A second method relates the coefficient
matrix in the normal system directly to the specified solution y(t)
by means of a certain matrix transformation. If the normal system
is nonhomogeneous then an explicit formula is given for determining

the nonhomogencous part of the system in terms of the specified
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solution y(t). Similar results are developed for constructing a
special class of nonlinear differential equations having a specified
solution.

The design methods, proposcd in the thesis, are

illustrated in the design of amplifiers and oscillators in the time-

domain.
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I. INTRODUCTION

The design of a physical system to meet a given
performance specification necessitates decisions based on a
knowledge of the inter-relationship of the system components
(parameters) to the system performance. A major portion of
any design procedure is devoted to the process of relating the
system parameters to the system performance.

Brown(l), Wirth(z), Koenig, Tokad, and Kosavan(?’)
have recently presented methods of formulating the mathematical

model of a physical system into the form

a—t---l:fi (xl,. . .,.xn;t) ,1i=1,2,. . ., n. (1.1)

The set of differential equations (l.1) is commonly referred

to as the normal system, the linear form of this system will be

denoted by
X = AX + Q1) (1.2)

where X' = [xl,xz, .o ,xn] , A = [aij] a square matrix of order
n, Q'(t) = [ql(t), qz(t), e, qn(t)] and the prime denotes the
transpose.

One method of approaching the design problem, when
presented with a mathematical model of the system in the normal
form, is to view the system performance as one specified com-
ponent xi(t) of the vector solution. Then relate the parameters

1



in the normal system to the system performance xi(t). One technique
of obtaining these parameter-solution relationships (design equations)
is to (1) convert the normal system into a higher-order differential
equation in X, by a reduction method such as the one proposed by
Murray and Miller [4, p.126], and (2) determine the inter-relation-
ship of the system performance x, to the system parameters in the
higher-order differential equation. An obstacle to obtaining the
desired parameter-solution relationships by this technique is that
the reduction method may convert the normal system into a differen-
tial equation of r-order, where the number r is less than the number
of equations in the normal system, i.e. r < n. Moulton [5, p.9]
presents, as an example, a normal system of three equations which
converts into a second-order cquation in any component, X, In
seeking these parameter-solution relationships, many questions have
arisen concerning the mathematical properties which relate the
normal system (l.1l) to an r-order (r < n) differential equation

r dy dr—l

:f(Y,——,- . ~,——:‘-Y} t) (1'3)
dt’ dt at’ 1

obtained from the system.

The objective of this thesis is to develop the math-
ematical properties which relate the normal system (1.1) to an
r-order (r<n) differential equation (1.3). The mathematical
properties, thus obtained, are to afford new tools for the design
of electrical networks.

When the mathematical model has the linear form (1. 2)
certain questions arise as to how the solution of the normal system
is related to the solution of the r-order (r<n) equation (l.3) obtained

from the system.



Coddington and Levinson [6,p.21] as well as others

[7. p.33] have applied the nonsingular transformation

-xlw T
(1)
x y
o (1. 4)
(n-1)
LX“J _y i

to the normal system (1.2), where matrix A has the special

form of a companion matrix (2.2.4) and Q'(t) = [0,0,..., O,qn(t)]
to obtain an n-order differential equation. The n-order equation
obtained from the system by the transformation (1.4) is referred
to by Coddington and Levinson as "'associated'" with the system.
The nonsingular transformation (1.4) thus specifies the manner in
which the solution of the normal system and the solution of the n-
order differential equation associated with the system are related.
A generalization of this ancept of the associated differential
equation is required in Chapter II (homogeneous) and Chapter III
(nonhomogeneous) to develop the general mathematical properties
which link the solution of the normal system (1l.2) to the solution of
the r-order differential equation obtained from the system.

The later parts of Chapters II and III develop techniques
for relating the parameters in the system (l.2) to one specified
component xi(t) of the vector X(t) solution. The parameter-solution
relationships developed in these sections have not been formally
investigated and made available to the network designer until now.
These relationships, as shown in Chapter V, offer new tools for the

design of electrical networks.



In Chapter IV mathematical relationships are developed
which relate the solution of a class of nonlinear systems (1. 1)
to a solutionof an n-order differential equation (1.3), obtained
from the system. A portion of the results obtained in Chapter IV
are applied to the design of tunnel-dinde amplifiers and oscil-
lators in Chapter V. The design equations obtained in Chapter V
areshown to be a generalization of results obtained by Kim [8, p.416]

by a different method.



PROPERTIES OF SYSTEMS OF HOMOGENEOUS

II.
DIFFERENTIAL EQUATIONS AND ASSOCIATED
HIGHER ORDER DIFFERENTIAL EQUATIONS
.1 Introduction

The general mathematical properties that relate the

solution of the normal system

. - o

[x) ‘10 %1z ... 2w [ ]

q X2 21 P22t %2n X2
dat | . =

*n Lanl aLnZ annJ | xn_

where the entries are constants or in symbolic form
X = AX (2.1.1)*

to the solution of the r-order (r<n) homogeneous differential

equation

T r r-i
4y . v 4 (2.1.2)
dt 1=1 dt

obtained from the system are developed as a result of deriving

the r-order equation from the system by means of the transformation

X = ¢ty (2.1.3)
,xn], Y' =[0,0,... ,O,y,)gl;)...,y(,r—DO,O,...O].

where X' = [xl,xz,.. .

The number indicates the section and the number of the
Thus (2.1.1) indicates Sec. 2.1,

sk
equation in the section.

Eq. 1.
5
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and the -1 superscript indicates the inverse of matrix C.

In the investigation of the general solution properties
a number of problems have arisen for which the solution will be

of interest to the system designer.

System design methods are proposed in Chapter V that
necessitate constructing: (1) a function y(t) from the specification
of a desired system performance and (2) a normal system (2. 1. 1)

having the function y(t) as a component of the system solution, X(t).

The construction of the normal system (2.1.1) to have
the component y(t) as a solution necessitates a knowledge of how the
component y(t) is related to : (1) the solution of the normal system

X(t) and (2) the aij entries in matrix A in the normal system.

It is shown in the development of this chapter that these
parameter-solution relationships can be obtained by viewing the
function y(t) as the solution of the r-order differential equation

(2.1.2).

In Section 2.2, the solution of the normal system is
shown to be related to the solution of the r-order differential
equation by the transformation (2.1.3). The formal development
of this transformation allows the system designer to establish the
initial conditions on the normal system in terms of the specified
component y(t). In this development it is shown that y(t) is the

component of the system solution denoted by xn(t).

The problem of relating the aij entries in the matrix

A in the normal system (2.1.1) to the solution y(t) is developed in



Section 2. 3. One method requires constructing the r-order dif-
ferential equation to have the specified solution y(t), and then re -
lating the coefficients aj j=1,2,...,r of the r-order differential
equation to the entries ai, in the normal system. A second method
relates the coefficient matrix A in the normal system (2.1.1)
directly to the specified solution y(t) by means of a certain matrix
transformation.

The parameter-solution relationships formally developed
in this section are referred to as design equations when applied to

system design in Chap. V.

2.2 Systems of First Order Homogeneous Differential Equations

and Associated Higher Order Differential Equations

In this section it is shown that when the r-order equation
(2.1.2) is obtained from the normal system (2.1.1) by a nonsingular
transformation of the form (2.1.3), that the solution of the system and
the solution of the r-order equation are linked by two well-defined

properties.
Property (a) The solution of the r-order equation is

given by r entries in some row of matrix triple product
CFmD when C, Fm and D are nonsingular and each column
of Fm is a solution of the normal system.

Property (b) A solution of the system is given by C-IY

where Y is a vector containing the solution and derivatives

of the solution of the r-order differential equation.
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The r-order equation defined by Properties (a) and (b) is said to
be "associated' with the system. These properties are stated

mathematically by the following definition:

Definition 2. 2.1: Consider the homogeneous system of differential

equations :

X = AX (2.2.1)

where A = [aij] , X'= [xl’XZ’ o ,xn].

An r-order homogeneous differential equation

(2.2.2)

’

is associated with (2.2.1) if,

(a) for Fm a fundamental matrix®* of (2.2.1), there exists
non-singular matrices C and D such that the (i,i), (i, itl),...,
(i, i4r-1) entries in CIE;nD, for some i, i=1, 2, ..., n, are a

fundamental set of (2.2.2) and

(b) for Yir Ypr o ¥, @ fundamental set of (2.2.2), the

vectors C-le where Yj' = [0,0,....0,)3.y§1),... R y(jr_l)0,0, ...,0],

j=1,2, ..., r, are r linearly inuependent solution on the open
are constants, of

interval I defined by I = [t:it, <t< tz], t, and t

1 2

(2.2.1).

* For the definitions of tecrminology and notations used
throughout, see Appendix A.



The mathematical properties specified in Def. 2.2.1
are first encountered in Thm. 2.2.1 when a transformation of the
form (2.1.3) is applied to a normal system (2.2.1) to obtain a
set of sdifferential equations, 1< s<n,of the form (2.2.2). This
set of s, higher-order differential equations, are ascertained to

be associated with the system.

Before proving the existence of a set of s higher-
oxider differential equations of the form (2. 2. 2) associated with
the system (2.2.1), some basic relationships must be established
between a fundamental matrix of the system (2.2.1) and a funda-

mental matrix of the transformed system (2.2.3). Lemma 2.2.1

follows immediately from results established in Thm. 2.2 [6, p. 69].

Lemma 2.2.1: If Fm is a fundamental matrix of the

system (2.2.1) and Y = CX, where c! exists, then CF__is a

fundamental matrix of

Yy - cac™ly (2.2.3)

Proof: Let fj’ j=1,2,...,n be the j-column of Fm
Since fj is a solution on I of (2.2.1) and (2.2.3) is obtained by sub-
stituting X = C_lY in (2.2.1), ij is a solution of (2.2.3) on I.

Since C and Fm are nonsingular by hypothesis, CFm is nonsingular.

The lemma follows.
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Lemma 2.2. 2% Suppose CAC—l of Lemma 2.2.1 is

- ]
B, 0 ... O
0O B.... 0
cac™t - 2
G B,

where Bi is of order r, i=1,2, ..., s. There exists a nonsingular
matrix D such that a fundamental matrix of Yi = BiYi’ i=1, 2,...,s

where Y' = [Yl" Y!,..., Y']. is the submatrix of CFmD consisting

2 D s .
i-1 i-1 i
of the entries in rows ZXr.+l, = r.+2,..., ¥ r.and columns
i-1 i-1 F17;0 =1 j=1
s r.+1, ¥ r.+2,...,Z r..
j=1 j=1 4 j=1 Y

. Proof: If Gi is a fundamental matrix of Yi = BiYi' i=1,2....

then a fundamental matrix of (2.2.3) is

Ul 0 0
0 G,. 0
B 2
Gls“ A
0 o ... G
. S—-

By Lemma 2.2.1 CFm is a fundamental matrix of (2. 2. 3).

Therefore, by Thm. A.1l, there exists a nonsingular matrix D

such that
G = CF_D
ls m
i-1 i-1

Since the entries in Gi are the entries in rows ¥ r.+l1, T r.+2,...,
i i-1 i-1 i j=1 ) =1

T r,and columns £ r+1, T rd,...,~ r, of CF_D, the lemma

i1 J i1 9 i1 J S m
j=1 i= j=1 j=1

follows.
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Theorem 2.2.1: There exists a set of s, homogeneous

differential equations, l1<s<n of order T, i=1,2, ..., s,
s
associated with the system (2.2.1) such that = r, = n.
i=1

Proof: Substitute X = C-lY in (2.2.1) so that (2.2.3)

results where

B, 0 . 0]
cac-L |0 By... 0
LO 0 BS_
and
|"o 1 0 0 ]
0 0 1 0
B - | e
! 0 0 0 1
arr. arr.-1 arr.-2 e ar1
L 11 1 1 1 1 1 |

It has been shown [9, p.49) that such a transformation exists.

For any subset of equations of (2.2.3) of the form

Y. = B.Y. (2.2.4)

1 11

h L= Ly sy e, Y. . . .
where Yl [yll’ylz’ ’ylri], calculate ri—l successive derivatives

of the first row of (2. 2.4) eliminating each time from the right hand

side the first derivatives of Yip» ¥ by means of the last
i

r.l-l equations of (2.2.4). This process results in

i3 v Yir



. - T
Dil Yi1
(1)
Yil Yi2
- . (2.2.5)
(ri-l)
Lyil yirl

Substituting (2.2.5) into (2. 2.4) gives,

(1) [~ 17 ]
yil ‘! 0 0 0 e e e 0 Yil
(2) (1)
Yii 0 0 1 e 0 Vil
. ) (2)
- = e e e e e e Yil (2.2.6)
(ri-l) 0
iy 0 0 1
(ri) (ri—l)
Y11 ariri aLriri-l ariri-Z vt aril Yi1
- i L JL B

The last row of (2.2. 6)

r. r r.-j

d 1yil i dt Yil
r. r.j r.-J

dt * j=1 ! dt *

(2.2.7)

is associated with (2.2.1). For if Fm is a fundamental matrix of
(2.2.1), by Lemmas 2.2.1 and 2.2.2 andthe initial part of the
proof, there exists nonsingular matrices C and D such that a sub-
matrix of CFmD, Gi’ (Lemma 2.2.2)is a fundamental matrix of
(2.2.4). By (2.2.5) and (2.2. 6) each entry in row one of Gi is a
solution on I of (2.2.7) and the j-row of Gi is the j-1 derivative of

the first row for j =1,2,... ST From Thm. A.2, since the
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determinant of Gi is the Wronskian of solutions on I of (2.2.7)
and since Gi is nonsingular, the entries in row one of Gi are a

fundamental set of (2.2.7).

If SR PIEREER is a fundamental set of (2.2.7), by

i
(2.2.6) and (2.2.5), r, linearly independent solutions on I of (2.2.4)
(r.-1)
are [y.,y(l), e,y ]' »j=1,2,..., r,. This implies that the
"% j 0 riod

vectors Y! =10,...,0,y.,yv:"", ...,
iol iV Y

-1
are r, linearly independent solutions on I of (2.2.3). Since X =C 'Y,

’ 0:°°'90]1 J = l,Z,...,I'i

r, linearly independent solutions on I, of (2.2.1), are C le, ji=1 2,...,ri.
Therefore, (2.2.7) is associated with (2.2.1). Corresponding to

each matrix Bi’ of order re, i=1,2,...,s, there exists an associated
differential equation of order r.. Since matrix A is of order n, then

s

= r, =n.
i=1
Theorem 2.2.1 establishes that, (2.2.1), an arbitrary
system of n differential equations explicit in the first derivative ,
may be converted into a set of s, 1<s<n, homogeneous differential
s
equations of order o, i=1,2,...,s, where = r, = n (ri may be
i=1
less than n). This is a generalization of results found by Murray

and Miller [4, p.129].

In Theorem 2.2.2 which follows, the matrix product
CAC"‘l is assumed to have the form of a set of s,1 <s<n, companion
matrices Bi’ i=1,2,...,s as in the proof of Thm. 2.2.1. Itis
then proved that the zeros of the characteristic equation of (2.2.2)
an r-order differential equation, associated with a system of n
homogeneous differential equations, are also zeros of the character-

istic equation of (2.2.1) the system of differential equations. These
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properties are obtained by applying well-known results from

matrix algebra.

Theorem 2.2.2: Suppose

r r r-j
d x-S a L« (2.2.8)
dt j=1 3 a7
is associated with
X = AX (2.2.9)

as in the proof of Thm. 2.2.1. Then if \ o is a zero of LL(\) =
r .
(-1 [)\r -z ax’d ] then A is alsoa zero of det[A-\1] = 0.
j=1*
Proof: By the method of the proof of Thm.2.2.1

5
det [CAC_l -\1I} = | | det [Bi -\1]. By Lemma [6, p.88], the
i=1

r. r. r, T.j
characteristic polynomial for B, is det [Bi- A= (-1) 'ht-ztan ).
j=1 9
Since C is nonsingular, the zeros of det [A - \I] = 0 and det [CAC l—)\I] =0

are the same. Therefore if \ o is a zero of LL(\ ) it also must be a

zero of det [A - \I] = 0.

Corollary 2.2.1: With the same hypothesis and r = n,

aj is (-l)J+l times the sum of the principal minors of order j of A.

Proof: This follows from Thm. 2.2.2, Thm. A.3 and

the fact that the coefficient of X in det [A - N 1] is (-1)".

Corollary 2.2.1 provides an explicit relationship between
the cocfficients aJ. j=1,2,...,n 0f (2.2.8) where r = n and coefficients
aij of A in (2.2.9). However, these results are only applicable when

it is known that CAC-l has the form of a companion matrix.
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From a practical standpoint, the existence Thm. 2.2.1
might at first be considered to be of academic interest only. How-
ever, in the proof of that theorem, a new method for converting a
system of n equation (2.2.1) into a higher-order differential

1y (Thm 2.21.

equation by transform techniques is given, i.e. X = C~
Before the transform technique can be applied the practical problem
of determining a transformation of the type X = C—IY which converts

the system into an r-order differential equation, must be solved.

A transformation of the form

- _

*1 *n W

o [
=G

x L«

L T L

where G is a nonsingular matrix, is determined in the following:

Consider the system X = AX (2.2.1) partitioned as

I RS I RS RS P N I
e = (2.2.10)
*n AZl *nn *n
where Xi = [xl,xz, PN ’xn-ll' Take n-1 successive derivatives
of AZIXI =-a x + ;{n the last row in (2.2.10) eliminate each

time the first derivative of the vector Xl by means of Xl = All Xl +

A12xn the first row in (2.2.10). This formulation results in the

following matrix form:
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¥ r B T

A, x, | -a_ 1 0 e 00

At {1 %2 = | 221tz i 1 0 0
: n-2 ° n-3 4 n-5

Aafin || %] [Pt A Ay AT AL S T

This last equation can be written in symbolic form as

BX, = PXj (2.2.11)

where the 1 row of (2.2.11) is

il -2 0 (i-2 G-1) . (i)
Aorfry XL =88 AlXa e Al A ALX, T T Ay Xy

i=1,2,...,n-1. By attaching ones and zeros to (2.2.11) form

o 1][x ull x
Lo [ d] (2.2.12)
B 0 x P
n
where U = [1,0,0,....0].

If B"'l exists, the coefficient matrix on the left
side of (2.2.12) is nonsingular. The coefficient matrix on the right

side of (2.2.12)

is nonsingular, since matrix L is lower triangular with ones on

the main diagonal, det (L) = 1. Let

G = =L B (2.2.13)
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1f the aij entries of matrix A of the system (2.2.1) satisfy the
condition det (B) # 0 then Bl‘ll exists in (2.2.13) and the matrix
G defined by (2.2.13) is nonsingular. This result is stated by

the following lemma:

Lemma 2.2.3: If, corresponding to the normal system

(2.2.1) the aij entries of the matrix A satisfy det (B) # 0, where

the i-row of matrix B is

(a a a ] fa a a i-1
nl n2" " " “n,n-1 [ 11 12 l1,n-1
Lan—l,l an-l,Z : n-1,n-1
i=1,2,...,n-1,
then there exists a nonsingular matrix G such that
X, = GX (2.2.14)

d

(1) x(n-l)]
M S P

| B
where Xd = [xn,x

Lemma 2.2.3 is a significant result of this section
with respect to application. In the technique for constructing the
nonsingular transformation (2. 2. 14) it is shown that the condition
det (B) # 0, on the aij entries of the matrix A, must be satisfied for
the existence of the transformation matrix G. Theorem 2.2.3
establishes that the transformation (2. 2.14) converts the normal system
into an n-order differential equation which is associated with the
system. The hypothesis of the theorem necessitates the same
conditions on the aLij entries of matrix A in the system (2.2.1) as

specified by the hypothesis of Lemma 2. 2. 3.
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Theorem 2.2.3: If det (B) # 0, where matrix B is

defined in the hypothesis of Lemma 2.2.3, then there exists an n-

order differential equation associated with the system (2.2.1).

L]
Proof: For X = AX, therec exists a nonsingular matrix

= GX by Lemma 2.2.3. Substituting X = G-lX into

G such that X d

d
(2.2.1) results in

-1
X, = GAG 'Xj (2.2.15)

The last row of (2.2.15) is an n-order differential equation associated
with (2.2.1). For if Fm is a fundamental matrix of (2.2.1), by
Lemma 2.2.1, GFm is a fundamental matrix of (2.2.15). By (2.2.14),
the entries in the first row of GFm are solutions on I of the n-order
differential equation in (2.2.15). In addition, the entries in the j-row
of GFm, j=2,3,...,n are the j-1 derivatives of the entries in the
first row. Therefore, the determinant of GFm is the Wronskian of
solutions on I of the n-order differential equation in (2.2.15) and since
G and Fm are nonsingular, GFm is nonsingular. It follows from
Thm. A.2 that the entries in the first row of GFm are also a fund-
amental set for the n-order differential equation in (2. 2.15).

Suppose Y oYYy is a fundamental set for the n-order
differential equation of (2.2.15). Then the matrix YJ! = [yj, (jl), ...,y:(jn-l)],
j=1,2,...,nis composed of n linearly independent vector solutions of
(2.2.15). Since substitution of Xd: GX of Lemma 2.2.3 into (2.2.15)

results in (2. 2. 1) the vectors G-le, j=1,2,...,nare n linearly in-

dependent solutions on I of (2.2.1). The theorem follows.
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The proof of Thm. 2.2.3 suggests a new method of
deriving n-order differential equations. If the coefficients aij of
matrix A (2.2.1) satisfy the condition det (B) # 0 of Lemma 2.2.3,
then an n-order equation can be formed by substituting X = G-IXd
into X = AX. The n-order equation is the last row of the resulting
system of equations (2.2.15). Note that the coefficients appearing

in the n-order equation have not been given explicitly in terms of

aij centries of matrix A.

Techniques for obtaining the higher order differential
equation presented by Moulton [5, p. 6] and others [4, pl26] do not
include the nonsingular transformation, X = G_le, nor do other
methods restrict the final equation to one of n-order. Moulton,
for example, presents a system of three equations which converts

into a second order equation in any variable.

Corollary 2.2.3 has been included to illustrate
a class of system models X = AX which can be converted into an
n-order differential equation, that is associated with the system.
Note, in the proof of the corollary, how the coefficients aij of
matrix A are subjected to the test of det (B) # 0 (Lemma 2.2.3).

This test establishes the existence of an n-order homogeneous

differential equation associated with the system model.

Corollary 2.2.3: Suppose matrix A of the system

(2.2.1) is - -
all 0 e e e 0 aln
0
A - ° Y22 U “2n
0 0 0 a
n-1n
ahl %n2 ** %hn-1 2hn
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where a,, distinct i = 1,2,..., nand a5 #0forj=1,2,...,n.
Then there exists an n-order homogeneous differential equation

associated with the system (2.2.1).

Proof: That det (B) # 0 follows from the fact that

the i-row of matrix B is

- _i-1

by=lay 2n2 s 2 ) 200 0 o ]
i-1
0 a22 0
i-1

0 0 n-ln-1

and therefore
— ! ' 1 -

det (B) = det [bl’ bz,...,bn]_ 1 1

a a ,...a 1
nln2 “nn-1 |
1
f
1

n-2 51-2 _in-Z
11 22 """ “n-ln-l
Fa pa s e an g Ii>j| (aii - ajj) which by hypothesis is

not zero. Therefore the corollary follows.

2.3 Additional Properties of Associate Differential Equations

The mathematical properties established in Sec. 2.2
are applied in the development of mathematical techniques for
relating the aij entries in matrix A of (2.1.1) to a specified solution
of (2.1.2), associated with the system. The techniques developed
here relate the aij entries in matrix A of the system (2.1.1) to

one specified component x; of the vector X of the system.
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The relationship between the aij entries of matrix A
in the system (2.3.2) and a specified solution to the r-order dif-

ferential equation (2.3.1), associated with the system, is cstablished

from the solution properties specified in Def.. 2..2. 1.

Theorem 2.3.1: If Y YooY, is a fundamental set for

T r r-j.
iy - v a 4 2 (2.3.1)
dt j=1 3 a7
and (2.3.1) is associated with
X = AX (2.3.2)

“where A = [a] , X' = [xl’XZ’ . , X ] Then there exists an

1
explicit relation between the x'2 entries of A and the entries of C

and Yj’ j=1,2,...,r,(Def. 2.2.1 for notation) .

Since (2.3.1) is associated with (2.3.2) the

vectors C-le where Y' = [0,... ,YJ»Y§1),.. . ,Y(jr-l),o,. ..,0],

Proof:

J =1,2,...,rare r linearly indcpendent solutions on I of (2. 3. 2).

LetF = [Y , Y , ..., Y_]and F_ be the (nonsingular) submatrix
m 1 2 r r
of F __ containing the columns [yj, y}”, el y_(jr_l)]" j=1,2,...,r.

Since the matrix C-lFm satisfies (2.3.2),

Multiplying the above equation on the right by [0, F;l, 0] results

in a system of equations in the following form:

clrrl - aAcT!
l r'r 1
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where Cil is the set of columns of C-1 corresponding to the

position of the entries in ¥_ (F_) in ¥ __(F__). Since the columns
r ' r m' m

of CIl are linearly independent, there exists a nonsingular sub-

matrix, C;l, of CIl or order r. Multiplication on the right by

Cr results in a system of equations which contains a subset of

equations in the form

A =C F F_C (2.3.3)

Since Ar is square and therefore contains r2 entries of A, the

theorem follows.

Corollary 2.3.1: With the same hypothesis and r = n.

A =C "F_F C (2.3.4)

Proof: This is a direct consequence of Thm. 2.3.1.

The matrix Fm as specified in (2. 3.4) is

B 1
71 Y2 T "n
(1) 1 1
F_=|"1 72 Yn
e (2.3.5)
0-) @) ... o-1)
1. Y2 "n
It is proved in the following corollary that P"mF;rl1

has the special form of a companion matrix.
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Corollary 2.3.2: With the same hypothesis and r = n

the F F1 of Cor. 2.3.1 is
m m

[0 1 0 0

L 0 0 1 ... 0

F F = A (2.3.6)
0 0 0 1
bn bn-l bn-?. bl_

Proof: Let T represent the companion matrix on the

right of (2.3.6). Consider the matrix product T Fm. If the n

equations
(1) (n-1) _  (n)
bnyl.”bn-lyl +...+blyl = yl
(1) (n-1) _ _(n)
bn y2 +bn-ly2 + ... +bly2 =Y,
(1) An-1) _ ’(n)
bn yn+bn—1)n LR +blyn = Yn

are satisfied then T F =F
m m

The above systemof n equations in matrix form is

p—

vy ¥y e Y(ln'lﬂ bnT y(iﬂ
. -1 i)

y y y b |y

SR I IR
: (n-)) )

Lyn yn yn ) _bl | Ly“_

From Thm. A.2, F__ is nonsingular. Since the matrix on the

left of (2.3.7) is Fr"n’ the lemma follows.
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Corollary 2.3.1 establishes a rclationship (2. 3. 4)
for determining the aij entries of the matrix A in (2.3.2) in terms
of ore specified component xi(t) of the vector X(t) of (2.3.2).
When Thm. 2.2.3 is applied to Cor. 2.3.1 it is determined that if
the aij entries in matrix A satisfy det (B) # 0 then the vector com-
ponent xn(t) of X(t) in the system (2.3.2) can be specified as consisting
of n linearly independent parts. This specification in turn restricts

the aij entries of matrix A by

g rilg (2.3.8)
m

m

A=G"

Equation (2.3.8) is a principal result of this section and is referred
to as a '"design equation'' when applied to the design of linear

oscillators in Chapter V.

The results of Cor. 2.3.1 are extended one step
further in Cor. 2.3.2 by proving the matrix product %‘mF;nl in
(2.3.4) or (2.3.8) to have the form of a companion matrix (2. 3. 6).
An important consequence of this, which is applied in Thm. 2.3.2,
is that the matrix products CAC_1 (2.3.4) and GAG-I(Z. 2.15),
(2.3.8) have the form of a companion matrix. This implies that

the characteristic polynomial of matrix A, det [A - X1] must be equal

to the minimum polynomial [10, p.149] of a matrix A.

Gantmacher [10, p.159] shows that the matrix C in
the similarity transformation CAC“'.l , which produces the companion
matrix, is not unique. Faddeeva [11, p.201] presents a method
developed by Danilevsky which brings a matrix A into companion

matrix form by means of (n-1) similarity transformations. The
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primary difference in the method for obtaining the companion matrix
in this thesis and other methods is that here it is obtained under
specified conditions det (B) # 0 on the aij entrics of matrix A by

a particular matrix product GAG_I, which has the desired form of

a companion matrix. This is not the case in the other methods
which have beenestablished for the primary purpose of bringing

the characteristic determinant det [ A - A\I ] of a matrix A into
polynomial form. What is even more significant in the development
of this thesis is the presentation of the transform in the form

X:Cr-l

Xd (Lemma 2.2.3) which links the solution of an n-order
differential equation (2. 3.9) to the solution of the system of dif-

ferential equations(2.3.2). The result of C:AG-l having the form of a

companion matrix is applied in the following theorem.

Theorem 2.3.2: If det (B) # 0, where matrix B is

de fined in the hypothesis of Lemma 2.2.3, then

(2.3.9)

where a. is (_1)J+1 times the sum of the principal minors of order

jof A, is associated with
X = AX (2.3.10)

where A = [aij] and X' = [xl,xz, “e ,xn].

Proof: Theorem follows from Cor. 2.3.2 and

Thm. 2,2.3.
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Theorem 2.3.2 provides a simple, yet effective

procedure for establishing a mathematical relationship between
the aij entries of the matrix A in the system (2.3.10) and the

a.j entries in the n-order equation (2.3.9). If the matrix A is
given and det (B) £ 0, or if matrix A contains arbitrary entries:
and det (B) # 0 is specified, then the mathematical relationships
are given in the theorem. The results of Thm. 2.3.2 provides

a new tool for system design in a later section.

Equation (2. 3. 8) is the result of specifying only one
component x in the vector X of the system (2.3.10). On the
other hand, Thm. 2.3.2 relates only the a.ij entries of the matrix
A in the system (2.3.10) to the aj entries in the n-order equation
.(2. 3.9). The additional step of relating the aij entries to the

specification on X, is made possible by the following theorem.

Theorem 2.3.3:Given the n-order differenial

equation o n dn"j
—-—n' x = X a. Y X (2. 3. ll)
dt j=1 3 a7

k Lt
(1) If a solution onI of (2.3.11)is y(t) = = P !
i-1

then aJ., j=1,2,...,n1is given by (B.1.1), (B.1.2) aj = -bj

mi_l(t) e (B.2)

for m. = 1 for all i.
! r )\it
(2) If a solution on I of (2.3.11) is y(t) = = c.e , where ci;GO,
i=1
and )‘i # 0 and distinct, thenr coefficients of (2.3.11) are given

by (B.1.4) where a‘j = -bj.
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m a.t
(3) If a solution of I of (2.3.11) is y(t) = = c.e 1 cos (wit +61) and
1

i=1
2m = r, then r coefficients of (2.3.11) are given by (B.1.4)

where aj = -b..

Proof: The theorem follows from the general form

of solution given in (B.2).

Theorem 2.3.3 establishes parameter-solution
relationships between the coefficients aj of (2.3.11) and a specified
solution. In (2) it is interesting to note (Thm. B. 1. 2) that if a
solution with r linearly independent parts is specified, r coefficients
of the n-order differential equation can be expressed in terms of the

remaining n-r coefficients.

Theorems 2.3.2 and 2.3.3 are sufficient to interrelate
the aij cntries of the matrix A of the normal system (2.3.10) and
the component xn(t) of the vector X(t) in the system (2.3.10).

These mathematical relations are referred to as "design equations"

when applied to system design in Chapter V.



III. PROPERTIES OF SYSTEMS OF NONHOMOGENEOUS

DIFFERENTIAL EQUATIONS AND ASSOCIATED

HIGHER-ORDER DIFFERENTIAL EQUATIONS

3.1 Introduction

Mathematical properties parallel to those in Chapter II
are devcloped for relating the solution of the nonhomogencous

system

X = AX +Q() (3.1.1)

N v 1 -
where X' = [xl,xz, ... ,xn], Q'(t) = [ql(t),qz(t), e ,qn(t)],
A = [aij] to the solution of the r-order(r<n) differential equation

r-i

a, ——y +F(1) (3.1.2)

1 dt

For instance, the problem of determining a transformation of

the form

X:C'l[YS - L7 H(@) (3.1.3)

where X' = [xl’XZ’ . ,xn], Y's = [0,0,...,0, y,y(l), . ,y(r-l),O, 0,...,0]
H(t) is a vector function of t, and C and L are nonsingular matrices,
which links the solution of the normal system (3. 1.1) to the solution
of the r-order equation (3.1.2), is encountered. The solution of this
Problem will allow the system designer to determine the initial
condition of the physical system in terms of one component xi(t),

of the system solution X(t).

28
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In contrast to the problems considered in Chapter II,
a new problem that arises in this section is that of formulating the
vector Q(t), of the normal system (3.1.1), in terms of one component
X, of the vector solution, X. These parameter-solution relation-

ships are illustrated in the design of amplifiers in Chapter V.

3.2 Svstems of First-Order Nonhomogeneous Differential

Equations and Associated lHigher-Order Differential

Equations

Properties parallel to those in Chapter II are developed
here for the nonhomogeneous system (3.2.1). For instance in
Thm. 3.2.1 it is proved by applying a transformation of the form
(3.1.3) to a nonhomogeneous system, that there exists a set of s
differential cquations, 1<s<n, of the form (3.2.2) "associated"
(Def. 3.2.1) with the system. In Thm.3.2.2 conditions on the aij
entries of matrix A in the normal system are given so that there
exists a differential equation of n-order associated with the system.
In the proof of these results a technique for formulating a trans-

formation of the form (3. 1. 3) is given (Lemma 3. 2. 2).

Definition 3.2.1 provides a concise description of the
mathematical properties existing between the normal system
and the r-order equation associated with the system. These

propertics are clarified in the theorems of this section.
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Definition 3.2.1: Consider the system of n non-

homogeneous equations,
X = AX 4+ Q(t) (3.2.1)

where A = [aij] , X' = [xl,xz,.. . ,xn], Q'(1) :[ql(t),...qn(t)],

qi(n)(t), i=1,2,...,n1is continuous for all t on the open interval I

defined by I = [t: t; < t<t2], where t, and t, are constants.

1 2

An r-order nonhomogeneous differential equation

dry

datt i

+ F(t) (3.2.2)

r
= = a
=1

isassociated with (3.2.1) if:

(2) The homogeneous part of (3.2.2) is associated
(with nonsingular matrices C and D and row i) with the homogeneous
part of (3.2.1) and

(b)l.For X'(t) = [xl(t),xz(t), e ,xn(t)] the solution of
(3.2.1) onI such that X(to) =0, to on I, then row i of CX(t) is the
solution of (3.2.2.) on I which is zero at to’

2. For y(t) the solution of (3.2.2) onI such that

r(j) - 1 =
y“'(t) =0, forj=0,1,...,r-1, t_onl, and

r-1  r-i-l . r-1
F()=-% a, = P D) I {0+x PUDE_ (1),
i=z1  ‘j=0 J I =0 )
(3.2.3)
where
_ pJ j-1 j-2
P?U))_ R T i T S TTE S T
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. k-2
d K
DJ '-—'--—-—!-’ P D = N - -
5+ PolD) landj:o p;‘(D) feo1jlte)=0.k=2,3, ...,

-1 -
then C [Ys(t) - L lH(t)] is the solution of (3.2.1) which, when

evaluated at to’ is the zero vector, where L-l = [1..] and
1)

20 = 10,0, 0,y 0,0,
i-1

’

H'(1)= [0,0,... ,O,fl(t),fl(l)(t) H1,00, ..
1

fl(r—Z)(t) s fZ(r--”)(t) to. 4L (0,0,...,0]

Definition 3.2.2: An r-order homogeneous differential

equation
ar r af i
T YT A r-1 Y
dt i=1 dt

is associated with (3. 2.1) if (a) and (b) of Def. 3.2.1 are satis{ied.

The mathemtical properties specified in Def. 3.2.1
are first encountered in Lemma 3.2.1 which follows. The lemma
presents a normal system of the form (3.2.1), with the coefficient
matrix in the form of a companion matrix, that converts into an n-order

differential equation associated with the system.
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Lemma 3.2.1: Suppose matrix A of the system(3.2.1) is

— —

0 1 0 0
0 0 1 0
A = e e e e e (3.2.4)
0 0 0 1
an an-l an—Z aLl

Then there exists an n-order differential equation, associated with

the system (3.2.1).

Proof: Determine the n-1 successive derivatives of the

first row of (3.2.1) eliminating each time from the right hand

side, the first derivatives of x by means of the last

Xy eoe,X
2’73 ’n

n-1 original equations. This process results in

Xl = X +Ql(t) (3.2.5)
where X' = [xl,x(ll) x(n—l)]_. X' = [xl,x Cee L X ]and
2 3
Q0 = [0, q (1), dXv +a,0.....q P + gl )(t)+... tq_ (0]
and
q" n dn-j n-1
—x = % aS——x, + = P(D)gq_ (1) (3.2.6)
dt j=1 Jat j=0 )
j j-1 i-2 o
where P.(D) = D -a; D -a, D -v..-a., ) =1,2,...,n-1,
J . 2 J
: ]
P (D) =1andD’ = S
© dt?

That the homogeneous part of (3.2.6) is associated with
the homogeneous part of (3.2.1), with C and D unit matrices and i =1,

follows by an argument similar to that used in the proof of Thm. 2.2.1.
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If X'(t) = [xl(t),xz(t), Ce ,xn(t)] is the solution of (3.2.1)
on I such that X(to) = 0, t0 on I, then by the method of construction of
(3.2.5) and (3.2.6), xl(t), the first entry of X(t), is the solution on
I of (3.2.6) such that xl(to) = 0. Therefore if (3.2.6) is homogeneous,

the lemxma follows.

Suppose (3.2.6) is nonhomogeneous and let y(t) be the
solution of I of (3.2.6) such that y(‘])(to) =0forj=0,1,2,...,n-1,

to on I. It has been shown [4, p.134] that such a solution exists.

n-1 n-1
For F(t) = ¥ P.(D (t), form F(t) = = P.(D) f .(t), whicl
(= = PiO)a, = = PiO) L 0 )
is a special case of (3.2.3) with 1.. =0Ofori#jandl.,, =1 fori-=
k-2 . 4 1
1,2,...,n, such that = DJ&I. (t)=0,t onlandk=2,3,...,n.
i=0 -4 Yo o
This can always be done, since if fi(to) =0,1i=1,2,...,n-1,
n-1
F(t) =f (t) = £ P.D)q_.(t). Consider the transformation of
n j=0 J n-j
variables xl(t) = yl(t) and
Y(t) = AY(t) + Fl(t) (3.2.7)

where Y'(t) = [y (t),y,(t), ...,y (O], Fi(1) = [£,(t),£,(t),....{ ()]
and A is given by (3.2.4). The solution of (3.2.7) is Y(t) = Ys(t) - Fll(t)
where YS'(t) = [y(t),y(lh) ..... ,y(n—l)(t)] and
1 _ (1) (n-2) (n-3)
F“(t) =[0,f (t),f (t)+f2(t),...,f (t) +f2 (t) +...+fn_l(t)]
and Y(to) = Ys(to) - Fll(to) = 0 for to on I since Ys(to) = 0 and

Fll = 0 for to on I. This implies the lemma.

Corollary 3.2.1: With the same hypothesis and if

n-1
> Pj(D) qn_j(t) = 0 then there exists an n-order homogeneous differential
j=0

equation associated with (3. 2. 1).
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Proof.: This follows from the method of formulating

(3.2.6) in the proof of Lemma 3.2.1.

A review of the salient features in the proof of Lemma 3.2.1
will lay the foundation for the theorems which follow. First, a
nonsingular transformation of the form (3.1.3) is determined
(3.2.5 in Lemma 3.2.1). This transformation relates the solution
of the system to the solution of the higher-order differential

equation (3. 2.6).

Property (a) of Def. 3. 2.1 is established in the same

manner in which the results of Thm. 2.2.1 were established.

In Property (b)1l of Def. 3.2.1, the first row in the vector
CX is the solution of the higher-order equation (3.2.6). In the
lemma, matrix C is the unit matrix and the {irst entry in the

vector Ql(t) is zero.

To satisfy Property (b)2 of Def. 3.2.1, it must be
pointed out that there exists a solution of the higher-order equation
with the property y(j)(to) =0,;=0,1,2,...,n-1. Next, it must be
demonstrated that the nonhomogeneous part, ¥(t). of the higher -
ofder equations, can be put into the form specified in (3. 2.3) in
such a way that it satisfies the conditions at ty specified in (3. 2. 3).
It is shown in IL.emma 3. 2.1 that F(t) can always be put into the
desired form to meet the specified conditions t = to The reason for
this last condition will become clear in the proof of Thm. 3.3.1

which follows later.
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It may be noted at this point the condition at to on F(t)
forces the vector L-lH(t) in the transformation (3.1.3) to be zero
att . In Lemma 3.2.1 this requires Fll(to) to be zero. Similar
operations are applied in Thm. 3.2.1 which follows to prove the
cxistence of a sct of s differential equations,1<s<n, of order r.

associated with the system.

Theorem 3.2.1: There exists a set of s differential

equations,l1< s<n,of order ro, i=1,2,...,s, associated with the
s
system (3.2.1) such that = r. = n.
i=1

Proof: Consider the transformation X = C—lY on

(3.2.1) which is used in the proof of Thm. 2.2.1. For this case

the transformed system of equations is

Y = cac™ly + cay (3. 2. 8)

and

’;{l = BiYi + Fi(t) (3.2.9)
where Bi,i =1,2,...,s, is of the form of (3.2.4). By Lemma 3.2.1
there exists an ri—order differential equation (3.2.6), n = r.,
associated (with matrices C and D and row i) with (3.2.9). That the
homogeneous part of this differential equation is associated with the

homogeneous part of (3.2.1) follows by an argument similar to that

of the proof of Thm..2.2. 1.

If X(t) is the solution of (3.2.1) such that X(to) =0, t, on
I, then CX(t) is the solution of (3. 2.8) which is zero at to:

The vector [yil(t)»yiz(t)ﬁ . .inri(t)]' Wh?f(le the component yij(t),
i=1,2,...,8,j=1,2,... T is the = rp + j entry in CX(t),
p=1
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1s the solution of (3.2.9% which when evaluated at to’to on I, is
zero. Therefore yil(t) is the solution of the ri-order differential

equation, (3.2.6), n = r, for which yil(to) = 0.

If (3.2.6) , n = T, is nonhomogeneous, then by an
argument similar to that of the proof of Lemma 3.2.1 (see proof
for notation), the solution of (3.2.9) is Y(t) = Ys(t) - F(t) which
is zero at to’ to on I. Appending zeros to the vectors expressing
this solution of (3. 2.9) results in the solution of (3. 2. 8) which is
zero at to. Since the solution of (3.2.1) is X = C_lY, the ri—order
differential equation established by Lemma 3.2.1 is associated with
(3.2.1). The theorem follows since the above argument applies
for alli, i =1,2,...,s and ; r. = n.

i-1 *

In Theorem 3.2.1 it is established that the normal system
(3.2.1) converts into a set of s differential equations, 1< s<n,of
order r.. This is an extension of results found by Murray and Miller
[4, p. 129] and others [5, p.6]. In addition to this, from a
practical viewpoint, the proof of the existence theorem affords a
new method of determining a solution of a system in terms of a
solution to a higher-order differential equation, i.e. X = C-lY.

The problem of formulating a nonsingular transformation, of the

form applied in the theorem is the subject of the following discussion:



Consider the normal sysiem X = AX + O(:), partitioned as

X AL ARTX Q)

I = + (3.2.10)

"
>
o
x

n 21 nn n qn(r')

As in the proof of Lemma 2.2.3, take n-1 successive derivatives
of the last row in (3.2.10), eliminate each time the first derivative of
the vector Xl by means of the first row in (3.2.10). This formulation

results in the following (n-1) relations:

_qg“a(t) + AZlA“Q(n S AT A, AT 349 (t)

—

This last equation can be written in symbolic form as

BXl = PXd - Qz(t) (3.2.11)

where the 1 row of (3.2.11) is

i1 o 62 (i) . ()
R A21 11 12507 A A 12%0 A T X

qfli_l)(t) 4 A?lATIQ(li-Z)(t) P A?_l 20

] W | [ 1 0 o ollx ]
AZl X1 “2nn *n
A x. l=|-A_.A -a 1 R L
AZl 11 2 21712 nn n
A2l . ) ) *0-1)
A ] a1 Aer{lu 12 AZIAll 12 ”71’{‘1 125 B0 % |
— - _ J L

MR T T T e
. N
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andi=1,2,...,n-1. Let (3.2.11) be bordered with ones and zeros

0 1||X, U[Xd] - |o
- (3.2.12)
xn

B 0 P | i_QZ(t)_

to form

where U - [1,0,0,...,0].

If B-1 exists, the coefficient matrix on the left side of

(3.2.12) is nonsingular. The coefficient matrix

also defined in Lemma 2. 2.3 is nonsingular, since matrix L

is lower triangular with ones on the main diagonal, det (L) = 1.

Let
U 0 1
1
G = o= I, Bll (3.2.13)
P B 04‘
and
0
Q (1) =
Qz(t)

If the aij entreis of matrix A of (3.2.1) satisfy the condition det (B) £ 0
then Bii exists and the matrix G defined by (3.2.13) is nonsingular.

These results are stated by Lemma 3.2.2 which follows.

Lemma 3.2.2: If corresponding to (3.2.1), det(B) # 0,

then there exists a vector Qd(t) and nonsingular matrices G and L

such that
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-1
Xd = GX +L Qd(t) (3.2.14)

where matrix B is defined in the hypothesis of Lemma 2.2.3

and X(i = [xn,xn(l),.. . ,xrgn-l) ].

Lemma 3.2.2 is one of the significant results of
this section. The lemma is, in a sense, an existence theorem.
That is, if the aijientries of matrix A in the normal system (3. 2. 1)
satisfy the condition det (B) # O then there exists a nonsingular
transformation (3.2.14). Identical conditions on the aij entries in
the homogeneous systems were found (Lemma 2.2. 3) for the
transformation (2.2.14) to exist. Theorem 3.2.2 shows that the
transformation (3. 2. 14) does convert the normal system into an

n-order differential equation which is associated with the system.

Theorem 3.2.2. If det (B) £ 0, where matrix B is

defined in the hypothesis of Lemma 2.2.3, then there exists an

n-order differential equation associated with the system (3.2.1).

Proof: Substituting the transformation (3.2.14) intothe system

(3.2.1) results in

v -l -l "l "l‘
X4 = GAG "X, - GAG L7 'Qu(1) + L Q4(t) + GQ(t) (3.2.15)
where
-1 v (1 n-1) (n-2)
(L Qd(t) + GQ(Y)] = [f“(t),fll{t) + flz(t),...,i(ll © + f12 + .

!

+1, (0] L7

U LT T ——
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2y 4 0D
g =t 10, 0 + 1,0, PO D0 0]

andf“()

row of (3.2.15) is,

qn(t)» (t)—Azl IIQ (t), 1i=2,3,...,n. The last

n n n-i n-1 n-i-1
fx =z a_x -5 a = A E RO
dt iz1 'dt i=1 j=0 =il
n-1 pn
T PO £ () (3.2.16)

an n-order differential equation associated with (3.2.1), where P;.((D) is
given after (3.2.3) and L-l = [11_]] Forx by an argument similar

to that of the proof of Thm. 2.2.3, the homogeneous part of (3.2.16)

is associated (with matrices G and row one) with the homogeneous

part of (3.2.1)

If X'(t) = [xl(t) x (t), ce ,xn(t)] is the solution of (3.2.1)
such that X(to) =0, to on I, then the correspondiné solution of (3.2.15)
is given by (3.2.14). The first entry of Xd(t) which is the first
entry of GX(t) (since L—l is lower triangular) is the solution of
(3.2.15) which is zero at to. Therefore if (3.2.16) is homogeneous,

the theorem follows.

For the case of (3.2.15) nonhomogeneous the method of the

last part of the proof of Lemma 3.2.1 is used. That is for

n-2 n-i-2 i nlJ-Z n-1 n+l4
F(=- xa = BT A, ATTPQ - s a P (D)g (0
i-1 *j=0 i1
4 5 p”(D) Ay A “‘J‘Z Q(t) + PT_ (D) q_(1 (3.2.17)

j=0
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n-1 n--l S+l n-1 n
form F(t) = - a, = . (D) f . (t) + = P.(D)f .(t) such
i=1 'j=0 J A T I
k-2
that = Pl.iD) f 1 (t ) =0fort onlI, k=2,3,...,n. Consider
520 J k-1-j'0 o

the transformation of variables xn(t) = y(t) and

1 1

Y(t) = GAG'IY(t) - GAG~ L‘le(t) + L~ F (1) (3.2.18)

where Y'(t) = [y(t), Y(l)(t)' ceey Y(n—l)(t)]o Qci(t) = [0, fl(t)'fl(l)(t) + fZ(t)’
LA e 0], Fio= [gm, e, g 00

.+ fn(t)]. Substituting (3.2.14) into (3.2.18) results in (3.2.1)

..]_)I .

sinceQ'(t) = [f,(8),1,(t), .., £ _(1)] (G L Therefore if y(t) is
the solution on I where y(to) = 0 and y(j)(to) =0,j=1,2,... ,n—l,to
on I, then the solution of (3.2.1) is X(t) = G_l[Xd(t) - L_l Qd(t)]
where X4(0) = [y, y? 0, ..., v 0] sueh that xie ) = o

The theorem follows.

The determination and application of the nonsingular
transformation of Lemma 3.2.2 and Thm,3.2.2 are unique to this
thesis. The technique used in the proof of Thm.3.2.2 offers not
only a new method of formulating an n-order differential equation,
but even more important a closed form relationship X = G_l[Xd—L-le(t)]
linking the solution of an n-order equation (3.2.16) to the solution of
the normal system (3.2.1). Methods of obtaining higher-order
equations presented by Moulton [3, p.6] and others [4, p.126] do
not consider a transformation of the above type (3.2.14) and as a
result do not restrict the final equation to one of n-order. The

restriction of the final equation to one of n-order and the transformation
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in the special form (3.2.14) are important features in the design of

electrical networks proposed in a later section.

A review of the main features of Thm. 3.2.2 shows
that if theﬁ aij entries of matrix A in the normal system (3.2.1)
satisfy the conditions det (B) # 0, then the system converts into the
n-order differential equation (3.2.16). This n-order equation, which
is associated with the system (3.2.1), is the result of long and

difficult derivations, i.e. the last row of (3.2.15). However, now

“-ﬂi.fr S et o C—

that this derivation has been sucessfully performed for the general
case it is no longer necessary to go through the complete process

of substituting the transformation (3. 2. 14) into the system (3.2.1)

and obtaining the last row of the resulting system, to arrive at the
n-order equation (3.2.16). It is, however, neccssary to determine
some of the components of the n-order equation. The a, i=1,2,...,n
components in (3.2.16) are determined by applying Thm. 2.3.2

as being (-1)i+l times the sum of the principal minors of order i

of matrix A in (3.2.1). Closer examination of the nonhomogeneous part
of the n-order equation (3.2.16) shows the only derivation yet to be
made is l_.,—1 = [ fij ], where the matrix L is defined in the results

of Lemma 3.2.2. This later derivation is relatively simple since the

matrix L is lower triangular with ones on the main diagonal.

An additional result of Thm. 3.2.2 is the formulation
of the vector
-1 -1
] —_ 1
Q'(t) = [fl(t), fz(t), e, fn(t)] (G "L )"
of the normal system (3.2.1) in terms of the components fl(t),EZ(t),...,fn(t)

in the nonhomogeneous part F(t) of the n-order equation (3.2.2). The
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formulation of the vector Q(t) is referred to as a '"design equation"

when applied to the design of amplifiers in a later section.

3.3 Additional Properties of Associated Differential Equations

Mathematical propertics established in Sec. 3.2, which
relate the solution of the normal system (3.1.3) to the solution of
the r-order equation (3.1.2) associated with the system, are
applied in this section. In the following development the coefficient
matrix A and the vector Q(t) in the normal system are related to
the solution y(t) and the nonhomogeneous part F(t) of an n-order

differential equation (3. 1.2) associated with the system.

Theorem 3.3.1: Suppose yl(t), yz(t), ce ,yn(t) is a

fundamental set of the homogeneous part of (3.3.1) and y(t) is the

solution on I: ltl > to of

n n n-j
dx .y a4 ki F( (3.3. 1)
dt j=1 3 @t

such that y('])(to) =0, to onl, j=0,1,...,n-1and (3.3.1) is

associated with

o
1

AX + Q(t) (3.3.2)

then

1

-1 -1
a=-clF_mrlmc

(3.3.3)

Q) = F_(t) S (F () Y(1)
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whereFm(t) = [fij(t)]’ fij(t) = y(jl—l)(t), i, j=1,2,...,nand

Y(1) = C7H[Y (1) - LV H(1)] (see Def. 3.2.1 for notation).

Proof: By hypothesis, and Cor. 2.3.1 (3.3.3) of

conclusion follows.

If Fm(t) is a fundamental matrix for X = AX then, by

Thm. 3.1 [6, p.74]

t
Y(t) = Fm(t)j F;nl(s) Q(s)ds
t
(o]

t on I, is that solution of (3. 3. 2) satisfying Y(to) = 0. Application
of "Leibnitz Rule" (Thm. A.4) to

t
el v) a%(f F~l(s)Q(s) ds)

t
(o]

results in n relations,
QW - F (0 i v
(t) = m dt'" m )

Since the n-order equation (3.3.1) is associated with the system

-l[ lH(t)] is the solution of (3. 3. 2)

(3.2.2) then Y(t) = C Ys(t) - L~

which, is zero when evaluated at to’ to onl .

In Theorem 3.3.1, if y(t) is replaced by xn(t) and
the restriction det (B) # 0 (as defined in the hypothesis of Lemma 2. 2. 3)

is added to the hypothesis of the theorem, then the relationships

n“i‘?’



A =G rlg (3.3.4)
m m
a,..-1
Q(t) = F_(1) o (F (1) X(1) ) (3.3.5)

are obtained. The solution of the normal system (3. 3.2) is given

in this restricted situation i.e. det (B) # 0, by the vector

X = 671 [x - L7HO) (3. 3. 6)

(1) (n-1) .

, ' - . . _
where Xd(t) = [xn(t), X (t),... X (t)], matrices G and L
are determined as in the discussion proceeding Lemma 3.2. 2,
and H(t) is determined as specified in Def. 3.2.1 where r = n.

The relationship (3. 3.4) has been discussed in Chapter II.

e s



Iv. ON A CLASS OF SYSTEMS OF NONLINEAR DIFFERENTIAL

EQUATIONS AND CORRESPONDING REDUCED DIFFERENTIAL

EQUATIONS

4.1 Introduction

In the design of tunnel-diode amplifiers and oscillators,
the state models of these systems have taken special forms. By
divorcing the parameters, in these mathematical models from the
parameters associated with a particular physical system, the class

of systems

r 1 ~ i - r a = 1

*] 1 7 #1p1 %pH 7 % 3 1) q;()
d | Pl
ol - la ... @ a -1 X + |f (x + t
at | *p pl pp-l “ppt m || “ptl pp! ()

l .
. { {
_an _anl " f%pl YhpH aLrnv _xn i lin(xp)_ L?n(t)_

or in symbolic form

X = AX N(xp) + Q1) (4.1.1)

results.

The problem of relating the solution of the system (4.1.1)

to the solution of the n-order differential equation

dn n-1 dn-j
at’ P oj=1 J a7 P P

by means of a nonsingular transformation is encountered, as in

Chapters Il and III.
46

RO KT T T
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The additional problem of relating a specified solution,
Bo + Bl sin(wt+@), to the parameters in the n-order equation (4. 1. 2)
where T(xp.) is a polynomial of m-order is considered. The solution
of this problem will assist in the design of an amplifier or oscillator
when the system contains a nonlinear component whose characteristics

can be approximated by a polynomial of order m.

4.2 Formulation and Solution of Reduced Nonlinear

Differential Equations

Conditions are given on the normal system (4.1.1)
for the existence of a nonsingular transformation (4.2.3). The
transformation, when it exists, reduces the system (4.1.1) to an
n-order ''reduced' (Def. 4. 3.1) differential equation (4.1.2). The
transformation in turn relates the solution of the normal system to
the solution of the n-order reduced differential equation.

First consider the problem of formulating a nonsingular
transformation.

Let the normal system X = Alxon + N(xn) + Q(t), (4.1.1)

be partitioned as

.
RS fap X ] [Frat) Q,®
= + +
@ *n |3A2.l fn(xn) qn(t)
- (4.2.1)

As in the proof of Lemmas 2.2.3 and 3.2.2, take n-1 successive
derivatives of the last row in (4. 2.1) and eliminate the first deriva-

tive of the vector X each time by means of the first row in (4. 2. 1).

1

This formulation results in

QDR - o T v p——
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(i) _ o A"l

. (-1) (i-2 i-1
Xp = AL AL X T )+ A ATETT (x ) 4+ Ay AT F o (x)

oD (i-2) , P2
a, | +A, A7 Q) e HAA T Q)

These n-1 relations in matrix form are

fori=1,2,...,n-1.

(4.2.2)

X,q = BX; +2Z (x . 1)

h ] - (l) (n-l) 1
w erede [xn , X ]and X [xl’XZ""’xn-l]'
Let (4.2.2) be bordered with a one and a zero to form

[x o 1] [x 0
n ! l

- +
X B0 x, Z (x_,1)

This last equation can be written in symbolic form as

Xq = By X + Z(x, 1)

entries in matrix Al of the system (4.1.1)

If in addition, the aij >
satisfy the condition det (B) # 0 then Bii exists. These results

are stated by the following lemma

Lemma 4.2.1:

P = n, det (B) # 0 where matrix B is defined in the hypothesis of Lermma 2.2.3

then there exists a vector Z(xp, t) and a nonsingular matrix B 1

such that

If corresponding to the system (4.1.1) with

R wiiem—

-—
=
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where X! = [x ,x(l),. N x(n-l) ].
d PP P

Lemma 4. 2.1 states that if the aij entries of matrix Al
in the normal system (4. 1.1) satisfy the andition det (B) £ 0 then
there exists a nonsingular transformation (4.2.3). The transfor-
mation determined in the lemma is the main part of the Def. 4.2. 1.

The definition supplies an operational technique for determining,and

hence defining,the n-order equation obtained from the normal system.

Definition 4. 2.1 The nonlinear differential equation

obtained as the last row of the system of differential equations

-1
11

in (4.1.1) is the reduced differential equation corresponding to

generated by substituting X = B [Xd - Z(xp, t)] , of Lemma 4.2.1,

(4.1.1).

Consider as an example, the two normal systems in
Theorems 4.2.1 and 4. 2.2 that convert to a reduced differential

equation.

Theorem 4.2.1: If the matrix Al of the system (4.1.1)

with p = n is
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— —
c 0 0
’111 0
0
0 a22 0
Al:

0 0 an-ln—Z. an-ln—l

[_anl h2 T ann-z hn- i

where a_. distinct i = 1,2,...,n-1 and anj #0forj=1,2,...,n-1,
then there exists an n-order reduced differential equation corres-

ponding to (4.1.1).

Proof: The proof is similar to that of Cor. 2.2.3

and therecfore has been omitted.

Theorem 4.2.2: If matrix A, of the system (4.1.1)

1

with p = 1 is

—-l 0 0'1
0 1 0
Al =
0 0 1
[‘n-l h-2 2

Then there exists an n-order reduced differcntial equation,

q" n-1 n-j n-1 n-1
d_, - 5 a. —x, + = P/(D)f (x)+2 P.(D)q__ (t)
T . B At 0 R A

corresponding to (4.1.1), where P,(D) = D'-a pl-la plv2. . -a;,P D) - 1

1 2
&
dt’

and DJ =
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Proof. Application of the procedure used in the proof
of Lemma 4.2.1 (calculate n-1 successive derivatives of the first

row of (4.1.1) eliminating x_,x_,... ,xn) results in

2°73

Xd = X + Z(xl, t) (4.2.4)
: e o (1) -1
where (B of Lemma 4.2.1 is the unit matrix) X' = [x, ,x,",...,x 1,
11 d 171 1
(1) 1)

X' = [xl,xz,... ,xn], Z'(xl, t) = [O,fl(xl) + ql(t),fl(xl)+£&(xl)+ql(t)+q2(t),....

(n-2)
1

follows by substituting (4. 2.4) into (4.1.1).

-2
f(ln )(xl) toobf o (x)) +q ()+...+q _;(t)]. The theorem

Lemma 4.2.1 is one of the important features of this
section. The lemma is in a sense, an existence theorem. That is,
1 in the system (4. 1.1) satisty the

condition det (B) 4 0, then there exists a nonsingular transformation

if the aij entries of matrix A

(4.2.3). Identical conditions on the aij entries have been found

for the transformation to exist, when the normal system is linear.

Theorem 4.2.3 shows that the transformation (4. 3. 3)
converts the normal system (4.1.1) into an n-order reduced

differential equation.

Theorem 4.2.3: Consider the system (4.1.1) with p = n,

det (B) # 0, where matrix B is defined in the hypothesis of Lemma 2. 2. 3.

Then there exists an n-order reduced differential equation

a" n-1 dn—j n-1 n-1
—x =5 a, + = P.(D)f +* P.(D (t
PR j:laJ gt *n _]:O _]( ) J.n—_](xn) §-0 J( )qln-_]()

(4.2.5)

—— T mn-—,v
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i-2 .
where fll(\ ) = f (x ),fl Ax ) = AZ‘All FlZ(xn) i=2,3,...,n,

-2 . .
qll(t) = qn(t), qli(t) = AZlAll Ql(t) i=2,3,...,n, corresponding

to the system (4.1.1).

Proof: Substituting the transformation (4.2.3) into the

system (4.1.1) results in

d 'l ‘l \ >
Xcl = BllAlB de-BllAlB Zl(xn,t) + B I\(x ) + B lQ(t) +Z.(xn,t)
(4.2.6)
. Vo vl - (1) (n-1)
where Xd = [xn, de] = [xn,xn pee e X ].
) )

(B, \NGx,) + B Q0 + 20x 0] = [£] 6 )+a (0,0] () + £ x )+q; (1) +q, {0,
. (n l)( ) fln(xn) +q(n 1)(t)+ +qln(t)]’ Zl'(xn,t) =

[£,,(x) + a0, f“l(x )+ ) a4 a0,

0B+t e 4 v g (0] and

Faley) = fn(xn)’ [50) = A ATF 50 ) 5= 200 om0 = g, (),

qli(t) = 21 Q (t) i=2,3,...,n. The theorem follows

since (4.2.5) is given by the last row of (4.2.6).

The determination (Lemma 4.2.2) and application
(Thm. 4.2.3) of the nonsingular transformation Xd = Bll + Z(xp,t) as
defined in the results of Lemma 4.2.1 are unique to this thesis.
The technique employed in the proof of Thm. 4.2.3 offers not only
2 new method of formulating the n-order differential equation, but

also of equal importance, a closed form relationship
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X =B ! Xd-Z(xn,t)] which joins the solution of the n-order equation

11[
(4.1.2) to the solution of the normal system (4.1. 1). This last

property is demonstrated by Thm. 4. 2.4, which follows.

Theorem 4.2.4: If (4.2.5) is the reduced differential

equation corresponding to the system (4.1.1) and xp(t) is a solution

onl of (4.1.2) then

1

X(t) = Bil [Xd(t) - Z(xp,t)] (4.2.7)

. 1 - (l) (n'l) [} -
where Xj(t) = [xp(t),xp (ty, ... X ], z (xp,t) =

(1) (1)

R RS NI R S OO TN ) R

solution of the system (4.1.1) on I.

Proof: By Definition 4.2.1 the last row of (4.2.6) is

(4.2.5). By substituting (4. 2. 3) where X, and Z(xp,t) are defined

d
after (4.2.7), in (4.2.6), (4.1.1) results since de: qu)+ Zl(xp’t)

1 . - -l'
N (}\l,t) = [fll(xp,t),flz(xp,t),. . .'fln().p,t)] (Bll) and
Q'(t) = [qll(t),qlz(t),. .. ,qln(t)] (BIl )' . Thus if xp(t) is a solution

of (4.2.5) on I, then X}(1) = [x (1), X (0] = [x_(1), SRR TUY
is a solution of (4.2.6) on I, which implies that (4.2.7) is a solution

of (41.1) on I.

4.3 A Relationship Between the Parameters and a Solution

b

of a Class of N-Order Nonlinear Differential Equations

Nonlinear differential equations of the form (4.1.2),

where T(xp) is a polynomial, are considered in what follows.
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A relationship between the parameters and a solution in the form of

Bo + Blsin(wt + @) of this class of differential equations is obtained.
The parameter-solution relationships determined in
Thm. 4.3.1 are referred to as design equations when applied in
Chapter V to the design of tunnel-diode amplifiers and oscillators.
Beforec considering the details of the thecorem, reference should be
made to Thm. C.1 in the appendix. In Thm,C. 1l the nonlinear part

Pl’n-l(D) f(y) of (4.3.1) is derived for f(y), a polynomial of order

m.

Theorem 4.3.1: If y(t) = B +Blsin(;,.>t + 9), Bo 40, is

a solution on I: [t[ >t0 of

q° n -l
y= Ya ——y+P (D) f(y) + F(t) (4.3.1)
a o] Fgtd L,n-1
: j
) . o n-1 n-2 n-3 j _d B
where Pl’n-l(D) =D -dlD -dZD - .. -dn_l,D = ;t—n—, pl’O(D) =1
m .
and £f(y) = = a.y, a_ # O,F(t) = q_ +q,sin(wt + 8) where x>0
=0 j m o 1
then
(1) 95 7 "% Bo ¥ dn-l bo
n n " n-i (n)
0 = . L - ) e ()T -
(2) qlco:-,S =B w cos,(Z + @) Bli%laiw cos( 5— * )] lel

n .
. _ n . n . “11-1‘, (n_i)-n-
(3) q151119 = Blu.. sin (—2—+ ?) - Bl i%lai.u bm(—z—— + @) -Slb1
(4) bS:O,s;éO,l s = 2j or 2j-1.
Where sz and ij-l are defined in the results of Lemma C.2 and

Ll’ Sl are defined in the results of Thm. C. 1.
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Proof. Sinceyw)=B _+ Bl sin(wt + @) is a solution of
qn © n dn-i
(4.3.1) on Is [t] >t , — (B_+B sin(ut+@)) = :i.:a

. i n-1
dt i=1 *dt

(B Bsin(ut+8) +
Pl’n_l(D) f(Bo+Blsin(wt+¢)) tq_ +q sin(wt+0).

Calculating the indicated derivatives, and applying the

conclusion of Thm. Cl, this equation reduces to

n

n_. nrw -« n4d . (n-)w
[Bl.u sm(—7+¢) —i.__,laiBl.o sin( > + 9) —Slb

l—qlsnle] cos wt +

n

[Bl 1® cos@ ] sin wt +

n . .
n _nw _ nH (n-i)mw _ _
w cos(—7_—+ ?) _Z aiB cos( —— ?) lel q,

a Bo qO leMJ 2j cos 2jwt j%l NJbZJ sin 2jwt

r r
= b_. 1 j-1)wt-X b, 5(27-1)wt = 0.
‘ Lj 2j-1 sin(2j-1)wt 5 SJ 2j-1 cos(2j-1)wt = 0

Grouping the coefficients of cos wt, sinwt, cos 2jwt, sin 2jwt, cos(2j-1)wt,
sin(2j-1)wt and constants, and equating each group to zero results in

(1), (2), and (3) conclusions of the theorem and the following

relations:

M.b_. =0 Nb..=0 j=1,2,...,k
J 2] J 2) J

L S j:2,3,...,r.

b_. =0 . . .=0
jo2j-1 JbZJ-l

Since Mj(Zju) is a polynomial in 2jw of order n-1, n>1, with
coefficients not all zero, Mj(Zj'“’)b?.j =0j=1,2,...,k for w>0,
implies that sz =0forj=1,2,...,k The theorem follows by

applying the same argument to Lj((Zj—l)u)sz_l.
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Corollary 4.3.1: Ifp -q#0, 2,4,... ,B1 # 0 then

(1) Boan R * drx-lbo
-[wlsin((____-“‘q)11r o) -w, cos((____._Q)Tr +0)]
(2) a = =
P AP gin (Po9)T q)vr
(W, sin(BRIT 4 ) - w, cos (3P 4 g))
(3) a =
q JAP i (P9
2
q b
where, ) :—B—l 0s0 - w cos(——+ ) + = a. ..)n cos((n DTrJr(b)JrLl Bl
1 s
q y ) b
W2 = -Ell sin@ - wnsin(nT"Hb) + ‘: aiwn 1sin(-(—l%E +0) + Sl Bll

Y is the sum over alli £ p, q.
s

Proof: This is a direct consequence of Thms. 4.3.1

and hence the proof is not included.

Consider as an example of Cor. 4.3.1 withn = 2

(1) Boa, = -q_ +db_
b 9
(2) al:E—l +wBl sin(@ - 0)
(3) a :—w2+d i-ﬂcos(e—ﬂ)
2 1 Bl Bl

and from the results of Lemma C.2 with m = 3 ( the derivation

following Lemma C. 2)

2
2 By 2
bo:n0+Boul+az(Bo+ )+B o.(B +~2~Bl)
2,3 .2
b, = Bl[al +20,B + us(3B +7 BY) ].
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The importance of the parameter-solution relationships
(1), (2) and (3) in Thm. 4.3.1 will be demonstrated when they are
applied to arrive at design equations, in the design of tunnel-diode

amplifiers and oscillators.

A notable feature of the n-order differential equation
(4.3.1) s i" at the nonlinear part f(y) is a polynomial of order m.

This r-sults in b0 and b,, in equation (1), (2), (3) and (4) of

ll

Thm. 4.3.1, being nonlinear in the specified B0 and Bl' When the

pel momial {(y) is of order m = 3 then bO and b, are given in the

1
example following Cor. 4.3.1.



V."ON DESIGN METHODS AND EXAMPLES

5.1 Introduction

Design methods, which require the construction of a
normal system of differential equations having a specified solution,
are presented here. These methods are based on a portion of the
mathematical properties developed in the preceding sections of

this thesis.

To exhibit that the design methods apply equally well
to a very large class of physical systems, the methods are applied
to a normal system of equations whose parameters have been divorced

from those of a particular physical system.

The approach to the design is to view the system perfor-
mance as one specified component xi(t) of the vector solution, X(t),
of the normal system. Then, by mathematical techniques developed
in the preceding sections, the mathematical relationships which
must be satisfied between the parameters in the normal system and

the specified solution xi(t) are determined.

5.2 Oscillator Design

Methods of oscillator design in terms of complex frequency

domain equationg/Laplace Transforms) are well-known (12, 13).

From
Chapter II, the development of Theorems 2.3.2, 2.3.3 and Cor. 2.3.1

(Eq. 2.3.8) provides some new tools which can be applied to oscillator

design in the time-domain.
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The linear oscillator is assumed to take the mathe-
matical form of a normal system of linear homogeneous differential
equations. If y(t) is to represent the oscillator response then y(t)
must be a non-constant solution of the normal system for all time
t, t>0. In addition, there must exist a constant.c >0 and time

t,> 0 such that l

[y(t +nt)) - y(t + (n+1)e )] < e (5.2.1)

forallt>T andn=0,1,2,...

R

The number to in (5.2.1) is called the period of
oscillation. The smallest values of T, To’ for which (5.2.1)
is satisfied, is the rise time of the oscilliator. The amplitude
of oscillation is lim [Max v(t)

=00 nto< t < (n+l)to}

Two methods of designing an oscillator which has a
specified frequency of oscillation, amplitude of oscillation and rise
time are presented. Method 5.2.1 illustrates the results obtained
in Theorems 2.3.2 and 2.3.3 whereas, Method 5.2.2 applies the

results of Cor. 2.3.1 (Eq. 2.3.8).

Method 5.2.1: Oscillator Design
k N\t

(a) Construct y(t) = = Pm _l(t) e ', t >0, from the
i=1 i

specifications.

(b) Apply Thm. Z233to y(t) of (a) and thereby

determine the coefficients aj, j=1,2,...,nof

n n n-j
_.dn y = > a.—-———v—dn_ (5.2-2)
dt j=1 Jat"

in terms of y(t).



60

(c) Relate the aj j=1,2,...,n entries to the aij

entries in matrix A of the system

X = AX (5.2.3)

, [ _ . .3
where X' = [XI’XZ’ ces ,xn] , A= [aij] by applying
Thm. 2.3, 2.

L - () )
(d) Relate the initial condition y (to) = Cj+l’
j=0,1,...,n-1 to the initial condition on the system
(5.2.3) by

X = G'lxd (5.2.4)

1 n-1
where X' = [xl,xz,. . ,xn] ) Xc'1 = [xn,xr(]),.. . ,xfl )] and

matrix G is defined in the results of Lemma 2.2.3.

Method 5.2.2: Oscillator Design
(a) Construct y(t) as in (a) Method 5.2. 1.
(b) Form the matrix Fm from a fundamental set of y(t),

i.e. if YirYar e+ Yp is a fundamental set of (5.2.2) then

—y'l yz o o e yn W
() (1) XY
F = Y1 . .yz. Yn (5.2.5)

} -1 )
y({ul) y(;)... yflnl)

. -

(c) Determine the coefficient matrix A of the normal system

(5.2.3) as

-1

-1 r ', (5.2.6)
m

A= G 'F
n

1

where matrix G is defined in the results of Lemma 2.2. 3.



61

(d) Determine the initial conditions for the normal system

as in (d) of Method 5.2.1.

The parameter-solution relationships obtained by either l
of these two methods when associated with the parameters in 1
systems of differential equations corresponding to known network

configurations are referred to as design equations.

\L. EF Rt

The basic steps of the proposed design methods are
illustrated in the examples that are itemized to correspond to the

design method being applied.

Example 5.2.1. (Method 5.2.1) Specifications require

an oscillator with a frequency of oscillation f = w/2%, aplitude of
oscillation ¢ and a '"'small' rise time.

(a) A possible y(t) is

At ALt At
y(t):cle 1 + c,e 2 + c,e 3 (5.2.7)

je -i9
ce ce L _ s - )
where Cl 75 €y =5 )\l = +_].A),)\2 = -jw and )\3 as, where

3 is as large as possible.

(b) The coefficients aj of (5.2.2) for n = 3 as given

w, C, ¢,a3 are real and positive anda

in the results of Thm.. 2.3.3

2
a, = )\1 +)\2+,\3:—a3 a2~(-)\l)\2+)\lk3+)\2)\3)——w

(5.2.8)
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(c) Proceeding as indicated in (c) of Method 5.2.1
the condition, det (B) # 0, in the hypothesis of Thm. 2. 3.2 must

be satisfied. For this condition

det (B) = a, (ay3a,,%a;,3 %2 ,a,,) -a,,(a .3, a2, +a,,2,,) #0

the third-order equation (5.2.2), n = 3, is associated with the normal

system (5. 2. 3) and hence the a, entries (5.2.8) are related to the
J
aij entries of matrix A in (5.2.3) by l
+ = - = '
211 T 222 T 233 R T i
-(a +a. . a +a_ a ) = 8- ‘
11 22721 12. 117337 31 13 2233 32 23 T T3 ’,
2 (5.2.9) .
det (A) = ~a_ 6 = a &
3 3

(d) In addition, for det (B) # 0, the initial conditions

as specified by (5.2.4) are -l
—xl 1 T 0 0 1 ] {y ]
2 | T 31 *32 33 v |
N B AR Ui R o S M Eoe Fhle SRS P AR .7 §5a31313+332a23 2

are in symbolic form -1
X(t ) = G'x (t ). (5.2.10)
o d o

Any physical system which has a mathematical model in
the normal form (5.2.3), with parémeters satisfying the design
equations (5.2.9) and (5.2.10), will have a specified response y(t);
where normal system x3(t) = y(t) specified. Note, when y(t) is given
the solution of the normal system is implied by (5.2.10). The para-
meter-solution relationships (5.2.9) and (5.2.10) are further illustrated

when applied in the design of a ""Colpitts Oscillator'.
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‘A normal system of equations corresonding to the

Colpitts Oscillator

Q
|

—— e - e e

Figure 5.2.1

where g K and rp are well-known tube parameters is

% 0 0 . 17+
€1 1 1
d |y | Bm -1 1 v
dt | e, T, T;x 0T c, (5.2.11)
1 1 ‘_1 _‘5 1
L L L L L
. - - . -
Specifying that det (B) = —& 1 # 0. Method 5.2.1 applies and
rpCZ.L

the aij entries in the coeffieient matrix (5.2.11) are related to the

specifications (design equations) by (5.2.9) as

! + R = a
C.r L -3
Z'p
1 1 1 R 2 .
i + i + N (5.2.12)
1 2 2 P
Em + _ A +1) a wZ
C ICZ.L ClCZLr CICZLrp 3
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and the system (5. 2.11) initial conditions are related to the

specifications by (5.2.10) as

X(to) = G'lxd(to)

, [ . .
where X' = [VC , Vv ,IL], 4 LRSS ] and the matrix G is

1 2

determined from (5.2.10).
Note, in the normal system (5.2.11) IL(L) = y(t), any
other component of the system model could have been specified
similarly by starting with the desired component in the last row

(provided det (B) # 0).

Example 5.2.2: (Method 5.2.2) Specifications require

an oscillator with a response as given by (a) of Ex. 5.2.1 where

cy = 0.
(a) y(t) is given by (a), in Ex. 5.2.1, with c3 = 0.
(b) The matrix Fm as specified by Method 5.2.2,1is
Nt A Zt“
e e '
F - (5.2.13)
m At Nt
X\ ! \ e 2
1€ 2

(c) The matrix A of the normal system is determined
from (5.2.6). First, the conditions on the aij entries
of matrix A in system (5.2.3) for matrix G to exist are
stated, i.e. det (B) £ 0. In the case of system (5.2. 3)
where n = 2, det (B) = as # 0 is required. Second,

formulate the matrix G as in proof of Lemma 2.2.3 as

oA Sowr

L .4
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0 1
G - (5.2.14)
421 &22
Finally the matri duct G'F F Tl
1nally the matrix produc m- m G 1is
a1 12 I PR R R U AU P AL PINERAPY
21 %22 221 a2
(5.2.15)
(d) The specified initial conditions are derived from
(5.2.4) as
~ - c_a - _
22 1
x(t) S P y(t,)
21 21
= (5.2.16)
x&(to) 1 0 y(to)
L —J — S Iy . —
Hence, the final mathematical model for the oscillator, as
determined from the specification of y(t), is
_ _ 2 _
-a —.w 22 ] x
*1 22 a,, 1
d , (5.2.17)
dt N
X2 221 222 *2
- —‘ — — — -
where as # 0, and the initial conditions are given in (5. 2.16).

Note, the specified y(t) corresponds to xz(t) in the normal system.
The parameter-solution relationships (5.2.16) and (5.2.17) are

applied in the design of a ''negative resistance'' oscillator.



s

+
A
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Consider the following network and corresponding system
of equations

™ |

- 1 -1
- - - Vc "Cr C Vc
d P
T° | T S
R L T L L_J
(5.2.18)

To impose the mathematical restrictions (5.2.16), (5.2.17), on the

parameters of the physical system requires; first 1/L # 0 then

By
1 rR 1 _*TL (5.2.19)
C—E; - L c - 17 it
and finally
v (t) R L y(t,)
. (5.2.20)
I (t) |_1 0 | (1))

Note in this case IL(t) = y(t).

Example 5.2.3:

(Method 5.2.2) Suppose the

specifications on y(t) are given by (5.2.7). The fundamental matrix
Fm (5.2.5) determined from y(t) is

)\lt )\Zt )\3t -1
€ e e
)\lt )\Zt Nt
Fm(t) SRR N e Nye
EATUNERYS 2 st (5.2.21)
1 2¢ 3° |
—
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For det (B) # 0 as specified in (c) of Example 5.2.1 the calculation

A=t rilg (5.2.6) is
m m
[
0 1 0 i
-1
A=G 0 0 1 G
- +
I\ l,\ &)\3 (\ 1)‘2“ 1)‘3“‘ z)‘ 3) X 1 \ 2_”‘3
L _
(5.2.22)

where the matrix G is given in (5. 2. 10). Design equations for the
Colpitts Oscillator are obtained in this case by letting X\ l:+j;o,

N, = -Jw, N\ 37 "%y and relating matrix A (5.2.22) to the coefficient
matrix of (5.2.11). The initial conditions are related to the Colpitts

Oscillator system of equations the same as in Ex. 5.2.1. Note the

companion-matrix form of F F-l in (5.2.22).
m m

5.3 Amplifier Design

Methods of amplifier design in terms of complex
frequency-domain equations (Laplace Transforms) are well-known
(12, 13) . . .

. To illustrate the results of Theorems 3.2.2 and 3.3.1
developed in Chapter III, two methods of amplifier design in the
time-domain are given.

The mathematical model of the amplifier is assumed
to take the form of a normal system of linear nonhomogeneous

differential equations (5.3.4). The nonhomogeneous part of system,

vector Q(t), is assumed to contain a component of the form qi(t) :qisir'(u-HO)

.. > 0, which can be associated with the amplifier input.
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If y(t) is to represent the amplifier response then y(t) is a nonconstant
solut:. of the normal system for all time t, t >0. In addition there

is a constant € >0 and time to >0 such that

|y(t + nto) - y(t + (n+1) to) l <e (5.3.1)
forallt>T andn=20,1,2,...

The number to is called the period of the amplifier
response and the smallest value of T, To which satisfies (5.3.1)
is the transient time of the amplifier. The gain G of the amplifier
is the usual steady-state peak output divided by peak input, denoted

mathematically by
Max y(t)

Gm = m (5.3.2)
for t >T. The amplifier bandwidth denoted by b will be
[;gl-w&[ < b. If y(t) = yt(t) + ys(t), and yt(t) satisfies the homogeneous
part of an n-order differential equation (5.3.3) where r = n then yt(t)
is called the transient response of the amplifier.

Two methods of designing an amplificr which has a
specificd response y(t) are presented. Method 5.3.1 illustrates the
results of Thm. 3.2.2, whereas Method 5.3. 2 applies the results
of Thm. 3.3.1. The first part of Methods 5.3.1 and 5.3.2 have been

given previously in Methods 5.2.1 and 5.2.2.

Method 5.3.1: Amplifier Design

(1) Construct y(t) = yt(t) + ys(t), t > 0, from the specifications,
k X U
where y (t) = ¥ P (t) e , t >0, is the transient

t ic1 n’ni-l -

response of the amplifier.
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(b) Apply (b) and (c) of Method 5.2.1, to relate yt(t) to the

aij entries in matrix A of the homogeneous system (5. 2. 3).

(c) Determine the nonhomogeneous part F(t) of the n-order

equation
dn n n-i
—y = > a. P y + F(t) (5.3.3)
dt j=1 Jdt

by a theorem from Sec. B.2.

(d) Formulate the nonhomogeneous part, vector Q(t), of

the normal system

X = AX +Q(t) (5.3.4)

where X' = [XI’XZ’ cen ,xn] , Q'(t) = [ql(t),qz(t), . ,qn(t)],
A = [aij]' by letting

Q'(t) = [fl(t), ce fn(t)] (G'l L'l)' (5.3.5)

as determined in Thm. 3.2.2. Matrices G and LL
are formulated in the proof of Lemma 3.2.2. Parameters
fl(t), fz(t), ...,fn(t) are the components of the nonhomo-

geneous part F(t), (5.3.3) and satisfy Def. 3.2.1, Eq.(3.2.3).

(e) Relate the initial conditions y(‘])(to), j=0,1,...,n-1
to the initial conditions on the normal system (5.3.4) by

X = G'lxd (5.3.6)

which is defined in the results of Lemma 2. 2. 3.
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Method 5.3. 2: Amplifier Design

(a) Construct y(t) as in (a) Method 5.3.1,

(b) Form the matrix Fm from a fundamental set of (a)

as in (b), Method 5. 2. 2.

(c) Determine the nonhomogeneous part F(t) of the n-order

equation (5.3.3) as in (c) Method 5. 3. 1.

(d) Determine the matrix A and vector Q(t) in the normal

system (5.3.4) as

A-cly Filg

m m

4 (5.3.7)
Qlt) = F_ 5(F X))

where notation is defined in (3.3.4), (3.3.5) and (3.3.6).

(¢) The initial condition on the normal system will be the

same as in (e) Method 5.3.1.

The parameter-solution relationships obtained by either
of these two methods when associated with the parameters in systems
of differential equations that correspond to known networks con-

figurations, are referred to as design equations.

The basic steps in design Method 5.3.1 are illustrated
by an example that is itemized in correspondence to the design
method.

Specifications require an amplifier with a transient
response yt(t) = cle-(1 tsin(;gt + @) and gain Gm for a frequency range

w1< w Wy
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(a) A possible y(t) is

(1) = cle“°‘+c2e’°‘sin(ut+-¢)+-Blsinwt (5.3.8)

where C1:Cp 0w, and Bl are real non-zero constants.

(b) First the coefficients aj j=1,2,3 0f (5.3.3) are
related to yt(t) as in (b) Method 5.2.1. Next specifying det (B) # 0
(as in (c) Meathod 5.2.1) the aJ. coefficient are related to the ai_j

entries in matrix A of (5.3.4) as

a + a + a = -3¢ = a

11 22 T %33 1
( ca A Al oAl A das Ao -anoasl) = -(3a 24w) =
A2 M2 M 3373113 T 3T 23! T w ) =a
, 5. 3.
det (A) = - a(a2+w2) =aj. ( 9

(c) Proceeding as indicated by Method 5.3.1, a possible
F(t) for the third-order equation (5. 3.3) is found in Thm. B.2.3
where m = 1 and n = 3 as

F(t) = q sin(wt + 8) (5.3.10)

3aw

where q, = Blo. \f(?;a;.))z + (Zua—az) , © = tzm-l
a -2w

(d) The nonhomogeneous part, Q(t), of the normal system

(5.3.4) is related to the nonhomogeneous part, F(t), of (5.3.3),

n = 3, by
-1 -1
Q'(t) = [fl(t),f (t),fs(t)] (G 'L ) (5.3.11)
k-2
where P}.<(D) f {t)=0,t onlI, k=2,3,
j=0 j k-1-j""0o o

as specified in Def. 3.2.1. This spccification requires

2

Woglrmo s



-1
o~

that the components of F(t) satisfy

2
PO(D) fl(to) = fl(to) =0

3 3
P(D) £,(t ) + PY(D) f1(t ) = (D +4,,){(t) =0

Let fl(t) = fz(t) =0, f3(t) = qlsin(‘. t+ 0). The matrix G is specified
by (5.2.10) and matrix L-l = [Iij] is determined,as in the proof of

Lemma 3.2.2,as

— -
1 0 0
L7t a 1 0 (5.3.12)
= 33 . 3.
az+a a. . ta_.a a 1
| 933" ©317137 73223 33 |

The vector Q(t) (5.3.11) can now be calculated as

B b B -25132q1 sin(:t+0) ]
q,(t) 3
az) 9 sin(«t+ 0)
Q(t) = qz(t) = J (5.2.13)
q5(t) 0

where d = a; (aj a,,%a,,a,,) -ag,(azja)) +az,a,).

(e) Finally the specified initial conditions y(j)(to) = cj+l
J=0,1,2, are related to the normal system by X(to) = G_IXd(to), as
implied by (5. 2.10).

Any physical device having a mathematical model in
the normal form (5.3.4), with parameter-solution relationships

as specified in (5.3.9), (5.3.13) and (5. 2. 10) will contain the
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specified function y(t) as a component of its vector solution, in

this case x3(t) = y(t).

(design equations) are applied to the design of an amplifier.

These parameter-solution relationships

The normal system (5.3.14) corresponds to the network

shown in Figures 5.3.1,

r - e p—

1 -1 ] 1T T i
-(r_iR ) “pe (1)
L ||l & o T
4 4 4
-R
1 3
I _— 0 T I 0
L 3 - _L3 3 - — 3 -~ - -
(5.3.14)
R4 L4
M -
c, = o
R3
y
Figure 5.3.1
If det(B) = —2—1—— # 0, Method 5.3.1 applies, and the
L3Cl

relationship between the entries in (5.3.14) and apecifications
(design equations) (5.3.9), (5.3.13) and (5.2.10) are
R
(rp + R4) 3

————— + — = 3a
Ly Ly






2
(— + +—) + (r +R)=3"+ o (5. 3.15)
C1L4 L3 L3L4 P 4
-(R,+r +R))
3 4 = afa +w2)
LaLgCy

iﬁ e (t) = L Clq1 sin (wt + 6),

The initial conditions for the system (5.3.3) are

Gy, vy, v ) 1

The gain and frequency (bandwidth) are related by the
ratio of y(t) and eg(t), from (5.3.15), as

K
G = . (5.3.16)

™ LL,Cpo V(jaw)& ¥ (20%- af)

Note, in the system (5. 3. 14) where 13(t) is the current
through L3, 13(1;) = y(t). Any other solution component of the normal
s ystem could have been specified similarly by starting with the

desired component in the last row.

5.4 Nonlinear Amplifier and Oscillator Design

The mathematical properties developed in Thm. 4.3.1
annd the process specified in Def. 4.2.1 for reducing the normal
sy stem (4.1.1) to an n-order differential equation of the form (4. 1.2)

4 re used in forming a method of designing nonlinear amplifiers and

Oss cillators in the time-domain.
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The mathematical models of the nonlinear amplifiers
and oscillators are characterized by a discussion similar to that
afforded the linear amplifier if the word ''linear'' is replaced by
""nonlinear'. In addition, it is assumed that the nonlinear oscillator
contains only constant entries in the nonhomogeneous part of its
mathematical model.
Suppose an amplifier (or oscillator) is to be designed with
a specified response y(t). A method of obtaining a normal system
of nonlinear differential equations which has a solution satisfying
the specification is:
(a) Construct y(t) from the specifications.
(b) Apply Thm. 4.3.1 to relate y(t) to (1) the
coefficient aj j=1,2,...,n, (2) nonlinear part
fly), and (3) the nonhomogeneous part F(t) of the
n-order equation (4.3.1).
(c) Construct the reduced differential quation from
the normal system (4.1.1) by the method specified
in Def., 4.2.1. Equate the coefficients and
parameters determined in (b) to corresponding
parameters aj j=1,2,...,n=-1, F(t) and T(xn)
of the reduced differential equation.
(d) Relate the specified initial condition y(j)(to)
j=0,1,...,n-1, to the initial condition on the
normal system (4.1.1) by means of the nonsingular
transformation
X=BIi[Xd-Z(xn, t)] (5.4.1)
as formulated in the proof of Lemma 4.2.1 and

applied in Thm.. 4.2.4.
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This method is illustrated on a general system of
equations to obtain parameter-solution relationships which
are then applied in the design of a tunnel-diode amplifier and
oscillator.

Specifications require an amplifier with a gain Gm

for frequency range w; < w< w, -
(a) A possible y(t) is

y(t) = B+ Blsin(wt + 9) (5.4.2)

the same y(t) is suitable as an oscillator response where B1 is
the amplitude of oscillation and { = w/2n the frequency of oscillation.

(b) The coefficients s i=1,2, the parameters T(y)

and F(t) of 2 2 >
d a, 4“7t
dt i=1 dt

®) 1)
a, :__.Bl + wBl sin (@ - 0)
d.,b q
2 171 1
= - — .= - .4.4
a, + Bl Bl cos (0 ?) (5 )
m j
T(y) = P D) f(y) = (D-d S a.y
6) = Py (P ) = (D-d) = o

d b q1

F(t) —db -B [ .u+ Ll - =—-cos(0 -P)] + q,sin(wt + 0),
B1 Bl 1

Th e notation will be found in Thm.4.3.1 and Cor. 4.3.1. Note, the
nonlinear part T(y) is a polynomial of order m. The bo and bl’ are
defined in the results of Lemma C.2 and have the form of the bo and

bl in the discussion after Cor. 4.3.1, namely, they are nonlinear in

the s pecified Bo and Bl'
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(c) Construct the reduced nonlinear differential

equation corresponding to the normal system

SIHEST [le f(x,) q; (1)
= +

d
dt + (5.4.5)

X2 | %21 £a(x)) q,()
as specified in Def. 4. 2. 1.
First, specify the condition det (B) = a,, # 0, formulate

X4 =B

case

X + Z(xn, t) as in the proof of Lemma 4.2.1 for this

. (5.4.6)
) a0 ) folx,) +q,(0)

Solve (5.4.6) for the vector X. Substitute the vector X

(5.4.6) into the system (5.4.5) to obtain
(5.4.7)

X, 0 1 x_,_] 0
d
—(Tf = +

x 0 aj |1%, 2 b)) H Dy )6 () 2, @ (040 ) qf0)

the last row of which is the reduced differential equation. Equating
the coefficients of the reduced equation to corresponding parts in
(5. 4.4) provides the desired parameter-solution relationships

(de sign equations).

Coe fficients of matrix AIZ

..'bl q

a1 " w5 +'B sin (@ - ) (5.4.8)
1 1
a = a_ . #0




Coefficients of vector N(xz):

b q b
1 2 1 1 . 1
fo(x,) = —[-u (s - sin(@-0)) =— -
1'72 a5, Bl :.\,Bl Bl
1)
B cos 6 -90)]y
1
= j
f(x,) = ¥ a.v
272 500
C ocfficients of vector Ql(t)Z
b q
1 1
q,(t) :.'__{- b= -— sin(@-06))b
1 a5 Bl uoBl o -
. b q b
21 1
B [-o"- (g - o= sin(@ -0)) 5 -
1 1 1
q
}—311 cos (0 -9)] + 9 sin (.t + 9&
q,(t) = 0.

W here b0 and bl’ as defined in the results of Lemma C. 2, are
ronlinear in the specified B0 and Bl' It is important to note the
S ystem parameters (5.4. 8) have been obtained for the case where

t hhe nonlinearity is a polynomial of order m. The effect of the non-

1 inecarlity is apparent in bo and bl which contain the specified Bo

. . m
and B, and powers of these constants up to and including Bo and

m
1

1
I3

(d) Finally the initial conditions for the normal system

(5. 4.5) as obtained from (5.4. 6) are

m

1 . v '
xltg) = 5 Bty - =0 Yt ) ]
(5.4.9)
x,(t ) = yl(t.)
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Any physical device having a mathematical system of
equations in the normal form (5.4.5), with parameter-solution
relationships (design equations) as specified in (5.4. 8) and (5.4.9)
will contain the specified response y(t) as a component of its vector
ss olution (in this case xz(t) = y(t) ). The parametcr-solution relation-
s hips (design equations) (5.4.8) and (5.4.9) are applied in the following

t o the design of a particular physical system.
A normal system corresponding to the tunnel-diode

1retwork of Figure 5.4.1 is

r " -R 190, 1 T T V()7
; T
|
d | _
dt i = + +
.. 1 0 b -f(vc) 0
| Ve C Ve C
L2t L (5.4.10)
1
_— > L

| R

Figure 5.4.1

The tunnel diode characteristic is assumed to be

3 2, o2 3
f(\c) = (g\’o-hvo + Io) +(-g + 311\0)\C 3}1\0\(: + h\c

(5.4.11)

WZWhich is the idealized-tunnel-diode characteristic
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I
P
I
o
I
v
~ here:
I +1 v o+
I = P v voo= v
o 2 ! 0 2
—3 (Ip-IV) . Z(IO—IV)
8 2 nvymv) 00T v v (v v )2
P VeTVg \v-\p

I and v_ are the peak current and voltage, Iv and vy

& re the valley current and voltage. The inter -relationship between

the entries in (5.4.8), (5.4.9), (5.4.10) and (5.4.11) are determined

as
G ,(e)
-R d 1 .
= = + me sin(@ - 6)
(5.4.12)
-1 > G ( ) sin(¢-0) Gd(e) _cos(6 - 0)
C["q) - )
T C me C Gm
-f(\'c) 3
— = j:o aj v
v (t) G (e) : -
c{—-—( ?; +Sln£g )y [(-g +_;_ihB ) e + he> +1]-

2 Ggle) , sin(0 - 9) Gyle) q; ©-9)] +

'——COS

- C wG C
m l

(vo +e) [-w

q; sin(wt + 98
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where: G (e) = g + 3he2 +-3-hB2 Gain G_ - q,/B, frequenc
d 4 77 Gan gy T qy /By requency
f=w/2r and e = BO-VO. The initial conditions on the normal system

are then

1

IL(to) C B1 W Cos(uto+ ?) + f((\'o+ e) + Blsin(wto +0))

wr 4 P

v (t ) = (\'o +e) + B1 sin (wto + 0). (5.4.13)

Thre oscillator design equations (ql = 0) are:

R G4le) .
L T °C
2

G (e)
1 2 d
= = Clu + ]
L CZ
v G (e)
S - d 3 2 3
_E_:C{-—C-z-[(-g-k—thl)e-i-he +I1]+4

2 Gé(e) i (5. 4. 14)

(v +e)lw + .
pal

It is important to note that three design cquations
are presented in (5.4.12) and (5.4.14). The addition of the
equation for Vs(t)/L. in (5.4.12) and (5. 4. 14) is unique to this
thesis. In addition, the nonlinear function (a function of operating
point e, and a function of the specified Bl) Gd(e) is a generalization
of the results of Kim [8, p.416], who obtained by a different method
Gd(e) where e = 0. The generality presented in this design technique
is apparent after examining parameter-solution relations (5.4. 8).

The parameter-solution relationships (5.4. 8) as viewed
from the application point of view are a function of operating point and

a tunnel-diode characteristic which is approximated by a polynomial

of m-order.



VI. CONCLUSION

The first parts of Chapters II and III develop the
mathematical properties which relate the solution of the normal
system of linear differential equations (l.2) to the solution of an
r-order (r < n) differential equation, (1, 3). The foundation of
this development is presented in the proofs & Theorems 2.2.1 and
3.2.1. It is proved in these theorems, by applying a transforma-
tion of the form

X = C [Ys -t H(t) ] (6.1)

(1) 1) 0,0, ..

where X' = [xl,x .. ,xn] and Ys' =10,0,...,0,y,y '.es, .,0]

2’
to the normal system (l.2), that there exists a set of s differential
equations, 1 < s < n, of r-order associated with the system. These

results are extended in Theorems 2.2.3 and 3.2.2.

In Theorems 2.2.3 and 3. 2.2 conditions on the aij
entries of matrix A in the normal system (l.2) are given so that
there exists a differential equation of n-order associated with the
system. In the proof of these results a technique for formulating
a transformation of the form (6.1), r = n, is given. Note, the
mathematical properties developed in these theorems allow the
determination of the solution of a normal system in terms of the

solution to the r-order (r < n) differential equation associated with

the system.
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Additional mathematical relationships are developed
in the later parts of Chapters II and III to interrelate the parameters
in the normal system (1l.2) to the solution of the r-order (r<n) dif-
ferential equation associated with the system. These relationships
provide the mathematical tools for relating the system parameters

to a component xn(t) of the system solution X(t).

The usefulness of the mathematical properties developed
in Chapters II and IIIl are demonstrated in design methods
and examples of Chapter V. One method, which illustrates some
parameter-solution relationships developed in Chapter 1I, has two
basic steps: (1) Construct (Thm. 2.3.3) an n-order homogeneous
differential equation which has a specified solution, xn(t). (2) Relate
the coefficients (Thm. 2.3.2) and the initial conditions, transformation
(6.1) where r=n and H(t) = 0, of the n-order differential equation to
the coefficients and initial conditions of a normal system of differential

equations.

In another design method of Chapter V some particularly
intercsting results which were developed in Thm. 3.3.1 of Chapter III
arc applied. The coefficient matrix A and the vector Q(t) in the normal
system (1.2), (3.1.1) are related to a solution xn(t) and the nonhomo-
geneous part F(t) of the n-order differential equation (3.1.2) by an
expression of the form

A-cVFr 7 lg
m m
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This design method is completed by determining the initial condition
on the normal system by means of a transformation (3. 3.6), of the

form (6.1).

Patterned after the linear case, it is proved in
Chapter IV that under certain conditions (hypothesis of Thm. 4. 2. 3)
a class of nonlinear differential equation (4.1.1) can be transformed
into an n-order "reduced'" (Def. 4.3.1) differential equation. A
solution of the reduced differential equation and a solution of the
corresponding nonlinear system are shown (in the proof of Thm. 4. 2. 4)

to be related by

X :Bl

d X + Z(xp, t)

1

(1) (n-1)
‘he P ' = . e .
where X} [xp,xp SEERE ], X [xl’XZ’ ,xn], and B, and
the vector Z(xp, t) are defined in the proof of Lemma 4.2.1. These

results are applied in the design of tunnel-diode amplifiers and

oscillators in Chapter V.

The criteria det (B) # 0 as defined in the hypothesis of
Lemma 2.2.3 was proved necessary for a transformation of the
form (6.1), r=n, to exist. This criteria is thus found in the
mathematical tools applied to the five design methods of Chapter V.
The development of other criteria for the existence of the transfor-
mation (6. 1) would be a useful extension of the results presented

here.

LRI W
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APPENDIX A

THEOREMS AND DEFINITIONS FROM REFERENCES

Definition A, 1. The m n-dimensional vectors X. j=1,2,...,m

are said to be '"linearly independent' if the identity & Cixi = 0, where
71

i
Ci constant , implies Ci =0,1=1,2,...,m,m<n.

Definition A. 2. A set of functions yj(t), j=1,2,...,r, is said

to be '"linearly independent' over the open interval I = [t: tl<t<tz]
r

where t1 and t2 are constants, if the identity = C.y.(t) = 0 for all t
j=1

on I implies Cj =0,j=1,2,...,r..

Definition A.3: A set of functions yj(t) ,j=1,2,...,r,

which are linearly independent solutions of the r-order equation

(2.1.2) onI, is called a "fundamental set' of (2.1.2).

Definition A.4: If Fm is a matrix whose n column are n

linearly independent solutions on I of (2.1.1), the normal system

X = AX, then Fm is called a '"fundamental matrix."

Theorem A.1l: [6, p70] If H is a fundamental matrix of (2.1.1)

the normal system X = AX and D a(complex) constant nonsingular

matrix, then HD is again a fundamental matrix of (2.1.1). If Hl

and HZ are fundamental matrices then I—I1 = HZDZ where DZ is

nonsingular.
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Theorem A. 2! [7, p.47] The r-order homogeneous dif-

ferential equation (2.1.2) always has a fundamental set (Def. A.3)
of precisely r solutions. A set of r solutions of (2.1.2) on I constitutes

a fundamental set if and only if its Wronskian

—

YI YZ “ e yr T
A1 A0 LW
Wl Yopeeery s
e Jrel) (e ) )
1 : S

is nonsingular (W#0) for some t, on L

Thcorem A.3: [14, p.215] The cocfficients of \ T in the

characteristic polynomial of matrix A, det [A-)\I]is (-l)r times

the sum of the principal minors of order n-r of matrix A, where

A = [aij] is of n-order and I is the unit matrix. In particular, the
coefficient of X " is (-l)n and the constant term in the characteristic

polynomial is det (A).

Leibnitz's Rule: [15, pP- 219] Let the function f(x,t) be

continuous and have a continuous derivative in a domain of the x-t

plane which includes the rectangle a<x<b, ty<t<t,. Then for

t1<t<tz

R e a4
£ e =
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Theorem A.4: [15,p.220] Let the function f(x,t)

satisfy Leibnitz's rule. In addition, let the functions a(t) and b(t)

be defined and have continuous derivativesfor t, <t<t..

1 2
Then
b(t) b(t)
Lt dx = £[b(y), 1] DY faq, ) B, % (x,t)dx .

a(t) a(t)



APPENDIX B

SOLUTIONS OF CERTAIN DIFFERENTIAL EQUATIONS

The design techniques developed in this thesis require a
that a specified system performance characteristic be considered a
soluticn of an n-order differential equation. This necessitates a
knowledge of the inter-relationship of the solution of an n-order
differential equation to the coefficients of the n-order differential
equation.

The n-order homogenecous differential equation

y (B. 1)

i (B. 2)

where (a) Pm _l(t) is a polynomial in t of degree mi-l,

i
2,...,k are the distinct zeros of the polynomial
. k
L(\) = NS a; """ = 0 each of multiplicity m, and (c) = m, = n.
i=1 i=1

(b))\i,IZI

1 [/:3

The n-order nonhomogeneous differential equation

dn n n-i
—y = X a,. — y + F(t) (B. 3)
at =1 P @t
is known [6, p.87] to have the solution
y(t) =y, (t) + yp(t) (B.4)

89




(}0

n t Wk(s)
where (a) yh(t) satisfies (B. !), (b) yp(t) = X ¢i(t) e F(s)ds
i1
t
o

and (1) ¢i(t), 1=1,2,...,n, is a fundamental set for(B. 3)when F(t) = 0.
(2) W(s) is the Wronskian of(B. 1)and (3) Wk(s) is the determinant

obtained from the Wronskian (Z2) by replacing the k-column by

"
(0, ..., 0, 1). ‘
When )\i in (B.2) are distinct, i = 1,2,...,n, then
i
the particular solution y(t), y(to) =0, t,on I can be expressed by {
n Nt t -\.s A
y(t) = £ A ! F(s)e ' ds (B. 5)
i-1
t
o
n+i
where Ai = (-1)
n>p>i>j>0
B.1 Inter -relationships of Coefficients of N-Order

Polynomial to Zeros of Polynomial

The design mecthods of Chapter V necessitate a knowledge
of the relationships between the coefficients and a4 solution of an n-order
homogencous differential equation. This information is supplied in
Thm. 2.3.3 as a result of developing the relationships between the

coefficients and zeros of an n-order polynomial.
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.

Theorem B.1.1: If.\i, i=1,2,..., kis a zero of

n . k
L) =x"+= bA"7, of multiplicity m., > m. = n, then
L Jj i’ i
j=1 i=1
bl:—(rl+rz+...+rn)
= B
bZ (rlr2 +...+ ryro + r,r, +...+ rzrn+.. .+ rn-lrn) 2
i
!
B.1.1
( ) L
n i
bn = (-1) (rlr2 rn) v‘
j-1 j-1 J
whoreri:)\,l- S m 1, I m+2,..., E m_ ,j=1,2 ,k
J p=1 p=1 p=1 P
Proof: By hypothesis
0 n ni
LA) =x"+ = bt
j1
m m m
1 2 k
= A=\ - -
( l) ()\A XZ) e (X )\k)
J-1 j-1 J
Ifr.=\N.wherei= & m_+1, T m_ +2, , S m_andj=1,2,...,k,
o p=1 P p:l p-1
then
L) = (=) o (e e ) e )T )
1 1 12
- irob e W e e e e 4 +
= —(rl ryt.. .t rr, AT T dr,rot...
bror 4 I ) )
2'n n-1"n IR T1%20 Ty

This implies the theorem.
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Corollary B. 1. 1: If)\i, i=1,2,..., nare distinct

n

roots of L(\) = AT+ s baA " then
SR
J_
bl = -()\1 +)\2. CEXN )
LT e R LD W N SR W NS SRR b S NN
(B.1.2)
n
bn =(-1)" (\ 1)\2 ce )‘n)
Proof: This is a direct consequence of Thm. B..1..1,.
Theorem B.1.2: If )\i, i=1,2,...,r are distinct non
n .
zero, zeros of L(\) = Ao b.)\n-J, then r coefficients of L(\),
j=1
b_j’ bj+l' N ’bj+r-l are explicitly related (B.1.4) to the remaining

n-r coefficients.

Proof: By hypothesis

. =0 fori=1,2,...,r.
’ J
This system is written in matrix form as

Va = L

n n-i
1 -3 bi)\l

where a' = [b,,b ’bj+r-l]’ Lo=[-n : .

ISR,

Tis the sumover alli, i #j, j+1,..., jtr-1 and
s



[ n-j -j-1 j ]
J n-j n-j-r+l
A \ A"
- -i-1 -ia
Ve | X S S (B.1.3)

n-j-r+l

For j=1, r =n (B.1.3) is the Vandermonde matrix [16, p. 85].

Forr<n

'

r
-
=
a1
|
[ T T A

det (V) = k Vl

n-j-r+l
1

n-j-r+l

n-jortl g
s

where k = [\ DN .,)\r \4

’

1“rzi>j("i""j)'

Vl is the Vandermonde determinant [14, p.47] which is non-zero

sinc:e)\i f)\j. Therefore
a=-V L (B.l.4)

which implies the theorem.

B.2 Solutions of N-Order Nonhomogeneous Differential

Equations

The relationships between the coefficients and a
solution of an n-order nonhomogeneous differential equations are
now determined. Formulas are given such that if a solution is known,
some or all of the coefficients of a corresponding differential equation
are specified. The relationships determined are for particular solutions
in the form of power series, linear combinations of exponential
functions and linear combinations of sine and cosine functions. The

results of this section are applied in the design methods of Chapter V.
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m

Theorem B.2.1: If y(t) = = Bjt’] is a solution on I:
j=0
[t! >t , of
o
n n n-j
dx . 5 4 x+F(Y (B.2.1)
dt j=1 9 dt
m .
where F(t) = = q.t‘] then
j=0 %
(j#n)! (j4n-1)! ] it If '
%G 57 Py 5 Bjma®1m 7 Bya {
(B.2.2) z
where j =0, 1,..., m, Bk:O,k>m. 4:
if*}

m .
Proof: By hypothesis y(t) = = BJLJ is a solution of
j=0
(B.2.1) onlry It[ >t0, therefore

dn m . n dn—i m . m .
__n_(x B.tJ): h) a; n_i(:>: B.tJ)+ = q,tJ
dt.  j-=0 i=1 dt j=0 J j=0 J
dl' m . m ._r
Since —— (x B.tY) = = (§) (j-1)... (j-r+l) 77,
at j=0 J j=0
m ‘-Il n m : +i
S B.()G-DG-2). .. (-nt)I T = Sa s BUi(G-D). .. (jontitl)d T
j=0 J i=1j=0 J
m N m .
+a ¥ B+ = q.t.
"j=0 1 j=0 )

Grouping the coefficients of like powers of t and equating each to

zero the theorem follows.

Corollary B.2.1: If Bm of hypothesis of Thm. B.2.1 is

not zero then
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(1) a

nem’fnomal’ 3, are explicitly expressed in

terms of Qg 9yre--rq, for m <n-1

(2) aj,ay,...,a are explicitly expressed in terms of

qo,ql, L W for m = n+l

(3) a,»a,,... ,aare explicitly expressed in terms of

1" 2

qm_n+l‘ qm_n+2’- -,qm, for m >n-1.

Proof: The system of equations (B. 2.2) in matrix form

is

Ma =q
where a' = [an-m’an-m+l" .. ,an], q' = [—qo,.. . ,-qm] for m<n-1,
a'-= [al,az,...,an], q'= [-qo,... ,—qm] for m = n-1, and

a':[al,az,...,a ], q9' = [-q .,—qm] for m >n-1.

n m-n+l’""

The coefficient matrix M is upper triangular in cach case and has
(m! Bm)n

a nonzero determinent equal to ant D) (oo )T ) for m = n,

1 n ' m+l1
(m! Bm) (m! Bm)

0T I 2r T mr - erm2nand groo for m<n-1.

m!

This implies the corollary.

Theorem B.2.2. Ify(t) = = B.e J is a solution on

1.7 |t >t of (B.2.1) where F(t) = = q; € , then

q; = By (u; - Ly (B.2.3)




26

’

m oLt
Proof: By hypothesis y(t) = % Bje Jis a solution
j::l
of (B.2.1) onl: [tt >to , therefore,

n m Bt n n-i m oLt m pot
ii—n-(EB.eJ):Zaidn_i(z:B.eJ)+Eq.eJ
dat” j=1 J i=1 *dt j=1 4 j=1

r m Bt m M.t
Since (z Be J)y= = p.B.e ), grouping the coefficients of
dt° =1 j=1 3 )
Bt

m n
=z (B.p. - B.
j-1 J) U

Since this is true for all lt[ >t0, the theorem follows.

Corollary B.2.3: If Bj 40, o # 0 and My # b fori, j=1,2....m.

then m coefficients of (B. 2. 3) aj, aj+l’ ces ’aj+m-l are explicitly

related (B.2.5) to the remaining n-m ai's.

Proof: Consider the system of mym < n, equations

(B.2.3) written in matrix form

g
1o 1 “«
where a' = [ag,a;, .02, ) L= g ) DAk e

-q .

m n n-i . .

B +pm+2aipm ], = is the sum over all i, i #j, j+1,...,
m s s

j + m-1 and
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n-j n-j-1 n-j-m+l
1 1 by
vV - e e e e (B.2.4)
n-j n-j-1 n-j-m+l
Mm Fm U m
Since det (V) = P‘I;-J-I1]+l HIZI—_]-m+1 o erln—_]-m-l-l | (Hi'“')’
m > i>j J

and by hypothesis u, $#0, s # s therefore det (V) # 0. This

implies the conclusion since,

a=1YV L (B.2.5)

3

Theorem B.2.30 If y(t) = Bo + =

1 m

.

solution on I: ]t] >to of (B.2.1) and F(t) = q, + = qj sin(wjtJrej) then

j=1

(1) 95 = "%y Bo
n

n nt =
2 .cos0. =B.w. cos(+ @.) - B. .
(2) qjeosy = Bjuy cosf P

2 i=1

n-i

n
. n . .nmu . n-i . ,(n-dx

3 .sin@® . = B.w. sin(—+ 9.) -B. Z a.w. + 0.

(3) q;sin®; = Bywy sinf+ ) =By 2 aju;sin i!

i=1 2
where j=1,2,...,m.
m
Proof: By hypothesis y(t) = B + I Bj sin(;gjt+¢j) is
J=1
a solution of (B.2.1) onI: |t| >to, therefore
at m n dn-i m
— (BO + = B. sin(w.tt@)) = = a; (B
dt j=1 J i=1 ' dt j=1
m
+ = . sin (w.t + 0.).
9, i 9 (w5 i

B. si t40.) 1
j 1n(wJ ¢J) is a

aiwj ! cos((n?“ + ¢J.)

B + 3 B.sin(wt+@, +
( o By (»3 J) )

falea

TowoT T
[,

7
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Calculating the indicated derivatives, this equation is,

m

s B. w. [s1n(——+¢)coswt+cos(— +¢)sm.ot]

73 j j

J-

n-1 m

= a.B + £ B.w [ i(n])”+ @. )cos.,.).t+cos((n A)m + @.)sinw,t)
i-.1 Y © j=1 JJ J J J

ks> 4

e

+a B +a = B. [sin@, cos w,t +cos @, sin w.t] +
n o n. J J J J J

-
|
—
oY T s T T R
v

q + = (qj sin Oj cos wjt + q‘j cos Oj sin wjt).

(o) J—l

Grouping the coecfficients of sin wjt and the coefficients of cos wjt

and equating cach to zero results in the theorem.

m m
If y(t) =B _+ = B.cos @. sin w.t + ¥ B. sin @f.cos w,t
° j=1 J J J j-1 J J J
m
is the solution on I: |t| >to of (B.2.1) and F(t) = q, + = qj cos 01 sinwjt +
m j=1
> q. sin 0. cos w.t then in a manner similar to that of the proof of Thm.
j=1 J J J
B.2.3
(1) 9 = "3,B,
n nw n n-i (n-1)mw
2 . cos0. = B.cos0.[w. cos—5 - S a.w. cos-—s
(2) 9 j = Bjeoso;ly z T 20 anl
n . -
- B, sin0. [w, sin - ¥ a.u sin (n-i)m ]
J T 2 T 2
= t
: nr 0 n-i_. (n-i)mw
(3) a; smOJ BJ coaOJ [.uJ sin—- X ajw © sin T ]

i=1

+ B. sin 0. [.,)n cos 2 _ v 4.1 Cos (n-i)w ]
) I e o1 b 2
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Corollary B.2.5: Ifm=1,p-q # O, 2,4,...,0.\1;50,

Bl # 0 then

(1) Boan R P
_['_1'<“lsin((——j———n.2 i + ¢1) - FZ cos (____(n-zq)rr + ¢1) ]

(2) a_ = — —
P wr;) 9 5in (____qu)ﬂ’
[Flsin((-i'zp—.rr + ¢l) - FZ cos ((—n—_—p—)! + ¢l) ]
(3) a = 2
q
n-q . (p-q)m
oy sin >
e . qlcosgl n LI IR n-i ((n-i)n 0
wnere, 1 - T - u.)l COos 7 1 _S, di.a)l COs -——2—— 1
- qsind n CT 10+ va ‘n-i . ((n-i)w v 0.
2 ——B—l——_’ u)l Sln-—z- 1 ;(iwl S1in > 1

3 is the sum over alli, i # p, q.
s

Proof: This is a direct consequence of Thm. B.2.3

for m = 1.

e



APPENDIX C

/

ON A SPECIAL INTER-RELATIONSHIP OF AN M-ORDER

POLYNOMIAL TO A SINE FUNCTION

The derivation of pl,n-l(D)f (B0 + Blsin(wt + @))

as defined in the proof of Thm. 4.3.1 is developed in this

Appendix.
Lemma C.1: If T(y) :jgj:)ajyj,am # 0Oand y = Yy ty,
then
T(y) = LY, Y, (C.1)
where L = [ao,al,... ,dm] , Y]" = [l,yi ,yi‘ s ,y;n ] and
i (g) 0 0 0 |
Yoo (1) 0 0
Y,=| 22 2 2 (C.2)
. yz_t()} YZ(].) ‘Z) 0
m-m ' _
AW W &

Proof: By hypothesis

m m v

: . . Y1
T(y) = £ a(y . +y,)0 = S a.yl (1 +-—)
=0 jo'1 72 =0 j’2 yz
Using the binomial theorem
n‘q j J Js Y1.r .
Ty = otV By G ) arsism

100
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m A Yy
= T ayy = )7

j=0 3 “r=0" Y2

m .
_ Jt jt
AL Dota, v, 0 vay,, 0000

m-j J
@y, (33 1y,

The lemma conclusion follows by writing this equation in matrix

form
T(y) = L YZ Yl
whe re Ll’ Y2 and Y1 are defined in the lemma conclusion.
m .
Lemma C.2: If T(y) = = ajy'], @ # 0, and y(t) =

Bls1n(:;;t+¢)+Bo, Bo £ 0, then for L = [uo,a JEERE ’arn]’ d=-wt+ @,

m/2 | m/2

T(y, t) = LRlReYe :JE‘,O szcos 2j®d + j—zl sz_lsm(z_]-l)q}

where m is even, Ye' = [1, sin ®, cos 2&,...,cos md]

i o] 0 0 0 0 |
2 R T
5oy By /1] 2 o0

Bm-l (m-l) Bm—Z (rn—l) m—3 rm l) (z:ﬁ 0 !

55 (o) oo ) omeT ) e me ) ()



102

— -
1 0 0 0 o
0 Bl 0 0 0
i ot
0 0 0
2°.2 2
B[ 1]
0 > 0 0 0
; 2
| ) )
|
' Brln-l'::-l m-l m-
AL B (’0‘)
0 m-: 0 . _——-—-———-T-—m_ 0
2 “ 2 ‘
ny m '
m, m \. -Bl)( m_]) Lpn m) ‘
Bl 2l 0 2 0 =71 (o
L m'lz Zrn-l Zm—I l
2 e
-
m-1 m-+1
and > >
T(v,t) = LRlRoYo = J:,O szcosz_]q) + J;l sz_lsm(ZJ-l)<1>
where m is odd, Y. = [l. sin®, cos 2&,.... sin m®] and R0 = Re

with m=-=m _-1l.
o

Proof: Set Y, = Bo and yy - sin ®in (C..1 ). It is well-

known [17, p.82] that for k even

. Bk‘kl) BY /2 [k
‘),11‘ = 1 ll:/ + T:l—l h) (—l)\ k_. cos 2v®
2 2 viool 2
and for k odd
k ———k-,l k
< Bl 2 v k-1
Y1 % TEoT = (-1) ——- -\] sin (2v+1)®.
! 2 v=0 2
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The lemma follows by writing (C. 1) in terms of the

above defined quantities (YZ: R, and YI::Re Ye or ROYO).

The following relation, is an example of Lemma C. 2.

form = 3,

BZ
2 1
T(y.t) = [ao +a B 40,(B_ +5-

3

2

3
) +a3(Bo +5 B B )} +

2

2 3.2 .
B, [a1+&1zBo+a3(3Bo +3B] )] sin (Lt+@)

2
B
1
“Z—[QZ + 3(13 Bo ] cos 2(wt + @)
B3
)
a4, 4 sin 3(wt + @) .
m .
Theorem C.1: If f(y) = = Q.y‘],q £ 0, and y(t) = B_ + B, sin(wt+@).
;-0 J m o 1
then Kk
an-l(D) f(BO+Blsm(;at+¢)) = -dn-lbo + j?:,lMJ.szcos 2jwt +
k r r
< ' . . < - ;P , <~ 1 - N
= I\jszsm 2jwt + Z ijzj_lbln(z_] 1wt + p2 Sijj-lcos(ZJ 1)wt
j=1 il j-1
v o)
R _ An-1l n-2 n-3 J d
where pl’n—l(D) =D - dlD —dZD - _dn-l'D ~m— ,PI»O(D) 1,
K - _m ) Kk - m-1 o m+l £ ad d
- r —7 or m even, = 2 r = Z or m O an
n-1 . .
. - Con-i-1 , -
M - (2i)" ! cos(2j¢ +(“_21_)"-) - = (2§ cos(2j8+ (n-i-br
i=1 -
n-1 . .
N. = -(2jw)” Lsin(ejos oy oy d.(zJ'w)“'l'lsin(zj(b ydn-i-Dw oy
j 2 o1 ! 2
n-1 (n-1)y, Pt n-i-1 .
LJ. = [(2j-1)w) cos((2j-1)@ + ——) - = d [(2j-1)w] cos((2j-1)@ +
i=1

-i-1
(nz1 ) )

e

TURE o e W Y
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(n-1)m n-1

5, = [(2j- 1] Psin((2§-1)8 + —T) - di[(2j~l)w]n_i-lsin((Zj—]W ¥

i=1

(n-i-1)
{oas i)

Proof: The theorem follows by determining

Pl,n-l(D) f(Bo+Blsin(wt+¢)) which is equal to

u u
P_ln_l(D) (‘?szcos 2j® + .Elb

1 sin(2j-1) @)
j=0 J

2j-

by Lemma C. 2.

AR " 1 Sp—
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