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ABSTRACT

THEORY OF THE MAGNETIC RESONANCE SPECTRA OF
WATER-OF-HYDRATION AND METHYL PROTONS

By

Deborah May Roudebush

The system of two quantum mechanical dipoles in different local
magnetic fields is solved completely for the case of protons. Eigen-
values, transition energies, intensities, and spectra are given. The
secular equation for three quantum mechanic dipoles in an equilateral
triangular configuration in different local magnetic fields is found
for protons. The symmetrical canting case, a special case for the
three proton configuration, is treated with the eigenvalues found

numerically at a number of geometric configurations.
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CHAPTER 1

INTRODUCTION

In their study of the antiferromagnetic crystal
C0C13((CH3)3NH)-2H20, Spence and Botterman] observed nuclear magnetic
resonances (NMR) for the various protons in the crystal. The 17.64 MHz,
the 16.80 MHz, and the 8.454 MHz proton resonances appear to have no
splitting. The 5.955 MHz, the 3.359 MHz, and the 1.95 MHz proton
resonance lines show dipole-like splitting. The line of particular
interest, the 4.297 MHz proton resonance line, shows no typical dipole
splitting. Instead it is made up of seven evenly spaced lines of
varying intensity as shown in Figure 1.1. These resonances were all
observed at approximately 2.4°K. The 4.297 MHz lines are field
independent over a range from 125 G to 450 G.

In an effort to explain these lines, the general case of the
dipole-dipole interaction is investigated since this corresponds to the
physical situation of the protons of water of hydration units. The
present study resulted in a complete solution for this geometry which
can yield a maximum of only four lines. The Hamiltonian, secular
equation, eigenvalues, eigenfunctions, and intensities are treated in
detail. Also included are several limiting cases, including the “"case

of equal local magnetic fields" treated by Pake.2



Figure 1.1. The 4.297 MHz resonance line.
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Since protons exist in the equilateral triangular configuration
in methyl groups, this geometry can also offer results of physical
significance. This thesis presents an appropriate secular equation,
which due to its complexity could not be solved analytically for the
general case. For an arbitrarily chosen magnetic field direction, the
secular equation was found to reduce to the "equal-field-case" as
treated by Andrew and Bersohn.3

A physically significant special case is obtained when the magnetic
fields at the three proton sites of the equilateral triangle are taken
such that the threefold symmetry of the geometrical configuration is
retained. One such case of "symmetrical canting" requires that the three
magnetic fields at the proton sites have equal magnitudes, and that
their respective directions intersect on the threefold symmetry axis
of the proton triangle. Such a case could conceivably apply at the
methyl sites due to internal magnetic fields arising at cobalt sites
located on or near the above threefold symmetry axis.

In this thesis, the secular equation for symmetrical canting is
developed. Since only one angle is required to specify a particular
canting configuration, it was found possible to solve the secular
equation numerically for the eigenvalues for a series of angles of
canting. The special case in which the magnetic fields are perpen-
dicular to the plane of the methyl group triangle is an equal-field-
case and is shown to properly reduce to the results of Andrew and
Bersohn.

The three-proton case results in eight energy levels, and hence,
can give rise to a maximum number of 28 possible transitions. If the

dipole-dipole interactions are weak compared to the field-dipole
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interactions, a maximum of 15 possible transitions can result in the
general case. Thus, the observed splitting of the 4.297 MHz tran-
sition could possibly be accounted for in the proposed manner, but a
much more detailed analysis would be required to be certain. Such an
analysis will most likely have to include a study of the respective

transition probabilities as well.



CHAPTER 11

THE INTERACTION OF TWO QUANTUM MECHANICAL DIPOLES
LOCATED IN DIFFERENT LOCAL MAGNETIC FIELDS

The Hamiltonian for two interacting dipoles in local magnetic

fields ﬁa and ﬁb is given by the well-known expression4

H= gB(H.1.+H I, .) + (g8)%R3 [1..1 -3(1.-p)(T,+3)] (2.1)
a‘a3 b'b3 a’b a b

Here 3 is the unit vector between the two dipoles as shown in Figure 2.1.
It is convenient to choose two Cartesian coordinate systems such that
the local axis of quantization is along the local field at each dipole.
These axes will be indicated as the respective 3-axis. The 2-axis will
be in the plane determined by the 3-axis and 3. The right hand rule
then determines the 1-axis. The unit vectors of each system will be
designated by the letter of the nucleus at the site; i.e. Ei at

proton a, and Bi at proton b.

On defining the scalar products,

> _ > _
-f °pP = Y I Tb.p = § ijIbJ

(2.2)
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where Yai is the direction cosine of 3 in the 31 direction, Ypi is the

N . . > . o> . .
direction cosine of p in the bi direction and a. .

1J

angle between a, and Ej, the Hamiltonian may be written as

1

H = QB(HaIa3+HbIb3)

where

(]
ni

With the further definition

1]

The Hamiltonian becomes

H = gB(H I q#HpIp3) + 417 Dyslo;Tys

= (g8)%R"3

17

]
Dij = - 7C3v,4vp57%45)

J

CYY (3y..vnsmos )1 .1 .
i3 ai'bj “ij’"ai’bj

If I==%-, which is the case for protons, then in the basis

indicated below, the block diagonal matrix of the Hamiltonian is

found to be the following:

Basis:
(+) (+-) (-+)
1
JoB(H_+H, )-D 0 0
1
H.<H, )+D (0. -
0 298y Hp)*D Dy 14D, 54i(D;5-5)
. 1
0 Dy1#Dpp-1(Dy5=Dpy) - 298(H,-Hy)+D
0 0 0
—

0

-%gB(Ha+Hb)-D

is the cosine of the

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)



8

where D= - 033. One can immediately write down two eigenvalues, viz.,

E] = —gB(H +H ) D
(2.8)
_ 1
E4 -"ﬁgs(Ha+Hb)'D
In order to obtain the remaining two eigenvalues, let
which yields the secular equation
(E-D)? = z(gsaH)?+|a|? (2.10)
where AH= H Hb’ with roots
1
2
Ep3=D¢ (}(geAH)Z+|A|2) (2.11)
The general solution, therefore, is
Eq = 9BHayeD
E2 = S+D
(2.12)
E3 = - S+D
Eq = -9BH, oD
where
1
S = ((3988H)%+[a]%)? (2.13)



and

_ 1
Hawe = ?(Ha+Hb) (2.14)

In the diagonalized basis, the corresponding normalized basis functions
are found to be

21
(25%+g8aHS) 2 [( - 2BAH-S) (+-)-2%(~+)]

¥
1 (2.15)
(25%-gBoHS) 2 [( - 59B8H+S) (+-)-2%(-+)]

¥o

The transition probabilities are proportional to |<n|Ix|n'>|2
where n and n' are the initial and final states between which magnetic
dipole transitions are considered. In the two-dipole interaction,

this calculation yields

+2D+S : %[] + KZSZQBAH)ReA]
2S"+gBAHS
(2.16)
+2D-S : ]T[] + (25-9BAHS )Red |

252_gBAHS

where the left column is the change in energy of transition from the
unperturbed value and the right hand column is the corresponding
normalized transition probability.

The energy levels are shown in Figure 2.2 with the transition

energies as follows:
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These energies yield the spectrum shown in Figure 2.3.

1

hvy = gBH,  -2D-S

ave~

hv, = ggH_  +2D+$

hv4 = gBHave+ZD-S

(2.17)

Referring to Figure 2.1 and Figure 2.4, the following relations

may be determined:

Yal

Ya2

Inserting

1]
(7]
-
3
D
[<}]

"
[®)]
o
(74}
D
[+ 3]

these results into Equation 2.4 and Equation 2.7, the

Yoy = O
Ypo © Sineb
Yp3 = COS6y

C05¢ab

s1neas1n6b+coseacosebcos¢ab

coseacoseb+s1n6a51nebcos¢ab = coseab

inA
S1nwabCOSGb

-sing,, coso,_

geometrical relations for D and |A|2 become

|A

%92

1
(29

2,-3
B“R (3coseacoseb-coseab)

2

2,-3,2 2
B°R™~) { (3cos6, cose, -cose, ;)

+ 4(1-coseab) -3(cosea-cose

b)

2

(2.18)

(2.19)
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Figure 2.3. Spectrum for the two dipole configuration in the
general case.

Figure 2.4. Geometric configuration for two dipole case.
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These results agree with the results given by G.E.G. Hardeman5 in

his dissertation and credited to J. D. Poll.

Limiting Cases

A. Consider the case where |A|2<<(%gBAH)2, i.e. Ha>>Hb or

Ha<<H Then

b

1

S = %gBAH + |A|2(geAH)' (2.20)
yielding eigenvalues of
Ey = 9BHye™D
E, = £59BAH+D+S
(2.21)
_ L
E3 = :igBAH+D-6
Ey = -9BH; oD
where
- 2 -1
& = |A]|“(gBAH) (2.22)

and E] and E4 are exact. The top sign of the double sign refers to
ﬁa>>ﬁb and the bottom sign refers to ﬁa<<ﬁb.
The energy levels are as shown in Figure 2.5 with the transition

energies as follows:
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1

hv] = gBHave"igBAH'ZD'G
- 1
hv2 = gBHave-+§gBAH+ZD+6
: (2.23)
hv3 = gBHave-+§gBAH-2D+6

_ 1
hv4 = gBHave-EgBAH+ZD-6

This yields the spectrum shown in Figure 2.6. For very large |AH|, &
is negligible compared to %gBAH.
B. Consider the case where |A|2>>(%gBAH)2, i.e. H sH . Now

S = |a] +5]a] " (gean)? (2.24)

yielding eigenvalues of

Eq = 9BH ye™D
E2 = D+|A|+e (2.25)
Es = D-|A|-€
Eg = - 9BHayeD
where
e = 71471 (Jg8aH)? (2.26)

and E] and E2 are exact. The energy level diagram is given as

Figure 2.7.
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The transition energies are as follows

hv

| = 98H, o-2D-[a]-¢

hv, = gBHave+ZD+|A|+e

(2.27)
hvs = gBHave-ZD+[A|+e
hv, = gBH, ,*2D-|b]-€

with the spectrum shown in Figure 2.8. If AH becomes very small,
then € goes to zero.
C. For the special case that the two magnetic fields are equal

in direction and magnitude,

> > > > >
Ay = Fys (Rl = (Rl = Hy oy = 3y BJ. = 853 (2.28)

Equation 2.5 reduces readily to the Hamiltonian which applies in this

case, viz., the one given by Pake.2 It follows that ¢ab=0, ea=eb=e,
and therefore D and |A|2 reduce to
D = ]?C (3c0526-1)
1812 = (0;4D,,)% = ()2 (3cos%e-1)? (2.29)
|al =D
The eigenvalues reduce to
E] = ggH-D
E2 = 2D
(2.30)
E3 =0
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as in Pake, with transition energies

hv] = gpH-3D
hvz = gRH+3D
(2.31)
hv3 = gpH-D
hv4 = gRH+D

The transitions hv3 and hv4 are the forbidden singlet-triplet tran-
sition as shown in Figure 2.9. The intensities reduce to %3 %3 and 0
as required by the Pake solution.

For the general case, the frequencies were plotted using the
Hewlett-Packard 9100B three dimensional perspective plot routine. The
local magnetic field values and ¢ab were held constant throughout a
given plot, while ea and eb were varied. Each plot has Vo in black

and Vg in red and is centered about
1

h™T (aeH o + [ (Jaar)2-12]2)12) (2.32)

ave

The field dependence of the frequencies is so small that these per-
turbations are not observable on the plots. The ¢ab dependence and
therefore the eab dependence is small, but can be seen by comparing

closely Figure 2.10, Figure 2.11, and Figure 2.12.
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Figure 2.9. Energy level diagram and spectrum for the two dipole
configuration in equal field case.
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Figure 2.10. Plot of v(63,6p) where ¢3p=0 for the two proton
general case.
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Figure 2.11. Plot of v(63,6p) where ¢3p=20° for the two proton
general case.
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Figure 2.12. Plot of v(63,6p) where ¢55=45° for the two proton
general case.
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CHAPTER III

THE INTERACTION OF THREE QUANTUM MECHANICAL DIPOLES IN AN EQUILATERAL
TRIANGULAR CONFIGURATION IN DIFFERENT LOCAL MAGNETIC FIELDS

The Hamiltonian for the interaction of three quantum mechanical
dipoles in an equilateral triangular configuration in different local

magnetic fields ﬁa’ ﬁb’ and ﬁc follows readily from (2.1) as

+ C[Ta‘Tb'B(Ta'Bab)(Tb.sab)] (3.1)

* C[-fb'_fc":*}(-fb'-';bc)(_fc°-5bc)]

+ e[ -1,-3(1 5, ) (1,8 ,)]

a ca

where C is defined as in Chapter II, and with R the distance between

any two dipoles. The vector E. is the directional vector from dipole

J
i to dipole j, as in Figure 3.1. Again, it is convenient to choose
coordinate systems such that the local axis of quantization is along
the field at each dipole. These axes will again be indicated as the
3-axis in each system. The unit vectors of each system will be
designated by the letter of the nucleus at that site, i.e., 31 at

proton a, etc.

26
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Proton c

N R /

Proton a Proton b

Figure 3.1. The equilateral triangular geometric configuration.
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On defining the scalar products as in Table 1 and Table 2, the

Hamiltonian, Equation 3.1, may be written

H = gB(HaIa3+HbIb3+HCIC3)

ab_ab ab

-C § (3v31Yb3% 3 ai b;

3

401

(3.2)

c.bc bc

b
-CL L Gvpiveyeis) pile;

o3

-
(4]

-CTT 3y 1.
ij ci1'aJ 1)° €1 aj

Let

ab __1 ab_ab__ab

with similar definitions under cyclic permutations for D?ﬁ and D?g-

With these definitions the Hamiltonian, Equation 3.2, may be written

H = gB(H, I 3tH Tpg+H I 3)
(3.4)

+D0%31

cj i c1'I

)

ab bc
* 4§§ (035%aiTb5*01; pil aj

Figure 3.2 shows the matrix representation of Equation 3.4 for
the case of protons, I=%, in the basis indicated and with only the
secular terms as described by Andrew4 retained. Two eigenvalues may

be written down immediately, viz.,

21 ab,~bc..ca
Ey = 29B(H +Hp+H )+D 354D 354D 55

(3.5)

_ 1 ab,.bc..ca
Eg = - 29B(H, tH +H )+D33+D3+D 5
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Table 1. Definitions of direction cosines, y, in the three-dipole
triangular configuration

Scalar Product Direction cosines of: System
Ta'sab-'gY:?Ia1 Eab (31’32’33)
Ty By I ¥h31n3 Pab (B;.B5.B3)
TPy ! Yoilbi [ (;:5,:55)
ToPpe § Yosle; Phc (€:¢583)
Tc'pca-‘§Y2?1c1 Bca (31’32’23)
Tc°3ca= ) Yacgla\] Bca (31 ’32 ’33)

Table 2. Definitions of scalar products, o, between coordinate
systems in the three-dipole triangular configuration

Scalar Product

- ab ab_-»
Ta°TB_'§§ a1JIa1ij %3572
bc bcz =
_ ca car =
_fc _fa-zz o‘1'jIc1Iaj ®§57Ci"8;
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Figure 3.2 The Hamiltonian matrix for the three photon general
case.
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Upon defining

033 =- 0%, 035 =- 0", pS3 = p@ (3.6)
and
D403+ (075057 = 4%
074023+ 015-D5) = 4 (3.7)
D73 +D5o+i (D73-D53) = a@

the upper 3 x 3 submatrix becomes

ﬁ% Abc Ac@
*
abe D, 2b (3.8)
Aca Aab* D3
h— ——

where

D, = %gB(H H-H ) + (- p2bypbeypca)

_ 1 ab,bc .ca
D2 = ?gB(Ha'Hb+Hc) + (D"+D™™-D"°) (3.9)

_ 1 ab .bc..ca
D3 = 598(‘Ha+Hb+Hc) + (D°V-D7"+D"%)
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The Tower 3 x 3 submatrix becomes

— —_—

D]' Abc* Ac@

aPC D, A3b* (3.10)
ca* ab .

o A °3 |

where

ot

: §QB(H +H Hc) + (- Dab+Dbc+Dca)

D, =-29B(H -H +H ) + (p3P+pbC_pca) (3.11)
Dy =-2g8(-H + +H ) + (02P-pPC40%2)

The secular equation for the eigenvalues Ai of Equation 3.8 and
Equation 3.10 are obtained in the standard manner, viz., by subtracting
A from the diagonal elements and by equating to zero the determinant of
the resulting matrix. Using Equation 3.9 and Equation 3.11, this pro-
cedure leads to the very complicated secular equations below, with the
upper signs applying to Equation 3.8, and the lower signs to

Equation 3.10:
-N3AZ £ Jga(H_#H +H_)+(D*P4D"C4D?)]
+A{%(gB)Z[H§+H§+H§-2(HaHb+HbH L HO1) (3.12)

c Ca

+gB[H (Dab bc+Dca)+Hb(Dab+ Dca)+H (- Dab bc+Dca)]
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Equation 3.12 continued
+[(Dab)2+(Dbc)2+(Dca)2_2(DabDbc+Dbcha+DcaDab)}

+L(033+055) 2+(D]3-057) 2+ (0 +035) 2+ (075-055) 2+ (077 4055) %+ (033-05) D)

35 (98) THI+HI+H2+2H H H ~HZ (H +H_)-HE(H_+H )-HE(H_+H, )]
-+%(gs)2[H§(D 3Dbc+Dca)+H (Dab bc 3Dca)+H§(-3Dab+Dbc+D )
+2HaHb( Dab+Dbc+Dca)+2HbHc(Dab-Dbc+Dca)+2H H (Dab bc -D%?)]

i?%( ){H [(Dab)Z 3(Dbc) +(D?) +2(DabD +Dbcha_DcaDab)]
+Hb[(Dab)2+(Dbc)2_3(Dca)2+2(_DabDbc+Dbcha+DcaDab)]
+Hc[_3(Dab)2+(Dbc)2+(Dca)2+2(DabDbc_Dbcha+DcaDab)] (3.12)
_[(Dab)3+(Dbc)3+(Dca)3+20abDbCDca_(Dab)Z(Dbc+Dca)

_(Dbc)Z(Dab+Dca)+(Dca)2(Dab+Dbc)]}

+20(037+050) (0054052 (053 +052)- (035-050) (0B5-D5¢) (0§3+053)

bc bc

- (03 3-037) (075 +4055) (0F5-D53)- (033+05) (075-D5) (075-055))

12 21
« [ (0304030) %+ (D35-D30) 1L % 9B(H_+H, -H_)+(-D?P+0PC4D?)]

x [(055+055) 2+ (005-055)210 3 98(H, -H, +H. )+ (D2P+0"-0%)]

£ [(D53#05) 2+ (05505200 F9B(-H,+H, +H )+ (020" 40)] = 0
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In order to determine the geometrical dependence of the matrix

elements it is necessary to recall the forms of Dab Dbc DCa

, and
ab, bc’ A2,
ab 1 ab_ab ab
Du Zc (3Ya1YbJ )
b _ ,nab ab
= (0]7+050)+1 (035-037)
(3.13)

21 ab_ab ab ab_ab__ab
= -3 CL03va1vpy=o 1 )+ (3v, 57} 0m05))

. ab.ab abs .,. abab ab
+(3v]1p-072)-1(3vap75 057 )]

The expressions for Dbc Dca bc’ and A? are found by cyclic

permutation of the superscripts.

Careful analysis of Figure 3.3, Figure 3.4, and Figure 3.5 shows

that the following geometrical relationships apply:

-lsab°aab=0 3bc'ﬁab=60530° Bca-ﬁab='-c0530°

pab bc - c0s30° Bbc°mbc=0 Bca'mbc=c°530°

Bab-ﬁca=cos30° 3bc°aca="C°S30° Bca°ﬁba=0
o (3.14)

M, eM =M _sMm__=m__em., = - cos60°
ab "'bc 'bc 'ca ca ab

> >

> > . S S 60°
Pab"Pbc™Pbc Pca PcaPab” - €08
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Proton ¢

Py
Proton @ Proton b

Figure 3.3. Geometric configuration with N perpendicular to and
directed out of the page. A1l vectors are coplanar.
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Figure 3.4. Geometric configuration with 3] perpendicular to and
directed out of the page. A1l vectors are coplanar.

Figure 3.5. Geometric configuration with Eab perpendicular to and
directed into the page. A1l vectors are coplanar.
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and A =sing, fi, M, =cos¢,
ﬁ-ﬁb=sin¢b ﬁb-ﬁbc=cos¢b (3.15)
ﬁ-ﬂc=sin¢c ﬁc-ﬁca=cos¢c
From these relationships, the values of the various Yab and aab may
be developed and one finds:
Ygg=cosea ygg=- c0560°coseb-cos30°sinebcos¢b
ygg=sinea ys2=- cosGO°sin6b+cos30°cosebcos¢>b
yg?=0 yg$=cos30°sin¢b
agg=sineasinebsin¢asin¢b-c0560°sineasinebcos¢acos¢b
-cos60°coseacoseb+cos30°sineacosebcos¢a
-cos30°s1'nebcoseacos¢b
agg=coseacosebsin¢asin¢b-c0560°coseacosebcos¢acos¢b (3.16)

_ o s . o s _ o .
cos60 s1n6as1neb+cos30 s1n6acosebcos¢b cos30 coseas1nebcos¢a

ab_ o .
1= - cos60 s1n¢as1n¢b+cos¢acos¢b

ab_ _ 0cq N ° . _ .
a0° cos30 s1nebs1n¢a cos60 cosebs1n¢acos¢b cosebcos¢asm¢b
a;?=cos30°sineasin¢b-cosGO°coseacos¢asin¢b-coseasin¢acos¢b

Cyclic permutation gives the corresponding expressions for ch’ abc,

Yca’ and aca.
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Consider now the special case of equal fields for which 33533=E3.
When 33 and 33 are written out in terms of their components in the N,
mab’ and Bab directions, the following relations apply:

->

> > >
(a) b3*Ppe = 33°Pyc

(b) Bo-F = 3,.R (3.17)
(c) By, = 3y
or more explicitly:
(a) cosd =- cos60°cosea+cos30°s1‘neacoscba
(b) sinebsin¢b = sineasimba (3.18)

3 = Oc4 - o
(c) sin8 cos¢, c0s60 sing_cosé, cos30 cosd,

These equations specify the relationship between (ea,¢a) and
(6,29,) when ﬁazﬁb’ and examination of these equations shows that
indeed a particular choice of (ea,¢a) uniquely determines (eb,¢b),
and vice versa. Cyclic permutation of indices yields the sets of
equations which relate (eb,¢b) to (ec,¢c), and (ec,¢c) to (ea,¢a),
respectively.

Substitution of Equations 3.18 into the expressions for agg=33-33

yields unity, as required for equal fields. Furthermore, with

Y:g = ygg = cos,, cyclic (3.19)
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the diagonal elements Dab etc., are found to reduce to %4:(cos2

ea-l),
.cyclic, which agrees with the corresponding results of Andrew and
Bersohn.

Despite much effort, no analytical method was found that would

ab bc’ and A? reduce

show that the off-diagonal matrix elements A", A
to those of Andrew and Bersohn when Equations 3.18 hold. Instead,

a particular numerical choice for ea and ¢a was made (viz., 6a=43°
¢a=27°), and for that choice, and with Equations 3.18 applying, it

was found that the resulting cubic secular equations agreed with

those obtained from Andrew and Bersohn's paper.

It seems obvious that an exact analytic solution for Equation 3.12
cannot easily be found. Perturbation theory is not particularly helpful
either, since for a degenerate or nearly degenerate zero-order sub-
block, perturbation theory calls for diagonalizing that block, i.e.,
the exact solution of Equation 3.12.

There is, however, a physically interesting special case for

which computing numerical solutions becomes practicable. This case

will be treated in the next chapter.



CHAPTER 1V

THE SYMMETRICAL CANTING CASE

The symmetrical canting case is defined as the case for which

9a=9b=6c=e
$a=0p=0 =0 (4.1)
H_=H,=H_=H
In this case,
s 4.2

as seen in Figure 4.1. As a consequence, Equations 3.16 give

cotd = 2c0s30°cos¢ (4.3)

This equation determines the angle ¢ for a given 6, and vice versa.

The following three special cases of Equation 4.3 may be considered:

a) 6= 30°, ¢=0°
b) 6= 90°, ¢=90° (4.4)

c) 6=150°, ¢=180°

4
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I

[ )

Pab

Proton @ Proton b

Figure 4.1. The symmetrjcal caniing case as seen in the plane
containing pap and H at the proton a site.
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where a) is the case in which H is in the plane of the proton triangle
and directed radially inward; b) is the case in which H is perpendicular
to the plane of the triangle; and c) is the case in which H is in the
plane of the triangle and directed radially outward.

The relevant scalar products become, upon inserting Equation 4.1

and Equation 4.2 into Equation 3.16,

ab_ ab_ 0cs
Yal_o yb]-cos30 sing

ab_ : ab.___ - o
yaz-sme Y2 €c0s60°sin6+cos30°cosBcos¢

Ygg=cose YE3= - cos@

(4.5)

ab_ 2
a33—1 - 2cos”0

ab 2

= 2. 1 .2
0y ,=C0S"05in"¢ - 5C0S

2

ecosch - —;-sin )

a?$= - Jz-sin2¢+cosz¢

ab ab
(oyq-0y

) =/3 sinbsing
With Equation 4.3, the following relationship is seen to hold:

(I 2+ rpg) 2+ (rp) %= (4.6)
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ab

The relationships for Dab and A"~ follow from Equation 4.5, viz.,

p=p2P=pPC-pca. _ %c (1+cos0)

2 2

A=Aab=Abc=Aca=%C(1-3cos 6+3sin28c0s%e) (4.7)
+ (i/8) C (V3 sin6sing)
The following eigenvalues may be written down immediately:

_3

(4.8)
Eq= - Sg8H+3D
8 2
The remaining six eigenvalues are
21 .
Ei---igBHH\1 (i=1,2,3)
(4.9)
1 .
- +). =
Ey= - 298K (3=1,2,3)

where the Ai are the three eigenvalues of the upper 3 x 3 Hamiltonian

submatrix with associated secular equation

D-x & A* |
A* D-A A = 0 (4.10)
A A D-A

In more explicit form,

3 2
r+6ArA

3 2=0 (4.11)

23-3022+3(02- 2| 2)r-D3+30| 2| 2-28
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where Ar is the real part of A and Ai is the imaginary part. The
associated eigenvalues were determined numerically as a function of 6.
They are listed in Table 3 and plotted in Figure 4.2. The lower 3 x 3
submatrix is found to have eigenvalues given by Equation 4.9, with the
Aj identical with the Ai of Equation 4.10.

In the special case when 6=¢=90°, it can be seen from Figure 4.3

that
Vo Toz’% SRR BT 2
y:2=1 Yg?z): -3 Gop* ‘]7 °‘21=]§‘/3— (4.12)
¥25=0 Y5=0 03371

The general expressions, Equation 3.16, and the symmetrical canting
expressions, Equation 4.5, are found to reduce properly to the above

values. Furthermore one has that here

(4.13)
A= - }‘—C oo (21/3)

which checks Andrew and Bersohn's results except for the constant
phase factor. It has been verified that the same secular equation is
obtained with or without the phase factor, which is connected with the
rotation B], 52, 33 relative to 3], 32, 33 by 2m/3 for this special

case.
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Table 3. The eigenvalues of the upper 3 x 3 submatrix as a function
of 6 in units of C=(gg)2R-3.

6 ¢ A] )\2 >\3

(degrees) (degrees) o o C
30 0 -.37500 .37500 .56250
35 34.45795 -.25334 .49737 .50254
40 46.52332 -.20008 .54992 .44031
45 54.73561 -.15853 .59147 .37500
50 61.02327 -.12371 .62629 . 30987
60 70.52878 -.06878 .68120 .18752
70 77.86954 -.03039 .71954 .08780
80 84.15703 -.00745 .74239 .02278
90 90.00000 .00000 .75000 .00000
100 95.84297 -.00745 .74239 .02278
110 102.13046 -.03039 .71954 .08780
120 109.47122 -.06878 .68120 .18752
130 118.97673 -.12371 .62629 . 30987
135 125.26439 -.15853 .59147 . 37500
140 133.47668 -.20008 . 54992 .44031
145 145.54205 -.25334 .49737 .50254
150 180. 00000 -.37500 .37500 .56250
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)\i[u?ﬂé
0.0+40 0 -t
A A
-ol-- O O _
A A T
A A
=2T © © A T
A A
73—'— o o —rt—
A o © A
_'4__ ———
© ©
<51 ¥ & —+
© X (o)
-.6_.| X x - T,
A X
-7+ X X 4
X X
X X X
-8T -+
N | ' 6 in Degrees |
25 50 75 10'0 125 150
Figure 4.2. The eigenvalues of the symmetrical canting case as a

function of 6.
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Figure 4.3. The ggometrjc configuration for 6=¢=90°. In this
case a3=b3=c3 and directed out of the page.

Figure 4.4. The geometr1c configuration for 6=150°, ¢=180°. 1In
this case a] b]-c1 and directed out of the page.
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In the special case where 6=150° and ¢=180°, as in Figure 4.4,

ab_ ab_ ab_ 1 ab_
Y10 Y1~ @335-7 %270
ab_1 ab_1 ab_ ab_
Ya2" 2 Yb2™ 2 oy =] 091 =0 (4.14)

again determined by inspection. The symmetrical canting expressions,

Equation 4.5, once more reduce properly to the above values.
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