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ABSTRACT

THEORY OF THE MAGNETIC RESONANCE SPECTRA OF

NATER-OF-HYDRATION AND METHYL PROTONS

By

Deborah May Roudebush

The system of two quantum mechanical dipoles in different local

magnetic fields is solved completely for the case of protons. Eigen-

values, transition energies, intensities, and spectra are given. The

secular equation for three quantum mechanic dipoles in an equilateral

triangular configuration in different local magnetic fields is found

for protons. The symmetrical canting case, a special case for the

three proton configuration, is treated with the eigenvalues found

numerically at a number of geometric configurations.
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CHAPTER I

INTRODUCTION

In their study of the antiferromagnetic crystal

CoCl3((CH3)3NH)-2H20, Spence and Botterman1 observed nuclear magnetic

resonances (NMR) for the various protons in the crystal. The l7.64 MHz,

the l6.80 MHz, and the 8.454 MHz proton resonances appear to have no

splitting. The 5.955 MHz, the 3.359 MHz, and the 1.95 MHz proton

resonance lines show dipole-like splitting. The line of particular

interest, the 4.297 MHz proton resonance line, shows no typical dipole

splitting. Instead it is made up of seven evenly spaced lines of

varying intensity as shown in Figure l.l. These resonances were all

observed at approximately 2.4°K. The 4.297 MHz lines are field

independent over a range from l25 G to 450 G.

In an effort to explain these lines, the general case of the

dipole-dipole interaction is investigated since this corresponds to the

physical situation of the protons of water of hydration units. The

present study resulted in a complete solution for this geometry which

can yield a maximum of only four lines. The Hamiltonian, secular

equation, eigenvalues, eigenfunctions, and intensities are treated in

detail. Also included are several limiting cases, including the "case

of equal local magnetic fields" treated by Pake.2



Figure l.l. The 4.297 MHz resonance line.



 
FIGURE |.|
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Since protons exist in the equilateral triangular configuration

in methyl groups, this geometry can also offer results of physical

significance. This thesis presents an appropriate secular equation,

which due to its complexity could not be solved analytically for the

general case. For an arbitrarily chosen magnetic field direction, the

secular equation was found to reduce to the "equal-field-case" as

treated by Andrew and Bersohn.3

A physically significant special case is obtained when the magnetic

fields at the three proton sites of the equilateral triangle are taken

such that the threefold symmetry of the geometrical configuration is

retained. One such case of "symmetrical canting" requires that the three

magnetic fields at the proton sites have equal magnitudes, and that

their respective directions intersect on the threefold symmetry axis

of the proton triangle. Such a case could conceivably apply at the

methyl sites due to internal magnetic fields arising at cobalt sites

located on or near the above threefold symmetry axis.

In this thesis, the secular equation for synmetrical canting is

developed. Since only one angle is required to specify a particular

canting configuration, it was found possible to solve the secular

equation numerically for the eigenvalues for a series of angles of

canting. The special case in which the magnetic fields are perpen-

dicular to the plane of the methyl group triangle is an equal-field-

case and is shown to properly reduce to the results of Andrew and

Bersohn.

The three-proton case results in eight energy levels, and hence,

can give rise to a maximum number of 28 possible transitions. If the

dipole-dipole interactions are weak compared to the field-dipole
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interactions, a maximum of l5 possible transitions can result in the

general case. Thus, the observed splitting of the 4.297 MHz tran;

sition could possibly be accounted for in the proposed manner, but a

much more detailed analysis would be required to be certain. Such an

analysis will most likely have to include a study of the respective

transition probabilities as well.



CHAPTER II

THE INTERACTION OF TWO QUANTUM MECHANICAL DIPOLES

LOCATED IN DIFFERENT LOCAL MAGNETIC FIELDS

The Hamiltonian for two interacting dipoles in local magnetic

fields Ba and fib is given by the well-known expression4

H = 98(Ha1a3+HbIb3) + (gmzR'3 [Ta-Tb-sfia-EHTb-ED (2.1)

Here 3 is the unit vector between the two dipoles as shown in Figure 2.l.

It is convenient to choose two Cartesian coordinate systems such that

the local axis of quantization is along the local field at each dipole.

These axes will be indicated as the respective 3-axis. The 2-axis will

be in the plane determined by the 3-axis and B. The right hand rule

then determines the l-axis. The unit vectors of each system will be

designated by the letter of the nucleus at the site; i.e. 31 at

proton a, and Bi at proton b.

0n defining the scalar products,

(2.2)
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where Yai is the direction cosine of E in the 3i direction, Ybi is the

direction cosine of 31in the Si direction and aij

angle between 31 and DJ, the Hamiltonian may be written as

H = 98(Ha1a3+HbIb3) ‘ Cg; “‘"zn'litfl'o‘ij)I

where

With the further definition

= -1.D.. 4C(3y
13 aiybj'aij)

The Hamiltonian becomes

H ‘ 98(Ha1a3+HbIb3) + 4% DianiIbJ'

I
ai bj

If I=-12-, which is the case for protons, then in the basis

indicated below, the block diagonal matrix of the Hamiltonian is

found to be the following:

Basis:

(++) (+-) (-+)

_1_

§93(Ha+Hb)-O O 0

l
H-H +D - -

0 79m 6 b) DII*°22"‘(012 ”21)

. l

0 D11“[’22"‘ (Dl 2'021) ' 298(Ha'Hb)+D

o O 0
IL_. 

 

O

 -]§gB(Ha+Hb)-D

is the cosine of the

(2.3)

(2.5)

(2.6)

(2.7)
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where D:"DB3' One can immediately write down two eigenvalues, viz.,

E1 =%QB(Ha+Hb-)D

4 ="298(Ha+Hb)'D

In order to obtain the remaining two eigenvalues, let

A E (”11*022)+1(912'021)

which yields the secular equation

2

(5-0) = %(GBAH)2+|A|2

where AH=Ha-Hb, with roots

—
I

2'

52,, = 0: (%(OBAH)2+|AIZ)

The general solution, therefore, is

El = gBHave"D

E2 = S+D

E3 = -S+D

E4 = "gBHaveD

where

m
l
—
a

= ((JZ-geAHTZHAIZ)

(2.8)

(2.9)

(2.10)

(2.ll)

(2.12)

(2.13)



and

_ l
Hawe - 2(Ha+Hb) (2.14)

In the diagonalized basis, the corresponding normalized basis functions

are found to be

I

w] = (252+98AHS) 2E(-%—gBAH-S)(+-)-A*(-+)]

1 (2.15)

I, = (ZSZ-OBAHS) 2[(-%OBAH+S)(+-)-A*(-+)l

The transition probabilities are proportional to |<n|Ix|n'>|2

where n and n' are the initial and final states between which magnetic

dipole transitions are considered. In the two-dipole interaction,

this calculation yields

 

 

:ZD+S : h] + KZSEQBAHWQA]

25 +gBAHS

(2.16)

120-5 : )[I + (ZS'QBAHSWEAJ

ZSZ-QBAHS

where the left column is the change in energy of transition from the

unperturbed value and the right hand column is the corresponding

normalized transition probability.

The energy levels are shown in Figure 2.2 with the transition

energies as follows:
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Proton o a Proton b

U2

Figure 2.l. Two protons separated by distance R and located in

magnetic field Ha and Hb respectively. The fields

are not necessarily coplanar.
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Figure 2.2. Energy level diagram for the two dipole configuration

in the general case. .
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hv] = gBHave-ZD-S

hv = gBH +ZD+S

2 ave (2.17)

hv3 = gBHave-ZD+S

hv4 = gBHave+2D-S

These energies yield the spectrum shown in Figure 2.3.

Referring to Figure 2.l and Figure 2.4, the following relations

may be determined:

YaI = 0 Ybl ‘ 0

Ya2 = sinea Yb2 = sineb

Ya3 = cosea Yb3 = coseb

++_

a1] al-b1 : coscbab (2 18)

“22 = 32-32 = sineasineb+coseacosebcos¢ab

++ . . _

O33 a3-b3 - C059a6059b+51"9a51n9b005¢ab = coseab

+ .4

012 - a1032 - smoabcoseb

++ .

a21 - aZ-b1 - -s1n¢abcosea

Inserting these results into Equation 2.4 and Equation 2.7, the

geometrical relations for D and IAIZ become

_ l 2 2 -3
D - 39 B R (3coseacoseb-coseab)

2 _ l 2 2 -3 2 2
[Al - (fig 8 R ) { (3coseacoseb-coseab) (2.l9)

2
+ 4(1-coseab) -3(cosea-coseb) }
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Figure 2.3. Spectrum for the two dipole configuration in the

general case.
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Figure 2.4. Geometric configuration for two dipole case.
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These results agree with the results given by G.E.G. Hardeman5 in

his dissertation and credited to J. D. Poll.

Limiting,Cases
 

A. Consider the case where |A|2<<(%gBAH)2, i.e. Ha>>Hb or

Ha<<Hb. Then

BAH + |A|2(98AH)'1 (2.20)m

1
1
2

[
\
c
h

yielding eigenvalues of

(2.21)

E3 = :%gBAH+D-6

E4 - 'gBHave D

where

6 = IAI2(gsAH)" (2.22)

and E1 and E4 are exact. The top sign of the double sign refers to

H >>H and the bottom sign refers to H <<H .
a b a b

The energy levels are as shown in Figure 2.5 with the transition

energies as follows:



hv1

hvz

hv3

hv4

This yields the spectrum shown in Figure 2.6.

14

- JégBAH-ZD-B
98Have

1

ave-figBAH+2D+O

+ %gBAH-ZD+6

= gBH

= gBHave

= gBH - %gBAH+2D-<S
ave

1
is negligible compared to EgBAH.

(2.23)

For very large |AH|, 6

B. Consider the case where |A|2>>(%gBAH)2, i.e. Hasz. Now

5:

yielding eigenvalues of

where

IA! +%IM“(l,gsAm2

El = gBHave"D

E2 = D+|A|+e

E3 = D-IAI-e

E4 ="geHave'D

1 -

= -2-IA| ‘(lggeamz

(2.24)

(2.25)

(2.26)

and E1 and E2 are exact. The energy level diagram is given as

Figure 2.7.
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Figure 2.5. Enérgy level diagram for the two dipole configuration

In limiting case A.
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Figure 2.6. Spectrum for the two dipole configuration in limiting

case A.
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.
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The transition energies are as follows

hv1 = gBHave-ZD-lAl-E

hvz = gBHave+ZD+|A|+e

(2.27)

hv3 = gBHave-ZD+|A|+E

hv4 = gBHave+2D-|AI-E

with the spectrum shown in Figure 2.8. If AH becomes very small,

then 6 goes to zero.

C. For the special case that the two magnetic fields are equal

in direction and magnitude,

-> + -> + +

Ha - Hb, |Ha| - |Hb| - H, aij - a1 Bj - aij (2.28)

Equation 2.5 reduces readily to the Hamiltonian which applies in this

case, viz., the one given by Fake.2 It follows that oab=0, Oa=eb=e,

and therefore D and |A|2 reduce to

D = %C (3cosze-l)

Ia|2 = (”11“”22)2 = (%C)2 (3:05.294)? (2.29)

IAI = D

The eigenvalues reduce to

E] = gBH'D

E2 = ZD

(2.30)

E3 = 0

E4 = "gBH-D
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Figure 2.7. Energy level diagram for the two dipole configuration

in limiting case B.
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Figure 2.8. Spectrum for the two dipole configuration in limiting

case B.
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as in Pake, with transition energies

hv1 = gBH-3D

hv2 = gBH+BD

(2.31)

hv3 = gBH-D

hv4 = gBH+D

The transitions hv3 and hv4 are the forbidden singlet-triplet tran-

sition as shown in Figure 2.9. The intensities reduce to %, %, and 0

as required by the Pake solution.

For the general case, the frequencies were plotted using the

Hewlett-Packard 91003 three dimensional perspective plot routine. The

local magnetic field values and ¢ab were held constant throughout a

given plot, while Ga and 0b were varied. Each plot has Oz in black

and 03 in red and is centered about

l

h"(gsH +[(%98AH)2-IATZ)17) (2.32)
ave

The field dependence of the frequencies is so small that these per-

turbations are not observable on the plots. The ¢ab dependence and

therefore the eab dependence is small, but can be seen by comparing

closely Figure 2.10, Figure 2.11, and Figure 2.12.
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Figure 2.9. Energy level diagram and spectrum for the two dipole

configuration in equal fie d case.
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Figure 2.10. Plot of 0(Oa,eb) where Oab=0 for the two proton

general case.
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Figure 2.11. Plot of v(ea,eb) where ¢ab=20° for the two proton

general case.
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Figure 2.12. Plot of v(ea,6b) where ¢ab=45° for the tWO proton

general case.
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CHAPTER III

THE INTERACTION OF THREE QUANTUM MECHANICAL DIPOLES IN AN EQUILATERAL

TRIANGULAR CONFIGURATION IN DIFFERENT LOCAL MAGNETIC FIELDS

The Hamiltonian for the interaction of three quantum mechanical

dipoles in an equilateral triangular configuration in different local

magnetic fields Ha, Rb, and HE follows readily from (2.1) as

+ C[Ié°Tb'3(Ta;Bab)(TPOEab)]
(3 1)

+ C[TH-I63(THEM)(Tc'Ebcn

+ CIYc-Ta-3(Tc°3ca)(T a n
aca

where C is defined as in Chapter II, and with R the distance between

any two dipoles. The vector Bij

i to dipole j, as in Figure 3.1. Again, it is convenient to choose

is the directional vector from dipole

coordinate systems such that the local axis of quantization is along

the field at each dipole. These axes will again be indicated as the

3-axis in each system. The unit vectors of each system will be

designated by the letter of the nucleus at that site, i.e., 31 at
1

proton a, etc.

26
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.Proion C

p’ca

fibc

E503

\ R /
Proton o Proton b

Figure 3.1. The equilateral triangular geometric configuration.
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On defining the scalar products as in Table l and Table 2, the

Hamiltonian, Equation 3.1, may be written

H = 98(Ha1a3+HbIb3+HcIc3)

ab ab ab

' C EX (3Yainj'aijnaiij

J (3.2)

bc be be

"Ci g (3Ybich'aij)Ibich

ca ca ca

' C E; (3YciYaj'aijnciIaJ’

Let

ab _ _l_ ab ab_ ab
Dlj - 4C (BYainj 0‘13 (3.3)

DC ca
ij and Dij'

With these definitions the Hamiltonian, Equation 3.2, may be written

with similar definitions under cyclic permutations for D

H = gB(H I +HbIb3+HcIc3)
a a3

(3.4)

+422(Oab1 I +DbcI .I +DcaI I )
ij ij ai bj ij b1 cj ij ci aj

Figure 3.2 shows the matrix representation of Equation 3.4 for

the case of protons, I=%, in the basis indicated and with only the

secular terms as described by Andrew4 retained. Two eigenvalues may

be written down immediately, viz.,

_ l ab bc ca

E1 ‘ 298(Ha+Hb+Hc)+D33+D33+033

(3.5)

_ l ab bc ca

E8 —"298(Ha+Hb+Hc)+033+033+D33
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Table 1. Definitions of direction cosines, y, in the three-dipole

triangular configuration

 

 

Scalar Product Direction cosines of: System

Ta°3ab- §Y:?Ia1 isab (31:52 ’33)

Th "cit:= g 1:3le isab (El 5233)

THBDC: E Ygglbi isbe (Bl 52:33)

THEM: E *2?ch iSbc (El 32:53)

Tcfica= EYEIIci Eca (El 3233)

Tc°5ca= §Y§31a3 sea (31 32:53)

 

Table 2. Definitions of scalar products, a, between coordinate

systems in the three-dipole triangular configuration

 

 

Scalar Product

 

_ ab aab_+

535% O‘ijlailhi “iia‘i -J.E

bc bc_ .+

ca ca4+ .+
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Figure 3.2 The Hamiltonian matrix for the three photon general

case.
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Upon defining

Dab _ Dab Dbc _ Dbc Dca _ _Dca

33“‘ . 33"’ 33

and

”11m£+‘(012M21) Aab

0110b2+‘(9120021) ' Abe

D$?+Dca+i(0%g?) = AC3

the upper 3 x 3 submatrix becomes

  

EM Abc Aca*

Abc* DZ Aab

Aca Aab* D3

where

D =lgG(Ha+Hb-Hc) + (- Dab+Db°+Oca )
1 N

—
l

DZ= Egema-Hb+H) + (Dab+DbCDca)

D = 2gB(-Ha+Hb+Hc) + (Dab_Dbc+Dca)
3

(3.6)

(3.7)

(3.8)

(3.9)
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The lower 3 x 3 submatrix becomes

F'_ .—

  

01' Abc* Aca

Abc Dz' Aab* (3.10)

ca* ab .

i. A 0.3.3

where

01'" "12'{~’8(Ha+Hb'Hc) + (-DDab+Dbc+Dca)

02' = -%gB(Ha-Hb+Hc) + (oab+DbC-D°a) (3.11)

031 = __a%gB(H +Hb+HC) + (Dab_DbC+DC3)

The secular equation for the eigenvalues 11 of Equation 3.8 and

Equation 3.l0 are obtained in the standard manner, viz., by subtracting

A from the diagonal elements and by equating to zero the determinant of

the resulting matrix. Using Equation 3.9 and Equation 3.ll, this pro-

cedure leads to the very complicated secular equations below, with the

upper signs applying to Equation 3.8, and the lower signs to

Equation 3.10:

-13+A2[+198(H+Hb+H)+(oab+nbc+oca)1

+A(%(ge)2[Hz+H§+HE-2(HaHb+HbHC+HcHa)]} (3.12)

+gB[Ha (Dab_ Hbc+Dca)+Hb(Dab+bc_Dca)+HC (_Dab+Dbc+Dca)]
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Equation 3.12 continued

+E(Dab)2+(Dbc)2+(Dca)2_2(DabDbc+Dbcha+DcaDab)J

+t<03%g) +<033-033) 2+<033+033) 2+<033- 033)2+<033+033)2+(013-033) 2]}

3 3 3 2 2 2
(g B)3 [Ha+Hb+Hc+2HacHbH-Ha(Hb+Hc)-Hb(Ha+Hc)-Hc(Ha+Hb)]

0
0
l
-
J

;

+3(DB)2[H§(Dab-aobc+Dca)+H§ (Dabmbc- 3caDca‘)+H§(-3Da'b+0bC+D )

+2H H (_ Dab+Dbc+Dca)+2HbHc(Dab_Dbcwca)+2HCHa+D(Dabbc _Dca)]

a b

:1? (gB){Ha[(Dab)2-3(Dbc)2+(Dca)2+2(DabDwabcha-DcaDab)]

+Hb[(Dab)2+(Dbc)2-3(Dca)2+2(-DabDbc+Dbcha+DcaDab)]

+HC[-3(Dab 2+(Dbc)2+(Dca)2+2<DabDbc_Dbcha+DcaDab)J (3.12)

_[(Dab)3+(Dbc)3+(Dca)3+20abDbcha_(Dab)2(Dbc+Dca)

_(Dbc)2(Dab+Dca)+(Dca)2(Dab+Dbc)]}

+2{(033+033)(t03’3r0331)<033+033)- (033-033M033033)(033+033>

bc DbcDab Dab bc+Dbc ca ca ab ab

-D( )(0112)(0-0 )--(011+022)(012D21)(013-033)}
12 021 12 21

:[<031+0033)z+(013-0031)21[290<H+H1,-H)+(033+0b°+0°an

+£(033+033) +(033-033)2][2ge(Ha--H1,+HC+)+(0‘“’0be-0)1

+[(Dca+Dca) 2+(Dca-Dcza1)2][ng(-3H+Hb
+Hc)+(Dab_l)bcwca )] = 0
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In order to determine the geometrical dependence of the matrix

elements it is necessary to recall the forms of Dab, Dbc, 0C3, and

Aab’ Abc, Aca:

ab __ abYab_aab

Dij ’ 3C (3YaiYbja j)

ab _ ab Dab

A ’ (D1Wg)*‘(012°21)

(3.l3)

_ l ab ab 0Lab abYab ab

"'E‘3[(3Ya1Yb1“11)+(3YHa2b20‘22)

ab ab QLab ab ab 0Lab

+1(3Ya11Y1320‘12) 1(3Ya12Yb10‘21)]

be ca Abc

1J 011J’

permutation of the superscripts.

The expressions for D. , and Aca are found by cyclic

Careful analysis of Figure 3.3, Figure 3.4, and Figure 3.5 shows

that the following geometrical relationships apply:

..) —> _ + .+ = o + .+ =_ o

pab°mab'0 pbc mab c0530 pca mab c0530

-> + _ o + .-> = -> .+ = °

pab-mbc—-cos30 pbc mbc 0 pca mbc c0530

+ + O + 0+ =- O + 0+ =pab-mca—COSBO pbc mca c0530 pca mca 0

(3.l4)

-> .+ _-> .+ _+ .-+ _ 60°

mab mbc'mbc mca'mca mab'"COS

-> + -> +

o ’ o —+ 0+ " 60°

pab pbc' bc pca'pca pab--cos
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 fig» V

Proion o Proion b

Figure 3.3. Geometric configuration with W perpendicular to and

directed out of the page. All vectors are coplanar.
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Figure 3.4. Geometric configuration with 31 perpendicular to and

directed out of the page. All vectors are coplanar.

 
 

 
Figure 3.5. Geometric configuration with Bab perpendicular to and

d1rected 1nto the page. All vectors are coplanar.
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and . +- +
N-fia-s1n¢a na-mab=cos¢a

+=. +0.):fi-nb s1n¢b nb mbc cosob (3.l5)

+-> . ++_

N-nc-s1noc nC-mca-cosoc

From these relationships, the values of the various yab and cab may

be developed and one finds:

ab=cose ab=-—c0560°cose -cos30°sine coso
Ya3 a Yb3 b b b

ab=sine ab=--c0560°si 6 +cos30°cose coso
Ya2 a Yb2 ” b b b

ab_ ab_ 0 °
Val—0 ybl—cos30 s1n¢b

ab_ . . . . o . .

a33-s1n6a51n6bs1n¢as1n¢b-c0560 s1neasmebcos¢acos¢b

-cos60 coseacoseb+c0530 s1n6acosebcos¢a

-c0530 smebcoseacosob

ab_ . . o
aZZ-coseacosebs1n¢a51n¢b-c0560 coseacosebcosoacosob (3.l6)

_ o . . + o . _ o ,

c0560 s1nea51neb c0530 smeacosebcosob c0530 coseas1nebcos¢a

ab_ 0 . .

a]]--c0560 s1n¢as1n¢b+cos¢acos¢b

ab__ 0 . . _ o . _ .
“12‘ cos30 s1nebs1n¢a cos60 cosebs1n¢acos¢b cosebcosoasmob

ab_ 0 . . o . .

a21-cos30 s1n6a51nob-c0560 coseacos¢a51n¢b-coseas1noacosob

Cyclic permutation gives the corresponding expressions for ch’ abc,
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Consider now the special case of equal fields for which 33533=E .

When;3 and 33 are written out in terms of their components in the W,

mab, and Bab directions, the following relations apply:

++ ++

(a) b3'pbc - a3'pbc

(b) 33-h = 33ofi (3.17)

++_+.+

(C) b3""bc ‘ a3 mbc

or more explicitly:

(a) coseb =-c0560 cosea+cos30 smeacosoa

(b) sinebsinob = sineasinoa (3.l8)

- =_ o- _ o
(c) s1nebcos¢b c0560 s1neacos¢a c0530 cosea

These equations specify the relationship between (ea,¢a) and

(6b,¢b) when fiagfib’ and examination of these equations shows that

indeed a particular choice of (6a,¢a) uniquely determines (eb,¢b),

and vice versa. Cyclic permutation of indices yields the sets of

equat1ons which relate (eb,¢b) to (6c,¢c), and (6c,¢c) to (ea,¢a),

respectively.

ab;+
Substitution of Equations 3.l8 into the expressions for a33—a3-b3

yields unity, as required for equal fields. Furthermore, with

vgg = 7:3 = cosea, cyclic (3.19)
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ab 2

the diagonal elements 0 etc., are found to reduce to %43(cos ea-l),

-cyclic, which agrees with the corresponding results of Andrew and

Bersohn.

Despite much effort, no analytical method was found that would

ab bc’ and Aca reduceshow that the off-diagonal matrix elements A , A

to those of Andrew and Bersohn when Equations 3.l8 hold. Instead,

a particular numerical choice for ea and ¢a was made (viz., 6a=43°

¢a=27°), and for that choice, and with Equations 3.l8 applying, it

was found that the resulting cubic secular equations agreed with

those obtained from Andrew and Bersohn's paper.

It seems obvious that an exact analytic solution for Equation 3.12

cannot easily be found. Perturbation theory is not particularly helpful

either, since for a degenerate or nearly degenerate zero-order sub-

block, perturbation theory calls for diagonalizing that block, i.e.,

the exact solution of Equation 3.l2.

There is, however, a physically interesting special case for

which computing numerical solutions becomes practicable. This case

will be treated in the next chapter.



CHAPTER IV

THE SYMMETRICAL CANTING CASE

The symmetrical canting case is defined as the case for which

¢a=¢b=¢c=¢ (4.1)

In this case,

ab_ ab

Ya3"'Yb3
(4.2)

as seen in Figure 4.1. As a consequence, Equations 3.16 give

cote = 2c0530°cos¢ (4.3)

This equation determines the angle ¢ for a given 6, and vice versa.

The following three special cases of Equation 4.3 may be considered:

a) 9: 30°, ¢=0°

b) a: 90°, ¢=90° (4 4)

c) e=150°, ¢=180°

41
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I
1

9 9

59b

Pro’ton o Proion b

Figure 4.1. The symmetrical cantin, . 9 case as seen in the lane

containing Pab and H at the proton a site. p
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where a) is the case in which H is in the plane of the proton triangle

and directed radially inward; b) is the case in which H is perpendicular

to the plane of the triangle; and c) is the case in which H is in the

plane of the triangle and directed radially outward.

The relevant scalar products become, upon inserting Equation 4.1

and Equation 4.2 into Equation 3.16,

y:?=0 vg?=cos30°sin¢

ab_ ab 0 o
ya2-sin6 yb2=-c0560 sin6+cos30 cosecoso

vgg=cose vgg= - cose

(4.5)

o33=l-2cosze

ogg=coszesin2q».-vlcoszecosz¢- lsinze

a?$= -%sin2¢+coszo

( ag?-aa?) =1/33sinesin¢

With Equation 4.3, the following relationship is seen to hold:

ab 2 ab 2+ ab 2_

(TM) +(Yb2) +-(Yb3) (4.6)
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ab ab

The relationships for D and A follow from Equation 4.5, viz.,

11:1)a'b=obc=pca - )c (1+cosze)

A=Aab=Abc=Aca 2 2
ecoszo) (4.7)C(l-3cos 6+3$in

l

8

+ (i/8) C ( f3- sinesino)

The following eigenvalues may be written down immediately:

-3.

(4.8)

E = --3-gBH+BD
8 2

The remaining six eigenvalues are

-1 ._
Ei- ngH+Ai (1-l,2,3)

(4.9)

1 .
0:- + . =

EJ ‘EgBH x3 (J 1.2.3)

where the Ai are the three eigenvalues of the upper 3 x 3 Hamiltonian

submatrix with associated secular equation

  

D-A A A*

A* 0-1 A = 0 (4.10)

A A* D-x

In more explicit form,

A3-BDA2+3(DZ-|A|2)A-D3+3D|A|2-2Ai+6ArA§=O (4.11)
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where Ar is the real part of A and Ai is the imaginary part. The

associated eigenvalues were determined numerically as a function of 9.

They are listed in Table 3 and plotted in Figure 4.2. The lower 3 x 3

submatrix is found to have eigenvalues given by Equation 4.9, with the

Aj identical with the xi of Equation 4.10.

In the special case when e=¢=90°, it can be seen from Figure 4.3

that

121:0 131:12/3— O‘11: 1? 0‘12: ’1?”—

y§2=1 133"]? 0‘22“% 0‘21=']2"/3— (4'12)

Y§§=o Y§§=0 0‘33:]

The general expressions, Equation 3.16, and the symmetrical canting

expressions, Equation 4.5, are found to reduce properly to the above

values. Furthermore one has that here

(4.13)

A= _ 21fC e-‘i (211/3)

which checks Andrew and Bersohn's results except for the constant

phase factor. It has been verified that the same secular equation is

obtained with or without the phase factor, which is connected with the

rotation 51, 32, 33 relative to 3], 32, 33 by 2n/3 for this special

case.



 

 

Table 3. The eigenvalues of the upper 3 x 3 submatrix as a function

of e in units of C=(gB)2R‘3.

8 o A] A2 A3

(degrees) (degrees) C C C

30 0 .37500 .37500 .56250

35 34.45795 .25334 .49737 .50254

40 46.52332 .20008 .54992 .44031

45 54.73561 .15853 .59147 .37500

50 61.02327 .12371 .62629 .30987

60 70.52878 .06878 .68120 .18752

70 77.86954 .03039 .71954 .08780

80 84.15703 .00745 .74239 .02278

90 90.00000 .00000 .75000 .00000

100 95.84297 .00745 .74239 .02278

110 102.13046 .03039 .71954 .08780

120 109.47122 .06878 .68120 .18752

130 118.97673 .12371 .62629 .30987

135 125.26439 .15853 .59147 .37500

140 133.47668 .20008 .54992 .44031

145 145.54205 .25334 .49737 .50254

150 180.00000 .37500 .37500 .56250
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Xi units

o.o--0 C o .-

A 8 6 A
£5

__|___ C) C)

A A 1'-

A

72" O "

A
A

'13“ o o ‘—

A
o A

-.4-- —-

-5__. é 6 ..

13
C)

-.6--' " .._

A X

-.7-- x --
X x

x X

-.ea- ~-

. , 1 9 in De rees , ,

25 5% 7'5 1010 1 5 150

Figure 4.2. The eigenvalues of the symmetrical canting case as a

function of e.
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Figure 4.3. The geometric configuration for 6=¢=90°. In this

case a3=b3=C3 and directed out of the page.

Figure 4.4. The geometric+cogfiguration for 6=150°, ¢=180°. In

this case a1=b1=c1 and directed out of the page.
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In the special case where e=150° and ¢=180°, as in Figure 4.4,

ab_ ab_ ab_ 1_ ab=

1a1'O Yb1“) O‘33" ’ 2 0‘12 0

ab_l ab_]_ ab= ab=

Y(12‘? 1132’ 2 0‘11 1 0‘21 0 (4°14)

ab_ ab_ ab: _ l_

Y513' ‘ “72 1(113‘ “Br/2 0‘22 2

again determined by inspection. The symmetrical canting expressions,

Equation 4.5, once more reduce properly to the above values.



REFERENCES



b
o
o
m

51

REFERENCES

R. D. Spence and A. C. Botterman, Phys. Rev. B 9, 2993 (1974).

G. E. Pake, J. Chem. Phys. 16, 327 (1948).

E. R. Andrew and R. Bersohn, J. Chem. Phys. 18, 159 (1950).

E. R. Andrew, Nuclear Magnetic Resonance, (Cambridge at the

University Press, London, 1955).

 

G.E.G. Hardeman, Resonantie en Relaxatie Van Protonspins in

een Antiferromagnetisch Kristal, (Riksuniveisiteit Te Leiden,

 

 

1954).



11111111111111111111111111111111 0569861303921

3

 


