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Avfif§j\ ABSTRACT

THE DIFFUSION THERMOEFFECT IN BINARY

LIQUID MIXTURES

By

Richard L. Rowley

The heat flow induced by a composition gradient is

known as the diffusion thermoeffect or Dufour effect.

It is characterized by the heat of transport, formally

defined as the ratio of the heat flux to the mass flux

under isothermal conditions. Although theoretical treat-

ments allow calculation of heats of transport from thermal

diffusion experiments on the basis of Onsager heat-mass

and mass-heat reciprocity, no direct, quantitative, experi-

mental determinations of the heat of transport in liquid

mixtures have previously been reported. The direct experi-

mental determination of the heat of transport for carbon

tetrachloride-cyclohexane mixtures reported here has

provided the first experimental verification of the Onsager

heat-mass reciprocal relation. Also reported here are the

first measurements of the behavior of the heat of transport

in a mixture (isobutyric acid-water) near its consolute

temperature.
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The equations of nonequilibrium thermodynamics and

the hydrodynamic conservation equations have been used

to formulate coupled, nonlinear, nonhomogeneous partial

differential equations which when solved subject to ap-

propriate initial and boundary conditions yield time and

space distributions for the barycentric velocity, composi-

tion, and temperature. These equations are solved with

a Crank-Nicholson implicit numerical scheme which allows

inclusion of the composition and temperature dependence

of the thermodynamic and transport parameters.

The heat of transport for carbon tetrachloride-cyclo-

hexane liquid mixtures has been determined directly by

diffusion thermoeffect experiments. The technique employs

a withdrawable "liquid gate" to create a nonturbulent,

sharp, diffusional interface. The heat of transport is

obtained from nonlinear least squares fitting of numerically

predicted values to actual temperature differences meas-

ured about the interface. The agreement of these direct

heat of transport measurements with values calculated from

thermal diffusion experiments constitutes the first experi-

mental verification of Onsager heat-mass and mass-heat

reciprocity in binary liquid mixtures.

The temperature dependence of the heat of transport

has also been measured, for isobutyric acid-water mixtures

near the critical solution temperature. A microwave oven

was used to jump the temperature of the initially two—phase
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system from Just below to Just above the consolute tempera-

ture. Above the consolute temperature, a uniform, one-

phase system is the equilibrium state. Consequently,

as soon as the temperature of the two-phase system is

raised above the consolute temperature, diffusion com—

mences and induces a temperature gradient. Temperature

differences about the interface obtained as a function of

nearness to the consolute temperature yield the critical

exponent for the heat of transport. The heat of transport

vanishes with a +2/3 critical exponent as the critical

solution temperature is approached. There thus exists

a previously unsuspected critical anomaly in the heat of

transport, which can be traced to a diverging Onsager co-

efficient. Because current kinetic theories are incon-

sistent with the critical behavior of the heat of transport,

a new molecular interpretation of the heat of transport is

proposed to explain the nature of coupling between molecu-

lar heat and mass transport as well as its critical be-

havior.
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CHAPTER 1

INTRODUCTION

A. Phenomenology of the Diffusion Thermoeffect

It is well-known that a gradient of composition in-

duces a mass flow or diffusional flux. Similarly, a heat

flux results from a thermal gradient. The phenomena of

diffusion and thermal conduction represent empirical rela-

tionships between flows or fluxes and their respective

driving forces. Less well—known are the relationships

between flows and cross driving forces. Partial separa-

tion of the components occurs when a mixture is subject

to a temperature gradient. Similarly, heat fluxes can

be induced by composition gradients.

The diffusion thermoeffect is just such a cross

phenomenon. The heat flux in a binary, field free liquid

mixture can be written, according to Onsager, as a linear

combination of the gradients of temperature and chemical

potential - the former drives thermal conduction while

the latter produces the diffusion thermoeffect. The

massffliucis similarly a linear combination of the dif-

fusion and thermal diffusion driving forces, which are

Chemical potential and temperature gradients, respectively.

Figure 1.1 illustrates the basic phenomenology of the
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diffusion thermoeffect. In Figure 1.1 z represents the

coordinate axis perpendicular to the interface between

two mixtures. Since "a" is cell height, (z/a) is the

reduced coordinate. The initial conditions shown in

Figure 1.1 are for isothermal mixtures (T = constant) and

a step function in mole fraction x of component 1; i.e.,

l

the mole fraction of component 1 in the upper layer xi

is different from that in the lower layer xL When two1’

isothermal mixtures containing different compositions of

the same two components are brought into contact such that

an initially distinct interface is formed between the

upper less dense phase and the more dense lower phase,

mutual diffusion begins. As diffusion continues, the

initially isothermal temperature distribution changes in

time through three effects: (1) heat of mixing, (2) dif-

fusion thermoeffect - heat transported by mutual diffusion,

and (3) thermal conduction. If equations are available

which describe these three phenomena, then temperature

measurements with respect to time and position will yield

information concerning the diffusion thermoeffect.

Though not essential, the initial conditions shown

in Figure 1.1 best illustrate the effect. The boundary

conditions listed apply to impermeable and adiabatically

insulated walls. These conditions maximize the measura-

bilitycfi‘the phenomenon (Ingle and Horne [1973]).

Although the diffusion thermoeffect, also called the



Dufour effect after its discoverer (Dufour [1873]) has been

suspected for over a century, interest in it was dormant

until Waldmann [1939], [19“3], [19“7], and [19“9] studied

and described it in gaseous mixtures. The equations

used by waldmann are based on ideal gas assumptions and

are not valid for liquid mixtures. Attempts to measure

the diffusion thermoeffect in liquid mixtures by Rastogi

EE.§l° [1965], [1969], and [1970] were only qualitative

and disagreed with the Onsager reciprocal relations. Their

experimental apparatus was not suitable for studying the

Dufour effect unambiguously. The theoretical prediction

by Ingle and Horne [1973], that the diffusion thermoeffect

was indeed measurable prompted initial consideration of

the effect as a tool for this work's study of the behavior

of transport properties near the critical point.

B. Objectives

Unlike gases and solids, liquids and liquid mixtures

have not yet been fully treated theoretically, although

great progress has recently occurred in both equilibrium

and nonequilibrium theories. The liquid-liquid critical

point (consolute point) in a binary mixture, where the

system rapidly changes from a single-phase homogeneous

mixture to a stable two-phase system, is characterized

by increasing molecular correlation lengths. Transport

properties in liquids are often dramatically affected by



this transition and therefore can serve as a probe in

understanding liquid phenomena in this region. Transport

experiments near the consolute point also aid the under-

standing of how molecular phenomena and interactions

couple to yield macroscopic transport.

The goal of the research described in this treatise

was to examine experimentally the diffusion thermoeffect

first in mixtures away from the critical region (since it

had never before been quantitatively measured in liquids)

and second in mixtures near the critical solution tempera-

ture. Since the diffusion thermoeffect involves the

coupling of heat and mass transport, any anomalous effects

in the critical region may help elucidate the manner in

which intermolecular correlations and interactions are

involved in the coupling of fluxes to their various

driving forces. The diffusion thermoeffect is particularly

suitable for studying heat-mass interactions in the criti-

cal region since only small temperature effects are produced

by moderate composition gradients. Thermal diffusion on

the other hand requires a large temperature gradient as a

driving force and therefore restricts the closeness of

approach to the consolute temperature and introduces am-

biguities in the difference Tcell'Tc where Tcell is the

mean cell temperature and Tc is the consolute temperature.

The particular objectives of this work, toward the

overall goals described above, were fourfold: (l) to



measure quantitatively for the first time the diffusion

thermoeffect in liquid mixtures, (2) to test experi-

mentally the Onsager heat-mass reciprocal relation, (3)

to measure the behavior of the diffusion thermoeffect in

the consolute region of a binary mixture in order to under—

stand how it may relate to microscopic phenomena; and (“)

to examine experimentally and compare the behavior of the

Onsager heat-mass and mass-heat coefficients in the con-

solute region. It is hoped that the result will provide

direction for further theoretical and experimental studies,

particularly of transport properties, in the liquid-liquid

critical region.

C. Plan of the Dissertation

Chapter 2 describes the diffusion thermoeffect mathe-

matically within the framework of the fundamental equations

of hydrodynamics and nonequilibrium thermodynamics. Solu-

tions of the equations developed therein have the capa-

bilitycfl‘describing measured temperature distributions in

terms of initial conditions, boundary conditions, and

transport properties. These equations are solved numer-

ically. Chapter 3 indicates special techniques used and

the simulated solutions obtained.

Chapter “ describes experimental investigation of the

diffusion thermoeffect for the carbon tetrachloride-cyclo-

hexane system. The results of these experiments, when



compared with thermal diffusion data, provide the first

verification of the Onsager heat-mass reciprocal rela-

tion (ORR).

Background for critical mixtures and for transport

properties in the critical region is presented in Chapter

5. Literature results clearly indicate the need for the

further experiments deScribed in Chapter 6 on the iso-

butyric acid-water system near its consolute temperature.

Results obtained for the diffusion thermoeffect in this

region show a strong dependence on the microscopic changes

that prepare the system for phase separation. These re-

sults are discussed in terms of possible models in the

final chapter.



CHAPTER 2

MATHEMATICAL FORMULATION OF THE

DIFFUSION THERMOEFFECT

A. Introduction
 

As Figure 1.1 shows, the diffusion thermoeffect occurs

as a result of diffusion across an initially distinct

interface between two phases containing different com-

positions of the same two components. The response is a

disruption of the initial temperature distribution. The

time-dependent temperature distribution at a given posi-

tion is related not only to the diffusion thermoeffect

but also to thermal conduction and heat of mixing effects.

In accord with the findings of Ingle and Horne [1973],

measurements of temperature differences between points

symmetric about the interface as a function of time are

used throughout this thesis. The procedure is to fit

predicted temperature differences to measured values from

which the magnitude of the diffusion thermoeffect can be

deduced. This requires equations which relate the tempera-

ture distribution to the heat of transport - the commonly

used parameter in describing the diffusion thermoeffect.

The equations of nonequilibrium thermodynamics and hydro—

dynamics yield partial differential equations for composi-

tion, barycentric velocity, and temperature as functions



of time and spatial position. The heat and mass fluxes

in the hydrodynamic equations are identified from an en-

tropy production equation. Substitution of the proper

fluxes into the conservation equations, identification of

the transport parameters involved in the fluxes, and deriva-

tion of appropriate boundary and initial conditions yield

a system of partial differential equations which describe

the temperature distribution of the fluid in terms of trans-

port properties and experimental conditions. Nonlinear,

weighted, least squares fitting of measured and calculated

temperatures provides a method for obtaining the heat of

transport.

The method used in setting up the partial differential

equations is not new. Therefore, more consideration will

be given to transformations, simplifications, and solutions

rather than derivations of the appropriate equations.

Details of the derivation and assumptions involved in ob-

taining the starting partial differential equations are

readily available from Fitts [1962], de Groot and Mazur

[1969], Haase [1969], Anderson and Horne [1970], and Horne

[1966] as well as elsewhere. In particular, the notation

of Horne and Anderson is used.

B. Hydrodynamic Equations

In displaying the conservation equations of hydro-

dynamics, limitation to continuous, isotropic, nonreacting
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binary liquid systems is intended. The continuity equa-

tions of mass for the bulk liquid and for component 1

(only 2 of the 3 possible equations for a binary system are

independent) are

(do/dt) + OY'y = o (2.1)

and

p(dwl/dt) + y- 41 = o (2.2)

where t is time, p is density, W1 is mass fraction, and

y is the center of mass or barycentric velocity related to

individual laboratory referenced component velocities by

v = w v + wl~1 The diffusion flux 11 is defined by
2Y2'

£1 = °1(Y ’Y)

where pl = wlp.

The Navier-Stokes equation derivable from the momentum

conservation equation for a Newtonian fluid is

0(dv/dt) + yf(2/3n-¢)(y'y)l-2V°nsyva

3

=o§>~< -VP (2.3)

where smev is the symmetric part of the tensor 2y, n is
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shear viscosity, o is bulk viscosity, Ki are external

forces, and P is pressure.

The equation of energy transport with temperature

and pressure as independent variables is

96p 85" TB gg" °1'Y'3'11'Y( i'fié) (2.“)

Where 5? is specific heat, T is temperature, 8 is thermal

expansivity, ¢1 is the entropy source term for bulk flow,

9 is the heat flux, and Hi is partial specific enthalpy

of component i (prime indicates inclusion of any neces-

sary work terms due to external forces). The entropy

source term ¢l is

¢1 E (g+Pl):Yy (2.5)

where g is the stress tensor.

Equations (2.1) - (2.“) are formulated in general

terms for pedagogical reasons. Considerable simplifica-

tion occurs in the preceding equations for the experimental

arrangements necessary to measure the diffusion thermo-

effect. If the width/height ratio of the fluid slab in

Figure 1.1 is large, wall effects can be excluded, and the

above equations need only be written for the z-direction

taken perpendicular to the interfacial plane. No external

fields are present - gravity effects are extremely small

since the cell height is only one or two centimeters.
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Pressure terms are very small for this experimental ar-

rangement (Anderson and Horne [1970]). Because liquid

densities are usually quite similar, the barycentric vel-

ocity will be small enough that all terms of order (av/32)2

can be safely neglected. These simplifications eliminate

the Navier-Stokes equation - there is no convection in

the cell unless temperature gradients cause density inver-

sions. Likewise, the entropy source for bulk flow ¢l

is negligible due to its dependence on the square of the

velocity gradient.

With the above restrictions and the relation between

substantial and local time derivatives, d/dt = (a/at) +

Y'Y’ Equations (2.1), (2.2), and (2.“) become

(Bo/3t) + (apV/Bz) = O, (2.6)

p(3wl/3t) + (le/az) + pv(3wl/az) = 0, (2.7)

and

pCp(3T/3t) = (sq/32) - Jl[a(fil-fi2)/az] — pva(3T/Bz)

(2.8)

respectively. Before these three equations can be solved

for v, w and T; expressions for the heat and mass fluxes
1’

must be introduced. These are deduced from the theories

of nonequilibrium thermodynamics.
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C. Nonequilibrium Thermodynamics Equations

The framework of nonequilibrium thermodynamics rests

on the foundation of "local states". This simply requires

that all thermodynamic functions of state exist for each

microscopic volume element of the system. Furthermore,

these thermodynamic quantities, in the case of nonequilib-

rium systems, are the same functions of the local state

variables as the corresponding equilibrium thermodynamic

quantities (Fitts [1962]). This permits the concepts of

temperature and entropy in nonequilibrium systems even

though their definitions evolved from thermostatic states.

Likewise, the Gibbsian equations are valid and, therefore,

_ g.__ _.____._ _.

‘ T dt ' T dt T X "1 YET" (2'9)

where S is specific entropy, U is specific internal energy,

and U: is the specific chemical potential of component i.

Entirely from balance techniques for the entropy of

a local volume element (similar to the method by which the

hydrodynamic equations are often derived), an entropy equa-

tion can be written in the form

pdEth = ¢/T - V'j~ ,8 (2.10)

where is is the entropy flux due to mass and heat flows

and the semidefinite positive quantity ¢/T is the rate



l“

per unit volume of the internal entropy production. Sub-

stitution of the hydrodynamic equations for mass and energy

balance into Equation (2.9) and subsequent comparison to

Equation (2.10) allows identification of ¢ after con-

siderable rearrangement. For the system at hand (a binary,

field—free, isotropic, nonreacting, nonelectrolyte liquid

mixture),

6
- ll p1 + $2 (2.11)

where

and

1’2 = - 111551-52)

with yTfiisyfii+§in.

It is important to note that e is of the form

¢ = :ZiJiXi where the J1 and X1 represent fluxes and driving

forces respectively. The fluxes and forces in $1 are ten—

sors of rank 2 while those of $2 are vectors. Centuries

of experimental work have shown linear coupling of fluxes

and forces J1 = gflijxj° For the isotropic liquids con-

sidered here, Curie's theorem, based on spacial symmetry
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arguments, allows coupling only between those fluxes and

forces which do not differ in tensorial character by an

odd integer. In Equation (2.11), the fluxes and forces

of $1 and ¢2 cannot interact. Therefore, heat and mass

fluxes are

-g = nooyznT + 901YT(“1‘“2) (2.12)

'11 = Q01‘3”? + 911YT(“1' "2) (2'13)

where the 013 are called Onsager coefficients. The utility

and indeed the present reason for the nonequilibrium thermo-

dynamic approach is the identification of correct fluxes

and driving forces and their proper coupling as required

by the entropy production equation. For many years, the

driving force for diffusion was thought to be a composi-

tion gradient (Fick's original 1aws),but the equations

of nonequilibrium thermodynamics readily identify it as

a gradient of chemical potential.

D. Transpprt Parameters and Equations

The Onsager coefficients which appear in Equations

(2.12) and (2.13) are related to experimentally observed

transport coefficients. In fact, their identification

is made by comparison with their phenomenological counter—

parts (Fick's law, Fourier's heat conduction law, etc.).
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The 013 for this binary nonelectrolyte mixture are

_* _

9 = KT (A) 901=DDQ1W2/ull (B)
3 u

10 DDT (C) Qll=ODW2/Eil (D)

(2.1“)

where K is thermal conductivity, D is mutual diffusivity,

5: is specific heat of transport (the commonly used measure

of heat transported by diffusion in a diffusion thermo-

effect arrangement), 5115(3E1/3w1)T,P’ and DT is the ther-

mal diffusion coefficient. Often experimental thermal

diffusion results are expressed in terms of the thermal

diffusion factor a1 or the thermal diffusion ratio K
T

rather than the thermal diffusion coefficient DT' These

three coefficients are related by

KT 5 DT/D (2.15)

and

-al 2 KT/wlw2 . (2.16)

Likewise, it is sometimes desirable to retain the form

of Equation (2.12) in which only a single transport co-

efficient appears but written in terms of mole fraction

rather than chemical potential. If Equation (2.12) is

written
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—g = KYT + B Yxl , (2.17)

a new coefficient 8T is defined known as the Dufour co—

efficient. From Equation (2.l“B) and the relationship

between mass fraction and mole fraction, 8T is related

_*

to Q1 by

_* ~

3T = pDQlMlM2/M2 (2.18)

where M is the mean molecular weight defined by M = XlMl

+ x2M2.

From Equations (2.12), (2.13), (2.1“B), and (2.1“D),

_*

the defining equation for the heat of transport Ql

is seen to be

(9/11)AT = 0 ° (2°19)

The heat of transport can therefore be thought of as a

heat flux produced by an isothermal mass flux. If the

isothermal conditions of Equation (2.19) are relaxed,

then

q = §1Q1 - KYT (2.20)

(de Groot and Mazur [1969]). This relationship shows the

two effects which determine the magnitude of the temperature
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difference measured between two points in a diffusion

thermoeffect cell. The heat transported via the mass

flux builds up a temperature gradient while thermal con-

duction tends to diminish it. The relative magnitudes

of Q: and K, for a given diffusional flux, determine the

magnitude of the ensuing temperature gradient. Note also

that the transient nature of the diffusion thermoeffect

is due to a nonconstant mass flux. When q = 0 the heat

flow transported by diffusion identically balances the con-

duction heat flow and

VT = le:/K . (2.21)

If Q1 remained constant throughout the experiment, a steady

state YT would be measured. However, as diffusion de—

creases the composition gradient, 11 decreases. This

lowers ET and a time dependent behavior is observed.

Not all of the set{K;D,Q:,DT} are independent. On-

sager [1931], applying microscopic reversibility concepts,

showed that the matrix of coefficients involved in the

flux-force relations must be symmetric. Though experi-

mental evidence accrues constantly in support of the On-

sager reciprocal relations (Miller [1960] and [1975]),

the results reported herein constitute the first experi-

mental evidence of the heat-mass ORR. For the system des—

cribed by Equations (2.12) and (2.13), ORR implies
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901 = 910 . (2.22)

Substitution of Equations (2.1“) for the Onsager co-

efficients in Equations (2.12) and (2.13) yields for the

applicable one dimensional flux equations

_*

—q = K(3T/3Z) + pDQl(3w1/Bz) (2.23)

- -1
—jl - pD(3wl/3z) - delleZT (ET/32) (2.2“)

where the Gibbs-Duhem equation has been invoked to help

transform chemical potential gradients to single mass

fraction gradients.

Ingle and Horne [1973] argue on the basis of numerical

values for common liquid systems that [alwleT-ll is of the

order 10'3 deg"1 and that therefore thermal diffusion is

at most 0.01% of diffusion, assuming that composition

gradients are an order of magnitude larger than tempera-

ture gradients for diffusion thermoeffect experiments.

Neglect of the thermal diffusion term in Equation (2.2“)

and substitution of Equations (2.23) and (2.2“) into Equa-

tions (2.7) and (2.8), yields partial differential equa—

tions which completely (with appropriate initial and boun-

dary conditions) define v, wl, and T as functions of t

and z:



2O

(ap/at) + (apv/az) = o (2.25)

p(3w1/3t) = {3[pD(8wl/az)]/Bz} - pv(3wl/Bz) (2.26)

pGfi(3T/3t) pD[3(Hl-H2)/Bz](3Wl/3Z)

+ {8[pDQ:(3wl/az)]/az}

95§v(3T/8z) + {8[K(8T/3Z)]/BZ}. (2.27)

These equations are identical to the starting equations

used by Ingle and Horne [1973] in their analytical double

perturbation solution of the diffusion thermoeffect problem.

Their perturbation scheme, while allowing solution even

with composition and temperature dependent parameters,

results in solutions which are extremely bulky and complex.

The number of terms required and the rapidly increasing

complexity of successively higher order terms limit the

practical application of this technique to those liquid

systems whose properties are only slightly temperature and

composition dependent. This unfortunately is not the case

for the systems of interest here. To avoid these dif-

ficulties the numerical scheme discussed in Chapter 3

is used.

The initial condition for the composition equation

is a step function
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I

2Wl(z/a > 0059 O) ‘ u

(2.28)

wl(z/a < 0.5, 0)

where w: and W% are the mass fractions of component 1 at

which the upper and lower phases respectively are prepared.

Exactly at the interface wl is an arithmetic average of the

two phases but it need not be defined unless a grid point

of the numerical scheme is located at that position. The

measured temperature distribution just prior to interface

formation becomes the initial condition for the tempera-

ture equation. It should roughly correspond to isothermal

conditions so that thermal diffusion can be neglected.

Thus, the initial condition is

T(z/a, 0) = T(z/a) (2.29)

where T(z/a) is a constant for isothermal conditions.

Boundary conditions can be imposed from the physical

aspects of the experimental design. Because the walls

are impermeable to matter,

v(0,t) = 0 = v(l,t) (2.30)

for the barycentric velocity and jl = 0 at (z/a) = 0 &

1 for the mass flux. Fick's law restates the vanishing
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mass flux boundary condition as

(awl/Bz)0’t = 0 = (awl/az)l,t (2.31)

since D never vanishes. The boundary conditions for the

temperature equation depend on the experimental arrange-

ment desired. If the walls are adiabatically insulated

the heat flux vanishes at the walls and, from Fourier's

heat conduction law,

(aT/az)O t = 0 = (ST/az)l,t . (2.32)

Although Equation (2.32) is the boundary condition used in

these experiments (the cell was adiabatically insulated to

maximize induced temperature inequalities), it is not the

only boundary condition which can be used.

Before limiting discussion to the carbon tetrachloride-

cyclohexane system (which provides a convenient system for

study of the diffusion thermoeffect away from critical

regions), it is appropriate to list the assumptions involved

in the derivation of Equations (2.25) — (2.27) for they will

also serve as the starting point in the analysis of systems

exhibiting critical mixing. The assumptions employed are:

(l) The linear hydrodynamic equations for conservation

of mass and energy are valid.



(2)

(3)

(“)

(5)

(6)

(7)

(8)
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The binary system is isotropic, nonreacting, and

field free.

Local states are assumed, 1:3,, the equations of

thermostatics apply for local regions.

Fluxes are linear combinations of these forces

which appear in the entropy production equation

and which have the same tensorial rank.

Pressure terms are negligible.

The bulk flow entropy source term is small.

The thermal diffusion portion of the mass flux

is small relative to the diffusional contribution.

The phenomenon takes place entirely in one dimen-

sion, so that wall effects are unimportant.

E. Mole Fraction Equations for Carbon Tetrachloride-

Cyclohexane Mixtures
 

The properties of the carbon tetrachloride-cyclohexane

system are much more nearly constant in molal rather than

in specific quantities. A transformation is therefore use-

ful, with respect to numerical step sizes and to possible

simplifications, from mass fractions and specific proper-

ties to mole fractions and molal properties. Transformation

of Equations (2.25) - (2.27) with the aid of the trans-

formation identities in Appendix A results in

(av/az) = (M2v —Mlv2){a[(D/vn)(axl/az)l/az}, (2.33)
1
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(axl/at) = VM{3[(D/VM)(axl/az)]/Bz} - v(axl/Bz) ,(2.3u)

and

(aT/at) (V/Cp){3[K(8T/Bz)]/Bz}

+ (M2V/Cp){3[(DQ:/VM)(Bxl/az)1/az}

~ 2~E 2 2
+ (D/Cp)(3 H /3X1)T’P(3Xl/Bz) -v(3T/Bz) (2.35)

~

where x1 is mole fraction of component 1, V is molar vol-

~ ~

ume, Cp is molar constant pressure heat capacity, Q1 is

the molar heat of transport, and HE is the molar excess

enthalpy. Equations (2.33) - (2.35) are the mole fraction-

molar property versions of the mass fraction-specific

property Equations (2.25) - (2.27) which Ingle and Horne

[1973] used. The excess molar enthalpy HE is related to

the difference in partial specific enthalpies by

[am -H)/321= (Fa/M M )(BZHE/axz) (8x mm (2 36)
l 2 1 2 l T,P 1 '

as derived in Appendix A.

For carbon tetrachloride-cyclohexane mixtures, the

excess volume of mixing is very small (Wilhelm and Sack-

mann [197“] indicate it to be everywhere less than 0.2%

of the total molar volume) and V = V?
O

i where V1 is the
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pure component molar volume. Integration of Equation

(2.33) subject to the boundary conditions

v(0,t) = o = v(l,t) (2.37)

and

(3X1/32)0,t = 0 = (3X1/32)1,t , (2.38)

yields for the barycentric velocity

v = (MZVE-Mlvg)(D/VM)(3xl/Bz) . (2-39)

Substitution of this expression into Equation (2.3“) pro-

duces upon rearrangement

(ax /at) = D(32x /Bz2) + [(aD/ax )
l l 1 T,P

~ ~ 2
- 2(D/V)(EV/3x1)T’P](3xl/Bz) . (2.“0)

For the experiments reported in this dissertation,

the composition and temperature dependencies of D and V

in Equation (2.“0) do not measurably contribute to the

observed temperature difference produced by the diffusion

thermoeffect. Numerical verification of this statement

was made by determination of the heat of transport (from
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experimental temperature differences) both with and without

the composition and temperature dependencies of D and V.

No detectable effect was found. There were of course

small differences in the composition as a function of time

and position because of the dependence of the parameters

D and V on composition. Nevertheless, small errors in the

composition profile due to relatively good assumptions in

the diffusion equation had a negligible effect on the solu-

tion of the temperature equation. It suffices therefore

to use

(axl/at) = DO(32Xl/322) (2.“1)

instead of Equation (2.“0) to describe composition in time

and space where the subscript 0 is used to denote evaluation

of the parameter D at x1 = 0.5 and T = 298.15 °K. Explicit

formulas for calculating directly the effect of the composi-

tion and temperature dependence of D and V on the experi-

mentally observed temperature differences may be found in

the paper by Ingle and Horne [1973]. As emphasized there,

these dependencies do not contribute to the temperature

difference measured symmetrically about the interface be-

cause they involve terms of only even symmetry about the

center.

The solution of Equation (2.“1), subject to the experi-

mental boundary conditions, is
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00

x1 = (x1> + 2(Axl/w) 2E0 (-1)“(22+1)'l

X{exp[-(22+l)2(t/6)1}Cos[(2£+1)wz/a] (2.u2)

where <xl> is the initial arithmetic mean x Ax is the

1’ 1

difference in X1 between the initial two phases, and

6 E a2/W2DO. It is important to note that the numerical

technique described in the next chapter allows solution

of Equation (2.“0) in its entirety when Equation (2.“1)

is not satisfactory for the desired system. In actual

practice, numerical solutions for both the composition

and temperature equations were used in the determination

of the heat of transport. This allowed development of a

computer program using the more general equation which

could then be quickly simplified to Equation (2.“1) for

appropriate systems such as carbon tetrachloride-cyclo-

hexane.



CHAPTER 3

NUMERICAL SOLUTION OF THE DIFFUSION

THERMOEFFECT EQUATIONS

A. General Scheme

Equations (2.“0) and (2.35) or Equations (2.“1) and

(2.35) with the initial and boundary conditions of Equa-

tions (2.28), (2.29), (2.32), and (2.38) completely des-

cribe the diffusion thermoeffect for the conditions of

experimental interest. Explicit solution of these equa-

tions is not easy because they are not only nonhomogen-

eous but are also coupled and nonlinear with nonconstant

coefficients. This type of problem is, in general, un-

solvable without recourse to numerical techniques. The

general presentation discussed here is due to Rosenberg

[1969].

To obtain a numerical solution, continuous variables

are replaced by their discrete counterparts. Partial

derivatives are represented by finite differences so that

the partial differential equations become finite dif—

ference equations - algebraic rather than differential.

To obtain discrete variables, the continuous time-space

domain of the problem is subdivided as shown in Figure

3.1. The time domain is divided into rows labeled with the

28
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Figure 3.1. Crank-Nicholson grid scheme for finite dif-

ference equations. Properties are evaluated

at the i,n positions, 0. Derivatives are

evaluated at the i,n+1/2 positions, I.
I
]
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index n. The spatial domain is divided into R columns

each labeled with an index denoted by i. Any dependent

variable U can be specified in time and space with its

appropriate indices Ui,n'

If U is expanded in a Taylor's series about the
i+l,n

point Ui (at constant n),
,n

U = U
2 2 2 ,

i+l,n + (BU/32)i,nAz + (8 U/az )i,n(Az) /2.
i,n

+ (33U/BZ3)i,n(AZ)3/3! + ..., (3.1)

finite difference representations for spatial derivatives

can be obtained in terms of the distance between two

consecutive spatial grid points “2. This is done by writ-

ing the Taylor's expansion for Ui-l about U
,n i,n’

_ 2 2 2 ,
- Ui,n - (BU/az)i,nAz + (a U/az )i,n(Az) /2.

Ui-1,n

- (a3U/az3)i n(Az)3/3! + ..., (3.2)

and then by comparing Equations (3.1) and (3.2). For

instance, the forward and backward difference equations

for the first derivative are obtained by rearranging

Equations (3.1) and (3.2) respectively and then truncating

them to obtain

(BU/az)i,n = (Ui+l’n — Ui n)/Az , (3.3)
3
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and

(BU/az)i,n = (Ui,n - Ui-l,n)/AZ . (3.“)

Notice that the first term omitted in the truncation is

(32U/322)1’nAz/2!. The truncation error is first order

in Az, and the finite difference expressions are therefore

first order correct analogs. A better approximation for

the first derivative is obtained by subtracting Equation

(3.2) from Equation (3.1),

(BU/az)i,n = (Ui+l,n — Ui_l,n)/2Az

- (83U/8z3)1,n(Az)2/3! - ...,

and then truncating terms of order (Az)2 and higher, with

the result

(BU/82),”r1 = (Ui+l,n - Ui-l,n)/2Az . (3.5)

Equation (3.5) is a second order correct representation of

the first spatial derivative. A graphical comparison of

first and second order correct finite difference analogs

is reproduced in Figure 3.2 (Rosenberg [1969]) where

line "a" represents the true slope of the curve at a point.

Line "b" is the second order correct analog and approximates
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correct analogs for the first derivative as

illustrated by Rosengren [1969]. a. Actual

derivative. b. Second order correct analog.

c. First order forward difference. d. First

order backward difference.
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the slope much more closely than the forward and backward

first order correct analogs shown as lines "c" and "d",

respectively.

A second order correct approximation for the second

derivative can be obtained by adding equations (3.1)

and (3.2) and truncating terms of order (auU/azu)i’n(Az)2/“!

and higher,

2U(3211/3225,n = (U + Ui_1,n)/(Az)2- (3.6)
i+l,n ' i,n

The finite difference expression for the first time

derivative can also be made second order correct by using

the Crank-Nicholson method. Finite difference expressions

are centered about the points zi’tn+l/2 which are half-

way between the known and unknown time levels. Dependent

variables U are evaluated at grid points, represented

by open circles in Figure 3.1, while derivatives are cal-

culated at center points such as the one designated with

the black square. The time derivative is

(BU/3t)i,n+l/2 = (Ui,n+l - Ui,n)/At (3'7)

which is second order correct. The spatial derivatives in

this scheme become
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(BU/32)i,n+l/2 = 1/“[(Ui+l,n+1 ' Ui-l,r1+1)/AZ

+ (01,1,r1 - Ui—l,n)/AZ] , (3.8)

and

(2)2U/az2)1’n+1/2 = 1/2[(Ui+1,n - 2111,n + Ui_l,n)/(AZ)2

2

+ (Ui+1,n+1 ‘ 2Ui,n+l + U1-1,n+1)/(“Z) 3 ' (3'9)

The Crank-Nicholson method is particularly effective for

the diffusion thermoeffect problem because there is no

stability restriction on At/(Az)2.

Equations (2.“0) and (2.35) are of the same general

forml,

a(aU/at) - (82U/az2) + b(aU/az) = d (3.10)

where a, b, and d are combinations of various transport

and thermodynamic properties and are, in general, functions

 

1Although for the carbon tetrachloride-cyclohexane

system Equation (2.“1) was used in place of Equation (2.“0),

the solution procedure outlined here uses the more general

Equation (2.“0). Both equations yield the same temperature

difference result for carbon tetrachloride-cyclohexane

mixtures.
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of temperature and composition. Substitution of Equations

(3.7) - (3.9) into Equation (3.10) followed by a regrouping

of terms yields the algebraic expressions

Ai,n+1/2Ui-l,n+l + Bi,n+l/2Ui,n+l

+ Ci,n+1/2Ui+l,n+1 = Di,n+1/2 (3°11)

where

A1,n+1/2 = 1 + (AZ)°1,h+1/2/2 ’ (3°12A)

Bi,n+1/2 = ‘2“?(“Hanna/JAt ’ (3'125)

C1,n+1/2 = l'(’-"Z)°1,n+1/2/2 ’ (3°12C)

and

_ 2

Di,n+l/2 - -Ai,n+l/2Ui_l,n + [2-2(AZ) ai,n+l/2/At]Ui,n

— c - 2(Az)2d (3.12m)
i,n+l/2Ui+l,n i,n+l/2

The equations are grouped in this fashion to display their

recursive nature. Values of U on the right hand side of

Equation (3.11) depend only on the nth time row while those

on the left hand side depend only on the n+1St row. A
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complete time row must be solved simultaneously from the

previously calculated row since Ui n+1 appears in Equation

3

(3.11) with both adjacent neighbors Ui-1,n+l and Ui+l,n+l°

Although the coefficients A, B, C and d are to be

evaluated between the time rows, an iterative procedure can

be avoided if Ai,n+1/2 = Ai,n; Bi’n+1/2 = Bi,n5 Ci,n+1/2

= C and d = d In this case, properties of
i,n; i,n+1/2

the system need be evaluated only at the nth time row

i,n'

where temperature and composition have already been

calculated. Because the composition equation is solved

prior to the temperature equation along the n+1St row, the

temperatures and compositions of the nth row grid points

are used to evaluate the parameters at the respective

n+l/2 locations. The temporarl spacing of the grid points

is based on a thermal conduction time scale which is much

faster than a diffusion time scale. Hence, the change in

composition between n and n+l/2 is negligible. Similarly,

as long as the row spacing At is not too large, the tempera-

ture dependence of the parameters evaluated at tn will be

essentially identical to the values at tn+1/2° For the

temperature equation, the parameters are directly evaluated

at n+l/2 with respect to composition by averaging the

composition at tn and tn+l’ The temperature dependence of

the parameters, however, is again evaluated at tr1 rather

than tn+l/2' Little or no error results for At small

compared to that required for significant changes in the
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temperature. Although time step sizes were increased as

the experiment progressed, care was taken to ensure that

they remained small enough that essentially no error was

introduced by evaluating the parameters with respect to

temperature at tn rather than tn+l/2‘ This procedure is

summarized in the flow diagram of Figure 3.3.

the values of
n+1’

Ui n must be known. The values for U1 0 are obtained from

2 3

To solve Equations (3.11) for Ui

3

the initial conditions and are therefore completely

specified. For any given row of R spatial increments,

the values of U and U must also be specified — these
0,n R,n

are the boundary conditions. Putting Equations (2.32) and

(2.38) into finite difference notation yields with the aid

of Equation (3.5)

U = U & UR,n = UR_2,n (3.13)

where the grid points are aligned such that i=1 and i=R—1

correspond to cell walls. This reflective boundary condi-

tion assigns imaginary grid points i=0 and i=R outside the

cell walls, but U0 and UR are never evaluated.

With the previous comments concerning the evaluation

of A, B, C, and d; Equations (3.11) and (3.13) can be

combined to yield a (R—l) x (R-l) tridiagonal matrix for

each row in time
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where the displayed indices are i values. Each tridiag-

onal matrix system (one for each row in time) is solved

via the Thomas Algorithm (Rosengren [1969]) as illustrated

in Figure 3.3.

The numerical solution of the diffusion thermoeffect

has certain advantages over the lengthy perturbation equa-

tions of Ingle and Horne [1973]. The composition and tem-

perature dependence of the parameters are fully included

without involving numerous infinite summations. Ingle and

Horne's solutions work well for systems whose pure com-

ponent properties are similar and whose mixture properties

are only slightly composition dependent. Otherwise, too

many higher order terms are needed in the perturbation

scheme for it to succeed.

The main advantage of the numerical technique is that

the boundary conditions and initial conditions can be

slightly altered without necessitating an entirely new
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analytical solution. Different solving techniques are

usually required for different boundary conditions in the

case of analytical solutions. The initial experimental

conditions need not be isothermal to observe the diffusion

thermoeffect as long as the initial temperature distribu-

tion (it must be small enough to avoid thermal diffusion

terms) is known in order to assign values to the first

row of grid points. The adiabatic or reflective boundary

condition can be changed relatively easily. For diathermal

walls, the grid points located at either cell wall can be

assigned a value of constant temperature equal to the out-

side bath temperature.

Once the computer program has been set up to evaluate

numerically Equations (3.10), many other transport phenomena

are readily simulated by a simple change of variables.

Thus, essentially the same program models diffusion, thermal

conduction, thermal diffusion, and pressure diffusion (most

thermodynamic transport equations are parabolic partial

differential equations), as well as the diffusion thermo-

effect.

The solutions, obtained as outlined above, were checked

for stability by comparison of results obtained using dif-

ferent step sizes. The number of spatial and temporal

grid divisions were both varied by more than an order of

magnitude without change in the dependent variables except

at very short times. Programming was checked by comparison
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to the solutions obtained by Ingle and Horne [1973] for a

case in which their first order equations adequately des-

cribed the system.

B. Solutions for the Carbon Tetrachlorideegyclohexane

System

Using parameter values for the CClu - 37C6H12 system,

numerical solutions were generated. Because solution of

the corresponding system of tridiagonal matrices yields

U = U(z,t), U was generated as a three dimensional sur-

face. The velocity surface obtained indirectly from

Xl(z,t) is shown in Figure 3.“. Note that the barycentric

velocity v is essentially negligible except for very short

times right at the interface. This results from the

initial condition where composition (hence density) is a

step function. If a simple algebraic solution for the Du-

four effect is desired, a good approximation would be to

neglect v.

The composition surface shown in Figure 3.5 is indica-

tive of why the diffusion thermoeffect is a transient phen-

omenon in mixtures away from their critical solution tem-

peratures. Note that as the experimental time proceeds,

the gradient of composition flattens out. Heat and mass

fluxes are related through the heat of transport by Equa-

tion (2.20). As jl decreases in time, the measured
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transient temperature gradient also decreases since thermal

conduction down the temperature gradient balances the heat

of transport term. The transient nature of the tempera-

ture distribution can be seen from Figure 3.6.1 Note that

the upper or less dense phase rapidly increases in tempera-

ture after initial boundary formation while the lower phase

decreases. This conveniently eliminates density inversion

possibilities. It also reflects a positive Q: because the

phase rich in component 1 induces the colder temperature.

The maximum AT between the top and bottom phases shown in

Figure 3.6 is about 0.28°C. Rapid establishment of the

maximum is due to the large initial composition gradient

which then slowly decays.

In confirmation of the results of Ingle and Horne[l973],

numerical simulation shows that the heat of mixing contribu-

tion to the local temperature distribution is symmetric

about the interface. While an endothermic (or exothermic)

heat of mixing lowers (or raises) the overall temperature

of the cell, the difference in temperature between two

points symmetric about the interface is not affected

by the heat of mixing term. This is dramatically illus-

trated in Figures 3.7 and 3.8. Even solutions in which
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1This plot was made for HB = 0 with Q1 values evaluated

from thermal diffusion factors using ORR.
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HE differs greatly from regular solution theory allow

determination of AT between points symmetric about the

interface without interference from the heat of mixing.

This fact led to the experimental design and data analysis

used in the next chapter. Although heat of mixing data

are fully included in the equations, only temperature

differences measured equidistant from the interface are

~*

necessary for the determination and evaluation of Q1'



CHAPTER “

DIFFUSION THERMOEFFECT EXPERIMENTS

ON CARBON TETRACHLORIDE-CYCLOHEXANE MIXTURES

A. Experimental Design

For a meaningful analysis of diffusion thermoeffect

data using the mathematical methods developed in the

preceding chapters, the cell in which the measurements

are made must be of a design consistent with the condi-

tions of Figure 1.1 and the assumptions outlined in Chap-

ters 2 and 3. Although Rastogi et a1. [1965], [1969],

and [1970] reported the first attempted measurements of

the diffusion thermoeffect in liquid mixtures, their ex-

perimental design was not amenable to theoretical analysis

as Ingle and Horne [1973] and Rowley and Horne [1978]

point out. Most of the diffusion thermoeffect induced

temperature gradient was in fact eliminated by their cell

design. The cell used by Rastogi 32 a1. had two vacuum—

jacketed half cells into which the initial phases were

introduced. These half cells were separated by a con-

stricted region which was not insulated with a vacuum

jacket. The interface was formed in the constricted

region by opening a stopcock. With an interfacial diameter

only half that of the bulk cell, radial diffusion and

50
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radial heat conduction must have occurred in the two half

cells, thereby vitiating the one dimensional transport

equations. The temperature directly above the inter-

facial area was subject to change not only by the diffu-

sion thermoeffect but also by thermal conduction into the

concentric ring of diathermal fluid outside the interfacial

area. Understandably, no quantitative analysis or veri—

fication of the Onsager reciprocal relations were obtain—

able from these results. The design and use of a diffusion

thermoeffect cell consistent with the conditions required

in the preceding chapters therefore constitutes the first

direct measurement of heats of transport in binary non-

electrolyte liquid mixtures as well as the first test of

Onsager reciprocity between 001 and 910 in such systems.

Traditional diffusion cells use mechanical methods of

interface creation often followed by siphon boundary sharp-

ening. Although diffusion thermoeffect experiments require

a distinct, sharp interface like that of diffusion experi-

ments, the creation technique is more important in the

former case since the response monitored is temperature

rather than composition. Characteristic times are much

shorter for thermal diffusivity than for diffusion,and

boundary sharpening techniques are too slow to prevent heat

conduction. Mechanical interfacial formation such as slide

withdrawal or cell rotation can introduce turbulence aswell

as obscure the initial time of the experiment (Bryngdahl
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[1958]). Initial times in cells employing these tech-

niques are obscured by the finite time required for slide

withdrawal or cell rotation during which only part of the

interface has been formed. Turbulence and initial time

problems are coupled. If the mechanical motion is ac-

celerated to reduce time errors, interfacial turbulence

is enhanced (Bryngdahl [1958]).

To allay these problems, the diffusion thermoeffect

cell used here creates a sharp interface by the slow with-

drawal of a third component from between the upper and

lower layers. No ambiguity of the initial time is intro—

duced since the third component is immiscible in the other

two layers. Thus, diffusion is prevented until the middle

layer has been completely withdrawn allowing contact between

the two layers of interest. Interfacial turbulence is

minimized since there are no moving surfaces. Furthermore,

there are no seals or possible leakages in the inter-

facial region. Unfortunately, the binary systems amenable

to investigation with this cell are those for which a

third component can be found possessing the necessary

properties: (1) a density intermediate to the densities

of the upper and lower mixtures, and (2) insignificant

solubility in either of the other two components. Distilled

water satisfies these requirements for the carbon tetra-

chloride-cyclohexane system and therefore served as the

withdrawable "liquid gate" for the experiments reported
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in this chapter.

The glass cell shown in Figure “.1 has two sections

internally separated by an 8.5 cm length of glass tubing

approximately 35 mm I.D. containing a stopcock. The upper

and lower sections are jacketed for either thermostatting

or vacuum insulating the containers. A stopcock in the

tube connecting these jackets allows a vacuum to be creat-

ed around onLythe lower cell. The bottom container in

Figure “.1 (or in the schematic diagram of Figure “.2)

is the actual diffusion thermoeffect cell. The upper con-

tainer serves only as a reservoir for the less dense phase

during displacement of the withdrawable "liquid gate".

Inside dimensions are

height: 2.0 cm

diameter: 6.0 cm

rim opening: m1 mm

rim depth: ml mm

where the rim is the bulge shown encircling the cell at

half-height in Figure “.1.

In preparation for each experimental run, the carbon

tetrachloride—cyclohexane mixtures were gravimetrically

prepared in two stoppered weighing erlenmeyer flasks of

50 mL capacity. Both components were "Baker analyzed"

spectrophotochemical reagent grade of 99.0% guaranteed

purity and were used without further purification. Horne



5“

Figure “.1. Withdrawable "liquid gate" diffusion thermo-

effect cell.
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Figure “.2.
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Schematic diagram of withdrawable "liquid

gate" diffusion thermoeffect cell.

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)

(J)

Upper phase storage reservoir.

Cell jacket for thermostatting or adia-

batically insulating.

Diffusion thermoeffect chamber.

Thermocouple banks.

Equatorial water entrapment rim.

"Liquid gate" withdrawal spout.

Ground glass fittings for thermocouple

leads and cell drainage.

T-connector to vacuum line and thermo-

stat.

Filling tubes.

Glass syringe.
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[1962] has reported an in-depth error analysis for dif-

ferent techniques of gravimetrically preparing carbon

tetrachloride-cyclohexane mixtures. The more volatile

cyclohexane was added to the already weighed carbon tetra-

chloride and the flask was immediately sealed with a

ground glass stopper lubricated with Fisher "Nonaq" grease,

which is inert to both carbon tetrachloride and cyclohexane.

Horne's [1962] discussion indicates carbon tetrachloride

weight decrease via vapor loss during the addition of the

cyclohexane to be less than 0.02%. No change of weight

in time was detected for the filled flask once stoppered

as described above.

The lower or diffusion thermoeffect chamber was filled

in a two step process. First, distilled water was intro-

duced from the bottom until it half filled the cell. Second,

the more dense carbon tetrachloride-cyclohexane mixture was

layered beneath the water layer by injection from below

with 21 syringe pump purchased from the Harvard Apparatus

Company. This technique prevented evaporational changes

in composition during cell infusion. Introduction of the

carbon tetrachloride rich layer raised the water level

into the storage cell. Care was taken to remove any

trapped air bubbles from the lower cell after which the

stopcock between it and the reservoir was closed. The

cyclohexane rich or less dense layer was then quickly

introduced into the storage reservoir with a 100 mL syringe.
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The syringe was left connected to the storage reservoir

during withdrawal of the "liquid gate". It served as an

enclosed piston for volume displacement as the distilled

water was withdrawn.

After filling, the cell and storage reservoir were

thermally equilibrated with the thermostatting jacket

surrounding them. To maintain the initial and boundary

conditions used in the mathematical description of the

effect, the initial nearly isothermal conditions (complete

temperature uniformity is not required if the initial

temperature distribution is known) must be quickly changed

to adiabatic conditions upon interface formation. Adia-

batic walls were imposed by evacuating the jacket with a

vacuum pump. It was found that the above conditions could

not be met if a liquid was circulated in the circumam-

bient jacket as the thermostatting fluid. Wetting of the

cell walls by a thermostatting liquid left residual drop-

lets when the jacket was drained. Adiabaticity could not

then be imposed due to vaporization (and associated heat

effects) of the droplets as the jacket was evacuated.

Consequently, room temperature air served as the thermo-

statting fluid. No temperature effects were noticed when

the jacket was evacuated for a trial run in which the cell

contained only pure water. Nevertheless, some runs were

performed by evacuating the jacket immediately after fill-

ing the cell and allowing internal thermal equilibrium to
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take place before starting the experiment. No discrep-

ancy was noted between the results obtained via the two

different procedures. In all cases, temperatures at each

thermocouple location were continuously monitored to ob-

tain the temperature distribution at the time of interface

formation. This measured initial temperature distribution

served as the mathematical initial condition.

The "liquid gate" (distilled water) was withdrawn via

the syringe pump at a rate of 0.76“ mL/min until only a

small phase separated the two carbon tetrachloride-cyclo-

hexane layers. From this point until contact of the two

layers, withdrawal rates were slowed to 0.0206 mL/min or

0.0382 mL/min to eliminate possible convection currents.

Faster withdrawal rates slightly altered the initial tem-

perature distribution in time even though the mixture dis-

placing the water had been co-thermostatted in the reser-

voir with the cell itself. Smooth interface creation oc-

curred uniformly and isochronously throughout the cell

except within the equatorial rim where the meniscii were

curved by preferential wetting. However, due to this

wetting, any residual water at the time of contact between

the upper and lower layers was contained within the rim.

Preliminary experiments indicated that constriction of

interfacial diameter relative to cell bulk diameter reduced

the ensuing temperature gradient. This is due to radial

thermal conduction as mentioned earlier with respect to
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the cell used by Rastogi _3 a1. Therefore, care was taken

to ensure that any residual water at the time of inter-

face formation was contained within the equatorial rim

from which the withdrawal spouts extended.

Immediately upon interface formation, a Precision

Scientific Co. "time it" digital timer (0.1 second read-

out) was activated, the syringe pump was disengaged, the

stopcock between the reservoir and the cell was closed,

and the vacuum jacket was evacuated. Temperature changes

were monitored with “0 gage copper-constantan thermocouples

placed equidistant above and below the interface as shownixi

Figure “.2. Each thermocouple comb cbntained four thermo-

couples spaced 2.0 mm from each other, the outside walls,

and the interface. Welded junctions (0.2 mm in diameter)

were spaced 2.0 mm from the surface of the 1.5 mm thick

Delrin ® (K = 0.23 J-m'lK-l) comb. Thermocouple potentials

were monitored with a Leeds and Northrup Co. K-3 poten-

tiometer facility provided with 16 thermocouple stations.

Temperatures at the eight thermocouple locations were

made at approximately 12 second intervals. Readings were

taken alternately about the interface such that differences

in temperature AT between symmetrically located thermo-

couples had uncertainties in time of about :6 seconds.

For these experiments, differences in temperature were

obtained by subtraction of two absolute temperatures

because it was felt important to observe actual temperatures
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everywhere during these pioneering measurements. In the

experiments performed later on critical mixtures, enhanced

precision was obtained by monitoring temperature differ-

ences directly rather than referencing each thermo-

couple to the ice bath. Exact thermocouple locations

were measured in_§itu_with a Beck Vernier Measuring Micro—

scope. Accuracy in exact thermocouple location was limited

by the finite size of the welded thermocouple junction (us-

ually 0.2 mm in diameter).

Monolayers of water were assumed not to be present im-

mediately following interface formation due to the hydro-

phobic character of both layers. Furthermore, since the

sharp interface initially formed becomes indistinct as

diffusion occurs, a monolayer cannot exist more than

instantaneously. The system becomes continuous as soon

as the initial step function in composition has vanished

due to diffusion, and any interfacially adsorbed water

must have previously been removed.

The maximum temperature difference between symmetric

thermocouples was obtained after 500 - 800 seconds. The

maximum temperature difference was found to be dependent

upon the difference in initial compositions in accord

with theory (Ingle and Horne [1973]). The starting mole

fraction differences varied between 0.59 and 0.82 with

corresponding temperature difference maxima from 0.21 °K

to 0.30 °K respectively. Pure components were not used
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for two reasons: (1) Preliminary experiments revealed an

onset of turbulence at the newly formed interface when

pure components were used, presumably due to large sur-

face tension shock between two different pure components.

(2) Heat of mixing effects are dependent upon the square

of the initial composition difference and are thus lowered

relative to the diffusion thermoeffect for smaller initial

composition differences (Ingle and Horne [1973]). The

second reason above is not very important for the experi-

mental design used here because heat of mixing effects do

not contribute to temperature differences taken at points

symmetric to the interface.

B. Analysis of Technique

As alluded to in the previous section, the initial

condition for the temperature equation was obtained from

measurements of cell temperature prior to contact of the

two layers. Temperatures at all eight thermocouple loca—

tions were continuously monitored as a function of time.

The exact time of contact was recorded,and an extrapola-

tion from the previous temperature readings to the contact

time yielded temperatures for each thermocouple at t = 0.

No extrapolation between a previous reading and t = 0

extended over 180 seconds,and no extrapolated temperature

change exceeded 0.010 °K. The initial condition data are

recorded in Table 8.1 of Appendix B. For the five runs
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performed, three were isothermal and two had essentially

linear temperature distributions. Neither of these dis-

tributions included differences larger than 0.068 °K be-

tween the top and bottom surfaces of the cell. Presumably,

the nonisothermal distribution in these two runs was due to

faster withdrawal rates and hence to faster intake rates

of reservoir thermostatted liquid. It should be emphasized

again that isothermal initial conditions are not required

as long as the actual temperature distribution is known,

and the initial gradient in temperature is small enough

that thermal diffusion terms are still negligible. More-

over, computer simulation using the equations developed

in Chapters 2 and 3 indicates that small initial tempera-

ture distributions do not markedly affect the difference

in temperatures between two symmetric points for times

measured after the maximum temperature difference has

been reached. This is because the magnitude of AT is

fixed by a balance between the opposing effects of thermal

conduction and the heat of transport and not by the pre-

vious temperature history of the mixture.

Care was taken to ensure that no vapor or air bubbles

remained in the cell. Until they were removed, air bubbles

aided in leveling the cell. Residual air pockets were

removed with a filling needle connected to a syringe.

Entrance to the filled cell could be made by dislodging

the ground glass fitting (through which the upper
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thermocouple leads entered) with the stopcock to the

reservoir closed. By carefully opening the stopcock,

hydrostatic pressure allowed displacement of the last

air bubbles. The ground glass fitting, coated with a

thin layer of Fisher "Nonaq" grease, was then firmly

reinstated. A preliminary experiment with only 97C6H12

showed that no vapor loss occurred around this fitting if

coated with the inert lubricant. However, with a dry glass

fitting, the upper portion of the cell persisted to be

0.05 °K colder than the lower region due to the endother-

mic vaporization of ng6Hl2 around the joint. A fresh

seal of the "Nonaq" grease was applied before each experi-

mental run.

Although temperature differences were monitored for

all four thermocouple pairs, only data from the pair clos-

est to the interface [(z/a) = 0.“0 and (z/a) = 0.60] are

reported in Appendix B Table B.2. Only data from this pair

were used in the calculation of Q: because the innermost

thermocouple pair is least prone to the possible errors

discussed below. Deviations from the mathematically pre-

dicted temperature differences can arise from: (1) Pertur-

bations due to the presence and finite size of the thermo-

couple holder and the other thermocouples. (2) Thermal

conduction through the thermocouple holders. (3) Side

wall effects. (“) Heat losses through the cell ends; LLQL,

nonconformity to the prescribed adiabatic boundary
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conditions. The first problem was minimized by allowing

the thermocouple junctions to protrude 1.5 mm from the

holders. In addition, the innermost thermocouple of each

group (closest to the interface) extended 1.0 mm below

the holders. Any effects due to the presence of other

thermocouples and/or the thermocouple holders, would not

be felt by this pair of thermocouples. For similar reasons,

the difference in thermal conductivity between Delrin ®

holders and the system would not affect the temperature

differences of the innermost pair. Side wall effects were

probably negligible because of the relatively large diam—

eter/height ratio. Furthermore, the main region of dif-

fusion is the interfacial region and wall effects would

be less important for those thermocouples closest to the

interface.

The fourth problem warrants more concern. Obviously,

it is impossible to have perfectly adiabatic walls, yet

the mathematical boundary condition used implies perfect

adiabaticity. Computer simulation shows that a change

in boundary conditions from adiabatic to diathermal af-

fects the innermost thermocouples the least. That is,

small deviations from temperatures described by adiabatic

boundary conditions due to imperfect adiabaticity of the

walls are absorbed by the bulk fluid before they are felt

near the interface. Therefore, any heat conduction through

the cell ends where the thermocouple holder is connected
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or where other tubes enter the cell may affect the outer

thermocouple pairs. The innermost pair appears to be the

most accurate and reliable set with respect to each of the

above four sources of error. Therefore, only data from

this pair were used in computing Q:.

In view of the above discussion, computer simulation

was used to check the validity of the adiabatic boundary

conditions. Figure “.3 compares the time dependent

shapes of AT values, expected for adiabatic and diathermic

boundary conditions for a given value of Q:, to the experi-

mental values obtained from the innermost thermocouples.

As can be seen, the boundary conditions change the time

dependent behavior of the predicted AT values consider-

ably. Note that the actual AT time dependence clearly

corresponds to that predicted on the basis of adiabatic

walls. Data from thermocouple pairs further from the

interface also agreed with the behavior predicted by the

adiabatic model at shorter times but deviated at inter-

mediate times. The length of time during which the AT

behavior was consistent with the adiabatic model was

inversely proportional to the distance from the inter-

face at which the particular thermocouple pair was located.

Figure “.3 is obvious verification that the innermost

thermocouples provide accurate readings for the experi-

mental time scale (%“000 seconds) when adiabatic boundary

conditions are used. A comparison run was also made in
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which the innermost thermocouples were each moved 10%

further from the interface. The Q: obtained was unchanged.

As previously mentioned, only temperature differences

between thermocouples positioned equidistant from the inter-

face were used in the parameter estimation procedure. More

sensitivity is obtained in computing the heat of trans-

port by this technique because the large background heat

of mixing with accompanying uncertainties is eliminated.

As Ingle and Horne [1973] have shown, the principal heat

of mixing contribution is symmetric about the interface.

Computer simulation using the previously described numeri-

cal routine substantiates their conclusions. In fact, the

symmetry of the heat of mixing term, even for mixtures

which deviate substantially from regular solution theory,

allows calculation of the antisymmetric heat of transport

term without including the excess enthalpy provided sym-

metric temperature differences are used as input data.

The sacrifice made in using only AT data rather than indi-

vidual T values is that only one rather than two parameters

can be accurately determined for a given run.

Because only one parameter was to be obtained from

the nonlinear, weighted, least squares fit of theoretical

to measured AT values, the most composition independent

form of the heat of transport was desired. As shown in

Appendix A, the relationship between Q: and al, assuming

Onsager reciprocity, involves various factors of which
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...fi ...

Q1 and M are the only strongly composition dependent terms.

In fact, a is used for reporting thermal diffusion re-

1

sults because of its relative constancy with respect to

composition. Consequently, (OX/M) is fairly composition

independent and was used as the adjustable parameter in

the fitting procedure. Program "KINFIT“" (the 1977 version

of "KINFIT" as published by Dye and Nicely [1971]), a

generalized, weighted, nonlinear, least squares fitting

routine extensively used in fitting chemical kinetics

data at Michigan State University, was used as the param-

eter estimating routine into which the previously des-

cribed numerical partial differential equation solver

was introduced. An example of the fit obtained using

this procedure is shown in Figure “.“.

To test the stability of parameter estimates obtained

for (Q:/M) as a function of the time range over which data

were input, numerous fits of the first run (depicted in

Figure “.“) were made as a function of data truncation.

Thus, only data out to t = 1500 seconds were included

for obtaining a value of (OI/M), then data out to t =

1700 seconds were included and the value of (Qi/M) was

again computed; etc. The results of this data truncation

test are shown in Figure “.5. Note that the parameter

estimate remains unchanged within 1% for inclusion of data

past 2800 seconds. When data past 3“00 seconds are in—

*

cluded, essentially no change in Q1 occurs as more data
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points are included. The effect shown in Figure “.5 has

essentially two causes: (1) The value of the fit parameter

becomes increasingly stable and (presumably) more accurate

as statistically more points are included. (2) Although

the parameter value for the perfect model would oscillate

randomly about a mean value as more points are added, the

assumed model, that (OI/M) is a constant independent of

composition and temperature, is not strictly true. There-

fore, inclusion of data taken at the relatively longer

times is important in finding the appropriate (Oi/M) for

the mean composition reported for each run because at

short times two very different compositions are located

on either side of the interface. As diffusion levels the

initially sharp composition gradient at (z/a) = 0.5, the

compositions in the regions near the interface become more

nearly the mean value, and the fit (Q:/M) becomes the value

for that composition.

All experimental runs were analyzed with respect to

(Q:/M) by inclusion of data up to “200 seconds. This not

only provided enough points forzastatistically "good" esti-

mate of (Q:/M) but also eliminated the problems discussed

in the previous paragraph. Analysis of the diffusion

thermoeffect in gaseous mixtures has often relied entirely

on the maximum temperature difference measured (Bousheri

and Afrashtehfar [1975]). Inclusion of points spaced in

time and use of the integrated equations provides a
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statistically better estimate of the heat of transport,

particularly since the maximum AT occurs so early that very

few data points can be obtained up to that time. For

thermocouples 2 mm from the interface, AT reaches its

maximum value in 500 - 800 seconds.

C. Literature Values for the Physicochemical Properties

of the Carbon Tetrachloride-Cyclohexane System

Before Equation (2.35) can be used in conjunction

with experimental data to obtain values for Q:, all other

parameters appearing in (2.35) must be available. Table

“.1 contains a synopsis of the values used for the system

carbon tetrachloride—cyclohexane. The parameters of Table

“.1 are based on the expansion

L = LO[1+Lx(xl-0.5) + LT(T-298.15) + LxT(xl—0.5)(T-298.l5)

+ 1/2Lxx(xl-0.5)2] (“.1)

where L is the property in question, L0 is the value of L

for an equimolar mixture at 298.15 °K, and Lx, LT, LXT;

Lxx are corresponding composition and temperature co—

efficients. The parameters are viewed as expansions about

X1 = 0.5 rather than about pure component values (LS and

LS) because the mean composition of each run was nearly

50 mole percent. In the sections below, further discussion
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of the literature values is given.

(1) Diffusion coefficient - The diffusion coefficient

as reported by Anderson and Horne [1970] agrees well with

other literature values cited therein. The composition

and temperature dependencies are included in their report

and were used in the numerical fitting routine.

(2) Excess enthalpy - Ewing and Marsh [1970] report

the composition dependence of the excess molar enthalpy at

three different temperatures. The temperature dependence

was obtained by a fit of their three temperature indepen-

dent equations for HE

[1968]).

using program "MULTREG" (Anderson

(3) Constant pressure heat capacity - Values for molar

heat capacities were obtained from Wilhelm and Sackmann

~0

lCP,l +
«.0 ~ - .-

x2CP,2 where ACP — -0.6xlx2, adequately describes the com

[197“]. They find that (GP/J'K'lmolIl) = ACP + x

position behavior of CP. As must be the case for thermo-

dynamic consistency, the constant pressure temperature

derivative of the excess enthalpy agrees well with the

excess heat capacity. Due to the smallness of the excess

heat capacity, the temperature dependent behavior of C?

is contained entirely in the temperature dependencies of

the pure component heat capacities. Upon rearrangement,

the temperature dependence with respect to the mixture

becomes that shown in Table “.1.

(“) Molar volumes - Molar volumes were calculated
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from the density data of Wood and Gray [1952]. The form

(V/cm3mol-l) = leg + x2Vg + VE yields excellent agreement

E 0
with their results when V = 0 and V0 and V

l 2

pure component temperature dependencies. Program "MULTREG"

contain the

provided best fits of their temperature dependent data which

were then rearranged into the form required for Table “.1.

The values obtained by Wilhelm and Sackmann [197“] also

agree well with these equations.

(5) Thermal conductivity - Thermal conductivity data

for liquid mixtures are scarce due to experimental convec-

tion problems. For the same reason, the uncertainty in good

experimental data is between 3% and 7% depending on tech-

niques and equipment used. The only experimental data

reported in the literature for carbon tetrachloride—cyclo-

hexane mixtures are those of Venart [1968]. His results

show a most peculiar cusp at x1 = 0.5 when K is plotted

against x1. No other nonelectrolyte mixture displays

this behavior. Furthermore, the scatter in data for this

system relative to that of analogous systems studied by

Venart indicates a pecularity and/or difficulty in obtain-

ing accurate thermal conductivity data for carbon tetra—

chloride-cyclohexane mixtures.

Jamieson, 33 a1. [1975] and Jamieson and Hastings [1969]

have recommended the NEL (National Engineering Laboratories)

equation,

= o o_ O_ _K le1 + w2K2 C(K2 Ki)(l /w2)w2, (“.2)
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for predictive estimates of the thermal conductivity of

binary liquid mixtures, where K3 is the thermal conductivity

of pure component i and C is an adjustable parameter.

Component 2 is assumed to have the largest thermal conduc-

tivity in using Equation “.2. Thermal conductivity predic-

tions based on this equation have been shown by Jamieson

gt al. to agree with experimental values over the entire

composition range to within 5% if a fit value obtained at

a single composition is used for C and to within 7% if C

is defined by C E 1.0 (most nonelectrolyte mixtures are

best represented by this value).

Rather than from Venart's data or from the NEL equation,

the composition dependence of the thermal conductivity was

obtained from the diffusion thermoeffect experiments them-

selves by an iterative technique. The method and the

results obtained for the thermal conductivity are presented

in the next section.

D. Experimental Results for Thermal Conductivity

The composition dependence of K was obtained from the

diffusion thermoeffect experiments. An iterative procedure

was followed in which the composition dependence of (Q:/M)

was first neglected and then its experimental value was

included in order to determine the composition dependence

of the thermal conductivity. To illustrate the approach,
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consider the temperature equation without the very small

term due to the barycentric velocity [obtained from Equa-

tion (2.35) for D/V independent of xi],

CP(3T/8t) vn(a2T/az2) + V(3K/3X1)T(3xl/3z)(ET/dz)
+

~*~ ~

DM2(Ql/M)(32xl/322) + 0(a2HE/ax§)T(axl/az)2

+

~*~ 2

DM2[8(Ql/M)/3xl]T(3xl/Bz) . (“.3)

In fitting the experimental data by the numerical scheme

described in Chapter 2, the last term on the right-hand

side of Equation (“.3) was first omitted. The calculations

then gave Q: and a first approximation for (BK/axl)T.

Once Q: was obtained for all the experimental runs, its

observed composition dependence was included and Equation

(“.3) was then used, in full, to obtain an improved esti-

mate of (8K/8X1)T.

Initial analysis of the 5 diffusion thermoeffect ex-

periments reported herein was done using the NEL equation

for the thermal conductivity with the adjustable parameter

C = 0.6. This value was obtained by fitting both (OI/M)

and C simultaneously to the data of Run I. However, be-

cause Q: and K at the mean mole fraction primarily determine

AT, C and (Q:/M) were largely coupled. Sensitivity co-

efficients for these parameters indicate coupling.
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Nevertheless, the thermocouple pair was sufficiently re-

moved from the interface that the magnitudes of K at these

thermocouple locations (hence compositions) sufficiently

decoupled C and (Q:/M) to obtain a unique but shallow

minimum in the residual search. Once the parameter C had

been identified (C = 0.6), Runs I through V were analyzed

with the fixed value for C leaving only (OI/M) as an adjust-

able parameter. Since (Qi/M) is not a constant as assumed

in this fitting procedure, the composition dependence of

(Q:/M) was absorbed in the fit value of the NEL parameter

0. The composition dependence of (Q:/M) obtained from the

five runs at different compositions was then introduced

into the fitting routine in an iterative fashion to yield

the improved value of C = 1.05. The value C = 0.6 is seen

to be an "effective" value into which the residual composi-

tion dependence of (Oi/M) was absorbed. Note that the

improved value obtained for C in the NEL equation from

diffusion thermoeffect data is in excellent agreement with

the recommended value of C = 1.0 for nonelectrolyte mix-

tures.

Absolute values of the thermal conductivity, as

predicted by the NEL equation with C = 1.05, are tabulated

in Table “.2. Also shown in Table “.2 are values obtained

from Venart's data by interpolation to the appropriate mole

fraction. Note that the values obtained from this itera-

tive treatment of the diffusion thermoeffect agree within
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Table “.2. Thermal conductivity of CCI“‘EEC6H12 mixtures

at 20°C and 1 atm.

 

 

<x1> KD/w.s'1x'1(a) KV/W°S-1K-1(b) (KD—KV)/KVX100%

 

0.3“69 0.1089 0.107 1.8

0.“112 0.1078 0.10“ 3.6

0.“295 0.107“ 0.10“ 3.3

0.“8“3 0.1066 0.10“ 2.5

0.551“ 0.1056 0.103 2.6

 

 

(a) Values obtained from diffusion thermoeffect experiments.

(b) Values interpolated from the data of Venart [1968].
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experimental error (ca. 3%) with Venart's data in the

composition range applicable to the measurements reported

here. This range of compositions involved the previously

noted cusp in Venart's data; i;g;, actual data in this

region were higher than expected on the basis of smooth

composition behavior with no inflection points for the

entire mole fraction range. Thermal conductivities pre-

dicted for compositions outside the experimental range of

interest deviated more than 3% but are irrelevant to the

analysis of data.

Although using AT data rather than values for T itself

did not allow accurate simultaneous determination of two

parameters, inclusion of multiple run information in the

above described iterative fashion decoupled the two param-

eters allowing accurate determination of both the heat of

transport and the thermal conductivity. The thermal

conductivity values obtained agree, within the experimental

uncertainties involved in measuring liquid mixture thermal

conductivities, with those measured by Venart [1968].

The values obtained for the heat of transport are discussed

in the following section.

E. Experimental Results for Heat of Transport

As previously indicated, the experimental data con-

sisted of numerous temperature differences between thermo-

couples located at (z/a) = 0.“ and (z/a) = 0.6. Appendix
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B contains the raw data obtained for the 5 experimental

runs and the initial run conditions associated with each.

Table “.3 shows the results obtained for Q: using the

previously described fitting procedure. Initial composi-

tions and temperatures are also included in this table.

From the resultant Q: values, the Onsager coefficient 001

is calculated on the basis of Equation (2.1“B). Literature

data for the thermal diffusion coefficient a1 (Anderson and

Horne [1971], Stanford and Beyerlein [1973]; and Turner,

§t_al, [1967]) provide values for 010 after averaging,

adjusting to the given temperature via the equation reported

by Anderson and Horne, and using Equations (2.1“C), (2.15),

and (2.16). A comparison of these two Onsager coefficients,

obtained independently of each other, is shown in Table “.3

along with the actual values of 001 and 010. As required

by the Onsager heat-mass reciprocal relation, 001 = 010

to within 3%. This constitutes the first experimental

verification of the Onsager heat-mass and mass-heat recipro-

cal relation in liquid systems (Rowley and Horne [1978]).

The verification of the heat—mass reciprocal relation

now allows transformation of experimental heats of transport

to thermal diffusion factors by way of Equation (2.22) with

the definitions of Equations (2.1“) — (2.16). Thermal dif-

fusion factors obtained in this manner are adjusted to 25

°C using the temperature dependence -d1 = -l.827 + 0.18lxl

+ 0.010“ (T—298.15) - 0.0008xl (T-298.15) reported by
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Anderson and Horne [1970]. A comparison of these thermal

diffusion factors (obtained from diffusion thermoeffect

experiments) to those obtained from various thermal dif-

fusion experiments is shown in Figure “.6. In particular,

the solid triangles are the results of these diffusion

thermoeffect experiments, the solid line and solid circles

represent the pure thermal diffusion results of Anderson

and Horne-[1971], the dashed line represents the thermo-

gravitational results of Stanford and Beyerlein [19731.

the open circles are the flow cell data of Turner, Butler,

and Story [1967]; and the solid squares represent thermo-

gravitational results obtained by Korchinsky and Emery

[1967]. The various techniques for obtaining thermal dif-

fusion factors all yield consistent results within the

experimental uncertainties. This comparison confirms the

diffusion thermoeffect as a valid and accurate method for

obtaining heats of transport and thermal diffusion factors.

The advantages of performing diffusion thermoeffect measure-

ments are perhaps manifest most strongly in the liquid-

1iquid critical region as will be shown in Chapters 5 and

6.

As shown in Appendix A, the relationship between Q:

and 01 is

~*

Q 1 = -dlMRT(1+F)/M1M2. (“.“)
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The transformation from heats of transport to thermal dif-

fusion factors therefore involves the "thermodynamic

factor" (1+?) defined by

(1+F) E (1+32nyl/alnxl)T’P (“.5)

where Y1 is the activity coefficient of component 1 (usually

based on the pure component standard state for nonelectro-

lyte mixtures). Although (1+F) is close to unity for this

system at all mole fractions, a least squares fit of the

activity coefficient data reported by Turner 33 a1. [1967]

was used to calculate “1 values from corresponding Q:

values. It is straightforward (but tedious) to show from

the excess enthalpy of Table “.1 that the temperature de-

pendence of (1+?) is negligible over the experimental range.

Nevertheless, in critical mixtures, the "thermodynamic fac-

tor" plays an important role in the behavior of properties

very near the consolute temperature. Because the "thermo-

dynamic factor" is often close to unity for nearly ideal

mixtures, early formulations of diffusion assigned composi-

tion gradients as mass flux driving forces. Systems and

regions (such as the critical region) where activity cor-

rections are important have been invaluable in clearly

identifying chemical potential gradients as the correct

diffusional driving forces.

From the experimentally obtained heats of transport

and the fundamental relationships between the heat-mass
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cross coefficients, the other commonly used transport co-

efficients can be evaluated. From Equation (2.18), the

Dufour coefficient 8T can be directly calculated. Similarly

the thermal diffusion coefficient DT can be obtained from

Equation (2.1“C) by using the now proven Onsager relation

910 = 001. These dependent coefficients along with Q:

and d1 are tabulated in Table “.“. A comparison of Figures

“.7 and “.8 reveal the main reason for the multiplicity of

coefficients. Note that the Dufour coefficient 8T appears

to be nearly independent of composition for this system at

25 °C. On the other hand, Q: is quite dependent upon

composition. A similar relationship holds between a1

and D 1 being more composition independent.T’ a

The diffusion thermoeffect results allow calculation of

another interesting quantity. There is some ambiguity in

the thermal conductivity which appears in thermal dif-

fusion equations. Before the temperature gradient is

applied in a thermal diffusion experiment, the isothermal

equilibrium mixture has a definite thermal conductivity

KO. After the temperature gradient has been applied,

a steady state is reached when the temperature gradient-

induced mass flux identically balances the mass flux

caused by the propensity for diffusion down a chemical

potential gradient. This steady state mixture also has

a definite but different thermal conductivity Kw. As

Horne and Bearman [1967] show, these two properties are
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Table “.“. Heat-mass transport coefficients for carbon

tetrachloride-cyclohexane mixtures at 25 °C

and 1 atm.

 

 

 

<x1> 91/k3°mOl-l BT/lO-ZJ-m'ls'l -mfi_ DT/lo'lomzs';l

0.3“69 5.“2 5.71 1.79 6.34

O.“112 5.56 5.60 1.77 6.12

0.4295 5.“o 5.39 1.70 5.80

0.“8u3 5.80 5.59 1.77 5.7“

0.551“ 6.10 5.6“ 1.79 5.69
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related by

_* _* “ 6

where Q: is the specific heat of transport of component 1.

The relation 001 = 010 has been used to obtain the second

equality shown in Equation (“.6). From diffusion thermo-

effect experiments, Q: and 001 are directly obtained.

Therefore, the difference between the two thermal conduc—

tivities KO-Km is readily calculable from diffusion thermo-

effect experiments. Table “.5 shows the difference as

obtained from the experimental results reported in this

chapter. Note that current uncertainties in experimentally

determined thermal conductivities are much larger than the

difference between K0 and Km. The two may therefore be

used interchangeably without sacrifice of numerical accuracy

until very much improved thermal conductivity measurements

can be made.

Unlike the AT versus time profiles, measured T versus

time profiles were quite asymmetric about (z/a) = 0.5. In

all cases, the increase from the uniform initial temperature

was much less for the thermocouple located above the inter-

face than was the decrease in temperature for the lower

thermocouple. This asymmetric effect is analogous to that

observed by Mason, Miller, and Spurling [1967], by Waldmann

[19“7], and by Miller [19“9] for gaseous diffusion
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Table “.5. Values for the difference in thermal conductiv-

ity between the equilibrium and steady states in

thermal diffusion experiments.

 

 

 

(KO-Km)/

<x1> T/OK KO/w-s"1K‘l 10'5 w-s'lx‘l %

(a) (b) Difference

0.3“69 295.36 0.108“ 7.6“ 0.07

0.“112 296.16 0.1072 7.95 0.07

0.“295 295.13 0.1070 7.3“ 0.07

0.“8“3 296.02 0.1060 8.18 0.08

0.551“ 296.“3 0.10“9 8.28 0.08

 

 

(a) Taken from Table “.2 and adjusted to prOper tempera-

ture using Table “.1.

(b) Calculated from Equation (“.6).
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thermoeffect experiments. These investigators all noted

that the temperature effect was greater below the diffu-

sion interface than above it. Our computer simulation

concurs with the hypothesis for this effect advanced by

Mason, Miller, and Spurling - the asymmetry in the tempera-

ture effect is primarily due to composition dependencies

of the transport parameters, particularly the thermal

conductivity. Individual thermocouples were not used to

fit the composition dependence of the thermal conductivity,

however, because the theoretical T vs. t behavior at a

given location, predicted with the inclusion of the large

heat of mixing term, does not agree very well with observed

behavior at long times. Reasons for this are not known,

but may be due to wall effects or thermocouple effects.

In addition to its intrinsic importance for liquid

mixture transport theory and behavior, the diffusion thermo-

effect can also be useful for exploring the critical solu-

tion region. Anomalous behavior is often noted for trans-

port prOperties near the consolute temperature. Attempts

to measure thermal diffusion factors very near the critical

temperature have been hampered by the large temperature

gradients required to observe the effect. The diffusion

thermoeffect should provide a valuable tool in this region

since only very small temperature gradients are induced

by the moderate composition gradients associated with

critical coexistence curves.



CHAPTER 5

LIQUID-LIQUID CRITICAL PHENOMENA

A. Classical Thermodynamics of Liquid-Liquid Critical

Phenomena
 

At uniform temperature and pressure, the tendency of

a liquid mixture to separate into two phases is governed

by the requirement that the Gibbs free energy be a mini-

mum at equilibrium. That is, the criterion for phase

stability in a binary liquid system is a downward convexity

of the free energy G (or the free energy of mixing GM)

as a function of mole fraction at a given T and P (see for

example Prigogine and Defay [195“] and Moore [1972]).

Curve "A" of Figure 5.1 (Moore [1972]) depicts a system

for which (32GM/3XI)T,P > 0 (GM is convex downward) over

the entire composition range. This corresponds to complete

miscibility of both components at all concentrations.

If, however, the free energy of mixing for a binary mixture

is similar to curve "B" of Figure 5.1, GM can be minimized

(for those overall compositions between xi and x3) by a

separation into two distinct liquid phases of compositions

xi and xi. Curve "C" represents a system at the stability

limit (critical solution temperature or consolute tempera-

ture) where the two inflections of curve "B" have merged.
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The stability criteria at this point are

2 2 _ _ 3 3

(a GM/axl)T,P - 0 - (a GM/axl). (5.1)

Liquid-liquid phase coexistence criteria could be

written equally well as

_ _ 2 2

(8U1/3X2)T’P - O ‘ (8 “1/3X2)T,P (5.2)

with the additional restriction

(a3ul/ax3) < o (5.3)

at the critical point (Prigogine and Defay [l95“]). The

two-phase region corresponds to a horizontal line in a

“1 vs x2 plot (Figure 5.2, Prigogine and Defay [l95“]);

1:9,, a region of two coexisting phases of compositions

xi and xi with pi = pi.

A coexistence curve (at constant P) for the system Q-

hexane—nitrobenzene (Figure 5.3, Prigogine and Defay [195“]

illustrates that the critical solution temperature (CST) is

the maximum temperature at which two phases can coexist at

a given pressure. The critical composition (xlc) istflmacom-

position locus at which the CST occurs. Above the critical

temperature TC a mixture prepared at any composition forms

a homogeneous fluid phase. However, at 10 °C and 0.5 over-

all mole fraction, for the system shown in Figure 5.3,
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Figure 5.2.

 

Behavior of the chemical potential of com-

ponent 1 vs. mole fraction of component 2 for

a critical system as depicted by Prigogine and

Defay [195“]. The dashed line indicates

metastable regions.
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two phases of compositions xC H = 0.18 and xC

6 5

= 0.82 coexist.

B. Critical Exponents

1. Definitions - Figure 5.“ captures a time sequence

of the physicochemical response of the isobutyric acid

(IBA)-water system to a slow decrease in temperature from

T > TC to T < Tc along an isobar at the critical IBA mole

fraction. Notice that even several degrees above the CST

a change begins to occur. On a molecular level, A-A

interactions relative to A-B interactions adjust rapidly.

Local concentration fluctuations of dimension 5 increase

dramatically, giving rise to a Tyndall-like light scatter-

ing effect known as critical opalescence. This occurs

when E acquires lateral dimensions on the order of the

wavelength of light. Figure 5.“ (b), (c), (d), and (e)

show the light scattering associated with an increasing E.

An understanding of how macroscopic transport properties

are affected by this molecular commencement of phase

separation promises to yield valuable information about the

relationship between molecular and macroscopic phenomena.

Since the properties of the system obviously begin to

adjust several degrees above phase separation (Figure 5.“),

a set of indices known as critical exponents (CE) are used

to correlate the temperature dependent behavior of proper-

ties as the CST is approached (Stanley [l97l]). The
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.
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p
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limiting behavior of a property f(€) in the critical region

 

is denoted

A

f(€) '9 e (5.“)

where

T-T

e E C (5.5)

T0

and

= tnf(e)

1 _ :13 _75E7_ (5.6)

It is important to realize that Equation (5.“) does

not imply f(8) = Ask. In general, there will be correction

terms which vanish as T + TC; i.e.,
 

f(e) = AeA(1 + Bey + . . .) (5.7)

where y > 0. Figure 5.5 shows the results of a light

scattering determination of the mutual diffusion coef-

ficient D by Chu, Lee, and Tscharnuter [1973]. They plot

log D vs.log e to obtain the CE as the slope of the

resultant line. Note the contribution of the higher

order terms of Equation (5.7) as illustrated by the devia-

tion from linearity when T - TC 2 5 °C.
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Although experimental determination of the critical

exponent A does not provide the entire 5 dependence of

f(e), the CE depicts the essential behavior sufficiently

close to the CST. As Figure 5.6 shows, a negative CE

characterizes a diverging function while a positive CE

represents a vanishing function as 5+0. The larger

|A| is, the further away from T0 the anomalous behavior

appears. The use of the word "anomalous" in reference

to the e-functionality of a property in the critical region

indicates a deviation from the behavior predicted by

extrapolation of the T-dependent behavior exhibited far

from the CST.

Some of the more common thermostatic properties which

exhibit anomalous critical behavior have been experi-

mentally characterized quite well and have specific sym-

bols reserved for their critical exponents. Thus

(X5 - xé) m IslB (constant P) (5.8)

defines 8,

7,. t-

(aul/axl)T’P m Isl (cons.ant P,X2c) (5.9)

defines v+ where + indicates 6+0 from the positive side,

and
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Figure 5.6. Behavior of properties as functions of s for

various values of the critical exponent A.
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EP,x m |€|-a+ (constant P; ch) (5.10)

defines a+. Table 5.1 lists some typical values for these

thermostatic critical exponents as reviewed by Scott

[1972].

In addition to anomalous behavior representation,

critical exponents are themselves fundamentally important.

Recent emphasis on experimental determination of CE's has

had a two-fold incentive: (1) the value of a particular

CE transcends the system under investigation (universality)

and (2) equalities between several exponents allow pre-

diction of unknown CE's from known ones (scaling).

2. Universality - The theory of universality states

that when allowance is made for any extra variables and

when the properly analogous quantities are compared,

the CE's for different systems are identical. An il-

lustrative example is the exponent B which characterizes

the temperature behavior of the order parameterl. Within

experimental error, the order parameter for liquid-liquid

systems (xi - xi), gas-liquid systems (pV - 0L), and

magnetic systems (magnetization M) all exhibit the same

critical exponent B = 0.33.

 

1An order parameter is the property that is nonzero

for T<TC but zero for TZTC. Equation (5.8) is an example.
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Table 5.1. Critical exponents for some equilibrium

thermodynamic properties. References are

cited in Scott's [1972] review.

 

 

System B Y+ a

 

+

001“ + C7Fl“ 0.33 1.2

CH” + CF“ 0.35 1.3, 1.“

EfC6Hlu + 27C6F1“ 0.3“, 0.35 1.37

lfC3H7COOH + H20 0.33 1.2“ 0.12, 0.

n7C10H22+(8-C1C2Hu)20 0.32 1.25

 

 



113

3. Scaling - Scaling hypotheses predict relations
 

among critical exponents on the assumption that the

free energy is a generalized homogeneous function of

the form

G(kax,kby) = kG(x,y). (5.11)

Although the scaling parameters "a" and "b" are not

specified, they can be identified by comparison with two

known critical exponents. If two properties are derived

by taking the appropriate partial derivatives of Equa-

tion (5.11), then the behavior of those properties in

the critical region necessitates a relation between "a"

and "b" and the properties' critical exponents. The two

known CE's thereby fix the degree of homogeneity, scaling

all other properties derivable from Equation (5.11). An

equality involving the three CE's results. A typical

example is a+28+y = 2, where the exponents d, 8, and

y have their common definitions shown in Equations (5.8)

- (5.10). Table 5.1 provides test data for the above

equality.

C. Transport Prgperties in the Critical Region

As mentioned in the previous sections, the onset of

phase separation as T approaches TC may produce anomalous

behavior in a given macroscopic property. The anomaly
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is characterized by a nonzero critical exponent. The

four transport phenomena of interest in binary nonelectro—

lyte liquid mixtures in the absence of pressure gradients

are: (1) thermal conduction, (2) mutual diffusion, (3)

thermal diffusion, and (“) the diffusion thermoeffect.

Examination of anomalies in these properties near the

CST is dedicated to understanding the microscopic contribu-

tions to the phenomena and to increasing predictive

capabilities.

Toward the above goals, Table 5.2 shows the transport

coefficients and their respective relationships to On-

sager coefficients. In Table 5.2 and throughout this

thesis, the following critical exponent symbols will be

used: (1) A1 for 000, (2) A2 for 011, (3) A3 for 010,

and (“) A“ for 001. Note that any anomalous behavior in

the critical region can be ascribed to a kinetic effect

(the Onsager coefficient), a thermodynamic effect [Fij

where 5:3 5 (351/3W3)T,P]’ or a combination of both.

Phase coexistence is governed by equilibrium thermo-

dynamic relations, and the purely equilibrium thermo-

dynamic coefficient Uij is known to vanish with a +“/3

exponent as the CST is approached. Thus, any anomalous

contributions from 013's should provide useful data for

probing the microscopic or kinetic nature of the phenom-

enon. Of special interest, in this light, are K and

01, which have no direct dependence on the thermodynamic

quantity “11'
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Table 5.2. The behavior of transport coefficients in the

critical region.

Behavior

Property Definition Near CST Exponents

A1
K K = GOO/T K N 900 K m E A1

_ 900 m 5

0 u A +“/3
_ -11 ll — 2

D D - pw2 D W “11“11 D N E

— “/3

1111 m E)

2

Q11 “ 5

A3
DT DT = Q10/° DT “ S210 DT “ 5

_ Q10 Q10 A3824”3

0‘1 ‘ ‘6"? 0D 0‘1 ” 0"6" °1 ” E
1 2 11 11

..A -K = 910w2 K m 010 K % eA3 2 “/3

T Q11°11 T g5111111 T

A

3

Q10 ” °

—* —* _ ”01 —* Q01 * A“’A2

Q1 1 ‘ 0 Q1 ”‘0" Q1 ” 5
ll 11

A

O m e “
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Literature values of the CE's for the properties

listed in Table 5.2 (with the exception of 0:) are dis-

cussed in the next sections. Chapter 6 presents original

research and results on Q: for isobutyric acid-water mix-

tures in the critical solution region.

D. Predicted Liquid-Liquid Critical Exponents for Trans-

port Phenomena

The utility and versatility of critical exponents

have been firmly established by scaling hypotheses and

universality theories. Extension of scaling procedures

to nonequilibrium processes and development of mode-mode

coupling theories constitute the most recent advances in

transport CE prediction. Older mean-field theories

implicitly or explicitly assume long range molecular inter-

actions and are less accurate.

Mode-mode coupling arguments are based on nonlineari-

ties in the hydrodynamic equations near the critical point.

The nonlinearities are due to coupling among various

energy dissipative modes. The best normal mode type solu-

tion of the nonlinear equations defines the correspond-

ing transport coefficient. This coefficient may then con-

tain an anomalous contribution in the critical region be—

cause of the included coupled dissipative term required

for a normal mode solution. Fixman [1962] noted that near

the CST, where long wavelength fluctuations become



117

intense, a velocity gradient, created by exerting shear

forces at the boundaries, can easily induce nonhomo-

geneities in concentration. The return to uniform com-

position via diffusion dissipates some of the energy.

Yet, from a macroscopic point of view, the total dissipa-

tion of energy through the coupled viscous and diffusive

modes appears simply to be the result of an anomalously

large viscosity.

Mode-mode coupling predictions are based on identifica-

tion of the appropriate, coupled modes. An estimation

(usually by scaling) of the contribution by the coupled

or nonlinear terms to the coefficient in the normal mode

solution yields a prediction for the expected anomaly.

Values of the various CE's as theoretically predicted for

binary liquid systems are shown in Table 5.3. When Table

5.3 is used, the necessary relationships between the thermal

diffusion coefficient DT, the thermal diffusion ratio KT,

and the thermal diffusion factor 01 are readily obtained

from Equations (2.15) and (2.16).

E. Experimental Liquid-Liquid Critical Exponents for

Transport Parameters

1. Techniques - Measurement of transport phenomena

near the CST commonly involve either (1) the system's

response to a macroscopic gradient or (2) the time varia-

tion in the local fluctuations of thermodynamic variables
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in a system in macroscopic equilibrium. The former

method constitutes a "thermodynamic" experiment, while

the latter usually involves light scattering techniques.

Although macroscopic gradients lead to experimental dif-

ficulties in systems near the consolute temperature,

thermodynamic measurements are extremely important for

understanding force-flux behavior in this region.

Determination of transport coefficients from non-

equilibrium thermodynamics involves linear hydrodynamic

equations; $421: the coefficients are not gradient de-

pendent. This is certainly valid for very small grad-

ients. However, near the CST where the correlation

length 5 diverges, coefficients may be nonconstant over

distances on the order of g even for moderately small

gradients. For this reason, several authors have suggest—

ed that nonlinearities are to be expected sufficiently

close to the critical point (e.g., Fixman [1962], Kawasaki

[1966], and Grossmann [1969]). Nevertheless, experiments

have failed to show any gradient dependence in measured

coefficients. To the contrary, Woermann and Sarholz

[1965] and Tsai [1970] have shown the shear viscosity

to be constant for a change in shear rate of “ and 5

orders of magnitude respectively. Similarly, Michels

and Sengers [1962]lwuneshown the thermal conductivity

near the gas—liquid critical point to be independent

of AT. These results justify the assumption of linear
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laws in the experimentally accessible neighborhood of the

critical point - especially if gradient driving forces

are kept small.

2. Thermal Conductivity — Thermal conductivity

experiments (and pure thermal diffusion experiments)

are plagued with convection problems. Convection is

especially enhanced in the consolute region where thermal

gradients can produce large density fluctuations. These

difficulties have kept data scarce.

Gerts and Filippov [1956] and Filippov [1968] meas-

ured the thermal conductivity of nitrobenzene-nehexane,

nitrobenzene-nyheptane, methanol-nrhexane, and triethyl-

amine-water mixtures as T + Tc' The absence of convec-

tion was demonstrated by independence of results on AT

(this also further justifies the linear flux-force laws).

The results for two of the investigated systems as re-

ported by Gerts and Filippov are shown in Figure 5.7.

As is the case for the mixtures depicted in Figure 5.7,

none of the four systems evidenced any anomaly.

Osipova [1957] did report an anomaly in the thermal

conductivity of a phenol-water mixture. However, most

reviewers (Sengers [1971]) suggest that the reported large

scatter in data and large errors in measurement of AT

are indicative of unreliable results.

Although further experiments are desirable, thermal
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conductivity evidently remains finite as Tc is approached

from the homogeneous fluid side. Thus, K = WOO/T N 6°.

3. Mutual Diffusivity - Thermodynamic measurements

of mutual diffusion coefficients near the liquid-liquid

critical point (Kricheviskii 22 al. [195“], Claesson and

Sundelaf [1957], Lorentzen and Hansen [1957] and [1958],

Kricheviskii gt al.[1960], Haase and Siry [1968], and

Balzarini [197“]) show unequivocably that D vanishes as

T+TC. With the exception of Balzarini [197“], none of the

above experimentalists report a critical exponent. The

prominent feature of these more qualitative works is

especially noticeable in Figure 5.8 where the represen-

tative results of Haase and Siry [1968], for the water-

triethylamine system exhibiting a lower consolute tempera-

ture, and of Claesson and Sundelfif [1957], for the n:

hexane-nitrobenzene system exhibiting an upper consolute

temperature, clearly indicate that (aD/BT)xlc becomes

infinite as the CST is approached. Differentiating with

respect to T the expression for D in Table 5.2 yields

A2+1/3

(3D/3T)X m e . (5.12)

lc

Recall from the discussion of critical exponents that in

order for (SD/3T)X to diverge as 5+0, the critical

lc

exponent must be negative. With respect to Equation (5.12)
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Mutual diffusion in the critical region. (A)

Results of Haase and Siry [1968] for the water-

triethylamine system exhibiting a lower con-

solute temperature at 91.26 mol % water and

18.3 °C. (B) Results of Claesson and Sunde18f

[1957] for the n—hexane-nitrobenzene system

at equal mole fractions.



12“

(A) 

 

    

 
  

(B)

D-Io’

(cmzsec')

20>

Iol-l

°2o 2'5 3‘0 3'6

T(°C)

Figure 5.8



125

this means that A2 < -l/3. Reasoning along these lines

constituted the first evidence that 011 diverged at

the critical point; 1,3,; that the observed anomaly in

D was not strictly dependent on the thermodynamic factor

Ell“ Balzarini's more recent thermodynamic experiments

yield 0.7“i0.08 for the CE of D.

Recently, values for A2 have been obtained much nearer

the critical point by light scattering experiments. Light

scattering measures the decay rate of concentration fluc-

tuations and therefore eliminates the need for macroscopic

gradients and system-perturbing response measurement

devices (for example, the thermal lens effect associated

with interferometry, Giglio and Vendramini [197“1). As

Table 5.“ illustrates, the diffusion coefficient is un-

I

questionably represented by D m EA with A' = A2 + “/3

= 2/3. This value (and the values in Table 5.“) compares

favorably with the exponent for thermal diffusivity in

gas-liquid systems, K/OCP m e)' where 0.61 g 1' i 0.69

(Sengers [1973]). As was mentioned earlier, universality

requires that comparison of like modes in different systems

yield identical exponents. Mutual diffusivity in liquid—

liquid systems corresponds to the thermal diffusivity

mode in gas-liquid one-component systems. The kinetic

A2
contribution 0 must therefore diverge as all m E

11

with A2 = -2/3 as T + To.
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Table 5.“. Light scattering results for the mutual dif-

fusion critical exponent.

 

 

System Exponent<a> Reference(b)

 

Isobutyric acid-water

n-hexane-nitro-

benzene

3-methylpentane-

nitroethane

cyclohexane-aniline

perfluoromethylcyclo-

hexane-carbon tetra-

chloride

lutidine-water

phenol-water

methane-tetrafluoro-

methane

0.68:0.0“

0.62:0.02 (c)

0.66:0.02

0.63 (c)

0.62 (c)

0.61:0.01

0.66(5):0.o3

0.63:0.005 (c)

0.55“:0.015

0.68:0.03

0.67:0.02

Chu [1968]

Chu [1972]

Chen [1969]

Chu [1972]

Chang [1972]

Berge [19701

Chu [1968]

Chu [1972]

Gfilary [1972]

Goldburg [19721

and Bak [19691

Blagoi [19701

 

 

(a) Exponent refers to A' in DNEA'

(b) Only first author is listed.

where A' = A2+“/3.

(0) Indicates renormalized values after taking into account

the "regular part" and temperature dependence of the

viscosity.
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“. Thermal Diffusion — Much like thermal conductivity

experiments, thermal diffusion measurements require sub-

stantial macroscopic temperature gradients which may

induce convection. Furthermore, the consolute tempera-

ture cannot be approached very closely with tempera-

ture gradients present. For these reasons, early meas-

urements cd‘ DT in the liquid—liquid critical region

yielded, at best, qualitative results (Thomaes [1956],

Tichacek and Drickamer [1956], and Haase and Bienert

[1967]). It is instructive to plot the data of Thomaes

and those of Tichacek and Drickamer in a typical log-

log plot of the thermal diffusion ratio KT versus E so

as to obtain from the slope an effective value for the CE.

This is done in Figure 5.9. Note the large scatter in

data and more importantly the large discrepancy in the

critical exponents or slopes obtained. The data of Haase

and Bienert [1967] on the water-triethylamine system are

not plotted here for two reasons: (1) the data are not

given at the critical composition, and (2) the consolute

temperature is not approached sufficiently closely for

comparison purposes. Although all three sets of thermal

diffusion data indicate that KT diverges as 5+0, Haase

and Thomaes qualitatively argue that DT also diverges

while Tichacek indicates that DT vanishes. That is,

1
Thomaes's results indicate DT % E- while Tichacek and

Drickamer's data yield DT N 6+l/3.
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Giglio and Vendramini [1975] claim the first "ac-

curate measurements of the thermal diffusion ratio KT

in the neighborhood of the consolute critical point of

the mixture aniline-cyclohexane." Their measurements

were performed using a classical Soret cell and a steady-

state beam-deflection technique. By evaluation of the

time evolution of beam deflection, they also obtained

the temperature dependence of the mutual diffusion co-

efficient. From these data, the behavior of DT was ob-

tained. Giglio and Vendramini's [1975] log-log plots of

KT, D, and DT are shown in Figure 5.10. In this figure,

the line through the diffusion data are the light scat-

tering results of Berge gt il- [1971]. Values for DT

are calculated from DT = KTD. The relatively good agree-

ment for D with the light scattering experiments of Berge

gt_al, [1971] seem indicative of reliable results. The

"best-fit" CE value for KT is A" = -0.7310.02 in the expres-

II

A . However, Giglio and Vendramini [1975]

1

sion KT m E

conclude that KT m D- % 6-2/3 because calculation of DT

shows it to be temperature independent; 142;, DT m E°.

The slightly larger exponent determined from the least

squares fit of KT is attributed to a deviation of the

II

A in the region where numerous data pointsrelation KT = As

are located. That 15, KT is expected to behave more like

Equation (5.7) further away from the critical point.

Inclusion of points in this region leads to an effective
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exponent of larger magnitude than the true exponent (cf.

Figure 5.5).

5. Heat of Transport - The diffusion thermoeffect

measurements discussed in Chapter 6 are believed to be

the first direct evaluation of the temperature dependence

for 0: near the consolute point. Although Haase and

Bienert [1967] calculated Q: from Thomaes's [1956] thermal

diffusion data, the values obtained were meaningless be-

cause (1) Thomaes's data are inconsistent with the more

accurate work of Giglio and Vendramini [1975], and (2)

no verification of the Onsager reciprocal relation in the

critical region has ever been made. To indicate further

the need for a direct study of the heat of transport,

note that the critical exponent obtained for Q: on the

basis of ORR is positive (+2/3) if the data of Giglio and

Vendramini are used, positive (+1) if the data of Ticha-

cek and Drickamer are used, but negative (-l/3) if Thom-

aes's data are used.

Table 5.5 summarizes the results of the preceding

sections for the four transport properties of interest

to the present discussion near the critical demixing point

of a binary liquid mixture. The indicated ignorance of

the temperature behavior of Q: as T + TC gives impetus

for the measurements described in the next chapter.
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Table 5.5. Literature transport parameters and their

critical exponents.
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(a) Results of Giglio and Vendramini [1975] are used.



CHAPTER 6

THE HEAT OF TRANSPORT IN THE CRITICAL SOLUTION

REGION OF ISOBUTYRIC ACID-WATER MIXTURES

A. Transport Equations
 

To evaluate the temperature dependence of the heat of

transport 0: as the CST is approached, the partial dif-

ferential equations describing the diffusion thermoeffect

must be solved and the solution fitted to the experi-

mental points. Although this technique was introduced

in Chapters 3 and “ for the CClu‘Efcsng system, each

equation with its underlying assumptions must be checked

for correctness in the critical region before use.

The starting partial differential equations of Chap—

ter 2 can be written

(Bo/3t) + (pr/az) = 0 , (6.1)

0(8Wl/8t) = {8[pD(8wl/az)]/Bz} - pv(8wl/az), (6.2)

and

pCfi(BT/3t) = pD[8(Hl-Hé)/Bz](3wl/Bz) - 60pv(aT/az)

+ {3[pDQ:(3wl/Sz)]/Bz} + {3[K(8T/Bz)]/Bz . (6.3)

133
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The assumptions made in obtaining Equations (6.1) - (6.3)

are 3

(l)

(2)

(3)

(“)

(5)

(6)

(7)

The linear hydrodynamic equations for conservation

of mass and energy are valid.

The binary system is isotropic, nonreacting,

and field free.

Local states are assumed; i;g;, the equations

of thermostatics apply for local regions.

Fluxes are linear combinations of those forces

which appear in the entropy production equation

and which have the same tensorial rank.

Pressure terms are negligible.

The bulk flow entropy source term is small.

The termal diffusion portion of the mass flux

is small compared to the diffusion portion.

Assumptions (2), (3), and (5) are obviously as cor—

rect near the CST as away from it. Assumptions (1) and

(“) were discussed in Chapter 5. The demonstration that

n, Kg-l (thermal conductivity near the gas-liquid critical

point), and Kl_l (thermal conductivity near the liquid-

liquid critical point) are independent of their respective

driving forces is indicative of linearity in the critical

region. Assumption (6) is also valid near the consolute

point because the bulk flow entropy source term is pro-

portional to the square of the barycentric velocity which

is itself small (especially for the system to be
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investigated here).

Assumption (7) must be dealt with somewhat more care-

fully. The mass flux, on the basis of the above assump-

tions, can be written

-Jl = oD(8w1/az) - pDalwlng'l(8T/az). (6.“)

The previous chapter (cf. Table 5.5) demonstrated that

the most accurately determined temperature behaviors of

D and 61 in the critical region are D m e2/3 and d m
1

8-2/3, respectively. Thus, while D vanishes in the criti—

cal region, dl becomes large at about the same rate. Al—

though the first term in Equation (6.“) vanishes, Dal

in the second term remains finite. At first sight, it

appears that the thermal diffusion term could be impor-

tant sufficiently close to the CST. However, (awl/Bz)

is always much larger than (aT/az). Away from the CST,

Ingle and Horne [1973] estimate the maximum contribution

of the thermal diffusion term to be 0.01%. With this

estimate for temperatures away from the CST, calcula-

tions show that the critical point must be approached

to within about 0.01°C before the decrease in D allows

a 1% contribution to jl from the thermal diffusion term

[at constant (aT/Bz) and (awl/az)]. The experiments

described herein show that (ST/dz) also vanishes as the

CST is approached while (Bwl/Bz) remains finite. Hence,
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the thermal diffusion contribution to the mass flux will

never reach 1% even for temperatures very near Tc and can

be safely neglected. With all assumptions thus verified,

Equations (6.1) - (6.3) can be used for critical mixtures.

The isobutyric acid-water system (IBW) is particularly

convenient for measurement of Q: in the critical region

because of the very similar densities of the pure com-

o a 3. o =
ponents (pIBA,20°C 0.958 g/cm , pH20,20°C 0.9989

g/cm3). Regardless of the compositions in the initial

layers, the density of the system will be essentially

invariant with respect to position and time. Equation

(6.1) then simplifies to

(av/az) = 0 . (6.5)

Integration of Equation (6.5) and application of the

physically imposed boundary condition that the velocity

vanish at the wall yields the trivial solution for the

barycentric velocity

v E 0 . (6.6)

Large concentration fluctuations characterize the

liquid-liquid critical region. For systems in which the

components have very dissimilar densities, density fluc-

tuations result. The gravitational field will produce
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density gradients in such a system (Mistura [1971]).

Gravitationally induced density gradients have been meas-

ured fin» a few systems very near the CST where the

sedimentation (pressure diffusion) coefficient diverges

(Giglio and Vendramini [1975] and Greer et a1. [1975]).

As Morrison and Knobler [1976] indicate, the presence of

a gravitational field poses no problems for this system

because of the nearly equal pure component densities.

As was done in Chapter 2, Equations (6.2) and (6.3)

can be transformed into equations involving molal param-

eters and mole fractions. This transformation with the

use of Equation (6.6) yields analogous equations for

both composition and temperature:

-0'1(axl/at) + (32x1/822) + {8[£n(D/VM)J/az}(3x1/az)=0

(6.7)

and

-0p/vw(aT/at) + (32T/az2) + (aInK/az)(aT/az)

= K-l{a[M2DQ:(Bxl/Bz)/VM]/az}

+ DK_1V-l(32HE/3Xi)(8x1/32)2 . (6.8)

The initial and boundary conditions are the same as before
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(cf. Chapter 2),

L
xl(0.5 z/a:l,0) = x3; x1(0:z/a 0.5,0) = x1

T(z,0) = constant (6.9)

and

(8Xl/8Z)z/a=0,t = O = (axl/az)z/a=1,t

(6.10)

(aT/az) = 0 = (aT/az)
z/a=0,t z/a=1,t

The solutions of Equations (6.7) and (6.8) subject

to Equations (6.9) and (6.10) for a known set of parameters

can now be numerically obtained using the previously

described program based on the Crank-Nicholson finite dif-

ference scheme.

B. Experimental
 

1. Cell Considerations - Measurements of the diffu-

sion thermoeffect near the consolute temperature cannot

be performed in the "liquid gate" withdrawal cell des-

cribed in Chapter “ because there appears to be no liquid

which is both (1) immiscible with both components and

(2) of intermediate density. However, liquid phase
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behavior in the critical demixing region allows design of

a much simpler cell.

The "liquid gate" withdrawal cell used a third com-

ponent to create the sharp diffusional interface. Systems

that exhibit partial miscibility regions near room tem-

perature are usually dissimilar enough that finding a

third mutually insoluable component is virtually impos-

sible. Even could such a liquid be found, it is undesir-

able to introduce a third component because of the large

effect minute concentrations of impurities have on the

absolute consolute temperature. The consolute tempera-

ture for IBW is known to be particularly sensitive to

ionic impurities (Gammell and Angell [197“] and Greer

[1976]) which tend to lower the CST dramatically. Al-

though small amounts of impurities may affect the absolute

TC by several degrees, critical exponents and temperature

dependencies of properties relative to the measured CST

are not influenced by the presence of impurities (Sengers

[1975], Hocken and Moldover [1976], Bak and Goldburg

[1969], and Fisher and Seesney [1970]).

Instead of a mechanical (or fluid) technique to create

the initially sharp interface, the natural, stationary,

and unperturbed interface present in a binary mixture for

T < TC can be utilized. With the binary mixture thermo-

statted at T < T two phases characterized by pi = pi
C,

are in equilibrium. If the temperature of the entire
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diphasic fluid slab is suddenly jumped via microwave

absorption such that T > Tc’ then pi # pi and diffusion

accompanied by the diffusion thermoeffect must begin.

Very gradual relaxation of T back toward Tc allows meas—

urement cd‘ the difference in temperature AT, caused by

the diffusion thermoeffect, between symmetrically placed

thermocouples as a function of E. Thermostatting of the

mixture at T < Tc allows reuse of the same mixture in

subsequent runs (time must be allowed for phase equilib-

rium to occur).

The cell designed to perform the above experiment is

shown in Figure 6.1. This cell, constructed of 2.0 mm

thick glass, has an inside height of 1.2 cm and an inside

diameter of “.8 cm. The relatively large ratio of diameter

to height minimizes wall effects. As shown in Figure 6.1,

two tiny thin-walled glass, closed, conical tubes project

into the radial center off the cell from opposite walls.

These tubes, which serve as thermocouple wells, extend

from the wall attachment site at halfeheight [(z/a)=0.5]

to positions (z/a) = 0.80 and (z/a) = 0.20 equidistant

from the cell half-height (interface formation was at half-

height). The average inside tube diameter is 0.“ mm.

A small stopcock atop the cell prevents vapor loss (hence

concentration changes) throughout the experiment but

still allows pressure equilibration during the temperature

jump. Large pressures result when liquid systems
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Figure 6.1. Temperature jump cell for diffusion thermo-

effect experiments in the critical region.
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encapsulated in a closed container are temperature jumped

due to the thermal expansivity of the liquid. Thermal

insulation for the cell is a composite wall of 1.3 cm

® ®
Styrofoam , 0.67 cm Acrolyte (to eliminate air cur-

rents through the Styrofoam), and 2.0 cm Styrofoam. Small

holes on opposite sides of this assembly allow thermo-

couple insertion.

Thermocouples were made from calibrated copper-con—

stantan “0 gage thermocouple wire by welding a small

junction. Response time of the thermocouple wells was

enhanced by insertion of a small drop of mercury into

each closed tube. Thermal equilibration times, checked

for similar thermocouple wells by monitoring the mean

time required for the potential to relax to 0.0 pV when

the probe was suddenly introduced into the thermocouple

reference bath, were about 2.5 seconds. Thermocouple

connections were made to the potentiometer facility such

that relative temperatures (the upper thermocouple ref-

erenced to the lower) could be directly measured in addi-

tion to absolute temperatures. This allowed relative

temperatures or temperature differences to be measured to

i0.1 uv (9a. 0.002°C).

2. Critical Temperature Measurements - Each experi-

mental determination of the critical exponent for the heat

of transport also involved measurement of the critical
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solution temperature. As previously mentioned, consolute

temperatures vary significantly with small impurity con-

I

centrations. In order to obtain Ql as a function of

T-T the CST determination was made on a portion of thec’

same mixture immediately before and after the T—jump

experiment. The literature value for the critical com-

position (xlc = 0.111 - 0.11“) was used without further

verification.

The cell shown in Figure 6.2, constructed of 1.5 mm

glass, was used for CST measurements. After filling with

the homogeneous critical fluid (x1 = xlc’ T > Tc), the

cell was sealed against vapor loss with the small glass

stopcocks shown. The consolute temperature drifted less

than 0.03°C during a period of over a week, indicating

essentially no change in concentration from vapor loss.

The outer water jacket depicted in Figure 6.2 con-

trolled cell temperatures with circulating water from a

Neslab Tamson T-9 (10 L capacity) constant temperature

bath. Cooling water to the T—9 bath was from a Lab-

Line Tempmobile (90 L capacity) while current to the

heating element in the T-9 was maintained by a model

2156 Versa-Therm Proportional Electronic Temperature

Controller.

Determination of T0 was visual. The onsets of both

phase separation and phase disappearance were ascertained

by careful temperature adjustment. Phase separation
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Figure 6.2. Critical solution temperature cell.
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temperatures agreed with phase disappearance tempera-

tures to within 0.010°C. The visual technique of de-

termining TC is illustrated in Figure 5.“. Photographs

(d) and (e) show that with T slightly above Tc’ critical

opalescence deepens from a light white fog to a dense

white cloud. The onset (or disappearance) of a turbid

cloud in the stirred opalescent mixture marks the phase

separation (or disappearance) point. Figure 5.“ (e)

depicts the turbid dense cloud observed for tempera-

tures just below Tc' Transition between states depicted

by photographs (d) and (e) is rapid with respect to tempera-

ture change, allowing determination of TO to about

i0.005°C. Maintenance of constant temperature without

stirring for several minutes to observe meniscus formation

was periodically used as a check on the stirred visual

technique of CST determination. Figure 5.“ (f) illustrates

meniscus formation for T < Tc‘ All temperatures were

measured with copper-constantan thermocouples similar

to those used in the diffusion thermoeffect cell as des-

cribed in the preceding section. The thermocouple well

visible in Figure 6.2 was a small mercury-filled glass

capillary tube into which the welded junction was inserted.

The length of this well positioned the welded thermocouple

junction at cell half height.
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3. Experimental Procedure — Fisher Certified Reagent

Grade isobutyric acid was used without further purifica-

tion. However, Karl Fischer analysis of water content

in the isobutyric acid yielded 0.070 wt. % water. This

was accounted for in preparing the mixtures at the

critical composition. Distilled, deionized water was used

for the second component.

Mixtures were prepared by additive weighing of pure

components in separate two-armed 50 mL bottles equipped

with stopcocks on each arm to prevent vapor loss. Excess

vapor space was minimized, and no vapor loss with time

could be noticed gravimetrically. The two pure component

weighing bottles were then connected with a short piece

of tygon tubing and thermostatted above Tc' Subsequent

transfer of the pure components (through the connected

sidearms) back and forth between the two weighing bottles

served to mix the components while maintaining a sealed

environment. With the mixture prepared and located entirely

in one of the two bottles, the side arm stopcock was closed

and the second bottle was removed.

Transfer of the homogeneous mixture through the top

arm of the filling bottle fitted with a short piece of

narrow tygon tubing, into the T-jump cell of Figure 6.1,

was completed quickly with T 3 Tc' To exclude any vapor

space, the cell was filled above the stopcock region and

the stopcock was then closed. The cell of Figure 6.2
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used for CST determinations was immediately thereafter

filled in an analogous manner except that a small vapor

space was left. All glassware was thoroughly washed,

rinsed in deionized water, oven dried for several hours,

and filled immediately upon cooling before each use to

eliminate adsorbed water and ionic impurities. Phase

equilibrium was established with the cell sitting un-

perturbed. Occasionally it was necessary to rotate the

cell carefully to dislodge "droplets" of discontinuous

phase from cell walls. A few days were assumed sufficient

for equilibrium to be established.

Actual experimental runs were made in the following

manner .

(1) Filling and stirring of the ice point thermo-

couple reference bath with distilled water and finely

ground ice.

(2) Observation of the initial temperatures of both

thermocouples and any difference in reading between them.

(3) Removal of the thermocouples (microwaves were

absorbed by the coatings and insulation on the wires).

(“) Simultaneous activation of the Litton industrial

microwave oven and the digital, 0.1 second readout timer.

(5) Disengagement of the microwave temperature jump

after a 1.0 to 2.2 second heating pulse.

(6) Careful insertion of thermocouple leads into

appropriate wells. Temperature readings as a function of
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time were begun.

(7) Acquisition of temperature data. Temperature

difference readings were obtained at 20 to “0 second

intervals and absolute readings were taken about every

100 seconds. Absolute readings of the two thermocouples

were taken within about 10 seconds of each other.

(8) Reestablishment of phase equilibrium after the

temperature had relaxed below Tc‘ The cell was set aside

for future runs.

(9) Measurement of TC in the critical solution tempera-

ture cell. This was done both immediately before and im-

mediately after each run. Values obtained for phase

separation and phase disappearance were averaged.

“. Data Analysis - Any one run consisted of absolute

temperatures at each thermocouple as a function of time,

temperature differences between the thermocouples as a

function of time, the consolute temperature Tc, and the

initial temperature of the cell. The required data to

A~*

fit Q1 8 AE are AT vs. (T -TC) and the initial phase
cell

compositions. Data reduction thus involved:

(1) Fit of absolute cell temperatures to a poly-

nomial in time. Program "MULTREG" (Anderson [1968])

yielded a cubic equation for each thermocouple. These

were averaged to give the instantaneous interfacial

temperature. From the measured TC, (Tcell-Tc) was
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available at any time.

(2) Determination of the upper and lower phase con-

centrations x3 and x§, respectively. The concentrations

were calculated from knowledge of the initial temperature.

Figure 6.3 shows the coexistence curve (temperature-com-

position relation) for IBW determined by Woermann and

Sarholz [1965]. A more accurate method of obtaining

phase concentrations for a given temperature uses the

known critical exponent B for the order parameter; 112;:

xi - xi = C(Tc-T)l/3. A plot of (Tc-T)1/3 vs. xl contain-

ing the data of Woermann and Sarholz [1965] and Chu g3 a1.

[1968] is shown in Figure 6.“. A least squares fit of

the data yielded

‘ II X10 + (Tc-T)l/3/1“.518

(6.11)

>
4 II3 x1e - (Tc-T)1/3/25.680

for the isobutyric acid rich (upper) layer and the water

rich (lower) layer, respectively. These equations are

the solid lines in Figure 6.“. Initial phase compositions

were thereby readily calculable from the initial tempera-

ture.

(3) Provision of AT vs. (Tcell’Tc) data from directly

determined AT vs. time data and from fit (Tcell-Tc) vs.

time data. From these, coupled with the initial phase
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Figure 6.“. The function (Tc-T)l/3 vs. mole fraction

of isobutyric acid. a, data of Woermann

and Sarholz [19651; I, data of Chu 33 a1.

[1968]; -——3 least squares fit.
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compositions, Q1 = AE “ was numerically fit by weighted,

nonlinear least squares regression of AT as calculated

from Equations (6.7) - (6.10). As before, program "KIN-

FIT“" was used ("KINFIT“" is the 1977 version of the orig-

inal "KINFIT" published by Dye and Nicely [1971]) inter-

meshed vain: the numerical integration routine.

C. The Temperature Jump Technique

The advantages of the temperature jump technique are

apparent:

(l) The natural, stable interface between the two

coexisting phases is undisturbed by the shearing action

associated with mechanical formation techniques. Impuri-

ties are not introduced as they would be with a liquid

extraction technique.

(2) There are no moving parts susceptible to leakage

and vapor loss.

(3) There is no ambiguity in mixture preparation.

Half-cell techniques require two phases of different com-

position which, when completely mixed, are at the critical

composition. Use of the T-jump cell allows filling of

the cell at the critical composition. For temperatures

moderately below Tc, the difference in composition between

the coexisting phases Axl is not large, and a distinct

interface with no preferential wetting of the walls (no
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curvature in the meniscus) is formed.

(“) No special thermostatting is required to main-

tain separate phases at a prescribed temperature (T > Tc)

during interface formation.

It is desirable to make the temperature jumps as

short-lived as possible. Temperature jumps of long dura-

tion obscure the initial time to. As an example, consider

a very long duration heating input, say by conduction.

Even before the cell temperature reaches TC, the concen-

trations of the two phases begin to change via diffusion.

Although the two phases are not yet completely miscible,

they are no longer at their equilibrium concentrations and

some diffusion will occur. Such behavior cannot be des-

cribed by the previous equations. This problem was avoided

by use of a commercial Litton Industries microwave oven

which supplied a short duration, moderate intensity heat-

ing pulse. Moreover, the pulse supplied uniform bulk

heating rather than surface conduction heating. Heating

constants for the previously described T-jump cell filled

with the critical mixture were about 7°C/S. Total heat-

ing time was between 1.5 and 2.2 seconds. Despite bulk

heating by the microwave oven, some nonuniformities are

to be expected because of geometrical asymmetries with

respect to the microwave source within the oven. Shortly

after heating, it was found that the upper thermocouple

often read 0.6°C higher than the lower thermocouple.
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Although these temperature nonuniformities are not pre-

dictable, the time behavior of the cell temperature dis-

tribution after they have been measured is calculable

using the diffusion thermoeffect program developed in

Chapter 3. Fortunately, temperature nonuniformities

relax via thermal conduction to the correct Dufour-effect-

caused AT within 500 to 800 seconds. This is because the

temperature gradients diminish by conduction until con-

duction just balances the heat transported by diffusion.

Figure 6.5 illustrates this behavior for various initial

temperature nonuniformities. All curves in Figure 6.5

were obtained by computer simulation for nonuniformities

symmetric about (z/a) = 0.5. Although all curves refer

to a mean cell temperature “°C above the critical point,

each individual curve corresponds to a different initial

temperature nonuniformity. Curve "a" corresponds to the

normal AT induced by the diffusion thermoeffect from

initially isothermal conditions. Curves "b" and "0"

correspond to the AT induced when initially the top (b)

or bottom (0) 5% of the fluid is 2°C warmer than the bulk

liquid while the bottom (b) or top (c) 5% is 2°C colder.

This might physically correspond to a surface effect in

the temperature jump. Curve "d" directly corresponds to

two different initial temperature nonuniformities: (1)

the initial temperature distribution in the cell varies

continuously and linearly from the upper surface to the
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4°C colder lower surface, and (2) the entire upper phase

is initially 2°C warmer than the entire lower phase.

This latter nonuniformity might occur for preferential

absorption of microwaves by one of the components. Curve

"e" corresponds to an initial linear and continuous grad-

ient of 8°C from top to bottom. The point of Figure 6.5

is the coalescence of AT for all these nonuniform initial

temperature conditions into the identical AT produced by

the diffusion thermoeffect with isothermal initial condi-

tions. This occurs in each case within 500 to 800

seconds. Thus, in spite of moderate initial tempera-

ture distributions produced by the T-jump technique,

the AT measured after 800 seconds is dependent upon only

the heat of transport, not the initial conditions. For

moderate T-Jumps, AT values obtained at times longer than

800 seconds can therefore be used without knowledge of the

actual T-distribution immediately following the heating

pulse. Since relaxation to the mean temperature is quick—

est near the interface where diffusion occurs, no ambi-

guities in the composition distribution produced by heat-

ing nonuniformities are expected even though D has a

significant temperature dependence in this region. No

experimental data for times shorter than 1050 seconds

were used in the calculation of 6 To verify further

*

1'

these computer simulations, pure water was T-Jumped with

the microwave oven. With T-Jumps comparable to those
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used for IBW, similar initial temperature nonuniformi-

ties were noticed shortly after perturbation. However,

the measured AT vanished completely after about 500

seconds in the case of pure water. Obviously, the AT

measured for the binary IBW system, persistent through-

out our measurement region (1050 seconds i t i 5000

seconds) depends solely on the diffusion thermoeffect.

The T—Jump technique is useful near the CST basically

because the diffusion coefficient diminishes in this

region while the thermal conductivity coefficient remains

finite. This changes the diffusion thermoeffect from a

transient phenomenon (Figure H.U) to essentially a steady

state phenomenon for times on the order of these experi—

ments.

To see how this happens, compare the composition sur-

faces shown in Figures 6.6 and 3.5. Note that Figure

6.6 shows that the gradient of composition, the main driv-

ing force for the diffusional process, remains almost

constant throughout the experiment except for an initial

blurring of the sharp step function at the interface.

The mass flux 31 = -pD(3wl/Bz) therefore remains prac-

tically constant in time for a given temperature. Heat

conduction down the produced temperature gradient opposes

the heat carried by the mass flux and will reach a point

where it counter balances production of the gradient by

the heat of transport. The transient phenomenon observed
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away from the CST is due to the constantly diminishing

mass flux.

To quantify this point, the equation

gnet = gHT ’ goond = Q16: ’ KAT (6°12)

(analogous to Equation 2.20) where gHT is the heat flux

due to the heat of transport and Scond is that due to

thermal conduction, shows that in the steady state

gnet = 0 and 116:/K=AT. Because in the critical region

at any given temperature ll§:/K changes only very slowly,

AT remains essentially constant.

In terms of the actual experiment, the effect of

this steady state is that perturbations from the AT

produced by the diffusion thermoeffect, will relax back

to the correct value. The establishment of the steady

state is rapid since thermal conduction remains large

and finite in the critical region while diffusion dim-

inishes.

Because near the critical point a steady state is

established between thermal conduction and the heat of

transport term, the cell temperature may be allowed to

relax gradually toward TO. The assumption is that the

steady state is established more quickly than the finite

drop in cell temperature. That is, the measured AT

at any instant is the appropriate steady state AT produced
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~*

by Q1 based on the instantaneous cell temperature; i.e.,

~* Au

Q1 = A[(Tcell-TC)/TC] . This implies that measured AT

values are essentially uncorrelated. They depend only

on the composition profile and the immediate deviation of

the cell temperature from the critical temperature and

not directly on any past history of AT or T The
cell'

measured AT as Tcell changes is always the appropriate

AT relative to the instantaneous cell temperature because

in the critical region the thermal conductivity is always

much larger than the diffusion coefficient thereby rapidly

establishing the steady state for slow changes in abso-

lute cell temperature.

Verification of this assumption was checked numeri-

cally by comparing simulated AT's for two kinds of systems.

In system 1 Tcell decreases to T0 at a rate of about 10"3

°C/s (comparable to the experimental situation). System

2, following the T-Jump, remains at a fixed mean tempera—

ture.1 A comparison of the induced AT in system 1,

when the decreasing cell temperature corresponded to

that of system 2, to the induced AT in system 2 was

made after correcting for small composition differences

due to the temperature dependent diffusion coefficient.

The results of this comparison are shown in Figure 6.7.

In each case, the AT expected in system 1 as Tcell + T0

 

*

1For these simulations, Ql values from Table 6.3

were used.
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is identical to that predicted for system 2 when compared

at the same mean cell temperature. In Figure 6.7, the

dashed lines represent steady state AT values for systems

2, the solid line represents system 1 AT values, and the

-black squares are system 1 AT values at each of the system

2 cell temperatures. Note that when T l of system 1
cel

reaches Tcell of each system 2 as indicated by the black

squares, the expected AT values are indeed identical.

Experimental evidence that measured AT values are

the appropriate steady state values at the instantaneous

temperature was obtained by performing a similar T-jump

experiment on a pure component - water. After the T-

Jump, no difference in temperature was measured between

symmetric thermocouples (AT = 0) throughout the time

region of the measurements (500 seconds i t i 5000 sec—

onds) during which the cell temperature dropped “°C.

No effects on the measured AT were due to the small heat

losses through the walls required to allow the decrease

in Tcell' Measured AT values for mixtures are therefore

due entirely to the diffusion thermoeffect.

An obvious advantage of allowing Tcell to approach Tc

is that each experiment contains the entire e—behavior of

0: from which the CE in can be obtained. Notice also

that AT becomes very small as the consolute temperature

is approached, allowing measurements very near Tc' How

close measurements can be made to Tc is limited by the
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cell temperature distribution. No meaning can be attached

to any result for which T < Tc in a portion of the cell.

However, AT decreases as e-+0, allowing closer and closer

approach to the consolute temperature. A few measure-

ments were obtained within 0.010°C of the consolute tem-

perature.

D. Literature Parameters for IBW

Fitting 0: and its temperature dependence from mea-

sured temperature differences requires fitting of the

values calculated using the previously described numerical

scheme. Literature values of the equilibrium and trans-

port properties of the IBW system were used in this pro-

cess. Composition dependencies of the parameters were

included as polynomial expansions in mole fraction by

fitting literature data using "MULTREG" (Anderson [1968]).

The temperature dependence was included via critical ex-

ponents where known and applicable, and by polynomial

fitting for properties with no anomaly in the critical

region. Table 6.1 summarizes the actual expressions

used for properties discussed below.

(1) Critical properties - The reported values of

the critical mole fraction vary from 0.110 to 0.115.

(Greer [1976], Woermann and Sarholz [1965], Chu £E.él-

[1968], Allegra et a1. [1971], and Friedlander [1901]).

Because the consolute temperature is lowered by
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impurities (especially ionic impurities), values tend

to vary somewhat from laboratory to laboratory. Most

recent experiments indicate the critical temperature to

be between 25.988°C and 26.385°C (Greer [1976], Woermann

and Sarholz [1965], Gammell and Angell [197“], and Allegra

33 a1. [1971]). The apparatus previously described al-

lowed measurement of relative temperatures in this labora-

tory to 0.002°C. Because only relative departures from

TC were needed for analysis, no elaborate calibration

was made in an attempt to obtain absolute temperatures.

However, the measured TC appeared to be slightly higher

than the best literature values. Only relative tempera-

tures were used in data analysis. The small value of

ch/dP (—o.055°K-atm’l reported by Morrison and Knobler

[1976]) indicates that TC is essentially independent of

barometric pressure.

(2) Density and molar volume - Woermann and Sarholz

[1965] and Greer [1976] report very accurately measured

densities in the critical region as a function of composi-

tion and temperature. The best "MULTREG" fit of their

data is shown in Table 6.1 for IT-298.15|515°K. This

equation fits the reported values to within 0.1% for all

values of WI. The polynomial expression for p fits well

very near Tc because thermal expansivity has such a small

CE - Morrison and Knobler [1976] report it as 0.08 - 0.1M

with an uncertainty of 0.1. Molar volumes were obtained
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from V = M/p.

(3) Heat capacity - The temperature dependence of the

specific heat at the critical composition can be well

represented very near the critical point with a logarithmic

singularity (Klein and Woermann [1975]). Klein and Woer-

mann found that correction terms to the logarithmic singu-

larity could not be neglected for deviations from TC

larger than 0.5°K. The fit of their data for 0°KST-TC:

3.5°K is shown in Table 6.1. This logarithmic singularity

is in agreement with the very small critical exponents

reported by investigators of other systems. For example,

Pelger 33 El- [1977] report a = 0.55 [see Equation (5.10)

and Table 5.1 for the definition of a], Voronel and Ovodova

[1969] and Cope gt 11. [1972] report a 2 0.0; and Gambhir

32 a1. [1971] and Viswanathan gt a1.[l973] report 03a10.l.

Although the results of Klein and Woermann were obtained

only at x1 = x1e, the data of Davies [1935] and, to a lesser

extent, those of Kresheck and Benjamin [196M] indicate

that 5% is relatively composition independent for the

relevant range of interest for the experiments reported

herein.

(u) Diffusion coefficient - Light scattering measure-

ments of the diffusion coefficient for this system have

been performed by Chu and coworkers [1968], [1969], and

[1973]. The best "MULTREG" (Anderson [1968]) fit of their

data is also given in Table 6.1. Data used in the fit
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included the self diffusion coefficient of water for the

point x1 = 0.0 in addition to the concentrations reported

by Chu gt 1. The values for D were measured by Chu

t l. at only two compositions in addition to the critical

composition.

(5) Thermal conductivity - No data exist for the

thermal conductivity of IBW mixtures. Fortunately, the

critical exponent of K is well defined at the critical

composition. As shown in Chapter 5, 21 = 0 and the thermal

conductivity shows no anomaly; iLQL, K exhibits the same

temperature behavior near the consolute temperature as

it does further away from the CST. Consequently, the

NEL equation (Jamieson [1975] and Chapter A of this

thesis) was used for the composition dependence. The

temperature dependence was included via the temperature

dependencies of the pure component thermal conductivities.

A linear interpolation of data reviewed by Jamieson [1975]

defined the temperature dependence of K3.

ture behavior of K3 was obtained from a "MULTREG" fit of

The tempera-

the data reviewed by McLaughlin [196M]. The NEL equation

shown in Equation (U.2) was used with Jamieson's recom-

mended value of C = 1.0 for the adjustable parameter C.

(6) Excess enthalpy - As discussed in Chapter U, the

heat of mixing effect is symmetric about the interface

even for very nonideal mixtures. The excess enthalpy is

~§

therefore not required for determinations of Q1 based on
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AT data taken at symmetric positions with respect to the

interface. No data have been reported for HE in the IBW

critical region although Daoust and Lajoie [1976] have

reported some heats of dilution.

(7) Heats of transport - The experimental results

presented here are the first determinations of the criti-

cal exponent for the heat of transport in liquid mixtures

in the critical region.

From the preceding discussion, it is apparent that the

composition dependence of most of the parameters is not

well known. Actual values of 0: calculated from measured

AT data would reflect this uncertainty and would certainly

be no more accurate than the total uncertainty of the

properties used. However, in determining the critical

exponent of 0:, composition changes very little in time.

This is illustrated well by Figure 6.6. Therefore, the

composition contribution to the value of any property

remains the same when the consolute temperature is ap-

proached. That is to say, all of the compositional

dependencies and uncertainties in the input properties

contribute a constant amount to 0: regardless of e and

are thus grouped together into the pre-e factor A in the

expression 0: = Ask“. Since the temperature dependence

of all the input properties was well known, the critical

exponent in can be calculated with good certainty. A

fit of experimental data yields the true value of the CE
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of the heat of transport Au. The pre-e factor A, however,

will be an effective value for each run.

E. Experimental Results
 

A

u were obtained from theBest estimates for 0: = A:

experimental AT data using nonlinear least squares and

Gauss-Markov regression. The values of various properties

used in the calculations are listed in Table 6.1. Table

6.2 contains the initial conditions for the seven runs

that were performed on two independently prepared mixtures.

Further experimental conditions are available from Table

C.l of Appendix C. The overall mole fraction of iso-

butyric acid at which the mixtures were prepared is de-

noted by <xl> in Table 6.2. Ti'Tc represents the initial

temperature from which initial phase compositions x3 and

x§ were calculated using Equations (6.11). The initial

difference in composition between the upper and lower

phases is given in the column labeled Axl. Tmax'Ti

represents the temperature jump range.

The results obtained for the critical exponent A“

are shown in Table 6.3. Also listed in this table are

values obtained for the pre-e factor A. Negative values

for 0: indicate that the temperature of the phase rich

in isobutyric acid increases while it decreases in the

water rich phase. As mentioned above, the composition
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dependence of the necessary input properties are not well

known. This is because investigators of critical systems

have been primarily interested in critical exponents at

constant (critical) composition. Because the composition

distribution remains essentially unchanged during the

experimental time period (of. Figure 6.6), the composi-

tional contribution of all the properties in cell regions

Where Xl # xlc also remains unchanged as T + TC. There-

fore, the critical exponent AM can be determined quite

well, but the absolute value of Q: at a given temperature

cannot be determined with any degree of certainty. The

value of the pre-e factor A contains the various composi-

tional contributions of all the input properties and is

therefore an effective value dependent upon the individual

run conditions. Like that of previous workers, the goal

of this dissertation has been the determination of a

critical exponent — the CE for the heat of transport in

this case. The lack of information about the composition

dependence of properties in this region has not been detri-

mental to the fulfillment of this goal. Nevertheless,

new measurements at various compositions are certainly

in order for the input properties of Table 6.1. Once

such measurements have been made, it is expected that the

large uncertainties in A shown in Table 6.3 will be

diminished and absolute values of the heat of transport

will then be calculable.
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Standard deviations for individual runs are listed

in Table 6.3 as they were calculated by the least squares

fitting program "KINFIT“". The mean critical exponent is

shown at the bottom of this table with its calculated

standard deviation. The most important result in Table

6.3 is An = 0.65 or A“ = 2/3, which indicates that 0:

vanishes as the critical point is approached.

Figures 6.8 - 6.1M show the fit data for each run.

As this is a two parameter regression, one parameter (A)

essentially determines the magnitude of AT while the other

parameter (Au) determines the shape of the curve. Al-

though all the AT data used are tabulated in Tables C.2 -

C.7 of Appendix C, Figures 6.8 - 6.1M are included here

to illustrate the shape of each curve. As mentioned, this

is important since A“ principally determines the shape.

A comparison of these seven figures readily indicates the

1
~*

validity of the simple power law Q1 - As A over the tem-

perature regions depicted therein. Notice, however, that

the first six runs (Figures 6.8 - 6.13) show points which

begin to deviate from the simple power law at temperatures

A°C to 5°C above Tc. This is in agreement with the results

of Chu 23 El [1973] depicted for the diffusion coefficient

in Figure 5.5. No points for T-Tc > 5.0°C were included

in the data analysis. Inclusion of data outside this range

would yield an effective critical exponent rather than

the true value corresponding to the definition of Equation

5.3.
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From Figures 6.8 - 6.1M note that even when T ap-

proaches Tc, the measured AT does not identically vanish.

There also appear to be larger discrepencies between

experiment and calculation in this region. These effects

are primarily attributable to the composition dependence

~* ~*

of DQl' AS T approaches T DQl becomes small near the
C,

interface where x1 = ch‘ However, on either side of the

interface, the composition differs from x1 and the phase
0

separation temperatures for those compositions are con-

siderably lower than TC. In these regions (x1 # x1e),

0: and D are still finite even when T = Tc because of the

lower phase separation temperature at these compositions.

The measured AT is related to D0: and will therefore be

nonzero when T = Tc because of the contribution from

diffusion occurring in regions slightly removed from the

interface. This contribution should also vanish if the

cell temperature is lowered to the local phase separation

temperature. Experimentally, AT did vanish at tempera-

tures below TC when diffusion entirely ceased.

As previously mentioned, this compositional contribu-

tion from various properties will be essentially constant

as T + To and will not affect the determination of Au

except very near the CST when the main contribution from

diffusion at the interface vanishes. To include the com-

position dependence in the predictive treatment, an em-

pirical correction for AT as a function of E was included
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in the numerical integration program for the very near

CST region. This empirical relation was obtained from

a fit of Run I. This same relation was then applied

equally to the other six runs which, as can be seen from

Figures 6.9 - 6.1M, gave good results in each case.

This empirical fitting procedure affected the fit of

experimental to predicted values only in the region of the

last few data points. Furthermore, because all known

composition dependencies were already included in the

equations, the empirical correction was at most 0.008°C.

Fits obtained with and without the data points of this

region, where the empirical composition correction was

used, yielded in values which agreed within 2%.

Table 6.“ is a reproduction of Table 5.5 with the

now known critical exponent for the heat of transport

included. Notice that Q: vanishes with a +2/3 exponent.

Also notice that 6: is identical to 001/011. Since no

thermostatic properties (such as U11) are involved in the

behavior of 0:, the entire observed anomaly is due to the

behavior of the Onsager coefficients. There is no am-

biguity in attributing anomalous behavior to the kinetic

or Onsager effects in the case of the heat of transport.

Since recent light scattering investigations of D in

the critical region reveal that mutual diffusion vanishes

with a +2/3 exponent and since 311 % 6+u/3, 911 must

diverge with a -2/3 exponent. Insertion of this value
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Table 6.U. Transport parameters and their critical ex-

 

 

 

ponents.
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(a) Results of Giglio and Vendramini [1975] are used.

(b) Results of this work.
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into the definition of 0: indicates that 001 N 8°. It

is interesting to note from Table 6.4 that 011 is therefore

the only Onsager coefficient for a binary liquid mixture

(without pressure gradients and external fields) with a

nonzero critical exponent. This fact is, however, con—

sistent with the general criterion for the direction of

an irreversible process as derived by Haase [1969]:

o o

00 01 > o . (6.12)

Q10 911

Equation (6.12) implies 000011-001010 > 0. Since this

expression is true away from the critical region and

only 0 l diverges (while the other coefficients remain

l

finite), the relation is certainly still valid in the

critical region.

Note that in qualitative support of Onsager reci-

W e° N 0procity in the critical region 00 That is,
l 10'

the reciprocal effects have equal critical exponents.

Actual verification of an identity between 001 and 010

must wait until composition dependencies of the various

transport properties and thermodynamic properties have

been accurately determined.

Figure 6.15 shows dramatically the manner in which

the measured AT vanishes as the consolute temperature

a

is approached. Since AT is related to DQl’ where D
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Figure 6.15. Simulated temperatures relative to the mean

cell temperature in temperature jump dif-

fusion thermoeffect experiments as T ap-

proaches Tc'
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vanishes as T + Tc’ the qualitative behavior of Figure

6.15 is to be expected. The feature unexpected a priori

is that AT vanishes more quickly than D; i;§;J that

Q: (the heat "carried" by a diffusing molecule) itself

vanishes. There is a critical decrease in Q: as well

as in D. This observed behavior obviously contains in-

formation relevant to the microscopic mechanism of the

diffusion thermoeffect and is discussed in Chapter 7 as

it pertains to current theories and molecular interpre-

tations of the heat of transport.



CHAPTER 7

CONCLUSIONS

A. Interpretations of the Heat of Transport
 

Although the work described in this dissertation was

the first quantitative measurement of the heat of trans-

port in binary liquid mixtures, numerous papers on the

theory of thermal diffusion and the heat of transport

have been published during the last 50 years. Two main

approaches can be identified, (1) the kinetic approach

and (2) the statistical mechanical approach.

The kinetic interpretation of the heat of transport

has developed from a model for diffusion akin to Eyring's

significant structure theory. The basic reasoning fol-

lows that proposed by Wirtz [1939], Wirtz and Hiby [1943],

Denbigh [1952], and Prigogine 23.21- [1950]. Some ex—

tensions have been made by Dougherty and Drickamer [1955]

and Rutherford and Drickamer [195A]. If a particle is to

leave its position on the quasi-crystalline liquid lattice

and move to a new location, the activation energy can be

divided into two parts: (1) qH, the "Hemmungsenergie"

required to break free from the attraction of the neigh-

boring molecules, and (2) qL, the "Lochbildungsenergie"

required to form the hole into which the diffusing mole-

cule passes. Thus the activation energy is

191
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a qH + qL. (7.1)

The diffusion coefficient and the mass flux can then be

written in a typical Arrhenius fashion with the above

activation energy. Consideration of a nonisothermal system

in which a molecule passes from a temperature Ta to a

temperature Tb requires qH at Ta and qL at Tb' Opposing

rates for the flux can be written which when balanced for

the case of the thermal diffusion steady state yields

2 q ’q

-(ia-rTlg) = ié—L (7.2)

8.8. RT

where C is molarity. The definition can then be made

x = _
Q1 - qH,l °L,1 (7.3)

where k0: is the heat of transport based on the kinetic

model. This is different from the phenomenological defini—

tion of Equation (2.19).

Denbigh's presentation is slightly different. He

defines the "two energy terms involved in this process

(the jumping of a molecule from one site to the next):

(a) the energy of detaching the molecule from its neigh-

bors; (b) the energy of creation or filling of the hole."

With NH and WL representing these two energies respect-

ively, the energy associated with the transfer of a
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molecule of component 1 is NH 1 - wL, which prompts the

9

definition

k x =

Consideration of the regular solution theory facilitates

a representation of NH and WL in terms of configuration or

interchange energies for the case in which molecules of

both components are about equal in size. The excess

~

molar free energy GE in regular solution theory is

= Nwalx2 = w'xlx2 (7.5)

in Which NA is the Avogadro number, w is the interchange

energy, and w' = NAw. Because the two components of the

mixture are perfectly randomly arranged, the excess entropy

of mixing is zero - the entropy of mixing corresponds to

that of an ideal mixture. The interchange energy can be

thought of as the change in potential energy when 2 dis—

similar 1-2 molecular pairs are formed from z/2 1—1 and

z/2 2-2 molecular pairs. The interchange energy is related

to the pair potential energies relative to infinite sepa-

ration Wij by

w = z[w12 - 2(wll + W22)] (7.6)
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where z is the coordination number (Prausnitz [1969]).

In terms of wij’ Denbigh found

81 = ’ZNAfX2/2EX1(W11 ' W12) ‘ x2(W22 ’ W12)]

(7.7)

where f is a numerical factor less than unity which physi-

cally corresponds to the fraction of nearest neighbor

"bonds" broken during the jump.

Dougherty and Drickamer [1955] have made some compari-

sons of experimental values for 0:, obtained from thermal

diffusion experiments on the assumption of Onsager reci-

procity for 001 and 010, with values calculated from

Equation (7.7). In this comparison, the Wij were related

to physical properties such as latent heats of vaporiza-

tion. Good qualitative agreement was found in the com-

parison but the quantitative agreement was poor.

As Tyrrell [1961] indicates, in and Q: are not

necessarily the same. The heat of transport depends on

the reference plane. Denbigh's work assumes a volume

fixed reference frame while the phenomenological defini-

tion of Equation (2.19) is for a barycentric or center

of mass reference system. Although related, the two

heats of transport are subtly different. Of course the

heat of transport obtained from the kinetic theory is

different from the excess enthalpy, which for a regular

solution is
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RE = NAZX1X2/2(2Wl2 - wll - w22). (7.8)

The heat of transport must be due to the very mechanism

of diffusion itself.

The statistical mechanical approach removes the

restrictive assumptions about the structure of the liquid

and the mechanism of diffusion. In so doing, the equations

are difficult to evaluate for real systems because they

contain integrals over pair correlation functions. Based

on Kirkwood's Brownian motion method, Bearman, Kirkwood,

and Fixman [1958] developed an expression for the heat

of transport for a system in which: (1) particles react

with central forces only, (2) intermolecular potentials

can be written as sums of pair potentials; and (3) both

components possess only translational energy. The heat

of transport for such a system in the absence of ex-

ternal forces can be split into two terms

a x x

where Q: is the heat of transport defined by Equation

(2.19), 0:1 is a term involving averages over equilibrium

ensembles, and 0:2 involves perturbations of the equilibrium

distribution due to the flow of heat and matter. Bearman

33 21. derived a general form for Q11 and Q:2. In the

case of regular solutions they are



 

 

_ _ f f
* _ 1 mlxl V1V2 2 1

Q11 - §(-M2— + X2) (:r-- z“) (7.10)

V2 V1

D -D m x f f

* _ 1. 2 1 1 1 1 2 — —

2 l 2 v1 v2

dwg 21 . (2.0) 3
-L2V2) - 3fI'(-—d?— - 1)V2lg2l d E} (7.11)+ 2x2(f2V2

where v is the mean molecular volume, V1 and V2 are the

partial molecular volumes of components 1 and 2 respec-

tively, v1 and v2 are the molecular volumes of the pure

components, :1 and f2 are the negatives of the latent

heats of vaporization of components 1 and 2, respectively,

from the solution to the ideal gas state, L1 and L2 are

the negatives of the latent heats of vaporization of the

pure component to the ideal gas state, m1 and m2 are mol-

ecular masses of components 1 and 2, D1 and D2 are self

diffusion coefficients for each species in the mixture, and

r and r are the magnitude and vector distances between two

molecules, respectively. The integral term in Equation

(7.11) cannot yet be evaluated for real systems because

it contains the radial distribution function gig’o),

the intermolecular potential V21 and a term involving

021 which is related to the nonequilibrium radial distribu-

tion function. The above functions are unknown for real

liquids. Notice that the equations from the kinetic theory
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are analogous to Equation (7.10), but neglect completely

the nonequilibrium portion Q:2 of the phenomenon.

Bearman and Horne [1965] have compared experimental

thermal diffusion factors with (1) thermal diffusion

factors calculated from Equations (7.10) and (7.11) on

the assumption of ORR, and (2) thermal diffusion factors

calculated from similar statistical mechanical equations

derived directly for thermal diffusion in terms of mole-

cular properties. The integral terms involving radial

distribution functions were left out. This corresponded

to a hard-sphere assumption. Because these integrals

were left out, the thermal diffusion factors calculated

from the thermal diffusion theory were somewhat lower than

those obtained from the heat of transport theory. The

values obtained from the heat of transport theory for the

thermal diffusion factors in carbon tetrachloride-cyclo-

hexane mixtures agreed quite well with the experimental

results. An important result of their calculations,

was that the 0:2 term contributed over 50% of the abso-

lute value of Q:. Thus, the nonequilibrium term in the

Bearman-Kirkwood—Fixman theory, which the kinetic theory

completely neglects, is in fact the predominant term.

Story [1967] and Story and Turner [1969] have ex-

amined experimental thermal diffusion factors for carbon

tetrachloride—benzene and cyclohexane-benzene mixtures

with respect to both the kinetic theory and the statistical
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mechanical theory. They find that the kinetic theory

is not only in error with respect to magnitude, but often

yields the wrong sign. They found similar difficulties

in magnitude and sign using the statistical mechanical

theory with the integral of Equation (7.11) neglected.

B. A New Interpretation of the Heat of Transport

The kinetic approach results in an expression for the

heat of transport obtained entirely from equilibrium

properties of mixtures. The Bearman—Kirkwood-Fixman theory

indicates that this cannot be done. In order for the heat

of tranSport to be nonzero, the molar energy transported

by diffusion must be different from the partial molar

enthalpy contribution due to the mass flux. This is

readily seen from Equations (2.4) and (2.19). It there—

fore seems likely that the heat of transport is not just

a difference in potential energies experienced by the

diffusing particle, but should depend on the kinetics

of transport - the very mechanism of diffusion itself.

The results of Chapter 6 clearly indicate that Q:

vanishes as the consolute temperature is approached and

does so with a +2/3 critical exponent. An implicit goal

throughout the evaluation of the critical behavior of

Q: has been that the results would provide insight into

the microscopic nature of heat and matter coupling and

its relationship to the diverging correlation length
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associated with critical mixtures. Clearly, any consistent

* *

model for Q1 must also explain the observed behavior Q1 W

52/3 in the near critical region. The kinetic theory of

Q*

l

ings. In the regular solution theory, the configuration

appears to be inconsistent with these experimental find-

energy w is at most a weak function of temperature, and

therefore Equation (7.7) does not exhibit the required

behavior in the critical region. Even the basic defini-

tion given in Equation (7.4), where regular solution

theory has not been invoked, does not display the experi-

mentally observed behavior. Note that Equation (7.4)

is consistent with the observed decrease of the diffusion

coefficient in the critical region if the increased cor-

relation length is assumed to enhance the diffusional

activation energy. The heat of transport defined in Equa-

tion (7.4) does not depend on the activation energy. It

depends only on the difference in energy required to

remove a molecule and the energy released when its hole

is filled. It would seem that this difference would

depend on relative potential energies rather than lengths

of correlation and therefore this model does not ade-

quately describe the critical behavior of 0:.

To formulate a new kinetic theory for the heat of

transport which is consistent with the experimental

behavior in the critical region, the lattice model for

liquid structure must be discarded in favor of the more
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intuitive idea of randomness due to molecular thermal

motions. Hildebrand [1977] has shown that "changes of

viscosity and diffusivity with temperature can be ac-

curately and more simply expressed in nonexponential for-

mulas than by plotting their logarithms against reciprocal

temperatures." "Activation energy" is therefore not a

necessary construct. The mechanism of diffusion in this

formulation is a succession of small displacements due to

random molecular thermal motions rather than to actual

"jumping" from one lattice site to the next. The tem-

perature dependence of the diffusion coefficient is simply

due to increased thermal motion, which decreases the time

needed for a net transference of molecules from one loca-

tion to another.

The thermal motions of each molecule vary but pre-

sumably obey a maxwellian or normal distribution. In

fact, the mode or expectation value of this distribution

of energies defines the thermodynamic temperature as kT,

where k is Boltzmann's constant. Because of this dis-

tribution of energies, some molecules are more energetic

than others at any given time. For convenience of dis-

cussion, define the "excess energy" of a particle or

molecule as that amount of energy which it possesses at

a given time in excess of the expectation or kT amount

of energy. Thus, the further out in the leading wing

of the distribution, the more "excess energy" the molecule
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has relative to the average value. Now bring two iso-

thermal subsystems (of different pure components for

the moment) into contact and allow mutual diffusion to

begin. Which molecules from the energy distribution

for subsystem 1 will be more likely to be found in sub-

system 2 shortly after initial contact of the phases has

been made? The conclusion that the more energetic mole—

cules diffuse more rapidly than their "average" energy

counterparts is inescapable. Although collisions are

energy randomizing events, molecules at any one time

possessing "excess energy" move faster through the solu-

tion than their lower energy counterparts and for any given

period of time will move further through the mixture.

The heat of transport of component 1 is simply the "excess

energy" transported by molecules which undergo diffusion.

From this picture of the heat of transport, several

concepts, vague in the previous kinetic theory, become

clear. Notice that the difference between the heat of

transport and the heat of mixing is evident. The heat

of mixing is a state function dependent only on the

states of the initial pure components and the final mix-

ture. The heat of transport cannot be separated from the

diffusional mixing process. The heat of transport is

thus dependent upon the nonequilibrium movement of mole-

cules as in the Bearman-Kirkwood-Fixman theory and cannot

be calculated merely from equilibrium properties and/or
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equilibrium intermolecular potentials. The heat of

transport is a property of the system because the distri-

bution of energies is certainly dependent upon the com-

ponents (mass, vibrational degrees of freedom, rotational

degrees of freedom, etc.) and the relative amounts of

each present. 0: is specific to the mixture and retains

its value even if two mixtures of equal chemical poten-

tial are brought into contact. For this case 0: is

nonzero, but no temperature change occurs in the system

because a forward diffusional event is as likely to occur

as a reverse event. The previous kinetic theory pre-

dicts kQ: = 0 in this case.

The temperature changes in a diffusion thermoeffect

experiment are explicable from this model of the heat

of transport. When a molecule of component 1 migrates

from a particular region carrying with it "excess energy",

the molecules behind are lowered in energy relative to the

previous kT value by an amount equal to the "excess

energy" transported. However, other high energy mole-

cules are finding their way into that region carrying

"excess energy" which tends to raise the distribution

of energies. Because there is a competing effect between

the net diffusion of component 1 in one direction (into

the lower chemical potential region) and the net diffusion

of component 2 in the other direction, the temperature

change in a particular location is related to the dif—

ference between the two distributions of energies in
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the initial phases. It is dependent upon the "book—keep-

ing" of "excess energies" carried into and out of the

region. The molecular distributions of energy for the

two initial phases are themselves dependent upon the

masses, intermolecular potentials, and complexity of the

molecules.

The same statistical nature of molecular thermal

motion gives rise to thermal diffusion. Consider a uni-

form, isothermal, binary liquid mixture between two

parallel plates. Because the system is isothermal, both

components have the same expectation value for their

thermal energy distributions. However, the breadth of

the distributions need not be the same and is dependent

upon the properties of the components. If a temperature

gradient is now imposed, the energy distributions of

both components very near the hot wall are shifted up in

energy while the distributions near the cold wall are

shifted down. Because both components are more energetic

near the hot wall, there is a net random migration of

both components toward the cold wall (thermal expansion).

However, the component with the broader distribution of

energies will tend to move faster, i;e;, its more ener-

getic molecules, on the average, move through the fluid

faster than those of the component with the narrower

distribution. Unlike isothermal conditions where the

faster migration of the component with the broader
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distribution occurs equally in both directions, under

the influence of a temperature gradient this statistical

"excess migration" is predominately toward the cold wall

since the distribution of energies was lowered in that

region. There is a net accumulation of this component

in the cold region (as thermal energy is now absorbed

into the cold plate) hence a relative accumulation of

the other component near the warm wall where heat is

continuously supplied. Finally, a steady state is

reached when the above accumulation process balances

diffusion in the reverse direction caused by unequal

populations.

The critical behavior of the heat of transport for

this model is closely tied to the critical behavior of

diffusion. Both are kinetic processes (as opposed to

thermal processes such as thermal conduction). The

Stokes-Einstein-Kawasaki equation (Kawasaki [1970])

D = kT/(onng) w e2/3 , (7.12)

where n is shear viscosity, describes the critical de-

crease of the diffusion coefficient near the consolute

point in terms of a rapidly diverging size effect as more

and more particles become correlated. Thus, D m 5'1 m 82/3,

and D vanishes as groups of molecules become correlated.

It should be mentioned that the critical exponent for n
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is still not known exactly, but appears to be zero or

slightly negative (the small anomaly observed may be a

logarithmic singularity).

For a related reason, Q: in the proposed model must

also vanish as correlation lengths increase. As the

consolute temperature is approached, correlation lengths

increase rapidly. As correlations increase, the max—

wellian distribution of energies must necessarily narrow.

This can be viewed as an effect due to increased mass

per diffusing particle or as a decrease in large magnitude

fluctuations due to increased correlations. Since the

heat of transport is viewed as the "excess energy" or

energy above the expectation value carried by a diffusing

molecule, 0: must vanish as the distribution of energies

narrows about the kT or expectation value. In the limit

of perfect correlation between the molecules, each dif-

fusing species has exactly kT of energy associated with it,

Q: is identically zero, and no change in local temperature

is produced by the diffusional event. This can be viewed

as the limiting case when T + To“ As T approaches To

the diversity of energies associated with particles de-

creases and appears to do so inversely proportional to the

correlation length 5. Therefore

Q, ~ I: w e (7.13)

in agreement with the experimental measurements of Chapter 6.
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C. Summary and Future Work Needed

As stated in the Introduction, the objectives of this

work have been fourfold: (l) to measure quantitatively

for the first time the diffusion thermoeffect in liquid

mixtures, (2) to test experimentally the Onsager heat-

mass reciprocal relation, (3) to study the behavior of

the diffusion thermoeffect in the consolute region of a

binary mixture in order to understand how it may relate

to microscopic phenomena; and (4) to examine experi-

mentally and compare the behavior of the Onsager heat-

mass and mass-heat coefficients in the consolute region.

It was felt that the accomplishment of these four goals

would contribute to the overall objective of transport

investigations: to understand the microscopic causes of

observed macroscopic phenomena sufficiently enough to

make accurate a priori predictions.

In fulfillment of the above objectives, a new cell

was designed which enabled quantitative observation of

the diffusion thermoeffect. This cell used a withdraw-

able third component to create an initially sharp dif-

fusional interface. The equations of nonequilibrium

thermodynamics and hydrodynamics were solved numerically

for the conditions involved in the actual experiments,

leaving (CI/M) as an adjustable parameter. Nonlinear

least squares fitting of these solutions to the measured

temperature differences between thermocouples placed
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symmetrically about the interface led to the first direct

determination of the heats of transport in carbon tetra-

chloride-cyclohexane mixtures. These values compared

well with those obtained via thermal diffusion techniques,

which led to the first experimental verification of the

Onsager reciprocal relation for the heat-mass and mass-

heat coefficients.

The temperature dependence of the heat of transport

was determined for isobutyric acid-water mixtures as a

function of distance from the critical temperature via

the diffusion thermoeffect technique. A temperature

jump cell was employed. The local temperature could be

rapidly jumped (with a microwave oven) to temperatures

above the consolute temperature. The difference in tem-

perature between two points symmetric about the inter-

face was monitored as a function of cell mean tempera-

ture. The cell temperature was allowed to slowly relax

toward Tc permitting determination of the critical ex-

ponent for the heat of transport by nonlinear least squares

fitting. It was found that 0: vanishes rapidly as T0

is approached and can be represented by 0: m e2/3. From

these results, the critical exponent for the Onsager co-

efficient 001 is 0. Very recent thermal diffusion experi-

ments indicate 0 m 5°. The reciprocal heat-mass and

10

mass-heat Onsager coefficients therefore have identical

critical behavior. Furthermore, existing kinetic theories
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of 0: do not explain its critical behavior. A new model

based on the thermal motion picture for diffusion not only

explains the critical behavior of 0:, but also explains

the basic features of the heat of transport left vague

in existing models.

More research is needed to verify and quantify the

model for 0:. The mathematical formulation of the model

is the next step. Of further interest would be diffusion

thermoeffect experiments in multicomponent systems,

especially near critical points of higher order. The

more areas in which the heat of transport can be evaluated

to give special criteria which must be met by any consistent

theory, the better the model will become as well as our

understanding of the processes involved.

With respect to the experiments themselves, it would

be desirable to perform similar studies on other systems

near their consolute temperature. Further studies on the

composition dependencies of thermodynamic and transport

properties in this region need to be performed so that

absolute values of heats of transport can be calculated

in this region. This would then establish a basis for

examination of 901 and 010 to test Onsager reciprocity in

the critical region.

Additional measurements of the temperature and pressure

dependence of Q: away from the critical temperature are

desirable to facilitate empirical predictive capabilities
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and to elucidate the microscopic coupling of heat and

mass transport.

These first experiments on the diffusion thermo-

effect in liquids have opened an area of investigation

in the study of transport processes which for decades

was discounted as unfeasible. Much information can be

gained from study of this cross transport coefficient.

It is hoped that other cross coefficients can also be

tapped and used as tools in the study of transport

phenomena.
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APPENDIX A

TRANSFORMATION RELATIONS AND IDENTITIES

The transformation of mass fraction-specific property

Equations (2.25) — (2.27) to mole fraction-molar property

Equations (2.33) - (2.35) involves the following defini-

tions, identities, and procedures:

A.3.

Mass fraction-mole fraction.

The relationship between mass fraction w1 and mole

fraction x1 is

wi = XiMi/M (A.l)

where M1 is the molecular weight of component i and

M E lel + sz2 is the mean molecular weight.

Specific property—molar property.

If T is any specific property either of the mixture

or of the pure component and 3 is the corresponding

molar property, then

LT= MI. (A.2)

Mass fraction derivatives—mole fraction derivatives.

The following identity is easily shown from the
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A.4.
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chain rule:

_ ~2
(dwl/d) - MlMZ/M (dxl/d). (A.3)

Partial specific enthalpies.

The derivative of the difference in partial specific

enthalpies contained hiEquation (2.27) can be

related to the excess molar enthalpy RE. From the

chain rule, Equation (A.2), and the Euler relation

x dHll+X

the derivative of the difference in partial specific

enthalpies can be written as

mal-fievaz] = (M/M1M2X2)(3Til/3x1)T,P(3xl/az).

The definition of partial molar enthalpy implies

—' - _ ~ 2” 2
[3(Hl-H2)/8z] - (M/M1M2)(3 H/3x1)(3xl/Bz)

where the total molar enthalpy H is usually split

into ideal and excess contributions
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with H? and Hg representing pure component molar

enthalpies. These two equations combine to yield

[3(Ri-H2)/azl = (M/Mle)(BZHE/axi)T,P(axl/az) (A.4)

which is the desired result identical to Equation

(2.36).

Thermodynamic factor.

The transformation from heats of transport to thermal

diffusion factors involves the thermodynamic fac-

tor (l+F) defined as

(1+r) s [1+(ainyl/alnxl)T,P] (A.5)

where Y1 is the activity coefficient for component

~*

1. The relationship between 01 and al is

~* ~ ~ _1

as is easily shown from Equations (2.14), (2.15),

and (2.16). The molar quantities 0: and fil are

related to their specific quantities by Equation

(A-2) where N becomes Ml' From thermostatics, the

molar chemical potential is related to the activity

coefficient Y1 and the standard state chemical

potential u: of component 1 by
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~

“1 e + RTinx y
"1 1 1'

Obviously, Y1 is the activity coefficient based on the

same standard state chosen for 03. Therefore,

(Bul/Binxl)T,P RT(l+32nYl/3£nxl)T,P = RT(1+P)

and

-alMRT(l+P)/M1M (A.6)
2

as required in Equation (4.1).



APPENDIX B

DIFFUSION THERMOEFFECT DATA FOR THE

CARBON TETRACHLORIDE-CYCLOHEXANE SYSTEM

Using the withdrawable "liquid gate" cell described

in Chapter 4, diffusion thermoeffect measurements were made

on five mixtures of CClu-93C6H12. The boundary conditions

used were for adiabatic, impermeable walls at @/a) = 0

and (z/a) = 1. Initial conditions for each run are listed

in Table B.l where x? is the initial mole fraction of

carbon tetrachloride in the upper phase and XE is the

initial mole fraction of carbon tetrachloride in the lower

phase. The initial temperature distribution TO obtained

from thermocouple readings just prior to interface crea-

tion is given by

To = TOO-TZ(z/a-0.5)

with T00 and TZ listed in Table B.l. Isothermal initial

conditions correspond to TZ = 0.

Temperature differences between thermocouples lo-

cated at (z/a) = 0.4 and (z/a) = 0.6 are listed as functions

of time in Table B.2. The initial contact of the upper

and lower phases established the diffusion interface and

was assigned the time t = 0.
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Table B.l. Initial Conditions.

Run # xu xL T /°K T
l l 00 z

I 0.0179 .8044 296.160 0

II 0.0503 .6436 295.355 0.068

III 0.0951 .7638 295.131 0

IV 0.0750 .8935 296.020 0

V 0.1934 .9094 296.429 0.062
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APPENDIX C

DIFFUSION THERMOEFFECT DATA FOR THE ISOBUTYRIC

ACID-WATER SYSTEM IN THE CRITICAL REGION

Using the temperature Jump cell described in Chapter 6,

diffusion thermoeffect measurements were performed on two

different mixtures of isobutyric acid and water prepared

at the critical composition. The initial conditions of

each run are listed in Table C.1 along with temperature Jump

data. After the temperature Jump, the mean cell tempera-

ture relaxed toward the critical temperature as monitored

by thermocouples located at (z/a) = 0.2 and (z/a) = 0.8.

A polynomial fit of mean cell temperature as a function of

time was obtained for each run. The polynomial equations

of the form

t+Tt2+Tt3
+T1 2 3

T - T0 = TO

fit the individual data smoothly where T-TC is the cell

temperature minus the measured critical temperature. The

T T are listed in Table C.1.coefficients T , and T
0’ 1’ 2 3

Also listed in Table C.1 are the critical mole fractions of

isobutyric acid at which mixtures were prepared xlc’ initial

temperatures relative to consolute temperatures (Just prior

to the T-Jump) Ti'Tc’ and the duration of the heating pulse
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Temperature differences between the two thermocouples

were measured directly and are listed adjacent to the time

at which they were observed in Tables C.2-C.8. All times

are relative to initiation of the heating pulse. As dis-

cussed in Chapter 6, data obtained for times less than 980

seconds are not included because of possible heating non-

uniformities.
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Table C.2. Run I.

No t/s AT/°K No. t/s AT/°K No. t/s AT/°K

1 1060 0.126 21 1753 0.067 41 2566 0.031

2 1091 0.123 22 1766 0.067 42 2585 0.029

3 1112 0.121 23 1819 0.062 43 2648 0.026

4 1135 0.118 24 1845 0.062 44 2705 0.026

5 1200 0.113 25 1888 0.059 45 2769 0.023

6 1260 0.103 26 1937 0.055 46 2786 0.023

7 1279 0.100 27 1980 0.054 47 2830 0.023

8 1331 0.098 28 2049 0.052 48 2890 0.023

9 1383 0.093 29 2078 0.049 49 2957 0.021

10 1401 0.087 30 2096 0.049 50 2974 0.021

11 1414 0.087 31 2163 0.045 51 3035 0.018

12 1476 0.082 32 2183 0.044 52 3118 0.018

13 1495 0.080 33 2241 0.044 53 3169 0.016

14 1518 0.080 34 2269 0.041 54 3233 0.018

15 1535 0.080 35 2343 0.039 55 3296 0.018

16 1578 0.077 36 2360 0.039 56 3370 0.016

17 1642 0.072 37 2432 0.034 57 3382 0.016

18 1655 0.072 38 2448 0.034 58 3439 0.013

19 1670 0.072 39 2458 0.034 59 3489 0.013

20 1730 0.070 40 2518 0.031 60 3554 0.013
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Table C.3. Run II.

No. t/s AT/°K No. t/s AT/°K No. t/s AT/°K

1 1104 0.103 18 1681 0.057 35 2294 0.031

2 1158 0.098 19 1734 0.054 36 2374 0.029

3 1176 0.095 20 1804 0.050 37 2398 0.029

4 1195 0.090 21 1823 0.049 38 2464 0.027

5 1207 0.090 22 1841 0.054 39 2552 0.026

6 1214 0.090 23 1857 0.054 40 2587 0.024

7 1225 0.087 24 1873 0.047 41 2623 0.024

8 1238 0.087 25 1933 0.045 42 2687 0.023

9 1294 0.082 26 1952 0.044 43 2761 0.021

10 1376 0.077 27 2051 0.039 44 2809 0.021

11 1394 0.075 28 2068 0.039 45 2832 0.021

12 1404 0.075 29 2080 0.039 46 2888 0.019

13 1475 0.070 30 2095 0.041 47 2946 0.018

14 1556 0.064 31 2115 0.036 48 3006 0.018

15 1571 0.062 32 2193 0.036 49 3078 0.017

16 1586 0.062 33 2216 0.036 50 3154 0.016

17 1648 0.060 34 2244 0.034 51 3198 0.016

Table 0.4. Run III.

No t/s AT/°K No. t/s AT/°K No. t/s AT/°K

1 1059 0.079 14 1608 0.046 27 2215 0.023

2 1073 0.077 15 1638 0.043 28 2247 0.020

3 1085 0.077 16 1715 0.041 29 2299 0.020

4 1193 0.066 17 1753 0.038 30 2318 0.019

5 1210 0.066 18 1810 0.036 31 2341 0.018

6 1236 0.061 19 1875 0.033 32 2390 0.018

7 1249 0.059 20 1936 0.031 33 2459 0.015

8 1276 0.059 21 1949 0.031 34 2547 0.010

9 1320 0.056 22 1960 0.028 35 2566 0.013

10 1380 0.049 23 2016 0.028 36 2578 0.013

11 1425 0.051 24 2071 0.028 37 2635 0.013

12 1459 0.046 25 2136 0.025 38 2655 0.010

13 1553 0.046 26 2149 0.025 39 2713 0.010
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Table C.5. Run IV.

No t/S AT/oK NO. t/S AT/OK NO. t/S AT/oK

1 1060 0.105 16 1719 0.054 31 2373 0.028

2 1122 0.098 17 1731 0.054 32 2448 0.026

3 1140 0.095 18 1755 0.052 33 2502 0.026

4 1160 0.092 19 1814 0.049 34 2535 0.023

5 1224 0.087 20 1895 0.046 35 2592 0.023

6 1296 0.082 21 1954 0.044 36 2607 0.023

7 1322 0.077 22 1971 0.041 37 2659 0.021

8 1387 0.072 23 1980 0.041 38 2690 0.021

9 1429 0.072 24 2000 0.041 39 2741 0.018

10 1489 0.067 25 2051 0.039 40 2764 0.018

11 1505 0.067 26 2110 0.039 41 2824 0.016

12 1555 0.062 27 2180 0.036 42 2834 0.016

13 1622 0.059 28 2251 0.034 43 2910 0.016

14 1652 0.057 29 2285 0.031 44 2951 0.016

15 1667 0.057 30 2354 0.031 45 3014 0.013

Table C.6. Run V.

No. t/s AT/°K No. t/s AT/°K No. t/s AT/°K

1 1810 0.087 13 2934 0.038 25 3830 0.023

2 1848 0.084 14 3015 0.036 26 3877 0.022

3 1946 0.077 15 3151 0.033 27 3954 0.022

4 2065 0.074 16 3242 0.033 28 4047 0.020

5 2149 0.069 17 3349 0.028 29 4159 0.020

6 2245 0.061 18 3376 0.028 30 4290 0.020

7 2381 0.056 19 3431 0.028 31 4334 0.018

8 2442 0.051 20 3495 0.025 32 4393 0.018

9 2530 0.051 21 3589 0.028 33 4424 0.018

10 2619 0.043 22 3620 0.026 34 4731 0.013

11 2725 0.041 23 3713 0.024 35 4853 0.013

12 2833 0.041 24 3740 0.023 36 4937 0.013
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Table C.7. Run VI.

No t/s AT/°K No. t/s AT/°K No t/s AT/°K

1 1446 0.093 18 2437 0.046 35 3527 0.021

2 1512 0.090 19 2507 0.044 36 3568 0.021

3 1550 0.085 20 2555 0.044 37 3655 0.021

4 1618 0.080 21 2624 0.041 38 3678 0.018

5 1648 0.082 22 2650 0.039 39 3727 0.018

6 1707 0.077 23 2714 0.039 40 3794 0.018

7 1762 0.070 24 2753 0.038 41 3836 0.018

8 1832 0.070 25 2825 0.036 42 3913 0.018

9 1913 0.067 26 2870 0.034 43 3933 0.018

10 1929 0.067 27 2958 0.034 44 3990 0.016

11 2027 0.062 28 3036 0.031 45 4076 0.016

12 2051 0.062 29 3102 0.029 46 4142 0.016

13 2106 0.059 30 3187 0.026 47 4196 0.015

14 2132 0.059 31 3246 0.026 48 4257 0.013

15 2224 0.056 32 3302 0.023 49 4330 0.016

16 2250 0.054 33 3392 0.022 50 4427 0.013

17 2317 0.052 34 3429 0.023 51 4485 0.013

Table C.8. Run VII.

No t/s AT/°K No. t/s AT/°K No. t/s AT/°K

l 1053 0.059 9 1482 0.033 17 1879 0.018

2 1081 0.057 10 1506 0.031 18 1934 0.016

3 1137 0.054 11 1568 0.028 19 2003 0.016

4 1203 0.049 12 1623 0.026 20 2036 0.016

5 1244 0.046 13 1693 0.024 21 2125 0.013

6 1290 0.041 14 1718 0.023 22 2148 0.013

7 1353 0.039 15 1780 0.021 23 2208 0.013

8 1403 0.036 16 1838 0.021
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