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ABSTRACT

THE DIFFUSION THERMOEFFECT IN BINARY

LIQUID MIXTURES

By

Richard L. Rowley

The heat flow induced by a composition gradient 1s
known as the diffuslion thermoeffect or Dufour effect.
It 1s characterized by the heat of transport, formally
defined as the ratio of the heat flux to the mass flux
under isothermal conditions. Although theoretical treat-
ments allow calculation of heats of transport from thermal
diffusion experiments on the basis of Onsager heat-mass
and mass-heat reciprocity, no direct, quantitative, experil-
mental determinations of the heat of transport in liquid
mixtures have previously been reported. The direct experi-
mental determination of the heat of transport for carbon
tetrachloride-cyclohexane mixtures reported here has
provided the first experimental verification of the Onsager
heat-mass reciprocal relation. Also reported here are the
first measurements of the behavior of the heat of transport

in a mixture (isobutyric acid-water) near its consolute

temperature.



Richard L. Rowley

The equations of nonequilibrium thermodynamics and
the hydrodynamic conservation equations have been used
to formulate coupled, nonlinear, nonhomogeneous partial
differential equations which when solved subject to ap-
propriate initial and boundary conditions yield time and
space distributlons for the barycentric velocity, composi-
tion, and temperature. These equations are solved with
a Crank-Nicholson implicit numerical scheme which allows
inclusion of the composition and temperature dependence
of the thermodynamic and transport parameters.

The heat of transport for carbon tetrachloride-cyclo-
hexane liquid mixtures has been determined directly by
diffusion thermoeffect experiments. The technique employs
a withdrawable "liquid gate" to create a nonturbulent,
sharp, diffusional interface. The heat of transport is
obtained from nonlinear least squares fitting of numericallw
predicted values to actual temperature differences meas-
ured about the interface. The agreement of these direct
heat of transport measurements with values calculated from
thermal diffusion experiments constitutes the first experi-
mental verification of Onsager heat-mass and mass-heat
reciprocity in binary liquid mixtures.

The temperature dependence of the heat of transport
has also been measured, for iscbutyric acid-water mixtures
near the critical solution temperature. A microwave oven

was used to Jump the temperature of the initially two-phase
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system from Jjust below to Just above the consolute tempera-
ture. Above the consolute temperature, a uniform, one-
phase system is the equilibrium state. Consequently,

as soon as the temperature of the two-phase system 1is
raised above the consolute temperature, diffusion com-
mences and induces a temperature gradlent. Temperature
differences about the Interface obtained as a function of
nearness to the consolute temperature yield the critical
exponent for the heat of transport. The heat of transport
vanishes with a +2/3 critical exponent as the critical
solution temperature 1s approached. There thus exists

a previously unsuspected critical anomaly in the heat of
transport, which can be traced to a diverging Onsager co-
efficlent. Because current kinetic theories are incon-
sistent with the critical behavior of the heat of transport,
a new molecular interpretation of the heat of transport 1s
proposed to explain the nature of coupling between molecu-
lar heat and mass transport as well as 1ts critical be-

havior.
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CHAPTER 1

INTRODUCTION

A. Phenomenology of the Diffusion Thermoeffect

It is well-known that a gradient of composition in-
duces a mass flow or diffusional flux. Similarly, a heat
flux results from a thermal gradient. The phenomena of
diffusion and thermal conduction represent empirical rela-
tionships between flows or fluxes and their respectilve
driving forces. Less well-known are the relationships
between flows and cross driving forces. Partial separa-
tion of the components occurs when a mixture 1s subjJect
to a temperature gradient. Similarly, heat fluxes can
be induced by composition gradients.

The diffusion thermoeffect 1is just such a cross
phenocmenon. The heat flux 1n a bilnary, field free liquid
mixture can be written, according to Onsager, as a linear
combination of the gradients of temperature and chemical
potential - the former drives thermal conductlion while
the latter produces the diffusion thermoeffect. The
mass flux is similarly a linear combination of the dif-
fusion and thermal diffusion driving forces, which are
chemical potential and temperature gradients, respectively.

Figure 1.1 illustrates the basic phencmenology of the
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Figure 1.1. Schematic of the diffusion thermoeffect.



diffusion thermoeffect. In Figure 1.1 z represents the
coordinate axls perpendicular to the interface between
two mixtures. Since "a" is cell height, (z/a) 1is the
reduced coordinate. The initial conditions shown 1n
Figure 1.1 are for isothermal mixtures (T = constant) and

a step function in mole fraction x, of component 1; 1i.e.,

1
the mole fraction of component 1 in the upper layer x%
is different from that in the lower layer xL When two

1
isothermal mixtures containing different compositions of
the same two components are brought into contact such that
an 1nitially distinct interface 1s formed between the
upper less dense phase and the more dense lower phase,
mutual diffusion begins. As diffusion continues, the
initially isothermal temperature distribution changes in
time through three effects: (1) heat of mixing, (2) dif-
fuslon thermoeffect - heat transported by mutual diffusion,
and (3) thermal conduction. If equations are available
which describe these three phenomena, then temperature
measurements with respect to time and position will yield
information concerning the diffusion thermoeffect.

Though not essential, the 1nitial conditions shown
in Figure 1.1 best illustrate the effect. The boundary
conditions listed apply to impermeable and adlabatically
insulated walls. These conditions maximize the measura-
bility of the phenomenon (Ingle and Horne [1973]).

Although the diffusion thermoeffect, also called the



Dufour effect after its discoverer (Dufour [1873]) has been
suspected for over a century, interest in it was dormant
until Waldmann [1939], [1943], [1947], and [1949] studied
and described it in gaseous mixtures. The equations

used by Waldmann are based on 1deal gas assumptions and

are not valid for liquid mixtures. Attempts to measure

the diffusion thermoeffect in liquid mixtures by Rastogil

1. [1965], [1969], and [1970] were only qualitative

et
and disagreed with the Onsager reciprocal relations. Their
experimental apparatus was not sultable for studylng the
Dufour effect unambiguously. The theoretical prediction

by Ingle and Horne [1973], that the diffusion thermoeffect
was indeed measurable prompted initial consideration of

the effect as a tool for this work's study cf the behavior

of transport properties near the critical point.

B. ObJjectives

Unlike gases and solids, liquids and liquid mixtures
have not yet been fully treated theoretically, although
great progress has recently occurred in both equilibrium
and nonequilibrium theories. The liquid-liquid critical
point (consolute point) in a binary mixture, where the
system rapidly changes from a single-phase homogeneous
mixture to a stable two-phase system, 1s characterized
by increasing molecular correlation lengths. Transport

properties in liquids are often dramatically affected by



this transition and therefore can serve as a probe in
understanding liquid phenomena in this region. Transport
experiments near the consolute point also aid the under-
standing of how molecular phenomena and interactions
couple to yleld macroscopic transport.

The goal of the research described in this treatise
was to examine experimentally the diffusion thermoeffect
first in mixtures away from the critical region (since it
had never before been quantitatively measured in liquids)
and second in mixtures near the critical solution tempera-
ture. Since the diffusion thermoeffect involves the
coupling of heat and mass transport, any anomalous effects
in the critical region may help elucidate the manner in
which intermolecular correlations and Interactlons are
involved in the coupling of fluxes to their varlous
driving forces. The diffusion thermoeffect 1s particularly
sulitable for studying heat-mass interactions in the criti-
cal region since only small temperature effects are produced
by moderate composition gradients. Thermal diffusion on
the other hand requires a large temperature gradient as a
driving force and therefore restricts the closeness of
approach to the consolute temperature and intrcduces am-
biguities 1in the difference Tcell'Tc where Tcell is the
mean cell temperature and Tc is the consolute temperature.

The particular objJectlves of this work, tcward the

overall gcals described above, were fourfold: (1) to



measure quantitatively for the first time the diffusion
thermoeffect in 1liquid mixtures, (2) to test experi-
mentally the Onsager heat-mass reciprocal relation, (3)

to measure the behavior of the diffusion thermoeffect in
the consolute region of a binary mixture in order to under-
stand how 1t may relate to microscopic phenomena; and (4)
to examine experimentally and compare the behavior of the
Onsager heat-mass and mass-heat coefficients in the con-
solute reglion. It 1is hoped that the result wilill provide
directlon for further theoretical and experimental studies,
particularly of transport properties, in the liquid-liquid

critical region.

C. Plan of the Dissertation

Chapter 2 describes the diffusion thermoeffect mathe-
matically within the framework of the fundamental equations
of hydrodynamics and nonequilibrium thermodynamics. Solu-
tions of the equations developed therein have the capa-
bility of describing measured temperature distributions in
terms of initial conditions, boundary conditions, and
transport properties. These equaticns are solved numer-
ically. Chapter 3 indicates special techniques used and
the simulated solutions obtained.

Chapter U4 describes experimental investigation of the
diffusion thermoeffect for the carbon tetrachloride-cyclo-

hexane system. The results of these experiments, when



compared with thermal diffusion data, provide the first
verificatlion of the Onsager heat-mass reciprocal rela-
tion (ORR).

Background for critical mixtures and for transport
properties in the critical region is presented in Chapter
5. Literature results clearly indicate the need for the
further experiments described in Chapter 6 on the iso-
butyric aclid-water system near its consolute temperature.
Results obtalned for the diffusion thermoeffect 1n this
region show a strong dependence on the microscopic changes
that prepare the system for phase separation. These re-
sults are discussed 1n terms of possible models in the

final chapter.



CHAPTER 2

MATHEMATICAL FORMULATION OF THE
DIFFUSION THERMOEFFECT

A. Introduction

As Figure 1.1 shows, the diffusion thermoeffect occurs
as a result of diffusion across an 1nitially distinct
interface between two phases containing different com-
positions of the same two components. The response 1s a
disruption of the i1nitial temperature distribution. The
time-dependent temperature distribution at a given posi-
tion 1s related not only to the diffusion thermoeffect
but also to thermal conduction and heat of mixing effects.
In accord with the findings of Ingle and Horne [19731],
measurements of temperature differences between points
symmetric about the Interface as a function of time are
used throughout this thesls. The procedure is to fit
predicted temperature differences to measured values from
which the magnitude of the diffusion thermoeffect can be
deduced. Thils requires equations which relate the tempera-
ture distribution to the heat of transport - the commonly
used parameter in describing the diffusion thermoeffect.
The equations of nonequilibrium thermodynamics and hydro-
dynamics yleld partial differential equations for ccmposi-

tion, barycentric velocity, and temperature as functions



of time and spatial position. The heat and mass fluxes

in the hydrodynamic equations are ildentified from an en-
tropy production equation. Substitution of the proper
fluxes into the conservation equations, ildentification of
the transport parameters 1involved in the fluxes, and deriva-
tion of appropriate boundary and initial conditions yield

a system of partial differential equations which describe
the temperature distribution of the fluid in terms of trans-
port properties and experimental conditions. Nonlinear,
welghted, least squares fitting of measured and calculated
temperatures provides a method for obtaining the heat of
transport.

The method used 1n setting up the partial differential
equations 1s not new. Therefore, more consideration will
be given to transformations, simplifications, and solutions
rather than derivations of the approprlate equations.
Detalls of the derivation and assumptions 1involved in ob-
taining the starting partial differentlal equations are
readlly available from Fitts [1962], de Groot and Mazur
[1969], Haase [1969], Anderson and Horne [1970], and Horne
[1966] as well as elsewhere. In particular, the notation

of Horne and Anderson is used.

B. Hydrodynamic Eguations

In displaying the conservation equations of hydro-

dynamics, limitation to continuous, isotropic, nonreacting
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binary liquid systems 1is intended. The continulty equa-
tions of mass for the bulk liquid and for component 1
(only 2 of the 3 possible equatlions for a binary system are

independent) are
(dp/dt) + pVey =0 (2.1)

and
p(dw,/dt) + ¥* J, =0 (2.2)

where t 1s time, p 1is density, LAY is mass fraction, and
v 1s the center of mass or barycentric velocity related to
individual laboratory referenced component veloclties by

V=WV, + W

11 The diffusion flux Ql is defined by

2¥o:
41 = 01 (Vy-Y)
where pl = wlp.

The Navier-Stokes equation derivable from the mcocmentum

conservation equation for a Newtonlan fluid is
p(dv/dt) + v[(2/3n-¢)(V-v)]-2V nsymVv
3
=p ) X - 9P (2.3)

where symVv 1s the symmetric part of the tensor Vv, n 1is
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shear viscosity, ¢ 1s bulk viscosity, Ki are external
forces, and P 1s pressure.
The equation of energy transport with temperature

and pressure as independent variables 1s

0Ty 92 _ g B = 4-9-g-4, - 9(H-EY) (2.4)

where Eb is specific heat, T is temperature, B is thermal
expansivity, 67 is the entropy source term for bulk flow,
g is the heat flux, and ﬁi is partial specific enthalpy
of component 1 (prime indicates inclusion of any neces-
sary work terms due to external forces). The entropy

source term ¢1 is
¢ = (g+P1):Vy (2.5)

where g is the stress tensor.

Equations (2.1) - (2.4) are formulated in general
terms for pedagogical reasons. Considerable simplifica-
tion occurs in the preceding equations for the experimental
arrangements necessary to measure the diffusion thermo-
effect. If the width/height ratio of the fluid slab in
Figure 1.1 1s large, wall effects can be excluded, and the
above equations need only be written for the z-dlrection
taken perpendicular to the interfacial plane. No external

flelds are present - gravity effects are extremely small

Since the cell height is only one or two centimeters.
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Pressure terms are very small for thilis experimental ar-
rangement (Anderson and Horne [1970]). Because liquid
densities are usually quite similar, the barycentric vel-
ocity will be small enough that all terms of order (av/az)2
can be safely neglected. These simplifications eliminate
the Navier-Stokes equation - there 1s no convection in
the cell unless temperature gradlents cause density inver-
sions. Likewlise, the entropy source for bulk flow 61
is negligible due to its dependence on the square of the
veloclty gradient.

With the above restricticns and the relation between
substantial and local time derivatives, d/dt = (3/3t) +
v-Y, Equations (2.1), (2.2), and (2.4) become

(3p/3t) + (dpv/dz) = 0, (2.6)
p(awl/at) + (ajl/az) + pv(awl/az) = 0, (2.7)
and

pC(3T/3t) = (3a/32) - J1[3(H -H,)/32] - oT v(37/3z2)
(2.8)

respectively. Before these three equations can be solved
for v, L) and T; expresslions for the heat and mass fluxes
must be introduced. These are deduced from the theoriles

of nonequilibrium thermodynamics.
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C. Nonequilibrium Thermodynamics Equations

The framework of nonequilibrium thermodynamics rests
on the foundation of "local states". This simply requires
that all thermodynamic functions of state exist for each
microscopic volume element of the system. Furthermore,
these thermodynamic quantities, in the case of nonequilib-
rium systems, are the same functions of the local state
variables as the corresponding equilibrium thermodynamic
quantities (Fitts [1962]). This permits the concepts of
temperature and entropy in nonequilibrium systems even
though their definitions evolved from thermostatic states.

Likewlse, the Glbbsian equations are valid and, therefore,

where S is specific entropy, U is specific internal energy,

and Hi 1s the specific chemical potential of component 1.
Entirely from balance techniques for the entropy of

a local volume element (similar to the method by which the

hydrodynamic equations are often derived), an entropy equa-

tion can be written in the form

0dS/dt = ¢/T - V*}J

Vg (2.10)

where Qs 1s the entropy flux due to mass and heat flows

and the semidefinite positive quantity ¢/T is the rate
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per unit volume of the internal entropy production. Sub-
stitution of the hydrodynamic equations for mass and energy
balance into Equation (2.9) and subsequent comparison to
Equation (2.10) allows identification of ¢ after con-
siderable rearrangement. For the system at hand (a binary,

field-free, isotropic, nonreacting, nonelectrolyte liquid

mixture),
¢ = ¢1 + ®2 (2.11)
where
01 = (g + PL):7y
and

¢ = —g Ut - Jy Tp(iy-ip)
with Yol =Vu,+5,VT.

It 1s important to note that ¢ is of the form
$ = iJiXi where the Ji and Xi represent fluxes and driving
forces respectively. The fluxes and forces in ¢1 are ten-
sors of rank 2 while those of ¢, are vectors. Centurles
of experimental work have shown linear coupling of fluxes
and forces Ji = §Qijxj‘ For the isotropic liquids con-

sidered here, Curie's theorem, based on spaclal symmetry
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arguments, allows coupling only between those fluxes and
forces which do not differ in tensorial character by an
odd integer. In Equation (2.11), the fluxes and forces
of Ql and ®2 cannot interact. Therefore, heat and mass

fluxes are

-q = QooyznT + 901YT(“1"“2) (2.12)

41 = Q0 70T + 0139 (uy- W) (2.13)
where the Qij are called Onsager coefficients. The utility
and indeed the present reason for the nonequilibrium thermo-
dynamic approach 1s the i1dentification of correct fluxes

and driving forces and thelr proper coupling as required

by the entropy production equation. For many years, the
driving force for diffusion was thought to be a composi-
tion gradient (Fick's original laws), but the eguations

of nonequilibrium thermodynamics readily identify it as

a gradlent of chemlcal potential.

D. Transport Parameters and Eguations

The Onsager coefficients which appear in Equaticns
(2.12) and (2.13) are related to experimentally observed
transport ccefficients. In fact, thelr identification
is made by comparison with their phencmenoclogical counter-

parts (Fick's law, Fourier's heat conduction law, etc.),
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The Qij for this bilnary nonelectrolyte mixture are

% —
Q9 = kT (A) Qg1=0DQ w5/ uy,  (B)
Q19 = PDp (c) Qll=pr2/u11 (D)
(2.14)

where k 1s thermal conductivity, D is mutual diffusivity,
5; is specific heat of transport (the commonly used measure
of heat transported by diffusion in a diffusion thermo-
effect arrangement), Eilz(aai/awl)T,P’ and Dp 1s the ther-
mal diffusion coefficient. O0Often experimental thermal
diffusion results are expressed 1in terms of the thermal
diffusion factor oy Or the thermal diffusion ratio K

T

rather than the thermal diffusion coefficient DT' These

three coefficients are related by

Kp = Dp/D (2.15)

and

-Otl KT/WIW2 . (2.16)
Likewise, 1t 1s sometimes desirable to retain the form
of Equation (2.12) 1in which only a single transport co-
efficient appears but written in terms of mole fraction
rather than chemical potential. If Equation (2.12) is

written
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_g = KYT + BTYxl s (2.17)

a new coefficlent BT 1s defined known as the Dufour co-
efficient. From Equation (2.14B) and the relationship
between mass fraction and mole fraction, BT i1s related

—*
to Q; by

—* ~
Bp = pDQ1M1M2/M2 (2.18)

where M 1s the mean molecular welght defined by M = lel
+ x2M2.
From Equations (2.12), (2.13), (2.14B), and (2.14D),
—*
the defining equation for the heat of transport Q1

1s seen to be

(@/J)pp = g - (2.19)

The heat of transport can therefore be thought of as a
heat flux produced by an 1sothermal mass flux. If the
isothermal conditions of Equation (2.19) are relaxed,

then
_*
a = élQl - KYT (2.20)

(de Groot and Mazur [1969]). This relationship shows the

two effects which determine the magnitude of the temperature
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difference measured between two points in a diffusion
thermoeffect cell. The heat transported via the mass
flux builds up a temperature gradient while thermal con-
duction tends to diminish it. The relative magnitudes

of 5; and k, for a given diffusional flux, determine the
magnitude of the ensuing temperature gradlient. Note also
that the transient nature of the diffusion thermoeffect
is due to a nonconstant mass flux. When q = 0 the heat

flow transported by diffusion identically balances the con-

duction heat flow and

VT = QIG;/K . (2.21)
If Ql remained constant throughout the experiment, a steady
state YT would be measured. However, as diffusion de-
creases the composition gradient, J; decreases. This
lowers yT and a time dependent behavior 1s observed.

Not all of the set{K,D,Q;,DT} are independent. On-
sager [1931], applying microscopic reversibility concepts,
showed that the matrix of coefficlents involved 1in the
flux-force relations must be symmetric. Though experi-
mental evidence accrues constantly in support of the On-
sager reciprocal relations (Miller [1960] and [19751]),
the results reported herein constitute the first experi-
mental evidence of the heat-mass ORR. For the system des-

cribed by Equations (2.12) and (2.13), CORR implies
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901 = Qlo . (2.22)
Substitution of Equations (2.14) for the Onsager co-
efficients in Equations (2.12) and (2.13) yields for the

applicable one dimensional flux equations
—*
-qQ = K(ST/aZ) + pDQl(awl/aZ) (2023)

Wow T L (3T/32) (2.24)

-Jl = pD(awl/az) - pDa1 1%5

where the Gibbs-Duhem equatlon has been invoked to help
transform chemical potential gradients to slngle mass
fraction gradients.

Ingle and Horne [1973] argue on the basis of numerical
values for common liquid systems that |a1w1w2T'l| is of the
order 10-3 deg'l and that therefore thermal diffusion is
at most 0.01% of diffusion, assuming that composition
gradients are an order of magnitude larger than tempera-
ture gradients for diffusion thermoeffect experiments.
Neglect of the thermal diffusion term in Equation (2.24)
and substitution of Equations (2.23) and (2.24) into Equa-
tions (2.7) and (2.8), yields partial differential equa-
tions which completely (with appropriate initial and boun-
dary conditions) define v, Wy, and T as functions of t

and z:
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(3p/3t) + (3pv/3z) =0 (2.25)

p(awl/at) = {3[pD(3w,/32)1/32} - pv(awl/az) (2.26)

pC, (3aT/3t) = oDla(H;-H,)/32](3w,/3z2)

+

(3[pDQ} (3w, /32)1/22)

pEﬁv(BT/az) + {3[k(3T/3z)]1/%z}. (2.27)

These equations are identical to the starting equations
used by Ingle and Horne [1973] in their analytical double
perturbation solution of the diffusion thermoeffect problem,
Their perturbation scheme, while allowlng solution even
with composition and temperature dependent parameters,
results 1n solutions which are extremely bulky and complex.
The number of terms required and the rapidly increasing
complexity of successlively higher order terms limit the
practical application of this technique to those liquid
systems whose properties are only slightly temperature and
composition dependent. Thils unfortunately 1s not the case
for the systems of interest here. To avoid these dif-
ficulties the numerical scheme discussed in Chapter 3
1s used.

The initial condition for the composition equation

is a step function
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]
5

w,(z/a > 0.5, 0) b
(2.28)

wl(z/a < 0.5, 0)

where w; and w% are the mass fractions of component 1 at
which the upper and lower phases respectlvely are prepared.
Exactly at the interface Wy is an arithmetic average of the
two phases but 1t need not be defined unless a grid point
of the numerical scheme 1s located at that position. The
measured temperature distribution just prior to interface
formation becomes the initial condition for the tempera-
ture equation. It should roughly correspond to isothermal
conditions so that thermal diffusion can be neglected.

Thus, the initial condition is
T(z/a, 0) = T(z/a) (2.29)
where T(z/a) is a constant for isothermal conditions.
Boundary conditions can be imposed from the physical

aspects of the experimental design. Because the walls

are 1mpermeable to matter,

v(0,t) = 0 = v(1,t) (2.30)

for the barycentric velocity and J; = 0 at (z/a) = 0 &

1 fer the mass flux. Fick's law restates the vanishing
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mass flux boundary condition as
(Bwl/az)o’t =0 = ('c)wl/az)l’t (2.31)

since D never vanishes. The boundary conditions for the
temperature equation depend on the experimental arrange-
ment desired. If the walls are adiabatlically insulated
the heat flux vanishes at the walls and, from Fouriler's

heat conduction law,

(3T/3z)q ¢ = 0 = (3T/32)y ¢ - (2.32)

Although Equation (2.32) 1is the boundary condition used in
these experiments (the cell was adiabatically insulated to
maximize induced temperature inequalities), it 1s not the
only boundary condition which can be used.

Before 1limiting discussion to the carbon tetrachloride-
cyclohexane system (which provides a convenient system for
study of the diffusion thermoeffect away from critical
regions), it is appropriate to 1list the assumptions involved
in the derivation of Equations (2.25) - (2.27) for they will
also serve as the starting point in the analysis of systems

exhiblting critical mixing. The assumptions employed are:

(1) The linear hydrodynamic equations for conservation

of mass and energy are valid.
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(2) The binary system is isotropic, nonreacting, and
field free.

(3) Local states are assumed, 1.e., the equations of
thermostatics apply for local regions.

(4) Fluxes are linear combinations of these forces
which appear in the entropy production equation
and which have the same tensorlal rank.

(5) Pressure terms are negligible.

(6) The bulk flow entropy source term is small.

(7) The thermal diffusion portion of the mass flux
is small relative to the diffusional contribution.

(8) The phenomenon takes place entirely in one dimen-

sion, so that wall effects are unimportant.

E. Mole Fraction Equations for Carbon Tetrachlorilde-

Cyclohexane Mixtures

The properties of the carbon tetrachloride-cyclohexane
system are much more nearly constant in mclal rather than
in specific quantities. A transformatlon is therefore use-
ful, with respect to numerical step sizes and to possible
simplifications, from mass fractions and specific proper-
ties to mole fractions and molal properties. Transformation
of Equations (2.25) - (2.27) with the aid of the trans-

formation identities in Appendix A results in

(3v/dz) = (szl-mlvz){a[(D/VM)(axl/az)J/az}, (2.33)
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(3xy/3t) = VM{3[(D/VM)(3x1/32)1/3z} - v(3x,/3z) ,(2.34)
and

(3T/3t)

(v/ép){a[K(aT/az)]/az}
+ (M,7/8 ) (3L (D3, /TH) (3x, /32)1/32)
+ (D/ap)(82ﬁE/3x§)T,P(axl/az)2—v(8T/az) (2.35)

where Xq is mole fraction of component 1, V 1s molar vol-

ume, Cp is molar constant pressure heat capacity, 5; is

the molar heat of transport, and ﬁE 1s the molar excess
enthalpy. Equations (2.33) - (2.35) are the mole fraction-
molar property versions of the mass fraction-specific
property Equaticns (2.25) - (2.27) which Ingle and Horne
[1973] used. The excess molar enthalpy iE 1s related to

the difference in partial specific enthalples by
[3(H,-H,)/82z] = (M/MiM,) (3°EE/8x2),, ,(9x,/32) (2.36)
1 2 12 1’T,P 1 :

as derived in Appendix A.

For carbon tetrachloride-cyclohexane mixtures, the
excess volume of mixing is very small (Wilhelm and Sack-
mann [19747] indicate it to be everywhere less than 0.29%

of the total molar volume) and V, = 770

1 ; Where Vg is the
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pure component molar volume. Integration of Equation

(2.33) subject to the boundary conditions
v(0,t) = 0 = v(1,t) (2.37)
and
(E)xl/az)o’t =0 = (axl/az)l’t s (2.38)

yields for the barycentric veloclty

v = (uyT0-M73) (D/T) (3%, /32) (2.39)

Substitution of this expression into Equation (2.34) pro-

duces upon rearrangement
(3x1/3t) = D(3°xy/32%) + [(3D/3%1)q p
- 2(0/7) (37/0%1 ) p1(ax/02)%.  (2.40)

For the experiments reported in this dissertation,
the composition and temperature dependencies of D and v
in Equation (2.40) do not measurably contribute to the
observed temperature difference produced by the diffuslon
thermoeffect. Numerical verification of this statement

was made by determination of the heat of transport (from
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experimental temperature differences) both with and without
the composition and temperature dependencies of D and V.

No detectable effect was found. There were of course

small differences in the composition as a function of time
and position because of the dependence of the parameters

D and ﬁ on composition. Nevertheless, small errors in the
composition profile due to relatively good assumptions 1in
the diffusion equation had a negligible effect on the solu-
tion of the temperature equation. It suffices therefore

to use
(3x,/3t) = Dy(3°x;/32%) (2.41)

instead of Equation (2.40) to describe composition in time
and space where the subscript 0 1s used to denote evaluation
of the parameter D at x; = 0.5 and T = 298.15 °K. Explicit
formulas for calculating directly the effect of the composi-
tlon and temperature dependence of D and v on the experi-
mentally observed temperature differences may be found in
the paper by Ingle and Horne [1973]. As emphasized there,
these dependencies do not contribute to the temperature
difference measured symmetrically about the interface be-
cause they involve terms of only even symmetry atout the
center.

The solution of Equation (2.41), subject to the experi-

mental boundary conditions, is
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[}

xp = x>+ 200xy/m) ] (-1)*2er)7t

X{exp[-(2£+l)2(t/e)]}cos[(22+1)nz/a] (2.42)

where <xl> is the initial arithmetic mean x Ax, 1s the

1 1
difference 1n Xq between the initial two phases, and

g = a2/ﬂ2D0. It is important to note that the numerical
technique described in the next chapter allows solutlon
of Equation (2.40) in its entirety when Equation (2.41)
Is not satisfactory for the deslired system. In actual
practice, numerical solutions for both the composition
and temperature equations were used in the determination
of the heat of transport. Thls allowed development of a
computer program using the more general equation which
could then be quickly simplified to Equation (2.41) for
appropriate systems such as carbon tetrachloride-cyclo-

hexane.



CHAPTER 3

NUMERICAL SOLUTION OF THE DIFFUSION

THERMOEFFECT EQUATIONS

A. General Scheme

Equations (2.40) and (2.35) or Equations (2.41) and
(2.35) with the initial and boundary conditions of Equa-
tions (2.28), (2.29), (2.32), and (2.38) completely des-
cribe the diffusion thermoeffect for the conditions of
experimental interest. Explicit solution of these equa-
tions 1s not easy because they are not only nonhomogen-
eous but are also coupled and nonlinear with nonconstant
coefficients. This type of problem 1s, in general, un-
solvable without recourse to numerical techniques. The
general presentation discussed here 1s due to Rosenberg
[1969].

To obtaln a numerical solution, continuous variables
are replaced by thelr discrete counterparts. Partial
derivatives are represented by finite differences so that
the partlal differential equations become finite dif-
ference equations - algebraic rather than differential.
To obtaln discrete variables, the continuous time-space

domain of the problem 1s subdivided as shown in Figure

3.1. The time domain 1s divided into rows labeled with the

28
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(S o o (o) o o o o o o <

| 1 | ] | 1 ] [| |
o} i-1 i i+1 R
Position

Figure 3.1. Crank-Nicholson grid scheme for finite dif-
ference equations. Properties are evaluated
at the 1,n positions, o. Derivatives are
evaluated at the i,n+l/2 positions, =.
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index n. The spatial domain 1s divided into R columns
each labeled with an index denoted by 1. Any dependent
variable U can be specified in time and space with 1ts
appropriate 1ndices Ui,n‘

If U 1s expanded in a Taylor's seriles about the

i+1,n
point Ui (at constant n),
,n

U = U, _+ (3U/3z), Az + (a2U/az2)i n(Az)2/2!

i1+1,n i,n

+ (33U/BZ3)i’n(Az)3/3! + ..., (3.1)

finite difference representations for spatial derivatives
can be obtained in terms of the distance between two
consecutive spatial grid points Az. This is done by writ-
ing the Taylor's expansion for Ui—l about U

,n i,n?

= Uy - QU/z), ez o+ (3%0/02%) [ (az)/2!

Ui-1,n = Y1 ,n

- (33u7923); _(82)3/31 + ..., (3.2)

and then by comparing Equations (3.1) and (3.2). Feor
instance, the forward and backward difference equations
for the first derivative are obtalned by rearranging
Equations (3.1) and (3.2) respectively and then truncating

them to obtain

Y/Az (3.3)

(30/02); o= (Ugyq o= Uy )
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and

(3U/3z), [ = (Uy = Uy /b2 . (3.4)

i,n
Notice that the filrst term omitted in the truncation 1s
(32U/az2)1’nAz/2!. The truncation error 1s first order

in Az, and the finite difference expressions are therefore
first order correct analogs. A better approximation for
the first derivative 1s obtained by subtracting Equatilon
(3.2) from Equation (3.1),

(aU/az)i’n = (Ui+1’n - Ui_l,n)/2Az
- (83U/8z3)i’n(Az)2/3! - ..,

and then truncating terms of order (Az)2 and higher, with

the result

(ZBU/Bz)i’n = (U1+1,n - Ui_l’n)/2Az . (3.5)
Fquation (3.5) 1s a second order correct representation of
the first spatial derivative. A graphical comparison of
first and second order correct finite difference analogs

is reproduced in Figure 3.2 (Rosenberg [1969]) where

line "a" represents the true slope of the curve at a point.

Line "b" 1s the seccnd order correct analog and approximates
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Figure 3.2.
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i i1

Graphical comparison of first and second order
correct analogs for the first derivative as
illustrated by Rosengren [1969]. a. Actual
derivative. b. Second order correct analog.
¢. First order forward difference. d. First
order backward difference.
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the slope much more closely than the forward and backward
first order correct analogs shown as lines "¢" and "4d",
respectively.

A second order correct approximation for the second
derivative can be obtained by adding equations (3.1)
and (3.2) and truncating terms of order (auU/azu)i’n(Az)z/H!

and higher,
(3%0/3z%), _ = (U -2U, +7U )/(8z)2. (3.6)
i,n i+l,n i,n i-1,n ' :

The finite difference expression for the first time
derivative can also be made second order correct by using
the Crank-Nicholson method. Finite difference expressions
are centered about the polnts Zystne1/2 which are half-
way between the known and unknown time levels. Dependent
varliables U are evaluated at grid points, represented
by open circles in Figure 3.1, while derivatives are cal-
culated at center points such as the one designated with

the black square. The time derivative is

(aU/at)i,n+l/2 = (Ui,n+l - Ui,n)/At (3.7)

which 1s second order correct. The spatial derivatives 1in

this scheme become
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(3U/32)4 ny1y2 = L/H0WUg4 ney = Usog nen)/22
+ (Ui+l,n - Ui-l,n)/AZ] Iy (3-8)

and

(220/32%)y 41y = 1/2000040 o = 20y o+ Uy g )/ (82)°

N

2
* (Ugsr,ner = 203 ne1 * Upog nen)/ (02270 - (3.9)
The Crank-Nicholson method 1s particularly effective for
the diffusion thermoeffect problem because there is no
stabllity restriction on At/ (az)2.
Equations (2.40) and (2.35) are of the same general

forml,

a(3U/3t) - (3°U/3z2) + b(3U/3z) = d (3.10)

where a, b, and d are comblnations of various transport

and thermodynamic properties and are, in general, functions

1Although for the carbon tetrachloride-cyclohexane
system Equation (2.41) was used in place of Equation (2.40),
the solution procedure outlined here uses the more general
Equation (2.40). Both equations yield the same temperature
difference result for carbon tetrachloride-cyclohexane
mixtures.
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of temperature and composition. Substitution of Equatilons
(3.7) = (3.9) into Equation (3.10) followed by a regrouping

of terms ylelds the algebraic expressions

Ay n+1/2Y%1-1,n+1 ¥ By n+1/2% 041
¥ Ci,n+1/201+1,n+1 = Dy n+1/2 (3.11)
where
Ai,n+1/2 =1 + (Az)bi,n+l/2/2 s (3.12A)
= 2
By ,n+1/2 = -2-2(Az) ai,n+l/2/At , (3.12B)
Ci,n+1/2 = 1'(A2)bi,n+l/2/2 , (3.12C)
and
2
Pi,n+172 = ~Ri,ns1/2Vs-1,n + (22082078 nyy /0800y

-C 2(4z)°d (3.12D)

1,n+1/2%+1,n ~ 1,n+1/2

The equations are grouped in this fashion to display thelir
recursive nature. Values of U on the right hand side of
Equation (3.11) depend only on the nth time row while those

on the left hand side depend only on the n+lSt row. A
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complete time row must be solved simultaneously from the
previously calculated row since U1 n+] appears in Equation
>
(3.11) with both adjacent neighbors Ui—l,n+1 and Ui+1,n+1'
Although the coefficlents A, B, C and 4 are to be
evaluated between the time rows, an iterative procedure can

be avolded if Ay n41/0 * A1,nd Bine1/2 = Bind Cionerse

k=4

and d = d In this case, properties of

C4,ns 1,n+1/2
the system need be evaluated only at the nth time row

i,n’

where temperature and composition have already been
calculated. Because the composition equation 1is solved

prior to the temperature equatlion along the n+lslc row, the

temperatures and compositions of the nth

row grid points
are used to evaluate the parameters at the respective

n+l/2 locations. The temporarl spacing of the grid points
is based on a thermal conduction time scale which is much
faster than a diffusion time scale. Hence, the change in
composition between n and n+l/2 is negligible. Similarly,
as long as the row spacing At 1s not too large, the tempera-
ture dependence of the parameters evaluated at tn will be
essentlally ldentical to the values at tn+l/2' For the
temperature equation, the parameters are directly evaluated
at n+l/2 with respect to composition by averaginrg the
composition at tn and tn+1' The temperature dependence of
the parameters, however, 1s again evaluated at tn rather
than tn+1/2' Little or no error results for At small

compared to that requlired for significant changes in the
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temperature. Although time step sizes were 1lncreased as
the experiment progressed, care was taken to ensure that
they remained small enough that essentially no error was
introduced by evaluating the parameters with respect to
temperature at tn rather than tn+l/2‘ This procedure is
summarized in the flow diagram of Figure 3.3.

To solve Equations (3.11) for Uy the values of
]

n+l°?
U must be known. The values for U are obtained from
i,n i,0

the initial conditions and are therefore completely
specified. For any given row of R spatial increments,

the values of U and U must also be specified - these

O,n R,n

are the boundary conditions. Putting Equations (2.32) and
(2.38) into finite difference notation yields with the aid

of Equation (3.5)

Yo,n = Y2,n & Ur,n = Ur-2,n (3.13)
where the grid points are aligned such that i=1 and i=R-1
correspond to cell walls. This reflective boundary condi-
tion assigns imaginary grid points 1=0 and i=R outside the
cell walls, but UO and UR are never evaluated.

With the previous comments concerning the evaluation
of A, B, C, and d; Equations (3.11) and (3.13) can te
combined to yield a (R-1) x (R-1) tridiagonal matrix for

each row 1n time
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Figure 3.3. Flow diagram for simultaneous numerical solu-
tion of the composition and temperature equa-

tions.
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PBlUl 2c,U, 0 0 0o ... ] [ D,

AU ByU, CoU; O 0o ... D,
0 AU, B3Us CaUy 0 ... D,
0 0  AyU; ByU, CuUs ... | = | Dy [ (3.1
0 0 0 AUy BgUs ... Dg

where the displayed indices are i values. Each tridiag-
onal matrix system (one for each row in time) 1is solved
via the Thomas Algorithm (Rosengren [1969]) as illustrated
in Figure 3.3.

The numerical solution of the diffusion thermoeffect
has certaln advantages over the lengthy perturbation equa-
tions of Ingle and Horne [1973]. The composition and tem-
perature dependence of the parameters are fully included
without involving numerous infinite summations. Ingle and
Horne's solutions work well for systems whose pure com-
ponent properties are similar and whose mixture properties
are only slightly composition dependent. Otherwlse, too
many higher order terms are needed in the perturbation
scheme for it to succeed.

The mailn advantage of the numerical technique is that
the boundary conditions and initial conditions can be

slightly altered without necessitating an entirely new
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analytical solution. Different solving techniques are
usually required for different boundary conditions in the
case of analytical solutions. The initial experimental
conditlons need not be isothermal to observe the diffusion
thermoeffect as long as the initial temperature distribu-
tion (it must be small enough to avoid thermal diffusion
terms) is known in order to assign values to the first

row of grid points. The adiabatic or reflective boundary
condition can be changed relatively easily. For diathermal
walls, the grid points located at either cell wall can be
assigned a value of constant temperature equal to the out-
slde bath temperature.

Once the computer program has been set up to evaluate
numerically Equations (3.10), many other transport phenomena
are readily simulated by a simple change of variables.
Thus, essentially the same program models diffusion, thermal
conduction, thermal diffusion, and pressure diffusion (most
thermodynamic transport equations are parabolic partial
differential equations), as well as the diffusicn thermo-
effect.

The solutlons, obtained as outlined above, were checked
for stability by comparison of results obtained using dif-
ferent step sizes. The number of spatial and temporal
grid divisions were both varied by more than an order of
magnitude without change in the dependent variables except

at very short times. Programming was checked by comparison



41

to the solutions obtained by Ingle and Horne [1973] for a
case 1n which thelr first order equations adequately des-

cribed the system.

B. Solutlons for the Carbon Tetrachloride-Cyclohexane

System

Using parameter values for the CClu - EfC6H12 system,
numerical solutions were generated. Because solution of
the corresponding system of tridiagonal matrices ylelds
U = U(z,t), U was generated as a three dimensional sur-
face. The velocity surface obtained indirectly from
xl(z,t) is shown in Figure 3.4. Note that the barycentric
velocity v 1s essentlially negligible except for very short
times right at the interface. Thils results from the
initial condition where composition (hence density) is a
step function. If a simple algebraic solution for the Du-
four effect 1is desired, a good approximation would be to
neglect v.

The composition surface shown in Figure 3.5 1is indica-
tive of why the diffusion thermoeffect 1s a transient phen-
omenon in mixtures away from thelr critical solution tem-
peratures. Note that as the experimental time proceeds,
the gradlent of composition flattens out. Heat and mass
fluxes are related through the heat of transport by Equa-

tion (2.20). As 41 decreases in time, the measured
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COMPOSITION SURFACE

Figure 3.5. Composition surface for the carbon tetra-
chloride-cyclohexane system.
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transient temperature gradient also decreases since thermal
conduction down the temperature gradlient balances the heat
of transport term. The transient nature of the tempera-
ture distribution can be seen from Figure 3.6.l Note that
the upper or less dense phase rapidly increases in tempera-
ture after initial boundary formation while the lower phase
decreases. This conveniently eliminates density inversion
possibilities. It also reflects a positive QI because the
phase rich in component 1 iInduces the colder temperature.
The maximum AT between the top and bottom phases shown in
Figure 3.6 1is about 0.28°C. Rapid establishment of the
maximum is due to the large initial composition gradient
which then slowly decays.

In confirmation of the results of Ingle and Horne [1973],
numerical simulation shows that the heat of mixing contribu-
tion to the local temperature distribution 1s symmetric
about the interface. While an endothermic (or exothermic)
heat of mixing lowers (or raises) the overall temperature
of the cell, the difference in temperature between two
points symmetric about the interface is not affected
by the heat of mixing term. Thils is dramatically 11llus-

trated in Figures 3.7 and 3.8. Even solutions in which

~ ¥
1This plot was made for HE = 0 with Ql values evaluated
from thermal diffusion factors using ORR.
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TEMPERATURE SURFACE

Figure 3.6. Temperature surface for the carbon tetra-
chloride-cyclohexane system. AT represents
the local temperature minus the initilal
temperature.
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ﬁE differs greatly from regular solutlion theory allow
determination of AT between points symmetric about the
interface without interference from the heat of mixing.
This fact led to the experimental design and data analysis
used 1n the next chapter. Although heat of mixing data
are fully included in the equations, only temperature
differences measured equidistant from the interface are

~%
necessary for the determination and evaluation of Ql'



CHAPTER 4

DIFFUSION THERMOEFFECT EXPERIMENTS
ON CARBON TETRACHLORIDE-CYCLOHEXANE MIXTURES

A. Experimental Design

For a meaningful analysis of diffusion thermoeffect
data using the mathematical methods developed 1n the
preceding chapters, the cell in which the measurements
are made must be of a design consistent with the condi-
tions of Figure 1.1 and the assumptions outlined in Chap-
ters 2 and 3. Although Rastogl et al. [1965], [1969],
and [1970] reported the first attempted measurements of
the diffusion thermoeffect in liquid mixtures, thelr ex-
perimental design was not amenable to theoretical analysis
as Ingle and Horne [1973] and Rowley and Horne [1978]
point out. Most of the diffusion thermoeffect induced
temperature gradlent was in fact eliminated by their cell
design. The cell used by Rastogl et al. had two vacuum-
Jacketed half cells into which the initial phases were
introduced. These half cells were separated by a con-
stricted region which was not insulated with a wvacuum
Jacket. The interface was formed in the constricted
region by opening a stopcock. With an interfaclal diareter

only half that of the bulk cell, radial diffusicn and

50
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radial heat conduction must have occurred in the two half
cells, thereby vitliating the one dimensional transport
equations. The temperature directly above the inter-
faclal area was subjJect to change not only by the diffu-
sion thermoeffect but also by thermal conduction into the
concentric ring of diathermal fluld outside the interfacilal
area. Understandably, no quantitative analysis or veri-
fication of the Onsager reciprocal relations were obtain-
able from these results. The design and use of a diffusion
thermoeffect cell consistent with the conditlons required
in the preceding chapters therefore constitutes the first
direct measurement of heats of transport in binary non-
electrolyte liquid mixtures as well as the first test of
Onsager reciprocity between QOl and QlO in such systems.
Traditional diffusion cells use mechanical methods of
interface creation often followed by siphon boundary sharp-
ening. Although diffusion thermoeffect experiments require
a distinct, sharp interface like that of diffusion experi-
ments, the creation technique 1s more important in the
former case since the response monitored 1s temperature
rather than composition. Characteristlc times are much
shorter for thermal diffusivity than for diffusion, and
boundary sharpening techniques are too slow to prevent heat
conduction. Mechanical interfacial formation such as slide
withdrawal or cell rotatlon can introduce turbulence as well

as obscure the initial time of the experiment (Bryngdahl
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[1958]). 1Initial times in cells employing these tech-
niques are obscured by the finite time required for slide
withdrawal or cell rotation during which only part of the
interface has been formed. Turbulence and initial time
problems are coupled. If the mechanical motion 1s ac-
celerated to reduce time errors, interfaclal turbulence
is enhanced (Bryngdahl [19581]).

To allay these problems, the diffusion thermoeffect
cell used here creates a sharp interface by the slow with-
drawal of a third component from between the upper and
lower layers. No ambigulty of the 1nitial time 1s intro-
duced since the third component 1s immiscible iIn the other
two layers. Thus, diffusion 1is prevented until the middle
layer has been completely withdrawn allowing contact between
the two layers of 1nterest. Interfacial turbulence 1s
minimized since there are no moving surfaces. Furthermore,
there are no seals or possible leakages in the inter-
facial region. Unfortunately, the binary systems amenable
to investigation with this cell are those for which a
third component can be found possessing the necessary
propertles: (1) a density intermediate to the densitles
of the upper and lower mixtures, and (2) insignificant
solubility in either of the other two components. Distilled
water satisfles these requirements for the carbon tetra-
chloride-cyclohexane system and therefore served as the

withdrawable "liquld gate" for the experiments reported
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in this chapter.

The glass cell shown in Figure 4.1 has two sections
internally separated by an 8.5 cm length of glass tubing
approximately 35 mm I.D. containing a stopcock. The upper
and lower sections are Jacketed for either thermostatting
or vacuum insulating the contalners. A stopcock in the
tube connecting these jackets allows a vacuum to be creat-
ed around only the lower cell. The bottom container in
Figure 4.1 (or in the schematic diagram of Figure 4.2)
is the actual diffusion thermoeffect cell. The upper con-
tainer serves only as a reservolr for the less dense phase
during displacement of the withdrawable "liquid gate".

Inside dimensions are

helight: 2.0 cm
diameter: 6.0 cm
rim opening: ~1 mm

rim depth: A1 mm

where the rim is the bulge shown encircling the cell at
half-height in Figure 4.1.

In preparation for each experimental run, the carbon
tetrachloride-cyclohexane mixtures were gravimetrically
prepared in two stoppered welighing erlenmeyer flasks of
50 mL capacity. Both components were "Baker analyzed"
spectrophotochemical reagent grade of 99.0% guaranteed

purlty and were used wilthout further purification. Horne
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Figure 4.1. Withdrawable "liquid gate" diffusion thermo-
effect cell.
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Figure 4.2.

56

Schematic diagram of withdrawable "liquid
gate" diffusion thermoeffect cell.

(A)
(B)

(C)
(D)
(E)
(F)
(G)

(H)

(I)
(J)

Upper phase storage reservoir.

Cell jacket for thermostatting or adia-
batlically insulating.

Diffusion thermoeffect chamber.
Thermocouple banks.

Equatorial water entrapment rim.
"Liquid gate" withdrawal spout.

Ground glass fittings for thermocouple
leads and cell dralnage.

T-connector to vacuum line and thermo-
stat.

Filling tubes.

Glass syringe.
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[1962] has reported an in-depth error analysis for dif-
ferent techniques of gravimetrically preparing carbon
tetrachloride-cyclohexane mixtures. The more volatile
cyclohexane was added to the already welghed carbon tetra-
chloride and the flask was lmmediately sealed with a

ground glass stopper lubricated with Fisher "Nonaq" grease,
which 1s inert to both carbon tetrachloride and cyclohexane.
Horne's [1962] discussion indicates carbon tetrachloride
weight decrease via vapor loss during the addition of the
cyclohexane to be less than 0.02%. No change of weight

in time was detected for the filled flask once stoppered

as described above.

The lower or diffusion thermoeffect chamber was filled
in a two step process. Flrst, distilled water was intro-
duced from the bottom until 1t half filled the cell. Second,
the more dense carbon tetrachloride-cyclohexane mixture was
layered beneath the water layer by injection from below
with a syringe pump purchased from the Harvard Apparatus
Company. Thils technique prevented evaporational changes
in composition during cell infusion. Introduction of the
carbon tetrachloride rich layer raised the water level
into the storage cell. Care was taken to remove any
trapped air bubbles from the lower cell after which the
stopcock between 1t and the reservoir was closed. The
cyclohexane rich or less dense layer was then quickly

introduced into the storage reservoir with a 100 mL syringe.



59

The syringe was left connected to the storage reservoir
during withdrawal of the "liquid gate". It served as an
enclosed piston for volume displacement as the distilled
water was withdrawn.

After fi1lling, the cell and storage reservoir were
thermally equllibrated with the thermostatting Jjacket
surrounding them. To maintain the initial and boundary
conditions used in the mathematical description of the
effect, the initial nearly isothermal conditions (complete
temperature uniformity 1s not required if the initial
temperature distribution 1is known) must be quickly changed
to adlabatic conditions upon interface formation. Adia-
batic walls were imposed by evacuating the jacket with a
vacuum pump. It was found that the above conditions could
not be met 1f a liquid was circulated in the circumam-
blent Jjacket as the thermostatting fluid. Wetting of the
cell walls by a thermostatting liquid left residual drop-
lets when the jacket was drained. Adiabaticity could not
then be imposed due to vaporization (and associated heat
effects) of the droplets as the jacket was evacuated.
Consequently, room temperature air served as the thermo-
statting fluid. No temperature effects were noticed when
the Jacket was evacuated for a trial run in which the cell
contained only pure water. Nevertheless, some runs were
performed by evacuating the jacket immediately after fill-

ing the cell and allowing internal thermal equilibrium to
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take place before starting the experiment. No discrep-
ancy was noted between the results obtained via the two
different procedures. In all cases, temperatures at each
thermocouple location were continuously monitored to ob-
tain the temperature distribution at the time of interface
formation. This measured initial temperature distribution
served as the mathematical initial condition.

The "liquid gate" (distilled water) was withdrawn via
the syringe pump at a rate of 0.764 mL/min until only a
small phase separated the two carbon tetrachloride-cyclo-
hexane layers. From thls point untill contact of the two
layers, withdrawal rates were slowed to 0.0206 mL/min or
0.0382 mL/min to eliminate possible convection currents.
Faster wlthdrawal rates slightly altered the i1nitial tem-
perature distribution in time even though the mixture dis-
placing the water had been co-thermostatted in the reser-
volr wilth the cell 1tself. Smooth interface creation oc-
curred uniformly and isochronously throughout the cell
except within the equatorial rim where the menlscii were
curved by preferential wetting. However, due to thls
wetting, any residual water at the time of contact between
the upper and lower layers was contained within the rim.
Preliminary experiments indicated that constriction of
interfaclal diameter relative to cell bulk diameter reduced
the ensulng temperature gradient. This 1s due to radial

thermal conduction as mentioned earlier with respect to
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the cell used by Rastogi et al. Therefore, care was taken
to ensure that any residual water at the time of inter-
face formation was contalned within the equatorial rim
from which the withdrawal spouts extended.

Immediately upon interface formation, a Precision
Scientific Co. "time 1it" digital timer (0.1 second read-
out) was activated, the syringe pump was disengaged, the
stopcock between the reservoir and the cell was closed,
and the vacuum jacket was evacuated. Temperature changes
were monitored with 40 gage copper-constantan thermocouples
placed equidistant above and below the interface as shown in
Figure 4.2. Each thermocouple comb contained four thermo-
couples spaced 2.0 mm from each other, the outside walls,
and the interface. Welded Junctions (0.2 mm in diameter)
were spaced 2.0 mm from the surface of the 1.5 mm thick
Delrin ® (¢ = 0.23 J-m'lK-l) comb. Thermocouple potentials
were monitored with a Leeds and Northrup Co. K-3 poten-
tiometer facility provided with 16 thermocouple stations.
Temperatures at the eight thermocouple locations were
made at approximately 12 second intervals. Readlngs were
taken alternatelv about the interface such that differences
in temperature AT between symmetrically located thermo-
couples had uncertainties in time of about *6 seconds.

For these experiments, differences in temperature were
obtained by subtraction of two absolute temperatures

because 1t was felt important to observe actual temperatures
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everywhere during these ploneering measurements. In the
experiments performed later on critical mixtures, enhanced
precision was obtained by monitoring temperature differ-
ences directly rather than referencing each thermo-

couple to the 1ce bath. Exact thermocouple locations

were measured in situ with a Beck Vernler Measuring Micro-
scope. Accuracy 1n exact thermocouple location was limited
by the finite size of the welded thermocouple junction (us-
ually 0.2 mm in diameter).

Monolayers of water were assumed not to be present im-
mediately following interface formation due to the hydro-
phobic character of both layers. Furthermore, since the
sharp interface initially formed becomes indistinct as
diffusion occurs, a monolayer cannot exist more than
instantaneously. The system becomes continuous as soon
as the 1nitial step function in composition has vanished
due to diffusion, and any interfacially adsorbed water
must have previously been removed.

The maximum temperature difference between symmetric
thermocouples was obtained after 500 - 800 seconds. The
maximum temperature difference was found to be dependent
upon the difference in initial compositions in accord
with theory (Ingle and Horne [1973]). The starting mole
fraction differences varied between 0.59 and 0.82 with
corresponding temperature difference maxima from 0.21 °K

to 0.30 °K respectively. Pure components were not used
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for two reasons: (1) Preliminary experiments revealed an
onset of turbulence at the newly formed interface when
pure components were used, presumably due to large sur-
face tension shock between two different pure components.
(2) Heat of mixing effects are dependent upon the square
of the initial composition difference and are thus lowered
relative to the diffusion thermoeffect for smaller initial
composition differences (Ingle and Horne [1973]). The
second reason above 1s not very important for the experi-
mental design used here because heat of mixing effects do
not contribute to temperature differences taken at points

symmetric to the interface.

B. Analysis of Technique

As alluded to 1n the previous section, the initial
condition for the temperature equation was obtalned from
measurements of cell temperature prior to contact of the
two layers. Temperatures at all eight thermocouple loca-
tions were continuously monitored as a function of time.
The exact time of contact was recorded,and an extrapola-

tion from the previous temperature readings to the contact

time ylelded temperatures for each thermocouple at t 0.
No extrapolation between a previous reading and t = 0

extended over 180 seconds,and no extrapolated temperature
change exceeded 0.010 °K. The initial condition data are

recorded in Table B.1l of Appendix B. For the five runs
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performed, three were isothermal and two had essentially
linear temperature distributions. Neither of these dis-
tributions included differences larger than 0.068 °K be-
tween the top and bottom surfaces of the cell. Presumably,
the nonisothermal distributlion 1n these two runs was due to
faster withdrawal rates and hence to faster intake rates

of reservoir thermostatted liquid. It should be emphasized
again that 1sothermal initlal conditions are not required
as long as the actual temperature distribution 1s known,
and the 1nitial gradient in temperature 1s small enough
that thermal diffusion terms are still negligible. More-
over, computer simulation using the equations developed

in Chapters 2 and 3 indicates that small initial tempera-
ture distributions do not markedly affect the difference

in temperatures between two symmetric points for times
measured after the maximum temperature difference has

been reached. This 1s because the magnitude of AT is

fixed by a balance between the opposing effects of thermal
conduction and the heat of transport and not by the pre-
vious temperature history of the mixture.

Care was taken to ensure that no vapor or air bubbles
remained in the cell. Until they were removed, air bubbles
alded in leveling the cell. Residual alr pockets were
removed with a filling needle connected to a syringe.
Entrance to the filled cell could be made by dislodging

the ground glass fitting (through which the upper
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thermocouple leads entered) with the stopcock to the
reservolir closed. By carefully opening the stopcock,
hydrostatic pressure allowed displacement of the last
alr bubbles. The ground glass fitting, coated with a
thin layer of Fisher "Nonaq" grease, was then firmly
reinstated. A preliminary experiment with only 9706H12
showed that no vapor loss occurred around this fitting 1if
coated with the inert lubricant. However, with a dry glass
fitting, the upper portion of the cell persisted to be
0.05 °K colder than the lower region due to the endother-
mic vaporization of c¢-C¢H,, around the joint. A fresh
seal of the "Nonaq" grease was applied before each experi-
mental run.

Although temperature differences were monitored for

all four thermocouple palrs, only data from the palr clos-

est to the interface [(z/a) 0.40 and (z/a) = 0.60] are
reported in Appendix B Table B.2. Only data from this pair
were used in the calculation of é; because the 1lnnermost
thermocouple palr 1s least prone to the possible errors
discussed below. Deviations from the mathematically pre-
dicted temperature differences can arise from: (1) Pertur-
bations due to the presence and finite size of the thermo-
couple holder and the other thermocouples. (2) Thermal
conduction through the thermocouple holders. (3) Side
wall effects. (4) Heat losses through the cell ends; i.e.,

nonconformity to the prescribed adiabatic boundary
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conditions. The first problem was minimized by allowing
the thermocouple Jjunctions to protrude 1.5 mm from the
holders. In addition, the innermost thermocouple of each
group (closest to the interface) extended 1.0 mm below
the holders. Any effects due to the presence of other
thermocouples and/or the thermocouple holders, would not
be felt by this pair of thermocouples. For similar reasons,
the difference in thermal conductivity between Delrin ®
holders and the system would not affect the temperature
differences of the innermost pair. Side wall effects were
probably negligible because of the relatively large dlam-
eter/height ratio. Furthermore, the main region of dif-
fusion 1is the interfaclal region and wall effects would
be less important for those thermocouples closest to the
interface.

The fourth problem warrants more concern. Obviously,
i1t 1s impossible to have perfectly adiabatic walls, yet
the mathematical boundary condition used implies perfect
adiabatilicity. Computer simulation shows that a change
in boundary conditions from adiabatic to diathermal af-
fects the lnnermost thermocouples the least. That is,
small deviations from temperatures described by adiabatic
boundary conditions due to imperfect adiabaticity of the
walls are absorbed by the bulk fluld before they are felt
near the interface. Therefore, any heat conduction through

the cell ends where the thermocouple holder is connected
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or where other tubes enter the cell may affect the outer
thermocouple pairs. The innermost pair appears to be the
most accurate and reliable set with respect to each of the
above four sources of error. Therefore, only data from
this pair were used in computing é;.

In view of the above discussion, computer simulation
was used to check the validity of the adiabatic boundary
conditions. Figure 4.3 compares the time dependent
shapes of AT values, expected for adiabatic and diathermic
boundary conditions for a given value of 6;, to the experi-
mental values obtalned from the innermost thermocouples.
As can be seen, the boundary conditions change the time
dependent behavior of the predicted AT values consider-
ably. Note that the actual AT time dependence clearly
corresponds to that predicted on the basis of adiabatic
walls. Data from thermocouple pairs further from the
interface also agreed with the behavior predicted by the
adiabatic model at shorter times but deviated at inter-
mediate times. The length of time during which the AT
behavior was consistent with the adiabatic model was
inversely proportional to the distance from the inter-
face at which the particular thermocouple pair was located.

Figure 4.3 is obvious verification that the innermost
thermocouples provide accurate readings for the experi-
mental time scale (“4000 seconds) when adiabatic boundary

conditions are used. A comparison run was also made in
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which the innermost thermocouples were each moved 10%
further from the interface. The 6; obtained was unchanged.
As previously mentioned, only temperature differences
between thermocouples positioned equidistant from the inter-
face were used in the parameter estimation procedure. More
sensitivity 1s obtained in computing the heat of trans-
port by thls technique because the large background heat
of mixing with accompanying uncertainties 1is eliminated.
As Ingle and Horne [1973] have shown, the principal heat
of mixing contribution is symmetric about the interface.
Computer simulation using the previously described numeri-
cal routine substantlates thelr conclusions. In fact, the
symmetry of the heat of mixing term, even for mixtures
which deviate substantially from regular solution theory,
allows calculation of the antisymmetric heat of transport
term without including the excess enthalpy provided sym-
metric temperature differences are used as input data.
The sacrifice made in using only AT data rather than indi-
vidual T values 1s that only one rather than two parameters
can be accurately determined for a given run.
Because only one parameter was to be obtained from
the nonlinear, weighted, least squares fit of theoretical
to measured AT values, the most composlition independent
form of the heat of transport was desired. As shown 1n
Appendix A, the relationship between é; and a, assuming

Onsager reciprocity, involves various factors of which
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~* -~
Ql and M are the only strongly composition dependent terms.

In fact, a, is used for reporting thermal diffusion re-

1
sults because of 1ts relative constancy with respect to
composition. Consequently, (éz/ﬁ) is fairly composition
independent and was used as the adjustable parameter 1n

the fitting procedure. Program "KINFIT4" (the 1977 version
of "KINFIT" as published by Dye and Nicely [1971]), a
generalized, weighted, nonlinear, least squares fitting
routine extensively used in fitting chemical kinetics

data at Michigan State University, was used as the param-
eter estimating routine into which the previously des-
cribed numerical partial differential equation solver

was introduced. An example of the fit obtained using

this procedure 1s shown in Figure 4.4.

To test the stability of parameter estimates obtained
for (Q;/ﬁ) as a function of the time range over which data
were input, numerous fits of the first run (depicted in
Figure 4.4) were made as a function of data truncation.
Thus, only data out to t = 1500 seconds were 1lncluded
for obtaining a value of (éz/ﬁ), then data out to t =
1700 seconds were 1included and the value of (Q;/ﬁ) was
again computed; etc. The results of this data truncation
test are shown in Figure 4.5. Note that the parameter
estimate remains unchanged within 1% forAinclusion of data
past 2800 seconds. When data past 3400 seconds are in-

cluded, essentially no change in Q; occurs as more data
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points are included. The effect shown in Figure 4.5 has
essentially two causes: (1) The value of the fit parameter
becomes increasingly stable and (presumably) more accurate
as statistically more points are included. (2) Although
the parameter value for the perfect model would oscillate
randomly about a mean value as more points are added, the
assumed model, that (QI/M) is a constant independent of
composition and temperature, 1s not strictly true. There-
fore, inclusion of data taken at the relatively longer
times 1s important in finding the appropriate (éz/ﬁ) for
the mean composition reported for each run because at

short times two very different compositions are located

on either side of the interface. As diffusion levels the
initially sharp composition gradient at (z/a) = 0.5, the
compositions in the regions near the interface become more
nearly the mean value, and the fit (é;/ﬁ) becomes the value
for that composition.

All experimental runs were analyzed wlth respect to
(é;/ﬁ) by inclusion of data up to 4200 seconds. This not
only provided enough points for a statistically "good" esti-
mate of (QI/M) but also eliminated the problems discussed
in the previous paragraph. Analysis of the diffusion
thermoeffect 1in gaseocus mixtures has often relied entirely
on the maximum temperature difference measured (Bousheri
and Afrashtehfar [1975]). Inclusion of points spaced in

time and use of the integrated equaticns provides a
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statistically better estimate of the heat of transport,
particularly since the maximum AT occurs so early that very
few data points can be obtained up to that time. For
thermocouples 2 mm from the interface, AT reaches its

maximum value in 500 - 800 seconds.

C. Literature Values for the Physicochemical Properties

of the Carbon Tetrachloride-Cyclohexane System

Before Equation (2.35) can be used in conjunction
with experimental data to obtain values for @I, all other
parameters appearing in (2.35) must be avallable. Table
4.1 contains a synopsis of the values used for the system
carbon tetrachloride-cyclohexane. The parameters of Table

4,1 are based on the expansion
L = Ly[1+L,(x7-0.5) + Lp(T-298.15) + LxT(xl-O.S)(T-298.15)
+ 1/2L_ (x,-0.5)?] (4.1)

where L 1s the property 1n question, LO is the value of L
for an equimolar mixture at 298.15 °K, and Ly, Lq, Lyps

Lxx are corresponding composition and temperature co-
efficients. The parameters are viewed as expansions about
X{ = 0.5 rather than about pure component values (Lg and
Lg) because the mean composition of each run was nearly

£0 mole percent. 1In the sections below, further discussion
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of the literature values 1s given.

(1) Diffusion coefficient - The diffusion coefficient
as reported by Anderson and Horne [1970] agrees well with
other literature values clted therein. The composition
and temperature dependencles are included in thelr report
and were used in the numerical fitting routine.

(2) Excess enthalpy - Ewing and Marsh [1970] report
the composition dependence of the excess molar enthalpy at
three different temperatures. The temperature dependence
was obtained by a fit of thelr three temperature indepen-
dent equations for e using program "MULTREG" (Anderson
[19681).

(3) Constant pressure heat capacity - Values for molar

heat capacities were obtalned from Wilhelm and Sackmann

0
p,1 %

~O ~
x2CP,2 where ACP = -0.6x1x2, adequately describes the com-

[19747. They find that (Cp/J-K Imol™h) = alp + x,C

position behavior of EP' As must be the case for thermo-
dynamic consistency, the constant pressure temperature
derivatlve of the excess enthalpy agrees well with the
excess heat capaclty. Due to the smallness of the excess
heat capacity, the temperature dependent behavior of EP
is contained entirely in the temperature dependencies of
the pure component heat capacities. Upon rearrangement,
the temperature dependence with respect to the mixture
becomes that shown in Table 4.1,

(4) Molar volumes - Molar volumes were calculated
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from the density data of Wood and Gray [1952]. The form

5,03 o=ly _ . =0 ~0 | oE
(V/em”mol™ ~) xlvl + x2V2

E

+ V yields excellent agreement

0

= 0 and V0 and V2 contain the

1
pure component temperature dependencies. Program "MULTREG"

with their results when V

provided best fits of thelr temperature dependent data which
were then rearranged into the form required for Table 4.1.
The values obtalned by Wilhelm and Sackmann [1974] also
agree well with these equations.

(5) Thermal conductivity - Thermal conductivity data
for liquid mixtures are scarce due to experimental convec-
tion problems. For the same reason, the uncertainty in good
experimental data is between 3% and 7% depending on tech-
niques and equipment used. The only experimental data
reported in the literature for carbon tetrachloride-cyclo-
hexane mixtures are those of Venart [1968]. His results
show a most pecullar cusp at X, = 0.5 when «k 1s plotted
agalinst Xq. No other nonelectrolyte mixture displays
this behavior. Furthermore, the scatter in data for thils
system relative to that of analogous systems studied by
Venart indicates a pecularity and/or difficulty in obtain-
ing accurate thermal conductivity data for carSon tetra-
chloride-cyclohexane mixtures.

Jamieson, et al. [1975] and Jamieson and Hastings [1969]
have recommended the NEL (National Engineering Laboratories)

equation,

= [} o _ o _ -
K = WiK] + W,k C(vc2 k9) (1 /W2)w2, (4.2)
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for predictive estimates of the thermal conductivity of
binary liquid mixtures, where K; is the thermal conductivity
of pure component 1 and C 1s an adjustable parameter.
Component 2 1s assumed to have the largest thermal conduc-
tivity in using Equation U4.2. Thermal conductivity predic-
tlons based on this equation have been shown by Jamieson
et al. to agree with experlimental values over the entlre
composition range to within 5% if a fit value obtained at

a single composition is used for C and to within 7% if C

is defined by C = 1.0 (most nonelectrolyte mixtures are
best represented by this value).

Rather than from Venart's data or from the NEL equation,
the compositlon dependence of the thermal conductivity was
obtained from the diffusion thermoeffect experiments them-
selves by an iterative technique. The method and the
results obtalned for the thermal conductivity are presented

in the next section.

D. Experimental Results for Thermal Conductivity

The composition dependence of k was obtalned from the
diffusion thermoeffect experiments. An 1terative procedure
was followed in which the composition dependence of (Q;/M)
was first neglected and then its experimental value was
included in order to determine the composition dependence

of the thermal conductivity. To illustrate the approach,
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consider the temperature equation without the very small
term due to the barycentric velocity [obtalned from Equa-

tion (2.35) for D/V independent of x17,

Cp(3T/3t)

VK(32T/az2) + ﬁ(ax/axl)T(axl/az)(BT/az)

+

DM, (&; /1) (3%x, /32%) + D(a%HE/ax2) (0x,/02)°

<+

~ % ~ 2
DM2[B(Ql/M)/axl]T(axl/az) . (4.3)

In filtting the experimental data by the numerical scheme
described in Chapter 2, the last term on the right-hand
side of Equation (4.3) was first omitted. The calculations
then gave é; and a first approximation for (BK/axl)T.

Once é; was obtained for all the experimental runs, its
observed composition dependence was included and Equation
(4.3) was then used, in full, to obtain an improved esti-
mate of (BK/axl)T.

Initial analysis of the 5 diffusion thermoeffect ex-
periments reported herein was done using the NEL equation
for the thermal conductlvity with the adjustable parameter
C = 0.6. This value was obtained by fitting both (é;/ﬁ)
and C simultaneously to the data of Run I. However, be-
cause é; and k at the mean mole fraction primarily determine
AT, C and (@I/M) were largely coupled. Sensitivity co-

efficlents for these parameters indicate coupling.
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Nevertheless, the thermocouple pair was sufficiently re-
moved from the interface that the magnitudes of k at these
thermocouple locations (hence compositions) sufficiently
decoupled C and (Q;/M) to obtain a unique but shallow
minimum in the residual search. Once the parameter C had
been identified (C = 0.6), Runs I through V were analyzed
with the fixed value for C leaving only (éi/ﬁ) as an adjust-
able parameter. Since (Q;/ﬁ) 1s not a constant as assumed
in this fitting procedure, the composition dependence of
(@I/ﬁ) was absorbed in the fit value of the NEL parameter
C. The composition dependence of (@;/M) obtained from the
five runs at different compositions was then introduced
into the fitting routine 1in an iterative fashion to yleld
the improved value of C = 1.05. The value C = 0.6 is seen
to be an "effective" value into which the residual composi-
tion dependence of (Q;/M) was absorbed. Note that the
improved value obtained for C in the NEL equation from
diffusion thermoeffect data 1s in excellent agreement with
the recommended value of C = 1.0 for nonelectrolyte mix-
tures.

Absolute values of the thermal conductivity, as
rredicted by the NEL equation with C = 1.05, are tabulated
in Table 4.2. Also shown in Table 4.2 are values obtalned
from Venart's data by interpolation to the appropriate mole
fraction. Note that the values obtained from thils 1ltera-

tive treatment of the diffusion thermoeffect agree within
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Table 4.2. Thermal conductivity of CClu—gfc6Hl2 mixtures
at 20°C and 1 atm.

<xp> «Drw.s~1x-1(a) V. g=1g=1(0)  ( D_Vy V1009

0.3469 0.1089 0.107 1.8
0.4112 0.1078 0.104 3.6
0.4295 0.1074 0.104 3.3
0.4843 0.1066 0.104 2.5
0.5514 0.1056 0.103 2.6

(a) Values obtained from diffusion thermoeffect experiments.

(b) Values interpolated from the data of Venart [1968].
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experimental error (ca. 3%) with Venart's data 1n the
composition range applicable to the measurements reported
here. This range of compositions involved the previously
noted cusp in Venart's data; i.e., actual data in this
reglion were higher than expected on the basis of smooth
composition behavior with no inflection points for the
entire mole fraction range. Thermal conductlvitiles pre-
dicted for compositions outside the experimental range of
interest deviated more than 3% but are irrelevant to the
analysis of data.

Although using AT data rather than values for T 1itself
did not allow accurate simultaneous determination of two
parameters, inclusion of multiple run information in the
above described iterative fashion decoupled the two param-
eters allowing accurate determination of both the heat of
transport and the thermal conductivity. The thermal
conductivity values obtalned agree, within the experimental
uncertainties involved in measuring liquid mixture thermal
conductivities, with those measured by Venart [1968].
The values obtained for the heat of transport are discussed

in the following sectlon.

E. Experimental Results for Heat of Transport

As previously indicated, the experimental data con-
sisted of numerous temperature differences between thermo-

couples located at (z/a) = 0.4 and (z/a) = 0.6. Appendix
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B contains the raw data obtained for the 5 experimental
runs and the initial run conditions associated with each.
Table 4.3 shows the results obtained for é; using the
previously described fitting procedure. Initial composi-
tions and temperatures are also included 1n this table.
From the resultant 6; values, the Onsager coefficient QOl
is calculated on the basis of Equation (2.14B). Literature
data for the thermal diffusion coefficlent oq (Anderson and
Horne [1971], Stanford and Beyerlein [1973]; and Turner,
et al. [1967]) provide values for QlO after averaging,
adjusting to the given temperature via the equation reported
by Anderson and Horne, and using Equations (2.14C), (2.15),
and (2.16). A comparison of these two Onsager coefficients,
obtained independently of each other, 1s shown in Table 4.3
along with the actual values of QOl and QlO' As required
by the Onsager heat-mass reclprocal relation, Q5 = Qg4
to within 3%. This constitutes the first experimental
verification of the Onsager heat-mass and mass-heat reclpro-
cal relation in liquid systems (Rowley and Horne [1978]).
The verification of the heat-mass reciprocal relation
now allows transformation of experimental heats of transport
to thermal diffusion factors by way of Equation (2.22) with
the definitions of Equations (2.14) - (2.16). Thermal 4if-
fusion factors obtained in this manner are adjJusted to 25
°C using the temperature dependence -y = -1.827 + 0.181xl
+ 0.0104 (T-298.15) - O.OOO8xl (T-298.15) reported by
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Anderson and Horne [1970]. A comparison of these thermal
diffusion factors (obtained from diffusion thermoeffect
experiments) to those obtained from various thermal dif-
fusion experiments is shown in Figure 4.6. In particular,
the so0lid triangles are the results of these diffusion
thermoeffect experiments, the solid line and solid circles
represent the pure thermal diffusion results of Anderson
and Horne -[1971], the dashed line represents the thermo-
gravitational results of Stanford and Beyerlein [1973],
the open circles are the flow cell data of Turner, Butler,
and Story [1967]; and the solid squares represent thermo-
gravitational results obtalned by Korchinsky and Emery
[1967]. The various techniques for obtaining thermal dif-
fusion factors all yield consistent results within the
experimental uncertalinties. This comparison confirms the
diffuslion thermoeffect as a valid and accurate method for
obtalning heats of transport and thermal diffusion factors.
The advantages of performing diffusion thermoeffect measure-
ments are perhaps manifest most strongly in the liquid-
liquld critical region as will be shown in Chapters 5 and
€.

As shown in Appendix A, the relationship between é;
and oy is

~ %

Ql = —alMRT(l+F)/MlM2. (4.4)
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The transformation from heats of transport to thermal dif-
fusion factors therefore involves the "thermodynamic

factor" (1+4T') defined by
(1+4r) = (l+82,nyl/32,nx1)T,P (4.5)

where vy, is the activity coefficient of component 1 (usually
based on the pure component standard state for nonelectro-
lyte mixtures). Although (1+I') is close to unity for this
system at all mole fractions, a least squares fit of the
activity coefficient data reported by Turner et al. [1967]
was used to calculate oq values from corresponding 5;
values. It is straightforward (but tedious) to show from
the excess enthalpy of Table 4.1 that the temperature de-
pendence of (1+T) is negligible over the experimental range.
Nevertheless, in critical mixtures, the "thermodynamic fac-
tor" plays an important role in the behavior of properties
very near the consolute temperature. Because the "thermo-
dynamic factor" 1s often close to unity for nearly ideal
mixtures, early formulations of diffusion assigned composi-
tion gradients as mass flux driving forces. Systems and
regions (such as the critical region) where activity cor-
rectlons are important have been invaluable in clearly
identifying chemical potential gradients as the correct
diffusional driving forces.

From the experimentally obtained heats of transport

and the fundamental relationships between the heat-mass
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cross coefficients, the other commonly used transport co-
efficients can be evaluated. From Equation (2.18), the
Dufour coefficient BT can be directly calculated. Similarly
the thermal diffusion coefficient Dy can be obtained from
Equation (2.14C) by using the now proven Onsager relation
910 = Qp7- These dependent coefficients along with é;

and a, are tabulated in Table L.4., A comparison of Figures
4,7 and 4.8 reveal the main reason for the multiplicity of
coefficients. Note that the Dufour coefficient BT appears
to be nearly independent of composition for this system at
25 °C. On the other hand, é; is quite dependent upon
composition. A similar relationship holds between oy

and DT’ oq being more composition independent.

The diffusion thermoeffect results allow calculation of
another interesting quantity. There 1s some ambigulty in
the thermal conductivity which appears in thermal dif-
fusion equations. Before the temperature gradient is
applied in a thermal diffusion experiment, the isothermal
equilibrium mixture has a definite thermal conductivity
K- After the temperature gradlent has been applied,

a steady state is reached when the temperature gradient-
induced mass flux identically balances the mass flux
caused by the propensity for diffusion down a chemilcal
potentlal gradient. This steady state mixture also has
a definite but different thermal conductivity k_. As

Horne and Bearman [1967] show, these two properties are
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Table 4.4, Heat-mass transport coefficients for carbon
tetrachloride-cyclohexane mixtures at 25 °C
and 1 atm.

<xq> EQI/kJ-mol'1 B,I./lo'z.lf-m'ls'1 -0y D.I‘/lo"]‘omzs;l
0.3469 5.42 5.71 1.79 6.34
0.4112 5.56 5.60 1.77 6.12
0.4295 5.40 5.39 1.70 5.80
0.4843 5.80 5.59 1.77 5.74

0.5514 6.10 5.64 1.79 5.69
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related by
—* _ —* I 6

where 6; is the specific heat of transport of component 1.
The relation 901 = Q0 has been used to obtain the second
equality shown in Equation (4.6). From diffusion thermo-
effect experiments, 6; and Qg are directly obtailned.
Therefore, the difference between the two thermal conduc-
tivitles k4-k, 1s readily calculable from diffusion thermo-
effect experiments. Table 4.5 shows the difference as
obtained from the experimental results reported in this
chapter. Note that current uncertalinties in experimentally
determined thermal conductivitlies are much larger than the
difference between k, and k,. The two may therefore be
used interchangeably without sacrifice of numerical accuracy
untll very much improved thermal conductivity measurements
can be made.

Unlike the AT versus time profiles, measured T versus
time profiles were quite asymmetric about (z/a) = 0.5. In
all cases, the increase from the uniform initial temperature
was much less for the thermocouple located above the inter-
face than was the decrease in temperature for the lower
thermocouple. This asymmetric effect 1is analogous to that
observed by Mason, Miller, and Spurling [1967], by Waldmann
(19477, and by Miller [1949] for gaseous diffusion
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Table U4.5. Values for the difference in thermal conductiv-
ity between the equilibrium and steady states in
thermal diffusion experiments.

(Kg=Kg)/
<xp> T/°k  wp/WesTIKTl 1077 wegmlkt %
(a) (b) Difference

0.3469 295.36 0.1084 7.64 0.07
0.4112 296.16 0.1072 7.95 0.07
0.4295 295.13 0.1070 7.34 0.07
0.4843 296.02 0.1060 8.18 0.08
0.5514 296.43 0.1049 8.28 0.08

(a) Taken from Table 4.2 and adjusted to proper tempera-
ture using Table 4.1.

(b) Calculated from Equation (4.6).
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thermoeffect experiments. These 1nvestigators all noted
that the temperature effect was greater below the diffu-
sion interface than above it. Our computer simulation
concurs with the hypothesis for this effect advanced by
Mason, Miller, and Spurling - the asymmetry in the tempera-
ture effect 1s primarily due to composition dependencies

of the transport parameters, particularly the thermal
conductivity. Individual thermocouples were not used to
fit the composition dependence of the thermal conductivity,
however, because the theoretical T vs. t behavior at a
given location, predicted with the inclusion of the large
heat of mixing term, does not agree very well with observed
behavior at long times. Reasons for this are not known,
but may be due to wall effects or thermocouple effects.

In addition to 1ts intrinsic importance for liquid
mixture transport theory and behavior, the diffusion thermo-
effect can also be useful for exploring the critical solu-
tion region. Anomalous behavior 1s often noted for trans-
port properties near the consolute temperature. Attenpts
to measure thermal diffusion factors very near the critical
temperature have been hampered by the large temperature
gradients required to observe the effect. The diffusion
thermoeffect should provlide a valuable tool 1in this region
since only very small temperature gradients are induced
by the moderate composition gradients associated with

critical coexistence curves.



CHAPTER 5

LIQUID-LIQUID CRITICAL PHENOMENA

A. Classical Thermodynamics of Ligquid-Liguid Critical

Phenomena

At uniform temperature and pressure, the tendency of
a liquid mixture to separate into two phases 1s governed
by the requirement that the Gibbs free energy be a mini-
mum at equilibrium. That 1s, the criterion for phase
stability in a binary liquid system 1s a downward convexity
of the free energy G (or the free energy of mixing GM)
as a function of mole fraction at a given T and P (see for
example Prigogine and Defay [1954] and Moore [1972]).
Curve "A" of Figure 5.1 (Moore [1972]) depicts a system
for which (32GM/?)X§).I.,P >0 (GM is convex downward) over
the entire composition range. This corresponds to complete
miscibility of both components at all concentrations.
If, however, the free energy of mixing for a binary mixture
is similar to curve "B" of Figure 5.1, Gy can be minimized
(for those overall compositions between xi and x{) by a
separation into two distinct liquid phases of compositlons
xi and x{. Curve "C" represents a system at the stability
limit (critical solution temperature or consolute tempera-

ture) where the two inflections of curve "B" have merged.
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Free energy of mixing vs. mole fraction of com-
ponent 1 as 1llustrated by Moore [1972]. A.
Complete miscibility. B. Two phase system of
compositions x! and x!. C. Phase stability
limit. 1 1
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The stabillity criteria at this point are
2 2 _ - 3 3

Liquid-liquid phase coexistence criteria could be

written equally well as

_ _ 2 2
with the additional restriction

(334, /3x3) < 0 (5.3)

at the critical point (Prigogine and Defay [1954]). The
two-phase region corresponds to a horizontal 1line in a
M1 VS x, plot (Figure 5.2, Prigogine and Defay [1954]);
l1.e., a region of two coexlsting phases of compositions
x] and x] with py = uy .

A coexistence curve (at constant P) for the system n-

hexane-nitrobenzene (Figure 5.3, Prigogine and Defay [1G54]

illustrates that the critical solution temperature (CST) is

the maximum temperature at which two phases can coexlst at

a given pressure. The critical composition (xlc) is the com-

position locus at which the CST occurs. Above the critilcal

temperature Tc 2 mixture prepared at any ccmpositicn forms

a homecgeneous fluid phase. However, at 10 °C and 0.5 over-

all mole fraction, for the system shown in Figure 5.3,
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Behavior of the chemical potential of com-
ponent 1 vs. mole fraction of component 2 for
a critical system as depicted by Prigogine and
Defay [1954]. The dashed line indicates
metastable regions.
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§yst§? as depicted by Prigogine and Defay
1954].
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two phases of compositions x06H5N02 = 0.18 and XC6H5N02

= 0.82 coexist.

B. Critical Exponents

1. Definitions - Figure 5.4 captures a time sequence
of the physicochemical response of the isobutyric acid
(IBA)-water system to a slow decrease in temperature from
T>T, to T < T, along an isobar at the critical IBA mole
fraction. Notice that even several degrees above the CST
a change begins to occur. On a molecular level, A-A
interactions relative to A-B interactions adjust rapidly.
Local concentration fluctuations of dimension £ 1increase
dramatically, giving rise to a Tyndall-like light scatter-
ing effect known as critical opalescence. This occurs
when ¢ acquires lateral dimensions on the order of the
wavelength of light. Figure 5.4 (b), (c), (d), and (e)
show the light scattering assoclated with an increasing £.
An understanding of how macroscopic transport properties
are affected by this molecular commencement of phase
separation promises to yleld valuéble information about the
relationship between molecular and macroscopic phenomena.

Since the properties of the system obviously begin to
adjust several degrees above phase separation (Figure 5.4),
a set of indices known as critical exponents (CE) are used
to correlate the temperature dependent behavior of proper-

ties as the CST is approached (Stanley [1971]). The
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limiting behavior of a provertv f(€) in the critical recion

1s denoted
A
f(e) v € (5.4)
where
T-T
€ = ¢ (5.5)
Tc
and
= iig inc (5.6)

It is important to realize that Equation (5.4) does

not imply f(g) = Aex. In general, there will be correction

terms which vanish as T » TC; i.e.,

fle) = Aer(1 + BeY + . . ) (5.7)

where y > 0. Figure 5.5 shows the results of a light
gcattering determination of the mutual diffusion coef-
ficient D by Chu, Lee, and Tscharnuter [1973]. They plot
log D vs. log € to obtain the CE as the slope of the
resultant line. Note the contribution of the higher

order terms of Equation (5.7) as i1llustrated by the devia-

tion from linearity when T - Tc > 5 °C.
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Although experimental determination of the critical
exponent A does not provide the entire € dependence of
f(e), the CE depicts the essential behavior sufficiently
close to the CST. As Figure 5.6 shows, a negative CE
characterlizes a diverging function while a positive CE
represents a vanishing function as e€+0. The larger
|x] 1is, the further away from T, the anomalous behavior
appears. The use of the word "anomalous" in reference
to the eg-functionality of a property in the critical region
indicates a devlation from the behavior predicted by
extrapolation of the T-dependent behavior exhibited far
from the CST.

Some of the more common thermostatic propertles which
exhiblt anomalous critical behavior have been experi-
mentally characterized qulte well and have specific sym-

bols reserved for thelr critical exponents. Thus
(x5 - x3) v |€|B (constant P) (5.8)
defines B,
Y4
(3ul/8xl)T’P el (constant P;X, ) (5.9)

defines Y, where + indicates e~+0 from the positive side,

and
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Figure 5.6. Behavior of properties as functions of € for
various values of the critical exponent .
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(B) A>0
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Figure 5.6



111

EP,x v |e|™" (constant P; X,,) (5.10)
defines a+. Table 5.1 1lists some typical values for these
thermostatic critical exponents as reviewed by Scott
[1972].

In addition to anomalous behavior representation,
critical exponents are themselves fundamentally important.
Recent emphaslis on experimental determination of CE's has
had a two-fold incentive: (1) the value of a particular
CE transcends the system under investigation (universality)
and (2) equalities between several exponents allow pre-

diction of unknown CE's from known ones (scaling).

2. Universality - The theory of universallty states

that when allowance 1s made for any extra varlables and
when the properly analogous quantlitles are compared,

the CE's for different systems are identical. An 11-
lustrative example 1s the exponent B which characterizes
the temperature behavior of the order parameterl. Within
experimental error, the order parameter for liquid-liquid
systems (xi - x{), gas-1liquid systems (pV - pL), and
magnetic systems (magnetization M) all exhibit the same

critical exponent B = 0.33.

1An order parameter 1s the property that is nonzero
for T<T, but zero for T>T,. Equation (5.8) 1s an example.



112

Table 5.1. Critical exponents for some equilibrium
thermodynamic properties. References are
cited in Scott's [1972] review.

System B Y4 oy

CClu + C7F1u 0.33 1.2

CHu + CFu 0.35 1.3, 1.4

gchHlu + gfc6F1u 0.34, 0.35 1.37

;¢C3H7COOH + H,y0 0.33 1.24 0.12, 0.1

QrCloH22+(8-CIC2Hu)20 0.32 1.25
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3. Scaling - Scaling hypotheses predict relations

among critical exponents on the assumption that the
free energy 1s a generalized homogeneous functlon of

the form

G (k%x,kPy) = kG(x,y). (5.11)

Although the scaling parameters "a" and "b" are not
specified, they can be identifled by comparison with two
known critical exponents. If two properties are derived
by taking the appropriate partial derivatives of Equa-
tion (5.11), then the behavior of those properties in
the ecritical reglon necessitates a relation between "a"
and "b" and the properties' critical exponents. The two
known CE's thereby fix the degree of homogeneity, scaling
all other properties derivable from Equation (5.11). An
equality involving the three CE's results. A typical
example 1is q+28+y = 2, where the exponents a, B, and

vy have their common definitions shown in Equations (5.8)
- (5.10). Table 5.1 provides test data for the above

equality.

C. Transport Properties in the Critical Regilon

As mentioned in the previous sections, the onset of
phase separation as T approaches Tc may produce anomalous

behavior in a given macroscopic property. The anomaly
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is characterized by a nonzero critical exponent. The

four transport phenomena of interest in blnary nonelectro-
lyte liquild mixtures in the absence of pressure gradients
are: (1) thermal conduction, (2) mutual diffusion, (3)
thermal diffusion, and (4) the diffusion thermoeffect.
Examination of anomalies in these properties near the

CST 1s dedicated to understanding the microscoplc contribu-
tions to the phenomena and to lncreasing predlctive
capabilities.

Toward the above goals, Table 5.2 shows the transport
coefficlents and thelr respective relationships to On-
sager coefflclents. In Table 5.2 and throughout this
thesis, the followling critical exponent symbols will be
used: (1) Ay for Qpq, (2) Ay for 944, (3) A3 for Q4
and (U4) Ay for 901. Note that any anomalous behavior in
the critical region can be ascribed to a kinetic effect
(the Onsager coefficient), a thermodynamic effect [aij
where Hij = (aﬁi/an)T,P], or a combination of both.
Phase coexlistence 1s governed by equilibrium thermo-
dynamlc relations, and the purely equilibrium thermo-
dynamic coefficient Eij is known to vanish with a +4/3
exponent as the CST 1s approached. Thus, any anomalous
contributlions from Qij's should provide useful data for
probling the microscopic or kinetic nature of the phenom-
enon. Of speclal interest, in this light, are «x and
QI, which have no direct dependence on the thermodynamilc

quantity Ell'
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Table 5.2. The behavior of transport coefficients 1in the
critical region.
Behavior
Property Definition Near CST Exponents
A
K K = QOO/T K N QOO KNV E Ay
B Qog Vv €
Q.. AL +4/3
_ 11711 - 2
D D—-W'Z— D'\lﬂllull D~ €
- L/3
S ©
2
Qll Noe
A3
D Dp = 2,4/ Dp v 99 Dp ~ €
T 210 A3=2,-4/3
“ T ww.ep %1V aoom @) v E
1"2P 11711
o QlOWZ - QlO - €A3-A2-M/3
T Qy,0y, T80, T
by
3
@19 v €
=* —+ o1 903 * TR
Q 1771 U Vg 9 v e
11 11
A
Q voEe 4
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Literature values of the CE's for the properties
listed in Table 5.2 (with the exception of QI) are dis-
cussed in the next sections. Chapter 6 presents original
research and results on 6; for isobutyric acid-water mix-

tures in the critical solution region.

D. Predicted Liquid-Liquid Critical Exponents for Trans-

port Phenomena

The utility and versatility of critical exponents
have been firmly established by scaling hypotheses and
universality theories. Extension of scaling procedures
to nonequilibrium processes and development of mode-mode
coupling theories constitute the most recent advances in
transport CE prediction. Older mean-field theorles
implicltly or explicitly assume long range molecular inter-
actions and are less accurate.

Mode-mode coupling arguments are based on nonlineari-
ties 1n the hydrodynamlic equations near the critical point.
The nonlinearities are due to coupling among various
energy dlssipative modes. The best normal mode type solu-
tion of the nonlinear equations defines the correspond-
ing transport coefficient. This coefficient may then con-
tain an anomalous contribution in the critical region be-
cause of the included coupled dissipative term required
for a normal mode solution. Fixman [1962] noted that near

the CST, where long wavelength fluctuations become



117

intense, a velocity gradient, created by exerting shear
forces at the boundaries, can easily induce nonhomo-
geneities 1in concentration. The return to uniform com-
position via diffusion dissipates some of the energy.
Yet, from a macroscopic point of view, the total dissipa-
tion of energy through the coupled viscous and diffusive
modes appears simply to be the result of an anomalously
large viscosity.

Mode-mode coupling predictions are based on identifica-
tion of the appropriate, coupled modes. An estimation
(usually by scaling) of the contribution by the coupled
or nonlinear terms to the coefflcient in the normal mode
solution yields a prediction for the expected anomaly.
Values of the various CE's as theoretically predicted for
binary liquid systems are shown in Table 5.3. When Table
5.3 1s used, the necessary relationships between the thermal
diffusion coefficlent Dp, the thermal diffusion ratio Ko,
and the thermal diffusion factor o, are readily obtained
from Equations (2.15) and (2.16).

E. Experimental Liquid-Liquid Critical Exponents for

Transport Parameters

1. Technigues - Measurement of transport phenomena

near the CST commonly involve elther (1) the system's
response to a macroscopic gradient or (2) the time varia-

tion in the local fluctuations of thermodynamic varlables
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in a system in macrcscopic equilibrium. The former
method constitutes a "thermodynamic" experiment, while
the latter usually involves light scattering techniques.
Although macroscopic gradients lead to experimental d4if-
ficultlies in systems near the consolute temperature,
thermodynamic measurements are extremely important for
understanding force-flux behavior in this region.
Determination of transport coefficients from non-
equllibrium thermodynamics involves linear hydrodynamic
equations; 1.e., the coefficients are not gradient de-
pendent. This 1is certainly valid for very small grad-
ients. However, near the CST where the correlation
length ¢ diverges, coefficlents may be nonconstant over
distances on the order of £ even for moderately small
gradients. For thls reason, several authors have suggest-
ed that nonlinearitles are to be expected sufficiently
close to the critical point (e.g., Fixman [1962], Kawasakil
[1966], and Grossmann [1969]). Nevertheless, experiments
have falled to show any gradient dependence 1n measured
coefficients. To the contrary, Woermann and Sarholz
[1965] and Tsail [1970] have shown the shear viscosity
to be constant for a change in shear rate of 4 and 5
orders of magnitude respectively. Similarly, Michels
and Sengers [1962] have shown the thermal conductivity
near the gas-liquid critical point to be independent

of AT. These results Justify the assumption of linear
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laws 1in the experimentally accesslible neighborhood of the
critical point - especially if gradient driving forces

are kept small.

2. Thermal Conductivity - Thermal conductivity

experiments (and pure thermal diffusion experiments)

are plagued with convectlion problems. Convection 1is
especlally enhanced in the consolute region where thermal
gradlents can produce large denslty fluctuations. These
difficulties have kept data scarce.

Gerts and Filippov [1956] and Filippov [1968] meas-
ured the thermal conductivity of nitrobenzene-n-hexane,
nitrobenzene-n-heptane, methanol-n-hexane, and triethyl-
amine-water mixtures as T =+ Tc. The absence of convec-
tion was demonstrated by independence of results on AT
(this also further justifies the linear flux-force laws).
The results for two of the investigated systems as re-
ported by Gerts and Filippov are shown in Figure 5.7.

As 1s the case for the mixtures deplcted in Figure 5.7,
none of the four systems evidenced any anomaly.

Csipova [1957] did report an anomaly in the thermal
conductivity of a phenol-water mixture. However, most
reviewers (Sengers [1971]) suggest that the reported large
scatter in data and large errors in measurement of AT
are indicative of unreliable results.

Although further experiments are desirable, thermal
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conductivity evidently remains finite as Tc is approached

from the homogeneous fluid side. Thus, k = QOO/T v g%,

3. Mutual Diffusivity - Thermodynamic measurements

of mutual diffusion coefflicients near the liquid-liquid
critical point (Kricheviskii et al. [1954], Claesson and
Sundeldf [1957], Lorentzen and Hansen [1957] and [1958],
Kricheviskii et al.[1960], Haase and Siry [1968], and
Balzarini [1974]) show unequivocably that D vanishes as
T+Tc. With the exception of Balzarini [1974], none of the
above experimentalists report a critical exponent. The
prominent feature of these more qualitative works is
especially noticeable in Figure 5.8 where the represen-
tative results of Haase and Siry [1968], for the water-
triethylamine system exhibiting a lower consolute tempera-
ture, and of Claesson and Sundeldf [1957], for the n-
hexane-nitrobenzene system exhibiting an upper consolute
temperature, clearly 1ndicate that (aD/aT)xlc becomes
infinite as the CST is approached. Differentiating with
respect to T the expression for D in Table 5.2 ylelds
)\2+1/3
(3D/3T), v e . (5.12)
lc

Recall from the discussion of critical exponents that 1n
order for (aD/aT)x to diverge as e+0, the critical

1lc
exponent must be negative. With respect to Equation (5.12)



Figure 5.8.
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Mutual diffusion in the critical region. (A)
Results of Haase and Siry [1968] for the water-
triethylamine system exhibiting a lower con-
solute temperature at 91.26 mol % water and
18.3 °C. (B) Results of Claesson and Sundeldf

[1957] for the n-hexane-nitrobenzene system
at equal mole fractions.
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thlis means that A2 < -1/3. Reasoning along these lilnes
constituted the first evidence that Qll diverged at

the critical point; 1l.e., that the observed anomaly in
D was not strictly dependent on the thermodynamic factor
;ll‘ Balzarini's more recent thermodynamic experiments
yield 0.74+0.08 for the CE of D.

Recently, values for A2 have been obtalned much nearer
the critical point by light scattering experiments. Light
scattering measures the decay rate of concentration fluc-
tuations and therefore eliminates the need for macroscoplc
gradients and system-perturbing response measurement
devices (for example, the thermal lens effect associlated
with interferometry, Giglio and Vendramini [1974]). As
Table 5.4 1llustrates, the diffusion coefficient is un-
questlonably represented by D ~ ex' with A' = A2 + 4/3
= 2/3. This value (and the values in Table 5.4) compares
favorably with the exponent for thermal diffusivity in
gas-liquid systems, k/pCp v e*' where 0.61 < A' < 0.69
(Sengers [1973]). As was mentioned earlier, universality
requlires that comparison of like modes in different systems
vyield i1dentical exponents. Mutual diffusivity in liquid-
liquild systems corresponds to the thermal diffusivity
mode 1in gas-liquid one-component systems. The kinetic
contribution Qll must therefore diverge as Qll v EAE

with Az ~ -2/3 as T -+ Tc.
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Table 5.4. Light scattering results for the mutual dif-
fusion critical exponent.

System Exponent(a) Reference(b)

Isobutyric acid-water 0.68+0.04 Chu [1968]
0.62£0.02 (c) Chu [1972]

n-hexane-nitro- 0.66+0.02 Chen [1969]
benzene 0.63 (c) Chu [1972]
3-methylpentane-
nitroethane 0.62 (c) Chang [1972]
cyclohexane-aniline 0.61+0.01 Berge [1970]
perfluoromethylcyclo-
hexane-carbon tetra- 0.66(5)+0.03 Chu [1968]
chloride 0.63+0.005 (c) Chu [1972]
lutidine-water 0.554£0.015 Glilary [1972]
phenol-water 0.68+0.03 Goldburg [1972]

and Bak [1969]

methane-tetrafluoro-
methane 0.67+0.02 Blagoi [1970]

(a) Exponent refers to A' i1n Dmex' where A' = x2+u/3.
(b) Only first author is listed.
(¢) 1Indicates renormalized values after taking into account

the "regular part" and temperature dependence of the
viscosity.
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4, Thermal Diffusion - Much like thermal conductivity

experiments, thermal diffusion measurements require sub-
stantial macroscopic temperature gradients which may
induce convection. Furthermore, the consolute tempera-
ture cannot be approached very closely with tempera-
ture gradients present. For these reasons, early meas-
urements of DT in the 1liquid-liquid critical region
ylelded, at best, qualitative results (Thomaes [1956],
Tichacek and Drickamer [1956], and Haase and Bienert
[1967]). It 1s instructive to plot the data of Thomaes
and those of Tichacek and Drickamer 1n a typical log-
log plot of the thermal diffusion ratio KT versus € So
as to obtain from the slope an effective value for the CE.
This 1s done in Figure 5.9. Note the large scatter in
data and more 1importantly the large discrepancy in the
critical exponents or slopes obtalned. The data of Haase
and Bienert [1967] on the water-triethylamine system are
not plotted here for two reasons: (1) the data are not
given at the critical composition, and (2) the consolute
temperature 1s not approached sufficiently closely for
comparlison purposes. Although all three sets of thermal
diffusion data indicate that KT diverges as e€+0, Haase
and Thomaes qualitatively argue that DT also diverges
while Tichacek indicates that DT vanishes. That 1s,

Thomaes's results indicate DT N e-l

€+1/3.

while Tichacek and

Drickamer's data yileld DT N
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Figure 5.9. Log-log plot of the thermal diffusion data
of Thomaes [1956] for the n-hexane-nitrobenzene
system and of Tichacek and Drickamer [1956]
for the perfluoro-n-heptane+2,2,4-trimethyl-
pentane system.



129

Giglio and Vendramini [1975] claim the first "ac-
curate measurements of the thermal diffusion ratilo KT
in the neighborhood of the consolute critical point of
the mixture aniline-cyclohexane." Thelr measurements
were performed using a classical Soret cell and a steady-
state beam-deflection technique. By evaluation of the
time evolution of beam deflection, they also obtalned
the temperature dependence of the mutual diffusion co-
efficlent. From these data, the behavior of DT was ob-
tained. Giglio and Vendramini's [1975] log-log plots of

KT, D, and D,, are shown 1n Figure 5.10. In this figure,

T
the line through the diffusion data are the light scat-
tering results of Berge et al. [1971]. Values for Dp

are calculated from DT = KTD. The relatively good agree-
ment for D with the light scattering experiments of Berge
et al. [1971] seem indicative of reliable results. The
"best-fit" CE value for KT is A" = -0.73%*0.02 in the expres-

1"
AT, However, Giglio and Vendramini [1975]

1

sion Kp v €
conclude that KT VDT A 6—2/3 because calculation of DrII
shows 1t to be temperature independent; i.e., DT n~ g%,
The slightly larger exponent determined from the least
squares fit of Kp i1s attributed to a deviation of the

A" in the region where numerous data points

relation KT = Ae
are located. That 1s, K; 1s expected to behave more like
Equation (5.7) further away from the critical point.

Inclusion of points in this region leads to an effective
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hexane mixtures.
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exponent of larger magnitude than the true exponent (cf.

Figure 5.5).

5. Heat of Transport - The diffusion thermoeffect

measurements discussed in Chapter 6 are believed to be
the first direct evaluation of the temperature dependence
for QI near the consolute point. Although Haase and
Bienert [1967] calculated 6; from Thomaes's [1956] thermal
diffusion data, the values obtalned were meaningless be-
cause (1) Thomaes's data are inconsistent with the more
accurate work of Giglio and Vendramini [1975], and (2)
no verification of the Onsager reciprocal relation in the
critical region has ever been made. To indicate further
the need for a direct study of the heat of transport,
note that the critical exponent obtained for 6; on the
basis of ORR is positive (+2/3) if the data of Giglio and
Vendramini are used, positive (+1) if the data of Ticha-
cek and Drickamer are used, but negative (-1/3) if Thom-
aes's data are used.

Table 5.5 summarizes the results of the preceding
sections for the four transport properties of interest
to the present discussion near the critical demixing point
of a binary liquid mixture. The indicated ignorance of
the temperature behavior of 6; as T -» Tc gives impetus

for the measurements described in the next chapter.
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Table 5.5. Literature transport parameters and their
critical exponents.
Behavior Critical
Property Definition Near CST Exponents
K K = QOO/T K Vv QOO K Vv g0
(o]
- Qoome
1141 - 2/3
D D= ———= D~ Q.1 D~ e
pw 11
2 11 _ L/3
Ull’\le
-2/3
Ve
Q
_ 10 (a)
Dy Dp = =~ Dp ~ 24 Dp v €°
-0 Q
10 10 -2/3 (a)
OLl wlwzpD %1 v Q..3 ap v €
11H11 k.~ g=2/3 (a)
Qq AW Q T
K., = 1072 Ko, v EO Q N~ og© (a)
T Q.7 T Qll”ll 10
11¥11
Q Q
#* —% —% —¥ 0
9 q) = g 1Y 9 Ve
11 11
Qn- N oE”
01 - €

(a) Results of Giglio and Vendramini [1975] are used.



CHAPTER 6

THE HEAT OF TRANSPORT IN THE CRITICAL SOLUTION
REGION OF ISOBUTYRIC ACID-WATER MIXTURES

A. Transport Equations

To evaluate the temperature dependence of the heat of
transport QI as the CST is approached, the partial dif-
ferential equations describing the diffusion thermoeffect
must be solved and the solution fitted to the experi-
mental points. Although this technique was introduced
in Chapters 3 and 4 for the CClu‘Efcsng system, each
equation with its underlying assumptions must be checked
for correctness in the critical region before use.

The starting partial differential equations of Chap-

ter 2 can be written
(3p/3t) + (dpv/3z) = 0 , (6.1)

p(3w,/3t) = {3[pD(dwy/32)1/3z} - ov(dw,/3z), (6.2)

and

pC,(3T/3t) = oD[3(H;-H,)/32]1 (3w /32) = pCLv(3T/3z)

+ (300D, (3w, /32)1/3z} + {3[x(3T/32)1/3z .  (6.3)

133
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The assumptions made in obtaining Equations (6.1) - (6.3)

are:

(1) The linear hydrodynamic equations for conservation
of mass and energy are valid.

(2) The binary system 1s isotropic, nonreacting,
and field free.

(3) Local states are assumed; i.e., the equations
of thermostatics apply for local regions.

(4) Fluxes are linear combinations of those forces
which appear 1n the entropy production equatilon
and which have the same tensorial rank.

(5) Pressure terms are negligible.

(6) The bulk flow entropy source term is small.

(7) The termal diffusion portion of the mass flux

1s small compared to the diffusion portion.

Assumptions (2), (3), and (5) are obviously as cor-
rect near the CST as away from 1it. Assumptions (1) and
(4) were discussed in Chapter 5. The demonstration that
n, Kg—l (thermal conductivity near the gas-liquid critical
roint), and Ki1-1 (thermal conductivity near the liquid-
liquid critical point) are independent of their respective
driving forces 1s indicative of linearity in the critical
region. Assumption (6) is also valid near the consolute
point because the bulk flow entropy source term 1s pro-
portional to the square of the barycentric velocity which

1s itself small (especially for the system to be
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investigated here).
Assumption (7) must be dealt with somewhat more care-
fully. The mass flux, on the basis of the above assump-

tlons, can be written
-3 = oD(3wy/3z) = pDoyw W,T ™ (3T/32). (6.4)

The previous chapter (cf. Table 5.5) demonstrated that
the most accurately determined temperature behaviors of
D and oq in the critical region are D ~ 52/3 and a; v
-2/3

€ , respectively. Thus, while D vanishes in the criti-
cal region, oq becomes large at about the same rate. Al-
though the first term in Equation (6.4) vanishes, Doy

in the second term remains finite. At first sight, it
appears that the thermal diffusion term could be impor-
tant sufficiently close to the CST. However, (awl/az)

is always much larger than (3T/3z). Away from the CST,
Ingle and Horne [1973] estimate the maximum contribution
of the thermal diffusion term to be 0.01%. With this
estimate for temperatures away from the CST, calcula-
tlons show that the critical point must be approached

to within about 0.01°C before the decrease in D allows

a 1% contribution to Jl from the thermal diffusion term
[at constant (3T/3z) and (awl/az)]. The experiments
described herein show that (3T/3z) also vanishes as the

CST is approached while (Bwl/az) remains finite. Hence,
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the thermal diffusion contribution to the mass flux will
never reach 1% even for temperatures very near Tc and can
be safely neglected. With all assumptions thus verified,
Equations (6.1) - (6.3) can be used for critical mixtures.
The isobutyric acid-water system (IBW) is particularly
convenient for measurement of Q; in the critical region
because of the very similar densities of the pure com-
ponents (D%BA,20°C = 0.958 g/cm3; °§20,20°C = 0.9989
g/cm3). Regardless of the compositions in the initilal
layers, the density of the system willl be essentlally
invariant with respect to position and time. Equation

(6.1) then simplifies to
(3v/3z) = 0 . (6.5)

Integration of Equation (6.5) and applicaticn of the
physically imposed boundary condition that the velocity
vanlish at the wall ylelds the trivial solution for the

barycentric velocity
vo0o . (6.6)

Large concentration fluctuations characterize the
liquid-1liquild critical region. For systems in which the
components have very dissimilar densities, density fluc-

tuations result. The gravitational field will produce
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density gradients in such a system (Mistura [1971]).
Gravitationally induced density gradlients have been meas-
ured for a few systems very near the CST where the
sedimentation (pressure diffusion) coefficient diverges
(Giglio and Vendramini [1975] and Greer et al. [1975]).
As Morrison and Knobler [1976] indicate, the presence of
a gravitational field poses no problems for this system
because of the nearly equal pure component densitles.

As was done in Chapter 2, Equations (6.2) and (6.3)
can be transformed into equations involving molal param-
eters and mole fractions. Thils transformation with the
use of Equation (6.6) yields analogous equations for

both composition and temperature:

-D”H(ax /3t) + (3%x /32°) + {(3[&n(D/Vi)1/0z2)} (3x,/82)=0

(6.7)
and
-8, /T (31/t) + (3°T/32%) + (3tnk/3z)(3T/3z)
= K-l{a[M2Dé;(Bxl/az)/Vﬁ]/az}
+ DT (05 0x ) (axp /02)2 (6.8)

The initial and boundary conditions are the same as before
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(¢f. Chapter 2),

x,(0.5 2/a<1,0) = x}; x,(0<z/a 0.5,0) = xJ

T(z,0) = constant (6.9)

and

(axl/BZ)z/a=O,t = 0= (axl/az)z/a=1,t
(6.10)

(3T/32) = 0 = (3T/3z)

z/a=0,t z/a=1,¢t

The solutions of Equations (6.7) and (6.8) subject
to Equations (6.9) and (6.10) for a known set of parameters
can now be numerically obtained using the previously
described program based on the Crank-Nicholson finite d4if-

ference scheme.

B. Experimental

1. Cell Conslderations - Measurements of the diffu-

sion thermoeffect near the consolute temperature cannot
be performed in the "liquid gate" withdrawal cell des-
cribed in Chapter 4 because there appears to be no liquid
which is both (1) immiscible with both components and

(2) of intermediate density. However, liquid phase
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behavior in the critical demixing region allows design of
a much simpler cell.

The "liquid gate" withdrawal cell used a third com-
ponent to create the sharp diffusional interface. Systems
that exhibit partial miscibillity regions near room tem-
perature are usually dissimilar enough that finding a
third mutually insoluable component 1s virtually impos-
sible. Even could such a liquid be found, it 1s undesir-
able to introduce a third component because of the large
effect minute concentrations of impurities have on the
absolute consolute temperature. The consolute tempera-
ture for IBW 1s known to be particularly sensitive to
ionic impurities (Gammell and Angell [1974] and Greer
[1976]) which tend to lower the CST dramatically. Al-
though small amounts of impuritiles may affect the absolute
Tc by several degrees, critical exponents and temperature
dependencies of properties relative to the measured CST
are not influenced by the presence of impurities (Sengers
[1975], Hocken and Moldover [1976], Bak and Goldburg
[1969], and Fisher and Seesney [1970]).

Instead of a mechanical (or fluid) technique to create
the initially sharp interface, the natural, stationary,
and unperturbed interface present in a binary mixture for
T < Tc can be utilized. With the binary mixture thermo-
statted at T < T,, two phases characterized by u] = uj

are in equilibrium. If the temperature of the entilre
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diphasic fluid slab is suddenly Jumped via microwave
absorption such that T > Tc’ then ui # u{ and diffusion
accompanied by the diffusion thermoeffect must begin.
Very gradual relaxation of T back toward Tc allows meas-
urement of the difference in temperature AT, caused by
the diffusion thermoceffect, between symmetrically placed
thermocouples as a function of €. Thermostatting of the
mixture at T < T, allows reuse of the same mixture in
subsequent runs (time must be allowed for phase equilib-
rium to occur).

The cell designed to perform the above experiment 1s
shown in Figure 6.1. This cell, constructed of 2.0 mm
thick glass, has an inside height of 1.2 cm and an inside
diameter of 4.8 ecm. The relatively large ratio of diameter
to helght minimizes wall effects. As shown in Figure 6.1,
two tiny thin-walled glass, closed, conlcal tubes project
into the radial center off the cell from opposite walls.
These tubes, which serve as thermocouple wells, extend
frém the wall attachment site at half?height [(z/a)=0.5]
to positions (z/a) = 0.80 and (z/a) = 0.20 equidistant
from the cell half-helght (interface formation was at half-
height). The average inside tube diameter is 0.4 mm.

A small stopcock atop the cell prevents vapor loss (hence
concentration changes) throughout the experiment but
st1ll allows pressure equilibration during the temperature

Jump. Large pressures result when ligquid systems
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Figure 6.1. Temperature jump cell for diffusion thermo-
effect experiments in the critical region.
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encapsulated in a closed contalner are temperature Jjumped
due to the thermal expansivity of the liquid. Thermal
insulation for the cell is a composite wall of 1.3 cm

® ®

Styrofoam (to eliminate air cur-

, 0.67 cm Acrolyte
rents through the Styrofoam), and 2.0 cm Styrofoam. Small
holes on opposite sides of thls assembly allow thermo-
couple insertion.

Thermocouples were made from calibrated copper-con-
stantan 40 gage thermocouple wire by welding a small
Junction. Response time of the thermocouple wells was
enhanced by insertion of a small drop of mercury into
each closed tube. Thermal equilibration times, checked
for similar thermocouple wells by monitoring the mean
time required for the potential to relax to 0.0 uV when
the probe was suddenly introduced into the thermocouple
reference bath, were about 2.5 seconds. Thermocouple
connections were made to the potentiometer facility such
that relative temperatures (the upper thermocouple ref-
erenced to the lower) could be directly measured in addi-
tion to absolute temperatures. This allowed relative
temperatures or temperature differences to be measured to

£0.1 uV (ca. 0.002°C).

2. Critical Temperature Measurements - Each experi-

mental determination of the critical exponent for the heat

of transport also involved measurement of the critical
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solution temperature. As previously mentioned, consolute
temperatures vary significantly with small impurity con-
centrations. In order to obtaln Q; as a function of
T-Tc, the CST determination was made on a portion of the
same mixture immediately before and after the T-jump
experiment. The literature value for the critical com-
position (x;, = 0.111 - 0.114) was used without further
verification.

The cell shown in Figure 6.2, constructed of 1.5 mm
glass, was used for CST measurements. After fillling with
the homogeneous critical fluid (xl = Xq,s T > Tc), the
cell was sealed against vapor loss with the small glass
stopcocks shown. The consolute temperature drifted less
than 0.03°C during a period of over a week, indicating
essentlally no change in concentration from vapor loss.

The outer water Jjacket depicted in Figure 6.2 con-

trolled cell temperatures with circulating water from a
Neslab Tamson T-9 (10 L capacity) constant temperature
bath. Cooling water to the T-9 bath was from a Lab-
Line Tempmobile (90 L capacity) while current to the
heating element 1n the T-9 was maintained by a model
2156 Versa-Therm Proportional Electronic Temperature
Controller.

Determination of Tc was visual. The onsets of both
phase separatlon and phase disappearance were ascertalned

by careful temperature adjustment. Phase separation
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Figure 6.2. Critical solution temperature cell.
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temperatures agreed with phase dlsappearance tempera-
tures to within 0.010°C. The visual technique of de-
termining Tc is 1llustrated in Figure 5.4. Photographs

(d) and (e) show that with T slightly above T,, critical
opalescence deepens from a light white fog to a dense
white cloud. The onset (or disappearance) of a turbid
cloud in the stirred opalescent mixture marks the phase
separation (or disappearance) point. Figure 5.4 (e)
depicts the turbid dense cloud observed for tempera-

tures Just below Tc‘ Transition between states deplcted
by photographs (d) and (e) 1s rapid with respect to tempera-
ture change, allowlng determination of T, to about
+0.005°C. Maintenance of constant temperature without
stirring for several minutes to observe meniscus formation
was perlodically used as a check on the stirred visual
technique of CST determination. Figure 5.4 (f) illustrates
meniscus formation for T < Tc‘ All temperatures were
measured with copper-constantan thermocouples similar

to those used in the diffusion thermoeffect cell as des-
cribed 1n the preceding section. The thermocouple well
visible in Figure 6.2 was a small mercury-filled glass
capillary tube into which the welded junction was inserted.
The length of this well positioned the welded thermocouple

Junction at cell half height.
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3. Experimental Procedure - Fisher Certified Reagent

Grade isobutyric acld was used without further purifica-
tion. However, Karl Fischer analysis of water content

in the isobutyric acid yielded 0.070 wt. % water. This
was accounted for in preparing the mixtures at the
critical composition. Distilled, deionized water was used
for the second component.

Mixtures were prepared by additive welghing of pure
components in separate two-armed 50 mL bottles equipped
wlith stopcocks on each arm to prevent vapor loss. Excess
vapor space was minimized, and no vapor loss with time
could be noticed gravimetrically. The two pure component
welghing bottles were then connected with a short pilece
of tygon tublng and thermostatted above Tc. Subsequent
transfer of the pure components (through the connected
sidearms) back and forth between the two weighing bottles
served to mix the components while maintaining a sealed
environment. With the milixture prepared and located entlrely
in one of the two bottles, the side arm stopcock was closed
and the second bottle was removed.

Transfer of the homogeneous mixture through the top
arm of the filling bottle fitted with a short piece of
narrow tygon tubing, into the T-jump cell of Figure 6.1,
was completed quickly with T > TC. To exclude any vapor
space, the cell was filled above the stopcock region and

the stopcock was then closed. The cell of Figure 6.2
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used for CST determinations was immedliately thereafter
filled in an analogous manner except that a small vapor
space was left. All glassware was thoroughly washed,
rinsed in deionized water, oven dried for several hours,
and filled immediately upon cooling before each use to
eliminate adsorbed water and ionic impurities. Phase
equilibrium was established with the cell sitting un-
perturbed. Occasionally it was necessary to rotate the
cell carefully to dislodge "droplets" of discontinuous
phase from cell walls. A few days were assumed sufficient
for equilibrium to be established.

Actual experimental runs were made in the following

manner.

(1) Filling and stirring of the ice point thermo-
couple reference bath with distilled water and finely
ground ice.

(2) Observation of the initial temperatures of both
thermocouples and any difference in reading between them.
(3) Removal of the thermocouples (microwaves were

absorbed by the coatings and insulation on the wires).

(4) Simultaneous activation of the Litton industrial
microwave oven and the digital, 0.1 second readout timer.

(5) Disengagement of the microwave temperature Jump
after a 1.0 to 2.2 second heating pulse.

(6) Careful insertion of thermocouple leads into

appropriate wells. Temperature readings as a function of
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time were begun.

(7) Acquisition of temperature data. Temperature
difference readings were obtained at 20 to U0 second
Intervals and absolute readings were taken about every
100 seconds. Absolute readings of the two thermocouples
were taken within about 10 seconds of each other.

(8) Reestablishment of phase equilibrium after the
temperature had relaxed below Tc' The cell was set aside
for future runs.

(9) Measurement of T, in the critical solution tempera-
ture cell. This was done both immedliately before and im-
medlately after each run. Values obtained for phase

separation and phase dilsappearance were averaged.

4, Data Analysis - Any one run consisted of absolute

temperatures at each thermocouple as a function of time,
temperature differences between the thermocouples as a
function of time, the consolute temperature To., and the
initial temgerature of the cell. The required data to

L

~ %
fit Q; = Ae ~ are AT vs. (T -T.) and the initial phase

cell
compositions. Data reduction thus involved:

(1) Fit of absolute cell temperatures to a poly-
nomial in time. Program "MULTREG" (Anderson [1968])
ylelded a cubic equation for each thermocouple. These
were averaged to give the instantaneous interfacial

temperature. From the measured T., (Tcell’Tc) was
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available at any time.

(2) Determination of the upper and lower phase con-
centrations x? and x%, respectively. The concentrations
were calculated from knowledge of the initlal temperature.
Figure 6.3 shows the coexistence curve (temperature-com-
position relation) for IBW determined by Woermann and
Sarholz [1965]. A more accurate method of obtalning
phase concentrations for a given temperature uses the
known critical exponent B for the order parameter; l.e.,
x] - x§ = C(T,-1)3. 4 plot of (1,-1)1/3 vs. x; contain-
ing the data of Woermann and Sarholz [1965] and Chu et al.
[1968] is shown in Figure 6.4, A 1least squares fit of

the data ylelded

1

X1

Xy, + (TC-T)1/3/1M.518

(6.11)

XY = x,, - (To-1)/3/25.680
for the isobutyric acid rich (upper) layer and the water
rich (lower) layer, respectively. These equations are

the solid lines in Figure 6.4, 1Initial phase compositions
were thereby readily calculable from the initial tempera-
ture.

(3) Provision of AT vs. (T l—Tc) data from directly

cel
determined AT vs. time data and from fit (Tcell"Tc) vs.

time data. From these, coupled with the 1nitial phase
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Figure 6.3. Coexistence curve for IBW as determined
by Woermann and Sarholz [1965].
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Figure 6.4. The function (TC-T)l/3 vs. mole fraction
of 1sobutyric acid. o, data of Woermann
and Sarholz [1965]; e, data of Chu et al.
[1968]; —, least squares fit.
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P\
4 was numerically fit by weighted,

compositions, Q; = Ae
nonlinear least squares regression of AT as calculated
from Equations (6.7) - (6.10). As before, program "KIN-
FIT4" was used ("KINFIT4U" is the 1977 version of the orig-
inal "KINFIT" published by Dye and Nicely [1971]) inter-

meshed with the numerical integration routine.

C. The Temperature Jump Technique

The advantages of the temperature jump technique are

apparent:

(1) The natural, stable interface between the two
coexisting phases is undisturbed by the shearing action
associated with mechanical formation techniques. Impuril-
tles are not introduced as they would be with a liquld
extractlion technique.

(2) There are no moving parts susceptible to leakage
and vapor loss.

(3) There 1s no ambiguity in mixture preparation.
Half-cell techniques require two phases of different com-
position which, when completely mixed, are at the critical
composition. Use of the T-Jump cell allows filling of
the cell at the critical composition. For temperatures

moderately below T the difference in composition between

c’
the coexisting phases Axq 1s not large, and a distinct

interface with no preferential wetting of the walls (no
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curvature in the meniscus) 1s formed.

(4) No special thermostatting 1s required to main-
tain separate phases at a prescribed temperature (T > Tc)
during interface formation.

It 1s desirable to make the temperature Jumps as
short-lived as possible. Temperature jumps of 1ong dura-
tion obscure the initial time to. As an example, consider
a very long duration heating input, say by conduction.
Even before the cell temperature reaches Tc, the concen-
trations of the two phases begin to change via diffusion.
Although the two phases are not yet completely miscible,
they are no longer at their equilibrium concentrations and
some diffusion willl occur. Such behavior cannot be des-
cribed by the previous equations. This problem was avoilded
by use of a commercial Litton Industries microwave oven
which supplied a short duration, moderate intensity heat-
ing pulse. Moreover, the pulse supplied uniform bulk
heating rather than surface conduction heating. Heating
constants for the previously described T-jump cell filled
with the critical mixture were about 7°C/S. Total heat-
ing time was between 1.5 and 2.2 seconds. Despite bulk
heating by the microwave oven, some nonuniformities are
to be expected because of geometrical asymmetrles with
respect to the microwave source within the oven. Shortly
after heating, it was found that the upper thermocouple

often read 0.6°C higher than the lower thermocouple.
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Although these temperature nonuniformities are not pre-
dictable, the time behavior of the cell temperature dis-
tribution after they have been measured is calculable
using the diffusion thermoeffect program developed in
Chapter 3. Fortunately, temperature nonuniformities
relax via thermal conductlon to the correct Dufour-effect-
caused AT within 500 to 800 seconds. This is because the
temperature gradients diminish by conduction until con-
duction just balances the heat transported by diffusion.
Figure 6.5 1llustrates this behavior for various initial
temperature nonuniformities. All curves in Figure 6.5
were obtalned by computer simulation for nonuniformities
symmetric about (z/a) = 0.5. Although all curves refer
to a mean cell temperature 4°C above the critical point,
each 1ndividual curve corresponds to a different initilal
temperature nonuniformity. Curve "a" corresponds to the
normal AT induced by the diffusion thermoeffect from
initially isothermal conditions. Curves "b" and "c"
correspond to the AT induced when initially the top (b)
or bottom (c¢) 5% of the fluid is 2°C warmer than the bulk
liquid while the bottom (b) or top (c) 5% is 2°C colder.
This might physically correspond to a surface effect in
the temperature jump. Curve "d" directly corresponds to
two different initial temperature nonuniformities: (1)
the 1nitial temperature distribution in the cell variles

continuously and linearly from the upper surface to the
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Figure 6.5. Predicted decay of initial temperature
nonuniformities in a temperature Jjump dif-
fusion thermoeffect experiment.
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4oC colder lower surface, and (2) the entire upper phase
1s initially 2°C warmer than the entire lower phase.

This latter nonuniformity might occur for preferentlal
absorption of microwaves by one of the components. Curve
"e" corresponds to an initial linear and continuous grad-
ient of 8°C from top to bottom. The point of Figure 6.5
1s the coalescence of AT for all these nonuniform initial
temperature conditions into the 1dentical AT produced by
the diffusion thermoeffect with isothermal initial condil-
tions. This occurs in each case within 500 to 800
seconds. Thus, in spite of moderate initial tempera-
ture distributions produced by the T-Jump technique,

the AT measured after 800 seconds 1s dependent upon only
the heat of transport, not the 1nitial conditions. For
moderate T-jumps, AT values obtained at times longer than
800 seconds can therefore be used without knowledge of the
actual T-distribution 1mmediately following the heating
pulse. Since relaxation to the mean temperature is quick-
est near the interface where diffusion occurs, no ambi-
gulties in the composition distribution produced by heat-
ing nonuniformities are expected even though D has a
significant temperature dependence in this region. No
experimental data for times shorter than 1050 seconds

were used in the calculation of @ To verify further

*
1
these computer simulatlons, pure water was T-=-Jumped wilth

the microwave oven. With T-jumps comparable to thocse
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used for IBW, similar initial temperature nonuniformi-
ties were noticed shortly after perturbation. However,
the measured AT vanished completely after about 500
seconds in the case of pure water. Obviously, the AT
measured for the binary IBW system, persistent through-
out our measurement region (1050 seconds <t < 5000
seconds) depends solely on the diffusion thermoeffect.

The T-Jump technique 1s useful near the CST basically
because the diffusion coefficient diminishes in this
region while the thermal conductivity coefficient remains
finite. This changes the diffusion thermoeffect from a
transient phenomenon (Figure 4.4) to essentially a steady
state phenomenon for times on the order of these experi-
ments.

To see how this happens, compare the composition sur-
faces shown in Figures 6.6 and 3.5. Note that Figure
6.6 shows that the gradient of composition, the main driv-
ing force for the diffusional process, remains almost
constant throughout the experiment except for an initial
blurring of the sharp step function at the interface.
The mass flux Jl = -pD(Bwl/az) therefore remains prac-
tically constant in time for a given temperature. Heat
conduction down the produced temperature gradient opposes
the heat carried by the mass flux and will reach a point
where 1t counter balances production of the gradient by

the heat of transport. The transient phenomenon observed
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Figure 6.6. Predicted composition surface for IBW in
a temperature jump diffusion thermoeffect
experiment 4°C above To.
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away from the CST is due to the constantly diminishing
mass flux.

To quantify this point, the equation

—%
Qnet = 9T = Qeond = 4197 - xaAT (6.12)

(analogous to Equation 2.20) where Qpr is the heat flux
due to the heat of transport and 9cond is that due to
thermal conduction, shows that in the steady state

dQpet = 0 and 415;/K=AT. Because in the critical region
at any given temperature llﬁz/x changes only very slowly,
AT remalins essentially constant.

In terms of the actual experiment, the effect of
this steady state 1s that perturbations from the AT
produced by the diffusion thermoeffect, will relax back
to the correct value. The establishment of the steady
state 1s rapld since thermal conduction remains large
and finite in the critical region while diffusion dim-
inishes.

Because near the critical point a steady state 1is
established between thermal conduction and the heat of
transport term, the cell temperature may be allowed to
relax gradually toward Tc' The assumption 1s that the
steady state 1s established more quickly than the finite
drop 1n cell temperature. That 1s, the measured AT

at any instant 1s the appropriate steady state AT produced
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~ %
by Q1 based on the instantaneocus cell temperature; i.e.,

L ¥ Ay

Ql = A[(Tcell-Tc)/Tc] . This implies that measured AT
values are essentially uncorrelated. They depend only

on the composition profile and the immediate deviation of
the cell temperature from the critical temperature and

not directly on any past history of AT or T The

cell®
measured AT as Tcell changes 1is always the appropriate

AT relative to the instantaneous cell temperature because
in the critical region the thermal conductlivity 1s always
much larger than the diffusion coefficient thereby rapidly
establishing the steady state for slow changes 1n abso-
lute cell temperature.

Verification of this assumption was checked numeri-
cally by comparing simulated AT's for two kinds of systems.
In system 1 Tcell decreases to Tc at a rate of about 10"3
°C/s (comparable to the experimental situation). System
2, following the T-jump, remalns at a fixed mean tempera-
ture.1 A comparison of the induced AT in system 1,
when the decreasing cell temperature corresponded to
that of system 2, to the induced AT in systeﬁ 2 was
made after correcting for small composition differences
due to the temperature dependent diffusion coefficient.

The results of this comparison are shown in Figure 6.7.

In each case, the AT expected in system 1 as Tcell > Tc

*
1For these simulations, Q1 values from Table 6.3
were used.
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1s identical to that predicted for system 2 when compared
at the same mean cell temperature. In Figure 6.7, the
dashed lines represent steady state AT values for systems
2, the solid line represents system 1 AT values, and the

- black squares are system 1 AT values at each of the system

2 cell temperatures. Note that when T 1 of system 1

cel
reaches Tcell of each system 2 as indicated by the black
squares, the expected AT values are indeed identical.

Experimental evidence that measured AT values are
the appropriate steady state values at the instantaneous
temperature was obtained by performing a similar T-Jump
experiment on a pure component - water. After the T-
jump, no difference 1in temperature was measured between
symmetric thermocouples (AT = 0) throughout the time
region of the measurements (500 seconds < t < 5000 sec-
onds) during which the cell temperature dropped 4°C.

No effects on the measured AT were due to the small heat
losses through the walls required to allow the decrease

in Tcell' Measured AT values for mixtures are therefore
due entlrely to the diffusion thermoeffect.

An obvious advantage of allowing Tcell to approach Tc
is that each experiment contains the entire e-behavior of
é; from which the CE X, can be obtained. Notice also
that AT becomes very small as the consolute temperature
is approached, allowling measurements very near Tc’ How

close measurements can be made to Tc is 1imited by the
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cell temperature distribution. No meaning can be attached
to any result for which T < Tc in a portion of the cell.
However, AT decreases as €+ 0, allowing closer and closer
approach to the consolute temperature. A few measure-
ments were obtained within 0.010°C of the consolute tem-

perature.

D. Literature Parameters for IBW

Fitting é; and its temperature dependence from mea-
sured temperature differences requires fitting of the
values calculated using the previously described numerical
scheme. Literature values of the equilibrium and trans-
port properties of the IBW system were used 1in this pro-
cess. Composlition dependencles of the parameters were
Included as polynomial expansions i1n mole fraction by
fitting literature data using "MULTREG" (Anderson [1968]).
The temperature dependence was included via critical ex-
ponents where known and applicable, and by polynomial
fitting for properties with no anomaly in the critical
region. Table 6.1 summarizes the actual expressions
used for properties discussed below.

(1) Critical properties - The reported values of
the critical mole fraction vary from 0.110 to 0.115.
(Greer [1976], Woermann and Sarholz [1965], Chu et al.
[1968], Allegra et al. [1971], and Friedlédnder [1901]).

Because the consolute temperature is lowered by
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impurities (especlally lonic impurities), values tend

to vary somewhat from laboratory to laboratory. Most
recent experiments indicate the critical temperature to

be between 25.988°C and 26.385°C (Greer [1976], Woermann
and Sarholz [1965], Gammell and Angell [1974], and Allegra
et al. [1971]). The apparatus previously described al-
lowed measurement of relative temperatures in this labora-
tory to 0.002°C. Because only relative departures from

Tc were needed for analysis, no elaborate calibration

was made in an attempt to obtain absolute temperatures.
However, the measured Tc appeared to be slightly higher
than the best literature values. Only relative tempera-
tures were used in data analysis. The small value of

dT,/aP (-0.055°K-atm™+

reported by Morrison and Knobler
[1976]) indicates that T, 1s essentlally independent of
barometric pressure.

(2) Density and molar volume - Woermann and Sarholz
[1965] and Greer [1976] report very accurately measured
densities in the critical region as a function of composi-
tion and temperature. The best "MULTREG" fit of their
data 1is shown in Table 6.1 for |T-298.15|<15°K. This
equatién fits the reported values to within 0.1% for all
values of w,. The polynomial expression for p fits well
very near Tc because thermal expansivity has such a small

CE - Morrison and Knobler [1976] report it as 0.08 - 0.14

with an uncertainty of 0.1. Molar volumes were obtained
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from V = M/p.

(3) Heat capacity - The temperature dependence of the
specific heat at the critical composition can be well
represented very near the critical point with a logarithmic
singularity (Klein and Woermann [1975]). Xlein and Woer-
mann found that correction terms to the logarithmic singu-
larity could not be neglected for deviations from Tc
larger than 0.5°K. The fit of their data for 0°K<T-T <
3.5°K 1s shown in Table 6.1. This logarithmic singularity
1s 1n agreement with the very small critical exponents
reported by 1lnvestigators of other systems. For example,
Pelger et al. [1977] report a = 0.55 [see Equation (5.10)
and Table 5.1 for the definition of o], Voronel and Ovodova
[1969] and Cope et al. [1972] report a = 0.0; and Gambhir
et al. [1971] and Viswanathan et al. [1973] report 0<a<0.1l.
Although the results of Klein and Woermann were obtained
only at x; = X;,, the data of Davies [1935] and, to a lesser
extent, those of Kresheck and Benjamin [1964] indicate
that 55 is relatively composition independent for the
relevant range of interest for the experiments reported
hereln.

(4) Diffusion coefficient - Light scattering measure-
ments of the diffusion coefficient for thls system have
been performed by Chu and coworkers [1968], [1969], and
[1973]. The best "MULTREG" (Anderson [1968]) fit of thelr
data 1is also given in Table 6.1. Data used in the fit
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included the self diffusion coefficient of water for the
point Xy = 0.0 in addition to the concentrations reported
by Chu et al. The values for D were measured by Chu

et al. at only two compositions in addition to the critical
composition.

(5) Thermal conductivity - No data exist for the
thermal conductivity of IBW mixtures. Fortunately, the
critical exponent of k 1s well defined at the critical
composition. As shown 1in Chapter 5, xl = 0 and the thermal
conductlvity shows no anomaly; i.e., « exhibits the same
temperature behavior near the consolute temperature as
it does further away from the CST. Consequently, the
NEL equation (Jamieson [1975] and Chapter U4 of this
thesis) was used for the composition dependence. The
temperature dependence was included via the temperature
dependencies of the pure component thermal conductivities.
A linear interpolation of data reviewed by Jamieson [1975]

defined the temperature dependence of KO The tempera-

1
ture behavior of Kg was obtained from a "MULTREG" fit of
the data reviewed by McLaughlin [1964]. The NEL equation
shown in Equation (4.2) was used with Jamieson's recom-
mended value of C = 1.0 for the adjustable parameter C.
(6) Excess enthalpy - As discussed in Chapter 4, the
heat of mixing effect 1s symmetric about the interface

even for very nonideal mixtures. The excess enthalpy is

~*
therefore not required for determinations of Q1 based on
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AT data taken at symmetric positions with respect to the
interface. No data have been reported for ﬁE in the IBW
critical region although Daoust and Lajoie [1976] have
reported some heats of dilution.

(7) Heats of transport - The experimental results
presented here are the first determinations of the criti-
cal exponent for the heat of transport in liquid mixtures
in the critical region.

From the preceding discussion, 1t 1s apparent that the
composition dependence of most of the parameters is not
well known. Actual values of Q; calculated from measured
AT data would reflect this uncertainty and would certainly
be no more accurate than the total uncertainty of the
propertlies used. However, in determining the critical
exponent of Q;, composition changes very little in time.
This is illustrated well by Figure 6.6. Therefore, the
composition contribution to the value of any property
remains the same when the consolute temperature 1is ap-
proached. That 1s to say, all of the compositional
dependencies and uncertaintles in the input propertiles
contribute a constant amount to 5; regardless of € and
are thus grouped together into the pre-e factor A in the
expression é; = Asxu. Since the temperature dependence
of all the input properties was well known, the critical

exponent Au can be calculated with good certainty. A

fit of experimental data yields the true value of the CE
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of the heat of transport Au. The pre-e factor A, however,

will be an effective value for each run.

E. Experimental Results

A
~*
Best estimates for Ql = Ae 4 were obtained from the

experimental AT data using nonlinear least squares and
Gauss-Markov regression. The values of varlious properties
used in the calculations are listed in Table 6.1. Table
6.2 contains the initial conditions for the seven runs
that were performed on two independently prepared mixtures.
Further experimental conditions are avallable from Table
C.1 of Appendix C. The overall mole fraction of iso-
butyric acid at which the mixtures were prepared 1s de-
noted by <x,> in Table 6.2. T;-T, represents the initial
temperature from which 1nitial phase compositions x% and
x% were calculated using Equations (6.11). The initial
difference in composition between the upper and lower

phases 1s given in the column labeled Ax T -Ti

1° max
represents the temperature jump range.

The results obtalned for the critical exponent Au
are shown in Table 6.3. Also listed in this table are
values obtained for the pre-e factor A. Negative values
for é; indicate that the temperature of the phase rich

in isobutyric acid increases while it decreases in the

water rich phase. As mentioned above, the composition
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dependence of the necessary input propertles are not well
known. This 1s because investlgators of critical systems
have been primarily interested in critical exponents at
constant (critical) composition. Because the composition
distribution remains essentlally unchanged during the
experimental time period (cf. Figure 6.6), the composi-
tional contribution of all the properties in cell regions
where X, # X, also remains unchanged as T + T,. There-
fore, the critical exponent Ay can be determined qulte
well, but the absolute value of Q; at a given temperature
cannot be determined with any degree of certainty. The
value of the pre-¢ factor A contains the various composi-
ional contributions of all the input properties and 1is
therefore an effective value dependent upon the individual
run conditions. Like that of previous workers, the goal
of this dissertation has been the determination of a
critical exponent - the CE for the heat of transport in
thls case. The lack of information about the composition
dependence of properties in this region has not been detri-
mental to the fulfillment of this goal. Nevertheless,
new measurements at various compositions are certainly
in order for the input properties of Table 6.1. Once
such measurements have been made, it 1is expected that the
large uncertainties in A shown in Table 6.3 will be
diminished and absolute values of the heat of transport

will then be calculable.
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Standard deviatlons for individual runs are listed
in Table 6.3 as they were calculated by the least squares
fitting program "KINFIT4". The mean critical exponent is
shown at the bottom of this table with its calculated
standard deviation. The most important result in Table
6.3 1s X = 0.65 or Ay = 2/3, which indicates that 5;
vanishes as the critical point 1s approached.

Figures 6.8 - 6.14 show the fit data for each run.
As this 1s a two parameter regression, one parameter (A)
essentlally determines the magnitude of AT while the other
parameter (Au) determines the shape of the curve. Al-
though all the AT data used are tabulated in Tables C.2 -
C.7 of Appendix C, Figures 6.8 - 6.14 are included here
to 1llustrate the shape of each curve. As mentioned, this
is important since Au principally determines the shape.
A comparison of these seven figures readily indicates the
validity of the simple power law 6; = Aexu over the tem-
perature regions depicted therein. Notice, however, that
the first six runs (Figures 6.8 - 6.13) show points which
begin to deviate from the simple power law at temperatures
4eC to 5°C above To. This 1s in agreement with the results
of Chu et al [1973] depicted for the diffusion coefficient
in Figure 5.5. No points for 'I‘-Tc > 5.0°C were included
in the data analysis. Inclusion of data outside this range
would yield an effective critical exponent rather than

the true value corresponding to the definition of Equation

5.3.
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with A and Au as adjustable parameters.
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From Figures 6.8 - 6.14 note that even when T ap-
proaches Tc, the measured AT does not 1dentically veanish.
There also appear to be larger discrepencies between
experiment and calculation in this region. These effects
are primarily attributable to the composition dependence

~% ~ %
of DQl. As T approaches T DQ, becomes small near the

c?
iInterface where Xy = Xq,-. However, on either side of the

interface, the composition differs from Xy and the phase

c
separation temperatures for those compositions are con-
siderably lower than Tc. In these reglons (xl # xlc),

é; and D are still finite even when T = T, because of the
lower phase separation temperature at these compositions.
The measured AT 1s related to DQI and will therefore be
nonzero when T = T, because of the contribution from
diffusion occurring in regions slightly removed from the
interface. This contribution should also vanish 1f the
cell temperature is lowered to the local phase separation
temperature. Experimentally, AT did vanish at tempera-
tures below Tc when diffusion entirely ceased.

As previously mentlioned, this compositional contribu-
tion from various properties will be essentially constant
as T » T, and will not affect the determination of A,
except very near the CST when the main contribution from
diffusion at the interface vanishes. To include the com-

position dependence in the predictive treatment, an em-

pirical correction for AT as a functlion of € was included
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in the numerical integration program for the very near
CST region. This empirical relation was obtained from
a fit of Run I. This same relation was then applied
equally to the other six runs which, as can be seen from
Figures 6.9 - 6.14, gave good results in each case.
This empirical fitting procedure affected the fit of
experimental to predicted values only 1n the regilon of the
last few data points. Furthermore, because all known
composition dependencies were already included in the
equations, the empirical correction was at most 0.008°C.
Fits obtalned with and without the data points of this
region, where the empirical composition correction was
used, yielded iy values which agreed within 27%.

Table 6.4 is a reproduction of Table 5.5 with the
now known critical exponent for the heat of transport
included. Notice that Q; vanishes with a +2/3 exponent.
Also notice that 5; 1s identical to Q4,/Q;7. Since no
thermostatic properties (such as Hil) are involved in the
behavior of 5;, the entire observed anomaly 1s due to the
behavior of the Onsager coefficlients. There is no am-
biguity in attributing anomalous behavior to the kinetic
or Onsager effects in the case of the heat of transport.

Since recent light scattering investigations of D in
the critical region reveal that mutual diffusion vanishes
with a +2/3 exponent and since Eil " e+u/3, Q) must

diverge with a -2/3 exponent. Insertion of thils value
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Table €.4. Transport parameters and their critical ex-
ponents.
Behavior Critical
Property Definition Near CST Exponents
= o
K K QOO/T K v QOO K Vv g
o
T P00 v €
_ it — 2/3
— L/3
Hip V€
-2/3
9y v e
D D = 10 D v Q Dp ~ €° (a)
T T o T 10 T a
-Q f
- 10 10 -2/3 (a)
11411
oo o2 L o K o e=2/3 (@)
T Q..T T Q..T T
1111 11%11
210 v €° (a)
Q Q
_* ~* gy —* 01 =* 2/3 (b)
1 N <o 1Y s Q9 v e
11 11
o (b)
U1 ™ €

(a) Results of Giglio and Vendramini [1975] are used.
(b) Results of this work.
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into the definition of 5; indicates that ., ~ e°. It

is interesting to note from Table 6.4 that @y, is therefore
the only Onsager coefficient for a binary liquid mixture
(without pressure gradients and external fields) with a
nonzero critical exponent. This fact is, however, con-
sistent with the general criterion for the direction of

an irreversible process as derived by Haase [1969]:

Q.. 0
00 701 |4 . (6.12)

20 911

Equation (6.12) implies Q002171 - 2919 0. Since this

01*10 >
expression 1s true away from the critical region and
only Qll diverges (while the other coefficients remain
finite), the relation 1s certainly still valid in the
critical region.

Note that in qualitative support of Onsager reci-
procity in the critical region 901 v gl 910' That 1is,
the reciprocal effects have equal critical exponents.
Actual verification of an identity between 901 and 910
must wait untlil composition dependencies of the various
transport properties and thermodynamic properties have
been accurately determined.

Figure 6.15 shows dramatically the manner in which

the measured AT vanishes as the consolute temperature

*
1s approached. Since AT 1s related to DQl’ where D
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vanlshes as T ~» Tc’ the qualitative behavior of Figure
6.15 1s to be expected. The feature unexpected a priori
1s that AT vanishes more quilckly than D; 1l.e., that

Q; (the heat "carried" by a diffusing molecule) itself
vanishes. There 1s a critical decrease 1n Q; as well

as in D. This observed behavior obviously contains in-
formation relevant to the microscopic mechanism of the
diffusion thermoeffect and is discussed in Chapter 7 as

it pertains to current theories and molecular Ilnterpre-

tations of the heat of transport.



CHAPTER 7

CONCLUSIONS

A. Interpretations of the Heat of Transport

Although the work described in this dissertation was
the first quantitative measurement of the heat of trans-
port in binary liquid mixtures, numerous papers on the
theory of thermal diffusion and the heat of transport
have been published durlng the last 50 years. Two mailn
approaches can be identified, (1) the kinetic approach
and (2) the statistical mechanical approach.

The kinetlc interpretation of the heat of transport
has developed from a model for diffusion akin to Eyring's
significant structure theory. The basic reasoning fol-
lows that proposed by Wirtz [1939], Wirtz and Hiby [1943],
Denbigh [1952], and Prigogine et al. [1950]. Some ex-
tensions have been made by Dougherty and Drickamer [1955]
and Rutherford and Drickamer [1954]. 1If a particle is to
leave 1its position on the quasi-crystalline liquld lattice
and move to a new location, the activation energy can be
divided into two parts: (1) qy, the "Hemmungsenergie"
required to break free from the attraction of the neigh-
boring molecules, and (2) q;,, the "Lochbildungsenergle"
required to form the hole into which the diffusing mole-

cule passes. Thus the activatlion energy is

191
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Ea = ay + qp, - (7.1)

The diffusion coefficient and the mass flux can then be
written in a typical Arrhenius fashion with the above
actlvation energy. Conslderation of a nonisothermal system
in which a molecule passes from a temperature 'I‘a to a
temperature Tb requirés qy at Ta and qr, at Tb' Opposing
rates for the flux can be written which when balanced for

the case of the thermal diffusion steady state yilelds

d4nC _ 39

-Car S.S.  RT? (7.2)

where C is molarity. The definition can then be made

* =
Ql = QH’l - QL,l (7-3)

where kQ; is the heat of transport based on the kinetic
model. Thils is different from the phenomenological defini-
tion of Equation (2.19).

Denbigh's presentation 1s slightly different. He
defines the "two energy terms involved in this process
(the Jumping of a molecule from one site to the next):
(a) the energy of detaching the molecule from its neigh-
bors; (b) the energy of creation or filling of the hole."
With WH and WL representing these two energles respect-

ively, the energy associated with the transfer of a
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molecule of component 1 is WH 1 - WL, which prompts the
]

definition
k~% -
Ql - WH,l - WL . (7.1‘1)

Consideration of the regular solution theory faclilitstes

a representation of WH and WL in terms of configuration or
interchange energies for the case in which molecules of
both components are about equal in size. The excess

~

molar free energy GE in regular solution theory is

GE = Nywx X5 = W'X X, (7.5)

in which N, 1is the Avogadro number, w is the interchange
energy, and w' = NAw. Because the two components of the
mixture are perfectly randomly arranged, the excess entropy
of mixing 1s zero - the entropy of mixing corresponds to
that of an i1deal mixture. The interchange energy can be
thought of as the change in potential energy when z dis-
similar 1-2 molecular pairs are formed from z/2 1-1 and

z/2 2-2 molecular pairs. The interchange energy 1s related
to the pair potential energiles relative to infinite sepa-

ration w,, by

1J

W = Z[w12 - %‘(wll + W22)] (7-6)
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where z is the coordination number (Prausnitz [1969]).

In terms of wij’ Denbigh found

QY = 2N, fxp/20x) (g = Wp,) = Xp(iyp = Wy,)]

(7.7)
where f 1s a numerical factor less than unity which physi-
cally corresponds to the fraction of nearest neighbor
"bonds" broken during the jump.

Dougherty and Drickamer [1955] have made some compari-
sons of experimental values for QI, obtained from thermal
diffusion experiments on the assumption of Onsager reci-
procity for 901 and 910, with values calculated from
Equation (7.7). In this comparison, the wij were related
to physical properties such as latent heats of vaporiza-
tion. Good qualitative agreement was found in the com-
parison but the quantitative agreement was poor.

As Tyrrell [1961] indicates, kQ; and Q; are not
necessarlily the same. The heat of transport depends on
the reference plane. Denbligh's work assumes a volume
fixed reference frame while the phenomenological defini-
tion of Equation (2.19) is for a barycentric or center
of mass reference system. Although related, the two
heats of transport are subtly different. Of course the
heat of transport obtained from the kinetic theory 1s
different from the excess enthalpy, which for a regular

solutlion 1is
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BE = NAzx1x2/2(2wl2 - Wyq - w22). (7.8)
The heat of transport must be due to the very mechanism
of diffusion 1itself.

The statistical mechanical approach removes the
restrictive assumptions about the structure of the liguld
and the mechanism of diffusion. In so doing, the equations
are difficult to evaluate for real systems because they
contain integrals over palr correlation functlions. Based
on Kirkwood's Brownian motion method, Bearman, Kirkwood,
and Fixman [1958] developed an expression for the heat
of transport for a system in which: (1) particles react
with central forces only, (2) intermolecular potentials
can be written as sums of pair potentials; and (3) both
components possess only translational energy. The heat
of transport for such a system 1n the absence of ex-

ternal forces can be split into two terms
* * *

where Q; is the heat of transport defined by Equation
(2.19), QIl is a term involving averages over equilibrium
ensembles, and QIz involves perturbations of the equilibrium
distribution due to the flow of heat and matter. Bearman
et al. derived a general form for Q;I and QI2. In the

case of regular solutions they are
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L P ! vivy, L L
Qll = ?(—M2_ + X2) (;— - 5—) (7.10)
2 1
D,-D L f
» 1 Y2791 1 X 1
Uz = v 5, (At X ivavelsm =)+ 2xy (T7)-Lyvy)
Vl V2
ay
21 (2,0)43
+ 2x2(L V2—L2 5) - fr( =55 - 1)V'1g21 r} (7.11)

where v is the mean molecular volume, Vl and V2 are the
partial molecular volumes of components 1 and 2 respec-
tively, vy and vV, are the molecular volumes of the pure
components, tl and f2 are the negatives of the latent

heats of vaporization of components 1 and 2, respectively,
from the solution to the 1deal gas state, Ll and L, are

the negatives of the latent heats of vaporization of the
pure component to the 1deal gas state, mq and m, are mol-
ecular masses of components 1 and 2, Dy and D, are self
diffusion coefficients for each species in the mixture, and
r and r are the magnitude and vector distances between two
molecules, respectively. The integral term in Equation
(7.11) cannot yet be evaluated for real systems because

it contalns the radial distribution function gig’o),

the intermolecular potential Vél and a term involving

w21 which 1s related to the nonequilibrium radial distribu-

tion function. The above functions are unknown for real

liquids. Notice that the equations from the kinetic theory
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are analogous to Equation (7.10), but neglect completely
the nonequilibrium portion QI2 of the phenomenon.
Bearman and Horne [1965] have compared experimental
thermal diffusion factors with (1) thermal diffusion
factors calculated from Equations (7.10) and (7.11) on
the assumption of ORR, and (2) thermal diffusion factors
calculated from similar statistical mechanical equations
derived directly for thermal diffusion in terms of mole-
cular properties. The integral terms involving radial
distribution functions were left out. This corresponded
to a hard-sphere assumption. Because these integrals
were left out, the thermal diffusion factors calculated
from the thermal diffusion theory were somewhat lower than
those obtalned from the heat of transport theory. The
values obtained from the heat of transport theory for the
thermal diffusion factors 1n carbon tetrachloride-cyclo-
hexane mixtures agreed quite well with the experimental
results. An important result of their calculations,
was that the QIz term contributed over 50% of the abso-
lute value of Q;. Thus, the nonequilibrium term in the
Bearman-Kirkwood-Fixman theory, which the kinetic theory
completely neglects, is 1n fact the predominant term.
Story [1967] and Story and Turner [1969] have ex-
amined experimental thermal diffusion factors for carbon
tetrachloride-benzene and cyclohexane-benzene mixtures

with respect to both the kinetic theory and the statistical
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mechanical theory. They find that the kinetic theory

is not only in error with respect to magnitude, but often
yields the wrong sign. They found similar difficultiles
in magnitude and sign using the statistical mechanical

theory with the integral of Equation (7.11) neglected.

B. A New Interpretation of the Heat of Transport

The kinetic approach results in an expression for the
heat of transport obtained entirely from equilibrium
properties of mixtures. The Bearman-Kirkwood-Fixman theory
indicates that this cannot be done. 1In order for the heat
of transport to be nonzero, the molar energy transported
by diffusion must be different from the partial molar
enthalpy contribution due to the mass flux. This 1s
readily seen from Equations (2.4) and (2.19). It there-
fore seems likely that the heat of transport is not just
a difference in potentlal energles experienced by the
diffusing particle, but should depend on the klnetics
of transport - the very mechanism of diffusion itself.

The results of Chapter 6 clearly indicate that Q;
vanishes as the consolute temperature is approached and
does so with a +2/3 critical exponent. An implicit goal
throughout the evaluation of the critical behavior of
Q; has been that the results would provide insight into
the microscopic nature of heat and matter coupling and

its relationship to the diverging correlation length
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associated with critical mixtures. Clearly, any consistent
* *

model for Ql must also explain the observed behavior Q1 3y

62/3 in the near critical region. The kinetic theory of

*
Ql

ings. In the regular solution theory, the configuration

appears to be inconsistent with these experimental find-

energy w is at most a weak function of temperature, and
therefore Equation (7.7) does not exhibit the required
behavicr in the critical region. Even the basic defini-
tion given in Equation (7.4), where regular solution
theory has not been invoked, does not display the experil-
mentally observed behavior. Note that Equation (7.4)
is consistent with the observed decrease of the diffusion
coefficient 1in the critical region if the increased cor-
relation length 1s assumed to enhance the diffusional
activation energy. The heat of transport defined in Equa-
tion (7.4) does not depend on the activation energy. It
depends only on the difference 1in energy required to
remove a molecule and the energy released when 1its hole
is filled. It would seem that this difference would
depend on relative potential energles rather than lengths
of correlation and therefore this model does not ade-
quately describe the critical behavior of QI.

To formulate a new kinetic theory for the heat of
transport which is conslistent with the experimental
behavior in the critical region, the lattice model for

liquid structure must be discarded in favor of the more
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intuitive idea of randomness due to molecular thermal
motions. Hildebrand [1977] has shown that "changes of
viscoslity and diffusivity with temperature can be ac-
curately and more simply expressed in nonexponential for-
mulas than by plotting thelr logarithms against reciprocal
temperatures." "Activation energy" is therefore not a
necessary construct. The mechanism of diffusion in this
formulation is a succession of small displacements due to
random molecular thermal motlions rather than to actual
"Jumping" from one lattice site to the next. The tem-
perature dependence of the diffusion coefficient is simply
due to increased thermal motion, which decreases the time
needed for a net transference of molecules from one loca-
tion to another.

The thermal motions of each molecule vary but pre-
sumably obey a maxwellian or normal distribution. In
fact, the mode or expectation value of this distributilon
of energles defines the thermodynamic temperature as kT,
where k is Boltzmann's constant. Because of this dis-
tribution of energies, some molecules are more energetic
than others at any given time. For convenlence of dis-
cussion, define the "excess energy" of a particle or
molecule as that amount of energy which it possesses at
a given time in excess of the expectation or kT amount
of energy. Thus, the further out in the leading wing

of the distribution, the more "excess energy" the molecule
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has relative toc the average value. Now bring two iso-
thermal sutsystems (of different pure components for
the moment) into contact and allow mutual diffusion to
begin. Which molecules from the energy distribution
for subsystem 1 will be more likely to be found in sub-
system 2 shortly after 1nitial contact of the phases has
been made? The conclusion that the more energetic mole-
cules diffuse more raplidly than their "average" energy
counterparts 1is inescapable. Although collisions are
energy randomizing events, molecules at any one time
possessing "excess energy" move faster through the solu-
tion than their lower energy counterparts and for any given
period of time will move further through the mixture.
The heat of transport of component 1 is simply the "excess
energy" transported by molecules which undergo diffusicn.
From this picture of the heat of transport, several
concepts, vague 1n the previous kinetic theory, become
clear. Notice that the difference between the heat of
transport and the heat of mixing is evident. The heat
of mixing 1s a state function dependent only on the
states of the initial pure components and the final mix-
ture. The heat of transport cannot be separated from the
diffusional mixing process. The heat of transport is
thus dependent upon the nonequilibrium movement of mole-
cules as in the Bearman-Kirkwood-Fixman theory and cannot

be calculated merely from equilibrium properties and/or
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equilibrium intermolecular potentials. The heat of
transport 1s a property of the system because the distri-
bution of energies is certalinly dependent upon the com-
ponents (mass, vibrational degrees of freedom, rotational
degrees of freedom, etc.) and the relative amounts of
each present. Q; is specific to the mixture and retains
its value even 1f two mixtures of equal chemical poten-
tial are brought into contact. For this case Q; is
nonzero, but no temperature change occurs in the system
because a forward diffuslonal event 1s as lilkely to occur
as a reverse event. The previous kinetic theory pre-
dicts kQ; = 0 in this case.

The temperature changes in a diffusion thermoeffect
experiment are explicable from this model of the heat
of transport. When a molecule of component 1 migrates
from a particular region carrying with it "excess energy",
the molecules behind are lowered in energy relative to the
previous kT value by an amount equal to the "excess
energy" transported. However, other high energy mole-
cules are finding theilr way into that region carrying
"excess energy" which tends to raise the distribution
of enefgies. Because there 1s a competing effect between
the net diffusion of component 1 in one direction (into
the lower chemical potential region) and the net diffusion
of component 2 in the other direction, the temperature
change in a particular location 1s related to the d4dif-

ference between the two distributions of energies in
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the initial rhases. It is dependent upon the "book-keep-
ing" of "excess energies" carried into and out of the
region. The molecular distributions of energy for the
two initial phases are themselves dependent upon the
masses, intermolecular potentials, and complexity of the
molecules.

The same statistical nature of molecular thermal
motion glves rise to thermal diffusion. Consider a uni-
form, isothermal, binary liquid mixture between two
parallel plates. Because the system is isothermal, both
components have the same expectation value for thelr
thermal energy distributions. However, the breadth of
the distributions need not be the same and is dependent
upon the properties of the components. If a temperature
gradient 1s now 1mposed, the energy distributions of
both components very near the hot wall are shifted up in
energy while the distributions near the cold wall are
shifted down. Because both components are more energetic
near the hot wall, there is a net random migration of
both components toward the cold wall (thermal expansion).
However, the component with the broader distribution of
energles will tend to move faster, 1.e., its more ener-
getic molecules, on the average, move through the fluid
faster than those of the component with the narrower
distribution. Unlike isothermal conditions where the

faster migration of the component with the broader
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distribution occurs equally in both directicns, under
the influence of a temperature gradient this statistical
"excess migration" is predominately toward the cold wall
since the distribution of energies was lowered in that
region. There 1s a net accumulation of this component
in the cold region (as thermal energy 1s now absorbed
into the cold plate) hence a relative accumulation of
the other component near the warm wall where heat is
continuously supplied. Finally, a steady state 1is
reached when the above accumulation process balances
diffusion in the reverse direction caused by unequal
populations.

The critical behavior of the heat of transport for
this model 1s closely tied to the critical behavior of
diffusion. Both are kinetic processes (as opposed to
thermal processes such as thermal conduction). The

Stokes-Einstein-Kawasaki equation (Kawasaki [1970])
D = kT/(6mnE) ~ €23 | (7.12)

where n 1s shear viscosity, describes the critical de-
crease of the diffusion coefficient near the consolute

point in terms of a raplidly diverging size effect as more
and more particles become correlated. Thus, D n g'l n 62/3,
and D vanlishes as groups of molecules become correlated.

It should be mentioned that the critical exponent for n



205

is still not known exactly, but appears to be zero or
slightly negative (the small anomaly observed may be a
logarithmic singularity).

For a related reason, Q; in the proposed model must
also vanish as correlation lengths increase. As the
consolute temperature 1s approached, correlation lengths
increase rapidly. As correlations increase, the max-
wellian distributicon of energies must necessarily narrow.
This can be viewed as an effect due to lncreased mass
per diffusing particle or as a decrease in large magnitude
fluctuatlons due to increased correlations. Since the
heat of transport 1s viewed as the "excess energy" or
energy above the expectation value carried by a diffusing
molecule, QI must vanish as the distribution of energies
narrows about the kT or expectatlion value. In the 1limit
of perfect correlation between the molecules, each dif-
fusing species has exactly kT of energy assoclated with 1t,
Q; 1s identically zero, and no change in local temperature
is produced by the diffusional event. Thls can be viewed
as the limiting case when T - Tc. As T approaches Tc
the diversity of energles assoclated with particles de-
creases and appears to do so inversely proportional to the

correlation length £. Therefore

Qf v g7t n 23 (7.13)

in agreement with the experimental measurements of Chapter 6.
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C. Summary and Future Work Needed

As stated in the Introduction, the objectives of this
work have been fourfold: (1) to measure quantitatively
for the first time the diffusion thermoeffect 1n liquid
mixtures, (2) to test experimentally the Onsager heat-
mass reciprocal relation, (3) to study the behavior of
the diffusion thermoeffect in the consolute region of a
binary mixture in order to understand how 1t may relate
to microscopic phenomena; and (4) to examine experi-
mentally and compare the behavior of the Onsager heat-
mass and mass-heat coefficients in the consolute region.
It was felt that the accomplishment of these four goals
would contribute to the overall objective of transport
investigations: to understand the microscopic causes of
observed macroscoplc phenomena sufficiently enough to
make accurate a priori predictions.

In fulfillment of the above objJectives, a new cell
was designed which enabled quantitative observation of
the diffusion thermoeffect. This cell used a withdraw-
able third component to create an initially sharp dif-
fusional interface. The equations of nonequilibrium
thermodynamics and hydrodynamics were solved numerically
for the conditions involved in the actual experiments,
leaving (éz/ﬁ) as an adjustable parameter. Nonlinear
least squares fitting of these solutions to the measured

temperature differences between thermocouples placed
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symmetrically about the interface led to the first direct
determination of the heats of transport in carbon tetra-
chloride-cyclohexane mixtures. These values compared
well with those obtained via thermal diffusion techniques,
which led to the first experimental verification of the
Onsager reciprocal relation for the heat-mass and mass-
heat coefficients.

The temperature dependence of the heat of transport
was determined for isobutyric acid-water mixtures as a
function of distance from the critical temperature via
the diffusion thermoeffect technique. A temperature
Jump cell was employed. The local temperature could be
rapidly jumped (with a microwave oven) to temperatures
above the consolute temperature. The difference in tem-
perature between two points symmetric about the 1lnter-
face was monitored as a function of cell mean tempera-
ture. The cell temperature was allowed to slowly relax
toward Tc permitting determination of the critical ex-
ponent for the heat of transport by nonlinear least squares
fitting. It was found that 5; vanishes rapidly as Tc
1s approached and can be represented by 5; n e2/3. From
these results, the critical exponent for the Onsager co-
efficient 901 is 0. Very recent thermal diffusion experi-
ments indicate QlO ~ €°, The reciprocal heat-mass and

mass-heat Onsager coefficlents therefore have 1identical

critical behavior. Furthermore, exlsting kinetic theories
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of Q; do not explain its critical behavior. A new model
based on the thermal motion plcture for diffusicn not only
explains the critical behavior of Q;, but also explains
the basic features of the heat of transport left vague

in existing models.

More research 1s needed to verify and quantify the
mocdel for Q;. The mathematical formulation of the model
is the next step. Of further interest would be diffusion
thermoeffect experiments in multicomponent systems,
especially near critical points of higher order. The
more areas in which the heat of transport can be evaluated
to give special criteria which must be met by any consistent
theory, the better the model will become as well as our
understanding of the processes 1nvolved.

With respect to the experiments themselves, it would
be desirable to perform simllar studles on other systems
near thelr consolute temperature. Further studies on the
composition dependencies of thermodynamic and transport
properties 1n thils region need to be performed so that
absolute values of heats of transport can be calculated
in this region. Thls would then establish a basis for
examination of 901 and QlO to test Onsager reciprocity in
the critical region.

Additional measurements of the temperature and pressure
dependence of QI away from the critical temperature are

desirable to facllitate empirical predictive capabilitiles
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and to elucidate the microscopic couplling of heat and
mass transport.

These first experiments on the diffusion thermo-
effect in liquids have opened an area of investigaticn
in the study of transport processes which for decades
was discounted as unfeasible. Much Information can be
gained from study of this cross transport coefficient.
It 1s hoped that other cross coefficients can also be
tapped and used as tools in the study of transport

phenomena.
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APPENDIX A

TRANSFORMATION RELATIONS AND IDENTITIES

The transformation of mass fraction-specific property

Equaticns (2.25) - (2.27) to mole fraction-molar property

Equations (2.33) - (2.35) involves the following defini-

tions, 1ldentiltles, and procedures:

A.3.

Mass fraction-mole fraction.
The relationship between mass fraction Wy and mole

fraction xi is
wy = xiMi/M (A.1)

where Mi is the molecular weight of component 1 and

M = lel + x2M2 is the mean molecular welght.

Specific property-molar property.
If J is any specific property either of the mixture
or of the pure component and J 1s the corresponding

molar property, then
T =3m. (A.2)

Mass fractlon derivatives-mole fraction derivatilves.

The following 1dentity 1s easily shown from the

210
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chain rule:
_ ~2
(dwl/d) = M1M2/M (dxl/d). (A.3)

Partial specific enthalples.

The derivative of the difference in partial specific
enthalpies contained inEquation (2.27) can be
related to the excess molar enthalpy ﬁE. From the
chain rule, Equation (A.2), and the Euler relation
dH

+ x2dh‘2 =0,

X198
the derivative of the difference in partial specific

enthalpies can be written as

[8(H,-H,)/92] = (M/M M%) (3 ﬁl/axl)T’P(axl/az).

The definition of partial molar enthalpy implies
[3(Fy-H,)/32] = (/M M,) (3%7/0x2) (3x, /32)

where the total molar enthalpy H is usually split
into 1deal and excess contributilons

= =0
H = lel + X2H2

+ §E
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with ﬁg and ﬁg representing pure component molar

enthalpies. These two equations combine to yield
[o(H, -H,)/32] = (M/M M) (3°HE/0x2),, o(0x,/02z) (A.4)
1 72 172 1’T,P 1 :

which 1is the desired result 1ldentical to Equation
(2.36).

Thermodynamic factor.

The transformation from heats of transport to thermal
diffusion factors involves the thermodynamic fac-

tor (14T) defined as
(14r) = [1+(a£nY1/a£nxl)T,P] (A.5)

where Y1 is the activity coefficient for component
~ %
1. The relationship between Q1 and 0q is

~

. o i3] -1

as 1s easlily shown from Equations (2.14), (2.15),
and (2.16). The molar quantities Q; and ﬁl are
related to thelr specific quantities by Equation
(A.2) where M becomes M;. From thermostatics, the
molar chemical potential is related to the activity
coefficlent Y4 and the standard state chemical

potential ug of component 1 by
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-~

“l 6 + RTI¢nx

Obviously, Y1 is the activity coefficient based on the

same standard state chosen for ug. Therefore,

(3u)/8&nxq)q p = RT(1432nY;/32nxy)p p = RT(14T)

and

-alMRT(1+F)/M1M (A.6)

2

as required in Equation (4.1).



APPENDIX B

DIFFUSION THERMOEFFECT DATA FOR THE
CARBON TETRACELORIDE-CYCLOHEXANE SYSTEM

Using the withdrawable "liquid gate" cell described
in Chapter 4, diffusion thermoeffect measurements were made
on five mixtures of CClu-gfc6H12. The boundary conditions
used were for adlabatic, impermeable walls at (z/a) = 0
and (z/a) = 1. 1Initial conditions for each run are listed
in Table B.1l where x% is the initial mole fractlon of
carbon tetrachloride in the upper phase and x% is the
initial mole fraction of carbon tetrachloride in the lower
phase. The initial temperature distribution To obtained

from thermocouple readings Just prior to interface crea-

tion 1s given by
T0 = TOO-TZ(z/a-O.S)

with T00 and Tz listed in Table B.1l. Isothermal initilal
conditions correspond to TZ = 0,

Temperature differences between thermocouples lo-
cated at (z/a) = 0.4 and (z/a) = 0.6 are listed as functions
of time in Table B.2. The 1initial contact of the upper
and lower phases established the diffusion interface and

was assligned the time t = 0.
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Table B.1. 1Initial Ccnditions.
Run # x4 xL T~n/°K T
1 1 00 z
I 0.0179 .8044 296.160 0
IT 0.0503 .6436 295.355 0.068
IIT 0.0951 .7638 295.131 0
Y 0.0750 .8935 296.020 0
A% 0.1934 .9094 296.429 0.062
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APPENDIX C

DIFFUSION THERMOEFFECT DATA FOR THE ISOBUTYRIC

ACID-WATER SYSTEM IN THE CRITICAL REGION

Using the temperature Jump cell described in Chapter 6,
diffusion thermoeffect measurements were performed on two
different mixtures of 1isobutyric acid and water prepared
at the critical composition. The initial conditions of
each run are listed in Table C.1l along with temperature Jjump
data. After the temperature jump, the mean cell tempera-
ture relaxed toward the critical temperature as monitored
by thermocouples located at (z/a) = 0.2 and (z/a) = 0.8.

A polynomial fit of mean cell temperature as a function of
time was obtained for each run. The polynomial equations
of the form

+ Tt + T t2 + T.t3

T -T, =T 1 2 3t

fit the individual data smoothly where T--Tc is the cell
temperature minus the measured critical temperature. The

coefficlents T T T2, and T, are listed in Table C.1l.

0’ l’ 3
Also listed in Table C.1l are the critical mole fractions of

isobutyric acid at which mixtures were prepared x initial

lec?
temperatures relative to consolute temperatures (just prior

to the T=jump) Ti'Tc’ and the duration of the heating pulse
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Temperature differences between the two thermocouples
were measured directly and are listed adjacent to the time
at which they were observed in Tables C.2-C.8. All times
are relative to initiation of the heating pulse. As dis-
cussed in Chapter 6, data obtained for times less than 980
seconds are not included because of possible heatling non-

uniformities.
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Table C.2. Run I.

No t/s AT/°K No. t/s AT/°K No. t/s AT/°K
1 1060 0.126 21 1753 0.067 41 2566 0.031
2 1091 0.123 22 1766 0.067 42 2585 0.029
3 1112 0.121 23 1819 0.062 43 2648 0.026
4 1135 0.118 24 1845 0.062 4y 2705 0.026
5 1200 0.113 25 1888 0.059 45 2769 0.023
6 1260 0.103 26 1937 0.055 46 2786 0.023
7 1279 0.100 27 1980 0.054 47 2830 0.023
8 1331 0.098 28 2049 0.052 48 2890 0.023
9 1383 0.093 29 2078 0.049 49 2957 0.021

10 1401 0.087 30 2096 0.049 50 2974  0.021

11 1414 0.087 31 2163 0.045 51 3035 0.018

12 1476 0.082 32 2183 0.044 52 3118 0.018

13 1495 0.080 33 2241 0.0u44 53 3169 0.016

14 1518 0.080 34 2269 0.041 54 3233 0.018

15 1535 0.080 35 2343 0.039 55 3296 0.018

16 1578 0.077 36 2360 0.039 56 3370 0.016

17 1642 0.072 37 2432 0.034 57 3382 0.016

18 1655 0.072 38 2448 0.034 58 3439  0.013

19 1670 0.072 39 2458 0.034 59 3489 0.013

20 1730 0.070 Lo 2518 0.031 60 3554  0.013
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Table C.3. Run II.

No. t/s AT/°K No. t/s AT/°K No. t/s AT/°K
1 1104 0.103 18 1681 0.057 35 2294 0.031
2 1158 0.098 19 1734 0.054 36 2374 0.029
3 1176 0.095 20 1804 0.050 37 2398 0.029
uy 1195 0.090 21 1823 0.049 38 2U64 0.027
5 1207 0.090 22 1841 0.054 39 2552 0.026
6 1214 0.090 23 1857 0.054 4o 2587 0.024
7 1225 0.087 U 1873 0.047 43 2623 0.024
8 1238 0.087 25 1933 0.045 42 2687 0.023
9 1294 0.082 26 1952 0.044 43 2761 0.021

10 1376 0.077 27 2051 0.039 Ly 2809 0.021

11 1394 0.075 28 2068 0.039 45 2832 0.021

12 1404 0.075 29 2080 0.039 L6 2888 0.019

13 1475 0.070 30 2095 0.041 u7 2946 0.018

14 1556 0.064 31 2115 0.036 48 3006 0.018

15 1571 0.062 32 2193 0.036 4q 3078 0.017

16 1586 0.062 33 2216 0.036 50 3154 0.016

17 1648 0.060 34 2244 0.034 51 3198 0.016

Table C.4. Run III.

No t/s AT/°K No. t/s AT/°K No. t/s AT/°K
1 1059 0.079 14 1608 0.046 27 2215 0.023
2 1073 0.077 15 1638 0.043 28 2247 0.020
3 1085 0.077 16 1715 0.041 29 2299 0.020
it 1193 0.066 17 1753 0.038 30 2318 0.019
5 1210 0.066 18 1810 0.036 31 2341 0.018
6 1236 0.061 19 1875 0.033 32 2390 0.018
7 1249 0.059 20 1936 0.031 33 2459 0.015
8 1276 0.059 21 1949 0.031 34 2547 0.010
9 1320 0.056 22 1960 0.028 35 2566 0.013

10 1380 0.049 23 2016 0.028 36 2578 0.013

11 1425 0.051 24 2071 0.028 37 2635 0.013

12 1459 0.046 25 2136 0.025 38 2655 0.010

13 1553 0.046 26 2149 0.025 39 2713 0.010
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Table C.5. Run IV.

No. t/s AT/°K No. t/s AT/°K No. t/s AT/°K
1 1060 0.105 16 1719 0.054 31 2373 0.028
2 1122 0.098 17 1731 0.054 32 2448 0.026
3 1140 0.095 18 1755 0.052 33 2502 0.026
4 1160 0.092 19 1814 0.049 34 2535 0.023
5 1224 0.087 20 1895 0.046 35 2592 0.023
6 1296 0.082 21 1954 0.044 36 2607 0.023
é 1322 0.077 22 1971 0.041 37 2659 0.021
8 1387 0.072 23 1980 0.041 38 2690 0.021
9 1429 0.072 24 2000 0.041 39 2741 0.018

10 1489 0.067 25 2051 0.039 4o 2764 0.018

11 1505 0.067 26 2110 0.039 b1 2824 0.016

12 1555 0.062 27 2180 0.036 y2 2834 0.016

13 1622 0.059 28 2251 0.034 43 2910 0.016

14 1652 0.057 29 2285 0.031 Ly 2951 0.016

15 1667 0.057 30 2354 0.031 45 3014 0.013

Table C.6. Run V.

No t/s AT/°K No. t/s AT/°K No. t/s AT/°K
1 1810 0.087 13 2934 0.038 25 3830 0.023
2 1848 0.084 14 3015 0.036 26 3877 0.022
3 1946 0.077 15 3151 0.033 27 3954 0.022
4 2065 0.074 16 3242 0.033 28 houTt 0.020
5 2149 0.069 17 3349 0.028 29 k159 0.020
6 2245 0.061 18 3376 0.028 30 4290 0.020
7 2381 0.056 19 3431 0.028 31 4334 0.018
8 2u42 0.051 20 3495 0.025 32 4393 0.018
9 2530 0.051 21 3589 0.028 33 buay 0.018

10 2619 0.043 22 3620 0.026 34 4731 0.013

11 2725 0.041 23 3713 0.024 35 4853 0.013

12 2833 0.041 24 3740 0.023 36 4937 0.013
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Table C.7. Run VI.

No t/s AT/°K No. t/s AT/°K No t/s AT/°K
1 1446 0.093 18 2437 0.046 35 3527 0.021
2 1512 0.090 19 2507 0.0U44 36 3568 0.021
3 1550 0.085 20 2555 0.0L44 37 3655 0.021
4 1618 0.080 21 2624 0.041 38 3678 0.018
5 1648 0.082 22 2650 0.039 39 3727 0.018
6 1707 0.077 23 2714 0.039 4o 3794 0.018
7 1762 0.070 24 2753 0.038 41 3836 0.018
8 1832 0.070 25 2825 0.036 L2 3913 0.018
9 1913 0.067 26 2870 0.034 43 3933 0.018

10 1929 0.067 27 2958 0.034 Ly 3990 0.016

11 2027 0.062 28 3036 0.031 45 4076 0.016

12 2051 0.062 29 3102 0.029 46 4iu2 0.016

13 2106 0.059 30 3187 0.026 47 4196 0.015

14 2132 0.059 31 3246 0.026 L8 4os57 0.013

15 2224 0.056 32 3302 0.023 4o 4330 0.016

16 2250 0.054 33 3392 0.022 50 huo7 0.013

17 2317 0.052 34 3429 0.023 51 4485 0.013

Table C.8. Run VII.

No t/s AT/°K No. t/s AT/°K No. t/s AT/°K
1 1053 0.059 9 1482 0.033 17 1879 0.018
2 1081 0.057 10 1506 0.031 18 1934 0.016
3 1137 0.054 11 1568 0.028 19 2003 0.016
4 1203 0.049 12 1623 0.026 20 2036 0.016
5 1244 0.0U46 13 1693 0.024 21 2125 0.013
6 1290 0.041 14 1718 0.023 22 2148 0.013
7 1353 0.039 15 1780 0.021 23 2208 0.013
8 1403 0.036 16 1838 0.021
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