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ABSTRACT

ON THE EXISTENCE OF LIPSCHITZ SOLUTIONS TO SOME
FORWARD-BACKWARD PARABOLIC EQUATIONS

By

Seonghak Kim

In this dissertation we discuss a new approach for studying forward-backward quasilinear
diffusion equations. Our main idea is motivated by a reformulation of such equations as
non-homogeneous partial differential inclusions and relies on a Baire’s category method. In
this way the existence of Lipschitz solutions to the initial-boundary value problem of those
equations is guaranteed under a certain density condition. Finally we study two important
cases of anisotropic diffusion in which such density condition can be realized.

The first case is on the Perona-Malik type equations. In 1990, P. Perona and J. Malik [35]
proposed an anisotropic diffusion model, called the Perona-Malik model, in image processing

Du)

— i (=2
T Dup?

for denoising and edge enhancement of a computer vision. Since then the dichotomy of
numerical stability and theoretical ill-posedness of the model has attracted many interests in
the name of the Perona-Malik paradox [28]. Our result in this case provides the model with
mathematically rigorous solutions in any dimension that are even reflecting some phenomena
observed in numerical simulations.

The other case deals with the existence result on the Hollig type equations. In 1983,
K. Héllig [20] proved, in dimension n = 1, the existence of infinitely many L2-weak solu-

tions to the initial-boundary value problem of a forward-backward diffusion equation with



non-monotone piecewise linear heat flux, and this piecewise linearity was much relaxed later
by K. Zhang [45]. The work [20] was initially motivated by the Clausius-Duhem inequal-
ity in the second law of thermodynamics, where the negative of the heat flux may violate
the monotonicity but should obey the Fourier inequality at least. Our result in this case

generalizes [20, 45] to all dimensions.
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Chapter 1

Introduction

The evolution process of many quantities in applications can be modeled by a diffusion

partial differential equation of the form
up = div(A(Du)) in Q x (0,7, (1.1)

where {2 C R" is a bounded domain, 7" > 0 is any fixed number, and u = u(z, t) is the density
of some quantity at position z and time ¢, with Du = (ugy,- -, uz,) and u; denoting its
spatial gradient and rate of change, respectively. The vector function A: R" — R" here
represents the diffusion flur of the evolution process. The usual heat equation corresponds
to the case of isotropic diffusion given by the Fourier law: A(p) = kp (p € R"), where k > 0
is the diffusion constant.

For standard diffusion equations, the flux A(p) is assumed to be monotone; namely,

(A(p) — A(q))-(p—¢q) =0 (p, ¢ €R").

In this case, equation (1.1) is parabolic and can be studied by the standard methods of

parabolic equations and monotone operators. For example, when the flux A(p) is given by



A(p) = DpyW (p) for some smooth convex function W : R"” — R satisfying

IDyW ) <A Y0 W (0665 = M (0, € € R™),
ij=1

where A, X are positive constants, (1.1) can be viewed and thus studied as a certain gradient

flow generated by the convex energy functional

I(u):/QW(Du(x))d:E

in the context of non-linear semigroup theory and monotone operators; see, e.g., Brezis [6].

In regard to classical solutions, if the flux A(p) satisfies the uniform ellipticity condition

NEP < D7 A ()& < AP (. € € R,
ij=1

the existence and properties of solutions to (1.1) can be examined by establishing vari-
ous a priori estimates and appealing to the Leray-Schauder fixed point theorem; see, e.g.,
Ladyzenskaja et al. [29] and Lieberman [30].

However, for some applications of the evolution process in certain important physical
problems, underlying diffusion fluxes may not be monotone, yielding non-parabolic equations
(1.1). In this dissertation, we study the diffusion equation (1.1) with certain non-monotone

fluxes A(p) satisfying Fourier’s inequality: A(p)-p > 0 (p € R™). We focus on the initial-



boundary value problem

p

up = div(A(Duw)) in Qp,
ADu)-n=0  ondQx(0,7), (1.2)

u = ug on 2 x {t =0},

\

where Q7 = Q x (0,7), n is the outer unit normal on 02, ug = ug(z) is a given initial

datum, and the flux A(p) is of the form

Alp) = f(lpPP)p (p €R), (1.3)

given by a function f: [0,00) — R with profile o(s) = sf(s%) having one of the graphs in
Figures 1.1 and 1.2 below. (Precise structural assumptions on o(s) = sf(s2) will be given

in Chapter 2.)

U(So) 77777777777777777777777

Figure 1.1: Case I: Perona-Malik type profile o(s).

The two cases in Figures 1.1 and 1.2 correspond to the applications in image processing

proposed by Perona and Malik [35] and in phase transition of thermodynamics studied by
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Figure 1.2: Case II: Hollig type profile o(s).

Hollig [20], respectively. For these diffusion equations (1.1), we have
o' (v/s) = f(s)+2sf'(s) <0 for some values of s > 0.

In these cases, the diffusion is anisotropic since the diffusion matrix (Aéj (p)), where

A%j (p) = fpI*)dij + 2 (Ip1Ppivj (i, =12, ,n),

has the eigenvalues f(|p|?) (of multiplicity n—1) and f(|p|)+2[p|>f’(|p|?); hence the diffusion
coefficients could be also negative. In such cases, problem (1.2) becomes forward-backward

parabolic. Moreover, setting

"
W(p) = /0 Moy dr, I(u) = /Q W (Du) de,

the initial-boundary value problem (1.2) becomes a L%-gradient flow of the energy functional

I(u); however, I(u) is non-conver. Consequently, neither the standard methods of parabolic



equations and monotone operators nor the non-linear semigroup theory can be applied to
study (1.2).
We now introduce the notion of a weak solution to problem (1.2) reflecting the initial

and boundary conditions as follows.

Definition 1.0.1. We say that a function u € W1 (Qqp) is a Lipschitz solution to (1.2)

provided that equality

/Q(u(a?, s)((x, s) — ug(z)((z,0))dz = /O /Q(uCt — A(Du) - D¢)dzdt (1.4)

holds for each ¢ € C*°(Qy) and each s € [0, 7.

Before stating the main results of this dissertation, we begin with a literature review on

forward-backward diffusion problems.

1.1 Review of the literature

In this review, we generally assume the flux A(p) is non-monotone. However, we impose
at least the Fourier inequality: A(p) -p > 0 for all p € R™, which is consistent with the

Clausius-Duhem inequality in the theory of thermal conductors.

1.1.1 Young measure solutions

A measure-valued or Young measure solution to equation (1.1) is a pair (u,v) of a function

u in a suitable Sobolev space and a parametrized family v = (Vﬂc,t)(a:,t)eQT of probability



measures on R" generated by the spatial gradients of a sequence in the same space, satisfying

/()T/Q(<V’ A) - D¢+ w()dxdt = 0

for all ¢ € C°(Qp), where

(v, A) = /]R” A(p)v(dp) a.e.in Qp.

In addition, the pair (u,v) is required to satisfy

Du = (v,id) = / pv(dp) a.e.in Qp,
Rn

where id : R — R" is the identity function.

Note that any Lipschitz solution v € W1 (Q7) to equation (1.1) in the sense of Defi-
nition 1.0.1 (without initial and boundary conditions) is a Young measure solution with its
corresponding parametrized family ép,, = (d Du(x,t))(a:,t)eQT of point masses at Du.

There have been extensive studies on Young measure solutions to diffusion equations (1.1)
and their properties under different assumptions on the flux A(p) and Dirichlet or Neumann
boundary conditions. Two early works were accomplished independently by Slemrod [39]
and by Kinderlehrer and Pedregal [27]. In [39], equation (1.1) under Dirichlet or Neumann
boundary conditions is approximated by a sequence of regular and singularly perturbed
problems whose solutions are used to generate a Young measure solution. On the other
hand, the work [27] combines the explicit methods for solutions to evolution equations with
variational methods used to incorporate the oscillatory behavior. Such combination then

leads to the existence of Young measure solutions to evolution problems that may be of



forward-backward type. However the differences between these two works are subtle. In
[39], the flux A(p) and initial datum ug are assumed to be sufficiently smooth, A(p) has
strictly sub-quadratic growth, and (1.1) is satisfied in the sense of distributions. In [27],
A(p) is continuous and of linear growth, ugy € H&(Q), and (1.1) is satisfied in H~1(Q).

Following the approach in [27], Demoulini [12] established the existence of a unique Young
measure solution to equation (1.1) with flux A(p) as the gradient of some C'! potential ¢(p)
satisfying a certain growth condition and under Dirichlet boundary condition. Her method
was further explored by Yin and Wang [43] to extend the existence result involving other
growth conditions on ¢(p).

Focusing on the Perona-Malik flux A(p) = see below), existence and properties

el
1+|p|?

of infinitely many Young measure solutions to problem (1.2) had been studied by Taheri et
al. [40] and by Chen and Zhang [7] for dimensions n = 1 and n = 2, respectively. Non-
uniqueness of solutions here is inevitable due to the intensity of forward-backward nature of

the Perona-Malik flux A(p). This is in sharp contrast to the uniqueness result in [12] as a

rather mild backwardness is inherent in the fluxes treated in that paper.

1.1.2 Perona-Malik model and spatial regularizations

In the original paper of Perona and Malik [35], they proposed an anisotropic diffusion model
(1.2), called the Perona-Malik model, for denoising and edge enhancement of a computer
vision, where  C R? is a square and the flux A(p) is given by (see Figure 1.1 for the shape

of profile o(s))

. p bl
either A(p) = r A(p) =exp( — =5 )p (1.5)
1+ pl?/s3 ( s%)



with a fixed threshold sg > 0 according to some experimental purposes.

In this model, u(x,t) represents an improved version of the initial gray level ug(x) of a
noisy picture. The anisotropic diffusion div(A(Duw)) is forward parabolic in the subcritical
region where |Du| < sg and backward parabolic in the supercritical region where |Du| > s.
The expectation of the model is that disturbances with small gradient in the subcritical
region will be smoothed out by the forward parabolic diffusion, while sharp edges corre-
sponding to large gradient in the supercritical region will be enhanced by the backward
parabolic equation. Such expected phenomenology has been implemented and observed in
some numerical experiments; see e.g., Esedoglu [13], showing stability and effectiveness of
the model. On the other hand, many analytical works have shown that the model is highly
ill-posed when the initial datum wug is transcritical in §2; namely, there are subregions in €2
where |Dug| < sg and where |Dug| > s, respectively. For such transcritical initial data, due
to the backward parabolicity, even a proper notion and the existence of well-posed solutions
to problem (1.2) have remained largely unsettled; see Kichenassamy [23] in this regard.

There have been many works trying to define a suitable notion of weak solution to
problem (1.2) reflecting expected phenomenology of the model. One way is to study Young
measure solutions to (1.2) as in [40, 7] explained above. Another way is to investigate the
nice solutions to regularized problems and the limiting behaviors of such solutions as the

regularization parameter approaches 0. For this discussion, let us take sy = 1 in (1.5) and
focus on the flux A(p) = —£—.
®)= e

As a perturbation of the original problem (1.2), a mild regularization was proposed by

Guidotti [19] including a viscous term (6 > 0):

up = div ((7



which is still of forward-backward type at least for § < 1/8. It is the formal gradient flow of

the energy functional

1
Is(u) = 5/9 (log(1 + |Du|?) + 5|Du|2)d1’.

This functional has a non-trivial convexification which uniquely determines a Young mea-
sure solution by means of approximate weak Young measure solutions. The construction
of these approximate solutions was carried out by following the approach of [12]. While
Young measure solutions in [40, 7] are not unique, those in [12, 19] are unique due to the
reason mentioned above. In a dynamical viewpoint, regularization (1.6) seems to replace
the staircasing effect of the Peorna-Malik equation with a micro-ramping phenomenon by
which the center of mass (that is, Young measure) solution is Lipschitz continuous while its
gradient exhibits a micro-structure composed of gradients of small and large size. One of
the main results of this dissertation actually verifies such phenomenon for ezact Lipschitz
solutions to the Perona-Malik type equations having profiles o(s) as in Figure 1.1 (including
the Perona-Malik equation itself) without regularization (1.6).

In dimension n = 1, fourth order regularization has been studied by Bellettini et al. [3]

and by Bellettini and Fusco [2]. These papers studied the singular perturbation (¢ > 0):

Ut = —e2u + (U7x>
t TTTT l—l—u% .

whose associated energy functional is given by

1

1
Ie(u) = 5/0 (eu%x +log(1 + u%))d:c



In [3], it had been observed that infinitely many different evolutions may arise under the
same initial datum ug by considering sequences ug of initial data that converge uniformly to
ug as € — 07. In [2], using the I-limit convergence technique with appropriate scaling, the
authors could capture the long time behavior of the Perona-Malik equation with evolution

of piecewise constant data.

1.1.3 Classical solutions

Let us assume for the moment that Q € R” is a bounded C! domain and that A(p) = 1+Z|) 7
p

Given a point z € €, we say that the initial datum ug € C1(Q) is subcritical at z if
|Dug(z)| < 1, supercritical at x if |Dug(x)| > 1, and critical at x if [Dug(x)] = 1. The
initial datum wg is transcritical in Q if there are two points x,y € Q with |Dug(z)| < 1 and
Dug(y)] > 1.

Existence of global or local classical solutions to problem (1.2) depends heavily on the
initial datum wg. Kawohl and Kutev [22] showed that a global classical solution exists
in any dimension if ug is subcritical on Q. However, in this case, the convexity of € is
required to guarantee such global existence as pointed out by Kim [24]. In [22], they also
proved that (1.2) cannot admit a global classical solution for n = 1 if ug is transcritical
in  under some technical assumptions, and these assumptions were completely removed
later by Gobbino [17]. Concerning the Perona-Malik type equations, it had been the general
belief that classical solutions can only exist if the initial data are smooth, even analytic, at
supercritical points; this was formally streamlined by Kichenassamy [23]. In regard to the
class of suitable initial data for classical solutions, Ghisi and Gobbino [14] established that
for n = 1, the set of initial data for which problem (1.2) has a local classical solution is dense
in CH(0).

10



The situation concerning the existence of a global classical solution to (1.2) with a trans-
critical initial datum for n > 2 turns out to be quite different from the case n = 1. The first
existence result of global classical solutions with uq transcritical for n > 2 was obtained by
Ghisi and Gobbino [15], where they constructed a class of global radial C?! solutions with
suitably chosen radial initial data transcritical on an annulus centered at the origin; these
solutions also have the property of finite-time extinction of supercritical region. In contrast
to the one-dimensional results [22, 17] mentioned above, their result exhibited a quite differ-
ent feature of the higher dimensional problem. On the other hand, in the radial case, Ghisi
and Gobbino [16] also proved that a global C'! solution cannot exist if the gradient of initial
datum wuy is very large at a point. Therefore, requirement of regularity for solutions (e.g.,
classical or C'1) would prevent the existence of such solutions if the initial data should be

arbitrarily given and transcritical.

1.1.4 Lipschitz solutions in dimension n =1

Let the flux A(p) be given by (1.3) with its profile o(s) as in Figures 1.1 or 1.2. When the
initial datum wug is any given smooth function (satisfying certain compatibility conditions
on 0f), it seems natural to lower the expectation on the regularity of solutions by finding
plausible weak solutions to problem (1.2). Even under the lowering of regularity have enor-
mous difficulties occurred on the existence of suitable weak solutions as we discussed above.
To our best knowledge, Zhang [44, 45] was the first to successfully prove that, for n = 1,
there are infinitely many Lipschitz solutions to (1.2) for any given non-constant smooth
initial data ug (with an extra assumption when the profile o(s) is as in Figure 1.2); his
pivotal idea was to reformulate the one-dimensional Perona-Malik or Héllig type equations

into 2 x 2 non-homogeneous partial differential inclusions and then to prove the existence

11



using a modified method of convex integration following the ideas of Kirchheim [28] and of
Miiller and Sverdk [32]. Before Zhang’s work [45], in the pioneering work of Hollig [20], it
was proved that for n = 1, there are infinitely many L?-weak solutions to (1.2) when the
profile o(s) is piecewise linear as in Figure 1.3; however, the method of Hollig cannot be

applied to generalized profiles o(s) as in Figure 1.2.

o(s)
0(81) Fmmmmmmmmmm- ‘
0(s2) [ ===/ mm- b :
0 811 312 %

Figure 1.3: Hollig’s piecewise linear profile o(s).

1.1.5 Lipschitz solutions in all dimensions

Recently, Kim and Yan [25] extended Zhang’s method [44] to study the Perona-Malik type
equations in all dimensions n for balls @ = {x € R" : |z| < R} and non-constant radi-
ally symmetric smooth initial data ug. In this case the n-dimensional equation for radial
solutions can still be reformulated as a 2 x 2 non-homogeneous partial differential inclusion.
However, for general domains and initial data, the n-dimensional problem (1.2) can only be
reformulated as an (14 n) x (n+ 1) non-homogeneous partial differential inclusion that has
some uncontrollable gradient components, making the construction of Lipschitz solutions to
this differential inclusion hopeless. In a very recent work of Kim and Yan [26], this difficulty

was overcome by developing a suitable density method, still motivated by the method of

12



differential inclusion but based on Baire’s category method. The result is that for all smooth
convez domains  C R™ and arbitrary smooth initial data ug € C2+(Q) with Dug-n = 0
on 0f, there exist infinitely many Lipschitz solutions to (1.2) with the ezact Perona-Malik
diffusion flux A(p) = ﬁg (p € R™). The proof heavily relies on the explicit formula for the
rank-one convex hull of the matrix set defined by this special function; such explicit formula

for the general flux function A(p) is impossible.

1.2 Main results

The main purpose of this dissertation is to explore a new approach for the existence of
Lipschitz solutions to non-parabolic problems (1.2), which is carried out in Chapter 2 as a
general existence theorem under some density condition, Theorem 2.2.4. However the general
existence theorem would be meaningless if such density condition cannot be realized for a
given non-monotone flux A(p). We indeed present two different classes of non-monotone
fluxes A(p) of the form (1.3) having profiles o(s) either as in Figure 1.1 or as in Figure 1.2
with which the density condition can be made true to extract Lipschitz solutions. To state

these results precisely, let us assume the following on the domain €2 and initial datum ug:

Q C R" is a bounded domain with 99 of C2te,
(1.7)

ug € C?*+(Q) is non-constant with Dug - n|gq = 0,

where a € (0, 1) is a given number.
Although we will repeat the statements of the concrete existence results in Chapter 2,

we introduce them here as a summary of the dissertation.

13



1.2.1 Perona-Malik type equations

Let the flux A(p) be of the form (1.3) with profile o(s) as in Figure 1.1. Then we have the

following.

Theorem 1.2.1 (Perona-Malik type). Let 2 and ug satisfy (1.7) with Q convex, and let

Qr =Qx(0,T) for a given T > 0. Then there exist infinitely Lipschitz solutions u to (1.2).

A detailed version of this result is available in Theorem 2.3.2 that provides the Perona-
Malik model with mathematically rigorous solutions reflecting some phenomena observed in

numerical simulations. Note that this result generalizes those of [44, 26].

1.2.2 Hollig type equations

Let the flux A(p) be of the form (1.3) with profile o(s) as in Figure 1.2. Then the result is

as follows.

Theorem 1.2.2 (Hollig type). Let Q and ug satisfy (2.10) with |Dug(zg)| € (s],55) for
some xg € Q, and let Qp = Q x (0,T) for a given T > 0. Then there ezist infinitely many

Lipschitz solutions u to (1.2).

This is to generalize the results of [20, 45] to Hollig type profiles o(s) illustrated in Figure
1.2 for all dimensions.

Precise structural assumptions on the profiles o(s) in Theorems 1.2.1 and 1.2.2 are given
in Chapter 2. These theorems are completely proved in Chapters 4 and 5, respectively.

Chapter 3 is reserved for preliminary results that may be of independent interest.

14



Chapter 2

A new approach by Baire’s category

method

The purpose of this chapter is to design a new functional approach to study problem (1.2),
which is based on a Baire’s category method. As a preliminary analytical background, we
introduce a version of the Baire category theorem on Baire-one functions. We then introduce
two important classes of non-monotone fluxes A(p) with which the approach can be applied
to (1.2). In doing so, the concrete existence results on the Perona-Malik and Hollig type
equations are stated along with the coexistence result on radial and non-radial solutions for

the Perona-Malik type when the domain ) is a ball and the initial datum wg is radial.

2.1 Baire-one functions

In this preliminary section, we introduce a version of the Baire category theorem on Baire-
one functions following the exposition of [9]. Here, let X, Y denote metric spaces with
corresponding metrics dxy, dy .

We begin with basic terminologies.
Definition 2.1.1. Let f : X — Y. We define the oscillation of f at a point xg € X by

wr(zg) = lim sup  dy(f(2), f(y)),
§—0T z,y€Bx (x(,0)

15



where By (xg,d) is the open ball in X with center zy and radius 6 > 0. The function

wy: X — [0, 00] is called the oscillation of f.

Definition 2.1.2. We say that f : X — Y is a Baire-one function if there exists a sequence

1/ };‘;1 of continuous functions from X into Y such that

lim fj(z) = f(z) inY, VrelX.

j—00

It is very easy to prove the following; we skip the proof.
Proposition 2.1.3. Let f: X — Y. Then
(i) f is continuous at a point o € X if and only if ws(xg) = 0,
(ii) Ye > 0, the set Q‘} = {z € X|wys(r) <€} is open in X.

Remark 2.1.4. Let f: X — Y. Let Cy = {x € X | f is continuous at 2} and Dy = X \ Cy.

By Proposition 2.1.3, we have

Dy ={r e X|ws(z) >0} = Ujen{r € X|wy(z) > 1/5},

which is an Fy set. Also, Cp = Njen{z € X [wy(r) < 1/j} is a G set.
Some basic definitions on metric spaces are included here.
Definition 2.1.5. (i) A set N C X is called nowhere dense in X if the closure N of N

contains no non-empty open subset of X, that is, the open set N¢ = X \ N is dense in

X.

(ii)) A set F' C X is said to be of the first category if it is the countable union of nowhere

dense subsets of X.

16



(iii) A set S C X that is not of the first category is said to be of the second category.

The Baire category theorem below is so standard that it is contained in almost all real

analysis books; see e.g., [5].

Theorem 2.1.6 (Baire Category Theorem: Version I). Let X be complete. Then any count-

able intersection of dense open subsets of X is dense in X.

The theorem below is the main part of this section whose proof is provided for reader’s

convenience.

Theorem 2.1.7 (Baire Category Theorem: Version II). Let X be complete. If f: X — Y

is a Baire-one function, then Dy is of the first category; so Cy is dense in X.

Proof. In view of Remark 2.1.4, it suffices to show that for each € > 0, the set F := {x €

X |wg(z) > 5e} is nowhere dense in X. So fix an € > 0.

oo

Since f is a Baire-one function, we can choose a sequence { f; } =1 of continuous functions

from X into Y such that
lim fj(z) = f(z) inY, VrelX.

j—00

For each v € N, define

Ey =i jzpiz € X|dy (fi(2), fj(x)) < €}

We show that F, is closed in X for each v € N. To do this, let ¢, 5 € N. Then it is sufficient

to check that =+ dy (f;(z), fj(z)) is a continuous function from X into [0, 00). Let xg € X
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and 1 > 0. Since f;, f; are continuous (at xg), there exists a § = d(n,4,j) > 0 such that

z € X, dx(vg, ) < = dy(fi(z0), fi(x)) <n/2, dy(f;j(x0), fj(z)) <n/2

= |dy (fi(z0), fj(x0)) — dy (fi(z), fj(2))| < dy (fi(zo), fi(x)) + dy (fj(2), fj(x0)) <n.

Hence the function z — dy (f;(x), fj(x)) is continuous at z.

Note £y C E9 C --- C X. We now check X = U, cnyEy. Choose any zg € X. Since
fv(zg) = f(wg) in Y as v — oo, there is an N € N such that dy (f;(%o), fj(z0)) <€ Vi,j >
N. Thus

Let I be any closed set in X with interior intI # (). Then

where each F,NI is closed in X. If each E,NI is nowhere dense in X, then ¢ = N, en(ELNI)°¢
is dense in X by Theorem 2.1.6, and so I¢ NintI # (), a contradiction. So there is an index
vp € N such that Ey, N1 is not nowhere dense in X; that is, there exists a non-empty open
set J in X with J C Ey, N 1. Thus for each z € J, we have dy (fi(z), fj(z)) < e for all
1, J > 19, and in particular,

dy (fvy(2), f(z)) <€

since fj(r) — f(z) in Y. By the continuity of fy,, for each z¢ € J, there is a neighborhood
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I(xq) of zg in the open set J such that
z € I(zg) = dY(fVO(fEO)a fVO(x)) <e

= dY(fl/()(xO)> f(z)) < dY(fl/()(xO)a fl/()(x)) + dY(fVO(x)a f(z)) < 2e

from the above inequality. Thus, for each xzy € J, we have dy (f(z), f(y)) < 4e for every
z,y € I(zg), and so wr(zg) < 4¢; so zg ¢ Fe. This implies J C FEN 1.

Putting everything together, we can conclude that for any closed set I C X with intI # (),
there is a non-empty open set J in X with J C FEN 1. So F£ N O # () for any non-empty

open set O in X. Therefore, F¢ is nowhere dense in X. O

2.2 General existence theorem

To set up a general approach for studying problem (1.2), we assume, in this section, the
domain Q has a Lipschitz boundary dQ and the initial datum wug € W1°(Qg). Without

loss of generality, we assume
/ ug(x) dx =0, (2.1)
Q
1

since otherwise we can solve (1.2) for initial datum g = ug — g with ug = 9] Jo uo de.

Our new approach is motivated by the following observation.

Proposition 2.2.1. Suppose u € W (Qqp) is such that u(x,0) = ug(x) (x € Q), there

exists a vector function v € WH2((0,T); L*(Q; R™)) with weak time derivative vy satisfying
v = A(Du) a.e. in Qp, (2.2)
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and for each ¢ € C°(Qr) and each t € [0,T),

/ v(z,t) - D{(x,t)dx = —/ u(z, t)((x,t) dz. (2.3)
Q Q

Then u is a Lipschitz solution to (1.2).

Proof. To verify (1.4), given any ¢ € C*°(Qr), let
o) = [ ulet)@ e, 1it) = [ w00 (@€ 0.T)),
Q Q
Then by (2.3), for each ¢ € C2°(0,T),

/O thgdt:— /O ! /Q Yv - DCdudt, / Yhdt = / / bv - Dédwdt.

Since v € WH2((0,T); L2(9;R™)) and vy = A(Du) a.e. in Qp, we have

/()T/Q(wDC)t'dedt:_/OT/QA(DU)"QDDCdjL’dt.

As (¥D()r = Y D¢ + 1Y D¢, combining the previous equations, we obtain

/()thgdt:/oTw(—h+/QA(Du)-DCd:r) dt

which proves that g is weakly differentiable in (0,7") with its weak derivative

g (t) = h(t) — /QA(Du(x, t)) - D¢(x,t)dx a.e. t € (0,T).

Upon integrating this, (1.4) follows for each s € [0, T. O
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Condition (2.3) means that the following condition holds in the sense of distributions in
2 for each t € [0,T7:

divo(-,t) = u(-,t), v(-,t) -nlgg =0.

If dimension n = 1, this condition together with (2.2) implies v € W1 (Qp; R1). However
for n > 2, since it is impossible to bound || Duv|| Loo(Qp) In terms of div v, the function v may
not be in W1H°(Qp; R™): this is the reason we only assume v € W12((0,T); L2(; R™)) in
Proposition 2.2.1. Nevertheless, we still try to approximate such v’s by some functions in
W (Qp: R™).

To choose suitable approximating functions, we first introduce the following definition.

Definition 2.2.2. A function ® = (u*,v*), with u* € WH®(Qp) and v* € W (Qp; R™),
is called a boundary function if it satisfies

(

u*(x,0) = up(z), x € Q,
divo*(z,t) = u*(z,t), ae. (z,t) € Qp, (2.4)
v*(-, 1) - m|yg = 0, teo,T).

\

Fix a boundary function & = (u*,v*). We denote by Wifo(QT) Wl;OO(QT;R") the

’ v

usual Dirichlet classes with boundary traces u*, v*, respectively. We also define the follow-

ing.

Definition 2.2.3. A class U C Wi;OO(QT) is called an admissible set provided that U # ()

is bounded in Wifo(QT) and that for each u € U, there exists a vector function v €

21



WJ;OO(QT; R"™) satisfying
divo =u a.e. in Qp, ||“t||LOO(QT) <r,

where r > 0 is a fixed number. For an admissible set ¢/ and each € > 0, let U be the set of

all u € U such that there exists a function v € W;;OO(QT; R"™) satisfying

diveo =u a.e. in Qrp, HWHLOO(QT) <r,

/ lvg(z,t) — A(Du(zx,t))| dedt < €|Qp|.
Qp

Our new approach is the following general existence theorem under the pivotal density

hypothesis of U, in U, which is based on the Baire category theorem in the previous section.

Theorem 2.2.4. Let U C Wi;OO(QT) be an admissible set satisfying the density property:
Ue is dense in U under the L°-norm for each € > 0. (2.5)

Then, given any ¢ € U, for each d > 0, there exists a Lipschitz solution u € Wi;OO(QT) to
(1.2) satisfying ||u — SOHLOO(QT) < 4. Furthermore, if U contains a function which is not a

Lipschitz solution to (1.2), then (1.2) itself admits infinitely many Lipschitz solutions.

Proof. For clarity, we divide the proof into several steps.

1. Let X be the closure of U in the metric space L°°(Q7). Then (X, L*°) is a non-empty
complete metric space. By assumption, each U/ is dense in X'. Moreover, since U is bounded
in Wi;OO(QT), we have X C Wi;OO(QT).

2. Let Y = LY(Qp;R™). For h > 0, define Tj,: X — Y as follows. Given any u € X,
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write u = u* +w with w € W&’OO(QT) and define
Tp(u) = Du* + D(pp, * w),

where pp,(2) = h~Np(z/h), with z = (2,t) and N = n+1, is the standard h-mollifier in RV,
and pp, * w is the usual convolution in RY with w extended to be zero outside Q7. Then, for

each h > 0, the map Tj,: (X, L) — (¥, L) is continuous, and for each u € X,

li T - D = li Dw—D =0.
h_1>I(I)1+ 1T (u) uHLl(QT) h_1>r(r)l+ lop * Dw wHLl(QT)

Therefore, the spatial gradient operator D: X — ) is the pointwise limit of a sequence
of continuous functions 7},: X — Y; hence D: X — Y is a Baire-one map. By the Baire
category theorem, Theorem 2.1.7, there exists a residual set G C X such that the operator
D is continuous at each point of G. Since X' \ G is of the first category, the set G is dense
in X. Therefore, given any ¢ € X, for each § > 0, there exists a function u € G such that
Ju = ¢loo(a) < &

3. We now prove that each v € G is a Lipschitz solution to (1.2). Let u € G be given.
By the density of U in (X, L) for each € > 0, for every j € N, there exists a function
uj € Uy such that [lu; — UHLOO(QT) < 1/j. Since the operator D: (X, L>®) — (¥, L) is
continuous at u, we have Du; — Du in LY(Q: R™). Furthermore, from the definition of

Uy, there exists a function v; € WS;OO(QT;]R”) such that for each ¢ € C*°(Qy) and each
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te0,7],

/ij(x,t) - D((z,t)dx = —/ wj(z,t)C(x,t) dz,

0
1
1)l oo gy <7 /Q |(vj)t = A(Duj)| dedt < E‘QT‘-

T

Since v;(z,0) = v*(r,0) € W (Q; R") and ||(Uj)tHLOO(QT) < r, it follows that both
sequences {v;} and {(v;)¢} are bounded in L2(Qp:R™) ~ L2((0,T); L*(Q; R™)). So we may
assume v; — v and (vj)¢ — v¢ in L2((0,7); L2(Q;R™)) for some v € W12((0,T); L>(Q; R™)),
where — denotes the weak convergence. Upon taking the limit as j — oo in (2.6), since

v e OO0, T); L3 R")) and A € CO(R™; R"), we obtain

/ v(x,t) - D{(x,t) dx = —/ u(z,t)C(z,t)dz (t €0,T)),
Q Q

ve(z,t) = A(Du(z,t)) a.e. (x,t) € Qp.

Consequently, by Proposition 2.2.1, u is a Lipschitz solution to (1.2).

4. Finally, assume U contains a function which is not a Lipschitz solution to (1.2); hence
G #U. Then G cannot be a finite set, since otherwise the L>®-closure X = G = U would be
a finite set, making U = G. Therefore, in this case, (1.2) admits infinitely many Lipschitz
solutions.

The proof is complete. 0

In fact, only when problem (1.2) is non-parabolic (that is, A(p) is non-monotone) could

Theorem 2.2.4 yield the non-uniqueness result.

Corollary 2.2.5. Assume the density property (2.5) holds for some admissible set U C

Wi;OO(QT). Suppose A: R" — R" is monotone. Then any function uw € U must be a
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Lipschitz solution to (1.2); in this case, U contains precisely one function.

Proof. We follow the proof of Theorem 2.2.4. The monotonicity of the flux A(p) implies
that there exists at most one Lipschitz solution to (1.2). Since U # ), we have G # (), where
every function in G is a Lipschitz solution to (1.2). Thus U = G = {u}, where @ is the unique

Lipschitz solution to (1.2). O

We also have the following general property for Lipschitz solutions to (1.2) when the flux

A(p) satisfies Fourier’s inequality.

Proposition 2.2.6. Let A: R" — R" satisfy Fourier’s inequality: A(p) - p > 0 for all

p € R™. Then any Lipschitz solution u to (1.2) satisfies
minug < u(x,t) < maxug in Qp. (2.7)
Q Q
Proof. Let u € W5(Qp) be any Lipschitz solution to (1.2). By (1.4), for all ¢ € C%(Qyp),

/ ug(x, t)C(x, t)dxdt = —/ A(Du) - D¢dzdt;
Q7

Qr

hence by approximation, this equality holds for all ¢ € W1°(Qy). Taking ¢ (x,t) = ¢(x, t)¥(t)

with arbitrary ¢ € W1 (Qqp) and ¢ € W1°(0, T), we deduce that

/ ug(x, t)p(x, t) doe = —/ A(Du(z,t)) - Dp(x,t) dx
Q Q

for a.e.t € (0,T) and all $ € W1°(Q7). Now taking ¢ = w1 with k = 1,2, - - -, it follows
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from the Fourier inequality of the flux A(p) that for a.e.t € (0,7,

%( /Q u%dx) = 2k /Q wd da = —2k /Q A(Du) - Dédz

= —2k(2k — 1) / u?* =2 A(Du) - Dudz < 0.
Q

From this we deduce that the L2¥(Q)-norm of u(-,t) is non-increasing on t € [0,7]; in

particular,

)l 2 g < ol ok € 0.T] k=12,

Letting k — oo, we obtain ||u(-, t)|| Loo(q) < [[uoll oe(q); hence

[ull Loo () = lluoll Loo(q)- (2.8)

Let

mp =minug, Mg = Mmaxuo,
Q Q0

and define A(p) = —A(—p). Observe that A(p) also satisfies the Fourier inequality: A(p)-p >
0 VpeR™

We show m1 < u(x,t) < mo for all (z,t) € Qp to complete the proof. We consider three
cases.

Case 1: my > 0 and |m| < mg. In this case, [lug[|poo() = mg; so by (2.8), for all
(x,t) € Qp,

u(@,t) < |lull poo(apy = lluoll oo () = ma.

To obtain the lower bound, let ug = —ug + mo +mq and @ = —u + m9g + mq. Then u is a

Lipschitz solution to (1.2) with A, ug replaced by A, g, respectively. Since mq < dg(x) <

26



ma, we have @(x,t) < mg as above; hence u(x,t) > mq for all (z,t) € Qp.

Case 2: mg > 0 and m; < —mg. Let ug = —ug and u = —u. Then @ is a Lipschitz
solution to (1.2) with A, ug replaced by A, 4, respectively. Since —mg < ig(z) < —my,
—my > 0, and | — mo| = mo < —my, it follows from Case 1 that —mg < a(x,t) < —my;
hence my < u(z,t) < mo for all (x,t) € Qp.

Case 3: mg < 0. In this case, m; < 0. If m; = 0 then mg = 0 and hence ug = 0; so,

by (2.8), u = 0. Next assume mj < 0. Let again as in Case 2 4y = —ug and @ = —u. Since
—mo < tg(z) < —mq and —mq > 0, | — mo| = —mo < —my, it follows again from Case 1
that —mo < a(z,t) < —myq; hence my < u(x,t) < mg for all (z,t) € Q. O

2.3 Existence theorems on anisotropic diffusions

In what follows, we study problem (1.2) for non-monotone diffusion fluxes A(p) of the form

Alp) = f(lpPP)p  (p € R™), (2.9)

where f:[0,00) — R is a function with profile o(s) = sf(s%) having one of the graphs
in Figure 2.1 below. Precise structural assumptions on o(s) will be given in the following
subsections.

Concerning the domain €2 and initial datum wug, we assume the following hereafter:

Q C R" is a bounded domain with 9Q of C2t¢,
(2.10)

ug € C?*+(Q) is non-constant with Dug - n|gq = 0,
where a € (0, 1) is a given number.
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Figure 2.1: Graphs of two profiles o(s). Case I: Perona-Malik type. Case II: Hollig type.

We aim to apply Theorem 2.2.4 to study the existence of Lipschitz solutions to (1.2).
The rest of the dissertation is devoted to constructing some admissible sets U/ satisfying the
density property (2.5). Of course, such constructions depend on the initial datum ug and

profile o(s) illustrated in Figure 2.1.

2.3.1 Case I: Perona-Malik type equations

In this case, we assume the following on the profile o(s) = sf(s?):

Hypothesis (PM) (See Figure 2.1.)

1) There exists a number sg > 0 such that
0

f € C([0,00)) N C3([0, 55)) N C (s, 00).
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(ii) o'(s) >0 Vs €0,s0), 0/(s) <0 Vs € (s0,00), and

Slggo o(s) =0.

We now state the existence result for the Perona-Malik type equations. In this case, for

each r € (0,0(sp)), let s—(r) € (0,sg) and s4+(r) € (sg,00) denote the unique numbers with

r=o(s+(r)).

Theorem 2.3.1 (Perona-Malik type). Let 2 and ug satisfy (2.10) with  convezx, and let

Qp =Qx(0,T) for a given T > 0. Then there exist infinitely Lipschitz solutions u to (1.2).

Depending on the size of ||Duyg|| Loo(q)» our solutions satisfy further properties as de-

scribed in the theorem below; we prove this detailed version that implies Theorem 2.3.1.

Theorem 2.3.2. In Theorem 2.3.1, let Mo = |[Dug||ro0(q). Then for each r € (0,0(Mp)),
there exists a number | =l € (0,7) such that for all 7 € (I,7) and all but at most countably
many 7 € (0,7), there exist two disjoint open sets Q%ﬂ, Q% C Qp with |Q%ﬂ U Q%\ = |Qp| and

infinitely many Lipschitz solutions u to (1.2) satisfying
u € C2+a’1+a/2(9%), ut = div(A(Du)) pointwise in Q%,

|Du(z,t)] < s—(7) Y(x,t) € Qh, Qf c 00k,
S| + [ Lyl = [9F], |Lpzl >0,

where

0 = {(z,0) |z € Q, [Dug(a)| < s— (M)},
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Sr = {(z,t) € Q7| [Dula, )] < s— (1)}, Lps = {(2,1) € O | s1.(r) < [Du(a,t)] < s4.(7)}.
Chapter 4 is devoted to the complete proof of this theorem.

Remark 2.3.3. By Hypothesis (PM), lim,_ 4+ s—(r) = 0 and lim __ 4 s4+(r) = oo. So
if 0 < r <« o(Mp) is fixed, then corresponding Lipschitz solutions u have large and small
gradient regimes L, 7 and Q%ﬂ U Sy up to measure zero that represent sharp edge and almost
constant parts of u in Qp, respectively. These properties together with (2.7) for solutions u
are somehow reflected in numerical simulations; see Figure 2.2 taken from Perona and Malik
[35]. On the other hand, it had been observed in [2, 3] that as the limits of solutions to a
class of regularized equations, infinitely many different evolutions may arise under the same
initial datum wug. Our non-uniqueness result seems to reflect this pathological behavior of

forward-backward problem (1.2).

2.3.2 Case II: Hollig type equations

Next, we assume the following on the profile o(s) = sf(s?):

Hypothesis (H) (See Figure 2.1.)

(i) There exist two numbers so > s; > 0 such that

f e CY([0,00)) N ([0, 53) U (53, 00)).

(ii) o'(s) >0 Vs € [0,51) U (s9,00), o(s1) > o(s2) >0, and A < 0/(s) < A Vs > 2s9 for
some constants A > A > 0. Let s] € (0,s1), s5 € (s2,00) denote the unique numbers

with o(s]) = o(s2), o(s5) = o(s1), respectively.
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Figure 2.2: Scale-space using anisotropic diffusion with flux A(p) = W. Three dimen-
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sional plot of the brightness of Figure 12 in [35]. (a) Original image, (b) after smoothing
with anisotropic diffusion.

We state the existence result for the Hollig type equations. In this case, for each r €
(0(s2),0(s1)), let s—(r) € (s],s1) and s4(r) € (s2,s5) denote the unique numbers with

r=o(s+(r)).

Theorem 2.3.4 (Héllig type). Let Q and ug satisfy (2.10) with |Dug(zg)| € (s7,s5) for
some xg € Q, and let Qp = Q x (0,T) for a given T > 0. Then there exist infinitely many

Lipschitz solutions u to (1.2).

Chapter 5 deals with the complete proof of this theorem.
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2.3.3 Radial and non-radial solutions

We introduce here the coexistence of radial and non-radial Lipschitz solutions to problem
(1.2) when the domain €2 is a ball and the initial datum wug is radial. For convenience, we
focus only on Case I: Perona-Malik type equations, although one could equally justify the
same for Case II: Hollig type equations. So we assume the flux A(p) fulfills Hypothesis
(PM).

Let Q = Bg(0) be the open ball in R" with center 0 and a given radius R > 0. Let the

initial datum uy € C2tel+e/ 2(Q) satisfy the compatibility condition

A(Dug) -n=0 on 0f.

We say that a function u defined in Qp [, resp.] is radial if u(z,t) = u(y,t) Vo,y €
Q, x| =ly|, vt € (0,T) [u(x) = u(y) Yo,y € Q, |z| = |y|, resp.].

We now have the following.

Theorem 2.3.5. Assume uq is radial. Then there are infinitely many radial and non-radial

Lipschitz solutions to (1.2).

The proof of this theorem is given at the end of Chapter 4.
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Chapter 3

Preliminaries

This chapter prepares some essential ingredients for the proofs of existence theorems, The-

orems 2.3.2 and 2.3.4.

3.1 Uniformly parabolic equations

We refer to the standard references [29, 30] for some notations concerning functions and
domains of class CFT with an integer £ > 0 and a number 0 < o < 1.

Assume f € C1T([0, 00)) is a function satisfying
0 < f(s)+2sf(s) <O Vs>0, (3.1)

where © > 6 > 0 are constants. This condition is equivalent to 6 < (sf(s?))’ < © for all

s € R; hence, 0 < ]E(S) < O for all s > 0. Let

Ap) = f(lpPP)p  (p € R™).

Then we have

A (p)
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and hence the uniform ellipticity condition:
n ~
0la* < > Ap;(P)aigj < Olg* Vp, ¢ €R" (3.2)
ij=1
Theorem 3.1.1. Assume (2.10) holds. Then the initial-Neumann boundary value problem

(

up = div(A(Du)) in Qp,
du/én = 0 on 09 x (0,T), (3.3)

u(x,0) =ug(z)  forx e

\

has a unique solution u € C2TOIT2(Qn) - Moreover, if f € C3([0,00)) and Q is convex,

then the gradient maximum principle holds:

[Dull Loy = [[Duoll Loo(q)- (3.4)

Proof. Let us divide the proof into three steps.

1. As problem (3.3) is uniformly parabolic by (3.2), the existence of a unique classical

24

o _
solution u in C*T% 72 (Q7) follows from the standard theory; see [30, Theorem 13.24]. To
prove the gradient maximum principle (3.4), we assume f € 03([0, o0)) and 2 is convex.
Note that, since A € C3 (R™), a standard bootstrap argument based on the regularity theory

of linear parabolic equations [29, 30] shows that the solution u has all continuous partial

derivatives Ui oy and uy, ¢ within Qp for 1 <4, j,k <n; see [24] for details.
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2. Let v = |Du|2. Then, within Q7, we compute

Av = 2Du - D(Au) + 2|D?ul?,

up = div(A(Duw)) = div(f(v)Du) = f'(v)Dv - Du+ f(v)Au,

Dug =f"(v)(Dv - Du)Dv + f'(v)(D?u) Dv

+ f'(w)(D*v)Du + f'(v)(Au)Dv + f(v)D(Au).

Putting these equations into vy = 2Dwu - Duy, we obtain
v — L(v) = B - Dv = =2f(|Du|?)|D?*ul> <0 in Qr, (3.5)
where operator £(v) and coefficient B are defined by

L(v) = f(|Dul?)Av + 2f'(|Du|?) Du - (D*v) Du,

B = 2f"(v)(Dv - Du)Du + 2f' (v)(D?*u)Du + 2f' (v)(Au) Du.
We write L(v) =377 iV with coefficients a;; = a;j(,t) given by

i = A%](DU) = f(|Du|2)5w + 2f’(|Du|2)u$iu$j (i,7=1,---,n).

Note that on Qp all eigenvalues of the matrix (a;;) lie in [0, ©].
3. We show

max o(z,t) = maxv(z,0),
(z,t)eQp LISy
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which proves (3.4). We prove this by contradiction. Suppose

M = max v(z,t) > maxv(x,0). (3.6)
(z,t)eQp LISy

Let (zg,tg) € Qp be such that v(zg,tg) = M; then tg > 0. If zg € €, then the strong
maximum principle applied to (3.5) would imply that v is constant on Qto, which yields
v(z,0) = M on €, a contradiction to (3.6). Consequently zg € 99 and thus v(xg,ty) =
M > v(z,t) for all (z,t) € Qp. We can then apply Hopf’s Lemma for parabolic equations
[36] to (3.5) to deduce Jv(zg,ty)/On > 0. However, a result of [1, Lemma 2.1] (see aslo [21,

Theorem 2]) asserts that dv/0n < 0 on 02 x [0, 7], which gives a desired contradiction. [

3.2 Modification of profile functions

The following elementary results can be proved in a similar way as in [44, 45]; we omit the

proofs (see Figures 3.1 and 3.2).

Lemma 3.2.1 (Case I: Perona-Malik type). Assume Hypothesis (PM). For every 0 < r; <

ro < 0(sg), there exists a function & € C3([0,00)) such that

=o0(s), 0<s<s_(r1),
5(s) (s) (r1)

<o(s), s-(r1) <s<s4(r2),

<5 (s) <O (0<s<00)

for some constants © > 0 > 0. With such function &, define f(s) = &( /5)/\/3 (s > 0) and

£(0) = £(0); then f € C3([0,00)) fulfills condition (3.1).

36



(80) o e ‘

() o ‘
TLpmm-ffmmm oo e N0 ()
01 s—(r1) 50 s1(r2) s4(r1) 5

Figure 3.1: Case I: Perona-Malik type profile o(s) and modified function &(s).

Lemma 3.2.2 (Case II: Cubic-like type). Assume Hypothesis (C). For every o(so) < ri <

ro < o(s1), there exists a function & € CT([0,00)) such that

for some constants © > 0 > 0. With such function &, define f(s) = &( /s)/\/5 (s > 0) and

£(0) = f(0); then f € C1T([0,00)) fulfills condition (3.1).

3.3 Right inverse of the divergence operator

To deal with linear constraint div v = u, we follow an argument of [4, Lemma 4] to construct
a right inverse R of the divergence operator: divR = Id (in the sense of distributions in

Q7). For the purpose of this dissertation, the construction of R is restricted to box domains,

37



O(81) F--mm--mm e

MLpoo A
o(s2)

Figure 3.2: Case II: Hollig type profile o(s) and modified function &(s).

by which we mean domains given by @) = Ji X Jo X - -+ X Jy, where J; = (a;,b;) C Ris a
finite open interval.
Given a box @, we define a linear operator Ry, : L°°(Q) — L°°(Q;R"™) inductively on

dimension n as follows. If n = 1, for u € L®°(Jy), we define v = Rqu by

v(zy) = /$1 u(s)ds (x1 € Jp).

1

Assume n = 2. Let u € L%(J; x Jo). Set u(z1) = ffg u(xy,s)ds for xr; € Ji. Then

u € L>®(Jy). Let © = Rqa; that is,

0(x1) :/ s)ds —/a /b2 u(s,7)drds (x1 € Jy).

Let po € C°(ag,bs) be such that 0 < pa(s) < bzc and f 2 po(s)ds = 1. Define v = Rou €

L(Jy x Jo;R?) by v = (v}, 0?) with v (21, x9) = pa(r9)d(21) and

(a1, 29) = / 2 u(er, s)ds — (o) / 2 pa(s)ds.

2 a
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Note that if u € W(J; x Jo) then @ € Who(J)); hence v = Rou € WhX(J; x Jo; R?)
and dive = v a.e.in J; x Jo. Moreover, if u € C1(J] x J3) then v is in C1(J] x Jo; R?).
Assume that we have defined the operator R,,_1. Let u € L®(Q) with Q@ = J; X
Jox - x Jyand x = (2, 1) € Q, where 2/ € Q' = J; x -+ x J,_1 and z,, € Jy. Set
a(a') = ffg u(x’,s)ds for ' € Q'. Then @ € L*°(Q’). By the assumption, o = R, _11% €

L®(Q"; R" 1) is defined. Write #(z') = (Z(2),---, 2" 1(2)), and let pp, € CX(ay, by) be

a function satisfying 0 < pp(s) < 7 € and f;g pn(s)ds = 1. Define v = Ryu € L°(Q;R™)

n—an

as follows. For = = (2/,zy,) € Q, v(z) = (v(z),v*(x), - ,v™(x)) is defined by

@ ) = pulzn) ZF () (k=1,2,-- ,n—1),

Tn

) = [t s)ds = aw) [ putspas.

n an

Then Ry : L°(Q) — L>(Q;R™) is a well-defined linear operator; moreover,

[Rutll ooy < Cn (1] + -+~ + [ TaD)llull oo (3.7)

where C, > 0 is a constant depending only on n.

As in the case n = 2, we see that if u € Wh(Q) then v = Ryu € WH™(Q;R") and
dive = u a.e.in Q. Also, if u € C1(Q) then v = Ryu is in C1(Q;R™). Moreover, if u €
Wol’OO(Q) satisfies fQ u(x)dx = 0, then one can easily show that v = Ryu € Wol’OO(Q; R™).

Let I be a finite open interval in R. We now extend the operator R, to an operator R

on L>®(Q x I) by defining, for a.e. (z,t) € Q x I,

(Ru)(z,t) = (Rpu(-,t))(x) Yue L®Q x I).
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Then R: L>(Q x I) — L°°(Q x I;R") is a bounded linear operator.

We have the following result.

Theorem 3.3.1. Let u € W&’OO(Q x 1) satisfy fQu(:ﬂ,t) der = 0 for all t € I. Then

v=TRué€ Wol’oo(Qx LR™), divo =u a.e.in Q X I, and

lvtll oo(@xry < Cn (191] + -+ - + [In)l[utll ooy (3.8)

where Q = Ji X+ --x Jy, and Cy, is the same constant as in (3.7). Moreover, if u € C1(Q x I)

then v =Ru € C1(Q x I; R").

Proof. Given u € VVO1 (Q x I), let v = Ru. We easily verify that v is Lipschitz continuous
in ¢ and hence v; exists. It also follows that vy = R(uy). Clearly, if fQ u(x,t)dr = 0 then
v(x,t) = 0 whenever t € 91 or x € Q). This proves v € Wol’oo(Q x I;R™) and the estimate
(3.8) follows from (3.7). Finally, from the definition of Ru, we see that if u € C1(Q x I)

then v = Ru € CL(Q x I; R™). O
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Chapter 4

Perona-Malik type equations

In this chapter, we completely prove the existence result on Case I: Perona-Malik type
equations, that is, Theorem 2.3.2. In order to so, we assume Hypothesis (PM) throughout

this chapter.

4.1 Geometry of relevant matrix set

We begin this section by introducing an approach for solving problem (1.2) that turns out
to be unsuccessful; however, it provides us with the main idea of solving (1.2) in the context
of our method, Theorem 2.2.4. Then we embark on an extensive analysis of partial rank-one

structure of some relevant matrix set that eventually yields Theorem 4.1.6.

4.1.1 Non-homogeneous differential inclusion and its limitation

Let ug € WHo°(Q). Assume ® = (u*,v*) € Wh(Qp; R1T) is a boundary function, that

is, it satisfies
.

u*(x,0) = ug(x), x €,
divo*(z,t) = u*(x,t), ae. (z,t) € Qp,

v*(-,t) - nlgn =0, t €[0,7].

\
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If a function w = (u,v) € WH(Qp; R1T") solves the Dirichlet problem of non-homogeneous

differential inclusion

Vw(z,t) € K(u(z,t)), ae. (z,t) € Qp,
(4.1)

w(z,t) = &(x,t), (x,t) € Oy,

then it can be easily seen that w is a Lipschitz solution to (1.2). Here, Vw denotes the
space-time Jacobian matrix of w that lies in MT7)*(+1) " the space of (1 +n) x (n+ 1)
real matrices, and for each [ € R, K(1) is the subset of M) *("+1) defined by

P C
K(l) = pER", ceR, BEMY™ trB=1}. (4.2)

B Alp)

The Dirichlet problem (4.1) falls into the framework of general non-homogeneous partial
differential inclusions that have been studied by Dacorogna and Marcellini [10] using Baire’s
category method and by Miiller and Sychev [34] using the convex integration method fol-
lowing the works [18, 32, 33]; see also [28]. Recently, the methods of differential inclusion
have been successfully applied to other important problems in partial differential equations
8, 11, 31, 38, 41].

We point out that the existence result of [34] is not applicable to problem (4.1) even
in dimension n = 1, as has already been noticed in [44, 45]. A key condition in the main
existence theorem of [34], when applied to (4.1), would require that the boundary function
® satisfy

VO(x,t) € Ulu*(z,t)) UK (u*(z,t)) ae. (x,t) € Qp,

where U(s) ¢ MI+t)x(+1) (4 ¢ R) are bounded sets that are reducible to K(s) in the
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sense that, for every sy € R, & € U(sg), € > 0, and bounded Lipschitz domain G ¢ R"*1,
there exist a piecewise affine function w € W& ’OO(G;R1+”) and a 0 > 0 satisfying, for

a.e.z = (z,t) € G,

&+ Vw(z) € ﬂ U(s), /Gdist(&) + Vuw(z), K(sg)) dz < €|G].
|s—sq|<0

Po <o
The second condition would imply tr By = sg for each £y = € U(sg) and sq € R;

By fo
but then Nj,_ sol<sU (s) = 0, which makes the first condition impossible.

However, certain structures of set K (0) turn out to be still quite useful, especially when it
comes to the relaxation of homogeneous differential inclusion Vw(z) € K(0) with z = (z, )
and w = (p,1). We investigate these structures and establish such relaxation result through

the rest of this section and Section 4.2.

4.1.2 Geometry of the matrix set Fj

Fix any two numbers 0 < 11 < 72 < 0(sq), and let Fy = Fy; ro(0) be the subset of K(0)

defined by

p e p € R, |p| € (s—(r1),5-(r2)) U (s+(r2), 5+(r1)),
Fy=

B A(p)] ¢€R, BEM™™ trB =0

We decompose the set F(y into two disjoint subsets as follows:

p c p €R", |p| € (s-(r1),5-(r2)),

B A(p) ceR, BeM"™ " trB=0
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p c p € R", |p| € (s4(r2), 5+(11)),
Fp=

B A(p) ceR, BeM"™ " trB=0

In order to extract more detailed information on solutions as stated in Theorem 2.3.2,
we focus on the homogeneous differential inclusion Vw(z) € Fy; thus we first scrutinize the

rank-one structure of the set Fjy. We introduce the following:

Definition 4.1.1. For a given set E ¢ M(T0)X(+1) ' [(E) is defined to be the set of all
matrices & € MIH)>(+1) that are not in E but are representable by & = A&p + (1= X)&

for some A\ € (0,1) and &1, & € E with rank(§; — &) = 1, or equivalently,
LE)={( ¢ E|{+trn € E for some t— < 0 < t4 and rankn = 1}.

For the matrix set Iy, we define

R(Fy) = U (6 &4),

€4 €Fy rank(é; ¢ )=1

where (£_,&4) is the open line segment in M+ x(+1) S6ining ¢4 .

From a careful analysis, one can actually deduce

L(Fp) = R(Fp) U L(Fy). (4.3)

Here, due to the backward nature of profile o(s) on (s4(r2), s4(r1)), the set L(F) is non-
empty, and its structural analysis seems quite difficult to be accomplished by the presence
of some degeneracy. Fortunately, it turns to be harmless and even better to only stick to the

analysis of the set R(F() towards the existence result, Theorem 2.3.2.
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We perform the step-by-step analysis of the set R(Fj).
1. Alternate expression for R(F;). We derive an equivalent condition for the mem-

bership of a matrix in R(Fp).

Lemma 4.1.2. Let £ € MUI+)X(n+1) - Tpep ¢ € R(Fy) if and only if there exist numbers

t— <0 <ty and vectors q, v € R"™ with |q| =1, v-q = 0 such that for each b € R\ {0}, if

q b
n= , then & +tyn € Fy.
F4®7 7
p c
Proof. Assume & = € R(Fp). By definition, £ +¢+7 € F4, where t— < 0 < t4 and
B p

7] is a rank-one matrix given by

a ~ aq ab -
,oa®+ o £0, B+ #0,

A}
Il
&
Yo
2
S
N—
Il

o a®q ba

for some a, beR and a, ¢ € R"; here a ® ¢ denotes the rank-one or zero matrix (oz,'Qj) in

M"*"  Condition £ +t1+n € Fy with t— < 0 < t4 is equivalent to the following:

trB=0, a-gq=0, A(p+ttaq) = B+ tiba,
(4.4)

p+traql € (s+(r2),54(r1)),  [p+t-aq| € (s—(r1),s-(r2))-

Therefore, ag # 0. Upon rescaling 7 and ¢+, we can assume a = 1 and |¢| = 1; namely,

q b
. lgl=1, a-q=0.

At}
I

a®q ba
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We now let v = ba. Let b e R\ {0} and

From (4.4), it follows that £ +t4+n € Fi.

The converse directly follows from the definition of R(Fp). O

2. Diagonal components of matrices in R(F{)). The following gives a description for

the diagonal components of matrices in R(Fy).

Lemma 4.1.3.

p c
R(Fy) = cER, BEM™" trB=0, (p,8) €S (4.5)

B f

for some set S = STLTQ C R7,

Proof. Let (¢, B), (¢, B') € R x M"*" be such that tr B = tr B’ = 0, and define

p
S(C,B) =4 (p,B) € R™t" ‘ € R(Fy) ¢,
B B
+ p C/
S(c’,B’) =< (p,B) e R" n‘ € R(Fp)
B B
p c
It is sufficient to show that S, gy = 5(6/ B = S. Let (p,p) € S(c,p), thatis, § = €
B p

R(Fpy). Then &+ := £ +tyn € F4 for some t— < 0 < t4 and rankn = 1. Observe that
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§ = A&t + (1= N)é- with A = 7—=5— € (0,1) and that

. N 0 ¢ -
where ¢ = ¢ —¢, B=B' — B, and £ = &4 + . Since &4+ € F4 and tr B = 0, we

0
have £+ € Fu, and so & € R(Fp). This implies (p, 8) € S(c’,B’)? hence S(C,B) C S(ClvBl).

o

Likewise, S(CI,B/) C 8(073); that iS, S(C,B) = S(CI,B/)’ O

3. Selection of approximate collinear rank-one connections for R([F(). We begin
with a 2-dimensional description for the rank-one connections of diagonal components of

matrices in R(Fp) in a general form.

Lemma 4.1.4. For all positive numbers a, b, c with b > a, there exists a continuous function
h(a,b,c,-,-, ) Igc=1[0,a) x [0,00) x [0,c) = [0, 00)

with h(a,b,c,0,0,0) = 0 satisfying the following:

Let 61,09 and n be any positive numbers with
0<a—01<a<b<b+dy, O0<c—n<ec,

and let Ry € [a — 61,a], Ry € [b,b+ 02, and Ry, Ry € [c —n,c|. Suppose § € [—7/2,7/2]
and

(Rl(cos(g +6), sin(g +0)) — ég(cos(g —0), sin(g — 9)))
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-(Rl(cos(g +0), sin(g +6)) — RQ(cos(g —0), sin(g — 9))) =0.

Then —5 < 0 < 3, R1 > Ry, and
m LT m . T
max{}((),a) — Rl(cos(§ + 9),s1n(§ + 9)) }, }(O,b) — RQ(COS(§ — 9),s1n(§ — 9))}

‘(0, c) — Rl(cos(g +0), sin(g + 9)) },

. T . T

(0,¢) — Rg(cos(E —0), sm(§ —0)) }}
S h(a7 b7 C7 517 527 n)'

Proof. By assumption,

0 = (Ry(—sinb, cos0) — Ry(sinb, cosh)) - (Ry(—sinb,cos ) — Ry(sin b, cos )

= (—(Ry + Ry)sinf, (R — Ry)cosh) - (—(Ry 4+ Ry)sinb, (R; — Ry) cos )
= (R1 4 Ro)(Ry + Ry)sin? 0 + (R — Ry)(Ry — Ry) cos® 0,

that is,

(Ry — R1)(Ry — Ry)cos? 0 = (Ry 4+ Ro)(Ry + Ry) sin’6;

hence, 8 # +%, Ry > R9, and

0— +tap-! (\/(32 — Rl)(f:ﬁ - 1‘?2)) '
(R1+ Rg)(R1 + Rg)

So
_ b—a+ 01+ 02)n
0] < tan™! ( =: g(a,b, ¢, d1,09,1).
0] < tan (\/2(a+b—51)(c—n) g(a,b,c,01,02,1m)
Note that the function g(a,b,c,-,-,-) : Ioc — [0,7/2) is well-defined and continuous and
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that g(a,b,c, 61,02,n) =0 for all (01,092,7) € Iy, with n = 0.
Observe now that

1(0,a) — Rl(cos(g +6), sin(g +6))]

< max{|(0,a) — a(—sinf, cos )|, |(0,a) — (a — d1)(—sin b, cosb)|}

= max{\/a2 sin? 0 + a2(1 — cos 6)2, \/(a —61)2sin26 + (a — (a — 1) 0089)2}

= max {\/5&\/1 — cos b, \/(a —01)2 +a? — 2a(a — &) cos@}

< max {\/5@\/1 - cos(g(a, b7 ¢, 517 527 7]))7

V@ =602 + a2 — 2a(a — 61) coslg(a, b, 61,62,m))}
=: hi(a,b, ¢, 61,02, n),
(0.0) = Ra(cos(5 — 6)sin(5 — 0))|

< max{|[(0,b) — b(sin 0, cos #)|, |(0,b) — (b + d2)(sind, cos )|}

= max{\/62 sin? 6 4 b2(1 — cos 6)2, \/(b +02)%sin? 0 + (b — (b + d2) cos 9)2}

= max {\/5()\/1 — cos b, \/(b 4+ 89)2 4 b2 — 2b(b + 69) cos@}

S max {\/ib\/]. — COS(g(CL, b, C, 517 527 77))7

\/(b + 02)% + b2 — 2b(b + 02) cos(g(a, b, ¢, b1, 52,77))}
=: ho(a,b,c,01,062,7),

(0, ¢) = Ry (cos(5 +6). sin(5 +6))
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< max {\/ic\/l — cos(g(a, b, c,01, 52777))7

Ve =2+ = 2e(c — ) cos(gla,b, ¢, 61,6,1))}
=: h3(a,b,c, 61,02, n),

™ . s
|(O>C) - RQ(COS(§ - 9)7SIH(§ - 9))| < h’i,?)(a? b> ¢, 51752an)‘

Define h(a,b,c,d1,09,m) = maxi<;j<3zhj(a,b,c,61,02,7n); then it is trivial to see that the

function h(a,b,c,,-,) : I, — [0,00) is well-defined and satisfies the desired properties. [

We now apply the previous lemma to choose approximate collinear rank-one connections

for the diagonal components of matrices in R(Fy).

Theorem 4.1.5. Let p+ € R™ satisfy

s—(r1) < |p—| < s—(r2) < s4(re) < [p+| < s4(r1)

and (A(py) — A(p_)) - (p+ —p—) = 0. Then there exists a vector (Y € S"1 such that, with

Pl = s4(r9)CY, A(pYL) = ro¢”, we have

max{|p? — p_|, [p} — p+|. [APL) — A-)], |[AGY) — A(p4)]}

< h(s—(r2),s+(r9),r2,5—(r2) — s—(r1),54(r1) — s+(ra),r9 — 11)
where S is the unit sphere in R™ and h is the function in Lemma 4.1.4.

Proof. Let Y9 denote the 2-dimensional linear subspace of R"™ spanned by the two vectors

p+. (In the case that p4 are collinear, we choose o to be any 2-dimensional space containing
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p+.) Set

p__|_+p__
0= ‘Ip+| Ip— I‘ sy,
|p+| Ip |

Since vectors p+, A(p+) and ¢ 0 all lie in X9, we can recast the problem into the setting of the
previous lemma via one of the two linear isomorphisms of Y9 onto R? with correspondence
¢¥ < (0,1) € R2. Then the result follows, where a = s_(r9), b = s4(r3), ¢ = r9, 01 =

s-(rg) — s—(r1), 0 = s4(r1) — s4(ra), n = ro —r1, Ry = [p—|, Ra = |p+|, R1 = o(|p—|),
Ry = o(|p+]), and 6 € [0, 7/2] is the half of the angle between p4 and p— in applying Lemma

4.1.4. U

4. Final characterization of R(F(;). We are now ready to establish the result concern-

ing essential structures of R(Fp).

Theorem 4.1.6. Let 0 < r9 < o(sg). Then there exists a number ly = I, € (0,72) such

that for any ly <1y <rg, the set § = Sy ry C R in (4.5) satisfies the following:
(i) sup(, g)es [Pl < s+(r1) and sup, gyes |B] < 12 hence S is bounded.
(ii) S is open.

(iii) For each (pgy,Bo) € S, there exist an open set V CC S containing (po, By) and C*

functions ¢ :V —S" 1 AV SRtV s Ruwithy-q=0andt_ <0<ty on

— p c _
V such that for every £ = € R(Fp) = R(Fry r9(0)) with (p,8) € V, we have
B B
§+ten € Fu,
q(p, B) b -
where t+ =t+(p,B), n = , and b # 0 is arbitrary.

Ly(p,8)®q(p,8) +(p,B)
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Proof. Fix any 0 < r9 < o(sg). For the moment, we let 1 be any number in (0,73) and
prove (i). Then we choose later a lower bound lg = I, € (0,72) of r1 for the validity of (ii)
and (iii) above.

We now divide the proof into several steps.

p 0
1. To show that (i) holds, choose any (p,) € S. By Lemma 4.1.3, £ := €

O p
R(Fy) = R(Fy{ r9(0)), where O is the n X n zero matrix. By the definition of R(Fp), there
P+ C+

exist two matrices £+ = € F4 and a number 0 < A < 1 such that

By U(‘piD%
€= Ay + (1= N)E-. So

Pl = 1Ap+ + (1 = Mp-| < s4(r1),

18] = Aa<|p+|>|§—j|+<1—A>a<|p_|>§—:| <y

hence, sup(,, g)es [P| < 5+(r1), sup(, g)es |B] < r2, and S is bounded. So (i) is proved.
2. We now turn to the remaining assertions that for all r{ < ro sufficiently close to r9,

S = Sy, ry satisfies (ii) and (iii). But in this step, we still assume 71 is any fixed number in

(0,72).
. po 0 .
Let (pg,By) € S. Since & = € R(Fp), it follows from Lemma 4.1.2 that
O fo
there exist numbers sg < 0 < ¢y and vectors qg, 79 € R™ with |gg| = 1, 79 - go = 0 such that
q0 b ‘

&o + sono € F- and &y + tong € F4, where ng = and b # 0 is any fixed
1
790 @0 70

number. Let q6 = toqo # 0, 76 = tp70, and 86 = s0/tg < 0; then

a0 =0, s—(r1) <|po+ spap| < s—(ra),

52



s+(r2) < |po + qo| < s+(r1),

pO+S6Q6 I, / p0+q6 /
o(|po + soaol) 7 = Bo + s070: o(lpo+ @) ——F =Bo+1p-  (4.6)
00 po + spyah)] 0 " lpo + f) 0
Observe also
to — 50 > [(po + toqo)| — [(po + s0q0)| > s+(r2) — s—(r2). (4.7)
Next, consider the function F' defined by
U 5.8) = (op+ S5~ = oy
y 4y oy |p—|—8’q/| )
p+d
a(lp+d) ——B—7"9¢) e RV
lp+ ']

for all v, ¢/, p, 3 € R® and s’ € R with s_(r1) < |p + §'¢| < s—(r9), s+(r2) < |p +
¢'| < s+(r1). Then F is C! in the described open subset of R?T7 14747 and the above

observation gives

F (Y0, 46, 803 Po, Bo) = 0.

Suppose for the moment that the Jacobian matrix D(”/ J S/)F is invertible at the point
(76, qé, 56; 10, Bo)- Then the Implicit Function Theorem implies the following: There exist

a bounded domain V = f/( ) C R™" containing (pg, fg) and C! functions ¢, ¥ € R™,

050
5 € R of (p,B) € V such that

Y(po, Bo) = 0. d(po, Bo) = 4o, 3(po, Bo) = s

and that

$(p,B) <0, s—(r1) <lp+3(p,B)alp, B)| < s-(r2),
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s+(r2) < |p+q(p, B)| < s+(r1),

F(3(p, 8),d(p, B), 3(p, B);p, 3) =0 V(p,B) € V.

Define
o q - 3 -
Y= 4= 75, t_:s\q|, t+—|Q| n V;
I |q]
then
s—(r1) <|p+t_ql <s_(r2),
s4+(r2) < |p+t4q| < s4+(r1),
+ 14+
P + trq|

where (p, ) € V, v =(p. B), ¢ = q(p, B), and t+ = t+(p, B).

Let (p,8) € V, B € M " trB =0, byc € R, b # 0, ¢ = q(p,B), v = 7(p, B),

p c qg b
t+ =t+(p,f), £ = ,and n = . Then &4 := £ +tan € Fr. By the

B B Iv®q
definition of R(Fp), £ € ({—,&+) C R(Fp). By Lemma 4.1.3, we thus have (p, 5) € S; hence

V C 8. Choosing any open set V CC V with (pg, 8g) € V, the assertions (ii) and (iii) hold
with § = U(Povﬁo)esv@oﬂo) open.
3. In this step, we continue Step 2 to deduce an equivalent condition for the invertibility

of the Jacobian matrix D, , .~ F at (7)), ¢h, sh: po, Bo). By direct computation,
(v'.d"s") 074070

/ _

D(V’,QI,S/)F = —In Ml 0 c M(n+n+1)x(n+n+1)

Y
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where I, is the n x n identity matrix,

allp+s'q +s'q +5q o(lp+s'q
MS/ — S/(O'/(|p+8/q/|) o (|p : C./I |)) p /q/ p /q/ —|—S/ (|p /ql |) s
lp+s'd| "lp+ | p+ Ip+ 5'¢|
olp+s'd)y prsd  nptsd  olptsdl)
lp+s'd| p+ 5 lp+ s'¢| Ip+ s'¢|

wy = (o' (lp+'q) -

For notational simplicity, we write (v/,¢’,s";p,8) = (76,(]6,36;]90,50). Applying suitable

elementary row operations, where s’ < 0,

1 1 —
D(yl,q/,s/)F — O My — ?Ms/ —gws,
/ /
q _
0 v+ S—}(Msl)l + et qg—?(MS/)n +q W
—s'I, MS/ w;
— O S,Ml — MS, —(.U; 9

0 Y+ g (M) ¢,

S
where O is the n X n zero matrix, and (MS/)Z is the ith row of M. Since |¢'| = ty, ' -¢' =0,
and s_(r1) < |p+ s'¢/| < s—(rq), we have

0(Ip+s’6/|))(p+s’q’ ) o(lp+'q)
lp+s'qd| lp+ 5] p+s'q| O

¢ wy = (lp+5d]) -

(\p+s’q’|))

2 29 1 11 217
=t5(cos“ 0 a’'(|p+ s + (1 —cos” @ > 0,
o (Ip+s'q']) + ( ) T ]

where 6/ € [0, 7] is the angle between p + s'¢’ and ¢/. Observe here that the forward part of

o in the definition of F_ becomes essential to guarantee that o' (|p + s'¢/|) > 0. After some
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elementary column operations to the last matrix from the above row operations, we obtain

_SIIn Ms/ - Ns/ w;
D(”Ylvqlvs')F - 0] 3/M1 - MS/ + NS/ —w; )

0 0 q w5

S

I g (M)
j—“w;. So D(V/ / /)F is invertible if and

where the jth column of Ny € M"*" is Js

=
)
q o

only if the n x n matrix Mj — LM, + LN, is invertible. We compute
o Mgt T 7V

1 1

ollp+d),p+d _ p+d
My~ S0y SN = o+ ) - )

p+d| "lp+d| p+d

o(lp+d))
P
Ip+ ¢

d@+§M%p+§d p+s'qd

In— (' (]p+5d)) —
n ( (\p q D |p+s’q’\ |p+s’q’| ‘p_i_slql‘

o(lp+s'd|)
T T Iy + T
Ip+ s'¢| q - w;

S

- /
Wy ® (7

o(lp+5d)),, p+5d p+sqd  o(lp+5d))
+o'(lp+5'q']) — ) 4 ) )
lp+s'q'| "p+s'q| Ip+ s'¢| lp+ s'¢|

p+qd _ p+d
p+d|  |p+d|

= (a1 — ay)ln + (b1 —a1)

p+s'qd _ p+sd |
p+s'd| I+ e

—(by —agy)

and set (with an assumption a1 # ay)

1 1 1 bh—ar p+q + ¢
B= e (My = My + 5 Ny) = Iy + i
ap —ay S S a1—a5/|p+q\ p+ |

_bs/—as/ p+s'q p+s'q 1 w_,®w4;
a1 —ay [p+5'qd|  |p+s'd| (al—as,)q/.w; $ $
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!/
alp+s'q])

where a_, =
s T Tlptsld] 0 s

1 =o' (|p+ s'q|); then D( / /)F is invertible if and only if the

Vs
matrix B € M"™*" is invertible.

4. To close the argument in Step 2 and thus to finish the proof, we choose a suitable
lo = lry € (0,72), depending on 9, in such a way that for any 71 € (lg,72), the matrix B,

determined through Steps 2 and 3 for any given (pg, 5y) € S = Spy ry, is invertible.

First, by Hypothesis (PM), 7o € (0,72) can be chosen close enough to ro so that

T 7O e s (o). s ()], VE € [s4(r2). 54 (7).

Then define a real-valued continuous function (to express the determinant of the matrix B

from Step 3)

o) =Ty DT,
DET(u,v,q,7) = det ([" * U?IU|I) _ 0(||v||) Jul ? [u] ff?|u||) _ o?l?fl) [o] = Jo|
! ooy v v
- o(|u o(lv o(lv ollv ((U/(|U|)——)(—q)—
(T = T (o) = T (- 02 + T ol el el
+70y oy e (ool - T g L T o))
o ol Rl PRl o

on the compact set M of points (u,v,q,7) € R” x R" x S~ x R" with

[ul € [s4(ro), s+(F2)], [v| € [s—(F2),s-(ro)], || < 1.
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Set k = 54 (r9) and [ = s_(r9); then for each ¢ € "1,

o' (k) — TP+ 7P
o(k) _ o)
k l

|+

DET(kq, lq,q,0) = det (In + q® q) # 0,

—
o~
~—

since o/(k) # 0 and hence the fraction in front of ¢ ® ¢ is different from —1. So

d:= min |DET(kq,lq,q,0)| > 0.

Next, choose a number § > 0 such that for all (u,v,q,7), (@,0,¢,7) € M with |u —

1~L|’ ‘U_rmv |q_(ﬂ7 h/_;ﬂ < 5, we have

IDET(u, v, ¢,7) — DET(&, 8,4, 7)| < d/2. (48)

Let Iy € (T9,79) be sufficiently close to ry so that for all r1 € (l9,12),

h(s—(r2), 5+ (r2),12,5-(r2) — 5—(r1), 54+(r1) — s4(r2), 2 — 1) < 7,

where h is the function in Theorem 4.1.5, and let

7 :=min{d, (s4(rg) — s—(r2))/4}.

Now, fix any 71 € (l2,792), and let B be the n x n matrix determined through Steps 2 and
3 in terms of any given (pg, By) € S = Spy,ry- Let py = pg + toqo and p— = pg + spqo from

Step 2; then p+ and A(p+) fulfill the conditions in Theorem 4.1.5. So this theorem implies
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that there exists a vector (¥ € "1 such that

max{[p? —p_|, [p} — p+|, [APY) — A(p-)], |[AGY) — Alp+)|} < T,

where pQL =£k¢Y, p2 =1¢Y, and A(p(j)[) = 190, Using (4.6) and (4.7),

I+ — k¢l <4, [p- - 10 <4,

g0 — 0 = [BEZP= _ 0 < [(p+ —p—) — (k= DO+ [(k = 1) — (to — s0)]
0 to — S0 - to — S0
0 _ 00 _1n _
e S et | I 5
to — so to — S0
= A A A — G+ AGR) Al
0 to — 50 B to — so '

Since det(B) = DET(p+, p—, qo,Y0) and |DET(E¢,1¢0, ¢V, 0)| > d, it follows from (4.8) that
| det(B)| > d/2 > 0.

The proof is now complete. O

4.2 Relaxation of Vw(z) € Fj

The following result is important for the convex integration with linear constraint; the func-
tion ¢ determined here plays a similar role as the tile function g used in [44, 45]. For a more

general case, see [37, Lemma 2.1].
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Lemma 4.2.1. Let A1, Ao > 0 and 91 = —A\n, 12 = Aon with

q b
n= , lgl=1,v-¢=0,b#0.

IY®q v
Let G ¢ R be a bounded domain. Then for each ¢ > 0, there exists a function w =
(¢,1)) € C(R™H; RIF7) with supp(w) CC G that satisfies the following properties:
(a) divy =0 inG,
(b)) {z€G|Vw(z) ¢ {m, m}} <e
(c) dist(Vw(z),[n1,m2]) <€ forall z € G,
(d) Nwllpoo(ey <e

(¢) Jgn(z,t)de =0 for allt € R.
Proof. The proof follows a simplified version of [37, Lemma 2.1].

1. We define a map P: CHR"H1) — CORPHL RIF1) by setting P(h) = (u,v), where,
for h(x,t) € CHR™ 1),

u(e,t) =g Dhz,t), v(r,1) = 3(7® g —q @) Dh(z. 1)

We easily see that P(h) = (u,v) € CX(R" ;R supp(P(h)) C supp(h), dive = 0,
and [pn u(z,t)dz =0 for all t € R, for all h € CX(R™1). For h(z,t) = f(q-x + bt) with
f € C®R), w= (u,v) = P(h) is given by u(z,t) = f'(q-z+bt) and v(z,t) = f'(q-z+bt)},

and hence Vw(x,t) = f"(q- x + bt)n. We also note that P(gh) = gP(h) + hP(g) and hence

VP(gh) = gVP(h) + hVP(9) + B(Vg,Vh) Yg, he CCR", (4.9)
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where B(Vg, Vh) is a bilinear map of Vg and Vh; so |B(Vh,Vg)| < C|Vh||Vg| for some
constant C' > 0.

2. Let G¢ CC G be a smooth sub-domain such that |G\ G¢| < €/2, and let pe € C°(G)
be a cut-off function satisfying 0 < p < 1in G, pe = 1 on G¢. As G is bounded, G C
{(z,t) | k < q-2x+ bt <} for some numbers k < [. For each 7 > 0, we can find a function

fr € C°(k, 1) satistying

M < S <X, [{s € (B, D) [ f(s) ¢ {=A1, Ml <7 [l fellpoe + I1f7ll oo < 7.

3. Define w = (¢, ¢) = P(pe(x, t)hr (2, 1)), where hr(x,t) = fr(¢-x+0bt). Then ||hr 1 <
Clfrllpr < Cryw € CR(R™ 1L RM™) supp(w) C supp(pe) CC G, and (a) and (e) are
satisfied. Note that

w| < pel|P(hr)| + [hr||P(pe)| < Cer,

where C¢ > 0 is a constant depending on ||p|| cl(c) So we can choose a 71 > 0 so small

that (d) is satisfied for all 0 < 7 < 77. Note also that

{ € G| Vw(z) ¢ {m,m}} S (G\G)U{z € Ge| f7(q-x+bt) & {-A1, Ao}}.

Since [{z € Ge| f7(q- 2 +bt) & {=A1, A} < Nl|{s € (k,1) | f7(s) ¢ {—A1, Ao}}| for some

constant N > 0 depending only on set GG, there exists a 79 > 0 such that

{z € G| Ve(z) ¢ {m.m}}| < 5+ Nr <«
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for all 0 < 7 < 9. Therefore, (b) is satisfied. Finally, note that
peVP(hr(x,t)) = pefr(q -z +bt)n € [, 2] in G
and, by (4.9), for all z = (z,t) € G,
[Vw(2) = peVP(hr (@, 1)) < [hr|[VP(pe) + IB(Vhr, Vpe)| < Cir < e

for all 0 < 7 < 73, where C! > 0 is a constant depending on || p¢|| C2(G) and 73 > 0 is another

constant. Hence (c) is satisfied. Taking 0 < 7 < min{r{, 79, 73}, the proof is complete. O

We now state the relaxation theorem for homogeneous differential inclusion Vw(z) €
Fy in a form that is more suitable for later use; we restrict the inclusion to only (p, )

components.

Theorem 4.2.2. Let 0 <1y < 0(sq), and let lo = lry € (0,72) be some number determined
by Theorem 4.1.6. Let ly < ry < ro, and let K be a compact subset of S = Sp ry. Let
Q x I be a box in R Then given any € > 0, there exists a & > 0 such that for each box
QxIcQxI, point (p, B) € K, and number p > 0 sufficiently small, there exists a function
w = (p, V) € CX(Q x I; R1T") satisfying the following properties:

(a) divyp=01inQ x I,

(b) (V' + Dyp(2), B’ +41(2)) €S forall z € Q x I and |(p', B') — (p, B)| <,

(¢) Nwlpoogxry < e

(d)  Jox1|B+vt(z) = Alp + Dp(2))|dz < €@ x I/1Q x 1,

(¢) Joelz,t)dr =0 forallt €,

(f) et oogxry < p-
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Proof. By Theorem 4.1.6, there exist finitely many open balls By, --- , By CC S covering K

and C! functions ¢; : B; — S"~1, ~; : B; — R", tiv:Bi >R (1<i<N)with~;-¢ =0

_ b c _
and t; _ < 0 < t; 4 on B; such that for each { = € R(Fp) with (p,B) € B;, we
B p
have
§+ti4m € Fy,
4i(p; ) b o
where t; 4+ =t; +(p, B), 1 = , and b # 0 is arbitrary.
3. B) @ ¢i(p. B) i, B)
p 0 _
Let 1 <7 < N. We write & = &(p,8) = € R(Fy) for (p,B) € B; C S, where O
O B

is the n x n zero matrix. We omit the dependence on (p, 3) € B; in the following whenever

it is clear from the context. Given any p > 0, we choose a constant b; with

0 < b; < min ———.
B; ti4+ —ti—

With this choice of b = b;, let 7; be defined on B; as above. Then

Pit  Ci+
Si+ = =&+t +n; € Fy,

B+ Bi+

_t _ _
G=Nbip+(1=X)&G -, \=—""-€(0,1) on B,
tigy —t;_
By the definition of R(Fy), on B;, both & _ = 7& 4 +(1—7)& _ and . =00-1)& 4 +7& -

belong to R(Fp) for all 7 € (0,1). Let 0 < 7 < minj<j<yming min{A;,1 — A\;} < %
T J

be a small number to be selected later. Let )\2 = i\l_;: on B;. Then )\2 € (0,1), & =

AL Z-T,+ +(1- A;)@T’_ on B;. Moreover, on B;, §iT7+ - 527,_ = (1-27)(&§ 4+ — & —) is rank-one,
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[giT,—>€iT,+] C (5i,—>€i,+) C R(Fp), and
or <& =&l =16 =&l = 7l& 4+ — & -] = T(ti g — ti ) |mil < C,

where C' = max|<j<p maxl;j(tj,+ —t;,)|n;l > minj<j<n mingj (tj+ —tj—)Injl = c>0.
By continuity, H; = U(p,ﬂ)el?j,lgjgN[g,—(p’ ﬁ),§;+(p, B)] is a compact subset of R(Fp),

where R(F)) is open in the space

p c
Y = trB=0%,

B p
by Lemma 4.1.3 and Theorem 4.1.6. So dr = dist(Hr, 0|y, R(Fp)) > 0, where 9|y, is the
relative boundary in Y.
Let n1 = —Xi1mi = —A,(1=27)(t; +—ti )i, mi2 = Nioni = (1=A)(1=27)(t; 4 —t; —)n;
on B;, where Ni1=7(ti4)+ (1 =7)(=t; =) >0, N\jo=(1—7)t; 4 +7t; _ > 0on B;, and

7 > 0 is so small that

i minA; ;>0 (k=1,2).
EE ( )

Applying Lemma 4.2.1 to matrices 7; 1 = 1; 1(p, 8), ni.2 = 1i 2(p, B) for a fixed (p, 8) € B;

and a given box G = ) x I, we obtain that for each p > 0, there exist a function w =
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(¢, 1) € C°(Q x I; R™™) and an open set G, CC @ x I satisfying the following conditions:

p

(1) divyy=0in @ x I,
(2) (@ xI)\Gpl <p; &—i—Vw(z)E{ﬁZ_, Z+}f0rallz€Gp,

(3) &+Vw(z)€[§£_, £+]p forall z € Q x I,

(4.10)
(4) NwllLoogxry <,
(5) fQ o(x,t)dr =0 forallt €I,
L(6) lletllpoo(gxry < 20,
where [§7_, &7 ], denotes the p-neighborhood of closed line segment [T _, &7 |. Here, from

(4.10.3), (4.10.6) follows as

lpel <leit —ci—[+p=(ti+ =t )|bil +p<2p mmQxI.

Note (a), (c), (e), and (f) follow from (4.10), where 2p in (4.10.6) can be adjusted to p
as in (f). By the uniform continuity of A on J = {p/ € R" | [p/| < s54(F2)}, we can find a

8" > 0 such that |[A(p') — A(p")| < 3|Q€><f| whenever p/, p” € J and [p’ — p”| < §'. We then

choose a 7 > 0 so small that
C¢<y,qéxﬂ7<§

Next, we choose a § > 0 such that § < d77 If 0 < p <4, then by (4.10.1) and (4.10.3), for
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all z€ Qx Iand|(p),58)— (p.B)] <9,
&0, B) +Vw(z) € Dy, dist(&(p', ) + Vw(2), Hy) < dr,

and so &(p/, 8') + Vw(z) € R(Fy), that is, (p' + Dp(2), 8’ + ¢¢(z)) € S. Thus (b) holds for
all 0 < p < 4. In particular, (p+ Dy(z), B+¢¢(2)) € S and so |p+ Dp(z)| < s4(r1) < s4+(73)

and |8+ ¢(2)| <rg forall z € @ x I, by (i) of Theorem 4.1.6. Thus

/ |8+t — A(p + Dy)|dz
QxI
< / 18+ bt — Alp+ D)ld= + (ra + My)p
Gp

<@ x Ifmax{[5] . — A(pj 1)[} + (r2 + Mo)p

< ClQ x I|7 +|Q x I max{[A(p; +) — A(p £)|} + (r2+ Mo)p
< 2¢|@ x I

< —=——= + (ro + My)p,
310 1| (72 o)p
L
where {7, = " " and My, = o(sg). Thus, (d) holds for all p > 0 satisfying
’ BT, BT
i,+ i+
€|Qx 1|

We have verified (a) — (f) for any (p, ) € B; and 1 <i < N, where § > 0 is independent

of the index 7. Since By, --- , By cover K, the proof is now complete. O

4.3 Construction of admissible set U

We first construct a suitable boundary function ® = (u*, v*) € WH°(Qp; R1T"). Assume

2 and ug satisfy (2.10) with  convex. Let Qp = Q x (0,7) for a given 7" > 0 and
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My = || Dugl|poo(q)- Recall that we assume (2.1); that is,

/ ug(x) dx = 0. (4.11)
Q

To tailor the detailed result of Theorem 2.3.2 into the general existence theorem, Theorem
2.2.4, we assume the following: Let 0 < r = r9 < o(M), and let [ = [, € (0,r) be some
number determined by Theorem 4.1.6. Choose any 7 =ry € (I,r).

With these numbers r; = 7, r9 = r, we apply Lemma 3.2.1 to obtain functions &, f €

C3([0, 0)) satisfying its conclusion. Also, let A(p) = f(|p|?)p (p € R™). Then:

Lemma 4.3.1. We have

(P, Alp)) €S V5-(r1) <p| <s4(r2),

where S = 87”1=7°2 is the set in Lemma 4.1.35.

Proof. Let s = |p|, r = &(s) and ¢ = p/|p|, so that s_(r1) < s < s+(r9), ¢ € S" 1 and

A(p) = r(. By Lemma 3.2.1, s_(r) < s < s4(r) and r{ < r < 79 . Set p+ = 54(r)¢ and

p 0 p+ 0
f+ = r(. Then A(p+) = r{ = P+. Define £ = and £+ = . Then

O Alp) O p+
E= X4+ (1= XN)¢- for some 0 < X < 1. Since £+ € F4 and rank({4 — ) = 1, it follows

from the definition of R(Fp) = R(Frry(0)) that § € (§—,&+) C R(Fp). Thus, by Lemma

4.1.3, (p, A(p)) € S. O

By Lemma 3.2.1, equation uy = div(A(Du)) is uniformly parabolic. So by Theorem 3.1.1
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together with the convexity of €2, the initial-Neumann boundary value problem

p

uf = div(A(Du*)) in Qp
ou*/on =0 on 99 x (0,7 (4.12)

u*(z,0) =ug(z), x€f

\

admits a unique classical solution u* € C2T®1+0/2((1) satisfying
|Du*(x,t)] < My V(z,t) € Q.
From conditions (2.10) and (4.11), we can find a function h € C?1T(Q) satisfying

Ah =wug in Q, O0h/On=0 on 0.

Let vg = Dh € C1H(Q; R") and define, for (z,t) € Qr,
t ~
v (z,t) = vo() +/ A(Du*(z,s))ds. (4.13)
0

Then it is easily seen that ® := (u*,v*) € C1(Qp; RIT™) satisfies (2.4); that is,

;

u*(x,0) = ug(z) (z € Q),
dive* = u* a.e. in Qp, (4.14)

v*(-,t) -n|go =0 Vte0,T].

\

Hence ® is a boundary function in the sense of Definition 2.2.2.
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Next, let

F={(p. AW | lpl € [0.5-(r)]}

Then we have the following;:

Lemma 4.3.2.

(Du*(z,t), v (x,t)) e SUF V (x,t) € Q.

Proof. Let (x,t) € Qp and p = Du*(x,t); then |p| < Mj.

If |p| < s_(r1), then A(p) = A(p) and hence by (4.13)

(Du*(z,1), vf (z,1)) = (p, A(p)) = (p, A(p)) € F.

If s_(r1) < |p| < My, then by Lemma 4.3.1 and (4.13)

(Du*(z, 1), v (2, 1)) = (p, A(p)) € S.

Therefore (Du*,vf) € SUF in Q. O

Definition 4.3.3. We say a function u is piecewise C' in Qp and write u € C’;Z-ece(QT) if

there exists a sequence of disjoint open sets {G };";1 in Q7 such that
ue CY(G)) VieN, [Qp\UZ,G)l =0.

Note that in this definition, we necessarily have |0G;| = 0 for all j € N.

(Selection of interface of measure zero for classical and Lipschitz parts of
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solutions) Observe that

{(z,t) € Qp | [Du*(z,1)] = s—(7)}| > 0

for at most countably many 7 € (0,7). We fix any 7 € (0,7) with

{(x,t) € Qp||Du*(z, )] = s-(7)} =0,

and let

Ok = {(x,t) € Qp | |Du* (2, t)| < s—(7)},
0% = {(z.t) € Q| [Du*(z,1)| > s—(F)},

so that Q%q and Q% are disjoint subsets of Q7 whose union has measure |[Qp|. Clearly,
Qg C 9Ok, where Qg is as in Theorem 2.3.2.

Let m = ||u; || ooy +1. We finally define the admissible set U as follows:

1 .
U= {u € Chicee NWi(O7) | u =" in O, udl| oo oy < m,
Jov e C;iece N W;;OO(QT; R"™) such that (4.15)

diveo = w and (Du,v) € SUF a.e. in QT}.

For each € > 0, let U, be the subset of U given by

Z/IE:{UEZ/HEIUECl

piece

N W5 (Q7; R™) such that dive = u and

(Du,v) € SUF a.e.in Qp, and fQT |vg — A(Du)|dxdt < 6|QT|}.
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Remark 4.3.4. From (4.14), Lemma 4.3.2, and the definition of U, it follows that u* € U
with its corresponding vector function v*; so U is non-empty. Also U is a bounded subset
of Wi:koo(QT) as S U F is bounded. Moreover, by (i) of Theorem 4.1.6 and the definition of
F, for each u € U, its corresponding vector function v satisfies ||vy|| Loo(Qp) ST2 =T Thus
U is indeed an admissible set in the sense of Definition 2.2.3 with respect to the boundary
function ® = (u*,v*). Finally, note that s_(r1) < |Du*| < s4(re) on some non-empty open
subset of Qp, and so A(Du*) # A(Du*) on this set; so u* itself is not a Lipschitz solution
to (1.2). In terms of Theorem 2.2.4, it only remains to verify the density property (2.5) to

obtain multiple Lipschitz solutions to problem (1.2). We accomplish this in the next section.

4.4 Completion of proof of Theorem 2.3.2

Following Section 4.3, we complete the proof of Theorem 2.3.2. The density theorem below

is the last preparation for the proof.
Theorem 4.4.1. For each € > 0, U is dense in U under the L°°-norm.

Proof. Let w € U, n > 0. The goal is to construct a function @ € U, such that ||a —
ul| Loo(Qp) <11 For clarity, we divide the proof into several steps.

1. Note ||u| Loo(Qp) < M =T for some 79 > 0 and there exists a vector function

1
vE Cpiece

N W;;OO(QT; R™) such that divev = u and (Du,v;) € SUF a.e. in Qp. Since both
u and v are piecewise C'! in Qp, there exists a sequence of disjoint open sets {G j };";1 in Qp

with [0G ;| = 0 such that

ue CHGy), ve CHGHR™) Vi > 1, |9 \U2,G) =0.
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2. Let j € N be fixed, where N is the set of positive integers. Note that (Du(z),v(z)) €
SUF forall z = (z,t) € Gj and that H; = {z € G} | (Du(2),v¢(2)) € S} is a (relatively)
closed set in Gj with measure zero. So éj = (j\ H; is an open subset of Gi; with \é]\ = |Gjl,
and (Du(z),v(z)) € SUF for all z € ij.

3. For each 7 > 0, let G- = {(p,B) € S| |8 — A(p)| > 7, dist((p, 5),0S) > 7)}; then

S = (Ur>0G7) U{(p,B) € S| A(p) = 5} as S is open. Since A(p) = V(p, 5) € F, we have

/ lvg(z) — A(Du(2))| dz = lim ) lvg(2) — A(Du(z2))| dz;
Gj r—0t {zeGj | (Du(z),v4(2))€Gr}

so we can find a T > 0 such that

/ lue(2) — A(Du(z))|dz < L|QT\ and |00;| =0, (4.16)
F; 327

where F; = {2 € éj | (Du(z),v¢(2)) ¢ QTj} and O; = éj \ Fj is open. Let J be the set of
all indices j € N with O; # 0. Then for j & J, Fj = ij.

4. We now fix a j € J. Note that O; = {z € éj | (Du(z),v(2)) € Qq—j} and that
K;:= GTJ. is a compact subset of S. Let Q C R™ be a box with Q@ ¢ Q and I = (0,7).
Applying Theorem 4.2.2 to box Q x I, Kj cC & = Sy (recall rg = 1,1y = 7), and

e = €|12T |, we obtain a constant d; > 0 that satisfies the conclusion of the theorem. By the

uniform continuity of A on compact subsets of R", we can find a 6 = ¢ r; > 0 such that

Ap) — AW < 5 (4.17)

whenever |p|, |p'| < 2s+(r1) and |p — p/| < 6. Also by the uniform continuity of u, v, and
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their gradients on G j, there exists a v; > 0 such that

u(z) — w(Z)| + [Vu(z) = V()] + [v(2) — v(Z)]
(4.18)

H90(2) = Vo()] < min{ s, {5, 0,54 ()}
whenever z,2' € G and |z — 2/| < ;. We now cover O; (up to measure zero) by a sequence
of disjoint open cubes {QZ X ] ¢ 721 in O;j whose sides are parallel to the axes with center

2t and diameter l; <.

J
p c , Du(zi-) ut(zi-)
5. Fix an i € N and write w = (u,v), £ = - Vw(z;-) — J J
B f Dv(z;-) vt(z;'.)

By the choice of §; > 0 in Step 4 via Theorem 4.2.2, since Qi. X ]i c Qx I and (p, B) € Kj,
for all sufficiently small p > 0, there exists a function wj = (goj, W) € C'OO(QZ X IZ RIH)
satisfying
(a) divet =0in Q) x I,
(b) '+ D@;(z)ﬂ/ + (?/f;)t(Z)) eSforall z € Q; X ]j’:
and all |(p', B') — (p, B)] < 9,
<@Hwhw@ﬂ@<@
) gurt 19+ (0(2) = Alp + D= < €10 x 11/1Q x T,
fQ; gpj (x,t)dz =0 for all t € I]Z.,
(f) ||(<P§-)t!|LOO(Q§X[j¢) < p.
Here, we let 0 < p < min{y, ;—gj, 1505 1}, Where Cy, is the constant in Theorem 3.3.1 and C' is

the product of Cj, and the sum of the lengths of all sides of Q. By (e), we can apply Theorem

3.3.1to gp on QZ ><IZ to obtain a function g = Rap] € Cl(Ql ]Z R”)HW&’OO(Q;. XI};R”)
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such that div g;- = <p§- in Q;'. X ]]Z: and

0.

< (by () (4.19)

||(gj)t||LOO(Q;_X[;) < C”(%)t”LOO(Q;.xI;)

6. As vy and A(Du) are essentially bounded in Q7, we can select a finite index set

Z C J x N so that

/ Cu(2) — A(Du(2))|dz < §|QT|. (4.20)
UG.i)e(7 <M\ 5% T;

We finally define

(,0) = (w,0) + D Xpi i) 05 +g)) in Q.
Gayezr 7 7
As a side remark, note here that only finitely many functions ((pé-,iﬂ;- + g;) are disjointly
patched to the original (u,v) to obtain a new function (@, ?) towards the goal of the proof.
The reason for using only finitely many pieces of gluing is due to the lack of control over the
spatial gradients D(@Dj- + g;-), and overcoming this difficulty is at the heart of our method.
7. Let us finally check that u together with ¢ indeed gives the desired result. By

NWLQr), o € CL

S ~ 1 1,00/ ..
construction, it is clear that @ € Cp; .. piece 1 Wi (Q7; R™). By
the choice of p in (f) as p < 79, we have ||ﬁt||LOO(QT) < m. Next, let (j,7) € Z, and observe
that for z € Q; X IJZ:, with (p, 5) = (Du(z;),vt(z;)) € gTj, since |z — z;| < l; < vj, it follows

from (4.18) and (4.19) that

|(Du(z), ve(2) + (99)4(2)) = (0, B)| < 6
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and so (D1(z),7¢(z)) € S from (b) above. From (a) and div g;- = goé-, for z € Q;- X Ij’:,
divo(z) = div(v + w;- + g;)(z) =u(z)+0+ @é(z) = u(z).

Therefore, © € U. Next, observe

/ |0y — A(Du)|dz = / lvg — A(Du)|dz
QT UjGNFj

+/ . lvg — A(Du)|dz+/ .. |0y — A(Du)|dz
) (TN @] Pa)e? T
=N+ 1h+1Is.
From (4.16) and (4.20), we have I1+15 < %|QT| Note also that for (j,7) € Z and z € Qé. XIJZ:,
from (4.18), (4.19), and (f),

[61(2) — A(Da(2))| = |o(2) + (¥))e(2) + (9)e(2) = A(Du(2) + Dg(2))|

< for(2) = v (25)] + Jue(2) + (05)i(2) — A(Du() + Dgly(2)))
H(gDe(2)] + |A(Du(=}) + Dgl(2)) — A(Du(z) + D (2)|

+ |or(25) + (8))e(2) — A(Du(2}) + Dgly(2))|

+ A(Du(z}) + Dli(2)) — A(Du(z) + Dgly(2))|.

From (i) of Theorem 4.1.6 and (4.18), we have |Du(z§)+Dap;(z)| < 2s4(r1). As(Du(z),7(z)) €

S, we also have | Du(z) —|—Dg0§»(z)| = |Du(z)| < s4+(r1), and by (4.18), \Du(z}) — Du(z)] < 6.
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From (4.17) we thus have

|A(Du(z;) + Dgpé(z)) — A(Du(z) + Dgpé(z))| < 1—62

Integrating the above inequality over Qé- X IJZ:, we now obtain from (d) that

e Q| Q) x I
12 |Q X I|

|, i) - ADa) iz < 5105 < 1) + < SIQh x 1)
QL x It 4% I 3 "7
J
which yields that I3 < §|Qp|. Hence Iy + I + I3 < ¢[Qp[, and so @ € U. Lastly, from (c)
with p < 7 and the definition of 4, we have ||a — UHLOO(QT) <.

The proof is now complete.

Completion of Proof of Theorem 2.3.2

Proof of Theorem 2.3.2. Combining Remark 4.3.4 and Theorem 4.4.1, we can see that there
are infinitely many Lipschitz solutions u to problem (1.2).

We now follow the proof of Theorem 2.2.4 for detailed information on any fixed Lipschitz
solution u € G to (1.2). Here Du is the a.e.-pointwise limit of the gradient sequence Du; of
some sequence u; € Lll/j converging to u in L>(Qp). Since u; = u* in Q%, we also have

u=u* € C’2+O"1+O‘/2(Q%), so that
ut = div(A(Du)) and |Du| < s—(F) in Qk.

As HDUJHLOO(QT) < 8_|_(f) = S+(7‘1), we have ||Du||Loo(QT) < 8_|_(f). Also (Uj>t — Ut in
L2(Q; R™), where v; is the corresponding vector function of u; and v € W2((0,T); L2(Q; R™)).
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From (2.6), we can even deduce that (vj); — v¢ pointwise a.e. in Qp, where ||(Uj)t||LOO(Q) <

r = ry by the definition of ¢ and (i) of Theorem 4.1.6; hence [|v¢|[fo0(q) < r. Note that

vy = A(Du) a.e. in Qp,

and so r > |v¢| = o(|Dul) a.e. in Qp. On the other hand, |Du| < s4(7) a.e. in Q7. So the
graph of ¢ forces to give

[Sel + | Ll = |95

If |L, 7 = 0, then [Du| < s_(r) a.e. in Qp, which implies that u = u* in Qp by
uniqueness. This contradicts the fact that || Du* (-, 0)([ zoo(q) = [[Duol|poo () = Mo > s—(r).

Thus, |L, ;| > 0.

4.5 Proof of Theorem 2.3.5

In this final section, we complete the proof of Theorem 2.3.5 on the coexistence of radial and

non-radial Lipschitz solutions to problem (1.2) when € is a ball and u is radial.

Proof of Theorem 2.3.5. Using Theorem 3.1.1, the existence of infinitely many radial Lip-
schitz solutions to (1.2) follows from [25]. We remark that these radial solutions are not
obtained through the existence result of this dissertation, Theorem 2.3.2.

The existence of infinitely many non-radial Lipschitz solutions to (1.2) can be shown by
modifying the proof of Theorem 2.3.2. We proceed the proof as below.

It is easy to check that the function u* € U constructed in Section 4.3 is radial in Q.

Our strategy is to imitate the procedure of the density proof in Section 4.4 to the function
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(u*,v*). We choose a space-time box in Qp with positive distance from the central axis of
Qp where v} is sufficiently away from A(Du*) in Ll-sense. Then as in the density proof,
we perform the surgery on (u*,v*) only in this box to obtain a function (u},.,v",.) with
membership u),. € U maintained. Such surgery breaks down the radial symmetry of u*;
hence, u},. is non-radial. Note also that this w},. cannot be a Lipschitz solution to (1.2).
Suppose there is no non-radial Lipschitz solution to (1.2). In the context of the proof of
Theorem 2.2.4, this means that every u € G is a radial solution. The L®°-density of G in X
then implies that every function in X is radial. This contradicts the existence of a non-radial
function u},. in Y C X above. Thus there exists a non-radial Lipschitz solution to (1.2).
Suppose there are only finitely many non-radial Lipschitz solutions to (1.2). This forces
that the non-radial function u},. should be the L®°-limit of some sequence of radial functions
in G, a contradiction. Therefore, there are infinitely many non-radial Lipschitz solutions to

(1.2). O
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Chapter 5

Hollig type equations

This chapter deals with the existence result on Case 1I: Hollig type equations, that is,

Theorem 2.3.4. We thus assume Hypothesis (H) throughout this chapter.

5.1 Geometry of relevant matrix set

This section proceeds almost in the same way as in Section 4.1, and so we skip many details
unless there should some change to be made.

For each [ € R, let K (I) be the subset of M(Hm)*(+1) defined by (4.2) with flux A(p)
with profile o(s) satisfying Hypothesis (H).

Fix any two numbers o(s2) < r1 < ry < o(s1), and let Fyy = Fy; r,(0) be the subset of
K (0) given by

p < p € R™, |p| € (5-(r1), 5-(r2)) U (s+(r1), s+(r2)),
Fy =

B A(p) ceR, BeM" " trB=0

The set Fj is decomposed into two disjoint subsets as follows:

p c p €R", |p| € (s-(r1),5-(r2)),

B A(p) ceR, BeM" " trB=0
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p c p €R", |p| € (s4(r1), 8+(12)),
Fp=

B A(p) ceR, BeM"™ " trB=0
As in Case I: Perona-Malik type equations, we focus on the homogeneous differential
inclusion Vw(z) € Fp; thus we first study the rank-one structure of the set Fj.

For the matrix set Fj, we define

R(Fp) = U (6= &4)-

4 €Fy rank(§4 —€_)=1

From a careful analysis, one can actually deduce
L(Fp) = R(Fp). (5.1)

This is a drastic difference to (4.3) where L(F4) # (). However, in the current case, as only
forward parts of o are involved in Fjy, no such set appears in (5.1); so it is even more natural
to only stick to the analysis of the set R(F()) towards the existence result, Theorem 2.3.4.
We perform the step-by-step analysis of the set R(Fj).
1. Alternate expression for R(F{y). The proof of the following lemma just follows the

lines of that of Theorem 4.1.2 with minor changes. So we skip the proof.

Lemma 5.1.1. Let £ € MUI+)X(n+1) - Tpep ¢ € R(Fy) if and only if there exist numbers

t— <0 <ty and vectors q, v € R™ with |q| =1, v-q = 0 such that for each b € R\ {0}, if

q b
n= , then & +t4n € Fy.
34®7Y 7

2. Diagonal components of matrices in R(Fp). The proof of the lemma below is

precisely the same as that of Lemma 4.1.3.
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Lemma 5.1.2.

p c
R(Fp) = ceR, BeEM”" trB=0, (p,f) €S (5.2)

B

for some set S = ST17T2 C R,

3. Selection of approximate collinear rank-one connections for R(Fj). We first
equip with a 2-dimensional description for the rank-one connections of diagonal components
of matrices in R(Fp) in a general form whose proof is similar to that of Lemma 4.1.4 but has

several minor changes.

Lemma 5.1.3. For all positive numbers a, b, c with b > a, there exists a continuous function
h(a,b,c,- ) Iy p e =10,a) x [0,b—a) x [0,c) — [0, 00)

with h(a,b,c,0,0,0) =0 satisfying the following:

Let 61,09 and n be any positive numbers with
0<a—01<a<b—03<b 0<c—n<ec,

and let Ry € [a — 01,a], Ry € [b— 69,b], and Ry, Ry € [c —n,c|. Suppose § € [—7/2,7/2]
and

(Rl(cos(g +0), sin(g +6)) — Ji’g(cos(g —0), sin(g — 9)))

-(Rl(cos(g +0), sin(g +6)) — RQ(Cos(g —0), sin(g — 9))) = 0.
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Then -5 <0 < %, Ry > Ry, and
m LT m . T
max{}((),a) — Rl(cos(§ + 9),s1n(§ + 9)) }, }(O,b) — RQ(COS(§ — 9),s1n(§ — 9))}

‘(0, c) — él(cos(g +0), sin(g +6)) },

~ T . T
(0,¢) — Rg(cos(E —0), sm(§ —0)) }}
S h(a7 b7 C7 517 527 n)'
Proof. By assumption,

0 = (Ry(—sinb, cos0) — Ry(sinb,cosh)) - (R1(—sinb,cos) — Ry(sin b, cosh))

= (—(Ry + Rg)sinf, (Ry — Ry)cosh) - (—(R1 4+ Ry)sinb, (R — Ry) cos )
— (Ry + Ry)(R1 + Ry)sin? 0 + (Ry — Ry)(R1 — Ry) cos® 0,

that is,

(Ry — R1)(Ry — Ry)cos® 0 = (Ry + Ro)(R; + Ry) sin6;

hence, 0 # £7, R1 > Ry, and

0 — +tan-! (\/(32 — Rl)(fiﬁ — 1?2)) '
(R1+ Rg)(R1 + Rg)

So

_ b—a+d1)n
] < tan~ 1 ( —: b.c,81.99.m).

Note that the function g(a,b,c,,+,-) : Ip . — [0,7/2) is well-defined and continuous and

that g(a,b,c,01,09,m) = 0 for all (61,d2,m) € Iy . with n = 0.
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Observe now that

1(0,a) — Rl(cos(g +0), sin(g +0))

< max{|(0,a) — a(—sinf, cos )|, |(0,a) — (a — d1)(—sin b, cosb)|}

= max{\/a2 sin? 0 4 a2(1 — cos 0)2, \/(a —01)2sin2 0 + (a — (a — 61) 0089)2}

= max {\/5@\/1 — cos b, \/(a —61)2 +a? — 2a(a — 01) COSH}

< max {\/ﬁa\/l —cos(g(a, b, ¢, 61,02,m)),

\/(a — 61)% + a? — 2a(a — é1) cos(g(a, b, ¢, d1, 3, 77))}
=: hi(a,b,c,01,062,1),

1(0,b) — RQ(cos(g —9), sin(g N

< max {\/ib\/l - COS(Q(CL, b7 G, 517 527 77))7

V(b= 62)2 + 12— 26(b — 8) cos(g(a b, ¢, 61,6, m)) }

=: ha(a,b,c,01,02,7),

10, ¢) — Rl(cos(g +0), sin(g +0))]

< max {\/ic\/l - Cos(g(&, b,c,01,09, 77))7

V=2 + e = 2e(c — ) cos(g(a, b, ¢, 61,52,m)) }

=: h3(a,b,c, 61,09, n),

(0.¢) = Rafcos(5; — 0),sin( = 6))] < hala,b.c. 1, 02.m).
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Define h(a, b, c,d1,02,1) = maxi<j<3zhj(a,b,c,d1,02,m). Then it is trivial to see that the
function h(a,b,c,-, ) : Iy — [0,00) is well-defined and satisfies the desired properties.

O

Next, we apply the previous lemma to choose approzimate collinear rank-one connections

for the diagonal components of matrices in R(Fy).

Theorem 5.1.4. Let p+ € R™ satisfy

s—(r1) < |p—| < s—(r2) <s4(r1) < [p+| < s4(r2)

and (A(py) — A(p_)) - (p+ —p—) = 0. Then there exists a vector (Y € S"1 such that, with

P = s1(r2)C0, APY) = roc?, we have

max{|p" — p_|, [p} — p+|. [AGY) — Ap-)], |[AGY) — Alp4)]}

< h(s—(r2),8+(ra),r2,5-(r2) — s—(r1), s4(r2) — s+(r1),r0 — 11),
where h is the function in Lemma 5.1.3.

Proof. The proof is the same as that of Lemma 4.1.5 except that we let do = sy (1) —s4(r1)

in applying Lemma 5.1.3. O

4. Final characterization of R(F;). Now we can deduce the result on essential
structures of R(Fp). Although the proof is very similar to that of Theorem 4.1.6, we include

it here for completeness.

Theorem 5.1.5. Let o(s2) <1y < o(s1). Then there exists a number ly = lyy € (0(s2),72)
such that for any lp <rp <rg, the set S = Sp rog C R in (5.2) satisfies the following:
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(i) sup(, gyes [Pl < s+(r2) and sup, gyes |B] < 12 hence S is bounded.
(i1) S is open.

(iii) For each (pg,Bo) € S, there exist an open set V CC S containing (po, fy) and C*

functions ¢V — S" L vV SRtV 5> Rwithy-q=0andt_ <0 <ty on

- p c _
V such that for every & = € R(Fp) = R(Fr r9(0)) with (p,B) € V, we have
B p
§+txn € Fx,
q(p, B) b o
where t+ =t4(p, ), n = , and b #£ 0 is arbitrary.

(. B) @ a(p.B) 7(p.B)
Proof. Fix any o(s9) < rg < o(s1). For the moment, we let r; be any number in (o(s2),r2)
and prove (i). Then we choose later a lower bound lg = Iy € (0(s2),72) of rq for the validity
of (ii) and (iii) above.

We divide the proof into several steps.

p 0
1. To show that (i) holds, choose any (p,) € S. By Lemma 5.1.2, £ := €
O p

R(Fy) = R(Fy{ r9(0)), where O is the n X n zero matrix. By the definition of R(Fp), there

== C+
exist two matrices £+ = € F4 and a number 0 < A < 1 such that

By 0(|pil)|§%

€= X4+ (1—N)Eé-. So
Ip| = [Ap+ + (1 = X)p—| < s54.(r2),
18] = Aa<|p+|>p—++<1—A>a<|p_|>f;—j| <y

Ip+|
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hence, sup(,, gcs [P| < s+(r2), sup(, gjes [8] < r2, and S is bounded. So (i) is proved.
2. We now turn to the remaining assertions that for all r{ < ro sufficiently close to

r2, 8 = Spy ry fulfills (ii) and (iii). In this step, we still assume rq is any fixed number in

(0(s2),72)-
. po 0 .
Let (pg, fp) € S. Since & := € R(Fp), it follows from Lemma 5.1.1 that
O fo
there exist numbers sg < 0 < ¢y and vectors qg, 79 € R™ with |gg| = 1, 7 - g = 0 such that
q0 b ‘

o+ sono € F- and &y + tgno € F4, where ny = and b # 0 is any fixed
1
790 @Y 70

number. Let ¢y = toqp # 0, 7 = to70, and s, = so/tp < 0; then

Y -ah =0, s—(r1) <|po+soapl < s—(re),

s1(r1) < |po + qp| < s4(r2),

po + shah ' /1 Do+ dp /
o(lpo + s0a0)) ————2 = Bo + 010, o(lpo +apl)—— =Bo+7.  (5.3)
050V po + s )| 070 A 0
Observe also
to — s0 = [(po + togo)| — |(po + s0q0)| > s+(r1) — s—(r2). (5.4)
Next, consider the function F' defined by
P, dsip ) = (ollp+s/d)EESL g gty
) M ) M |p+ S/q/| )
p+d
o(lp+4d) —B—+9,7-¢) e R

P+ |

for all 7/, ¢/, p, B € R" and s’ € R with s_(r1) < |p + s'¢/| < s—(r9), s+(r1) < |p +

¢'| < s+(rg). Then F is C1 in the described open subset of R?7H14n+7n and the above
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observation gives

F (Y0, 46, 803 Po, Bo) = 0.

Suppose for the moment that the Jacobian matrix D( / /)F is invertible at the point

Vs

(vé,q{), 56; P0, Bo); then the Implicit Function Theorem implies the following: There exist

a bounded domain V = )}( C R™™ containing (pg, fo) and C! functions §, ¥ € R™,

IEN)
5 e R of (p,3) € V such that

Y(po, Bo) = 0. d(po, Bo) = 4o, 3(po, Bo) = s,

and that
5(p,B) <0, s—(r1) <|p+3(p,B)q(p, )| < s—(ra),
s+(r1) < |p+q(p, B)| < s+(r2),
F(3(p, 8),d(p, 8),5(p, B);p, B) =0 V(p,B) € V.
Define
Y= g= k=3, tr =13 i V;
] |q]

then

s—(r1) < |p+t—q| < s—(r2),

s+(r1) < |p+tyql < s4(re),

p+ttq
U(|p+tiQ|)m :5+t:|:77 |Q| = ]-7 7q207 t— <0 <t+>

where (p, 8) € V, v = v(p, 8), ¢ = q(p, B), and t+ = t+(p, B).
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Let ( , Be M trB =0, bceR, b#0, qg=qlpB), =700,

q b
t+ = t4 ,and n = . Then &t = &+ ten € F4+. By the

l'y ®q v
definition of R(Fp), 5 5 ,&4) C R(Fp). By Lemma 5.1.2, we thus have (p, 5) € S; hence

Y C 8. Choosing any open set V CC V with (pg, 8g) € V, the assertions (ii) and (iii) hold

with § = U(p(),ﬁo)eSf}( open.

70-50)

3. In this step, we continue Step 2 to deduce an equivalent condition for the invertibility

ol the Jacoblan matrix r 1 nEat (Y, 9n, Sos Po, £o). By direct computation,
f the Jacobi trix Dy o o F at (70,4, 50: o, o) By direct tati

_SIIn MS, UJS_,
D(,-Y/g/ S’)F —In Ml 0 c M(n—l—n—i—l)x(n—i—n—i—l)’
q/ ,y/ 0

where [, is the n X n identity matrix,

p+sd). p+s'q p+s'q a(lp + s'q
MS/: ( (|p—|—8q|) (| //|)) — //—|—8, (| //|)
lp+s'qd| "Ip+5d| T [p+ 5 lp+5'¢|

/D_UWHWb%XP+ﬂW_ @p+§¢ o(lp+5'd1) ,

+ / /
w,; =\0 + s
v = (ollersa p+s'd| Tlp+s'dl T lp+ S p+ s

For notational simplicity, we write (v/,¢’,s";p,8) = (76,(]6,36;]90,50). Applying suitable

elementary row operations, where s’ < 0,

—$'1, MS/ w;
N 1 1 -
D(W//aq/ S/)F 0 My Y MS/ _s/ws/
! /
q v —_
0 7’_‘_5_:,[( S/)l_‘_._‘_qs_/]}(MS,)n %q/'wsf
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_S,[n MS, w;
- O s' My — My —ws_, 5

0 Y+ M -+ g, (M) ¢

S
where O is the n x n zero matrix, and (MS,)Z is the ith row of M. Since |¢'| = ty, v -¢' =0,
and s_(r1) < |p+ §'¢'| < s—(rq9), we have

/

_ o(lp+sd)) ., p+s4q o(lp + s'q
q .wS/ _ (U,(|p—|—8,q,‘) . (| D)( l)2 (| |) 2

p+s'd] Clp+sd] p+s'q] "

(Ip+s'd])

2 240 1 I, 290
=t5(cos“ B o (|p+ s + (1 — cos“ @ > 0,
0( (|p q‘) ( ) |p—|—$/q/| )

where 6/ € [0, 7] is the angle between p + s'¢ and ¢/. Observe here that the forward part of
o in the definition of F_ becomes essential to guarantee that o’(|p + s'¢’|) > 0. After some

elementary column operations to the last matrix from the above row operations, we obtain

/ p—
—S In MS/ - NS/ ws/
D(vl,q/,S/)F - O s' My — Mg+ Ny —w; )

0 0 q w5

S

I g (M)
jl—s’jw;. So D(”Y/ ’ ,)F is invertible if and

where the jth column of N, € M"*" is —
q .w / 7q 75
S

only if the n x n matrix M; — %M o T %N ¢ 1s invertible. We compute

1 1 o
My = 5Mg+ 5Ny = (o'(lp+d]) -

(@+@W>p+d p+d
p+d| "lp+d| p+d

o(lp+d))
Ip+ ¢

dm+§ﬁhp+§d p+s'q

I — (o (lp+sd]) —
n ( (\p q D |p+s’q’\ |p+s’q’| \p—i—s/q/\
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o(lp+5'¢]) o
SRl Bk 475 A Y
p+sq] " q“%,g

/

o(lp+s'd])

p+s'qd ,p+sd  ollp+dd])
@+§¢Ix ) )

/ .
+o(lp+s - :
( (\p q |) \p—l— s’q’\ |p+s’q’| \p—l— s’q’|

p+d _ p+d
p+d|  |p+d|

= (a1 — ay)In + (b1 —a1)

p+sqd  p+sd 1
p+sd| o +s'dl g w

—(by —ay)

S S

and set (with an assumption a1 # a )

1 1 1 bi—a1 p+q + ¢

B=————(My - Mg+ Ny) =l + ——L L0 g P2L

a; —ay s S ap—aglp+d|  |p+d
by —ag pts'd  p+sd 1 T

a1 —ay lp+ 5] |p+5'q| (al—as/)q’-w; $

!/
alp+s'q])

where a_, =
ST s

o =0 (Ip+5'¢]); then D( / /)F is invertible if and only if the

Vs
matrix B € M"™*" is invertible.

4. To close the arguments in Step 2 and thus to finish the proof, we choose a suitable
lo = lr, € (0(s2),72) in such a way that for any r1 € (lg,72), the matrix B, determined

through Steps 2 and 3 for any given (pg, 8y) € S = Sy ry, is invertible.

First, by Hypothesis (C), 7o € (0(s3),r2) can be chosen close enough to ry so that

T 7O e s (). s ()], VR € [ (Ra) 51 ()]

Then define a real-valued continuous function (to express the determinant of the matrix B
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from Step 3)

o) -, den -,
DET(u, v,4,7) = det (I + oAl — () Tl © Tl ~ o ) ol * o
1 a(lv]),, v v
+ o(lu a(Jv o(lv a(lv ((U/(|U|)_ =)
(T = TR () = D - 02 + T ol Tl el
o(|v) L () NN (1),
+——¢—7)® - —q)— + +
o 4= @ (00 = F R @)+ T R )

on the compact set M of points (u,v,q,7) € R” x R" x S~ x R" with

ul € [s4(72), s+(r2)], |v| € [s—(F2),s-(r2)], [7] <L

With k = s (r9) and [ = s_(rg), for each ¢ € S"~1,

DET (kq,lq, q,0) = det (In +
since o’/ (k) # 0 and hence the fraction in front of ¢ ® ¢ is different from —1. So
d:= min |DET(kq,lq,q,0)| > 0.

Next, choose a number § > 0 such that for all (u,v,q,7v),(a,0,q¢,7) € M with |u —

al, lv—12l, |¢g —q|, |y — 7| <6, we have

IDET(u,v,q,7) — DET(@, 3,4, )| < d/2. (5.5)
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Let lo € (9, 79) be sufficiently close to ro so that for all 1 € (l9,79),

h(s—(ra), s+(r2),m2,5—(r2) — s—(r1), s4(ro) — s4(r1),ro —71) <7,

where h is the function in Theorem 5.1.4 and

7 :=min{d, (so — s1)/4}.

Now, fix any 1 € (l2,72), and let B be the n X n matrix determined through Steps 2 and
3 in terms of any given (pg, 8p) € S = Spy ry- Let p1 = pg +toqo and p— = pg + spqp from
Step 2; then p+ and A(p+) fulfill the conditions in Theorem 5.1.4. So this theorem implies

that there exists a vector (¥ € §"~! such that

max{[p? —p_|, [p} — p+|, [APY) — A(p-)], |[ABY) — Alp4+)|} < T,

where pQL =k¢0, p? =1¢Y, and A(p(i) = r9¢0. Using (5.3) and (5.4),

I+ — k¢l <0, [p- — 10 <4,

|q _§0| = |Zﬁ _CO| < |(p_|_ —p—) — (]%_Z)CO‘ + ‘(]%_Z) - (t() —So)|
0 to — so o to) — S0
0 _ 01 _1|n _
B S ey | I 5
to — so to — S0
ol = [A£) = Alp-) _ [Al+) — AGDI+1AGY) — A _
0 to — S0 - to — so '
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Since det(B) = DET(p+, p—, qo, 7o) and [DET(k¢,1¢0, ¢0,0)| > d, it follows from (5.5) that
|det(B)| > d/2 > 0.

The proof is now complete. O

5.2 Relaxation of Vw(z) € F}

Lemma 4.2.1 is in common use for both Theorems 4.2.2 and 5.2.1, and so we do not restate
it here.

We state the relaxation theorem for homogeneous differential inclusion Vw(z) € Fj in a
form that is more suitable for later use; we restrict the inclusion to only (p, 8) components.
Although the proof of this theorem is quite similar to that of its companion version, Theorem

4.2.2, we include it here for the sake of completeness.

Theorem 5.2.1. Let o(s2) < ry < o(s1), and let lo = Iy, € (0(s2),72) be some number
determined by Theorem 5.1.5. Letly <1y <rg, and let K be a compact subset of § = Sy ro-
Let Q x I be a box in R"T. Then, given any e > 0, there exists a 6 > 0 such that for each
box Q x I C Q x I, point (p,B) € K, and number p > 0 sufficiently small, there exists a
function w = (p, ) € CX(Q x I; R satisfying the following properties:

(a) divyp=01inQ x I,

(b) (0" + Dyp(2), B’ +41(2)) €S forall z € Q x I and |(p', B') — (p, B)| <,

(¢c) lwllpoo@xry < p

(d)  four|B+t(z) = Alp + Dp(2))|dz < €|Q x 1|/|Q x I,

(e) fQ o(x,t)dx =0 for allt € I,
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() Nt ooggen < »-

Proof. By Theorem 5.1.5, there exist finitely many open balls By,--- , By CC S covering

and C! functions ¢; : B; — S"~1, ~; : B; — R", tiv:Bi >R (1<i<N)with~;-¢ =0

_ p c _
and t; ~ < 0 < t; 4 on B; such that for each { = € R(Fp) with (p,B) € B;, we
B p
have
§+ti4m € Fy,
4i(p; B) b o
where t; 4 =t; +(p, B), 1 = , and b # 0 is arbitrary.
3i(p, B) @ ai(p, B) i(p, B)
p 0 _
Let 1 <i < N. We write §; = &(p, 8) = € R(Fp) for (p,p) € B; C S, where O
O B

is the n x n zero matrix. We omit the dependence on (p, 3) € B; in the following whenever

it is clear from the context. Given any p > 0, we choose a constant b; with

0 < b; < min ———.
B; ti4+ —ti—

With this choice of b = b;, let 7; be defined on B; as above. Then

Pit Cit
i+ = =&+t +m; € I,
B+ Bi+
—t; B
§=N&i++(1=X)§—, N=—""—¢€(0,1) on B
tiy —ti

By the definition of R(Fp), on B;, both & _ = 7&; 4+ +(1—7)&; _ and & =0-1)& 4+ +78 —

belong to R(Fp) for all 7 € (0,1). Let 0 < 7 < minj<j<yming min{A;,1 — A;} < %
T J
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be a small number to be selected later. Let X, = i\l_gz on B;. Then X, € (0,1), & =

AL Z-T,+ +(1-— A;)@T’_ on B;. Moreover, on B;, §iT7+ - 527,_ = (1-27)(&§ 4+ — & —) is rank-one,

€7 &7 ] C (&€& +) C R(Fp), and
cr < |€z‘T,+ —&i 4l = |€¢T,_ — & =76+ —&i—| =Tt 4 —ti )| < C,

where C' = maxj<j<y maXBj(tj,+ —t;)|n;l > minj<j<n mingj (tj+ —tj—)Injl =c>0.
By continuity, H, = U(p,B)ij,lgjgN[ng,—(pv B),§}7+(p, B)] is a compact subset of R(Fp),

where R(Fj) is open in the space

p c
Yo = trB=0,,

B B
by Lemma 5.1.2 and Theorem 5.1.5. So dr = dist(Hr, d|g,R(Fp)) > 0, where J|y, is the
relative boundary in .
Let n1 = —Aiini = =X, (1=27)(t; 4 —t; _ )i, mi2 = Ao = (1=N)(1=27) (t; 4 —t; _)n;
on B;, where Ni1=T(ti4)+ (A =7)(=t; =) >0, N\jo=(1—7)t; 4 +7t; _ >0on B;, and
7 > 0 is so small that

min min ;. >0 (k=1, 2).
L<j<N B, Ik ( )

Applying Lemma 4.2.1 to matrices n;1 = n;1(p, 8), ni.2 = ni 2(p, 8) with a fixed (p, 8) € B;

and a given box G = ) x I, we obtain that for each p > 0, there exist a function w =
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(¢, 1) € C°(Q x I; R™™) and an open set G, CC @ x I satisfying the following conditions:

(1) divy=0in Q@ x I,
(2) (@ xI)\ Gyl <p; £Z~+Vw(z)€{££_, Z+} for all z € G,

(3) &+ Vw(z) € [5177_, Z-T,+]p forall z€ Q x I,

(5.6)
(4) el poogxry <,
(5) fQ o(x,t)dr =0forallt €I,
L (6) lletllpoo(gury < 20,
where [5177_, Z ]p denotes the p-neighborhood of closed line segment [52-7,_, Z ] Here, from

(5.6.3), (5.6.6) follows as

lpel <leit —ci—[+p=(ti+ =t )bl +p<2p mQxI.

Note (a), (c), (e), and (f) follow from (5.6), where 2p in (5.6.6) can be adjusted to p as
in (f). By the uniform continuity of A on J = {p’ € R" | |p/| < s5}, we can find a §' > 0

such that |A(p) — A(p")| < 3|Q€xf| whenever p’, p”’ € J and |p’ — p'| < §'. We then choose

a 7 > 0 so small that
€

Cr<d, ClQxIlr< 3

Next, we choose a 6 > 0 such that § < dTT If 0 < p <6, then by (5.6.1) and (5.6.3), for all

zeQxTand|(p,p) - (p,B) <9,

&0, B+ Vw(z) € By, dist(&(p', ') + Vw(2), Hy) < dr,
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and so & (p/, B') + Vw(z) € R(Fp), that is, (p/ + Dy(2), 8’ + ¢¢(2)) € S. Thus (b) holds for
all 0 < p < 4. In particular, (p + D(2), 8+ ¢¢(z)) € S and so |p + Dy(z)| < s4(r2) < s5

and |8+ ¢(2)| <rg forall z € @ x I, by (i) of Theorem 5.1.5. Thus
/ |6+ — Alp+ Dy)ldz
QxI

< / 18+t — Alp+ Dg)ldz + (ra + My)p
Gp

< 1@ x I max{[8] + — Alp] I} + (r2 + Mo )p

< ClQ x I|r +[Q x I|max{|A(p; +) — A(pj )|} + (r2 + Mg)p

2e|l@ x I
< e x1] (ro + My)p,
310 x 1)
Pir Cix
where {7, = ’ ’ and M, = o(s3). Thus, (d) holds for all p > 0 satisfying
’ BT, BT
i,+ i+
€|Qx 1|

We have verified (a) — (f) for any (p, ) € B; and 1 <i < N, where § > 0 is independent

of the index 7. Since By, --- , By cover K, the proof is now complete. O

5.3 Construction of admissible set U/

We first construct a suitable boundary function ® = (u*,v*) € WH°(Qp; R1T"). Assume
Q and ug satisfy (2.10) and |Dug(xg)| € (s],55) for some xg € Q. Let Qp = Q x (0,T) for

a given T'> 0 and Mo = || Dug|| o0 (qy)- Recall that we assume (2.1); hence,

/ ug(z) dz = 0. (5.7)
Q
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Note My > [Dug(zg)| > s]. We now assume the following: If My < s1, we fix any
o(s2) <re < o(My) < o(sy). If My > s, we fix any o(s3) < ry < o(s1). Then let Iy =1, €
(0(s2),r9) be some number determined by Theorem 5.1.5. Now, fix any 1 € (l2,79).

With these numbers 71, 79, we apply Lemma 3.2.2 to determine functions &, f € 03([0, 00))

satisfying its conclusion. Also, let A(p) = f(|p|?)p (p € R™). Then:

Lemma 5.3.1. We have

(p, Alp)) €S Vs—(r1) <|p| < s+(ro),

where S = 87”1=7°2 18 the set in Lemma 5.1.2.

Proof. Let s = |p|, r = 6(s) and ¢ = p/|p|, so that s_(r1) < s < sy (rg), ¢ € S* 1 and

A(p) = r(. By Lemma 3.2.2, s_(r) < s < s4(r) and r; < r <y . Set p+ = s+(r)( and

p 0 p+ 0
f+ = r(. Then A(p+) = r{ = P+. Define £ = and {4 = . Then

O Ap) O Bx
£ =M+ + (1= X)&- for some 0 < A < 1. Since £+ € F4 and rank({4 — ) = 1, it follows

from the definition of R(Fp) = R(Frry(0)) that § € (§—,&+) C R(Fp). Thus, by Lemma

5.1.2, we have (p, A(p)) € S. O

By Lemma 3.2.2, equation uy = div(A(Du)) is uniformly parabolic. So by Theorem 3.1.1,

the initial-Neumann boundary value problem

p

uf = div(A(Du*)) in Qp
ou*/on =0 on 09 x (0,7) (5.8)

u*(x,0) = ug(z), z€f

\
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admits a unique classical solution u* € C2T®1+a/ 2(Qp).

Note here that we may not have the gradient maximum principle (3.4) for the solution u*
since we do not assume the convexity of (2 in Case II: Hollig type equations. However, in the
case that ) is convex, such gradient maximum principle holds, and it invokes advantageous
effects on the existence result, Theorem 2.3.4, in two folds:

1. The profile (s) in Hypothesis (H) can be allowed to have unbounded derivative for
large values of s > 0.

2. Lipschitz solutions to problem (1.2) can be chosen to satisfy certain gradient estimates
in terms of the initial gradient Duy.

Despite of these advantages coming from the convexity assumption on the domain €2, we
plan not to pursue those here. Instead, we are including a larger class of domains for the

existence result.

From conditions (2.10) and (5.7), we can find a function h € C?T%(Q) satisfying
Ah=ugy in , 0Oh/On =0 on 0.
Let vg = Dh € CTY(Q;R™) and define, for (z,t) € Qrp,

t ~
v*(z,t) = vo() +/0 A(Du*(z,s))ds. (5.9)
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Then it is easily seen that ® := (u*,v*) € C1(Qp; RIT™) satisfies (2.4); that is,

;

u*(z,0) = ug(z) (x € Q),

dive® =u* a.e. in Qp, (5.10)

v*(-,t) -n|go =0 Vtel0,T].

\

Hence ® is a boundary function in the sense of Definition 2.2.2.

Next, set M = max{s3 + 1, ||Du*||Lo<3(QT)}, r = o(M) and define

F={(0.AD)) | Ip| € [0,5-(r1)] U [s(r2), M]}

Then we have the following:

Lemma 5.3.2.

(Du™(z,t), v (x,t)) e SUF V (x,t) € Qp.

Proof. Let (x,t) € Qp and p = Du*(x,t); then |p| < M.

If |p| < s_(r1) or s4(r9) < |p| < M, then A(p) = A(p) and hence by (5.9)

(Du™(z,t),vf (2,1)) = (p, A(p)) = (p, A(p)) € F.

If s_(r1) < |p| < s4+(re), then by Lemma 5.3.1 and (5.9)

(Du*(,1),vf (z,1)) = (p, A(p)) € S.

Therefore (Du*,vf) € SUF in Q. O
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Let m = [Juj]| ooy +1. We finally define the admissible set U as follows:

1
U ={u € Chigee "W (@) | Jutll o) < m.
Jov € C’;iece N WJ;OO(QT; R™) such that (5.11)

dive = w and (Du,v;) € SUF a.e. in QT}.

For each € > 0, let U, be given by

WJ;OO(QT; R™) such that dive = u and

Ue={u €U |30 € Chiee

(Du,vy) € SUF ae.in O, and fo_ |vp — A(Du)|dwdt < e|QT|}.

Remark 5.3.3. From (5.10), Lemma 5.3.2, and the definition of U, it follows that u* € U
with its corresponding vector function v*; so U is non-empty. Also U is a bounded subset
of Wi;OO(QT) as S U F is bounded. Moreover, by (i) of Theorem 5.1.5 and the definition
of F, for each u € U, its corresponding vector function v satisfies ||v| L®@Qp) ST Thus
U is indeed an admissible set in the sense of Definition 2.2.3 with respect to the boundary
function ® = (u*,v*). Finally, note that s_(r1) < |[Du*| < s4(r2) on some non-empty open
subset of Qp, and so A(Du*) # A(Du*) on a non-empty open subset of this set; so u* itself
is not a Lipschitz solution to (1.2). In terms of Theorem 2.2.4, it only remains to verify the
density property (2.5) to obtain multiple Lipschitz solutions to problem (1.2). We complete

this task in the next section.
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5.4 Completion of proof of Theorem 2.3.4

Following Section 5.3, we complete the proof of Theorem 2.3.4. As mentioned in Remark
5.3.3, it only remains to prove the following density theorem. Although the proof of this
density theorem is very similar to that of Theorem 4.4.1, since the ingredients towards it are

coming from the current chapter, we sacrifice conciseness for the sake of completeness.
Theorem 5.4.1. For each € > 0, U is dense in U under the L°°-norm.

Proof. Let w € U, n > 0. The goal is to construct a function 4 € U, such that ||a —
ul| Loo(Qp) <11 For clarity, we divide the proof into several steps.

1. Note [[ut|foo(q,) < m — 7 for some 79 > 0 and there exists a vector function

Qp

1
ve Cpiece

N WS;OO(QT; R™) such that divev = v and (Du,v;) € SUF a.e. in Q7. Since both
u and v are piecewise C in Qyp, there exists a sequence of disjoint open sets 1G; };";1 in Qp

with [0G ;| = 0 such that
ue CY(G)), ve CHG;RY) Vi>1, [Qp\UZ,G) =0.

2. Let j € N be fixed. Note that (Du(z),v4(2)) € SUF for all z = (x,t) € G; and that
Hj = {z € Gj | (Du(2),v(z)) € S} is a (relatively) closed set in G; with measure zero.
So G~‘j = G\ Hj is an open subset of G; with |G~’]| = |G}, and (Du(z),v(2)) € SUF for
all z € G

3. Foreach 7 > 0, let G- = {(p,B) € S| |8 — A(p)| > 7, dist((p, 5),0S) > 7)}; then

S = (Ur=0G7) U{(p,B) € S| A(p) = B} as S is open. Since A(p) = V(p, 5) € F, we have

/ |ve(2) — A(Du(2))|dz = lim . lve(2) — A(Du(2))| dz;
G 7—0T1 {ZEGj | (Du(z),v4(2))€Gr}
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thus we can find a T > 0 such that

/F. lor(2) — A(Du(2))| dz < ﬁmﬂ and [00;] =0, (5.12)
J

where F; = {2 € C~¥j | (Du(z),v¢(2)) ¢ QTj} and O; = C~¥j \ Fj is open. Let J be the set of
all indices j € N with O; # (. Then for j & J, F; = ij.

4. We now fix a j € J. Note that O; = {2 € éj | (Du(z),v(2)) € Qq—j} and that
K; = ,C’;Tj is a compact subset of S. Let Q C R™ be a box with Q ¢ Q and I = (0,7).
Applying Theorem 5.2.1 to box Q x I, K;j cC § = 8y, and € = @, we obtain a
constant d; > 0 that satisfies the conclusion of the theorem. By the uniform continuity of A
on compact subsets of R", we can find a 6 = 95,53 > 0 such that

[A(p) — A(p')| < 1—62 (5.13)

whenever |p|, |p| < 2s5 and |p — p/| < 6. Also by the uniform continuity of u, v, and their
gradients on Gj, there exists a v; > 0 such that

u(z) — u(2")] +[Vu(z) = Vu(')| +[v(2) — v(2)]
(5.14)

5 .
+|Vu(z) — Vu(2)| < min{+, 5,6, s5}
whenever 2,2’ € G jand [z — 2| < v;j. We now cover O; (up to measure zero) by a sequence
of disjoint open cubes {Q; X ]]Z: 721 in O; whose sides are parallel to the axes with center

% and diameter [ i <.

p , Du(z%)  wy(2Y)
5. Fix an ¢ € N and write w = (u,v), £ = = Vw(z;.) = J J
B g Dv(z;-) vt(zé)
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By the choice of §; > 0 in Step 4 via Theorem 5.2.1, since Qé- X ]]Z: cQx1and(pp) e K;,
for all sufficiently small p > 0, there exists a function wé = (gpé., @D;) € C’é’o(Qé X IJZ:; R1+m)
satisfying

(a) divel =0in Q) x I,

(b) (V) + Dgi(2), B + (i)u(2) € S for all z € QL x I

and all |(p/, 8') = (p, B)| < 9,

© 1ol e gty < P

(d) szxp 18+ (Wh)e(2) — Alp + Del(2))|dz < €|Q% x 1] /|Q x I},

(e) fQ; goj(a:,t)dx =0forallte Ij’-,

(f) ||(<P§~)t||LOO(Q;;X];;) <p
Here, we let 0 < p < min{y, g—é, T30+ 11} Where Cy, is the constant in Theorem 3.3.1 and C' is
the product of C), and the sum of the lengths of all sides of Q. By (e), we can apply Theorem
3.3.1to goé- on Qé- X ]]Z: to obtain a function gj Rapj € Cl(Q’ IZ R")HW&’OO(Q;- X Ij’:; R™)

such that div g;. = @é in Qé. X ]}: and

d;

2. (by () (5.15)

< 4
-2

1650y < NP e g

6. As vy and A(Du) are essentially bounded in Qp, we can select a finite index set

7 C J x N so that

/ CJulz) — A(Du(2))|dz < §|QT\. (5.16)
Uiye(xmng 9577
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We finally define

(@, 9) = (u,0) + Y XQZ',XIZ',(SO‘?"@D;' +g%) in Qp.
Gaer 77
7. Let us finally check that @ together with ¥ indeed gives the desired result. By

1 ~
NW. (@), o € C!

construction, it is clear that & € C! piece | Wvl;oo(QT;]R”). By

piece

the choice of p in (f) as p < 7, we have ||ﬂt||LOO(QT) < m. Next, let (j,7) € Z, and observe
that for z € Qé- X Ij’:, with (p, 5) = (Du(zé),vt(z;-)) € QTJ., since |z — z;| < l; < vj, it follows

from (5.14) and (5.15) that
|(Du(z), v1(2) + (9))e(2)) = (0, B)] < 65,
and so (D1(z),7¢(z)) € S from (b) above. From (a) and div g;'- = @é, for z € Qé- X IJZ:,
divo(z) = div(v + w;- + g;)(z) = u(2) + 0 + @' (2) = ().
Therefore, u € U. Next, observe

/QT |0y — A(Du)|dz = / lvy — A(Du)|dz

Vjent;
+/ v = A(Du)|dz +/ o —A(Da)|dz
Uiy e(TxNN\T Q5% T; Uiy ez @< 1

=N+ 1h+1Is.

From (5.12) and (5.16), we have I1+15 < %|QT| Note also that for (j,7) € Z and z € Qé. XIJZ:,
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from (5.14), (5.15), and (f),
[#t(2) — A(Da(2))| = [oe(2) + (W5)e(2) + (9))e(2) — A(Du(2) + Dl(2))|

< Jor(=) — vp(2H)] + Jur(h) + (8)e(z) — A(Du(=h) + Dli(2)
+(9D)u(2)| + |A(Du(z}) + Di(2)) — A(Du(z) + D (2))|
T lor(2h) + (=) — A(Du(zh) + Dih(2))]

+A(Du(2) + D'i(2)) — A(Du(z) + Dgl(2)).

From (i) of Theorem 5.1.5 and (5.14), we have \Du(z})—l—Dgo;(zﬂ < 2s5. As (Du(z),04(2)) €
S, we also have |Du(z) + Dgoé-(z)| = |Du(z)| < s3, and by (5.14), \Du(z;) — Du(z)| < 6.

From (5.13) we thus have

[A(Du(=2) + Dgli(2)) — A(Du(z) + Dg(2))| < 1_62

Integrating the above inequality over Q;- X IJZ:, we now obtain from (d) that

i ) € g dap Q5 x I
— < Z|OY 3 J -
4%%M@ Az < 5105 x i+ RS

6 . .
< 510} < 1j).
which yields that I3 < §|Qp|. Hence Iy + I + I3 < €[Qp|, and so @ € Ue. Lastly, from (c)
with p <7 and the definition of @, we have ||@ — UHLOO(QT) <.

The proof is now complete.
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