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ABSTRACT

ON THE EXISTENCE OF LIPSCHITZ SOLUTIONS TO SOME
FORWARD-BACKWARD PARABOLIC EQUATIONS

By

Seonghak Kim

In this dissertation we discuss a new approach for studying forward-backward quasilinear

diffusion equations. Our main idea is motivated by a reformulation of such equations as

non-homogeneous partial differential inclusions and relies on a Baire’s category method. In

this way the existence of Lipschitz solutions to the initial-boundary value problem of those

equations is guaranteed under a certain density condition. Finally we study two important

cases of anisotropic diffusion in which such density condition can be realized.

The first case is on the Perona-Malik type equations. In 1990, P. Perona and J. Malik [35]

proposed an anisotropic diffusion model, called the Perona-Malik model, in image processing

ut = div
( Du

1 + |Du|2
)

for denoising and edge enhancement of a computer vision. Since then the dichotomy of

numerical stability and theoretical ill-posedness of the model has attracted many interests in

the name of the Perona-Malik paradox [28]. Our result in this case provides the model with

mathematically rigorous solutions in any dimension that are even reflecting some phenomena

observed in numerical simulations.

The other case deals with the existence result on the Höllig type equations. In 1983,

K. Höllig [20] proved, in dimension n = 1, the existence of infinitely many L2-weak solu-

tions to the initial-boundary value problem of a forward-backward diffusion equation with



non-monotone piecewise linear heat flux, and this piecewise linearity was much relaxed later

by K. Zhang [45]. The work [20] was initially motivated by the Clausius-Duhem inequal-

ity in the second law of thermodynamics, where the negative of the heat flux may violate

the monotonicity but should obey the Fourier inequality at least. Our result in this case

generalizes [20, 45] to all dimensions.
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Chapter 1

Introduction

The evolution process of many quantities in applications can be modeled by a diffusion

partial differential equation of the form

ut = div(A(Du)) in Ω× (0, T ), (1.1)

where Ω ⊂ Rn is a bounded domain, T > 0 is any fixed number, and u = u(x, t) is the density

of some quantity at position x and time t, with Du = (ux1, · · · , uxn) and ut denoting its

spatial gradient and rate of change, respectively. The vector function A : Rn → Rn here

represents the diffusion flux of the evolution process. The usual heat equation corresponds

to the case of isotropic diffusion given by the Fourier law: A(p) = kp (p ∈ Rn), where k > 0

is the diffusion constant.

For standard diffusion equations, the flux A(p) is assumed to be monotone; namely,

(A(p)− A(q)) · (p− q) ≥ 0 (p, q ∈ R
n).

In this case, equation (1.1) is parabolic and can be studied by the standard methods of

parabolic equations and monotone operators. For example, when the flux A(p) is given by
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A(p) = DpW (p) for some smooth convex function W : Rn → R satisfying

|D2
pW (p)| ≤ Λ,

n
∑

i,j=1

Wpipj (p)ξiξj ≥ λ|ξ|2 (p, ξ ∈ R
n),

where Λ, λ are positive constants, (1.1) can be viewed and thus studied as a certain gradient

flow generated by the convex energy functional

I(u) =

∫

Ω
W (Du(x)) dx

in the context of non-linear semigroup theory and monotone operators; see, e.g., Brezis [6].

In regard to classical solutions, if the flux A(p) satisfies the uniform ellipticity condition

λ|ξ|2 ≤
n
∑

i,j=1

Ai
pj
(p)ξiξj ≤ Λ|ξ|2 (p, ξ ∈ R

n),

the existence and properties of solutions to (1.1) can be examined by establishing vari-

ous a priori estimates and appealing to the Leray-Schauder fixed point theorem; see, e.g.,

Ladyženskaja et al. [29] and Lieberman [30].

However, for some applications of the evolution process in certain important physical

problems, underlying diffusion fluxes may not be monotone, yielding non-parabolic equations

(1.1). In this dissertation, we study the diffusion equation (1.1) with certain non-monotone

fluxes A(p) satisfying Fourier’s inequality: A(p) · p ≥ 0 (p ∈ R
n). We focus on the initial-
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boundary value problem







































ut = div(A(Du)) in ΩT ,

A(Du) · n = 0 on ∂Ω × (0, T ),

u = u0 on Ω× {t = 0},

(1.2)

where ΩT = Ω × (0, T ), n is the outer unit normal on ∂Ω, u0 = u0(x) is a given initial

datum, and the flux A(p) is of the form

A(p) = f(|p|2)p (p ∈ R
n), (1.3)

given by a function f : [0,∞) → R with profile σ(s) = sf(s2) having one of the graphs in

Figures 1.1 and 1.2 below. (Precise structural assumptions on σ(s) = sf(s2) will be given

in Chapter 2.)

s0

σ(s)

σ(s0)

s0

Figure 1.1: Case I: Perona-Malik type profile σ(s).

The two cases in Figures 1.1 and 1.2 correspond to the applications in image processing

proposed by Perona and Malik [35] and in phase transition of thermodynamics studied by
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s0

σ(s)

σ(s1)

σ(s2)

s2s1s∗1 s∗2

Figure 1.2: Case II: Höllig type profile σ(s).

Höllig [20], respectively. For these diffusion equations (1.1), we have

σ′(
√
s) = f(s) + 2sf ′(s) < 0 for some values of s > 0.

In these cases, the diffusion is anisotropic since the diffusion matrix (Ai
pj
(p)), where

Ai
pj
(p) = f(|p|2)δij + 2f ′(|p|2)pipj (i, j = 1, 2, · · · , n),

has the eigenvalues f(|p|2) (of multiplicity n−1) and f(|p|2)+2|p|2f ′(|p|2); hence the diffusion

coefficients could be also negative. In such cases, problem (1.2) becomes forward-backward

parabolic. Moreover, setting

W (p) =

∫ |p|

0
σ(r) dr, I(u) =

∫

Ω
W (Du) dx,

the initial-boundary value problem (1.2) becomes a L2-gradient flow of the energy functional

I(u); however, I(u) is non-convex. Consequently, neither the standard methods of parabolic
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equations and monotone operators nor the non-linear semigroup theory can be applied to

study (1.2).

We now introduce the notion of a weak solution to problem (1.2) reflecting the initial

and boundary conditions as follows.

Definition 1.0.1. We say that a function u ∈ W 1,∞(ΩT ) is a Lipschitz solution to (1.2)

provided that equality

∫

Ω
(u(x, s)ζ(x, s)− u0(x)ζ(x, 0))dx =

∫ s

0

∫

Ω
(uζt − A(Du) ·Dζ)dxdt (1.4)

holds for each ζ ∈ C∞(Ω̄T ) and each s ∈ [0, T ].

Before stating the main results of this dissertation, we begin with a literature review on

forward-backward diffusion problems.

1.1 Review of the literature

In this review, we generally assume the flux A(p) is non-monotone. However, we impose

at least the Fourier inequality: A(p) · p ≥ 0 for all p ∈ Rn, which is consistent with the

Clausius-Duhem inequality in the theory of thermal conductors.

1.1.1 Young measure solutions

A measure-valued or Young measure solution to equation (1.1) is a pair (u, ν) of a function

u in a suitable Sobolev space and a parametrized family ν = (νx,t)(x,t)∈ΩT of probability

5



measures on R
n generated by the spatial gradients of a sequence in the same space, satisfying

∫ T

0

∫

Ω
(〈ν, A〉 ·Dζ + utζ)dxdt = 0

for all ζ ∈ C∞
c (ΩT ), where

〈ν, A〉 =
∫

Rn
A(p)ν(dp) a.e. in ΩT .

In addition, the pair (u, ν) is required to satisfy

Du = 〈ν, id〉 =
∫

Rn
p ν(dp) a.e. in ΩT ,

where id : Rn → Rn is the identity function.

Note that any Lipschitz solution u ∈ W 1,∞(ΩT ) to equation (1.1) in the sense of Defi-

nition 1.0.1 (without initial and boundary conditions) is a Young measure solution with its

corresponding parametrized family δDu = (δDu(x,t))(x,t)∈ΩT of point masses at Du.

There have been extensive studies on Young measure solutions to diffusion equations (1.1)

and their properties under different assumptions on the flux A(p) and Dirichlet or Neumann

boundary conditions. Two early works were accomplished independently by Slemrod [39]

and by Kinderlehrer and Pedregal [27]. In [39], equation (1.1) under Dirichlet or Neumann

boundary conditions is approximated by a sequence of regular and singularly perturbed

problems whose solutions are used to generate a Young measure solution. On the other

hand, the work [27] combines the explicit methods for solutions to evolution equations with

variational methods used to incorporate the oscillatory behavior. Such combination then

leads to the existence of Young measure solutions to evolution problems that may be of
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forward-backward type. However the differences between these two works are subtle. In

[39], the flux A(p) and initial datum u0 are assumed to be sufficiently smooth, A(p) has

strictly sub-quadratic growth, and (1.1) is satisfied in the sense of distributions. In [27],

A(p) is continuous and of linear growth, u0 ∈ H1
0 (Ω), and (1.1) is satisfied in H−1(Ω).

Following the approach in [27], Demoulini [12] established the existence of a unique Young

measure solution to equation (1.1) with flux A(p) as the gradient of some C1 potential φ(p)

satisfying a certain growth condition and under Dirichlet boundary condition. Her method

was further explored by Yin and Wang [43] to extend the existence result involving other

growth conditions on φ(p).

Focusing on the Perona-Malik flux A(p) = p

1+|p|2 (see below), existence and properties

of infinitely many Young measure solutions to problem (1.2) had been studied by Taheri et

al. [40] and by Chen and Zhang [7] for dimensions n = 1 and n = 2, respectively. Non-

uniqueness of solutions here is inevitable due to the intensity of forward-backward nature of

the Perona-Malik flux A(p). This is in sharp contrast to the uniqueness result in [12] as a

rather mild backwardness is inherent in the fluxes treated in that paper.

1.1.2 Perona-Malik model and spatial regularizations

In the original paper of Perona and Malik [35], they proposed an anisotropic diffusion model

(1.2), called the Perona-Malik model, for denoising and edge enhancement of a computer

vision, where Ω ⊂ R
2 is a square and the flux A(p) is given by (see Figure 1.1 for the shape

of profile σ(s))

either A(p) =
p

1 + |p|2/s20
or A(p) = exp

(

− |p|2
2s20

)

p (1.5)
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with a fixed threshold s0 > 0 according to some experimental purposes.

In this model, u(x, t) represents an improved version of the initial gray level u0(x) of a

noisy picture. The anisotropic diffusion div(A(Du)) is forward parabolic in the subcritical

region where |Du| < s0 and backward parabolic in the supercritical region where |Du| > s0.

The expectation of the model is that disturbances with small gradient in the subcritical

region will be smoothed out by the forward parabolic diffusion, while sharp edges corre-

sponding to large gradient in the supercritical region will be enhanced by the backward

parabolic equation. Such expected phenomenology has been implemented and observed in

some numerical experiments; see e.g., Esedoglu [13], showing stability and effectiveness of

the model. On the other hand, many analytical works have shown that the model is highly

ill-posed when the initial datum u0 is transcritical in Ω; namely, there are subregions in Ω

where |Du0| < s0 and where |Du0| > s0, respectively. For such transcritical initial data, due

to the backward parabolicity, even a proper notion and the existence of well-posed solutions

to problem (1.2) have remained largely unsettled; see Kichenassamy [23] in this regard.

There have been many works trying to define a suitable notion of weak solution to

problem (1.2) reflecting expected phenomenology of the model. One way is to study Young

measure solutions to (1.2) as in [40, 7] explained above. Another way is to investigate the

nice solutions to regularized problems and the limiting behaviors of such solutions as the

regularization parameter approaches 0. For this discussion, let us take s0 = 1 in (1.5) and

focus on the flux A(p) = p

1+|p|2 .

As a perturbation of the original problem (1.2), a mild regularization was proposed by

Guidotti [19] including a viscous term (δ > 0):

ut = div
(

( 1

1 + |Du|2 + δ
)

Du
)

, (1.6)
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which is still of forward-backward type at least for δ < 1/8. It is the formal gradient flow of

the energy functional

Iδ(u) =
1

2

∫

Ω

(

log(1 + |Du|2) + δ|Du|2
)

dx.

This functional has a non-trivial convexification which uniquely determines a Young mea-

sure solution by means of approximate weak Young measure solutions. The construction

of these approximate solutions was carried out by following the approach of [12]. While

Young measure solutions in [40, 7] are not unique, those in [12, 19] are unique due to the

reason mentioned above. In a dynamical viewpoint, regularization (1.6) seems to replace

the staircasing effect of the Peorna-Malik equation with a micro-ramping phenomenon by

which the center of mass (that is, Young measure) solution is Lipschitz continuous while its

gradient exhibits a micro-structure composed of gradients of small and large size. One of

the main results of this dissertation actually verifies such phenomenon for exact Lipschitz

solutions to the Perona-Malik type equations having profiles σ(s) as in Figure 1.1 (including

the Perona-Malik equation itself) without regularization (1.6).

In dimension n = 1, fourth order regularization has been studied by Bellettini et al. [3]

and by Bellettini and Fusco [2]. These papers studied the singular perturbation (ǫ > 0):

ut = −ǫ2uxxxx +
( ux
1 + u2x

)

x

whose associated energy functional is given by

Iǫ(u) =
1

2

∫ 1

0

(

ǫu2xx + log(1 + u2x)
)

dx.

9



In [3], it had been observed that infinitely many different evolutions may arise under the

same initial datum u0 by considering sequences uǫ0 of initial data that converge uniformly to

u0 as ǫ → 0+. In [2], using the Γ-limit convergence technique with appropriate scaling, the

authors could capture the long time behavior of the Perona-Malik equation with evolution

of piecewise constant data.

1.1.3 Classical solutions

Let us assume for the moment that Ω ⊂ Rn is a bounded C1 domain and that A(p) = p

1+|p|2 .

Given a point x ∈ Ω̄, we say that the initial datum u0 ∈ C1(Ω̄) is subcritical at x if

|Du0(x)| < 1, supercritical at x if |Du0(x)| > 1, and critical at x if |Du0(x)| = 1. The

initial datum u0 is transcritical in Ω if there are two points x, y ∈ Ω with |Du0(x)| < 1 and

|Du0(y)| > 1.

Existence of global or local classical solutions to problem (1.2) depends heavily on the

initial datum u0. Kawohl and Kutev [22] showed that a global classical solution exists

in any dimension if u0 is subcritical on Ω̄. However, in this case, the convexity of Ω is

required to guarantee such global existence as pointed out by Kim [24]. In [22], they also

proved that (1.2) cannot admit a global classical solution for n = 1 if u0 is transcritical

in Ω under some technical assumptions, and these assumptions were completely removed

later by Gobbino [17]. Concerning the Perona-Malik type equations, it had been the general

belief that classical solutions can only exist if the initial data are smooth, even analytic, at

supercritical points; this was formally streamlined by Kichenassamy [23]. In regard to the

class of suitable initial data for classical solutions, Ghisi and Gobbino [14] established that

for n = 1, the set of initial data for which problem (1.2) has a local classical solution is dense

in C1(Ω̄).
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The situation concerning the existence of a global classical solution to (1.2) with a trans-

critical initial datum for n ≥ 2 turns out to be quite different from the case n = 1. The first

existence result of global classical solutions with u0 transcritical for n ≥ 2 was obtained by

Ghisi and Gobbino [15], where they constructed a class of global radial C2,1 solutions with

suitably chosen radial initial data transcritical on an annulus centered at the origin; these

solutions also have the property of finite-time extinction of supercritical region. In contrast

to the one-dimensional results [22, 17] mentioned above, their result exhibited a quite differ-

ent feature of the higher dimensional problem. On the other hand, in the radial case, Ghisi

and Gobbino [16] also proved that a global C1 solution cannot exist if the gradient of initial

datum u0 is very large at a point. Therefore, requirement of regularity for solutions (e.g.,

classical or C1) would prevent the existence of such solutions if the initial data should be

arbitrarily given and transcritical.

1.1.4 Lipschitz solutions in dimension n = 1

Let the flux A(p) be given by (1.3) with its profile σ(s) as in Figures 1.1 or 1.2. When the

initial datum u0 is any given smooth function (satisfying certain compatibility conditions

on ∂Ω), it seems natural to lower the expectation on the regularity of solutions by finding

plausible weak solutions to problem (1.2). Even under the lowering of regularity have enor-

mous difficulties occurred on the existence of suitable weak solutions as we discussed above.

To our best knowledge, Zhang [44, 45] was the first to successfully prove that, for n = 1,

there are infinitely many Lipschitz solutions to (1.2) for any given non-constant smooth

initial data u0 (with an extra assumption when the profile σ(s) is as in Figure 1.2); his

pivotal idea was to reformulate the one-dimensional Perona-Malik or Höllig type equations

into 2 × 2 non-homogeneous partial differential inclusions and then to prove the existence

11



using a modified method of convex integration following the ideas of Kirchheim [28] and of

Müller and Sverák [32]. Before Zhang’s work [45], in the pioneering work of Höllig [20], it

was proved that for n = 1, there are infinitely many L2-weak solutions to (1.2) when the

profile σ(s) is piecewise linear as in Figure 1.3; however, the method of Höllig cannot be

applied to generalized profiles σ(s) as in Figure 1.2.

s0

σ(s)

σ(s1)

σ(s2)

s2s1

Figure 1.3: Höllig’s piecewise linear profile σ(s).

1.1.5 Lipschitz solutions in all dimensions

Recently, Kim and Yan [25] extended Zhang’s method [44] to study the Perona-Malik type

equations in all dimensions n for balls Ω = {x ∈ Rn : |x| < R} and non-constant radi-

ally symmetric smooth initial data u0. In this case the n-dimensional equation for radial

solutions can still be reformulated as a 2× 2 non-homogeneous partial differential inclusion.

However, for general domains and initial data, the n-dimensional problem (1.2) can only be

reformulated as an (1+ n)× (n+1) non-homogeneous partial differential inclusion that has

some uncontrollable gradient components, making the construction of Lipschitz solutions to

this differential inclusion hopeless. In a very recent work of Kim and Yan [26], this difficulty

was overcome by developing a suitable density method, still motivated by the method of
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differential inclusion but based on Baire’s category method. The result is that for all smooth

convex domains Ω ⊂ Rn and arbitrary smooth initial data u0 ∈ C2+α(Ω̄) with Du0 · n = 0

on ∂Ω, there exist infinitely many Lipschitz solutions to (1.2) with the exact Perona-Malik

diffusion flux A(p) = p

1+|p|2 (p ∈ Rn). The proof heavily relies on the explicit formula for the

rank-one convex hull of the matrix set defined by this special function; such explicit formula

for the general flux function A(p) is impossible.

1.2 Main results

The main purpose of this dissertation is to explore a new approach for the existence of

Lipschitz solutions to non-parabolic problems (1.2), which is carried out in Chapter 2 as a

general existence theorem under some density condition, Theorem 2.2.4. However the general

existence theorem would be meaningless if such density condition cannot be realized for a

given non-monotone flux A(p). We indeed present two different classes of non-monotone

fluxes A(p) of the form (1.3) having profiles σ(s) either as in Figure 1.1 or as in Figure 1.2

with which the density condition can be made true to extract Lipschitz solutions. To state

these results precisely, let us assume the following on the domain Ω and initial datum u0:



















Ω ⊂ Rn is a bounded domain with ∂Ω of C2+α,

u0 ∈ C2+α(Ω̄) is non-constant with Du0 · n|∂Ω = 0,

(1.7)

where α ∈ (0, 1) is a given number.

Although we will repeat the statements of the concrete existence results in Chapter 2,

we introduce them here as a summary of the dissertation.
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1.2.1 Perona-Malik type equations

Let the flux A(p) be of the form (1.3) with profile σ(s) as in Figure 1.1. Then we have the

following.

Theorem 1.2.1 (Perona-Malik type). Let Ω and u0 satisfy (1.7) with Ω convex, and let

ΩT = Ω× (0, T ) for a given T > 0. Then there exist infinitely Lipschitz solutions u to (1.2).

A detailed version of this result is available in Theorem 2.3.2 that provides the Perona-

Malik model with mathematically rigorous solutions reflecting some phenomena observed in

numerical simulations. Note that this result generalizes those of [44, 26].

1.2.2 Höllig type equations

Let the flux A(p) be of the form (1.3) with profile σ(s) as in Figure 1.2. Then the result is

as follows.

Theorem 1.2.2 (Höllig type). Let Ω and u0 satisfy (2.10) with |Du0(x0)| ∈ (s∗1, s
∗
2) for

some x0 ∈ Ω, and let ΩT = Ω × (0, T ) for a given T > 0. Then there exist infinitely many

Lipschitz solutions u to (1.2).

This is to generalize the results of [20, 45] to Höllig type profiles σ(s) illustrated in Figure

1.2 for all dimensions.

Precise structural assumptions on the profiles σ(s) in Theorems 1.2.1 and 1.2.2 are given

in Chapter 2. These theorems are completely proved in Chapters 4 and 5, respectively.

Chapter 3 is reserved for preliminary results that may be of independent interest.
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Chapter 2

A new approach by Baire’s category

method

The purpose of this chapter is to design a new functional approach to study problem (1.2),

which is based on a Baire’s category method. As a preliminary analytical background, we

introduce a version of the Baire category theorem on Baire-one functions. We then introduce

two important classes of non-monotone fluxes A(p) with which the approach can be applied

to (1.2). In doing so, the concrete existence results on the Perona-Malik and Höllig type

equations are stated along with the coexistence result on radial and non-radial solutions for

the Perona-Malik type when the domain Ω is a ball and the initial datum u0 is radial.

2.1 Baire-one functions

In this preliminary section, we introduce a version of the Baire category theorem on Baire-

one functions following the exposition of [9]. Here, let X, Y denote metric spaces with

corresponding metrics dX , dY .

We begin with basic terminologies.

Definition 2.1.1. Let f : X → Y . We define the oscillation of f at a point x0 ∈ X by

ωf (x0) = lim
δ→0+

sup
x,y∈BX (x0,δ)

dY (f(x), f(y)),
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where BX(x0, δ) is the open ball in X with center x0 and radius δ > 0. The function

ωf : X → [0,∞] is called the oscillation of f .

Definition 2.1.2. We say that f : X → Y is a Baire-one function if there exists a sequence

{fj}∞j=1 of continuous functions from X into Y such that

lim
j→∞

fj(x) = f(x) in Y , ∀x ∈ X.

It is very easy to prove the following; we skip the proof.

Proposition 2.1.3. Let f : X → Y . Then

(i) f is continuous at a point x0 ∈ X if and only if ωf (x0) = 0,

(ii) ∀ǫ > 0, the set Ωǫ
f := {x ∈ X |ωf (x) < ǫ} is open in X.

Remark 2.1.4. Let f : X → Y . Let Cf = {x ∈ X | f is continuous at x} and Df = X \ Cf .

By Proposition 2.1.3, we have

Df = {x ∈ X |ωf (x) > 0} = ∪j∈N{x ∈ X |ωf (x) ≥ 1/j},

which is an Fσ set. Also, Cf = ∩j∈N{x ∈ X |ωf (x) < 1/j} is a Gδ set.

Some basic definitions on metric spaces are included here.

Definition 2.1.5. (i) A set N ⊂ X is called nowhere dense in X if the closure N̄ of N

contains no non-empty open subset of X , that is, the open set N̄c = X \ N̄ is dense in

X .

(ii) A set F ⊂ X is said to be of the first category if it is the countable union of nowhere

dense subsets of X .
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(iii) A set S ⊂ X that is not of the first category is said to be of the second category.

The Baire category theorem below is so standard that it is contained in almost all real

analysis books; see e.g., [5].

Theorem 2.1.6 (Baire Category Theorem: Version I). Let X be complete. Then any count-

able intersection of dense open subsets of X is dense in X.

The theorem below is the main part of this section whose proof is provided for reader’s

convenience.

Theorem 2.1.7 (Baire Category Theorem: Version II). Let X be complete. If f : X → Y

is a Baire-one function, then Df is of the first category; so Cf is dense in X.

Proof. In view of Remark 2.1.4, it suffices to show that for each ǫ > 0, the set Fǫ := {x ∈

X |ωf (x) ≥ 5ǫ} is nowhere dense in X . So fix an ǫ > 0.

Since f is a Baire-one function, we can choose a sequence {fj}∞j=1 of continuous functions

from X into Y such that

lim
j→∞

fj(x) = f(x) in Y , ∀x ∈ X.

For each ν ∈ N, define

Eν = ∩i,j≥ν{x ∈ X | dY (fi(x), fj(x)) ≤ ǫ}.

We show that Eν is closed in X for each ν ∈ N. To do this, let i, j ∈ N. Then it is sufficient

to check that x 7→ dY (fi(x), fj(x)) is a continuous function from X into [0,∞). Let x0 ∈ X
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and η > 0. Since fi, fj are continuous (at x0), there exists a δ = δ(η, i, j) > 0 such that

x ∈ X, dX(x0, x) < δ =⇒ dY (fi(x0), fi(x)) < η/2, dY (fj(x0), fj(x)) < η/2

=⇒ |dY (fi(x0), fj(x0))− dY (fi(x), fj(x))| ≤ dY (fi(x0), fi(x)) + dY (fj(x), fj(x0)) < η.

Hence the function x 7→ dY (fi(x), fj(x)) is continuous at x0.

Note E1 ⊂ E2 ⊂ · · · ⊂ X . We now check X = ∪ν∈NEν . Choose any x0 ∈ X . Since

fν(x0) → f(x0) in Y as ν → ∞, there is an N ∈ N such that dY (fi(x0), fj(x0)) ≤ ǫ ∀i, j ≥

N . Thus

x0 ∈ EN ⊂ ∪ν∈NEν .

Thus X = ∪ν∈NEν .

Let I be any closed set in X with interior intI 6= ∅. Then

I = I ∩X = ∪ν∈N(Eν ∩ I),

where each Eν∩I is closed inX . If each Eν∩I is nowhere dense inX , then Ic = ∩ν∈N(Eν∩I)c

is dense in X by Theorem 2.1.6, and so Ic ∩ intI 6= ∅, a contradiction. So there is an index

ν0 ∈ N such that Eν0 ∩ I is not nowhere dense in X ; that is, there exists a non-empty open

set J in X with J ⊂ Eν0 ∩ I. Thus for each x ∈ J , we have dY (fi(x), fj(x)) ≤ ǫ for all

i, j ≥ ν0, and in particular,

dY (fν0(x), f(x)) ≤ ǫ,

since fj(x) → f(x) in Y . By the continuity of fν0 , for each x0 ∈ J , there is a neighborhood
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I(x0) of x0 in the open set J such that

x ∈ I(x0) =⇒ dY (fν0(x0), fν0(x)) ≤ ǫ

=⇒ dY (fν0(x0), f(x)) ≤ dY (fν0(x0), fν0(x)) + dY (fν0(x), f(x)) ≤ 2ǫ

from the above inequality. Thus, for each x0 ∈ J , we have dY (f(x), f(y)) ≤ 4ǫ for every

x, y ∈ I(x0), and so ωf (x0) ≤ 4ǫ; so x0 6∈ Fǫ. This implies J ⊂ F c
ǫ ∩ I.

Putting everything together, we can conclude that for any closed set I ⊂ X with intI 6= ∅,

there is a non-empty open set J in X with J ⊂ F c
ǫ ∩ I. So F c

ǫ ∩ O 6= ∅ for any non-empty

open set O in X . Therefore, Fǫ is nowhere dense in X .

2.2 General existence theorem

To set up a general approach for studying problem (1.2), we assume, in this section, the

domain Ω has a Lipschitz boundary ∂Ω and the initial datum u0 ∈ W 1,∞(ΩT ). Without

loss of generality, we assume
∫

Ω
u0(x) dx = 0, (2.1)

since otherwise we can solve (1.2) for initial datum ũ0 = u0 − ū0 with ū0 =
1
|Ω|
∫

Ω u0 dx.

Our new approach is motivated by the following observation.

Proposition 2.2.1. Suppose u ∈ W 1,∞(ΩT ) is such that u(x, 0) = u0(x) (x ∈ Ω), there

exists a vector function v ∈ W 1,2((0, T );L2(Ω;Rn)) with weak time derivative vt satisfying

vt = A(Du) a.e. in ΩT , (2.2)
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and for each ζ ∈ C∞(Ω̄T ) and each t ∈ [0, T ],

∫

Ω
v(x, t) ·Dζ(x, t) dx = −

∫

Ω
u(x, t)ζ(x, t) dx. (2.3)

Then u is a Lipschitz solution to (1.2).

Proof. To verify (1.4), given any ζ ∈ C∞(Ω̄T ), let

g(t) =

∫

Ω
u(x, t)ζ(x, t)dx, h(t) =

∫

Ω
u(x, t)ζt(x, t)dx (t ∈ [0, T ]).

Then by (2.3), for each ψ ∈ C∞
c (0, T ),

∫ T

0
ψtgdt = −

∫ T

0

∫

Ω
ψtv ·Dζdxdt,

∫ T

0
ψhdt = −

∫ T

0

∫

Ω
ψv ·Dζtdxdt.

Since v ∈ W 1,2((0, T );L2(Ω;Rn)) and vt = A(Du) a.e. in ΩT , we have

∫ T

0

∫

Ω
(ψDζ)t · vdxdt = −

∫ T

0

∫

Ω
A(Du) · ψDζ dxdt.

As (ψDζ)t = ψtDζ + ψDζt, combining the previous equations, we obtain

∫ T

0
ψtg dt =

∫ T

0
ψ

(

−h +

∫

Ω
A(Du) ·Dζ dx

)

dt,

which proves that g is weakly differentiable in (0, T ) with its weak derivative

g′(t) = h(t)−
∫

Ω
A(Du(x, t)) ·Dζ(x, t) dx a.e. t ∈ (0, T ).

Upon integrating this, (1.4) follows for each s ∈ [0, T ].
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Condition (2.3) means that the following condition holds in the sense of distributions in

Ω for each t ∈ [0, T ]:

div v(·, t) = u(·, t), v(·, t) · n|∂Ω = 0.

If dimension n = 1, this condition together with (2.2) implies v ∈ W 1,∞(ΩT ;R
1). However

for n ≥ 2, since it is impossible to bound ‖Dv‖L∞(ΩT ) in terms of div v, the function v may

not be in W 1,∞(ΩT ;R
n); this is the reason we only assume v ∈ W 1,2((0, T );L2(Ω;Rn)) in

Proposition 2.2.1. Nevertheless, we still try to approximate such v’s by some functions in

W 1,∞(ΩT ;R
n).

To choose suitable approximating functions, we first introduce the following definition.

Definition 2.2.2. A function Φ = (u∗, v∗), with u∗ ∈ W 1,∞(ΩT ) and v
∗ ∈ W 1,∞(ΩT ;R

n),

is called a boundary function if it satisfies







































u∗(x, 0) = u0(x), x ∈ Ω,

div v∗(x, t) = u∗(x, t), a.e. (x, t) ∈ ΩT ,

v∗(·, t) · n|∂Ω = 0, t ∈ [0, T ].

(2.4)

Fix a boundary function Φ = (u∗, v∗). We denote by W
1,∞
u∗ (ΩT ), W

1,∞
v∗ (ΩT ;R

n) the

usual Dirichlet classes with boundary traces u∗, v∗, respectively. We also define the follow-

ing.

Definition 2.2.3. A class U ⊂ W
1,∞
u∗ (ΩT ) is called an admissible set provided that U 6= ∅

is bounded in W
1,∞
u∗ (ΩT ) and that for each u ∈ U , there exists a vector function v ∈
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W
1,∞
v∗ (ΩT ;R

n) satisfying

div v = u a.e. in ΩT , ‖vt‖L∞(ΩT ) ≤ r,

where r > 0 is a fixed number. For an admissible set U and each ǫ > 0, let Uǫ be the set of

all u ∈ U such that there exists a function v ∈ W
1,∞
v∗ (ΩT ;R

n) satisfying

div v = u a.e. in ΩT , ‖vt‖L∞(ΩT ) ≤ r,
∫

ΩT

|vt(x, t)− A(Du(x, t))| dxdt ≤ ǫ|ΩT |.

Our new approach is the following general existence theorem under the pivotal density

hypothesis of Uǫ in U , which is based on the Baire category theorem in the previous section.

Theorem 2.2.4. Let U ⊂W
1,∞
u∗ (ΩT ) be an admissible set satisfying the density property:

Uǫ is dense in U under the L∞-norm for each ǫ > 0. (2.5)

Then, given any ϕ ∈ U , for each δ > 0, there exists a Lipschitz solution u ∈ W
1,∞
u∗ (ΩT ) to

(1.2) satisfying ‖u − ϕ‖L∞(ΩT ) < δ. Furthermore, if U contains a function which is not a

Lipschitz solution to (1.2), then (1.2) itself admits infinitely many Lipschitz solutions.

Proof. For clarity, we divide the proof into several steps.

1. Let X be the closure of U in the metric space L∞(ΩT ). Then (X , L∞) is a non-empty

complete metric space. By assumption, each Uǫ is dense in X . Moreover, since U is bounded

in W
1,∞
u∗ (ΩT ), we have X ⊂W

1,∞
u∗ (ΩT ).

2. Let Y = L1(ΩT ;R
n). For h > 0, define Th : X → Y as follows. Given any u ∈ X ,
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write u = u∗ + w with w ∈ W
1,∞
0 (ΩT ) and define

Th(u) = Du∗ +D(ρh ∗ w),

where ρh(z) = h−Nρ(z/h), with z = (x, t) and N = n+1, is the standard h-mollifier in RN ,

and ρh ∗w is the usual convolution in RN with w extended to be zero outside Ω̄T . Then, for

each h > 0, the map Th : (X , L∞) → (Y , L1) is continuous, and for each u ∈ X ,

lim
h→0+

‖Th(u)−Du‖
L1(ΩT )

= lim
h→0+

‖ρh ∗Dw −Dw‖
L1(ΩT )

= 0.

Therefore, the spatial gradient operator D : X → Y is the pointwise limit of a sequence

of continuous functions Th : X → Y ; hence D : X → Y is a Baire-one map. By the Baire

category theorem, Theorem 2.1.7, there exists a residual set G ⊂ X such that the operator

D is continuous at each point of G. Since X \ G is of the first category, the set G is dense

in X . Therefore, given any ϕ ∈ X , for each δ > 0, there exists a function u ∈ G such that

‖u− ϕ‖L∞(ΩT ) < δ.

3. We now prove that each u ∈ G is a Lipschitz solution to (1.2). Let u ∈ G be given.

By the density of Uǫ in (X , L∞) for each ǫ > 0, for every j ∈ N, there exists a function

uj ∈ U1/j such that ‖uj − u‖L∞(ΩT ) < 1/j. Since the operator D : (X , L∞) → (Y , L1) is

continuous at u, we have Duj → Du in L1(ΩT ;R
n). Furthermore, from the definition of

U1/j, there exists a function vj ∈ W
1,∞
v∗ (ΩT ;R

n) such that for each ζ ∈ C∞(Ω̄T ) and each
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t ∈ [0, T ],

∫

Ω
vj(x, t) ·Dζ(x, t)dx = −

∫

Ω
uj(x, t)ζ(x, t) dx,

‖(vj)t‖L∞(ΩT ) ≤ r,

∫

ΩT

|(vj)t − A(Duj)| dxdt ≤
1

j
|ΩT |.

(2.6)

Since vj(x, 0) = v∗(x, 0) ∈ W 1,∞(Ω;Rn) and ‖(vj)t‖L∞(ΩT ) ≤ r, it follows that both

sequences {vj} and {(vj)t} are bounded in L2(ΩT ;R
n) ≈ L2((0, T );L2(Ω;Rn)). So we may

assume vj ⇀ v and (vj)t ⇀ vt in L
2((0, T );L2(Ω;Rn)) for some v ∈ W 1,2((0, T );L2(Ω;Rn)),

where ⇀ denotes the weak convergence. Upon taking the limit as j → ∞ in (2.6), since

v ∈ C0([0, T ];L2(Ω;Rn)) and A ∈ C0(Rn;Rn), we obtain

∫

Ω
v(x, t) ·Dζ(x, t) dx = −

∫

Ω
u(x, t)ζ(x, t) dx (t ∈ [0, T ]),

vt(x, t) = A(Du(x, t)) a.e. (x, t) ∈ ΩT .

Consequently, by Proposition 2.2.1, u is a Lipschitz solution to (1.2).

4. Finally, assume U contains a function which is not a Lipschitz solution to (1.2); hence

G 6= U . Then G cannot be a finite set, since otherwise the L∞-closure X = G = U would be

a finite set, making U = G. Therefore, in this case, (1.2) admits infinitely many Lipschitz

solutions.

The proof is complete.

In fact, only when problem (1.2) is non-parabolic (that is, A(p) is non-monotone) could

Theorem 2.2.4 yield the non-uniqueness result.

Corollary 2.2.5. Assume the density property (2.5) holds for some admissible set U ⊂

W
1,∞
u∗ (ΩT ). Suppose A : Rn → Rn is monotone. Then any function u ∈ U must be a
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Lipschitz solution to (1.2); in this case, U contains precisely one function.

Proof. We follow the proof of Theorem 2.2.4. The monotonicity of the flux A(p) implies

that there exists at most one Lipschitz solution to (1.2). Since U 6= ∅, we have G 6= ∅, where

every function in G is a Lipschitz solution to (1.2). Thus U = G = {ū}, where ū is the unique

Lipschitz solution to (1.2).

We also have the following general property for Lipschitz solutions to (1.2) when the flux

A(p) satisfies Fourier’s inequality.

Proposition 2.2.6. Let A : Rn → Rn satisfy Fourier’s inequality: A(p) · p ≥ 0 for all

p ∈ Rn. Then any Lipschitz solution u to (1.2) satisfies

min
Ω̄

u0 ≤ u(x, t) ≤ max
Ω̄

u0 in ΩT . (2.7)

Proof. Let u ∈ W 1,∞(ΩT ) be any Lipschitz solution to (1.2). By (1.4), for all ζ ∈ C∞(Ω̄T ),

∫

ΩT

ut(x, t)ζ(x, t)dxdt = −
∫

ΩT

A(Du) ·Dζdxdt;

hence by approximation, this equality holds for all ζ ∈ W 1,∞(ΩT ). Taking ζ(x, t) = φ(x, t)ψ(t)

with arbitrary φ ∈ W 1,∞(ΩT ) and ψ ∈ W 1,∞(0, T ), we deduce that

∫

Ω
ut(x, t)φ(x, t) dx = −

∫

Ω
A(Du(x, t)) ·Dφ(x, t) dx

for a.e. t ∈ (0, T ) and all φ ∈ W 1,∞(ΩT ). Now taking φ = u2k−1 with k = 1, 2, · · · , it follows
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from the Fourier inequality of the flux A(p) that for a.e. t ∈ (0, T ),

d

dt

(

∫

Ω
u2kdx

)

= 2k

∫

Ω
utφ dx = −2k

∫

Ω
A(Du) ·Dφdx

= −2k(2k − 1)

∫

Ω
u2k−2A(Du) ·Dudx ≤ 0.

From this we deduce that the L2k(Ω)-norm of u(·, t) is non-increasing on t ∈ [0, T ]; in

particular,

‖u(·, t)‖
L2k(Ω)

≤ ‖u0‖L2k(Ω) ∀ t ∈ [0, T ], k = 1, 2, · · · .

Letting k → ∞, we obtain ‖u(·, t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω); hence

‖u‖L∞(ΩT ) = ‖u0‖L∞(Ω). (2.8)

Let

m1 = min
Ω̄

u0, m2 = max
Ω̄

u0,

and define Ã(p) = −A(−p). Observe that Ã(p) also satisfies the Fourier inequality: Ã(p)·p ≥

0 ∀p ∈ Rn.

We show m1 ≤ u(x, t) ≤ m2 for all (x, t) ∈ ΩT to complete the proof. We consider three

cases.

Case 1: m2 > 0 and |m1| ≤ m2. In this case, ‖u0‖L∞(Ω) = m2; so by (2.8), for all

(x, t) ∈ ΩT ,

u(x, t) ≤ ‖u‖L∞(ΩT ) = ‖u0‖L∞(Ω) = m2.

To obtain the lower bound, let ũ0 = −u0 +m2 +m1 and ũ = −u +m2 +m1. Then ũ is a

Lipschitz solution to (1.2) with A, u0 replaced by Ã, ũ0, respectively. Since m1 ≤ ũ0(x) ≤
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m2, we have ũ(x, t) ≤ m2 as above; hence u(x, t) ≥ m1 for all (x, t) ∈ ΩT .

Case 2: m2 > 0 and m1 < −m2. Let ũ0 = −u0 and ũ = −u. Then ũ is a Lipschitz

solution to (1.2) with A, u0 replaced by Ã, ũ0, respectively. Since −m2 ≤ ũ0(x) ≤ −m1,

−m1 > 0, and | − m2| = m2 ≤ −m1, it follows from Case 1 that −m2 ≤ ũ(x, t) ≤ −m1;

hence m1 ≤ u(x, t) ≤ m2 for all (x, t) ∈ ΩT .

Case 3: m2 ≤ 0. In this case, m1 ≤ 0. If m1 = 0 then m2 = 0 and hence u0 ≡ 0; so,

by (2.8), u ≡ 0. Next assume m1 < 0. Let again as in Case 2 ũ0 = −u0 and ũ = −u. Since

−m2 ≤ ũ0(x) ≤ −m1 and −m1 > 0, | −m2| = −m2 ≤ −m1, it follows again from Case 1

that −m2 ≤ ũ(x, t) ≤ −m1; hence m1 ≤ u(x, t) ≤ m2 for all (x, t) ∈ ΩT .

2.3 Existence theorems on anisotropic diffusions

In what follows, we study problem (1.2) for non-monotone diffusion fluxes A(p) of the form

A(p) = f(|p|2)p (p ∈ R
n), (2.9)

where f : [0,∞) → R is a function with profile σ(s) = sf(s2) having one of the graphs

in Figure 2.1 below. Precise structural assumptions on σ(s) will be given in the following

subsections.

Concerning the domain Ω and initial datum u0, we assume the following hereafter:



















Ω ⊂ Rn is a bounded domain with ∂Ω of C2+α,

u0 ∈ C2+α(Ω̄) is non-constant with Du0 · n|∂Ω = 0,

(2.10)

where α ∈ (0, 1) is a given number.
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Figure 2.1: Graphs of two profiles σ(s). Case I: Perona-Malik type. Case II: Höllig type.

We aim to apply Theorem 2.2.4 to study the existence of Lipschitz solutions to (1.2).

The rest of the dissertation is devoted to constructing some admissible sets U satisfying the

density property (2.5). Of course, such constructions depend on the initial datum u0 and

profile σ(s) illustrated in Figure 2.1.

2.3.1 Case I: Perona-Malik type equations

In this case, we assume the following on the profile σ(s) = sf(s2):

Hypothesis (PM) (See Figure 2.1.)

(i) There exists a number s0 > 0 such that

f ∈ C0([0,∞)) ∩ C3([0, s20)) ∩ C1(s20,∞).
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(ii) σ′(s) > 0 ∀s ∈ [0, s0), σ
′(s) < 0 ∀s ∈ (s0,∞), and

lim
s→∞ σ(s) = 0.

We now state the existence result for the Perona-Malik type equations. In this case, for

each r ∈ (0, σ(s0)), let s−(r) ∈ (0, s0) and s+(r) ∈ (s0,∞) denote the unique numbers with

r = σ(s±(r)).

Theorem 2.3.1 (Perona-Malik type). Let Ω and u0 satisfy (2.10) with Ω convex, and let

ΩT = Ω× (0, T ) for a given T > 0. Then there exist infinitely Lipschitz solutions u to (1.2).

Depending on the size of ||Du0||L∞(Ω), our solutions satisfy further properties as de-

scribed in the theorem below; we prove this detailed version that implies Theorem 2.3.1.

Theorem 2.3.2. In Theorem 2.3.1, let M0 = ||Du0||L∞(Ω). Then for each r ∈ (0, σ(M0)),

there exists a number l = lr ∈ (0, r) such that for all r̃ ∈ (l, r) and all but at most countably

many r̄ ∈ (0, r̃), there exist two disjoint open sets Ω1
T ,Ω

2
T ⊂ ΩT with |Ω1

T ∪Ω2
T | = |ΩT | and

infinitely many Lipschitz solutions u to (1.2) satisfying

u ∈ C2+α,1+α/2(Ω̄1
T ), ut = div(A(Du)) pointwise in Ω1

T ,

|Du(x, t)| < s−(r̄) ∀(x, t) ∈ Ω1
T , Ωr̄

0 ⊂ ∂Ω1
T ,

|Sr|+ |Lr,r̃| = |Ω2
T |, |Lr,r̃| > 0,

where

Ωr̄
0 = {(x, 0) | x ∈ Ω, |Du0(x)| < s−(r̄)},
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Sr = {(x, t) ∈ Ω2
T | |Du(x, t)| ≤ s−(r)}, Lr,r̃ = {(x, t) ∈ Ω2

T | s+(r) ≤ |Du(x, t)| ≤ s+(r̃)}.

Chapter 4 is devoted to the complete proof of this theorem.

Remark 2.3.3. By Hypothesis (PM), limr→0+ s−(r) = 0 and limr→0+ s+(r) = ∞. So

if 0 < r ≪ σ(M0) is fixed, then corresponding Lipschitz solutions u have large and small

gradient regimes Lr,r̃ and Ω1
T ∪ Sr up to measure zero that represent sharp edge and almost

constant parts of u in ΩT , respectively. These properties together with (2.7) for solutions u

are somehow reflected in numerical simulations; see Figure 2.2 taken from Perona and Malik

[35]. On the other hand, it had been observed in [2, 3] that as the limits of solutions to a

class of regularized equations, infinitely many different evolutions may arise under the same

initial datum u0. Our non-uniqueness result seems to reflect this pathological behavior of

forward-backward problem (1.2).

2.3.2 Case II: Höllig type equations

Next, we assume the following on the profile σ(s) = sf(s2):

Hypothesis (H) (See Figure 2.1.)

(i) There exist two numbers s2 > s1 > 0 such that

f ∈ C0([0,∞)) ∩ C1+α([0, s21) ∪ (s22,∞)).

(ii) σ′(s) > 0 ∀s ∈ [0, s1) ∪ (s2,∞), σ(s1) > σ(s2) > 0, and λ ≤ σ′(s) ≤ Λ ∀s ≥ 2s2 for

some constants Λ ≥ λ > 0. Let s∗1 ∈ (0, s1), s
∗
2 ∈ (s2,∞) denote the unique numbers

with σ(s∗1) = σ(s2), σ(s
∗
2) = σ(s1), respectively.
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Figure 2.2: Scale-space using anisotropic diffusion with flux A(p) = p

1+|p|2/s20
. Three dimen-

sional plot of the brightness of Figure 12 in [35]. (a) Original image, (b) after smoothing
with anisotropic diffusion.

We state the existence result for the Höllig type equations. In this case, for each r ∈

(σ(s2), σ(s1)), let s−(r) ∈ (s∗1, s1) and s+(r) ∈ (s2, s
∗
2) denote the unique numbers with

r = σ(s±(r)).

Theorem 2.3.4 (Höllig type). Let Ω and u0 satisfy (2.10) with |Du0(x0)| ∈ (s∗1, s
∗
2) for

some x0 ∈ Ω, and let ΩT = Ω × (0, T ) for a given T > 0. Then there exist infinitely many

Lipschitz solutions u to (1.2).

Chapter 5 deals with the complete proof of this theorem.
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2.3.3 Radial and non-radial solutions

We introduce here the coexistence of radial and non-radial Lipschitz solutions to problem

(1.2) when the domain Ω is a ball and the initial datum u0 is radial. For convenience, we

focus only on Case I: Perona-Malik type equations, although one could equally justify the

same for Case II: Höllig type equations. So we assume the flux A(p) fulfills Hypothesis

(PM).

Let Ω = BR(0) be the open ball in Rn with center 0 and a given radius R > 0. Let the

initial datum u0 ∈ C2+α,1+α/2(Ω̄) satisfy the compatibility condition

A(Du0) · n = 0 on ∂Ω.

We say that a function u defined in ΩT [Ω, resp.] is radial if u(x, t) = u(y, t) ∀x, y ∈

Ω, |x| = |y|, ∀t ∈ (0, T ) [u(x) = u(y) ∀x, y ∈ Ω, |x| = |y|, resp.].

We now have the following.

Theorem 2.3.5. Assume u0 is radial. Then there are infinitely many radial and non-radial

Lipschitz solutions to (1.2).

The proof of this theorem is given at the end of Chapter 4.
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Chapter 3

Preliminaries

This chapter prepares some essential ingredients for the proofs of existence theorems, The-

orems 2.3.2 and 2.3.4.

3.1 Uniformly parabolic equations

We refer to the standard references [29, 30] for some notations concerning functions and

domains of class Ck+α with an integer k ≥ 0 and a number 0 < α < 1.

Assume f̃ ∈ C1+α([0,∞)) is a function satisfying

θ ≤ f̃(s) + 2sf̃ ′(s) ≤ Θ ∀ s ≥ 0, (3.1)

where Θ ≥ θ > 0 are constants. This condition is equivalent to θ ≤ (sf̃(s2))′ ≤ Θ for all

s ∈ R; hence, θ ≤ f̃(s) ≤ Θ for all s ≥ 0. Let

Ã(p) = f̃(|p|2)p (p ∈ R
n).

Then we have

Ãi
pj
(p) = f̃(|p|2)δij + 2f̃ ′(|p|2)pipj (i, j = 1, 2, · · · , n; p ∈ R

n)
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and hence the uniform ellipticity condition:

θ|q|2 ≤
n
∑

i,j=1

Ãi
pj
(p)qiqj ≤ Θ|q|2 ∀ p, q ∈ R

n. (3.2)

Theorem 3.1.1. Assume (2.10) holds. Then the initial-Neumann boundary value problem







































ut = div(Ã(Du)) in ΩT ,

∂u/∂n = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) for x ∈ Ω

(3.3)

has a unique solution u ∈ C2+α,1+α/2(Ω̄T ). Moreover, if f̃ ∈ C3([0,∞)) and Ω is convex,

then the gradient maximum principle holds:

‖Du‖L∞(ΩT ) = ‖Du0‖L∞(Ω). (3.4)

Proof. Let us divide the proof into three steps.

1. As problem (3.3) is uniformly parabolic by (3.2), the existence of a unique classical

solution u in C2+α,2+α
2 (Ω̄T ) follows from the standard theory; see [30, Theorem 13.24]. To

prove the gradient maximum principle (3.4), we assume f̃ ∈ C3([0,∞)) and Ω is convex.

Note that, since Ã ∈ C3(Rn), a standard bootstrap argument based on the regularity theory

of linear parabolic equations [29, 30] shows that the solution u has all continuous partial

derivatives uxixjxk and uxit within ΩT for 1 ≤ i, j, k ≤ n; see [24] for details.
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2. Let v = |Du|2. Then, within ΩT , we compute

∆v = 2Du ·D(∆u) + 2|D2u|2,

ut = div(Ã(Du)) = div(f̃(v)Du) = f̃ ′(v)Dv ·Du+ f̃(v)∆u,

Dut =f̃
′′(v)(Dv ·Du)Dv + f̃ ′(v)(D2u)Dv

+ f̃ ′(v)(D2v)Du+ f̃ ′(v)(∆u)Dv + f̃(v)D(∆u).

Putting these equations into vt = 2Du ·Dut, we obtain

vt − L(v)− B ·Dv = −2f̃(|Du|2)|D2u|2 ≤ 0 in ΩT , (3.5)

where operator L(v) and coefficient B are defined by

L(v) = f̃(|Du|2)∆v + 2f̃ ′(|Du|2)Du · (D2v)Du,

B = 2f̃ ′′(v)(Dv ·Du)Du+ 2f̃ ′(v)(D2u)Du+ 2f̃ ′(v)(∆u)Du.

We write L(v) =∑n
i,j=1 aijvxixj , with coefficients aij = aij(x, t) given by

aij = Ãi
pj
(Du) = f̃(|Du|2)δij + 2f̃ ′(|Du|2)uxiuxj (i, j = 1, · · · , n).

Note that on Ω̄T all eigenvalues of the matrix (aij) lie in [θ,Θ].

3. We show

max
(x,t)∈Ω̄T

v(x, t) = max
x∈Ω̄

v(x, 0),
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which proves (3.4). We prove this by contradiction. Suppose

M := max
(x,t)∈Ω̄T

v(x, t) > max
x∈Ω̄

v(x, 0). (3.6)

Let (x0, t0) ∈ Ω̄T be such that v(x0, t0) = M ; then t0 > 0. If x0 ∈ Ω, then the strong

maximum principle applied to (3.5) would imply that v is constant on Ωt0
, which yields

v(x, 0) ≡ M on Ω̄, a contradiction to (3.6). Consequently x0 ∈ ∂Ω and thus v(x0, t0) =

M > v(x, t) for all (x, t) ∈ ΩT . We can then apply Hopf’s Lemma for parabolic equations

[36] to (3.5) to deduce ∂v(x0, t0)/∂n > 0. However, a result of [1, Lemma 2.1] (see aslo [21,

Theorem 2]) asserts that ∂v/∂n ≤ 0 on ∂Ω× [0, T ], which gives a desired contradiction.

3.2 Modification of profile functions

The following elementary results can be proved in a similar way as in [44, 45]; we omit the

proofs (see Figures 3.1 and 3.2).

Lemma 3.2.1 (Case I: Perona-Malik type). Assume Hypothesis (PM). For every 0 < r1 <

r2 < σ(s0), there exists a function σ̃ ∈ C3([0,∞)) such that

σ̃(s)











= σ(s), 0 ≤ s ≤ s−(r1),

< σ(s), s−(r1) < s < s+(r2),

θ ≤ σ̃′(s) ≤ Θ (0 ≤ s <∞)

for some constants Θ ≥ θ > 0. With such function σ̃, define f̃(s) = σ̃(
√
s)/

√
s (s > 0) and

f̃(0) = f(0); then f̃ ∈ C3([0,∞)) fulfills condition (3.1).
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s0

σ(s)

σ(s0)

r1

r2

s+(r1)

σ̃(s)

s+(r2)
s0s−(r1)

Figure 3.1: Case I: Perona-Malik type profile σ(s) and modified function σ̃(s).

Lemma 3.2.2 (Case II: Cubic-like type). Assume Hypothesis (C). For every σ(s2) < r1 <

r2 < σ(s1), there exists a function σ̃ ∈ C1+α([0,∞)) such that

σ̃(s)



























= σ(s), s ∈ [0, s−(r1)] ∪ [s+(r2),∞),

< σ(s), s−(r1) < s ≤ s−(r2),

> σ(s), s+(r1) ≤ s < s+(r2),

θ ≤ σ̃′(s) ≤ Θ (0 ≤ s <∞)

for some constants Θ ≥ θ > 0. With such function σ̃, define f̃(s) = σ̃(
√
s)/

√
s (s > 0) and

f̃(0) = f(0); then f̃ ∈ C1+α([0,∞)) fulfills condition (3.1).

3.3 Right inverse of the divergence operator

To deal with linear constraint div v = u, we follow an argument of [4, Lemma 4] to construct

a right inverse R of the divergence operator: divR = Id (in the sense of distributions in

ΩT ). For the purpose of this dissertation, the construction of R is restricted to box domains,

37



s0

σ(s)

σ(s1)

σ(s2)
r1

r2

s2

σ̃(s)

s1s∗1s−(r1) s∗2s+(r2)s+(r1)

Figure 3.2: Case II: Höllig type profile σ(s) and modified function σ̃(s).

by which we mean domains given by Q = J1 × J2 × · · · × Jn, where Ji = (ai, bi) ⊂ R is a

finite open interval.

Given a box Q, we define a linear operator Rn : L
∞(Q) → L∞(Q;Rn) inductively on

dimension n as follows. If n = 1, for u ∈ L∞(J1), we define v = R1u by

v(x1) =

∫ x1

a1

u(s)ds (x1 ∈ J1).

Assume n = 2. Let u ∈ L∞(J1 × J2). Set ũ(x1) =
∫ b2
a2
u(x1, s) ds for x1 ∈ J1. Then

ũ ∈ L∞(J1). Let ṽ = R1ũ; that is,

ṽ(x1) =

∫ x1

a1

ũ(s)ds =

∫ x1

a1

∫ b2

a2

u(s, τ) dτds (x1 ∈ J1).

Let ρ2 ∈ C∞
c (a2, b2) be such that 0 ≤ ρ2(s) ≤ C0

b2−a2
and

∫ b2
a2
ρ2(s)ds = 1. Define v = R2u ∈

L∞(J1 × J2;R
2) by v = (v1, v2) with v1(x1, x2) = ρ2(x2)ṽ(x1) and

v2(x1, x2) =

∫ x2

a2

u(x1, s)ds− ũ(x1)

∫ x2

a2

ρ2(s)ds.
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Note that if u ∈ W 1,∞(J1 × J2) then ũ ∈ W 1,∞(J1); hence v = R2u ∈ W 1,∞(J1 × J2;R
2)

and div v = u a.e. in J1 × J2. Moreover, if u ∈ C1(J1 × J2) then v is in C1(J1 × J2;R
2).

Assume that we have defined the operator Rn−1. Let u ∈ L∞(Q) with Q = J1 ×

J2 × · · · × Jn and x = (x′, xn) ∈ Q, where x′ ∈ Q′ = J1 × · · · × Jn−1 and xn ∈ Jn. Set

ũ(x′) =
∫ bn
an

u(x′, s) ds for x′ ∈ Q′. Then ũ ∈ L∞(Q′). By the assumption, ṽ = Rn−1ũ ∈

L∞(Q′;Rn−1) is defined. Write ṽ(x′) = (Z1(x′), · · · , Zn−1(x′)), and let ρn ∈ C∞
c (an, bn) be

a function satisfying 0 ≤ ρn(s) ≤ C0
bn−an

and
∫ bn
an

ρn(s)ds = 1. Define v = Rnu ∈ L∞(Q;Rn)

as follows. For x = (x′, xn) ∈ Q, v(x) = (v1(x), v2(x), · · · , vn(x)) is defined by

vk(x′, xn) = ρn(xn)Z
k(x′) (k = 1, 2, · · · , n− 1),

vn(x′, xn) =
∫ xn

an
u(x′, s)ds− ũ(x′)

∫ xn

an
ρn(s)ds.

Then Rn : L
∞(Q) → L∞(Q;Rn) is a well-defined linear operator; moreover,

‖Rnu‖L∞(Q) ≤ Cn (|J1|+ · · ·+ |Jn|)‖u‖L∞(Q), (3.7)

where Cn > 0 is a constant depending only on n.

As in the case n = 2, we see that if u ∈ W 1,∞(Q) then v = Rnu ∈ W 1,∞(Q;Rn) and

div v = u a.e. in Q. Also, if u ∈ C1(Q̄) then v = Rnu is in C1(Q̄;Rn). Moreover, if u ∈

W
1,∞
0 (Q) satisfies

∫

Q u(x)dx = 0, then one can easily show that v = Rnu ∈ W
1,∞
0 (Q;Rn).

Let I be a finite open interval in R. We now extend the operator Rn to an operator R

on L∞(Q× I) by defining, for a.e. (x, t) ∈ Q× I,

(Ru)(x, t) = (Rnu(·, t))(x) ∀ u ∈ L∞(Q× I).
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Then R : L∞(Q× I) → L∞(Q× I;Rn) is a bounded linear operator.

We have the following result.

Theorem 3.3.1. Let u ∈ W
1,∞
0 (Q × I) satisfy

∫

Q u(x, t) dx = 0 for all t ∈ I. Then

v = Ru ∈ W
1,∞
0 (Q× I;Rn), div v = u a.e. in Q× I, and

‖vt‖L∞(Q×I) ≤ Cn (|J1|+ · · ·+ |Jn|)‖ut‖L∞(Q×I), (3.8)

where Q = J1×· · ·×Jn and Cn is the same constant as in (3.7). Moreover, if u ∈ C1(Q× I)

then v = Ru ∈ C1(Q× I;Rn).

Proof. Given u ∈ W
1,∞
0 (Q× I), let v = Ru. We easily verify that v is Lipschitz continuous

in t and hence vt exists. It also follows that vt = R(ut). Clearly, if
∫

Q u(x, t)dx = 0 then

v(x, t) = 0 whenever t ∈ ∂I or x ∈ ∂Q. This proves v ∈ W
1,∞
0 (Q× I;Rn) and the estimate

(3.8) follows from (3.7). Finally, from the definition of Ru, we see that if u ∈ C1(Q× I)

then v = Ru ∈ C1(Q× I;Rn).
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Chapter 4

Perona-Malik type equations

In this chapter, we completely prove the existence result on Case I: Perona-Malik type

equations, that is, Theorem 2.3.2. In order to so, we assume Hypothesis (PM) throughout

this chapter.

4.1 Geometry of relevant matrix set

We begin this section by introducing an approach for solving problem (1.2) that turns out

to be unsuccessful; however, it provides us with the main idea of solving (1.2) in the context

of our method, Theorem 2.2.4. Then we embark on an extensive analysis of partial rank-one

structure of some relevant matrix set that eventually yields Theorem 4.1.6.

4.1.1 Non-homogeneous differential inclusion and its limitation

Let u0 ∈ W 1,∞(Ω). Assume Φ = (u∗, v∗) ∈ W 1,∞(ΩT ;R
1+n) is a boundary function, that

is, it satisfies






































u∗(x, 0) = u0(x), x ∈ Ω,

div v∗(x, t) = u∗(x, t), a.e. (x, t) ∈ ΩT ,

v∗(·, t) · n|∂Ω = 0, t ∈ [0, T ].
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If a function w = (u, v) ∈ W 1,∞(ΩT ;R
1+n) solves the Dirichlet problem of non-homogeneous

differential inclusion



















∇w(x, t) ∈ K(u(x, t)), a.e. (x, t) ∈ ΩT ,

w(x, t) = Φ(x, t), (x, t) ∈ ∂ΩT ,

(4.1)

then it can be easily seen that u is a Lipschitz solution to (1.2). Here, ∇w denotes the

space-time Jacobian matrix of w that lies in M(1+n)×(n+1), the space of (1 + n) × (n + 1)

real matrices, and for each l ∈ R, K(l) is the subset of M(1+n)×(n+1) defined by

K(l) =

















p c

B A(p)







∣

∣

∣
p ∈ R

n, c ∈ R, B ∈ M
n×n, trB = l











. (4.2)

The Dirichlet problem (4.1) falls into the framework of general non-homogeneous partial

differential inclusions that have been studied by Dacorogna and Marcellini [10] using Baire’s

category method and by Müller and Sychev [34] using the convex integration method fol-

lowing the works [18, 32, 33]; see also [28]. Recently, the methods of differential inclusion

have been successfully applied to other important problems in partial differential equations

[8, 11, 31, 38, 41].

We point out that the existence result of [34] is not applicable to problem (4.1) even

in dimension n = 1, as has already been noticed in [44, 45]. A key condition in the main

existence theorem of [34], when applied to (4.1), would require that the boundary function

Φ satisfy

∇Φ(x, t) ∈ U(u∗(x, t)) ∪K(u∗(x, t)) a.e. (x, t) ∈ ΩT ,

where U(s) ⊂ M(1+n)×(n+1) (s ∈ R) are bounded sets that are reducible to K(s) in the
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sense that, for every s0 ∈ R, ξ0 ∈ U(s0), ǫ > 0, and bounded Lipschitz domain G ⊂ R
n+1,

there exist a piecewise affine function w ∈ W
1,∞
0 (G;R1+n) and a δ > 0 satisfying, for

a.e. z = (x, t) ∈ G,

ξ0 +∇w(z) ∈
⋂

|s−s0|<δ

U(s),

∫

G
dist(ξ0 +∇w(z), K(s0)) dz < ǫ|G|.

The second condition would imply trB0 = s0 for each ξ0 =







p0 c0

B0 β0






∈ U(s0) and s0 ∈ R;

but then ∩|s−s0|<δU(s) = ∅, which makes the first condition impossible.

However, certain structures of set K(0) turn out to be still quite useful, especially when it

comes to the relaxation of homogeneous differential inclusion ∇ω(z) ∈ K(0) with z = (x, t)

and ω = (ϕ, ψ). We investigate these structures and establish such relaxation result through

the rest of this section and Section 4.2.

4.1.2 Geometry of the matrix set F0

Fix any two numbers 0 < r1 < r2 < σ(s0), and let F0 = Fr1,r2(0) be the subset of K(0)

defined by

F0 =

















p c

B A(p)







∣

∣

∣

p ∈ Rn, |p| ∈ (s−(r1), s−(r2)) ∪ (s+(r2), s+(r1)),

c ∈ R, B ∈ M
n×n, trB = 0











.

We decompose the set F0 into two disjoint subsets as follows:

F− =

















p c

B A(p)







∣

∣

∣

p ∈ Rn, |p| ∈ (s−(r1), s−(r2)),

c ∈ R, B ∈ Mn×n, trB = 0











,
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F+ =

















p c

B A(p)







∣

∣

∣

p ∈ Rn, |p| ∈ (s+(r2), s+(r1)),

c ∈ R, B ∈ Mn×n, trB = 0











.

In order to extract more detailed information on solutions as stated in Theorem 2.3.2,

we focus on the homogeneous differential inclusion ∇ω(z) ∈ F0; thus we first scrutinize the

rank-one structure of the set F0. We introduce the following:

Definition 4.1.1. For a given set E ⊂ M(1+n)×(n+1), L(E) is defined to be the set of all

matrices ξ ∈ M(1+n)×(n+1) that are not in E but are representable by ξ = λξ1 + (1− λ)ξ2

for some λ ∈ (0, 1) and ξ1, ξ2 ∈ E with rank(ξ1 − ξ2) = 1, or equivalently,

L(E) = {ξ 6∈ E | ξ + t±η ∈ E for some t− < 0 < t+ and rank η = 1}.

For the matrix set F0, we define

R(F0) =
⋃

ξ±∈F±, rank(ξ+−ξ−)=1

(ξ−, ξ+),

where (ξ−, ξ+) is the open line segment in M
(1+n)×(n+1) joining ξ±.

From a careful analysis, one can actually deduce

L(F0) = R(F0) ∪ L(F+). (4.3)

Here, due to the backward nature of profile σ(s) on (s+(r2), s+(r1)), the set L(F+) is non-

empty, and its structural analysis seems quite difficult to be accomplished by the presence

of some degeneracy. Fortunately, it turns to be harmless and even better to only stick to the

analysis of the set R(F0) towards the existence result, Theorem 2.3.2.
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We perform the step-by-step analysis of the set R(F0).

1. Alternate expression for R(F0). We derive an equivalent condition for the mem-

bership of a matrix in R(F0).

Lemma 4.1.2. Let ξ ∈ M(1+n)×(n+1). Then ξ ∈ R(F0) if and only if there exist numbers

t− < 0 < t+ and vectors q, γ ∈ R
n with |q| = 1, γ · q = 0 such that for each b ∈ R \ {0}, if

η =







q b

1
b q ⊗ γ γ






, then ξ + t±η ∈ F±.

Proof. Assume ξ =







p c

B β






∈ R(F0). By definition, ξ+ t±η̃ ∈ F±, where t− < 0 < t+ and

η̃ is a rank-one matrix given by

η̃ =







a

α






⊗ (q, b̃) =







aq ab̃

α⊗ q b̃α






, a2 + |α|2 6= 0, b̃2 + |q|2 6= 0,

for some a, b̃ ∈ R and α, q ∈ Rn; here α ⊗ q denotes the rank-one or zero matrix (αiqj) in

M
n×n. Condition ξ + t±η̃ ∈ F± with t− < 0 < t+ is equivalent to the following:

trB = 0, α · q = 0, A(p+ t±aq) = β + t±b̃α,

|p+ t+aq| ∈ (s+(r2), s+(r1)), |p+ t−aq| ∈ (s−(r1), s−(r2)).
(4.4)

Therefore, aq 6= 0. Upon rescaling η̃ and t±, we can assume a = 1 and |q| = 1; namely,

η̃ =







q b̃

α⊗ q b̃α






, |q| = 1, α · q = 0.
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We now let γ = b̃α. Let b ∈ R \ {0} and

η =







q b

1
bγ ⊗ q γ






.

From (4.4), it follows that ξ + t±η ∈ F±.

The converse directly follows from the definition of R(F0).

2. Diagonal components of matrices in R(F0). The following gives a description for

the diagonal components of matrices in R(F0).

Lemma 4.1.3.

R(F0) =

















p c

B β







∣

∣

∣
c ∈ R, B ∈ M

n×n, trB = 0, (p, β) ∈ S











(4.5)

for some set S = Sr1,r2 ⊂ Rn+n.

Proof. Let (c, B), (c′, B′) ∈ R×Mn×n be such that trB = trB′ = 0, and define

S(c,B) =











(p, β) ∈ R
n+n

∣

∣

∣







p c

B β






∈ R(F0)











,

S(c′,B′) =











(p, β) ∈ R
n+n

∣

∣

∣







p c′

B′ β






∈ R(F0)











.

It is sufficient to show that S(c,B) = S(c′,B′) =: S. Let (p, β) ∈ S(c,B), that is, ξ =







p c

B β






∈

R(F0). Then ξ± := ξ + t±η ∈ F± for some t− < 0 < t+ and rank η = 1. Observe that
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ξ = λξ+ + (1− λ)ξ− with λ =
−t−

t+−t− ∈ (0, 1) and that

ξ′ :=







p c′

B′ β






= ξ +







0 c̃

B̃ 0






= λξ̃+ + (1− λ)ξ̃−

where c̃ = c′ − c, B̃ = B′ − B, and ξ̃± = ξ± +







0 c̃

B̃ 0






. Since ξ± ∈ F± and tr B̃ = 0, we

have ξ̃± ∈ F±, and so ξ′ ∈ R(F0). This implies (p, β) ∈ S(c′,B′); hence S(c,B) ⊂ S(c′,B′).

Likewise, S(c′,B′) ⊂ S(c,B); that is, S(c,B) = S(c′,B′).

3. Selection of approximate collinear rank-one connections for R(F0). We begin

with a 2-dimensional description for the rank-one connections of diagonal components of

matrices in R(F0) in a general form.

Lemma 4.1.4. For all positive numbers a, b, c with b > a, there exists a continuous function

h(a, b, c, ·, ·, ·) : Ia,c = [0, a)× [0,∞)× [0, c) → [0,∞)

with h(a, b, c, 0, 0, 0) = 0 satisfying the following:

Let δ1, δ2 and η be any positive numbers with

0 < a− δ1 < a < b < b+ δ2, 0 < c− η < c,

and let R1 ∈ [a − δ1, a], R2 ∈ [b, b + δ2], and R̃1, R̃2 ∈ [c − η, c]. Suppose θ ∈ [−π/2, π/2]

and
(

R̃1
(

cos(
π

2
+ θ), sin(

π

2
+ θ)

)

− R̃2
(

cos(
π

2
− θ), sin(

π

2
− θ)

)

)
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·
(

R1
(

cos(
π

2
+ θ), sin(

π

2
+ θ)

)

− R2
(

cos(
π

2
− θ), sin(

π

2
− θ)

)

)

= 0.

Then −π
2 < θ < π

2 , R̃1 ≥ R̃2, and

max
{

∣

∣(0, a)−R1
(

cos(
π

2
+ θ), sin(

π

2
+ θ)

)∣

∣,
∣

∣(0, b)−R2
(

cos(
π

2
− θ), sin(

π

2
− θ)

)∣

∣

∣

∣(0, c)− R̃1
(

cos(
π

2
+ θ), sin(

π

2
+ θ)

)∣

∣,
∣

∣(0, c)− R̃2
(

cos(
π

2
− θ), sin(

π

2
− θ)

)∣

∣

}

≤ h(a, b, c, δ1, δ2, η).

Proof. By assumption,

0 = (R̃1(− sin θ, cos θ)− R̃2(sin θ, cos θ)) · (R1(− sin θ, cos θ)−R2(sin θ, cos θ))

= (−(R̃1 + R̃2) sin θ, (R̃1 − R̃2) cos θ) · (−(R1 +R2) sin θ, (R1 −R2) cos θ)

= (R̃1 + R̃2)(R1 +R2) sin
2 θ + (R̃1 − R̃2)(R1 −R2) cos

2 θ,

that is,

(R2 − R1)(R̃1 − R̃2) cos
2 θ = (R1 +R2)(R̃1 + R̃2) sin

2 θ;

hence, θ 6= ±π
2 , R̃1 ≥ R̃2, and

θ = ± tan−1

(
√

(R2 − R1)(R̃1 − R̃2)

(R1 +R2)(R̃1 + R̃2)

)

.

So

|θ| ≤ tan−1

(
√

(b− a+ δ1 + δ2)η

2(a+ b− δ1)(c− η)

)

=: g(a, b, c, δ1, δ2, η).

Note that the function g(a, b, c, ·, ·, ·) : Ia,c → [0, π/2) is well-defined and continuous and
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that g(a, b, c, δ1, δ2, η) = 0 for all (δ1, δ2, η) ∈ Ia,c with η = 0.

Observe now that

|(0, a)− R1(cos(
π

2
+ θ), sin(

π

2
+ θ))|

≤ max{|(0, a)− a(− sin θ, cos θ)|, |(0, a)− (a− δ1)(− sin θ, cos θ)|}

= max

{

√

a2 sin2 θ + a2(1− cos θ)2,

√

(a− δ1)2 sin
2 θ + (a− (a− δ1) cos θ)2

}

= max

{√
2a

√
1− cos θ,

√

(a− δ1)2 + a2 − 2a(a− δ1) cos θ

}

≤ max
{√

2a
√

1− cos(g(a, b, c, δ1, δ2, η)),

√

(a− δ1)2 + a2 − 2a(a− δ1) cos(g(a, b, c, δ1, δ2, η))
}

=: h1(a, b, c, δ1, δ2, η),

|(0, b)−R2(cos(
π

2
− θ), sin(

π

2
− θ))|

≤ max{|(0, b)− b(sin θ, cos θ)|, |(0, b)− (b+ δ2)(sin θ, cos θ)|}

= max

{

√

b2 sin2 θ + b2(1− cos θ)2,

√

(b+ δ2)2 sin
2 θ + (b− (b+ δ2) cos θ)2

}

= max

{√
2b
√
1− cos θ,

√

(b+ δ2)2 + b2 − 2b(b+ δ2) cos θ

}

≤ max
{√

2b
√

1− cos(g(a, b, c, δ1, δ2, η)),

√

(b+ δ2)2 + b2 − 2b(b+ δ2) cos(g(a, b, c, δ1, δ2, η))
}

=: h2(a, b, c, δ1, δ2, η),

|(0, c)− R̃1(cos(
π

2
+ θ), sin(

π

2
+ θ))|
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≤ max
{√

2c
√

1− cos(g(a, b, c, δ1, δ2, η)),

√

(c− η)2 + c2 − 2c(c− η) cos(g(a, b, c, δ1, δ2, η))
}

=: h3(a, b, c, δ1, δ2, η),

|(0, c)− R̃2(cos(
π

2
− θ), sin(

π

2
− θ))| ≤ hi,3(a, b, c, δ1, δ2, η).

Define h(a, b, c, δ1, δ2, η) = max1≤j≤3 hj(a, b, c, δ1, δ2, η); then it is trivial to see that the

function h(a, b, c, ·, ·, ·) : Ia,c → [0,∞) is well-defined and satisfies the desired properties.

We now apply the previous lemma to choose approximate collinear rank-one connections

for the diagonal components of matrices in R(F0).

Theorem 4.1.5. Let p± ∈ Rn satisfy

s−(r1) < |p−| < s−(r2) < s+(r2) < |p+| < s+(r1)

and (A(p+)−A(p−)) · (p+ − p−) = 0. Then there exists a vector ζ0 ∈ Sn−1 such that, with

p0± = s±(r2)ζ0, A(p0±) = r2ζ
0, we have

max{|p0− − p−|, |p0+ − p+|, |A(p0−)− A(p−)|, |A(p0+)− A(p+)|}

≤ h(s−(r2), s+(r2), r2, s−(r2)− s−(r1), s+(r1)− s+(r2), r2 − r1)

where Sn−1 is the unit sphere in Rn and h is the function in Lemma 4.1.4.

Proof. Let Σ2 denote the 2-dimensional linear subspace of Rn spanned by the two vectors

p±. (In the case that p± are collinear, we choose Σ2 to be any 2-dimensional space containing
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p±.) Set

ζ0 =

p+
|p+| +

p−
|p−|

∣

∣

p+
|p+| +

p−
|p−|

∣

∣

∈ S
n−1 ∩ Σ2.

Since vectors p±, A(p±) and ζ0 all lie in Σ2, we can recast the problem into the setting of the

previous lemma via one of the two linear isomorphisms of Σ2 onto R2 with correspondence

ζ0 ↔ (0, 1) ∈ R2. Then the result follows, where a = s−(r2), b = s+(r2), c = r2, δ1 =

s−(r2) − s−(r1), δ2 = s+(r1) − s+(r2), η = r2 − r1, R1 = |p−|, R2 = |p+|, R̃1 = σ(|p−|),

R̃2 = σ(|p+|), and θ ∈ [0, π/2] is the half of the angle between p+ and p− in applying Lemma

4.1.4.

4. Final characterization of R(F0). We are now ready to establish the result concern-

ing essential structures of R(F0).

Theorem 4.1.6. Let 0 < r2 < σ(s0). Then there exists a number l2 = lr2 ∈ (0, r2) such

that for any l2 < r1 < r2, the set S = Sr1,r2 ⊂ Rn+n in (4.5) satisfies the following:

(i) sup(p,β)∈S |p| ≤ s+(r1) and sup(p,β)∈S |β| ≤ r2; hence S is bounded.

(ii) S is open.

(iii) For each (p0, β0) ∈ S, there exist an open set V ⊂⊂ S containing (p0, β0) and C1

functions q : V̄ → Sn−1, γ : V̄ → R
n, t± : V̄ → R with γ · q = 0 and t− < 0 < t+ on

V̄ such that for every ξ =







p c

B β






∈ R(F0) = R(Fr1,r2(0)) with (p, β) ∈ V̄ , we have

ξ + t±η ∈ F±,

where t± = t±(p, β), η =







q(p, β) b

1
bγ(p, β)⊗ q(p, β) γ(p, β)






, and b 6= 0 is arbitrary.
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Proof. Fix any 0 < r2 < σ(s0). For the moment, we let r1 be any number in (0, r2) and

prove (i). Then we choose later a lower bound l2 = lr2 ∈ (0, r2) of r1 for the validity of (ii)

and (iii) above.

We now divide the proof into several steps.

1. To show that (i) holds, choose any (p, β) ∈ S. By Lemma 4.1.3, ξ :=







p 0

O β






∈

R(F0) = R(Fr1,r2(0)), where O is the n× n zero matrix. By the definition of R(F0), there

exist two matrices ξ± =







p± c±

B± σ(|p±|) p±
|p±|






∈ F± and a number 0 < λ < 1 such that

ξ = λξ+ + (1− λ)ξ−. So

|p| = |λp+ + (1− λ)p−| ≤ s+(r1),

|β| =
∣

∣

∣

∣

λσ(|p+|)
p+
|p+|

+ (1− λ)σ(|p−|)
p−
|p−|

∣

∣

∣

∣

≤ r2 ;

hence, sup(p,β)∈S |p| ≤ s+(r1), sup(p,β)∈S |β| ≤ r2, and S is bounded. So (i) is proved.

2. We now turn to the remaining assertions that for all r1 < r2 sufficiently close to r2,

S = Sr1,r2 satisfies (ii) and (iii). But in this step, we still assume r1 is any fixed number in

(0, r2).

Let (p0, β0) ∈ S. Since ξ0 :=







p0 0

O β0






∈ R(F0), it follows from Lemma 4.1.2 that

there exist numbers s0 < 0 < t0 and vectors q0, γ0 ∈ Rn with |q0| = 1, γ0 · q0 = 0 such that

ξ0 + s0η0 ∈ F− and ξ0 + t0η0 ∈ F+, where η0 =







q0 b

1
b q0 ⊗ γ0 γ0






and b 6= 0 is any fixed

number. Let q′0 = t0q0 6= 0, γ′0 = t0γ0, and s
′
0 = s0/t0 < 0; then

γ′0 · q′0 = 0, s−(r1) < |p0 + s′0q
′
0| < s−(r2),
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s+(r2) < |p0 + q′0| < s+(r1),

σ(|p0 + s′0q
′
0|)

p0 + s′0q
′
0

|p0 + s′0q
′
0|

= β0 + s′0γ
′
0, σ(|p0 + q′0|)

p0 + q′0
|p0 + q′0|

= β0 + γ′0. (4.6)

Observe also

t0 − s0 ≥ |(p0 + t0q0)| − |(p0 + s0q0)| > s+(r2)− s−(r2). (4.7)

Next, consider the function F defined by

F (γ′, q′, s′; p, β) = (σ(|p+ s′q′|) p + s′q′

|p+ s′q′| − β − s′γ′,

σ(|p+ q′|) p+ q′

|p+ q′| − β − γ′, γ′ · q′) ∈ R
n+n+1

for all γ′, q′, p, β ∈ Rn and s′ ∈ R with s−(r1) < |p + s′q′| < s−(r2), s+(r2) < |p +

q′| < s+(r1). Then F is C1 in the described open subset of Rn+n+1+n+n, and the above

observation gives

F (γ′0, q
′
0, s

′
0; p0, β0) = 0.

Suppose for the moment that the Jacobian matrix D(γ′,q′,s′)F is invertible at the point

(γ′0, q
′
0, s

′
0; p0, β0). Then the Implicit Function Theorem implies the following: There exist

a bounded domain Ṽ = Ṽ(p0,β0) ⊂ Rn+n containing (p0, β0) and C1 functions q̃, γ̃ ∈ Rn,

s̃ ∈ R of (p, β) ∈ Ṽ such that

γ̃(p0, β0) = γ′0, q̃(p0, β0) = q′0, s̃(p0, β0) = s′0

and that

s̃(p, β) < 0, s−(r1) < |p+ s̃(p, β)q̃(p, β)| < s−(r2),
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s+(r2) < |p+ q̃(p, β)| < s+(r1),

F (γ̃(p, β), q̃(p, β), s̃(p, β); p, β) = 0 ∀(p, β) ∈ Ṽ .

Define

γ =
γ̃

|q̃| , q =
q̃

|q̃| , t− = s̃|q̃|, t+ = |q̃| in Ṽ;

then

s−(r1) < |p+ t−q| < s−(r2),

s+(r2) < |p+ t+q| < s+(r1),

σ(|p+ t±q|)
p+ t±q
|p+ t±q|

= β + t±γ, |q| = 1, γ · q = 0, t− < 0 < t+,

where (p, β) ∈ Ṽ, γ = γ(p, β), q = q(p, β), and t± = t±(p, β).

Let (p, β) ∈ Ṽ, B ∈ Mn×n, trB = 0, b, c ∈ R, b 6= 0, q = q(p, β), γ = γ(p, β),

t± = t±(p, β), ξ =







p c

B β






, and η =







q b

1
bγ ⊗ q γ






. Then ξ± := ξ + t±η ∈ F±. By the

definition of R(F0), ξ ∈ (ξ−, ξ+) ⊂ R(F0). By Lemma 4.1.3, we thus have (p, β) ∈ S; hence

Ṽ ⊂ S. Choosing any open set V ⊂⊂ Ṽ with (p0, β0) ∈ V, the assertions (ii) and (iii) hold

with S = ∪(p0,β0)∈S Ṽ(p0,β0) open.

3. In this step, we continue Step 2 to deduce an equivalent condition for the invertibility

of the Jacobian matrix D(γ′,q′,s′)F at (γ′0, q
′
0, s

′
0; p0, β0). By direct computation,

D(γ′,q′,s′)F =















−s′In Ms′ ω−
s′

−In M1 0

q′ γ′ 0















∈ M
(n+n+1)×(n+n+1),
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where In is the n× n identity matrix,

Ms′ = s′(σ′(|p+ s′q′|)− σ(|p+ s′q′|)
|p+ s′q′| )

p+ s′q′

|p+ s′q′| ⊗
p+ s′q′

|p+ s′q′| + s′
σ(|p+ s′q′|)
|p+ s′q′| In,

ω±
s′ = (σ′(|p+ s′q′|)− σ(|p+ s′q′|)

|p+ s′q′| )(
p+ s′q′

|p+ s′q′| · q
′)
p+ s′q′

|p+ s′q′| +
σ(|p+ s′q′|)
|p+ s′q′| q′ ± γ′.

For notational simplicity, we write (γ′, q′, s′; p, β) = (γ′0, q
′
0, s

′
0; p0, β0). Applying suitable

elementary row operations, where s′ < 0,

D(γ′,q′,s′)F →















−s′In Ms′ ω−
s′

O M1 − 1
s′Ms′ − 1

s′ω
−
s′

0 γ′ +
q′1
s′ (Ms′)

1 + · · ·+ q′n
s′ (Ms′)

n 1
s′ q

′ · ω−
s′















→















−s′In Ms′ ω−
s′

O s′M1 −Ms′ −ω−
s′

0 s′γ′ + q′1(Ms′)
1 + · · ·+ q′n(Ms′)

n q′ · ω−
s′















,

where O is the n×n zero matrix, and (Ms′)
i is the ith row ofMs′ . Since |q′| = t0, γ

′ ·q′ = 0,

and s−(r1) < |p+ s′q′| < s−(r2), we have

q′ · ω−
s′ = (σ′(|p+ s′q′|)− σ(|p+ s′q′|)

|p+ s′q′| )(
p+ s′q′

|p+ s′q′| · q
′)2 +

σ(|p+ s′q′|)
|p+ s′q′| t20

= t20(cos
2 θ′σ′(|p+ s′q′|) + (1− cos2 θ′)

σ(|p+ s′q′|)
|p+ s′q′| ) > 0,

where θ′ ∈ [0, π] is the angle between p+ s′q′ and q′. Observe here that the forward part of

σ in the definition of F− becomes essential to guarantee that σ′(|p+ s′q′|) > 0. After some
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elementary column operations to the last matrix from the above row operations, we obtain

D(γ′,q′,s′)F →















−s′In Ms′ −Ns′ ω−
s′

O s′M1 −Ms′ +Ns′ −ω−
s′

0 0 q′ · ω−
s′















,

where the jth column of Ns′ ∈ M
n×n is

s′γ′j+q′·(Ms′)j
q′·ω−

s′
ω−
s′ . So D(γ′,q′,s′)F is invertible if and

only if the n× n matrix M1 − 1
s′Ms′ +

1
s′Ns′ is invertible. We compute

M1 −
1

s′
Ms′ +

1

s′
Ns′ = (σ′(|p+ q′|)− σ(|p+ q′|)

|p+ q′| )
p+ q′

|p+ q′| ⊗
p+ q′

|p+ q′|

+
σ(|p+ q′|)
|p+ q′| In − (σ′(|p+ s′q′|)− σ(|p+ s′q′|)

|p+ s′q′| )
p+ s′q′

|p+ s′q′| ⊗
p+ s′q′

|p+ s′q′|

−σ(|p + s′q′|)
|p+ s′q′| In +

1

q′ · ω−
s′
ω−
s′ ⊗ (γ′

+(σ′(|p+ s′q′|)− σ(|p+ s′q′|)
|p+ s′q′| )(

p+ s′q′

|p+ s′q′| · q
′)
p+ s′q′

|p+ s′q′| +
σ(|p+ s′q′|)
|p+ s′q′| q′)

= (a1 − as′)In + (b1 − a1)
p+ q′

|p+ q′| ⊗
p+ q′

|p+ q′|

−(bs′ − as′)
p+ s′q′

|p+ s′q′| ⊗
p+ s′q′

|p+ s′q′| +
1

q′ · ω−
s′
ω−
s′ ⊗ ω+

s′ ,

and set (with an assumption a1 6= as′)

B =
1

a1 − as′
(M1 −

1

s′
Ms′ +

1

s′
Ns′) = In +

b1 − a1
a1 − as′

p+ q′

|p+ q′| ⊗
p+ q′

|p+ q′|

−bs′ − as′
a1 − as′

p+ s′q′

|p+ s′q′| ⊗
p+ s′q′

|p+ s′q′| +
1

(a1 − as′)q′ · ω
−
s′
ω−
s′ ⊗ ω+

s′ ,
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where as′ =
σ(|p+s′q′|)
|p+s′q′| , bs′ = σ′(|p + s′q′|); then D(γ′,q′,s′)F is invertible if and only if the

matrix B ∈ M
n×n is invertible.

4. To close the argument in Step 2 and thus to finish the proof, we choose a suitable

l2 = lr2 ∈ (0, r2), depending on r2, in such a way that for any r1 ∈ (l2, r2), the matrix B,

determined through Steps 2 and 3 for any given (p0, β0) ∈ S = Sr1,r2 , is invertible.

First, by Hypothesis (PM), r̃2 ∈ (0, r2) can be chosen close enough to r2 so that

σ(k)

k
<
σ(l)

l
∀l ∈ [s−(r̃2), s−(r2)], ∀k ∈ [s+(r2), s+(r̃2)].

Then define a real-valued continuous function (to express the determinant of the matrix B

from Step 3)

DET(u, v, q, γ) = det
(

In +
σ′(|u|)− σ(|u|)

|u|
σ(|u|)
|u| − σ(|v|)

|v|

u

|u| ⊗
u

|u| −
σ′(|v|)− σ(|v|)

|v|
σ(|u|)
|u| − σ(|v|)

|v|

v

|v| ⊗
v

|v|

+
1

(
σ(|u|)
|u| − σ(|v|)

|v| )((σ′(|v|)− σ(|v|)
|v| )( v

|v| · q)2 +
σ(|v|)
|v| )

(

(σ′(|v|)− σ(|v|)
|v| )(

v

|v| · q)
v

|v|

+
σ(|v|)
|v| q − γ

)

⊗
(

(σ′(|v|)− σ(|v|)
|v| )(

v

|v| · q)
v

|v| +
σ(|v|)
|v| q + γ

)

)

on the compact set M of points (u, v, q, γ) ∈ R
n × R

n × S
n−1 × R

n with

|u| ∈ [s+(r2), s+(r̃2)], |v| ∈ [s−(r̃2), s−(r2)], |γ| ≤ 1.
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Set k̄ = s+(r2) and l̄ = s−(r2); then for each q ∈ S
n−1,

DET(k̄q, l̄q, q, 0) = det
(

In +
σ′(k̄)− σ(k̄)

k̄
+

σ(l̄)
l̄

σ(k̄)
k̄

− σ(l̄)
l̄

q ⊗ q
)

6= 0,

since σ′(k̄) 6= 0 and hence the fraction in front of q ⊗ q is different from −1. So

d := min
q∈Sn−1

|DET(k̄q, l̄q, q, 0)| > 0.

Next, choose a number δ > 0 such that for all (u, v, q, γ), (ũ, ṽ, q̃, γ̃) ∈ M with |u −

ũ|, |v − ṽ|, |q − q̃|, |γ − γ̃| < δ, we have

|DET(u, v, q, γ)− DET(ũ, ṽ, q̃, γ̃)| < d/2. (4.8)

Let l2 ∈ (r̃2, r2) be sufficiently close to r2 so that for all r1 ∈ (l2, r2),

h(s−(r2), s+(r2), r2, s−(r2)− s−(r1), s+(r1)− s+(r2), r2 − r1) < τ,

where h is the function in Theorem 4.1.5, and let

τ := min{δ, δ(s+(r2)− s−(r2))/4}.

Now, fix any r1 ∈ (l2, r2), and let B be the n×n matrix determined through Steps 2 and

3 in terms of any given (p0, β0) ∈ S = Sr1,r2 . Let p+ = p0 + t0q0 and p− = p0 + s0q0 from

Step 2; then p± and A(p±) fulfill the conditions in Theorem 4.1.5. So this theorem implies
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that there exists a vector ζ0 ∈ S
n−1 such that

max{|p0− − p−|, |p0+ − p+|, |A(p0−)− A(p−)|, |A(p0+)− A(p+)|} < τ,

where p0+ = k̄ζ0, p0− = l̄ζ0, and A(p0±) = r2ζ
0. Using (4.6) and (4.7),

|p+ − k̄ζ0| < δ, |p− − l̄ζ0| < δ,

|q0 − ζ0| = |p+ − p−
t0 − s0

− ζ0| ≤ |(p+ − p−)− (k̄ − l̄)ζ0|+ |(k̄ − l̄)− (t0 − s0)|
t0 − s0

≤ 2τ + ||p0+ − p0−| − |p+ − p−||
t0 − s0

<
4τ

t0 − s0
< δ,

|γ0| = |A(p+)−A(p−)
t0 − s0

| ≤ |A(p+)− A(p0+)|+ |A(p0−)−A(p−)|
t0 − s0

< δ.

Since det(B) = DET(p+, p−, q0, γ0) and |DET(k̄ζ0, l̄ζ0, ζ0, 0)| ≥ d, it follows from (4.8) that

| det(B)| > d/2 > 0.

The proof is now complete.

4.2 Relaxation of ∇ω(z) ∈ F0

The following result is important for the convex integration with linear constraint; the func-

tion ϕ determined here plays a similar role as the tile function g used in [44, 45]. For a more

general case, see [37, Lemma 2.1].
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Lemma 4.2.1. Let λ1, λ2 > 0 and η1 = −λ1η, η2 = λ2η with

η =







q b

1
bγ ⊗ q γ






, |q| = 1, γ · q = 0, b 6= 0.

Let G ⊂ Rn+1 be a bounded domain. Then for each ǫ > 0, there exists a function ω =

(ϕ, ψ) ∈ C∞
c (Rn+1;R1+n) with supp(ω) ⊂⊂ G that satisfies the following properties:

(a) divψ = 0 in G,

(b) |{z ∈ G | ∇ω(z) /∈ {η1, η2}}| < ǫ,

(c) dist(∇ω(z), [η1, η2]) < ǫ for all z ∈ G,

(d) ‖ω‖L∞(G) < ǫ,

(e)
∫

Rn ϕ(x, t) dx = 0 for all t ∈ R.

Proof. The proof follows a simplified version of [37, Lemma 2.1].

1. We define a map P : C1(Rn+1) → C0(Rn+1;R1+n) by setting P(h) = (u, v), where,

for h(x, t) ∈ C1(Rn+1),

u(x, t) = q ·Dh(x, t), v(x, t) =
1

b
(γ ⊗ q − q ⊗ γ)Dh(x, t).

We easily see that P(h) = (u, v) ∈ C∞
c (Rn+1;R1+n), supp(P(h)) ⊂ supp(h), div v ≡ 0,

and
∫

Rn u(x, t) dx = 0 for all t ∈ R, for all h ∈ C∞
c (Rn+1). For h(x, t) = f(q · x + bt) with

f ∈ C∞(R), w = (u, v) = P(h) is given by u(x, t) = f ′(q ·x+bt) and v(x, t) = f ′(q ·x+bt)γb ,

and hence ∇w(x, t) = f ′′(q · x+ bt)η. We also note that P(gh) = gP(h) + hP(g) and hence

∇P(gh) = g∇P(h) + h∇P(g) + B(∇g,∇h) ∀ g, h ∈ C∞(Rn+1), (4.9)
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where B(∇g,∇h) is a bilinear map of ∇g and ∇h; so |B(∇h,∇g)| ≤ C|∇h||∇g| for some

constant C > 0.

2. Let Gǫ ⊂⊂ G be a smooth sub-domain such that |G \Gǫ| < ǫ/2, and let ρǫ ∈ C∞
c (G)

be a cut-off function satisfying 0 ≤ ρǫ ≤ 1 in G, ρǫ = 1 on Gǫ. As G is bounded, G ⊂

{(x, t) | k < q · x+ bt < l} for some numbers k < l. For each τ > 0, we can find a function

fτ ∈ C∞
c (k, l) satisfying

−λ1 ≤ f ′′τ ≤ λ2, |{s ∈ (k, l) | f ′′τ (s) /∈ {−λ1, λ2}}| < τ, ‖fτ‖L∞ + ‖f ′τ‖L∞ < τ.

3. Define ω = (ϕ, ψ) = P(ρǫ(x, t)hτ (x, t)), where hτ (x, t) = fτ (q ·x+bt). Then ‖hτ‖C1 ≤

C‖fτ‖C1 ≤ Cτ , ω ∈ C∞
c (Rn+1;R1+n), supp(ω) ⊂ supp(ρǫ) ⊂⊂ G, and (a) and (e) are

satisfied. Note that

|ω| ≤ |ρǫ||P(hτ )|+ |hτ ||P(ρǫ)| ≤ Cǫτ,

where Cǫ > 0 is a constant depending on ‖ρǫ‖C1(G)
. So we can choose a τ1 > 0 so small

that (d) is satisfied for all 0 < τ < τ1. Note also that

{z ∈ G | ∇ω(z) /∈ {η1, η2}} ⊆ (G \Gǫ) ∪ {z ∈ Gǫ | f ′′τ (q · x+ bt) /∈ {−λ1, λ2}}.

Since |{z ∈ Gǫ | f ′′τ (q · x+ bt) /∈ {−λ1, λ2}| ≤ N |{s ∈ (k, l) | f ′′τ (s) /∈ {−λ1, λ2}}| for some

constant N > 0 depending only on set G, there exists a τ2 > 0 such that

|{z ∈ G | ∇ω(z) /∈ {η1, η2}}| ≤
ǫ

2
+Nτ < ǫ
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for all 0 < τ < τ2. Therefore, (b) is satisfied. Finally, note that

ρǫ∇P(hτ (x, t)) = ρǫf
′′
τ (q · x+ bt)η ∈ [η1, η2] in G

and, by (4.9), for all z = (x, t) ∈ G,

|∇ω(z)− ρǫ∇P(hτ (x, t))| ≤ |hτ ||∇P(ρǫ)|+ |B(∇hτ ,∇ρǫ)| ≤ C ′
ǫτ < ǫ

for all 0 < τ < τ3, where C
′
ǫ > 0 is a constant depending on ‖ρǫ‖C2(G)

, and τ3 > 0 is another

constant. Hence (c) is satisfied. Taking 0 < τ < min{τ1, τ2, τ3}, the proof is complete.

We now state the relaxation theorem for homogeneous differential inclusion ∇ω(z) ∈

F0 in a form that is more suitable for later use; we restrict the inclusion to only (p, β)

components.

Theorem 4.2.2. Let 0 < r2 < σ(s0), and let l2 = lr2 ∈ (0, r2) be some number determined

by Theorem 4.1.6. Let l2 < r1 < r2, and let K be a compact subset of S = Sr1,r2 . Let

Q̃ × Ĩ be a box in Rn+1. Then given any ǫ > 0, there exists a δ > 0 such that for each box

Q× I ⊂ Q̃× Ĩ, point (p, β) ∈ K, and number ρ > 0 sufficiently small, there exists a function

ω = (ϕ, ψ) ∈ C∞
c (Q× I;R1+n) satisfying the following properties:

(a) divψ = 0 in Q× I,

(b) (p′ +Dϕ(z), β′ + ψt(z)) ∈ S for all z ∈ Q× I and |(p′, β′)− (p, β)| ≤ δ,

(c) ‖ω‖L∞(Q×I) < ρ,

(d)
∫

Q×I |β + ψt(z)− A(p+Dϕ(z))|dz < ǫ|Q× I|/|Q̃× Ĩ|,

(e)
∫

Q ϕ(x, t)dx = 0 for all t ∈ I,

(f) ‖ϕt‖L∞(Q×I) < ρ.
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Proof. By Theorem 4.1.6, there exist finitely many open balls B1, · · · ,BN ⊂⊂ S covering K

and C1 functions qi : B̄i → Sn−1, γi : B̄i → Rn, ti,± : B̄i → R (1 ≤ i ≤ N) with γi · qi = 0

and ti,− < 0 < ti,+ on B̄i such that for each ξ =







p c

B β






∈ R(F0) with (p, β) ∈ B̄i, we

have

ξ + ti,±ηi ∈ F±,

where ti,± = ti,±(p, β), ηi =







qi(p, β) b

1
bγi(p, β)⊗ qi(p, β) γi(p, β)






, and b 6= 0 is arbitrary.

Let 1 ≤ i ≤ N . We write ξi = ξi(p, β) =







p 0

O β






∈ R(F0) for (p, β) ∈ B̄i ⊂ S, where O

is the n× n zero matrix. We omit the dependence on (p, β) ∈ B̄i in the following whenever

it is clear from the context. Given any ρ > 0, we choose a constant bi with

0 < bi < min
B̄i

ρ

ti,+ − ti,−
.

With this choice of b = bi, let ηi be defined on B̄i as above. Then

ξi,± =







pi,± ci,±

Bi,± βi,±






:= ξi + ti,±ηi ∈ F±,

ξi = λiξi,+ + (1− λi)ξi,−, λi =
−ti,−

ti,+ − ti,−
∈ (0, 1) on B̄i.

By the definition of R(F0), on B̄i, both ξ
τ
i,− = τξi,++(1−τ)ξi,− and ξτi,+ = (1−τ)ξi,++τξi,−

belong to R(F0) for all τ ∈ (0, 1). Let 0 < τ < min1≤j≤N minB̄j min{λj , 1 − λj} ≤ 1
2

be a small number to be selected later. Let λ′i =
λi−τ
1−2τ on B̄i. Then λ′i ∈ (0, 1), ξi =

λ′iξ
τ
i,++ (1− λ′i)ξ

τ
i,− on B̄i. Moreover, on B̄i, ξ

τ
i,+ − ξτi,− = (1− 2τ)(ξi,+− ξi,−) is rank-one,
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[ξτi,−, ξ
τ
i,+] ⊂ (ξi,−, ξi,+) ⊂ R(F0), and

cτ ≤ |ξτi,+ − ξi,+| = |ξτi,− − ξi,−| = τ |ξi,+ − ξi,−| = τ(ti,+ − ti,−)|ηi| ≤ Cτ,

where C = max1≤j≤N maxB̄j (tj,+ − tj,−)|ηj | ≥ min1≤j≤N minB̄j (tj,+ − tj,−)|ηj | = c > 0.

By continuity, Hτ =
⋃

(p,β)∈B̄j ,1≤j≤N [ξτj,−(p, β), ξ
τ
j,+(p, β)] is a compact subset of R(F0),

where R(F0) is open in the space

Σ0 =

















p c

B β







∣

∣

∣
trB = 0











,

by Lemma 4.1.3 and Theorem 4.1.6. So dτ = dist(Hτ , ∂|Σ0R(F0)) > 0, where ∂|Σ0 is the

relative boundary in Σ0.

Let ηi,1 = −λi,1ηi = −λ′i(1−2τ)(ti,+−ti,−)ηi, ηi,2 = λi,2ηi = (1−λ′i)(1−2τ)(ti,+−ti,−)ηi

on B̄i, where λi,1 = τ(−ti,+) + (1− τ)(−ti,−) > 0, λi,2 = (1− τ)ti,+ + τti,− > 0 on B̄i, and

τ > 0 is so small that

min
1≤j≤N

min
B̄j

λj,k > 0 (k = 1, 2).

Applying Lemma 4.2.1 to matrices ηi,1 = ηi,1(p, β), ηi,2 = ηi,2(p, β) for a fixed (p, β) ∈ B̄i

and a given box G = Q × I, we obtain that for each ρ > 0, there exist a function ω =
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(ϕ, ψ) ∈ C∞
c (Q×I;R1+n) and an open set Gρ ⊂⊂ Q×I satisfying the following conditions:



























































































(1) divψ = 0 in Q× I,

(2) |(Q× I) \Gρ| < ρ; ξi +∇ω(z) ∈ {ξτi,−, ξτi,+} for all z ∈ Gρ,

(3) ξi +∇ω(z) ∈ [ξτi,−, ξ
τ
i,+]ρ for all z ∈ Q× I,

(4) ‖ω‖L∞(Q×I) < ρ,

(5)
∫

Q ϕ(x, t) dx = 0 for all t ∈ I,

(6) ‖ϕt‖L∞(Q×I) < 2ρ,

(4.10)

where [ξτi,−, ξ
τ
i,+]ρ denotes the ρ-neighborhood of closed line segment [ξτi,−, ξ

τ
i,+]. Here, from

(4.10.3), (4.10.6) follows as

|ϕt| < |ci,+ − ci,−|+ ρ = (ti,+ − ti,−)|bi|+ ρ < 2ρ in Q× I.

Note (a), (c), (e), and (f) follow from (4.10), where 2ρ in (4.10.6) can be adjusted to ρ

as in (f). By the uniform continuity of A on J = {p′ ∈ Rn | |p′| ≤ s+(r̄2)}, we can find a

δ′ > 0 such that |A(p′) − A(p′′)| < ǫ
3|Q̃×Ĩ| whenever p

′, p′′ ∈ J and |p′ − p′′| < δ′. We then

choose a τ > 0 so small that

Cτ < δ′, C|Q̃× Ĩ|τ < ǫ

3
.

Next, we choose a δ > 0 such that δ < dτ
2 . If 0 < ρ < δ, then by (4.10.1) and (4.10.3), for
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all z ∈ Q× I and |(p′, β′)− (p, β)| ≤ δ,

ξi(p
′, β′) +∇ω(z) ∈ Σ0, dist(ξi(p

′, β′) +∇ω(z), Hτ ) < dτ ,

and so ξi(p
′, β′) +∇ω(z) ∈ R(F0), that is, (p

′ +Dϕ(z), β′ + ψt(z)) ∈ S. Thus (b) holds for

all 0 < ρ < δ. In particular, (p+Dϕ(z), β+ψt(z)) ∈ S and so |p+Dϕ(z)| ≤ s+(r1) < s+(r̄2)

and |β + ψt(z)| ≤ r2 for all z ∈ Q× I, by (i) of Theorem 4.1.6. Thus

∫

Q×I
|β + ψt − A(p+Dϕ)|dz

≤
∫

Gρ
|β + ψt − A(p+Dϕ)|dz + (r2 +Mσ)ρ

≤ |Q× I|max{|βτi,± − A(pτi,±)|}+ (r2 +Mσ)ρ

≤ C|Q× I|τ + |Q× I|max{|A(pi,±)− A(pτi,±)|}+ (r2 +Mσ)ρ

≤ 2ǫ|Q× I|
3|Q̃× Ĩ|

+ (r2 +Mσ)ρ,

where ξτi,± =







pτi,± cτi,±

Bτ
i,± βτi,±






and Mσ = σ(s0). Thus, (d) holds for all ρ > 0 satisfying

(r2 +Mσ)ρ <
ǫ|Q×I|
3|Q̃×Ĩ| .

We have verified (a) – (f) for any (p, β) ∈ B̄i and 1 ≤ i ≤ N , where δ > 0 is independent

of the index i. Since B1, · · · ,BN cover K, the proof is now complete.

4.3 Construction of admissible set U

We first construct a suitable boundary function Φ = (u∗, v∗) ∈ W 1,∞(ΩT ;R
1+n). Assume

Ω and u0 satisfy (2.10) with Ω convex. Let ΩT = Ω × (0, T ) for a given T > 0 and
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M0 = ‖Du0‖L∞(Ω). Recall that we assume (2.1); that is,

∫

Ω
u0(x) dx = 0. (4.11)

To tailor the detailed result of Theorem 2.3.2 into the general existence theorem, Theorem

2.2.4, we assume the following: Let 0 < r = r2 < σ(M0), and let l = lr ∈ (0, r) be some

number determined by Theorem 4.1.6. Choose any r̃ = r1 ∈ (l, r).

With these numbers r1 = r̃, r2 = r, we apply Lemma 3.2.1 to obtain functions σ̃, f̃ ∈

C3([0,∞)) satisfying its conclusion. Also, let Ã(p) = f̃(|p|2)p (p ∈ R
n). Then:

Lemma 4.3.1. We have

(p, Ã(p)) ∈ S ∀ s−(r1) < |p| < s+(r2),

where S = Sr1,r2 is the set in Lemma 4.1.3.

Proof. Let s = |p|, r = σ̃(s) and ζ = p/|p|, so that s−(r1) < s < s+(r2), ζ ∈ Sn−1 and

Ã(p) = rζ . By Lemma 3.2.1, s−(r) < s < s+(r) and r1 < r < r2 . Set p± = s±(r)ζ and

β± = rζ . Then A(p±) = rζ = β±. Define ξ =







p 0

O Ã(p)






and ξ± =







p± 0

O β±






. Then

ξ = λξ+ + (1− λ)ξ− for some 0 < λ < 1. Since ξ± ∈ F± and rank(ξ+ − ξ−) = 1, it follows

from the definition of R(F0) = R(Fr1,r2(0)) that ξ ∈ (ξ−, ξ+) ⊂ R(F0). Thus, by Lemma

4.1.3, (p, Ã(p)) ∈ S.

By Lemma 3.2.1, equation ut = div(Ã(Du)) is uniformly parabolic. So by Theorem 3.1.1
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together with the convexity of Ω, the initial-Neumann boundary value problem







































u∗t = div(Ã(Du∗)) in ΩT

∂u∗/∂n = 0 on ∂Ω× (0, T )

u∗(x, 0) = u0(x), x ∈ Ω

(4.12)

admits a unique classical solution u∗ ∈ C2+α,1+α/2(Ω̄T ) satisfying

|Du∗(x, t)| ≤M0 ∀(x, t) ∈ ΩT .

From conditions (2.10) and (4.11), we can find a function h ∈ C2+α(Ω̄) satisfying

∆h = u0 in Ω, ∂h/∂n = 0 on ∂Ω.

Let v0 = Dh ∈ C1+α(Ω̄;Rn) and define, for (x, t) ∈ ΩT ,

v∗(x, t) = v0(x) +

∫ t

0
Ã(Du∗(x, s)) ds. (4.13)

Then it is easily seen that Φ := (u∗, v∗) ∈ C1(Ω̄T ;R
1+n) satisfies (2.4); that is,







































u∗(x, 0) = u0(x) (x ∈ Ω),

div v∗ = u∗ a.e. in ΩT ,

v∗(·, t) · n|∂Ω = 0 ∀ t ∈ [0, T ].

(4.14)

Hence Φ is a boundary function in the sense of Definition 2.2.2.
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Next, let

F = {(p, A(p)) | |p| ∈ [0, s−(r1)]} .

Then we have the following:

Lemma 4.3.2.

(Du∗(x, t), v∗t (x, t)) ∈ S ∪ F ∀ (x, t) ∈ ΩT .

Proof. Let (x, t) ∈ ΩT and p = Du∗(x, t); then |p| ≤M0.

If |p| ≤ s−(r1), then Ã(p) = A(p) and hence by (4.13)

(Du∗(x, t), v∗t (x, t)) = (p, Ã(p)) = (p, A(p)) ∈ F .

If s−(r1) < |p| ≤M0, then by Lemma 4.3.1 and (4.13)

(Du∗(x, t), v∗t (x, t)) = (p, Ã(p)) ∈ S.

Therefore (Du∗, v∗t ) ∈ S ∪ F in ΩT .

Definition 4.3.3. We say a function u is piecewise C1 in ΩT and write u ∈ C1
piece(ΩT ) if

there exists a sequence of disjoint open sets {Gj}∞j=1 in ΩT such that

u ∈ C1(Ḡj) ∀j ∈ N, |ΩT \ ∪∞
j=1Gj | = 0.

Note that in this definition, we necessarily have |∂Gj | = 0 for all j ∈ N.

(Selection of interface of measure zero for classical and Lipschitz parts of
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solutions) Observe that

|{(x, t) ∈ ΩT | |Du∗(x, t)| = s−(r̄)}| > 0

for at most countably many r̄ ∈ (0, r̃). We fix any r̄ ∈ (0, r̃) with

|{(x, t) ∈ ΩT | |Du∗(x, t)| = s−(r̄)}| = 0,

and let

Ω1
T = {(x, t) ∈ ΩT | |Du∗(x, t)| < s−(r̄)},

Ω2
T = {(x, t) ∈ ΩT | |Du∗(x, t)| > s−(r̄)},

so that Ω1
T and Ω2

T are disjoint subsets of ΩT whose union has measure |ΩT |. Clearly,

Ωr̄
0 ⊂ ∂Ω1

T , where Ωr̄
0 is as in Theorem 2.3.2.

Let m = ‖u∗t ‖L∞(ΩT ) + 1 . We finally define the admissible set U as follows:

U =
{

u ∈ C1
piece ∩W

1,∞
u∗ (ΩT )

∣

∣ u = u∗ in Ω1
T , ‖ut‖L∞(ΩT ) < m,

∃ v ∈ C1
piece ∩W

1,∞
v∗ (ΩT ;R

n) such that

div v = u and (Du, vt) ∈ S ∪ F a.e. in ΩT

}

.

(4.15)

For each ǫ > 0, let Uǫ be the subset of U given by

Uǫ =
{

u ∈ U | ∃ v ∈ C1
piece ∩W

1,∞
v∗ (ΩT ;R

n) such that div v = u and

(Du, vt) ∈ S ∪ F a.e. in ΩT , and
∫

ΩT
|vt − A(Du)|dxdt ≤ ǫ|ΩT |

}

.
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Remark 4.3.4. From (4.14), Lemma 4.3.2, and the definition of U , it follows that u∗ ∈ U

with its corresponding vector function v∗; so U is non-empty. Also U is a bounded subset

of W
1,∞
u∗ (ΩT ) as S ∪ F is bounded. Moreover, by (i) of Theorem 4.1.6 and the definition of

F , for each u ∈ U , its corresponding vector function v satisfies ‖vt‖L∞(ΩT ) ≤ r2 = r. Thus

U is indeed an admissible set in the sense of Definition 2.2.3 with respect to the boundary

function Φ = (u∗, v∗). Finally, note that s−(r1) < |Du∗| < s+(r2) on some non-empty open

subset of ΩT , and so Ã(Du∗) 6= A(Du∗) on this set; so u∗ itself is not a Lipschitz solution

to (1.2). In terms of Theorem 2.2.4, it only remains to verify the density property (2.5) to

obtain multiple Lipschitz solutions to problem (1.2). We accomplish this in the next section.

4.4 Completion of proof of Theorem 2.3.2

Following Section 4.3, we complete the proof of Theorem 2.3.2. The density theorem below

is the last preparation for the proof.

Theorem 4.4.1. For each ǫ > 0, Uǫ is dense in U under the L∞-norm.

Proof. Let u ∈ U , η > 0. The goal is to construct a function ũ ∈ Uǫ such that ‖ũ −

u‖L∞(ΩT ) < η. For clarity, we divide the proof into several steps.

1. Note ‖ut‖L∞(ΩT ) < m − τ0 for some τ0 > 0 and there exists a vector function

v ∈ C1
piece ∩W

1,∞
v∗ (ΩT ;R

n) such that div v = u and (Du, vt) ∈ S ∪F a.e. in ΩT . Since both

u and v are piecewise C1 in ΩT , there exists a sequence of disjoint open sets {Gj}∞j=1 in ΩT

with |∂Gj | = 0 such that

u ∈ C1(Ḡj), v ∈ C1(Ḡj ;R
n) ∀j ≥ 1, |ΩT \ ∪∞

j=1Gj | = 0.
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2. Let j ∈ N be fixed, where N is the set of positive integers. Note that (Du(z), vt(z)) ∈

S̄ ∪ F for all z = (x, t) ∈ Gj and that Hj = {z ∈ Gj | (Du(z), vt(z)) ∈ ∂S} is a (relatively)

closed set in Gj with measure zero. So G̃j = Gj\Hj is an open subset of Gj with |G̃j | = |Gj|,

and (Du(z), vt(z)) ∈ S ∪ F for all z ∈ G̃j .

3. For each τ > 0, let Gτ = {(p, β) ∈ S | |β − A(p)| > τ, dist((p, β), ∂S) > τ)}; then

S = (∪τ>0Gτ ) ∪ {(p, β) ∈ S | A(p) = β} as S is open. Since A(p) = β ∀(p, β) ∈ F , we have

∫

G̃j

|vt(z)−A(Du(z))| dz = lim
τ→0+

∫

{z∈G̃j | (Du(z),vt(z))∈Gτ }
|vt(z)− A(Du(z))| dz;

so we can find a τj > 0 such that

∫

Fj

|vt(z)− A(Du(z))| dz < ǫ

3 · 2j |ΩT | and |∂Oj | = 0, (4.16)

where Fj = {z ∈ G̃j | (Du(z), vt(z)) /∈ Gτj} and Oj = G̃j \ Fj is open. Let J be the set of

all indices j ∈ N with Oj 6= ∅. Then for j 6∈ J , Fj = G̃j .

4. We now fix a j ∈ J . Note that Oj = {z ∈ G̃j | (Du(z), vt(z)) ∈ Gτj} and that

Kj := Ḡτj is a compact subset of S. Let Q̃ ⊂ Rn be a box with Ω ⊂ Q̃ and Ĩ = (0, T ).

Applying Theorem 4.2.2 to box Q̃ × Ĩ , Kj ⊂⊂ S = Sr1,r2 (recall r2 = r, r1 = r̃), and

ǫ′ = ǫ|ΩT |
12 , we obtain a constant δj > 0 that satisfies the conclusion of the theorem. By the

uniform continuity of A on compact subsets of Rn, we can find a θ = θǫ,r1 > 0 such that

|A(p)− A(p′)| < ǫ

12
(4.17)

whenever |p|, |p′| ≤ 2s+(r1) and |p − p′| ≤ θ. Also by the uniform continuity of u, v, and
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their gradients on Ḡj , there exists a νj > 0 such that

|u(z)− u(z′)|+ |∇u(z)−∇u(z′)|+ |v(z)− v(z′)|

+|∇v(z)−∇v(z′)| < min{δj2 , ǫ
12 , θ, s+(r1)}

(4.18)

whenever z, z′ ∈ Ḡj and |z− z′| ≤ νj . We now cover Oj (up to measure zero) by a sequence

of disjoint open cubes {Qi
j × Iij}∞i=1 in Oj whose sides are parallel to the axes with center

zij and diameter lij < νj .

5. Fix an i ∈ N and write w = (u, v), ξ =







p c

B β






= ∇w(zij) =







Du(zij) ut(z
i
j)

Dv(zij) vt(z
i
j)






.

By the choice of δj > 0 in Step 4 via Theorem 4.2.2, since Qi
j × Iij ⊂ Q̃× Ĩ and (p, β) ∈ Kj ,

for all sufficiently small ρ > 0, there exists a function ωij = (ϕij , ψ
i
j) ∈ C∞

c (Qi
j × Iij ;R

1+n)

satisfying

(a) divψij = 0 in Qi
j × Iij ,

(b) (p′ +Dϕij(z), β
′ + (ψij)t(z)) ∈ S for all z ∈ Qi

j × Iij

and all |(p′, β′)− (p, β)| ≤ δj ,

(c) ‖ωij‖L∞(Qi
j×Iij)

< ρ,

(d)
∫

Qi
j×Iij

|β + (ψij)t(z)− A(p+Dϕij(z))|dz < ǫ′|Qi
j × Iij |/|Q̃× Ĩ|,

(e)
∫

Qi
j
ϕij(x, t)dx = 0 for all t ∈ Iij ,

(f) ‖(ϕij)t‖L∞(Qi
j×Iij )

< ρ.

Here, we let 0 < ρ ≤ min{τ0,
δj
2C ,

ǫ
12C , η}, where Cn is the constant in Theorem 3.3.1 and C is

the product of Cn and the sum of the lengths of all sides of Q̃. By (e), we can apply Theorem

3.3.1 to ϕij on Q
i
j×Iij to obtain a function gij = Rϕij ∈ C1(Qi

j × Iij ;R
n)∩W 1,∞

0 (Qi
j×Iij ;Rn)
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such that div gij = ϕij in Qi
j × Iij and

‖(gij)t‖L∞(Qi
j×Iij)

≤ C‖(ϕij)t‖L∞(Qi
j×Iij)

≤ δj
2
. (by (f)) (4.19)

6. As vt and A(Du) are essentially bounded in ΩT , we can select a finite index set

I ⊂ J × N so that

∫

⋃

(j,i)∈(J×N)\I Qi
j×Iij

|vt(z)− A(Du(z))|dz ≤ ǫ

3
|ΩT |. (4.20)

We finally define

(ũ, ṽ) = (u, v) +
∑

(j,i)∈I
χ
Qi
j×Iij

(ϕij , ψ
i
j + gij) in ΩT .

As a side remark, note here that only finitely many functions (ϕij , ψ
i
j + gij) are disjointly

patched to the original (u, v) to obtain a new function (ũ, ṽ) towards the goal of the proof.

The reason for using only finitely many pieces of gluing is due to the lack of control over the

spatial gradients D(ψij + gij), and overcoming this difficulty is at the heart of our method.

7. Let us finally check that ũ together with ṽ indeed gives the desired result. By

construction, it is clear that ũ ∈ C1
piece ∩ W

1,∞
u∗ (ΩT ), ṽ ∈ C1

piece ∩ W
1,∞
v∗ (ΩT ;R

n). By

the choice of ρ in (f) as ρ ≤ τ0, we have ‖ũt‖L∞(ΩT ) < m. Next, let (j, i) ∈ I, and observe

that for z ∈ Qi
j × Iij , with (p, β) = (Du(zij), vt(z

i
j)) ∈ Gτj , since |z− zij | < lij < νj , it follows

from (4.18) and (4.19) that

|(Du(z), vt(z) + (gij)t(z))− (p, β)| ≤ δj ,
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and so (Dũ(z), ṽt(z)) ∈ S from (b) above. From (a) and div gij = ϕij , for z ∈ Qi
j × Iij ,

div ṽ(z) = div(v + ψij + gij)(z) = u(z) + 0 + ϕij(z) = ũ(z).

Therefore, ũ ∈ U . Next, observe

∫

ΩT

|ṽt − A(Dũ)|dz =
∫

∪j∈NFj

|vt − A(Du)|dz

+

∫

∪(j,i)∈(J×N)\IQi
j×Iij

|vt −A(Du)|dz +
∫

∪(j,i)∈IQi
j×Iij

|ṽt − A(Dũ)|dz

=: I1 + I2 + I3.

From (4.16) and (4.20), we have I1+I2 ≤ 2ǫ
3 |ΩT |. Note also that for (j, i) ∈ I and z ∈ Qi

j×Iij ,

from (4.18), (4.19), and (f),

|ṽt(z)− A(Dũ(z))| = |vt(z) + (ψij)t(z) + (gij)t(z)− A(Du(z) +Dϕij(z))|

≤ |vt(z)− vt(z
i
j)|+ |vt(zij) + (ψij)t(z)− A(Du(zij) +Dϕij(z))|

+|(gij)t(z)|+ |A(Du(zij) +Dϕij(z))− A(Du(z) +Dϕij(z))|

≤ ǫ

6
+ |vt(zij) + (ψij)t(z)−A(Du(zij) +Dϕij(z))|

+|A(Du(zij) +Dϕij(z))− A(Du(z) +Dϕij(z))|.

From (i) of Theorem 4.1.6 and (4.18), we have |Du(zij)+Dϕij(z)| ≤ 2s+(r1). As (Dũ(z), ṽt(z)) ∈

S, we also have |Du(z)+Dϕij(z)| = |Dũ(z)| ≤ s+(r1), and by (4.18), |Du(zij)−Du(z)| < θ.
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From (4.17) we thus have

|A(Du(zij) +Dϕij(z))−A(Du(z) +Dϕij(z))| <
ǫ

12
.

Integrating the above inequality over Qi
j × Iij , we now obtain from (d) that

∫

Qi
j×Iij

|ṽt(z)− A(Dũ(z))|dz ≤ ǫ

4
|Qi

j × Iij |+
ǫ|ΩT |
12

|Qi
j × Iij |

|Q̃× Ĩ|
≤ ǫ

3
|Qi

j × Iij |,

which yields that I3 ≤ ǫ
3 |ΩT |. Hence I1 + I2 + I3 ≤ ǫ|ΩT |, and so ũ ∈ Uǫ. Lastly, from (c)

with ρ ≤ η and the definition of ũ, we have ‖ũ− u‖L∞(ΩT ) < η.

The proof is now complete.

Completion of Proof of Theorem 2.3.2

Proof of Theorem 2.3.2. Combining Remark 4.3.4 and Theorem 4.4.1, we can see that there

are infinitely many Lipschitz solutions u to problem (1.2).

We now follow the proof of Theorem 2.2.4 for detailed information on any fixed Lipschitz

solution u ∈ G to (1.2). Here Du is the a.e.-pointwise limit of the gradient sequence Duj of

some sequence uj ∈ U1/j converging to u in L∞(ΩT ). Since uj ≡ u∗ in Ω1
T , we also have

u ≡ u∗ ∈ C2+α,1+α/2(Ω̄1
T ), so that

ut = div(A(Du)) and |Du| < s−(r̄) in Ω1
T .

As ‖Duj‖L∞(ΩT ) ≤ s+(r̃) = s+(r1), we have ‖Du‖L∞(ΩT ) ≤ s+(r̃). Also (vj)t ⇀ vt in

L2(ΩT ;R
n), where vj is the corresponding vector function of uj and v ∈ W 1,2((0, T );L2(Ω;Rn)).
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From (2.6), we can even deduce that (vj)t → vt pointwise a.e. in ΩT , where ‖(vj)t‖L∞(Ω) ≤

r = r2 by the definition of U and (i) of Theorem 4.1.6; hence ‖vt‖L∞(Ω) ≤ r. Note that

vt = A(Du) a.e. in ΩT ,

and so r ≥ |vt| = σ(|Du|) a.e. in ΩT . On the other hand, |Du| ≤ s+(r̃) a.e. in ΩT . So the

graph of σ forces to give

|Sr|+ |Lr,r̃| = |Ω2
T |.

If |Lr,r̃| = 0, then |Du| ≤ s−(r) a.e. in ΩT , which implies that u = u∗ in ΩT by

uniqueness. This contradicts the fact that ‖Du∗(·, 0)‖L∞(Ω) = ‖Du0‖L∞(Ω) =M0 > s−(r).

Thus, |Lr,r̃| > 0.

4.5 Proof of Theorem 2.3.5

In this final section, we complete the proof of Theorem 2.3.5 on the coexistence of radial and

non-radial Lipschitz solutions to problem (1.2) when Ω is a ball and u0 is radial.

Proof of Theorem 2.3.5. Using Theorem 3.1.1, the existence of infinitely many radial Lip-

schitz solutions to (1.2) follows from [25]. We remark that these radial solutions are not

obtained through the existence result of this dissertation, Theorem 2.3.2.

The existence of infinitely many non-radial Lipschitz solutions to (1.2) can be shown by

modifying the proof of Theorem 2.3.2. We proceed the proof as below.

It is easy to check that the function u∗ ∈ U constructed in Section 4.3 is radial in ΩT .

Our strategy is to imitate the procedure of the density proof in Section 4.4 to the function
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(u∗, v∗). We choose a space-time box in ΩT with positive distance from the central axis of

ΩT where v∗t is sufficiently away from A(Du∗) in L1-sense. Then as in the density proof,

we perform the surgery on (u∗, v∗) only in this box to obtain a function (u∗nr, v∗nr) with

membership u∗nr ∈ U maintained. Such surgery breaks down the radial symmetry of u∗;

hence, u∗nr is non-radial. Note also that this u∗nr cannot be a Lipschitz solution to (1.2).

Suppose there is no non-radial Lipschitz solution to (1.2). In the context of the proof of

Theorem 2.2.4, this means that every u ∈ G is a radial solution. The L∞-density of G in X

then implies that every function in X is radial. This contradicts the existence of a non-radial

function u∗nr in U ⊂ X above. Thus there exists a non-radial Lipschitz solution to (1.2).

Suppose there are only finitely many non-radial Lipschitz solutions to (1.2). This forces

that the non-radial function u∗nr should be the L∞-limit of some sequence of radial functions

in G, a contradiction. Therefore, there are infinitely many non-radial Lipschitz solutions to

(1.2).
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Chapter 5

Höllig type equations

This chapter deals with the existence result on Case II: Höllig type equations, that is,

Theorem 2.3.4. We thus assume Hypothesis (H) throughout this chapter.

5.1 Geometry of relevant matrix set

This section proceeds almost in the same way as in Section 4.1, and so we skip many details

unless there should some change to be made.

For each l ∈ R, let K(l) be the subset of M(1+n)×(n+1) defined by (4.2) with flux A(p)

with profile σ(s) satisfying Hypothesis (H).

Fix any two numbers σ(s2) < r1 < r2 < σ(s1), and let F0 = Fr1,r2(0) be the subset of

K(0) given by

F0 =

















p c

B A(p)







∣

∣

∣

p ∈ R
n, |p| ∈ (s−(r1), s−(r2)) ∪ (s+(r1), s+(r2)),

c ∈ R, B ∈ Mn×n, trB = 0











.

The set F0 is decomposed into two disjoint subsets as follows:

F− =

















p c

B A(p)







∣

∣

∣

p ∈ Rn, |p| ∈ (s−(r1), s−(r2)),

c ∈ R, B ∈ M
n×n, trB = 0











,
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F+ =

















p c

B A(p)







∣

∣

∣

p ∈ Rn, |p| ∈ (s+(r1), s+(r2)),

c ∈ R, B ∈ Mn×n, trB = 0











.

As in Case I: Perona-Malik type equations, we focus on the homogeneous differential

inclusion ∇ω(z) ∈ F0; thus we first study the rank-one structure of the set F0.

For the matrix set F0, we define

R(F0) =
⋃

ξ±∈F±, rank(ξ+−ξ−)=1

(ξ−, ξ+).

From a careful analysis, one can actually deduce

L(F0) = R(F0). (5.1)

This is a drastic difference to (4.3) where L(F+) 6= ∅. However, in the current case, as only

forward parts of σ are involved in F0, no such set appears in (5.1); so it is even more natural

to only stick to the analysis of the set R(F0) towards the existence result, Theorem 2.3.4.

We perform the step-by-step analysis of the set R(F0).

1. Alternate expression for R(F0). The proof of the following lemma just follows the

lines of that of Theorem 4.1.2 with minor changes. So we skip the proof.

Lemma 5.1.1. Let ξ ∈ M(1+n)×(n+1). Then ξ ∈ R(F0) if and only if there exist numbers

t− < 0 < t+ and vectors q, γ ∈ Rn with |q| = 1, γ · q = 0 such that for each b ∈ R \ {0}, if

η =







q b

1
b q ⊗ γ γ






, then ξ + t±η ∈ F±.

2. Diagonal components of matrices in R(F0). The proof of the lemma below is

precisely the same as that of Lemma 4.1.3.
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Lemma 5.1.2.

R(F0) =

















p c

B β







∣

∣

∣
c ∈ R, B ∈ M

n×n, trB = 0, (p, β) ∈ S











(5.2)

for some set S = Sr1,r2 ⊂ Rn+n.

3. Selection of approximate collinear rank-one connections for R(F0). We first

equip with a 2-dimensional description for the rank-one connections of diagonal components

of matrices in R(F0) in a general form whose proof is similar to that of Lemma 4.1.4 but has

several minor changes.

Lemma 5.1.3. For all positive numbers a, b, c with b > a, there exists a continuous function

h(a, b, c, ·, ·, ·) : Ia,b,c = [0, a)× [0, b− a)× [0, c) → [0,∞)

with h(a, b, c, 0, 0, 0) = 0 satisfying the following:

Let δ1, δ2 and η be any positive numbers with

0 < a− δ1 < a < b− δ2 < b, 0 < c− η < c,

and let R1 ∈ [a − δ1, a], R2 ∈ [b − δ2, b], and R̃1, R̃2 ∈ [c − η, c]. Suppose θ ∈ [−π/2, π/2]

and
(

R̃1
(

cos(
π

2
+ θ), sin(

π

2
+ θ)

)

− R̃2
(

cos(
π

2
− θ), sin(

π

2
− θ)

)

)

·
(

R1
(

cos(
π

2
+ θ), sin(

π

2
+ θ)

)

− R2
(

cos(
π

2
− θ), sin(

π

2
− θ)

)

)

= 0.
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Then −π
2 < θ < π

2 , R̃1 ≥ R̃2, and

max
{

∣

∣(0, a)−R1
(

cos(
π

2
+ θ), sin(

π

2
+ θ)

)∣

∣,
∣

∣(0, b)−R2
(

cos(
π

2
− θ), sin(

π

2
− θ)

)∣

∣

∣

∣(0, c)− R̃1
(

cos(
π

2
+ θ), sin(

π

2
+ θ)

)∣

∣,
∣

∣(0, c)− R̃2
(

cos(
π

2
− θ), sin(

π

2
− θ)

)∣

∣

}

≤ h(a, b, c, δ1, δ2, η).

Proof. By assumption,

0 = (R̃1(− sin θ, cos θ)− R̃2(sin θ, cos θ)) · (R1(− sin θ, cos θ)−R2(sin θ, cos θ))

= (−(R̃1 + R̃2) sin θ, (R̃1 − R̃2) cos θ) · (−(R1 +R2) sin θ, (R1 −R2) cos θ)

= (R̃1 + R̃2)(R1 +R2) sin
2 θ + (R̃1 − R̃2)(R1 −R2) cos

2 θ,

that is,

(R2 − R1)(R̃1 − R̃2) cos
2 θ = (R1 +R2)(R̃1 + R̃2) sin

2 θ;

hence, θ 6= ±π
2 , R̃1 ≥ R̃2, and

θ = ± tan−1

(
√

(R2 − R1)(R̃1 − R̃2)

(R1 +R2)(R̃1 + R̃2)

)

.

So

|θ| ≤ tan−1

(
√

(b− a + δ1)η

2(a+ b− δ1 − δ2)(c− η)

)

=: g(a, b, c, δ1, δ2, η).

Note that the function g(a, b, c, ·, ·, ·) : Ia,b,c → [0, π/2) is well-defined and continuous and

that g(a, b, c, δ1, δ2, η) = 0 for all (δ1, δ2, η) ∈ Ia,b,c with η = 0.
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Observe now that

|(0, a)− R1(cos(
π

2
+ θ), sin(

π

2
+ θ))|

≤ max{|(0, a)− a(− sin θ, cos θ)|, |(0, a)− (a− δ1)(− sin θ, cos θ)|}

= max

{

√

a2 sin2 θ + a2(1− cos θ)2,

√

(a− δ1)2 sin
2 θ + (a− (a− δ1) cos θ)2

}

= max

{√
2a

√
1− cos θ,

√

(a− δ1)2 + a2 − 2a(a− δ1) cos θ

}

≤ max
{√

2a
√

1− cos(g(a, b, c, δ1, δ2, η)),

√

(a− δ1)2 + a2 − 2a(a− δ1) cos(g(a, b, c, δ1, δ2, η))
}

=: h1(a, b, c, δ1, δ2, η),

|(0, b)−R2(cos(
π

2
− θ), sin(

π

2
− θ))|

≤ max
{√

2b
√

1− cos(g(a, b, c, δ1, δ2, η)),

√

(b− δ2)2 + b2 − 2b(b− δ2) cos(g(a, b, c, δ1, δ2, η))
}

=: h2(a, b, c, δ1, δ2, η),

|(0, c)− R̃1(cos(
π

2
+ θ), sin(

π

2
+ θ))|

≤ max
{√

2c
√

1− cos(g(a, b, c, δ1, δ2, η)),

√

(c− η)2 + c2 − 2c(c− η) cos(g(a, b, c, δ1, δ2, η))
}

=: h3(a, b, c, δ1, δ2, η),

|(0, c)− R̃2(cos(
π

2
− θ), sin(

π

2
− θ))| ≤ h3(a, b, c, δ1, δ2, η).
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Define h(a, b, c, δ1, δ2, η) = max1≤j≤3 hj(a, b, c, δ1, δ2, η). Then it is trivial to see that the

function h(a, b, c, ·, ·, ·) : Ia,b,c → [0,∞) is well-defined and satisfies the desired properties.

Next, we apply the previous lemma to choose approximate collinear rank-one connections

for the diagonal components of matrices in R(F0).

Theorem 5.1.4. Let p± ∈ Rn satisfy

s−(r1) < |p−| < s−(r2) < s+(r1) < |p+| < s+(r2)

and (A(p+)−A(p−)) · (p+ − p−) = 0. Then there exists a vector ζ0 ∈ Sn−1 such that, with

p0± = s±(r2)ζ0, A(p0±) = r2ζ
0, we have

max{|p0− − p−|, |p0+ − p+|, |A(p0−)− A(p−)|, |A(p0+)− A(p+)|}

≤ h(s−(r2), s+(r2), r2, s−(r2)− s−(r1), s+(r2)− s+(r1), r2 − r1),

where h is the function in Lemma 5.1.3.

Proof. The proof is the same as that of Lemma 4.1.5 except that we let δ2 = s+(r2)−s+(r1)

in applying Lemma 5.1.3.

4. Final characterization of R(F0). Now we can deduce the result on essential

structures of R(F0). Although the proof is very similar to that of Theorem 4.1.6, we include

it here for completeness.

Theorem 5.1.5. Let σ(s2) < r2 < σ(s1). Then there exists a number l2 = lr2 ∈ (σ(s2), r2)

such that for any l2 < r1 < r2, the set S = Sr1,r2 ⊂ Rn+n in (5.2) satisfies the following:
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(i) sup(p,β)∈S |p| ≤ s+(r2) and sup(p,β)∈S |β| ≤ r2; hence S is bounded.

(ii) S is open.

(iii) For each (p0, β0) ∈ S, there exist an open set V ⊂⊂ S containing (p0, β0) and C1

functions q : V̄ → Sn−1, γ : V̄ → Rn, t± : V̄ → R with γ · q = 0 and t− < 0 < t+ on

V̄ such that for every ξ =







p c

B β






∈ R(F0) = R(Fr1,r2(0)) with (p, β) ∈ V̄ , we have

ξ + t±η ∈ F±,

where t± = t±(p, β), η =







q(p, β) b

1
bγ(p, β)⊗ q(p, β) γ(p, β)






, and b 6= 0 is arbitrary.

Proof. Fix any σ(s2) < r2 < σ(s1). For the moment, we let r1 be any number in (σ(s2), r2)

and prove (i). Then we choose later a lower bound l2 = lr2 ∈ (σ(s2), r2) of r1 for the validity

of (ii) and (iii) above.

We divide the proof into several steps.

1. To show that (i) holds, choose any (p, β) ∈ S. By Lemma 5.1.2, ξ :=







p 0

O β






∈

R(F0) = R(Fr1,r2(0)), where O is the n× n zero matrix. By the definition of R(F0), there

exist two matrices ξ± =







p± c±

B± σ(|p±|) p±
|p±|






∈ F± and a number 0 < λ < 1 such that

ξ = λξ+ + (1− λ)ξ−. So

|p| = |λp+ + (1− λ)p−| ≤ s+(r2),

|β| =
∣

∣

∣

∣

λσ(|p+|)
p+
|p+|

+ (1− λ)σ(|p−|)
p−
|p−|

∣

∣

∣

∣

≤ r2 ;
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hence, sup(p,β)∈S |p| ≤ s+(r2), sup(p,β)∈S |β| ≤ r2, and S is bounded. So (i) is proved.

2. We now turn to the remaining assertions that for all r1 < r2 sufficiently close to

r2, S = Sr1,r2 fulfills (ii) and (iii). In this step, we still assume r1 is any fixed number in

(σ(s2), r2).

Let (p0, β0) ∈ S. Since ξ0 :=







p0 0

O β0






∈ R(F0), it follows from Lemma 5.1.1 that

there exist numbers s0 < 0 < t0 and vectors q0, γ0 ∈ Rn with |q0| = 1, γ0 · q0 = 0 such that

ξ0 + s0η0 ∈ F− and ξ0 + t0η0 ∈ F+, where η0 =







q0 b

1
b q0 ⊗ γ0 γ0






and b 6= 0 is any fixed

number. Let q′0 = t0q0 6= 0, γ′0 = t0γ0, and s
′
0 = s0/t0 < 0; then

γ′0 · q′0 = 0, s−(r1) < |p0 + s′0q
′
0| < s−(r2),

s+(r1) < |p0 + q′0| < s+(r2),

σ(|p0 + s′0q
′
0|)

p0 + s′0q
′
0

|p0 + s′0q
′
0|

= β0 + s′0γ
′
0, σ(|p0 + q′0|)

p0 + q′0
|p0 + q′0|

= β0 + γ′0. (5.3)

Observe also

t0 − s0 ≥ |(p0 + t0q0)| − |(p0 + s0q0)| > s+(r1)− s−(r2). (5.4)

Next, consider the function F defined by

F (γ′, q′, s′; p, β) = (σ(|p+ s′q′|) p + s′q′

|p+ s′q′| − β − s′γ′,

σ(|p+ q′|) p+ q′

|p+ q′| − β − γ′, γ′ · q′) ∈ R
n+n+1

for all γ′, q′, p, β ∈ Rn and s′ ∈ R with s−(r1) < |p + s′q′| < s−(r2), s+(r1) < |p +

q′| < s+(r2). Then F is C1 in the described open subset of Rn+n+1+n+n, and the above
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observation gives

F (γ′0, q
′
0, s

′
0; p0, β0) = 0.

Suppose for the moment that the Jacobian matrix D(γ′,q′,s′)F is invertible at the point

(γ′0, q
′
0, s

′
0; p0, β0); then the Implicit Function Theorem implies the following: There exist

a bounded domain Ṽ = Ṽ(p0,β0) ⊂ Rn+n containing (p0, β0) and C1 functions q̃, γ̃ ∈ Rn,

s̃ ∈ R of (p, β) ∈ Ṽ such that

γ̃(p0, β0) = γ′0, q̃(p0, β0) = q′0, s̃(p0, β0) = s′0

and that

s̃(p, β) < 0, s−(r1) < |p+ s̃(p, β)q̃(p, β)| < s−(r2),

s+(r1) < |p+ q̃(p, β)| < s+(r2),

F (γ̃(p, β), q̃(p, β), s̃(p, β); p, β) = 0 ∀(p, β) ∈ Ṽ .

Define

γ =
γ̃

|q̃| , q =
q̃

|q̃| , t− = s̃|q̃|, t+ = |q̃| in Ṽ;

then

s−(r1) < |p+ t−q| < s−(r2),

s+(r1) < |p+ t+q| < s+(r2),

σ(|p+ t±q|)
p+ t±q
|p+ t±q|

= β + t±γ, |q| = 1, γ · q = 0, t− < 0 < t+,

where (p, β) ∈ Ṽ, γ = γ(p, β), q = q(p, β), and t± = t±(p, β).
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Let (p, β) ∈ Ṽ, B ∈ M
n×n, trB = 0, b, c ∈ R, b 6= 0, q = q(p, β), γ = γ(p, β),

t± = t±(p, β), ξ =







p c

B β






, and η =







q b

1
bγ ⊗ q γ






. Then ξ± := ξ + t±η ∈ F±. By the

definition of R(F0), ξ ∈ (ξ−, ξ+) ⊂ R(F0). By Lemma 5.1.2, we thus have (p, β) ∈ S; hence

Ṽ ⊂ S. Choosing any open set V ⊂⊂ Ṽ with (p0, β0) ∈ V, the assertions (ii) and (iii) hold

with S = ∪(p0,β0)∈S Ṽ(p0,β0) open.

3. In this step, we continue Step 2 to deduce an equivalent condition for the invertibility

of the Jacobian matrix D(γ′,q′,s′)F at (γ′0, q
′
0, s

′
0; p0, β0). By direct computation,

D(γ′,q′,s′)F =















−s′In Ms′ ω−
s′

−In M1 0

q′ γ′ 0















∈ M
(n+n+1)×(n+n+1),

where In is the n× n identity matrix,

Ms′ = s′(σ′(|p+ s′q′|)− σ(|p+ s′q′|)
|p+ s′q′| )

p+ s′q′

|p+ s′q′| ⊗
p+ s′q′

|p+ s′q′| + s′
σ(|p+ s′q′|)
|p+ s′q′| In,

ω±
s′ = (σ′(|p+ s′q′|)− σ(|p+ s′q′|)

|p+ s′q′| )(
p+ s′q′

|p+ s′q′| · q
′)
p+ s′q′

|p+ s′q′| +
σ(|p+ s′q′|)
|p+ s′q′| q′ ± γ′.

For notational simplicity, we write (γ′, q′, s′; p, β) = (γ′0, q
′
0, s

′
0; p0, β0). Applying suitable

elementary row operations, where s′ < 0,

D(γ′,q′,s′)F →















−s′In Ms′ ω−
s′

O M1 − 1
s′Ms′ − 1

s′ω
−
s′

0 γ′ +
q′1
s′ (Ms′)

1 + · · ·+ q′n
s′ (Ms′)

n 1
s′ q

′ · ω−
s′
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→















−s′In Ms′ ω−
s′

O s′M1 −Ms′ −ω−
s′

0 s′γ′ + q′1(Ms′)
1 + · · ·+ q′n(Ms′)

n q′ · ω−
s′















,

where O is the n×n zero matrix, and (Ms′)
i is the ith row ofMs′ . Since |q′| = t0, γ

′ ·q′ = 0,

and s−(r1) < |p+ s′q′| < s−(r2), we have

q′ · ω−
s′ = (σ′(|p+ s′q′|)− σ(|p+ s′q′|)

|p+ s′q′| )(
p+ s′q′

|p+ s′q′| · q
′)2 +

σ(|p+ s′q′|)
|p+ s′q′| t20

= t20(cos
2 θ′σ′(|p+ s′q′|) + (1− cos2 θ′)

σ(|p+ s′q′|)
|p+ s′q′| ) > 0,

where θ′ ∈ [0, π] is the angle between p+ s′q′ and q′. Observe here that the forward part of

σ in the definition of F− becomes essential to guarantee that σ′(|p+ s′q′|) > 0. After some

elementary column operations to the last matrix from the above row operations, we obtain

D(γ′,q′,s′)F →















−s′In Ms′ −Ns′ ω−
s′

O s′M1 −Ms′ +Ns′ −ω−
s′

0 0 q′ · ω−
s′















,

where the jth column of Ns′ ∈ Mn×n is
s′γ′j+q′·(Ms′)j

q′·ω−
s′

ω−
s′ . So D(γ′,q′,s′)F is invertible if and

only if the n× n matrix M1 − 1
s′Ms′ +

1
s′Ns′ is invertible. We compute

M1 −
1

s′
Ms′ +

1

s′
Ns′ = (σ′(|p+ q′|)− σ(|p+ q′|)

|p+ q′| )
p+ q′

|p+ q′| ⊗
p+ q′

|p+ q′|

+
σ(|p+ q′|)
|p+ q′| In − (σ′(|p+ s′q′|)− σ(|p+ s′q′|)

|p+ s′q′| )
p+ s′q′

|p+ s′q′| ⊗
p+ s′q′

|p+ s′q′|
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−σ(|p + s′q′|)
|p+ s′q′| In +

1

q′ · ω−
s′
ω−
s′ ⊗ (γ′

+(σ′(|p+ s′q′|)− σ(|p+ s′q′|)
|p+ s′q′| )(

p+ s′q′

|p+ s′q′| · q
′)
p+ s′q′

|p+ s′q′| +
σ(|p+ s′q′|)
|p+ s′q′| q′)

= (a1 − as′)In + (b1 − a1)
p+ q′

|p+ q′| ⊗
p+ q′

|p+ q′|

−(bs′ − as′)
p+ s′q′

|p+ s′q′| ⊗
p+ s′q′

|p+ s′q′| +
1

q′ · ω−
s′
ω−
s′ ⊗ ω+

s′ ,

and set (with an assumption a1 6= as′)

B =
1

a1 − as′
(M1 −

1

s′
Ms′ +

1

s′
Ns′) = In +

b1 − a1
a1 − as′

p+ q′

|p+ q′| ⊗
p+ q′

|p+ q′|

−bs′ − as′
a1 − as′

p+ s′q′

|p+ s′q′| ⊗
p+ s′q′

|p+ s′q′| +
1

(a1 − as′)q′ · ω
−
s′
ω−
s′ ⊗ ω+

s′ ,

where as′ =
σ(|p+s′q′|)
|p+s′q′| , bs′ = σ′(|p + s′q′|); then D(γ′,q′,s′)F is invertible if and only if the

matrix B ∈ Mn×n is invertible.

4. To close the arguments in Step 2 and thus to finish the proof, we choose a suitable

l2 = lr2 ∈ (σ(s2), r2) in such a way that for any r1 ∈ (l2, r2), the matrix B, determined

through Steps 2 and 3 for any given (p0, β0) ∈ S = Sr1,r2 , is invertible.

First, by Hypothesis (C), r̃2 ∈ (σ(s2), r2) can be chosen close enough to r2 so that

σ(k)

k
<
σ(l)

l
∀l ∈ [s−(r̃2), s−(r2)], ∀k ∈ [s+(r̃2), s+(r2)].

Then define a real-valued continuous function (to express the determinant of the matrix B
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from Step 3)

DET(u, v, q, γ) = det
(

In +
σ′(|u|)− σ(|u|)

|u|
σ(|u|)
|u| − σ(|v|)

|v|

u

|u| ⊗
u

|u| −
σ′(|v|)− σ(|v|)

|v|
σ(|u|)
|u| − σ(|v|)

|v|

v

|v| ⊗
v

|v|

+
1

(
σ(|u|)
|u| − σ(|v|)

|v| )((σ′(|v|)− σ(|v|)
|v| )( v

|v| · q)2 +
σ(|v|)
|v| )

(

(σ′(|v|)− σ(|v|)
|v| )(

v

|v| · q)
v

|v|

+
σ(|v|)
|v| q − γ

)

⊗
(

(σ′(|v|)− σ(|v|)
|v| )(

v

|v| · q)
v

|v| +
σ(|v|)
|v| q + γ

)

)

on the compact set M of points (u, v, q, γ) ∈ Rn × Rn × Sn−1 × Rn with

|u| ∈ [s+(r̃2), s+(r2)], |v| ∈ [s−(r̃2), s−(r2)], |γ| ≤ 1.

With k̄ = s+(r2) and l̄ = s−(r2), for each q ∈ Sn−1,

DET(k̄q, l̄q, q, 0) = det
(

In +
σ′(k̄)− σ(k̄)

k̄
+

σ(l̄)
l̄

σ(k̄)
k̄

− σ(l̄)
l̄

q ⊗ q
)

6= 0,

since σ′(k̄) 6= 0 and hence the fraction in front of q ⊗ q is different from −1. So

d := min
q∈Sn−1

|DET(k̄q, l̄q, q, 0)| > 0.

Next, choose a number δ > 0 such that for all (u, v, q, γ), (ũ, ṽ, q̃, γ̃) ∈ M with |u −

ũ|, |v − ṽ|, |q − q̃|, |γ − γ̃| < δ, we have

|DET(u, v, q, γ)− DET(ũ, ṽ, q̃, γ̃)| < d/2. (5.5)
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Let l2 ∈ (r̃2, r2) be sufficiently close to r2 so that for all r1 ∈ (l2, r2),

h(s−(r2), s+(r2), r2, s−(r2)− s−(r1), s+(r2)− s+(r1), r2 − r1) < τ,

where h is the function in Theorem 5.1.4 and

τ := min{δ, δ(s2 − s1)/4}.

Now, fix any r1 ∈ (l2, r2), and let B be the n×n matrix determined through Steps 2 and

3 in terms of any given (p0, β0) ∈ S = Sr1,r2 . Let p+ = p0 + t0q0 and p− = p0 + s0q0 from

Step 2; then p± and A(p±) fulfill the conditions in Theorem 5.1.4. So this theorem implies

that there exists a vector ζ0 ∈ Sn−1 such that

max{|p0− − p−|, |p0+ − p+|, |A(p0−)− A(p−)|, |A(p0+)− A(p+)|} < τ,

where p0+ = k̄ζ0, p0− = l̄ζ0, and A(p0±) = r2ζ
0. Using (5.3) and (5.4),

|p+ − k̄ζ0| < δ, |p− − l̄ζ0| < δ,

|q0 − ζ0| = |p+ − p−
t0 − s0

− ζ0| ≤ |(p+ − p−)− (k̄ − l̄)ζ0|+ |(k̄ − l̄)− (t0 − s0)|
t0 − s0

≤ 2τ + ||p0+ − p0−| − |p+ − p−||
t0 − s0

<
4τ

t0 − s0
< δ,

|γ0| = |A(p+)−A(p−)
t0 − s0

| ≤ |A(p+)− A(p0+)|+ |A(p0−)−A(p−)|
t0 − s0

< δ.
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Since det(B) = DET(p+, p−, q0, γ0) and |DET(k̄ζ0, l̄ζ0, ζ0, 0)| ≥ d, it follows from (5.5) that

| det(B)| > d/2 > 0.

The proof is now complete.

5.2 Relaxation of ∇ω(z) ∈ F0

Lemma 4.2.1 is in common use for both Theorems 4.2.2 and 5.2.1, and so we do not restate

it here.

We state the relaxation theorem for homogeneous differential inclusion ∇ω(z) ∈ F0 in a

form that is more suitable for later use; we restrict the inclusion to only (p, β) components.

Although the proof of this theorem is quite similar to that of its companion version, Theorem

4.2.2, we include it here for the sake of completeness.

Theorem 5.2.1. Let σ(s2) < r2 < σ(s1), and let l2 = lr2 ∈ (σ(s2), r2) be some number

determined by Theorem 5.1.5. Let l2 < r1 < r2, and let K be a compact subset of S = Sr1,r2 .

Let Q̃ × Ĩ be a box in Rn+1. Then, given any ǫ > 0, there exists a δ > 0 such that for each

box Q × I ⊂ Q̃ × Ĩ, point (p, β) ∈ K, and number ρ > 0 sufficiently small, there exists a

function ω = (ϕ, ψ) ∈ C∞
c (Q× I;R1+n) satisfying the following properties:

(a) divψ = 0 in Q× I,

(b) (p′ +Dϕ(z), β′ + ψt(z)) ∈ S for all z ∈ Q× I and |(p′, β′)− (p, β)| ≤ δ,

(c) ‖ω‖L∞(Q×I) < ρ,

(d)
∫

Q×I |β + ψt(z)− A(p+Dϕ(z))|dz < ǫ|Q× I|/|Q̃× Ĩ|,

(e)
∫

Q ϕ(x, t)dx = 0 for all t ∈ I,
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(f) ‖ϕt‖L∞(Q×I) < ρ.

Proof. By Theorem 5.1.5, there exist finitely many open balls B1, · · · ,BN ⊂⊂ S covering K

and C1 functions qi : B̄i → Sn−1, γi : B̄i → Rn, ti,± : B̄i → R (1 ≤ i ≤ N) with γi · qi = 0

and ti,− < 0 < ti,+ on B̄i such that for each ξ =







p c

B β






∈ R(F0) with (p, β) ∈ B̄i, we

have

ξ + ti,±ηi ∈ F±,

where ti,± = ti,±(p, β), ηi =







qi(p, β) b

1
bγi(p, β)⊗ qi(p, β) γi(p, β)






, and b 6= 0 is arbitrary.

Let 1 ≤ i ≤ N . We write ξi = ξi(p, β) =







p 0

O β






∈ R(F0) for (p, β) ∈ B̄i ⊂ S, where O

is the n× n zero matrix. We omit the dependence on (p, β) ∈ B̄i in the following whenever

it is clear from the context. Given any ρ > 0, we choose a constant bi with

0 < bi < min
B̄i

ρ

ti,+ − ti,−
.

With this choice of b = bi, let ηi be defined on B̄i as above. Then

ξi,± =







pi,± ci,±

Bi,± βi,±






:= ξi + ti,±ηi ∈ F±,

ξi = λiξi,+ + (1− λi)ξi,−, λi =
−ti,−

ti,+ − ti,−
∈ (0, 1) on B̄i.

By the definition of R(F0), on B̄i, both ξ
τ
i,− = τξi,++(1−τ)ξi,− and ξτi,+ = (1−τ)ξi,++τξi,−

belong to R(F0) for all τ ∈ (0, 1). Let 0 < τ < min1≤j≤N minB̄j min{λj , 1 − λj} ≤ 1
2
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be a small number to be selected later. Let λ′i =
λi−τ
1−2τ on B̄i. Then λ′i ∈ (0, 1), ξi =

λ′iξ
τ
i,++ (1− λ′i)ξ

τ
i,− on B̄i. Moreover, on B̄i, ξ

τ
i,+ − ξτi,− = (1− 2τ)(ξi,+− ξi,−) is rank-one,

[ξτi,−, ξ
τ
i,+] ⊂ (ξi,−, ξi,+) ⊂ R(F0), and

cτ ≤ |ξτi,+ − ξi,+| = |ξτi,− − ξi,−| = τ |ξi,+ − ξi,−| = τ(ti,+ − ti,−)|ηi| ≤ Cτ,

where C = max1≤j≤N maxB̄j (tj,+ − tj,−)|ηj | ≥ min1≤j≤N minB̄j (tj,+ − tj,−)|ηj | = c > 0.

By continuity, Hτ =
⋃

(p,β)∈B̄j ,1≤j≤N [ξτj,−(p, β), ξ
τ
j,+(p, β)] is a compact subset of R(F0),

where R(F0) is open in the space

Σ0 =

















p c

B β







∣

∣

∣
trB = 0











,

by Lemma 5.1.2 and Theorem 5.1.5. So dτ = dist(Hτ , ∂|Σ0R(F0)) > 0, where ∂|Σ0 is the

relative boundary in Σ0.

Let ηi,1 = −λi,1ηi = −λ′i(1−2τ)(ti,+−ti,−)ηi, ηi,2 = λi,2ηi = (1−λ′i)(1−2τ)(ti,+−ti,−)ηi

on B̄i, where λi,1 = τ(−ti,+) + (1− τ)(−ti,−) > 0, λi,2 = (1− τ)ti,+ + τti,− > 0 on B̄i, and

τ > 0 is so small that

min
1≤j≤N

min
B̄j

λj,k > 0 (k = 1, 2).

Applying Lemma 4.2.1 to matrices ηi,1 = ηi,1(p, β), ηi,2 = ηi,2(p, β) with a fixed (p, β) ∈ B̄i

and a given box G = Q × I, we obtain that for each ρ > 0, there exist a function ω =
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(ϕ, ψ) ∈ C∞
c (Q×I;R1+n) and an open set Gρ ⊂⊂ Q×I satisfying the following conditions:



























































































(1) divψ = 0 in Q× I,

(2) |(Q× I) \Gρ| < ρ; ξi +∇ω(z) ∈ {ξτi,−, ξτi,+} for all z ∈ Gρ,

(3) ξi +∇ω(z) ∈ [ξτi,−, ξ
τ
i,+]ρ for all z ∈ Q× I,

(4) ‖ω‖L∞(Q×I) < ρ,

(5)
∫

Q ϕ(x, t) dx = 0 for all t ∈ I,

(6) ‖ϕt‖L∞(Q×I) < 2ρ,

(5.6)

where [ξτi,−, ξ
τ
i,+]ρ denotes the ρ-neighborhood of closed line segment [ξτi,−, ξ

τ
i,+]. Here, from

(5.6.3), (5.6.6) follows as

|ϕt| < |ci,+ − ci,−|+ ρ = (ti,+ − ti,−)|bi|+ ρ < 2ρ in Q× I.

Note (a), (c), (e), and (f) follow from (5.6), where 2ρ in (5.6.6) can be adjusted to ρ as

in (f). By the uniform continuity of A on J = {p′ ∈ Rn | |p′| ≤ s∗2}, we can find a δ′ > 0

such that |A(p′)− A(p′′)| < ǫ
3|Q̃×Ĩ| whenever p

′, p′′ ∈ J and |p′ − p′′| < δ′. We then choose

a τ > 0 so small that

Cτ < δ′, C|Q̃× Ĩ|τ < ǫ

3
.

Next, we choose a δ > 0 such that δ < dτ
2 . If 0 < ρ < δ, then by (5.6.1) and (5.6.3), for all

z ∈ Q× I and |(p′, β′)− (p, β)| ≤ δ,

ξi(p
′, β′) +∇ω(z) ∈ Σ0, dist(ξi(p

′, β′) +∇ω(z), Hτ ) < dτ ,
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and so ξi(p
′, β′) +∇ω(z) ∈ R(F0), that is, (p

′ +Dϕ(z), β′ + ψt(z)) ∈ S. Thus (b) holds for

all 0 < ρ < δ. In particular, (p +Dϕ(z), β + ψt(z)) ∈ S and so |p +Dϕ(z)| ≤ s+(r2) < s∗2

and |β + ψt(z)| ≤ r2 for all z ∈ Q× I, by (i) of Theorem 5.1.5. Thus

∫

Q×I
|β + ψt − A(p+Dϕ)|dz

≤
∫

Gρ
|β + ψt − A(p+Dϕ)|dz + (r2 +Mσ)ρ

≤ |Q× I|max{|βτi,± − A(pτi,±)|}+ (r2 +Mσ)ρ

≤ C|Q× I|τ + |Q× I|max{|A(pi,±)− A(pτi,±)|}+ (r2 +Mσ)ρ

≤ 2ǫ|Q× I|
3|Q̃× Ĩ|

+ (r2 +Mσ)ρ,

where ξτi,± =







pτi,± cτi,±

Bτ
i,± βτi,±






and Mσ = σ(s∗2). Thus, (d) holds for all ρ > 0 satisfying

(r2 +Mσ)ρ <
ǫ|Q×I|
3|Q̃×Ĩ| .

We have verified (a) – (f) for any (p, β) ∈ B̄i and 1 ≤ i ≤ N , where δ > 0 is independent

of the index i. Since B1, · · · ,BN cover K, the proof is now complete.

5.3 Construction of admissible set U

We first construct a suitable boundary function Φ = (u∗, v∗) ∈ W 1,∞(ΩT ;R
1+n). Assume

Ω and u0 satisfy (2.10) and |Du0(x0)| ∈ (s∗1, s
∗
2) for some x0 ∈ Ω. Let ΩT = Ω× (0, T ) for

a given T > 0 and M0 = ‖Du0‖L∞(Ω). Recall that we assume (2.1); hence,

∫

Ω
u0(x) dx = 0. (5.7)
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Note M0 ≥ |Du0(x0)| > s∗1. We now assume the following: If M0 < s1, we fix any

σ(s2) < r2 < σ(M0) < σ(s1). IfM0 ≥ s1, we fix any σ(s2) < r2 < σ(s1). Then let l2 = lr2 ∈

(σ(s2), r2) be some number determined by Theorem 5.1.5. Now, fix any r1 ∈ (l2, r2).

With these numbers r1, r2, we apply Lemma 3.2.2 to determine functions σ̃, f̃ ∈ C3([0,∞))

satisfying its conclusion. Also, let Ã(p) = f̃(|p|2)p (p ∈ R
n). Then:

Lemma 5.3.1. We have

(p, Ã(p)) ∈ S ∀ s−(r1) < |p| < s+(r2),

where S = Sr1,r2 is the set in Lemma 5.1.2.

Proof. Let s = |p|, r = σ̃(s) and ζ = p/|p|, so that s−(r1) < s < s+(r2), ζ ∈ Sn−1 and

Ã(p) = rζ . By Lemma 3.2.2, s−(r) < s < s+(r) and r1 < r < r2 . Set p± = s±(r)ζ and

β± = rζ . Then A(p±) = rζ = β±. Define ξ =







p 0

O Ã(p)






and ξ± =







p± 0

O β±






. Then

ξ = λξ+ + (1− λ)ξ− for some 0 < λ < 1. Since ξ± ∈ F± and rank(ξ+ − ξ−) = 1, it follows

from the definition of R(F0) = R(Fr1,r2(0)) that ξ ∈ (ξ−, ξ+) ⊂ R(F0). Thus, by Lemma

5.1.2, we have (p, Ã(p)) ∈ S.

By Lemma 3.2.2, equation ut = div(Ã(Du)) is uniformly parabolic. So by Theorem 3.1.1,

the initial-Neumann boundary value problem







































u∗t = div(Ã(Du∗)) in ΩT

∂u∗/∂n = 0 on ∂Ω× (0, T )

u∗(x, 0) = u0(x), x ∈ Ω

(5.8)
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admits a unique classical solution u∗ ∈ C2+α,1+α/2(Ω̄T ).

Note here that we may not have the gradient maximum principle (3.4) for the solution u∗

since we do not assume the convexity of Ω in Case II: Höllig type equations. However, in the

case that Ω is convex, such gradient maximum principle holds, and it invokes advantageous

effects on the existence result, Theorem 2.3.4, in two folds:

1. The profile σ(s) in Hypothesis (H) can be allowed to have unbounded derivative for

large values of s > 0.

2. Lipschitz solutions to problem (1.2) can be chosen to satisfy certain gradient estimates

in terms of the initial gradient Du0.

Despite of these advantages coming from the convexity assumption on the domain Ω, we

plan not to pursue those here. Instead, we are including a larger class of domains for the

existence result.

From conditions (2.10) and (5.7), we can find a function h ∈ C2+α(Ω̄) satisfying

∆h = u0 in Ω, ∂h/∂n = 0 on ∂Ω.

Let v0 = Dh ∈ C1+α(Ω̄;Rn) and define, for (x, t) ∈ ΩT ,

v∗(x, t) = v0(x) +

∫ t

0
Ã(Du∗(x, s)) ds. (5.9)
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Then it is easily seen that Φ := (u∗, v∗) ∈ C1(Ω̄T ;R
1+n) satisfies (2.4); that is,







































u∗(x, 0) = u0(x) (x ∈ Ω),

div v∗ = u∗ a.e. in ΩT ,

v∗(·, t) · n|∂Ω = 0 ∀ t ∈ [0, T ].

(5.10)

Hence Φ is a boundary function in the sense of Definition 2.2.2.

Next, set M = max{s∗2 + 1, ‖Du∗‖L∞(ΩT )}, r = σ(M) and define

F = {(p, A(p)) | |p| ∈ [0, s−(r1)] ∪ [s+(r2),M ]} .

Then we have the following:

Lemma 5.3.2.

(Du∗(x, t), v∗t (x, t)) ∈ S ∪ F ∀ (x, t) ∈ ΩT .

Proof. Let (x, t) ∈ ΩT and p = Du∗(x, t); then |p| ≤M.

If |p| ≤ s−(r1) or s+(r2) ≤ |p| ≤M , then Ã(p) = A(p) and hence by (5.9)

(Du∗(x, t), v∗t (x, t)) = (p, Ã(p)) = (p, A(p)) ∈ F .

If s−(r1) < |p| < s+(r2), then by Lemma 5.3.1 and (5.9)

(Du∗(x, t), v∗t (x, t)) = (p, Ã(p)) ∈ S.

Therefore (Du∗, v∗t ) ∈ S ∪ F in ΩT .
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Let m = ‖u∗t ‖L∞(ΩT ) + 1 . We finally define the admissible set U as follows:

U =
{

u ∈ C1
piece ∩W

1,∞
u∗ (ΩT )

∣

∣ ‖ut‖L∞(ΩT ) < m,

∃ v ∈ C1
piece ∩W

1,∞
v∗ (ΩT ;R

n) such that

div v = u and (Du, vt) ∈ S ∪ F a.e. in ΩT

}

.

(5.11)

For each ǫ > 0, let Uǫ be given by

Uǫ =
{

u ∈ U | ∃ v ∈ C1
piece ∩W

1,∞
v∗ (ΩT ;R

n) such that div v = u and

(Du, vt) ∈ S ∪ F a.e. in ΩT , and
∫

ΩT
|vt − A(Du)|dxdt ≤ ǫ|ΩT |

}

.

Remark 5.3.3. From (5.10), Lemma 5.3.2, and the definition of U , it follows that u∗ ∈ U

with its corresponding vector function v∗; so U is non-empty. Also U is a bounded subset

of W
1,∞
u∗ (ΩT ) as S ∪ F is bounded. Moreover, by (i) of Theorem 5.1.5 and the definition

of F , for each u ∈ U , its corresponding vector function v satisfies ‖vt‖L∞(ΩT ) ≤ r. Thus

U is indeed an admissible set in the sense of Definition 2.2.3 with respect to the boundary

function Φ = (u∗, v∗). Finally, note that s−(r1) < |Du∗| < s+(r2) on some non-empty open

subset of ΩT , and so Ã(Du∗) 6= A(Du∗) on a non-empty open subset of this set; so u∗ itself

is not a Lipschitz solution to (1.2). In terms of Theorem 2.2.4, it only remains to verify the

density property (2.5) to obtain multiple Lipschitz solutions to problem (1.2). We complete

this task in the next section.
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5.4 Completion of proof of Theorem 2.3.4

Following Section 5.3, we complete the proof of Theorem 2.3.4. As mentioned in Remark

5.3.3, it only remains to prove the following density theorem. Although the proof of this

density theorem is very similar to that of Theorem 4.4.1, since the ingredients towards it are

coming from the current chapter, we sacrifice conciseness for the sake of completeness.

Theorem 5.4.1. For each ǫ > 0, Uǫ is dense in U under the L∞-norm.

Proof. Let u ∈ U , η > 0. The goal is to construct a function ũ ∈ Uǫ such that ‖ũ −

u‖L∞(ΩT ) < η. For clarity, we divide the proof into several steps.

1. Note ‖ut‖L∞(ΩT ) < m − τ0 for some τ0 > 0 and there exists a vector function

v ∈ C1
piece ∩W

1,∞
v∗ (ΩT ;R

n) such that div v = u and (Du, vt) ∈ S ∪F a.e. in ΩT . Since both

u and v are piecewise C1 in ΩT , there exists a sequence of disjoint open sets {Gj}∞j=1 in ΩT

with |∂Gj | = 0 such that

u ∈ C1(Ḡj), v ∈ C1(Ḡj ;R
n) ∀j ≥ 1, |ΩT \ ∪∞

j=1Gj | = 0.

2. Let j ∈ N be fixed. Note that (Du(z), vt(z)) ∈ S̄ ∪ F for all z = (x, t) ∈ Gj and that

Hj = {z ∈ Gj | (Du(z), vt(z)) ∈ ∂S} is a (relatively) closed set in Gj with measure zero.

So G̃j = Gj \Hj is an open subset of Gj with |G̃j| = |Gj |, and (Du(z), vt(z)) ∈ S ∪ F for

all z ∈ G̃j .

3. For each τ > 0, let Gτ = {(p, β) ∈ S | |β − A(p)| > τ, dist((p, β), ∂S) > τ)}; then

S = (∪τ>0Gτ ) ∪ {(p, β) ∈ S | A(p) = β} as S is open. Since A(p) = β ∀(p, β) ∈ F , we have

∫

G̃j

|vt(z)−A(Du(z))| dz = lim
τ→0+

∫

{z∈G̃j | (Du(z),vt(z))∈Gτ }
|vt(z)− A(Du(z))| dz;
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thus we can find a τj > 0 such that

∫

Fj

|vt(z)− A(Du(z))| dz < ǫ

3 · 2j |ΩT | and |∂Oj | = 0, (5.12)

where Fj = {z ∈ G̃j | (Du(z), vt(z)) /∈ Gτj} and Oj = G̃j \ Fj is open. Let J be the set of

all indices j ∈ N with Oj 6= ∅. Then for j 6∈ J , Fj = G̃j .

4. We now fix a j ∈ J . Note that Oj = {z ∈ G̃j | (Du(z), vt(z)) ∈ Gτj} and that

Kj := Ḡτj is a compact subset of S. Let Q̃ ⊂ Rn be a box with Ω ⊂ Q̃ and Ĩ = (0, T ).

Applying Theorem 5.2.1 to box Q̃ × Ĩ , Kj ⊂⊂ S = Sr1,r2 , and ǫ′ = ǫ|ΩT |
12 , we obtain a

constant δj > 0 that satisfies the conclusion of the theorem. By the uniform continuity of A

on compact subsets of Rn, we can find a θ = θǫ,s∗2
> 0 such that

|A(p)− A(p′)| < ǫ

12
(5.13)

whenever |p|, |p′| ≤ 2s∗2 and |p− p′| ≤ θ. Also by the uniform continuity of u, v, and their

gradients on Ḡj , there exists a νj > 0 such that

|u(z)− u(z′)|+ |∇u(z)−∇u(z′)|+ |v(z)− v(z′)|

+|∇v(z)−∇v(z′)| < min{δj2 , ǫ
12 , θ, s

∗
2}

(5.14)

whenever z, z′ ∈ Ḡj and |z− z′| ≤ νj . We now cover Oj (up to measure zero) by a sequence

of disjoint open cubes {Qi
j × Iij}∞i=1 in Oj whose sides are parallel to the axes with center

zij and diameter lij < νj .

5. Fix an i ∈ N and write w = (u, v), ξ =







p c

B β






= ∇w(zij) =







Du(zij) ut(z
i
j)

Dv(zij) vt(z
i
j)






.
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By the choice of δj > 0 in Step 4 via Theorem 5.2.1, since Qi
j × Iij ⊂ Q̃× Ĩ and (p, β) ∈ Kj ,

for all sufficiently small ρ > 0, there exists a function ωij = (ϕij , ψ
i
j) ∈ C∞

c (Qi
j × Iij ;R

1+n)

satisfying

(a) divψij = 0 in Qi
j × Iij ,

(b) (p′ +Dϕij(z), β
′ + (ψij)t(z)) ∈ S for all z ∈ Qi

j × Iij

and all |(p′, β′)− (p, β)| ≤ δj ,

(c) ‖ωij‖L∞(Qi
j×Iij)

< ρ,

(d)
∫

Qi
j×Iij

|β + (ψij)t(z)− A(p+Dϕij(z))|dz < ǫ′|Qi
j × Iij |/|Q̃× Ĩ|,

(e)
∫

Qi
j
ϕij(x, t)dx = 0 for all t ∈ Iij ,

(f) ‖(ϕij)t‖L∞(Qi
j×Iij )

< ρ.

Here, we let 0 < ρ ≤ min{τ0,
δj
2C ,

ǫ
12C , η}, where Cn is the constant in Theorem 3.3.1 and C is

the product of Cn and the sum of the lengths of all sides of Q̃. By (e), we can apply Theorem

3.3.1 to ϕij on Q
i
j×Iij to obtain a function gij = Rϕij ∈ C1(Qi

j × Iij ;R
n)∩W 1,∞

0 (Qi
j×Iij ;Rn)

such that div gij = ϕij in Qi
j × Iij and

‖(gij)t‖L∞(Qi
j×Iij)

≤ C‖(ϕij)t‖L∞(Qi
j×Iij)

≤ δj
2
. (by (f)) (5.15)

6. As vt and A(Du) are essentially bounded in ΩT , we can select a finite index set

I ⊂ J × N so that

∫

⋃

(j,i)∈(J×N)\I Qi
j×Iij

|vt(z)− A(Du(z))|dz ≤ ǫ

3
|ΩT |. (5.16)
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We finally define

(ũ, ṽ) = (u, v) +
∑

(j,i)∈I
χ
Qi
j×Iij

(ϕij , ψ
i
j + gij) in ΩT .

7. Let us finally check that ũ together with ṽ indeed gives the desired result. By

construction, it is clear that ũ ∈ C1
piece ∩ W

1,∞
u∗ (ΩT ), ṽ ∈ C1

piece ∩ W
1,∞
v∗ (ΩT ;R

n). By

the choice of ρ in (f) as ρ ≤ τ0, we have ‖ũt‖L∞(ΩT ) < m. Next, let (j, i) ∈ I, and observe

that for z ∈ Qi
j × Iij , with (p, β) = (Du(zij), vt(z

i
j)) ∈ Gτj , since |z− zij | < lij < νj , it follows

from (5.14) and (5.15) that

|(Du(z), vt(z) + (gij)t(z))− (p, β)| ≤ δj ,

and so (Dũ(z), ṽt(z)) ∈ S from (b) above. From (a) and div gij = ϕij , for z ∈ Qi
j × Iij ,

div ṽ(z) = div(v + ψij + gij)(z) = u(z) + 0 + ϕij(z) = ũ(z).

Therefore, ũ ∈ U . Next, observe

∫

ΩT

|ṽt − A(Dũ)|dz =
∫

∪j∈NFj

|vt − A(Du)|dz

+

∫

∪(j,i)∈(J×N)\IQi
j×Iij

|vt −A(Du)|dz +
∫

∪(j,i)∈IQi
j×Iij

|ṽt − A(Dũ)|dz

=: I1 + I2 + I3.

From (5.12) and (5.16), we have I1+I2 ≤ 2ǫ
3 |ΩT |. Note also that for (j, i) ∈ I and z ∈ Qi

j×Iij ,
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from (5.14), (5.15), and (f),

|ṽt(z)− A(Dũ(z))| = |vt(z) + (ψij)t(z) + (gij)t(z)− A(Du(z) +Dϕij(z))|

≤ |vt(z)− vt(z
i
j)|+ |vt(zij) + (ψij)t(z)− A(Du(zij) +Dϕij(z))|

+|(gij)t(z)|+ |A(Du(zij) +Dϕij(z))− A(Du(z) +Dϕij(z))|

≤ ǫ

6
+ |vt(zij) + (ψij)t(z)−A(Du(zij) +Dϕij(z))|

+|A(Du(zij) +Dϕij(z))− A(Du(z) +Dϕij(z))|.

From (i) of Theorem 5.1.5 and (5.14), we have |Du(zij)+Dϕij(z)| ≤ 2s∗2. As (Dũ(z), ṽt(z)) ∈

S, we also have |Du(z) + Dϕij(z)| = |Dũ(z)| ≤ s∗2, and by (5.14), |Du(zij) − Du(z)| < θ.

From (5.13) we thus have

|A(Du(zij) +Dϕij(z))−A(Du(z) +Dϕij(z))| <
ǫ

12
.

Integrating the above inequality over Qi
j × Iij , we now obtain from (d) that

∫

Qi
j×Iij

|ṽt(z)− A(Dũ(z))|dz ≤ ǫ

4
|Qi

j × Iij |+
ǫ|ΩT |
12

|Qi
j × Iij |

|Q̃× Ĩ|
≤ ǫ

3
|Qi

j × Iij |,

which yields that I3 ≤ ǫ
3 |ΩT |. Hence I1 + I2 + I3 ≤ ǫ|ΩT |, and so ũ ∈ Uǫ. Lastly, from (c)

with ρ ≤ η and the definition of ũ, we have ‖ũ− u‖L∞(ΩT ) < η.

The proof is now complete.
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[20] K. Höllig, Existence of infinitely many solutions for a forward backward hear equation,
Trans. Amer. Math. Soc., 278:299–316, 1983.

[21] C. Kahane, A gradient estimate for solutions of the heat equation II, Czechoslovak Math.
J., 51 (126) (2001), 39–44.

[22] B. Kawohl and N. Kutev, Maximum and comparison principle for one-dimensional
anisotropic diffusion, Math. Ann., 311 (1998), 107–123.

[23] S. Kichenassamy, The Perona-Malik paradox, SIAM J. Appl. Math., 57 (1997), 1328-
1342.

[24] S. Kim, On a gradient maximum principle for some quasilinear parabolic equations on
convex domains, (2015), Preprint.

[25] S. Kim and B. Yan, Radial weak solutions for the Perona-Malik equation as a differential
inclusion, J. Diff. Eqns., 258 (6) (2015), 1889–1932.

109



[26] S. Kim and B. Yan, Convex integration and infinitely many weak solutions to the Perona-
Malik equation in all dimensions, (2014), Preprint.

[27] D. Kinderlehrer and P. Pedregal, Weak convergence of integrands and the Young measure
representation, SIAM J. Math. Anal., 23 (1992), 1–19

[28] B. Kirchheim, Rigidity and geometry of microstructures. Habilitation thesis, University
of Leipzig, 2003
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