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ABSTRACT

STUDIES IN THE CENTRIFUGAL DISTORTION THEORY OF

TRIANGULAR TRIATOMIC MOLECULES

by

Azam Niroomand-Rad

In this dissertation the molecular vibration-rotation

Hamiltonian of Darling and Dennison is used in the expanded form of

Nielsen, Amat, and Goldsmith. Expressions for four linearly inde-

pendent linear combinations of the ten sextic centrifugal distortion

coefficients of triangular triatomic molecules are presented. These

combinations are formed in such a way that the resulting expressions

depend only on the equilibrium geometry and the harmonic force field

of the molecule. These expressions appear to be potentially useful

as a set of planarity—constraints on the ten sextic coefficients ob-

tained in the expansion of the Darling-Dennison Hamiltonian and can

be utilized to effect a Watson-type reduction of the sextic portion

of the Hamiltonian. Also in this dissertation, the quartic and

sextic centrifugal distortion coefficients of ozone have been cal-

culated and the results compared with experiment. The agreement is

found to be quite satisfactory.
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1. INTRODUCTION

One of the principal tasks of the molecular spectrosc0pist

is to determine and to interpret the vibration-rotation energy level

structure of the molecule under study. The analysis of the infrared

spectra of molecules in the gas phase gives precise information about

the vibration-rotation energies, and knowledge of these energies can

lead to the accurate determination of molecular constants such as

bond distances, bond angles, vibrational frequencies, force contants,

centrifugal distortion constants, etc. An understanding of these

quantities is relevant in the determination of the detailed structure

and prOperties of the molecule and helps to better interpret the

physical and chemical prOperties of bulk matter.

The vibration-rotation Hamiltonian of diatomic molecules has

been treated to fourth and even higher orders of approximation many

years ago, and also the case of linear triatomic molecules (COz-type

molecules) has been studied extensively. It appears generally to be

quite impossible to find exact analytic expressions for the energy

levels of polyatomic molecules. For this reason, assumptions must be

made which one hopes are valid in practice, and the general theoretical

expression for the energies of polyatomic molecules must be treated by

an expansion formalism in successive orders of approximation. For

instance, assuming the validity of the Born-Oppenheimer approximation

allows separation of the vibration-rotation motion of the nuclei from

‘1



the electronic motion to a high degree of accuracy. Similarly, it has

been found that one can often safely ignore the energy contribution of

the nuclear spins to a high order of approximation.

During the last decade, the field of high resolution molecular

spectroscopy has experienced many impressive developments in instru-

mentation, resulting in particular from the availability of on-line

computing facilities, sensitive detectors, the progress of interfero-

metric methods, and the use of laser sources and detection methods.

For many polyatomic molecules, high quality rotation and rotation-

vibration spectra are being obtained both in the infrared and the

microwave regions. The complete interpretation of such spectra re-

quires the use of very accurate formulas for the frequencies of the

spectral lines expressed in terms of quantum numbers and molecular

parameters. To this end, it is necessary to compute rotation-vibra-

tion energies to a high order of accuracy which means that fourth, and

even higher, orders of perturbation theory need to be considered.

In cases such as the triangular XYXrtype (HfJ-type) molecule, fourth-

order centrifugal distortion coefficients are required in order to

account for the observed results to the experimental accuracy attain-

able, in some cases even for the low values of the angular momentum

quantum number J1, Therefore, one needs to consider a fourth-order

Hamiltonian to get a satisfactory and theoretically meaningful fit to

the spectral data.

The general vibration-rotation Hamiltonian for asymmetric

rotator molecules has been developed by Chung and Parker in the

2
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rotation Hamiltonian through the consideration of symmetry restric-

tions imposed by the applicable asymmetric rotator point group. Later

on, Watson3succeeded in developing a form of the Darling-Dennison

Hamiltonian which greatly simplified subsequent calculations. However,

even with this simplification, the general formulation of Amat-Nielsen—

Goldsmith”.5 is unnecessarily complicated when applied to the case of

the asymmetric rotator, principally because of its inclusion of de-

generate normal modes of vibration which are absent in asymmetric

rotator molecules. Therefore, instead of working with the general

formulation, Chan and Parkeréstarted with the Darling-Dennison vibra-

tionrrotation Hamiltonian in Watson's simplified form for the XYZ~type

molecule. Then the Hamiltonian was expanded and subjected to two

successive contact transformations of the Van Vleck type. The re-

sulting Hamiltonian for a given vibrational state has the form of a

power series in the angular momentum components. By using an extended

version of Watson's theoryi this Hamiltonian can be related to experi-

mental results in such a manner that meaningful fits to high-resolu-

tion experimental data are possible, at least in principle. Calcula-

tion of a complete set of fourth-order centrifugal distortion co-

efficients for X32 and XXthype triangular molecules was carried out

by Sumberg and Parkef7in a form which exhibits extensive cyclic and

algebraic regularities and which could readily be used in the present

work to determine a number of constraints on the sextic coefficients

due to the planarity of the nuclear framework configuration of the

molecule.



For the general case of asymmetric rotator molecules, Watson

has shown that the number of independent sextic coefficients (or

independent'linear combination of these) is seven. The constraint

due to planarity- reduces this number by one, to a total of six. The

principal aim of this thesis work was to find and to calculate, for

triangular triatomic molecules, four linearly independent linear

combinations of the ten sextic centrifugal distortion coefficients

which would represent the complete specification of the constraint

that reduces the ten original coefficients to six independent ones.

This attempt was successful, since the linear combinations that were

determined depend only on the equilibrium geometry and the harmonic

force field parameters of the molecule, quantities which are ordinarily

known to much better precision than either the calculated or the

empiriCal values of the sextic coefficients.

The triangular XYX—type molecule is considered explicitly as

a special case which leads to simplified expressions due to the higher

symmetry. Finally, the complete set of centrifugal distortion co-

efficients of ozone has been calculated and the results were compared

with the available experimental data. The agreement was found to be

quite satisfactory.



2. MOLECULAR VIBRATION-ROTATION HAMILTONIAN

2.1 The DarlingrDennison Hamiltonian
 

For any theoretical calculation of the energies of a mole-

cule, it is necessary to formulate a suitable quantum mechanical

Hamiltonian. The total Hamiltonian of a molecule would have to in—

clude an electronic part as well as a vibration-rotation part. The

electronic energy is not of interest here, since we wish to consider

vibration—rotation transitions during which the molecule remains in

its electronic ground state configuration. For such a case, Born and

Oppenheimerehave shown that it is allowable to separate the electronic

motion from the nuclear motion to a very good degree of approximation.

Since the electrons are moving much faster than the nuclei and con-

sequently the wavefunction of the electronic state is almost in-

dependent of the change in the internuclear distances, the Born-

Oppenheimer approximation is valid in many cases, especially when the

electronic state is one of zero total electronic angular momentum. To

the accuracy of the approximation, the total wavefunction can be

written as the product of an electronic and a vibration-rotational

wavefunction. For the present work, only the vibration-rotation

Hamiltonian is of direct interest.

The Schrodinger equation

(H - E)? = 0 (2-1)



of a rotating and vibrating polyatomic molecule was first discussed

by Wilson and Howard? and somewhat later by Darling and Dennisod? The

second formulation is now known to be equivalent to that of the former

authors and proves more convenient for the present discussion.

Essentially, the derivation is based on a classical develOpment of

the vibrational and rotational energies, subsequently transcribed into

the preper quantum mechanical operator form. We therefore begin with

the Darling-Dennison Hamiltonian for a polyatomic molecule which

reads:

k -h h

H bu ZG,B(PG - pa)ua8n (PB - p8)u

b
+ 5 1‘X * ' * h + V (2 2)

u 5 psp psu °

The lower-case Greek indices a and B (and lower-case Greek

indices in general) range over x, y, and z, the principal axes

directions of the equilibrium inertia tensor of the molecule. The

(x,y,z) coordinate system is fixed with respect to the equilibrium

configuration of the molecule ("body-fixed") and its origin is taken

to coincide with the instantaneous center of mass. Let the equilibrium

and instantaneous positions of the i-th nuclei in (x,y,z) be denoted

by “oi. and a1, respectively. Then the displacement of the i-th

nucleus from its position of equilibrium is:

“-3 -I{
1 1 ‘

01

(2-3)

.+

a

In Eq. (2-2), Pu is the a-th component of the total angular

momentum referred to the body-fixed axes and can be expressed solely

in terms of the Euler angles and the time derivatives with respect



to these angles. Thus the Euler angles can be taken as the rotational

coordinates of the problem. The vibrational coordinates to be used in

connection with Eq. (2-2) are the normal coordinates QS. To trans-

form to the normal coordinates, a set of transformation coefficients

1:8 is introduced which transforms mass-weighted cartesian to normal

coordinates as follows:

/m'a' = 2 2a
1 i s ist ' (2-4)

Here m1 is the mass of the i-th nucleus. For asymmetric rotor

molecules, no index enumerating essential degenerate modes of vibra-

11

tion is required as these do not occur. The vibrational momentum

*

ps conjugate to the normal coordinate QS is defined as:

p: = -ifi——— . (2-5)

The internal angular momentum pa occurring in Eq. (2-2) can then

be defined as:

(1*- * 26

Ru 3 ZSASPS ‘ stsvcsstsva 9 < ' )

where

a 8 £7 - 8 Y ' -Cs's zi<£is'£ is 215213,), a,8,y cyclic (2 7)

AG

3

BY__ Y

Zs'ZiU'is'g'is 218113,)QS '

2svcgtstv 9 G’ng CYC11C° (2‘8)

The ;:,8 are the Coriolis coupling coefficients. It is clear from

their definition that ;:,S - -§:S. and 5:3 - O.



The effective moments and products

are defined, respectively, by:

, B _ a 2

Ida Ida zs<As) ’

a 8

where

2 2

Ian ' Zim1(81 + Yi)’

IaB = ‘Zimiaisi’

of inertia, I' and I'

do a B

(2-9)

a # 8 (2-10)

a # 8 H Y (2-11)

a # 8 (2-12)

are the instantaneous moments and products of inertia. The effective

inertia tensor and its determinant are defined by:

( I' -I' _I! ‘

XX

  

xy xz

-1

3 -I' I' -I' = I' , 2-13In] yx yy yz I ] ( )

4;... 5.
L 4

[u] = [I'J‘l , (2-14)

a det[ ] = ——L—— (2-15)
u u detII'] ’

a I! I! + I 0 ’ 2-

Has u( YY a8 IayIBy) a # B # Y ( l6)

2
a 9 V _ 9 _

uaa MIBBIYY IBY)’ a f 8 # Y - (2 17)

The components of the effective rotational angular momentum, Pa — p ,

and the components of the angular velocity ma

[P - p] = [I'JIw]

a

are related by

(2-18)



Finally, V is the effective vibrational potential energy

which is usually written as a positive definite power series in the

normal coordinate QS, with the harmonic portion, quadratic in the

Qs’ the leading and lowest power terms. All quantities occurring in

the Hamiltonian (2-2) have now been defined.

2.2 Watson's Simplification of the DarlingrDennison Hamiltonian

If one commutes out n from the first two terms of Eq. (2—2),

the Darling-Dennison Hamiltonian becomes:

*2

= - - + .—H sza 8(5 pa)“a8(PB p8) szsps + U + V (2 l9)
9

where

U = -52

a
9

I. _ A: a _ 1. 4.
Bu (Pa pa)ua8u [p8,u ] 82a Bu [pa,u ]

_ a * 4. * 1.
x uaB(PB pa) + kzsu Psu [P3,u ]

5 * “h * _

+ 122811 [Psw 1pS . <2 20)

To obtain this result, one uses the fact that Pa operates only on

the Euler angles and thus commutes with all quantities in H except

P and P .

B Y

In applications of Eq. (2-19), it has been customary to start

by introducing the power series eXpansion of “a and u in terms

8

of the normal coordinates, and to evaluate U from these expansions

' 3

to the desired degree of approximation. However, Watson has been able

to show that it is much simpler to use the commutation relations and

the prOperties of the ”08 tensor to evaluate U directly, without

first expanding it. After lengthy calculation, Watson finds that:
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l 2

U - 8 M Sc uaa. (2-21)

This amazingly simple result constitutes Watson's simplification of

the Darling-Dennison vibration-rotation Hamiltonian which can thus be

written as:

‘*

) + kisfi: -'% M22 u + V .
8 i - —

H éza,B(Pa pa)uaB(PB p a do8

(2-22)

This form of the Hamiltonian will be taken as the starting point for

the expansion in the normal coordinates in the next section.

2.3 Expansion of the Hamiltonian

In this section, a review of the expansion of the Watson form

of the fourth-order of approximation in the energy is given, and

terms standing in the various orders of approximation are identified

12 13

and written out explicitly in Amat-Nielsen-Tarrago and also in Watson

notation. We start with Eq. (2-22) and write it as:

H ' x12c.8“aepaps ‘ 122c.8(pauae + “aspa)P8 + IzaBpauaBpB

12 *2

8 M zauaa + 523 pS + v . (2-23)

The terms represent, in succession, the pure rotational energy, the

Coriolis coupling energy, a correction to the Coriolis energy,

another correction to the Coriolis energy, the vibrational kinetic

energy, and the potential energy of vibration.

It is not possible to find directly the eigenvalues of the

Hamiltonian (2-23). We therefore seek an expansion in orders of

magnitude of the general form:
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2 3 4

H = H0 + 1H1 + 1 H2 + A H3 + A H4 +... (2-24)

where A is the expansion parameter. This form will allow us to

apply perturbation theory. We begin the expansion by writing the

effective moments and products of inertia in terms of the normal

coordinates. Substituting the appropriate form of Eq. (2-3) for

Ba and Yi into Eqs. (2-11) and (2-12), and using Eq. (2-4) to
i’ i

introduce the normal coordinates gives:

IaB Iaasas + 23 a8 QS + 23’s, Ass'Qst' a, B x,y,z (2 25)

where

I° = X m (82 + Y2 ) a # 8 ¥ Y (2-26)
on i i' O O. ’

i 1

1° = -£ m.a B , (2-27)
as i 1 Oi Oi

no a /- B Y _
as 22?1 mi (801$is + YOizis)’ a 7‘ B 3‘ Y (2 28)

a“8=-z/E(a 9.8 +3 2“) aa‘Ba‘Y (2-29)
3 i 1 O1 is 01 is ’

aa a B 'B Y Y _

Ass. 21(2182’18' + g‘iszisl) 9 a # B * Y (2 3O)

as a _ a B _

Ass' 21 kislis' , a ¥ 8 . (2 31)

Substitution of Eqs. (2-25) and (2-8) into Eqs. (2-9) and (2-10)

gives:

I a o 0-8 0&8 t _

IaB IaaaaB + is as Qs + Zs,s'(Ass') Qst' (2 32)

where

as . - a8 _ a 8 _
(A88!) A85! XS" CSSHCS' H ° (2 33)

S
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The equilibrium products of inertia I° , a # B, are zero in the
a8

principal axes system (x,y,z).

Let us now continue with the expansion of the kinetic energy

part, H - V, of the Hamiltonian (2-23). To accomplish this, “68 and

non as defined by Eqs. (2-16) and (2-17) are written as a power

series in the normal coordinates. This is permissible, because “as

and “on are functions of the components of the instantaneous inertia

tensor, and therefore functions of the normal coordinates only. The

normal coordinates, in turn, are linear combinations of the in-

stantaneous cartesian displacement coordinates, assumed to be small

compared to the equilibrium separations. The u take the following

a8

general form:

V :- 8 o o 0-8 (18

“as “8a (MIMIBBHMO) + 23 9(1)s QS

a8 a8
+ 23,3! Q<2>SS'QSQS' + ZS,S',S" 9(3)SS'S"QSQ3 '0

+2 9(44)“ QSSQ QS QS +. 1 <2-34)S,S',S",S"' SSISHSHV V H I” "

where the various Q are the coefficients obtained in the expansion.

The most compact and convenient form of these coefficients appears to

14

be the one given by Rothman and Clough which is the following:

9(0)“5 = IZBGdB, (2-35)

9(1)“B - 21°cl(nigs(:;§)“ 12:8 , (2-36)

52(2):B . 21°“1&6A:2')3 2R::., (2—37)

n(3)“3. = 21°1°Boiéi—l:§:)* 3Ra8, ", (2—38)
33' s" K6 as s



l3

 

9(4)“ =21° 1° (ASAS'AS"AS"')Y 4Ra8 <2-39)
SS'SHS"' ca 88 “8 SS'SHSH' 9

with

A‘YB
l 0.8 s _ _s_ _

Rs 21. , (2 40)

(10.

2Rue, =- - -3- ): (LRGY AY§ + 111°”! AYB) , (2-41)
33 8 s s s s

33““, .. - --2- z ( 2R°‘Y AY§+ ZRO‘Y" AY‘? + 2R°‘Y .. AYB).
as s 9 ss 3 s s

(2.42)

4 a8 = --2— Y8 +3 “Y YB

88181.8"! 32 Z (3Rgsisfl ASH! +RSS'S"! A3"

+ 3R°Y8.. AYB + 312°“: .. AYB ).
S S S 8

(2-43)

and

aa8 “2

A?- -I-—§ (—) <2-44)
88

In these equations, the As appear in the harmonic potential func-

tion as:

1

V ='§ 2 A Q , (2-45)

i.e., they are proportional to the squares of the corresponding

normal frequencies. The potential energy function can be expanded

as the Taylor series:

.. av . _1__ av ,
V V0 + Zs[aT.] as + . 2 . , . use

3 o

3

3 V ,

3! Zs,s',s" Bagaa;.3a;n S

J o

2

‘ kzsxsqs + Z t n KSSISHQSQSUQSH

35?.25

 

 

+ zSiS':S"_<_S"' KSS'SHSH'QSQS 'Qs"Q3 "1 + co. (2_46)
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Since this Taylor series expansion of V is taken about the equilibrium

positions of the nuclei, the total force at equilibrium in the

3V

3Q3 0

stant V0 has no physical significance and may be set equal to zero,

s-th normal mode must be equal to zero, hence ( = O. The con-

and V then can be rewritten as a function of the normal coordinates,

as shown above, with

A5 = 2wc m , (2'47)
3 s

where ms is the s-th normal frequency. The various sets of co-

efficients K are the force constants of the molecular force field

in the various orders of the expansion.

When Eq. (2-34) is substituted into Eq. (2-23), the expanded

form of. H, Eq. (2-24) is obtained, with:

 

 

 

 

P2 P2

3 1 a h._§ 2 _
H0 52 “1° + HAS( 2 + qs)} (2 48)

s a on K

9(1)a8 2 2p P

l S H k a a
H=-ZZ{"T"‘?‘(“‘) qPP- . }+V (2-49)

1 28 a8 IaaIBB As 5 a B loo 1

9(2)“. 4

H2 8 2'2 Z ff;—_%§— (Aflk )h qsqs'PaPB
83' 08 do 88 s s'

2

:zu)‘YB 2 p

- —'§*—.. (“—Y‘W q + q .13)? +--? }+ V (2-50)
I I A a S S a B I 2

do 88 s 7 ca

no)“. .. 6
1 ss 8 M k

H ' - 2 Si: 0 o ( ) q q !q "P P

3 38'3" a8 IaaIBB AsAs'As" s s s a 8

9(2)“. 4
38 H h a

"' o o _ + P

IaaIBB (A818,) (paqsqs' qsqs'po) 8

M1)“8 2 2
___s_ L Y: L Y: -

+ Io I° (A ) PaquB + A(3)S( ) qs} ‘+ V3 (2 51)

aa 88 s As
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8
52(4)“ . . 8

1 ss s"s" u

H2.— 2 Z{° ‘ ( )quqHQIHPP

4 2 ss's"s"' a8 IaaIBB AsAs'AsMsm s S S S a B

52(3)::usu M6 1‘

- IZGIEB (Aslsnlsn) (paqsqs'qs" + qsqs'qs"pa)PB

8
9(2)“ , 4 4

ss u a u z.
4- 130.133 (Asks') qusqsmB + A(4)ss'(>‘s)‘s') qsqs.} + v4. (2-52)

In these equations, qs is a dimensionless normal coordinate and p3

is its conjugate momentum defined by:

2

qs = (AS/u )YQS. (2-53)

2 *

p3 = (u mgp‘fias . (2-54)

1’ V2, V3 and V4 denote, respectively, the cubic,

quartic, quintic, and sextic portions of the anharmonic potential and

The symbols V

are defined through:

V1 3 he 2 ' H kSS'SuquS'qS" ’ (2'55)

$33.33

V2 a he 2 ' n kSS'SHS'” quS'qs"qs"' a (2‘56)

35§ 5s

V3 ' 1“: Z ' n kssvsnsnvsnn qsqslqansntqsmn (2‘57)

S<S <3

<8" ' < S" '

= h k , 7V4 (18:8 ' <8" 88' S' S" v Snusml v ,quS ' qansntqsnnq'n: v

i-s'nvEvaS-Smn (2-58)

The quantities AK3)s and A(4)ss, which appear in H3 and H4

originate from the term U and are given by



2 9(1):”

A<3>s = --Z- i'z;:—;§ , (2-59)

on

u2 9(2)“:,

A(4) , = --- 2 (2-60)
33 4 o 2

(I )
no

The internal angular momenta pa may be expressed as:

= Z (A /A )h C“ q q - (2-61)
pa , s' 3 ss' 3 s'

3,3

It is convenient to denote the various terms in the expansion

of the vibration-rotation Hamiltonian in a systematic manner by

adopting Watson'suzotational scheme in which the various terms are

designated by Hmn’ where the first subscript is the degree in the

vibrational Operators (coordinates and momenta) and the second sub-

script is the degree in the components of the total angular momentum

vector J. To conform completely to Watson's notation, the following

modifications must be introduced:

qk,pk: dimensionless normal coordinates and dimensionless

momenta which correspond to Amat-Nielsen qk, 11 pk,

Luk: harmonic vibrational frequencies,

.1“: dimensionless angular momentum components which

correspond to Amat-Nielsen (Pa/“)-

The terms Hmn’ expressed in wavenumber units, can be related to

H0, H1, H2, H , and H4 as follows:

3

H0 - H02 + 320, (2-62)

H 3 H + H + H

1 12 21 30° (2'63)



= + «-H2 H22 + H31 + H4O + H00 H40, (2 64)

* **

a + + , ..
H3 H32 + H41 + H50 H10 H50 (2 65)

* **

H = H + H + H + H + H . (2-66)

To give the various Hmn explicitly and in a convenient form, one

can define a set of rotational operators as listed in Table (2-1).

These definitions constitute an extension of Watson's definitions.

It will be seen that if an R operator has an upper index, it is

linear in Ja' and if it has no upper index it is quadratic in Ja'

Lower indices not separated by commas may be permuted, and inter-

changing an upper index with the corresponding lower index introduces

a factor: - (m upper/w lower).

It is also helpful to define the set of coefficients B

listed in Table (2-2). With the definitions just introduced, the

terms of the vibration-rotation Hamiltonian can be written as given

in Table (2-3).

It can be seen that in Table (2-3) all summations over vibra-

tional indices are unrestricted. As a consequence, the anharmonic

potential constants k' in the present scheme are not, in general,

equal to the anharmonic potential constants k used in the Nielsen-

Amat Scheme, Eqs. (2-SS)-(2-58). Rather one has:

kzzz 6k££2’ kllm 2k22m’ klmn kzmn (2 67)

' 3 ' I -

kllil 12k£££2 kzzzm 3k£££m (2 68)

t a ' a ..

klmmm 2k££mm’ kzzmn kzzmn’ (2 69)
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Table (2-1). Rotational Operators R of the Expanded Hamiltonian

Terms

 

a8

= 2 B J J
Rk (1,8 It a B

a

2. k ‘1 a

Rk ' ‘(wz/“k)R2 ’ “2(w2/“k) : Ba Ckx J

, _.2 Ya YB YB Ya

sz Rzk 8 a S Y(Bk 32 + Bk B: )(JaJB/BY)
9 9

9. k ’1 0:88

Rk,m . -(w2/wk)R£,m ' “(mm/wk) z Bm Clia
0,8

6aa a}. 50157
R R 42 (Ble+Bm

01,8

Y.€

2. k

Pigmn a Rk,nm :- -(wl/wk)R£,mn

. av 78 av YB '0
a : Y(Bm Bn + Bn Bm )Ckl(JB/BY)

’ 3

5Y YB
132 )BD (JdJB/BaBy)

II I

o
o
l
w

A

i
f \

K
E
V

a L so an to an M YB

32 Z (Bk Bl + BIL Bk )Bm Bn (JoJB/BYBEBn)

a.B.Y

e,n

9. 2.

Rk,mn,j - Rk,mn,j a -(wz/ulc)R1:,mn,j

_ l ‘1 (So 5y 60: (W Ys

4 (wk/wk) a Z (Bm Bn + Bn Btn )B (JB/BYBG)

Ca

kl

:89Y j

6
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Table (2-2). The B Coefficients of the Expanded Hamiltonian Terms

 

l ’ o
' '5 [K “2“”an

3/2Hi/2](aaB/Io Io ). -.l 3/2
B 2 [2. /(21c) “a BB

2., n . k,n-' a _ 2.,m

Bkm B: -(w£ /wk)B£,m (mu/wm)Bk,n

= (w;/wk)l/2(wn/mm)l/2 : B Ca C“
a k2 mn

32’“ . B“ 2 . -(wM/mk)3
k,m,j m,k,j = “(2fl/Qm)Bl m.j k.nn.j

1/2 a8 a 81/2
= (wk/wk) (mu/mm) Z Bj Ckigmn

(198

1

Bk ‘ ‘ 4

£,n l ,n n,£

k.m.Jg km.gj ”Em.k.js (“l/wk)3lnm.jg

. -(wnI”m)Bkmn.j8

l/2(wn/wm)l/2 z (BaYBYB + BaYBYB)(;“; a /BY).2
(ml/wk) a,8,y j g g 3 mn

B - B = - -—- 2 (BGBBaslBB )

o,8
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(2-3). Terms of the Expanded Vibration-Rotation Hamiltonian

 

02

20

12

21

30

22

31

4O

*1:

00

40

32

41

50

*1:

lO

50

42

=£BJ2

. do:

0.

R0

2 2

k(pk + qk)Z w

k

quk

2.

2 QP
k’zkkkz

.1. .

6 Z kltSLmqquLQm

k, 2. ,m

.1.

2

w
h
o

>3 qq
k’szlkR.

9.

2 m Rk,m(qkp£qm + qmqkpl)

2.,n

F Bk,m qkpzqmpn

1 v

12 £.m.n kLdmn k lqm n

2 m Rlc£,mqkq2qm

2.

z n Rk,mn(qkp£q~mqn + qmqnqkpl)

Z 32’“ q P q qmp
k,£,m,n,j k,m,j k 2;] n

z quk

l

60 X k
1

cl q ‘1 q
k,l,m,n,j 1(2an k iq-m n j

12:2, Rl<2,m,nqkq£qmqn

mn
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Table (2-3) (continued)

 

2’ .

H51 k,2,m',n,j Rk’m’j (qkppvqmqj + qmqnqjqkpl)

* 2 n

H = 2 B ’

60 k,2,m, k,m,jg qkp2qquqmpn

n:j:g

H - 2 B q q
20 k2 k k 2

 



k!

k!

k!

k!

kl

k!

22222 a

222mm 3 6

22mmn E

222222 a

2222mm '

222mmm '

22mmnn a 2k

22222’

222mm’

22mmn’

222222’

2222mm’

222mmm’

22mmnn°

22

k!

12k

2222m a 2222m’

' a

k222mn 3k222mn’

' _

k22222m ' 30k22222m’

' I

k2222mm 6k2222mn’

' a

k222mmn 3k222mmn’

(2-70)

(2-71)

(2-72)

(2-73)

(2-74)

(2-75)

(2-76)



3. THE SUCCESSIVE-VIBRATIONAL CONTACT

TRANSFORMATION TECHNIQUE

3.1 First Contact Transformation
 

The energies of the system represented by the Hamiltonian

(2—24) can in principle be calculated in successive orders of approxi-

mation by the perturbation method. The zeroth-order energy would be

calculated only from the zeroth—order part of the Hamiltonian, H0.

The first-order correction to the energy, E1, is computed exclusively

from the diagonal matrix elements of H1. In the absence of de-

generacies, the off-diagonal elements of H1 will contribute only to

the second and higher-order corrections. The perturbation calculation

is thus principally complicated by the myriad of off-diagonal con-

tributions, especially those from H and H4, and it is therefore

3

highly desirable to transform the Hamiltonian to a more convenient

form. To attain such a form, Van Vleck. suggested the so-called con-

tact transformation technique. By a suitable unitary operator T, one

subjects the Hamiltonian H to a transformation and attempts to find

a Hamiltonian H',

1 = H + m' + 2211' +... , (3-1)1 a '
H THT O 1 2

such that the zeroth-order term and the diagonal matrix elements of

the first-order term of the Hamiltonian remain unchanged while the

off-diagonal elements of the first-order term of the transformed

Hamiltonian H1, would vanish completely. The eigenfunctions of H

23

O



24

become eigenfunctions of H0 + Hi which is thus effectively a

zeroth—order term, if the zeroth—order energy is non-degenerate.

Since now there are no off-diagonal matrix elements in Hi, the

Hamiltonian H5 can be treated as a first-order perturbation term,

and the second-order corrections to the energy are obtained by taking

the expectation values of H5.

Thus, except in the case of accidental degeneracies, it is

advantageous to consider a partial diagonalization of the vibration—

rotation Hamiltonian in the vibrational quantum numbers by use of the

contact transformation. This can be done by determining the operator

T which leave HO of Eq. (2-48) unchanged and gives an Hi diagonal

16

in the vibrational Operators. The simplest method of obtaining the

suitable form of T is to set T = exp(iAs(1)) where the Hamiltonian

(1)
Operator 3 is called the Herman-Shaffer operator, and is chosen

such that the operator HO + AHi has only diagonal matrix elements

with respect to the vibrational quantum numbers vS in the repre-

sentation which diagonalizes HO.

To carry out the first contact transformation, we let

1 iAS(l) e-iAS(1)
H's-THT-ae H 2= ' ' .-H0 + 2H1 + A H2 +... (3 2)

To obtain the general expressions for the operators Hg, Eq. (3-2)

is expanded as

2 3I - l v I 2
H H0+AH1+AH2+AH3+...

= (l + 123(1) - -l- AZS(1)2 - A 1233(1)3 +...)(H + AH + AZH +...)
2 6 o 1 2

(1 - 125(1) - % 225”” +365 1235(1)3 +...). (3-3)



25

Equating the coefficients of like powers of A, one obtains in general

that

. _ (l) (2)
an - Hn + i[s , Hn_1], (3-4)

where

<2)_ _1_ <1) <3) _

Hn-l Hn—l + 2 [S ’ Hn-ZJ’ (3 5)

and so on, to

(m) a _i_ <1) (n+1)
HI]. Hn + m [S a Hn-l ] 9 (3-6)

with Hgm) - H0 for all values of m. Writing out the first few

terms of H; explicitly, one obtains

H' ; H (3-7)
0 0

Hi = Hl + i[s(l), HO] (3-8)

Hé =- 32 + i[s(l),Hl] vfi- [5(1),[s(1),H0]] (3-9)

H5 - 33 + i[s(1),H2] “21- [5(1),[S(1),H11]

-% [5(1).[s(1).[s(1),H0]]] (MO)

11; =- H4 + i[s(l),H3] -% [5(1),[s(l).H2]]

-% [3(1).[s(1)[.s(1),H1]]]

+ é; Lsmds‘l’d 5(1).[s(1).H0]]]] (341)



26

In general,

n n-k

.££L___ {S(l)n-k

H; = .5. a.-.” , H19 <3-12>

where

(l)(0) -
{S , HR} : Hn (3'13)

(l)(1) - (1)
{S , Hn} = [S , Hn] (3-14)

{5(1)(2). H } s [5(1).[s(1), H 11 (3-15)
n n

k brackets

\—."____/

{ (1"k),nn} : [5(1).[5(1)...-[S(l).Hn]]--u] <3-16)

According to Eq. (3—8), the required transformed first-order

Hamiltonian H' is obtained if 5(1) is chosen such that

1

(l) a : _i[s , H0] H1 + H1 (3 17)

where Hi is the portion of H1 which is diagonal in the vibra-

(1)
tional quantum numbers. This choice of S removes all but the

so-called first-order essential Coriolis term from the first order

Hamiltonian. For the case of asymmetric rotator molecules, it can be

shown that Hi - 0, because there is no symmetry-conditioned,

essential<zoriolis interaction for this type of rotator. Eq. (3-17)

thus becomes

i[s(l) (3-18)’ Ho] = -111,

(1)
and constitutes the defining equation for the 8 function for the

case of the asymmetric rotator molecule.
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(1)
Now the Hermitian operator S , and the partial Hamiltonian

Héfil) whose commutator appears in Eq. (3-6), are each made up of

combinations of the vibrational operators ps and qS and the rota-

tional Operators Pa. The two types of operator can be expressed

!

symbolically as 5(1) s 2k kS,and Hn”is 2k k H with

k
t t

S - (kS)V(kS)R, and k H a (k I-I)V(k H)R where the subscripts V

and R denote the vibrational and rotational parts. For any ks

1

and k H, and suppressing the k—indices, one has that

(l) (l)
[8. , H1 = [s H] + [s‘l’HHIR (3-19)

where

[3(1), H] =[s(1),Hv](s(l) + HRSél))/2 (3-20)

[5(1),nH]R = (3:1)av + H5(1))[ 3(1) ,HR]/2 (3-21)

It can be shown that if an is of order n, then [8(1),H]v

[8(1)
is of order n+1, whereas ,H] is of order n+2. This comes

R

about since the commutators [Pa’ PB] occurring in» [5(1) ,HR] are

equivalent to -i )1 PY and are therefore of one order of magnitude

smaller than PaPB’ whereas the [p,q] occurring in [851), Hv] are

equivalent to -i )1 and are therefore of the same order of magnitude

as pq. For these reasons it is useful to allow for the possibility

of regrouping terms into orders of magnitude in accordance with the

above remarks, and the once-transformed Hamiltonian is therefore re-

written in the general form

3' a h' + h' +rh' +Hh' +-hfl +-

o 1 2 3 4 (3’22)
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From Eq. (3-4), the transformed Hamiltonian has the form

(1) h(2)]v .+ R[5(1) h(2)1R
h' ,n‘H +i[S

n

where one has, in analogy with Eqs. (3-5) and (3-6),

(2) a (1) h<3) <1) h<3)
hn Hn+%[5 1v1%SI . 2R1

and in general

(In) 1 (l) (n+1) _i_ (l) (n+1)

hn a Hn + m [S ’ hn-l 1v + m [S ’ hn-2 1R '

(3-23)

(3-24)

(3-25)

For the asymmetric-rotator case, the above equations give explicitly

that

hé . H0

hi - H1 + 1[s(1), Ho]v = 0

ha - H2 + i[S(l), HO]R+ %1IS(1). Hllv

hé - H3 +-% 1[s(1), H11R+ 6 [S8(1).[S(1),H0]R]v

%1[s(1), 2hR + H2]v

ha . H4 + 1[s(1), H31v- Z1[S(l).IS(l) h'+ M]1v

+‘%§ 1[S(l)’[5(1)’[S(1)’H0]R]v]v _ %-[s(1),[s

+«% i[S(l),2hé + HRIR+ %IS(1).IS(1),HOIR]R

(l).HllR]v

(3-26)

(3-27)

(3-28)

(3-29)

(3-30)

Using Eqs. (3-20) and (3-21), and the commutation relations

17

as stated by Herman and Shaffer, it is possible to find the
S<1)

function defined by Eq. (3-27). It can be shown to have the general

form
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(l) a a8 8 a

S za,st S PsPaPB + Zazs<s'( 833' quS.

+ “888' p p )P + 2 SS" 'qu q p + q q )
' s s' a sis';s" ss' 2 s s' 3" ps" 3 3'

88'3"

ZS<SI<SII pSpS'pS" : (3‘31)

where

aaB

- 2 .7. . (3-32)
2 O O

(K A ) I o£188

& A + A ca

a a l s ' ss' ,

Sss' (A A ,) A - A , I° ’ s * 3 (3-33)
8 an

5 a

. (A A .) c .
aSss =Rg§ s s is , S # S, (3_34)

A - A , I
h s s cc

A5 (A - A - A )

SS" 3 2wc 1 + R s" s" s s'

SS' " n < 688" + 58'8", G kSS'S'”

. ss's"

L
(3-35)

(A A A ) 2
Sss's" 4nc s s' s" k

a v u , (3-36)
“3 G ' I. SS S

38 s

with

G . n = (A5 + A”. + A”..)(AL2 + A*. - A5")
33 s s s s s s s

B 5 5 k 5 5

(AS 18' AS")()‘S A8' + As") . (3‘37)

It may be verified that 633's" is invariant under all six possible

permutations of the indices s,s' ,3".

With the explicit knowledge of the S(l)-function, the first

contact transformation can be carried out according to the procedures

described by evaluating the required commutators. This has been

done by Amat, Nielsen and co-workers. The lengthy results are
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12

collected in a reference book by Amat, Nielsen and Tarrago. The

explicit forms of h', h', and h" are
l 2

v a ..
h0 H0 (3 38)

v 3 ..
h1 0 <3 39)

hé - 2 (“BY5 Y)PGPBP PR + z 2 ("‘BY YS)pSPaPBP

am (2) Y may 8 (2) Y

a8 83' a8

+ Z X ( Y psps. + Yss.qsqs.)PaPR

a8 s,s' (2) (2)

sgs'

a 33's"

'I' Z Z ( Y )PSPS'pSHPO.

a s,s',s" (2)

833,18"

a s" l

+ Z Z ' n ( Yssy)2(qsqstl?sn + pSHquS')Pa

a 3,3 ,5 (2)

8:8"

H H'

l

+ 2 ( Y3? )—(q q 1? up In + P up nvq q t)
s,s',s",s"' (2) ss 2 s s s s s s s 3

8(8' ;s"<s" V

+ Z ( Y . n n.)q q .q "q nv' (3-40)
s,s',s",s"' (2) as s s s s s s

sis':SI'—<-SHV

The expressions for h3 and h; are also cited in entirety in the

Amat-Nielson-Tarrago book, as are the detailed forms of the above

coefficients (2)Y in terms of fundamental molecular parameters,

3.2 Second Contact Transformation

In order to cast the Hamiltonian into a form suitable for the

calculation of the vibration-rotation energies to the fourth-order

of approximation, it is necessary to perform a second contact
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transformation on the once-transformed Hamiltonian H', such that the

twice-transformed Hamiltonian will be diagonal to second order in all

vibrational quantum numbers. We therefore let

H" a TH'T-l a eiAZS (2)HRe-1AZS(
2)

. H" + AH" + AZH" + A3H" + (3-41)
0 l 2 3 °'°

where H3 + AH; + AZHS is required to be diagonal with respect to

the vibrational quantum numbers vs. On expansion of the exponentials

and equating like powers of A one obtains

Hg . hé (3-42)

H; 3 hi (3-43)

H3 . hé + i[s(2), ha] (3-44)

Hg . h; + i[s(2), hi} (3-45)

H2 = h; + i[s(2),h21- %[5(2),[s(2), h0]] (3-46)

H; = hé + 1[s(2), h31- %[(2),[s(2), h'lJJ (3—47)

.., . <2) S<2) <2) .
H6 h6+1[s,h'-J%s[ ,[s ,hRJJ

-6[s(2), [3(2),[s(2),h01]] etc. (3-48)

Again allowing for the possibility of regrouping the terms of the

twice-transformed Hamiltonian by true orders of magnitude, it is

expedient to write H" as

H g H H II I! _

H h0+hl+h2+h3+... (3 49)
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The above Hamiltonian can be used to calculate the vibration-

rotation energies to the fourth-order of approximation by including

only those matrix elements which are diagonal in all vibrational

quantum numbers vs, because ha, h; and h; are diagonal in all

vS by virtue of the contact transformations, and those matrix

elements of h; and hz which are off-diagonal in one or more

vibrational quantum numbers can contribute to the energies only in

orders of approximation higher than the fourth. The Hamiltonian H"

is diagonal to all orders in the rotational quantum numbers J

(total angular momentum quantum number) and M (magnetic quantum

number). However, it has matrix elements which are nondiagonal in

~the angular momentum projection quantum number k in a symmetric

rotator representation whose basis functions are rigid-symmetric-

to ei enfun tions .

p 8 c kaM

HISIIB

It was found that through the fourth-order of approximation,

the general Hamiltonian has terms which can be classified into the

following three categories:

(a) (0)2 r2, (2)2 r4, (4)2 r6;

(b) (0)2 P2, (2)2 P4, (4)2 P2, (4)2 P6;

(c) (1)2 rzP, (2)z r2P2, (3)2 r4P, (3)z r2P3, (4)2 r2P4,

(4)2 r4P2,

where r2 denotes any possible product of two vibrational operators

4

i.e., qsqs,, Psps" qsps,, or psqs,; r denotes any possible pro-

duct of four vibrational operators, etc. The symbols ‘Pn' stands

for any possible product of ‘Px,?Py and. Pz of total power n, and
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and (m)Z stands, in general, for the coefficient of an Operator

appearing in the meth order of approximation.

The terms in (a) constitute pure vibrational operators in—

cluding anharmonicity corrections, the terms in (b) constitute pure

rotational operators including centrifugal distortion corrections, and

the terms in (c) represent vibration-rotation interaction contribu-

tions.

The pure vibrational energies will not concern us here since

we are interested principally in the rotational level structure built

upon a particular vibrational state rather than in the detailed

calculation of the pure vibrational level structure. In the absence

of vibrational degeneracy, it is found that the (1)2 r2 ‘P-type terms

have zero coefficients (1)2. Also, the (3)2 r4? and (3)2 rzPB-

type terms have no non-zero matrix elements diagonal in all v8 to

the fourth-order approximation.' Thus the odd order terms may be ex-

cluded from consideration unless accidental resonances occur which

would partially invalidate the order of approximation arrangement of

the Hamiltonian. The Hamiltonian of interest has then the general

schematic form:

" h"* h"* h"* 3 49H 0 + 2 + 4 (- )

where

..* ,_ 2 _

"* 2 2 4

= z + P -

* 2 4 2 2 4 6

Z r P + Z r P + Z P . (3-52)
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The asterisks indicate that terms of h; and hz which are of the

"* and h"* Also

2 4 °

- *

terms of hz not diagonal in all vs are to be omitted in hZ .

Regrouping terms in Eqs. (3-42)-(3-46) according to true

pure-vibrational type are to be omitted in h

orders of magnitude, the twice-transformed Hamiltonian takes the

following general form:

R3 hé , H0, (3-53)

h; = hi = 0, (3-54)

hg . hi + i[s(2), H0]v, (3-55)

h; = 115 + i[s(2),Ho]R + i[s(2), hi1v, (3-56)

.hZ - ha + i[s(2), hi]R + {215(2), bi + h'2'1v. (3-57)

The operator 8(2) is determined through Eq. (3-55) by requiring

the commutator -i[s(2), HO]v to be of a form such that if offsets

the vibrationally off-diagonal matrix elements of hi. This 5(2)

function is found to take the following form:

5(2) = za,B’st O‘BYSR qs PaPBPY

+ za,8 s,s' GB :' 2(qsps'+ ps'qs)PaPB

+ Zazsgstgs" asss's" qsqs'qs" Pa

+ Zazs;s[§s" “82's" 2(qsps'ps" + ps'ps"qs)Pa

+ Z s's"s"' 1

s;s':s"_gs"' S ‘2'(qSPSvPSnPSnv + Psvpsnpsnvqs)

SS" I

"I 88'3" Eiqsqs.qsnpsnv+ p n q q .qsu). (3-58)2
sgsljs";s s s s s
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12

(2)are listed in the Amat-Nielsen-Tarrago

2 4 2
z Z

(4) P and (4) r P

terms from Eq. (3-58), since they constitute fourth-order corrections

where the coefficients 5

book. It may be allowable to omit the

to the second-order corrected rotational constants and as such their

effects are probably undetectably small. Upon substitution of 5(2)

into Eq. (3-56), it is found that the diagonal matrix elements of hg

vanish; the off-diagonal matrix elements of h; and hz contribute

to orders of approximation higher than the fourth. Extensive computa-

tion yields a twice-transformed Hamiltonian of the following form:

 

n a ‘ _
h0 Ho (3 59)

n a
..

h1 O (3 60)

h"'-2: “875 YPPPP
2 GBYG (2) a B y 6

2 a8 39' a8 1 sps'

+ z 2: (II Y + Y .A-(q q . + )P P
a8 38' (2) (2) ss 2 s s K2 a B

s-s'

+ pure-vibration terms. (3-61)

The very complicated explicit results for h", h; and hZ will be

12

found in the Amat-Nielsen-Tarrago book

3.3 Third (and Highgg) Contact Transformations

It is sometimes necessary to perform a third (or even higher)

contact transformation such that the three-times-transformed

Hamiltonian will be diagonal in all vibrational quantum numbers.

One then takes:
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-1 1A3 (3)
3 (3)

H"! 3 Salve = e S Hue 1A 3

.2 33' a; + 2H; + fins: + 4H:

4 3
H! "I "I

where H0 + AH1 + A H4 + A 3

(3-62)

H"' are diagonal with respect to the

vibrational quantum numbers vs. In terms of the like powers of the

parameter A, Eq. (3-62) is equivalent to

H ' "

Ho ho

I" 8 I! (3) H

. H' . H 0 (3) H

II! a ll (3) H

HS h5 + i[S , h2]

In a n (3) n A (3) (3) 11

H6 h6 + i[S , h3] - 2[S ,[S , ho]] etc.

Eq. (3-66) is the defining equation for the operator

(3)
function S is constructed such that

(3) n _ _ u

1&3 ’ ho] ’ ha off diag.

8(3).

(3-63)

(3-64)

(3-65)

(3-66)

(3-67)

(3-68)

(3-69)

The

(3-70)

Again allowing for the possibility of regrouping the terms of the

three-times-transformed Hamiltonian into a "true" order of magnitude

arrangement, one has

H"' . ha' + hI' + hg' + hg' + hZ' +... (3-71)
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Recently Aliev and Watsonyhave calculated the sextic

centrifugal distortion constants of polyatomic molecules by a so-

called "reordered perturbation treatment", for which they had to

consider the three-times transformed Hamiltonian. We will discuss

this calculation in some detail in chapter 7.

,The procedure of successive contact transformations could

be applied as many times as required. The general theory of n-times-

transformed molecular Hamiltonians has been explored in some detail

19

by Aliev and Aleksanyan.



4. THE NORMAL MODES PROBLEM FOR

TRIANGULAR TRIATOMIC MOLECULES

In order to present and explore the details of the theory of

centrifugal distortion in triangular triatomic molecules, it is

necessary to review the normal-coordinate problem for this class of

molecules. The XYXstype molecule was first considered by Shaffer and

20

Nielsen, and discussions have since appeared in numerous publications,

21 22

e.g., those of Nielsen, or Chung and Parker. The XYZ-type molecule

. 23

was first studied by Shaffer and Schuman, and further details have

6

been presented by others, including Chan and Parker.

4.1 Equilibrium Geometry of the ngjtype Mblecule

Let the XYZ molecule lie in the E; plane, as shown in

Figure (4-1), with the origin of coordinates at the center of mass.

The X and Z atoms are located at the base vertices of the

y Y y

-
-

 
 

Figure (4-1). Equilibrium configuration of the triangular tri-

atomic molecule.

38
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triangle and the Y atom is at the top vertex. They are numbered

3, 2 and 1, respectively, and X2 -is chosen parallel to the §

axis. In the barred equilibrium coordinates §,i,‘§;i and 201,

i = 1,2,3, one has that

a 3 gal - 1:93, (4-1)

b 8 x02 - x01, (4-2)

C a §°1 ' §03° (4-3)

The principal axes of the molecule, designated as x, y,

and 2 have the same origin as the E, § and E coordinates. The

z-axis coincides with the Z-axis and the x,y axes are in the plane

of the molecule and make an angle 6 with the E, 5 axis. The

equilibrium coordinates are found to be

ERR - (m3a - mRb)/M, (4-4)

22.2 = [m3a + (m1 + m2)b1/H. <4-5)

§,3 = -[(m1 + m2)a + m2b]/M, (4-6)

§°1 - (m2 + m3)c/M, (4-7)

§,2 = -mlc/M, (4-8)

§,3 . -mlc/M, (4-9)

2.1 . 2,2 = 2,3 = 0, (4-10)

with M being the total mass of the molecule, viz.,

M 8 ml + m2 + m3 . (4-11)
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Transformation to the principal axes system of the equilibrium inertia

tensor is accomplished by taking

x°i = xoicose + yoisine, (4-12)

yoi = -x°isin6 + yoicose, (4-13)

201 3 E01 3 0’ (4-14)

where the angle 6 is given by

tan 26 = T/Q, (4-15)

with

T a 2m1c(m3a - mzb), (4-16)

9 = m (m + m )a2 + m (m + m )b2
3 l 2 2 l 3

2

- m1(m2 + m3)c + 2m2m3ab . (4-17)

For the equilibrium coordinates in the principal axes system the

transformation gives

x01 8 {(m3a - mzb)cose + (m2 + m3)c-sin6}/M, (4-18)

x°2 = {{m3a + (1111 + m3)b]cose - m3c-sin8}/M, (4-19)

x.3 = -{[(m1 + m2)a + m2b]cose + mlc-sin6}/M, (4-20)

yol a -{(m3a - mzb)sin6 - (m2 + m3)c-cose}/M, (4-21)

y°2 = -{[m3a + (m1 + m3)b]sin6 + mlc-cose}/M, (4-22)

y,3 8 {[(ml + m2)a + mzb]sine - mlc'cose}/M, (4-23)

2.1 = 2.2 = 2,3 = O . (4-24)
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For the equilibrium principal moments of inertia one has

1:3 = -]2;(I;z - 1'), 2 (4-25)

;y - %(I;z + 1'), (4-26)

122 - IL; + 1;}, =- [(2 + 2m1(m2 + m3)c2]/M, (4-27)

with

1' - [(T2 + (3)/14215. (4-28)

The equilibrium coordinates and the equilibrium principal

moments of inertia of the HDO-type molecule can be obtained from the

above more general expressions by setting a = b.

4.2 Normal Coordinates of the XYZ—type Molecule
 

Denoting instantaneous position coordinates by xi, yi and

21, we have that z - 22 - 23 - 0 because of the absence of out-of-

1

2k

plane vibrations. The Eckart conditions can be written as

Zmi 0,130 (4-29)

1

sz xE)-o. (4-30)
1 i 01 i

The first condition keeps the origin at the center of mass at all

times while the second condition keeps the xyz coordinate system

attached to the nuclear equilibrium configuration. We now introduce

intermediate symmetry coordinates u,v,w as follows:

3’

v a y]. - (mzyz + m3Y3)/(m2 + “13), (4'32)
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w = x1 - (mzx2 + m3x3)/(m2 + m3). (4-33)

Eqs. (4—3l)7(4-33) along with the Eckart conditions give for the

instantaneous cartesian position coordinates:

x1 = (u/ml)W. (4-34)

x2 = (u'/m2)u - [u/(m2 + m3)]w, (4-35)

x3 = -(u'/m3)u - [u/(m2 + m3)JW. (4-36)

Y1 = (u/ml)v (4-37)

Y2 = (u'Y/m2)u + (ua/m2)v + (u"/m2)W. (4-38)

Y3 = -(u'Y/m3)u - (uB/m3)v - (u"/m3)w, (4—39)

with

u = [m1(m2 + m3)]/M , (4-40)

u' = m2m3/(m2 + m3). (4-41)

u" - mly.1/x23. (4-42)

a - -x13/x23, (4-43)

3 - -x12/x23, (4-44)

7 = y23/x23 = -tane, (4—45)

where

x12 a x01 - x02 - —b cose + c sine, (4-46)

x13 = x°l - x03 = a c036 + c sine, (4-47)

x23 = x02 - x.3 = (a + b)cose, (4-48)

Y23 = Yoz - y03 - -(a + b)sine. (4-49)



43

The vibrational kinetic energy is

l . 2 . 2 -. 2 ..
a 2 (ullu + “22v + p33W + Zulzuv

+ 2u13uw + 2u23vw), (4-50)

which can be expressed in terms of the intermediate coordinates as

l . . t

T - §'(W)(u)(W) , (4-51)

where

w s (a v w), (4-52)

and t denotes the transpose; (u) is the 3 x 3 symmetric matrix

with elements

‘111 ‘ u'(1 + Y2). (4‘53)

2 2 2

“22 = u [(l/ml) + (a /m2) + (8 /m3)], (4‘54)

1133 = u + (11"2/u'), (4-55)

1112 I “21 a “H'Yy (4'56)

u13 ' U31 ' u"Y. ' (4-57)

1123 ' 1132 8 u"u"'/u', (4.58)

where

u = -mlxo1/X23 = uu'[(a/m2) + (B/m3)]. (4-59)
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Now, the most general form for the harmonic potential energy

can be expressed in the intermediate coordinates as

l t

v - 3(4) (10(4) . W60)

where (w) a (u V'W) and (k) is the 3 x 3 symmetric matrix of

22’ k33’ 12 ' k21’ k13 ' k31'

k23 - k32. The potential is invariant under the group symmetry of

potential constants with elements kll’ k k

the molecule CLh and can be written explicitly as

l 2 2 2
V's 2 (kllu + k22v + k33w + 2k12uv

+ 2k13uw + 2k23vw) . (4-61)

The symmetry coordinates u,v,w are related to the normal

coordinates QS (s = 1,2,3) through a set of transformation coeffi-

cients n , ,

s s

u = 28 nls s’ s = 1,2,3, (4-62)

v = ZS nszS, s = 1,2,3, (4-63)

w = 28 n3S S, s = 1,2,3, (4-64)

where these coefficients can be obtained in general only by solving

the cubic secular equation

IA(u) - (k)| . o . (4-65)

Each ns's can be expressed as

n , - 3 3 , (4-66) 
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where Ns's is the cofactor of the s'-th element of any row of the

determinant, Eq. (4-65), and where 'A 2 is is the s—th root of Eq.

(4-65). The quantity NS is determined such that

l '2 '2 '2
T 3.? (Q1 + Q2 + Q3) , (4-67)

which requires that

2 2

Ns - 2:s'='l,3 [us's'Ns's + zs"#s' us's"Ns'st,"s]' (4-68)

Expressed in the normal coordinates, the harmonic portion of the

potential energy becomes

1 2 2 2

V a 2 (AlQl + AZQZ + A3Q3), (4-69)

where the associated normal frequencies, in radians per second, are

A: (s - 1,2,3). The normal frequencies A: could be specified in

closed form as the roots of the general cubic equation. These ex-

pressions are of limited practical use, as ordinarily it is the three

roots As for which numerical values are known and the potential

constants kij for which numerical values are sought. As there are

three As and six distinct potential constants kij’ the problem is

underdetermined and additional relations must be obtained through

intercomparison of isotOpically substituted species and through in-

formation derived via the second-order parameters of the Hamiltonian.

The normal vibrations problem has been presented above in

such a way that specializing the results of this and the following

section to the XYx-type molecule will reduce‘ these directly to the

results of Chung and ParkerizYallabandi and Parkeii and Chan, Wilardjo,

2

and Parker.
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The normal mode 3 = l specifies the X-Y 'bond stretching

mode, 3 = 2 specifies the bending mode, and s = 3 the Y-Z bond

stretching mode. The three normal modes are sketched fin Figure

(4-2).

 

 

 

./ 12 X\ ,72 2% ‘W’;
X Y-X Bond Bending Mode v2 Y-Z Bond

Stretching Mode . Stretching mode v3

v

'1

Figure (4-2). Normal Modes of the XYZ Molecule.

4.3 Molecular Parameters of the XYZ-type Molecule
 

The coefficients 2:8, a = x,y,z of the transformation from

instantaneous position coordinates to normal coordinates are defined

by Eq. (2-4) and can be constructed for the xyz-type molecule with the

aid of Eqs. (4-34)-(4-39) and (4-62)-(4-64). In this manner one de-

termines that

21‘s - (u/m§)n38, (4-70)

2:8 ' (u'lmZMIS - [mug/(m2 + 1:13)]n38 (4-71)

2353 - -(u'/m‘3’>nls - [mfg/(m2 + m3>1n3s. <4-72)

231's - (u/m‘isz, (4-73)

gs - (u'v/m’pnls + (pa/m3)n28 + (4711391138, <4-74)

23's - -<u'y/m§)nls - (us/ugh“ - <u"/m‘3’)n3s, (4—75)
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2 . z = 22 a 0 s = 1,2,3. (4-76)

Knowing the set of coefficients £38, one can construct the Coriolis

constants, cgs, from Eq. (2-7) as

3

- 8 Y _ Y B _

css' 1:1 (liszis' lislis')’ (4 77)

where n.8, and y denote x,y, and 2, respectively, or one of

their two cyclic permutations. One finds that

C v = C t a C = 0: (4‘78)

for any 3 and s'. The onlynon-Vanishing Coriolis constants are-

the following:

2' - _ z a _ _ uv _

Css' cs's “(n23n3s' n23'n3s) + u (nlanS' nls'n28)

+ u"(nlsn3s, - nls'n3s)’ 8 ¥ 3'. (4-79)

It is customary to suppress the upper index for 5:8,. There

are then three distinctnon-VaniShing‘30riolis constants, viz.,

C12 3 '521 C13 ' ’531 C23 3 "532’ (4’80)

4’28

and these constants obey the sum rule

2 2 2
(12 + :13 + :23 1. (4-81)

The coefficients of expansion of the instantaneous moments

and products of inertia introduced in Eqs. (2-28) and (2—29) take

the following form for the XYZ-type molecule:

(4-82)
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yy , yy + yy yy _
aS t1 nls t2 1128 + t3 n38, (4 83)

22 _ 22 22 22 = xx yy _
as t1 nls + t2 n2 + t3 n3 a8 + a , (4 84)

XY . xv xy xy , yx _
as t1 “ls + t2 nzs + t3 n3s as ’ (4 85)

where the coefficients tie are summarized in Table (4-1). All

other a:8 vanish. The non-vanishing (A::.)' and (A::,)' are

given by

Wyayyv=yy=yy

(Ass') (As's) Ass' As's

a ' -

u nlsnls' + un3sn33., (A 86)

22 , . 2 22 , = 2 22 , a 2 _

22 , . _ zz , a ' zz , a _ _

(A12) C13‘23’ (A13) ‘12‘23’ (A23) ‘12‘13’ (4 88)

XVIayxgxygyx
(Ass') (A843) ASS. As's

, + p"'n n ' + u"n n
a _ '

(“ Y “lg“ ls 2s ls 3s'ls

+ u n (4-89)
3sn23')°

In Eqs. (4—87) and (4-88), we have used that A::, - 538,.

Direct computation of (A::.)' yields the rather complicated

expression

2 2

xx,_lxx,-xx-xx=,2 ZLLL

(Ass') (As's) Ass' As's n Y nlsnls' + u (m1 + m2 +‘m3)n23n23’

2
H

E... "v

+ u' n38n33' + u Y(Illans' + nls'nZS)

H -

+ p 7(nlsn3s' + n1 .n3s) + E;%-— (n23n3s, + n23,n3s). (4 90)
S
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Table (4-1). The Coefficients tc‘B Introduced in Eqs. (4-82)-(4-85)

 

 

 
 

 

  

 

i

2 ,

t - 2m2m3(a + b)sin 6 cyy a 2m2m3(a + b) cose

1 (m2 + m3)cose (m2 + m3)

txx - 2m1(m2 + m3)c tyy s O

2 M cose 2

xx:— yy:t3 2m1yo1 tane t3 2mlxol

tzz - 2m2m3(a + b) a txx + tyy txy a 2m2m3(a + b) sine

1 (m2 + m3) cose l l .1 (m2 + m3)

zz . xx xy 8

t2 t2 t2 O

:22 - 2m1(m3a - mzb) a txx + tyy tgy , —2m1y91

3 M cose 3 3

x.l and y°l are as given by Eqs. (4-18) and (4-21)
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28

Using the sum rule of Oka and Morino given for s = 3', namely

2 Aggg- 2, one can avoid the above result and write (A::)' for'the

a

XYZ-type molecule simply as

H‘s-W, = _

(Ass) 1 (ASS) , 3 1,2,3, (4 91)

12

with (AZZ)' given by Eq. (4-86). For 3 # s', Amat and Henry have

shown that

H's-W1
-(Ass.> (Ass') . (4 92)

Combining Eqs. (4—91) and (4-92), we have

xx v YY v a _
(Ass') + (Ass') 688, . (4 93)

Amat and Henry have also shown that the following simple relations

exist between the age and the A::,:

as . =.l ay my 0 -(Ass') 4 ZY as as,/Iyy, (4 94)

a8 . Ba 3 l ow BY av BY 0 _
(Ass') + (ASS,)' 4 Xy(aS as, + as,aS )/IYY . (4 95)

Another useful sum rule is given for 2 A:: which for X32 jyields

S

(A’l‘x1)' + (A?2)' + (A?3)' -%+ (1° -I° )/21° (4-96)
yy 22

t v 1 2 o _ O o _

(A3) + (Ag) + (Ag) - 2 + (Iyy Ixxm:zz . (4 97)

The equations, coefficients and sum rules given in this section can

be specialized to XYX-type molecules. This case will be discussed

in the following section.
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4.4 Molecular Parameters of the Xngtype Molecule

The normal modes problem for the XYX-type molecule has been

discussed by Chung and Parker?2 The problem can be considered as a

special case of the XYZ develOpment just presented above. Let the

molecule be in the xy plane as shown in Figure (4-3) with the origin

at the center of mass. The X atoms are located at the base vertices

 

 

 
 

x

x 3 . 2 X
a a

, m m

Figure (4—3). Equilibrium configuration of the nonlinear XYX

molecule.

while the Y atom is at the top vertex of the triangle, and XX is

chosen parallel to the x axis. The equilibrium coordinates x

01’

yoi’ i - 1,2,3 are:

x01 = 0, (4-98)

x02 - r sina, (4-99)

x03 = -r sina, (4-100)

y01 - I)”; r cosa, (4-101)

yo2 a - gE-r cosa, (4-102)

y03 - --%;-r cosa, (4—103)

where
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2m

11 - 2m + M (4-104)

The equilibrium principal moments of inertia are

I;x = urzcosza, (4-105)

0 2 2

I = 2m 1: sin 0:, (4-106)

YY

I° - I° + I° = 2m(u3)rzsin2a (4-107)

-22 xx yy D" ’

where

113 = “[1 + (p/Zm)cot2a]. (4-103)

Denoting instantaneous position coordinates by x1 and yi, we have

for the Eckart conditions

m(x2 + x3) +Mxl = 0, (4-109)

m(y2 + y3) + Myl = 0, (4—110)

m r sin (y2 - y3) =-% u r cosa(2xl - x2 - x3). (4—lll)

If we now introduce mass-adjusted symmetry coordinates u,v,w as

follows:

u - (tn/2)],(x2 - x3) , (4-112)

V 8 UHIYI " ‘é'UZ + 373) 3 (ll-113)

w 8 p3le -'%(x2 + x3)], (4-114)

then the vibrational kinetic energy becomes

2
T = %(a2 + (r + 6:2), (4-115)
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and the harmonic potential energy is

l 2 2 2

V = 2(kllu + k22v + k33w + 2k12uv). (4-116)

It is important to note that when the comparison is made be-

tween a molecule of the XXXétype and one of the XYZ-type, the con-

ventional definition of the intermediate coordinates of XYX, Eqs.

(4-112)-(4-ll4), is inconsistent with the corresponding definition

for xyz, Eqs. (4-31)—(4-33). Hence there arises an inconsistency in

the definition of the harmonic potential constants. This discrepancy

must be taken into account whenever expressions applying to XYZ are

specialized to XYX according to the replacement scheme:

kll(XYX') + % m2k11(XYX) , (4-117)

k22(XYX')A+ uk22(XYX), (4-118)

k33(XYX') + u3k33(XYX), (4-119)

k12(XYX') - (% umz)“k12(m>, <4-120>

k13(XYX') + 0, (4—121)

k23(XYX') + 0. (4-122)

Also, specializing to XYX, the angle 6 defined by Eqs. (4-15)-

(4—17) is equal to zero. The transformation from symmetry coordinates

u,v,w to normal coordinates Q1,Q2,Q3 can be taken as

u - Qlcosy - stiny, (4-123)

v - leiny + Q2cosy, (4-124)

w - Q3, (4-125)

with
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siny - +(l//E)(l - {Ak/[(Ak)2 + 4k122]&})a, (4-126)

cosy = +(l - sinzy)5, 1 (4-127)

and with

Ak = (kll - k (4-128)
22)°

The normal coordinate transformation is such that Ql is the co-

ordinate of the symmetric bond stretching or "breathing mode", Q2

is the coordinate of the bending mode, and Q3 is the coordinate of

the asymmetric bond stretching mode. The normal frequencies A5

_A

19

3, A: (in radians per second) are given by

. l l 2 2 ., _Al 2(kll + k22) + 2[(Ak) + 4k12 J , (4 129)

.l _l 2 2% -. AZ 2(kll + k22) 2[(Ak) + 4k12 ] , (4 130)

The transformation between displacement coordinates and normal co-

ordinates, of the form

iai = : 2:8 QS a - x,y,z, (4-132)

can be develOped and the transformation coefficients 2:3 are found

to be the following ones.

211‘ . 0 any =- (u/M)”s1ny (4-133)

2le - cosy/)5 221V - -§(u/m.)fisin-y (4-134)

£31x = -cosY//2 £31? - -5(u/m)ysiny (4-135)

and
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212x = 0 llzy = (u/M)&cosy (4—136)

222x = -siny//2 fizzy = -§(u/m)%cosy (4—137)

232x - sinyl/2 232y = —B(u/m)gcosv (4-138)

and

£133 a (ll/MHM/l-IB)’, any = 0 (4-139)

223x = -(u/2m) (In/113)], 123), = (u/Zm) (In/113)],cota0 (4-140)

1331‘ = -(u/2m) (In/113)}, 9.33}, = -(1.t/2In)(In/1J3)1’cotmO (4-141)

and

Z

2 = 0, i = 1,2,3; n = 1,2,3. (4-142)

in

a

is

constants tin from Eq. (4-77),

,Knowing the 2

Y_ BY

mn im ILin zin 2im )’

c x = c y . o, m = 1,2,3; n = 1,2,3;
mn mu

2 2

C12 ' ‘21 = 0’

z 2 H 8
:13 -§31 a (Ix/Iz) cosy - (Iy/Iz) siny,

c z a -c z - -(I /I )ksin - (I /I )Bcos
23 32 x 2 Y y z 7’

2

(£1332 + (4232) - 1.

Again the superscript z

Coriolis constants are those with superscript z.

coefficients, we can construct the Coriolis

(4-143)

This gives

(4-144)

(4-145)

(4-146)

(4-147)

(4-148)

can be omitted since the only non-zero
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8
We also will need the coefficients of expansion a: and

(A::,)' of the instantaneous moments and products of inertia intro-

duced in Eqs. (2-28) and (2-29). The non-vanishing coefficients a?

are

xx 5 XX 5

81 ' 21x81ny a2 = ZIxcosy (4-149)

ayy - ZIhcosy ayy - -ZIysiny . (4-150)
1 y 2 Y

zz . xx yy 3 _ 5 22 8 xx yy 3 _ 5 _

a1 a1 + a1 2122;23 a2 a2 + a2 212:31 (4 151)

and

KY . _ 5 _
a3 2(Iny/Iz) (4 152)

The non-vanishin8(A::.Y and (A::,)' are given as

(A::)' - (A§§)' - sinzy (4-153)

(A::)' - (A{{)' = coszy (4-154)

(A§§)' - Ix/Iz (4-155)

(A§§)' - Iy/Iz (4-156)

}(A::)' - (A::)' - -(A{§)' - -(A§{)' = sinycosy (4-157)

and

(A§§)' - (A§:)' - -(Ix/Iz)5cosy (4—158)

(A?{)‘ = (A{§)' . -(Iy/Iz)§siny (4-159)

(A;§)' - (A§:)' - +(Ix/Iz)331ny (4-160)

(A§§)' - (A§§)' - -(Iy/Iz)5cosy (4-161)

These coefficients will be used in Chapter 9 for calculating the

centrifugal distortion coefficients of ozone.



5. CENTRIGUFAL DISTORTION COEFFICIENTS

FOR TRIANGULAR TRIATOMIC MOLECULES

In this chapter there will be described a number of schemes

of development and rearrangement of the Hamiltonian into a form in

which the effects of centrifugal distortion on the rotational energies

are explicitly apparent.

5.1 Development of the Hamiltonian

It was shown by Kneizys, Freedman, and Clouglfgthat the

vibration-rotation Hamiltonian for the XYZ-type molecule in general,

and for XYX in particular, could be given in a simplified form

through extensive rearrangement based on the angular momentum

commutation relations

[Pa, P8] = -1 u PY, a,B,Y cyclic. (5-1)

The form of the resulting Hamiltonian is, for a given vibrational

state, a power series in the angular momentum components which needs

for its specification, to fourth order of approximation, three co-

efficients A, B, and C, of terms of the second power in the body-

fixed angular momentum components; six coefficients T1 of fourth-

power angular momentum terms; and ten coefficients of sixth-power

angular momentum terms. For XYX-type molecules, the Hamiltonian of

29

a given vibrational state can eventually be written as

57
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H = H2 + H4 + H6 , (5—2)

where

2

H = A P2 + HP + C P2, (5-3)

2 x y z

4 4 4 2 2 2 2 2 2

H4 TIPx + TZPy + T3Pz + T4(Psz + PZPy) + T5(Psz

2 2 2 2 2

+ PxPz) + T6933, + 9:13,), (5-4)

6 6 6 2 4 4 2 2 4

H6 . ¢1Px + ¢2Py + @BPZ + <I>4(PxPy + Pny) + ¢5(Pny

+ P4P2) + c (P2P4 +AP4P2) +.¢ (P2P4 +'P4P2)

x y 6 y z z y 7 z y y z

4 4 2 2 4 4 2

+ ¢8(P:Px + PxPz) + ¢9(PXPz + Psz)

2 2 2 2 2 2

. + ¢10(Px1>zpy + PszPx) , (5-5)

For the XYZ-type molecule, an additional contribution must be added

to (5—2), viz.,

1 3 3 1 3
H6a D(PxPy + Pny) + 4 r10(PXPy + Pny) + 4 111(Pny

3 1 2 2
+ PxPy) + 4 112(PXPZPy + PszPx)° (5-6)

18

This contribution was originally developed by Chung and Parker. The

coefficients 1 appear here with numerical subscripts. These take

18

a8y6'

of the terms quadratic in Pa are the effective rotational con-

the place of the more elaborate notation r The coefficients

stants, equal to the equilibrium rotational constants (l/ZIga) of

0(0) [order zero], plus second-order centrifugal distortion correc-

tions to the equilibrium Ti, plus second—order vibrational correc-

tions, a2. There are also terms of 0(4). More explicitly:
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A - 1/(21;x) + 2231 01: (vs + 92:) -%u219 + 0(4), (5-7)

B - 1/(21;y) + 2231 (1: (vs + $4 - % uzrg + 0(4), (5-8)

C I 1/(2I22) + 2:31 a: (v +-%) +-%'M219 + 0(4), (5-9)

where

as . %;)xss + aaYs + “2(aayss). (5_10)

The coefficients

an (10 SS

(;)Xss’ Ys’ and y are given by Amat,

Nielsen and Tarrago}2'The other coefficients in Eqs. (S-3)-(S-6) are

given by:

D-23 (”x +ny +uzcxyyss)1(v +4)
831 (2) ss 33 s 2

1 2
- 4 M (110 + 111 — 2 112), (5-11)

I -l( + )+u2¢ (5-12)
1 4 T1 01 11’

T .lh + ) +1424 (5-13)
2 4 2 ‘32 12’

T --1-(1- +p)+u2¢ (5-14)
3 4 3 3 13’

T - l ( + *) + “2 4 (5-15)
4 4 T4 04 14’

1 * 2
T5 - 4 (rs + p5) + u 415, (5-16)

1 * * 2
T6 - 4 (1'6 + p6) + u 416, (5-17)

where the 1 are the centrifugal distortion coefficients of 0(2),

01

i

the r , and 4

0(4).

1 11

The terms 4

11

t *

to 93, 94 to p6, of 0(4), are the vibrational corrections to

to 4 are rotational corrections to T of

16

to 4 and the p-coefficients are not the

16
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subject of the present investigation, and their extremely complicated

*

forms will be omitted. The quantity T6 is defined as

*

Finally, the coefficients of the 1P6 terms are the fourth-order

centrifugal distortion coefficients, 41 to 410 in which we are

interested in this dissertation. These coefficients have been dis-

cussed extensively by Sumberg and Parker: and have been given in a

form which exhibits extensive cyclic and algebraic regularities.

The basic form of the transformed Hamiltonian given by Eqs.

(5—2)-(5—6) is referred to as the "4—form"?shAn alternate form of

the Hamiltonian which considerably reduces the computation of matrix

elements is expressed in powers of P2 and P2 (where P2 a P: +

Py + Pz). This is the so—called "H-form":

* 2 * 2 3 * 2

H2 (A -*D.6)Px +'(B - D6)?y + (C - 2‘06)Pz. (5—19)

* 4 * 2 2 * 4 * 2 2 2

H4=D1P +D2PPZ+D3PZ+D4P(Px-Py)

* 2 2 2 P2 2

+D Pz2(P2 - P + P - P P2 +-D; P:51 y) ( x y) 1 1( -Py)

l 4 2 2 4 2 2 S 2

- 2 (P - 2P Pz + P2) + h (P - 2 Pz)], (5-20)

6 4 2 2 4 6 4 2 2

H6 - Hl P + H2 P P2 + H3? Pz + H4Pz + H5 P (Px - Py)

2 2 2 2 l 6 4 2 2 4
+ H6[P (Px - Py) - 2 (P - 2? P2 + P P2)

2 4 2
+ a (P - «% P2P:)] + H7{P [P:(P: - P2) + (P:- P:)P:]}

+ 381P2<P: - P3) + (P: W:1 + a9{[P:(P: 4:)2

-1-(P:-P)2P:22]- (P4P2- 2P2P:+P:)

+ 2 112 (P2P: -: P:)} + “104?: - P333, (5-21)
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2 .

M1 + M (~2Hl - H2 - H6 + 3H9),

2

M2'+ M (12Hl + 6H + H - 20H9),
2 6

M + M2(-lOH - 5H3 1 2 + 20H9),

M4,

+ 2H

2

M + K (2H5 + 4H7 10),
5

M + “2(4H1 + 2H - 6H9),
6 2

l
+'Z T

a
fl
o
o

(Tl + T2) 6’

3 1
- 4 (T1 + T2) + (T4 + T5) -«5 T6,

1

- (T4 + T5) + T(Tl + T2) + T 4

a
fl
u
a

3 6’

(T

h
fl
P
‘

l - T2),

1 1

’ 4 (T1 ' T2) ' 2 (T4 ' T5)’

1

(T1+T2)-2T

c
t
h

6’

l-5

16(°1 + °2> + 8 (¢4 + 25”

15 3 3 ,
- 16 (¢l + ¢2) - 8 (454 + ¢5) +-—-(¢

4 7

1

+ P8)

(5—22)

(5-23)

(5-24)

(5-25)

(5-26)

(5-27)

(5-28)

(5-29)

(5-30)

(5-31)

(5-32)

(5-33)

(5-34)

(5-35)
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H'_21(°+¢2)+% (¢4+¢569)+(<1>+<1>)

3

-—(<1>7+<1>8-) -1- (5-36)
24’10’

H=--S-(¢ +¢)+¢ -l(¢ +¢)-(¢ +<I>)
4 16 1 2 3 8 4 5 6 9

%7(<1> +¢S)+1<1> (5-37)
410’

H --g (¢ -‘¢ ) -'; (¢ - ¢ ) (5‘38)5 8 1 2 4 4 5'

H--3-(<1> +¢)-l(¢ +4) (5-39)
6 8 1 2 4 4 5’

3 1 1
H7 =- --§ (<111 - <1>2)+z(<1>4 - 455) — 2(<17 - P8). (5-40)

3 1 1
H8 - 16 (41 - 42) - 8 (44 - 45) - 2 (¢6 - 49)

+l(¢ -<1>) (5-41)
2 7 8’

H9- -l§g(¢1+¢2%)+ (<114 +<115--)+1 (<b7 +48)

1
- 4 410, (5-42)

H =l(¢-¢)+-1-(¢-¢) (5-43)
10 8 1 2 4 4 5'

The equivalence of the H-form to the o—form can be verified

by substitution of Eqs. (5-22)-(5-43) into Eqs. (5-19)-(S-21) and by

rearranging the resulting expressions to the form specified by Eqs.

(5-3)-(5-5). Here the last term, viz., H has been omitted and
6a’

can be set equal to zero since the theoretical expressions for the

110, Ill 12 cannot be ififermined

from.experiment. This result has been obtained by Watson who showed

nonezero coefficients D, and t

that the transformed Hamiltonian can be reduced to a form in which all
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indeterminacies inherent in fitting the complete Hamiltonian to

observed energy levels can be avoided.

5.2 Second-order Centrifugal Distortion Constants

From the information of Sections 4.3 and 4.4, the second-

order centrifugal distortion constants,

, -.£ 88 15 _TOBYG 2 2 a a8 lIaIBIYIGAs’ (5 44)
S

can be constructed. These are the coefficients of the fourth-power

angular momentum terms of the vibration-rotation Hamiltonian of tri-

angular triatomic molecules. Taking account of the symmetry pro-

perties of the age for the case of planar molecules (i.e. azs - as“

s

and a:? - aZZ = 0), one obtains a total of thirteen distinct non-

zero coefficients T according to Eq. (5-44). These coefficients

aByd

are given in Table (5—1).

20

Shaffer and Nielsen have originally calculated these constants.

3393“ 35

They obey the relations of Dowling, and Oka and Morino which hold in

general for planar asymmetric-top molecules:

Tl - (122/1;x)215 - (I;y/I;x)216 (5-45)

0 O 2 O O 2

12 ' (Izz/Iyy) T4 - (Ixx/Iyy) T6 (5-46)

0 o 2 O G 2

r3 - (Iyy/Izz) 14 + (xxx/122) r5 (5-47)

T7 = 18 = O . (5-48)

Thus there are-four independent distortion constants from among T1

32

to t For the.XYZ-type molecule, Parker finds that additionally9.
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Table (5-1). Abbreviated Notation for Ta Coefficients

8Y6

 

(aBYG)

Tl : (arm)

12 : (yyyy)

(2222)

r4 : (yy22); (zzyy)

(xxzz); (zzxx)

16 : (xxyy); (YYXX)

r7 : (YZYZ); (ZYZY); (zyy2); (yzzy)

T8 : (xzxz); (zxzx); (zxxz); (xzzx)

19 : (nyy); (YXYX); (XYYX); (yxxy)

110: (xxxy); (yXXX)

111: (YYYX); (xyyy)

112: (xyzz); (ZZYX)

113: (xzzy); (yzzx)
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T12 - (1;x/1;z)2410 + (I;y/I;z)2111 (5-49)

and

113 = 0, (5-50)

whereas for the XYX-type molecule 110 a 111 - 112 = 0.

The centrifugal distortion constants Tl through 16, and

19 with the molecule in the xy plane can be constructed with the

help of the information introduced intthapter 4 and this gives the

following result:

:1 . -<1/21:)[(c’l"‘)28ll + (ch)2822 + (c§X)Zo33 + (2cjxch)olz

. + (2tgxch)cz3 + (2t§xt:x)031], <5-51)

r . —(1/214)[<cyy)28 + (tyy)20 + (2tyytyy)o 1, (5-52)
2 y 1 11 3 33 3 1 31

:3 - -(l/ZI:)[(t:z)zoll + (tgz)2022 + (c§2)2833 + (2tiztgz)012

+ (Ztgztgz)023 + (Ztgztiz)031], (5-53)

14 - -(l/21§I§X(t{yt:z)oll + (tgytgz)o33 + (tiytzzw12

+ (tgztgy)oz3 + (tgytiz + tgztiy)o31], (5-54)

15 - -(l/21:I:)[(t:x1:z)oll + (tgxtgz)°22 + (tgxtgz)o33

+ (tixtgz + tiztgx)alz + (tgxtgz + tgztgx)023

xx 22 22 xx
+ (t3 t1 + t3 t1 )031], (5-55)
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a 2 2 xx yy xx

T6 '(1/21x1y1(t1 t{33°11 + (33M>°33 (t1 t2 )°12

(txxtyy + tyytxxxxxv

+ (t 3 t1 3 1 )031]t2 t3 )°23+ (5'56)

- _ xy2 xy 2 xytxy _
19 (1/21:1:)[(tl ) 011+ (t3 ) 033 + (2t13)o31],(5 57)

where the coefficients tie are given in Table (4-1),

3 n n ,

ass, . z -J%%414¥ . (5-58)

i=1 i

The symbols x12, x13, x23, y23 are defined by Eqs. (4-46)-(4-49);

and

y12 yol - y02 = b sin 8 + c cos 6, (5-59)

yl3 yol - yo3 = -a sin 6 + c cos 6. (5-60)

Furthermore for brevity we have written all lac as Ia’ and the

latter designation will be used henceforth.

One can now write down the second-order centrifugal dis-

tortion constants for XYX-type molecules as a special case of the

XYZ molecule and the following results are obtained.

r1 . -(2/I:)ol, (5-61)

12 - -(2/I:)02, (5-62)

13 = -(2/I:)[Ixol + Iyoz + 2(Ix1y)*o31

- -<2/I:)[<c§3/11> + (ci3/12>1 <5-63)

:4 = -(2/1§1W:)[Io + (Iny)5o3] (5-64)

:5 - -(2/I:I:)[Ixol + (Ixxy)*o3] (5-65)
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a _ 2 2 5 _

T6 (2/Iny)(Iny) 03 (5 66)

19 = -(2/InyIzA3) (5-67)

with

sin2 cos2

0137—14-74) 0 (5-68)

1 2

co 21 sinzx

G‘2 ’ 18 + A > 0 - <5-69)

l 2

o = sin 7 cos 7 fl- - l-] < 0 (5-70)

3 A A '

l 2

Since Al > 12 from Eq. (4-129) and (4-130), always 03 < O.

5.3 Fourth-order Centrifugal Distortion Constants
 

' The principal information of interest obtainable from the

fourth-order centrifugal distortion coefficients concerns the cubic

potential constants kss's"’ which are the coefficients appearing in

the anharmonic portion V of the Taylor series expansion of the

3

potential energy in dimensionless normal coordinates. For XYZ-type

molecules, the expansion takes the form:

3 3 3 2

V ' hc (R111 q1 + k222 q2 + k333 q3 + k112 qlqz3

2 2 2 2

+ k113 q1‘13 + k122 q1‘12 + k223 q2‘13 + k133 q1‘13

+ k (5-71)
2

233 q2‘13 + k123 q1q2q3)’

with the dimensionless normal coordinates qS defined by

qs = (AS/HZY‘QS . (5-72)
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The potential constants kss's" are in cqu' when V3 is in ergs.

It should be noted from (5-71) that for XYZ there are ten distinct

cubic potential constants. Yet, only seven ¢i or combinations

thereof are determinable experimentally. Thus, not enough informa-

tion is available to determine the full set of cubic potential con-

stants from the fourth-order centrifugal distortion constants alone.

However, cubic potential constants also appear in the coefficients

a: which specify the second-order vibrational corrections to the

equilibrium rotational constants. Full use of both the a: and the

¢1 thus opens the possibility of obtaining a complete, consistent,

and accurate set of cubic potential constants. Furthermore,it is

7
. a

observed that the as do not contain those potential constants

kss's". for which 3 # s' # 3". Therefore, for XYZ the cubic

potential constant k is obtainable only through a determination
123

of the 61. For XYX molecules, there are only six cubic potential

constants, and in principle, the full set can be obtained either from

the ¢i alone, or from the a: alone.

By extensive regrouping and redefining of terms, Sumberg and

7

Parker have been able to express the ten ¢i coefficients in a

relatively compact form. Let us introduce the following definitions:

8:3 - aEB/Azl4 , (5-73)

3:8 . age/AS , (5-74)

(B‘)ae 7 Big C23 + 3:8 531 + 338 512 ’ (5‘75)

an _ _ _
I - (IY IB)/IGY a # B i Y and cyclic. (5 76)
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Thus,

22 '

I = (Iy - Ix)/Iz , (5-77)

and recognizing that Ix + Iy = Iz one has that

XX

I . +1, 1yy a -1. (5-78)

Also let

we
N "———— - (5-79)

n1/2

In terms of the above definitons, the ¢i coefficients are listed

in Table (5-2).

Each of the ¢i has a set of terms linear in the cubic

potential constants kss's" with coefficients that are symmetrized

products Ofthe bze. In addition, there occur terms independent of

the kss's"° These terms depend only on the parameters of the harmonic

vibration problem and on the equilibrium geometry. Thus, the fourth-

order centrifugal distortion coefficients may be regarded as resulting

from the sum of two contributions: cubic anharmonic and harmonic.

The equilibrium geometry of a particular molecule and the

parameters of the normal-vibrations problem are usually known through

the zeroth and second-order part of the analysis of the high-resolu-

tion data, and therefore one may regard the only unknown parameters

occurring in the fourth-order centrifugal distortion constants to

be the full set of cubic potential constants of the molecule.
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Table (5-2). The Fourth-order Centrifugal Distortion Coefficients

of XYZ as Calculated by Sumberngarker

 

6 = xx .3 xx xx xx ,
1x31 %N 2 2 2 (bsz:¥bs")kss.sn + 2 2 BS BS,(ASS.)

sjs'js" 8 S 3'

16¢ a AN 2 2 2 (byybYYbyZ)k , n +-3 2 2 Byy8y¥(Ayy,)'
y 2 4 s<s'<s" s s as s 8 s s' s 3 ss

6 1 22 22 zz' l 2 l 22 2

I243 ZN :<:.<:" (bs bs'bs")kss's" + 2(BC)zz 8 2 (BS )

12144 ='lN 2 2 2 (bxxbbeyZ + bxfbyybyfi + bxfbbeyy
x y 4 8 s<s'<s" s s s s s s s s s

+ 4byybebe + 4bbexybe + AbebXbey)k . u
S S S S S S S 8 S SSS

_ YY YY XX 1 XX YY xy U yy 1
+ 16 2 2' {BS BS,(ASS,) + 2(BS 33' + 238 3800188,)

xy yy xv . xv .
+ 488 BS,[(ASS,) + (As's) 1}

l zz A3 + As' xy yy xy yy

+'__ I Z 2' Css'[X—_:—l—71(Bs Bs' + Bs'Bs )
12 s<s S S

I4I2¢ same as 12144 with yy interchanged with xx and with

x y 5 x y 4

I22 replaced by _Izz

2 4 ‘ yy 22 zz yy 22 zz yy 22 22

IYIz¢6 lfiN :<:'<:n (b8 bs'bs" + bs'bs bs" + bs"bs'bs )kSS'S"

l_ _.l yy 22 ‘§_ 22 zz yy ,

+ 2(BC)yy(BC)zz 8 2 B3 B3 + 16 g 2. B8 Bs'(Ass')

C v
1 ss :2 xy _ zz xy _

-T;j:-x;:][Bs BS,(AS, 2A8) + Bs'Bs (AS 218,)]
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Table (5-2) (continued)

 

 

' 14124' - in 2 2 2 (byybYszfi + byybysz? + bbeyszz)k , n
y z s s s s s s s s 3 ss

7 8 sgsflgs" S

.i 2 _.£_ 22 2 _.l xy 2 .2 yy 22 yy .
+ 4(32;)yy 16 2 (BS ) 4 2 (33) + 8 2 2,33 33,6488.)

3 s s s

C t

-.l ___£EL___ X? Y? _ Ky 22 _
6 Z Z'[A _ A ,][Bs 38,0S 2A8.) + Bs'Bs (AS, 2A8)]

s<s s s

I4I2¢ same as 14I2¢ with re laced b xx thro hout andx z 8 y z 7 YY P Y “8

change sign of last sum

1x1 69 same as I:I:¢6 with yy replaced by xx throughout and

change sign of last sum

1212126 s'lN 2 2 2 (bxxbbezfi + bxxbysz? + bxfib ¥ybzz
x y z 10 8 s<s'<s" s s s s s s s s s

Z 22 22

+ b:¥b:Yb:" + b§§b§y8:? + b§§b§st + 4b:yb:¥bsn

xy Ky 22 XY Ky 22 l. 2
+ 4bs bsnbs. + 4bsnbs.bS )kss.su + 2(Bc)xx(B<:)yy + (BC)xy

--l 2 [IxxBxx + Iyysyy + Izszz]2 -'l 2 BxxByy
4 s s s 8 s s s

l_ xy 2 §_ 22 xx yy , yy xx ,
+ 4 2 (Bs ) + 8 2 2' BS,[BS (Ass') + BS (A381) 1

s S S

1 22 xy xy 1 xy I
+ 4 2 2' B8.Bs [(Ass.) + (As.s) 1

s s

1 As' XX YY XY

- .2— Z 2' Css'R—T—‘T-X—MBS - BS )BS'
sis s 8

l 22 A8' - 3AS KY 22_ Z I Z 2' gs's[-X-—,—:—X_—.]Bs BS .

sis s s

 



6. ROTATIONAL CONTACT TRANSFORMATION

TECHNIQUE AND THE REDUCTION OF THE HAMILTONIAN

6.1 Reduced Hamiltonian and Determinable Combinations of Coefficients

we have discussed earlier that in the absence of resonances,

the rotational energy levels of an asymmetric-top molecule in a given

vibrational state are the eigenvalues of a rotational Hamiltonian

which is obtained, in the form of a power series in the components of

the total angular momentum, from a perturbation treatment of the

vibration-rotation Hamiltonian. The coefficients of this power series

are the rotational and centrifugal distortion constants of the

vibrational state under consideration. Therefore, if the values of

these constants are known initially, at least in principle, it is

possible to compute the rotational energy levels from them. However,

the situation that arises experimentally is the reverse of this:

one wishes to determine the values of the rotational and centrifugal

constants from the observed rotational structure of the spectrum.

These coefficients can then,in conjunction with the theoretical

formulation,provide information about the structure and force field of

the molecule under study.

The difficulty which arises in this reverse calculation is

that some constants or combinations of constants truly contribute to

the observed energy levels while others can be arbitrarily assigned

36

without changing the energy eigenvalues. Watson has shown that

72
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this problem can be approached by making use of the fact that the

eigenvalues of the Hamiltonian are-unaltered when the Hamiltonian

is similarity-transformed by an arbitrary unitary operator. If the

unitary operator is a power series in the angular momentum components,

then the transformed Hamiltonian will again be a power series in the

angular momentum components with_exactly the same eigenvalues

as the original Hamiltonian. Therefore on the basis of the experi-

mental results, the two Hamiltonians are indistinguishable. The

transformed Hamiltonian is called the "reduced Hamiltonian", and

the coefficients in this reduced Hamiltonian are, in general, func-

tions of the coefficients in the original Hamiltonian. Unitary trans-

formations whose effects are equivalent to merely changing the values

of the coefficients in the Hamiltonian are found to lead to arbitrary

contributions to some of the coefficients. Since the sets of co-

efficients before and after transformation are equally consistent with

the given set of eigenvalues, the arbitrary contributions are not

physically significant and can be removed through particular choices

of the coefficients of the originally arbitrary unitary transformation

Operator. This "reduction" is not unique and depends on the particular

way in which the removable terms are eliminated. However, certain

combinations of coefficients are unique and these are referred to as

"determinable combinations of coefficients." The only determinable

combinations are those which are obtained through elimination of the

coefficients of the unitary transformation. The number of deter-

minable combinations is therefore equal to the number of coefficients

which contribute independently to the Hamiltonian minus the number
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of parameters which contribute independently to the unitary trans-

formation. Consideration of the orders of magnitude of the various

coefficients involved allows one to associate particular degrees of

freedom in the unitary transformation with particular terms in the

Hamiltonian. It is then fairly easy to find the number of deter-

minable combinations of the coefficients of the various types of

term. The arbitrary parameters specifying the unitary operator are

chosen such as to eliminate as many terms as possible from the trans-

formed Hamiltonian. Then the coefficients of the remaining terms are

of the maximum number that can be determined from experiment.

6.2 Rotational Contact Transformation

. Let us suppose that the usual vibrational perturbation treat-

ment has been performed far a general asymmetric-tap molecule so that

the calculation of the rotational levels of a particular vibrational

level has been reduced to finding the eigenvalues of a rotational

Hamiltonian whose coefficients are appropriate to the vibrational

state in question. Now the only remaining dynamical variables are

the components of the total angular momentum, and it is assumed that

the Hamiltonian is expressed as a power series in them. These com-

ponents, in units of M, are denoted by Jx’ Jy’ Jz; they satisfy

the commutation relations

[Jx’ Jy] = -iJz, cyclic, (6-1)

appropriate to the components in moving or "molecule-fixed" axes.

These commutation relations can obviously be used to alter any
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expression involving the angular mementa in a way which is equi-

valent to changing the coefficients of the various terms. To see this,

let us consider the following general expression for the rotational

Hamiltonian:

H - 2 (JpJqJ + J:Jqu), (6-2)
p,q,r=0 hpqr x y 2

which contains one independent term for each combination of powers

of Jx’ Jy’ Jz. The expression in parentheses is chosen in the manner

shown because it is convenient that each term be Hermitian. The

hpqr are constant coefficients. If we now have a quantum product of

p factors Jx’ q factors Jy, and r factors Jz, in any order,

then because of commutation rules, it differs from

%(J:J;J: + JZJEJZ) by terms only of lower degree in the components

of J. These latter terms, in turn, differ from similar expressions

of (6-2) by terms of yet lower degree in J, and so on. By carrying

through this procedure, one can therefore express any term of the

quantum-mechanical Hamiltonian in terms of the form (6-2). It follows

that the rotational Hamiltonian may be assumed, without loss of

generality, to be in the form (6-2) which is referred to as the

"standard form".

The vibrational perturbation treatment can be performed so

as to preserve the Hermitian property of the Hamiltonian. Since the

expression in parentheses in (6-2) is Hermitian, it follows that the

coefficients hpqr in the standard form are all real. A second pro-

perty of the Hamiltonian, which should also be preserved in the

perturbation treatment, is its invariance under the operation of time
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reversal, i.e., reversal of all momenta accompanied by complex con-

jugation of all coefficients. When applied to the standard form

(6-2), this means that the coefficients hpqr are real for even

values of n a p + q + r and purely imaginary for odd values of

n - p + q + r. It follows that the coefficients of terms with odd

values of n must vanish, and that the coefficients of terms with

even values of n are real. The number and species of terms in the

standard form of the Hamiltonian (6-2) is given in Table (6-1).

When the Hamiltonian (6-2) is subjected to a general unitary

transformation, all the coefficients in the Hamiltonian are changed

to some extent. However, the change is not significant if it is of

small magnitude relative to the coefficient itself, and in such

cases the coefficient is regarded as "determinable". On the other

hand, if.the change is of the same order of magnitude as the co-

efficient itself, the coefficient is "indeterminable". When the

Table (6-1). The Number and Species of Terms in the Standard

Form of the Hamiltonian (6-2)a

 

 

 

D2 Species p q r number of terms

A e e e % (m-l-l) (n+2)

Bx e o o -%-m(m+l)

By 0 e o %-m(m+l)

32 o o e %- m(m+1)

Total (2m+l)(m+l)

 

ap + q + r = 2m, for fixed m; e is even, 0 is odd.
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coefficient is indeterminable in this way, the parameters in the

unitary transformation can be chosen to eliminate the corresponding

term from the Hamiltonian. However, all terms whose coefficients are

individually indeterminable cannot be eliminated simultaneously be-

cause certain coefficients of this type occur in determinable combina-

tions. The reduced Hamiltonian is obtained by choosing the unitary

transformation so as to leave only these determinable combinations

of coefficients.

If U is some unitary operation (U+ = U-l), then the trans-

~

formed Hamiltonian H can be written as

2 . u'luu . (6-3)

We suppose that a set of unitary transformations is applied succes-

sively, which is equivalent to expressing U as a product. Since

we want H to be purely a function of Jx’ Jy, Jz, we choose U to

be such a function. If U is also chosen to be invariant to time

reversal, then H will be invariant if H is invariant. The most

convenient form for a unitary operator is

U a exp(iS). 1 (6‘4)

The unitary condition requires S to be Hermitian. The invariance of

U under time reversal requires that S change sign. Together these

two requirements imply that, when S is expressed in a "standard

form" analogous to (6-2), it has real coefficients and contains terms

of odd u only.
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On the basis of this result, we can introduce the factorized

form of U:

U a exp(iSl)exp(iS3)exp(iSS) ..., (6-5)

where Sn contains only terms with n = p + q + r:

s - 2 s ruquJ: + J:JqJ:), (6-6)
n=p+q+r Pq Y Y

with real coefficients Spqr' The number and species of terms in

the standard form (6-6) of S is listed in Table (6-2).

2m-l

Table (6-2). The Number and Species of Terms in the Standard

 

 

 

 

Form (6-6) of 82m_1.a

D2 Species p q r number of terms

A o o o %-m(m+l)

Bx o e e '%-m(m+l)

By e o e ‘%-m(m+l)

Bz e e o %-m(m+l)

Total m(2m+l)

 

ap+q+r = Zmrl, for fixed m; e is even, 0 is odd.

We now introduce the notation

H2m+2 - exp(-iS )Hzmexp(iS ), (6-7)

2m+l 2m+l

where m takes the values O,l,2,... and H0 is the Hamiltonian
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B2 = exp(-iSl)HO exp(iSl), (6-8)

H4 = exp(-133)H2 exp(iSB), (6-9)

H - fi . (6-10)

When H m has been reduced to standard form, it can be written as:

2

32m - 2 h(2:) (JquJ: + J:JqJ:). (6-11)

p+q+r pq y y

even

It is found that Sl specifies that part of the complete

transformation which brings the rigid rotor Hamiltonian to principal

axes. Since this has already been anticipated in the expansion of

the Darling-Dennison Hamiltonian, one may take S a O, exp(iSl) 8 l,
l

and proceed to H of (6-9). This part of the Hamiltonian is
4

associated with the determinability of the quartic coefficeints.

From Table (6-1), there are fifteen independent quartic terms,

(2m = 4), in the Hamiltonian, while from Table (6-2), one sees that

there are ten independent terms in S Thus, if all these terms in3.

83 would affect the Hamiltonian independently, then the number of

determinable combinations of the quartic coefficients obtained is

15 - lO - S.

The angular momentum commutation rules (6-1) are invariant

under the operations of the point group D2, and H2 is, of course,

totally symmetric. Therefore in the expansion of H4,

H = H + i[H2, S4 2 +..., (6-12)3]

the terms in i[H2, 33] are of the same symmetry species as the
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corresponding terms in S3. One can therefore discuss the deter-

minability of the coefficients of the quartic terms of the different.

symmetry species separately.

We first consider the Bx species which is typical of the

three B species of D Putting m - 2 in Tables (6-1) and (6-2),2.

we find that there are three quartic terms in H of species Bx, and

three terms in S3 of species Bx. The corresponding coefficients

are h031, h013, h211 and $120, 3102, S300. Deve10pment of (6-12)

leads to the relations

(4) , <2) _ _

(4) (2) . -

h013 ' 8013 + 2(C‘B)3102’ (6 14)

(4) ,, (2) _ _ _ _
h211 h211 + 6(C B)8300 + 4(A C)S120 + 4(B A)3102. (6 15)

. (4) (4) (4)
The three coefficients h03l’ h013, h211 are independent functions

of $120, $102, $300 and by a suitable choice of the latter, they

could be made to take any—arbitrary values, subject only to order-

of-magnitude restrictions. These coefficients are therefore in—

determinable, and the transformation should be chosen to eliminate

the corresponding terms from the reduced Hamiltonian, and thus

<4) _

031

(4) (4)
h 013 . h211 8 0. (6-16)h

Similar results hold for the By and the 32 terms. It can there-

fore be concluded that the non-totally symmetric (non—orthorhombic)

quartic terms should always be omitted from the reduced Hamiltonian,

even when the particular point group symmetry of the molecule allows

them to be present.
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We now consider the Arspecies terms. We see from Tables (6-1)

and (6-2) that there are six quartic terms in H and one correspond-

ing term in S3. The former have coefficients h400, h040’ h004’

h022’ h202’ h220, and the latter has coefficient $111. It is found

4 4 . 2 2

that héog, hOZO’ héOZ differ insignificantly from héoa, 643,

hé§%, respectively, whereas for the remaining coefficients we have

h

“622 ' “622 + 2(C"B)Sul’ (6'17)

“232 h2§2 + 2(A-C)Slll’ (6'18)

11:33-11:23 + 2(B-A)Slll. (6-19)

(4) (4) (4)
Since each of h022’ h202’ h220

freedom in the unitary transformation, each of them is indetermin-

is affected by this degree of

able individually. However, we can eliminate the parameter Slll

from Eqs. (6-17)-(6-19) in two independent ways which yields two

determinable combinations of these coefficients. The most

symmetrical choice is

1‘64) h<4) h<4) ho2) + h(2) + 115:3 (Ho)

and

A802 + Bh(4) + Chégga Ahéggi+ Bh<2> + Chggg (6-21)

Therefore a set of five independent) determinable combinations of the

. h(2) (2) (2) (2) (2)
quartic coefficients is. h400’ hog ’hOO4’ h022 + h20 + h220 and

Anna + Bh<2> + Ch(§3, since none of these is affected significantly

by the similarity transformation.
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The parameter S is now chosen so that only five in—

111

dependent quartic terms are left in-the reduced Hamiltonian. It

is convenient to make a choice for $111 which simplifies the

calculation of the eigenvalues of the reduced Hamiltonian. Once the

choice has been made, all the coefficients of 83 will have been

chosen in a definite way.

6.3 Determination of Quartic and Sextic Determinable Combinations

of Coefficients

For an orthorhombic molecule, the rotational Hamiltonian as

obtained from the vibrational perturbation treatment contains only

terms of species A in D2 because of molecular symmetry. For

molecules of lower symmetry there are, in general, also terms which

are non-totally symmetric in D2. In the latter case we assume that

thenon-totally symmetric terms in the Operators S1 and S3 have

been chosen such as to remove the non-totally symmetric quadratic and

quartic terms from the Hamiltonian, as described in the previous

section. Thus in either case, we are left with only the A-species

terms in the standard form (6-2). Therefore we can concentrate on

the one-parameter problem of the reduction of the A-species quartic

terms.

In the form of the Hamiltonian (6—2) apprOpriate to an

orthorhombic molecule, the only terms present have p, q and r

all even. Thus for this case, Eq. (6-2) becomes, up to sextic

terms ,

H - H + H4 + H6, (6-22)



83

where H2, H4 and H6 are defined by Eqs. (5-3)-(5—5). Here the

hpqr notation, which was useful for the general discussion, has been

dropped in favor of our previous notation.

We now proceed to consider the transformation of the

Hamiltonian (6-2) by the unitary operator

U - exp(is3)exp(185), (6-23)

where

538 W111(JJ Jz + JzyJJx), (6-24)

and

3
$5: 3311(JnyJz + JzyJJ3x) + 8131(JxJsz + JzJy3Jx)

+ s (J J J3 + J3J J ) (6-25)
113 x y z z y x '

The four real coefficients 8qu are the parameters of the unitary

transformation (6-23).

Carrying out the transformation one obtains the transformed

Hamiltonian

( I

a = u Inmza H2 + H4 + H6, (6-26)

where

H2 . H2, (6-27)

H4 - H4 + iIHZ, 83], (6-28)

” 1

H6 3 H6 + i[H4, $3] + i[H2, SS] --§[[H2, 83], S3]. (6-29)

After evaluation of the above commutators, H can be rearranged to

the form of Eqs. (5-2)-(5-5), with new coefficients that will be

distinguished by tildes, as follows:
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A . A, B = B, 6 = G (6-30)

21 a T1, 22 a T2, i3 = T3 (6-31)

24 . T4 + 2(C-B)Slll, (6-32)

is - T5 + 2(ArC)Slll, (6-33)

.i6 - T6 + 2(B-A)Slll, (6-34)

51 . 21, $2 - @2, 53 - o3, (6-35)

54 = ¢4 + 2(B-A)Sl31 + 4(T2-T6)Slll + 4(A—B)Sill, (6-36)

55 - J5 + 2(B'A)5311 - 4(Tl-T6)Slll + 4(B-A)Sill, (6-37)

56 = ¢6 + 2(c-B)s113 + 4(T3-T4)Slll + 4(B-C)Sill, (6-38)

87 f J7 + 2(c-B)s131 - 4(T2-T4)s111 + 4(C-B)Sill, (6-39)

58 = ¢8 + 2(A—C)S3ll + 4(Tl-T5)Slll + 4(C-A)Sill, (6-40)

59 8 o9 + 2(A.-C)S113 - 4(T3-T5)S111 + 4(A—C)Sill, (6-41)

510 - J10 + 6[(c-B)s311 + (A-c)s131 + (B-A)8113]. (6-42)

It can be seen that the coefficients A, B, C, T1, T2, T3,

$1, Q2, and ¢3 are, by themselves, invariant and therefore de-

terminable. The other determinable combinations must be obtained by

elimination of the S-parameters. The most symmetrical choice of

transformationrinvariant functions appears to be:

T4 + T5 + T6, (6-43)

AT4 + BT5 + CT6, (6-44)

3(¢5 + o8 + ¢7 + ¢4 + @9 + @6) + ¢10, (6-45)
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(A—C)<1>5 + (A-B)¢8 - 2(T1-T6)(T1-T5),

(B-C)¢4 + (B-A)¢7 — 2(T2-T65(r2-T4),

(C-B)<l>9 + (C-AM6 - 2(T3-T5)(T3-T4).

(6-46)

(6-47)

(6-48)

Any other choice of a set of determinable combinations can be ex-

pressed in terms of those given above. It is convenient in practice

to have all of the invariant quantities involving the ¢ with the

same dimensions. To this end, in place of (6-46)-(6-48), one may

divide each of these by (A23) to obtain:

2¢8 + (1-o)¢5 - 4(Tl-T6)(Tl-T5)/(A-B)

2¢7 + (1+o)<b4 + 4(T2-T6)(T2-T4)/(A—B)

'(a+1)¢9 + (0-1)¢6 - 4(T3-T5)(T3-T4)/(A-B)

where

o = (2C - A - B)/(A—B).

(6-49)

(6-50)

(6-51)

(6-52)



7. CALCULATION OF ASYMMETRIC-ROTATOR

CENTRIFUGAL DISTORTION COEFFICIENTS

BY THE ALIEV-WATSON METHOD

In 1976, Aliev and Watson13 presented a very direct and

efficient method for the calculation of the fourth—order centri-

fugal distortion constants of asymmetric, as well as symmetric and

spherical, rotator molecules. Their very compact results, when

applied to triatomic molecules, are consistent (but not identical)

with those of Sumberg and Parker7. It was deemed useful to give a

more extended discussion of the Aliev-Watson method in this chapter,

because the results are relevant to the present work, because the

method appears potentially useful for the calculation of higher-

order vibration-rotation interaction coefficients, and also because

the original paper gives only a very brief presentation whose verifica-

tion in detail required much effort. We also present in this chapter

a detailed comparison between the Aliev-Watson and the Sumberg-

Parker sextic centrifugal distortion coefficients and account for all

discrepancies between the two sets of results.

7.1 Direct Perturbation Treatment for the Calculation of the Sextic

Centrifugal Distortion Coefficients
 

Using Watson's notation as discussed in Section 2.3, we let

~

Hmn denote the various terms of the effective Hamiltonian resulting

from the perturbation treatment. The perturbation calculation of

86
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the desired terms, viz., H06, can be carried out in two stages. In

the first stage, two successive vibrational contact transformations

are performed to eliminate terms off-diagonal in the vibrational

quantum numbers vs. This can be done by the technique described in

Chapter 3. We denote the result of this transformation by H62).

In the second stage the rotational Hamiltonian is subjected to a

rotational contact transformation to produce a reduced rotational

Hamiltonian containing only experimentally determinable coefficients.

This can be done by the technique described in Chapter 6. We denote

~(R)
the result of this transformation by HO6 . The final expression

for H06 can be written as

~ _ ~(V) ~(R)

H06 ' 06 + Hoe ° (7’1)

The vibrational contact transformations are carried out such that at

each stage only those terms that contribute to the desired order of

magnitude, klou§ib, and a degree of six or greater in Jo are re-

tained. The power of k indicates the order of magnitude of the

coefficients relative to the harmonic vibrational frequencies.38

To express the two requirements together, we introduce the notation

kmrn, where m indicates the order of the magnitude of the co-

efficients and.mnn is equal to the total power of Jo of the

associated operator. It is found that the terms required in the

calculation of H06 are:

0’0 2-0 3-1 4-2 2-1 1-0

H20<k >.H02<k ),H12(k >,H22(k ),H21<1< >.H3o<k )

(7-2)
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where the explicit expressions for these terms are given in Table

(2-3). The contributions of these terms can be conveniently grouped

into the following three classes:

(a) Anharmonic: H H H H
30 12 12 12

(b) Harmonic: leleH22

(c) C°ri°lis‘ H12H12H21H21’ H12312321H02’ lenlznozfioz'

In the contact-transformation formulation, each of the above terms

denotes a product in which the individual factors can be either Sis)

functions or Hmn functions to be identified with the apprOpriate

commutator brackets of the transformed Hamiltonians. No other

combinations of terms from the Hamiltonian of Table (2-3) satisfy the

specified requirements. If we now express our initial Hamiltonian

in the form:

2

H = H0 + AHl + A H2, (7-6)

with

Ho - H20, (7-7)

H1 .. H02 + H12 + H21 + H30, (7-8)

H2 - 322, (7-9)

then the above contributions all appear in the fourth-order of

perturbation theory.

Now the first vibrational contact transformation can be

written as:

H6 = H0 (7-10)

(1)v a ..
H1 H1 + i[S , H (7 ll)
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. , <1) _ i <1) (1) _
H2 H2 + i[S , H1] 2[S ,[S , H01] (7 12)

3I0
. . <1) <1) (1)

33 //§ + its H21- %[8 ,[s . H11]

-%ts‘1’,[s‘1’,[s‘l’, H0111 (7-13)

.0 o

. (1) .l (1) (1)
34 - H 4 + i[S , J/g ] - 2[s ,[s , H21]

-%[s(l).ts(l).[s(l). H1111

(1)
its ,[s(1).[s(1).[s(l), H0111]. (7-14)

(1)
Eq. (7-11) defines the Operator S which is constructed such that

off-diagonal elements in the vibrational quantum numbers vS are

removed. Therefore Eq. (7-11) can be written as:

i[S(l), H0] 8 -H1(off diag.) (7-15)

where

1-0

H kz’o) + H k3’1) + H kz-l) + H (k ) . (7-16)
1 ' Hoz‘ 12‘ 21‘ 30

Considering vibrational commutators only, we can assign separate

(1)
functions of S to each term of H with the exception of the,

l

H term , and these functions are respectively denoted by

02

8(1)-S(1)(kH) + S(l)(kH) + smacl'0). (7-17)

Now considering the second vibrational contact transformation, we

can write:

"- 1 -

H0 H0 (7 18)

n .1 v _
H1 H1 (7 l9)
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(2)
H; = Hé + i[S , H6] (7-20)

II . I (2) I '

H3 H3 + i[S , H1] (7—21)

II _ I (2) I (2) (2) I

H4 - H4 + i[S , H2]- %[8 ,[S , H0]]. (7-22)

Using the fact that

(l) a _ . _ _
[S . Ho] 1(H1 H1). (7 23)

we can write Eq. (7-20) in the following way:

u , (1) . (2)
H2 H2 + %[S , (Hl + H1)] + i[S , H0] . (7-24)

This equation now serves as the defining equation for the operator

8(2). From Eq. (7--22) it can be seen that the only 8(2) term con-

tributing to H is S(Z)(k5”2). Therefore in Eq. (7-24), the

(2)

13

diagonal elements, viz.,

06

operator S has to be chosen such that it removes the off-

[s(2). H01 = -1{-n2 --§[s(1’, (H1 + Hi)1} <7-2s>
off-diag.

where

~ ~

H' i H + H = H

1 02 21 1’ (7'26)

and H21 is the diagonal part of H21.

that the needed part Sig) of 313 must satisfy

It is seen from Eq. (7-25)

3(2)]-%[s<1> (2302 +'H .+ fi21)]1+--[s(1)
12 ’ 21 21 ' H121' (7'27)[H0.

S(1)3(1) S(l) (2)
The expressions for $12 , S21 , $30 , and 813 are given in Table

(7-1). On substitution of these into their respective defining
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Table (7-1). 8 Operators for the Vibrational Contact Transformationa’b

<1) ,

S12 : RkPk/“k

(1) l k *

S --{2R(qq-pp)/(m +w)+2 k
21 2 k2 2 k 2 k 2 k 1 k1 R2(qkq£ + Pkp£)/(wk - w£)}

(1) _ 1 . 2 2 2

S30 6 Kin klmnnwzwmmn pRPmPn + 3wm(w2 - mm + wn)q£pmqn}/Q£mn

<2> . 1 k
313 41:12: qk {i(3wk + 5w£)R£R£/(wk + 1119‘)!»ka

- 2*(111 + w )R Rk/(w - w )w w + 41[ H ]/m2
2 k 2 z 1 k 2 k 2 Rk’ 02 k

a
- + + - - - .

Qzmn (ml mm wn)( ml + mm + wn)(w£ mm + wn)(w£ + mm mn)

The other notations are described in Chapter 2.

*

bln the Z sums, terms with zero denominators are omitted.

equations, it can be verified that these functions were chosen

correctly. Now using Eq. (7-25) along with the commutators of the

first vibrational contact transformation in Eq. (7-10)-(7-14), we

can write the fourth-order Hamiltonian in the form

~(4). - n s _ _i_ (l) (l) (1) _]_-, "

a 34 81s .13 .[s , (H1 + 3 H1>111

1 (l) (l) 1 (2) (2) _

From the various operators and commutators, the three classes of

term in fiéz) can be calculated by means of the equations

~(v) , .1 <1) <1) <1) <1)
H06 (anharmonic) - 8[S12 ,[S12 ,[S12 , H30] + [S30 , H12]]]

(7-29)

fi(v)(harmonic) - --l[s(1) [5(1) H 1] (7-30)
06 2 12 ’ 12 ’ 22
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(1) (1) (l)
12 , [S (4H

+ [S [321 ’ 12 ’ 02 3H21 + 321)]]]}

(1) [5(1) (1) (2) (2)
[s13 , H011.

(7-31)

8[S12

The commutators containing H in the above equations are evaluated
02

as rotational commutators; all the other commutators are vibrational

commutators. The diagonal Coriolis term fl is included for complete-
21

ness in order to be able to apply the results to symmetric and

spherical tops as well as asymmetric tops. For asymmetric rotators

fiZl 8 0. After considerable algebraic manipulation, the very compact

resulting expression for H62) is obtained as listed in Table (7-2).

Table (7-2). Sextic Centrifugal Distortion Hamiltonian of an

Arbitrary Moleculea

 

Egg) _ H(V)(harmonic) + H(V6)(Coriolis) + H(V6)(anharmonic)

ficv)(harmonic) = 5HRkszRzlwk2

fi(v)(Coriolis) = -‘E Z{£ Rsz/wlwk1/2+ i[Rk H”21/3/2} 2

k 2

k k

RkR£R£ + * RkR£R£

(wk + “H>wk2 k2 (“k ' ”2)wk”2

  %[£ 021

H(V6) g .:£ '
(anharmonic) 6 inn kzmnRszRn/wzwmwn

 

aNotation as in Table (7—1).

(R6)
Next, we proceed to calculate HO by subjecting the

rotational Hamiltonian
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~H(V) (V) ~(V)
Hmt a1102+ H04 + H06 +..., (7-32)

to a rotational contact transformation by a purely rotational

operator. This operator is taken in the form

U = exp(i Sos)exp(i 503). (7-33)

Then the transformed Hamiltonian can be written as:

ii = Ulfi(v)U
rot rOtU

=- fioz + 1304 + {106 +..., (7-34)

with

1102 . 302, (7-35)

' {‘04 " 332" + 1L[503’H02] ' Hg) + Héfi)’ (7‘36)

ii06 " 135? " %[So3’[303’ Hoz“ + i[Soa’HoHm] + 1L[5033302]

-~sz> ~32”,
(V)

where the second-order fourth-power (in Ja) Hamiltonian H04

is defined as:

WaBYGJaJBJJ (7-38)

For convenience of reference, all possible asymmetric rotator

32

point groups are listed in Table (7-3). The asymmetric-top rigid-

is invariant under the operation of therotor Hamiltonian H02

orthorhombic group D Therefore the terms of H(v) H(v) S
2' 04 ’ H06 ’ 03’

and S can be classified according to the symmetry species of this
05

group. As mentioned in Chapter 6, even for non-orthorhombic molecules,
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Table (7-3). Asymmetric-rotator Point Groups.

 

 

Crystallographic Group Group operations other than

nomenclature symbol identity operation

Triclinic Cl none

Ci 8 82 i

*

Monoclinic Cs 8 C1h 0

C2 C2

C2h C2,oh,i

0 h h bi C **rt or om c 2v C2, two ov,

V 8 D2 three mutually 1 C2

Vh = D2h three mutually i C2, 1,

three mutually l o

 

*

XYZ-type molecule has point group symmetry CS.

**

XYX-type molecule has point group symmetry C2v'

the non-orthorhombic terms of 803 and S can be chosen to

05

eliminate all the hon-orthorhombic terms from I} and 1:1 so that

04 06

as orthorhombic operators.

~

it is sufficient to consider Q and H

04 06

Such operators contain only even powers of the individual components

Ja' The non-orthorhombic terms of 135:) and 803 in Eq. (7-36),

however, do contribute to orthorhombic terms in fourth order.

It is found that the operator form of the last two sums of

I.

n")
(

06

be completely removed by the choice of an appropriate term in 805'

(Coriolis) as given in Table (7-2) is such that these terms can

Therefore this part of the Coriolis contribution can be omitted.
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The remaining terms of $03 and SOS are associated with the re-

duction of the Hamiltonian to avoid indeterminacies in the fitting

of experimental data, and since this reduction is not unique, there

is no unique choice for the remaining S-parameters in S and S .
03 05

The final expressions for the various sextic distortion

constants are obtained from fiéz) by:

(a) adding the second-order contributions resulting from

the elimination of the non-orthorhombic terms from

fi04’ and

(b) eliminating all the non-orthorhombic terms and the

orthorhombic contribution from the last term of fiéz)

(Coriolis).

The resulting expressions are presented in Table (7-4). In order to

effect a detailed comparison between the Aliev-Watson coefficients

and the Sumberg-Parker coefficients, the former have been trans-

scribed into Sumberg-Parker notation.

.30The contributions to the complete coefficients ¢
1

which result from the elimination of the non-orthorhombic terms in

the second-order part of the Hamiltonian are listed in Table (7-5),

again in Sumberg-Parker notation. For triangular molecules, these

contributions arise only for the XYZ case. For XYX the oiR) all

vanish identically. The Sumberg-Parker calculation failed to in-

clude the non-orthorhombic terms for the XYZ case, and hence their

ER) as listed inresults should be augmented by including the ¢

Table (7-5). Table (7-6) presents the Sumberg-Parker coefficients

augmented by the non-orthorhombic contributions of Table (7-5).
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Table (7-4). The Fourth-Order Centrifugal Distortion Coefficients of

XYZ as Calculated by Aliev-Watson

 

' I
¢l %N 2 Z.

S 8

xx §_ xx xx ,

i" (b:xb:?bsn)kss.sn + 3 i :' B:XBS.(ASS.)

.; _ X? X? x xx
+ 8[Ix/Iy(Iy Ix)]z 2' Asxs'Bs BS.BSXBS.

8,3

6 . _ yy yy yy .3 yy Y? Y? .
I ¢ 1N z z 2 (b8 bs'bs")kss' . + z 2 Bs Bs'(Ass')
y 2 4 sgs'gs" S 8 s s'

-.l - xy xy yy yy
8[Iy/Ix(Iy Ix)]Z z ASAS,BS 38,33 BS,

s,s'

6 , 22 22 22 l_ 2 l_ 22 2

Iz¢3 %N Z X. 2" (bs bs'bs")kss's" + 2(BC)zz — 8 2 (Es )
s_s _s s

1214¢' - AN 2 z z (bxxbbeyZ + bx¥byybyZ + bxifbyfiyy +4bybebeX
x y 4 8 s<s'<s" s s s s s s s s s s s s

X? + yy xy xy .2. YY YY xx v+ 4bz¥§ibs" 4bs"bs'bs )kss's" + 16 i :' {Bs Bs'(Ass')

yy KY KY yy . KY XY XY .
+ 2(B:XBS, + 2138 33,)(ASS,) + 438 Bs,[(Ass,)

XV . _.2 - xv xv yy xx
+ (As.s> 1} 8[Iy/Ixay Ix)]: E'ASAS.BS 38,38 BS,

l. _ XY XY yy yy
+ 8[Ix/Iyuy Ix): :' ASA3,BS 38,38 BS,

’

Iiliog same as 1:134;4 with yy interchanged with xx

2 4 , 1V yy 22 22 yy 22 22 yy 22 22

I I ¢ -'—1 2 2 z (b b .b n + b .b b n + b "b .b )k . n
y z 6 8 s<s'<s" s s s s s s s s s as s

+-£(B;) (8;) --£ szszz +-3- 2 2 Bzszzmyy )'
2 yy 22 8 s s s 16 s s' s 3' 38'

l_ 22 xy _ zz xy

+ 4 2 2:.L;ss'(Bs Bs' Bs'Bs )
s<s

_‘l_ _ xy xy 22 22

l6[Iy/Ix(Iy Ix)]£ Z Asxs'Bs Bs'Bs Bs'

I

3,3

.l 2 xy Ky 22 yy _ xx
- 8[Iz/(Iy - Ix) ]: E'ASXS,BS 38,38 [(IyBs,/Ix) IyBS./Ix)]
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Table (2-4) (continued)

 

I4Ich' - lN 2 2 2 (byybyybzz + byybyybzz + byybyybzzflc
y z 7 8 $£§,§§" s s' s" s s" s' s' s" 3 53’s"

+-%(B§)2-12(B:y)2 %2(Bxy)2+3 2 2 B’VB:Z(A:: )'
Yy16 S 8

s s s'

_l xyyy_yyyy

4 :<:,Css'(B Bs' B '38 )

- -[Iy/Ix (Iy - Ix)12 2 A“A ByB’gByszz

S, 8'

--—[I2/(Iy-Ix) 22 2 A SA S,B:yB:yByy[(IyB3.)/Ix-(IxByy)/Iy 1

8"3

4 2

loo8 same as IyIz<I>7 with yy replaced by xx throughoutI

N
N
fl
k

N
H
b
N
N

I Ioo; same as 1:1:¢6 with yy replaced by xx throughout

121212¢' sin 2 2 2 (b:xbyybus" + bxxbebzf + bxfby¥bzz
10 8 sis'<s' s s s s s s

+ bmszybgfi + bsz..s”B2s. + bxxb.YZB" + ABXYBXszfi
s s s s s 3

xy xy zz xy xy 22 .l

+ Abs b3..bs. + “be,"bs'bs )ks . .. + 2(Bc)xx(Bc)
88

+ (BC)2 -'l i[IxxBxx + IyyByy + IZZB:Z]Z
xy 48 S s

_.l yy .l xy 2 3 Ayy .
8 2 BszS + 4 2 (BS ) +-8 2 2 B2s,[B? (A88,)

s s'

+BYY(A?s,) 1 +-% 2 2 3:23:V[(A:Y ) + (A:¥s)']

s s'

_‘l xy _ yy 22B22
4 2 2' CSS,BS,[(Bs Bs ) + 218]

sfis

+--[Iz/(Iy - Ix) 212 2 2828BznyuIyngB?.)/Ix

3"3

yy yy _ Y?
+ (IXBS BS.)/Iy (Iy/Ix + Ix/Iy)B:st.]
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Table (7-5). Contribution to the Distortion Constants Resulting

from the Elimination of the Non-Orthorhombic Terms

 

I:¢iR) --—[Ix/Iy (Iy - Ix)]2 2 ASAS B:yB:nyBxxs,

s, s'

I3¢§R> same as I:¢§R) with xx and yy interchanged throughout

6 (R)

z¢3 0

I:1y4¢(R)- --2[I /I (Iy ~ Ix)]Z Z A SA xy xy yym

4 8 y x ss 3 RB B8 B8 Bs'

+%[Ix/Iy(Iy - Ix)12 2 ASAS ByByBWBW

S, S

Iy1”4¢(R) same as I:Iy¢(R) with xx and yy interchanged

throughout

I 21%“) = - Lu /I (Iy - Ix)12 2 A SAS,B"3'B:"B:‘"'B:z
ya26 16 y x ,

8,8

-—[Iz/(Iy - Ix) 212 2 A SSA B:yB:yB:z [IxBW/Iy-I”Bx”,‘x/I]

S, 8

14124310 = - l[Iy/Ix (Iy - Ix)12 2 ASA Sz.B’;"B’£:3’BWB:2
y z 7 8

S, S

- %[Iz/(Iy - Ix) 212 2 A8A3 B:yB:yB:y[IyBSx’fx/I-IxBW/Iy 1

S, 8'

I:I:¢§R) same as I:I:¢§R) with xx and yy interchanged

throughout

IiIi¢éR> same as IyI:¢éR) with xx and yy interchanged

throughout

1:133:39?me/(Iy -Ix) 21): 2 A“A ,B?B?[(IyBf‘Bf‘,x)/I

+ (I BWBWVI - (I /I + I /I )Bm‘BW
x s s y y x x y s s
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Table (7-6). The Complete Expressions for the Fourth-Order

Centrifugal Distortion Coefficient of XYZ as Calculated

4§y SumbergéParker

1ch -$sz z"(b’:‘bs’fxb:x..)kss"'+§£z B’D‘B’fi‘mna'
s 8 s' s 3 ss

s<s <8"

 

+—[IxIIy (Iy - Ix>12 2 AS As B:YB:VB’:‘B’°f

S, S

I 64> sin I z z (byybyyb?.s-Nc8.8.. +-:- 2 z BWBZV(AW.')

yZ s<s_<_S" SS 8

+-[I /I (Ix - I )1: 2 AS AS ,B:VB:VBWBW
8 y x y s s'

2

16¢ -- in Z 2 z (bzzbzzbzfmsS, .. + l(Bc)2 - -1- 2(Bzz)
z 3 4 s 2 22 8 s

s<s'<5" 8

=15sz z"(b’s°‘bWb:?I +bs,b:yb:.y.s)+b.bWbW

s<s'<3"

Iny¢4=

+ AbbebeX + 4bWb:yb:?’ + 4bWb’S‘yb23% 8.8..

§_ yyyy XX. xxyy nyy W .

+ 16 : :.{Bs Bs'(Ass') + 2“33 BS' + 23$ Bs')(Ass')

xy yy xy 0 KY
+438 BS,[(ASS.) + (AS. S)']}

l 22 A3 + As' xy yy xy xy

+.l5 I :<:, z;ss'[)\s - A ,](Bs Bs' + Bs'Bs )

-—[Iy/IX (Iy - Ix)1: 2 A3 A8 BzyayBan’,‘

S, S.

+8[Ix/Iy (Iy - Ix)Jz 2 ASAS .B:VB:YBYVBYV

8,8

42 24
I I ¢ same as I I ¢ with yy interchanged with xx and with

X Y 5 x y 4

Css' replaced by -Css'
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Table (7-6) (continued)

 

1212456 - in 2 2: 2 (bWb:zb:ff + by¥b:zb:,z. + bW’bs‘2b:z)kss

yz S<S <8"

__ .l yy 22 3 22 22 yy
+ 2(Bz;)yy(Bc)zz 8 2 BS 33+ 2 2 BS B (AS )'

l6 . s'

s s s

C 1
__l ss 22 xy _ zz xy _

6 :<:'[As - xs'][Bs BS'(AS' 2A3) + BS'BS (AS ZASI)]

- -11-6-[Iy/Ix(Iy- IX)Jz I ASA S,B:YB:¥B:ZB:Z

8,8

--[I2/(1y-Ix) 2]): 2: AS A S,B:yB:yB:z[(IxBW)/Iy _ (1yBs.)/Ix]

S,S

141‘?» =- 1N z 2 2: (bWbW'b? + bWbW'b:z + bWbWb:z)k , ..
yz 7 8 S S

s<s'<8"

_ _. l. W 2_ KY?- 3 W2 Y? .
+ 4(BB)yy 16 2(BS) “5 2 £38 ) +—8 z 2 BS B820.85.)

S 8 S S

c
.1. 88 X? W _ xv yy

6 sfs'[A - A ,][Bs Bs'as st') + Bs'Bs (ls' ZAS)]

- in /I (Iy - Ix)1: z A A .BxyBWBWB ?2
8 Y X s s s s s s s s

_l _ 2 xyxyyy xx

8[Iz/(Iy Ix) 152$? Asxs'Bs 35,88 [(IyBs')/Ix

YY .
‘ (IXBS')/Iy]

I Ii°8 same as I:I:¢7 above with yy replaced by xx throughout

and with Css' replaced by -Css'

Iil2¢9 same as 1:1:¢6 above with yy replaced by xx throughout

and with Css' replaced by -Css'
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Table (7-6) (continued)

 

121212¢ . in Z 2: z (bxxbng’; + bS“‘1:be + bS,.bWb:z
x y z 10 8 s<s$5"

+ b’obebzz,, + bmn‘bW bzz + bf‘bngz + AbWbszfi
S S S S S S S S S

1

+ 4b:yb:y.‘gbz+ 4b:zb:yb:z)ks3.8.. + -2-(Bz;)xx(Bz;)

+ (BC)2 - l zu’mBm‘ + IWBW + Izszz]2
4xy 3 s s

— -1- z Bx‘fisW +l 2 (BW)2 + 3 z 2 Bz?[B’°‘(AW.)'
8 s s s 4 s s 8 s s' s s 38

+ B?(A::,)'] +— 2 z B:ZB:Y[(AW )' + (AWS)']

s s'

1 Xs' xx 3?? XY

--5 Z 2. Css'fx_7_:—X;](BS - B )B '
sis s

l 22 AS' - 315 Ky 22
-"I Z X C v [S SSSJB BS

4 g 3 S A v

s¥s s

+3[I /(Iy - Ix) 2]: 2 A A .BWBWHI B1 Emb/I
8 z s s s s y s s x

8,8

yyyy _ xxyy
+ (IXBS BS.)/Iy (Iy/Ix + Ix/Iy)BS 38.]
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By comparing Tables (7-4) and (7-6), we can now trace the

remaining differences between the sextic centrifugal distortion co-

efficients of Aliev-Watson and Sumberg—Parker. These differences are

due exclusively to the Coriolis-type contributions which are handled

differently in the two formalisms, viz., in the Aliev-Watson procedure,

part of the Coriolis contribution is removed through the rotational

contact transformation, as described previously. These differences,

listed in Table (7-7), are defined as

A¢i = ¢i(Sumberg-Parker) - ¢i(Aliev-Watson). (7-39)

We have now fully accounted for the differences between the

Aliev-Watson results and the Sumberg-Parker results.

. For fitting to experimental data, the contact transformation

is, finally, fully specified and one may proceed to obtain a re-

duced rotational Hamiltonian in the manner described in Chapter 6.

The result can be expressed as:

2

x

3 ~ 6 ~ 6 ~ 6 ~ 4 2 4 ~ 4 2 2 4
H06 ¢1Jx + ¢2Jy + ¢3Jz + ¢4(JyJ + Jny) + <I>5(JXJy + Jny)

~ 4 2 2 4 ~ 4 2

+ ¢6(Jsz + Jsz) + ¢7(Jsz + J2J4) + 5 (J4J2 + J2J4)
z y 8 x z z x

~ 4 2 2 4 ~ 2 2 2 2 2 2

+ <I>9(JzJx + JxJz) + 610(JnyJz + JszJy). (7-40)

The relations between the coefficients 51 and a; are given in

Eqs. (6-40)-(6-47) with ¢i replaced by ¢i.



Table (7-7).
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The Differences Between Sumberg-Parker and Aliev-

Watson Sextic Centrifugal Distortion Coefficients
 

 

0
‘

I A¢

N H

I A¢

N
D
O
‘
V
O
‘

N

IA¢3 =

1214A¢=

x y 4

I2I4A¢

y x 5

IZIAA¢=
y z 6

1412A¢a
y z 7

a

4 2
IxI ZA¢8

As + AS,

I2"2 2 css3.(VT—w)as"??? + 3x313?)

S<S 8

same as I214A¢

X Y

1

12

4 with xx replaced by yy throughout

replaced by -Css'°

+gzaB:y)

and with Css'

A + As

1

ss'(l-

zz xy+

12 m)(B BS2 z t

(8' S

A + A , x

S S )(BXYBYY + B YByy)
, s s s

-1— <
33' A - A

s

12 2 Z 5
s<s'

same as I:I:A¢7 with yy replaced by xx throughout

and with css' replaced by -Css'°

same as 1:1:A¢6 with yy replaced by xx throughout

replaced by -C .and with C' ,

ss 33

A8 + AS, 22

H)BXYB
-XS.S

+l z z c .[BXWBY’I - Bx?) - Bxywyy - Bxxn
4 s<s' as s s s s' s s

A

.l . ______L__ X? yy xx
+ 2 Z 2' tss'(l- )Bs '(Bs -BS )

sis s
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7.2 Reordered Perturbation Treatment for the Calculation of the
 

Sextic Centrifugal Distortion Coefficients
 

13

In an appendix of their paper, Aliev and Watson show that

the calculation of H82)

ing the orders of expansion of the terms in the perturbation treat-

may be simplified considerably by reassign-

ment. The terms are ordered according to the degree in the vibra-

tional Operators, except that, as usual, H20 is taken as the zero—

order Hamiltonian H0, while H 2 is placed in H2. Furthermore,

0

the initial Hamiltonian (7-6)-(7-9) can be broken up into three parts

to suit the three different classes of term as expressed by Eqs.

(7-3)-(7-5).

~(V)
In case of H06

initial Hamiltonian are:

(harmonic), the relevant terms from the

H a H0 + AHl + AZH2 (7-41)

with

Ho . Hzocko‘o) (7-42)

H1 -'312(k3'1) (7-43)

H2 - H22(k4'2) (7-44)

Subjecting the Hamiltonian (7-41) to the first contact transforma-

tion, one obtains

H6 - HO (7-45)

. - <1) -
H1 H1 + i[S , H0] (7 46)

a; - H2 + 113(1), 31] --%[s(1),[s(1), 30]] (7-47)
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. a (l) _.l (1) (1)
H3 i[S , H J le ,[s , H11]

2

--§ts(1),[s(1’.[s‘l), H0111 <7-48)

a; . --§ts(1),[s(l’, n21] --§[ (l),[s(l),[s(l), H111]

+-%Z[s(l),s(1),[s(l),[3(1), H0]]]]- <7-49)

Eq. (7-46) now defines the 8(1) operator such that

‘1) (7-50)
i[S ’ Ho] = ”H1 off-diagonal ' ‘H12 off-diagonal'

In this case we have only one type of function for the Operator 8(1),

namely S§:)(k3-l). The harmonic contribution can then be obtained

from H4’ and gives, as before,

' ~<v> 1 (1) (1)
'. Sun— -H4 06 (harmonic) 2[S12 ,[S12 , H22]] . (7 51)

Next we consider the anharmonic part. The initial Hamiltonian

can be written as:

H = H0 + AHl + A3H3 (7-52)

with

no . 320(k0‘0) (7-53)

nl - 312(k3‘1) (7-54)

H3 - H30(k1'°) . (7-55)

We now subject this Hamiltonian to the first contact transformation,

giving
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H6 = HO <7-56)

Hi = Hl + i[S(l), HO] (7-57)

Hé = H2 + i[S(l), H1] --i[s(l),[s(l), H01] (7-58)

35 - H3 + i[S(1), H2]- %[s(1),[s(l), H11]

--§[s‘1),ts‘1’.[s(l’. H0111 <7-59)

a; - i[S(l), 331- %[s(1),[s(l), 32]]

_ %[S<1>,[S<1>,[S<1>, H111]

fits‘l),ts(l’.[s(l),[s(l’, H0111] <7-60)

Hg 3 _ _[S(1> [33(1), H3]]_ %[S(1),[S(1) [33(1), 321]]

2_4[S<1),[_.,,<1>,[SmJSm’ H1111]

+Tzo[5(l)’[s(l) [33(1),[s(1),[s(1), Holllll (7-61)

Hg = - %{s(1),[s(l),[s(l), H311]

Ta[s(l) [S3(1),[s(1),[s(1), H2111]

Tzo[s(1)'[5(1)'[5(1)’[S(1)’[S(1)' “111111

-770[S(1),[S(1),[S(1).[S(1).[S(1).[S(l), 80111111. (7-62)

Again 3(1) consists of the single contribution Si:$(k3-1). An

examination of the terms shows that the anharmonic contribution to

fi(v) I

H06 arises with H 6 only, viz.,

fi<v6) , _ (1) (1) <1) _
(anharmonic) 6[S12 ,[S1 ,[S12 , H3011]. (7 63)
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For the calculation of H56) (Coriolis) the appropriate terms are

H a H + AH + AZH I (7-64)
0 l 2

with

no 320(k0‘0) (7-65)

H1 - 312(k3‘1) (7-66)

H2 a H21(k2‘1) + 302(k2'0). (7-67)

Subjecting this Hamiltonian to the first contact transformation, we

have a set of equations identical to (7-56)-(7-62). However now H2

is given by (7-67). Proceeding to the second contact transformation,

we can write

H3 8 H6 (7-68)

H1 8 Hi 3 0 . (7-69)

Hg - Hi + i[S(2), H0] (7-70)

33 - HS + i[S(2),H//f1 - H' (7-71)

HZ - H; + i[S(2), H2] - %[s(2),[s(2), 30]] (7-72)

H'S' - H; + i[S(2), H5] - %[S(2)’ [3(2), %=?] <7-73)

.. . . (2) . _ (2) (2) .
Ho H6 + i[s ,H4] %[s ,[s , H21]

- %ts‘2’,[s(2’.ts(2’, H0111 . <7-74)

Eq. (7-70) defines 8(2) such that:

(2) (1) (l) (1)

off—diag.

(7-75)
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NOW’the third contact transformation can be written as:

H"' . H"
(7-76)

0 o

33' a H; = 0 (7-77)

33' - a; (7-78)

33' - H; + i[S(3), HO] (7-79)

HZ' . H2 + i[S(3), H2] (7-80)

Hg' . a; + i[S(3), Hg] (7-81)

Hg' a 3; + i[S(3), Hg] --%[s(3),[s(3), H0]] . (7-82)

Eq. (7-79) defines 8(3) such that

(3) n . _ .
i[S ’ Ho] H3off-diag. H30ff-diag.

- -{1[s‘1’, H21- §ts‘l’,[s(l’ H11]

(1) S(1) (1)
%[s [s ,[s , H0111}off_diag. <7-83)

(1)
Since S is linear in the vibrational operators, the second and

third commutator terms vanish and

(3) . _ <1) -
[S ’ H0] [S ’ HZloff-diag. (7 84)

The required part of 8(3) is 8(3), and it is given by

S(3) , _ -1 ‘2 _
$13 2 qk{2 RkRz (mlwk + i[Rk, 1102]!»k }. (7 85)

k

Now Eq. (7-82) can be written as
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". a _ <2) (1) (1) _ ;_ <2) (2)
H 2[s ,[s ,[s , H2111 2[S ,[s , H211

- §Is(2’ [33(2),[s(1), H1111 +-{S(2), [ss‘z’.[s‘1’,[s‘1),H01111

.; <2) (2) S<2) _ <3) <1)
- 6[8 .[s [s . H0111 [s ,[s ,H211

- 2[S(3),[S(1),[S(1), H1111 + %ts‘3),[3(1),[s(1),[s(1’,H01111

Using Eqs. (7-75) and (7-83), we have:

u. , _.; <2) (1) <1) (2) <2) (2)
H 2[s ,[s ,[s , H2111 + §ts .[s ,[s , H2011]

(3>,[S<3), H
+2[3 2011- (7-87)

An examination of the terms shows that the only contribution to

fi(V)
H06 (Coriolis) is

(3)Hue . H<v6)(CorioliS) a %[S(3) l3 ’6 13 ’[S
H (7-88)20]]

Evaluation of Eq. (7-88) yields the result in Table (7-2) without the

last two sums of H(v)(Coriolis). These were the sums that were

removed by a rotational contact transformation in the previous pro-

cedure. In the present procedure, these terms do not arise in the

first place. Altogether, the result from Eq. (7-88) is the same as

that finally obtained in Section 7.1, but clearly Eq. (7-88) is

considerably simpler to employ than Eq. (7-31) because it is un-

(l)

21

tained by a much more direct procedure.

necessary to evaluate S , and the Coriolis contribution is ob-
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From the three different initial Hamiltonians (7-41)-(7-44),

(7-52)-(7-55), and (7-64)-(7-67), for the harmonic, anharmonic and

Coriolis contributions,respectively, we can see that it is per-

missible to combine the harmonic and anharmonic Hamiltonians without

any change in the result. We could also combine the anharmonic and

Coriolis parts and get the same result. However, one cannot combine

the harmonic and Coriolis Hamiltonians since the H1 term has been

defined differently for each case.



8. CENTRIFUGAL DISTORTION SUM RULES

8.1 Second-Order Centrifugal Distortion Sum Rules
 

As mentioned in Section 5.2, the second-order centrifugal

distortion constants which are the coefficients of the fourth-

T1

power angular momentum operators of the rotational Hamiltonian can

be constructed from Eq. (5-44). Considering the fact that the co-

efficients Ti

covering operations of the point group of the molecule under con-

have to be totally symmetric with respect to the

sideration, one obtains a total of nine distinct non-zero coeffi-

cients for orthorhombic molecules (such as the XYX-type molecule),

and a total of thirteen distinctnon-zemacoefficients for monoclinic

molecules (such as the XYZ-type molecule), and a total of twenty one

distinct non-zero coefficients for triclinic molecules.

31+

For planar asymmetric t0p molecules, Oka and Morino and

23

Dowling have proved that among T to 19, the relationships
1

(5-4S)-(5-48) exist. To obtain these relationships one starts with

the planarity condition:

axx + azy

22

s as , for all s, (8-1)

if the molecule lies in the xy plane. This condition follows

immediately from the definition of the inertial derivatives ags,

Eqs. (4-82)-(4-85). Multiplying (8-1) by a:x and dividing by

111



llZ

I:23’ yields Eq. (5-45), viz.,

(a?asxx/I2A S) + (azxayy/I:A S) a (a:xa:z/I:A S) (8-2)

01':

2 xx xx 2 xxa22

(IXas as /I:A S) + (12yaSHazy/IIyAS ) = (Iza s/Ix12ZA 8) . (8-3)

Subsequent use of the definition (5-44) then leads to the relation

T1 = (Iz/Ix)215 - (Iy/IZA2T6 . (8-4)

Similarly multiplying (8-1) by azy and dividing by I323’ gives

Eq. (5-46), viz.,

yy xx 2 yy yy 2 a yy 22 2 _

(asas /IyAS) + (a8 a8 /IyAS) (a8 a8 llyAS) (8 5)

or:

(12ayya:x/I212YAS) + (Iy2ayyaYY/I:A S) a (12ayy3:2/12I2As), (8-6)

from which

12 = (Iz/Iy)214 - (Ix/Iy)216 . (8-7)

Also multiplying (8-1) by azz and dividing by IiAs, gives Eq.

(5-47), viz.,

(aagza22/12As) + (aas2293712AS) = (a223:2/12 A S) <8—8)

or:

(12a22axx/I:I:A8) a22yy/I:I2AS) = (12aS22azz/I2A ) (8-9)
x s s + (5's a s z s ’

from which
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_ 2 2

I3 - (Iy/Iz) I4 + (Ix/12) I5 . (8—10)

Moreover, using the fact that a:2 = aZZ = O, the definition (5-44)

gives Eq. (5—48), viz.,

= 0, (8-11)

= I = 0. (8—12)

Therefore, in planar molecules, there are five constraints among

I1 to T9. This means that there are only four independent I's

among Il to I9 for orthorhombic molecules.

For the monoclinic space groups, it is easy to prove that

in addition to the above five constraints, there are two more con-

straints among I through I Again multiplying (8-1) by

10 13°

azy and dividing by InyAS yields Eq. (5-49), viz.,

xy xx xy yy = xy zz _
(as as /InyAs) + (a8 a8 /InyAS) (a8 a8 /InyAS), (8 l3)

0].”:

2 xy xx 3 ny yy 3 . a 2 xy 22 2 _
(Ixas as /InyAS) +(Iyasas /InyAS) (Izas as /InyIzAS) (8 14)

from which

1: - (I- n )2: + (I /1 )2r <8-15)
12 x z 10 y z 11 '

Therefore there are altogether seven constraints among I1 through

T13. This gives us six independent I's for monoclinic space

groups.

30

However, as discussed in Chapter 6, Watson has shown that

the non-totally symmetric quartic tenns, i.e., non-orthorhombic
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terms,can be omitted from the reduced second-order Hamiltonian. This

can be done irrespective of the symmetry of the molecule. The non-

totally symmetric terms do not contribute to the energy in second

order, and they can be transformed completely into the terms of

higher degree in the Hamiltonian. Therefore the effects of these

terms in second or higher order are indistinguishable from the

effects of higher degree terms in the Hamiltonian. Thus we can con-

clude that in general in the planar case there are three sum rules

and two zero I's, hence four independent determinable coefficients

for the second-order centrifugal distortion coefficients T1.

8.2 Fourth-order Centrifugal Distortion Sum Rules

In the fitting of molecular rotational energies with a

sixth-degree rotational Hamiltonian, some of the sextic distortion

constants are frequently found to have large experimental un-

certainties. This can limit the usefulness of these constants as

sources of information on the cubic anharmonic potential of the

molecule. In such circumstances, it is advantageous to apply as a

constraint any theoretical relation existing between the sextic dis-

tortion constants. Such a constraint will normally reduce the un-

certainity of the constants without interfering with the deduction

of potential constants from them. While a relation of this type is

unlikely to exist for a completely arbitrary molecule, Watson39

has shown that there exists a general relation for planar molecules.

This relation is analogous to a planarity condition for the quartic

distortion constants, and like these is only strictly valid for the

equilibrium constants.
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30

For the general case of the asymmetric rotator, Watson

has shown that the number of independent sextic coefficients or in-

dependent linear combinations of these is seven. Since the

planarity relation (8-1) introduces an additional constraint,

planarity would be expected to reduce the number of independent

sextic coefficients by one, to a total of six. Therefore, there

should exist four linearly independent relations among the fourth-

order centrifugal distortion constants. The construction and

calculation of these four sextic equations of constraint forms a

part of the original work of this dissertation. The manner in which

these results might be useful in the analysis of high-resolution

vibration-rotation data will also be discussed.

By inapection of the anharmonic portions of the theoretical

expressions @i, and by repeated use of the conditions of planarity

(8-1), it is found that the following four linear combinations of

the sextic constants ¢ are independent of the cubic anharmonic

potential constants: i

F1 =-%I:¢3 - I:I:¢6 - 1:1:¢9, (8-16)

F2 = IiIzog - I:I:¢6 - I:I:¢8 + I3I:Q7, (8-17)

F3 - I:¢1 + IS¢2 + %I:¢3 - I:I:¢7 — 1:1:28’ (8—18)

F4 - Iial + Igoz - 12¢3 - ZI:I:¢4 - 21:I:¢5 + 22:2:Ii210' (8—19)

These expressions depend thus only on the equilibrium geometry and

the harmonic force field parameters of the molecule, quantities

which are ordinarily known to considerably better precision than
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either the calculated or the empirical values of the sextic co-

efficients. These expressions therefore appear potentially useful

as planarity-conditioned constraints on the ten sextic centrifugal

distortion coefficients obtained in the expansion of the Darling-

Dennison Hamiltonian.

The indexing of 21 corresponds to the sextic part of the

Hamiltonian as follows:

6 6 6 4

”6 21px +I¢2py + ¢3pz
X

2 4 4 2 2 4 2
+ ¢4(Pxpy + Pny) + ¢5(PyP + PxPy)

2 4 4 2 2 4 4 2 2 4 4 2

+ 26(Pypz + PzPy) + 457032?y + Psz) + 28(P2Px + PXPZ)

4

z

2 2 2 2 22 4 2 2

+ ¢9(PXP + Psz) + ¢10(PXPZPy + PszPx)° (8-20)

In ourformulation, the molecular framework is located in the

xy plane. If it is desired to have the molecule located in the

yz or zx plane, the appropriate cyclic permutations of the

cartesian coordinates can easily be carried out. It should be re-

called from Chapter 7 that the theoretical expressions for the

- 13

sextic coefficients ¢' given by Aliev and Watson (Table 7-4))1.

differ in part from those given by Sumberg and Parker (Table (7-6)),

in the manner described in Chapter 7. An independent calculation

carried out by Georghiou“o and using a different pertubation pro-

cedure gives the same results as the calculation of Aliev and Watson.

Which of the two available sets of coefficients gives better

agreement with experiment must ultimately be decided by experiment.

At the present time, neither set has been tested extensively. Aliev

13

and Watson find reasonably good agreement with experiment for



117

I40

502, and Georghiou for H28. Using both the Sumberg-Parker co-

efficients and the Aliev-Watson coefficients, we find reasonably

good agreement for the ozone molecule with either set of coefficients.

These results will be given in the next chapter.

The computation of the functions Fi given by Eqs. (8—16)-

(8-19) is mostly straightforwardnthough somewhat tedious. Frequent

use is made of the planarity condition, Eq. (8-1), in simplifying and

consolidating the expressions as the calculation proceeds. Tables

(8-1) and (8-2), respectively, list the results obtained on the

basis of the Sumberg-Parker coefficients and on the basis of the

Aliev-Watson coefficients for the XYX (CZV) case. The more complicated

results for the general triatomic XYZ (Cs) case are listed in

Tables (8—3) and (8—4). In all these tables, ABS denotes BZY - B:x.

For ease of comparison, we have transcribed the Aliev-Watson based

functions into the Sumberg-Parker notation and dimensions. As re-

quired by the respective formalisms, we verified that the Aliev-

Watson based functions FAW yield the corresponding Sumberg-Parker

1

based functions Fip except for the Coriolis-type contributions

which are different in the two formalisms.-

In the cgs system of units, the ¢1 are in g-Scm_los4 and

can be changed to wavenumber units (cmfl) by multiplying by (HS/Zuc).

The dimensions of the functions F are g cmzsa, and the coeffi-
i

cients 3:6 are in 85mm 82.
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Table (8—1). The Functions PEP, FiP, F§P, and Pip Defined by

Eqs. (8-16)-(8-19) for the XYX (sz) Molecule)

 

 

F? = -71;(Bizc31 - 332:23)2 a -Izc§3c§1[(l/Al) - (l/Azfl2

2:? " ' %(B}IQC31 ' 32:222322 + %(B}12y231 " B222,223)2

+ 3232;2{u3113izu3 - 2A1)/_(A3 - Al)] - [:233‘22203 - 2A2)/(A3 - A2)]}

2:? a ‘ 2(2?231 ' B220222320322231 ‘ 322,523) + 2(3)?)2

+-%B§y{[c31ABl(A3 - 2A1)/(A3 - A1>1

- [2:231:3203 - 2A2)/(A3- *2)“

F2? ' 7(2)::231 ‘ B22212223M22122231 ' B2227223) + ‘2'“:2231 " 2:22:23)2

_ (B§Y)Z --%(Z IauBia)2 --%(Z IaaBga)2

a a

--%IZZB§Y;31[A31<A1 + A3) + 33:20l - 3A3>1/<A3 - A1)

+ %1223?;23[A32(A2 + A3) + 333202 - 3A3)]/(A3 - A2)

xy
- n3 A3{[§31ABl/(A3 - A1)1 - [c23ABZ/(A3 - A2)]}
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Table (8-2). The Functions Fgw, Fgw, Fgw, and Fiw Defined by

Eqs. (8-16)-(8-19) for the XYX (C2?) Molecule

 

 

Replace terms with Coriolis-resonant denominators (A3 - Al)

and (A3 - A2) of Table (8-1).

SP . .1 xy zz _ 22
in F2 by. + 4 B3 (B1 :31 B2 :23)

SP . lxy ..
in F3 by. + 4 B3 (Anlg31 A32c23)

in FSP by: --1 Bxy(AB c - AB t ) + Izszy(322: - 322: )
4 2 3 1 31 2 23 3 1 31 2 23
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SP SP SP SP

Table (8-3). The Functions Fl , F2 , F3 , and F4 Defined by

Eqs. (8-16)-(8—l9) for the XYZ (CS) Molecule

 

 

FSP . f-%(Bc):z- %2(B:2)2 +1%(I/IxIy): 2 ASA S,B:YB:YB:ZB:?

S SS

2a .1 2 _'l _‘1 xx 2 ._ yy 2

F2 + 4(BI)xx 4(BI)yy 4:(Bs ) + 42038 )

l__ _ zz xy _ zz xy _

+ 6:<:v[§ss'/(As As')][Bs Bs'us' 223) + Bs'Bs (As 22$”>]

- l—(Izx/IIy): z A SSA J:YB:YB:z.ABS

SS'

- -{Iz/(Iy - Ix) 212 2 A“A .BZYB:YB:ZI(IyBS./Ix) - (IxByy/Iy)1
S 8'

SP - .1 -.1 xxByy .1 xy 2

F3 + 2<Bc)xx(Bc)yy 2:35 5 + 2:<Bs )

1 _ xy _

.+.gz 2 [6 ./(AS - A S.)][B::YABS(AS , - 2A S)+ Bs ABs .(AS - 2A .)1
[ SS 3

s<s
.

.1 - XY XY yy xx _ Y?
+ 8[I/(Iy Ix)]: i ASA $.33 BS.[(IyBS Bs,/Ix) (Ingst,/Iy)]

+“[Iz/(Iy - Ix) 2]: z A SSA B:YB:YABS [(IyBSKII)- (IXBZY/Iy)]

83'

.1 2 _ xx yy 22 2

F +(Bc)xx<Bz;)yy 2(Br)zz :33 BS + h2<B ) + 203:):y

28

_ xy 2 _.1 an an 2 _ - KY -
2(Bs ) 22(21 Bs ) z 2' ;SS.BS,ABSAs./(AS. AS)

3 S a sfis

lz
_ xvz - ‘ _
2122:22: Cs'sBs B8,(As, 3As)/(AS, As)

l 22
_ _. XY XY -61 :(g' ;SS.(Bs ABS, + BS,ABS)(AS +As,)/(AS As.)

+-—[1/(Iy - Ix)1): z A SAs ,B:YB:Y[(IY/Ix)(23223:x - BYYBYY)

SS

yy yy _ xx xx

(Ix/Ty)(ZBS BS, Bs 38.)]

i[Iz/(Iy Ix) 2]: :8A AS Bs B:YABs [(IxBYY/Iy)- (IyBs./Ix)]

%[Iz/Ix1y]z 2 A8AS.B:YB:YB?BYY.

8.23
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(8—4). The Functions Fiw, Fgw, Fgw, and FZW Defined by

Eqs. (8-16)-(8-l9) for the XYZ (CS) Molecule

 

 

+~ch;)2 visa")2 +m1(1/IxIy): 2 ASAS BSxxB:YBz823:?
~ 4 zz 4 s

S SS

1 2 1 2_I:m2I w2
+ 4(Ba)xx 4(Be)yy 42033 > +4:(BS )

.1 KY 22 22 XY __. xy xy:

8

88'

-—[I2 /(Iy - Ix)2 12 2 ASAs B:YB:YB:Z[(IyBs,/Ix) - (IxBYY/Iy)]

s s'

.1 _.1 xx yy .1 xy 2 1 xy‘

+ 2(BC)xx(BC)yy 2:33 Bs + 2:(Bs ) +'Z:<:.Css'(Bs ABs'

B:YABs) + 8[1/(Iy - Ix)1: z A$3A B:YB:Y[(IyBYYB?./Ix)

SS'

(IszxBZY/Iy)] +—%[Iz /(Iy — Ix) 2]: z AHA BZYB:YABS [(IyBsm/I)

SS

YY
(IXBS.{IY)]

2 2 2

«Bowmanyy - -%(Bc)zz - 23:33? + inn?) + mac)xy
S S

_ xy 2 _.l on an 2 _ zz xy zz
2(Bs ) 22(2 I BS ) I 2 Z c 'Bs'Bs

s s a s¥s' S

m—i- 2;,38(B’g‘YABS , - B:YAB3) +—[Iz/IxIy]: z A$3A B:YB:YB:"BYY

s' s s'

+8[1/(Iy - Ix)JZ zA“A B:YB:Y[(Iy/Ix)(2B:"B:’.‘ - BYYBYY)

S S'

Y? Y? xx
- (Ix/1y)(zBs Bs' - B:XBS.AJ

+Z[Iz/(Iy — Ix) 212 z A“A B:YB:YABs [(IxBYY/Iy) - (IyBs,/Ix)]

SS,
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8.3 Constrained Empirical Constants
 

In order to utilize the sextic planarity relations in the

analysis of vibration-rotation data, the theoretical constants $1

must be related to the corresponding empirical constant 5 (Again,1.

the tilde symbol is used consistently in this chapter to denote

empirical constants.) The relations existing between the theoretical

13

and the experimental constants have been studied by Watson. This

work was discussed in Chapter 6, and we shall use the results in the

25

form given by Yallabandi and Parker, Eqs. (24-26).

In general, the planarity relations among the empirical co-

efficients are obtained when the oi are replaced in Eqs. (8-16)-

(8-19) by the corresponding 5 with the aid of the set of Eqs. (26)
i

. 25

of Yallabandi and Parker. After this raplacement, however, the

resulting equations are more complicated and contain four S-para-

meters viz., $111, $113, 8131 and S311. A more promising approach

appears to be to let the planarity relations define a reduction of

the sextic Hamiltonian by using an empirical Hamiltonian which in-

cludes all ten 5 but with these planarity constrained by our
1’

Eqs. (8-21)-(8-24) below. This reduction is specified by taking

S - $131 - S - O which amounts to not applying the fourth-
113 311

order part of the similarity transformation of the Hamiltonian. The

advantage of this approach is that a reduction is obtained which has

a natural and straightforward relation to the theoretical formulation,

and that this relation can be explored without the necessity of

, and S whichdetermining non-zero numerical values for 8113, 311
S131

tend to be very poorly determined in practice.
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Another advantage is the immediate one that the equations

relating the theoretical and empirical coefficients are much simplified

113 ‘ S131 ‘ S311

(8-16)-(8-19) that

by taking S = 0 in which case one finds from Eqs.

3 6~ 2 4~ 2 4 ~ 2 ~ ;

Fl 21253 - IyIz56 - 1x1259 - 4uslllI: [1: (T3 -T4) + Ix(T5 - I3)]

ZS 2

- 4K3 I4 [-I:(C-B) + I:(A-C)], (8-21)
1112

2 4~ 2 4~ 4 2~ 4 2~ 2 2 2

F2 IXIZ¢9 - IyIz<I>6 - IXIZ¢8 + IyIz¢7 - “551111z [IyIz(T3- T4)

2 2 ~ 4~ ~ 4 ; ~

+ Isz(T3 - T5) + IX(Tl - T5) + Iy<l2 - T4)]

2 2 ~ ~ 2 2 2 ~ -

+ 4“2811112 [Ii (I: + Iz)(A-C) + Iy(Iy + Iz)(C-B)], (8-22)

6~ 6~ l 6~ 4 2~ 4 2~ 4 ~ ~

. F3 . 1x5l + Iy52 + 2I253 - IyIz¢7 - Isz58 - 4HSlllI:&Iy(T4 - T2)

4 ~ ~ 2 4 4 ~ ~

+ Ix(Tl - T5)]- 4hSlllIz [Iy(C-B)- Ix(A-C)], (8-23)

F - 165 + 165 - I65- 212x134?» - 2121255 + 2121212510
4 x l y 2 z 3 xyz

II22 2 2 ~ ~
-8H51111x1y[1y(T2-T6) + Ix(T6 - T1)]

232
-8K lllliyI2 [--I: (B-A) + I:(B-A)]. (8-24)

Here A, H, and C are the experimentally determined effective

rotational constants and the T1 are the experimentally determined

coefficients of the quartic part of the Hamiltonian,

H4 = TIPx + TzPy + T3Pz + T4(Psz + PzPy)

~ 2 2 PP22 22
+ T5(Psz+ PxPz) + T6(P:Py + P:Pi). (8-25)
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The manner in which the reduction of H4 is effected determines the

value of the parameter. 8 When S - S = S = 0, then
111' 113 1311+1 311

the T1 are related to the corresponding Ti by

T1 . Ii + 0(4), 1 = 1,2,3, (8-26)

I4 - I4 + 2u(é-fi)slll + 0(4), (8-27)

T5 . I5 + 2“(AP&)Slll + 0(4), (8-28)

T6 = I6 + 2n(§-A)slll + 0(4), (8—29)

where 0(4) are contributions of order four which also depend on

8111. In practice one is forced to neglect these contributions at

the present time since the fourthporder contributions to the

theoretical coefficients T1 are very complicated and have not yet

been well developed. Consequently, the T need to be approximated
i

by the theoretical expressions for the corresponding equilibrium

quartic distortion constants T After a quartic reduction isi.

specified, for example T6 - 0, one can proceed to obtain a value

for S111 from one or more of the Eqs. (8-27)-(8-29). Use of more

than one equation for the determination of $111 amounts to a test

for consistency, with the more reliable values of S 1 probably
11

those for which the difference in the rotational constants involved

is of the same order of magnitude as the rotational constants them-

selves. Whereas, in principle, it is possible to determine the

numerical value of 8111 strictly from theory, in practice both

experimental and theoretical input are required because the

theoretical development remains incomplete.
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It appears very attractive to attempt to take S = 0, as
111

in that case the numerical values of all empirical constants would

correspond to the numerical evaluation of the associated theoretical

expressions, i.e.,

5 a 5 . (8-30)

For such a situation to apply it is, however, necessary to planarity-

constrain the quartic constants T1 in the data fit. These con-

straints, however, are known at the present time only for the

335
’

3

corresponding equilibrium coefficients 1 , and thus an error
i

of order four would be incurred in the data fit which may be accept-

13 42

able in special cases , but almost certainly not in general.

' Watson39 has given a general sextic planarity relation in-

volving only empirical rotational and distortion constants and valid

for any reduction of the quartic and sextic portions of the

Hamiltonian. The relation is, however, strictly valid only for

the equilibrium values of these constants. With this proviso, we

have confirmed that Watson's planarity relation is equivalent to

the first planarity relation Eq. (8-16). This equivalence holds for

both the XYX case and the XYZ case.

8.4 Cylindrical Tensor Form Hamiltonian
 

Cylindrical tensor forms of the Hamiltonian have been widely

and successfully used for data analysis. Starting with such a

Hamiltonian in the form cited by Yallabandi and Parkerzs, Eqs. (5-2),

(5-19)-(5-21), it is possible to develop the set of equations below.

These are again based on a full ten-term sextic Hamiltonian with
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planarity contrained coefficients H Use of Eqs. (S-22)-(5-43)1'

leads to the following set of equations:

491 + <92 3 2H1 + H6, (8-31)

<91 ' <32 " 2H5 + ZHIO’
(8-32)

53 - H1 + H2 + H3 + H4, (8-33)

5~ ~

~ ~ - 2 2 - -
<54 - <55 -H5 + 31110 + 1658111136 - 8K Slum-A), (8-35)

5 + 5 a 3E + zfi + a + 4us (fi + 25 ) - 45232 (26-A-fi) (8-36)
6 9 1 2 3 111 4 5 111 ’

- - - r - 2 2 - -

56 - 59 -H5 - 2117 - 2H8 + 4158111032 + 293) + 4H Sula-A), (8-37)

57 + 58 . 3H1 + H2 +-%a6 + H9 + 41131110)4 - 295)

+ 4n232 (26-A-fi) (8-38)
111 ' .

¢ - 5 . -25 - zfi + 4mg (5 - 5 > - auzsz (é-A) <8-39)
7 8 5 7 111 2 6 111 ’

~ ~ 3.. ~

510 3111 + H2 - 5H6 - 3H9. (8-40)

If in Eqs. (8-16)-(8-l9) the ¢i are replaced in accordance with

Eqs. (8-31)-(8-40) above, then the cylindrical tensor version of

the planarity relations for the empirical coefficients, Eqs. (8-21)-

(8-24), is obtained. If in these one takes 8111 a O and removes

the tilde symbols from the Hi, the cylindrical tensor version of

the planarity relations for the theoretical coefficients, Eqs.

(8-16)-(8-l9) is obtained.

An experimental test of the planarity relations requires that

the data fit be carried out in a particular way, viz., with the co-

efficients constrained as described. No such data fits have been
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carried out to date, but it may be hoped that they will be attempted

at some future time.



9. THE CENTRIFUGAL DISTORTION

COEFFICIENTS 0F OZONE

A calculation of the centrifugal distortion constants of

the ozone molecule was carried out and will be described in this

chapter. For the sextic constants, both the Sumberg-Parker and the

Aliev-watson expressions were used. The calculated distortion con-

stants were compared to experimental results in the literature with

the aid of the reduced-Hamiltonian approach described in Chapter 6.

The agreement between theory and experiment was found to be gen-

erally quite satisfactory.

9.1 The Fourth-Order Centrifugal Distortion Coefficients for an

XYX-Type Molecule
 

The complete expressions for the ten sextic fourth-order

centrifugal distortion coefficients for an XYZ-type molecule as

calculated by Aliev-Watsonl3 and Sumberg-Parker7 are given in

Tables (7-4) and (7-6) respectively. To specialize to the XYX—type

molecule, we let m2 8 m3 - m, M1 - M, a 3 b, e - 0. The detailed

expressions for b:8 - (age/12,4), 3:8 - (age/As), (A:S,)' and

Css' are obtained from Section 4.4 in a straightforward manner,

and the expressions for the ten sextic centrifugal distortion co—

efficients for an XYX-type molecule can then be written out and

are given in Table (9-1).
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Table (9-1). The Fourth-order Centrifugal Distortion Coefficients

 

for an XYX-type Mblecule

6 xx 3 xx 3 xx 2 xx

Ix¢l "%N[(b1 ) k111 + (b2 ) k222 + (b1 ) (b2 )k112

+ (bfx)(b§x)2k122] +-%(B:xsin y + ngcos y)2

2 - yy 3 yy 3 yy 2 yy

Iy‘pz %N[$b1 ) k111 + (b2 ) k222 + (b1 ) (b2 )k112

2 2
+ (biy)(b§y) k122] +-%(B{ycos y - Egysin y)

1:53 ’ %N[(b:z)3k111 + (b22)3k222 + (biz)2(bgz)k112

+ <b§z><b§z>2k1221 + %[B:zc23 + 33253112 - $05th + (3:2)21

IiI3¢4 a %N{3(b:x)(b{y)2klll + 3(ng)(b§y)2k222 + 4(biy)(b§y)2kl33

+ 4<b§5><b§Y>25233 + 1203:") (5312’) 532') + (a?) (591231512

+ [zcbiyxa’z‘xxag'b + (a’l‘x)<a’z’y)21k122}

+-%E(B{ysin y + Bgycos y)2 +-%(Iy/Iz)(B§y)2

+-%[B§x3{ycoszy + ngBgysinzy - sin ycos y(B:xB§y

+ B:xB{Y)] --%(I:/Iz)1/2B§ysin ycos YC§I --%;)

+‘I2 IzzB§y[(*1 + A3)‘13B{y/“1 ‘ *3)

+ (*2 + A3’C23Bgy/(A2 ‘ *3)]

-5%B§y(1ny/Iz)1/2(coszy/Al + sinzylxz)

I:I:¢5 "%N+3<biy)(b:x>2k111 + 3b2y(b§x)2k222 + 4(bixfibgyfikus

xx XYZ yy xx XX YY XXZ+ 4(b2 )(b3 ) k233 + [2(b1 )(b1 )(b2 ) + (b2 )(bl ) lkllz
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Table (9-1) (continued)

 

+ [20:’°‘)<byy)(b’2°‘) + <5”) <b’°‘)21k122}

§__ xx _ xx . 2 §_ xy 2
+ 16(31 cos Y B2 Sln y) + 4(Ix/Iz)(B3 )

XX

+ %{(B:x)(B{y)sin2y + BxxByycoszy + sin ycos y(B{YBZ
2 2

+ ByyB1)]- %(Ix2/Iz)l/szysin ycos 7(1/11 - 1/12)

_ 3 xy 1/2 2 2
533 (Iny/Iz) (sin y/Al + cos y/lz)

.l_ 22 xy xx

12I B3 [(*1 + A951331 /(*1 A3)

+ (*2 + A3)’;233}2{x/02 ‘ *3)]

12145 ---%N{3(b{y)(bzz)2k + 3(byy)(bzz)2k2
y z 6 11122

yy zzazz yy 22 2 yy 22 22
+ [2b1 b1a2+b2(b1) ]k112 + [2b2 b1 b2

22 2YY yy zz yy 22 yy zz 2
+bl (b2 )]1<122}+8—(B1 131 +132 32 )- E-[BI 131 :13

yy zz 2 yy 22 yy 22

+ B2 B2 ‘23 + C2341303132 + B2 B1 )1

L22 _zz 2_1xy _ 22
+ 16(Blcos Y B sin y) 633 [(A3 211)C13Bl /(A1

2

zz

+ (13 - 212)52332 /(12 - 13)]

‘ zz yy 2 zz yy 2

I 12° %N{3(b1 )(b1 ) k111 + 3(b2 )(b2 ) k222

+ [Zbyybyybzz + (b:Z)(b{y)2]k + [Zbiybgybgz
2 1 112

YYZ _.l KY 2 .§_ yy 2 yy 2

+ blz (b2 ) 1k122} 4(33 ) + 16[(Bl ) + (32 ) 1

-1 yy22 yyZ yyw

4[(31 ) 3+ (32 >‘23 + 2B1 B2 423413]

13)
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Table (9-1) (continued)

 

yszz + Byszz)]
-§ yy zz 2 yy 22 ' 2 _

+ 8[B B B sin Y sin ycos y(B1 2 2 1l 1 cos y + 32 2

_ 1 xy _ yy _ _ yv _

3B3 [(A3 2X1)Bl ‘13/(A1 *3) + (*3 2A2’32 ‘23/(A2 ‘3’]

IiIZ¢8 "%N{3b:z(b1x)2k111 + 3b22(b§x)2k222 + [Zbixngbiz

+ b22<bf>21km + when? +b32<b2>21k122

- %<B§y>2 + fi-t 031‘“)2 + (3’2“)21 - %[<B’f‘>2c§3 + (312°52c33

+ Zfong;23;13] +-%[B:x3:zsin2Y + ngBgzcoszY

+ sin Ycos “3:ngz + B§x3:2)1

+'%B§y[(*3 ' 2A1>‘13B)1‘/(A1 ‘ A3) + (*3 ‘ 2A2)‘23B}2{x/“2 ' ‘3’]

12I2¢9 ' %N{3b:x(biz)2k111 + 3b:x(b:z)2k222 + [Zbixbizbgz '

xx zz 2 x zz 22 xx 22 2

+ b2 (b1 ) 1k112 + [szxbl b2 + b1 (b2 ) 1k122}

3 22 xx zz 1 x zz 2 x 22 2

+ 8(fo31 + B2 B2 ) ’ 2[le31 ‘13 + B2sz ‘23

xx 22 xx 22 3 . 2

+ c23;13(B1 B2 + B2 B1 )] + 16(3131n Y + Bzcos Y)

.;.xy _ zz _+ 633 [(A3 221M133l /(A1 A3)

22

+ (*3 ’ 2A2)‘2332 /(*2 ’ A3)]

2 2 2 - yy 22 yy 22 x yy zz

InyIzolo %N[6b:xhl b1 klll + 6b§Xb2 b2 k222 + 2(blxb1 b2

22 yy 22 yy xx yy 22 yy 22 xx

+ bixbl b2 + b1 b1 b2 )k112 + 2(bfxb2 b2 + b1 b2 b2

22 yy xx zz xy 2 22 xy 2

+ b1 b2 b2 )k122 + 4b1 (b3 ) k133 + 4132 (b3 ) k233]
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Table (9-1) (continued)

 

.3. W W vixy2_ yy2

+ 8(31x31 + 32x32 ) + 4(33 ) ”[331”;13

yy 2 yy x yy

+ 32x32 ‘23 + (31x32 + B2x31 )‘23‘131

BXX%[BlzBl ZZBZZ

cosZY + BxxB:zsinzY - sin Ycos Y(Bl B2

BzzBxx 22 xx 2 2

+3132 )] + 8[Bl Bl cos Y + 32B22sin Y

- sin ycos Y(BlzzB332+ BzzBxx)] + %[B:zBiysin2Y

+ 32ngycoszY + sin Ycos Y(ByyB:z + Byszz)]

--%(Ixx3:x + Iyysiy + IZZBBiz) 2- %(Ixx3xx++1373};y

+ Izngz)2_233xy(Iz)1/2{[(1ny)1/2 + Izsin Ycos Y]/)\l

+ [(ley)l/2 — Izsin Ycos Y]/12} - %B§ycl3(8:x

’ B{KB/(*3 ‘1) 2Bgy‘23(32x B§YM3HA3 k2)

. - :1Izszyt(A1-3A3)B:zcl3/(Al A3)

22
+ (A2 - 313)§2332 /(>\2 - 13)]
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9.2 Fundamental Mblecular Constants of Ozone

The calculation of the theOretical centrifugal distortion

constants requires the following input data: the equilibrium geometry

of the molecule, the harmonic force field (which determines the

normal frequencies), and in the case of the sextic constants, the

cubic anharmonic portion of the molecular force field.

At equilibrium, ozone 1603 is known to have the geometry of

an isosceles triangle. The equilibrium apex angle Zoe - ll6°47(2)'

and the bond lengths of the equal-length sides of the isosceles

triangle, re - l.27l7(2)A, are well established through microwave

spectroscopyka’uu, with the numbers in parenthesis representing the

quoted uncertainties in units of the last decimal place given. The

above values allow determination of the equilibrium moments of

16
inertia for 03 as

2 2 2 2 a -40 2 _

Ix ‘Smrecos ae 7.868(10) x 10 g cm , (9 l)

I = 2mrzsin2a = 6.233(4) X 10.39 g cmz, (9-2)

y e e

-39 2

I2 Ix + Iy 7.020(4) X 10 g cm . (9-3)

18
For 03, the above values scale by a factor of (18m/1 6111) = 1.12531.

The most reliable harmonic frequencies, harmonic force field,

and cubic potential constants available for 1603 and 1803 at the

as

present time are those determined by Barbe, Secroun, and Jouve,

obtained through an analysis of thirty-three band center positions,

and these values were used for the present work. For the harmonic

frequencies of 16O3, Barbe et a1. give
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1

m1 = 1134.9(2) cm" , (9-4)

-1 _

”2 = 716.0(2) cm , -(9-5)

-1

w3 = 1089.2(2) cm . (9-6)

These are related to the corresponding As by

mg a Ai/Z/ch, s - 1,2,3. (9-7)

The fourth parameter needed for the complete specification of the

46

harmonic field was taken to be :31 as determined by Barbe et a1,

viz.,

:31 = 0.604(1). ‘ (9-3)

This value of :31 is more precise than, and consistent with pre—

44

vious determinations by Tanaka and Morino and also by Clough and

.+7

Kneizys who found

:31 - 0.60(l). (9-9)

Since

2 2
:23 + g31 = 1, (9-10)

we obtain

:23 - -c32 = -0.797(1). (9-11)

:31 = -§13 a +0.604(1). (9-12)

With these values, use of Eqs. (4-144)-(4-148) now allows calculation

of the angle Y associated with the normal coordinate transformation

and one obtains
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sin y = 0.836(2), (9-13)

cos y = 0.549(2), (9-14)

Y = 56°43(13)'. (9-15)

The angle 7 as well as the Coriolis constants have the same

numerical values for 16O3 and 1803 under the assumption of

1+8

negligible nuclear size effects due to isotopic substitution.

The signs of the Coriolis coupling constants :23 and :31 as

given by (9-9) and (9-10) are consistent with the arbitrary choice

of placing Y in the first quadrant. Different choices of

quadrant for y correspond to other mutually consistent choices of

phase for the two totally symmetric modes v1 and v2.

. For the cubic potential constants, the set given by Barbe,

L. s .

et al. was adopted. However, care must be exercised because the

signs of the cubic potential constants depend, in general, on the

choices of phase for the normal coordinates. In order to obtain

signs consistent with those of our y, :23, and :31, the cubic

potential constants were recalculated from the rotation-vibration

bk
a

interaction constants as measured by Tanaka and Morino , and

1+5

those of Barbe et al. The theoretical expressions for the a:

are well-established and are reproduced in the paper by Tanaka and

an

Morino . As a sample calculation, we have:

  

 

XX XX

1 2 3/4 111 3/4 112 2 1/2

2I A A 4wc I A

x 1 2 x 1

Y? yy

(1y 261.2. {381 k + 32—. k } + 3“2c°92 (9_17)

l 2 3/4 111 3/4 112 2 1/2

21 A A 4ncI A

y l 2 y l



with

and

Thus we can write the following relations for

a: = (1.2451x 10'3)k

oi . (3.6673 x 10'5)k

Z

“1'
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2

2 1/2 C13113

22

2 >‘3/4 k4'111A3/4 k112 2 1/2..-

21 41rchA1 ch A

z 1 2 z 1

F13 = A3/(A1 - A3) = 11.66977

K a -39

‘5;- 5.5987 x 10 g - cm

aix . 21: sin y = 4.690 x 10"20 g7 - cm

{y a 21: cos y = 8.669 x 10-20 g5 - cm

22 a _ B . ‘20 5 _
a1 212 :23 13.355 x 10 g

six . 21: cos Y= 3. 080 x 1020 g5 - cm

aZy - -21;sin y = -13.200 x 10.20 g11 - cm

22 a 8 a _ ‘20 5 -
a2 212:13 10.121 x 10 g cm

A: a 2.1378 x 1014 radians/sec

A: a 1.3487 x 1014 radians/sec

A: a 2 0517 x 1014 radians/sec

111

111

+ (0.5439 x 10‘3)k

- (3.7146 x 10'5)k

112

112

X

i, and oz:

+ 4.67705 x 10'

(9-18)

(9-19)

(9-20)

(9-21)

(9-22)

(9-23)

(9-24)

(9-25)

(9-26)

(9-27)

(9-28)

(9-29)

(9-30)

+ 3.21395 x 10"4

(9-31)
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z a -5 _ -5 -3

61 (4.4539 x 10 )klll (2.2453 x 10 )kll2 + 5.61252 x 10

(9-32)

44

Using Tanaka and Morino data, we have

a: . -3.037 x 10'3 cm‘1 (9-33)

ai = 2.540 x 10"3 cm'1 (9-34)

0: . 2.317 x 10'3 cm’1 (9-35)

while Barbe et al. data determined

a? a -2.981 x 10‘3 cm’1 (9-36)

oi - 2.554 x 10..3 cm.1 (9-37)

0: = 2.319 x 10‘3 cm'1 (9-38)

Thus these values are reasonably consistent. Using the newer data

45

by Barbe et al. , one obtains

(1.2451)klll + (0.5439)k112 = -43.79 (9-39)

(3.6673)1<111 + (-3.7146)k112 = -287.5 (9-40)

(4.4539)k111 + (-2.2453)k112 = -285.3 (9-41)

Solving for klll and R112 in the three possible ways gives

-1
klll -48.2, - 48.6, -49.8 cm , (9-42)

—1
k112 - +29.8, +30.7, +28.2 cm . (9-43)

The remaining cubic potential constants can be determined in a

similar manner. Using the average values of these constants and
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attaching the appropriate uncertainties to these quantities, we

obtain

k = -48 1(7) cm"l (9-44)
111 ’

-1
4222 +19.2(6) cm (9-45)

-1
k112 = +29.7(10) cm (9-46)

-1
klzz - -25.5(30) cm (9-47)

-1
k133 = -225.8(30) cm (9-48)

k a +59.3(10) cm'l (9-49)
233

This complete set of cubic potential constants is the same as that

45

determined by Barbe et a1 , except that positive sign is

obtained for k k112’ and k

222’ 233'

For our calculations, the uncertainties limiting the pre-

cision of the final results are principally determined by those of

sin y and cos y above, and by those of the cubic potential con-

stants. When the cubic potential constants as well as the harmonic

frequencies of 1603 are scaled by factors of (16m/18m)3/4

(l6m/l8m), respectively, they are in satisfactory agreement with the

and

corresponding experimental values for 1803 as determined by Barbe

45 “9

et al. A recent study by Hennig and Strey also confirms the

1+5

anharmonic force field of Barbe et a1.

9.3 Calculated Centrifugal Distortion Constants

One is now ready to calculate the sextic centrifugal dis-

tortion coefficients 91. The coefficients ¢i will now be
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separated into three parts: a harmonic part, an anharmonic part,

and a Coriolis part. The expressions for the 0 , as calculated by

i

Aliev-Watson and Sumberg-Parker for XYXEtype molecules, differ only

in part of the Coriolis portion. The calculated values for ozone of

the harmonic, anharmonic, Coriolis, and total 9 of Aliev-watson

i

and Sumberg-Parker are given in Table (9-2). The.Coriolis entries

list only the part of the Coriolis contribution which differs in the

two formulations. The matching parts have been included in the

harmonic contributions.

Numerically, the distortion constants range over more than

four orders of magnitude, with the harmonic and anharmonic contribu-

tions of comparable magnitudes. Generally, the harmonic contribu-

tions are better determined than the anharmonic contributions. The

quoted undertainties were arrived at by elementary standard methods

for propagating errors on the basis of the uncertainties specified

for the input data.

Table (9-3) lists the values calculated for the six non-

vanishing second-order centrifugal distortion constants SinceT1.

1
the smaller T are of the order of 10_6cm- and the largest 9

i i

is of the order of 10-8cm-l, the numerical separation by order of

approximation of the perturbation calculation seems adequate.

9.4 Reduced Hamiltonian
 

In order to effect a comparison of the calculated distor-

tion constants with the measured ground state constants of 160

50

recently determined by Maki from the

45

et al. from the v3

3.

v1 + v3 band and by Barbe

band, it is necessary to reconcile the
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Table (9-3). Calculated Second-Order Distortion Coefficients T

 

 

of 1603in cm.1 i

11 - -8.139(48) x 10’4 14 - -l.605(7) x 10"6

12 - -2.313(13) x 10'6 15 . +3.499(75) x 10'6

T3 = -1.221(4) x 10'6 r: - +0.23(13) x 10’6

To obtain the corresponding values for 1803, all entries should be

multiplied by (mm/18m)2 - 0.78969.

 

Hamiltonians used by these authors with the one used by us. As dis-

cussed in Chapter 6, one must take into account Watson's theory which

requires the Hamiltonian used to fit the data to be in a reduced form

such that no redundant coefficients, or redundant combinations of

coefficients, occur. The Hamiltonians used by Maki and by Barbe et al.

are identical in structure and very similar in notation. Inspection

of the Hamiltonian shows that the symmetric-top or H-formzs’51 is

used, and that the reduction is carried out by choosing one of the six

quartic coefficients and three of the ten sextic coefficients to be

equal to zero. Since the molecule is taken to be in the zx »p1ane,

one cyclic permutation is required to bring the molecule into the

xy plane. Carrying out the permutation and introducing the notation

25

of Yallabandi and Parker for the coefficients, it is determined that

H - Apz +.sz + 092, (9-50)
2 x y z

.444 -1422 ~*4 ~*22 2

H4 DlP + DZP Px + D3Px + D4? (Py — Pz)

~* 2 2 2 2 2 2
+ D5[Px(Py - Pz) + (Py - Pz)Px]’ (9-51)
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and

H6 = filpe + H2P4P: + H3P2P: + fi4P: + H5P4(P: - Pi)

+ H7P2[P:(P: - Pi) + (P; - P:)P:1

+ H8[P:(P: - 9:) + (P: - P:)P:]. (9.52)

As we have mentioned in Chapter 6, we use the tilde with the ex-

perimentally determined constants of the Hamiltonian, whereas all

constants calculated on the basis of theory appear without the tilde.

The particular reduction used is specified by

-* - -

D6 - H - H - H = 0. (9-53)

The Hamiltonian, Eqs. (9-50)-(9-52), must be arranged into the form

specified by Eqs. (5-2)-(5-5) in order to develop the relations be-

tween the two sets of coefficients. This is done by expanding

(9-51) and (9-52), retaining all Hermitian groupings of operators,

and comparing coefficients. The listing of angular momentum operator

identities given by Kneizys, Freedman and Clough51 in their Table II

is quite helpful in carrying out this calculation expeditiously. We

find that

a
n

. A + n4<-sfil), <9—s4)

w
e 4 ~ - -

- B + u (-8H1 - 4112 + 4H5), (9-55)

- C + Mane}?l + 4fiO
:

2 - 435). (9-56)

Also:
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~ ~* ~* ~*

Tl - + 02 + D3, (9-57)

'1' ~* + J:

2 D1 D4’ (9-58)

~ ~* ~*

T3 01 - 04, (9-59)

- 2* 2~

$4 01 - 4“ H1, (9-60)

T ~* ~* 1 ~* ~* 2 .” 2~ ~

5 (D1 - 05) + 2(1)2 - 04) + u (-4Hl - H2 + 2H5), (9-61)

- -* ~* 1 -* ~* 2 ~ - .

T6 - (D1 + 05) + 2(D2 + D4) +.u (+8Hl + 232 - 2H5). (9-62)

Furthermore,

01 - H1 + H2 + H3 + H4, (9-63)

02 - H1 + H5, (9-64)

03 - H1 - H5, (9-65)

.. 3.. ~ ~ ~

<14 - 51.11 + #2 + “5 + H7, (9-66)

5 - éfi + Q + ~ +31% + i + H (9-67)
5 2 1 2 2 3 2 5 7 8’

- 3~ 1~

06 "Efll - EHS’ (9-68)

.. 3... ~

37 EH1 +'%Hs’ (9'69)

- 3~ - - - - -

$8 Sal + Hz +‘2H3 "%H5 ' H7 ' Hs’ (9‘70)

- 3- - -

¢9 ' 2H1 +‘2H2 ‘ H5 ’ 37’ (9‘71)

010 - 3111 + H2. (9-72)

The reduction, Eqs. (9-53), is specified alternatively by taking

4. ~ 4. 2... ~ 2.. ~

T2 + T3 . 2T4 + 8“ H1 . 214 + 4H (02 + 93), (9-73)

.. .. 3 .. ..

96 + 07 2(02 + 03), (9-74)



Inverting Eqs. (9-57)-(9-62) and (9-63)-(9-72), and using Eqs.

(9-76) to eliminate T4, 56’ 57, and 5

and

U
:

U
:

w
a
-
N
a
-
H
a
-

10 gives:

1 ..

2(T2 + T3),

- - 2~

-(T2 + T3) + (T5 + T6) - 4“ H1,

1 1’

1..

2(T2 ‘ T3)’

1 ~ ~ 1 ~ ~ 2 ~ ~ ~
- 4(12 - T3) - 2(15 - T6) - 2a (3111 + H2 - H5),

+ 63) + (5 4 + 99).

-%(6 + $3) - 20134 + $9) + (95 + 98).

+53) + 61+ (044-99) - (55+ 58)

-%(52 - 53>.

_.%(¢2 - 53) +'%(54 - 59),

~ ~

1

To relate the experimental to the theoretical constants, the

25

equations are the following :

(9-75)

(9-76)

(9-73)-

(9-77)

(9-78)

(9-79)

(9-80)

(9-81)

(9-82)

(9-83)

(9-84)

(9-85)

(9~86)

(9-87)

(9-88)

(9-89)

(9-90)

required
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T1 = T1 + 0(4), 1 . 1,2,3, (9-91)

24 - 14 + 2nslll(0 - B) + 0(4), (9-92)

T5 = T5 + 2H3111(A - E) + 0(4), (9-93)

16 - i6 + zusmas - A) + 0(4), <9-94)

and

61 - 61, 1 . 1,2,3, (9-95)

¢4 . $4 + 25s113(i - A) + 4uslllciz 16) - 4nzsill(§ - A), (9-96)

¢5 . 5+ zus3ll(n - A) + 4uslll(i6 11) + 4uzsill(fi - A), (9-97)

66 - $6 + zusl3l(é - 6) + 4uslll(23 14) - 4uzsill(é - 3), (9-98)

¢7 . 57 + 2u5113(0 - 3) + ““5111(T4 -'12) + 4uzsill(é - B), (9-99)

68 - 68 + zus311(A - E) + 4151110:1 is) 4uzsill(1 - 6), (9-100)

69 . £59 + 211513101 - E) + 411511105 T3) + 4nzsmu'; - é), <9-101)

410 = $10 + 6u[(& - ii)s311 + (i - 1)5131 + (A - é)sll3]. (9-102)

As mentioned in Chapter 6, the coefficients S 1’ of second order
11

of approximation, and the coefficients $113, $131, and $311, of

fourth :rorder of approximation, are determined by the particular

reduction chosen.

9.5 Comparison of the Quartic Distortion Coefficients

~

we first examine the quartic distortion coefficients Di

given by Eqs. (9-77)-(9-82), with the T1 related to the Ti by

Eqs. (9-91)-(9-94). The T in turn, are given by
1’

Ti= '4H + 0(4), 1 . 1,2,3,4,5, (9-103)
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T6 =

9
4
h
:

(116 + 2r9) + 0(4)

=2 + 0(4), ' (9-104)

k
j
h
‘

in which the terms of 0(4) are not firmly established, other than

that they are very complicated. This necessitates approximating the

Ti by the corresponding T1, thereby incurring an error of 0(4).

Because of this, the terms of 0(4) in Eqs. (9—77)-(9-82) and (9-91)-

(9-94) should be dropped as well at this point, with the result that

to 0(2) we have that

-4 1

01 - -8-(12 + 13), (9-105)

-* 1 1 * - -

D2 - - 2(12 + :3) + 2(15 + 16) + znsulm - B) (9-106)

0* - 14 +-l(r + r ) --¥(T + 1*) - zus (é - 6) (9-107)
3 4 1 8 2 3 4 5 6 111 ’

-*. 1 '

D4 I. '§(T2 - T3), (9‘108)

0* l;<T T ) - l(r - 1:) + “S (2A - B - 0). (9-109)

5 16 2 3 8 5 111

In order to evaluate these, the value of S is needed. From

111

Eqs. (9-91)-(9-94) and again dropping terms of 0(4), we obtain

“S111 . (T4 - 4T4)/8(C - B) = (r5 - 4T5)/8(A - é)

* ~ .., ~

- (T6 - 4T6)/8(B - A). (9-110)'

-* -

Using Eqs. (9-57)-(9-62) and Maki's D1 to evaluate the T1, using

Maki's rotational constants A, 8, and C in place of A, B, and

C, and using the values of the T as given in Table (9-3), we find
i

from Eqs. (9-110) three independently determined values for the

dimensionless quantity u 3111, viz.,
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6 6 6
, -0.465(6) x 10‘

(9-111)

us - ~0.525(19) x 10' , -0.459(4) x 10'
111

respectively. These values are reasonably consistent, although the

error ranges do not overlap completely which can be attributed to the

neglect of the terms of 0(4). To proceed, we chose to use the

average value and the maximum uncertainty, viz.,

6
KS - -0.483(l9) x 10' . (9-112)

111

The distortion constants D: can now be evaluated. The calculated

values are listed in Table (9-4) along with the two sets of observed

values. In order to provide a common basis of comparison for these,

the uncertainties shown with both data sets were taken to correspond

to twice the reported standard deviations. The ratio of calculated

to observed values are also given. These ratios are the "best" ones

obtainable in the sense that the uncertainties are used in such a way

as to give ratios as close to unity as possible. For two of the five

coefficients, 0*

i

an overlap of the error bars of the calculated and observed values.

, this ratio is equal to unity which corresponds to

For the remaining three coefficients the agreement is close, but not

complete. This can again be attributed to the neglect of terms of

0(4), and on the basis of this assumption, the agreement may be con-

sidered satisfactory. From Eqs. (9-105)-(9-109) it is seen that

-* -*

$111 is not needed to determine D1 and D4, Numerically, the

-*

111-term to the value of D3 is negligible,

~*

and it is less than 3% for D2. The contribution of the Sill-term to

-*

the value of D5 is, however, the dominant one and amounts to almost

902 of the total value of 0

contribution of the S

5.
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The third column of observed values of Table (9-4) gives the

values of the second-order distortion coefficients corrected for

~*

vibration. For this calculation we used the values of Di of the

45

(100) and (001) vibrational states given by Barbe et a1. , and

2* 52

the D1 of (010) obtained by Bellet and his group from microwave

*

3

improved, but in general, the agreement is not substantially better.

data. For the largest coefficient D , the agreement is thereby

*

1

represent the equilibrium second-order distortion constants, because

The vibrationally corrected values of the D still do not fully

there remains a vibration-independent fourth-order difference between

these and the vibrationally corrected quartic ground state coeffic-

25

ients .

9.6 Comparison of the Sextic Distortion Coefficients

Calculation of the seven non-zero sextic distortion coeffi-

cients fii is based on Eqs. (9-83)-(9-90) with the 51 replaced by

the corresponding 0 of Table (9-1) according to the scheme des-

i

cribed by Eqs. (9—95)-(9-102). In Eqs. (9-95)-(9-102), the co-

efficient S111 is used as given by Eqs. (9-110), and the T can
i

be calculated from the experimental results with the aid of Eqs.

(9-57)-(9-62). Correlation effects among the T1 are not

considered in the present calculation. The coeffi-

cients 56’ 57, and 510 are eliminated from Eqs. (9-95)-(9-102)

through the use of applicable constraints, Eqs. (9-73)-(9-76).

According to Eq. (9-95), 5 and 53 in Eqs. (9-83)-(9-90) can
1’ 52,

be neplaced by 01, 9., and 03 respectively. The remaining seven

Eqs. (9-96)-(9-102) are used to determine the four combinations
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(55;: 58) and (54;: 59) needed in Eqs. (9-83)-(9-90) along with

the three coefficients S113, S131, and $311. Carrying out the in-

dicated calculations, we find

us - +1 45(275) x 10‘12 (9-113)
113 ° ’

as = -0 19(200) x 10'12 (9-114)
131 ° ’

us - +2 30(415) x 10"10 (9-115)
311 ° . ’

- - -9 -1
05 + 08 a -2.15(15) X 10 cm , (9-116)

~ ~ -9 -1

¢5 - 98 a +3.62(530) x 10 cm , (9-117)

54 + 69 - -1.63(345) x 10'11 cm'l, (9-118)

54 - 59 = +3.36(335) x 10~11 cmfll. (9-119)

It is seen that, with the exception of (55 + 58), the above quantities

are very poorly determined. This is principally due to the occurrence

of near-cancellation of the calculated sextic distortion coefficients

in the determination of S and S which, in turn, leads to

113 131

the remaining large uncertainties. As a consequence, we obtain

~

poorly determined values for H2, H7, and H8. Since (55 + 58)

constitutes the principal contribution to H3, this coefficient is

much better determined, as are H1 to H5 which do not depend on any

of the Eqs. (9-113)-(9-119), and i for which the 6 and ($5 + 5
4 1

contributions dominate. The calculated values of the fii are listed

50

in Table (9-5) along with the experimental values of Haki and

8)

46

Barbe et al. which are in remarkably good agreement. In Fig. (9-1)

we compare the calculated values with the experimental values. The
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agreement between observed and calculated values is quite good, with

the experimental values generally much more precise than the cal-

culated ones. The Sumberg-Parker and Aliev-Watson theories generally

give comparable results.

Another method of comparing calculated and observed results

is more indirect, but has the advantage that it does not require the

evaluation of 8113, S131, and S311. As a consequence, this method

leads to more precise calculated values and hence constitutes a more

exacting test of the theory. In this procedure, the constants S

113’

1, and 3 are first eliminated from the ten Eqs. (9-95)-S

13 311

(9-102), leaving seven linearly independent equations relating the

~

Qi to the 01, valid for any reduction of H6 provided only that

the reduction exists. Such a set of seven reduction-invariant re-

lations I is

1

11: 61 = 61, 1 - 1,2,3, (9-120)

9 1 9 ~ 1~
I4: 2 (0i) +-3010 = 2 (01) + 3¢10’ (9-121)

1:4 1-4

2 ~ 2‘* + 1 ~ ”* 9 122

2 2‘* “* 9 123I6. 68 + (1 - 6)¢5 = ¢8 + (1 - 6)05. ( - )

~ ~ 1 ”* ~ ”* 24I7. (1 - 0)¢9 - (1 - 0)¢6 ( + 6)¢9 - (l - 0)¢6. (9'1 )

where

A - 3.553666 cm-l (9-125)

3 - 0.445283 cm‘l (9-126)

5 = 0.394752 cm'l (9-127)

6 = (20 - A - §)/(A - E) - -1.032513, (9-128)
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and

«-
*=~ ~-~ - 22 ~‘~

¢4 O4 + 4h8111(T2 T6) 4“ 8111(B A), (9-129)

~ ~*

with 05 through 09 given by similar expressions, easily deter-

mined by reference to Eqs. (9-95)-(9-102) and (9-120)-(9-124). The

51 were obtained from the experimental results with the aid of Eqs.

(9-63)-(9-72). Considering the left—hand sides of Eqs. (9-120)-

(9-124) as the calculated values and the right-hand sides as the ob-

served values, and carrying out the computations just described, one

obtains the results summarized in Table (9-6). The precision of the

calculated values is much improved over that in Table (9-5). How-

ever, since some manipulation of the experimental constants is re-

quired, the attendant accumulation of errors leads to a loss in pre-

cision of the experimental quantities. In Fig. (9-2), we compare

the experimental values of the Ii with the calculated values. The

algebraic signs of six invariants are reproduced correctly by the

theory. With the exception of II, all error bars overlap and the

agreement can be considered satisfactory.
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Fig. (9-2). Comparison of the Experimental and TheoretiCal Values

of the Invariants Ii for Ozone
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Fig. (9-2) (continued)
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10. CONCLUSION

The Darling-Dennison molecular vibration-rotation Hamiltonian

and an order-of magnitude expansion of this Hamiltonian appropriate

for asymmetric-top molecules were presented. After outlining the

contact transformation technique as applicable to the expanded

Hamiltonian, the calculation by this technique of the second-order

(quartic) and fourth-order (sextic) centrifugal distortion coeffi-

cients was described.

The results of the calculation of the theoretical expressions

for the sextic centrifugal distortion coefficients for triangular

triatomic molecules by Sumberg and Parker were compared with the

results of the more recent calculation by Aliev and watson. All

discrepancies between- the two calculations were determined and fully

accounted for.

The complete set of quartic and sextic distortion coefficients

was calculated for the ozone molecule and compared to experimental

determinations appearing in the recent literature. To carry through

this comparison, extensive use was made of Watson's theory of re-

duced Hamiltonians. Agreement between theory and experiment was

found to be quite satisfactory.

Also in this dissertation, four linearly independent linear

combinations of the ten sextic centrifugal distortion coefficients of

triangular traitomic molecules are developed. These are independent

159
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of the cubic anharmonic potential constants and depend only on the

equilibrium geometry and the harmonic force field parameters of the

molecule. These expressions appear potentially useful as planarity-

conditioned constraints on the ten sextic centrifugal distortion

coefficients. Such sum-rule type constraints should normally reduce

the uncertainty of the experimental constants without interfering

with the deduction of the potential constants from.them and lead to

Hamiltonians devoid of indeterminable coefficients or combinations of

coefficients. The manner in which these original results might be

useful in the analysis of high-resolution vibration-rotation data

was discussed.
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