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J ABS TRACT

A NW -REGULAR SOUARED ERROR LOSS

SET COMPOUND ETIMATICN PROBLEM

By

Yoshiko Nogami

For an integrable function f 2 0, let .9(f) be the family

of distributions Pe specified by a density proportional to the

restriction of f to the interval [9, e + l) for e in a real

interval 0. The component problem is estimation of 9 based

on X distributed according to P9, with squared-error loss. For

a prior G on Q, let R(G) denote the Bayes risk versus G in

the component problem .

Let X1,...,X be n independent random variable with

n

each Xj having Pe 60(f). Let G

j

of 91,...,9n.

n be the empiric distribution

The work here is a generalization and continuation of

R. Fox's (1968, 1970) work. Under P6, the uniform distribution

on [9, e + 1), he constructed a Levy consistent distribution-

valued estimate an of Gn' When the e are iid G, he showed

the convergence to R(G) of the respective expected risks for

D with components Bayes versus an and for ¢ with components

~

direct estimates of the posterior means wrt G.

In this work we introduce procedures 9, ¢ and er (another

~ ~

direct estimate of the posterior mean wrt Gn)' We generalize
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Fox's an to .9(f) and , with all convergence rates for bounded

0, show that D(§, E) = E{n-1 22:1(@j(§) - ej)2] - R(Gn) is

0((n-110g n)%), even when f E 1, the boundedness of Q is

necessary for the convergence of D(§,E) to zero whatever be the

set compound procedure t. The proof is based on the bound obtained

for the risk difference in terms of Lévy distance. In this connec-

tion we obtain a unified generalization of Lemmas 8 and 8' of

Oaten (1969).

For a prior Gk on 0k, let Rk(Gk) denote the Bayes risk

. k . . .
against G in squared error loss estimation of 9k, based on

k k

.0. O = 0.. . = .0. bX1, ,Xk Let gj (ej¥k+1’ ,ej), J k, ,n and GD e

the empiric distribution of é:,...,é:. Then, QT for .9(f) and

05 for em, both have 0(n-1/<2k+2)

E{(n-k+l)-1

) for Dk(§,9
T) =

2 k k

z?=k(e*r,j(§) ‘ 93-) i ' R (Ga) and Dk(e,@). It is

_L

shown that D(O, QT) has exact order n 2.
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CHAPTER 0

INTRODUCTION

The set compound problem simultaneously considers n

statistical decision problems each of which is structurally identical

to the component problem. The loss is taken to be the average of

n component losses.

For a non-negative integrable function f, let .Q(f)

denote the family of probability measures {P919 6 a real interval Q}

with P6 specified by a density proportional to the restriction

of f to the interval [9, 9+1). In this thesis, the component

problem considered is the squared-error loss estimation of 9

based on X with distribution Pe 6.9(f). For any prior distribution

G on 0, let R(G) be the Bayes risk versus G in this component

problem.

Let X .,X be n independent random variables with

1". n

Xj distributed according to P9 . Let t = (t1,...,t ) be a set

. ~ n

J

compound procedure: for each j = 1,2,...,n, tj is an estimator

N

of ej based on X = (X1,...,Xn). Let Gn denote the enpiric

distribution of 9 .,9n and let1,..

-l n 2

i“ sj=1(tj(§> - 9].) ‘15 - R(Gn)U A (
D

H

v

II

(1)



A bootstrap procedure based on component procedures Bayes

versus an estimate of Gn will be called a two-stage procedure,

while a procedure based on a direct estimate of the component Bayes

procedure versus Gn will be called a one-stage procedure.

For the case where f l and Q = (-m,m),'Fox (1970)

exhibited a distribution-valued Levy consistent estimate an of

Gn' In the Empirical Bayes problem where the 9i are iid with

common distribution G, Fox (1968, §4.3) obtained a convergence

rate 0(1) of the expected risks to R(G) for a two-stage pro-

cedure E based on an and for a certain one-stage procedure 9.

The behavior in the compound problem of the generalizations

of these procedures is the subject of this thesis.

If sup{\D(e, t)\ : e E 0n} = 0(n-Q), then we will say t

~

has a rate a. All rates are obtained only for bounded 0.

Chapter I is concerned with a two-stage procedure E. In

Section 1 an upper bound of D(§, D) for 3 based on any distribu-

tion-valued estimate G of CD is obtained. In Section 2 we

show that there is E based on the generalization On of Fox

(1970) with a rate

Chapter II is specialized to f E 1. We here deal with

two one-stage procedures ET and ¢ (the latter is completed in

~

Chapter 111) where ET is based on retraction of the Bayes estimate

versus a raw estimate of Gn to the interval (X-1,X], while

m is based on estimates of a modified form of the Bayes estimate

versus cm. In Section 1, a ET with a rate % is displayed and

in Sections 2 and 3 it is shown that 9T has exact order % at

e = 0. Section 4 shows that at e = 0, 9 is sometimes better than

gr.Section 5 shows that when 0 = (-m,m), there is no sequence of

estimates E of g for which D(g,£) converges to zero.



Chapter III considers the k-extended problem. For any

k k

prior distribution G on Q , let Rk(Gk) denote the Bayes risk

against GR in the squared-error loss estimation of 6k based

k k

on X1,...,Xk. Let ej — (ej4k+1’°°"ej)’ j — k,...,n, and GD

~

be the empiric distribution of é:,...,é:. Then,

k k ___ -1n _2_kk

(1 ) D (g. E) f(n4k+1) Zj=k (tj(§) ej) d5 R (Gn)

is used as the standard in the k-extended problem.

In Chapter III we exhibit two one-stage k-extended procedures

QT for .9(f) and ¢ for .9(1) with Q bounded. These are

respective generalizations of QT and @ introduced in Chapter II,

1

~

and have rate (2k + 2)-

In Appendix, unified generalizatiw at Lemmas 8 and 8' of

Oaten (1969, Appendix) is introduced in connection with Chapter I.

Notational Conventions.

P and P abbreviate P and Xn P , respectively.

j ~ 9. i=1 91

A distribution function also represents the corresponding measure.

We often let P(h) or P(h(w)) denote jh(w)dP(u0. G abbreviates

the empiric distribution Gn of 91,...,9n. R denotes the real

line. We often abbreviate y-l to y'. We denote the indicator

function of a set A by [A] or simply A itself. ]?or any

b

function h, hjb or [h(o)]a means h(b) - h(a). V and A de-

a

note the supremum and the infimum, respectively. é denotes the

defining property. We also use the notations a+ é 0 V a and

a 5 (-a)+, When we refer to (c,d) in the same section that we

are dealingwith, we simply write (d). Lemma b.d means Lemma
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d in Chapter b. The symbol ' is used throughout to signal the

end of a proof. EX and Var(X) mean the expectation and variance

of a random variable X.



CHAPTER I

A BGJND AND RATE FOR A TWO-STAGE PROCEDURE

§1.0. Introduction

Let f be a measurable function with 0 s f s 1. With

g Lebesgue measure,we define q(e) é (fg+1 f d5).1 and assume that

q is uniformly bounded by a finite constant, say m. Letting

p é dPe/dg we denote by .9(f) the family of probability measures

6

given by

(0-1) 9(f) = {P9 with P6 = q(e)[e.e+1)f, V e E o)

where Q is a real interval. The above assumptions apply through-

out the body of this thesis.

Let X1,...,Xn be n independent random variables with

each X distributed according to P

j j

abbreviates P . Denote the empiric distribution function of

j

91,92,...,en by G without exhibiting the subscript n. With

69(f) where PJ,

squared-error loss, let 90

procedures are Bayes against G: QG(X) é (91n,ezn,...,enn) with,

be the procedure whose component

for each j,



(0.2) ejn = 6(9 Pe(Xj))/G(Pe(xj))

x, x

= I J ecI(e>dc(e>/jj q as
xj'+ X.'+

where y' is an abbreviation of y-l and the affix + is intended

to describe the integration as over (X3, X.]. Henceforth we delete
J J

+ in lower limits of I s.

A bootstrap procedure based on component procedures Bayes

versus an estimate of G will be called a two stage procedure.

Let G be a distributiondvalued estimate of G. Define

E = (©1,...,©n) to be the two-stage procedure such that, for each

j, ©j(X) = gjn is of form (0.2) with G replaced by C (0/0 is

understood to be Xj).

The modified regret for a procedure t is of form

~

1_ - .n _ 2 _ _ 2

(0 3) D(e,g) — n zj=1{§(tj(§) ej) {(ejn ej) I .

In §1 we exhibit an upper bound of D(§, E) (uniform wrt

9 in 0? when Q is bounded) in terms of L(G,G), relying on

Proposition A and Lemma A.3 in Appendix. In §2 we construct a

particular distribution-valued Lévy consistent estimate G of G

for Q = R. To show consistency, Theorem 2 of Hoeffding (1963) will

be used. Under the additional assumption that l/f satisfies a

Lipshitz condition, we show by making use of the bound in §1 that the

modified regret D(9, E) has a rate %-- when 0 is bounded.

In both sections, L abbreviates L(G,C), and (ajb) or

(b) ‘mean (a,b) or (b) with G replaced by an estimate C.



 

§l.l. An Upper Bound of the Modified Regret for E .

In this section we shall exhibit a bound of the modified

regret D(e, D) for the two-stage procedure 9. To do so, the main
~

development is Lemma 6 in which we show that the average expectation

of ‘an - ejni over the set where L < e is bounded by at most a

constant times 6- For the proof of Lemma 6 we use a special case

of Lemma A.2 of Singh (1974) and Proposition A and Lemma A.3 in the

Appendix. Lemma 6*, which improves the bound of Lemma 6 in the

special case where f E l, is included because it also illustrates

a different proof.

Let Q [c,d], where -m < c S d <'+m, throughout this

section. Let G be a distribution-valued random variable which is

an estimate of the empiric distribution G, obtained from

X ,...,X . Since X! < e s X, by (0.2) whatever be the distribu-

1 n J jn J

2 2 .

tion G, \(B. - 8.) — (9, - ej) \ s Z‘gjn - 0 Hence, it follows

Jn J Jn jn\°

from (0.3) that

(1.1) 2'1\D(§, EH s In’1 2,

Now, Lévy distance for two distribution functions is defined by

(A-1-1)- For fixed j, since \gjn - 9 S 1,

Jn‘

for any e > O

(1.2) PI’e.

Jn - ejn‘ SEE?” > 61+?“ng - ejnmi S 6])

Q



Before dealing with the second term of rhs(2), we introduce

four lemmas.

Lemma 1. For any a 2 O and 6 2 0 with e +16 < l,
 

-1 n

n 2j=1AjSI+d-c

where V j,

X.-6 _1

Aj =Pj{[ej + 5 sxj < ej + 1 - eyj‘xjHe q (16) }.

E£22£- Since V j,

(1.3) A]. =j {q(ej)[ej+5 s y < sing/K}; q dG}f(y)dy

and the average wrt j of the numerator of the quotient in rhs(3)

equals the denominator, it follows that

-1 n Y'O

. A. = - .2J=1 J fij,+eq dG > 0]f(y)dy s 1 + d c

Lemma 2, For an arbitrary distribution function F of a

random variable and any s,t 6 R with s < t,

u+t

Proof. By the Fubini theorem f F]§:: dy = f Xu+s

t-s..

dy dF(u) =



Lemma 3. For s,t E R with s s t and for any n E R,

(1.4) n'1 2‘} B s t-s

J=1 j

where V j,

Xj-s X_+T]

B. =P,G - sx, ,+1- J, dG .

J J lxj-Jej ‘I J < eJ “Vixjm q I

Proof. As in the proof of Lemma 1, V j,

q(ej)[ej + T1_ S y < 91“ - m]

y+TI

j q dG

y '+TI

 
(1.5) Bj = j 13(y)c;]y"S dy .

y-t

Since [9]. + TL sy< ej+1 - n+1=[y'+n+< ej 5y - TL], the

average wrt j of the numerator in the quotient is no more than

the denominator. Also, since f s 1, taking the average wrt j

and interchanging the integral and average operation leads to

lhs(4) s f(G(y-s)-G(y-t))dy, hence does not exceed t-s by Lemma 2..

Lemma ‘1- For all s E R,

X.

(1.6) [1'1 22:1 {{HG'éNXj'SHEi s G,w‘XJ, q as} g e(3+d-c)

J'

Proof. For j fixed we let 2 = Xj -s. By the definition

of L and remark stated after (A.l.l) (that the infimum in the

definition of Lévy distance is attained), if L s 6: then
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(1.7) (G') 56' s (G')

-3 6

where . denotes addition of the identity and the pre-subscripts

denote composition with those translations. Hence

I(G-é>(z)I[i s e] sc'J:_€ v G']

+

S e + G]:_:

Hence,

X

(jx. q d0) 1
-1 Zn

lhs(6) s an Zj—_1P j

‘1 n Xj-S+e j

+ n Zj_1 P jx(Gl S_€/j::. q dG)

Lemma 1 with e = 6 = 0 and Lemma 3 with (s,t,n) = (s-e,s+€,0)

lead to the bound of Lemma 4.‘

We will invoke a special case of Lemma A.2 of Singh (1974,

Appendix) in the proof of forthcoming Lemma 6, and also in later

sections (§2.l and §3.l).

Lemm§_§_(8ingh (1974)). For real random variables Y and

Z, and real numbers y and z,

E(\§" :jAl) s 2\z\-1[E‘Y-y\ + (\Zj + l)E\Z-z\}
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We shall now get an upper bound of the average wrt j of

the second term of rhs(2).

Lemma 6. For a > 0,

'1 n

2j=1'3(Iejn - ejn\[i s 6]) s aoe

where = 4m{16 + 21m + (6+9m)(d-c)].
30

Proof. Fix n and e e [o,d]“. We also fix j thru (19).

X abbreviates Xj. Since (0.2) - X' = fi. (G-X')q(9)dG/j:, q(e)dG,

we abbreviate the quotient of the rhs to y/z and that with G

replaced by C to Y/Z. Then,

(1-8) B. - ejn = Y/Z - y/z

Let * denote conditioning on X and [L s 3]. Then, by

Lemma 5 and by the fact that o s'Y/Z, y/z s 1,

(1.9) §*\%-- :1 s.§-R*(IY-y\ + Z‘Z-Z‘)

By letting I = (X',X], GI and GI are defined in PrOposi-

tion A in Appendix. Then, by Proposition A,
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where

(1.11) s = \(c -E;)(x')'\ and r = \(c -&)(X)I

Thus

(1.12) when Lse,L seVSVTse+S+T-°-},.
I

By applying Lemma A.3 in Appendix, with h(e), the restriction of

(e-X')q(e) to (X',X], and weakening the resulted bound, when

LI 3 1,,

(1.13) jY-yj s 2041+) + m(S+‘I‘)

To bound a(k+), pick w1,w2 E I such that 0 < w -w1 < x.
2

Now, by the definition of h,

wz wl-X' m2

(1.14) th1 = (wz‘wl)(Q(w2) + w2_w1 Qle)
 

But, since by the definition of q,

w2 w2 w2+1

qlwl = <I(un?_)<1(wl)(j'w1 f(s)ds - [001“ f(s)ds)

and since q s'm and O s f s l,
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w
2 2

(1.15) jqu1\SIn (u)2 - ml) .

Thus, from (14),

\hlmli 50132 - w1){q(w2) + (m1 - x')m } ,

Using q s m, ml - X' s l and w2 - ml 3 x, and applying the de-

finition of 0(h) gives us that

U.)

2.
(1.16) a(k) S V{\h]w1\: for w1,w2 E I 3 O < wZ-wl < A}

s Mm + m2)

and thus the same bound applies for a(k+)-

Therefore, applying the bound of (16) to the first term of

rhs(l3) shows that when LI 3 x,

2 2

(1.17) \Y-y\ s2(m+m)e+(3m+2m)(s+T)

Similarly, by Lemma A.3 in Appendix with l s h 5 q Sin,

when LI 3 1:

\Z-zj s 20(X+) +-m(S +'T)

Since by the definitions of 0(K) and q and by (15)
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U.)

2 .om s vTIquII . for calm, e I 9 o < oz-ol < u

2

smh.

a(x&) is also bounded by m2). Hence, as in (17) when LI 5 A:

(1.18) \z-zI s 211126 + (m + 2m2) (S + T)

Therefore, by (17), (18) and (12), when i s e,

(1.19) \Y-yI + 2\z-z\ s 2(m + 3m2)e +-(5m +-em2)(s +IT)

By this and in view of (9) and (8),

-l n

P .n Zj=l ~(\eJ n“ BjnHL S 6])

2 -1 n -1

s ’ m + 3m n E, P,z4( )e( 3:1 J )

+ 2(5m + 6m2)n'lzr3Fl {{(8 +T)[L s e]/z} .

We apply Lemma 1 to the first term and use Lemma 4 twice to the

second term. The result is the bound of Lemma 6..

The following theorem is an immediate consequence of (l),

(2) and Lemma 6.
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Theorem I, If Pj €'9(f) with Q = [c,d], for j = 1,2,...,n

then V 3 >0,

Z-IjD(e, b)‘ s'PEL > 3] + aoe uniformly in 9

N

where so is as defined in Lemma 6.

We can prove a strengthened version of Lemma 6 for .9(l)

using an alternative proof. To do so we need to introduce the follow-

ing lemma.

Lemma 7. Let T be a signed measure, h be a measurable

 

function and I = (y',y] be an interval with El h dT # 0. Let

T be the signed measure with density Ih/yI h dT wrt T. Then,

Y

1 I I

f5 dTy(S) = y - f0 Ty(y , y +t]dt

Proof. By Fubini's theorem applied to the lbs of the second

equality below,

Y " f8 d'ry(s) = j. f:_y.dt dry(s) = j; Ty(y', y'+t]dt ..

Since G(X) - G(X') 2 n-1, it follows by two applications

of Lemma 7 above with h = 1, T = C and G to gjn and ejn

(cf. (0.2) and (675) with q = 1) that if G(X) - 6(x') > 0, then

.1 .
(1.20) ejn - ejn = 30 (w - W)dt
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where for 0 s t s l,

X '+I:

(1.21) ‘W = Glx. IGJE.

A A

and W is given by (21).

 

~k -

Lemma 6_. If Pj6@(l),j=l,2,...,n, then for 0<€<21,

-1 n

(1.22) n 2j=1 3(Iejn - ejn\[i s 6]) 3 8(2 + d-c)e .

Proof. Fix j until (35). Since ‘ejn - ejn‘ s l,

(1 23) A - s [EJX = O] + A [C X 0

, . x-e . x
Now, if L s s, then (7) holds. Hence, G]X,_e s GJX' + 23 Thus

5 X A X's

(1.24) ELGJXI = O) L 5 3] S PEG]x1+€ S 26]

5P, .SX< ,+ +P, .+1- SX 3+1JIGJ SJ 6] J19] e < 93 ]

X-e '1

+2 P ,+ 5X< .+1- G , '.6 jU-GJ 6 9J e]( ]X +6) }

Therefore ,



17

(1.25) o'1 22:1(lhs(24)) 5 2(2 + a - c)€

because both the first and second terms of rhs(24) do not exceed

-1

e and (23) (third term of rhs(24)) s l + d - c by Lemma 1

On the other hand, by (20) and weakening the integrand,

. . x
(1.26) qujn - ejnIIGJX. > 0. i 5 el)

1. ,. ..

egqotw - win, 3 ejdt)

For any a, b and z E R, when a S b, ((a-z)/(b-z)) = l -

((b-a)/(b—z)) decreases from 1 to zero as 2 increases from -m

to a. Applying the above analysis to the representation (21) with

a, b and 2 defined by positional correspondence in (21) and then

applying (7) at X', we obtain that for 0 s t s l and L s e

ELX'+t1-GLX'+e)-e S Q S ELX'm5(X'J)+e

C(X>~G(X'+e)-e é<X>-G(X'-e)+e

Finally, making the lower bound smaller (and the upper bound larger)

wrt G(X'+t) and G(X) and weakening by another four usages of

L < 3, results in



l8

X'+t-e

X'+e

X'+t+€

(1.27) (6] X._-2€)/GJ:T_:€ s W s (G] + Ze)/G]§:E€

Note for future use that if u S‘W s v, then

(1.28) jW-W\g(W-u)++(V‘W)+-

Now, for any a, b, y and z E R

(1-29) Z{b/a - (y-Ze)/Z) = 2e + (b-y) + (b/a)(z-a)

Let u = lhs(27). With W é- b/a and u 5 (y-Ze)/z where the corn-

ponent quantities are defined by positional correspondence in the

definitions of W and u, (29) and the relationships

X '+t X'+€ ,

X'+t-e + ij. give

X+

z-a s ij e, O s (b/a) S l, and b-y = G]

X+e X '+t X '+e X+

(1.30) (GIX.+€>(w-u> s 2s + G]X'+t-e + GJX. + GTX 8 .

Similarly, for any a, b, y and z E R,

(1.31) z((y+2€)/z - (b/a)) = 23+y-b + (b/a)(a-z)

Let v = rhs(27). With v = (y+2e)/z and w = b/a where the
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corresponding quantities are defined by the positional correspondence

in v and W, (31) and the relationships a-z s G]: , O s (b/a) < l

'e

_ X'+t+e X'

and y-b — G1X"+t + G]X._e show

X-e X'+t+e x' x

1032 - + + g( ) (GJX1_€)(V W) S 26 GJX‘+t + GJX._€ GJX_€

(26), (27), (28), (30) and (32) together give us that

(1.33) IN - WILL s e] s (6]:Tie)"1(rhs(30)) + (G]§:E€)-1(rhs(32)).

1 X'+t 1 X'+t+€
dt 3 dBy Lemma 2 , f0 ]X'+t-e e an IQ G1X'+t dt 3 €-

Thus

1

(1.34) f0 rhs(33)dt s a'+ B

where

_ X'+e X+€ X+e

oz - (3s + GJX' + ij )/G]X,+ and

X' X X-e

= +
a (36 + G]x!_€ G]X-e)/G]X'

l

Bounding I01h8(33)dt by 1 (since 0 5W, W s 1) over the sets

X-1[ej, ej+e) and X-1[ej+l-e, ej+1)’ and extending the set
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X-ILGj + e, ej+l-e) in two different ways (as shown below) we get

(1.35) n-1 33:1 P(J‘éjw - {TILL s e]dt)

-1 n

+ . P . s X < .+1-S 26 n ZJ=1 j(aIGJ SJ 6])

+ n.1 2‘? P.(B[0.+e s X < e.+1])
J=1 J J J

By applying Lemma 1 with q = l, twice and Lemma 3 four times to

the second and third terms of rhs(35), the second and third terms

of rhs(35) are both 5 33(l+d-c) + 23.

Hence, in view of (35), (26), (25) and (23) we recognize

that the sum of rhs(25) and 2€.+ 2{3€(1+d-c) + 23} gives us rhs(22)..
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§1.2. A Particular Procedure % with a Rate (l/4)-.
 

We first construct a normalized (but not monotonized) estimate

G* of the empiric distribution function G. Main work in this

section is, under the extra assumption on f (Lipshitz condition

for l/f), to obtain the generalization (Lemma 8) of Lemma 3.1 of

Fox (1970). Then, we exhibit a distribution-valued estimate G

of G. Lemma 9,showing Lévy consistency of G to G, will be

proved as in the proof of Theorem 3.1 of Fox (1970) by using Lemma

8. Finally, Theorem 2 shows that there exists a procedure E with

a rate (l/4)-.

In addition to the assumption on f in the introduction of

Chapter I we now assume that l/f satisfies the Lipshitz condition:

1I(2.1) v{(v-u)' (f(v))-1-(f(u))-1'I : u < v} sM

for a finite constant M.

Let Q = R until the proof of Lemma 9 is ended. Let Q be the

distribution function defined by

Q(y) =fiquo,vy,

Then, letting 5 5 I deG(e)’ we have by the definition of pa

that 66:) = f(y)(Q(y)-Q(y')) and thus

= 21121
(2.2) Q(y) 2f(y_r)
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where 2 abbreviates 2m=0 throughout this section. Since

r

q 2 l and q is the density of Q wrt C, it follows by Theorem

32.B of Halmos (1950) that

(2.3) em = fl, (q(e)>'1dQ(e)

For each y, we let

‘1: -1 n

F = X. S(y) n 2j=1[ J Y]

and for any h > O

a - * +h

(2.4) at (y) =h 1F 13, .

We allow h to depend on n and assume h < l for convenience.

Let P'é fPedG. Then, 5 = dP7d§ where g is Lebesgue measure.

We estimate p(y) by AF*(y) and Q(y) by

7': *

(2.5) Q (y) = $(AF (y-r)/f(y-r))

Note that Qx has bounded variation because of (1). From the

relation (3), we obtain a raw estimate W. of G from

(2.6) We) = floo(q(t)>’1dq*(t>
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* *

Since F (y) s.G(y) s.F (y+l) for all y E R, we furthermore estimate

G at a point y by

* * — ~k

C (y) = (F (1') V NW) A F (y+1)

Following Lemma 8 is a direct generalization of Lemma 3.1

of Fox (1970) in the sense that if f :-:— 1, then m = l and M = 0,

and hence we get his bound 2exp{-2nh232}.

Lemma 8. If 0 < h s e s 1, then for each y

(2.7) Racers-e s c*<y> sc<y+e>+e1°>

2nh2( ( e-bh)+) 2

 

sZexp-

2
1+4 - +3 M

{ (9m) 9(1) > }

where 8 = min 8 , 9 = max 9, and b = 2-1m(2M+3(1 AM)).

(1) . (n) . i
1sisn ISlsn

P1:_gg_f_. For y > 6(1)) + l, F*(y) = 0*(y) = G(y+3) = l and

for y < 9(1) -1, F*(y+l) = 6*(y) = G(Y'e) = 0; in both cases

lhs( 7 ) = 0 and ( 7 ) holds trivially.

For y 6 [9(1) --1, G(n)+l] it is sufficient to prove the

lemma for the raw estimate W. For if G(y-e)-e SW(y) s G(y+e)+e,

then. since G(Y‘e)-e $G(Y) S F*(Y+1) and F*(Y) SG(Y) SG(Y‘+e)+€:

it follows that mm)... s W(y) A F*(y~+l) s c*<y) s No) v F*<y>

s G(y+e)+e.

Pick y E [9 Since the summation on r in(”-1, G(n)+1].

(5) involves at most a finite number of non-zero terms, we shall
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freely interchange integral and summation on r without further

comment. In fact, if the r-th term is non-zero, then

r s y - 9(1) + h and, for y s 9(n) + l,

(2.8) r s e - 6 + 2 5 a - 1

(n) (1)

For each j, let

1 l
(2.9) N]. = 2: flm(q(t))' dt{[t-r < xj s t-r+h](h f(t-r))'} ,

where the subscript t in dt denotes the variable of integration.

By the definition (6) of W,

We are going to find an upper and a lower b0und of PW(y)

in order to apply Hoeffding's bound (1963, Theorem 2). To do so we

shall find an upper and a lower bound of PW , V j. Fix j until

(24). We use the corresponding notations without subscript j until

(28). Now, Proposition 111.2.1 of Never (1965) gives us a version of

the relation E E(h(t)\X) = Eh(t) for an integrable function h

and probability measures. But, because of its proof it holds for

finite measures and hence by two applications of it, it holds for

finite signed measures.
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Hence,

1 l
pe{j‘3:m(q(t))' dt([t-r < x s t-r+h](f(t-r))‘ )

= Km(q(t))’1dt{r>e([t-r < x s t-r+h](f(t-r))'1)}

Thus, by the definition of W

(2.10) 3 w = «9) z flw<q<t>f1dts<m>

where

(2.11) s<c> = (f(tn‘lh'l Thu, 5 s < e+ljf(s)ds

Because a function satisfying Lipshitz condition is absolutely con-

tinuous (cf. Royden (1968), p. 108, Exercise 16(a)) and the product

of two absolutely continuous functions is absolutely continuOus,

S(--r) is absolutely continuous. Since l/q is clearly absolutely

continuous, S('-r) and l/q are both of bounded variation.

Applying integration by parts (Saks (1937), Theorem III.14.l) and

using d(q(t))-1 = (f(t+l)-f(t))dt gives us that

- - 1
(2.12) flm(q(t)) ldtS(t-r) = 361%? - Km S(t-r)f]:+ dt .

Now, by the assumption (1),
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(2.13) ‘§%:))- - 1" ijs-tj .

Until (22), we use the notation

- +
(2.14) A(t) = h 1f: h[e s s < 9+1de

Applying (13) to the definition (11) of S and doing exact

integration leads to the inequalities

(2.15) l - 12—1" 5 3(t)/A(t) S 1 + lid-l .

- +h

Moreover, because ZA(y-r) = h 1 fy [6 < tjdt,

y

[e s y] s Eh(y-r) S [e s y + h] .

Hence, weakening the bounds by a usage of [e s -]/q(y) s 1, shows

that

2 16 LQ_§;Xl _Iflfl S QJLEXZEL ( £0 S x+h| +13h

( . ) q(Y) 2 q(y) T Q(Y) 2

On the other hand, in the integral of rhs(12) we make a

change of the variable t-r to t to get
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j: S(t -r)f]:+1dt = j‘3(t)[t s y-r]£]:::+1 dt

Let [2] denote the greatest integer s 2 if z > 0 and -1 if z < 0.

Since z[t e y-r](f(t+r+l) -f(t+r)) = [t s y](f(t+[y-tj+1)-f(t))

= f(t+Ey-fij+l)-f(t) (the latter because [y-fi] = -1 if t > y),

it follows that

(2.17) g “I“: S(t-r)f]:+1dt = j s(t)f]:+D'tj+1 dt

By one usage of (15) and the fact that 0 < f s l and

j‘g(t)dt = 1,

(2.18) Ij<3(t>-t<t))f]:+D'U+1 dtI

Mh t+ -t-+1 Mh

S E“ jA(t)\f]t [y :3 \dt 3 2_ .

From the deviation, (17) holds for A in place of S. Thus,

t

(2.19) j‘Mt)f]t+[—y-t-j+l dt = flea £A(t-r)f]:+1 dt

But, by a change of variable s+r = u in the definition (14) of

A.
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h 2 Q(t-r) Z ft+h[e.+ r S u < e +-r + l]du

(2-20) :+h[e S u]du

= [e-h s t < e](t+h-e) + [9 s tjh .

Therefore, (19) equals Aim h-lrhs(20)(f(t+l)-f(t))dt which becomes

(2-21) {[e-h S y < GHQ}, +1.6 S fljgm) 3%:3 f]:+1 dt

+ [e s yum f]?-1 dt) .

Since I£(t+1)-f(t)\ s \(£(t))'1-(f(t+1))’1'| A 1 SM A 1 and

5:6: (t+h‘9)dt S h2/2, \first term of (20)\ S (M A l)h/2. (19) thru

(21) together give us that

t+ -t +1 t+l

(2.22) dfg(t)f]t [y 1 dt - [e 3 fig); fjt dt)‘ 3 (M A l)h/2 .

Therefore, by (22) and (18), in view of (17)

(2.23) [G s yjq); f]:+1 dt) - (M + MAD}:

s lhs(17) s [e s y] it, f]:+1 dt + (M + MAD}; .
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Therefore, from the relations (10), (12) and the bounds (16), (23),

we can see that (P W)/q(e) is bounded above and below by (rhs(16) -

lhs(23)) and (lhs(l6)-rhs(23)), respectively. Since

t+l

[e s y+h]/q(y) - [e S y+h]/q(e) = [e s ylj}; flt dt

9 t

+ [y < e s y+hljy flt+1 dt

for h 2 0, weakening the above bounds by using

+h e fjt dt s (M A 1)h
[y < 9 S y 1f)! t+1

and q S m results in

(2.24) [eSyj-bhsPWS[QSy+h]+bh

where b is as defined in the statement of this lemma.

Averaging (24) wrt j gives

(2.25) G(y) - bh s P W(y) s G(y+h) + bh

In order to apply Theorem 2 of Hoeffding (1963), we shall

furthermore need to get an upper and a lower bound of W. As for

the derivation of (12), l/q and l/f(--r) are of bounded varia-

tion, and integration by parts gives
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fim(q(t))-1dt([t -r < X s t-r~Pn]/f(t-r))

 
 

 

 

(2.26)

= [y-r < X S y-r+h] _ [y Lt-r < X S t-r+h] f:‘t-Fl dt

f(y-r)q(y) -oo f(t-r) t: °

Then, in view of the definition (9) of W,

hW = E lhs(26)

(2.27)

1 Ly-r < X sy-r+h] y f(t+j:y-t1+1)
=——- - t<XSt+h -ldt:

Q(Y) f(y'r) j-al ]( f(t) )

In the summation of the first term of rhs(27), there are at

most two positive terms. Applying (13) and then (8) gives that

with a as defined in (8)

O S first term of rhs(27) S 1+2aM .

In addition, by two applications of (13) and the fact that

y-th S a-l (because y E [9(1)-l, 9(n)+l], 9(1) S X and h < 1),

\second term of rhs(27)‘ S aMh

Therefore, weakening the bound by using h < 1 shows

-aMSW Sl+3aM.
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Now, we go back to (25). Since h S s, using the second in-

equality of (25) and applying Theorem 2 of Hoeffding (1963) gives

131%) > G(y+e)+c] s {[1760 - My) > e-bh]

(2.28)

2nh2((e-bh)+)2
 

S exp -

i (1 + 4aM)2

Furthermore, by the first inequality of (25),

{W(y) <;G(y-e)-e} C1{P W(y) - W(y) > e-bhj. Hence by the symmetry

of the tail bounds,‘P[W(y) < G(y-€)-e] has the same upper bound,

rhs(28), which together with (28) gives us the asserted bound of

Lemma 8.‘I

We let 6 = N-l, N being a positive integer depending on

n, and consider the following grid on the real line:

.-< -26 < ‘6 < O < 6 < 26 <... . We finally estimate G at y by

A *

(2.29) G(y) = supr (jS) : jé S y, j = 0, i_l,... }

Let L = L(G, G be Lévy metric of G and G (cf. (A.l.l)).

Lemma 9. (Fox (1970)). For any a > 0, if h S e and

O S 6, then

(2.30) ‘P[L >'23] S (6-1 +-l)[k-1 +1] rhs(7).
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Proof. We rely on the proof of Theorem 3.1 of Fox (1970).

Pick 6 > 0 such that h S e and 6 S e- Let J be the largest

*

integer such that F (J6 + l) S e- We also let

* *

T = {j : F ((j+l)6+l)4F (j6) > e, j 2 J, j = O, :_l,...} and

An = U [j6, (j+l)6). Since only retraction and monotonicity

jtT * A

properties of his respective estimates G and C were used before

Lemma 3.1 of Fox was applied, the following inequalities are still

* A

true for our estimates G and G.

(2 31) 'Pli > 2e] = P( U ({5(y) > G(y+2e)+2e}U{§(y) < G(y-Ze)-Ze}))

~ " yEAn

at u ((6715) >G(io+e>+e} u {chm <G<jo-e>-e}>

jotAn

S E R((G*(J5) >’G(j6+e)+e} U {G*(j6) < G(j6-e)'e)) .

jééAn

Since there are at most (6-1+l)[§-1+I] grid points (see

Fox (1970, p. 1850)) in An’ by Lemma 8 the extreme rhs of (31) is

no larger than rhs(30). .

Let E be the procedure whose component procedures are Bayes

versus C defined by (29). To get a rate of convergence of the

modified regret for 9 we use the bound of Theorem 1 in section 1.

Since this bound is valid only for Q = [c,d] where -m < c S d <'+m,

we assume Q(f) with Q = [c,d].
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Theorem _2_. If Pj E Q(f) With Q = [Cid], j = 1929000911

where f-1 satisfies the Lipshitz condition (1), then there exist

.. 1v

constants b1 and b2 so that,for B with blh = b26 = (n 1log n)“,

c ‘1 2 . . n
D(9, e) = 0((n log n) ), uniformly in e E [c,d] .

2392:. We use Theorem 1 in section 1 with 6 replaced by

2 13 and apply Lemma 9. Then, choosing e = 6 = (2b+l)h < l (for

sufficiently large n) and weakening the bound by changing G(n) and

e to d and c, respectively gives

(1)

4

2 -(nh /b5)

(2.32) \D(§, E)\ s b3h + bah e

where b3 and b4 are some constants, and b5 = 2{l+4(d-c+3)M]2.

% 2
Choose b1 and b2 so that b S4 and

l

- — L

b2 = b1(2b + l) 1. Then, for blh (= bzé) = (n 1log n)“, (32) leads

to the asserted rate in Theorem 2” .

(3b5)-



CHAPTER II

RATES FOR ONE -STAGE PROCEDURES FOR A

FAMILY OF UNIFORM DISTRIBUTIONS

§2.0. Introduction
 

In Chapter I two-stage procedures were developed for estima-

tion of 9 for the family .9(f). For sufficiently smooth f and

certain two-stage procedures E, D(e, b) = 0((n-llog n)%) uniformly

in 0 (cf. Theorem 1.2 ). In this Chapter we consider one-stage

~

procedures for estimating 0 for the family 19(1), i.e., where

_1

Pj is the uniform distribution u[ej, qj+1), and obtain 0(n 6).

Throughout this chapter let X1,X2,... be independent with

Xj distributed according to P. =U0., 0.+1 . Webe inbJ I J J ) g y

motivating the structure of two one-stage procedures for estimating

g = (91,...,en). For fixed j, l S j S n, we abbreviate Xj to x.

Then by (1.0.2) with q = l and Lemma 1.7 with h = l, y = x and

T = G, the empirical distribution of 91,...,en,

§G(X) = (eln’°°"enn) has jth coordinate

x'+t X

X! IG]XI dt

1
(0.1) ejn = x - f0 G]

For each y let pe(y) * (dPe/d§)(y) = [e S y < 9+1]

where g is Lebesgue measure. Then p(y) é G(pe(y)) = G(y)-G(y')

34.
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which leads to the relationship

(0.2) G(y) = 2:0 5<y-r) .

_ . *
Let P(y) = G(Pe(y)) and F be the empiric distribution of

X1,...,Xn.

. - — *
Since p = dP/dg, the divided difference A F

(sem2(l.2.4)) is an estimate of 5. In view of (2) we estimate

G(y) by

(0.3) Tn(y) = 2:=0 A F (y-r)

Thus, (1) suggests that to achieve small modified regret we might

estimate §G(X) (hence 9 = (91,...,en)) by BT where

(0.4) er j = (x: v ffin) A x
9

and

l -x'+t x
0.5 = .-

( ) qfin X IO Tan' [TDJX

dt

(Here and throughout this chapter quotients 0/0 are defined to be

zero.) 0n the other hand, since §3(G(x'+t)-G(x'))/(G(x)-G(x'))dt

_ - — * -

= (P(x)-G(x'))/p(x), estimating P by F , G by TH and p(x)

*

by A‘F (x) = Tn(x)-Tn(x') leads to an alternative estimate ¢ where
N
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(0.6) ¢jn = (x' v Njn) A x

and

7': ' X

(0.7) wjn = x - (F (X)-Tn(x ))/Tn]X.

Fox (1968) considered the estimate 4 in the empirical Bayes prob-

N

lem and showed the convergence of the risk of ¢ to minimum Bayes

’nn

risk. In this chapter we study the risk behavior of the one-stage

procedures 9T and ¢.

In Section 1, with Q = [c,d] where -m < c S d < m,

e.
we show that 6T with h = 0(n ) has modified regret converging

with rate 1/4 (cf. Theorem 1).

In Sections 2 and 3 we investigate the risk behavior of

ET at the parameter sequence where 0. = O for all j, i.e., with

X1,X2,... iid u[0,l). Theorem 2 of Section 2 gives lower bounds

for D(0, 9T) which combined with an upper bound develOped in

Section 3 shows that D(0, ET) is of exact order O(h2) provided

n-'%h-.1 = 0(1) (cf. Theorem 3). This indicates that Theorem 1 can

possibly be strengthened to rate 1/2.

In Section 4, we indicate that in the bounded parameter

k) if h = 0(n-%). Thisset case, Q also has modified regret 0(n-

result is not proved in Section 4; rather it is noted that it follows

as a corollary to Theorem 2 of Chapter III (Section 2). Section 4

concentrates on the e = 0 sequence and develops upper and lower

~

bounds for D(0, A). By comparing the bounds established in
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Sections 2, 3 and 4 we deduce that for large n the estimator ¢

N

is strictly better than 6T at 0 for certain choices of h.

~

Finally, in Theorem 5 (Section 5) we prove the necessity

of the bounded Q assumption for the existence of procedures t

~

such that D(e, t) a 0 for all e.

N

Concerning our notation, in Sections 1 and 5 Ex will

..,X )denote the conditional distribution of (X1,...,Xj_1, Xj+1.- n

given Xj = x and in sections 2, 3 and 4, the conditional dis-

tribution of (X1,...,Xn) given Xh+1 = x. c0,c .,c4 in

Section 3 are some positive constants. Also, for convenience in

1,..

writing bounds, we will take h S % throughout the chapter.
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§2.l. A Procedure 9T with a Rate 1/4.
 

Let Q = [c,d] where -m < c S d < +a5 throughout this section.

3

Since Xj' < 9T , S Xj’ as in (1.1.1)

-1 -1 n

(1 1) 2 \D(§, gr)\ 5 n E {\e - e. I

Fix j and let x é Xj until the end of the proof of Lemma 4.

For the purpose of treating the estimator ET and throughout this

section only,for a signed measure H and O S t S l, we abbreviate

H(x' + t) - H(x') to AtH and furthermore A1 to A. By (0.1), (0.4)

and (0.5) it follows that

l

(1.2) ‘91".1' - ejn‘ S ”0 etc/11G dt - j‘; gtTn/ATndtI A 1

where Tn is defined in (0.3). Applying Lemma 1.5 (a special

case of Lemma A.2 of Singh (1974)) and 0 S AtG/AG S l, we obtain

2_ 1 1
(1.3) Px(rhs(2)) s chix‘lo etc dt - f0 AtrndtI + ZEX\AC - AinI} .

A series of lemmas and a proposition will be used to complete

the development of a bound for rhs(l). We begin with Lemma 1 which

is straightforward from the proof of Lemma 3.1 of Fox (1970).

Lemma 1. For every 3 E R,

s+h_ -1
(1-4) Ex(Tn(S)) -h j’s

l m

v — - - +hGj(u)du + nh 2r=0[s r < x S s r ]
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where Gj(u) = G(u) - n.1[ej S u].

Proof. By the definition (0.3) of Tn’

__1_I'l m - .-

(1.5) Tn(s) - nh 21:1 Er=0[s r < Xi S s r + h], for s E R .

The term associated with i = j gives the second term of rhs(4).

The integral wrt memeasure of rhs(5) excluding the j-th term

can be written as

'1 -l n m

(1.6) h In Ej¥i=l[ei S u < 9i+l](zr=0[s - r < u S s - r + h])du

:=0[S - r < u S s - r + h])du
-l u

— h jGj]u-l(g

Since by a change of variable v = u - l,

jGj(u-l)(z:=0[s-r < u < s-r+h])du = IC5(V)(2:;1[s-r < v S s-r+h])dv,

we have

_ -l s+h

(1.7) (6) -h [S Go(u)du

J

which gives us Lemma 1. '

Lemma 2. For each t 6 [0,1]

 

x'+t 1 x'+t+h _1_

S Ex(AtTn) S GJX' + nh
x'+h[t 2 h] - n-
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Proof. Since 0 s (second term of rhs(4)) s (nh)‘1, using

two applications of Lemma 1 with this fact, taking the upper and

lower limits of ranges of integrations and performing simple

computations gives

X .+t x '+t+h 1

(1.9) Gj]xv+h[t 2 h] ‘Ex(AtTn) s 651x. + —— .

Weakening the bounds by three applications of inequalities

G(s) - n“1 S Gj(s) S G(s) and using [ej S x'] = 0, results in the

asserted bounds of Lemma 2..

Since we are going to invoke Fubini representation of the

integral here and in later sections (§2.3, §2.4 and §3.l), we

assert it beforehand. For a positive integer r, a measure u and

a measurable function g,

(1.10) jgrdu = $3 nEg > s]dsr + (-1)rj3 u[g < -s]dsr

Proposition 1. Let Y .,Yr be independent and
 

1,..

a S'Yi S b, i = 1,2,...,r. Let T'= r-l E:=1‘Yi' Then, for every

TI

- , - b-a

EIY - Bl S \EY - TH +-—y¥" Jn72

Proof. By the triangle inequality

(1.11) ET? - m s In? - “I +E‘T - EI'EI .

Now, by Fubini representation (10) of the integral,
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Also, using the first inequality of Lemma 2, and weakening the bound

by use of G(x'+t) - G(x') S l and l-h < 1, gives us

1 h x'+t 1 x'+h -1
(1.17) jouitc - PX(AtTn))dt s i0 G]x, dt + (h gjx, dt + n

x'+h -l

Sh+G]x, +n .

Thus, taking the maximum of two bounds of (16) and (17) (recall

h < 1/2) and weakening the bound by a use of (y-I-u) V (yd-yam) S y-Pv-I-uvw,

'

leads to first term of rhs(lS) S h + G]:.+h + 8171-. Thus, in view of

(15) and the fact n.-1 S (n-l)-;5, (14) is established.’

Lemma 4_.
 

(1.18) PXIAT - AG\ s 01”“ + 03" "Lb + (1 + .an2) 1

" n x x' frT-Th

 

Proof. Define Wi = ((n-l)/(nh))[x < Xi S x+h] for i 9‘ j.

Then, by definition (5) of Tn’ we can directly verify AT“ = 8
|

-1 -

Since 0 SWi S h for all i, by Proposition 1 with b-a h 1

 

(1.19) lhs(18) S \PX(ATn) ' AG\ + 1 ' 71172 .

"' n-l h

But, by the second inequality of Lemma 2,

l

3

x+h -

EX(ATn) - AG S GJX + (nh)

and by the first inequality of Lemma 2,
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x'+h -1

NC “'EX(ATH) S G]x' +-n .

Thus, taking the maximum of above two bounds and weakening the bound

by use of (u+v) V (s+t) S u+s+th gives us first term of

rhs(l9) S.G]::hlflh + G]::+h +(nh).1 . Therefore, in view of (19) and

n-1 S (n-l) J5 the bound (18) is obtained.‘

We now go back to the inequality (3). Applying the bounds from

Lemmas 3 and 4, we get

n-1 21 P.(rhs(3)) s 2(h+(3+ 1.6172) “-L—M-l Zr} Flam-1
J—l J 2 f‘n_'1" h le J

-1 n xj+h
-1 n X'+h

+ A.“ 2j=1Pj{G]Xj /ch + 6-6 sjzlei GJX? lee} -

Therefore, by Lemma 1.1 with 6 = e = O and by two applications of

Lemma 1.3 with (n,s,t) = (0, l-h, l) and = (O,-h,0), we finally

obtain in view of (3), (2) and (1) that

\D(e.8r)\ s (10+2(d+1-c))h + 2(3 + £fm)(d+1_c) 1

N N

Jn-lli

Setting h = n T gives us

-}’

Theorem 1, For QT defined by (0.4) with h = n 4

\D(§’§T)\ S 0(n-% ) uniformly in 0 .

Remark 1, Theorem 1 of Chapterlll is a k-extended generaliza-

tion of Theorem 1 for non-regular families of distributions .9(f).

Its specialization to k=l (unextended case) is itself a
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generalization of Theorem 1 which concerned the .0(1) family. Theorem

1 was presented because of its simplicity and its significance in the

motivation of Theorem 1 of Chapter III.
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§2.2. A Lower Bound of the Modified Regret D(0, 9T).

Let X1,...,Xn+1 be i.i.d. random variables with the common

' ’b ' = . = .o.distri ution P U[0,1) Let § (X1: ’xn+l

ar(X) = (er l’°"’eT n+1) (for the definition, see (0.4) with n

). Here we consider

replaced by n+1). Since QT l""’eT n+1 are identically distributed

and since for all j, ej n+1 = 0 (for the definition, see (0.1) with

n replaced by n+1), abbreviating 9T n+1 to 9 we see in view of

(1.0.3) that the modified regret of 3T at e = O is given by

82
(2.1) D(O, 9T) =P e

For fixed x i X , we abbreviate in the defini-

n+1 ‘Pn+1 ,n+1

tion of 6 (see (0.5) with j and n replaced by n+1) to m

and exhibit an explicit form of T in a.s. PX-sense.

Lemma 5, For every x 6 [0,1),

11 n

(2.2) (p - (zj___l(xj -h)[x < XJ. S x+h]-h zj=1[0 S Xj S x]

n n -
- h + , [O S X S x'+h IX, [x < X, S x+h a.e. P

2J=1 j J) J=1 J ] ~X

Proof. Fix j and note that as a function of t 6 [0,1],

z:d3[Xj-x'+r-h S t < Xj-x'+r] is equal to zero, is equal to its

first term, or is equal to the sum of its first two terms according to

whether 1 < X -x'-h, Xj-x'-h S 1 < Xj-x' or Xj-x' S l. Integrat-

j

ing over t 6 [0,1] for each case gives

1 m

X - '+ - S .- '+ = h- , X, S x+hf0 Zr=0[ j x r h t < XJ x r]dt (x+ XJ)[x < J ]

+ h[Xj S x] .
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Hence, it follows by the definition (see (1.5)) of T abbreviated

n+1’

to T that

(2.3) (“1“)th T]::+tdt = Egfiwth-xjux < xj s x+h]

n+1 200 [X'

j=l r=0

n+1

+ h , X. S x - -r < X, S x'-r+h .2J=ll J l a J 1

But since [x < x S x+h] = 0, [x S x] = l, g:_0[x'-r < x S x'-r+h] = 0

and a.e. P , 2m [x'-r < X S x'-r+h] = 0 we have

~X r=l j ’

n n

rhs3 =x , x<X. Sx+h - , X,-h x<X, Sx-I-h

n n
+ h , X. S x + h - , x' < X, S x'+h , a.e. P .

zj=lE J ] ZJ=1[ j ] ~x

On the other hand, since [x < x S x+h] = O,

((n+1)h)T]x = g“ [x < x s x+h] .
x' j=l j

Applying these to the definition of m, we get the asserted expression

for (p. '

In this section we need only deal with m for x < l-h,

where the term 2? 1[O S X S x‘+h] (cf. rhs(2)) vanishes. We also
J:

J

recognize that for x < l-h, Px[m >1x] = 0. Hence, E has the follow-

ing shnpler form:

(2.4) ’9 =[ x' V tp for x E [0, l-h)

(x' V qD A x, for x E [l-h, l).
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Now, we let

(2.5) J = [m 2 x', x < l-h]

and recognize by (l) and the definition of E that

(2.6) D(0, 9 ) 2 P( 2J)
....T ~‘P

Let 52 denote convergence in distribution. Also, N(c,d)

denotes the normal distribution with mean c and variance d.

To get lower bounds for D(0, er) (Theorem 2) we use the relation

(6) and the fact that for fixed x, hm1 $01? - 2.1 and

L '1 3.~ fl 2

Sn - Q/nh m-+ 2 nh )J ..N(0,x ). We then apply a convergence

theorem (cf. Loéve (1963) 11.4, A(i)):

2

(2.7) If Un'QU, then liinEUn ZEUZ ,

where E means expectation, and Theorem A.1 in appendix. We shall

first prepare Lemmas 6, 7 and 8 to prove the above two convergences in

distribution for the proof of forthcoming Theorem 2.

n n

Let u = 0 S X. S , v = , x X, S x+h and

w = 22:1 Xj[x < Xj S x+h]. We also define

X = (w-hv-xv-h)/(hv),

Y = (u-nx)A/nx(l-x) and

Z = (v-nh)//Efi .
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Then, on the set J, m of the form (2) is alternatively written as

(2 8) = hx + gnhflzz f—_x(l-x) n'liy

~ P -L ' _

1+(nh) ’2 1+(nh)%Z

Lemma 6. Given x 6 (0,1), if h is a function of n such

that nh « m and h a 0, then

(Y, Z) €N(_0_, I)

. 2 . . . .
where Q is the zero vector in R and I is 2 X 2 identity matrix.

Proof. For each x 6 (0,1) we restrict to n such that

x < l-h. Pick t and s arbitrary, and let

- ..lv -

Vj = n %{s(x(l-x)) 2([0 S Xj S x]-x) + th 15([x < Xj S x+h]-h)] ,

for j = 1,2,...,n. Then, it is not hard to see that

n
, V, = s Y + t Z

ZJ=1 J

Since the V, are i.i.d., the characteristic function R of (Y, Z)

2

at a point (s,t) 6 R is given by

n

(2.9) K(S.t) = (J(1))

where J is the characteristic function of V ; V1.
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Since by XV (6.8) (Feller, 1971), for any complex numbers

such that ‘04 S 1 and jsj S 1,

Ia“ - e“I s nIa - BI»

(2.10) \(J(l))n - exp(-%(sz+t2))j S n\J(l) - exp(-%;(sz+t2))j

 

By the triangular inequality and by using Il-y-e-yj = 0(y2) as

y—DO,

sz+t2 l

(2.11) rhs(lO) S an(1) - l + 2n \ + 0(n )

Now, from the Taylor development of characteristic functions

by XV (4.14) (Feller, 1971) and from the fact that J(0) = l,

2

J'(O) = i PgV = 0 and J"(0) = 4PgV , it follows that
N

1 2 1I - _ l _ I

IJ(1) 1 + 2 {Xv , s 6PX\VI
3

Now, we verify that

PXVZ = n-1{(sz+t2) - tzh - zstx(,/’>E(1-x)-% + l-x x-%)/h-]

and

PX\V\3 = n'3/2{Is(x'1-1)15 - th15\3x + jt(l-h)h-%-sx%(l-x)_%j3h

+ 'st%(l-x)-% + t h1§\3(l-x-h)] .
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Hence,

-1 2 - L

OSn (s+t2)- xV2S0(n1h2)

1
'
1
3

and

3 -3 2 -%

Exivi =0(n / h )

Hence, applying the triangular inequality leads to

2 2

S +t \ = 0(n.1 hg + n-B/2

2n

 

Jr
\J(l) - 1 + h ))

Thus, in view of (11), (10) and (9)

2 2

\K(t,s)-exp(- S :t
 

)] = O(hlé + n-;5 h-% + n-l)

To get the conclusion we invoke the continuity theorem (cf.

e.g. Breiman (1968), Theorem 11.6). |

P -l P

We shall next prove X H -2 where a 0 means convergence

in probability PX for given x.

Lemma 7. Under the same assumption as Lemma 6,
 

Proof. For given x 6 (0,1), we restrict to n such that

x < 1-h. Then, X is written as

(2.12) x = (C/(Z—hn - v'1
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-1 n

where C = (nh) 2j=1

I. = x < X. s x+h .

J [ J J

U,, where U, = h-1(x,-X-h)l, with

J J J J

Since v has the binomial distribution with parameters n

and 1h

(2.13) — 1 as nh -+ co and h -+ 0

By simple computations,

EU

N
l
’
J
“

and

Var(U) = %--Fr11-h

Thus, EC = h'lsu = -2‘1 and Var(C) = (nh2)-1Var(U) = (12'1+(1-h)/4)/(nh).

Therefore, by the Chebychev inequality,

P

(2.14) C a -2 as nh « m and h a 0

Applying (14), (13), (12) and Slutsky's Theorem completes the

proof of Lemma 7. '

Besides the above two lemmas we shall show that PX[&>5 x']

vanishes when nh » m .and h a O.
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Lemma g. Under the same assumption as Lemma 6,

s ' .. f ’ .EXEm x ] O or fixed x

Proof. We restrict to n such that x < l-h. Let

Wj = h[0 S Xj S x] - (Xj-h-x')[x < Xj S x+h] for j = 1,2,...,n.

Then, by the‘representatixn1(2) of m, [m s x'] = [Wuz -n-1h] where

W is the average of i.i.d. W.'S- Since PXWJ =1m2‘%+xw,
1

j _ — -1 '1

(2.15) Px[m S x ] = PX[W4PXW 2 (l-x-n -2 h)h] .

But, Var(W) = n-IVarU/Jl) = hn-1{l-(1-x)(2-x)h + (1% - x)h2-4-1h3} s

(g9hn-1. Hence, by the Chebychev inequality and for large n

- -l - -l -2

rhs(15) s (7/3)h 1n (l-x-n 1-2 h)

which tends to zero when nh a m and h a 0. .

We are now ready to prove

Theorem 2. (i) If h is a function of n such that

nh « m and h a 0, then for any i > e > 0, there exists N <‘+m

so that for all n 2 N

D(g. 9T) > (fi - €)h

(ii) If h is a function of n such that nh a m, h d 0 and

3

nh = 0(1), then for any

W
I
H

> e > 0, there exists N < +m so that

for all n 2N
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D<9.9T)><§-e>:—h.

. . 3

Proof. (1) Since nh a a and h a 0 implies nh a m

and h a O, we have by Lemmas 6, 7 and 8 that given x 6 (0,1),

.0 P

(2.16) mm ..N(9_,1), x —» - i [.9 2 x'J 3 1

Hence, in view of (8) it follows from Slutsky's Theorem that if

-1 -1

x t (0,1), then b ¢.J‘Q -2 (see (5) for the definition of J).

By a convergence theorem (7), we have

. -2 2 1
(2.17) 11m Px(h m J) 2 EEO < x < 1],

and hence by Fatou's theorem applied to the lhs below

b
l
p
-
a

. -2 2

11m P Px(h Q J) 2 P(lhs(l7)) 2

Thus, by (6) we get that

1' h-ZD o ) ‘ la

.21.! (”.13 4

(i) follows because of the definition of lim inf.

To prove (ii) we first recognize that for this choice of

__ _ /m

h, (16) still holds. Let SD = {/hh q>+ 2 1 JnhB} J. Then, in view

of (8) it follows from Slutsky's theorem that if x 6 (0,1), then
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.3 2

Sn “N(O, x)

. 2 - W
Since px{(nh)¢ J} = Px(sn - 2 1 ,/nh3 J)2 2 Var(Sn), applying Theorem

A.l in Appendix to the rhs leads to

. 2 2 .

(2.18) 11m PX{(nh)m .J} 2 x [O < x < 1] .

Thus, by Fatou's Lemma applied to the lhs below

2

1y; P§X(nh (p J) 2 P(lhs(18))

and the

o
o
h
—
-

Therefore by (6) we get that lim (nh)D(O, gr) 2

definition of 1im inf leads to (ii). I

Theorem 2(i) implies that at any parameter sequence

(91,92,...) where 91 = 92 =..., 9T with the choice h = n has

modified regret converging to zero at a rate no faster than n-

This leaves open the possibility of strengthening Theorem 1 of §1

by this improved rate. The next section develops a positive result

in this direction by obtaining the improved rate at a fixed parameter

sequence.
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§2.3. Procedures 8T where D(O, QT) is of Exact Order 0(h2).
 

In this section we show that the modified regret D(O, 9T)

2 -%h-1

has an upper bound of order 0(h ) when n = 0(1), and by

this choice of h we have a lower bound with the same order of

magnitude. Specifically, if h = n- (up to constants), then we

get convergence of exact order %.

As in §2, let X1,...,Xn+1 be i.i.d. observations from

P = u[0,l) and fix x = Xn+l' 9 and m abbreViate aT,n+1 and

n
‘ . = th t 2.2¢h+l,n+l’ respectively Let v Zj=1[x < Xj s x+h] so a ( )

reads for each fixed x E [0,1),

-l n

(3.1) ¢ = v {gj=1{(Xj-h)[x < Xj s x+h]

- h[0 s Xj s x] + [0 g Xj s x'+h]} - h} a.e. Px'

Since 3 is the retraction of m to (x',x] where O s x < 1,

then \é\ s 1 and

(3.2) P B2 S PEV = 0] + P(BZEV > 0])

Note that

(3.3) P 1;..[v = 0] = jg‘hu-mndy + fi_h<1-y)“dy .

+1 , ,

The first term on rhs(3) is (l-h)n . Hence, the inequalities

1 = ((1-h)+h)n+2 2 (“"1'2)h(1-h)“‘+1 imply that it is bounded by

((n+2)h)-1. The second term on rhs(3) is bounded by (n+1)-1 so

.
g
r
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that (3) implies

(3.4) ' P[v = o] = 0((nh)'1)

Now, consider the last term on rhs(2). Since x' < O s x,

by Fubini representation of the integral (c f. (1.10) with r = 2)

and (1) it follows that

(3.5) P(B2[v > 0]) s P(jé PX[U > h]dsz) + P(IS EX[V < h]d52)

where U = 2 U , V = Z,V,, and for each j = 1,2,...,n

j j J J

(3.6) Uj = (Xj-s-h)[x < Xj s x+h]-h[0 < Xj s x] + [0 < X. s x'+h]

J

and

(3.7) Vj = Uj + 23[x < Xj s x+h] .

The Uj are i.i.d. with mean -sh - 2-1h2 for x E [0, l-h) and

mean -s(1-x)-2-1(1-x)2 for x 6 [l-h,1). Then, by (7), each Vj

has mean

J’sh - z'lhz, for x e [0,1-h)

(3.8) P V. = ..

~x J L_S(1-x)-2 1(1'102, for X E [l'h’1)

We will use the bound 2 for the range of Uj and Vj for all

0 s s s l and O s x < l in Theorem 2 of Hoeffding (1963) in order

L“
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to bound the tail probabilities in (5). Moreover, the Hoeffding

bound developed for the last term of rhs(5) will also bound the first

term since Egv is closer to h than PXU is to h. Having

noticed these facts we now prove

lemma 2.
 

% 1
(3.9) P(“92[v > 0]) = 0(h2 + n- + (nh2)')

Proof. In view of the comment preceding Lemma 9 it suffices

to show that the last term of rhs(5) has the order indicated in (9).

Let €-= n-lV. Using (8) and letting a = n“1 + %h and

1

a = hn'1(1-x)'12 -+ %(l-x) we have

[EXDV +EXV >h(s-a1)], for x e [0,1-h)

PXEV < h] =

[ EX[4U + EH6 > (1-x)(s-a2)], for x E [l-h,l)

Applying Theorem 2 of Hoeffding (1963) with the bound 2 for the range

of the Vj gives

. 2

J exp{-%b1((s-al)+) }, for x E [0, l-h)

(3.10) EXW < h] sL 1 2

exp{-2b2((s-a2)+) }, for x 6 [l-h,l)

where b1 = nh2 and b2 = n(1-x)2. A direct calculation together

with the fact that I: exp(-%y2)dy =,/n72, shows that
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1 2 2
f0 eXP{-%b((s-a)+) )ds

2
2 m -3use) 2

(3.11) s f: ds +'ja e ds

- -L

sa2+(2b 1+,f2‘nab 2)

where a,b 2 0.,

Applying (10) and (11) with a a and b = b

gives

~
\
"
"

0(h2 + n" + (nhzfl).(3.12) P{[0 s x < 141]]: PXLV < h]ds2'}

The treatment of the [1-h s x < 1] part involves more

 

analysis because of the dependence of a2 and b2 on x. By (11)

with a = a2 and b = b2, and by h s 2-1,

1 2 h l-X 2 -% l

. + — ——(3 13) f0 EX£V < h]ds s {{n(1_x) 2 } + cln + c2 mum?) A 1

—_];_§.}A1,

—L

221.2 + (2+ c1>n 2+ {04+ c2)
n(l-x)

for x E [l-h,1) and constants c1 and c2. But, for d > 0

2

2

(3.14) fl-h (1_y)2 A 1 dy S f(1_h)v(1-d)dy + Il-h (1-y)2

 

dy

2 -l -l

=h/\d+d{(h/\d) -h}s2d.

Thus,

' -L

(3.15) P([l-h s x < l]lhs(l3)) s 0(h3 + n 2)
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Therefore, (9) follows from (15), (13), (12) and (5)..

Hence, by (2.1), (2), (4) and Lemma 9, we get the followinglemma:

Lemma lg.
 

(3.16) MO. 9,) = 0(h2 + 15% + (nh2)-1).

Theorem 3. If 8T is defined by (0.4) with h such that

~

-L -1

n 4h = 0(1), then there exists a constant c3 so that for

sufficiently large n,

-1 2 2

C3 1] >D(9, ET) SC3h

Proof. If nn‘h-l = 0(1), then there exists some constant

0 <:M < +m such that

(3.17) h 2 Mn‘%

Therefore, by Lemma 10 there exists a constant c such that

D(0, 9T) 5 C4h2 for sufficiently large n.

On the other hand, by (17), nh3 2 nkM3 1 +m as n 1 +m.

Hence, (i) of Theorem 2 in section 2 holds. Letting c3 > Ca V 4

we pick a > 0 in (i) of Theorem 2 so that e < 4-1 - cgl. Then,

from (i) of‘Theorem 2 the first inequality in Theorem 3 follows.‘

Remark. Here, we shall state values of h and of bounds

of the modified regret, up to constants. That is, for example,

’(I _ ‘0’ . .

h = n means h - C n for some pOSitive constant c. We let

large n be fixed.
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The lower bounds of D(0, 3T) in Theorem 2 describe the

. . . . . -2 3
strictly convex curve which attains the minimum value n I at

n-1/3, has the value (nh).1 for h less than n-1/3 and h2

-1/3
n .

h:

for h greater than

0n the other hand, the upper bound in (16) describes the

.L
I O O I O O 2

strictly convex curve which attains its minimum value n at

-% 2 -1 -% 2

h = n , has the value (nh ) for h less than n and h

for h greater than n-%.

Hence, these two curves coincide with each other for h

-1.

greater than and equivalent to n 4 and attain the best exact order

-% ..

% at h = n . For h less than n , our (upper and lower) bounds

N
"

are not necessarily close.
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§2.4. The One-Stage Procedure ¢ .

Consider the procedure a (0.6) originally considered by

~

Fox (1968) in the empirical Bayes problem. It is a corollary to

Theorem 2 of Chapter III that with bounded Q and the choice

h = n-% , \D(e, ¢)\ = 0(n-k) uniformly in parameter sequences,

the same rate established for 6T in Theorem 1.
N

In this section we study the risk behavior of a at 0.

N

For the modified regret of ¢ we find the same lower bound as

established in Theorem 2(ii) for 9T and an upper bound which is

0(n‘%) for the choice h = n-%.- As in sections 2 and 3 let

X1,...,Xn+1 be iid P = u[0,1) and replace n by n+1 in the

definition (0.6) of 9. Fix x é Xn+l and let ¢ and W abbreviate

¢n+l,n+l and wn+l,n+1 in (0.6) and (0.7). As in section 2 define

n n

= n 0 s X. S x and v = x < X, s x+h .

*

Then, by (0.7) applying the definitions of F and T + we can

n 1

show as we have done for m in (2.2) that W has the following

explicit form; for x 6 [0,1),

. -1 n
4.1 =v -hu-h+ , 0 5X. '( > W {Xv 2J=11 J 5 x +h]} a.e. Ex

From Lemma 5 in section 2 and the above (1), we can easily

see that

(4.2) OSw-tpsh
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In the same manner as (2.1) was obtained,

(4.3) ME}. 9) = I; q)

Note that ¢ = x' V W for x E [0, l-h); = (x' V w) A x, for

x e [i-h, 1).

We get a lower bound first. Let

J = [W 2 X', x < l-h] .

By (1) and the definition of ¢,

(4.4) P ¢2 2 P(WZJ)

Define Y = [nx(l-x)]-%(u-nx) and Z = (nh)-%(v-nh). Then, we

can easily see that

= (nh)f%xZ-n-1 _,/x(1-x) n-gY

(4-5) W _ .1.

1 + (nh) L52 1+(hh) 22

Theorem 4. If h is a function of n such that nh a m

and h a 0, then for any %’> 6 >10, there exists N <‘+m so that

for all n 2‘N,

l 1

13(9),) >(3- e) a;
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Proof. Fix x 6 (0,1) until (7). Since by (2) m s w,

it follows by Lemma 8 in section 2 that

(4.6) PXEW s x'] S'Px[m s x'] a 0, for given x.

.8
Since by Lemma 6 in section 2, (Y,Z) _.N(QJI) where Q_is 2 dimen-

sional zero vector and I, 2 x 2 identity matrix, and since by (6)

P

J a 1, it follows from Slutsky's theorem applied to rhs(5) that if

x E (0,1), then

fr-Ih (L: J §N(0,x2)

As a consequence of a convergence theorem (2.7) (cf. Loéve (1963)

11.4 A(i)) we have

2 2
(4-7) lim(nh)PX(¢ J) 2 x [0 < x < l] .

Thus, by Fatou's Lemma applied to the lhs below

-1
2

lim P Px(nh w J) 2 P(lhs(7)) 2 j; yzdy = 3

Therefore, in View of (3) and (4),

lim_(nh)D(O, a) 2 3'1

and the definition of lflm inf leads to the conclusion. .
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We shall now find an upper bound. In the same manner as (3.2)

was obtained

2 2

(4.8) Pg) SP[v=0]+P(¢ [v>0])

In view of (3.4), we only consider the last term. As in (3.5),

2 / l 2 l 2

(4.9) {(3 [v > 0]) s P{]O PXEU > h]ds + (O Extv < h]ds }

where U = ngj, V = ZjVj and for each j = 1,2,...,n

(4.10) U. = (x-s)[x < Xj S x+h]-hLO S Xj S X] + [O s Xj S x'+h]

J

and

v. = U. + 2 x < x. s x+h
J J SE J 1

The Vj are i.i.d. with

; sh , for x E [0, 1-h)

l

(4.11) P V, ='

{(1-x)( s-L+x+h) , for x e [1-h, 1)

Note that each Uj has mean -sh for x é [0,1-h) and mean

(l-x)(-s-l+x+h) for x E [l-h,l). We will use the bound 3 for the

range of Vj and Uj for all 0 s s s l and O s x < l in

'Theorem 2 of Hoeffding (1963) in order to bound two tail probabilities

in (9). As in §3, for 0 s x < l-h the bound develOped for the first

term in the curly brackets of rhs(9) will also bound the last term

in the same brackets because P¥V is closer to h than PXU is
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to h. But, for x E [l-h,l) such ordering varies according as

the values of x and hence we require more treatment for this case.

Using these facts we prove

Lemma ll.

1.. _,L _

(4.12) P(QZEV > 0]) = 0((nh2) + h3 + hn 2log n + n

Proof. Let UI= n-1V. Using (11) and letting a = n

and a = x+h-l-n-1h(l-x)-1, we get

3.5x“? +1397 >'n(s-a1)], for x e [0,1-h)

(4.13) Px[v < h] =1

1,1:XE-V + {XV >(1-x)(s+a2)], for x t [1-h,1)

~

Fix x E [0,1-h) until (15). We shall find the bound for

the second term in the curly brackets of rhs(9) and double it to

bound the curly brackets of rhs(9).

By Theorem 2 of Hoeffding (1963) with the bound 3 for the

range of the Uj and Vj’

- , _; _ 2

(4.14) ‘EX[U >1h] + PX[V < h] > 2exp{ 2 b1((s a1)+) }

where b1 = 4nh2/9.

Applying (l4) and (3.11) with a = a1 and b = b1 gives
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II

C A A

:
3

'
3
'

N

v

I

v

(4.15) P([o s x < 1-h3fé lhs(l4)dsz)

Fix x E [l-h,l) until (19) and let U = n U. By the

statement after (11),

(4.16) EX[U > h] gigx[fi'- 3X6 > (1-x)(s-a2)] .

Applying Hoeffding's bound (as (14) is obtained) to rhs (13) for

x E [l-h,l) and rhs(l6) and weakening the bound as below, shows

(4.17) lhs(l4) g 2 exp{- 6 b2((s-a2)+ A (s+a2)+)2}

2

where b2 = 4n(l-x) /9.

Notice that a2 > 0 iff (l-h <)5l < x < 62 (< l) where

- --\ _—._.-- _-___

-1 t 2 - ~ - V~" _
51 = 1-2 (h + Jh -4n 1h) and 62 = 1-2 1(h - éh2-4n 1h)

 

Hence,

2
- C

-1 EeXP{‘% b2((s+a2)+) ], for X E (61.52) fl[1-h,l)

(4.18) 2 rhs(l7) =j

{ exp{-% b2((s-a2)+)2], for x 6 (61,6 )

2
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Rec0gnizing lhs(3.ll) S l and applying (l8) and (3.11) with b = b2

c .
and a — -a2 for x 6 (61,62) 0 [l-h,l), — a for x E (01

2 ’52)’

and weakening the bounds results in

L9t14£2%.A 1 , for x 6 (61,62)Cr[1—h,l)

1 2 4n(1-X)

(4.19) 10 (18) ds 3

2 9 '1(x+h-l) +(——-——-—§)A1+c h(/FKI-x)) ,
6

2n(1-x)

for X C (61,62)

where c6 is some positive constant.

Simple computation gives us

1 2 _ 3
§1_h(y+h-1) dy - h /3.

6

:6i(1-y)-1dy = log((l-51)/(l-62)) S log n

Also, by (3.14)

Hence, we can easily check
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(4.20) P([l-h S x < 1]]; (18) dsz) = 0(h3 + hn-%log n + n-%)

1 2
Thus, in view of (20), (18) and (17), P([i-h s x < 1]]01hs(14) ds )

equals rhs(20).

Therefore, (12) follows from this, (15), (14) and (9). I

Applying Lemma 11 and (3.4) to (8) we obtain, in view of

(8) and (3), the following upper bound of D(0, ¢).

Theorem 5,

2 - - -

D(O,¢) = 0((nh ) 1 + h3 +'hn %log n + n 35) .

Remark . As in the remark of section 3, we shall state

values of h and of bounds of the modified regrets, up to constants.

We let large n be fixed.

The lower bound of D(0, ¢) in Theorem 4 describes the

hyperbola (nh).1 which coincides with (up to constants) that of

the lower bound D(0, 3T) in Theorem 2, for h less than n-1/3,

-1 .

and then decreases to n as h increases.

0n the other hand, the upper bound of D(0, @) in Theorem

5 describes the strictly convex curve which attains the minimum

-% 2 1/6
value n for n- S h S;n- , has the value (nhz).1 for h H

- 3 -

less than n and h for h greater than n 1,6.

Thus, from the remark at the end of section 3, we can easily

see that for h greater than n-%, D(0, a) must be strictly below

D(0, 9T)' Hence, for such h ¢ is strictly better than 3T.

~
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co

 

§2.S. A Counterexample to D(e, t) a 0 93’ R

In §1 we demonstrated a procedure gr such that

N

D(e, QT) = 0(n-k) uniformly in e in case of a bounded parameter

~

set 0 = [c,d]. Here we prove that the boundedness assumption on

Q is necessary for the modified regret to converge to zero.

Theorem 6. Let X1,X2,... be independent random variables

where for each j, xj ~ uIej, ej+1). ej t a = R. Let

t(X) = (t1(X),...,tn(X)) be an estimator of e = (91,...,9n),

N

n = 1,2,... Then there exists a sequence (91,92,...) E R0° such

that limn D(e,t) > 0.

Proof. Since for each j, P(t.(X) - 9,)2 2 P.(P (t,(X)) - 9.)2,

-—-- ~ J ~ J J ~X J ~ J

it follows that

l 2

(5.1) ”‘9"? 2 n 2j=1 Pj<gx(tj<§>> - 9].) - R(G)

Now, let u be a joint prior measure on (91,92,...).

Let ”9 be the conditional measure given ej and let ”j be

" j

the marginal measure of ej. Then, setting sj = ”9 Px(tj(X)),

J = 1,2,...,n. we have that

'1 n 2 -1 n

5.2 P. P t. X - _ . '.P. . - .( ) gin 2j=l 3(~x( J(~)) ej) } > n 21:1 e] J(sJ 9])

1/

Now consider u = ”l x ”2 X... where ”j puts mass 2

on each of the values 2j j;r, j 2 l, where r is some fixed

number such that 0 < r < 2. Then
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2 = c . - 2 - . 2

uij(sj-ej) %?sz_r(sj (23 r)) + % P2j+r(sj (2J+T))

(5.3)

2 f2j+l-r
2 2

2j+r {$(sj'(2j-r)) + h(sj-(2j+r))2}dx 2 r (1-2r) ,

where the last inequality follows since the integrand on the lhs is

2

not less than r .

-1 n 2

Since R G = n 2 P.(e. ' 9.) where , is defined

( ) i=1 J Jn J eJn

by the posterior mean (1.0.2) with q = l, and since the ej's are

apart from each other more than 1, ejn = ej for all j and hence

R(G) = 0. Thus, u(R(G)) = 0. Therefore, in view of (1), (2) and

(3).

(5.4) u{D(e, t)] 2 r2(1-2r)

*

for all n. The retraction t of t formed by taking

*

tj = (X5 A tj) v Xj has modified regret bounded by l and satisfies

(4). Therefore, usin Fatou's lemma ives8 g

(5.5) u{ling(e, t*)} 2 12;;{u D(e, t*)} 2 r2(1-2r) > 0 .

.___ .___ *

By limnD(e, t) 2 limnD(9, t ) and (5), there exists a (61,92,...) 6 R

such that 1imn n(e, t) > 0..

co



CHAPTER III

RATES FOR ONE -STAGE PROCEDURES IN THE k-EXI‘ENDED PROBLEM

§3.0. Introduction

Let X1,...,Xn be independent random variables each X,

having the distribution Pj 6.9(f) (see (1.0.1) for the definition

of .9(f)) where f satisfies the assumptions (stronger here in

that f is now assumed bounded away from zero) that for given

finite positive constants m (> 0) and M (2 0),

(0.1) m" s f s 1

and

-1 -1 -1
(0.2) v{(v-u) \(f(v)) -(f(w) \ : u < v} SM

Throughout the chapter, we assume 0 = [c,d] with -oo < c S d < 00.

R

For each J = k,k+1,...,n, let ij = (zj-k+l’°"’zj)’

; L '1 _
x - Xj, y - §§_1 and §.— (y,x).

Throughout this chapter, G is interpreted as the empirical

distribution of the (n-k+1) k-tuples 31:,91:+1,...,9: of parameters.

~

(qtn’°°"enn)

where e'n is the posterior mean of ej given )_<_ wrt the prior

J

Let 96 be the k-extended Procedure with 9600

71
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, namely ,

(0.3) 9.

J“:
115+ raj q<§>flg§flf§+ q<§>dG<9§>

where the affix + is intended to describe the integration as

over (x',x_]. The modified regret for any procedure t relative
~

to the k-extended envelope is given by

2k = _ _ _ 2
D(e.t) Av. Q(tjq) e) 13(9jn ej)}

~~ J

where Av. means the average over 3‘ = k,...,n. Since Xf < ejn s X ,

J

when X]: < tj(X) s Xj , we have

\(0.4) 2-1\Dk(e,t)‘ sAv. P\tj(X) - ejn

We here introduce two one-stage procedures which are respective

generalizations of unextended (k = l) procedures, 9T treated for

9(1) and 05 treated for the uniform distribution on the unit

interval [0,1) in Chapter II. We exhibit in Section 1 the

k-extended version of 9T for Q(f) and in Section 2 that of

(b for 0(1) with the same rate (2k 4- 2) ‘1.
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§3.1 A Procedure 9T with a Rate (2k +.2)'1.

~

Hereafter throughout this Chapter, we interpret er as a

~

k-extended version of the procedure treated in Sections 1, 2 and 3

of Chapter II.

We first derive 3T in analogous way used in §2.0. We
~

then bound the modified regret of 9T using Lemmas 1 through 5

and.Proposition 1 (analogous respectively to Lemmas 1.7, 1.1, 1.3,

II.l and II.2 and'Proposition 1.1).

Let u.= (v,u) E R X R and similarly (Q = (w,e) E Rkn1 X R.

Let f(v) = fling). f(2) = f<v>f(u> and «mm = n‘i‘iqmi).

qua) = Q(w)Q(e)-

Let Q be the measure with density q(u) at u. wrt G.

Note that, since (0.1) hmplies q s m,

(1.1) q(g) S‘mk for all 2.6 RR

For fixed j, we abbreviate R: to x = (y,x) where y is the

~

first k—l coordinates and x 5 Xj. In view of (0.3),

a.

(1.2) e. =J“ 'e dQ(§)/j‘ 'dQ(Q) Vj =k,k+l,...,n

B?§

The following lemma generalizes Lemma 1.7 with h E 1.

Lemma 1. Let T be a signed.measure and I = (u),uj be a

cube with T(I) # 0. Let Tu be the signed measure with density

I/‘T(I) wrt T. Then,
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— 1 I '

Isdeg(§) — uk f0 TUESk 2 uk + tjdt

Proof. By the Fubini theorem applied to the lhs of the

second equality below,

f(uk-sk)d72(§) = f j:k-u£dt dTE(§) = I; TEESk s u; + t]dt . |

Applying Lemma 1 with T the measure with density

(Q(fi',§])-1 wrt Q, gives us that

(1.3) ejn = x - njn

where

(1.4) “jn = f; Q((y'.y] x (X',X'+t])dt/Q(§'.§] .

For every u_€ R , let

05> Mm=fp§mwm)

where
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k-l

paw = pw(V)pe(U) = i=1 pwi(vi)pe(u)

Then, by the form of densities (1.0.1) ,

(1.6) 6(2) = momma] .

Hence, V (v,u) E Rka1 X R,

(1.7) Q((V'NJ X (..,u1) = 2: ggilfiar) ’

where z abbreviates summation wrt the non-negative integer r

and (also in (10) below) involves at most G(n) - 9(1) + 2 terms

(when 0 = [c,d], at most d-c+2). (7) is a generalized form of

(2 .0 .2) . Letting

(1.8) F*(Q = Av. [X3( 3 u]

where throughout this chapter Av. means average over

and, for any 0 < h < 1,

(1.9) Mm) = h'kF*(2.e+hl].
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_ *

we estimate p(u) by AF (g). Thus, in view of (7), we estimate

Q((v',v] X (-m,u]) by (a generalization of (2.0.3))

 

AF*( 2;
(1'10) “3) = 3 f(v)¥(:-:)

and Q(gfl.g] ‘by

u *

(1.11) T(v,°)]u, = AF (2)/f(2)

Since 0 sLThn s l, we finally estimate ejn by

(1.12) 9rj=x‘(0V(pjn)/\1

where

1 I

(1.13) «3“ = $0 T(y.~>]:.+tdt/T<y,->]:.

and 0/0 is taken to be zero.

To get an upper bound of the modified regret for ET we

use an analogous method to that used in Theorem 1 in Chapter II.

The following lemma is a generalization of Lemma 1.1 with 5 = 0 = e.

k
Let {j =Pj_k+1 x...x Pj Vj =k,...,n.
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U
N
:

L
"

m nLanma I =(y_',u_]. Then

k k k
0 O Q 2- O(1 14) Av Ej {15(9J)/Q(I£)] s (d+ c)

Proof. Since by the definition of Q,

5 k I = Q(I )

it follows by k usages of f s 1 that

lhs(lh) = fig : Q(Iu) > O}f(L_1)dl_1_ s (d+2-c)k .

The next lemma is a generalized analogue of Lemma 1.3

with n = 0.

Lemma ;. For 3 st ERR,

k

(1.16) AV- P1;(G(2<_-£. §-§]/Q(2s'.£]) S H (ti-Si)

" i=1

Proof. In view of (15) with e = 0 and |
: u

I
s

111806) = [0201' .27.] > 016(2-£.w_-§Jf(2)d!

S [G(z-Efl-aldw. -
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By the Fubini Theorem, the rhs equals

jg: d! dG(_® = rhs(l6) .I

By the definitions ((3) and (12), respectively) of 9.

and aT,j’ and by the fact that 0 s njn s l,

(1.17) \e'r,j - ejn\ s \njn - (pjn‘ A 1 .

But, by Lemma 1.5 and by another usage of 0 s njn s 1, it follows

v. = x... x?that with {bk P1 XPj-k ij XPn

(1.18) Ej’kfin
/ I ‘1 1 . x'+t .-

jn - ijn‘ /\ 1) :- 2(Q(?£ :51) {Ejk‘j‘o T(y, )JX' dt

1 v -

I0 Q((y',y] x (x',x'+t])dt\ + ZEj,k\T(y.°)]:.'(Q(£,§]) 1\}

The following lemma is a modified analogue to Lemma 11.1.

It is used to prove the forthcoming Lemma 5 which is a generalized

analogue to Lemma 11.2.

. k-

Lemma 4. For g = (v,u) c R 1 x R and each j,
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RV 1 v+hl u-r+h v

(1.19) h Ej,k(T(‘—9) = Z f(v)f(u-r) I j Qj(s_)f(§_)d§

t=v s=u-v

 

+(n-k)-1 Z{[v < y < v+hl, u-r < x $.u-r+h]/f(v)f(u-r)},

where 0j(B) é Q(B) - (n-k)-1[(y,x) E B]q(§:), V B E 5% .

Proof. By the definition (10) of T,

(1.20) 119 = h"‘ Av.{g[v < 9513:} s.v+hl, u-r < Xj s u-r+h]/(f(v)f(u-r))}.

-2

The i=jth term gives h (second term of rhs (19)).

Now, since for fixed r, taking the average operation in-

side of the integrals gives us that

k

9i+l
-1 ~ k

(n-k+l) Z:=k,#j k [v < t s v+hl, u-r < s s u-r+h]q(gi)f(§)d§

~1

_ v+hl u-r~+h ., .

t=v Is=u~r Qj(§ ’§]f(§)d§ '

Multiplying by (f(v)f(u-r))-1 and summing over r leads to the

first term of rhs(l9) .'

Lgmma’ég For 0 s t s l,
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Q((Y'i'hldl X (X'+h,x'+t])[t 2 h]-a

-3136">113” s Q((yuwhu x (x',x'+t+h]) + o.

-1

where a = 0(h+n ).

Proof. We obtain by two applications of Lemma 3 (note that

the second term of rhs(l9) with s=x is zero) and a change of

variable u' to u in the second inner integral below,

kv X '+t

(1-21) h Ej,kT(y’ )lxu

= lymmf(y) ME)“”h 41—65. (<v .v]x(-..u])du]:,

- [‘f: ::: {+11 —%l—E'l)-VJQ ((V' Hv]X(-a3U])dll]:::+tldV 0

Now, by the assumption (0.2),

(1.22) ‘%%§%-- 1\ S M‘w - 2‘

Using (22) to bound the four f-ratios in (21) and using (1), we

ob ta in that



81

+hlf ' -
(1. 23) rhs(21)(:) j” §%z{j'+h 53W ,v]X(-oo.u])du]x.:_:_1

- J" +hc§<<v' .:.v]<(-oou])du]: r + 411154112)“ .
1-'()

By our convention on g, and two telescopic series,

2 Y‘H'll f v

(1.24) rhs(23) s A + 4“:th (d+2-c)( Ll dv)

<2) <-> XY “3“)

where

y+hl f(v ) .+h v , x'+t

A= Iy f(y) [I. Qj((v ,v]X(-m,u])du]x. dv .

Making a change of variable w = u-t in the positive term of A,

using (22) to bound the f-ratios as needed for (21) and applying

(1) gives us

A s I31Ix:%((v',v]X(w,,w+t])dwdv(+50(hk+1)

By this and by the upper bound of (22) together with the assumption

h < 1, applied to the integral of the second term of rhs(24),
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::+h éj((v',v]x(w,w+t])dwdv +'hkq .rhs(24) s fi+hl I (

')(1.25) (2)

Weakening the bounds and applying Q-(n-1)D1 s 6j s Q

gives, in view of (25), (24), (23) and (21), the bounds of asserted

Lemma 5..

We finally introduce the following pr0position which gen-

eralizes Proposition 11.1.

1,...,YN be (k-l)-dependent random

variables and a s'Yi s b for all i = 1,2,...,N. Then, for

Proposition 1. Let Y

any fl and every N,

(1.26) E\§ - n\ s \E; - ni +'h:§'/n72 .

«51

where M is the greatest integer s N/k.

Proof. We prove in the same way as Proposition 11.1.

The extension of Theorem 2 of Hoeffding (1963, Section 5d) to

(k-l)-dependent random variables gives

2M
PUT- - ET‘ > s]ds s 2 exp{- Li]

(b'a)

Hence
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E)? - ET] s 2f: exp{-252M(b-a)-2}ds = (b-aL/fi7(2M) .

Thus, the triangle inequality leads to the asserted bound.‘

We shall now go back to (18). To get an upper bound of the

k

average expectation wrt Pj of lhs(18), we apply the following

~

Lemmas 6 and 7. These are replacements of Lemmas 11.3 and 11.4

combined with multiplication by (Q(xf,x])-1 and the average

expectation. Let f(- é (n.k)-1£j],l=i=k Ki for any random

variables K1

Lemma é,
 

k -1 ,.1 v '

(1-27) AV- Ej{(Q(§'.§]) (J0\Ej,k(T(y.-J:.+t) -Q((y'.y]X(X',X'fi1)\dt)}

= 0(h + n'1 + ([6 hk)’1).

Proof. For notational simplicity we prove only for k = 2.

Fix j until (32) and t 6 [0,1] until (30). Define

-2 -

Wi = h (f(y)) 1[y < Xi-l s y+h]g([x'+t-r < Xi s x'+t-r+h]/f(x'+t-r)

-[x'-r < Xi S x'-r+h]/f(x'-r)) for i = 2,3,...,n. In view of

U

(20), we can directly verify that T(y,')]:,+t = W.

Since W1 is a function of Xi-l and Xi’ the sequence of

random variables W2,...,Wn are l-dependent. Also \Wi\ szmzh‘Z

for all i. Thus, by Proposition 1, with b-a = ZmZh-Z,
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(1.28) Ej,2\T(y,')1:v+t -Q(<y'.y]x<x'.x'+t1>\

 

2 _

v ' 2

s \Ej.2<T<y.-)J:.+t)42(<y'.y]x<x'.x'+t]>\ + m 2 (‘3'
A x h

where K is the least integer greater than %n-l.

Let us denote the first term of rhs(28) by \P-Q\ where

P and Q are defined by positional correspondence. Using

\P-Q‘ = (Q-P)+ + (P-Q)+, applying the lower and upper bounds of

Lemma 5 to P in (Q-P)+ and (P-Q)+, respectively, and performing

simple computations, we bound \P-Q\ by

Q((y'.y]X(X'.X'+t])[t < 111+ {Q((y'.y'+h]X(X'.X'+t])

(1.29) + Q((y'+h,y]x(x',x'+h])}[t 2 h] + Q((y',y]x(x'+t,x'+t+h])

+ Q((y,y+h]X(X',x'+t+h]) + 0(h+n-1)

By (1) with k = 2, Q((y',y]x(x'+t,x'+t+h]) s.m2 X

G((y',y]x(x'+t,x'+t+h]). Also, from the Fubini Theorem

x+h

1 ' -m . x'+t+h = (S‘X')A1 I
joc<<y,y1x< .]>JX.+t dt jx. f(s-x'-h)vodtdsc“y .y]x(-«>.s1>

s hc<<y',y] x <x'.x+h]> sh

where the subscript s in dS denotes the variable of integration.
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Hence,

1 2

(1.30) $0 Q((y',y] X (x'+t,x'+t+h])dt s m h .

Thus, taking the integral wrt Lebesgue measure over [0,1], and

weakening the bound in various ways (including one usage of (l)

and (30)) leads to

(1.31) [3(29)dt s Q((y'.y'+h]><(x'.x]) + Q((y'+h.y]><(x'.x'+h])

+Quwwh1xmumhb+om+wfh

By Lemma 2 with k = 2 and by three applications of (l) and Lemma

3.

(1.32) Av. pj_in{ rhs<31> /Q<zfl.;]} = 0(h + n‘l).

Thus, in view of (32), (31) and (29),

(1.33) Av. P§{fé(first term of rhs(28))dt/Q(£',£]} = 0(h + n‘l).
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2 -

Since by Lemma 2 with k = 2, Av. Pj(Q(§}:£]) 1 s (d+2-c)2,

it follows that

(1.34) Av. P§{j3(second term of rhs(28))dt/Q(xf,§]} 0((/h h2)'1)

In view of (33), (34) and (28) we get the k 2 version

of asserted Lemma 6.3

Lemma 1.
 

(1.35) Av. fiuqm'sh’lfij ,k\T<y.->1:. - Q((y',y1 x (x',x]>\}

= 0(h + n-1 + (m h2)'1)

Proof. The proof proceeds in the same way as that of

Lemma 6. For simplicity, we let k = 2. Fix j until (38).

Define Zi = h;k[§ 5 §: 5 x + h1]/f(x), V i = 2,3,...,n. Then,

in view of (11), (9) and (8) we can directly verify T(y,-)]:, = Z:

From the definition, Z2,...,Zn are l-dependent random

variables. Also, by the assumption (0.1), 0 s Zi smzh-2 for

2 -2

all i. Thus, by Proposition 1 with b-a = m h

(1.36) rzj,2\T(y.-)]:. ' Q(E'EN

2 -_

s 15,202,211» - «tutu + 7773-
2 ), h
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where k is as defined just below (28).

Proceeding the same way that (29) was obtained, we bound

the first term of rhs(36) by

(1-37) Q((y'.y]><(x,r+h]) + Q((y.y+h]X(X'.x+h]) + Q((y'+h,>']X(X'.X'+h])

+ Q((y' .y'+h] x <x'.x]) + 0(h + n“)

By four applications of (l) and Lemma 3 and by Lemma 2 with k = 2,

(1.38) Av. P§{(37)/Q(§',§]) = 0(h + n-l)

Thus, in view of (38) and (37),

2 -l

(1.39) Av. Pj(first term of rhs(36)) = 0(h + n )

2 -1 2

Since by Lemma 2 with k = 2, Av. Pj(Q(§',x]) s (d+2-c) ,

we obtain

(1.40) Av. P§(second term of rhs(36)) = O((/h h2)-1)
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Thus, in view of (40), (39), (36) and lhs(35), we obtain

k s 2 version of Lemma 73 I

Therefore, by Lemmas 6 and 7, it follows in view of (18)

and (17) that

_ a -1 k -1
(1.41) Av. 21er - ejn\ - 0(h +n + ([5 h) )

- 2 +2

In view of (0.4), taking h to be exact order n 1/( k ) gives

Theorem 1, With h, exact order, n-I/(2k+2),

-l/(2k+2)

\Dk(§, 9.1” 50(n ) ,

uniformly in 9.
~
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§3.2. The Procedure ¢ for «9(1) with a Rate (2k + 2)-1.
 

Throughout this section, consider -9(l) as the underlying

family of distributions, and interpret ¢ as a k-extended version

of the procedure treated in Section 4 in Chapter 11. 9 will be

constructed according to the analogous method used in §2.0. We

then bound the modified regret of 0, using the fact that the dif-

ference of the jth components of ¢ and 61 does not exceed h,

N

together with (1.41).

Fix j until (5). Let A(x) = jpw(y)Pe(x)dG(§). Then, it

is not difficult to verify

(2.1) ejn = y - {(A(§) - G<(y'.y] x <-w.x']>>/6<§>)

where P(fi) is defined by (1.5). As in §2.0,estimating 5(3)

by AF*(u) (see (1.9) with f E l), Q(u) by h-(k-1)F*((v,v+hl]

X (-m,u]) and G((v',v] X (~m,u]) by T(u) é Z AF*(v,u-r), and

noting from (1.4) that 0 s njn S 1, gives us an estimate of 9.

JD

as

(2.2) ®jn = X - (0 V q’jn) A l

where

(2.3) an = {h'(k‘1)F*<(y.y+h]x(-m.x]> - T<y.x'>}/T<y.->1:.
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where 0/0 is taken to be zero.

We first investigate the relation between ¢ and er. We

~

abbreViate wjn to W and qfin in the definition of aT,j to

m and will show m lies between w-h and w. In view of (3)

and (1 13)

(2.4) (9')) a)"; T(y.x'+t>dt - h‘(k‘1)F*(-.x)];+h)/T(y.31:. .

1n the definition (1.10) of T(y,x'), for every i,

1

f0 g[y'+t-r < xi 3 y'+t-r+h]dt = h, s‘h, = 0,

according as X1 5 y, y < Xi s y+h, y+h < Xi. Applying two separate

cases X1 5 y and y < X1 5 y+h to the rhs of the first equality

below gives us

h2 1T( x'+t)dt = Av [ < Xk-l s +h]( 1z[x'+t-r < X s x‘+t-r+h]dt)
10 y’ ' y .,1-1 Y 10 1

+ 1 1 , ,

= hF (-,x)]y +[y < X1-1 s y+hl, x < xi 5 “H.102“ +t-r<Xi;<_x +t -r+h]dt.

Hence

h-]F*(',x)];+h1 3 1(1) T(y,x'+t)dt s h-LF*(-,xI-h)]::+h1
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Thus, applying this to rhs(4) and noticing, by the definition (1.11)

x x -l * +hl * +hl

of T<y.->]x.. that T<y.->]x. = h {F <~.x+h>]§ - F < .x>1§ 3,

we obtain

(2.5) OStp-wsh,

analogous to (2.4.1) in the k = 1 version.

We now consider the modified regret of m. Since

~

X! < ¢jn 5 xj’ it follows by (0.4) and by the triangular inequality

with QT j as an intermediate term that

(2 6) 2-1'Dk ) 5A P" - '+A P - 9

° \ (9’91 V; ‘an 9T,j‘ V' ~\e'1‘,j jn‘

Since (by (2), (1.12) and (5)) l¢jn - aT’j! s (W - q» A l s'h,

(2.7) first term of rhs(6) s h

0n the other hand, since the inequality (1.41) for f = l bounds

the second term of rhs(6), it follows by (6) that

whg@\=Mh+R*+4G#34>

- 2 2

Hence, taking h to be exact order n 1/( k+ ) gives
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-l/ (2k+2)

Theorem 2, For h with exact order n

n-l/(2k+2)

\Dk(g. g)\ = 0( ) ,

uniformly in e.
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Section A.l (the main development) relates to bounds for

difference of two integrals of a bounded function in terms of exten-

sions of Levy metric. Section A.2 relates to convergence of a

sequence of variances. Some of the results in §A.l were used in

§1.1 and the consequence in §1.2 was applied in §2.2.

§A.l. Extensions of Lévy Metric and Bounds for Difference of Two

Integrals of a Bounded Function.

We first extend Levy metric L to the family 3 of in-

creasing real functions on R and then introduce an extension 9

to the family 771 of measures on (R,B) determined by the variation

of elements in 3.

p is defined as the infimum of L's and Remark A.l shows

the infimum is attained. Proposition A bounds L at retractions

to an interval by the maximum of differences of values of the func-

tions at end points of the interval and L at the unretracted

functions.

We then prove strengthened generalizations (Lemma A.2) of

Lemmas 8' and 8 of Oaten (1969, Appendix) giving bounds on the dif-

ference of two integrals of a bounded function. Lemma A.3 introduces

another family of bounds for the same difference.

Proposition A and Lemma A.3 are used in the proof of Lemma

6 in §l.l. Although Lemma A.2 was derived for this purpose, it is

93
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now included only for its own sake (as a generalization of Oaten's

results) since Lemma A.3 gives a better bound in this application.

For each F E 3, let pre-subscripts on F denote composi-

tion with the indicated translation, that is,

€F(X) = F<€ + X) 2

let F'(x) = x + P(x) and note a + ( F)’ = e(F'). For every

6

r é‘R, let Sr be the interval

Sr: {320 : _€(F°) _<_r+G° s€(F')} .

Note that (i) replacement by strict inequalities throughout would,

at most, subtract an end point from Sr’ (ii) replacement by re-

strictions to a dense subset of R would, at most add an end point

to Sr' Therefore neither would affect definitions which follow.

Lévy distance L of F and G in 3 is defined by

(1.1) L(F,G) = A SO.

That L is a pseudo metric will be seen in Lemma A.l where L is

shown to be the supremum of the difference of the quantiles of modifica-

tions.

For right continuous F and G, Sr(F,G) is closed. For,

taking r = 0 without loss of generality (since Sr(F,G) = SO(F,r+G))
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and letting e 1 L(F,G) = L through points of S0 gives G' s L(F')

and, by symmetry of Lévy distance, F' s L(G') which is equivalent

to _L(F') S G'.

We define another distance function p on 5 as follows:

for any F and G in 3,

(1.2) p(F,G) = A L(F. Hi3)

reR

Note that p is invariant under translates of values of F and G.

Since functions in 3 which differ only by a constant except at

discontinuity points induce the same measure, p is actually a metric

on 7%:

(1-3) p(u, v) = p(F,G)

for any F and G E 3, inducing the respective measures u and v.

Since A (A Sr) = A (U Sr) for any family of subsets Sr

r r

of extended real line, we see that

(1.4) p = A (U Sr)

r

Although we have used + (-) in the subscript position to

denote the positive (negative) part, we will also use + (-) on the

line to denote right (left) limit.

Remark A4. The infimum in the definition of p is attained.
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Proof. Pick a sequence {an} of numbers which strictly

decreases to p. Then, by (4) there exists rn such that

- + 0 O - O

rn _€(F)SG srn+e(F)

U n

Thus, taking lim and 133 on the lhs and the rhs respectively,

leads to

- 1im r +' (F')- s G' s.-lim r +- (F')+-.
__ n -p 11 p

Therefore, for every r 6 L133 rn, IE; rn], L(F, r+G) = p.

For each F E 3 and t 6 R, let tF denote the t-th quantile

of F'. Note that tsa CF maps R onto R. Define n by

n<F.G)= V \t -t -..R F c\ 0

Lgmm§.A.1. L = n.

Proof, 'To show L s n ‘we first have by the definition of

the t-th quantiles that

O - O + O - , o

F (tF) sG (CG) and G (t:G ) sF (tF+)

Hence, for every 5 > 0
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F'(tG-‘n-5) s F°(tF-5) s G'(tG+6)

and

G'(tG-6) s F'(tF+5) s F’(tG+n+5)

Since the mapping t«9 tG is onto, these inequalities show that

L(F,G) s fi(F,G) +'26 and thus L s n.

0n the other hand, if L(F,G) < c, then _e(F') s G' 3.6(F').

Noticing that the t-th quantiles have the Opposite ordering and by

the definition of S(F')

(t-th quantile of S(F')) = tF-s ,

we obtain tF+e 2 tG 2 tF-e. Thus N(F,G) s e and therefore

n s'L..

We now prove the following pr0position.

Proposition A, Let 1 = (a,b] be a finite interval and

let FI be the retraction of F into the closed interval

[F(a+), F(b+)]. Then,

L(FI,GI) _<. \(F-G)(a+)\ v \(F-c)(b+)\ v L(F,G)

fleei- Let
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(1.5) v =F‘ VG' and A =F‘ AG'

It is straightforward from the definition of t-th quantiles to show

that according as

t _<. V(a+) or 2 A(b+) or e (V(a+), A(b+)).

we have

\tF - tG \ s 1(F'-G')(a+)i or s \(F'-G')(b+)‘

I I

where strict inequalities hold for A(a+) < t s V(a+) or

A(b+) s t < V(b+). Thus,

(1031,61) 5 \(F'-G')(a+)\ v \(F°£')(b+)\ v was)

Therefore, Lemma A.l leads to the asserted inequaltiy..

Definition A.l. With h, a function defined on a real

interval 1, the modulus of continuity of h is the function given

by

(.0

(1.6) 0(a) = V(thl : ml, (1.2 e 1, MI - 1112‘ < e)

2
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for every 3 > 0.

Definition A.2. With h measurable on a real interval 1
 

supporting a finite measure T,

(1.7) T-SUP h = A{6: TEh > 5] = 0},

T-inf h = -(T-sup (-h))

and, with Tr denoting the restriction of T to the interval

a

(r-6/2, r+€/2), the anodulus of continuity of h is the func-

tion given by

(1.8) T-q(e) = V{Tr€-sup h - Tre-inf h : r e I}

for every 6 > 0.

The following Lemma A.2 is a unified and slightly strengthened

generalization of Lemmas 8' (corrected by replacing 3 by 4 in the bound)

and 8 of Oaten (1969, Appendix) with proof evolving from those of

Oaten.

nggg.é;g. Let 1 be a finite interval {a,b} supporting

finite measures u and v and let h be measurable on 1 into

a finite interval [c,d]. By abbreviating p(u,v) to p and

L(u[a,-], v[a,-]) to L, §§hd(u-u)| has the following families

of upper bounds:
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(1 9) 0((Eifl'V L)+){(k-1)L + \h-v\1+2(ui A v1)}+((-e) v d)\u1-vI\,

V positive integer k < hf§'+ l

(1.10) (cl-cm + (m) «(pub-1?- v (2.0mm: /\ vI)+((‘d) v emu-m

b-a

V positive integer k < “5; + l .

The bounds in (9) and (10) hold for every positive integer

k, but those unlisted are dominated by the bounds corresponding to

the largest k listed.

Rgmark, The bounds of Oaten are parametrized by A 6 (L,m)

and (2L,m) respectively and are improved by the u1 = 01 = l

specialization of (9) and (10) above with k taken to be the least

integer greater than (b-a)/x.

Proof of Lemma A.2. For a given 0 with k-l < (b-a)/o < k,

let 6 5 kg-(b-a) and let Xj é a+j6-2-16 for j = 0,1,2,...,k.

Since G < (b-a)/(k-l), it follows that 5 < o and hence (x0+x1)/2

and (xk_1+xk)/2 both lie inside the interval 1.

Proof of (3)). Note L < (b-a)/(k-l) and take

0 > ((b-a)/k) v L. Let hj é h((xj_I+xj)/2) for j = 1,2,...,k.

Then, \h(x)-hj\ s q(g 0+) for each x 6 (xj_ 1,xj], and

'hj-hj+l' s q(o+) for each j.

Let D. = 1M9 x ,x, , ' = O,l,...,k. ThenJ (u X 0 J] J
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k
jhd(h-v) = zj=1{§(xj_1,xj](h-hj)d(u-v) + hj(Dj-Dj_1)}

(1.11)

s ( + 1 - 1 + h D + zk‘l (h -h )D
0129+) ”iv kk j=1 j j+l j

From 0 > L,

D.) s (V(X., X. +L A x, ,X. +L(J+ J 1+1] ) (“(3-1 J] )

s v X. ,X. A (X. ,X.] + L
( J J+1] H J-1 J

and, by interchange of u and v,

D. S X.. X. Av(X. .X. +L .

Thus, henceforth abbreviating HI and v1 to u and v,

-1 , .
35 1 (Dj‘ s 2(h A v) + (k-1)L .

Therefore,

k-l

Zj=1(hj-hj+l)Dj S o(o+)(2(u A v) + (k'1)L} -
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Combining this with the inequality thk s d(u-v)+_+

(-c)(v-u)+, we obtain that

(1.12) man s e(e+){1h-q1+2(,.Av)+<k-1>L3+d<h-v>+ +('C)(v-u)+ .

Replacing h by -h gives us

(1.13) -lhs(ll) sy(g+){iu-v\I+2(uAV)+(k-1)L]+(-c)(u-v)+fd(v-u)+ .

We obtain (9) by taking the maximum of rhs(12) and rhs(l3), recognizing

(d(u-v)++(-C)(v‘u)+)V((-C)(LL‘v)++d(v-u)+)=((-C)Vd) \u-v\ and letting

0 decrease to ((b-a)/k)vL.

Proof of (19). Since, by Remark A.2, p = L(F,G) for some
 

right continuous distribution functions F and G inducing u

and 0, it suffices to prove (10) with p replaced by L = L(F,G).

As in the proof of (9), note 2L < (b-a)/(k-l) and take

a >((b-a)/k) v 2L.

By the definition of L we can find x0 = y0 < y1 <...< yk = xk

so that,for each j, ‘xj-yj\ s L and

(1.14) F(yj-) - L s G(xj) SF(yj) + L

because
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u{[F(y-)-L. F<y>+LJ = \y-xj\ sL}

Y

= [F((Xj ‘14) -) -L. F( xj+L )+L]

and the intervals [xj-L, xj+L] strictly increase wrt j.

We extend the domain of h to the interval [x0, xk] by

defining 2h = c + d on complement of 1.

For each ', let A. = x, A , and V, = x. V ,. Let

J J J yJ J J y]

T = ”+6, let Tj denote the restriction of T to the interval

[A,, V. ] and let h. = T.-inf h. Then, define functions h and

J J+1 "J J 1

h2 by

= = = - +h1(xj,xj+1] h2(yj.yj+1) 11]. and h2(yj) 112(3'j ) Vh2(yj)

Now h-h s T-q(L+g+) a.e. T on (x.,x. ] because

1 J 3+1

V 6 > 0 1((ijVjHJDEh < hj+o])+'r([/\j.xj+1]0[h < hj+6]) > 0

so that if 7((xj,xj+1]fl[h-hj > 1]) > 0 then T-ry(L+o+) 2 1-6 and

thus 2 A-

Also h -h s 0 a.e. T because h 2 h vh, 2 h a.e. T

2 ‘—j-1 -j 2

on A.,V. and h 2 h. = h a.e. 'r on V,,A. .

[J J] "J 2 (J J+1)

Let r E R. If h2(yj_1,yj+1) s r, then h1(xj_1,xj+1] s r.

. . l
Conversely hl(Xj-l’xj+1] s r implies h2((yj_1,yj)L(yj,yj+1)) s r

and therefore h2(yj-l’yj) s r. Hence h;1(-m,r] is the union of at
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most k/2 intervals of the form (yi,yj), and h;1(-m,r] is the union

of the corresponding intervals (xi,xj].

We note that, by two applications of (14), ”(y"yj) s

i

v(xi,xj]+2L V j so that

-1 -

(1.15) uhz (~m,r] s vh11(-m,r] + kL .

By two usages of the Funini representation of the integral

(cf. (2.1.10)) of a nonnegative function in the rhs of the first

equality below

(1.16) jhldo-fhzdu-d(o1-o1) f(d-h2)du - f(d-h1)dv

= g-c(uh;1-Vh;1)(-m,d-t]dt g (d-c)kL .

Henceforth abbreviating T-q(o+L+) to g, p1 to u and

61 to v, the triangle inequality and (16) bound fhd(v-L)-(d-c)kL

(1.17) f(h'h1)dv + f(hz‘h)du + d(v‘u) S a» + d(v-u)

Applying (17) to -h with the measures interchanged gives the bound

gp+(-C)(u'v). The minimum of those bounds is the former or latter

according as u 2 or s v and therefore
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(1.18) fhd(o-o) s (d-c)kL + Q(o A v) + t(o-o)+ - d(u-v)+ .

Applying (18) to -h gives rhs(l8) with c,d replaced by -d,-c

and gives

(1.19) Wham-m s (d-chL + am A v) + (c v (-d>>ia-v\ .

and (10) results on letting a decrease to ((b-a)/k) V 2L. '

In the following lemma, the natural generalization of the

inverse probability integral transformation is used to develop

bounds for the same difference of integrals without recourse to

partitioning.

Léflfli.é;2° Let I,u,v and h be as in Lemma A.2. Let

F and G be distribution functions inducing M and v with

V(a-) s A(b+) where v and A abbreviate F' V G' and F' A G°

(as in (5)). Then \fh d(M-v)i has the°following family of

bounds

(1.20) igin(IF-(Dwain(IE-cum)11+o<1(F.G)+>{A(b+)-v(a->}

+ gig) I-in

2

Proof. Without loss of generality we can assume I is

open. For, V e > 0 {a,b]cxa-e,b+€) to which h is extendible with
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the same modulus of continuity and, if (20) holds with a,b replaced

by a-e, b+e, then letting 310 gives (20) with 1 = {a,b}.

Let I = (a,b) and let f denote the map t 9 tF.

f-1{u] = [F'(u-), F'(u+)] and F' is strictly increasing,

Since

-1 ‘ . .

f (8.)1) = u f '{u} = (F (9+). F (w)

B<U<V

Thus, Lebesgue measure and f induce the measure with F. as a

distribution function on the range of f. By the transformation

theorem (cf. Halmos (1950), p. 163),

- - '(b)
(1.21) flh (IF — ”(2(a) h(tF)dt

Letting 6(H) = l or -1 according as H = F or G, the

difference of (21) for F and for G results in the following

representation for Eh d(u-v)=

fA<a> 6(S)h(ts)dt + (V(a) h(tF) h(tG)dt + (A(b) 6(T)h(tT)dt

where S and T have values in the set {F,G} 3 S'(a) = A(a)

and T°(b) = v(b). Hence, abbreviating L(F,G) to L hereafter

and using Lemma A.l, fh d(u-v) s



107

(1.22) d( (G -F) (a) )++( -c) ((F -G) (a) )++o(L+) (A(b) -v(a))+d( (F -G) (b) )+

+ (-c>((c-F>(b>>+ -

Applied to -h, (22) is altered only by c,d changing to -d, -c:

(1 ~23) ('C) ((G -F) (a) )++d((F -G) (a) )++oz(L+) (A(b) -V(a) )+(-C) ((F-G) (b) )+

+ d((G-F)(b))+.

Since (22) + (23) = (d-c){1(F-G)(a)‘ + \(F-G)(b)\} + 20(L+)(A(b)-V(a))

and (22) - (23) = (d+C) ((11 - (11), (22) v (23) = (20).§
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§A.2. A Fatou Theorem for Variances.

The following theorem is used in Section 2.2.

 

Theorem A.l. If (Um) is a sequence of random variables

converging in distribution to a random variable U, then

lim_Var(Un) 2 Var(U).

Pooof. It suffices to show that for {UH} such that

Var(Un) ~ finite.

With ”n = EUn and o: = Var Un’ the Tchebycheff inequality

gives P[\Un — “n! <,/2 on] 2 1/2 while tightness provides a finite

b independent of n for which PE'Unl s b] > 1/2. The nonempty-

ness of the intersection of these events shows Eunl < b +-/§ Oh

so that {Mn} is bounded.

Letting {um} be a convergent subsequence with limit u ,
on

U - U 'QIJ"LL and hence (cf. Loéve (1963) 11.4, A(i))

m m m

. . 2 2
11m Var(Un) = 11m 151(11m - Rm) 2 13(1) - Na.) 2 Var U . 5
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