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ABSTRACT

ANALYTICAL INVESTIGATION OF STABILITY

OF SQUEEZE-FILM JOURNAL BEARINGS

by John Edward Nolan

Because of increasing applications for gas bear-

ings, the operating characteristics of such bearings,

in particular, stability characteristics, are of inter—

est. While many investigators have considered hydro-

dynamic and externally-pressurized gas bearings in this

regard, very little has been done with squeeze-film

type gas bearings.

This paper describes the investigation of stabil-

ity characteristics of squeeze—film type gas journal

bearings by solving the differential equations which

describe bearing behavior~~Reynolds' equation and the

dynamic equations for the journal. .Although some ap-

proximate results were obtained from small-parameter

considerations leading to forms of the Mathieu equation,

the greatest accuracy was given by digital—computer so-

lutions based on finite-difference methods. A technique

was devised which enables the computer to automatically

locate and follow the boundaries of stability maps, even

 



John Edward Nolan

around extremely sharp turns. The associated logic is

described in detail and is adaptable to the determina—

tion of boundaries in other similar applications.

After a thorough analysis of an infinitely-long

journal bearing constrained to motion in only one trans-

lational coordinate, the work was extended to include

(a) bearings of finite length and (b) bearings allowed

to tilt as well as translate in one plane. Of all cases

considered, it was found that the stability regions for

the infinite journal were the smallest. Thus, it was

concluded that a bearing design based on the character-

istics for an infinite journal would be conservative.
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INTRODUCTION

In the present space-age technology, there is an

increasing demand for bearings which can operate over a

wide speed range, with low friction, and under extreme

conditions of environment. This demand is being met in

certain applications with the use of gas bearings, i.e.,

bearings which use a gas (e.g., air) as their lubricant.

It is desired that the load applied to these bearings be

supported entirely by the film of gas which exists be-

tween the bearing surfaces. In order for such a film to

support a load, the pressure forces in the film must be

such that their resultant produces a net lift. There

are basically three different methods of effecting suit-

able pressure distributions, and gas bearings are clas~

sified according to which of these means they are de-

signed to use. The three general classifications of gas

bearings are: (l) self-acting, or hydrodynamic, bear-

ings, (2) externally-pressurized bearings, and ~

(3) squeeze-film type gas bearings. Each of these types

will be described briefly below for the particular case

of journal bearings, although it should be clear that

gas bearings can be used in other configurations (e.g.,

thrust bearings) as well.



In hydrodynamic bearings, the relative tangential

motion of the bearing surfaces results in gas being car-

ried around and wedged into the space of minimum clear-

ance, thus effecting a lift. Since the operation of

these bearings is dependent on the relative motion of

the bearing surfaces, self-acting bearings are limited

to applications where such relative motion is always

present; e.g., in the case of journal bearings, the

journal must always be rotating.

When there is insufficient relative surface mo-

tion to develop a self-acting film, or when wide speed

fluctuations are expected, either an externally-pres-

surized bearing or a squeeze-film bearing must be used.

A typical application for low-speed, low—friction bear-

ings is in gimbal bearings for gyroscopes.

The lift in an externally-pressurized bearing is

produced by gas being forced under pressure into the

space between the bearing surfaces. The gas can be fed

into the bearing through orifices, capillary restriction

holes, or grooves.

The net supporting force in squeeze-film bearings

is created by oscillating one of the bearing surfaces

rapidly insand-out normal to the film. Since the pres-

sure increase during the approach is of greater magni-

tude than the pressure decrease during the pull-away

part of the cycle, a net positive lift results. In the



case of a journal bearing, an overall net force on the

journal can be produced only if the journal is not con-

centric with the bearing. If the journal is off center,

the tendency of the squeeze-film pressure forces is to

return it to the center. Either externally-pressurized

or squeeze-film journal bearings can support a load even

if the journal is not rotating. If it is rotating, the

self-acting lift effects resulting from this rotation

should generally be expected to combine with the exter-

nally-pressured or squeeze-film effects.

Experience with self-acting and externally-pres-

surized gas bearings has shown that, while the pressure

forces developed may be sufficient to support the re-

quired load, certain operating conditions do not allow

the journal to seek a stable equilibrium position and

remain there, but instead cause it to move about inside

the bearing, possibly until the journal and bearing come

into contact. These undesirable bearing phenomena are

commonly called forms of instability.

While stability characteristics of self-acting and

externally-pressurized bearings have been studied by

many investigators, both experimentally and analytically,

very little has been published about squeeze-film bear-

ings. An initial investigation by Beck and Strodtman [1]1

1Numbers in brackets designate references.



showed that these bearings also exhibit stable and un-

stable regions of operation. It is the purpose of the

present work to make a more-complete determination of

these regions and to extend the analysis to bearings of

finite length which are free to move in more than one

degree of freedom.

In the analytical investigation of gas bearings of

any of the three basic types, the partial differential

equation describing the fluid flow and pressure distri-

bution in the bearing (Reynolds' equation) must be sat-

isfied. If the Reynolds equation is solved by itself,

with the journal in some specific configuration, only

pressure distribution and load support information can

be obtained. If stability characteristics are to be de-

termined, appropriate equations of motion for the journal

must be solved concurrently with the Reynolds equation.

The equations of motion are invariably based on Newton's

second law and are relatively easy to solve. Reynolds'

equation, on the other hand, is a rather cumbersome par—

tial differential equation; the various methods which

“have been used to satisfy it will now be reviewed.

Numerous perturbation techniques have been applied

to the Reynolds equation. In these methods, a solution

is assumed as a power series in terms of a parameter ap-

propriate to the nature of the problem. Gross and Zach-

manoglou [2] discuss several of the perturbation param-



eters which have been considered. Ausman was the first

to use the product PH (where P and H are normalized pres-

sure and clearance respectively) as the basis of a per-

turbation series, and most subsequent perturbation ap-

proaches have used his "Linearized PH Method" [3].

Galerkin's method has been used by some investiga-

tors [4,5]. In this method, the Reynolds equation is

reduced to a system of first-order ordinary differential

equations which are then solved together with the equa-

tions of motion.

 

 
Castelli and Elrod [6] used a finite-difference ap-

proach, solving both the Reynolds equation and the dynam-

ic equations for the journal on a digital computer.

While this method is very expensive, it also results in

greater accuracy than the others, as pointed out by Aus-

man [7] .

For further reference concerning these methods,

the papers of Katto and Soda [8] and Pan and Sternlicht

[9] are recommended. The first of these compares theo-

retical methods of sclving the Reynolds equation, and

the second compares both theoretical and experimental

methods of determining stability of self-acting plain

cylindrical journal bearings.

The only papers concerning squeeze-film bearings

known to be presently published are those of Salbu [10];

Pan, Malanoski, Broussard, and Burch [11]; and Beck and



Strodtman [l]. Salbu's paper compares experimental re—

sults with finite-difference solutions of the squeeze-

film equations for a pair of parallel coaxial disks.

Reference [11] compares various theoretical and experi-

mental results for squeeze-film cylindrical journal bear-

ings. Neither of these two papers consider stability.

Reference [1] does outline approximate stability maps for

infinite squeeze-film journal bearings, and these results

will be extended in the present investigation.

The methods mentioned above for solving the Reynolds  
equation were all used for either self-acting or external-

ly-pressurized journal bearings. In the present investi-

gation, it will be seen that, for the squeeze—film con-

figurations considered, the Reynolds equation will reduce

to a relatively simple form. The dynamic equations are

then solved by finite-difference methods, subject to the

restrictions imposed by the simplified Reynolds equation

and by a mass-content rule. 0f the various methods dis-

cussed above, the present method is most like that of [6].

The computer used throughout this work was the Con-

trol Data Corporation 3600 at Michigan State University.

The plotter used in conjunction with this computer was

the CDC 165.



STABILITY OF THE INFINITE JOURNAL BEARING

IN ONE DEGREE OF FREEDOM

It is desired to establish stability characteris-

tics of squeeze-film type gas journal bearings. The

method of determining these characteristics is basically

a computer-solution of the differential equations govern-

ing bearing behavior. These equations are of two types:

 

 
(l) the equation relating properties within the gas film

(Reynolds' equation) and (2) the equation (or equations)

of motion of the journal in response to forces which are

applied to it by the pressure of the gas film, by any ex-

ternal loads which may be applied, and by the weight of

the journal itself. These latter equations are derived

from Newton's second law of motion.

In order to completely locate a rigid body in space,

six independent coordinates are required. Thus, in order

to provide for the most general motion of the journal,

equations of motion in each of six coordinates should be

used. If it is desired to eliminate consideration of mo-

tion in one or more of these coordinates, appropriate

constraints should be assumed. Because it is not likely

that a journal would move an appreciable distance along

its axis, motion in this coordinate will be neglected.



Because squeeze-film effects could not otherwise be dis-

tinguished from hydrodynamic effects, it will be assumed

that rotation of the journals about their axes will be

zero. If the reference position of the shaft is taken to

be in a horizontal plane, the remaining four coordinates

could be: (1) vertical displacement of the center of

gravity of the journal, (2) horizontal displacement of g

the center of gravity in a direction normal to the shaft F

axis, (3) rotation in the horizontal plane about the ver-

 tical line through the center of gravity of the journal,

‘
3

and (4) rotation in a vertical plane about the horizontal

line which is perpendicular to the shaft axis at its cen-

ter of gravity. Of these four coordinates, only motion in

the first is considered in the initial investigations.

Constraints are assumed to prohibit motion in the other

three. Later in this paper, angular motion in the coor-

dinate defined by (4) above will also be allowed.

At this point, it seems advisable to give a more-

detailed description of the system configuration. The

journal being supported is considered to be a solid homo-

geneous shaft of radius R, length L, and mass m. The

bearing which encloses the journal has a length L and a

nominal radius (R+h0). During operation, the bearing ra-

dius fluctuates sinusoidally at a high frequency, pro-

ducing the squeeze effect. The amplitude of this sinu-

soidal variation is denoted by the symbol hl° Assume the



bearing axis and the reference position of the journal

axis to lie on the same horizontal line. Then the loca-

tion of the journal centerline can be specified by a co-

ordinate y measured positive upward from the fixed bear-

ing centerline-~this assumes, of course, that the other

five coordinates are constrained to be zero as mentioned

above. A possible instantaneous configuration of beer-

ing and journal (with the bearing at its nominal radius)

is shown in Fig. l.

 Another symbol shown in Fig. 1, but which has not

 

been mentioned previously, is the angle 9, which is meas-

ured from the vertical about the centerline of the jour-

nal. Since some of the variables to be encountered will

be functions of position around the journal, 9 is intro—

duced to provide for these functional relationships.

These variables will also generally be functions of posi-

tion along the shaft, so a coordinate 2, measured from

the left end of the shaft, is provided. The angle 9 can

assume values between 0 and 2N; while 2 varies from 0

to L.

The Reynolds Equation

The equation describing the fluid dynamics of lam-

inar gas films is called the Reynolds equation. For a

gas bearing in which there is no relative tangential mo-

tion between mating surfaces, and for the coordinates O

and 2 as defined above, the Reynolds equation can be
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Fig. l.--End view of the shaft

indicating nomenclature.

 

 

Fig. 2.—-End view of the shaft

showing the action of a

general pressure force.
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This equation is readily derived from the general Reynolds

equation as given in Gross [12]. In this equation, p is

the density of the gas film;’u is its viscosity; h is the

film thickness at a general location (z,9) and at a gen-

eral real time't; and p is the pressure at a given

(z,9{t).

An assumption which is generally valid in gas bear-

ing work is that the gas film behaves as a perfect gas.

Thus,‘p in Eq. (1) can be replaced with

p=7§7 (2)

Another generally-accepted assumption used in gas—bearing

work is that the gas behaves isothermally, i.e., T, the

temperature, is constant. Also, for an isothermal gas,

lfi.can be considered constant. Then (1) becomes

e[ph3e1+—e[phe1= 12/». as m

Equation (3) is a relationship containing dimen-

sioned quantities. To make it dimensionless, define

Zaz/B, where B is some characteristic bearing dimension,

and Z is the normalized z; P=p/pa, where pa is the ambi-

ent pressure, and P is the normalized p; H=h/ho, where

h0 is the nominal film thickness, and H is normalized h;

and taut, where t is normalized time, andcn is some char-
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acteristic frequency, usually taken to be the squeeze

frequency in squeeze-film work. Using these dimension—

less groups, and letting B equal R, (3) can be written

g2 [H13 $73] + 3‘25 [PH3 5%] z c ‘9 PH (4)

where the dimensionless constant 0, defined by

2

q = aeg— <5)
pahO A

is commonly called the "squeeze number".

 The Equation of Motion F

Equation (4) is one of two equations which must be

satisfied in order to determine journal bearing stability

characteristics. The second is the equation of motion.

As stated above, the journal will first be considered

free to move in only one coordinate. The forces acting on

it are the gas pressure forces, the weight of the jour-

nal, and external forces; the last two of these forces

are combined in this development.

Figure 2 represents an end view of the journal.

The arrow labeled p indicates the pressure applied to the

journal at a general location (2,0). This pressure ap-

plied over an elemental area.Rdzd9 results in a force in

the y direction equal to -pR(cosG)dzd9. The resultant of

all such forces is obtained by integrating this elemental

force over the complete bearing. Letting the load per

unit length,due to the combined effects of shaft weight
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and applied forces, be W1, the equation of motion can be

2 2N’L

‘ = -[ pr<cosO)dde - WlL (5)

0 0

To make (6) dimensionless, use the same substitutions

written

3
‘
4
5

%
1

9
-

which were used to normalize (3). The resulting equa-

tion is

“
"
2
. .
I
.

2w 1'

d2 = - 1 R RP(cosO)dZdO + 2w' (7)

a? E I o o

where two new dimensionless groups have been used, which

n
e
w

 3"

are defined as

B - —-—flmh°w2 (8)

— gOpa

and

W
, l

w 2 Pa (9)

These groups were used previously in Reference [1]. If

advantage is taken of the symmetry present in the bear-

ing, both axially and circumferentially, (7) can be

written

«L

2 2R

S.% = .. % [5%] P(cos9)dZdO + 2W] (10)

0

Datermining Stability

The method of determining stability in this inves-
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tigation is basically to start the solution of Eq. (10)

from a reasonable set of initial conditions and to ob-

serve the motion in Y. If this motion is such that the

journal “survives" a specified number of squeeze cycles

without contacting the bearing, the system is said to

have behaved in a.stable manner, otherwise unstable.

Since R, L, B, and W' are all known constants for

a given case, the solution of (10) would be quite simple

except for the presence of P, which is generally a func-

tion of position as well as time. Once H is known, it

is possible to obtain P from Eq. (4). Referring to

Fig. 1 should help to verify that the general expression

for h, the dimensioned clearance, can be written

h = hO - y cosO - h1 sinQot) (11)

This is normalized by using H=h/ho, Y=y/h0, €l=h1/ho,

and<JU=t, most of which have been used before. The

resulting expression for normalized clearance is

H = l - Y cosO - £1 sin(t) (12)

It should now be evident that the general solution

of (10) is dependent on both (4) and (12). In a numer-

ical solution of the problem, the system could be given

an initial value of Y from which an initial H could be

calculated using (12). Equation (9) and this H would

yield atP distribution which could be used in (10) to

determine a new Y, etc. In theory, this procedure could

be continued for as many time steps as desired, but in
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practice, the computer time required for repeated solu-

tions of (4) is prohibitive when attempting to obtain a

complete stability map. Fortunately, for bearings which

operate at high values of squeeze number, a simpler re-

quirement can be developed from equation (4).

Simplified Reynolds Equation for Largetr

Note that Eq. (4) can be rewritten as

tltz‘PHB t?) + §t<PH3 3%)] = Ari"PH (13>

If U’is sufficiently large, this equation can be approx-

Qgfl =2 o (14)

or for relatively short times,

imated as

PH 2 constant in time at any location (15)

Fortunately, for many cases of interest, the numerical

values encountered are large enough (10,000 or larger)

to make (14) a reasonable approximation. Also, it has

been observed [13] that when a bearing is going to be-

come unstable, it generally does so in much less time

than would be required for PH to change appreciably.

Thus, at least for high squeeze numbers, the use of

Eq. (15) in place of the Reynolds equation is a reason-

able basis for stability investigations.

A_"Mass-Content“ Rule

Equation (15) indicates that the product (PH)
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should maintain a value which is approximately constant

in time at a given location (2,9) in the film. This

product can, however, assume different values at differ-

ent locations, i.e.,

PH = who) (16)

In order for this reduced Reynolds equation to be help-

ful in solving (10), it is necessary that the function

Y'be known. One derivation, which was developed by

Elrod [14], for an infinitely-long journal with infinite

squeeze number and a fixed journal location, resulted in

the following relationship:

 j

%€§
\V = N1 + 37;; (l "' €2COSG) (17)

 

Relationships of this type have been called "mass-con-

tent" rules, because their derivation is dependent on a

consideration of the average amount of mass of the gas

contained in the space between bearing and journal.

fihe constant {2 in Eq. (17) has not yet been de-

fined. If a bearing operates with a normalized excur-

sion 61 and supports the journal at steady-state for a

given W', the position of the journal will be a definite

average distance below the bearing centerline, i.e., at

that location Where gas pressure forces just balance W'.

In this position, the distance from the bearing center-

line to the journal centerline, in normalized form, is
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called 62, eccentricity.

Equation (17) is not a function of both Z and 0,

but is a function only of Q,because the bearing was as-

sumed to be infinitely long. While less-restrictive

mass-content rules have been developed and will be dis-

cussed later, the stability work done in [l] and much

of the work done in the present investigation is based

on Eq. (17). Use of this equation was justified ini-

tially because it was the best available. Later on,

even after a more-accurate rule was developed, (17) was

still used to some extent because computer time required

to use the new rule was considerably greater. Finally,

use of Eq. (17) can be justified because stability plots

based on it are not too different from those based on a

less-restrictive mass-content rule; where differences do

occur, designs based on (17) would be conservative.

Stability of the Infinite Journal

With‘P and H both being independent of Z for in-

finite bearings, it follows that P will also be inde-

pendent of Z, and (10) can be reduced to

'1"

9.2.)?! = .. g [[P(cos€)d9 + w'] (18)

dt 0

From Equations (12), (16), and (17),
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., gezfi

1 + l (1 - £20080)
P _,y 1 + (2

_'H = l - Y cosO - 61 sin(t) (19)

Substituting this expression for P into (18) gives

7"

d2Y 2 (l - €2cose)cosGdG

“"2 "' "' B A 1 - verbs - g sin(t) "’ w' (20)dt 0 1

 

where,A has been defined for convenience as

zfi

A== Vfl + gel (21)

1 + €2

 

Now the stability characteristics of infinite journal

bearings can be determined by solving only this one

equation (20) for various values of the system parame-

ters B, 61, (2, and W'.

Compatible Values of Parameters

In using Eq. (20) to establish stability regions,

61’ (2, and W' cannot all be chosen independently. If

any two of them are chosen arbitrarily, there is only

one compatible value for the third one. This stems from

the fact that the mass-content rule, Eq. (17), was de-

rived from the steady-state Reynolds equation, i.e., the

system was assumed to have gone through all transients,

so that the only time-variations of any variables were

cyclic. If the system is to be in a steady-state con-

figuration, a bearing with an excursion 61 supporting a
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specified W' would support it with a definite average

eccentricity 62.

Compatible values of 61’ 62, and W' can be deter-

mined from Eq. (20) for steady-state. To do this, £1

and (2 are specified, and the corresponding values of

W' are determined. One way of forcing;equation (20) to

conform to a set of steady-state conditions at a given

€2, even for the case of an unstable configuration, is

to physically "hold" the journal at Y = {é and to let

the bearing operate with its excursion {1 until steady-

state conditions are reached. During the transient to

reach these steady-state conditions, the bearing is said

to be "pumping up". The transient itself could be fol-

lowed by solving the Reynolds equation. This has been

done in [13] for infinitely-long flat-plate squeeze-film

bearings. Also, the steady-state pressure distributions

for parallel flat discs have been predicted for various

cases in Ref. [10]; some of these cases were confirmed

experimentally. The results of both of these papers

show that the bearing actually does pump up, with the

average final pressure in the film being higher than

ambient.

If the journal is held in the Y=€2 position,

Eq. (20) can be averaged in time to give
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’N 2“

(l - €2cosG)cosGdO

W! - "%W I - 620085 - €isin($) dth (22) 

This expression was used in Ref. [1] to establish the

family of curves shown in Fig. 3. In the present inves-

tigation, a more-extensive set of these curves was re-

quired, so a computer program called COMBAT was written

which solved Eq. (22) for many more possible combinar

tions of €i and E2. The results of COMBAT were not

plotted, but Values were taken from the computer print-

out as needed. Plots of the type shown in Fig. 3 are

called "load-support curves".

Solution of the Equation of Motion

The procedure for testing the stability of a bear-

ing for a given set of operating conditions can be out-

lined as follows. First, choose values of €1, EZ, and

W' which are compatible with Eq. (22). Then, assume

that the journal is held at Y = 62 while the bearing-is

operated with an excursion (1 until it pumps up to

steady-state. When steady-state is reached, Eq. (22)

should be satisfied, and the average of the resultant of

the pressure forces should just balance W'. Then, if

the constraint which was holding the journal at its

equilibrium position is removed, (20) becomes the gov-

erning equation. It is the solution of this equation

that is the basis of stability in the method of analysis
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10.‘

Fig. 3.—-The load—support curves

for an infinite journal

given by Ref. [1].
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used. If the motion in Y is such that it would cause

the journal to contact the bearing, the system is said to

be unstable, otherwise stable.

An explicit expression for Y(t) satisfying Eq. (20)

appeared to be very difficult to derive, because the

equation is nonlinear. Thus, it was decided to solve

this equation by finite-difference methods. The method

of solution used considers (20) to be a special case of

the more-general form

.7 = f(t) (23)

The initial value of Y is specified; it may or may not

equal (2, depending on whether it is desired to start

the journal from equilibrium or from some distance away

from equilibrium. Both types of starts are considered

below; in any case, the initial value of Y is called YO.

Subsequent values of Y are determined at time in-

tervals At. The value of Y(At) can be approximated by

a Taylor series:

Y1 = Y(At) = Y(O) + Y'(O)At + mm”? + (24)

Assuming that the journal is released from rest, Y'(0)

equals zero, and, from (23), Y"(0) = f(0), so (27) be—

comes

Y1 = YO + £91th (25)

For Y2, the following approximation can be used:
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2
Y2 = 2Yl - YO + (Ax) fl , (26)

and the remaining values of Y can be calculated from the

general expression

2
At

rm = 22ml - Ym_2 + STE-[1313,14 - 2fm_2 + fm_3] (27)

This last approximation is given in Crandall [15], and

it is accurate to the order of hit)5.

In using this finite-difference technique to solve

Eq. (20), it is obviously not feasible to allow the

tests to go on indefinitely in time. Instead, the com-

puter runs have been limited to a specified number of

cycles. The "unstable" points determined by this method

actually are unstable, since they were tested over a suf-

ficient number of cycles for the instability to occur.

The ”stable" points, however, left room for doubt, since

such a point might have gone unstable if allowed even

one more time step. In order to remove some of this

doubt, especially in the earlier runs, plots of Y ver-

sus t were obtained, The unstable points generally went

unstable in a fraction of the number of cycles allotted,

by oscillating with increasing amplitude. The plots for

the stable points survived the number of cycles allotted,

generally following one of two patterns: either oscilla-

tions of nearly constant amplitude, or oscillations with

an oscillating amplitude (beating). In most cases, the

repetitious nature of the response was apparent, and it
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was this apparent good behavior which justified the meth-

od used. A few so-called "spongy" regions appeared, in

which the "unstable" points ran for almost as many cycles

as the "stable" points, but, since these regions general-

ly appeared in less-critical parts of the stability map,

they were not retested with more allowable time steps.

Some typical response plots will be discussed later in

more detail.

The Results of Beck and Strodtman

The first family of stability curves for infinite

journal bearings was derived by Beck and Strodtman [1].

In this work, the boundaries between stable and unsta-

ble regions for given values of W' were plotted with €l

as the ordinate and B"1 as the abscissa. The complete

family of curves for a range of parameters was plotted

and is reproduced in Fig. 4. The region of.unstable

points for a given W' is the area to the left of the

curve for that W'; the region of unstable points is to

the right.

In locating these curves, the finite-difference

method just discussed was used, with eighty cycles of

squeeze required for stability. The method of searching

for the boundary was: (1) to hold both W' and €l con-

stant, (2) to begin with a value of B-1 in the unstable

region (which was predicted approximately by a.small-

parameter analysis leading to a form of the Mathieu equa-
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tion), and (3) to decrease B-1 in steps until a stable

point was found. Then a new value of El was read in,

and the process was repeated until enough boundary points

were located to outline a curve for that value of W'.

There is a definite drawback to this method of searching,

namely that boundary points could be located only if they

could be "seen" from the starting point for a given £1.

The search was conducted on a constant-£1 straight line,

and there was no provision for turning corners if any

'should exist. The need for the ability to turn corners

did not become apparent until Strodtman, in attempting to

verify the results of Fig. 4 with an analog computer, ob-

served unstable behavior at certain points within the

"stable" regions. Some of these same points were tested

by the original method, allowing 250 cycles for stabiIL

ity, and they also went unstable by this method. It was

decided that there must be some type of "holes" in the

stable regions, but not enough points had been tested to

completely define the nature of these holes. While

points in the vicinity of the holes could have been test-

ed at random until the boundary could be sighted-in be-

tween the stable and unstable fields of points, this

would have required much computer time, with 250 cycles

being allowed, and also many runs in order for the inves-

tigator to be able to determine which points to try next.

It seemed that what was needed was a computer program
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which could locate and follow a stability boundary, even

around sharp corners, without having to test an excessive

number of points. The development of such a method of

analysis is one of the prime contributions of the present

investigation.

The “Automatic" Program

In the initial search for a program which would au-

tomatically locate and follow a stability boundary, many

possible methods were considered. Each proposed logic

was applied graphically by hand to a typical section of

curve which contained a sharp bend. None of the methods

failed to trace out a reasonable approximation to the

gradually-curved part of the plot, but the abilities of

the methods to negotiate the sharp turn varied consider-

ably; many of the methods would not follow the turn at

all.

The method which was finally adopted can best be

explained by considering a graphical application of it

to a specific curve. Let the boundary of interest be

represented by the curve of Fig. 5. This method begins

by locating two points just inside the stable region,

using a method similar to that of [1]. These first two

points are labeled A and B in the figure. After A and B

are located, it is required that all succeeding points on

the approximate curve alternate in~and~out of the unsta-

ble region and that each point be a known small distance
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Fig. 5.--Graphica1 presentation of the

automatic seeking method.
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(called DIST in the computer programs) from each of its

two neighbors. These two requirements force all points

on the approximate curve to fall no further than DIST

from the true curve.

Points A and B define a straight line which is di-

rected at an angle ARG to the horizontal as shown. The

next trial point is located by extending a distance DIST

from B in the direction of ABC. Since this new point, C,

is in the unstable region, it will be the next point on

the approximate boundary. If 0 had fallen in the stable

 
region, ARG would have been decreased by a given angle L"

DELARG, and the process would have been repeated until

the trial point did fall in the unstable region. Note

that, for this procedure to work, B must be no further

than DIST from the true boundary.

Following this procedure, the next trial point, D,

is located by extending a distance DIST from C in the di-

rection of ARG. Since G was in the unstable region, the

next good point should be in the stable region. Thus, D

is discarded, ARC is increased by DELARG, and the next

trial point, E, is located from C a distance DIST in the

direction of the new ARG. This procedure is repeated un-

til the next stable point is found, and the general pro-

cedure continues, locating alternating stable and unsta-

ble boundary points, until the complete curve is traced.

The above method is the basis of all the automatic
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techniques used in any of the computer runs. However,

many modifications were made to overcome specific diffi-

culties which occurred. In particular, at least eight

different starting procedures were used, to accomodate

starting from the unstable region and moving up; start-

ing from the unstable region and moving down; starting

in a hole, moving left and up; starting in a hole, mov-

ing left and down; etc. Also, as various corners were

encountered which could not be followed, the computer

logic was modified accordingly. These modifications

were suggested as a result of manually plotting what

path the computer was following and determining what a

new logic must include in order to avoid the same diffi-

culty. Although it is possible to sketch curves which

the best of these methods cannot follow, fortunately no

such curves have been encountered in the stability plots

studied. The curve-following logic from one of the more-

effective programs is discussed in more detail in Appen-

dix A.

It should be obvious from the geometry of the meth-

od that smaller values of DIST result in a better repro-

duction of the desired curve, but also require that a

greater number of points be tested. While small values

of DELARG may allow the method to progress quite effi-

ciently along relatively-straight portions of the curve,

larger values allow it to turn corners more quickly. It
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was decided on the basis of some manual applications of

the method that a DELARG of fifteen degrees (.261799388

radians) gave reasonable accuracy and speed over either

straight or curved sections of curve. Although the pro-

grams provided for reading in DELARG with each new set of

data, this same value was used throughout. DIST was giv-

en different values depending on the detail expected in

the region being tested. In all cases, the value of

DIST used was specified in terms of the ordinate scale

of the curve being traced, e.g., if DIST is given as

0.025, and if one inch on the ordinate represents 0.1

units of the ordinate variable, then DIST would be one-

fourth inch on that plot.

The first automatic programs were used to follow

curves similar to those given in Fig. 4, i.e., plots of

61 versus B-1 at constant W'. In methods used before

the automatic programs were developed, it was known in

advance what the values of W' and 61 of the tested points

would be, and so the corresponding value of 62, to satis-

fy Eq. (22), could be read into the program as data. In

the new programs, the order in which points would be

tested could not be predicted; thus there was a need in

the program for a means of calculating compatible values

of Ge for given values of El and W' at each point. Since

each curve was to be plotted for a constant W', this

problem was solved by reading in a complete range of com-
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patible values of El and 62 for this W', and then inter-

polating for the E2 values as the corresponding values

of €1 became known. This method worked very well for the

problems involving Elrod's mass-content rule, but it will

be demonstrated that it could not be used practically

with the more-accurate mass-content rule developed by

Beck.

Findingthe "Hole" Automatically

It has been stated that a few unstable points had

been located inside the "stable" regions given in Ref.

[1]. Specifically, some of these points occurred inside

the plot for W' = 0.1 at the locations shown in Fig. 6.

The information given by these few points was not suffi-

cient to tell whether the hole was closed inside the sta-

ble region or whether it might open out into the larger

unstable region. If this latter possibility had been the

case, it should have been possible to locate the hole by

following the original stability boundary into it. Thus

the first automatic programs were used in an attempt to

locate the hole in this manner. The first of these pro-

grams was started at point A of Fig. 6 and allowed to

follow the boundary upward to point B. The zig-zag pat-

tern shown was taken directly from the plotter output; it

is so coarse because DIST was specified as 0.050. Since

this run failed to locate the entrance to the hole, the

program was modified so that it would start at point C

   



1.0-1

0.8?

0.6“

0.4i

   

 

   

 

   

33

Fig. 6.--The first-stability plot

from an automatic program;

 

for W'=O.l.

r.

Solid 'zig-zag" curve

.from.the plotter output

Dashed curve from Fig. l. l

Unstable points

located by Strodtman,

verified by Beck.  
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and work downward. The computer plot of this run is rep—

resented by the line C-D. This run did not locate the

entrance to the hole either, although it was discovered

later that it should have; the start-up procedure was so

coarse that it jumped over the entrance.

At this point in the investigation, it was believed

that the hole did not open out into the large unstable ;

region, so a program was developed which would start from

inside the hole. While the two runs from A to B and C to

D were allowed fifty cycles for stability, 250 cycles

 1...
.

were allowed for runs inside the hole. Also, DIST was

reduced to 0.01, since it was anticipated that features

inside the hole would be somewhat finer than those on

the outside. Both of these changes obviously increased

the computer time required to progress a given distance,

but, for this test case, it was felt to be justified.

The curve from E to F in Fig. 7 represents the

first section of boundary located inside the hole. The

next run began at point G and ended at H. This was the

first relatively-sharp turn that was followed by any of

the programs. The next run gave the points from I to J,

and it was expected that a run started downward from

point H, if given enough time, would eventually close the

hole. When this was tried, however, the curve did not >

close, but instead doubled back around point K to point

L. The last section tested was from J to M; here the I
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Fig. 7.--Stability plot for W'=0.1, showing

1.0%

0.8.

0.6:

0.4“

0.2y

 

detailed construction of the hole.

 

 

0.0
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program stopped, because the value of 61 at point M was

the lowest value which could support a W' of 0.1. Thus,

it was finally shown that the hole did open out through

the bottom of the original stability region.

The total computer time used for the portion of

Fig. 7 from M to L was approximately 45 minutes on the

CDC 3600. The reason for this, as suggested earlier, is

that the tested points in this region were very close to—

gether and that 250 cycles were required for stability.

While such a time-consuming method might be justifiable ,

 
for a test case, it would obviously not be practical to

obtain a complete family of curves in this manner. How-

ever, before the next modification of the method is dis-

cussed, it is interesting to compare plots of Y(t) for

some of the points tested in obtaining Fig. 7.

Comparison of Some Y Responses

It has been emphasized that whether a point of op-

eration is called stable or unstable depends on whether

or not the journal can survive a specified number of

squeeze cycles without contacting the bearing wall. The

method may be questioned in that survival of the speci-

fied number of cycles gives no assurance that the bearing

will remain stable for all time; the journal could con-

ceivably hit the wall in the very next time step after

the last one tested. It is not necessary to run the cas-

es for longer times, because plots of the response Y as a
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function of t show trends of the responses near the point

of cutoff. Typical examples of these response plots are

shown in Figures 8 through 10. For each case represent-

ed, there are two straight lines with the Y plot in be-

tween. The straight lines represent the innermost posi-

tions of the upper and lower bearing walls, i.e., they

are located at a distance (l-Qi) above and below the

bearing centerline. If the plot of Y ever crosses either

of these lines, collision of the journal and bearing is

indicated, and the case is called unstable (Because the

 
subroutine used to plot these curves did not plot the

last point tested, many of the plots fail to cross either

boundary. However, any case for which the plot is cut

off prematurely is unstable.) Note that the radius of

the journal is neglected in these plots° The full ab-

scissa scale in all cases represents 250 cycles of

squeeze. All runs were started with Y0 = 62, i.e., from

the equilibrium position.

Figure 8 shows the plots for some representative

points in the vicinity of point J of Fig. 7. These re-

sponse plots are for consecutive points near J which al-

ternate in-and-out of the stable region. Since the value

of DIST used in all of these runs was 0.01, neighboring

stable and unstable points are very close together; yet

there is a marked difference in their response plots.

The unstable responses of Fig. 8 terminate in relatively
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Fig. 8.-~Typical response plots for points in

the vicinity of point J of Fig. 7.
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few cycles, while the repetitive nature of the stable re-

sponses suggests that they would remain stable even be-

yond the point of cutoff. Thus, the method of analysis

seems to have defined the stability boundary quite well

in the vicinity of point J. Note that some slight beat-

ing is apparent in the stable responses.

Response plots from point J up through point G of

Fig. 7 showed generally the same tendencies as those

shown in Fig. 8, i.e., the unstable points showed their

instability quickly, while the stable points showed no

 
tendency to become unstable. There was, however, a gen- L“

eral trend of the unstable points to require more cycles

to become unstable as point G was approached.

From point G around the bend to point H, the con-

clusions to be made from the response plots were not

nearly so definite. This is the so—called ”spongy re-

gion" which was mentioned earlier. Response plots for

all of the points tested through this region are shown

in the three pages of Fig. 9. Note that the consecutive

response plots are numbered from the bottom up; this is

the way that they came from the plotter. Note the un-

certainty presented in this series of plots. Some of the

unstable points survived many more cycles than previous-

ly. Unpredictable beating occurred which sometimes car-

ried the bearing into instability and sometimes allowed

it to pass the 250 cycles while leaving doubt that it
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Fig. 9.—-Typical reaponse plots for points

from point G to point H of Fig. 7.
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Fig. 9.-—(Continued)
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Fig. 9.~—(Continued)
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should be stable there. Plot number 8 of Fig. 9 repre—

sents the highest point tested on the hole boundary.

This response is quite well-behaved for most of the al—

lotted time, but it is growing steadily in amplitude near

the point of cutoff, and thus should no doubt have been

labeled unstable; the same can be said for plot 12.

Fortunately, the "spongy" region appeared only near 4

the top of the hole. As other points were tested from

point H to point L of Fig. 7, the responses resumed a na-

 ture similar to those which were exhibited from point J

to point G. The unstable points went unstable in very i

few cycles and without any beating; the stable points

showed beating which became more apparent as point L was

approached, but there was no indication that the bearing

would go unstable at these points. Typical plots for

the region around point L of Fig. 7 are shown in Fig. 10.

Note how the lower extreme of motion in Y for the stable

plots is relatively constant, while the beating appears

to all occur on the upper amplitude.

Except possibly in the relatively small "spongy"

region, it is felt that the method being used to deter-

mine stability leads to reasonably-accurate stability

plots. Thus, the same basic method is used throughout

this investigation.

§peeding-up the Process

After establishing the complete stability plot, in—
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Fig. 10.-—Typical response plots for points in

the vicinity of point L of Fig. 7.
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cluding the hole, for W' = 0.1, it was desired to apply

automatic programs to plots for the other values of W'

tested in [1] in hopes of locating holes in these as

well. As mentioned before, however, to trace the com-

plete family of curves with the same accuracy as used in

following Fig. 7 would be too consuming of computer time.

The case of W' = 0.1 was a pilot case, and thus it was ;

felt justifiable to make it more accurate than might be r

necessary; then it could be used as a standard to compare

 with when coarser methods were used.

One means of reducing the computer time necessary V‘

to run a stability curve is to test fewer points by in-

creasing DIST. The obvious disadvantage in this is that

fine variations in the curve might be missed, but the

distance used in obtaining Fig. 7 was probably finer

than necessary. Thus, in most of the remaining runs, a

DIST of 0.025 was used.

A second possible means of saving computer time

would be to use fewer time steps per cycle in the approx-

imate solution of Eq. (20). While forty time steps per

cycle were used in obtaining Fig. 7, it is concluded be-

low that ten gives reasonable accuracy.

Reducing the number of squeeze cycles used as the

criterion for stability would also speed up the process.

However, since many of the unstable points, especially

inside the hole, of Fig. 7 took almost the allotted 250
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cycles of squeeze to go unstable, it is likely that re-

ducing the number of cycles would reduce the size of the

hole or even cause it to be missed completely. The num—

ber of cycles might be reduced if some means could be de-

vised to cause the instabilities to become apparent in a

fewer number of cycles. All of the cases tested up to

this point had been started with the journal at Y0 = €2,

the equilibrium position predicted by Eq. (22). It

seemed reasonable to expect that starting the journal

with a YO somewhat displaced from equilibrium might has-

ten the onset of instability for unstable cases. There

was also the possibility that this procedure might result

in some of the stable points becoming unstable, but it

appeared to be worth investigating.

The new expression for Y0 incorporated into the

computer program was based on the equation

where CRD is a constant which can be given any value be-

tween zero and unity. If CRD = 0, Y0 = €2, the same as

before. If CRD = 1, Y0 = (-l + 61), which would mean

that the pulsating bearing would just contact the bottom

of the journal on its inward strokes. If the journal is

at Y = E2 and the bearing excursion is El, the minimum

clearance between the journal and bearing is (1"'€l + (2).

Thus, CRD is the fraction of this minimum clearance that

the journal is displaced from equilibrium before being
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released.

The first stability plot made using the above-men—

tioned modifications is shown in Fig. ll superimposed

over a reproduction of the plot of Fig. 7. The value of

CRD used in obtaining this new plot was 0.5, and only

fifty cycles were taken as the basis of stability. The

approximate solution was based on ten time steps per cy-

cle of squeeze. The hole is quite apparent in this fig-

ure. Starting with such a high value of CRD not only lo-

cated the hole; it also caused some points which were

stable in Fig. 7 to be in the unstable region here. It

should be clear that a bearing which inherently tends to

keep its journal near the equilibrium position (i.e., be

stable) can be caused to exhibit unstable behavior by

choosing an extreme set of starting conditions. In pro-

posing the method involving CRD, it was not intended

that the stability plot of Fig. 7 for W' = 0.1 be changed;

it was only hoped that a value of CRD could be found

which would cause unstable points to go unstable quicker,

but still not cause any previously-stable points to be-

come unstable. Thus, a CRD of 0.5 is too large.

The second value of CRD to be tried was 0.25. Ten

time steps per cycle were also used in this run. The re-

sultant plot is given in Fig. 12 along with a reproduc-

tion of the desired plot. Note that, as expected, the

hole is smaller than it was for CRD = 0.5, and that this



48

Fig. ll.--Stability plot for W'=O.l, CRD=O.5,

 

superimposed over the plot of Fig. 7.
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Fig. 12.--Stability plot for W'sO.l, CRD=O.25,

superimposed over the plot of Fig. 7.

  

1.04

\

\

\

\

\\

008' \

\

\

\
\

\

\
\

\\

0.6+ \
\

\\

\

\

\

_ \

4 ‘ \ \\

I i I

/ I, /

/ / l/

// // ’I

0.2- / ,/ ’

//// /

// // ’l/

/// 1‘”

0'00 .61 .62 .0'3 .04

-1



5O

plot is generally a better approximation to the desired

plot. It is interesting to note in both Figs. 11 and 12

that the stable region is only affected on the left side

of its neighboring unstable region, i.e., the right

boundary of the hole does not move appreciably.

In the first attempt at a run for CRD = 0.1, the

automatic program being used at the time was unable to

negotiate the sharp turn at the top of the hole. After

some modification in the program, the run was tried

again, and the plot of Fig. 13 resulted. This curve for

CRD = 0.1 was felt to be a reasonable approximation to

the desired curve. Although the hole is a little larger

and the right-hand boundary is a little further to the

left, a bearing design based on this approximate curve

would at least be conservative, and thus it was decided

, to use CRD = 0.1 in obtaining stability plots for other

values of W'.

As with Figs. 11 and 12, Fig. 13 was based on ten

time steps per cycle. At the same time the run for Fig.

13 was made, a partial run was also made using identical

data except with twenty time steps per cycle. The dif-

ference in the plots taken from these two runs was neg-

ligible; thus, it was decided that ten time steps per

cycle was sufficiently accurate. Although the decisions

made in this and the preceding paragraph were initially

based on a limited amount of work, comparison of later
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Fig. l3.--Stability plot for W'=0.l, CRD=O.1,

superimposed over the plot of Fig. 7.
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results with those of Ref. [1] confirmed the validity of

using CRD = 0.1 and ten time steps per cycle.

Other Values of W'

Because excessive computer time would have been re-

quired to obtain a full set of curves by the method used

to establish Fig. 7, and since Fig. 13, based on short-

cut methods, is a reasonable approximation to the more-

accurate plot, it was decided to base the stability

curves for other values of W' on CRD = 0.1, DIST = 0.025,

ten time steps per cycle, and fifty cycles for stability.

Although no complete curves were available as a means of

checking these approximate curves, the results of Ref. [1]

were used to verify them in all except the hole regions.

Stability plots for various values of W', from both this

approximate method and the results of [l], are presented

in Figures 14 through 16. Some of these curves are plot-

ted individually, rather than in a family as before, be-

cause otherwise the overlapping of their hole regions

would cause confusion. In most cases the agreement be-

tween the two sets of curves is good. For the higher

values of W', there is some discrepancy, especially for

W' = 0.5, but even here a bearing design based on the

new data would be conservative.

It is especially interesting to compare the new

curves with those of [l] for the particular values of W'

equal to 0.4, 0.3, 0.2, and 0.15. Remembering that the
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method used in [I] searched only on a straight-line path

from right to left, it should be clear how the holes were

jumped over. The results of the two methods for these

values of W' agree quite well in all regions except the

holes.

No holes were located for values of W' less than

0.1. Curves for W' = 0.05 and 0.025 are given in Fig. 16;

the agreement here between the two methods is quite satis-

factory. Note that the new results are plotted to lower

values of {1; these are the lowest values of E1 capable

of supporting the given W' in a stable manner. For lower

values of 61, the corresponding increase in 62 which

would be necessary to keep supporting the load would

cause the sum of El and £2 to exceed unity--thus insta-

bility.

An especially interesting, although not so practi-

cal, case stems from the curve proposed in [l] for W' =

0.0 (See Fig. 4). Since compatible values of El and'ej2

were not available for W' = 0.0, an attempt was made to

approach this curve by testing cases of small, but not

zero, W'. Fig. 16 shows the curves for W' = 0.01 and

0.001 along with the one given in Fig. 4 for W' = 0.0.

The curve for W' = 0.01 follows the trend of those given

for larger values of W', with its stable region extending

even further to the right than in the case of W' = 0.025.

The curve for W' = 0.001 does loop back as predicted in



57

[1], although the loop occurs at larger values of B"1

than predicted. The loop continues back to the point

indicated by "A", where the curve takes a very sharp

change in direction and extends out to the right as

shown (It was necessary to modify the searching logic

again before the turn at point A could be negotiated.)

Since the program was written to terminate if any values

of B71ilarger than 0.1 were encountered, the plot was

not obtained past that point. However, the trend of the

curve at the point of termination was still gradually

inclined downward to the right as shown. It was decided

that the case of W' = 0.001 was not of sufficient prac-

tical interest to warrant a further investigation of the

curve.

It is of interest to mention the savings of com-

puter time realized by the use of the short-cut method.

For thirteen different cases, including those plotted in

Figs. 14 through 16, the total computer time was less

than ten minutes-~a considerable improvement over the

forty-five minutes required for the single plot of Fig. 7.



STABILITY OF THE FINITE JOURNAL BEARING

IN ONE DEGREE OF FREEDOM

While the stability plots presented thus far in

this paper have given much information of interest con-

cerning the general nature of stable and unstable regions

of operation for various combinations of system parame-

ters, the analysis, as mentioned before, was based on a

mass-content rule which is restricted to journal bearings

of infinite length. Use of this mass-content rule was

justified because, first, at one time it was the best

available, and, secondly, stability plots based on it

required much less computer time than those based on the

less-restrictive rule. However, because typical length—

to—radius ratios currently of interest are in the neigh-

borhood from 1.0 to 2.0, the development of some stabi-

lity criteria based on a mass-content rule for finite

bearings was felt to be in order.

Mass-Content Rule for Finite Bearings

The more-general mass-content rule was developed

by Beck and Strodtman [16]. As with the Elrod mass-00n-

tent rule (Eq. 17), the derivation of this one begins

with the Reynolds equation. Using Eq. (16) to eliminate

P from Eq. (4) gives

58
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gflvng-‘Z‘i- 02%;]. vgdwsig- v2 33%]: 05") (29)

Assuming V’to be periodic in time at every point after

steady-state is reached (which seems reasonable since

the squeeze input is periodic), averaging this equation

over a number of cycles in time gives

tzhfitt-7“?a] sea .2so new
where the bars above terms denote time-averages. For

  

large squeeze numbers, w/is independent of time--see

Eqs. (14), (15), and (16); thus (30) can be rewritten

aw 2'52] [ aw_ 2‘3}
yawn-wfingW—Q snag—o (31)

An expression for H is given by Equation (12). At the

position of equilibrium, where the journal is assumed to

be held until the bearing is pumped up to satisfy the

mass-content rule, Y = 62. Then for purposes of deriving

the mass-content rule, (12) can be written

H = 1 - Eécose - €lsin(t) (32)

From this,

H = l - €20080 (33)

g = o = 31% (34>

and

3% = egsine = g. (35)

Putting (33), (34), and (35) into (31), and defining

2

T :4) a (36)
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Eq. (31) can be written

l-€ cose l-E’cose

5%[ % gg] +.%§{ g g; - Tezsine] = 0 (37)

In the development of Elrod's mass-content rule,

 

 

T was assumed to be independent of 2, except possibly in

the very narrow end regions at infinity, and so the first

term of Eq. (37) was omitted, and the eXplicit expression

for'WIgiven by Eq. (17) resulted. Since the present

analysis is for finite-length bearings, such a simplifi-

cation cannot be made; it is necessary to solve Eq. (37)

as it stands. Unfortunately, no neat analytical expres-

sion for T could be derived which would satisfy this

equation. Therefore, Strodtman developed a computer pro-

gram which would solve the equation using finite-differ-

ence techniques.

The particular technique used by Strodtman in the

solution of (37) is the Peaceman-Rachford alternating-

direction method [17]. To use this method, the film is

considered to be broken up into an M by N matrix, with

M nodes in the Z direction from one end to the center,

and N nodes in the 0 direction from 0 to‘W} advantage is

taken of symmetry in both the Z and 0 directions. An

initial array of T values is specified, and then itera-

tions are made, alternating in the Z and 9 directions,

until both Eq. (37) and the following boundary condi-

tions are satisfied:
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T(0,0) = (1-620080)2 + £63 (38)

and

%§(0.Z) .-. 35'3"“) = if“??? = o (39)

Conditions (39) are obvious from symmetry considerations,

while (38) is a special case of a more-general boundary

condition developed in Ref. [16].

When Strodtman developed the computer program

SHORTJ to solve Eq. (37), it was with the intention of

constructing load curves for finite bearings of various

length-to radius ratios, i.e., curves of W' versus 62

for various constant 61 as shown in Fig. 3 for infinite

journals. Thus, convergence of his iteration procedure

was based on convergence of W' calculated from

'W'£_

w' z _2§IJ2R [Tease dZdO (40)

0 0 «(l-620039)2 - 61

 

Because no analytical expression for T as a function of

Z and 9 was available, it was necessary to perform the

double integration in (40) numerically; Simpson's rule

was used.

Two families of load—support curves (for length-

to-radius ratios of 1 and 2) are given in Figures 17

and 18. It is interesting that the load support pro-

duced by a finite bearing is higher than that for an in-

finite bearing (Compare with Fig. 3.)
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Fig. l7.--Load-support curves for bearings with

a length—to-radius ratio of unity.
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Fig. 18.-—Load-support curves for bearings with

a length-to-radius ratio of 2.0.
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Equation of Motion for Finite Bearings

Equation (10) is a valid equation of motion for

journal bearings of finite length which are constrained

to motion only in the Y coordinate; it is repeated here

for convenience.

111.

d2 14sz2
= - P(cosO)dZdG + 2w' (10)

3:2 3' ‘r 0

In general, P in the above integral will be a function

of both Z and 0. It can be expressed in terms of‘V and

H (See Eq. 20) as

w)

P = fi‘ (41)

An expression for H is given in Eq. (12), and, since

SHORTJ works with T instead of‘V, it is better to replace

V’with TT; thus (41) becomes

if

P = l - YooEOFL EasinTt) (42)

Putting (42) into (10) gives the equation of motion which

must be solved for bearings of finite length:

 

m'2_

02 2R WT 0Y_ 14R cos

at: ’ ‘ B L’ l-YcosG-Elsin(t)dZd9 + 2w' (43)

0 0

Since no analytical expression for T as a function of Z

and 0 is available, the double integral above was eval-

uated with Simpson's rule in two dimensions, using the

same number of nodes in the Z and 0 directions as were

used in SHORTJ so that there would be a value of T avail-
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able for each node. Once compatible values of El, 62,

W', and the corresponding T array are obtained from

SHORTJ, Eq. (43) is solved in the same manner as was (20).

Searching in Other Coordinates

In the case of the infinite journal, the automatic

searching procedure was carried out in the 61 versus B-l

plane for curves of constant W'. As the program "felt"

its way along the curve, the value of 51 changed, and

the corresponding values of €é, which would be compatible

with each new 6i and the value of W' for the curve, were

needed. These values of 62 were found by interpolating

in a table of values of €i and 6‘; this table was read

into the program as part of the data for each new value

of W'. Because no more than forty storage locations were

required to accomodate the complete table, this method

proved to be quite satisfactory.

In the present case of the finite bearing, compat-

ible values of 61 and 6? for a given W' could be taken

from curves like those of Figs. 17 and 18 for the appro-

priate length-to-radius ratio, and the values of 62 need-

ed in the program could again be found by interpolation.

However, the problem which arises in this finite-journal

case is not with €2, but with the T in Eq. (43). In the

infinite-journal case, once 61 and €2 were known, the

integrand of Eq. (20) could be calculated, because it

was an analytical function of El and {2. In the present
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case, T cannot be expressed analytically in terms of El

and 62, but, at best, distinct numerical values of T at

each node can be obtained from SHORTJ for each combina-

tion of 61 and €2 for a given W'. Then, if the intent is

to conduct the search procedure in the 61 versus B"1

plane as before, the interpolation table must include

not only compatible values of El and 62, but also the

corresponding T arrays. There are many disadvantages to

this method. First, very-complete sets of data from

SHORTJ would have to be run, and the resulting values of

W', 61’ €2, and T arrays would have to be saved. Sec—

ondly, since W' is an output of SHORTJ, it cannot be

specified in convenient round-number values; thus, if a

constant-W' curve is to be run, values of 62 and T arrays

for the chosen value of W' would have to be determined by

interpolation in the complete sets of data mentioned

above. Thirdly, even if sets of €l’ E2, and T were

available for a given W', all of the values would have

to be stored in the computer memory before the program

could be executed; this would require much more input

data than before, and it is doubtful that the capacity

of the computer memory would be large enough to accept

this data and the program simultaneously. Finally, if

the program had been brought to the point of execution,

the minimum—sized T array used (21 X 21) would have re-

quired 442 interpolations at each point tested, and this
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would probably have required excessive computer time.

In order to circumvent many of the above problems,

it was decided to conduct the search routine in terms of

coordinates which could be prescribed independently of

the results of SHORTJ, i.e., instead of plotting curves

of constant W', plot them for constant 61 or €é. Then

when a test point is located in the new coordinates,

SHORTJ could be called as a subroutine to generate the

corresponding W' and T arrays-~no interpolations being

necessary.

Numerous representations of stability were con-

structed graphically from the data of Figs. 13 through

16 in an attempt to determine which variables should be

plotted on the ordinate and abscissa and which should be

held constant in the new program. After comparing the

various possibilities, it was decided that the search

should take place in a plot of 62 versus B-1 with 61

held constant. Such curves, constructed from the pre-

viously-given data for infinite bearings, are shown in

Fig. 19 for 61 values of 0.3, 0.5, and 0.8. The first

step in constructing these curves was to tabulate com-

patible values of W' versus B-1 for each El of interest;

these values were obtained from Figs. 13 through 16.

Then compatible values of 62 for each (€1,W') combina—

tion were obtained from Fig. 3, and these values of £2

were plotted versus B"1 on curves of constant El in
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l forFig. l9.--Stability plots of 62 versus B—

61:0.8, 0.5, and 0.3; constructed

from the datazof Figs. l3-l6.
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Fig. 19.

l

Plots of 62 versus B' Independent of L/R

 

The first successful stability program for finite

bearings was an attempt to locate the right—hand bound-

ary of the plot for 61 = 0.3 in the 62 versus B"l plane.

Data was read in for length-to-radius ratios of 100, 10,

5, and 2, and it was anticipated that the resulting sta-

bility curve for a ratio of 100 would be closest to the

curve for the infinite ratio given in Fig. 19 for 61 =

0.3, with the other curves falling further from this one

as the value of L/R decreased. However, as closely as

could be determined from the relatively coarse data be-

ing used at the time (DIST = 0.1), the curves for all

values of L/R appeared to lie right on the curve for the

infinite bearing--points for L/R values of 5 and 100 are

plotted on Fig. 19. As these results were only obtained

in the region between points A and B of Fig. 19, another

more-complete run was made for L/R = 2.

For this more-complete run, DIST was decreased to

0.02, CRD was 0.1, ten time steps per cycle were used,

and fifty cycles were taken as the basis of stability.

Three separate computer runs were required to establish

the 128 points from which the two sections of curve shown

in Fig. 20 were plotted. The gap between points 0 and D

could have been filled in, but, since the rest of the
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Fig. 20. --Stability plots of £2 versus 3‘1 for

€1=-0. 8, 0. 5, and 0. 3; R = 2.0;

superimposed over the corresponding

curves for infinite bearings.
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curve followed the one for the infinite journal so well,

it was decided that this section need not be tested.

After the unexpected similarity between the curves

of Fig. 20 for 61 = 0.3, data was run for 61 values of

0.5 and 0.8; the results of these runs are also shown in

Fig. 20. Although the program for €i = 0.8 was termi-

nated at point E, due to a limitation of one of the sub-

routines, it was decided that the curves presented thus

far were sufficient evidence to conclude that stability

plots in the €2 versus 8‘1 plane for curves of constant

61 are essentially independent of the length-to-radius

ratio.

Constructing Stability Plots for Finite Journals

Although stability plots in the €2 versus 8'1 plane

were found to be very nearly the same for any length-to-

radius ratio, the same conclusion cannot be reached for

stability plots in the €1 versus B-l plane at constant

W' (as were used previously). These latter plots are

more meaningful representations of stability because W'

is a more meaningful system parameter than is 62; i.e.,

while the values of €l’ W', and B-1‘ can be controlled, at

least to some extent, €2 is the resulting equilibrium

displacement, and its value depends on the values of the

other three parameters; £2 can be thought of as a depend-

ent quantity, while the other three are independent.

Even though the plots of £2 versus B-1 at constant



72

6i are not particularly useful representations of stabil-

ity, the fact that they are essentially the same for all

length-to-radius ratios suggests a technique for the con-

struction of plots of 61 versus B'1 at constant W' for

finite bearings of a given L/R. This technique is based

on the curves of £2 versus B"1 at constant 61 (independ-

ent of L/R) and on the load-support curves (e.g., Figs.

17 and 18) for the particular length-to-radius ratio of

interest. The method is essentially the reverse of that

used in the construction of Fig. 19.

Because the procedure for any value of L/R began

with curves of 62 versus B-1 at constant 61, a complete

family of these curves was desired. These curves could

have been obtained by using the computer program for fi-

nite bearings, but, since the resulting curves from the

program for infinite journals have been shown to be es-

sentially the same, this latter program was used, with

a considerable savings of computer time. Such curves

were obtained for values of 61 from 0.1 through 0.8 in

increments of 0.05; several of them are plotted in Fig-

ure 21.

In the computer program used, the stable and the

unstable boundary points were plotted individually, but

on the same set of axes. The curves of Fig. 21 were then

traced directly from the plotter output by drawing be-

tween the curves of stable and unstable points. Thus,
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Fig. 21.--Stability plots of 62 versus B-

73

l

for various constant €l, based on

the program for infinite journals.

61:0.2

61:0.3

61:0 -4

51:0.5
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the occasional irregular trends of these curves are felt

to be correct, and in some locations, especially near

the tops of these curves, it seems quite possible that

other hole regions may exist. While such regions could

be investigated more thoroughly by using smaller dis-

tances between test points, more cycles for stability,

etc., it is felt that the present set of curves are suf-

ficiently accurate for this investigation.

Starting with the curves of Fig. 21, it is desired

to construct stability plots in the (€1,B'l) plane for

finite bearings. Such stability curves depend in gener-

al on the value of length-to-radius ratio of interest.

In any case, the method of construction is the same, and

it will be outlined here for the particular ratio of

unity. For a given length-to-radius ratio, the values

of El and £2 at a given point of Fig. 21 define a specif-

ic value of W'. For the present case, with L/R of unity,

these values of W' were obtained from the load curves of

Fig. 17. Thus, curves of W' versus B-1 at constant 61

were constructed. This was done for values of {1 between

0.1 and 0.5 at intervals of 0.05. If the (€1,B_l) pairs

for a given W' are taken from these curves, a stability

plot in the 61 versus B'l plane at that constant W' can

be plotted. The results of such construction are pre-

sented in Figs. 22 and 23 for various values of W'. The

broken lines in these figures duplicate the previously-
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plotted results from the case of the infinite journal

(Figs. 14 and 15). The curves for the finite hearing

are incomplete because the load-support curves of Fig. 17

were only given for 61 between 0.1 and 0.5. While a more-

complete set of these curves could have been obtained,

the portions of plots already shown in Figs. 22 and 23

are sufficiently complete to compare the stability re-

gions of the finite journal with those of the infinite

journal. It appears that the two sets of curves would

merge at 61 = 0.0 and at 61 = 1.0, and a more-complete

construction would probably only verify this.

Comparison of the Finite and Infinite Bearings

The curves shown in Figs. 22 and 23 indicate that

the stability characteristics of finite journal bearings

with L/R of unity are better than those for infinite

journal bearings. Because the method of construction

of such stability curves depends directly on the family

of load-support curves for the L/R of interest, and be-

cause it is shown in Ref. [16] that load-support increas-

es with decreasing L/R, it seems safe to assume that sta-

bility curves for all finite journal bearings will fall

to the right of those for infinite journal bearings when

plotted in the (€1,3‘1) plane. Thus, the infinite jour-

nal bearing will have the least desirable stability char-

acteristics of any, and any design based on the stability

curves of an infinite bearing should be conservative.



STABILITY OF THE FINITE JOURNAL BEARING

IN MORE—THAN-ONE DEGREE OF FREEDOM

Up to this point, the analysis has been restricted

to journals constrained to move only in a single trans-

lational coordinate normal to their axes and in the di-

rection of the applied load. The purpose of the present

section is to investigate stability characteristics of

finite journal bearings in more-than-one degree of free-

dom. A preliminary small—parameter analysis showed that,

for the four coordinates listed on page 8, the equation

of motion for the second translational coordinate is

quite like the one already studied, and that the equa-

tions of motion in the two angular coordinates are quite

similar to each other. It was decided that if motion in

only one additional coordinate were going to be allowed,

it should be one of the angular coordinates, since mo-

tion in the other translational coordinate would probably

yield essentially the same stability plots as before. In

order to confine all motion of the journal to a single

plane, the coordinate described by point (4) on page 8

was chosen for the second degree of freedom.

The two coordinates used in the two—degree-of—free-

dom case are defined in Fig. 24. The y-coordinate speci-

78
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Fig. 24.--Configuration of the two-

degree-of—freedom system.
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fies the vertical location of the center of gravity of

the journal as before, and 0 indicates the angular ori-

entation of the journal about its center of gravity.

The distance 2 is measured from the left end of the jour-

nal as shown, to be consistent with previous work, and

the angle 0 is also defined as before.

EquatiOn (7) is still a valid dimensionless equa-

tion of motion in the Y coordinate, but it can no longer

be reduced to the form of Eq. (10) because axial symme-

try no longer exists in general. However, symmetry in 0

is still present, so (7) can be written

W'L

2 R

d = — 1 2R P(cosO)dZdO + ZWA] (44)

3'? FELL

The equation of motion in the 0 coordinate is de-

rived by applying Newton's second law of motion in the

form J

= —5—°'' " (45)ET... .0 ¢

where the subscripts c g indicate that the law is being

applied about the center of gravity of the journal. Be-

cause the center of gravity is chosen as the reference

point, any torques produced by applied loads would can-

cel out, so only those produced by pressure forces need

be considered. A procedure similar to that used in the

derivation of Eq. (6) leads to the following equation

of motion for the 0 coordinate:
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ZN'L

£90.: —R,£-,{ p(z - %)(cosO)dzd9 (46)

0

The moment of inertia J for a solid cylinder about

a line through its center of gravity perpendicular to

its axis can be expressed in terms of its length L, ra-

dius R, and mass m as

2

J = 9%[3 + (11.02] (47)

Using this expression for J along with the substitutions

. 2

p=paP, Z=ZR’ ¢=G£ Egg, and °'=%O¢o Eq. (46) can be writ-

ten in normalized form as

2 W L
9.?1 = _ 24 2 ‘[’£RP(Z - %E)(cosO)dZdO (48)

>]oat B(%>[3+<%

 

It was noticed during the derivation of this equation

that defining 0' as above eliminated the need for an

additional dimensionless group.

The method of solution of Eqs. (44) and (48) is the

same as that used previously, i.e., as prescribed by Eqs.

(23), (25), (26), and (27). However, as before, this

method cannot be applied until an expression for P is

known. Since the analysis will still be restricted to

bearings operating at high squeeze numbers, P can still

be expressed in terms of H and T as

P = [g- (49)
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However, the introduction of the second degree of freedom

causes the expression for H to be somewhat different.

The derivation of this new H will begin with its dimen-

sional counterpart h, and reference to Fig. 24 should

help verify the following expression:

h = hO - hlsineut) - y 0080 - (z-%)sin0cos0 (50)

This is made dimensionless by using h=hOH, hl=€1ho,cJt=t,

y=hOY, z=ZR, sin0=0, and 0'=%60, yielding

H = l - €isin(t) - [Y+(Z—%R)0{]coso (51)

The two-degree-of—freedom analysis can then be performed

by solving Eqs. (44) and (48) simultaneously, using (51)

as the expression for H.

Some Analytical Considerations

Before solving the above equations on the computer,

some general statements can be made regarding the solu-

tions. Such analysis is worthwhile to provide some in-

sight into the character of the solutions, thus helping

to detect possible errors in the computer program. Since

stability regions for motion in Y alone have been quite

thoroughly discussed, the observations to be made here

will involve mainly the 0' coordinate, both how overall

stability is affected by allowing motion in 0' and what

stability regions can be expected if only 0' is allowed

to change, i.e., Y fixed.
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The first observation is that unless 0' (orlggl) is

given some initial value other than zero, no subsequent

motion in 0' will occur. This statement is based on a

consideration of the system configuration and on an exam-

ination of Eq. (48). Consider the bearing to be held at

Y = 62, 0' = 0, and pumped up to satisfy the mass—content

rule. The resultant pressure distribution must be sym-

metrical along the length of the bearing, i.e., P(Z,9)

must equal P(%-Z,O). Now if the journal is displaced in

the Y coordinate, but not in 0', this symmetry in pres-

sure should still exist. Referring to Eq. (48), a plot

of the quantity (Z-én) versus Z from zero toifi results

in a straight line which goes from.-%R at the left end of

the bearing through zero at the center toI+%§ at the

right end. Thus, in the integration of P(Z~%R)dz, the

contributions from the left half of the bearing are just

canceled by those from the right half, and (48) reduces

2

d—Alw
dt

to

This equation provides for no motion in 0' unless the in-

itial value of 0' or ggl is other than zero, and these

possibilities have been prohibited. With no motion in

0', the symmetry in pressure distribution remains, the

right side of (48) goes to zero for the next time step,

and this cycle repeats for all subsequent time steps.

The next observation is that, for small 61, 62, Y,
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and 0', the stability regions in the 0' coordinate are

always at least as large as those in the Y coordinate.

This conclusion is based on a small-parameter analysis;

the development will first be applied to the equation in

the Y coordinate. It is desired to find an expression

for P which will make the integral in Eq. (44) integra-

ble. Reference [16] gives the following general expres-

sion for T which is valid for finite bearings with small

€2:

T 2 l + 262 - 26200s0

.{1+%€§[l-cosh(Z)+sinh(Z)tanh(%R)D'(52)

Putting (51) and (52) into (49) gives

[l-t-‘gEi-‘Q €QC°SG{1+2€§[l-G]}J—% 
P = L D-Easin(t) (53)

where

G = cosh(Z) - sinh(Z)tanh(%R) (54)

and

D — l - [Y+(Z-I‘ ) 'J_ m 0 0089 (55)

If P is considered as a function of 61 and 62, it can be

expanded in a Maclaurin series about 61:0, 62:0. The

first ten terms of this series are given by

N 1 sin t 0080 sin(t)cos9

P‘D*—’§‘2D €l""15"‘€2" D2 €162

2 2
_cos0€2+lsint+ ]€2+

"TD" 2 To 415 1

(continued)

 

(56)
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P . 3 .

+ aln t + galnét):]€i

D 4D

P3(-l+2G)cosG_ cosGsin2t:]€2€2 (56)

[ 4D. 03 (cont.) 
2 3

sin(t)cos O 2 cos 9 3

‘ 20? 6l€2 ' ‘21?— 62

It is interesting that the term in {$62 is the first one

influenced by G.

In evaluating the integral of Eq. (44). it will be

assumed that {1 and 62 are sufficiently small so that the

first three terms of (56) are a good approximation to P.

Then the integral becomes

[gfifn’PcosOdOdz =

+ %(1+2€1sin(t)) + 2—%§(0' )2(1+4€lsin(t)) + "‘]Y

KL 2 . Y2

+ 2—fi- §2R§(¢' ) W]

+ £%(l+4€lsin(t)) ++°"]Y3

*["‘1§%‘ ...]€2Y4 +

In the derivation of this equation, the denominators of

 

3 5
_7_\’_I_._7<L ,2_’KLR .4_...

 
(57)

 

the P terms were expanded in series, and only the first

five terms of these series were considered. The dots

("') inside the square brackets of the terms of Eq. (57)

indicate that there would be additional terms if more

terms of these denominator terms had been used. The dots
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at the end of (57) indicate that there would be addi-

tional terms there if more terms of (56) had been used.

Equation (57) is written in ascending powers of Y

because it is the integral for the equation of motion in

the Y coordinate. Motion in ¢' can affect motion in Y

only through this integral, and it should be clear that

such effects are present only for terms in even powers

of ¢'.

If the integral of Eq. (48) is evaluated in a sim-

ilar manner to that above, the result is

L

[11sz L ) ododz m3 [(1 2e ' (t)) 362x"' = + 8111 -

0 7R COS ‘72“, l T

(58)

+ Z(l+4€lSln( - —E— +

5 106

+ 179-?[(l+4€lsin(t)) - —-3-2-Y + °°°](t')3 +

640R

It should be clear from this equation that all powers of

Y affect motion in the @' coordinate.

Now that the nature of the coupling between the

coordinates has been discussed, assume that Y and ¢' are

so small that Eqs. (57) and (58) can be approximated as

L W

R «1.6 .

££ PcosGdeZ 2 - —§fi-2- + %(l+2€ls1n(t)) (59)

and

L 7V

Rf L n3 .
P Z- GdeZa ———§(l+2€ eln(t))®' (60)

f0 0 ( $10008 24R 1
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Substituting (59) into (44) gives

2 RE t

if?! + §(l+2elsin(t))y = 13- - 2g; (61)

If YtAY'is substituted for Y in this equation, where both

Y and YhAY are solutions of the equation, for slightly

different sets of initial conditions, the following var-

iational equation in.AY results:

d2 AY
+1 + g(l+2elsin(t))(ny) = o (62)
dt

This is a form of the Mathieu equation, about which more

will be said later.

If Eq. (60) is substituted into (48), the equation

in $' becomes:

2 , 2

SM? ... ”1' (1+2e sin(t))‘p' = 0 (63)
dt 2 I.2 1

BR [3443) A

 

 

This is already a form of the Mathieu equation; thus,

there is no need to use the variational method.

The Mathieu equation is one for which the regions

of stability are well-known. For a Mathieu equation in

the form

d2w .
‘33? + (5+681n(q))w = O , (64)

the regions of stability in the E-5 plane are indicated

in Fig. 25 (This figure was taken from Ref. [18]). Note

that the stable regions of this plot are connected to-

gether at points where E = O, 5 = 31-5, 11 an integer.
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Fig. 25.--Stable and unstable regions

for the Mathieu equation.

Stable regions shaded
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Because Eqs. (62) and (63) are both Mathieu equa-

2€iK

tions, it should be clear that a plot of —B—— versus g

for the Y coordinate would be similar to Fig. 24, as

2

would a plot of versus - a for the

:32]3+ (359] BR2 [33%)2]

0' coordinate. In this work, however, these are not the

 

quantities which have been plotted, although plots of (1

versus %” such as have been used in the one-degree-of-

freedom case, lend themselves to an observation based on

the Mathieu plot.

Consider«—§l— to be plotted against E for the sta-

bility regions of the Y coordinate, thus giving a Mathieu

plot, at least for small 61 and 62. The first and second

stable regionslof such a plot should come together at

3:27: = 0, g:‘1’ as indicated previously for Mathieu

plots. On a plot of El versus 5’ this same point would

occur at €1 = o, %'-? 2%,}? = 0.0796. Refer to Fig. 16

again, and consider the curve for W' = 0.001. With this

low value of W' at the lowest point of the curve (low £1),

62 should also be small, so the present approximate anal-

ysis should apply. At the lowest point of this curve,

the value of %’is 0.067, which does not agree exactly

with the value predicted above, but is definitely of the

same order of magnitude. If the downhill portion of this

curve is extended to the abscissa as shown, the intersec-

tion occurs at % = 0.078. This is much closer to the

predicted value, as should be expected since this point
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corresponds to 61 = 62 = W' = 0, all parameters as small

as possible. This analysis indicates that only the first

stable region of the Mathieu plot is of interest in the

present gas—bearing work.

If an argument similar to the one above is applied

to the equation for the 0' coordinate, it would be found

that the intersection of the first two stability bound-

 

7r12 l
aries with the abscissa would occur at 2 L 2— = 1,

BR [3+( ) J

or at B.1 = 0.0796[l+3(§)2]. It should be clear that for

an infinitely-long bearing, this expression reduces to

the value given above for the Y coordinate; also, as %

approaches zero, the value of this expression approaches

infinity. Thus, if the stability boundaries for both the

Y and 0' coordinates are plotted on the same €l-versus-

-l
B plot, the stability region for 0' should be at least

as large as the region for Y, regardless of the value of

§. This conclusion should be valid at least in the small-

parameter regions, and, if the value of B"1 at the abscis-

sa for the Y coordinate is known, it should be possible

to calculate the corresponding B"1 for 0' by using

_ -l

(s 1>¢. = [1+3<§)2]<B >2 (65>

While this development was based on small-parameter con—

siderations, it will be seen in the next section that

Eq. (65) proved to be quite accurate over a large part

of the stability map.
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The analysis of the present section led to two main

observations, which are restated here for future refer—

ence: 1) Unless 0’ or $3; is given some initial value

other than zero, no subsequent motion in 0' will occur,

and 2) For small 61, 62, Y, and 0', the stability regions

in the 0' coordinate are always at least as large as

those in the Y coordinate.

While Eq. (65) was stated above for an €l-versus-

-l
B plot near the abscissa, it should be valid for any

1
plot using 3‘ as the abscissa variable, provided 61 and

62 are still small. In particular, it should hold for

1 at constant 61, such as were usedplots of 62 versus B-

earlier in the single-degree-of-freedom cases, at least

for curves of low 61 where they approach the abscissa.

This is pointed out here because the computer work dis—

cussed in the next section was all carried out in the

62-versus-B'"1 plane.

§gme Computer Results for Two Degrees of Freedom

Because of the long computer times required, it was

found impractical for present purposes to determine com-

plete sets of stability curves in two degrees of freedom.

Instead, only a few single points on the stability bound-

ary were located for various combinations of parameters,

and the results so obtained are discussed in terms of the

observations made above.

In the singlemdegree-ofmfreedom work, the initial
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value of Y was defined in terms of a parameter CRD, which

was the decimal fraction of the minimum Y for instabil-

ity. In this two-degree—of-freedom work, CRD is re—

tained, but is now the decimal fraction of the minimum Y

for instability with 0' equal to zero. In order to pro-

vide for different—sized starting angles, a parameter

CRD2 is similarly defined as the decimal fraction of the

minimum 0' for instability with Y equal to zero. Both

GED and CRD2 can be given values between zero and unity,

but if their sum equals or exceeds unity, the bearing

will be unstable at the start.

Since the first observation of the preceding sec-

tion was based on the equation in 0' with no limiting

assumptions, it is felt to be unquestionably valid, and

any comparison between it and computer runs starting with

0' = %%l = 0 would serve more to check the computer pro-

gram than the observation. In any computer runs which

were made with these starting conditions, 0' remained

equal to zero as predicted by the observation, except in

regions of instability, and in these cases it was con~

cluded that cumulative errors in the computer were the

cause of eventual motion in 0'.

Computer verification of the second observation was

even better than expected. Since this observation-~that

stability regions in 0' would be at least as large as

those in Y-—was based on a smalluparameter analysis, it
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was anticipated that it might apply only in limited re-

gions. However, as will be seen below, it proved to be

applicable for much of the stability plot.

The first method used to determine the effects of

the second degree of freedom on stability was to simply

make computer runs with motion in both coordinates per-

mitted. Because too much computer time would have been

required to establish complete curves of the type shown

in Fig. 21, only single boundary points were found for a

number of cases. For most of these cases, the point ar-

bitrarily chosen for test was El = 0.3, 62 = -O.l, % = 2.

A number of runs was made at this point, starting with

various combinations of CRD and CRD2, and, although the

boundary point determined sometimes varied slightly, mo-

tion in 0' was never the reason for instability. In one

particular sequence, CRD was held at zero while CRD2 was

increased in steps of 0.1 from zero to 0.6. In all of

these runs, 0' was well-behaved. Its general tendency

was to oscillate with approximately its initial ampli-

tude, while only Y exhibited any oscillations of growing

amplitude. At the time these runs were made, it had not

yet been predicted that longer bearings would be less

stable in the angular coordinate. Possibly choosing an

.% of 2 made these results more clear-cut than they might

have been for a larger value, but a similar case to be

discussed later, with'% = 10, yields the same general

conclusion.
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Motion in the Angular Coordinate Only

Although it seemed clear at this point that motion

in the Y coordinate would be the dominating cause of any

instability, it was still desired to verify that unstable

regions do exist for motion in the 0' coordinate. In

order to do this, it was necessary to modify the computer

program so that instability in Y could not occur. This

was done by holding Y at its equilibrium value, Y = 62,

thus allowing only tilting of the journal about its cen-

ter of gravity. Again because of limited computer time,

only single points were located in most of these runs.

For a given combination of values of El, 62, and %, the

corresponding value of B"1 was predicted using Eq. (65)

and the plots of Fig. 21. Then the values of El, €é, and

% were read into the computer, and the start—up procedure

of the original program was used to locate just the first

point on the stability boundary. For all of these cases,

the value of CRD2 was 0.1.

Table 1 summarizes the results of these runs. The

first point tested was at El 2 0.3, 62 = —0.1 for various

values of %. The agreement between predicted and calcu-

lated values of B”1 at this point was excellent. Thus,

subsequent tests were made along the curve of constant

61 (:0. 3) for various €2 and if, and along the line of

constant 62 (=-0.l) for various 61 and %° Agreement be-

tween predicted and calculated values is good for this

latter series, possibly because the value of 62 is small,
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Table 1.--Comparison of computed values of B-1

with those predicted by Eq. (65).

{i E; .§ 1 can 0302 Prf§° °°T§-

B B

0.3 -0.100 2.0 1 0.0 0.1 0.0788 0.079

0.3 -O.100 5.0 0.0 0.1 0.0504 0.050

0.3 -0.100 10.0 0.0 0.1 0.0463 0.046

0.3 -0.100 100.0 0.0 0.1 0.0450 0.045

0.3 -0.300 1.0 0.0 0.1 0.1507 0.149

0.3 -0.300 2.0 0.0 0.1 0.066 0.065

0.3 -0.300 10.0 0.0 0.1 0.0388 0.039

0.3 -0.500 1.0 0.0 0.1 0.0952 0.087

0.3 -0.500 2.0 0.0 0.1 0.0416 0.038

0.3 ~0.500 10.0 0.0 0.1 0.0245 0.023

0.4 -0.100 1.0 0.0 0.1 0.138 0.138

0.4 -0.100 2.0 0.0 0.1 0.0604.' 0.060

0.4 -0.100 10.0 0.0 0.1 0.0355 0.035

0.5 -0.100 1.0 0.0 0.1 0.0988 0.100

0.5 -O.100 2.0 0.0 0.1 0.0432 0.044

0.5 -0.100 10.0 0.0 0.1 0.0254 0.026

0.6 -0.100 1.0 0.0 0.1 0.0648 0.066

0.6 -0.100 220 0.0 0.1 0.0284 0.029

0.6 -0.100 10.0 0.0 0.1 0.0167 0.017

0.4 -0.435 1.0 0.0 0.1 0.0692 0.060

0.5 -0.325 1.0 0.0 0.1 0.0576 0.053

0.6 -O;245 1.0 0.0 0.1 0.0420 0.039

0.4 -0.435 2.0 0.0 0.1 0.0303 0.027

0.5 ~0.325 2.0 0.0 0.1 0.0252 0.023

0.6 -0.245 2.0 0.0 0.1 0.0184 0.0169

0.6 -0.245 10.0 0.0 0.1 0.0108 0.0105
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but for the point at 6i = 0.3, €2 = -0.5, the difference

between the two values of B"1 is significant.

The last points tested were located just before the

entrances to the holes of Fig. 21 for 61 = 0.4, 0.5, 0.6.

These results are also given in Table l, and, although

there is again a noticeable difference between the two

values of B"1 , the largest difference in any case is only

0.0092. Fortunately, the largest discrepancies in Table

1 occur for smaller values of %, and, since the 0'—sta-

bility region for such cases is considerably larger than

the accompanying Y-stability region, such discrepancies

can be safely ignored. Note that the largest difference

between predicted and computed values of B"-1 for g of 10

is only 0.0015.

Several attempts were made to locate holes in the

0'-stability region. The first approach was to start

the automatic program just below the suspected hole en-

trance for 61‘: 0.3, fi = 10, and to let the program find

the hole. Two ten-minute runs on the computer located

only nine boundary points. Since the suspected entrance

had been passed with no tendency of the program to turn

in to it, it was decided to try another method. Single

points were tested along a line of constant 62 (=-0.55),

starting from the already-established right-hand bound-

ary and moving left in an attempt to locate other unsta-

ble points; none were found. Similar testing was done in

the anticipated hole regions for other values of E1, and
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again no holes were found. Apparently either there are

no hole regions in the 0' stability plots, or else more

cycles should be required as the criterion for stability

in these regions. Because the 0' response plots obtained

for fifty cycles of test showed no tendency toward going

unstable in the near future, it was decided not to run

the cases for a larger number of cycles, but to continue

on the assumption that these points would remain stable

in 0' indefinitely.

Back to Motion in Both Coordinates

The main reason for testing for stability in 0'

alone was to verify that stable and unstable regions do

exist for this coordinate. It was anticipated that the

boundaries of these regions might be difficult to locate

without constraining the motion in Y, since instability

might always occur in Y first. The above results verify

that the region of stability for 0' alone is always at

least as large as the corresponding region for Y alone.

This suggests that it might be possible to predict sta-

bility characteristics in both coordinates on the basis

of the stability plots for Y alone.

As mentioned earlier, the P0111t at 61 = 0'3’ 62 =

-0.1, fi = 2, was tested with motion being allowed in both

coordinates.

the one given in Fig. 21 for motion in Y only.

The boundary point located was identical to

This

. L

agreement is not surprising, Since, for F = 2, the sta-
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bility region in 0' is expected to be 1.75 times as large

as that in Y; thus, motion in 0' should have very little

influence on the stability of the bearing as a whole.

If motion in the angular coordinate is ever apt to reduce

the size of the stability region for the bearing as a

whole, it seems that it would be most likely to do so for

larger values of %.

It was mentioned before that the automatic program

was allowed to locate nine points near the entrance to

the hole for 61 = 0.3, % = 10, with motion being allowed

only in 0'. Until the suspected hole region was reached,

the resulting stability plot for 0' was practically on

top of the one given for Y in Fig. 21. Since the plots

for each of the separate coordinates were known in this

region, it was decided that this is where stability in

both coordinates simultaneously should be tested. Start-

ing from the same point as for the 0'-0nly run, with

% = l0, CRD = 0., CRD2 = 0.1, the automatic program was

allowed to run for ten minutes, locating four good points.

The section of boundary defined by these points was only

slightly to the left of that given in Fig. 21.

It was not surprising that the stability region was

reduced for the two-degree-of—freedom
system, since am-

plitudes of Y and 0' which would survive the stability

test alone now had to pass it together. However, the re-

sponse plots in 0' for the stable points of this run
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seemed to be growing in amplitude near the point of cut—

off at fifty cycles. A retest of these same points for

250 cycles of squeeze revealed that the motion in 0' was

of a beating nature, and the increasing amplitude ob-

served after fifty cycles was just the peak of the first

beat.



CONCLUSIONS

The stability characteristics of journal bearings

under various constraints have been investigated.

Starting with the results of Ref. [1], the automatic

technique was applied to locate holes in the stability

regions for infinite journals. Extensions of the anal-

ysis to (l) bearings of finite length and (2) bearings

allowed to tilt as well as translate in one plane led

to larger stable regions than those given for the infi-

nite journal. Because the equations of motion for the

remaining two coordinates are essentially of the same

form as those already tested, especially for small pa-

rameters, it is felt that an extension of the computer

analysis to more coordinates would lead to very little

new information, and such information would come only

at the expense of a great amount of computer time.

If further work is to be done, other extensions

than increasing the number of coordinates would probably

be more worthwhile. For examples, the squeeze-film

bearing might be analyzed with the journal rotating,

periodic loads might be considered, or an applied torque

might be added to the 0' coordinate. There is obviously

much more work which could be done in this area, but un-

100
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til such time as individual cases can be considered in

detail, it seems advisable to keep points of operation

of any journals within the stability regions of infinite

journals. Bearing designs based on this requirement

would at least be conservative when operated under the

conditions specified in this paper.
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APPENDIX A

This appendix presents the portion of one of the

computer programs which includes the logic for automatic

curve following. Specifically, the program from which

the following statements are taken is the one which was

used to follow the curve for W'=0.00l in Fig. 16; thus

the sharp-turn logic in this listing is the best one

which was developed. Fig. A-l is a flow chart of the

portion of program being discussed. Following is the

FORTRAN listing of the same portion of program including

numerous descriptive comments. It is felt that the best

way to gain an understanding of how this method works is

to apply it by hand to a section of sketched curve, pref-

erably one with a sharp turn in it. It should be noted

that, in this particular program, the stable region is

on the right-hand side of the boundary as the program

progresses. This was not the case in all programs used,

but only minor modifications are necessary to develop

one from another.

The FORTRAN Listing

Previous to this point in the program, two start-

ing points A and B are located by the method used in

Ref. [1], and their ordinate and abscissa values are

104
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Fig. A—l.--Flow chart for the automatic

curve-following logic.

 

   

   

490 PRINT 12, ...

EPSl-3P1( 1 )FC’E-

ZO

_ ”J“_11- -

1 L€954_E?§€=£?5?(3P51):

_1_h,_1,7,7 .
YZBRO=BPS2-CRD1I( l . ~BP3163P52)

CALL COORBY

gum-ma

a...

   

    

  

ABSC(KPT)-ABSCA

cam KPT)=ORDA

910 15W:1
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named ABSCA, ORDA, ABSCB, and ORDB. The values of these

quantities are changed throughout the following DO-loop,

with each new B being the previous A and each new A being

calculated from statements 4951 and 4952 below.

ISHARP=0

This is the value which ISHARP will have

unless a 180° change of direction is made

in searching for the next point. Dis-

cussed further below.

DO 525 IJI=3,IJJI

LQQ=0

KPT=IJI

JIB=JIA

IJJI is read into the program earlier as

the total number of points that it is de-

sired to test.

LQQ is set equal to zero at the beginning

of each run through the DO-loop, and it

is increased by 1 each time ARG is

changed. If ARG is changed enough times

in searching for a new point, LQQ will

equal LQS (defined earlier in the pro—

gram), indicating a sharp turn. When

this occurs, the sharp-turn logic is ap-

plied below.

SUBROUTINE COORDS, which tests for sta-

bility at each point, assigns a value of

O to JIA for stable points and l for un-

stable points. At this point in the pro-

gram, JIB is given the value of JIA for

the last point tested. Subsequent points

are tested until the value of JIA returned

by COORDS no longer equals JIB; this in-

dicates that the boundary has been

crossed. Then the DO-loop is completed

for that value of IJI, and the process is

repeated.
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496

497

498

4951

4952
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GO TO 4951

PRINT l2, ...

Format statement 12 is used to print in-

formation concerning points tested but

not kept.

IF(JIA) 497,497,498

If JIA is zero, statement 497 will cause

ARG to be increased by DELARG, indicating

a left turn toward the unstable region. If

JIA is 1, statement 498 will decrease ARG

bg DELARG, indicating a right turn toward

t e stable region.

ARGsARG+DELARG

LQQ=LQQ+1

GO TO 4951

ARG=ARG-DELARG

LQQ=LQQ+1

ABSCA=ABSCB+DIST*COSF(ARG)

This gives the abscissa value of the next

point to be tested.

IF(ABSCA) 526,526,4952

If the abscissa value of the next point

is less than or equal to zero, the pro-

gram goes to statement 526 (not included

here) and terminates the run for that set

of data; otherwise, it continues to state-

ment 4952.

ORDA=ORDB+DIST§SINF<ARG)

This gives the ordinate value for the

next point.

IF(LQQ-LQS)-4957,4957,525

For certain values of DELARG which might

be read in to the program, it is possible

that the incrementing of ARG might con-

tinue indefinitely without crossing the
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stability boundary. This statement limits

the turn to about 180° before the case is

terminated at statement 526. This is not

likely to be a problem if DELARG is divis-

ible into 180° a Whole number of times.

4957 BEE=SFABS/ABSCA

BEE is the B of the main text. SFABS and

SFORD (below) were scale factors provided

for the abscissa and ordinate in case it

was found convenient to expand one of the

scales for the search. Values for these

quantities were read in to the program as

data, but the flexibility thus provided

was not used.

BETA=l./BEE

IF(BETA—.l) 4953.4953.526

This statement prevents the search from

going indefinitely to the right; it is

what terminated the curve of Fig. 16 for

W'=0.00l.

4953 EPSl=ORDA/SFORD

IF(EPSl-EP1(1)) 526,4954.4954

This program was one of the ones which

interpolated in a table of EPSl and

EPSZ to get the value of EPSZ at each

new point. The array of EPSl values was

EPl. This statement causes the program

to terminate if the value of EPSl at

hand is lower than the lowest value in

the EPl array.

4954 EPS2=EPPSZ(EPSl)

EPPS2 was the function subroutine which

did the interpolation mentioned above.

YZERO=EPS2-CRD*(1.-EPSl+EP82)

This sets the initial value of Y as pre-

scribed by Eq. (28).

CALL COORDY

COORDY was the subroutine which tested

for stability and returned the correspond-
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ing values of JIA.

IF(JIA-JIB) 516,490,516

See the above comment under the state-

ment JIB=JIA.

516 PRINT 13, ...

Format statement 13 was used to print out

data which proved to be on the boundary.

CALL YPLOT

YPLOT was the subroutine used to plot the

responses of the type given in Figs. 8,

9, and 10.

ABSC(KPT)=ABSCA

ORD(KPT)=ORDA

ABSC and 0RD were arrays for storage of

the values used to plot the curves such

as Fig. 16 after all points on the curve

were tested for stability.

IF(LQQ-LQS) 524,910,910

This is the test to determine whether the

sharp-turn logic should be used. It

should be used if LQQ is greater than or

equal to LQS.

910 ISHARP=1

ABSCC=ABSCA

ORDC=ORDA

These last three values are used in the

sharp-turn logic on the next trip through

the loop.

GO TO 525

524 ABSCB=ABSCA

ORDB=ORDA

Point A becomes the new point B, and mem-

ory locations for ABSCA and ORDA are
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914
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available for new values the next time

through statements 4951 and 4952.

IF(ISHARP) 525,525,911

If ISHARP had been set equal to l on the

previous trip through the loop, the pro-

gram would go to statement 911 to continue

the sharp-turn logic; otherwise it would

go on to statement 525.

IF(ORDA-ORDC) 912,913,913

The sharp-turn logic defines a new start-

ing ARG based on either statement 912 or

913. Which one is used depends on the

value of (ORDA-ORDC).

ARG=1.5*PI+ATANF((ABSCA-ABSCC)/(ORDC-ORDA))

GO TO 914

ARG=.5*PI+ATANF((ABSCC-ABSCA)/(ORDA-ORDC))

ISHARP=0

ISHARP is reset at zero here so that the

sharp-turn logic will be bypassed until

the next time a sharp turn is encountered.

CONTINUE





 


