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ABSTRACT

ANALYTICAL INVESTIGATION OF STABILITY
OF SQUEEZE-FILM JOURNAL BEARINGS

by John Edward Nolan

Because of increasing applications for gas bear-
ings, the operating characteristics of such bearings,
in particular, stability characteristics, are of inter-
est. While many investigators have considered hydro-
dynamic and externally-pressurized gas bearings in this
regard, very little has been done with squeeze-film

type gas bearings.
This paper describes the investigation of stabil-

ity characteristics of squeeze-film type gas journal
bearings by solving the differential equations which

describe bearing behavior--Reynolds' equation and the

dynamic equations for the journal. Although some ap-

proximate results were obtained from small-parameter
considerations leading to forms of the Mathieu equation,
the greatest accuracy was given by digital-computer so-

lutions based on finite-difference methods. A technique

was devised which enables the computer to automatically

locate and follow the boundaries of stability maps, even




John Edward Nolan

around extremely sharp turns. The associated logic is

described in detail and is adaptable to the determina-

tion of boundaries in other similar applications.

After a thorough analysis of an infinitely-long

journal bearing constrained to motion in only one trans-

lational coordinate, the work was extended to include

(a) bearings of finite length and (b) bearings allowed

to tilt as well as translate in one plane. Of all cases

congidered, it was found that the stability regions for

the infinite journal were the smallest. Thus, it was

concluded that a bearing design based on the character-

igtics for an infinite journal would be conservative.
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INTRODUCTION

In the present space-age technology, there is an
increasing demand for bearings which can operate over a
wide speed range, with low friction, and under extreme
conditions of environment. This demand is being met in
certain applications with the use of gas bearings, i. €.,
bearings which use a gas (e.g., air) as their lubricant.
It is desired that the load applied to these bearings be
supported entirely by the film of gas which exists be-
tween the bearing surfaces. In order for such a film to
support a load, the pressure forces in the film must be
such that their resultant produces a net lift. fThere
are basically three different methods of effecting suit-
able pressure distributions, and gas bearings are clage
sified according to which of these means they are de-
signed to use. The three general classifications of gas
bearings are: (1) self-acting, or hydrodynamic, bear-
ings, (2) externally-pressurized bearings, and -

(3) squeeze-film type gas bearings. Each of these types
Wwill be described briefly below for the particular case
of journal bearings, although it should be clear that

gas bearings can be used in other configurations (e.g.,

thrust bearings) as well.



In hydrodynamic bearings, the relative tangential
motion of the bearing surfaces results in gas being car-
ried around and wedged into the space of minimum clear-
ance, thus effecting a 1lift. Since the operation of
these bearings is dependent on the relative motion of
the bearing surfaces, self-acting bearings are limited
to applications where such relative motion is always
present; e.g., in the case of journal bearings, the
journal must always be rotating.

When there is insufficient relative surface mo-
tion to develop a self-acting film, or when wide speed
fluctuations are expected, either an externally-pres-
surized bearing or a squeeze-film bearing must be used.
A typical application for low-speed, low-friction bear-
ings is in gimbal bearings for gyroscopes.

The 1ift in an externally-pressurized bearing is
produced by gas being forced under pressure into the
space between the bearing surfaces. The gas can be fed
into the bearing through orifices, capillary restriction
holes, or grooves.

The net supporting force in squeeze-film bearings
is created by oscillating one of the bearing surfaces
rapidly in-and-out normal to the film. Since the pres-
sure increase during the aprroach is of greater magni-
tude than the pressure decrease during the pull-away

part of the cycle, a net positive 1lift results. In the



case of a journal bearing, an overall net force on the
journal can be produced only if the journal is not con-
centric with the bearing. If the journal is off center,
the tendency of the squeeze-film pressure forces is to
return it to the center. Either externally-pressurized
or squeeze~film Jjournal bearings can support a load even
if the journal is not rotating. If it is rotating, the
self-acting 1lift effects resulting from this rotation
should generally be expected to combine with the exter-
nally-pressured or squeeze-film effects.

Experience with self-acting and externally-pres-
surized gas bearings has shown that, while the pressure
forces developed may be sufficient to support the re-
quired load, certain operating conditions do not allow
the journal to seek a stable equilibrium position and
remain there, but instead cause it to move about inside
the bearing, possibly until the journal and bearing come
into contact. These undesirable bearing phenomena are
commonly called forms of instability.

While stability characteristics cf self-acting and
externally-pressurized bearings have been studied by
many investigators, both experimentally and analytically,
very little has been published about squeeze-film bear-

ings. An initial investigation by Beck and Strodtman [l]1

lNumbers in brackets designate references.



showed that these bearings also exhibit stable and un-
stable regions of operation. It is the purpose of the
present work to make a more-complete determination of
these regions and to extend the analysis to bearings of
finite length which are free to move in more than one
degree of freedom.

In the analytical investigation of gas bearings of
any of the three basic types, the partial differential
equation describing the fluid flow and pressure distri-
bution in the bearing (Reynolds' equation) must be sat-
igfied. If the Reynolds equation is solved by itself,
with the journal in some sgpecific configuration, only
pressure distribution and load support information can
be obtained. If stability characteristics are to be de-
termined, appropriate equations of motion for the journal
must be solved concurrently with the Reynolds equation.
The equations of motion are invariably based on Newton's
second law and are relatively easy to solve. Reynolds'
equation, on the other hand, is a rather cumbersome par-
tial differential equation; the various methods which
have been used to satisfy it will now be reviewed.

Numerous perturbation techniques have been applied
to the Reynolds equation. In these methods, a solution
is assumed as a power series in terms of a parameter ap-
propriate to the nature of the problem. Gross and Zach-

manoglou [2] discuss several of the perturbation param-



eters which have been considered. Ausman was the first
to use the product PH (where P and H are normalized pres-
sure and clearance respectively) as the basis of a per-
turbation series, and most subsequent perturbation ap-
proaches have used his "Linearized PH Method"™ [3].

Galerkin's method has been used by some investiga-
tors [4,5]. In this method, the Reynolds equation is
reduced to a system of first-order ordinary differential
equations which are then solved together with the equa-
tions of motion.

Castelli and Elrod [6] used a finite-difference ap-
proach, solving both the Reynolds equation and the dynam-
ic equations for the Jjournal on a digital computer.

While this method is very expensive, it also results in
greater accuracy than the others, as pointed out by Aus-
man [7].

For further reference concerning these methods,
the papers of Katto and Soda [8] and Pan and Sternlicht
[9] are recommended. The first of these compares theo-
retical methods of sclving the Reynolds equation, and
the second compares both theoretical and experimental
methods of determining stability of self-acting plain
cylindrical journal bearings.

The only papers concerning squeeze-film bearings
known to be presently published are those of Salbu [10];

Pan, Malanoski, Broussard, and Burch [11]; and Beck and




Strodtman [1l. Salbu's paper compares experimental re-
sults with finite-difference solutions of the squeeze-
film equations for a pair of parallel coaxial disks.
Reference [11l] compares various theoretical and experi-
mental results for squeeze-film cylindrical journal bear-
ings. Neither of these two papers consider stability.
Reference [l] does outline approximate stability maps for
infinite squeeze~-film journal béarings, and these results
will be extended in the present investigation.

The methods mentioned above for solving the Reynolds
equation were all used for either self-acting or external-
ly-pressurized journal bearings. In the present investi-
gation, it will be seen that, for the squeeze-film con-
figurations considered, the Reynolds equation will reduce
to a relatively simple form. The dynamic equations are
then solved by finite-difference methods, subject to the
restrictions imposed by the simplified Reynolds equation
and by a mass-content rule. Of the various methods dis-
cussed above, the present method is most like that of [6].

The computer used throughout this work was the Con-
trol Data Corporation 3600 at Michigan State University.
The plotter used in conjunction with this computer was

the CDC 165.



STABILITY OF THE INFINITE JOURNAL BEARING
IN ONE DEGREE OF FREEDOM

It is desired to establish stability characteris-
tics of squeeze-film type gas Jjournal bearings. The ‘
method of determining these characteristics is basically

a computer-solution of the differential equations govern-

ing bearing behavior. These equations are of two types:

(1) the equation relating properties within the gas film
(Reynolds' equation) and (2) the equation (or equations)
of motion of the Journal in response to forces which are
applied to it by the pressure of the gas film, by any ex-
ternal loads which may be applied, and by the weight of
the Jjournal itself. These latter equations are derived
from Newton's second law of motion.

In order to completely locate a rigid body in space,
six independent coordinates are required. Thus, in order
to provide for the most general motion of the journal,
equations of motion in each of six coordinates should be
used. If it is desired to eliminate consideration of mo-
tion in one or more of these coordinates, appropriate
constraints should be assumed. Because it is not likely
that a journal would move an appreciable distance along

its axis, motion in this coordinate will be neglected.
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Because squeeze-film effects could not otherwise be dis-
tinguished from hydrodynamic effects, it will be assumed
that rotation of the journals about their axes will be
zero. If the reference position of the shaft is taken to
be in a horizontal plane, the remaining four coordinates
could be: (1) vertical displacement of the center of
gravity of the journal, (2) horizontal displacement of
the center of gravity in a direction normal to the shaft
axis, (3) rotation in the horizontal plane about the ver-
tical line through the center of gravity of the journal,
and (4) rotation in a vertical plane about the horizontal
line which is perpendicular to the shaft axis at its cen-
ter of gravity. Of these four coordinates, only motion in
the first is considered in the initial investigations.
Constraints are assumed to prohibit motion in the other
three. Later in this paper, angular motion in the coor-
dinate defined by (4) above will also be allowed.

At this point, it seems advisable to give a more-
detailed description of the system configuration. The
journal being supported is considered to be a solid homo-
geneous shaft of radius R, length L, and mass m. The
bearing which encloses the journal has a length L and a
nominal radius (R+ho). During operation, the bearing ra-
dius fluctuates sinusoidally at a high frequency, pro-
ducing the squeeze effect. The amplitude of this sinu-
soidal variation is denoted by the symbol hl' Assume the




bearing axis and the reference position of the journal
axis to lie on the same horizontal line. Then the loca-
tion of the journal centerline can be specified by a co-
ordinate y measured positive upward from the fixed bear-
ing centerline-~this assumes, of course, that the other
five coordinates are constrained to be zero as mentioned
above. A possible instantaneous configuration of bear-
ing and journal (with the bearing at its nominal radius)
is shown in Fig. 1.

Another symbol shown in Fig. 1, but which has not
been mentioned previously, is the angle ©, which is meas-
ured from the vertical about the centerline of the jour-
nal. Since some of the variables to be encountered will
be functions of position around the journal, © is intro-
duced to provide for these functional relationships.
These variables will also generally be functions of posi-
tion along the shaft, so a coordinate z, measured from
the left end of the shaft, is provided. The angle © can
assume values between O and 2%, while z varies from O

to L.

The Reynolds Equation

The equation describing the fluid dynamics of lam-
inar gas films is called the Reynolds equation. For a
gas bearing in which there is no relative tangential mo-
tion between mating surfaces, and for the coordinates ©

and z as defined above, the Reynolds equation can be
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FPig. 1l.~-End view of the shaft
indicating nomenclature.

//'

(¢}
e
QT"'+,//-R*hO
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Z

Fig. 2.--End view of the shaft
showing the action of a
general pressure force.
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written

LS LH R o

This equation is readily derived from the general Reynolds
equation as given in Gross [12]. In this equation, p is
the density of the gas film; u is its viscosity; h is the
film thickness at a general location (z,0) and at a gen-
eral real time T; and p is the pressure at a given
(2,6,7T).

An assumption which is generally valid in gas bear-
ing work is that the gas film behaves as a perfect gas.

Thus, p in Eq. (1) can be replaced with

P = o (2)

Another generally-accepted assumption used in gas-bearing
work is that the gas behaves isothermally, i.e., T, the
temperature, is constant. Also, for an isothermal gas,

M can be considered constant. Then (1) becomes

%—[hB"‘p']* 2_5_[ph33_2]=12/4§ip_}.ll (3)

Equation (3) is a relationship containing dimen-
sioned quantities. To make it dimensionless, define
2=2/B, where B is some characteristic bearing dimension,
and Z is the normalized z; P=p/pa, where p, is the ambi-
ent pressure, and P is the normalized p; H=h/ho, where
ho is the nominal film thickness, and H is normalized h;

and t=wWT, where t is normalized time, and w is some char-
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acteristic frequency, usually taken to be the squeeze
frequency in squeeze-film work. Using these dimension-

less groups, and letting B equal R, (3) can be written
3 3P o) 3 3P _ o(PH
-gz [PH B-ZJ + 356 [PH -55] = q (4)
where the dimensionless constant 0, defined by

2
o = uel (5) ‘
pahO !

is commonly called the "squeeze number".

The Equation of Motion 3

Equation (4) is one of two equations which must be
satisfied in order to determine journal bearing stability
characteristics. The second is the equation of motion.
As stated above, the journal will first be considered
free to move in only one coordinate. The forces acting on
it are the gas pressure forces, the weight of the jour-
nal, and external forces; the last two of these forces
are combined in this development.

Figure 2 represents an end view of the journal.

The arrow labeled p indicates the pressure applied to the
journal at a general location (z,0). This pressure ap-
plied over an elemental area Rdzd® results in a force in
the y direction equal to -pR(cos®)dzd®. The resultant of
all such forces is obtained by integrating this elemental
force over the complete bearing. Letting the load per

unit length,due to the combined effects of shaft weight
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and applied forces, be Wl, the equation of motion can be

written

2 2N /L
n_ Q—% = - J/.Rp(cose)dzde - WL (6)
&0 av b o

To make (6) dimensionless, use the same substitutions
which were used to normalize (3). The resulting equa-

tion is

a’y [z (7[R
= - P(cos0)dzde + 2wW! 7)
-d;-z 5[3/0 /o cos + ] (

where two new dimensionless groups have been used, which

are defined as

mh
P " Eopat ®
and
W
. 1
V' = 75.R (9)

These groups were used previously in Reference [1]. If
advantage is taken of the symmetry present in the bear-

ing, both axially and circumferentially, (7) can be

written
7 ,L_
2 7R
%:7 = - % [i%)[ P(cos0)dzde + 2W!' (10)
070

Determining Stability
The method of determining stability in this inves-

= 3
.

"-w
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tigation is basically to start the solution of Eg. (10)
from a reasonable set of initial conditions and to ob-
serve the motion in Y. If this motion is such that the
journal "“survives" a specified number of squeeze cycles
without contacting the bearing, the system is said to
have behaved in a stable manner, otherwise unstable.
Since R, L, B, and W' are all known constants for
a given case, the solution of (10) would be quite simple

except for the presence of P, which is generally a func-

tion of position as well as time. Once H is known, it

is possible to obtain P from Eq. (4). Referring to -
Fig. 1 should help to verify that the general expression
for h, the dimensioned clearance, can be written

h =hy -y cos® - hy sin(wT) (11)

This is normalized by using H=h/h, Y=y/h, €1=hl/ho,
and WT=t, most of which have been used before. The
resulting expression for normalized clearance is
H=1-1Ycose - € sin(t) (12)
It should now be evident that the general solution
of (10) is dependent on both (4) and (12). In a numer-
ical solution of the problem, the system could be given
an initial value of Y from which an initial H could be
calculated using (12). Equation (9) and this H would
yield & P distribution which could be used in (10) to
determine a new Y, etc. In theory, this procedure could

be continued for as many time steps as desired, but in
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practice, the computer time required for repeated solu-
tions of (4) is prohibitive when attempting to obtain a
complete stability map. Portunately, for bearings which
operate at high values of squeeze number, a simpler re-

quirement can be developed from equation (4).

Simplified Reynolds Equation for Large O

Note that Eq. (4) can be rewritten as

1 4en® 3F) + (e 35| - AP (13)

If o is sufficiently large, this equation can be approx-

2%¥El ~ 0 (14)

or for relatively short times,

imated as

PH ~ constant in time at any location (15)
Fortunately, for many cases of interest, the numerical
values encountered are large enough (10,000 or larger)
to make (14) a reasonable approximation. Also, it has
been observed [13] that when a bearing is going to be-
come unstable, it generally does so in much less time
than would be required for PH to change appreciably.
Thus, at least for high squeeze numbers, the use of
Eq. (15) in place of the Reynolds equation is a reason-
able basis for stability investigations.

A "Mass-Content"™ Rule

Equation (15) indicates that the product (PH)
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should maintain a value which is approximately constant
in time at a given location (Z,0) in the film. This
product can, however, assume different values at differ-
ent locations, i.e.,

PH = ¥(2z,0) (16)
In order for this reduced Reynolds equation to be help-
ful in solving (10), it is necessary that the function
Y be known. One derivation, which was developed by
Elrod [14], for an infinitely-long journal with infinite
squeeze number and a fixed Jjournal location, resulted in

the following relationship:

€2
v o= 1+ —-%-%'—-2- (1 - Gzcose) (17)
1l + 562

1

Relationships of this type have been called "mass-con-
tent" rules, because their derivation is dependent on a
consideration of the average amount of mass of the gas
contained in the space between bearing and Jjournal.

The constant 62 in Eq. (17) has not yet been de-
fined. 1If a bearing operates with a normalized excur-
sion €1 and supports the journal at steady-state for a
given W', the position of the journal will be a definite
average distance below the bearing centerline, i.e., at
that location where gas pressure forces just balance W',
In this position, the distance from the bearing center-

line to the journal centerline, in normalized form, is
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called €2, eccentricity.

Equation (17) is not a function of both Z and o,
but is a function only of @ because the bearing was as-
sumed to be infinitely long. While less-restrictive
mass-content rules have been developed and will be dig-
cussed later, the stability work done in [1] and much
of the work done in the present investigation is based
on Eq. (17). Use of this equation was Justified ini-
tially because it was the best available. Later on,
even after a more-accurate rule was developed, (17) was
s8till used to some extent because computer time required
to use the new rule was considerably greater. Finally,
use of Eq. (17) can be justified because stability plots
based on it are not too different from those based on a
less-restrictive mass-content rule; where differences do

occur, designs based on (17) would be conservative.

Stability of the Infinite Journal
With ¥ and H both being independent of 2 for in-

finite bearings, it follows that P will also be inde-
pendent of Z, and (10) can be reduced to

FAY
.dfg = - % [/P(cose)do + W (18)
dt 0

From Equations (12), (16), and (17),
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| 3¢ B
1+ x (1 - €,c080)
v 1+ 56

P=q=7—% cos0 - € sin(t) (19)

Substituting this expression for P into (18) gives
N

d2Y 5 (1 - EZcose)cosGdO
w2 " B|A T Yeest—emmr t W (20)
dt 0 1

where )\ has been defined for convenience as

2 L
A= \/1+ %El (21)

1+ g(g

Now the stability characteristics of infinite journal
bearings can be determined by solving only this one
equation (20) for various values of the system parame-

ters B, El’ 62, and W',

Compatible Values of Parameters

In using Eq. (20) to establish stability regions,
€1, €2, and W' cannot all be chosen independently. If
any two of them are chosen arbitrarily, there is only
one compatible value for the third one. This stems from
the fact that the mass-content rule, Eq. (17), was de-
rived from the steady-state Reynolds equation, i.e., the
system was assumed to have gone through all transients,
so that the only time-variations of any variables were
cyclic. If the system is to be in a steady-state con-

figuration, a bearing with an excursion (l supporting a
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specified W' would support it with a definite average
eccentricity €,.

Compatible values of €l, €,, and W' can be deter-
mined from Eq. (20) for steady-state. To do this, €
and €2 are specified, and the corresponding values of
W' are determined. One way of forcing equation (20) to
conform to a set of steady-state conditions at a given
€2, even for the case of an unstable configuration, is
to physically "“hold" the journal at Y = €2 and to let
the bearing operate with its excursion €i until steady-
state conditions are reached. During the transient to
reach these steady-state conditions, the bearing is said
to be "pumping up". The transient itself could be fol-
lowed by solving the Reynolds equation. This has been
done in [13] for infinitely-long flat-plate squeeze-film
bearings. Also, the steady-state pressure distributions
for parallel flat discs have been predicted for various
cases in Ref. [10]; some of these cases were confirmed
experimentally. The results of both of these papers
show that the bearing actually does pump up, with the
average final pressure in the film being higher than

ambient.
If the journal is held in the Y=€2 position,

Eq. (20) can be averaged in time to give
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N 27
(1 - €zcosG)cosed9

LANERE ™ T=¢;0080 = ¢,5Ta(®) dtde (22)

This expression was used in Ref. [1] to establish the
family of curves shown in Fig. 3. In the present inves-
tigation, a more-extensive set of these curves was re-
quired, so a computer program called COMBAT was written
which solved Eq. (22) for many more possible combina-
tions of €, and €2. The results of COMPAT were not
plotted, but values were taken from the computer print-
out as needed. Plots of the type shown in Fig. 3 are

called "load-support curves".

Solution of the Equation of Motion

The procedure for testing the stability of a bear-
ing for a given set of operating conditions can be out-
lined as follows. PFirst, choose values of 61, €2, and
W' which are compatible with Eq. (22). Then, assume
that the journal is held at Y = €2 while the bearing is
operated with an excursion €1 until it pumps up to
steady-state. When steady-state is reached, Eq. (22)
should be satisfied, and the average of the resultant of
the pressure forces should just balance W'. Then, if
the constraint which was holding the journal at its

equilibrium position is removed, (20) becomes the gov-

erning equation. It is the solution of this equation

that is the basis of stability in the method of analysis
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10. 7

Fig. 3.--The load-support curves
for an infinite journal
given by Ref. [1].
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used. If the motion in Y is such that it would cause
the journal to contact the bearing, the system is said to
be unstable, otherwise stable.

An explicit expression for Y(t) satisfying Eq. (20)
appeared to be very difficult to derive, because the
equation is nonlinear. Thus, it was decided to solve
this equation by finite-difference methods. The method
of solution used considers (20) to be a special case of
the more-general form
23%
dt

= £(t) (23)

The initial value of Y is specified; it may or may not
equal 62, depending on whether it is desired to start
the journal from equilibrium or from some distance away
from equilibrium. Both types of starts are considered
below; in any case, the initial value of Y is called YO‘
Subsequent values of Y are determined at time in-
tervals At. The value of Y(At) can be approximated by

a Taylor series:
¥, = Y(at) = ¥(0) + Y (0)at + E{Q(AL)2 4 -on (24)

Assuming that the journal is released from rest, Y'(0)

equals zere, and, from (23), Y"(0) = £(0), so (27) be-

¥ = ¥y + H0(ar)? (25)

For Y2, the following approximation can be used:

comes



23

2
Y2 = 2Y1 - YO + (At) fl s (26)

and the remaining values of Y can be calculated from the

general expression

2
At
Yn = 2Ypy - Yot LTﬁl_[13fm—l - 2p ot fm-BJ (27)

This last approximation is given in Crandall [15], and
it is accurate to the order of (At)s.

In using this finite-difference technique to solve
Eq. (20), it is obviously not feasible to allow the
tests to go on indefinitely in time. Instead, the com-
puter runs have been limited to a specified number of
cycles. The "unstable" points determined by this method
actually are unstable, since they were tested over a suf-
ficient number of cycles for the instability to occur.
The "stable" points, however, left room for doubt, since
such a point might have gone unstable if allowed even
one more time step. In order to remove some of this
doubt, especially in the earlier runs, plots of Y ver-
sus t were obtained. The unstable points generally went
unstable in a fraction of the number of cycles allotted,
by oscillating with increasing amplitude. The plots for
the stable points survived the number of cycles allotted,
generally following one of two patterns: either oscilla-
tions of nearly constant amplitude, or oscillations with
an oscillating amplitude (beating). In most cases, the

repetitious nature of the response was apparent, and it
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was this appérent good behavior which justified the meth-
od used. A few so-called "spongy" regions appeared, in
which the "unstable" points ran for almost as many cycles
as the "stable" points, but, since these regions general-
ly appeared in less-critical parts of the stability map,
they were not retested with more allowable time steps.
Some typical response plots will be discussed later in

more detail.

The Results of Beck and Strodtman

The first family of stability curves for infinite
journal bearings was derived by Beck and Strodtman [1].
In this work, the boundaries between stable and unsta-
ble regions for given values of W' were plotted with €1
as the ordinate and B'l as the abscissa. The complete
family of curves for a range of parameters was plotted
and is reproduced in Fig. 4. The region of mrstable
points for a given W' is the area to the left of the
curve for that W'; the region of unstable points is to
the right.

In locating these curves, the finite-difference
method just discussed was used, with eighty cycles of
squeeze required for stability. The method of searching
for the boundary was: (1) to hold both W' and €, con-
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