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ABSTRACT

BRILLOUIN SPECTROSCOPY OF
MACROMOLECULAR SOLUTIONS
By

Douglas Edward Nordhaus

Brillouin light scattering was evaluated as an experi-
mental method for measuring the molecular weights of macro-
molecules. The thermodynamic theory of Miller was utilized
in the calculations while its limitations were evaluated with
the aid of the linearized hydrodynamic equations of Mountain
as applied to a thermally relaxing liquid.

An instrumental procedure involving parameters associated
with the optical quality was developed to experimentally
separate the Rayleigh and Brillouin peaks over a range of
scattering angles from 45 to 135 degrees. Brillouin spectra
of benzene were taken and the isotropically scattered light
identified, separated and measured. A good correspondence was
found between the ratio J, obtained from the experimental
measurements and from the calculations using Mountain's theory.
This fact indicates that only isotropically scattered light
was measured and that the correct spectral base line was
selected.

An extensive cleaning and filtering procedure was also

developed to give consistent scattering measurements from



Douglas Edward Nordhaus

sample solutions and some parameters of benzene were measured
including a relaxation line, the "Mountain" line,.

Brillouin spectra of macromolecular solutions were taken
and it was found that for dilute solutions of polystyrene in
benzene the solute did not affect the solvent parameters

\ Vo ? and t to any measurable extent. This indicated that

o’
Miller's theory can be effectively applied to this solvent and
solute combination. Six macromolecules, used as molecular weight
standards and with different molecular weights, were measured
with Brillouin scattering and the molecular weights calculated
using Miller' theory. The final values compared well with

other techniques previously used such as photometric light
scattering and viscosity measurements, although the concentra-
tions were about one order of magnitude smaller than needed

for photometric measurements and the precision slightly lower.

A new sample scattering cell was designed for angular
measurements from large macromolecules to eliminate reflected
light from the back of the cell. This cell was subsequently
used in the extrapolation of the scattered intensity measure-
ments to zero concentration and zero scattering angle for
large macromolecules and also for the measurement of the angu-
lar dependence of the Brillouin peak widths for the solvent

benzene.
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I.Introduction

A-Historical Discussion

Scattered light has excited man's imagination for
thousands of years as seen by his frequent attempts to ex-
plain common phenomena such as the origin of the blue sky
and the red sunset. Experimentally Tyndall [1] produced the
scattering effect of a "blue sky" by passing a beam of white
light through a tube of small suspended particles from the
mixed vapors of butyl nitrate and hydrochloric acid. Unfor-
tunately his attempts to explain this scattering process
were unsuccessful as were the attempts of many others before
him, but in 1871 a theoretical paper based on his work was
written by Lord Rayleigh [2] which correctly identified the
process as one of diffraction., Using this theory, one could
predict other properties from scattering such as the angular
dependence of the scattered intensity from horizontally
polarized incident light and the dependence of the intensity
on the fourth power of the wave-length. Thus Lord Rayleigh
initiated the science of light scattering as it is presently
known.

Since Rayleigh's original theory [3,4] dealt only with
small, simple, and noninteracting particles, others made an
effort to extend his theory to solids and liquids. These
attempts met with many difficulties since in a liquid the
positions and interactions of individual particles are inter-
dependent and thus can not be simply summed as had previously
been done; thus Lord Rayleigh's theory had to be modified or

1



completely changed.

In a liquid, the physical properties at equilibrium are
practically always equal to their mean values with great
accuracy, although small deviations from these mean values
do occur and can be described by fluctuation theory. Einstein
[5] utilized the idea of fluctuations in a liquid to modify
Rayleigh's earlier theory and calculated light scattering
intensities for liquids and solutions.

All the theoretical work on light scattering processes
up to this time, including Einstein's theory, dealt only
with the intensity of the scattered light and entirely ne-
glected any frequency dependence. This deficiency was finally
remedied in a paper by Brillouin [6] who predicted that light
is actually inelastically scattered from a liquid because of
the presence of thermally excited acoustic or pressure waves.,
The incident light shifted in frequency due to this inelastic
scattering is related directly to the velocity of the thermal
waves in the liquid. Gross[ 7] experimentally verified this
theory a short time later, but the experimental techniques
were so difficult and the accuracy so poor that few experi-
ments were ever attempted [8]. Most researchers instead
directed their attention either to Raman scattering or to
elastic light scattering.

The study of elastic light scattering developed rapidly
and led to solution studies of polymers in which Debye [9]
made an important contribution. By measuring the extra

scattering from a solution over that of the same pure liquid,



he could count the number of molecules per unit volume and

so determine the molecular weight of a macromolecule, But
with macromolecules, the intensity of vertically polarized
scattered light varies with the scattering angle, whereas

for small molecules no variation is noticeable. To correct
for this angular dependence and another effect due to the non-
ideal behavior of solutions, Zimm [10] and his co-workers
devised a double extrapolation plot to zero concentration

and zero scattering angle in order to obtain a correct molec-
ular weight for large macromolecules., Since then the theoret-
ical development and experimental techniques have changed
only slightly [11].

In the early 1960's the development of a powerful new
optical source, the laser [12], now made Brillouin scatter-
ing a viable technique [13,14] in the study of liquids and
solutions. The major advantages that this new source offered
included both a very high intensity of polarized light and a
very narrow frequency distribution. Those two properties
were the main deterrents to obtaining good Brillouin spectra
earlier, since it was necessary to separate three closely
spaced peaks. When intensity is plotted against frequency, the
Brillouin spectra of liquids are very simple consisting of a
central peak resulting from elastically scattered light, the
Rayleigh peak, and two symmetrical frequency shifted peaks
on either side of the Rayleigh peak resulting from inelastic-

ally scattered light. It was observed that a macromolecule



added in small quantities to a pure liquid greatly increased
the total amount of scattering from a liquid but this change
was noticeable only in the intensity of the central peak
[15,16]. The two frequency shifted side peaks related ex-
clusively to the solvent and were unaffected by the solute.
Thus, the increased scattering of a solution could be measur-
ed by relating the increased intensity of the central peak to
the constant intensity of the two shifted peaks which could
thereby act as internal standards.

A theory for the ratio of the intensity of the central
peak to the frequency shifted peaks or Brillouin peaks,
Ic/'zI , was developed by Miller [17] using strictly thermo-
dynam?c arguments. Subsequently it was applied to determine
the molecular weight of a macromolecule in the same manner as
Debye previously had done with elastic light scattering, but
the primary assumptions made were never experimentally verified.
Simultaneously Mountain [18,19] developed a theory which cal-
culated the total frequency spectra of scattered light in the
Brillouin-Rayleigh region in liquid mixtures, This theory
included relaxation effects due to the solvent which can modify
the Brillouin spectra sufficiently to render Miller's theory
valid only under restricted circumstances.

B-Purpose

This thesis will examine experimentally the theory of

Miller [17] for determining the molecular weights of

macromolecules in solution, using Brillouin light scatter-



ing. The limitations which must be observed will be analyzed
in the context of Mountain's theory [19] for solutions in
thermally relaxing liquids, and experimentally verified where
possible. A comparison between molecular weights obtained
from Brillouin light scattering and other methods for a
series of high molecular weight polystyrenes will be made
along with a general comparison of this method with regular
elastic light scattering [11] to evaluate major advantages

and disadvantages,



II-Theory
A-Light Scattering

1-Time Independent Scattering Theory

a-Scattering Processes

Light scattering is a general phenomenon which occurs
whenever electromagnetic radiation in the visible region
interacts with matter. If a particle is small compared with
the wave-length of light and sufficiently isotropic to be
polarized in the direction of the incident electric vector,
the exciting field will induce a dipole moment in the
particle as it interacts with the field [20]. This dipole
oscillates in phase with the original radiation and becomes
a secondary source of energy, which emits light in all
directions with the same frequency as that of the incident
radiation. This induced dipole moment vector P, is a
function of the polarizability tensor ai,j of a particle
since the induced dipole is dependent on the shape of the
particle and on the amplitude of the exciting radiation

vector Ei'

e
il
Q
=
|

This is an expression for the dipole induced in a particle
by a radiation field and can be used in Maxwell's electro-
magnetic equations to obtain a scattering equation for
independent particles which are small compared to the

wave-length of light. Unfortunately this theory specifically

6



applies to a dilute gas since in a liquid a particle is not
independent of other particles in its position or properties.

A different and more practical approach to calculating
the scattered intensity from a liquid is to consider it as a
continuum instead of a collection of individual atoms. If the
liquid is dense and homogeneous, the scattered intensity
should be zero because the phases of the radiation scatter-
ed by each particle destructively interfere with each other.
However, a pure liquid does scatter light. This is the re-
sult of optical inhomogeneities or fluctuations within the
ligquid which are due to the random thermal motions of the
molecules [5].

b-Fluctuations

A statistical thermodynamic approach is taken to de-
scribe the fluctuations present in a liquid but the models
require the system to be both isotropic and continuous. These
conditions imply that the polarization vector of the incident
light is not rotated during the scattering process (isotropic
media) and the mean free path of the molecules in a liquid is
much shorter than the wavelength of light in the media.

In a pure liquid, fluctuations are very small changes
in the average value of some property of a liquid, for ex-
ample fluctuations in the density. If these fluctuations
affect the dielectric constant, light passing through the

liquid will be scattered and the intensity will depend on



the extent to which the fluctuations are coupled to the
dielectric constant. Because of the fluctuations, the
dielectric constant can be separated into an average value,

(o, and a fluctuating part Aei . [20] This latter term
3

J
accounts for the total optical inhomogeneities in a liquid
and the total light scattered. We can now write the dielec-

tric constant as follows:

€, . =€, d. . +a€.

1,]

The second term can be further divided into two terms, the

[
isotropic part, A€ , and the anisotropic part Aei 3
B

/

=5
1,3

AE . . =A€-8i’j + A€

1,]

H
II' ™ Iw
=i
>
m
(R
“r-'
(@)

The first term on the right side is due to isotropic
fluctuations and is simply described by a set of statisti-
cally independent thermal variables such as density and
temperature or entropy and pressure. The anisotropic part
AE;’j, has not been fully described by theory but appears
to be partly due to fluctuations in the orientation of
anistropic molecules. Since there is no agreement on its

/
evaluation [21], we set ACi 3 equal to zero for our
3

theoretical and experimental development,

L]

[N}



c-Thermodynamic Theory

The intensity of the scattered light can be obtained by
beginning with Maxwell's electromagnetic equations [19] and
using the assumption that only first order terms are neces-
sary to describe the scattering. The total scattering volume
in a liquid V, is divided into a number of small parts V*,
in such a way that each of the parts contains a sufficient
number of atoms to be independent of the others, yet small
compared to the wave-length of light. The fluctuations in the
dielectric constant of each volume ACV*’ are related to A€
for the total scattering volume since both have the same
density dependence. Maxwell's equation for the scattered

intensity is

2
_ v .2 2
Iscatt = Io /\41‘2 sin“e < (A€ )" >

|

The components of this equation are V, the scattering
volume, L, the distance between the scattering volume and
the detector, )\ , the wave-length of the incident light
in the medium, @, the viewing angle for the scattered light,
and <(A£)2>, the average value of the square of the
fluctuations in the dielectric constant. This is the time
independent scattering equation for which the values of all
the terms can be measured except for the last term <0&£)2>.
Einstein derived the value of this last term using
statistical thermodynamics by separating the fluctuations

in the dielectric constant into two statistically
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independent parts.

A€ = (—aa%) AS + (Z—CP) AP
P

S

jin

In Brillouin spectroscopy, it is possible to separate ex-
perimentally these two contributions [ 7] since the part of
the scattered light due to the pressure fluctuations AP, is
shifted in frequency sufficiently to separate it from the
entropy fluctuations, AS. Consequently an intensity ratio
of the nonfrequency shifted light to that of the shifted
components (there is both a positive and a negative fre-
quency shift) is related to the ratio of the entropy and
pressure fluctuations.

a€\2 2
I, (a—g)P <€) >p

= 6
21 2 =
B a€ 2
(ap) <€)7 >g
S

This relation has been reduced by Landau and Placzek [22]
to a very simple form by using the assumption that

(9, (9 v

\?P/, a \aT/, -
The Landau-Placzek ratio is defined as,

I C 8
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However, in the event that the thermodynamic parameters
do vary with the measurement frequency, this thermodynamic
derivation is not sufficiently accurate [23]. A variation
with frequency often appears to be present in liquids because
the measured Landau-Placzek ratio is usually larger than
calculated and another parameter, namely the velocity of sound,
which is related to the adiabatic compressibility, also in-
creases when measured at increasing frequencies [22]. Thus a
different theory is necessary which will lead to a better
correspondence between theoretical and experimental results

when a dispersion in these terms is present,

2-Time Dependent Scattering Theory

a-Pure Liquids

(1) Fluctuations

The frequency shifted light due to pressure fluctuations
is caused by molecular motions which, according to :
Debye's theory of heat in a solid [24], are a superposition
of longitudinal and transverse waves of different frequencies.
Liquids also contain these waves except that the transverse
waves are almost nonexistent since the viscosity of a liquid
is usually very low. Energy to excite the longitudinal waves

is readily available in the liquid since the energy per

phonon is much less than the energy available as heat.

hQl <<k T

|
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Therefore at room temperature the frequency of the phonon,
() may have any value up to about 1012 Hz,

Each propagating longitudinal wave is a periodic varia-
tion of the density and so will scatter light in a manner
similar to the scattering of x-rays from the planes in a
crystal in that both types of scattering must follow Bragg's
law, This requires that the sum of the vectors for the

]
incident wave ki’ the scattered wave ki , and the sound

wave g, is equal to zero, or

ki = ki +.4q;. 10

Graphically, this is

The value of q; is approximated by assuming that

Ikil = Ikil , Since the scattered wave differs from the
incident wave only by a very small amount. This assumption
makes the vector triangle isosceles and therefore determines
the value of the sound wave q; when the scattering angle ©
is selected.

q; = 2k; sin (6 /2) 11
The wave vectors for light and sound are respectively

k, = ZW/A and q; = 21r/As = 2 vs/vs , with A and /\S
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the wave-lengths of light and sound in the media, lg the
sound frequency, and Ve the sound velocity. Substituting in
the above equation, we obtain equations for the character-

istic properties of the sound wave. Letting )\=)\O//n, with n

the refractive index of the scattering media,

ve =V, AO/[Zn sin (6/2)] 12

A, =)Ao/ [2n sin(e/2)] 13
v

LA TZ [2n sin(8/2)] 14

The velocity of sound in a liquid can be calculated according
to equation 12 by measuring the frequency shift lg of the
Brillouin peaks, and substituting in the known values of the
scattering angle, refractive index of the liquid and the
wave-length of light in vacuo. In equation 13, the wave-length
of the sound waves is dependent on the scattering angle and
is of the same order of magnitude as the wave-length of the
incident light waves, while the ultra high acoustic frequency
of the waves can be calculated either from equation 14 or
directly measured from the spectra. Examining equation 12
more closely and recognizing that at increasing scattering
angles the scattered light is from sound waves of increasing
frequency, we can measure the dispersion in the velocity of
sound by simply changing the scattering angle. It will be
noted here that the theoretical velocity dependence of the

sound wave on the increasing scattering vector exhibits
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a slight negative dispersion in light scattering and must
be interpreted differently from acoustic propagation exper-
iments [25].

The scattered light is considered to be shifted in
frequency, either increasing or decreasing the original
energy of the radiation, corresponding to the annihilation
or creation of a phonon in the liquid. Since the phonon
population is large at room temperature, the equilibrium
population is maintained if energies of the incident light
are less than 105 milliwatts per square centimeter [26].
This is still well in excess of the energies we use in laser
scattering, indicating we are not disturbing the system
during our measurements and hence are measuring liquids
in thermal equilibrium,

The shortest pressure fluctuation that can be measured
by Brillouin scattering is dependent on the incident wave-

length of light,

(As)minimum = Ao/2n 15

This fluctuation is about 10_5 cm, in length and has a
frequency of 1010 Hz, In terms of molecular sizes, these
are very long fluctuations, so the scattered light can be
interpreted as coming from coherent fluctuations in the
pressure,

Associated with these pressure fluctuations are in-
dependent fluctuations in the entropy which cannot be

included in Debye's purely mechanical description of
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heat motion because they do not propagate in the form of
waves. In comparison to the coherent pressure fluctuations,
entropy fluctuations occur only over a short range, and are
related to the short range motions of the thermal diffusion
process. Hence these are considered as incoherent processes.
Thus Brillouin spectroscopy can be used to measure these two
types of fluctuations but requires the scattered light to be
sufficiently separated into two parts due to (1) frequency
shifted light from pressure fluctuations and (2) light not
shifted in frequency from entropy fluctuations. For an iso-
tropic liquid in which the scattered light does not depend
on the direction of the incident light vector ki it has been
established using Onsager's symmetry relations that the
spectrum contains only those two frequency shifted lines [27].
(2)-Ideal Case

Since the pressure and entropy fluctuations in a
liquid are time dependent, these fluctuations can be calcu-
lated by adapting thermodynamic and hydrodynamic equations
to the calculations. An approximate theory of the fluctua-
tions employing both of these processes to account for the
temporal dependence has been developed by Mountain to ex-
plain the frequency shifted light in the Rayleigh-Brillouin
region [28]. Since this is a phenomenological theory which
treats a liquid as a continuum, it should be strictly valid
only for measurements at long wave-lengths and low frequen-
cies. The fluctuations that scatter light are long, lO—Scm,

compared with molecular sizes although the frequency, 1010 Hz,
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is much higher than usually encountered in hydrodynamics.
This theory should still apply up to frequencies close to the
reciprocal of the collision time,lO12 to 1014 Hz |[29,30,31].
This implies that some properties may have a significant
frequency dependence, and for those cases a modified or
completely different approach must be used.

Mountain's theory begins with the neutron scattering
equation of van Hove [32] which has been modified for light

scattering [33].

2
I(r.,t) =I. T V .2
i o Xl 5 sine /<A£ (rl,tl). A€ (r2’t2)>
L
i@t,-t,) - ik, (r,-r,)
. 2 1 itv2 "1 16
e erdrldtZdtl

The fluctuations in the dielectric constant are a function
of the two statistically independent variables, density and
temperature. Since the temperature fluctuations are small
compared to those of the density [34], we can neglect the

temperature fluctuations and obtain the resulting equation

2 2
B T v .2 o€ <
I(ri,t) = I0 —)71'—1—_:2— sin"@ (BP) ﬂ<Ap (rl,tl)Ap (r2,t2)/
T

i@t -t,)-ik. (r.-r,)
2 1 i72 71
e drzdrldtzdt1 _—

Introducing the Fourier-Laplace transform of the density

fluctuations and letting rj =r, - r; and tj = t2 - tl’
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we have
iki-r. - i(ﬂtj
Pk, ;@) =//e ] bp (r;,ts)dr dt, 18

Now equation 17 can be written as

) =1 TT2V __b_e__ 2 .2 w) - kK.)> 19

where the last term in brackets is

(o )

p(ki,w)°p(-ki) = 2Re/o e-.i“)t p(ki,t)'p(—ki)dt 20

Either of two different sets of independent variables can
now be selected to calculate the time dependence of the
fluctuations in the system; entropy and pressure, or density
and temperature. Either set has inherent advantages and dis-
advantages in the calculations but the final equations are
identical. We will follow Mountain's original derivation [28]
using the latter set and begin with the linearized hydrody-
namic equations., The deviation from equilibrium is assumed
to be very small so that we can expand the mass density p,
and the temperature T, about their equilibrium values

T

Po’ “o°

©
Il

Po t Py

T=TO+T1
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Using these terms, the linearized hydrodynamic equations are:

Equation of Continuity

dPy
ot

+ div vi =0 22

Po

Navier-Stokes Equation

V. v 2 v 2 a

i o %Po
Po ot + grad Pyt

grad Tl

o)
- (i M + M) grad div v, =0 23
3 ¥s B i

Energy Transport Equation

aTl CV()LI) 3P, 4
Po CV St o "3t )\grad grad T, =0 24

l [l

The components of these three equations are the thermal
|
expansion coefficient a , thermal conductivity )\ , ratio
C
of specific heats‘Y==—?fL , low frequency sound velocity
v

VO,

and the shear and bulk viscosities ”S and T)B
respectively. Since we have assumed only small deviations
about the equilibrium values and a low viscosity, we can
then neglect the transverse part of the velocity. This
limits the following derivation to liquids where angular
correlations between particles are not important. Also the

concept of local thermodynamic equilibrium is assumed, so

that the usual pressure and entropy terms can be replaced
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with thermodynamic relations involving density and tempera-
ture.

According to Mountain's theory, these equations are now
solved for the time dependence of the density fluctuations by
first eliminating the velocity and obtaining two equations
in the density and temperature. The space-time transforms of
two equations are then taken and the resulting equations are
solved in terms of the new variables, Subsequently the Laplace
transform is taken and the ensemble average of the kth compo-
nent calculated over the initial values. Finally the frequency
transform is calculated to give the final equation to describe

the frequency dependence w , of the scattered light.

v 2 de. 2 2 A2

- 1
Ik,w ) =1I sin"9 (<) T B (1- =)
0 4,2 dp’ Po~ Fr Y (ADH)? 102
2 2
+ LTIk . L Tk ;
Y 2 2 2 2
Fk)  + (w+ v k) (Tk) + (w- yk)
25
where
[‘___1_ é. + +.§i 1 26
~ 2p, 3”5 ”B CP (Y-1) <2

The first term in the braces in equation 25 represents
the unshifted or Rayleigh peak while the other two terms
represent the Brillouin doublet which is shifted in fre-

quency by the amount vok. It is evident from equation 25
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that a ratio of the unshifted to the shifted components
gives the Landau-Placzek ratio of vertically polarized
light originally derived using only equilibrium thermodynam-

ics and which we have mentioned earlier in equation 8.

(), 7

\Y

joo

Mountain's theory gives results consistent with the thermo-
dynamic treatment, since the final Landau-Placzek ratios are
identical, although it does not account for any frequency

dispersion in the experimental measurements.

3) Relaxing Case

If we assume that the velocity dispersion is entirely
due to a coupling between the molecular motions already
described by Debye's theory and the internal degrees of
freedom of the particles such as vibrational modes in a
thermal relaxation process,as opposed to a structural relax-
ation process [35], the frequency spectrum of the scattered
light can then be derived by using either an additional
hydrodynamic equation for the internal degrees of freedom
or a frequency dependent bulk viscosity [36]. The second
alternative is more easily followed in the mathematical
derivation although both modify the frequency shift and the
width of the Brillouin peaks and also add a new unshifted
mode in the spectrum [37] which we will refer to as the

Mountain line after his theory.



21

To effect this change in the theory, the Navier-Stokes
equation is modified by inserting an extra term to allow for
a frequency dependent bulk viscosity; (the last term on the

left side).

2 2
vy Vo Vo @ Pq
Poat t grad Pyt grad T,
t
4 _ b : ' .
-3 ”S + -')B)grad grad vy / ﬂB(t t' )grad div v (kv)dt! =0
0]
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The bulk viscosity thus has a frequency independent part ")B
and a frequency dependent part 7’;3 . The analysis proceeds
in the same manner as in the ideal case except that the
final equation is too detailed and the terms too interre-
lated to be able to identify specific expressions with
properties of the material. Because of this complexity, a
simplified approach is taken, even though the exact solution
to the hydrodynamic equations is available for the fluctua-
tions in the density. This simplification process is
explained well by Mountain, who gives the final frequency
dependent scattering equation from a relaxing liquid as

follows:
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]
A 2
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9
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2 + w22
ve
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rB+(w+vk) FB+(m—vk)

The first term corresponds to the Rayleigh peak and is
identical to those arising in the nonrelaxing case. This is
the non-propagating decay of a fluctuation by thermal dif-
fusion with the peak half-width at half-height.

|
R
r;,-2 .«

_ N 29
1/2 pOCP —
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Because of the dependence on the scattering vector k, this
half-width should decrease with decreasing scattering angle,

since kz = §E§—EE (L - cos ©8). This has been shown to be the
(o]
correct angular dependence by self-beating spectroscopy [38].
The second term corresponds to a nonpropagating decay
that is coupled to the internal degrees of freedom of the

molecules. This is a new peak, which is called the Mountain

line, and it has a half-width

The half-width is not dependent on the scattering vector
as is the Rayleigh peak, but it does depend on the disper-
sion of the velocity of sound and on a single relaxation
time (7) of the liquid.

The third and fourth terms correspond to the propa-
gating modes, the Brillouin peaks, and result from the
moving sound waves. The frequency shift from the incident
frequency @) is AW = v-k and depends on the scattering

vector

k = 2™ 5in(e/2) 31

Mo

Thus for a decreasing scattering angle the frequency shift

will show a decrease. The half-width of this shifted term

due to pressure fluctuations is
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This half-width is also dependent on the scattering vector
k2, and decreases with a decrease in scattering angle, but
the change is not linear as it is for the Rayleigh peak.

The ratio of the intensities of the central components
to the shifted components is termed JV instead of the Landau-
Placzek ratio because of the relaxation processes present,

and is obtained from equation 28 .

3
2
;) +v k)4 (w2 -v2)- 5 - 1) 2 2 viia-
Y
Vo Ve
J
Y v2 v2
(0) 1 2 0 2 2,.2
l - —— (1-4) vk + 55| - (v_-v])k
v2 ‘Y v2"|"2 © 0

33

At low phonon frequencies this reduces to the Landau-Placzek

ratio, so for the case VvkT K1

JV='Y—1 34

At very large phonon frequencies equation 33 reduces to a

slightly different but simpler form for the case vk{>> 1.

I, ={=5=\Y -1 35
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Between these two extremes the more complex equation 33
must be used to determine the ratio JV, although it should
be noted that the value JV can be equal to or larger than
the Landau-Placzek ratio but not smaller. This is true for
all liquids examined to date.
The relaxation time P , can be calculated from the
velocity dispersion equation in Mountain's theory.
1
2

, ]
(VkT) =“21' [(Vookf)%"]" %[ (("ook‘l')2 - 1?4 4(kaT)2]

36

The velocity of sound extrapolated to zero frequency Voo is
measured acoustically while the velocity of sound at infinite
frequencies is approximated by using acoustic theory and
assuming that only one relaxation mechanism with a single

relaxation time contributes to the velocity dispersion [39],

giving the equation

2
Voo _[CP - CI] [cv] 37
2 ~|lc. -c N =<
s v I p

The internal specific heat CI’ is calculated from vibration-

<

al energy levels and their known degeneracies [39] from the

equation

N
2 hQ.
= E: 2, Xq_ "X, __Yi
CI—i=lgin/e(le) 5 X = 7

The measured velocity v, with the corresponding incident

vector k, is then substituted in the dispersion equation
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to obtain T, the relaxation time.

b-Solutions

1) Mountain's Theory

The frequency dependence of light scattered from
a solution [19] with the solvent a relaxing liquid, can be
treated in a manner similar to the case of a pure relaxing
liquid by including another equation to describe the mass
diffusion due to the solute.
kp 2

°r + =B) v2p 39
o Po

3%, 2 KT
Dt "D[ve )Y

The components of this equation are the binary diffusion
coefficient D, the thermal diffusion ratio kT’ and a term kP’

containing different thermodynamic quantities,

L ..k (5P/ac2__)P,T
P B fb ( 3#1 ) —_
/9Cy b 1

3

The solution of these equations has been approximated, as
was done previously, even though an exact solution again

is available. Nevertheless it is extremely complex, requir-
ing at least a full page to reproduce in its entirety. Since
we are principally interested in the intensity ratio Jv’

the complex set is reduced to a much simpler set based on a

thermodynamic ratio JVT’S°1n

* derived by Miller [40]. We
must first assume that the relaxation peak is narrower in

width than the frequency shift of the Brillouin peaks, so
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vkT > 1. This is true experimentally since for benzene we

find vkT = 5.44. The complex equation is then reduced to

the following form based on the ratio JVT’SOID‘

T,soln.
soln., JV 2 [L+A(k)] + B(k)
Jy = T,soln 4l
l—B&)—Jw ‘[A (k)]
The two composite terms A (k) and B(k) are
v 2 v_4
2 2,,2 2
Wio- VIKTT - G2+ D
A(k) = 42
2 VO 4 —
vkT)" + )
2 v_4
2 2 M
v - vl e’ - 2 + D
B(k) = 43
2 Vo, % —
vkT ) + )
v
These two terms are equal to zero for a very small
wave vector k, (A(k) = B(k) = 0) and equation 41 reduces
to the following for vkY << 1
soln T,soln 44

\Y v

At the other limit of a very large vector k, A(k) =0

2
v
and B(k) =1 -(-—9-) and equation 41 reduces to the

v
oo

following for vky >> 1
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Using our experimental spectra of benzene at a 90° scatter-

ing angle and the known values of k, and Vo the value

Voo
of A(k) = 0.00253 is small and relatively unimportant,
although the second term B(k) = 0.2769 is too large to be
neglected in our calculations. Thus the thermodynamic deri-
vation of the ratio JVT cannot be used directly for benzene

and its solutions but must be modified to account for the

internal relaxation present,

2) Miller's Theory

A light scattering theory of solutions has been de-
rived by Miller [40] which separates pressure fluctuations
from entropy and concentration fluctuations. The derivation
is similar to that described in the section on thermodynamic
theory, but it also includes fluctuations in the concentra-
tion in deriving the average value of the fluctuation in the
square of the dielectric constant < (A € )2> . Using the
variables temperature T, pressure P, and number of moles

of solute n,, the scattering equation 4 is
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Iscatt. = Yo IY_ sing (—35) <(AT)2> 46

2
o€ d€ o€

2
+ 2 ) — < (ATAP) > + (———) <(ap) >
3T p,n, <aP>T,n2 F/T,n,

2
" (gn%) <(An2)2>]

The cross terms, <(AT-AT)>and< (AP*AT)> are zero, since
the variables are statistically independent. Statistical
thermodynamics is used to obtain the fluctuation averages

and gives the final scattering equation

2
v 2 ﬁ(?e)
P,n

scatt. (0 A4L2 Cv _ﬁ ,n,
47
2 : 2
, 2RT°Q (_2_’_6.) €\ |, Rr (QS)
By \dT/p n \®P)p , = VBg \dP/y
3 2 3 2 3 2
2
RT (€ /dn,)

( D’tz/bnz) T,P
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The Brillouin peaks are due only to adiabatic pressure
fluctuations, therefore, this contribution to the fluctua-

tions in the dielectric constant is given as follows

2
<(A£)2>P n. = (%) <(AP)2> 48
272 S,n2

From thermodynamics we obtain the equation

o€ _ [2€ ™va , [(Q€
(TP)S’nZ <3T)P’n2 <, + <bp)1,n2 49

From statistical thermodynamics the pressure fluctuations

are given as follows

<@ap®s =K/, 50

S

Combining the above to obtain the contribution due to the

adiabatic pressure fluctuations, the final equation obtained

is 5 >€ 2
)2 RT 1
<AE€)™> =— (1 -5 T
¢ ( T)P,n2

v Y
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Since this part is included in equation 47, subtrac —
tion gives the fluctuations contributing to the central
peak. A ratio of the fluctuations contributing to the
central peak to the fluctuations contributing to the

Brillouin peaks is found as follows:

< €)g

c_ _ 2 _
2T 2
NN e .
€/9n.)°
RTZ( 36)2 ( anz)T’P
RT + R
c, \ 9T

T
P,n P
2 (OR2 / a“z)T,P

2

RT 1 35)2 2RT 0 (36) (bi rT [ J€
2= (1- = + - = | 2=
cg Y (_a_T e, Py \¥T)pn, \82)y B \oe

Values of (%y%) are usually not available in the litera-
T,n
2

ture, but by assuming that €==n2, and rearranging the

denominator using a term X , where

(9 T)
X =1+ 22 n/dTp 53
(bn/ap)T

for which excellent values are available from the literature

[34], equation 52 reduces to
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2
2 (On/Qn.)
BT_2 (_@2) + RT —5 . ; T,.P
C T ( n.,)
JT,soln. _ P P,ny _ f*z 2 T,P 54
v rRTZ( 1 )(Bn)2 1+Y(2x + S )
Cp \Y-1/\oT P,n, =% (1-x)2

Simplifying this equation further by letting

_ 2% " sz

T 1-x (1—x)2

and writing the solvent chemical potential in terms of the

concentration of a macromolecule C2,

"‘1_"‘o=—RTVlC2(_lﬁ+A2C2+A3C§+“') 56

The ratio JVT for a real polymer solution is

J

2
T, soln. _( y-1 )+()’-1 \ < | <an/ac2)T’P
\% “\1+Yf£ 1+)’f/ RT> (3n/3T)2

-1
.<}+ 2A.C, + 3A,C> + )

2%2 32
"

This is an exact thermodynamic ratio without approximations
or relaxation effects adding to the central peak.

This equation can be reduced to a simpler and more
easily handled form by setting the exact thermodynamic

ratio for the pure solvent equal to JVT.
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;T __ ¥
v 1+ ‘Yif 58

Grouping other terms into a constant K, dependent on the

solvent and solute system, we have

. (3n/dc)?
2
P T,P
K = 2 2 _5_9
RT (an/aT)P
,N
2
Now we can write equation 57 in a simplified form,
T,soln, T 1 2 -1
J 7’ =J T+ J KC —
v v v 2 (M + 2A,C, + 3A.C, + ...) 60

W

If no relaxation or dispersion effects are present to form a
significant Mountain line, the experimentally measured ratio
Jv for the solvent is equal to the thermodynamic ratio JVT.
The presence of thermal relaxation effects can be detected by

an increased velocity of sound in the pure liquid at increas-

ing frequencies and a larger experimental intensity ratio Jv,

than calculated from thermodynamics as JVT. When these effects
arepresent, equation 60 must be modified to use the experimen-
tal ratio Jv. This is accomplished by multiplying each term

due to the pure liquid by the quantity (Jv/UvT) so that

equation 60 may now be written as

soln, 1 2 -1
J =J_+ J_ KC —

v v v KC, (Mw+ 2A,C, + 3A,C, + ...) 61
If no relaxation or dispersion effects are present J, = JVT

and the original equation is recovered. Unfortunately
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equation 61 is not entirely correct when dispersion is
present, since to evaluate the molecular weight we need

to measure the relative amount that the central peak is
increased due to concentration fluctuations. This increase
is dependent on the original amount of scattering present
which is due only to entropy fluctuations and so should
not include other effects such as the Mountain line,

Since Miller's calculations are based on the complete
separation of fluctuations due to pressure from those due
to entropy and concentration effects, the relative intensity
of the central peak must be reduced to the thermodynamic
value. This is accomplished by multiplying the measured

ratio J, by the term

which is derived as follows: the thermodynamic ratio

is a ratio of the scattered intensity from entropy

and concentration fluctuations Ic’ to the intensity due to

pressure fluctuations IB’ whereas the measured ratio
]

I

C '
J, = 577 i >
v 21 is the same except that Ic > IC and IB > IB

due to an extra relaxation peak, the Mountain line, Assum-
ing that the total scattered intensity in each case is equal,
the intensity of the Rayleigh and Brillouin peaks in terms

of the ratios and the thermodynamic value from Miller's
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equation is

T
J, (T, + 1) J_ + 1

C C! T
JV(JV +1) Jv + 1

Therefore by multiplying the intensity of the central

Rayleigh peak as measured in a spectra by the ratio

T
JV(JV + 1)

we obtain the correct thermodynamic value and
T
J, (Jv + 1)

equation 61 becomes

T -1
J. (J.. + 1)
gseln. _ 5 4+ g LY ke, | X— + 2a c +3a.c2s...
v v v J (JT + 1) 2 = 272 372
vy My
64
Simplifying this expression by letting
. (3 ,+1) (Y-1) .
)’(1+f) A==
and rearranging, the final working equation becomes
BKC
2 _ 1 2
soln. = + 2A,C, + 3A5C0 + ... 66

J

v -9y My

If there is no dispersion present in the constants which
characterize the solvent, then the measured ratios and

thermodynamic ratios are equal and we find for the solvent

_sT_ . X-1
v =9 TETTTYE &1
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Therefore with no dispersion, equation 66 reduces to the

thermodynamic expression 60.

3) Angular Correlations

Equation 66 is often modified by inserting an extra

term P(®), the internal interference factor.

BKC
2 1 2
= — + 2A.C. + 3A_C + e
JSOll‘l.__ J MW P (0) 22 372
v v

This term P(0), is defined as [4]1]

sin (K.r_ )
PO) = iz 2. 2 Y
N X Y

X,Y

where

41n .
K = —— sin(0/2).
A /!

(o)
The relative amount of destructive interference which
decreases the scattered intensity can be determined from
the scattering at N different points which are pairwise
separated by the distance rx,y' If a solution is dilute,
this destructive interference is calculated only from the
separate scattering points within each molecule, since
rx,y is very large for widely separate random points and
thus produces a very small interference effect at these
distances., Therefore P(0) becomes a factor internal to the

molecule, although only becoming a significant factor in

reducing the scattered intensity if the size of the macro-
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molecule exceeds about 1/20 of the wavelength of the light
used., Consequently the molecular weight should be greater
than about 106 g/mole for P(6) to be smaller than unity and

significantly affect the molecular weight measurements,

3-Discussion

An analysis of the light scattered from a solution of
macromolecules or even from a pure liquid is difficult to
interpret completely without a precise liquid theory. Con-
sequently we can only approximate the scattering with
simplified models [42]. The two different theories we have
used to evaluate Brillouin light scattering from solutions
and pure liquids are (1) Miller's thermodynamic theory,
and (2) Mountain's thermodynamic-hydrodynamic theory. Other
theories similar in nature are available [42,43,44,45,46,47].

Both theories attempt to explain only the light scatter-
ed from isotropic fluctuations; so only the vertically
polarized light v, or Jv can be evaluated. In many liquids,
a significant amount of the scattered intensity is not
vertically polarized and therefore must be separated and
eliminated from the measured value. Also, part of the re-
maining vertically polarized light is due to anisotropic
fluctuations which may have broad frequency shifts such as is
exhibited in the Rayleigh "wing" in benzene and also must be
separated and eliminated from the analysis. Because much of
the scattered light is not included, both of these theories

are only approximations to the total scattering and should
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only be treated as such,

Both theories also often contain simplifying assumptions
to allow a clearer mathematical representation of the final
result, Mountain's theory necessarily employs more approx-
imations because of its complexity. The most significant
approximations are in (1) describing extremely rapid
fluctuations on the order of 10lo Hz by hydrodynamic equa-
tions, (2) evaluating the fluctuations in the dielectric
constant with only density fluctuations, and (3) using a
single frequency dependent bulk viscosity to describe dis-
persion effects [46], The first approximation mentioned
above is Mountain's basic assumption and appears to result
in a reasonable correspondence with experimental measure-
ments. The second approximation neglects temperature fluc-
tuations since they are small when compared with density
fluctuations. Since the temperature fluctuations are about
0.2% of the density fluctuations for many liquids [34],
this approximation is often used in light scattering theory.
The third approximation results in an entirely new peak
which appears to be present.

The theory by Miller makes a basic assumption that
fluctuations in entropy and concentration can be completely
separated from fluctuations in the pressure in order to
derive a ratio. In some solutions this separation is not
possible if the solute affects the values of Vo' Voo and T,

as has been seen in gas mixtures [ 31,48]. When this happens,

a coupling between pressure and concentration fluctuations
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occurs requiring a very complex expression such as Mountain
has derived. It is also assumed in Miller's theory that the
Brillouin peaks scatter an identical amount of light even
after large macromolecules are added to the solvent. This
assumption also appears to be valid for very dilute solu —
tions in solvents where significant structural relaxation
is not present, An evaluation of these assumptions with
experimental data will be made when possible along with

the ability of Brillouin scattering to determine accurate

molecular weights of large macromolecules.

B-Viscosity
1-Theory
A liquid which is under small shear stress will

easily distort and flow, whereas a solid will show a fixed
shear strain. This distortion and flow in a liquid is a
result of adjacent molecules or molecular layers moving
relative to each other, while the frictional forces between
them reduces this relative motion. The rate that mechanical
energy from a stress is transformed into heat J, by friction-

al resistance is [49]

J =‘qoq2 70

The uniform velocity gradient is g and the viscosity of a

pure liquid 170.
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The addition of a solute to a liquid will modify J by
an amount AJ.

J+ AJT = ]’qz 71

The relative change or specific viscosity, ’)sp’ is
written as

~ -7,

EE e e 2

If the solute consists of large rigid spheres, the specific
viscosity depends on the volume of these spheres plus second

order effects, and can be expressed as [49]
Yﬁ Ve ’ 2
")Sp = 2.5\ o e, +12.6( 55| 73

2 2

2-Molecular Weight Determinations

Experimentally we use an empirical equation which has
the same form as above even though macromolecules in solution

do not act exactly as large rigid spheres.

Msp _ .

c, [7)]+k['q]C2 74
The limiting viscosity number [11], is related to the
hydrodynamic volume Ve’ for a mole of particles but varies
with the size and shape of the particles, the solvent,
solute and temperature. Also and most importantly, the

hydrodynamic volume varies with the molecular weight
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according to the well established theoretical equation of
Flory [50]. 3
2 2 1
<r, > 5
_ (0] 2 3 =
[n] - Qo( M M a l_
The components of this equation are the molecular weight M,

the average value of the square of the end-to-end distance

< ro2 > , the expansion factor a, and a universal constant

¢O . When a macromolecule is in a solvent at the theta
temperature, ©, as defined by Flory, equation 75 reduces
to a very simple form, where the constant K depends only

on the specific solvent and solute

M lg=kM ;5 a=1/ 76

This simple form can be used at temperatures higher than
the theta temperature but then the constants K and a
must be experimentally determined, since they are not
simply derived from theory.

If we define a viscosity average molecular weight as

N 1

:E: ”
= = b
M wiMi 77

n i=1 ’ A
we find that when b = 1.0, the viscosity average molecular
weight equals the weight average molecular weight Ew .

Since ﬁn is often a closer approximation to ﬁ; than the
number average molecular weight ﬁn, the constants K and a are

usually determined by an experimental method such as elastic

Photometric light scattering which permits determination of the
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weight average molecular weight., In the experimental section
on viscosity we have used light scattering data from the
literature to determine the constants K and a so as to
experimentally evaluate the weight average molecular weights
for a series of polystyrenes. These then are compared with
experimental values calculated from Brillouin scattering

experiments.



III Experiment

A-Light Scattering

l1-Instrument

An instrument to measure Brillouin light scattering,
shown in Figure 1, was designed and constructed in the
chemistry laboratory at Michigan State University [51].
Basically it consists of a laser, collecting and resolving
optics, plus a detector and recorder which are constructed
along two parallel tracks. The optical system, which is very
sensitive to vibrations, is mounted entirely on a large, flat,
acoustically isolated table to eliminate building vibrations
which otherwise would force the system out of alignment.

One track of this system holds an argon ion laser and
beam directing mirror, while the other holds the scattering
cell and angular adjustment system, collecting lens, inter-
ferometer, resolving lens and detector. Each of these com-
ponents will be described separately, although only briefly,
since a more complete description can be found in the thesis

of S. Gaumer,

a-Laser
The primary light source is a commercial Spectra Physics
argon ion laser, model 165-03, Due to its high intensity and
single frequency, the detection of Brillouin spectra is
guite simple. Also because of stable output, vertical polar-

ization and a singl<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>