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ABSTRACT

LONGITUDINAL IMPACT OF A THIN VISCOELAS-TIC ROD

by Douglas Monroe Norris, Jr.

The propagation of stress pulses in a semi-infinite viscoelastic

rod is investigated. A thin rod of polyethylene is axially impacted

and the stress condition on the end measured as a function of time.

The resulting longitudinal strain in the bar is simultaneously monitored

at a number of positions along the bar.

The equations describing the resulting motion are presented and

the solution given by Fourier transform methods for the case of a

material obeying the Bolzmann superposition law. The solutions are

numerically evaluated for the experimental stress boundary condition

using the complex compliance measured from sinusoidal vibration tests

on fibers of the same material. Strain at positions along the bar is

also computed using strain measured at another position on the bar as

the boundary condition.

The results for these two conditions are compared with the

experimentally obtained results. The agreement is good.
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I. INTRODUCTION

Recent technological developments have motivated extensive

interest in problems of response of viscoelastic structures to dynamic

loading. A number of analytic solutions have been given for the case

of stress pulse propagation in a thin rod subjected to an axial impact

applied to one end. However, relatively little experimental work has

been undertaken in this area. The purpose of this dissertation is to

experimentally and analytically investigate the transient phenomenon

associated with the prOpagation of a stress pulse in a semi-infinite

viscoelastic bar.

The work falls into two general areas. The first area is an

experimental investigation of the stress pulse propagation phenomenon.

The second area is a combination of analytical and experimental work

which presents the numerical results of a theory describing the stress

pulse propagation phenomenon in a particular viscoelastic material.

The conclusions drawn from the comparison of these results constitute

the major contribution of this thesis.

In the experimental investigation the end of a thin rod of poly-

ethylene is given an axial impact. The impact is maintained and the

consequent end stress is measured as a function of time. The resulting

strain wave is simultaneously monitored at a number of positions along

the bar. The data obtained from these measurements extend the experi-

mental results of Kolsky [1956]l to give a more complete description of

impact phenomenon. Kolsky's work was limited to an impulse end

condition.

The second purpose of this dissertation is to compute the strain

using the equations of the one dimensional elementary theory of viscoelastic

__

1Numbers in the brackets refer to the Bibliography at the end of the

paper.



wave propagation. The theory used is essentially that developed by

Hunter [1960] for a viscoelastic material obeying a Bolzmann super-

position stress strain law. It is necessary to perform additional experi-

mentation to determine the viscoelastic material properties needed in

evaluating integral solutions to the strain pulse propagation problem.

These material properties are determined by sinusoidal vibration tests

on fibers of the material.

The Boltzmann superposition law may be taken as the fundamental

relationship defining a linear viscoelastic material. More generally,

a viscoelastic material may be defined as one in which the stress strain

relationship is dependent on time. For example, such a material when

loaded may have an instantaneous deflection followed by a continued

elongation as time passes. Upon removal of the load the material might

partially recover elastically and then gradually recover to the original

length or might maintain a permanent deformation. These effects might

happen quite rapidly in time or over a number of years. Creep and

relaxation are two particular characteristics of a viscoelastic solid.

Viscoelastic materials have other characteristics not found in

purely elastic media. One factor that complicates an analysis is that the

viscoelastic material is dispersive. This means that sinusoidal waves of

one frequency are propagated at a different velocity from that of another

frequency. The net effect of this phenomenon is that a strain pulse

will constantly change in shape as it moves through a viscoelastic solid.

Further complication arises from the fact that waves of higher frequency

are attenuated more rapidly than waves of lower frequency. It is this

combination of dispersion and attenuation which makes the analysis of

viscoelastic materials more complicated than analysis in purely Hookean

media and has recently attracted much attention to the problem.



II. HISTORY

A brief history of impact in viscoelastic solids is given here.

Discussion of static analysis, sinusoidal response and other work done

on viscoelastic materials will be only briefly mentioned since the primary

purpose is the analysis of transient effects. The reader interested in

the general theory of viscoelasticity is referred to books by Bland [1960],

Gross [1953], Bergen [1960], and Alfrey [1948].

An early mention of time dependent material effects was given by

Weber [1835]. He described an "elastische Nachwirkung" in silk fibers

and arrived at an empirical equation relating displacement and time.

Thompson [1933] gave a summary of the developments in the field up to

the date of his paper. Most of the early work was concerned with formu-

lation of viscoelastic stress strain laws. This paper by Thompson gave

the first solution to an impact problem, a torsional ramp function pulse

in a Voigt cylinder.

The period following the second world war produced extensive work

in viscoelastic analysis in statically deformed bodies. Alfrey's book in

1948 followed by Tsien's paper in 1950 extended the great quantity of

elastic solutions to viscoelastic media by the now well-known corres-

pondence principle.

In the area of wave propagation, Ricker [1943] considered the

problem of a sharp pulse propagated in what actually amounted to a Voigt

solid in connection with a seismic problem. A survey of the literature in

viscoelastic wave propagation is given by Kolsky [1958] and Hunter

[1960].

Serious analytic interest in the wave propagation problem seemed

to originate in 1951 with papers by Zverev [1951] and Malvern [1951].

Zverev solved the problem for a semi-infinite bar of Voigt material with



a suddenly applied end velocity by the use of the Laplace transform.

Malvern,in investigating strain rate effects in plastic wave propagation,

obtained a formal solution for a propagation problem in a Maxwell

medium. This particular solution was a special case of a more general

plastic wave theory.

These two papers were quickly followed by four other papers dis-

cussing the same problem by other methods and for other materials.

Lee and Kanter [195 3] obtained solutions for pulse propagation in a

Maxwell material. Glauz and Lee [1954] obtained the solution to the

problem for a material representable by a four parameter model using

the method of characteristics. Morrison [1956] used the Laplace trans-

form to obtain the solution in a Voigt and three parameter material.

A comparison of these last three papers is given by Lee and Morrison

[1956].

A more general constitutive relationship may be chosen in the

form of a Boltzmann superposition integral. The theory is well developed

by Leaderman [1943] and Gross [1953]. An interesting paper on pulse

propagation in a simplified hereditary material was given by Eubanks,

Muster and Volterra [1954]. Using the superposition law Berry and

Hunter [1955] solved the wave problem for a number of different boundary

conditions using the Laplace transform. Similar approaches were given

by Sips [1951a,b] and Charles [1951]. More recently, Hunter [1960]

discussed wave pr0pagation in viscoelastic materials including important

work on Fourier transform methods of special interest to the experi-

mentalist. Books by Kolsky [1953] and Bland [1960] include material on

particular problems in viscoelastic impact.

Experimental work in the field of viscoelastic waves is limited.

It would seem that most of the work on longitudinal impact has been done

by Kolsky and his associates. Kolsky [1953] determined dynamic stress

strain curves for polymers by longitudinal impact applied for times in



the order of 20 microseconds. Propagation of very short strain pulses

in rods of viscoelastic material was investigated by Kolsky [1956] in

another important paper. The particular experimental problem treated

here was motivated by this work.

In Kolsky's 1956 paper an integral expression for the displace-

ment in an impacted semi-infinite viscoelastic rod was given. The

integral was valid only for the case where the impact was representable

by a Dirac delta function. Using the experimental data of Hillier [1949]

for the dispersion and attenuation effects, Kolsky was able to numerically

evaluate this integral. He thus analytically predicted the displacement

as a function of time at any point on the bar for a sharp impact on the

end of the bar. The results were checked experimentally using explosive

charges to generate the short pulse of about 2 microseconds duration.

The results were compared and are discussed in more detail later in

this thesis.

The problem treated in this thesis extends Kolsky's results to the

case of a much longer initially applied arbitrary stress pulse. The

analysis of the finite pulse considerably complicates both the mathematical

analysis and the experimental techniques necessary to verify the theory.

Details of the methods used in this work are given in the next section.

Bodner and Kolsky [1958] extended Kolsky's 1956 impulse method

to lead bars which were shown to behave viscoelastically. Experimental

results were compared with computed results and a good correspondence

was found. This was surprising since the analysis assumed linearity

which was demonstrated not to exist.

The reader interested in experimentation should also see two other

review articles, Kolsky [1959] and Kolsky [1960]. More recently,

Hillier [1961] has reviewed methods of measurement of dynamic visco-

elastic moduli by sinusoidal and pulse techniques. An excellent

bibliography is included.



III. DESCRIPTION OF THE PROBLEM

The elementary theory of elastic wave propagation predicts that a

strain pulse traveling in an elastic bar will remain undistorted as it

moves along the bar. A strain pulse traveling in a viscoelastic bar is

both attenuated and diSpersed as it moves along the bar. The objective

of this study is to analytically and experimentally investigate the phenomeno-

logical behavior of a longitudinal strain pulse as it travels in an impacted

bar of viscoelastic material. The one-dimensional elementary wave

propagation theory is used.

A more exact elastic theory was developed by Pochammer [1876]

and Chree [1886] (see Love [1927] p. 287 et seq.) for an infinite circular

cylinder free from traction. It was shown that the velocity of prOpagation

of a sinusoidal wave along the cylinder actually depends on the ratio of

the wavelength, say )t to the cylinder diameter, a, and that

E1 x

V—>(-)T as ———>00,

p 3

Actually, Davies [1948] has shown if E);- > 10 this type of dispersion,

called geometric dispersion, is not significant. However, in a complete

analysis it is necessary to consider both this geometric dispersion and

dispersion due to viscoelastic material properties. This involves mathe-

matical difficulties and the problem has not yet been solved. Kolsky

[1956], using the delta function strain pulse, has attributed a difference in

his computed and experimental data to the effect of this geometric

dispersion.

The problem of geometric dispersion is difficult to separate from

the natural dispersion inherent in the material. However, the geometric

dispersion may be minimized by using a pulse loading whose frequency



spectrum is largely composed of low frequency components having

associated long wavelengths. This is the procedure to be followed here;

the boundary stress pulse is made approximately 500 microseconds in

length and the disPersion is considered to be that of the material.

This is not strictly true, of course, but is a better approximation than

that possible with a shorter pulse.

We consider the case of the propagation of longitudinal waves in

a semi-infinite viscoelastic rod x: 0. Let u(x, t) denote the displace-

ment of the section x of the rod at time t, so that its position is given

as (u + x). Let 0" (x, t) and e (x,t) denote the stress and strain re—

spectively which will be assumed uniform across the rod at position x.

Then from the elementary one-dimensional theory of wave propagation

we have

8211 _ 80‘ (1)

p at: _ 8x

_ an 2e _ 5X ( )

where p is the density of the material in the unstrained state.

The stress strain relation is taken in the form of a superposition

integral

t

U'(t) = ED{€(t) - f 12% cp (ppm-5} (3)

where ED is the dynamic Young's modulus and ¢(t) is the relaxation

function. ¢(t) may be determined by a uniaxial relaxation test.

Equation (3) is derived by considering the stress response to an instan-

taneously applied Heaviside strain step on the uniaxial bar which is then

generalized to an arbitrary strain loading by the superposition integral.

The details on the derivation of this equation and the following solution

0f Equations (1), (2) and (3) are given in Appendix I. These three



equations plus the particular boundary and initial conditions represent

the complete description of the wave propagation phenomena in the

viscoelastic rod. The boundary condition considered here is one of

stress, 0‘ (0, t), prescribed at the end of a semi-infinite rod.

The stress pulse may be represented by a Fourier transform as

the superposition of a spectrum of sinusoidal waves of angular frequency co.

It has already been mentioned that in viscoelastic materials each of

these frequencies is propagated at a different velocity. This velocity is

called the phase velocity C(w). Each frequency component is also

attenuated as it moves down the bar. Let this damping coefficient be

denoted 0(0)) with units of per inch.

The solution of Equations (1), (2) and (3) is effected in a manner

similar to that given by Hunter [1960] by the one-sided Fourier transform

subject to the conditions

u(x,o)=-g-?u (x,o) = O xiO

(r (0. t) -—- fit) } (4)

. t > 0

11m 0" (x, t) = 0

x-> °°

yielding

1r€(x,t) 2' f exp[-a (w)x] {A(w)cos[w(t - 33)] + B(w)sin[w(t - §)]}dw

o c c

_ 1 — ZCL(w)C(w) -

A(w)—W [O'R- #911 (5)

__ 1 -- 2C1.(w)c(w) —

BMm [w -——-. “R1

ER = f:(0,t)coswtdt 0:1: [0"(0,t)sinwtdt.

o 0

Thus if the boundary stress condition, O"(O,t), is known and o.(w)

and dc») are given over a sufficient frequency range, the resulting

Strain in the bar may be calculated by evaluating Equation (5).



In a similar manner for the conditions

€(x,o)=-g—€E(x,o) =0 x30

€(O,t) = 5;“)

lim €(x,t) = 0 } t > 0’

x-—>oo

the solution of Equations (1), (2) and (3) may be shown to yield

DO

1T€(X, t): of exp [-o.(w)x] {chos[w(t--:—{)] + E—I sin[w(t- g U} do.)

00 0°

2 = f6(0,t)cosootdt 6 = [6(0,t)sinwtdt.

R . 0 I 0

Rather than measure the strain 6(0, t) as a boundary condition,

Equation (6) may be used (as is later done) to predict strain at, say

position x2 if the strain as a function of time is known at some other

position, say x1. Again, the two quanties (1(a)) and C(ca) which com-

pletely describe the material properties must first be determined.

The particular problem which is considered here is to evaluate

Equations (5) and (6) for some particular viscoelastic material and to

compare the solution with the experimentally measured strain in the

bar. To do this the following information must be experimentally

obtained:

a. the phase velocity and the damping coefficient over the

significant part of the frequency spectrum,

b. the 500 microsecond boundary stress condition, G‘(0,t),

c. the experimental strain,e(x, t),in the polymer bar at a

representative number of points on the bar to compare

with the solution of Equations (5) and (6).



10

The material selected for this work was a low density polyethylene

number B8020 manufactured by the E. I. du Pont de Nemours and

Company. This material is chemically quite similar to the polyethylene

used by Kolsky [1956], which was manufactured by the Imperial Chemical

Industries Limited and is presently designated Alkathene WRM 19.

Unfortunately, this same material was not available in this country.

Since it was thought desirable for comparison purposes to use a chemically

similar material, du Pont was requested to supply a similar polymer.

The material is physically a translucent, milky white, quite flabby

polymer. It has a melt index of 23, a density of 0. 915 grams per square

centimeter and crystalline melting temperature between 1150 and 1200 C.

It presently has typical application in coaxial cable dielectric, flexible

bottles, ice cube trays and packaging film.



IV. SUMMARY OF THE EXPERIMENTAL WORK

The material damping (1(a)) and phase velocity C(w) were determined

by longitudinal sinusoidal vibration tests on unoriented fibers of poly-

ethylene. These fibers varied in length from 47 inches to 24 feet and

had a diameter of 0. 030 inches. One end was driven longitudinally by

a phonograph cutter head. The amplitude and phase of the traveling

wave was monitored as a function of distance (usually every inch) at each

frequency by a conventional ceramic phonograph crystal pickup lightly

touching the fiber. Knowing the phase difference and amplitude ratio of

the input and output signal it was possible to calculate the damping and

velocity at each frequency. The method used was similar to that em-

ployed by Ballou and Smith [1949] and Hillier and Kolsky [1949]. The

details are given in Appendix II.

It was found over the frequency range considered that the damping

could be accurately represented by

(1(a)) = 2. 753 x10.6 w (7)

as shown in Appendix II. The phase velocity is given in Figure 1.

The impact tests were made using a modified Hopkinson-Davies

pressure bar as developed by Davies [1948]. Figure 2 illustrates the

experimental arrangement used in the long pulse impact tests. The firing

device is a commercial Hyge Shock Tester, type HY-3433, manufactured

by Consolidated Electrodynamics Corporation. The complete mechanical

system is composed of this accelerating device, two long cylindrical

magnesium rods called the "striker" bar and the "transmitter” bar

respectively, the polymer sample bar and finally a stopping device.

All rods were 1/2 inch diameter. The bar system is mounted horizontally

11
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in lubricated pillow blocks on an impacting frame about 22 feet long.

A photograph of the apparatus is given in Figure 3.

When the accelerating device is triggered, the striker bar is

pushed and accelerated down the impacting frame. Before the striker

bar impacts the transmitter bar it leaves the pusher and moves as a

. free-free bar in the pillow blocks. After traveling a total of 18 inches

the striker hits the transmitter bar which in turn moves 0. 012 inches

into contact with the polymer specimen. The small movement of the

transmitter bar obviates the need for elaborate wiring installation in

connection with instrumentation mounted on this bar. A photograph

showing the polymer-transmitter bar interface is given in Figure 4.

When the striker bar impacts the transmitter bar a compressive

wave moves out from the interface at a velocity equal to «FE-7;)— relative

to each bar. This wave travels down the transmitter bar until it reaches

the free end, the end slightly separated from the polymer. At this

point it is reflected as a tensile wave and now moves toward the striker

end. The tensile stress and compressive stress in the incident and

reflected wave add algebraically yielding zero stress in the section of

the transmitter bar in the rear of the advancing tensile wave. It can be

shown that the particle velocity in the compressed section of the trans-

mitter bar is one-half the striker velocity while the particle velocity

behind the advancing tensile wave is equal to the striker velocity. When

the reflected pulse reaches the striker bar-transmitter bar interface,

the bars, being the same length and density, exchange velocities and

separate. This is discussed in Timoshenko and Goodier [1951].

The important point here is that after reflection of the compressive

wave from the polymer end of the transmitter bar, the polymer end of

the transmitter bar is stress free and moving at a constant velocity when

it impacts the polymer rod. Now a new compressive pulse moves out

from the polymer-transmitter bar interface, the gap having been set to



Figure 3. Photograph of the Impact Apparatus.
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Figure 4. Photograph of the polymer-transmitter bar interface.

The box on the top of the photograph contains the Wheatstone bridge.

The trigger crystal is shown on the left.
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allow this new compressive pulse to closely follow the reflected tensile

wave front in the transmitter bar. Since the transmitter bar is stress

free between these two wave fronts, a strain gage located near the

polymer end of the transmitter bar can monitor this new compressive

strain pulse as a function of time, which is recorded photographically

from an oscilloscope trace. Since the pressure bar material is Hookean,

from (the strain record we can immediately calculate the stress, 0"(0, t).

This stress pulse is, of course, the initial condition on the polymer bar.

This is the procedure followed in this work. It should be noted that the

duration in time of the boundary condition 0' (0, t) is equal to twice the

time necessary for the wave front to travel the length of the transmitter

bar.

Strain was monitored both in the polymer and magnesium bar with

conventional strain gages. The gages used were Baldwin-Lima-Hamilton

Corporation SR-4 type FAP-lZ-IZ foil strain gages with a 1/4 inch gage

length and were located as shown in Figure 2. To cancel bending stresses

the gages were mounted on opposite sides of the rods and in opposite

arms of a Wheatstone bridge. Output from the strain gage bridges was

amplified and recorded photographically on oscilloscopes set for single

sweep and triggered by a single ADP crystal. Various photographic

results are shown in Figure 5. Detailed information on the electrical

and mechanical system is given in Appendix III.
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Strain versus time in the magnesium transmitter bar. From this

photograph the boundary condition, 0"(0, t), on the polymer bar is

determined. The scale is 50 microseconds per centimeter and

0. 5 millivolts per centimeter.

 

Strain versus time in the polymer bar. The upper trace is strain

at x = 2 inches and lower trace at x = 32 inches. The scale is 150

microseconds per centimeter and about 10 millivolts per centimeter.

Figure 5. Typical oscillosc0pe records from the impact tests.



V. RESULTS

From Figure 5 it is seen that 0‘ (0, t) may be well represented

for t < 500 microseconds by a Heaviside step function

0— (0: t) = 0-0 H“) (8)

where (To is the amplitude of the square wave. It may be shown that

this condition implies a constant velocity condition on the end of the bar,

a condition frequently used in analytic work on the wave propagation

problem. Using Equation (8) along with the linear damping relation,

Equation (7), and the curve for phase velocity, Figure 1, Equation (5)

may be evaluated numerically to yield the strain, 6 (x, t), at each position

on the polymer bar. The results of this calculation are plotted against

the experimental results in Figures 6A, B, C, and D. Details of the

numerical work are given in Appendix IV.

In comparing the results of the calculated strain to the experi—

mentally measured strain, it was found that the magnitude of the curves

differed by a factor of approximately two. Further investigation showed

that the cement holding the gage to the polymer and the paper on which

the gage is mounted actually had a restraining effect in the vicinity of

the gage. The output of the gages was actually less than the strain

present in the polymer. Constant strain rate compression tests per-

formed on samples cut from the polymer rods with gages attached

showed that the error was approximately independent of strain rate and

constant for a large range of strains. This permitted a correction

factor to be determined for the gage readings on the polymer bar.

The details of these tests are given in Appendix V. The corrected values

for the experimental strains are plotted in Figures 6A, B, C, and D and

19
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compared with the strains predicted by the calculation, using the end

condition of Equation (8). In Figure 6, to better show the shape and

amplitude correSpondence of the computed and experimental waves,

the curves have been shifted in time to put their initial arrival time,

at each gage station, into agreement.

An attempt was also made to correlate the uncorrected strain

measurements by taking the measured strain at x = 2 inches as an end

condition to calculate the strain at the other stations. These uncorrected

strains are shown in Figure 7 and are compared with the uncorrected

experimental values. It is seen that the strain at x = 2 inches may be

approximated by a step function (shown in the dotted lines), and to

facilitate the calculation this approximation was used to predict the strain

at x = 12, 22, and 32 inches. The agreement between calculated and

experimental wave shape is excellent, however, the calculated curves

are somewhat shifted in time.
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VI. DISCUSSION OF RESULTS

It is obvious from Figure 7 that the calculated pulse is moving

more slowly down the bar than the actual pulse. Since the agreement

in amplitude and pulse shape is excellent, the disagreement between

the two curves would seem to be in the phase velocity used in evaluating

the integrals for the strain. It is thought the time difference might be

eliminated by uniformly increasing the values of the phase velocity

curve, Figure l. A different shape of the phase velocity curve would

destroy agreement in pulse shapes which is already quite good.

In particular, the high frequency components of the pulse are

moving the fastest and hence are first to arrive at any given gage station

on the polymer rod. It is seen from Figure 7 that these frequency

components are moving at a velocity of about 32, 800 inches per second

while the maximum velocity given from the fiber tests is only 29, 600

inches per second. The high frequency velocity read from Figure 7 for

the computed curve is about equal to 29, 600 inches per second as would

be expected. Lee and Kanter [1953] showed that for a Maxwell model

the head of the pulse is propagated at the maximum phase velocity of

the solid. For comparison purposes it is to be noted that Hillier [1949],

on a similar polyethylene, obtained an upper value of phase velocity of

37, 800 inches per second.

Kolsky [1956] noticed a similar time discrepancy in comparing

his observed pulse and calculated pulse. To obtain good correspondence

between exPerimental and calculated pulse shapes,” he found it was

necessary to compare the experimental pulse at x = 60 cm. with the

computed pulse at x = 70 cm. The results are shown in Figure 8.
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Figure 8. Comparison between observed pulse for 60 cm rod

and curve calculated for 70 cm by Kolsky [1956].

 

Kolsky attributed the discrepancy to the initial geometric dispersion

associated with an extremely short pulse and the inadequacy of repre-

senting the initial pulse as delta function. It is interesting to note here

that Kolsky's results as shown in Figure 8 may be roughly interpreted

to mean that the computed pulse is traveling too slowly. Geometric dis-

persion effects in an elastic bar would cause the high frequency com-

ponents to travel more slowly than calculated by the elementary one-

dimensional theory. Actual comparison of Kolsky's work and this work

is difficult since Kolsky does not give a zero time reference.

The discrepancy in the computed and experimental velocities

mentioned above may be due to orientation effects on the long polymer

molecules during the extrusion process of the fibers, assuming the theory

is correct. Hillier and Kolsky [1949] have shown that the complex modulus

rises rapidly with increased orientation and hence the velocity does also.
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Although care was taken in the extrusion so that little drawing occurred,

it would seem difficult to maintain identical directional properties when

extruding different diameter rods and fibers of diameter ratio of about

20 as was the case here. The results would have more significance if

the material properties were measured on the rods to be impacted as

done on lead by Bodner and Kolsky [1958].

It was found that the computed curves of Figure 6 (stress boundary

condition) were actually shifted in time by the same amount as in Figure

7. However, since in Figure 6 it was a comparison of shape and amplitude

which was desired, the computed curves have been shifted to put the initial

arrival time into correspondence with initial arrival time of the experi-

mental curves at each gage station. It is noted that if a multiplicative

factor were applied to either set of curves of Figure 6, the amplitude

and pulse shape would be in excellent agreement at all gage stations.

It should also be pointed out that while Bell [1960] found a measur-

able amount of the pulse exceeding the bar velocity, Wt), in his elastic

bar at five diameters from the end, in the polymer bar there seemed to

be no such effect. It is difficult to draw conclusions from one such

measurement (gage at x = 2 inches) but perhaps the problem is interest-

ing enough to be investigated in more detail.

There is a question which arises in the assumption that the initial

stress condition as measured in the strain gage at 3 inches from the

end of the magnesium transmitter bar actually is an accurate measure

of the stress on the end of the polymer bar. The elementary theory

predicts the instantaneous formation of a step strain pulse which moves

along the elastic magnesium bar at the bar velocity N/_E7-p—. Actually it

takes a finite amount of time for this dilatational wave front to fully

develOp as Bell [1960] has shown. Using a 1/4 inch diameter striker bar

he centrally impacted a two inch diameter bar and has shown the main

detail of the pulse was formed by between three and five diameters.
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With this type of central impact it would seem that due to the spherical

nature of the wave in the first few diameters, the development of this

wave front would take longer than for the case of impacting rods of the

same diameter. Hence it is felt here that the wave monitored at x = 3'

inches in the magnesium bar actually represents the developed shape of

the boundary condition on the polymer bar. The development of the wave

front in the first few diameters of a viscoelastic bar has not yet been

investigated.

A more serious question is the applicability of SR-4 strain gages

on polymers of very low elastic modulus. The test results given in

Appendix V have shown decidedly different performance of strain gages

mounted on polyethylene than performance in the usual metal application.

A correction factor is required which appears to be relatively independent

of strain and strain rate. Since the computed and experimental curves

appear in good agreement at the 22 inch and 32 inch positions down the

bar, it is thought that the restraining effect on the polymer of the

cement-paper gage combination is a local effect and has little effect on

the main part of the strain wave.

Little material appears in the literature on the application of

SR-4 strain gages on low modulus polymers. SR-4 gages bonded to poly-

methyl methacrylate are discussed in a recent paper by Johnson and

Homewood [1959]. Dietz and Campbell [1947] have made a rather

thorough investigation of the effects of a number of cements available at

that time on polymethyl methacrylate and polystyrene. The conclusions

indicated the paper backing of the gage may introduce errors in low

modulus materials.

It is known that a number of people are working on methods for

monitoring strains in low modulus polymers because of the application

to stress analysis in solid rocket propellents which are viscoelastic in

nature. Much of the work is proprietary in nature and does not appear
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in the literature. However, two obvious methods of solving the problem

are defraction grating techniques or perhaps use of an extensometer and

some associated photoelectric circuitry. Radial capacitive gages would

introduce another variable in the form of a viscoelastic Poisson effect.

These methods would involve added complications and further investigation

of the SR-4 gage in this application would be profitable.

A number of analytical solutions to the impact problem have been

given for particular materials, e. g. Voigt, Maxwell, standard linear

solid, etc. It would be interesting to see how well these solutions would

agree with the experimental results obtained in the present work. The

various model parameters could be obtained from a method such as given

by Bland [1960] using data presented in Appendix II on the complex com-

pliance for polyethylene. Because of the limited frequency range of the

complex compliance necessary here for the Fourier analysis, it is

thought a good fit might be obtained over the significant portions of the

frequency Spectrum. Kolsky [1949] has used this fact in a different

problem to predict stress strain behavior of polyethylene even when the

material does not behave as the model over large frequency ranges.

In conclusion, the work presented here seems to confirm the

accuracy of the theory of impact of the linear polymer polyethylene for

small strains pulses in the time range of 500 microseconds and repre-

sents the primary contribution of the work. A number of associated

problems arising in the work have been presented which, it is hoped, will

motivate further investigation.
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APPENDIX I

THEORY

The equations necessary to describe uniaxial wave propagation

in a viscoelastic rod are the stress strain relationship, the equation

of motion, the strain displacement relationship, and the associated

boundary and initial conditions. Two of these equations are identical

to those (of elasticity theory and the only problem arises in a choice

of a suitable viscoelastic stress strain relationship.

A number of investigators have analyzed wave propagation prob-

lems by idealizing the material to yield a usable stress strain relationship.

Behavior corresponding to Maxwell, Voigt or combination models is

assumed which gives an nth order linear differential equation relating

stress and its time derivatives to strain and its time derivatives.

Unfortunately, not many real materials behave as these simple idealiz-

ations. It is necessary in many cases to take a considerable number of

elements to get significant correspondence over a wide frequency range.

This in general leads to mathematical difficulties.

A more general approach to a stress strain relationship is achieved

by use of the Boltzmann superposition integral. The linear super-

position concept is used to generalize the results of a uniaxial relaxation

test to a strain varying with time. The following argument is given in

more detail in Leaderman [1943].

Consider a uniaxial relaxation test where at time t = 0, a thin rod

of viscoelastic material is subjected to a step strain, 6 = so H(t), where

H(t) is the Heaviside unit function. The resulting stress, O’(t), is given

by

Ho- (t) ED 60(1 - ¢(t)) t_>_ 0

(11)

- O t<0
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¢(t) is called the relaxation function, a positive, monotonic

function increasing with time and independent of the stress and strain

amplitude. ED is the dynamic Young's modulus of the material. The

relaxation function is usually measured from an uniaxial relaxation

test although other methods are available.

Equation (11) may be generalized by use of the superposition

integral to apply to a more general strain loading by the integral

 

equation

t de(t)

O‘(t) 2 ED [ €(t) :0! dc ¢(t -t)dt} (12)

which is taken here to be the fundamental constitutive equation relating

stress and strain. Gross [1953] has shown it is equally acceptable to

define a creep function through a simple creep test and arrive at a

similar relationship. He has shown that the creep and relaxation

functions are not independent and may be related by a Laplace transform.

The stress-strain relation together with the equation of motion

 

2

2: = p —.—2s
and the strain-displacement relationship

6 = gi- (14)

together with the boundary and initial conditions are the defining

equations of the problem.

It is convenient to solve these equations by a Fourier method.

The solution given below essentially follows the method given by Hunter

[1960]. The Fourier integral theorem may be written

1r f(x, t) = I do) I f(x,§) c08[w(t-§)]d§ (15)

0 —OO



 

38

from which we may define the one-sided Fourier transform

f(x, w) = foof(x, t)e-iw’c dt

0 (16)

nf(x, t) 2 ago E(x,..)ei‘°td..}

0

provided f(x, t) = O for t_<_ O, f (x, t) is sectionally continuous and the

integral 00

f lf(x,t)l dt (17)
0

converges uniformly on x. These conditions are all satisfied for the

case of the pulse considered here but not satisfied for steady-state

vibrations .

Applying the transform to the stress strain relation and making

use of the convolution theorem we have

67(6)) 2 ED [1 + iw$(w)];(w) (18)

where the bars indicate the transformed variables. This transformed

stress strain relation may be rewritten for simplicity as

a...) 2 E061»); (1.) (19)

where E0(iw) is defined from equation (18).

Hunter [1960] has shown how the convergence problem arising in

a direct Fourier transform of a sinusoidally varing strain may be avoided.

He applies a Laplace transform to the constitutive Equation (12) where

now 6 =;(<.o)eimt is a periodic strain initiated at time t = 0. The result-

ing equation is inverted by use of the complex inversion integral.

The result, after initial transients die out, is
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0_‘ (1..) = Eu...) a...) (20)

where (T = 07(4))eiwt. This equation is identical to Equation (19) if

Eo(iw) = E(ico).

E(iw) is a complex function of the real variable co and relates the

amplitude and phase of the periodic stress and strain. E(iw) is known

as the complex modulus and completely defines the material properties

of a viscoelastic material. It is conveniently obtained by steady state

vibration tests as is later shown. This, in fact, is the reason the

Fourier transform is used here rather than the Laplace transform.

The one-sided Fourier transform of Equations (13) and (14) are

respectively for the initially dead bar

agitx’w) = P “£01251?“ 9’) (21)

2d,.» == 83%) (22)

where the bar again indicates a transformed variable. Note with

Equation (20), Equations (21) and (22) form a set similar to the elastic

wave problem. It is this similarity which forms the basis of the elastic-

viscoelastic correspondence principle previously referred to.

Combining these two equations and the transformed stress-strain

relationship yields

2 ._

{58:2 - flaw} €(x,c.o) = 0 (23)

where
(. )2

Wm) = fi [ (24)

A:)\1+l>\z. J
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Solving Equation (23) gives

ax, .1) = can!” + 13(1..)e>‘X (25)

where C and D are found from the boundary conditions.

For the semi-infinite bar we have the condition

1im0’(x,t) =0

x —9- 00

which transforms to

lim 65 (41,...) = Ea...) lim E (x, 1.) = o (26)
ant—900

x->0<>

and yields D(w) = 0. At the end x = 0, the boundary condition is one

of stress as a function of time and Equation (25) becomes

7561,...) = E(o,..)e"‘x = 75% e'”. (27)

This equation is inverted by the inverse one-sided Fourier trans-

form to give the solution

o—"_(___o,w) e-Xx-l-iwt
= d (28)we (x, t) R{Of-———E(iw) } (.0

And since

90 , on °°

01.70, 0.)) = f g- (0, ”6'1“”; dt z: [0" (o, t)coswtdt - if 0' (o, t)sinwtdt,

o - 0 0

(29)

it is convenient to define

O:(o,o.)) = 0‘} (1.1) - i 071 (w) (30)

where
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on

(raw) = ofo- (0.t)coswtdt 0"} (1.)) = fo- (o,t)sinwtdt. (31)

Replacing the complex modulus, E(iw), by the complex compliance,

J(iw), where

. 1 .

J(1(.o)= m 1' JR+1JI (32)

and 07(o,w) =GTR (c1) - it)? (to), Equation (28) becomes

1T€(x,t): R[of (JR + ulna-‘1', - i0_‘1)e ' “"14“”t Twas} (33)

From Equation (33) it is seen that x, corresponds to a frequency dependent

damping coefficient which is usually denoted (1(a)). If X; corresponds to

the angular velocity (.0 divided by the phase velocity C(w), the solution,

Equation (33), could represent the case of a strain pulse moving down

the bar. A Fourier analysis shows the pulse is composed of a distributed

spectrum of frequencies each of which is propagated at a different velocity

c (co) and damped as a function of frequency and position down the bar.

Hence the pulse will be dispersed and attenuated as it moves down the

bar.

Substituting in Equation (33) for )t and taking the real part of the

integral we finally have

1T€(x, t) =of°<:xp[-o.(w)x] [A(w)cos[w(t-é—E-o))]+ B(w)sin[w(t - 1%)] do.)

_' _ _ (34)

An.) = JRcFR + J1 0-1 B(..) = JRO‘I - J1 O'R-

The complex compliance may be put in a more convenient form

by use of Equation (24), (32) and the definition of 1. as a complex function

of a(w) and C(00). This results in the relationships

1

JR (0)): p €(w)2 (35)

20.(<.o)

JI (w) = ”p 50.0)“)
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where it has been assumed that (1(4)) is small compared to 35-.

Equation (20) motivates a method for determining the complex modulus

and compliance by experimentally measuring C(co) and (1(a)) in a steady

state vibration test.

If it is now assumed (1(w) is proportional to the angular frequency

w by a factor of proportionality k1, Equation (35) becomes

2k)

JIM): - W (36)

from which A(<.o) and B(w) of Equation (34) become

A11»): —1—.2 (o-‘R - 2k1czc'r'1 1
p c

(37)
1 . .-

B(o.)) - p—E-z (0—1 +Zk1C.O—R),

If the phase velocity C(09) and damping o.(w) are known for a given

material and the boundary condition, 0" (o, t), on the end of the semi-

infinite bar is known, Equations (34) and (37) constitute the complete

solution to the one-dimensional wave propagation problem.

Kolsky [1956] has considered the case when the boundary condition

is given by a sharp impact which may be represented

CT‘(O,t) =A 5(t) (38)

where 6 (t) is the Dirac delta function. Now if Equation (34) is derived

in terms of stress only, it can be shown that

w ’ x " ' X d 3TrO‘(x,t) :of exp (- d(w)x){O'R cos[w(t - 3)]1-0’1 8111 [03(1'. - E.- )] w. ( 9)

Using Equation (38) and the definitions of CTR and 0'1 it is easily shown

that Equation (39) reduces to
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n 0—(x, t) = Ajogxp (-o.(co)x)cos[oo(t - 25)] dd). (40)

0

Kolsky has solved this equation by a series approximation and

compared the results with experimental impact, using an explosive to

create an approximation to the delta function.

For a boundary condition on strain, it is easily shown that

Equation (27) reduces to Equation (6).



APPENDIX II

EXPERIMENTAL DETERMINATION OF THE

COMPLEX COMPLIANCE

The complex compliance has been defined in terms of the

material damping o.(w) and the phase velocity C(11)) in Equation (35),

which is repeated here for convenience

. 1 , 201(4))

J = J + = —-———2 - —--~--- 41
R 1 J1 (0 C(w) 1 mo etc») ( )

Hence if the phase velocity and damping can be measured as a

function of frequency, the stress strain relation, Equation (19), may

be completely specified in the transformed space.

A number of experimental techniques are available for the

measurement of the parameters; the method of measurement is largely

determined by the relevant frequency range desired. A survey of

experimental techniques in this area is given by Hillier [1961]. For

this problem the nature of the damping term in the integral of

Equation (34) suggests frequencies above some number may be neglected.

It later will be shown that this upper limit is of the order of the audio

spectrum and hence a method giving o(w) and C(11)) over the audio range

was selected.

A convenient method for measuring these parameters over this

frequency range is to apply a steady sinusoidal longitudinal displace-

ment to one end of a long rod or fiber and physically measure the

attenuation and velocity of the resulting traveling waves at a constant

frequency. The theory is well discussed by Ballou and Smith [1949]

and by Hillier and Kolsky [1949]. A thin string or fiber of the material
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to be tested is usually used because of lack of availability of high

power sinusoidal drivers with adequate frequency response. The sens-

ing device is some type of crystal in physical contact with the fiber

and designed so that it might be moved accurately along the fiber. If

the length of the fiber is long compared to the distance between the

driver and crystal pick-up and the material has sufficient damping

properties, the string may be considered semi-infinite and no waves

are reflected from the terminated end. Reflections from the pick-up,

however, must be included in the analysis.

The displacement at a distance x from the driver is given by

-c1x i(wt-kx)

e .u1 2 ae (42)

The wave reflected from the pick-up is

uz : - ame-MZ!’ —x) e1[c.>t-k(2£-x)] (43)

where .2 is the distance between the pick-up and the driver and m is

the reflection coefficient. From these equations it may be shown that

the phase angle, 6, between the fiber displacement at the driver and

that at the pick-up is given by

-2 of.

1+me

-2o£

l-me

tan kl . (44)
 

tane =

If m << 1 and 0.2, is large, we may take 0 =3 kl. and hence the velocity

may be determined. Equation (44) represents a straight line of slope k

on which is superimposed an oscillation rapidly decaying with distance

along the fiber. One such curve is given in Figure 9.

The ratio of the amplitude of the signal at the pickup, B, to that

at the driver, A, may be shown to be

1

AB = (l-m)e-a£[l - 2 me-Zalcos 2kg. ‘1' Kile-40.2 1-2—- (45)

For materials of relatively high damping a plot of the logarithm of a
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Figure 9. Fiber Test on Polyethylene at 900 cps and 75°F.

The phase velocity, C(03), may be obtained from the slope of

this curve.
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versus distance along the string gives 0.. A sample curve is given in

Figure 10. For materials of smaller damping it becomes much more

difficult experimentally to obtain information from Equation (45) than

Equation (44). Ballou and Smith [1949] and Hillier and Kolsky [1949]

both give methods which will allow measurement of a for cases of low

damping. The material used in this work had high damping character-

istics and a was obtained by a direct plot of the logarithm of the ampli—

tude ratio against distance along the fiber.

Unoriented fibers of the same polyethylene as that used in the

impact tests were obtained for the work here. Fiber diameter was

0. 030 :1: 0. 001 inch; various lengths from 47 inches to 24 feet were used.

In the extrusion of the fibers and the rods an effort was made to minimize

any geometric effects due to the extrusion process. Since the diameters

differ by a factor of about 20 it is difficult to keep identical molecular

orientation, however, since both the fibers and rods were undrawn it

was initially felt that this was not a serious problem.

The driver was a phonograph record cutter head, Audax Model

RH-S. The response of this unit was :1: 2 db from 1, 000 to over 13, 000

cps and adequate response (from 100 to 25, 000 cps) for this application.

Distortion is 1. 2% at 1000 cps. A magnesium needle was drilled to

accept the fiber and the needle mounted in the cutter head.

The pick-up used was a PZT ceramic, Electro-Voice, Model 21

phonograph cartridge with a rated output of O. 5 volts. The response of

this unit is from 20 to 20, 000 cps. The standard pick-up needle was

removed from the needle arm and a small grooved polymethyl methac rylate

contactor was designed and cemented to the arm. The cartridge was

mounted so that the needle pointed vertically upward with the fiber

positioned perpendicular to the needle arm and touching the grooved

contactor .
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Figure 10. Fiber test on polyethylene at 3000 cps and 75°F. The

slope of this curve gives the damping coefficient (1(0)).
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Preliminary tests were run maintaining tracking pressure

constant at 5 grams but it was found that the results were not sensitive

to this pressure and later no great efforts were made to maintain this

pressure constant. Checks were also made on slippage between fiber

and pick-up and no problems were detected here.

The far end of the fiber was passed over a felt roller and a weight

of 0. 1 lb. was applied. During a test the roller was then fixed maintain-

ing essentially constant strain during the test.

The pick-up was mounted on the compound rest of a lathe and the

cutter on a specially designed bracket on the motor end of the lathe as

shown in the photograph, Figure 11. This arrangement allowed a total

pick-up travel of 44 inches. The lathe was stripped of everything except

the bed, carriage and compound rest. Considerable attention was given

to the problem of vibration isolation of the system. A schematic diagram

of the apparatus and the associated electronic circuitry is given in

Figure 12.

The signal from a Hewlett—Packard, Model 200 CD, Wide Range

Oscillator was fed into a high fidelity type 50 watt power amplifier and

used to drive the cutter. A Hewlett-Packard Model 400A Vacuum Tube

Voltmeter was used to set and maintain constant input voltage to the

cutter. The signal from the pick-up was amplified by a Tektronix Type

53/54E preamplifier unit mounted in a Tektronix Type 127 preamplifier

power supply. The signal amplitude from the crystal was read by a

Ballantine Model 320 True Root Mean Square Electronic Voltmeter.

The signal phase difference was compared directly with a Type 320-AB

Phase Meter manufactured by Acton Laboratories. The input and output

waveforms were monitored visually by an oscilloscope. A Hewlett-

Packard Model 523B Electronic Counter was used to maintain the frequency

constant within a few cycles per second.
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Figure 11. Photograph of the fiber test apparatus. The cutter

head is shown on the left and the crystal pick-up in the center

on the movable compound rest.
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Figure 12 . Schematic Diagram of the Fiber Test Apparatus.
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The usual experimental procedure was as follows:

1. The equipment was turned on and allowed to stabilize. The

fiber was fixed in the constant strain position.

2. The signal generator was adjusted for the desired frequency

and amplitude level at the cutter. This level, in general, was set so

that at the end of the pick-up traverse, the output level would be just

above the minimum detectable level. The level setting used was from

about 0. 1 volts to 5 volts and was maintained constant throughout each

test.

3. The carriage with the crystal pick-up was located properly

for the first reading and the RMS voltmeter and phasemeter reading

recorded.

4. The fiber was then removed from the pick-up, the carriage

moved one inch, the fiber replaced and readings again taken. The

process was repeated for the 44 inches of traverse, or in the case of

the higher frequencies, until the signal was no longer detectable.

A different procedure was used for the very low frequencies.

The data was also reproducible; the percentage difference in

velocity values was within 5 percent at the higher frequencies with

somewhat more scatter at frequencies below 1000 cps. Values of

damping checked to within 1%, however, no attempt was made to secure

damping data below 1000 cps where the method was not so accurate.

Typical results for a single frequency are given in Figures 9 and 10.

The composite damping and velocity curves are given in Figure 13 and

Figure 1 respectively and this data is given numerically in Table 1.

The damping and phase velocity completely specify the viscoelastic

properties of the material.

The assumption of linearity was checked by running tests at the

same frequency but with different driving signal voltages. A number of

checks were made and over the amplitude levels tested, no significant

differences in results were noted.
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Figurée 13. Experimental measurement of damping in polyethylene

at 75 F.
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Phase Velocity and Damping as Measured on Fibers of

 

 

20,000 29,632

Table l. o

Polyethylene at 75 F.

Frequency Phase Velocity Damping

(cps) (inches per second) (perinch)

200 21,998 -

300 24,086 -

400 23,200 -

500 23,775 -

800 25,000 -

900 24,900 -

1,000 25,460 0.0089

2,000 26,374 0.0347

3,000 27,135 0,0514

4,000 27,068 0.0706

5,000 27,027 0.0866

6,000 27,906 0.104

7,000 28,188 0.118

8,000 28,029 0.135

9,000 29,189 0.158

10,000 29,058 0.166

11,000 28,800 0.183

12,000 29,171 0.210

13,000 29,197 0.220

15,000 29,461 0.262

0.349
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At the lower frequencies it was found that end reflections made

it necessary to employ longer fibers. Lengths up to 24 feet were

employed and points along the fiber checked by removing the cartridge

from the lathe and physically moving it along the fiber in a special jig.

At the high frequencies it was found necessary to employ selective

electronic filters to remove effects of transverse vibrations from the

pick-up signal.

The velocity at zero frequency was determined from static tests

using a Pye optical cathetometer. ,A fiber of polyethylene was sus-

pended from a support and a small initial weight was attached. A gage

length of 27. 230 centimeters was marked on the fiber and the stress

strain curve for loading from 5 to 95 grams in steps of 5 grams was

optically determined. No appreciable creep was observed during the

time of these tests. By this method a linear relationship was found

between stress and strain and the elastic modulus was found to be

12, 710 psi. Taking the specific gravity of the material as 0. 915, the

velocity was computed to be 12,200 inches per second.



APPENDIX III

IMPACT TESTS

The experimental part of the impact problem consists of applying

a measured boundary condition in the form of an axial stress to the

end of the initially dead viscoelastic bar. The resulting strain is

measured as a function of time at various positions down the bar.

The impact tests were made with a modification of the well-known

Hopkinson-Davies pressure bar. An analysis of this bar is given by

Davies [1948]. Figures 2, 3 and 4 show the experimental apparatus used

in the long pulse impact testing. 1

Magnesium was selected for the striker and transmitter bars.

This metal is commercially available in rods and has a low Young's

modulus relative to other metals. This implies a larger strain for a

given stress, and since we are measuring a low stress level in the

magnesium, we thereby increase the sensitivity. The polyethylene bar

has a static modulus in the neighborhood of 12, 000 psi necessitating

extremely low stress levels for reasonable strains. The pressure bars

used were 52 inches long and %- inch in diameter, Dow specification AZ31B.

The bars were cut from 12 foot stock and the faces carefully dressed

on a lathe. The faces between the striker bar and transmitter bar were

slightly rounded to assure an axial impact. A gage station was located

3 inches from the polymer end of the transmitter bar.

Polyethylene rods of various lengths were employed as test material.

The minimum length of the polymer bar was determined from the time

necessary for reflections from the far end to return and interfere with

strain gage readings. With a gage station 32 inches from the impact
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face a rod 47 inches long was used. The polymer rods were carefully

turned on a lathe to 1/2 inch diameter and the faces squared and

dressed. On the final test sample, gage stations were established at

2, 12, 22, and 32 inches from the transmitter bar end of the polymer

bar. Figure 14 gives the dimensions of the pressure bar system.

A commercial Hyge Shock Tester, type HY-3422, manufactured

by Consolidated Electrodynamics Corporation was mounted horizontally

and used to propel the striker bar down the impact frame. The device

is designed so that at a given gas pressure differential across a seal,

the seal is broken and a high pressure is dumped suddenly onto a

piston. The piston is accelerated and a piston rod pushes the striker

bar. The piston is then hydraulically decelerated allowing the striker

bar to move on alone. The acceleration of the piston is easily and

accurately varied by setting the pressure level on the low side of the

seal. The device has been used in this laboratory to achieve rod velocities

of about 7 feet per second up to 50 feet per second. This is actually in

the lower velocity capability range of the device. Striker velocities of

about 10 feet per second were used in all this work.

The bars were supported by conventional pillow blocks usually

used for rotating shafting. A circumferential groove was machined in

the shaft seat; a rubber "O" ring was inserted and used to support the

bars. Molykote and light grade oil were used as lubricants. A check on

the effect of these supports was made on a pulse in a magnesium bar

before and after travel through two of these supports. The resulting

amplitude of the pulse was within two percent of the original pulse.

With exception of one pillow block on the struck end of the polymer rod,

the polymer rod was simply placed in the lower part of the blocks with

no top supports.

The gages used were Baldwin-Lima-Hamilton Corporation, SR-4,

Type FAP-12-12, foil strain gages with a gage length of 1/4 inch.
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To cancel bending stresses the gages were mounted on opposite sides

of the rod and in opposite arms of a Wheatstone bridge. Eastman 910

cement was found to be an effective adhesive both for the polymer and

magnesium.

The two gages at each gage station were arranged in conventional

bridge circuitry using precision resistors in the other two arms.

Output was through 0. l microfarad blocking condensors to the input of

the oscilloscope amplifiers. To increase sensitivity, the bridge on

the transmitter bar was operated at 12 volts while those stations on the

polymer were set at 4 volts each to avoid overheating. Individual wet

cells were used in this application.

Output from the transmitter bar bridge was fed to a Tektronix

type 53/54E plug-in preamplifier used in a Tektronix Type 532 oscillo-

scope. The frequency response of the preamplifier is from 0.06 to

60, 000 cps with a rise time of 0.06 microseconds.

Output from each polymer bridge was fed into a Tektronix Type

122 Preamplifier which has a frequency response of 0. 16 to 40, 000 cps.

Output from these preamplifiers was fed into two Tektronix Type

53/54C dual-trace plug—in amplifiers used in a Tektronix Type 551 dual-

beam oscilloscope. An electronic switch built into the amplifier

units allowed the two available oscilloscope beams to separately display

output of all four polymer gage stations. The response of these plug-in

units is in, the megacycle range with a rise time of less than one micro—

second. This arrangement allowed all four polymer gage stations to be

monitored on a single sweep of the oscilloscope. Both oscilloscopes

were triggered from one ammonium dihydrogen phosphate (ADP) crystal

mounted on the transmitter bar, three inches in front of the gage station.

Dumont Type 302 bscilloscope cameras were used to record the

pulses. Polaroid Pola Pan 400, type 44, film was used with the shutter

stopped to f 2.8. Samples of the photographic results are given in

Figure 5.
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In performing the impact tests the following procedure was

generally followed:

1. The two oscilloscopes, the Type 122 preamplifiers and the

magnesium strain gage bridge were turned on and allowed to stabilize.

2. The impact end diameter of the polymer bar was checked by

micrometer.

3. A gap of 0. 012 inches was set between the polymer bar and

the transmitter bar. The striker bar was seated firmly against the

pusher on the Hyge piston rod.

4. The Type 532 oscilloscope (monitoring the strain in the

magnesium bar) was set to sweep at 50 microseconds per centimeter

with sensitivity of 0. 5 millivolts per centimeter. The oscilloscope

was set to single sweep, the camera lens opened and the crystal

triggered manually. This records a zero level trace (see Figure 5)

on which later was superimposed the Boundary condition trace. The

shutter was closed and the single sweep reset.

5. The Type 551 oscilloscope was adjusted to sweep at various

rates from 100 to 200 microseconds per centimeter. The sensitivity

was set to approximately 10 millivolts per centimeter and the

oscilloscope placed on single sweep. The polymer bridges were

switched on.

6. Pressure was applied slowly to the Hyge Shock Tester and,

just before firing, the camera shutters were Opened manually. After

firing,the shutters were closed, the Hyge recocked and the bars again

positioned for another test. The polymer bar was again checked by

micrometer and the bridge voltages recorded.

The voltage calibrator output from the Type 551 oscilloscope was

calibrated to within three percent accuracy by a factory representative

just prior to testing. This output was photographed on both oscilloscopes

set for a normal test run and these photographs used to determine output

from the strain gage bridges.
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The actual strains were then computed by use of the unbalanced

strain gage bridge equation

2

VOF

 

AV (46)

where V0 is the applied bridge voltage, F is the gage factor for a single

gage and AV is the change in voltage produced by the strain, €,and

measured from the calibrated oscilloscope trace.

The horizontal sweep was calibrated by photographing the marker

output from a Rutherford Model B7 Pulse Generator. The marker

frequency was monitored by a Hewlett-Packard Model 523B Electronic

Counter. By this method the horizontal sweep was calibrated accurately

to within one percent across the entire tube face. The photographs were

analyzed in a Pye, two-dimensional measuring microscope accurate to

0. 01 mm.

To determine the stress boundary condition on the polymer rod,

it is necessary to know the Young's modulus of the magnesium since we

are measuring the strain in the transmitter bar. This may be determined

from the relation

E = p c,2 (47)

where E is the modulus, p is the mass density per unit volume and

C0 is the velocity of sound in the material.

The velocity Co was measured by photographing a pulse as it

passed two strain gages a known distance apart. . Knowing the calibrated

sweep Speed the velocity could be determined. Using the manufacturer's

density of 0. 066 pounds per cubic inch and the measured velocity, the

dynamic Young's modulus was determined to be 6.63 x 106 psi.

The value of Co was checked using an Arenberg ultrasonic pulsed

oscillator and identical results were obtained.
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The difference in amplitude found initially between computed

and experimental strain (a factor of about 2) made the output of the

gages suspect. A test was devised to check the amplitude of this gage

output against another method of measuring strain. If the striker

velocity is known, we may compute the strain from the relationship

Vs

: 2co (48)

 

where V3 is the striker velocity and Co is the velocity of sound in

magnesium.

The striker velocity was measured by a two beam photo cell, the

beams separated by a distance of one inch. The output of the cells was

amplified and the resulting voltage used to start and stop an electronic

counter. The apparatus is similar to that used by Habib [1948].

Knowing the time required for the striker bar to travel one inch, the

velocity is determined and the strain may be computed from Equation (48).

The strain computed from Equation (48) was compared with that

monitored from the gage station on the transmitter bar as shown in

Figure 2. The resulting strain was accurate within 10%; the error being

attributed to defects in the simple photocell apparatus.



APPENDIX IV

NUMERICAL EVALUATION OF EQUATIONS

Equation (5) for the stress boundary condition and Equation (6)

for the strain boundary condition were integrated numerically using the

Michigan State University digital computer, MISTIC, a twin to the

ILLIAC at the University of Illinois.

An interpretive routine (Al) and the associated subroutines were

used in the work. The integrals were all evaluated by the EAl-M sub-

routine which emplOys quadrature formula Q66 (see Kunz [1957]). This

formula uses a sixth degree polynomial that fits the g(f) values at seven

points and then integrates over the six panels between f0 and f6. The

program is written to then sum these blocks of six panels.

Equations (5) and (6) were actually converted to frequency and

integrated over 12 blocks. The frequency increments were chosen to

be 100 cps. Hence each program put the integral limits from 0 to 7200

cps. This was found to be sufficient for x = 32 inches but at earlier

gage stations it was found it was necessary to integrate to as high as

21, 600 cps. The 100 cps frequency increment was selected when it was

shown the results differed little from use of a larger increment.

In each case the damping was expressed in the form of Equation

(7) and introduced into the integrals of Equations (5) and (6). The phase

velocity for each 100 cps of frequency was stored in the machine and

the appropriate value selected by the computer in evaluating the integrand

ordinates.

To speed up the calculation it was found desirable to evaluate ER

and El (see Equation (5)) analytically. This was possible since 0' (0, t)
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was experimentally shown to be accurately represented by a Heaviside

step function, 0'0H(t). Since these integrals are divergent for the usual

step function, a pulse of the form

a-(0,t) =0’0[H(t) - H(t- {3)} 0<tfifl

(49)

was used.

0'0 is the average height of the stress pulse and 8 was the approxi-

mate length of the experimental pulse. 0‘0 was found to be 335 psi and

{3 was chosen to be 500 microseconds. Of course the results are now

only significant for the first 500 microseconds of time after the pulse

reaches a particular gage station.

With the above assumptions A(f) and B(f) of Equation (5) now

(50)

kc
 

Bub—QT 1ZTrpfc SinZTTff) - (COSZTTfB -1)]

where k here is the slope of the damping versus frequency curve. The

results of the integration are plotted in Figure 6 and compared with the

corrected experimental values.

Equation (6) for strain was evaluated in a similar manner by choos-

ing a Heaviside step strain function

€(2,t)= ez[H(t)-H(t-B)] 0<t_<[3

(51)

: O t> B

which approximates the strain measured experimentally at x = 2 inches.



65

Time zero is measured from the time the pulse reached x = 2 inches.

The strain is then computed for x = 12, 22, and 32 inches. 6; was taken

as 3397 microinches per inch. The results are given in Figure 7 and

compared with the uncorrected experimental strain gage readings.

The integral used by Kolsky [1956], Equation 40, is quite similar

to Equations 5 and 6. This integral was programmed and compared

with Kolsky's computed results. Values for the phase velocity and

attenuation were taken from Kolsky's 1956 paper. The results, shown

in Figure 15, show excellent agreement and serve as a check on the

accuracy of the computer program.
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APPENDIX V

STRAIN GAGE TESTS

Comparison of the original computed and experimental results

showed good agreement in wave shape. However, the amplitude of

the computed results were higher by a factor of about two from the

experimental results. The computer program, using the x = 2 inch

strain boundary condition, gave excellent amplitude agreement with the

experimentally measured strain. Hence it was felt that perhaps the

polymer gages were not correctly calibrated for service on polyethylene

and were uniformly reading a value lower than the true strain.

To check the indicated strain from the gages, short samples were

cut from the polyethylene sample bars with the strain gages already

mounted. These samples were tested at various strain rates in com-

pression in an Instron Tensile Testing Instrument. The chart of the

recorder built into this machine is driven synchronously at a wide

variety of speed ratios with respect to the crosshead, thus enabling

measurements of sample compression to be made with a large choice

of magnification factors. Hence the strain may be independently re-

corded.

The two pages on each specimen were installed in a bridge circuit

with two 120 ohm precision dummy resistors. The output from these

gages was brought into a Type Q Transducer and Strain Gage Plug-in

Unitmounted in a Tektronix Series 530 oscilloscope. A very slow

single sweep of about one centimeter per second was used and the trace

photographed with a Polaroid camera. The system was calibrated by

the built-in calibration device in the Q unit and the di8placement
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photographed. The photographs were measured using the Pye measur-

ing instrument previously discussed.

The experimental procedure was as follows:

1. The sample was carefully measured, lubricated and placed in

the Instron machine.

2. A small preload of about 3 kg. was put on the Specimen.

3. The trace was triggered by pushing the reset button on the

oscillosc0pe and the recorder chart was started.

4. The camera shutter, set on "time, ” was opened and the

Instron started.

5. The machine was stopped, the camera shutter closed and the

photograph removed.

Separate checks were made on a number of samples to check for

possible barreling effects. Careful measurement by micrometer over

the range of strains used showed no such effects.

The results of these tests are shown in Table 2 below.

Table 2. Tests on Output of Strain Gages on Polyethylene.

—‘ i
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Strain Rate Recorder Strain Initial Length Recorder Strain

(cm/min) (microinches/inch) (inches) Gage Strain

0.02 2400 1.539 2.55=1<

0.02 4810 1.539 2.56’1<

0.05 6897 1.3978 2.530

0.05 7434 1.5362 2.544

0.5 7039 1.3978 2.219

0.5 7039 1.3978 2.254

1 8344 1. 3978 Z. 202

l 7039 1. 3978 2.114

1 13,857 1.3978 2.29

1 18,589 1.3978 2.20

 

[The strain was monitored visually on the oscilloscope.
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It is seen from Table 2 the ratio of true strain and gage strain

is relatively independent of strain rate and strain amplitude. The

values read at the high strain rate were averaged and a correction

factor of 2. 20 was used in plotting the experimental data of Figure 6.

The uncorrected data is shown in Figure 7.
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