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ABSTRACT
MULTIPLE CIRCADIAN PERIODICITIES

IN HAMSTER MOTOR ACTIVITY AS
DETERMINED BY TIME SERIES ANALYSIS

By

David L. Norton

Hamster activity data recorded with a capacitance-type
activity monitor under constant light (LL) and constant
darkness (DD) were subjected to vigorous time-series analy-
sis to determine if multiple periodicities were detectable
from such records and, if so, to quantify their parameters.
It has been shown that such records of gross motor activity
contain information regarding the output from several
"motor sub-sets" (such as eating, drinking, running wheel
activity, etc.) which may exhibit independent rhythmicities
when freed from light-dark synchronization (Wolterink et al.,
1973). It was therefore supposed that as the commonly
observed circadian rhythms of gross motor activity are best
seen when the constituent "motor sub-sets" are synchronized,
these "partial activities" would be seen best under condi-
tions which might desynchronize the ensemble such as in
constant light or constant darkness. Since classical
"strip-chart" methodologies are inadequate to an investiga-

tion of multiple periodic components, more detailed



David L. Norton

statistical procedures need to be applied to the biological
time series in order to provide the analytical basis for
model building. The potential of three such methodologies
(spectral analyses, autocorrelation functions, and periodo-
grams) are examined in this dissertation.

Application of time series analysis to entrained and
"dissociated" hamster activity data revealed the presence
of multiple periodic components in the dissociated (but not
the entrained) data. In particular, spectral analyses of
3-day non-overlapping data sub-sets offered evidence for
the existence of multiple circadian components as well as
for the existence of higher frequency components. Autocor-
relation analyses confirmed the observation of several
circadian components but the presence of higher frequency
oscillations was difficult to establish. Periodograms, in
general, appear to lack the resolution necessary for con-
sistent detection.

The spectral analysis program (Program Waver) presented
in this study offers an alternative to the "Halberg-cosinor"
and the strict classical Fourier methodologies for the

analysis of time structured observations.
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INTRODUCTION

A vast amount of evidence has been accumulated to sup-
port the existence of endogenous oscillators in several
species. Of the numerous reports concerning circadian
rhythms and their sensitivity to changing environmental
photoperiod, gross motor activity, owing to the relative
ease of data collection, is most commonly measured (Lowe
et al., 1967; Suter and Rawson, 1968; Aschoff et al., 1971;
Kramm, 1973; Brown and Chow, 1974). Long time series can
be obtained for a single animal, making the data more amena-
ble to complex mathematical analyses and leading to an
objective description of the biologic time structure.
Activity/rest ratios (Aschoff, 1971) or fluctuations in
activity onset (DeCoursey, 1961; Kramm, 1973) are generally
emphasized, but most notable in the response of activity
data to "constant conditions" is the relative stability of
frequency in the face of easily affected phasing (Sollberger,
1965).

The existence of many other biorhythmic phenomena has
been well documented; eosinophil counts (Halberg et al.,
1957), body temperature (Folk and Schellinger, 1954), and

urinary ketosteroid excretion (Pincus, 1943) to name a few.



It is evident that studies of biorhythms using specific
physiological end points, such as urinary ketosteroids, can
give important conclusions with respect to the detailed
model which seeks to explain certain endocrine systems. On
the other hand, gross motor activity measurements recorded
in the classical strip-chart manner, may contain information
regarding many neural control systems. This is especially
true in animals like the hamster (Norton, 1974), whose sleep-
wakefulness cycles are strongly circadian. In these animals,
feeding activity occurs only during twelve hours of animal
activity (under LD12:12 entrainment), hence the true perio-
dicity of this "motor sub-set" may be masked if periodic
sleep acts as a forcing function.

Entrainment of circadian rhythms is defined by Bruce
(1960) as the phenomenon whereby a periodically repeated
stimulus, such as a light cycle, causes an overt persistent
rhythm to become periodic with the same frequency as the
entraining cycle. There is thus a fixed phase relationship
between the entrained rhythm and the entraining cycle.

Since the commonly observed circadian rhythms in locomotor
activity are best seen when the constituent motor sub-sets
are synchronized, it was assumed that the partial activities
might be seen best under conditions whicnh tend to desynchro-
nize the ensemble, such as constant light or constant dark-
ness. Each variety of motor output might then be more or

less free-running and, if sufficiently phase shifted,



produce detectable perturbations in the analyses. To the
physiologist, this might allow the testing of physiological
models which may describe the sub-systems responsible for
each particular identifiable activity. Because the measure-
ment techniques are non-invasive, such analyses of intact
animals would avoid criticisms based on acute methodologies.
Periodogram analysis, autocorrelation functions, and
power spectra are potential tools for determining the
length and stability of the circadian period. Calculation
of the best fitting cosine function by the least squares
method is a useful technique to display other rhythm char-
acteristics, i.e., amplitude, phase, and wave level. It was
the object of this research, therefore, to determine which
analyses might best reveal the presence of multiple periodic
components in a given set of activity data. Such exhaustive
analyses might then lead to a better understanding of the
neural networks responsible for those complex motor

behaviors collectively called circadian activity.



REVIEW OF THE LITERATURE

Although the existence of biological rhythms has long
been established, the possible existence of innate biologi-
cal oscillators has only recently been accepted. A promi-
nent view, and one still held by some researchers (Brown,
1960), was that the rhythms were purely exogenous; an overt
expression of the periodic environment. This was particu-
larly true for that class of low-frequency oscillations with
an obvious external correlate in the daily light-dark cycle.
These rhythms have since been termed circadian (Halberg et
al., 1959), referring to those endogenous rhythms which
have a period length of about (circa) a day (diem). An
organism exhibiting a day-night periodicity, therefore, does
not necessarily possess an endogenous circadian one. An
environmental period may be the real and only cause of the
rhythm, particularly if it decays in artificial constant
conditions (Aschoff, 1960). A circadian system, however, is
characterized by its capacity to oscillate in the absence
of periodic factors in the environment (Aschoff, 1973).
Differentiation is thus made between systems whose oscilla-
tions decay following the removal of exogenous periodic
factors and systems which are capable of self-sustained

oscillations. As Aschoff points out, an oscillating system

4



can be entrained "by another periodic source of energy"
resulting in a forced oscillation with the same frequency
as the driving agent. In contrast to exogenous rhythms,
endogenous circadian frequencies become overt when there is
no periodic driving agent. Such overt oscillations, occur-
ring in the absence of environmental cues, have been called
free-running (Pittendrigh, 1958) or spontaneous (Aschoff,
1958), and the periodic factors of the environment to which
they can be synchronized have been designated as entraining
agents (Bruce, 1960), synchronizers (Halberg et al., 1959)
or Zeitgebers (Aschoff, 1960; 1965a).

Endogenous rhythms for a wide variety of daily physio-
logical functions have now been demonstrated in both verte-
brates and invertebrates. The review papers of Welsh
(1938), Kleitman (1949), and Aschoff (1954,1963) give exten-
sive summaries. Much investigation has been done in rodents,
since a clear expression of "clock-controlled" locomotor
activity is present in this group (DeCoursey, 1972). It is
now fairly well established that daily activity rhythms in
most animals are not passive responses to periodic environ-
mental changes and probably depend on persistent endogenous
oscillators (Aschoff, 1965b; Kramm, 1973). In favor of this
theory has been the demonstration of persistent free-running
activity rhythms having relatively stable period lengths of
approximately 24 hours (DeCoursey, 1972; Pavlidis, 1973).

However, DeCoursey (1961) has shown that animals free-running



in constant conditions, while exhibiting rhythmic activity
patterns, drift out of phase from each other and from
sidereal time. They are therefore dependent on environ-
mental cues for synchronization to a precise 24-hour period
and a distinctive phase.

The mechanism of circadian activity has usually been
investigated by measuring the periodic course of a single
parameter, typically activity onset (Rawson, 1959; Aschoff,
1965¢c). Strip-chart recordings of the activity-rest cycle
are made and activity onset is linearly regressed on time
for a determination of period length (Richter, 1965).
However, in view of the current hypothesis that the circa-
dian system consists of a multiplicity of individual oscil-
lators which, although normally coupled to each other, may
become uncoupled to produce independent rhythmicities in
the steady-state, more detailed statistical procedures for
the detection of multiple periodicities need to be applied
to biological time series. Three procedures which may
prove useful to such investigations are examined in this
review preceded by a brief research summary of typical cir-

cadian activity studies.

Entrainment Studies

Ranges of Entrainment

Studies on the mechanism of entrainment of circadian

rhythms by light and temperature have shown that



synchronization of the rhythm to the period and phase of an
external Zeitgeber (Aschoff, 1960) is possible only if the
period of the exogenous cycle is close to that of the endo-
genous one (Bruce, 1960; Rawson, 1959). Tribukait (1954,
1956), for example, entrained mice (Mus) to a 24-hour cycle
then gradually lengthened or shortened the period until the
animals no longer entrained. This occurred with periods
shorter than 21 hours or longer than 27 hours. He failed
to get entrainment to 16, 20, 22 and 28 hours when these
were established suddenly. The findings of Bruce (1960) on
hamsters (Mesocricetus) and mice (Peromyscus) suggest that
entrainment ranges may be species specific. Running wheel
activity in these species entrains within narrow limits on
either side of 24 hours, 23-25 hours, compared with Mus.
DeCoursey (1972) compared circadian entrainment in a diurnal
(Tamias striatus) and nocturnal (Glaucomys volans) rodent.
The mechanism of entrainment appeared to be different for
the two species. A rough generalization indicates that the
more complex the organism the more difficult it becomes to
entrain the rhythm to period lengths considerably different
from 24 hours (Bruce, 1960). The work of Kleitman and
Kleitman (1953), and of Lewis and Lobban (1954), illustrates
the difficulties of entraining human subjects to artificiai

days shorter or longer than 24 hours.



As the frequency of a light-dark cycle to which an
organism is entrained increases, the phase of the organism
lags further behind the Zeitgeber phase until the limits of
entrainment are reached and the organism free-runs. Leading
phases of the entrained organism are seen when the frequency
of the Zeitgeber is lowered. Aschoff (1964) observed the
circadian activity pattern of mice in light-dark cycles of
varying lengths and showed that in a 26-hour day, activity
onset was advanced relative to its position in a 24-hour
day. In a 22-hour day, activity onsets were delayed com-
pared with 24-hour controls. Aschoff views entrainment
limits to be an index of the strength of self-excitation in
the entrained oscillator. If the strength of a Zeitgeber
is constant, a narrow range may indicate a strong, and a
wide range a weak capacity for self-excitation.

Entrainment of activity rhythms to light-dark cycles
may also depend on the photofraction. DeCoursey (1972) has
measured the limits of entrainment for a wide spectrum of
LD (light-dark) ratios on a 24-hour day schedule in the
nocturnal flying squirrel (Glaucomys volans) and the diurnal
chipmunk (Tamias striatus). Photoperiods for Glaucomys were
varied from 1 second L:24 hours D to 18L:6D; those for
Tamias ranged from 1/4L:23 3/4D to 23 3/4L:1/4D. Under
these conditions, Glaucomys was able to entrain to all
schedules from 1 second of light per day to 18 hours of

light per day. Stable entrainment for Tamias occurred only



between 6L:18D and 21L:3D. Beyond these limits, oscilla-
tory entrainment occurred prior to free-runs suggesting the
beginning of synchronization breakdown. Aschoff (1965b)

has examined the effect of varying LD ratios on entrainment
for a wide variety of species. Within a 24-hour period,
large changes in the photofraction may be made without dis-
turbing entrainment. If the frequency of the Zeitgeber is
altered, variation of the photofraction becomes more restric-
tive. Bruce (1960) noted further that the minimum amount

of light required to entrain a rhythm is generally much

less than the minimum amount of dark needed.

Phase Response Studies

Rawson (1959) has shown that light may have quite a
different phase controlling action if it occurs near the
beginning of an active period (subjective early night) from
its action if it occurs near the end of an active period
(subjective late night). Presenting 12 hours of light to
mice free-running in constant darkness when they were
active, produced a delay in activity onset. When light of
the same intensity was presented during an inactive period,
no phase delay occurred. Pittendrigh and Bruce (1957) and
Pittendrigh (1958, 1960, 1965) have published a systematic
study of the effects of single perturbations to a free-
running rhythm and showed that they effect phase advances

or phase delays depending on the phase of the rhythm at
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which they are administered. Similar studies by DeCoursey
(1961, 1964) and Wever (1965) have now led to a number of
phase response curves for several species which Aschoff
(1965a) reviewed. DeCoursey (1960a, 1960b) interprets such
results in terms of a daily rhythm of light sensitivity in
which early and late subjective night periods are sensitive

to phase-shifting in opposite directions.

Free-running Rhythms

Hemmingsen and Krarup (1937) reported that in the
white rat, the period of spontaneous locomotor activity was
lengthened in constant light. Johnson (1926, 1939) con-
firmed these findings for Peromyscus and also noted that the
period increased with increasing intensity of constant illum-
ination. Certain generalizations concerning the character
of free-running activity rhythms have since been established.

Free-running periods are close to 24 hours, in general
varying between 22 and 26 hours (Bruce, 1960; Pavlidis,
1973), and depend only slightly on the temperature at which
they are measured (Rawson, 1959). Tabulations of some
ranges of period lengths for different organisms have been
compiled by Aschoff (1958), Hoffmann (1965), Folk (1966),
and in Table 1.

Under constant experimental conditions, the rhythm of

gross motor activity is generally maintained with a
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relatively constant period characteristic of the individual
animal. Deviations in any one animal usually range from
less than one hour to less than fifteen minutes (Bunning,
1967; Pittendrigh and Bruce, 1957), whereas between animal
differences may range from one to several hours. Aschoff
(1955), for example, found the following specific period
lengths for five mice in constant light: 25.0, 25.1, 25.3,
25.4, and 25.5 hours. DeCoursey (1960, 1961) reported a
range of 23.0 to 24.5 hours for the activity of 16 flying
squirrels in constant dark. For this reason, Aschoff and
Honma (1959) refer to "individual patterns."

The value of the free-running period in constant dark
generally differs from its value in constant light (Bruce,
1960; see Table 1). Bullfinches kept in continuous dark-
ness exhibit a frequency of 24 hours; in constant light it
changes to 22 hours. In mice (Mus), the period increases
to 24 or 26 hours under continuous light and decreases to
23 or 23.5 hours in constant darkness (Aschoff, 1953, 1955;
Meyer-Lohmann, 1955). Reductions in the activity-rest
ratio of dark-active animals by constant light have also
been reported (DeCoursey, 1961; Aschoff et al., 1971).
Aschoff (1952a, 1958) expressed a general rule (circadian
rule) concerning free-running activity patterns which
states that the length of the period of animals active in
light decreases with increasing light intensity; and in

dark-active species it increases with increasing light



13

intensity. In all cases, however, frequencies change by
only 5-10% (Bruce, 1960). Exceptions to Aschoff's rule have

been noted by Hoffmann (1965).

Dissociation of Circadian Rhythms

The circadian system of an organism consists of a
number of rhythms which are normally entrained to the same
frequency by a synchronizing Zeitgeber (Aschoff, 1973).

The temporal relationships of such rhythms have been illus-
trated graphically in phase-maps (Halberg, 1960b; Halberg
et al., 1959, 1967). When not entrained by a Zeitgeber,
all rhythms within an organism may remain synchronized with
each other, showing one free-running rhythm of the entire
system (Aschoff, 1973), or they may become desynchronized
to show different frequencies in the steady-state (Wever,
1973). This has led some investigators (Wever, 1971; 1972)
to suggest that the circadian system is controlled by a
nultiplicity of individual oscillators which are normally
entrained with each other but which may become uncoupled to
oscillate at different speeds. Evidence for this hypothesis
has been demonstrated by following the temporal course of
different biological variables like activity and rectal
temperature (Wever and Lund, 1973) or of a single variable
which exhibits multiple components (Hoffmann, 1971). Wever

and Lund (1973) illustrated desynchronization of several
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physiological rhythms in humans living under constant light.
Fourier analysis of activity and rectal temperature cycles
resulted in a "two-peaked" spectrum suggesting the presence
of two oscillations having significantly different period
lengths. The predominant component for rectal temperature
was a 25.1-hour period while that for activity was a 33.4-
hour period.

Pittendrigh (1960) and Swade (1971) have reported that
after prolonged constant illumination the rhythm of loco-
motor activity in nocturnal rodents Mesocricetus and
Peromyscus split into two components. These components
showed distinctly different frequencies for some time but
eventually resynchronized to produce one free-running pat-
tern at a new phase relation. Evidence for the occurrence
of multiple components in the activity rhythm of a light-
active animal (Tupais) as a function of light intensity has
been presented by Hoffmann (1971). If light intensity was
reduced below a certain level (usually 5 lux) the activity
rhythm split into two and sometimes three components which
oscillated at different frequencies. Eventually the com-
ponents were observed to run parallel with identical fre-
quencies. Resynchronization occurred when light intensity
was elevated.

Dissociation of the circadian drinking pattern from
eating, two "motor sub-sets" which comprise gross activity,

has been demonstrated in rats by Oatley (1971).
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Richter (1965) has reported free-running circadian rhythms
in activity, eating and drinking in blinded rats. In addi-
tion, non-circadian periodicities for some "motor sub-sets"
have been reported. In rats, urination produces a perio-
dicity of about 3-4 hours while defecation occurs at slight-

ly longer intervals (Richter, 1965).

Time Series Analysis

Introduction

The application of time series analysis to physiologi-
cal data provides a method whereby a rhythmic signal, if
present, can be detected, apart from superimposed random
noise, and its parameters objectively quantified. Classical
procedures for investigating circadian activity, using strip-
chart recorders and chronograms (DeCoursey, 1961), seem
inadequate to a total understanding of the time series since
they utilize a single (often subjective) estimate to evalu-
ate it (typically activity onset). On the other hand, time
series analyses which utilize the total length of record,
can provide in depth statements regarding its biological
time structure, which Halberg and Katinas (1973) define as
the sum total of non-random and thus predictable aspects of
organismic behavior including bioperiodicities.

Periodic functions are functions whose values recur

at regular temporal intervals called the period (Halberg
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and Katinas, 1973), and may be expressed as

f(t) = £(t + 1) (2.1)
where T is the period of the rhythm under study (Halberg,
1969). It should be noted that under this definition, an
organism need not generate activity which is sinusoidal
to exhibit periodic behavior. Time series analyses which
isolate periodic functions from random noise without speci-
fic assumptions regarding waveform, autocorrelation and
periodogram analyses, for example, are especially useful in
this regard. However, the non-sinusoidal nature of any
given time series does not necessarily limit the usefulness
of fitting cosines to the data by the method of least
squares (Halberg et al., 1972). As illustrated in Figure 9,
the circadian nature of a "24-hour" square wave can be de-
tected by least squares cosine fitting given a time series
which includes several repetitions of the cycle. Further,
such a procedure is necessary for an objective quantifica-
tion of detected periodicities in terms of an average period
length (T), average acrophase or crest-time (¢), and an
average amplitude (C) demonstrated to be significantly dif-
ferent from the mean level (CO) by statistical means.

The remainder of this chapter examines three analytical
methods for the study of periodic functions obscured by
random disturbances. Two of these, periodogram and autocor-
relation analysis, have been used sparingly in physiological

studies but are potential tools for determining the length
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and stability of oscillatory components (Sasaki, 1972), as
well as for detecting the presence of multiple periodicities.
The computational equations for the least squares fit of a
cosine have been reserved for the following chapter, as they
have been related to the operation of Program Waver used in

this study.

Cosine Curve Fitting

Usage
Cosine curve fitting has as its objective the quantifi-
cation of amplitude, phase and wave level of the rhythm
under study. Smolensky et al. (1972) used the technique for
the identification of circadian and circannual rhythms of
birth and death. Estimations of amplitude and phase for a
number of circadian functions in mice have been presented in
phase-maps (Halberg et al., 1959; Halberg, 1960b). The com-
putational procedure utilizes the method of least squares
and has been extensively developed by Halberg (1960a, 1967;
Halberg et al., 1967) as part of the cosinor technique.
Recently, modified computational methods have been published

(Halberg et al., 1972; Dewey, 1973).

Terminology and Rationale

Sine-cosine curves are basic periodic functions and,
unlike other trigonometric functions, are continuous in the

time domain. They are therefore useful as approximating
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functions in periodic regression analysis. In addition, a
periodic function which is non-sinusoidal may be Fourier
transformed to a constituent set of cosine waves and its
waveform described by the summation of appropriate harmonics
(see Sollberger, 1965, for methodology).

A rhythm detected by the least squares fit of a cosine
can be described on the basis of several endpoints obtained
from approximating functions of the form:

Y(t) = C0 + C.cos(wt + ¢) = Ei (2.2)

For data recorded at 0.1l hour intervals, C, is comparable

0
to a mean 6-minute average. The amplitude, C, measures the
degree of variability existing over a time interval, T,
called the period and is, in fact, equivalent to the half-
amplitude of the fitted cosine. Since w denotes the (fixed)
angular frequency of the fitted curve, equation (2.2) may be
expressed as:

1 0 1

where each data point is represented as some fraction

Y. =C, + C-cos(%}ti + ¢) * E. (2.3)

(ti/r) of a complete (2n) cycle. The concept of least
squares fitting of a cosine to a time series is illustrated
in Figure 1 (after Halberg et al., 1972). As the figure
indicates, the computative acrophase (¢) delineates, in
time, the peak of the best fitting cosine function. For
the CO' C, and ¢ values shown, the function Y (t) results

2

in a minimized sum of squares for error (ZEi ). Calculation

of these parameters is outlined in the following section.
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Periodogram Analysis

Usage

The application of periodogram analysis to biological
data has been limited. Halberg (1960a, 1965) utilized
periodograms for the analysis of rectal temperature cycles
in blinded mice. Pochobradsky (1970) recently investigated
the usefulness of periodograms in the determination of
menstrual cycles, and Binkley et al. (1973) compared peri-
odogram analysis with autocorrelation techniques on free-
running activity data in sparrows. Enright (1965a) sub-
jected previously published data which suggested the
presence of lunar-tidal rhythmicities in activity, to a re-
examination by periodograms and found such conclusions to
be unwarranted.

Currently, two periodogram techniques have been in-
vestigated. One is that of Koehler et al. (1956) which
involves the sequential use of periodic regression analysis
(i.e., least squares cosine fitting) and the second that of
Enright (1965a, 1965b). The method discussed here will
follow that of Enright although the basic rationale is

applicable to both techniques.

Periodogram Rationale

Periodogram analysis, as described by Enright (1965b),
involves a posteriori evaluation of a given set of frequen-

cies as a function of their relative amplitudes.
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The procedure is a generalization of standard statistical
methods for the form estimation of a periodic function.

For example, if in a continuous time series of some bio-
logical variable, there is a stable oscillation with a
period of 24.0 hours which is subject to randomly occurring
disturbances ("noise"), then by classical statistical argu-
ments, the mean value of all observations recorded at 1
a.m., becomes an unbiased estimator of the value of the under-
lying periodic function at 1 a.m., and the calculation of
24 such averages would lead to an unbiased estimate of its
form. Likewise, in a 25-hour form estimate, the 1 a.m.
value for the first day of record would be averaged with
the 2 a.m. value for the second day, the 3 a.m. value for
the third day, etc. Enright (1965a) has generalized this
averaging procedure for any other integral period using the
Buys-Ballot Table of Kendall (1946; Appendix A).

In frequency analysis, the significance of a given
oscillation is generally associated with the magnitude of
its amplitude. For periodogram analysis, the test statis-
tic normally utilized is the root-mean-square amplitude
(Ap) defined by Enright (1965b) as

A = [X1 (v

— 1 —
- Y )2]1 where Y = 1
p Ph=1 p,h P

P
Ly (2.4)
P P

L, P./h

and all other symbols are as described in Appendix A.

Plots of these amplitude estimates against a sequence of



23

assumed period lengths are called periodograms (Whittaker
and Robinson, 1927) and, as equation (2.4) illustrates,
these Ap values are essentially the sums of squared deviates
from the mean, indicating that periodograms are variance-
type spectrums.

Examination of equation (2.4) reveals that if a time
series contains a stable oscillation with a period of 22 +
€ hours (e is'a very small non-rational number) then the
amplitude estimate for a mistakenly assumed 24.0-hour perio-
dicity would equal zero over an infinite series of data.
Even for a finite series, however, including several cycles
of the real component, the estimate of amplitude for the
assumed 24.0-hour period would be less than the estimate
obtained for a 22.0-hour period (Enright, 1965b). As a re-
sult, periodogram analysis assumes the presence of no perio-
dicity a priori, and instead consists of a comparison of
amplitudes calculated from a series of form estimates, each
of which is based on a different value of assumed period.
By estimating amplitudes for all values of period within a
range presumed to include the periods of major oscillatory
components, differentiation can then be made between unusual-
ly large amplitude form estimates and those form estimates

which have amplitudes no greater than background.
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Peaks Due to Sub- and Supermultiples

Enright (1965b) has noted that for any oscillation
which does not show an appropriate symmetry, periodogram
analysis may produce peaks at submultiples of the true
period. When two symmetrical disturbances of 9 hours dura-
tion and an interval of 368 hours were added to a set of
1000 random numbers, periodogram peaks occurred at all major
submultiples of 368 hours. As illustrated in Figure 2(b),
the periodogram for a sine function exhibits no such peaks
at its harmonic points (i.e., at 1/2, 1/3, 1/4 of its period
length, etc.). To remedy this situation, Enright suggests
a re-analysis of non-overlapping data subsets or replicate
series. Any periodogram feature which appears in the total
series and by all replicate subsets, implies a persistent
rhythmic component.

A second complication following the use of periodo-
grams is that the analysis cannot distinguish between peaks
resulting from real periodic components and those which
arise due to components having period lengths which are sub-
multiples (harmonics) of the apparent value. The periodo-
gram of Figure 2(a) was based on input data consisting of
twenty cycles of a 12-hour sine function (p = 7 radians)
while that of Figure 2(b) from ten cycles of a 24-hour sine
function (p = 27 radians). As the figure illustrates, both
oscillations produce a peak on the periodogram corresponding

to a 24-hour cycle. Had the analyses covered a range of
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Periodograms based on artificial, stable

input data. Figure 2a was based on twenty
cycles of a 12-hour sine function (p = n
radians); Figure 2b on ten cycles of a 24-

hour sine function (p = 27 radians), and
Figure 2c on ten cycles of an artificial square
pulse (p = 27 radians). Ap = root-mean-square
amplitude (Appendix D); N = 2400; AT = 0.1 hr.
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20-30 hours (because of an a priori assumption that the data
contained a circadian oscillation), the conclusion might
have been made that such an assumption was correct for both
series. Extension of the analysis to include the first
harmonic (l12-hour period), however, indicates that for the
data of Figure 2(a), such a conclusion is decidedly unwar-
ranted. Further, Figure 2 (a) would also have produced a
peak at 36, 48, 60 hours, etc., and Figure 2(b) peaks at 48,
72, 96 hours, etc. had the analysis been extended to include
these periods. Enright (1965b) suggests examination of the
respective form estimates prior to any conclusions regarding
periodicities inferred from components of the periodogram.
If the form estimates show one, two, or three complete
cycles etc. within a 24-hour period, the periodogram peak

may be assigned to an appropriate harmonic.

Form Assumptions

In contrast to procedures which assume the presence of
sinusoidal functions, the detection of periodic components
by periodogram analysis is possible without assumptions
regarding form. Although the periodograms of Figure 2 (b and
c) were produced using input data of contrasting form
(Figure 2(b) from a "24-hour" sine function and Figure 2(c)
from a "24-hour" square wave), both reveal peaks correspond-

ing to a 24-hour periodicity.
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Unstable Data

The data used to produce the periodograms of Figure 2
differ from most biological data in that the oscillatory
components persisted with constant amplitude and period
length. Enright (1965b) examined the properties of periodo-
grams derived from non-stable input data and found that
minor instabilities in the oscillatory components did not
eliminate the usefulness of the method. Linear increases
or decreases in either amplitude, frequency, or a combina-
tion of both, resulted in periodograms which still provided
meaningful information about average properties of the
oscillation. It should be noted, however, that Enright's
test functions had period lengths in the circadian domain,
indicating that, at least for low-frequency oscillations,
the procedure has only limited sensitivity to minor shifts
in either phase or period. For high frequency oscillations,
such shifts could easily obscure the presence of a periodic

component using this method.

Autocorrelation Analysis

Usage

Halberg (1960a), using autocorrelation procedures,
found a 24-hour rectal temperature rhythm in data obtained
at 4-hour intervals in mice. Sollberger (1970) applied the

autocorrelation function to finch activity data and showed
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clear circadian peaks through 26 days. Recently, Binkley

et al. (1973) used a modified autocorrelation procedure to
test the stability of free-running activity rhythms in
sparrows. Theoretical considerations of the autocorrelation
function have been extensively discussed by Yule (1921,

1927) and by Jenkins and Watts (1968).

Rationale of the Autocorrelation Function

Sollberger (1965) has noted the usefulness of autocorre-
lation analysis in separating, from time series data, peri-
odic components and random noise. The procedure was
developed by Yule (1921) as a method of investigating perio-
dicities in disturbed series and involves sequential calcu-
lation of the product-moment correlation coefficient, r_.
The observed series is duplicated and simultaneous values
correlated with no time displacement (1 = 0) to yield an
initial coefficient of r = +1. One of the series is repeat-
edly lagged an interval (1) and each term of the original
series correlated with the corresponding term of the lagged
series. Mercer (1960) expressed the autocorrelation func-

tion, R(t), of a time function, f(t), mathematically as

T

R(t) = P LT £y k(e + 1)dt (2.5)

where 1t is the time delay and T the total length of record.
In Kendall's (1945) notation, the coefficient of product-

moment correlation between members of a series T intervals
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apart is called the serial correlation of order T. For a
finite series, the computational equation is given by

Z(Xj-xl)(xj+T—x2)

(2 (xy-5%p) % (2 kg, %) D17

r(t) = (2.6)

where r (1) is the serial correlation coefficient of the
series at time'r,xj = f(tj), and the summations run from
j=1toj=Nn- 1. It can be seen from equations (2.5) and
(2.6) that at 7 = 0, £(t) = £(t + 1); hence correlation is
maximal (r = +1) at zero lag. If f(t) represents a purely
random function (with no periodic components), the autocor-
relation function R(t) approaches zero for large values of r.
This is so since in a random function the two ordinates to
be multiplied,f(t) and f(t + t), are as equally likely to be
positive as negative (i.e., occurring below a mean base
line) and the sum of a large number of them will tend to be
zero (Murtha, 196la, 1961b). Moreover, it is obvious from
equation (2.6) that for a periodic function, R(t) will be
repetitive, since a phase displacement of one period repro-
duces the condition at zero lag. For a sine wave with a
period of 2m radians, the "r" value will be +1 after dis-
placenments of 2w, 4m... n27 radians and -1 following dis-
placements of n, 3n1... (m + 27) radians. The autocorrela-
tion function for this waveform is presented in Figure 3(a).
As the figure illustrates, the periodic nature of the sine

wave is preserved in the autocorrelation function as a
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cosine and, further, that the frequency of oscillation is
the same as that of the original time series.

If a time series contains a periodic component dis-
turbed by random noise (a bioperiodicity), R(1) will again
be repetitive. When the two curves are out of phase they
will tend towards inverse values and the correlation coeffi-
cient towards -1; when in phase, the coefficient will
approach +1 and produce a peak in the autocorrelation func-
tion equivalent in time to the period of the oscillation.

In the process, random components will cancel. The effec-
tiveness of the autocorrelation analysis in separating
periodic components from noise will depend upon the magni-
tude of the random errors and the length of the time series.
But, as Yule (1927) states, however large the errors, given
a sufficient number of periods (i.e., a long enough time
series), autocorrelation will provide a close approximation
of the period of the underlying harmonic function. It
should be noted, moreover, that correlograms yield no analy-
sis into various components of the hidden periodicity or

their phasing (Sollberger, 1965).

Form Assumptions

Like periodogram analysis, autocorrelation procedures
are valid without prior assumptions regarding waveform. In
Figure 3, the autocorrelation function for three different

sets of input data are presented. Figure 3(a) was obtained
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Autocorrelation functions derived from artificial
input data. Figure 3a was based on ten cycles

of a 24-hour sine function (p = 27 radians),
Figure 3b on ten cycles of a 24-hour square

pulse (p = 2m radians), and Figure 3c on a set of
computer generated random numbers. Rho = serial
correlation coefficient; N = 2400; AT = 0.1 hr.



RHO

10

05

00

=05

33

100 200 399 598 798 997 1096
LAG (O.Ihr)

i1 1 2 2 1 1 1 1 & 1 3 1 3 1 1 1292 1 21 1

100 200 399 598 798 997 1096
LAG (O.l hr)

i ] /] 1 | 1 'l i ' i 1 1 1 | Il 1 1 ] 1 /| 1 1 l I

100 200 399 598 798 997 1096
LAG (O.hr)
Figure 3



34

from a 24-hour artificial sine wave while Figure 3(b) repre-
sents the autocorrelation function for a 24-hour artificial
square wave. As the figures illustrate, the periodic nature
of the input data is reproduced in the autocorrelation
function though not necessarily with the same waveform.
Figure 3(c) resulted from the autocorrelation of 2400 com-

puter generated random numbers and exhibits no periodicity.



MATERIALS AND METHODS

Experimental Rationale

Recording gross motor activity from the isolated ham-
ster with a capacitance activity monitor produces a printout
in which the output from several "motor sub-sets" are con-
founded. If activity is recorded at the end of each 0.1
hr., each sum represents a variety of motor outputs (i.e.,
eating, drinking, running wheel activity, etc.) with varying
durations and intensities. Since the commonly observed
circadian rhythm of "gross motor activity" is best seen when
the constituent motor sub-sets are synchronized (or observed
separately as in running wheels; Rawson, 1959), it might be
supposed that these "partial activities" would be seen best
under conditions which would desynchronize the ensemble,
such as constant light (LL) or constant darkness (DD). Each
variety of motor output might then be more or less free-
running and dissociated from the others. Accordingly, ham-
ster activity data recorded under LL and DD were subjected
to rigorous time series analysis in order to determine if
multiple periodicities were detectable from such records

and, if so, to quantify their parameters. Such an

35
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exhaustive analysis might then lead to a better understand-
ing of the neural networks responsible for those complex

motor behaviors collectively called circadian activity.

Physical Setup

Adult male golden hamsters, Mesocricetus auratus,
(Lakeview Hamster Colony, Newfield, NJ) were individually
housed under a lighting regimen which consisted of fluores-

cent light (650 lux) from 0600 to 1800 hr. alternating with

00 00

darkness from 18 to 06 hr., daily (LD Food and

12:12)’
water were provided ad libitum and replenished at random or
when needed.

Motor activity was measured using a capacitance-type
activity monitor (Stoelting Co., Model #31400, Chicago, IL)
equipped with a 6-digit printing counter (Stoelting Co.,
Model #22408), Figure 4. Movement of the animal resulted
in changes in the capacitance field causing a "count."
Counts were integrated over a 6-minute interval and a data
printout obtained every 0.1 hr. After each print, the
counters automatically reset to zero. Thus, 10 days of
monitored activity (a time series) consisted of 2400 data
points collected every 0.1 hr. of clock time. Activity

counts were punched into IBM cards as four-digit numbers

for computer analysis (Appendix B).



37

*paooax A3TATIO® = J {a93unodo 3nojutad 3T16TP-9 = @ ¢{Ix03TUOU
K3TaT3oe 9dAj-sdouejzTorded = O {xoq burjissau = g {9b6ed K3ITATIOR = ¢
*e3ep A3TAT3IO®R I030W SSoxbH JO HBurpaodoax ay3z I0J UOTIRIUSBUMIISUT

*p 2anbrg



y oanbta




39

Recordings were obtained from individual animals main-
tained in Habitrail cages (Metaframe Corp., East Patterson,
NJ) fitted with running wheels and an "isolated nesting box"
which effectively positioned the animals above the elec-
trical field and eliminated small extraneous counts during
sleep. Cages were positioned on activity monitors and the
entire unit (Figure 4) enclosed in a chamber covered with
heavy black Visqueen. Hence, recorded data represents
"total activity" including that associated with feeding,
drinking, running wheel activity, etc. Four fluorescent
lights (cage light intensity 650 lux) controlled by a time
switch, imposed a 24-hour light-dark photoperiod (LD12:12;
lights on 0600 - 1800 hrs.) with step transitions from L to
D and D to L. Daily temperatures averaged 27 + 2°C during
the trial periods. (Note: some of the trials were con-
ducted in a semi-soundproof room with overhead lighting for
illumination.)

After 10 days of LD entrainment, animals were kept in
constant illumination (LL) for 20 days followed by 20 days
of constant darkness (DD; 0 lux). Thus, a complete time
series for any one animal consisted of 50 continuous days
of record. Although a transverse (between animal) profile
was analyzed (see Table 3), emphasis in this thesis con-
cerned longitudinal studies of time series data. Changes
in the synchronized pattern of gross motor activity and the

detection of multiple periodicities following alteration of
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the lighting regimen were of particular interest. Hence,
spectral amplitude analyses were performed on full 10-day
data segments and on 3-day non-overlapping data subsets in
order that the time course of these changes be more closely
examined. In addition, the time series were subjected to
autocorrelation and periodogram analyses for a comparison
of findings. All calculations were performed with the aid
of a CDC 6500 computer while all figures were plotted with
the aid of a CDC Calcomp Plotter. The FORTRAN programs
developed for each of the analyses employed in this study

appear in Appendix B.

Analysis of Data

Least Squares Analysis: Program Waver
(Appendix B)

Cosine functions were fitted to individual time series
by the method of least squares. The following model was

assumed:

Yi = Co-i-C[cos(wti + ¢)] ¢ E;i i = 1,2,...N (3.1)

where Yi are measurements of the physiological variable
(motor activity) at times tys totalling N in number (for

10 days of data, N = 2400). The quantities CO' C, w, and ¢
represent the level (mean), amplitude, angular frequency,
and acrophase of the fitted cosine. The least squares

error estimate is given by ﬁi' It was further assumed that



41

if the data were aperiodic and random, C[cos(wti + ¢)] could

be eliminated and equation (3.1) reduced to:

= + > . 1 =
Yj Co * Ej, j 1,2,...N (3.2)

where ﬁj represents the error associated with the mean.
Elimination of the oscillating term might be due either to
w assuming a value not statistically different from zero
(i.e., because there is really no overall average perio-
dicity), or by C assuming a value not statistically differ-
ent from zero (i.e., the amplitude of the oscillation is
hidden in the noise, or error term, ﬁi). Thus there is a
real difference in logic between a truly aperiodic system
and one that is not demonstrably periodic because of a low
signal to noise ratio. In the usual case, however, perio-
dicity is suggested if the error Ei is minimized or reduced
after fitting the data to equation (3.1) (i.e., when

E, < f:j).

Expansion of equation (3.1) yields:

Yi = C0 + C-cos¢cos(wti) - C-51n¢51n(wti) + Ei (3.3)

where (C-.cos¢) and (-C-sin¢) represent "weighted amplitude"
coefficients of the fitted cosine and sine functions. The
values of these coefficients are given in the output to
Program Waver (Appendix B) where they are denoted as HC and

HS respectively. By substitution, equation (3.3) becomes:

Y. =C

i 0 + HC'cos(wti) + HS°s1n(wti) * Ei (3.4)
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Least squares regression theory defines a linear
regression line as that straight line which results in
Zd;-x being at a minimum where Zdi.x is equivalent to re-

sidual variation. In comparison, the minimizing equation

for the least squares fit of a cosine is:

g [ﬁi] = .§ {Yi-[c0 + HC-cos (wt;) + HS'sin(wti)]}z

=1 i=1 (3.5)
For an illustrative example of the fitted equation and its

variables, the reader is referred to Figure 1, from Halberg
et al. (1972) and to the sample output of Appendix B.

All data sets were tested for the existence of statis-
tically significant periodicities with period lengths rang-
ing from T = 99.9 hr. to T = 3.0 hr. (t = period length in
hours). Beginning with the first fitted frequency (w =1
cycle/99.9 hr.), Program Waver assembles a "weighted vari-
ance spectrum" where the amplitude of each period tested is
associated with its own least squares error. Point esti-

mates for the amplitudes of the fitted cosines ¢ (denoted

as H in Waver output, Appendix B), were given by:

A 2 2.3 .
C = {(HC)® + (HS)"}* = C (of equation 3.1) (3.6)

since: HC = Ccos¢ and HS = -Csin¢
C = (Czcosz¢ + Czsinqu);5 = C (3.7)
C = [C?(cos?¢ + sin?¢)]* = C (3.8)
&= (Hi=c (3.9)

The ratio of H (for w = 1 cycle/99.9 hr) to the standard
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error of H (SEH) composed the first value of the "weighted
variance spectrum." Successive frequencies fitted were
determined by constant percentage (1%) decrementations of
the preceding wavelength. Hence, the second fitted w would
be 98.901 [99.9 - (99.9 X .01)], the third 97.912, etc.
Amplitude/standard error ratios for each wavelength fitted
gave the amplitude-weighted variance spectrum. A theoreti-

cal example of one such spectrum is shown in Table 2.

Table 2. Example of a Typical Amplitude-Weighted Variance

Spectrum
Period Length (hrs) Relative Deviate for the
Cosine Amplitude
(1) (H/SE,)

Ty 99.900 1.8
T, 98.901 2.6
5 97.912 3.0 printed sig.*
Ty 96.933 2.7
Ty 95.964 2.6
Tg 95.004 1.0
T, 94.054 0.8
g 93.113 1.7 printed but NS
Ty 92.182 1.6
Yo 91.260 0.5

*

Only the peaks (i.e., 2.6 < 3.0 > 2.7) are printed out.
All pertinent data for that peak are given as output
(see Appendix B).
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It can be shown that the ratio H/SEH is comparable to the
relative deviate of a "t" distribution. Hence, if the
value of H/SEH for any t was greater than 2.58, that wave-
length was said to have an amplitude which was signifi-
cantly different from zero at p < 0.01 and N = =,

The final computer printout from Program Waver repre-
sents all periods for which the H/SEH ratios corresponded

to spectral maxima. In Table 2, both 1, and 1, would ap-

3 8

pear as output but of the two only 1, is significant.

3
Moreover, Tyr Ty and Tg are also significant periodicities
but since they do not represent spectral maxima, they do
not appear as output. Decrementation of T continued until
T. = 3.00 hrs.
i
The point estimate, $, for acrophase (in degrees from

0000 hrs) is:

~ _ sine coefficient (HS) _
tand = —o=The coefficient (AC) ~ rtan¢ (3.10)
or $ = arctanis = ¢ (3.11)

HC
and is given indirectly in terms of crest time (CT) of the
fitted cosine, by the formula:

~ —_— C.T.
¢ = T

(360°)

The basic rhythm parameters C,, C, 1T and ¢ were quanti-

0
fied using the method of least squares for a cosine func-
tion. The effect of changing photoperiod upon each of

these variables was then examined. 1In addition, the time
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series were analyzed longitudinally by examining the
amplitude-frequency spectra produced by least squares
analysis of full 10-day data segments or by 3-day non-
overlapping data subsets. Further, all data sets were
evaluated in terms of an autocorrelation function, for
examination of oscillatory stability in the time domain,
and in terms of amplitude as a function of frequency in a
periodogram.

The Autocorrelation Function: Program
Main (Appendix C)

Least squares analysis of a given set of data results
in an average T value for any one periodicity within the
time series. The stability of those detected periodicities
in time and as lighting regimens were altered, was examined
using sequential plots of the autocorrelation function
applied to 10-day data segments of a complete 50-day time
series.

The autocorrelation function consists of a series of
correlation coefficients obtained by first correlating the
entire time series with itself then lagging the data by
6-minute (or hourly) intervals and recorrelating. Calcula-
tion of the autocorrelation function for each data set re-
quired the use of Program Main (Appendix C) and a CDC 6500
computer, particularly for computation of the lagged sums

of products (a maximum of 1200 computations is needed).
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The estimate of r(k) for any lag, k, was computed as:

) Z(xtxt+k) - (th)(Ext+k)/n
{12(x%) - (Ix)°/nl[L(x>,.) - (Ix, . )2/n]}"
t Xyl /m Xt+k Xesx’! /1
(3.13)

where n = N/2 (the number of pairs) and the summations run
from t = 1 to t = n. Autocorrelation of each data segment
continued until k = n (when the first half of the data was
correlated with the last half). Detection of periodic com-
ponents was aided by plotting the autocorrelation function
for each time series as a correlogram with the aid of a

CDC Calcomp Plotter and the plot routine of Appendix E.

Periodogram Analysis: Program Spect
(Appendix D)

Periodogram analysis, as described by Enright (1965a),
represents a generalization of the Buys-Ballot form esti-
mating technique, an averaging procedure for obtaining an
unbiased estimate of the form of the underlying periodicity.
This averaging procedure can be generalized for any inte-
gral period, p, in the form of a table (Appendix A).

The analysis involves an evaluation of a given set of
frequencies as a function of their relative amplitudes.

The test statistic computed in Program Spect (Appendix D)

is the root-mean-square amplitude defined as:

-7 )% (3.14)

All notations for equation (3.14) are defined in Appendix A.
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Amplitude is estimated for all values of period length with-
in a range presumed to include the period of the primary
oscillation. Hence, the period value at which amplitude is
maximal should represent the best estimater of the period

of the primary oscillation. In this study, amplitude esti-
mates were made at all values of period length from 20 hours
to 30 hours for data sets of the kind described for auto-

correlation analysis.



RESULTS

Longitudinal profiles of gross motor activity were
obtained from a capacitance-type activity monitor as a four-
digit printout recorded every six minutes (0.1 hr.) for 50
days. Lighting regimens for the time series are described
on page 39. Parameters defining the activity rhythms (i.e.,
amplitudes, frequencies, phase-angles and means) were esti-
mated by periodic regression analysis.

The data were transformed to an assembly of cosines,
each with its own period, amplitude, and phasing, using
approximating functions of the form Yi = CO + C[cos(wti +
¢)] = Ei' The time series were then examined for the
presence of multiple periodicities by plotting relative
amplitudes of the cosine components (C/CO) against frequen-
cies (cycles/day) to yield a spectrum (after Sollberger,
1967). Peaks in such spectra represent dominant cosine

components with large amplitudes.

Transverse Profiles

Between-animal comparisons of the effects of constant
light and constant dark on circadian activity parameters
are presented below as a general orientation. When cosines

were fitted to entire 10-day time series, a single dominant

48
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component was found in the circadian frequency domain (22-27
hr.) representing the average and most significant perio-
dicity for the time series. The characteristics of these
components (i.e., period length, amplitude, phase angle,
etc.) have been tabulated for five hamsters in Table 3.

The value found for period lengths (t) are in agree-
ment with those cited for this species in the literature,
Table 1. 1In general, changes in period length following
constant illumination or constant darkness tend to follow
Aschoff's rule; increasing slightly under constant light
and decreasing slightly in constant darkness. However,
period changes were, in all cases, small (1%) and because of
the high between-animal variance and small sample size, no
statistical significance could be attributed to treatment
effects.

The specific lighting regimens imposed on each time
series, twenty days of constant light followed by twenty
days of constant dark, resulted in continuous phase drifts
from an LD reference point which initially crested around
midnight. The average phase angle during entrainment was
-359.24 degrees with a between-animal variance of only 1.02
degrees (4.8 minutes). As expected, the absence of an
external acrophase during constant light and constant dark
resulted in a greater between-animal phase variance with
the highest cumulative variation occurring after 20 days of

constant dark (by this time the "clock" was nearly 16 hours
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slow, as well as 30 times more variable). As a result, a
statistically significant shift in phase was not demonstra-
ble until the second half of the LL time series.

Significant changes in both mean activity levels (CO)
and circadian amplitudes (C) were observed during the ini-
tial period of constant light and the final period of con-
stant dark. 1Initial exposure to constant light resulted in
a depression of mean activity from an average of 490.76
counts/0.1 hr. during entrainment to 159.72 counts/0.1 hr.
during the first ten days of constant light. Circadian
amplitudes during this period averaged 195.78 counts/0.1 hr.
compared to a mean of 667.79 counts/0.1 hr. during entrain-
ment. This depression of activity by constant light agrees
with previously published findings for nocturnal rodents
(DeCoursey, 1961). However, the effect appeared to be
transitory since both parameters tended to recover to pre-
constant light (LD control) values by the end of the 20-day
LL series.

Circadian amplitudes fell slightly while mean activity
levels increased during initial exposure to constant dark-
ness (DD). Neither parameter changed significantly,
however, until 20 days of DD. Circadian amplitudes con-
tinued to fall throughout the time series while the initial
rise in activity level was followed by an eventual depres-
sion. By the end of a 20-day DD series, circadian ampli-

tudes averaged 341.99 counts/0.1 hr. while the average
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activity level was 325.35 counts/0.1 hr.

When circadian amplitudes were normalized to their
respective means (C/CO), it was found that both constant
light and constant dark caused a significant reduction in
the ratio. Initially ,under LL, the C/Co ratio fell to an
average value of 1.17 * 0.09 from a previous LD average of
1.40 + 0.02. Both amplitudes and mean levels fell during
this period, however a disproportionate fall in circadian
amplitudes (71%) compared to mean levels (67% fall)
accounted for an overall reduction in the C/CO ratio. The
effect of LL again appeared to be transitory.

The C/CO ratio was significantly reduced throughout
the entire DD period. The initial reduction (to a value
of 0.98 + 0.08) resulted from both a fall in circadian
amplitude and a rise in activity level. The combined effect
of these changes was to greatly reduce the C/CO ratio. By

the end of the DD period, the C/C0 ratios showed partial

recovery (mean = 1.03 * 0.04) but were still significantly
depressed from their LD values.

In summary, analysis of 10-day time segments of ham-
ster motor activity reveals the presence of a relatively
stable and apparently synchronized circadian periodicity.
While the period length (t) of this major component varies
only slightly, its phase angle and amplitude are highly
labile. Moreover, although transverse profiles are useful

in the comparison of circadian parameters between individual



53

animals, longitudinal profiles allow for a more complete
description of changes within the time series, including
those which are transitory. Accordingly, the presence of
additional periodicities was evaluated by examining the
results obtained when spectral analyses were applied to

individual time series.

Spectral Analysis of Hamster Motor Activity

The spectral analysis procedure used in this study
(Program Waver; Appendix B) produces a computer output of
calculated amplitudes (with standard errors) and crest times
for a large number of significant periodicities. Not all
of these appear to be biologically meaningful when plotted
in a line spectrum and are, in fact, introduced into the
computations by the total length of record (T) and the
interval between data points (AT). It was apparent that an
analysis of these "artifacts" (sidebands) was necessary
prior to a meaningful description of the biological data.
Consequently, computer simulations were performed on arti-
ficial input data of known waveform. Results of this analy-

sis are presented in Figures 6-9.

Computer Simulations

The typical 24-hour (LD) rhythm of the hamster ﬁas the
conceptual starting point for the simulation. Figure 5

illustrates daily activity records of several hamsters



Figure 5.
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Daily activity records of several hamsters
recorded at different times during a 1l0-day
period of LD]2.,]12 entrainment. Horizontal
bars below each graph indicate lights off.
Amplitudes are in counts/hr. x 104. Each
figure represents a daily record from a
single animal.
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recorded at different times during a 1l0-day period of
L012:12 entrainment. Activity (in counts/hr.) is indicated
on the ordinate; time (in hours) appears on the abscissa.
The dark band below each graph represents lights off.

As the figure illustrates, activity in these animals
occurred during the 12-hour dark span. Exact times for
activity onsets and offsets varied between animals with
onsets appearing less variable than offsets. Moreover, the
waveform of entrained hamster activity is frequently multi-
modal, closely resembling a "rippled" square wave.
Accordingly, the effect of fitting cosines to a non-sinu-
soidal function was examined using ten cycles of an artifi-
cial square wave as input to Program Waver. For comparison,
cosines were also fitted to ten cycles of a single sine
function. Thus, both data decks simulated a ten-day time
series with AT = 0.1 hr., N = 2400, and £ = 1 cycle/day
(t=24.0 hrs.). The results are shown in Figure 6.

Figure 6 (a and b) represents the amplitude-frequency
spectra for the square wave and sine wave analysis respec-
tively. (Note: For significance levels, the reader is
referred to Figure 7.) Amplitudes are expressed relative
to the mean and are indicated on the ordinate as a C/Co
ratio. Corresponding frequencies appear on the abscissa
in cycles/day. The figure indicates a dominant spectral
peak at the frequency of the fundamental component (1 cycle/

day) for both waveforms.
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Figure 6. Amplitude-frequency spectra from spectral

analysis of a 24-hour square pulse (a) and a
24-hour sine function (b). Amplitudes are

normalized to the mean at C/CO. N = 2400;
AT = 0.1 hr.
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For the square wave (Figure 6a), the fundamental fre-
quency gave a C/C0 ratio of 1.27 while the ratio for the
sine function was 1.00. Moreover, the analysis produced
numerous sidebands and harmonics even though a single
periodicity was present. It is interesting to note that,
apart from the fundamental components and their immediate
sidebands (which had identical frequency values), the
spectral patterns produced by the contrasting waveforms are
quite different.

The sine spectrum (Figure 6b) indicates that the
original waveform can be described as a single oscillatory
component (a sinusoid) having a frequency of 1 cycle/day.
Sideband amplitudes approach zero as the frequencies
examined by the analysis increase. No secondary peaks occur
at harmonic periods.

In contrast, the square wave spectrum (Figure 6a)
shows several secondary peaks which rise significantly
above background noise at frequencies of 3.0, 5.0, 7.0 and
9.0 cycles/day. These represent cosine components with
period lengths of 8.00, 4.80, 3.42, and 2.67 hrs. respec-
tively, and correspond to the odd harmonics of the funda-
mental frequency. (Note: A square wave is generated by
summating a sufficient number of the odd harmonics of a
sinusoid; Fourier synthesis.)

In Figure 7 (a and c), these spectra are again repro-

duced but include only those components with amplitudes
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significantly higher than the overall mean level when evalu-
ated statistically. In addition, six-minute data values
were summated in these simulations (reducing N by a factor
of 10, from N = 2400 to N = 240) to give hourly totals.

The resulting spectra are shown in Figure 7 (b and d). As
these figures indicate, a reduction in the number of data
points comprising a time series and an increase in the
sampling interval (AT), results in a loss of information
provided by the spectra. For example, in the hourly square
spectrum, Figure 7b, only the first three odd harmonics

are significant, whereas the first nineteen odd harmonics
are significant when AT = 0.1 hr. and N = 2400 (Figure 7a).
Precise values for the spectra of Figure 7 (a and c) have
been tabulated in Appendix F. All significant periods

(T values) which appeared as output are listed, as well as
their frequencies, C/Co ratios, and phase angles. In addi-
tion, the amplitude of each component relative to the cir-
cadian amplitude has been expressed in a ratio (C/C24,
column 5).

In the final simulation, cosines were fitted to a
single square wave cycle to determine this method's useful-
ness in analyzing daily activity records resembling square
waves. The results are shown in Figure 8. The best fitting
cosine had a period length of 29.00 hrs. (frequency 0.82
cycles/day) rather than the expected 24.00 hrs. However,

all secondary peaks represent the odd harmonics of a
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Figure 9. Relationship between continuous days of record
of a 24-hour square pulse and the frequency of
the circadian spectral component. Numbers indi-
cate period lengths (hrs.) converging on 24.0
hrs.
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24-hour square wave with the lowest frequency component
being an 8.01 hr. harmonic (3 cycles/day).

In Figure 9, the relationship between continuous days
of record (T) and the frequency of the dominant oscillation
is illustrated. As the simulation deck was increased from
one day of record to ten days of record, the dominant
spectral component approached the value of the true perio-
dicity (24.00 hrs.) as an assymptote. As the figure shows,
a minimum of 3 continuous days of record was needed in order
to reduce the distortion of the true periodicity from 5.00
hrs. to 0.37 hrs. (22.2 minutes). Ten days of record re-
duced the error of T to 0.02 hrs. (1.2 minutes). A tabula-
tion of values for the three-day square wave spectrum can

also be found in Appendix F.

Analysis of Hamster Data

The results of spectral analysis of a complete 50-day
time series from a typical hamster are presented sequential-
ly in Figures 10-14. Each figure represents the spectral
pattern produced when cosines were fitted to a 10-day data
segment of motor activity. Amplitudes of the cosine compo-
nents are indicated on the ordinate as a normalized ratio
(C/Co); frequencies are indicated on the abscissa in cycles/
day (24.0 hr. = 1 cycle/day). Occasionally, the period
length (1), in hours, of a dominant component is indicated

along with its phase angle (¢) and its amplitude relative
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to the circadian amplitude (C/C24).

In general, the spectra produced by 10 days of hamster
motor activity typically show a single major component in
the circadian frequency domain. Unlike the spectra of the
pure waveforms used in the simulations, however, secondary
peaks having various amplitude and phase relationships to
the circadian component, are usually found at all harmonic
(and sometimes at non-harmonic) frequencies. The peaks
which occur at odd harmonic frequencies, for example at
3 cycles/day (t = 8.00 hrs.), are predictable from the
square wave spectrum, but the appearance of even harmonics
represents a deviation from both the square wave and sine
wave simulations. Moreover, changes in the relative ampli-
tudes of these components seem to be related at least in
part, to the degree of internal dissociation produced by
either LL or DD. In the illustrative examples, dissocia-
tion of the circadian rhythm into its components is demon-
strated by the differences between the LD spectrum of
Figure 10, the spectrum representing the first 10 days of
LL (Figure 1ll1), and the spectra from the entire DD series
(Figures 13 and 14). Under constant light, the dissocia-
tion is transient and missing from the second 10-day period
(Figure 12). This is demonstrated by a transient increasé
in the relative amplitudes of non-circadian frequencies and
a transient decrease in the amplitude of the major 24-hour

periodicity. The spectra illustrating the effect of DD,



69

H.Avmo\uv opn3TTdwe ueTPeOITD 3Y3 03 SATIeTSI dpn3iTTdwe ay3z a3eDTPUT
so9sayjuaaed ut sxaqumN °s3jusuodwoo xolew 03 3xau xeadde (sa3abap)
soTbhue aseyd pue (°say) syzbusl porxad a0z ssntepn °05/o5 se uesu

9yl 03 pazTlewiou axe sapn3iTrdury] °*SOTIOS dwrl Aep-0§ © wWOII e3jep
K3taT3yoe x93swey (CT:CTqgq) pauTtexjus Jo sAep QT JO sTsATeue Texloads

*0T @anbtg



70

0T @anbta
(AVA/S3T0A0) AON3ND3INS

bl 899 686C olI's e ¢St e3¢ 6l Sl 9¢€0
“ v T T I v ! ! J v J I ! ! L} I ! T T T .lloo.o
N NI
1€20
ell-
I9I- 16- O _ .
Gog) (e (222
009 oo i
1440
1€0
»8- dne
an anN 4@».

3ANLITNdAYV



71

however, suggest a more complete dissociation of the syn-
chronized activity rhythm, demonstrated by a progressive

increase in the significance of non-circadian frequencies
and a relatively long lasting depression of the amplitude
of the fundamental circadian component.

In Figure 10, the spectrum produced by synchronized
(LD) data is illustrated. As the figure indicates, a single
circadian component with a period length of 23.95 hrs.

(1 cycle/day) and a phase angle of 83.63 degrees was the
dominant periodicity for this animal during entrainment.
The normalized amplitude (C/Co) of this component had a
value of 1.36 + 0.02. In addition, with the exception of
harmonic #7, a component can be identified at all harmonic
frequencies up to 8 (1t = 3.00 hrs.). Of these components,
the first three had relatively high amplitudes when compared
to the circadian peak. The 12-hour component had an ampli-
tude which was 27.5% of the circadian amplitude while the
8-hour and 6-hour periodicities had amplitudes which were
31 and 30.2% of the circadian amplitude respectively.

As mentioned above, Figure 1l extends the analysis to
include the first 10 days of the LL period following LD.
The spectrum shows a single dominant component in the cir-
cadian domain with a period length of 23.98 hrs. and a
phase angle of 96.34 degrees. Secondary peaks were again

found at harmonic frequencies, slightly shifted but not
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significantly different in period lengths from those seen
in the LD spectrum.

Amplitude changes for both the fundamental and harmonic
components constitute the greatest deviation from the LD
spectrum. The C/C0 ratio of the circadian component was
1.07 * 0.04 during this period compared to a value of 1.36
0.02 during LD. Further, the spectrum suggests some degree
of dissociation, as evidenced by the presence of high-
amplitude harmonics. The peak at a frequency of 3 cycles/
day (period length 7.90 hrs.) for example, now has an ampli-
tude which is 66% of the amplitude of the circadian compon-
ent. Similarly, the amplitudes of all other harmonics,
relative to the circadian amplitude, showed an increase from
their values in the LD spectrum. In addition, peaks were
found at other non-harmonic frequencies (e.g., at 2.8 cycles/
day) suggesting the presence of additional periodicities.

The spectrum illustrating the second half of the LL
time series is shown in Figure 12. The general pattern is
similar to that seen during LD, which suggests the reoccur-
rence of synchronization. A single major circadian compon-
ent was found to have a period length of 24.17 hours and a
phase angle of 88.48 degrees. Its normalized amplitude of
1.37 ¢ 0.03 was comparable to the value seen during LD. In
addition, the relative amplitudes of harmonic components
(i.e., 12, 8, and 6-hour periodicities), showed a return to

LD values. The l2-hour component had an amplitude which was
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19.4% of the circadian amplitude while the amplitudes of
the 8 and 6-hour components were 27.9 and 16.1% of the
circadian amplitude respectively. Peaks at non-harmonic
frequencies were not discernible.

The spectra produced by activity data recorded under
constant darkness are shown in Figures 13 and 14. Figure
13 includes the first 10 days and Figure 14 the second 10
days of a 20-day series. Both figures suggest a dissocia-
tion of the data which lasted for the entire time series.
Figure 13 shows a major circadian component with a period
length of 24.00 hrs. and a phase angle of 205.43 degrees.
Its normalized amplitude, as expected from Table 3, fell
to a value of 0.930 * 0.02. Components representing 12.3
and 8.2 - hr. periodicities were found to have amplitudes
which were 57.2 and 63.6% of the major circadian amplitude.

Data recorded during the second half of the DD series
produced a circadian component with a period length of
23.53 hrs. and a 12.04-hour component whose amplitude was
81.2% of the circadian amplitude, Figure 14. The normalized
amplitude of the circadian period remained at a value of
0.932 + 0.03 while the relative amplitudes of secondary
components increased from their previous DD values.
Further, higher frequency components became more significant
during this period as, for example, in the occurrence of a
4.00 hr. periodicity with an amplitude 42.6% of the circa-

dian amplitude.
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In summary, as the above figures indicate, spectral
analysis of ten-day data segments of hamster activity pro-
duce amplitude-frequency spectra containing a single major
component in the circadian domain. It is possible, however,
that high amplitude peaks represent the summation of
several circadian (or non-circadian) periodicities which
occurred either transiently (and then dropped out or were
resynchronized) or whose phase relationships made them in-
distinguishable as separate components in the specific 10-
day analysis examined. Consequently, detection of these
additional periodicities was attempted by analyzing 3-day
non-overlapping data subsets. The results are shown in

Figure 15.

Analysis of Three-day Data Subsets

Figures 10-14 illustrate that a major circadian
periodicity can be identified from both LL and DD data.
During these periods, however, significant changes in the
amplitude of the circadian spectral peak (relative to its
value in the LD spectrum) suggest a possible interference
from one or more additional periodicities. Higher-than-
expected peaks at other frequencies also suggest the
presence of transient (but real) components which are
normally hidden in the synchronized record. Accordingly,
spectral analyses were obtained from 3-day non-overlapping

data subsets in order that changes in the gross activity
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patterns be more closely documented. For the data presented
in Figures 10-14, the results of such an analysis are shown
in Figure 15 (a-p). As above, normalized amplitudes are
plotted on the ordinate as a ratio (C/Co); frequencies are
shown on the abscissa in cycles/day. (Note: Amplitudes
may be compared directly between plots since ordinates are
drawn to the same scale; frequency scales vary slightly.)

Figure 15 (a-c) represents the spectra obtained from
nine days of entrained (LD) activity data. Each plot in-
cludes 3 consecutive days. A single circadian component
was found in each data subset with period lengths of 24.2,
23.8 and 24.0 hrs. (x = 24.0 * 0.11 hrs.; 1 cycle/day)
and normalized amplitudes of 1.43 + 0.03, 1.42 + 0.04, and
1.34 + 0.04 (x = 1.39 * 0.03) respectively. The slightly
lower value seen during days 7-9 was caused principally by
a reduction in amplitude (C). Mean activity level (Co)
remained constant at 522.73 * 16.2 counts/0.1 hr. through-
out the series. As in Figure 10, secondary peaks were
found at "harmonic" frequencies with greatly reduced ampli-
tudes compared to the circadian peak. The similarity of
each consecutive plot suggests that entrainment of hamster
activity produces a relatively stationary (stable) time
series with minimal dissociation or desynchronization.

Data recorded during the first 3 days of LL (Figure
15d) showed a significant reduction in mean activity level

(119.93 * 11.23 counts/0.1 hr.) from previous LD values
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(p < 0.01). Both the 25.7 and 24.0 hr. periodicities
appear to represent independent rhythms, since their phase
angles (and crest times) were quantitatively different
(48.4 and 91.4 degrees respectively). The phase difference
of these two components is equivalent to 3 hours of clock
time. In addition, secondary components at frequencies of
5.3 and 4.7 cycles/day had amplitudes which were 91 and 94%
of the circadian amplitudes. Hence, the spectrum for this
time period indicates a splitting (into two or more com-
ponents) of the strongly circadian sleep-wakefulness pattern
demonstrated in the LD spectra.

The most significant periodicity found during days 4-6
of LL had a period length of 8.03 hrs. and a normalized
amplitude of 1.05 * 0.07, which suggests additional data
splitting. A circadian component with a period length of
24.05 hrs. and an amplitude of 0.921 + 0.07 was also found.
The longer circadian component seen in the previous three
days could not be separated during days 4-6 but reappeared
in days 7-9 (Figure 15f) and days 10-12 (Figure 15g). Mean
activity level remained depressed during this period at
111.87 + 5.69 counts/0.1 hr. but circadian amplitudes rose
slightly to produce somewhat higher ratios.

Like Figure 15d, Figure 15h, for days 13-15 of LL,
shows two circadian components with period lengths of 25.8
and 24.1 hrs. and amplitudes of 1.46 *+ 0.05 and 1.43 + 0.05

respectively. As in Figure 15d, the circadian components
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represent independent rhythmicities with a phase angle dif-
ference of 45 degrees (51.8 and 96.0 degrees) equivalent to
three hours of clock time. Moreover, the small phase angle
difference of the "25.7-hour" component between days 1-3
and days 13-15 of LL (3.4 degrees) suggests either that
considerable phase shifting occurred for this periodicity
or that the estimate of period length has an inflated error
and is actually closer to 24.0 hours. In addition, secon-
dary peaks at harmonic frequencies had greatly depressed
amplitudes suggesting data resynchronization. This is
further supported by the pattern of Figure 15i (also from
LL) which resembles those spectra produced by the entrained
data.

The remaining spectra of Figure 15 (plots j-p) extend
the time series to include the DD data. Analysis of the
first 12 days, Figure 15 (j-m), revealed a single component
in the circadian domain having an average period length of
24.4 + 0.34 hrs. Some degree of data dissociation is sug-
gested by a highly significant 12.1 hr. component in Figure
15j (with a normalized amplitude greater than the circadian
period for this time segment) and, likewise, by an 8.42 hr.
periodicity in Figure 15k (whose normalized amplitude was
96.3% of the circadian peak). Moreover, Figure 15j, for
the initial 3 days of DD, shows a 53% reduction in the C/Co
ratio of the circadian period (0.68 * 0.04) which resulted

from the combined increase in the overall mean activity
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level (Co) and a decrease in its circadian amplitude (C).

Dissociation of the activity data into components is
further evidenced in Figure 15n for days 13-15 of DD. With
the exception of a 20.5 hr. component with a relatively
low amplitude, no "circadian" period could be demonstrated.
Instead, the most significant periodicity isolated during
this segment had a period length of 12.19 hrs. and an
amplitude of 0.95 * 0.08.

Spectral splitting in the circadian domain occurred
after 16 days of DD, Figure 150. Two high amplitude com-
ponents were found to have period lengths of 23.9 and 22.7
hrs. and normalized amplitudes of 1.15 #* 0.05 and 1.14 ¢
0.05 respectively. As was the case in the LL spectra
(Figure 15 d and h), both components represent independent
rhythms which crested 2 hours apart for an average phase
angle difference of 30 degrees (352.5 and 22.5 degrees
respectively). Finally, in contrast to LL, the last spec-
trum of the DD series (Figure 15p) offers no evidence for
data resynchronization which would restore the spectrum to

its LD pattern.

Analysis of Hamster Data Using Autocorrelation
Functions and Periodograms

Spectral analyses of hamster motor activity under LL
and DD demonstrate the presence of multiple periodic com-

ponents representing independent rhythmicities. To confirm
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such findings, the time series were subjected to autocorre-

lation and periodogram analyses. Each technique emphasizes

a different aspect of the data and, hence, the detection of

multiple components by all methods would further support

the conclusions of the spectral analyses. For the data pre-
sented in the previous section, the results of autocorrela-

tion and periodogram analyses are shown in Figures 16-24.

Results of Autocorrelation Analyses

The effect of lighting regimen on hamster activity
patterns is illustrated in Figures 16-23. The five graphs
of activity data (top) comprise a typical 50-day time
series presented chronologically, with each figure encom-
passing a 10-day data segment. In order that the entire
series be illustrated, only the hourly sums are reproduced
(since the CDC Calcomp Plotter accepts only 500 data points
as input to the plot routine). Nevertheless, analysis of
6-minute data produced patterns of the autocorrelation func-
tion similar to the hourly data (bottom). In some cases,
for example the first 10 days of the LL series, a greater
resolution of the autocorrelation pattern was needed. For
this reason, detailed plots of the autocorrelation analyses
from 6-minute data have also been included (Figures 18, 21
and 23).

In Figures 16-23, hamster activity (raw data) expressed

in counts/hr. as recorded from the activity monitors, is
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Ten-day time series of entrained (LDj3.32)
hamster activity (a) and corresponding auto-
correlation function (b). Amplitude ordinate
is_in scientific_notation in ranges of 1.857 x
103 - 7.426 x 103 to 1.021 x 104 - 1.578 x 104
counts/hr. Rho = serial correlation coeffi-
cient; lag = hourly shifts of the time series.
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indicated on the ordinates in scientific notation (see
Legends on facing pages). Time, in hours, is plotted on
the abscissa. The corresponding autocorrelation functions
for each data segment appear below the raw data plots for
comparison. Each of these graphs represents a sequence

of product-moment correlation coefficients, Rho, obtained
by autocorrelation of the full ten-day segment. The values
of the coefficients range from +1.0 to -1.0 on the ordinate,
while the time lag extends to 120 hours on the abscissa.
All analyses utilized Program Main (Appendix C) and a CDC
6500 computer; results were plotted with a CDC Calcomp
Plotter.

Figure 16b presents the typical correlation sequence
for entrained (LD12:12) hamster data. As the figure illus-
trates, photoperiodic entrainment of hamster activity pro-
duced an autocorrelation pattern in which a single periodic
component was observed. Autocorrelation of ten days of
activity data produced five highly significant peaks with
an average interpeak interval of 24.0 + 0.1 hrs. corre-
sponding to an exogenous 24.0 hr. photoperiod. Peak corre-
lation coefficients averaged a highly significant 0.82
0.01 (p << 0.01) and occurred at 24.2, 48.2, 71.7, 96.0 and
120.0 hrs. The raw data, Figure l6a, from which the auto-
correlation function was derived, are typical of entrained
hamster activity, exhibiting sustained periods of activity

(when the lights are off) followed by equally sustained
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periods of sleep. This is evidenced by a high first-order
serial correlation coefficient for the LD data of 0.81l. It
should be noted that the LD data, which are the controls for
other lighting regimens, appear to be almost square waves
(in the plot of raw data) or triangular waves (in the auto-
correlation plot). The reader is referred to Figure 3 for
similarities between the autocorrelation functions for a
sine wave, a square pulse, and LD hamster activity data
(page 33).

Figure 17a illustrates the initial effect of LL on the
activity pattern. In the absence of an exogenous photo-
period, sustained periods of activity and sleep, like those
previously discernible, are still present but with a more
erratic pattern. The first-order serial correlation coef-
ficient for this series was reduced to 0.42. In addition,
LL caused a 78.5% reduction in the average intensity of
activity from that seen under LD (note the difference in
magnitude of the amplitude scales, Figure l6a vs. Figure

l7a). Mean activity level under LD measured 5315 % 421

1+

counts/hr. compared with an initial level of 1143 134
counts/hr. during LL.

Figure 17b illustrates the autocorrelation function
for the data recorded during the first 10 days of the 20-
day LL series. A detailed analysis (using 6-minute data;

AT = 0.1 hr.) is presented for the same time period in

Figure 18. As the analysis suggests, peak correlation for
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Ten-day time series of hamster activity
recorded during the first half of a 20-day
constant light (LL) time period (a) and corre-
sponding autocorrelation function (b).
Amplitude ordinate is in scientific notation in
ranges of 875 - 7.002 x 103 counts/hr. Rho =
serial correlation coefficient; lag = hourly
shifts of the time series.
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this time segment followed lags of 24.1, 48.4, 72.8, 96.2,
and 119.5 hrs. for an average interpeak interval of 23.9 *
0.23 hrs. Moreover, in contrast to the single oscillation
observed for LD data, a second peak occurred in the auto-
correlation function after a lag of 25.3 hrs. (and again
at 50.4, 74.3, and 100.8 hrs.) suggesting the presence of
a 25.2 * 0.53 hr. periodicity. (These peaks are better
illustrated in Figure 18, although only every fifth point
has been plotted.) In addition, autocorrelation produced
secondary peaks which occurred at regular intervals as the
data were lagged. They are illustrated in Figure 18 pre-
ceding the major components.

The first of these peaks occurred after lags of 6.5,
31.7, 57.0 and 82.6 hrs. and had an average interpeak inter-
val of 25.36 * 0.12 hrs. Likewise, the second peak in the
autocorrelation function reoccurred four times (at 17.4,
41.0, 64.7, and 88.2 hrs.) resulting in a periodicity with
an interpeak interval of 23.6 + 0.05 hrs. Following a lag
of 90 hrs., however, secondary peaks in the autocorrelation
function are difficult to observe. This suggests that multi-
ple periodicities produced by LL are transitory (at least
initially), are best detected from the initial data segment,
and that resynchronization is likely to occur after about
5 days, suggesting beat phenomena. It is interesting to
note, furthermore, that peak correlation values for this

ten day segment were significantly lower than those observed
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for the LD data (p << 0.0l1). The most significant oscilla-
tion (Tt = 23.90 * 0.23 hrs.) had an average peak correlation
value of only 0.29 * 0.03 (Figure 17b) compared to an
average value of 0.82 * 0.01 under LD. This drop in correla-
tion was probably due to the presence of multiple periodici-
ties in the data as well as their wide phase dispersion.

Figure 19a continues the data record to include the
second 10 days of the LL series. As the figure illustrates,
aata splitting was less frequent than in the previous 10
days. Mean amplitudes during the first three days of this
time period were comparable to those of the preceding
series, but by day 14 daily amplitudes returned to LD levels.
Mean activity intensity for the entire series was 4377 * 397
counts/hr., representing a 73.9% increase from the previous
ten days.

The clean delineation of sleep and activity cycles
seen in the LD data returned after 13 days of LL producing
an autocorrelation function similar in shape to that ob-
served during entrainment (Figure 19b). This was further
evidenced by an increase in the first-order serial corre-
lation coefficient to a value of 0.69. It is apparent from
the LL figures that the partial periodicities seen during
the first 10 days of LL resynchronized by the end of 20
days of LL, presumably by shifts in phase. The resynchroni-
zation of these periodicities was followed, in turn, by a

significant increase in the resultant amplitude vector.



Figure 19.
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Ten-day time series of hamster activity
recorded during the second half of a 20-day
constant light (LL) time period (a) and
corresponding autocorrelation function (b).
Amplitude ordinate is in scientific notation
in ranges of 1.752 x 103 - 9.636 x 103 to
1.226 x 104 - 1.489 x 104 counts/hr. Rho =
serial correlation coefficient; lag = hourly
shifts of time series.
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The autocorrelation pattern calculated for this second ten
day segment had peaks at 23.8, 47.8, 72.3, 96.3 and 119.9
hrs., for an average period length of 23.98 * 0.14 hrs. In
addition, peak correlation increased during this period to
a mean of 0.64 + 0.03.

Dissociation of hamster activity by DD is illustrated
in Figures 20a and 22a. Data splitting occurred but to a
lesser degree than that seen during LL. The first-order
serial correlation coefficient fell only slightly during
the first 10 days of DD to a value of 0.67, and was still
relatively high by the end of 20 days at a value of 0.55.

For the first 10 days (Figure 20a) the mean activity
level was 5146 * 378 counts/hr. which was not significantly
different from the mean levels of the LD and final LL time
series (Figures l6a and 19a). Moreover, the autocorrela-
tion function for this 1l0-day segment (Figure 20b) revealed
three periodic components. A major peak occurred at 24.6,
49.2, 73.3 and 97.8 hrs. indicating a 24.45 * 0.12 hr.
periodicity with a relatively high average correlation
value of 0.55 + 0.03. Secondary peaks are illustrated in
Figure 21 for the analysis of six-minute data. The peak at
7.6 hrs. occurred four additional times (at 33.5, 58.7,
81.0 and 104.9 hrs.) suggesting a rhythmicity with an
average period length of 24.13 * 0.06 hrs. Likewise, the
peak at 17.0 hrs. appeared four times to suggest the pres-

ence of a 24.77 + 0.30 hr. periodicity.
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Figure 20. Ten-day time series of hamster activity
recorded during the first half of a 20-day
constant dark (DD) time period (a) and corre-
sponding autocorrelation function (b).
Amplitude ordinate is in scientific notation
in ranges of 1.865 x 103 - 7.460 x 103 to
1.026 x 104 - 1.5854 x 104 counts/hr. Rho =
serial correlation coefficient; lag = hourly
shifts of time series.
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In contrast to the LL time series, dissociation seemed
to be more complete during the second ten days of DD,
Figure 22b. In fact, it is difficult to identify multiple
periodic components which possess relative stability other
than a single, stable circadian period averaging 23.90 #
0.18 hrs., with peaks at 23.6, 71.6, 95.9, and 119.5 hrs.
Peak correlation values averaged 0.33 *+ 0.03 and, although
several secondary peaks occurred during the initial lags,
their stability following subsequent lags was not easily
discernible. The transitory nature of the secondary peaks
is again suggestive of wide phase dispersal. Mean activity
level was reduced 50.64% to 2623 * 265 counts/hr. which was

significantly lower than the LD value (p << 0.01).

Periodogram Analysis

Figure 24 (a-e) offers examples of periodograms calcu-
lated from the hamster activity data of Figures 16-23 (top).
The range of period lengths examined was permitted to vary
in steps of 0.1 hr. from 20-30 hrs., limits which include
the circadian domain of 24.0 hrs. Estimates of Ap (root-
mean-square amplitude) for each of the 101 values of assumed
period are plotted on the ordinates; corresponding period
lengths are found on the abscissa.

The primary feature of each graph is an amplitude peak
at a period value which corresponds closely to the value

obtained by each of the autocorrelation analyses. For the



Figure 22,
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Ten—-day time series of hamster activity
recorded during the second half of a 20-day
constant dark (DD) time series (a) and corre-
sponding autocorrelation function (b).
Amplitude ordinate is in scientific notation
in ranges of 1.570 x 103 - 8.633 x 103 to
1.099 x 104 - 1.334 x 104 counts/hr. Rho =
serial correlation coefficient; lag = hourly
shifts of time series.
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LD data, Figure 24a, maximum amplitude occurred at a period
of 23.9 hrs., which is comparable to the 24.0 hr. perio-
dicity seen in the autocorrelation function for this time
segment. Likewise, periods of 23.9 and 24.0 hrs. are
present in the periodograms for the first and last 10 days
of the LL time series (Figure 24b and c), corresponding to
autocorrelation values of 23.9 and 24.0 hrs. respectively.
In addition, the results of Figure 24b, for the first 10
days of LL, agree with the findings of the autocorrelation
analysis that at least two periodicities were present in
this data segment. Besides the peak at 23.9 hrs. previously
cited, a second, equally significant peak occurred for a
period of 25.0 hrs. which is comparable to the 25.2 hr.
periodicity identified by the autocorrelation function.

In contrast to the autocorrelation analysis, however,
resolution of multiple periodicities from the DD data is
not possible from the periodograms for these segments
(Figure 24d and e). Instead, only a single peak occurred
in each case at 24.5 and 24.0 hrs. for the first and second
l0-day segments. These values, however, do correspond
closely to the major periodicities detected by the auto-

correlation analysis (24.4 and 24.0 hrs. respectively).
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Figure 24. Periodograms of 10-day segments of hamster
activity data from a continuous 50-day time
series, Figure 24a: LD entrained data.
Figure 24b: 1Initial 10 days of LL data.
Figure 24c: Final 10 days of LL data.
Figure 24d: 1Initial 10 days of DD data.
Figure 24e: Final 10 days of DD data.

Ap = root-mean-square amplitude.
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DISCUSSION

Any time series, regardless of waveform, may be ana-
lyzed (by means of Fourier's theorem) into an additive
assembly of cosines whose parameters (i.e., frequencies,
amplitudes and phasing) can then be objectively quantified
(Sollberger et al., 1967). The phase and amplitude of each
of these cosine components plotted as a function of fre-
quency constitute the spectrum. In general, the procedure
involves converting the data from a function of time to a
function of frequency. The spectrum then obtained will show
prevalent periodic components (rhythmicities) having promi-
nent amplitude peaks at their respective frequencies as
opposed to the "flat" spectrum representing white noise.
Strict Fourier procedures, however, make assumptions re-
garding the length of the fundamental component (f = k/T;
frequency = k/total length of record) and, as a result,
the calculated harmonic frequencies include the true basic
periodicity of the time series only by coincidence.
Accordingly, the amplitude-frequency spectra of standard
Fourier analyses are discontinuous since they contain oniy
one set of harmonics.

To avoid this criticism, the spectral analysis pro-

cedure of Program Waver uses a least squares format to fit

118
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(by predetermined increments) cosines of sequentially decre-
mented period lengths. Those cosines which show a greater
amplitude/standard error ratio than that of functions fitted
immediately preceding or following it, appear as output.
The result is a quasi-continuous spectrum of peaks from a
periodogram of best fitting cosine functions (see Table 2).
Moreover, it should be noted here that the error estimate
for values of period length can therefore be approximated by
twice the decrementation interval. Hence, if the decrements
occur as 1% of the previous wavelength, a conservative esti-
mate of the error associated with any one periodicity can
be given as * 2% of the value of the respective wavelength.
The computer simulations on test input data having
known waveforms, period lengths, amplitudes, and phase
angies, have established certain criteria for the interpre-
tation of spectra obtained from biological data. The first
of these concerns the accuracy of period estimation given
a periodic function that is not a sinusoid. As illustrated
in Figures 8 and 9, the distortion produced by the fit of a
cosine to a square pulse is inversely related to the length
of the time series or, more accurately, to the number of
repetitive pulses. Increasing the number of cycles of a
"24-hour" square pulse from one cycle to ten cycles reduced
the distortion of the true periodicity from 20% to 0.08%.
For entrained hamster data, which are similar in shape to a

square pulse, it appears (from Figure 9) that a minimum of
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3 continuous days of record is needed for the production of
meaningful spectra, in the sense of a low error in period
length. There is still an error in absolute amplitude,
however, as discussed below.

A second criterion established by the computer simula-
tions relates the waveform to the pattern of harmonic peaks.
As illustrated in Figure 6, a pure "24-hour" sine function

with a crest time at 0600

hrs. produces a single spectral
peak (with its sidebands) at a frequency of 1 cycle/day and
a phase angle (as indicated in Appendix F) of 90.76 degrees.
In addition, no secondary peaks occur at harmonic frequen-
cies. On the other hand, the spectrum produced by a "24-
hour" square pulse exhibits secondary peaks at all of the
odd harmonic frequencies of the fundamental component. The

00 hrs.

square pulse had a step transition from 0-100 at 12
which resulted in a phase angle of 270 degrees (midpoint of
the pulse) for the fitted cosine. Concurrently, the phase
angles for all of the odd-harmonic components averaged 269.5
+ 1.8 degrees.

The relationship of the amplitude of a harmonic com-
ponent to that of the fundamental frequency (C/C24), as
evidenced by the values for the square spectrum (Appendix F),
is given by the reciprocal of the harmonic number (at least
for functions approximating a square pulse). Thus, for a

"24-hour" square wave the third harmonic (1t = 8.00 hrs.)

has an expected amplitude of 1/3 or 33% of the amplitude of
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the 24-hour period, while the fifth harmonic (t = 4.8 hrs.)
produces a C/C24 ratio of 1/5 or 0.20, etc. Moreover, it
should be noted in Appendix F that the least squares fit of
a cosine to a 24-hour square pulse results in an "overshoot"
of the circadian amplitude estimate by approximately 27%

(as evidenced by a C/Co ratio of 1.27 for the square pulse
as opposed to a value of 1.00 for the sine). It is evident
that this error is easily compensated for by normalizing

all amplitudes to the circadian peak.

The term "harmonic" in the above description indicates
frequencies in the spectrum (detectable by the least squares
fit of a cosine) which are integer multiples of the funda-
mental. For "pure functions," their expected amplitudes and
phase angles will vary in a manner consistent with the wave-
form of the major periodicity. In the case of a sine wave,
for example, peaks in the spectrum will be absent at harmonic
frequencies (expected amplitude 0% of the amplitude of the
fundamental), whereas periodic functions which approximate
a square pulse would be expected to produce spectral peaks
at odd harmonic frequencies, with predictable relative ampli-
tudes and phase angles. However, biological oscillators
would rarely (if ever) be expected to produce symmetrical
periodicities. Hence, peaks at harmonic frequencies in the
biological spectra, while referred to as "harmonic" compo-
nents in this text, may in fact represent real and inde-

pendent periodicities since their amplitude and phase
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characteristics (under LL and DD) are often inconsistent
with either the square wave spectrum or the spectrum of LD
control data. It is hard to imagine, for example, a spec-
tral peak at a frequency of 2 cycles/day (T = 12.0 hrs.)
which has an amplitude that is 81.2% of the amplitude of
the circadian period as being anything less than an indica-
tor for some real component (see Figure 14) rather than

the simple second harmonic of the 24.0-hr. period, in the
strict sense. Moreover, if the 12.0-hr. periodicity does
represent a "real" component, then the analytical power of
Program Waver is such that multiple periodic components may
be identified as coexisting in the same time series. To
test this, Kasiske (1972) applied the least squares analy-
sis (Program Waver) to an artificial 24-hour sine function
and, in addition, to a function formed from the summation
of four sinusoids (period lengths 23.9, 8.0, 6.0 and 4.0
hrs.) with different amplitudes and phase angles. The

function can be expressed as:

£(t) = 142 + [127 cos(mt - 2" 21.8) +
27 2T
84 cos(——t -3 5.7) + 73 cos (5.1)
27
(= 6t - 4.8) + 60 cos (——t -
34’1 3.1)1/4

As expected, for the 24-hour pure sine simulation, the ana-

lysis illustrated a single peak in the amplitude spectrum
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at a frequency of 1 cycle/day. However, for the function
described by equation (5.1), amplitude peaks were detectable
at all component frequencies (i.e., at 1, 3, 4, and 6
cycles/day) and at phase positions identical to those of

the input curves. As evidenced by equation (5.1), their
amplitude values were equivalent to Ci/4 (where C, = 127...

1
4 = 60). Moreover, no significant shifts in these para-

C
meters occurred after the addition of random noise. 1In
other words, the output spectrum of f(t) revealed the
presence of 4 periodicities of predictable amplitude and
phase which were known a priori to be independent.

Finally, it should be noted that, as Figure 7 illus-
trates, the resolution of any given spectrum is inversely
related to the length of the sampling interval (AT) and
directly related to the length of the time series (T). The
analytical power of least squares analysis will thus be
increased by small sampling intervals and long time series.

As illustrated in Figure 5, the general waveform of
entrained hamster activity bears closer resemblence to a
"rippled" square wave than to a sinusoid. This is due
principally to the sharp rises in activity onset and,
usually by equally sharp falls in offsets. (The reader is
not to infer, however, that such patterns are reproduced in
the natural state, since they may in fact, be produced by
the step transitions of the artificial LD photoperiod in

the laboratory). Consequently, the output spectra produced
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by least squares analysis of LD data were expected to
exhibit patterns similar to the square pulse simulation
(Figure 6a). However, as shown in Figure 10, entrained
hamster data show characteristic deviations from both of
the previously mentioned simulations. (The reader is here
referred to Appendix G for numerical values of the five
biological spectra presented earlier.) Unlike the sine
wave simulation (Figure 6b), the amplitude spectra typically
produced by LD data exhibit components at all harmonic
frequencies with harmonics 2, 3 and 4 (t = 12.0, 8.0, and
6.0 hrs. respectively) generally possessing "substantial"
amplitude values relative to the higher frequency harmonics.
Moreover, the appearance of the "even harmonics" represents
a deviation from the square wave spectrum and, as alluded
to earlier, cannot be attributed to the presence of random
noise.

Like the square wave simulation, the 8.0-hr. component
illustrated in Figure 10 had an amplitude and phase value
predictable by square wave analysis (see Appendix G for
T = 8.0 hr.). Consequently, the LD spectra typically offer

little evidence regarding the "authenticity" of this compP<
2 A
£ t

-_—

nent as being anything other than the third harmonic o
circadian period. 1In principal, of course, this alone wa >
rants a closer examination of the 8.0-hr. oscillation (aﬂé
other significant harmonics) since the actual wave form of

the data may reflect important features of the neuxral
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system which produces circadian behavior. In the case of a
square pulse, for example, these higher frequency components
correspond to the fine ripples and sharp corners of the
waveform. It may be, however, that these secondary com-
ponents correspond to rhythmicities in the output data which
reflect interactive sub-systems of the neural networks.

This is evidenced by the fact that when the system is dis-
turbed, as with constant light (see Figures 11 and 12), the
amplitudes and phase angles of these harmonic components
appear to be modulated independently from the fundamental.
In Figure 11, for example, the 8-hour component (actually
7.9 hrs.) showed a phase angle of =-267°, constituting a
phase shift of approximately 180° from its value under LD,
while the circadian component shifted by only 14°. In addi-
tion, its amplitude relative to that of the circadian period
was twice its predicted value. When the data showed resyn-
chronization (Figure 12), the relative amplitude of the 8-
hour component returned to a value compatible with the
simulation but its phase angle (-137°) remained inconsistent
with the expected value. Evidence for a "real" 8-hour
component is further suggested, though not completely demon-
strated, by the fact that data dissociation produced an
8.33-hr. component (Figure 11) with a phase angle of 61.3°
and a relative amplitude which was 62.8% of the circadian
amplitude. Since the amplitudes of these components (and

therefore their significance in the spectrum) do not differ
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significantly, there is no criteria for accepting one as a
"real" component and the other as merely a sideband. It
should be noted, moreover, that the ability of the least
squares spectra to illustrate "additional" independent
rhythmicities will, of course, depend in large part on the
"natural strength" of any given periodicity as well as the
degree to which it can be dissociated from the synchronized
cycle by either LL or DD. Nevertheless, at this point,
lacking more precise measures of data collection, Figure 11
suggests a periodicity around 8 hours possibly representing
an independent "motor sub-set." Peaks at higher component
frequencies, previously observed, may do the same.

That the waveform of entrained hamster activity data
resembles the square pulse of the simulation, aside from
producing odd-harmonic components in the amplitude spectrum,
is further evidenced by the fact that spectral analysis of
the LD data, which produced the ten-day spectrum of Figure
10, on a day-to-day basis resulted in an average periodicity
of 30.3 + 0.34 hrs. as a fundamental frequency. When these
daily records were analyzed as a ten-day time series,
however, the spectrum produced a highly significant circa-
dian period of 23.95 hrs. corresponding to the 24.0 hr.
photoperiod (Figure 10). This relationship follows the
square wave simulation illustrated in Figure 9.

A deviation from the square wave spectrum, which has

yet to be explained, is the appearance of secondary
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components at even-harmonic frequencies in the spectra of

LD data. Simulations which include the addition of random
noise, as mentioned earlier, have yet to demonstrate the pro-
duction of these unexpected components. Moreover, they are

not produced as artifacts to the LD photoperiod. It

12:12
might be argued, for example, that if the waveform of en-
trained data is, on the average, a "bimodal" function, with
peaks at onset and offset separated by 12 hours, the fit of
a l2-hour cosine might produce a lower least squares error
estimate than surrounding frequencies and, as a result,
appear in the spectrum. Recently, however, data recorded
under LD16=8 entrainment, where activity occurred only dur-
ing the 8 hours of darkness, produced spectra with highly

significant peaks at 12.0 and 6.0 hrs. In the LD data,

16:8
no combination of peaks resulted in either a 12 or 6-hour
interval to which these components might then have been re-
lated. Moreover, no waveforms thus far simulated, includ-
ing triangular waves, can account for the presence of 6 and
12-hour periodicities. Whether these components are real
or artifactual (and certainly all waveforms have not been
tested), the evidence to date characterizes them as pecu-
liar only to the biological spectra. Thus there is no
apparent way, as yet, to question their validity as reflec-
tions of true biological activity.

Aschoff (1973) defines the transitory state whereby

rhythmicities within an organism change their mutual phase
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relations from one steady state to another steady state as
"internal dissociation." Internal desynchronization, on
the other hand, occurs when different rhythms show differ-
ent frequencies in the steady state. It appears from this
study, that complete desynchronization of the strongly
circadian activity cycle of the hamster is difficult to
demonstrate in a 20-day time series. In general, as the
activity graphs of Figure 16-22 (top) exemplify, LL animals
tended to show a transient dissociation initially after
which resynchronization occurred in the absence of an ex-
ternal periodicity. Further, although DD data also disso-
ciated, it generally took longer than LL data (compare
Figures 20 and 22) and hence, the 20-day time series was
too short to reveal complete desynchronization. Neverthe-
less, the spectra of Figures 10-14 offer evidence for the
presence of multiple periodicities in circadian activity in
dissociated data.

Aside from the "non-circadian" spectral components
previously considered, the 10-day spectra suggest that
several periodicities may be present whose period lengths
are near 24 hours. This is evidenced, not by the appearance
of several circadian peaks, but by the reduction in the
C/Co ratio of the single peak seen in the LL and DD spectra
(see also Table 3). Recent simulations have shown that a
time series containing three "24-hour" cosines separated by

90° produces a spectrum with a single peak in the circadian



129

domain but with a greatly reduced normalized amplitude
(C/Co) and a phase angle representing the average of all
three. However, because of the specific operating format of
Program Waver, the fitting of the significant 24.0-hr.
cosine (T = 1 cycle/day) is followed by a 1% frequency
decrementation and the fitting of additional cosines with
smaller wavelengths. Consequently, the presence of multiple
periodicities having identical period lengths would not be
directly detected by the Waver program (that is by the
appearance of several circadian peaks in the spectrum). In
fact it is unlikely that additional circadian peaks will
appear in a l1l0-day spectrum unless the real periodicities
which they would represent had period lengths different
enough to allow for several decrementations to occur. In
this case, the presumption is that at least one of the rela-
tive deviates of the separating decrements might produce a
trough in the amplitude spectrum (between the periodicities)
and allow peaks to occur at the appropriate frequencies.

All circadian components, differing by at least 2%, might
then appear in the output spectrum. Nevertheless, regard-
less of the number of peaks which appear in the circadian
domain, any time series whose spectra indicate significant
reductions in the C/C0 ratio of the circadian peak must be
viewed as potentially possessing more than one circadian
periodicity. It is appropriate to suggest for future study

that, since several circadian components may be "visible"
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in dissociated or desynchronized data, the decrementation
interval in the circadian domain be reduced (in Program
Waver) to increase the probability of finding multiple
circadian peaks in 1l0-day spectra. Comparisons with LD
spectra from time series of equal length (using the same
decrementation schema) would of course have to be made.

An additional note concerning the occurrence of only
a single circadian peak in the 10-day spectra has to do
with the stability (in time) of the various periodicities.
In this case, spectral analysis of the full 10-day time
series might be able to isolate only a single component
whose period length, amplitude, and phase angle represent
an averaging of various unknown circadian components.
Analysis of shorter time series, however, might uncover
these "transient" components provided that the "strength"
of any one periodicity is sufficient enough to allow for
its detection and also that an appropriate data sub-set is
chosen. Moreover, if any given sub-set contains more than
one periodicity, their period lengths should be sufficient-
ly separated to allow for the occurrence of several decre-
mentations according to the rationale stated above. The
presumption of these remarks relates of course, to the
analytical requirement for stationarity in the basic dafa
set. Detéctability is thus seen to be a balance between
the length of record and the time structure of the bio-

logical output data set.
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Figure 15 illustrates the results of spectral analyses
on shorter time series. Three-day non-overlapping data sub-
sets of hamster activity were chosen in accordance with the
criteria established in Figure 9, namely, that there be at
least three repetitive cycles for periodic functions re-
sembling a square pulse. For a comparison with a 3-day
square pulse spectrum, the reader is referred to Appendix F.

Typically, the spectra from LD sub-sets (Figure 15 a-c)
indicate that entrainment of hamster activity produces rela-
tively stationary (stable) time series having a single
circadian component and hence, are in general agreement
with the 10-day LD spectra. In contrast to the 10-day LL
spectra, however, 3-day analysis of LL data offer evidence
for the presence of additional circadian components when the
activity data are dissociated. Data splitting is evidenced
in Figure 15(d and h) by the simultaneous occurrence of two
circadian components of equal significance (amplitude) but
phase shifted by about 45° (3 hours). Moreover, the spectra
following Figure 15d indicate that the stability of these
components is such that they appear transiently (and then
fade out) until, as in this example, the data resynchronize
(Figure 15i). In addition, two circadian components were
"uncovered" from the DD data of the example (Figure 150)
although not until 16 days of constant darkness. However,
the spectra preceding Figure 150, for example Figure 15n,

indicate that some dissociation began prior to the
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occurrence of the "split-spectrum." In days 13-15 of this
time series (Figure 15n) the most significant periodicity,
according to spectral analysis, had a period length of 12.1
hrs. 1In fact, no circadian component appeared, with the
possible exception of a low amplitude 20.6-hr. component,
during this time segment. Since many of these higher fre-
quency components appear in the 3-day analyses, and with
greater significance levels than the "true" circadian fre-
quencies [see Figure 15 (e, j, m and n)], it is difficult
to call them either harmonics or sidebands of a circadian
period. The possibility that they are correlates of real
biological rhythmicities must therefore be considered.

It should be noted here, in accordance with a previous
discussion, that the appearance of two circadian components
in two of the LL and one of the DD spectra probably oc-
curred because they were sufficiently different in period
length to allow for several decrementations to occur. For
the LL spectra, at least 7 decrementations occurred between
the fitting of the 25.7 and 24.0-hr. components; at least
5 occurred in the DD spectrum between 23.9 and 22.7 hrs.
This does not suggest, however, that when several peaks are
found in the circadian domain of least squares spectra they
must therefore have significantly different period lengths
when evaluated statistically. It must be emphasized that
if such components appear with "equal" amplitudes but with

crest times which are 3 hours apart (as in this example),
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the possibility that they represent independent rhythmici-
ties must be considered even if statistical differences in
period lengths cannot be demonstrated.

Before leaving the 3-day spectra, attention is drawn
to the difference in the splitting patterns observed in the
LL and DD spectra. Under LL, the split occurred between a
24.0-hr. component and a slightly longer component of 25.7
hrs. In the DD spectrum, the split occurred between a 23.9-
hr. component and a slightly shorter component of 22.7 hrs.
Whether this pattern bears any relationship to Aschoff's
rule is not known but it is pointed out here as a possible
question for future study.

Two alternative methods for finding the frequency
content of periodic time series are autocorrelation analysis
and the periodogram methodology of Enright (1965a). The
general impression of this study regarding the periodogram
technique, however, is that it lacks the resolution neces-
sary for the detection of multiple periodicities. As illus-
trated in Figure 24b for LL data, two periodogram peaks
representing periodicities of 23.9 and 24.8 hrs. were de-
tected. However, the DD periodograms (Figure 24 d and e)
failed to clearly resolve any periodicities other than a
single 24-hr. component even though the spectral and auto-
correlation analyses (both of which represent more powerful
techniques) offer evidence for the presence of multiple

components in the DD data. Autocorrelation analysis, on the
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other hand, is a useful technique for the detection of
periodic signals although, since it does not offer informa-
tion regarding the phase of a rhythmicity, it is best used
in conjunction with spectral analysis.

A comparison of findings between the spectral analysis
procedure used in this study and autocorrelation analysis
reveals that the two are in general agreement. For LD data,
both autocorrelation and spectral analysis indicate that
entrainment results in a single observable periodicity.
However, the number of circadian components resolved from
dissociated data is often different for the two techniques.
For the example presented here, spectral analysis of LL
data showed two circadian components whereas autocorrelation
of the same time series resulted in four. This is probably
because the decrementation criterion seen in the spectral
program is not identical to the lag sequence required for
the autocorrelation analysis. Examination of the four
periodicities indicated by the autocorrelation function of
Figure 18 (average period lengths are 25.3 * 0.12, 23.6 *
0.05, 23.9 + 0.29, and 25.2 + 0.75) reveals that their
proximity probably accounts for the appearance of only two
of them in the spectrum. A sufficient number of decrementa-
tions does not occur between 25.3 and 25.2 hrs. nor between
23.9 and 23.6 hrs. Consequently the spectrum revealed only
two circadian components but their period lengths are in

general agreement with those of the autocorrelation
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function. The same argument may be used for the three
circadian components found by autocorrelation of the DD time
series (Figure 16) where the spectra revealed only two.

The correlograms of Figures 18 and 21 suggest that
multiple circadian periodicities can be detected in both LL
and DD activity data. Moreover, the fact that the LL data
in this example resynchronized after 14 days, suggesting a
dissociated rather than a completely desynchronized time
series, illustrates that autocorrelation functions may de-
tect periodicities even when they are "transients." It
should also be noted that detection of any one periodicity
by autocorrelation is probably contingent on the number of
"visible" cycles which present themselves in the complete
time series and of course, on the number of actual perio-
dicities present. The latter is so because the presence of
additional periodicities may reduce the value of the par-
ticular correlation coefficient for any one component (as
opposed to the case where only one was present) and hence,
certain periodicities may not be discernible above the
"noise." This would also be true for periodicities which
exhibit phase shifts or frequency changes. In this case,
they would appear in the correlogram at their average
length with reduced amplitude or, if the shifts were large
enough, possibly not at all.

Finally, the degree to which activity data are dissoci-

ated (or desynchronized) may be identified in the first data
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lag by the value of the first-order serial correlation coef-
ficient; a measure of whether high values tend to be
followed by high values or low values by low values. In
general, both LL and DD data show lower first-order serial
correlation coefficients than LD controls. Moreover, as in
the example of Figure 19, an increase in the serial correla-
tion coefficient from data recorded under either LL or DD

is an indication of resynchronization. The LL data of
Figure 17 for example, had a first-order serial correlation
coefficient of 0.42 (compared to 0.81 under LD) which is
reflected in the raw data plot, Figure 17a, by a high degree
of "data splitting." The data of Figure 19a, however, which
appear to be relatively synchronized under LL, reflect an
increase in the first-order serial correlation coefficient
of 0.69.

The phenomena of beats in frequency analysis has only
been alluded to above by the reference to frequencies which
fade in and out. Perfectly stationary output time series
will of course show beats (i.e., difference frequencies)
whose measurable amplitudes go through maxima and minima.
These may, in the long run, be the most revealing of all
for the construction of those physiological models for gross
motor activity toward which this field of investigation is
ultimately directed.

The current hypothesis which proposes a multiplicity

of individual oscillators in circadian organization may be



137

applicable to activity data. It has been shown that such
records contain information regarding the output from sever-
al "motor sub-sets" (such as eating, drinking, running wheel
activity, etc.) which may exhibit independent rhythmicities
when freed from light-dark synchronization (Wolterink et al.,
1973). Classical strip-chart recordings of motor activity
which measure (often subjectively) the periodic course of a
single parameter (typically activity onset) are therefore
inadequate to a total understanding of the neural networks
which contribute to circadian behavior. Recording gross
motor activity, however, with a capacitance-type activity
monitor produces a numerical printout which is easily amen-
able to complex time series analysis. Moreover, it is
obvious that recording techniques which separate (from the
total time series) the output from different motor sub-sets
will further this understanding.

The above considerations have almost been a defense of
a "modified-Halberg-cosinor" methodology, guided by auto-
correlation and simulation, despite recent attacks upon its
basic validity. By the use of 1% decrementations, looking
at first-order coefficients becomes a reasonable first
approximation to a "multiple-Fourier" periodogram. It
fails, however, to do true second, third and n-order coef-
ficients, and it is only by simulation, not by analysis,
that the results can be shown to be biologically meaningful.

Nonetheless, such analyses are necessary to an understanding
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of those motor mechanisms responsible for circadian activ-
ity as they allow for a more detailed description of the

biological time structure and provide the analytical basis

for model building.



SUMMARY AND CONCLUSIONS

1. Circadian activity data recorded in constant light
or constant darkness exhibit minor shifts in frequency but
major shifts in amplitude and phase.

2, Both constant light and constant darkness cause a
general depression of mean activity levels, although con-
stant darkness may cause a transient increase initially.
This is usually accompanied by a reduction in circadian
amplitude thus reducing the C/C0 ratio.

3. Spectral analysis of activity data involves a con-
version of the time series from a function of time to a
function of frequency. Prevalent periodic components are
then represented by peaks in an amplitude-frequency spectrum.

4. The spectral analysis program developed for this
study (Program Waver) produces a modified-Fourier periodo-
gram which results in a more complete amplitude-frequency
spectrum than either classical Fourier analysis or the
simpler cosinor program of Halberg.

5. Computer simulations (spectral analyses) on test
input data of known waveform, period length, amplitude and
phase angle are useful in establishing criteria for the

interpretation of spectra obtained from biological data.
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6. In general, the spectral pattern of a periodic time
series depends in part on the overall shape and stationarity
of the periodicity.

7. For periodic functions that are not sinusoids, such
as for square waves, the distortion in period length pro-
duced by the fitting of a cosine can be reduced by increas-
ing the number of repetitive cycles.

8. The resolution of any given spectrum is inversely
related to the length of the sampling interval (AT) and
directly related to the length of the time series (T).

9. Spectral analysis of daily entrained hamster activ-
ity records containing as many as 240 points in one day may
result in an error in period length estimation of as high
as 20%. For this reason, at least 3 continuous days of
record are needed for the production of meaningful spectra.

10. Since entrained hamster activity closely resembles
a square pulse, the estimate of amplitude even in a 1l0-day
record may result in an "overshoot" of about 27% in the
estimation of a circadian amplitude.

11. The time series methodology examined in this dis-
sertation (spectral analyses, autocorrelation functions,
and periodograms) indicate the presence of multiple perio-
dicities in "dissociated" hamster activity.

12. In addition to the detection of multiple-periodic
components in time series data, spectral analysis results

in quantification of rhythm parameters in terms of period
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length, phase, and amplitude.

13. Although multiple periodicities are easily detected
in "dissociated" data by autocorrelation functions, they are
best used in conjunction with spectral analysis since they
offer no determination of phase and only indirect estimation
of amplitude.

14. The periodogram procedure of Enright (1965a)
appears to lack the resolution necessary for the detection

of several circadian periodicities.
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APPENDIX A

BUYS~BALLOT TABLE¥*

Row 1 X X oo X

1 2 P
Row m Xp(m—l)+l xp(m—l)+2 ces Xpm
Totals U U cee U
P,1l P,2 P,P
Averages Yp,l Yp'2 cee Yp,p
N = total number of hourly observations, an integer;**
i = hourly observation for the itp hour (0<1i<N);
P = period for which form is to be estimated (need not be
an integer);
P = largest integer <p; e.g. if p = 24.7, P = 24;
h = hour for which an average is to be calculated, an
integer (0<h<p);
m = number of measurements entering calculation of an
hourly average, an integer;
Yy = mean hourly value for the Ath hour of the form
p,h : : :
estimate for assumed period, p;
Jj = an integer, essentially the equivalent of the row

number in the Buys-Ballot table.

For each value of h and p, let m be the largest integer
less than or equal to
1 +3-h
P

Then

Y =
P,h

=

m
z
j=

L Fh+G-Lp)

*
xxfrom Enright (1965b)
AT may equal 0.1 hr.
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APPENDIX E

Basic Plot Routine

ATTACH (STAT,STAT3)

STAT.

FILEBUILD,DATOUT=DATAl

L1=LAG,RHO

FILEBUILD,DATOUT=DATA2

L1=LAG,RHO

FILEBUILD,DATOUT=DATA3
(etc.)

PLOT(1,2) PD,NODS,PLOTJECT,DATIN=DATAl

HSI1ZE=10,VSI1IZE=6 ,DOT,NHINT=24 ,VSEP=2 ,SPECIAL1S5
PLOT(1,2) PD,NODS,PLOTJECT,DATIN=DATA2
HSIZE=10,VSIZE=6,DOT,NHINT=24,VSEP=2,SPECIAL15

(etc.)

FORMAT (VARIABLE)

(DATADECK)
END OF DATA
FORMAT (VARIABLE)
(DATADECK)

END OF DATA

(etc.)
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T
(hrs.)
68.99
53.48
43.64
36.89
31.91
28.05
24.00
21.01
19.29
17.83
16.60
8.40
8.00
7.64
4.94
4.80
4.67
3.43
2.67
2,18
1.85
1.60
1.41
1.26

I. Ten-day Square Wave Spectrum

£ (cycles/
day)
0.347
0.448
0.549
0.650
0.752
0.855
1.000
1.142
1.244
1.346
1.446
2.858
3.000
3.143
4.855
5.000
5.114
7.000
8.999
11.000
12,999
14,994
16.998
19.007

APPENDIX F

¢

C/C0

0.112
0.121
0.136
0.159
0.205
0.315
1.273
0.239
0.125
0.077
0.058
0.094
0.424
0.086
0.055
0.251
0.052
0.182
0.142
0.116
0.098
0.085
0.076
0.067

(degrees)
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176.32
177.80
178.88
181.07
183.77
190.12
268.21
346.03
349.82
350.66
352.92
194.02
269.60
346.68
189.00
269.75
349.06
271.01
268.10
270.43
268.18
259.95
267.54
281.95

C/Coa

0.088

0.095
0.107
0.125
0.161
0.247
1.000
0.188
0.098
0.061
0.040
0.074
0.333
0.068
0.044
0.200
0.042
0.143
0.111
0.091
0.077
0.067
0.059
0.059

Harmonic #

11
13
15
17
19



T
(hrs.)
48,82
24.37
16.43
9.48
8.00
6.93
4,80
3.43
2.67
2.18
1.85
1.60

T
(hrs.)
68.99
53.48
43.64
36.89
31.91
28.05
24.00
21.01
19.29
17.83
16.60

II. Three-day Square Wave Spectrum

f (cycles/
day)
0.490
0.985
1.461
2.530
3.000
3.460
5.000
7.000
8.999

11.000
12.999
14.994

168

c/C

(degrees)

c/C

0 24
0.426 175.06 .335
1.271 261.57 1.000
0.155 339.40 .122
0.088 197.09 .069
0.425 270.00 .334
0.065 340.78 .051
0.255 270.00 .201
0.182 271.84 «143
0.142 268.31 112
0.116 270.83 .091
0.098 270.49 .077
0.085 268.20 .067

III. Ten-day Sine Wave Spectrum

f (cycles/
day)
0.347
0.448
0.549
0.650
0.752
0.855
1.000
1.142
1.244
1.346
1.446

C/CO-“-C/C24

0.073
0.080
0.091
0.110
0.146
0.233
1.000
0.204
0.115
0.078
0.058

(degrees)

3.42
1.86
0.27
1.56
4.34
10.77
90.76
168.88
170.75
174.06
174.00

Harmonic #

11
13
15

Harmonic #



APPENDIX G

Computer Output From Spectral Analysis of Hamster Data

I. LD Data (Figure 10)

C, = 531.52 + 15.26 C + 727.45 + 11.08

0 24

T frequency T frequency
(hrs.) (cycles/day) C/Co (hrs) (cycles/day) C/Co
67.54 0.355 0.152 6.53 3.673 0.101
53.05 0.452 0.140 6.00 4.001 0.413
44.17 0.543 0.083 5.77 4.162 0.148
37.19 0.645 0.265 5.44 4.409 0.087
31.75 0.756 0.283 5.30 4.531 0.098
27.83 0.863 0.398 4.90 4,893 0.092
23.95 1.002 1.369 4.78 5.024 0.123
21.03 1.141 0.339 4.65 5.158 0.100
19.25 1.247 0.212 4.56 5.254 0.096
17.61 1.363 0.166 4.43 5.418 0.135
15.66 1.533 0.116 4.18 5.739 0.076
14.72 1.630 0.139 4.00 6.001 0.154
13.62 1.762 0.167 3.74 6.422 0.149
12.74 1.883 0.154 3.60 6.660 0.079
11.90 2.024 0.377 3.59 6.676 0.077
10.68 2.247 0.192 3.56 6.738 0.085
10.05 2.387 0.142 3.35 7.163 0.095
9.45 2.539 0.146 3.24 7.406 0.121
8.56 2.803 0.094 3.13 7.658 0.080
8.00 3.154 0.426 2.99 8.034 0.188
7.61 3.552 0.131 2.90 8.266 0.113
6.76 3.552 0.159
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II. LL Data (Figure 11)

C, = 113.85 * 5.48 Cc = 121.78 +* 5.19

0 24
T frequency T frequency
(hrs.) (cycles/day) C/C0 (hrs.) (cycles/day) C/C0
74.75 0.321 0.175 5.89 4,077 0.425
54.23 0.442 0.207 5.70 4.212 0.459
43.33 0.554 0.208 5.35 4.484 0.253
35.86 0.669 0.220 5.19 4.627 0.350
31.97 0.750 0.171 5.12 4,684 0.169
28.39 0.845 0.281 5.07 4,733 0.209
23.98 1.002 1.066 4.93 4.859 0.481
20.78 1.155 0.240 4.80 5.004 0.361
18.49 1.298 0.337 4.61 5.207 0.452
15.20 1.579 0.294 4,36 5.499 0.234
13.78 1.741 0.308 4.22 5.686 0.216
12.31 1.938 0.480 4.07 5.891 0.288
10.44 2.298 0.164 3.85 6.233 0.247
9.93 2.417 0.162 3.71 6.471 0.208
9.21 2.607 0.290 3.63 6.618 0.322
8.79 2.731 0.259 3.56 6.734 0.286
8.33 2.888 0.669 3.41 7.033 0.388
7.90 3.055 0.705 3.29 7.286 0.220
7.49 3.206 0.203 3.21 7.473 0.245
7.25 3.309 0.312 3.15 7.612 0.355
6.98 3.438 0.256 2.98 8.055 0.402
6.43 3.727 0.366 2.90 8.278 0.321

6.21 3.862 0.529
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III. LL Data (Figure 12)

Ch = 437.75 * 14.34 C,, = 601.77 + 11.38

0 24
T frequency T frequency
(hrs.) (cycles/day) C/C0 (hrs) (cycles/day) C/Co
46.03 0.521 0.168 5.80 4.138 0.108
37.45 0.640 0.102 5.54 4,331 0.116
30.26 0.793 0.249 5.16 4.647 0.095
24.17 0.993 1.374 5.03 4.767 0.087
19.75 1.215 0.162 4,91 4.884 0.125
17.86 1.344 0.088 4.80 5.005 0.228
16.41 1.462 0.102 4.66 5.149 0.107
13.79 1.740 0.138 4.51 5.324 c.182
11.87 2,023 0.267 4.17 5.754 0.087
10.04 2.391 0.098 4.02 5.967 0.165
9.30 2.582 0.089 3.91 6.145 0.091
8.86 2.707 0.160 3.81 6.303 0.148
8.47 2.833 0.188 3.62 6.623 0.093
8.02 2.992 0.384 3.42 7.008 0.168
7.46 3.217 0.111 3.36 7.152 0.122
7.08 3.387 0.121 3.27 7.329 0.085
6.49 3.698 0.120 3.14 7.631 0.132
6.28 3.820 0.116 3.00 7.986 0.258

6.05 3.966 0.222 2.92 8.208 0.118
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IV. DD Data (Figure 13)

C0 = 567.42 * 15,24 Coy = 528.09 * 13,20
T frequency T frequency
(hrs.) (cycles/day) C/C0 (hrs.) (cycles/day) C/C0
74.30 0.323 0.135 6.74 3.562 0.204
69.45 0.346 0.136 6.52 3.680 0.176
47.48 0.505 0.243 6.11 3.925 0.197
37.67 0.627 0.258 5.90 4,067 0.177
31.69 0.757 0.189 5.72 4,197 0.190
28.02 0.856 0.140 5.53 4.339 0.118
24.00 1.000 0.930 5.23 4.573 0.099
20.82 1.251 0.231 5.09 4.715 0.117
19.17 1.450 0.105 4.90 4.099 0.192
16.54 1.694 0.253 4,51 5.324 0.099
14.16 1.702 0.223 4.32 5.554 0.125
13.22 1.815 0.190 4.20 5.709 0.144
12.30 1.951 0.532 3.96 6.055 0.156
11.63 2.064 0.260 3.87 6.198 0.155
11.01 2,180 0.185 3.79 6.326 0.137
10.53 2.279 0.130 3.68 6.521 0.135
10.01 2.397 0.291 3.50 6.852 0.205
9.64 2.491 0.182 3.35 7.163 0.117
9.23 2.602 0.172 3.10 7.740 0.099
8.89 2.701 0.260 3.09 7.758 0.098
8.69 2,762 0.115 3.09 7.776 0.095
8.58 2.796 0.134 3.05 7.891 0.067
8.18 2.932 0.592 3.01 7.964 0.107
7.45 3.224 0.196 2.83 8.455 0.089

7.15 3.357 0.216 2.75 8.734 0.058
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V. DD Data (Figure 14)

C0 = 262.32 + 10.51 024 = 244.53 * 9,90
T frequency T frequency
(hrs.) (cycles/day) C/C0 (hrs.) (cycles/day) C/C0
61.33 0.391 0.199 5.76 4.164 0.354
44.99 0.534 0-197 5.33 4,505 0.299
36.53 0.657 0.185 5.14 4.672 0.410
30.66 0.783 0.283 4,84 4,954 0.223
23.53 1.020 0.932 4.68 5.132 0.251
19.97 1.202 0.480 4.50 5.328 0.321
16.90 1.420 0.328 4,34 5.520 0.317
14.62 1.642 0.214 4.22 5.691 0.351
13.06 1.838 0.300 4.11 5.843 0.264
12.04 1.992 0.757 4,00 6.001 0.397
10.78 2.226 0.366 3.89 6.174 0.202
9.86 2.435 0.332 3.79 6.327 0.213
8.57 2,800 0.109 3.65 6.568 0.128
7.92 3.029 0.431 3.56 6.751 0.124
7.41 3.240 0.204 3.37 7.115 0.186
7.11 3.374 0.298 3.28 7.327 0.243
6.90 3.478 0.233 3.21 7.480 0.125
6.65 3.607 0.142 3.02 7.957 0.293
6.27 3.829 0.313 2.89 8.310 0.233

6.04 3.975 0.323
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