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ABSTRACT

MULTIPLE CIRCADIAN PERIODICITIES

IN HAMSTER MOTOR ACTIVITY AS

DETERMINED BY TIME SERIES ANALYSIS

BY

David L. Norton

Hamster activity data recorded with a capacitance-type

activity monitor under constant light (LL) and constant

darkness (DD) were subjected to vigorous time-series analy—

sis to determine if multiple periodicities were detectable

from such records and, if so, to quantify their parameters.

It has been shown that such records of gross motor activity

contain information regarding the output from several

"motor sub-sets" (such as eating, drinking, running wheel

activity, etc.) which may exhibit independent rhythmicities

when freed from light-dark synchronization (Wolterink et al.,

1973). It was therefore supposed that as the commonly

observed circadian rhythms of gross motor activity are best

seen when the constituent "motor sub-sets" are synchronized,

these "partial activities" would be seen best under condi-

tions which might desynchronize the ensemble such as in

constant light or constant darkness. Since classical

"strip-chart" methodologies are inadequate to an investiga-

tion of multiple periodic components, more detailed
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statistical procedures need to be applied to the biological

time series in order to provide the analytical basis for

model building. The potential of three such methodologies

(spectral analyses, autocorrelation functions, and periodo-

grams) are examined in this dissertation.

Application of time series analysis to entrained and

"dissociated" hamster activity data revealed the presence

of multiple periodic components in the dissociated (but not

the entrained) data. In particular, spectral analyses of

3-day non-overlapping data sub-sets offered evidence for

the existence of multiple circadian components as well as

for the existence of higher frequency components. Autocor-

relation analyses confirmed the observation of several

circadian components but the presence of higher frequency

oscillations was difficult to establish. Periodograms, in

general, appear to lack the resolution necessary for con—

sistent detection.

The spectral analysis program (Program Waver) presented

in this study offers an alternative to the "Halberg-cosinor"

and the strict classical Fourier methodologies for the

analysis of time structured observations.
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INTRODUCTION

A vast amount of evidence has been accumulated to sup-

port the existence of endogenous oscillators in several

Species. Of the numerous reports concerning circadian

rhythms and their sensitivity to changing environmental

photoperiod, gross motor activity, owing to the relative

ease of data collection, is most commonly measured (Lowe

et al., 1967; Suter and Rawson, 1968; Aschoff et al., 1971;

Kramm, 1973; Brown and Chow, 1974). Long time series can

be obtained for a single animal, making the data more amena-

ble to complex mathematical analyses and leading to an

objective description of the biologic time structure.

Activity/rest ratios (Aschoff, 1971) or fluctuations in

activity onset (DeCoursey, 1961; Kramm, 1973) are generally

emphasized, but most notable in the response of activity

data to "constant conditions" is the relative stability of

frequency in the face of easily affected phasing (Sollberger,

1965).

The existence of many other biorhythmic phenomena has

been well documented; eosinophil counts (Halberg et al.,

1957), body temperature (Folk and Schellinger, 1954), and

urinary ketosteroid excretion (Pincus, 1943) to name a few.



It is evident that studies of biorhythms using specific

physiological end points, such as urinary ketosteroids, can

give important conclusions with respect to the detailed

model which seeks to explain certain endocrine systems. On

the other hand, gross motor activity measurements recorded

in the classical strip—chart manner, may contain information

regarding many neural control systems. This is especially

true in animals like the hamster (Norton, 1974), whose sleep-

wakefulness cycles are strongly circadian. In these animals,

feeding activity occurs only during twelve hours of animal

activity (under LD12:12 entrainment), hence the true perio-

dicity of this "motor sub-set" may be masked if periodic

sleep acts as a forcing function.

Entrainment of circadian rhythms is defined by Bruce

(1960) as the phenomenon whereby a periodically repeated

stimulus, such as a light cycle, causes an overt persistent

rhythm to become periodic with the same frequency as the

entraining cycle. There is thus a fixed phase relationship

between the entrained rhythm and the entraining cycle.

Since the commonly observed circadian rhythms in locomotor

activity are best seen when the constituent motor sub-sets

are synchronized, it was assumed that the partial activities

might be seen best under conditions which tend to desynchro-

nize the ensemble, such as constant light or constant dark-

ness. Each variety of motor output might then be more or

less free-running and, if sufficiently phase shifted,



produce detectable perturbations in the analyses. To the

physiologist, this might allow the testing of physiological

models which may describe the sub-systems responsible for

each particular identifiable activity. Because the measure-

ment techniques are non-invasive, such analyses of intact

animals would avoid criticisms based on acute methodologies.

Periodogram analysis, autocorrelation functions, and

power spectra are potential tools for determining the

length and stability of the circadian period. Calculation

of the best fitting cosine function by the least squares

method is a useful technique to display other rhythm char—

acteristics, i.e., amplitude, phase, and wave level. It was

the object of this research, therefore, to determine which

analyses might best reveal the presence of multiple periodic

components in a given set of activity data. Such exhaustive

analyses might then lead to a better understanding of the

neural networks responsible for those complex motor

behaviors collectively called circadian activity.



REVIEW OF THE LITERATURE

Although the existence of biological rhythms has long

been established, the possible existence of innate biologi-

cal oscillators has only recently been accepted. A promi-

nent View, and one still held by some researchers (Brown,

1960), was that the rhythms were purely exogenous; an overt

expression of the periodic environment. This was particu-

larly true for that class of low-frequency oscillations with

an obvious external correlate in the daily light-dark cycle.

These rhythms have since been termed circadian (Halberg et

al., 1959), referring to those endogenous rhythms which

have a period length of about (circa) a day (dicm). An

organism exhibiting a day-night periodicity, therefore, does

not necessarily possess an endogenous circadian one. An

environmental period may be the real and only cause of the

rhythm, particularly if it decays in artificial constant

conditions (Aschoff, 1960). A circadian system, however, is

characterized by its capacity to oscillate in the absence

of periodic factors in the environment (Aschoff, 1973).

Differentiation is thus made between systems whose oscilla-

tions decay following the removal of exogenous periodic

factors and systems which are capable of self-sustained

oscillations. As Aschoff points out, an oscillating system

4



can be entrained "by another periodic source of energy"

resulting in a forced oscillation with the same frequency

as the driving agent. In contrast to exogenous rhythms,

endogenous circadian frequencies become overt when there is

no periodic driving agent. Such overt oscillations, occur-

ring in the absence of environmental cues, have been called

free-running (Pittendrigh, 1958) or spontaneous (Aschoff,

1958), and the periodic factors of the environment to which

they can be synchronized have been designated as entraining

agents (Bruce, 1960), synchronizers (Halberg et al., 1959)

or Zeitgebers (Aschoff, 1960; 1965a).

Endogenous rhythms for a wide variety of daily physio-

logical functions have now been demonstrated in both verte-

brates and invertebrates. The review papers of Welsh

(1938), Kleitman (1949), and Aschoff (1954,1963) give exten-

sive summaries. Much investigation has been done in rodents,

since a clear expression of "clock-controlled" locomotor

activity is present in this group (DeCoursey, 1972). It is

now fairly well established that daily activity rhythms in

most animals are not passive responses to periodic environ-

mental changes and probably depend on persistent endogenous

oscillators (Aschoff, 1965b; Kramm, 1973). In favor of this

theory has been the demonstration of persistent free-running

activity rhythms having relatively stable period lengths of

approximately 24 hours (DeCoursey, 1972; Pavlidis, 1973).

However, DeCoursey (1961) has shown that animals free-running



in constant conditions, while exhibiting rhythmic activity

patterns, drift out of phase from each other and from

sidereal time. They are therefore dependent on environ-

.mental cues for synchronization to a precise 24-hour period

and a distinctive phase.

The mechanism of circadian activity has usually been

investigated by measuring the periodic course of a single

parameter, typically activity onset (Rawson, 1959; Aschoff,

1965c). Strip-chart recordings of the activity-rest cycle

are made and activity onset is linearly regressed on time

for a determination of period length (Richter, 1965).

However, in view of the current hypothesis that the circa-

dian system consists of a multiplicity of individual oscil-

lators which, although normally coupled to each other, may

become uncoupled to produce independent rhythmicities in

the steady-state, more detailed statistical procedures for

the detection of multiple periodicities need to be applied

to biological time series. Three procedures which may

prove useful to such investigations are examined in this

review preceded by a brief research summary of typical cir-

cadian activity studies.

Entrainment Studies

Ranges of Entrainment

Studies on the mechanism of entrainment of circadian

rhythms by light and temperature have shown that



synchronization of the rhythm to the period and phase of an

external Zeitgeber (Aschoff, 1960) is possible only if the

period of the exogenous cycle is close to that of the endo-

genous one (Bruce, 1960; Rawson, 1959). Tribukait (1954,

1956), for example, entrained mice (Mus) to a 24-hour cycle

then gradually lengthened or shortened the period until the

animals no longer entrained. This occurred with periods

shorter than 21 hours or longer than 27 hours. He failed

to get entrainment to 16, 20, 22 and 28 hours when these

were established suddenly. The findings of Bruce (1960) on

hamsters (Mcsocricetus) and mice (Peromyscus) suggest that

entrainment ranges may be species specific. Running wheel

activity in these Species entrains within narrow limits on

either side of 24 hours, 23-25 hours, compared with Mus.

DeCoursey (1972) compared circadian entrainment in a diurnal

(Tamias striatus) and nocturnal (Glaucomys volans) rodent.

The mechanism of entrainment appeared to be different for

the two species. A rough generalization indicates that the

more complex the organism the more difficult it becomes to

entrain the rhythm to period lengths considerably different

from 24 hours (Bruce, 1960). The work of Kleitman and

Kleitman (1953), and of Lewis and Lobban (1954), illustrates

the difficulties of entraining human subjects to artificial

days shorter or longer than 24 hours.



As the frequency of a light-dark cycle to which an

organism is entrained increases, the phase of the organism

lags further behind the Zeitgeber phase until the limits of

entrainment are reached and the organism free-runs. Leading

phases of the entrained organism are seen when the frequency

of the Zeitgeber is lowered. Aschoff (1964) observed the

circadian activity pattern of mice in light-dark cycles of

varying lengths and showed that in a 26-hour day, activity

onset was advanced relative to its position in a 24-hour

day. In a 22-hour day, activity onsets were delayed com-

pared with 24-hour controls. Aschoff views entrainment

limits to be an index of the strength of self-excitation in

the entrained oscillator. If the strength of a Zeitgeber

is constant, a narrow range may indicate a strong, and a

wide range a weak capacity for self-excitation.

Entrainment of activity rhythms to light—dark cycles

may also depend on the photofraction. DeCoursey (1972) has

measured the limits of entrainment for a wide spectrum of

LD (light-dark) ratios on a 24-hour day schedule in the

nocturnal flying squirrel (Glaucomys volans) and the diurnal

chipmunk (Tamias striatus). Photoperiods for Glaucomys were

varied from 1 second L:24 hours D to 18L:6D; those for

Tamias ranged from l/4L:23 3/4D to 23 3/4L:l/4D. Under

these conditions, Glaucomys was able to entrain to all

schedules from 1 second of light per day to 18 hours of

light per day. Stable entrainment for Tamias occurred only



between 6L:18D and 21L:3D. Beyond these limits, oscilla-

tory entrainment occurred prior to free-runs suggesting the

beginning of synchronization breakdown. Aschoff (1965b)

has examined the effect of varying LD ratios on entrainment

for a wide variety of species. Within a 24-hour period,

large changes in the photofraction may be made without dis-

turbing entrainment. If the frequency of the Zeitgeber is

altered, variation of the photofraction becomes more restric-

tive. Bruce (1960) noted further that the minimum amount

of light required to entrain a rhythm is generally much

less than the minimum amount of dark needed.

Phase Response Studies
 

Rawson (1959) has shown that light may have quite a

different phase controlling action if it occurs near the

beginning of an active period (subjective early night) from

its action if it occurs near the end of an active period

(subjective late night). Presenting 12 hours of light to

mice free-running in constant darkness when they were

active, produced a delay in activity onset. When light of

the same intensity was presented during an inactive period,

no phase delay occurred. Pittendrigh and Bruce (1957) and

Pittendrigh (1958, 1960, 1965) have published a systematic.

study of the effects of single perturbations to a free-

running rhythm and showed that they effect phase advances

or phase delays depending on the phase of the rhythm at
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which they are administered. Similar studies by DeCoursey

(1961, 1964) and Wever (1965) have now led to a number of

phase response curves for several species which Aschoff

(1965a) reviewed. DeCoursey (1960a, 1960b) interprets such

results in terms of a daily rhythm of light sensitivity in

which early and late subjective night periods are sensitive

to phase-shifting in opposite directions.

Free-running_Rhythms

Hemmingsen and Krarup (1937) reported that in the

white rat, the period of spontaneous locomotor activity was

lengthened in constant light. Johnson (1926, 1939) con-

firmed these findings for Peromyscus and also noted that the

period increased with increasing intensity of constant illum-

ination. Certain generalizations concerning the character

of free-running activity rhythms have since been established.

Free-running periods are close to 24 hours, in general

varying between 22 and 26 hours (Bruce, 1960; Pavlidis,

1973), and depend only slightly on the temperature at which

they are measured (Rawson, 1959). Tabulations of some

ranges of period lengths for different organisms have been

compiled by Aschoff (1958), Hoffmann (1965), Folk (1966),

and in Table 1.

Under constant experimental conditions, the rhythm of

gross motor activity is generally maintained with a
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relatively constant period characteristic of the individual

animal. Deviations in any one animal usually range from

less than one hour to less than fifteen minutes (Bunning,

1967; Pittendrigh and Bruce, 1957), whereas between animal

differences may range from one to several hours. Aschoff

(1955), for example, found the following specific period

lengths for five mice in constant light: 25.0, 25.1, 25.3,

25.4, and 25.5 hours. DeCoursey (1960, 1961) reported a

range of 23.0 to 24.5 hours for the activity of 16 flying

squirrels in constant dark. For this reason, Aschoff and

Honma (1959) refer to "individual patterns."

The value of the free—running period in constant dark

generally differs from its value in constant light (Bruce,

1960; see Table l). Bullfinches kept in continuous dark-

ness exhibit a frequency of 24 hours; in constant light it

changes to 22 hours. In mice (Mus), the period increases

to 24 or 26 hours under continuous light and decreases to

23 or 23.5 hours in constant darkness (Aschoff, 1953, 1955;

Meyer-Lohmann, 1955). Reductions in the activity-rest

ratio of dark-active animals by constant light have also

been reported (DeCoursey, 1961; Aschoff et al., 1971).

Aschoff (1952a, 1958) expressed a general rule (circadian

rule) concerning free—running activity patterns which

states that the length of the period of animals active in

light decreases with increasing light intensity; and in

dark-active species it increases with increasing light
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intensity. In all cases, however, frequencies change by

only 5-10% (Bruce, 1960). Exceptions to Aschoff's rule have

been noted by Hoffmann (1965).

Dissociation of Circadian Rhythms

The circadian system of an organism consists of a

number of rhythms which are normally entrained to the same

frequency by a synchronizing Zeitgeber (Aschoff, 1973).

The temporal relationships of such rhythms have been illus-

trated graphically in phase-maps (Halberg, 1960b; Halberg

et al., 1959, 1967). When not entrained by a Zeitgeber,

all rhythms within an organism may remain synchronized with

each other, showing one free-running rhythm of the entire

system (Aschoff, 1973), or they may become desynchronized

to show different frequencies in the steady-state (Wever,

1973). This has led some investigators (Wever, 1971; 1972)

to suggest that the circadian system is controlled by a

multiplicity of individual oscillators which are normally

entrained with each other but which may become uncoupled to

oscillate at different speeds. Evidence for this hypothesis

has been demonstrated by following the temporal course of

different biological variables like activity and rectal

temperature (Wever and Lund, 1973) or of a single variable

which exhibits multiple components (Hoffmann, 1971). wever

and Lund (1973) illustrated desynchronization of several
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physiological rhythms in humans living under constant light.

Fourier analysis of activity and rectal temperature cycles

resulted in a "two-peaked" spectrum suggesting the presence

of two oscillations having significantly different period

lengths. The predominant component for rectal temperature

was a 25.1-hour period while that for activity was a 33.4-

hour period.

Pittendrigh (1960) and Swade (1971) have reported that

after prolonged constant illumination the rhythm of loco-

motor activity in nocturnal rodents Mesocricetus and

Peromyscus split into two components. These components

showed distinctly different frequencies for some time but

eventually resynchronized to produce one free-running pat-

tern at a new phase relation. Evidence for the occurrence

of multiple components in the activity rhythm of a light-

active animal (Tupais) as a function of light intensity has

been presented by Hoffmann (1971). If light intensity was

reduced below a certain level (usually 5 lux) the activity

rhythm split into two and sometimes three components which

oscillated at different frequencies. Eventually the com-

ponents were observed to run parallel with identical fre-

quencies. Resynchronization occurred when light intensity

was elevated. 3

Dissociation of the circadian drinking pattern from

eating, two "motor sub-sets" which comprise gross activity,

has been demonstrated in rats by Oatley (1971).
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Richter (1965) has reported free-running circadian rhythms

in activity, eating and drinking in blinded rats. In addi-

tion, non-circadian periodicities for some "motor sub-sets"

have been reported. In rats, urination produces a perio-

dicity of about 3-4 hours while defecation occurs at slight-

ly longer intervals (Richter, 1965).

Time Series Analysis
 

Introduction
 

The application of time series analysis to physiologi-

cal data provides a method whereby a rhythmic signal, if

present, can be detected, apart from superimposed random

noise, and its parameters objectively quantified. Classical

procedures for investigating circadian activity, using strip-

chart recorders and chronograms (DeCoursey, 1961), seem

inadequate to a total understanding of the time series since

they utilize a single (often subjective) estimate to evalu-

ate it (typically activity onset). On the other hand, time

series analyses which utilize the total length of record,

can provide in depth statements regarding its biological

time structure, which Halberg and Katinas (1973) define as

the sum total of non-random and thus predictable aspects of

organismic behavior including bioperiodicities.

Periodic functions are functions whose values recur

at regular temporal intervals called the period (Halberg
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and Katinas, 1973), and may be expressed as

f(t) = f(t + r) (2.1)

where T is the period of the rhythm under study (Halberg,

1969). It should be noted that under this definition, an

organism need not generate activity which is sinusoidal

to exhibit periodic behavior. Time series analyses which

isolate periodic functions from random noise without speci-

fic assumptions regarding waveform, autocorrelation and

periodogram analyses, for example, are especially useful in

this regard. However, the non-sinusoidal nature of any

given time series does not necessarily limit the usefulness

of fitting cosines to the data by the method of least

squares (Halberg et al., 1972). As illustrated in Figure 9,

the circadian nature of a "24-hour" square wave can be de-

tected by least squares cosine fitting given a time series

which includes several repetitions of the cycle. Further,

such a procedure is necessary for an objective quantifica-

tion of detected periodicities in terms of an average period

length (I), average acrophase or crest-time (¢), and an

average amplitude (C) demonstrated to be significantly dif-

ferent from the mean level (C0) by statistical means.

The remainder of this chapter examines three analytical

methods for the study of periodic functions obscured by

random disturbances. Two of these, periodogram and autocor-

relation analysis, have been used sparingly in physiological

studies but are potential tools for determining the length
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and stability of oscillatory components (Sasaki, 1972), as

well as for detecting the presence of multiple periodicities.

The computational equations for the least squares fit of a

cosine have been reserved for the following chapter, as they

have been related to the Operation of Program Waver used in

this study.

Cosine Curve Fitting
 

rises:

Cosine curve fitting has as its objective the quantifi-

cation of amplitude, phase and wave level of the rhythm

under study. Smolensky et a1. (1972) used the technique for

the identification of circadian and circannual rhythms of

birth and death. Estimations of amplitude and phase for a

number of circadian functions in mice have been presented in

phase-maps (Halberg et al., 1959; Halberg, 1960b). The com—

putational procedure utilizes the method of least squares

and has been extensively developed by Halberg (1960a, 1967;

Halberg et al., 1967) as part of the cosinor technique.

Recently, modified computational methods have been published

(Halberg et al., 1972; Dewey, 1973).

Terminology and Rationale
 

Sine-cosine curves are basic periodic functions and,

unlike other trigonometric functions, are continuous in the

time domain. They are therefore useful as approximating
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functions in periodic regression analysis. In addition, a

periodic function which is non-sinusoidal may be Fourier

transformed to a constituent set of cosine waves and its

waveform described by the summation of apprOpriate harmonics

(see Sollberger, 1965, for methodology).

A rhythm detected by the least squares fit of a cosine

can be described on the basis of several endpoints obtained

from approximating functions of the form:

Y(t) = C + C-cos(wt + ¢) i E. (2.2)

O 1

For data recorded at 0.1 hour intervals, C is comparable
0

to a mean 6-minute average. The amplitude, C, measures the

degree of variability existing over a time interval, 1,

called the period and is, in fact, equivalent to the half-

amplitude of the fitted cosine. Since w denotes the (fixed)

angular frequency of the fitted curve, equation (2.2) may be

expressed as:

Y1 = C0 + C-cos(g;r£ti + 0) : Bi (2.3)

where each data point is represented as some fraction

(ti/r) of a complete (2n) cycle. The concept of least

squares fitting of a cosine to a time series is illustrated

in Figure 1 (after Halberg et al., 1972). As the figure

indicates, the computative acrOphase (0) delineates, in

time, the peak of the best fitting cosine function. For

the C C, and ¢ values shown, the function Y(t) results
0'

in a minimized sum of squares for error (EEiz). Calculation

of these parameters is outlined in the following section.
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Periodogram Analysis
 

Usage

The application of periodogram analysis to biological

data has been limited. Halberg (1960a, 1965) utilized

periodograms for the analysis of rectal temperature cycles

in blinded mice. Pochobradsky (1970) recently investigated

the usefulness of periodograms in the determination of

menstrual cycles, and Binkley et a1. (1973) compared peri-

odogram analysis with autocorrelation techniques on free-

running activity data in sparrows. Enright (1965a) sub-

jected previously published data which suggested the

presence of lunar-tidal rhythmicities in activity, to a re-

examination by periodograms and found such conclusions to

be unwarranted.

Currently, two periodogram techniques have been in-

vestigated. One is that of Koehler et a1. (1956) which

involves the sequential use of periodic regression analysis

(i.e., least squares cosine fitting) and the second that of

Enright (1965a, 1965b). The method discussed here will

follow that of Enright although the basic rationale is

applicable to both techniques.

Periodogram Rationale
 

Periodogram analysis, as described by Enright (1965b),

involves a posteriori evaluation of a given set of frequen-

cies as a function of their relative amplitudes.
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The procedure is a generalization of standard statistical

methods for the form estimation of a periodic function.

For example, if in a continuous time series of some bio—

logical variable, there is a stable oscillation with a

period of 24.0 hours which is subject to randomly occurring

disturbances ("noise"), then by classical statistical argu-

ments, the mean value of all observations recorded at l

a.m. becomes an unbiased estimator of the value of the under-

lying periodic function at 1 a.m., and the calculation of

24 such averages would lead to an unbiased estimate of its

form. Likewise, in a 25-hour form estimate, the l a.m.

value for the first day of record would be averaged with

the 2 a.m. value for the second day, the 3 a.m. value for

the third day, etc. Enright (1965a) has generalized this

averaging procedure for any other integral period using the

Buys-Ballot Table of Kendall (1946; Appendix A).

In frequency analysis, the significance of a given

oscillation is generally associated with the magnitude of

its amplitude. For periodogram analysis, the test statis-

tic normally utilized is the root-mean-square amplitude

(AP) defined by Enright (1965b) as

P

l

A = -'X Y

p [Ph=l( p.h
‘23 ‘ 112:! (24)-Y Y=_ 0»p) ] where p thl p,h

and all other symbols are as described in Appendix A.

Plots of these amplitude estimates against a sequence of
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assumed period lengths are called periodograms (Whittaker

and Robinson, 1927) and, as equation (2.4) illustrates,

these Ap values are essentially the sums of squared deviates

from the mean, indicating that periodograms are variance-

type spectrums.

Examination of equation (2.4) reveals that if a time

series contains a stable oscillation with a period of 22 +

6 hours (a is‘a very small non-rational number) then the

amplitude estimate for a mistakenly assumed 24.0-hour perio-

dicity would equal zero over an infinite series of data.

Even for a finite series, however, including several cycles

of the real component, the estimate of amplitude for the

assumed 24.0-hour period would be less than the estimate

obtained for a 22.0-hour period (Enright, 1965b). As a re-

sult, periodogram analysis assumes the presence of no perio-

dicity a priori, and instead consists of a comparison of

amplitudes calculated from a series of form estimates, each

of which is based on a different value of assumed period.

By estimating amplitudes for all values of period within a

range presumed to include the periods of major oscillatory

components, differentiation can then be made between unusual-

ly large amplitude form estimates and those form estimates

which have amplitudes no greater than background.
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Peaks Due to Sub- and Supermultiples

Enright (1965b) has noted that for any oscillation

which does not show an appropriate symmetry, periodogram

analysis may produce peaks at submultiples of the true

period. When two symmetrical disturbances of 9 hours dura-

tion and an interval of 368 hours were added to a set of

1000 random numbers, periodogram peaks occurred at all major

submultiples of 368 hours. As illustrated in Figure 2(b),

the periodogram for a sine function exhibits no such peaks

at its harmonic points (i.e., at 1/2, 1/3, 1/4 of its period

length, etc.). To remedy this situation, Enright suggests

a re-analysis of non-overlapping data subsets or replicate

series. Any periodogram feature which appears in the total

series and by all replicate subsets, implies a persistent

rhythmic component.

A second complication following the use of periodo-

grams is that the analysis cannot distinguish between peaks

resulting from real periodic components and those which

arise due to components having period lengths which are sub-

multiples (harmonics) of the apparent value. The periodo-

gram of Figure 2(a) was based on input data consisting of

twenty cycles of a 12-hour sine function (p = n radians)

while that of Figure 2(b) from ten cycles of a 24-hour sine

function (p = 2n radians). As the figure illustrates, both

oscillations produce a peak on the periodogram corresponding

to a 24-hour cycle. Had the analyses covered a range of
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Periodograms based on artificial, stable

input data. Figure 2a was based on twenty

cycles of a 12-hour sine function (p = n

radians); Figure 2b on ten cycles of a 24-

hour sine function (p = 2n radians), and

Figure 2c on ten cycles of an artificial square

pulse (p = 2n radians). A = root-mean-square

amplitude (Appendix D); N = 2400; AT = 0.1 hr.
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20-30 hours (because of an a priori assumption that the data

contained a circadian oscillation), the conclusion might

have been made that such an assumption was correct for both

series. Extension of the analysis to include the first

harmonic (12-hour period), however, indicates that for the

data of Figure 2(a), such a conclusion is decidedly unwar-

ranted. Further, Figure 2(a) would also have produced a

peak at 36, 48, 60 hours, etc., and Figure 2(b) peaks at 48,

72, 96 hours, etc. had the analysis been extended to include

these periods. Enright (1965b) suggests examination of the

respective form estimates prior to any conclusions regarding

periodicities inferred from components of the periodogram.

If the form estimates show one, two, or three complete

cycles etc. within a 24-hour period, the periodogram peak

may be assigned to an appropriate harmonic.

Form Assumptions
 

In contrast to procedures which assume the presence of

sinusoidal functions, the detection of periodic components

by periodogram analysis is possible without assumptions

regarding form. Although the periodograms of Figure 2(b and

c) were produced using input data of contrasting form

(Figure 2(b) from a "24-hour" sine function and Figure 2(c)

from a "24-hour" square wave), both reveal peaks correspond—

ing to a 24-hour periodicity.
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Unstable Data
 

The data used to produce the periodograms of Figure 2

differ from most biological data in that the oscillatory

components persisted with constant amplitude and period

length. Enright (1965b) examined the properties of periodo—

grams derived from non-stable input data and found that

minor instabilities in the oscillatory components did not

eliminate the usefulness of the method. Linear increases

or decreases in either amplitude, frequency, or a combina-

tion of both, resulted in periodograms which still provided

meaningful information about average properties of the

oscillation. It should be noted, however, that Enright's

test functions had period lengths in the circadian domain,

indicating that, at least for low-frequency oscillations,

the procedure has only limited sensitivity to minor shifts

in either phase or period. For high frequency oscillations,

such shifts could easily obscure the presence of a periodic

component using this method.

Autocorrelation Analysis
 

Usa e

Halberg (1960a), using autocorrelation procedures,

found a 24-hour rectal temperature rhythm in data obtained

at 4-hour intervals in mice. Sollberger (1970) applied the

autocorrelation function to finch activity data and showed
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clear circadian peaks through 26 days. Recently, Binkley

et al. (1973) used a modified autocorrelation procedure to

test the stability of free-running activity rhythms in

sparrows. Theoretical considerations of the autocorrelation

function have been extensively discussed by Yule (1921,

1927) and by Jenkins and Watts (1968).

Rationale of the Autocorrelation Function
 

Sollberger (1965) has noted the usefulness of autocorre-

lation analysis in separating, from time series data, peri-

odic components and random noise. The procedure was

developed by Yule (1921) as a method of investigating perio-

dicities in disturbed series and involves sequential calcu-

lation of the product-moment correlation coefficient, rT.

The observed series is duplicated and simultaneous values

correlated with no time displacement (r = 0) to yield an

initial coefficient of r = +1. One of the series is repeat-

edly lagged an interval (I) and each term of the original

series correlated with the corresponding term of the lagged

series. Mercer (1960) expressed the autocorrelation func-

tion, R(r), of a time function, f(t), mathematically as

Lim 1 IT

T+mIP 0

where r is the time delay and T the total length of record.

R(T) = f(t)f(t + t)dt (2.5)

In Kendall's (1945) notation, the coefficient of product-

moment correlation between members of a series I intervals
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apart is called the serial correlation of order I. For a

finite series, the computational equation is given by

2 .-' . -'

r(t) = (x3 xl)()fJ+T x2)
_-2 :21;

[2(xj X1) (thj+T x2) )]

 

(2.6)

where r(t) is the serial correlation coefficient of the

series at time‘t,xj = f(tj), and the summations run from

j = l to j = N - t. It can be seen from equations (2.5) and

(2.6) that at r = O, f(t) = f(t + 1); hence correlation is

maximal (r = +1) at zero lag. If f(t) represents a purely

random function (with no periodic components), the autocor-

relation function R(r) approaches zero for large values of r.

This is so since in a random function the two ordinates to

be multiplied,f(t) and f(t + tk.are as equally likely to be

positive as negative (i.e., occurring below a mean base

line) and the sum of a large number of them will tend to be

zero (Murtha, 1961a, 1961b). Moreover, it is obvious from

equation (2.6) that for a periodic function, R(T) will be

repetitive, since a phase displacement of one period repro—

duces the condition at zero lag. For a sine wave with a

period of 2n radians, the "r" value will be +1 after dis-

placements of 2n, 4n... n2n radians and —1 following dis-

placements ofny 3n... (n + 2n) radians. The autocorrelaf

tion function for this waveform is presented in Figure 3(a).

As the figure illustrates, the periodic nature of the sine

wave is preserved in the autocorrelation function as a
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cosine and, further, that the frequency of oscillation is

the same as that of the original time series.

If a time series contains a periodic component dis-

turbed by random noise (a bioperiodicity), R(r) will again

be repetitive. When the two curves are out of phase they

will tend towards inverse values and the correlation coeffi-

cient towards -1; when in phase, the coefficient will

approach +1 and produce a peak in the autocorrelation func-

tion equivalent in time to the period of the oscillation.

In the process, random components will cancel. The effec-

tiveness of the autocorrelation analysis in separating

periodic components from noise will depend upon the magni-

tude of the random errors and the length of the time series.

But, as Yule (1927) states, however large the errors, given

a sufficient number of periods (i.e., a long enough time

series), autocorrelation will provide a close approximation

of the period of the underlying harmonic function. It

should be noted, moreover, that correlograms yield no analy-

sis into various components of the hidden periodicity or

their phasing (Sollberger, 1965).

Form Assumptions
 

Like periodogram analysis, autocorrelation procedures

are valid without prior assumptions regarding waveform. In

Figure 3, the autocorrelation function for three different

sets of input data are presented. Figure 3(a) was obtained
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Autocorrelation functions derived from artificial

input data. Figure 3a was based on ten cycles

of a 24-hour sine function (p = 2n radians),

Figure 3b on ten cycles of a 24-hour square

pulse (p = 20 radians), and Figure 3c on a set of

computer generated random numbers. Rho = serial

correlation coefficient; N = 2400; AT = 0.1 hr.
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Figure 3

A

160 200 399 596 796 997 IO96 ‘

LAG (01m)

B

I90 200 399 596 796 997 I096

LAG (O.l hr)

C

W

100 200 399 598 798 997 I096

LAG (OJhr)
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from a 24-hour artificial sine wave while Figure 3(b) repre-

sents the autocorrelation function for a 24-hour artificial

square wave. As the figures illustrate, the periodic nature

of the input data is reproduced in the autocorrelation

function though not necessarily with the same waveform.

Figure 3(c) resulted from the autocorrelation of 2400 com-

puter generated random numbers and exhibits no periodicity.



MATERIALS AND METHODS

Experimental Rationale
 

Recording gross motor activity from the isolated ham—

ster with a capacitance activity monitor produces a printout

in which the output from several "motor sub-sets" are con—

founded. If activity is recorded at the end of each 0.1

hr., each sum represents a Variety of motor outputs (i.e.,

eating, drinking, running wheel activity, etc.) with varying

durations and intensities. Since the commonly observed

circadian rhythm of "gross motor activity" is best seen when

the constituent motor sub-sets are synchronized (or observed

separately as in running wheels; Rawson, 1959), it might be

supposed that these “partial activities" would be seen best

under conditions which would desynchronize the ensemble,

such as constant light (LL) or constant darkness (DD). Each

variety of motor output might then be more or less free-

running and dissociated from the others. Accordingly, ham-

ster activity data recorded under LL and DD were subjected

to rigorous time series analysis in order to determine if

multiple periodicities were detectable from such records 9

and, if so, to quantify their parameters. Such an

35
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exhaustive analysis might then lead to a better understand-

ing of the neural networks responsible for those complex

motor behaviors collectively called circadian activity.

Physical Setup
 

Adult male golden hamsters, Mesocricctus auratus,

(Lakeview Hamster Colony, Newfield, NJ) were individually

housed under a lighting regimen which consisted of fluores-

cent light (650 lux) from O600 to 1800 hr. alternating with

00 00
darkness from 18 to 06 hr. daily (LD Food and

12:12)'

water were provided ad Zibitum and replenished at random or

when needed.

Motor activity was measured using a capacitance-type

activity monitor (Stoelting Co., Model #31400, Chicago, IL)

equipped with a 6-digit printing counter (Stoelting Co.,

Model #22408), Figure 4. Movement of the animal resulted

in changes in the capacitance field causing a "count."

Counts were integrated over a 6-minute interval and a data

printout obtained every 0.1 hr. After each print, the

counters automatically reset to zero. Thus, 10 days of

monitored activity (a time series) consisted of 2400 data

points collected every 0.1 hr. of clock time. Activity

counts were punched into IBM cards as four-digit numbers

for computer analysis (Appendix B).
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Recordings were obtained from individual animals main-

tained in Habitrail cages (Metaframe Corp., East PatterSon,

NJ) fitted with running wheels and an "isolated nesting box“

which effectively positioned the animals above the elec—

trical field and eliminated small extraneous counts during

sleep. Cages were positioned on activity monitors and the

entire unit (Figure 4) enclosed in a chamber covered with

heavy black Visqueen. Hence, recorded data represents

"total activity" including that associated with feeding,

drinking, running wheel activity, etc. Four fluorescent

lights (cage light intensity 650 lux) controlled by a time

switch, imposed a 24-hour light—dark photoperiod (L012:12;

lights on 0600 - 1800 hrs.) with step transitions from L to

D and D to L. Daily temperatures averaged 27 :_2°C during

the trial periods. (Note: some of the trials were con-

ducted in a semi-soundproof room with overhead lighting for

illumination.)

After 10 days of LD entrainment, animals were kept in

constant illumination (LL) for 20 days followed by 20 days

of constant darkness (DD; 0 lux). Thus, a complete time

series for any one animal consisted of 50 continuous days

of record. Although a transverse (between animal) profile

was analyzed (see Table 3), emphasis in this thesis con- ’

cerned longitudinal studies of time series data. Changes

in the synchronized pattern of gross motor activity and the

detection of multiple periodicities following alteration of
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the lighting regimen were of particular interest. Hence,

spectral amplitude analyses were performed on full lO-day

data segments and on 3-day non-overlapping data subsets in

order that the time course of these changes be more closely

examined. In addition, the time series were subjected to

autocorrelation and periodogram analyses for a comparison

of findings. All calculations were performed with the aid

of a CDC 6500 computer while all figures were plotted with

the aid of a CDC Calcomp Plotter. The FORTRAN programs

developed for each of the analyses employed in this study

appear in Appendix B.

Analysis of Data
 

Least Squares Analysis: Program Waver

(Appendix BIC

 

Cosine functions were fitted to individual time series

by the method of least squares. The following model was

assumed:

Yi = Co+-C[cos(wti + ¢)] i Bi; 1 = 1,2,...N (3.1)

where Yi are measurements of the physiological variable

(motor activity) at times ti; totalling N in number (for

10 days of data, N = 2400). The quantities C C, m, and o
0!

represent the level (mean), amplitude, angular frequency,

and acrophase of the fitted cosine. The least squares

error estimate is given by Ei. It was further assumed that
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if the data were aperiodic and random, C[cos(wti + 0)] could

be eliminated and equation (3.1) reduced to:

Y.=C 313.; j=1,2,...N (3.2)

where Ej represents the error associated with the mean.

Elimination of the oscillating term might be due either to

w assuming a value not statistically different from zero

(i.e., because there is really no overall average perio-

dicity), or by C assuming a value not statistically differ-

ent from zero (i.e., the amplitude of the oscillation is

hidden in the noise, or error term, Ei). Thus there is a

real difference in logic between a truly aperiodic system

and one that is not demonstrably periodic because of a low

signal to noise ratio. In the usual case, however, perio-

dicity is suggested if the error Ei is minimized or reduced

after fitting the data to equation (3.1) (i.e., when

fii < 5].).

Expansion of equation (3.1) yields:

Yi = C0 + C-cos¢cos(wti) - C-s1n051n(wti) 1 Bi (3.3)

where (Cocose) and (-C-sin¢) represent "weighted amplitude"

coefficients of the fitted cosine and sine functions. The

values of these coefficients are given in the output to

Program Waver (Appendix B) where they are denoted as HC and

HS respectively. By substitution, equation (3.3) becomes:

Yi = C0 + HC°cos(wti) + Hs-s1n(wti) i Ei (3.4)
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Least squares regression theory defines a linear

regression line as that straight line which results in

Edi-x being at a minimum where Edi-x is equivalent to re—

sidual variation. In comparison, the minimizing equation

for the least squares fit of a cosine is:

II
M
2

0
"
!

t
a
)

5
—
:

ll

I
l
e
a
z

. 2

{Y.-[C + HC-cos(wt.) + HS°51n(wt.)]}
l 1 O 1 1 (3.5)

For an illustrative example of the fitted equation and its

variables, the reader is referred to Figure 1, from Halberg

et a1. (1972) and to the sample output of Appendix B.

All data sets were tested for the existence of statis-

tically significant periodicities with period lengths rang-

ing from T = 99.9 hr. to T = 3.0 hr. (1 = period length in

hours). Beginning with the first fitted frequency (w = l

cycle/99.9 hr.), Program Waver assembles a "weighted vari-

ance spectrum" where the amplitude of each period tested is

associated with its own least squares error. Point esti-

mates for the amplitudes of the fitted cosines C (denoted

as H in Waver output, Appendix B), were given by:

E = {(110)2 + (Hsr?)11 = c (of equation 3.1) (3.6)

since: HC = Ccos¢ and HS = -Csin¢

C = (C2c032¢ + Czsinzcb)35 = C (3.7)

C = [C2(c052¢ + sin2¢)]% = C (3.8)

E = (c2);‘ = c (3.9)

The ratio of H (for w = l cycle/99.9 hr) to the standard
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error of H (SEH) composed the first value of the "weighted

variance spectrum." Successive frequencies fitted were

determined by constant percentage (1%) decrementations of

the preceding wavelength. Hence, the second fitted w would

be 98.901 [99.9 - (99.9 x .01)], the third 97.912, etc.

Amplitude/standard error ratios for each wavelength fitted

gave the amplitude—weighted variance spectrum. A theoreti-

cal example of one such spectrum is shown in Table 2.

Table 2. Example of a Typical Amplitude—Weighted Variance

 

 

 

Spectrum

Period Length (hrs) Relative Deviate for the

Cosine Amplitude

(Ti) (H/SEH)

Tl 99.900 1:8

12 98.901 2L6

T3 97.912 212 printed sig.*

T4 96.933 311

Is 95.964 2L6

T6 95.004 1:2

r7 94.054 2L8

T8 93.113 ‘ILZ printed but NS

r9 92.182 1:6

T10 91.260 912

 

*

Only the peaks (i.e., 2.6 < 3.0 > 2.7) are printed out.

All pertinent data for that peak are given as output

(see Appendix B).
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It can be shown that the ratio H/SE is comparable to the

H

relative deviate of a "t" distribution. Hence, if the

value of H/SE for any 1 was greater than 2.58, that wave-
H

length was said to have an amplitude which was signifi-

cantly different from zero at p < 0.01 and N = m.

The final computer printout from Program Waver repre-

sents all periods for which the H/SEH ratios corresponded

to Spectral maxima. In Table 2, both T and I would ap-

3 8

pear as output but of the two only I is significant.
3

Moreover, 12, t4 and r5 are also significant periodicities

but since they do not represent spectral maxima, they do

not appear as output. Decrementation of Ti continued until

I. = 3.00 hrs.
1

The point estimate, $, for acrophase (in degrees from

0000 hrs) is:

sine coefficient (HS)

tan¢ = cosine coeffiCIent(HC)

 

= tan¢ (3.10)

“_ £13:or ¢ — arctanHC o (3.11)

and is given indirectly in terms of crest time (CT) of the

fitted cosine, by the formula:

A C.T.

¢ = 'r (360°)
 

The basic rhythm parameters C C, r and 0 were quanti—
0!

fied using the method of least squares for a cosine func-

tion. The effect of changing photoperiod upon each of

these variables was then examined. In addition, the time
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series were analyzed longitudinally by examining the

amplitude-frequency spectra produced by least squares

analysis of full lO-day data segments or by 3-day non-

overlapping data subsets. Further, all data sets were

evaluated in terms of an autocorrelation function, for

examination of oscillatory stability in the time domain,

and in terms of amplitude as a function of frequency in a

periodogram.

The Autocorrelation Function: Program

Main IAppendix C)

 

 

Least squares analysis of a given set of data results

in an average I value for any one periodicity within the

time series. The stability of those detected periodicities

in time and as lighting regimens were altered, was examined

using sequential plots of the autocorrelation function

applied to lO-day data segments of a complete 50-day time

series.

The autocorrelation function consists of a series of

correlation coefficients obtained by first correlating the

entire time series with itself then lagging the data by

6-minute (or hourly) intervals and recorrelating. Calcula-

tion of the autocorrelation function for each data set re-

quired the use of Program Main (Appendix C) and a CDC 6500

computer, particularly for computation of the lagged sums

of products (a maximum of 1200 computations is needed).
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The estimate of r(k) for any lag, k, was computed as:

£(Xtx )- (let )(Zx
t+k t+k)/n

{[E(xt) - (2xt ) 2/n][2(x

r(k) =
 

)z/nI}1

(3.13)

t+k) ' (XXXt+k)

where n = N/2 (the number of pairs) and the summations run

from t = l to t = n. Autocorrelation of each data segment

continued until k = n (when the first half of the data was

correlated with the last half). Detection of periodic com-

ponents was aided by plotting the autocorrelation function

for each time series as a correlogram with the aid of a

CDC Calcomp Plotter and the plot routine of Appendix E.

Periodogram Analysis: Program Spect

(Append1xD)

Periodogram analysis, as described by Enright (1965a),

represents a generalization of the Buys-Ballot form esti-

mating technique, an averaging procedure for obtaining an

unbiased estimate of the form of the underlying periodicity.

This averaging procedure can be generalized for any inte-

gral period, p, in the form of a table (Appendix A).

The analysis involves an evaluation of a given set of

frequencies as a function of their relative amplitudes.

The test statistic computed in Program Spect (Appendix D)

is the root-mean-square amplitude defined as:

P

A = [— Z (Y

_ 21$

- Y ) ] (3.14)

p Ph=l Plh p

All notations for equation (3.14) are defined in Appendix A.
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Amplitude is estimated for all values of period length with—

in a range presumed to include the period of the primary

oscillation. Hence, the period value at which amplitude is

maximal should represent the best estimater of the period

of the primary oscillation. In this study, amplitude esti-

mates were made at all values of period length from 20 hours

to 30 hours for data sets of the kind described for auto-

correlation analysis.



RESULTS

Longitudinal profiles of gross motor activity were

obtained from a capacitance-type activity monitor as a four-

digit printout recorded every six minutes (0.1 hr.) for 50

days. Lighting regimens for the time series are described

on page 39. Parameters defining the activity rhythms (i.e.,

amplitudes, frequencies, phase-angles and means) were esti—

mated by periodic regression analysis.

The data were transformed to an assembly of cosines,

each with its own period, amplitude, and phasing, using

approximating functions of the form Yi = C0 + C[cos(wti +

0)] i Ei' The time series were then examined for the

presence of multiple periodicities by plotting relative

amplitudes of the cosine components (C/CO) against frequen-

cies (cycles/day) to yield a spectrum (after Sollberger,

1967). Peaks in such spectra represent dominant cosine

components with large amplitudes.

Transverse Profiles
 

Between-animal comparisons of the effects of constant

light and constant dark on circadian activity parameters

are presented below as a general orientation. When cosines

were fitted to entire lO-day time series, a single dominant

48
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component was found in the circadian frequency domain (22-27

hr.) representing the average and most significant perio-

dicity for the time series. The characteristics of these

components (i.e., period length, amplitude, phase angle,

etc.) have been tabulated for five hamsters in Table 3.

The value found for period lengths (T) are in agree-

ment with those cited for this species in the literature,

Table 1. In general, changes in period length following

constant illumination or constant darkness tend to follow

Aschoff's rule; increasing slightly under constant light

and decreasing slightly in constant darkness. However,

period changes were, in all cases, small (1%) and because of

the high between-animal variance and small sample size, no

statistical significance could be attributed to treatment

effects.

The specific lighting regimens imposed on each time

series, twenty days of constant light followed by twenty

days of constant dark, resulted in continuous phase drifts

from an LD reference point which initially crested around

midnight. The average phase angle during entrainment was

-359.24 degrees with a between-animal variance of only 1.02

degrees (4.8 minutes). As expected, the absence of an

external acrophase during constant light and constant dark

resulted in a greater between-animal phase variance with

the highest cumulative variation occurring after 20 days of

constant dark (by this time the "clock" was nearly 16 hours
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slow, as well as 30 times more variable). As a result, a

statistically significant shift in phase was not demonstra-

ble until the second half of the LL time series.

Significant changes in both mean activity levels (CO)

and circadian amplitudes (C) were observed during the ini-

tial period of constant light and the final period of con-

stant dark. Initial exposure to constant light resulted in

a depression of mean activity from an average of 490.76

counts/0.1 hr. during entrainment to 159.72 counts/0.1 hr.

during the first ten days of constant light. Circadian

amplitudes during this period averaged 195.78 counts/0.1 hr.

compared to a mean of 667.79 counts/0.1 hr. during entrain-

ment. This depression of activity by constant light agrees

with previously published findings for nocturnal rodents

(DeCoursey, 1961). However, the effect appeared to be

transitory since both parameters tended to recover to pre-

constant light (LD control) values by the end of the 20-day

LL series.

Circadian amplitudes fell slightly while mean activity

levels increased during initial exposure to constant dark-

ness (DD). Neither parameter changed significantly,

however, until 20 days of DD. Circadian amplitudes con-

tinued to fall throughout the time series while the initial

rise in activity level was followed by an eventual depres-

sion. By the end of a 20-day DD series, circadian ampli-

tudes averaged 341.99 counts/0.1 hr. while the average
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activity level was 325.35 counts/0.1 hr.

When circadian amplitudes were normalized to their

respective means (C/CO), it was found that both constant

light and constant dark caused a significant reduction in

the ratio. Initially ,under LL, the C/C0 ratio fell to an

average value of 1.17 i 0.09 from a previous LD average of

1.40 i 0.02. Both amplitudes and mean levels fell during

this period, however a disproportionate fall in circadian

amplitudes (71%) compared to mean levels (67% fall)

accounted for an overall reduction in the C/CO ratio. The

effect of LL again appeared to be transitory.

The C/Co ratio was significantly reduced throughout

the entire DD period. The initial reduction (to a value

of 0.98 i 0.08) resulted from both a fall in circadian

amplitude and a rise in activity level. The combined effect

of these changes was to greatly reduce the C/CO ratio. By

the end of the DD period, the C/CO ratios showed partial

recovery (mean = 1.03 i 0.04) but were still significantly

depressed from their LD values.

In summary, analysis of lO-day time segments of ham-

ster motor activity reveals the presence of a relatively

stable and apparently synchronized circadian periodicity.

While the period length (r) of this major component varies-

only slightly, its phase angle and amplitude are highly

labile. Moreover, although transverse profiles are useful

in the comparison of circadian parameters between individual
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animals, longitudinal profiles allow for a more complete

description of changes within the time series, including

those which are transitory. Accordingly, the presence of

additional periodicities was evaluated by examining the

results obtained when spectral analyses were applied to

individual time series.

Spectral Analysis of Hamster Motor Activity

The spectral analysis procedure used in this study

(Program waver; Appendix B) produces a computer output of

calculated amplitudes (with standard errors) and crest times

for a large number of significant periodicities. Not all

of these appear to be biologically meaningful when plotted

in a line spectrum and are, in fact, introduced into the

computations by the total length of record (T) and the

interval between data points (AT). It was apparent that an

analysis of these "artifacts" (sidebands) was necessary

prior to a meaningful description of the biological data.

Consequently, computer simulations were performed on arti—

ficial input data of known waveform. Results of this analy-

sis are presented in Figures 6-9.

Compgter Simulations
 

The typical 24-hour (LD) rhythm of the hamster was the

conceptual starting point for the simulation. Figure 5

illustrates daily activity records of several hamsters
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Daily activity records of several hamsters

recorded at different times during a lO—day

period of LD12:12 entrainment. Horizontal

bars below each graph indicate li hts off.

Amplitudes are in counts/hr. x 10 . Each

figure represents a daily record from a

single animal.
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recorded at different times during a lO-day period of

LD12:12 entrainment. Activity (in counts/hr.) is indicated

on the ordinate; time (in hours) appears on the abscissa.

The dark band below each graph represents lights off.

As the figure illustrates, activity in these animals

occurred during the 12—hour dark span. Exact times for

activity onsets and offsets varied between animals with

onsets appearing less variable than offsets. Moreover, the

waveform of entrained hamster activity is frequently multi-

modal, closely resembling a "rippled" square wave.

Accordingly, the effect of fitting cosines to a non—sinu-

soidal function was examined using ten cycles of an artifi-

cial square wave as input to Program Waver. For comparison,

cosines were also fitted to ten cycles of a single sine

function. Thus, both data decks simulated a ten-day time

series with AT = 0.1 hr., N = 2400, and f = 1 cycle/day

(r==24.0 hrs.). The results are shown in Figure 6.

Figure 6(a and b) represents the amplitude—frequency

spectra for the square wave and sine wave analysis respec-

tively. (Note: For significance levels, the reader is

referred to Figure 7.) Amplitudes are expressed relative

to the mean and are indicated on the ordinate as a C/Co

ratio. Corresponding frequencies appear on the abscissa

in cycles/day. The figure indicates a dominant spectral

peak at the frequency of the fundamental component (1 cycle/

day) for both waveforms.
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Figure 6. Amplitude—frequency spectra from spectral

analysis of a 24-hour square pulse (a) and a

24-hour sine function (b). Amplitudes are

normalized to the mean at C/CO. N = 2400;

AT = 0.1 hr.
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For the square wave (Figure 6a), the fundamental fre-

quency gave a C/CO ratio of 1.27 while the ratio for the

sine function was 1.00. Moreover, the analysis produced

numerous sidebands and harmonics even though a single

periodicity was present. It is interesting to note that,

apart from the fundamental components and their immediate

sidebands (which had identical frequency values), the

spectral patterns produced by the contrasting waveforms are

quite different.

The sine spectrum (Figure 6b) indicates that the

original waveform can be described as a single oscillatory

component (a sinusoid) having a frequency of l cycle/day.

Sideband amplitudes approach zero as the frequencies

examined by the analysis increase. No secondary peaks occur

at harmonic periods.

In contrast, the square wave spectrum (Figure 6a)

shows several secondary peaks which rise significantly

above background noise at frequencies of 3.0, 5.0, 7.0 and

9.0 cycles/day. These represent cosine components with

period lengths of 8.00, 4.80, 3.42, and 2.67 hrs. respec-

tively, and correspond to the odd harmonics of the funda-

mental frequency. (Note: A square wave is generated by

summating a sufficient number of the odd harmonics of a

sinusoid; Fourier synthesis.)

In Figure 7 (a and c), these spectra are again repro—

duced but include only those components with amplitudes
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significantly higher than the overall mean level when evalu-

ated statistically. In addition, six-minute data values

were summated in these simulations (reducing N by a factor

of 10, from N = 2400 to N = 240) to give hourly totals.

The resulting spectra are shown in Figure 7 (b and d). As

these figures indicate, a reduction in the number of data

points comprising a time series and an increase in the

sampling interval (AT), results in a loss of information

provided by the spectra. For example, in the hourly square

spectrum, Figure 7b, only the first three odd harmonics

are significant, whereas the first nineteen odd harmonics

are significant when AT = 0.1 hr. and N = 2400 (Figure 7a).

Precise values for the spectra of Figure 7 (a and c) have

been tabulated in Appendix F. All significant periods

(T values) which appeared as output are listed, as well as

their frequencies, C/Co ratios, and phase angles. In addi—

tion, the amplitude of each component relative to the cir-

cadian amplitude has been expressed in a ratio (C/C24,

column 5).

In the final simulation, cosines were fitted to a

single square wave cycle to determine this method's useful-

ness in analyzing daily activity records resembling square

waves. The results are shown in Figure 8. The best fitting

cosine had a period length of 29.00 hrs. (frequency 0.82

cycles/day) rather than the expected 24.00 hrs. However,

all secondary peaks represent the odd harmonics of a
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Figure 9. Relationship between continuous days of record

of a 24-hour square pulse and the frequency of

the circadian spectral component. Numbers indi-

cate period lengths (hrs.) converging on 24.0

hrs.
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24-hour square wave with the lowest frequency component

being an 8.01 hr. harmonic (3 cycles/day).

In Figure 9, the relationship between continuous days

of record (T) and the frequency of the dominant oscillation

is illustrated. As the simulation deck was increased from

one day of record to ten days of record, the dominant

spectral component approached the value of the true perio-

dicity (24.00 hrs.) as an assymptote. As the figure shows,

a minimum of 3 continuous days of record was needed in order

to reduce the distortion of the true periodicity from 5.00

hrs. to 0.37 hrs. (22.2 minutes). Ten days of record re-

duced the error of T to 0.02 hrs. (1.2 minutes). A tabula-

tion of values for the three-day square wave spectrum can

also be found in Appendix F.

Analysis of Hamster Data

The results of Spectral analysis of a complete 50-day

time series from a typical hamster are presented sequential-

ly in Figures 10-14. Each figure represents the spectral

pattern produced when cosines were fitted to a 10-day data

segment of motor activity. Amplitudes of the cosine compo-

nents are indicated on the ordinate as a normalized ratio

(C/Co); frequencies are indicated on the abscissa in cycles/

day (24.0 hr. = l cycle/day). Occasionally, the period

length (T), in hours, of a dominant component is indicated

along with its phase angle (0) and its amplitude relative
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to the circadian amplitude (C/C24).

In general, the spectra produced by 10 days of hamster

motor activity typically show a single major component in

the circadian frequency domain. Unlike the spectra of the

pure waveforms used in the simulations, however, secondary

peaks having various amplitude and phase relationships to

the circadian component, are usually found at all harmonic

(and sometimes at non-harmonic) frequencies. The peaks

which occur at odd harmonic frequencies, for example at

3 cycles/day (T = 8.00 hrs.), are predictable from the

square wave spectrum, but the appearance of even harmonics

represents a deviation from both the square wave and sine

wave simulations. Moreover, changes in the relative ampli-

tudes of these components seem to be related at least in

part, to the degree of internal dissociation produced by

either LL or DD. In the illustrative examples, dissocia-

tion of the circadian rhythm into its components is demon-

strated by the differences between the LD spectrum of

Figure 10, the spectrum representing the first 10 days of

LL (Figure 11), and the spectra from the entire DD series

(Figures 13 and 14). Under constant light, the dissocia-

tion is transient and missing from the second 10-day period

(Figure 12). This is demonstrated by a transient increase

in the relative amplitudes of non-circadian frequencies and

a transient decrease in the amplitude of the major 24-hour

periodicity. The spectra illustrating the effect of DD,
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however, suggest a more complete dissociation of the syn-

chronized activity rhythm, demonstrated by a progressive

increase in the significance of non-circadian frequencies

and a relatively long lasting depression of the amplitude

of the fundamental circadian component.

In Figure 10, the spectrum produced by synchronized

(LD) data is illustrated. As the figure indicates, a single

circadian component with a period length of 23.95 hrs.

(1 cycle/day) and a phase angle of 83.63 degrees was the

dominant periodicity for this animal during entrainment.

The normalized amplitude (C/Co) of this component had a

value of 1.36 i 0.02. In addition, with the exception of

harmonic #7, a component can be identified at all harmonic

frequencies up to 8 (T = 3.00 hrs.). Of these components,

the first three had relatively high amplitudes when compared

to the circadian peak. The lZ—hour component had an ampli-

tude which was 27.5% of the circadian amplitude while the

8—hour and 6-hour periodicities had amplitudes which were

31 and 30.2% of the circadian amplitude respectively.

As mentioned above, Figure 11 extends the analysis to

include the first 10 days of the LL period following LD.

The spectrum shows a single dominant component in the cir-

cadian domain with a period length of 23.98 hrs. and a

phase angle of 96.34 degrees. Secondary peaks were again

found at harmonic frequencies, slightly shifted but not
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significantly different in period lengths from those seen

in the LD spectrum.

Amplitude changes for both the fundamental and harmonic

components constitute the greatest deviation from the LD

spectrum. The C/C0 ratio of the circadian component was

1.07 i 0.04 during this period compared to a value of 1.36 i

0.02 during LD. Further, the spectrum suggests some degree

of dissociation, as evidenced by the presence of high-

amplitude harmonics. The peak at a frequency of 3 cycles/

day (period length 7.90 hrs.) for example, now has an ampli-

tude which is 66% of the amplitude of the circadian compon-

ent. Similarly, the amplitudes of all other harmonics,

relative to the circadian amplitude, showed an increase from

their values in the LD spectrum. In addition, peaks were

found at other non—harmonic frequencies (e.g., at 2.8 cycles/

day) suggesting the presence of additional periodicities.

The spectrum illustrating the second half of the LL

time series is shown in Figure 12. The general pattern is

similar to that seen during LD, which suggests the reoccur-

rence of synchronization. A single major circadian compon-

ent was found to have a period length of 24.17 hours and a

phase angle of 88.48 degrees. Its normalized amplitude of

1.37 i 0.03 was comparable to the value seen during LD. 'In

addition, the relative amplitudes of harmonic components

(i.e., 12, 8, and 6-hour periodicities), showed a return to

LB values. The lZ-hour component had an amplitude which was
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19.4% of the circadian amplitude while the amplitudes of

the 8 and 6-hour components were 27.9 and 16.1% of the

circadian amplitude respectively. Peaks at non-harmonic

frequencies were not discernible.

The spectra produced by activity data recorded under

constant darkness are shown in Figures 13 and 14. Figure

13 includes the first 10 days and Figure 14 the second 10

days of a 20-day series. Both figures suggest a dissocia-

tion of the data which lasted for the entire time series.

Figure 13 shows a major circadian component with a period

length of 24.00 hrs. and a phase angle of 205.43 degrees.

Its normalized amplitude, as expected from Table 3, fell

to a value of 0.930 i 0.02. Components representing 12.3

and 8.2 - hr. periodicities were found to have amplitudes

which were 57.2 and 63.6% of the major circadian amplitude.

Data recorded during the second half of the DD series

produced a circadian component with a period length of

23.53 hrs. and a 12.04-hour component whose amplitude was

81.2% of the circadian amplitude, Figure 14. The normalized

amplitude of the circadian period remained at a value of

0.932 t 0.03 while the relative amplitudes of secondary

components increased from their previous DD values.

Further, higher frequency components became more significant

during this period as, for example, in the occurrence of a

(4.00 hr. periodicity with an amplitude 42.6% of the circa-

dian amplitude .
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In summary, as the above figures indicate, spectral

analysis of ten-day data segments of hamster activity pro-

duce amplitude—frequency spectra containing a single major

component in the circadian domain. It is possible, however,

that high amplitude peaks represent the summation of

several circadian (or non-circadian) periodicities which

occurred either transiently (and then dropped out or were

resynchronized) or whose phase relationships made them in-

distinguishable as separate components in the specific 10-

day analysis examined. Consequently, detection of these

additional periodicities was attempted by analyzing 3-day

non—overlapping data subsets. The results are shown in

Figure 15.

Analysis of Three-day Data Subsets

Figures 10-14 illustrate that a major circadian

periodicity can be identified from both LL and DD data.

During these periods, however, significant changes in the

amplitude of the circadian spectral peak (relative to its

value in the LD Spectrum) suggest a possible interference

from one or more additional periodicities. Higher-than-

expected peaks at other frequencies also suggest the

presence of transient (but real) components which are

normally hidden in the synchronized record. Accordingly,

spectral analyses were obtained from 3-day non-overlapping

data subsets in order that changes in the gross activity
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patterns be more closely documented. For the data presented

in Figures 10-14, the results of such an analysis are shown

in Figure 15 (a-p). As above, normalized amplitudes are

plotted on the ordinate as a ratio (C/CO); frequencies are

shown on the abscissa in cycles/day. (Note: Amplitudes

may be compared directly between plots since ordinates are

drawn to the same scale; frequency scales vary slightly.)

Figure 15 (a-c) represents the spectra obtained from

nine days of entrained (LD) activity data. Each plot in-

cludes 3 consecutive days. A single circadian component

was found in each data subset with period lengths of 24.2,

23.6 and 24.0 hrs. (2 = 24.0 e 0.11 hrs.; 1 cycle/day)

and normalized amplitudes of 1.43 i 0.03, 1.42 t 0.04, and

1.34 z 0.04 (i = 1.39 i 0.03) respectively. The slightly

lower value seen during days 7-9 was caused principally by

a reduction in amplitude (C). Mean activity level (Co)

remained constant at 522.73 i 16.2 counts/0.1 hr. through-

out the series. As in Figure 10, secondary peaks were

found at "harmonic" frequencies with greatly reduced ampli-

tudes compared to the circadian peak. The similarity of

each consecutive plot suggests that entrainment of hamster

activity produces a relatively stationary (stable) time

semies with minimal dissociation or desynchronization.

Data recorded during the first 3 days of LL (Figure

15d) showed a significant reduction in mean activity level

(1419.93 1 11.23 counts/0.1 hr.) from previous LD values
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(p < 0.01). Both the 25.7 and 24.0 hr. periodicities

appear to represent independent rhythms, since their phase

angles (and crest times) were quantitatively different

(48.4 and 91.4 degrees respectively). The phase difference

of these two components is equivalent to 3 hours of clock

time. In addition, secondary components at frequencies of

5.3 and 4.7 cycles/day had amplitudes which were 91 and 94%

of the circadian amplitudes. Hence, the spectrum for this

time period indicates a splitting (into two or more com-

ponents) of the strongly circadian sleep-wakefulness pattern

demonstrated in the LD spectra.

The most significant periodicity found during days 4-6

of LL had a period length of 8.03 hrs. and a normalized

amplitude of 1.05 i 0.07, which suggests additional data

splitting. A circadian component with a period length of

24.05 hrs. and an amplitude of 0.921 t 0.07 was also found.

The longer circadian component seen in the previous three

days could not be separated during days 4—6 but reappeared

in days 7—9 (Figure 15f) and days 10-12 (Figure 159). Mean

activity level remained depressed during this period at

111.87 1 5.69 counts/0.1 hr. but circadian amplitudes rose

slightly to produce somewhat higher ratios.

Like Figure 15d, Figure 15h, for days 13-15 of LL,

shows two circadian components with period lengths of 25.8

and 24.1 hrs. and amplitudes of 1.46 i 0.05 and 1.43 t 0.05

respectively. As in Figure 15d, the circadian components
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represent independent rhythmicities with a phase angle dif-

ference of 45 degrees (51.8 and 96.0 degrees) equivalent to

three hours of clock time. Moreover, the small phase angle

difference of the "25.7-hour" component between days 1-3

and days 13-15 of LL (3.4 degrees) suggests either that

considerable phase shifting occurred for this periodicity

or that the estimate of period length has an inflated error

and is actually closer to 24.0 hours. In addition, secon-

dary peaks at harmonic frequencies had greatly depressed

amplitudes suggesting data resynchronization. This is

further supported by the pattern of Figure 15i (also from

LL) which resembles those spectra produced by the entrained

data.

The remaining spectra of Figure 15 (plots j-p) extend

the time series to include the DD data. Analysis of the

first 12 days, Figure 15 (j—m), revealed a single component

in the circadian domain having an average period length of

24.4 i 0.34 hrs. Some degree of data dissociation is sug-

gested by a highly significant 12.1 hr. component in Figure

lSj (with a normalized amplitude greater than the circadian

period for this time segment) and, likewise, by an 8.42 hr.

periodicity in Figure 15k (whose normalized amplitude was

96.3% of the circadian peak). Moreover, Figure lSj, for

the initial 3 days of DD, shows a 53% reduction in the C/Co

ratio of the circadian period (0.68 i 0.04) which resulted

from the combined increase in the overall mean activity
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level (CO) and a decrease in its circadian amplitude (C).

Dissociation of the activity data into components is

further evidenced in Figure lSn for days 13-15 of DD. With

the exception of a 20.5 hr. component with a relatively

low amplitude, no "circadian" period could be demonstrated.

Instead, the most significant periodicity isolated during

this segment had a period length of 12.19 hrs. and an

amplitude of 0.95 t 0.08.

Spectral splitting in the circadian domain occurred

after 16 days of DD, Figure 150. Two high amplitude com—

ponents were found to have period lengths of 23.9 and 22.7

hrs. and normalized amplitudes of 1.15 i 0.05 and 1.14 i

0.05 respectively. As was the case in the LL spectra

(Figure 15 d and h), both components represent independent

rhythms which crested 2 hours apart for an average phase

angle difference of 30 degrees (352.5 and 22.5 degrees

respectively). Finally, in contrast to LL, the last spec—

trum of the DD series (Figure 15p) offers no evidence for

data resynchronization which would restore the spectrum to

its LD pattern.

Analysis of Hamster Data Using Autocorrelation

FunctionS‘and’Periodograms
 

Spectral analyses of hamster motor activity under LL

and DD demonstrate the presence of multiple periodic com—

ponents representing independent rhythmicities. To confirm
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such findings, the time series were subjected to autocorre-

lation and periodogram analyses. Each technique emphasizes

a different aspect of the data and, hence, the detection of

multiple components by all methods would further support

the conclusions of the spectral analyses. For the data pre-

sented in the previous section, the results of autocorrela-

tion and periodogram analyses are shown in Figures 16-24.

Results of Autocorrelation Analyses
 

The effect of lighting regimen on hamster activity

patterns is illustrated in Figures 16-23. The five graphs

of activity data (top) comprise a typical 50-day time

series presented chronologically, with each figure encom-

passing a lO-day data segment. In order that the entire

series be illustrated, only the hourly sums are reproduced

(since the CDC Calcomp Plotter accepts only 500 data points

as input to the plot routine). Nevertheless, analysis of

6-minute data produced patterns of the autocorrelation func-

tion similar to the hourly data (bottom). In some cases,

for example the first 10 days of the LL series, a greater

resolution of the autocorrelation pattern was needed. For

this reason, detailed plots of the autocorrelation analyses

from 6-minute data have also been included (Figures 18, 21

and 23).

In Figures 16-23, hamster activity (raw data) expressed

in counts/hr. as recorded from the activity monitors, is



Figure 16.
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Ten—day time series of entrained (LDlzglz)

hamster activity (a) and corresponding auto-

correlation function (b). Amplitude ordinate

is in scientific notation in ranges of 1.857 x

103 - 7.426 x 103 to 1.021 x 104 - 1.578 .x 104

counts/hr. Rho = serial correlation coeffi—

cient; lag = hourly shifts of the time series.
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indicated on the ordinates in scientific notation (see

Legends on facing pages). Time, in hours, is plotted on

the abscissa. The corresponding autocorrelation functions

for each data segment appear below the raw data plots for

comparison. Each of these graphs represents a sequence

of product-moment correlation coefficients, Rho, obtained

by autocorrelation of the full ten-day segment. The values

of the coefficients range from +1.0 to -1.0 on the ordinate,

while the time lag extends to 120 hours on the abscissa.

All analyses utilized Program Main (Appendix C) and a CDC

6500 computer; results were plotted with a CDC Calcomp

Plotter.

Figure 16b presents the typical correlation sequence

for entrained (LD ) hamster data. As the figure illus-
12:12

trates, photoperiodic entrainment of hamster activity pro-

duced an autocorrelation pattern in which a single periodic

component was observed. Autocorrelation of ten days of

activity data produced five highly significant peaks with

an average interpeak interval of 24.0 i 0.1 hrs. corre-

sponding to an exogenous 24.0 hr. photoperiod. Peak corre-

lation coefficients averaged a highly significant 0.82 i

0.01 (p << 0.01) and occurred at 24.2, 48.2, 71.7, 96.0 and

120.0 hrs. The raw data, Figure 16a, from which the auto-

correlation function was derived, are typical of entrained

hamster activity, exhibiting sustained periods of activity

(when the lights are off) followed by equally sustained
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periods of sleep. This is evidenced by a high first—order

serial correlation coefficient for the LD data of 0.81. It

should be noted that the LD data, which are the controls for

other lighting regimens, appear to be almost square waves

(in the plot of raw data) or triangular waves (in the auto—

correlation plot). The reader is referred to Figure 3 for

similarities between the autocorrelation functions for a

sine wave, a square pulse, and LD hamster activity data

(page 33).

Figure 17a illustrates the initial effect of LL on the

activity pattern. In the absence of an exogenous photo-

period, sustained periods of activity and sleep, like those

previously discernible, are still present but with a more

erratic pattern. The first-order serial correlation coef-

ficient for this series was reduced to 0.42. In addition,

LL caused a 78.5% reduction in the average intensity of

activity from that seen under LD (note the difference in

magnitude of the amplitude scales, Figure 16a vs. Figure

17a). Mean activity level under LD measured 5315 i 421

counts/hr. compared with an initial level of 1143 i 134

counts/hr. during LL.

Figure 17b illustrates the autocorrelation function

for the data recorded during the first 10 days of the 20-

day LL series. A detailed analysis (using 6-minute data;

AT = 0.1 hr.) is presented for the same time period in

Figure 18. As the analysis suggests, peak correlation for



Figure 17.
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Ten-day time series of hamster activity

recorded during the first half of a 20-day

constant light (LL) time period (a) and corre-

sponding autocorrelation function (b).

Amplitude ordinate is in scientific notation in

ranges of 875 — 7.002 x 103 counts/hr. Rho =

serial correlation coefficient; lag = hourly

shifts of the time series.
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this time segment followed lags of 24.1, 48.4, 72.8, 96.2,

and 119.5 hrs. for an average interpeak interval of 23.9 i

0.23 hrs. Moreover, in contrast to the single oscillation

observed for LD data, a second peak occurred in the auto-

correlation function after a lag of 25.3 hrs. (and again

at 50.4, 74.3, and 100.8 hrs.) suggesting the presence of

a 25.2 i 0.53 hr. periodicity. (These peaks are better

illustrated in Figure 18, although only every fifth point

has been plotted.) In addition, autocorrelation produced

secondary peaks which occurred at regular intervals as the

data were lagged. They are illustrated in Figure 18 pre-

ceding the major components.

The first of these peaks occurred after lags of 6.5,

31.7, 57.0 and 82.6 hrs. and had an average interpeak inter-

val of 25.36 i 0.12 hrs. Likewise, the second peak in the

autocorrelation function reoccurred four times (at 17.4,

41.0, 64.7, and 88.2 hrs.) resulting in a periodicity with

an interpeak interval of 23.6 i 0.05 hrs. Following a lag

of 90 hrs., however, secondary peaks in the autocorrelation

function are difficult to observe. This suggests that multi-

ple periodicities produced by LL are transitory (at least

initially), are best detected from the initial data segment,

and that resynchronization is likely to occur after about

5 days, suggesting beat phenomena. It is interesting to

note, furthermore, that peak correlation values for this

ten day segment were significantly lower than those observed
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for the LD data (£><< 0.01). The most significant oscilla-

tion (T = 23.90 i 0.23 hrs.) had an average peak correlation

value of only 0.29 i 0.03 (Figure 17b) compared to an

average value of 0.82 i 0.01 under LD. This drop in correla-

tion was probably due to the presence of multiple periodici-

ties in the data as well as their wide phase dispersion.

Figure 19a continues the data record to include the

second 10 days of the LL series. As the figure illustrates,

data splitting was less frequent than in the previous 10

days. Mean amplitudes during the first three days of this

time period were comparable to those of the preceding

series, but by day 14 daily amplitudes returned to LD levels.

Mean activity intensity for the entire series was 4377 i 397

counts/hr., representing a 73.9% increase from the previous

ten days.

The clean delineation of sleep and activity cycles

seen in the LD data returned after 13 days of LL producing

an autocorrelation function similar in shape to that ob-

served during entrainment (Figure 19b). This was further

evidenced by an increase in the first-order serial corre-

lation coefficient to a value of 0.69. It is apparent from

the LL figures that the partial periodicities seen during

the first 10 days of LL resynchronized by the end of 20

days of LL, presumably by shifts in phase. The resynchroni-

zation of these periodicities was followed, in turn, by a

significant increase in the resultant amplitude vector.



Figure 19.
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Ten-day time series of hamster activity

recorded during the second half of a 20-day

constant light (LL) time period (a) and

corresponding autocorrelation function (b).

Amplitude ordinate is in scientific notation

in ranges of 1.752 x 103 - 9.636 x 103 to

1.226 x 104 - 1.489 x 104 counts/hr. Rho =

serial correlation coefficient; lag = hourly

shifts of time series.
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The autocorrelation pattern calculated for this second ten

day segment had peaks at 23.8, 47.8, 72.3, 96.3 and 119.9

hrs.,for an average period length of 23.98 i 0.14 hrs. In

addition, peak correlation increased during this period to

a mean of 0.64 i 0.03.

Dissociation of hamster activity by DD is illustrated

in Figures 20a and 22a. Data splitting occurred but to a

lesser degree than that seen during LL. The first-order

serial correlation coefficient fell only slightly during

the first 10 days of DD to a value of 0.67, and was still

relatively high by the end of 20 days at a value of 0.55.

For the first 10 days (Figure 20a) the mean activity

level was 5146 i 378 counts/hr. which was not significantly

different from the mean levels of the LD and final LL time

series (Figures 16a and 19a). Moreover, the autocorrela-

tion function for this lO-day segment (Figure 20b) revealed

three periodic components. A major peak occurred at 24.6,

49.2, 73.3 and 97.8 hrs. indicating a 24.45 i 0.12 hr.

periodicity with a relatively high average correlation

value of 0.55 t 0.03. Secondary peaks are illustrated in

Figure 21 for the analysis of six-minute data. The peak at

7.6 hrs. occurred four additional times (at 33.5, 58.7,

81.0 and 104.9 hrs.) suggesting a rhythmicity with an

average period length of 24.13 i 0.06 hrs. Likewise, the

peak at 17.0 hrs. appeared four times to suggest the pres—

ence of a 24.77 t 0.30 hr. periodicity.



Figure 20.

105

Ten-day time series of hamster activity

recorded during the first half of a 20—day

constant dark (DD) time period (a) and corre-

sponding autocorrelation function (b).

Amplitude ordinate is in scientific notation

in ranges of 1.865 x 103 - 7.460 x 103 to

1.026 x 104 — 1.5854 x 104 counts/hr. Rho =

serial correlation coefficient; lag = hourly

shifts of time series.
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In contrast to the LL time series, dissociation seemed

to be more complete during the second ten days of DD,

Figure 22b. In fact, it is difficult to identify multiple

periodic components which possess relative stability other

than a single, stable circadian period averaging 23.90 i

0.18 hrs., with peaks at 23.6, 71.6, 95.9, and 119.5 hrs.

Peak correlation values averaged 0.33 t 0.03 and, although

several secondary peaks occurred during the initial lags,

their stability following subsequent lags was not easily

discernible. The transitory nature of the secondary peaks

is again suggestive of wide phase dispersal. Mean activity

level was reduced 50.64% to 2623 i 265 counts/hr. which was

significantly lower than the LD value (p << 0.01).

Periodogram Analysis
 

Figure 24 (a-e) offers examples of periodograms calcu-

lated from the hamster activity data of Figures 16-23 (tOp).

The range of period lengths examined was permitted to vary

in steps of 0.1 hr. from 20-30 hrs., limits which include

the circadian domain of 24.0 hrs. Estimates of Ap (root-

mean-square amplitude) for each of the 101 values of assumed

period are plotted on the ordinates; corresponding period

lengths are found on the abscissa.

The primary feature of each graph is an amplitude peak

at a period value which corresponds closely to the value

obtained by each of the autocorrelation analyses. For the



Figure 22.

110

Ten—day time series of hamster activity

recorded during the second half of a 20-day

constant dark (DD) time series (a) and corre—

sponding autocorrelation function (b).

Amplitude ordinate is in scientific notation

in ranges of 1.570 x 103 - 6.633 x 103 to

1.099 x 104 - 1.334 x 104 counts/hr. Rho =

serial correlation coefficient; lag = hourly

shifts of time series.
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LD data, Figure 24a, maximum amplitude occurred at a period

of 23.9 hrs., which is comparable to the 24.0 hr. perio-

dicity seen in the autocorrelation function for this time

segment. Likewise, periods of 23.9 and 24.0 hrs. are

present in the periodograms for the first and last 10 days

of the LL time series (Figure 24b and c), corresponding to

autocorrelation values of 23.9 and 24.0 hrs. respectively.

In addition, the results of Figure 24b, for the first 10

days of LL, agree with the findings of the autocorrelation

analysis that at least two periodicities were present in

this data segment. Besides the peak at 23.9 hrs. previously

cited, a second, equally significant peak occurred for a

period of 25.0 hrs. which is comparable to the 25.2 hr.

periodicity identified by the autocorrelation function.

In contrast to the autocorrelation analysis, however,

resolution of multiple periodicities from the DD data is

not possible from the periodograms for these segments

(Figure 24d and e). Instead, only a single peak occurred

in each case at 24.5 and 24.0 hrs. for the first and second

lO-day segments. These values, however, do correspond

closely to the major periodicities detected by the auto-

correlation analysis (24.4 and 24.0 hrs. respectively).
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Figure 24. Periodograms of lO-day segments of hamster

activity data from a continuous 50-day time

series. Figure 24a: LD entrained data.

Figure 24b: Initial 10 days of LL data.

Figure 24c: Final 10 days of LL data.

Figure 24d: Initial 10 days of DD data.

Figure 24e: Final 10 days of DD data.

Ap = root—mean-square amplitude.  
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DISCUSSION

Any time series, regardless of waveform, may be ana-

lyzed (by means of Fourier's theorem) into an additive

assembly of cosines whose parameters (i.e., frequenCies,

amplitudes and phasing) can then be objectively quantified

(Sollberger et al., 1967). The phase and amplitude of each

of these cosine components plotted as a function of fre-

quency constitute the spectrum. In general, the procedure

involves converting the data from a function of time to a

function of frequency. The spectrum then obtained will show

prevalent periodic components (rhythmicities) having promi-

nent amplitude peaks at their respective frequencies as

Opposed to the "flat" spectrum representing white noise.

Strict Fourier procedures, however, make assumptions re-

garding the length of the fundamental component (f = k/T;

frequency = k/total length of record) and, as a result,

the calculated harmonic frequencies include the true basic

periodicity of the time series only by coincidence.

Accordingly, the amplitude-frequency spectra of standard

Fourier analyses are discontinuous since they contain only

one set of harmonics.

To avoid this criticism, the spectral analysis pro-

cedure of Program Waver uses a least squares format to fit

118



119

(by predetermined increments) cosines of sequentially decre-

mented period lengths. Those cosines which show a greater

amplitude/standard error ratio than that of functions fitted

immediately preceding or following it, appear as output.

The result is a quasi-continuous spectrum of peaks from a

periodogram of best fitting cosine functions (see Table 2).

Moreover, it should be noted here that the error estimate

for values of period length can therefore be approximated by

twice the decrementation interval. Hence, if the decrements

occur as 1% of the previous wavelength, a conservative esti-

mate of the error associated with any one periodicity can

be given as t 2% of the value of the respective wavelength.

The computer simulations on test input data having

known waveforms, period lengths, amplitudes, and phase

angles, have established certain criteria for the interpre-

tation of spectra obtained from biological data. The first

of these concerns the accuracy of period estimation given

a periodic function that is not a sinusoid. As illustrated

in Figures 8 and 9, the distortion produced by the fit of a

cosine to a square pulse is inversely related to the length

of the time series or, more accurately, to the number of

repetitive pulses. Increasing the number of cycles of a

"24-hour" square pulse from one cycle to ten cycles reduced

the distortion of the true periodicity from 20% to 0.08%.

For entrained hamster data, which are similar in shape to a

square pulse, it appears (from Figure 9) that a minimum of
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3 continuous days of record is needed for the production of

meaningful spectra, in the sense of a low error in period

length. There is still an error in absolute amplitude,

however, as discussed below.

A second criterion established by the computer simula-

tions relates the waveform to the pattern of harmonic peaks.

As illustrated in Figure 6, a pure "24-hour" sine function

with a crest time at 0600 hrs. produces a single spectral

peak (with its sidebands) at a frequency of l cycle/day and

a phase angle (as indicated in Appendix F) of 90.76 degrees.

In addition, no secondary peaks occur at harmonic frequen-

cies. On the other hand, the spectrum produced by a "24-

hour" square pulse exhibits secondary peaks at all of the

odd harmonic frequencies of the fundamental component. The

00 hrs.square pulse had a step transition from 0-100 at 12

which resulted in a phase angle of 270 degrees (midpoint of

the pulse) for the fitted cosine. Concurrently, the phase

angles for all of the odd-harmonic components averaged 269.5

f 1.8 degrees.

The relationship of the amplitude of a harmonic com-

ponent to that of the fundamental frequency (C/C24), as

evidenced by the values for the square spectrum (Appendix F),

is given by the reciprocal of the harmonic number (at least

for functions approximating a square pulse). Thus, for a

"24-hour" square wave the third harmonic (T = 8.00 hrs.)

has an expected amplitude of 1/3 or 33% of the amplitude of
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the 24-hour period, while the fifth harmonic (T = 4.8 hrs.)

produces a C/C24 ratio of 1/5 or 0.20, etc. Moreover, it

should be noted in Appendix F that the least squares fit of

a cosine to a 24-hour square pulse results in an "overshoot"

of the circadian amplitude estimate by approximately 27%

(as evidenced by a C/C0 ratio of 1.27 for the square pulse

as Opposed to a value of 1.00 for the sine). It is evident

that this error is easily compensated for by normalizing

all amplitudes to the circadian peak.

The term "harmonic" in the above description indicates

frequencies in the spectrum (detectable by the least squares

fit of a cosine) which are integer multiples of the funda-

mental. For "pure functions," their expected amplitudes and

phase angles will vary in a manner consistent with the wave-

form of the major periodicity. In the case of a sine wave,

for example, peaks in the spectrum will be absent at harmonic

frequencies (expected amplitude 0% of the amplitude of the

fundamental), whereas periodic functions which approximate

a square pulse would be expected to produce spectral peaks

at odd harmonic frequencies, with predictable relative ampli-

tudes and phase angles. However, biological oscillators

would rarely (if ever) be expected to produce symmetrical

periodicities. Hence, peaks at harmonic frequencies in the

biological spectra, while referred to as "harmonic" compo—

nents in this text, may in fact represent real and inde-

pendent periodicities since their amplitude and phase
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characteristics (under LL and DD) are often inconsistent

with either the square wave spectrum or the spectrum of LD

control data. It is hard to imagine, for example, a spec-

tral peak at a frequency of 2 cycles/day (T = 12.0 hrs.)

which has an amplitude that is 81.2% of the amplitude of

the circadian period as being anything less than an indica-

tor for some real component (see Figure 14) rather than

the simple second harmonic of the 24.0-hr. period, in the

strict sense. Moreover, if the 12.0-hr. periodicity does

represent a "real" component, then the analytical power of

Program Waver is such that multiple periodic components may

be identified as coexisting in the same time series. To

test this, Kasiske (1972) applied the least squares analy-

sis (Program Waver) to an artificial 24-hour sine function

and, in addition, to a function formed from the summation

of four sinusoids (period lengths 23.9, 8.0, 6.0 and 4.0

hrs.) with different amplitudes and phase angles. The

function can be expressed as:

f(t) = 142 + [127 cos(%§7§t - %% 21.8) +

84 cos(%§t - %§-5.7) + 73 cos (5.1)

(33711; - 3811 4.8) + 60 cos (3411- -

23"- 3.1)1/4

As expected, for the 24—hour pure sine simulation, the ana-

lysis illustrated a single peak in the amplitude spectrum
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at a frequency of 1 cycle/day. However, for the function

described by equation (5.1), amplitude peaks were detectable

at all component frequencies (i.e., at l, 3, 4, and 6

cycles/day) and at phase positions identical to those of

the input curves. As evidenced by equation (5.1), their

amplitude values were equivalent to Ci/4 (where C1 = 127...

C4 = 60). Moreover, no significant shifts in these para-

meters occurred after the addition of random noise. In

other words, the output spectrum of f(t) revealed the

presence of 4 periodicities of predictable amplitude and

phase which were known a priori to be independent.

Finally, it should be noted that, as Figure 7 illus-

trates, the resolution of any given spectrum is inversely

related to the length of the sampling interval (AT) and

directly related to the length of the time series (T). The

analytical power of least squares analysis will thus be

increased by small sampling intervals and long time series.

As illustrated in Figure 5, the general waveform of

entrained hamster activity bears closer resemblence to a

"rippled" square wave than to a sinusoid. This is due

principally to the sharp rises in activity onset and,

usually by equally sharp falls in offsets. (The reader is

not to infer, however, that such patterns are reproduced in

the natural state, since they may in fact, be produced by

the step transitions of the artificial LD photoperiod in

the laboratory). Consequently, the output spectra produced
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by least squares analysis of LD data were expected to

exhibit patterns similar to the square pulse simulation

(Figure 6a). However, as shown in Figure 10, entrained

hamster data show characteristic deviations from both of

the previously mentioned simulations. (The reader is here

referred to Appendix G for numerical values of the five

biological spectra presented earlier.) Unlike the sine

wave simulation (Figure 6b), the amplitude spectra typically

produced by LD data exhibit components at all harmonic

frequencies with harmonics 2, 3 and 4 (T = 12.0, 8.0, and

6.0 hrs. respectively) generally possessing "substantial"

amplitude values relative to the higher frequency harmonics.

Moreover, the appearance of the "even harmonics" represents

a deviation from the square wave spectrum and, as alluded

to earlier, cannot be attributed to the presence of random

noise.

Like the square wave simulation, the 8.0-hr. component

illustrated in Figure 10 had an amplitude and phase valufii

predictable by square wave analysis (see Appendix G for

T = 8.0 hr.). Consequently, the LD spectra typically offer

little evidence regarding the "authenticity" of this (301090,

nent as being anything other than the third harmonic Oftpe

circadian period. In principal, of course, this alone wa’:

rants a closer examination of the 8.0—hr. oscillation (and

other significant harmonics) since the actual waveform Of

the data may reflect important features of the neural
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system which produces circadian behavior. In the case of a

square pulse, for example, these higher frequency components

correspond to the fine ripples and sharp corners of the

waveform. It may be, however, that these secondary com-

ponents correspond to rhythmicities in the output data which

reflect interactive sub-systems of the neural networks.

This is evidenced by the fact that when the system is dis-

turbed, as with constant light (see Figures 11 and 12), the

amplitudes and phase angles of these harmonic components

appear to be modulated independently from the fundamental.

In Figure 11, for example, the 8—hour component (actually

7.9 hrs.) showed a phase angle of -267°, constituting a

phase shift of approximately 180° from its value under LD,

while the circadian component shifted by only 14°. In addi-

tion, its amplitude relative to that of the circadian period

was twice its predicted value. When the data showed resyn-

chronization (Figure 12), the relative amplitude of the 8-

hour component returned to a value compatible with the

simulation but its phase angle (-l37°) remained inconsistent

with the expected value. Evidence for a "real" 8-hour

component is further suggested, though not completely demon-

strated, by the fact that data dissociation produced an_

8.33-hr. component (Figure 11) with a phase angle of 61.3°

and a relative amplitude which was 62.8% of the circadian

amplitude. Since the amplitudes of these components (and

therefore their significance in the spectrum) do not differ
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significantly, there is no criteria for accepting one as a

"real" component and the other as merely a sideband. It

should be noted, moreover, that the ability of the least

squares spectra to illustrate "additional" independent

rhythmicities will, of course, depend in large part on the

"natural strength" of any given periodicity as well as the

degree to which it can be dissociated from the synchronized

cycle by either LL or DD. Nevertheless, at this point,

lacking more precise measures of data collection, Figure 11

suggests a periodicity around 8 hours possibly representing

an independent "motor sub-set." Peaks at higher component

frequencies, previously observed, may do the same.

That the waveform of entrained hamster activity data

resembles the square pulse of the simulation, aside from

producing odd-harmonic components in the amplitude spectrum,

is further evidenced by the fact that spectral analysis of

the LD data, which produced the ten-day spectrum of Figure

10, on a day-to-day basis resulted in an average periodicity

of 30.3 i 0.34 hrs. as a fundamental frequency. When these

daily records were analyzed as a ten-day time series,

however, the spectrum produced a highly significant circa-

dian period of 23.95 hrs. corresponding to the 24.0 hr..

photOperiod (Figure 10). This relationship follows the

square wave simulation illustrated in Figure 9.

A deviation from the square wave spectrum, which has

yet to be explained, is the appearance of secondary
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components at even-harmonic frequencies in the spectra of

LD data. Simulations which include the addition of random

noise, as mentioned earlier, have yet to demonstrate the pro-

duction of these unexpected components. Moreover, they are

not produced as artifacts to the LD 2 photoperiod. It

12:1

might be argued, for example, that if the waveform of en-

trained data is, on the average, a "bimodal" function, with

peaks at onset and offset separated by 12 hours, the fit of

a 12—hour cosine might produce a lower least squares error

estimate than surrounding frequencies and, as a result,

appear in the spectrum. Recently, however, data recorded

under LDl6:8 entrainment, where activity occurred only dur-

ing the8 hours of darkness, produced spectra with highly

significant peaks at 12.0 and 6.0 hrs. In the LD data,
16:8

no combination of peaks resulted in either a 12 or 6-hour

interval to which these components might then have been re—

lated. Moreover, no waveforms thus far simulated, includ-

ing triangular waves, can account for the presence of 6 and

lZ-hour periodicities. Whether these components are real

or artifactual (and certainly all waveforms have not been

tested), the evidence to date characterizes them as pecu-

liar only to the biological spectra. Thus there is no

apparent way, as yet, to question their validity as reflec-

tions of true biological activity.

Aschoff (1973) defines the transitory state whereby

rhythmicities within an organism change their mutual phase
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relations from one steady state to another steady state as

"internal dissociation." Internal desynchronization, on

the other hand, occurs when different rhythms show differ-

ent frequencies in the steady state. It appears from this

study, that complete desynchronization of the strongly

circadian activity cycle of the hamster is difficult to

demonstrate in a 20-day time series. In general, as the

activity graphs of Figure l6-22 (top) exemplify, LL animals

tended to show a transient dissociation initially after

which resynchronization occurred in the absence of an ex-

ternal periodicity. Further, although DD data also disso-

ciated, it generally took longer than LL data (compare

Figures 20 and 22) and hence, the 20-day time series was

too short to reveal complete desynchronization. Neverthe-

less, the spectra of Figures 10-14 offer evidence for the

presence of multiple periodicities in circadian activity in

dissociated data.

Aside from the "non-circadian" spectral components

previously considered, the lO-day spectra suggest that

several periodicities may be present whose period lengths

are near 24 hours. This is evidenced, not by the appearance

of several circadian peaks, but by the reduction in the,

C/Co ratio of the single peak seen in the LL and DD spectra

(see also Table 3). Recent simulations have shown that a

time series containing three "24-hour" cosines separated by

90° produces a spectrum with a single peak in the circadian
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domain but with a greatly reduced normalized amplitude

(C/CO) and a phase angle representing the average of all

three. However, because of the specific Operating format of

Program Waver, the fitting of the significant 24.0-hr.

cosine (T = l cycle/day) is followed by a 1% frequency

decrementation and the fitting of additional cosines with

smaller wavelengths. Consequently, the presence Of multiple

periodicities having identical period lengths would not be

directly detected by the Waver program (that is by the
 

appearance Of several circadian peaks in the spectrum). In

fact it is unlikely that additional circadian peaks will

appear in a lO-day spectrum unless the real periodicities

which they would represent had period lengths different

enough to allow for several decrementations to occur. In

this case, the presumption is that at least one of the rela-

tive deviates of the separating decrements might produce a

trough in the amplitude spectrum (between the periodicities)

and allow peaks to occur at the appropriate frequencies.

All circadian components, differing by at least 2%, might

then appear in the output spectrum. Nevertheless, regard-

less Of the number of peaks which appear in the circadian

domain, any time series whose spectra indicate significant

reductions in the C/C0 ratio of the circadian peak must be

viewed as potentially possessing more than one circadian

periodicity. It is appropriate to suggest for future study

that, since several circadian components may be "visible"
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in dissociated or desynchronized data, the decrementation

interval in the circadian domain be reduced (in Program

Waver) to increase the probability Of finding multiple

circadian peaks in lO-day spectra. Comparisons with LD

spectra from time series of equal length (using the same

decrementation schema) would of course have to be made.

An additional note concerning the occurrence of only

a single circadian peak in the 10-day spectra has to do

with the stability (in time) Of the various periodicities.

In this case, spectral analysis Of the full lO-day time

series might be able to isolate only a single component

whose period length, amplitude, and phase angle represent

an averaging of various unknown circadian components.

Analysis of shorter time series, however, might uncover

these "transient" components provided that the "strength"

Of any one periodicity is sufficient enough to allow for

its detection and also that an appropriate data sub-set is

chosen. Moreover, if any given sub-set contains more than

one periodicity, their period lengths should be sufficient—

ly separated to allow for the occurrence of several decre-

mentations according to the ratiOnale stated above. The

presumption Of these remarks relates of course, to the

analytical requirement for stationarity in the basic data

set. Detectability is thus seen to be a balance between

the length of record and the time structure of the bio-

logical output data set.
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Figure 15 illustrates the results of spectral analyses

on shorter time series. Three-day non-overlapping data sub-

sets of hamster activity were chosen in accordance with the

criteria established in Figure 9, namely, that there be at

least three repetitive cycles for periodic functions re-

sembling a square pulse. For a comparison with a 3-day

square pulse spectrum, the reader is referred to Appendix F.

Typically, the spectra from LD sub-sets (Figure 15 a-c)

indicate that entrainment of hamster activity produces rela-

tively stationary (stable) time series having a single

circadian component and hence, are in general agreement

with the lO-day LD spectra. In contrast to the lO-day LL

spectra, however, 3-day analysis of LL data offer evidence

for the presence Of additional circadian components when the

activity data are dissociated. Data splitting is evidenced

in Figure 15(d and h) by the simultaneous occurrence of two

circadian components of equal significance (amplitude) but

phase shifted by about 45° (3 hours). Moreover, the spectra

following Figure 15d indicate that the stability of these

components is such that they appear transiently (and then

fade out) until, as in this example, the data resynchronize

(Figure 15i). In addition, two circadian components were

"uncovered" from the DD data of the example (Figure 150)

although not until 16 days of constant darkness. However,

the spectra preceding Figure 150, for example Figure 15n,

indicate that some dissociation began prior to the
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occurrence of the "split-spectrum." In days l3-15 of this

time series (Figure 15n) the most significant periodicity,

according to spectral analysis, had a period length of 12.1

hrs. In fact, no circadian component appeared, with the

possible exception of a low amplitude 20.6-hr. component,

during this time segment. Since many of these higher fre-

quency components appear in the 3-day analyses, and with

greater significance levels than the "true" circadian fre-

quencies [see Figure 15 (e, j, m and n)], it is difficult

to call them either harmonics or sidebands Of a circadian

period. The possibility that they are correlates of real

biological rhythmicities must therefore be considered.

It should be noted here, in accordance with a previous

discussion, that the appearance of two circadian components

in two of the LL and one of the DD spectra probably oc-

curred because they were sufficiently different in period

length to allow for several decrementations to occur. For

the LL spectra, at least 7 decrementations occurred between

the fitting of the 25.7 and 24.0-hr. components; at least

5 occurred in the DD spectrum between 23.9 and 22.7 hrs.

This does not suggest, however, that when several peaks are

found in the circadian domain Of least squares spectra they

must therefore have significantly different period lengths

when evaluated statistically. It must be emphasized that

if such components appear with "equal" amplitudes but with

crest times which are 3 hours apart (as in this example),
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the possibility that they represent independent rhythmici-

ties must be considered even if statistical differences in

period lengths cannot be demonstrated.

Before leaving the 3-day spectra, attention is drawn

to the difference in the splitting patterns observed in the

LL and DD spectra. Under LL, the split occurred between a

24.0-hr. component and a slightly longer component of 25.7

hrs. In the DD spectrum, the split occurred between a 23.9-

hr. component and a slightly shorter component of 22.7 hrs.

Whether this pattern bears any relationship to Aschoff's

rule is not known but it is pointed out here as a possible

question for future study.

Two alternative methods for finding the frequency

content Of periodic time series are autocorrelation analysis

and the periodogram methodology of Enright (1965a). The

general impression of this study regarding the periodogram

technique, however, is that it lacks the resolution neces-

sary for the detection Of multiple periodicities. As illus-

trated in Figure 24b for LL data, two periodogram peaks

representing periodicities of 23.9 and 24.8 hrs. were de-

tected. However, the DD periodograms (Figure 24 d and e)

failed to clearly resolve any periodicities other than a

single 24-hr. component even though the spectral and auto-

correlation analyses (both of which represent more powerful

techniques) Offer evidence for the presence of multiple

components in the DD data. Autocorrelation analysis, on the
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other hand, is a useful technique for the detection of

periodic signals although, since it does not Offer informa-

tion regarding the phase of a rhythmicity, it is best used

in conjunction with spectral analysis.

A comparison of findings between the spectral analysis

procedure used in this study and autocorrelation analysis

reveals that the two are in general agreement. For LD data,

both autocorrelation and spectral analysis indicate that

entrainment results in a single observable periodicity.

However, the number Of circadian components resolved from

dissociated data is often different for the two techniques.

For the example presented here, spectral analysis of LL

data showed two circadian components whereas autocorrelation

of the same time series resulted in four. This is probably

because the decrementation criterion seen in the spectral

program is not identical to the lag sequence required for

the autocorrelation analysis. Examination of the four

periodicities indicated by the autocorrelation function of

Figure 18 (average period lengths are 25.3 i 0.12, 23.6 i

0.05, 23.9 t 0.29, and 25.2 i 0.75) reveals that their

proximity probably accounts for the appearance of only two

of them in the spectrum. A sufficient number of decrementa-

tions does not occur between 25.3 and 25.2 hrs. nor between

23.9 and 23.6 hrs. Consequently the spectrum revealed only

two circadian components but their period lengths are in

general agreement with those of the autocorrelation
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function. The same argument may be used for the three

circadian components found by autocorrelation of the DD time

series (Figure 16) where the spectra revealed only two.

The correlograms Of Figures 18 and 21 suggest that

multiple circadian periodicities can be detected in both LL

and DD activity data. Moreover, the fact that the LL data

in this example resynchronized after 14 days, suggesting a

dissociated rather than a completely desynchronized time

series, illustrates that autocorrelation functions may de-

tect periodicities even when they are "transients." It

should also be noted that detection of any one periodicity

by autocorrelation is probably contingent on the number of

"visible" cycles which present themselves in the complete

time series and of course, on the number of actual perio-

dicities present. The latter is so because the presence of

additional periodicities may reduce the value of the par-

ticular correlation coefficient for any one component (as

opposed to the case where only one was present) and hence,

certain periodicities may not be discernible above the

"noise." This would also be true for periodicities which

exhibit phase shifts or frequency changes. In this case,

they would appear in the correlogram at their average

length with reduced amplitude or, if the shifts were large

enough, possibly not at all.

Finally, the degree to which activity data are dissoci-

ated (or desynchronized) may be identified in the first data
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lag by the value of the first-order serial correlation coef-

ficient; a measure of whether high values tend to be

followed by high values or low values by low values. In

general, both LL and DD data show lower first-order serial

correlation coefficients than LD controls. Moreover, as in

the example of Figure 19, an increase in the serial correla-

tion coefficient from data recorded under either LL or DD

is an indication of resynchronization. The LL data of

Figure 17 for example, had a first-order serial correlation

coefficient of 0.42 (compared to 0.81 under LD) which is

reflected in the raw data plot, Figure 17a, by a high degree

of "data splitting." The data of Figure 19a, however, which

appear to be relatively synchronized under LL, reflect an

increase in the first—order serial correlation coefficient

of 0.69.

The phenomena of beats in frequency analysis has only

been alluded to above by the reference to frequencies which

fade in and out. Perfectly stationary output time series

will of course show beats (i.e., difference frequencies)

whose measurable amplitudes go through maxima and minima.

These may, in the long run, be the most revealing of all

for the construction of those physiological models for gross

motor activity toward which this field of investigation is

ultimately directed.

The current hypothesis which proposes a multiplicity

of individual oscillators in circadian organization may be
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applicable to activity data. It has been shown that such

records contain information regarding the output from sever-

al "motor sub-sets" (such as eating, drinking, running wheel

activity, etc.) which may exhibit independent rhythmicities

when freed from light-dark synchronization (Wolterink et al.,

1973). Classical strip-chart recordings of motor activity

which measure (Often subjectively) the periodic course Of a

single parameter (typically activity onset) are therefore

inadequate to a total understanding of the neural networks

which contribute to circadian behavior. Recording gross

motor activity, however, with a capacitance-type activity

monitor produces a numerical printout which is easily amen—

able to complex time series analysis. Moreover, it is

obvious that recording techniques which separate (from the

total time series) the output from different motor sub-sets

will further this understanding.

The above considerations have almost been a defense of

a "modified-Halberg-cosinor" methodology, guided by auto-

correlation and simulation, despite recent attacks upon its

basic validity. By the use of 1% decrementations, looking

at first-order coefficients becomes a reasonable first

approximation to a "multiple-Fourier" periodogram. It

fails, however, to do true second, third and n-order coef-

ficients, and it is only by simulation, not by analysis,

that the results can be shown to be biologically meaningful.

Nonetheless, such analyses are necessary to an understanding
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Of those motor mechanisms responsible for circadian activ-

ity as they allow for a more detailed description of the

biological time structure and provide the analytical basis

for model building.



SUMMARY AND CONCLUS IONS

l. Circadian activity data recorded in constant light

or constant darkness exhibit minor shifts in frequency but

major shifts in amplitude and phase.

2. Both constant light and constant darkness cause a

general depression of mean activity levels, although con-

stant darkness may cause a transient increase initially.

This is usually accompanied by a reduction in circadian

amplitude thus reducing the C/C0 ratio.

3. Spectral analysis of activity data involves a con-

version of the time series from a function of time to a

function of frequency. Prevalent periodic components are

then represented by peaks in an amplitude-frequency spectrum.

4. The spectral analysis program developed for this

study (Program Waver) produces a modified-Fourier periodo-

gram which results in a more complete amplitude-frequency

spectrum than either classical Fourier analysis or the

simpler cosinor program of Halberg.

5. Computer simulations (spectral analyses) on test

input data of known waveform, period length, amplitude-and

phase angle are useful in establishing criteria for the

interpretation of Spectra Obtained from biological data.

139
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6. In general, the spectral pattern of a periodic time

series depends in part on the overall shape and stationarity

of the periodicity.

7. For periodic functions that are not sinusoids, such

as for square waves, the distortion in period length pro-

duced by the fitting of a cosine can be reduced by increas-

ing the number of repetitive cycles.

8. The resolution of any given spectrum is inversely

related to the length Of the sampling interval (AT) and

directly related to the length of the time series (T).

9. Spectral analysis of daily entrained hamster activ-

ity records containing as many as 240 points in one day may

result in an error in period length estimation of as high

as 20%. For this reason, at least 3 continuous days of

record are needed for the production of meaningful spectra.

10. Since entrained hamster activity closely resembles

a square pulse, the estimate Of amplitude even in a lO-day

record may result in an "overshoot" of about 27% in the

estimation of a circadian amplitude.

11. The time series methodology examined in this dis-

sertation (spectral analyses, autocorrelation functions,

and periodograms) indicate the presence Of multiple perio-

dicities in "dissociated" hamster activity.

12. In addition to the detection of multiple-periodic

components in time series data, spectral analysis results

in quantification of rhythm parameters in terms of period



141

length, phase, and amplitude.

13. Although multiple periodicities are easily detected

in "dissociated" data by autocorrelation functions, they are

best used in conjunction with spectral analysis since they

Offer no determination of phase and only indirect estimation

Of amplitude.

14. The periodogram procedure of Enright (1965a)

appears to lack the resolution necessary for the detection

of several circadian periodicities.
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APPENDIX A

BUYSWBALLOT TABLE*

 

Row 1 X1 X2 ... Xp

Row m §p(m-1)+l xp(m-l)+2 "’ xpm

Totals U U ... U

Pll P72 PIP

Averages YP,1 Yp’2 ... Yp’p

N = total number of hourly observations, an integer;**

i = hourly observation for the ith hour (0<<i<<N);

= period for which form is to be estimated (need not be

an integer);

P = largest integer <<p; e.g. if p = 24.7, P = 24;

h = hour for which an average is to be calculated, an

integer (0 < h < p);

m = number of measurements entering calculation of an

hourly average, an integer;

y = mean hourly value for the hth hour of the form

p,h . . .
estimate for assumed period, p,

j = an integer, essentially the equivalent of the row

number in the Buys-Ballot table.

For each value of h and p, let m be the largest integer

less than or equal to

 1+N—h.

P

Then

y =1 ‘Ex
p,h m j=l (h+(j-1)p)’

 

i:

**from Enright (1965b)

AT may equal 0.1 hr.
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APPENDIX E

Basic Plot Routine

ATTACH(STAT,STAT3)

STAT.

FILEBUILD,DATOUT=DATA1

L1=LAG,RHO

FILEBUILD,DATOUT=DATA2

L1=LAG,RHO

FILEBUILD,DATOUT=DATA3

(etc.)

PLOT(1,2) PD,NODS,PLOTJECT,DATIN=DATA1

HSIZE=10 ,VSIZE=6 , DOT,NHINT=24 ,VSEP=2 , SPECIAL15

PLOT(1,2) PD,NODS,PLOTJECT,DATIN=DATA2

HSIZE=10,VSIZE=6,DOT,NHINT=24,VSEP=2,SPECIAL15

(etc.)

FORMAT(VARIABLE)

(DATADECK)

END OF DATA

FORMAT(VARIABLE)

(DATADECK)

END OF DATA

(etc.)
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T

(hrs.)

68.99

53.48

43.64

36.89

31.91

28.05

24.00

21.01

19.29

17.83

16.60

8.40

8.00

7.64

4.94

4.80

4.67

3.43

2.67

2.18

1.85

1.60

1.41

1.26

I. Ten-day Square Wave Spectrum

f(cycles/

day)

0.347

0.448

0.549

0.650

0.752

0.855

1.000

1.142

1.244

1.346

1.446

2.858

3.000

3.143

4.855

5.000

5.114

7.000

8.999

11.000

12.999

14.994

16.998

19.007

APPENDIX F

¢

C/Co

0.112

0.121

0.136

0.159

0.205

0.315

1.273

0.239

0.125

0.077

0.058

0.094

0.424

0.086

0.055

0.251

0.052

0.182

0.142

0.116

0.098

0.085

0.076

0.067

(degrees)
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176.32

177.80

178.88

181.07

183.77

190.12

268.21

346.03

349.82

350.66

352.92

194.02

269.60

346.68

189.00

269.75

349.06

271.01

268.10

270.43

268.18

259.95

267.54

281.95

C/C24

0.088‘

0.095

0.107

0.125

0.161

0.247

1.000

0.188

0.098

0.061

0.040

0.074

0.333

0.068

0.044

0.200

0.042

0.143

0.111

0.091

0.077

0.067

0.059

0.059

Harmonic #

11

13

15

17

19



T

(hrs.)

48.82

24.37

16.43

9.48

8.00

6.93

4.80

3.43

2.67

2.18

1.85

1.60

T

(hrs.)

68.99

53.48

43.64

36.89

31.91

28.05

24.00

21.01

19.29

17.83

16.60
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II. Three-day Square Wave Spectrum

f(cycles/

day) C/Co (degrees) C/C24

0.490 0.426 175.06 .335

0.985 1.271 261.57 1.000

1.461 0.155 339.40 .122

2.530 0.088 197.09 .069

3.000 0.425 270.00 .334

3.460 0.065 340.78 .051

5.000 0.255 270.00 .201

7.000 0.182 271.84 .143

8.999 0.142 268.31 .112

11.000 0.116 270.83 .091

12.999 0.098 270.49 .077

14.994 0.085 268.20 .067

III. Ten-day Sine Wave Spectrum

f(cycles/

day) C/Co=C/C24 (degrees)

0.347 0.073 3.42

0.448 0.080 1.86

0.549 0.091 0.27

0.650 0.110 1.56

0.752 0.146 4.34

0.855 0.233 10.77

1.000 1.000 90.76

1.142 0.204 168.88

1.244 0.115 170.75

1.346 0.078 174.06

1.446 0.058 174.00

Harmonic #

11

13

15

Harmonic #



Computer Output From Spectral Analysis of Hamster

’1'

(hrs.)

67.54

53.05

44.17

37.19

31.75

27.83

23.95

21.03

19.25

17.61

15.66

14.72

13.62

12.74

11.90

10.68

10.05

9.45

8.56

8.00

7.61

6.76

C
0

I.

531.52

frequency

(cycles/day)

0.355

0.452

0.543

0.645

0.756

0.863

1.002

1.141

1.247

1.363

1.533

1.630

1.762

1.883

2.024

2.247

2.387

2.539

2.803

3.154

3.552

3.552

.4.

APPENDIX G

LD Data (Figure 10)

15.26

C/co

0.152

0.140

0.083

0.265

0.283

0.398

1.369

0.339

0.212

0.166

0.116

0.139

0.167

0.154

0.377

0.192

0.142

0.146

0.094

0.426

0.131

0.159
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C24

1'

(hIS)

6.53

6.00

5.77

5.44

5.30

4.90

4.78

4.65

4.56

4.43

4.18

4.00

3.74

3.60

3.59

3.56

3.35

3.24

3.13

2.99

2.90

+ 727.45 i

frequency

(cycles/day)

3.673

4.001

4.162

4.409

4.531

4.893

5.024

5.158

5.254

5.418

5.739

6.001

6.422

6.660

6.676

6.738

7.163

7.406

7.658

8.034

8.266

11.08

Data

C/C

0.101

0.413

0.148

0.087

0.098

0.092

0.123

0.100

0.096

0.135

0.076

0.154

0.149

0.079

0.077

0.085

0.095

0.121

0.080

0.188

0.113
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II. LL Data (Figure 11)

C0 = 113.85 i 5.48 C24 = 121.78‘1 5.19

T frequency T frequency

(hrs.) (cycles/day) C/C0 (hrs.) (cycles/day) C/C0

74.75 0.321 0.175 5.89 4.077 0.425

54.23 0.442 0.207 5.70 4.212 0.459

43.33 0.554 0.208 5.35 4.484 0.253

35.86 0.669 0.220 5.19 4.627 0.350

31.97 0.750 0.171 5.12 4.684 0.169

28.39 0.845 0.281 5.07 4.733 0.209

23.98 1.002 1.066 4.93 4.859 0.481

20.78 1.155 0.240 4.80 5.004 0.361

18.49 1.298 0.337 4.61 5.207 0.452

15.20 1.579 0.294 4.36 5.499 0.234

13.78 1.741 0.308 4.22 5.686 0.216

12.31 1.938 0.480 4.07 5.891 0.288

10.44 2.298 0.164 3.85 6.233 0.247

9.93 2.417 0.162 3.71 6.471 0.208

9.21 2.607 0.290 3.63 6.618 0.322

8.79 2.731 0.259 3.56 6.734 0.286

8.33 2.888 0.669 3.41 7.033 0.388

7.90 3.055 0.705 3.29 7.286 0.220

7.49 3.206 0.203 3.21 7.473 0.245

7.25 3.309 0.312 3.15 7.612 0.355

6.98 3.438 0.256 2.98 8.055 0.402

6.43 3.727 0.366 2.90 8.278 0.321

6.21 3.862 0.529



‘1'

(hrs.)

46.03

37.45

30.26

24.17

19.75

17.86

16.41

13.79

11.87

10.04

9.30

8.86

8.47

8.02

7.46

7.08

6.49

6.28

6.05

C
0

= 437.75 1

III.

frequency

(cycles/day)

0.521

0.640

0.793

0.993

1.215

1.344

1.462

1.740

2.023

2.391

2.582

2.707

2.833

2.992

3.217

3.387

3.698

3.820

3.966
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LL Data (Figure 12)

14.34

C/C0

0.168

0.102

0.249

1.374

0.162

0.088

0.102

0.138

0.267

0.098

0.089

0.160

0.188

0.384

0.111

0.121

0.120

0.116

0.222

C24

T

(hrs)

5.80

5.54

5.16

5.03

4.91

4.80

4.66

4.51

4.17

4.02

3.91

3.81

3.62

3.42

3.36

3.27

3.14

3.00

2.92

= 601.77 1

frequency

(cycles/day)

4.138

4.331

4.647

4.767

4.884

5.005

5.149

5.324

5.754

5.967

6.145

6.303

6.623

7.008

7.152

7.329

7.631

7.986

8.208

C/C0

0.108

0.116

0.095

0.087

0.125

0.228

0.107

0.182

0.087

0.165

0.091

0.148

0.093

0.168

0.122

0.085

0.132

0.258

0.118
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IV. DD Data (Figure 13)

C0 = 567.42 1 15.24 C24 = 528.09 i 13.20

T frequency T frequency

(hrs.) (cycles/day) C/C0 (hrs.) (cycles/day) C/C0

74.30 0.323 0.135 6.74 3.562 0.204

69.45 0.346 0.136 6.52 3.680 0.176

47.48 0.505 0.243 6.11 3.925 0.197

37.67 0.627 0.258 5.90 4.067 0.177

31.69 0.757 0.189 5.72 4.197 0.190

28.02 0.856 0.140 5.53 4.339 0.118

24.00 1.000 0.930 5.23 4.573 0.099

20.82 1.251 0.231 5.09 4.715 0.117

19.17 1.450 0.105 4.90 4.099 0.192

16.54 1.694 0.253 4.51 5.324 0.099

14.16 1.702 0.223 4.32 5.554 0.125

13.22 1.815 0.190 4.20 5.709 0.144

12.30 1.951 0.532 3.96 6.055 0.156

11.63 2.064 0.260 3.87 6.198 0.155

11.01 2.180 0.185 3.79 6.326 0.137

10.53 2.279 0.130 3.68 6.521 0.135

10.01 2.397 0.291 3.50 6.852 0.205

9.64 2.491 0.182 3.35 7.163 0.117

9.23 2.602 0.172 3.10 7.740 0.099

8.89 2.701 0.260 3.09 7.758 0.098

8.69 2.762 0.115 3.09 7.776 0.095

8.58 2.796 0.134 3.05 7.891 0.067

8.18 2.932 0.592 3.01 7.964 0.107

7.45 3.224 0.196 2.83 8.455 0.089

7.15 3.357 0.216 2.75 8.734 0.058



'1'

(hrs.)

61.33

44.99

36.53

30.66

23.53

19.97

16.90

14.62

13.06

12.04

10.78

9.86

8.57

7.92

7.41

7.11

6.90

6.65

6.27

6.04

262.32

frequency

(cycles/day)

0.391

0.534

0.657

0.783

1.020

1.202

1.420

1.642

1.838

1.992

2.226

2.435

2.800

3.029

3.240

3.374

3.478

3.607

3.829

3.975
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10.51

C/C0

0.199

0-197

0.185

0.283

0.932

0.480

0.328

0.214

0.300

0.757

0.366

0.332

0.109

0.431

0.204

0.298

0.233

0.142

0.313

0.323

C

DD Data (Figure 14)

24

T

(hrs.)

5.76

5.33

5.14

4.84

4.68

4.50

4.34

4.22

4.11

4.00

3.89

3.79

3.65

3.56

3.37

3.28

3.21

3.02

2.89

= 244.53 E 9.90

frequency

(cycles/day)

4.164

4.505

4.672

4.954

5.132

5.328

5.520

5.691

5.843

6.001

6.174

6.327

6.568

6.751

7.115

7.327

7.480

7.957

8.310

C/C0

0.354

0.299

0.410

0.223

0.251

0.321

0.317

0.351

0.264

0.397

0.202

0.213

0.128

0.124

0.186

0.243

0.125

0.293

0.233
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