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ABSTRACT

THE ORTHOGONAL POLYNOMIALS ASSOCIATED WITH

THE ITERAIION OF A SECOND DEGREE POIXNOMIAL

BY

Daniel Arac Nussbaum

We consider the polynomial P(z) a 22 - p and its iterates

Pn(z) defined by Ph(z) - P(Ph_1(z)). Define F as the set of

points for which {Pn(z)} is not a normal family and p as the

equilibrium distribution for F. These definitions are due to

Brolin [1].

Kinney and Pitcher have shown in [4] that the family of

iterates of P(z) form an orthogonal family over F with respect

to the measure u in the sense that long) 635’ sz) - o

if n # m. Since Pn(z) has degree 2“, we have a lacunary set

of orthogonal polynomials. In this paper we attempt to complete

the set by finding polynomials Quiz) of degree n, with leading

coefficient 1, for which i Qn(z) 6;?Ey'dp(z) = 0 for n ¢ m

and so that Q n(z) = Ph(z). As a matter of convenience we

2 m

introduce z<n>’ where z<n> = n (P1(z))e(i’n), where

a i=0

2 e(i,n)21 is the binary expansion of n.

1-0

We achieve a matrix representation for Qn(z) and obtain

results about the matrix entries. Specifically, we obtain a

closed form for calculating the matrix entries.



We show that the Qn(z) satisfy a linear difference equa-

tion which depends only on n, n-1, n-2 and a constant, K(n),

which depends only on n and p. In the case that F is a sub-

set of the reals (p 2 2 is sufficient) we obtain non-linear

recursion formulas for K(n). We also relate these constants to

a function which represents the ratio of successive Q's.

We also show that Qn(z) can be expanded as a linear

combination of z<0>, z<1>, z<2>,..., and we obtain results about

the coefficients in this expansion.

Finally, we extend the orthogonality of the family

{Qn(z)} to certain sets which contain F. These sets are level

curves of a Green's function, and the measure we use is the normal

derivative of i log ‘2 - w‘du(w)\dz|.
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INTRODUCTION

This paper deals with the set of polynomials which are

orthogonal with respect to a certain measure.

Consider a polynomial P(z) of degree N and its iterates

Pn(z) given by Pn(z) = P(Pn_1(z)). Brolin [1] has discussed

the set of points F where the family {Pn(z)} is not a normal

family. Thus, for z é F and for every neighborhood, N, of 2,

there is a subsequence of {Pn(z)} which converges uniformly to

an analytic function on compact subsets of N. Brolin shows that

F is compact, contains no open set, is invariant under P and

P_1, and has capacity one. Thus

exp{-inf(l[1£ 10g Tfil dv(z)dv(w))} = 1 where the infiuum is taken

over all measures v for which £ do 8 1. We denote the measure

which minimizes the above energy integral by p. It turns out

that p is invariant under P_1 (the inverse of P). That is,

du<z> = du(P_1(Z))o

In [4], Kinney and Pitcher show that {Ph} form an

orthogonal family in the sense that i Ph(z) P;?;7'dp(z) - 0 if

n and m are unequal.

In this paper we seek methods to complete this lacunary

set of orthogonal functions. That is, we seek polynomials, Quiz),

with leading coefficient 1 so that Q n(z) - Ph(z) and

N

fiQn(z) Qm‘z) dp(z) B 0 for n f m.



While we could attempt the above problem for an arbitrary

polynomial P(z), for the sake of brevity we restrict our attention

to the case N I 2. For reasons given in Brolin [1] and Kinney-

Pitcher [4], we may take P(z) B 22 - p. We know from Brolin [1]

that F is a real set if p 2 2.

In the first chapter we derive a representation of our

orthogonal polynomials. Using a technique developed by Walsh

[9] (see also Fine [2]) in his completion of the Rademacher func-

on

tions, we introduce z:l = H (Pi(z))e(1’n), where

Q i=0

n = 2 e(i,n)2i is the binary expansion of n. The powers z<n>

i=0

give rise to an inner product matrix, Ck where c(m,n) =

 

i z<m>'z<n> dp(z) for m,n = 0,1,... .

We derive some results about the matrix CL In particular

we find a closed form for evaluating c(m,n) (Theorem 1.12), and

a result about entries c(m,n) where ml+ n is constant (Theorem

1.36).

We use c(m,n) to construct a matrix representation of our

orthogonal polynomials (Theorem 1.57) essentially as Szego does in

[5] and [7]. We do not use true moments in our matrix, and we do

not use arc length in our measure until Chapter IV.

In Chapter II we approach the problem of completing the

orthogonal family differently. We find that the Qn(z)'s satisfy

a linear difference equation (Theorem 2.8), and that the coefficients

in the equation satisfy non-linear recursion formulae (Theorem 2.9)

in the case that F is a subset of the reals. We also obtain

continued fraction representations for the coefficients (Theorem

2.13), and a link between the methods of Chapters I and II

(Theorem 2.16).



In Chapter II we also consider Tn(z), the ratio of Qn(z)

to Qn-1(z) and show it is related to the coefficients of the

linear difference equation (Lemma 2.20).

In Chapter III we construct Qn(z) as a linear combina-

tion of the z: ' s. We establish recursion formulae among the

coefficients and in so doing we link this method with Chapter II.

In Chapter IV we extend the orthogonality of the family

{Qn(z)} to sets other than F. Specifically we show in Theorem

4.9 that Qn(z) and Qm(z) are orthogonal on the level curves

of a Green's function with reSpect to the measure

31:]: log \z - w‘dp,(w)-‘dz\.

Using the results of the previous chapters, we present

two examples. The first, P(z) = 22, for which the F set is

the unit circle.

The second example we present is P(z) = 22 - 2 for which

the real interval [-2,2] is the F set. We show that the

Tchebysheff polynomials Tn(z) = 2 Cos n Cos.1 z/2 are orthogonal

on [-2,2] with respect to p, and we derive a 1934 result of

Walsh's on the orthogonality of Tchebysheff polynomials on certain

confocal ellipses.



CHAPTER I”

Let P(z) = 22 - p and its iterates {Pn(z)] be defined

as follows: Po(z) = z, P1(z) = P(z), and the iterates Pn(z) are

recursively defined by

(1.1) Pn(Z) = P(Pn_1(2)>o

Throughout, F denotes the set of points in the plane at

which {Pn(z)} is not a normal family. Brolin shows in [1] that

when P(z) is as above than F is compact, has capacity one, is

invariant under P(z) and P_1(z), and often has 2-dimensional

measure zero.

As Brolin does in [l], we introduce the measure p on F

as follows:

(1.2) Let 20 be any point in the plane with at most 2 excep-

tions. We define ”n to be the discrete measure which plaCes

weight 2-n at each of the roots Pn(z) = 20; that is, at the

2n points if if : ... i /p + 20 . Then pn converges

weakly to u, where p is independent of 20 [1; Theorem 16.1].

 

That is, for f continuous and zero outside a compact set con-

taining F, 11ml; f dun = g f du. We know that p is concentrated

on F and qup = 1, [1]. Moreover, p is symmetric with respect

to the origin by its construction. Thus for f(z) an odd function

of z,



(1.3) g f(2)du(2) = o .

It is known [4; pg. 25] that u is invariant under P 1(z).

Together with the invariance of F under P_1(z), this invariance

yields the following relation:

(1.4) i f<z>ds<z> = ] f(P_1(Z))du(Z) .

We will use this "shift" extensively.

Walsh [9] completes the Rademacher functions with what

have come to be known as Walsh (or Walsh-Rademacher) functions.

His technique, described also by Fine in [2], leads us to make the

Q

following definition: for n = 2 e(i,n)21, where e(i,n) = 0

i=0

or 1 we take

<n> m (i n)

(1'5) 2 = n (Pi(z))€ , 0

i=0

We have

(1.6) (P<z>)<“> = z<2n> .

When we multiply z<n>' by 2 we obtain:

Lemma 1.7.

(1) If e(0,n) = 0, then z-z<n> - z<n+1>

(11) If 3(0,n) = ... = 3(S,n) 3 1 and e(8+1,n) = 0

8+1 k

where s z 0, then z-z<n> - i<n+r>r+~p Z z<n+1-2 > .

<n> on (k ) k'l

Proof. By definition, 2.2 a z 20(Pk(z))e ,n , which by

k



CD

assumption equals 2 II (Pk(z))€(k’n). Since P0(z) = 2, we have

k=1
G

D

z.z<n> = Po(z) n1(Pk(z))€(k’n), which equals z<n+ . Thus, (i)

k:

is true.

3

To prove (ii), we have z-z<n> = )(z II Pk(z), where

k=0

°° (k n) <n> S 2
x = n (Pk(z))€ ’ . Since 90(2) = z, 2.2 = x n z pk<z).

k=s+2 k=1

2 <n> 3

Since 2 = P(z) + p, z-z = 7. 1'1 (P(z) + p)Pk(z) =

k=l
Q

x II P2(z)P (z) + pz<n-1>. Since P2(z) = P (z) + p,

k=2 1 k l 2

> m <n-l>

z-z<n = t n (P (2) +1»)? (2) + p z
2 k

k=2

oo

- -1

=). n P202)? (2) +pz<n3>+pz<n >-
2 k

k=3

Repeating this argument 8 times, we have

3-1 k

2'z<n> = x P:(z) + p z z<n-2 >

k=0

s-l k

(1'8) = (Ps+1(2) + I)” + p 2 z<n 2 >

k=0

s-l k
-2

= z<n+1> + p E z<n > ,

k=0

This proves (ii).

It will be necessary to form inner products of these

"powers". We make the following definition:

Definition. For m,n = 0,1,...

(1-9) c(m,n) = <2<m> z<n>> a i z<m> z<n> dlJ-(z)-

 

It follows inmediately from (1.9) that c(m,n) '3 c(n,m).

We would like to have a procedure for computing c(m,n). To that

end, we assume that p 2 2. Then F is a subset of the real



axis [1], p, is a symmetric real measure, c(m,n) = c(n,m), and we have

lermna 1.10. For p 2 2,

(i) c(2n,2m) = c(n,m)

(ii) c(2n+1,2m) = 0

(iii) c(4n+1,4m+1) I p-c(n,m)

(iv) e (4n+1 ,4m+3) c (2n+1 , 2m-l-1)

(v) c (4n+3 ,4m+3) p°c(2n+1,2m+1) .

Proof. The first assertion follows from (1.4). Since

c(2n+1,2m) I <z<2n>-z,z<2m>>, the integrand is odd. Thus, applying

(1.3) gives c(2n+1,2m) I 0, so the second assertion follows.

<4n> <4m> 2 <4n> <4m>
Since c(4n+l,4m+1) I <2 oz, 2 oz) I <2 .2 ,z >,

we use 22 = P(z) + p to get c(4n+l,4m+1) I <P(z)z<4n>,z<4m>> +

p<z<4n>,z<4m>>. Using (1.7) and (1.3) we see that the first inner

product equals 0. Applying (1.7) twice we see that the second

inner product equals p-c(n,m). Thus, (iii) is proved.

Since c(4n+1,4m+3) I <22.z<4n>’z<4m+2>>’ we may use

<4n>,z<4m+2>> +
P(z) + p I 22 to obtain c(4n+1,4m+3) I <P(z)z

p<z<lm>,z<4m+2>>. Using (1.7) and (1.4), we see that the first

inner product is <z z<2n>,z<2m+l>>. Applying Iema 1.8 we see

z<2n+1>,z<2m+1>>, which is c(2n+1,2m+1). From

(1.4) we see that p<z<4n>,z<4m+2>> =- p<z<2n>,z<2m+1>>, which is

that this is <

0 from (1.3). Thus (iv) follows.

To show (v) we use P(z) + p = 22 to get c(4n+3,4m+3) =

<p(z)z<““+2>,z<l‘m+2>> + p c(4n+2,4m+2). Using (1.7) and (1.4)

we see that the first inner product is <z-z<2n+1>,z<2m+1>> =

<23 z<2n>,z<2m>>, which is 0, by using (1.3). Thus (v) follows.



Before proceeding to the main theorem on c(m,n), we need

the following definition:

Definition 1.11. For i,n,m I 0,1,...

A(i; n,m) = (€(i+1:n)a C(ian)s e(i+1;m). e(i.m))

and f(i; n,m) I f(A(i; n,m)) I 0 if A(i; n,m)

I (0,0,1,0) or (1,0,0,0) and equals 1 otherwise.

We may now state

Theorem 1.12. For p 2 2,

E €(ian)€(ism)

i=0

CD

c(n,m) = H f(i; nsm)'p

i=0

if m+m is even and 0 if n+m is odd.

Proof. We may assume that m s n since c(m,n) I c(n,m).

If n+m is odd the theorem follows from Lemma 1.10,

part 2.

For n+m even, we use induction on n. For n I 0,

c(0,0) I 1. For n I 1, c(1,1) I £ zzdu I I(P(z) + P>du I

I2 du +-p Idp I p, by applying (1.4) to the first integral, which

is 0 by (1.3). We now assume that the theorem is true for n s k.

For n I k+l we distinguish four cases. Case (i). For n I 23

and m I 2t we have e(0,n) I 3(0,m) I 0, and for k 2 0 we

have e(k+l,n) I e(k,s), e(k+1,m) I e(k+1,t) and

f(k+1; n,m) I f(k; s,t). If we apply Lemma 1.10, part 1 we obtain

a

m 2 6(1,S)'e(i,t)

c(n,m) = H f(i; Sst)'Pi=0

i=0 ..

w .2 c(isn)°e(i.m)

= II f(i; um) 91:1 .

i=1



If e(1,n) I e(1,m), then f(O; n,m) I 0 and s +-t is odd. The

theorem holds in this case. On the other hand, if e(1,n) I c(l,m),

then f(0; n,m) I 1 and c(n,m) I c(s,t)

m 2 e(i.n).e(i.m)

= H f(i; n.m)pi=0

i=0

Case (ii). If n I 48 + 1 and m.I 4t + 1, then e(0,n) I e(1,n) I

1 I f(0; n,m), and for k 2 0 we have e(k,28) I e(k+l,n),

e(k,2t) I e(k+1,m) and f(k; 23,2t) I f(k+l; n,m). Using Lemma

1.10, part 3, we obtain

co 2 6(1,n)e(i,m)

“mm = P C(ZSaZC) = p ll f(i; n,m)Pig=1

i=1

a, E c(i.n)°e(i.m)

, -1 i=0

= p H f(l; n,m)p p .

i=0

and the theorem.holds in this case.

Case (iii). If n I 43 + 1 and m I 4t +'3 then

1 I e(0,28+1) I e(0,n) I e(0,2t+1) I e(0,m) I e(1,m),

while 3(1,n) = o, f(O; n,m) = £(1; n,m) = f(0,28+1,2t+1) = 1,

and for k 2 1 g(k,2t+l) = c(k+l,m) and f(k; 2s+1,2t+1) =

f(k+1; n,m). Thus, using Lemma 1.10, part 4, we obtain

3 e<i.n>e(1.m>

c(n,m) - c(28+1,2t+1) a n f(i; n m)p p1-1

i=2

a, E e(i.n)e(i.m)

i=0

= n f(i; n,m)p 3

i=0

a:

and the theorem is valid for this case.

Case (iv). If n I 4sa+ 3 and m I 4t +-3, then e(0,n) I e(l,n) I

6(0,m) - e(1,m) - f(O; n,m) . 1, and for k 2 0 we have e(k,23+1) .
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c(k+1,n), e(k,2t+l) - c(k+l,m), and f(k; 2s+1,2t+1) = f(k+1; n,m).

ThuS, from Lemma 1.10, part 5, we obtain

G

a, 2: eck.n>e<k.m)
kIl

c(n,m) I p c(25+1,2t+l) I p n f(k; n,m)p

k=1
on

a) Z C(ksn)€(kam)

-1 k=o

I p H f(k; n.m)p p .

k=o

and the theorem holds in this case. This completes the proof of

the theorem.

The following results follow from the above theorem:

Corollary 1.13. If p 2 2, then

(i) For k I 0, c(k,0) I 0.

(11) For 0 s k s 2n + 2n+1, c(2“,k) = 0 unless k a 2n in which

n n on

case c(2 ,2 ) p. Z e(l,k)

(111) For 0 s k s 2“-1, c(2n - l,k) - pi‘o .

E 8(1sk)

(iv) For all k, c(k,k) = pi=0 .

(v) For 2 s j s n < a, c(2n - 1, 2j - 1) I pj.

(vi) For 3 2 0 and for all n, c(2n,2n +2n+1 +...+ 2n+s) I p.

(vii) For all k, except as noted in (vi) above, c(2n,k) I 0.

(viii) For all n and for k s 2“, c(2n + 1,k) = p if k = 2n - 1

and 0 otherwise.

(ix) For n < 28+1 5 m and t > 8+1, c(n,mfi2t) I c(n,m) or 0.

Thus for n,m,s as above at X 2 28+1, c(n,mfix) I c(n,m) or 0.

(x) For 2mn4 < 2n - 2 and for c(2n +-2,2m) - 0, we have

c(zn +-2, 2m'+ 4) . 0.

(xi) For 2m+4 < 2n - 2 and for can + 2,2m) n 0, we have

c(2n +-2, 2m +12) - o.



(xii)

We now construct the matrix of these inner products.

11

For 2m+4 < 2n - 2 and for c(2n - 2,2n) 15 0, we have

c(2n - 2,2m +12) = 0.

will use this matrix to construct the orthogonal polynomials.

We

Definition 1.14. G is the matrix whose entries are c(m,n) for

m,n =0,l,... O

In what follows, we will assume that p 2 2. Thus F is

real, F : [-% -- /% + p, +3: +/% + p] [1; Theorem 12.1], and G

is a symnetric matrix.

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)

s

We note: For 0 s n,m S 2 - l, we have

e(k,n) c(k,n + 25) for o s k S 8-1

e(k,m) e(k,m + 28) for o s k S 8-1

6(81n) = 6(21111) = 0

8

3(S,n+2 ) I 5(S,m+28) I"- 1 .

For 285n528+1-1 and OSmSZS-l wehave

e(k,n) I e(k,n + 28) I e(k,n + 28'”) for 0 s k S 8-1

1
g(s,n) = e(s,n + 25) = e(s,n + 28+1) = e(s+1,n + 28+') = 1

c(m,n) = e(s.n + 28> = c(sm) = e<s+1,m) = o .

For 28sn523+1-l and m+n$28+1-l,wehave

e(k,n) I e(k,n + 23) I e(k,n + 28+1) for 0 S k S 8-1

g(s,n) I e(s,n + 28-”) I €(s+1,n + 28) I 3(s+1,n + 28+

e(s+1,n) = e(s,n + 28) = e(s,m) = e(s+1,m) - o .

1

>=1
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For 0 s n S 28 - 1, 28 s m 3 28+1 - 1

5+1 +1

(1.25) e(k,n) = e(1t,n + 23) = e(k,n + 2 ) = e(k,n + 28 + 28 )

for k I 0,1,...,s-1 .

(1.26) g(s,n) = c(s+1,n) = e(s+l,n + 25) = e(s,n + 28‘”) = o .

+1 s+1

(1.27) e(s,n + 25) = e(s+l,n + 28 ) = 3(s,n + 23 + 2 ) e

e(s+l,n + 2S + 28‘”) = 1.

Thus, the following formulae are valid for s 2 0:

8

Theorem 1.28. (1) For 0 s n,m s 28 - 1, c(n + 23, m + 2) p c(n,m).

l S

(ii-iii). For 28 s n s 28+ - 1 and O s m s 2 - 1,

c(n + 28+1,m) I c(n,m) and c(n + 28,m) I 0 .

+1

(iv-v). For ZS s n s 28+1 - l and m + n 5 2S - l,

c(n +-28+1,m) I c(n,m) and c(n + 28,m) I 0 .

s

(vi-vii). For 0 S n s 28 - l and 2 s m 5 28+1 - 1,

+

c(n + 28+1,m) I c(n,m) and c(n + 28 +2S 1,m) I c(n + 2S,m).

Proof. To show (i) we apply (1.15-1.18) to (1.12). To show (ii)

and (iii) we apply (1.19-1.21) to (1.12). To show (iv) and (v)

we apply (1.22-1.24) to (1.12). To show (vi) and (vii) we need some

G

additional remarks: Using (1.25-1.27) we obtain 2 e(k,n)-e(k,m) I

a s+l kggl

2-g(k,n +12 )e(k,m) and A(k; n,m) I A(k; n +.2 ,m), for

kI0

l
o s k s s. Therefore f(k; n,m) = f(k; n + 28+ ,m) for o s k s s.

.1.

80, using (1.12), c(n,m) I c(n + 28 1,m), which proves (vi). Again,

(D co

4.

using (1.25-1.27), 2 e(k,n + 25)e(k,m) I Z e(k,n + 28 + 28 1)e(k,m)

kIO kI0

and A(k; n + 28,m) I A(k; n + 28 + 28+1) for 0 s k s 3. There-

fore, f(k; n + 28,111) - f(k; n + 28 + 28+1,m) for o s k s 8.

So, by applying (1.12) we have c(n + 28,m) I c(n +28 + 28+1,m),

which proves (vii).
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Corollary 1.29. For m,n s 28 - 1 and m +~n 2 28, c(n,m) I
 

c(n + 28,m).

Proof. We distinguish 3 cases. In the first case we have

3-1 3-1
n,m s 2 - 1 and n +-m 2 2 . Under the assumption of the

s

corollary m 2 2 - n; under the assumption of the first case

-n 2 4“"1 + 1. Thus, 11: 2 28 - 28'1 + 1 - 26"1 + 1 2 28'1. We

have

(1.30) 23'1 s m s 25'1 - 1 s 28 and o s n s 2""1 - 1 .

We apply (1.28 (vi)) to get c(n,m) a c(n + 28,m).

1
In the second case we take n 2 28- , m 5 ZS - 1. Let

N I n - 28-1. Then

(1.31) o S'N s 23‘1 and

3-1 s

(1.32) 2 SmSZ -1.

, 8-1 3-1 s

We may apply (1.28 (Vii)) to get CON +-2 ,m) I c(N +12 +-2 ,m).

That is, c(n,m) I c(n +-28,m).

S 8-1 s

In the final case, n s 2 - l, m s 2 - 1, and n +-m 2 2 .

By assumption in this case, n 2 ZS - m 2 2S - 28-1 +11 I 23-1 +.1 2 28-1.

Thus

8- ..

(1.33) O s m s 2 1 - 1 and ZS 1 s n 5 2s - 1 .

We apply (1.28 (ii)) to get c(n,m) I c(n +~28,m). This completes

the proof of the corollary.

Theorem 1.34.
 

1 1

c(n,m) I 0 for 28 S n 3 28+. - 1 and n +'m S 28+. - 1.
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Proof. We prove the theorem by induction on 8. For 8 I 0 and

8 I 1, we have, using (1.12), c(0,1) I c(0,2) I c(0,3) I c(2,1) I 0.

We assume the theorem is true for 8 s k-l. That is,

(1.35) c(n,m) I 0 for 2k.1 s n 3 2k - 1 and n+m.s 2k - 1.

For 8 I k we have 3 cases.

In the first case, we take m,n in the rectangle defined

by 2k 5 n 3 2k +210“1 - 1 and 0 S m 5 2k-1 - 1. We take

8 I k-l and use (1.28 (iii)) and (1.35) to get our result.

In the second case we take m,n in the triangle defined

by 2k +21“1 5 n S 2k+1 - 1 and m +1n S 2k+1 - 1. We take

8 I k-l and use (1.28 (iv)) and (1.35) to get our result.

'In the third case, we take m,n in the triangle defined

by 2k 5 n s 2k +21“1 and m +-n s 2k+1 - 1. We use (1.28 (vi)),

symmetry of the matrix C. and (1.35) to get our result. Thus the

theorem is proved.

The next theorem tells us that certain diagonals in C.

can be classified by a single parameter.

Theorem 1.36 (Diagonal Theorem). If n +~m I constant, then

(1.36) c(n,m) I 0 or SKI“ +-m)

G

Where XKn +-m) I 2 c(t.n)-e(t,m).

tIO

Proof. If n +-m is odd the theorem follows easily since c(n,m) I 0

by using (1.12).

If n +-m is even we let 8 and x be defined by

l x+l

n +-m I 28 and 2 s 28 s 2 - 2. We proceed by induction on

x. Using (1.12), c(0,0) I l, c(2,0) I c(0,2) I c(1,1) I p.
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Thus we may assume 1 2 2. Since c(m,n) I c(n,m), we may assume

m S n. Using (1.34), c(n,m) I 0 for n > 21,

We partition 6. and show that the theorem is true in each

member of the partition. We will then show that the members of

the partition give the same answers. We partition c. as follows:

2’“1For S m S n S 21 - l, we have 0 S m - ZX-l S n - ZX-l S ZX-l - 1.

Therefore, using (1.28 (i)) we obtain c(n,m) I c(n - 21-1 + 21-1,

111 - 2x-1 + 21-1 271-1, m - 27‘4”
) ‘ P c(n ' ). Thus, if we restrict

2’"1our attention to (the triangle) S m S n S 21 - l, the relation

(1.36) holds by induction. On the other hand, for m S 2""1 -1 S

n S 21 - l, we have, using (1.29), c(n,m) I c(n - 2x-1,m). Thus,

if we restrict our view to (the triangle) m S 2’61 - 211 S n S - 1,

the relation (1.36) is true by induction.

It is now sufficient to show that one entry from

2k1 S m S n S 21 - 1 equals one entry from m S ZX-l - 1 S n S

2)\ - 1. Moreover, we may assume

(1.37) 8S2 +2 --1,

for if 8 > 21-1 +_21'2 - 1, then we would have m +1n I 28 2 21 -

ZK-l. But for m S 2k1 - l S n S 21 - 1 we have m.< 2k-1 and

n S 21 - 1, whereby m + n I 28 < 21 +2)“1 - 1. Thus (1.37) holds.

2x-l-l

let k I s - 23-1. Using 21 S 28 S +-2 (as stated

at the beginning of this proof), we have

(1.38) o s k s 2*“1 - 1 .

Using (1.37) we have
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(1.39) 0 s k s 2"”2 - 1 .

x-l

We choose c(2)‘-1 +~k, 2 +-k) as an entry for which

2)“1 S m S n S 21 - 1. We choose c(2)‘-1 +_21'2 + k, 2)"-2

S 21-1

+ k)

as an entry for which m S 2k1 - l S n . It is sufficient

to show c(2’"1 +2”2 +»k, 21'2 +1k) - c(2 +1k, 2”1 + k).

We may use (1.38) and (1.28 (1)) to get

(1.40) 12(2)"1 +'k, 2’“1 +1k) = p c(k,k) .

Adding 21-2 to (1.39) we get

(1.41) 2’1'2 s k +2’V2 s 2’"1 - 1 .

Thus, applying (1.28 (vii)),

(1.42) c(k + 21'2, k + 21-2) = c(k +21"1 + 21‘2, k + 21-2).

Using (1.39), 0 s k s 2"“2 - 1. Applying (1.28 (1)),

(1.43) p c(k,k) a c(k + 21’2, k + 21'2) .

Combining (1.40), (1.42), and (1.43), we have

ea”1 +1k, 2""1 + k) = c(k +2)“l +-2*'2, k +-2*'2),

and this completes the proof.

We are now prepared to construct the monic polynomials

Qn(z) of degree n which are orthogonal with re8pect to u.

That is, let Qo(z) I l and Qn(z) be a polynomial of degree n

with leading coefficient 1 such that

(1.44) i Qn(z) Qm(z) du(z) I 0 if n I m .
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For example, if Q1(z) I z +1A, then

0 = i 00(2) 01(2) an =£ 1-2 on +X£ 1.8“. .

The first integral is 0 since its integrand is odd, while (1.2)

tells us that the second integral is 1. Therefore A I 0 and

(1.45) Q1(z) I z .

Kinney and Pitcher [4; pg. 27] find

(1.46) Q2n(z) I Pn(z) .

We complete this lacunary set of orthogonal polynomials to the

complete set.

SzegB uses GramrSchmidt Orthogonalization on linearly

independent functions to obtain orthogonal polynomials in [5;

pp. 227-228]. We use a slight variation, suggested by the

technique of Walsh, to obtain Qn(z).

Since the degree of z: is n, {z<n>} form a linearly

independent set of functions. For 8 S n I 0,1,2,... , let

o(n,s) be defined by

n <8)

(1.47) Qn(2) - 2 s<n,s)z .
8I0

Then for 0 S k1< n,

 

0 a <Qn(z) , z<k>> - IE Qn(2) 24‘) 611(2)

n s> k>
e]: [ an(n’8)z< 32‘ du(z).

8

Interchanging integration and summation, we get
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n

0 - z a(n,s) z<s> z<k> du(z)

sIO

n

= z a(n,s)c(8,k) .

8I0

Also, Since i<n> can be expressed as a linear combination of the Qn's,

n

<n>

42,02). 2 > i[Qm(z)1:23:06ij(2)1180?)

If \Qn(2)l2du ~

We denote this by “Qn(z)“2. Thus we have

n

(1.48) 0 I 2 a(n,s)c(8,k) for 0 S k S n-l

8I0

and

2 n

(1.49) Mona)“ = :3 a(n,s)c(s,n) .

8I0

(1.48) and (1.49) represent n+1 linear, non-homogeneous

equations in the n+1 unknowns a(n,0), a(n,1),..., c(n,n). Thus,

as in SzegB's paper [5; pp. 227-228],

(1.50) a(n,s) I A;1 c(0,0) ... c(0,8-1) 0 c(0,s+l) ... c(0,n)

c(1,0) ... c(1,s-1) 0 c(1,s+l) ... c(1,n)

c(n.0> c(n,s-1)\\Qnu2c(n,8+1)-oo c(n,n)   
where

(1.51) A0 I 1 and An I c(0,0) .... c(0,n)

 
c(n,0) .... c(n,n)
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According to Theorem 1.12, c(0,8) I c(8,0) and both are

68 0; that is, 0 if 8 I 0 and 1 if 8 I 0. Thus,

3

c(1,1) ... c(1,s-1) c(1,s+l) ... c(1,n)

(1°52) O’O‘ss) - A;158,OHQn(z)“2

c(n,1) ... c(n,8-1) c(n,s+l) ... c(n,n)

 
In particular,

(1.53) c(n,0) B O for n I 1,2,... 0

Combining (1.47) with (1.52), we have shown that the follow-

ing representation holds for Qn(z):

c<1.1) .... e(1,n)

(1.54) Qn(z>=u<2n<z>\\21;1 :

c(n-1,1) .... c(n-l,n)

z<1> .... Z   
Since the leading term of Qn(z) is 2“, we have

n

Qn(z) I z + lower order terms. But (1.54) indicates that

(211(2) " “Qn(Z)H2 AglAn_12<n> + lower order terms. Thus,

(1.55) \\Qn(z)\\2 Amlbgl a 1 or An = 11ml Honor)“2 .

Thus, by induction we have

n 2

(1.56) an - kno Hoke)“ .

We have thus established the following:

Theorem 1.57. For n 2 1,
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Qn(z) I Dn c(l,1) .... c(1,n)

c(n-1,1) .... c(n-1,n)

<1>' .... z:   
n

where on a “(gummy .- 131 = (kl) \\Qk<z)u2>'1 .

In Special cases we can be more specific about An, as

the next lemma shows.

Lemma 1.58. (1) A = P A

(11) uoznmn2 = p .

Proof. To show (i) we note that using (1.13 (2)) we obtain

c(2n,k) - p 5 (where 6, I 0 for i I j and l for

k,2“ 1’3
1 u j), When we expand A n by the row containing c(2n,k),

2

the result follows.

To show (ii) we recall that (1.46) implies Q n(z) I Pn(z).

2
2

Therefore, “Q n(2)“2 I HPn(z)“ I c(2n,2n) I p when we use (1.13

2

(2)) or (1.13 (4)). This completes the proof of the lemma.

In [5], SzegS uses I an zm ldz‘ as the matrix entries.

(11) m>

a< du

 

We have used I z . In the case that F is a subset

of the real line (this occurs for p 2 2), we might have con-

sidered I szu. If N is odd, we apply (1.3) to find this in-

tegral equals 0, but if N is even, then the integral is a poly-

nomial in p of degree N/2. Moreover, the coefficients in this

polynomial have a complex pattern. As examples, we note that
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jzzdu-fluz) +p>du=fzdu+jpdu=p

j‘zl’du =f(1>(z) + p)2dp. =f 22:1,. + 2pjz on, + p2] dp, = p2 + p

fzédp, - 2p2 + p3

S

I zzsdu = I<P<z> + mad» - 2 (DPS-xi ‘de
1‘0 7“

[8’2] _2

z (3)398 1 j‘ 221d“ .

1,-0

The use of c(n,m) for our matrix entries seems to be

simpler since c(n,m) is 0 or a power of p (Theorem 1.12) and

c(n,m) I c(s,t) or 0 if n + m I 8 + t (Theorem 1.36).



CHAPTER II

We develop a difference equation for our orthogonal poly-

nomials as SzegS does in [1].

To insure that divisions occurring later are legitimate

we need the following lemma:

Lemma 2.1.

HQn(z)H2 I 0 for n I 0,1,2,...

‘ggggf: £ ‘Qn(z)‘2du(z) I 0 if and only if p is concentrated

on the roots of Qn(z), n I 0,1,2,... . Since p is concentrated

on F [1; Lemma 15.2], we would have F consisting of the roots

of Qn(z), n I 0,1,2,... . Then F would be a denumerable set

and have capacity 0 [8; Theorem III.8]. But F has capacity 1

[1; Lemma 15.1]. This contradiction completes the proof.

Since Qn(z) are orthogonal polynomials, the difference

equation

(2.2) one) = z Qn_1(2) + An-2Qn-2<z) + An_10n_1<z>

holds for some An-Z’ An-l [7; Theorem 3.2.1]. We can improve

the above difference equation; after a few lemmas, we will be able

to delete the middle term.

Lama 2.3. an(z) I Qn(P(z)) for n I 0,1,...

Proof. It is sufficient to show that £Qn(P(11))zs dp,(z) I 0

for 0 S 8 < 2n.

22
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If 8 is even we let 8 I 2m. Then 0 S m< n, and

 

an(P(2))zs du == an(P(z)>zZ“‘ cl» = an(P(z))(P<z) + p)“‘dn

Shifting, the last integral is J‘Qn(z) (z + p)m dp.

Using the binomial theorem on (2 + p)!n and interchanging

integration and summation we get IQn(P(z))zs (1p, I jgo(?)pm-1J‘Qn(z);j-du.

But j S m < n and thus the integral is 0 by induction. Thus

we have our result if s is even.

If s is odd, then we claim that Qn(P(z))-z: is an odd

function of z. This is true because P(z) is even, hence

Qn(P(z)) is even and z—8 is odd. Thus IQn(P(z))z—8- dp. I 0 by

(1.3). This concludes the proof of the lam.

We have, iumediately, the following corollary:

Corollary 2.4. IF|QZn(z)‘2dp. I IF‘Qn(z)|2dp, .

31:92:. Use the previous lemma and shift (1.4).

Our next result tells us about the evenness or oddness

of the Qn(z).

Lama 2.5.

(i) an(z) is an even function of z for n I 0,1,...

(ii) Q2n+1(z) is an odd function of z for n I 0,1,...

M. Since 0211(2) IQn(P(z)) by lemma 2.3, we obtain (i).

To prove (ii), we note that by orthogonality,

fQ2n(Z)Q2n'+_-1—-(Z) as = 0. By (2.2).

(2.5) 102,12) (121.1175) due) =J02n12) 20:12) .1,

+ KZn-l IQZn“) Q2n-1(z) d“ + X2: IQ2n(z) Q2n(z) dp' '
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Thus,

(2'6) 0 a PQ2n(z) lenEZE d“ +X2n-l jQ2n<z) Q2n-1(z) d“

2

+A2n1HQ2n(z)‘ d“ ‘

The first integral on the right hand side of (2.6) is zero

because its integrand is an odd function of z. The second integral

is zero by orthogonality of the Qn(z). Thus, since

2 ._

“one” an I 0 by learna 3.1, we must have A2“ - 0. Thus Azn = 0.

We have shown that

(2'7) Q2n+1(z) "' zan(z) + AZn-l Q2n-1(z)°

Therefore, by induction on n and the facts that

zQ2(z) I z(z2 - P) I z3 I 92 and Q1(z) I 2, we have our result.

We combine (2.2) with lemma (2.5), and we write -K(n)

instead of An-Z' Then we have shown that the following theorem

holds:

Theorem 2.8.

Q0(z) B 1 9 (21(2) 3 z , and

(2.8) Qn(z) I ZQn_1(z) - K(n) Qn_2(z) for n 2 2.

We have reduced the problem to finding relationships

among the K(n). This problem admits a solution in some cases.

As the next theorem shows, when our F set is a real set, the

K(n) satisfy a pair of non-linear recursion relations.

Theorem 2.9. If p 2 2, then

(i) K(Z) " P
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(11) K(2n+l)IK(n+1)/K(2n) for n 1,2,...

(iii) K(2n) I p - K(2n-l) for n I 2,3,...

2

Proof. Since Qo(z) I 1, 01(2) I 2, 02(2) I z - p, we may take

2

n I 2 in Theorem 2.8. Thus 2 - p I 2(2) - K(2). We then

have K(Z) I p, giving us (i). To show (ii), we multiply (2.8)

by Qn_2(z) and integrate:

(2.10) o ==json_1(z)0n_2<z>dn - Kn HQn_2(2)H2 .

but an_2(z) IQn_1(z) +K(n-1)Qn_3(z) from (2.8), so

szn_1(z)Qn,2<z>dn = [\Qn_1<z)|2du + K(n-1)an_1(2)Qn_3(2)du

which equals “Qn_1(z)“2.

Thus, (2.10) becomes

2 2

0 = HQn_1(Z)H - K(n) HQn_2(Z)H

or

(2.11) K(n) = H0n_ltz>n2/Hon_2(z)n2 for n = 2,3,...

Thus using Corollary 2.4 and taking n 2 1, we have

1122,12 19,12
K(2n+l) = —— = ——

1122,4112 1192,4112

Dividing numerator and denominator by “Qn_1“2, we have

a \1Q,\12/\\o,,-112 Mont/11.112 green

“an-1\\2/\\Qn-1\\2 g \lQ2n_1\\2/nqzn_2“2
K(Zn)

  K(2n+l

which proves (ii).
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To show (iii), we write (2.8) as an+1(z) IzQ2n(z) -

K(2n+l)Q2n_1(z) and note that

(2-12) zQZn_1(2) = Q2n(2) +K<2n)Q2n_2(2) -

Thus,

2

\lQ2n+1(7-)H = [Q2n+1(2)[202r‘1(z) - K(2n+l)02n_1(z)]dp,

= sz2n(z)QZn+1(z)dn - K(2n+l) -0

= fzozn(z)[zqzn(z) - K(2n+1)Q2n_1(z)]du

2 2 .

= $2 Q2n(2)du - K(2n+1>j202n_1<z>02n(z>du -

Using (1.6) in the first integral and (2.12) in the second integral,

we get

uqzmenlz = f(Pczmmfinem - K(2n+1>jm§n<z> +

+ K(2n)Q2n_2(Z)Q2n(7-)]du .

Using (1.3) and (1.4), we have

HQ (MHZ = 2 (2)d + 2 ( )d - K 2 +1) 2(2)11 - x 2 +1)-x 2 0
2n+l IZQII P PJQZn Z W ( n szn u ( n ( n). .

The first integral above is zero because its integrand is

an odd function of 2. Thus

HQ (2)12 - 2 - 2 .1 2
2n+l — pHQn(Z)H 1“ n ) “(2,101)“ °

That is,

v - K<Zn+1> = \\92n,1<z>\\2/\\Qn<z>n2 .
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2 2

But by (2.4), “Qn(z)“ = HQ2n(z)H and by (2.11)

K(2n+2) = \\02n+1\\2/\\02nl12 .

Therefore,

K(2n+2) I p - K(2n+1)

or

K(2n) = P ‘ K(Zn-l) a

which completes the proof of (iii).

Since K(2n+l) = 512111. and K(2n) = p - K(Zn-l), we
K(2n)

have K(2n+l) I Eiflill——- . Continuing this way we can develop

p-K(2n-l)

a continued fraction expansion for K(2n+l). Similarly, since

K(n)

K(2n) p - K(2n-l) and K(Zn-l) K(2n-2) , we have

K(2n) I p - %%%%—§;-, and we can develop a continued fraction

expansion for K(2n). We exhibit these continued fractions in

our next theorem.

Theorem 2.13.

 

 

 

 

(2.14) K(2n+l) I K(n+l)

p - K(n)

p - K(n-l) for n 2 3 and

'. p 2 2

p - K(3)

(2.15) K(2n) I p - K(n)

p - Kin-1)

p - K(n-Z) for n 2 2

 

p - K(3)
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We have so far developed two approaches to the problem of

finding the orthogonal polynomials Qn(z). One method uses a

matrix representation (Theorem 1.57) in which the determinant An

appears. The other approach is by difference equation techniques

(Theorem 2.8) in which we use the coefficients K(n). The next

theorem relates these two methods.

Theorem 2.16.

-2

K(n) = An_1 An_2 An_3 for n 2 3 .

Proof. By (2.11) we have

2

K(n) = HQn_1(Z)H2/HQn_2(Z)H for n 2 2 .

We also have, by (1.55)

2 -1

Home)“ _ An A“ for n 2 1 .

-1

An-l An-2 -2

Therefore K(n) I _ I n-l An-Z An-3 , which is what we

An-z An-3

wish to show.

Another approach to computing Qn(z) for p 2 2, using the

coefficients K(n) of the linear difference equation is to consider

ratios of the Qn(z).

Definition.

(2.17) Tn(z) I=Qn(z)flQn_1(z) for n 2 1 and Qn_1(z) I 0 .

If we divide (2.8) by Qn_1(z) we have

=_§.£E1L_
(2.18) Tn(2) z Tn-l(z)
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Since, by definition, T1(z) I z, T2(z) = z - E', we have the

following continued fraction representation for Tn(z):

Tn(z) I z - K(n)

(2.19) z - tin-11

z - K(n-Z)

2-2

2

This continued fraction reminds us of the continued fraction for

K(2n) in (2.15). In fact, if we replace 2 in (2.19) by p,

the two continued fractions (2.15) and (2.19) are identical. Thus

we have shown the following lemma.

lemma 2.20. For p 2 2 and n 2 l

Tn(p) I K(2n) .

We are in the following situation:

If we know K(2),...,K(n) then we can compute, by (2.19),

T1(z), T2(z),...,Tn(z). Then, by lemma 2.20, we get K(2n) by

evaluating Tn(p). Moreover, since K(2n-l) I p - K(2n), by

(2.9 (iii)), we have K(3), K(5),..., K(2n-l). Thus, starting

with the first n-l K's, we readily get the first 2n-l K's.

Repeating this argument gets us as many coefficients K(n) as we

want.

Example. we know (2.9 (1)) that 1((2) - p. Thus T2(z) - z - £- .

Therefore K(4) I T2(p) I p - l and K(3) I p - K(4) I l.

T3(Z) I z - fi-- f%- and

Continuing,



from which K(6) I T3(P) =

30

-l l

Tum-9199
1253111111 and K(S) — p - K(6) =-—I-.

Therefore

one).

(2.21)

rn<z>

Tn_1(z).

(2.22)

 

9-1 p-1

._1_|

T5(Z)IZ-p1-f;—L-%i-flam

2(2- 12--1

was—419‘9- I99
A simple observation allows us another approach to computing

Namely

=Qn (Z)

Since Qo(z) l we have observed that

n

Qn(2) = jn T (2) .
J

Using the Tn(z) we computed above we have, as examples:

01(2) = 211(2) = 2

02(2) = 11(z>12(z) = z<z - f) = 22 - p

03(2) (11(2)12<z>>r3<z) =02<z>13<z>= (22-12) (2 - —>=
2.2

23 - (p+l)z.

We already have one continued fraction representation for

in (2.19). Another may be obtained by solving (2.18) for

We have

Tn-l(z) 2 5122... .

z-Tn(z)
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Since Tn(2) in the denominator of (2.22) can be expressed

K n+1
‘géE-izzy', we obtain the following continued fraction re-

n+

presentation for Tn(z):

Tn(z) I K(n+l)

(2-23) 2 - K(n+2)

z - K(n+3li

(2.24) z a as: 



CHAPTER III

In this chapter we use the linear independence of the set

{z<n>} to find representations for Qn(z).

As in (1.47) let

n

<k>

(3.1) Qn(z) = z a(n,k) z .

k=0

. <n> . .
We remark that Since z 18 an n-th degree polynomial,

the z<n> are linearly independent; thus the coefficients q(n,k)

are unique.

We obtain some relationships among the q(n,k) in the

following lemmas.

Lemma 3.2.

3.2 (i) c(2n,2m) = c(n,m) for O s m S n < m

3.2 (ii) q(2n,2m+l) = O for O s m s n < m .

Proof. Since Q2n(z) ==Qn(P(z)) (Lemma 2.3) we can write Q2n(z)

2n n

as 2 a(2n,k)z<k> or as 2 a(n,k)(P(z))<k>. But

k=0k-O

(P(z))<k> a z<2k> by (1.7). Thus

2n n

(3.3) 2 01(2n,k)z<k>= 2 c(n,k)z<k>.

k=0 k=0

Comparing coefficients in (3.3) we obtain (3.2).

We next prove:

32
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IBmma 3.4.

(3.4) c(2n+1,2m) I 0 for 0 s m s n < m

(3.5) a(2k+3,2k+3) I a(2k+2,2k+2)

(3.6) a(2kfi3,25+1) I a(2k+2,23) - K(2kfi3)a(2k+l,28+l)

for 0 s s s k .

lgzggf. To show (3.4) we use induction on n. For n I O and 1

we use Qo(z) I l to obtain a(0,0) I l; we use Q1(z) I Pb(z) I z

to obtain a(l,1) I l and a(l,0) I 0; we use Q2(z) I P1(z) I

22 - p to obtain a(2,2) I 1, c(2,1) I O, and a(2,0) I -p.

We assume (3.4) is true for n s k. That is

a(2n+l,2m) I 0 for 0 s m s n1< R. For n I k+l, we use n I k+1

in (2.8), and we get

Q2(k+l)+1(z) = ZQ2(1<+1)(Z) ' K(2(1“"'1)+1)Qz(1<+1)-1(‘”‘) °

So,

2k+3 <8) 2k+2 > 2k+1

)3 q(2k+3,s)z = z z oz(2k+2,s)z<s - K(2k+3) z a(2k+1,s)z<8> .

SIO sIO s=0

Applying (3.2 (ii)) to the first expression on the right hand side

and the inductive assumption to the second expression, we may write

2k+3 2k+2 2k+1

z a(2k+3,s)z<s> = z z a(2k+2,s)z<s> - K(2k+3) z: a(2k+l,s)z<s>.

830 8.0 3:0

3 even 3 odd

So, by (1.8 (i)),

2k+3 s) 2k+2 (8+1) 2k+1 <8)

(3.7) 2: a(2k+3,s)z< - z a(2k+2,s)z -K(2k+3) z o,(2k+1,s)z .

8=0 s-O SIO

8 odd
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Comparing coefficients in (3.7), we obtain a(2k+3,28) I 0

for s I 0,1,...,k+1. Thus (3.4) is true for n I k+1 and thus

true by induction.

Comparing coefficients in (3.7) also establishes (3.5)

and (3.6).

We are now able to show that when we expand Qn(z) in

<o>
> .

powers of z<n , the coefficient of z is always zero.

Lemma 3.8.

a(n,0) I 0 for n I 1,2,...

£222£° If n is odd, this follows from Lemma 3.4. If n is even,

we use (3.2 (i)) to write a(n,0) I c(n/2,0). Our result follows

by induction.

Having shown that there is no "constant coefficient", we

n
<k>

now show that Z c(n,k)z is a "monic" expansion. That is

RIO

Lemma 3.9.

c(n,n) I 1 for n I 0,1,...

Proof. We prove the lemma by induction on n. We have already

shown, in the proof of Lemma 3.4, that the result is true for

n I 0,1,2.

We assume that the theorem is true for n s'N. That is,

(3.10) a(n,n) I l for n s N .

If n I=N+1, we have to distinguish between N+l being

even or odd. If N+1 is even we take N+1 I 28. Then

am+1,n+1) - a(2s,2s), which by (3.2 (1)) equals 0103.8). which
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by (3.10) equals 1.

If N+1 is odd, we let N+1 I Zs+1.

Then writing the difference equation for Qn(z) as expansions

<

in z n> and utilizing (1.8 (i)) we obtain:

8 8 .

(3.11) z; a(28+l,2j+l)z<2j+1> -= z c(n,m).-523“)

i=0 1‘0

5'1 2-+1>
- K(ZS-l-l) z a(2s-l,2j+l)z< J .

J=0

The second sum on the right hand side of (3.11) has no

terms involving z<23+1>. Thus, comparing coefficients in (3.11)

we obtain

a(N+1,N+1) I a(28+1,28+1) I a(28,23) I a(S,s) = 1 .

This completes the proof of the lemma.

We now show:

Lemma 3.12.
 

c(2n+1,2mfi1) I a(n,m) - K(2n+l)a(2n-1,2m+1)

Proof. We use, again, the difference equation for the Qn (2.8)

written as expansions in z<n>.

2n+1 <s> 2n <s> 2n-1 3)

z a(2n+l,s)z =2}: a(2n,s)z -K(2n+l) z a(2n-l,s)z< .

BIO sIO SIO

By (3.2 (11)) and (3.4), c(2n,28+l), a(2n-1,23) and a(2n+1,28)

are zero for O s s < n.

Thus

“ <2s+1> “ <2s>
(3.13) E a(2n+1,29+1)z I z 2 c(2n,28)z

8'0 sIO

n-l
2 +

- K(2n+1) £0 Q,(2n-1,2s+1)z< 8 1) .

8
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<28> <Zs+1>

z - z I zRecalling that , and conbining like

terms we have

n “-1
.

Z“ c(2n+1,28+1)z<28+1> - z [c(2n,28)-K(2n+l)a(2n-l,23+l)]z<28+1>

8'0 sIO

+ (1r(2n,2n)z<2n+]'> .

By Lemma 3.9, a(2n,2n) I 1. Thus,

n 11-1
2 +1> 2 +1>

(3-14) 2 or<2n+1.28+1)z< 8 - 2 [c(2n,23)-K(2n+1)a(2n-1,28+1)]2< ‘3

sIO sIO

+ z<2n-i-1> .

Comparing coefficients in (3.14),

a(2n+1,28+l) - a(2n,2s) - K(2n+1)a(2n-l,28+l) for n 2 o .

Since a(2n,28) I a(n,s), we obtain our result:

a(2n+1,2m+1) - c(n,m) - K(2n+1)a(2n-l,2m+l) .

Combining our results from (3.2), (3.4), and (3.12) we have:

Theorem 3 .15 .

c(n,m) I 0 if n-im is odd

a(n,m) (3621-, £22) if n and m are even

n-l m-l

c(n,m) I (AT, T) - K(n)a(n-2,m) if n and m are odd

c(n,m)Il if nImIl.

As corollaries to this theorem we have

Corollary 3.16.

1. c(2n+1,2m+I) a -x(2“+1)a(2“-1,2m+1) for o s m s 2“"2
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“'1-1,m) - K(2“-1)a(2“-3,2m+1)

for 0 s m 5 2n-1_1

a(2“-1,2m+1) . a(2

a (2n+1, Zn- 1) I -I((2n+1)

a(2n+l,l) I (-1)n r1'11((2j+l)

i=1

a(2n+l,2n-3) I c(n,n-Z) + K(2n+l)K(2n-1)

a(2n+l,2n-5) I -K(2n+1)K(2n-1)K(2n-3) if n is odd and

K(2n+1)[K(n-1) - K(2n-3)K(2n-1)] if n is even.



CHAPTER IV

We have developed representations for Qn(x), the monic

orthogonal polynomials over F with respect to L». We now

extend the orthogonality to sets other than F by using a measure

p* induced by use of the Green's function.

We let G(z,zo.,C'/) be the Green's function for the region

bounded by the closed analytic curve 0 with pole at 20. We

recall that G(z,zo,c) I 0 on O, G(z,zo,c) > 0 in the region

bounded by c, and G(z,zb,c) + log ‘2 - 20‘ is harmonic in the

region bounded by 6.

Theorem 4.1. Let G be any closed, analytic curve containing

F in its interior. Let W E F. For 2 E c we take

<p(z) - g C(z.w.o>du<w)

* d

and dp, (z) uEE-cp(z)‘dz\ where n is normal to c at 2. Then

1‘2““) Qua) du*(2) = o if n ,1 m .

Proof. By definition we have

£Qn(2) Qm(2) d11*(2) I ions) Qm(2) (3'31: G(Z.W.G)du(w))\dZ\

=£<1£Qnm Qm(2) c<z.w.c>d..(w))\dz| .

By the Fubini Theorem, the last expression equals

38
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H one) one) §;G(Z:Waa)‘dz‘)dp(w) .

In [8] we find the following result:

Theorem [8; Theorem 1.21]. Let f(g) be a bounded measurable

function defined on the closed analytic curve F. For g E P,

we take n to be the inner normal to F at Q. We put

u(z) =I[ f(z) g;G(Z.C.I‘) \ch .

Then u(z) is a bounded harmonic function in the region bounded

by P, and if f(g) is continuous at go 6 P, then

11m u(z) g f(go) 9

Zago

for z belonging to the region bounded by F. Thus

_" L C(Z,‘I,O) dz )dI-3(w)

H: one) Qm(2) an 1 |

= i once) 0mm duo») .

which equals zero by orthogonality. This completes the proof of

the theorem.

We examine the equilibrium measures concentrated on the

equipotential curves associated with the measure u concentrated

on F. We take

(4.2) or I [2 :£ log ‘2 - w‘dp.(w) I r} .

We always assume that r is large enough so that 6% is

simply connected and contains F in its interior.

We have the following relationship between Green's functions

and i log ‘2 - w‘dp,(w):
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Lemma 4.3.

C(z,m,Cr) I i log ‘2 - w‘dp(w) - r .

Proof. In order to prove the lemma we must show two things. First

we must prove that as 2 tends to infinity, log ‘z-w‘dp(w) - r

tends to log ‘z‘. This is so because as 2‘» a, log ‘z-w‘ a log ‘z‘;

thus,

i log ‘2 - w‘du(w) ~ E log ‘z‘du(w) I log ‘2‘ .

Therefore as 2 a m,

i log Iz - W‘dp(W) - r ~ log ‘2‘ - r ~ log ‘2‘ .

Secondly, we must show that for z 6 CE’ i log ‘z-w‘dp(w) - r = O.

This is true by definition of C%. Thus,the lemma is proved.

There is another representation for G(z,«,Cr), as follows:

Lemma 4.4.

0(2 :maar) B 'i C(2 awscr)dIJ-(w) 0

Proof. By definition of G(z,w,c%), we know that

(4.5) G(z,w,(‘,r) + log ‘2 - w‘ .. h(z,w,cr)

where h is a harmonic function of z throughout the region

bounded by CE. Thus,

(4.6) 1‘ G(z,w,(‘,r)dp,(w) .1 -log ‘z-w‘dp(w) +£ h(z,w,(',r)dp,(w) .

The first integral on the right hand side of (4.6) equals

-G(z,m,c%) - r by Lemma 4.3. The second integral on the right
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hand side of (4.6) is a harmonic function of 2 inside cg since

the integrand is a harmonic function of 2 inside 6%. By defini-

tion of G(z,zogC9, h(z,w,C§) I 410g ‘2 - w‘ for z 6 CE' Thus,

for z 6 Ci,

‘2 h(z,w,(‘,r)dp.(w) =+l[ log ‘2 - W‘dpfifl) 2+r.

Since i h(z,w,c%)du(w) is harmonic throughout the region

bounded by C? and constant on C4, I h(z,w,c%)dp(w) I-+r . Thus,

£G(Z,W,Gr)dp,(w) B 'G(Z,Q,Cr) + r " r = ‘G(Z,°,Cr)

Since G(z,m,c%) is unique, we combine the results of

Lemma 5.3 and Lemma 5.4 to get

(4.7) £ log ‘2 - W‘dp(W) - r I -; G(z,w,Cr)dp(w) .

Therefore

d d '
(4.8) 3:“: G(Z.W.Gr)du(W) = - 35‘ log \z - w‘de)

*

and dp , which we have previously defined as

d d
33-; G(z,w,ci)du(w)-‘dz‘ may now be taken as 33-; log ‘z-w‘du(w)-‘dz‘.

We have proved the following theorem:

Theorem.4.9.

£Qn(z) Qm(z) [gr-1'; log ‘z-w‘dp(w)] ‘dz‘ I 0 if m If n.

r



CHAPTER V

We conclude with two examples; namely, P(z) I z2 in which

case the F set is the unit circle, and P(z) I z2 - 2 in which

case the F set is the interval [-2,2] on the real axis.

Example 1. P(z) I 22.

We will show that the F set is {2: ‘2‘ I 1}, that dp

is arc length, and that the orthogonal polynomials are powers of

2. We observe that P2(2) I 24 and Pn(z) I 22“.

If ‘20‘ > 1, then for all 2 sufficiently close to 20,

{Pn(z)} converges uniformly to m. Thus {Ph(z)} is normal at

20, so that no point of ‘2‘ > 1 belongs to F.

If ‘20‘ < 1, then Ph(z) converges uniformly to O for

all z sufficiently close to Thus {Ph(z)} is normal at20.

20, so that no point of ‘z‘ < 1 belongs to F.

0n the other hand Pn(eie) is not normal for each point

e19 of the unit circle. This is clear since each open neighbor-

hood of e19 contains points whose absolute value is greater

than one and points whose absolute value is less than one. Under

iteration the former points converge to a while the latter

points converge to 0.

Thus F I {2: ‘z‘ I 1}.

To construct p we take 2 I l and we let p“ be the
0

discrete measure placing weight 2-n at each root of Pn(z) I l.

42
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Since these roots are the roots of unity, and since they are dis-

tributed symmetrically around the unit circle, we have

lim u I Lebesgue measure (=.l_ ° arc length). That is,

n—m n 2n

dun I %; - ‘dz‘ as n'I m.

We now use the method of Chapter I to construct Qn(z).

Lemma 5.1. 2<n> I zn I Qn(z) for n I 0,1,... .

as

Proof. For n I 2 e(s,n)28 we have

SIO I s

2 3(S,n)2

m S €(Ssn)
z<n> a H (138(2))5;(8,n)I=B II (22 ) g zsIO a zn .

SIO s=0

Thus we have the first equality.

<m>’i<n>

We have c(m,n) .{i Z dfl(z)‘ 1H‘2‘_1 Zn ‘dz‘ =

if m I n and 1 if m I n. Hence An I l for all n. Hence

Qn(z) B 1 0 ...... 0 o

0 l ...... 0 0

o . n

. . . . . I 2

0 0 '.l :

1 2 2“”1 2n   
and this illustrates the second equality.

Now that we have F (I unit circle), p (I %; - arc length),

and Qn(2) (I 2“) we can use the results of Chapter IV to extend

orthogonality. For CE I {2: ‘2‘ I r} we have G(2,m,c%) I

log'% ° ‘2‘. In this case g;- is taken in the radial direction,

d 1 1
sothat a—logF- ‘2‘I—log‘z‘I—long;. Therefore

du* (2) I- - ‘dz‘. We_have obtained the well known result that

n

for z I r e19, I 2nzm--‘dz‘ I 0 if m I n .

o



Example 2. P(z) I z2 - 2 .

We will use the results of Chapter II to show that Qn(z)

is the Tchebycheff polynomial 2 Cos n arc Cos (x/Z). F will be

the real segment [-2,2] and dp,(z) '% - (4 - 22)-%d2. We con-

clude with remarks about the orthogonality of Qn(z) on certain

confocal ellipses of which F is a limitingcase.

Brolin [1; Theorem 12.1] shows that F I [-2,2]. Kinney

and Pitcher [4; pg. 27] remark, without proof, that

du(x) I - (4 - x2) a‘dxdx. We show this in the following lemma.

Leanna 5.2. dp,(x) I -2- ° (4 - x2)-%dx.

Proof. We must show that u is invariant under P1(x). This

follows from du(P_1(x)) I l -[_4 - ((x + 2)}5)213"‘d(x + 2);} I - du(x).

But when we consider that there are two branches of P_1(x), each

contributing equally to our measure, and we have considered only

the positive branch, we get our result: dp.(P_1(x)) I dp.(x).

We use our non-linear recursion relations to find k(n)

and thus to find Qn(x).

From the recurrence formulae of Theorem 2.9 we have

k(2) I 2, k(3) I k(4) I ... I 1. Thus, Qo(x) I 1, Q1(x) I x,

Q2(x) 3x2 - 2 and

(5.3) for n 2 3, Qn(x) I XQn_1(X) ' Qn_2(x)

That Qn(x) I 2 Cos n arc Cos (x/2) satisfies (5.3) may

be seen by setting A I n are Cos (x/2), B I arc Cos (x/2) in the

identity Cos (A +B) + Cos (A - B) I 2 C08 A . Cos B.

Now we use the results of Chapter IV to extend the ortho-

gonality of the Tchebycheff polynomials to other curves.
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We define 6R as the ellipse

-1 -l 2 -l - 2

[x<R+R ) 1 +1y<R-R )1] =1.

where z I x + iy, and R > 1. We note that 6R has x I i 2

as foci , and that as R -o l, 6R approaches the segment [-2,2].

Since 2 I w + w.1 maps ‘w‘ > R conformally onto the

exterior of 6R with the point at I going into the point at on,

log .11.. - ‘w‘ I G(z,co,6R). That is,

(5.4) 108 % ' ‘(Z ...-“22 _ 4)‘ - G(zaQ96R) 0

According to our work at the beginning of Chapter IV,

 *

(5.5) g 2 Cos n arc Cos (z/2)-2 Cos m are Cos (2/2) d... (z) I 0

R

9:

if m 9‘ n where (1‘; (2) I %EG(z,oo,C’/r)-‘d2‘. In our next lemma

*

we compute dp, .

i.
Lanna 5.6. dn

 

G(Z,Q,6R) . ‘ 1 ‘ o

4-2

Proof. By (5.4), we must show

.3; 103 ‘2 44:21—44 . _L_ ,

VII?!

If w I r e19 (r > R) corresponds to 2, then C(2,o,6R) I log r -

log R and a; G(z,oo,6R) '% - g—E- . It is thus sufficient to show

that for z 6 6R ,

(5.7) R'1 - 53- - —-1——- .

an " 4-2 |

For 2 Ix + iy 6 6R, we have

(5.8) xIACose, yIBSine
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where

(5.9) A=R+R' , BIR-R- .

We note that

(5.10) 3% I 1 - R"2 = R'l-B and $21; - 1 + R'2 = R'lA .

Taking the partial derivative with respect to x in both equations

of (5.8) and solving for 23', we get

R -2

(5-11) 3;: R-B-D Cos e ,

2 2 2 2 2

where D I B C08 9 +'A Sin 9.

Similarly, taking the partial derivative with re8pect to

y and solving for gg', we obtain

(5.12) 53- - R-AoD-ZSin e .
ay

Therefore,

(5.13) grad R I R-D-2(B Cos e, A Sin 9) .

We still need to find n, the unit normal to 3R. Since

-2 -2 -2 2 -

(2A x, ZB y) is normal to A x +-b 2y2 I l, we have

- 2 - - - -

n I (4x2A A +'4y B 4) % (2A 2x, 2B 2y). Using (5.8) we have

2 2 - - -

Sin 9) k(A 1Cos e. B 1Sin 9)
n a (A'ZCosZe + B-

= (BZCOSZQ +-AZSin29)-%(B C08 9, A Sin 9)

- D‘las Cos e, A Sin 9) .
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-2 -1

Thus ill-:- Ii]: ~RoD (B Cos e, A Sin e)-D (B cos 9, A Sin 9)

= D'3(BZCos29 +-A231n29) = D'3-D2 = D"1 .

Now we show —— I D .

‘V 4-: ‘

Since 2 I w +w-1, we have

1"].
- - 2 - - - -

‘4-22‘ 35 I ‘4-(w-lw 1') ‘ 3 I ‘(w-w 1)2‘ I I ‘w-w

I |Reie - R'le'ie"1 = ‘(R-R-1)Cos e +-i(R+R-1)Sin e|-1,

which is ‘A Cos e +-i B Sin e‘-1, which equals D.1 when

i

w I R e 9. This proves the lemma.

Hence, (5.5) reduces to the following relation, first

obtained by Walsh [10]:

n m

(5.14) ng(z)T(z)-—Ldfl—IO if msén,

where Tn(z) is the n-th Tchebycheff polynomial 2 Cox n arc Cos (2/2).
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