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ABSTRACT

GENERALISED SYLVESTER GALLAI CONFIGURATIONS

BY

Sonde Ndubeze Nwankpa

In linear spaces it is of interest to study cutting

hyperplanes of a family of, say, disjoint compact sets as

opposed to studying supporting and separating hyperplanes.

Kelly and Edelstein have shown that "if {Si} is a

a

finite collection of disjoint compact sets in a Hausdorff

linear topological space 2, spanning a space of dimension

d > 1 and if IUSiI = m then there is a line in Z, inter-

secting precisely two of the sets of {Si]." Furthermore,

they have shown that if d > 3 the condition that IUSiI = m

can be removed. For d = 2 in real linear space there

exists a large number of examples of what we now call general-

ised Sylvester-Gallai configurations (i.e. a finite collection

of disjoint finite sets spanning a space of dimension 2 such

that no line cuts precisely two of the sets).

For d = 3 only one example is known, the classically

studied desmic configuration consisting of 3 sets of 4 points

each.

This thesis represents an effort to understand these

generalised Sylvester-Gallai configurations better, both



Sonde Ndubeze Nwankpa

in the ordered linear setting, and in some general projective

spaces.

It is easily shown that a necessary condition for the

existence of a GSG configuration of 3 sets in dimension d 2 3

is the existence of a completely self perspective arrangement

(CSPA) in dimension d-l. Accordingly a considerable portion

of the work is devoted to the study of CSPA particularly in

the ordered projective plane. Our conjecture was (and is)

that such an arrangement fails to exist in ordered projective

space for sets of more than four points. We were only able

to verify this for sets with fewer than nine points. This

is the main result of Chapter 3.

Generalised S.G. Configurations in which each Si consists

of a single point are called simply S.G. configurations and

have received considerable attention from several prominent

sources. For example, J. P. Serre [AMM 73, p. 89 1966]

asked if an S.G. configuration spanning complex projective

3-space exists. In Chapter 2 we show that such a set must

contain at least 40 points. We also continue the program

initiated by T. Motzkin LTAMS 70 (1951) 451-464] of character-

izing abstract S.G. configurations of low orders or with

other restrictions. For example, we completely analyze

those which are subsets of 3 lines.

Typical theorems proved in the thesis

Theorem "If G is a GSG whose point sets {Si} span

an ordered projective 3-space then no line intersects

more than three of the sets."
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Theorem "If S is an S.G. configuration spanning

complex projective 3-space then [S] 2 40."

Theorem "If {Sl.Sz,F} is a multiply perspective

arrangement of class [k,k.d] then k 2 2d_l."
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INTRODUCTI0N

In the study of convex sets in linear spaces the con-

cepts of supporting and separating hyperplanes is of central

importance. While not as strong a case can be made for the

study of cutting hyperplanes of a family of, say, disjoint

compact sets in a linear space it does seem natural and

possibly useful to prObe such matters.

For example, we may ask if corresponding to any finite

family of bounded, closed disjoint sets in a Banach space

there is at least one hyperplane cutting exactly one set

of the family. The answer is no. It is possible to con-

struct two disjoint bounded closed sets in cO such that

any hyperplane cutting one of the sets intersects the other

set. However, if the sets, instead of being merely bounded

and closed are also compact, then the corresponding question

can be answered in the affirmative

Definition 1.1: k-secant

A line intersecting precisely k—members of a family

of point sets is a k-secant of that family.

Theorem 1.1: (Kelly and Edelstein)

A finite family of disjoint compact sets in a topo-

logical linear space has a l-secant.



How about 2-secants? The answer has turned out to

be rather surprising and leads us out of the linear topologi-

cal setting into the linear combinatorial setting with.which

this thesis will be concerned.

The question about 2-secants was originally posed by B.

Grunbaum [4] who proved that a finite family of disjoint

continua in E not all subsets of the same line, must2.

have a 2-secant. He thoughthfthis as a generalization

of the Sylvester phenomenon, namely that a finite non-linear

set of points of En' or more generally in any ordered pro-

jective space, is cut by some line in exactly two points.

Herzog and Kelly (9) extended the Grunbaum result to

a finite family of disjoint compact sets in En at least

one of which is infinite.

Edelstein, Herzog and Kelly (2) strengthened the above

result to the following:

Theorem 1.2:

A finite family of disjoint compact sets in a topo—

logical linear space at least one of which is infinite and

not all of which are subsets of the same line is cut by

some hyperplane in exactly two sets. That the condition of

infinite number of points in one set cannot be dropped follows

from the following example. Consider the Pappus configuration

in E2: A, B, C on a line L, A’B’C’ on 1’ + z with



AB’ flA’BzC

 

A’C n AC’ I! w

BC’ nB’C=A

The sets {A,A’,A”}

 

{B,B’,B”], {c.c’,c”]

 

constitute a finite family of Figure 1.1

disjoint compact sets in E2

having no 2-secant.

The hope was that this and possibly a few other con-

figurations would be the only one standing in the way of

improved version of theorem 1.2. Unfortunately, this is

not the case. Consider as a further example, the vertices

of a regular hexagon alternately carrying the number 1

and 2, together with the three

points at infinity on the side

lines carrying the number 3. The

points carrying the same number con-

 

stitute a set and the three such sets ,/ \

 

have no 2-secants. The interesting 1 2 3

thing about this example is that it is

. 1.,

extendable to any regular 2n-gon. So Figure A

in E2 we have an infinite class of examples of what we

now call generalized Sylvester-Gallai configurations.

Definition 1.2:

A generalized Sylvester-Gallai configuration (GSG)

is a finite family of disjoint finite sets not all on one

line which has no 2-secant.



Definition 1.3:

If in the above each set of the family consists of a

single point, then the configuration is called simply a

Sylvester-Gallai configuration.

At this stage Kelly and Edelstein [3] anticipated

a flood of further counterexamples in E3 and En' For

example they found that numbering the 8 vertices of a cube

in E3 alternately with the integers l and 2, the

center and three ideal points on the edges with the integer

3, yielded a counterexample. This is the classically studied

 

 

desmic configuration discovered by Stephanos in 1890. g 3

However, they could find no other :f/fl

example spanning E3 and this ’m-HLP //2&‘” _73

example failed to generalize to 27~‘%+_~.31'

higher dimensions. Fig. 1'3 /’Efl‘w-m(i?/l

Note incidentally that the l 5/

topology has completely vanished at this stage and one is

concerned only with incidence structure and order. That

the flood, alluded to above, would not materialize became

evident from the discovery that in ordered projective spaces

there are no generalized Sylvester-Gallai configurations

spanning a space of more than three dimensions, specifically:

Theorem 1.3:

If {Si} is a finite collection of two or more non-

empty disjoint finite sets in an ordered projective space

such that Usi spans a subspace of dimension at least 4,



then there exists a line (and therefore also a hyperplane)

cutting precisely two of the sets.

This theorem is proved in Chapter 3.

In his Transactions'paper, Motzkin [8] initiated this

study, showing among other thinge,that Sylvester-Gallai

configurations exist in a wide variety of non-ordered

projective spaces. It is, of course, clear that any finite

projective space is a Sylvester-Gallai configuration but

it is not so obvious that such configurations exist in

projective spaces of infinite cardinality. Motzkin showed

that such configurations always exist in projective spaces

over a field which contains roots of unity other than 11.

We continue this program in Chapter 2, characterizing

such configurations of low orders as well as those which

are subsets of three or four lines. The latter part of the

chapter is concerned specifically with complex projective

space. Specifically we try to cast some light on a ques-

tion raised by J. P.Serre [AM 73 P. 89, 1966] concerning

the existence of non-planar Sylvester-Gallai configurations

in complex 3-space. We succeed only in establishing a

rather high lower bound on the cardinality of such sets if,

in fact, they do exist.

In Chapter 3 we attack the problem of characterizing

generalized Sylvester Gallai configurations in ordered

projective three space. It has been conjectured that the

classical desmic configuration is the lone element of

this class but we were unable to prove or disprove this.



However, we state and prove a number of unpublished theorems

of Edelstein throwing considerable light on the structure

of G S G's in ordered projective 3-space and go on from

there to show that there are no analogues of the classical

configuration in which each of the three sets has 5, 6, 7

or 8 points. The 8 point analysis involved a lengthy

case-analysis which seems to preclude a generalization by

these methods to higher orders.

Chapter 4 is devoted to a study of the existence and

characterization of generalized desmic configurations

(GDC) in a variety of projective spaces. There is consider-

able emphasis on the problem of obtaining configurations

which span spaces of various dimensions. For example we

show that a desmic triad in which each set consists of pre-

cisely 7 points does not exist in any projective space,

while one in which each set consists of exactly 6 points

has a very special structure [see theorem 4.3] and exists

only in a projective 3-space over a field of characteristic

3. Detailed analysis of the desmic triads resulted in

the concept of multiply perspective and self perspective

sets.

As a final example of the variety of results in this

chapter we cite the following theorems:

Theorem 1.4;

. . . d-l d-2
There eXists desmic triads of order q —- q for

any prime p, where q = pk, d is dimension of the space of

order q spanned by the configuration.



Theorem 1.5:

There is no desmic triad of order 10 spanning a

projective space of 4 dimensions.



CHAPTER 2

Sylvester - Gallai Configurations

1. Configurations:

In our introductory remarks it did not seem necessary

to abstract the notion of configurations. However, we

cannot conveniently proceed much further without a more

precise and a more general definition.

Definition_gél:

A structure consisting of two sets, P (points)

and L (lines) together with a symmetric binary relation

(incidence) between points and lines such that two points

are incident with at most one line is a linear configuration.

It is usual in such studies to identify a line in

L with the set of points of P incident with that line.

Definition 2.2:

Two linear configurations are abstractly (combinatori-

ally) isomorphic if there is a 1-1 correspondence between

their points and lines respectively which preserves the rela-

tion of incidence.

Definition 2.3:

A configuration is embeddable (or realizable) in a

projective space if there is a 1-1 mapping of the points of

8



the configuration onto a set of points of the space and a

1-1 mapping of the set of lines of the configuration onto a

set of lines of the space such that incidence is preserved.

Definition 2.4:

A configuration in which each two points are incident

with a line is line complete. A point complete configuration
 

is defined dually.

In this new terminology we might recast the Sylvester-

Gallai theorem thus:

Thggg'gm 2.1:

A necessary condition that a finite line complete con-

figuration be embeddable in an ordered projective space is

that some line of the configuration be incident with two

and only two points.

Since this theorem is so basic to this study we repro-

duce a proof here adapted from that of Kelly and Moser [6]

which employs the useful concept of residence of a point.

This concept will recur in subsequent proofs.

Definition 2.5:

A line complete configuration of n points, n-l of

which are on a line is a near pencil.
 

Definition 2.6:

The set of lines incident with a point of a configura-

tion is called a pencil of the configuration. The point is



10

the vertex of the pencil and each line a ray. If the number

of rays is m, the pencil is an m-pencil. If the numbers

of points on the rays, arranged in descending order of magni-

tude, are n1,n2,°'°nm, the pencil is said to be 9: type

(n1.n2.---nm).
 

Definition 2.7:

A finite line complete configuration in which no line

is incident with exactly two points is a Sylvester-Gallai

configuration or an S.G. configuration.
 

Definitionggggz

If C is a finite line complete configuration in an

ordered projective plane, with point set T, then the set of

lines of C not through PET either consists of a single

element or partition the plane into regions. In the latter

case P is in one of these regions which is called the

residence of P relative to g. A sideline of a residence

is called a neighbor of P.

We now proceed to prove theorem 2.1 stated earlier.

There is no SG configuration in an ordered projective

space.

Case (1):

The lines of the configuration form a partition of the

plane which is a near pencil. Let P be the point not on

i-th line of the pencil. Then the join of P to any point

on L is a 2-secant.
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Figure 2.1

The lines of the configuration, not through P, form

a proper partition of the plane such that P has a residence

with neighbor L.

   

 
Figure 2.2

Suppose g has three points on it 1,2,3. Let x be a

point of the boundary of the residence of P such that

[1x, 23]. Claim that x * i , i = 1,2,3. Suppose not:

i.e. x = 3 (say). Let 1’ be another neighbor of P.

1’ has at least two points z,4 on it. NOw either '53

intersects the residence of P or 43 intersects the resi-

dence of P and z,3,P are collinear or z,3,P are
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collinear and 1,2,3,4 are collinear. In the last case

2’ contains a third point m such that either .35 inter—

sects the residence or 2’ is a 2-secant as required.

We now suppose x # i, i = 1,2,3. The line IP has

a third point Q on it otherwise we have a 2-secant as

required. Thus (IE‘EE, 36 Ga], i.e. 16 =IIP and E5

intersect the residence .2 35 intersects the residence of

P or .25 intersects the residence of P according as

[10, PR] or [1P, QR] where l, P, Q, R are collinear

as indicated. Therefore in every case we have a contradiction

of the definition of residence of P, which implies z is

a 2-secant as required. I

Remark 2.2 (a)

There is no S.G. configuration in En for all n.

2.2 (b):

There is no S.G. configuration in any real Banach

space.

Every finite projective space is an S.G. configuration.

Definition of a Scheme 2.9:

Following the usual practice of using rectangular

schemes to represent configurations of type (aa) in pro-

jective geometry, we describe the following variant of it

to represent any S.G. configuration of order n.
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In constructing an S.G. configuration of order n the

following method will be found convenient: We label the n

points with the numbers 1 through n and label the n pen-

cils at each point, similarly with the numbers (1) through

(n). Then we set up a scheme of lines in which the lines

incident with any given pencil are arranged in a column and

the points incident with any given line are arranged in a

row of a column. There will be n columns corresponding to

the n pencils, but the number of rows per column will vary

according to the number of lines in a pencil. The scheme must

satisfy the following conditions

(1) The numbers written in the rows of any one column

must contain the number representing the pencil

corresponding to the column to ensure that all

lines of a pencil contain its vertex.

(2) The numbers of a row of a column must be more

than three in cardinality to avoid 2-secants.

(3) Two different rows of a column cannot have two

numbers in common, as this would make the straight

lines corresponding to the rows coincide.

Remark 2.3:
 

We observe that a row of length k is repeated in the

columns k times.

An Illustration:

An S.G. configuration of order 7 corresponds to the

following scheme:
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(l) (2) (3) (4) (5) (6) (7)

124 214 317 412 516 615 713

137 235 325 436 523 627 726

156 267 346 457 547 634 745

where each row in the columns after the vertical bar are re-

peats. The resulting configuration is seen easily to be iso—

morphic to the Fano plane.

Definition 2.10:

Two S.G. configurations are equivalent iff there is a

1-1 correspondence between the points and lines of the con-

figurations which preserves incidence.

Definition 2.11:

Two schemes are equivalent if one can be obtained from

the other by means of one or all of the following operations:

(a) Interchange of any two numbers in each row of any

column, corresponds to relabelling the points of a line.

(b) Interchange of any two columns. This corresponds to

the relabelling of the pencils hence of the points.

(c) Interchange of any two rows of a column. This

corresponds to relabelling the lines of a pencil.

Definition 2.1;:

Two S.G. configurations are said to be schematically

equivalent if they have equivalent schemes.

Theorem 2.5:

Two S.G. configurations are equivalentzrfifthey are

schematically equivalent.
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2:29.12:

Suppose the two configurations are denoted by C1 and

C2 respectively. Furthermore suppose Cl and C2 are

equivalent, i.e., there is a 1-1 correspondence between

their points which preserves incidence. The 1-1 correspon-

dence between points is an operation of type (b) i.e relabel-

ling the points. The preservation of incidences are operations

of types (a) and (c); i.e. Cl and C2 are schematically

equivalent. Conversely if Cl and C2 are schematically

equivalent all the operations involved are 1-1 correspond-

ences and they preserve incidence; i.e. Cl and C2 are

equivalent . I

We now derive necessary numerical conditions for an

S.G. to exist.

Lemma 2.6:

If a k-pencil F has the sequence (n1,n2,---,nk)

associated with it. Then

1
+
F
1
W

ni = n+k-l, where n is order of S.G.
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21:29::

We have, counting all points but the vertex of the

 

   

pencil

(nl-l) + (nZ-l) +---+ (nk-l) = n-l

k

= Z n. - k = n-l
1 1

k

i.e. 2‘. n. = n+k-l I
1 1

2. Complete characterizations of

S. G. configurations for low orders not exceeding 12.

Our procedure is as follows: For any given n as

the order of an S.G. configuration we first of all seek

the solution of the following system of equations and inequal-

ities.

then for each solution investigate the construction of an

S. G. configuration.

 

Lemma 2.7:

An S. G. configuration of order 7 is not a subset of

a S-pencil.
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Proof:

This follows from the fact that there are no integer

solutions to the following system of equations and inequali-

ties

5

Z n. = 11

l i

ni 2 3 i = 1,2,3,4,5.

Remark 2.8:

Similarly, an S.G. configuration of order 7 is not a

subset of a 4-penci1.

 

Remark 229:

For a 3-pencil the corresponding system of equations

and inequalities has the solution (3,3,3). An S.G. configura—

tion realizing this solution has already been constructed

in the illustration above. Any two line complete configura-

tion, each vertex of which has order 3, we easily see to

be equivalent.

Lemma 2.10:

An S.G. configuration of order 9 is not a subset Of

Ia k-pencil for k 2 5.

Proof:

This follows from the fact that there are, for k = 5

(say). no integer solutions to the system
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ll [
.
4

0
)

Remark 2.11:

There are solutions (3,3,3,3) and (5,3,3) (4,4,3)

corresponding to a 4-pencil and two 3-pencils respectively.

Remark 2.2:

(a)

(b)

(C)

We observe that if an S.G. configuration is a

subset of a 3-pencil then we have

It is also clear that an S.G. configuration is not

a subset of a 2-pencil. Later we shall prove a

theorem which determines completely all S.G. configur-

ations which are subsets of a 3-penci1.

Solutions (5,3,3) and (4,4,3) are impossible by (a).

Theorem 2.13:

There exists an S. G. configuration of order 9.
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_Proof:

This contains the 4-pencil corresponding to the

solution (3,3,3,3)

(l) (2) (3) (4) (5) (6) (7) (8) (9)

123 213 312 415 514 617 716 819 918

145 249 346 429 527 628 725 826 924

167 257 358 436 538 634 739 835 937

189 268 379 478 569 659 748 847 956

The above table satisfies all three conditions

(a) Each column contains the integer representing

the pencil in each of its rows.

(b) Each row has length at least 3.

(c) No two rows of a column have two integers in

common.

The scheme represents an S.G. configuration

of order 9. I

Remark 2.14:

We observe that the above S.G. configuration is equi—

valent to the configuration of type (9 12
4' 3)'

It is always possible to represent a configuration

by points in a projective plane in which the lines of two

pencils of the configuration are faithfully represented by

subsets of points on projective lines. If the projective

line joining these two points is taken as an ideal line the

pencils in the resulting affine plane are two independent

sets of parallel lines and the resulting planar set of points

and lines is called a grid diagram of the configuration.



2(3

Further linearities are sometimes conveniently suggested

by means of simple arcs passing through a set of points of

the grid diagram which correspond to sets of points which

are linear in the configuration.

Thus we might represent the seven point projective

plane by a grid diagram in the real affine plane as follows:

 

 
  

Slh 1K

7

I’m

4 6 } Fig. 2.4

1.1.1 >

1 2 3

As a second example consider a grid diagram representing

 

 

  
 

the configuration (94, 123)

F

San IR A 9

F 18 ’ .

4.L 4/ ‘\ A F14}. 23.5

\

4' \

In this second example the grid diagram is only a partial

representation of the configuration while in the first example

we have a complete representation of the seven point plane.

Proceeding from the linearities of the grid diagram

in example 2'we can construct a tabular scheme as follows:
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312 593 123 634 716 856 213 415 918

346 514 145 658 725 819 257 428 926

378 527 167 617 738 837 269 436 935

359 568 189 629 749 824 284 479 947

It should be clear that up to the equivalence previously

described the tabular scheme is unique and hence we claim

12that the configuration (94, 3) is combinatorially

unique.

Definition 2.13:

We now ask whether it is possible in some affine plane

to complete the grid diagram so that we will have a com-

plete representation of the (94, 12 configuration with3)

all lines of the configuration represented by linear subsets

of the affine plane. Such a representation we refer to as an

embedding of the configuration in the particular affine plane.

5A T» .T«\‘

(Lb)

40:11 A Flg. 2.6

 

 

   
 

(0.0) 1 2<I.o (a.O) 7‘3

We may coordinatise the grid diagram over a division ring

as shown above.

The equation of the line 42 is x+y = l and the linearity

428 implies that a+b = l

The equation of line 16 is x ya

and linearity 167 gives 1 = ba

Thus b(l-b) = 1 = o = bZ-b+1 and

if the ring does not have characteristic 2 then
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b=l;1:\/-3 a l

2

fig"

N
+
l

It follows that, since an easy checking shows the remaining

linearities are consistent with the above values of a and

10.

Theorem 2.16:

There exists a unique embedding of (94,123) in a

Desarguesian plane iff the coordinate ring contains ~/:§-

Unique means here that any two embeddings in a plane

are projectively equivalent. It is possible to embed a

(94,12 configuration in planes over division rings of3)

characteristic 2 but we do not analyze this further.

12)It follows from the above analysis of (94, 3

configuration that

Corollary 2.15:

Any two embeddings of an S.G. configuration of order

9 are projectively equivalent.

Corollary 2.16:

An S.G. configuration of order 9 is uniquely realizable

in the complex projective plane.

£1.18

We now show that there exists no S.G. configuration S with

|S|=8
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Theorem 2.11:

There does not exist an S.G. configuration S with

|s| = 8.

Proof:

We have

nl + n2 + °-- + nk = 8 + k - 1

n1 2 n2 2 --- 2 nk 2 3 k 2 3

For k 2 4 these inequalities have no solution, suppose

k = 3 then n = n = n1 2 which is impossible. I
3

The analysis of S.G. configurations of orders 7, 8, and 9

is thus Complete.

n = 10

Now let S be an S.G. configuration with [SI = 10.

Theorem 2.18:

A 10 point S.G. configuration with a 3-pencil exists

and is combinatorially unique.

Proof:

k

Now E ni = 9 + k n1 2 n2 2'--2 nk 2 3, k 2 3

have no solutions for k 2 5
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l + n2 + n3 + n4 = 13 has solution

(4,3,3,3) , thus 4-pencils in S must be of type (4,3,3,3)

Let k = 4. n

+ n + n = 12Let k = 3, n1 2 3

nl = n = n = 4

i.e. 3-pencils must be of type (4,4,4).

Suppose S has a 3-penci1

 

   
 

e» A A

910

___>

5 7 8 I

-% Fig. 2.7

l 2 3 4

The scheme below easily follows and is unique

 

4123 615 156 7458 836 9,10,64

4578 627 1234 726 8457 917

49106 638 179 719 829 928

69104 18,10 73,10 8110 935

2134 3124 5478 710964

267 359 516 1025

289 368 539 1037

25,10 37,10 52,10 1018 I

We claim that

Theorem 2.19:

There is no 10 point S.G. configuration containing only

4-pencils

Proof:

Suppose S were such a pencil. Its grid diagram

is shown below
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53* We,

4

Fig. 2.8

6 7

_A.

1 2 '3

The pencil with vertex 1 must contain a 4-1ine and this

4-line will certainly contain either point 9 or 10. Thus

the pencil with either vertex 9 or vertex 10 is not a 4-pencil.

The unique S.G. configuration of order 10 has been combina-

torially characterized.

We now consider its possible embeddings.

Theorem 2.23:

A 10 point S.G. is embeddable in a Desarguesian

 

    

plane, iff the coordinate ring has characteristic 3.

64A W\ 1!\ l\

9

10

5 0.1) .. 9.1) <a.1) ,
27

€1.01 6120) I; FiG- 2-9

3 a

Line 17: x = y

Line 28: x-y(a-1)-l = 0

Since these lines are parallel, a = 2

Line 25: x + y = 1

Line 18: x = ya

Since these lines are parallel, a = -1. Thus 2 = -l = 3 = 0

It is easy to check that this necessary condition is also

sufficient. I
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n = 11

Suppose now that S is an S.G. configuration of order 11.

Theorem 2.21:

An 11 point S.G. configuration with a 4-pencil exists

and it is combinatorially unique.

Proof:

We have

k

2 n. = 10 + k n 2 n 2---2

1 1

l 2 nk 2 3, k 2 3.

For k 2 6 these relations have no solution. If k = 5

nl + n2 + n3 + n4 + n5 = 15 has the unique solution (3,3,3,3,3).

If k = 4 nl + n + n + n = 14 has solutions (5,3,3,3)

2 3 4

+ n + n = 13 which isand (4,4,3,3). l 2 3If k = 3, n

 

 

     

 

clearly impossible. Suppose S contains a pencil of

type (5.3.3.3)

/ The scheme below follows and

/ A

9,‘/10 I it is unique.

7 _, /77 7% Fig. 2.10

I 4— s
l 2 3 4 5

51234 617 12345 21345 1059

578 628 167 268 1046

5910 639 189 2710 1027

56,11 64,10 11011 2911 1038

65,11

11,1,10 31245 41235 758 826 9510

11,56 369 4610 716 8310 918

11,29 38,10 4811 7210 819 9211

11,37 37,11 497 7311 857 936

11,48 749 8411 947 I
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Embedding:

Theorem 2.22:

An ll-point S.G. is embeddable in a Desarguesian

plane iff the coordinate ring has characteristic 2.

 
 

 

   
 

64“ AN

1

(0a) a) l(bia)

[“69 1°
”W" ) Fig. 2.11

gag/0 (10 (<10 (13.911 A

2 3 ’.
5

U
1

Line 1,10: x b_1a - y = 0 _1 -l

a (xb a)(a (a-l))=x-l

Line 29: y a-1(a-l) x - 1

ll X

I
.

Hi.e. x b_1(a-l)

i.e. x[b-1(a-1)-l] = -1

But lines 1,10 and 29 are parallel.

b-1(a-1) = 1

i.e. a-l = b_[

v

 

 

Now the linearity 72,10 gives

'1 = .._;_ :9 -a+2 = a

a-2

: 2 = 2a

= l = a impossible

or 2 = 0 as required

It is easy to check that this condition is also sufficient. I

We claim that
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Theorem 2.23:

There is no 11 point S.G. configuration containing

a 4-pencil of type (4,4,3,3)

 

 

    

Proof:

Suppose S were such a pencil. Its grid diagram

is shown below

6 A

Fig. 2.12

5 9 —*

___\

/

l 2 3 4

If we consider the vertex 2 then since it already has

one 4-line, it must have a second 4-line. i.e. this

 

second 4-line must hit the lines '59,'68 and 10,11.

Similarly for the vertex 3. But this is impossible. I

Lemma 2.24;

There is no 11 point S.G. configuration containing

pencils of type (3,3,3,3,3) at each vertex.

3929

If all pencils of S were of type (3,3,3,3,3) the

configuration would be regular and the equation 11(5) = 3x

would have an integral solution. Since it does not the

lemma follows. I

This completes the analysis of S.G. configuration of order 11.
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n = 12

Suppose finally that S is an S.G. configuration of order

12.

_Theorem 2.2;:

There is no 12 point S.G. configuration containing a

4-pencil of type (5,4,3,3)

Proof:

Suppose S were such a pencil. Its grid diagram

is shown below

 

 

     

GP 11

12

9 1g

7 8 Fig.2.13

,9

1 2 3 4 5

There is a 4-line through 1 and it has to contain

either 11 or 12. But each of them is a vertex of a

5-penci1. i.e. there is no second 4-line through them.

Hence theorem I

We obtain the other solutions as follows

Remark 2.2g:

k

2 n. = 11 + k n 2 n 2 ... 2

l 1

For k 2 6 these relations have no solution.ij k = 5

n1 + n2 + n3 + n4 + n5 = 16 has the unique solution (4,3,3,3,3).
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n1 + n2 + n3 + n4 = 15 has solutions

(5,4,3,3), (4,4,4,3), (6,3,3,3) where the last one is

If k = 4,

clearly impossible. If k = 3, nl + n2 + n3 = 14 with

nl = n2 = n3iisimpossible; since 3 cannot divide 14.

Theorem 2.27:

A 12-point S.G. configuration containing two pencils

of type (4,4,4,3) exists and is combinatorially unique,

and infact all pencils are of same type.

Proof:

The scheme below follows and it is unique.

 

 

 

   
 

10,?

3

7 .8 1

,/ .
4 - 6’ 4% Fig. 2.14

l 2 3 '11

11123 10147 12311 54611 97811 65411

11456 10258 14710 52810 93610 63910

11784 10369 15912 51912 91512 618

11,10,12 101112 186 573 924 62712

87911 25810 31211 41710 71410

82510 23111 34812 429 72612

816 249 357 43812 735

83412 26712 36910 45611 78911

12159

12267

12348

12,10,11. I
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Embedding
 

Theorem 2.28:

If the above 12 point S.G. is embeddable in a Desargue-

sian plane the coordinate ring must have characteristic

3.

Proof:

186: y = xa

ll [
.
1

N O
J ll [
.
1

429: X + y

a + a = 1 4a = 1

48312: (a-l)2 = -a

= a2 - a + l = 0

4 a _ 1 1 T3— _ _1_

_ 2 _ 2

which is consistent with a = 2 = -l I

Theorem 2.29:

There is no 12 point S.G. containing pencils of type

(4,4,4,3) and (4,3,3,3,3).

Proof:

 

Ag} Fig. 2.15
 

     

H
n
w
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From the above diagram we observe that it is impossible

to form the grid to begin with. For the 4-penci1 with

vertex 11 has not got the 3rd 4-line. I

Lemma 2.30:

An S. G. configuration of order 12, with each pencil

of type (4,3,3,3,3) contains a complete quadrilateral.

Proof:

With suitable labelling we have the grid diagram shown:

 

 
 

 

 

2

J i

/ 7

Fig. 2.16 x

I

\_,

A

.57

   

 

The following table lists these linearities

123 312 514

145 347 526

16710 369 578

1811 3810 5910

1912 311125 511123

Additional linearities implied by these are:

67110 415 213

639 437 256

625 4289 2489

6114 4116 21110

6128 41210 2127



But now points 2, 6, 7, 8, 5, 12 are vertices of a

complete quadrilateral.

II

We observe that each diagonal line of the complete

quadrilateral is a 4-1ine. It will now be shown that

there exist two distinct S.G. configurations of order 12

all of whose pencils are of type (4,3,3,3,3).

Definition 2.14:

Let 18 = number of complete quadrilaterals contained

in an S.G.

Theorem 2.31:

If cum: pencil is of type (4,3,3,3,3) hence all

pencils are of this type by theorem 2.32, then there existsemactly

two distinct non-equivalent lZ-point S.G.‘s.

EEO—09

Let 3 and 5 be two opposite vertices of a complete

quadrilateral of each of the S's which is assured by lemma

2.33.Subject to proper labelling the two S.G.‘s have the

grid diagrams shown.

 

 

 

 

 

  
 

 

   

5 5

A A A 11 A A 11

2

/

8 9 /' >

B

/r 10

2.17A / / \
'1' 6/ / I

A    

  



Table for A

34

     

 

  
 

 
 

 

         

 

312 514 123 213 415 857 1095 634

346 526 145 256 436 839 1073 625

3710 578 1679 24810 48102 82410 10248 6179

389 5910 1811 2911 4711 8111 10611 6812

351112 531112 11012 2712 4912 8126 10112 61011

7310 9167 1118 12110

758 9211 1129 1227

7212 938 113512 123511

7169 9412 1147 1249

7411 9510 11610 1268

Table B

312 514 123 213 415 857

346 526 145 256 436 839

3710 578 1679 24810 48102 82410

389 5910 1811 2117 4119 8111

31112 511123 11012 2129 4127 8126

1095 643 7310 9167 1118 12110

1073 625 758 9212 1127 1229

10248 6179 7211 938 113512 123511

10116 6812 7169 9411 1149 1247

10121 61110 7412 9510 11610 1268

It is easy to check that 1A = and XB = 2. (see

following diagram)

Ax ll5w 5 11
11

/[ 12#
,/I/

2 . ,

8 /

/

/ ’7 /

/ /' 10 1%;3—1...

44 1L. 4f;

/’ 6

1 2 ‘5 1*

.A: 1A = 6 B: XB = 2

i.e.; the S.G. configurations of order 12 represented by

tables A and B are combinatorially distinct.
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Embedding of A

 

 

 

    
 

 

 

 

11

'12

Eb) (bb)

8 90 , 1_ Fig. 2.19

/ (amfiga) 5

(01) 6 4-

/ (ll)

1/ -

(00) (10)

Line 42: x + y = l = a + b = 1 - (1)

For linearity l, 8, 11 x = yb_1a

4, 7, 11 x = (y-l)(a-1)_la

- -1

=yb1a = (y-1)<a-1) a

yb—£a = y(a-1)_la - (a-1)-la

y[b-la—(a-l)-la] = -(a-1)_1a

Since 1, 8, 11 is parallel to 4, 7, 11

we have

b_la = (a-1)-la

a b = a - 1 (2)

From (1) and (2) we have

a + b = 1

= (2a-2) = 0

a - b = 1

= a = 1 impossible

or 2“: 0

Embedding of B

Linearity 42810: a + b = 1
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1
Line 1 8 11 x = yb' a

2 9 11 x-l = y[a-l(a-1)]

i.e. yb-la = yfa-1(a-1)] + 1

i.e. y[b_1a - 1 + a—l} = 1

Since 1,8,11 and 2,9,11 are parallel

 

b_la + a"1 = 1

i.e. (1-a)_1a = 1 - a”1

= -a—1(1-a)

1 e [a l(1-a)]_1= -a—l(l-a)

Le. - = [a‘1<1-a>12

-a = 1 - 2a + a2

i.e. a2 - 2a + 1 = 0 = a = lgl- a b =_l§l-

   

Thus we observe that S.G. configuration represented by

table A embeds in a Desarguesian planeztfifthe ring is of charac-

teristic 2, while that represented by table B embeds in a

Desarguesian plane iff the ring contains 4th roots of unity. I

Corollary 2%;;:

There is one and only one S.G. configuration of order

12 in the complex plane whose structure is determined as

a subset of a S-pencil coordinatized by 4th roots of unity.

This completes the analysis of S.G. configuration of

order 12.

3. S.G. configurations as subsets of 3 lines

Theorem 2.33:

A subset, S, of 3 non-concurrent lines in a projective
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plane coordinatized over a field is a finite S.G. configura-

tion if and only if S is projectively equivalent to the

set of points {(1, ai, 0), (0, 1, -aj), (1, 0, ak)}

i,j,k = l,2,---,n where {aa], a = 1,2,3,'°°,n are nth

roots of unity.

Proof:

Suppose S a subset of 3 non-
I

concurrent lines L1, 22, L3 1n a

Pappian plane,is a finite S.G.

configuration. Now if 21

2 0 £1 = 01 and L3 0 21 = 02 are

the vertices of the triangle of

L

reference with 01(1,0,0),02(010)

       

 

and 03(001) then the coordinates

. O 100

of Ai'Bj'Ck may respectively be 1(

 

 

1

taken to be A.(0,1,-a.), B.(1,0,b.), 3

1 1 J J k

Ck(1,ck,0) With a1 = 1, cl = 1.

It is easily seen that [[ai}| = |{bj]| = [(ck]|

Now suppose Ai' Bj' Ck are collinear

Then 0 1 -ai = 0 = (-l)(-bj) - aick = 0

l O bj :: D = aickl *

1 ck 0 1 J V

  

With the assumption that C1 = 1 we see that the following

points are collinear: (110), (10b) and (01 -a)

i.e. 3 a, b e[bj} 9: for each a E {ai]

b = a from the above equation (*)

I: [bj}= {ai}
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Similarly {bj}= {ck}

i.e. {ai}= {bj}= {ck} ,

{ck} 3a3 E {ai} 9: for al, a2 6 {ai}Since {ai]= {bj}

a3 = a1&2

i.e. {ai} is a subset of non-zero element of a field F

which is closed under multiplication, therefore it is a

multiplicative subgroup of F*. Therefore [ai} is a

cyclic group (see Artin [12] page 49).

i.e. H a positive integer n such that an = 1 for some

a 6 {ai}

i.e. the set {ai}= {bi}: {ck} are nth roots of unity.

For the 2nd part of the proof, suppose [ai} is a cyclic

subgroup of F* of some field F. Consider the following

set of points [(1,ai,0), (0,1,-aj), (1,0,ak)}. We observe

that the indicated coordinates satisfy

a3. = aiak

whenever any point Ai(1,ai,0) is joined by a line to

a point Ak(l,0,a the line passes through a third pointk)

Aj(0,1,-aj) i.e. the indicated set form a finite S.G. configura—

tion on three non-concurrent lines. I

Theorem 2.34:

A subset, S, of 3 concurrent lines in a projective

plane coordinatized over afield F is a finite S.G. configura-

tion iff F has finite characteristic and S is projectively

equivalent to the set of points {(1,0,ai), (1,1,aj), (0,1,ak)}
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i,j,k = 1,2,---,n where {am} a = 1,2,°°°,n is an

additive subgroup of the coordinate field.

Proof:

Suppose S a subset of 3 concurrent lines 21,12.£
3

in a Pappian plane is a

finite S.G. configuration.

If 03 = £1 n 22 0 23 and

01 6 £1. 02 6 £2 are the

vertices of the triangle of 2 21

reference with 01(100)

02(010) and 03(001) then

 
k

may respectively be taken to

 the coordinates of Ai'Bj'C

/

01(100

be Ai(01ai)' Bj(10bj) and Ck(llck)' With a = 0, b = 0

it is easily seen that

[{ai}‘ = I[bj}‘ IfckH

Now suppose Ai' B., Ck are collinear

Then 0 1 a. = O = -[Ck-bj] + a. = O

l ,

a. + b.l

1 J

 

1 0 bj = ck

 

1 1 c   

With the assumption that a1 = 0 we see that the following

points are collinear: (010), (10b), and (11b)

3 c 6 {ck} such that for each b E {bj}

2b: :1).c {9k} 1 3}

Similarly

{q(}= {31}.
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[ail = {133'} = {ck} -

Since {a1} = {bj}= {ck} 3 a3 6 {a9}: for al, a2 6 {a1}

2

i.e. [ai} is a subset of the coordinate field F closed

under addition, therefore it is an additive subgroup of

the coordinate field. Conversely, suppose [ai} is an

additive subgroup of F, then whenever we join the point

we get aAi(01ai) on to the p01nt Bj(10bj) on

‘1

Also if we join Bj(10bj) on

‘2

point Ck(11ck) on 11

we get a point Ai(01ai) on

L3.

to a point Ck(llck) on 13

22 since ai = ck - bj is an element of the additive group

{a1} i.e. Ai' Bj' Ck are point of an S.G. and a subset

of 3 concurrent lines. For the remaining part of the proof

‘we have to show that the field has finite characteristic.

We have that C(11a), 13(100) “1

and A(0,1,a) are collinear. Also

(11a), (010) and (10a) are

collinear and (10a), (112a) and

 
(01a) are collinear. Similarly

(100), (112a), (012a) are collinear;

(010), (112a), (102a) are collinear

and (1023), (114a), (012a) are
  1 ' 110

collinear and so on, for some a E F. Fig. 2.2

For the configuration to close we need the last point

generated on L3 to coincide with some earlier point on

Lk . . .
23. Thus we need 2 a = 2 a for some p031t1ve integers k

and z where L < k (say)
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k-z
= 2£(2 -1)a = 0

= 23(2m-l)a = 0 for some positive integer m.

Since a # 0 we need either 2 = 0 i.e. coordinate field

has characteristic 2 or p = 0 where p is a prime

divisor of 2m-1 (since 2m-l containsaiprime factor + 2)

i.e. characteristic p Thus in all cases the coordinate

field has finite characteristic. This completes the proof

of the theorem. I

Remark 2.35:

Theorem 2.36 corrects the mistake in the theorem

on page 460 of Motzkin [8].

4. 0n the existence of S.G. configurations

in complex projective 3-space

Motivated by the question raised by J. P. Serre

(AMM731966 we, in this section,show that there is no non-

planar Sylvester-Gallai configuration in complex projective

3-space with fewer than 40 points. It is convenient to

confine the argument to the C3 setting but the reasoning

for the most part is applicable to more general spaces

and permits us eventually to characterize all non-planar

Sylvester-Gallai configurations of fewer than 40 points in

any projective 3-space.

Lemma 2,36:

If a Sylvester-Gallai configuration, S, is a subset

of a 4-pencil having lines £1, £2, 23, £4 with vertex P



42

and if the associated sequence (n1,n2,n3,n4) has the

properties nl-l = x 2 n2-1 = y 2 n3-l = z 2 n4-1 = w then

'8' 2 x + 9.

££22£=

Observe that x = [£1 0 (S-P)|: y = [22 n (S-P)|:

z = I23 0 (S-P)‘: w = |z4 n (S—P)|. If Q is a point of

22 n (S-P), then the x lines joining Q to points of

£1 n (S-P) intersect (L3 U L4) 0 (S-P) and hence z+w 2 x.

Similarly y+z 2 x and y+w 2 x. Thus y+z+w 2 %x and

ISI 2 x + gx.

Now if x 2 6, |S| 2 x + 9. If x = 5 and w 2 3

then y + z 2 6, = |S| 2 x + 9. If x = 5 and w = 2,

again y + z + 2w 2 2x, y + z 2 6. Keeping in mind that

P must be an element of S we again have IS] 2 x + 9.

If x = 4, it follows from theorem 2.28 that |S| 2 13 =

4 + 9. Finally if x = 3 then y, z, w are all 3 and

|s| > x + 9. 1|

Lemma 2.37:

If in complex projective 3-space a Sylvester-Gallai

configuration, S, is a subset of a pencil of four planes

having axis 1, and if z’ is a line in one of these

planes o with la n 5| 2 13, lz’ n SI 2 k 2 3, and

IL n 2’ n s| = 0 then [s] 2 4o.
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EEEEED

Let B be any plane containing 1' and a point of S

not on a. S n 8 is a planar Sylvester-Gallai configuration

and is a subset of 4-penci1 with vertex P = L n L’. It

follows from lemma 2.48 that I8 0 SI 2 k + 9.

Now there are at least three distinct planes through

2’ intersecting S in points not on 1! Hence

|s|23(9)+|ans|227+13=4o. I

Theorem 2,383

If S is a Sylvester-Gallai configuration spanning

complex projective 3-space, then ISI 2 40.

££29£=

Let L be a line of C3.

Case 1: |z n sI = 7.

There is clearly a line 2’ skew to 1 such that

IL' n SI = k 2 3. There are at least 7 distinct planes

through 1’ intersecting points of S not on 2’. If a

is any one of these planes then Ia n SI 2 k + 6. Thus

Is] 2 7(6) + k 2 45.

Case 2: IL 0 SI = 4.

If there are 5 planes containing 2 and intersecting

S-L then ISI 2 5(8) + 4 = 44. Since no Sylvester-Gallai

configuration spanning C is a subset of a pencil of

3
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3 planes (vide lemma) we may assume that S is a subset of

precisely four planes containing 2. Suppose a and B

are two of these planes with Ia fl SI = I8 n SI = 12.

From lemma 2.32 detailing the structure of Sylvester-

Gallai configuration of order 12 it is clear that there are

then lines ‘1 in o. and z in B such that

2

IS 0 LII = IS 0 ‘2' = 4 and (z n 8) 0 S = ¢. There are

1

thus five distinct planes through intersecting S-L
‘2 2

and hence Is| 2 5(8) + 4 = 44.

Suppose then, that one of the four planes through 2

contains 12 points of S. The only possible distribution

of points of S on these four planes that does not immediately

lead to the conclusions that ISI 2 40 is that in which

three of the planes contains precisely 13 points and the

remaining plane contains precisely 12 points. Suppose a

is one of the planes with 13 points of S and B the

one with 12 points. If P is a point of S n (Q-E) and

Q is a point on S n (a-a) not on any of the four lines

joining P to points of S n 1, then it follows from lemma

2.49 that ISI 2 40. If no such Q exists, then for at

least one of the lines, say 2’, joining P to a point

of S n L IS 0 z’I 2 4. There are now at least 5 planes

containing 2’ and points if B n S and ISI 2 40.

Case 3: I2 0 SI = 5

As in the previous cases we can proceed at once to

assume that there are precisely four planes containing L

and points of S - L. If each of these contain more than
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13 points of S then ISI 2 4(9) + 5 = 4). We may thus

assume that for one of the planes a, Id 0 SI = 12. It

now easily follows that S n a is a subset of a 4-pencil

two of which contain 5 points of S and the other two of

which contain 3 points each. In such a configuration there

is a line 2’ with either IL’ 0 SI = 4 or I1’ 0 SI = 3

and 2’ 0 z n S = 0. In the first instance the theorem

follows from case 2 and in the latter from lemma 2.40.

Case 4: IL 8 SI = 6.

First observe that there is a line 2’ shew to 2 such

that I2’ 0 SI 2 3. Now through 2’ there are at least

six planes intersecting S-L’. Hence ISI 2 6(6) + 3 = 39.

Now suppose as usual that S is a subset of a pencil

of four planes through 2. For at least one of these

planes, o. Ia n SI > 13. Let P e S n (o'z). If Q is

a point of S n (a-L) not on any of the six lines joining

P to the points of S n 2 then ISI 2 40 by lemma 2.49.

If no such Q exists one of the six lines joining P

to the points of S n L may be assumed to contain precisely

6 points of S. Thus Ia n SI 2 16. Since 3(7) + 16 = 37 < 39

it follows that either Id 0 SI 2 19 or for some second

plane 5, I8 n SI 2 16. In either case ISI 2 40.

Case 5: For all 1, IL 0 SI s 3.

If for any plane, a, Id 0 SI > 13, then for any point

P E S n a there are at least 7 lines containing P and
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points of (S n o) - P. If 2’ is a line joining P to

a point of S - a then L’ is contained in at least 7

distinct planes intersecting S - 2’. Hence ISI 2 7(6) + 3 = 45.

We are thus led to assume that for all planes, a, contain-

ing at least 3 non-linear points of S, lg 0 SI = 13 or

Id 0 SI = 9.

If Ia 0 SI = 13, then any point P of S n a is on

6 distinct lines containing points of (S 0 a) - P. If

2’, as above, is a line joining P to a point of S-a,

then 1’ is on six planes containing points of s—z’.

Thus Isl 2 6(6) + 3 = 39.

Suppose, in fact, that |s| = 39, L n s c a, [S n oI = 13.

There must be m+n planes each containing and intersecting

S-L, with 39 = 10m + 6n + 3, m 2 1. This means m = 3,

n = 1. That is S is a subset of a pencil of four planes

through 2 three of which contain 13 points of S and one

of which contains 6 points.

If Q is a point of L n S and 2* a line joining

Q to a point of S n (B-L), where B is one of the planes

containing 13 points of S, then since Ia n SI = 13, there

are 6 lines through Q in a each intersecting S. Hence,

there are 6 planes containing 2* and points of S-£*. One

of these planes is 8. Thus ISI 2 5(6) + 10 + 3 = 43. It

remains to consider the case in which for all planes a

intersecting S in three non collinear points Ia n SI = 9.

We will show that such configurations do not exist.
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Suppose, in fact, that A,B,C are three collinear points

of such a configuration S, and a and 8 two planes

containing A,B,C and intersecting S - {A,B,C}. Let

A,D,E be collinear points of S - [A,B} in a and

A,D’,E’, be collinear points in S - {A,B} in B.

We now introduce affine coordinates,taking the plane

E,E’,C as ideal plane/in such a way that A(0,0,0),

D(l,0,0), B(0,1,0), D’(0,0,l). From the known structure of’a

9 point planar S.G. configuration (see page 20 ) it follows

that the remaining four points of a n S are H(a,l,0)

F(1,%,0), G(a;%,0) and the ideal point I = AG 0 BF n DH 0 CE.

Similarly in plane a point H’(0,1,a), F'(o,%,1), G’(O;%,a),

and the ideal point I’ = AG’ n D’H’ n BF’ n CE’ are all

points of B n S.
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Now F,G,E F’,G’,E’ are in a plane Y. An easy

computation shows that J(l,%3a) and K(a;§,l) are also

in Y 0 S.

Finally we observe that B, H’, E’, F, J, L are in

a plane S, and that they are the six vertices of a

complete quadrilateral. But a planar S.G. configuration

of 9 points does not contain a complete quadrilateral as

a subconfiguration so it follows that I6 n SI + 9.

This contradiction shows that no S.G. configuration

exists in C3 all of whose plane sections are 9 point

S.G. configurations and completes the proof of the theorem. l



Chapter 3

The structure of a GSG spanning ordered 3-space.

Introduction:
 

Definition 1.2 of the introduction described generalized

Sylvester~Ga11ai configurations in the context of projective

or linear spaces. We proceed now to define an abstract

GSG.

Definition 3.0:
 

If the point set, S, of a finite linear configura-

tion, C, is partitioned into sets [Si], i > 2 such that

each pair of points from two different sets Si and Sj is

on a line of C and if no line of C intersects exactly

two of the sets {Si}, then C is a generalized Sylvester~

Gallai configuration or simply a GSG. The lines of the

configuration are its secants and the sets Si are called

the (constituent)sets of C.

We first reproduce the Kelly-Edelstein proof that a

GSG cannot span ordered projective k—space for k > 3.

The remainder of the chapter is designed to throw light on

their conjecture that the only GSG spanning ordered projec~

tive k-space, k > 2, is the 12 point desmic configuration

(see introduction, page 4) discovered by Stephanos in 1890.

49
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Mai-.1:

There exists no GSG spanning ordered projective 4-

space.

Proof:

Suppose, in fact, that S is a GSG spanning an ordered

space, S4, of 4-dimensions. Let [Ai] be the constituent

point sets of the configuration. Consider the line L

3
and p2 6 A2 and let S1

i together with pl spans S4.

through p1 E A be a 3—space
1

not containing L. Then S

The line L and each point of S-L determines a

plane. All such planes may be described in a picturesque

'way as forming a book of planes with back L. Now L n Si = P

and the planes of the book intersect Si in a bundle of

lines with vertex P.

Motzkin observed in his 1951 paper .[8] that for such

a bundle in 3-space there exists a plane containing precisely

two lines of the bundle. This follows, at once, if we con-

sider a section of the bundle by a plane and apply theorem

2.1.

The 3-space, $3, spanned by these two lines and L

contains precisely two pages of our book. It is now an easy

matter to check that if a collection of two or more finite

non-empty and disjoint sets in 83

not on one, then there is a line intersecting precisely two

lie on two planes and

of the sets. This contradiction establishes the theorem. I
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.EROOF:

 

  

 
 

Fig. 3.1

     
 

Theorem 3.1 implies that GSG's in ordered projective spaces

are confined to two and three dimensions. The next two

theorems, due to M. Edelstein are the only ones known to us

which throw much light on the structure of such sets.

Definition 3.1:

A k-secant of a collection of sets is simple if it

intersects no set of the collection in more than one point.
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_Theorem 3.2:
 

If a finite family, {Si}, of disjoint finite sets

spans an ordered projective space of dimension 3 and has no

2-secants, then all k-secants, k > 2, are simple.

That is to say all k-secants of the sets of a GSG

k > 1 are simple.

.B£QQ£=

Suppose, to the contrary, that 11 is a k-secant with

k > 2 which is not simple. We may assume the labelling

so that points 1 and 1’ are in S1 0 £1,226S20 9,33653001.

Let V be a plane such that w 0 Si = 0 for i = 1,2,'°°,n.

Now centrally project all points of 3 Si from 1’ onto

w and let T be the set of these projections in w, and

P the projection of 2. Let Q 6 T and X E 8 Si which

projects into Q. Since X f 81 the line 1X 2contains a

point Y E 8 Si other than X. The projection of Y onto

w is a poiit of T on PQ. Hence PQ is not a 2-secant

of T.

It is now clear that T is not the point set of a near

pencils and hence that the set of lines defined by the pairs

of points of T which do not pass through P partition

W into polygonal regions. It is shown in [G that if

there are no 2-secants in T through P then the side

lines of the residence of P are all 2-secants of T.

Now if QR is a side line of the residence of P, with

n

Q, R E T, there is a point Z E U S 1 whose projection is

2
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R, where X and Z are in different sets.

 

I

Hence the line joining X and Y must 1 1

contain a point of S1 since if it Fig. 3,2 2 X

contains a point from a Si' RQ would

not be a 2-secant of T? Thus we P

G

can assume a point 1” 6 S1 whose

 

projection S* is on RQ.

Now consider T U S*. It is easy to verify that the.

lines defined by pairs of points of this set are precisely

those defined by pairs of points of T. Hence the residence

of P relative to T U S* is the same as the residence

of P relative to T. Every line of T U S* through P

contains at least three points of T U S*, but one of the

side lines of the residence of P, namely QR, is not a 2-

secant of T U S*. This is a contradiction and proves the

theorem . I

Theorem 3.3:
 

If G is a GSG whose point sets {Si} span an ordered

projective 3-space then no line intersects more than three

of the sets.

2.299;:

Suppose G has a k-secant z with k > 3. From

theorem 3.2 we know that 1 must be simple and the nota—

tion may be chosen so that z n Si = i, i = l,2,3,4,"',k,

with points 1,2,'°',k in cyclic order.
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As in the proof of theorem 3.2 we centrally project

8 Si from 1 onto a plane v with P the projection

if 2 and T the set of projection of point if 9 Si.

If Q + P is any point of T we again wish to show that

the line PQ intersects T in yet another point. The

argument then will proceed precisely as in theorem 3.2.

To show that PQ contains a third point of T we

consider a point X 6 2’ n 9 Si' where 2’ = 1Q, such that

l and X are not separated by any points of 2’0 9 Si'

Suppose X ¢ S3. The line 3X must then contain a point

0 3X. If
1

X’2 n 2’2 — n ’ ’— n K- o E 3 Si' X 4 0 £ — B E 3 Si then 1 2 3 4

l

n

of U Si. If not there is a point X’ = S

a X B and and X are separated by two points of

3

1

n o 9 I

U Si contrary to the definition of’ X. If X E S but

2

k > 4 the same argument shows that the line 4X has a

n

third point of U S on it. Thus in these cases there

2 i

is a third point of T on line PQ.

It remains to consider the case in which X 6 S3 and

k = 4.

n

If the line 2X does not contain a point of U S

2

it must contain a point X* E 51'

n

Let X* 3 fl 2' = a’E U S.
2 i

n

X* 4 n 2’ = 5’6 3 Si' Again

line 38’ contains a point

w of S1 or the proof is complete.

Since w i 83, XW contains a  
 

third point of U Si 0 z. This
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point is clearly not 1, 2, or 3 and hence must be 4. Let

a w n z = u 6 USi' Now 1 2 3 4 K 1 a’a’ A 1 4 u 3.

Thus u + 2 and we have a contradiction to the assumption

that k = 4.

Thus in all cases the lines PQ intersect T in

at least three points.

The proof now proceeds in a completely analogous

fashion to that of theorem 3.2 producing a contradiction

to the assumption that In 0 USiI 2 3. I

We have previously noted that the only known example

of a three dimensional GSG in an ordered projective space

is the 12 point desmic configuration consisting of three

sets of four points each i.e. the configuration of type

(12 16
4! 3).

Since our efforts to characterize generalized Sylvester-

Gallai configurations were not too fruitful we turned to

the special case in which the number of sets in the configura-

tion is three. It is easy to see that in this case ISlI

ISZI = ISBI' We refer to such configurations as desmic

triads or generalized desmic configurations (GDC).

Definition 3.2:

A GSG having exactly three sets all of whose 3-secants

are simple is a desmic triad.

In a desmic triad each point of set Si is a center

of perspectivity for Sj and S (i,j,k) a permutation
k

of the integers 1, 2, 3. Thus sets Sj and Sk are
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multiply perspective under ISiI different perspectivities.

Thus the problem of constructing desmic triads in various

spaces may be looked at as that of constructing two sets

of n points which are perspective from n different

centers. We will now show that a necessary condition

that this be possible in a given space is that it be possible

to find an n-point set in a plane of that space which is

completely.§elf,perspective.

The theorem showing the techniques used in the

subsequent analysis will now be proved.

Theorem 3:4:
 

Suppose A, B, C are three sets of k points each,

in a projective 3-space S which have no 2-secants. Let

v be a plane of s with A n w = B n w = C n v = ¢. Let

all secants be simple. Let m be a central projection of

S onto w with center al 6 A. Define w(bi) = m(ci) = p e n

m(B) = m(C) = P and m(ai) = q., i = 2,3,‘°',n. Then P

l

is self-perspective from each of the points qi.

Proof:
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Fig. 3.4

 
“*"P‘T‘ 2.1-2-2 .. q .

 

Define qi: P 4 P as follows:

“H

Let Ckai 0 B = bj’ then 91(pk) = w(bj) (where

kai is the line jOining ok to ai) Indeed Qi is

uniquely defined, otherwise Ckai will be non-simple.

 

C

Also 9i is 1-1 Since 9i(pk) = 9i(p£) = o ai n B =
k

czai 0 B e Ckai = czai = ck = cg = pk = p2. Finally Qi

is a self-perspectivity of P with center qi. Clearly

 

pk, pj, qi are collinear since they are images of the

collinear points bj’ ai under m. Ick,

Remark 3;§:

If no three points of P are collinear then the 91's

are involutary.
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Indeed; let ei(pk) = pj. Now for ei(pj) we consider

 
 

cjai n B, Since cjai is coplanar with pkqui and no

other points of P are in this plane we must have

. _ . 2 _ .
cjai n B bk' i.e. 9i(pj) — pk i.e. 9i — 1,Vi I

 

Lemma 3.6:

For each i, ei(p) I p V p e P

 

Proof:

Suppose the statement is false, then the points al'ai'bj’

and ok are collinear with pk. i.e. alai is a non-simple

secant in A -«- I

Lemma 3.7:

ei(p) + ej(p) if i + j

Proof:

Suppose the statement is false; consider the accompany-

ing figure. We observe that alp is a non-simple secant

k

cutting C at ck and ck’. *I

Fig. 3.5
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Theorem 3,8:

A necessary condition for a GDC to exist in a project-

ive 3-space is that in w the set P be self perspective

from n-l centers.

Proof:

In defining the self-perspectivities Bi of P we

obtain a 1—1 correspondence between the centers qi and

the points af i = 2,"',n of A. I

Remark 3.9:
 

The qi's must be distinct from the pk's otherwise

we have a non-Simple secant in A, namely since c b.a

 

k j i

is mapped by 8 onto pkqui if p3. = qi (say) then ai

lies on the line 'aibjcj . The qi's need not be distinct

points.

The above theorem 3.12 holds true in any space, not only in

ordered projective spaces since no order is involved in

theorem 3.8 - 3.11 leading to it. Thus we shall make use

of it in the more general analysis to be undertaken in

chapter 4.

3.2 Completely self perspective sets of low orders.

Suppose S a completely self perspective set in an

ordered projective space and P, Q two distinct centers

of perspectivity.
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S is then a subset of two pencils [P] and [Q]

formed by joining P and Q respectively to points of

S. Let p and q be the number of rays in these pencils.

If S* = [P] 0 [Q] then S C S* and IS*I= pq. It is

convenient to consider the line PQ as the ideal line

and to introduce affine coordinates. S may be then

 

 

   
 

viewed as a subset of the "grid" 8* = [(ai.bj)lo

al<a2 .o. (ap' bl (b2! ...’ <b

Q/A A\ /\

.....-m_. Fi . 3.6

(a..b.) l g
1 J

(al,b2) >

>
(a1b1)62'bl)...

It is, of course, clear that any quadruple of points

no three collinear is a completely self perspective set,

while no set of five points is of this type.

We now proceed to show that there are no completely

self perspective sets, S, in an ordered projective plane

with ISI = 6,7,8. More general conclusions can be drawn

about completely self perspective sets of orders 6 and

7 in more general spaces. This will be done in chapter

4. However the analysis of the case ISI = 8 by strictly

algebraic arguments seems to be very involved.

Theorem 3.10:

There are no completely self—perspective sets, S, in an

ordered projective plane with ISI = 6,7,8.
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3J£ll Completely self perspective sets of order 6. ISI = 6.

In the associated grid diagram either IS*I = 6 or

IS*I = 9. In the first instance we may assume p = 2, q = 3

and S* = S
{(allbl)l(a21b1)1(ajlbl)l(allb2)l(a2Ib2I(a-3Ib2)]°

 

   

Q

I; 5 6 .
L‘ Fig. 3.7

>
1 2 3 P

Let (albl) = l, (a2bl’ = 2, (a3,bl) = 3, (alb2) = 4, (a2b2)

(a3,b2) = 6.

If 915 denotes a perspectivity such that 915(1) = 5

then 915(2) = 6 or 915(2) = 4. The latter is immediately

ruled out since (2) = 4 s 915(3) = 6 which violates

615

the assumption that the perspectivities are disjoint.

If 915(2) = 6 then 915(3) = 4. But obvious order

relations Show that lines 15, 26, 34 are not concurrent and

 

 

   
 

915 could not have a center.

Hence ISI= IS*I = 6 is impossible

Now suppose IS*I = 9, p = 3, q = 3.

Qt »~ ,4

I
I

>

} Fig. 3.8

79

Let T = [(albl),(alb3),(a3bl),(a3b3)], i.e. T is the

set of "corners” of the grid.
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It is immediately clear that S must contain at least

two points of T and at least two opposite corners.

Qa§e_l: S n T = [(al,bl),(a3,b3)).

.5 6 = S = {(albl).(a2bl).(a3.b2).(a2b3).(a3.b3))v 

Heavy dots indicate points of S, crosses
 

1 points of S*\S.

2

Fig. 3.9

923(1) = 4. or 923(1) = 5. or 923

   

(l) = 6. The following

three grid diagrams Show that none of these is possible.

 
 

 

 
 

 

 

       
 

 

 

5 5 6 5 6.-I..3$ ? ,

/? I V3 4 3 :14 3t.“ 4 Fig. 3.10
k ‘ , ,7 "I? I ‘

\ ..

. \ \

1 2 1 2 " 1

In the first two respectively 923 and 946' 923 and 956

are not disjoint while in the third diagram obvious between-

A to have aness relations make it impossible for 23

center.

Ease 2: S n T = ((319131)! (a3lb3)l (a3obl)}

 

 

  

5 6 _

3 4 . (az'b3)I

IK’ :f:>?, Fig. 3.11

1 2

916(4) = 2 916(3) = 5

But lines 16, 35, 24 do not concur and Q16 has no center.

All other cases are isomorphic to either case 1 or case 2.

Thus there are no completely self perspective sets of

order 6 in an ordered projective space.
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Again we remark that for ISI = 6 a more algebraic

analysis can and will be made. But the presentation

given here paves the way for the much more complicated

treatment of ISI = 8.

3JLLZ. Completely self perspective sets of order 7. ISI 2 7.

The situations in which IS*I = 8 or IS*I = 12 are

easily seen to be combinatorially impossible. For IS*I = 9,

p = q = 3 there are 3 non—isomorphic case depicted by the

diagrams below

  T ..___.__r___...-..-.-i r

 
  Fig. 3.12

          
 

 

Associated with the A diagram there are two possibilities

  

  

        

for S

A A

6 l 6 2 7

7

4 4 5 Fig. 3.13

l 2 3 1 2 3

Since in Al no triples other than [1,2,3] and [1,4,6]

are linear, S has at most two self perspectivities.

For similar reasons there can be at most two self

perspectivities of S in the A2 case.
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Diagrams B and C give rise to essentially one

possibility for S in each case

  

  

        

B C

6 7 7

4 5 3 4 5 Fig. 3.14

k

l 2 l 2

The analysis of linear triples shows that S in B

has at most four possible self perspectivities while S

in C can have at most two.

Thus if S is a subset of an ordered projective

space and ISI = 7 then S is not a completely self

perspective set.
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3.103. Completely self perspective sets of order 8. ISI = 8.

If IS*I = 8 we have the essentially unique diagram shown

A

5 "6 ’17 "8 \
7 

Fig. 3.15

    
 

1 2 3 4}

The following diagrams dipict the possibilities for 916

 

 

   

 

 

 

4 I

15 A6 A7 [8 A

N / Fig. 3.16

4 7 1 A
, , '5

1 2 3 F 1 2 3 4 7

In neither case can 916 have a center, so IS*I = 8 is

impossible.

The case IS*I = 12 is very easily handled by methods

discussed in chapter four while its analysis by ordered grid

diagrams is a little awkward. Accordingly we refer the

reader to chapter four for a discussion of this case. The

discussion there shows that in an ordered projective space

IS*I = 12, ISI = 8 is impossible.

We turn to the final and most difficult case in which

 

 

 

     

IS*I = 16.

Let S* = [(ai,bj)} i,j = 1,2,3,4.

(allb4) «---w-

T:

Fig. 3.17

(albl’ (a4,bl)
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Our analysis is organized into a number of cases which

can be described informally as follows:

1. 1 corner, 2 adjacent points

2. 1 corner, 1 adjacent, 1 non adjacent point

3. 1 corner, no adjacent points.

4. 2 corners adjacent, 2 non adjacent points.

5a,b,c. 2 corners adjacent, 1 adjacent point.

6a,b,c. 2 corners opposite, 2 adjacent points.

7a,b. 2 corners opposite, non adjacent points.

8a,b,c. 2 corners opposite, 1 adjacent point.

9a,b. 3 corners, 1 adjacent point.

10. 3 corners, non adjacent point.

11. 4 corners.

12. No corners.

Case 1:

S [‘1 T = [(allbl)t (azlbl)r (a11b2)}'

It follows that S = [(al,bl), (a2,bl),(al,b2),(a2,b4,(a3,b3),

 (a3.b4).(a4.b2).(a4.b3)).

 

 

     

5 —-—-4 -—-~—-‘V6

7 8

Let gij represent the perspectivity in a complete set

of perspectivities taking 1 into j. This notation is,

of course, far from unique.
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We propose to show, in this case, that there are no

possibilities for 967'

(
D H

U
1

C
D

0
)

\
l

(
I
) I

M 967(8) = 3 967(8) = 4

l 7

“
N H n
)

U
1 N

0 U
1

2
_
_
L
w
_
-
.
_
i
i

0
‘

U
T

I (
7
)

U
1 I 0
‘

 
 

 
 

w p w 2 w p w 2

   
 

    

\ \

               A
;

T

L

 
   

In each case the only possible center of the perspec—

tivity 967 is seen to be inconsistent with the ordered

arrangements of the remaining points. The impossibility

is strongly suggested by the line with arrows.

.Qe§§.;=

s n T = [(al,bl),(a2,b1),(al,b3)}.

S = [(al,bl),(a2,bl),(a4,b2),(a3,b2),(a4b3),(al,b3)

(a2.b4).(a3.b4)}

l 2
 iiI

 

 

     

 

 

 
 

 
 

7

967(2) = 3 967(2) = 4

1 2 2

I

3 4 3 4

967 5 5

r/ A I A?         
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Hence is impossible.
967

s n T = {<al.bl).(a3.bl).(al.b3>}.

= S = {(a1.b1).(a3.bl).(al.b3).(a2.b2).(a4.b2).(a4.b3).

(a3.b4).(a2.b4)}.

 

 

 

 
 

 

 

 

 

 

            
 

 

  

2 1 2 1

\
’//l

422‘ 4 2-22_.>4 )3
-'-\<\d \, ’-

/

.2_ ”5‘224229 5 ,/ 6 5
, ”A

//2/ ’2
,/ I

r

r'7 ./
,. . 1

723/ 8 ’ k”

967(2) = 4 967(2) = 5 967(2) = 3

Hence 8 is impossible. .
67

Case 4:

S n T = {(alrbl)o(a4tbl)t(allb3)}

= s = {(a1.bl).(a4.b1).<al.b3).(a2.b2).(a2.b4).<a3.b2)

(a3.b4>.(a4.b1).<a4.b3)1

1 2 I . r: 9 l T%<:jj

/fi

   

  
 

 
 

  

 
            

  

3 MN MN I 3 4 3 .

\.:'“’”‘ «574:: ‘\\

I\\I\ ¢ \ X“ \ \

712 i 8 7 / ‘ 8 ~48

: 9 (2 = 4958(2) 3 958(2) 7 58 )

9 is impossible. I

58
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s 0 T = [(a1.bl).(a4.bl).(al.b2)}

There are three possibilities for S:

a: S = {(al.bl).(a4.b1).(al.b2).(a4.b2).(a2.b3).(a3.b3).

(3. ,b4), (a3ob4)}

2

{(allbl)I (a4lbl)l (alib2)0 (a3lb2)l (a21b3)l (a4lb3) I

0
‘

m I

(a2.b4).(a3.b4)}

C: S : {(al'bl)’ (a4lbl)l (alib2)I (5121132): (a2Ib4)l (a3lb3)l

(a3.b4).(a4.b3)}-

(a)

 
  

 

 

 
 
 

  

 

  

                 
 

 

 

  
 

 

  

  
 

            
  

2)

3 4 7 3 4 3\\.4
3 E\

5 I** ‘6 5 6 = _ \\\$.2 5 6

/ )- .‘ x
/ ,4 I

”I .m- /_
I I

’- V

/

I .I

I ’

867(4) = 8 967(4) 5 967(4) _ 1 967(4) = 1

(b)

l \2
l \.

l 2

- ~—- I 1 . -~ ‘1 , ,2;

3 ’ 3 \\1%%\
///A,

/ A.
, "’I

/., IAI/ A
,/’

5

I"
"fngw-

—— -.I 5 {#3 ~~ ’
6 .I

/ ’/
l

y
I

/

.. L - ~

A ,—

3
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(C) . /

   

  
 

   

 
           

 

  

917(4) = 6 917(4) = 5 917(4) = 2

Case 6:

S m T = {(al'bl)’ (a2'b1)' (31,132)]

6(a) (
D

II {<al.bl).(a2.bl).(a1.b2>.(a2.b3>.(a3.b2).(a3.b4).

(al.b3).<a4.b4)}

6(b) S = [(al.b1).(a2.bl).(al.b2).(a3.b3).(a2.b2).(a3.b4).

(a4.b3).(a4.b4)}.

6(C) S = {(a1.b1).(a2.bl).(al.b2).(a2.b4).(a3.b2).(a3.b3).

(a4.b3).(a4.b4)]-

Case 6a is the first of several which cannot be dismissed

by virtue of the fact that for some i,j there is no corre-

sponding eij° In fact for each i,j there often exist

several possible perspectivities and it is only after com-

paring the geometry of the configurations that it becomes clear

that a complete set of perspectivities cannot exist.

For example a glance at the Al and B1 diagrams of

case 6a shows that the betweeness relations implied by lines

46 are incompatible. Hence we conclude that the perspectivi-

ties (74)(25)(13)(68) and (73)(26)(48)(15) cannot exist.

We indicate this Al Y 81(46).
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On the other hand Al and B3 are incompatible because

their perspectivities are not disjoint having transformations

(25) and (68) in common. This is symbolized: Al 0 B3 =

(25)(68).

The analysis of 6a then proceeds as follows:

Al Y 81(46), Al Y 82(73),Al D 83 = (25)(68).

A2 Y 81(46), A2 Y B2(73),A2 0 B3 = (68)

A3 0 B1 = (26) A3 Y B2(46)

Thus a complete set of perspectivities must include A3

and B3. We proceed now to see if any of the possibilities

for e are compatible with these two.

72

A3 n C1 = (58)(l3), B3 n C3 = (l4)(86)

At this point we know that the only possibilities for a

complete set of perspectivities must include the perspectivi-

ties represented by diagrams A3, B3, C2. We now examine

976’

D2 0 A3 = (13), D3 n B3 = (14)

Now a complete set of perspectivities must include A3, B3, C2, D1.

El Y Dl(46) , E2 0 A3 = (26), E3 0 A3 = (58).

Thus the diagram of case 6a is not a completely self perspec-

tive set . fl



£182.62:

74

 

 

 
 

   ... 4...“--- 
(25) (13) (68)

 

 

212

 

   

 

 

    
 

 

 

 
 

T ,

B W3 _§(

*1 1

973 5.x L 5/ ;

i.e/ -1

(26) (48) (15)

.__-.-_ (1.---2

F ‘1

c 3 " 4

9 .. "
72 5

1 \ I’H/

1 1’

(31) (46) (58)

D 1

976

7

(23) (15) (48)

1

T [1
i 3 / [,4 ./

E 1 / .'

e " /‘ /f

   

 

 

 
 

   

(28) (35) (46)

Mg:

7,,

72

 

 

     

(23) (15) (68)

21
 

/
 

/.
 

    
 

(28) (15) (46)

3;- 

 

$
1
.
.
.
.

1-

‘1

 

  

_4_,'

1

i

I
 

q
.
»
-

 

 

 

  

(25) (13) (48)

 

 1 x
6 

  1.514:

(26) (35) (48)

  

 

 

/
 

 
’-

h.’

 
7'

L/

   
I

(26‘)(13) (58)

7

\
l
M
”

7
6

I

I 2
 

  //“

/

I
 7

/

     
(25) (14) (68)

7

(35) (14) (68)

2 

 

 

I]
 

 
/

 

 

  

 

 

  

/

D

 

(23) (46) (58)

 

 

 

   71  

 

    

 

 

 

     

 

 

     

 

 

    

(36) ——————

- i)- ,1?

3 4

6 ”J

"F u

b ”7 ml». .2

3 1;) “.40

J’-

. /'

m)

.1137.-......-J

I, (25) ------

 



73

M:

 

 

 

 

 

      
 

 

1 2

1—-—34P-4I

/ l
6, m1;

,1 7 1, 1
1-} /"8 7kg... . .-__-.I

(16) (23) (58) (15) (---) (18) (---)

  

 

._..1t. 1-

          
(46) (23) (58) (45) (--") (48) (---)

Since A1 0 B1 = (58)(23), 871 and 674 cannot coeXist

and the set of perspectivities in this case is incomplete. I

 
 

 

       

 

 

    

Case 6c:

A ‘1: 3k”;

871*,115‘H l
r V I

’ __,I

7

(32) (46) (58)

. .712

B i;%1.§//4t

%4/fi1111gb_.1

¢._7t1 1-1.1.111

7 8

(15) (23) (68) (16) (“--) (l3) (----)



A]. (1 B1 =

Case 7:

s n

(a): S =

(b): S

.Qase 7a

A1 Bl

A2 B2

Case 7b

A

074

B

q75

74

(23) 2 Diagram not completely self perspective. I

T = {(al.bl).(al.b3).(a3.bl)

((al.b1).(al.b3).(a3.bl).(a2.b4).(a4.b2L(a4.b4).

(a3.b3).(a2.b2))

((al.bl).(al.b3).<a3.b1>.(a2.b4).<a4.b2).(a4.b4).

(a2.b3).(a3.b2)}-

(see grid diagrams)

   

  
 

  
 

              

 

 

  

 
  

       
        

, A1 u 81 2 cl , (Al u 81 8 cl) n Di + ¢ 1 = 1,2

, A2 8 82 = c1 , (A2 u 82 u c1) n Ei + ¢ 1 = 1,2

I’

ly/ _2 , 2 1 g

l //’l y/ '11 ‘ r>('\ " /

/ 8 ,7 1 3 14\\ 4

’ 5_ 4 ‘ 3 6 j 6

/ [xi] ' r
.111..- K 1 .1

7 //8 7 8

(52)(l3)(68) (51)(---)

‘—%//t7;/ C~_§F“Z F 2
3 .2”

.._.
y, 4 3 3

5 /6 / 5 61 5 6

/ / /11- ’ / /

7 8 7 8\ 7 8

A1 n 81 = (86)(13) I



Case 7a:

B

‘374

G
)

75

27

-
4
»
~
—
~
—
;
—
4

|
u
—
‘

( w/
 

fie

‘ {I

X

l \‘

1‘1

\

f1-

$88

1 \

4
L...
 
777’M'“%T""

(45)(18

1,

  

)(36)

 

1 ~54,”
1 { ‘/

I 2’ 1

%;__17Aj4_4

' .' I

 

 

(7' r-

 .t-‘

()~

 

  
6

  

 

   

 

 

 

 
 

   

(24)(36 )(58)

Grid diagrams

75

 

 

 

-/ 21

// /

, ’/

3.»;""" ’ j /4

/ _ /

, 5 *“‘*6
/ /'

7

     

(45)(13)(68)

 

 

 

__ 1 2

1 \

.1 \ / .

T\ -1 \1

    
8

 

 

   
 

  

l !

3 2.

/§ '

i 1“" 11 (@

L11111J111

7 8

(23) (18) (46)

1 Z
 

A
 

.vf
 

     )
(28) (35) (14)

 

 

     7-
8

(23) (46) (58)

7

 

 

 

  

 

  

  

 

 

 

p..- ---

 -141111

(24)(13)(68)

1 7

  

 

 

     

 

 

 

  

 

 
(28)(---)

 

 

 

   

T‘fiK

-1 76

8--)  

(4l)(--*)

 

  . [111
"8

1‘

  
(23)(---)

2
 

 

  7£““'“

1
f
?
“

7

/

A31
1 /

1‘'\ 41.6

   
(24)(18)(63)

 

 

   

 

 

-,__1_-17

1;---

5 1,8

' ,/
-/ -1---

8

 

 

 

 

(25)(—‘-)
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Case 8a:

5 H T = ((a1.bl).(a2.bl).(a1.b3)).

(a): S

(a2.b2).(a3.b3)1

(b): (
D II

((al.b1).(a2.bl).(al.b2).(a2.b4).(a3.b2).(a3.b3).

(a4.b2).(a4.b4)}

(a4Ib2) I (a4Ib4) -

 

 
  

 

 
 

 

            
 
 
 

__1__1-112 1.1.1__2 : { 12

3 / ' 4 3‘ /A

A ¢ 1’ / 1 Fig. 3.31

A 6 , 5 - 6

971 ‘ '7 \

7’78 7 8

(68)(--—) (64)(’-‘) (63)(—‘-)

Thus 971 does not exist and configuration 8a is not

completely self perspective.

 

 

 

 

 

 
 

 

       
 

 

Case 8b:

1.11.1..- 2, L 2

A ;%r /: 4 J 3 ‘

./ i ,

971 5’ L6 \\\
(/ E//j _7

J11-L4::.11J J

8' 8

(64)(---) (68)(--‘) (63)(‘-‘)

871 is 1mposs1ble. I
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Case 8c:

 

 

1__ 1 2 'WT . 2

.2

””%:”§>;§_ 1 /r\3

11 V17 .1 TV
(68)(---) (64)(---) (63)(---)

  

  
  

         

 

871 is impOSSible. I

Case 9:

s n T = {(al.bl).(a4.b1).(a1.b4))

(a): S ((al.b1).(a4.b1).(al.b4).(a2.b3).(a2.b4).(a3.b2)

(a3.b3).(a4.b2).

(b): s = {<a1.b1).(a4.b11<a1.b4).(a2.b2).(a2.b3).(a3.b3).

(a3,b2),(a4,b2)].

.§§§§_2§=

AlYBl(64) AlflBz=l6 AlYB3(64) AlYB4(64) AlflB5=(l6)(24)

Aanl=(28) A2~32 A2~B3 A2084=(l4) AZYB5(85)

A3YBl(48) A3~BZ A2n83=(18) A3YB4(46) A3flBS=(24)

A4YBl(64) A4flB2=(48) A4YB3(64) A4flB4=(26) A4YB5(64)

AsflBl=28 ASYB2(85) AsflB3=(46) ASYB4(64) ASYB5(85)

Thus the only AB combinations are: AZ'BZ; A2,83: A3,B2.

But A20C1=(28), A20C2=(28) , AzflC3=(36) , AZYC4(64) . AZYC5(85)

B20C1=l6 , B2YC2(85) , BzflC3=(25) , B

Hence 675 , 973 and 874 cannot coeXist.

28C4=(16)(25), BZYCS 85
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Grid diagrams Case 9a:

1 B " 9
A 875 ‘ 73

L1 '1' .
1 . ""- *7" r -—.—-1

' t /

\ ’7 I .
:gii::i: , .

. .L

// 6 / )6

, ’r ’ ‘ \1

7 8 8

(38) (24) (16) (51) (28) (46)

 

 

 

  

      

\ 2 /

, . 1 r 7 f

’ ; £81 1-

3: /
. I

1'1 1 ‘/,/61 6 / 6

/ 4 J

I 7
   

(52) (16) (48)

 

7” ”7‘

 

6 / \
  

         
(36) (24) (18) (52) (64) (18)

  

  

    

       
 

 
 

 

 
 

          

l \ l 1 1 / ._.

i "I

.5 J N

:1 /

I,» 6

7 8 7 5 8

(31) (26) (48) (58) (62) (41)

. - 7_11.

\‘K

‘\ 1

l 3” /

/ 5 ”I"....

7 8 l 8

(31) (28) (46) (58) (16) (24)

 

 

 

 

C 9
1‘\.-J\ 74

e / 2r

.1 X1.

” \1 5
/  

 
  

 

 

 J
I

/    
 

 

 

 

 

     

(25)(36)(18)

\
 

\
 

J
 

//,

  

1
h
\

 
\6

  
7

(25)(38)(1;\

 

 

 

     

(26) (13) (58)
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Case 9b:

2 2 1 ((2

k 1 1 1‘ W4 1;

A 11.111.11.31 r 1 A; «I r— 3 1

e 1 ‘
76 '1 5 - _.

. fl 5 F/ 2f 5 11 ’6

, 14” V 115/1’ . 1.6::1f111111-_.1 _

7 8 7 8 7 8

976 is lmpOSSlble. I

Case 10:

l .

K111.-- “‘2;'_11_ 1L A: JL [

A 3 , K 1 3 3 ,1... \ 3 / ‘1

/ I"! 1 1‘

e73 ’ 5 1 / [5 1 75 6 1.

7 . / , / 7

.r / 1‘

7 8 I , 8 7 8 7

(25)(14)(68) (25) (18) (46) (24) (---) (28) (---)

1 .2.-.- . ' 1 - .2. 1. -
--_ \ /1 31 4 \

B . 11:4, -1, ... 1..— 2

/ v’ -4 CIA “ ~""

9 .1 .~-— " /

‘ 74 5’ /5

// \NL - / I

L . 1 4

7 8 7 8 7‘ 8 7 8

(25) (36) (18) (25) (16) (38) (25) (13) (68) (23) (15) (86)

Ai n Bj = ¢ = 1 = 2, 3 = 4. But A2 Y B4(86)

Hence 673 and 674 cannot coex1st.
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Case 11:

S = ((a1.bl).(a1.b4).(a2.b2).(a2.b3).(a3.b2).(a3.b4).(a4.bl).

 

 

 

 
 

 

 
 

(a4,b4)

“— A1 A2 A3 A4 A5 A6

B1 (13) Di (62) Di 27 9366;

B2 Di 18 1 Di (61) Di 18

B3 (67) Di ; (13) 27 18 27

B4 Di ‘ (61) a 27 ;(16) 27 18

B5 27 1 Di 1 18 i 27 (27) 27

B6 DZUCii 18 i 27 18 (27) 18      
 

Explantion of the table.

If the Bi' Aj entry is (L,m) then B Aj have thek’

transposition (L,m) in common. If the entry is 2m then

Bk and Aj are incompatible by virtue of the betweeness

relations implied by the line joining points 2 and m.

If the entry is Di then Ak and B3. are compatible

but no Di is compatible with both.

Finally, the entry D U Ci corresponding to B6,Al

2

means that A B ,D are compatible but together they are
1' 6 2

compatible with no Ci' Similarly for the Bl,A6 entry
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Case 12:

S = {(a1.b2).(al.b3).(a2.bl).(a2.b4).(a3.b1).(a4.b4).

(a4.b2).(a4.b3)].
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This completes the analysis of the situation in which

IS*I = 16. All other cases are isomorphic to one of those

analyzed above.

Subject to completing the consideration of case in

which |s*| = 12 in chapter 4 this theorem shows that

there is no desmic triad of 24 points spanning an ordered

projective k-space, k > 2.



CHAPTER 4

Desmic triads in general spaces

4.1 Introduction

In this chapter we continue the study of desmic triads

but now in general spaces and not necessarily spanning three

dimensions. If Z$_l, 22-1, Z§_l

a finite projective space of dimension 11 then quite clearly

are three hyperplanes in

the three sets Zn-l - (Zn-l U Zn-l), Zn-l - (Zn-1 U Zn-l).
2 3 2 l 3

$3-1 - (XE-1 U 23-1) constitute a desmic triad. How much

more general such triads can be is still not clear and a

large segment of this chapter is concerned with this question.

Many of the techniques of Chapter 3 are applicable to

this more general setting with obvious modifications. Thus

theorem 3.8 which asserts that a necessary condition for the

existence of a desmic triad spanning a 3-space is the existence

of a completely self-perspective set in the 2-spaces of that

3-space clearly extends to n-spaces.

In Chapter 3 we found it occasionally convenient to

express selffperspectivities as permutations in "factored"

form. In this chapter much more extensive use is made of

this technique in completely characterizing desmic triads of

order 7 or less in all dimensions. The use of fixed sets in

analyzing the equivalence of self-perspective arrangements
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seems to be very closely related to some work of L. D.

Cummings DJJ concerning steiner triple systems. We do not

yet completely understand these connections but propose

to look into the matter further.

We have already observed in Chapter 3 that if A, B, C

are three sets of a desmic triad then sets A and B are

perspectively related by [C] disjoint perspectivities. Thus

for the rest of this chapter we shall concentrate on the

language of multiply perspective arrangements (to be defined

shortly). The concept of multiply perspective arrangements

is the same as that of multiply perspective sets but the new

terminology is more convenient for the general treatment

in this chapter.



4.2 Multiplvgperspective arranqements

Definition 4.1:

Let {A,B,F) denotes two disjoint sets A and B in a

projective space 2 and a set F of disjoint perspective

mappings of A onto B. Let ci be the center of Yi 6 T

and C = {c1,c2,--- If |F| = p, |A| = |B| = k we'Cp-l}'

say that {A,B,F} is a multiply perspective arrangement

of class [k,p,d], d > 1 where A U B spans a subspace of

Z of dimension d and A n B = B n C = A n C = ¢.

Notation:

[k,p,d] MPA.

Definition 4.2:

Suppose {A,r] denotes a set A in a projective space

2 and a set P of disjoint self perspective mappings of

A onto A including the identity. If |F| = p |A| = k we

say that [A,F) is a self perspective arrangement of class

[k,p,d] where A spans a subspace of Z of dimension d 2 2,

A n C = D and C = [c1,c --,cp_l) is the set of centers.
2"

It should be clear that if Y be expressed as a factored

permutation then the points of A corresponding to each cycle

must be linear.

Keeping this in mind the condition A n C = ¢ can be

described more explicitly in terms of permutation cycles of

P as follows:

(1) If a point in one cycle is on the line of a second

cycle of the same Yi E F then the lines associated with

85
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the two cycles are identical.

(2) If two cycles have a pair of points in common then

their associated lines are identical.

Notation:

[k,p.d] SPA

_Definition 4.3:

Two multiply perspective arrangements (81.82,?) and

{S1,§2,F} are said to be equivalent if there exist l-l

mappings 01: S1 4 82. 02: S
l
45 g:1‘-.f, with

2'

g(Yi) = ;i’ Yi 6 P such that the following diagram commutes

 

$1

.1 l

S1

Definition 4.4:

Y
1

——")52

_ l 02
Y
1 _

4&52

Two self perspective arrangements (5,?) and (5,?)

are equivalent if there exist

g: T 4 f with g(Yi) = Yiel‘.

l-l maps 0: S 4 S and

such that §i = o ly.o.

Since O, y., §. may be regarded as permutations, on |S| =
l 1

symbols this means that F and f are conjugate sets of

permutations in the symmetric group on k symbols.

 

 

f =
0 P O'

-l

 
 

Definition 4.4:

If in the self-perspective arrangement {S.F}. ISI = I?!

then the arrangement is called completely self perspective.
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Remark 4.2:

If (8,?) is a completely self perspective arrangement

then the set of permutations is simply transitive on S.

F, in general, is not a group.

In chapter 3 we showed that it was impossible to realize

completely self perspective arrangements of class [k,k,2]

k = S, 6, 7, 8 in ordered projective spaces. We now propose

to conduct a similar analysis for k s 7 in general

Desarguesian spaces. In Chapter 3 our technique involved

making a few combinatorial observations and then showing

that these were incompatible with the order requirements of

the embedding space. NOW’We are going to make similar

combinatorial observations and then complete the analysis

by making use of the conditions contained in the following

theorem.

Theorem 4.3:

Let S = {l,2,°°-,n} denote the points of a completely

self perspective arrangement {S.F}. Let f = {the permuta-

tions of S representing the self-perspectivities P].

Let C = (c1,c2,°°°,cn) denote the centers of the perspectivi-

ties 1‘. Then {if} satisfies the following conditions:

(1) f is simply transitive on S.

(2) Elements of f are pairwise disjoint.

(3) 1 E f where l is the identity permutation of S.
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2320;;

Condition (1) follows from lemma 3.6 of Chapter 3.

Condition (2) follows from the definition of completely self-

perspective arrangement. Condition (3) is a consequence of

IF] = ISI and the fact that the elements of T are disjoint.

Remark 4.4:

From now on we shall use F to represent both the self-

perspectivities and their representing permutations.

An illustration:

If (8,?) is a self perspective arrangement of class

[4,4,d] in a projective space 2, and S = [1,2,3,4] then

d = 2 and

T = (I, (12)(34), (l4)(32, (l3)(42)].

It is clear that no cycle of any Y can be of length three

since Y would then have a fixed element and Y and I would

fail to be disjoint.

Theorem 4.6:

If (8,?) is a completely self perspective arrangement

then no cycle C, of y E F has length exceeding ‘3 where

ISI = n.

Proof:

2.
2.

on a line L. Let S n L = P. Since F is simply transi-

Suppose C has length R > The points of C are

tive there are at least k-l distinct elements YI'Y2'°"'Yk-l

of F taking a point t E P into points of P.
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The center of each Yi is on 2. If yi(p) = q, p 6 P,

q 6 2—2 then the center of Yi is on line pq. Hence the

center of Yi is L n pq = p 6 8. But this contradicts the

definition of self-perspective arrangements.

Thus yi(P) = P and yi(S-P) = S-P. But 0 < lS-P| < {21.

Hence the k >-2r1 mappings Yi cannot be disjoint. I

The next theorem establishes the result stated at the

beginning of the introduction to this chapter.

Theorem 4.7:

If 21, 22, 23 are three distinct hyperplanes in a

finite projective space 2d, d 2 3, then 21 - (22 U 23),

22 — (23 U 21) 23 - (22 U 21) form a desmic triad.

Proof:

2i — (Zj U 2k) is not empty Since each line in 2i

contains at least 3 points. Let p E 21 - (22 U 23)

g e 22 - (23 U 21). pq n 23 = X and k ¢ 22 U 21.

Q.E.D.

Corollary 4.7.1:

There exists multiply perspective arrangement {A,B,F}

of order [A] = [3' = IPI = qd"l - qd_2 where q = pk, p

any prime and k a positive integer.

Theorem 4.8:

If (Sl,SZ,F) is a multiply perspective arrangement

of class [k,k,d] then k 2 Zd-l.
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££22£=

(Induction on d)

For d = 2 the theorem is trivially true. Let c be

a center of one of the perspectivities of P. There exists

a set P of d-l points in 81 such that c U P spans a

space 2d_l. Let 81 n Zd-l = 81*, 82 n 26.1 = 82*, if F*

is the set of restrictions

to S1 of the perspectivities

of P which have centers in

Zd-l then it is easily seen that

(81*, 82*, F*) is a multiply

perspective arrangement of

class (L. z. d-l). Hence by the

induction hypothesis L 2 2d-2.  
Since the yi are disjoint and

.. __ ° *
.

'Sll — '82] — |P| if x 6 81 Fig. 4.1

and y 6 82-82* then there is a vi 6 P such that yi(x) = y.

*

We claim that y.(S *) c S -S *. For suppose z E S and
1 l 2 2 1

yi(z) = w E 82* Then the center of Yi is one lines xy

and zw. Thus the only possibility for the center is the

point x 6 81. But this is also impossible. Hence

= 81* = 26-2 :: |sll = 26“1 which was to be proved. I

One of the difficulties in analyzing self-perspective

arrangements (8,?) for ISI = 8 comes in trying to list

all conjugate classes of admissible sets of permutations.

For example after some effort we discovered the following

three sets of admissible perspectivities for n = 8.
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I I

(12) (34) (56) (78) (12) (34) (S6) (78)

(13) (24) (57) (68) (13) (25) (47) (78)

1 (14) (23) (58) (67) (14) (26) (38) (57)

1‘ (15) (26) (37) (48) 1“2 (15) (28) (37) (46)

(16) (25) (38) (47) (16)(27)(35)(48)

(17) (28) (35) (46) (17) (24) (36) (58)

(18)(27)(36)(45) (18)(23)(45)(67)

I

(12) (34) (56) (78)

(13) (24) (57) (68)

(14) (25) (38) (67)

1‘ (15) (26) (37) (48)

(16)(23)(47)(58)

(17) (28) (35) (46)

(18) (27) (36) (45).

To decide whether these are conjugate sets we could seek a

permutation exhibiting the conjugacy. Another common

scheme is to study the action of the sets T1 on the set

8 = (l,2,---,n). If for example T1 is simply transitive

on the elements of 8 while T2 is not then T1 and F2

are not conjugate sets. However, in the case at hand all our

admissible sets are simply transitive by construction.

Another technique is to study fixed sets of F or sub-

sets of T. Note for example the set {1,2,3,4} is fixed

under the first three mappings of F1 while F2 contains no

three mappings which fix a four element subset of 8. Thus

F1 and F2 are not conjugate sets. Similarly, the first

two maps in F3 fix the set {1,2,3,4} while no two trans-

formations of F2 fix any four element set. In this way
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we see that Fl. P2, F3 are in different conjugate classes.

Thus if completely self perspective arrangements (Si'ri)

exists i = 1,2,3 they will be pairwise inequivalent.

Our investigations of completely self perspective

arrangements of class (8,8,2) are still incomplete and

we proceed now to an analysis of those of class (k,k,2) for

k S 7.



3. Multiply perspective arrangements

of class [k,k,d], k s 7

Our general procedure is as follows: If (S,r) is

an SPA of class (k,p,2) then the sum of the lengths of

the cycles in a particular y E T is k. Thus we first

seek possible integral solutions of

Z ki = k, ki 2 2.

For small k this gives relatively few possible cycle

lengths. The construction of the arrangement proceeds

initially as in Chapters 2 and 3, making use of a grid

diagram and then making extensive use of the conditions

contained in theorem 4.3.

If such a combinatorial representation exists then

we try to find the nature of the embedding space by coordina-

zation.

Finally we investigate the possibility of "lifting"

the various completely self perspective arrangements of

class [k,k,d] to multiply perspective arrangements of

class [k,k,d+l]. That is to say, we attempt to create desmk:

triads of order k.

Theorem 4.9:

In any projective space 2, (8,?) is an SPA of class

[4,4,d] iff d = 2,S=(L2£14} is a quadruple of points no three

of which are linear and F = (I, (12)(34), (l3)(24),(14)(23)).

93
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£3353?

Suppose (8,?) is an SPA of class [4,4,d] in a project-

ive space 2. Since each of the 4 points has to be joined

to the remaining 3, we have that d = 2. No three of

the points are collinear since d > 1 by definition, and

using disjointness and transitivity we have P = (I,(12(34),

(13)(24, (l4)(23)].

The sufficiency is clear.

In an affine 3~space over a field let

s1 = (A(0,0,0), B = (1,1,0), 0(011), 0(1,0,1))

52 — (Al(l,0,0), B1 = (0,1,0), 01(1,1,1), 01(0,0,1)}.

Y1(A) = A1. Y1(B) = Bl. Y1(C) = c1. 71(0) = 01.

Y2(A) = Bl. 72(8) = A1. Y2(C) = 01, (2(0) = c1

F: Y3(A) = C1 Y3(B) = D1 Y3(C) = A1 V3(D) = B1

1 1 1 _ A1
74(2)) =D Y4(B) =c Y4(C) =B Y4(D)

 

 

   
(s I] is an MPA of type [4,4,3]. A A

1'82'

It should be clear that a configuration isomorphic to

(81,82,T} is realizable in any affine space.

Now let (81,82,f} be an MPA of type (4,4,3) in a

Desarguesian affine space.

_ - — - - — _ —1 —1 —1 —1 _ - - - —
s1 — [A,B,C,D} 52 — (A ,B ,C ,D }, F — (Yl.y2.v3.y4}-
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l 1
We may assume that §1(A,§,E,5) = (Al,§ ,5 ,Bl). As a

consequence of theorem 3.8 and 4.10 we can conclude that

no three of the lines AAl, fifil, 651, 551 are coplanar.

Thus if y2(§) = £1 then Y2(fi) = $1, y2(B) = 61, y2(E)

and if y3(£) = 51 then y3(5)= £1, y3(E) = B1, y3(§) =

-1 - -1. - - -1 -
FlnallY: Y4 (A) I Y4 (C) = A I Y4 (D) = B

Now there is an affine transformation T such that

1101) = A T(I-\l) = A1, T031) = D1, T(1§1) = Bl, Tail) = A

Thus T[§1,§2,f] = [81,SZ,F]. This means that an MPA in

Desarguesian affine space is affinely unique.

Theorem 4.10:
 

Any two multiply perspective arrangements of

class (4,4,3) are combinatorially isomorphic.

Jiheorem 4.11:

Any two multiply perspective arrangements in a

Desarguesian projective (affine) space are projectively

(affinely) equivalent.

-1

l
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l

//

2

Fig. 4.2:

A geometric representation of the multiply perspective

arrangement of class [4,4,3].
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In the case of (81.82,?) of class [k,k,2] it has

been conjectured by M. Edelstein that in the real project-

ive plane the figure must be rigid in the sense that the set

of centers must lie on a line. We now show for k = 4 that

this is not so by the following theorem.

Theorem 4.12:

An MPA of type [4,4,2] exists and is combinatorially

 

 

 

    

 

 

unique.
1 .

Case 1: ‘5; R,ald TR b'd

l,f 01

’b,f

s1 E

O, .1 i

P l '

0,0 1,0

S]. = {PI Q! RI 8}

82 = {Pl.Ql.Rl.S}-

l l l l . .

Y1: P4P , QaQ ,RqR ,SaS . Center: ideal pt on x ax1s

l l l l . .
y2: p45 , Q—p ,RaQ ,qu Center: ideal pt on y aXlS

. l l l 1 . a d
Y3° PaR , QaS ,RaP ,SaQ Center. a-b+l a-b+l

f = b+d-l
. 1 1 1 1 . b f. a

Y4- P40 , 04R ,RaS ,SaP Center. f-d+l f-d+l

Select a, b, d, f such that af = b+d-l, a-b+1 + O

f-d+l + 0, d + f, a + b

a, b, f, d + 0, 1

For example a = 2, b = 4, d = 7, f = 5 produces a multiply

perspective arrangement of type (4,4,2) in the real affine

plane such that no three of the four centers of perspectivity

are on a line. For other properly chosen values of a,b,d
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and f the four centers will be linear.
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two combinatorially equivalent MPA's of type [4,4,2] in

real affine space which are not affinely equivalent.

Case 2:

Thus there exists

To complete the picture of the multiply perspective

arrangements of type [4,4,3] we examine the remaining

combinatorially distinct arrangement and show that is not

realizable in any Pappian plane.

| $

1

1 l

acéLxfic
 

 

 011.1 .

  

aflfifi C

1
It

.’
I

5.

L
f Ajk %1'

b

C3' Y “ Ex '

7

  

If ab-cd+d + 0

ad ab ab-cd+d

,1 l l

a a l

a ad-ab = d(a-c)

ad ab ab-cd+d

l O 1 =

a b l  

1

Y1-

1
Y2. A4B

Y3: Aacl B-oD1 C-oAl DaB

 

 

l l

BaAl C4D1

 

  

l
A4A BaB C4C D4D C -

l
Dac C =

l

 

 

Y4: A-oDl B-oCl C-oBl Dqu

_ ab-cd+d Y _ ab-cd+d

ad-ab ab d-cdi ad-ab

= O 0 l (D = O O

a-c c l-c a-c

= ab=cd. = x = a y = %§

ad ab d ad a d

0 l O l = O O l

a b l a l l

 



99

== 0 O 1 =0 =0 d(a-l) =a(a-l) =a= d.

  

But this is impossible

Suppose then that ab-cd+d = 0.

Then

§-=‘§E% = :%i a b = c-l and d = a-l

a ab - d(c-l) = 0 = ab - db = 0 = a = d

and this is impossible.



In this case if an SPA of class [5,5,2] exists the

possible cycle length combination is (3,2). But this

is impossible by Theorem 4.6.

Thus there is no (8,?) of class [5,5,d] for all

d, hence there is no MPA [Sl,Sz,r] of class [5,5,d]

d 2 3.

However MPA's of class [5,5,2] do exist. For example,

the following figure exhibits an [Sl,Sz,F] of class [5,5,2]

Fig. 4.3 J 2 _fl __ ._);3

2 /'/l

 
The complete analysis of this class is not attempted in

this thesis.

Theorem 4.17:

There are two distinct [S,F]'s as SPA's of class

[6,6,2].

Proof:

If [8,?) is an SPA of class [6,6,2] then the numerical

conditions gives the possible cycle lengths combinations (3,3)

and (2,2,2).
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Case 1:

Suppose [8,?) contains permutations having cycles of

lengths (3,3). Its grid diagram is shown below

 

Fig. 4.4

    ._L_
l 5 3

V
/

A representation for ? follow easily from the grid

diagram as

I‘ = [I, (135) (246),(153) (264), (14) (25) (36), (16) (45) (23) ,

(12') (34) (56)].

and it is clear that for this diagram this [8,?) of class

[6,6,2] is unique up to an equivalence.

Case 2:

Suppose [8,?) contains permutations having all cycles

of lengths (2,2,2). The grid diagram in this case is

D 44 6 .11

given by

 

Fig. 4.5
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We thus derive a representation for ? as

1‘ = (I. (12)(34)(56). (13)(25) (46).(14) (26) (35).(15) (24) (36).

(16)(23)(45)}

which again is unique up to equivalence. Furthermore, the

two SPA's of cases 1 and 2 are inequivalent by virtue of

their cycle structure. I

Remark 4.18:

From the grid diagram of case 1, it is clear that we

cannot have a ? in which all cycles of the permutations

have lengths (3,3).

Theorem 4.19:

A Desarguesian affine plane 2 contains a unique

self perspective arrangement (8,?) of class [6,6,2] with

3 points of 8 linear iff the associated coordinate ring

contains V/:3. Two such arrangements in 2 are affinely

 

   
 

equivalent.

Proof:

4 (01) 2 L11) 6 (al)

Fig. 4.6

l (00) 5 (10) 3 (a0)

Line 16: ay - x = O ay = l-y

Line 45: y + x - l = O y = (a+l)-l

1

n o x n

D
J

‘
8
+ H

I

Line 23: (l-a)y - (x-a)

]
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Using lines .12,'34, 56 ‘we Observe that the above equations

are consistent. Thus we can choose a = fil4§~L:;- and

this is possible in any division ring containing ~/:3. That

this condition is also sufficient is easily checked. I

Theorem 4 .29 :

A Desarguesian affine plane 2 contains a self

perspective arrangement (S,f) of class [6,6,2] with

no three points of 8 linear iff the associated coordinate

ring has characteristic 2. Two such arrangements in 2

are affinely equivalent.

Proof:

4 (1b) 6 (ab)
 

 
 

   

 

 

  

 

 

   

 

 

2) Fig. 4.7

[(01) (11) 5 (a1)

1[(00) 3 (10) (a0)

From lines 15, 24, 36' we have

ab2 + 1 - a - b = 0] (1)

From lines _6, 23, 45' we have

abL-b+l - a+];] = O (2)

From lines 12, 26, 35' we have

azb + l-b-a = 0 (3)
   

(1) and (3) give a2b = ab2 s a = b

Since ab + O, (2) gives -a2[2-2a] = O = a = l or 2 = 0

But a # 1, hence 2 = 0. That this condition is also suffi-

cient is easily checked. I
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Lifting:

Theorem 4.21:

An MPA (81,82,?) of class [6,6,3] exists in any

projective 3-space whose coordinate ring is of characteristic

3.

Proof:

4110111 51111) 6(211)

 

z I

l

1

l
 

 

  
 

171001) I 2’(101)’ 31</01) Fig' 4'8

191... . __. .__

/§ '1 - ’ (110) 6’ (210)

/" /

/ ./

.7x

1(000) 2(100) 3(200)

Consider the above prism coordinatised from a division

ring of characteristic 3 and labelled as shown. Let

S1 = [1,2,3,4,5,6) and S2 = [1’,2’,3’,4’,5’,6’). The cen-

ters of the perspectivities F are now obtained from the

following calculations.

On the front plane we have

Line 127 ; x : y : 2 ll

H O H

Line 23’ ; x-l: y : z = 1 : O : 1

Line 1’3 ; x-2: y : z = -2: 0 : l = l : 0 : 1
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i.e. these lines are parallel with direction numbers (1,0,1).

Similar calculations on the rear plane give a set of three

parallel lines with direction numbers (1,0,1). Thus we

have a center on the ideal plane in the direction with

direction numbers (1,0,1). Call this center C12. Now

the center C is obtained similarly:
13

'1—3’ ; dir. nos. = (2,0,1) = (2,0,1)

33’ : dir. nos. = (-1,0,1)= (2,0,1)

5' , dir. nos. = (-1,0,1)= (2,0,1)

7170'; dir. nos. = (2,0,1) = (2,0,1)

.675 7 dir. nos. = (-1,0,1)= (2,0,1)

4"? : dir. nos. = (-1,0,1)= (2,0,1)

i.e. C13 is a point on the ideal plane in the direction

with dir. nos. (2,0,1). Similarly [C15 has dir. nos. (1,1,0)

and C16 has dir. nos. (2,1,0). C11 and C14 are known

to be on the ideal plane in the direction of the z-axis

and the y-axis respectively.

Thus the above figure is an [81,82,?) of class

[6,6,3] and clearly it is a lifting of an [8,?) of class

[6,6,2] with three points on‘a line. This completes the

proof of the theorem. I

Remark 4.22:

This theorem can be generalized to an arbitrary prime

number p, where in the above p = 3, is the characteristic

of the ring.
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Before we prove the uniqueness of the above [81.82,?)

of class [6,6,3] we derive the following

Lemma 4.21:

In an MPA [81,82,?) of class [6,6,3]

having permutations of ? in a corresponding [8,?)

. 2 . . _
in 2 Wlth cycle lengths (3,3), if C - [c1,c2,c3,c4,c5,c6)

denotestflueset of centers, then each of the sets 81,82

and C lie ontho lines.

Proof:

As in chapter 3, we project the [81,82,?) from

one of its centers to obtain an [8,?) in 22.

 

c

c 02

23 C6

c3

1 3
s

\\\\\\ S2

2

‘2 Fig. 4.9

1
s 3
1 s 1

xx

”KN

S1 [.513J’s-”fl”

.————'”’" ‘fiimwflfifl 5:2 fl  

Suppose the theorem is false. Then there exist three points

in set C not on a line since we already have three points

on a line by the structure of [8,?) in $2. Hence, since
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2I sets 81 and C are multiply perspective

from the points of set 82, sets 81 and 82 have each

three points not on a line. Let these points be labelled

l 2 3 l 2 3 . .

1' 81, 81 and 82, 82, 82 respectively as shown in the

2 2. . 1

figure. Then Cl With [81, 81' 2.

span a plane. By our permutational representation of the

|C| = lsl| = '3

S

3 1 3
51} and {52. s 82}

perspectivities if Y12 corresponds to the case when

l 2 . 2 3
S1 4 82 With center C2 (say) then [81, 81) and [82, 82

have to be mapped into each other for a new center other

1 3}

than Cl and C2. Similarly for the sets of points in the

plane containing [8%, Si, 8?). But any such further per-

spectivity y23 (say) is not disjoint from Y12'

This contradiction proves the theorem. I

Theorem 4.22:

(Uniqueness)

The multiply perspective arrangement [81,82,?) of

class [6,6,3] constructed in theorem14.21is unique.

2£22£=

By the above lemma all 6 points of each set 81,82,C

lie on two lines. Thus such an [81,82,?) of class [6,6,3]

lies on two planes each containing nine points. Let us take

one of these planes as the xy-plane and the other as the

xz-plane. Furthermore, if we choose a point of the set of

centers C at infinity then we have the following coordinate

system.
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4(011) __ __ ___]5(111) __ “L

l — |6(all)

1/ 1 ’(iOi) ’{a01)

1’(001) ' I l

' 01_0_)_ _ ___ 5' 119) J__[(s’_(__a_110)

Fig. 4.10

1(000) 2(100) 3(a00)

Comparing direction numbers we observe that plane 36’5 is

 

parallel to the plane 3’65. Hence we can take plane 3’65

at a unit distance above 3 6’5’. Furthermore, 12’ has

dir. nos. (1,0,1) and N 3’ has dir. nos. (a-l,0,l)

(
A
)

i
—
l \

has dir. nos. (—a, 0,1)

4’5 has dir. nos. (1, 0, 1)

5’6 has dir. nos. (a-l, 0, 1)

6’4 has dir. nos. (-a, 0, l)

s a-l = l and -a = l ’ a = 2 and 3 = 0

This is exactly the configuration of Theorem 4. Hence the

theorem . '

Lemma 4.23:

If in an [81,82,?) of class [6,6,3] one of its associated

[8,?) of class [6,6,2] has permutations containing cycles

all of lengths (2,2,2) then 81,82, and the set of centers

C are all planar.
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E£22£=

An [8,?) of class [k,k,d-l] is said to be associ-

ated with an [S1,Sz,?) of class [k,k,d] if a projection

of the [81,82,?) of class [k,k,d] from one of its centers

onto a d-l-projective subspace Zd-l is an [8,?) of

class [k,k,d-l].

It is easy to show by some calculations that all the

centers of an [8,?) of class [6,6,2] and of the prescribed

cycle structure lie on the ideal line, hence the set C of

centers of [81,82,?) is planar. Claim 81 and hence S2

is also planar. Suppose the claim is false. Let the C

and S be perspective from the points of 81' These are
2

two cases to be considered.

(i) A projection from a point of 81 gives an [8,?)

with permutations having all cycle length (2,2,2), then

this implies S1 is planar.

(ii) If the cycle lengths are (3,3) then three points of

81 are linear, now if we revert back and project from a

point of set C we obtain an [8,?) with three points on

a line, this is a contradiction. Therefore 8 and hence
l

82 is planar. I

Theorem 4.24:

An MPA ($1.82.?) of class [6.6.3] one ofwhose associated

[8,?) of class [6,6,2] has permutations with all cycles

of lengths 2 does not exist.
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Proof:

From theorem 4.20 an associated [8,?) can only exist

in a Pappian plane over a field of characteristic 2. The

coordinates of the centers are found to be

y = ax

g := (co, 00)

X _ a q3

- 2

a -a+l

for some a in the field and choice of coordinates as

in theorem 4.20. Similarly q4 = (w,m) and q5~= (m,m).

This means all five non identity centers are on the ideal

line. This implies that the set C and each of the sets 81

and S2 is planar (see lemma 4.23). Choosing now the

plane of the set C as the base plane v we proceed to

show that the plane of set S is parallel to W.

 

 

 

2

Let 52 = [l’,2’,3’,4’,5’,6’), c = [l,2,3,4,5,6)

A, I

fl
2 22/ 5’

4) (1
1! i i3,

I fly Fig. 4.11

  
 

/4—_— “—151— __ __Zy6

1‘L/ #L 4;

 

   
 

Now we show that 1’3’ ”.13
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Let the point 81 6 S be chosen at infinity on the z-axis.
1

Consider the following two complete quadrangles

 

 

     

 

1 . 1
181 181

l ’\ {‘5 , 2 r Fig. 4 . 12

' 2 3 ./ 3
.51 ““251 3 ————)sl

1 3\ 2 5

Si is at infinity by the choice of coordinate axis.

2 _ —2 2 . . . . l 2 3 .
S1 — S2 a 81 is at infinity. But 81' 81, 81 are collinear

since diagonal points of a complete quadrangle. Therefore

3
S1 is at infinity. Therefore 1’3’ H 13. Similarly

4’6’ H 46. This implies the plane of S is parallel to
2

the plane of C. Thus we can choose 82 at height 1 above

C, giving the following coordinates.

.AIIJAII .6’(aal)

2’(011)2//‘ z/q ’(all)

1.1M s 1 J!
m

 

 

 

 

 
 

 

 

  
 

. 1 “If“ '

13(010) #(lfiQL __.____. . .i_1(aa0)

/’ f1"
"'" 5(a10)

1(000) 3(100)

Considering vectors 137: (1,0,1), 1’3 = (-l,0,l) = (1,0,1)

and 27;" = (a,01) = (101) s a = 1 «- I
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From the above results 4.17 - 4.24 we have the following

result.

Theorem 4.25:

There is one and only one MPA, [81,82,?) of class

[6,6,3] up to equivalence.

Theorem 4.26:

A Desarguesian affine space 2 contains a unique

self-perspective arrangement [8,?) of class [7,7,2]

iff the characteristic of the ring is 2.

Proof: It is clear that the only solution to our numerical

equations is (3,2,2). Thus all permutations of ? have

cycle lengths (3,2,2). Let C = [c2,c3,c4,c5,c6,c7) be

the set of non-identity centers. Let S = [l,2,3,4,5,6,7).

Consider the following grid diagram

P A C3

 

5 (ob) 6(1b) (ab).

\ Fig. 4.14

4(01) (11) 7(a1) ' C2

 

   
_11. Q, _-

1(00) 2(10) 3(a0)

From the linearities in the grid diagram we can derive the

following set for ?

I‘ = [I, (123) (47) (65), (132) (46) (57), (145) (26) (37) ,

(154)(27)(36),(167)(24)(35),(l76)(25)(34)).
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The set [8,?) is clearly an SPA of class [7,7,2].

After choosing coordinates as shown and performing

a few simple calculations we obtain the following relations

b = a

and (2a)-1 = (-b+a-l)—l(l-b).

These imply that

and since a + 0 = 2 = 0. The sufficiency of this condition

follow from the proof which is easily reversible. The

uniqueness follows from the uniqueness of the T. I

Lifting:

Theorem 4.27:

An MPA [81,82,?) of class [7,7,3] does not exist.

£fl$¥L§=

Suppose the theorem is false. Then the projection of

[81,82,?) to a projective 2-subspace 22 of its embedding

space 23 is an SPA [8,?) of class [7,7,2]. From the

preceding theorem, a necessary condition for the coordinatising

ring is that

Now if we compute the centers of the [8,?) we have (with

1

  

notation as in Theorem 4-26 ) q4 = '%£vo)v q5 = (0,3:T-)'

_ 1 b _ a 1 _ m m

q6 — (1+1) I l+b)' C17 —' (1+ab' l+ab ) '— ( p ). Thus We have

the following configuration for the set of centers [qi).

i = 2,3,4,5,6,7.
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This implies that in the set C and hence (in set 81 and

82) the points lie in 4's in three planes incident at

Cl(say). Now representing these three planes through Cl

each.with 4 points we have the following tetrahedron.

Fig. 4.16

 

 
But the projection used is independent of the choice of

center in Set C. However, the above configuration of Set

C is not true of the points C2,C3, and C4 as centers of

projection. Since the plane C2,C3,C4 has no point on it.

Therefore, an MPA of class [7,7,3] cannot exist. I

 

Remark 4.28:

There is no MPA [81,82,?) of class [7,7,2], d > 3,

from theorem 4.9.
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§ 4. Some general results

In this last short section we give some general results,

with particular reference to k = 8.

Theorem 4.29:

In a finite projective 4-space X4 , there exists.

an MPA of class [p3,p3,4] where p is a prime and is also

the order of the underlying field.

Proof:

This follows from theorem 4.9 since p3 2 8 V p I

Corollarv 4.30:

There exists an MPA of class [8,8,4].

Corollary 4.31:

There exists an SPA of class [8,8,3]. This follows

by projecting the MPA of class [8,8,4] from cum: of its

centers onto 3-subspace of its embedding space.

Remark 4.3;:

The possible solutions to our numerical relations in

case of k = 8 are (2,2,2,2), (4,2,2), (3,2,2) and (4,4).

We have already made some remarks about the solution (2,2,2,2).

For solution (4,2,2) we have

Theorem 4.33:

If an SPA [8,?) of class ]8,8,2] containing permu-

tations with cycle lengths (4,2,2) exists then the coordi-

nating field must have characteristic 2.
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Proof:

Consider the following representatives for the y's.

Yss = (1234)(56)(78)

v57‘= (i432)(57)(68)

Y58 = (13)(24)(58)(67)

Let their corresponding centers be denoted by q56,q57, and

q58° These centers are the diagonal points of the complete

quadrangle with vertices 5,6,7,8 and furthermore they lie

on the line 1234. Hence the result. I

Theorem 4.34:

There is no SPA of class [8,8,2] containing permuta-

tions with cycle lengths (3,3,2).

Proof:

This follows from theorem 4.6 since when we compare

one cycle of length3 against the rest of symbols we have an

unequal splitting which is impossible by Theorem 4.6 I
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CONCLUDING REMARKS

Abstract Sylvester-Gallai configurations are very weak

and inhomeogeneous structures. The class includes finite

projective and affine spaces among others. Hence any

effective classification or characterization of S.G. configura-

tion is too much to expect. However, their complete absence

in ordered projective spaces and their seeming scarcity in

complex projective space suggests further efforts to under—

stand their relation to the concept of order and to whatever

it is that inhibits their occurence in complex spaces.

Certainly the curious behavior of generalized Sylvester-

Gallai configurations in ordered projective spaces warrants

more investigation. The Edelstein theorems cannot be the

final general conclusions in this direction.

The related conjecture that completely self perspective

arrangements of more than four points fail to exist in an

ordered projective plane does not seem beyond hope of settling

though our painful case examinations have failed to reveal

the proper general methods. We propose to pursue this matter

further.

There seems to be a resurgence of interest by algebraists

and others in the study of general configurations and we can

only hope that this investigation may contribute in some

way to these developments.
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