ANOVELAPPROACHTOBLINDSOURCESEPARATIONANDEXTRACTIONIN AUDIO By XunWang ADISSERTATION Submittedto MichiganStateUniversity inpartialentoftherequirements forthedegreeof AppliedMathematics|DoctorofPhilosophy 2015 ABSTRACT ANOVELAPPROACHTOBLINDSOURCESEPARATIONAND EXTRACTIONINAUDIO By XunWang Inthisthesis,theblindsourceseparation(BSS)ondigitalaudiosignalsviabackground learningbyseveraltmethodologiesiscarefullystudied.Inthedailyauditory,acoustic audiosignalsareusuallymixturesoftsources,includingforegroundandbackground noises. Mostofthetime,weonlywanttoreceivetheforegroundsourcesandgetridofthe backgroundones.Becauseoftherandomnessofvarioussituations,itisveryto performthisseparationwithoutknowingthedetailedinformation.Evenifthebackground noisesarenotdominatingtheforegroundsources,orevenmuchweaker,itisstilla problem,especiallyforthecasethattherearemorethanthreesourcesincludingthenoise. Thisalsomakesitevenmoretoseparatetsourcesfrommixedsignals.In thisthesis,anovelapproachtosolvecancellationkernelsisprovidedbyusingamo sigularvaluedecompositionmethod.Themainfocusistousethisnewtechniquetoestimate thecacellationkernelswithgoodresultsinshortcomputationaltime. Inthiswork,somebackgroundinformationforblindsourceseparationofaudiowillbe introduced.Next,theknowledgeoffourtmethodsforsolvingthistypeof problemsismentioned.SplitBregmanhasbeenstudiedbyothersinsolvingcancellation kernelsfortheseparationofspeechsignals.Weapplyproximityoperatormethodtosolvethe cancellationkernelsforBSSofaudiosignalprocessing.Ithasbeenappliedtostudyimage processingbyotherresearchers.Quadraticprogrammingmethodhasbeenappliedtosolve cancellationkernelsbyWangandZhou.Weprovideanewapproachtobringsparsenessto cancellationkernelsbyusingquadraticprogramming. Wedevelopedamosingularvaluedecomposition(SVD)algorithmbasedonthe numericalexperiments.ItisanewtechniquetoestimatecancellationkernelsforBSSof audiosignals.ThedetailedinformationandschemesarepresentedinChapter3.Then,in thefouthchapter,therearetnumericalsimulationexamplesaccordingtot scenarios.WecomparetheresultsofourmoSVDmethodwithothersmethods,and concludethatourmoSVDisthebestapproach. ToSihuaandmyparents iv ACKNOWLEDGMENTS Iowemygreatgratitudetomytwoadvisors,Dr.YangWangandDr.ZhengfangZhou, withoutwhomthisthesiswouldnothavebeenpossible.Theyintroducedmetotheof mathematicsandsupportedmyworkintimesofchallengeandy.Theyarenotjust myacademicadvisors,butalsolifementorswhomakemethepersonIamtoday. Iwouldalsolovetoexpressmygratitudetomyotherthreecommitteemembers.Dr. AndrewChristlieb,Dr.MarkIwen,andDr.Tien-YienLi.Theyhavesharedtheirgreat wisdomwithmeandtakentimetogivemefeedbackonthisthesis.Isincerelyappreciate thehelpfromDr.PeiruWu.Therearemanyfacultyandinthisgreatdepartmentthat Iamgratefulto,fortheyprovidemerapportandencouragementthroughoutmyyearshere atMichiganState. Iwouldalsoliketothankmyfamilyfortheirunquestionableloveandsupport.Thank youforbelievinginmeallthetime,andthankyoufornotgivingmepressurewhenIwas atmylowpoint. Lastbutnottheleast,somanythankstomydeargirlfriendSihuaHuwhoinspiresme tomythesis. v TABLEOFCONTENTS LISTOFFIGURES ................................... viii Chapter1Introduction ............................... 1 1.1BlindSourceSeparation.............................1 1.2MathematicalModelforBackgroundCancellation...............6 Chapter2BackgroundonPreviousWorkandNewApproach ....... 11 2.1ICAforBSS....................................11 2.2DUETforBSS..................................14 2.3CancellationKernels...............................17 2.4OptimizationMethods..............................18 2.4.1QuadraticProgramming.........................20 2.4.1.1TwoSourcesandTwoMixtures................21 2.4.1.2ThreeSourcesandThreeMixtures..............23 2.4.1.3IntroducingSparseness.....................26 2.4.2SplitBregmanMethod..........................28 2.4.2.1BregmanIteration.......................30 2.4.2.2ConstrainedOptimization...................31 2.4.2.3SplitBregman.........................32 2.4.3ProximityOperator............................34 2.4.3.1...........................34 2.4.3.2FixedPointAlgorithmBasedonProximityOperator....36 2.4.3.3Nonexpansivityof H ......................38 2.4.3.4Algorithm............................40 2.4.4SingularValueDecomposition......................41 Chapter3TechnicalDiscussions .......................... 43 3.1Reviewofotheralgorithms............................43 3.1.1SplitBregmaniteration.........................43 3.1.1.1AlgorithmofSplitBregman..................43 3.1.1.2TwoSourcesandTwoMixtures................45 3.1.1.3ThreeSourcesandThreeMixtures..............47 3.1.1.4 n sourcesand n mixtures...................49 3.1.2ProximityOperator............................50 3.1.2.1Algorithmofproximityoperator...............51 3.1.2.2ApplicationforBSSofAudioSignalProcessing.......52 3.1.2.3TwoSourcesandTwoMixturescase.............53 3.1.2.4ThreeSourcesandThreeMixturescase...........54 3.1.2.5 n Sourcesand n Mixturescase................54 3.2QuadraticProgramming.............................54 vi 3.2.1AlgorithmforSparseness.........................54 3.3SingularValueDecomposition..........................56 3.3.1OurMethodology.............................56 3.3.2TwoSourcesandTwoMixtures.....................61 3.3.3ThreeSourcesandThreeMixtures...................62 3.3.4 n Sourcesand n Mixtures........................62 Chapter4NumericalResults ........................... 63 4.1NumericalExampleofQuadraticProgramming................63 4.1.1NumericalExamplesofTwoSourcesandTwoMixtures........63 4.1.1.1Example1............................63 4.1.1.2Example2............................66 4.1.1.3Example3............................68 4.1.2NumericalExamplesofThreeSourcesandThreeMixtures......70 4.1.2.1Example4............................70 4.2NumericalExamplesofSVDMethod......................72 4.2.1TwoSourcesTwoMixturescase.....................73 4.2.1.1Example5............................73 4.2.1.2Example6............................74 4.2.2ThreeSourcesThreeMixtures......................76 4.2.2.1Example7............................76 4.2.2.2Example8............................77 4.3NumericalExamplesofSplitBregmanIteration................78 4.3.1Twosourcestwomixturescase.....................79 4.3.1.1Example9............................79 4.3.1.2Example10...........................79 4.3.2Threesourcesthreemixtures......................80 4.3.2.1Example11...........................80 4.3.2.2Example12...........................81 4.4NumericalExamplesofProximityOperatorMethod..............82 4.4.1Twosourcestwomixturescase.....................83 4.4.1.1Example13...........................83 4.4.1.2Example14...........................83 4.4.2ThreeSourcesThreeMixtures......................84 4.4.2.1Example15...........................84 4.4.2.2Example16...........................85 4.5Summarization..................................86 BIBLIOGRAPHY .................................... 88 vii LISTOFFIGURES Figure1:Plotof f 1 ˙ k g ................................59 Figure2:Plotof f 1 ˙ k g withtangentline......................59 Figure3:Recordedmixturesandresultafterremovalofbackgroundmusic...64 Figure4:Cancelationkernels............................64 Figure5:Spectrogram................................65 Figure6:Recordedmixturesandresultafterremovalofbackgroundmusic...66 Figure7:Cancelationkernels............................67 Figure8:Spectrogram................................68 Figure9:mixturesandresultaftertheremovalofbackgroundsource.69 Figure10:Cancelationkernels............................69 Figure11:3mixturesandresultaftertheremovalofbackgroundsource.71 Figure12:Cancelationkernels............................72 Figure13:Recordedmixturesandresultsaftertheremovalofbackgroundsource.73 Figure14:Spectrogram................................74 Figure15:Recordedmixturesandresultsaftertheremovalofbackgroundsource.75 Figure16:Spectrogram................................75 Figure17:Recordedmixturesandresultsaftertheremovalofbackgroundsources.77 Figure18:Recordedmixturesandresultsaftertheremovalofbackgroundsources.78 Figure19:Recordedmixturesandresultaftertheremovalofbackgroundmusic.79 Figure20:Recordedmixturesandresultaftertheremovalofbackgroundmusic.80 viii Figure21:Recordedmixturesandresultsaftertheremovalofbackgroundsources.81 Figure22:Recordedmixturesandresultsaftertheremovalofbackgroundsources.82 Figure23:Recordedmixturesandresultsaftertheremovalofbackgroundsource.83 Figure24:Recordedmixturesandresultsaftertheremovalofbackgroundsource.84 Figure25:Recordedmixturesandresultsafterremovalofbackgroundsources.85 Figure26:Recordedmixturesandresultsaftertheremovalofbackgroundsources.86 ix Chapter1 Introduction Theacousticsignalprocessingsystemhasbeenstudiedbyresearchersforseveraldecades. Withintheresearchcommunity,peoplehaveachievedmanyremarkableresults,especially inthepastdecade.Duringthisprocess,oneofthemajorgoalsistogettheestimationof oneormoresourcesignalsasaccurateaspossible,oratleasttothelevelthatpeoplecould toleratethenoise.Especiallynowadays,thehighperformancecomputingtechnologycan rapidlyimplementalotofpreviouslytime-consumingmethods. Foraudiorecordingmixtures,itisverytoseparatetsourcesignalsfrom mixtures.Therearemanycausesfornoise,suchasaudiorecordingprocess,background noisefromothersources,oraudiopropagation,andsoon.Theserandomoriginsmakeit toconductnoiseremoval.Blindsourceseparationistheseparationofasetofsignals fromthesetofmixedsignals,withouttheaidofinformation(orwithverylittleinformation) aboutthesourcesignalsorthemixingprocess.Therearemanyapplicationsofblindsource separationtomoderntechnology,suchasbiomedical,telecommunications,astrophysicsand imageprocessing,etc. 1.1BlindSourceSeparation Blindsourceseparation(BSS)isamajorareaofresearchinsignalprocessing.Avast literatureexists,particularlyinaudiosignalprocessing.ThegoalofBSSistoseparatesource 1 signalsfromtheirmixtureswithoutassumingdetailedknowledgeaboutthesourcesandthe mixingprocess.InthispaperwefocusonaparticularapplicationofBSSinaudio,namely toextractadesiredaudiosourcefrommixturesinvolvingnoise,backgroundorunwanted sources.Suchextractionscanbeextremelychallengingwhentheunwantedsourcesaremuch strongerthanthesourceonewishestoextract,whichcanbethecaseinmanypractical applicationssuchasmobileandcarphones.StandardBSStechniquesoftendonotworkat allinsuchsettings. Wedescribeourmodelinitsmostgeneralform.ThebasicsetupforBSSinaudio has n audiosources S 1 ( t ) ;:::;S n ( t )and m mixtures X 1 ( t ) ;:::;X m ( t ),withthemodel X k ( t )= L X i =1 N k;i X j =1 a k;i;j S i ( t d k;i;j ) ;k =1 ;:::;M (1.1.1) where a k;i;j arethemixingcotsand d k;i;j arethedelaysfromthesource i tothe recordingorsensingdevice k .Themixingwithmultipledelaysarearesultofboththedirect signalandthereverberations(echoes)intheambientenvironment.Inaudioapplications thesensorsaremicrophones,andthesemixturesarerecordedbyplacing m microphonesin variouslocations.InBSSthesecotsareunknown.Withthepresenceofreverberations weoftenrefertothemixtures X k in(1.1.1)as convolutivemixtures .Mathematicallyamore concisewaytoformulatethemodel(1.1.1)is X k = L X i =1 A k;i S i ;k =1 ;:::;M (1.1.2) 2 where denotesconvolutionand A k;i ( t )= N k;i X j =1 a k;i;j ( t d k;i;j )(1.1.3) arethe convolutivekernels or thatrepresentthemixingofboththedirectsignalsand theirreverberations.BSStechniquesaimtoestimatetheseconvolutivekernels A k;i . AmongthemostpopulartechniquesforBSSisthe independentcomponentanalysis(ICA) model,wherethesourcesignals S k ,modeledasrandomvariables,areassumedtobeinde- pendent,seethereviews[13,26]andthereferencesthereinformoredetails.Underthis model,manytechniquessuchasJointApproximateDiagonalizationEigenmatrices(JADE) [11]andInformationMaximization(Infomax)[6,12],aswellastheirts,havebeen developed.ItissafetosaythattheICAmodelformstheoverwhelmingbulkoftheresearch inBSS.Analternativetechnique,whichisgainingpopularity,isthe DegenerativeUnmixing andEstimationTechnique(DUET) ,whichusestime-frequencyseparationstoachieveBSS andhastheadvantagethatitcanworkinthedegenerativecase MJ .Thenthereexistssupportedcancellationkernels b 1 ;:::; b M 2 l 1 ( Z ) notallzerosuchthat M X k =1 b k u k;i =0 ;i =1 ;:::;J: (1.2.8) Proof. TakingtheFouriertransformweneedtoshowtheexistenceofsupported b k suchthat M X k =1 b b k ( ˘ ) b u k;i ( ˘ )=0 ;i =1 ;:::;J: Let F betheofallrealtrigonometricrationalfunctions,i.e.functionsoftheform f=g whereboth f;g aretrigonometricpolynomialswithrealcots.Set A =[ b u k;i ]with rowsindexedby i andcolumnsindexedby k ,whichis J M .Since M>J thereexistsa Z =[ f 1 ;:::;f M ] T in F M suchthat A Z =0.Nowlet F ( ˘ )beatrigonometricpolynomial thatisthecommondenominatorofalltrigonometricrationalfunctions f k ,1 6 k 6 M and G k ( ˘ )= F ( ˘ ) f k ( ˘ ).Each G k isatrigonometricpolynomialwithrealcots.Let 7 b k 2 l 1 ( Z )suchthat b b k = G k .Then M X k =1 b k u k;i =0 ;i =1 ;:::;J: Ingeneralcancellationkernelsarenotunique.Practicallythequestionishowcanthey bereconstructed.Thekeyideain[60]andseveralsubsequentpapers(e.g.,[63])isthat cancellationkernelscanbeestimatedifthereisaperiodofsilencebythetargetsources usingvariousoptimizationmethods. Observethatif b 1 ;:::; b M arecancellationkernelsthensoare ˝ q b 1 ;:::;˝ q b M forany q . Byshiftingwecanthusnormalizethecancellationkernelssothatallsupp b k arenonnegative andatleastone b k (0) 6 =0.Weshallcallsuchcancellationkernels normalized .Thegeneral frameworkfortargetsourceextractionweproposeinthisthesisistocomputethenormalized cancellationkernelsviabackgroundlearning.Thiscanbeachievedbyutilizinganinterval ofsilenceforthetargetsourceswewishtoextract.Oncewehavethecancellationkernels theextractionoftargetcanbemadethroughbackgroundcancellations.Assumethatthe targetsources S J +1 ( t ) ;:::;S L ( t )aresilentinthetimeinterval a 6 t 6 b ,i.e. S J +1 ( t )= = S L ( t )=0.Let b 1 ;:::; b M bethecancellationkernels.Itfollowsfrom(1.2.8)that M X k =1 b k X k =0 for a + N 6 t 6 b . N isthemaximumdelayinthemixturewhichdependsontheambienten- vironmentandthesamplerate.Thuswecanusethisintervaltolearnaboutthebackground 8 andestimatethenormalizedcancellationkernelsbyminimizingthecostfunction F ( b 1 ;:::; b M ;a;b ):= X a + N 6 t 6 b M X k =1 b k X k ( t ) 2 ; (1.2.9) subjecttotheconstraint P M k =1 j b (0) j =1.Inpractice,wereplacethenonlinearconstraint P M k =1 j b (0) j =1withtherelaxedlinearconstraint P M k =1 b (0)=1,anditseemstowork equallywell.Oncethecancellationkernelsareobtained,targetsourcescanbeextractedin realtimeby(1.2.8)throughsimpleconvolutions M X k =1 b k X k = L X i = J +1 M X k =1 b k u k;i S i : Thecostfunction F ( b 1 ;:::; b M ;a;b )withconstraint P M k =1 b (0)=1canbeminimized easilyasitisaquadraticfunction.Itfallsintothegeneralcategoryof min x k Au f k 2 2 ; (1.2.10) where u 2 R n and A is m n .Ifitisthissimplethenthereclearlyisnotanyneedto goanyfurther.Unfortunately,ournumericalexperimentshaveshownthatwithoutfurther constraintsthecancellationkernelsobtainedbyminimizing F donotworkatall.Therecould beseveralproblemsassociatedwithsimplyminimizingthecostfunction.Oneproblemis thattheconditionnumberinthissetupistypicallyhigh.Anotherproblemisthelackof uniquenessevenwhenallcancellationkernelsarenormalized.Butsinceanycancellation kernelscanbeusedtoremovethebackgroundsources,thismaynotbeamajorproblem. Amoreseriousproblemispotential .Toovercometheseonemust 9 imposeproperlevelofconstraintsandregularization. Onepossiblesolutiontoovercometheovproblemandill-posed-nessoftheprob- lemistoimposeapenaltytermthatservesasboththeregularizerandthesparsityinducer. Inourexperimentstheminimizersof(1.2.9)arealmostneversparse,particularlyforreal liferecordedmixtures.Therearemanywaystoachievesparsity,suchasaddingan l 1 -norm penaltyterm,seee.g.[33]andthereferencestherein.Thewell-knownROFtotalvariation modelisthestandardfromwhichmanyothermodelshadoriginated.Thispenaltyhelps somewhat,andtheresultingbackgroundremovalisoftenadequate.However,theproblem withthisapproachisthatitaddsapenaltytermthatdoesnotseemnaturaltous.And Itcanttheperformance.Findingtherightsparsityorotherconditionstoimposeis themostimportantaspectofthisapproachtosourceextraction,andatthispointisstill aworkinprogress.ThemaincontributionofthisthesisistointroduceanewSVD-based regularizationalgorithm,andtoalesserextend,aproximityoperatorbasedalgorithm,to addresstheproblemsthatareencounteredinbackgroundremoval. 10 Chapter2 BackgroundonPreviousWorkand NewApproach 2.1ICAforBSS Independentcomponentanalysis(ICA) wasbroughtupbyHeraultandJuttenaround 1986[23],becauseitissimilartoanothermethod,principalcomponentanalysis(PCA). Meanwhile,manypeople,suchasGiannakis[21],Cardoso[10],InouyeandMatsui[27],and Fety,contributedtothedevelopmentoftheandpropertiesinthisarea. ICA was wellnedbyComonin[17],JuttenandHerault[29]precisely,withdetaileddescriptions ofotherconceptsaswell. 1 The ICA ofarandomvector y ofsize N withcovariance V y isapair f F; g ofmatricessuchthat ( a ) thecovariancefactorizesinto V y = F 2 F ; (2.1.1) where isdiagonalrealpositive, F isfullcolumnrank ˆ ,and F isthetranspositionof F . ( b ) theobservationcanbewrittenas y = Fz ,where z isa ˆ 1 randomvectorwith covariance 2 andwhosecomponentsare'themostindependentpossible',inthesenseof 11 themaximizationofagiven'contrastfunction'thatwillbesubsequentlyd. Thegoalof ICA istoalinearrepresentationofnon-Gaussiandatasothatthe componentsarestatisticallyindependent,orasindependentaspossible.arinenandOja providedathoroughreviewofICAalgorithmappliedinBSS[26]. Assumethatweobserved n linearmixtures x 1 ;:::;x n of n independentcomponents s 1 ;:::;s n .Asthesimplestcase,ICAmodeliswrittenas X j = a j 1 S 1 + a j 2 S 2 + + a jn S n ; 1 6 j 6 n; (2.1.2) wecandropthetimeindex t .Itcanbetransferedasmatrixform X = AS; (2.1.3) where X isthematrixofallmixtures f X j g n j =1 , A isthematrixofthecot f a jk g n j;k =1 , and S isthematrixof f S j g n j =1 . A isunknown,and S isthesolutionwewouldliketo estimate.ThisishowitisrelatedtoBSS.Sincetheindependenceimpliesuncorrelatedness, theconstraintofindependencereducesthenumberoffreeparameters,andsimpthe problem. Theimmidiatequestioniswhythesourcesarerequiredtobenon-Gaussian.Itcanbe simplyprovedbythefollowingcounterexample. Assumethatthemixingmatrix A isorthogonalandthesources f S j g n j =1 areindependent andGaussianin(2.1.3).Thenmixtures f X j g n j =1 areuncorrelatedandGaussianwhichinplies 12 theyareofunitvariance.For x 1 and x 2 ,thejointdensityis p ( x 1 ;x 2 )= 1 2 ˇ e x 2 1 + x 2 2 2 ; whichisasymmetricfunction.Itdoen'tcontainanyinformationonthedirectionsofthe columnsofthemixingmatrix A . z = A T w ,then y = w T X = w T AS = z T S .So y isalinearconbinationof s k with weights z k .If w isavectormaximizesthenon-Gaussianityof w T X , w wouldcorrespondto a z whichhasonlyonenon-zerocomponentprovedin[26].Thatmeans w T S = z T S isone oftheindependentcomponents. Inordertomeasurethenon-Gaussianityof w T X inICAmodel,kurtosisis[26]. If y isanon-Gaussianrandomvariablewithzeromeanandunitvariance,thenkurtosisis by kurt ( y )= E f y 4 g 3( E f y 2 g ) 2 : Bymaximizingthethenon-Gaussianity,itneedstosolveminimafornegativeormaxima forpositivekurtosis.Detailedsolutionshavebeenprovidedin[20,26].Negentropyasanother measurementisintroducedfornon-Gaussianity[26].Minimizationofmutualinformation isdesignedtominimizethemutualinformation,whichisequivalenttomaimizingthenon- Gaussianity.Thoroughdisscussionshavebeenprovidedin[19,26] Asmentionedinprevious1.1,therearemanytechniquesdesignedunder ICA model,such asJADE[11],Infomax[6,12,43].Therearealsomanyextensionsof ICA algorithm,such astopographicICA,multidimensionalICA,kernelICA,tree-dependentcomponentanalysis, subbanddecompositionICA[13]. Therearetwoambiguitiesof ICA providedin[13,26],whicharealsowhatwehavein 13 BSS.Theoneisthatthesources f S j g n j =1 can'tbeunique,sinceboth A and S are unknownin(2.1.3).Thesolutionwouldbeascalarmultipleofthesouces.Thesecondone isthatthesolutiontomixingmatrix A couldbe AP 1 and P isapermutationmatrix, becausethereisnoorderof S andtheordercanbefreelychanged. ThishelpstounderstandandsolvetheBSSproblem(1.2.4).Inourassumption,all sourcesareindependentandnon-Gaussian.Becauseweusehumanspeechandmusicas sources,thefactthatvoicesoftpeopleareindependentandmusicisindependentto humanvoiceiswidelyaccepted.Thistopicstilldeservesfurtherinvestigation,thoughitis notthefocusofourstudy. 2.2DUETforBSS Degenerateunmixingestimationtechnique(DUET)appearedin[30].Jourjine,Rickard andYilmazstartedworkonBSSwhentherearelessmixturesthansources,whichisdegen- eratedblindsourceseparation.Thisischallengingbecausethemixingmatrix A in(2.1.3) isnotinvertibleandthetraditionalworkofestimatingtheinversematrixof A wouldnot workanymore. tfrommodelsunderICAusingthekurtosisortheinformationoptimizationsto themixingcotsandthedelays,DUETusesthetime-frequencyorthogonality propertyofthesourcesignals,W-DisjointOrthogonality(WDO)[30,60].DUETallowsfor thereconstructionofmultiplesourcesfromonlytwomixtures.Furthermore,itisextremely fast,makingitsuitableforbothbatchanddynamicsourceseparation. In[60],thedetailedproceduresforthecomputationofsourcesareprovided.Weonlylist someimportantsteps.Givenawindowingfunction W ( t )andafunction f ( t ),thewindowed 14 Fouriertransformof f withwindow W isby b f W ( !;˝ ):= Z R W ( t ˝ ) f ( t ) e i!t dt: (2.2.4) Twofunctions S 1 ( t )and S 2 ( t )arecalled W-disjointorthogonal ifthesupportsofthewin- dowedFouriertransformsof b S W 1 ( !;˝ )and b S W 2 ( !;˝ )aredisjoint,i.e., b S W 1 ( !;˝ ) b S W 2 ( !;˝ )=0 : (2.2.5) forall ! and ˝ .Ifanytwofunctionsin S k ( t ) n k =1 satisfytheWDOpropertythenwesay S k ( t ) n k =1 satisfytheWDOproperty. Asanexample,ifweconsidertheanechoicmodelasasimpleexampleof1.1.1 X k ( t )= n X i =1 a k;i S i ( t d k;i ) ;k =1 ;:::;m: (2.2.6) When m =2andtheconstantwindowfunction W ( t )=1,wehave X 1 ( t )= n X k =1 a 1 ;k S k ( t d 1 ;k ) X 2 ( t )= n X k =1 a 2 ;k S k ( t d 2 ;k ) Withoutlossofgenerality,wecanassume a 1 k =1, d 1 k =0,andchangethenotation 15 a 2 k = a k and d 2 k = d k .Thenwehave X 1 ( t )= n X i =1 S k ( t ) X 2 ( t )= n X i =1 a k S k ( t d k ) With W ( t )=1,wehave b X W 1 ( !;˝ )= n X k =1 b S W k ( !;˝ ) b X W 2 ( !;˝ )= n X k =1 a k e id k ! b S W k ( !;˝ ) BytheWDOpropertywithanygiven ! ,thefunction F ( !;˝ ):= b X W 2 ( !;˝ ) b X W 1 ( !;˝ ) canonlytakevaluesintheset f a k e id k ! :1 6 k 6 n g ,whichformsthethebasisfor DUET.theamplitude-phasefunction, !;˝ ):=( j F ( !;˝ ) j ; ! 1 F ( !;˝ ))) ; where z )denotestheangleof z , ˇ 6 6 ˇ .Ifthereisnowrap-aroundin F ( !;˝ )), thenonlytakesvaluesintheset f ( a k ;d k ):1 6 k 6 n g .Thuseach b S W k ( !;˝ )can 16 besolvedviafollowingassignment b S W k ( !;˝ )= 8 > > > < > > > : b S W k ( !;˝ )if !;˝ )=( a k ;d k ) ; 0otherwise. ThefatalproblemofDUETisthephasewraparoundproblem,whichcausesthefaulty assignmentof b S W k ( !;˝ ).Wang,YilmazandZhou[60]introducedanewmethodto theamplitude-phasefunction withover-sampledFFT.Ifthewindow W sizeis N ,in steadofthenormalFFTcomputationofsize N data g ˝ := W ( t ˝ ) X i ( t )thatitcomputes M -pointFFTof~ g ˝ bypadding M N zerostoreplace.Thenumericalexperimentsin[60] provideextremelygoodresultsfor2sourcescase.Moreover,themoDUETimproves theresultsthannormalDUET,thoughitisstillnotperfectintheseparationofthreeor moresources. 2.3CancellationKernels Frompreviousdiscussionandderivation,thereisageneralideaofcancellationkernels.In thispart,itissummarized.Forthemodel(1.2.5) X k = L X i =1 a k;i S i ;k =1 ;:::;M; where a k;i 2 l 1 ( Z )issupportedon[0 ;N ]with a k;i;j asits j -thelement.Thesequence f b k g L k =1 2 l 1 ( Z ),whichalsosatisfytheconditionthat P M k =1 b k a ki =0for1 6 i 6 J ,is calledcancellationkernels. ByProposition1.2.1,ithasbeenprovedthattheexistenceofcancellationkernels.There- 17 fore,(1.2.7)canbevas M X k =1 b k X k =( J X i =1 + L X i = J +1 )( M X k =1 b k a k;i ) S i (2.3.7) = L X i = J +1 ( M X k =1 b k a k;i ) S i : (2.3.8) Inthisway,backgroundsourcesareeliminated.Researchcanbefurtherconductedfor separationofsources f S i g L J +1 ,iftherearemorethanoneforegroundsources,i.e. J +1 40atleasttoprovidegoodresultsforcancellationkernelswhichcanremovethe background. 7 : Getingthefrequencyofeachelementincancelationkernels f b k g , V Freq ,correspond- ingtotheminimumerrorsineachstepattheend. Inthesecondstage,westartwithpreviouslycapturednonzeropositionswithminimum errors,andestimatethecancelationkernelsonthelearninginterval,throughincreasing thenonzeropositionsatcertainpercentageineachsteptocomparetheerrortermby(2.4.12), sothatwegetthecancelationkernels b k withminimumerrorattheend. Detailedstepsarelistedasbelow. 1 : Startingtoestimate f b k g withonly q highestfrequencyelementsasnonzeroand leavetherestelementsaszero,byminimizationfunction(1.2.9)on[ s 1 ;e 1 ],where q isa positiveinteger.Then,dividing[ s 1 ;e 1 ]into Q 2 equalsubintervals, I 1 ;:::;I Q 2 ,where Q 2 is apre-selectednumber.Now,wecorrespondingerrorvector Error byfunction(2.4.12) 27 andestimatedcancellationkernels,onallof I k , k =1 ;:::;Q 2 .Meanwhile,takeingthe meansofalltheseerrors, Error mean . 2 : Choosingnext M q highestfrequencyelementsincancelationkernels,exceptthe q elementsalreadychosen.Thenusingthese q + M q nonzeroelementstoestimateasetofnew f b k g byminimizationfunction(1.2.9),oninterval[ s 1 ;e 1 ].Pluswecouldgetanewerror vector, Error q + M q anditsmean, Error mean;q + M q . 3 : Runningthesameprocedureasabovestep2iteratively,tillwetakealltheelements withpositivefrequencyof f b k g in V Freq . 4 : Takingthesetof f b k g withtheminimummeanerror.Nowwecangettheforeground sourcesonthedesiredtimeintervalbyusing f b k g . Ingeneral,thisprocesscanprovidethesparsecancellationkernelswithimportantpo- sitions,thoughittakesalongtimetogothroughtheinterativequadraticprogramming procedure.ThealgorithmislistedinSection3.2.1. 2.4.2SplitBregmanMethod Bregmaniterationisoriginallyusedinfunctionalanalysisforextremaofconvex functionals[5].Furthermore,OsherusedBregmaniterationinimageprocessing[47]. However,itneedstosolveaoptimizationequationeachiterativestepwhichisveryexpensive computationally. In[22,47],authorsprovidedathoroughbackgroundintroductionofBregmaniteration. Startingwiththeassumptionthat E and H aretwoconvexenergyfunctionals, over R n withmin u 2 R n H ( u )=0,where H istiableforsimplicity.Itleadstothe 28 unconstraintminimizationproblem, arg min u f E ( u )+ ( u ): u 2 R d g ; (2.4.19) whichwasmobyiterativelysolving u k +1 =min u f D p E ( u;u k )+ ( u ) g (2.4.20) =min u f E ( u )

+ ( u ) g ; (2.4.21) where D p E ( u;v )= E ( u ) E ( v ) ,with p isinthesubgradientof E at v ,and p k +1 = p k r H ( u k +1 )in[5]. ThenGoldsteinandOsherintroducedtheapplicationofsplitBregmanmethodfor L 1 regularizedproblemsin[22]withathoroughintroductionofsplitBregmaniterationfor imageprocessing.Itsplitsthecomputationbyintroducingaintermediateterm,which thecomputation.In[9],CaietalprovedtheconvergenceofthesplitBregman iterationundercertainassumptions.Lateron,OsheretalproposedthelinearizedBregman iterationmethodbytransformingtheminimizationproblemineachinterativesteptoa linearapproximationforbettercomputationaltime[8,48]. XinandOsher,etalalsocontributedalotinapplyingsplitBregmaniterationinaudio signalprocessing,[39,40,41,63,64].Theirworkbroughtuptheattentiontotheimportance offastcomputationinBSS.SplitBregmanmethodwillbenumericallydemonstratedand comparedwiththeworkwehavedoneinfollowingchapters. 29 2.4.2.1BregmanIteration Intheliterature[22],itprovidedathoroughbackgroundintroductionofBregmaniteration. Startingwiththeassumptionthat E and H aretwoconvexenergyfunctionals, over R n withmin u 2 R n H ( u )=0,where H istiableforsimplicity.Itleadstothe unconstraintminimizationproblem, arg min u f E ( u )+ ( u ): u 2 R d g ; (2.4.22) whichwasmobyiterativelysolving u k +1 =min u f D p E ( u;u k )+ ( u ) g (2.4.23) =min u f E ( u )

+ ( u ) g ; (2.4.24) where D p E ( u;v )= E ( u ) E ( v ) ,with p isinthesubgradientof E at v ,and p k +1 = p k r H ( u k +1 )in[5]. In[47],authorsanalyzedtheconvergenceofBregmaniteration,especially,underfairly weakassumptionson E and H ,that H ( u k ) ! 0as k ! 0.Thereisaconvergenceresult restatedin[22]. Theorem2.4.1 Assumethat E and H areconvexfunctionals,andthat H isentiable. Wealsoassumethatsolutionstothesub-problemsin(2.4.23)exist.Wethenhave 1. Monotonicdecreasein H : H ( u k +1 ) 6 H ( u k ) , 2. Covergencetoaminimizerof H : H ( u k ) 6 H ( u )+ E ( u ) =k , where u istheminimizerof H ( u ) . 30 2.4.2.2ConstrainedOptimization Forproblem arg min u E ( u ) suchthatAu = b; (2.4.25) where A isalinearoperatorand b isavector.Byapplyingformula(2.4.22),itcanbe transformedtounconstrainedproblemusing kk 2 , arg min u f E ( u )+ 2 k Au b k 2 2 g ; (2.4.26) where isapositiveconstant. Furthermore,weapplyBregmaniteration(2.4.23)toderive, u k +1 =min u f E ( u )

+ 2 k Au b k 2 2 g ; (2.4.27) p k +1 = p k T ( Au k +1 b ) ; (2.4.28) where A T isthetransposeof A ,and < ; > isthenormalinnerproduct.When A islinear, itisequivalenttosolve, u k +1 =min u f E ( u )+ 2 k Au b k 2 2 g ; (2.4.29) b k +1 = b k + b Au k : (2.4.30) Thefollowingtheoremfrom[22]statesthatthesolution, u ,throughthisprocess(2.4.29) -(2.4.30),isthesolutionof(2.4.25). Theorem2.4.2 Let H : R d ! R beconvex,and A : R n ! R m belinear.Considerthe algorithm(2.4.29)-(2.4.30).Supposethat u ,that Au = b .Then u isasolution 31 totheoriginalconstrainedproblem(2.4.25). 2.4.2.3SplitBregman Bregmaniterationisagoodtoolforsolvingoptimizationproblems,however,itneedsto solvetheminimization D p E ( u;u k )+ ( u ) in(2.4.23)ateachiterativestep,whichcancomputationallyexpensive.ThesplitBregman iterationmethodintroducesanintermediatevariablewhichmakestheROFmodelseparable andeasiertosolve.InsteadofconsideringtheoriginalBregmanproblemasaconstraint problem,accordingto[22],thesplitBregmanmethodaimstosolvetheunconstrainedprob- lem arg min u;d fj d j + H ( u )+ 2 k u ) d k 2 2 g : (2.4.31) Byintroducing E ( u;d )= j d j + H ( u ),and A ( u;d )= d u ),itisclearthat(2.4.31) issimplyanimplementationof(2.4.26).Correspondingly,weshouldhavethefollowing iteration, ( u k +1 ;d k +1 )= arg min u;d f E ( u;d )

+ 2 k u ) d k 2 2 g ; p k +1 u = p k u ( r T u k +1 ) d k +1 ) ; p k +1 d = p k d ( d k +1 u k +1 )) : Similarly,following(2.4.29)-(2.4.30),byintroducing b k = p k d ,wenoticethat p k d = k , and p k u = ( r T b k .Thenitleadstotheequivalentalgorithmfrom[41],bysetting d 0 =0, 32 u 0 =0,and b 0 =0, d k +1 = arg min d f 1 J ( d ) + 1 2 k u k ) d k 2 2 ; g (2.4.32) u k +1 = arg min u f 1 H ( u )+ + 1 2 k d k +1 u k ) k 2 2 g ; (2.4.33) b k +1 = b k ( d k +1 u k +1 )) : (2.4.34) Convergencetheoremisderivedin[9],forthecaseof J ( u )= k u k 1 ,alsorestatedin [41]asbelow, Theorem2.4.3 Assumethatthereexistsatleastonesolution u of arg min u f J u ))+ H ( u ) g ; (2.4.35) where J isconvexbutnotnecessarilyentiable, H isconvexandentiable,and isalinearoperator.ThenwehavethefollowingpropertiesforthesplitBregmaniteration (2.4.32)-(2.4.34), lim k !1 f k u k ) k 1 + H ( u k ) g = k u ) k 1 + H ( u ) : (2.4.36) Furthermore, lim k !1 k u k u k 2 =0 ; if u istheuniquesolution. 33 2.4.3ProximityOperator WeapplythismethodinBSSofaudiosignalprocessingtosolvethecancellationkernels.The majorconclusionsofproximityoperatorarelistedinthischapter.Thedetailedalgorithmis thethenextchapterandnumericalresultsareprovidedattheend. ProximityoperatorwasintroducedbyMoreauin[34],andfurtherinvestigatedin [35][36].Combettesalsocontributedtotheinitiationofusingproximityoperatorin[14]. Micchelli,ShenandXuappliedproximityoperatormethodforBSSinimageprocessing [37,38].Theyalsoprovidedadetailedanalysisincomparingproximityoperatorwithsplit BregmaninimageprocessingtoshowthatproximityoperatorisbetterthansplitBregman. 2.4.3.1 2 Let beareal-valuedconvexfunctionon R d .Theproximityoperatorof is dfor x 2 R d by prox x := arg min f 1 2 k u x k 2 2 + ( u ): u 2 R d g : (2.4.37) InROFmodel(2.4.9),themajoryisinminimizingthetotalvariationterm jj TV . C.Micchelli,L.Shen,andY.XuproposedarentwayofsolvingtheROFmodelfor imageprocessing,[37,38],andconcludedthatitisfasterthansplitBregmaninthesp form, arg min u f 1 2 k u x k 2 2 + j u j TV : u 2 R d g ; (2.4.38) where x 2 R d denotesthenoisysignal, istheregularizationparameter,bynotingthat thesolutionoftheROFmodelcanbeviewedastheproximityoperatorof jj TV evaluated 34 atthenoisysignal x .Sinceitcannotbeeasilycomputed,itistreatedthat jj TV isthe compositionofconvexfunction,suchasthenorm kk 1 fortheanisotropictotal-variation oracertaincombinationofthenorm kk 2 fortheisotropictotalvariation,withalinear transformation(theoperator).Thisapproachwillbeadoptedinnext chapterforsolvingBSSaccousticsignalprocessing. 3 Let beareal-valuedconvexfunctionon R d .Thesubentialof at x 2 R d isdby @ ( x ):= f y : y 2 R d and ( z ) > ( x )+ forallz 2 R d g : (2.4.39) Elementsin @ ( x )arecalledsubgradients. If > 0and x 2 R ,thenthewell-knownsoftthresholdingoperatorwith 1 asthe thresholdis, prox 1 x =max fj x j 1 ; 0 g sign ( x ) : (2.4.40) Furthermore,if > 0and x 2 R m ,wehave prox 1 1 x =[ prox 1 x 1 ;prox 1 x 2 ;:::;prox 1 x m ] T : (2.4.41) Itisapparenttodirectlyverifythatif isaconvexfunctionon R d and x 2 R d ,then y 2 @ ( x ) 35 ifandonlyif x = prox ( x + y ) : 2.4.3.2FixedPointAlgorithmBasedonProximityOperator Foraconvexfunction ' on R m andan m d matrix B ,authorsin[37]aconvex function ( x ):=( ' B )( x ) : (2.4.42) Sincetheaimistocomputetheproximityoperator prox ,i.e., prox ' B ,thenconsiderthe minimizationproblem, arg min u f 1 2 k u x k 2 2 +( ' B )( u ): u 2 R d g ; (2.4.43) where x 2 R d isgiven.ThentheROFmodelcorrespondstospecialcasesofthisminimization problem. Byreplacing with ' B ,wehavefollowingseveralproperties: prox ' B x 2 x @ ( ' B )( prox ' B x ) ; (2.4.44) @ ( ' B )= B T ( @' ) B; (2.4.45) prox ' B x 2 x B T @' ( Bprox ' B x ) : (2.4.46) Byintroducingthetransformation A : R m ! R m forall y 2 R m as Ay := Bx +( I B T ) y (2.4.47) 36 fora x 2 R d ,thenonecantheoperator A : R m ! R m givenby H :=( I prox 1 ' ) A: (2.4.48) Theorem2.4.4 If ' isaconvexfunctionon R m , B isa m d matrix, x 2 R d and isa positivenumberthen prox ' B x = x T v (2.4.49) ifandonlyif v 2 R m isad-pointof H . Theorem(2.4.4)showsthattheminimizationproblem(2.4.43)correspondstoa pointof H ,whichinvolvestheproximityoperatoroftheconvexfunction 1 ' andalinear transformation B .Asadirectresult,thereisthefollowingproposition. Proposition2.4.5 If ' isaconvexfunctionon R m , B isa m d matrix, x 2 R d and is apositivenumber,then H hasadpoint. ForaLipschitzcontinuousfunction ' withLipschitzconstant K thatis j ' ( u ) ' ( v ) j 6 K k u v k ;forallu;v 2 R m : (2.4.50) Let Lip ' representthesmallestconstant K inthisinequality.Thereisfollowinglemma. Lemma2.4.6 If ' isaLipschitzcontinuousconvexfunctionand y 2 @' ( x ) forsome x 2 R m ,then k y k 6 Lip ' ; (2.4.51) where kk representsthedualnorm. 37 Let C ' := f z : z 2 R m ; k z k 6 Lip ' g : (2.4.52) Thefollowinglemmaisestablishedin[37]. Lemma2.4.7 If ' isaLipschitzcontinuousconvexfunctionand B isan m d matrix, then H maps R m into C ' .If ispositivenumber,thenallthedpointsof H arein C ' . 2.4.3.3Nonexpansivityof H 4 Anonlinearoperator P : R d ! R d iscallednonexpansiveif kP ( x ) P ( y ) k 2 6 k x y k 2 ; (2.4.53) forall x , y 2 R d . P.Combettes,andV.Wajsin[15]provedthat k ( I prox )( x ) ( I prox )( y ) k 2 2 6 : (2.4.54) ByapplyingCauchy-Schwarzinequalityto(2.4.54),itshows I prox isnonexpansive. H isnonexpansivebasedonnextlemma. Lemma2.4.8 If ' isaconvexfunctionon R d , B isan m d matrix,and ispositive numbersuchthat k I B T k 2 6 1 ,then H isnonexpansive. 5 Anonlinearoperator P : R d ! R d iscallednonexpansiveaveragedifthere areanumber 2 (0 ; 1) andanonexpansiveoperator Q suchthat P = +(1 ) Q: (2.4.55) 38 P isspallycallednonexpansive -averaged.Bydirectcomputation,onecanverifythat thecompositionoftwononexppansiveaveragedoperatorsisalsononexpansiveaveraged. Thenthesegeneralresultscanbeappliedon H in(2.4.48). Proposition2.4.9 If ' isaconvexfunctionon R d , B isan m d matrix,and ispositive numbersuchthat k I B T k 2 6 1 ,then H isnonexpansive -averagedforsome 2 (0 ; 1) . Inordertoshowtheconvergence,weneedtoconstructPicardsequence.Foranoperator P : R m ! R m ,withinitialpoint v 0 2 R m ,wehavethefollowingPicardsequence, v n +1 := P ( v n ) ; (2.4.56) for n 2 N .For 2 (0 ; 1),theof -averagedoperator P for P isgivenby P := +(1 ) P : (2.4.57) Let P 0 = P . Z.Opialin[45],showstheconvergenceofthePicardsequenceof P . Lemma2.4.10 If C isaclosedandconvexsetin R m and P : C ! C isanonexpansive mappinghavingatleastonedpoint,thenfor 2 (0 ; 1) , fP k g isnonexpansive,maps C to itself,andhasthesamesetofthedpointas P .Moreover,forany u 2 C and 2 (0 ; 1) , thePicardsequenceof P convergestoadpointof P . Correspondingly,to H ,authorsin[37]cameupwiththeresult. Theorem2.4.11 If ' isaLipschitzcontinuousconvexfunction, B isan m d matrix,and ispositivenumber,suchthat k I B T k 2 6 1 ,thenforanyinitialpointin C ' andany 2 (0 ; 1) ,thePicardsequenceof H convergestoadpointof H . 39 Asaconsequenceof(2.4.9),theauthorsin[37]derivedthefollowingconvergencetheorem withaslighlystrongercondition. Theorem2.4.12 If ' isaLipschitzcontinuousconvexfunction, B isan m d matrix, and ispositivenumber,suchthat k I B T k 2 < 1 ,thenforanyinitialpointin C ' ,the Picardsequenceof H convergestoadpointof H . Theyalsoshowedthat H isaveragednonexpansiveasfaras < 1 4sin 2 ( N 1) ˇ 2 N (2.4.58) where N = p d . 2.4.3.4Algorithm Bysetting ' ( x )= k x k 1 ,theROFmodel(2.4.9)becomes arg min u f 1 2 k u x k 2 2 + k Bu k 1 : u 2 R d g : (2.4.59) Thealgorithmcanbegeneralizedin[37]as Given x ; < 1 4sin 2 ( N 1) ˇ 2 N , > 0, 2 [0 ; 1) Initialize: v 0 =0 For n =0 ; 1 ;::: v n +1 := n +(1 )( I prox 1 )( Bx +( I B T ) v n ) End Writetheoutputof v n fromtheaboveloopas v 1 andcompute prox ' B x = x T v 1 . 40 Theconvergenceisguaranteedbythefollowingproposition. Proposition2.4.13 If > 0 and a , x 0 2 R m ,thentheiterativescheme x k +1 =( I prox 1 1 )( x k + a ) ;k =0 ; 1 ;:::; (2.4.60) convergestoitslimitinanumberofstepsandfor i =0 ; 1 ;:::;m . 2.4.4SingularValueDecomposition Inthispartwewillonlyreviewsomeimportantpropertiesofsingularvaluedecomposition. Thedetailedtechniquesbyapplyingsingularvaluedecompositionareprovidedinthenext chapter. Singularvaluedecomposition(SVD)isaclassictopicinmatrixanalysisandnumeric computation.Comparedwithpreviousiterationmethods,itsolvesthesolutionofthesystem directly.Thedetailedmethodologyandadjustmentwillbeprovidedinthenextchapteras ournewapproachtoROFmodel. Foragiven m n realorcomplexmatrix A ,thereexistafactorizationformof A , A = U V ; (2.4.61) where U isa m m unitarymatrix,isa m n rectangulardiagonalmatrixwithnonnegative realnumbersonthediagonal,and V istheconjugatetransposeof V asa n n unitary matrix. Thediagonalentries ˙ j ofaresocalledsingularvaluesof A ,byconventionarranged innon-increasingorder. 41 SVDcanbeusedforcomputingthepseudoinverseofamatrix A .Indeed,thepseudoin- verseofmatrix A withitsSVD A = U V is A + = V + U ; where + isthepseudoinverseofformedbyreplacingeverynon-zerodiagonalentryby itsreciprocalandtransposingtheresultingmatrix,and U istheconjugatetransposeof U . AnotherimportantpropertyofSVDisthatif A isasymmetricreal n n matrix,there isanorthogonalmatrix V andadiagonalmatrix D suchthat A = VDV T .Thenthisis alsotheeigenvaluedecomposition.Thediagonalelementsof D aretheeigenvaluesof A in descendingorder. Ingeneral,ifamatrix A withsize m n ,then A T A isasymmetric n n matrix.The singularvaluedecompositionof A T A canbewrittenas A T A = VDV T : (2.4.62) 42 Chapter3 TechnicalDiscussions 3.1Reviewofotheralgorithms 3.1.1SplitBregmaniteration Basedonpreviousdiscussionin2.4.2.3,weusethemodelprovidedin[22],byGoldsteinand Osher,insteadofROFmodel(2.4.9), arg min u f 2 k Au f k 2 2 + J ( u ) g : (3.1.1) Equivalently, arg min u f 1 2 k Au f k 2 2 + ( u ) g : (3.1.2) 3.1.1.1AlgorithmofSplitBregman ByapplyingsplitBregmanschemes(2.4.32)-(2.4.34),wehavethescheme, ( u k +1 ;d k +1 )= arg min u;d E ( u;d )

+ 2 k u ) d k 2 2 ; p k +1 u = p k u T u k +1 ) d k +1 ) ; p k +1 d = p k d ( d k +1 u k +1 )) : Let b k = p k d ,wehave p k d = k and p k u = T b k .ThenthegeneralsplitBregman 43 iterationis, d k +1 = arg min d 1 J ( d ) + 1 2 k u k ) d k 2 2 ; u k +1 = arg min u 1 H ( u )+ + 1 2 k d k +1 u k ) k 2 2 ; b k +1 = b k ( d k +1 u k +1 )) : In[40,41,63,64],authorsusedthetansformed(3.1.1)to arg min u f 1 2 k Au f k 2 2 + k u k 1 g : (3.1.3) Inthiscase, J ( u )= k u k 1 ,= I ,and H ( u )= 1 2 k Au f k 2 2 .Theiterationare d k +1 = arg min d k d k 1 + 1 2 k d u k k 2 2 (3.1.4) u k +1 = arg min u 1 2 k Au f k 2 2 + + 1 2 k d k +1 u k 2 2 (3.1.5) b k +1 = b k d k +1 + u k +1 : (3.1.6) Bysolving(3.1.4)and(3.1.5)explicitly,itresultsinasimplealgorithm, Initialize u 0 = d 0 = b 0 =0 While k u k +1 u k k 2 > d k +1 = shrink ( u k + b k ; ) u k +1 =( "I + A T A ) 1 ( A T f + ( d k +1 b k )) b k +1 = b k d k +1 + u k +1 endWhile 44 where shrink ( v;t )=( ˝ t ( v 1 ) ;˝ t ( v 2 ) ; ;˝ t ( v NL )) T with ˝ t ( x )= sign ( x )max fj x j t; 0 g . The shrink ( v;t )isasoftthreshholdfunction.Clearly,thestep u k +1 =( "I + A T A ) 1 ( A T f + ( d k +1 b k ))(3.1.7) bringsinerrorasaregularizationterm.WewillcomparethiswiththetheSVDmethod appliedinthelaterpart. 3.1.1.2TwoSourcesandTwoMixtures Letusstartwithsimpledeterminedcase,2sourcesand2mixtures,followingthesame strategyas[40],[41],[63],[64].Aspreviously,2sourcesarebackgroundsource S 1 andforegroundsource S 2 ,2mixturesare X 1 and X 2 .Itleadstomixingmodel X j = a j; 1 S 1 + a j; 2 S 2 ; (3.1.8) where j =1,2.Inordertoextractforegroundsource S 2 ,asweassumedpreviously, S 2 =0, where a 6 t 6 b ,wehavetocancelationkernels u 1 and u 2 ,suchthat u 1 X 1 + u 2 X 2 = u 1 a 1 ; 1 S 1 + u 2 a 2 ; 1 S 1 t 0 : (3.1.9) Anidealpairofsolutionsare u 1 t a 2 ; 1 ;u 2 t a 1 ; 1 : (3.1.10) Basedonpreviousdiscussioninquadraticprogramming,wecangettheoptimization 45 problemas ( u 1 ;u 2 )= arg min ( u 1 ;u 2 ) 1 2 k u 1 X 1 + u 2 X 2 k 2 2 + ( k u 1 k 1 + k u 2 k 1 ) (3.1.11) subjectto u 1 (1)+ u 2 (1)=1. Equivalently,theauthorsproposedproblem ( u 1 ;u 2 )= arg min ( u 1 ;u 2 ) 1 2 k u 1 X 1 + u 2 X 2 k 2 2 + 2 2 ( 2 X j =1 u j (1) 1) 2 + ( k u 1 k 1 + k u 2 k 1 ) : (3.1.12) Inmatrixform,(3.1.12)correspondsto(3.1.3)as u = arg min u f 1 2 k Au f k 2 2 + k u k 1 g ; (3.1.13) where, A = 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 X 1 (1) X 1 (2) X 1 ( m 2) X 1 ( m 1) X 1 (1) X 1 ( m 3) X 1 ( m 2)0 . . . . . . . . . X 1 (1) X 1 ( m d )0 X 2 (1) X 2 (2) X 2 ( m 2) X 2 ( m 1) X 2 (1) X 2 ( m 3) X 2 ( m 2)0 . . . . . . . . . X 2 (1) X 2 ( m d )0 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5 T ; 46 f =[00 0 ] T ; X 1 =[ X 1 (1) X 1 (2) X 1 ( m 2) X 1 ( m 1)] T ; X 2 =[ X 2 (1) X 2 (2) X 2 ( m 2) X 2 ( m 1)] T ; m 1representsthelengthoftheaudiosignal, f withsize m 1,and d representsthe lengthofthecancellationkernel, X 1 and X 2 aretwomixtures. 3.1.1.3ThreeSourcesandThreeMixtures Similarly,in3sourcesand3mixturescase,weshouldhave ( u 1 ;u 2 ;u 3 )= arg min ( u 1 ;u 2 ;u 3 ) 1 2 k u 1 X 1 + u 2 X 2 + u 3 X 3 k 2 2 + 2 2 ( 3 X j =1 u j (1) 1) 2 + ( k u 1 k 1 + k u 2 k 1 + k u 3 k 1 ) : (3.1.14) 47 Correspondingto(3.1.13), A = 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 X 1 (1) X 1 (2) X 1 ( m 2) X 1 ( m 1) X 1 (1) X 1 ( m 3) X 1 ( m 2)0 . . . . . . . . . X 1 (1) X 1 ( m d )0 X 2 (1) X 2 (2) X 2 ( m 2) X 2 ( m 1) X 2 (1) X 2 ( m 3) X 2 ( m 2)0 . . . . . . . . . X 2 (1) X 2 ( m d )0 X 3 (1) X 3 (2) X 3 ( m 2) X 3 ( m 1) X 3 (1) X 3 ( m 3) X 3 ( m 2)0 . . . . . . . . . X 3 (1) X 3 ( m d )0 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5 T : f =[00 0 ] T ; X 1 =[ X 1 (1) X 1 (2) X 1 ( m 2) X 1 ( m 1)] T ; X 2 =[ X 2 (1) X 2 (2) X 2 ( m 2) X 2 ( m 1)] T ; X 3 =[ X 3 (1) X 3 (2) X 3 ( m 2) X 3 ( m 1)] T ; where m 1representsthelengthoftheaudiosignal; f isinsize m 1; d representsthe lengthofthecancellationkernel; X 1 , X 2 ,and X 3 arethreeentmixtures. 48 3.1.1.4 n sourcesand n mixtures Ingeneral,ifthere n sourcesand n mixtures,wearegoingtosolvethefollowingproblem, ( u 1 ;u 2 ;u 3 ;:::;u n )= arg min ( u 1 ;u 2 ;u 3 ;:::;u n ) 1 2 k n X j =1 u j X j k 2 2 + 2 2 ( n X j =1 u j (1) 1) 2 + n X j =1 k u j k 1 : (3.1.15) Correspondingto(3.1.13), A = 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 X 1 (1) X 1 (2) X 1 ( m 2) X 1 ( m 1) X 1 (1) X 1 ( m 3) X 1 ( m 2)0 . . . . . . . . . X 1 (1) X 1 ( m d )0 X 2 (1) X 2 (2) X 2 ( m 2) X 2 ( m 1) X 2 (1) X 2 ( m 3) X 2 ( m 2)0 . . . . . . . . . X 2 (1) X 2 ( m d )0 . . . . . . . . . . . . . . . . . . . . . X n (1) X n (2) X n ( m 2) X n ( m 1) X n (1) X n ( m 3) X n ( m 2)0 . . . . . . . . . X n (1) X n ( m d )0 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5 T : 49 f =[00 0 ] T ; X 1 =[ X 1 (1) X 1 (2) X 1 ( m 2) X 1 ( m 1)] T ; X 2 =[ X 2 (1) X 2 (2) X 2 ( m 2) X 2 ( m 1)] T ; . . . X n =[ X n (1) X n (2) X n ( m 2) X n ( m 1)] T ; where m 1representsthelengthoftheaudiosignal; f isinsize m 1; d representsthe lengthofthecancellationkernel; f X k g n k =1 are n tmixtures. 3.1.2ProximityOperator Aspreviouslymentionedin2.4.3,theproximityoperatorhasbeenusedinimageprocessing. WeuseittoestimatecancellationkernelsforBSS.Ingeneral,weconsiderthefollowing model arg min u f 1 2 k u x k 2 2 +( ' B )( u ) g (3.1.16) ComparedwiththeROFmodel(2.4.9),spusedinthiscase(2.4.38) arg min u f 1 2 k u x k 2 2 + j u j TV : u 2 R d g ; clearly,onejustneedstosetup ' ( x )= k x k 1 : Then jj TV canberewrittenas jj TV = kk 1 B: (3.1.17) 50 Next,theproblembecomes, arg min u f 1 2 k u x k 2 2 + k Bu k 1 g (3.1.18) 3.1.2.1Algorithmofproximityoperator Followedby(3.1.18),recallthealgorithmmentionedinSection2.4.3.4. Given x ; < 1 4sin 2 ( N 1) ˇ 2 N , > 0, 2 [0 ; 1) Initialize: v 0 =0 For n =0 ; 1 ;::: v n +1 := n +(1 )( I prox 1 )( Bx +( I B T ) v n ) End Writetheoutputof v n fromtheaboveloopas v 1 andcompute prox ' B x = x T v 1 . Bysolving v 1 andreplacingthecorrespondingterminthelaststep,wehavethefollowing algorithm. Given x, < 1 4 sin 2 ( ( N 1) ˇ 2 N ), > 0, 2 [0 ; 1) Initialize u 0 =0 While k u k +1 u k k 2 > u k +1 = k +(1 )( I prox 1 )( Bx +(1 B T ) u k ) endWhile u =( "I + B T B ) 1 B T x u k +1 . where prox 1 x =( prox 1 x (1) ;prox 1 x (2) ; ;prox 1 x ( d )) T ,with prox 1 x = max fj x j ; 0 g sign ( x ),and "I isaregularizationterm. 51 3.1.2.2ApplicationforBSSofAudioSignalProcessing Inthispartwechangethealgorithmintheformwecanusetosolvecancellationkernels. SincethemodelfrompreviousROFmodelis(3.1.3),andbychangingtheparameters,we shouldhave arg min w f 1 2 k w f k 2 2 + k w k 1 g : (3.1.19) Ifweassume w = Au ,thereisanequivalentproblem arg min u f 1 2 k Au f k 2 2 + k Au k 1 g : (3.1.20) Thenwecantransferittoasimilarproblem, arg min u f 1 2 k u ( A T A ) 1 A T f k 2 2 + k ( A T A ) 1 A T Au k 1 g ; i.e., arg min u f 1 2 k u ( A T A ) 1 A T f k 2 2 + k u k 1 g ; (3.1.21) where B = I . ByapplyingthealgorithminSection3.1.2.1, Initialize u 0 =0 While k u k +1 u k k 2 > u k +1 = k +(1 ) prox 1 (( "I +( A T A )) 1 A T f +(1 ) u k ) endWhile u =( "I +( A T A )) 1 A T f u k +1 . where prox 1 x =( prox 1 x (1) ;prox 1 x (2) ; ;prox 1 x ( d )) T ,with prox 1 x = 52 max fj x j ; 0 g sign ( x ), "I isaregularizationterm. The prox 1 x functionisasoftthreshholdfunctionwhichisthesameaspreviously mentionedinsplitBregmanalgorithm3.1.1.1.Thestep u =( "I +( A T A )) 1 A T f u k +1 (3.1.22) alsobringsinerrorfromaregularizationterm.Atleastthisstepisatthesamelevelas (3.1.7)insplitBregman.WecancomparethiswiththetheSVDmethodappliedinthe laterpart. 3.1.2.3TwoSourcesandTwoMixturescase Whenweconsiderthedeterminedtwosourcesandtwomixturescase,thematrix A isthe sameasinSection3.1.1.2. A = 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 X 1 (1) X 1 (2) X 1 ( m 2) X 1 ( m 1) X 1 (1) X 1 ( m 3) X 1 ( m 2)0 . . . . . . . . . X 1 (1) X 1 ( m d )0 X 2 (1) X 2 (2) X 2 ( m 2) X 2 ( m 1) X 2 (1) X 2 ( m 3) X 2 ( m 2)0 . . . . . . . . . X 2 (1) X 2 ( m d )0 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5 T ; 53 f =[00 0 ] T ; X 1 =[ X 1 (1) X 1 (2) X 1 ( m 2) X 1 ( m 1)] T ; X 2 =[ X 2 (1) X 2 (2) X 2 ( m 2) X 2 ( m 1)] T ; where m 1representsthelengthoftheaudiosignal; f isinsize m 1; d representsthe lengthofthecancellationkernel; X 1 and X 2 aretwomixtures. 3.1.2.4ThreeSourcesandThreeMixturescase Asthreesourcesandthreemixturescase,wehavethesamematrix A ,andothercorrespond- ingparametersasinSection3.1.1.3. 3.1.2.5 n Sourcesand n Mixturescase Ingeneral,fordetermined n sourcesand n mixturescase,thematrix A andotherparameters areasthesameasinSection3.1.1.4. 3.2QuadraticProgramming 3.2.1AlgorithmforSparseness Thealgorithmforthelearningprocessislistedasfollowed.Assumetheforegroundsources S 1 ;:::;S L areinactive(silent)when t 2 [ a + N;b ]. Take [ s 1 ;e 1 ]and[ s 2 ;e 2 ]from[ a + N;b ],[ s 1 ;e 1 ] T [ s 2 ;e 2 ]= ; . forj =1: Q 1 Randomlychoose[ s 1 ;j ;e 1 ;j ] ˆ [ s 1 ;e 1 ]and[ s 2 ;j ;e 2 ;j ] ˆ [ s 2 ;e 2 ]; 54 whileq nnz > C + n sp and n sp > 1 ( a )Solve f b k g on[ s 1 ;j ;e 1 ;j ]; ( b )Finditserrorbyequation(2.4.12)on[ s 2 ;j ;e 2 ;j ]; ( c )Force n sp =0 : 1 q nnz smallestelementsof fj b k jg be0, q nnz =numberofnonzeroelementsin f b k g , q nnz =0 : 9 q nnz ; end Recordpositionsofnonzeroelementsin f b k g withminimum error; end Get thefrequencyofallthepositionsin f b k g withnonzerovalues, V freq . Inourwork,itturnsout Q 1 > 40,sinceitdoesnotworkwellinsomecasesif Q 1 < 40. Forintervals[ s 1 ;j ;e 1 ;j ]and[ s 2 ;j ;e 2 ;j ],thelengthshouldbeatleast1second. Thealgorithmforoptimalcancelationkernelsdescribedasthesecondstageisasbelow. Divide [ s 1 ;e 1 ]into Q 2 equalsubintervals I 1 ;:::;I Q 2 ; n V freq isthenumberofnonzeroelementsof V freq ; whileq 6 C and q 6 n V freq ( a )Take q highestfrequencypositionsof f b k g by V freq and forcetheresttobe0; ( b )Compute f b k g on[ s 1 ;e 1 ]; ( c )Solveerroron I 1 ;:::;I Q 2 by(2.4.12)andtheirmean, Err mean ; ( d ) q =1 : 1 q ; end Get f b k g withminimum Err mean ; Byequation(1.2.6)and(2.3.7),foregroundsourcescouldbeextracted. 55 Quadraticprogrammingisagoodtooltoprovidegoodestimateofcancellationkernels [61].Ourapproachaimstobringsparsenesstothecancellationkernels.Itworkstheoretically whichcanbeprovedbythenumericalexperimentsinthenextchapterviathe mixedaudios.However,fortherealliferecordings,itonlyworksOKontwosourcestwo mixturescase. 3.3SingularValueDecomposition Otherthanapproximationmethodsmentionedabove,wecanalsoseetheproblemfrom anotherangle.Wecansolvetheproblembydirectmethod,suchassingularvaluedecom- position(SVD).Letusconsiderthefollowingproblem. arg min u f 1 2 k Au f k 2 2 g where u =( u T 1 ;u T 2 ;:::;u T n ) T ,subjectto P n j =1 u j (1)=1. 3.3.1OurMethodology Weindeedjustneedtosolvetheequation, Au = f: (3.3.23) Sincematrix A canrarelybeasquarematrix,inordertosolve(3.3.23),weneedto transformitto A T Au = A T f: (3.3.24) 56 Asmentionedpreviously2.4.62, A T A isasymmetricpositivematrix.Thuswe apply SVD methodtosolveit. VDV T = A T A: (3.3.25) Moreover,asamatrix A hasitsownSVD A = U V T : (3.3.26) Matrix D = T So VDV T u = A T f (3.3.27) = ) u = VD 1 V T A T f (3.3.28) = ) u = VD 1 V T V U T f (3.3.29) = ) u = VD 1 U T f: (3.3.30) Theoretically(3.3.28)shouldbeperfectforsolvingtheproblem(3.3.23).Unfortunately, thesingularvaluesof A T A arenotwelldistributed,whichmeanstheconditionnumber of A T A isverylarge.Thisresultsinalargeerror,sometimesmayalsomakethesystem unsolvable. AswecanknowfromSVD,thediagonalelementsofthematrix D areallthesingular valuesof A T A . diag ( D )=[ ˙ 1 ;˙ 2 ;:::;˙ n ] T ; (3.3.31) indescendingorder.SimilarlyaspreviousinSection3.1.2.2,weneedtoaddaregularization 57 termtothediagonalofmatrix D .Insteadofusing "I ,wecanadjustthediagonalofthis relaxationmatrixmorespcorrespondto D . Sincethe k valuesof D , ˙ 1 ;˙ 2 ;:::;˙ k arethepartswhichwillnotcauseahuge problem,startingfromthe( k +1)thitemofthediagonalof D ,weaddaregularizationterm toeachcorrespondingterminthediagonalof D .Then, diag ( D ):=[ ˙ 1 ;˙ 2 ;:::;˙ k ;˙ k +1 + " 2 k +1 ;:::;˙ n + " 2 n ] T : (3.3.32) Thiswillygiveamoreaccuratecomputationalresult,comparedwithonlyadding aregularizationtermtoalltheitemsinthediagonalof D .Thetechniqueofaddinga regularizationtermtoalldiagonalelementsisequivalentassolvingtheinverseterm( "I + A T A ) 1 oftheregularizationstep(3.1.7)insplitBregmanandthesamepartof(3.1.22) inproximityoperator.ItclearlyindicatesthatsplitBregmanandproximityoperatormay takesameamountoftimetosolvetheinverseterm. Thisideaalsoinspiresthatwecanusethespecialpropertyof D 1 toreducethe computationaltimefromabovetechnique.Because D = T wecanestimatethatthe diagonalelementsof D 1 arearound f 1 p ˙ k g level.Thefollowinggraphisaportionofthe plotfor f 1 ˙ k g . 58 Figure1:Plotof f 1 ˙ k g . Wecanpre-selectapositivenumber 0 ,thenthereexistsa K suchthat p ˙ K +1 6 0 < p ˙ K .Thenusethevalueofthetangentlinetoreplacetheleftpartoftheplot. Figure2:Plotof f 1 ˙ k g withtangentline. Inourcomputation,werealizethistechniquebycreatingthetangentlinetotheplotof 1 ˙ k atpoint( ˙ K , 1 ˙ K ).Thecorrespondingslopeatthatpointis 1 ˙ 2 K .Byalgebra,wecan 59 theequationofthelineinpointslopeform y = 1 ˙ 2 K x + 2 ˙ K : (3.3.33) Thus,wecanreplacethe 1 ˙ j elementfor j > K +1in D 1 as 1 ˙ 2 K ˙ j + 2 ˙ K ,whichalso meanswecanreplace ˙ j with 1 1 ˙ 2 K ˙ j + 2 ˙ K . Since 1 1 ˙ 2 K ˙ j + 2 ˙ K = ˙ 2 K ˙ j +2 ˙ K ,and f ˙ k g n k =1 decaysdramaticallyfast,itcanbederived as ˙ 2 K ˙ j +2 ˙ K ˇ ˙ K 2 forlarge j . Basedonournumericalexamples,especiallytherealliferecordings,theratio ˙ k ˙ 1 ˇ 10 4 when150 6 k 6 200andthemaxdelayis230.Wecansimplyreplace ˙ j with ˙ K 2 when j islargeenough.Inournumericalresults,weuse ˙ j = ˙ K 2 when j > 5 K 4 . Ingeneral,wecanthediagonalelementsinthematrix D d j;j = 8 > > > > > > > > < > > > > > > > > : ˙ j if j 6 K; ˙ 2 K ˙ j +2 ˙ K if K 6 j< 5 K 4 ; ˙ K 2 otherwise ; where1 6 j 6 n . 60 3.3.2TwoSourcesandTwoMixtures Inthedeterminedtwosourcesandtwomixturescase,thematrix A andothercorresponding parametersarethesameasinSection3.1.1.2. A = 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 X 1 (1) X 1 (2) X 1 ( m 2) X 1 ( m 1) X 1 (1) X 1 ( m 3) X 1 ( m 2)0 . . . . . . . . . X 1 (1) X 1 ( m d )0 X 2 (1) X 2 (2) X 2 ( m 2) X 2 ( m 1) X 2 (1) X 2 ( m 3) X 2 ( m 2)0 . . . . . . . . . X 2 (1) X 2 ( m d )0 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5 T ; f =[00 0 ] T ; X 1 =[ X 1 (1) X 1 (2) X 1 ( m 2) X 1 ( m 1)] T ; X 2 =[ X 2 (1) X 2 (2) X 2 ( m 2) X 2 ( m 1)] T ; where m 1representsthelengthoftheaudiosignal; f isinsize m 1; d representsthe lengthofthecancellationkernel; X 1 and X 2 aretwomixtures. 61 3.3.3ThreeSourcesandThreeMixtures Inthreesourcesandthreemixturescase,thematrix A andothercorrespondingparameters arethesameasinSection3.1.1.3. 3.3.4 n Sourcesand n Mixtures Ingeneral,for n sourcesand n mixturescase,thematrix A andotherparametersare thesameasinSection3.1.1.4. 62 Chapter4 NumericalResults Inthischapter,weprovideseveralnumericalexperiments,mostofthemarefromreallife recordings.Themixedaudiosareonlyusedforquadraticprogrammingtoshow thatitworkstheoretically. Basedontheperformance,wecanconcludethatourmoSVDisthebest,and proximityoperatorisslightlybetterthansplitBregmanincomputationaltime. 4.1NumericalExampleofQuadraticProgramming 4.1.1NumericalExamplesofTwoSourcesandTwoMixtures 4.1.1.1Example 1 Inthisexample,thebackgroundmusicstartsThedesiredforegroundsourceissilent forafewseconds,anditiscompletelyoverwhelmedbythebackgroundmusic.Basedon thework[61],wecanrequirecancellationkernelstobenon-negative,oronlyfewofthem beingnegative,inquadraticprogramming.Inthisway,wewillnotseesomecancelation kernelswithlargemagnitudeinnegativedirections,whichalsomakemoresense,because soundsourcesaremorethanabsorbedinnormalroomcondition.Themathematical theorybehindthisscenariodeservesfurtherinvestigation,suchas[65].However, itisnotapartwefocuseoninthisstudy. 63 Inordertosolveit,severalparametershavetakenthefollowingvalues,thesamplefre- quency SF =16000 Hz ,thelengthofeachcancellationkernel d =230,thelearningtime interval[14 ; 15],thepercentageofnonzerocancellationkernels r =15%.Moreover,10% ofallthesenonzerocancellationkernelsarenegativevaluestorepresenttheabsorptions. Thebelowshowsthetwomixturesbeforeseparationandthenormalizedresultafter removalofthebackgroundmusic.Inordertopicktheimportantcancellationelements,the iterativeselectionhasbeenrun80times.Thewholeprocesstakes170seconds. Figure3:Recordedmixturesandresultafterremovalofbackgroundmusic. Thefollowingshowsthevalueofthecorrespondingcancelationkernels. Figure4:Cancelationkernels. Itlooksliketheresultisnotverygoodbasedonthethirdplotofthenormalizedresult. 64 However,thetruthisthattheresultisnotasexpected,evenifwedidseparatetheforeground source.Theforegroundsourcecanbeheard,anditisnotoverwhelmedbybackgroundmusic comparedwithoriginalmixture.Butthereisstilladefectthatthebackgroundnoiseisa littleloud.Thereasonisthatthebackgroundmusicissoloudcomparedtotheforeground source.Ifweneedbetterresultwehavetouselargerdelayorlongerlearningtimeinterval, whichwillthecomputationaltime. ThiscanbeshowninthespectrogramplotbelowbySTFTandHannwindow.The widowsizeis512with500overlaps.Theplotistheoriginalmixtureduringthetime interval[15 ; 17],theotheroneistheresultafterremovalthebackgroundduringthesame timeinterval.Wecanseefromthethatthespectrogramoftheforegroundsource canbeclearlyseenfromthesecondplotbetweenthetimeinterval[16 ; 16 : 5],whileitcanbe hardlyseenintheplot. Figure5:Spectrogram. Inordertoevaluatetheperformance,anewquantity,relativeerror,isintroduced,and 65 as, f 2 P a + N 6 t 6 b [ A T F ( t ) B T G ( t )] 2 P a + N 6 t 6 b [( A T F ( t )) 2 +( B T G ( t )) 2 ] g 1 2 : Therelativeerrorofthisexampleis23 : 34%. 4.1.1.2Example 2 Inthisexample,thebackgroundmusicstartsThedesiredforegroundsourceissilent forafewseconds,anditisalittleweakerthanthebackgroundmusic. Samevaluesfortheparametersaretakeninthecomputation,thesamplefrequency SF =16000 Hz ,thelengthofeachcancellationkernel d =230,thelearningtimeinterval [14 ; 15],percentageofnonzerocancellationkernels r =15%,and10%ofthesecancellation kernelsarenegative.Theiterativeselectionhasbeenrun80times. Thebelowshowsthetwomixturesbeforeseparationandresultafterremovalof thebackgroundmusic.Ittakes160secondstocompletethecomputation. Figure6:Recordedmixturesandresultafterremovalofbackgroundmusic. 66 Figure7:Cancelationkernels. Thecorrespondingspectrogramoftimeinterval[15 ; 17]whentheforegroundsource startedisalsoshownbelowbyapplyingSTFTandHannwindowfunction.Sameasthe previousexample,thewidowsizeis512with500overlaps.Theplotisfortheoriginal mixture,andtheotheroneisfortheremovalresult.Intherstoneitcanhardlytellthe betweenthebackgroundmusicandtheforegroundsource.Inthesecondplot,it clearlyshowstheforegroundsourcestartedbetweentimeinterval[15 : 5 ; 16],whiletheback- groundmusichasbeenremovedtoalargeextend.Wecanseethisfactfromthespectrogram oftheforegroundsourceinthesecondplot. 67 Figure8:Spectrogram. Therelativeerrorofthisexampleis22 : 48%. 4.1.1.3Example 3 Inthisexample,theaudioismixed,notfromrealrecordings.Therearetwo sourcesbeingused.Oneisabackgroundmusic,andtheotheroneisahumanspeech. Byrandomlychoosingthesamplefrequency SF =16000 Hz ,thelengthofeachcan- cellationkernel d =230,thepercentageofnonzerocancellationkernels r =15%,and elementofthecancellationkernelnon-zero,and10%ofthesecancellationkernelsare negative,itappliestheconvolutionformulatomixtherecordings. Similaras Example 1,thebackgoundmusicstartsThedesiredforegroundsource issilentforafewseconds,andisnotoverwhelmedbythebackgroundmusic. Alltheparametersaretakenthesamevaluesforsolvingthesystem,whilethelearning timeintervalusedis[9 ; 10].Thebelowshowsthetwomixturesbeforeseparationand 68 resultafterremovalofthebackgroundmusicwithoutanynormalization. Figure9:mixturesandresultaftertheremovalofbackgroundsource. Clearly,thebackgroundmusichasbeensuccessfullycompletelyremoved.Itshowsthe factthatthismethodologyworkstheoretically. Thefollowingshowsthevalueofthecorrespondingcancelationkernels. Figure10:Cancelationkernels. Thecancellationkernelsarenotasidealasexpected.Itonlyneedstopickafewelements fromcancellationkernelstosolvethesystem.Thisisnotasurprise,sincethear mixturesaresimplyformedbyusingtheconvolutionnotation.Theoptimizationproblem canbesolvedbyotherestimations. 69 Therelativeerrorinthisexampleislessthan0 : 19%. 4.1.2NumericalExamplesofThreeSourcesandThreeMixtures 4.1.2.1Example 4 Inthisexample,threesinglechannelspeechsignalsarearmixedtomake3 entmixtures.Ineachofthem,thethirdsource S 3 issilentforafewseconds,anditis overwhelmedbyotherbackgrounds. Themixingprocessissimilartopreviousexamplein4.1.1.3.Thesamevaluesof parametersaretakenforproducingmitures,thesamplefrequency SF =16000 Hz ,thelength ofeachcancellationkernel d =230,percentageofnonzerocancellationkernels r =15%, andelementofthecancellationkernelnon-zero,and10%ofthesecancellationkernels arenegative. Theparametersforsolvingthesystemarethesameasthemixingprocess,whilethetime interval[9 ; 10]. Thebelowshowsthatthreemixturesbeforeseparationandresultaftertheremoval oftwobackgroundsources. 70 g Figure11:3mixturesandresultaftertheremovalofbackgroundsource. Basedonthefourthplot,themarjorityenergyofthetwobackgroundsisclearly removed,thoughthereisstillsomesmallportionleft. Thebelowshowsthecancelationkernels. 71 Figure12:Cancelationkernels. Thecancellationkernelsarenotasidealasexpected.Itonlyneedstopickafewelements fromcancellationkernelstoprovidethesolution.Thisisnotasurprise,sincethe mixturesareonlysimplyformedbyusingtheconvolutionnotation.Theoptimizationprob- lemcanbesolvedbyotherestimations. Therelativeerroris3 : 3%.Ittakes80secondstoeliminatingbackgroundsignals. 4.2NumericalExamplesofSVDMethod Inthispart,weapplyourmoSVDmethoddevelopedinSection3.3tothesame examplesofrealliferecordings.Inthefollowingnumericalexamples,itwilldemonstrate thatourmoSVDisaveryfastalgorithmandprovidesgoodresults. 72 4.2.1TwoSourcesTwoMixturescase 4.2.1.1Example 5 ByusingthesameaudiorecordingsfromExample1insection4.1.1.1,wesolvetheproblem byusingSVDmethod. Forthecorrespondingparameters,samplefrequency SF =16000 Hz ,lengthofeach cancellationkernel d =230,thetimeinterval[14 ; 15], 0 isthevalue p ˙ K when ˙ K +1 ˙ 1 6 10 4 6 ˙ K ˙ 1 . ThenwehavethefollowingresultasshownintheItonlytakes0 : 158tosolvethe SVDprocesstothesigularvalue ˙ K withrelativeerror5 : 1%. Figure13:Recordedmixturesandresultsaftertheremovalofbackgroundsource. Thecorrespondingspectrogramoftimeinterval[15 ; 17]whentheforegroundsource startedisalsoshownbelowbyapplyingSTFTandHannwindowfunction.Sameasthe previousexample,thewidowsizeis512with500overlaps. 73 Figure14:Spectrogram. Theoneisfortheoriginalmixture,whilethesecondoneisfortheresult.Fromthe secondplot,thespectrogramoftheforegroundsourcecanbeclearlyseenbetweenthetime interval[16 ; 16 : 5],whileitcanhardlyseenintheplot.ComparedwithExample1,alot lowfrequencyenergyhasbeenremovedcomparedwiththesecondplotinFigure5,especially forthefrequenciesbetween[0 ; 500].SothereisimprovementfromExample1to Example5. 4.2.1.2Example 6 UsingthesameaudiorecordingsfromExample2insection4.1.1.2,wesolvetheproblemby usingSVDmethod. Forthecorrespondingparameters,samplefrequency SF =16000 Hz ,lengthofeach cancellationkernel d =230,thetimeinterval[14 ; 15], 0 isthevalue p ˙ K when ˙ K +1 ˙ 1 6 10 4 6 ˙ K ˙ 1 . 74 ThenwehavethefollowingresultasshownintheIttakes0 : 172tosolvetheSVD processtothesigularvalue ˙ K withrelativeerror6 : 02% Figure15:Recordedmixturesandresultsaftertheremovalofbackgroundsource. ThefollowingpartusesSTFTandHannwindowfunctiontocheckthespectrogramof themixtureandresultbetweentimeinterval[15 ; 17].Sameasthepreviousexample,the widowsizeis512with500overlaps. Figure16:Spectrogram. 75 Theplotisfortheoriginalmixture,whilethesecondoneisfortheresult.Fromthe secondplot,thespectrogramoftheforegroundsourcecanbeclearlyseenbetweenthetime interval[15 : 5 ; 16],whilethemajorityofthesourcehasbeeneliminated.Comparedwith Example2,alotlowfrequencyenergyhasbeenremovedcomparedwiththesecondplotin Figure8,especiallyforthefrequenciesbetween[0 ; 500].Sothereisimprovement fromExample2toExample6. 4.2.2ThreeSourcesThreeMixtures 4.2.2.1Example 7 Inthisexample,thesourceismusic;theothertwosourcesarespeechesoftwopeople. Thesecondsourcestartsafewsecondslaterthanthesource.Andthethirdsource startsafewsecondslaterthanthesecondone.WeuseourmoSVDmethodtoremove towsourcesandkeepthethirdsource. Forthecorrespondingparameters,samplefrequency SF =16000 Hz ,lengthofeach cancellationkernel d =230,thetimeinterval[18 ; 19], 0 isthevalue p ˙ K when ˙ K +1 ˙ 1 6 10 4 6 ˙ K ˙ 1 . Thefollowingaretheoriginalaudiosignalsandresultfromtheabovemethod. 76 Figure17:Recordedmixturesandresultsaftertheremovalofbackgroundsources. Clearly,thetwosourceshavebeenlargelyremovedinthefourthplot.Sincewe normalizedtheresulttothemaximumof0 : 95,itmaylooklikethatthereisstillalarge portionoftwosourcesintheresult.Infact,theresultisverygood.Therelativeerror is11 : 2%. 4.2.2.2Example 8 Inthisexample,allthreesourcesarehumanspeeches.Thesecondsourcestartsafewseconds laterthantheone.Andthethirdonestartsafewsecondslaterthanthesecondone. WeusetheSVDmethodtoremovethetwosourcesandextractthethirdone. Forthecorrespondingparameters,samplefrequency SF =16000 Hz ,lengthofeach cancellationkernel d =230,thetimeinterval[14 ; 15], 0 isthevalue p ˙ K when ˙ K +1 ˙ 1 6 77 10 4 6 ˙ K ˙ 1 . Thefollowingaretheoriginalaudiosignalsandresultsfromthismethod. Figure18:Recordedmixturesandresultsaftertheremovalofbackgroundsources. Basedonaboveplot,thetwosourceshavebeenlargelyremovedinthefourthplot. Sincewenormalizedtheresulttothemaximumof0 : 95,itmaylooklikethatthereisstilla largeportionoftwosourcesintheresult.Infact,theresultisverygood.Therelative erroris14 : 6%. Ingeneral,ourmoSVDprovidesverygoodresults. 4.3NumericalExamplesofSplitBregmanIteration Inthefollowingexamples,wechoose = =10 3 , =1, =2 sameas[40]. 78 4.3.1Twosourcestwomixturescase 4.3.1.1Example 9 ByusingthesameaudiorecordingsfromExample1insection4.1.1.1,wehavethefollowing resultasshownintheFigure19. Figure19:Recordedmixturesandresultaftertheremovalofbackgroundmusic. Therelativeerrorforthisexampleis4 : 5%. 4.3.1.2Example 10 ByusingthesameaudiorecordingsfromExample2insection4.1.1.2,wehavethefollowing resultasshownintheFigure20. 79 Figure20:Recordedmixturesandresultaftertheremovalofbackgroundmusic. Therelativeerrorforthisexampleis4 : 1%. 4.3.2Threesourcesthreemixtures 4.3.2.1Example 11 Inthisexample,weusethesameaudiofromExample7insection4.2.2.1.Therearetwo waystoremovetheforegroundsources.OneistousethesplitBregmaniterationdirectly forthemixtures. Theotheristoremovethesourcebytwogroupsofttwomixtureslikewhat weusefortwosourcestwomixturescase.Thenusethecorrespondingresultstoremovethe secondsource. ThefollowingplotsinFigure21aretheoriginalaudiosignalsandtheresultsfromthe twowaysmentionedabove. 80 Figure21:Recordedmixturesandresultsaftertheremovalofbackgroundsources. 4.3.2.2Example 12 Inthisexample,weusethesameaudiofromExample8insection4.2.2.2.Weusethe similartwowayslistedinExample11insection4.3.2.1tosolvetheproblem. ThefollowingplotsinFigure22aretheoriginalaudiosignalsandresultsfromtheabove twoapproachesmentionedinExample11. 81 Figure22:Recordedmixturesandresultsaftertheremovalofbackgroundsources. 4.4NumericalExamplesofProximityOperatorMethod Inthefollowingexamples,wechoose =0and = 1 4 sameas[37]. Ingeneral,theproximityoperatorisslightlybetterthansplitBregman,butthecompu- tationaltimeisslowerthanourmoSVD.Itdeservesmoreinvestigationsfor morereasonisbehindthisphenomena. 82 4.4.1Twosourcestwomixturescase 4.4.1.1Example 13 ByusingthesameaudiorecordingsfromExample1insection4.1.1.1,wesolvetheproblem byusingproximityoperatormethod.Thenwehavethefollowingresultasshowninthe Figure23. Figure23:Recordedmixturesandresultsaftertheremovalofbackgroundsource. Therelativeerrorforthisexampleis4 : 5%. 4.4.1.2Example 14 UsingthesameaudiorecordingsfromExample2insection4.1.1.2,wesolvetheproblem byusingproximityoperatormethod.Thenwehavethefollowingresultasshowninthe Figure24. 83 Figure24:Recordedmixturesandresultsaftertheremovalofbackgroundsource. Therelativeerrorforthisexampleis3 : 9%. 4.4.2ThreeSourcesThreeMixtures 4.4.2.1Example 15 Inthisexample,weusethesameaudiofromExample7inSection4.2.2.1.Therearetwo methodstoremovetheforegroundsources.Oneistousetheproximityoperatordirectly. Theotheristoremovethesourcebytwogroupsofttwomixtureslikewhat weusefortwosourcestwomixturescasebyproximityoperatormethod.Thenusethe correspondingresultstoremovethesecondsource. ThefollowingplotsinFigure25aretheoriginalaudiosignalsandresultsfromtheabove twoways. 84 Figure25:Recordedmixturesandresultsafterremovalofbackgroundsources. 4.4.2.2Example 16 Inthisexampleexample,weusethesameaudiofromExample8inSection4.2.2.2.There aretwomethodstoremovetheforegroundsources.Oneistousetheproximityoperator directlyonthreemixutrestosolvetheproblem.twogroupsofttwomixtureslike whatweusefortwosourcestwomixturescasebyproximityoperatormethod.Thenusethe correspondingresultstoremovethesecondsource. ThefollowingplotsinFigure26aretheoriginalaudiosignalsandresultsfromtheabove twoways. 85 Figure26:Recordedmixturesandresultsaftertheremovalofbackgroundsources. 4.5Summarization WeuseasystemwithCPUIntelCorei7 4770and16GBDDR3800MHzmemorytorun alltheabovenumericalexamples. Aslistedabove,thereisabigperformancebetweenquadraticprogramming withsparsenessandthemoSVD.Clearly,theperformanceofSVDmethodisbetter thanthequadraticprogram.Moreover,basedontheanalysisofSection3.3,theSVDmethod isatleastatthesamelevelofcomputaitonaltimecomparedwithproximityoperatormethod andsplitBregman. Inournumericalresults,ourmoSVDdoeshavethebestperformance.Itisfastest withthesamelevelofrelativeerrorcomparedwithproximityoperatorandsplitBregman, 86 especiallywhenweconsiderasmalllengthofeachcancellationkernel d =230.Proximity operatormethodisslightlybetterthansplitBregmaniterationintermscomputationaltime buttheydohavethesamelevelofrelativeerror. 87 BIBLIOGRAPHY 88 BIBLIOGRAPHY [1] S.Alliney. Apropertyoftheminimumvectorsofaregularizingfunctionaldby meanoftheabsolutenorm .IEEETransactionsonSignalProcessing,451997,pp.913- 917. [2] S.I.Amari,A.Cichocki,andH.H.Yang. Anewlearningalgorithmforblindsignal separation .Advancesinneuralinformationprocessingsystems(1996):757-763. [3] S.Araki,S.Makino,H.Sawada,andR.Mukai. Reducingmusicalnoisebya overlap-addmethodappliedtosourceseparationusingatime-frequencymask .Proc. ICASSP,III,81-84,2005. [4] J.Allen,andL.Rabiner. Adapproachtoshort-timeFourieranalysisandsynthe- sis .ProceedingsoftheIEEE,Vol.65,NO.11,Nov.1977. [5] L.Bregman. Therelaxationmethodofthecommonpointsofconvexsetsand itsapplicationtothesolutionofproblemsinconvexoptimization .USSRComputational MathematicsandMathematicalPhysics,1967,7,pp.200-217. [6] A.Bell,andT.Sejnowski. Aninformation-maximizationapproachtoblindseparation andblinddeconvolution .NeuralComputation,1995,7(6),pp.1129-1159. [7] R.Blackman,andJ.Tukey. Themeasurementofpowerspectrafromthepointofview ofcommunicationsEngineering .1958,DoverPublicationInc.,NewYork,pp.170. [8] J.Cai,S.Osher,andZ.Shen. LinearizedBregmaniterationsforcompressedsensing. MathematicsofComputation78.267(2009):1515-1536. [9] J.Cai,S.Osher,andZ.Shen. SplitBregmanmethodsandframebasedimagerestoration . MultiscaleModel.Simul.,Vol.8(2),2010,pp.337-369. [10] J.F.Cardoso. Sourcesseparationusinghigherordermoments .Proc.Internat.Conf. Acoust.SpeechSignalProcess.,Glasgow,1989,pp.2109-2112. [11] J.F.Cardoso,andA.Souloumiac. Blindbeamformingfornon-Gaussiansignals .IEE ProceedingsF(RadarandSignalProcessing).Vol.140.No.6.1993. 89 [12] A.CichockiandS.Amari. Adaptiveblindsignalandimageprocessing:learningalgo- rithmsandapplications .Wiley,2002. [13] S.Choi,A.Cichocki,H.ParkandS.Lee. Blindscourcesepararionandindependent componentanalysis:Areview .NeuralInform.Process.Lett.Rev.,6,2005,pp.1-57. [14] P.Combettes. Convexiteetsignal .Proc.CongresdeMathematiquesAppliqueesetIn- dustriellesSMAI.Vol.1,2001. [15] P.Combettes,andV.Wajs. Signalrecoverybyproximalforward-backwardsplitting . MutiscaleModel.Simul.,2005,4,pp.1168-1200. [16] P.Combettes,andJ.Pesquet. Proximalsplittingmethodsinsignalprocessing.Fixed- pointalgorithmsforinverseproblemsinscienceandengineering .SpringerNewYork, 185 212,2011. [17] P.Comon. Independentcomponentanalysis,Anewconcept .SignalProcessing36,1994, pp.287-314. [18] P.Comon,andC.Jutten. HandbookofBlindSourceSeparation:Independentcomponent analysisandapplications .Academicpress,2010. [19] T.Cover,andJ.Thomas. Elementsofinformationtheory .NewYork:Wiley(1991). [20] N.Delfosse,andP.Loubaton.Adaptiveblindseparationofindependentsources:a approach.SignalProcessing,45(1995),5983. [21] G.Giannakis,Y.InouyeandJ.M.Mendel. Cumulantbasedationofmultichannel movingaveragemodels .IEEEAutomat.Control,Vol.34,July1989,pp.783-787. [22] T.Goldstein,andS.Osher. ThesplitBregmanmethodfor L 1 regularizedproblems . SIAMJournalImagingSci.,Vol.2,April2009,pp.323-343. [23] J.Herault,andC.Jutten. Spaceortimeadaptivesignalprocessingbyneuralnetwork models .AIPConf.Proc.151,206(1986). [24] J.Hughes,D.Mao,D.Rockmore,Y.Wang,Q.Wu. Empiricalmodedecomposition analysisforvisualstylometry .IEEETransPatternAnalMachIntell,Nov.2012,34(11), pp.2147-57. 90 [25] A.arinen,J.Karhunen,andE.Oja. IndependentComponentAnalysis .JohnWiley, NewYork,2001. [26] A.arine,andE.Oja. IndependentComponentAnalysis:AlgorithmsandApplica- tions .NeuralNetworks,13(4 5),2000,pp.411-430. [27] Y.Inouye,andT.Matsui. Cumulantbasedparameterestimationoflinearsystems .Proc. WorkshopHigher-OrderSpectralAnalysis,Vail,Colorado,June1989,pp.180-185. [28] S.Johnson,andM.Frigo. Amodsplit-radixFFTwithfewerarithmeticoperations . SignalProcessing,IEEETransactionson55 : 1(2007):111-119. [29] C.Jutten,andJ.Herault. Blindseparationofsources,partI:Anadaptivealgorithm basedonneuromimeticarchitecture .SignalProcessing24,1991,pp.1-10. [30] A.Jourjine,S.Rickardand O.Yilmaz. Blindseparationofdisjointorthogonalsignals: demixingNsourcesfrom2mixtures .ProceedingsoftheIEEEInternationalConference onAcoustics,Speech,andSignalProcessing,Jun2000,pp.2985-2988. [31] D.D.Lee,andH.S.Seung. Learningofthepartsofobjectsbynon-negativematrix factorization .Nature,401:788 791,1999. [32] J.Liu,J.Xin,Y.Qi,andF.Zeng. Atimedomainalgorithmforblindseparation ofconvolutivesoundmixturesand L 1 constrainedminimizationofcrosscorrelations . Commun.Math.Sci.,Vol.7,No.1,2009,pp.109-128. [33] J.Liu,J.Xin,andY.Qi. Adynamicalgorithmforblindseparationofconvolutivesound mixtures .Neurocomputing72 : 1(2008):521-532. [34] J-J.Moreau. Fonctionsconvexesdualesetpointsproximauxdansunespacehilbertien . CRAcad.Sci.ParisSer.AMath255:2897-2899,1962. [35] J-J.Moreau. Proprietesdesapplications"prox" .CRAcad.Sci.Paris256(1963),pp. 1069-1071. [36] J-J.Moreau. Proximiteetdualitedansunespacehilbertien .BulletindelaSociete mathematiquedeFrance93(1965),pp.273-299. [37] C.Micchelli,L.Shen,andY.Xu. Proximityalgorithmsforimagemodels:denoising . InverseProblems,IOPScience,2011,Vol.27. 91 [38] C.Micchelli,L.Shen,Y.Xu,andX.Zeng. ProximityalgorithmsfortheL1/TVimage denoisingmodel .Adv.Comput.Math.,2013,38(2),pp.401-426. [39] J.Liu,J.Xin,Y.Qi,andF.Zheng. Atimedomainalgorithmforblindseparation ofconvolutivesoundmixturesandL1constrainedminimizationofcrosscorrelations . Commun.Math.Sci.,2009,Vol.7,No.1,pp.1-247. [40] W.Ma,M.Yu,J.Xin,andS.Osher. Reducingmusicalnoiseinblindsourceseparation bytime-domainsparseandsplitBregmanmethod .Interspeech2010,pp.402-405, Sept26-30,2010,Chiba,Japan. [41] W.Ma,M.Yu,J.Xin,andS.Osher. Aconvexmodeland L 1 minimizationformusical noisereductioninblindsourceseparation .Commun.Math.Sci.,2012Vol.10,No.1, pp.223-238. [42] D.Mao,Y.Wang,andQ.Wu. Anewapproachforanalyzingphysiologicaltimeseries . Jul.2010. [43] J.Nadal,andN.Parga. Non-linearneuronsinthelownoiselimit:afactorialcode maximizesinformationtransfer .Network,5(1994),565581. [44] A.Nuttall. Somewindowswithverygoodsidelobebehavior .IEEETransactiononAcous- tics,Speech,andSignalProcessing,Vol.Assp29,NO.1,Feb,1981. [45] Z.Opial. Weakconvergenceofthesequenceofsuccessiveapproximationsfornonexpan- sivemappings .Bull.Amer.Math.Soc.,1967,Vol.73,Num.4,pp.591-597. [46] V.Oppenheim. SpeechspectrogramsusingthefastFouriertransform .IEEESpectrum, vol.7,Aug.1970,pp.57-62. [47] S.Osher,M.Burger,D.Goldfarb,J.Xu,andW.Yin. Aniterativeregularizationmethod fortotalvariation-basedimagerestoration .MultiscaleModel.Simul.,Vol.4,N.O.2, 2005. [48] S.Osher,Y.Mao,B.Dong,W.Yin. FastlinearizedBregmaniterationforcompressive sensingandsparsedenoising .arXivpreprintarXiv:1104.0262(2011). [49] S.Osher,andL.I.Rudin. Featureorientedimageenhancementusingshock .SIAM J.Num.Anal.27(1990)919. 92 [50] A.Papoulis, Probability,randomvariables,andstochasticprocesses(3rded.) .NewYork: McGraw-Hill1991. [51] M.Pinsky. IntroductiontoFourierAnalysisandWavelets .AmericanMathematical Society,2002. [52] L.Rudin. Images,numericalanalysisofsingularitiesandshock .Caltech,C.S. Dept.Report1987 ] TR.5250:87. [53] L.Rudin,andS.Osher. Totalvariationbasedimagerestorationwithfreelocalcon- straints .ImageProcessing,1994.Proceedings.ICIP-94.,IEEEInternationalConference. Vol.1.IEEE,1994,pp.31-35. [54] L.Rudin,S.OsherandE.Fatemi. Nonlineartotalvariationbasednoiseremovalalgo- rithms . PhysicaD ,60(1992)pp.259-268. [55] S.Rickard,and O.Yilmaz. Onthew-disjointorthogonalityofspeech .Proceedingsofthe IEEEinternationalconferenceonacoustics,speech,andsignalprocessing,May2002, pp.529-532. [56] D.Strong,andT.Chan. Edge-preservingandscale-dependentpropertiesoftotalvaria- tionregularization .InverseProblems,19(2003),pp. S 165- S 187. [57] F.BachandM.Jordan. Beyondindependentcomponents:treesandclusters .Journal ofMachineLearningResearch,4:1205-1233,2003. [58] L.Vese,andS.Osher. Modelingtestureswithtotalvariationminimizationandoscilla- torypatternsinimageprocessing .Journalofsciencomputing,19 : 1-3(2003),pp. 553-572. [59] M.VanSegbroeck,andH.Vanhamme. Robustspeechrecognitionusingcepstraldomain missingdatatechniquesandnoisymasks .IEEEInternationalConferenceonAcoustics, Speech,andSignalProcessing,Vol.1,2004. [60] Y.Wang, O.Yilmaz,andZ.Zhou. Phasealiasingcorrectionforrobustblindsource separationusingDUET .AppliedandComput.Harm.Anal.,Vol.35,Issue2,Sept. 2013,pp.341-349 [61] Y.Wang,andZ.Zhou. Sourceextractioninaudioviabackgroundlearning .Inverse problemsandimaging7 : 1(2013):283. 93 [62] B.Yang. Astudyofinverseshorttimefouriertransform .IEEEInternationalConference onAcoustics,SpeechandSignalProcessing,2008. [63] M.Yu,W.Ma,J.Xin,andS.Osher. Convexityandfastspeechextractionbysplit Bregmanmethod .Interspeech2010,pp.398-401,Sept26-30,2010,Chiba,Japan. [64] M.Yu,W.Ma,J.Xin,andS.Osher. Multi-channel l 1 regularizedconvexspeechen- hancementmodelandfastcomputationbythesplitBregmanmethod .Audio,Speech andLanguageProcessing,IEEETransactionson20(2),(2012):661-675. [65] Z.Zeng. Thenumericalgreatestcommondivisorofunivariatepolynomials .Random- ization,relaxation,andcomplexityinpolynomialequationsolving,Providence,RI. Contemp.Math.Amer.Math.Soc556(2011):187-217. 94