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ABSTRACT

A NOVEL APPROACH TO BLIND SOURCE SEPARATION AND
EXTRACTION IN AUDIO

By

Xun Wang

In this thesis, the blind source separation (BSS) on digital audio signals via background

learning by several different methodologies is carefully studied. In the daily auditory, acoustic

audio signals are usually mixtures of different sources, including foreground and background

noises.

Most of the time, we only want to receive the foreground sources and get rid of the

background ones. Because of the randomness of various situations, it is very difficult to

perform this separation without knowing the detailed information. Even if the background

noises are not dominating the foreground sources, or even much weaker, it is still a difficult

problem, especially for the case that there are more than three sources including the noise.

This also makes it even more difficult to separate different sources from mixed signals. In

this thesis, a novel approach to solve cancellation kernels is provided by using a modified

sigular value decomposition method. The main focus is to use this new technique to estimate

the cacellation kernels with good results in short computational time.

In this work, some background information for blind source separation of audio will be

first introduced. Next, the knowledge of four different methods for solving this type of

problems is mentioned. Split Bregman has been studied by others in solving cancellation

kernels for the separation of speech signals. We apply proximity operator method to solve the

cancellation kernels for BSS of audio signal processing. It has been applied to study image

processing by other researchers. Quadratic programming method has been applied to solve



cancellation kernels by Wang and Zhou. We provide a new approach to bring sparseness to

cancellation kernels by using quadratic programming.

We developed a modified singular value decomposition (SVD) algorithm based on the

numerical experiments. It is a new technique to estimate cancellation kernels for BSS of

audio signals. The detailed information and schemes are presented in Chapter 3. Then, in

the fouth chapter, there are different numerical simulation examples according to different

scenarios. We compare the results of our modified SVD method with others methods, and

conclude that our modified SVD is the best approach.
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Chapter 1

Introduction

The acoustic signal processing system has been studied by researchers for several decades.

Within the research community, people have achieved many remarkable results, especially

in the past decade. During this process, one of the major goals is to get the estimation of

one or more source signals as accurate as possible, or at least to the level that people could

tolerate the noise. Especially nowadays, the high performance computing technology can

rapidly implement a lot of previously time-consuming methods.

For audio recording mixtures, it is very difficult to separate different source signals from

mixtures. There are many causes for noise, such as audio recording process, background

noise from other sources, or audio propagation, and so on. These random origins make it

difficult to conduct noise removal. Blind source separation is the separation of a set of signals

from the set of mixed signals, without the aid of information (or with very little information)

about the source signals or the mixing process. There are many applications of blind source

separation to modern technology, such as biomedical, telecommunications, astrophysics and

image processing, etc.

1.1 Blind Source Separation

Blind source separation (BSS) is a major area of research in signal processing. A vast

literature exists, particularly in audio signal processing. The goal of BSS is to separate source
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signals from their mixtures without assuming detailed knowledge about the sources and the

mixing process. In this paper we focus on a particular application of BSS in audio, namely

to extract a desired audio source from mixtures involving noise, background or unwanted

sources. Such extractions can be extremely challenging when the unwanted sources are much

stronger than the source one wishes to extract, which can be the case in many practical

applications such as mobile and car phones. Standard BSS techniques often do not work at

all in such settings.

We first describe our model in its most general form. The basic setup for BSS in audio

has n audio sources S1(t), . . . , Sn(t) and m mixtures X1(t), . . . , Xm(t), with the model

Xk(t) =
L∑
i=1

Nk,i∑
j=1

ak,i,jSi(t− dk,i,j), k = 1, . . . ,M (1.1.1)

where ak,i,j are the mixing coefficients and dk,i,j are the delays from the source i to the

recording or sensing device k. The mixing with multiple delays are a result of both the direct

signal and the reverberations (echoes) in the ambient environment. In audio applications

the sensors are microphones, and these mixtures are recorded by placing m microphones in

various locations. In BSS these coefficients are unknown. With the presence of reverberations

we often refer to the mixtures Xk in (1.1.1) as convolutive mixtures. Mathematically a more

concise way to formulate the model (1.1.1) is

Xk =
L∑
i=1

Ak,i ∗ Si, k = 1, . . . ,M (1.1.2)
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where ∗ denotes convolution and

Ak,i(t) =

Nk,i∑
j=1

ak,i,jδ(t− dk,i,j) (1.1.3)

are the convolutive kernels or filters that represent the mixing of both the direct signals and

their reverberations. BSS techniques aim to estimate these convolutive kernels Ak,i.

Among the most popular techniques for BSS is the independent component analysis (ICA)

model, where the source signals Sk, modeled as random variables, are assumed to be inde-

pendent, see the reviews [13, 26] and the references therein for more details. Under this

model, many techniques such as Joint Approximate Diagonalization Eigenmatrices (JADE)

[11] and Information Maximization (Infomax) [6, 12], as well as their refinements, have been

developed. It is safe to say that the ICA model forms the overwhelming bulk of the research

in BSS. An alternative technique, which is gaining popularity, is the Degenerative Unmixing

and Estimation Technique (DUET), which uses time-frequency separations to achieve BSS

and has the advantage that it can work in the degenerative case M < L, see e.g. [30, 60]. All

these techniques have their respective strengths and weaknesses, which are well documented

in the literature so we will not go into details here. While these techniques can often yield

good results in BSS, they all have certain limitations that pose challenges for many source

extraction and background removal applications. A major challenge is that they do not work

well for the case we focus on, namely for source extraction where the desired source signals

are very weak in comparison to the unwanted sources in the mixtures. Computational cost

can be another issue for many practical applications such as mobile and car phone where

removing background sources must be done in real time. The batch processing techniques

used by many of the ICA techniques do not adapt well to dynamic real-time processing.
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An alternative approach based on background learning and cancellation kernels for source

extraction was first proposed by Wang and Zhou [61]. The idea is that if the desired source

we wish to extract (we call it the target sources) is inactive (silent) for a brief moment,

then one may during this brief moment “learn” the ambient environment in the sense of

attaining information about the convolutive kernels for the unwanted sources (we call them

the background sources). This will allow the extraction of the target source through can-

cellation of the background sources. Typically one second or even less of silent moment by

the target source is sufficient for the extraction. In [61] background learning was achieved

through quadratic programming and regularization by imposing certain nonnegativity con-

dition which we shall describe in detail later. However, there are issues that needed to be

addressed. A major issue was the computational speed, as quadratic programming can be

quite slow. Another main issue is that although the imposition of nonnegativity regulariza-

tion seems to yield excellent result, it is physically unrealistic as in real world mixtures the

convolutive kernels will often have negative coefficients. A modified version of this model

was proposed in Yu et al [63], in which an L1 regularization model was used in place of the

nonnegativity. Not only it would allow negative coefficients in the kernel, but now a split

Bregman algorithm to compute the kernels for the extraction. Computationally, the use of

the split Bregman algorithm is substantially more efficient than the quadratic programming

approach in [61].

Still, even with the much improved computational efficiency there remain some issues that

need to be addressed or understood. The L1 minimization model often leads to sparsity.

But again, just like the nonnegativity assumption is physically unrealistic, so is the sparsity

assumption, as in a typical echoic environment the convolutive kernels are frequently not

sparse. The quality of the extracted sources using the nonnegative model and the L1 model
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are fairly comparable. The L1 model does seem to suppress the background a bit more, but

the extracted target source often exhibit subtle artifacts as opposed to the usually artifact-

free extraction from the nonnegativity model. Another issue we try to understand is why the

nonnegativity model works even though it is not a realistic physical model. Given the quality

of the extracted target sources using the nonnegativity model we are very interested in finding

an algorithm that greatly improves the computational efficiency of the nonnegativity model.

In this thesis we attempt to address these issues. We develop a new algorithms based on a

regularized SVD algorithm. Other than our SVD mehtod, we also apply proximity operator

in solving cancellation kernels for BSS. Based on our numerical results, proximity operator

is slightly faster than split Bregman while they have the same level of relative error. Later

we perform extensive comparisons of various different algorithms. As far as our results can

show, the SVD algorithm yields the best results, and it is also the most computationally

efficient.

This thesis focuses on background source removal through learning and cancellation ker-

nels. In the rest of this thesis, we shall introduce more details on our mathematical model

as well as further background information about various techniques for BSS. Overviews of

various algorithms (split Bregman, Promixity operator etc.) will be provided. In the last

part of the thesis, several numerical examples will be shown.
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1.2 Mathematical Model for Background Cancellation

In practice the time is discretized through sampling. It is convenient to write the convolutive

mixtures in the discrete form:

Xk(t) =
L∑
i=1

N∑
j=0

ak,i,jSi(t− j), k = 1, . . . ,M, (1.2.4)

where t ∈ Z and T0 6 t < T1. The integer N denotes the maximal delay in the mixture,

which depends on the ambient environment and the sampling rate. We shall view a signal as

an element in l∞(Z). We shall adopt the notations used in [61]: For each u ∈ l∞(Z) we use

u(j) to denote its j-th entry and supp (u) its support, i.e. the set of indices of its nonzero

entries. For any u, X ∈ l∞(Z), where u is finitely supported, the convolution u∗X ∈ l∞(Z)

is defined by

u ∗X(t) =
∑
j∈Z

u(j)X(t− j).

Again we may rewrite the model (1.2.4) simply as

Xk =
L∑
i=1

ak,i ∗ Si, k = 1, . . . ,M, (1.2.5)

where ak,i ∈ l∞(Z) is supported on [0, N ] with ak,i,j as its j-th element.

Suppose that the sources S1, . . . , SJ are the background sources we wish to remove and

SJ+1, . . . , SL are the target sources we wish to preserve from the mixtures Xk, 1 6 k 6M .

For any finitely supported bk ∈ l∞(Z) we have

bk ∗Xk =
L∑
i=1

bk ∗ ak,i ∗ Si. (1.2.6)
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If we can find bk such that
∑M
k=1 bk ∗ aki = 0 for 1 6 i 6 J , then by (1.2.5) one can easily

verify that
M∑
k=1

bk ∗Xk =
L∑

i=J+1

( M∑
k=1

bk ∗ ak,i

)
∗ Si. (1.2.7)

Note that the unwanted background sources are now removed, leaving only the target sources

in place. We shall call those bk cancellation kernels. It was shown in [61] that cancellation

kernels always exist. The following proposition was proved in [61], and we include the proof

here for self-containment.

Proposition 1.2.1 ([61]) Let uk,i ∈ l∞(Z) for 1 6 k 6 M and 1 6 i 6 J have finite

support. Suppose that M > J . Then there exists finitely supported cancellation kernels

b1, . . . ,bM ∈ l∞(Z) not all zero such that

M∑
k=1

bk ∗ uk,i = 0, i = 1, . . . , J. (1.2.8)

Proof. Taking the Fourier transform we need to show the existence of finitely supported

bk such that
M∑
k=1

b̂k(ξ)ûk,i(ξ) = 0, i = 1, . . . , J.

Let F be the field of all real trigonometric rational functions, i.e. functions of the form f/g

where both f, g are trigonometric polynomials with real coefficients. Set A = [ûk,i] with

rows indexed by i and columns indexed by k, which is J ×M . Since M > J there exists a

Z = [f1, . . . , fM ]T in FM such that AZ = 0. Now let F (ξ) be a trigonometric polynomial

that is the common denominator of all trigonometric rational functions fk, 1 6 k 6 M

and Gk(ξ) = F (ξ)fk(ξ). Each Gk is a trigonometric polynomial with real coefficients. Let
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bk ∈ l∞(Z) such that b̂k = Gk. Then

M∑
k=1

bk ∗ uk,i = 0, i = 1, . . . , J.

In general cancellation kernels are not unique. Practically the question is how can they

be reconstructed. The key idea in [60] and several subsequent papers (e.g., [63]) is that

cancellation kernels can be estimated if there is a period of silence by the target sources

using various optimization methods.

Observe that if b1, . . . ,bM are cancellation kernels then so are τqb1, . . . , τqbM for any q.

By shifting we can thus normalize the cancellation kernels so that all supp bk are nonnegative

and at least one bk(0) 6= 0. We shall call such cancellation kernels normalized. The general

framework for target source extraction we propose in this thesis is to compute the normalized

cancellation kernels via background learning. This can be achieved by utilizing an interval

of silence for the target sources we wish to extract. Once we have the cancellation kernels

the extraction of target can be made through background cancellations. Assume that the

target sources SJ+1(t), . . . , SL(t) are silent in the time interval a 6 t 6 b, i.e. SJ+1(t) =

· · · = SL(t) = 0. Let b1, . . . ,bM be the cancellation kernels. It follows from (1.2.8) that

M∑
k=1

bk ∗Xk = 0

for a+N 6 t 6 b. N is the maximum delay in the mixture which depends on the ambient en-

vironment and the sample rate. Thus we can use this interval to learn about the background
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and estimate the normalized cancellation kernels by minimizing the cost function

F (b1, . . . ,bM , a, b) :=
∑

a+N6t6b

∣∣∣∣∣∣
M∑
k=1

bk ∗Xk(t)

∣∣∣∣∣∣
2

, (1.2.9)

subject to the constraint
∑M
k=1 |b(0)| = 1. In practice, we replace the nonlinear constraint∑M

k=1 |b(0)| = 1 with the relaxed linear constraint
∑M
k=1 b(0) = 1, and it seems to work

equally well. Once the cancellation kernels are obtained, target sources can be extracted in

real time by (1.2.8) through simple convolutions

M∑
k=1

bk ∗Xk =
L∑

i=J+1

( M∑
k=1

bk ∗ uk,i

)
∗ Si.

The cost function F (b1, . . . ,bM , a, b) with constraint
∑M
k=1 b(0) = 1 can be minimized

easily as it is a quadratic function. It falls into the general category of

min
x
‖Au− f‖22 , (1.2.10)

where u ∈ Rn and A is m × n. If it is this simple then there clearly is not any need to

go any further. Unfortunately, our numerical experiments have shown that without further

constraints the cancellation kernels obtained by minimizing F do not work at all. There could

be several problems associated with simply minimizing the cost function. One problem is

that the condition number in this setup is typically high. Another problem is the lack of

uniqueness even when all cancellation kernels are normalized. But since any cancellation

kernels can be used to remove the background sources, this may not be a major problem.

A more serious problem is potential over-fitting. To overcome these difficulties one must
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impose proper level of constraints and regularization.

One possible solution to overcome the over-fitting problem and ill-posed-ness of the prob-

lem is to impose a penalty term that serves as both the regularizer and the sparsity inducer.

In our experiments the minimizers of (1.2.9) are almost never sparse, particularly for real

life recorded mixtures. There are many ways to achieve sparsity, such as adding an l1-norm

penalty term, see e.g. [33] and the references therein. The well-known ROF total variation

model is the standard from which many other models had originated. This penalty helps

somewhat, and the resulting background removal is often adequate. However, the problem

with this approach is that it adds a penalty term that does not seem natural to us. And

It can affect the performance. Finding the right sparsity or other conditions to impose is

the most important aspect of this approach to source extraction, and at this point is still

a work in progress. The main contribution of this thesis is to introduce a new SVD-based

regularization algorithm, and to a lesser extend, a proximity operator based algorithm, to

address the problems that are encountered in background removal.
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Chapter 2

Background on Previous Work and

New Approach

2.1 ICA for BSS

Independent component analysis (ICA) was first brought up by Herault and Jutten around

1986 [23], because it is similar to another method, principal component analysis (PCA).

Meanwhile, many people, such as Giannakis [21], Cardoso [10], Inouye and Matsui [27], and

Fety, contributed to the development of the definition and properties in this area. ICA was

well defined by Comon in [17], Jutten and Herault [29] precisely, with detailed descriptions

of other concepts as well.

Definition 1 The ICA of a random vector y of size N with finite covariance Vy is a pair

{F,∆} of matrices such that

(a) the covariance factorizes into

Vy = F∆2F ∗, (2.1.1)

where ∆ is diagonal real positive, F is full column rank ρ, and F ∗ is the transposition of F .

(b) the observation can be written as y = Fz, where z is a ρ × 1 random vector with

covariance ∆2 and whose components are ’the most independent possible’, in the sense of
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the maximization of a given ’contrast function’ that will be subsequently defined.

The goal of ICA is to find a linear representation of non-Gaussian data so that the

components are statistically independent, or as independent as possible. Hyvärinen and Oja

provided a thorough review of ICA algorithm applied in BSS [26].

Assume that we observed n linear mixtures x1, . . . , xn of n independent components

s1, . . . , sn. As the simplest case, ICA model is written as

Xj = aj1S1 + aj2S2 + · · ·+ ajnSn, 1 6 j 6 n, (2.1.2)

we can drop the time index t. It can be transfered as matrix form

X = AS, (2.1.3)

where X is the matrix of all mixtures {Xj}nj=1, A is the matrix of the coefficient {ajk}nj,k=1,

and S is the matrix of {Sj}nj=1. A is unknown, and S is the solution we would like to

estimate. This is how it is related to BSS. Since the independence implies uncorrelatedness,

the constraint of independence reduces the number of free parameters, and simplifies the

problem.

The immidiate question is why the sources are required to be non-Gaussian. It can be

simply proved by the following counter example.

Assume that the mixing matrix A is orthogonal and the sources {Sj}nj=1 are independent

and Gaussian in (2.1.3). Then mixtures {Xj}nj=1 are uncorrelated and Gaussian which inplies
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they are of unit variance. For x1 and x2, the joint density is

p(x1, x2) =
1

2π
e−

x21+x
2
2

2 ,

which is a symmetric function. It doen’t contain any information on the directions of the

columns of the mixing matrix A.

Define z = ATw, then y = wTX = wTAS = zTS. So y is a linear conbination of sk with

weights zk. If w is a vector maximizes the non-Gaussianity of wTX, w would correspond to

a z which has only one non-zero component proved in [26]. That means wTS = zTS is one

of the independent components.

In order to measure the non-Gaussianity of wTX in ICA model, kurtosis is defined [26].

If y is a non-Gaussian random variable with zero mean and unit variance, then kurtosis is

defined by

kurt(y) = E{y4} − 3(E{y2})2.

By maximizing the the non-Gaussianity, it needs to solve minima for negative or maxima

for positive kurtosis. Detailed solutions have been provided in [20, 26]. Negentropy as another

measurement is introduced for non-Gaussianity [26]. Minimization of mutual information

is designed to minimize the mutual information, which is equivalent to maimizing the non-

Gaussianity. Thorough disscussions have been provided in [19, 26]

As mentioned in previous 1.1, there are many techniques designed under ICA model, such

as JADE [11], Infomax [6, 12, 43]. There are also many extensions of ICA algorithm, such

as topographic ICA, multidimensional ICA, kernel ICA, tree-dependent component analysis,

subband decomposition ICA [13].

There are two ambiguities of ICA provided in [13, 26], which are also what we have in

13



BSS. The first one is that the sources {Sj}nj=1 can’t be unique, since both A and S are

unknown in (2.1.3). The solution would be a scalar multiple of the souces. The second one

is that the solution to mixing matrix A could be AP−1 and P is a permutation matrix,

because there is no order of S and the order can be freely changed.

This helps to understand and solve the BSS problem (1.2.4). In our assumption, all

sources are independent and non-Gaussian. Because we use human speech and music as

sources, the fact that voices of different people are independent and music is independent to

human voice is widely accepted. This topic still deserves further investigation, though it is

not the focus of our study.

2.2 DUET for BSS

Degenerate unmixing estimation technique (DUET) firstly appeared in [30]. Jourjine, Rickard

and Yilmaz started work on BSS when there are less mixtures than sources, which is degen-

erated blind source separation. This is challenging because the mixing matrix A in (2.1.3)

is not invertible and the traditional work of estimating the inverse matrix of A would not

work any more.

Different from models under ICA using the kurtosis or the information optimizations to

find the mixing coefficients and the delays, DUET uses the time-frequency orthogonality

property of the source signals, W-Disjoint Orthogonality (WDO) [30, 60]. DUET allows for

the reconstruction of multiple sources from only two mixtures. Furthermore, it is extremely

fast, making it suitable for both batch and dynamic source separation.

In [60], the detailed procedures for the computation of sources are provided. We only list

some important steps. Given a windowing function W (t) and a function f(t), the windowed
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Fourier transform of f with window W is defined by

f̂W (ω, τ) :=

∫
R
W (t− τ)f(t)e−iωtdt. (2.2.4)

Two functions S1(t) and S2(t) are called W-disjoint orthogonal if the supports of the win-

dowed Fourier transforms of ŜW1 (ω, τ) and ŜW2 (ω, τ) are disjoint, i.e.,

ŜW1 (ω, τ) · ŜW2 (ω, τ) = 0. (2.2.5)

for all ω and τ . If any two functions in Sk(t)nk=1 satisfy the WDO property then we say

Sk(t)nk=1 satisfy the WDO property.

As an example, if we consider the anechoic model as a simple example of 1.1.1

Xk(t) =
n∑
i=1

ak,iSi(t− dk,i), k = 1, . . . ,m. (2.2.6)

When m = 2 and the constant window function W (t) = 1, we have

X1(t) =
n∑
k=1

a1,kSk(t− d1,k)

X2(t) =
n∑
k=1

a2,kSk(t− d2,k)

Without loss of generality, we can assume a1k = 1, d1k = 0, and change the notation
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a2k = ak and d2k = dk. Then we have

X1(t) =
n∑
i=1

Sk(t)

X2(t) =
n∑
i=1

akSk(t− dk)

With W (t) = 1, we have

X̂W
1 (ω, τ) =

n∑
k=1

ŜWk (ω, τ)

X̂W
2 (ω, τ) =

n∑
k=1

ake
−idkωŜWk (ω, τ)

By the WDO property with any given ω, the function

F (ω, τ) :=
X̂W
2 (ω, τ)

X̂W
1 (ω, τ)

can only take values in the finite set {ake−idkω : 1 6 k 6 n}, which forms the the basis for

DUET. Define the amplitude-phase function,

Λ(ω, τ) := (|F (ω, τ)|,−ω−1Θ(F (ω, τ))),

where Θ(z) denotes the angle of z, −π 6 Θ 6 π. If there is no wrap-around in Θ(F (ω, τ)),

then Λ only takes values in the finite set {(ak, dk) : 1 6 k 6 n}. Thus each ŜWk (ω, τ) can
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be solved via following assignment

ŜWk (ω, τ) =


ŜWk (ω, τ) if Λ(ω, τ) = (ak, dk),

0 otherwise.

The fatal problem of DUET is the phase wrap around problem, which causes the faulty

assignment of ŜWk (ω, τ). Wang, Yilmaz and Zhou [60] introduced a new method to define

the amplitude-phase function Λ̄ with over-sampled FFT. If the window W size is N , in

stead of the normal FFT computation of size N data gτ := W (t− τ)Xi(t) that it computes

M -point FFT of g̃τ by padding M −N zeros to replace. The numerical experiments in [60]

provide extremely good results for 2 sources case. Moreover, the modified DUET improves

the results than normal DUET, though it is still not perfect in the separation of three or

more sources.

2.3 Cancellation Kernels

From previous discussion and derivation, there is a general idea of cancellation kernels. In

this part, it is summarized. For the model (1.2.5)

Xk =
L∑
i=1

ak,i ∗ Si, k = 1, . . . ,M,

where ak,i ∈ l∞(Z) is supported on [0, N ] with ak,i,j as its j-th element. The sequence

{bk}Lk=1 ∈ l
∞(Z), which also satisfy the condition that

∑M
k=1 bk ∗ aki = 0 for 1 6 i 6 J , is

called cancellation kernels.

By Proposition 1.2.1, it has been proved that the existence of cancellation kernels. There-
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fore, (1.2.7) can be verified as

M∑
k=1

bk ∗Xk = (
J∑
i=1

+
L∑

i=J+1

)(
M∑
k=1

bk ∗ ak,i) ∗ Si (2.3.7)

=
L∑

i=J+1

(
M∑
k=1

bk ∗ ak,i) ∗ Si. (2.3.8)

In this way, background sources are eliminated. Research can be further conducted for

separation of sources {Si}LJ+1, if there are more than one foreground sources, i.e. J +1 < L.

The focus of our work is to estimate the corresponding cancellation kernels as BSS tech-

nique. By comparing various optimization methods, including quadratic programming, split

Bregman, proximity operator and sigular value decomposition (SVD), and corresponding nu-

merical experiments in the next part, we can choose the ones which provide good results. At

the end, the results of SVD provide us very good solutions compared to other optimization

methods.

2.4 Optimization Methods

The essencial work of BSS is based on using optimization algarithms to solve the approx-

imation system, which is solving the cancellation kernels in this thesis. At the early stage

of optimization study, the most commonly used criteria are based on least square method,

however, it has been proved in [52] that the total variation (TV) is more proper than L2

norm. ROF model is introduced by L. Rudin, S. Osher and E. Fatemi in [54] formulated as

argmin
u
{λ ‖ f − u ‖2

L2
+|u|TV : u ∈ Rd}, (2.4.9)
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where f ∈ Rd, λ is the regularization parameter, and |u|TV is the total variation of u. It

has successfully demonstrated the advantage of optimizing the local solution, and also is

broadly accepted and used as the general model of signal processing, but it has been proved

to be very difficult to minimize by conventional methods. In order to make the computation

faster, L1 has been adopted to replace the total variation term. The formula can be written

as

argmin
u
{λ ‖ f − u ‖2

L2
+|u|1 : u ∈ Rd}. (2.4.10)

For estimating cancellatoin kernels, the formula can be rewritten as

argmin
u
{λ ‖ Au− f ‖2

L2
+|u|1 : u ∈ Rd}. (2.4.11)

In BSS of audio signals, ROF model with L1 regularization term (2.4.11) is used to solve

the cancellation kernels, as we mentioned previously in Section 1.1. u is the combination of

cancellation kernels, which is different from the case of image processing that people use u

as the true signal (2.4.10). A lot of previous existing algorithms in image processing can be

used in BSS of audio signals. In the next part, we are going to introduce some important

methods for solving BSS. Quadratic programming is specified for solving cancellation kernels

in audio signal processing [60]. Split Bregam is an iteration method originally used in image

processing [22]. Xin and Osher applied it in BSS of audio signal process [39, 40, 41, 63, 64].

Proximity operator method is another interation method used by Micchelli, Shen and Xu

for BSS of image processing [37, 38]. We apply proximity operator method in solving the

cancellation kernels for BBS of audio signal processing.
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2.4.1 Quadratic Programming

Wang and Zhou developed the idea of using cancellation kernels and quadratic programming

to solve BSS of audio signal processing via background learning [60]. We apply the method

in the work to achieve the sparseness of cancellation kernels by restricting the number of

nonzero elements in cancellation kernels, and the ratio between numbers of positive to neg-

ative elements. Yu et al proposed a modified model by replacing the nonnegativity of the

regularization term with L1 regularization and split Bregman method [63].

As we have already disscussed in 1.2 and above, the cancellation kernels exist so that

M∑
k=1

bk ∗Xk = 0

for a + N 6 t 6 b. N is the maximum delay in the mixture which depends on the ambient

environment and the sample rate. Therefor we can use this interval to learn the background

and estimate the normalized cancellation kernels by minimizing the cost function (1.2.9)

F (b1, . . . ,bM , a, b) :=
∑

a+N6t6b

∣∣∣∣∣∣
M∑
k=1

bk ∗Xk(t)

∣∣∣∣∣∣
2

,

subject to the constraint
∑M
k=1 b(0) = 1.

In numerical computation, we only need to choose a time interval with length around

1 second from [a + N, b] for learning the background, for solving the cancellation kernels

and extracting the foreground sources. In order to test the error of the result, we choose a
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different time interval [stesting, etesting] from [a+N, b] to calculate the error by

Err(b1, . . . , bM , a, b) :=
∑

stesting6t6etesting

∣∣∣∣∣∣
M∑
k=1

bk ∗Xk(t)

∣∣∣∣∣∣
2

. (2.4.12)

In the following part, the formula for the cases of two source and two mixtures and three

sources and three mixtures are provided.

2.4.1.1 Two Sources and Two Mixtures

Now let us take the example of two sources and two mixtures case. The analysis can also be

found in [60]. When L = M = 2, S1 is the background and S2 is the foreground. Assume

that the foreground source S2 = 0 in the time interval a 6 t 6 b. It simply needs to take

b1 = a2,1 and b2 = −a1,1 for cancellation kernels, which satisfy

b1 ∗ a1,1 + b2 ∗ a2,1 = 0. (2.4.13)

It leads to

b1 ∗X1 + b2 ∗X2 = (b1 ∗ a1,2 + b2 ∗ a2,2) ∗ S2 = (a2,1 ∗ a1,2 − a1,1 ∗ a2,2) ∗ S2.

Let

Y := a2,1 ∗X1 − a1,1 ∗X2. (2.4.14)

Then Y (t) = 0, where a+N 6 t 6 b.

Let An = a2,1(n) and Bn = a1,1(n) for 0 6 n 6 N and 0 otherwise.
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Denote

A = [A0, A1, . . . , AN ]T ,

B = [B0, B1, . . . , BN ]T ,

and

F (t) = [X1(t), X1(t− 1), . . . , X1(t−N), ]T ,

G(t) = [X2(t), X2(t− 1), . . . , X2(t−N), ]T .

We could estimate a2,1, a1,1 by minimizing

E(A,B, a, b) =
∑

a+N6t6b

| Y (t) |2

=
∑

a+N6t6b

[ATF (t)−BTG(t)]2

=
∑

a+N6t6b

[ATF (t)F (t)TA+BTG(t)G(t)TB − 2ATF (t)G(t)TB]

= UTDU,

where

U =

 A

B

 , D =

 DFF −DFG

−DGF DGG

 ,
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DFF =
∑

a+N6t6b

F (t)F (t)T ,

DGG =
∑

a+N6t6b

G(t)G(t)T ,

DFG =
∑

a+N6t6b

F (t)G(t)T ,

DGF =
∑

a+N6t6b

G(t)F (t)T = DT
FG,

It results in

min
A,B

ATDFFA+BTDGGB − 2ATDFGB (2.4.15)

subject to A0 +B0 = 1.

2.4.1.2 Three Sources and Three Mixtures

For three sources and three mixtures case, we assume S1 and S2 are backgrounds, and S3 is

foreground. Assume that the foreground source S3 = 0 in the time interval a 6 t 6 b. Since

L = M = 3, there exist cancellation kernels {bk}3k=1 such that

3∑
k=1

bk ∗Xk =
3∑
i=1

(
3∑

k=1

bk ∗ ak,i) ∗ Si. (2.4.16)

So our goal is to remove S1 and S2 from mixtures X1, X2, X3. Similarly as in previous case,

let

Y := b1 ∗X1 + b2 ∗X2 + b3 ∗X3. (2.4.17)

Then Y (t) = 0, where a+N 6 t 6 b.
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Denote

b1 = [b1(0), b1(1), . . . , b1(N)]T ,

b2 = [b2(0), b2(1), . . . , b2(N)]T ,

b3 = [b3(0), b3(1), . . . , b3(N)]T ,

and

F (t) = [X1(t), X1(t− 1), . . . , X1(t−N)]T ,

G(t) = [X2(t), X2(t− 1), . . . , X2(t−N)]T ,

H(t) = [X3(t), X3(t− 1), . . . , X3(t−N)]T .

We can estimate b1, b2, b3 by minimizing

E(b1, b2, b3, a, b) =
∑

a+N6t6b

| Y (t) |2

=
∑

a+N6t6b

[bT1 F (t) + bT2G(t) + bT3H(t)]2

=
∑

a+N6t6b

[ATF (t)F (t)TA+BTG(t)G(t)TB − 2ATF (t)G(t)TB]

= UTDU,

where

U =


b1

b2

b3

 , D =


DFF DFG DFH

DGF DGG DGH

DHF DHG DHH

 ,
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DFF =
∑

a+N6t6b

F (t)F (t)T ,

DGG =
∑

a+N6t6b

G(t)G(t)T ,

DHH =
∑

a+N6t6b

H(t)H(t)T ,

DFG =
∑

a+N6t6b

F (t)G(t)T ,

DFH =
∑

a+N6t6b

H(t)H(t)T ,

DGF =
∑

a+N6t6b

G(t)F (t)T = DT
FG,

DGH =
∑

a+N6t6b

G(t)H(t)T ,

DHF =
∑

a+N6t6b

H(t)F (t)T = DT
FH ,

DHG =
∑

a+N6t6b

H(t)G(t)T = DT
GH .

It leads to

min
b1,b2,b3

UTDU, (2.4.18)

subject to b1(0) + b2(0) + b3(0) = 1.

If we can bring the sparseness to cancelation kernels bk, we probably will have a better

computational time than the ones without sparseness. Here we try to get the approximation

of them with the minimum number of nonzero elements. The more zeros we have, the less

computations we need in solving convolutions. Though it is supposed to be computationally

faster and more efficient, the numerical experiments show that the sparseness can not really

25



improve the results, and it is even more time-consuming sometimes. The detailed description

for introducing sparseness is provided below, while the algorithm is provided in the next

chapter.

2.4.1.3 Introducing Sparseness

Since the numerical results of the cancelation kernels are not unique for different local inter-

vals, one big challenge becomes the evaluation of different cancelation kernels solved from

different intervals. This is the also the part of the original goal of considering the sparseness

for all cancelation kernels and pick up the important positions of cancellation kernels.

The main idea of this algorithm is to replace unimportant elements in cancelation kernels

with zeros. So these unimportant ones do not have much impact on the results when we

evaluate the error term (2.4.12), and keep all the positions of important ones’ that those can

affect the error term (2.4.12), while we also keep the ones with minimum error term through

the process by comparing with previous step as well.

This idea is borrowed from a specific method called support vector machine, from machine

learning. It is described in [24] and [42]. The compuation process is listed as below.

1. First of all, we take two non-overlapped smaller intervals, [s1, e1] and [s2, e2], from

the interval [a + N, b], where the foreground sources are silent. [s1, e1] is the training set,

and [s2, e2] is the testing set.

2. Choosing small intervals [straining, etraining] ⊂ [s1, e1] and [stesting, etesting] ⊂

[s2, e2].

3. Solving the corresponding cancellation kernels {bk} on [straining, etraining] and tak-

ing the error by (2.4.12) on [stesting, etesting].

In the following steps, we are going to find the minimum error with its corresponding

26



sparsed cancellation kernels.

4. Eliminating the smallest p elements of {bk} in absolute value.

5. Resolving the minimization problem on interval [ttraining, etraining] to find new

cancelation kernels, with the constraint that the eliminated positions of {bk} as zeros.

6. Calculating the new error from new cancellation kernels by (2.4.12) on [stesting, etesting].

We repeat the above procedures from 4 to 6 untill we get the minimum error with

minimum number of nonzero elements of {bk}, since we at least can get rid of p nonzero

elements each time. Then, we record all the nonzero positions of {bk}.

Starting over from step 1. by randomly choosing another pair of training set [straining, etraining]

and testing set [stesting, etesting]. Follow what are shown above repeatedly Q1 iteration

times, till we get the minimum error during each step. In our numerical examples, it turns

out Q1 > 40 at least to provide good results for cancellation kernels which can remove the

background.

7. Geting the frequency of each element in cancelation kernels {bk}, VFreq, correspond-

ing to the minimum errors in each step at the end.

In the second stage, we start with previously captured nonzero positions with minimum

errors, and estimate the cancelation kernels on the first learning interval, through increasing

the nonzero positions at certain percentage in each step to compare the error term by (2.4.12),

so that we get the cancelation kernels bk with minimum error at the end.

Detailed steps are listed as below.

1. Starting to estimate {bk} with only q highest frequency elements as nonzero and

leave the rest elements as zero, by minimization function (1.2.9) on [s1, e1], where q is a

positive integer. Then, dividing [s1, e1] into Q2 equal subintervals, I1, . . . , IQ2
, where Q2 is

a pre-selected number . Now, we find corresponding error vector Error by function (2.4.12)
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and estimated cancellation kernels, on all of Ik, k = 1, . . . , Q2. Meanwhile, takeing the

means of all these errors, Errormean.

2. Choosing next M q highest frequency elements in cancelation kernels, except the q

elements already chosen. Then using these q+ M q nonzero elements to estimate a set of new

{bk} by minimization function (1.2.9), on interval [s1, e1]. Plus we could get a new error

vector, Errorq+Mq and its mean, Errormean,q+Mq.

3.Running the same procedure as above step 2 iteratively, till we take all the elements

with positive frequency of {bk} in VFreq.

4. Taking the set of {bk} with the minimum mean error. Now we can get the foreground

sources on the desired time interval by using {bk}.

In general, this process can provide the sparse cancellation kernels with important po-

sitions, though it takes a long time to go through the interative quadratic programming

procedure. The algorithm is listed in Section 3.2.1.

2.4.2 Split Bregman Method

Bregman iteration is originally used in functional analysis for finding extrema of convex

functionals [5]. Furthermore, Osher firstly used Bregman iteration in image processing [47].

However, it needs to solve a optimization equation each iterative step which is very expensive

computationally.

In [22, 47], authors provided a thorough background introduction of Bregman iteration.

Starting with the assumption that E and H are two convex energy functionals, defined

over Rn with minu∈Rn H(u) = 0, where H is differentiable for simplicity. It leads to the
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unconstraint minimization problem,

argmin
u
{E(u) + λH(u) : u ∈ Rd}, (2.4.19)

which was modified by iteratively solving

uk+1 = min
u
{Dp

E(u, uk) + λH(u)} (2.4.20)

= min
u
{E(u)− < pk, u− uk > +λH(u)}, (2.4.21)

where D
p
E(u, v) = E(u) − E(v)− < p, u − v >, with p is in the subgradient of E at v, and

pk+1 = pk −∇H(uk+1) in [5].

Then Goldstein and Osher introduced the application of split Bregman method for L1

regularized problems in [22] with a thorough introduction of split Bregman iteration for

image processing. It splits the computation by introducing a intermediate term, which

simplifies the computation. In [9], Cai et al proved the convergence of the split Bregman

iteration under certain assumptions. Later on, Osher et al proposed the linearized Bregman

iteration method by transforming the minimization problem in each interative step to a

linear approximation for better computational time [8, 48].

Xin and Osher, et al also contributed a lot in applying split Bregman iteration in audio

signal processing, [39, 40, 41, 63, 64]. Their work brought up the attention to the importance

of fast computation in BSS. Split Bregman method will be numerically demonstrated and

compared with the work we have done in following chapters.
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2.4.2.1 Bregman Iteration

In the literature [22], it provided a thorough background introduction of Bregman iteration.

Starting with the assumption that E and H are two convex energy functionals, defined

over Rn with minu∈Rn H(u) = 0, where H is differentiable for simplicity. It leads to the

unconstraint minimization problem,

argmin
u
{E(u) + λH(u) : u ∈ Rd}, (2.4.22)

which was modified by iteratively solving

uk+1 = min
u
{Dp

E(u, uk) + λH(u)} (2.4.23)

= min
u
{E(u)− < pk, u− uk > +λH(u)}, (2.4.24)

where D
p
E(u, v) = E(u) − E(v)− < p, u − v >, with p is in the subgradient of E at v, and

pk+1 = pk −∇H(uk+1) in [5].

In [47], authors analyzed the convergence of Bregman iteration, especially, under fairly

weak assumptions on E and H, that H(uk) → 0 as k → 0. There is a convergence result

restated in [22].

Theorem 2.4.1 Assume that E and H are convex functionals, and that H is differentiable.

We also assume that solutions to the sub-problems in (2.4.23) exist. We then have

1. Monotonic decrease in H: H(uk+1) 6 H(uk),

2. Covergence to a minimizer of H: H(uk) 6 H(u∗) + E(u∗)/k,

where u∗ is the minimizer of H(u).
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2.4.2.2 Constrained Optimization

For problem

argmin
u
E(u) such that Au = b, (2.4.25)

where A is a linear operator and b is a vector. By applying formula (2.4.22), it can be

transformed to unconstrained problem using ‖ · ‖2,

argmin
u
{E(u) +

λ

2
‖ Au− b ‖22}, (2.4.26)

where λ is a positive constant.

Furthermore, we apply Bregman iteration (2.4.23) to derive,

uk+1 = min
u
{E(u)− < pk, u− uk > +

λ

2
‖ Au− b ‖22}, (2.4.27)

pk+1 = pk − λAT (Auk+1 − b), (2.4.28)

where AT is the transpose of A, and < ·, · > is the normal inner product. When A is linear,

it is equivalent to solve,

uk+1 = min
u
{E(u) +

λ

2
‖ Au− b ‖22}, (2.4.29)

bk+1 = bk + b− Auk. (2.4.30)

The following theorem from [22] states that the solution, u∗, through this process (2.4.29)

- (2.4.30), is the solution of (2.4.25).

Theorem 2.4.2 Let H: Rd → R be convex, and A: Rn → Rm be linear. Consider the

algorithm (2.4.29) - (2.4.30). Suppose that u∗, satisfies that Au∗ = b. Then u∗ is a solution
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to the original constrained problem (2.4.25).

2.4.2.3 Split Bregman

Bregman iteration is a good tool for solving optimization problems, however, it needs to

solve the minimization

D
p
E(u, uk) + λH(u)

in (2.4.23) at each iterative step, which can computationally expensive. The split Bregman

iteration method introduces an intermediate variable which makes the ROF model separable

and easier to solve. Instead of considering the original Bregman problem as a constraint

problem, according to [22], the split Bregman method aims to solve the unconstrained prob-

lem

argmin
u,d
{|d|+H(u) +

λ

2
‖ Φ(u)− d ‖22}. (2.4.31)

By introducing E(u, d) = |d| + H(u), and A(u, d) = d − Φ(u), it is clear that (2.4.31)

is simply an implementation of (2.4.26). Correspondingly, we should have the following

iteration,

(uk+1, dk+1) = argmin
u,d
{E(u, d)− < pku, u− uk > − < pkd, d− d

k > +
λ

2
‖ Φ(u)− d ‖22},

pk+1
u = pku − λ(∇Φ)T (Φ(uk+1)− dk+1),

pk+1
d = pkd − λ(dk+1 − Φ(uk+1)).

Similarly, following (2.4.29) - (2.4.30), by introducing bk = pkd/λ, we notice that pkd = λbk,

and pku = −λ(∇Φ)T bk. Then it leads to the equivalent algorithm from [41], by setting d0 = 0,
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u0 = 0, and b0 = 0,

dk+1 = argmin
d
{1

λ
J(d)− < bk, d− dk > +

1

2
‖ Φ(uk)− d ‖22, } (2.4.32)

uk+1 = argmin
u
{1

λ
H(u)+ < bk,Φ(u− uk) >

+
1

2
‖ dk+1 − Φ(uk) ‖22}, (2.4.33)

bk+1 = bk − (dk+1 − Φ(uk+1)). (2.4.34)

Convergence theorem is derived in [9], for the case of J(u) = µ ‖ u ‖1, also restated in

[41] as below,

Theorem 2.4.3 Assume that there exists at least one solution u∗ of

argmin
u
{J(Φ(u)) +H(u)}, (2.4.35)

where J is convex but not necessarily differentiable, H is convex and differentiable, and Φ

is a linear operator. Then we have the following properties for the split Bregman iteration

(2.4.32) - (2.4.34),

lim
k→∞

{µ ‖ Φ(uk) ‖1 +H(uk)} = µ ‖ Φ(u∗) ‖1 +H(u∗). (2.4.36)

Furthermore,

lim
k→∞

‖ uk − u∗ ‖2= 0,

if u∗ is the unique solution.
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2.4.3 Proximity Operator

We apply this method in BSS of audio signal processing to solve the cancellation kernels. The

major conclusions of proximity operator are listed in this chapter. The detailed algorithm is

the the next chapter and numerical results are provided at the end.

Proximity operator was firstly introduced by Moreau in [34], and further investigated in

[35] [36]. Combettes also contributed to the initiation of using proximity operator in [14].

Micchelli, Shen and Xu applied proximity operator method for BSS in image processing

[37, 38]. They also provided a detailed analysis in comparing proximity operator with split

Bregman in image processing to show that proximity operator is better than split Bregman.

2.4.3.1 Definitions

Definition 2 Let ψ be a real-valued convex function on Rd. The proximity operator of ψ is

defined for x ∈ Rd by

proxψx := argmin{1

2
‖ u− x ‖22 +ψ(u) : u ∈ Rd}. (2.4.37)

In ROF model (2.4.9), the major difficulty is in minimizing the total variation term |·|TV .

C. Micchelli, L. Shen, and Y. Xu proposed a different way of solving the ROF model for

image processing, [37, 38], and concluded that it is faster than split Bregman in the specific

form,

argmin
u
{1

2
‖ u− x ‖22 +µ|u|TV : u ∈ Rd}, (2.4.38)

where x ∈ Rd denotes the noisy signal, µ is the regularization parameter, by noting that

the solution of the ROF model can be viewed as the proximity operator of | · |TV evaluated
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at the noisy signal x. Since it cannot be easily computed, it is treated that | · |TV is the

composition of convex function, such as the norm ‖ · ‖1 for the anisotropic total-variation

or a certain combination of the norm ‖ · ‖2 for the isotropic total variation, with a linear

transformation (the first-order difference operator). This approach will be adopted in next

chapter for solving BSS accoustic signal processing.

Definition 3 Let ψ be a real-valued convex function on Rd. The subdifferential of ψ at

x ∈ Rd is defined by

∂ψ(x) := {y : y ∈ Rd and ψ(z) > ψ(x)+ < y, z − x > for all z ∈ Rd}. (2.4.39)

Elements in ∂ψ(x) are called subgradients.

If λ > 0 and x ∈ R, then the well-known soft thresholding operator with 1
λ as the

threshold is,

prox 1
λ
|·|x = max{|x| − 1

λ
, 0}sign(x). (2.4.40)

Furthermore, if λ > 0 and x ∈ Rm, we have

prox 1
λ
‖·‖1

x = [prox 1
λ
|·|x1, prox 1

λ
|·|x2, . . . , prox 1

λ
|·|xm]T . (2.4.41)

It is apparent to directly verify that if ψ is a convex function on Rd and x ∈ Rd, then

y ∈ ∂ψ(x)
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if and only if

x = proxψ(x+ y).

2.4.3.2 Fixed Point Algorithm Based on Proximity Operator

For a convex function ϕ on Rm and an m × d matrix B, authors in [37] define a convex

function

ψ(x) := (ϕ ◦B)(x). (2.4.42)

Since the aim is to compute the proximity operator proxψ, i.e., proxϕ◦B , then consider the

minimization problem,

argmin
u
{1

2
‖ u− x ‖22 +(ϕ ◦B)(u) : u ∈ Rd}, (2.4.43)

where x ∈ Rd is given. Then the ROF model corresponds to special cases of this minimization

problem.

By replacing ψ with ϕ ◦B, we have following several properties:

proxϕ◦Bx ∈ x− ∂(ϕ ◦B)(proxϕ◦Bx), (2.4.44)

∂(ϕ ◦B) = BT ◦ (∂ϕ) ◦B, (2.4.45)

proxϕ◦Bx ∈ x−BT ∂ϕ(Bproxϕ◦Bx). (2.4.46)

By introducing the affine transformation A : Rm → Rm for all y ∈ Rm as

Ay := Bx+ (I − λBBT )y (2.4.47)
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for a fixed x ∈ Rd, then one can define the operator A : Rm → Rm given by

H := (I − prox 1
λ
ϕ

) ◦ A. (2.4.48)

Theorem 2.4.4 If ϕ is a convex function on Rm, B is a m× d matrix, x ∈ Rd and λ is a

positive number then

proxϕ◦Bx = x− λBT v (2.4.49)

if and only if v ∈ Rm is a fixed-point of H.

Theorem (2.4.4) shows that the minimization problem (2.4.43) corresponds to a fixed

point of H, which involves the proximity operator of the convex function 1
λϕ and a linear

transformation B. As a direct result, there is the following proposition.

Proposition 2.4.5 If ϕ is a convex function on Rm, B is a m× d matrix, x ∈ Rd and λ is

a positive number, then H has a fixed point.

For a Lipschitz continuous function ϕ with Lipschitz constant K that is

|ϕ(u)− ϕ(v)| 6 K ‖ u− v ‖, for all u, v ∈ Rm. (2.4.50)

Let Lipϕ represent the smallest constant K in this inequality. There is following lemma.

Lemma 2.4.6 If ϕ is a Lipschitz continuous convex function and y ∈ ∂ϕ(x) for some

x ∈ Rm, then

‖ y ‖∗6 Lipϕ, (2.4.51)

where ‖ · ‖∗ represents the dual norm.
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Let

Cϕ := {z : z ∈ Rm, ‖ z ‖∗6 Lipϕ/λ}. (2.4.52)

The following lemma is established in [37].

Lemma 2.4.7 If ϕ is a Lipschitz continuous convex function and B is an m × d matrix,

then H maps Rm into Cϕ. If λ is positive number, then all the fixed points of H are in Cϕ.

2.4.3.3 Nonexpansivity of H

Definition 4 A nonlinear operator P: Rd → Rd is called nonexpansive if

‖ P(x)− P(y) ‖26‖ x− y ‖2, (2.4.53)

for all x, y ∈ Rd.

P. Combettes, and V. Wajs in [15] proved that

‖ (I−proxψ)(x)−(I−proxψ)(y) ‖226< x−y, (I−proxψ)(x)−(I−proxψ)(y) > . (2.4.54)

By applying Cauchy-Schwarz inequality to (2.4.54), it shows I − proxψ is nonexpansive.

H is nonexpansive based on next lemma.

Lemma 2.4.8 If ϕ is a convex function on Rd, B is an m × d matrix, and λ is positive

number such that ‖ I − λBBT ‖26 1, then H is nonexpansive.

Definition 5 A nonlinear operator P: Rd → Rd is called nonexpansive averaged if there

are a number κ ∈ (0, 1) and a nonexpansive operator Q such that

P = κI + (1− κ)Q. (2.4.55)
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P is specifically called nonexpansive κ-averaged. By direct computation, one can verify that

the composition of two nonexppansive averaged operators is also nonexpansive averaged.

Then these general results can be applied on H defined in (2.4.48).

Proposition 2.4.9 If ϕ is a convex function on Rd, B is an m×d matrix, and λ is positive

number such that ‖ I−λBBT ‖26 1, then H is nonexpansive κ-averaged for some κ ∈ (0, 1).

In order to show the convergence, we need to construct Picard sequence. For an operator

P : Rm → Rm, with initial point v0 ∈ Rm, we have the following Picard sequence,

vn+1 := P(vn), (2.4.56)

for n ∈ N. For κ ∈ (0, 1), the definition of κ-averaged operator Pκ for P is given by

Pκ := κI + (1− κ)P . (2.4.57)

Let P0 = P .

Z. Opial in [45], shows the convergence of the Picard sequence of Pκ.

Lemma 2.4.10 If C is a closed and convex set in Rm and P : C → C is a nonexpansive

mapping having at least one fixed point, then for κ ∈ (0, 1), {Pk} is nonexpansive, maps C to

itself, and has the same set of the fixed point as P. Moreover, for any u ∈ C and κ ∈ (0, 1),

the Picard sequence of Pκ converges to a fixed point of P.

Correspondingly, to H, authors in [37] came up with the result.

Theorem 2.4.11 If ϕ is a Lipschitz continuous convex function, B is an m×d matrix, and

λ is positive number, such that ‖ I − λBBT ‖26 1, then for any initial point in Cϕ and any

κ ∈ (0, 1), the Picard sequence of Hκ converges to a fixed point of H.
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As a consequence of (2.4.9), the authors in [37] derived the following convergence theorem

with a slighly stronger condition.

Theorem 2.4.12 If ϕ is a Lipschitz continuous convex function, B is an m × d matrix,

and λ is positive number, such that ‖ I − λBBT ‖2< 1, then for any initial point in Cϕ, the

Picard sequence of H converges to a fixed point of H.

They also showed that H is averaged nonexpansive as far as

λ <
1

4 sin2
(N−1)π

2N

(2.4.58)

where N =
√
d.

2.4.3.4 Algorithm

By setting ϕ(x) = µ ‖ x ‖1, the ROF model (2.4.9) becomes

argmin
u
{1

2
‖ u− x ‖22 +µ ‖ Bu ‖1: u ∈ Rd}. (2.4.59)

The algorithm can be generalized in [37] as

Given x; λ < 1

4 sin2
(N−1)π

2N

, µ > 0, κ ∈ [0, 1)

Initialize: v0 = 0

For n = 0, 1, . . .

vn+1 := κvn + (1− κ)(I − proxµ
λ
‖·‖1

)(Bx+ (I − λBBT )vn)

End

Write the output of vn from the above loop as v∞ and compute

proxϕ◦Bx = x− λBT v∞.
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The convergence is guaranteed by the following proposition.

Proposition 2.4.13 If λ > 0 and a, x0 ∈ Rm, then the iterative scheme

xk+1 = (I − prox 1
λ
‖·‖1

)(xk + a), k = 0, 1, . . . , (2.4.60)

converges to its limit in a finite number of steps and for i = 0, 1, . . . ,m.

2.4.4 Singular Value Decomposition

In this part we will only review some important properties of singular value decomposition.

The detailed techniques by applying singular value decomposition are provided in the next

chapter.

Singular value decomposition (SVD) is a classic topic in matrix analysis and numeric

computation. Compared with previous iteration methods, it solves the solution of the system

directly. The detailed methodology and adjustment will be provided in the next chapter as

our new approach to ROF model.

For a given m× n real or complex matrix A, there exist a factorization form of A,

A = UΣV ∗, (2.4.61)

where U is a m×m unitary matrix, Σ is a m×n rectangular diagonal matrix with nonnegative

real numbers on the diagonal, and V ∗ is the conjugate transpose of V as a n × n unitary

matrix.

The diagonal entries σj of Σ are so called singular values of A, by convention arranged

in non-increasing order.
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SVD can be used for computing the pseudoinverse of a matrix A. Indeed, the pseudoin-

verse of matrix A with its SVD A = UΣV ∗ is

A+ = V Σ+U∗,

where Σ+ is the pseudoinverse of Σ, formed by replacing every non-zero diagonal entry by

its reciprocal and transposing the resulting matrix, and U∗ is the conjugate transpose of U .

Another important property of SVD is that if A is a symmetric real n× n matrix, there

is an orthogonal matrix V and a diagonal matrix D such that A = V DV T . Then this is

also the eigenvalue decomposition. The diagonal elements of D are the eigenvalues of A in

descending order.

In general, if a matrix A with size m× n, then ATA is a symmetric n× n matrix. The

singular value decomposition of ATA can be written as

ATA = V DV T . (2.4.62)
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Chapter 3

Technical Discussions

3.1 Review of other algorithms

3.1.1 Split Bregman iteration

Based on previous discussion in 2.4.2.3, we use the model provided in [22], by Goldstein and

Osher, instead of ROF model (2.4.9),

argmin
u
{µ

2
‖ Au− f ‖22 +J(u)}. (3.1.1)

Equivalently,

argmin
u
{1

2
‖ Au− f ‖22 +µJ(u)}. (3.1.2)

3.1.1.1 Algorithm of Split Bregman

By applying split Bregman schemes (2.4.32) - (2.4.34), we have the scheme,

(uk+1, dk+1) = argmin
u,d

E(u, d)− < pku, u− uk > − < pkd, d− d
k > +

λ

2
‖ Φ(u)− d ‖22,

pk+1
u = pku − λ(Φ)T (Φ(uk+1)− dk+1),

pk+1
d = pkd − λ(dk+1 − Φ(uk+1)).

Let bk = pkd/λ, we have pkd = λbk and pku = −λΦT bk. Then the general split Bregman
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iteration is,

dk+1 = argmin
d

1

λ
J(d)− < bk, d− dk > +

1

2
‖ Φ(uk)− d ‖22,

uk+1 = argmin
u

1

λ
H(u)+ < bk,Φ(u− uk) > +

1

2
‖ dk+1 − Φ(uk) ‖22,

bk+1 = bk − (dk+1 − Φ(uk+1)).

In [40, 41, 63, 64], authors used the tansformed (3.1.1) to

argmin
u
{1

2
‖ Au− f ‖22 +µ ‖ u ‖1}. (3.1.3)

In this case, J(u) = µ ‖ u ‖1, Φ = I, and H(u) = 1
2 ‖ Au− f ‖

2
2. The iteration are

dk+1 = argmin
d

µ

λ
‖ d ‖1 − < bk, d− dk > +

1

2
‖ d− uk ‖22 (3.1.4)

uk+1 = argmin
u

1

2λ
‖ Au− f ‖22 + < bk, u− uk >

+
1

2
‖ dk+1 − u ‖22 (3.1.5)

bk+1 = bk − dk+1 + uk+1. (3.1.6)

By solving (3.1.4) and (3.1.5) explicitly, it results in a simple algorithm,

Initialize u0 = d0 = b0 = 0

While ‖ uk+1 − uk ‖2> ε

dk+1 = shrink(uk + bk, µλ)

uk+1 = (εI + ATA)−1(AT f + λ(dk+1 − bk))

bk+1 = bk − dk+1 + uk+1

end While
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where shrink(v, t) = (τt(v1), τt(v2), · · · , τt(vNL))T with τt(x) = sign(x) max{|x| − t, 0}.

The shrink(v, t) is a soft threshhold function. Clearly, the step

uk+1 = (εI + ATA)−1(AT f + λ(dk+1 − bk)) (3.1.7)

brings in error as a regularization term. We will compare this with the the SVD method

applied in the later part.

3.1.1.2 Two Sources and Two Mixtures

Let us start with simple determined case, 2 sources and 2 mixtures, following the same

strategy as [40], [41], [63], [64]. As defined previously, 2 sources are background source S1

and foreground source S2, 2 mixtures are X1 and X2. It leads to mixing model

Xj = aj,1 ∗ S1 + aj,2 ∗ S2, (3.1.8)

where j = 1, 2. In order to extract foreground source S2, as we assumed previously, S2 = 0,

where a 6 t 6 b, we have to find cancelation kernels u1 and u2, such that

u1 ∗X1 + u2 ∗X2 = u1 ∗ a1,1 ∗ S1 + u2 ∗ a2,1 ∗ S1 ≈ 0. (3.1.9)

An ideal pair of solutions are

u1 ≈ a2,1, u2 ≈ −a1,1. (3.1.10)

Based on previous discussion in quadratic programming, we can get the optimization
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problem as

(u∗1, u
∗
2) = arg min

(u1,u2)

1

2
‖ u1 ∗X1 + u2 ∗X2 ‖22

+µ(‖ u1 ‖1 + ‖ u2 ‖1) (3.1.11)

subject to u1(1) + u2(1) = 1.

Equivalently, the authors proposed problem

(u∗1, u
∗
2) = arg min

(u1,u2)

1

2
‖ u1 ∗X1 + u2 ∗X2 ‖22 +

η2

2
(

2∑
j=1

uj(1)− 1)2

+µ(‖ u1 ‖1 + ‖ u2 ‖1). (3.1.12)

In matrix form, (3.1.12) corresponds to (3.1.3) as

u∗ = argmin
u
{1

2
‖ Au− f ‖22 +µ ‖ u ‖1}, (3.1.13)

where,

A =



X1(1) X1(2) · · · · · · X1(m− 2) X1(m− 1) η

X1(1) · · · · · · X1(m− 3) X1(m− 2) 0

. . .
...

...

X1(1) · · · X1(m− d) 0

X2(1) X2(2) · · · · · · X2(m− 2) X2(m− 1) η

X2(1) · · · · · · X2(m− 3) X2(m− 2) 0

. . .
...

...

X2(1) · · · X2(m− d) 0



T

,
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f = [0 0 · · · 0 η]T ,

X1 = [X1(1) X1(2) · · · X1(m− 2) X1(m− 1)]T ,

X2 = [X2(1) X2(2) · · · X2(m− 2) X2(m− 1)]T ,

m − 1 represents the length of the audio signal, f with size m × 1, and d represents the

length of the cancellation kernel, X1 and X2 are two mixtures.

3.1.1.3 Three Sources and Three Mixtures

Similarly, in 3 sources and 3 mixtures case, we should have

(u∗1, u
∗
2, u
∗
3) = arg min

(u1,u2,u3)

1

2
‖ u1 ∗X1 + u2 ∗X2 + u3 ∗X3 ‖22 +

η2

2
(

3∑
j=1

uj(1)− 1)2

+µ(‖ u1 ‖1 + ‖ u2 ‖1 + ‖ u3 ‖1). (3.1.14)
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Corresponding to (3.1.13),

A =



X1(1) X1(2) · · · · · · X1(m− 2) X1(m− 1) η

X1(1) · · · · · · X1(m− 3) X1(m− 2) 0

. . .
...

...

X1(1) · · · X1(m− d) 0

X2(1) X2(2) · · · · · · X2(m− 2) X2(m− 1) η

X2(1) · · · · · · X2(m− 3) X2(m− 2) 0

. . .
...

...

X2(1) · · · X2(m− d) 0

X3(1) X3(2) · · · · · · X3(m− 2) X3(m− 1) η

X3(1) · · · · · · X3(m− 3) X3(m− 2) 0

. . .
...

...

X3(1) · · · X3(m− d) 0



T

.

f = [0 0 · · · 0 η]T ,

X1 = [X1(1) X1(2) · · · X1(m− 2) X1(m− 1)]T ,

X2 = [X2(1) X2(2) · · · X2(m− 2) X2(m− 1)]T ,

X3 = [X3(1) X3(2) · · · X3(m− 2) X3(m− 1)]T ,

where m − 1 represents the length of the audio signal; f is in size m × 1; d represents the

length of the cancellation kernel; X1, X2, and X3 are three different mixtures.
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3.1.1.4 n sources and n mixtures

In general, if there n sources and n mixtures, we are going to solve the following problem,

(u∗1, u
∗
2, u
∗
3, ..., u

∗
n) = arg min

(u1,u2,u3,...,un)

1

2
‖

n∑
j=1

uj ∗Xj ‖22 +
η2

2
(
n∑
j=1

uj(1)− 1)2

+µ
n∑
j=1

‖ uj ‖1 . (3.1.15)

Corresponding to (3.1.13),

A =



X1(1) X1(2) · · · · · · X1(m− 2) X1(m− 1) η

X1(1) · · · · · · X1(m− 3) X1(m− 2) 0

. . .
...

...

X1(1) · · · X1(m− d) 0

X2(1) X2(2) · · · · · · X2(m− 2) X2(m− 1) η

X2(1) · · · · · · X2(m− 3) X2(m− 2) 0

. . .
...

...

X2(1) · · · X2(m− d) 0

...
...

...
...

...
...

...

Xn(1) Xn(2) · · · · · · Xn(m− 2) Xn(m− 1) η

Xn(1) · · · · · · Xn(m− 3) Xn(m− 2) 0

. . .
...

...

Xn(1) · · · Xn(m− d) 0



T

.

49



f = [0 0 · · · 0 η]T ,

X1 = [X1(1) X1(2) · · · X1(m− 2) X1(m− 1)]T ,

X2 = [X2(1) X2(2) · · · X2(m− 2) X2(m− 1)]T ,

...

Xn = [Xn(1) Xn(2) · · · Xn(m− 2) Xn(m− 1)]T ,

where m − 1 represents the length of the audio signal; f is in size m × 1; d represents the

length of the cancellation kernel; {Xk}nk=1 are n different mixtures.

3.1.2 Proximity Operator

As previously mentioned in 2.4.3, the proximity operator has been used in image processing.

We use it to estimate cancellation kernels for BSS. In general, we consider the following

model

argmin
u
{1

2
‖ u− x ‖22 +(ϕ ◦B)(u)} (3.1.16)

Compared with the ROF model (2.4.9), specifically used in this case (2.4.38)

argmin
u
{1

2
‖ u− x ‖22 +µ|u|TV : u ∈ Rd},

clearly, one just needs to set up ϕ(x) = µ ‖ x ‖1 . Then | · |TV can be rewritten as

| · |TV =‖ · ‖1 ◦B. (3.1.17)
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Next, the problem becomes,

argmin
u
{1

2
‖ u− x ‖22 +µ ‖ Bu ‖1} (3.1.18)

3.1.2.1 Algorithm of proximity operator

Followed by (3.1.18), recall the algorithm mentioned in Section 2.4.3.4.

Given x; λ < 1

4 sin2
(N−1)π

2N

, µ > 0, κ ∈ [0, 1)

Initialize: v0 = 0

For n = 0, 1, . . .

vn+1 := κvn + (1− κ)(I − proxµ
λ
‖·‖1

)(Bx+ (I − λBBT )vn)

End

Write the output of vn from the above loop as v∞ and compute

proxϕ◦Bx = x− λBT v∞.

By solving v∞ and replacing the corresponding term in the last step, we have the following

algorithm.

Given x, λ < 1
4 sin−2(

(N−1)π
2N ), µ > 0, κ ∈ [0, 1)

Initialize u0 = 0

While ‖ uk+1 − uk ‖2> ε

uk+1 = κuk + (1− κ)(I − proxµ
λ
‖·‖1

)(Bx+ (1− λBBT )uk)

end While

u = (εI +BTB)−1BTx− uk+1.

where proxµ
λ
‖·‖1

x = (proxµ
λ
|·|1
x(1), proxµ

λ
|·|1
x(2), · · · , proxµ

λ
|·|1
x(d))T , with proxµ

λ
|·|1
x =

max{|x| − µ
λ , 0}sign(x), and εI is a regularization term.
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3.1.2.2 Application for BSS of Audio Signal Processing

In this part we change the algorithm in the form we can use to solve cancellation kernels.

Since the model from previous ROF model is (3.1.3), and by changing the parameters, we

should have

argmin
w
{1

2
‖ w − f ‖22 +µ ‖ w ‖1}. (3.1.19)

If we assume w = Au, there is an equivalent problem

argmin
u
{1

2
‖ Au− f ‖22 +µ ‖ Au ‖1}. (3.1.20)

Then we can transfer it to a similar problem,

argmin
u
{1

2
‖ u− (ATA)−1AT f ‖22 +µ ‖ (ATA)−1ATAu ‖1},

i.e.,

argmin
u
{1

2
‖ u− (ATA)−1AT f ‖22 +µ ‖ u ‖1}, (3.1.21)

where B = I.

By applying the algorithm in Section 3.1.2.1,

Initialize u0 = 0

While ‖ uk+1 − uk ‖2> ε

uk+1 = κuk + (1− κ)proxµ
λ
‖·‖1

((εI + (ATA))−1AT f + (1− λ)uk)

end While

u = (εI + (ATA))−1AT f − uk+1.

where proxµ
λ
‖·‖1

x = (proxµ
λ
|·|1
x(1), proxµ

λ
|·|1
x(2), · · · , proxµ

λ
|·|1
x(d))T , with proxµ

λ
|·|1
x =
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max{|x| − µ
λ , 0}sign(x), εI is a regularization term.

The proxµ
λ
‖·‖1

x function is a soft threshhold function which is the same as previously

mentioned in split Bregman algorithm 3.1.1.1. The step

u = (εI + (ATA))−1AT f − uk+1 (3.1.22)

also brings in error from a regularization term. At least this step is at the same level as

(3.1.7) in split Bregman. We can compare this with the the SVD method applied in the

later part.

3.1.2.3 Two Sources and Two Mixtures case

When we consider the determined two sources and two mixtures case, the matrix A is the

same as in Section 3.1.1.2.

A =



X1(1) X1(2) · · · · · · X1(m− 2) X1(m− 1) η

X1(1) · · · · · · X1(m− 3) X1(m− 2) 0

. . .
...

...

X1(1) · · · X1(m− d) 0

X2(1) X2(2) · · · · · · X2(m− 2) X2(m− 1) η

X2(1) · · · · · · X2(m− 3) X2(m− 2) 0

. . .
...

...

X2(1) · · · X2(m− d) 0



T

,
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f = [0 0 · · · 0 η]T ,

X1 = [X1(1) X1(2) · · · X1(m− 2) X1(m− 1)]T ,

X2 = [X2(1) X2(2) · · · X2(m− 2) X2(m− 1)]T ,

where m − 1 represents the length of the audio signal; f is in size m × 1; d represents the

length of the cancellation kernel; X1 and X2 are two mixtures.

3.1.2.4 Three Sources and Three Mixtures case

As three sources and three mixtures case, we have the same matrix A, and other correspond-

ing parameters as in Section 3.1.1.3.

3.1.2.5 n Sources and n Mixtures case

In general, for determined n sources and n mixtures case, the matrix A and other parameters

are defined as the same as in Section 3.1.1.4.

3.2 Quadratic Programming

3.2.1 Algorithm for Sparseness

The algorithm for the learning process is listed as followed. Assume the foreground sources

S1, . . . , SL are inactive (silent) when t ∈ [a+N, b].

Take [s1, e1] and [s2, e2] from [a+N, b], [s1, e1]
⋂

[s2, e2] = ∅.

for j = 1 : Q1

Randomly choose [s1,j , e1,j ] ⊂ [s1, e1] and [s2,j , e2,j ] ⊂ [s2, e2];
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while qnnz > C + nsp and nsp > 1

(a) Solve {bk} on [s1,j , e1,j ];

(b) Find its error by equation (2.4.12) on [s2,j , e2,j ];

(c) Force nsp = 0.1× qnnz smallest elements of {| bk |} be 0,

qnnz = number of nonzero elements in {bk}, qnnz = 0.9qnnz;

end

Record positions of nonzero elements in {bk} with minimum

error;

end

Get the frequency of all the positions in {bk} with nonzero values, Vfreq.

In our work, it turns out Q1 > 40, since it does not work well in some cases if Q1 < 40.

For intervals [s1,j , e1,j ] and [s2,j , e2,j ], the length should be at least 1 second.

The algorithm for optimal cancelation kernels described as the second stage is as below.

Divide [s1, e1] into Q2 equal subintervals I1, . . . , IQ2
;

nVfreq
is the number of nonzero elements of Vfreq;

while q 6 C and q 6 nVfreq

(a) Take q highest frequency positions of {bk} by Vfreq and

force the rest to be 0;

(b) Compute {bk} on [s1, e1];

(c) Solve error on I1, . . . , IQ2
by (2.4.12) and their mean, Errmean;

(d) q = 1.1q;

end

Get {bk} with minimum Errmean;

By equation (1.2.6) and (2.3.7), foreground sources could be extracted.
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Quadratic programming is a good tool to provide good estimate of cancellation kernels

[61]. Our approach aims to bring sparseness to the cancellation kernels. It works theoretically

which can be proved by the numerical experiments in the next chapter via the artificially

mixed audios. However, for the real life recordings, it only works OK on two sources two

mixtures case.

3.3 Singular Value Decomposition

Other than approximation methods mentioned above, we can also see the problem from

another angle. We can solve the problem by direct method, such as singular value decom-

position (SVD). Let us consider the following problem.

argmin
u
{1

2
‖ Au− f ‖22}

where u = (uT1 , u
T
2 , . . . , u

T
n )T , subject to

∑n
j=1 uj(1) = 1.

3.3.1 Our Methodology

We indeed just need to solve the equation,

Au = f. (3.3.23)

Since matrix A can rarely be a square matrix, in order to solve (3.3.23), we need to

transform it to

ATAu = AT f. (3.3.24)
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As mentioned previously 2.4.62, ATA is a symmetric positive definite matrix. Thus we

apply SV D method to solve it.

V DV T = ATA. (3.3.25)

Moreover, as a matrix A has its own SVD

A = UΣV T . (3.3.26)

Matrix D = ΣTΣ.

So

V DV Tu = AT f (3.3.27)

=⇒ u = V D−1V TAT f (3.3.28)

=⇒ u = V D−1V TV ΣUT f (3.3.29)

=⇒ u = V D−1ΣUT f. (3.3.30)

Theoretically (3.3.28) should be perfect for solving the problem (3.3.23). Unfortunately,

the singular values of ATA are not well distributed, which means the condition number

of ATA is very large. This results in a large error, sometimes may also make the system

unsolvable.

As we can know from SVD, the diagonal elements of the matrix D are all the singular

values of ATA.

diag(D) = [σ1, σ2, . . . , σn]T , (3.3.31)

in descending order. Similarly as previous in Section 3.1.2.2, we need to add a regularization
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term to the diagonal of matrix D. Instead of using εI, we can adjust the diagonal of this

relaxation matrix more specifically correspond to D.

Since the first k values of D, σ1, σ2, . . . , σk are the parts which will not cause a huge

problem, starting from the (k+ 1)th item of the diagonal of D, we add a regularization term

to each corresponding term in the diagonal of D. Then,

diag(D) := [σ1, σ2, . . . , σk, σk+1 + ε2k+1, . . . , σn + ε2n]T . (3.3.32)

This will definitely give a more accurate computational result, compared with only adding

a regularization term to all the items in the diagonal of D. The technique of adding a

regularization term to all diagonal elements is equivalent as solving the inverse term (εI +

ATA)−1 of the regularization step (3.1.7) in split Bregman and the same part of (3.1.22)

in proximity operator. It clearly indicates that split Bregman and proximity operator may

take same amount of time to solve the inverse term.

This idea also inspires that we can use the special property of D−1Σ to reduce the

computational time from above technique. Because D = ΣTΣ, we can estimate that the

diagonal elements of D−1Σ are around { 1√
σk
} level. The following graph is a portion of the

plot for { 1
σk
}.
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Figure 1: Plot of { 1
σk
}.

We can pre-select a positive number ε0, then there exists a K such that
√
σK+1 6 ε0 <

√
σK . Then use the value of the tangent line to replace the left part of the plot.

0 0.02 0.04 0.06 0.08 0.1
0

100

200

300

400

500

600

700

800

900

1000

Figure 2: Plot of { 1
σk
} with tangent line.

In our computation, we realize this technique by creating the tangent line to the plot of

1
σk

at point (σK , 1
σK

). The corresponding slope at that point is − 1
σ2K

. By algebra, we can
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find the equation of the line in point slope form

y = − 1

σ2K
x+

2

σK
. (3.3.33)

Thus, we can replace the 1
σj

element for j > K + 1 in D−1 as − 1
σ2K

σj + 2
σK

, which also

means we can replace σj with 1

− 1
σ2K

σj+
2
σK

.

Since 1

− 1
σ2K

σj+
2
σK

=
σ2K

−σj+2σK
, and {σk}nk=1 decays dramatically fast, it can be derived

as
σ2K

−σj+2σK
≈ σK

2 for large j.

Based on our numerical examples, especially the real life recordings, the ratio
σk
σ1
≈ 10−4

when 150 6 k 6 200 and the max delay is 230. We can simply replace σj with
σK
2 when j

is large enough. In our numerical results, we use σj =
σK
2 when j > 5K

4 .

In general, we can redefine the diagonal elements in the matrix D

dj,j =



σj if j 6 K,

σ2K
−σj+2σK

if K 6 j < 5K
4 ,

σK
2 otherwise,

where 1 6 j 6 n.
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3.3.2 Two Sources and Two Mixtures

In the determined two sources and two mixtures case, the matrix A and other corresponding

parameters are the same as in Section 3.1.1.2.

A =



X1(1) X1(2) · · · · · · X1(m− 2) X1(m− 1) η

X1(1) · · · · · · X1(m− 3) X1(m− 2) 0

. . .
...

...

X1(1) · · · X1(m− d) 0

X2(1) X2(2) · · · · · · X2(m− 2) X2(m− 1) η

X2(1) · · · · · · X2(m− 3) X2(m− 2) 0

. . .
...

...

X2(1) · · · X2(m− d) 0



T

,

f = [0 0 · · · 0 η]T ,

X1 = [X1(1) X1(2) · · · X1(m− 2) X1(m− 1)]T ,

X2 = [X2(1) X2(2) · · · X2(m− 2) X2(m− 1)]T ,

where m − 1 represents the length of the audio signal; f is in size m × 1; d represents the

length of the cancellation kernel; X1 and X2 are two mixtures.
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3.3.3 Three Sources and Three Mixtures

In three sources and three mixtures case, the matrix A and other corresponding parameters

are the same as in Section 3.1.1.3.

3.3.4 n Sources and n Mixtures

In general, for n sources and n mixtures case, the matrix A and other parameters are defined

the same as in Section 3.1.1.4.
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Chapter 4

Numerical Results

In this chapter, we provide several numerical experiments, most of them are from real life

recordings. The artificial mixed audios are only used for quadratic programming to show

that it works theoretically.

Based on the performance, we can conclude that our modified SVD is the best, and

proximity operator is slightly better than split Bregman in computational time.

4.1 Numerical Example of Quadratic Programming

4.1.1 Numerical Examples of Two Sources and Two Mixtures

4.1.1.1 Example 1

In this example, the background music starts first. The desired foreground source is silent

for a few seconds, and it is completely overwhelmed by the background music. Based on

the work [61], we can require cancellation kernels to be non-negative, or only few of them

being negative, in quadratic programming. In this way, we will not see some cancelation

kernels with large magnitude in negative directions, which also make more sense, because

sound sources are more reflected than absorbed in normal room condition. The mathematical

theory behind this scenario definitely deserves further investigation, such as [65]. However,

it is not a part we focuse on in this study.
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In order to solve it, several parameters have taken the following values, the sample fre-

quency SF = 16000Hz, the length of each cancellation kernel d = 230, the learning time

interval [14, 15], the percentage of non zero cancellation kernels r = 15%. Moreover, 10%

of all these non zero cancellation kernels are negative values to represent the absorptions.

The figure below shows the two mixtures before separation and the normalized result after

removal of the background music. In order to pick the important cancellation elements, the

iterative selection has been run 80 times. The whole process takes 170 seconds.
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Figure 3: Recorded mixtures and result after removal of background music.

The following figure shows the value of the corresponding cancelation kernels.
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Figure 4: Cancelation kernels.

It looks like the result is not very good based on the third plot of the normalized result.
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However, the truth is that the result is not as expected, even if we did separate the foreground

source. The foreground source can be heard, and it is not overwhelmed by background music

compared with original mixture. But there is still a defect that the background noise is a

little loud. The reason is that the background music is so loud compared to the foreground

source. If we need better result we have to use larger delay or longer learning time interval,

which will sacrifice the computational time.

This can be shown in the spectrogram plot below by STFT and Hann window. The

widow size is 512 with 500 overlaps. The first plot is the original mixture during the time

interval [15, 17], the other one is the result after removal the background during the same

time interval. We can see from the figure that the spectrogram of the foreground source

can be clearly seen from the second plot between the time interval [16, 16.5], while it can be

hardly seen in the first plot.

Figure 5: Spectrogram.

In order to evaluate the performance, a new quantity, relative error, is introduced, and

65



defined as,

{
2×

∑
a+N6t6b[A

TF (t)−BTG(t)]2∑
a+N6t6b[(A

TF (t))2 + (BTG(t))2]
}
1
2 .

The relative error of this example is 23.34%.

4.1.1.2 Example 2

In this example, the background music starts first. The desired foreground source is silent

for a few seconds, and it is a little weaker than the background music.

Same values for the parameters are taken in the computation, the sample frequency

SF = 16000Hz, the length of each cancellation kernel d = 230, the learning time interval

[14, 15], percentage of non zero cancellation kernels r = 15%, and 10% of these cancellation

kernels are negative. The iterative selection has been run 80 times.

The figure below shows the two mixtures before separation and result after removal of

the background music. It takes 160 seconds to complete the computation.
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Figure 6: Recorded mixtures and result after removal of background music.
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Figure 7: Cancelation kernels.

The corresponding spectrogram of time interval [15, 17] when the foreground source

started is also shown below by applying STFT and Hann window function. Same as the

previous example, the widow size is 512 with 500 overlaps. The first plot is for the original

mixture, and the other one is for the removal result. In the first one it can hardly tell the

difference between the background music and the foreground source. In the second plot, it

clearly shows the foreground source started between time interval [15.5, 16], while the back-

ground music has been removed to a large extend. We can see this fact from the spectrogram

of the foreground source in the second plot.
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Figure 8: Spectrogram.

The relative error of this example is 22.48%.

4.1.1.3 Example 3

In this example, the audio file is artificially mixed, not from real recordings. There are two

sources being used. One is a background music, and the other one is a human speech.

By randomly choosing the sample frequency SF = 16000Hz, the length of each can-

cellation kernel d = 230, the percentage of non zero cancellation kernels r = 15%, and

first element of the cancellation kernel non-zero, and 10% of these cancellation kernels are

negative, it applies the convolution formula to mix the artificial recordings.

Similar as Example 1, the backgound music starts first. The desired foreground source

is silent for a few seconds, and is not overwhelmed by the background music.

All the parameters are taken the same values for solving the system, while the learning

time interval used is [9, 10]. The figure below shows the two mixtures before separation and
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result after removal of the background music without any normalization.
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Figure 9: Artificial mixtures and result after the removal of background source.

Clearly, the background music has been successfully completely removed. It shows the

fact that this methodology definitely works theoretically.

The following figure shows the value of the corresponding cancelation kernels.
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Figure 10: Cancelation kernels.

The cancellation kernels are not as ideal as expected. It only needs to pick a few elements

from cancellation kernels to solve the system. This is not a surprise, since the artificial

mixtures are simply formed by using the convolution notation. The optimization problem

can be solved by other estimations.
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The relative error in this example is less than 0.19%.

4.1.2 Numerical Examples of Three Sources and Three Mixtures

4.1.2.1 Example 4

In this example, three single channel speech signals are artificially mixed to make 3 differ-

ent mixtures. In each of them, the third source S3 is silent for a few seconds, and it is

overwhelmed by other backgrounds.

The artificial mixing process is similar to previous example in 4.1.1.3. The same values of

parameters are taken for producing mitures, the sample frequency SF = 16000Hz, the length

of each cancellation kernel d = 230, percentage of non zero cancellation kernels r = 15%,

and first element of the cancellation kernel non-zero, and 10% of these cancellation kernels

are negative.

The parameters for solving the system are the same as the mixing process, while the time

interval [9, 10].

The figure below shows that three mixtures before separation and result after the removal

of two background sources.
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Figure 11: 3 Artificial mixtures and result after the removal of background source.

Based on the fourth plot, the marjority energy of the first two backgrounds is clearly

removed, though there is still some small portion left.

The figure below shows the cancelation kernels.
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Figure 12: Cancelation kernels.

The cancellation kernels are not as ideal as expected. It only needs to pick a few elements

from cancellation kernels to provide the solution. This is not a surprise, since the artificial

mixtures are only simply formed by using the convolution notation. The optimization prob-

lem can be solved by other estimations.

The relative error is 3.3%. It takes 80 seconds to finish eliminating background signals.

4.2 Numerical Examples of SVD Method

In this part, we apply our modified SVD method developed in Section 3.3 to the same

examples of real life recordings. In the following numerical examples, it will demonstrate

that our modified SVD is a very fast algorithm and provides good results.
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4.2.1 Two Sources Two Mixtures case

4.2.1.1 Example 5

By using the same audio recordings from Example 1 in section 4.1.1.1, we solve the problem

by using SVD method.

For the corresponding parameters, sample frequency SF = 16000Hz, length of each

cancellation kernel d = 230, the time interval [14, 15], ε0 is the value
√
σK when

σK+1
σ1

6

10−4 6
σK
σ1

.

Then we have the following result as shown in the figure. It only takes 0.158 to solve the

SVD process to the sigular value σK with relative error 5.1%.
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Figure 13: Recorded mixtures and results after the removal of background source.

The corresponding spectrogram of time interval [15, 17] when the foreground source

started is also shown below by applying STFT and Hann window function. Same as the

previous example, the widow size is 512 with 500 overlaps.
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Figure 14: Spectrogram.

The first one is for the original mixture, while the second one is for the result. From the

second plot, the spectrogram of the foreground source can be clearly seen between the time

interval [16, 16.5], while it can hardly seen in the first plot. Compared with Example 1, a lot

low frequency energy has been removed compared with the second plot in Figure 5, especially

for the frequencies between [0, 500]. So there is definitely improvement from Example 1 to

Example 5.

4.2.1.2 Example 6

Using the same audio recordings from Example 2 in section 4.1.1.2, we solve the problem by

using SVD method.

For the corresponding parameters, sample frequency SF = 16000Hz, length of each

cancellation kernel d = 230, the time interval [14, 15], ε0 is the value
√
σK when

σK+1
σ1

6

10−4 6
σK
σ1

.
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Then we have the following result as shown in the figure. It takes 0.172 to solve the SVD

process to the sigular value σK with relative error 6.02%
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Figure 15: Recorded mixtures and results after the removal of background source.

The following part uses STFT and Hann window function to check the spectrogram of

the mixture and result between time interval [15, 17]. Same as the previous example, the

widow size is 512 with 500 overlaps.

Figure 16: Spectrogram.
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The first plot is for the original mixture, while the second one is for the result. From the

second plot, the spectrogram of the foreground source can be clearly seen between the time

interval [15.5, 16], while the majority of the first source has been eliminated. Compared with

Example 2, a lot low frequency energy has been removed compared with the second plot in

Figure 8, especially for the frequencies between [0, 500]. So there is definitely improvement

from Example 2 to Example 6.

4.2.2 Three Sources Three Mixtures

4.2.2.1 Example 7

In this example, the first source is music; the other two sources are speeches of two people.

The second source starts a few seconds later than the first source. And the third source

starts a few seconds later than the second one. We use our modified SVD method to remove

first tow sources and keep the third source.

For the corresponding parameters, sample frequency SF = 16000Hz, length of each

cancellation kernel d = 230, the time interval [18, 19], ε0 is the value
√
σK when

σK+1
σ1

6

10−4 6
σK
σ1

.

The following figures are the original audio signals and result from the above method.
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Figure 17: Recorded mixtures and results after the removal of background sources.

Clearly, the first two sources have been largely removed in the fourth plot. Since we

normalized the result to the maximum of 0.95, it may look like that there is still a large

portion of first two sources in the result. In fact, the result is very good. The relative error

is 11.2%.

4.2.2.2 Example 8

In this example, all three sources are human speeches. The second source starts a few seconds

later than the first one. And the third one starts a few seconds later than the second one.

We use the SVD method to remove the first two sources and extract the third one.

For the corresponding parameters, sample frequency SF = 16000Hz, length of each

cancellation kernel d = 230, the time interval [14, 15], ε0 is the value
√
σK when

σK+1
σ1

6
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10−4 6
σK
σ1

.

The following figures are the original audio signals and results from this method.
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Figure 18: Recorded mixtures and results after the removal of background sources.

Based on above plot, the first two sources have been largely removed in the fourth plot.

Since we normalized the result to the maximum of 0.95, it may look like that there is still a

large portion of first two sources in the result. In fact, the result is very good. The relative

error is 14.6%.

In general, our modified SVD provides very good results.

4.3 Numerical Examples of Split Bregman Iteration

In the following examples, we choose µ = ε = 10−3, η = 1, λ = 2µ same as [40].
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4.3.1 Two sources two mixtures case

4.3.1.1 Example 9

By using the same audio recordings from Example 1 in section 4.1.1.1, we have the following

result as shown in the Figure 19.
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Figure 19: Recorded mixtures and result after the removal of background music.

The relative error for this example is 4.5%.

4.3.1.2 Example 10

By using the same audio recordings from Example 2 in section 4.1.1.2, we have the following

result as shown in the Figure 20.
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Figure 20: Recorded mixtures and result after the removal of background music.

The relative error for this example is 4.1%.

4.3.2 Three sources three mixtures

4.3.2.1 Example 11

In this example, we use the same audio files from Example 7 in section 4.2.2.1. There are two

ways to remove the foreground sources. One is to use the split Bregman iteration directly

for the mixtures.

The other is to remove the first source by two groups of different two mixtures like what

we use for two sources two mixtures case. Then use the corresponding results to remove the

second source.

The following plots in Figure 21 are the original audio signals and the results from the

two ways mentioned above.
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Figure 21: Recorded mixtures and results after the removal of background sources.

4.3.2.2 Example 12

In this example, we use the same audio files from Example 8 in section 4.2.2.2. We use the

similar two ways listed in Example 11 in section 4.3.2.1 to solve the problem.

The following plots in Figure 22 are the original audio signals and results from the above

two approaches mentioned in Example 11.
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Figure 22: Recorded mixtures and results after the removal of background sources.

4.4 Numerical Examples of Proximity Operator Method

In the following examples, we choose κ = 0 and λ = 1
4 same as [37].

In general, the proximity operator is slightly better than split Bregman, but the compu-

tational time is slower than our modified SVD. It definitely deserves more investigations for

more reasonis behind this phenomena.
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4.4.1 Two sources two mixtures case

4.4.1.1 Example 13

By using the same audio recordings from Example 1 in section 4.1.1.1, we solve the problem

by using proximity operator method. Then we have the following result as shown in the

Figure 23.
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Figure 23: Recorded mixtures and results after the removal of background source.

The relative error for this example is 4.5%.

4.4.1.2 Example 14

Using the same audio recordings from Example 2 in section 4.1.1.2, we solve the problem

by using proximity operator method. Then we have the following result as shown in the

Figure 24.
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Figure 24: Recorded mixtures and results after the removal of background source.

The relative error for this example is 3.9%.

4.4.2 Three Sources Three Mixtures

4.4.2.1 Example 15

In this example, we use the same audio files from Example 7 in Section 4.2.2.1. There are two

methods to remove the foreground sources. One is to use the proximity operator directly.

The other is to remove the first source by two groups of different two mixtures like what

we use for two sources two mixtures case by proximity operator method. Then use the

corresponding results to remove the second source.

The following plots in Figure 25 are the original audio signals and results from the above

two ways.
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Figure 25: Recorded mixtures and results after removal of background sources.

4.4.2.2 Example 16

In this example example, we use the same audio files from Example 8 in Section 4.2.2.2. There

are two methods to remove the foreground sources. One is to use the proximity operator

directly on three mixutres to solve the problem. two groups of different two mixtures like

what we use for two sources two mixtures case by proximity operator method. Then use the

corresponding results to remove the second source.

The following plots in Figure 26 are the original audio signals and results from the above

two ways.
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Figure 26: Recorded mixtures and results after the removal of background sources.

4.5 Summarization

We use a system with CPU Intel Core i7− 4770 and 16 GB DDR3 800 MHz memory to run

all the above numerical examples.

As listed above, there is a big performance difference between quadratic programming

with sparseness and the modified SVD. Clearly, the performance of SVD method is better

than the quadratic program. Moreover, based on the analysis of Section 3.3, the SVD method

is at least at the same level of computaitonal time compared with proximity operator method

and split Bregman.

In our numerical results, our modified SVD does have the best performance. It is fastest

with the same level of relative error compared with proximity operator and split Bregman,
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especially when we consider a small length of each cancellation kernel d = 230. Proximity

operator method is slightly better than split Bregman iteration in terms computational time

but they do have the same level of relative error.
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mathématique de France 93 (1965), pp. 273-299.

[37] C. Micchelli, L. Shen, and Y. Xu. Proximity algorithms for image models: denoising.
Inverse Problems, IOP Science, 2011, Vol. 27.

91



[38] C. Micchelli, L. Shen, Y. Xu, and X. Zeng. Proximity algorithms for the L1/TV image
denoising model. Adv. Comput. Math., 2013, 38(2), pp. 401-426.

[39] J. Liu, J. Xin, Y. Qi, and F. Zheng. A time domain algorithm for blind separation
of convolutive sound mixtures and L1 constrained minimization of cross correlations.
Commun. Math. Sci., 2009, Vol. 7, No. 1, pp. 1-247.

[40] W. Ma, M. Yu, J. Xin, and S. Osher. Reducing musical noise in blind source separation
by time-domain sparse filters and split Bregman method. Interspeech 2010, pp. 402-405,
Sept 26-30, 2010, Chiba, Japan.

[41] W. Ma, M. Yu, J. Xin, and S. Osher. A convex model and L1 minimization for musical
noise reduction in blind source separation. Commun. Math. Sci., 2012 Vol. 10, No. 1,
pp. 223-238.

[42] D. Mao, Y. Wang, and Q. Wu. A new approach for analyzing physiological time series.
Jul. 2010.

[43] J. Nadal, and N. Parga. Non-linear neurons in the low noise limit: a factorial code
maximizes information transfer. Network, 5 (1994), 565581.

[44] A. Nuttall. Some windows with very good sidelobe behavior. IEEE Transaction on Acous-
tics, Speech, and Signal Processing, Vol. Assp 29, NO. 1, Feb, 1981.

[45] Z. Opial. Weak convergence of the sequence of successive approximations for nonexpan-
sive mappings. Bull. Amer. Math. Soc., 1967, Vol. 73, Num. 4, pp. 591-597.

[46] V. Oppenheim. Speech spectrograms using the fast Fourier transform. IEEE Spectrum,
vol. 7, Aug. 1970, pp. 57-62.

[47] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin. An iterative regularization method
for total variation-based image restoration. Multiscale Model. Simul., Vol. 4, N.O. 2,
2005.

[48] S. Osher, Y. Mao, B. Dong, W. Yin. Fast linearized Bregman iteration for compressive
sensing and sparse denoising. arXiv preprint arXiv:1104.0262 (2011).

[49] S. Osher, and L. I. Rudin. Feature oriented image enhancement using shock filters. SIAM
J. Num. Anal. 27(1990)919.

92



[50] A. Papoulis, Probability, random variables, and stochastic processes (3rd ed.). New York:
McGraw-Hill 1991.

[51] M. Pinsky. Introduction to Fourier Analysis and Wavelets. American Mathematical
Society, 2002.

[52] L. Rudin. Images, numerical analysis of singularities and shock filters. Caltech, C.S.
Dept. Report 1987 ] TR. 5250 : 87.

[53] L. Rudin, and S. Osher. Total variation based image restoration with free local con-
straints. Image Processing, 1994. Proceedings. ICIP-94., IEEE International Conference.
Vol. 1. IEEE, 1994, pp.31-35.

[54] L. Rudin, S.Osher and E. Fatemi. Nonlinear total variation based noise removal algo-
rithms. Physica D, 60(1992) pp. 259-268.
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