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ABSTRACT
ON A GENERALIZATION OF HAAR SERIES
By

Melvin Andrew Nyman

For each natural number n let Dn be a

set {tn,O’tn,l""'tn,rn}' where

0 = tn'o < tn'l<c.a\tn'rn = 10

©
Assume that D, < D, c... and that D= |J D is
n=1

dense in [0,1]. For each natural number n let 5,
be the system of all intervals [tn,j—l'tn,j] (i = l,...,rn).

A function f 1is called regular if f 1is of bounded
= E(x+) +f (x-)
- 2

variation on [O,1], f(x) for x ¢ (0,1),
f(0) = £(0+) and £f(l1) = £(1-). For each n > 1 let

gn be the vector space of all regular functions on

[0,1] which are constant on the interior of each interval

from ﬁh. Set T, =8 and

1 1

1
T, = [f ¢ snzjofg = 0 for all g ¢ gn_l} (n =2,3,...).

A K-series with respect to (Dn] is any series of the

(-]
form 2 £, where f €T (n=1,2,...). If
n=l’
Xo'xl"" are the Haar functions and agraysays e+ are

@
numbers, then ngaan_lxn_l is a K-series (the corresponding
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sequence of sets {Dn] are easily constructed). An

analogous assertion holds for the Rademacher functions.

The Fourier-K-series of a function which is
Perron integrable on [O,1l] is defined. It is proved
that if f 1is Perron integrable and sn(f) is the nE}l
partial sum of the Perron-Fourier-K-series for f,
then fJ s () = [ £ for every interval J of
ﬁh (n = 1,2,...).J From this it may be shown that the
Perron-Fourier-K-series of a Perron integrable function
converges almost everywhere to the function. It is
also proved that the Fourier-K-series of a Lebesgue
integrable function converges to the function at every
Lebesgue point of the function. It is shown that if
f € Lp[o,l] (1 < p < =), then the Fourier-K-series
of an arbitrary finite Borel measure on [O,1] is

defined and the behavior investigated.

A uniqueness theorem for K-series which

generalizes those known for Haar series is proved.

Let f be a finite function on D. Derivates
of f with respect to {Dn} are defined. Using the
properties of such derivates, a class of K-series is
found such that no member of the class has an infinite

sum on a set of positive Lebesgue measure.
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Let f be a bounded function on [O,1]. Let

(-]

£ be a K-series with respect to {Dn]. conditions
n=1

on the sequence {Dn} are found so that if

z £ (x) = £(x)
n=1

[>
for every x € [0,1], then X2 £ is the Fourier-K-series
n=1

for f. Examples are given to show that this need not

always be the case.
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CHAPTER I

INTRODUCTION

Consider the Haar, Walsh and Rademacher systems
of orthonormal step functions. The first two of
these are complete in L2[O,l] and the last is not,
Walsh's system being the completion of the Rademacher
system. The similarities and dissimilarities of
these systems with one another and with the trigonometric

system have been investigated by several mathematicians.

The basic elements of the theory of Haar-Fourier
series as well as a complete discussion of the relation-
ship between the Haar, Rademacher and Walsh systems may
be found in the book by Alexitis [l1]. Fine [4],([5]

has developed much of the theory of Walsh series.

In this paper the notion of K-series is defined
and is shown to include series with respect to the
systems of Haar and Rademacher. Since the partial sums
of order 2" (n =0,1,2,...) of a Walsh series may be
written as the ZnEQ partial sum of a Haar series
(see [1], pg.62) the convergence theory of K-series

also includes these convergence questions.



Wade [14],[15] has given conditions under which
a Haar series is the Haar-Fourier series of a Lebesgue
integrable function. In Chapter III, we are able to
prove more general theorems for K-series and deduce

stronger versions of Wade's theorems as corollaries.

In Chapter IV, the question of whether a K-
series may have an infinite sum on a set of positive
measure is considered. Talalyan and Arutyunyan |13]
have proved that this is impossible for Haar series.
Skvorcov [12] deduces the same theorem by another
method. Using the method of Skvorcov we can find a
class of K-series for which the question has a negative
answer. By applying directly a theorem of Gundy [7],
we can find sufficient conditions for the answer to

be affirmative.

Faber |3 ] has given an example of a Haar
series which converges to zcro at all but one point
of [O0,1]. Skvorcov |10] has shown that if a Haar
series converges everywhere on |0O,1] to a bounded
function then it is the Haar-Fourier series for the
function. These two results suggest the analogous
questions for K-series. Results in this direction are

given in Chapter V.



Since the Perron integral is used extensively
in this paper, we will include the definition and
some of the most important properties. For a more
detailed discussion of the Perron method of integration

see [9].

Definition. Let f be a function (not

necessarily finite) defined on an interval [a,b].

The function U 1is a majorant for f if

a) U(a) =0

b) DU(x) = lim inf Uly) -U(x) > - for all x ¢ [a,b]

c) DU(x) > f(x) for all x € [a,b].

The function V 1is a minorant for f if

a) v(a) =0

b) Dv(x) = lim sup Viy) -v(x) <{ +» for all x ¢ [a,b]
y - y=x

c) Dv(x) < f(x) for all x € [a,b].

It can be shown that

(1) sup{V(b) :V is a minorant for f} < inf(U(b):U is a
majorant for f}.

If £ has at least one majorant, at least one minorant

and equality holds in (1), then £f is said to be Perron

integrable on [a,b] and the common value is denoted by

(P)J'b f. The following are some of the most useful
a

properties of the Perron integral.



Let f be Perron integrable on [a,b].
a

Set (P)[ £ = 0. Then for any x ¢ [a,b]
a

f 1is Perron integrable on [a,x] and on

[x,b]. Furthermore (P)fx f + (P)j;b f = (P)jb f
a X a

for every x € [a,b] and the function
(P)‘rx f 1is continuous on [a,b]. Any
functlon of the form F(x) = c+(P)J'x £ is

called an indefinite Perron 1ntegral of f.

Let f be Perron integrable on [a,b] and
k Dbe a finite constant. Then the function

is Perron integrable on [a,b] and

(P)fb kf = k(P)fb f.
a

Let £ and g be Perron integrable functions
on [a,b] such that f+g 1is defined on

all of [a,b]. Then f+g 1is Perron integrable

on [a,b] and (P)Jb (f+g) = (P)‘rb f + (P)J;b g.
a a a

Let f be Perron integrable on [a,b], U

a majorant for f, V a minorant for f

and F(x) = (P)fx f. Then U-F and F-V
a

are non-decreasing functions on [a,b].

If f 1is Lebesgue integrable on [a,b],

then is Perron integrable on |a,b]

and (p)fb f = (L)fb £.
a



6. If the function F possesses a finite
derivative F’® everywhere on [a,b],
then F’ is Perron integrable and
F(b) - F(a) = (P)j’b F’.

a

7. Every Perron integrable function is
measurable and is almost everywhere
finite and equal to the derivative of
its indefinite integral.

8. Let f and g be functions on [a,b]
such that f=g a.e. Assume f 1is Perron
integrable on [a,b]. Then g is
Perron integrable and (P)Jb f = (P)Ib g.

a a

9. Let f be Perron integrable on [a,b] and
g have finite variation on [a,b]. Then
the product fg 1is Perron integrable.

When there is no danger of confusion we will write Ib
for (P)fb f. 2

a

Let g be a finite function on a set A. 1If
a,b ea, a<b and I = [a,b], denote g(b) - g(a)
by g(I). If E is a set of real numbers, then |E|
will denote the outer Lebesgue measure of E; 1in case
E is measurable, then, of course, |E| is the measure

of E. Which of these is meant will be clear from the

context.

f



CHAPTER II
DEFINITIONS AND SOME THEOREMS
ON FOURIER-K-SERIES

We start by defining the notion of a K-series.
This gives simultaneous generalization of series in
the Haar and Rademacher orthonormal systems. Moreover,
the concept of K-series includes as a special case
the partial sums of order 2" for series in the
Walsh orthonormal system. We shall also define the
Fourier-K-series of an integrable function and of a
measure and investigate the convergence properties of

such series.

l. Definition. Let Dn be a finite set

{tn'o'tn.l'...'tn’rn] Where O = tn'o < tn'l\-oo\tn'rn= l
[}
(n=1,2,...). Set D= |U D_.. Assume D, €D, C...
n=1 B 2

and that D is dense in [0O,1]. For each n - 0 let
ﬂh denote the system of all intervals of the form

[t (3 =1,2,...,r). Set B= U 5.

. t .
n, J-l' n, J] n=1
We say a function g is regular on |[O,1] if
g 1is of bounded variation and g(0) = g(0+), g(1l) = g(1-),

g(x) = g(xtl;g(x-L, for x € (0,1). For each n > O

denote by sn the space of all regular functions on



[0,1] which are constant on the interior of each
interval of ﬁh’ Notice that Sn has dimension r_.

Define Tl = 81 and

2’3'-.0)-

1
T = (f ¢ Sﬂ:fg fg = O for all g ¢ gn—l] (n

A series of the form 72, £ where fn €T (n=1,2,...)

n=1 n

will be called a K-series with respect to the sequence

(Dn}n=1'

2. Lemma. Let f be a Perron integrable
function on [0,1]. Let T be a finite dimensional
vector space of regular functions on [0O,1]. Then there
is a unique function g € T such that Il (f-=g)t = O

(0]

for every t € T.

Proof. Since every non-zero regular function
is non-zero on a set of positive measure, we may choose

a basis Viseess Vo for T such that

1 .
‘I[‘O ViVj = 6ij (l'J = l"-c'n)o
Set
1 .
ﬁi = fo fvi (i=1,...,n).

n
Then g = X B;v; 1is the required function. Suppose
i=1

1

h €T fulfills [ (f-h)t =0 for all t € T. This
o

is equivalent to

ji fv, = J; hv, (i =1,...,n).



n
Since h ¢ T we have h = Yivi. Thus
i=1

J 1

j‘l £ j‘l( = Yovo) z v fl v, =1 n)
v, = V)V, = . v.v. = Y, =1,..., .
0 i 0 j=1 joj° i . Jj o I

j=1

Hence h=g. C

3. Definition. Let T,f and g be as in

lemma 2. Then g is called the orthogonal projection

of £ to T.

4. Definition. Let f be a Perron integrable

function on [O,1]. For each n > 1 1let f  be the

orthogonal projection of f to T, - The K-series

o)
b fn is the Perron-Fourier-K-series for f, hereafter
n=1

denoted by PFK-series for f. 1In case f 1is Lebesgue

integrable we say that X f  is the LFK-series for f.
n=1

5. Lemma. Let S be a finite dimensional vector
space of regular functions on [0O,l1]. Let T be a linear

subspate of S. Let

1
V= {(f e¢s:[7 fg = 0 for all g € T).
(0]

Let h be Perron integrable on [0,1]. Let ¥, and
wz denote the orthogonal projections of h to T and
V respectively. Then the orthogonal projection of h

to S equals ¢1 + wz.



Proof. Choose an arbitrary u € S. Let t
be the orthogonal projection of u to T and let

v=u- t. Obviously v € V so that

1
J.o (h=y;-v))u = [

[

1
(h=-y,-y,) (t+v) = joth—wl)t

O + O

1 1
Vbt + (h=y,)v - y.v = 0. O
2 ﬁo 2 LO 1

6. Lemma. Let f be Perron integrable on

o
[0,1] and X £, be the PFK-series for f. Then

k=1

n
> fk is the orthogonal projection of £ to s (n=1,2,...).
k=1

k

Proof. By induction. The assertion is obvious

n
for n=1, since 8, = T,. Assume 2 f  is the
1 1 k=1 k
orthogonal projection of f to sn. Because Dn c Dn+l

we have sn c Sn+1. Therefore we may apply lemma 5

with S = § T=8, V= Tn to see that the orthogonal

’
n+1l n n
is kzé fn + fn

projection of £ to §

n+1 +1° 0

7. Theorem. Let f be Perron integrable on

[0,1]. Let g be the orthogonal projection of £ to
8, Then

j g = I f for every J € B (n =1,2,...).
J J

Proof. Fix an n. Let Jl,...,Jr be an
n
enumeration of the intervals of ﬁh. Let v be a

regular function such that v, = 1 on int Ji and

v, = O off Ji. Obviously v, € gn (i = 1,...,rn).
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Since g is the orthogonal projection of £ to 8,

we have

1
IJ.(f-g) = Io(f-g)vi =0 (i=1,...,r). [

i
@ n
Given any K-series 2, £, define s, = 2 £,
_ k=1 k=1
(n =1,2,...). In case 2 f, 1is the PFK-series for
k=1 n
a Perron integrable function f write sn(f) = 2, X
k=1

We will write sn(f,x) for (sn(f))(x).

We now present theorems on the behavior of the

K-Fourier series of Perron integrable functions.

8. Theorem. Let f be Perron integrable on

[0,1]. Let X f be the PFK-series for f. Then
n=1

1 .
s, (£,x) = =T fJf for x € int J, J € B/ (n =1,2,...).

Proof. This is a direct consequence of lemma 6

and theorem 7. Q

9. Theorem. Let g be Perron integrable on

[0,1]. Let Z)fn be the PFK-series for g. Then
n=1
Z £ (x) = g(x)

n=1

for every x such that

d%—((?)f(‘) 9) = gx.
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Proof. Let G Dbe an indefinite Perron

integral of g. By theorem 8 we have

| :
s, (9,x) = ToT fJ g for x € int J, J € 5

and
sn(g,x) = EfFT IJ g + EfET IL g for x €D,

X a common endpoint of J,L ¢ ﬁh. Therefore, if

G’(x) = g(x) we have g(x) = lim sn(g,x) since D
n-o

is dense in [O,1]. O

10. corollary. Let g and 2 f be as
© n=1
in theorem 9. Then 2 fn(x) converges to g (x)
n=1
almost everywhere on [O,1].

Proof. Follows directly from theorem 9 and

the fact that for any Perron integrable function
d
a;((P)jz ¥) = y(x) a.e.

11. corollary. Let g and X fn be as in
n=1

theorem 9. Then 2 fn(x) converges to g(x) for
n=1

every x which is a point of continuity of g. Further-
@

more, if g is Lebesgue integrable, then 3 £, (x) = g(x)
=1

n
at every Lebesgue point x of g.

12. Lemma. Let f be Lebesgue integrable on

@
[0,1]. Let Z f  be the LFK-series for f. Assume f
n=1
is continuous on an interval I < [0,1]. Then for any
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compact interval Il contained in the interior of 1I,

[ -]
b f converges uniformly to f on I, 1In case
n=1

I=1[0,1], then 2 £, converges uniformly to £

n=1
on [O0,1].
Proof. Let I, be a compact subinterval of
int I. Let I be a compact interval such that

2

1 € int 12 and 12 C int I. Let ¢ > O. By the

uniform continuity of f on I

I
2 there is a 8§ >0

such that |f(x)-£f(y)| < € for every pair x,y € I,
with |x-y| < 8. Because of the density of D and
because Dn (-~ Dn+1 (n =1,2,...) there is an integer
NO so large that if n > NO and J € ﬁh' then

o] < s.

Now there is an Nl such that if n > Nl,
J €5 and J N 1, # @, then J c I,. Let
n > max(No,Nl) and let t € Il' If t £ Dn’ then

there is a J € jh such that t € int J and by theorem 8

(1) s (F,8)-£(1) | = T%T |[ [£(u)-£(t) Jau|
J

< -‘%r j‘J\f(u)-f(t) |du < e.

If t € Dn n (0,1), then there are two intervals
Jl.J2 € ﬁh for which t 1is a common endpoint and by

theorem 8
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(2) s, (E.£)-£(t) | < 2—&’? fJ |£ (u) -£(t) |du
1

Nim

1
+ Z_F'T?‘- J‘J2|f(u)-f(t) \du <

Assume that I = [0,1]. Take I, =1, = [0,1]
in the first part of the proof. Then there is an N
such that if n >N and J € 5, then |J| < 5. Let
n >N and t £ Dn’ Apply theorem 8 as above to

conclude that for J ¢ jh and t € int J
» 1
1) s _(f,t)-£f(t) < f(u)-£(t) |du < e.
( Isp !x"—]'J le( (t) | €

If t € (0,1) N D, then applying theorem 8 as we did
to obtain (2) we get

(29 |s_(£,£)-£(t) | gz—rlJ—le |£ (u) -£(t) |du
J
1

7

1
+ '2—‘-3.;‘- szlf(u) -f(t) ‘du < e

In case t=0 or t=1, theorem 8 gives (1°) where t

is an endpoint of J. O

The inequality which is derived in theorem 16
is the direct analogue of one which is know for the

Haar-Fourier series of an LP function (1 < p< =

(6, pg. 72].

We begin with some lemmas.
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13. Lemma. Let p > 1. Let f be a

Lebesgue integrable function on [a,b]. Let Y be a

number such that fb Y = fb f. Then
a a

Pivie < Prep.
a a
Proof. We have

vIo-a) = [°|v]

1Py = 1Pel < (P nittRPeRy P
a a a a
(b-a) p-l/P(Jb ‘f‘P) l/P.
a

Taking pth power of both sides of this inequality we
see |Y\p(b-a)p < (b-a)p_lj‘b‘f\p. Thus
a

j‘:\v]p = | Y|P (b-a) gj:|f‘P. 0

@®
14. Proposition. Let L £ be a K-series.
n=1

For each x € [0,1] and each n > 1 set

s:(x) = max |s.(x)|.
i<j<n ' J
Then for all )\ > O

>l

lx:so (0 >N <5 s, (t) |at

[xzs:1 (x) >}

1
Io |s, (t) |at.

n
>
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Proof. Take XA > O and a natural number n.

Let A = [x:s;(x) > A} and Ay = (xz]s; () | < Noeees

]sj_l(x)\ < x,\sj(x)\ >2}) (3 =1,...,n). Obviously
n

Aj na, = g for i #¥j and A = jg& 3

Let Jj be the algebra generated by the
elements of JB (3 =1,2,...). Now sj € sj and
hence is constant on interiors of intervals of JG. It
follows that Aj is composed of interiors of intervals
of jﬁ together with some points of Dj' Thus
Aj € Jj (3 =1,2,...,n). If j<n and J € bj,

then IJ sj = j} S,» SO that

[tes) = 1] s51 <] I8yl
Since Aj € JE we have

IA.|sj| < IA.|Sn| (3 =1,...,n).
J J

Hence

Bal =5 0, teal 2 B, tesl 2 F A
= A|A]l.

This completes the proof. m)

15. Lemma. Let 1 < p < =». Let f €LFP[0,1]

@
and let X% fj be the LFK-series for f. Let s; be
j=1
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as in proposition 14. Then

1 *p p ol P Pl P o o
[ )7 < (o) [lente) | ey [P = 12,000,

Proof. Let A >0 and n > 1. Define
1 if § >
¢(gv A) = .
O if 0 < & <A
Then the inequality
X\[x:s;(x) > A < f . ‘sn(x)\dx
(x|s, (x) >A}

of proposition 14 becomes
1 * 1 *
xjsw(sn(x),x)dx < fow(sn(x),x)\sn(x)ldx.
Thus

® p- ® P 1
) \P l(flw(s;(x).x)dx)dx <[ AP Z(I W(s;(x),k)\sn(x)|dx)dk.
o o 0] o

Since we may interchange the order of integration, we

have

*

s_ (x)
("

(1) f; Loy (x))Pax = [ xP~1ay) ax

(x)
(2 P2 s () |an) ax







17

By HOlder's inequality we have
1 -
(2) jo(s:(x))p s, (%) |ax
< ISt 0 1PH P/ D) gy iR s () Pax] P,
(0] o

From (1) and (2) we get

Il

1 * - 1
O(s;(x))de < p%l(jo[sn(x) 1Pax) 1/1’(j0|srl (x) [Pax) /P,

LR Ror

Hence
(f;(s:(x))pdx)l/p < ;gf(filsn(x)\pdx)l/p.

Taking pth powers we have the first inequality of our

assertion.

The second inequality follows from theorem 8

and lemma 13. O

16. Theorem. Let 1 < p < =; f € 1P[0,1].

[. -]
Let X fj be the LFK-series for f. Define
j=1

s*(x) = sup|sn(f,x)\ for all x € [0O,1].
n
Then
1 & 1
jo(s (x))Pax < (;EI)PJO\f(x) |Pax.
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Proof. Let s; be as in 14 and 15 (n = 1,2,...) .

* %*
Then it is easily seen that s, ' s. Hence we have

1 1
f (s*)p = 1lim (s:)p
(0] n+o O

by the Lebesgue Monotone Convergence Theorem. This

combined with lemma 15 proves our assertion. O

Next we show that the LFK-series for a function

in Lp[o,l] (1 < p < = converges to f in Lt norm.

17. Theorem. Let 1 < p < ». Assume

f ¢ Lp[O,l]. Then the LFK-series for £ converges

to £ in Lp norm,

Proof. Let € > O. There is a continuous
function g such that Hf-g”p < §. By lemma 12,
sn(g) + g uniformly on [O,1]. Thus there is an
integer N such that \sn(g,x)-g(x)| < § for n > N.

1
Therefore Hsn(g)—gup = (Io|sn(g)-g|p)1/p < f for n > N.

Combining theorem 8 and lemma 13 we have

1
s, (£-9) [I2 jo‘sn(f-g) P - £ fJ|sn(f_g) P

n

otP = o (P
SJgnJ‘Jlf g fo\fg\

= le=g|¥ (n = 1,2,...).
P

From this and the triangle inequality we get
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o (B -£1l, < llsy (=) [, + llsp(@)-gll, + fa=£1],
< 2Hf—ng + Hsn(g)-ng < e for n >N.

The following two sections contain the definition
of the formal integral of a K-series and one of the

elementary properties.

18. Definition. Let Z £ bea K-series.
® n=1
The sum of the series Z:fx f ~will be denoted by F(x)
n=1 0
at points of convergence.

@
19. Lemma. Let 2 f. be a K-series. Let n

j=1
be a natural number; 1let x € Dn‘ Then F(x) = jx Sh*
(0]

Proof. By orthogonality we have fx s; = Ix Sh
o o
for i > n. Thus

Loas

f;fj= ?:foj

) Ix s, = F(x). O
j= 0 0

J
Next a short investigation of Fourier-Stieltjes-
K-series for measures is undertaken. By a measure we will
mean a finite, signed measure defined on the Borel sets

in [O,1].

20. Definition. For any J = [a,B] € & define

* * *
J by J =[a,B) if B <<l and J =J if B=l.
Let U be a measure. For each n > 1 define s, €8

*
by | s, = W) for each J ¢ 5. Set f; =s
J
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£, = S5 for n > 2. Obviously £, €Ty. Take
n > 2 and let IseeenI be an enumeration of B8 .

ro_1 n-1
Define vj to be regular and

{ 1 on int Ij
v. = (j = 1,2,.-.,1'_ )-
J O off 1I. n-1
J
Then [vl....,vr } 1is a basis for 8,-1+ Fix a 3.
n-1
Then Ij = J1U...U Jb where Ji € ﬁh (i=1,...,p)

* * . .
and J; N J, = g for i # 4. (Note: it may happen
that p=1). Now applying the definitions of vy fn'

S and s it follows that

n-1

1
Jofn"s = Iljfn ) ”rIj(Sn—sn"l) 221 IJisn ) IIJ‘sn-l

) u(x’Jf) - u(I;) = o.

. o*

p *
2 u(Ji) - W(I
i=1

Therefore fn € Tn' Hence is a K-series with

n

Il M8
Lt
Hh

respect to fDn].

@
The K-series 2 fn is the Fourier-Stieltjes-
n=1
K-series for 4, hereafter denoted by FSK-series for M.

2l. Definition. Let [Dn] and [ﬁh} be as

in definition 1. Let x € [0,1) and n > 1. Define
an(x) and Bn(x) by an(x) <x < Bn(x) and
[an(x).Bn(x)] € b . For x € (0,1], define aé(x)
and Br:(x) by a’(x) < x {B’(x) and

[ag(x),B ()] € 5, (n=1,2,...).

Set an(l) = Bn(l) = 5;(1) =1 and
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aJ(O) = B;(O) = an(O) =0 (n=12,...).

For any x € [0,1] set Jn(x) = [an(x).ﬁn(x)] and
J;(x) = [a;(x),B;(x)], where [0,0] = {0} and

[1,1] = (1).

: — [ d
Note that if x €D, then J (x) = J (x)
(n =1,2,...). Furthermore, if x € [0,1] N D then

an(x) = B;(x) =x (n=1,2,...).

22. Proposition. Let U4 be a measure. Let

> fn be the FSK-series for u. Then

lim [ s, = u(ly)) for each y € [0O,1)
ne= "J (y)

and

lim s
n-o IJ;(I) n

u({1})

Proof. Let y € [0,1). Then it follows directly

from the definition that for n so large that Bn(y) < 1

J s, = Mo (y).B_(¥)).
J (y)

The first assertion follows from this since
@

Nla (¥).B (¥)) = (y} and |y0,1]]| < ». similarly
n=1

lim s = u((l}). O
n-4e IJ;(I) n
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23. Proposition. Let n be a natural number

©

and x €D . Let U Dbe a measure and z fj its
j=1
FSK-series. Let F Dbe as in definition 18. Then

wo,x) = F(x), if x <1 and uy[0,1] = F(1).

Proof. Let k be such that x = tn,k' Then

F(x)=jxs =§ftn'j s =§,u[t . L0t L)

o™ =1 tn,j-l Do n,j-1" "n,j

= y[o,x) if x < 1,
and
F (1) =r§3jtn'j s =r!21?-lu[t L0t L)+ H[t 1-1]
=1t 5y © 3=1 M3 Red moTp-
= u[o,1].

24. Proposition. Let x £ D. Assume M 1is

(-]
a non-atomic measure. Let 2 £ be the FSK-series
n=1
for u. Then F(x) = uyO0,x).

Proof. Choose a natural number n. Then

jxsn = Jgn(X)sn + fx S, = F(an(x)) + jx )sn

o] 0 an(x) an(x

uo,a, (x)) +C e
n

by proposition 23. Now

lim u[O.an(X)) = u( U [Olan(x))) = U[O,X)o
n-c n=1

Moreover,

1 sal =) " O wla_(x),B8_(x)) | < |Wa_(x),8_(x)) ]
an(x) n n n n n

B, (x)-a (x)
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. x-an(x)
since ‘5n(x)_an(£)\ < 1. But

ula (x),B (x)) - u((x)}) = o.
This proves the assertion. Q

We will next show how the singular portion of

the measure may be recovered.

The following theorem is well known (see for

example (8], pg.1l54).

25. Theorem. Let U be a Borel measure on

[0,1]. Set g(x) = uy[o,x) for x € (0,1] and

g(0) = u{0}. Then

a) g 1is differentiable a.e. with respect
to Lebesgue measure,

b) g’ is Lebesgue integrable on [0,1],

c) there is a measure Y such that
u(E) = MS(E) + f g’(x)dx for every
Borel set E ang us is singular with

respect to Lebesgue measure.

@©

26. Theorem. Let Uu be a measure and XL f_
n=1

its FSK-series. Let g be as in theorem 25. Then

®

(1) g’(x) = fon(x) except for a set of
n=1

Lebesgue measure zero, and if 4 is

non-atomic,
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(2) w(,x) =Z [ £ - 2 £ for all x ¢ [0,1].
S ‘ n=1fz n IZ n=1 "

Proof. Let x € (0,1) be such that g ’(x)

exists., Then we have

. . 9@, (x))-g(a (x)) . Mo (x),B (%))
97 x) = ,llﬂ B, (x)-a_(x) - ii’: B, (x)-a_ (x)
= ii: Sn(x+).
But s (x+) = s (x) for x €D . Thus g’(x) = lim s, (%)

N=$®

for almost all x with respect to Lebesgue measure.

This proves (1).

If u is non-atomic, we have Y[0,x) = Z}jx fn(t)
n=1 0
for all x € [0,1] by proposition 23 and 24. Combining

this with (1) and part (c) of theorem 25 we have (2). O



CHAPTER III

A UNIQUENESS THEOREM FOR K-SERIES

In this chapter we will show that a Haar

series is a K-series and prove a uniqueness theorem

for K-series which generalizes those known for Haar

series.

We will start by defining the Haar functions.

Set xo(x) =1 for all x € [0,1]. set
1 if x € [O,%
xi(x) =( O if x = %
-1 if x e (3.1].
Given any integer n > 1, write it uniquely as
n = 2™4k where O <k < 2™. Define %, to be regular
and
( VA;H for x € (l%-,gﬁf%
2 2
)(n(x) = 4-\/2}'— for € (2—:71%. ]—{;‘—;)
o) for x £ [l%y lii%n].
\ 2 2

as defined above if we take

Note that this gives Xy

@®
n=l. Any series of the form 2 a X,» Where a_ are
n=0 n n

real numbers, is called a Haar series.

25
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In papers on Haar series the following condition
is often imposed [11], [14], [15].

®©
l. Definition. A Haar series X a X, satisfies
n=0
condition GH if for every x € [0,1]

a
Ny
1i =0
kir: Xnkz")

where {nk] is the sequence of integers m for which

X, (X) # O.

The corresponding conditions for K-series are

the following:

™
2. Definition. A K-series I £ satisfies
n=1
condition G if

lim f =0 and 1lim f =0
n-o IJn(X) n N4 IJr:(x) n

for every x € [0,1], where J (x) and J;(x) are as
in section 21 of Chapter II.

-]

The K-series fn satisfies condition H if
n=1
lim s, = O and 1lim s, =
N4 Jn (x) N Jr:(X)

for every x € [0,1]. (Note that J (x) = J;(x) if x £ D, .)
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The next objective is to show that a Haar series
is a K-series and that for Haar series conditions GH, G
and H are equivalent. Define a sequence of finite sets
{An] as follows. Set 4, = {o,1}, A, = (O,%,l]. For

n >2 write n-1l = 2™+k where © <k (< 2™ as in

the definition of the Haar functions. Set

1 2 2k+1 k+1 k+2

A = [O,——-l——'oo.' ’ Y] 'oo-’l}.
n 2m+l 2m+1 2m+1 2m 2m
. 11 _ 113
For instance A3 [O'Z'f'l]' A4 = [0.3.5.3.1].
1113 _ 11313
A5 {00501151311}: A6 = [OlnglglilZIl]l etc.

®
3. Proposition. Let X a X, be a Haar
@ n=0 n
series. Then X a X, 1is a K-series with respect to
n=0
(An]. Moreover, for Haar series conditions GH and G

are equivalent.

Proof. Define fn+1 = a %, m(n = 0,1,2,604)

Then f €T for each n. Hence 2 f_ is a K-series
n n n=1 D
with respect to {An}.

[0}
Let X a X, be a Haar series. Define
n=0 »

fj (j =1,2,...) as above. Let y € [0,1] and let

(nk]:=1 be the sequence of integers i such that

xi(y) # 0. Fix a k > 1 and write n, = 294m where

o<m<2)., 1If y A , then
Dy
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1 3
(1) £ =\ £ = —=7la, | vé
fJnk+1(Y) nk+l Jﬁ;+1(y) nk+l 2J+l n,
= 3 AT
Xnk

If y € An‘\\{o,l}, then y is an endpoint of the
k
support of X since X, (y) #¥ 0. Therefore, of the
k k

two integrals

I f and I f
. n, +1 n, +1
Jnk+1(y) k I +1(¥) Tk

one is zero and the other has absolute value

a
1 i l “k\
(2) 2j+1 \ank“vé;—'- 2 Xnk(y) .

If y=O or 1, then one of the two integrals

QJ

and I
n +l(y)fnk+1 I

K nk+l

is zero and the other has absolute value

a
1 j _ \ nk‘

We will show that there is an N such that

£
(y) "x*t

(4) {J ( )fn+1 = 3 ¢ )fn+l =0 for n >N and
n+1 'Y n+1 VY

n # n, (k =1,2,...).
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There are two cases.

hC s

Case 1. Suppose y £ A = A.. Let

J
n # n, (k =1,2,...). Then vy £ 1nil' Consequently
Jn+1(y) = J;;l(y). Furthermore x  is zero on
int Jn+l(y) since xn(y) = 0 and Xy is constant on
the interior of Jn+l(y)' Thus

j £ =j' f = 0.
n+l » n+l
Jn+l(y) Jn+l(y)

So in this case (4) holds for any n # n, (k =1,2,3,...).

Case 2. Assume Yy € A. Then y € Ap for
some p. Let n be an integer such that xn(y) = 0.
Then either y 1is the midpoint of the support of % *
or y is outside the support of P Suppose y is
the midpoint of the support of X * Then y € An+l and
y £ 8; for i < n. Therefore, since 8, c 4, .,
(i=1,2,...), we have n+l { p. From this consideration
we see that if n > p and xn(y) = 0, then y is
outside the support of X,+ Let n2>p and n # n,
(k =1,2,...). Since the support of X is the union

of two adjacent closed intervals with endpoints in A1

and since y 1is outside the support of X ? the support

o L4
of % does not overlap with Jn+1(y) and Jn+l(y)'
Hence
J fel = el =
n+l P n+l
Jn+1(y) Jn+l(y)

for n # n, (k =1,2,...). This establishes (4).
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(-]
Now assume that 2 a_ X, satisfies condition
n=0
GH. Let ¢ > O. There is a K such that

< e for k > K.

Combining this with (1), (2) and (3) we have

[ £ < £ and £ < £
n, +1 2 ’, n, +1 2
Jnk+1(y) k Jnk+l(y) k
for k > K.
Therefore by (4) we see that
€ €
\[ 5 and |[ £ ] <5
3, (¥) nl <2 gy M2

for all n > max(n,+1,N+1). Thus > £ satisfies
n=1
condition G.

Conversely, suppose Z) f satisfies condition
n=1
G. Let € > O. Then there is an N such that

€ and £fl1<$ forn >N.
‘IJ (y) fal <2 ‘I&;(y) nl <z

Choose K such that ny > N. Then from (1), (2) and (3)
it follows that
a

Ny

§;;T§T

< e for k > K.

@

Therefore 2 a %, satisfies condition GH. O
n=0

The equivalence of conditions G and H for Haar

series follows from a more general assertion.
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4. Definition. We say [Dn] satisfies

condition Q if there exists q € (0,1) with the

following property: if J € ﬁh' L € ﬁh+l' L €¢J, then

either L=J or |L| < ql|J| (n=1,2,...).

5. Theorem. Let {Dn] satisfy condition

Q.- Assume z £ is a K-series with respect to [Dn].
© n=1
Then X f  satisfies condition G if and only if it
n=1
satisfies condition H.

e <]
Proof. Assume .. £ satisfies condition H.

n=1
Let y € [0,1]. Then
n
lim s, = lim z fj = 0 implies
n4e “J_(y) na= j=1"J_(y)
lim [ f = 0.
N9 J (y) n
n
Similarly
lim s, =0 implies 1lim fn = 0.
N+ J;(y) nae JJ(Y)

(-]
Therefore 2 £, satisfies condition G.
n=1

Conversely, suppose fn satisfies condition
n=1
G. Let x € [0,1]. Set
B. = sup I |fk| (3 =1,2,...).

7 gk T (0
Let q be the number in definition 4 and let

- m-1 -
bm = alq +...+Bm_lq+6m (m=1,2,...).
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{B. for Jj >1, we have

b < B, @ T+ +1) <'JiL for all m > 1
m = lq ooo+q —l-q .

An easy induction shows that b ., =qb +B _,

(m=1,2,...). Therefore

lim sup bm = g lim sup bm + lim Bm = q lim sup bm'
M= Mmoo Mmoo Mo

Since 1lim sup bm { » it follows that 1lim sup bm = lim bm = 0.
M- m-o m-o

For each Jj > 1 1let o be the number of distinct

intervals occurring in Jl(x),...,Jj(x). For each n > 1
we have

\Jh(x)] ©n=C;
W ‘rJn(x) 1%51 = To6aT “ri (x) 1551 <@ 'ri oy 3]

(j =1,...,n)

by condition Qo' If Jj(x) = Jj+1(x) for any 3,

then fj+1 = 0 on int Jj+l(x), because of the orthogonality.

Combining this fact with (1) we have

C -
2 | |£) |+ec o+ £ 1 <a®™ [ |£, |
I (x) I (x) J, (%)
€h~C2 ©n"%n-1
+q | £, |+...+q £ _
‘rJz (x) 2 ‘rJn_l( ) £n-1 |
- c -1 c_=2
+ q n n I ‘fn‘ <q n Bl +q n 62 +eeo
(x)
n
+ chn 1 + Bcn = bcn

since Jj+1(x) # Jj(x) implies Cyp1 = cj+lu
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|f « sn\ = I « \sn‘ < IJ )‘fl‘ +eoo

n n n(x

+ f (n =1,2,...).
I, 15

Thus it follows from (2) that

(3) s | <b (n=1,2,...).
AN

From the density of D it follows that 1lim <,
N9
Hence, given ¢ > O, there is an N such that n > N

I
$

implies bc < e, From this and (3) it follows that

n
s < e for n > N.
0, !

Similarly, we may show 1lim s, = 0.
N4 J;(x)

e o]
Therefore 2 fn satisfies condition H. 1
n=1

It should be remarked that assumption of
condition Q° is not used in proving the "if" part of

the assertion.

Combining theorem 5 and proposition 3 we see
that for Haar series conditions GH, G and H are equivalent.
In view of the following proposition, condition H seems
to be the more natural condition to impose for the study

of K-series.
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6. Proposition. Let g be a Perron integrable

function on [0O,1]. Then the PFK-series for g satisfies

condition H.

Proof. Let G be an indefinite Perron integral

of g. Then

s_(g) = g =GB (x)) - G(a_(x))
‘rJ (x) ™ J_(x) n n
n n
and
s_(g9) = = G(B (x)) - G(a’(x))
n n
(n=1,2,...).
Since D 1is dense, 1lim B_(x) = lim an(x) = x and
n-+o N4
lim B ?’(x) = 1lim o ’(x) = x. Therefore 1lim f s (g) =0
n-e n+o o N4 Jn(x) n
and lim [ s (g) = 0 by the continuity of G. QO

P n
N Jn(x) :

It should be remarked that proposition 6 remains
valid if the Perron integral is replaced by any method
of integration for which the indefinite integral is
continuous.

®

7. Lemma. Let X f ~be a K-series, F as

in definition 13 of chapEZi II. Then the following

properties hold:
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(i) for x £ D

F(B, (x))-F(a (x))
Snt®) = 7 o, ™

(n =1,2,...).

(ii) for x eD N (0,1)

1 F(x)-F (ar:(x) ) F(B, (x))-F(x)
sy (x) = 5[ + B, (x)-x

x-a;(x)
(iii) if an fulfills condition H, then

lim[F(Bn(x)) - F(an(x))] = 0 for all x ¢ (0,1)
n-+o

and

lim F(ag(x)) = lim F(ﬁn(x)) = F(x) for x € D.
N9 n-o

Proof. For any x € [0,1]

(x) (x) a_ (x)
(1) jﬂn s, = jin S, - j‘n s, = F(B,(x))-F(a_ (x))

an(x) (o] n

by lemma 19 of Chapter II. For x f£ D we have

Pn () (x) [B_(x) (x) ]
S = 8 X X - Q X
an(x) n n n n
since Sp is constant on (an(x),bn(x)). This proves (i).

If x € Dn n (0,1), then 25n(x) = sn(x+) + sn(x-)
by definition. Now sn(x-) = sn(t) for any t € (aé(x),x)
and sn(x+) = sn(T) for any T € (x,ﬁn(x)). Now we
apply part (i) in order to compute sn(x+) and sn(x-).

This proves (ii).
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@
Assume 2 f satisfies condition H. From
n=1
(1) we observe that

(x)
(2) |F(B, (x)) -Fla (x))]| = |jpn s

a, (x) nl

Thus F(ﬁn(x))—F(an(x)) 4+ 0 as n o+ o,

If x € Dm for some m, then an(x) = x for

n > m. Therefore for n > m (2) becomes

B, (x)
|FB (x))-F(x)) | = |f s |
X
Similarly,
\F(x)—F(aJ(x))\ = |fx Sn‘ for n > m.
' a ’(x)
n
This completes the proof of (iii). C

[}
8. Proposition. Let Z)fn be a K-series.
n=1
Suppose F(x) = O for every X € D. Then s, =0

(n = 1,2,3,.-.) .

Proof. This is an immediate consequence of
lemma 7, (ii) and the regularity, for we have s, =0

on the interior of any interval of ﬂh (n=1,2,...). O

9. Proposition. Let £ be a Perron integrable

function on [O0,1]. Let 2 f be the PFK-series for f.
n=1 ®©
Then for each x ¢ [0,1], F(x) = 2 Ix f exists as
n=1 ‘0o ™
a finite number and

F(x) = (p) [ £(t)at.
(0]
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Proof. Let x e D . Then x =t for some
—_— m m,k

k. Hence by lemma 19 of Chapter II

kK ot .
F(x) =2 [™) s = z:(p)j m3g
j=1 tm,j—l j=1 tm,j 1
= ([ £(0)at.
(0]

Let x € [0,1] \\D. Fix an n. Then by the

first paragraph

an(x)
F(a,(x)) = (P) j‘o £(t)at.

Thus
= an(x) -
fzsn(t)dt = IO s, + xzn(x)sn Fla, (x))
a_ (x)
+ s_ = (P) n f +
[ o™ @ J"(x)n
Now
(x)
s |<|f \P>I
an(x)
since Sy is constant on (a (x),B (x)). By the

(x)
continuity of the integral we have (P)IFS + 0 and
(x

o ()
(P)I f o (P)fxf (as n =+ =), Therefore
(0]

lim ["s_(t)at = (p) ['£. O
(o)

n+~ O

10. Definition. Let a,b € D, a < b. Let

/
Ea b be the class of all finite real-valued functions
14

on DN [a,b] which fulfill the following properties:
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Plz If x € [a,b) ND and )\ = lim f(Bn(x)),
N
finite or infinite, exists, then f£f(x) > A.
P,: If x € (a,b] ND and y = lim f(ag(x)),

N

finite or infinite, exists, then £(x) < .

ll. Remark. Let a,b € D, f € Ea b’ and let
14

g be continuous on D N [a,b]. Then f+g € Ea b
’

Proof. Let x ¢ [a,b) N D and let the limit

vy = lim[f(Bn(x))+g(Bn(x))] exist. Then also the limit
N«

§ = lim f(Bn(x)) exists and vy = 8+g(x) < f£(x) + g(x).
n-$co

so f+g fulfills P,.
Similarly we have property P2 for f+g. O

12, Lemma. Let a,b € D, a < b. Assume

f €Y, .+ JESH, JTc[ab] and that £(J) > O.
a,b n

Then there exists an m > n and intervals Jk € ﬂk

such that J = Jn ) Jn+1 DeeedD Jm' f(Jk) >0

(k =n,...,m) and I C int Jn'

Proof. Denote J = [X,y]. Among all the intervals

of & contained in J there must be at least one,

n+l
say L, such that £(L) > O. In this way we may construct

intervals Li € ﬁi such that J = Ln o) Ln D...,f(Li) >0

+1
(i >n). Let p be the smallest integer greater than
n for which Lp # J. The existence of such a p

follows from the density of D.

(-
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Suppose the assertion is false. Then we have

either x € L, or y €L, for any i > n.

1) Assume that x € Lp. Then x € Li for all
i>n, and, therefore, L, = [x,ﬁi(x)] for all 1i.

Choose an i > p. Denote the set D, N L, by

-1

(tgreeesTg)s where x = 1) << 7o =8, ,(x). Clearly

s
T, =B;(x). If s=1, then £(B,(x)) = £(B;_;(x)).

If s > 1, then we must have f(Tj_l) > f(rj) for
j=2,...,8, for otherwise the assertion would be

true with m=i, Jp = Lk (k =n,...,i-1), J; = [Tj_l,Tj]:
thus f(Bi(x)) = f(Tl) > f(Ts) = f(Bi_l(x)). We

have therefore f(Bi(x)) > f(Bi_l(x)) > f(x) for any

i > p. Because of the density of D there are

infinitely many numbers i > p for which s > 1 and,

therefore, f(Bi(x)) > f(Bi_l(x)). It follows that

lim f(Bi(x)) > £(x) which contradicts Pl'
i
2) If y € Lp then we prove analogously
that 1lim £(a/(y)) < £(y) which contradicts P This
i
proves our assertion. C

20

13. Lemma. Let a,b € D, a < b. Assume that

[a,b] € ﬁj for some 3j. Let f € Sa b and f(a) < £().
[4
Then there exists an x € (a,b) \ D such that

f(an(x)) g_f(Bn(x)) (n = j,j+1,...).
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Proof. Take n=j, J = [a,b] in 12 and
construct the intervals Jj""'Jm' Set P, = J. P} =m
Now apply 12 with n=m and J=Jm, getting intervals

J oJ SeeeD J such that J,_ € , £(3) o

P pl+l P, k " ( x 2

(k = Pyseeesp,) and J_ c int J_ . Continuing in this
1 2 P, Py

fashion we construct sequences of intervals

Jj o Jj+l D... and integers P, < P, <... such that
Jy € b, f(Jk) >0 (k= 3j,3+1,...)
and J c int J (1 = 1,2,.004)0
Pi i-1
Since each Iy is closed and D 1is dense in
[0,1] there is a point X such that E_ Jk = (xo].

=]
It is obvious that J, = [ak(xo),ﬁk(xo)] for each k

and that X, € int Jk for each k, so X £ D. Having
remarked that f(Jk) >0 (k= 3,j+1,...), the proof

is complete. O

The following lemma is a generalization of a

lemma in [2], due in its present form, to J. Marik.

14. Lemma. Let a,b € D, a < b. Assume

f € aa,b' Let C be a countable set in (a,b). Let

lim inf f(Jn(x)) {0 for x € (a,b) \\ D. Let

T£(I, (%)) N
lim inf —T-_—-TT'S O for x € (a,b (cup). Then f
n-w Ip (x ’

is non-increasing on D N [a,b].
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Proof. Suppose not. Then there exists
v,z €D N [a,b] such that y < z and f£f(y) < £(z).
There is a j such that y,z € Dj' Then we can find
J = [v,w] € 3j for which £(J) > O. Choose an ¢ > O
such that £(v) + 3¢ < £f(w). We may assume C is an
infinite subset of (v,w) \ D. Let [cl.cz,...] be

an enumeration of C. Define functions

(x) = E} £ sgn (x-c_),
i n=1 2n n
R(x) = o(x) + ex, and
y(x) = £(x) - R(x).

Now R(w) = R(v) < R(1) - R(O) = (1) + ¢ - o(0)
=3¢, so {Y(v) < yw). Since ¢ is continuous on

[0,1] \C, R 1is continuous on D. Thus ¢ ¢ 5v w®
14

For each x € (0,1) \ (CUD) we have

VB ) -vla (x)  £(B_(x))-£(a_(x)
) R ) Bl WY € B €

>

lim inf
N

-e]

since ¢ is non-decreasing.

If x € C, then

lim inf[W(Bn(x))-w(an(x))] = lim inf[f(Bn(x))-f(an(x))]

o L) N
- lim[ (B _(x))-p(a_(x))
im 0B, ela, ]

< lim[op(a, (%)) -o(B (x))] < O.

n-$x
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Therefore, for each x ¢ (0,1)\ D there is an n such

that w(ﬁn(x)) < W(an(x)). This is a contradiction with
lemma 13. O

15. Theorem. Let L £ be a K-series
n=1
fulfilling condition H. Let a,b € D, a < b. Let

C be a countable set in (a,b). Let f be a Perron

integrable function on (a,b). Assume

(1) lim sup s_(x) > f(x) a.e. on (a,b),
n
N
(2) lim sup sn(x) > - and lim inf sn(x) < 4+

N N
for x ¢ (a,b)\ (cUD).

Then
(3) > fn(x) exists and is finite a.e. on (a,b),
n=1
(4) = fn(x) is Perron integrable on (a,b), and
n=1
(-]
(5) F(x) - (P)rx ) fn is constant on D N [a,b].
O n=1

Proof. We may assume 1lim sup sn(x) > £(x)
N

everywhere on (a,b). Let G be a minorant of f£.

Define H on D N [a,b] by H(x) = G(x) - F(x).

Set {(x) = (P)jx f for x € [a,b]. Then
a
is continuous and G-{ is non-increasing. Thus

G(x+) < G(x) for any x € [a,b). If x € [a,b) N D,



43

then 1lim F(Bn(x)) = F(x) by lemma 7, part (iii), so

o g -}
that 1lim H(ﬁn(x)) < H(x). Similarly lim H(aJ(x))‘Z H (x)
N = N

for any x € (a,b] N D. Hence H ¢ 33.b°
Furthermore, for each x € (a,b)
lim inf[H(Bn(x))-H(an(x))] = lim inf[G(Bn(x))—GOan(x))

Nox N 4o

- F(Bn(x)) + F(an(x))] <0

since DG(x) # += and lim{F (B, (x))-F(a (x))] = O by
N9
lemma 7.

For each x € (a,b)\ (CcUD) we have by lemma 7,

part (i),

H(B,(x))-H(a (x)) G(B, (x))-G(a (x))

1i24inf B ) - a_(®) = liﬁainf[ B ) - an(iy' - s, (x)]

< DG(x) - 1lim sup s, (x) <O
n-o

since DG(x) < +», 1lim sup s (x) > -=, and
n+e

DG (x) < £(x) < lim sup sn(x). Thus we may apply lemma 14
n-+xo

to conclude that H 1is non-increasing on D N [a,b].
Since D 1is dense in [0,1], H may be extended to a
non-increasing function E on all of [a,b]. Since ﬁ

is monotone, ﬁ'(x) exists and is finite almost everywhere

on (a,b). Furthermore
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@[> H* > HE) - H@)
a

~

which implies H’ is Lebesgue integrable on (a,b).

Recall (x) = (P)L:f. Since -G is non-
decreasing there is a set A of measure zero such that
for any x € (a,b)\N A, y-G has a finite derivative.
Furthermore, the function D(y-G) is Lebesgue integrable
on (a,b). Since §’(x) exists and is almost everywhere
f(x), there is a set B of measure zero such that
G™(x) = y°(x) - (¥-G) ’(x) exists as a finite number
for every x € (a,b)\ B. Thus DG is Perron integrable
on (a,b) since Dy is Perron integrable and D(y-G)
is Lebesgue integrable on (a,b). For any x ¢ (a,b)\Dn

we have
G(B (x))—G(an(x)) H(B (x))-H(an(x))
(6) sp(x) = B:(x) (%) - Bz(x) )

(n = 1'2'3'0-0)-
Since H”’(x) and G’(x) exist and are finite for almost

every x € (a,b), it follows from (6) that 1lim sn(x)
n -

exists and is finite for almost every x € (a,b).

Furthermore the function o(x) = lim sup sn(x) being
n-e

equal almost everywhere to the difference of two Perron
integrable functions, is a Perron integrable function on

(a,b). This proves (3) and (4).
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To prove (5) construct sequences of minorants

(. -] . -]
[Un]n=l and majorants [Ln]n=l for ¢ such that
(7) lim U_(x) = lim L_(x) = (P) [ g
n <o n-o (0]

for every x € (a,b).

Since we may take f=¢ in the first part of
the proof, we see that the function v, -F fulfills

the conditions of lemma 14 (n =1,2,...).

Part (iii) of lemma 7 and the fact that L, is
a majorant (QLn(x) # -» for all x) imply that the
function K =F - L_ belongs to J and that
n a,b

lim inf[K(B.(x))-K(a.(x))] =0 (n=1,2,...).
N - J J

Moreover, for each x € (a,b) \(CUD)

K(Bj (X) )"K(a_-' (X) )

lim inf
j R Bj(x) - aj (X)
L_(B.(x))-L_(a.(x))
- o . - n J n J
= LD Inflsy G0 B30 - o ()

jae

because L, is a majorant for o, gLn(x) > -,
lim inf s.(x) < +», and 1lim inf s (x) < o(x) < DL_(x).
4 J j 4 J n
Therefore for each n >0, F - Ln and Un - F

fulfill the conditions of lemma 14. Hence F - Ln
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and U - F are non-increasing on D N [a,b] for
each n. From this and (7) it follows that
F(x) - chp and ‘]J‘cp - F(x) are non-increasing on
a a
D N [a,b].
Whence, F(x) - Jx lim s. 1is constant on

a j-baa
(a,b] N D. a

(oo
16. _Theorem. Let 2 £ Dbe a K-series satisfying
n=1
condition H. Let C be a countable set in (0,1),

f be a Perron integrable function on (0,1l). Assume

lim sup sn(x) > f(x) a.e. on (0,1),
N

lim sup sn(x) > -==» and lim inf sn(x) < +o
Nox» N

(e <]
for all x € (0,1) \(cUD). Then X2 £ converges a.e.
n=1 -]
to a Perron integrable function ¢ and 2 £ is the
n=1
PFK-series for ¢. Moreover

nz-:el‘[’(; £ = (P)j’:’ @ for all x € [O,1].

Proof. Take a=0, b=1] in theorem 15, Then

- -]
by 15, 2 fn
n=1

integrable function . Furthermore F(x)-(P).[‘x ¢ is

converges a.e. on [0,1] to a Perron

(0]
constant on D. But F(0) =0, so F(x) = (P)j\x ®
(0]

for x € D.
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o]
Let 2 9. be the PFK-series for . By
n=1

proposition 9, T rx I, = (P)j'x ¢ for all x ¢ [0O,1].
n=l1 O (o]

Therefore, proposition 8 applied to the K-series
@
nzi (fn-gn) gives f =g/ (n =1,2,...). This
proves the assertion. O
®
17. Theorem. Let % f be a K-series

n=1
satisfying condition H. Let g be a Perron integrable

function on [0O,1]. Let C be a countable subset of
[0,1]. Let [an,k] and {bn,k} be two non-negative,
limit preserving matrices such that (k : CY # 0}
14
and (k : bn " # 0} are finite (n =1,2,...). Define
o] ’ ®

o =2 a.s, and ¢’ =2 b.s .
no oo nk~k no.5 nk"k
{n{} be two increasing sequences of natural numbers.

Let [nj] and

Assume
lim © = g in measure,
e 3

lim sup CJ/(X) > - for x € (0,1)\cC, and

J e 3
lim inf 0;,(x) < 4o for x € (0,1)\ C.
J
@®
Then T fn(x) = g(x) for almost every x in [O,1]
n=1
-]
and Z)fn is the PFK-series for g.
n=1
Proof. There are integers jl < j2 {ses such

that putting mz =n. , we have 1lim om (x) = g(x)
By Lae Mg
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for almost all x. Since the matrices are non-negative

it follows that 1lim sup G > lim sup o lim sup S >

N Now® n-co
lim sup o, and lim inf s < lim inf 0;. Because of
N~ N n -
this 1lim sup s_(x) > lim sup cn(x) > lim o (x) = g(x)
n-e n n-4o Lo T

almost everywhere. For x € (0,1)\C

lim sup s_(x) > lim sup 0 (x) > lim sup og,(x) > -~
N> n4e J 4 j

and

lim inf sn(x) < 1lim inf Gé(x) < lim inf OJ,(x) < +o.
N4 N4 J e J

-}

Therefore. theorem 16 may be applied to see that X £
n=1

converges a.e. to a Perron integrable function ¢ for

which it is the PFK-series. But 1lim sn(x) = ¢(x) a.e.
Ny
implies 1lim Gn(x) = ¢(x) a.e. since [an k} is limit
n-o ’ :

preserving. Therefore g=¢ a.e. by the uniqueness of

the limits. This completes the proof. O

Generalizations of the theorems of Wade [14],
[15] for Haar and Walsh series may be obtained as
corollaries to proposition 3 and theorems 5,16 and 17.
In each of these corollaries C will denote an arbitrary
countable set in [0,1] and A the set of dyadic

.}
rationals in [O,1]. If X ay % is a Haar series,
k=0
n-1

then we will denote RZGakxk by S| n=1,2,...).
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If we put ap x = bn,k =0 for n #¥ k and

ann = bn,n =1 (nk=1,2,...) in theorem 17, then

we have the following assertion.

(- -]

18. corollary. Let 2 a %, be a Haar series

n=0
satisfying condition GH. Let g, [nj] , and [nj'} be as
n. n.
in theorem 17. Set 2 J = mj and 2 J = mj'. Assume
lim Sm. = 9 in measure,
e ]

lim sup s_- > -= on (0,1)\ C and
jao
lim inf Sp’ < += on (0,1)\ C.
jao M3
-}
Then X~ a X, (X) = g(x) for almost all x in [O,1]
n=0 o
(-
and Y a X, is the Perron-Haar-Fourier series for g.
n=0 o

Let wo, wl,... be the Walsh functions and
n-1

agrays..+ be real numbers. Denote j:z:o ajwj by s_

(n=1,2,...), as we did above for Haar series. It is

well known (see for example [1l] or [14]) that there are

real numbers Yor Ypro - such that

2;:-1 ) z'nz-l ) ¢
a.y.(x) = Y. x. (x for x A
j= J wJ i=0 i%i

and n > O. Wade [14] has shown that if 1lim a, = O,

k

k-4
(- -]
then Y; % satisfies condition GH. Wade [14] also
i=0 @
has shown that if 2 Y;X; 1is the Haar-Fourier series
i=0

(- -]
of a function g, then X a is the Walsh-Fourier

o 1%
series for g. Putting C U A for C in corollary 18

we get the following corollary to theorem 17.
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@
19. corollary. Let 2 a
n=0
series. Let g, [nj] ,and [nj'] be as in theorem 17.
n. n.
set 2 7 = mj and 2 J = mj'. Assume

nwn be a Walsh

lim s = g 1in measure,

o J

lim sup s_» > -= on (0,1) \ (cuy),
J= J

lim inf Sp* < += on (0,1) \ (cUa), and
J 4 j

lim a, = 0.

K4

.-}
Then 2. a ¥, is the Perron-Walsh-Fourier series for
n=0

g and lim s n (X) =g(x) for almost all x € [O,1].
N 2



CHAPTER IV
EXISTENCE OF INFINITE SUMS FOR K-SERIES
ON SETS OF POSITIVE MEASURE
In a 1965 paper, A.A. Talalan and F.G. Arutyunyan
[13] have shown\that a Haar or Walsh series cannot
have an infinite sum on a set of positive measure.
This problem has been considered by R.F. Gundy [7]
and V.A. Skvorcov [12]. In this chapter we will
show that under suitable restrictions on the sequence
fDn}, a K-series with respect to [Dn] can not
have an infinite sum on a set of positive measure.

The method is similar to that used by Skvorcov.

l. Definition. Let g be a finite function

on D. Recall that if ([x,y] = J € B8, we write
g(J) =g(y) - g(x). For x £ D, define the symmetric

D-derivates of g at x to be the limit points of

the sequence

g (J, (%))

|Jn3x)| ‘

In particular, define
g (I, (x))

S. g(x) = lim inf
=D N |Jn(x5|

51
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and
g (I, (x))

S g(x) = lim sup .
D n-e (Jn(x)l

2. Lemma. Let 2. £ be a K-series. Let
n=1
x € [0,1] \ D. Then the set of limit points of the
sequence {sn(x)}:___l is the same as the set of

symmetric D-derivates of F. 1In particular

lim inf s_(x) = S F(x), 1lim sup s_(x) = S_F(x) and
n-$o n =D ol L n D

(- -]
at points of convergence L £ (x) = S F(x).
n=1
Proof. This is an immediate consequence of

lemma 7, part (ii) of Chapter III.

3. Lemma. Let G be a finite function on D.
Let a >0. Let E c [0,1] \ D be a set of positive
outer measure. Assume §DG(x) < a for every x € E.
Then for each ¢ > O there is an integer n > 1 and

an interval Q F ﬁh such that

lo} < ez |E nQl > (1-¢) |@| and
G(Q) < ale].

Proof. Let x be a point of outer density
for E. There isa § >0 such that |E N J| > (1-¢) |T|

for all intervals J such that x € J and \J| < 6.
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By the hypothesis we have

G(Jn(x))
lim inf R < a.
X
n-=o n

Choose an 1 such that

G(J, (x))

—‘-J—-(;TT < a and \Ji(x)\ < min (8&,¢€).

i

Take Q = Ji(x) . C

4. Definition. We say the sequence (Dn}
satisfies condition Q if there is a q € (0,1)

with the property: if J ¢ ﬂh, L € ﬁh+1 and L c J,
then -*%-*-)q th=1,2,...).

5., Lemma. Let [Dn] satisfy condition Q,:
let g be the corresponding number from definition 4.
Let G be a finite function on D. Let E < [0,1],
Q € 8. Let € >0 and b be arbitrary numbers.
Assume that

(1) |E nal > (1-9 |o]

(2) G(J) > O for every J € & such that

JC€Q and JNE# ¢

(3) §DG(x) >b for all x ¢ E.

Then G(Q) > b(l - 3(-1-6-) lo]-
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Proof. We may assume E <€ Int Q \X\ D and that
all points of E are points of outer density. Since
(1) lim sup 57, () =S G(x) >b
for each x € E, we may associate with each x ¢ E

and n1 >0 a J € & such that

(2) G(J) >b|J|, x €3 and |J| < n.

The collection of all intervals J € £ such that
(3) JNE#@ JTcq and G(J) > b|J|

is therefore a Vitali covering for E. Set € = elo]|.
Applying the Vitali covering theorem, we can find
a finite number of non-overlapping intervals

Jl,...,JN € 5, Ji € Q so that

(4) G(J;) >blJ|

(5) JinE7!¢ (i=1,2,...,N), and

N
() |ENU 7] < .

But |E| > (1-€) || by assumption and
N N

\E\_Ul a1 2 el -Z |3,1.

i=

i=1
Combining this with (6) we see that

N N
(7) |U g, 1 =Z 13,1 > |E] - ¢ > (1-e) 10| - €|}
i=1 i=1

= (1-2¢) |a].
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Choose K so large that none of the intervals Jpreeerdy
belongs to ﬁh for every n > K. Let ¥ be the

system of all intervals L such that (i) L € Q,

(ii) L € B, for some k < K, (iii) either L is

one of Jy,...,Jy or L NE # @ and L has the
property that of the intervals belonging to ﬁk+1 whose
union is L, at least one doesn't overlap with any

of the intervals Jl,...,JN.

We first show that Q = U L. For if not, then
Le¥

we could find an interval L, € ﬁk which is contained

in Q but not contained in any interval of %Y. Now

J'j € for j=1,...,N by the definition of .
Suppose L overlaps with Jj for some 3j. Then

since Dk c Dk+1 for each Xk, either Lo c Jj or

Jj c L,. From the choice of K it follows that Jj c L,
is impossible. So L, € Jj' But L, is not contained
in any interval from . Hence L, overlaps with

none of the intervals Jl,...,JN. Therefore, if

L, NE # @, then L, fulfills (i), (ii) and (iii)

in the definition of . But Lo £ 4. Hence L, NE = d&.

Consider the interval L, € B, ; which
contains Lo. We have L1 cQ because Q € 8, so if
L, NE # @, then L, satisfies conditions (i), (ii)

and (iii) of the definition of ¥. But this implies
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L U L, a contradiction. So L, NE=¢g. If
© Lew 1
L, = Q, the construction terminates. In case L, # Q

proceed as follows. We claim L, overlaps with no
interval belonging to . To see this recall that

Dk c Dk+l for every k. Therefore, if L1 overlaps

with any interval I of ¥, either I € L, or

Ll cI. If Ll c I, then Ll cU L, which implies

Le¥
Lo cU L, a contradiction. On the other hand, if
LeY
I cL;, then LlnE;!d since I NE # @ by the

definition of ¥, again a contradiction. Hence L1
overlaps with none of the intervals from ¥. 1In

particular, Ll overlaps with none of Jl,...,JN.

Now consider L, € B, , such that L, ¢ L,. Clearly

L2 fulfills (i) and (ii) in the definition of .

If L2 NE # g, then L fulfills (iii) in the

2

definition of . But this implies L_ <L, cL, clU L,
o 1 2 Led
a contradiction. So L, NE = ¢@g. In this way we

2
could construct a finite ascending sequence of intervals
disjoint from E and belonging respectively to &,,
ﬂk-l""'ﬂh where Q € ﬁh. The last term in this

sequence is Q. Therefore Q NE = ¢, contradiction.

Hence Q = L.
Led

For any pair of intervals in ¥ which overlap,
one is contained in the other. Thus we may replace the
system ¥ by a system ﬂl c ¥ such that Q= L and

Leul

no two intervals of ”1 overlap.
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Set A= U J, . Then by (4) we have

I €4
(8) Z 6(3) > T bla | =Dblal.
J; €%y J; €Y

Set u2={LezllzL;!Ji,1gi_g_N]. Then

(9) QN\NA= U L

and L NE # @ for each L ¢ %, so that by (2)

(10) 0< Z G(L).

Le!l2
If L €4, then L # J; (i=1,...,N) by the construction
of !5. Since ﬂz c ¥ any L € u2 satisfies (iii)
in the definition of #. Therefore, if L € ﬂz, say

(1) (1)

L € j%' there is an L such that L

€ P54
overlaps with none of Jl,...,Jn because of (iii). By
condition Q, ., | < é\L(1)| for each such pair L

and L(l). Therefore

loNaj= £ jpp<z Z ),

LG’J2 LCSJ2
However, the union of all such L is contained in

(1)

N
(o U Ji) . Thus
i=1

1 1) 1 N 1
(11) lo \a| <3l L( YRR L
in view of (7). That is

(12) Al > @ - 25 0.
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Now

G(Q) = Z G(J;) + 2 G(L) > Z G(J;)
J; €Y Led, J; €U,

by (l0). This combined with (8) and (12) gives

6@ ~bal >b1-29el. O

6. Theorem. Let (Dn} satisfy condition Ql'

Let G Dbe a finite function on D. Let
A= ({x ¢ [0,1]:§DG(X) > -o Or §Dg(x) ¢ +m),

Then §DG(x) = SDG(x) and is finite a.e. on A.

Proof. Let A, = (x : SDG(x) b §DG(x) Y=o,

Suppose \Al\ > 0. There is a number a > O and a set
B ©A; such that |B]| >0 and S G(x) - S,G(x) > a
for all x € B. Let g be the number of definition 4.

Choose € > O such that

2
1 2 a(l - —).
(1) e < af =
For each integer n set
B, = ([(x € B : n¢ < §DG(X) < (n+l) €}.

Since |B| > O, there exists a p such that ‘Bp‘ > 0.
For each x ¢ Bp there is an integer m(x)

such that for m > m(x)

G(Jh(X))

(2) p‘l'—‘—J—I:x—)—]-.
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Now define

m
©

E = {(x ¢ Bp :m(x) <m} (m=1,2,...).

Then B_ =U E_, so there is an m such that
P 1 M o
]Emol > 0. Denote E by E and set § = min 71

o Jéjh
o

We have for all x € E
(3) 0 < _S_D[G(x)—pex] = §DG(X) - pe L €< 2¢

since E < Bp and pe < §DG(x) < (p+l)e on Bp. Further,

we have for all x € E

(4) SplG(x)-pex] > S [G(x)-pex] - S, [G(x)-pex]
= 5,G(x) - 5,G(x) > a.

Also

(5) G(J (x)) - pelJ (x)| >0 for all x € E

and m > mge

Applying lemma 3 and (3) we can find an

interval Q € £ such that

(6) ‘Q‘ < min(e, §)
(7) lE nQl > (1 - min(e,8)) |Q| and
(8) G(Q) - pel|Q| < 2¢]Q].

If J € 5, JNE#FF and JT ©Q, then (6)
implies that m Z‘mo. Thus from (5), (4) and (7) we

see that lemma 5 may be applied to the function G(x)-pex.
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Hence

(9) (@ - pelo| >a(l - 289 |o|.
From (8) and (9) we see that
2¢l0] > a1 - 29 |o|,

which implies 2¢ > a(l - %f). This is a contradiction

with (1) . Therefore ‘A = 0. Similarly we show

1|
fx = §DG(x) < §DG(x)< +»} has measure zero.

It remains to show that M = (x : SDG(x) = +o
has measure zero. For each X € M there is a natural
number m(x) such that m > m(x) implies

G(Jm(x)) S o
I, (X *
Set
Mj ={x eM:m(x) <3j} (3 =1,2,...).
Assume that |M| > O. Then since M= (U M. there is
an n such that |Mn| >0. Let y € M Dbe a point

of outer density and choose m > n such that

19, (9) M| > (1= 3|3 ()]
Set P = Jm(y). From the definition of Mh it follows
that if x € M and j > n, then G(Jj(x)) > 0.
Therefore, if J € 8, J P and JT N Mn # @ , then

G(J) > o.

Let x € Mn. Since x € M we have

SDG(x) = §DG(x) > b for every real number b. Therefore
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conditions (1), (2) and (3) of lemma 5 are fulfilled

with e = =, from which it follows that

NIl

1
G(P) > Db(l - a) |P|

for every real number b. But this is impossible.
Hence M has measure zero. Similarly, we show

(x = SDG(x) = -»] has measure zero. a

7. _Theorem. Let [Dn) satisfy condition Q,.

Let T £ be a K-series with respect to {Dn]. Let
n=1

E Dbe a set of positive measure. Assume that for each

X € E, either

lim sup s_(x) < +=
n-o

or

lim inf sn(x) > -,
n-e

@®
Then 2 fn converges to a finite number almost everywhere
n=1
on E.

Proof. This follows immediately from lemma 2

and theorem 6. a

8. Corollary. Let {Dn} satisfy condition OQ,.

Then a K-series with respect to [Dn] cannot diverge

to either +o or -« on a set of positive measure.
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9. Definition. We say [Dn} satisfies

condition Q2 if for each natural number n there
. 0 \ R
is an interval J ¢ jh such that Dn+1 Dn cJ
Note that if D has n+l points (n =1,2,...),

==} . . . o
then {Dn}n=l satisfies condition Q,.

R.L. Gundy [7] has considered the problem of
representing arbitrary measurable functions on a
probability space by means of series with respect
to complete orthonormal sequences of step functions. If
we take [0,1] with Lebesgue measure as the probability

}co

n=1 according

space and construct an H*-system [un
to Gundy's definition, then there is a sequence

[Dn]:=l fulfilling condition Q, such that any series
Ef au is a K-series with respect to [Dn]. Let
{Dn} be such a sequence. Then applying theorem 2.2

of [7] we see that there exists a K-series with respect
to {Dn] with an infinite limit on a set of positive

measure if and only if [Dn] does not satisfy

condition Ql'

This leads us to conjecture that the assumption

of condition Q1 is essential in theorem 7.



CHAPTER V

REMARKS ON EVERYWHERE CONVERGENCE

V.A. Skvorcov [1l0] has shown that if a Haar
series converges pointwise everywhere on [0,1] to
a bounded function g, then the given Haar series
is the Haar-Fourier series for g. On the other
hand, L. Faber [3] has constructed a nontrivial
Haar series which converges to zero at all but one
point in [0,1]. 1In this chapter the corresponding

questions for K-series are considered.

First an example of a nontrivial K-series
which converges to zero everywhere on [0,1] is
constructed. The partial sums of this example are a
subsequence of the partial sums in Faber's Haar

series example.

l. Example. The example is constructed by

defining the partial sums. Let [Dn}:=1 be given by

— -lc ] = n - s
Dn"' [2n . J—O,l,-.-,z } (n—l,2,...). Deflne Sn

to be regular and

63
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(
n-1 1 1 1
2 on (3 - —, =)
2 2n 2
_ n-1 1 1 1.
s, = < -2 on (5. 5 + 2n)
0  off [% - J;. % + J;]
\ 2 2

(n =1,2,...). Set f1 = Sy f = Sh~Sn-1 for n > 2.

Take an n > 2. The elements of ﬁh—l are of the form

j-1 j . n-1
Jj'_'[-z(%T]TL' —-ﬁl_ﬁ'] (i =1,...,2 ).

Let vj be regular and satisfy

1 on 1int J.
V. = { J (j = 1,2,..0'2n l)o
J 0 off Jg

Then {vl,...,vzn_l] is a basis for 8 ;. In order to

1
show f € T  we need only show j; fnvj = £, =0

- J
for j = l,...,2n 1. But
( 2 o (L 11 _ 1, , 11, 1,
5~ o1z ~ o Y Gz TR
2 on 172 on 2’2 on
_ n-2 1 11 1,11 1
fn = { -2 on (5 - npi) U (5 + n'i + n—l)
2 2 2
1 1 1 1
\ o off [5 - ;H:T'i + n-l]'
. n-1
Therefore, [ £ =0 (3 =1,...,27 7).
J.
J

@®
Since f_ €T, (n =1,2,...) the series nzi fn

is a K-series with respect to {Dn}.

By the regularity sn(%) = 0 for all n. Fix

x #

N =

¢ there is a j such that sn(x) =0 for n > j.
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@®
Therefore fn(x) = 0 for every x. Notice that
n=1

_1
J 1,5 T 3
for all n, so X2 £~ does not satisfy condition H.

Example 1 shows that for general K-series
there can be no analogue to Skvorcov's Haar series
theorem. In order to obtain a class of K-series for
which there is an analogue to Skvorcov's theorem we

will impose the following conditions.

Recall from Chapter IV that the sequence [Dn]

satisfies condition Q2 if for any n, there is an

interval J ¢ ﬁh such that Dn+l\‘ Dn cJ.

2. Definition. We say (Dn} satisfies
condition Q3 if there is a number K with the property
that for each pair of intervals Jl'Jé € ﬁh+l with

Jl UJ, €L ¢ 3h we have

2
|7, |
"F];"<K (n=l'2'ooo)o
2
3. Lemma. Let {Dn} satisfy condition Q,-
Let X f be a K-series with respect to [Dn]' Let
n=1
P = [a,b] € jb, a, € int P, P, = [al,b] € jﬁ and
sq 2 5y on int P,. Assume that for each n > p and

each J ¢ ﬁh with the property J < int P we have
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s, < sp on int J. Then there are numbers

q=m < m, < ... and a; < a, <eee< b 'such that

Py = [agb] € .amj, fmj <0 off Py, and fmj >0

on int Pj' Moreover [mj] may be chosen so that

£

= f
+1
™5

m.+2 T fm

1 =0on int Pj (i =1,2,...).
3 j+1

Proof. Because of condition 02 and the orthogonality
there exists L ¢ Jh such that the support of fn+1 is

contained in L (n=1,2,...).

If fn =0 on int P for all n > q, the

1
assertion is trivial. Otherwise proceed as follows.

Let n be the smallest integer i > q such that fi
is not identically zero on int P,. By orthogonality
and condition 02 there is at least one interval I ¢ ﬁh

such that I c P I # Py and fn >0 on int I. From

1'
our assumptions it follows that we cannot have I < int P,
because Sy 2 Spoy Sece= sq 2> Sp on int I. Let
I=1/[aB]. Then a < a; Lac< B <b. If B <b, then

I €int P. Therefore B=b and a, < a. Set m, = n,

a2 =qa, and P, =1I.

2

Now assume that ml,...,mj and Pl""’Pj

have been constructed. Repeating the argument above
with mj in place of gq, Pj in place of P, and

Pj-l in place of P, we construct m.

j+1 and Pj+l' O
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4. Theorem. Let f be a bounded function on

[0,1]. Let [Dn} satisfy conditions Q, and Q.. Let

]
o]
> f ~be a K-series with respect to [Dn]. Assume

@®
Z £ (x) = £(x) for all x € [0,1]. Then T £
n=1
is the LFK-series for f.

Proof. Let ‘f(x)‘ < ¢ for all x € |0,1].

We will show that |s (x)| < Cc for all x and n.

Suppose not. Then there is an ng and Jo € ﬂh
o
such that |s | >C on int J . For the sake of
o

definiteness, assume Sh > C on int Jo.
o

It will be shown that there exists a sequence of
intervals {Jj] and an increasing sequence of integers

[nj} with the properties

(1) Jj+1 C int Jj'
]
(3) s s »>C on int J. (j =0,1,2,...).
nj+1 nj j+1

The sequences are constructed by induction. We have

n and Jo' Assume that no,nl,...,nk and J

o Jiseee,d

o’'"1
have been constructed. Suppose that for every n > n

k

k

and every I € ﬁh with I < int J, Wwe have s, < snk
on int I. (We wish to deduce a contradiction.)
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Obviously there exists an index i > n, such that fi

is not identically zero on int Iy Let m be the
smallest such i. By property Q, and orthogonality
there is an I ¢ B such that I c Jper I # Iy and

fm > 0O on int I. Since Sm > Spo] Stec= snk on

int I, the interval I must, by the assumption, have
a common endpoint with Jk’ For definiteness, assume
the common endpoint of Iy and I 1is the right,

denoted by vy.

Now apply lemma 3 with p = ny. P =J,., Qq=
and Pl = I to find integers m = my < m, <... and
intervals Pj € ﬁh (j =1,2,...), all having vy

as a common right endpoint, such that fm < O off Pj'

;=
f >0 on int P,, £ = f =.e.= f 1 =0
mj j mj+1 mj+2 M 1

on int Pj (j =1,2,...).

Define Mj = -min £ (t) (3 =1,2,...).

Suppose for j > 2

4 M- ;' f - o
(4) j < ml(y )
Let P; denote a member of 5~ upon which —Mj is
3
attained by fm . Then we have
J
' 3 —
Because of condition Q, we have £ (y-) = 2f_ (y)

J J
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(j =1,2,...). This fact combined with (4), (5) and

condition Q3 gives

. |p. | ’
L2f (y) 1pom < 2f (Y)K

(6) 0 < 2fml(y) < M
j j j

for j . 2, where K 1is a constant independent of j.

But the convergence of X £ (y) implies 1lim £ (y) = O,
n=1 j-bcn J

a contradiction with (6). Therefore, there exists j > 2

for which Mj < fml(y—).

By condition Q2 and orthogonality the support of

fm is contained in Pj-l (j = 2,3,...). Therefore

p"J P
! c P,
3 j-1
and to the left of y so P; cint g (3 =2,3,...).

(3 = 2,3,...). Now P; is disjoint from

Let j; > 1 be such that \fm_ (t)| < fml(y-) for

I
: 4 . U
every t € int Pj . Then fm + fm. >0 on int Pj .
1 1 i 1
Si Pl c P. for j >2, £ >0 on int P/
ince j 5-1 j > mj > 3

(7 = 1,2,...,j1-1). Combining this fact with the choice

of {mj] we have

g 1 1 jl-l j1 1
=s  on int P,
k I

a contradiction.
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Therefore there is an n > n, and J € 5,
such that J € int I and S, 2s, on int J. Set

k

n ., =n and Jpp1 = J- This completes the construction.

From the density of D and from (1), (2), and

(3) we have N Jy = {z} and 1lim s, (z) >C > £(z),
k=1 K4 k

a contradiction. Therefore |s (x)| < C for all

x € [0,1] and all n.

Fix an integer m > 1 and J ¢ B - Set

g = characteristic function of J. Then
flgs=fs for n > m.
o) n g " -

By the Lebesgue Dominated Convergence Theorem we have

lim

s = lim gs_ = Il gf = £.
n+e ‘g o o n 0 IJ

n-o

Because of the orthogonality

Combining these last two facts with theorem 8 of Chapter

[ ]
II proves that 2 £ is the LFK series for f. 0
n=1

In the remainder of this chapter it will be
assumed that D, has n+l points. Note that this is

the case for Haar series, that condition 02 is automatically
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fulfilled and that conditions QO' Q1 and Q3 are
equivalent under this assumption. Furthermore if D
has n+l points, then ﬁh has n elements and

5 \ 2 -1 has two elements (n = 2,3,...).

5. Definition. Let J%‘\\ﬁh_l have two

elements, say J and K. Set

= max(+—* 1—10 (n =2,3,...).

Under the assumption that Dn has n+l1l points,
condition Q, is equivalent to boundedness of the
sequence [qn]. In the next example a sequence [Dn]
and a non-trivial K-series 2 f_ with respect to
{Dn] are constructed such :;;t g& fn(x) = 0 for every
X € [0,1]. This example satisfigg all the hypotheses

of theorem 4 except for the boundedness of [qn}.

6. Example. Let 2 = Al < A2 Cese, lim An = o,
n -

. . 1 1 11 1
lim(a -A ) = 0. Define J = [z - 377,z], L_=[5,5 + 7]
. n+l “'n n 2 An 2 n 2’2 An
(n =1,2,...). It is easy to see that there is a sequence

(Dn] fulfilling the requirements of definition 1 of

I
o

Chapter II and a sequence of natural numbers 2

with the properties

(1) Dn has n+l points
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(2) Jn,Ln € ﬁkn

3) Jn+l € ﬁkn+1

(4) Lner € B 42
Set S4

to be regular and

An on
s = -A on
kn n
(o) on
Let skn+1 be regular and
An+1
Sk +1 = \72n
(o)
Let skn+2 be regular and
r
An+l
s = -A
kn+2 n+1l
0
Set s = s Z.ee= S
kn+1 kn+l 1 kn+
f1 = s, and fm = S."Sp1

is identically zero for m # k.

on
on

on

3

+1

= O. For each n > 1 define Sy

n

int J
n
int L
n

[0,1]\(Jn U Ln).

int Jn+1
int Ln

UL.).

[0,1] \(Jn-i-l n

int Jn+1

int Ln+1

[o'l]\\(Jn+l v Ln+l)°

= s Define

kn+2

(m = 2,3,...). Then £

and m # kn+2

(n=1,2,...). Therefore f_ € Tm for m # kn+1 and

m

m # k+2 (n=1,2,...). Choose an n > 1, let

Il,...,Ik be an enumeration of the intervals in ﬁk .

n

n
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Define vj to be regular and
1 on int I.
{ j
J 0 on [0,1]\1I.

(j = 1,...'kn)o Then [Vl'.'.’vkn}
Sk « In order to show fk +1 € Tk +1
n n n

show
f v, = f =0
‘I‘O kn+l 3 II. kn+l
J
for j = 1"'°'kn' Obviously fkn+1
int Ij' if Ij # J . since {J skn
n
we have f fk $1 = O. Hence fk +1
Jn n n

Similarly let Pl....,Pkn+1

J

is a basis for

we need only

=0 on
=1 = s ’
fJ k +1
n
€Ty 41°
n

be an enumeration

of the intervals of ﬁkn+1. Define uj to be regular
and
1 on int P,
u. = J (3 = 1, ee0,k +1).
] 0 off P,

Then [ul""'ukn+l] is a basis for

. To show
skn+1

fk +2 € Tk +2 We need only show
n n
jl £ | £ 0
u. = =

0 kn+2 Jj Pj kn+2
for j = 1,...,kn+2. Obviously fkn+2 = 0 on int Pj
if Pj # L, - Since IL skn+1 =1 = IL skn+2. we have

n n

j fi 42 = O-
L, “n
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Consequently, f € Tm for every m. So

m
L £ is a K-series with respect to [Dm]. Let
n=1
X = %. Then there is an integer m such that sn(x) =0
1 1
for n >m. For x = 3 we have skn+l(§) =A 1 - A,
and
1 1 1
S (") = S (-) = eee= S ("’) = O
kn+2 2 kn+3 2 kn+l 2
(n = 1121000) . Therefore lim Sm(%) = 0.
- Mo
Hence mZi £ (x) =0 for every x, but fkn+1 and

fkn+2 are non-zero functions (n =1,2,...).

The example constructed in section 6 has several
interesting properties which are the subject of the

next remarks.

7. Remark. Let (A}, {kn]. (w1, {Jh}. be

as in example 6. Set

1 1 1 1
K = [- -——l a -—] (n =2,3,-o.).
n 2 An-l 2 An
Jn+1‘ _ An

Thel‘l q = q = - - (n = 1121000)0
k +1 k +2 K1l AL,172,

Moreover, there does not exist an integer N such that
Qe 41 <n for n > N. To see that this is the case,
n

suppose that there were such an N > 1. Then for any

A
_n+l _ 1.

Ap

n >N we have % < That is
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1 7
ﬁ) > An+1

An(l +

There is an a > O for which

(2)

Let

then (2) holds.
-An+1 > a(n+l).

(1) and the fact that 1lim(A

An
that lim — = O,
n

N

8.

Remark.

matter how the sequence

n be an integer such that A 2 an.

A, 2an (n =1,...,N+1).

If n { N+1

If n >N, then by (1) we have

So that (2) holds in any case. From

-An) = 0 it follows

N n+l

a contradiction.

We have seen in section 7 that no

(A}

for Qe 41 to be eventually bounded above by n.
n
However, choose B >1 and a € (B 1,1). Define
A = 2n® (n =1,2,...). Then
-1 n+l,a
A +1 © ( n - 1.
n
Now
n+l,a _ lia _a
(n)-l—(1+ﬁ -l—ﬁbn'

where bn =

limb_ =1,

n4e o

for n > N.

Thus d 41
n
9.

a
(1 + 7?0a—1 and 0 < a < 1. Therefore

so there exists an N such that bn >i§;
-1 a 1
For n > N we have then Qe 41 > n B
n ;
< nB for n > N.
Remark. ©.

It is clear

n-wx
that the sequence [kn} in example 6 may

is chosen it is impossible
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be chosen so that qkn+1 < bkn+l and qkn+2 < bkn+2:
at the same time we may choose the sets Dn so that
q, = 1 for m # kn+l, kn+2 (n =1,2,...). Then

qpy < bm for any m.

In view of example 6 and these remarks, it
appears that the assumption of condition Q3 in theorem 4
cannot be substantially weakened. A natural question
is whether the imposition of conditions on the rate
at which the lengths of the smallest and largest intervals
in the nEE partition tend to zero might imply the

conclusion of theorem 4.

10. Definition. Let {Dn] be given. Denote

v, = max |J| and = min |J| (n =1,2,...).
T Jes, " Jeb

ll. Lemma. Assume that there exist numbers

a,p such that ny > a and nv, <B (h=1,2,...).

Then fDn] satisfies condition Q-

Proof. Take n »1 and J,L € ﬁh. Then

J “n
L

< —X
T

12, corollary (to theorem 4). Let [Dn]

QI™

. O

satisfy the assumptions of lemma 1ll. Assume Dn has

n+l points for each n > 1. Let X~ f  be a K-series
n=1

F-




77

with respect to [Dn} which converges everywhere on
@
[0,1] to a bounded function f. Then 2" £ is the
n=1
LFK-series for f£f.
The next example shows that if we only assume

(nun} is bounded away from zero the conclusion of

theorem 4 need not hold.

13. Example. Let O < a < l. Set

A = 2na

n (n =1,2,...). Define sets E. € E, CE, C...

(o) 1 2

E, = (0.5 - E.i,i + Kz-.ll. Let m > 2 and let finite
sets EO < El CeeoC Em be defined. Define

(1) _ . 1 (2) _ ] 1
E, = (t eE :t<3), Ef = (t €E = t >3} Let
{tl Ceool tr] be an enumeration of Eél) and
{tr+1 <ty $oeol ts] be an enumeration of E£2).

1 .

Let aé ) - [[tj_l,tj] :2<3j<r} and

(2) _ . . _ (1 (2)
&, = {[tj_l,tj] : r+2 < j < s}. Denote &, = 87 U8 .

Let F_ be the set of midpoints of intervals from 6m.

Now define

E

1 1 1
m m Am+1 2

NI

m+1

Now we prove E € (0o,1] (m=0,1,2,...). The
assertion is clear for m = 0,1,2. Assume n > 2 and

E < [0,1]. Then certainly F, < [0,1]. sSince
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A, >2 it follows that °<%‘K'l'_<%+;\l < 1.
n+1l n+1
Therefore E 1€ [0,1]. This establishes the assertion.
1 1 1
Next we prove that max{t € E_ : t < 5} = 5 - —
n 2 2 An
(n =2,3,...). This is obvious for n=2. Assume n > 2
1, _1_ 1
and max{t € E, : t< 5] =3 A . Thus
max{t fE_ UF_ : t < l] =:_ L Thus max{t € E :
n ) 2 2 An' n+l °
t < %] % - A]- since % - A]- > % - £; and
n+l n+1 n
En+l = En U Fn U [% - A]- R % + A]. }. This proves the
n+1 n+1l

assertion. Similarly it may be shown that

- 1, 1,1 .
mln[t GEn-t>§]-§+An (n—2'3'ooo)o

From these two facts it follows that

| 1 1
2

y = +
A 2 An+1

}NE =¢g (n=2,3,...)
n+l n

because An+1 > An (n = 1,2,.¢.)

Now we may show that En has 2741 points
(n =0,1,2,...). This is clear for m = 0,1,2. Suppose
n > 2 and E has 2"+1 points. It follows from
the definition of F that Fn n E = g. Moreover

Fn has Zn-2 points. We have seen above that

1 1 1 1
{' - v = +
2 An+1 2 A

} NE_ = d.
n+1l n
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Therefore
_ 1 1 1 1
E 41 = Ep UF, u {i - An+l'§ + An+1]

has (2n+l) + (2n—2) + 2 points. This establishes

the assertion.

Set D = E (n =0,1,2,...). In order to
o n

define Dk for any natural number k, choose an n.

Let Jl,...,J n be an enumeration of the elements of
2
B n Further assume that the indices are so chosen that
2

the right endpoint of Jg is the left endpoint of Ji+

1
(i=1,...,2"-1). set D = E_ U (midpoint of J.},
n n 1
2 +1
and D =D U {midpoint of J.} for 1< 3 < 2n-1.
n . n . j =~
27°+j 2°+j-1
Define
1 1
D =D 4, U5+ )
2Ryl onon-l gyt "2 AL,
and
1 1
D =D Uiz + }.
2Pyl Tonypn-lt 2 AL,
Define D =D U [(midpoint of Jj) for

243 2"4+5-1
2"l < 5 < 2P

Since (E%TJG <2 (n=2,3,...) and An = 2n%

(n =1,2,...), we have

2oL .1 m-a2,3,....
n 2n 2 (n-1) n-1
Therefore
1 1 1
(1) A >A -X-_ (n_2'3'oo.)|
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Now we prove that

1, .1 _
n-1 An An

1

(2) 3

To see this rewrite the inequality
3-2(1 + 5™ > 1 -
n

Now using the Taylor expansion for

that there are sequences [cn] and

1
n+1l

A for n > 4.

as

1l,-a
U

(14x) "% we see

(dn] satisfying

P 1 1
0 < <y < 5 T n < dn < O,
1, -a a a(a+l)
(1 + = =1- =+ ) and
n n 2n2(1+c )OL+2
n
1, -a a a(a+l)
(1——) =l+-—+ (n=2'3,ooo)o
n n o oon2 (1+d ) a+l
Hence
(3) (l + l -Q < l - g + g_(ngL .
n n 2n2

Now let n > 4. Since n > 5 and

O0< a < 1l, we have

. 1 a+2 4. a+2 4.3
dn o= Ee (1+dn) > (g’) > (g) ’
that is
1 125
(1+d )a+2 64 <2
n
so that
(4) (1-DH"%c1+@yaledd

From (3) and (4) it follows that
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l)-a (1 - % Oy 3.5 4 2 _ afa+l) _ 4

3-2(1 + = -
n n n2
_a _ a(a+l) a _ 2a (a+1)
n 2 " n 2
n n
a N
= —2 |l’l - 2(1((1+1)] > 0.
n

_/l_ 11 _l1 1
set J, =1[5-a-3] Ly=I53+31
n n
1 1 1 1 1 1 1 1
K, =[35-3%5-=—1, I, =I[5+5—35+3]
n+1l 2 An 2 An+l n+1 2 An+l 2 An
(nh =1,2,...). Now we prove
. 1 1 1
(5) 8] = mln[— u _ ' - _—] (n = 2,3,...).
2n 2 2n 1 An-l An
Obviously W4, = l. By (1) we have 1L <'}- ;
2 2 2 A2 A2
therefore
1 1 1 1 1
M, = min{3z - =—,=—} = 5 - — .
4 2 A2 A2 2 A2
Since u, + —L-= 8] and u, < 1 we have Wd, < l U
4 7 A, 2 4 > A, ' 4 ~ 2 2

which is (5) for n=2. Now suppose that (5) holds for

some n >2. Let J € & be such that |J| =4 .
- 2" 2"
Because of (1)

1 1 1 1
U o =min{5; W 5,577 - 7=} < — .
2" 2 ALy BT Ay

Therefore J 1is not Jn or Ln' Now in constructing

D2n+l from Dzn, each interval of ﬁén\.[Jn.Ln] is

divided in half. Thus for each I € ﬁén+f\ rJn+l'Kn+l'

Ln+1'In+1] we have |I| > % \J\. By (1) we have

|Ln+l‘ = Tl > Kl = \In+1\‘
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Thus
1 1 1 1
u = min{5 |J|, |K |} = min{3z u ., - }.
2n+1 2 n+1 2 5N An An+1
This proves (5).
Let = MW, N ove that u _ = 2270y
e Uy, = H. ow we prove a n =
for n > 5. The relation is clear for n=5. Suppose
that for some n > 5 u n = Zs_nu. From (5) it
2
follows that u < z5— - 7. Thus
2 n-1 n
1 1, 1 1
= U S —( - _)o
2 2n 2 An-l An
Combining this with (2) gives
1 1 1
2 ot TAL Ann
From (5) and (6) it follows that
.1 1 1 1
u = min{z 4 , — - } =z .
o+l 2" Ay Ay 2R
Therefore U n+l = %(ZS—nu) = 25-(n+1)u. This proves
2

the assertion.

Let n >4 and 2" < j < 21, Then

. . n
u U » so that ]Uj R L 2u n+l’

2 2 2 2
Thus juj > 1l6y. There is a number c¢ > O such

I

n+l S My

that mum >2c for m=1,...,32. Thus

. 1 : .
juj > 16y = 5 32u32 > c. Therefore ky&.,'c for

every k > 1.
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Set s, = O. Define s, to be regular and
A1 on 1int Jl
S, = )
-A1 on 1int Ll'
Let S5 be regular and
A2 on 1int J2
Sy = —Al on int L1
O off J2 U Ll.
For n > 2 set P, = 3-2n-2+1 and define sp to
n
be regular and
An on 1int Jn
spn = -An on 1int Ln
O off Jn U Ln'
Set s_ =s =...= S . Let s be
P Pptl Pp+172 Phe17t
regular and
p .
An+1 on 1int Jn+1
S = - on int L
Pp+171 #n n
(0] off Jn+l U Ln‘
Then s € g and s 1 € 28 _ since J ,L_ € &
Pn Pn n+l 1 Pn+l 1 n.n Pn
n+l" n Pt 1
Take f1 =85, and fn = s,"S; 1 for n > 2.

Then it follows in exactly the same way as in example 6
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that £ €T for each n > 1 and that 2 f_is
n n < o1 R

a non-trivial K-series with respect to [Dn] which
converges to zero at every point in [O,1]. However,
as was observed above, there is ¢ > O such that

nu, > c for every n.
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