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ABSTRACT

TRAVELING WAVE ANTENNAS

WITH IMPEDANCE LOADING

by Dennis P. Nyquist

The circuit and radiation characteristics associated with thin-

wire traveling wave antennas are desirable for certain applications.

In this thesis, specific consideration is given to two members of the

class of thin-wire antennas: (l) the linear antenna and (2) the

circular 100p antenna. An impedance loading technique is utilized

in either case to modify the usual standing wave distribution of

antenna current. It is indicated that a traveling wave of current may

be excited on such thin-wire antennas through the use of an Optimum

impedance loading.

It is well known that conventional thin-wire antennas support

an essentially standing wave distribution of current. Such antennas

are highly frequency sensitive, in that their input impedance is a

strong function of the excitation frequency. As a consequence of

this sensitivity, antennas of this type are ordinarily used only at

a single frequency or over a very narrow band of frequencies.

A traveling wave antenna supports a distribution of current

which is essentially an outward traveling wave. In contrast to its

standing wave counterpart, the input impedance of a traveling wave

antenna is relatively broadband as a function of frequency. Further-

more, the radiation fields of such an antenna are considerably

modified as compared with those of a corresponding conventional
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DENNIS P. NYQUIST

antenna. These radiation patterns are in general characterized by

a wider beamwidth for electrically small antennas, and improved

directivity with a notable absence of minor lobes for large antennas.

It is the object of this research to realize a high efficiency

traveling wave antenna and to evaluate its corresponding circuit and

radiation characteristics. An impedance loading technique is

utilized whereby the antenna is doubly loaded with a pair of idential

lumped impedances. The position and impedance of an optimum

loading to yield an outward traveling wave of antenna current are

determined in terms of the antenna dimensions and its frequency of

excitation. It is indicated that a purely non-dissipative optimum

loading may be utilized if its position is properly chosen. Through

the use of such a loading, a traveling wave antenna may be realized

while maintaining the high efficiency characteristic of a conventional

unloaded antenna.

A theoretical analysis is made of the impedance loaded linear

and loop antenna configurations. It is the object of this analysis to:

(1) determine approximately the distribution of antenna current as

a function of its dimensions, the impedance and position of the loading,

and the frequency of excitation; (2) determine the optimum loading to

yield an outward traveling wave of current; (3) investigate the possibility

of utilizing a purely non-dissipative loading; and (4) calculate the

corresponding input impedance and radiation fields. Particular

emphasis is placed upon the use of a non-dissipative optimum loading,

since the high efficiency associated with such a loading is of fundamental

interest.
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DENNIS P. NYQUIST

It is verified experimentally that a traveling wave of current

may indeed be obtained on a linear antenna through the use of a properly

located, purely reactive loading. The experimentally measured values

of the parameters for such an optimum loading are demonstrated to

compare favorably with those which were determined theoretically.

The frequency dependence of the input impedance to a linear antenna

utilizing an optimum non-dissipative loading is evaluated experimentally.

Perhaps the most significant result of this research is the

conclusion that a traveling wave antenna may be realized through the

use of a purely non-dissipative loading. Explicit expressions for the

reactance and position of such an optimum loading are presented. It

is indicated that a purely reactive loading can be optimum only at a

single frequency, a resistive component being required at all other

frequencies. Approximate expressions for the input impedance and

radiation fields of the traveling wave antenna are given in terms of

its dimensions and the frequency of excitation. Numerical examples

are presented for antennas of specific dimensions to illustrate these

theoretical results.
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PART I

TRAVELING WAVE LINEAR ANTENNA

WITH OPTIMUM IMPEDANCE LOADING
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CHAPTER I

INTRODUCTION

1. 1. Introduction

It is the object of the first part of this research to realize

a high efficiency traveling wave linear antenna and to evaluate its

corresponding circuit and radiation characteristics. An impedance

loading technique is utilized in which the cylindrical dipole antenna

is doubly loaded with a pair of identical lumped impedances. A

theoretical investigation of this configuration is carried out to

determine approximately the distribution of current on the cylinder

as a function of its dimensions, the excitation frequency, and the

impedance and position of the double loading. The optimum loading

impedance to yield a traveling wave distribution of current over most

of the cylinder is determined from this result. Particular emphasis

is placed upon the possibility of utilizing a purely non-dissipative

loading, since this would provide the means of realizing a high

efficiency traveling wave linear antenna. It is verified experimentally

that a traveling wave of current can indeed be excited on a linear

antenna through the use of a properly positioned purely reactive loading.

The input impedance and radiation fields of a traveling wave linear

dipole having such a non-dissipative optimum loading are evaluated

as a function of the cylinder dimensions and the frequency of

excitation.

l. 2. Definition of a Traveling Wave Linear Antenna

A traveling wave linear antenna is defined as a linear antenna

which supports a traveling wave distribution of current. The traveling
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wave of current is excited by a voltage generator at. the center of the

linear dipole, and travels outward toward its ends. While the

amplitude of the current wave decays as it advances outward from the

excitation point, since it continuously radiates energy into space, its

phase is essentially a linear function of position along the antenna. In

this research, a restriction is made to the class of long thin-wire

anteims such that an expedient but approximate one-dimensional theory

may be utilized with good accuracy. In this one-dimensional approx-

imation, the distribution of dipole current is assumed to flow parallel

to the axis of the thin cylinder comprising the linear antenna.

The characteristics of thinuwire center fed linear antennas

have been studied extensively. Historically, Hallenl developed the

first mathematical theory describing the circuit properties of a linear

antenna. The result of this theory was an integral equation for the

axial distribution of current on the linear dipole. Hallen was, however,

unable to find a simple closed form solution to this integral equation.

Some time later, KingZ obtained an approximate closed form solution

to Hallen's integral equation through the use of an iterative technique.

This solution indicated that the distribution of current on a conventional

linear antenna consists essentially of a standing current wave. It was

found that these approximate theoretical results agreed very well with

corresponding experimental measurements of the antenna current.

Since it has been observed that the current distribution on an

ordinary linear antenna is essentially a standing wave, then evidently

some modification of its structure is necessary in order that it might

support a traveling wave of current. In the present research, an
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impedance loading technique is utilized to modify the distribution of

antenna current. This method consists of doubly loading the dipole

with a pair of identical impedances. When the loading is optimum,

that is, when its impedance and position are properly chosen, the

antenna may be made to support the desired traveling wave distri-

bution of current along the majority of its length.

A linear antenna is completely characterized by its distribution

of current. The dipole is fully described by its circuit and radiation

characteristics, which are readily determined from its current

distribution. From a knowledge of the current at its excitation point,

the input impedance of a linear antenna may be immediately calculated.

Similarly, the radiation pattern of the dipole is determined in a straight-

forward manner in terms of its distribution of current. Since the

circuit and radiation characteristics of a linear antenna are determined

by its current distribution, then it might be expected that these

characteristics should differ greatly for distributions corresponding,

respectively, to standing and traveling current waves.

1 . 3. Important Characteristics of 3. Traveling Wave Dipole

A conventional linear dipole antenna is highly frequency sensitive,

in that its input impedance is a strong function of the excitation frequency.

This frequency dependence is a direct consequence of the standing wave

distribution of antenna current. As the frequency of excitation is varied,

the maxima and minima of the standing wave of current shift in position

along the dipole. With the excitation potential fixed therefore, the

current at the driving point of the dipole, and hence its input impedance,

varies strongly Ravith changes in the excitation frequency. As a consequence
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of this frequency sensitivity, a conventional linear antenna is ordinarily

used only at a single frequency, or over a very narrow band of

frequencies.

In contrast to (the standing wave dipole, a traveling wave

antenna has an input impedance characteristic which is relatively

independent of frequency. This broadband character is a consequence

of the traveling wave distribution of dipole current. Since the

amplitude of the traveling wave of current is essentially constant along

the antenna, except for the smooth decay due to radiation, then a

variation in the excitation frequency does not result in a rapid change

in the current at the driving point. The input impedance of a traveling

wave dipole is therefore a relatively weak function of frequency. It

is this broadband character which is the most important property of

a traveling wave linear antenna.

The radiation pattern of a conventional standing wave dipole is

characterized by a single major lobe when the antenna is electrically

short. As the electrical length is increased, this single lobe splits

to form a new major lobe in conjunction with a minor lobe structure.

The beamwidth of the major lobe decreases as the antenna length

increases, which would result in increasingly improved directivity

(high gain) if it were not for the presence of the minor lobe structure.

These minor lobes, however, have an amplitude which is a large

fraction of that of the major lobe. Consequently, the directional

characteristics of a long linear antenna are not desirable for most

applications.
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The radiation characteristics of a traveling wave linear antenna

are quite different from those of its standing wave counterpart. An

electrically short traveling wave dipole is characterized by a radiation

pattern having a single major lobe with a very wide beamwidth. As

the electrical length of the antenna is increased, the beamwidth of

this single lobe continually decreases. A minor lobe does not appear

in the pattern until the antenna length is much greater than that of the

comparable standing wave antenna. An electrically long traveling wave

antenna may thus be utilized to realize an improved directivity, this

improvement being a consequence of the relatively narrow major lobe

beamwidth which may be obtained without the appearance of a minor

lobe structure. When the traveling wave antenna is sufficiently long

that minor lobes finally do appear, their amplitude is lower than that

of the initial minor lobe structure associated with the standing wave

counterpart antenna.

The modified radiation pattern characteristic of a traveling

wave linear antenna may be desirable for certain purposes. In

particular, the wide beamwidth of a short dipole and the absence of

minor lobes associated with an electrically long antenna may be

useful for some applications.

1. 4. Previous Research on the Traveling Wave Linear Antenna

It has been established that a traveling wave linear antenna

may be realized through the use of a resistance loading technique.

Research has been reported on methods which utilize both lumped and

distributed purely resistive loadings. A traveling wave distribution

of current may be excited on a linear antenna having a purely dissipative
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loading through the application of either of these techniques.

Altshuler3 proposed that a traveling wave of current could be

obtained on a linear antenna by doubly loading the dipole with a pair

of optimum lumped resistances placed a quarter wavelength from its

ends. This technique was motivated by an analogy between the

standing wave distribution of current on a linear antenna and the

standing wave of current on a section of lossless transmission line

having an equal length and terminated in an open-circuit. Such a

section of line may be matched by placing a resistance equal to its

characteristic resistance in series with the line a quarter wavelength

from the open-circuited end. The distribution of current on the

matched line is a traveling current wave, except on the quarter wave-

length section at the end where the standing wave persists. It was

reasoned by analogy therefore, that, by placing an optimum resistance

loading a quarter wavelength from the ends of a linear antenna, a

traveling wave distribution of current might be excited on all but its

' end quarter wavelength. That such a lumped resistance loading

technique could indeed yield the desired traveling wave of current was

verified experimentally, where a slowly decaying traveling current

wave was found to exist on the antenna between its excitation point

and the position of the loading.

It was found further than an approximately traveling wave

distribution of current was maintained for a range of frequencies

about that where the resistance and position of the loading were

optimum. Consequently, a relatively broadband input impedance

characteristic was measured for a dipole having a fixed resistance
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loading of fixed position. When the excitation frequency was varied

significantly from its center value, where the resistance and position

of the loading were optimum, it was found that the distribution of

dipole current reverted back to an essentially standing wave. Further,

the input impedance again displayed the strong frequency dependence

characteristic of a conventional unloaded antenna. The expected

radiation characteristics of a traveling wave antenna were measured

experimentally for such a resistance loaded dipole.

It has been demonstrated by Wu and King4 that a traveling

wave dipole may be realized by constructing it of a dissipative

conductor whose resistance varies in a prescribed manner with

position along the antenna. Theoretically, such a loading will yield

a rapidly decaying traveling wave distribution of current along the

entire dipole. This distributed loading technique has the advantage

that the optimum resistance of the loading is essentially independent

of the excitation frequency, so that the traveling wave of current may

consequently be maintained over a wide band of frequencies. The

broadband input impedance characteristic and modified radiation

pattern generally associated with traveling wave antennas were

demonstrated to characterize this particular dipole structure.

Although each of the resitance loading techniques discussed in

the preceding paragraphs may be utilized to obtain a traveling wave

distribution of current on a linear antenna, they share a common

disadvantage. Traveling wave antennas realized through these

techniques have a very low efficiency due to the great amount of power

dissipated in the resistive loadings. In either case, the efficiency is of
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the order of 50% or less, ‘which severely limits the practical value

of both techniques.

1. 5. Object of the Present Research

It has been indicated that the resistance loading techniques

for obtaining a traveling wave distribution of current on a linear

antenna are very inefficient. Although these schemes may be

applied to yield the desired traveling wave of current, 50% or more

of the power supplied by the source is lost in joule heating of the

dissipative loading, rather than being radiated into space. Such a

gross inefficiency is intolerable in the majority of applications.

It is the object of the present research therefore to realize a

high efficiency traveling wave antenna through a new technique

utilizing a lumped non-dissipative impedance loading. Since the

loading is to be non-dissipative with this method, no power loss will

be experienced and essentially all the power supplied by the source

will be effectively radiated. The efficiency of such a traveling wave

linear antenna will thus be comparable to that of a conventional

standing wave dipole.

In this investigation, the antenna is assumed to consist of a

thin perfectly conducting cylinder which is excited at its center and

doubly loaded with a pair of identical impedances placed symmetrically

about the excitation point. There are two degrees of freedom in

choosing a loading with such a configuration; its impedance and position.

The optimum loading to yield a traveling wave distribution of current

on the cylinder is to be determined. In particular, the possibility of

utilizing a properly positioned purely reactive optimum loading is to

be investigated.
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Through this reactive loading technique, the desirable circuit

and radiation characteristics associated with a traveling wave

distribution of current may be obtained without the introduction of

dissipative elements. A traveling wave linear antenna is thus

realized while retaining the high efficiency of a conventional standing

wave dipole.

l. 6. Outline for Investigation of Traveling Wave Linear Antenna

with Optimum Impedance Loading

The present investigation of a traveling wave linear antenna

with optimum impedance loading is broken into two distinct parts.

Initially, an approximate theoretical study of the doubly loaded

dipole is undertaken to determine the parameters of an optimum

loading which will yield a traveling wave distribution of cylinder

current. At a later point, an experimental study is made to verify

these theoretical results. It is demonstrated in particular that the

theoretically predicted optimum impedance loading will indeed yield

a traveling wave of current on a linear antenna.

It is the purpose of the theoretical analysis to: (1) determine

approximately the distribution of current on the doubly loaded cylinder

as a function of its dimensions, the excitation frequency, and the

impedance and position of the loading; (2) obtain from this result

(in terms of the cylinder dimensions and its frequency of excitation)

the parameters of an optimum double loading to yield a traveling wave

distribution of current on the cylinder; (3) investigate the possibility

of utilizing a purely non-dissipative optimum loading; (4) calculate the

corresponding circuit and radiation characteristics of a linear antenna

utilizing such an optimum impedance loading.
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An experimental arrangement is to be assembled in order to

verify that, at a given frequency, a traveling wave distribution of

current may indeed be excited on a linear antenna through the use of

a purely reactive optimum loading. Further, the circuit characteristics

of such a traveling wave dipole are to be studied experimentally. The

effects of variations in the excitation frequency and loading parameters

upon the distribution of antenna current are evaluated. A study is also

made of the frequency dependence of the input impedance to the traveling

wave antenna with purely non-dissipative loading. These experimental

results are compared with similar ones for a corresponding conventional

standing wave linear antenna.
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CHAPTER 2

APPROXIMATE DISTRIBUTION OF CURRENT ON A

DOUBLY LOADED LINEAR ANTENNA

2. 1. Geometry of the Doubly Loaded Linear Antenna

The geometry of the doubly impedance loaded linear dipole is

taken to be as indicated in Figure 2. l. A thin perfectly conducting

circular cylinder of length 2h and diameter 2a is excited at its

center by a harmonic voltage source of angular frequency w and

potential VO . The cylinder is symmetrically loaded with a pair of

identical lumped impedances ZL at a distance d on either side of

its center. With such a configuration, there are two degrees of

freedom in choosing a loading; its impedance and position.

In this research, both the source of excitation and the loading

impedances are idealized to be point elements. The gap in the

cylinder at the excitation point z = 0 is assumed to be centered about

that point and to have a length of 2.6 . Similarly, the gaps at the

loading impedances at z = :I: d are assumed to have a length of 26

and to be centered about those points. The point element assumption

then corresponds to letting 6 tend to zero as a limit. This mathe-

matical approximation is equivalent to the physical requirement that

the linear dimensions of the excitation and loading elements be

negligibly small compared with the length of the cylinder itself.

2. 2. Dimensions of Interest for a One -Dimensiona1 Theory

It is assumed that the linear antenna consists of a long thin

cylinder whose half-length is very much greater than its radius,

where the latter is taken to be a small fraction of the wavelength.

ll
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Figure 2.1. Geometry of Impedance Loaded Dipole
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Under these circumstances, and due to the symmetry of the cylinder

about its axis, it may be assumed that the distribution of current

excited on the cylinder by the source at its center is one-dimensional.

That is, the current is assumed to have only a z-component Iz(z)

which flows parallel to the cylinder axis. The dimenionsal restrictions

which are implicit in such a one ~dimensiona1 theory are thus

h > > a

(2.1)

[30a < < l

where (30 : ZTr/XO is the free space wave number which corresponds

to the free space wavelength )‘o .

Conditions (2.1) are also sufficient to validate the usual

approximation technique utilized in the study of thin wire antennas.

With this technique, the vector potential at the antenna surface is

calculated as the contour integral of the total antenna current, which

is assumed to flow along its axis. In reality, the current flows

throughout the cross section of the cylinder, and is actually most

concentrated along its surface due to the skin effect phenomena. The

vector potential at the antenna surface should in general, therefore,

be calculated as a volume integral of the current density on the

cylinder. However, it has been indicated by Hallen1 and King2 that,

when conditions (2.1) are satisfied, the error introduced by the above

mentioned approximation is negligible. This approximation technique

facilitates the solution for the distribution of antenna current, which

would otherwise be very much more complicated.
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2. 3. Formulation of an Integral Equation for the Distribution of

Cylinder Current

The boundary condition on the electric field at the antenna

surface is

(sx'fi) = o (2.2)

where fl is a unit outward normal vector at a point on the surface and

E the electric field at the same point. This condition requires that

the tangential component of electrical field be continuous across the

surface of the cylinder. Since conditions (2.1) are assumed to be

satisfied, then the distribution of current on the cylinder may be taken

to be one -dimensional, i. e. , to have only an axial component Iz(z) .

Under these circumstances, the tangential electrical field at the surface

of the cylinder will have only a z-component and condition (2. 2) becomes

E:(z) = Eiz(z) (2.3)

where E:(z) is the field just within the surface of the cylinder at

r = a- and E:(z) is the field at r =a+ just outside its surface.

Since the cylinder comprising the linear antenna is taken to

be perfectly conducting, then the applied field E:(z) may be non-

vanishing only in the gaps at z = 0, id . Thus E:(z) may be

expressed as

I z 1(d)
—£—?—-—— for -d-6<z<-d+6

N 0
'
!

V03.

Ez(z) = i ‘ 26
for -6< z< 6 (2.4)

 

zL12m)

K "—28—“ for -d-6< z<d+6
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E:(z) = 0 for all other point on - h 5 z: h (2. 5)

where Iz(d) is the current at the loading impedance and 26 tends to

zero in accordance with the point element assumption. In result (2. 4),

the symmetry of the distribution of current has been utilized as

Iz(-z) 2 12(2) (2. 6)

The total voltage drop along the cylinder must be given by

h

-S‘h E:(z) dz = VO - 2 ZL Iz(d) (2-7)

A result consistent with equations (2. 6) and (2. 7) is

E:(z) = - v0 5(2) + zL Iz(d)[6(z-d) + 6(z+d)] (2. 8)

where 6(z) is the Diract delta function.

The induced electric field E1z(z) just outside the surface of

the antenna, due to the current and charge on the cylinder, may be

calculated from the vector and scalar potentials5 (see Appendix A)

A, 4) as

° 87?1

gm — - (WMZ - (57) (2.9)
Z

Since the time variation is assumed to be harmonic of the form ert ,

then it is possible to make the replacement 5%- -* jw, where the

potentials and fields are then understood to be complex valued. There

is thus obtained

E:(z) = -(vc)>)z -ijz (2.10)
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where Az(z) and ¢(z) are the potentials at the surface of the cylinder.

The vector and scalar potentials are related by the Lorentz condition,

which may be expressed in the form

4. =l‘Bzv-X (2.11)

F5
O

with which equation (2. 10) becomes

Ei(z) = - i”— [ WV- lib]z .. ijz (2.12)

Since the distribution of cylinder current is axial, then the vector

potential will have only a z-component Az(z) as well, 5 and equation

(2. 12) gives

1 '0.) z .

Ez(z) = - 32 2 - JUJAZ (2.13)

(3 8z

 

If results (2.8) and (2.13) are substituted into condition (2. 3),

to satisfy the boundary condition on the electric field at the surface of

the cylinder, then a second order inhomogeneous differential equation

for the vector potential at the antenna surface is obtained as

 

82 Z jBoZ
$2— + 50 Az(z) = w { -VO6(z) + ZLIz(d)[5(z-d)+5(z+d)]}

(2.14)

This differential equation must be satisfied for - h E z _<_ h. A

complementary solution of equation (2.14) is well known to be

112(2) = c1 eJBOZ + cze‘lfioz - h < z < h (2.15)
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where C1 and C2 are arbitrary complex constants. The particular

solution is determined as

 

-jsolzl _ M[e-jfiolz-dl ,e-jaolzml]
2v

0

Alz)(z) = e

-h_<_th (2.16)

which is readily verified by direct substitution into differential equation

(2.14). In this last result, v0 = 119/130 is the velocity of propagation in

free space. The complete solution for the vector potential at the antenna

surface is obtained by the superposition of results (2.15) and (2.16) as

 

. . V .

Az(z) = (31.3130Z + Ca e'JF3oz + 2 V: e-JBOI 2|

[e'jfioiz‘di + e'jBolz'l'dl] _ h < z< h

(2.17)

Since the distribution of current on the cylinder is symmetric

about the excitation point, then the vector potential at its surface

exhibits a similar symmetry2 such that

A (-z) = A (z) (2.18)
Z Z

Solution (2.17) may be made to satisfy this boundary condition only if

C2 = C1 , which yields the simplified result

. . V .

A (z) : c eJfiOZ +c e'JFOZJ. _2. e-Jfiolzl
z 1 l 2vO

Z I d . .

_ L z() [e—molz-dl +e'JBOIZ’FdI] _h< M h
ZVO _ _.

(2.19)
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It should be noted that a solution in terms of complex exponentials has

been obtained since a traveling wave distribution of current having such

a functional dependence is to be sought eventually.

As indicated in section 2. 2, the vector potential at the cylinder

surface may be written as the Helmholtz integral over an assumed

axial distribution of current (see Appendix A) as

p. h

A212) = 1,95 1212')K(z.z') dz' -h_<_ 25h (2.20)

where (.10 is the permeability of free space and the kernel K(z, z')

is the Green's function

 

-j(30~/(z--z')2 + a2

K(z, z') = e (2.21)

~/(z-z')2 + a2

The factor R = ~l(z-z')2 + z‘2 in the Green's function (2. 21) represents

 

 

the Euclidean distance between an element of current on the cylinder

axis at z' and an observation point on its surface at z .

If the two expressions (2.19) and (2. 20) for the vector potential

Az(z) at the antenna surface are equated, there is obtained for - h 5 z

_<_ h the result

 

p. h . . V .

—9' I (Z') K(Z. Z') dz' = C 831302 + C e'Jfioz + O e'JBol zl
417 h z 1 1 2V

"’
0

Z I (d) . .

.. __ZI"v—z_ [e-JBOI Z-dl +e'JfiO|z+dl] (2.22)

o

This expression is an integral equation for the distribution of current
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12(2) on the doubly loaded linear antenna. The cylinder dimensions

h, a as well as the impedance and position Z d of the double loadingL’

appear as parameters in the equation. Two as yet undetermined constants

C1 and Iz(d) appear on the right hand side of the integral equation,

and must be evaluated through the application of a pair of subsidiary

conditions.

Since the antenna structure terminates at z = h, then the

cylinder current at that point must vanish. Further, the distribution

of cylinder current must be continuous, with the result that the

condition Iz(z=d) = Iz(d) must hold at the location of the loading. The

solution Iz(z) of integral equation (2. 22) must therefore satisfy the

subsidiary conditions

II CI ( =h)

Z z (2.23)

Iz(z=d) Iz(d)

These conditions are sufficient to facilitate evaluation of the constants

C and I (d).
z1

It is to be noted that, in the special case where Z = 0,

L

. . . . . 2
equation (2. 22) reduces to a variation of Hallen's integral equation

for the distribution of current on a conventional linear dipole. This

is to be expected, since when Z = O the structure of the doubly
L

loaded cylinder reduces to that of. an ordinary linear antenna.
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2. 4. Approximate Solution for the Distribution of Current on the

Doubly Loaded Cylinder

It has been indicated that, for the special case where ZL = 0,

equation (2. 22) reduces to Hallen's integral equation for the distribution

of current on a conventional linear antenna. Hallen's equation has

been solved approximately by King. 2 A relatively simple closed form

expression for the distribution of cylinder current may be obtained

through what has become known as the King -Middleton iterative

technique. The application of this technique to obtain a solution to

equation (2. 22) is, however, impractical since: (1) the constant Iz(d)

on the right hand side of the integral equation depends upon the as yet

undetermined distribution of current; (2) the additional terms occurring

on the right in equation (2. 22) for ZL )6 0 are equivalent to a pair of

shifted sources, which complicate such a solution to the extent that it

becomes very unwieldy.

An integral equation similar to result (2. 22) has been encountered

by Chen6 in the investigation of electromagnetic scattering from a doubly

loaded cylinder. Through an approximate technique, a rather complex

solution for the distribution of cylinder current was obtained in terms

of simple functions. This integral equation was essentially identical

to result (2. 22), with the term involving the excitation potential VO

omitted. The inclusion of this term in equation (2. 22) makes Chen's

approximation technique too intractable to provide a useful solution.

A more approximate technique than those mentioned in the

preceding paragraphs has been reported by Wu and King4 and later by

Chen in conjunction w1th determining the distribution of current on an
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impedance loaded cylinder. In the latter case, an excellent agreement

with corresponding experimental results was observed. This approxi-

mation technique consists essentially of assuming that the ratio of

vector potential at a point on the antenna surface to the current at the

same point is constant along the cylinder.

The motivation for this approximate method is a consequence

of the peaking property of the kernel K(z, z'). It has been found that

the vector potential at a point z on the surface of the cylinder is

 

 

 

given by

HO h

A(z) =—— I(z')K(z,z')dz' -h<z<h

z 417 -h z — —

(2.20)

where K(z, z') is the Green's function

e-j130~/(z..z')Z + a2

K(z,z') = (2.21)

~/(z-z')2 + a2

The peaking property of this kernal is exploited to formulate an

approximate solution for the distribution of current on the doubly

impedance loaded cylinder.

Since a < < h by the thin-wire assumption, 1. e. , condition

(2.1), then K(z, 2') has a very sharp peak at z' : z when considered

as a function of z' on - h E z‘ _<_ h. Hence the contribution to the

vector potential Az(z) at each point on - h j z 5 h, as calculated

from equation (2. 20), is due primarily to current elements in a small

neighborhood about the point z' = z . Because the distribution of current

Iz(z) is continuous, then the current Iz(z') for z' = z makes the major
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contribution to the vector potential at a point z on the cylinder surface.

It is expected from this argument therefore, that the ratio Az(z)/Iz(z)

should be essentially constant at each point along the cylinder, or for

- h 5 z _<_ h .

The preceding conclusion is obtained directly if K(z, z') is

identified approximately with the Dirac delta function 6(z-z') . Making

this replacement in equation (2. 20), there is obtained

A212)

12(2)
 

(.1

74.? -115th (2.24)

which is equivalent to the remarks of the last paragraph. An essentially

constant dimensionless quantity ‘II(z) is thus defined by

Az(2) H
0

12(2) = 71-.”- \Il(z) - h: 2: h (2.25) 

and is designated as the "expansion parameter. " It has been indicated

by King, 2’ 4 in agreement with the above arguments, that ‘Il(z) is

essentially independent of 2 except near z = :1: h, and is determined

primarily by the antenna dimensions. It is thus asserted that ‘I'(z) = \II

is indeed a constant depending only upon the antenna dimensions. The

validity of this assumption will be discussed more fully in section 3. 6

of the following chapter.

According to the approximation discussed above, the distribution

of current on the cylinder is related to the vector potential at its surface

as

Iz(z) = $713; Az(z)

O
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An expression for the vector potential at the surface of the cylinder

has been obtained, however, as equation (2.19). The distribution of

antenna current on - h E z E h is therefore obtained approximately

from equations (2. 26) and (2.19) as

ZTrV

 

 

12(2) : 51‘? C1 ejfioz + “41:1, Cl e‘jfioz + 27172 e‘jfiolzl

O O 0

2w 43 lz-dl as lz+dl

' to? ZL Iz(d) [ e O + e 0 ] (2.27)

where {,0 = «ML 760 = 120w is the 1ntr1n31c impedance of free space.

It is to be noted that this expression satisfies the symmetry condition

Iz(z) = Iz(-z) .

Result (2. 27) contains the two as yet undetermined constants

C1 and Iz(d) . These constants may be evaluated by applying to

solution (2. 27) the boundary conditions (2. 23), which are given by

l
l

0Iz(z=h)

(2.23)

I (d)
Z

Iz(z=d)

The straightforward application of these conditions to expression (2. 27)

yields finally the approximate distribution of cylinder current on

- h E z E h as

Vn’ D D

 

Iz(z) : CO‘I’ __1 e'jfioz + T31 ejfioz + Ze‘jfiolzl

o 2 2

Z D . . .

_—_—L __1 cos 5 d + e'JBod e'JBolz'dl + e'JBolz+d|

30T 2 o

(2.28)
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In this result, the factors T, D1, and D are constants depending
2

upon the excitation frequency, the cylinder dimensions, and the

impedance and position of the loading as

 

 

Z .

_. L 'Jzflod
T — ‘I’+—6—O (1+e ) (2.29)

Z

L -‘ d

D1 = 30,1. e Jfio cos pod —1 (2.30)

jp h ZL 2
o -D2 e cos [30h 30T cos (30d (2.31)

An approximate expression for the distribution of current on

the doubly loaded cylinder has been obtained in equation (2. 28). This

distribution completely characterizes the linear antenna, and is given

in terms of its dimensions, the excitation frequency, the impedance

and position of the double loading, and the as yet undetermined expansion

parameter. The optimum loading to yield a traveling wave distribution

of current on the cylinder will be obtained from this result in the

following chapter. This traveling wave current distribution will then be

utilized to calculate the value of the expansion parameter ‘I’ .

2. 5. I Input Impedance of the Doubly Loaded Linear Antenna

The input impedance to the doubly loaded linear antenna is

defined by

V
_ o

Zin — —-————Iz(z:0) (2.32)

This expression is readily evaluated by using result (2. 28) for the

approximate distribution of current on the doubly loaded cylinder,

and is found to be
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D Z D

_ _1 _L as d _1 "350d
Zin — 60‘1’ 1+ D2 - 3OT e 0 D2 cos (30d + e

(2.33)

An approximate relation for the input impedance to the doubly loaded

linear antenna is thus obtained in terms of its dimensions, the frequency

of excitation, and the impedance and position of the loading.
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CHAPTER 3

OPTIMUM LOADING FOR A TRAVELING WAVE

DISTRIBUTION OF ANTENNA CURRENT

3.1. Physical Interpretation of the Distribution of Current on a

Doubly Loaded Dipole

An approximate expression for the distribution of current on

the doubly loaded linear antenna has been developed as equation (2. 28).

This solution is valid on - h E z E h, but since Iz(-z) = Iz(z) it is

sufficient to consider only the current on O E z E h. If attention is

restricted to the regions 0 E z E d and d _<_ z _<_ h, then the various

terms in expression (2. 28) may be combined to yield a pair of results

which are more physically meaningful.

The distribution of cylinder current for O E z i d is obtained

from the general result (2. 28) as

 

 

V TT D Z . D . .

IZ(Z) = Z231, 2 + B; - 30.1.. e JBO (T5; COS Bod + e JBO ) e 350

D Z . D . .

_1 _ L flfiod _1 160d Jfioz
+ D2 3OTe (D2 cos Bod+e e

(3.1)

while that on d E z E h becomes

V 11' D Z D . .

_ o 1 L l 160d -JBoZ
Iz(z)— C—J‘F 2+DZ ~15Tcos Bod (D2 cos 80d+e ) e

1 )st (3.2)
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A physical interpretation of the current distribution is readily obtained

from expressions (3.1) and (3. 2).

It is observed from equation (3.1) that on O E z E d the total

current may be considered as a superposition of a pair of outward and

inward traveling current waves. The first term in this result represents

an outward traveling wave of current which is excited by the source at

z = 0. At z = d this current wave is partially reflected and partially

transmitted. The second term of equation (3.1) represents an inward

traveling wave of current which results from the reflection of the

outward traveling wave by the impedance discontinuity at z = d.

Similarly, equation (3. 2) indicates that the distribution of cylinder

current on d E z _<_ h is composed of a pair of Oppositely directed

traveling current waves. The first term of this expression represents

an outward traveling wave of current which is excited at z = d by the

transmitted portion of the outward wave on O E z E d. This current

wave is reflected by the structural discontinuity in the cylinder at

z = h. The second term of equation (3. 2) represents the inward traveling

wave of current which results from the reflection of the outward wave at

z = h.

It is indicated therefore, that inIgeneral both outward and inward

traveling waves of current are supported on each of the two regions

0 E2 E d and d E z E h. The superposition of the oppositely directed

traveling waves results in a standing wave distribution of current along

either region. Thus in the usual case a standing wave of current is

supported along the entire cylinder.
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3. 2. Optimum Loading Impedance for a Traveling Wave Distribution of

Cylinder Current

It has been indicated in the preceding section that the doubly

loaded cylinder generally supports a standing wave distribution of

current over its entire length. The possibility that this distribution

might be modified, through the selection of an optimum impedance

loading, to yield a purely outward traveling wave distribution of

current over most of the cylinder is now to be investigated.

It is evident physically that no choice of the loading will give

a purely outward traveling current wave on d E z E h, since the

inward traveling wave on that region is due to a reflection from the

unalterable structural discontinuity at z = h. However, it is reason-

able to suspect on physical grounds that if the loading is properly

chosen the inward traveling wave on O E z E d might be eliminated,

leaving only the desired outward traveling wave of current over that

region. Since the inward traveling wave on O E z E d is actually

reflected from the impedance discontinuity at z : d, it is expected

that such an optimum loading should exist.

The optimum loading impedance to yield an outward traveling

wave distribution of cylinder current on O E z E d may be obtained

from expression (3.1). This situation evidently requires that the

inward traveling current wave on that region should vanish. Realization

of this condition is accomplished by equating the coefficient of the second

term in equation (3.1), which corresponds to the amplitude of the inward

traveling wave, to zero as
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D Z . D .

Di - 334T euJfi0d Di cos [30d + e-Jp0d> = O (3.3)

2 2

Using the defining relations (2.29), (2.30), and (2. 31) for T, D1, and

D2 , respectively, this equation may be solved for the Optimum loading

impedance, designated as [ ZL] O , to yield

eJ’Bod
. (3. 4)

cos [30d - eJBOul'd) cos Boh

 [z = 30w
L]O

After considerable straightforward manipulation, result (3. 4) may be

cast into the simpler form

[Z = 30‘I’[l + j cot 80(li-d)] (3.5)
L] 0

When the loading impedance is given by this relation, the cylinder

current on O E z E (1 becomes the desired purely outward traveling

wave, while that on d E z _<_ h remains the usual standing wave.

Expression (3. 5) gives the optimum loading impedance in terms

of its position, the cylinder dimensions, and the frequency of excitation.

For a given set of antenna dimensions, this optimum impedance is a

function only of its position d and the frequency w . At this point

the loading location is completely arbitrary, and may be freely

specified in order that the corresponding impedance may satisfy

certain prescribed conditions.

It has been indicated that the optimum loading impedance [ ZL] 0

depends only upon its position d and the excitation frequency (0 once

the cylinder dimensions h and a have been specified. This leads one

to suspect that, at least at a single frequency, it should be possible to
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choose an optimum position for the loading such that [ ZL] 0 will be

either purely resistive or purely reactive. These two special cases

will be considered individually in the following two sections.

Since ‘11 is in general a complex number, it may be written

as \II = u + jv . With this designation, the Optimum loading impedance

of expression (3. 5) becomes

[Z : 30(u + jv)[l + j cot (30(h-d)] (3.6)

L10

or, in terms of real and imaginary parts

2 3O {[ u - v cot (30(h-d)]

+ j[ v + u cot pom-(1)] } (3.7)

An explicit expression for the expansion parameter \I’ is to be

developed in section 3. 6.

3. 3. Purely Resistive Optimum Loading

In order to obtain the condition for a purely resistive optimum

loading, it is only necessary to equate the reactive component of the

optimum loading impedance given by expression (3. 7) to zero as

v + u cot (30(h-d) = O (3. 8)

This result yields the necessary position of an optimum purely resistive

loading as

h—d l -1 u
 

“—
1

while its resistance becomes
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[RL]O = 3o[u -v cot 50(h'd1]

2

= 30(u+%—) (3.10)

Theoretically then, a linear antenna which is doubly loaded with an

optimum resistance [R as given by result (3.10), whose position

L] o

d satisfies equation (3. 9), will support a purely outward traveling

wave of current on O E z E d.

It will be indicated in section 3. 6 that ‘I’ = u + jv is a relatively

weak function of the excitation frequency. Thus it is observed from

expressions (3. 9) and (3.10) that (h—d)/>\ o and [R are essentially
L] 0

frequency independent.

The parameters of an optimum purely resistive loading are

indicated in Figure (3.1) as a function of the antenna electrical length

h/X o for the typical case of an antenna having a half-length of h = 31. 25 cm

and a diameter of 2a : O. 25 inches. These dimensions correspond to

a half-length of h 2 0. 625 X 0 at an excitation frequency of 600 mhz. In

obtaining these numerical results from expressions (3. 9) and (3.10) use

was made of equation (3. 37), which will be developed in section 3. 6.

This equation gives the expansion parameter \I' in terms of the antenna

dimensions h and a, and the excitation frequency w. It is noted

from the figure that both (h-d)/>\ o and [RL] 0 are essentially constant

over a wide range of frequencies. .Thus while the optimum resistance

of such a loading is almost constant, its necessary position is a strong

function of the frequency of excitation. This is evident since d then

depends directly upon X o = Vo/f’ where f is the frequency and v0 the

C

D

velocity of propagation in free space.
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The preceding theoretical results correspond to the research

reported by Altshuler. 3 As indicated earlier, Altshuler carried out an

experimental investigation of a linear antenna doubly loaded with an

optimum resistance. This experiment indicated that the value of the

optimum loading resistance was essentially constant, i. e. , for a

given set of antenna dimensions it was a weak function of the excitation

frequency. It was found further that such a purely resistive loading

should be placed approximately a quarter wavelength from the antenna

ends in order to obtain a traveling wave distribution of current.

For an antenna having the same dimensions (h = 31. 25 cm,

2a = 0. 25 inch) as those which were used in obtaining the theoretical

results indicated in Figure 3.1, Altshuler determined the parameters

of an optimum purely resistive loading experimentally as: [ RL] 0 =

240 ohms; (h—d) = 0. 25 X o' The excitation frequency utilized in the

experiment was 600 mhz (X o = 50 cm). A corresponding set of

theoretical values are obtained from equations (3.10) and (3. 9),

respectively, as: [RL] 0 = 220 ohms; (h-d) = 0.17 X 0' An excellent

quantitative agreement is thus observed between the present theory

and the available experimental results.

It has been indicated that the necessary position of a purely

resistive optimum loading is a strong function of the excitation

frequency. In a practical physical situation, .however, the location

of the loading must be fixed at some point along the antenna. Hence

an optimum purely resistive loading is possible only at a single

frequency. If the position of an optimum loading is chosen such that

its impedance is purely resistive at a given frequency, then at any
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other frequency an optimum impedance must have both resistive and

reactive components.

It is interesting to consider the frequency dependence of an

optimum loading whose fixed position is so chosen that its impedance

becomes purely resistive at a given frequency. An antenna having

the dimensions h = 31. 25 cm and 2a = 0. 25 inch will again be

considered. If the optimum loading is placed such that (h-d) = 0. 171.0,

then its impedance becomes purely resistive with [RL] 0 = 220 ohms

at a frequency where h = O. 6251\0 (600 mhz).

The optimum impedance of a loading having its position fixed

at this location is indicated in Figure 3. 2 as a function of the antenna

electrical length. This result is obtained from equation (3. 5), and

it is noted that the reactive component of the impedance vanishes only

for the frequency where h = 0. 625 x0 . At any other frequency, the

optimum impedance must have a reactive component in order to yield

a purely outward traveling wave of current.

It is noted from the figure, however, that for small frequency

deviations about the value where the reactive component of the optimum

impedance vanishes, the resistive component of this impedance is

essentially constant. Furthermore, for such frequencies, the reactive

component of the optimum loading impedance is much smaller than its

resistive component. Thus a constant purely resistive loading of

fixed position may be utilized to realize an approximately traveling

wave distribution of antenna current for a band of excitation frequencies.

As the frequency deviates further from its value corresponding to an
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optimum loading, the current distribution slowly reverts back to an

essentially standing wave. These are exactly the results which were

obtained by Altshuler in his experimental study.

3. 4. Purely Reactive Optimum Loading

The condition for a purely non-dissipative optimum loading is

obtained by equating the resistive component of the optimum impedance

given by expression (3. 7) to zero as

u-vcot (30(h-d) 2‘ O (3.11)

This result requires that the necessary position of an optimum purely

non-dissipative loading be given by

 x _ 21? tan ‘3’ (3.12)

With this condition satisfied, the corresponding optimum loading reactance

becomes

[x = 3O[v+ucotBO(h-d)]

2

30(v+3V—) (3.13)

L10

It is indicated theoretically therefore, that a linear antenna which is

doubly loaded with an optimum non-dissipative impedance, whose

reactance [XL] 0 is given by expression (3.13) and whose position d

satisfies equation (3. 12), will support a purely outward traveling wave

of current on 0 E z E d.

In section 3. 6 it will be indicated that ‘I’ = u + jv is relatively

independent of the excitation frequency, and depends primarily upon the
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antenna dimensions h and a. Expressions (3. 12) and (3.13) therefore

indicate, respectively, that (h—d)/>\O and [XL] are essentially
0

frequency independent.

Numerical values for the parameters of an optimum non-

dissipative loading will be obtained for a pair of antennas having the

following dimensions:

(1) h = 50 cm, 2a : 0.25 inch; h : k0 at a frequency of

f = 600 mhz.

(2) h = 100 cm, 2a : 0.25 inch; h : 2X0 at a frequency of

600 mhz.

The optimum loading reactance [XL] 0 and its necessary location

(h-d)/)\O are indicated in Figures 3. 3 and 3. 4 as a function of the

antenna electrical length h/kO for antennas (l) and (2), respectively.

These numerical results were obtained from expressions (3.12) and

(3.13). The value of the expansion parameter \I' was calculated from

equation (3. 37) of section 3. 6, which gives 11 in terms of the antenna

dimensions h and a and the excitation frequency w .

It is observed from the figures that, for either antenna, both

(h-d)/>\O and [XL] 0 are essentially constant for a wide band of

frequencies. Hence while the optimum reactance of such a non-

dissipative loading is rather constant, its necessary position is a

strong function of the excitation frequency. As for the case of a purely

resistive loading, this is evident since the loading position (1 depends

directly upon the wavelength X0 = vO/f, where f is the frequency at

which the dipole is excited.
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A comparison of Figures 3. 3 and 3. 4 indicates that these

numerical results are nearly identical for antennas (l) and (2). The

frequency dependence of the optimum loading reactance [XL] 0 and

its necessary position (h-d)/)\O are almost the same in either case,

even though the half-length of one antenna is twice that of the other.

In particular, at a frequency of 600 mhz the parameters of an

optimum non-dissipative loading for these two antennas are

(l) h
)‘o; [XL] 0

210; [ XL] 0 = - 363 ohms, (h-d) = 0.417 1.0.

= - 366 ohms, (h-d) = O. 418 X0 .

(2) h

This result is a consequence of the fact (as will be discussed in

section 3. 6) that the expansion parameter ‘I’ is essentially indepen-

dent of the antenna half-length whenever this dimension is of the order

of a wavelength or greater. A similar situation is not observed when

the cylinder diameter 2a is varied, however, since ‘I’ is a strong

function of the cylinder diameter for all values of its half-length h.

It has been indicated that, for a given set of cylinder dimensions,

the necessary position of an optimum non-dissipative loading is strongly

dependent upon the frequency of excitation. Physically, however, a

practical arrangement of such a doubly loaded linear antenna requires

that the position of the loading be fixed at some point along the cylinder.

With this restriction, an optimum purely reactive loading may therefore

be realized only at a single frequency. If the location of such an optimum

impedance loading is so chosen that it becomes purely reactive at a

given frequency, then at any other frequency it must consist of both

resistive and reactive components.
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Since the position of the impedance must be fixed, it is of

interest to consider the frequency dependence of an optimum loading

whose location is so chosen that its impedance becomes purely

reactive at a given frequency. In order to obtain some specific

numerical results, the two antennas considered previously will

again be utilized. The loading positions are chosen according to

equation (3. 12) such that the corresponding optimum impedances be-

come purely reactive at a frequency of 600 mhz (X0 = 50 cm). The

specific antenna dimensions and loading locations are then as follows:

(1) h = 50 cm, 2a = 0.25 inch, d = 29.1 cm; at 600 mhz:

h = 1.0, (h-d) = 0.418 x0, [XL] 0 = - 366 ohms.

(2) h = 100 cm, 2a = O. 25 inch, (1 = 79.2 cm; at 600 mhz:

h = 210, (h-d) = 0.417 ho, [XL] 0 = — 363 ohms.

The optimum impedance of a loading with fixed position is

indicated as a function of the antenna electrical length in Figures 3. 5

and 3. 6 for the configurations corresponding, respectively, to antennas

(l) and (2) above. Since the optimum impedance is no longer purely

reactive at every excitation frequency, these results were obtained

from the general expression (3. 5), with the dimensions h and d

fixed at the appropriate values. It is noted that in either case the

resistive component of the optimum impedance vanishes only at the

frequency where h 2 X0 or h = 210, respectively (600 mhz). At

any other frequency, an optimum loading impedance must have a

resistive as well as a reactive component in order to yield a traveling

wave distribution of antenna current.
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The following important characteristics are observed from

Figures 3. 5 and 3. 6 for the case of an optimum impedance loading of

fixed position:

(i) In general, an optimum loading impedance requires both

(ii)

(iii)

(1V)

resistive and reactive components. The resistive

component vanishes only at a single frequency.

Both the resistive and reactive components of the optimum

impedance are strong functions of frequency. There is a

frequency just above that where the resistive impedance

component vanishes at which both impedance components

tend to infinity.

The sign of both impedance components changes within a

relatively narrow frequency range. An optimum impedance

thus requires a negative resistance component (active

element) at certain frequencies, and its reactive component

varies from capacitive to inductive as the frequency is

increased.

The reactive component of the optimum impedance has a

negative slope as a function of frequency.

It is therefore evident that synthesis of an exact optimum impedance,

to yield a purely outward traveling wave distribution of current at

every frequency, is out of the question. Although an Esaki diode might

be utilized to obtain a given negative resistance component, there is

no practical; means of realizing a variable negative resistance having

a frequency dependence of the type indicated.

Since the high efficiency associated with a non-dissipative
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loading is of fundamental interest, one is led to consider, when

dealing with a loading of fixed position, a loading consisting of the

reactive component of the optimum impedance. Such a purely non-

dissipative loading is optimum only at a single given frequency, and

its effectiveness diminishes as the frequency of excitation is varied

from this value. That is, the distribution of cylinder current on

O E z E (1 will consist of a purely outward traveling wave at an

excitation frequency corresponding to the given center frequency, but

will gradually revert back to an essentially standing wave as the

frequency of excitation deviates from this value.

For reasonably small excursions about the center frequency,

the current distribution corresponding to such a non-dissipative loading

will remain an essentially outward traveling wave. This is evident

since, referring to Figures 3. 5 and 3. 6, for such small frequency

variations the resistive component of the optimum impedance is

small compared with its reactive component. For large deviations

in the frequency of excitation, however, the magnitude of the resistance

component becomes comparable with that of the reactive component,

and the effectiveness of a purely non-dissipative loading will be

necessarily reduced.

An approximately traveling wave distribution of current may

therefore be maintained on a linear antenna over a band of excitation

frequencies through the use of a non-dissipative loading of fixed

position. The frequency dependence of this purely reactive loading

must match that of the reactive component of the optimum impedance

of fixed position. The circuit and radiation characteristics of an
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antenna with such a non -dissipative loading will thus be typical of

those for an ideal traveling wave antenna over this range of frequencies.

In order to realize an effective purely non-dissipative loading,

it is necessary that its reactance depend upon frequency in the same

way as the reactive component of the optimum impedance of fixed

position, as indicated in Figures 3. 5 and 3. 6. The problem therefore

is to realize such a frequency dependent reactance characteristic.

Due to the negative slope of this reactance as a function of frequency,

the use of an ordinary lumped capacitance would be relatively ineffective.

A similar difficulty is encountered with a short circuited transmission

line section, or a coaxial cavity. Such a frequency dependent reactance

is thus not realizable with simple circuit elements, and presents a

difficult synthesis problem. The consideration of this problem is

beyond the scope of the present research.

In order to verify the preceding theoretical results, an

experimental investigation of a linear antenna having a purely non-

dissipative loading is made in Chapter 5. In particular, it is

demonstrated that a traveling wave distribution of current may indeed

be excited on a linear antenna through the use of a prOperly positioned

optimum purely reactive loading.

Expressions (3.12) and (3.13) for the position and reactance of

an optimum non-dissipative double loading are perhaps the most

significant results of this research. Given the antenna dimensions and

its excitation frequency, the parameters of an optimum non-dissipative

loading to yield a traveling wave distribution of cylinder current are

readily calculated from these simple expressions. Through the use of
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such a loading, a traveling wave linear antenna may be realized which

retains the high efficiency of a conventional unloaded dipole. It is

worthy of note that the simple transmission line analogy utilized by

Altshuler3 in the study Of a resistance loaded dipole fails completely

in this case. A lossless transmission line section terminated in an

open circuit cannot be matched with a purely reactive series loading

regardless of its position. It is thus indicated that there is no real

amlogy between a linear antenna and an open circuited section Of

transmission line.

3. 5. The Distribution Of Current and Input Impedance Corresponding

to an Optimum Loading

A general expression for the Optimum loading impedance to

yield a traveling wave distribution of cylinder current on O E z E d

was determined as equation (3. 5). Whenever the impedance is given

by this expression, whether it consists of a purely resistive or

reactive Optimum loading Of proper position or one of arbitrary position

having both resistive and reactive impedance components, then condition

(3. 3) holds, i. e. ,

 

Z . D .

Di -— 301.1. e-Ji30d (TD—1 cos 130d + e-Jflod) = 0 (3-3)

2

The distribution Of cylinder current on O E z E (1 therefore becomes

from equation (3.1)

12(2) = T)? e‘Jfioz (3.14)
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while by result (3. 2) that on d E z E h is given by

V Tl' Z D . .

12(2) : 2?th 2 - ——__I:'— (.1 C08 god .1. e-Jfiod) e'JBoz

3OT D2

D .

+ .1 63502 (3.15)

D2

These expressions represent, respectively, the outward traveling

current wave which has been realized on 0 E z E d and the standing

wave which remains on d E z E h .

It is desired to simplify result (3.15) in order to indicate more

clearly the distribution of current on d E z Eh . This equation may

be written in the general form

2V 71'

12(2) = 2:917 [Ae-jfioz + BejBOz] (3.16)

where A and B are complex constants depending upon the antenna

dimensions and the loading parameters. The direct evaluation Of A

and B is very tedious, so an alternate method will be used. Since

the cylinder current is continuous at z : d, then the condition

I( ~d') — 1( -d+) (3 17)z z— _ z z— .

must be satisfied, along with the Obvious requirement that

Iz(z=h) = 0 (3.18)

The result Of equation (3.14) may be utilized to Obtain

_ 2V07r "B d

Iz(z=d) = W e 3 0 (3.19)

O
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Applying the two boundary conditions (3.17) and (3.18) to expression

(3.16) in conjunction with result (3.19), the constants Ai and B are

evaluated in a straightforward manner as

A z 1 (3.20)

1 _ e'jzfiou'l‘d)

 

_ e'jzfioh

1 _ e'J2p0(h'd)

 (3.21)

If expressions (3.20) and (3. 21) for A and B, respectively, are

substituted into equation (3.16), the distribution Of current on

d E z E h is obtained as

I j4VO1r e—jpoh

z‘z) ‘ 401 ,_e-12130(h-d)
 sin 80(h-z) (3.22)

It is Observed from result (3. 22) that the cylinder current on

d E z Eh has a sinusoidal distribution. Thus although an Optimum

impedance loading yields an outward traveling wave of current on

0 E z E d, the distribution on d E z Eh remains a purely standing

wave. This standing wave distribution is in fact identical with the

zeroth-order distribution Of current on a conventional unloaded linear

antenna.

Since the antenna current is symmetric about its excitation

point, then Iz(-z) = Iz(z). In summary then, the distribution of

cylinder current corresponding to an optimum impedance loading may

be expressed on - h E z E h as

'

Iz(z) = afie-Jfiolzl -dE zE d (3.23)
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jVO e-jfioh .
Iz(z) = 30111 1 - e-jZBo(h-d) sm 80(h-|z|) (3.24) 

_h< z<-d, d:Z:h

The distribution of current corresponding to an Optimum impedance

loading will be illustrated by considering a pair of antennas having the

purely resistive and purely reactive Optimum loadings discussed

previously in sections 3. 3 and 3. 4. Specifically, the antenna

dimensions and Optimum loading parameters are taken as:

(l) h = 31.25 cm, 2a : 0.25 inch, d = 22.9 cm, [RL] 0 = 220 ohms;

purely resistive optimum loading at 600 mhz where:

h=0.625k,(h-d)=0.l7>\ .
O O

(2) h = 100 cm, 2a = 0.25 inch, d : 79. 2 cm, [XL] 0 = - 363 ohms;

purely reactive Optimum loading at 600 mhz where :

h = 2110, (h-d) = 0. 417 he .

In Figures 3. 7 and 3. 8 are indicated the amplitude and phase

Of current (Obtained from expressions (3. 23) and (3. 24)) for antennas

(l) and (2), respectively, as a function Of position along the cylinder.

It is noted that in either case the amplitude Of the current on 0 E z E d

is constant while its phase is linear, corresponding to a traveling wave

Of current along that region. On (1 E z E h, however, both figures

indicate a sinusoidal standing wave with constant phase. The appearance

of the standing wave on this region is quite different for the two cases.

In Figure 3. 7, corresponding to the optimum resistive loading, the

length (h-d) is only 0.17 he so the standing wave exists only on a

region whose length is less than a quarter free space wavelength. For

the Optimum reactive loading of Figure 3. 8, however, (h-d) = 0. 417 RC
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and nearly a full half wavelength Of the standing wave is present.

The input impedance to a traveling wave linear antenna is

obtained from equation (3. 23) as

V

O

in Iz(z=0)

60 ‘II (3.25)

It is to be noted that this expression is valid only when the impedance

and position Of the double loading are chosen to be Optimum, i. e. ,

equation (3. 5) is satisfied. Under any other circumstances, when

ZL is not [ ZL] 0’ the general input impedance expression (2. 33)

must be utilized as

-l

 

Z . D .

_ _1. L 'JB d __l_ ’Jfiod
Zin—60\II 1+D -30Te 0 (D2 cosfiod+d

(2.33)

This general result reduces to equation (3. 25) when the loading

impedance is Optimum.

In order to demonstrate the input impedance characteristic of

a linear antenna having an Optimum impedance loading, the two dipoles

having purely resistive and purely reactive loadings will again be

considered. In this instance, however, the loadings are taken to be

optimum at every frequency, that is, to have the impedance and

position given by Figures 3.1 and 3. 4, respectively. The specific

antenna dimensions and loadings are thus:

(1) h = 31. 25 cm, 2a = 0. 25 inch; Optimum resistance loading

as in Figure 3.1.
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(2) h = 100 cm, 2a : 0. 25 inch; Optimum reactance loading

as in Figure 3. 4.

An indication of the frequency dependence Of the input impedance for

these two configurations is given, respectively, in Figures 3. 9 and

3.10. These numerical results were calculated from expression

(3. 25) using the approximate value of ‘1’ given by equation (3. 37) Of

section 3. 6. It is noted that the input impedance Of a linear antenna

which supports a traveling wave Of current at every frequency is

essentially independent Of the frequency Of excitation. The

approximate theory developed in this research therefore predicts

an input impedance characteristic which is in general agreement

with the well known circuit properties Of a traveling wave linear

antenna.

It was indicated in sections 3. 3 and 3. 4 that a purely resistive

or purely reactive loading Of fixed position can be Optimum only at a

single frequency. Consideration was thus directed tO loadings consisting

of either the resistive or reactive components of the Optimum impedance,

with their locations selected in such a way that they became Optimum at

a given frequency. Since such loadings are optimum, and hence yield

a purely outward traveling current wave on 0 E z E (1, only at a

single frequency, then the frequency dependence of the corresponding

input impedance must be calculated from expression (2. 33).

In Figure 3. 2 Of section 3. 3, the optimum loading impedance

was indicated as a function Of antenna electrical length for a dipole

having dimensions h = 31. 25 cm, 2a : 0. 25 inch, and for which the

loading position was fixed at d = 22. 9 cm. The reactive component
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of the optimum impedance was found to vanish at a frequency Of 600 mhz,

where h = 0.625 x0 and (h-d) = 0.17 1.0. A resistance loading Of

[RL] 0 = 220 ohms is Optimum at that frequency. The input impedance

corresponding to a constant resistance loading of RL 2 220 Ohms

positioned at d = 22. 9 cm is now to be considered. Since the loading

is Optimum for h = 0. 625 KO , then it is approximately Optimum for

a range Of frequencies centered about this point. The input impedance

is therefore expected to be relatively broadband about the frequency

where h = O. 625 10.

The input impedance to a linear antenna having such a constant

resistance loading of fixed position is indicated as a function Of its

electrical length in Figure 3.11. Both the theoretical result calculated

from expression (2. 33) and Altshuler's experimental result3 are

presented. It is Observed that in either case the input impedance is

relatively constant for a range of frequencies about that where

h = O. 625 X0. This broadband character is quite in contrast to the

frequency dependent impedance of a conventional unloaded linear

dipole, which is a very strong function of the frequency of excitation.

It is noted from the figure that the theoretical and experimental

values for the resistive component of input impedance are in close

agreement. There is, however, considerable error present for the

corresponding reactive components. While the two reactance curves

display basically the same functional dependence, they are displaced

from one another along the impedance axis. There are several probable

sources for this error as follows:
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(i) The approximate technique utilized to Obtain the distribution

Of current on the doubly loaded cylinder.

(ii) The approximate nature of the expression utilized for the

expansion parameter ‘1! (to be discussed in section 3. 6).

(iii) There is some question as to whether end-effect correction

factors were applied to the experimental results.

It is felt that the major contribution to the error is due to point (ii)

above. As will be indicated in the following section, the approximate

expression utilized to calculate \I’ is accurate only for the case of a

long antenna. It is necessary that the length d of the cylinder on

which the traveling wave of current exists be considerably greater than

the length (h-d) which supports a standing wave distribution. In the

present case, the antenna length is relatively short, and the accuracy

of the approximate expression for ‘I’ is consequently questionable.

This particular cylinder length was chosen initially only to correspond

with the dimensions used by Altshuler in his experimental investigation.

An antenna having the dimenions h = 100 cm and 2a 2 0. 25 inch,

with a loading impedance fixed at the position d = 79. 2 cm was considered

in section 3. 4. The corresponding optimum loading impedance was

indicated in Figure 3. 6 as a function of the antenna electrical length.

With this particular choice of the loading position, the Optimum

impedance becomes purely reactive at a frequency of 600 mhz where

h = 2X0 and (h-d) = 0. 417 10 . The input impedance Of an antenna

with similar dimensions having a non-dissipative loading consisting

Of the reactive component of the above Optimum impedance is now to

be considered. Since this loading is Optimum for h : 2X0, then the
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distribution Of cylinder current on 0 E z E d will approximate a

traveling wave for a range of frequencies about this point. The

corresponding input impedance is therefore expected to be relatively

broadband about the frequency where h = 210 .

In Figure 3.12 is indicated the input impedance Of a linear

antenna having such a non-dissipative loading of fixed position, as a

function of its electrical length. This theoretical result was

calculated from the general input impedance expression (2. 33). It

is noted that the input impedance is relatively constant for a range

Of frequencies about that where h : 2X0, at which point the loading

is optimum. This broadbanding effect is not as pronounced, however,

as for the case Of a purely resistive loading. Since a purely resistive

loading is more nearly Optimum over a band Of frequencies, as

indicated by Figures 3. 2 and 3. 6, such a difference is to be expected.

From Figure 3.12 it is observed that the input impedance Of the

doubly reactance loaded dipole is reasonably constant for h/kO between

the values Of 1. 75 and 2. 25. Thus a broadbanding effect is evident for

a half-length variation of 0. 5 wavelengths, or for a variation of a full

wavelength in the total antenna length. This is a notable improvement

over the situation which exists with a conventional unloaded dipole,

where the antenna input impedance is a much stronger function Of its

electrical length. It is evident therefore that the desirable circuit

properties of a traveling wave linear antenna may be realized through

the use of a purely non-dissipative loading. In contrast to the resistance

loading method, this technique maintains the antenna efficiency at the

same high level as that Of a conventional linear dipole.
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It should be remarked that if a non-dissipative loading Of fixed

position is desired, then the reactive component Of [ZL] O , as

considered above,is not the optimum reactance. Although it is not

evident from the present theory, there may exist a more suitable

non-dissipative loading for the purpose. Further, if some dissipation

is allowed, a more effective broadbanding of the input impedance than

is indicated in Figure 3.12 should be obtainable.

3. 6. Calculation Of the Expansion Parameter \Il(z)

The expansion parameter ‘I/(z) has been defined in Chapter 2

by equation (2. 25), and may be written in the form

A212)

12(2)

 11(2) 2 iii -h< z< h (3.26)
110 - —

where Az(z) is the vector potential at a point on the antenna surface

and Iz(z) is the corresponding cylinder current. It has been indicated

that this vector potential may be expressed as

h -

A (z) : —— f Iz(z')K(z,z') dz' (2.20)

where K(z, z') is the Green's function

 

e--j(3()~[(z-z')2 + a2

K(z,z') = (2.21)

2 2
z-J( z') +a

 

Using result (2. 20) in equation (3. 26), the expansion parameter becomes

h

1 l l 1
‘I’(Z) = T;(—Z—)— S111 12(2) K(z, Z ) dz (3.27)
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Since the current distribution of fundamental interest is the

traveling wave corresponding to an Optimum impedance loading, then

it is this distribution which will be used to evaluate the expansion

parameter. It has been indicated by King3 that ‘I’(z) is relatively

independent of the distribution Of cylinder current, and depends

primarily upon its dimensions. Hence no great error will be made

by using the value of ‘I’(z) corresponding to a traveling wave

distribution when carrying out calculations where the cylinder current

actually departs moderately from a traveling wave, i. e. , when ZL

is not [ ZL] 0 .

In the preceding section, it was found that the distribution of

cylinder current on 0 E z E h corresponding tO an Optimum impedance

loading may be expressed as

 

2VOTr "P z

Iz(z)=—z——O‘IJ eJO OEzEd (3.14)

2V TT . .

12(2) 2 LOO‘II [A e-Jfioz + B eJBOZ] d E z E h

(3.16)

where the complex constants A and B are given by equations (3. 20)

and (3. 21), respectively. It is clear from equation (3. 27) for the

expansion parameter, that, since the cylinder current appears both

in the integrand and in the denominator, the constant multipliers of

the current expression may be dropped. Furthermore, since Iz(-z) :

Iz(z), then for the calculation of \Il(z) the distribution of cylinder

current may be taken as
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e-jfiolzl _d< zIz(z) :
_ E d

. . (3.28)

12(2) = lie'Jfiol‘zl +BeJBOlz' -hE zE-d,

2 h

With the current distribution Of equations (3. 28), there is

obtained the result

1‘ 'd -'13 IN 'o W
S Iz(z')K(z, z') dz' = S [A e J 0 + B eJ 0 ]K(z, 2') dz'

-h -h

d -'13 lz'l
+5 e J 0 K(z,z') dz' (3.29)

-d

h . , . .

+54 [Ae'JBOIZl + Belfiolz l] K(z,z') dz'

d

which may be written as

h h #13 (z') “e lz'l
S Iz(z') K(z, 2') dz' = 5 [Ac J 0 + BeJ 0 ] K(z, 2') dz'

-h -h

d _. [2,,

+S e 3‘30 K(z,z') dz' (3.30)

-d

d . .

-S [Ae-Jfiolz'l +BeJfiolz'l] K(z,z')dz'

-d

Result (3. 30) may finally be expressed in the form

h

S‘ Iz(z')K(z, z') dz' = (A+B)Ca(h, z) - j(A—B) Sa(h, 2)

-h

+(1-A-B) Ca(d, z) - j(l +B-A) Sa(d, z) (3. 31)

where Ca(h, z) and Sa(h, z) represent the integrals
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h

Ca(h,z) : 5 cos Boz' K(z,z') dz'

-h

(3.32)

h

Sa(h,z) s 5 sin solz'l K(z,z') dz'

h

These integrals occur frequently in the theory of linear antennas, and

were numerically machine calculated to facilitate evaluation Of the

expansion parameter ‘Il(z) .

If equations (3. 28) and (3. 31) are used in expression (3. 27),

then ‘I’(z) is immediately obtained as

M2) : (A+B)Ca(h, z) - j(A-B)Sa1h. 2) +(1-A—B)Ca(d,z) - j(l+B-A)Sa(d, z)

e'jfioz

0: zE d (3.33)

_ (A+B)Ca(h,z.) Lj(A-B)Sa(h, z) + (1 -A-B)Ca(d, z) - 11+B-A)Sa(d, z)
142) _. .

Ae J‘303 + B 8,1302

dEth (3.34)

It .is noted from these results that the expansion parameter depends

upon the position d Of the Optimum impedance loading as well as the

antenna dimensions h and a. This poses a new problem, since the

loading position was previously determined in terms Of \I' , but now ‘I’

is found to depend in a complicated way upon the location d of the

loading- Furthermore, it was postulated that the expansion parameter

111(2) = \I’ was indeed a constant, while expressions (3. 33) and (3. 34)

indicate that \Il(z) is generally a function of position along the antenna.

Some further approximations are evidently in order, and it must be

demonstrated that ‘I’(z) is essentially independent of z .
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It is a well known result in linear antenna theory that the

expansion parameter ‘Il(z) is a relatively weak function Of the

distribution Of cylinder current. 2 In the present case Of an antenna

having an Optimum impedance loading therefore, if the portion Of the

cylinder supporting a standing wave Of current is short compared

with that on which a traveling wave exists, then no great error will

be made in calculating \Il(z) by assuming the traveling wave of

current to exist over the entire cylinder. That is, if (h-d) is small

compared with d, then it should be a valid approximation to let d = h

in result (3. 33). Making this substitution yields the greatly simplified

expression

‘I’(z) 5 ca(h’:L-j13:zsa(h’ z) 0 f z E h (3. 35)

In this approximate result, 111(2) depends only upon the antenna

dimensions h and a. The methods of sections 3.3 and 3. 4 may there-

fore be applied to directly evaluate the necessary position Of an optimum

loading.

An indication Of the error in approximation (3. 35) is now to be

Obtained. The special case of an antenna having a half-length of h = 100 cm

and a diameter of 2a = 0. 25 inch will be considered. It is assumed

that an Optimum impedance loading is positioned at d = 79. 2 cm such

that a traveling wave distribution Of current exists on 0 E z E d.

This configuration corresponds to the antenna with non-dissipative

loading discussed in conjunction with Figures 3. 8 and 3.12 in the

preceding section. In Figure 3.13 a comparison is indicated between
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the exact result Of expression (3. 33) and the approximate one of equation

(3. 35). The figure indicates the dependence Of the real and imaginary

parts of \II(z) upon position along the cylinder for O E z E d.

It is Observed from Figure 3.13 that there is a very close

correspondence between the approximate and exact values of \II(z)

for both its real and imaginary parts. The deviation bemeen the two

results is small near z = 0 and becomes progressively larger (as

would be expected by physical reasoning) as the position of the loading,

beyond which a standing wave Of current exists, is approached. Use

Of the approximate expression (3. 35) for \I'(z) is therefore quite well

justified provided that:

(i) The ratio d/(h-d) is relatively large (in the preceding case

this ratio had the value 3. 81).

(ii) The expression is not applied for values Of 2 close to d.

A second very important Observation from Figure 3.13 is that

the expansion parameter is indeed nearly independent of position along

the cylinder. This fact justifies the original approximating assumption

of section 2. 4, in which ‘Il(z) was taken to be a constant Of value ‘I’.

Since ‘I’(z) is well represented by its value at the excitation point

z = 0, and since this is the point at which the input impedance is

defined, then it will be taken that the constant value Of ‘1’ is given by

‘11 = \I’(0) . The exact and approximate expressions for ‘I’ then

become from equations (3. 33) and (3. 35), respectively,
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\II = (A+B) Ca(h, 0) — j (A-B) Sa(h, 0)

+ (1-11-13) Ca(d, 0) - j(1+B-A) Sa(d, 0) (3.36)

11! s Ca(h, 0) - jSa(h, 0) (3.37)

Again, result (3. 37) will be a satisfactory approximation whenever

(h-d) is small compared with d.

A comparison between the exact and approximate values of ‘11

given by expressions (3. 36) and (3. 37), respectively, is indicated in

Figure 3.14. The antenna is again taken to have a half-length Of

h = 100 cm and a diameter of 2a : 0. 25 inch. A plot of the approxi-

mate value of ‘11 given by equation (3. 37) is presented as a function

Of the cylinder's electrical length. From this value of ‘I’ , the

position (1 of a purely reactive Optimum loading was calculated for

each frequency (see Figure 3. 4) according to the method indicated in

section 3. 4. Using these results for d, a corrected result for ‘I’

was Obtained from expression (3. 36), as indicated in the figure. The

deviation between the approximate and corrected values of \II is

negligible for its real part, but becomes appreciable for the imaginary

part in the case of a short antenna.

In all Of the preceding numerical calculations, the value Of \I' was

Obtained from the approximate expression (3. 37). The error inherent

in this approximation is small whenever the antenna half-length is Of

the order of a wavelength or greater, and the ratio Of d to (h-d) is

sufficiently large. In the case of the resistance loaded antenna of the

preceding section, the half-length was relatively short (always less than

a wavelength), and the accuracy of equation (3. 37) is accordingly doubtful.
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As was noted in connection with Figure 3.14, the error due to the

approximation occurs primarily in the imaginary part of ‘I’. It is

felt that this inaccuracy in ‘II is primarily responsible for the

deviation between theoretical and experimental values for the

reactive component Of input impedance which was observed in

connection with Figure 3.11.
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CHAPTER 4

RADIATION CHARACTERISTICS OF A

TRAVELING WAVE LINEAR ANTENNA

4.1. Distribution of Cylinder Current for Calculation of

Radiation Fields

It was indicated in the introduction that the radiation charac-

teristics of a linear antenna are completely characterized by its

distribution of current. The approximate current distribution on

the doubly loaded cylinder was determined in Chapter 2, while

that corresponding to an optimum impedance loading was established

in Chapter 3. In the present chapter, the electromagnetic fields of

the traveling wave linear antenna at the radiation zone (or far zone)

are to be calculated. These radiation fields are defined by the

condition fiOR > > 1 , where R is the distance from a current

element on the cylinder to an observation point P as indicated in

Figure 4.1. This condition is equivalent to the requirement that

the observation point P be separated from every point of the dipole

by many wavelengths. In order to determine these electromagnetic

fields, the distribution of cylinder current corresponding to an

otpimum impedance loading will be utilized. Since it is, in

particular, the radiation fields which are to be determined, this

distribution will be further approximated to simplify the calculations.

In section 3. 5 of the preceding chapter, the current distribution

on the doubly loaded cylinder corresponding to an optimum impedance

loading was found as

72
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V

12(2) = 36% e'jfiolzl -d:z:d (3.23)

jVO e'jfioh

 Iz(z) — 30‘11 1-e-J°Zf30(h-<Tl sin BO(h-lz|) (3.24)

These expressions represent, respectively, a traveling wave of cylinder

current over the region - d E z i d and a standing wave on the regions

- h _<_ z 5 - d and d _<_ z _<_ h. It is well known that the radiation fields

of a linear antenna are not a strong function of its distribution of

current. 2’ 5 If the regions of the dipole supporting a standing wave

of current are short compared with the one on which a traveling wave

exists, then it is a reasonable approximation to assume that the

traveling wave is present over the entire cylinder. That is, if (h-d)

is reasonably small compared with d, then no great error will be

made in calculating the radiation zone electromagnetic fields if

equation (3. 23) is assumed to be valid for - h _<_ z 5 h.

From the results of sections 3. 3 and 3. 4, the range of antenna

lengths for which the above approximation is applicable may be deduced.

Consider an antenna with a purely resistive optimum loading having

the dimensions utilized in conjunction with Figure 3. 1. It is observed

from that figure that the ratio d/(h-d) is greater than 2. 0 whenever

the half-length h of the cylinder is of the order of O. 5 wavelengths

or greater. Similarly, for the antenna with the non-dissipative loading

considered in Figure 3. 4, it is found that d/(h-d) is of the order of

2. O or greater whenever the half-length h is greater than a wave-

length. Hence, for either type of loading, there exists a range of
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cylinder lengths for which the distribution of current

V

Iz(z) = 60x13 e‘jfiolZl -h:z:h (4.1) 

is a reasonable approximation. It is this current distribution which

will be utilized to calculate the radiation fields of a traveling wave

linear antenna.

4. 2. Radiation Fields of the Traveling Wave Linear Antenna

The electric and magnetic fields at a point in space due to a

time harmonic current-charge distribution are given quite generally

(see Appendix A) in terms of the vector and scalar potentials A and

4), respectively, as

_\

E - V43 - ij

(4.2)
_I

VxAU
3
1
.

n

In the particular case of a linear antenna, the electromagnetic potentials

are given in terms of the charge-current distribution by the Helmholtz

 

integrals

-‘ ”0 ha eujBOR
_ __ I __ l

A — 4w 5. 212(2) R dz (4.3)

-h

h -j[3 R

_. 1 I e O t
¢> — 4“ f q(z) R dz (4.4)

o -h

where, as indicated in Figure 4.1, g is a unit vector parallel to the

antenna axis and R is the distance between a source point on the

cylinder at z = z' and the point of observation at P . Further, q(z)

is the distribution of charge per unit length along the cylinder and

Iz(z) the corresponding distribution of current. Actually the charge
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distribution is not independent, but is related to the cylinder current

through the equation of continuity as

q(z) = g— 5%; 12(2) (4.5)

By substituting the electromagnetic potentials given by equations

(4. 3) and (4. 4), in conjunction with relation (4. 5), into expressions

(4. 2), the electromagnetic fields E and R at any point in space are

determined in terms of the distribution of cylinder current Iz(z) .

The general expressions for these fields are quite complex, but for

observation points in the radiation zone they are greatly simplified.

It has been indicated by King5 that the radiation fields of a linear

antenna may be expressed as

'B'ru‘) = -jBO[?xXr<r‘)1 (4.6)

EH?) = vo[§r('r‘) x 3] (4.7)

where Erd) and Era") are the radiation electric and magnetic fields,

respectively, Km?) is the radiation zone vector potential corresponding

to equation (4. 3), and f is a unit vector in the direction of the vector

'1'" which locates the observation point P with respect to the center

of the antenna.

Let the point P be specified by the spherical coordinates

(r, 9 , (b) as indicated in Figure 4.1. The electromagnetic fields given

by equations (4. 6) and (4. 7) then become

firm - 3'64 9x MiG-“)1 = we A3?) sin 9 $

- ijAgrr') 3 (4.8)
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m A
H

3
1

I
I

A

— jBOvOAg (“1") (c) x Q)

- Mng (4.9)

1115 the radiation electric and magnetic fields are transverse to one

another as well as to the direction ’1“ of prOpagation. These fields

may finally be expressed in the form

Erfi‘) = -ijN-r‘) (4.10)
9 9

r _I l r __I

B¢(r) — -—v Ee(r) (4.11)

o

where

1‘ .s I‘ .4 .

Ae(r) — - Az(r) $111 9

H h -J't3 R
_ . o , e o ,
_ .. sin 9 TV S—h Iz(z ) ——————vR dz (4.12)

In order to carry out the integration indicated in equation (4.12),

it is necessary to obtain an expression for the distance R in terms of

the integration variable z' . With reference to Figure 4.1, R may

be expressed by the law of cosines as

R_[2 2 ]1/2
r + z' - 2rz' cos 9

r[1 - Z(z'/r) cos 9 + (z'/r)2] l/Z

Since in the radiation zone z' < < r, then the term in (z'/r)2 may

be dropped. Retaining only the two leading terms of a binomial

expansion then gives

R 1- r-z‘c‘ose (4.13)

The value for R in expression (4.12) will thus be taken approximately
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as

R i r ........... . amplitude term

(4.14)

R : r - z' cos 9 ...... phase term

and making this substitution gives

1* ‘JB r h ' 1
r _ _ _g e 0 . , Jfioz cos 9 ,

A6 (1*) — 411' —-—---r 3m 95‘ Iz(z ) 6 dz (4.15)

-h

This result indicates that the radiation zone electromagnetic fields

are essentially outward traveling spherically diverging waves which

are modified by a function of the polar angle 9 , the exact form of

which depends upon the distribution of cylinder current.

In order to determine the radiation zone electromagnetic fields

of the traveling wave linear antenna with optimum impedance loading,

it is only necessary to evaluate the integral in equation (4.15) using

the approximate distribution of cylinder current given by equation (4.1).

Making this substitution, the 9 -component of radiation zone vector

potential bec ome s

V -' r h . .

(3") ‘ HO 0 e J50 sinGS‘ e—JBOIZ'I eroz' COS 9 dz'
A ' 240w? _h

r

9

(4.16)

The integral in this expression may be rewritten in the form

h . , . , h . ,

S. e-Jfiolz ' e360z COS 9 dz' : ZS e-JfioZ cos(BOz' cos 9) dz'

-h o

(4.17)

and a straightforward integration yields the result
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h . .

5' e'Jpol Z" eJBoz' C03 9 dz'

-h

: —-——?L—Z—— {e-Jfiohhcoswohcos 9) - cos9 sin(90h COS 9)] 1'}

Bosin 9

(4.18)

It is convenient to define a quantity C(Boh, 9) as

C(fioh, 9): siln 9 {e-jfiohfj cos (Boh cos 9) - cos 9 sin (fioh cos 9)] -j}
 

 

(4.19)

in terms of which the vector potential of equation (4. 16) becomes

P- V -J't3 1'
r .1 o o e 0

z _ 9 .Aem 40‘1’ for Gmoh, ) <4 20)

If the last result is used in conjunction with expressions (4.10)

and (4.11), the radiation electric and magnetic fields, respectively,

of the traveling wave linear antenna are obtained as

 

 

iv 413 r
Egrr’) = W0 E—r—O— C(poh, e) (4.21)

jv as r
Biff) = V g e O Gwoh. 9) (4.22)

0

These expressions give the electromagnetic fields of the traveling wave

antenna as a function of its electrical length and the coordinates (r, 9)

of an observation point P in the radiation zone. There is no variation

with the ¢ -coordinate since the fields of a linear antenna are azirnuthically

symmetric. For fixed values of Bob, the function G(f30h, 9) describes

the variation of the radiation fields with the polar angle 9 , and is

hence designated as the "polar pattern factor. "
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It is noted that C(fioh, 9) is a complex number, and the

radiation fields therefore vary in phase as well as amplitude with the

polar angle 9 . Physically however, it is the amplitude of the fields

at each point in the radiation zone which is of primary interest.

Consideration will henceforth be restricted, therefore, to the modulus

of the polar pattern factor. After considerable calculation, (C(fioh, 9 )l

is obtained as

 (C(fioh, 9)] = [cosZUBOh cos 9) + c0529 sinzflioh cos 9)
sin 9

- 2 cos (30h cos (90h cos 9) +1

. . 1/2
- 2 $111 [30h cos 9 s1n (50h COS 9 l]

(4.23)

This expression gives the relative amplitude of the radiation zone

electromagnetic fields as a function of the polar angle 9 and the

electrical length of the traveling wave antenna.

Considering the complexity of expression (4. 23), it is clear

why the approximation discussed in the preceding section was necessary.

If, instead of approximating the distribution of cylinder current as a

traveling wave over its entire length - h _<_ z _<_ h, account were

taken of the standing wave on the regions - h E z j - d and d _<_ z E h,

then the position d of the loading impedance would appear in the

expression for the polar pattern. The result would be a further

complication of this expression, to the extent that it would become

quite intractable for calculating even specific radiation patterns. On

the other hand, the error associated with the approximate expression
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(4. 23) will be small, and its relative simplicity renders it useful for

making practical calculations.

4. 3. Comparison of Radiation Patterns for Traveling Wave and

Standing Wave Linear Antennas

As was mentioned earlier, it is quite well known that the

radiation characteristics of traveling wave and standing wave linear

antennas differ considerably. The radiation patterns of a conventional

dipole and a traveling wave dipole utilizing an optimum lumped

resistance loading were measured experimentally and compared in the

research reported by Altshuler. 3 Further, Wu and King4 determined

theoretically the polar pattern of a traveling wave antenna having a

distributed resistance loading. These investigations have disclosed

that the radiation patterns of traveling wave antennas are in general

characterized by a wider major lobe beamwidth and an absence of

minor lobes, as compared with an ordinary standing wave dipole. It

is to be expected, therefore, that the radiation patterns resulting

from the present theory should disply essentially the same character.

The approximate expression (4. 23) may be utilized to evaluate

numerically the radiation patterns of traveling wave linear antennas

having various electrical lengths. These polar patterns are obtained

by plotting IGmOh, 9 )l as a function of 9 in polar coordinates, with

the appr0priate constant values of [50h as parameter. Typical

patterns are indicated in Figures 4. 2, 4. 3, and 4. 4 for [30h values

of Zn, 717/2, and 417, respectively. The corresponding respective

half-lengths are h 2 k0, h =1. 75 X0, and h = ZKO. In each case,

the radiation patterns of the corresponding standing wave dipoles,

given by lFmoh, 9 )l are included for comparison.

0
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Figure 4. 2. Radiation Patterns of Traveling and Standing Wave

Antennas with Bob = er .
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An inspection of the figures reveals that a traveling wave linear

antenna possesses the following radiation characteristics:

(i) The polar pattern of a traveling wave antenna has a major

lobe beamwidth which is wider than the one of its standing

wave counterpart.

(ii) A minor lobe does not appear in the pattern of a traveling

wave antenna until its length is much greater than that of

the corresponding standing wave dipole. In particular,

the first appearance of a minor lobe in the traveling wave

antenna pattern occurs for a half-length of h 2 2X0 . The

first minor lobe occurs for h = O. 75 x0 in the case of a

standing wave dipole.

(iii) The radiation pattern of a traveling wave antenna is much

less dependent upon the cylinder's electrical length

(frequency of excitation) than is the one of a standing

wave antenna.

In these figures, the radiation patterns of the traveling wave and standing

wave antennas are not normalized to the same absolute values of field

intensity, but are merely independent relative field strength patterns.

Thus while it appears from the figures that the traveling wave antenna

radiates more power than its standing wave counterpart, this is only

apparent. Actually, in the case of a traveling wave antenna with non-

dissipative loading, the efficiencies of the two antennas are equal

(essentially 100%) and the power radiated by each will be the same.

From the above remarks, it is noted that the radiation patterns

calculated from the approximate theoretical expression (4. 23) display
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the characteristics generally associated with those of traveling wave

antennas. Whether or not these characteristics represent any

particular advantage will depend, of course, upon the intended

application of the antenna. The relatively wide beamwidth associated

with a short traveling wave antenna, and the absence of minor lobes in

the radiation pattern of a long antenna should be useful in certain

applications.

It should be emphasized that the radiation characteristics

calculated in section 4. 2 correspond to the traveling wave distribution

of antenna current associated with an optimum impedance loading.

As the loading deviates from its optimum value, the traveling wave

of current gradually reverts back to an essentially standing wave.

Under these circumstances, the corresponding radiation patterns

would again be characterized by the narrower beamwidth and presence

of multiple minor lobes associated with a conventional unloaded dipole.



CHAPTER 5

EXPERIMENTAL STUDY OF TRAVELING WAVE

ANTENNA WITH NON-DISSIPATIVE LOADING

5.1. Object of the Experimental Investigation

An approximate expression for the distribution of current on a

linear antenna consisting of a doubly impedance loaded cylinder was

obtained theoretically in Chapter 2. This result gave the current

distribution on the cylinder as a function of its dimensions, the

excitation frequency, and the impedance and position of the double

loading. In Chapter 3 the optimum loading impedance to yield a

traveling wave of current over most of the antenna was determined

from its current distribution. This optimum impedance was

expressed in terms of the cylinder dimensions, the frequency of

excitation, and the position of the loading. It was found that a pure

resistance or a pure reactance could constitute an optimum impedance

loading if their locations were properly selected. The results of this

theory indicate therefore, that a traveling wave distribution of current

may be excited on a linear antenna having either a purely resistive

or a purely non-dissipative loading of proper position.

As was indicated earlier, the observation that a traveling wave

linear antenna may be realized through the use of a properly located

lumped resistance loading is not original with the present research.

An experimental study of such a resistance loaded dipole was made

by Altshuler. 3 In order to determine the necessary position of the

resistance loading, he relied upon a transmission line analogy.

87
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It is well known that an analogy exists between a linear antenna

and a section of lossless transmission line terminated in an open

circuit, since: (1) the current at the end of either is zero; and (2)

both support an essentially standing wave distribution of current.

The section of transmission line may be matched by placing a series

resistance equal to the characteristic resistance of the line a quarter

wavelength from its open-circuited end. A traveling wave of current

will then exist on all but the end quarter wavelength of the line.

Through this analogy, Altshuler proposed that a traveling

wave linear antenna might be realized by placing an optimum

resistance loading a quarter wavelength from the cylinder ends. He

verified experimentally that this was indeed possible, and determined

the optimum value of the loading resistance. The distribution of

current on the antenna with optimum resistance loading was found

experimentally to consist of a traveling wave between the excitation

point and the position of the loading, and a standing wave between the

loading and the cylinder ends.

The theoretical prediction that a traveling wave current

distribution may be obtained on a linear antenna through the use of

a purely resistive loading is thus found to be in agreement with

Altshuler's experimental results. Specific numerical comparisons

between the theoretical and experimental values for the parameters

of an optimum loading were made in section 3. 3 of the preceding

Chapter. The close correspondence between these results gives an

indication of the validity of the approximate theory presented in

Chapter 2.
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Although it has been predicted theoretically that a traveling

wave distribution of current may be exicted on a linear antenna

through the use of a properly located lumped non-dissipative loading,

there are no existing experimental results to verify this assertion.

In fact the transmission line analogy just considered appears to

indicate that such a technique must fail to yield a traveling wave of

current, since an Open-circuited section of lossless transmission

line cannot be matched with a purely reactive loading regardless of

its position. The need for an experimental study of such a linear

antenna utilizing a non-dissipative loading is thus apparent. In

particular, the experiment should verify that a traveling wave

antenna may indeed be realized through the use of a lumped purely

reactive loading.

In accordance with the above remarks, an experimental

investigation of a linear antenna utilizing a purely non-dissipative

loading was conducted. The object of the experiment was threefold:

(l) verify that a traveling wave of current may be excited on a dipole

having a purely reactive loading; (2) study the effect of variations in

the loading parameters and excitation frequency upon the distribution

of antenna current; (3) determine the frequency dependence of the

input impedance to a traveling wave antenna utilizing a particular

reactance loading which is optimum only at a single frequency.

In order to facilitate comparison of these experimental results

with the theory presented in Chapter 3, the dimensions of the model

antennas were taken to be the same as those considered in the numerical

results of section 3. 4. The theoretical and experimental values for the
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position of an optimum non-dissipative loading and the input impedance

to the corresponding traveling wave antennas may therefore be directly

compared.

5. 2. Description of the Experimental Arrangement

The experimental arrangement is indicated in Figure 5.1. An

anechoic chamber was constructed with an aluminum image plane on

one wall and with R. F. absorber covering the remaining walls. The

monopole antenna consisted of an extension of the movable centerwire

of the exciting coaxial line, and emerged from the center of the image

plane. A purely reactive loading impedance was obtained through the

use of an adjustable coaxial cavity structure in the end section of the

antenna, as indicated in Figure 5. 2. The length (h-d) of the end

section was made adjustable so that the effective position as well as

the reactance of the loading could be varied. A movable current probe

of the type indicated in Figure 5. 3 was employed to sense the amplitude

of the antenna current. A slotted section in the exciting transmission

line was provided to facilitate measurement of the antenna input

impedance.

The anechoic chamber consisted of a cubical wooden structure

having dimensions of 6. 0 feet on each side. Since an excitation frequency

of 600 mhz (k0 = 50 cm) was used in the experiment, the chamber

dimensions were of the order of 4. O wavelengths. An aluminimum

ground plane having a thickness of 0. 125 inches completely covered

the chamber wall through which the antenna projected. The remaining

walls of the chamber were covered with radio frequency absorbing

material, which was effective, at the frequency utilized, in reducing
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the reflected power by at least 20 db. It is felt that any interaction

of the reflected fields with the radiating antenna was entirely

negligible. Access was provided to the chamber through a door

opposite the ground plane, this being the region of minimum radiation.

Only the antenna itself was interior to the chamber, with all excitation

and monitoring equipment situated on the outside.

A coaxial transmission line was used to excite the antenna,

and its outer conductor terminated in an electrical contact with the

aluminum ground plane at its center. The outer conductor of this

line consisted of a brass tube with an outside diameter of l. 0 inches

and an inside diameter of O. 875 inches, while the inner conductor

was a brass tube having an outside diameter of O. 25 inches. Several

thin dielectric wafers were used to support the centerwire and

maintain it concentric with the outer tube, except for which the

coaxial line was air filled. The corresponding characteristic

resistance of the line was therefore calculated as RC = 75 ohms.

At the end of the coaxial line opposite the ground plane, and

approximately 1. 5 wavelengths (k0 = 50 cm at 600 mhz) from it, an

adjustable short-circuit was provided between the inner and outer

conductors. The coaxial line was fed through a tee-section located

about 0. 5 wavelengths from its short-circuited end. At the tee-section,

the joint between the two center conductors was effected through the

use of a coupling collar about the centerwire of the line exciting the

antenna. This arrangement allowed the centerwire of the exciting

line, which becomes the antenna after emerging through the ground

Plane, to remain freely movable. The short-circuited tuning stub
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was utilized to tune out the reactive component of the input impedance

to the coaxial exciting system, as viewed from its driving point at the

tee-section. This arrangement allowed a reasonably good impedance

match to be realized between the coaxial exciting system and the

transmission line driving it at the tee-section.

In the region between the ground plane and the tee-section, the

outer conductor of the coaxial line was slotted axially to allow the

insertion of a charge probe. A movable carraige was constructed to

support a conventional probe in the slot, and thus facilitate monitoring

the III-field of the line at each point along its length. This arrangement

was utilized to make the standing wave ratio measurements necessary

in the experimental evaluation of the antenna input impedance.

The monopole antenna itself consisted of an extension of the

center conductor from the exciting coaxial line, and projected into

the anechoic chamber through the center of the ground plane. Since

this monopole was imaged into the highly conducting aluminimum

ground plane, its distribution of current was exactly that of a

corresponding dipole. The monopole is therefore equivalent to its

dipole counterpart, except that it is driven by an effective voltage

of VO/Z , where V0 is the excitation potential of the corresponding

dipole. Measured values of the monopole input impedance thus

correspond to one half those of the equivalent dipole.

A detailed drawing of the impedance loaded monopole antenna

is given in Figure 5. 2. The section of the monopole for 0 _<_ z 5 (1

consisted of the extended centerwire from the coaxial line, while

that for d j z E h was a separately constructed segment. Since



95

the center conductor of the coaxial line was free to move along its

axis, then the total length of the antenna was readily adjustable.

The portion of the monopole for 0 _f z E d, i. e. , the center conductor

of the coaxial line, was constructed of a brass tube having an outside

diameter of 0. 25 inches. This section of tubing was slotted axially to

allow a small current probe to project through its surface. The

current probe consisted of a small loop, and was supported in the

slot by a plastic guide which prevented it from making contact with

the antenna. With this arrangement, it was possible to measure the

relative amplitude of axial current at each point 0 E z _<_ d along

the monopole.

Figure 5. 3 indicates the detailed construction of the current

probe. The probe consisted of a loop having a diameter of approxi-

mately 0. 25 inches, and was fabricated from a section of Microcoax

coaxial line. This coaxial cable had a solid copper outer sheath with

a diameter of O. 030 inches, and its characteristic resistance was

50 ohms. At its end, this section of Microcoax line was bent into a

semicircle to form half of the current loop. The second half of the

loop was formed from a semi -circular arc of solid wire having the

same diameter as the Microcoax, and was soldered to the coaxial

section at the base of the loop. At the point where the two halves

of the loop met a small gap was left, and the center conductor of the

Microcoax line was soldered to the solid wire loop segment.

The circumferential magnetic field near the antenna surface

links the open surface subtended by the plane loop and induces an e. m. f.

3around its circumference. Since the loop is essentially perfectly
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conducting except at the small gap, then this induced voltage appears

across the gap and excites a wave on the Microcoax line. At each

point along the surface of the monpole, the magnetic -B‘-field is

essentially proportional to the axial current at the same point. The

amplitude of the voltage wave excited on the Microc oax line by the

loop probe is therefore proportional to the amplitude of the axial

monopole current.

A length of thin flexible 50 ohm coaxial line was joined to the

Microcoax comprising the loop, and was passed through the center

of the tube forming the monOpole, as well as the center conductor

of its exciting line, to the monitoring instruments outside the

chamber. Since the loop was free to move in the axial slot of the

monopole, its position could be varied over 0 5 z E d by simply

feeding this line in or out of the center conductor of the coaxial line

driving the antenna. Dimensional calibrations were placed on the

flexible line such that the position of the loop along the monopole

could be determined accurately. With this arrangement, it was

possible to measure the amplitude of the current distribution on

the monopole by operations completely exterior to the chamber.

A pair of concentric telescoping brass tubes comprised the

end section of the monopole having length (h-d), as indicated in

Figure 5. 2. The inner tube had an outside diameter of 0. 25 inches

and an inside diameter of 0.188 inches, while the outer tube made

a tight electrical contact with the inner one, had a wall thickness

0f 0. 015 inches, and was fitted with a hemispherical end cap. This

telescoping arrangement allowed the end length (h-d) of the monopole

to be adjusted to any desired value.
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Within the inside tube of the concentric end section was

constructed a short-circuited section of coaxial transmission line.

The details are again indicated in Figure 5. 2. A center conductor

having a diameter of 0. 063 inches was used for this coaxial section

and, since the line was air filled, its characteristic resistance was

calculated as RC = 66 ohms. A short-circuiting disk terminated

the coaxial section, while a dielectric wafer supported its center-

wire at the excited end. The center conductor and shorting disk

were threaded to facilitate adjusting the length I of the short-

circuited section.

The input impedance to the short-circuited coaxial line

section is given by the well known expression

Zin = j Rc tan (301 (5.1)

where Rc is its characteristic resistance and (30 the free space

wave number. It is clear from Figure 5. 2 that this input impedance

is excatly the impedance which loads the mon0pole antenna at z = (1.

Hence, in accordance with the definitions made in Chapter 2, the

loading impedance appearing at z = d is

zL = J RC tan (3012 (5.2)

This impedance is purely reactive, and may be made to have any value

between plus and minus infinity by proper adjustment of the length I

of the short-circuited coaxial section.

The experimental arrangement just described provided the

means for realizing a monopole antenna having a purely non-dissipative

loading. With this apparatus, the total length h of the monopole, the
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effective position d of the impedance loading, and its reactance XL

were all readily adjustable. Further, means were available for

monitoring the distribution of current along 0 _<_ z _<_ d on the

monopole, and for measurement of its input impedance.

Excitation of the entire experimental setup was provided at the

input arm of the tee-section in the coaxial line driving the antenna.

A 50 ohm coaxial transmission system was used to deliver energy

from the R. F. oscillator (General Radio 1209-B) through a 50 ohm

slotted section (General Radio 874-LBA) to the input of the tee-section.

The antenna tuning stub was then adjusted to minimize the S. W. R.

measured on this slotted section, and consequently result in maximum

power being transferred to the monopole.

In order to avoid the necessity for complicated measuring

apparatus, the 600 mhz signal from the R. F. oscillator was

amplitude modulated at 1 khz by a sinusoidal signal from an audio

oscillator (General Radio ZOO-C), as indicated in Figure 5.1. The

R. F. signals from the current probe and the charge probes of the

two slotted sections were then amplitude detected by coaxial detectors

(General Radio 874-VQL) terminated in the 50 ohm characteristic

resistance common to all three transmission systems. Bolometer

detectors (Narda N-610B) were utilized to assure accurate square

law detection. These detector outputs were coupled to standard S.W. R.

indicators (General Radio 415-B), which provided the necessary bolo-

meter bias currents and which were calibrated for square law detection.

The desired values of standing wave ratio or relative amplitude of

monopole current could then be read directly from the meter scales.
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5. 3. Traveling Wave Distribution of Current on Mon0pole with

Purely Non-Dissipative Loading

It was the primary object of the experimental study to verify

the theoretical prediction that a traveling wave of current could be

excited on a linear monopole antenna through the use of a properly

positioned non-dissipative loading. The experimental arrangement

described in the preceding section was ideally suited to this purpose

since:

(i) It provided an impedance loaded monopole whose total

length h was freely variable.

(ii) The loading impedance was purely non-dissipative, and its

reactance could be varied to obtain any desired value from

- 0° to +co ohms.

(iii) The position of the loading d and the length (h-d) of the

end section of the monopole were readily adjustable.

(iv) Means were provided to measure the distribution of

monopole current on 0 E z E d for each combination of

antenna length and loading parameters.

For this portion of the experiment, the antenna was excited at a

constant frequency of 600 mhz corresponding to a wavelength of

)‘o = 50 cm.

Two different monopole antennas, having lengths of h 2 X0 =

50 cm and h 2 2X0 = 100 cm, were studied experimentally. These

monopoles correspond to the dipoles considered in section 3. 4, where

the reactance and position of an optimum non-dissipative loading were

given in Figures 3. 3 and 3. 4, respectively, as a function of the

antenna electrical length. In either case, the end length (h-d) was
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first set to its theoretically optimum value. The optimum loading

reactance was then determined by observing the distribution of

current on the monopole as the length 1 of the coaxial cavity was

varied. Through this technique, it was possible to determine the

cavity setting which minimized the current standing wave ratio on

the monopole. Similarly, the end length (h-d) was slightly readjusted

until a traveling wave of current was realized over the region

0 f z _<_ d of the monopole.

The experimentally measured distributions of monopole current

are indicated in Figures 5. 4 and 5. 5. In theSe figures, the traveling

wave of current obtained with the purely non-dissipative loading is

compared with the standing wave which exists on a conventional

unloaded monopole. It is noted that, in either case, a decaying

traveling wave of current was obtained over the region 0 _<_ z E (1

through the use of a properly located purely reactive loading. The

current over the region d E z E h of the monopole with optimum

loading remains a standing wave. On this region the current was

not measured, but represents the theoretical sinusoidal standing

wave distribution. These results provide direct experimental

verification of the theory presented in Chapter 3.

A comparison is made between the theoretically and

experimentally determined values of the Optimum monopole end length

(h-d) in Table 5.1. It is noted that the agreement between these two

sets of results is quite close, in that the experimental values are only

of the order of 9% smaller than the theoretical ones. Further, the

theoretical prediction that the optimum end length should be essentially
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independent of the total antenna length is found to be fully verified by

the experimental measurements .

Table 5.1. Comparison of Optimum MonOpole End Lengths

 

Optimum monopole end length (h-d)

 

total length h

 

 

 

of monopole theoretical experimental

h = k0 = 50 cm (h-d) = 0. 418kO : 20. 9 cm (h-d) = 0.378)\O =18. 9 cm

h = 210 = 100 cm (h-d) = 0. 4l7>to = 20. 8 cm (h-d) = 0.3'78kO = 18.9 cm    
 

No attempt was made to measure the loading reactance provided

by the coaxial cavity, since it would be virtually impossible to account

for the stray capacitances which would necessarily influence the cavity

adjustment. At the frequency of 600 mhz utilized in the experiment,

the theoretically optimum loading reactance of approximately - 365 ohms

corresponds to a capacitance of less than one picofarad. It therefore

becomes evident that any stray capacitances, which are effectively

paralleled with the input to the cavity across the antenna gap at z = d,

would have a definite but unpredictable effect upon the necessary

optimum length I of the coaxial cavity.

5. 4. Effects of Variations in Loading Parameters and Frequency

Upon the Traveling Wave Distribution of Current

In the preceding section, the parameters of an optimum non-

dissipative loading to yield a decaying traveling wave distribution of

current on a linear monOpole antenna were determined experimentally.

It was found in particular that, for a monopole having a length of

2X0 = 100 cm at an excitation frequency of 600 mhz, the optimum
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reactance corresponded to a cavity length of I = 12. 2 cm while its

necessary position was d = 81.1 cm. The sensitivity of the traveling

wave distribution of monopole current on 0 _<_ z E d to variations in

these loading parameters and the frequency of excitation is to be

evaluated experimentally in the present section.

The first effect to be considered was that due to variations

in the loading position d, or equivalently the end length (h-d) of

the monopole. An optimum non -dissipative loading requires an end

length of (h-d) = 18. 9 cm. Figure 5.6 indicates a comparison

between the traveling wave of current obtained with this loading

position and the distribution of current which was measured

corresponding to end lengths of (h-d) = 17. 9 cm and (h-d) : l9. 9 cm.

It is noted that due to the l. 0 cm variation from the optimum end

length (about 5%) the traveling wave distribution of monopole current

is altered substantially, and begins to revert back to a standing

current wave. This indicates that the current distribution on the

monOpOle is a strong function of the loading position, in accordance

with the theroetical observations of Chapter 3.

An Optimum loading reactance corresponding to a coaxial

cavity length of I = 12. 2 cm was determined experimentally for the

monopole having a total length of h : 2X0 : 100 cm. If the cavity

length is changed, then the position but not the reactance of the non-

dissipative loading is optimum, and the current distribution will

deviate from the traveling wave corresponding to an optimum loading.

In Figure 5. 7 a comparison is indicated between the traveling wave of

monopole current associated with an Optimum loading and the measured
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distribution of current Obtained when the coaxial cavity length was set

to values of I = 11. 7 cm and 1 = 13. 0 cm. It is again noted that the

traveling wave distribution of monopole current is substantially altered

by such variations, and that it deviates toward the standing wave

distribution characteristic of a conventional dipole. The dependence

of the monopole current distribution upon the reactance of the non-

dissipative loading is thus observed to be very pronounced.

It has been indicated, both in theory and by experiment, that

a purely reactive loading Of fixed position may be Optimum only at a

single frequency. At any other frequency, an optimum loading

impedance must have a resistive component as well as a reactive

one. In section 3. 4, consideration was given to a purely non-dissipative

loading consisting at each frequency of the reactive component of the

corresponding optimum impedance. It was Observed that, with such

a loading, an approximately traveling wave distribution of current

could be maintained for a band of frequencies about the one where

the loading became Optimum.

The monopole antenna having a length of h : 2X0 = 100 cm

at an excitation frequency of 600 mhz was found experimentally to

require the optimum loading parameters: (1 = 81.1 cm, I = 12. 2 cm.

A decaying traveling wave of current was measured on O E z E d

for an antenna having such a loading. Figure 5. 8 indicates a.

comparison between this traveling wave of current and the

distribution of monopole current measured when the excitation

frequency was varied to 560 mhz and 640 mhz, with the loading

parameters fixed at the above indicated values. Evidently the
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frequency dependence of the antenna current distribution is quite

strong. There are two reasons for this result: (1) there was no

resistive impedance component present in the loading; (2) the fre-

quency dependence of the coaxial cavity reactance does not at all

match that of the reactive component of an optimum impedance

loading. The distribution of monOpole current therefore reverts

rather rapidly back to an essentially standing wave as the excitation

frequency deviates from 600 mhz. This situation could be greatly

improved upon if a more apprOpriate optimum loading reactance

were realized.

5. 5. Input Impedance of a Traveling Wave Linear Antenna with

Non-Dissipative Loading

It is of particular interest to consider the frequency dependence

of the input impedance to a traveling wave linear antenna utilizing a

purely non-dissipative optimum loading. According to the theory of

section 3. 5, this input impedance should be relatively broadband about

the frequency at which the purely reactive loading becomes Optimum.

The extent of this broadbanding will depend, of course, upon just how

well the frequency dependence of the loading reactance matches that

of the reactive component of an optimum loading impedance.

The monopole having a length of h : 2X0 : 100 cm at an

excitation frequency of 600 mhz was again utilized for this part Of

the experimental study. A purely reactive coaxial cavity loading

having the parameters d = 81.1 cm, I : 12.2 cm was utilized. Such

a loading is optimum at a frequency of 600 mhz. With the loading

parameters held constant at the indicated values,the input impedance
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to the monopole was measured for excitation frequencies between

480 and 720 mhz. Since the input impedance of the monopole

antenna is effectively the impedance which terminates its exciting

coaxial line, then this impedance was readily determined by

conventional S.W. R. measurements8 on the slotted section Of that

line.

The experimentally measured input impedance to the reactance

loaded dipole is indicated as a function of frequency in Figure 5. 9,

where it is compared with that of an unloaded antenna Of the same

dimensions. Since the input impedance to a monopole antenna is

one half that of its dipole counterpart, the values given in the figure

are just twice the experimentally measured ones. It is noted that

the input impedance of the reactance loaded antenna is somewhat

broadband about the frequency of 600 mhz, where the loading becomes

optimum, as compared with the impedance of the conventional dipole.

It must be emphasized that the frequency dependence of the coaxial

cavity reactance does not at all match that of the reactive component

of an Optimum loading impedance. If a more appropriate non-dissipative

loading could be realized, the above indicated broadbanding would be

greatly increased.

A direct comparison may be made between the experimentally

measured value of input impedance to a traveling wave antenna and

the one calculated from the theory of section 3. 5. At an excitation

frequency of 600 mhz where the purely reactive loading becomes

Optimum, i. e. , yields a traveling wave distribution of antenna current,

the corresponding values of input impedance are: (l) theoretical,
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Zin = 316 - j 184 Ohms; (2) experimental, Zin = 264 -le6 ohms. The

error in the theoretical result is approximately 15%, which is well

within the range to be expected for such an approximate theory. It is

felt that the major contribution to this error is due to the approximate

nature Of expression (3. 37), which was used to evalute the expansion

parameter ‘1’ .



PART II

TRAVELING WAVE LOOP ANTENNA

WITH OPTIMUM IMPEDANCE LOADING
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CHAPTER 6

INTRODUCTION

6 . l . Introduction

In the second part of this research, attention is to be directed

t o the realization of a traveling wave loop atenna and to the evaluation

of its corresponding circuit and radiation characteristics. An imped-

ance loading technique is utilized whereby the circular loop antenna

1'. s doubly loaded with a pair of identical lumped impedances. A

th eoretical study of this configuration is made to determine approxi-

mately the distribution of current on the loop as a function of its

dimensions, the excitation frequency, and the impedance and position

of the double loading. From this result the optimum loading impedance

to yield a traveling wave of current over the major extent of the loop

(:5. :- cumference is determined. In particular, the possibility of utilizing

a pu rely non-dissipative optimum loading is thoroughly investigated.

Finally, the input impedance and radiation fields of a traveling wave

loop antenna having a non -dissipative Optimum loading are evaluated

as a function of its dimensions and the frequency Of excitation.

6- 2 - Definition of a Traveling Wave Loop Antenna

A traveling wave loop antenna will henceforth be considered

as a. C ircular loop antenna which supports a traveling wave distribution

0f c111‘rent. The traveling wave of current is excited by a voltage

gene, rator at a point on the loop, and advances outward along its

Circumference toward a point 180 degrees removed from the point

of -exCItation. While the phase of the current is essentially a linear

114
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function of position along the loop circumference, the amplitude of the

traveling wave decays as it advances outward from the excitation point,

since it constantly radiates energy into space. A restriction to the

class of thin-wire loop antennas is made in this research, such that

an expedient one -dimensional theory will be approximately valid. In

this one -dimensional approximation, the distribution of loop current

i s assumed to flow parallel to the axis of the thin wire constituting

the loop.

The theory of circular loop antennas remains relatively un-

de veloped when compared with the extensive research which has been

reported concerning the linear antenna. A mathematical theory

de scribing the circuit properties of a circular loop antenna was first

developed by Hallen, 1 at the same time at which he formulated the

cor responding theory for a linear antenna. The result of this theory

wa s an integral equation for the distribution of loop current. Hallen

solved this integral equation through a Fourier series technique, but

POinted out that the series did not converge when the loop diameter

became an appreciable fraction of the wavelength. Some eighteen

year 8 later, Storer9 found that, by a more careful evaluation of the

Fouri er coefficients, the Fourier series for the distribution of loop

curr ent could be made to converge. This modified theory yielded

nume rical results which were in good agreement with corresponding

exPe rimental measurements of the loop current, and indicated that

the CUrrent distribution on a loop antenna consists of an essentially

standing wave.
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Since it is well known that a conventional loop antenna supports

an essentially standing wave of current, then evidently some modification

of its structure is necessary in order that it might support a traveling

wave current distribution. In the present research, an impedance

1 oading technique is utilized to obtain the desired traveling current

wave on the circular loop. This method consists of doubly loading the

1 cap with a pair of identical lumped impedances placed symmetrically

with respect to its excitation point. When the loading is optimum,

that is, when its impedance and position are pr0per1y selected, a

traveling wave distribution of current may be excited on the loop over

mcat of its circumference.

A loop antenna is completely characterized by its distribution

of current. The loop is fully described by its circuit and radiation

cha racteristics, which are readily determined in terms of the current

di 3 t ribution. If the current at its excitation point is known, then the

input impedance to the circular loop may be immediately calculated.

Furthermore the radiation pattern of the loop is determined in a

strai ghtforward manner in terms of its distribution of current. Since

the c i rcuit and radiation characteristics of a loop antenna are determined

by it 8 current distribution, then it might be expected that these

Characteristics should differ greatly for distributions corresponding,

respe ctively, to the standing and traveling current waves.

6’ 3 ° Important Characteristics of a Traveling Wave Loop Antenna

A conventional circular loop antenna is very frequency sensitive,

th ~ . . . .
at 1 S 3 its input impedance depends strongly upon the exc1tat1on frequency.

Th’

18 frequency dependence is a direct consequence of the standing wave



11?

distribution of antenna current. As the frequency of excitation is

varied, the maxima and minima of the standing wave of current shift

in position along the circumference of the loop. With the excitation

potential fixed therefore, the current at the driving point of the 100p,

and hence its input impedance, varies strongly with changes in the

frequency of excitation. As a result of this frequency sensitivity,

a conventional loop antenna is ordinarily used only at a single

frequency or over a very narrow band of frequencies.

A traveling wave antenna, in contrast to its standing wave

counterpart, has an input impedance which is relatively frequency

independent. This broadband character is a consequence of the

traveling wave distribution of current. Since the amplitude of the

traveling wave of current is essentially constant along the circum-

ference of the loop, except for the smooth decay due to radiation,

a variation in the excitation frequency does not result in a rapid

change in the current at the driving point. The input impedance of

a traveling wave loop antenna is therefore a relatively weak function

of frequency. It is this broadband character which is the most

important property of a traveling wave loop antenna.

The radiation pattern in the plane of a relatively small

conventional loop antenna consists of two broad lobes separated in

Space by 180 degrees. As the diameter of this standing wave loop

is increased, both the shape and the spatial orientation of the pair

of lobes in its radiation pattern undergo radical variations, although

they remain oppositely directed in space. Finally, as the loop circum-

ference is further increased, the pair of lobes split to form several

narrower lobes of equal but smaller amplitude.
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On the other hand, the radiation pattern of a traveling wave

loop antenna of small dimensions is essentially unidirectional, having

a very broad major lobe in one spatial direction and a narrow minor

lobe of relatively small amplitude in the opposite direction. As the

electrical diameter of the traveling wave loop is increased, the

narrow lobe grows in amplitude while the broad lobe shifts in its

spacial orientation, decreases in amplitude, and finally splits to form

a minor lobe structure of relatively small amplitude. An electrically

large traveling wave loop antenna is thus characterized by a single

narrow major lobe which is accompanied by a relatively low minor lobe

structure. The major lobe of this pattern is spatially oriented in a

direction 180 degrees removed from the excitation point of the 100p,

i. e. , in the direction of the traveling wave of current.

It is indicated therefore that the radiation characteristics of a

traveling wave loop antenna in no way resemble those of its standing

wave counterpart. The modified radiation pattern characteristic of

the traveling wave loop may be desirable for certain purposes. In

particular, the broad unidirectional pattern of a small loop or the

directive pattern of an electrically large loop may be useful for

certain applications.

6. 4. Previous Research on the Traveling Wave Loop Antenna

It was mentioned earlier that little research has been directed

to the study of circular loop antennas, and that the theory of such

antennas remains relatively undeveloped. A formulation for the

distribution of current and circuit characteristics of such a loop was

presented by Storer. 9 This theory expresses the current distribution
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on the loop antenna in the form of a Fourier series, a result which is

very intractable for practical calculations. No theory has been

developed which yields a closed form solution for the distribution of

loop current in terms of simple functions. Further, no complete

formulation for the radiation field of a circular loop antenna in terms

of its distribution of current is available. Only the special case of an

electrically small loop, on which the current is assumed to be constant

along its circumference, has been considered in any detail. It is

therefore perhaps not surprising that no specific consideration has

been given to the realization of a traveling wave circular loop antenna.

A circular loop antenna multiloaded with lumped resistors has

been considered by Iizuka. 10 In this theory, use was made of Storer's

technique and the principle of linear superposition to obtain a Fourier

series solution for the distribution of current on the multiloaded loop.

It was noted that, when the loop was loaded with a single positive

resistance of approximately 100 ohms at a point 180 degrees removed

fr om the excitation point, its input impedance became relatively broad-

band as a function of frequency. A study of the corresponding amplitude

and phase of the current distribution on the loop, which was presented

by Iizuka, indicates that it approximates a traveling wave distribution.

Thus, while Iizuka's research was not directed toward realizing a

traveling wave loop antenna, his results appear to indicate that such

a. traveling wave of current may be obtained through the use of a lumped

impedance loading technique, and that the corresponding input impedance

will exhibit a broadband character.
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It will be demonstrated in Chapter 7, through a formulation

similar to Iizuka's, that the Fourier series solution for the distribution

of loop current cannot yield an explicit expression for the optimum

loading impedance to excite a traveling wave of current. A more

approximate closed form solution in terms of simple functions must be

resorted to in order to determine the optimum impedance in terms of

the dimensions of the loop and its frequency of excitation.

6. 5. Object of the Present Research

It is the object of the present research to realize a traveling

wave loop antenna through the use of a lumped impedance loading

technique. In this investigation, the loop antenna is assumed to

consist of a thin perfectly conducting circular cylinder bent into the

form of a circular loop. The 100p is excited at an origin point and

doubly loaded with a pair of identical impedances which are placed

symmetrically along its circumference with respect to the origin.

With such a configuration, there are two degrees of freedom in

choosing a loading; its impedance and position. The optimum loading

to yield a traveling wave distribution of current on the loop is to be

determined. In particular, the possibility of utilizing a properly

located purely reactive optimum loading is to be investigated.

Through the use of such a reactance loading technique, the

desirable circuit and radiation characteristics associated with a

traveling wave distribution of current may be obtained while avoiding

the introduction of dissipative elements. A traveling wave loop antenna

is therefore realized while maintaining the high efficiency of a

conventional standing wave loop.
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6. 6. Outline for Theoretical Investigation of a Traveling Wave Loop

Antenna with Optimum Impedance Loading

The present research concerning a traveling wave circular loop

antenna with Optimum impedance loading is restricted to a theoretical

investigation. It will be the primary goal of this theory to determine

the parameters of an optimum loading to yield a purely outward

traveling wave of current over the circumference of the loop. No

experimental investigation will be conducted in conjunction with this

portion of the research, since the theoretical results will be found to

be very similar to those obtained for the case of an impedance loaded

linear antenna, which were thoroughly verified by an experimental

study.

It is the purpose of the theoretical analysis to: (1) determine

approximately the distribution of current on the doubly loaded loop

as a function of its dimensions, the excitation frequency, and the

impedance and position of the loading; (2) obtain from this result

(in terms of the loop dimensions and its frequency of excitation) the

parameters of an optimum double loading to yield a traveling wave

distribution of current along the circumference of the loop; (3) investi-

gate the possibility of utilizing a purely non -dissipative optimum

loading; (4) calculate the circuit and radiation characteristics of a

circular loop antenna utilizing such an optimum impedance loading.



CHAPTER 7

DISTRIBUTION OF CURRENT ON A DOUBLY

LOADED CIRCULAR LOOP ANTENNA

7.1. Geometry of the Doubly Loaded Circular Loop Antenna

The geometry of the doubly impedance loaded circular 100p

antenna is taken to be as indicated in Figure 7. l. A thin perfectly

conducting circular cylinder of diameter 2a is bent into the form of

a circular loop having an outside diameter of 2b. A system of polar

coordinates (r, 9) is established with its origin at the center of the

plane loop. The 100p antenna is excited at 9 = O by a harmonic

,voltage source of frequency w and potential VO , and is symmet-

rically loaded at 9 : :teo with a pair of identical lumped impedances

ZL . With such a configuration, there are two degrees of freedom

in choosing a loading; its impedance and position.

In this research, both the source of excitation and the loading

impedances are idealized to be point elements. The gap in the loop

at its excitation point 9 = O is assumed to be centered about that

point and to have a length of 2b69 . Similarly, the gaps at the loading

impedances at 9 = d: 90 are taken to have a length of 2b69 and to be

centered about those points. The point element assumption then

corresponds to letting 69 tend to zero as a limit. This mathematical

approximation corresponds to the physical requirement that the linear

dimensions of the excitation and loading elements be negligibly small

compared with the circumference of the 100p itself.
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Figure 7. 1. Geometry of the Doubly Impedance Loaded

Loop Antenna.
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7. 2. Dimensions of Interest for a One-Dimensional Theory

It is assumed that the circular loop antenna consists of a very

thin cylinder, whose radius is much smaller than the loop diameter

and at the same time is a small fraction of the wavelength. Under

these circumstances, it may be assumed that a one-dimensional

distribution of current is excited on the thin loop by its source at

9 = 0 . That is, the current is taken to have only a 9 -component

19 (9) which flows parallel to the cylinder axis at each point along

the circumference of the loop. The dimensional restrictions which

validate this one-dimensional theory are thus

a < < b

(7. l)

Boa < < l

where BO 2 ZTr/XO is the free space wave number corresponding to

the free space wavelength X0 .

Conditions (7.1) are also sufficient to validate the usual

approximation technique utilized in the study of thin-wire antennas.

With this technique, the vector potential at the antenna surface is

calculated as a contour inegral over the total antenna current, which

is assumed to be confined to flow along the axis of the thin wire. In

reality, the current flows throughout the cross section of the wire,

and is actually most concentrated at its surface due to the skin effect

phenomenon. The vector potential at the antenna surface should in

general, therefore, be calculated as a volume integral over the

current density on the thin wire. It has been indicated by Hallen, 1

however, that when conditions (7.1) are satisfied the error introduced
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by the above mentioned approximation is negligible. This approximation

facilitates the solution for the distribution of current on the thin wire

loop antenna, which would otherwise be very much more difficult.

7. 3. A Rigorous Fourier Series Solution for the Distribution of

Current on a Doubly Loaded Loop; Its Failure to Yield the

Parameters of an Optimum Loading

The boundary condition on the electric field at the surface of

the loop is given by

(n x E) = O (7. 2)

where ’fi is a unit outward normal vector at a point on the surface and

E the electric field at the same point. This condition requires that

the tangential component of electric field be continuous across the

surface of the cylinder forming the circular loop. Since conditions

(7.1) are assumed to be satisified, the distribution of loop current

may be taken to be one-dimensional, i. e. , to have only a 9 -component

19 (9 ) . Under these circumstances, the electric field at the loop

surface will have only a 9 -component and an r-component. The

tangential component of electric field at the surface of the loop is

therefore Ee (9 ) , and condition (7. 2) becomes

153(9) = Eye) (7.3)

where Eg(9) is the field just within the loop surface and EEW) is

that just outside its surface.

Since the cylinder comprising the loop is taken to be perfectly

conducting, then the applied field Eg(9) may be non-vanishing only

in the gaps at 9 : 0,:t90. Thus Eg(9) may be expressed as
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r

Z I (9)
L9 0
2b69 for 00 69 9 60 + 66

a V0
Ee(9)‘< -3768? for -69<9< 69 (7.4)

Z I (9)

L9 0
.. <—T—Zb6 for 90 69 < 9 90 + 69

K

r

6<9<9 -6G

— — o

Eg(9)=0 for ( eo+59595_-eo-59 (7,5)

-9 +69<9<-69

L o — — 

where 16(90) is the current flowing at the loading impedances and

269 tends to zero in accordance with point element assumption. In

result (7. 4), the symmetry of the distribution of current has been

utilized as

Ie(-9):Ie(9) (7.6)

The total voltage drop along the circumference of the loop must be

given by

TI

a

_5‘ Ee(e)bde = v0 — 2 ZLIG(90) (7.7)

-TT

A result consistent with equations (7. 6) and (7. 7) is

123(9) 2 .11)— {- V06(6) + ZLIG(90)[ 6(6 -90) + 6(9 +eo)]} (7.8)

where 6(9) is the Dirac delta function.
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The induced electric field Elem) just outside the surface of

the loop, due to the current and charge on the loop, may be calculated

from the vector and scalar potentialss(see Appendix A) A, d) as

12%) = -(v¢)e (95%),, (7.9)

. . . . . . out

Since the time variation is assumed to be harmomc of the form eJ ,

it is possible to make the replacement Eaf - jw , where the potentials

and fields are then understood to be complex valued. There is then

obtained

ng): -(V¢)e -ij (7.10)
6

where A6 and (b are the potentials at the surface of the loop.

The vector and scalar potentials at the surface of the loop may

be expressed in terms of its distribution of current and charge by the

Helmholtz integral (see Figure 7.1) as

 

“o 1* , . e-jBoR '
Ae(9) = 31:5: 19(9 )cos(8-G )———R—— bde (7.11)

1 1T eu‘ji30R

¢(6) : 4Tr€ 5‘ q(e') —-R—— bd9' (7.12)

o —17

In these expressions, ”0 and 60 are the permeability and permittivity

of free space, respectively, q(9) is the charge per unit length

distribution along the loop, and R is the Euclidean distance between

an observation point on the loop surface at 9 and a source point on

its axis at 9 ' . The distribution of charge on the loop is related to

its current distribution by the equation of continuity as

v. T(e)+jwq(e) = o (7.13)
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and since the current is one-dimensional this becomes

 

_ .L l 2.

r=b

_ .L .3._ wb 89 Ie(6) (7.14)

With this result, the scalar potential may be expressed as

'jfioR

(7.15)

11'

j 8 , e

¢(6 ) 2 411-60“) 5-1T 8 9| 19(6 ) —'_R'_- (19 1

Referring to Figure 7.1, the Euclidean distance R may be

calculated from the law of cosines to give

[b2 + (b-a)2 - 2b(b-a) cos (9 -9')]1/2

(7.16)

R

b[4(1-a/b) sinz (9.222;) + aZ/b2]1/Z

In the thin wire approximation a/b may be dropped, but aZ/b must

_ l

9 6 may also be very small. An approxi-be retained since )

mate expression for R which is valid for a < < b is thus

92.9 ') + az/bz]1/.z

 sin2 (

(7.17) R ‘= b [ 4 sin2(

Equation (7.15) for the scalar potential (He) may be integrated

by parts to obtain

9 I211'

. -so

¢(9) = —J——41T€w [19(6) —-————“’R :l

O 9'2-1T

(7.18)

Tl' -jfiR
a e 0

5 19“") WT de'

The integrated term vanishes since, by equations (7. 5) and (7.16),

=-w).respectively, it is found that I9(-Tr) = I9 (1r) and R(9 '=TT) = R(9'
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Further, it is noted from expression (7.17) that

8R 8R

sew-‘55

and equation (7.18) therefore becomes

. 1r -jf3 R

(11(9) : Twig—6519(9')—a% i—fi—O— d9' (7.19)

0 -TT

Relations (7.11) and (7.19) may be substituted into expression

(7.10) to obtain the induced electric field just outside the surface of the

loop as

. . -' R

1 - .1— 2... __J___ Tr l _a_ e J50 [

139(9) ‘ ' b as [Anson LIN ) as R ‘19

jwpob 17 e-jBOR

-717— 16(9')cos (9-9') —-—§—-— d9' (7.20)

Upon combining terms and rearranging slightly, equation (7. 20)

may be expressed in the form

1 e jgo W 9) e 9' e)
E9( )- - m - 19( )K( 1 )d (7-21)

In this result, {.0 = )J. 60 is the intrinsic impedance of free space

and the kernel K(G , 6 ') is defined by

 

 

F 1 32 e-ifioRl
K(9,9 ): Lfiob COS (9 -9 )+ 50b 392 T— (7.22)

where

R1 = B}: = [4 sin2 (92‘9') + aZ/b2]1/2 (7.23)
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If expressions (7. 8) and (7. 21) for Eg(9) and Elem), respectively,

are used in equation (7. 3), an integral equation for the distribution of

loop current is obtained as

1&0 w
*5 19(9')K(9,9')d9' = V06(9) (7.24)

TT

4~rr

— zLIe(eO)[ 5(e-eo) + 5(e+eo)]

The unknown distribution of loop current 19(9) appears in the integrand

on the left side of this integral equation, while its value 19(90) at the

location of the loading impedances appears on the right hand side in a

term analogous to the excitation function V06(9 ) . This equation is

parameterized by the 100p diemsnions a, b which occur in the kernel

K(9 , 9 ') and by the impedance and position ZL’ Go of the double

loading. In the special case where Z = 0 , result (7. 24) reduces to
L

the integral equation obtained by Storer9 for the current on a conventional

circular loop antenna.

A rigorous Fourier series solution has been obtained by Storer9

for the distribution of current on a conventional loop antenna. Integral

equation (7. 24) for the current distribution on a doubly impedance loaded

loop is very similar to the one obtained by Storer for an ordinary loop,

the only difference being the additional shifted Dirac delta function

terms on its right hand side. It is a consequence of this similarity

that Storer's Fourier series technique may be applied, almost without

modification, to obtain a rigorous solution to integral equation (7. 24).

The application of this method to obtain an exact solution for the

distribution of loop current will be sketched in the development to follow.
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It is noted that R1(9 , 9') = R1(9 -9 ') is continuously differentiable

and that Rl(9 -9 ') > O for -T1' E (9 -9 ') 5 1T . The function

e-jBObR1w -9 ')
f(6 -91) = R1“; .9!) (7.25)

is therefore bounded and continuous with a continuous first derivative for

- 1r 5 (9 -9 ') < 1r , and is periodic with f(-1r) = f(TI’) . This function may

thus be expanded in a Fourier series as

 

-.-jBobR1<e -9 '1 .. me -e .,
' = Z k e

R1(f-9 )
n: .00

(7.26)
n

which converges uniformly to f(9 -9 ') on - 11' _<_ (9 -9 ') _<_ TT . The

Fourier coefficients of this expansion are given by

 

1 Swr e-jBObR1(¢)

e‘jn¢ d4) (7.27)

lekn = ‘2';

Expansion (7. 26) may be substituted into equation (7. 22) to obtain

a new expression for the kernel K(G, 9 ') . The Fourier series (7. 26)

may be differentiated term by term, and K(9 , 9 ') becomes after some

straightforwa rd manipulation

  

' _ 1

K(9,6'): :2 new“9 9) (7.28)

n:-00

where

kn+1 -kn-l nzkn

an : (30b 2 - (30b (7.29)

Equation (7. 28) expresses the Fourier series expansion of K(9 -9 ') on

- 1r 5 (9 -9 ') 5 7r with coefficients specified by relation (7. 29). The

Fourier series of an absolutely integrable function may be integrated

term by term, thus substituting expansion (7. 28) for K(G , 9 ') into
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the left hand side of integral equation (7. 24) and interchanging the order

of summation and integration gives

jg co 1T .

. (9-9') (

Z7179 n-Zoo (1113:.“ 19(9 )eJn d9

= VO 5(9) - ZLIG(eo) [6(8 -60) + 6(6+60)] (7.30)

Since the loop current is bounded and continuously differentiable

(by physical necessity) with Ie ( -1T) 2 16(1r) , then it may be expanded in

a Fourier series as

(I)

I 9 = Z I 7.319() mm n e ( )

which converges uniformly to 19(9) on - 1r 5 9 _<_ 17 . If expansion

(7.31) is substituted into equation (7. 30) and the order of summation

and integration interchanged (by the uniform convergence), there is

obtained

jg co 00 TT . .

_2 Z) a Z I 5‘ ejn(9 -er)er9( de' :

411. n: _CD p: .0) p -TI‘

= V06(6) - 2L19(eo) [ 6(9 -90) + 5(e+eo)] (7.32)

However, by the orthogonality of the set {eJn<1> }

Tr . . 1 .

S, eJne ej(p-n)9 d9' = Z‘IT eJne 6!}: (7.33)

-1T

where 6: is the Kroneker 6-function, and result (7.32) becomes

-22. )3 a 111.3119 = V06(9) - leewoiaw-GO) +6<9+9011 (7.34)
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-‘ 9

If equation (7. 34) is first multiplied by e Jm and then integrated

with respect to 9 on - 1T _<_ 9 5 1r there is obtained, after interchanging

the order of summation and integration on the left hand side

jgo °° 1‘ jnG -jm6
T 2 O. I e e d6

11: _oo n n -TI'

(7.35)

T!" .
_ -jm9

_ S {V06(9) - zL19(eo)[ 6(9 -90) + 6(6+90)l } e de

-1T

Making use of the orthogonality of the set {ejmb} and carrying out

the straightforward integration on the right of expression (7. 35) results

in

m
jQOTr Z a I 6n = VO - 2 ZLI9(90) cos (meo) (7.36)

n: _CD n n

From equation (7. 36), a relation between the Fourier coefficients In

and the coefficients on is immediately obtained as

_ 1 .
In _ jug a [v0 - 2 ZLIG(90) cos (1190)] (7.37)

o n

It is a simple matter to complete the solution for the distribution

of loop current by writing out the Fourier series for 19(9 ), with

coefficients given by result (7. 37), as

00 V - 2 Z I (9 )cos(n9 ) .

z 0 L9 0 ° eJne (7.38)
:-CI) an

  

19(8) : jn'é

The coefficients on are given by equation (7. 29), and have been

evaluated in detail by Storer. 9 Expression (7. 38) indicates that the

distribution of loop current depends upon the impedance and position

ZL and 90, respectively, of the double loading as well as upon the
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loop dimensions (which are implicit in an). In the special case where

ZL = O , this solution becomes identical with the one obtained by Storer.

The constant 19 (90) in solution (7. 38) for the distribution of

loop current remains as yet undetermined. Since the loop current is

continuous, however, the condition

19(9290) : 19(90) (7.39)

must be satisfied. With this condition, equation (7. 38) may be solved

for 19(90) in terms of the loop dimensions and the impedance and

position of the loading as

  

 

 

 

. -l
9 .

9 0 yr 0 jTréo n=-°° an n:_co an

(7.40)

If H(ZL,90) is defined as

'ne -1

ZZL ZZL co eJ Oc:os(n90) 00 ejneo

H(ZL, 60) = T 1+ T Z 2

J“ O I" O n=-°° an n:-00 an

(7.41)

then the final solution for the distribution of loop current becomes

 

V co 1 - H(Z ,9 )cos(n9 ) .

19(9) = ——£’-— 2 L 0 0 (am9 (7.42)

N o n:-°° C1n

It is observed from solution (7. 42) that the coefficients of the

Fourier series for the distribution of loop current depend in a very

complicated way upon the impedance and position of the double loading.

Furthermore, it has been indicated by Storer9 that this is a slowly
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converging Fourier series. The possibility of obtaining an approximate

solution by truncating the series and retaining only a few of the leading

terms is thus precluded.

Expression (7. 42) does, however, represent a formal solution

for the distribution of loop current. For a given set of loop dimensions,

excitation frequency, and loading parameters, the series could be

machine summed using Storer's values for the coefficients on . It is

evident, however, that there is no way of determining from this

solution an explicit expression for the parameters of an optimum

loading to yield a traveling wave distribution of loop current. A trial

and error process would therefore be required and, since there are

two degrees of freedom in choosing a loading for each set of loop

dimensions and each excitation frequency, this process would appear

to be highly impractical.

The failure of the formal Fourier series solution to provide

an explicit expression for the optimum loading impedance severely

limits its practical usefulness. A more approximate technique is

therefore required to obtain a simple closed form solution for the

loop current, from which an expression for the parameters of an

optimum loading may be determined. Such an approximate theory

is the subject of the following section, where explicit expressions

for the impedance and position of an optimum loading are obtained.

7. 4. Approximate Distribution of Current on a Doubly Loaded

Loop Antenna

In this section, an approximate theory for the distribution of

current on a doubly impedance loaded loop antenna is presented.

Quite in contrast to the rigorous Fourier series solution obtained

in the preceding section, a closed form result is obtained in
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terms of simple functions. From this approximate solution, explicit

expressions may be obtained for the parameters of an optimum loading

to yield a traveling wave distribution of current.

It was found in the preceding section that the electric field at

the surface of the loop must satisfy the boundary condition

a .

129(9) = 1229(8) (7.3)

where 123(9) is the field just within the loop surface and 5219(9) is

that just outside its surface. An expression for the applied field

E3(9) was determined as

123(6) = %{ - V06(6) + zL19(eO)[ 6(6 -90) + 6(6+60)]} (7.8)

where 6(9) is the Dirac 6-function. The induced electric field E219 (9)

at the surface of the antenna, due to the current and charge on the

loop, was written as

Eye) = -<W)e -ij9 (7.10)

where A9 (9) and ¢(9) are the time harmonic vector and scalar

potentials, respectively, at the antenna surface.

The vector and scalar potentials at the surface of the loop

may be expressed in terms of its distributions of current and charge

by the Helmholtz integrals5 (see Appendix A) as

 

)1. 1r

Aew) = 3,3 (“19(9) cos (e-e') K(e.9')bd9' (7.43)

1 1T

¢(e) = 4M 5 q(O')K(G,6')bd9' (7.44)

0 -1T
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where K(9 , 9 ') is the Green's function

e'jpoR(e 9 e I)

K(939') : R(ejel)

 (7.45)

In the above expressions, 19 (9) is the distribution of total loop current,

q(9) is its charge per unit length distribution, and R(9 , 9') is the

Euclidean distance between a source element on the axis of the loop

at 9 ' and an observation point on its surface at 9 . An approximate

expression for R(9 , 9') was developed in the preceding section as

_ l

R(9, e ') = b[ 4 3111‘2 (979—) + aZ/bz']1/2 (7.17)

which is valid in the thin-wire approximation where a < < b .

The peaking property of the kernel K(9 , 9 ') is exploited to

formulate an approximate theory for the impedance loaded loop antenna.

Since (a/b)2 < < 1 by the thin-wire assumption, then K(9, 9 ') has a

very sharp peak at 9' = 9 when considered as a function of 9' on

- 1r 5 9 ' _<_ 7r . The contribution to the vector and scalar potentials

Ae(9) and 43(9), respectively, at each point on - 1r 5 9 5 1r, as

calculated from equations (7. 43) and (7. 44), is therefore due primarily

to source elements in a small neighborhood about the point 9' = 9 .

Because the source distributions are continuous, then the current and

charge 19(9 ') and q(9 ') , respectively, for 9' : 9 make the major

contributions to the vector and scalar potentials at a point 9 on the

loop surface. It is therefore expected from this argument that the

ratios A9 (9 )/I9 (9) and (M9 )/q(9) should be essentially constant

at each point along the loop circumference, or for - 1r _<_ 9 5 TI’ .
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A pair of essentially constant dimensionless quantities are

defined by

119(9)
:11 __

19(9)
{11(9) : -TT:e:1T (7.46)

_ (#9(qu) _ 4ND 711(9) -1T:9:1r (7.47)

and are designated as the "current expansion parameter" and "charge

expansion parameter, ” respectively. In accordance with the foregoing

argument, the functions \I’i(9) and \I’q(9) should be essentially

independent of 9 , and be determined primarily by the loop dimensions.

Furthermore, these functions will not depend strongly upon the source

distributions 19(9) and q(9 ) . It is therefore asserted that \I’i(9) =

\IIi and ‘Ilq(9) = ‘I’q are indeed constants depending only upon the loop

dimensions. The validity of this assumption will be discussed more

fully in section 8. 5 of the next chapter.

According to the approximations described in the last paragraph,

the vector and scalar potentials at the loop surface are related to the

corresponding current and charge distributions as

p'o \Pi

191.9(9) = T 19(9) (7.48)

‘1!

4(6) = t5— q<9> (7.49)
O

The distribution of charge is, however, not independent, but related to

the current distribution through the equation of continuity as
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7-1‘q(9)

r=b

Li? 3%— 19(9) (7.50)

With this last result, expression (7. 49) becomes

3" a

we): 4765:3055 19(6) (7.51)

From equation (7.10), -the induced electric field E19(9) at the

surface r = b of the loop may be expressed as

I .v

'.,.I

E1989) -(V¢)9 -ij9

=.. - % 3% - ije (7.52)

If expressions (7. 48) and (7. 51) are used for A9(9) and ¢(9),

respectively, result (7. 52) becomes

1 e '3‘1’9 62 2 2‘I’i
E ( ) = —— + [3 b I (9) (7.53)

9 2 2 o T 9

1;, 4TT€Owb 89 q

2 2

where the definition (30 = 1.) H060 has been used. A complex wave

number (3 is defined as

(s = (30 W1 (7.54)

in terms of which equation (7. 53) may be expressed as

° 'j‘I’ 82 2 2
121(9) = q + (3 b 1(9) (7.55)

9 4n€0wbz (:an 9
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If results (7. 8) and (7. 55) are substituted into equation (7. 3),

in order to satisfy the boundary condition on the electric field at the

surface of the loop, a second order inhomogeneous differential

equation for the distribution of loop current on - «_<_ 9 5 TT is

obtained as

2 2

3 2 2 _ '4Trb
7+(3b 19(9)_fi {-V06(9)+

99 o 1

+ ZLIG(9)[ 8(9 -90) + 6(9+90)]} (7.56)

A complementary solution to this equation is well known to be

13(9) = cl (3)9139 + c2 8..)pr -n _<_ 9 5 «n (7.57)

where c1 and c2 are arbitrary complex constants. The particular

solution is determined as

217V . .

p _ o wblel 2w arable-90!
19(9)- W e 'W ZLIe<90>[e

O O

+e'j5b'9+90'] -1T:9_‘_<_1T (7.58)

which is readily verified by direct substitution into differential equation

(7. 56). In this last result, L0 = VHO7€O is the intrinsic impedance

of free space, and the "expansion parameter” ‘11 has been defined as

\I’ : «I W. \I’ (7. 59)

The complete solution for the distribution of loop current is obtained

by superposition of results (7. 57) and (7. 58) as



(7. 60)

It should be noted that a solution in terms of complex exponentials

has been obtained since a traveling wave distribution of current having

such a functional dependence is to be sought eventually.

Solution (7. 60) contains the three as yet undetermined constants

c1, c2, and 19(90) . There are three physical boundary conditions

which facilitate the evaluation of these constants. Due to the symmetry

of the loop, its distribution of current must be symmetric and its

charge distribution antisymmetric about the point of excitation at

9 = 0 . These conditions may be expressed mathematically as

Ie(-9) 2 19(9) (7.61)

<1(-9) = - q(9) (7-62)

Since the distribution of charge must be continuous at 9 = 1r , then

condition (7. 62) may be satisfied at that point only if q(Tr) = O . However,

q(9) is related to 19(9) through the equation of continuity as

q(9): “—33 3%- 19(9) (7.50)

The condition q(Tr) = 0 thus implies that

9

'5'6‘ 19(9)

l
l

O (7.63)

9:17
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A third condition is obtained from the continuity of the distribution of

current at 9 = 90 as

16(9:90) : 19(90) (7.64)

Solution (7. 60) is consequently subject to the set of three boundary

c onditions

Ie('e) : 19(6)

9
57,- 19(9) 2 0 (7.65)

9:.

16(9 :9 O) : 16(90)

The first of conditions (7. 65) may be satisifed by the distribution

of loop current (7. 60) only if c2 = c1 , which yields the simplified result

211V

'be -19b9 0 -10b|9l
I (9) =c eJfi +c e + e
9 1 1 COT

12% Z 1 (9 ,[e-ijIG-eol +6-10bl6+96|]

O

- 11' E 9 _<_ 11 (7. 66)

A straightforward but tedious application of the last two of boundary

conditions (7. 65) to result (7. 66) yields finally the approximate

distribution of current on the loop as

O N

V 11 P . P . .

° [_1. eJBbe +__1 e“JF3b9 + 2 e-JBblel

Z P . .

- 39% (Pl cos (3b90 + e-Jfibec) (e-Jfible -90l _

Z

+ e-jfible +9 61)] -1, 5 9 5 n (7.67)
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In this result, the factors T, Pl , and P2 are constants depending

upon the excitation frequency, the loop dimensions, and the impedance

and position of the double loading as

 

Z .

T = ‘I’+ 737]):- (1+ e-329b90) (7.68)

ZL -j(3b9
P1 = l - 30.1. e Ocos (3b9O (7.69)

'(3b11 ZL 2

P2 = jeJ sin (3b11 + 39T cos (3b90 (7.70)

An approximate expression for the distribution of current on

the doubly loaded loop antenna has been obtained in equation (7. 67).

This distribution completely characterizes the loop antenna, and is

given in terms of its dimensions, the excitation frequency, the

impedance and position of the double loading, and the as yet

undetermined expansion parameter. The optimum loading to yield

a traveling wave distribution of current on the loop will be obtained

from this result in the next chapter. This traveling wave current

distribution will then be used to calculate the value of the expansion

parameter ‘1'.

The similarity between the distribution of current (7. 67) on an

impedance loaded loop antenna and the expression (2. 28) for that on a

doubly loaded linear antenna is quite apparent. If the constants (30,

D1 , and D2 in the result for the linear antenna are replaced by 9b,

P and P2 , the corresponding expression for the loop antenna is
1’

obtained. In the case of a loop antenna, however, (3 is a complex

number, and the expression for P is quite different from its counter-
2

part D2 . The functional depedence of the current upon position along

the antenna is otherwise identical in either case.
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7. 5. Input Impedance of a Doubly Loaded Loop Antenna

The input impedance to the loop antenna is defined by

v

zin- = 1—7625") (7.71)

9

This impedance is readily evaluated by using result (7. 67) for the

approximate distribution of current on the doubly loaded loop, and

is found to be

-1
P Z . P

_ __1_ L -j[3b9 __1_ -jpbeo

Zin—6O\II 1+P2-30T e 0 (P2c039b90+e 

(7.72)

An approximate relation for the input impedance of a doubly impedance

loaded loop antenna is thus obtained in terms of its dimensions, the

frequency of excitation, and the impedance and position of the loading.

Again the similarity between this result and the corresponding

expression (2. 33) for a linear antenna is immediately apparent.



CHAPTER 8

OPTIMUM LOADING FOR A TRAVELING WAVE

DISTRIBUTION OF LOOP CURRENT

8.1. Physical Interpretation of the Distribution of Current on a

Doubly Loaded Loop Antenna

An approximate expression for the distribution of current on a

doubly impedance loaded loop antenna has been developed as equation

(7.67). This solution is valid on -11 _<_ 9 _<_11, but since Ie(-9) = 19(9)

it is sufficient to consider only the current on O E 9 5 11 . If attention

is restricted to the regions 0 E 9 _<_ 90 and 90: 9 _<_ 11 , then the

various terms in expression (7. 67) may be combined to yield a pair

of results which are more physically meaningful.

The distribution of loop current on O 5 9 _<_ 90 is obtained

 

from the general result (7. 67) as

V 11 P Z . P . .

_ _2_ _1 L -15b _1 -15b9 -Jf3b9

o 2 2

P Z . P

_l _._1_:. -Jfib90 __1_ -j9b60 jpbe
+ P2 -3OT e (P2 cos Bb90+e e (8.1)

V11 P z P
_ o 1 L 1 -ij9 -J'F5b9

19(9) ‘ {7'13 [2+P '15": C05 9690 (772 C05 Bb90+e 0)]e
O

_1. 113109+ P e
(8.2)

A physical interpretation of the current distribution is readily obtained

from expressions (8.1) and (8. 2).

145
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It is noted from equation (8. 1) that the total loop current on

O E 9 S 90 may be considered as a superposition of a pair of outward

and inward traveling current waves. The first term in this expression

represents an outward traveling wave of current which is excited by

the source at 9 = O . At 9 : 90 this current wave is partially

reflected and partially transmitted. The second term of equation

(8. 1) represents an inward traveling wave of current which results

from the reflection of the outward traveling wave by the impedance

discontinuity at ' 9 = 90

Similarly, equation (8. 2) indicates that the distribution of

loop current on 90 5 9 f 11 is composed of a pair of oppositely

directed traveling current waves. The first term of this expression

represents an outward traveling wave of current which is excited by

the potential difference at 9 = 90. The second term of equation (8. 2)

represents the inward traveling wave of current which results from

the reflection by ZL at 9 = - 9O.

It is indicated by the above results therefore, that in general

both outward and inward traveling waves of current are supported on

each of the two antenna regions 0 _<_ 9 _<_ 90 and 90 E 9 i 11 . The

superposition of these Oppositely directed traveling waves results

in a standing wave distribution of current along either region. Thus

in the usual case a standing wave of current is supported along the

entire circumference of the loop.

8. 2. Optimum loading Impedance for a Traveling Wave Distribution

of Loop Current

It was indicated in the preceding section that the doubly loaded

loop generally supports a standing wave distribution of current over
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its entire circumference. The possibility that this distribution might

be modified, through the selection of an Optimum impedance loading,

to yield a purely outward traveling wave of current over most of the

loop is now to be investigated.

It is evident physically that no choice of the loading will give

a purely outward traveling current wave on 90 _<_ 9 5 11 , since the

current should be maximum at 9 = 11 subject to the boundary condition

at that point. However, it is reasonable to suspect that if the loading

is properly chosen the inward traveling wave on 0 _<_ 9 E 90 might be

eliminated, leaving only the desired outward traveling wave of current

over that region. Since this inward traveling wave is actually reflected

from the impedance dicsontinuity at 9 = 90, it is expected that such

an optimum loading should exist.

The optimum loading impedance to yield a purely outward

traveling wave of loop current on O i 9 E 90 may be obtained from

expression (8.1). This condition evidently requires that the inward

traveling current wave on that region should vanish. Realization of

this condition is accomplished by equating the coefficient of the second

term in equation (8.1), which represents the amplitude of the inward

traveling wave, to zero as

ZL -jpb9o :1

30T 8 P2

 cos 9690 + e‘jfibeo = 0 (8.3)

"
U
I
'
U

N
H

Using the defining relations (7.68), (7. 69). and (7.70) for T , P1,

and P2 , respectively, this equation may be solved for the optimum

loading impedance, designated as [ZL] , to yield

0
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e113199.

: 3” ejfibhr J?
(8.4) 

cos fib90 + j 0) sin (3b11

After some lengthy but straighforward manipulation, result (8. 4) may

be put into the simpler form

[2 = 30\Ir[1 - j tan (3b(11 -90)] (8.5)
L]o

When the loading impedance is given by this relation, the loop current

on O _<_ 9 5 90 becomes the desired purely outward traveling wave,

while that on 90 _<_ 9 E 11 remains the usual standing wave

Expression (8. 5) gives the optimum loading impedance in terms

of the excitation frequency, the loop dimensions, and the position of

the loading. For a given set of antenna dimensions a and b , this

optimum impedance is a function only of the frequency w and its

position 90 . At this point the loading location is completely arbitrary,

and may be freely specified in order that the corresponding impedance

may satisfy certain prescribed conditions.

8. 3. Purely Reactive Optimum Loading

A purely non-dissipative optimum loading is of particular

interest, since such a loading would permit the realization of a high

efficiency traveling wave 100p antenna. It has been indicated that the

optimum loading impedance [ ZL] 0 depends only upon its position

90 and the excitation frequency 0) once the loop dimensions a and

b have been specified. This leads one to suspect that, at least at a

single frequency, it should be possible to choose an optimum position

for the loading such that [ ZL] 0 will become purely reactive.

Since ‘11 and (3 are in general complex numbers, then the
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following designations will be established

‘1’ = M+ jN (8.6)

(abs-90> = x+jy (8.7)

tan (3b(11-90) = u + jv (8. 8)

With these definitions, expression (8. 5) for the optimum loading

impedance becomes

[2 3o (M+jN)[1 - 101 + M]
L]O

30 {[M(l+v) + Nu] + j[N(1+v) - Mu] } (8.9)

The condition for a non-dissipative loading is obtained by equating

the real part of equation (8. 9) to zero, which gives

u _ 1.4
— — - N (8.10)

With this result, the corresponding optimum loading reactance becomes

2

[x = 30(1+v) <N+&) (8.11)
L]O N

It is indicated therefore that a loop antenna which is doubly loaded

with an optimum non-dissipative impedance, whose reactance [ XL] 0

is given by expression (8.11) and whose position 90 is so selected

that equation (8.10) is satisfied, will support an outward traveling

wave of current on 0 _<_ 9 _<_ 90.

The necessary position of an Optimum non-dissipative loading

may be Obtained from relation(8. 10). It is first necessary to express

u, v in equation (8. 8) in terms Of x, y from definitions (8.7) as

sinin)

cos (2x) + cosh (2y)

 

(8.12)

sinh (2y)

cos (2x) + cosh (2y)
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In terms of these results, condition (8.10) for a purely reactive

optimum loading becomes

sin (2x) _ M

COS (2x) + cosh (2y) + sinh (2y) " " N (8-13)

From this expression, it is desired to determine (11 - 90) where by

definition 9b(11-90) = x + jy, and M/N and 9b are known quantities.

Evidently some approximations are in order tO facilitate the solution

of this trancendental equation.

According to definition (7. 54) for 9 , it is possible to express

9/90 as

‘11.
_ 1

1 T17 (8.14)

The current and charge expansion parameters ‘I’i and ‘Ilq, respectively,

corresponding to a traveling wave distribution Of current, will be

evaluated in section 8. 5. These results may be utilized to calculate

the ratio 9/9O , as expressed by equation (8.14). Figure 8.1 indicates

a plot of 9/90 as a function Of the electrical loop circumference 90b

for a loop having dimensions specified by a/b = 0. 0423 or n. = 2 1n

(211b/a) = 10 . It is noted that the real part of 9/90 is always of the

order Of unity, while its imaginary part is always less than approximately

0. 05 in absolute value.

In accordance with the remarks Of the last paragraph, it would

appear that for a zeroth-order approximation the imaginary part of 9

may be dropped entirely and the value Of 9 taken as 9 = 90 . Under

these circumstances, the position Of an Optimum pure reactive loading

is determined immediately by equating the real part of equation (8. 5)
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to zero as

_ -l M

90b(11-9O) — tan (vfi) (8.15)

The ratio M/N is always negative and greater than 3. 0 in absolute

value for a loop with n = 10 and for O. 25 5 90b 5 4. 0 . Thus

9Ob(1r -90) is always of the order of 11/2 for a loop of such

dimensions.

Using the result 9Ob(11-90) 5 11/2 Of the zeroth-order

approximate solution, a more accurate formulation may be Obtained

from equation (8.13) . Since the maximum value Of Im(9/9O) is of

the order Of 0. 05, then

[y] = [ Im 9b(11-9O)] x é (005)12— = 0. 08
max ma

and the maximum value Of 2y is of the order of 0.16. The hyperbolic

functions in expression (8.13) have the power series expansions

cosh(2y) : 1+QZ-X)— +

(2 )3
sinh(2y) 2 (2y) + —3—?’—— +

and since it has been found that 2y < 0.16 , then a very good approxi-

mation is Obtained by retaining only the leading term in each expansion.

With this approximation, condition (8.13) becomes

sin (2x)

1 + cos (2x) + 2y

 -_M
‘ N

which may be written in the form

sin x cos x
 

2
|
:

(8.16)
2

cos x+y
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Result (8.16) may be further approximated by noting that

x = Re[ moo-60)] = (Bobs-60) = w/2

Power series expansions of sin x and cos x are then made as

. l 2
Sinxzcos(11/2-x)=1 - 7 (11/2-x) + (8.17)

. l 3
cosx= s1n(11/2-x)=(11/2-x)-6-(11/2-x) +... (8.18)

and since x E 11/2 only the first few terms Of each expansion need

be retained. Substituting expansions (8.17) and (8.18) into equation

(8. 16), and dropping all terms in (11/2-x)3 and higher powers gives

(I/ng) : _ LIE/[I- (8.19)

(R/Z-X) +7

If the constants 91, 92, <1) , and Q are defined as

Re ((313)
91

(32 Immb)

¢ (v-00)

Q = -M/N

(8.20)

then

x = Rembw-eon = 91¢

(8.21)

y -- bimbo-9011 = (3,4

and condition (8.19) becomes

(3
2 2 1 11 1

(1) + __2 + — _ _ (p + _ _—
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Since 91, 92, and Q are known constants, then quadratic equation

(8.22) may be solved directly for ((9 = (11-90) to Obtain the necessary

position of an optimum non-dissipative loading.

In order to verify the accuracy Of result (8.22), it was solved

to Obtain <1) = (11-90) for several values Of the electrical loop

circumference 90b. The values of x and y were then calculated

according to equations (8. 21 ). These results were then substituted

back into equation (8.13), which was found to be satisfied identically.

Hence the approximate solution (8. 22) was verified tO be essentially

100% accurate. It should be noted that only the smaller Of the two‘

roots to equation (8.22) was considered, since it is desired to

minimize the length of the region 90 E 9 E 11 on which a standing

current wave exists.

To summarize, the position 4) = (11-90) Of an optimum purely

non-dissipative loading may be calculated from equation (8. 22) in

terms of the loop dimensions and its frequency of excitation if

90b (11-90) = 11/2 . The corresponding Optimum reactance of the

loading is then given by expression (8.11), which may be written

appr oximately a s

2 .

[XL]O = 30 (1+——X-Z——)(N+-Mfi—) (8.23)

COSX

When a non-dissipative loading having these parameters is utilized,

then the corresponding distribution Of loop current on 0 _<_ 9 _<_ 9 0

becomes a purely outward traveling wave.

In order to Obtain some specific numerical results, a lOOp

antenna specified by the dimensions a/b = O. 0423, or .n. = 2 ln(21rb/a) = 10
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will be considered. The position (11-90) and reactance [XL] 0 Of

an optimum non-dissipative loading for such a loop are indicated in

Figures 8. 2 and 8. 3, respectively, as a function of the electrical

lOOp circumference 90b, as 90b varies from O. 25 to 4. 0. These

results were calculated from expressions (8.22) and (8.23 ) using the

relations for ‘Ifi, ‘I’q, and \I' which will be presented in section

8. 5. Since 90 = (11/v0 where V0 is the velocity Of propagation in

free space, then 90b = cob/v0 is a linear function of the angular

frequency w of excitation. It is noted from Figure 8. 2 that (11-90)

is a strong function of frequency, and that in fact 9Ob(1r -90) is

essentially frequency independent. Further, the nearly constant

value of 9Ob(11-90) is Of the order of 11/2 , which justifies the

approximations leading to solution (8.22). Figure 8. 3 indicates

that the Optimum loading reactance [ XL] 0 is a strong function of

frequency for relatively small loops, but settles down to a value of

approximately - 500 Ohms when 90b is greater than 1. 5 .

Expressions (8.22) and (8.23 ) for the position and reactance

Of an optimum non-dissipative double loading are perhaps the most

significant results Of the present research. Given the loop dimensions

and its excitation frequency, the parameters of an optimum non-

dissipative loading are readily calculated from these simple expressions.

By utilizing such a loading, a traveling wave antenna may be realized

which retains the high efficiency of a conventional loop. Since the

theory leading to results (8. 22) and (8. 23) is very similar to that of

the linear antenna Of Part I, which was successfully verified
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experimentally, it was felt that no experimental study Of the reactance

loaded lOOp antenna was warranted.

It has been indicated that, for a given set of loop dimensions,

the necessary position Of an Optimum non-dissipative loading is

strongly dependent upon the excitation frequency. Physically, however,

a practical arrangement Of such a doubly loaded loop requires that the

position Of the loading be fixed at some point along its circumference.

With this restriction, an Optimum purely reactive loading may there-

fore be realized only at a single frequency. If the position of such an

optimum impedance loading is so chosen that it becomes purely

reactive at a given frequency, then at any other frequency it must

have both resistive and reactive components.

Since the position of the impedance must be fixed, it is of

interest to consider the frequency dependence of an Optimum loading

whose location is so chosen that its impedance becomes purely

reactive at a predetermined frequency. In order to Obtain specific

numerical results, the loop specified by n = 10 will again be con-

sidered. A loading position of (11-90) = 27.10 is chosen so that the

optimum impedance becomes purely reactive when 90b = 2. 5 (see

Figure 8. 2). Figure 8. 4 indicates the Optimum impedance Of such a

fixed loading as a function of the antenna's electrical circumference

90b. These results were calculated from expression (8. 9) for [ ZL] O,

with the values Of u, v taken from equations (8.12). It is noted

from the figure that the resistive component Of the Optimum impedance

vanishes only for 90b 2 2. 5. At any other frequency, an optimum

loading must consist of both resistive and reactive components in order
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to yield a traveling wave distribution of loop current.

From Figure 8. 4 the following important characteristics are

Observed for the case of an Optimum impedance loading Of fixed

position:

(i)

(ii)

(iii)

(iV)

In general an Optimum loading impedance requires both

resistive. and reactive components.

Both the resistive and reactive components of the

Optimum impedance are strong functions of frequency.

There is a particular frequency where the resistive

component takes on a very large negative value.

The sign of both impedance components changes within

a relatively narrow frequency range. An optimum

impedance thus requires a negative resistance component

(active element) at certain frequencies, and its reactive

component changes from capacitive to inductive as the

frequency is increased.

The reactive component Of the Optimum impedance has a

negative slope as a function Of frequency.

It is thus evident that synthesis Of an exact optimum loading impedance,

to yield a purely outward traveling wave distribution Of loop current

at every frequency, is out Of the question. Although an Esaki diode

might be utilized tO yield a given negative resistance component,

there is no practical means of realizing a frequency variable negative

resistance characteristic Of the type indicated.

Since the high efficiency associated with a non-dissipative

loading is of fundamental interest, one is led to consider, when dealing
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with a loading of fixed position, one consisting of the reactive component

Of the Optimum impedance. Such a purely non-dissipative loading is

optimum only at a given center frequency, and its effectiveness

diminishes as the frequency of excitation is varied from this value.

That is, the distribution Of loOp current on 0 _<_ 9 _<_ 90 will be an

outward traveling wave at an excitation frequency corresponding to the

chosen optimum center frequency, but will gradually revert back to

an essentially standing wave as the frequency of excitation deviates

from this value.

For relatively small excursions about the center frequency,the

current distribution corresponding to such a non-dissipative loading

will remain an essentially outward traveling wave. Referring back

to Figure 8. 4, this is evident since for such small frequency variations

the resistive component Of the Optimum impedance is small compared

with its reactive component. For large deviations in the frequency Of

excitation, however, the magnitude Of the resistive component becomes

comparable with that of the reactive component, and the effectiveness

of a purely non-dissipative loading will be necessarily reduced.

An approximately traveling wave distribution of loop current

may therefore be maintained over a band of excitation frequencies

through the use of a purely reactive loading Of fixed position, provided

that its reactance is a proper function of frequency. The circuit and

radiation characteristics of a loop with such a non-dissipative loading

Will thus be typical Of those Of an ideal traveling wave loop over this

range of fr equencie s .
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In order to obtain an effective non-dissipative loading therefore,

it is necessary that the frequency dependence Of its reactance match

that of the reactive component Of the optimum impedance, as indicated

in Figure 8. 4. The consideration of this synthesis problem is beyond

the scope of the present research.

8. 4. The Distribution of Current and Input Impedance Corresponding

to an Optimum Loading

A general expression for the optimum loading impedance to

yield a traveling wave distribution Of loop current on 0 E 9 E 90

was determined as expression (8. 5). Whenever the impedance is

given by this equation, then condition (8. 3) holds, i. e. ,

P Z . P .

fi'l' " 30% e-j9b90 (51 cos (3b9O + e-Jfibe 0) = 0 (8-3)

2 2

Hence the distribution Of current on O E 9 _<_ 90 becomes from

equation (8.1)

2 V 11 .

_ 0 -j9b9

0

while by result (8. 2) that on 90 _<_ 9 E 11 may be expressed as

 

V 11 Z . P . .

9 s 0 - L Jfibee __1_ -Jsb90 .pr9
I6( ) W 2 3OT e P2 cos 9b9O + e e

P .

+ 15—1 eJfibe (8.25)

2

These expressions represent, respectively, the outward traveling wave

which has been realized on O E 9 5 90 and the standing wave which

remains on 90 5 9 _<_ 11 .
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It is desired to simplify result (8. 25) in order to indicate

more clearly the distribution Of loop current on 9") E 9 _<_ 11 . This

equation may be written in the general form

2 V 11 . .
- 9 9b99 z 0 16b J .

Ie( ) W [Ae +Be ] (8 26)

0

where A and B are complex constants depending upon the antenna

dimengi‘iins and the loading parameters. The direct evaluation Of A

and B is very tedious, so an alternate method will be utilized. Since

the loop current is continuous at 9 = 90, then the condition

- +
19(9=9O) : 1 9:90) (8.27)9(

must be satisfied. Further, it was found in the preceding chapter

that the antisymmetry Of the distribution of charge implies that

.3.
99 19(9) : 0 (8.28)

9:11

The result of equation (8.24) may be utilized to Obtain

2 V 11 .
_ - _ o -j9b9

19(0_90) — W e (8.29)

0

Applying the two boundary conditions (8.27) and (8. 28) in conjunction

with result (8.29) to expression (8.26 ), the constants A and B are

evaluated in a straightforward manner as

1
A e 1 + e-J'ZfibW-éo) (8.30) 

e-j29b11 .,

l + e-jzfib("-B 0)

 

(8.31)
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If expression (8. 30) and (8.31) for A and B , respectively, are

substituted into equation (8.26 ), the distribution of loop current on

90 _<_ 9 E 11 is Obtained as

 

4 V011 e-j9b11

19(9) = TOT 1 + e-j29b(11-90) cos 9b(11-9) (8.32)

It is Observed from result (8.32) that the loop current on

90 E 9 E 11 has a cosinusoidal distribution. Thus although the

Optimum impedance loading yields an outward traveling wave of

current on O :9 E 90 , the distribution on 90 E 9 _<_ 11 remains a

pure standing wave. This standing wave distribution is in fact

identical with the zeroth-order distribution of current on a conventional

lOOp atenna.

Since the loop current is symmetric about the excitation point,

then I9 (-9) = Ie (9 ). In summary then, the distribution of loop current

corresponding to an Optimum impedance loading may be expressed on

-1rf_9:11 as

 

V .

_ 0 1131019119(9) _ 6011 e -9059590 (8.33)

V e-j9b11

 19(9): 0 cos 9b(11-(9l) (8.34)
3011 1 + e-j29b(1r-9O)

-11<e<-e’9 <9<1T

In order to illustrate the distribution of loop current corresponding

to an optimum impedance loading, as given by expressions (8.33) and

(8.34), the loop having dimensions specified by n = 10 will again be

considered. If it is taken that 90b 2 2. 5 , then the parameters Of an
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optimum non-dissipative loading are found from Figures 8. 2 and 8.3

O

to be: (11-90) = 27.1 , [X z - 421 Ohms. Figure 8. 5 indicates
L] o

the amplitude and phase of the distribution of loop current corresponding

to such a loading, as a function Of the angular position 9 along the

circumference of the loop. These results were Obtained from equations

(8. 33) and (8.34), where the very small imaginary part of 9 was

neglected. It is noted that the amplitude of the current on O _<_ 9 _<_ 90

is constant while its phase is linear, corresponding to a traveling wave

along that region. On 90 E 9 5 11 , however, the current is represented

by a sinusoidal standing wave Of constant phase.

The input impedance to the traveling wave 100p antenna is

Obtained from equation (8. 33) as

V

__ O

Zin ‘ ‘1e"'"“(9£0)

60 ‘1’ (8.35)

It is to be noted that this expression is valid only when the position and

impedance of the double loading are chosen to be Optimum, i. e. ,

equation (8. 5) is satisfied. Under any other circumstances, when

ZL is not [ ZL] o’ the general input impedance expression (7. 72)

must be utilized as

-1
P Z . P .

_ 1 L ~JBb9 1 -Jfibeo

Zin — 60‘1’ l + —Pz -————30T e 0 -—P2 cos 9b90 + e

(7.72)

This result reduces to equation (8. 35) when the loading is optimum.
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Figure 8. 6 indicates the input impedance of a loop antenna

with n. = 10 as a function Of its electrical circumference 90b .

These results were Obtained from expression (8. 35), and it is

assumed that the loading is Optimum at every frequency. It is

noted from the figure that the input impedance Of a loop antenna

which supports a traveling wave of current at each frequency is

essentially independent Of the excitation frequency.

In section 8. 3 it was indicated that a non-dissipative loading

of fixed position can be Optimum only at a single frequency. Special

consideration was thus given to a loading consisting Of the reactive

component of the optimum impedance. The position Of the loading

was selected in such a way that it became Optimum at a given

frequency. Since such a loading is Optimum, and hence yields a

purely outward traveling wave Of loop current on 0 f 9 _E 90, only

at a single frequency, then the frequency dependence Of the

corresponding input impedance must be calculated from expression

(7. 72). As indicated in Figure 8. 4, for a loop with n. = 10, an

Optimum impedance loading located such that (11-90) = 27.10 becomes

purely reactive when 90b = 2. 5 . The input impedance to a loop

antenna having a loading consisting of the reactive component of the

optimum impedance given in Figure 8. 4 must therefore be calculated

from expression (7.72) for all frequencies except that where 90b = 2. 5 .

In the corresponding case for a linear antenna, similar

calculations were made from expression (2. 33) and the results presented

in Figure 3.12. Since the input impedance expressions (2.33) and (7. 72)
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are essentially identical, and resulted from similar approximate

theories for the distribution of current on linear and lOOp antennas,

respectively, then the input impedance of the two antenna types will

exhibit a very similar frequency dependence. Thus the calculations

outlined in the preceding paragraph will not be carried out for the

case of a loop antenna. By analogy to Figure 3.12, however, the

frequency dependence of the input impedance to a lOOp antenna having

such a purely reactive loading, which becomes Optimum for 90b = 2. 5,

will be relatively broadband about the frequency where 90b 2 2. 5.

8. 5. Calculation of the Expansion Parameters ‘I’i(9), \I’q(9), and \I’(9)

The expansion parameters \I'i(9), \I'q(9) , and ‘I’(9) were

defined in section 7. 4 as

 

9 411 A909)
‘I’i( )2 14:)- W (7.46)

_ n 1121
‘I/q(9) - 4 so q(9) (7.47)

111(9) 2 4111(9) 1101(9) (7.59)

where A9 (9) and (M9) are the vector and scalar potentials at the

surface Of the 100p, and 19 (9) and q(9) are the corresponding

distributions Of current and charge. It has been indicated that the

potentials may be expressed as

 

u 11

119(0): 4??) 19(9') cos (9 -91) K(9,9') bd9' (7.43)

11'

41(9): 41115 S q(9 1) K(9,9 1) bd9' (7.44)

O .-
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where K(9 , 9 ') in the Green's function

e'jBoR(e 1 9 ')

 

K(9,0') : R(erg') (7.45)

and the Euclidean distance R(9 , 9 ') is given approximately by

_ I

R(9, 9') = b [ 4 sinz (920 ) + aZ/bz]1/2 (7.17) 

Using expressiors(7. 43) and (7. 44) for the potentials, the current and

charge expansion parameters \Ili(9) and ‘I’q(9) , respectively, are

obtained from their definitions (7. 46) and (7. 47) as

111(9) 2 1

11

1 W is, 16(6'1cos(e-.e')K(e,9')bd6' (8.36)

w

\qu(9) = 335— )“ q(9') K(9,9') bd9' (8.37)

-11

Since the current distribution Of fundamental interest is the

traveling wave corresponding to an Optimum impedance loading, then

it is this distribution which will be used to evaluate the expansion

parameters. By analOgy to the linear antenna, it is expected that

{11(9) and ‘I’q(9) will be relatively independent of the distribution

of loop current, and depend primarily upon its dimensions. Hence

no great error will be made by using the values of \Ifi(9) and ‘Ilq(9)

corresponding to a traveling wave distribution when the loop current

actually departs moderately from a traveling wave: i. e. , when ZL

is not [ ZL] O .

In the preceding section, it was found that the distribution Of

loop current on - 11 E 9 _<_ 11 corresponding to an Optimum loading
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may be expressed as

 

9 — V0 -j9bl9| 9 <9<9 8
IeH-me -O——o (33)

I (9) V0 67% BM )6!) (834)= . COS 1T- .

9 30111 1 +e-j29b(11-90)

-11 < 9 < -9 , 9 < 9 < 11

It is necessary to know the position 90 Of the loading impedance before

results (8.33) and (8.34) may be utilized for the calculation of ‘I’i(9)

and ‘Ilq(9) . This presents some difficulty, since the loading position

was previously determined in terms of ‘II = Nf—‘If-l‘l'q and 9 = 50¢??qu ,

but now it is found necessary to known the location 90 of the loading

in order to evaluate ‘I‘i(9) and ‘I’q(9) . Some further approximations

are consequently in order to allow the explicit evaluation of the

expansion parameters.

It is a well known result in linear antenna theory that the

expansion parameter ‘I’(z) associated with such an atenna is a weak

function Of the distribution Of cylinder current. 2 This fact was

demonstrated in section 3. 5 and was indicated by Figure 3.13. It

was found that no great error was introduced by neglecting the standing

wave Of current on d f z 5 h and assuming a traveling wave to exist

on 0 f z E h when calculating ‘Il(z) . Such an approximation was

found to yield reasonably accurate results whenever the length d of

the antenna supporting a traveling wave Of current was sufficiently

greater than the length (h-d) which supports a standing wave distri-

bution. It was indicated that,‘ whenever the ratio d/(h-d) is Of the

order Of three or greater, sufficiently accurate results may be Obtained
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through this approximation technique.

A close analogy may be drawn between thin-wire traveling wave

linear and loop antennas. Not only are the current distributions

corresponding to an Optimum impedance loading essentially identical

for the two antenna types, but a very close correspondence between

the theoretical developments Of Chapters 2 and 7 exists as well. It

is thus tO be expected that an approximation technique analogous to

the one described in the preceding paragraph will be valid for the

calculation Of the lOOp expansion parameters \I’i(9) and ‘I’q(9) .

According to the above arguments, if (11-90) is reasonably

small compared with 90, no great error will be made in the

calculation Of {11(9) and ‘I’q(9) if the traveling wave distribution

Of current is assumed to exist over the entire loop, i. e. , for

- 11 E 9 5 1r . As indicated in Figure 8. 2, the necessary position

(11-90) of an optimum non-dissipative loading is always less than 500

when 90b is greater than 1. 5. Thus, for a loop with n = 10, the

above indicated approximation should be valid whenever the electrical

loop circumference is of the order 90b = l. 5 or greater. It was

indicated in Figure 8.1 that the imaginary part Of the complex wave

number 9 is always very small, while its real part is essentially

equal to 90 . The further approximating assumption that 9 is real

and has the value 9 = 90 will thus be made to facilitate the calculation

of ‘I’i(9) and ‘I’q(9 ).

In accordance with the approximations outlined in the preceding

paragraph, the distribution Of loop current to be utilized in calculating

the expansion parameters will be taken as
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V

-. b 9
19(6) : 600‘? e J60! I -1T:9 in (8.38)

 

The corresponding approximate distribution of charge is related to

the loop current through the equation of continuity as

q(e) = (is 5% 19(0) (7.50)

21T€OVO ‘Ifi blel

=T—eJo sgn(9) ”159511 (8.39)

q

where the signum function sgn(9) is defined by

lfor9>0

sgn (9) = O for 9 II C (8.40)

-1 for9<0

Using the distributions of loop current and charge given by results

(8.38) and (8.39), the expansion parameters \I’i(9) and \I’q(9) are

Obtained from expressions (8.36 ) and (8.37 ), respectively, as

. TT . '

1111(9) = eJBObeS e'3‘3oble I cos(9 -9 ')K(9,9 ')bd9' (8.41)

Jr 0 E 9 E 11

. 1T . '

“11(9) = 6960109) e'moble 'sgnw ') K(9.e ')bde' (8.42)
-11

0 _<_ 9 _<_ 11

The results may be written in the form

111(9)=e3130b9[ci (9b9)-jSi (9b9)] 0<9<11 (843)
i a,b O ’ a,b O ’ — — '

)I/qw) = ejfiobe [ cibmob, 9) - j sibmob, 9)] 0 5 9 5 11 (8.44)
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. . i i q

where the quant1t1es Ca, b(90b, 9), Sa, b(9ob, 9), Ca, b(90b, 9), and

q .

Sa, b(90b, 9) are defined by

. 11'

Cal, b(9ob, 9): 5:“ cos 90b9' cos (9 -9 ') K(9, 9 ') bd9' (8. 45)

. 11

5;,b(90b, 9) = S‘msin poble'l cos(9 -91) K(9,9 ') bd9' (8.46)

TI'

Cg, b(9ob, 9) =S:1T sgn(9 ') cos 90b9' K(9 , 9') bd9' (8.47)

1'!”

Sg,b(90b, 9) = 5:” sgn(9 ') sin 9Ob[9'l K(9,9 ') bd9' (8.48)

The Green's function K(9 , 9 ') is given by equation (7. 45). Integrals

(8. 45) through (8. 48) were numerically machine calculated for the

0 following values of the parameters a/b, 90b, and 9 :

a/b

(30b

9 = 00 through 1800 for each 90b

0.0423, or n = 21n(211b/a) = 10

O. 25 through 4. 0

With these numerical results, the values of ‘I’i(9) and ‘qu(9) are

readily calculated from expressions (8.43) and (8.44), respectively.

The dependence Of \1/i(9) and ‘I’q(9) upon the angular position

9 along the loop circumference is indicated in Figures 8. 7 and 8. 8,

respectively, for the case of 90b : 2 . These results were calculated

from expressions (8. 43) and (8.44 ), and correspond to a loop having

n. = 10 and an electrical circumference of 90b 2 2. 0 . It will be

recalled that in the approximate theory Of Chapter 7 it was asserted

that ‘Ili(9) and \I’q(9) were indeed essentially constant. A study Of

Figure 8.7 reveals that {11(9), is relatively independent of 9 for
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0°: 9 51600 The variation Of \I’q(9) as depicted by Figure 8. 8 is

more pronounced, but its value is relatively constant for 300 f 9 E 1300.

In either case, the rapid variation for large values Of 9 (near 1800)

is very likely due to the approximate nature Of expressions (8.43) and

(8.44), where the standing wave Of current on 1450 _<_ 9 E 1800 was

neglected. The strong variation in ‘qu(9) for small arguments may

attributed to the discontinuity in both the scalar potential ¢(9 ) and

the charge distribution q(9) at the excitation point 9 = O .

It has been indicated by King2 that in the case of a linear

antenna the greatest accuracy is Obtained by evaluating the expansion

parameter ‘P(z) at a point Of maximum antenna current. By the

analogy discussed previously, this criterion should also be valid for

a loop antenna. Thus ‘Ili should be evaluated at a point Of maximum

loop current and \Ilq at a point Of maximum charge. Due tO the

traveling wave of current on O E 9 _<_ 90 , the amplitudes Of both

19(9) and q(9) are constant for O _<_ 9 f 90, while q(9) is

discontinuous with q(O) = O at 9 = O . It would thus appear that

\I’i(9) and ‘Ilq(9) might be evaluated at any point where the traveling

wave exists, except near the discontinuity at 9 = 0 or the standing

wave at 9 : 90, to yield the constant values ‘Pi and ‘I'q. Since both

‘I’i(9) and ‘Ilq(9) are well represented by their values at = 11/2 ,

it is taken that

75
‘

ll \I’.(9 : 11/2)

1 1 (8.50)

\I/q(9 = 11/2))
6

ll
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These values of ‘I’i and ‘I’q were utilized to Obtain all the preceding

numerical results Of this chapter.

Figures 8. 9, 8.10, and 8.11 indicate the variation of ‘Pi, ‘qu,

and ‘11 = Jill-11': , respectively, as a function of the electrical loop

circumference 90b . These results were obtained from expressions

(8.43) and (8.44) in conjunction with conditions (8. 50) for a loop with

n = 10 . The numerical values given by these figures may be used in

conjunction with the theory Of sections 8. 3 and 8. 4 to determine the

parameters Of an optimum non-dissipative loading and the corresponding

input impedance to the traveling wave loop antenna.

 



I

71‘ reiemex'ed uotsu'edxa quaxxno

n
=
2
1
n
(
2
1
1
b
/
a
)

=
1
0

9
=
9
0
°

8
.
0
)
-

R
e
‘
l
’

 

 

4
.
0
"

2
.
0
-  

0
o
0
“
,

1
l

L
l

L
l

4

e
l
e
c
t
r
i
c
a
l
l
o
o
p
c
i
r
c
u
m
f
e
r
e
n
c
e
9
0
b

F
i
g
u
r
e

8
.

9
.

C
u
r
r
e
n
t
E
x
p
a
n
s
i
o
n
P
a
r
a
m
e
t
e
r

‘
1
!
i
a
s

a
F
u
n
c
t
i
o
n

o
f
t
h
e

E
l
e
c
t
r
i
c
a
l

L
o
o
p
C
i
r
c
u
m
f
e
r
e
n
c
e
.

179



b
.11 1913111121211 notsuedxa 98.1er

n
=
2

1
n

(
2
1
1
b
/
a
)

=
1
0

9
e
9
0
°

8
.
0
:
-

R
e
‘
I
’

 
 

6
.
0
-

 

 

4
.
0
)
-

2
.
0
'  

0
0
0
"

l
l

l
J

l
V
J
A

1
I

e
l
e
c
t
r
i
c
a
l
l
o
o
p
c
i
r
c
u
m
f
e
r
e
n
c
e
9
0
b

F
i
g
u
r
e

8
.
1
0
.

C
h
a
r
g
e
E
x
p
a
n
s
i
o
n
P
a
r
a
m
e
t
e
r

\
I
I

a
s

a
F
u
n
c
t
i
o
n

o
f
t
h
e
E
l
e
c
t
r
i
c
a
l

L
o
o
p
C
i
r
c
u
m
f
e
r
e
n
c
e
.

q

180



’1‘ xsiamexed uotsu'edxa

2
1
n
(
2
1
1
b
/
a
)
=

1
0

9
0
°

II

CD

8
.
0
p
'

R
e
‘
I
’

 

 

-
I
m

\
I
I

 
0
,
0
“
!

l
l

l
'

l
l

L
4

e
l
e
c
t
r
i
c
a
l
l
o
o
p
c
i
r
c
u
m
f
e
r
e
n
c
e

9
0
b

F
i
g
u
r
e

8
.
1
1
.

E
x
p
a
n
s
i
o
n
P
a
r
a
m
e
t
e
r

\
I
’
a
s

a
F
u
n
c
t
i
o
n

o
f
t
h
e
E
l
e
c
t
r
i
c
a
l
L
o
o
p

C
i
r
c
u
m
f
e
r
e
n
c
e
.

181



CHAPTER 9

RADIATION CHARACTERISTICS OF A

TRAVELING WAVE LOOP ANTENNA

9. 1. Distribution of LOOp Current for Calculation of Radiation Fields

It was indicated in the introduction that the radiation charac-

teristics of a loop antenna are completely characterized by its

distribution of current. The approximate current distribution on

the doubly loaded loop was determined in Chapter 7, and that

corresponding to an optimum impedance loading was established in

Chapter 8. In the present chapter, the radiation zone fields of the

traveling wave loop antenna are to be calculated. These fields are

defined by the condition 90R > > 1 , where R is the distance from

a current element on the lOOp to an Observation point P. This

condition is equivalent to the requirement that the point Of Observation

P should be separated from every point Of the loop by many wave-

lengths. TO determine these fields, the distribution of current

corresponding to an Optimum loading will be utilized. Since it is,

in particular, the radiation zone fields which are to be determined,

this distribution will be further approximated to simplify the

calculations.

In section 8. 4 of the preceding chapter, the current distribution

on the doubly loaded lOOp corresponding to an Optimum impedance

loading was found as

 

_ o -j)3bl9|
19(9) _ 601' e -9059 _<_90 (8.33)
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 9 V0 3-3mm la) 4

e

-11 < 9 <-9 , 9 < 9 < 11

These expressions represent a traveling wave Of lOOp current over

the region - 90 _<_ 9 _<_ 90 and a standing wave on the regions - 11 _<_ 9 _<_-9O

and 90 5 6 5 11. It is well known that the radiation zone fields of an

antenna are not a strong function of its distribution of current. If the

regions Of the loop supporting a standing wave of current are short

compared with the one on which a traveling wave exists, it is reasonable

to assume that the traveling wave is supported over the entire loop.

That is, if (11-90) is reasonably small compared with 90, then no

great error will be made by assuming equation (8. 33) tp hold on

- 11 _<_ 9 _<_ 11 when calculating the radiation fields Of the loop.

From the results of section 8. 3, the range of loop sizes for

which the above outlined approximation is applicable may be deduced.

Consider a lOOp with n. = 10 and having a purely non-dissipative

optimum loading. It is noted from Figure 8. 2 that the ratio 90/(11-90)

is greater than 2. 0 whenever the electrical loop circumference is Of

the order of 90b : l. 25 or greater. Further, it was indicated in

Figure 8.1 that the complex wave number, 9 is essentially equal to

the free space wave number 90 . It is therefore a valid approximation

to take 9 = 90 in calculating the radiation fields. Hence there exists

a range of loop sizes for which the distribution Of current

 

v .

19(9) = 6:111 e750blel -11< e <11 (9.1)
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is a reasonable approximation. It is this current distribution which

will be utilized to calculate the radiation fields of a traveling wave

loop antenna.

9. 2. Radiation Fields of the Traveling Wave LOOp Antenna

It was found that a general formulation for the radiation zone

fields of a circular loop antenna is not available in the existing

literature. The case which is invariably treated is that of an

electrically small loop for which the distribution Of current is assumed

constant along its circumference. NO theory could be found which

formulated the radiation fields of a circular loop in terms Of a general

current distribution. This is a rather surprising fact in view of the

relative popularity Of loop type antennas. It is first necessary there-

fore, to calculate the radiation zone fields of a loop Of arbitrary size

in terms Of a general distribution of current. The fields corresponding

to standing and traveling waves Of current may then be Obtained from

this general result.

The electric and magnetic fields at a point in space due to some

localized time harmonic current-charge distribution are given quite

generally in terms Of the vector and scalar potentials A and <1) ,

respectively, as

M
L

-V¢ -jw_A

_1 (9.2)
V XA0

1
L

II

It is possible to express the potentials in terms Of the Helmholtz

—1

integrals over the volume density Of current JG") and the volume

density of charge p5") as
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_I I"'0 _.| _: e-jBOR '

A(r) = 74-1? v J(r ) R dV

(9. 3)

-' R

"’ _ 1 ‘1 .2192..— 1

¢(r) - 4“ S p(r) R dv

0 v

where“ R = I? - ?'| is the distance between a source point located

_I

by r' and an Observation point at '1", and v the region Of non-

vanishing source densities. By substituting the potentials (9. 3) into

expressions (9. 2), it has been shown by King5 that the radiation zone

electromagnetic fields become

 

' 11) ,. -* —) -190R
E14?) : #5 [R p017) - J—(vi-L ] S-T— dV' (9. 4)

O V O

_J _, 313 P. _, -j90R

Br(r) : - 4: O S, AR X .14?) E—R-— dvI (9. 5)

where

_1 _1 A '33 _}‘1

R = (r ' r'l ' R = _1 _1

l r - I"!

and v0 is the velocity of prOpagation in free space, with 90 the free

space wave number.

Figure 9. 1 illustrates the geometry of interest for calculating

the radiation fields Ofa circular loop antenna. The loop is taken to lie

in the x-y plane Of a system Of rectangular coordinates (x, y, z) and

to be centered about the origin 0 at (O, 0, 0) . A position vector 1“

locates the observation point P(r, 9 , 4)), having the spherical

coordinates (r, 9 , 4)), with respect to the origin 0 . The vector 1""

locates a source element along the loop having the spherical

_l

coordinates (b, 11/2, 4)'). The loop current HF") thus has onlya
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Figure 9.1. Loop Geometry for Calculation of Radiation

Zone Fields.
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4) -component and is a function Of 4) ' , with the result that

 

 

  

 

_, A

113'“) = ¢'I¢(¢') (9.

It is assumed that the loop is excited at the point 4)' = O .

Due to the assumption Of a thin-wire loop where 90a < < l ,

it may be taken that

—) _1 .1 _1 A

JII“) dV' = I(r') bd9' = 9' I¢(¢') bd¢' (9.

p11“) dv' = q(I-") bd9' = q(¢') bd9' (9.

where I¢(4)) and q(4)) are the current and charge per unit length,

respectively, along the loop. Further, q(4)) is related to 143(4))

through the equation of continuity as

q(9) = J— 1 1(9) (9
wb 84 (9 °

so that finally

_1 _\ A

J(r') dv' 2' 4)'I¢(4)') bd4)' (9.

95") av) = i—i— 119949 (9
w 89' 4) '

If results (9.10) are substituted into expressions (9. 4) and (9. 5), the

radiation zone electromagnetic fields become

.1 “190R
r4 — RJ. _9_ I §___ 1

E (r) _ 41::[31): R0) 9'4) 143(4)) R d4)

143””) e'jPoR

_ __._____ I
R b d4) (9.

.1 .113 I‘” W A A 'jflOR
r _1 _ O O , 1 e

B(r)— - 411 SRXCP I¢(¢)—__R bd4)‘ (9.

6)

7)

8)

9)

10a)

10b)

11)

12)

 



188

Before proceeding further, it is necessary to evaluate the

Euclidean distance R between a source element at '1‘" and the

observation point P at ‘1‘". With reference to Figure 9.1, an

application of the law of cosines gives

2 Z Z
R r +b -2rbsin9cos(¢-¢')

r2[l + (b/r)2 - 2(b/r) sine cos (d>-¢')] (9.13)

Since the radiation zone is characterized by r > > b, the term in

(b/r)2 may be dropped, leaving

. . , 1/2
R = r[l -2(b/r)sm9 cos (Cb-Cb )] (9.14)

Using the two leading terms of a binomial series expansion gives

finally

R 5 r-bsinecos(¢-¢') (9.15)

It will thus be taken that, for observation points P in the radiation

zone, the distance R is given approximately by

r ................ amplitude terms

R z (9.16)
r - b sin 9 cos (<1) -¢') . . . phase terms

A

Further, the unit vector R may be approximated in the radiation

zone as

A . A

R = r (9.17)

If approximations (9.16) and (9.17) are substituted into equations

(9.11) and (9.12), the radiation fields may be expressed as

 

w
, n
u
n

'





 

_‘ jB -j(3 r 1T . . . ,

Era.) : o e 0 5' ,1} i; _8_ I¢(¢,)8380b31n8 cos(<(> —¢ )ddD'

390 e-J‘fior 1" 14M“) 3;, ejpobsinecos(¢-¢')bd¢(

 

4Tr€ r _ v0

(9.18)

_, jg 1" 'jB r Tr A ° ' _ l

Bra") = ‘ 4: o e r O S I¢<¢>')(?x9') elfiobsmecos‘d’ “bd9'
-11'

(9.19)

The integration in the first term of result (9. 18) may be carried out

by parts, and the integrated term is found to vanish. Making use of

the fact that

sin 9 sin (c) -¢') = r - 513' (9.20)

the remaining term may be combined with the second integral in

equation (9.18) to give

mob e-jsor

41r€v r

00

 Era!) = S [?(’r‘-$') - 9'] I¢(9'>

-1T

ejBObsine cos(¢-¢') d¢' (9.21)

If the vector identity

?- 35')? «’5' (9.22)
A

9x6x99=<

is utilized, then result (9. 21) may be rewritten, and the radiation

zone fields bec ome

 

‘JB r 1"- b 17 A

e r0 f“ 5 (9x 9')I¢(9')
-Tr

ejfiobSine C05“) “4") (143' (9. 23)
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e-Jfior Hob

r 4w

 

1T

5 (9 x$')1¢(9')

-1T

firm = - 1'90

ejBObsinGCOS(¢'-¢') d¢' (9.24)

From these expressions, it is observed that

-'r —sr A A

E (E‘) = vO[B (r) x r] (9.25)

and ETC?) and RIG) are orthogonal to one another as well as to the

direction of propagation ’1}, as is typical of radiation fields.

A

Since the unit vector Cb' may be expressed as

A A A A

(19': sine sin(¢-¢') r+cos 9 sin(¢-<(>') 9 +cos(¢-¢') <1)

 

(9.26)

then

A A A

’rxdb' = -cos(¢-¢')9 +cose sin(¢-¢')<(> (9.27)

The radiation zone vector potential Xrfii) is given by

1* 'j(3 r 17 ° - _ l
RIG“) : _g e O 5' 35,1 ((1),) eJflObsmB cos(¢ ¢)bd¢'

4w r -1r 4)

(J. b -j[3 r 1T A

= 4: e : S. [sine sin(¢-¢')’1"+cose sin (¢-¢')9

-Tr

+ cos(¢ _¢() $] I¢(¢l)ejpob sine C05 (‘1) -¢')d¢'

(9.28)

Using result (9. 27) in expressions (9. 23) and (9. 24) and comparing

with equation (9. 28) shows immediately that

 

i
n
:
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Err?) = jw?x[ -A;('i-‘)8 +2.35) 3] (9.29)

fir... r A r A

B (r) = jBO[A¢('r‘) 9 -A9(?) 9] (9.30)

If the cross product in result (9. 29) is expanded, the radiation fields

may finally be expressed as

 

_s _| A A

Erm -- -jw[A;('r‘)9 +Agré)9] --

A (9. 31)

A .J A .3

Br(r> = -j90[A;G') 9 -A§,(r> 9]

The components of vector potential are obtained from equation (9. 28) ,J

as

 

H b -J'B 1' Tr

A25?) = 4: e r0 S I¢(¢') cos (¢-¢')

TT

ejBOb sin 9 C08 (¢’¢') dd): (9.32)

A p. b -j[3 r 1T

Agm = 4: e r° cos 91.19””) sin (9-9') 

ejBOb sin 9 cos (Cb-<1“) (19' (9.33)

Expressions (9. 31) give the radiation fields ER?) and firfif)

of a loop antenna, at an observation point P(T’) in the radiation zone,

in terms of its distribution of current. These fields depend in general

upon each of the spherical coordinates (r, 9 , cb) of the point P(‘r') .

A special case which is commonly considered is that of the radiation

fields in the plane of the loop, specified by 9 = Tr/Z . For this case,

A; (_r.) = O by equation (9.33) while Air?) becomes
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)JL b -J')3
r _ o e

A9965 — 4n

 

r 11’ - 1

O .1 14““) cos (9 -¢') erObcos(¢ '4) )d¢'

-1T

1‘

(9.34)

The radiation fields in the plane of the loop are therefore given by

_5 _. d A

firm = - jw Aim 9

(9. 35)
_s _. . A

Br(r) = 350 Aim 9

It was indicated in section (9. 1) that the traveling wave

distribution of current corresponding to an optimum impedance

loading may be approximated as

V .

_ O -J50b ’4) I _ < <
I¢(¢) — m e TT_¢_TT (9.36)

Further, the zeroth-order standing wave current distribution on a

conventional loop antenna may be written as

= - .. <I¢(¢) Im cos [30b(1r |¢|) 1r_ (b in (9.37)

Using distributions (9. 36) and (9. 37) in equation (9. 34), the vector

potential in the plane of the loop, corresponding to the traveling and

standing waves of current, respectively, becomes

Vobp.O e-Jfior

(Ayah = 240.9 1. 0149099) (9.38) 

I b“ -j[30r
r A m 0 e

[A¢(r)] S = 4.".
 osmob, 9) (9.39)

1'

where

9149.99) =) Cos<9-9')emofiwsw'w‘w'”d9) (9.40)
-TT
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1r
. ‘ '

(35(501319) = S. cos {30b(1T-l4)' I)cos(¢-¢')eJ(30bCOS(¢ -¢ ) d4)'

-1T

(9. 41)

With result (9. 38), the electric field in the plane of the traveling

wave loop may be obtained from expression (9. 35) as

jV p b 'jpor
r .~. _ o o e

[E¢(I‘)]T - 'T r GT(flOb’¢) (9. 42)

while that corresponding to the standing wave of current is determined

from equations (9.35) and (9. 39) as

11 99b 1'9 r
[Egc—r‘ns = - ‘21, ° 6 r° 65(90b,9) (9.43) 

The functions GTmob, 4)) and Osmob, 4)) are defined as the polar

pattern factors of the traveling wave and standing wave loop antennas,

respectively. These expressions describe the variation of the

amplitude and phase of the radiation fields as a function of the electrical

loop circumference (30b and the azimuth angle 4) of spherical

coordinates. For fixed values of Bob , these factors become functions

of 4) alone, and describe the radiation patterns of the fields in the

plane of the loop.

It is noted that GTmob’ 4)) and GS(BOb, 4)) are in general 1

complex numbers. Hence the radiation fields vary in phase as well

as amplitude with the‘angle 4) . Physically, however, it is the

amplitude of the fields at each point in the radiation zone which is

of primary interest. Consideration will henceforth be restricted,

therefore, to the modulus IGTmOb, 4))I and IGS([30b, 4))) of the

polar pattern factors. These expressions give the relative amplitudes
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of the radiation fields as a function of the angle 4) and the electrical

circumference of the traveling or standing wave loop antennas.

9. 3. Comparison of Radiation Patterns for Traveling Wave and

Standing Wave Loop Antennas

The functions GTmob’ 4)) and GS(BOb, 4)) , which describe

the radiation patterns of traveling and standing wave loop antennas, bl

respectively, were determined in the preceding section as

 

1r
_

' '

GT(9Ob.9) =§ com-..) emobhosw—c) )4.) I] dd), (9.40)

GS((30b. ‘1’) = g“ cos 50b(fi_|¢1|) cos (4) '41") ejfiobcos(¢ -43!) d4)'
J

-11'

(9.41)

These integrals cannot be evaluated in closed form to yield a result

in terms of simple functions. It was therefore necessary to determine

the values of GT([30b, 4)) and GS([30b, 4)) by numerical machine

calculation. Specific numerical results were obtained for values of

Bob between 0. 25 and 4. O. For each value of Bob, the angle 4) was

allowed to take values of O - 180 degrees.

The radiation patterns corresponding to the above numerical

results are obtained by plotting ’GTmob’ 4))) and lefliob, 4))l as

a function of 4) in polar coordinates, with the appropriate values of

[Bob as parameter. Typical patterns are indicated in Figures 9. 2

through 9. 5 for Bob values of l. O, l. 5, 2. 5, and 4. 0, respectively.

In each case, the traveling wave and standing wave patterns are

plotted in the same figure to facilitate comparison. Each pattern is

actually symmetric about the 4) = 0 axis, but only half of every

pattern is shown to avoid obscuring the figures.
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Figure 9. 2. Radiation Pattern in Plane of Loop (6 =900) as a

Function of 4) for Bob =1 .
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Figure 9. 3. Radiation Pattern in Plane of Loop (9: 90o) as a

Function of 4D for Bob =1. 5.
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Figure 9. 4. Radiation Pattern in Plane of Loop (9 :900) as a

Function of 4) for [Bob = 2. 5 .
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Figure 9. 5. Radiation Pattern in Plane of Loop (9 =9OO) as a

Function of 49 for Bob : 4. 0 .
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An inspection of Figures 9. 2 through 9. 5 reveals the following

radiation characteristics for traveling and standing wave loop antennas:

(i) The radiation pattern in the plane of a conventional loop

antenna consists of two broad lobes separated in space by

180°. On the other hand, the pattern of a small traveling

wave loop is essentially unidirectional, having a very broad

major lobe in one spatial direction and a narrow minor lobe

of relatively small amplitude in the opposite direction.

(ii) As the diameter of the standing wave 100p is increased,

both the shape and the spatial orientation of the pair of

lobes in its radiation pattern undergo radical variations,

although they remain oppositely directed in space. Finally,

as the loop size is further increased, the pair of lobes

split to form several narrower lobes of smaller but equal

amplitude. As the electrical diameter of the traveling wave

loop is increased, the narrow minor lobe grows in amplitude

while the broad major lobe shifts in its spatial orientation,

decreases in amplitude, and finally splits to form a minor

lobe structure of relatively small amplitude.

(iii) An electrically large traveling wave loop antenna is

characterized by a single narrow major lobe accompanied

by a minor lobe structure. As the diameter of the loop

increases, the amplitude of the major lobe steadily

increases with respect to that of the minor lobe structure.

The major lobe of this pattern is spatially oriented in a

direction 1800 removed from the excitation point of the loop,

i. e. , in the direction of the traveling wave of current.

 ‘
k
u
;
m
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It is indicated by the above remarks that the radiation characteristics

of a traveling wave loop antenna in no way resemble those of its

standing wave counterpart.

Whether or not the radiation characteristics of a traveling

wave loop offer any particular advantage will depend of course upon

the intended application of the antenna. The modified radiation pattern '1

which characterizes the traveling wave loop may, however, be desirable I l

for some purposes. In particular, the broad unidirectional pattern of

 
a small loop or the narrow directive pattern of an electrically large i

loop should be useful for certain applications. v

It should be emphasized that the radiation characteristics

determined in the preceding section correspond to the traveling wave

distribution of current associated with an Optimum impedance loading.

As the loading deviates from its optimum value, the traveling wave of

current gradually reverts back to an essentially standing wave. Under

these circumstances, the corresponding radiation patterns would again

become similar to those characteristic of a conventional loop antenna.
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APPENDIX A

ELECTROMAGNETIC POTENTIALS

IN ANTENNA THEORY

It is convenient to formulate the theory of thin-wire antennas in terms

of the electromagnetic scalar and vector potentials. Such a formulation

is expedient since the distributions of antenna current and charge are

more closely related to these potential functions than to the electric

and magnetic fields themselves. A brief survey of the set of electro-

magnetic potentials useful in the study of thin-wire antennas is presented

here.

It will be assumed that the antenna is immersed in an infinite free

space region characterized by a permittivity 60 and a permeability

11.0. Maxwell's equations for such a free space region may be expressed

11
as

V-E = E"— (A.1)

O

-s 3???
VXE = -'5-E- (A.Z)

BE_3 A

VxB = poJ+pon-5-E (A.3)

_J

V-B = o (A.4)

_1 _1 .1"

where E is the electric field, B the magnetic field, and J and p

are the volume densities of current and charge, respectively. The

basic problem in the theory of thin-wire antennas is to determine the

distributions of antenna current and charge as solutions to equations

(A. 1) through (A. 4). Such a solution is greatly facilitated by the

introduction of a set of electromagnetic potentials.

203
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Equation (A. 4) implies that

E“ = v xA (A. 5)

_l

where A is the vector potential. If expression (A. 5) is used in

equation (A. 2), there is obtained

which implies

where 4) is the scalar potential. The electromangetic fields may

therefore be expressed in terms of the vector and scalar potentials as

-: 32

E = 'W - 75?

(A. 6)

_I c—I

B = V xA

If equations (A. 6) are substituted into equations (A. l) and (A. 3), a

pair of equations for the potentials are obtained as

2 8 . -‘ _ E.

V o + at V A _ _ e

o

z-s 3221' -s 34> —'
V A 'Hoeo —-2- -V(V° A+uoeo W) = -uOJ

8t

Since V - 75: is as yet unspecified, it may be taken that

. "' 34> _
V A+HO€O—a-E — O (A.7)

. . . . Lorentz condition

A

and the differential equations for 4) and A become
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2

V 4’ - ”060—: = -

(A. 8)

2-' -4
VA-HOEO—7—-|J. J

In the special case where the sources are time harmonic of

the form ,2

the results of the preceding paragraph become J

 
.1

E - V4) - ij

(A. 9)

D
U
I

ll <
1

)
4 M
.

0 (A. 10)

 ° 4> = o (A.ll)

. Lorentz c ondition

jwt

The time factor e is implied in these results, and the fields

and potentials are undertstood to be complex valued. Further, the

free space wave number has been defined by £502 = (0211.060 . It is

possible to integrate the inhomogeneous wave equations (A. 8) through

the use of a Green's function technique11 to obtain

_,' e‘jBoR

5. P(r) -—-§— dv

V

¢<‘r‘) --
 41m (A. 12)

O
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e_______"J:oR

= -—Sv J(r' dv' (A.l3)

where R = I? - 3‘"! is the distance between an observation point

located by I" and a source point at 'r“ .

For the case of a thin-wire antenna, solutions (A. 12) and (A. 13)

may be integrated over the cross section of the wire to obtain

_, _, 49 R

Mr) 4,360 SCHq(r') 3+ dz'

T '

411'OCH d!

A

where q(?) is the charge per unit length and I('r.) the total current on

 

XG’)

the wire forming the contour c . It has been indicated by Hallenl and

King ’ that the potentials at the surface of a thin-wire antenna may be

.4

calculated by assuming q('r‘) and HE") to be concentrated along the

axis of the wire. In such a case, R = I'i'! - 33" is the distance between

an observation point on the wire surface at T“ and a source point on

o a J'

its ax1s at r .


