
THE CORNEAL LAMELLA ANISOTROPIC

ELASTIC CONSTITUTIVE RELATION:

THEORY AND EXPERIMENT

Thesis for the Degree of Ph. D.

MICHIGAN STATE UNIVERSITY

GERALD WARREN NYQUIST

1970



  
   

LIBRARY h‘

Michigan State

* Uaivcrsity ..

 

   

This is to certify that the

thesis entitled

The Corneal Lamella Anisotropic Elastic

Constitutive Relation: Theory and Experiment

presented by

I

Gerald w. Nyquist

has been accepted towards fulfillment

of the requirements for

Ph. D. degree inMeohani cs

 
Ma r professor

Gary Lee Cloud I

Date July 30. 1970

*
—

.
n
-
"
r
n
‘

-
*
-
v
—
I
~

0-169

I

I

    
, BINDING BY

Incas & SBNS'

am mm INC.
|.-Ll *AR HIH ER'SH‘I

   

K- r _



 

 

 



ABSTRACT

THE CORNEAL LAMELLA ANISOTROPIC ELASTIC

CONSTITUTIVE RELATION: THEORY AND EXPERIMENT

By

Gerald Warren Nyquist

The structure of the corneal stroma of the higher

vertebrates renders it a fascinating example of an anisotropic

heterogeneous tissue, and the extreme geometric regularity of

the stroma enables realistic analytic modeling of the three-

dimensional stress-strain relation.

An analysis of the fluid pressure in the stroma

indicates that a simple elastic continuum theory must be

abandoned in favor of a mixed-media theory, which enables the

tissue to be treated as a fluid-impregnated elastic continuum.

The stroma is modeled as a superposition of a large number of

randomly-oriented identical linearly-elastic transversely-

isotropic layers, and it is shown that anisotropic heterogeneous

plate theory may be used to relate the load-deformation pro-

perties of the complete stroma to the elastic properties of an

individual layer.

The analytical treatment indicates that laboratory

eXperiments are feasible which give results enabling some

numerical information to be associated with the elastic con-

stants of the constitutive model. Complete experimental data



Gerald Warren Nyquist

for fresh pig corneas are included, and details regarding the

test equipment and procedures are presented. Pertinent

experimental results are that the load-deformation prOperties

are linear for the range of stress representative of intraocular

pressure loading, and uniaxial tensile strips of stroma exhibit

a Young's modulus of 66.3 gm/mm2 and a Poisson's ratio of 5.9.
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INTRODUCTION

The structural complexity of the corneal stroma of

the higher vertebrates renders it a fascinating example of an

anisotropic heterogeneous viscoelastic tissue, and the extreme

geometric regularity of the stroma enables realistic analytic

modeling of the three-dimensional stress-strain relation. The

combined results of theory and experiment enable some numerical

values to be associated with the material constants of the pro-

posed stress-strain constitutive law.

The elastic properties of the cornea have received little

attention from researchers to date, even though measurements

made by the ophthalmologist in diagnosing a major cause of blind-

ness (glaucoma) are dependent on these properties. Glaucoma

is characterized by an abnormal elevation of the intraocular

pressure, and the aforementioned measurements give an indica-

tion of the pressure by means of the techniques of tonometry

and tonography, which are dependent on the elastic reSponse

of the cornea.

The above reference to glaucoma and the associated

pressure-measuring techniques was made to aid in justifying

this study of the elastic properties of the stroma. No

further comment on the glaucoma problem will be made other

than to point out that tonometric and tonographic procedures



in common usage are known to produce inexact indications of

intraocular pressure.

Recently the possibility of correlating measurements

of the temporary stress-dependent birefringence (double-refrac-

tion) of the stroma to the intraocular pressure has been the

motivating force of several research efforts. The goal is to

deve10p a purely optical technique for clinical pressure

measurement. A feasible technique is yet to be developed, and

a knowledge of the stress-strain properties of the tissue is

a necessary prerequisite to a complete understanding of the

stress-dependence of stromal birefringence.

The research of this Thesis is of a bioengineering

nature, heavily weighted toward engineering. Whereas the con-

tinuum mechanics theory presented would be difficult for the

medically-oriented reader, the brief presentation of the

anatomy of the eye in Chapter I will enable the engineering-

oriented reader to proceed with little difficulty.

After a short presentation of previous studies on the

mechanical properties of the cornea, a detailed analysis of

the characteristics of the aqueous fluid pressure in the tissue

is presented, and it becomes apparent that a simple elastic

continuum theory must be abandoned in favor of a mixed-media

theory which enables the cornea to be treated as a fluid-

impregnated elastic continuum.

It is shown that the corneal stroma can be modeled as

a superposition of a large number of transversely-isotropic

elastic layers. The layers are identical, but are randomly



oriented, and this leads to the use of an anisotropic heterogeneous

plate theory to relate the load-deformation prOperties of the

complete stroma to the elastic properties of an individual layer.

In the context of this Thesis, a "simple test" is de-

fined to be a load-deformation test of the stroma where the

stress and/or strain distribution may be evaluated without

requiring the solution of a full-scale boundary value problem

of the theory of elasticity. Three such simple tests are

develOped - uniaxial tensile stress, torsion, and uniaxial

compressive strain.

Custom-designed test fixtures were fabricated for con-

ducting the above tests, and fresh pig corneas were used for

test Specimens. Complete details of the laboratory experiments

and results are presented, and the analytical and experimental

re3ults are combined to yield some numerical information regard-

ing the elastic constants of the constitutive model. The metric

system of units is generally adhered to, and force is expressed

in grams (a one-gram force is that due to gravity acting on a

standard one-gram mass).

The theoretical portion of the Thesis borrows heavily

from the research of others, and the formulation of the problem

would not have been possible without the mixed-media theory of

Biot and the anisotropic heterogeneous elastic plate theory of

Reissner and Stavsky (see Refs. 15 and 23). The combining of

the two theories to analyze the cornea is of course original,

as are all aSpects of the experimental portion of the work.



It appears that this research constitutes the first

attempt to rigorously analyze the anisotrOpic elastic pro-

perties of the tissue, and it is hoped that the work will not

die at this point, but that the theory will enjoy impnovements

by those who follow.



CHAPTER I

ANATOMY OF THE EYE

The Eyeball

The anatomy of the eye of man and the domestic animals

is nearly the same with the exception of dimensional variations

among the Species. The eye is most simply described as a layer

of light-sensitive tissue (the retina) held in shape by surround-

ing coats of tissue which protect it (the sclera and cornea)

and nourish it (the choroid). Further, the retina is served

by an optical system consisting of a lens of variable aperture

(the latter feature being the function of the iris) positioned

behind a transparent anterior extension of the sclera known as

the cornea. The cornea, in addition to its role as a structural

member and protective shield for the intraocular structures, is

a vital part of the optical system. The bending of light rays

due to passing through the cornea is several times greater than

the same effect experienced while passing through the lens. The

configuration of the eye is shown in Figure I-l.

Although the eye is commonly referred to as a ball or

globe, it is not a true Sphere, but consists of the segments

of two nonconcentric somewhat modified Spheres.2 The structural

tissue of the posterior spherical segment is the white, opaque

sclera. Viewing a horizontal section through the eye, the sclera
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accounts for approximately five-sixths of the circumference of

the eyeball. The remaining anterior one-sixth of the circum-

ference (the cornea) is the segment of a Sphere of smaller

diameter. The sclera and cornea together are referred to as

the fibrous tunic. Although the sclera and cornea appear to

be composed of basically different types of tissue (since one

is white and Opaque whereas the other is clear and tranSparent),

the transition from sclera to cornea (known as the limbus) is

of a continuous nature.

The fibrous tunic is the outer coat or structure of

the eye that houses and protects the delicate inner structures.

In conjunction with the intraocular pressure the fibrous tunic

gives the eyeball its resilience and definite shape.

Two fluids within the fibrous tunic are the mediums

through which the intraocular pressure is realized. The

vitreous hummr, which fills the region posterior to the lens,

is a clear gelatinous liquid having no provision for reproduc-

tion in the event of loss. The aqueous humor is a water-like

liquid produced by the ciliary process. It flows through the

posterior chamber (the region between the iris and anterior

surface of the lens) and pupil into the anterior

chamber (the region between the iris and posterior surface of

the cornea). The fluid exits through the "angle" of the

anterior chamber into the canal of Schlemm which carries it

away via the venous pathways.



The Cornea

Since the cornea and sclera are of a continuous nature

and together make up the fibrous tunic, a few remarks regarding

the structure of the sclera will be made prior to a detailed

description of the corneal structure. Strength is imparted to

the fibrous tunic by tightly packed collagenous connective

tiSSue fibers along with "elastic" fibers in much smaller numbers

and a relatively few stroma cells.

In the sclera the collagen tissues are arranged into

lamellae, or broad ribbons, which interweave in intricate

strength-increasing patterns.3 The sclera is thinnest at the

equator and becomes progressively thicker anteriorly and

posteriorly. The outer layers of the sclera are loosely woven,

especially anteriorly, this soft material being known as the

episcleral tiSSue.

The corneoscleral junction, or limbus, is approximately

0.75 to 1.0 mm in width, and is easily recognized as the thin

transitional region along the periphery of the cornea where the

change from opaqueness to tranSparency occurs. The scleral

lamellae pass through the limbus, the dramatic change from

Opaqueness to tranSparency being caused by changes in their hydra-

titniand in the orientation of the microscopic structural elements.

The cornea is virtually a continuation of the sclera,

but has greater curvature and a more methodical arrangement

of its fibrous structure. The limbus is not always completely

circular, but varies slightly among the species. Typical
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variations from a circle are the ellipse and pear-shape. The

cornea is classically divided into five distinct anatomical

layers lying parallel to the surface (see Figure I-2). Start-

ing anteriorly, the layers are:

1) epithelium

2) Bowman's membrane

3) stroma (or substantia propria)

4) Descemet's membrane

5) endothelium.

A brief description of each of the above layers follows.

Dimensions for both man (Ref. 3, pp. 290-302) and the pig (Ref.

1, pp. 217-218) are cited. This Thesis deals specifically with

the pig cornea; however, for convenience of comparison the

dimensions in man are also given.

The epithelium, built up of many layers of cells, accounts

for about 10 per cent of the corneal thickness. There are 5

or 6 layers in.uan.and 6 to 8 layers in the pig. The posterior

layer is formed by basal cells which are columnar and closely

packed. The middle layers are made up of "wing cells" which

become increasingly flatter, thinner, and wider until the

anterior layer is reached. The first few anterior layers con-

sist of flat, overlapping squamous (scaly) cells.

Bowman's‘membrane4 is 10 to 13 microns thick in man and

arm: more than 2 microns thick in the pig. The anterior surface

is :smooth, but the posterior is rough due to projections from

th£= membrane, called arcuate fibers, into the stroma. Pores

in the membrane allow passage of nerve fibers from the



Epithelium

membrane

   ;—- Descemet's

"] membrane

Endothelium

I?igure I-2. Transverse Section of the Cornea

(Reproduced with permission from Ref. 2)
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epithelium. Bowman's membrane is often referred to as a

modified layer of the stroma due to its structural similarity.

Since the stroma makes up the majority of the corneal

thickness, is structurally of primary interest, and has a com-

plex structure, the description of this layer is presented in

considerable detail. The stroma or "substantia prOpria" makes

up about 90 per cent of the thickness of the cornea. The

literature is rather inconsistent in the terminology used in

describing its structure. Upon studying a number of the

morphological descriptions based on conventional, polarized

light, and electron microsc0py, the following description

seems to be representative.

The stroma of the cornea is composed of thin sheets

of tissue called lamellae which are stacked one upon another

to form a laminated structure composed of approximately two-

hundred layers. Each lamella has a fibrous structure, and the

elemental structural unit is the fibril, predominantly composed

of collagen. The fibrils of a given lamella are parallel to

one-another and to the surfaces of the sheet; however, the

fibril directions of adjacent lamellae through the thickness

of the stack are randomly oriented.5’6 The fibrils may be

'assumed to run uninterruptedly from limbus-to-limbus.

The fibrils are known to have a circular cross-

Section of constant diameter along their length, varying be-

0*

tween approximately 190 A and 340 3,3 and reportedly

 

* <3
10 0

It denotes the Angstrom unit of length. (10) A = 1 meter.
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independent of age. The distance between adjacent fibrils is

near the same order of magnitude as this diameter, and the thick-

ness of a lamella may be taken as approximately two microns.

Isolated fibrils separated with a minimum of preparation

are coated with a sheath of amorphous material that requires

vigorous chemical or physical treatment for removal. Analysis

of lamellar fragments indicates that the fibrils are embedded

within this "ground substance" to the extent that their in-

dividual outlines are nearly indiscernible.3

The above description of the stroma, using two structural

levels (fibril and lamella) and assuming the lamellae are con-

tinuous flat sheets stacked one-upon-another, simplifies the

exact picture to some degree; but to the writer seems repre-

sentative of the structure, and is concise and unambiguous.

Additional terms used in the literature are zone, fiber,

and band. In accordance with the convention of Naylor,S a zone

is simply the region of the stroma occupied by a given lamella.

Following the recoumendations of NaylorS and Maurice,3 the term

"fiber" is to be conveniently used to denote bundles of parallel

f1131:1113 of arbitrary size, one fiber always comprising the full

t1"ictkness of a lamella. The term "band" is not as concisely

defined. The lamellae, particularly near the anterior surface

of the stroma, are not of a perfectly continuous nature in the

direction perpendicular to the fibers, but are composed of

8e‘Iel'al individual bands3 (a band is at least three nun wide).

The nature of the transition between bands is not well under-

stOOd, and photomicrographs indicate that there is a localized
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variation in fibril density, giving the impression that the

lamella is composed of individual bands.

The above description of the structure of the stroma

holds for all of the higher vertebrates, however there is some

variation among the Species, and the structure in mammals is

said to lack this extreme regularity someWhat. An electron

micrograph showing the lamellae and fibrils of a well-organized

area of the stroma in man is shown in Figure I-3.

The next anatomical layer is Descemet's membrane.

This membrane is a Sheet which bounds the inner surface of the

stroma, from which it is easily separated. The membrane is

5 to 10 microns thick in man, and 8 to 15 microns thick in

Structurally, Descemet's membrane consists of athe pig.

superposition of a large number of sheets of a meshwork which

lie parallel to the surface.

The final (posterior) layer of the cornea is the

endothelium. This is a single layer of flattened cells,

haVing a thickness of approximately 4 or 5 microns in man and

the pig.

Regarding overall dimensions of the cornea, for man

a mean value of the thickness at the central position is 0.55

mm. The radius of curvature of the anterior surface is 8.0 mm,

and the corneal diameter (i.e. greatest chord) is 11 um. For

the pigl, the central corneal thickness is given as slightly

less than 1.0 mm. The radius of curvature of the anterior



 

it»

One

lamella

 

 

 
Figure I-3. Well-Organized Section of the Stroma in Man

(Reproduced with permission from Ref. 3)
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surface is 10 to 11 mm, and the corneal diameter is 17 to 19 mm

horizontally and 14 to 16.5 mm vertically (the pig limbus is

somewhat pear-shaped).

Coulombre7 indicates that since collagen has a high

tensile strength, the stroma will determine the structural

properties of the cornea, such as its response to mechanical

distortion. The stroma is an unusual material from the stand-

point of its shear rigidity. If a surface-parallel disc is cut

from the laminated stroma and held between the thumb and index-

finger, one can easily observe that over limited but quite large

shear diSplacements the rigidity is quite small. According to

Maurice (see Ref. 3) this is due to the properties of the matrix

of ground Substance in which the fibrils of the lamellae are

embedded. He reports that it is impossible for the tensile force

in a fibril to be dissipated into adjacent fibrils by means of

Shear stresses.

Since swelling of the excised cornea is a persistent

problem, some comments on the hydration properties are in order.

One may refer to pages 307 and 322 of Ref. 3 to obtain an

introduction to this topic and a number of references to research

papers. If the cornea were freely permeable to fluids, then one

could expect considerable loss of aqueous humor due to diffusion

through the stroma and evaporation at the anterior surface (tear

evaporation is known to be of considerable magnitude); however

(1118 does not occur. The processes involved are currently not

fully understood. Experiments have shown that the barriers to

salt: passage are the epithelium and endothelium, and that
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substances which do not pass through the stroma have very large

molecules (proteins and congo red are examples) or are insoluble

in water.

The stroma of the in vitro or excised cornea has an

affinity for water. When immersed in aqueous solutions it will

absorb and hold water in large quantities. The hydration pro-

perties of excised pieces of cornea have been studied exper-

imentally with the conclusion that the amount of swelling is

not simply dependent on the osmotic pressure of the solution

in which the Specimen is immersed. The degree of swelling was

found to be the same throughout a wide range of concentrations

of glucose, urea, glycerine, and even distilled water. The

cornea swells to the same extent in solutions of nonelectrolytes

as in distilled water. In salt solutions, however, the amount

and rate of swelling is dependent on the concentration.

It has been concluded that since the in vivo cornea

is in a deturgesced state, that it contains less water than it

is capable of imbibing, the hydration is controlled by some

mechanism which draws water out. The hydration is maintained

by a steady-state existing between water imbibed by the stroma

and water removed by some other process (this is though to be

associated with the endothelium). One can expect that any dis-

ruPtion of the normal in vivo state of the cornea will affect

the steady-state situation; therefore it becomes important in

removing a test Specimen of corneal tissue from the eye to

immerse it iumediately in an appropriate liquid in order to
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mitigate swelling. Viability considerations8 are of course

important in the case of transplants; however since the collagen

fibrils and ground-substance are not composed of living cells

this is of secondary importance in tests regarding mechanical

properties.

The normal corneal stroma consists of about 78 per cent

water by weightB, and the matrix of ground substance around

the fibrils is known to be heavily hydrated; however evidence

to date indicates that the fibrils themselves are essentially

free of hydration since no change of diameter is observed upon

desiccation.



CHAPTER II

PREVIOUS STUDIES OF CORNEAL ELASTICITY

A literature survey indicated that little quantitative

information is available regarding the elastic properties of

the cornea. There has apparently been no methodical theoretical

and/or experimental treatment of the anisotropic elastic pro-

perties of the lamella.

Stanworth9 made a brief study of the load-elongation

properties of the cat cornea as part of his classical work

dealing with corneal birefringence, and a treatise on the

mechanical behavior of the cornea intact with the in vitro

eyeball has been presented by Schwartz10 which includes both

theoretical and experimental aspects of the problem. Nyquist

has studied the viscoelastic properties of uniaxial tensile

strips of cornea and concluded that the reSponse of the cornea

to an applied stress includes instantaneous and retarded (time

dependent) elastic components.

Stanworth's work consisted of load-elongation measure—

ments on the cat cornea with a constant loading rate of 125

grams per minute. The test Specimens consisted of cleanly cut

Strips of cornea 1.5 mm wide with a small length of sclera re-

maining at each end. The Specimens were obtained from fresh

cat eyes by means of a double-blade knife. Artery forcepts

18
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were used to clamp to the sclera at each end of the test strip,

and were fixed to two pillars, the distance between which could

be altered by means of a screw arrangement. The distance be-

tween the tips of the forceps was used as a measure of the

elongation, and was measured to 0.1 mm by means of a fine

pointer moving over a scale observed through a magnifying glass.

Loads were monitored by means of a recording device.9

A load-elongation curve is presented, and Stanworth

points out that it approaches a straight line only for rel-

atively large loads and elongations, and that for this range

Young's modulus of elasticity is approximately 1800 gm/mmz,

or 2560 psi.

The research of Schwartz was confined to a study of

the intact cornea with the intraocular pressure in force.

Loads were applied to the anterior corneal surface through a

small disc or indenter in a manner similar to that used in

tonometry. A theoretical analysis is presented which includes

the solution for the constraint of a thin, shallow, Spherical

shell (the cornea) by a flat plate. The experimental study

investigated the rheology of the intact cornea with particular

emphasis on its compliance with the requirements of the

Boltzmann superposition principle. It is concluded that the

corneas of the human and pig behave as linear viscoelastic

solids.

Nyquist studied the stress-strain-time prOperties of

the pig cornea,and tested long strips of stroma in tension.

Stresses were applied using dead-weight loads, and the resulting
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strains at midlength of the strip (the central cornea) were

recorded by means of photomicrography. Constant loads were

suddenly applied, and the strains were measured as a function

of time (creep test). Testing strips cut at various orienta-

tion angles (i.e. various rotations with respect to an axis

normal to the plane of the surface of the cornea) indicated

that the uniaxial tensile properties were independent of

orientation, which supports theories of random orientation of

the stromal fibrils.5’6

The reSponse of the cornea to an applied stress includes

instantaneous and retarded (time-dependent) elastic components.

Figure II-l shows typical results for a uniaxial tensile creep

test (constant nominal stress suddenly applied), and Figure

II-2 shows the instantaneous and steady-state stress-strain

curves generated by conducting a series of creep tests. It

can be seen from.Figure II-2 that for the phgfiiological range

of stress (say less than 10.0 psi) the stress-strain relation

any be approximated quite well by a straight line, whereas non-

linearity cannot be neglected over an extended range.
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CHAPTER III

PRESSURE DISTRIBUTION OF

THE INTRACORNEAL FLUID

Theoretical Considerations

The fluid pressure equilibrium within the cornea

evaded understanding until quite recently, and some of the

details are still unclear. Several research programsll’lz’13

since approximately 1940, culminating with the work of Hedbys,

Mishima, and Maurice14 in 1963 led to the currently accepted

description of the fluid pressure phenomenon. A complete

summary of the research would be lengthy, therefore only the

results necessary for an understanding of the mechanism

regulating pressure and swelling within the cornea will be

considered. Some details must be added in order to present

the Ophthalmologist's conceptually-correct descriptions in

engineering terms (i.e. using a mathematical framework).

A number of variables must be defined, and fortunately,

a fairly standard terminology has evolved. Pressures are

reckoned from atmOSpheric (i.e. gage pressures), and a positive

pressure implies a negative stress as usual. The variables

are as follows:

23
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Variable Symbol

Fluid pressure Pf

Imbibition pressure Pi

Osmotic pressure PC

External pressure Pe

Mechanical pressure Pm

Swelling pressure PS

Tissue pressure Pt

A "button" cut from the stroma (full thickness of the

cornea, but with epithelium, endothelium, and Descemet's

membrane removed) is shown schematically in Figures III-1(a)

and III-1(b). The button may be assumed circular with a

diameter d, and to have a thickness h normal to the plane

of the cornea. In Figure III-1(a) only an external pressure

Pe is acting, whereas in Figure III-1(b), in addition to the

external pressure, there is a mechanical pressure Pm exerted

by porous rigid plates. Details of the state of equilibrium

across the (circumferential) side surface is not clearly under-

stood, but this need not be considered if d/h >> 1, and only

preSSure equilibrium in the direction normal to the plate of

the stroma is considered. Rigorous justification for this

approach is lacking, but the success of the resulting analysis

in explaining all experimentally observed phenomena is con-

sidered justification enough. Publications to date seem to

have overlooked this matter entirely.

The fluid pressure Pf is the hydrostatic pressure of

the aqueous solution within the stroma. It is the sum of two

separate components; the osmotic preSSure Po caused by solute
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molecules and ions (PO includes the Donnan effect) in the tissue,

and the imbibition pressure Pi which results from capillary

action in the fibrous structure. Pi is a negative preSSure

(An analogous case which is easier to comprehend is the capillary

rise of water in a glass tube, where the pressure just below the

meniscus is negative). The fluid, osmotic, and imbibition pressures

are related as follows:

Pf = P0 + Pi. (3-1)

The lamellae of the stroma are normally compressed in

the direction perpendicular to the plane of the Surface, and the

t133ue preSSure Pt is a measure of this compression. The

release of this compression is the mechanism by which the stroma

swells, and may be thought of as being analogous to the elonga-

tion of a compression-type spring as its load is decreased.

To properly analyze the system of pressures acting in

the lamellae it is necessary to introduce the notion of porosity

as used in the theory of elasticity of a porous solid.15 At

any given state of hydration of a lamella let the total (bulk)

volume be denoted by V and let the fluid volume (i.e. the
b,

pore volume) be denoted by VP. Then the porosity f is de-

fined by the ratio

f = v /v . (3-2)
p b

For a homogeneous anisotropic material (a lamella is considered

macroscopically homogeneous) the porosity is also the ratio of

the pore cross-sectional area to the bulk cross-sectional area

of any plane section, regardless of its orientation.
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The tissue pressure Pt is defined as the force per

unit 9215 cross-sectional area exerted by the tissue owing to

its compressed state. In contrast, the fluid pressure Pf,

osmotic pressure Po’ and imbibition pressure P1 are defined

as forces exerted per unit cross-section of BEES area. These

values (Pf, PO and Pi) must be multiplied by the porosity

f if they are to be reckoned per unit bulk cross-sectional

area. Hypothetical experimental pressure measurements (say

with a small cannula and manometer) would yield values of Pf,

Po, and Pi’ whereas in a procedure of adding or equating

pressures from various sources one must use fP fPO, andf.

fPi' The factor f is only necessary when dealing with

"intratissue" fluid pressures.

Suppose the stromal button of Figure III-1(a) is

hydrated so as to have some thickness h, and is immersed in a

non-imbibable medium at a positive hydrostatic (external)

pressure Pe' Then normal-stress continuity at the boundary

requires

Pe = fPf + Pt, (3-3)

and using eq. (3-1) this becomes

= -[Pe £(PO + Pi) + Pt. (3 +)

With reference to eq. (3-4), it is experimentally

feasible to hold Pt and P0 constant while varying Pe

and measuring Pi’ It has been shown16 that the thickness h

Ci the excised cornea varies linearly with hydration (weight

per unit dry weight), therefore if the State of hydration is
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fixed, the thickness remains constant. This in turn implies

that the tissue preSSure Pt remains constant. Since the

osmotic pressure PO is primarily a function of the tissue

chemistry and microscopic geometry, it also can be assumed

independent of P8 when h is fixed.

The above discussion indicates that when a non-

imbibable immersion medium is used, Pi is linearly related

to Pe through the constant f, and for incremental changes

e i

Letting the increments tend to zero, it becomes apparent that

an alternate definition for the porosity f is

P

f = (2&5? (3-5)

i h

where the subscript h indicates that the derivative is

evaluated for some constant hydration (thickness).

A similar analysis may be made in the case of Figure

III-1(b), however the mechanical pressure Ph exerted by the

porous plates must be taken into account. Continuity of the

normal stress at the boundary between the plate and the tissue

requires

f P + P = fP
e m

1 -+ Pt (3-6)
f

l

per unit bulk area of the plate. Applying eq. (3-1), eq. (3—6)

where f is the porosity of the plate and Pm is reckoned

becomes

+ = . -flPe Pm 13(P0 + Pi) + Pt (3 7)
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By definition the swelling preSSure PS is the equilibrium

value of the mechanical pressure Pm. Thus from eq. (3-7),

P8 = f(PO + Pi) + Pt - flPe. (3-8)

A common test condition has been the case where Pe is zero

and the immersion medium is imbibable. The pressure PS re-

quired to maintain the plates at various distances h apart

is measured, and the dataennaplotted in the form of a swelling

pressure versus hydration curve. Such a curve is a measure of

the relation

= + = -PS [f(PO Pi) + Pt] g(h) (3 9)

where g(h) is some function of the stromal thickness h

and is dependent on the type of immersion medium used.

Now, analogous to the analyses of Figures III-1(a)

and (b), consider the pressures acting on the cornea in situ,

where the intraocular pressure is in force on the posterior

surface and the anterior surface is at ameSpheric (zero)

pressure. The situation is shown schematically in Figure III-2

(curvature has been neglected for the moment). Let the intra-

ocular pressure be denoted by Pa, the Subscript "a" being

associated with "anterior chamberfl'

In this case two different equations reSult when con-

tinuity of the normal stress is required at the two surfaces.

Let subscripts A and P denote the anterior and posterior

surfaces reSpectively. Then at the posterior surface

Pa = (fPf + Pt)P,
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whereas at the anterior surface

0 = (fPf + Pt)A'

Eq. (3-1) is still applicable, therefore

"
U ll f(Po + Pi)P + (Pt)P (Posteriorally)

(3—10)

0

ll f + P + '(Po i)A (Pt)A (Anteriorally)

Maurice17 has proposed a model which enables both of

eqs. (3-10) to hold. This is reproduced in Figure III-3.

Curvature of the cornea is taken into account, and the function

of the limiting layers (epithelium and endothelium) becomes

important. Maurice's variable S is the imbibition pressure

Pi' He explains the model as follows:

"The ground substance is shown enmeshing the collagen

fibrils at the bottom right, but its expansile com-

ponent is represented functionally, upper right, by

compressed Springs. The tension (T) of the indi-

vidual fibrils creates a centrally directed pressure,

rising cumulatively from the outside to the inside

of the stroma, where it is balanced by the intra-

ocular pressure. This would compress the ground

substance unevenly across the thickness and cause

a displacement of the majority of the fibrils to-

wards the endothelial surface. The endothelial

pump meachanism (P), however, maintains a suction

(S) in the stromal tissue fluid. The suction acting

on the epithelial and endothelial surfaces tend

to establish a uniform compression of the ground

substance across the thickness. This braces the

fibrils apart, giving them a more equal distribution

and leading to the formation of a regular lattice

on which the tranSparency of the tissue depends.

The compression of the ground substance is manifested

as the swelling pressure, 60 mm. Hg, when fluid is

allowed free access to the Stroma."



 

 

  

 

    

 

 

 

 

 

 

 

  

 

 

 

 

  

Figure III-3. Maurice's Proposed Scheme of

Pressures Within the Cornea

(Reproduced with permission from Ref. 1?)
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Pressure Distribution Experiments

The most common type of experiment has been the measure-

ment of swelling pressure as a function of hydration,u’12’13

the general scheme of Figure III-1(b) being used and eq. (3-9)

being applicable. Swelling pressure versus hydration curves

are, however, not of great use in validating the theory pre-

sented in the previous pages. More pertinent information in

this reSpect is given by the work of Hedbys et a114 where intra-

tissue measurements of the imbibition pressure Pi were made,

both in vitro (steer cornea) and in vivo (rabbit cornea) using

a cannula and pressure transducer with pen-recorder output.

In vitro tests were performed under conditions for which eq.

(3-4) is applicable, and Pe was zero. P1 was recorded as

a function of thickness h and the thickness measurements were

converted to hydrations using a Steer eye thickness versus

hydration curve previously established.13 It was found that

this data gave the same curve as obtained when plotting the

negative of the swelling pressure P8 as a function of hydra-

tion, conditions being those under which eq. (3-9) is applicable.

This correlation is Shown in Figure III-4. In short, this can

be summarized by saying that for equal hydrations

Pi nonimbibile‘a -Ps|imbibible (3-11)

fluid fluid

In vitro tests were also performed which may be

analyzed using Figure III-1(b) and eq. (3-8). In place of

the porous plates shown in the figure, a glass plate was used
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on one side, and a pressurized rubber balloon on the other

side. The stroma was compressed by increasing the pressure

in the balloon. The glass and rubber may be assumed nonporous,

therefore f is zero in eq. (3-8), and the swelling pressure

1

PS may be taken equal to the balloon pressure (Pb). Eq. (3-8)

becomes

a = . -12Pb PS f(Po + Pi) + Pt (3 )

Pi was measured using a cannula and pressure transducer, and

it was found that increments in Pb and -Pi were nearly

equal (for a positive increment of Pb the magnitude of the

negative imbibition pressure Pi decreased). The correlation

diminished as Pb increased, the magnitude of APi being

smaller than those of APb.

Complete information for analyzing this test is lack-

ing. No data has been presented regarding the thickness (hydra-

tion) variation with Pb; therefore, with reference to eq. (3-12),

it is not known to what extent Pt varied during the teSt. It

is reasonable to assume that f and P0 are constant with

respect to small fluctuations in Pb’ therefore from eq. (3-12)

one can write

APb = fAPi + APt' (3-13)

The thickness must have decreased somewhat as Pb increased,

and therefore some positive value of APt was present in eq.

(3-13), which may be written as

1 AP - AP ). (3-14)
AP1=;( b t



36

It was pointed out at the end of Chapter I that about

78 per cent, by weight, of the corneal Stroma is water. In

addition, it is easily observed that stromal specimens are

heavier than water, therefore the per cent of water by volume

is greater than 78 per cent. This implies that the factor

(l/f) in eq. (3-14) is of the order of unity and therefore

indicates that values of APi smaller than APb, as observed,

are in fact fully justified, since it is likely that APt was

not negligibly small.

Measurements of the imbibition pressure in vivo in the

rabbit cornea14 showed the same general trends as the tests in

vitro. The magnitude of the imbibition pressure in vivo was

found to be less than that in vitro, at the same hydration, by

an amount comparable to the magnitude of the intraocular pressure.

Assuming that f and PO remain constant for small changes

in the intraocular pressure Pa’ eqs. (3-10) give

APa = f(APi)P + (APt)P (Posteriorally)

(Apt)A = -f(APi)A (Anteriorally).

Recalling that f is nearly unity, it becomes apparent that

the observed correlation between APa and APi implies that

as P8 is increased, Pt near the posterior surface remains

nearly constant whereas near the anterior Surface Pt decreases.

In all cases, both in vivo and in vitro, it was found

that the imbibition pressure did not vary with position in the

stroma, either in the anterior-posterior direction or with

distance from the limbus. The research Showed that the stroma
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exerts its full tendency to swell under normal (in vivo)

physiological conditions and that the reason swelling does not

take place as a result of slow absorption of the aqueous humor

is due to an active tranSport mechanism continuously "pumping

down" the stroma. This mechanism is thought to be located in

the endothelium (see Ref. 3, p. 334).



CHAPTER IV

THE STRESS-STRAIN CONSTITUTIVE

RELATION FOR A SINGLE LAMELLA

Introduction

In order to obtain relations between the components

of stress and strain in a lamella it is necessary to formulate

a mathematical model which describes the material. The pre-

vious chapters make it clear that the lamella is not a simple

elastic continuum. It may be treated as a mixed-media prob-

lem; more Specifically, as a binary mixture composed of a

porous elastic solid (or "elastic framework") containing an

incompressible viscous fluid. This is a Special case of the

same problentwith a compressible fluid, and Biot15 has gen-

eralized the classical theory of elasticity to cover Such a

material.

Formulation of General

Anisotropic Equations

Consider an elastic framework with a random distribu-

tion of interconnected pores. Let the porosity f be defined

as in the previous chapter; that is

V

f——R=—R (4-1)
V

b

where Vp and Ap are the volume and cross-sectional area

38
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of pores contained in a sample of bulk volume Vb and bulk

cross-sectional area Ab (For a macroscopically homogeneous

anisotropic material f is independent of location and cross-

section orientation).

Consider a unit cube (i.e. having edge lengths of unity

and consequently face areas of unity) of the bulk material

having edges parallel to orthogonal rectangular cartesian

Let 0 represent the normalreference axes x1,x , and x

2 3°

tensile force on each face of the cube due to the stress in

the fluid. Then if p is the hydrostatic pressure of the

fluid one can write

0 = -fp. (4-2)

In a similar manner let oij denote the forces applied to the

solid part of the cube faces where, in the usual manner, sub-

scripts i and j corresponding to x1 and Xj denote the

directions of the normal to the cube face, and the line-of-

action of the force reSpectively (i,j = 1,2,3). No couple

stresses are considered, therefore Oij = Cji’ and the total

stresses Tij are components of a symmetric second-order tensor

as follows:

(°11+U) C12 C13

Tij g c’12 (“22+”) c’23 '

O13 O23 (033+U)

Let diSplacements of the solid and the fluid in the

directions (x1,x2,x3) be denoted by (u1,u2,u3) and

(v1,v2,v3) reSpectively. Assuming small diSplacement gradients,
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the solid strains e. and fluid strains gij are defined

11

by the relations

U. BU.

ij 2 axj 5x1

v av (4-3)

6. =.]_‘__._i.+__l .

ij 2 axj ax.

In each case the strains are components of a symmetric second-

order tensor.

The constitutive equations relating the above stresses

and strains may be established by generalizing the procedure

used in classical elasticity. Let it be assumed that the

deformations are completely reversible and that an elastic

potential, or strain-energy function V exists such that

C, ._.av__
ij aeij

(4-4)
0 =51

as

where

e = e=11 + 822 + €33“

Such a material is said to be "hyperelastic". It is further

assumed that the seven stress components (0 and o) are

ij

linear functions of the seven strain components (eij and 6);

therefore the elastic potential V is a quadratic function

of the Strains.

Let the following stress and strain notation be used

for convenience:
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G1 = 011 e1 = e11

02 = 022 92 = G22

03 = 033 e3 = 833

04 = 023 e4 = e23

°5 = °13 e5 = e13

G6 = 012 e6 = e12

07 = 0 e7 = 6

Then the quadratic elastic potential V has the general form

v=c +C.e, °,k, =1,2,...,7O J J (J t )+C'ee

Mkt

where the C's are material constants. Expanding the right

hand side of this equation and defining

= CI + I

th kt Ctk

yields

V = C + C e +°°--+ C +'1 C e2 +°' +‘l C e2

o 1 1 797 2 11 1 2 77 7

+ ClZeleZ +----+ C17e1e7

+ 023e2e3 +----+ C27eze7

+ C34e3e4

+-C45e4e5 +----+ C4704e7

+ C56e5e6 + C57e5e7

+'C67eée7 (4'5)

Insertion of eq. (4-5) into (4-4) gives
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5°17 PCB rP11 C12 C13 C14 C15 C16 C177 rig1fl

02 Oz C12 : e2

03 C3 C13 9'3

04 = 04 +- C14 (symmetric) e4 . (4-6)

05 C5 C15 . eS

c’6 C6 C16 5 e6

LgZJ L023 L917 .... .... C7ZJLFZJ     
This is the most general form of the stress-strain constitutive

relation. It differs from that given by Biot in that the con-

stants C1 through C7 have been retained. This retention

allows a reference configuration (ei = 0) where the stresses

are not identically zero (Additional comments will be made in

the following section). K

1 for i = j )

The total stresses Tij (Tij = oij +-oéij; 5ij = A? for i # j

of the bulk material satisfy the equilibrium equations

.Jl. = -
8Xj(oij + oéij) + pXi 0 (4 7)

where p is the mass density of the bulk material and Xi is

the body force per unit mass in the positive xi-direction. Biot

goes on to Show that substituting the diSplacement gradients

of eqs. (4-3) for the strains in the constitutive relation (4-6),

and using the result to eliminate the stresses from the equi-

librium equations (7), gives three equations in the six dis-

placements ui and vi. He introduces a generalized form of

Darcy's law to describe the flow of fluid in a porous material

and obtains an additional three equations in the diSplacements
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ui and vi (time derivatives are involved). There is, how-

ever, no need to work with the resulting set of six simul-

taneous partial differential equations in this Thesis.

Specialization of the General

Equations to the Lamella

The general applicability of the formulation presented

in the previous section was discussed in the Introduction of

this Chapter. Some correlation of the variables with those of

Chapter III, and additional Specialization of the stress-strain

relation of eq. (4-6) must be considered. The use of a linear

constitutive equation also must be justified.

Figure II-2 indicates that the uniaxial tensile stress-

strain relation of the corneal tissue is inherently nonlinear.

For the restricted range of Stress resulting from the intra-

ocular pressure (say up to 10 psi) the Figure tends to indicate

that linearity is a good approximation. It is reasonable to

generalize this indication and state that linearity may be

assumed regardless of the state of stress as long as the

stresses are restricted to be within the physiological range

(i.e. stresses caused by intraocular pressure). The correctness

of this linearity aSSumption will be established later in the

analysis and discussion of experimental data from fresh tissue

experiments.

By restricting the applicability of the proposed con-

stitutive equation to steady-state conditions and dealing with

only the quasi-elastostatic properties of the tissue, the
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viscoelastic effects (see Figure II-l) can be eliminated from

the analysis. The viscoelastic properties of the cornea

resemble those of a Voigt-element (spring and dashpot in parallel

combination). For a given applied load the final elongation

of a Voigt-element (after a large interval of time) is not

dependent on the presence of the dashpot; that is, the spring-

dashpot combination and the Spring alone have identical quasi-

elastostatic properties.

With regard to correlation of variables between Chapters

III and IV, the porosity f was defined in the same manner in

both chapters, and the hydrostatic pressure p of this Chapter

may be associated with the fluid pressure Pf, in the stroma,

defined in Chapter III. Thus from eqs. (3-1) and (4-2) one

can write

0 = -fp = -fPf = -f(PO + Pi) (4-8)

where PO and P1 are the osmotic and imbibition pressures

respectively. The elastic solid stresses Oij may be

associated with the tissue stresses of the lamella; that is,

the forces on the faces of a unit cube of lamella caused by

the stresses in the elastic solid part of the binary mixture.

The component of the tissue Stress normal to the face of a

lamella is the negative of the tissue pressure Pt defined in

Chapter III.

The discussion in the previous chapter leads one to

assume that the fluid pressure Pf, as a first-order approxima-

tion, is independent of the state of tissue strain (e1,....,e6).
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This assumption is based on the notions that the osmotic pressure

Po depends on the solute molecules and ions in the tissue, and

the imbibition pressure Pi’ induced through capillary action,

depends on the gross geometrical Structure and material con-

stitution. One can expect that none of these will change

significantly with (small) strain.

Recalling that 07 = o and using eq. (4-8), the

independence of P with respect to tissue strain implies that

f

in eq. (4-6)

and thus

-fP C + C e

f 7 77 7

from which

p =-—1-(c +cf f 7 776). (4‘9)

The variables Pf and 6. however, are directly related through

the elastic bulk modulus K of the fluid by the relation

P = -K Of 8

Comparing this equation to eq. (4-9) shows that C7 = 0 and

C77 = fK. Thus the constitutive equation (4-6) may be written as

0' = fKe (4-10)

and
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5°17 ”'Ci‘l rC11 C12 C13 C14 C15 C16'? Lei“

°2 C2 C12 3 e2

“3 = C3 + C13 83

“a C4 C14 ea

“5 Cs C15 : es

e°6J L_C6J i_C16 ... ... C66Ji—e64        
Let the double-subscript indicial notation for the

total stresses Tij given by the matrix on page 39 be changed,

for convenience, to a single subscript using the same conven-

tion as in the G'j-tO-oi conversion on page 41; then

1

    

(Tifi "Cl'fPE‘ rCll C12 C13 C14 C15 C161 feij

12 cz-fPf C12
5 e2

T3 = C3-fPf + (313
e3 (4-11)

T4 C4 C14

e4

T5 C5 C15
e5

LyaJ L. Ce J L916 "' °°° Céa‘Lfé‘
    
In the Introduction to this Thesis it was pointed out

that this research is linked to the glaucoma problem, where the

increased intraocular pressure causes above-normal stresses in

the cornea. Let it be required that the constitutive equation

be applicable only for the range of stresses and strains asso-

ciated with the physiologically normal, and elevated intraocular

pressures; then the material behavior outside this range need

not be considered. Since eq. (4-11) is linear, the superposition

principle is applicable, and one can deal with the problem by
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reckoning the stresses and strains from the normal condition

(i.e., Ti = 0 = 81 at the normal intraocular pressure).

Let the normal fluid pressure Pf be denoted by Pfo;

then in order for the Ti and ei to be zero simultaneously

eq. (4-11) requires that

and

and the constitutive equation reduces to

     

r'71"1 FC11 C12 C13 C14 C15 C161"ei“

T2 C12 2 e2

T3 = C13 9;, - (4-12)

*4 C14 ea

T5 C15 2 es

L764 L916 ... ... C6631L664 
Equation (4-12) may be simplified further using symmetry

arguments. Consider the geometric symmetry of the lamella.

The anatomy discussion of Chapter I showed that a lamella is a

sheet made up of parallel fibrils in an amorphous matrix.

The fibrils are parallel to the surfaces of the sheet, and the

Sheet thickness is large compared to the diameter of an indi-

vidual fibril; also, the fibril Spacing is near the same order

of magnitude as the diameter. Although some tests have given

vague indications of regularity of the fibril array (see

Ref. 3, pp. 320-322) there seems to be no strong evidence that
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the parallel fibrils are not randomly disposed, therefore

random disposition will be assumed in the following analysis.

The literature on the theory of fiber-reinforced

composites (see, for example, Refs. 18 thru 21) shows that in

a macrosc0pic sense the material may be treated as homogeneous

and anisotropic, and further that geometric Symmetry implies

elastic symmetry.

Let rectangular orthogonal cartesian reference axes

(x1,x2,x3) be defined for a given lamella such that the

xl-axis is parallel to the fibril axis and the x3-axis is

normal to the plane of the lamella, having positive sense in

the anterior direction. Then the xz-axis is also in the

plane of the lamella, and is normal to the fibrils. An element

of a lamella is shown in Figure VI-l. It is apparent that the

coordinate planes are planes of symmetry, and the xl-axis is

an axis of rotational symmetry.

The reduction of the number of independent constants

in the elastic constant matrix of eq. (4-12), using symmetry

arguments, proceeds as follows. First consider the x2 - x3

plane of Symmetry. Define a new set of axes (§l,§2,§3) by

-direction, thesimply taking the x -axis in the negative x

l 1

other axes remaining unchanged. Therefore

= - dT13 T an T
13 12 = ’T12°

That is,

and similarly
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figure lV-l. An Element of a Lamella
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e = -e and e = -e

5 5 6 6'

All other stresses and strains remained unchanged. Since the

stress-Strain constitutive law must hold for both coordinate

systems, from eq. (4-12) one can write

C e + C e + C e + C e + C e + C e

T5 15 1 25 2 35 3 45 4 55 5 S6 6

and

_ = + ‘ — - ,

*5 C15e1 + C2582 C3583 + C45e4 C5595 C5686

Subtract the latter equation from the former to get

2f5 = 2C55€5 + 2C56e6

for arbitrary values of e1 through e This requires that4.

Using exactly the same procedure with the two expressions for

T6 shows that

C16 = C26 = C36 = C46 = 0'

Therefore the symmetric matrix of elastic constants reduces to

r n

C11 C12 C13 C14 0 0

C12 C22 C23 C24 0 0

C13 C23 C33 C34 0 0

C14 C24 C34 C44 0 O

o o 0 0 c55 056

L0 0 0 0 (:56 C62  
which has 13 independent elements.

Now consider the x 1 - x3 plane of symmetry. Define

new axes (£1,§2,§3) by taking the Q -axis in the negative

2
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xz-direction, the other axes remaining unchanged. Then

T23 = "123 and T12 = "112'

That is,

-=-T -=-

34 a and T6 T6

and similarly

e4 = -e4 and e6 = -e6.

All other stresses and strains remain unchanged. The symmetry

conditions have already been imposed on ;6 and £6, but

using the previously established procedure on and a
*4 4

shows that

C14 = C24 = C34 = C45 = 0

and the symmetric matrix of elastic constants is further re-

  

duced to

r n

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

L0 0 0 0 0 C664

which has 9 independent elements.

Following the above procedure using the x - x
l 2

plane of Symmetry gives no further reduction of constants;

however a rotation of 90 degrees about the xl-axis gives an

additional simplification. The 90 degree rotation places the



xz-ax is a long the

negative xz-axis.

T22

*3

That is,

T2 =

T3 =

and similarly

£2 =

e3 -

All other stresses
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positive x3-axis and the xB-axis along the

Then

= T33

T22

and strains remain unchanged.

4
1

12

4
|

13

“
I
I

23

4
1

4
|

4
|

T13

-r

12

"T23

-'r

'T

e

5

-e

6

‘84 .

Comparing

corresponding expressions for each Stress component expressed

in the two coordinate systems and simplifying using the above

expressions, shows that

= C33

= C13

7 C66

and the elastic constant matrix has only six independent elements

as follows:
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r 1

C11 C12 C12 0 O 0

C12 C22 C23 0 O 0

C12 C23 C22 0 O 0

o o 0 c44 0 o

o o o 0 C55 0

L0 o o o o 0554 
The final reduction of constants comes from considering

an arbitrary rotation about the xl-axis. Let the angle of

rotation be a and define the direction cosine aij as the

cosine of the angle between the positive x1 and xj axes.

Then

all = l 321 = 0 a31 = 0 ‘W

a12 = 0 a22 = cos a a32 = -sin a (4-13)

a13 = 0 a23 = Sin 0 a33 = cos a .

The stresses and strains in the rotated coordinate system may

be found by using the transformation equation for a second-

order tensor; that is

in =3. a. 'r
ij 1k jL kL

a a. a e . (4‘1“)
ij 11(th

Expanding eqs. (4-14) and applying eqs. (4-13) yields the

following expressions:

 

I11 g T11 W
712 = T12 cos a + T13 sin 0

E13 g T13 °°Sza ' T12 Sinza 5 (4'15)
:22 = 722 cos 3 + T33 gin a + 2723 sin a cos a

I23 = r23 (cos a - sin a) + (T33 - T22) sin n cos a

733 a T22 sin a + r33 cos a - 2T23 sin n cos a . J
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The Strains in the rotated coordinate system are found simply

by replacing the Stresses in the above equations by their

correSponding strains. Converting the stresses and strains

to single-subscripted variables using the relations on page

41, and writing the expressions for the stresses in terms

of strains in both the original and the rotated coordinates,

it can be Shown after applying eqs. (4-15) that in order for

the constitutive equation to hold in both coordinate systems

it is necessary that

C = (C
44 22 ' C23)'

Therefore the final elastic constant matrix contains five

independent elements, and the constitutive equation takes the

following form:

      

CTij FCll C12 C12 0 0 0 n r'ein

T2 C12 C22 23 O 0 0 e2

T3 012 023 22 0 o 0 e3 . (4-16)

T4 0 0 0 (sz-CZB) 0 0 e4

.5 o o 0 o 55 0 e5

LFeJ L_o o o 0 0 55¢ i_863

A material described by eq. (4-16) is said to have a "plane

of isotropy" normal to the xl-axis, and is referred to as

"transversely isotropic". The corneal lamella, then, is

transversely isotropic with reSpect to the fibril axis.



CHAPTER V

LAMINATED PLATE ANALYSIS OF THE STROMA

Introduction

The formulation of a generalized plane-Stress or plane-

strain elasticity problem using the transversely isotropic

stress-strain relation, eq. (4-16), develOped for a corneal

lamella, is conceptually straight-forward. Unfortunately,

this is not the case for the complete stroma of the cornea,

which is a laminate composed of a large number of randomly-

oriented lamellae. It is reasonable to assume that the

individual lamellae are identical, therefore the same stress-

Strain relation holds for each lamella in its own coordinate

system.

It is apparent that the stroma is heterogeneous, and

this is the stumbling-block in formulating the elasticity prob-

lem. Procedures for analyzing laminated anisotropic heterogeneous

plates and shells have been developed22’23’24’25 in recent

years largely as a result of the interest in using laminated

fibrous composite materials in aircraft structures (because

of their characteristically high strength-to-weight ratios).

One of these procedures is suitable for analyzing the stroma,

and is presented in the following section.

55
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Analysis of Laminated Anisotropic Elastic Plates

The problem formulation which might be referred to as

"classical," for the analysis of a laminated anisotropic elastic

plate Subjected to bending and stretching, may be attributed

to Reissner and Stavsky (l96l)23.

The formulation closely parallels that of classical

homogeneous plate theory, and the Kirchhoff assumption, that

normals of the middle-plane of the plate before bending and

stretching are deformed into the normals of the middle-plane

after bending and stretching, is used. An element of the

plate is Shown in Figure V-l.

Let stresses Ti and strains ei (i = l,....,6)

be defined in a manner analogous to that on page 41. Stress-

resultants and couples are defined as follows:

 

h/2

N = T dx \

1 J:h/z 1 3

h/2

N = P T dx $ (5-1)

2 {h/Z 2 3

h/2

N = j T dx = N = N y
12 _h/2 6 21 6

h/2 W

M = T X dx

1 [h/Z 1 3 3

h/2

M = 1 x dx > (5-2)

2 £h/2 2 3 3

h/2  H I
:

0
5 \M = T x dx = -M —

l12 [h/Z 6 3 3 2



 

 

   Middlc P181?

 

1:18: A.Element of theHi ~1o‘.’ \' {1, [-3-



58

Transverse shearing forces are defined as

 

h/2 \

Q = T dx

1 [h/Z 5 3

) (5-3)

h/2

Q2 = {h/2T4dx3. J

Classical plate theory gives the equilibrium relations

 

N1,1+N6,2+Pl=0 W

112,2 +N6,l + P2 = 0

111,1 +116,2 -Q1 = o (5-4)

M2,2 +M6,l ‘ Q2 = 0

Q1,1-l-QZ,2 +q =0 J

where the comma indicates partial differentiation with

respect to the direction indicated by the numbers is preceeds.

P1,P2, and q are the body forces per unit volume in the x1

and x directions, and the distributed surface force per

2

unit area acting in the x3-direction.

Displacements of the middle-plane (x3 = 0) in the

x1,x2, and x3 directions are denoted by u1,u2, and u3

respectively and the in-plane strains are

0
= \

e1 el-l-x3K1 1

o

= +' 5-5e2 e2 x3K2 ( )

_ 0

e6 - e6 +X3K6

where

o = \

e1 u1,1

o
= 5-

e2 112’2 ( 6)

o -1
e6 - 2(u1,2 + uz’l)
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and K1,K2, and K6 are curvatures defined as follows:

K1 = ””3,11

K2 = "113,22 (5‘7)

K6 = '“3,12'

It should be noted that the shear strain e6 is a component

of a second-order tensor, and represents half the angle-change

(Y12)-

The plane—stress generalized Hooke's law is used;

therefore the assumption of classical plate theory, that the

shearing forces Q1 and Q2, and the stress T produced by

3

q, have negligible effect on the bending, is in force (see

Ref. 26, p. 81). Let the stress-strain relation be written

in the form

”‘1 'E11 IE12 E16 81

T2 3 E12 E22 E26 ez (5'8)

T6 E16 E26 E66 86

where it is understood that the Eij vary with x3 because

the plate is heterogeneous (the elements Eij of eq. (5-8)

will later be defined in terms of the elements C ij of eq.

(4-16) for the corneal lamella).

Substituting eq. (5-5) into (5-8) and the result into

eqs. (5-1) and (5-2) yields a constitutive relation between the

stress-resultants and couples and the middle-plane strains

and curvatures as follows:



.
.
.
.

 

.
‘
q



6O

      

"N1“ rA11 A12 A16 5 B11 B12 316‘1 Pei“
.

N2 A21 A22 A26 é B21 B22 B26 6;

N6 = 591-132--i§§-i_’3e--‘ie-3§§ e: ' (5‘9)

M1 B11 B12 B16% D11 D12 D16 K1

M2 B21 B22 B26 é D21 D22 D26 K2

L-Ms! L361 B62 B665 D61 D62 D66J LKsJ

The constants in the above 6 X 6 matrix are given by the

following relations (i,j = 1,2,6):

h/2 1

,. I E..dx3

LJ -h/2 1.]

A

h/2 > (5-10)

.. = P E..x dx
ij {h/Z 1] 3 3

 D,,=j‘ E,,x dx . J

13 —h/2

Equations (5-4) and (5-9) may be considered to be a

system of eleven equations in eleven unknowns (Ql’QZ’Ni’Mi’ui;

i = 1,2,6), and with appropriate boundary conditions may, in

theory, be solved. Reissner and Stavsky23 show that the system

may be reduced to three equations in diSplacements ui, or two

(uluations in terms of u and an Airy stress function F.

3

There are two controversial points of the formulation.

13%: use of the plane-stress constitutive relation (eq. (5-8))

is (obviously an approximation. This same approximation is made

in cllassical plate theory, and has been shown to give negligible

error? for thin plates. Timoshenko and'Woinowsky-Krieger26 make

sevezrzil comments regarding this matter. Secondly, the applica-

bilfl:)7 of the assumption that straight lines normal to the
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middle-surface before deformation are straight line normal

to the deformed middle Surface is questionable in the case of

éiheterogeneousplate. The good correlation of theory and

experiment in the research of Azzi and Tsai25, however,

indicates that one can be optimistic in this regard.

Application of the Laminated Plate

Analysis to the Corneal Stroma

The laminated plate formulation presented in the pre-

vious section is a practical means for analyzing the stroma

as a laminated structure of a large number of randomly oriented

anisotropic lamellae. The quasi-elastostatic stress-strain

constitutive equation of the transversely isotropic lamella

given by eq. (4-16) will be used along with some arguments

based on qualitative observations of corneal mechanical pro-

perties to yield expressions enabling partial evaluation of

elastic constants from simple tests.

The first task at hand is the evaluation of A1 B

l’ iJ’

and D1:] using eqs. (5-10) and the plane-stress Specialization

of eq. (4-16). The plane-stress Specialization of the elastic

constant matrix is obtained by setting 73 to zero and solving

for e3 in terms of e1 and e2.

of eq. (5-8) are related to the Cij of eq. (4-16) as follows:

The result is that the Eij



 

2

E =C C_12. W

11 11 ' c
22

c

E "E - c (1 23)
" 1 ' 12 ‘ "'12 2 022

E16 g E61 = 02

0 (5-11)

E =C ...—2.2.

22 22 c22

E26 = E62 = 0

E66 = C55 ° J 
The Eij of eq. (5-11) are defined with respect to

the Specific coordinate system (x1,x2,x3) shown in Figure

V-l. Suppose new axes (£1,§2,§3) are defined by a rotation

through an angle g about the x3-axis as shown in Figure

V-2. The elastic constants Eij of the new coordinate system

can be expressed in terms of the original Eij and the angle

g by employing the transformation relation for a fourth-order

tensor; that is,

= a E 5-12

EijkL imajnakogtp mnop ( )

where aij is the cosine of the angle between the positive

£1 and xj axes, and the indices take on the values of l

and 2. The correlation between the Eij of eqs. (5-11) and

the Emnop of eq. (5-12) is as follows:

E11 ‘ E1111

E12 3 E21 ‘ E1122 = E2211

E16 ‘ E61 ‘ E1112 g E1121 ‘ E1211 = E2111

3 5-13

E22 E2222 ( )

E26 7 E62 ' E2212 a E2221 g E1222 = E2122

E = E
66 1212 = E2121 °
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Taking direction cosines from Figure V-2 and using eqs.

(5-13), eq. (5-12) may be expanded to yield the following re-

sults:

E. = E coszé + E sin2§ + (2E + 4E - E - E )sinzf coszg

11 11 22 12 66 11 22 -’

E =E +E +13 -2E -4E )si2 2
12 12 ( 11 22 12 66 n 5 C05 5

- 3 . .3
E16 — (2E66 + E12 - E11)cos 5 Sin g - (2E66 + E12 - E22)51n g cos 5

(5-14)

E =E '2 +E 6s2 +(2E +4E -E E '2 2
22 11sm g 22C 5 12 66 11 22)5m 5 C05 5

—‘ 3 3= _ . _ 2 _ .
E26 (2E66 +E12 E11)Sln é cos § ( E66+E12 E22)cos g Sin 5

_ -E + E + 2 4 2 2
E66 ’ 66 ( 11 E22 ' E12 ’ E66)Sin 6 C03 5

and

Eij = Eji'

Equations (5-10) may be evaluated in an approximate sense

by introducing the notion of macroscopic transverse isotropy of

the plate with reSpect to the x3-axis. The lamellae are large

in number (approximately 200 in the 0.5 mm thick human stroma),

and their orientation angles (g) are randomly distributed in

the x3-direction (g is constant for a given lamella, and has

random jump-discontinuities between adjacent lamellae). Let

average values (Eij) of the Eij be introduced. Since all

lamellae are identical, and are large in number, the above

described random disposition with respect to x3 implies that

all the Elj associated with increments of plate thickness

AX3 (arbitrarily located in the plate) are equal. The values

*

of Eij may be defined by the relation
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* 1 h/2 _

E.. =" E..(X )dx
1_] h -h/2 1j 3 3

or equivalently

2n
* _

E.. = l—.f E..(§)d§, (5-15)
ij 2110 ij

and eqs. (5-10) may be approximated as follows:

* h/2

 

 

'k

A.. = E.. j dx = h E.. (5-16)
ij 1] -h/2 3 ij

h/2

= * d = 0 5-17)
Bij Eij.i X3 X3 (

-h/2

h/2 3
e 2 h *

= =-— . 5-1
Dij Eij [h/2X3dx3 12 Eij ( 8)

Equations (5-15) may be evaluated by Substituting

Eij(§) from eqs. (5-14), and it is easily shown that

E* - 1313 + 3E +'4E + 2E ‘
11 ‘ 8( 11 22 66 12)

E* = l(6E + E +>E - 4E )
12 8 12 11 22 66

* — 0 5 19

13* _ 7':

22 ’ E11

* — 0
E26 7

E* - l-AE + E +-E 2E J
66 8( 66 11 22 ' 12)'

Since Bij = 0 there is no coupling between in-plane

stretching and transverse bending, and using eqs. (5-16) through

(5-18) the matrix equation (5-9) may be separated into the follow-

ing two simpler expressions:



E E 0 0
N1] 11 12 e1

* x o

I 0 * °
N6J 0 E66 e6

6* * 0
M1 3 11 E12 K1

h— * * 5 21M2 = 12 E12 E11 0 K2 . ( - )

*

M6 0 0 E6 K

Equations (5-20) and (5-21) hold for any orientation

of axes x and x

1
2 in the plane of the Stroma because the

x

E.. are average values, independent of direction in the plane.

1]

It is important to note that this theoretical analysis predicts

the earlier experimentally observed6 in-plane isotrOpy of the

stroma.

Equations (5-20) and (5-21) may be used to analyze

laboratory experiments that lead toward evaluation of the

elastic constants in the matrix of eq. (4-16). A discussion

of the theory behind the experiments follows. In all cases

the body forces P and P and the distributed force q

1 2

are zero (see page 58).

Uniaxial Tensile Stress Test

For the case of uniaxial tension of a long strip of

stroma, eq. (5-20) is applicable, and it may be assumed, except

near the end restraints (St. Venant boundary region), that

N2 = 0 = N6 and N

equations (5-4) are identically satisfied, and from eq. (5-20)

1 is uniformly distributed. The equilibrium

one can write
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J.

N = h(E* e0 + E" e0)
1 11 1 12 2

* o * o

O — h(E12e1 + E1182).

. . . 0 .

Eliminat1ng e2 gives

N
1 _ 1 * 2 * 2 o

h ’ * [(E11) (E12) Je1°

E11

The quantity Nl/h is the nominal tensile stress in the

' H ** ' H '

strip, thus the apparent Young s modulus E3 18

* 2

* (E12)

Ea — Ell - E*

11

**

and the "apparent Poisson's Ratio" pa, in the x1 - x2 plane,

is

*

_ E12
ua - ‘I‘ -

E11

From the above two equations one can write

7'1‘ _ Ea

E11 ' 2
l - “a

* _ H'a Ea

E12 — :7 a

a

and applying eqs. (5-19) these relations become

8E

a
+ =-———3(E11 + E22) 2E12 + 4E66 1 - ”2

a ,_
89a Ea (J 22)

E11 + E22 + 6E12 - 4E66 = ;—:7:2 .

a

 

** The term "apparent" is included because of the fact that the

concept of Young's modulus and Poisson's ratio are not simply de-

fined as for an isotropic material. Subscript a is added to E

and p in order that this be kept in mind.
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Torsion Test

*

66

to analyze a torsion test. Consider a long strip of stroma of

The quantity B may be evaluated by using eq. (5-21)

width W having a length L in the xl-direction. Let the

strip be clamped rigidly at x = 0 and let a torque T be

1

applied (about the axis of the strip) at x = L, and let ¢

1

be the resulting angle-of-twist (Use the left-hand rule for

the directions of T and ®).

If the strip is centered with respect to the xl-axis

one may approximate the middle-plane displacement (it is

assumed u E O E u1 by taking

X

_ _ ..l
u3 ¢X2(L ).

Applying eqs. (5-2) and (5-7), it is apparent that

M6:

z
l
a

and

_ m
K6 {

It may be assumed, except near the end restraints, that only

the stresses and T are nonzero, and that both are

T5 6

uniformly distributed in the xl-direction. Then from eqs.

(5-1) through (5-3) it is clear that all the equilibrium

equations (5-4) are satisfied.

Using the above expressions for M and K from
6 6’

eq. (5-21) one can write

E* = 12 M6 : lggL (E)

66 113 K6 w113 <0
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Applying eqs. (5-18) this becomes

g .2§;L _E11 + E22 - 2312 + 4E66 (W hB)1<T (5 23)

where KT is the "torsional rigidity of the strip"; that is

=1

KTQS

Tension and Torsion Data Analysis

For convenience let the right hand side of eqs. (5-22)

and (5-23) be denoted as follows:

8 E
a

I“"§ ‘ EA

 

8pa Ea _ > (5-24)
2—11

1- B
”a.

96
(-—459K = E
w h3 T

 
c‘ J

Then

3( + £22) + 2E +-4E = E
E11 12 66 A

(E + E22) + SE - AB = E

11 12 66 B

) - 2E +'4E = E

(E11 +'E 12 66 c'22

These three equations give only two independent relations in

the three quantities (E11 + E22), E12, and E It is easily

66'

shown from the first two of the equations that

1

E12 ' 16(3EB ' EA) +E66

1 (5-25)

(E11 +-Ezz)= 5(3EA - EB) - 2E66.
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If one solves the third equation for E66 and substitutes the

expression into eqs. (5-25), the resulting two equations may

be combined to Show that

EA - E = 2E . (5-26)

Numerical values of EA’ EB, and EC may be determined from

laboratory experiments, and the degree to which they satisfy

eq. (5-26) gives an indication of the validity of the theoretical

formulation of the problem.

The plane stress elastic constants Eij in eqs. (5-25)

may be expressed in terms of the constants Cij of eq. (4—16)

by using the relationships presented in eqs. (S-ll). The

result is two independent equations in the five elastic con-

stants Cij' Before carrying out these calculations it is

convenient to discuss a uniaxial strain test that leads to the

evaluation of the constant C22. Arguments also will be pre-

sented to show that C55 is small.

Uniaxial Strain Test

With reference to eq. (4-16), consider a uniaxial

strain test in the x3-direction. This implies that e and

l

e? are zero, and therefore

T3 = C22e3. (5-27)

Since the x3-axis of each lamella is normal to the surfaces

of the stroma, all the x3-axes are parallel, and no trans-

formation-of-axes relations need be used.
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A uniaxial compressive strain test of the stroma in the

x3-direction may be conducted as illustrated in Figure V-3.

The test specimen is a disc of corneal stroma having a circular

cross-section in the x1 - x2 plane. The specimen lies on a

flat Surface, and the circumfrential edges are in contact with

a rigid surface to prevent displacements in the x1 - x2 plane.

The plunger and guide are coupled in such a manner that, at the

end in contact with the Specimen, the plunger face always remains

flush with the face of the guide (i.e. the plunger never moves

relative to the guide).

The diameter of the test specimen is large compared

to its thickness h, and the ratio of guide-to-plunger outside

diameters is sufficiently large so that "edge effects" at the

periphery of the Specimen may be assumed to have a negligible

influence on the state of stress in the vicinity of the plunger.

Let the plunger/guide assembly be diSplaced in the

negative x3-direction by an amount Ah so as to compress the

Specimen, and let the change in the axial force in the plunger

be AP. If the cross-sectional area of the plunger face is

denoted by A, then eq. (5-27) may be written in the form

12 = 11h.
A C2291 )

and therefore

h AP

‘ = — —— . 5-2(,2, A(Ah) < 8)



Note: All parts appear circular when viewing .n

the x -direction.

 

 
Test Specimen

Rigid Containing Siructure

F:gure V-B. Uniax'al Compress re Strain Tes: Coni gnra5ion
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Analysis of the Stroma

Small Shear Rigidity

As pointed out in Chapter I (see also Ref. 3, p. 306

and 311), the stroma has a small shear rigidity for shear

displacements of planes relative to one-another parallel to

the anterior and posterior surfaces of the cornea. Recall

that the stroma is composed of a stack of a large number of

randomly-oriented lamellae as indicated in Figure V-h.

The matrix of elastic constants of eq. (4-16) defines

the stress-strain relations for any one of the lamellae with

reSpect to its axes (Xln’XZn’X3)' Since the lamellae are

large in number, and are randomly oriented (with respect to

rotations about the x3-axis), it may be assumed that there

always exists a value for n (see Figure V-4) such that

the x In axis is parallel to any arbitrarily selected

direction in the plane of the stroma. This leads one to con-

clude that the observed small shear rigidity across the stack

of lamellae could be due to any one, or all, of the following

possible properties:

1) The shear rigidity between adjacent lamellae

is small.

2) The shear rigidity related to distortion in

the x1 - x3 plane is small.

3) The shear rigidity related to distortion in

the x2 - x3 plane is small.

Possibility (1) does not directly influence the form of the

elastic constant matrix of the lamella; however possibilities
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(2) and (3) imply that C55 and (C22 - C23) are approximately

zero reSpectively (see eq. (4-16)).

Possibility (3) may be eliminated by considering the

physical consequences it implies. If (C - C23) = 0, then
22

the constitutive equation (4-16) requires that the stresses

T2 and T3

of strain. Since sections of stroma stretched in the x3-

be identically equal, regardless of the state

direction show normal elastic action (see Ref. 3, p. 307) it

and T3appears that are in fact independent. This
*2

evidence is assumed to be sufficient justification for throw-

ing-out possibility (3) above.

If possibility (I) alone is the mechanism reSponsible

for the small Shear rigidity, then microscopic examination of

the side surfaces (i.e. surfaces parallel to the x3-axis) of

a section of stroma after shear deformation should reveal a

staircase-type profile, since there would be discontinuities

in the displacements from one lamella to the next as one pro—

ceeded in the x3-direction. There is no evidence in the

literature that this easily-recognizable phenomenon has been

observed, and on this basis it will be assumed that possibility

(I) does not exist algae. It is concluded, then, that

possibility (2), perhaps supplemented by (1), exists and is

responsible for the observed small shear rigidity. As dis-

cussed previously, this implies that

C55cs 0. (5-29)
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It should be pointed out, in support of the argument leading

to eq. (5-29), that there are no contradictions with the

stroma model proposed by Maurice (see Fig. III-3).

Analysis of the Simple-Test Relationships

With regard to the use of simple tests to evaluate

the elastic constants, the three tests presented in the pre-

vious sections of this Chapter - uniaxial tensile stress,

torsion, and uniaxial compressive strain - exhaust the list

of possibilities.

Recapitulating, the three-dimensional set of elastic

constants is shown in eq. (4-16), and contains five nonzero

The constant C
55). 22

may be evaluated directly from the uniaxial strain test data

entries (C and C
11’ C12’ 022’ C23’

by using eq. (5-28), and applying eqs. (5-11) to the uniaxial

tensile stress relations of eqs. (5-25) and rearranging gives

 

2
c c

1 12 1 22
=-— - - + + F I -

C11 8(3EA EB 16C55) 0 L 8 ‘16C55 3E3 +'EA)]
22 12

C
22 1 2

_.1 _ +~ _
+ CZ [16( 6C55 3EB LA)] (5 30)

12

1 C22
= + -_1 " + 0

C23 C22 C12[ 16( 6C55 3E3 EA)]

The consequences of setting C55 = 0, as suggested by

the analysis leading to eq. (5-29) will be discussed in

Chapter VIII where the experimental results are applied to eqs.

(5-30). The quantity C55 has been retained in eqs. (5-30) so

that the effects of nonzero values may be observed. Details of

the laboratory experiments follow next.



CHAPTER VI

EXPERIMENTAI.EQUIPMENT

Introduction

Experimental equipment was designed Specifically for

carrying out the three types of tests discussed in the pre-

vious Chapter (uniaxial tension, torsion, and uniaxial

strain). The same Specimen preparation and mensuration

equipment, and constant temperature immersion bath System,

were used for all three types of experiments. The equipment

was fabricated using the facilities of the Departmental

experimental mechanics laboratories and the Division of

Engineering Research machine shop.

The topic of Specimen preparation is an appropriate

starting point in discussing the equipment, and will be

followed by descriptions of the specimen mensuration equip-

ment, immersion bath system, and the test fixtures used in

conducting the three basic experiments.

Specimen Preparation

A double-blade knife was used to cut a uniform strip

of cornea from a "hemispherical Shell" of the eyeball

(specifically, the quasi-hemiSphere anterior from the equator,

which contains the cornea). A photograph of the knife is

77
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Shown in Figure VI-l. The plastic Spherical seat of the knife

enabled the eyeball hemisphere to be positioned with the cornea

directed toward the knife blades. The tissue was held in place

by means of a vacuum applied through small holes in the,plastic

seat. This held the sclera, adjacent to the periphery of the

cornea, tightly against the seat.

Two parallel Slots machined in the Spherical seat en-

abled the knife blades to cut through the entire width and thick-

ness of the cornea and adjacent sclera, and resulted in a long-

strip Specimen of uniform rectangular cross-section. This pre-

paration eliminated excessive handling which might have lead

to inadvertent straining of the tissue. The knife blades con-

sisted of two razor-blades, and were held a specific distance

apart by a Spacer. The blades could be moved in the vertical

direction by Sliding their mounting frame along four rigid

guide-rods extending from the heavy steel base of the fixture.

The circular disc-Shaped specimens used in the uniaxial

Strain tests were cut from the cornea using a standard type 7

mm diameter corneal trephine. The trephine is shown in Figure

V1-12.

Specimen Mensuration

The initial thickness (h) of the strip Specimens in

the anterior-posterior direction (the x3-direction) was always

measured immediately after preparation. The measurement was

made using an Ames dial-indicator (0.0001 inch Scale divisions)

mounted on a ring-stand, and a simple electrical circuit. The
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Figure VI-l. Double-Blade Knife
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device is shown in Figure VI-2.

A small electrical probe protruding from the tip of

the dial-indicator was coupled through an ohm-meter to a

stainless-steel plate cemented to the base of the ring-stand.

The probe was moveable in the vertical direction, and could

be adjusted, so as to contact a surface beneath the dial-

indicator, by means of a screw-mechanism above the indicator.

The probe position at the point of incipient contact could

be precisely determined by noting the dial reading at the point

where continuity of the electrical circuit was indicated by

the meter. The Specimen thickness was obtained by taking the

difference between successive dial readings for incipient con-

tact with the stainless-steel plate and with the upper Specimen

surface when positioned on the plate beneath the probe.

Length and width measurements of the strip specimens

were made using the Specially-constructed measuring microscope

shown in Figure VI-3. The microscope had a working distance of

approximately 1.5 inches, and a reticle with perpendicular cross-

hairs. The vertical position was given by an Ames dial-indicator

(0.001 inch scale divisions; one-inch travel), and the horizontal

position was read directly from a micrometer-head (Starrett model

465M; 0.002 mm divisions). Length and width measurements were

made by taking the difference between successive readings of the

dial-indicator and micrometer respectively. The standard

deviations associated with the precision of the microscope may

be taken as 0.0015 mm and 0.010 mm for the width and length

measurements reSpectively (Specimen dimensions are given in



81

 

Figure VI-2. Thickness nonsuring Fixture
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Figure VI-3. Measuring Hioroscope
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Tables VII-l and VII-2).

Immersion Bath System

All tests were conducted with the corneal specimens

immersed in a constant-temperature bath so that the in vivo

temperature and hydration of the tissue could be approximated.

The constant-temperature system consisted basically of two

coupled heat-exchangers, one immersed in a tank containing the

test-specimen and immersion medium, and the other immersed in

a drum of water maintained at a constant temperature of 91.5

deg. F. A schematic diagram is shown in Figure VI-A.

The two heat-exchangers were coupled by plastic

tubing, and this closed system was filled with water. At

one point the tubing ran through a variable-Speed pump

(Varistaltic pump no. 72-590-60; Manostat Corp.). This en-

abled the water to be pumped through the closed circuit and

thereby transmit heat from one exchanger to the other. The

Specimen-tank heat-exchanger consisted of a three-foot length

of 1/8-inch copper tubing soldered to a five-inch by nine-inch

thin copper plate. The water-drum heat-exchanger consisted of

a twenty-foot length of 1/4-inch copper tubing coiled around

a ten-inch diameter cylinder. The cylinder was mounted in a

twenty-gallon insulated steel drum nearly filled with water.

An immersion heater (Aqua-Lite immersion water heater;

Vogelzang Bros., Inc., Holland, Mich.) was mounted at the

bottom of the drum, and a motor-driven mixer near the center

of the drum circulated the water continuously (a mixer was
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employed in the test tank also).

The immersion heater was powered through a Variac

variable transformer, which enabled the rate of heat input

to be controlled. A given constant temperature in the test

tank was achieved by operating the immersion heater, pump,

and mixers continuously and simply varying the pump Speed

and/or heater voltage to change the equilibrium temperature

in the test tank.

Uniaxial Tensile Stress Test

For the uniaxial tensile test the immersion tank was

a six-inch by eight-inch glass container eight inches in depth,

and the heat exchanger was positioned parallel to, and

approximately 1/4 inch above the bottom. A rigid vertical post

behind the container was used as an attachment point for the

immersion-fluid mixer and the tensile test fixture. These were

held in place in the tank by cantilever-type structures extending

forward from the post (see Figure VI-S).

The tensile test fixture was positioned in the tank so

that the long axis of the test Specimen (strip of cornea) was

aligned with the vertical direction, and was clamped in place

by means of two thumb-screws. This configuration enabled the

tensile test fixture to be easily and quickly installed in the

immersion tank after a test specimen had been mounted in the

fixture (The fixture was mobile, and could be moved away from

the tank, for convenience, while installing the test Specimen).
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Immersion

Tank
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Illumination

Heat
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Figure VI-5. Overall View of Tensile Test Equipment
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The uniaxial tensile test fixture is shown in Figure

VI-6. The fixture enabled the application of a prescribed

Specimen elongation and measurement of the resulting tensile

load.

Prescribed diSplacements of the upper specimen end

restraint were applied by rotating the micrometer head through

the desired increment of displacement. The micrometer head

was a Starrett model 465M with 0.002 mm divisions. Rotation

of the head caused the micrometer coupler to be diSplaced

upward, the force required for this diSplacement being pro-

vided by the preload Spring which was always in the compressed

state. The rigid diSplacement bar was attached to the bottom

of the micrometer coupler, and slid smoothly in the guide block.

The load transducer was affixed to the end of the diSplacement

bar, and the clevis-like transducer coupler connected the upper

Specimen end restraint to the loading stud of the transducer

through pinned-joints that were free to pivot in order to

accommodate small misalignments of the system.

The upper and lower Specimen end restraints were identical

(see Figure VI-7 for a close-up photograph). Each restraint

consisted of two machined aluminum components coupled by an

aluminum pin, and was attached to the specimen by a simple

clamping-action, the clamping force being provided by a brass

screw. The lower Specimen end restraint was pinned to the

attachment bracket, which was simply a rigid L-shaped bracket

with provision for adjusting its vertical position in order

that test Specimens of varying lengths could be accommodated.
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The load transducer was especially designed and

fabricated for this research by Kulite Semiconductor Products,

Inc., and consisted basically of a miniature phosphor-bronze

cantilever beam with a full four-arm bridge of Kulite semi-

conductor electrical resistance strain gages. A close-up

photograph of the transducer is shown in Figure VI-8. The

basic Specifications were as follows:

Impedance: 1000 ohms

Sensitivity: Nominally 8.0 mv/gram at 10 volts D.C.

Input: 10 volts DC or AC max.

Rated (max.) load: 50 grams

Temp. sensitivity: Less than 0.2 mv/deg. F. at

100 deg. F.

Rigidity: 0.00083 mm deflection/gram.

The transducer was coupled to a Tektronix type Q trans-

ducer preamplifier plug-in unit, and loads were indicated by

the vertical trace deflection on an oscilloscope screen.

Torsion Test

The torsion test was conducted in a five-inch by eight-

inch sheet steel container ten-inches in depth. The heat-

exchanger and immersion-fluid mixer used for the tensile tests

were also used in the torsion tests. The basic configuration

is shown in Figure VI-9.

The torsion test fixture was clamped to the base of

the immersion tank, and was easily removable to facilitate

installation of the test-Specimens. The fixture is shown in
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Figure VI-7. Specimen End Restraint

   Loading
Stud

Figure VI-8. Load Transducer
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Figure VI-9. Overall View of Torsion Test Equipment
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Figure VI-lO, and a discussion of the principles of operation

follows.

The torsional rigidity of a strip of cornea is small

compared to that of Specimens normally tested in torsion,

therefore no existing torsion test equipment was applicable.

The primary difficulty was that commercially available torque

transducers do not have the capability of measuring torsional

loads in the range of interest for the cornea (of the order of

0.05 gram-millimeter). This difficulty was overcome by using

an optical system to measure the torque. The technique con-

sisted of using laser beams and mirrors to measure the twist

in a length of wire having a known torsional rigidity.

The torsion test Specimens had the same geometry as

the tensile specimens, and the same upper and lower specimen

end restraints were used in each case. The long-axis of the

test Strip was vertical, and the torsion test consisted

basically of measuring the torque necessary to rotate the lower

specimen end restraint, about the vertical axis, through a known

angle relative to the upper Specimen end restraint.

The upper Specimen end restraint was pinned to the

attachment bracket, and the bracket was affixed (with provision

for rotation about the vertical axis) to the body of the torsion

fixture. The bracket could be clamped in place at an arbitrary

orientation, which facilitated initial alignment of the system.

The lower Specimen end restraint was pinned to a small block

of brass that served as a mounting point for the specimen-twist

mirror and also as a coupling between the and restraint and
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the torsion-wire.

The torsion-wire was a steel music-wire of 0.008 inch

diameter that extended downward from the lower Specimen end

restraint, and was supported laterally by two horizontal

platens. Each platen had a guide for the torsion wire. The

guide was simply a small disc of 0.005 inch steel shim stock

with a 0.020 inch diameter hole through which the torsion

wire passed.

Two small first-surface mirrors were clamped to the

torsion-wire a known distance apart (approximately 46 milli-

meters). These mirrors will henceforth be referred to as the

upper torque mirror and the lower torque mirror, and their

function, along with that of the Specimen-twist mirror will

be discussed Shortly.

An aluminum crossbar was pinned to the torsion-wire

below the lower of the two guide-platens, and was used to

apply a twisting—couple to the wire. The couple was applied

by rotating the shaft shown in the upper left of Figure VI-lO.

The shaft was coupled through a flexible cable and screw-

mechanism to a horizontal disc that rotated about the axis of

the torsion-wire. Two small vertical pins in the disc made

contact with the crossbar and caused it to rotate as the upper

shaft was turned.

A preload hanger bracket was attached to the lower end

of the torsiondwire. This bracket enabled preload weights to

be suspended from the torsion-wire in order to vary the axial

tensile stress in the test Specimen, a capability that was
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required in order to check for coupling between tensile and

torsional modes of loading.

As pointed out earlier, the torque and associated

Specimen twist angle were measured optically using the Specimen-

twist mirror and the two torque mirrors. Since the upper

Specimen end restraint was clamped rigidly in place, the angle-

of-twist across the test specimen was equal to the angle-of-

rotation of the lower Specimen end restraint. The torque

reSponsible for this specimen twist was of the same magnitude

as that in the torsion-wire. Assuming the torsional rigidity

of the torsion-wire is known, it is apparent that the torque

and specimen angle-of—twist can be evaluated if the angles of

rotation of the three mirrors, about the vertical torsion-wire

axis, can be meaSured. The torsional rigidity of the wire was

evaluated by means of a torsional pendulum, and may be expressed

as a torsional Spring constant (k) per unit length of wire.

The result was

2

k = 1402 33133“—
radian

with a standard deviation of 4.0. Details of the calibration

procedure are presented in Appendix A.

The angles of rotation of the three mirrors were

determined by reflecting laser beams from the mirrors and

measuring the beam diSplacements on a distant screen. In order

to keep the tensile preload on the test Specimen small, it

was necessary to use mirrors weighing only a fraction of a gram.

Light-beam oscillograph galvanometer mirrors fulfilled the
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requirements. These first-surface mirrors were rectangular,

having a length and width of 3.14 and 0.64 mm respectively.

The weight of one torsion mirror, complete with its torsion-

wire mounting attachment, was approximately 0.10 gram.

The small size of the mirrors introduced an unantic-

ipated optical problem. The laser light reflected from the

mirrors was no longer well-collimated, but took the form of

a rectangular aperture diffraction pattern, and the light

impinging on the screen was an interference-fringe pattern

rather than a small circular spot of light. Since accurate

measurements in the horizontal direction were necessary, the

problem was overcome by having the long-axis of the mirrors

horizontal. This caused the fringe pattern to be acceptably

narrow in the horizontal direction (approx. 3 mm wide), al-

though quite lengthy in the vertical direction (approx. 30

mm long).

The laser beams were provided by means of a one-milli-

watt 6328 angstrom Spectra-Physics laser and a three-way beam

splitter. The three beams were directed onto auxiliary

adjustable first-surface mirrors positioned in the laboratory

to give convenient angles of incidence at the torsion test

fixture.

Complications in the data-reduction procedure stemmed

from two nonnegligible sources. Firstly, the incident light

beams propagated from air through a glass plate and into the

immersion medium, and the reflected beams prOpagated from

the immersion medium, through the glass plate, and back into
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the air. Secondly, there was no means to accurately mount the

mirrors in a vertical plane (i.e. parallel to the torsion-wire

axis), and this misalignment necessitated the introduction of

a complicated three-dimensional analysis of the change—in-path

of the light beams with rotation of the mirrors about a vertical

axis.

The effect of the glass plate may be neglected since

it only caused a small offset of the beams, and not a change-

in-direction. This leaves one to deal with an air/immersion

medium interface and misaligned mirrors. A coordinate system

was established so that the rectangular components of the

three torsion-fixture mirrors and the three reflected points

on the measurement screen could be determined. The coordinates

of arbitrary points on each of the incident beams were also

measured. This information, recorded both before and after

application of torque increments, was sufficient to determine

the angles of rotation of the mirrors about the torsion-wire

axis. The analysis was rather lengthy, and is presented in

Appendix B. A computer program was used to carry out the

calculations.

The angle of twist across the test Specimen was given

directly by the incremental change in the angle 9 of equation

(B-13) computed for the specimen-twist mirror. The torque was

calculated by subtracting the incremental angle-change of the

upper-torque mirror from that of the lower-torque mirror and

dividing the result by the distance between the mirrors to get

the twist per unit length of the torsion-wire. Multiplying this
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figure by the torsional spring constant (k) gave the applied

torque.

Uniaxial Strain Test

The uniaxial strain test fixture configuration was

identical to that of the uniaxial stress tests except for the

details in the immediate vicinity of the test Specimen. The

overall view of the tensile test equipment shown in Figure

VI-S is equally applicable for the uniaxial strain test. The

details of the uniaxial strain test fixture are shown in

Figure VI-ll. It is instructive at this point to return to

the schematic drawing of Figure V-3 in order to recall the

basic geometry required for the uniaxial strain experiment.

The rigid containing structure of Figure V-3 was the

corneal trephine of Figure VI-ll (see the detail photograph

of Figure VI-lZ). It was a Castroviejo tranSplant trephine

that cut a seven-millimeter diameter disc from the cornea.

The foot of the trephine, which normally has a concave surface

with a radius of curvature to match the central cornea, was

filled with an epoxy resin and ground to a smooth flat surface.

The trephine was clamped to a mounting bracket on the test

fixture of Figure VI-ll by means of a clamping action that en-

abled quick installation with assured accurate alignment.

The plunger and guide assembly of Figure V—3 are shown

in the close-up photograph of Figure VI-13. The plunger had

a diameter of 2.53 mm, and the guide outside diameter was 6.63

mm. Both parts were made of aluminum, and the mating surfaces
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were smoothly finished to minimize frictional effects. The

same load transducer used in the uniaxial tensile stress

experiments (see Figure VI-8) was used to measure the plunger

load in the uniaxial strain tests. The transducer was clamped

in a slot machined in the housing above the plunger and guide,

and the upper end of the plunger was coupled to the loading

stud of the transducer through a small ball-bearing seated in

a detent in the end of the plunger. A small spring-clip

compressed the ball between the stud and the plunger in order

to assure that no backlash was present. The position of the

transducer in the mounting slot was adjusted while viewing the

bottom end of the plunger and guide assembly through a

microscope, and the transducer was clamped in place when the

end face of the plunger was aligned coincident with the face

of the guide.

The complete transducer-plunger-guide assembly was

coupled to the uniaxial strain fixture of Figure VI-ll by

means of a clevis-type bracket and set-screw, and the assembly

could be moved in the vertical direction in exactly the same

manner as the upper Specimen end restraint was displaced in

the uniaxial tensile stress experiments. The same Tektronix

equipment used for the tensile stress experiments was used

in conjunction with the transducer to measure the plunger loads.



CHAPTER VII

EXPERIMENTAL PROCEDURES AND DATA

Introduction

All experiments were performed using mature pig corneas

because these were readily available, and the pig eye is nearly

the same as that of man except for overall size (see Chapter I).

The Peet Packing Co. of Chesaning, Michigan cooperated by making

eyes available on a daily basis. The eyes were shipped to the

University - a distance of approximately 50 miles - by re-

frigerated truck, and were available within four-hours of the

time of death. Unfortunately, it was not possible to remove

the eyes until after the animal had passed through a scalding

process (140 deg. F. water for five to ten minutes). Although

the eyelids remained tightly closed during this time, there

would be no justification for ignoring the possibility that

mechanical properties of the corneal Stroma may have been

altered.

A limited number of pig eyes were available within the

University. The Meats Laboratory of the Food Science Department

slaughtered several pigs in the course of this research, and

the eyes of these animals were enucleated immediately after death,

prior to the scalding process.

102
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If one attempts to Store corneal tiSSue in the presence

of aqueous solutions, it will swell profusely regardless of

the salinity. This swelling would have been unacceptable,

because in order to get stress-strain information indicative

of the in vivo cornea it was necessary that no dimensional

changes take place. The problem was solved by using mineral

oil as an immersion medium, both during storage at reduced

temperature, and during the tests which were performed at the

in vivo temperature.

Immediately upon receiving eyes an incision was made

through the sclera, along the equator, and only the anterior

hemisphere was retained. The contents (i.e. vitreous humor,

ciliary process, lens, aqueous humor, etc.) were removed, and

the remaining shell, composed of the cornea and adjacent sclera,

was immersed in mineral oil. The Specimen was refrigerated at

50 deg. F. until tested. The mineral oil was not imbibed by

the stroma, and the moisture content (thickness) remained con-

stant during storage because the mineral oil eliminated evapora-

tion of water from the tissue. During the tests the mineral

oil was held at approximately 91.5 deg. F. According to the

measurements of Lele and Weddell27 this is one degree warmer

than the anterior surface temperature of the human cornea,

therefore it seemed a reasonable immersion temperature.

The Kulite load transducer (see Figure VI-8) was dead-

weight calibrated using a set of gramdweights. For the

uniaxial tensile stress calibration the weights were SUSpended

from the end of the upper specimen end restraint. The
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compression calibration for the uniaxial strain test was

carried out with the transducer mounted in the test con-

figuration except that it was adjusted so that the plunger

extended approximately 0.5 mm beyond the end of the guide

(see Figure VI—l3). This adjustment enabled the gram-weights

to be placed on the plunger so as to load the transducer in

the same manner as during the actual tests. The transducer

reSponse in both tension and compression was linear in the

load range of interest.

Uniaxial Tensile Stress Test

Uniaxial tensile stress tests were conducted using

strips of cornea having nominal widths of 2.4 and 3.5 mm. The

strips were cut using the double-blade knife described in

Chapter VI. The pig cornea is somewhat pear-shaped, and all

specimens were cut from the direction yielding a strip of

maximum length. Approximately two-to-three mm of sclera was

retained at the ends of the strip to serve as points for

clamping on the end restraints, and the epithelium and

endothelium were removed by gently scraping with a sharp

scalpel.

Immediately after preparing the strip the excess mineral

oil was blotted from the surfaces, and the Specimen was placed

on the thickness measuring fixture of Figure VI-2. The mid-

length thickness was measured with four replications, and the

thickness at each end of the strip, approximately two-to-three

mm from the limbus, was measured with three replications.
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During this process the specimen was handled at the scleral

ends with tweezers, and immediately after completion of the

measurements additional mineral oil was Spread on the strip

in order to guard against dehydration.

The two end restraints (see Figure VI-7) were

temporarily affixed to a small jig that approximated the

juxtaposition necessary for insertion of the corneal strip.

The ends of the Strip were aligned in the end restraints and

clamped in place, after which the two end restraints were re-

moved from the jig and pinned to the test fixture as shown in

Figure VI-6 (the test Strip was in a "limp" conditions at this

point).

Next the test fixture was inserted into the immersion

tank of mineral oil, and clamped in place by means of two

thumb-screws. After waiting several minutes for temperature

stabilization, the transducer strain gage bridge was balanced

and the specimen was quickly elongated until a small load of

approximately 0.2 gram was applied (This small load immediately

began to diminish due to viscoelastic effects). For lack of

a more Specific criterion, after the Specimen had relaxed for

approximately 15 minutes, this was referred to as the zero

load-zero elongation initial condition for the enSuing test.

The measuring microscope of Figure VI-3 was used next

in order to determine the length and exact width of the test

specimen. The length was defined as the distance between the

adjacent ends of the two end restraints. The width was measured

at three positions on the Specimen - at midlength of the strip
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and also 0.10 inch from each of the end restraints. The length

measurement was replicated three times and each of the three

width measurements was replicated twice.

The above measurement procedure required approximately

15 to 20 minutes, and after this time the load transducer

bridge was rebalanced and a series of elongations were applied.

It was found that a time increment of 15 minutes was sufficient

for the transient viscoelastic effects to decay to a negligible

magnitude. The elongation increments were limited to 1.0 and

2.0 percent of the initial length of the Specimen, and the

tensile load and Specimen width at midlength were measured

and recorded for each increment (always after the 15 minute

relaxation). This data enabled the load versus elongation

and width versus elongation curves of Figures C-l through

C-8 to be plotted. It will be shown in Chapter VIII that it is

the slepe of the linear portion of the curves that is of interest,

therefore the slopes are presented in Table VII-1 along with

other pertinent information regarding the Specimens. It was

estimated that a standard deviation of 0.01 mm may be

associated with each of the length meaSurements, and that

standard deviations of 0.2 gm/mm and 0.03 mm/mm may be associated

with each of the load verSus elongation and width versus

elongation SlOpes.

Specimens 70 and 76 were used to examine the re-

versibility of the deformation process by subjecting the same

Specimen to two identical tensile tests, the second test

being conducted after the Specimen had recovered for one
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hour with the elongation set to zero. The load versus elonga-

tion data for these Specimens are plotted in Figures C-9 and

C'lo e

Torsion Test

The torsion test Specimens had the same nominal dimensions

as the uniaxial tensile stress specimens, and were prepared

following the same procedures, including thickness measurement

and attachment of the end restraints. The end restraints were

pinned to the test fixture as shown in Figure VI-lO, and after

a brief series of fixture alignments the assembly was installed

in the immersion tank of Figure VI-9. The tensile preload on

the test specimen was in force immediately upon installing the

specimen in the test fixture. Length and width measurements

were made using the measuring microscope in the same manner

as for the uniaxial tensile stress tests.

Upon completing the mensuration process, the laser was

turned on and a series of preliminary optical adjustments of

the torque and specimen twist measuring system were made. The

auxiliary mirrors were adjusted so that the light beams propagated

through the immersion tank.window and impinged on the test

fixture mirrors, and the complete test Specimen and torsion-wire

assembly was rotated so that the light beams prOpagated outward

from the immersion tank in a direction approximately perpendicular

to the glass window (the incident beams also had nearly this

same azimuth). The light beams propagating from the fixture

impinged on the measuring screen, which was in a plane parallel
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to the immersion tank window and located approximately 3.4

meters from the torsion-wire axis (the screen was actually

the wall on the cpposite side of the room).

The light beam positions on the screen were unstable

because of air currents in the room and building vibration.

Placing the test fixture on a resilient mounting helped to

some degree, but it was necessary to apply a small preload

torque to the Specimen to reduce the vibration to an accept-

able level. The preload was equivalent to a test Specimen

twist angle of approximately 4 to 5 degrees.

The coordinates of points on the incident beams were

measured with a scale and tripod-mounted plumb bob, and the

reflected-beam coordinates were measured from the screen after

a time-interval of 15 to 20 minutes had elapsed from the time

of preload application. Three increments of Specimen twist,

each of approximately 0.07 radian magnitude were applied

successively at 15 minute intervals, and screen-coordinates

of the three light beams were recorded at the end of each

interval.

The data reduction procedure presented in Appendix C was

required to convert the light beam coordinate experimental data

into twist-angle and torque information. The procedure was

lengthy, and required the use of a computer program. The re-

sults were somewhat disheartening because for many of the tests

the maximum applied torque was below the limit of resolution

of the system. Discussion regarding this matter will be pre-

sented in Chapter VIII. A precision analysis indicated that



111

the limit of resolution of the system.was at best 0.008 gm mm

torque, and any torque below this value was discarded from the

analysis. In order to treat the remaining data in an unbiased

manner, the following procedure was adhered to:

1. All first-increment torque data was discarded

because the values were generally near or below

the limit-of-resolution of the system.

2. The average twist angle and average torque was

computed for each Specimen, and the torsional

rigidity (gm mm/radian) was expressed as the

quotient of this torque divided by this twist.

The individual data points are presented in Figure C-11, and

the torsional rigidities are listed in Table VII-2 along with

other pertinent information regarding the Specimens. All dis-

carded Specimen data are included in the Table for completeness.

The standard deviation of the length measurement may be taken

as 0.01 mm (the same as for the uniaxial tensile stress tests),

and it was estimated that a standard deviation of 0.08 gm mm/

rad may be associated with each of the torsional rigidities.

Uniaxial Strain Test

Uniaxial compressive strain tests were conducted using

circular diSc Specimens cut from the central cornea with the

trephine shown in Figures VI-ll and VI-12. The epithelium and

endothelium*were removed from the cornea by gently Scraping with

a sharp knife, and the trephine was used in the normal manner

(lightly pressing the blade into the tissue while continuously
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rotating the trephine).

The trephine and Specimen were mounted in the test fixture

as shown in Figure VI-ll, and the plunger and guide assembly

was diSplaced downward sufficiently so that the lower face had

entered into the end of the trephine. The fixture was then

installed in the immersion tank and allowed to temperature-

stabilize for several minutes, after which the plunger and guide

assembly was lowered until a plunger load of approximately 0.2

grams was achieved. This criterion was used to define the zero

displacement condition, and after allowing a relaxation period

of approximately 15 minutes the load transducer bridge was re-

balanced and a series of compressive displacements were applied

at 15 minute intervals. The resulting plunger load versus dis-

placement data are presented in the curves of Figures C-12 and

C-13. The reversibility of the deformation process was examined

by subjecting the same Specimen to two identical uniaxial strain

tests, the second test having been conducted after the Specimen

had recovered for one and one-half hours with the compressive

displacement set to zero. The plunger load versus displacement

data for these Specimens are plotted in Figures C-14 and C-15.

An initial attempt was made to measure the thickness of

the disc-shaped Specimens immediately after installing the

trephine in the test fixture.. The procedure was to back-off

the trephine-handle locknut and rotate the handle until the

foot of the trephine had threaded itself upward to expose the

edges of the test Specimen, after which optical measurements

using the measuring microscope were attempted. Unfortunately
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the edges of the specimen had been sufficiently distorted from

the cutting Process that representative measurements could not

be obtained.

An alternate source of thickness information was con-

sidered more reliable. The average value of the central

corneal thickness of all of the tensile and torsion test

specimens was used. The average value of the thickness was

0.989 mm with a standard deviation of 0.13 mm.

It will be Shown in Chapter VIII that the slope of

the linear portion of the plunger load versus displacment

curves is the information of interest, and this is presented

in Table VII-3 along with additional specimen information.

It was estimated that the standard deviation of each of the

slopes may be taken as 1.0 gm/mm.
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Table VII-3. Uniaxial Strain Test Data

Specimen Source Hours Slope

Number Since (gm/mm)

Death

77 Meats Lab 73 100.0

78 Meats Lab 77 51.2

79 * Meats Lab 79 47.4

80 Meats Lab 83 74.3

81 Meats Lab 96 102.0

82 Meats Lab 99 98.0

83 * Meats Lab 101 -

84 Peet 12 42.5

85 Peet 14 50.2

86 Peet 28 48.7

87 Peet 31 51.5

88 Peet 33 43.5

89 Peet 37 86.0

* Specimens 79 and 83 were used to check the

reversibility of the load vs. deflection

process.



CHAPTER VIII

RESULTS AND CONCLUSIONS

Linearity

The problem formulation of this research was based

on the premise that a linear theory was applicable, and it was

indicated in the previous Chapter that the slopes of the linear

region of the experimental curves (load versus elongation, etc.)

were the data of interest. Some simple calculations can be

used to show that the linear region of the curves may be asso-

ciated with the range of corneal stresses caused by intraocular

pressure loading.

Dimensional and pressure information for the human

eye are given by Davson (see Ref. 3, pp. 158, 161, 290 and 291).

The radius of curvature of the outer surface of the central

cornea may be taken as 7.86 mm, and the thickness is 0.54 mm.

A value of 16 mm Hg is representative of the normal intraocular

pressure, and this may rise as high as 80 mm Hg in cases of

angle-block glaucoma.

To calculate order-of-magnitude stresses in the

cornea it is reasonable to assume the stresses are equal to

those of a thin-walled sphere having the same mean radius and

thickness as the central cornea, and an internal pressure equal

to that of the intraocular pressure. The strength-of-materials

117
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solution for the in-plane tensile stress (a) is simply

2

= TIT—Jr = £2

0 2nrh 2h

where r, h, and p are the mean radius, thickness, and

internal pressure reSpectively.

The normal intraocular pressure of 16 mm Hg is

. 2 . .
equ1valent to 0.218 gm/mm , therefore the tenSile stress in

the cornea may be taken as

= (7.86 - O.67)(O.21§) = 2
2(0.54) 1.53 gm/mm .
 

The average thickness and width of the tensile test Specimens

were as follows:

Thickness: 0.939 mm

Narrow Specimens: 2.38 mm

Width Wide Specimens: 3.44 mm

These measurements lead to the following tensile loads nec-

essary to produce a uniaxial tensile stress of 1.53 gm/mm2

Narrow Specimens: 3.42 gm

Wide Specimens: 4.94 gm.

The 3.42 and 4.94 gm loads associated with normal

intraocular pressure fall on the linear portion of the load

versus elongation curves of Figures C-l through C-4, and

furthermore if the elongations at these loads are located on

width versus elongation curves of Figures C-5 through C-8, the

points fall on the linear portion of these curves.

A similar analysis may be carried out for the uniaxial

strain data. The normal intraocular pressure of 1.53 gm/mm2
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may be converted to an equivalent plunger load by multiplying

by the cross-sectional area of the plunger. The plunger dia-

meter was 2.53 mm, therefore the plunger load (P) associated

with normal intraocular pressure may be taken as

(2 53 2

P - TL—li—i—(IJB) = 7.69 gm.

It must be remembered that although a pressure of 1.53 gm/mm

is acting at the posterior surface of the cornea, the pressure

is zero at the anterior surface, therefore in an order-of-

magnitude sense it seems more realistic to use one-half of the

above 7.69 gram plunger load as a representative value for the

cornea in vivo. It may be seen in Figures C-12 and C-13 that

the half-value of 3.85 gm falls on the linear portion of the

load versus diSplacement curves.

The torsion test data has already been treated in a

linear manner due to lack of resolution of the test equipment,

and nothing can be added here to further justify the action

taken.

In conclusion, it appears that the linearity assumption

was acceptable over the physiologically important range of loads.

Reversibility

In addition to linearity it was assumed that the de-

formation process is completely reversible. This assumption

may be justified by the observation that the in vivo eye under-

goes reversible deformation as the intraocular pressure fluc-

tuates (for example in the water-test for glaucoma where the
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intraocular pressure commonly undergoes a transient fluctuation

of 10 mm Hg over an interval of an hour or two). It was of

interest to establish the degree of reversibility of the de-

formations in the uniaxial tensile Stress experiments and the

uniaxial Strain experiments.

One could not expect complete reversibility, as observed

in vivo, because the aqueous solution impregnating the tissue

could not flow out of the specimens, and then back in, in a

reversible manner. This was evidenced by the formation of

small water droplets on the surfaces of the tensile specimens

during elongation, and the fact that the droplets remained

after the elongation had been reduced to zero. Figures C-9

and C-10 for the uniaxial tensile stress experiments, and

Figures C-14 and C-15 for the uniaxial compressive strain

experiments, Show the degree of reversibility that was retained.

This does not imply that the load versus deformation curves are

not representative of the in vivo tissue, however, because the

initial mode of deformation, where moisture was forced out of

the tissue, would remain unchanged regardless of the nature

of the reversibility of the process.

Statistical Procedures

Before proceeding with the analysis it is timely to

discuss the method of error analysis used. The simplifying

assumption was made that all Statistical distributions were

normal, and the propagation of errors resulting from the use

of equations in the data reduction procedure were accounted
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for by using elementary statistical analysis. Suppose one has

a function f of several variables (u,v,w,...) of the form

y = f(U,V,W,....). (8-1)

Let the Standard deviations of u,v,w,.... be denoted by

S ,Su v’ w"'°°’ and let the resulting standard deviation of

y be denoted Sy. Then it can be shown28 that

2 5f 2 2 af 2 2 af 2 2
= +0... -

8y (8“) Su + (8V) Sv + (3“) Sw . (8 2)

In the following material the standard deviations of all

calculated quantities were evaluated using eqs. (8-1) and

(8-2), and if S is the standard deviation of X the con-

vention of writing this as X i;S has been adhered to.

Final Analysis

The uniaxial tensile stress test data of Table VII-l

were used to calculate the apparent Young's modulus E8 and

the apparent Poisson's ratio pa (see p. 67). Let the load

versus elongation slope and the width versus elongation slope

be denoted as follows:

Load vs. elong.: (a;

Width vs. elong.: (£-

Then the nominal values of E8 and “a are given by the

expressions

= L 9.11

1Ea Wh(d.L)

dW

”a =h'%(dz)
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where L, w, and h are the original (unloaded) values of

the test Specimen length, width, and thickness reSpectively.

The results are shown in Table VIII-1.

Cumulative results are shown in Table VIII-2 where

the data from similar types of test specimens have been grouped

in Several manners in order that the effects of the various

test specimen characteristics may be observed. Since the

standard deviations are quite large it is unwise to draw any

strong conclusions regarding dependence of E8 and “a on

the variables tabulated, and the results for "all specimens"

will be used in forthcoming calculations; that is,

66.32 i 24.14 gm/mm2E

a

pa 5.90 i 1.38

The above values of E8 and ”a may be substituted

into the first two of eqs. (5-24) to evaluate the parameters

EA and EB. The result is

EA -lS.69 i 9.47 gnu/mm2

(8-3)

-92.59 25.60 gm/mm2
EB |

+

The shortcomings of the torsion test were already pointed

out in Chapter VII, and it seems reasonable to expect the data

to indicate only trends and order-of-magnitude quantitative

results.

The torsion test data of Table VII-2 may be used to

evaluate the parameter EC by applying the last of eqs. (5-24),

and in addition the tensile stress in the Specimen may be
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evaluated by dividing the tensile preload force by the cross-

sectional area. The results of these calculations are pre-

sented in Table VIII-3. The data of Table VIII-3 is plotted

in Figure VIII-l, and the least-squares straight line is shown.

It appears that the torsional prOperties are dependent on the

magnitude of the tensile preload stress, a result not predicted

by the theoretical analysis.

The theory of Chapter V lead to eq. (5-26) which re-

quires

1

EC 7 2(EA ' EB)’

thus if the values of EA and EB given by eqs. (8-3) are

applied it is predicted that EC = 38.45 i 13.7 gm/mmz. If

a number is to be assigned to EC from the torsion test

results, it is reasonable to select the point on the least-

squares line of Figure VIII-1 that is representative of the

stress due to normal intraocular preSSure. This stress was

calculated earlier in the Chapter to be 1.53 gm/mmz, and yields

a value of EC = 123 i 50 gm/mm2 which is too large by a

factor of 3.2 i 1.7.

The uniaxial Strain data of Table VII-3 may be used

to evaluate the elastic constant C by applying eq. (5-28).

22

As discussed in the previous Chapter, the thickness (h) of

the Specimen is to be taken as 0.989 mm with a standard

deviation of 0.13 can The diameter (d) of the plunger was

2.53 mm with an estimated standard deviation of 0.005 mm. In

eq. (5-28) the area (A) is given by
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Table VIII-3. Torsion Test Results

Tensile E Std.

Specimen Preload C 2 Deviation

Number Stress2 (gm/mm ) EC

(gm/mm ) (gm/mmz)

39 .92 127.7 54.2

42 .94 23.8 41.5

47 .91 103.1 51.6

50 1.44 100.1 75.4

51 1.13 56.5 69.8

53 .96 80.1 54.4

54 1.12 45.8 78.2

56 1.08 36.94 64.3

57 1.09 105.3 65.7

.59 1.75 115.2 26.9

61 2.19 261.6 52.2

63 1.86 155.1 34.3

64 2.15 153.8 38.4
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therefore

The reSultS of the calculations are presented in Table VIII-4.

Cumulative results were calculated by grouping the data as pre-

viously done for the uniaxial tensile test analysis, and the

information is shown in Table VIII-5.

The results of Table VIII-5 tend to indicate quite

strongly that the Peet Packing Co. test Specimens have a re-

duced uniaxial compressive Strain rigidity as compared to the

Meats Laboratory specimens. It must be remembered, however,

that the total number of specimens tested was small, and the

discrepancy could possibly reduce with increasing Specimen

quantity. The plausible reason for the reduced rigidity of

the Peet specimens is that Meats Laboratory eyes were enucleated

prior to the scalding bath Operation, whereas Peet eyes were

not. Since results indicative of in vivo tissue are desired,

the cululative Meats Laboratory value of C = 15.55 i 4.93

22

gm/mm2 will be used in all forthcoming calculations.

Combined Results of Theory and Experiment

The numerical values of EA’ EB, and C22 may be sub-

stituted into eqs. (5-30) to obtain expressions for C11 and

C23 in terms of C12 and 055. The following values are

appropriate:
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Table VIII-4. Uniaxial Strain Test Results

Specimen Source C Std.

Number 22 Deviation

(gm/m2) (gm/m2)

 

77 19.73 2.68

78 . 10.10 1.38

..D

79 '3 9.35 1.28

3

80 g 14.66 1.99

2

81 20.12 2.73

82 19.33 2.62

84 8.38 1.15

85 9.90 1.35

86 9.61 1.32

U

87 3 10.16 1.39
9..

88 8.58 1.18

89 16.97 2.30
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Table VIII-5. Uniaxial

Specimen Group

All Meats Lab.

All Peet

All Specimens

Strain Test

C22

2

(Sm/mm )

15.55

10.60

13.07

Cumulative Results

Std.

Deviation

2

(891/mm )

4.93

3.20

4.73
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[
:
1 ll -15.69 i 9.47 gm/mm2

A

EB = -92.59 2‘. 25.60 gm/nm2

2
022 = 15°55.i 4.93 gm/mm .

Equations (5-30) become

 

012 2
C11 = 5.69 - 2C55 +W + 15.55(Q + 2Q)

(8'4)

C23 = 15.55(1 +0)

where

+ 1 .Q = C55 6 38

C12

and all the Cij are expressed in units of gm/mmz.

The data reduction procedure cannot be catried further

because two additional independent relationships among the

elastic constants are needed. Comments regarding this matter

are included in the following section of this Chapter.

It is interesting to select hypothetical values for

and C55 and compute the resulting elastic constants.
C12

In Chapter V the analysis of the small shear rigidity of the

stroma indicated that the elastic constant C is likely to
55

be small compared to the other constants, therefore it is

logical to compute the C. and E over a reasonable range

13 ii

of assumed C12 values while incrementing C55 from zero.

Figures VIII-2 through VIII-6 Show families of curves of Cij

and Eij versus C12 for several values of C55.
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It is easily shown that

E12 = -(c55 + 16.38)

and therefore it is predicted that one of the elastic constants

is negative. It can also be Shown that

 

C55 + 16.38

(C -C)=-( )
22 23 C12

therefore if C is assumed positive, then both E and

55 12

(C22 - C23) are negative. This matter is covered further in

the Discussion.

Discussion

The research has been fully presented at this point;

however some discussion of the work is in order. Additional

simple tests enabling complete evaluation of the elastic constants

are beyond the scope of this Thesis. Information regarding the

shear constants C55 and (C22 - C23) could perhaps be obtained

by analyzing some type of shear test of a stroma Specimen

(full thickness), and additional information might be given by

the solution of the elastic shell problem of the cornea con-

strained around the periphery and loaded on the posterior sur-

face by the intraocular pressure. The latter possibility

would be a full-scale boundary value problem of the theory of

shells, and would be difficult.

In deriving the stress-strain constitutive relation,

the existence of an elastic potential V was assumed (see p. 40).
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Strain-energy arguments of the theory of elasticity show that

V must be "positive definite," and this implies that the

elastic constants Cij and Eij are non-negative. It was

shown at the t0p of page 133 that negative constants are pre-

dicted, and therefore the analytical model for the material is

not adequate in its present form. Additional research must

be carried out using these results as a basis for postulating

a more appropriate theory.

For this reason it seems appropriate to recapitulate

and present a comprehensive list of assumptions made in develop-

ing the analytical formulation. The assumptions are listed

in Appendix D, and are in the same order as they appear in

the text. Page numbers are included for convenience.

The discussion of the pressure distribution of the

intraocular fluid given in Chapter III is an important de-

velOpment in its own right. It appears to be the first analysis

using the notion of porosity, along with pressure equilibrium

equations, to correlate the results of previous experiments

with analytical relations.
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APPENDIX A

TORSION4WIRE CALIBRATION

The torsional spring constant of the torsion test

fixture wire was determined indirectly by measuring the

period of vibration of a torsional pendulum constructed with

the wire (see Figure A-l). The spring constant (K) of a

length (L) of the wire is defined by the equation

T = K¢ (A-l)

where (T) is the applied torque and ¢ is the relative

angle-of-twist, measured in radians, between two points on

the wire separated by a distance L.

It is easily shown, using the theory of mechanical

vibrationszg, that the vibrational frequency (f) of a

torsional pendulum is given by the relation

2

where (I) is the polar moment of inertia of the pendulum

mass and (C) is a damping coefficient. For a slow pendulum

in air the effects of damping are negligible, and the co-

efficient (C) may be set to zero (The validity of this

assumption will be discussed later). The above equation then

gives

140
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The polar moment-of-inertia of a homogeneous circular disc of

mass (M) and radius (R) is

2

=MR_;_

I 2

Substituting this expression for (I) into eq. (A-2) and

multiplying by the wire length (L) gives the torsional spring-

constant (k) per unit length of wire as follows:

2 2

k = 2n LMR f0 (A'3)

If (L) and (R) are measured in centimeters, (M) in grams,

and (f) is the reciprocal of the vibrational period in seconds,

then the units of k are dyne-centimeters square per radian.

If the weight in dynes is divided by the acceleration of gravity

in centimeters per second square, the result may be referred

to as "grams weight" (simply abbreviated gm). Thus eq. (A-3)

gives

2 2 2 2 2

g radian

where g is the acceleration of gravity.

The torsion-wire selected was Steel music-wire of 0.008

inch diameter. A 46.05 cm effective length of the wire was

used, along with a 450.5 gm steel disc of 2.529 cm radius, to

construct the pendulum. Replicated measurements of the time

required for 20 vibrational cycles all gave 4.60 minutes to

within i 0.005 minutes. In addition, it was found that the

time-interval was independent of the angular amplitude of

vibration, which confirms that damping effects were negligible.
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Using this data along with eq. (A-4) and taking g = 980.4 cm/

sec sq. (see Ref. 30) gives

2

k = 14.02 EE_EE_

radian

A precision analysis indicated that a reasonable value for the

standard deviation of (k) is 0.04 gm cmZ/radian.



APPENDIX B

TORSION TEST LASER BEAM PATH ANALYSIS

The problem at hand is that of computing the angle of

rotation of a mirror, about a vertical axis, by analyzing the

path of a light beam impinging on the mirror. The spatial

rectangular cartesian coordinates of the mirror, and of re-

ference points on the incident and reflected light beams,

both before and after rotation, are assumed to be known.

The beams pass through a vertical plane air/immersion medium

interface located close to the mirror as compared to the

distance to the reference points, and the refractive index of

the immersion medium is assumed to be different from that of

air.

If the air/immersion medium interface is close to the

mirror, then from the standpoint of determining the direction

cosines of the incident and reflected beams in air, one can

neglect the presence of the interface and assume that each

beam follows a straight-line between the mirror and the re-

ference point on the beam. The coordinates of two points

Onirror and reference point) on the line are known, therefore

the direction cosines of the beam in air may be computed.

Take a coordinate system (x1,x2,x3) with origin

located at the point the light beam intersects the air/immersion

“Xmedium interface as shown in Figure B-1, and let the x1 3

144
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Figure B-l. Light Beam and Air/Immersion Interfatc
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plane be the plane of the interface. The light may be assumed

to be prOpagating in either direction across the interface.

Let g be a unit vector parallel to the beam in air,

and pointing into the immersion medium. Then if unit vectors

along the positive coordinate directions are denoted by 11,

12, and 13 one can represent 0 by the expression

A = 6 a I.

B 8111 + 8212 + 8313.

Similarly, let 9 be a unit vector parallel to the beam in

the immersion medium, and pointing into the immersion medium.

Then 9 may be represented by the expression

Q = Ylil + vziz + y313.

Since g and Q are unit vectors, the quantities (51,32,83)

and (y1,y2,y3) are the direction cosines of the air and

immersion beams reSpectively.

According to Snell's law of refraction the refracted

beam lies in the plane of incidence; therefore in Figure B-l

A

the vectors 5 and Q and the x2- axis are coplanar. Let

h be a unit vector normal to this plane, and have components

(n1,n2,n3) such that

:
5
)

nl'i1 + n212 + n313.

A

Since i2 and B are in the plane having normal 8 one may

write

i1 X B

- \‘izXeI

:
3
)

which yields



 

__E_3___ W
n =3

1 2 2
+

\jél E33

62 = 0 s (B-l)

n = -81

3 2 2

81 + 62
J

The xz-axis is normal to the interface, therefore

the angles 9A and 90 are related by Snell's law of re-

fraction, and one can write

n sin e = n sin e

A A 0 0

where nA and n0 are the absolute refractive indices of

the air and the immersion medium reSpectively. It is easily

shown from the above expression that

 

1 \/’2 2 2
=— - 1-

COS 90 no n0 “A( cos 9A) ’

 

but

cos 90 = y2

cos 9A = 82

therefore

1 \/F2 2 2
= -— - 1 - . -2Y2 “0' no nA( 82) (B )

The vector 9 is normal to 8, therefore

Q ° 8 = 0

which may be written in the form

vlnl 4'"an2 + v3n3 = 0 . (B-3)
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Substituting the values of n1,n2, and n3 from (B-l) into

(B-3) gives

83
Y3 = (El-)Yl (13’4)

and since 9 is a unit vector one can write

2 2 2
y1+y2+y3 1.

Substituting v1 and V2 from (B-2) and (B-4) into this equa-

tion and simplifying yields

2 2 2

Y1—

 

2 2 2

H0 (31 + 83)

but since 8 is a unit vector it follows that

2 2 2

el+e3=1-82

and therefore

= (1)0 . (B-5)
Y1 n0 1

Substituting Y1 from (B-S) into (B-4) gives

n
A

Y3 = (r)83 ° (B'6)

0

Recapitulating, equations (B-2), (B-5), and (B-6) give the

direction cosines of the beam in the immersion medium in terms

of the direction cosines of the beam in air and the two re-

fractive indices, therefore the direction cosines of the

incident and reflected beams in the immersion medium may be

calculated. The next step in the analysis is to calculate the

direction cosines of the normal to the mirror surface in terms

of the direction cosines of the incident and reflected beams.
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It is convenient now to redefine 9 to be a unit vector

along the beam impinging on the mirror, and pointing into the

mirror. Similarly let 9' be a unit vector along the beam re-

flected from the mirror, and pointing into the mirror. Then

as indicated previously, if the direction cosines of 9 and

Al

9 are (91,92,93) and (91,95,95) one can write

1 = Ylil + Y232 + Y333

.. = "i + M M .

Y Yl l Y212 + Y313

These two vectors are Shown in Figure B-2.

Let fi be a unit vector normal to the mirror as shown

in Figure B-2, and let the direction cosines of a be

(ul,p.2,p,3) 30 that

‘3' = ““111 + H'212 + ”333 '

Snell's law of reflection requires that the angle of incidence

must be equal to the angle of reflection. These angles are

denoted by g in Figure B-2, and it is obvious that

 

9 - a = cos ¢ 2

’1‘7' '0 = cos 6 ) (B-7)

9' - 9 = cos 2¢ . J

Also, since 0 is a unit vector one can write

(1 ° I1 = 1 - (B-8)

Equations (B-7) and (B-8) constitute a system of four simul-

taneous equations in the four unknowns 91:92:03: and ¢.
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“I

The components of 9 and 9 may be assumed known,

therefore the quantity cos 2¢ may be evaluated immediately

by expanding the last of equations (B-7); that is

cos 2¢ = 919i + 9295 +-9395 .

Applying a trigonometric identity gives

cosz¢ = 1(l + 9 9' + 9 9' + 9 9'). (3'9)
2 1 1 2 2 3 3

The first two of equations (B-7) may be written in the form

Y1“'1 + Y2% + Y393 = C03 9

Yiul + Yéuz + v5», = COS c -

One can solve for ”2 and 03 in terms of pl from these

two equations. The result is

”2 = C191 + C2

 

(B-IO)

93 = C391 + C4

where C1 through C4 are defined as follows:

I I

V1Y3 ' Y1Y3

c=r_T

1 Y2Y 3 Y2V3

(95 - 93)cos ¢

C: 

I_T

2 Y2Y3 Y2Y3

_ I I _ I

_ ' (Y2 Y2)(Y1Y3 Y1Y3)

C—_T-—_-Y'Y+ T T

3 Y3 - Y3 1 1 Y2Y3 - Y2Y3

(92 - 95) cos ¢

c

4 Y2Y3 ' Y2V3

H
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Equation (B-8) may be written in the form

2 2 2

ul+uz+03=1

and if ”2 and #3 are eliminated by using equations (B-10)

the result is

A“? + 861 + c = 0 (B-ll)

where

2 2

C1 + C3 +.13
> II

o
r
: I

2 2

C2+C4-le(
'
3

ll

Equation (B-ll) is simply a quadratic equation in pl,

-B 1 7'82 - 4AC

“1 = 2A '

and has the solution

(B-12)

Upon evaluating ”1 from (B-12) one can substitute the value

back into (B-lO) to get ”2 and 93- Equation (B-12) gives

two roots for pl, and at first though one might require that

only real roots leading to values of “1’”2’ and ”3 between

‘i 1.0 be retained. This restriction was included in the

computer program used to carry out the calculations of this

analysis; however in all cases the discriminant (32 - 4AC)

was negligibly small, and therefore root selection was never

a problem. It is anticipated that one could probably show

analytically that the discriminant is identically zero if he

had the time and patience to carry out the algebraic manipula-

tions involved.
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At this point the direction cosines giving the orienta-

tion of the mirror normal have been evaluated. The vector 0

is shown in Figure B-3. As the mirror rotates about the vertical

axis, the angle 9 changes by an increment exactly equal to

the rotation angle, therefore the desired rotation angle is

determined by calculating 0 before and after the increment and

subtracting the two values to get the net rotation. It is easily

seen from Figure B-3 that

9 = arc tan —— . (3‘13)
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Figure B-3. Components of the Mirror Normal
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EXPERIMENTAL DATA
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APPENDIX D

COMPREHENSIVE LIST OF ASSUMPTIONS

Page 40: Deformations are reversible. An elastic

strain-energy function exists.

Page 40: The stresses are linear functions of the

strains.

Page 44: The fluid pressure is independent of the

state of tissue strain.

Page 48: The parallel fibrils are randomly diSposed.

Page 48: The lamella is macroscopically homogeneous,

and geometric symmetry implies elastic symmetry.

Page 55: The individual lamellae of the stroma are

identical.

Pages 60 & 61: Classical homogeneous plate theory assump-

tions are in force; that is, normals of the middle-plane of the

plate before bending and stretching are deformed into normals

of the middle-plane after bending and stretching, and transverse

shearing and normal forces have negligible effect on the bending.

Pages 66‘& 68: The St. Venant boundary regions of the

uniaxial tensile test and torsion test are neglected.

Page 68: The torsion test diSplacement U is only a

3

first-order approximation. Only the shear stresses are nonzero,

and these are uniformly distributed along the length of the

Specimen.
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Page 71: In the uniaxial strain test, "edge effects"

at the periphery of the Specimen have negligible influence at

the plunger.
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