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ABSTRACT

THE CORNEAL LAMELIA ANISOTROPIC ELASTIC
CONSTITUTIVE REIATION: THEORY AND EXPERIMENT

By

Gerald Warren Nyquist

The structure of the corneal stroma of the higher
vertebrates renders it a fascinating example of an anisotropic
heterogeneous tissue, and the extreme geometric regularity of
the stroma enables realistic analytic modeling of the three-
dimensional stress-strain relation.

An analysis of the fluid pressure in the stroma
indicates that a simple elastic continuum theory must be
abandoned in favor of a mixed-media theory, which enables the
tissue to be treated as a fluid-impregnated elastic continuum.
The stroma is modeled as a superposition of a large number of
randomly-oriented identical linearly-elastic transversely-
isotropic layers, and it is shown that anisotropic heterogeneous
plate theory may be used to relate the load-deformation pro-
perties of the complete stroma to the elastic properties of an
individual layer.

The analytical treatment indicates that laboratory
experiments are feasible which give results enabling some
numerical information to be associated with the elastic con-

stants of the constitutive model. Complete experimental data



Gerald Warren Nyquist

for fresh pig corneas are included, and details regarding the
test equipment and procedures are presented. Pertinent
experimental results are that the load-deformation properties
are linear for the range of stress representative of intraocular
pressure loading, and uniaxial tensile strips of stroma exhibit

a Young's modulus of 66.3 gm/mm2 and a Poisson's ratio of 5.9.
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INTRODUCTION

The structural complexity of the corneal stroma of
the higher vertebrates renders it a fascinating example of an
anisotropic heterogeneous viscoelastic tissue, and the extreme
geometric regularity of the stroma enables realistic analytic
modeling of the three-dimensional stress-strain relation. The
combined results of theory and experiment enable some numerical
values to be associated with the material constants of the pro-
posed stress-strain constitutive law.

The elastic properties of the cornea have received little
attention from researchers to date, even though measurements
made by the ophthalmologist in diagnosing a major cause of blind-
ness (glaucoma) are dependent on these properties. Glaucoma
is characterized by an abnormal elevation of the intraocular
pressure, and the aforementioned measurements give an indica-
tion of the pressure by means of the techniques of tonometry
and tonography, which are dependent on the elastic response
of the cornea.

The above reference to glaucoma and the associated
pressure-measuring techniques was made to aid in justifying
this study of the elastic properties of the stroma. No
further comment on the glaucoma problem will be made other

than to point out that tonometric and tonographic procedures



in common usage are known to produce inexact indications of
intraocular pressure.

Recently the possibility of correlating measurements
of the temporary stress-dependent birefringence (double-refrac-
tion) of the stroma to the intraocular pressure has been the
motivating force of several research efforts. The goal is to
develop a purely optical technique for clinical pressure
measurement. A feasible technique is yet to be developed, and
a knowledge of the stress-strain properties of the tissue is
a necessary prerequisite to a complete understanding of the
stress-dependence of stromal birefringence.

The research of this Thesis is of a bioengineering
nature, heavily weighted toward engineering. Whereas the con-
tinuum mechanics theory presented would be difficult for the
medically-oriented reader, the brief presentation of the
anatomy of the eye in Chapter I will enable the engineering-
oriented reader to proceed with little difficulty.

After a short presentation of previous studies on the
mechanical properties of the cornea, a detailed analysis of
the characteristics of the aqueous fluid pressure in the tissue
is presented, and it becomes apparent that a simple elastic
cont inuum theory must be abandoned in favor of a mixed-media
theory which enables the cornea to be treated as a fluid-
impregnated elastic continuum.

It is shown that the corneal stroma can be modeled as
a superposition of a large number of transversely-isotropic

elastic layers. The layers are identical, but are randomly



oriented, and this leads to the use of an anisotropic heterogeneous
plate theory to relate the load-deformation properties of the
complete stroma to the elastic properties of an individual layer.

In the context of this Thesis, a "“simple test'" is de-
fined to be a load-deformation test of the stroma where the
stress and/or strain distribution may be evaluated without
requiring the solution of a full-scale boundary value problem
of the theory of elasticity. Three such simple tests are
developed - uniaxial tensile stress, torsion, and uniaxial
compressive strain.

Custom-designed test fixtures were fabricated for con-
ducting the above tests, and fresh pig corneas were used for
test specimens. Complete details of the laboratory experiments
and results are presented, and the analytical and experimental
results are combined to yield some numerical information regard-
ing the elastic constants of the constitutive model. The metric
system of units is generally adhered to, and force is expressed
in grams (a one-gram force is that due to gravity acting on a
standard one-gram mass).

The theoretical portion of the Thesis borrows heavily
from the research of others, and the formulation of the problem
would not have been possible without the mixed-media theory of
Biot and the anisotropic heterogeneous elastic plate theory of
Reissner and Stavsky (see Refs. 15 and 23). The combining of
the two theories to analyze the cornea is of course original,

as are all aspects of the experimental portion of the work.



It appears that this research constitutes the first
attempt to rigorously analyze the anisotropic elastic pro-
perties of the tissue, and it is hoped that the work will not
die at this point, but that the theory will enjoy improvements

by those who follow.



CHAPTER 1

ANATOMY OF THE EYE

The Eyeball

The anatomy of the eye of man and the domestic animals
is nearly the same with the exception of dimensional variations
among the species. The eye is most simply described as a layer
of light-sensitive tissue (the retina) held in shape by surrouni-
ing coats of tissue which protect it (the sclera and cornea)
and nourish it (the choroid). Further, the retina is served
by an optical system consisting of a lens of variable aperture
(the latter feature being the function of the iris) positioned
behind a transparent anterior extemsion of the sclera known as
the cornea. The cornea, in addition to its role as a structural
member and protective shield for the intraocular structures, is
a vital part of the optical system. The bending of light rays
due to passing through the cormea is several times greater than
the same effect experienced while passing through the lens. The
configuration of the eye is shown in Figure I-1.

Although the eye is commonly referred to as a ball or
globe, it is not a true sphere, but consists of the segments
of two nonconcentric somewhat modified spheres.2 The structural
tissue of the posterior spherical segment is the white, opaque

sclera. Viewing a horizontal section through the eye, the sclera
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accounts for approximately five-sixths of the circumference of
the eyeball. The remaining anterior one-sixth of the circum-
ference (the cornea) is the segment of a sphere of smaller
diameter. The sclera and cornea together are referred to as

the fibrous tunic. Although the sclera and cornea appear to

be composed of basically different types of tissue (since one

is white and opaque whereas the other is clear and transparent),
the transition from sclera to cornea (known as the limbus) is

of a continuous nature.

The fibrous tunic is the outer coat or structure of
the eye that houses and protects the delicate inner structures.
In conjunction with the intraocular pressure the fibrous tunic
gives the eyeball its resilience and definite shape.

Two fluids within the fibrous tunic are the mediums
through which the intraocular pressure is realized. The
vitreous humor, which fills the region posterior to the lens,
is a clear gelatinous liquid having no provision for reproduc-
tion in the event of loss. The aqueous humor is a water-like
liquid produced by the ciliary process. It flows through the
posterior chamber (the region between the iris and anterior
surface of the lens) and pupil into the anterior
chamber (the region between the iris and posterior surface of
the cornea). The fluid exits through the "angle'" of the
anterior chamber into the canal of Schlemm which carries it

away via the venous pathways.



The Cornea

Since the cornea and sclera are of a continuous nature
and together make up the fibrous tunic, a few remarks regarding
the structure of the sclera will be made prior to a detailed
description of the corneal structure. Strength is imparted to
the fibrous tunic by tightly packed collagenous connective
tissue fibers along with "elastic" fibers in much smaller numbers
and a relatively few stroma cells.

In the sclera the collagen tissues are arranged into
lamellae, or broad ribbons, which interweave in intricate
strength-increasing patterns.3 The sclera is thinnest at the
equator and becomes progressively thicker anteriorly and
posteriorly. The outer layers of the sclera are loosely woven,
especially anteriorly, this soft material being known as the
episcleral tissue.

The corneoscleral junction, or limbus, is approximately
0.75 to 1.0 mm in width, and is easily recognized as the thin
transitional region along the periphery of the cornea where the
change from opaqueness to transparency occurs. The scleral
lamellae pass through the limbus, the dramatic change from
opaqueness to transparency being caused by changes in their hydra-
tionand in the orientation of the microscopic structural elements.

The cornea is virtually a continuation of the sclera,
but has greater curvature and a more methodical arrangement
of its fibrous structure. The limbus is not always completely

circular, but varies slightly among the species. Typical



variations from a circle are the ellipse and pear-shape. The
cornea is classically divided into five distinct anatomical
layers lying parallel to the surface (see Figure I-2). Start-
ing anteriorly, the layers are:

1) epithelium

2) Bowman's membrane

3) stroma (or substantia propria)

4) Descemet's membrane

5) endothelium.

A brief description of each of the above layers follows.
Dimensions for both man (Ref. 3, pp. 290-302) and the pig (Ref.
1, pp. 217-218) are cited. This Thesis deals specifically with
the pig cornea; however, for convenience of comparison the
dimensions in man are also given.

The epithelium, built up of many layers of cells, accounts
for about 10 per cent of the corneal thickness. There are 5
or 6 layers in man and 6 to 8 layers in the pig. The posterior
layer is formed by basal cells which are columnar and closely
packed. The middle layers are made up of '"wing cells" which
become increasingly flatter, thinner, and wider until the
anterior layer is reached. The first few anterior layers con-
sist of flat, overlapping squamous (scaly) cells.

Bowman's membrane4 is 10 to 13 microns thick in man and
not more than 2 microns thick in the pig. The anterior surface
is smooth, but the posterior is rough due to projections from
the membrane, called arcuate fibers, into the stroma. Pores

in the membrane allow passage of nerve fibers from the
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Figure I-2, Transverse Section of the Cornea

(Reproduced with permission from Ref. 2)
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epithelium. Bowman's membrane is often referred to as a
modified layer of the stroma due to its structural similarity.
Since the stroma makes up the majority of the corneal
thickness, is structurally of primary interest, and has a com-
plex structure, the description of this layer is presented in
considerable detail. The stroma or "substantia propria' makes
up about 90 per cent of the thickness of the cornea. The
literature is rather inconsistent in the terminology used in
describing its structure. Upon studying a number of the
morphological descriptions based on conventional, polarized
light, and electron microscopy, the following description
seems to be representative.
The stroma of the cornea is composed of thin sheets
of tissue called lamellae which are stacked one upon another
to form a laminated structure composed of approximately two-
hundred layers. Each lamella has a fibrous structure, and the
elemental structural unit is the fibril, predominantly composed
of collagen. The fibrils of a given lamella are parallel to
one-another and to the surfaces of the sheet; however, the
fibril directions of adjacent lamellae through the thickness
of the stack are randomly oriented.s’6 The fibrils may be
assumed to run uninterruptedly from limbus-to-limbus.
The fibrils are known to have a circular cross-
seéction of constant diameter along their length, varying be-

O%
tween approximately 190 A and 340 2,3 and reportedly

* O 10 ©
A denotes the Angstrom unit of length. (10) ~ A = 1 meter.
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independent of age. The distance between adjacent fibrils is
near the same order of magnitude as this diameter, and the thick-
ness of a lamella may be taken as approximately two micronms.

Isolated fibrils separated with a minimum of preparation
are coated with a sheath of amorphous material that requires
vigorous chemical or physical treatment for removal. Analysis
of lamellar fragments indicates that the fibrils are embedded

within this "ground substance'" to the extent that their in-

dividual outlines are nearly indiscernible.3

The above description of the stroma, using two structural
levels (fibril and lamella) and assuming the lamellae are con-
t inuous flat sheets stacked one-upon-another, simplifies the
exact picture to some degree; but to the writer seems repre-
sentative of the structure, and is concise and unambiguous.

Additional terms used in the literature are zone, fiber,

and band. 1In accordance with the convention of Naylor,5 a zone

is simply the region of the stroma occupied by a given lamella.

Following the recommendations of Nalylor5 and Maurice,3 the term

"fiber" is to be conveniently used to denote bundles of parallel

fibrils of arbitrary size, one fiber always comprising the full
thickness of a lamella. The term "band" is not as concisely

defined. The lamellae, particularly near the anterior surface
Of the stroma, are not of a perfectly continuous nature in the

direction perpendicular to the fibers, but are composed of

Beveral individual bands3 (a band is at least three mm wide).

The nature of the transition between bands is not well under-

Stood, and photomicrographs indicate that there is a localized
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variation in fibril density, giving the impression that the
lamella is composed of individual bands.

The above description of the structure of the stroma
holds for all of the higher vertebrates, however there is some
variation among the species, and the structure in mammals is
said to lack this extreme regularity somewhat. An electron
micrograph showing the lamellae and fibrils of a well-organized
area of the stroma in man is shown in Figure I-3.

The next anatomical layer is Descemet's membrane.

This membrane is a sheet which bounds the inner surface of the
stroma, from which it is easily separated. The membrane is

5 to 10 microns thick in man, and 8 to 15 microns thick in
the pig. Structurally, Descemet's membrane consists of a
superposition of a large number of sheets of a meshwork which
lie parallel to the surface.

The final (posterior) layer of the cornea is the
endothelium. This is a single layer of flattened cells,
having a thickness of approximately 4 or 5 microns in man and
the pig.

Regarding overall dimensions of the cornea, for man3
4 mean value of the thickness at the central position is 0.55
mm. The radius of curvature of the anterior surface is 8.0 mm,
And the corneal diameter (i.e. greatest chord) is 11 mm. For
the Pigl, the central corneal thickness is given as slightly

less than 1.0 mm. The radius of curvature of the anterior



Figure I-3.
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One
lanella

Well-Organized Section of the Stroma in Man

(Reproduced with permission from Ref. 3)
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surface is 10 to 11 mm, and the corneal diameter is 17 to 19 mm
horizontally and 14 to 16.5 mm vertically (the pig limbus is
somewhat pear-shaped).

Coulombre7 indicates that since collagen has a high
tensile strength, the stroma will determine the structural
properties of the cornea, such as its response to mechanical
distortion. The stroma is an unusual material from the stand-
point of its shear rigidity. If a surface-parallel disc is cut
from the laminated stroma and held between the thumb and index-
finger, one can easily observe that over limited but quite large
shear displacements the rigidity is quite small. According to
Maurice (see Ref. 3) this is due to the properties of the matrix
of ground substance in which the fibrils of the lamellae are
embedded. He reports that it is impossible for the tensile force
in a fibril to be dissipated into adjacent fibrils by means of
shear stresses.

Since swelling of the excised cornea is a persistent
problem, some comments on the hydration properties are in order.
One may refer to pages 307 and 322 of Ref. 3 to obtain an

introduction to this topic and a number of references to research
papers. If the cornea were freely permeable to fluids, then one
could expect considerable loss of aqueous humor due to diffusion
through the stroma and evaporation at the anterior surface (tear
evaporation is known to be of considerable magnitude); however
this does not occur. The processes involved are currently not
fully understood. Experiments have shown that the barriers to

salt passage are the epithelium and endothelium, and that
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substances which do not pass through the stroma have very large
molecules (proteins and congo red are examples) or are insoluble
in water.

The stroma of the in vitro or excised cornea has an
affinity for water. When immersed in aqueous solutions it will
absorb and hold water in large quantities. The hydration pro-
perties of excised pieces of cornea have been studied exper-
imentally with the conclusion that the amount of swelling is
not simply dependent on the osmotic pressure of the solution
in which the specimen is immersed. The degree of swelling was
found to be the same throughout a wide range of concentrations
of glucose, urea, glycerine, and even distilled water. The
cornea swells to the same extent in solutions of nonelectrolytes
as in distilled water. 1In salt solutions, however, the amount
and rate of swelling is dependent on the concentration.

It has been concluded that since the in vivo cornea
is in a deturgesced state, that it contains less water than it
is capable of imbibing, the hydration is controlled by some
mechanism which draws water out. The hydration is maintained
by a steady-state existing between water imbibed by the stroma
and water removed by some other process (this is though to be
asgsociated with the endothelium). One can expect that any dis-
ruption of the normal in vivo state of the cornea will affect
the steady-state situation; therefore it becomes important in
removing a test specimen of corneal tissue from the eye to

immerse it immediately in an appropriate liquid in order to



17

mitigate swelling. Viability considerations8 are of course
important in the case of transplants; however since the collagen
fibrils and ground-substance are not composed of living cells
this is of secondary importance in tests regarding mechanical
properties.

The normal corneal stroma consists of about 78 per cent
water by weight3, and the matrix of ground substance around
the fibrils is known to be heavily hydrated; however evidence
to date indicates that the fibrils themselves are essentially
free of hydration since no change of diameter is observed upon

desiccation.



CHAPTER II

PREVIOUS STUDIES OF CORNEAL ELASTICITY

A literature survey indicated that little quantitative
information is available regarding the elastic properties of
the cornea. There has apparently been no methodical theoretical
and/or experimental treatment of the anisotropic elastic pro-
perties of the lamella.

Stanworth9 made a brief study of the load-elongation
properties of the cat cornea as part of his classical work
dealing with corneal birefringence, and a treatise on the
mechanical behavior of the cornea intact with the in vitro
eyeball has been presented by Schwartz10 which includes both
theoretical and experimental aspects of the problem. Nyquist6
has studied the viscoelastic properties of uniaxial tensile
strips of cornea and concluded that the response of the cornea
to an applied stress includes instantaneous and retarded (time
dependent) elastic components.

Stanworth's work consisted of load-elongation measure-
ments on the cat cornea with a constant loading rate of 125
grams per minute. The test specimens consisted of cleanly cut
strips of cornea 1.5 mm wide with a small length of sclera re-
maining at each end. The specimens were obtained from fresh

cat eyes by means of a double-blade knife. Artery forcepts

18
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were used to clamp to the sclera at each end of the test strip,
and were fixed to two pillars, the distance between which could
be altered by means of a screw arrangement. The distance be-
tween the tips of the forceps was used as a measure of the
elongation, and was measured to 0.1 mm by means of a fine
pointer moving over a scale observed through a magnifying glass.
Loads were monitored by means of a recording device.9

A load-elongation curve is presented, and Stanworth
points out that it approaches a straight line only for rel-
atively large loads and elongations, and that for this range
Young's modulus of elasticity is approximately 1800 gm/mmz,
or 2560 psi.

The research of Schwartz was confined to a study of
the intact cornea with the intraocular pressure in force.
Loads were applied to the anterior cormeal surface through a
small disc or indenter in a manner similar to that used in
tonometry. A theoretical analysis is presented which includes
the solution for the constraint of a thin, shallow, spherical
shell (the cornea) by a flat plate. The experimental study
investigated the rheology of the intact cornea with particular
emphasis on its compliance with the requirements of the
Boltzmann superposition principle. It is concluded that the
corneas of the human and pig behave as linear viscoelastic
solids.

Nyquist studied the stress-strain-time properties of
the pig cornea, and tested long strips of stroma in tension.

Stxesses were applied using dead-weight loads, and the resulting
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strains at midlength of the strip (the central cornea) were
recorded by means of photomicrography. Constant loads were
suddenly applied, and the strains were measured as a function
of time (creep test). Testing strips cut at various orienta-
tion angles (i.e. various rotations with respect to an axis
normal to the plane of the surface of the cornea) indicated
that the uniaxial tensile properties were independent of
orientation, which supports theories of random orientation of
the stromal fibrils.s’6

The response of the cornea to an applied stress includes
instantaneous and retarded (time-dependent) elastic components.
Figure II1-1 shows typical results for a uniaxial tensile creep
test (constant nominal stress suddenly applied), and.Figure
II-2 shows the instantaneous and steady-state stress-strain
curves generated by conducting a series of creep tests. It
can be seen from Figure II1-2 that for the phsfiological range
of stress (say less than 10.0 psi) the stress-strain relation
may be approximated quite well by a straight line, whereas non-

linearity cannot be neglected over an extended range.
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CHAPTER III

PRESSURE DISTRIBUTION OF
THE INTRACORNEAL FLUID

Theoretical Considerations

The fluid pressure equilibrium within the cornea
evaded understanding until quite recently, and some of the
details are still unclear. Several research programsu’lz’13
since approximately 1940, culminating with the work of Hedbys,
Mishima, and Mauricel4 in 1963 led to the currently accepted
description of the fluid pressure phenomenon. A complete
summary of the research would be lengthy, therefore only the
results necessary for an understanding of the mechanism
regulating pressure and swelling within the cornea will be
considered. Some details must be added in order to present
the Ophthalmologist's conceptually-correct descriptions in
engineering terms (i.e. using a mathematical framework).

A number of variables must be defined, and fortunately,
a fairly standard terminology has evolved. Pressures are
reckoned from atmospheric (i.e. gage pressures), and a positive
pressure implies a negative stress as usual. The variables

are as follows:

23
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Variable Symbol
Fluid pressure Pe
Imbibition pressure Pi
Osmotic pressure P0
External pressure Pe
Mechanical pressure Pm
Swelling pressure Ps
Tissue pressure Pt

A "button" cut from the stroma (full thickness of the
cornea, but with epithelium, endothelium, and Descemet's
membrane removed) is shown schematically in Figures III-1(a)
and III-1(b). The button may be assumed circular with a
diameter d, and to have a thickness h normal to the plane
of the cornea. In Figure III-1(a) only an external pressure
Pe is acting, whereas in Figure III-1(b), in addition to the
external pressure, there is a mechanical pressure Pm exerted
by porous rigid plates. Details of the state of equilibrium
across the (circumferential) side surface is not clearly under-
stood, but this need not be considered if d/h >> 1, and only
pressure equilibrium in the direction normal to the plate of
the stroma is considered. Rigorous justification for this
approach is lacking, but the success of the resulting analysis
in explaining all experimentally observed phenomena is con-
sidered justification enough. Publications to date seem to
have overlooked this matter entirely.

The fluid pressure Pf is the hydrostatic pressure of
the aqueous solution within the stroma. It is the sum of two

separate components; the osmotic pressure PO caused by solute
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molecules and ions (Po includes the Donnan effect) in the tissue,
and the imbibition pressure Pi which results from capillary
action in the fibrous structure. Pi is a negative pressure

(An analogous case which is easier to comprehend is the capillary
rise of water in a glass tube, where the pressure just below the
meniscus is negative). The fluid, osmotic, and imbibition pressures

are related as follows:

Pf = Po + Pi. 3-1)

The lamellae of the stroma are normally compressed in
the direction perpendicular to the plane of the surface, and the
tissue pressure Pt is a measure of this compression. The
release of this compression is the mechanism by which the stroma
swells, and may be thought of as being analogous to the elonga-
tion of a compression-type spring as its load is decreased.

To properly analyze the system of pressures acting in
the lamellae it is necessary to introduce the notion of porosity
as used in the theory of elasticity of a porous solid.15 At
any given state of hydration of a lamella let the total (bulk)

volume be denoted by V and let the fluid volume (i.e. the

b,
pore volume) be denoted by Vp' Then the porosity f is de-

fined by the ratio
f=v /v . (3-2)
p b

For a homogeneous anisotropic material (a lamella is considered

macroscopically homogeneous) the porosity is also the ratio of
the pore cross-sectional area to the bulk cross-sectional area

of any plane section, regardless of its orientation.
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The tissue pressure Pt is defined as the force per
unit bulk cross-sectional area exerted by the tissue owing to
its compressed state. In contrast, the fluid pressure Pf,
osmotic pressure P, and imbibition pressure Pi are defined
as forces exerted per unit cross-section of pore area. These
values (Pf, Po and Pi) must be multiplied by the porosity
f if they are to be reckoned per unit bulk cross-sectional
area. Hypothetical experimental pressure measurements (say
with a small cannula and manometer) would yield values of Pf,
Po, and Pi’ whereas in a procedure of adding or equating
pressures from various sources one must use fPf, fPO, and
fPi' The factor f is only necessary when dealing with
"intratissue'" fluid pressures.

Suppose the stromal button of Figure III-1(a) is
hydrated so as to have some thickness h, and is immersed in a
non-imbibable medium at a positive hydrostatic (external)
pressure Pe. Then normal-stress continuity at the boundary

requires

= fP_+ P
Pe Pf t’

and using eq. (3-1) this becomes

Pe = f(P0 + Pi) + Pt.

With reference to eq. (3-4), it is experimentally
feasible to hold Pt and P0 constant while varying P
and measuring P;. It has been shown16 that the thickness h

of the excised cornea varies linearly with hydration (weight

per unit dry weight), therefore if the state of hydration is

(3-3)

(3-4)
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fixed, the thickness remains constant. This in turn implies
that the tissue pressure Pt remains constant. Since the
osmotic pressure Po is primarily a function of the tissue
chemistry and microscopic geometry, it also can be assumed
independent of Pe when h is fixed.
The above discussion indicates that when a non-

imbibable immersion medium is used, Pi is linearly related
to Pe through the constant f, and for incremental changes

one can Wwr ite
= f P .
AP A .

letting the increments tend to zero, it becomes apparent that

an alternate definition for the porosity £ is

3P
= ——e -
f (3Pi)h (3-5)

where the subscript h indicates that the derivative is
evaluated for some constant hydration (thickness).

A similar analysis may be made in the case of Figure
II1-1(b), however the mechanical pressure Pm exerted by the
porous plates must be taken into account. Continuity of the
normal stress at the boundary between the plate and the tissue

requires

f.Pp + P =fP
e m

1 + Pt (3-6)

f
where f1 is the porosity of the plate and Pm is reckoned
per unit bulk area of the plate. Applying eq. (3-1), eq. (3-6)

becomes

£P +P =f(P +P)+P. (3-7)
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By definition the swelling pressure Ps is the equilibrium

value of the mechanical pressure Pm. Thus from eq. (3-7),
Ps = f(PO + Pi) + Pt - flPe. (3-8)

A common test condition has been the case where Pe is zero
and the immersion medium is imbibable. The pressure P_ re-
quired to maintain the plates at various distances h apart
is measured, and the data are plotted in the form of a swelling

pressure versus hydration curve. Such a curve is a measure of

the relation
Ps = [f(Po + Pi) + Pt] = g(h) (3-9)

where g(h) 1is some function of the stromal thickness h
and is dependent on the type of immersion medium used.

Now, analogous to the analyses of Figures III-1(a)
and (b), consider the pressures acting on the cornea in situ,
where the intraocular pressure is in force on the posterior
surface and the anterior surface is at aEmOSpheric (zero)
pressure. The situation is shown schematically in Figure III-2
(curvature has been neglected for the moment). Let the intra-
ocular pressure be denoted by P, , the subscript "a" being
associated with "anterior chamber."

In this case two different equations result when con-
tinuity of the normal stress is required at the two surfaces.
Let subscripts A and P denote the anterior and posterior

surfaces respectively. Then at the posterior surface

Pa = (fPf + Pt)P’



30

Normal Stress

v‘%&i‘_‘ear Seoe

POS[(\,- ;Ol‘

Avteito
’ (Zero rreooars’

Fiwire T7.-2, Schematic Loading Diacvar: -7 t7e To Sit. (ornea



31
whereas at the anterior surface
0= (fPf + Pt)A'

Eq. (3-1) is still applicable, therefore

la°)
"

f(Po + Pi)P + (Pt)P (Posteriorally)
(3-10)

o
I

£(P +P) + i
(P A (Pt)A (Anteriorally)

Mauricel7 has proposed a model which enables both of
eqs. (3-10) to hold. This is reproduced in Figure III-3.
Curvature of the cornea is taken into account, and the function
of the limiting layers (epithelium and endothelium) becomes
important. Maurice's variable S is the imbibition pressure

Pi' He explains the model as follows:

"The ground substance is shown enmeshing the collagen
fibrils at the bottom right, but its expansile com-
ponent is represented functionally, upper right, by
compressed springs. The tension (T) of the indi-
vidual fibrils creates a centrally directed pressure,
rising cumlatively from the outside to the inside

of the stroma, where it is balanced by the intra-
ocular pressure. This would compress the ground
substance unevenly across the thickness and cause

a displacement of the majority of the fibrils to-
wards the endothelial surface. The endothelial

pump meachanism (P), however, maintains a suction

(S) in the stromal tissue fluid. The suction acting
on the epithelial and endothelial surfaces tend

to establish a uniform compression of the ground
substance across the thickness. This braces the
fibrils apart, giving them a more equal distribution
and leading to the formation of a regular lattice

on which the transparency of the tissue depends.

The compression of the ground substance is manifested
as the swelling pressure, 60 mm. Hg, when fluid is
allowed free access to the stroma."



Figure 1I11-3. Maurice's Proposed Scheme of
Pressures Within the Cornea

(Reproduced with permission from Ref. 17)
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Pressure Distribution Experiments

The most common type of experiment has been the measure-
ment of swelling pressure as a function of hydration,u’lz’13
the general scheme of Figure III-1(b) being used and eq. (3-9)
being applicable. Swelling pressure versus hydration curves
are, however, not of great use in validating the theory pre-
sented in the previous pages. More pertinent information in
this respect is given by the work of Hedbys et a114 where intra-
tissue measurements of the imbibition pressure Pi were made,
both in vitro (steer cornea) and in vivo (rabbit cornea) using

a cannula and pressure transducer with pen-recorder output.

In vitro tests were performed under conditions for which eq.
(3-4) is applicable, and Pe was zero. Pi was recorded as

a function of thickness h and the thickness measurements were
converted to hydrations using a steer eye thickness versus
hydration curve previously established.13 It was found that

this data gave the same curve as obtained when plotting the

negative of the swelling pressure P, as a function of hydra-

tion, conditions being those under which eq. (3-9) is applicable.

This correlation is shown in Figure III-4. 1In short, this can
be summarized by saying that for equal hydrations
P |noninbibite = ~Ps|imbivible *
fluid fluid
In vitro tests were also performed which may be
analyzed using Figure I11I-1(b) and eq. (3-8). 1In place of

the porous plates shown in the figure, a glass plate was used

(3-11)
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on one side, and a pressurized rubber balloon on the other
side. The stroma was compressed by increasing the pressure
in the balloon. The glass and rubber may be assumed nonporous,

therefore f1 is zero in eq. (3-8), and the swelling pressure

PS may be taken equal to the balloon pressure (P,

b). Eq. (3-8)

becomes

B =P =f(P +P)+P. (3-12)

Pi was measured using a cannula and pressure transducer, and

it was found that increments in Pb and -Pi were nearly

equal (for a positive increment of Pb the magnitude of the

negative imbibition pressure Pi decreased). The correlation
diminished as Pb increased, the magnitude of APi being
smaller than those of AP .

Complete information for analyzing this test is lack-
ing. No data has been presented regarding the thickness (hydra-
tion) variation with Pb; therefore, with reference to eq. (3-12),
it is not known to what extent Pt varied during the test. It

is reasonable to assume that f and P0 are constant with

respect to small fluctuations in P

b therefore from eq. (3-12)

one can write
APb = fAPi + APt' (3-13)

The thickness must have decreased somewhat as Pb increased,

and therefore some positive value of APt was present in eq.

(3-13), which may be written as

=1 - -
AP, = f(APb APt). (3-14)
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It was pointed out at the end of Chapter I that about
78 per cent, by weight, of the corneal stroma is water. 1In
addition, it is easily observed that stromal specimens are
heavier than water, therefore the per cent of water by volume
is greater than 78 per cent. This implies that the factor
(1/f) 1in eq. (3-14) is of the order of unity and therefore
indicates that values of APi smaller than AP , as observed,
are in fact fully justified, since it is likely that APt was
not negligibly small,

Measurements of the imbibition pressure in vivo in the
rabbit cornea14 showed the same general trends as the tests in
vitro. The magnitude of the imbibition pressure in vivo was
found to be less than that in vitro, at the same hydration, by
an amount comparable to the magnitude of the intraocular pressure.
Assuming that f and P remain constant for small changes

in the intraocular pressure Pa’ eqs. (3-10) give
aP, = f(APi)P + (APt)P (Posteriorally)
(APt)A = -f(APi)A (Anteriorally).

Recalling that f is nearly unity, it becomes apparent that

the observed correlation between APa and APi implies that

as Pa is increased, Pt near the posterior surface remains

nearly constant whereas near the anterior surface Pt decreases.
In all cases, both in vivo and in vitro, it was found

that the imbibition pressure did not vary with position in the

stroma, either in the anterior-posterior direction or with

distance from the limbus. The research showed that the stroma
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exerts its full tendency to swell under normal (in vivo)

physiological conditions and that the reason swelling does not
take place as a result of slow absorption of the aqueous humor
is due to an active transport mechanism continuously '"pumping
down'" the stroma. This mechanism is thought to be located in

the endothelium (see Ref. 3, p. 334).



CHAPTER IV

THE STRESS-STRAIN CONSTITUTIVE
RELATION FOR A SINGLE LAMELIA

Introduction

In order to obtain relations between the components
of stress and strain in a lamella it is necessary to formulate
a mathematical model which describes the material. The pre-
vious chapters make it clear that the lamella is not a simple
elastic continuum. It may be treated as a mixed-media prob-
lem; more specifically, as a binary mixture composed of a
porous elastic solid (or "elastic framework') containing an
incompressible viscous fluid. This is a special case of the
same problem with a compressible fluid, and Biot15 has gen-
eralized the classical theory of elasticity to cover such a
material.
Formulation of General
Anisotropic Equations
Consider an elastic framework with a random distribu-
tion of interconnected pores. Let the porosity f be defined
as in the previous chapter; that is

\ A
f = i]-E = —E (4-1)
b

%

where Vp and Ap are the volume and cross-sectional area

38
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of pores contained in a sample of bulk volume Vb and bulk
cross-sectional area Ab (For a macroscopically homogeneous
anisotropic material f is independent of location and cross-
section orientation).

Consider a unit cube (i.e. having edge lengths of unity
and consequently face areas of unity) of the bulk material
having edges parallel to orthogonal rectangular cartesian
reference axes X 9%,5 and Xq. Let g represent the normal
tensile force on each face of the cube due to the stress in

the fluid. Then if p is the hydrostatic pressure of the

fluid one can write
o = -fp. (4-2)

In a similar manner let oij denote the forces applied to the
solid part of the cube faces where, in the usual manner, sub-

scripts i and j corresponding to x; and xj denote the

directions of the normal to the cube face, and the line-of-
action of the force respectively (i,j =1,2,3). No couple

stresses are considered, therefore = Oji’ and the total

ol'.j

stresses Tij are components of a symmetric second-order tensor

as follows:

(o13%0) oy, 013
Tig S| %12 (10 oyy |
013 093  (o33%0)

Let displacements of the solid and the fluid in the

directions (xl,xz,x3) be denoted by (ul,u and

27U3)

(vl,vz,v3) respectively. Assuming small displacement gradients,
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the solid strains eij and fluid strains eij are defined

by the relations

=1(3”_i+a_“.1)
€ij ~ 2 % 3%

’ 3
v, av (4-3)
eij =-%C;;? + S;% .
In each case the strains are components of a symmetric second-
order tensor.
The constitutive equations relating the above stresses
and strains may be established by generalizing the procedure
used in classical elasticity. Let it be assumed that the
deformations are completely reversible and that an elastic
potential, or strain-energy function V exists such that
o.. = a¥
ij aeij
.- W 4-4)
o€
where
€ = ey T ey toegse

Such a material is said to be "hyperelastic'". 1t is further
assumed that the seven stress components (cij and o) are
linear functions of the seven strain components (eij and ¢);
therefore the elastic potential V 1is a quadratic function

of the strains.

Let the following stress and strain notation be used

for convenience:
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9" 11 17 °1n
9y = 9y €)= 2
03 T 933 €3 T €33
% = %23 ®4 = %23
95 = 913 ®s = 13
% - 912 ®6 = 12
07 =0 e7 =€

Then the quadratic elastic potential V has the general form

vV =2C, + Cjej + cl'%eke{' (G,k,2 =1,2,...,7)

where the C's are material constants. Expanding the right

hand side of this equation and defining

c,, =C! +¢

kg ke, Lk
yields
v=Cc +C,e; +---+C +=C e2 Gt 1 C e2
o 171 7%7 T2 1151 2 “97%7

+ Cppeq8p to oot Cpgeqey
+ C23e2e3 +--- 4 C27e297
+ C34e3e4 +. -4 C37(-3c7
* Cyseues +oor ot Cupcycy
+ CS6e5e6 + C57e5e7
+ C67e6e7 . (4-5)

Insertion of eq. (4-5) into (4-4) gives



42

(o1] (€] [C11 2 ©3 S S5 Ci6 S17)[%1]
o | %] |%2 %2
o3| |C3 €13 e3
ol = C4 + Cl4 (symmetric) e | - (4-6)
s C5 C15 . e5
Cg C6 C16 E ec
| 97 LCL LC17 cees oo C7L Le7_J

This is the most general form of the stress-strain constitutive
relation. It differs from that given by Biot in that the con-
stants C1 through C7 have been retained. This retention
allows a reference configuration (ei = 0) where the stresses

are not identically zero (Additional comments will be made in

the following section).

1 for i = j )
The total stresses Tij (Tij = oij + géij; Gij = 40 for i # i

N

of the bulk material satisfy the equilibrium equations

a = -
axj(oij + oéij) + pX, 0 4-7)

where p is the mass density of the bulk material and Xi is
the body force per unit mass in the positive xi-direction. Biot
goes on to show that substituting the displacement gradients

of eqs. (4-3) for the strains in the constitutive relation (4-6),
and using the result to eliminate the stresses from the equi-
librium equations (7), gives three equations in the six dis-
placements u, and vi. He introduces a generalized form of

Darcy's law to describe the flow of fluid in a porous material

and obtains an additional three equations in the displacements
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uy and v, (time derivatives are involved). There is, how-
ever, no need to work with the resulting set of six simul-
taneous partial differential equations in this Thesis.
Specialization of the General
Equations to the Lamella

The general applicability of the formulation presented
in the previous section was discussed in the Introduction of
this Chapter. Some correlation of the variables with those of
Chapter I1I, and additional specialization of the stress-strain
relation of eq. (4-6) must be considered. The use of a linear
constitutive equation also must be justified.

Figure II-2 indicates that the uniaxial tensile stress-
strain relation of the corneal tissue is inherently nonlinear.
For the restricted range of stress resulting from the intra-
ocular pressure (say up to 10 psi) the Figure tends to indicate
that linearity is a good approximation. It is reasonable to
generalize this indication and state that linearity may be
assumed regardless of the state of stress as long as the
stresses are restricted to be within the physiological rangec
(i.e. stresses caused by intraocular pressure). The correctness
of this linearity assumption will be established later in the
analysis and discussion of experimental data from fresh tissue
experiments.

By restricting the applicability of the proposed con-
stitutive equation to steady-state conditions and dealing with

only the quasi-elastostatic properties of the tissue, the
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viscoelastic effects (see Figure II-1) can be eliminated from
the analysis. The viscoelastic properties of the cornea
resemble those of a Voigt-element (spring and dashpot in parallel
combination). For a given applied load the final elongation
of a Voigt-element (after a large interval of time) is not
dependent on the presence of the dashpot; that is, the spring-
dashpot combination and thé spring alone have identical quasi-
elastostatic properties.

With regard to correlation of variables between Chapters
III and IV, the porosity f was defined in the same manner in
both chapters, and the hydrostatic pressure p of this Chapter
may be associated with the fluid pressure Pf, in the stroma,
defined in Chapter III. Thus from eqs. (3-1) and (4-2) one

can write

o = -fp = -fP; = -£(P, + P,) (4-8)

where Po and Pi are the osmotic and imbibition pressures
respectively. The elastic solid stresses Oy may be
associated with the tissue stresses of the lamella; that is,
the forces on the faces of a unit cube of lamella caused by
the stresses in the elastic solid part of the binary mixture.
The component of the tissue stress normal to the face of a
lamella is the negative of the tissue pressure Pt defined in
Chapter III.

The discussion in the previous chapter leads one to
assume that the fluid pressure Pf, as a first-order approxima-

tion, is independent of the state of tissue strain (el"""eﬁ)'
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This assumption is based on the notions that the osmotic pressure
Po depends on the solute molecules and ions in the tissue, and
the imbibition pressure Pi’ induced through capillary action,
depends on the gross geometrical structure and material con-
stitution. One can expect that none of these will change
significantly with (small) strain.

Recalling that o, = o and using eq. (4-8), the
independence of P

£ with respect to tissue strain implies that

in eq. (4-6)

and thus

fP_=C_ +
£ =% T8

from which

-1 -
P, = -(C, + Cooe). (4-9)

The variables Pf and ¢, however, are directly related through

the elastic bulk modulus K of the fluid by the relation

P_ = -Ke.
£ €

Comparing this equation to eq. (4-9) shows that C; = 0 and

C77 = fK. Thus the constitutive equation (4-6) may be written as
o = fKg¢ (4-10)

and
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(917 (C1'1 11 C2 CG3 G4 G5 C}67 (e1)
9 €y 12 < |82
k) = C3 + C13 e3 .
9 A C14 A
s Cs C15 2 |l &

| T L-C6J [Ci16 * - .o C66J Leg

Let the double-subscript indicial notation for the
total stresses Tij given by the matrix on page 39 be changed,
for convenience, to a single subscript using the same conven-

tion as in the gij-to-oi conversion on page 41; then

(M) (G [ G2 G3 % Gs Ge[er)

L% B 3 B o F ||

o |- CB-fPf + C13 ey | - (4-11)
T& C4 C14 4

Ts Cs C15 °5

T L C J LCg - 1 fesd e

In the Introduction to this Thesis it was pointed out
that this research is linked to the glaucoma problem, where the
increased intraocular pressure causes above-normal stresses in
the cornea. Let it be required that the constitutive equation
be applicable only for the range of stresses and strains asso-
ciated with the physiologically normal, and elevated intraocular
pressures; then the material behavior outside this range need
not be considered. Since eq. (4-11) is linear, the superposition

principle is applicable, and one can deal with the problem by
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reckoning the stresses and strains from the normal condition
(i.e., T, =0 = e, at the normal intraocular pressure).

Let the normal fluid pressure P_ be denoted by P

f fo;

then in order for the TS and e, to be zero simultaneously

eq. (4-11) requires that

and

and the constitutive equation reduces to

(M) (11 %2 %3 % Gs Geyfen)

Ty C12 . e,

5 [=] ¢ eq |- (4-12)
4 14 A

Ts €15 Dl

LT64 Lp16 e cos C66« Le64

Equation (4-12) may be simplified further using symmetry
arguments. Consider the geometric symmetry of the lamella.
The anatomy discussion of Chapter I showed that a lamella is a
sheet made up of parallel fibrils in an amorphous matrix.
The fibrils are parallel to the surfaces of the sheet, and the
sheet thickness is large compared to the diameter of an indi-
vidual fibril; also, the fibril spacing is near the same order
of magnitude as the diameter. Although some tests have given
vague indications of regularity of the fibril array (see

Ref. 3, pp. 320-322) there seems to be no strong evidence that
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the parallel fibrils are not randomly disposed, therefore
random disposition will be assumed in the following analysis.

The literature on the theory of fiber-reinforced
composites (see, for example, Refs. 18 thru 21) shows that in
a macroscopic sense the material may be treated as homogeneous
and anisotropic, and further that geometric symmetry implies
elastic symmetry.

Let rectangular orthogonal cartesian reference axes
(xl,xz,x3) be defined for a given lamella such that the

xl-axis is parallel to the fibril axis and the x,-axis is

3
normal to the plane of the lamella, having positive sense in
the anterior direction. Then the xz-axis is also in the
plane of the lamella, and is normal to the fibrils. An element
of a lamella is shown in Figure VI-1l., It is apparent that the
coordinate planes are planes of symmetry, and the xl-axis is
an axis of rotational symmetry.

The reduction of the number of independent constants
in the elastic constant matrix of eq. (4-12), using symmetry
arguments, proceeds as follows. First consider the X, = Xgq
plane of symmetry. Define a new set of axes (;1,§2,§3) by
simply taking the x

-axis in the negative x,-direction, the

1

other axes remaining unchanged. Therefore

1

= - d
13T iz T

13 12 = "T12°

That is,

and similarly



49
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e5 = -e5 and e6 = -e6.

All other stresses and strains remained unchanged. Since the
stress-strain constitutive law must hold for both coordinate

systems, from eq. (4-12) one can write

= ClSe +C,.e, +C,.e, +C,.e, + C..e. + C.. e

Ts 1 25%2 35°3 45%4 555 56%6

and

- = + C - - .
Ts = C158) ¥ Cy58y T C3585 ¥ Cp5e, = Coses - Coglg

Subtract the latter equation from the former to get

215 = 2Cggeg + 2Cg e

for arbitrary values of ey through e This requires that

4"

Using exactly the same procedure with the two expressions for

76 shows that

C16 = C26 = C36 = C46 = O-

Therefore the symmetric matrix of elastic constants reduces to

- D
Ci1 %12 C3 G4 O O
Cia Cp C3 G © 0
€13 Cy3 €33 G4 0 O
Cla Co4 C3p Gy OO
0 0 0 0 cy C
[0 0 0 0 g ey

which has 13 independent elements.

Now consider the x

1" %3 plane of symmetry. Define

new axes (;1,;2,§3) by taking the X.-axis in the negative

2
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xz-direction, the other axes remaining unchanged. Then
Trz = T3 and T2 = "Typ°
That is,
T = -T T o= -
Tl& 4 and 1‘6 "l'6
and similarly
e, = -e, and e6 = -e6.

All other stresses and strains remain unchanged. The symmetry

conditions have already been imposed on ;6 and é6’ but
using the previously established procedure on ;4 and 54
shows that

Clo = Co4 T C3 =G5 =0

and the symmetric matrix of elastic constants is further re-

duced to

- n
Ci1 S 013 0 0 0
C1a €2 C3 0 0 0
Cq3 023 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0

LO 0 0 0 0 C6Q

which has 9 independent elements.
Following the above procedure using the x| T X,
plane of symmetry gives no further reduction of constants;

however a rotation of 90 degrees about the xl-axis gives an

additional simplification. The 90 degree rotation places the
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ﬁz-axis along the positive x3-axis and the §3-axis along the
negative x2-axis. Then
T22 T 733 T12 T 13
T33 = T22 137 2
T23 = TT23 -
That is,
T, = T3 Te = s
3T Ts = e
Ta T Ty
and similarly
e, = eq e, = eg
e3 = ez e5 = -e6
e4 =-e, -

All other stresses and strains remain unchanged. Comparing
corrésponding expressions for each stress component expressed
in the two coordinate systems and simplifying using the above

expressions, shows that

Crp = C33
C12 = €13
Cs5 = Cee

and the elastic constant matrix has only six independent elements

as follows:



‘11 %2 C12
€12 €22 C23
€12 C3 Cp2
0O 0 0
o 0 o0
0 0 o
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0o 0
0o 0
0o 0
Chp O
0 Cq
0o 0

The final reduction of constants

an arbitrary rotation about the xl-axis.

rotation be

cosine of the angle

Then
ah

42

413

o

and define the direction

a4

)

223

between the positive

0

COS o

sin o

comes from considering

Let the angle of

cosine a,., as the
1]
;, and x, axes.
1 ]
ag, = 0 3
a32 = -sin ¢
333 = CcOS ¢ .

(4-13)

The stresses and strains in the rotated coordinate system may

be found by using the transformation equation for a second-

order tensor; that is

T
i

e..
1]

a..a, T
ik jo ki

a lkaJLek{, .

Expanding eqs. (4-14) and applying eqs. (4-13) yields the

following expressions:

A1 A A A A A
DN
WD WN

w
w

T

=T

T
T
T

T

11
12
13
22
23

22

cos o + T13

cos o - 112

sin o

sin o

cosza + T33 sinza + 2723 sin o cos ¢

2

(cos“y - si

nza) + (T

33~

T sin cos
22) @ @

8i 2 + [} 2 si s
n o T33 cOo8 o ¢23 i1n ¢ COS o

/

(4-14)

5 (4-15)
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The strains in the rotated coordinate system are found simply
by replacing the stresses in the above equations by their
corresponding strains. Converting the stresses and strains
to single-subscripted variables using the relations on page
41, and writing the expressions for the stresses in terms

of strains in both the original and the rotated coordinates,
it can be shown after applying eqs. (4-15) that in order for

the constitutive equation to hold in both coordinate systems

it is necessary that

Char, = (Cpy

- C .
23)
Therefore the final elastic constant matrix contains five

independent elements, and the constitutive equation takes the

following form:

rfiﬂ 'Cll 012 C12 0 0 0 T req
Ty C12 sz C23 0 0 0 e,
T4 | = €12 C23 Coo 0 0 0 ey | -
T, 0 0 0 (C22-Cz3) 0 0 e,
Ts 0 0 0 0 C55 0 eg
L6 _ 0 0 0 0 0 Cs5J @6

A material described by eq. (4-16) is said to have a '"plane
of isotropy'" normal to the xj-axis, and is referred to as
"transversely isotropic'". The corneal lamella, then, is

transversely isotropic with respect to the fibril axis.

(4-16)



CHAPTER V

LAMINATED PIATE ANALYSIS OF THE STROMA

Introduction

The formulation of a generalized plane-stress or plane-
strain elasticity problem using the transversely isotropic
stress-strain relation, eq. (4-16), developed for a corneal
lamella, is conceptually straight-forward. Unfortunately,
this is not the case for the complete stroma of the cornea,
which is a laminate composed of a large number of randomly-
oriented lamellae. It is reasonable to assume that the
individual lamellae are identical, therefore the same stress-
strain relation holds for each lamella in its own coordinate
system.

It is apparent that the stroma is heterogeneous, and
this is the stumbling-block in formulating the elasticity prob-
lem. Procedures for analyzing laminated anisotropic heterogeneous

plates and shells have been developed22’23’24’25

in recent

years largely as a result of the interest in using laminated
fibrous composite materials in aircraft structures (because
of their characteristically high strength-to-weight ratios).

One of these procedures is suitable for analyzing the stroma,

and is presented in the following section.

55
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Analysis of Laminated Anisotropic Elastic Plates

The problem formulation which might be referred to as
"classical," for the analysis of a laminated anisotropic elastic
plate subjected to bending and stretching, may be attributed
to Reissner and Stavsky (1961)23.

The formulation closely parallels that of classical
homogeneous plate theory, and the Kirchhoff assumption, that
normals of the middle-plane of the plate before bending and
stretching are deformed into the normals of the middle-plane
after bending and stretching, is used. An element of the
plate is shown in Figure V-1,

Let stresses Ty and strains e (i=1,....,6)
be defined in a manner analogous to that on page 4l1. Stress-

resultants and couples are defined as follows:

h/2
N, = T.dx aY
[h/Z 173

h/2 $
N, = 7.dx (5-1)
{h/Z 273

h/2
N = I T dx, =N =N J
h/2 6 3 21 6

h/2 |
M, = T.X.dx

h/2
M_= T.%,dx > (5-2)
2 [h/Z 2°3°73
h/2

M = T x,dx, = =M =M,. J
1
12 [h/z 67373 2 6
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Transverse shearing forces are defined as

h/2

Q, = T dx
1 J:h/Z >3
(5-3)
h/2
Q2 = ‘[hlz'\‘adx:s.
Classical plate theory gives the equilibrium relations

N
Ni,1 7 N,2 1

+ =
Ny, *Ng 1+ P 0

]
o
~

Ml,l + M6,2 = Ql (5-4)

My g ¥Mg 1 -Q =0

Q%2 v =0

where the comma indicates partial differentiation with
respect to the direction indicated by the numbers is preceeds.
Pl’PZ’ and q are the body forces per unit volume in the Xy
and x, directions, and the distributed surface force per
unit area acting in the x3-direction.

Displacements of the middle-plane (x3 = 0) 1in the

X)s%ys and X4 directions are denoted by UpsUy, and ug

respectively and the in-plane strains are

J

+ x3K1

+ -
x3l(2 (5-5)

e =e +x3K6

(]
]

e

e, = e

ANANO NO =O

where

Y11
(5-6)

=u

2,2
= l(u + )
21,2 T Y21
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and KI’KZ’ and K are curvatures defined as follows:

6
K1 n
Ky =7¥3.22
Ke = 3,12

It should be noted that the shear strain ee is a component
of a second-order tensor, and represents half the angle-change
(vy4)-

The plane-stress generalized Hooke's law is used;
therefore the assumption of classical plate theory, that the
shearing forces Q, and Q2’ and the stress Ty produced by
q, have negligible effect on the bending, is in force (see
Ref. 26, p. 8l). Let the stress-strain relation be written

in the form

T E E E e

1 11 F12 By 1
T2 11 B2 B Eae | | %
76 Eie Eae Eeed L%

where it is understood that the E

ij
the plate is heterogeneous (the elements Eij of eq. (5-8)

vary with X4 because

will later be defined in terms of the elements C.

ij of eq.

(4-16) for the corneal lamella).

Substituting eq. (5-5) into (5-8) and the result into
eqs. (5-1) and (5-2) yields a constitutive relation between the
stress-resultants and couples and the middle-plane strains

and curvatures as follows:

G-7)

(5-8)
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N P P2 A16§ Biy Bip Bre) (1)
Nyl |21 222 A i By By Byg || €
N || 461 A6 Aee i Per Bea Pes || 6 |- ©-
Ml |B1r Bi2 Bis § D11 D12 Dy || ¥4
M, Byr Bay B é Dy1 D2 Dye || %2
(M LBe1 Bo2 Bes ! De1 o2 Pegd LK

The constants in the above 6 X 6 matrix are given by the

following relations (i,j = 1,2,6):

h/2 3\
Aij = J:h/ZEijdx3

h/2

h/2 2
Dij = {h/injx:;de . )

Equations (5-4) and (5-9) may be considered to be a
system of eleven equations in eleven unknowns (Ql,Qz,Ni,Mi,ui;
i =1,2,6), and with appropriate boundary conditions may, in
theory, be solved. Reissner and Stavsky23 show that the system
may be reduced to three equations in displacements u;, or two

equations in terms of wu and an Airy stress function F.

3
There are two controversial points of the formulation.

The use of the plane-stress constitutive relation (eq. (5-8))

is obviously an approximation. This same approximation is made

in classical plate theory, and has been shown to give negligible

erroxr for thin plates. Timoshenko and Woinowsky-Krieger26 make

Sever-al comments regarding this matter. Secondly, the applica-

bilitys of the assumption that straight lines normal to the

(5-10)
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middle-surface before deformation are straight line normal
to the deformed middle surface is questionable in the case of
a heterogeneous plate. The good correlation of theory and
experiment in the research of Azzi and Tsaizs, however,
indicates that one can be optimistic in this regard.
Application of the laminated Plate
Analysis to the Corneal Stroma

The laminated plate formulation presented in the pre-
vious section is a practical means for analyzing the stroma
as a laminated structure of a large number of randomly oriented
anisotropic lamellae. The quasi-elastostatic stress-strain
constitutive equation of the transversely isotropic lamella
given by eq. (4-16) will be used along with some arguments
based on qualitative observations of corneal mechanical pro-
perties to yield expressions enabling partial evaluation of
elastic constants from simple tests.

The first task at hand is the evaluation of Ai » B

AR S
and Dij using eqs. (5-10) and the plane-stress specialization

of eq. (4-16). The plane-stress specialization of the elastic

constant matrix is obtained by setting Ty to zero and solving

for e in terms of e, and e_,. The result is that the E_,
3 1 2 ij

of eq. (5-8) are related to the Cij of eq. (4-16) as follows:



2
R ] 3
11 - %1 "¢
22
C
E.., =E Cy,(1 23)
12 = ¢
12 " En <,y
Ei6 = Ee1 = 02
c (5-11)
E =C _..._2_3.
22~ %2 "¢,
Ejg “EBg =0
Ege = Cs5 ° )

The Eij of eq. (5-11) are defined with respect to
the specific coordinate system (xl,xz,x3) shown in Figure
V-1. Suppose new axes (;1,52,§3) are defined by a rotation
through an angle € about the x3-axis as shown in Figure
V-2. The elastic constants Eij of the new coordinate system
can be expressed in terms of the original Eij and the angle

€ by employing the transformation relation for a fourth-order

tensor; that is,

EijkL - aimajnakoaLpEmnop G-12)
where a4 is the cosine of the angle between the positive
;i and xj axes, and the indices take on the values of 1
and 2, The correlation between the Eij of eqs. (5-11) and
the Emnop of eq. (5-12) is as follows:
11 " Enn 1
Ej2 = Ea1 ™ Eyipp © Boonn
E16 " Ber = E1112 © E1121 < Eponn T Ean
Ey2 = Egz2 ) ©-13)
Eye ™ Be2 ™ E2212 = 2221 T F1222 T Ep1p
Eee = E1212 = Eqion - J
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Taking direction cosines from Figure V-2 and using eqs.

(5-13), eq. (5-12) may be expanded to yield the following re-

sults:
E,, =E c052§ + E sinZE + (2E,, +4E,, -E.. -E )sian coszg
11 11 22 12 66 11 22 ‘
= , 2 2
E12 =E;, t (E11 + E22 - 2E12 - 4E66)Sln g cos §
= 3 . .3
E16 = (2E66 + E12 - Ell)cos € sin € - (2E66 + E12 - E22)31n € cos €
(5-14)
E.. = E..sin’€ +E, . cos’e + (2E, ,+4E__-E_.-E in? 2
22 T Eq8in § * Ejycos § 1274Egg E117Epp)sin § cos §
= . ) 3 ) i 3. .
E26 (2E66 + E12 E11)51n € cos § (2E66+E12 EZZ)COS € sin §
E,, =E,. + (E 2 4 2 2
Ege = Egp T (Eq1 + Eyp - 2By - 4Egg)sin § cos §
and
Ejy = Ey4e

Equations (5-10) may be evaluated in an approximate sense
by introducing the notion of macroscopic transverse isotropy of

the plate with respect to the x,-axis. The lamellae are large

3
in number (approximately 200 in the 0.5 mm thick human stroma),
and their orientation angles () are randomly distributed in
the x3-direction (E 1is constant for a given lamella, and has
random jump-discontinuities between adjacent lamellae). Let
average values (E:j) of the Eij be introduced. Since all
lamellae are identical, and are large in number, the above
described random disposition with respect to ) implies that
all the Etj associated with increments of plate thickness

Ax3 (arbitrarily located in the plate) are equal. The values

*
of Eij may be defined by the relation
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/2

m
I
=l I

| ——

. E,. (x,)d
ij h/2 IJ(X3) X3

or equivalently

* 1 2m_
Ejy = Egg By 5 ©)dE, (5-15)

and eqs. (5-10) may be approximated as follows:

x h/2 *
A =E_. j dxy = h E_. (5-16)
. I n/2 J
h/2
_— dx, = 0 (5-17)
Biy =Ejj ) x3dxg
-h/2
h/2 3
* 2 h *
D.. =E_, xdx, = —=E, . . (5-18)
ij ij [h/Z 3773 12 Tij
Equations (5-15) may be evaluated by substituting
Eij(g) from eqs. (5-14), and it is easily shown that
E* -1 3E., + 3E.,., + 4E_, + 2E )
11 - 8CEn 22 66 12)
e =XeE  +E.. +E 4LE
12 8( 12 11 22 66
¥ =0 5-19
E* _ B
22 = B
* -0
Ere =
X = 1 4LE , + + 2
66 = 8“Fge TEqp T Eyy - 2E15)-

Since Bij = 0 there is no coupling between in-plane
stretching and transverse bending, and using eqs. (5-16) through
(5-18) the matrix equation (5-9) may be separated into the follow-

ing two simpler expressions:



0

(N7 Efn B 07 [

_ * * o

o

(N 0 0 Ee Le6

r B . E 0 (K

Mp) 1 Fro !
h | * * 5-21
Myl=121 B2 E1n O || K- (5-21)

*
M, 0 0 Eg |l

Equations (5-20) and (5-21) hold for any orientation

of axes L and x in the plane of the stroma because the

2
* . .
E,. are average values, independent of direction in the plane.

1]
It is important to note that this theoretical analysis predicts
the earlier experimentally observed6 in-plane isotropy of the
stroma.

Equations (5-20) and (5-21) may be used to analyze
laboratory experiments that lead toward evaluation of the
elastic constants in the matrix of eq. (4-16). A discussion
of the theory behind thce experiments follows. 1In .all cases
the body forces P1 and P, and the distributed force ¢

2

are zero (see page 58).
Uniaxial Tensile Stress Test

For the case of uniaxial tension of a long strip of
stroma, eq. (5-20) is applicable, and it may be assumed, except
near the end restraints (St. Venant boundary region), that

N, =0=N

2 and Ny is uniformly distributed. The equilibrium

6
equations (5-4) are identically satisfied, and from eq. (5-20)

one can write
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* o0 %

* 0
= +E
N, =hEpe) tEe))
0 =he e +E e°
=h(E ey +Eppe)).

o
Eliminating e, gives

N

11 * 2 * 2 o

R LEpD - Bpp) ey
11

The quantity Nl/h is the nominal tensile stress in the

ok
strip, thus the "apparent  Young's modulus" E, is

* 2
(B
Ea - E11 - E*
11

*%

and the "apparent Poisson's Ratio" , in the x. - x, plane,
PP Ha 1 2

is

* a
E =
11 1 - u2
* Ha Ea
Fla=]_ 2
Ha

and applying eqs. (5-19) these relations become

8E_
12 ¥ 4Egg = L. .2
-l

g (5-22)
Ejy +E,, + 6B, - 4E = ——F .

1 -

+
3(B,, +E,,) + 2E

En

** The term "apparent" is included because of the fact that the

concept of Young's modulus and Poisson's ratio are not simply de-
fined as for an isotropic material. Subscript a 1is added to E
and u in order that this be kept in mind.
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Torsion Test

*
66

to analyze a torsion test. Consider a long strip of stroma of

The quantity E may be evaluated by using eq. (5-21)

width W having a length { in the xl-direction. Let the

strip be clamped rigidly at x, = 0 and let a torque T be

1

applied (about the axis of the strip) at x, = {, and let ¢

1
be the resulting angle-of-twist (Use the left-hand rule for
the directions of T and g).

If the strip is centered with respect to the xl—axis
one may approximate thec middle-plane displacement (it is
assumed u, = 0 = u2) by taking

X

- 1
uy = @xz(L ).

Applying eqs. (5-2) and (5-7), it is apparent that

M ==
6 W
and
)
K6 .

It may be assumed, except near the end restraints, that only

the stresses and T are nonzero, and that both are

Ts 6

uniformly distributed in the xl-direction. Then from eqgs.
(5-1) through (5-3) it is clear that all the equilibrium
equations (5-4) are satisfied.

Using the above expressions for M, and K,, from

6 6’

eq. (5-21) one can write

- =12M6=12L(1)
66 13 Kg ywpd @
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Applying eqs. (5-18) this becomes

= (2524 .
Eyp +Eyy - 2By, +4E, (w h3)x,r (5-23)

where Ky is the "torsional rigidity of the strip'"; that is

Tension and Torsion Data Analysis

For convenience let the right hand side of eqs. (5-22)

and (5-23) be denoted as follows:

8 E, |
_-__i = EA 3
1-y
a
8u, Ep (5-24)
2 - Ep
1 -4
a
.M K =
(w h3) T~ E¢r /
Then
+ 2 =
3(E)y +Eyy) + 2B, FUE L =E,
(Eyy +Eypy) + 6B, - 4B, = E_
(E11 + E22) - 2E12 + 4E66 = EC.

These three equations give only two independent relations in

the three quantities (E11 + E22)’ E12’ and E It is easily

66"
shown from the first two of the equations that

1
Ejp = 16CGEg - Ey) +Eg
(5-25)

1
(E11 + E22)= 8(3EA - EB) - 2E66.
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1f one solves the third equation for and substitutes the

E66
cxpression into eqs. (5-25), the resulting two equations may

be combinced to show that

E, - E = 2E_. (5-26)

Numerical values of EA, EB’ and EC may be determined from
laboratory experiments, and the degree to which they satisfy
eq. (5-26) gives an indication of the validity of the theorctical
formulation of the problem.

The planc stress elastic constants Eij in eqs. (5-25)
may be expressed in terms of the constants Cij of eq. (4-16)
by using the relationships presented in eqs. (5-11). The
result is two independent equations in the five elastic con-
stants Cij' Before carrying out these calculations it is
convenient to discuss a uniaxial strain test that leads to the

evaluation of the constant Cop- Arguments also will be pre-

scnted to show that C55 is small.
Uniaxial Strain Test

With reference to eq. (4-16), consider a uniaxial
strain test in the x3-direction. This implies that ey and

e, are zero, and therefore

Ty = C22e3. (5-27)
Since the x3-axis of cach lamella is normal to the surfaces

of the stroma, all the Xq-axes are parallel, and no trans-

formation-of-axes relations neced be used.
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A uniaxial compressive strain test of the stroma in the
x3-direction may be conducted as illustrated in Figure V-3.
The test specimen is a disc of corneal stroma having a circular
cross-section in the X1 T %, plane. The specimen lies on a
flat surface, and the circumfrential cdges are in contact with
a rigid surface to prevent displacements in the X1 T X%, plane.
The plunger and guide are coupled in such a manner that, at the
end in contact with the specimen, the plunger face always remains
flush with the face of the guide (i.e. the plunger never movcs
relative to the guide).

The diameter of the test specimen is large compared
to its thickness h, and the ratio of guide-to-plunger outside
diameters is sufficicntly large so that "edge effects' at the
periphery of the spcecimen may be assumed to have a negligible
influence on the state of stress in the vicinity of the plunger.

Let the plunger/guide assembly be displaced in the

negative x,-direction by an amount Ah so &as to compress the

3
specimen, and let the change in the axial force in the plunger

be AP. If the cross-sectional area of the plunger face is

denoted by A, then eq. (5-27) may be written in the form

AP _ . bh
A P22

and therefore
. _hctP -
Cop = A(Ah)- (5-28)
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Analysis of the Stroma
Small Shear Rigidity

As pointed out in Chapter I (see also Ref. 3, p. 306
and 311), the stroma has a small shear rigidity for shear
displacements of planes relative to one-another parallel to
the anterior and posterior surfaces of the cornea. Recall
that the stroma is composed of a stack of a large number of
randomly-oriented lamellae as indicated in Figure V-4.

The matrix of elastic constants of eq. (4-16) defines
the stress-strain rclations for any one of the lamellae with
respect to its axes (xln,xzn,x3). Since the lamellae are
large in number, and are randomly oriented (with respect to
rotations about tLhe x3—axis), it may be assumed that there
always exists a value for n (see Figure V-4) such that
the x

1n

direction in the plane of the stroma. This leads one to con-

axis is parallel to any arbitrarily selected

clude that the observed small shear rigidity across the stack
of lamellae could be due to any one, or all, of the following
possible properties:
1) The shear rigidity between adjacent lamellae
is small.
2) The shear rigidity related to distortion in
the X - x3 plane is small.
3) The shear rigidity related to distortion in
the X, T Xq plane is small.

Possibility (1) does not directly influence the form of the

elastic constant matrix of the lamella; however possibilities
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(2) and (3) imply that Ces and (C22 - C23)

are approximately
zero respectively (see eq. (4-16)).

Possibility (3) may be eliminated by considering the
physical consequences it implies. If (C22 - C23) = 0, then
the constitutive equation (4-16) requires that the stresses
T and T3 be identically equal, regardless of the state

2

of strain. Since sections of stroma stretched in the X3"
direction show normal elastic action (see Ref. 3, p. 307) it

and T

3 are in fact independent. This

appears that T,
evidence is assumed to be sufficient justification for throw-
ing-out possibility (3) above.

1f possibility (1) alone is the mechanism responsible
for the small shear rigidity, then microscopic examination of
the side surfaces (i.e. surfaces parallel to the x3-axis) of
a section of stroma after shear deformation should reveal a
staircase-type profile, since there would be discontinuities
in the displacements from one lamella to the next as one pro-
ceeded in the x3-direction. There is no evidence in the
literature that this easily-recognizable phenomecnon has been
observed, and on this basis it will be assumed that possibility
(1) does not exist alone. It is concluded, then, that
possibility (2), perhaps supplcmented by (1), exists and is
responsible for the observed small shear rigidity. As dis-

cussed previously, this implies that

C.. ~ 0. (5-29)

55



76

1t should be pointed out, in support of the argument lecading
to eq. (5-29), that there are no contradictions with the

stroma model proposed by Maurice (see Fig. III-3).
Analysis of the Simple-Test Relationships

With regard to the use of simple tests to evaluate
the elastic constants, the three tests presented in the pre-
vious sections of this Chapter - uniaxial tensile stress,
torsion, and uniaxial compressive strain - exhaust the list
of possibilities.

Recapitulating, the three-dimensional set of elastic
constants is shown in eq. (4-16), and contains five nonzero
entries (Cll’ C12’ C22, C23, and CSS)' The constant 022
may be evaluated directly from the uniaxial strain test data
by using eq. (5-28), and applying eqs. (5-11) to the uniaxial

tensile stress relations of eqs. (5-25) and rearranging gives

2
c c
1 12 1722
= = - - + + I -
Cpp T gGE, - Ep - 16C55) + ¢ c g (16C5g - 3B, +E )]
22 C12
C
221 2
_fir= - + -
+ =5 [16( 6c55 3EB EA)] (5-30)

Ci2

(@]
"

c +—1—{Cﬁ(16c - 3E +E))]
23 22 ° ¢y, 16 55 B A4

The consequences of setting C55 = 0, as suggested by
the analysis leading to eq. (5-29) will be discussed in
Chapter VIII where the experimental results are applied to egs.
(5-30). The quantity Ces has been retained in eqs. (5-30) so
that the effects of nonzero values may be observed. Details of

the laboratory experiments follow next.



CHAPTER VI

EXPERIMENTAL EQUIPMENT

Introduction

Experimental equipment was designed speccifically for
carrying out the three types of tests discussed in the pre-
vious Chapter (uniaxial tension, torsion, and uniaxial
strain). The same specimen preparation and mensuration
equipment, and constant temperature immersion bath system,
were used for all three types of experiments. The equipment
was fabricated using the facilities of the Departmental
experimental mechanics laboratories and the Division of
Engineering Research machine shop.

The topic of specimen preparation is an appropriate
starting point in discussing the equipment, and will be
followed by descriptions of the specimen mensuration cquip-
ment, immersion bath system, and the test fixtures used in

conducting the three basic experiments.

Specimen Preparation

A double-blade knifc was used to cut a uniform strip
of cornca from a "hemispherical shell" of the eyeball
(specifically, the quasi-hcemisphere anterior from the equator,

which contains the cornea). A photograph of the knife is
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shown in Figure VI-1. The plastic spherical seat of the knife
enabled the eyeball hemisphere to be positioned with the cornea
directed toward the knife blades. The tissue was held in place
by means of a vacuum applied through small holes in the, plastic
seat. This held the sclera, adjacent to the periphery of the
cornea, tightly against the seat.

Two parallel slots machined in the spherical seat en-
abled the knife blades to cut through the entire width and thick-
ness of the cornea and adjacent sclera, and resulted in a long-
strip specimen of uniform rectangular cross-section. This pre-
paration eliminated excessive handling which might have lead
to inadvertent straining of the tissue. The knife blades con-
sisted of two razor-blades, and were held a specific distance
apart by a spacer. The blades could be moved in the vertical
direction by sliding their mounting frame along four rigid
guide-rods extending from the heavy steel base of the fixture.

The circular disc-shaped specimens used in the uniaxial
strain tests were cut from the cornea using a standard type 7
mm diameter corneal trephine. The trephine is shown in Figure

VI-120
Specimen Mensuration

The initial thickness (h) of the strip specimens in
the anterior-posterior direction (the x3-direction) was always
measured immediately after preparation. The measurement was
made using an Ames dial-indicator (0.0001 inch scale divisions)

mounted on a ring-stand, and a simple electrical circuit. The
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device is shown in Figure VI-2.

A small electrical probe protruding from the tip of
the dial-indicator was coupled through an ohm-meter to a
stainless-steel plate cemented to the base of the ring-stand.
The probe was moveable in the vertical direction, and could
be adjusted, so as to contact a surface beneath the dial-
indicator, by means of a screw-mechanism above the indicator.
The probe position at the point of incipient contact could
be precisely determined by noting the dial reading at the point
where continuity of the electrical circuit was indicated by
the meter. The specimen thickness was obtained by taking the
difference between successive dial readings for incipient con-
tact with the stainless-steel plate and with the upper specimen
surface when positioned on the plate beneath the probe.

Length and width measurements of the strip specimens
were made using the specially-constructed measuring microscope
shown in Figure VI-3. The microscope had a working distance of
approximately 1.5 inches, and a reticle with perpendicular cross-
hairs. The vertical position was given by an Ames dial-indicator
(0.001 inch scale divisions; one-inch travel), and the horizontal
position was read directly from a micrometer-head (Starrett model
465M; 0.002 mm divisions). Length and width measurements were
made by taking the difference between successive readings of the
dial-indicator and micrometer respectively. The standard
deviations associated with the preciéion of the microscope may
be taken as 0.0015 mm and 0.010 mm for the width and length

measurements respectively (Specimen dimensions are given in
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-Figure VI-2. Thickness Measuring Fixture



Figure VI-3. Measuring Microscope
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Tables VII-1 and VII-2).

Immersion Bath System

All tests were conducted with the corneal specimens
immersed in a constant-temperature bath so that the in vivo
temperature and hydration of the tissue could be approximated.
The constant-temperature system consisted basically of two
coupled heat-exchangers, one immersed in a tank containing the
test-specimen and immersion medium, and the other immersed in
a drum of water maintained at a constant temperature of 91.5
deg. F. A schematic diagram is shown in Figure VI-4.

The two heat-exchangers were coupled by plastic
tubing, and this closed system was filled with water. At
one point the tubing ran through a variable-speed pump
(Varistaltic pump no. 72-590-60; Manostat Corp.). This en-
abled the water to be pumped through the closed circuit and
thereby transmit heat from one exchanger to the other. The
specimen-tank heat-exchanger consisted of a three-foot length
of 1/8-inch copper tubing soldered to a five-inch by nine-inch
thin copper plate. The water-drum heat-exchanger consisted of
a twenty-foot length of 1/4-inch copper tubing coiled around
a ten-inch diameter cylinder. The cylinder was mounted in a
twenty-gallon insulated steel drum nearly filled with water.
An immersion heater (Aqua-Lite immersion water heater;
Vogelzang Bros., Inc., Holland, Mich.) was mounted at the
bottom of the drum, and a motor-driven mixer near the center

of the drum circulated the water continuously (a mixer was
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employed in the test tank also).

The immersion heater was powered through a Variac
variable transformer, which enabled the rate of heat input
to be controlled. A given constant temperature in the test
tank was achieved by operating the immersion heater, pump,
and mixers continuously and simply varying the pump speed
and/or heater voltage to change the equilibrium temperature

in the test tank.
Uniaxial Tensile Stress Test

For the uniaxial tensile test the immersion tank was
a six-inch by eight-inch glass container eight inches in depth,
and the heat exchanger was positioned parallel to, and
approximately 1/4 inch above the bottom. A rigid vertical post
behind the container was used as an attachment point for the
immersion-fluid mixer and the tensile test fixture. These were
held in place in the tank by cantilever-type structures extending
forward from the post (see Figure VI-5).

The tensile test fixture was positioned in the tank so
that the long axis of the test specimen (strip of cornca) was
aligned with the vertical direction, and was clamped in place
by means of two thumb-screws. This configuration enabled the
tensile test fixture to be easily and quickly installed in the
immersion tank after a test specimen had been mounted in the
fixture (The fixture was mobile, and could be moved away from

the tank, for convenience, while installing the test specimen).
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The uniaxial tensile test fixture is shown in Figure
VI-6. The fixture enabled the application of a prescribed
specimen elongation and measurement of the resulting tensile
load.

Prescribed displacements of the upper specimen end
restraint were applied by rotating the micrometer head through
the desired increment of displacement. The micrometer head
was a Starrett model 465M with 0.002 mm divisions. Rotation
of the head caused the micrometer coupler to be displaced
upward, the force required for this displacement being pro-
vided by the preload spring which was always in the compressed
state. The rigid displacement bar was attached to the bottom
of the micrometer coupler, and slid smoothly in the guide block.
The load transducer was affixed to the end of the displacement
bar, and the clevis-like transducer coupler connected the upper
specimen end restraint to the loading stud of the transducer
through pinned-joints that were free to pivot in order to
accommodate small misalignments of the system.

The upper and lower specimen end restraints were identical
(see Figure VI-7 for a close-up photograph). Each restraint
consisted of two machined aluminum components coupled by an
aluminum pin, and was attached to the specimen by a simple
clamping-action, the clamping force being provided by a brass
screw. The lower specimen end restraint was pinned to the
attachment bracket, which was simply a rigid L-shaped bracket
with provision for adjusting its vertical position in order

that test specimens of varying lengths could be accommodated.
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The load transducer was especially designed and
fabricated for this research by Kulite Semiconductor Products,
Inc., and consisted basically of a miniature phosphor-bronze
cantilever beam with a full four-arm bridge of Kulite semi-
conductor electrical resistance strain gages. A close-up
photograph of the transducer is shown in Figure VI-8. The
basic specifications were as follows:

Impedance: 1000 ohms
Sensitivity: Nominally 8.0 mv/gram at 10 volts D.C.
Input: 10 volts DC or AC max.
Rated (max.) load: 50 grams
Temp. sensitivity: Less than 0.2 mv/deg. F. at
100 deg. F.
Rigidity: 0.00083 mm deflection/gram.

The transducer was coupled to a Tektronix type Q trans-

ducer preamplifier plug-in unit, and loads were indicated by

the vertical trace deflection on an oscilloscope screen.

Torsion Test

The torsion test was conducted in a five-inch by eight-
inch sheet steel container ten-inches in depth. The heat-
exchanger and immersion-fluid mixer used for the tensile tests
were also used in the torsion tests. The basic configuration
is shown in Figure VI-9.

The torsion test fixture was clamped to the base of
the immersion tank, and was easily removable to facilitate

installation of the test-specimens. The fixture is shown in
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Figure VI-10, and a discussion of the principles of operation
follows.

The torsional rigidity of a strip of cornea is small
compared to that of specimens normally tested in torsion,
therefore no existing torsion test equipment was applicable.
The primary difficulty was that commercially available torque
transducers do not have the capability of measuring torsional
loads in the range of interest for the cornea (of the order of
0.05 gram-millimeter). This difficulty was overcome by using
an optical system to measure the torque. The technique con-
sisted of using laser beams and mirrors to measure the twist
in a length of wire having a known torsional rigidity.

The torsion test specimens had the same geometry as
the tensile specimens, and the same upper and lower specimen
end restraints were used in each case. The long-axis of the
test strip was vertical, and the torsion test consisted
basically of measuring the torque necessary to rotate the lower
specimen end restraint, about the vertical axis, through a known
angle relative to the upper specimen end restraint.

The upper specimen end restraint was pinned to the
attachment bracket, and the bracket was affixed (with provision
for rotation about the vertical axis) to the body of the torsion
fixture. The bracket could be clamped in place at an arbitrary
orientation, which facilitated initial alignment of the system.
The lower specimen end restraint was pinned to a small block
of brass that served as a mounting point for the specimen-twist

mirror and also as a coupling between the end restraint and
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the torsion-wire.

The torsion-wire was a steel music-wire of 0.008 inch
diameter that extended downward from the lower specimen end
restraint, and was supported laterally by two horizontal
platens. Each platen had a guide for the torsion wire. The
guide was simply a small disc of 0.005 inch steel shim stock
with a 0.020 inch diameter hole through which the torsion
wire passed.

Two small first-surface mirrors were clamped to the
torsion-wire a known distance apart (approximately 46 milli-
meters). These mirrors will henceforth be referred to as the
upper torque mirror and the lower torque mirror, and their
function, along with that of the specimen-twist mirror will
be discussed shortly.

An aluminum crossbar was pinned to the torsion-wire
below the lower of the two guide-platens, and was used to
apply a twisting-couple to the wire. The couple was applied
by rotating the shaft shown in the upper left of Figure VI-10.
The shaft was coupled through a flexible cable and screw-
mechanism to a horizontal disc that rotated about the axis of
the torsion-wire. Two small vertical pins in the disc made
contact with the crossbar and caused it to rotate as the upper
shaft was turned.

A preload hanger bracket was attached to the lower end
of the torsion-wire. This bracket enabled preload weights to
be suspended from the torsion-wire in order to vary the axial

tensile stress in the test specimen, a capability that was
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required in order to check for coupling between tensile and
torsional modes of loading.

As pointed out earlier, the torque and associated
specimen twist angle were measured optically using the specimen-
twist mirror and the two torque mirrors. Since the upper
specimen end restraint was clamped rigidly in place, the angle-
of -twist across the test specimen was equal to the angle-of-
rotation of the lower specimen end restraint. The torque
responsible for this specimen twist was of the same magnitude
as that in the torsion-wire. Assuming the torsional rigidity
of the torsion-wire is known, it is apparent that the torque
and specimen angle-of-twist can be evaluated if the angles of
rotation of the three mirrors, about the vertical torsion-wire
axis, can be measured. The torsional rigidity of the wire was
evaluated by means of a torsional pendulum, and may be expressed
as a torsional spring constant (k) per unit length of wire.

The result was

2
k = 1402 gELgEL_
radian

with a standard deviation of 4.0. Details of the calibration
procedure are presented in Appendix A.

The angles of rotation of the three mirrors were
determined by reflecting laser beams from the mirrors and
measuring the beam displacements on a distant screen. In order
to keep the tensile preload on the test specimen small, it
was necessary to use mirrors weighing only a fraction of a gram.

Light-beam oscillograph galvanometer mirrors fulfilled the
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requirements. These first-surface mirrors were rectangular,
having a length and width of 3.14 and 0.64 mm respectively.
The weight of one torsion mirror, complete with its torsion-
wire mounting attachment, was approximately 0,10 gram.

The small size of the mirrors introduced an unantic-
ipated optical problem. The laser light reflected from the
mirrors was no longer well-collimated, but took the form of
a rectangular aperture diffraction pattern, and the light
impinging on the screen was an interference-fringe pattern
rather than a small circular spot of light. Since accurate
measurements in the horizontal direction were necessary, the
problem was overcome by having the long-axis of the mirrors
horizontal. This caused the fringe pattern to be acceptably
narrow in the horizontal direction (approx. 3 mm wide), al-
though quite lengthy in the vertical direction (approx. 30
mm long).

The laser beams were provided by means of a one-milli-
watt 6328 angstrom Spectra-Physics laser and a three-way beam
splitter. The three beams were directed onto auxiliary
adjustable first-surface mirrors positioned in the laboratory
to give convenient angles of incidence at the torsion test
fixture.

Complications in the data-reduction procedure stemmed
from two nonnegligible sources. Firstly, the incident light
beams propagated from air through a glass plate and into the
immersion medium, and the reflected beams propagated from

the immersion medium, through the glass plate, and back into
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the air. Secondly, there was no means to accurately mount the
mirrors in a vertical plane (i.e. parallel to the torsion-wire
axis), and this misalignment necessitated the introduction of

a complicated three-dimensional analysis of the change-in-path
of the light beams with rotation of the mirrors about a vertical
axis.

The effect of the glass plate may be neglected since
it only caused a small offset of the beams, and not a change-
in-direction. This leaves one to deal with an air/immersion
medium interface and misaligned mirrors. A coordinate system
was established so that the rectangular components of the
three torsion-fixture mirrors and the three reflected points
on the measurement screen could be determined. The coordinates
of arbitrary points on each of the incident beams were also
measured. This information, recorded both before and after
application of torque increments, was sufficient to determine
the angles of rotation of the mirrors about the torsion-wire
axis. The analysis was rather lengthy, and is presented in
Appendix B. A computer program was used to carry out the
calculations.

The angle of twist across the test specimen was given
directly by the incremental change in the angle 6 of equation
(B-13) computed for the specimen-twist mirror. The torque was
calculated by subtracting the incremental angle-change of the
upper-torque mirror from that of the lower-torque mirror and
dividing the result by the distance between the mirrors to get

the twist per unit length of the torsion-wire. Multiplying this



98

figure by the torsional spring constant (k) gave the applied

torque.

Uniaxial Strain Test

The uniaxial strain test fixture configuration was
identical to that of the uniaxial stress tests except for the
details in the immediate vicinity of the test specimen. The
overall view of the tensile test equipment shown in Figure
VI-5 is equally applicable for the uniaxial strain test. The
details of the uniaxial strain test fixture are shown in
Figure VI-11l. It is instructive at this point to return to
the schematic drawing of Figure V-3 in order to recall the
basic geometry required for the uniaxial strain experiment.

The rigid containing structure of Figure V-3 was the
corneal trephine of Figure VI-11 (see the detail photograph
of Figure VI-12). It was a Castroviejo transplant trephine
that cut a seven-millimeter diameter disc from the cornea.

The foot of the trephine, which normally has a concave surface
with a radius of curvature to match the central cornea, was
filled with an epoxy resin and ground to a smooth flat surface.
The trephine was clamped to a mounting bracket on the test
fixture of Figure VI-1ll by means of a clamping action that en-
abled quick installation with assured accurate alignment.

The plunger and guide assembly of Figure V-3 are shown
in the close-up photograph of Figure VI-13. The plunger had
a diameter of 2.53 mm, and the guide outside diameter was 6.63

mm. Both parts were made of aluminum, and the mating surfaces
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were smoothly finished to minimize frictional effects. The
same load transducer used in the uniaxial tensile stress
experiments (see Figure VI-8) was used to measure the plunger
load in the uniaxial strain tests. The transducer was clamped
in a slot machined in the housing above the plunger and guide,
and the upper end of the plunger was coupled to the loading
stud of the transducer through a small ball-bearing seated in
a detent in the end of the plunger. A small spring-clip
compressed the ball between the stud and the plunger in order
to assure that no backlash was present. The position of the
transducer in the mounting slot was adjusted while viewing the
bottom end of the plunger and guide assembly through a
microscope, and the transducer was clamped in place when the
end face of the plunger was aligned coincident with the face
of the guide.

The complete transducer-plunger-guide assembly was
coupled to the uniaxial strain fixture of Figure VI-11 by
means of a clevis-type bracket and set-screw, and the assembly
could be moved in the vertical direction in exactly the same
manner as the upper specimen end restraint was displaced in
the uniaxial tensile stress experiments. The same Tektronix
equipment used for the tensile stress experiments was used

in conjunction with the transducer to measure the plunger loads.



CHAPTER VII

EXPERIMENTAL PROCEDURES AND DATA

Introduction

All experiments were performed using mature pig corneas
because these were readily available, and the pig eye is nearly
the same as that of man except for overall size (see Chapter I).
The Peet Packing Co. of Chesaning, Michigan cooperated by making
eyes available on a daily basis. The eyes were shipped to the
University - a distance of approximately 50 miles - by re-
frigerated truck, and were available within four-hours of the
time of death. Unfortunately, it was not possible to remove
the eyes until after the animal had passed through a scalding
process (140 deg. F. water for five to tén minutes). Although
the eyelids remained tightly closed during this time, there
would be no justification for ignoring the possibility that
mechanical properties of the corneal stroma may have been
altered.

A limited number of pig eyes were available within the
University. The Meats Laboratory of the Food Science Department
slaughtered several pigs in the course of this research, and
the eyes of these animals were enucleated immediately after death,

prior to the scalding process.
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If one attempts to store corneal tissue in the presence
of aqueous solutions, it will swell profusely regardless of
the salinity. This swelling would have been unacceptable,
because in order to get stress-strain information indicative
of the in vivo cornea it was necessary that no dimensional
changes take place. The problem was solved by using mineral
oil as an immersion medium, both during storage at reduced
temperature, and during the tests which were performed at the
in vivo temperature.

Immediately upon receiving eyes an incision was made
through the sclera, along the equator, and only the anterior
hemisphere was retained. The contents (i.e. vitreous humor,
ciliary process, lens, aqueous humor, etc.) were removed, and
the remaining shell, composed of the cornea and adjacent sclera,
was immersed in mineral oil. The specimen was refrigerated at
50 deg. F. until tested. The mineral oil was not imbibed by
the stroma, and the moisture content (thickness) remained con-
stant during storage because the mineral oil eliminated evapora-
tion of water from the tissue. During the tests the mineral
oil was held at approximately 91.5 deg. F. According to the
measurements of Lele and Weddell27 this is one degree warmer
than the anterior surface temperature of the human cornea,
therefore it seemed a reasonable immersion temperature.

The Kulite load transducer (see Figure VI-8) was dead-
weight calibrated using a set of gram-weights. For the
uniaxial tensile stress calibration the weights were suspended

from the end of the upper specimen end restraint. The
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compression calibration for the uniaxial strain test was
carried out with the transducer mounted in the test con-
figuration except that it was adjusted so that the plunger
extended approximately 0.5 mm beyond the end of the guide
(see Figure VI-13). This adjustment enabled the gram-weights
to be placed on the plunger so as to load the transducer in
the same manner as during the actual tests. The transducer
response in both tension and compression was linear in the

load range of interest.

Uniaxial Tensile Stress Test

Uniaxial tensile stress tests were conducted using
strips of cornea having nominal widths of 2.4 and 3.5 mm. The
strips were cut using the double-blade knife described in
Chapter VI. The pig cornea is somewhat pear-shaped, and all
specimens were cut from the direction yielding a strip of
maximum length. Approximately two-to-three mm of sclera was
retained at the ends of the strip to serve as points for
clamping on the end restraints, and the epithelium and
endothelium were removed by gently scraping with a sharp
scalpel.

Immediately after preparing the strip the excess mineral
oil was blotted from the surfaces, and the specimen was placed
on the thickness measuring fixture of Figure VI-2. The mid-
length thickness was measured with four replications, and the
thickness at each end of the strip, approximately two-to-three

mn from the limbus, was measured with three replications.
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During this process the specimen was handled at the scleral
ends with tweezers, and immediately after completion of the
measurements additional mineral oil was spread on the strip
in order to guard against dehydration.

The two end restraints (see Figure VI-7) were
temporarily affixed to a small jig that approximated the
juxtaposition necessary for insertion of the corneal strip.
The ends of the strip were aligned in the end restraints and
clamped in place, after which the two end restraints were re-
moved from the jig and pinned to the test fixture as shown in
Figure VI-6 (the test strip was in a "limp" conditions at this
point).

Next the test fixture was inserted into the immersion
tank of mineral oil, and clamped in place by means of two
thumb-screws. After waiting several minutes for temperature
stabilization, the transducer strain gage bridge was balanced
and the specimen was quickly elongated until a small load of
approximately 0.2 gram was applied (This small load immediately
began to diminish due to viscoelastic effects). For lack of
a more specific criterion, after the specimen had relaxed for
approximately 15 minutes, this was referred to as the zero
load-zero elongation initial condition for the ensuing test.

The measuring microscope of Figure VI-3 was used next
in order to determine the length and exact width of the test
specimen. The length was defined as the distance between the
adjacent ends of the two end restraints. The width was measured

at three positions on the specimen - at midlength of the strip
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and also 0.10 inch from each of the end restraints. The length
measurement was replicated three times and each of the three
width measurements was replicated twice.

The above measurement procedure required approximately
15 to 20 minutes, and after this time the load transducer
bridge was rebalanced and a series of elongations were applied.
It was found that a time increment of 15 minutes was sufficient
for the transient viscoelastic effects to decay to a negligible
magnitude. The elongation increments were limited to 1.0 and
2.0 percent of the initial length of the specimen, and the
tensile load and specimen width at midlength were measured
and recorded for each increment (always after the 15 minute
relaxation). This data enabled the load versus elongation
and width versus elongation curves of Figures C-1 through
C-8 to be plotted. It will be shown in Chapter VIII that it is
the slope of the linear portion of the curves that is of interest,
therefore the slopes are presented in Table VII-1 along with
other pertinent information regarding the specimens. It was
estimated that a standard deviation of 0.0l mm may be
associated with each of the length measurements, and that
standard deviations of 0.2 gm/mm and 0.03 mm/mm may be associated
with each of the load versus elongation and width versus
elongation slopes.

Specimens 70 and 76 were used to examine the re-
versibility of the deformation process by subjecting the same
specimen to two identical tensile tests, the second test

being conducted after the specimen had recovered for one
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hour with the elongation set to zero. The load versus elonga-

tion data for these specimens are plotted in Figures C-9 and

c-10.

Torsion Test

The torsion test specimens had the same nominal dimensions
as the uniaxial tensile stress specimens, and were prepared
following the same procedures, including thickness measurement
and attachment of the end restraints. The end restraints were
pinned to the test fixture as shown in Figure VI-10, and after
a brief series of fixture alignments the assembly was installed
in the immersion tank of Figure VI-9. The tensile preload on
the test specimen was in force immediately upon installing the
specimen in the test fixture. Length and width measurements
were made using the measuring microscope in the same manner
as for the uniaxial tensile stress tests.

Upon completing the mensuration process, the laser was
turned on and a series of preliminary optical adjustments of
the torque and specimen twist measuring system were made. The
auxiliary mirrors were adjusted so that the light beams propagated
through the immersion tank window and impinged on the test
fixture mirrors, and the complete test specimen and torsion-wire
assembly was rotated so that the light beams propagated outward
from the immersion tank in a direction approximately perpendicular
to the glass window (the incident beams also had nearly this
same azimuth). The light beams propagating from the fixture

impinged on the measuring screen, which was in a plane parallel
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to the immersion tank window and located approximately 3.4
meters from the torsion-wire axis (the screen was actually
the wall on the opposite side of the room).

The light beam positions on the screen were unstable
because of air currents in the room and building vibration.
Placing the test fixture on a resilient mounting helped to
some degree, but it was necessary to apply a small preload
torjue to the specimen to reduce the vibration to an accept-
able level. The preload was equivalent to a test specimen
twist angle of approximately 4 to 5 degrees.

The coordinates of points on the incident beams were
measured with a scale and tripod-mounted plumb bob, and the
reflected-beam coordinates were measured from the screen after
a time-interval of 15 to 20 minutes had elapsed from the time
of preload application. Three increments of specimen twist,
each of approximately 0.07 radian magnitude were applied
successively at 15 minute intervals, and screen-coordinates
of the three light beams were recorded at the end of each
interval.

The data reduction procedure presented in Appendix C was
required to convert the light beam coordinate experimental data
into twist-angle and torque information. The procedure was
lengthy, and required the use of a computer program. The re-
sults were somewhat disheartening because for many of the tests
the maximum applied torque was below the limit of resolution
of the system. Discussion regarding this matter will be pre-

sented in Chapter VIII. A precision analysis indicated that
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the limit of resolution of the system was at best 0.008 gm mm
torque, and any torque below this value was discarded from the
analysis., In order to treat the remaining data in an unbiased
manner, the following procedure was adhered to:

1. All first-increment torque data was discarded
because the values were generally near or below
the limit-of-resolution of the system.

2. The average twist angle and average torque was
computed for each specimen, and the torsional
rigidity (gm mm/radian) was expressed as the
quotient of this torque divided by this twist.

The individual data points are presented in Figure C-11, and
the torsional rigidities are listed in Table VII-2 along with
other pertinent information regarding the specimens. All dis-
carded specimen data are included in the Table for completeness.
The standard deviation of the length measurement may be taken

as 0.01 mm (the same as for the uniaxial tensile stress tests),
and it was estimated that a standard deviation of 0.08 gm mm/

rad may be associated with each of the torsional rigidities.

Uniaxial Strain Test

Uniaxial compressive strain tests were conducted using
circular disc specimens cut from the central cornea with the
trephine shown in Figures VI-11 and VI-12., The epithelium and
endothelium were removed from the cornea by gently scraping with
a sharp knife, and the trephine was used in the normal manner

(lightly pressing the blade into the tissue while continuously
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rotating the trephine).

The trephine and specimen were mounted in the test fixture
as shown in Figure VI-11, and the plunger and guide assembly
was displaced downward sufficiently so that the lower face had
entered into the end of the trephine. The fixture was then
installed in the immersion tank and allowed to temperature-
stabilize for several minutes, after which the plunger and guide
assembly was lowered until a plunger load of approximately 0.2
grams was achieved. This criterion was used to define the zero
displacement condition, and after allowing a relaxation period
of approximately 15 minutes the load transducer bridge was re-
balanced and a series of compressive displacements were applied
at 15 minute intervals. The resulting plunger load versus dis-
placement data are presented in the curves of Figures C-12 and
C-13. The reversibility of the deformation process was examined
by subjecting the same specimen to two identical uniaxial strain
tests, the second test having been conducted after the specimen
had recovered for one and one-half hours with the compressive
displacement set to zero. The plunger load versus displacement
data for these specimens are plotted in Figures C-14 and C-15.

An initial attempt was made to measure the thickness of
the disc-shaped specimens immediately after installing the
trephine in the test fixture. The procedure was to back-off
the trephine-handle locknut and rotate the handle until the
foot of the trephine had threaded itself upward to expose the
edges of the test specimen, after which optical measurements

using the measuring microscope were attempted. Unfortunately
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the edges of the specimen had been sufficiently distorted from
the cutting process that representative measurements could not
be obtained.

An alternate source of thickness information was con=-
sidered more reliable. The average value of the central
corneal thickness of all of the tensile and torsion test
specimens was used. The average value of the thickness was
0.989 mm with a standard deviation of 0.13 mm.

It will be shown in Chapter VIII that the slope of
the linear portion of the plunger load versus displacment
curves is the information of interest, and this is presented
in Table VII-3 along with additional specimen information.

It was estimated that the standard deviation of each of the

slopes may be taken as 1.0 gm/mm.
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Table VII-3. Uniaxial Strain Test Data

Specimen Source Hours Slope
Number Since (gm/mm)
Death

77 Meats Lab 73 100.0
78 Meats Lab 77 51.2
79 * Meats Lab 79 47 .4
80 Meats Lab 83 74.3
81 Meats Lab 96 102.0
82 Meats Lab 99 98.0
83 * Meats Lab 101 -
84 Peet 12 42.5
85 Peet 14 50.2
86 Peet 28 48.7
87 Peet 31 51.5
88 Peet 33 43.5
89 Peet 37 86.0

* Specimens 79 and 83 were used to check the
reversibility of the load vs. deflection
process.,



CHAPTER VIII

RESULTS AND CONCLUSIONS

Linearity

The problem formulation of this research was based
on the premise that a linear theory was applicable, and it was
indicated in the previous Chapter that the slopes of the linear
region of the experimental curves (load versus elongation, etc.)
were the data of interest. Some simple calculations can be
used to show that the linear region of the curves may be asso-
ciated with the range of corneal stresses caused by intraocular
pressure loading.

Dimensional and pressure information for the human
eye are given by Davson (see Ref. 3, pp. 158, 161, 290 and 291).
The radius of curvature of the outer surface of the central
cornea may be taken as 7.86 mm, and the thickness is 0.54 mm.

A value of 16 mm Hg is representative of the normal intraocular
pressure, and this may rise as high as 80 mm Hg in cases of
angle-block glaucoma.

To calculate order-of-magnitude stresses in the
cornea it is reasonable to assume the stresses are equal to
those of a thin-walled sphere having the same mean radius and
thickness as the central cornea, and an internal pressure equal

to that of the intraocular pressure. The strength-of-materials

117
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solution for the in-plane tensile stress (g) is simply

o=TrR_IP
2nirh 2h

where r, h, and p are the mean radius, thickness, and
internal pressure respectively.

The normal intraocular pressure of 16 mm Hg is
equivalent to 0.218 gm/mmz, therefore the tensile stress in
the cornca may be taken as

_ (7.86 - 0.67)(0.218)

_ 2
200.54) 1.53 gm/mm”.

The average thickness and width of the tensile test specimens

were as follows:

Thickness: 0.939 mm

Narrow Specimens: 2.38 mm
Width Wide Specimens: 3.44 mm

These measurements lead to the following tensile loads nec-

essary to produce a uniaxial tensile stress of 1.53 gm/mm?

Narrow Specimens: 3.42 gm

Wide Specimens: 4.9 gm.

The 3.42 and 4.94 gm loads associated with normal
intraocular pressure fall on the linear portion of the load
versus elongation curves of Figures C-1 through C-4, and
furthermore if the elongations at these loads are located on
width versus elongation curves of Figures C-5 through C-8, the
points fall on the linear portion of these curves.

A similar analysis may be carried out for the uniaxial

strain data. The normal intraocular pressure of 1.53 gm/mm2
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may be converted to an equivalent plunger load by multiplying
by the cross-sectional area of the plunger. The plunger dia-
meter was 2,53 mm, therefore the plunger load (P) associated

with normal intraocular pressure may be taken as
(2.53)°
P = 11__(1_1_(1.53) = 7.69 gm.

It must be remembered that although a pressure of 1.53 gm/mm2
is acting at the posterior surface of the cornea, the pressure
is zero at the anterior surface, therefore in an order-of-
magnitude sense it seems more realistic to use one-half of the
above 7.69 gram plunger load as a representative value for the
cornea in vivo. It may be seen in Figures C-12 and C-13 that
the half-value of 3.85 gm falls on the linear portion of the
load versus displacement curves.

The torsion test data has already been treated in a
linear manner due to lack of resolution of the test equipment,
and nothing can be added here to further justify the action
taken.

In conclusion, it appears that the linearity assumption

was acceptable over the physiologically important range of loads.
Reversibility

In addition to linearity it was assumed that the de-
formation process is completely reversible. This assumption
may be justified by the observation that the in vivo eye under-
goes reversible deformation as the intraocular pressure fluc-

tuates (for example in the water-test for glaucoma where the
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intraocular pressure commonly undergoes a transient fluctuation
of 10 mm Hg over an interval of an hour or two). It was of
interest to establish the degree of reversibility of the de-
formations in the uniaxial tensile stress experiments and the
uniaxial strain experiments.

One could not expect complete reversibility, as observed
in vivo, because the aqueous solution impregnating the tissue
could not flow out of the specimens, and then back in, in a
reversible manner. This was evidenced by the formation of
small water droplets on the surfaces of the tensile specimens
during elongation, and the fact that the droplets remained
after the elongation had been reduced to zero. Figures C-9
and C-10 for the uniaxial tensile stress experiments, and
Figures C-14 and C-15 for the uniaxial compressive strain
experiments, show the degree of reversibility that was retained.
This does not imply that the load versus deformation curves are
not representative of the in vivo tissue, however, because the
initial mode of deformation, where moisture was forced out of
the tissue, would remain unchanged regardless of the nature

of the reversibility of the process.

Statistical Procedures

Before proceeding with the analysis it is timely to
discuss the method of error analysis used. The simplifying
assumption was made that all statistical distributions were
normal, and the propagation of errors resulting from the use

of equations in the data reduction procedure were accounted
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for by using elementary statistical analysis. Suppose one has

a function f of several variables (u,v,w,...) of the form
y=f(u,v,w,.0..). (8-1)

Let the standard deviations of u,v,w,.... be denoted by
Su,Sv,Sw,...., and let the resulting standard deviation of

y be denoted Sy' Then it can be shown28 that
2 _ pf 22 af. 2 2 af 2 2
sy (au) s, + (av) s, t (aw) s, . (8-2)

In the following material the standard deviations of all
calculated quantities were evaluated using eqs. (8-1) and
(8-2), and if S 1is the standard deviation of X the con-

vention of writing this as X + S has been adhered to.

Final Analysis

The uniaxial tensile stress test data of Table VII-1
were used to calculate the apparent Young's modulus E, and
the apparent Poisson's ratio By (see p. 67). Let the load
versus elongation slope and the width versus elongation slope

be denoted as follows:

Load vs. elong.: (%f

Width vs. elong.: (%)

Then the nominal values of Ea and w, are given by the

expressions

Ea Wh(dL)

dw
Ha s"%‘EZ?
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where [{, w, and h are the original (unloaded) values of
the test specimen length, width, and thickness respectively.
The results are shown in Table VIII-1.

Cumulative results are shown in Table VIII-2 where
the data from similar types of test specimens have been grouped
in éeveral manners in order that the effects of the various
test specimen characteristics may be observed. Since the
standard deviations are quite large it is unwise to draw any
strong conclusions regarding dependence of E, and W, on
the variables tabulated, and the results for "all specimens"

will be used in forthcoming calculations; that is,

E
a

66.32 + 24.14 gm/mm2

Mg 5.9011.38

The above values of E, and b, may be substituted

into the first two of eqs. (5-24) to evaluate the parameters

EA and EB' The result is

E -15.69 + 9.47 gm/mm2

A
(8-3)

Ep

-92.59 + 25.60 gm/mm2
The shortcomings of the torsion test were already pointed
out in Chapter VII, and it seems reasonable to expect the data
to indicate only trends and order-of-magnitude quantitative
results.
The torsion test data of Table VII-2 may be used to
evaluate the parameter EC by applying the last of eqs. (5-24),

and in addition the tensile stress in the specimen may be
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evaluated by dividing the tensile preload force by the cross-
sectional area. The results of these calculations are pre-
sented in Table VIII-3. The data of Table VIII-3 is plotted
in Figure VIII-1, and the least-squares straight line is shown.
It appears that the torsional properties are dependent on the
magnitude of the tensile preload stress, a result not predicted
by the theoretical analysis.

The theory of Chapter V lead to eq. (5-26) which re-

quires

1
Ec = 2, - Ep)s

thus if the values of EA and EB given by eqs. (8-3) are
applied it is predicted that Ec = 38.45 + 13.7 gm/mmz. 1f

a number is to be assigned to EC from the torsion test
results, it is reasonable to select the point on the least-
squares line of Figure VIII-1 that is representative of the
stress due to normal intraocular pressure. This stress was
calculated earlier in the Chapter to be 1.53 gm/mmz, and yields
a value of Eq = 123 + 50 gm/mm2 which is too large by a
factor of 3.2 + 1.7.

The uniaxial strain data of Table VII-3 may be used

to evaluate the elastic constant C

22 by applying eq. (5-28).

As discussed in the previous Chapter, the thickness (h) of
the specimen is to be taken as 0.989 mm with a standard
deviation of 0.13 mm. The diameter (d) of the plunger was
2.53 mm with an estimated standard deviation of 0.005 mm. In

eq. (5-28) the area (A) 1is given by
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Table VIII-3. Torsion Test Results

Tensile E Std.
Specimen Preload c 2 Deviation

Number Stress (gm/mm") E,
(/o) (gm/mm?)

39 .92 127.7 54.2

42 . 9% 23.8 41.5

47 .91 103.1 51.6

50 1.44 100.1 75.4

51 1.13 56.5 69.8

53 .96 80.1 54.4

54 1.12 45.8 78.2

56 1.08 36.9% 64.3

57 1.09 105.3 65.7

59 1.75 115.2 26.9

61 2.19 261.6 52.2

63 1.86 155.1 34.3

64 2.15 153.8 38.4
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therefore

The results of the calculations are presented in Table VIII-4.
Cumulative results were calculated by grouping the data as pre-
viously done for the uniaxial tensile test analysis, and the
information is shown in Table VIII-5.

The results of Table VIII-5> tend to indicate quite
strongly that the Peet Packing Co. test specimens have a re-
duced uniaxial compressive strain rigidity as compared to the
Meats Laboratory specimens. It must be remembered, however,
that the total number of specimens tested was small, and the
discrepancy could possibly reduce with increasing specimen
quantity. The plausible reason for the reduced rigidity of
the Peet specimens is that Meats Laboratory eyes were enucleated
prior to the scalding bath operation, whereas Peet eyes were
not. Since results indicative of in vivo tissue are desired,

the cululative Meats Laboratory value of C 5 = 15.55 + 4.93

2

gm/mm2 will be used in all forthcoming calculations.
Combined Results of Theory and Experiment

The numerical values of E,, E_, and C may be sub-

A’ B 22
stituted into eqs. (5-30) to obtain expressions for C11 and
Cosg in terms of 012 and C55. The following values are

appropriate:
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Table VIII-4. Uniaxial Strain Test Results

Specimen Source c Std.
Number 22 Deviation

(gn/m’)  (gm/m’)

77 19.73 2.68

78 . 10.10 1.38
e}

79 3 9.35 1.28
]

80 b 14.66 1.99
=

81 20.12 2.73

82 19.33 2.62

84 8.38 1.15

85 9.90 1.35

86 9.61 1.32
&

87 M 10.16 1.39
(W)

88 8.58 1.18

89 16.97 2.30
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Table VIII-5. Uniaxial

Specimen Group

All Meats Lab.
All Peet

All Specimens

Strain Test Cumulative Results

C Std.
22 Deviation
(gn/m?)  (gn/mm’)
15.55 4.93
10.60 3.20
13.07 4.73
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E = -15.69 + 9.47 gm/um?

E = -92.59 + 25.60 gm/mm’

C,, = 15.55 + 4.93 gm/mm2 .

Equations (5-30) become

Ciz 2
Cpp = 5:69 - 2Co + 7555 + 15.55Q° + )
(8-4)
Cpq = 15.55(1 +Q)
where
Q- C55 + 16.38
€12

and all the C are expressed in units of gm/mmz.

ij

The data reduction procedure cannot be catried further
because two additional independent relationships among the
elastic constants are needed. Comments regarding this matter
are included in the following section of this Chapter.

It is interesting to select hypothetical values for
C19 and Cqs and compute the resulting elastic constants.
In Chapter V the analysis of the small shear rigidity of the

stroma indicated that the elastic constant C is likely to

55

be small compared to the other constants, therefor<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>