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ABSTRACT

APPROXIMATION TO BAYES RISK IN

COMPOUND DECISION PROBLEMS

By

Allan Oaten

The set version of the compound decision problem involves

simultaneous consideration of N statistical decision problems,

called the component problems, with identical generic structure:

state space 0, action Space A, sample space I and non-negative

loss function L defined on Q X A x I. With 5" (x1,x2,...,xN)

N

distributed according to H P = P , a compound procedure is a

._ 9 ‘g
1-1 i N

vector, 9 = ($1,...,cpN) such that, for each i, cpi: I, _. A.

The conditional risk, given 5, of the procedure $2 is

N

W@,gg,§) = N-1 Z L(er,cpr(§),xr), the unconditional risk is

r=1

R(g,gg) = fW@,gg)dPe, and the modified regret is D(_Q_,gg) = R@,§Q) - R(GN)

where G is the empirical distribution of 91,6 and R(o)N 2,000,6N

is the Bayes enve10pe in the component problem.

For F a distribution on Q, QF is the set of procedures in

the component problem which are e-Bayes against F. Let C be an

estimator of GN - i.e. for each §_E IF, §(§) is a distribution on

Q and let QC be the set of compound procedures 53 such that, for

each 5, there is an element, cp°(§), of @6405) such that

cpr(§) = cp°(}_()(xr) for each r. Thus, to use a procedure in QC

one first estimates GN by C(g) and then plays e-Bayes against

C(g) in each component problem.
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We consider two subsets of Qa, the "half-Space" procedures

and the "equivariant uniformly e-Bayes" procedures. For the m X n

problem (i.e. O has m elements, A has n) we establish the

uniform almost sure convergence of W@,gg,39 to R(GN) for half-

Space procedures if C is "uniformly strongly consistent"; and if

C is "uniformly consistent" we establish D@,gg) < 0(1) + e

uniformly as N ~ m for both types. For the m X m problem, we

again establish D@,gg) < 0(1) + e for the equivariant procedures.

We also consider the problem when. 0 is infinite. We

consider a class of procedures that differs from QC in that the

corresponding component procedures are defined in the elements of

a finite partition, V, of I, rather than I itself. Assuming

the existence of "good" estimators C, we establish results similar

to, but slightly weaker than, those for finite state spaces, pro-

vided V is a "good approximation" to 1 in respect of both the

distributions Pb and the loss function. We give conditions under

which this latter requirement holds, and show that these conditions

are satisfied by wide classes of problems.
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0. INTRODUCTION AND NOTATION

In this thesis we consider a set of statistical decision prob-

lems, each having the structure of what is called the component prob-

lem: a state Space 0 indexing a family of probability distributions

{P&, w E 0} over a o-field 46 of a sample space I; a measurable

action Space (A,a0; and a loss function L 2 0 defined on Q X A X 1,

which is ahmeasurable for each m and x. A (randomized) decision

function W has domain I X 6’ and is such that Y(x)(-) is a

probability measure on <7 for each fixed x. If the State is w,

the conditional risk of Y given x is

(0.1) L(w,~r<x>,x> = IAL<w.a.x>Y(x)<da);

and if’ 14m,Y(x),x) is BBmeasurable, the unconditional risk is

(0.2) R(w,‘i’) = fL(w,Y(x),x)de(x)-

The notation of (0.1) will be extended to Lfln,x,x) = IALGm,a,x)x(da)

for any signed measure I for which the right side exists; in this

context, "a" will stand for the probability measure degenerate at a,

so that, for example, Lan,a-b,x) = L0»,a,x) - Lfin,b,x).

For any §.= (91,82,...) 6 Om we write, for the moment,

EN = (91,92,...,6N); t§en in the compound problem,

EN = (x1,x2,...,xN) ~ H P = P , and the choice of an action for

r=l er gN

the rth component problem is allowed to depend on EN; this



distinguishes the "set" compound problem from the "sequence" problem

in which the action at the rth stage can depend on Er = (x1,...,xr)

only. Formally, a compound procedure of the type we consider is an

array, 9 = {(m§,m§,...,mg), N = 1,2,...} such that, for each N and

r s N, cpl: is defined on IN X a, with $205“) being, for each a],

the probability measure on (7 according to which an action is chosen

for the rth problem. Since N is fixed in most of what follows

(although our main concern is with the asymptotic prOperties of certain

procedures), we will omit it henceforth and simply write

g_= (¢I,¢2,...,mN). For the same reason we Shall write g. for fiN

and x_ for xN. If there are N problems, the conditional risk,

given x, of the procedure 9_ is

(0.3) W(fi,g.§) = N )3

r:

1L(9r.cpr(§) ,xr)

and if W(§,g,§) is EN-measurable, the unconditional risk is

(0.4) R(§.g) =IWLQ.2.§)<1P_Q(£)-

The above is the more or less standard setting for the compound

decision problem. However to reduce somewhat the complexity of the

notation, and to avoid the necessity of keeping track of a multiplicity

of measures, we will adopt a slightly different point of view. Let

. . . In th
P be any distribution on whose w marginal is B”. Let

X_= (Y1,Y2,...) be a random matrix distributed according to P”,

and suppose that, if the states are 91,92,...,9N, only

. th
(Y1(91),Y2(92),...,YN(GN)) is observed, where ‘YQn) is the m

coordinate of Y. We will write x for the observed coordinate of

Y in the component problem and x_ for



(x1,x2,...,xN) = (Y1(99;Y2(92),...,YN(eN)). In addition we shall

frequently omit the variable of integration. Consequently, in the

notation to be used throughout, (0.2) and (0.4) become, reSpectively,

(0.5) Raw) = IL(w,w<x).x>dP<Y> = IL<M>dP

and

(0.6) R@,g) =fw<e,gp_,s)d1>°°q> = Meow”.

As is becoming standard (cf. Gilliland, (1968) p. 1890), we

say a compound procedure 9_ is Simple if ¢r(-)(C) is a function of

xr for each r and C. If, in addition, the mr are identical,

say ”r = m, we say 9. is simple symmetric, with kernel m. We

Shall, in general, identify Simple symmetric procedures with their

kernels, and write R(§,¢) and ‘W(§,m,x) for, respectively, the

risk and the conditional risk given 5. of the simple symmetric pro-

cedure whose kernel is m. For §.E Om and any simple symmetric

procedure w,

-1 N

new) = N )3 Merm-

r=l

From the right side it is clear that R(§,¢) is the risk of the

component procedure, m, against G , the empirical distribution of

91,92,...,eN. To emphasize this, we shall frequently write, when

m is Simple symmetric,

(0. 7) RQM = GN[R(w.cp)]

R(GN,cp) 2 R(GN)

where R(-) is the Bayes envelope for the component problem and we



have used the convention of writing integrals in operator notation,

i.e. G[h(w)] = Ih(w)dG(w), a notation we shall continue to use for

integrals on the Space 0 only.

In (0.7), because of the nature of GN’ theiB-measurability of

LQn,m(x),x) for each m suffices to make R(GN,¢) meaningful.

Future references to R(G,m), where G is a distribution on 0, will

be restricted to the class, Q, of "measurable" component procedures -

those for which R(w,m) exists and is a measurable function of m.

In particular, the Bayes envelope at G is given by R(G) = inf R(G,m).

9

For any Simple procedure g) (cf. Gilliland (1968), p. 1890),

N

sup {new - R(GNH 2 sup {N‘1 2 R(e.cpi) - inf j‘L(e,‘1’)dPI
e e r=1 Y

2 inf sup {R(e,cg) - inf fL(9,Y)dP}.

w 0 Y

The right side is positive, and is zero only when the component prob-

lem is trivial; hence, with modified regret defined by

(0.8) Dam) = Mam) - R(GN)

we have D(§,g) 2 0 for all simple g; and if the component problem

is non-trivial, there is a 6 > 0 such that sup D(§,g) 2 6 for all

9

simple 9,

However, it is possible, in some cases, to find non-Simple pro-

cedures, g, for which D(§,g) converges in some sense to zero as

N a m. Robbins (1951) gives a heuristic argument for the existence of

such procedures, and precedes it by an example in which the component

problem is to distinguish between N(1,1) and N(-1,l). In the case

where the component problem is to distinguish between two arbitrary



distributions, Hannan and Robbins (1955) exhibit non-simple procedures,

9, for which D(§,g) < 0(1) uniformly in .g as N a m (Theorem 4);

this result is obtained as a corollary to a theorem (Theorem 3) in

which it is shown (in our notation) that to any 6 > 0 corresponds

an N(e) such that, for any §_E Ow,

P°°[W(g,g,y - R(GN) > e for some N > N(e)] < e.

In addition, defining the "equivariant envelope" by

R*(cN) = inf {R(GN,Q): 52(gg) = g Egg) for all 5 e 1“, g 65}

where S; is the set of all permutations, g, of vectors of N

coordinates (i.e. )) whereg(r1,r2,...,rN) = (rg(1)’rg(2)";"rg(N

g(1,2,...,N) = (g(l),...,g(N))), they show that In (3N) - R(GN)I s 0(1)

0

as N a m. Hannan and Huang (1969) have generalized and strengthened

this latter result by showing that, for a finite State Space and under

* -

mild conditions on the loss function, IR (GN) - R(GN)I s 0(N 5) as

N a m.

Hannan and Van Ryzin (1965), in the case considered by Hannan

and Robbins, exhibit a function of the observation in the rth problem

which provides an unbiased estimate of the empirical distribution of

the rth state; they consider procedures which consist of playing Bayes,

in each component problem, against the estimate of GN given by the

average of these estimates, and give sets of conditions, each stronger

than the last, under which an upper bound for D(§,Q) is 0(N-g).

J; -1 .
0(N ) and 0(N ) reSpectively, each bound being uniform in 'g.

Van Ryzin (1966) considers the case in which the component problem

consists of making one of n decisions based on an observation from



one of m distributions; for procedures analogous to those of Hannan

and Van Ryzin, he gives conditions which imply D(§Jg) S 0(N"35)

and further conditions implying D(§,g) s 0(N-1), both rates being

uniform in ‘g.

Mention should also be made of the papers by Stein (1955) and

James and Stein (1960) Showing inadmissibility of the usual estimator

of the mean of an N-variate normal distribution (N > 2), with co-

variance matrix identity, under Squared error loss. As is recognized

in these papers, this is a compound problem whose rth component prob-

lem is to estimate the mean of the rth coordinate of the random vector;

however the estimator which makes the usual estimator inadmissible

does not seem to have been derived by an explicit compound procedure.

Other work on the compound problem includes that of Fox (1968,

Chapter 2) who exhibits procedures, 9, for which D(§,g) ~ 0 for

each .g in the case where the component problem is a test on the

parameter of an exponential family; that of Cogburn (1963 and 1967)

who deals in particular with the case in which the component problem

is to estimate the probability of success of a binomial distribution

and who formulates a general approach from the point of view of the

notion of stringent solutions; that of Suzuki (1968) who includes

(among other things) some discussion of "e-Bayes" simple symmetric

procedures; and some expository work of Samuel (1967).

Throughout this thesis, 3 denotes an arbitrary non-negative

number, possibly depending on N, and we concern ourselves with the

asymptotic prOperties of procedures which consist of playing e-Bayes

against an estimate C(x) of GN. The main intuitive justification

for these procedures is the following lemma, a slight generalization

of earlier results (see, e.g., Hannan and Robbins (1955), Theorem 1),



which we will refer to again, and which shows that a simple symmetric

procedure which is Bayes against a distribution "close" to GN will

yield a risk close to the Bayes envelope at GN'

Lemma 0 Let G and F be any distributions on Q and let

m be any measurable component procedure. Then

R(G,cp) - R(G) s sup (G - F)[R(u>.v) - R(w,‘i’)] + R(F.cp) - R(F)

v,YE§

where Q is, as before, the class of measurable component procedures.

2.22213; (1) R(G.w) - R(F.<p) = (G - F)[R(w.cp)]

for any procedure m. If mm is any procedure for which

R(G,¢n) s R(G) + n-1, then

(2) R(F) - R(G) s R(F,¢Pn) - use“) + n‘1

= -(c - F)[R(u),cpn)] + m‘1

Adding (1) and (2) and taking the supremum,

R(G,¢) - R(G) - R(F,m) + R(F) S sup (G - F)[R(w,v) - RQDJ¥)] + n-l.

V’YEQ

Since the left side is independent of n, the proof is complete.

If 0 is finite and JL(w,¢)de s M < m for every w and

Y E Q, and m is e-Bayes against F (i.e. R(F,w) s R(F) + S) then

(0.9) R(G.:p) - R(G) s ZMIG - Fl (0) + e.

Hence if we play e-Bayes against an estimator, C, for which

ICE) - GNI (O) .. 0 in some sense as N _. m, we might expect to do

reasonably well.

In Chapter 1 we consider the case in which 0 is finite; we

obtain results of the form sup D(§Jg) s 0(1) +'e for a fairly wide

9
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class of "half-Space" procedures,gm, when the action Space is finite

and under rather weaker conditions on the loss function and the

estimator C than are in Van Ryzin; this result is a corollary to

Theorem 1, which is analogous to the result of Hannan and Robbins

involving WQ,§Q,5). Later in Chapter I we obtain sup D(_9_,g2) s 0(1) + e

for equivariant procedures which play e-Bayes, in a cgrtain uniform

sense, against &(§); and this result iS used to achieve a Similar

result, under certain conditions, when the action Space is infinite.

In Chapter 2 we consider the case when 0 is infinite.

Assuming the existence of "good" estimators, we show that under certain

conditions (mainly involving the total boundedness of I in an

La-norm for the loss function, and of O in an L -norm for the family
1

of distributions) there exist, for arbitrarily small n, procedures

Q for which D(§Jg9 5 0(1) +-n for each g. and the result analogous

to Theorem 3 of Hannan and Robbins (1955) holds. We conclude Chapter

2 by showing that the required conditions hold for a very large class

of problems.

In addition to the notational conventions already described,

we shall also identify sets with their indicator functions and write

Hc for the complement of a set H.



CHAPTER ,1

FINITE STATE SPACES

§1.0 Definitions and Preliminaries

Throughout this chapter, 0 = {l,2,...,m}. In this case we have

m dP

Pb < < u = 2 P&, and we define fQD,-) = 359(o). We assume throughout

w=1

that L(w,a,x) iSIB-measurable for each fixed m and a, and that

(1.1) fL(w,a,x)dP s M‘< m for all m and a.

We let .3 be the set of all distributions on Q.

A

Definition 1. G is a uniformly consistent estimator (of GN’

the empirical distribution of 91,92,...,9N) if there exists a function

N1(n,v), defined for all n > 0 and v > 0 Such that, for each

gen”,

sup P00[IC(§) - GNI (0) > TI] < Y-

N>N1(TI.Y)

With the supremum inside the Square brackets, C is uniformly strongly

consistent. (An estimator C is really a sequence of functions

C1,C2,..., with CN : IF "n3 being BN-measurable for each N. We Shall

not need to emphasize this formality, however.)

Definition 2. For each F 6.3, let QF be the set of component

procedures e-Bayes against F. For C an estimator, let

% = Isa N 22.3 «90(5) 6 @233) such that,vr, are) = cp°(§)(xr)}

9
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Thus to use a procedure in fig one first estimates GN by

C(x) and then, using a simple symmetric procedure the choice of whose

kernel is permitted to depend on 5, plays e-Bayes against C(x) in

each component problem. Henceforth, for each x. and each g_€ 9A,

mo(x) will denote the component procedure given by Definition 2.

It is with two subsets of QC that we will be concerned in

this chapter, the first in sections 1.1, 1.3 and 1.4, and the second

in sections 1.5, 1.6 and 1.7.
I

§l.l Finite Action Spaces. Definitions of Half-Spaces and Half-

Space Procedures.

Throughout this section (and also sections 1.3 and 1.6)

A = {1,2,...,n}. Let Ek be k-dimensional Euclidean space and let

2: I » Emn be given by

(1.2) Z(w,a,x) = LQn,a,x)f(w,x) m = 1,2,...,m; a = 1,2,...,n.

We shall adopt, for Z, the same conventions as for L; i.e.

20b,x,x) = IZ(m,a,x)dx(a) for any signed measure on <7 for which

the right Side exists.

Definition 3. A set H<: ER is a half-space if, for some
 

linear functional L and some number p, either H or Hc is

{y: L(y) < p}. let k; be the set of all intersections of 8 half-

Spaces, Hi the set of all unions of t members of NE, and

t_ -1 t

Xs-Z avg).

For each F €.& we want to restrict attention to those members

of Q which take on only finitely many values, and for which the
F

corresponding induced partition of I is a collection of regions each

of which is an element of x: for some t and S. Formally,

Y 6 CF is an element of QF,s,t,v if
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{Y(X) : x E I} C {v1.v2.---.vv}

where v1,...,vv are distinct measures on (7 and, for each j,

{x: Y(x) = vj} = Qj for some (possibly empty) Qj E x:. Hence

v

Y(x)(a) = 2 Qj(x)vj(a) for each x 6 I and a E A.

1‘1 .

Definition 4. (Half-Space Procedures). Let G be an

estimator. Then,with s,t,v all finite,

_ . o

éE‘;.s.t:.v ' {9’- 6 Q3: ' for web i’ (P (3") 6 Q€3(.>;>.==».t:.v}’

where $0 is as in Definition 2.

To use a procedure in QC,S,t,V’ one first estimates GN by

C(x) and then, using a Simple symmetric procedure whose kernel, the

choice of which may depend on x, is an element of §C(§),s,t,v’ one

plays e-Bayes against C(x) in each component problem.

Most results obtained so far in the set version of the compound

decision problem have been obtained only for Special Subsets of

QC 3 t v (e.g. Hannan and Robbins (1955) and Van Ryzin (1966)) -

, 2 3

usually the class QF 8 t v has been restricted to those procedures,

, 2 8

Y, for which Y(x)(a) = 2 Q0 (x)v (a), where x E Q0 if B is the

BZA FB B FB

set of Bayes acts against F when x is observed. The proof that

QPB G X: for some t and s will be given in a more general context

in Lemma 2, in section 1.5. Usually vB(a) is restricted to the

values 0 and 1. In addition the form of the estimator, C, is usually

restricted, especially when rates have been obtained; the most common

form is the "average of unbiased estimators" given by Hannan and Van

Ryzin (1965) and mentioned in the Introduction.
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§l.2 Unions of Intersections of Half-Spaces.

t

Recalling the definition of N; in the previous section, and

t

identifying sets and their indicator functions, we see that if H €.flg,

then for some elements {Hj} of Hg,

12

_ = c c c c c c .
H - Li Hj H1 + H1}!2 + H1H2H3 +...+ 11le Ht-lHt° Since Hj 6 NS

S

implies that, for some half-Spaces {Hji}, Hj = fl Hji’ so that

c S c C c i: t

= = H + 0.. 0.. hHj ingji jl HlejZ + + HlejZ Hjs_1Hj§,1we see t at H ENS

implies that H is the disjoint union of at most 2 8 members of

i=0
~St° For future use we note that this implies:

t. J

(1.4) If Hj 6 kg] for j = 1,2,...,J, then 0 H. is the disjoint

k

union of C ( Z 3,) members of N', where q = Z sjt,.

j=1 k=0 3 q j=l 3

We now prove a lemma which is a slight generalization of the

results of Ranga Rao (1962), and which we use in section 1.3.

Lemma 1. Let (Iy3,P) be a probability space, and let Pk be the

empirical distribution of N i.i.d. random variables ~ P. Let

h: I a E’ be P-integrable and let g: I a Ek bale-measurable. Then,

for any 3 and t,

p°°[suptIJ‘g'1(u) h d(PN - P)‘ —. o as N _. co] = 1.

HOV
s

Proof. It is clearly Sufficient to prove the lemma for h 2 0; also,

by the preceding discussion, and Since g preserves unions and

intersections, it is sufficient to prove the theorem for ME. If

S

H = n H , where the Hj are indicators of half-spaces, H can be

i=1

written as a linear combination of open members of fig by replacing

any closed H by l - H: in the product. Hence it is sufficient

J

to prove the lemma for Open members of fig.
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For any Borel set B<: Ek, let N(B) ='I’IIgI-1(B) h dP, and

xN(B) = Ig-1(B)h dPfi. Ranga Rao (1962, Lemma 7.3) shows the existence,

forfinite x,of mutually orthogonal measures, N(l), r = 0,1,...,k-1,

k’l °° (i) (0)
i = 0,1,2,... and r = k, i = 0 such that l = 2 2 1 +'xk ,

r=0 i=0

and,for each r and i, there exists an r-dimensional subSpace or a

translate of such a subspace, Ail) say, such that xii)(Ek ~ A:1)) = 0,

and x(1)(A) = 0 whenever A is a translate of a subSpace of dimension

r

(i)

r

less than r. For each Borel set B C Ek, let 16:)(3) = IN(B n A ).

Then Ranga Rao (Lemma 7.5) Shows that if (i) IN converges weakly to

(i)

r

(1)

Cr

1, (ii) xN(A:i)) » x(A ) for all r and i, and (iii) Aéi)

converges weakly to , then sup IXNCH) - x(H)I a 0 as N 4.x,

* RSV:

where R' are the Open members of UV .

st St

Thus our lemma is proved if we can Show that (i), (ii) and (iii)

hold almost Surely [Pm]. However (ii) follows immediately from the

(i)

I
r

strong law of large numbers and the fact that {A is a countable

collection; and (i) and (iii) follow from the Strong law together with

the "sufficiency" part of Theorem 3.1 of Varadarajan (1958), which

establishes that for any separable metric Space 3 there iS a

fsequence of functions f such that, for any finite measure1, 2,...

I on S, RN converges weakly to I if Ifide a Ifidx for each i.

Hence the lemma is proved.

§1.3 Convergence of D(§,§) for Half-Space Procedures.
 

In this section we prove the main theorem for half-Space pro-

cedures, establishing conditions for the uniform almost Sure con-

vergence of the conditional risk. This is followed by some remarks

which attempt to point up some features of the proof which the State-

ment of the theorem tends to obscure, by a Corollary concerning the

unconditional risk, and some further remarks.
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Theorem 1. Let C be a uniformly strongly consistent estimator

of GN' Then given S < m, t < m and v < m, there exists a function

N(TI,-y), defined for all n > o and y > 0, such that, for all g e n”

and all Q 6 QC,s,t,v’

PP[IW(§JQSE) _ R(GN)I > e + n for some N >'N(n,v)] < y.

Proof. Let Y E Q a say Y = 2 Qj v where each Q
F,s,t,v j:_.]1 j

j

is an element of K:, and v1,...,vv are distinct measures on an Then

_1 N v

W@,Y,£) = N Z Qj(xr) Z V (3)1.(9rsaaxr)

r=-1 j=-1 aEA j

m _1 v

= EN 2 2: v. (a) )3 Qj(xr)L(er,a.xr).

w=l j=-l aEA j (r: er=w}

Now 2 (xque ,a,xI:)= waQ L(u),a)dP where P is
Qj j N N

{r: 9r=w} N w w

the empirical distribution of the Nm = Nw(§) = Z [er=w] i.i.d.

r=l

random variables [xrz 9r=w}. Thus

m N v

“(@389 = 2 13m2 2 v. (£1)qu L(w, a)de

0313-18691ij

Subtracting from each side its expectation:

'
Z

I
I
M
B

I
I
M
<

- .JR

wfls‘y ii) - R(GN :Y) N 2v (a)QJ. L( .a)d(PN - P)-

1 j- I w ww -1 aEA j Nw

Finally, taking the supremum of the absolute value of the

integrals and bounding out the vj(a) terms, we have, with

Smagawsi) = V 2 SUPtI‘I‘Q L(UJaa)d(PN - Pw)‘,

86A QEXE Nw

m N

(1.5) Iw<e.i.x> - R(G ml s z 4113‘“9"”x):
" N N

w=l

for any Y E e and any F 6.9.
F,s,t,v
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0
Let w (x) be the member of 6&(5),s,t,v’ guaranteed by

Definition 4, for which ¢r(§) = mo(§)(xr) for each r. Since A

has n elements, and ‘YLOn,a)dP S‘M for each m and a,

IL(w,Y)dP 3 Mn for any component procedure Y. Hence, from (0.9)

and (1.5), we have, since W@,g,x_) = W(_9_,cpo(x), x) for each E,

m N

(1.6) was“) - R(GNH s z #smamgs) +Mn\&<x) - GNHm + e.

w=l

We note that (1.6) does not depend on any properties of &,

nor on the measurability of the left side, points to which we shall

return in the remarks to follow.

Applying Lemma 1 to the random variables [xrz Gran}, there

exists a function k' = k'(n,y), defined for all n > O and y > 0,

such that, for all w,‘g and a,

P°°E sup sup \ Q L(w.a)d(P - P )l > n] < v

J(k':w,fi) Q9(t I NO) (1)

s

where J(k',w,§) = {Ni Nw(§) > k'}-

Thus, with h = k(fl,y) = k'(fi(nv)-1,vn-1), we have

Pm[ sup S(N,g,w,§) >T1] < y for all _e_ and m.

J(h,w,§) -1 -1

Thus, for any N', with k = k(fim , y(2m) ) and

H(k,w,§) = {N: N >'N' and Nw(§) s k}, we have

 

 

m m ‘Nw(g)

p [ 2 N SGN,§,w,§) > n for some N > N']

w=1

m w Nw(§) _1

s )3 P [ N SCN,g,w,§) > Tun for some N >N']

w=1

m -L

5 Z P00 SUP SCN,§_,<D,§) > “tn-1 + P 1%?" max SCN,§_,w,§_)>nm- }

(0:1 J (Rd-Dag.) R(k,w,§)

< y/Z + g(N')
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where g(N') l 0 as N' 1 m, since max S(N,§,m,x) is finite

R(ksw a_e_)

valued, because {S(N,§,w,§) : N E H(k,w,§)} has at most k elements.

Hence for N' sufficiently large, say N2(n,y),

m m N

(1.7) P E z fim-S(N,§,w,§) > n for some N > N'] < y.

w=1

Using now the condition on G, let

Nam) = max {N1(n<mn)'1, v/Z), szlz, y/2)} where N1 is the

function given by the uniform strong consistency of a, as described

in Definition 1. Then (1.6) and (1.7) together yield Theorem 1.

Remarks 1. Neither (1.6) nor (1.7) depends on the hypothesis con-

cerning &. Consequently this hypothesis could be omitted and the

theorem restated as: given 3 < m, t < w and v < m, there exists

um”) such that, for all g and 811 a E $55,”,

(1.8) P°°[|W(g,g,§_) - R(GN)| - Mn‘é(x) - GNI (o) > “n+3 for some N>N(T\,y)] < y.

2. It follows from (1.8) that if E is uniformly consistent

(not necessarily strongly) and n > 0 then

(1.9) sup sup PPE‘W(§,Q,§) - R(GN)‘ > n + e] a 0 as N atm.

QE;,s,t:,v g

It is (1.9) which yields the corollary to this theorem.

Corollary. If 6 is uniformly consistent then

sup sup D(§Jg) < e + 0(1) as N 4 m.

Proof. Recalling our convention that §_= (Y1(61),...,YN(eN)), let
 

ab] = {1, WQAMQ > R(GN) + e + 5/2}, so that

R(g,§g) s R(GN) + e + 5/2 + j‘cNWQ,g)dP°°.
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N N

Since W(§Jg,§) s N 1 2 max Lfin,a,YrQn)) N.1 2 V(Yr)’ say,

r=l w,a r=l

N

fcflw (g,52)dp°° s u'1 2 chv (Yr)de

r=1

< 6/2 for P(CN) sufficiently small,

because the V(Yr) are identically distributed and integrable.

Hence, from (1.9), R(g,g) < R(GN) +’e + 6, for all g_ and

g E ¢§,s,t,v’ for N suffic1ently large.

Remarks 1. We repeat the observation in the Introduction

that none of our results are affected if 6 depends on N. In

particular, if e = 0(1) as N a m, then the conclusion of the

corollary becomes sup sup D(§, ) < 0(1) as N a m.

é§,s,t,v g

2. The class §&,s,t,v may include procedures, 9, which

are not EN-measurable (though, for each 5, the component procedures

mo(x) must beIB-measurable). Such procedures are included in

Theorem 1 and its corollary in the sense that, whether or not

W@,g,x) is BN-measurable, there is a measurable function, W'Qgi)

such that W'@,§) 2 W(_e_,gp,_)£) for all g and x, with W' having

the prOperties asserted for W. This can be seen from the fact that

both S(N,g,m,§) and Rug) - GN‘GI) are HN-measurable, and the

comment following (1.6).

§l.4 Remarks on the Restrictions on Half-Space Procedures.

It is clear that the results of section 1.1 depend heavily on

the use of Lemma 1. Indeed this is the reason for restricting the

conclusions of Theorem 1 to the class Q.

G,s,t,v'

The restrictions on the class s. are two, both the

G,s,t,v

result of restrictions on the classes Q for F €.&: that for
F,s,t,v
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Y 6 § (1) {Y(x): x E I} is finite and (2) (x: Y(x) = vj} E X:
F,x,t,v’

for each j. Restriction (2) is clearly not essential: the application

of Lemma 1 would not be affected if finitely many of the sets

, F E.&} were not elements{fx: Y(x) = vj}, 1 S j s v, Y E §F,x

of X'.
S

stsv

The crux of the proof of Theorem 1 is the uniform almost sure

convergence of S(N,§,w,§), which is obtained from Lemma 1 because of

the structure of the family of functions U {Y(-)(a): a E A, Y E Q }.
F69 F,s,t,v

However if, for each F 6.3, Q is a subclass of QF and, for each
F1

w E O and a E A,

Pm[sup”g(a)L(w,a)d(PNm - Pw)‘ -+ O as N -° 0°] = 1

where the sup is taken over g 6 U {Y(')(a): Y E QFI}, then Theorem 1

F69

o
— A. o Awould hold with QG,s,t,v replaced by Q61( {99 E @G. cp (x) E §G@)1

for each E3). The families U {Y(-)(a): Y E QF 5 t v}, a E A, are

9 3 9

F63

by no means the only ones with this property; however they are of

particular interest as a rather natural generalization of the standard

situation, mentioned previously in section 1.1, in which, for each F,

9F is restricted to those procedures, Y, for which

0

Y(x><a> = 2 chowe).
KIA

In fact, although vB usually depends only on B (the most

common case, with A = {1,2,...,n}, is to have VB degenerate at the

"minimum" member of B; see, e.g., Hannan and Robbins (1955), Hannan

and Van Ryzin (1965), Van Ryzin (1966)), Theorem 1 also applies to

the case where v is also permitted to depend on F; and the con-

B

clusions of Theorem 1 hold if VB is a measurable function of x

(since Pw[sup ‘Iv (a)Q L(w,a)d(P - P )|'» O as N d’w] = 1 for

QEXI B Nw w w

each a E A, Ba: A and w E Q, from Lemma 1).
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However the methods of Theorem 1 fail if vB depends on both

F and x. In this case (1.5) becomes

m N
42 , O

(1.10) W(§,‘i’,§) - R(GN,‘Y) s z N 2 2: Sup lfQFBvFB(a)L(w,a)d(PN - P)|.

w=1 BZA aEA FEQ w

It is possible for the right side of (1.10) not to converge to

zero; for there may exist, for a fixed B, containing at least 2 points,

a set C 618, of non-atomic RD-measure, with card C 3 card g where

8 = {F: C:C:Q;B}' Let J map 5 onto the finite subsets of C and

let vFBx(a) = J(F)(x) for some a E B and all F E 8. Then, if

. o __ =
p01nts are measurable, IQFBvFB(a)L0n,a)dP - IJ(F)LGn,a)dP& 0 for

any F, since JCF) is finite. However for any empirical distribution

PW , there is an F for which EN [x E J(F)] = Pfi [x E C] and

L

w o w m

C c: QFB' Hence

0 _ m

sup IQFBvFB(a)L(w,a)dPN - f0 L(u>,a)dPN -+ IC L(w,a)de a.s. [P ],

F68 w m

which may not be zero.

For example, let P& be the uniform distribution on

[0,1] U [m,w+l] for w = 1,2,3 with L0»,l) = w = 4 - L0»,2). Let

C = [0,1]. Then since F(w,x) = %{0,l](x) +-[w,w+l](x), we have

0 3

8 = {F2 C C QF{1,2}} = {Ft 2 Fw(L(w,1) - L(w,2))F(u>.X) = 0} = {F: F1 = F3},

w=1

if e = 0, so that card C = card 3. Then with J mapping 8 onto

the finite subsets of C, and VF{1,2}X(1) = J(F)Cx), we have

0

sup UQF{1.2}"F{1,2}(1)”1’1’d‘1’n - P1" _ Sup In»N - 1’1) (mm - Pu [0,1].

.& l g 1 1

Since RN [0,1] » P1[0,1] = k, the equivalent of Lemma 1 does not hold

1

in this case.
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§1.5 Uniformly geBayes Procedures. The sets QFB' Equivariant

Procedures.
 

In this section we define the procedures to be discussed in

section 1.6 for finite action spaces, and in section 1.7 for infinite

action Spaces. We also prove, in a more general context, the claim of

0

section 1.1, that the sets QFB’ F E 3, B C.‘ A, are elements of X:

for some t and 8.

Definition 5. A measurable component procedure, m, is
 

uniformly e-Bayes against a distribution F 6.9 if

m(x)(B(F,x,e)) = l for all x, where

(1.11) B(F,x,e) = {8: F[Z(w,a-b,x)] s e/m for all b E A}.

If m is uniformly e-Bayes against F, then

R(F.cp) = FUL<w.cp>dP] = 12sz <w.=p(x>.x>de(x>3

(1.12) fF[z(w.cp(x>.x>]du<x> s R(F) + e ,

since F[Z(w,m(x),x)] S min F[Z(w,a,x)] + e/m, and p(I) = m. The

aEA

change in the order of integration is justified by the finiteness

of 0.

Hence a uniformly e-Bayes procedure is e-Bayes in the usual

sense.

Lemma 2. Let QFB = {x: B(F,x,e) = B}. Then for each F 6.9,

e t “1 2k 2
B<: A and e 2 0, Q E X’ for t = 2 n , and s = n (1+r)

FB 3

k=0
n

where r = n .

Proof. Let TFba = {x: F[Z(w,b-a,x)] s e/m}. Then TFba 18

the Z-inverse of a half space, so is an element of X1. Since



21

QEB '3 {X: B C B(F9Xa€)} n {X: (AnB) n B(F,X,€) _—_ ¢}

=nn'r nnurc,

b6B 86A Fba d6A~B e6A Fde

and, from (1.4) and the fact that inverses of functions preserve

. . . - , c

unions and intersections, 0 fl TFba 6 X5 and n J TFde 6 XI,

2 b6B a6A d6A~D e6A q

where q = n and r = 11“. Hence, by (1.4), QFB C K: where

r-l

t = 2 q and s = q(l+r). The proof is complete.

k=0

Since 6 is fixed in our discussion, we shall abbreviate

B(F,x,e) and QFB to B(F,x) and QFB respectively, in future.

Definition 6. For each F 6.8, let QFu be the set of component

procedures uniformly e-Bayes against F; and for a an estimator,

let can = {gm/5, 3 cp°(§) 6 tag)“ such that,v r, 601.01) = cpo(}_{_)(xr)}.

From (1.12), §6u<z @& for every 0.

Let g(1,2,...,N) = (g1,g2,...,gN) be an arbitrary permutation

of (1,2,...,N), and, for any vector £_= (r1,...,rN), let

g3 = (rg1,rg2,...,rgN). Let 65 be the set of permutations on

(1,2,...,N).

Definition 7. A procedure ‘m is equivariant if, for each

N, x and g 6 6, 12(8):) = gg(£), i.e., for each r, CPI-(8’1) = cpgch).

Definition 8. ha is the set of equivariant members of Qau.

In sections 1.6 and 1.7 we establish asymptotic results for

* a

D(§Jg9 for the classes Q6 with G uniformly consistent.

§l.6 Invariant Estimates. Convergence of D(§Jgp for Equivariant,

Uniformlyingayes Procedures. (Finite Action Spaces)
 

The main result of this section is the convergence of D(§,gp

*

for procedures in the class Q6, to be proved in Theorem 2. In

proving this result it will be convenient to make use of the in-

variance of the estimator C, and we proceed now to show that no loss
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of generality occurs if this property is assumed.

Definition 9. An estimator C is invariant if, for each N,

each 5 and each g e 6, fig) = ‘c‘;(gs_t_).

We note a particular class of procedures where the invariance

of C implies the equivariance of the procedure. This occurs when

the choice of the procedure to be used in the component problems

depends on §_ only through C(x); i.e. if Y maps .9 into the

class of component procedures and cprbi) = ‘1’ for each x

awe?

and r, then g; is equivariant if a is invariant, for

cpr(g§) = Y0(g§) (xgr) = Fag) (xgr) = cpgrg). We make use of this in

Theorem 2.

Lemma 3. Let C be an estimator and let C(35) = E[C(g§)],

where E denotes expectation under the distribution with mass 1%-

2 * * 2

at each g 6 6. Then G is invariant, 6%: G2, and G is uniformly

G
A

consistent if G is.

>
>

*

Proof. Clearly G is invariant. Suppose g; 6 @a. We shall

*

show that m 6 GE. '

To show this, we need to show that cpr(§)(B(&(x),xr)) = 1 for

all 5. and r. Given 5, r and g, let gk = r. Then,since

:9 6 @Cu’ we have cpk(g§) (B(G(gx_),xgk)) = 1. Thus, Since 99 is

equivariant, mgk@(‘B(G(g§),xgk)) = 1, so that

¢r(§)(B(6(g§),xr)) = 1 for all g, x. and r, i.e.

cpr(§)[ fl B(a(g§),xr)] = 1. Thus Q 6 <1: if n B(E;(g§) ,xr) C B(éQg) ,xr).

865 .. In , G g€6

For any a 6 n B(G(gx),x ), 2 G (g3<_)Z(w,a-b,x ) s e/m for all

- r __ w r
g66 03-1 1 m A

b 6 A and all g 6 6. Hence 1“- 2 2 Gw(g};)Z(w,a-b,xr) S e/m

a 866 (1):].

for all h 6 A, so that a 6 B(GQc),xr) as required. Hence

{Cir

C G
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Suppose that f; is uniformly consistent, and let a, B, 'Y and

6 be arbitrary positive numbers. We write ‘6‘ for ‘G‘GD. Then

for N > N(y,6) we have Pm[\é(1(g)) - GN‘ > y] < 6 for all g,

where _Y_@) = (Y1(01),...,YN(3N)). Hence, since ‘C-GN‘ s ‘6‘ + ‘GN‘ = 2,

‘H‘EQQD - GNUdeOQ < y + 26 for all Q. Since the Yi are

i.i.d. and GN(g_e_) = GN(_Q) for all g and g (where GNQ) is the

empirical distribution of 91,92,...,9N) we have, by the transformation

“EQGQD ' GN‘deQ) < 'Y + 26 fortheorem, “Maytag” - GNldeQ)

all g and g. Hence

fl 9051(89) - GN1dP°°(Y) s f};- 2: J‘Iécysa» - GNldem

gee

a
l
e

2

geS

< y + 26.

- . °° 1 32%
Thus, by the Markov inequality, P “N? Z G(g_¥_(gg)) - GN‘ > a] < 01 .

866

Since gx_ = g_Y_(gg) for each x, g and 3 we have that if N >N(v,6),

with y + 26 < (18,

PODHCQQ - GN‘ > 01] < B for all g.

The lemma is proved.

We can now state the main result of this section.

Theorem 2. Let C be a uniformly consistent estimator. Then

sup sup D(_Q,gg) < 0(1) + e as N -+ 00.

mag a

Proof. In view of Lemma 3, it suffices to prove the result for

A

O * -

G invariant. Let 9&6 66; and let Wr@,gg,§) -L(er,cpr(x_),xr). Then

Wgrfiiamg) = L(egr.cpgr(§).xgr) = L(egr,cpr(g§).xgr) = Wr(s§.gg-gzr_)-

Let E denote expectation under the distribution with mass

N

1%!- at each element of 6. Then since N.1 2 h(r) = E[h(gN)] we

r=1

have
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N

Mam) = fEEWgN(§,gg.§_)] kglfmk’kaBNQ)

EEfWN (g§.m,g><) II f(egkg,xkN)du (x)]

k=1

N

N

EEwamgam) k21f(9gksxk)du (25)]

0 O N O O O

by the transformation theorem, Since M is invariant under per-

N

mutations of x, Noting that EtegN = w] = §93 we have

N
_ N

Race) ~§E1L<egN.mN<a).xN> k31f(esk’xk)]d” (a)

N

= IEEEEL‘egN’WE’Xu) k21f(egk’xk)‘egN = mm“ (a)

m Nw N-l

(Ln) = f 2 _w L(u), cpN(x),Nx )f(w,XN )E[ H

k:

_ N
w=1N t(egkk,xHegN -w]dp. (1g).

1

Denoting the integrand of (1.13) by T<¢N(§)’§) we have,

with B(r) = B(GQ:_).xr).

(1.14) R(MQ) s j‘ max T(a,x)dp.N U for all g; e @a.

aEB(N)

Let Q'6 Qau be given by gr(x)(a) = l for a = aB(r)(xr)’

where aB(x) is the first maximizer, among elements of B, of

GN[Z(m,a,x)]. One might expect 'g to do about as badly as possible

against ‘g since it "plays anti-Bayes" against GN within the

restrictions imposed by membership of Qéu' We shall Show that this

is, in fact, the case. Since C is invariant, g_ is equivariant

(see, e.g., the remarks following Definition 9). Hence

fmax T<amp.“ (x) - R(e._c.) = 2BEAHB=BCN>JWM< Wx) - T<a<xN>ex>1duN (x)
aEB(N) 863

(1.15) s z j‘max T(a,x) - T(aB(xN),x)dp.N(x),

BCA aEB
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A5)since each integrand is positive. We Show the right side is 0(N-

as N d-m.

For each B, consider the problem obtained from the present

problem by truncating the action Space to B and using the loss

function LB(w,a,x) = bEBL(w,b,x) - L0»,a,x).

Replacing L by LB in (1.13) and interchanging orders of

summation, we see that the risk of an equivariant procedure, X3 in

this new game is

(1.16) RB(_e_.i) = beBumy - wN exam" 6).

In particular, the best equivariant procedure has risk

(1.17) R;(GN) =j' z T(b,§) - max T(a.§)duN®

bEB aEB

and the best simple Symmetric procedure has risk

_ N
(1.18) RB(GN) - f z T(b,}_<_) - T(%(xN).§)du Qg)

bEB

since simple symmetric procedures are equivariant. We obtain (1.18)

from (1.16) by taking X. to be the simple symmetric procedure whose

. th 0 o o o

kernel, in the r problem, is degenerate at the first minimizer in

B of GN[LB(w,a,xr)f(u),xr)] = GN[f(w,xr)b§BL(w,b,xr)] - CN[Z(w,a,xr)],

i.e. at aB(xr), the first maximizer of GNEZQn,a,xr)] in B.

Substituting into the left side of (1.15) the left of (1.14)

and replacing the right of (1.15) by the difference of the left sides

*

of (1.18) and (1.17), we obtain, for all g) 6 11>“,

(1.19) R(_e_,§g) - R(g,;) s 2 {RB(GN) - g(an.

BIA

Hannan and Huang (1969) have shown that each summand on the

right of (1.19) is bounded by 0(N-a) uniformly in g, Hence
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(1.20) sup* Sup D(g,gg) s sup{R(§_,Q) - R(GN)} + 009-}5

606% Q .Q

We now Show that Q_ is a half-space procedure, so that, from

).

the corollary to Theorem 1, sup{R(§,£) - R(GN)} < 0(1) +.e. We first

0

note that if go is the function given by Definition 6 then

0
{Q (§)(y): y 6 I}<: {a1,a2,...,an} (where "a" denotes the measure

degenerate at a) for each x, It remains only to Show that, for each

x, {y: 60(x)(y) = a} 6 K: for some t and 5. But

0

{Vi Q E) (y) = a} = U (Q* 0 Q )

{BCA:aEB} GQ)B GNBa

where

D

II (x: aB(x) = a}
GNBa

n {x: GN[Z(w,b-a,x)j < 0} H n {x: GN[Z(m,b-a,x)] s 0}

bEB b6B

b<a b>a

E Kn-l'

G’

(1.4) yields the result.

t

Since we already have Q"(§n)B 6 X; from Lemma 2, an application of

e e A s e d dH nc £_6 QG,s,t,n for om boun ed 3 an t, so we can

apply the corollary to Theorem 1 in (1.20) to get

Sgp sup D(§,gg) < 0(1) + e as N _. co, as required.

Q“ 9
G _

§1.7 Convergence of D(§,Q) for quivariant Uniformly e-Bayes
 
 

Procedures. (Totally Bounded Action Spaces)

In this section we replace the assumption that A is finite by

(1.21) A is totally bounded in the metric d(a,a') = sup ‘L(w,a-a',x)‘.

x,w

(Since, in fact, we deal only with uniformly e-Bayes procedures, it

is sufficient that some totally bounded subset of A contain
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U B(F,x).) We now state and prove the result analogous to Theorem 2.

F63

XEI

Theorem 3. If (1.21) holds and 6 is uniformly consistent,

sup sup D(_9_,<_;Q) < e + 0(1) as N -o 00.

a
66 I6

Proof. For each 6 > 0, let D6 = {a1,a2,...,ak}, k = k(6),

be such that, for any a 6 A, d(a,aj) < 6 for some aj 6 D5, where

d is the metric given in (1.21).

*

Let 9665 Fix 6 and let {Ajz j =l,2,...,k} be a

partition of A such that, for each j, d(a,a ) < 6 for every a 6 Aj.

.1

Consider the reduced problem obtained by replacing A by

A f - - - u u
D Let ché and 666 satisfy Definitions 6 and 8 (for ch and6.

*

"66"), with "e" replaced by "e+m6"; and let R6(-) be the Bayes

envelope for this reduced game.

We observe that, for any G 6.9, we have

min G[Z(w,aj,x)] - inf G[Z(w,a,x)] < 6 max f(w,x) < 6,

D A w

6

since f(w,x) S 1 for all m and x. Integrating this inequality

with reSpect to u, we have, Since B(I) = m,

(1.22) R6(G) - R(G) < m6 for all G 6.9.

Let ‘Q = QQQ) be the procedure in the reduced game given by

cr(a><aj) = uramj

First. since £r(s§)(aj) = cpr(82<_)(Aj) = ((381.03) (Aj) = Cgr(§)(aj).

*

) for all r, x_ and j. We show that 'Q 6 6&5.

‘Q is equivariant. It remains to Show that £_6 §6u6°

Let mo be the function, given by the definition of Qéu

(Definition 6), corresponding to m. For each §_6 IF, y 6 I and

aj 6 D6’ let go®(y) (aj) = cpo(§) (y)(Aj). Then for each x and r,
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5t® =,;°@(xr). If g°(§_)(y)(aj) >0 for some 5, y and j,

then @005.) (y) (Aj) > 0. Since (pow 6 QCQN’ there exists an a 6 Aj

such that §(§)[Z(w,a-b,y)] S e/m for all b 6 A. By definition of

A this implies that 6(x)[LQp,aj-b,y)f6p,y) s e/m + 6] for all

j

b 6 A (and hence for all b 6 D6)' Hence g°(§)(y)(a ) > 0 implies

J

aj 6 B6(C(x),y,e+m6) where B6(G’x’€) satisfies (1.11) when A is

replaced by D5. Hence 60(5) 6 §§(§)u6 for all x, so that

*

96 @65'

By definition of Q_ we have, for all ‘g and x,

N

Mata) - Megan s if1 z ‘Wr@,§Q,£) - Wr(§,§p£)‘
r=1

N n

-1
s N a E H‘A.L(9r,asxr)Cpr(>_<_sda) - L<er.aj.xr>cpr(a.Aj>l

r-l J-l J

_1 N n

_<. N )3 E jAj|L(er,a,xr) - L(er,aj,xr)|tpr(g,da)

r-l j-l

_1 N n

SN )3 ZUCOQEJA.)=6°

r=1 j=l r J

Integrating this inequality we obtain,

(1.23) R(g,gg) - R(§,Q) < 6 for all g.

Thus, for any 6 > O,

sgp sup New s sgp sup{lMass-Mama»|+\R(§»§.(g2)-R5(0N)\

QC 3 9a .Q

+ ‘R5(GN) - R(GNH}

(1.24) s 5 + 83p sule(§_,;)-R6(GN)| + m6, by (1.22) and (1.23).

ea 9
ca -

From Theorem 2 there is a function N6(y) = N(y,6) such that

N > N(y,6) implies sgp sup‘R(§,£_) - R6(GN)‘ < y + a + m6.

Q66 6
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Substituting this in (1.24), with 6(y) = , we have,
.__;l___

2 (2m+1)

for N > N'(Y) = N(%3 6(y)), Sgp sup D(§Jgp < y +'e as required.

<16 6

Remark. We again note that Theorems 2 and 3 continue to hold

if 6 depends on N.



CHAPTER II

INFINITE STATE SPACES

§2.0 Introduction.
 

When 0 is infinite, we face two problems not encountered

earlier. Solutions to the problem of estimating the empirical dis-

1,x2,...,xN are not known

in general. In what follows we Simply assume the existence of appro-

tribution GN from the observations x

priate estimators, and we will not discuss this question further

except to mention the work of Fox (1968, Chapter III) in the case

where the distribution Pb is the uniform distribution on [0,w]

(O < w < w) and the case where PE is the uniform distribution on

[w,w+1] (-m < w < m). Also, appropriate forms of Lemma 1 are not

available because, among other things, of the partial failure of the

Glivenko-Cantelli theorem in infinite dimensional Spaces (see, e.g.,

Sazonov (1963)). The convergence for which Lemma 1 was used, however,

could be expected if the sample Space, 1, were finite, since we would

then be concerned with a supremum over a finite number of sets. How-

ever if I is finite the problem of estimating GN is virtually in-

capable of solution, since the distributions {P@: w 6 0} would not

be linearly independent if Q has more elements than I. One seems

to need, then, an infinite sample space to allow the estimation and a

finite sample Space to ensure the convergence needed for the asymptotic

optimality of the "Bayes against the estimate" procedures. It is these

considerations that motivate this chapter.

30
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In section 2.1 we define terms to be used in the following

sections, and outline the basic approach. The main results of the

chapter are in section 2.2, and this is followed, in section 2.3,

by an attempt to show that, under reasonable conditions, constant

terms appearing in the bounds in section 2.2 can be controlled.

§2.l Finitely Based Decision Procedures.

Let V be a finite measurable partition of I, and for each

x 6 I let x' be the member of V to which x belongs and

L(w,a,x') be the value of L(w,a,y) at a fixed, but arbitrary,

point y 6 x'. As before, let .9 be the set of distributions on 0.

Definition 10. For each m 6 0, let va bl the distribution

on V induced by PG on .6. For the component game obtained by

replacing I by U, Pb by PUV and Lfin,a,x) by LQn,a,V), let

RV(.) be the Bayes envelope, RV(G,m) the risk of a V—measurable

component procedure m against G 6.9, Q the set of component

V

procedures and,for each F 6.9, QFV the set of component procedures

e-Bayes against F. Component procedures available in the reduced

game are also available in the original game in the sense that if

m 6 av

for every x, can be identified with cp. Since V CB, any V-measurable

, the procedure Y in the original game, given by ‘i’(x) = cp(x')

procedure in the reduced game ista-measurable in the original game.

In the context of the original problem, a procedure m 6 QE/ will be

called "g-V-Bayes" against F.

For each F and G 6.9, let

(2.1) 1(F.G)= sup 2 (G-F)\'_L(w.v<V)-Y(V),V)Pw(V>]-

wresv vs!

Then, from Lemma 0, for each F and G 6.9, and w 6 fi/,
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2.2 RC, -RGS ,G+RF, -RF( ) v(cp) v() HF) v(cp) v()

where the interchange of the order of integration, for the term

I(F,G), is justified by the finiteness of V.

The main idea in what follows is that, if V is a "good"

approximation to I in the sense that both \L(w,a,x) - L(w,a,x')‘

P (V)

and 2 IV(f --J£———)+m1 are small for every w,x,a and V (where

vev ' m ”(V)

dP

fw = aam' for some measure p), then Rv(-) might be close to R(o).

Then we might use &(x1,...,xN) to estimate GN, play e-V-Bayes

against C(x) in each component problem, and use the finiteness of

V to obtain the convergence which, in Theorem 1, came as a result

of Lemma 1.

§2.2 Converggnce Theorems for e-V-Bayes Compound Procedures.

In this section we give conditions under which the risk of an

"e-v-Bayes against a" procedure is close to RV(GN)’ and give a

bound on the difference RV(GN) - R(GN). These results are drawn

together for a general theorem on the convergence to R(GN) of

these procedures.

Definition 11. For 6 an estimator, let
 

Gav = {SEVEJCPOQQ E 966w such that.Vr. 61,6) = cp°(1<.) (x91-

Theorem 4. Let Q be totally bounded in the metric

d1(w,w') = sup{\L(tu,a,V) - L(u>',a,V)‘: a e A, v e V}- Let

(2'4) 6W) = SUP{‘L((D,3,X) ' L(w:a:Y)‘:w E a: a e A, X. = y'}

be finite and let M«< m be the uniform bound on L implied by

these conditions.
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Then with 6 = 6(V), there is a function N(n,v), defined for

all T\>0 and y>0 such that, for all 660m and 99665;,

P E U {W(§,92.§) - x(§(§),G ) > RV<G > + e + 56 +111] < v-
N N

N>N(fl.v)

Proof. Let E1,...,Ek be a partition of O by sets of

dl-diameter < 6, so that for each i, sup‘LGn,a,x) - L(w',a,x')‘ < 26

a

whenever w,w' 6 Ei' For each i, let wi be an arbitrary fixed

element of Ei-

Let Y 6 QVF for some F. Then

_1 N _1 N

Manny-N 2: L(er.‘r(x;).x;)| s N z
r_1 r=1‘ L(er,1 (x11) ,xr)-L(er,‘i’ (x11) ,x;)| s 5,

Since the integral of the absolute value bounds the absolute value of

the integral,

(2.5) buggy) - RVQQJ’)‘ s 6.

Also, for er 6 Ei’ we have

‘L(er’Y(X1'-)’xr)-L(wi’Y(xii)’x1'-)‘ s f|L(er,a,xr)-L(wi,a,x;)N(xp(da) s 25.

Hence

-1 m

(2.6) (Mini) - N z z L(w.,‘l’(x'),x')‘ < 25.

i=1 {r-e 6E } 1 r r
‘ r i

N __ _1 N

Let Ni - N(g,1) - 2: [er 6 E1], PN - N].L E19]: 6 Ei'JPe V’

r-1 _1 N i r-l r

and for each D<: V, let P (D) = N z [e 6 E,][x' 6 D], so that

Ni i r=1 r i r

3’ is the "average" distribution on V arising from the er's in

i

E1, and PN is the corresponding empirical distribution given by

i

t.
{xr. er 6 E1}.

Hence (2.6) becomes
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m N,

._l
(2.7) |W(g,‘i’,§_) - E N IL(wi,‘Y)dPN.| < 25

1-1 1

which implies

m N,_1_ _

|R(§_,1’) - 15:1 N j‘L(wi,1)dei| < 25,

so that, from (2.5), we have

Nm . ‘_

(2.8) ‘RVQQD - 1: ffuwixmpNJ < 35.

1

From (2.7) and (2.8) we have

m N,A __

(2.9) W(_6_,Y,§) s 55 + 121 N fL(wi,Y)d(PNi PNi) + Rug,“-

Let SD 6 96V and let cpo be the function guaranteed by

Definition 11. Then since W@,gg,§) = W@,cpo(§_),§) for each 5,

we have, from (2.9) and using (2.2) and the definition of QFV to

bound Rv(g,cp°@),

m Ni

(2.10) W(_9_,gg,£) s 55 + £1 fi— S(N,_9_,Ei,)_<_) + pva) + e + )((C(:_<_),GN)

where S(N,_9_,Ei,§) = M 2 |PN - EN \(V).

V€Vm 1N1 1 m

We now show that 2 fi—-S(N,§,i,§) a 0 a.s. (P ) uniformly

i=1

in Q_ as N a m, by considering the 4th moment of \Pfi - P; ‘(V).

i i

We have

It @N - 5N m>|4dP°° = N74{ >3 Icvm - P <v>>“cu£>e (x)
i i 1 {r=9r6Ei} 6r r

+ 6 [form-PG (vnzdpe supremo-re <v>>2cuae (xm
{r#s:6r,686Ei} r r s s

-4 -2
+ -3 N1 {N1 6NiCNi 1)} < 6Ni

where we use the independence and zero expectation of the terms

V(xr) - Perm), r = 1,2,...,N.
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Hence, by the Markov inequality, given n > 0,

Pm[sup S(N,§Ji,§) > D] S 2 6n-2'T'F2 a 0 as N'(§,i) d'm.

N>N' n=N'(§_,i)

Hence there exists a function k' = k'(n,y), defined for all

n > o and y > 0, such that, for each i and each g e o”,

P°°E SUP S<N._Q.i.2<_) > 11] < v

N6J(k'.i.g)

where J(k',i,§) = {N: N(gni) > k'}.

Let k = k'(fi/m,v/m). Then, with H(k,i,§) = {N: N>N' and N(g,i)<k},

m N,

.1 S(N.a.i.§)>n] s z P°°[sup f 801.5.199 > n/m]

1 N i=1 N>N'

2(D

P [sup

N>N' i

"
M
B

“1

(2°11) 5 2 (P001:- sup S(N,g,i,x)>'fl/m] + Pmi‘k—r max SCN,_Q:1.>_<.)>11/m])

i=1 N6J (k,1,9_) N N€H(k.i.g)

< y/2 +-g(N'), where g(N') 1 O uniformly in g_ as N 1 m

since S(N,g,i,x) S 2M< 0°.

Theorem 4 now follows from (2.10) and (2.11).

We now deal with the term fiV<CN)’ by introducing a measure of

the accuracy with which. V "approximates" I.

dP

Let Pml< < u for all w, with f = -—Q- and, for each x,

P (X') m d”
__ U.)

fun/(X) u(x'>’ Let

= = _ +

(2.12) am) Sip max) 33p Jaw aw) d».

It is clear that au(v) depends on n. In fact, if u is

c-finite, then av(V) s au(v) for any finite measure, v, equivalent

to u and agreeing with u on U{V 6 v: u(V) < m}. This follows

easily from the fact that fwv(x) = 0 if ”(x') - m.

Definition 12. For V a measurable partition of I, let
 

d(V) = inf dp(V): where the infimum is taken over the set of o-finite
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measures {u: Pb < < u for all m 6 0}.

Remark. We assume henceforth that Q is separable in the

metric d(w,w') = sup‘P (A) - P ,(A)‘; this implies domination of

AC—B‘” w

{P¢: w 6 O} by a o-finite measure.

Definition 13. For each C 6.&, let R1(G) = inf R(G,¢D, where
 

the infimum is taken over all measurable procedures m for which

ciJ‘pr) fwdu] = IG1L(w,cp)fw]dt-h

Remark. The class of procedures for which this change of order

is valid does not depend on u, since

(i) u can be taken to be equivalent to {sz w 6 0} because

of the separability of 0 under the metric d; and

dP

.'
——u‘)-=£1—u'-f h

(11) if u < < v then dv dv w’ so t at

dP

J'GEE-jp- L(w,cp)]dv = ”((51% G[wa(w,cp)]dv = j‘GEwa(w,cp)]du.

Lemma 4. Let L(m,a,x) s M for all w,a and x, and let

6 = 5(V) be given by (2.4). Then, with a = d(V),

(2.13) RV(G) - R1(G) S Ma + 6

for all C 6 .3.

Proof. Let u be any measure with PE < < u for each m,

and let fw and wa be as in (2.12). Let m be any procedure for

which GLfL(w,cp)fwdu] =j’c[L(w,cp)fw]du. Then

Map) 2 fc[{L<w,cp(x>.x'> - 61fw(X)]du(X)

>— fc[L(w.cp(x>.x')fw<x)]du<x) - 5.

Since L s M and two.) >_ 13w (x) - (fwv(x) - fw(x))+, we have

(2.14) R(G,cp) + a 2 fancies) .x'>£wv<x>1da(x) - mcmfwv - fw)+du]-
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The first term on the right of (2.14) is bounded below by

(2.15) j‘ inf G[L(u),a,x')f (x)]du.(x) 2 R (c) - M 2: G[Pm(V)].

aEA (W V u(V)=°=>

To deal with the second term on the right of (2.14) we note

that

IE”) - fw)+du _ 1(qu - fw)+du )3 IVf du. + z fvaw - £W)dh

u(V)=°° ‘” none»

(2.16) E P (V).

MVme

Combining (2.12) and (2.16) we have, for all m,

+

(2.17) (v)- 2 P002 (f -f)d.

a” uW)=°°w I “’V w )5

Combining (2.14), (2.15) and (2.17) we have

R(G,cp) + 5 2 Rv(G) - mum).

Since q) and p are arbitrary, the proof is complete.

Corollary. R(GN) 2 R (GN) - Ma - 6 for all ‘g 6 Om.

Proof, We have only to show that R1(GN) - R(GN). This, however,

follows immediately from the fact that GN is discrete, so the change

in the order of integration in Definition 13 is valid for any measurable

procedure 5;).

We are now in a position to obtain a result, analogous to

Theorem 1, for infinite state Spaces.

Theorem 5. Let Q and A be compact, L jointly continuous

in w and a for each fixed x, Pb(V) continuous in m for each

V 61/, and 5 = 5([) and a = ad!) as in (2.4) and Definition 12

respectively. Let M be the bound on L, and let either

*5

(a) 63,d) be a metric Space and L (G(§),GN) » 0 a.s. [Pm]
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*

as N ... 0° for each g 6 000, where L is the Prohorov metric, or

(b) Q be a subset of the real line and L(CQ),GN) —+ 0 a.s. [Pm]

as N -° 0° for each _9_ 6 Om, where L is the Levy metric.

Then there exists a function Nm,y,g) such that for each

P°°[ sup WQ,;Q,§) - R(GN) > a +Ma + 65 + n] < y.

N>N(T19Y:§)

In addition, if the convergence of fig) to GN is uniform

in Q then N(T],v,§) =N(T\,v).

Proof. For any v and ‘Y 6 QV and V6v

|L(w.vw> - YW).V)Pw(V) - L(w'.v(V) - YCV).V)Pw.(V)|

s wanuww) - 1mm - Loam) - Y<V>,V)| +M|Pw.m-Pw(v>|

(2.18) S 2 sup ‘L(w,a,v) _ L(wv,a,v)‘ +M‘Pw,(V) - PwWH.

a

Since 0 is compact, P is uniformly continuous so that

w

WWW) - PwCV)‘ -+ O uniformly in u) as (n' -o m. We shall show that

the same is true for sup \L(u),a,V) - L(u)',a,V)‘.

a

Given p > 0 and a.) 6 O, for each a 6 A there exist open

sets U C Q and W C. A such that (w,a) 6 U X W , and
a a a a

(w',a') 6 Ua X W8 2 lL(w,a,V) - L(w',a',V)‘ < p/2. Since A is

compact, a finite covering {U8 X Wa , i = 1,2,...,n} covers {an} X A.

n i i

Let U = 0 U8 . Then U is open, contains 0), and for any 10' 6 U

i=1 i

and a 6 A there is an i for which {(m,a),(u)',a)} c: Ua X W ,
a

so that |L(u>,a,V)-L(w',a,V)‘ s ‘L(w,a,V)-L(u),ai,V)‘ + ‘L(w,ai,V)-L(u)',a,V)‘<p.

Hence for each 0) there is Bw(p) > 0 such that d(u),u)') < Bw(p)

implies sup ‘L(w,a,V) - L(u)',a,V)‘ < p. An elementary argument,

a

using the compactness of C), shows that inf Bw(p) = B(p) > 0 for

u)
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each p > 0. Hence sup ‘LQn,a,V) - LQn',a,V)\ # 0 uniformly as

w' a w, for each V; aid the above~also suffices to show that Q

is compact (and hence totally bounded) in the metric

5156,60 = sup |L(w,a,V) - L(u>',a,V)\.

a,V

Thus both terms on the right of (2.18) tend uniformly to zero

as w a w', so that, with ah(p) = sup{h(w)-h(w'): d(m,w') < p} and

with Y = {L(w,Y(V)-V(V),V)Pw(V): V 6 V; Y,v 6 QV}, we have

sup ah(p) a 0 as p a O.

hGV

Hence, if G),d) is a metric space, we can apply Lemma 7 in

the Appendix, to get h(F,G) « 0 as L*(F,G) ~ 0; and if Q is a

subset of the real line, we can apply Lemma 8 (or 8') in the Appendix

to get x(F,G) » 0 as L(F,G) a 0.

Consequently, under either (a) or (b) we have, for each §_6 Om,

1(C(§),GN) a 0 a.s. [Pm], with this convergence being uniform for

§,6 Om if the convergence of C(x) to GN is uniform.

In addition, as has been shown, 0 is totally bounded in the

metric d1(m,w‘) = :us ‘L(w,a,V) - L0»',a,V)‘; thus the conclusion

of Theorem 4 holds. ,This conclusion, with the conclusion of the

corollary of Lemma 4 and the convergence of x(C(3),GN), yields the

required result.

Corollary. Under the conditions of Theorem 5,

sup D(9_,gg) < 6(1) + e + Ma + 55, as N —. no, for each g e a”; and the

convergence to 0 is uniform in .Q if the convergence of 6(5) to

GN is uniform.

Proof. Given n > 0, by Theorem 5 we have

R(g,92) = fw(g&,:_t_)dp°° s R(GN) + e + n + M: + 65

if N > N(n/z, n/ZM,g), since w s M.
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We remark, in concluding this section, that none of the results

depend on the particular determination of ‘Lcn,a,x'). (The first

condition for Theorem 4 does depend on this; however if d1 were

computed for a determination different from the one to be used,

L0»,a,x") say, the first sentence of the proof would still hold

and would imply sup |LGn,a,x) - L6»',a,x")‘ < 46; and the conclusion

a

of Theorem 4 would still hold with "56" replaced by "96".) Consequently

any determination of LQn,a,x') will suffice.

§2.3 Approximating the Sample Space byia Finite Partition.

The usefulness of Theorem 5 and its corollary will depend on

the existence of estimators satisfying conditions (a) and (b) of

Theorem 5, and on the availability of partitions,v, for which d(v)

and 5(9) are arbitrarily small. As has been said, we do not discuss

the first of these problems in this thesis. The next two lemmas and

the remarks which follow give a partial answer to the second.

Lemma 5. Let Pb‘< < u with §;&-= fw. Then, for each m

and a > 0, there is a partition vw such that amu(V) s a whenever

V is a sub-partition of Vw

-1 _

Proof. Choose a so that PN(fw [0,a1)) < a/3. Let a0 0,

 

1
3a

=_.l;.1._ J’311
and let aj 3-a (3-a) for l < j s k where

k = min{j. Pm (f001‘;(3_01)j""a1 1,a)) < d/3}. Let ak+1 =5. and let

-1
Vw = {V0,V1,...,Vk} where Vj = fw [aj,aj+1).

Let V be a sub--partition of Vw Then for V CZVj, li< j < k,

P(V)+

and x 6 V, (f (x) - M) s fw (x)(l - -J—-9 s fw (x)a/3. Hence

no MV) aj

P (V) +

a (V)= r. J‘V(fw - (V))dp.= z: fvtdn+ z: z: fowMy/3du<oz

u“ vev vcvouvk w j=1Vc:v6

This proves the lemma.
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Lemma 6. If D is totally bounded in the metric

d(u),m') = SXP ‘Puo(A) - Pw,(A)l, then for any a > 0 there is a

partition,v, of I for which d(V) s a.

£59313. Since 0 is totally bounded in d, it is separable

so that, for some o-finite u, Pm < < p. for all m 6 0. Let

dP

foo = ELL—“l. Then d(u),u)') = kflfw- fw,‘dp..

By Lemma 5 we can find, for each u), a partition Vw such

that am (V) s (11/2 for any sub-partition of Vw. Let Ul’U2’°°°’Uk

be a covering of Q be Spheres of diameter S 01/8, and let mi E Ui’

i - 1,...,k, be arbitrary. Then since, for any w,w' and any V,

 

P (V) P ICV)

2 IVwa - :(v))+ - (fw. - Wridu

V

P (V) Pw.(V)
 

s ZUVlfw - may. +J‘v‘ :(V) - amid“

V

and since, for the second term on the right,

P (V) w.(V)

.J&___ -.—————- g - f - dM “M MWM» lP (V) PwmI)‘ sIVI w £00.! 1».

h - S 2 f - f = 4d , ' .we ave QWW) awmfll) J“ u.) w"du' (w 03)

Let V be any finite sub-partition of V ,v ,...,v . Then

“’1 UL’2 UL’k

+ d .for any 0), awa) s awiual) 4 (w,wi) s or for u) 6 Ui Hence

a (y) = sup or (V) s 0. Since oral) $0! (V), the lemma is proved.

HI 0.) W 14

Remarks 1. If the conditions of Lemma 6 hold and there is a

partition,Vr say, for which 64/1) s 6, then any sub-partition, ([2,

of both V1 and the v of Lemma 6 will have 01412) s a by Lemma 5

and 5(/2) s 5 trivially. We do not discuss 5(,) further except

to note that, obviously, 6(V) = 0 for all V if L is independent

of x.
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2. The condition of Lemma 6, that Q be totally bounded,

holds for many families of distributions. Scheffé's theorem, that

I‘fw - fw,‘du a 0 if, for every F with h(F) < m and every n‘> 0,

”[F n {x: ‘fw(x) - fm,(x)‘ > n}] a 0, serves to establish total

boundedness - often by using compactness - in many cases. We give

soue examples.

(a) Exponential families. Let T be a mapping from '1 into

Ek and let u be a measure on I. Let ® = {w 6 Ek} fewT(x)du < m}

where m T(x) is an inner product. The class of densities

wT(x): w 6 ®}, where C0») = [IewT(x)dp]'1, is the exponential{C0b)e

family on I generated by T and n. It is well known that C is

continuous on the interior of @; so,since fw(x) a fw.(x) as w «’w'

for all x and all w' in the interior of @, we see, using Scheffé's

Theorem, that any subset of a compact subset of the interior of ®

will be totally bounded in the metric

d(w,w') = sgp |Pw(A) - Pw,(A)‘ = aflfw - fw,\du.

For example, in the one dimensional normal family, T(x) = (x2,x)

and w = (- -l§, Ea), for the distribution with mean u and variance

02. Hence oi: requirement is satisfied if, for some positive numbers,

a and b, 02 2 a and ‘u‘ s boz.

(b) Translation parameter families. Let Ip dv = l where,

for u Lebesgue measure on Ek, v < < u and g3- is bounded. Let

fw(x) = p(x-w), w 6 ER. Then since I‘f¢ - fw,‘dvH 0 as w d w'

(cf. Royden (1968), p. 91, Problem 17 (b)) our condition is satisfied

if Q is any bounded subset of ER.

Remark. In both (a) and (b) above, we also have, for each

B 68, ‘Pw(B) - Pw'CB)‘ a 0 uniformly in u) 6 Q as w' aw, a

result which, in Theorem 5, was obtained from the compactness of O
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and was used in showing that x(F,G) ~ 0 as L(F,G) * 0 or

*

L (F,G) d O. The other requirement,that

sup ‘L(w,a,V) - L0»',a,V)‘ a 0 uniformly in w, still needs separate

a,V

treatment however.
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APPENDIX

We prove here lemmas which have been used in Chapter II but

which were unsuitable for inclusion there because, except for their

application, they have no particular connection with the Compound

Decision Problem. These lemmas are concerned with the relations

between certain metrics on sets of probability measures; although

they were used in the proof of Theorem 5, their use may not have

been necessary and they are included at least partly because of

their general interest.

Before introducing the lemmas, we need some definitions.

Definition 1. Let h be any function on a metric Space

«l,d). The modulus of continuity of h is the function given by

ah(e) = SUP {\h(w) - h(w')\ =d(w.w') < s}

for each a > 0.

Definition 2. Let .3 be the space of probability distributions
 

on a metric space 0. The Prohorov metric on .9 is given by

* . 6
L (F,G) = 1nf {6: F(A ) + 6 2 G(A) for all closed A.C:O}

where

A6

= {w: for some w' 6 A, d(w,w') < 6}.

* *

[We note L (F,G) = L (G,F); for A5 is open for each A, so

6c 6

A is closed; and w 6 A6C
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'
-
—
-
A
3
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“
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.

a d(w,w') < 6 for some w' 6 A5C‘= w 6 AC,

1
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6C6 c . * 6
so A <: A . Hence, if 6 < L (G,F), so that G(A ) +-6 < F(A) for

*

some A, then F(Abcs) + 6 S F(Ac) +-6 < G(Aéc), i.e. 6 < L (F,G).

* *

Thus L (G,F) S L (F,G).]

Lemma 7. Let a s h(-) s a +-M be a real-valued function on

a metric Space 0. Then if P and Q are distributions on O with

*

L (P5Q) = p:

Uh dP - J‘h dQ| s Mp +ah(p).

Proof. Without loss of generality we take a = 0. Then

fh dP - fh dQ = jg): dPh'1 - ng c‘lQh'1

(1) = fl; Ph'1[x > t] - Qh'1[x > t]dt

(_:"__“)9

Since w 6 h 1[t,M] (where the bar denotes closure) implies

h(w) 2 t - ah(p), we have

- - )9 -

Ph 1[x 2 t] < Q(h 1[t,M] + p S Qh 1[t - ah(p),M] + p.

Thus

M -l

(1) Sfth [t-ah(p)SxSt]+pdt

= OM +'Qh-1[Ig[x, x+ah(p)](t)dt] by Fubini's Theorem

SpM+ah(p).

The same argument, with P and Q interchanged, proves the

lemma.

Definition 3. Let S be the space of probability distribution

functions on the real line. The Levy metric on S is given by

L(F,G) = inf {6: F(x-e) - e < G(x) < F(x+e) + e for all real x}.
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Lemma 8. Let a and b be real, and c s h(o) s c +-M be

a real valued function on Q C [a,b]. Let F and G be any dis-

tributions on O, and I > 2p = 2L(F,G). Then

b-a

‘fh dF - jh dG‘ < ME—i— + 119 +'dh(l + P) +'ah(X + 29):

where [x] denotes the largest integer not greater than x.

Proof. Without loss of generality, we take c = 0, Mi< m and

b“& < mo

Choose 0 so that 2p < o'< I and [2&2 + l]o - (b-a) = 6 > 0,

 

and let xj = a + jo - 6/2 for j = 0,1,2,...,k = [Pifi,+ l].

. . . . = I t v =
By definition of L(F,G), we can find x0 x0 < x1 <...< xk xk

such that, for each j, ‘xj - x3‘ 5 p and F(x3-) - p < G(xj) < F(xs) +'p,

because F(xj - p) - p < G(x ) < F(x +'p) + p implies the existence

1 J

of an x36 [xj - p, xj + p] for which either G(xj) - p < F(xS) < G(xj) + p

or F(x3-) < G(xj) - p < G(xj) +-p < F(xs).

For each j, let yj = min {xj, x3} and 2]. = max {xj. xj'}.

and for x 6 (xj, xj+1] let h1(x) = inf {h(w)= w 6 [yja Zj+1j n 0}:

with h1(x) = M if [yj, zj+1] n 0 ¢.

I i =
For x 6 (x , xj+1), let h2(x) h1(y) for y 6 (xj , x

j

and for each j let h2(x3) = max {h2(x3-),2h (x'*9}-

j+l] ’

Since ‘xj - x3_1\ < I + p, ‘x ‘ < I + p and

j ' x3+1

lxj' - x3+1‘ < I + 29 for each j, \h-hl‘ s ah(I + p) and

‘h-hz‘ S oh(I + 2p)-

We note that F(x£,x3) < G(xi,xj] + 2p by the construction of

, k

{Xj}j=0°

Let 0 s r < M. If h 2(xj') s r then (x'_ 1,xj+1)<:12h 1(43, r]

and (xj-l’xj+l]<:1h1(qn’ r]. Conversely (xj_1,x:+43 Cih11(-m,r]

implies (x' _1,x') U (xJ, ,xj +1) Cih21(-m, r] and this implies
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h2(x') S r. Hence h;1(«n,r] is the union of at most k/2 intervals

j

of the form (x;,x'

3

intervals (xi,xj].

and h11(«n,r] is the union of the corresponding

Hence, for all r,

-l -1
F 112 (-°°,r] < C h1 (-00,r] + kp.

lM -1 M -
d - d = - dThus {E h F {1; h1 (; Io x th2 I0 x Gh1

 

M -1 -1
= f0 6111 (-°°,x] - th (-oo,x]dx

N f: Gh11(-®,x] - [Gh;1(dw,x] +-kp]dx

 
- Mkp.

Hence jh dF - jh dG 2 -Mkp - ah(I + p) -ozh(I + 26). The same

argument with F and G interchanged proves the lemma.

Lemma 8' involves a special case of Lemma 8 in which a simpler

proof leads to a somewhat stronger conclusion. It seems, though we

have been unable to Show this, that the proof could be used in the

context of Lemma 8, with some modifications, to give an improved

result; and also that it might be amenable to versions of Lemma 8 or

Lemma 8' in higher dimensions.

Lemma 8'. Let h be a function on [a,b], F and G any

distributions on [a,b] and I > p = L(F,G). Then

b-

m. as - f5 dcl s oh()\){3 + [7519}

Proof. Choose 0 such that p < O < I and [2&2 + 110 > b-a,

and let xj = b - (k+l-j)o, for j = 0,1,...,k+l = [b—i‘i + 1].

x 4x

Let c, = h -1:l-—i for j = l,2,...,k+l. Then

J 2

|h(x) - cj‘ s ah(I) for each x 6 (xj-l’ij’ and \cj - cj-l‘ s ah(I)
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for each j.

Let D = F(xj) - G(xj) for each j.

J
?

J

Then

k+l

hd(F-G) $01 (I) + 23 c (D -D.

k

= ah(I) - chO + ck+le+1 +jEIDj(cj - cj+1)

k

So (I) +6 0.) 2 |D.|.
h h j=l 3

But ‘DJL = [F(xj)-G(xj)] V [G(xj)-F(xj)] < [G(xj+1)+p-G(xj)] V [G(xj)-G(xj_1)+p]

Hence j21|nj1 < jEI{G(xj+1) - G(xj) + p + G(xj) - G(xj_1)}

= kp + G(xk+1) + G(xk) - G(xl) - G(xo)

s kp + 2.

Hence [h d(F-G) < ah(X)(kO + 2)

= [fljp a (I) + 3:101)-
I h h

Again, reversing the roles of F and G proves the lemma.


