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ABSTRACT

APPROXIMATION TO BAYES RISK IN
COMPOUND DECISION PROBLEMS

By

Allan Oaten

The set version of the compound decision problem involves
simultaneous consideration of N statistical decision problems,
called the component problems, with identical generic structure:
state space (), action space A, sample space Y and non-negative
loss function L defined on Q X A X Y. With x = (xl,xz,...,xN)

N
distributed according to I P, = P., a compound procedure is a

._q1 O 9
i=1l “i N
vector, ¢ = (cpl,...,cpN) such that, for each i, Pt X - A.
The conditional risk, given x, of the procedure ¢ is
N
W(8,p,x) = N‘l ) L(gr,cpr(:i) ,xr), the unconditional risk is
r=1
R(,p) = J'W(g_,gg)dPe, and the modified regret is D(8,p) = R(8,p) - R(GN)

where G is the empirical distribution of 91,92,...,6

N N and R(-)

is the Bayes envelope in the component problem.

For F a distribution on Q, QF is the set of procedures in
the component problem which are ¢-Bayes against F. Let G be an
estimator of Gy - i.e. for each x € IN, G(x) is a distribution on
1 and let Qc be the set of compound procedures ¢ such that, for
each x, there is an element, cpo(}i)’ of §&® such that
cpr(g) = cpo(}_c)(xr) for each r. Thus, to use a procedure in Qé
one first estimates GN by &(5) and then plays ¢-Bayes against

&(_x_) in each component problem.



Allan Oaten

We consider two subsets of Qé, the "half-space" procedures
and the "equivariant uniformly e-Bayes'" procedures. For the m X n
problem (i.e. (Q has m elements, A has n) we establish the
uniform almost sure convergence of W(8,p,X) to R(GN) for half-
space procedures if G is "uniformly strongly consistent"; and if
G is "uniformly consistent'" we establish D(g,p) < o(l) + ¢
uniformly as N = «» for both types. For the m X «» problem, we
again establish D(8,p) < o(1l) + ¢ for the equivariant procedures.

We also consider the problem when (1 is infinite. We
consider a class of procedures that differs from Q& in that the
corresponding component procedures are defined in the elements of
a finite partition, V/, of X, rather than X itself. Assuming
the existence of "good" estimators &, we establish results similar
to, but slightly weaker than, those for finite state spaces, pro-
vided V is a "good approximation" to X in respect of both the
distributions E» and the loss function. We give conditions under
which this latter requirement holds, and show that these conditions

are satisfied by wide classes of problems.
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0. INTRODUCTION AND NOTATION

In this thesis we consider a set of statistical decision prob-
lems, each having the structure of what is called the component prob-
lem: a state space () indexing a family of probability distributions
{g», w € Q} over a g-field B of a sample space Y; a measurable
action space (A,7); and a loss function L =2 0 defined on Q X A X Y,
which is (7-measurable for each @ and x. A (randomized) decision
function ¥ has domain Y X ¢ and is such that Y ) (-) 1is a
probability measure on (7 for each fixed x. If the state is ),

the conditional risk of ¥ given x is
(0.1) L(,¥ (x),x) = [,L(w,a,x)¥ ) (da);

and if L(w,Y(x),x) is PB-measurable, the unconditional risk is

(0.2) R@,¥) = [L(w,¥ (x),x)dB (x).

The notation of (0.1) will be extended to L(w,\,x) = IALG»,a,x)x(da)
for any signed measure ) for which the right side exists; in this
context, "a" will stand for the probability measure degenerate at a,
so that, for example, L(w,a-b,x) = L(w,a,x) - L(w,b,x).

For any § = (91,92,...) € Q" we write, for the moment,

QN = (61,62,...,9N); then in the compound problem,
N
= (X;3Xo5e0e5%X.) ~ I P. =P , and the choice of an action for
n 172 N r=l er gN

the rth component problem is allowed to depend on EN; this



distinguishes the "set'" compound problem from the ''sequence'" problem
in which the action at the rth stage can depend on X = (xl,...,xr)
only. Formally, a compound procedure of the type we consider is an
array, @ = {(¢1,¢§,...,¢g), N =1,2,...} such that, for each N and
r <N, ¢€ is defined on IN X d, with ¢§Q§N) being, for each EN’
the probability measure on (7 according to which an action is chosen
for the rth problem. Since N 1is fixed in most of what follows
(although our main concern is with the asymptotic properties of certain
procedures), we will omit it henceforth and simply write
Q = (¢1,¢2,...,¢N). For the same reason we shall write @ for QN
and x for Xy- If there are N problems, the conditional risk,
given x, of the procedure ¢ is

N

0.3) W(e,.x) =N ! g

r_]_L(er :cPr (&) ’x]’.')

and if W(8,p,x) is EN-measurable, the unconditional risk is

(0.4) R(Q,p) = [W @ 2:x) 4P () -

The above is the more or less standard setting for the compound
decision problem. However to reduce somewhat the complexity of the
notation, and to avoid the necessity of keeping track of a multiplicity
of measures, we will adopt a slightly different point of view. Let

. Ip th
P be any distribution on whose marginal is g”- Let
Y = (Yl,Yz,...) be a random matrix distributed according to ﬁm,

and suppose that, if the states are 91,92,...,aN, only

. th
(Yl(el),Yz(ez),...,YN(BN)) is observed, where Y(w) is the w
coordinate of Y. We will write x for the observed coordinate of

Y in the component problem and x for



(xl,xz,...,xN) = (Yl(ef;Yz(ez),...,YN(GN)). In addition we shall
frequently omit the variable of integration. Consequently, in the

notation to be used throughout, (0.2) and (0.4) become, respectively,

(0.5) R(@,¥) = [L(w,¥(x),x)dP(¥) = [L(v,¥)dP
and
(0.6) R(8,9) = j‘w(g,g,z)dl’m@) = [w(g,p)dP .

As is becoming standard (cf. Gilliland, (1968) p. 1890), we
say a compound procedure ¢ 1is simple if wr(-)(C) is a function of
X for each r and C. 1If, in addition, the ®. are identical,
say . = ¢, we say 9 is simple symmetric, with kernel ¢. We
shall, in general, identify simple symmetric procedures with their
kernels, and write R(8,9) and W(Q,p,x) for, respectively, the
risk and the conditional risk given x of the simple symmetric pro-
cedure whose kernel is ¢. For § € Q°° and any simple symmetric
procedure ¢,

-1 N
R(Q,9) =N z R(era¢)'
r=1
From the right side it is clear that R(Q@,9p) is the risk of the
component procedure, ¢, against G, , the empirical distribution of
91,92,...,6N. To emphasize this, we shall frequently write, when

¢ 1is simple symmetric,

0.7) R(8,p) = GN[R(w,w)]

R(GN,cp) = R(GN)

where R(-) is the Bayes envelope for the component problem and we



have used the convention of writing integrals in operator notation,
i.e. G[h@n)] = fhcn)dcon), a notation we shall continue to use for
integrals on the space (Q only.

In (0.7), because of the nature of GN’ the B-measurability of
Lw,9px),x) for each w suffices to make R(GN,w) meaningful.
Future references to R(G,y), where G 1is a distribution on Q, will
be restricted to the class, §, of "measurable" component procedures -
those for which R(w,p) exists and is a measurable function of w.
In particular, the Bayes envelope at G 1is given by R(G) = inf R(G,o).

3
For any simple procedure ¢, (cf. Gilliland (1968), p. 1890),

N
sup {R(8,® - R(GN)} 2 sup {N-l z R(e,wi) - inf IL(S,‘Y)dP}
) 2 r=1 Y

2 inf sup {R(B,¢) - inf IL(Q,Y)dP}.
® ) ¥

The right side is positive, and is zero only when the component prob-

lem is trivial; hence, with modified regret defined by

(0.8) D(8,9) = R(8,%) - R(GN)

we have D(g,p) =2 0 for all simple ¢; and if the component problem

is non-trivial, there is a 6 > 0 such that sup D(g,p) =2 8§ for all
8

simple ¢p.
However, it is possible, in some cases, to find non-simple pro-

cedures, ¢, for which D(g,p) converges in some sense to zero as

N - ». Robbins (1951) gives a heuristic argument for the existence of

such procedures, and precedes it by an example in which the component

problem is to distinguish between N(1,1) and N(-1,1). 1In the case

where the component problem is to distinguish between two arbitrary



distributions, Hannan and Robbins (1955) exhibit non-simple procedures,
¢, for which D(@,p) < o(l) uniformly in § as N -+ = (Theorem 4);
this result is obtained as a corollary to a theorem (Theorem 3) in
which it is shown (in our notation) that to any ¢ > 0 corresponds

an N(e) such that, for any § € Qa,
P IW(8,p,x) - R(Gy) > e for some N >N(e)] < e.
In addition, defining the "equivariant envelope" by
R'(Gy) = inf {RC,®: @) = g p@ for all x € X', g ¢ &}

where & is the set of all permutations, g, of vectors of N

coordinates (i.e. ) where

g(rl,rz,...,rN) = (rg(l)’rg(Z)";”rg(N)

8(1,2,...,8) = (g(1),...,g())), they show that |R (Gy) - R(GY| < o(D)
*

as N - =, Hannan and Huang (1969) have generalized and strengthened

this latter result by showing that, for a finite state space and under

%

mild conditions on the loss function, ‘R*(GN) - R(GN)‘ < ON % as
N - =,

Hannan and Van Ryzin (1965), in the case considered by Hannan
and Robbins, exhibit a function of the observation in the rth problem
which provides an unbiased estimate of the empirical distribution of
the rth state; they consider procedures which consist of playing Bayes,
in each component problem, against the estimate of GN given by the
average of these estimates, and give sets of conditions, each stronger

than the last, under which an upper bound for D(g,p) is O(N-s‘;

%

)>
o(‘N- ) and OCN-]') respectively, each bound being uniform in 8.
Van Ryzin (1966) considers the case in which the component problem

consists of making one of n decisions based on an observation from



one of m distributions; for procedures analogous to those of Hannan

and Van Ryzin, he gives conditions which imply D(g,p) < O(N-%

)
and further conditions implying D(8,9) < OCN-I), both rates being
uniform in §.

Mention should also be made of the papers by Stein (1955) and
James and Stein (1960) showing inadmissibility of the usual estimator
of the mean of an N-variate normal distribution O > 2), with co-
variance matrix identity, under squared error loss. As is recognized
in these papers, this is a compound problem whose rth component prob-
lem is to estimate the mean of the rth coordinate of the random vector;
however the estimator which makes the usual estimator inadmissible
does not seem to have been derived by an explicit compound procedure.

Other work on the compound problem includes that of Fox (1968,
Chapter 2) who exhibits procedures, @, for which D(g,p) - 0 for
each 9 in the case where the component problem is a test on the
parameter of an exponential family; that of Cogburn (1963 and 1967)
who deals in particular with the case in which the component problem
is to estimate the probability of success of a binomial distribution
and who formulates a general approach from the point of view of the
notion of stringent solutions; that of Suzuki (1968) who includes
(among other things) some discussion of "¢-Bayes" simple symmetric
procedures; and some expository work of Samuel (1967).

Throughout this thesis, ¢ denotes an arbitrary non-negative
number, possibly depending on N, and we concern ourselves with the
asymptotic properties of procedures which consist of playing e-Bayes
against an estimate G(x) of Gy - The main intuitive justification
for these procedures is the following lemma, a slight generalization

of earlier results (see, e.g., Hannan and Robbins (1955), Theorem 1),



which we will refer to again, and which shows that a simple symmetric
procedure which is Bayes against a distribution "close" to GN will
yield a risk close to the Bayes envelope at GN

Lemma 0 Let G and F be any distributions on (Q and let
¢ be any measurable component procedure. Then

R(G,9) - R@G) < sup (G - F)[R(W,v) - R(w,¥)] + R(F,p) - R(F)
v,¥€d

where ¢ 1is, as before, the class of measurable component procedures.
Proof. (1) R(G,y) - R(F,9) = G - F)[R(w,9)]
for any procedure . If ?, is any procedure for which

R(G,9 ) < RE@) + n'l, then

() R(E) - R©) < R(F,9) - REp) +n '

= - - HR,p)] + 0!

Adding (1) and (2) and taking the supremum,

R(Gaw) - R(G) - R(F»QP) + R(F) < sup (G = F)[R((.l),\)) - R(U)’Y)] + n-10

\)’YGQ

Since the left side is independent of n, the proof is complete.
If Q 1is finite and j‘L(w,cp)de <M< o for every w and

Y € §, and ¢ 1is e-Bayes against F (i.e. R(F,p) < R(F) + ¢) then
0.9) R(G,9) - R(G) < 2M|G - F| Q) + e.

Hence if we play e¢-Bayes against an estimator, G, for which
\@(:_{_) - GN| ) - 0 in some sense as N - =, we might expect to do
reasonably well.

In Chapter 1 we consider the case in which (Q is finite; we

obtain results of the form sup D(g,p) < o(l) + ¢ for a fairly wide
8



class of "half-space" procedures, g, when the action space is finite
and under rather weaker conditions on the loss function and the
estimator G than are in Van Ryzin; this result is a corollary to
Theorem 1, which is analogous to the result of Hannan and Robbins
involving W(8,p,x). Later in Chapter I we obtain sup D(8,p) < o(l) + ¢
for equivariant procedures which play e-Bayes, in a cgftain uniform
sense, against &(5); and this result is used to achieve a similar
result, under certain conditions, when the action space is infinite.

In Chapter 2 we consider the case when (1 is infinite.
Assuming the existence of '"good" estimators, we show that under certain
conditions (mainly involving the total boundedness of X in an
L_-norm for the loss function, and of (Q 1in an Ll-norm for the family
of distributions) there exist, for arbitrarily small T, procedures
¢ for which D(8,p) < o(l) +T for each @ and the result analogous
to Theorem 3 of Hannan and Robbins (1955) holds. We conclude Chapter
2 by showing that the required conditions hold for a very large class
of problems.

In addition to the notational conventions already described,
we shall also identify sets with their indicator functions and write

H® for the complement of a set H.



CHAPTER I

FINITE STATE SPACES

§1.0 Definitions and Preliminaries

Throughout this chapter, Q = {1,2,...,m}. In this case we have

m dp
P@ <<u=3I RD, and we define f(w,+) = E;Q(-). We assume throughout
w=1

that L(w,a,x) 1is /9-measurable for each fixed @ and a, and that
(1.1) [Lw,a,x)dP <M< = for all w and a.

We let & be the set of all distributions on Q.

A

Definition 1. G 1is a uniformly consistent estimator (of GN’

the empirical distribution of 91,62,...,eN) if there exists a function
Nl(ﬂ,y), defined for all 71 >0 and +vy > 0 such that, for each

@
seq,

sup P [|le) - GN\ Q) >1 <v.

With the supremum inside the square brackets, G is uniformly strongly
consistent. (An estimator G is really a sequence of functions
@1,62,..., with GN : IF -+ % being BN-measurable for each N. We shall

not need to emphasize this formality, however.)

Definition 2. For each F € %, let QF be the set of component

procedures ¢-Bayes against F. For G an estimator, let

% = levx3 ¢°@ €8y, such that,Vr, o (© = ¢°@ )

9



10

Thus to use a procedure in Qa one first estimates GN by
&(5) and then, using a simple symmetric procedure the choice of whose
kernel is permitted to depend on x, plays ¢-Bayes against &(5) in
each component problem. Henceforth, for each x and each ¢ € &.,
¢°(§) will denote the component procedure given by Definition 2.

It is with two subsets of Q& that we will be concerned in
this chapter, the first in sections 1.1, 1.3 and 1.4, and the second

in sections 1.5, 1.6 and 1.7.

L4

§1.1 Finite Action Spaces. Definitions of Half-Spaces and Half-

Space Procedures.

Throughout this section (and also sections 1.3 and 1.6)
A =1{1,2,...,n}. Let Ek be k-dimensional Euclidean space and let

Z: X - Emn be given by
(1.2) Z(w,a,x) = L(w,a,x)f w,x) w=1,2,...,m; a =1,2,...,n.

We shall adopt, for Z, the same conventions as for L; i.e.
Z(yh,x) = IZG»,a,x)dx(a) for any signed measure on (¢ for which
the right side exists.

Definition 3. A set HC Ek is a half-space if, for some

linear functional 4 and some number p, either H or Hc is
{y: L(y) < p}. Let N; be the set of all intersections of s half-

spaces, uﬁ the set of all unions of t members of N;, and

t -1_t
X =2 W)
For each F € % we want to restrict attention to those members
of §_, which take on only finitely many values, and for which the

F

corresponding induced partition of X 1is a collection of regions each
of which is an element of Xﬁ for some t and s. Formally,

is an element of & if

Ye QF F,s,t,v
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Yyx) : xex}c {vl,vz,---,vv}

where vl,...,vv are distinct measures on (¢ and, for each j,

{x: Y(x) = vj} =Q, for some (possibly empty) QK6 € Xﬁ. Hence

3 3

v
Yx)(@) = ¢ Qj(x)vj(a) for each x € X and a € A.
j=1

Definition 4. (Half-Space Procedures). Let G be an

estimator. Then,with s,t,v all finite,

Ba v {p € @a : for each x, onQ €9

G,s,t, é(i),s,t,v}’

where wo is as in Definition 2.

To use a procedure in Q&,s,t,v’ one first estimates GN by
é(i) and then, using a simple symmetric procedure whose kernel, the

hoi . d R

choice of which may depend on x, is an element of QG(K),s,t,v’ one
plays ¢-Bayes against &(5) in each component problem.

Most results obtained so far in the set version of the compound
decision problem have been obtained only for special subsets of

Qé (e.g. Hannan and Robbins (1955) and Van Ryzin (1966)) -

’s’t,v
usually the class § has been restricted to those procedures,
F,s,t,v
Y, for which vY(x)(@) = T Qo (x)v_(a), where x € Qo if B 1is the
BCA FB B FB

set of Bayes acts against F when x is observed. The proof that
Q;B € Xﬁ for some t and s will be given in a more general context
in Lemma 2, in section 1.5. Usually vB(a) is restricted to the
values 0 and 1. In addition the form of the estimator, G, is usually
restricted, especially when rates have been obtained; the most common
form is the "average of unbiased estimators'" given by Hannan and Van

Ryzin (1965) and mentioned in the Introduction.
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§1.2 Unions of Intersections of Half-Spaces.

t
Recalling the definition of N; in the previous section, and
t
identifying sets and their indicator functions, we see that if H € ﬂ;,

then for some elements {Hj} of W,
t

_ - c c,.C c,C c .
H = % Hj H1 + H1H2 + H1H2H3 +...+ HlH2 cos Ht-l“t' Since Hj € N;
s
implies that, for some half-spaces {Hji}, Hj =N Hji’ so that
HS = S S, =H., +H,HS, +...+H, H H i;& we see that H € wt
SR E S O D A 1o A L s
implies that H 1is the disjoint union of at most ¥ sj members of
3=0
ﬂ;t. For future use we note that this implies:
tj J
(1.4) 1f Hj € R; for j =1,2,...,J, then N Hj is the disjoint
j tj‘l k j=1 J
union of ﬁ (z Sj) members of X , where q = % sjtj.
j=1 k=0 q j=1

We now prove a lemma which is a slight generalization of the
results of Ranga Rao (1962), and which we use in section 1.3.
Lemma 1. let (X,3,P) be a probability space, and let Pﬁ be the
empirical distribution of N 1i.i.d. random variables . P. Let
h: X - 2 be P-integrable and let g: X - Ek be B-measurable. Then,

for any s and t,

) -1 =
P [:;;tl‘]”g ) h d(B - P)| 0 as N -] =1,

8

Proof. It is clearly sufficient to prove the lemma for h = 0; also,

by the preceding discussion, and since g preserves unions and

intersections, it is sufficient to prove the theorem for N;. If
s

H= 1 Hj’ where the Hj are indicators of half-spaces, H can be
i=1

written as a linear combination of open members of &; by replacing

any closed H, by 1 - H; in the product. Hence it is sufficient

3

to prove the lemma for open members of ﬂ;.
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For any Borel set B C:Ek, let A(B) = Ig-l(B) h dP, and

KN(B) = Ig-l(B)h dPﬁ. Ranga Rao (1962, Lemma 7.3) shows the existence,

for finite ), of mutually orthogonal measures, )\r(i), r = 0,1,...,k-1,
le @, 0

i=0,1,2,... and r =%k, i =0 such that )\ = % 2)\1_ +)\k s
r=0 i=0

and, for each r and i, there exists an r-dimensional subspace or a

translate of such a subspace, Asl) say, such that x:i)(Ek ~ Ail)) =0,

and x:l)(A) = 0 whenever A is a translate of a subspace of dimension

k (i) (1)

less than r. For each Borel set BC E , let AN ®) = )‘N(B nA.

r
Then Ranga Rao (Lemma 7.5) shows that if (i) XN converges weakly to

A, (ii) )\N(Al(_i)) - )\(A]Ei)) for all r and i, and (iii) )\léi)

(1)

converges weakly to )‘r

, then sup lxN(H) - x(H)\ -0 as N - =,

* A
where ¥ are the open members of HV .

st st

Thus our lemma is proved if we can show that (i), (ii) and (iii)

hold almost surely [ﬁm]. However (ii) follows immediately from the
strong law of large numbers and the fact that {Afl)} is a countable
collection; and (i) and (iii) follow from the strong law together with
the "sufficiency" part of Theorem 3.1 of Varadarajan (1958), which
establishes that for any separable metric space S there is a
sequence of functions fl,fz,... such that, for any finite measure
A on S, XN converges weakly to A\ 1if Ifide - Ifidx for each 1.

Hence the lemma is proved.

§1.3 Convergence of D(§,p) for Half-Space Procedures.

In this section we prove the main theorem for half-space pro-
cedures, establishing conditions for the uniform almost sure con-
vergence of the conditional risk. This is followed by some remarks
which attempt to point up some features of the proof which the state-
ment of the theorem tends to obscure, by a Corollary concerning the

unconditional risk, and some further remarks.
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Theorem 1. Let G be a uniformly strongly consistent estimator
of GN. Then given 8 < o, t < ®» and v < o, there exists a function
N(T,y), defined for all T >0 and vy > 0, such that, for all § € Q

and all ¢ € Qa,s,t,v’

ﬁm[lW(g,Q,i) - R(GN)‘ > ¢+ "M for some N >N(T,vy)] < v.

Proof. Let Y € § , say Y = Z Q:v

F,s,t,v =1 i3

t
is an element of X;, and v

where each Q

3

120y are distinct measures on (¢. Then

-1 N v

W@,Y,i) =N = j(x ) T \’j(a)L(e »a,X )
r=1 j =1 acA
m 5V
= LN £ v, (@ Qj(X)L(G ax)
w=1 j=1 acA 3 {r:o ﬂ»}
Now % (x XL(Q »@,X ) N (Q.L(w,a)dP where P is
{r:0_w) % ol i o N N,

the empirical d1str1but1on of the Nw = Nw(g) = 3 [9r=w] i.i.d.
r=1
random variables ({x : 9r=w}. Thus

ZIEZ

v
Z

"T™MB

W(e,Y,x) = (a)ijL(w a)dB_ .

w=1 laEAj u)

Subtracting from each side its expectation:

N v
w
b v,(a)|Q L,a)d(B, - P).

N j=1 aEA j I w v

ne3

W(Q,Y,i) = R(GN,Y) =
w=1
Finally, taking the supremum of the absolute value of the

integrals and bounding out the v (a) terms, we have, with

SO,00,x) =v T sup |fo Lew,a)d@, - B)|,
acA Qe X"

m N
1.3) |Wwee,¥,x) - R@G,,¥)| = £ = SNN,8,w,x),
N IN

for any VY € % and any F € 4.

F,s,t,v
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Let cpo(i) be the member of @& , guaranteed by

G®),s,t,v
Definition 4, for which (pr()i) = cpo(:i)(xr) for each r. Since A
has n elements, and ‘[‘L(w,a)dPSM for each w and a,

IL(u),Y)dP < Mn for any component procedure Y. Hence, from (0.9)

and (1.5), we have, since W(8,9,x) = W(_Q,:pog), x) for each x,

m N
1.6) [W(@.2.®) - REY| = z RLSM,8,w,x) +MlBE@ - Gyl @) +e.
w:

We note that (1.6) does not depend on any properties of &,
nor on the measurability of the left side, points to which we shall
return in the remarks to follow.

Applying Lemma 1 to the random variables {xr: eran}, there
exists a function k' = k'(T,y), defined for all T >0 and vy > 0,
such that, for all w, § and a,

P[ sup sup,|[Q L(w,a)d(®, - P)| >M]<y¥
T ,0,8) Qex“r Ny @

S
where J(k',w,0) = {N: N (8) > k'}.
Thus, with h = k(0,y) = k'(n(nv)'l,yn'l), we have

Pm[ sup S(N,f,w,x) >N} < vy for all § and w.

J(h’w:g) -1 -1
Thus, for any N', with k = k(Tm ~, y(2m) ~) and

H(k,w,8) = {N: N >N' and N,(® < k}, we have

o M Nu)@
Pl X N S(N,6,w,x) >M for some N >N']
w=1
oo Nw@ -1
< ¢P( N S(N,9,w,x) > Mu for some N > N']
w=1

m =
s I Pm sup SN »8,w,x) > T‘m-l + P IE(T max SN »8,w ’£)>'ﬂm-
w=1 J(k,w,9) H(k,w,0)

< y/2 +g®")



16

where g®N') 1 0 as N' t », since max S(N,8,w,x) is finite
H(k:w’g)
valued, because {S(N,0,w,x) : N € H(k,w,8)} has at most k elements.

Hence for N' sufficiently large, say NZ('n,\(),
m N
aa.7) Pz ﬁm-S(N,g,w,i) > T for some N >N'] < v.

Using now the condition on ?;, let
N(M,Yy) = max {Nl(T](ZMn)-I, v/2), NZ(T]/Z, v/2)} where N, is the
function given by the uniform strong consistency of (“;, as described
in Definition 1. Then (1.6) and (1.7) together yield Theorem 1.
Remarks 1. Neither (1.6) nor (1.7) depends on the hypothesis con-
cerning G. Consequently this hypothesis could be omitted and the

theorem restated as: given 8 < », t < ® and Vv < », there exists

N(N,y) such that, for all 9§ and all ¢ € Qf;,s,t,v

(1.8) Pm[lW(g,g,i) - R(GN)| - Mn\&@ - GN‘ Q) > M+e for some N>N(T,y)] < v.

2. It follows from (1.8) that if G is uniformly consistent
(not necessarily strongly) and T > 0 then

(1.9) sup sup P [|W(8,0-x) - R(GN)| >TN+¢] -0 as N - w.

*% . s,t,v 8

It is (1.9) which yields the corollary to this theorem.
Corollary. If G is uniformly consistent then

sup sup D(8,9) < ¢ +o(l) as N - =,
Q&,s,t,v (-
Proof. Recalling our convention that x = (Yl(el),...,YN (eN)), let

¢y = {¥: W(Q,@,x) > R(Gy) + ¢ +6/2}, so that

R(E,®) < R(Gy) +e +8/2+ jc.NW(g,g)dP“.
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N N
Since W(g,g,&) <N 1 Y max L((D’a9Yr(w)) = N-l z V(Yr)’ say,
r=1 w,a r=1

N
j‘c.Nw 8,9)dP” < nls j‘ch (Yr)de
r=1
< §/2 for P(CN) sufficiently small,

because the V(Yr) are identically distributed and integrable.
Hence, from (1.9), R(8,9) < R(GN) +¢+8, for all § and
Q€ Q@,s,t,v’ for N sufficiently large.
Remarks 1. We repeat the observation in the Introduction
that none of our results are affected if ¢ depends on N. 1In

particular, if ¢ = o(l) as N - o, then the conclusion of the

corollary becomes sup sup D(8,p) < o(l) as N - =,

¥,s,t,v 2
2. The class & may include procedures, @, which
G,s,t,v

are not EN-measurable (though, for each x, the component procedures
wo(i) must be B-measurable). Such procedures are included in
Theorem 1 and its corollary in the sense that, whether or not
W(e,9p,x) is BN-measurable, there is a measurable function, W'(8,x)
such that W'(9,x) = W(8,p,x) for all § and x, with W' having
the properties asserted for W. This can be seen from the fact that
both S(N,8,w,x) and \&(5) - GN‘ Q) are HN-measurable, and the

comment following (1.6).

§1.4 Remarks on the Restrictions on Half-Space Procedures.

It is clear that the results of section 1.1 depend heavily on
the use of Lemma 1. Indeed this is the reason for restricting the
conclusions of Theorem 1 to the class & .

G,8,t,v

The restrictions on the class §a are two, both the
G,s,t,v

result of restrictions on the classes &

F,s,t,v for F € %: that for
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Y€Ed 1) {¥&): x € X} is finite and (2) {x: ¥(x) = vj} € Xi

F,x,t,v’
for each j. Restriction (2) is clearly not essential: the application
of Lemma 1 would not be affected if finitely many of the sets

{fx: Y(x) = vj}, l<j<sv,V¥Ye QF , F € 4] were not elements

of X _.

s

»X,t,v

The crux of the proof of Theorem 1 is the uniform almost sure
convergence of S(N,f,w,x), which is obtained from Lemma 1 because of
the structure of the family of functions U {¥(.)(a): a € A, Y € §

F&&

is a subclass of QF and, for each

F,s,t,v}'

However if, for each F € %, QFI

w€E€Q and a € A,

Pm[supU'g(a)L(w,a)d(PNw -B)| -0 as N-~w] =1

where the sup is taken over g € U {Y(-)(a): ¥ € QFI}’ then Theorem 1
Fe&
. = A o Py
would hold with QG,s,t,v replaced by Qal( {p € QG. o x) € QG[x]l

for each x}). The families J {¥(-)(a): ¥ € &
Fc&
by no means the only ones with this property; however they are of

F,s,t,v}’ a € A, are

particular interest as a rather natural generalization of the standard
situation, mentioned previously in section 1.1, in which, for each F,

QF is restricted to those procedures, Y, for which

o
¥Y(x) (a) = T QoyG)vy(a).
BCA
In fact, although Vg usually depends only on B (the most
common case, with A = {1,2,...,n}, is to have Vg degenerate at the
"minimum" member of B; see, e.g., Hannan and Robbins (1955), Hannan
and Van Ryzin (1965), Van Ryzin (1966)), Theorem 1 also applies to

the case where Vg is also permitted to depend on F; and the con-

clusions of Theorem 1 hold if Vg is a measurable function of x

(since Pw[sup |Iv (a)Q L(w,a)d(P., - P )| -0 as N -] =1 for
QEX{ B Nw w w
each a € A, B’ A and w € Q, from Lemma 1).
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However the methods of Theorem 1 fail if Vg depends on both
F and x. 1In this case (1.5) becomes

N
£z osup |fopv (@Le,ad@, - P,

(1.10) W(8,¥,%) - R(Gy,Y) =
1 BCA acA Fe¥ w

n~Ma

w
It is possible for the right side of (1.10) not to converge to
zero; for there may exist, for a fixed B, containing at least 2 points,
a set C € B, of non-atomic Pw-measure, with card C < card {§ where
3= {F: C CQ;B}‘ Let J map {§ onto the finite subsets of C and
let vFBx(a) =J(F)(x) for some a € B and all F € §. Then, if
points are measurable, fQ?BvFB(a)L(m,a)dP = IJ(F)L(w,a)de =0 for
any F, since J() 1is finite. However for any empirical distribution
Py » there is an F for which PN xeam)] = pN [x € c] and

w w w
CCQFB' Hence

1—8*25 IQ?BvFB(a)L(w,a)dPNw = fc L(w,a)dPNw - Jc L(w,a)dp a.s. (r1,
which may not be zero.
For example, let Pw be the uniform distribution on
(0,17 U {w,w+l] for w =1,2,3 with L(w,1) =w =4 - L(w,2). Let
¢ = [0,1]. Then since F(w,x) = %{0,1] x) + [w,0+1] (x), we have
3

Z F (L,1) - L,2))F(w,x) = 0} = {F: F, = FB},
w=1

g ={F: cC Q;{l’z}} = (F:
if ¢ =0, so that card C = card . Then with J mapping {§ onto
the finite subsets of C, and vF[l,Z}x(l) = J(F) (x), we have
sup UQ;{l,z}"F{l,z}(I)L(l’l)d(PNI - PPl =sup [y - PpE@En| = g T0,1].
3 1 1
Since PN1[0,1] - Pl[O,l] = %, the equivalent of Lemma 1 does not hold

in this case.
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§1.5 Uniformly ¢-Bayes Procedures. The sets QEB. Equivariant

Procedures.
In this section we define the procedures to be discussed in
section 1.6 for finite action spaces, and in section 1.7 for infinite

action spaces. We also prove, in a more general context, the claim of

o

section 1.1, that the sets QFB’

F €%, BC A, are elements of 7(:
for some t and s.

Definition 5. A measurable compoment procedure, ¢, is

uniformly e-Bayes against a distribution F € & if

ox)B(F,x,e)) =1 for all x, where
(1.11) B(F,x,e) = {a: F{Z(w,a-b,x)] < ¢/m for all b € A}.
If ¢ 1is uniformly e¢-Bayes against F, then

R(F,9) = F[[L(w,9)dP] = FL[Z(w,9(x),x)du (x)]

(1.12) JFlZ @,0(x),x)]du(x) < RE) + ¢,

since F[Z(w,p(x),x)] < min F[(Z(w,a,x)] + ¢/m, and w(X) = m. The
acA
change in the order of integration is justified by the finiteness

of Q.
Hence a uniformly e¢-Bayes procedure is e¢-Bayes in the usual
sense.
Lemma 2. Let Q;B = {x: B(F,x,e) = B}. Then for each F € &,
¢ t r-1 ok 2
BCA and ¢20,Q. €% for t= % n, and s = n“(l4r)
FB s
k=0
n
where r =n .
Proof. Let T = {x: F(Z(w,b-a,x)] < e¢/m}. Then T is

Fba Fba

the Z-inverse of a half space, so is an element of Xi. Since
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Qpg = (x: BC B(F,x,e)} N {x: (AB) N B(F,x,¢) = ¢}
Cc
= N nT n n U T ,
bEB acA Fba dEALB e€A Fde

and, from (1.4) and the fact that inverses of functions preserve

. . : \ c
unions and intersections, N N TFba € Xﬁ and n J TFde € Xr,

) beB acA dEAD ecA d
where q=n and r = n". Hence, by (1.4), Q?B C:X§ where
r-1
k
t= % q and s = q(l+r). The proof is complete.
k=0

Since ¢ 1is fixed in our discussion, we shall abbreviate

B(F,x,¢) and QSB to B(F,x) and QFB respectively, in future.

Definition 6. For each F € &, let QFu be the set of component

procedures uniformly e-Bayes against F; and for ¢ an estimator,
= (. o _ o

let & = {p:Vx,3 ¢ &) € Q&(&)u such that,V r, o &) =o @® &)}

From (1.12), Qau(: Qa for every @&.

Let g(1,2,...,N) = (gl,g2,...,gN) be an arbitrary permutation
of (1,2,...,N), and, for any vector r = (rl,...,rN), let
r = (r r casyT . Let & be the set of permutations on
gr (gl’ g2’ > gN) P

(1,2,...,N).

Definition 7. A procedure ¢ is equivariant if, for each

N, x and g €6, pgx) = go(x), i.e., for each r, ¢ (gx) = °pgr®'

*
Definition 8. Lh is the set of equivariant members of Qéu.

In sections 1.6 and 1.7 we establish asymptotic results for

* a
D(8,yp) for the classes Q& with G uniformly consistent.

§1.6 Invariant Estimates. Convergence of D(6,p) for Equivariant,

Uniformly ¢-Bayes Procedures. (Finite Action Spaces)

The main result of this section is the convergence of D(g,(p)
*
for procedures in the class Q&, to be proved in Theorem 2. 1In
proving this result it will be convenient to make use of the in-

variance of the estimator €, and we proceed now to show that no loss
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of generality occurs if this property is assumed.

Definition 9. An estimator G 1is invariant if, for each N,

each x and each g € G, ‘(\;(5) = &(g:g.

We note a particular class of procedures where the invariance
of G implies the equivariance of the procedure. This occurs when
the choice of the procedure to be used in the component problems
depends on x only through &(5); i.e. if ¥ maps & into the

class of component procedures and cpr(;g =Y for each x

&(&) (Xr)
and r, then ¢ is equivariant if G is invariant, for

=¥ = ¥Ya X = x). We make use of this in
(B0 = Y3 (o0 ) = Yoo Far) ™ Pgr ®
Theorem 2.

Lemma 3. Let G be an estimator and let E;Qg) = E[8(gx)],
where E denotes expectation under the distribution with mass }]I.—!

A * * 2
at each g € 6. Then G 1is invariant, Q&C $2, and G 1is uniformly
(&
consistent if G is.
2 *
Proof. Clearly G 1is invariant. Suppose ¢ € @a. We shall
*

show that ¢ € Qé. '

To show this, we need to show that cpr(i) (B(é(i) ’xr)) =1 for
all x and r. Given x, r and g, let gk = r. Then,since
® € Q&u, we have cpk(g)_c) (B (G (gx) ,xgk)) = 1. Thus, since g is
equivariant, cpgk(ng (B(&(gag ’xgk)) = 1, so that
cpr(i)(B(C(gﬁ),xr)) =1 for all g, x and r, i.e.

9, @0 N BEEw,x)] = 1. Thus ge &l if N BGEx) cBC@.x)-

ges R m G €S
For any a € N B(G(gx),x. ), L G (gx)Z(w,a-b,x ) < ¢/m for all
=/ %y ~ W r
gcs w=1 1 m
b€ A and all g € 6. Hence NT £ T Gw(gas)z(w,a'b,xr) < ¢/m

a gcs w=1
for all b € A, so that a € B(G@,xr) as required. Hence

*

8 g
G ¢
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Suppose that ¢ is uniformly consistent, and let o, B, Y and
6 be arbitrary positive numbers. We write |G\ for |G] Q). Then
for N > N(y,8) we have Pm[\a(_Y_(Q)) - GN‘ >vy] <6 for all g,
where Y(9) = (Yl(el),...,YN(eN)). Hence, since |G-GN\ < |G\ + ‘GN‘ =
JUG@(®) - 6 l14F° @ < v + 26 for all g. Since the Y, are
i.i.d. and GN(gg) = GN(§) for all g and § (where GN(Q) is the
empirical distribution of 91,92,...,9N) we have, by the transformation
theorem, [|G(gx(g®)) - cN|dp°°@) = J‘\?;(l(gg)) - cN\dp‘”@ <y + 28 for

all § and g. Hence

le. £ G(s¥(89) - GyldP (V) =< z TleexEe) - 6 ld” @
gcs

<y + 25.

Thus, by the Markov inequality, Pwﬂbll'—! T G(gY(gp)) - GN‘ > o] < 12.:2_5. .
g8es

Since gx = gY¥(gp) for each x, g and § we have that if N > N(y,8),

with vy + 26 < oB,
Pm[la@) - GN‘ >a)] < g for all 8.

The lemma is proved.
We can now state the main result of this section.
Theorem 2. Let G be a uniformly consistent estimator. Then

SUpsupD(Q;Q)<o(1)+e as N - o,
QE@ ]

Proof. In view of Lemma 3, it suffices to prove the result for

a

G invariant. Let ¢ € Qf and let wr(g_,gg,g) = L(er,cpr(i) ,xr). Then
Wgr(g,gg,z) = L(egr gr(_), L(Ggr,cpr(gz) ,xgr) =W _(89,0-8%).
Let E denote expectation under the distribution with mass
N
;—! at each element of &. Then since N-l T h(r) = E[h(gN)] we
r=1
have
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N
N
E(W_o(8,0,x)] T £(8,,x,)du (x)
J gN =1 KTk

)
@
3

]

N N
E[ /W, (89,0,8%) I ECgxg 0% @]

]

N
N
E[ /W, (8,0,%) RULICRE LR )

. . N . .
by the transformation theorem, since is invariant under per-
N

mutations of x. Noting that E[egN =w] = ﬁgy we have

N
_ N
R(E@ = [ELL(8 o G 1x) kElf(egk,xk)]du €9

N
= JECELL(8 y»t, () xy) kr=11f(egk,xk)\egN = 0]1dN &)

N N-1

L L@, () ,xN)f«u,xN)E[kn

m
(1.13) =j‘§ = n

w=1

£ o0y = wld @

Denoting the integrand of (1.13) by T(¢N(§),£) we have,
with ﬁ(r) = B(&@,xr),

(1.14) R, < j max T(a, x)dp. (x) for all g € @«
acB (N)

Let ([ € Q&u be given by gr(g)(a) =1 for a = aﬁ(r)(xr)’
where aB(x) is the first maximizer, among elements of B, of
GN[Z(w,a,x)]. One might expect ( to do about as badly as possible
against © since it '"plays anti-Bayes" against GN within the
restrictions imposed by membership of Qau. We shall show that this
is, in fact, the case. Since G is invariant, { 1is equivariant
(see, e.g., the remarks following Definition 9). Hence

J‘ max T(a, x)dp, (x) - R(8,0) = T j[n—ﬁ(u)]{max T(a,x) - T(ay(xy) ,%) }duN (x)
acB (N) acB

(1.15) < T [max T(a,0) - T(ay ) 0)d" (),
BCA a€B
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%

since each integrand is positive. We show the right side is oW %)
as N - =,

For each B, consider the problem obtained from the present
problem by truncating the action space to B and using the loss
function LBGn,a,x) = béBLGn,b,x) - L(w,a,x).

Replacing L by LB in (1.13) and interchanging orders of
summation, we see that the risk of an equivariant procedure, ¥, in
this new game is
(1.16) Ry (&Y = [ £ T(,0) - T @ 0 d @.

bEB
In particular, the best equivariant procedure has risk
1.17) R,Gy) = [ £ T(,x) - max T(a,00d" @
bEB acB
and the best simple symmetric procedure has risk
(1.18) RyGy) = [ ZTM,x) - T(aB(xN),z)duN(g)
beB
since simple symmetric procedures are equivariant. We obtain (1.18)
from (1.16) by taking Y to be the simple symmetric procedure whose

. th . .. .
kernel, in the r = problem, is degenerate at the first minimizer in

B of GN[LBOD,a,xr)fGn,xr)] = GN[fﬁn,xr)bgBLG»,b,xr)] - GN[ZQn,a,xr)],

i.e. at aB(xr), the first maximizer of GN[ZG»,a,xr)] in B.
Substituting into the left side of (1.15) the left of (1.14)

and replacing the right of (1.15) by the difference of the left sides

*
of (1.18) and (1.17), we obtain, for all ¢ € %,

(1.19) RO - RED S T (R - R,

Hannan and Huang (1969) have shown that each summand on the

%

right of (1.19) is bounded by O(N 2) uniformly in §. Hence
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(1.20)  sup_ sup D(@,@) < sup(R(,0) - RGO} + O *

weda 8 8

We now show that [ 1is a half-space procedure, so that, from

).

the corollary to Theorem 1, sup{R(8,0) - R(GN)} < o(l) +e¢. We first
e
note that if g° is the function given by Definition 6 then
o
{(CEW: yex} C:{al,az,...,an} (where "a" denotes the measure
degenerate at a) for each x. It remains only to show that, for each
x, {y: ®x)(y) = a} € XE for some t and s. But
o
{y: @) =a} = U Qa naQ )
(BcA:acp} C@B  TGyBa

where

Lo
]

{x: aB(x) = a}

GNBa

N (x: 6ylz@,b-2,0] < 0} N N {x: 6y[z(w,b-a,%)] = 0}

b€EB b€EB
b<a b>a
€ Xn-l'

. R t .
Since we already have QG(K)B € Ké from Lemma 2, an application of
(1.4) yields the result.
Hence ( € 3, for some bounded s and t, so we can
G’S’t’n

apply the corollary to Theorem 1 in (1.20) to get

syp sup D(8,p) < o(l) + ¢ as N - =, as required.
-1 2
G —

§1.7 Convergence of D(8,p) for Equivariant Uniformly ¢-Bayes

Procedures. (Totally Bounded Action Spaces)

In this section we replace the assumption that A is finite by

(1.21) A is totally bounded in the metric d(a,a') = sup |LG»,a-a',x)\.
X ,W

(Since, in fact, we deal only with uniformly ¢-Bayes procedures, it

is sufficient that some totally bounded subset of A contain
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U B(F,x).) We now state and prove the result analogous to Theorem 2.
Fcé
x€X

Theorem 3. If (1.21) holds and G is uniformly consistent,

sup sup D(8,p) < e +0o(l) as N - =,
@3 ;]

Proof. For each 6§ > 0, let Dy = {al,az,...,ak}, k = k(),

be such that, for any a € A, d(a,aj) < & for some aj € Dé’ where

d 1is the metric given in (1.21).
*
Let @€ #. Fix & and let {Aj: j=1,2,...,k} be a

partition of A such that, for each j, d(a,a,) < & for every a € A

3
Consider the reduced problem obtained by replacing A by

i

-~ :f : PR " "
D Let QGu& and §G5 satisfy Definitions 6 and 8 (for Q?‘,u and

6.
*
"Qé"), with "¢" replaced by "¢+md'; and let Ra(-) be the Bayes
envelope for this reduced game.
We observe that, for any G € &, we have
min G[Z(w,aj,x)] - inf G[{Z (w,a,x)] < § max f(w,x) < &,
D6 A w

since f(w,x) £ 1 for all w and x. Integrating this inequality

with respect to p, we have, since p() =m,
(1.22) R6 (G) - R(G) < m§ for all G € 4.

Let ( = L(p) be the procedure in the reduced game given by
@ @) = @@
First, since Cr(gi) (aj) = cpr(gi) (Aj) = cpgr(zc_) (Aj) = Cgr@i) (aj),

*
) for all r, x and j. We show that QGQGG.

L 1is equivariant. It remains to show that ( € Q&u&'
Let cpo be the function, given by the definition of Q&u
(Definition 6), corresponding to ¢. For each x € IN, y € X and

aj € D6’ let g°®@)(aj) = cpo(g)(}’)(Aj)' Then for etach x and r,
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Cr® =§o®(xr)' If QOQ(_)(y)(aj) >0 for some x, y and j,

then ¢ (x) (¥) @,

such that @(ﬁ)[z(w,a-b,y)] < ¢/m for all b € A. By definition of

) > 0. Since Qp°® € QC(&)U’ there exists an a € Aj

Aj this implies that ‘C(}i)[L(u:,aj-b,y)f(w,y) < ¢/m + 8] for all
b € A (and hence for all b ¢ Db)' Hence l;o()i) ) (aj) > 0 implies
a; € B6@®,y,em&) where B (G,x,¢) satisfies (1.11) when A is

replaced by D Hence

*
L€ g

By definition of [ we have, for all § and x,

for all x, so that

o
5" ¢ ® €%

N
|W(Q’SQ’§) = w@’g’iﬂ < N-l z ‘wr(.e_’SQ’l) = wr(.e_’;.’ﬁ)‘
r=1

N n
-1
SNTI I |[y Lo 2% o (x,da) - L(8,»a5x ) @A)
r=1 j=1 j
-1 N n
SNZoz jAle(er.a,xr> - L(er,aj,xr)lcpr(g,da)
r=1 j=1
-1 N n
<N z PG cpr(&,Aj) =5.
r=1 j=1

Integrating this inequality we obtain,
(1.23) R(8,p - R(B,L) < & for all .

Thus, for any 6§ > O,

sup sup D(g,p) < syp sup{|R(8,0)-R@,L@)|+RE.L@-R, G|
LA PR
+ |RgGy) - RGP}

(1.24) < 6 + syp sule(g_,g)-R6(cN)| + m§, by (1.22) and (1.23).
2N 2
G =

From Theorem 2 there is a function Né (y) = N(y,8) such that

N > N(y,8) implies sup sup|R(8,0) - Ré(GN)l <y +e+m.

¥ 2
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Substituting this in (1.24), with 6&(y) = , we have,

N
2 (2mt1)
for N>N'(y) = N(%u 5§(V)), s;p sup D(8,p) < vy + ¢ as required.

7]

Remark. We again note that Theorems 2 and 3 continue to hold

if ¢ depends on N.



CHAPTER II

INFINITE STATE SPACES

§2.0 Introduction.

When ( 1is infinite, we face two problems not encountered
earlier. Solutions to the problem of estimating the empirical dis-
1’x2"°"xN are not known

in general. 1In what follows we simply assume the existence of appro-

tribution GN from the observations x

priate estimators, and we will not discuss this question further

except to mention the work of Fox (1968, Chapter III) in the case
where the distribution g» is the uniform distribution on [0,w]

(0 < w <« ®) and the case where g» is the uniform distribution on
(w,w+l] (- < w < »). Also, appropriate forms of Lemma 1 are not
available because, among other things, of the partial failure of the
Glivenko-Cantelli theorem in infinite dimensional spaces (see, e.g.,
Sazonov (1963)). The convergence for which Lemma 1 was used, however,
could be expected if the sample space, Y, were finite, since we would
then be concerned with a supremum over a finite number of sets. How-
ever if Y 1is finite the problem of estimating GN is virtually in-
capable of solution, since the distributions {P@: w € Q} would not

be linearly independent if ()} has more elements than Y. One seems

to need, then, an infinite sample space to allow the estimation and a
finite sample space to ensure the convergence needed for the asymptotic
optimality of the '"Bayes against the estimate'" procedures. It is these

considerations that motivate this chapter.

30



31

In section 2.1 we define terms to be used in the following
sections, and outline the basic approach. The main results of the
chapter are in section 2.2, and this is followed, in section 2.3,
by an attempt to show that, under reasonable conditions, constant

terms appearing in the bounds in section 2.2 can be controlled.

§2.1 Finitely Based Decision Procedures.

Let V be a finite measurable partition of Y, and for each
x € X let x' be the member of V to which x belongs and
L(w,a,x') be the value of L(w,a,y) at a fixed, but arbitrary,
point y € x'. As before, let & be the set of distributions on Q.

Definition 10. For each w € Q, let PwV be the distribution

on V induced by Pu) on /[B. For the component game obtained by

replacing X by V, Pw by PW and L(w,a,x) by L(w,a,V), let
Rv(-) be the Bayes envelope, PV(G’CP) the risk of a V-measurable

component procedure ¢ against G € %, §, the set of component

v
procedures and, for each F € 4, QFV the set of component procedures
c¢-Bayes against F. Component procedures available in the reduced

game are also available in the original game in the sense that 1if

op € @v, the procedure Y in the original game, given by Y (&) = p(x"')

for every x, can be identified with (. Since V < /3, any |/ -measurable
procedure in the reduced game is /S-measurable in the original game.

In the context of the original problem, a procedure ¢ € QFV will be
called "¢/ -Bayes" against F.

For each F and G € &, let

(2.1) A(F,6) = sup T (G-F)[L@,v(V)-¥(V),V)B (V)].
v,‘l'eév vd/

Then, from Lemma O, for each F and G € &, and ¢ € QV .
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2.2 R G,p) - R (G ,G) +R (F,p) - R (F
(2.2) V( ®) V()sx(F) V( ®) V()

where the interchange of the order of integration, for the term
A(F,G), is justified by the finiteness of V.

The main idea in what follows is that, if V is a "good"
approximation to Y in the sense that both ‘L(w,a,x) - Lon,a,x')‘

P (V)
and I JV(E - —Q———)+Q¢ are small for every w,x,a and V (where
vey © @ B

dp
f =4

w du
Then we might use a(xl,...,xN) to estimate GN’ play e-V-Bayes

for some measure ), then RV(-) might be close to R(-).

against &(5) in each component problem, and use the finiteness of
{/ to obtain the convergence which, in Theorem 1, came as a result

of Lemma 1.

§2.2 Convergence Theorems for ¢-V-Bayes Compound Procedures.

In this section we give conditions under which the risk of an
"¢+ -Bayes against G" procedure is close to RU(GN)’ and give a
bound on the difference RV(GN) - R(GN). These results are drawn
together for a general theorem on the convergence to R(GN) of
these procedures.

Definition 11. For G an estimator, let

Yoy " {@:Vx30° @ € Sy Such that,Vr, o () = o @) (x )}

Theorem 4. Let (Q be totally bounded in the metric

dl(w,w') = sup{lL(w,a,V) - L(wv,a,v)\: acA,Vey} Let
(2.4) G(V) = sup{‘L(w,a,x) - L(w,a’y)‘ w €Q, a €A, x' = yv}

be finite and let M < «» be the uniform bound on L implied by

these conditions.
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Then with § = §(/), there is a function N(T,Yy), defined for
all >0 and y >0 such that, for all 9 €Q and g€ &gy,
[s2d A
PL U (WX - A6®,6)) >R,G) +e+58 +M}] < v.
N N
N>N (T,v)
Proof. Let El""’Ek be a partition of (1 by sets of
dl-diameter < &, so that for each i, sup‘LGn,a,x) - L(w',a,x')‘ < 2%
a
whenever w,w' € E;. For each i, let w; be an arbitrary fixed

element of Ei-

Let Y € QVF for some F. Then

Z

| Lo, ¥ &) ox )-Leo,,¥ 1) x| < 8.

N
|W(Q,Y,§)-N'1 Z L(,,¥ (x) x| s N .

r=1 r

nme

Since the integral of the absolute value bounds the absolute value of

the integral,

(2.5) |RC8,Y) - Rv(g,‘y)l < 6.

Also, for er € Ei’ we have

|L(o, ¥ (x))x ) -Llw ¥ 1) ,x )| < [IL(8,,a,x ) -Lw;,a,x)) |¥ (x]) (da) < 26.

Hence

m
(2.6) |W@,¥,x) -8 1z g Llwg,¥ (1) ,x!)| < 26.
i=1 {r:0 €E,} ror
ri
N _ L N
Let N, =N(g,i) = z [er €EJ, By =N, z [er € E;]P, v’
r=1 -1 N i r=1 r
and for each Dc {, let P. (D) =N v [6_ € E ][x' € D], so that
Ni i =1 ¥ i r
P is the "average' distribution on |/ arising from the er's in
i
Ei’ and PN is the corresponding empirical distribution given by
i
',
{xr. 6, € Ei}.

Hence (2.6) becomes
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m N,
i
2.7) |w(a,¥,x) iz=1N jL(wi,w)deil < 26

which implies

m N,
Ny -
|RC8,Y) - N fL(mi,w)dei| < 28,

so that, from (2.5), we have

m N,
N, -
(2.8) |RV@_,Y) - 151“ j’L(wi,Y)dei| < 3.

From (2.7) and (2.8) we have

m N,
N, =
(2.9) W(9,¥,x) < 56 + 121 - J‘L(wi,‘i’)d(PNi PNi) + Ry (8,Y)-

Let ¢ € Qav and let cpo be the function guaranteed by
Definition 11. Then since W(8,¢p,X) =W(g,cp°(5) »X) for each x,

we have, from (2.9) and using (2.2) and the definition of QPV to

bound R, @, ),

m N
(2.10) W(Q,p,x) <56 + % N—i S(N,Q,Ei,p +13,(GN) + e + x(ﬁ(a),GN)

i=1

where SN,0,E,,x) =M T |P -P ‘(V).
== N N
Véym iN; 1 -
We now show that ¢ N S(N,9,i,x) -0 a.s. (P) uniformly
i=1
in 9 as N - =, by considering the Ath moment of ‘PN - PN |(V).
i i

We have

~ -— 4 e =4 4
(B, -P YWV)| dP =N_{ % V&) - P, (V) dP, (x)
'“ Ny Ny | ' {{r:erEEi}J\ O Oy

+6 [Jve-p, @)%, 0]V -2, @) 7, 1)
{r#s:8 ,0,€E ]} r r s s

-4 -2
+ -
< N, {Ni 6N1(Ni 1} < 6Ni

where we use the independence and zero expectation of the terms

Vix) - Per(V), r=1,2,...,N.
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Hence, by the Markov inequality, given T > 0,

m - -
P [sup SO,8,i,x) > M) < z 6n 2'\'\"2 -0 as N'(g,i) = =.
N>N' n=N'(g,1)

Hence there exists a function k' = k'(7,y), defined for all

N>0 and y >0, such that, for each i and each § € Q°,

P sup S(N,9,i,x) > M) < v
NeJ(k',i,9)

where J(k',i,9) = {N: N(g,1) > k'}.

Let k = k'(0/m,y/m). Then, with H(k,i,8) = {N: N>N' and N(8,i)<k},

m N
i SN,0,i,x)>N] < £ P sup N—ism,g,i,i) > 1/m]

2

® m
Plsup T _i
N>N' i=1 N i=1 N>N'

m
(2.11) < £ (F°[ sup  S®,0,i,x)>Vm] + P[5 max  SO,0,1,%)>T/a])
i=1  NeJ(k,1,0) N wen(k,1,8)

<vy/2 +g(N'), where g(N') | O uniformly in § as N t =
since S(N,0,i,x) < 2M < =,

Theorem 4 now follows from (2.10) and (2.11).

We now deal with the term RV (GN), by introducing a measure of

the accuracy with which V "approximates" X.

dp
let Py << u for all w, with f = —2  and, for each x,
P (x') w  du
_ W
fwv(x) _p.(x')° Let
= = - +
(2.12) 2, () = sup o ) = sup Jg, - £, du

It is clear that au(v) depends on . In fact, if u is

o-finite, then av(U) < au(v) for any finite measure, v, equivalent
to u and agreeing with pu on U{V € yy: (V) < »}. This follows

easily from the fact that wa x) =0 if pE') ==

Definition 12. For { a measurable partition of 7Y, let

a) = inf o V), where the infimum is taken over the set of o-finite
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measures {u: P < <p for all w € Q}.
Remark. We assume henceforth that (Q 1is separable in the
metric d(,w') = Sup‘P (A) - P ,(A)‘; this implies domination of
acs w

{g»: w € Q} by a o-finite measure.

Definition 13. For each G € %, let RI(G) = inf R(G,y), where

the infimum is taken over all measurable procedures ¢ for which
UL, £ du] = fElLw,p) £ Jdu.

Remark. The class of procedures for which this change of order
is valid does not depend on u, since

(i) u can be taken to be equivalent to {P@: w € Q} because
of the separability of (} under the metric d; and

dp

i1 _U)_=g-E-_ h
(ii) if pw < < v then v ao fw’ so that

dp
Jolgg" Lwsp)Jdv = f%% 6LE L@, ]dv = [6LE Lw,p)]du.

Lemma 4. Let L(w,a,x) <M for all w,a and x, and let

6§ = 8()) be given by (2.4). Then, with o =a /),
(2.13) RV(G) - RI(G) <My + 8§

for all G € 4.
Proof. Let , be any measure with P@ < < u for each w,

and let fuJ and fwv be as in (2.12). let ¢ be any procedure for

which G[[L(@,p) £ du] = [6[L(w,p)f Jdu. Then

RG,) 2 [6L{Llw,px),x") - 8}f (x)]du(x)

2 [elL@w,p @) ,x")E ()]du(x) - 6.

. +
Since L <M and fw(x) p- fwy(x) - (fwv(x) - fw(x)) , we have

(2.16) RG») +6 2 [elLl,p6x ), ()1dut) - W[ (E, - £ d].
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The first term on the right of (2.14) is bounded below by
(2.15) [ inf G[L(w,a,x")f (x)]du(x) 2R (G) -M £ G[B_ (V)].
acA W v w (V)=
To deal with the second term on the right of (2.14) we note
that

Je -yl - -£)faw= £ [ved+ sz [v(E - £ )du
® W I w v p.(V)=°°I v w (V)< ¢ W

(2.16) = P P (V).
pW)= ¢

Combining (2.12) and (2.16) we have, for all w,

+
(2.17) W) - £ PV =[(¢ -f£f)du.
h pV)== * I oy o

Combining (2.14), (2.15) and (2.17) we have
R@G,p) +6 = RV(G) - Myu.(v).

Since ¢ and . are arbitrary, the proof is complete.

Corollary. R(Gy) =2 R () - Mx - 6 for all g€ Q”.

Proof. We have only to show that RI(GN) - R(GN). This, however,
follows immediately from the fact that GN is discrete, so the change
in the order of integration in Definition 13 is valid for any measurable
procedure ¢p.

We are now in a position to obtain a result, analogous to
Theorem 1, for infinite state spaces.

Theorem 5. Let Q and A be compact, L jointly continuous
in w and a for each fixed x, ED(V) continuous in w for each
VEV, and § =8¢) and o =a@) as in (2.4) and Definition 12
respectively. Let M be the bound on L, and let either

* A
(a) (@Q,d) be a metric space and L (G(g),GN) - 0 a.s. [ﬁm]
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*
as N - o for each ¢ € QQ, where L is the Prohorov metric, or

(b) Q be a subset of the real line and L(&(&) ,GN) - 0 a.s. [Pm]
as N - o for each g € Q”, where L is the Lévy metric.

Then there exists a function N(7,Y,8) such that for each

Pl sup W(B,p.x) - R(GY) > e +Mx + 65 + 7] < v.
N>N(M,v,8)

In addition, if the convergence of G(x) to Gy 1is uniform

in § then N(M,v,8) = N(,vy).

Proof. For any v and VY € QV and V € y

|L@,v) - Y(),NEB V) - Lw',vE¥) - ¥YV),NE V)]

< B, |L,v®¥) - ¥V),V) - Le',v®) - YW, +M[B,0)-P V)]

(2.18) < 2 sup |L(m,a,V) - L(“’"a’v)‘ +M\Pw'(v) ) P‘”(V)‘.

a
Since (3 is compact, P is uniformly continuous so that
w
|2, y@) - B (V)| -0 uniformly in w as o'~ w. We shall show that

the same is true for sup |L(u),a,v) - L(w',a,V)‘.
a
Given p >0 and w € (2, for each a € A there exist open

c d
sets Ua Q an wac A such that (w,a) € Ua X wa, and
w',a') € U, X W, = |L(u),a,V) - L(u)',a',V)‘ < p/2. Since A is

compact, a finite covering {Ua X wa » 1 =1,2,...,n} covers {w} x A.
n i i

et U= NU_ . Then U 1is open, contains w, and for any w' € U
i=1 °1

and a € A there is an i for which {(w,a),"',a)}cC U, XW_,

a
so that lL(w,a,V)-L(w',a,V)\ < |L(m,a,V)-L(w,ai,V)| + |L(w,ai,V)-L(w',a,V)\<p.

Hence for each @ there is Bw(p) > 0 such that d@,w') < Bw(p)

implies sup |L(w,a,V) - L(w',a,V)‘ < p. An elementary argument,
a
using the compactness of (), shows that inf Bw(p) =g8(p) >0 for
w
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each p > 0. Hence sup \Lﬁn,a,V) - LG»',a,V)\ =+ 0 uniformly as
w' - w, for each V; a:d the above ‘also suffices to show that Q
is compact (and hence totally bounded) in the metric

d; (w,w') = sup |L(w,a,V) - L(w',a,0)|.

Thus goth terms on the right of (2.18) tend uniformly to zero
as w - w', so that, with a (p) = sup{h(w)-h('): d(,w') < p} and
with ¥ = {L(w,‘i’(V)-v(V),V)Pw(V): VEY; ¥,v € QV}, we have
sup ah(p) -0 as p - 0.
hey

Hence, if (,d) is a metric space, we can apply Lemma 7 in
the Appendix, to get )\(F,G) - 0 as L*CF,G) - 0; and if Q 1is a
subset of the real line, we can apply Lemma 8 (or 8') in the Appendix
to get \(F,G) - 0 as L(F,G) - O.

Consequently, under either (a) or (b) we have, for each § € Qw,
x(é(g),GN) -0 a.s. [P°], with this convergence being uniform for
8 € Q if the convergence of G(x) to Cy is uniform.

In addition, as has been shown, (1 1is totally bounded in the
metric dlﬂn,w‘) = :93 |L0»,a,V) - LG»',a,V)‘; thus the conclusion
of Theorem 4 holds. ’This conclusion, with the conclusion of the
corollary of Lemma 4 and the convergence of x(@(z),GN), yields the
required result.

Corollary. Under the conditions of Theorem 5,
sup D(8,p) < o(1) + ¢ + Mo + 58, as N - =, for each § € Qw; and the
convergence to O is uniform in § if the convergence of é(g) to

GN is uniform.

Proof. Given T > 0, by Theorem 5 we have
R(8,®) = [W(@.@.x)dF" < RGY) + e + M +Mx + 65

if N >N(W/2, 1/2M,6), since W < M.
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We remark, in concluding this section, that none of the results
depend on the particular determination of L(w,a,x'). (The first
condition for Theorem 4 does depend on this; however if d1 were
computed for a determination different from the one to be used,
L(w,a,x") say, the first sentence of the proof would still hold
and would imply sup |LG»,a,x) - LG»',a,x")\ < 486; and the conclusion

a

of Theorem 4 would still hold with "5§" replaced by "98".) Consequently

any determination of L(w,a,x') will suffice.

§2.3 Approximating the Sample Space by a Finite Partition.

The usefulness of Theorem 5 and its corollary will depend on
the existence of estimators satisfying conditions (a) and (b) of
Theorem 5, and on the availability of partitions,|, for which o)
and §(y) are arbitrarily small. As has been said, we do not discuss
the first of these problems in this thesis. The next two lemmas and

the remarks which follow give a partial answer to the second.

dp
Lemma 5. Let B <<m with E;m-= fw. Then, for each w

and o > 0, there is a partition Um such that awu(V) < o whenever
/ 1is a sub-partition of Vw.

-1 _
Proof. Choose a, so that %n(ﬁn [O,al)) < af3. lLet a =0,

1
3a
and let aj = 33;1 = (3?a)j-1a1 for 1< j < k where
= i . -1 i j-l (-] =
k = min{j: gn(qn [(3q1) a;s )) < a/3}. Let a,, == and let
-1
VUJ = {VO,VI,...,Vk} where Vj = fw [aj,aj+1).
lLet V ©be a sub-partition of Vw‘ Then for V CZVj, l< j<k,
P V) + . a 1
and x €V, (q”(x) - ﬂfivy) < q”(x)( - ;j——) < fw(x)a/B. Hence
PO, k
@ V)= 5 [V - 2= = = [VEdu+ £ L [VEo/3du<a
s vey woow v, j=tvev,”

This proves the lemma.



41

Lemma 6. If ( 1is totally bounded in the metric
dw,w") = sxp \Pw(A) - Pw,(A)l, then for any o > 0 there is a
partition,/, of X for which o) < .

Proof. Since ( 1is totally bounded in d, it is separable
so that, for some c-finite u, P <<y for all w € Q. Let

dp
f === Then d(w,n') = %ﬂfw- fw,|du..

w  du
By Lemma 5 we can find, for each w, a partition Vu) such
that a (V) < /2 for any sub-partition of V Let UI’UZ""’Uk

be a covering of (Q be spheres of diameter < «/8, and let w, € Ui’

i=1,...,k, be arbitrary. Then since, for any w,w' and any V,

PO P
= VI, -t - ) e
v
PO B

< z{fvlf - fu')\dp + [v| :-)(V) u-(V)' du.}
v

and since, for the second term on the right,

PO) B,
N v ity C O T AT U I A LA A LT

- < 21{f - = 4d .

we have ozw(v) cvw,u(l/) [ N fw,|du. (w,w")

Let V be any finite sub-partition of { ,/ ,...,y . Then

Y1 %2 Wk

for any w, awu(") < awiu(ll) +4d,w;) <o for o € U;. Hence
o ¢) =supa_ @) <a. Since a) <o ), the lemma is proved.
v @ (Y

Remarks 1. If the conditions of Lemma 6 hold and there is a
partition,Vr say, for which 8¢ ,) < &, then any sub-partition, |,,
of both vV, and the y of Lemma 6 will have avz) < a by Lemma 5
and 6(/2) < § trivially. We do not discuss §¢ ) further except
to note that, obviously, §(y) =0 for all ¢ if L 1is independent

of x.
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2. The condition of Lemma 6, that (2 be totally bounded,
holds for many families of distributions. Scheffe's theorem, that
-“fw - fw,\dp. - 0 if, for every F with Ww(F) < and every T >0,
wlF N {x: |fw(x) - fw,(x)‘ > M}] = 0, serves to establish total
boundedness - often by using compactness - in many cases. We give
some examples.,

(a) Exponential families. Let T be a mapping from Y into

Ek and let u be a measure on Y. Let © = {w € Ek: IemT(x)du. < =}
where w T(x) 1is an inner product. The class of densities

m'l‘(x): w € 0}, where C(w) = [fewT(x)du]-l, is the exponential

{cw)e
family on X generated by T and pu. It is well known that C is
continuous on the interior of @; so,since fw(x) - fw,(x) as w - w'
for all x and all @' in the interior of @, we see, using Scheffé's
Theorem, that any subset of a compact subset of the interior of ®
will be totally bounded in the metric
d,w') = s;p \Pw(A) - Pw,(A)\ = gjlfw - fw,‘dp..

For example, in the one dimensional normal family, T(x) = (xz,x)

and w = (- —, “'—2), for the distribution with mean p and variance

202 c

02. Hence our requirement is satisfied if, for some positive numbers,
2
a and b, 0 2a and |u| < ba’.

(b) Translation parameter families. Let J‘p dv = 1 where,

for u Lebesgue measure on Ek, v<<u and 3“—\’ is bounded. Let
= k .
fw(x) = p(x-w), w € E'. Then since “fw - fw,ldv -0 as w-w'
(cf. Royden (1968), p. 91, Problem 17 (b)) our condition is satisfied
if Q 1is any bounded subset of Ek.
Remark. In both (a) and (b) above, we also have, for each

BERB, ‘Pw(B) - Pu)'CB)‘ -+ 0 uniformly in w€Q as w'-w, a

result which, in Theorem 5, was obtained from the compactness of Q
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and was used in showing that )\(F,G) - 0 as L(F,G) - 0 or

*

L (F,G) = 0. The other requirement, that

sup |L(w,a,V) - L(w',a,V)l - 0 uniformly in w, still needs separate

a,v
treatment however.
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We prove here lemmas which have been used in Chapter II but
which were unsuitable for inclusion there because, except for their
application, they have no particular connection with the Compound
Decision Problem. These lemmas are concerned with the relations
between certain metrics on sets of probability measures; although
they were used in the proof of Theorem 5, their use may not have
been necessary and they are included at least partly because of
their general interest.

Before introducing the lemmas, we need some definitions.

Definition 1. Let h be any function on a metric space

Q,d). The modulus of continuity of h is the function given by
@, (e) = sup {|h@) - h@")| : dw,w") < €}

for each ¢ > 0.
Definition 2. Let & be the space of probability distributions

on a metric space (). The Prohorov metric on 4 is given by
* . 5
L (F,G) = inf {§: F(A") + 6 =2 G(A) for all closed A cQ}
where
Ab = {w: for some w' € A, d(w,w") < &8}.

* *
[(We note L (F,G) = L (G,F); for A6 is open for each A, so

6c )

A is closed; and w € A6c > d(,w') < 8§ for some w' € adc . w € AS,
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&chd c . * )
so A - A". Hence, if 8§ < L (G,F), so that G(A") + &§ < F(A) for

*
some A, then F@A°®) +5 < F@%) + 5 < ¢S, i.e. 6 < L (F,0).
* *
Thus L (G,F) s L (F,G).)
Lemma 7. let a < h(-) <a+M be a real-valued function on
a metric space Q. Then if P and Q are distributions on Q with

*
L (P,Q) = p,
|/h dp - [hdo| < Mp + o (p)-
Proof. Without loss of generality we take a = 0. Then

[hdp - [hdq = j"gx arn~! - j"gx daqh~ !

1) = Ig Ph-l[x > t] - Qh-I[x > t]dt

- p
Since w € ‘h l[t,M]’ (where the bar denotes closure) implies

h) =t - ah(p), we have

-1 -1 e -1
Ph "[x 2 t] < Q(h [t,M]] +p <Qh [t-ah(p),]+p.

Thus
M -1
(1) sj'OQh [t - o () sxst]+pde
= pM + Qh-l[‘l‘lg[x, x-l-ozh(p)](t)dt] by Fubini's Theorem
< oM + ah(p).
The same argument, with P and Q interchanged, proves the
lemma.

Definition 3. Let & be the space of probability distribution

functions on the real line. The Levy metric on § 1is given by

L(F,G) = inf {6: F(x-¢) - ¢ < G(x) < F(x+¢) + ¢ for all real x}.
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Lemma 8. let a and b be real, and c < h(:) < c +M be
a real valued function on Q < [a,b]. let F and G be any dis-

tributions on Q, and A > 2p = 2L(F,G). Then
|[h dF - [hode| < M2 + 190 + o (\ + ) +a, (A + 20)
A h h ?

where [x] denotes the largest integer not greater than x.

Proof. Without loss of generality, we take ¢ =0, M< @ and
b-a < =,
Choose G so that 2p < g < )\ and [b'Ta + 1o - (b-a) =6 >0,
and let x, =a+jo-06/2 for §=0,1,2,...k= [Eiﬁ +1].
PP . = ! ' ' =
By definition of L(F,G), we can find X, = X, < X <o Xy X,

such that, for each j, lxj - x-;\ < p and F(x_;-) -p< G(xj) < F(xi) + p,

because F(xj -p) =p< G(xj) < F(x, +p) +p implies the existence

]
of an x}é [xj -0y X, + p] for which either G(xj) -p< F(xs) < G(xj) + p

or F(xi-) < G(xj) -p< G(xj) +p < F(xi).

For each j, let vy = min {x_, xi} and z,£ = max {x,, x'},

i h| R
and for x € (xj, xj+1] let h,(x) = inf {(h): wr [yj’ zj+1] nal,

with h,(x) =M if \'_yj, zj+1] nNa = g.

For x € (x.;, x5+1), let hz(x) = hl(y) for y € (xj, xj+1],
and for each j let hz(xs) = max {hz(xi-), h2(x3+)}.

Since |xj - x;_l\ <\ +op, ‘xj - x5+1| <\A+p and
lxi - x3+1‘ <\+2 for each j, [h-h | <o (A +p) and

|h-h,| < o (0 + 2p).

We note that F(x;,xj

) < G(xi,xj] + 2p by the construction of
k
{x},_,-
j’3=0

L L ]
Let 0 < r< M. If hz(xj)sr then (xj-l’xj+1

-1 -1
and (xj-l’xj+1] c hl (-»,r]. Conversely (xj-l’xj+1] c hl (=,1]

) © bt (e, 7]

3 ] ] ] ] -1 . . N
implies (xj_l,xj) U (xj ,xj+1) c h2 (~,r] and this implies
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h, (x!) £ r. Hence h;l(-m,r] is the union of at most k/2 intervals

273

of the form (x;,x'

3

intervals (xi,xj].

and hil(-w,r] is the union of the corresponding

Hence, for all r,
-1 -1
F h2 (-aa,r] <G hl (-‘”,r] + kp.
1

_ oM -1 M -
Thus ghdF-z‘;hldG joxthZ -J‘Oxdchl

M -1 -1
= IO Ghl (-»,x] = Fh2 (= ,x]dx

"

Ig Gh;l(dm,x] - [Gh;l(dw,x] + kpJdx

= - Mkp.

Hence Ih dF - Ih dG = -Mkp - ah(x + p) - ah(x + 2p). The same
argument with F and G interchanged proves the lemma.

Lemma 8' involves a special case of Lemma 8 in which a simpler
proof leads to a somewhat stronger conclusion. It seems, though we
have been unable to show this, that the proof could be used in the
context of Lemma 8, with some modifications, to give an improved
result; and also that it might be amenable to versions of Lemma 8 or
Lemma 8' in higher dimensions.

Lemma 8'. Let h be a function on [a,b], F and G any

distributions on ([a,b] and A >p = L(F,G). Then

|Jh aF - [hde| s o, {3 + [Eiéﬂp}

Proof. Choose @ such that p < o < )\ and [Eii + 1]lo > b-a,

and let x

]

X +=x
Let cj=h—j%—i for j =1,2,...,k+l. Then

|h(x) - cjl < ah(x) for each x € (xj_l,xj], and |cj - cj-l‘ < dh(x)

b - (k+l-j)o, for j =0,l,...,k+l = [Eiﬁ + 1.

m.m‘_:m
o
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for each j.
let D, =F(x.,) - G(x,) for each j.
i h| |
Then

k+l
Jh dEF-G) <o, (V) + jzl @, - Dy yy
k

=0, () - D, + ¢l T Ele (cj - cj+1)

k
<o, )+, ) j>:1|D | .

. P

But |D.| = [F(x )-G(x )]V [G(xj)-F(xj)] < [c(xj+1)+p-c(xj)] \/ [c(xj)-c(xj_1)+p] f

h|

k
Hence jEI‘Dj‘ < le{c(xjﬂ) - G(xj) +p + G(xj) - G(xj_l)}

kp+G&kH)+G&Q -G&P -G@&
< kp + 2.

Hence [h d(F-G) < ap (V) (kp + 2)
= [k:— pa, (\) + 3 (V)
A h h** e

Again, reversing the roles of F and G proves the lemma.



