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ABSTRACT
CYCLIC DOWEL ACTION AND PULL-OUT BEHAVIOR OF BEAM
REINFORCEMENT AT REBINFORCED CONCRETE JOINTS
by
Kienuwa Osama Obaseki

An integrated experimental-theoretical investigation
was performed on the cyclic dowel and pull-out behavior on
beam longitudinal bars at beam—column connections.

Dowel tests investigated the behavior of bars with
different sizes bearing against the concrete core and cover
and their cyclic performance. Analytical models were
developed for predicting the ultimate strength and
constitutive behavior of dowel bars at beam-column
interfaces. Effects of the diameter, yield strength and
tensile stresses of bars as well as the compressive
strength of concrete, on the behavior of dowel bars were
studied analytically.

An improved hysteretic model was developed for the
local bond stress-slip relationship, and it was
incorporated into a new mathematical model for predicting
the cyclic pull-out behavior of the longitudinal beam
reinforcement embedded in the interior beam-column
connections. This new model is based on the displacement
method of analysis, and it is more efficient than the other
available models for analysis of bonded bars by computer.
Parametric studies were performed on the effects of bar

diameter and its yield strength, concrete compressive



strength and the rate of loading on the pull-out behavior
of bars in the interior beam-column connections.

Tests were also performed on the pull-out behavior of
beam longitudinal bars hooked in the exterior beam—column
connections. These tests studied the effects of the bar
size, the confinement provided in the column, and the
concrete compressive strength on the hook pull-out
behavior. An empirical constitutive model was developed for
hooks, and it was incorporated into an analytical procedure
for predicting the overall behavior of hooked bars. The
resulting procedure was used to check the current U.S

design guidelines for 90° hooked bars.
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CHAPTER 1
INTRODUCTION

Fixed-end rotation and sliding shear at beam-column
connections (Figure l1.1(a)] are generally considered as
some of the major factors influencing the seismic response
characteristics of reinforced concrete frames.33.36,44
Excessive fixed-end rotations and sliding shear
deformations in frames under earthquake excitations are not
desirable. This is due to the limited amount of hysteretic
energy that can be absorbed by these deformations under
inelastic loads. The deteriorating nature of the mechanisms
resisting fixed-end rotations and sliding shear at joints
[dowel action and pull-out behavior of longitudinal bars
and aggregate interlocking of crack faces shown in Figure
1.1(b)] is the main factor for such inferior energy

absorption capacity.

5, desistance Mechamisms
Figure 1.1 Reinforced Concrete Seam-Column

Aterface Under Sevsmic forces

Development of analytical methods for considering the

effects of fixed-end rotation and sliding shear in seismic



analysis of reinforced concrete frames is a task yet to be
fulfilled. The main problems in this regard are:

(a) Limited understanding of the dowel and pull-out
behavior of longitudinal bars and aggregate interlocking of
crack faces at beam—column joints under cyclic loads; and
(b) lack of practical methods for simulating these
phenomena in structural analysis processes.

The main objectives of the research described herein
were to generate experimental data on the dowel action and
pull-out behavior of beam longitudinal bars at beam-column
connections, and to come up with analytical methods for
analyzing these types of behavior. The results are expected
to facilitate consideration of fixed-end rotation and
sliding shear in nonlinear seismic analysis of reinforced
concrete frames.

In the following description of this research project,
Chapter 2 reviews the literature on the behavior of dowel
bars, and Chapter 3 presents the results of an experimentai
study that was followed by development of empirical models
for the dowel action of beam longitudinal bars under
monotonic and cyclic loads at beam-column interfaces.

Chapter 4 summarizes the available literature on the
behavior of bonded bars, and Chapter 5 illustrates the
results of an analytical study on the pull-out behavior of
beam reinforcement in the interior beam—-column connections
(Figure 1.2(a)]. The study illustrated in Chapter 5 has led

to an analytical procedure for predicting the anchored bar



behavior under random cyclic load histories. This procedure
is distinguished from the other available ones by its time-
efficiency for analysis by computer.

Finally, Chapter 6 presents the results of an integrated
exerimental-analytical study on the pull-out behavior of
beam longitudinal bars hooked in exterior beam column
connections (Figure 1.2 (b)].

The major findings of this research project are

summarized in chapter 7.

- =
(a) Interior Connection
Exposey
Beam
- Column
(b) thefior Connectionsa
Figure 1.2:

Interior and Exterior Beam-Column Connections



CHAPTER 2

LITERATURE REVIEW ON DOWEL ACTION OF BEAM LONGITUDINAL BARS

AT BEAM-COLUMN INTEBRFACES

2-1 Introduction

The sliding shear deformations at beam-column
interfaces [(Figure 2.1(a)] are resisted by the dowel action
of longitudinal bars and the aggregate interlock between
rough faces of the interface crack (Figure 2.1(b)]23.36,44¢
Aggregate interlock diminishes rapidly with crack
opening,29:30 and hence dowel bars play a major role in

oreventing the sliding shear failure.

4/ ACCRECATE 1wTERLOCK
/‘mz ACTION OF TME TOP BARS
r----- {:--~--—--- ‘T
"
" ‘ '
| S+ - ______1
—_
|
V \u———-unu ACTION Of T™E eOTTOM
RARS
(a)Si1ding Shear Failure (b) Resisting Mechanisms

Figure 2.1: Dowel Action at Beam-Column

Intertace

In studying the dowel action at the beam—column
interface, distinction should be made between the action of
dowel bars when pushed against the concrete core [bottom
bars in Figure 2.1(b)] and when pushed against the concrete
cover [top bars in Figure 2.1(b)]. In the first case, when
the bar is pushed against the core, the concrete above the
bar works like a flexible foundation

[Figure 2.2(a)]4:14,29,30,37 | The maximum capacity in this



condition i1s reached when the bar yields in flexure and
concrete fails under the bearing stresses. In the second
case, with the bar pushing against the concrete cover,
split cracking soon separates the cover from the core, and
the dowel bar acts like a beam supported by ties near the
interface [Figure 2.2(b)).4:29.31,36 The maximum capacity
in this case is reached when the dowel bar or the tie
yields. In both cases, the axial force in the dowel bar

reduces the maximum dowel capacity.

\\\-—

{ ‘ ‘ B }

1 1
(a) Push Against Core (b) Push Against Cover

Figure 2.2: Dowel Bar Action Against Concrete
Core and Against Concrete Cover

2-2 DOWEL ACTION AGAINST CONCRETE CORE

2-2.1 Test Results: The only two test techniques that
closely simulate the dowel action against the concrete core
were presented in Ref. 14 (Figure 2.3(a)] and Ref. 37
[Figure 2.3(b)]. In the shear plane of the specimen shown
in Figure 2.3(a), aggregate interlock was eliminated by two
layers of lubricated brass sheet [thickness = 0.0078 in.
(0.20 mm))] placed at the shear plane. The relatively small
dowel bars tested in this reterence failed by yielding of
the bar and crushing of the concrete supporting the bar. A

typical dowel force-slip relationship for a test on a 0.39



in. (10 mm) dowel bar with yield strength of 41,830 psi
(289.0 MPa) and concrete compressive strength of 4,540 ps1
that was inclined at an angle of 20° from the line normal
to the crack is shown in Figure 2.3(c). The effects of the
reinforcement angle, dowel bar diameter, and concrete
strength were studied experimentally in Ref. 14. It was
concluded that the ultimate dowel force increases
noticeably with increasing bar diameter and concrete
strength. The effect of the inclination angle of dowel bar
was found to be small.

The specimen shown in Figure 2.3(b) represents the
action of dowel bars in concrete pavement joint.37 In this
case, the dowel force is directly applied on the bar at a
distance from the concrete face. A typical dowel load-dowel
deflection diagram obtained in this type of test is shown
in Figure 2.3(d) for a dowel bar with a diameter of 0.75 in.
(19.0 mm) embedded 6 in. (154 mm) in concrete blocks with a
concrete compressive strength of 3,440 psi (23.7 MPa) and a
total depth of 8 in. (200.4 mm). Test results in Ref. 37 on
dowel bars with 0.75 in. (19.0 mm), 1.00 in. (25.4 mm), 1.50
in. (38 mm), and 2 in. (51 mm) diameters, and different
embedment lengths and concrete block depths showed that:
(1) Dowel failure 1is reached as a result of concrete split
cracking 1in the plane of the dowel bar and dowel load; (2)
the cracking load is slightly attected by dowel length if
this length i1s greater than eight times the bar diameter;

(3) the cracking load increases with increasing concrete



depth undernecath the dowel bar; and (4) an increase of thne

width of the concrete block beyond the width to height

ratio of 1.5 does not seem to have any definite influence

on the cracking load.

Distributed
Load on bar

(b) Ref. 37 Teat Specimen

e

(a) Ref. 14 Test Specimen

7]
Q
-
E3
200 —
o
3
o]
Q
11 (05) o
o
el
]
[¢]

Q04 (10) 008 (20)

4. » (mm)
(€) Ref. 14 Typical Teast
Results
¢d) Ref. 37 Typical Test
Results

Figure 2.3: Test On Dowel Acting Against Concrete Core



2-2.2 Ultimate Strength Computation: in order ro compute
the ultimate strength of dowel bars acting against concrete
core, their behavior has been treated as the action of a
beam on an elastic foundation (Figure 2.4(a)].4-14.,24,29,37
Using the beam on an elastic foundation theory together
with some simplifying assumptions on bearing stress
distribution, an equation for ultimate load can be derived.
Figures 2.4(b) and 2.4(c) show the actual bearing stress
distribution and its simplified distribution pattern used
in Ref. 14, respectively. Failure in this model is assumed

to be reached when the critical bar section reaches the

plastic hinge moment and the stress on concrete reachea the

u: 1mate bearing strength of concrete.
b Actual Bearina oo typreal SaTptatieed
sStress Disrr. SHArANTD 5L ress
(a) The Mode!
Figqure 0o SAf L Rlastic boundation e,

wWel ACr Lon Adainst Concrete oo

Well-developed models that have followed the beam on an
elastic foundation idealization,4'!4 have not paid enough
attention to the bearing strength of concrete. Ref. 4
assumes a bearing strength of 1.445 times the concrete
compressive strength, while Ref. 14 takes the bearing

strength to be four times the concrete compressive



strength. Both of these references assumed that the bearing
failure under the dowel bar occurs by concrete crushing.
This assumption is based on test results reported in Ref.
14 on small-diameter dowel bars. Tests on more common sizes
of dowel bars in Ref. 37 have shown that the bearing
strength is reached when the concrete underneath the dowel
bar splits in the plane formed by the bar and the dowel
load. These tests showed that the bearing strength of
concrete at split cracking depends on many factors
including the dimensions of the loaded area, depth of
concrete below the dowel bar, and the tensile strength of
concrete. Tests in Ref. 37 disclosed that the ratio of
concrete bearing strength to its compressive strength in a
12 in. (304.8 mm) deep specimen is on the average 2.6 for
0.75 in;(IQ.O mm) dowel bars, 2.3 for 1 in. (25.4 am)
diameter, 1.8 for 1.50 in. (38.0 mm) diameter, and 1.8 for
2.00 in. (50.8 mm) diameter dowel bars. The bearing strength
for six inches deep specimens was from 1.22 to 1.37 times
the bearing strength of 12 in. deep specimens, depending on
the dowel bar diameter. The bearing strength for 18 in. deep
specimen was between 0.98 and 1.09 times the one for 12 1in.
deep specimens. The shallow blocks seem to have larger
bearing strength than the deeper ones ( noting that the
specimens simulate a pavement joint with some base friction
resisting split cracking).

The other parameter that governs the behavior of the

beam on an elastic foundation model of dowel bars acting
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agninst concrete core 13 the foundation modulus. Different
investigators29,30.37 hgve concluded from test results that
the concrete foundation modulus varies from 750,000 to
2,500,000 psi/in. (203.7 to 679.1 MPa/mm), and a typical
value of 1,000,000 psi/in. (271.7 MPa/mm) has been commonly
used.

Dowel bars are generally subjected to axial forces,
produced by flexural moments (Figure 2.1). The bar axial
force reduces its plastic hinge moment, and the bond
stresses of a bar subjected to axial tension might prodﬁce
radial stresses around the bar that tend to accelerate
split cracking of concrete under bearing stresses. Ref. 30
suggests that the interaction between the bar axial and
dowel forces is negligible for axial forces smaller than
80X of the bar pull-out strength, but it becomes important
at higher axial forces. Refs. 14 and 29 suggest that an
elliptical interaction formulation can predict test results
with reasonable accuracy.

2-2.3 Monotonic Dowel Load-Deflection Formulation: The beam

on an elastic foundation theory has been found to be
incapable of predicting the inelastic constitutive behavior
of dowel bars acting against the concrete core.%4:1!¢ This is
probably due to the noticeable effect of the concrete and
steel inelasticities, that are not considered when the heam
on an elastic foundation model is used for determining
dowel deformations. Hence, Refs. 4 and 14 have developed

load-deflection expressions by curve fitting to the results
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of tests reported in Ref. 14 (Figure 2.5). These tests
used unrealistically small dowel bars and thus the
empirical models are not necessarily applicable to the
commonly used dowel bar sizes. Besides, the constitutive
model of Ref. 14 gives dowel load in terms of dowel
deflection. If dowel deflection is to be derived in terms
of dowel load, as required in the widely used displacement
method of analysis, time-consuming iterative methods are
needed to achieve this solution. The constitutive model of
Ref. 4 gives the dowel deflection in terms of dowel load,
but this model is not complete in the sense that the usecr
should input an initial dowel stiffness that should be

derived from test results.

L — Ret. 14
2 c
¢ == Ref. 4
- —.=-Test (Ref. 14,
L = Dowel Force
N.= Lowel Fource v Fa1l.,rnm
A= Dowel Displacenons
—_——a A ——
2 T A T
A, :n
Yipure 20F

2. Fxperimental and Theoretieal Dowe | [ [
BRI X

Deflectian Hvlnl.nnunnps For d.39 1n I
Dowel Bar Acting Against Core With ¢ - .
4,540 ps. Hefs g 14 !

D came-t oy

Some investigators¢?2 have also studied the dowel bar
behavior within the crack. The results are applicable to

conditions with very wide cracks. Dowel strength in this



12

case may be derived from three mechanisms. the flexutre of
the bar [Figure 2.6(a)], the shear force across the bar
(Figure 2.6(b)] , and the kinking of the bar [Figure
2.6(c)]. These figures also show the ultimate dowel force
in terms of the bar strength. In these figures:

ultimate dowel strength;
As = bar area;

do bar diameter; and

fy bar yield strength

— “
_ /i
_ L

Lo

-

e e —

M

I AES 2 = 3 = . .
D 744, 3TAE L D s AL VAR At - cos

(a) Flexure (b) Shear (c) Kinking

Figure 2.6: Mechanisms of Dowel Action Within the Crack
(Ref. 42).

Ref. 29 suggests that the dominant mode of dowel action
changes according to the magnitude of dowel force. For very
small dowel forces, the force transfered across the crack
produces shear deformations in the reinforcement (Figure
2.6(a) above]. At this stage, the bar spans a distance
approximately equal to the initial crack width. As the
dowel force increases, the bearing stresses induced by the
dowel bar on councrete deteriorates the concrete around the

bar, and consequently the unsupported length of the dowel
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bar increases. Dowel forces are then transtered across the
crack primarily by the bending action of the reinforcement
[Figure 2.6(a)]. With further increase in dowel force, the
unsupported length of the dowel bar decreases and the bar
curves around the concrete, and consequently the dowel
stiffness increases due to the kinking action (Figure
2.6(c)]. The unsupported length of the dowel bar is thus a
difficult parameter to estimate and depends, on the initial
crack width, the state of stresses in the concrete
‘surrounding the bar, the level of axial and dowel forces
sustained by the reinforcement, and the bar diameter.

2-3 DOWEL ACTION AGAINST CONCRETE COVER

2-3.1 Test Results: A number of test set-ups have been
suggested in the literature for simulating the action of
dowel bars against the concrete cover. Ref. 22 used the
specimen shown in Figure 2.7(a) to idealize the behavior of
a dowel bar acting against cover in a reinforced concrete
beam at the closest crack to the support. This reference
also suggests the test specimen shown in Figure 2.7(b) for
simulating the dowel action between two flexural cracks
along the beam span. Ref. 54 used the specimen shown in
Figure 2.7(c) for modeling the dowel behavior at the first
diagonal crack from the support. The specimen of Figure
2.7(d) has been suggested in Ref. 34 for idealizing the
behavior of a dowel bar acting against concrete cover at a
beam shear-flexural crack.

On the basis of test results presented in Refs. 8 and
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54, it can be concluded that the constitutive behavior of
dowel bar acting against the concrete cover after split
cracking (Figure 2.2(b)] depends primarily on the spacing
of the stirrup closest (supporting the dowel bar) to the
crack. Maximum dowel capacity when the first stirrup is
spaced further than about one inch (25.4 mm) from the crack
was reached when split cracking occurred (curve A in Pigure
2.8). In the cases with a stirrup was placed closer than
one inch (25.4 mm) to the crack, the dowel load could be
increased after split cracking, and the maximum dowel
capacity was reached when the stirrup yielded in tension
(curve B in Figure 2.8). Figure 2.8 also shows a typical
constitutive behavior of dowel bars pushed against concrete
core (curve C) that is generally superior to the behavior
of dowel bars acting againat cover.

From test results on specimens similar to the one shown
in Figure 2.7(d), it has been concluded in Ref. 8 that in
dowel action against cover, the splitting load increases
with increasing beam width, bar diameter, and concrete
strength. The beam depth, concrete cover, and crack width
did not affect the dowel capacity of the reinforcement. The
presence of two layers of reinforcement increased the dowel
strength by approximately 40X over that of one layer. Test
results presented in Ref. 54 on similar test specimens
confirmed the above results and also showed that the
distance between the support and the diagonal crack does

not affect the dowel capacity. Some results contradicting
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the above conclusions have also been presented in the
literature. For example in the test results reported in
Ref. 27, bar size did not noticeably influence the split
cracking load, and Ref. 32 concluded from test results that
the split cracking load depends on the concrete cover

thickness (especially if the dowel bar is subjected to

axial temnsion).

ﬁn':n
O/AMETE #
COMPRE 80|

b — - = — ——— -

m L, —

[t 7esiom sine ]
— 1

Ly
" ,
Reaction L——L——i ‘,4“ ~2 l

\a) Ref. 22 (Long Dowel)

Dowe

(b) Ref. 22 (Short

fc) Ref. 5S4 (d' Ref. 34

Figure 2.7: Tests On Dowel Bar Acting Against Concrete

Cover (Refs. 22, 34, and 54).

fouel Load

-Action Aaainst < ;.

B -Action Against ovey
w/Stirrup

!
]
\/ e

y A -Action Against Cover
% w/O Stirrup

Dowel Displacement

Figure 2.8: Dowel Constitutive Rehavior.



16

Large axial tension (of the order of 80X of Lhe bLarx
pull-out strength) in dowel bars acting against cover also
has been observed to reduce the dowel stiffness and
strength by cracking the surrounding concrete and also by
lowering the bar plastic hinge capacity. Small axial loads,
however, have been observed to slightly improve the dowel
capacity.18.27.,32,47 Fjijgure 2.9 shows test resulis from

Ref. 47 on the interaction of the dowel and axial forces.
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2-3.2 Dowel Strength and Monotonic Load-Deflection

Formulations: Ref. 47 suggest that before split
cracking, the dowel bar acting against cover can be
idealized as a beam supported by concrete that works as an
elastic foundation, and the stirrups that work as flexible
supports [Figure 2.10(a)]. The beam in this idealization is
composed of the dowel bars together with the concrete cover
(Figure 2.10(b)]. Failure in this model takes place by the
occurrence of one or a combination of the following
actions: split cracking, yielding of the bar, and yielding
of the stirrup. A complex formulation based on this
theory!® compares relatively well with experimental

results.

Stirrup spacing from crack

( -
r o o
l— > 1
<&

W NHIETINTIRY o

)\
(a) Bear on Elastic Foundation Model b

L

d

.ronsite Bear

Figure 2 10: Idealization of Dowel Action Against
Concrete Cover (Ref. 31).

For tﬁe cases without stirrups, many
investigators.8:,22,27,29,30,34,54 have used the above beam
on an elastic foundation modei [ussuming that the idealized
beam is either the composite one shown in Figure 2.10(b) or

simply the dowel bars acting alone] to derive a simple



18

expression for the dowel stiftness betore cracking us weil
as the dowel load corresponding to split cracking (that is
also the dowel strength for the case without close-by
stirrups). The dowel strength in these formulations
generally increases proportionally with the available beam
width, concrete tensile strength, and in some cases the
embedded length of the dowel bar. The dowel stiffness on
the other hand depends basically on the dowel bar diameter
and modulus of elasticity as well as the concrete
foundation modulus. Most of these references assumed that
upon split cracking, the dowel deflection starts to
increase with a constant dowel load. Ref. 54, however,
assumes that upon split cracking the dowel load drops
suddenly to 80X of the split load and then remains constant
with increasing dowel deflection. Some of these dowel load-
deflections and strength formulations for dowel bars acting
against concrete cover with no stirrup support are compared
in Figure 2.11 for the typical dowel bar shown in this
figure.

As far as formulating the interaction of the axial and
dowel forces is concerned, an elliptical curve seems to be
a simple and accurate idealization of the actual failure

condition.29,32,47
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2-4 DOWEL BEHAVIOR UNDER CYCLIC LOADS

2-4.]1 Test Results: Experimental studies specifically

concerned with the behavior of the beam top or bottom
longitudinal bars subjected to cyclic dowel loads have not
been reported in the literature available to the author.
Some cyclic tests, however, have been performed on dowel
bars in specimens that simulate the behavior of the
reinforcing bars placed in concrete panels [Figure
2.12(a)].29.30.,50

The aggregate interlock in these specimens was
eliminated by means of two 0.01 in (0.25 mm) brass plates
placed at the shear plane. Specimens with different dowel
bar sizes, numbers and placement configurations were

tested. A typical cracking pattern, and the cyclic load
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#9 bars and concrete compressive strength of about 3,100
psi (21.4 MPa) are shown in Figures 2.12(b) and 2.12(c),
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As shown 1n Figure 2.12(c¢), lhe dowei stiffness
deteri1orates significantly 1n the second cycle, and 1t
exhibits a hardening type of behavior (pinching). This
indicates permanent distortion and damage in the concrete
produced by the dowel force. The concrete degradation was
observed to be enhanced by the application of large tensile
stresses to the reinforcement and by the presence of
shrinkage cracks around the dowel bars. In general, the
dowel specimen experienced large deteriorations under the
first loading cycle. For subsequent cycles at the same load
amplitude, the response tended to stabilize and the rate of
degradation decreased with increasing cycle number.

It was also observed that while the area enclosed by
the hystersis loop initially decreases with cycles (Figure
2.12(c)], this area increases significantly when the
specimen cycles at a shear stress very close to its failure
load. The crack width change due to dowel was found to be
negligible except for dowel forces near to the ultimate
dowel strength. Typical increases in crack width at the
maximum shear stress were of the order of 17% of the
initial crack width.

In an attempt to justify the stiffness degradation of
dowel bars subjected to cyclic loads, Ref. 29 suggests the
following illustration. As a result of the high bearing
stresses produced by the doweli bar in the vicinity of the
crack, the concrete in this area crushes and hence in the

second load cycle it can provide support to the dowel bar
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only if the dowel deflection is large enough to provide
contact between the dowel bar and the uncrushed concrete.
After the contact is made, the stiffness of the dowel
increases considerably.

2-4.2 Hysteretic Modeling: Two different analytical models

for predicting the cyclic behavior of dowel bars have been
developed in the literature. The first one29:30 jig a
hysteretic model for the dowel action of the panel
reinforcement [Figure 2.12(a)]. The first loading cycle is
assumed to behave linearly which is true for relatively
small dowel loads (Figure 2.13). The subsequent cycles are
idealized to be highly non-linear with a pinching type of
behavior. This model does not attribute any hysteretic
energy dissipation capacity to dowel. It is based on the
assumption that the dowel energy dissipation [Figure
2.12(c)] is relatively small when compared with the other
sources of energy dissipation in reinforced concrete. The
details of the hysteretic model shown in Figure 2.13 have
been derived empirically in Ref. 30 using the test data
presented in Ref. 29. This model is not directly
applicable to ‘the dowel action of the beam longitudinal
bars when pushed against the concrete cover [Figure 2.2(b)]
that cannot be idealized by the panel test specimen shown

in Figure 2.12(a).
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Another dowel hysteretic model has been developed in
Ref. 36 for the action of the beam dowel bars at the beam-
column joint [Figure 2.14(a)]. In the physical idealization
of the dowel behavior, the contribution of the concrete
cover to the dowel stiffness was neglected, and the dowel
bar was assumed to behave like a beam. Some typical
boundary conditions of this beam are shown in Figure
2.14(b) for the condition with the bar in contact with
either the beam end or the stirrup; in Figure 2.14(c) for
the condition with the bar in contact with both the first
and the second stirrups; and in Figure 2.14(c) for the
condition with the bar in contact with the first stirrup
but not the second one. The dowel stiffness in this
idealization is then taken equal to the flexural stiffness
of the dowel bar with the assumed boundary conditions.

In the research project describe below, an integrated
experimental-theoretical approach was adopted for modeling

the dowel action of beam longitudinal bars at the beam-
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column 1nterface. Thig involved studies on the benavior of.
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CHAPTER 3

EXPERIMENTAL AND ANALYTICAL STUDIRS ON DOWEL ACTION OF BEAM

LONGITUDINAL BARS AT BEAM—-COLUMN INTERFACES

3-1 Introduction

The available experimental data on dowel bars applicable
to situation of longitudinal beam reinforcements at joints
are limited to test results on unrealistically small dowel
bars against concrete core. The empirical formulations that
are based on this limited test data are not necessarily
applicable to the actual conditions of dowel bars at the
beam-column connections.

This Chapter illustrates the experimental and
analytical studies performed in this research project on
the behavior of dowel bars at beam-column connections.
First, the studies on the bearing strength and stiffness of
concrete core under dowel bars are presented, and then the
works on the behavior of dowel bars acting against concrete
core are discussed. The rest of this Chapter is devoted to
illustrating behavior of dowel bars acting against concrete
core and cyclic performance of dowel.

3-2 BEARING STRENGTH AND STIFFNESS OF CONCRETE UNDER

REINFORCING BARS

3-2.1 Introduction: The ultimate resistance and stiffness

of the dowel bars bearing on concrete core (e.g. the bottom
beam reinforcement in the condition of Figure 3.1) depends
on the bearing strength and the bearing stiffness

(foundation modulus) of the concrete core under the action

25
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of the dowel bars.¢ ,t4.30,137

Figure 3.1: Dowel Action of Reinforcing Bars.

Test results on concrete bearing strength are scarce,
and consequently the values proposed by different
investigators for these two properties of concrete are wide
apart. The values suggested for the bearing strength23.43
range from 1.45 to 4.00 times the concrete compressive
strength, and the values of bearing stiffness used by
different investigators30.38(bd) range from 750 ksi/in.
(203.7 MPa/mm) to 4,000 ksi/in. (1,244.1 MPa/mm).

Experimental data on the behavior of dowel bar under
concrete bearing stresses was obtained, and empirical
expressions were derived for the bearing strength and
stiffness of concrete.

3-2.2 Test Program: The specimen shown in Figure 3.2(a) was
designed to simulate the behavior of dowel bars bearing
against concrete core. The properties of the test specimens
are summarized below in Table 3-1. A total of 33 tests were
performed for studying the effects of the following
variables on the bearing behavior of concrete: (a) the bar

diameter (series II tests); (b) the concrete strength
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(series III tests); (c) the width ot the concrete block
(series IV tests); (d) the depth of the concrete block
(series V tests); (e) the embeddment length of the dowel
bar (series VI tests); (f) the number of dowel bars [Figure
3.2(b), series VII tests]; and (g) confinement of the
concrete block [(Figure 3.2(c), series VIII tests].

All the specimens were constructed with type III
Portland cement and normal-weight aggregate. The maximum
size of the aggregate was 3/4 in. The specimens were
covered with plastic in their wood forms for 24 hours. The
forms were then removed and the specimens were placed in a
moist room with 72°F (22.29C) temperature and 100X%X
humidity. After 5 days, the specimens were exposed to the
regular lab environment and they were tested at the age of
25+ 2 days. The values of concrete strength specified in
Table 3-1 were recorded at the test age.

The test set—-up is shown in Figure 3.3. The load was
applied quasi-statically by a hydraulic testing machine,
and the tests were all load-controlled. The load was
distributed uniformly along the length of the dowel bar,
and the bottom surface of the specimen was greased in order
to prevent development of frictional forces. The
penetration of the dowel bar into the concrete under load
was measured by two electrical displacement transducers as
shown in Figure 3.3. The errors in both displacement and

force measurements were smaller than 1X.
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Table o Prope *ocn of Test Specwmens o Hesao!
On Bearing Strength of Concrete
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3-2.3 Test Results: All the specimens behaved elastically
up to failure, and failure in the unconfined specimens
occurred suddenly when the dowel bar together with a
concrete wedge underneath it pushed into the specimen and
produced a split crack (Figure‘3.4). In general the split
crack divided the concrete block into two roughly symmetric
segments [Figures 3.5(a) and 3.5(b)], but in the case that

the embedded length of the dowel bar was much shorter than
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the total block length, the crack pattern was similatr i
the one shown in Figure 3.5(c).

Failure in the multiple bar specimens was also caused
by split cracking of concrete in the plane of each of the
bars (Figure 3.6), with no significant interactions between
the bars.

Failure in the confined specimen was relatively ductile
and the confining bar crossing the split crack prevented a
sudden drop in the bearing resistance of the specimen after
split cracking. The load dropped gradually in these
confined specimens, and transfer of bearing stresses to the
confining bars finally resulted in split cracks in the
plane of the confining bars (as shown in Figure 3.7 for a
specimen confined with two bars).

The values of bearing strength (fo) and bearing
stifness (kr) obtained in tests are given in Table 3-1.

The bearing strength was derived by dividing the failure
load by the projected area of the dowel bar on concrete

[fo = failure load/lidv in Figure 3.2(a)], and the bearing
stiffness was defined as the slope of the bearing stress-
bearing deflection diagram (that was found in tests to be
linear). The bearing strength obtained in tests ranged from
1.2 to 3.0 times the concrete compressive strength, and the
bearing stiffness was between 200 and 600 Ksi/in (54.3 to

163.0 MPa/mm).
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Figure 3.3: Test Set-up.
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Figure 3.4: Split Cracking of the
Specimen.



(a) Fully Embedded Bar.
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(b) Long, Partially Embedded Bar.
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(c) Short, Partially Embedded Bar.

Figure 3.5: Crack Pattern in Different
Specimens.
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Figure 3.6: Split Cracking of Multiple
Bar Specimen.
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Figure 3.7: Failure of Confined Concrete.
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From the teat results presented in Table 3-1, it can be
concluded that: (a) both the bearing strength and the
bearing stiffness of concrete under dowel bars increases
with decreasing bar diameter and increasing compressive
strength; (b) with increasing width of the concrete block
or decreasing the embedded length of dowel bars, the
bearing strength tends to increase while the bearing
stiffness remain unchange; (c) neigher the bearing strength
nor the bearing stiffness was sensitive to variations in
the specimen depth; (d) when more than one bar with clear
spacing of one inch (25.4 mm) was bearing against concrete,
the bearing strength is still close to the bearing strength
of specimens with a single dowel bar, whereas the bearing
stiffness was reduced in the case of multiple-bar
specimens; (e) confinement that has favorable effect on the
ductility of concrete under bearing stresses, did not
considerably influence the concrete bearing strength or
stiffness.

3-2.4 Empirical Equations: The values of bearing strength

obtained in tests on unconfined concrete specimens are
shown in Figure 3.8. This figure also presents the results
of two earlier test programs on similar specimens: one with
rectangular plates (instead of dowel bars) bearing against
unconfined concrete26¢(a), and the other with dowel bars
bearing on unconfined concrete blocks with frictional
forces resisting split cracking at their bottom faces.37

The bearing strength in both of these earlier
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investigations are seen 1n Figure 3.8 to be larger than the

values obtained in this study.
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Figure 3.8 Hearang Strength of Concrete.

The trend of the test results can be represented b+ the

following equation (see Figure 3.8B):

96 \’fc'l/ll (w/dp)1/3 if fc’ in psi

(3-1)

8 fc'l/l1 (w/do )3 if fc' in MPa

concrete bearing strength;

where: fo

concrete compressive strength; and other

fe'

variables are described in Figure 3.2
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It should be noticed that due to the lTimited range of

variables in tests, it seems reasonable to limit the ratios

of 1/11 and w/dv in Eqn. (3-1) to 4.0 and 8.0,
respectively. Further test results are also needed for

studying the effects of confinement on the bearing

strength.
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The bearing stiffness values derived from tests
conducted on unconfined specimens with a single douwel bar
are shown in Figure 3.9. The trend of test results can'be

represented by the following equation that is also shown

in
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Figure 3.9:
4500C, fc'(1l/dv,<4"? 1f tc’ 1n psi, dv in inches

ke = (3-2)
127C:. fc’ (1/dv)2/3 if fc' in MPa, do in mm

concrete bearing stiffness (foundation

where: kr
modulus);

fc’ = concrete compressive strength;

a
o
"

bar diameter; and

o
i

a coefficient ranging from 0.6 for a clear bar
spacing of one inch to 1.0 for large bar
spacings.

More test data are needed to check the valididy of the
above equation outside the range of variables used in this
experimental study.

3-3 BEHAVIOR OF DOWEL BARS IN ACTION AGAINST CONCRETE CORE

3-3.1 Test Program: The reinforcement in a typical specimen
tested in this study is shown in Figure 3.10. The shear
plane in this specimen was 6 in. (152.4 mm) by 12.5 in.
(317.5 mm) in cross-section, and two 0.008 in. (0.203 mm)
greased brass plate were used to eliminate the aggregate
interlock at this plane. The shear resistance at shear
plane was provided by two dowel bars shown in Figure
3.11(a). These bars simulate the dowel action of two
identical longitudinal beam reinforcing bars. When the
specimen is subjected to compression in the shear pliane,
the top bar in Figure 3.11(a) in the left hand side block

acts like a beam longitudinal bar with 2 in. (5.08 mm) cover
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that acts against the beam core. This 1s also true tor ihe
bottom bar 1n the right hand side ot the block. The right
side of the top bar as well as the left side of the bottom
bar, represent the dowel bar continuation into the column
where the bar is well-surrounded by concrete.

Figure 3.11(b) shows the section A-A through shear
plane of the specimen. The blocks on the two sides of the
specimen were sufficiently reinforced such that failure
could not precede failure under dowel forces.

Three specimens were tested under compression, and they
were designed to overcome the shortcomings of the test
program reported in Ref. 14 on specimens with
unrealistically small dowel bars (diameter less than 0.546
in. or 13.9 mm). The dowel bars used in this study were #4,
#6, and #8 grade 60 deformed bars. The average compressive
strength of concrete in the specimens was 6,400 psi (44.1
MPa) at test age. The specimens were constructed Qith type
I1I Portland cement, and water/cement ratio was 0.5. The
concrete air content was 2 X on the average, and its
average slump was 1.5 in (38.1 mm). The specimens were
removed from their wood moulds after 24 hrs, and were
placed in a curing room with 72°F (22.2°C) temperature and
100% relative hHumidity for 7 days. The test specimens were
then exposed to the uncontrolled laboratory environment,

and were tested at the age of 28 days.



Figure 3.10: Typical Specimen Reinforcement.
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Figure 3.11: Test Specimen Under Compression Load.

The compressive load was applied by a hydraulic
actuator (Figure 3.12), and the load was measured by a load
cell. Measurements during tests were made on the crack
opening ( with two electrical displacement transducers) and
the relative slippage of the two concrete faces at the
shear plane (with two other electrical displacement
transducers). The dowel bar strain was also measured at

three points near the shear plane with electrical strain
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gages. Locations of the load cell, displacement transducers
and the strain gages are shown in Figure 3.13. The maximum
error in the displacement transducer readings was 0.4 X,
and the load cell was capable of reading loads with an

accuracy of 0.2%.

Figure 3.12: Test Set-Up For Dowel Action Against Core.
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3-3.2 Test Results: Figures 3.14(a), 3.14(b), and 3.14(c)
show the dowel load-dowel displacement curves obtained in
the test on #4, #6, and #B dowel bars, respectively. These

figures also show some theoretical predictions that will be

disscussed later.
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48

Figures 3.15(a), 3.15(b), and 3.15(¢c) present the dowel
load-crack opening curves obtained in tests on #4,#6, and

#8 dowel bars, respectively.
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Figure 3.15: Dowel ioad Crack Opening Relationshi
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The maximum capacity of all three bars in action
against concrete core was reached when a split crack
appeared in the plane formed by the dowel load and the
dowel bar. Figure 3.16 shows the split crack of the blocks
of a specimen (with the other block removed). Occurrence
of this split crack has not been reported in Ref. 14 for
tests on small-diameter dowel bars with low yield strength.
According to this reference, the maximum dowel capacity
in action against concrete core was reached when the
concrete underneath the bar crushed and the dowel bar
itself yielded. Strain gage readings in tests revealed that
yielding occurred in all the dowel bars at about the same
time that the maximum dowel capacity was reached.

An important observation in Figure 3.14 is that while
#4 dowel bar after reaching its maximum capacity can still
resist considerable dowel loads up to relatively large
dowel displacements, dowel bars, #6, and #8, show a rather
sudden drop in their resistance just after reaching the
maximum dowel capacity. The behavior of #6, and #8 dowel
bars after reaching their maximum capacity invalidates the
assumption made in the available dowel load-deflection
models?® 14 according to which there is no loss in dowel bar

capacity after failure.
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Figure 3.16: The Split Crack Observed at Maximum
Dowel Capacity.
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The measured crack openings shown in Figure 3.15 arc
observed to be a-ail prior to reaching the maximum dowel
capacity. Thereafter, the crack starts to widen in an
increasing rate. Very small crack openings before the
maximum dowel strength is reached might be attributed to
the slight out-of-straightnesses of the two crack surfaces.
The increase in crack opening after maximum &owel capacity
(Figure 3.15), might be caused by the kinking action of
dowel bars (Figure 2.6(c)].

3-3.3 Formulation of Dowel Strength:

The action of a dowel bar against concrete core [Figure
3.17(a)] is assumed to be similar to the action of a beam
(dowel bar) on an elastic foundation ( the surrounding
concrete) as shown in Figure 3.17(b). The distribution of
stresses on concrete as well as the moment in the
reinforcement as predicted by the beam on elastic
foundation theory are also shown in Figure 3.17(b).13

According to the beam on elastic foundation theory!3,
the maximum moment in the dowel bar occurs at a distance x
from the crack(where ¢ = 0) given by the following

expression:

X = ﬂ/4? (3-3)
where: _ A4/ K
B=Ver

dowel bar modulus of elasticity

Pt
u

dowel bar moment of inertia
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do = do* /64
= bar diameter
K = elastic foundation stiffness per unit
length [ unit = force/(length)2]
= krdo
Kr= concrete foundation modulus

([ unit = force/(length)3)
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Figure 3.17: Dowel Action Idealization.
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Failure 1n this model is assumed to occur when Lhe
dowel bar develops a plastic hinge at the point of maximum
moment, and the surrounding concrete reaches its bearing
strength marked by the development of the split crack shown
in Figure 3.16. It is assumed in this study that concrete
bearing stresses between the crack and the plastic hinge
are uniformly distributed at a value equal to the concrete
bearing strength (fv). The assumed failure condition is
shown in Figure 3.17(c). The assumed uniform bearing stress
distribution can be justified by inelastic stress
redistributions.

The dowel force Du can now be derived by satisfying
equilibrium of moments around the plastic hinge in
Figure 3.17(c):

Du = 0.5 fo (0.37Y do - c)2 + 0.45 fy dv2 (1-T2/Ty2)/Y

(3-4)

where: T=\‘/ Bs /Kedo ;

c = length of the crushed concrete zone ( derived

empirically in Ref. 14)
= 0.05 fy do sin&x /fc'

Kt = concrete foundation modulus ( 108 psi/in or
271.7 MPa/mm);

dvo = dowel bar diameter;

Be = dowel bar modulus of elasticity ( 29 x 106 psi
or 2 x 10 MPa),;

fo = concrete bearing strength [ Eqn. (3-1)]

fy

dowel bar yield stress;
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T = dowel bar axial force;

Ty = dowel bar yield axial force;

fc’'= concrete compressive strength; and

X = angle of inclination of dowel bar to line

normal to crack plane.

Values of concrete bearing strength (fvo) and its foundation
modulus can be derived from Eqns. (3-1) and (3-2),
respectively. The value of 11 in Eqn. (3-1) is equal to x
derived from Eqmn. (3-3).

3-3.4 Formulation of Dowel Load-Deflection Relationship:

This section illustrates the steps taken in this study for
producing an empirical expression for dowel load (D) versus
the dowel bar deflection at the point of load application
(S) for dowel bars acting against concrete core. In this
derivation, first a relationship was found between the
dowel deflection at the instant when ultimate dowel load
was reached (Su) and the ultimate dowel load (Du). This
relationship was based on results of the three tests

perfomed in this study as well as the 15 tests of Ref. 14:

Su = 4.26x10-¢ Dy + 0.00945 (3-5)
Figure 3.18 shows that the above linear relationship which

fits very well to test results.
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The following constitutive model was derived by least

curve square fitting to the two branches of the three test

results performed, as well as the results
reported in Ref. 14. With the value of Su
above equation, the dowel load-deflection

be found from the following equation that

of 15 tests
known from the
relationship can

is developed by
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curve fitting to results of 18 tests performed by thne
author and other investigators.l¢
The following equation was derived empirically to
predict the load-deflection diagram:
Du(S/Su)0-5 for S < Su
D = (3-6)

Du - Du(s—Su)/(0-4/db ‘Su) > 0.4D. for S > Su

where: D dowel load;

S = dowel displacement;
Du = ultimate dowel load in action against coreA
(Eqn. (3-4)];
Su = displacement at ultimate dowel load in action
against core [Bqn. (3-5)];
do = bar diameter.

The ultimate dowel strengths obtained from EBqn (3-4)
are compared in Table (3-2) with the results of 15 tests
reported in Ref. 14 as well as the three test results
produced in this study. Comparison between test and theory
is found to be quite reasonable.

A typical comparison between the dowel load-deflection
diagram as predicted by Eqn 3-6 and those obtained in tests
of Ref. 14 (test no. 8 in Table 3-2) is shown in Figure
3.19, and Figures 3.14(a), 3.14(b), and 3.14(c) also
compare prediction of Eqn. 3-6 with test results produced
in this study. The comparison between test and theory is
observed in these figures to be reasonable. The extra

strength of dowel bar #4 at large slips might have resulted
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from the kinking action [Figure 2.6(c)] that was observed

to be significant in dowel bar #4.

Table 3-2: Comparison of Experimental & Theoretical
Dowel Strength

Bar size [ 5 fy Dowel Strength (1lb)
Specimen No. (in) (psa) {(psi) a T Test Theory Theory/Test
1 (Ref.14) 0.319 4540 41890 10 (o] 2381 2020 0.817
2 (Ref.|4) 0.19 4540 41890 10 0 2271 2070 0.91
) (Ref. |3) 0.2535 4260 35070 20 o] 948 894 0.94
4 (Ref. |4) 0.2515 4260 35070 20 ] 882 894 1.01
S (Ref. 4} 0.39 1420 41890 20 ] 1720 1181 0.69
6 (Ref. q) 0.39 1420 41890 20 ] 1102 1181 1.07
7 (Ref. i4) 0.39 4540 41890 20 o 2205 1908 0.87
8 (Ref. 14) 0.39 4540 41890 20 o 2712 1908 0.70
9 (Ref. |4) 0.139 4540 41890 20 [} 2205 1908 0.87
10 (Ref. |4 0.546 4260 36490 20 0 4189 3l4S 0.7S
11 (Ref. 14 0.546 4260 36490 20 o 3488 3145 0.90
12 (Ref. l4) 0.39 410 41890 30 ] 1374 1545 0.82
13 (Ref. )4 0.39 3410 41890 30 o 1543 1545 1.00
14 (Ref. M, 0.39 3410 41890 40 ] 1830 1424 0.78
15 (l.f.]4l 0.39 3410 41890 40 0 1433 1424 0.99
16 (STuoY) 0.50 6400 60000 o] o] 9419 4469 0.47
17 (STuDY) 0.75 £400 60000 0 [o] 13266 9337 0.70

18 (STuDVY 1.00 6400 60000 o ] 15787 16176 1.02
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The effects of different factors on dowel strength and
dowel load-deflection diagrams were evaluated in this study
using Eqns. 3-4 and 3-6. The dowel bar diameter is shown in
Figure 3.20(a) to considerably influence the dowel
behavior. The yield strength of dowel bar is also shown in
Figure 3.20(b) to have some noticable effects. Relatively
small influences of the concrete compressive strength and
the inclination of dowel bar on dowel load-deflection
diagrams can be seen in Figures 3.20(c) and 3.20(d),
respectively. Axial load in the dowel bar is shown in
Figure 3.20(e) to have important effects on the dowel

behavior of the bar especially when its value exceeds about
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80X of the bar yield strength.
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3-4 BEHAVIOR OF DOWEL BARS IN ACTION AGAINST CONCRETE COVER

3-4.1 Test Program: The specimens tested in this phase

(Figures 3.2]1 and 3.22) were similar to the ones used for
simulating dowel action against core (Figures 3.10 through
3.13) except that the load was reversed, and the dowel bars
were supported by #3 stirrups located at 2 in (50.8 mm)
from the crack face (shear plane). Applying tension to the
specimen as shown in Figure 3.22 results in dowel action of
the two bars against concrete cover in one direction and
the core in the other. This is similar to dowel action of
beam longitudinal bars against beam cover at reinforced
concrete joints ([(Figure 2.1(a)].

Tests were performed on three sizes of grade 60 dowel
bars (#4, #6, and #8). Concrete in the specimens was made
with type III Portland cement, and the mix proportion and
curing condition were similar to the ones in previous
specimens (for dowel action against core). The compressive
strength of concrete at the test age was 6,200 psi (42.8
MPa). As shown in Figure 3.23, the specimens were fixed
through their anchorage bolts to a reaction frame at the
top and to a hydraulic actuator at the bottom. The tensile
force was measured by a load cell with a maximum error of
0.2X%. Opening and slippage of the crack were each measured
by two electrical displacement transducers with a maximum
error of 0.4%. Loading in all tests was displacement-

controlled and quasi-static.
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Figure 3.23: Test Set-Up For Dowel Action Against
Cover.
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3-4.2 Test Results: Action of dowel bars against concrete

cover in all specimens resulted in a split crack separating
the concrete cover from the core. After split cracking,
stiffness was reduced but resistance of dowel bars
continued to increase. Propagation of the split crack was
gradual (Figure 3.24) and the concrete cover appeared to be
contributing to dowel resistance even after split cracking.
The ultimate strength was finally reached when the concrete
cover peeled off after which dowel resistance started to
drop. Figure 3.25 shows one of the specimens after failure
(this is the view after half of the specimen was removed).
Figure 3.26 shows the experimental dowel load-
displacement relationships in action against cover. This
figure also presents the load-deflection felationships
obtained from earlier tests (Figure 3.14) on specimens
sub jected to compression instead of tension (with dowel
bars acting against concrete core). In Figure 3.26,
initially the behavior in dowel actions against core and
cover were similar, but upon split cracking, stiffness of
dowel bars acting against cover dropped suddenly. In these
specimens with stirrups located at 2 in (50.8 mm) from the
crack face, dowel bars with different sizes all reached a
maximum capacity equal to the stirrup yield strength. The
deflection at this maximum capacity, however, deéended on
the bar size, and increased with decreasing diameter of

_dowel bars.
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Figure 3.24: Split Cracking Resulting From
Dowel Bars Acting Against Cover.



65

Figure 3.25: View of Half-Section of Specimen
Showing Crack Pattern.



66

"
a
2 Action Against Core
- -=-=-=-Action Aqainst Cover
)
e ]
Si10. |
_:. . N\ - - T T ==
2 -- "
9] -
O em = —/
0. . A A -
0.0 0.2 0.4
Dowel Displacement (inJ
(a) Dowel Bar ¢4
g ! Action Against Core
x = =---Action Against Cover
he)
L]
0
2
P
3
0
a
0.0 0.2 0.4
Dowel Displacemsnt (ind
(b) Dowel Bar 06
20.¢
@ ———Action Against Core
Q.
o) - --<-4Action Against Cover
o]
5
210,
s
3
[}
a
0. 4 A . ~
0.0 n.2 0.4

(c)

Figure 3.26:

Dowel Displacement (inJ)

Dowel Bar &8

Dowel Load-Deflection Relationships.






Dowel Load (kips)

67

Dowel load-crack opening relationships for dowei bars

acting against cover and core are shown 1n Figure 3.27 for

different bar sizes. The trend in crack opening is observed

in these figures to be similar in both cases.
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Figure 3.27: Dowel Load-Crack Opening Heiationships.
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Relationship: Before split cracking, the load
deflection diagram of dowel bars acting against cover
coincides with those ones acting against core. This
relationship can be represented by the following expression

derived earlier for push against core:

D = Du(s/su)0 -5 for s < su
(3-7)
where: D = dowel load;
s = dowel displacement;
Dy = ultimate dowel load in action against core

= 0.07fv Y2dv2 + 0.45fydb2/r (for dowel bars
perpendicular to crack with zero axial stress);
su = displacement at ultimate dowel load in action
against core
= 4.2x10-%Dy + 0.00945 (for su in inches,
Du in 1b)

= 2.43%x10-5Dy + 0.240 (for su in mm, Du in N);

k¢ = concrete foundation modulus (Eqn. (3-2)]
do = dowel bar diameter;

Es = dowel bar modulus of elasticity;

fo = concrete bearing strength

(Eqn. (3-1), with 11 = x in Eqn. (3-1)]
fy = dowel bar yield stress.
In order to find the dowel load at the initiation of

cover splitting (Dcr), where the load-deflection diagram
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deviates from EBEqn. (3-6), the dowel bar in action against
cover before split cracking [(Figure 3.28(a)] was modeled as
a beam on an elastic foundation [Figure 3.28(b)] in which
the effect of stirrup was neglected. Figure 3.28(b) also
shows the distribution of bearing loads along the length of
the dowel bar. Split cracking was assumed to occur when the
sum total of bearing loads under the dowel bar from the
crack face up to the inflection point [distance (a) in
Figure 3.28(b)] reaches the tensile strength provided by
the beam width in distance (a). This resulted in the

following expression for dowel load at split cracking of

cover:
Dcr = 0.83(b-dv).a.f: (3-8)
where: b = beam width;
ft = concrete tensile strength
= 7.5/fc’ (psi)
= 90/fc’ (MPa);
a = ﬂ/(z\y/kfd./n.x. )
Bs = steel elastic modulus ( 29x10® psi or 2x105MPa)
Iv = dowel bar moment of inertia

Tdv4/64.
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The split cracking load from the above equation

compares well with test results:

BAR SIZE SPLIT CRACKING LOAD kips (EN)
TEST THEORY

#4 3.9 (17.3) 3.9 (17.3)

#6 4.6 (20.5) 5.0 (22.2)

#8 5.5 (24.5) 5.9 (26.2)

After split cracking, concrete cover still contributed
to dowel resistance until the ultimate dowel load (that was
roughly equal to the stirrup yield force) was reached. This
contribution of concrete cover cannot be guranteed in

actual conditions where the axial tension in bars tends to
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damage the cover.

3-5 BEHAVIOR OF DOWEL BARS UNDER CYCLIC LOADS:

3-5.1 Test Program: Test specimens used for cyclic loading

were similar to the ones used for simulating the monotonic
action of dowel bars against concrete cover and core. The
loading was, however, applied cyclically (Figure 3.29(a)].
The history of deflection application in cyclic tests is
shown in Figure 3.29(b). Three cyclic tests on grade 60
dowel bars #4, #6, and #8 were performed. The same concrete
mix as in the case of similar tests on dowel action against

concrete core and cover was used. The concrete compressive

strength was on the average 6,200 psi (42.8 MPa).
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Figure 3.29: Cyclic Tests On Dowel Bars.

3-5.2 Test Results: The first sign of distress in the
specimens under cyclic loads was initiation of a split
crack between cover and core resulting from dowel action
against cover [like the one shown in Figure 3.30(b)]. At
large loads, dowel action against core also resulted in a
split crack in the plane of dowel bar normal to the
direction of the previous crack. Both of these cracks

propagated and widened as the loading progressed. In fact,
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towards the end of the load history, the cover fully
separated from the core. This resulted in deterioration of
dowel resistance in action against cover at large-amplitude
cycles. Figure 3.30(c) shows the two split cracks in one of
the specimen blocks (with the other block removed) after

test.

K Split Crack

<

(a) Action Against Core

Splat
Crack

(b: Action Against Cover
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(c) Split Cracks of Specimen Resulting From
Cyclic Dowel Action.

Figure 3.30: Split Cracks Resulting From
Cyclic Dowel Action.



:

’,
<]

~c oo

-

v



75

Figures 3.31(a), 3.31(b), and 3.31(c) show the cyclic
dowel load-deflection diagrams obtained in testas on bars
#4, #6, and #8, respectively. These figures also show the
load-deflection diagrams obtained in monotonic tests. Test
results presented in Figure 3.3]1 show that the stiffness
and the energy dissipation capacity of dowel bars
deteriorate severely with repetition of inelastic load
cycles. The hysteretic envelope on the compression side
(with push against core) is practically the same as the
monotonic load deflection diagram. This means that there is
no significant deterioration of strength with repeated
cycles on this side. This was also true for dowel bars #6,
and #8 on the tension side (with action against cover).
Dowel bar #4, however, showed considerable deterioration of

strength in push against cover.
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The diagram shown in Figure 3.32 presents the

experimentally obtained dowel load-crack opening

relationships. It can be observed that the crack width

continues to grow with application of inelastic cyclic

loads. This is expected because both actions againat core

and cover tend to open the crack and there is no tendency

towards crack closure. Hence, in the inelastic region, the

residual crack width after unloading cannot be overcome

with loading in the opposite direction.
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3-56.3 Hysteretic Modeling: A number of monotonic

constitutive models have been suggested in the literature
for dowel action against core or cover.¢4:14,29 Lack of
cyclic test data, however, has been an obstacle in
developing hysteretic models for dowel bars. In this study,
hysteretic rules governing the constitutive behavior of
dowel bars under repeated load reversals were derived from
test results.

It was assumed that the hysteretic envelopes in push
against cover and core follow the respective monotonic load
deflection diagrams. This was true for test results on #6,
and #8 bars, but not fo #4 bar in action against cover.
Dowel bar #4 is not, however, regularly used as beam
longitudinal reinforcement.

Figure 3.33 shows the proposed empirical hysteretic
rules by adopting the hysteretic envelopes (monotonic dowel
load-deflection diagrams) from earlier tests. In a typical
cycle for a compressive dowel load (D*) against core and a
tensile dowel load (D-) against cover, assuming that D* is
reached first, unloading takes place with a stiffness of
275 kips/in. (4.8 N/mm) up to a dowel load equal to 25X of
D*. Then the unloading path go linearly to the origin. The
load-deflection diagram in the opposite direction coincides
with the last path followed in that direction. This path is
the envelope curve in the first loading in any direction.
Unloading from D- results in transfer towards the origin.

Loading in the positive direction takes place along the
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last path in that direction, but deviates from this paih at
75% of D* in the second cycle and 65X of D* in the
subsequent cycles. This is also true in the tension side
with D- substituting D*. In Figure 3.33, the first cycle is
repeated three times and then the deflection is increased
to a new maximum value in the compression side. As a
result, at point A the stiffness drops to 50X of the
initial unloading stiffness (50X of 275 kips/in. in push
against core) and then the load-deflection diagram follows
path AB until it reaches the envelope curve at point B.
Then the envelope is followed until another load reversal
takes place at point C with a new value of D*. Unloading at
point C also takes place towards the origin. Loading in the
tension side then takes place along the laat path in this
direction up to 65X of D-. Then, here also, stiffness drops
to 50% of the initial unloading stiffness (50X of 175
kips/in. in push against cover) and thereafter follow the
monotonic curve.

Figures 3.34(a), 3.34(b), and 3.34(c) show the
hysteretic diagrams of bars #4, #6, and #8, respectively,
as constructed with the above hysteretic rules and the
monotonic dowel load-deflection diagrams reported earlier.
Comparison of experimental and theoretical hysteretic
diagrams in Figures 3.31 and 3.34 show that the proposed
model can approximate the test results with a reasonable
accuracy. More test data are, however, needed for improving

the above empirical hysteretic model.
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CHAPTER 4

LITERATURE REVIEW ON PULL-OUT BEHAVIOR OF BEAM LONGITUDINAL

BARS BONDED IN BEAM-COLUMN CONNECTIONS

4-1 INTRODUCTION

The interaction of deformed bars with concrete depends
mainly on the mechanical interlocking between the bar lugs
and concrete. Adhesion and friction between the rough bar
surface and concrete add only a little to the bond
resistance.

Bar slippage is caused mainly by crushing of concrete
in front of the lug.19.23,44,48,53 {nder small pull-out
forces, the bond resistance is basically made up of
adhesion. At higher loads, however, mechanical interlocking
between the lugs and concrete is the main source of
resistance against pull-out. The high pressure in front of
the lugs causes tensile stresses in the concrete which
result in internal inclined cracks [Figure 4.1(a) and
4.1(b)], called herein the bond cracks.

Bond cracks modify the response of concrete to loading,
and reduce the pull-out stiffness of the anchored bar.
After the occurence of bond cracks, the stress transfer
from steel to concrete is achieved by inclined compressive
forces spreading from the lugs into concrete at an angle
as shown in Figure 4.1(c) above. The components of these
forces parallel to the bar axis are proportional to the
bond stress. The radial components, with respect to tﬂe bar

axis, load concrete like an internal pressure and induce
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tensile hoop stresses which cause splitting cracks. When

this crack reaches the concrete surface and none or only a

small amount of confining reinforcement is provided, the

bond resistance will drop to zero. However, if the concrete

is well confined, the load can be increased further.

ORCLS aCTue
On COnCRE 1Y

Bond Slip

(d)

Figure 4.1: Internal Bond Cracks and Forces Ioside
Concrete (Ref. 19).

Figure 4.1(d) shows a typical bond stress-slip

relationship. Up to point A in this curve, adhesion is the

main source of bond resistance. Bond cracking occurs at
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point B, and the splitting cracks (produced by radial
stresses) reach the center surface at point C. Curve CP
represents the behavior of bond in unconfined concrete, and
curve CDEF shows how bond behaves in confined concrete.

m bond stress in confined

When approaching the maxi
concrete [at point D in Figure 4.1(d)] shear cracks in
parts of the concrete keys between ribs are initiated as

shown below in Figure 4.2.

COnCRETE 1|
SHEAR CRACK

—— TENSION TRAJECTORIES |
~== COMPRESSION TRAJECTORK'S

Figure 4.2: Shear Cracks In the Concrete Keys Between
Lugs (Ref. 19)

When more slippage 1s induced, an increasing larger
part of the concrete is sheared off without much drop in
bond resistance. When the slip reaches the clear lug
distance, the lug has traveled into the position of the
neighboring rib (point E) in Figure 4.1(d), and the
concrete between lugs has been sheared off. Thereafter,
only frictional resistance is left which is practically

independent of the deformation pattern.



86

Figure 4.3 shows a closer view of the bond cracking
process. The inclined bond cracks shown in Figure 4.3(a) do
not grow much wider than that developed at maximum bond
stress when shear cracks initiate [see Figure 4.3(b)]. In
fact, some new inclined cracks might develop as shown by
dashed lines in Figure 4.3(c) due to the high compressive

forces on concrete in front of the lugs.

Figure 4.3

Mechanisas of 3
Loading (Ref. 19),

ond Resistance Monoton;c
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The above illustration of bond failure conditions has not
been accepted by some investigators. For example, TassiosS>3
assumed that the maximum bond resistance is controlled by
compression failure of the compression strut spreading out
from the lugs into the concrete.

The adhesive bond resistance is rather small (T. = 72
to 145 psi or 1.0 MPa). The bond stress at the occurence of
internal bond crack can be roughly estimated to be Ts= 208
to 245 psi or 1.43 to 1.70 MPa for a concrete with f¢' =
4,350 psi or 30 MPa23. Analysis of these values reveals
that even under service loads, adhesion can be overcome and
internal bond cracks might occur.

The splitting resistance depends mainly on the concrete
failure strength, concrete cover, bar spacing, amount of
transverse reinforcement, and transverse pressure. The bond
stress .Cc at splitting may be as low as 290 psi (2.0 MPa)
or as high as 1,015 psi (7.0 MPa) for fc’'= 4,350 psi (30
MPa) and with no transverse pressure applied.

The maximum bond resistance,.tnax is mainly influenced
by the concrete strength, bar deformations, and the
position of the bar during casting. The influence of the
bar diameter is relatively small if all dimensions (height
and spacing of the bar lugs, and concrete dimensions) are
kept constant as multiple of the bar diameter. The bond
strength might be influenced by confining reinforcement and
transverse pressure. Some investigators have assumed that

‘C sax is proportional to fc’, but others have taken it
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proportional to the V&:’

The influence of the bar deformation pattern on the
bond behavior has been generally described by the so called
relative rib area, ‘%.sn. that is the relation between
bearing area (area of the lug perpendicular to the bar
axis) to the shearing area (bar perimeter times lug

spacing):

Kgp = (K.Fr .SinP /T .db.C) (4-1)
where: K =is the # of transverse lug around perimeter;
FrR =is the area of one transverse lug;
SinP =is the angle between lugs and longitudinal axis
of bar.
C =is the center to center distance between
tranverse lug.

Bond strength and bond stiffness increase with
increasing Xsr. Common U.S. deformed bars have Xsr between
0.05 and 0.08. Depending on the relative rib area, the
value of maximum bond stress between 58 to 1,450 psi or 0.4
to 10 MPa for fc' = 4,350 psi (30 MPa).

There is a large scatter in the experimental bond
stress-slip relationships. This large scatter is due to
difficulty in measuring slip between steel and concrete
correctly and also due to the use of different test
specimens with different stress conditions in the concrete
surrounding the bar. The position of the bar during casting

also influences the local bond laws. The larger bar
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stiffness is for the bar cast vertically and loaded against
the casting direction of fresh concrete. Bars cast
horizontally (especially with a large depth of concrete
underneath them) have smaller stiffness and strength. Bars
cast vertically but loaded in the casting direction of
concrete may perform worse than bars cast horizontally.

The local bond stress-slip relationship is also
dependent on the location along the embedment length. In
Refs. 19 and 23, three different regions with very
different bond stress—-slip behavior were identified in a
beam-column joint: unconfined concrete in tension, confined
concrete and unconfined concrete in compression. These
regions are shown in Figure 4.4(a), and typical bond stress-
slip relationships in different regions are compared in
Figure 4.4(b).

If slip reverses before shear cracking, after unloading
[path AF in Figure 4.5(a)], a gap remains open with a width
equal to slip at point F. Continuing slip reversal will
have a frictional resistance which is rather small because
of the smooth surface of concrete surrounding the bar. At
point H in Figure 4.5(a), the contact between lugs and
concrete reinitiates. With increase in load, the previous
cracks close and new inclined cracks perpendicular to the
old ones will appear. If the magnitude of bond stress
continues to rise, the old and new crack might even join.
Confinement makes this- part of reversal path close to the

monotonic envelop. At point I in Figure 4.5(a), a gap with
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a width equal to the difference between siips at points F
and I has opened. When again reversing the slip at point I
in Figure 4.5(a), the bond mechanism for the loading patﬁ
IKL is similar to the one for path AFH described earlier.
However, the bond resistance starts only to increase again
at point L, when the lugs start to press broken pieces of
concrete against the previous bearing space. With further
movement, cracks close. At point M, lugs and concrete are
fully in contact again. With more slip in the same
direction, the monotonic envelope is reached again and
followed thereafter.

D R i i L KL . STEEL STRAPS
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Figure 4.5: Mechanisms of Bond Resistance Cyclic
Loading (Ref. 19).

Behavior is different if the slip is reversed after the
initiation of shear cracks in concrete keys. In this case,
the bond resistance in the opposite direction is reduced
compared to the monotonic envelope [path CFGHI in Figure
4.5(a)]. This is because after load reversal, the lug
presses against a key whose resistance is lower due to the
shear crack over part of its length induced by the first

half cycle. When reversing the slip again (path IKLMN in



92

Figure 4.5(b)], only the remaining intact part of the
concrete between lugs must be sheared off, resulting in an
even lower maximum resistance than at point I.

If a large slip is imposed during the first half cycle
resulting in almost complete shearing of concrete keys
[Figure 4.5(c)]), in reversal the friction is larger than
before because the concrete surface is rough along the
entire width of the lug. At point H in Figure 4.5(c), the
lugs are again in contact with the remaining intact parts
of the keys which do not offer much resistance. Therefore,
the maximum resistance during the second half cycle is
almost the same as the ultimate frictional resistance.
During reloading [path JKLMNO in Figure 4.5(c)], an even
lower resistance is offered because the concrete at the
cylinderical surface where shear failure occured has been
smoothen already during the first cycle.

From the above consideration it follows that if the bar
is cycled between constant peak slip values, the main
damage is done during the first cycle. During successive
cycles, the concrete at the cylindrical surface where shear
failure occurred is ground off, decreasing its interlocking
and frictional resistance. This explains the observed
decrease in maximum resistance on the path LMN in Figures
4.5(b) and 4.5(c) with increasing number of cycles.

According to the above theory, under otherwise
constant conditions, bars with smaller ratio of clear

lug spacing to lug height will produce more bond
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deterioration than bars with larger ratio of the lug
spacing to the lug height when cycled between the same
minimum and maximum slip values.

So far, the local bond behavior was discussed. The
anchorage of an embedded bar inside concrete is, however,
developed along the length of the bar. As shown in
Figure 4.6, the bond stress is almost constant over the
core region of the joint leading to an almost linear
distribution of steel stresses in this region. The bond
stress drops outside the joint core. Details of bond stress
distribution depend on the boundary conditions (bar stress
and slip) at the two bar ends as well as the history of

loading.

Bond

A
Stress f{:::::ii}L
—

Bar
Stress

Figure 4.6:
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4-2 REVIEW OF TEST RESULTS ON BOND

Two comprehensive test programs on the bond behavior
inside R/C beam-column connections have been reported in
Refs. 12 and 19. The results are discussed in the
following.

The subject of study in Ref. 19 has been the local bond
stress-slip relationship inside joints under monotonic and
repeated loads. The test specimen shown in Figure 4.7 was

chosen to represent the conditions found in a beam-column

Joint.

I || omecvion of casting
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Figure 4.7: Test Specimen Used in Ref. 19.

Only a short length of grade 60 deformed bar was
embeded in concrete. During the test, the force acting on
the loaded bar end and the slip, at the unloaded bar end

were measured. Assuming that bond stresses are evenly
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distributed along the bonded length, the value of bond
stress can be easily calculated from the measured force.
Furthermore, because the steel behaves elastically and the
embedment length is short, the slip values at the unloaded
and loaded bar ends do not differ significantly.
Therefore, the measured slip represents the local slip in
the middle of embedment length with sufficient accuracy.
Note that strictly speaking the resulting relationship is
not a local bond-slip rélationahip but an average one. The
embedded length 5dv shown in Figure 4.7 is short enough to
reduce the scatter of test results usually observed in
tests with very short bonded lengths.

The bars in the specimen shown in Figure 4.7 were
placed in the middle of the specimen and cast in a
horizontal position. Therefore, the bond could be expected
to be some what superior or inferior to top or bottom bar,
respectively.

Ref. 19 has reported the results of 125 tests on
specimens similar to the ones shown in Figure 4.7. The
"standard”" test in this program consisted of a #8 bar
embedded in concrete with a compressive strength of 4,350
psi (30 MPa), and confined with #4 bars. No transverse
pressure was applied in the "standard" test in which the
loading was applied with a slip rate of 0.067 in/min (1.702
mm/min). In the other tests of Ref. 19, one parameter of
the standard specimen was varied at each time as follows:

concrete stregth ( increased to 7,975 psi or 55 MPa);
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transverse pressure (ranging from 725 to 1,914 ps1 or 5.0
to 13.2 MPa in the direction of the column reinforcement);
bar diameter (#6 or #10); confining reinforcement (#8 or #2
or none); bar spacing (increased from ldv in the standard
specimen to 6dv); and loading rate [(0.67 in/min (1.702
mm/min) and 6.7 in/min (170.0 mm/min) slip rate].

The influences of the above parameters were studied for
monotonically increasing slip and for cyclic loading at a
peak slip value of 0.065 in. (1.651 mm). In cyclic tests,
after performing 10 cycles between fixed slip values, the
slip was increased monotonically to failure.

In all tests, except those with an applied transverse
pressure, a splitting crack developed prior to failure in
the plane of the longitudinal axis of the bar. The bond
stress at splitting was about 580 to 1,305 psi or 4 to 9
MPa for concrete with compressive strength of 4,350 psi (30
MPa). After developing this crack, the load dropped rapidly
if concrete was not confined. In the case of confined
concrete, however, the load could be increased further with
a gradually decreasing bond stiffness. This can be
explained by the fact that the growth of cracks can be
controlled by vertical bars crossing the crack plane.

In all tests conducted on specimens with confined
concrete, failure was caused by pulling out of the bars at
steel stresses well below yield strength ( between 40X to
80X of yield strength). The concrete between lugs was

completely sheared off and almost pulverized. Specimens
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with no confining reinforcement failed by splitting of
concrete in the plane of the bar longitudinal axis at about
45X of the pull-out load of comparable confined specimens.
In these specimens, the concrete between lugs was intact
after failure and no severe damage (shear cracks or
crushing) could be detected.

Under monotonic loading as shown in Figure.4.8. the
stiffness of the ascending branch of the bond stress-slip
curve decreased gradually from its initial large value to
zero when approaching the maximum bond resistance at a slip
value approximately 0.06 in. (1.52 mm). After passing the
maximum bond stress, the bond resistance decreased slowly
and almost linearly until it leveled off at a slip of about
0.45 in. (11.43). This value is almost identical to the
clear distance between lugs. For larger slip values, the
bond resistance was almost constant. The scatter of test
results was relatively small ( coefficient of variation of
bond resistance was about 5X) especially when the specimens
were cast from the same concrete batch.

Bond stress-slip relationships for tension and
compression were almost identical. However, it can be
expected that after yielding (that did not occur in these
tests), the diameter of the bar in tension will be
significantly reduced due to the necking effect, and this
can reduce the bond resistance. The opposite can be true
for bars yielding in compression. The necking effect can be

expected to change the bond resistance by not more than 20
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to 30%.

The absence of confining reinforcement drastically
influenced the bond behavior in test reported in Ref. 19
(Figure 4.9). Specimens having no confined reinforcement
failed by splitting of concrete at a rather small bond

stress (870 psi or 6 MPa). This value compared favorably

Terack = 1.5 fcr [C/do (4-2)

with:

where: Tcrack = bond stress at occurence of splitting
cracks
C = minimum concrete cover
fct = axial tensile strength of concrete
do = diameter of bar.

After splitting, the bond resistance dropped rapidly in
unconfined specimens and reached 145 psi (1 MPa) at a slip
of 0.16 in. (4.06 mm). This resistance is expected to be
provided by the friction at the bearing plate used in the
test.

Specimens with confined concrete failed by bar pull out
because the split cracks developed in the plane of the
longitudinal axis of the bars were restrained by vertical
bars (the influence of stirrups was negligible). There was
no significant difference between the behavior of confined
specimens with different confinements tested in Ref. 19.

This shows that there exists an upper limit for the amount
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of restraining reinforcement beyond which behavior cannot
be improved further.

The maximum bond resistance decreased slightly with
increasing bar diameter in monotonic tests (Figure 4.10).
The relationship was 1.00 : 0.94 : 0.85 for #6, #8, and #10
bars, respectively. The descending branch of the local bond
stress-slip relationships leveled up at slip values that
were almost identical with the clear distance between lugs
(about 0.36 in. (9.14 mm) for #6 and #10 bars and 0.45 in.
(11.43 mm) for #8 bar]). The frictional bond resistance was
not influenced much by variations in bar diameter, lug
spacing, or the related rib area. It was also observed that
increased related rib areas increase the ascending branch
stiffness as well as the peak bond resistance.

As can be seen in Figure 4.11, stiffness of the
ascending branch as well as bond resistance at equal slip
values increase with increasing compressive strength of
concrete. Furthermore, maximum bond resistance is reached
at smaller slip values in specimens with higher—-strength
concrete. The increase in bond resistance was proportional
to the increase in tensile strength (which is proportional
to the Jfc’ ).

The bond behavior in tests performed in Ref. 19
improved with increasing bar spacing; however, as shown in
Figure 4.12, the influence was relatively small. The small
effect of bar spacing is possibly because the split cracks

(that are strongly influenced by bar spacing) are
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restrained by the confining reintorcement and hence failure
is by pull-out and not split cracking.

Increase in transverse pressure is shown in Figure 4.13
to cause increases in the maximum bond resistance and the
ultimate frictional resistance.!® The slip at maximum bond
resistance also shifted to slightly larger values with
increasing transverse pressure.

The influence of rate of pull-out (or rate of slip) on
the local bond constitutive behavior can be seen from
Figure 4.14. While the overall shape of bond stress-slip
relationship was not changed much, bond resistance
increased with increasing rate of pull-out. A change of
rate of pull-out by a factor of 100 resulted in a change of

maximum bond resistance by about 15X%X.
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Figure 4.8: Bond Stress-Slip Relationship For All
Monotonic Tests (Ref. 19).
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Some of the hysteretic loops obtained in a cyclic test

on the standard specimen together with the monotonic stress-

slip relationships are shown in Figure 4.15.
teats, the scatter of test results was still
especially if the tested specimens were from
concrete batch. The coefficient of variation

characteristic bond stress value was between
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In cyclic loading,

if the peak bond stress during

cycling did not exceed 70 to 80X of the monotonic bond

strength,

the deterioration was moderate (Figure 4.16).

No

major deterioration was also observed under repeated slip

from zero load to a peak slip value,

peak slip value (Figure 4.17).

no matter what the
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Figure 4.16: Bond Stress-Slip Relationship For Cyclic

Loading (Ref. 19).
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Loading to a slip vaiue 1nducing a bond stress iarger
than 80X of the monotonic bond strength in either direction
led to a degradation in the bond stress-slip behavior in
the reverse direction (Figure 4.18). As shown in this
figure, the bond stress-slip relationship at slip values
larger than the peak value during the previous cycle was
significantly different from the virgin monotonic envelope.
There always was a significant deterioration of the bond
resistance which increased with increasing peak slip and
increasing number of cycles, and was larger for full
reversal of slip than for half cycles. Furthermore, the
cycle produced a pronounced deterioration of the bond
stiffness and bond resistance at slip values smaller than
or equal to the peak slip value.

The frictional bond resistance during cycling was
dependent upon the value of the peak slip and the number of
cycles. With repeated cycles, the frictional bond
resistance deteriorated rapidly ([(see Figure 4.18].

Cyclic loading with increasing slip values had an added
effect on the deterioration of bond‘stiffnelc and bond
resistance. On the other hand, some additional cycles
between smaller slip values than the peak value in the
previous cycles did not significantly influence the bond

behavior at larger peak value.
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Figure 4.18: Bond Stress-Slip Relationship For Cyclic
Loading (Ref. 19).

The cyclic bond deteriorations were approximatly the
same when the test bars were first loaded in tension or
compression. Substituting #2 bars for #4 bars as transverse
(restraining) reinforcement had no significant effect on
the cyclic bond deteriorations. This is also true for
specimens made out of high strength concrete or with
different clear spacings.

Transverse pressure in the investigated range as well
as a 100 times faster loading rate did not change the
cyclic deteriorations very much. Bars with different
related rib areas also had similar deteriorations under
cyclic loads in the limited number of tests reported in
Ref. 19. The bond resistance was almost independent of the
bar size after some load cycles.

In short, it can be stated that the behavior of bond
during cyclic loading is not significantly affected by the
various parameters investigated if the deterioration of

bond resistance is related to the pertinent monotonic
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envelope. However, the influence of bar diameter and
deformation pattern on the cyclic load behavior were not

studied thoroughly in Ref. 19.

) TEST sm(

Figure 4.19: Specimen Detail Plan Used In Ref. 12.

Another series of tests have been reported in Ref. 12
on specimens refered to as "column stubs” shown in Figure
4.19. These specimens represent a section of an interior
column through which a single bar of a continous beam
passes Figure 4.20. The column stub is reinforced to
simulate the confinement within a joint core when designed
and detailed according to ACI standard 318-71. Of the seven
specimens tested in Ref. 12, five were 25 x 10 in. (625 x

250 mm) and two were 20 x 10 in. (500 x 250 mm) in column
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cross-section Figure 4.19. The width ot 25 and 20 in. (625
and 500 mm) in tested specimens specified the embedment
lengths of bars. The overall height of the specimen was 46
in. (1,150 mm), and reinforcing bars were all grade 60.
deformed bars. The longitudinal reinforcement for the 25 in.
(625 mm) column stub consisted of eight #7 bars and the
ties were #4 reinforcing bars; the 20 in. (500 mm) column
stub consisted of four #8 and 2#4 reinforcing bars, with #4
ties. The embedded bar is placed so that it is in the
middle of the 10 in. (250 mm) thickness, and approximately
in the center of the column stub height. The concrete type
in the specimens included 4 ksi normal weight, 4 ksi light

weight and 9 ksi normal weight.

Figure 4.20: Column Stub Specimen (Ref. 12).
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The test set-up shown in Figure 4.2]1 below was designed
to avoid support reaction from affecting the behavior of
the bar being tested. For tests in which both ends of the
rebar were loaded, the two end loads were equal but
opposite, representing the condition that occurs in a joint
after the beam had cracked and the top and bottom beam bars
act alone to resist equal couples at the column faces. Some
of the tests were also performed with loading at only one
end of the bar. The instrumentation monitored behavior of
the embedded bar from which the applied loads, displacement
of the bar at either end and the load behavior along the
embedded length of the bar could be deduced ( the deduction
of bond stresas-slip relationship required the assumption of

Ramberg-0Osgood hysteretic model for steel bar).
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Figure 4.21: Test Set-Up Used In Ref. 12.
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Test results in Ref. 12 were presented in the form of the
local bond stress-slip relationships. The local bond-slip
for different locations along the 25 in. (625 mm) embeddment
length in the standard specimen (that was constructed of
normal weight concrete and was loaded at both ends) are

shown Figures 4.22 and 4.23 for the monotonic loading.
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Figure 4.22: Bond-Slip For Monotonic Standard Specimen
(Tensile Bar Strain on Pull Side of Specimen).
In Al]l Cases x is Measured From Left End of
Bar Emsbedment (Ref. 12).

Figure 4.22 shows the monotonic loading for portions of
the bar that are in tension, and Figure 4.23 shows the
curves for the portion of bar in compression. Comparison of
these figures shows that the compression side exhibits a
stiffer response as well as a higher maximum bond

resistance.



112

T
%

80ONO [MPo]

0z
SLIP (in]

Figure 4.23: Bond-Slip For Monotonic Standard Specimen
(Compressive Bar Strain on Push Side of
Specimen) (Ref. 12)

A typical comparison of cyclic bond-slip curves with
monotonic curve at the same relative location in Figure
4.24 reveals how closely the cyclic curve follows the
monotonic curve until bond degradation due to cyclic
loading causes the curve to fall below the monotonic bond
value.

In the case of specimens with light-weight aggregate
concrete, the variation of local bond-slip at different
locations along the embedded length was less than that with
normal weight concrete. For the length of the bar under
tension, the response at 6 in. (150 mm) of embedment shows a
maximum bond stress 40X less than that of a normal -weight
concrete (Figure 4.25). The increase in maximum bond stress

in the compression region of the bar is much less for the
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light weight concrete. Moreover, the degradation in the

compressive region is more severe than with normal weight
concrete.
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Figure 4.24: Cyclic vs Monotonic Bond-Slip For Standard

Specimen At x = 6.0 in. of Embedment
(Ref. 12).
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Figure 4.25: Comparison of Standard and Lightweight

Specimen Monotonic Bond-Slip at x = 6.0 in. of
Bmbedment (Ref. 12).
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Stiffness of the local bond-slip curve 1n higher
strength concrete specimens, that were constructed with a
shorter embeddment length of 20 in. (500 mm) in anticipation
of higher bond strength, was much greater than a comparable
local response for the standard concrete. The increase in
maximum bond strength over the standard normal weight
concrete was about 60X. This was less than the relative
difference in compressive strength (9 ksi or 62 MPa versus
4.5 ksi or 31 MPa), indicating the greater influence of
tensile and shear stresses on bond than of compressive
stress. The variation over the embedment length of local
bond-slip for the high strength concrete specimen was
similar to that of the standard specimens. The degradation
under cyclic loads in the high strength concrete specimen

was more than the standard specimen.

FORCES TRANSFERRED TO HMOMZONTAL
SUPPORT

X| --L/—-. X

Figure 4.26: kending Moment Produced
Applied Loading (Ref. 12).

Causes of the variation in local bond-slip relationship
for different locations along the embedment length have
also been discussed in Ref. 2. The first cause according to
this reference is due to the bending moment generated by

applied loads (Figure 4.26). The resulting stresses produce
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a tension field near the bar on the pull side and a
compression field on the push side; this produces a change
in bond resistance of the concrete, a decrease for tension
and an increase for compression.

The second cause, related to poisson’s ratio, is the
expansion or contraction of the bar diameter. This results
in a change of the bearing area of bar lugs against
concrete. Tensile strain reduceas the area of contact and
results in decreased resistance; compressive strain
increases the bearing area, resulting in an increased
resistance. The bar axial force also changes the distance
between lugs. This alters the state of stress in the
concrete in the immediate area, there by affecting the
strength and stiffness of bond.

4-3 REVIEW OF LOCAL BOND CONSTITUTIVE MODELS

A comprehensive model for the local bond stress-slip
relationship under cyclic loads inside the reinforced
concrete beam-column connections has been developed in the
Earthquake Research Center of the University of California,
Berkeley.l11,12,19,23,44

The description of the local bond stress-slip relation
between reinforcing bars and surrounding concrete, that has
been empirically developed in Berkeley, consists of the
following parts:

(1) Two monotonic envelopes, one in tension and one in
compression, which are updated in each slip reversal as a

function of incurred damage [curves (a) and (b) in
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Figure 4.27(a)];

(2) A typical unloading-reloading path described by the
current frictional bond resistance (qr), and unloading
curve (c) and a reloading curve (d), along with a set of

rules for unloading and reloading in the case of incomplete

cycles [Figures 4.27(a) and 4.27(b) ];
(3) A set of functional relation which allow updating
the monotonic envelope values and the frictional bond

resistance as a function of incurred damage.

BOND STRESS ¢ [mpq)

(a) Complete Slip Reversal
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Figure 4.27: Bond Model Developed In Berkeley Under
Complete and Incomplete Slip Reversal
(Ref. 19).

The simplified monotonic envelope shown in Figure
4.27(a) simulates the experimentally obtained curve under
monotonically increasing slip. It consists of an initial
non-linear relationship q = qi1(u/u1)%-4 |, varied for u ¢ u:
followed by a plateau q = q1 for ux» ¢ u  uz. For u > uz, q
decreases linearly to the value of ultimate frictional bond
resistaance q3 at a slip value of us. This value is assumed
to be equal to the clear distance between lugs of deformed
bars. In the case of well confined regions, identical
envelopes apply to tension and compression, i.e., to the
case of the bar being pulled or pushed. In the unconfined

case, two different envelopes curves have to be specified.
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After 1mposing a load reversal at an arbitrary slip
value [ point A in Figure 4.27(a)], unloading takes place
along a steep straight line up to the point where the
frictional bond resistance qr is reached [ point B in
Figure 4.27(a)]. Further slippage in the same direction
takes place at an almost constant bond stress [curve (d) in
Figure 4.27(a)] until reaching near the under the reduced
envelope curve [point C in Figure 4.27(a)] which has a slip
value equal to the maximum or minimum slip imposed during
previous cycles. Beyond point C, a bond stress-slip
relationship similar to the virgin monotonic envelope but
with a reduced value of bond stress is followed [curve (e)
in Figure 4.27(a)]. This curve is called reduced envelope.
In case that no slip has been previously imposed in one
direction, reloading takes place along a horizontal line
until reaching the reduced envelope [curve (f)]. If the
slip imposed in one direction does not exceed the maximum
slip attained during previous cycle, a typical cycle
follows the path depicted in Figure 4.27(b).

Updated envelope curves are obtained in this model from
the monotonic envelope by reducing the characteristic bond
stresses q1 and q3 by a factor, which is formulated as a
function of a parameter, called the "damage parameter”", d,

The relation proposed in Ref. 19 has the form:

Q1 (N) = q1(1-d) ' (4-3)

where q1 represents the characteristic bond stress values
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on the virgin envelope curve and qi1(N) is the corresponding
value after N cycles. For no damage, d=0, and the reduced
envelope curves coincide with the monotonic curve. For
complete damage, d=1, eignifying that the bond is
completely destroyed. The damage parameter, d was assumed
in Ref. 19 to be a function of the total energy
dissipation. The proposed relationship (Ref. 19) has the

form:
14 »
d = l-e-1.2(E/E,) (4-4)

in which E is the total energy dissipated and the
normalizing energy Eo corresponds to the energy absorped
under monotonically increasing slip up to the value us |
Figure 4.27(a)]. An additional relationship is used in
establishing the frictional bond resistance qf, which
depends upon the previous slip value uaax and relates qr to
the ultimate bond resistance, qa(N) of the corresponding
reduced envelope curve. For subsequent cycles between fixed
values of slip, qr is further reduced by multiplying its
initial value with a factor which depends on the energy
dissipation by friction alone. Explicit expressions for the
above relation are given in Ref. 19.

It is important to realize that the concept of relating
damage to one scalar quantity, like the normalized
dissipated energy, provides the basis for a relatively easy

generalization of local bond behavior to cover random
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excitations. Moreover, the bond stress-slip model can be
used without any modification over a wide range of
parameter values. Typical parameters include bar diameter,
concrete strength, degree of confinement, and transverse
pressure due to axial load. It should be noted in this
context that, with the exception of the characteristic
values of the monotonic envelope curve, all expressions
prescribed in the model of Ref. 19 are cast in
dimensionless forms. Thus only the characteristic values of
the pertinent envelope curves are needed in order to
establish the hysteretic bond stress-slip relation under
any condition. These values can be based on experimental
results or, alternatively, on the following empirical
values derived in Ref. 19.

Well-Confined Concrete: The condition of well-confined
concrete is present when a further increase in the amount
of transverse reinforcement does not result in significant
improvement of the local bond streas-slip behavior. This is
depicted in Figure 4.9 presented earlier. In the case of
well-confined concrete regions, identical envelopes apply
to tension and compression. The following set of
characteristic monotonic envelope values represent the
average bond condition for #8 reinforcing bars in well
confined concrete with a compressive strength equal to

4,350 psi (30 MPa):

u1 0.394 in. (1.0 mm)

u2 0.118 in. (3.0 mm)
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us = 0.413 in. (10.5 mm)

q1 = 19.575 ksi (13.6 N/mm2)
q3 = 0.725 ksi (5.0 N/mm2)
X = 0.4

(4-5)

Due to inevitable scatter of experimental results, the
values of q1, and q3, and & may well vary up to + 15%.

For non-standard condition (bar size different from #8,
concrete strength different from 4,350 psi, bar spacing
less than 4dv, external pressure applied or related rib
area different from 0.065), the above characteristic
monotonic envelope values for well-confined concrete should
be modified as discussed in the following:

(1) The influence of concrete strength can be taken

into account by multiplying q1, and q3 with the factor

ykfc'/4.350) where fc’' is the concrete compressive

strength in psi. Furthermore, the value of ui should be

reduced approximately in proportion toyk4.350/fc').

(2) If the clear spacing between bars is smaller than
4dv, where dv is the bar diameter, q1 and q3 should be
reduced using the information given in Figure 4.28. The
following expressions have been derived in this study on

the basis of this figure:

079
For s < 4dv q(8)/q(4dv) = 1-0.833e-1-61(8/db)

(4-6)
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Figure 4.28: Influence of Clear Bar Specing s/de On
Bond Resistance (Ref. 19).

(3) The influence of external pressure (e.g. axial
compressive column force) can be taken into account by
increase in q1 and 93 according to Figure 4.29. Least
square curve fitting to test results resulted in the
following expression:

q(p)/q(p=0) = 1.3-0.3e-0.00103p (4-7)
where: p is the transverse pressure in psi.

(4) If #6 or #10 bars are used, it is recommended to
increase or decrease, respectively, qi1 by 10%.

(5) If the related rib area , X3R, differs from the
value 0.065, its influence should be taken into account by
modifying uy and q1 using the data given in Ref. 19.

(6) The given values for ui ,uz, and us should be

multiplied by a factor ¢1/0.41, where c1 is the clear
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spacings between lugs in inches, but this modification
should not be greater thanm +30X.

(7) Thevunlonding slope is equal to 26,100 psi (180
MPa) for #8 bars. It should be modified in the same way as

q1 for different conditions.

T(p)/ T(p:=0)

:3[7 ]
|

TRANSVERSE PRESSURE , o [N/mm? |

Figure 4.29: Influence of Transverse Pressure On
Bond Resistance (Ref. 19).

Unconfined Concrete: Unconfined concrete occurs in the
column cover region of interior and exterior R/C joints
Figure 4.30. It is possible to generalize the local bond
stress-slip relation for confined concrete regions by
introducing the following modifications:

(1) A different monotonic envelope is specified for
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positive slip values than for negative slip values;

(2) The normalizing energy Eo used in the computation
of damage is chosen to be the largest between Eo* and Eo-,
which are, respectively, the areas under the monotonic
envelopes for positive and negative slip values up to the
slip value of us. To take into account different rates of
damage in the two directions of loading, the pertinent
total dissipated energies E, used to compute the reduced
envelope are multiplied by an amplification factor f3 .
which is different in the two opposite slip directions.
Similar rules for computing damage apply to the friction
part of the curve.

The following envelope values are suggested for #8 bars
embedded in unconfined concrete with compressive strength
of 4,350 psi or 30 MPa (Ref. 19):

Envelope values for the case that the bar is pulled
(Figure 4.30):

ur = 0.0118 in. (0.3 mm)

uz = 0.0118 in. (0.3 mm)

us = 0.0394 in. (1.0 mm)

qr = 0.725 ksi (5.0 N/mm2)
q3 = 0

x = 0.40

(4-8)
Envelope values for the case that the bar is pushed
(Figure 4.30):

uy = 0.0394 in. (1.0 mm)
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uz = 0.1181 in. (3.0 mm)

ua = 0.413 in. (10.5 mm)

q1 = 2.900 ksi (20.0 N/mm2)
qa = 1.088 ksi (7.5 N/mm?)

&

0.40

(4-9)

The same modification as in the case of confined

concrete apply for different bar diameters and concrete

compressive strengths.

e

-— —) —— LOADNG |

Different Regions and Corre-pondinillond
Stess-Slip Envelope Curves In Interior

Joint (Ref. 19).

Figure 4.30:

Less detailed models for the local bond behavior

under
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cyclic loads have been introduced in Refs. 39, 52, 56. The
first analytical model for the local bond stress-slip
relationship under cyclic loading was proposed by Morita
and Kaku.39 This mode)] is shown in Figure 4.31. The
monotonic envelopes which are different for loading in
tension and compression, and for confined and unconfined
concrete, are bilinear. The assumed bond stress-slip
relationship for the first cycle coincides relatively well
with the behavior observed in tests. This model, however,
neglects any deterioration in the envelope curve or
frictional bond resistance. The model is sufficiently
accurate for a small number of cycles between relatively
small slip values with corresponding bond stresses smaller
than about 80X of the monotonic bond strength. It is,
however, inaccurate for a large number of load cycles, and
it is not valid for slip values larger than the one
corresponding to 80X of the bond strength.

Another bond hysteretic model has been developed by
Tassios.53 As shown in Figure 4.32, the monotonic envelope
in this model consists of six succesive straight lines. The
coordinates of the controlling points A to E, which have
the same physical meanings as describe earlier for the
detailed model of Ref. 19, have been theoretically
evaluated and given as functions of the relevant
influencing parameters in Ref. 53. The same bond stress-
s8lip relationship is assumed regardless of whether the bar

is pulled or pushed. After loading to a slip value greater
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than the value of slip corresponding to point B on the
envelope curve shown in Figure 4.32, the value of the bond
stress—-slip relationship for loading in the reverse
direction are reduced by one-third compared to the
monotonic envelope. The bond stress-slip relationship for
reloading and for subsequent cycles between fixed slip
values is somewhat simplistic in this model compared to the
real behavior. However, the deterioration of the bond
resistance at peak slip and that of the frictional bond
resistance are taken into account. when increasing the slip
beyond the previous peak slip value, it is assumed that the
monotonic envelope is reached again. This model an
improvement over the one developed by Morita and Kaku3®
because the descending branch of the local bond stress-slip
relationship is considered, and the influence of lo;d
cycles on bond deterioration is also taken into account.
However, the assumption that for slip values larger than
the peak value in the previous cycle, the monotonic
envelope is reached again and followed thereafter, is not
representative of the experimentally observed behavior. For
monotonic loading, the model seems accurate for the total
slip range. However, for the cyclic loading, it is valid
only for slip values smaller than the slip at ultimate bond

strength.
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4-4 REVIEW OF ANALYTICAL MODELS FOR PULL OUT BEHAVIOR OF

EMBEDDED BARS

The above discussion mainly concentrated on the local
bond stress-slip behavior. The ultimate goal is, however,
to analyze the overall behavior of embedded bars. Refs. 11,
23, and 53 have suggested some methods for using the local
bond stress-slip relationship in predicting the overall
behavior of embedded b;rs sub jected to cyclic loads.

In the typical method developed in Ref.1l1, the actual
behavior of a bar of finite length embedded in a concrete
block has been studied using an idealized one-dimensional
mathematical model (Figure 4.33). The governing equilibrium

equation of this model may be written as:

dN(x)/dx - q(x) =0 (4-10)
where: q = bond force per unit length
=Tdo T(x);

bar force

AL(x);

bond stress;

4
]}

A

do bar diameter;

A area of the bar cross-section.

This relation expresses equilibrium of an infinitesimal
portion of the bar [Figure 4.34(a)]. It has to be coupled
with the constitutive laws for steel and bond, which can be

expressed as:
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/\(olS(Z)"
S(C(x))A2 &L ax J

Cis(x)) (4-11)

&
T

where s(x) 1is the slip along the bar. Note that here the

1"

influence of concrete deformation on slip has been
considered negligible, as commonly assumed. As a
consequence, the strain in steel, & , has been set equal to
ds/dx.

Boundary values are specified at the two end points of
the bar. Three different cases, in particular, has been
considered [Figure 4.34(b)]:

(1) The displacement (slip) values at the two ends
are assigned (this is the case , for example, of a pull-
push test with displacement controlled at both ends).

(2) The displacement is assigned at one end only,
together with the axial force at the other end (this is the
case of a pull test with displacement controlled at the
pull end).

(3) while at one end the displacement is assigned,
at the other gnd the magnitude of force is constrained to
be equal to the one at the first end (this corresponds to a
pull-push test arrangement where the displacement is
controlled at one end only, but the pull and push forces
are constrained to have same magnitude).

Ref. 11 suggests an incremental solution process for
the bond nonlinear equation presented above. In this
solution, small increments of the assigned boundary

conditions define the loading. In Ref. 11, the bond
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equations are recast into the following nonlinear tnitial

value form:

dN(x)/dx - q(x) = 0

N(x) = N ( €(x)) = N(ds(x)/dx) (4-12)

Tdo. C(x), with ((x) = %(s(x))

q(x)
The above equations govern the behavior on the interval
[0,L] of the real axis x [Figure 4.34(c)], with the initial
conditions:

€(0) = (ds/dx)x-=0 = €, ;

8(x=0) = =)
In order to solve this problem numerically, the interval
(0,L] is first divided at the position (or stations) «xi
(i= 1,2, cc0ceen. osN; x1=0, xn=L, X1 = Xxt1+1-%x1), by n points
into n-1 sub-intervals [Figure 4.34(c)]).

Once the values Ni, qi,€i, and si of the functions
N(x), q(x), €(x), and s(x) at station i are known, the
solution is advanced to the next station i+l using the
following relations:

Si+1 = 8i + [( &, + Ei+1)/2) Ax;y
-(4-13)
Nie1( €1e1) = Ni = [{q1 + Qie1(Si+1)}/2)Axi =0
which express an approximate integration of the bond
equations given earlier on the sub-interval (xi,xi+1). The
above two equations combined together result in a nonlinear
equation with only one unknown€ .1, the solution of which

requires repeated evaluation of the functions N(€), q(s) at
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point i+1. Once €,+1 has been determined, and si+1, Ni+1,
and qi+1 are available, the procedure can be applied to the
next sub-interval and continued up to the end point n.

The type of integration scheme presented above is
implicit and has the disadvantage of requiring at each step
(interval) the iterative solution of a nonlinear equation.
Furthermore, since the regular boundary conditions
presented in Figure 4.34(b) define the conditions at both
ends, a shooting technique should be implemented and this
involves additional level of iterations that makes the
solution very time-consuming.

The method presented in Ref. 53 is also very similar to
the above method of Ref. 11 except that the concrete
strains are approximately taken into account in Ref. 53.

An interesting aspect of model presented in Ref. 11 and
23 is the distinction between confined and unconfined
concrete in specifying the bond stress-slip envelope curves
along the bar embedded length. According to these
references, the dividing line between the confined and
unconfined conditions can not be sharply defined in the
joint. Therefore, it is suggested to assume a gradual
transistion between the region of well-confined concrete
and the region of unconfined concrete. In summary the
following regions have been assumed in Ref. 23 (Figure
4.35) on the basis of a limited number of test results.

(1) Unconfined concrete extends ldo into the column

cover region on both ends of the joint, where dv is the
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reinforcing bar diameter;

(2) Transistion region between unconfined and confined
concrete extends 2do from the end of the unconfined region
on both ends of the joint,

(3) The remaining length inside the column core is

considered as confined concrete region.

e o et o S —
__..[“* l-—-

g Cp— —— — Sp—

One-Dimensional Model

Figure 4.33: Physical Idealization of Anchored Bar

ofx) = o((e(x)), =(x)= r(s(x))

a(c) = constitutive law for steel
T(x) = - ® " Bond
(a) Different Ecvation For Bond

.
% n

(@) ~— —
Sl N"'O

(3) =~— - N

Sl “n."l

(b) Boundary Conditions Considered

x
.
|

—
(c) Subdivision of Bar

Figure 4.34: Mathematical Model of Deformed Bar.
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Different Bond Regions (Ref. 23).



CHAPTEBR §

ANALYTICAL STUDIES ON PULL-OUT BEHAVIOR OF BEAM

LONGITUDINAL BARS BONDED BEAM-COLUMN CONNECTIONS

6-1 INTRODUCTION

This Chapter illustrates the analytical studies
performed on the pull-out behavior on the beam longitudinal
bars embedded in interior beam-column connections. First an
improved local bond stress-slip relationship is presented
and then a new modeling technique that is based on the
displacement method of analysis is presented. This
technique is significantly more efficient than the
available ones. The Chapter concludes with a parametric
studies on the pull-out behavior of embedded bars.

5-2 AN IMPROVED LOCAL BOND CONSTITUTIVE MODEL

The model developed in Ref. 19 (presented in section
4-3 ) assumes that on the reloading curve, the frictional
bond resistance remain constant before reaching the peak
slip value of the previous cycle in the corresponding
direction, and then the resistance jumps suddenly to the
reduced envelope curve Figure 5.1(a). In order to improve
this model, Ref. 23 has suggested a gradual increase in
the force carried by the bar according to a fourth degree
polynomial (Figure 5.1(b)]. The constant friction
assumption of Ref. 5 does not agree well with the test
results, and the gradual increase of the bond resistance
during the loading proposed in Ref. 23 adds to the

complexity of the model. In this study, the following

135
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simple and realistic law for reloading up to the peak siip
value in the previous cycle was developed ([(Figure 5.1(c)].

If after the firast loading up to point A shown in
Figure 5.1(c), unloading and reloading takes place, after
the elastic part is over in point B, a constant frictional
resistance is assumed to be effective up to reaching the
envelope curve in the reversed direction at point C. This
is similar to the assumption of Ref. 19. In the subsequent
reloading, however, the path is suggested to be different.
In the proposed model it is assumed that the frictional
resistance, that becomes effective at point E in Figure
5.1(c), remains constant up to point F the slip value of
which is the average of the maximum and minimum slip value
so far reached at points A and D, respectively, except
that the sign of the slip value at F should be different
from the one at E, otherwise the slip at F should be taken
equal to zero. This means that line EF either crosses the
vertical axis with zero slip value or at least reaches this
axis. After reaching point F, if the reloading is
continued, the path follows a line drawn from F to G on the
reduced envelope curve as shown in Figure 5.1(c).
Thereafter, the reduced envelope curve is followed. In
incomplete cycles, if the elastic reloading path intersects
EF between E and F [see path HIJK in Figure 5.1(c¢c)],
thereafter the path follows EF up to F, and then goes
linearly towards G as discussed above. In case of

incomplete cycles that intersect the line EF outside the E-
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F range [like path HILM in Figure 5.1(c) ], then from M the
reloading path directly goes towards G on a linear path.

BOND STRESS, g [mpa]

o
SLIP.u [mm]

(8) Model of Ref. 23

BOND STRESS, q [Mpa)

-20
)

(b) Model of per, 19
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BOND sTRESS

SLIP

(c)Improvement on the Reloading
Branch of Berkeley Models

Figure 5.1: Comparison
: Co of Hystareti
With Models Prupal.d.l(el::::lf:r..‘ Sehevite

Figures 5.2(a), 5.2(b), and 5.2(c) that compare an

experimental cyclic bond stress-slip curve with the ones

predicted by the proposed model and the model of Ref. 19

show the improvements achieved by the proposed modification

of the model of Ref. 19.
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Figures 5.3, 5.4, 5.5, 5.6, and 5.7 show some cyclic
test results as well as the predictions of the proposed
version of the Berkeley’'s model. The properties of the test
specimen!® are also shown in these figures. The model is
observed to predict the test results with reasonable

accuracy.
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5-3 A _NEW ANALYTICAL MODEL FOR PULL-OUT BEHAVIOR OF

EMBEDDED BARS

In this study, a technique based on the displacement
method of analysis has been developed for predicting the
behavior of anchored bars under the action of random load
histories. This approach does not involve iterations at
each load step, and thus it is time efficient for computer
analysis.

In finite element modeling of reinforced concrete
structures, the bond between steel and concrete is
sometimes idealized by discrete springs connecting the bar
at different points along its length to concrete.¢ In the
model developed in this study, the idea of idealizing bond
with discrete springs has been employed for deriving a more
efficient procedure for predicting the behavior of anchored
bars with any of the boundary conditions shown in Figure
4.34(b).

The proposed model is shown in Figure 5.8. Each spring
in this model represents the bond resistance provided by
its tributary length of the anchored bar. In this one-
dimensional model, the concrete strains are assumed to have
negligible effects on the anchored bar behavior!! and thus
the springs in Figure 5.8 are assumed to be rigidly fixed

at the ends connected to concrete.
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Construction of the tangent stiffness matrix of the
anchored bar model in Figure 5.8 requires knowledge of the
steel and bond constitutive laws. Assuming that these laws
are known, and the history and values of dispacement (slip)
at any of the discrete points along the bar length
Figure 5.8 are available, then the bond tangent atiffness
(kt1) and the steel tangent stiffness (kri) can be derived.
The stiffnesses of the springs (ksi) and the steel
segments (koi) can be computed at each stage of loading
history:

kv kti( [Jdv)1; (5-1)

1]

Ke i kei ( TTdv2/4) /1, (56-2)

where: do bar diameter;

li = length of the ith steel segment (Figure 5.8)
Knowing the tangent stiffnesses, steel segment and
springs, the overall tangent stiffness matrix (kr) of the

idealized system shown in Figure 5.8 with n degrees of
fredom (n is the number of discecrete points along the bar

length) can be constructed as follows:
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Eqn. (5-3) (tangent stiffness malrix) defines the
relationship between incremental end forces (dP: and dPn 1in
Figure 5.8) and the incremental slip values along the bar
length (dS:, dSz2,.., ,dSi,....,dSn) according to the

following expression:

(dP1) (ds: )
0 ds:

< . 7 = Kr < . > (5-4)
0 dSa -1

[ dPn | [ dsa )

or assuming that F = Kr-1.

([ dsy ] (dP))
ds:2 0
dsS2 0

<7 = F <> (5-5)

dSn-1 0

\dSn ) Ldpﬂ

It can be concluded from Eqn. (5-5) that:

dsS: fi1,1dP1 + f1,adPn (8-6)

dSn fn,1dP1 + fn,ndPa ’ (5-7)

n

where: f{,; = the element in the ith row and the jth colunn



of matrix F.

Eqns. (5-6) and (5-7) give the incremental values of
end slip in terms of the incremental end forces. Such
expressions are helpful if the loading is defined by
assigning the two end forces. The loads applied on the
anchored bars are, however, generally defined by assigning
one of the three boundary conditions shown in Figure
4.34(b). In the following, Eqns. (5-6) and (5-7) are
reorganized for use with any of these three boundary
conditions.

Case 1:- slip assigned at both ends: solving Eqgns.
(56-6) and (5-7) for the incremental end forces we get:
dP, = dS.1/f1,1 (5-8)

-(dSnf1,1-dS1fn,1)/(fa,nf1,12/f1,n - fan,1f1,1)

dPn = (dSnfl.l‘dslfn.x)/(fn.nfl,l"fl.nfn.l) (5-9)

Eqns. (5-8) and (5-9) give the incremental end forces in

terms of the input values of the incremental end slips.
Case 2:~- slip assigned at one end with force at the

other end equal to zero: by substituting dP with zero 1in

Eqns. (5-6) and (5-7), and solving for dPn and dSn we get:

dPn = dSn/fn.n (5-10)
dS: = (dSn—-f1.a)/fn.n (5-11)
Case 3:- slip assigned at one end with the force at two

ends constrained to be equal: by substituting dPn and dP,,
and cancelling dP: in Eqns. (5-6) and (5-7) the following

expression can be derived for the unknown value of dS, in
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terms of dSa:

dS1 = dSn.(f1,n+f1,1)/(Ffn,n+fn, 1 (5-12)
The incremental end forces can then be computed using Eqn.
(5-6) or (5-7).

For any of the above boundary conditions, the solution
algorithm at each load step will be as follows:

(1) Using the slip values of the previous load step,
construct the overall tangent stiffness matrix of the
system using bond and steel <constitutive laws with Eqns.
(5-1), (5-2), and (5-3). Invert this tangent stiffness
matrix to get matrix F (and its elements fi1,1, fi1,n, fn,1,
and fn,n);

(2) In case 1l: Given dS: and dSa, find dP: and dPn

using Eqns. (5-8) and (5-9),

In case 2: Given dSn and dP.:=0 find dPn and dS)
using Eqns. (5-10) and (5-11),

In case 3: Given dSn and dPi1=dPan, find dS: from
Eqn. (5-12) and dP1=dPn from
Eqn. (5-6) or (5-7).

(3) Find all the incremental slip values along the bar
length using Eqn. (5-4).

The above algorithm gives the slip values along bar the
length at the end of the current time step. This is the
information needed for constructing the new tangent
stiffness matrix for the next time step. Consequently, the
above algorithm can be repeated for the consequent load

step up to the end of the loading history.




The above approach to analysis of anchored bars, unlihe
the other available methods,4:11,19 does not involve
iterative solution of nonlinear equation and thus it is
time efficient for analysis by computer. The proposed
approach is also based on the displacement method of
analysis that is commonly used in conventional computer
programs for static and dynamic analysis of complete
structures. Consequently, this model of anchored bars can
be incorporated into such programs conviniently. This might
provide researchers with a practical tool for studying the
effects of bar slippage (e.g. in reinforced concrete beam-
column connections) on the overall response of the
reinforced concrete structures.

5-4 COMPARISON OF THE PROPOSED EMBEDDED BAR MODEL WITH TES

RESULTS

The proposed embedded bar model together with a
bilinear hysteretic model of steel (Figure 5.9) and bond
constitutive laws presented in section 5-2 [Figure 5.1(c)]
were incorporated into a computer program for predicting
the behavior of anchored bars under random cyclic loads.
The analytical results were compared with test results
reported in Ref. 56 in order to check the accuracy of the

Proposed model.
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Strain

Figure 5.9: Steel Comnstitutive Model.

In all of the selected tests, #8 deformred bars with
yield strength of 65,000 psi (450 MPa) were anchored in a
confined concrete specimens (Figure 5.10) with compressive
strength of 4,350 psi (30 MPa). The anchorage length'wus 25
times the bar diameter. The load histories in the selected
tests included: monotonic pull only (boundary conditions
(2) in Figure 4.34(b)], monotonic pull-push and cyclic pull-
push both with equal end forces [boundary condition (3) in

Figure 4.34(b)].

) | UnConfined Concrete
ﬁ Under Tension

— oo

=== ::" “Confined Concrete

Mmconfi ned Concrete

Under Compression

Figure 5.10: Test Speciemen Used For Anslytical Studies.
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The anchored bar was modeied as shown in Figure £.8
with 25 springs simulating the bond between steel and
concrete. In the model it was assumed that the cover
(unconfined) concrete thickness was equal to four times the
bar diameter on each side.

Figure 5.11(a) compares the experimental and
theoretical end force—end slip relationships for the
specimen tested under monotonic pull only, and Figures
5.11(b), 5.11(c), and 5.11(d) present similar comparisons
for the distributions of slip, bar force, and bond force
per unit length, along the anchorage length of this
specimen at an end slip value of 6 mm (0.24 in). Comparison
between test and theory in all these figures is observed to
be reasonably well in aggrement.

The comparison between the experimental and theoretical
end force-end slip relationships at the pull end of the bar
for the specimen subjected to the monotonic push-pull at
the two ends (with equal end forces) is presented in
Figures 5.12(a). Figures 5.12(b), 5.12(c), and 5.12(d)
also present the comparisons of the distributions of slip,
bar force , and bond force per unit length along the
anchorage length of this specimen at a slip value of 6 mm
at the pulled end. A reasonable comparison is obtained in

this case.
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Figures 5.13(a) compares the experimental and
theoretical end force-end slip relationships for the

specimens subjected to cyclic pull-push at the two ends



157

(with equal end forces). Figures 5.13(b), 5.13(c), and
5.13(d) present comparisons between theoretical and
experimental distributions of slip, bar force, and bond
force per unit length along the anchorage length of this
specimen at the peak of the second cycle with an end slip
value of 0.023 in (0.580 mm). for this specimen also the

comparison between test and theory is reasonably well.
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5-5 RESULTS OF PARAMETRIC STUDIES WITH THE PROPOSED

EMBEDDED BAR MODEL

BEffects of variations in bar dimeter and yield
strength, concrete compressive strength and column axial
pressure on the computed response of anchored bars
subjected to equal push and pull forces at two ends are
presented in the following. Loading rate effects of pull-
out behavior of anchored bars pulled at one end are also
discussed. For the purposed of this parametric study, a
basic specimen similar to the one shown in Figure 5.10 was
chosen. The basic values used for bar diameter, concrete
compressive strength, bar yield strength, and column
pressure were 1 in (25 mm), 4,350 psi (30 N/mm2), 65,000
psi (450 N/mm2), and 0, respectively. Unless mentioned
otherwise, these basic values are the ones chosen in the
following discussion.
6-5.1 Effect of Bar Diameter: Figure 5.14(a) shows pull-out
force-displacement relationships for embedded bars with
different bar diameters. It can be seen in this figure that
with decrease in bar diameter, the pull-out strength
decreases but better pull-out behavior at large slip values
is obtained. The inferior ductility of larger bars can be
illustrated through comparison of bar slip distribution
along its embedded length (at an end pull-out displacement
of 0.236 in or 6.0 mm) shown in Figure 5.14(b). This figure
shows that as the bar diameter (and consequently the

strength and stiffness) of the bar increases, distribution
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of slip along the bar length tends to be more uniform. This
means that larger bars are less stressed along their
embedment length and thus tend to pull out from concrete
like.a rigid rod. In this condition, the pull-out
displacement consists more of bond slip and less of bar
stretching. The fact that bond behavior is not as ductile
as steel stretching behavior illustrates the inferior
behavior at large displacements of bars with larger

diameter.
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5-5.2 Effect of Concrete Compressive Strength: Comparison

of pull-out

force-displacement relationships in

Figure 5.15(a) as well as slip distribution along the

embedded length of bars (at a pull-out displacement of

0.236 in (6.

improvement
compressive
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Figure 5.15:

0 mm)) in Figure 5.15(b) indicate that the
in pull-out behavior with increase in concrete

strength is not significant.
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5-5.3 Effect of Bar Yield Strength:

Increase in bar yield strength is shown in Figure 5.16(b)

to increase the pull-out strength of the anchored bar, but

does not damage its ductility. This can be illustrated

(like the effect of bar diameter) by the more uniform
distribution of slip along the embedment length of higher

strength bars shown in Figure 5.16(b).
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Figure 5.16: Effects of Bar Yield Strength On Pull-Out
Behavior: (a) Pull-Out Force-Displacement
Relationship; (b) Bond Slip Distribution.
(1l mm = 0.0394 in.; 1 N/mm? = 6.9 ksi;

1 KN = 2.28 kips).
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Column Pressure: Increase in column

pressure is shown in Figure 5.17(a) and 5.17(b) to result

in a slight improvement of the pull-out behavior. This

improvement, however, does not seem to have any practical

significance.
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5-5.5 Effect of Loading Rate: The behavior of anchored bars

apart from their dependency on the mechanical properties
of steel and the bond between steel and concrete, are also
sensitive to variations in the rate of loading.!9.49¢a)
Consequently, the anchored bar behavior under high
earthquake-induced loading rates is expected to be
different from the behavior under quasi-static loads. This
difference might influence the current anchorage design
requirements that are based on quasi-static test results.

The particular study reported in this section utilizes
the available test data on loading rate-sensitivity of
steel and bond constitutive laws for analyzing the loading
rate-sensitivity of the anchored bar behavior. Loading rate
effects on the bond constitutive behavior were discussed
earlier in section 3.2. The steel strain rate-sensitive
constitutive model used in this study has been developed in
Ref. 49(a):

Bs €4 for €,< fy’/Es
fs =

fy' + Eh,(Es - fy,/E.) for fy’/En (kg < Eu’

——

0 (5-13)
where: fs = steel stress;
€ = steel strain;
Es = steel elastic modulus;

fy’'= dynamic yield strength of steel
= fy.[(-4.51x10-6fy + 1.46)

+(-9.20x10-7fy + 0.927)logi0€ |;
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fy = quasi-static yield strength of steel (psi);
= strain rate (l/sec);
En’= dynamic strain hardening modulus of steel
= En.[2x10-5fy + 0.077
+ (4x10-8f, - 0.185)logi10€ ] < En;
En = quasi—-static strain hardening modulus of steel;
€u’= dynamic ultimate strain of steel
= €y.[(-8.93x10-8fy + 1.4)
+ (-1.79x10-6f, + 0.0827)logio€ |;
€, - quasi-static ultimate strain of steel.
Figure 5.18 presents a typical comparison of the steel

constitutive model with test results.’
wcq

;- 0.025/ses

I - n.0009C33Y/sec

400. 1

STRESS (N/MM2)

STRAIN

Figure 5.18: Strein Rate-Sensitaivaty Steel Model
[Hef. 49(n}’

The steel and bond loading rate-sensitive constitutive

laws together with the proposed model of embedded bars were
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used to study the loading rate effects on anchored bars
similar to the one shown in Figure 5§.19 (pull from one side
only) in which a #8 deformed bar with yield strength of
65,000 psi (450 MPa) is embedded in confined concrete with
a compressive strength of 4,350 psi (30 MPa), and is
subjected to a monotonic pull at one end. Figure 5.20(a)
presents loading rate effects on the end force-slip
relationship of this anchored bar. The end slip rates used
in producing Figure 5.20(a) ranged from 5x1-5 in/sec. (2x10-
Smm/sec), that corresponds to quasi-static loading
conditions, to 0.5 in/sec (0.02 mm/sec), that is a typical
rate expected under seismic loads. From Figure 5.20(a) it
can be concluded that with increasing slip rate, the
anchored bar resistance against pull-out increases, but its
stiffness remains practically unchanged. The load at which
large inelastic pull-out of the anchored bar initiates
(from now on this is refered to as the anchorage yield
load) increases by 8.6X in Figure 5.20(a) as the loading
rate increases from the quasi-static level to the values
expected under earthquakes. During analysis, the steel
strain rate- was also computed at the point of load
application. Using the steel strain rate- sensitive model,
it was found that the steel yield strength just outside the
anchored bar region increcased by 12X as the quasi-static
rate was increased to rate expected under earthquakes. This
shows that the increase in anchorage yield strength with

increasing loading rate cannot match the corresponding
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increase 1n bar yield strength. Consequentiy. 1f an
anchorage is designed to remain elastic before bar yielding
under quasi-static loads, its yield might undesirably

precede bar yielding under dynamic loads.

,___——;7 ——  Uncont tned
____—__—___——__—__——4 )/// Concrete

S::_ —_—
_— e ]
SR ? —
—

~f -

contined
Concrete

s
Reaction Forces

Figure 5.19: Test Specimen (Pull From One Side Only
Used In Studying Rate of Loading.

The same undesirable effects of loading rate increase
can be seen in Figures 5.20(b) and 5.20. ¢, for specimens
that simulate the one used for deriving Figure 5.20(a) [see
Figure 5.19(a)] with the same bar yield and concrete
compressive strengths but different bar diameters. For #6
bar [Figure 5.20(b)] the anchorage yield strength increased
by 3.5% that is considerably lower than the i2.1% 1ncrease
in bar yield strength as the loading rate was increased

from quasi-static to the seismic level. The corresponding
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increases 1n anchorage and bar yireld strengths of 210 Las
were 9.2% and 13.2%, respectively.

The effects of concrete compressive strength on
anchored bar strain rate-sensitivity are studied in Figures
5.20(d) and 5.20((e). In Figure 5.20(d) with a low-strength
concrete (fc’' = 2.9 ksi or 20 MPa), the anchorage yield
strength increased by 10.3X compared to 13.1X increase in
the bar yield stength with loading rate increasing from a
quasi-static level to that expected under earthquake
earthquakes. The corresponding increases in anchorage and
bar yield strengths for the high strength concrete (f.’ =
7.25ksi or 50.0MPa) in Figure 5.20(e) are observed to be
11.8% and 13.1% respectively. Hence, the effects of
increasing loading rates are still undesirable, and
irrespective of concrete compressive strength, the 1ncrease
in the anchorage yield strength at higher loading rates is
less than the corresponding increase in bar yield strength.
In Figures 5.20(b) through 5.20(e) the anchorage stiffness
can be seen to remain insensitive to loading rate
variations for diffeerent bar diameters and concrete
compressive strengths.

The effect of bar yield strength on anchorage loading
rate-sensitivity are studied in Figures 5.20(f) and
5.20(g). the specimens for these figures were similar to
the one used for producing Figure 5.20{a) except for the
bar yield strength. 1t should be noticed that the strain

rate-sensitivity of bar yield strength is stronger for
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lower strength concrete.? ' 2" The anchorage yvield strengin
for the low-strength stecl bar (fy= 43.5 ksi or 300 MPa) 1in
Figure 5.20(f) increased by 17.4% that was still lower than
the corresponding increase of bar yield strength (21.3%).
Hence, for low-strength steel too, the increase in loading
rate produces undesirable effects. For the high-strength
steel bar (fy= 87.0Ksi or 600 MPa) in Figure 5.20(g),
however, the increase in anchorage yield strength (6.8%)
was higher than the corresponding increase in bar yield
strength (5.4% as thc loading rate increased from the quasi-
static level to the level typically expected under
earthquakes. Hence, for a very high-strength steel, the
increase in loading rate has a desirable effect and
increases the safety against possibility of bar pull out
before steel yielding. At different bar yield strengths
also, the anchorage stiffness 1s not loading rate-
sensitive.
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CHAPTER 6
PULL-OUT BEHAVIOR OF BEAM LONGITUDINAL BARS HOOKED IN

BEAM-COLUMN CONNECTIONS

6-1 INTRODUCTION

Longitudinal bars of reinforced concrete beams are
generally anchored in the exterior beam-column connections
by 90° hooks [Figure 6.1(a)]. these hooks resist pull-out
forces, and prevent large fixed-end rotations that can
contribute significantly to the overall beam deflections
(Figure 6.1(b)].2% It is thus important to assess the
behavior of hooked bars under pull-out forces in order to

predict the beam fixed-end rotations.

\ fixed-end

e rotation

L

(b) Hook Resistance Against
(a) A Typical Exterior Fixed-End Rotation
Joint

Behavior of Exterior R/C Connections Under

Figure 6.1:
Beam End-Moment.
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The resistance of hooked bars against pull-out is
provided by the bond between steel and concrete along the
straight embedded length of the bar, and by the hook itself
(Figure 6.2).! Bond between deformed bars and concrete has
been studied rather extensively,!:,11,19,23,44,53,56 yhijle
the reported studies on hook behavior are
scarce.37(a),38(c),44 The present work is an experimental
study on the behavior of 90° standard hooks embedded in
confined concrete specimens (that simulate the exterior
beam—column connections) under the action of monotonic pull-

out forces.

Bond

EZ = Resistance

Hook
Resistance

Figure 6.2: Resistance of Hooked Bars Against Pull-Out
i .2:

Forces.
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6-2 BACKGHOUND

The available test data on hook behavior are very
limited. Refs. 20, 37(a), and 38(c¢) have reported some test
results on specimens shown in Figures 6.3(a), 6.3(b), and
6.3(c), respectively. From test data reported in Ref. 38(c)
it can be concluded that for hooks embedded in plain
concrete specimens (Figure 6.3), an increase in the angle
of bend reduces the hook pull-out stiffness, but does not
change the pull-out strength.

The full-scale exterior beam-column joints tested in
Ref. 37(a) [Figure 6.3(b)] failed suddenly with entire side
of the column face spalling. Increase in concrete cover
thickness normal to the hook plane increased the ductility
of hooked bars subjected to pull-out forces. Confinement of
concrete surrounding the hook was also found to improve the
behavior of #11 hooked bars, but did not significantly
influence the performance of #7 hooked bars. Test results
reported in Ref. 37(a) showed no effect of column axial
load or angle of hook bent on the overall hook behavior.

Ref. 20 has summarized results of a limited number of
tests on single #8 hooked bars embedded in confined
concrete specimens that simulated exterior beam-column
connections [Figure 6.3(c)]. An empirical constitutive
model was developed for 90° standard hooks in Ref. 20,

which will be presented later.
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6-3 Test Program

The specimen tested in this study (Figure 6.4) simulate
the behavior of hook inside an exterior beam-column
connection. The connection was confined according to the
ACI code! requirements for R/C frames located in high
seismic risk zones. The straight embedded length of bar was
covered with a plastic tube. This eliminated the bond
resistance, and left the 90° standard hook to provide the
pull-out resiastance. The compression zone of the beam was
duplicated in these tests with a steel plate bearing

against column face.

L—————u.n———_4

i « #8 Coly
o= = = - .._-_...{B/ r “olumn

Laceral
Conf {nement

. 12 tn
h
or

Bl 9
f 1 :

5 9

%o LTI

(06,18 010)

26 {n

Beanm
Compresstion
Zone

2 {n{(Clear Soacing)

Figure 6. 4:
! Hook Test Specimen (used in this Study)
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Concrete was cast vertically in the direction of hook
bent. A plastic sheet was placed horizontally at the level
of anchored bars in concrete cover in order to artificially
produce the radial cracks that could occur under pull-out
forces if the bond between straight segment of the bar and
concrete was not eliminated. Type IA Portland cement, and
aggregate with a maximum size of 3/4 in. (19.]1 mm) were used
in the mix. The specimens were cured in moist room for
seven days before their wood forms were removed. They were
then kept in moist room for another seven days after which
they were exposed to the uncontrolled lab environment. The
specimens were tested at the age of 30 + 2 days. All the
steel bars used in reinforcing the specimens were grade 60,
and their actual yield strength obtained from tensile tests
was about 70 ksi (480 MPa).

The seven specimens tested in this study had the same
general geometry (Figure 6.4), but the hooked bar size,
confinement, and concrete strength varied in different
specimens are discussed below:

a) Anchored bars were #6, #8, and #10;

b) confinement was provided by #3 ties spaced at 3 in.

(76.2 mm) or 4 in. (101.6 mm), or #4 ties spaced at
3 in (76.2 mm) center to center;
c) the concrete compressive strength were either 3,780

psi (26.1 MPa) or 6,050 psi (41.7 MPa).
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Table 6-1: summarizes the properties of the seven

specimens tested in this study.

Table 6-1: Properties of Test Specimens on Hook

Bar Laceral Concrete Compressive
Specimen Size Confinement Scrength (pst)
1 Scandard [ 1] ) @ )° 3780
2 Standard 8 ®3 @)° 3780
Low
3 Confinement [1} ) @ 6° 3780
High
4 Confinesent 8 o @3 3780
High
S Concrete Strength [ 1] e} @ 3° 6050
Small
6 Hooked Bars »6 ®3 @ 3° 3780
Large

7 Hooked Bars 10 ») @3 3?30

The test setup is shown in Figure 6.5. Two hydraulic

actuators bearing on concrete column applied quasi-static

pull-out force on the hooked bars. The load was measured by

a load cell located midway between the two bars. Four
electrical displacement transducers (two for each bar) were
used to measure pull-out displacements at a point on
anchored bars 4 in. (101.6 mm) above the column face. The
hook pull-out (at point A in Figure 6.5) was obtained by
subtracting the extension of anchored bar between point A

and the point to which transducers were fixed from the
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average measurements of the two transducers (bar extensions
were measured in seperate tension tests). The tests were
discontinued after excessive cracking of specimens and

large pull-out displacements.

H I Clamp Device

Load Cell
1=

[ I 4" Rect-Bear

vdraulic

Lt
-

ﬂ Displaccrent

/\ rransducers
4 "f‘ ’V
1 [

Wl o
&smqr&sm
Rl

Figure 6.5: Test Set-Up lised In This Study.

6-4 Test Results

The crack pattern and general behavior of all specimens
were similar. At about half the ultimate load, the crack
that was artificially produced by placing plastic sheets in
specimens started to grow and extended along the hook
[Figure 6.6(a)]. Radial cracks normal to the direction of
artificially produced cracks appeared later in the loading
history [Figure 6.6(b)]. Near ultimate load, the specimens

had a clear tendency to expand in the direction normal to
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the hook plane. This resulted in spalling of concrete cover
[Figures 6.6(c) and 6.6(d)]. This tendency to expand can be
illustrated by the fact that pull-out forces produce large
compressive stresses inside the hook bend [Figure
6.7]38¢c), and with the increasing poisson’s ratio of
concrete under high compressive stresses, concrete tends
to expand laterally and push against the ties and the
cover.

Figures 6.8(a) through 6.8(g) show pull-out force
versus hook pull-out displacement relationships for the
seven specimens tested in this study. The curves in this
figures represent the average behavior of the two hooks in
each specimen. These two hooks behaved almost identically
under pull-out forces.

From test results presented in Figure 6.8 it can be
concluded that: (a) with increasing bar diameter, the hook
ultimate pull-out force as well as its pull-out resistance
at large displacements increase considerably [see Figure
6.9(a)]. This increase is, however, smaller than the
increase in bar yield strength; (b) the hook pull-out
resistance also increase with increasing confinement
[Figure 6.9(b)]); (c) the higher concrete strength used in
specimen 5 did not significantly improve the hook behavior,
but more test data are needed before a final conclusion can

be made in this regard.
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(a) Cracking Along Hook.
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(b) Radial Cracks Normal to Direction of
Artificially Produced Cracks.



(c) Spalling of Concrete Cover.
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(d) Total Spalling of Concrete Cover.

Figure 6.6: Cracking of Specimen Under Gradual
Increasing Load.
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6-5 EMPIRICAL FORMULATIONS

The following equations (Figure 6.10)2° were chosen to
represent the relationship between the hook pull-out force

(P) and its pull-out displacement (u)20:

P1.(u/u1)0-2 for u { wm
P = Pa1 for ui1 ( u  u2
P1 - (u-uz2)(P1-Pa)/(ua-u2)d> Ps3 for u Ju,

(6-1)
The characteristic displacement values (ui, uz, and us)

in the above constitutive model were derived from test

results:
ur = 0.1 in, (2.5 mm)
uz = 0.3 in. (7.6 mm)
us = 1.5 in. (38.1 mm)

Characteristics force values (P and Pa) in this model were
derived from results of tests on different specimens, and
they are presented in Table 6-2. For well confined concrete
specimens with compressive strength of about 4,000 psi

(about 30 MPa), these values can be approximated by:

P. = 61(1.2dv - 0.2) kips (with do in inches)
= 27.1(0.5dv - 0.25) KN (with do in mm);
Pz = 33(1.2dv - 0.2) kips (with dbv in inches)

14.7(0.05do - 0.25) KN (with do in mm);

where do = bar diameter.
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Figure 6.10: General Shape of Rook and Bond Constitutive

Models.

Table 6-2: Characteristic Pull-Out Force Values In the
Constitutive Model of Hooks Gives In Eqm. (6-1)

Specimen P, (kips) ) Py (kips)
1 (Sctandard) 64 %
2 (Standard) s8 32
3 (Lov Confinement) «7 6
4 (Migh Confinementc) 66 35
5 (High Concrete Strengch) 61 22
6 (Small Hooked Bar) e6 a 2s
7 (Large Mosked Bar) 010 7”7 «8
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Specimens 1 and 2 in this study were similar to the

specimens tested in Ref. 20 except for the number of hooked

bars which were two in this study (Figure 6.4) and one in

Ref. 20 (Figure 6.3(c)). The constitutive model that

represents the behavior of hooks in the specimens of Ref.

20 is compared in Figure 6.1]1 with the experimentally

observed behavior of hooks in specimens 1 and 2 of this

study. This figure also shows the constitutive model

developed in this study.

PULL-OUT FORCE (kips)

This Scudy
Spec. |

Spec. 2
Theory (Ref. 20)

. T
4 - T et et e e

Figure 6.11: Comparison of Hook Behavior Observed in This

Study With Ref. 20. (1 in. = 25.4 am;
1 kip = 0.445 KN).
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6-6 ANALYTICAL STUDIES ON THE HOOKED BAR BEHAVIOR

A hooked bar consists of a standard hook and a straight
segment of the bar embedded in concrete. The physical model
shown in Figure 6.12 was used in this study for analytical
studies on the hooked bar behavior under pull-out forces.
In this model, bond is simulated by springs connecting the
bar to concrete along the embedded length.¢¢ The hook is
also idealized as a single spring connecting the bar end to

concrete.

l//\b// Unceaf ined
Ar"’ Concrete

W T oo o tE oy —— Mpllowe
ool fval vl odd ree
s L7 RO

Springs
Confined
Concrete

V=
ZSdb }‘-:2‘

Figure 6.12: Physical Model of Hook Aanchorage.

Constitutive models of the springs in Figure 6.12 as

well as the steel constitutive law are needed for
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constructing the tangent stiffness matrix of the anchored

bar. This stiffness matrix can be used for analysis of bar

pull-out behavior.

The bond constitutive model used in this study is an

empirical one presented in Ref 19 (that was also presented

in Chapter 5):

where: q

ul

u2

usa

q1

q1 (u/u1)0-¢ for u { m
q1 for ui ¢ u < u2 (6-3)

q1-(u-uz2)(q1-qa3)/(us-uz2)>qa for u > u2

bond stress;

slip; and for a concrete with compressive

strength of about 4,000 psi (about 30 MPa):

0.394 in. (1.0 mm) for confine@ concrete
= 0.0118 in. (0.3 mm) for unconfined concrete in
tension;

= 0.118 in. (3.0 mm) for confined concrete

1]

0.0118 in. (0.3 mm) for unconfined concrete in

tension;

0.413 in. (10.5 mm) for confined concrete
= 0.0394 in. (1.0 mm) for unconfined concrete in

tension;

1,960((3.5-dv)/2.5] (psi) for confined concrete

with do in inches

= 13.5((89~dv)/63.5]) (MPa) for confined concrete
with do in mm

= 725[(3.5-dv)/2.5] (psi) for unconfined concrete

in tension with do in inches
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= 5{(89-db)/63.5] (MPa) for unconfined concrete
in tension with dv in mm;
q3 = 725 psi (5 MPa) for confined concrete
= 0 for unconfined concrete in tension;

do = bar diameter.

The constitutive model for spring representing 90°
standard hooks was presented earlier ( see Eqn. 6-1 and
Figure 6.10). A bilinear model was used in this study to
represent the steel sress-strain relationship. The strain
hardening modulus was assumed to be 1.7X of the elastic
modulus in this model.

The validity of the above anchored bar model was
checked through comparison of its predictions with test
results reported in Ref. 37(a). This reference has
presented experimental pull-out force displacement
relationships for deformed bars anchored by 90° hooks in
confined concrete specimens (Figure 6.3(a)]. Concrete
compressive strength in these tests was about 4,000 psi
(about 30 MPa), and steel yield strength was 65,000 psi
(450 MPa). Figure 6.13 shows a comparison of test results
on two different sizes of anchored bars with analytical
predictions based on the physical model shown in Figure
6.12. The model is observed to be capable of predicting

test results with a reasonable accuracy.
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Figure 6.13 Co-puricon of Test [Ref. 37(a)] and Theory
(1 in. = 25.4 mam; | kip = 0.445 KN). .

The above analytical model of hooked bars was also used
to evaluate the new ACI code! requirements for anchorage of
deformed bars by standard hooks. ACI code (318-83)?

suggests the following equation for basic development

length of hooked bars:

Inb = 1200 do/+/ fc' (6-3)

basic development length (in);

where: 1lno

bar diameter (in.);

do

concrete compressive strength (psi);

fc'
For well-confined concrete, the basic development length
shall be multiplied by a modifying factor of 0.8
Following these ACI guidelines, grade 60 hooked bars #6,

#8, and #10 require development lengths of 12 in. (305 mm),
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15 in. (381 mm), and 19 in (483 mm), respectively, when
embedded in confined concrete with compressive strength of
4,000 psi (27.6 MPa). Hooks with these devopment lengths
were modeled as shown in Figure 6.12, and the constitutive
models of bond and hook given Eqns. (6-1) and (6-2) were
utilized for deriving pull-out force-displacement
relationships of hooked bars. The analytical results
presented in Figure 6.14 for hooked bars #6, #8, and #10,
respectively, indicate that if the current ACI requirements
for development of 90° standard hooks in tension are
followed, a satisfactory ductile behavior will be achieved

in which the bar yields before the anchorage fails.

120.1
100.
—~ 80.
(7]
Q
=
=~ 60.
V)
bt
e
40,
s
3
<
— 20.
a
0.

0.0 01 0.2 03 04 0.5
Pul1-Out Displacement (in)

Figure 6.14: Effect of Bar Diameter.
(1 in. = 25.4 ma; 1 kip = 0.445 KN).
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CHAPTER 7
SUMMARY AND CONCLUSIONS
An integrated experimental-theoretical investigation
was performed on the cyclic dowel and pull-out behavior of
beam longitudinal bars at beam-column connections. The
results are expected to facilitate consideration of fixed-
end rotation and sliding shear deformation of beams in
seismic analysis of reinforced concrete structures.
A summary of the major activities and findings of the
research project is presented in the following:
DOWEL ACTION OF BEAM LONGITUDINAL BARS AT BEAM-COLUMN
INTERFACEBS: Monotonic cyclic tests were performed on
different sizes of dowel bars. The tested specimens
simulated behavior of dowel bars in monotonic action
against beam core and cover, and in cyclic action. The beanm
on an elastic foundation theory together with test results
were used to develop formulation for dowel strength and
load-deflection relationships in action‘againlt cover and
core, and for hysteretic rules governing the cyclic
behavior of dowel bars. The results indicated that:

- In action against beam core, the ultimate strength
was reached when a split crack appeared in the plane
of dowel bar and load. The major factors influencing
behavior of dowel bars in action against core include
bar diameter, and to a lesser extent its yield
strength. The effect of concrete compressive strength

was relatively small;
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- In dowel action against cover beam cover, the
stiffness dropped when a split crack separated the
concrete cover from the core. The ultimate load was
reached when the stirrup located near the point of
dowel load application yielded. Before split
cracking, dowel bars acting against cover behaved
similar to the ones against core. After split
cracking, however, the action against cover was more
flexible;

— Cyclic application of dowel load resulted in severe
degradation of dowel bars stiffness and energy
absorption capacity. Dowel strength, however, did not
deteriorate under cyclic loads, except for very small
dowel bars, and the hysteretic envelope practically
coincided with the monotonic dowel load-deflection
diagrams. The interface crack width was also observed
to grow with repeated application of load cycles.

PULL-OUT BEHAVIOR OF BEAM LONGITUDINAL BAR BONDED IN BEAM-
COLUMN CONNECTIONS: A new modeling technique based on the
displacement method of inalyais was developed for
predicting the behavior of deformed bars anchored in
concrete. In this model, the bond between steel and
concrete was simulated by discrete springs connecting the
bar to concrete along the anchorage length. Uhlike the
other available analytical models of anchored bars that
require iterative solution of the governing nonlinear

equations, the proposed approach is non-iterative and it
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involves construction of the tangent stiffness matrix of
the anchorage model at each load step. This technique is
time-efficient for computer analysis, and its predictions
were shown to compare well with test results. A parametric
study was performed on the pull-out behavior of beam
longitudinal bars embedded in interior beam-column
connections using the model developed. The results
indicated that:

- With increasing bar diameter and yield strength, the
pull-out strength increased but the ductility
decreased. This can be illustrated by the observation
that slip distribution along the embedded length of
bars with larger diameter and yield stength tends to
be more uniform; ‘

- Increase in concrete compressive strength and column
pressure resulted in slight improvements in pull-out
behavior that do not appear to be of practical
significance;

- The anchored bar pull-out strength increased with
increasing loading rate. This increase was in general
less than the corresponding increase in the bar yield
strength. As a result, anchored bars that yield
before pulling out under quasi-static loads might
fail by pull-out under dynamic loads. This effect is
not desirable and results in loss of energy

absorption capacity.
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BEHAVIOR OF BEAM LONGITUDINAL BARS HOOKED IN BRAM-COLUMN

CONNECTIONS: Pull-out tests were performed on 90° standard
hooks anchored in confined concrete specimens that
simulated external beam-column connections. The effects of
anchored bar diameter, confinement of concrete surrounding
the hook, and concrete compressive strength on the hook
behavior were studied experimentally. Empirical
formulations were also developed for the hook pull-out
force-displacement relationship and they were incorporated
into a physical model for predicting the pull-out force-
displacement relationship of beam longitudinal bars hooked
in exterior beam-column connections. The results of
analytical approach compared well with test results, and it
was used to check adequacy of current ACI requirements for
development of 90° standard hooks in tension.

From the experimental and analytical results it could

be concluded that:

- The hook pull-out resistance increases with
increasing bar diameter, but this increased was lower
than the corresponding rise in the bar yield force;

- Better confinement of concrete surrounding the hook
also improved the hook behavior.

~ Under monotonic pull-out forces, the ACI design
guidelines resulted in hooks with a satisfactory

ductile behavior.
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