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ABSTRACT

CYCLIC DONEL ACTION AND PULL-OUT BEHAVIOR OF BEAM

REINFORCEMENT AT REINFORCED CONCRETE JOINTS

by

Eienuws Osana Obaseki

An integrated experimental-theoretical investigation

was perforaed on the cyclic dowel and pull-out behavior on

bean longitudinal bars at bean-coluan connections.

Dowel tests investigated the behavior of bars with

different sizes bearing against the concrete core and cover

and their cyclic perfornance. Analytical aodels were

developed for predicting the ultinate strength and

constitutive behavior of dowel bars at bean-coluan

interfaces. Effects of the diaaeter, yield strength and

tensile stresses of bars as well as the coapressive

strength of concrete, on the behavior of dowel bars were

studied analytically.

An ilproved hysteretic aodel was developed for the

local bond stress-slip relationship, and it was

incorporated into a new aatheaatical aodel for predicting

the cyclic pull-out behavior of the longitudinal bean

reinforce-eat enbedded in the interior bean-colunn

connections. This new aodel is based on the displace-eat

aethod of analysis, and it is sore efficient than the other

available aodels for analysis of bonded bars by coaputer.

Paraletric studies were performed on the effects of bar

dianeter and its yield strength, concrete coapressive



strength and the rate of loading on the pull—out behavror

of bars in the interior bean-coluan connections.

Tests were also perforaed on the pull-out behavior of

been longitudinal bars hooked in the exterior bean-coluan

connections. These tests studied the effects of the bar

size, the confine-eat provided in the colunn, and the

concrete coapressive strength on the hook pull-out

behavior. An eapirical constitutive aodel was developed for

books, and it was incorporated into an analytical procedure

for predicting the overall behavior of hooked bars. The

resulting procedure was used to check the current 0.8

design guidelines for 90° hooked bars.
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CHAPTER 1

INTRODUCTION

Fixed-end rotation and sliding shear at beam-column

connections [Figure 1.1(a)] are generally considered as

some of the major factors influencing the seismic response

characteristics of reinforced concrete frames.33'3"4‘

Excessive fixed-end rotations and sliding shear

deformations in frames under earthquake excitations are not

desirable. This is due to the limited amount of hysteretic

energy that can be absorbed by these deformations under

inelastic loads. The deteriorating nature of the mechanisms

resisting fixed-end rotations and sliding shear at joints

[dowel action and pull-out behavior of longitudinal bars

and aggregate interlocking of crack faces shown in Figure

1.1(b)] is the main factor for such inferior energy

absorption capacity.
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Development of analytical methods for considering the

effects of fixed-end rotation and sliding shear in seismic



analysis of reinforced concrete frames is a task yet to be

fulfilled. The main problems in this regard are:

(a) Limited understanding of the dowel and pull-out

behavior of longitudinal bars and aggregate interlocking of

crack faces at beam-column Joints under cyclic loads; and

(b) lack of practical methods for simulating these

phenomena in structural analysis processes.

The main objectives of the research described herein

were to generate experimental data on the dowel action and

pull-out behavior of beam longitudinal bars at beam-column

connections, and to come up with analytical methods for

analyzing these types of behavior. The results are expected

to facilitate consideration of fixed-end rotation and

sliding shear in nonlinear seismic analysis of reinforced

concrete frames.

In the following description of this research project,

Chapter 2 reviews the literature on the behavior of dowel

bars, and Chapter 3 presents the results of an experimental

study that was followed by development of empirical models

for the dowel action of beam longitudinal bars under

monotonic and cyclic loads at beam-column interfaces.

Chapter 4 summarizes the available literature on the

behavior of bonded bars, and Chapter 5 illustrates the

results of an analytical study on the pull—out behavior of

beam reinforcement in the interior beam-column connections

[Figure l.2(a)]. The study illustrated in Chapter 5 has led

to an analytical procedure for predicting the anchored bar



behavior under random cyclic load histories. This procedure

is distinguished from the other available ones by its time—

efficiency for analysis by computer.

Finally, Chapter 6 presents the results of an integrated

exerimental-analytical study on the pull-out behavior of

beam longitudinal bars hooked in exterior beam column

connections [Figure 1.2 (b)].

The major findings of this research project are

summarised in chapter 7.
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CHAPTER 2

LITERATURE REVIEW ON DOWEL ACTION OF BEAM LONOITUDINAL BARS

AT BEAM-COLUMN INTERFACES

2-1 Introduction

The sliding shear deformations at beam-column

interfaces [Figure 2.1(a)] are resisted by the dowel action

of longitudinal bars and the aggregate interlock between

rough faces of the interface crack [Figure 2.1(b)]33-35-“.

Aggregate interlock diminishes rapidly with crack

opening,3°-3° and hence dowel bars play a major role in

preventing the sliding shear failure.
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(alsiding Shear Failure (b) ReSistinq Mechanisms

Figure 2.1: Dowel Action at Beam-Column

Interface

In studying the dowel action at the beam—column

interface, distinction should be made between the action of

dowel bars when pushed against the concrete core [bottom

bars in Figure 2.1(b)] and when pushed against the concrete

cover [top bars in Figure 2.1(b)]. In the first case, when

the bar is pushed against the core, the concrete above the

bar works like a flexible foundation

[Figure 2.2(a)]‘v“-3°v3°'37 . The maximum capacity in this



condition is reached when the bar yields in flexure and

concrete fails under the bearing stresses. In the second

case, with the bar pushing against the concrete cover,

split cracking soon separates the cover from the core, and

the dowel bar acts like a been supported by ties near the

interface [Figure 2.2(b)]."29-31-3° The maximum capacity

in this case is reached when the dowel bar or the tie

yields. In both cases, the axial force in the dowel bar

reduces the maximum dowel capacity.

 

 

 

 

   

(a) Push Against Core (b) Push Against Cover

Figure 2.2: Dowel Bar Action Ageinst Concrete

Core and Against Concrete Cover

2-2 DOWEL ACTION AQAINST CONCRETE CORE

2-2.l Test Results: The only two test techniques that

closely simulate the dowel action against the concrete core

were presented in Ref. 14 [Figure 2.3(a)] and Ref. 37

[Figure 2.3(b)]. In the shear plane of the specimen shown

in Figure 2.3(a), aggregate interlock was eliminated by two

layers of lubricated brass sheet [thickness = 0.0078 in.

(0.20 mm)] placed at the shear plane. The relatively small

dowel bars tested in this reference failed by yielding of

the bar and crushing of the concrete supporting the bar. A

typical dowel force-slip relationship for a test on a 0.39



in.(lO mn) dowel bar with yield strength of 41,890 p51

(289.0 MPa) and concrete compressive strength of 4,540 psi

that was inclined at an angle of 20° from the line normal

to the crack is shown in Figure 2.3(c). The effects of the

reinforcement angle, dowel bar diameter, and concrete

strength were studied experimentally in Ref. 14. It was

concluded that the ultimate dowel force increases

noticeably with increasing bar diameter and concrete

strength. The effect of the inclination angle of dowel bar

was found to be small.

The specimen shown in Figure 2.3(b) represents the

action of dowel bars in concrete pavement .jointf”7 In this

case, the dowel force is directly applied on the bar at a

distance from the concrete face. A typical dowel load-dowel

deflection diagram obtained in this type of test is shown

in Figure 2.3(d) for a dowel bar with a diameter of 0.75 in.

(19.0 mm) embedded 6 in (154 an) in concrete blocks with a

concrete compressive strength of 3,440 psi (23.? MPa) and a

total depth of 8 in.(200.4 mm). Test results in Ref. 37 on

dowel bars with 0.75 in.(19.0 mm), l.00 in.(25.4 mm), 1.50

in.(38 mm), and 2 in.(51 um) diameters, and different

embedment lengths and concrete block depths showed that:

(l) Dowel failure is reached as a result of concrete split

cracking in the plane of the dowel bar and dowel load; (2)

the cracking load is slightly affected by dowel length if

this length is greater than eight times the bar diameter;

(3) the cracking load increases with increasing concrete



depth underneath the dowel bar; and (4} an Increase of rhr

width of the concrete block beyond the width to height

ratio of 1.5 does not seen to have any definite influence

on the cracking load.
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(c) Ref. 14 Typical Test

Results

(d) Ref. 37 Typical Test

Results

Figure 2. ‘3. Test On Dowel Acting
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Concrete
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the ultimate strength of dowel bars acting against concrete

core, their behaVior has been treated as the action of a

beam on an elastic foundation [Figure 2.4(a)].4-14:24v29'37

Using the beam on an elastic foundation theory together

with some simplifying assumptions on hearing stress

distribution, an equation for ultimate load can be derived.

Figures 2.4(b) and 2.4(c) show the actual bearing stress

distribution and its simplified distribution pattern used

in Ref. 14, respectively. Failure in this model is assumed

to be reached when the critical bar section reaches the

plastic hinge moment and the stress on concrete reaches the

 

  

 

nu‘xmate bearing strength of concrete.
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Hell-developed models that have followed the beam on an

elastic foundation idealization,“H have not paid enough

attention to the bearing strength of concrete. Ref. 4

assumes a bearing strength of 1.445 times the concrcte

compressive strength, while Ref. 14 takes the bearing

strength to be four times the concrete compressive



strength. Both of these references assumed that the hearing

failure under the dowel bar occurs by concrete crushing.

This assumption is based on test results reported in Ref.

14 on small-diameter dowel bars. Tests on more common sizes

of dowel bars in Ref. 37 have shown that the bearing

strength is reached when the concrete underneath the dowel

bar splits in the plane formed by the bar and the dowel

load. These tests showed that the bearing strength of

concrete at split cracking depends on many factors

including the dimensions of the loaded area, depth of

concrete below the dowel bar, and the tensile strength of

concrete. Tests in Ref. 37 disclosed that the ratio of

concrete bearing strength to its compressive strength in a

12 in.(304.8 mm) deep specimen is on the average 2.6 for

0.75 ins(19.0 mm) dowel bars, 2.3 for 1 in.(25.4 mm)

diameter, 1.8 for 1.50 in.(38.0 mm) diameter, and 1.8 for

2.00 in (50.8 mm) diameter dowel bars. The bearing strength

for six inches deep specimens was from 1.22 to 1.37 times

the bearing strength of 12 in.deep specimens, depending on

the dowel bar diameter. The bearing strength for 18 in.deep

specimen was between 0.98 and 1.09 times the one for 12 in.

deep specimens. The shallow blocks seem to have larger

bearing strength than the deeper ones ( noting that the

specimens simulate a pavement joint with some base friction

resisting split cracking).

The other parameter that governs the behavior of the

beam on an elastic foundation model of dowel bars acting
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against concrete core 13 the foundation modulus. Different

investigator329-30'37 have concluded from test results that

the concrete foundation modulus varies from 750,000 to

2,500,000 psi/in.(203.7 to 679.1 MPa/mm), and a typical

value of 1,000,000 psi/in.(271.7 MPa/mm) has been commonly

used.

Dowel bars are generally subjected to axial forces,

produced by flexural moments (Figure 2.1). The bar axial

force reduces its plastic hinge moment, and the bond

stresses of a bar subjected to axial tension might produce

radial stresses around the bar that tend to accelerate

split cracking of concrete under bearing stresses. Ref. 30

suggests that the interaction between the bar axial and

dowel forces is negligible for axial forces smaller than

80* of the bar pull-out strength, but it becomes important

at higher axial forces. Refs. 14 and 29 suggest that an

elliptical interaction formulation can predict test results

with reasonable accuracy.

2-2.3 Monotonic Dowel Load-Deflection Formulation: The beam

on an elastic foundation theory has been found to be

incapable of predicting the inelastic constitutive behavior

of dowel bars acting against the concrete core.“»H This is

probably due to the noticeable effect of the concrete and

steel inelasticities, that are not considered when the beam

on an elastic foundation model is used for determining

dowel deformations. Hence, Refs. 4 and 14 have deve10ped

load-deflection expressions by curve fitting to the results
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of tests reported in Ref. 14 (Figure 2.5). These tests

used unrealistically small dowel bars and thus the

empirical models are not necessarily applicable to the

commonly used dowel bar sizes. Besides, the constitutive

model of Ref. 14 gives dowel load in terms of dowel

deflection. If dowel deflection is to be derived in terms

of dowel load, as required in the widely used displacement

method of analysis, time-consuming iterative methods are

needed to achieve this solution. The constitutive model of

Ref. 4 gives the dowel deflection in terms of dowel load,

but this model is not complete in the sense that the usur

should input an initial dowel stiffness that should be

derived from test results.
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Some investigators‘2 have also studied the dowel bar

behavior within the crack. The results are applicable to

conditions with very wide cracks. Dowel strength in this
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case may be derived from three mechanisms; the flexuze of

the bar [Figure 2.6(a)], the shear force across the bar

[Figure 2.6(b)] , and the kinking of the bar [Figure

2.6(c)]. These figures also show the ultimate dowel force

in terms of the bar strength. In these figures:

Du = ultimate dowel strength;

A. = bar area;

db = bar diameter; and

fy = bar yield strength

T.“ F75. F‘ ’1
I .i

I _. /

1 *_ (f

l +_ u.
v

Duz‘db/h‘Asfy/l D = Asf‘, fl. U =41sz cos

(a) Flexure (b) Shear (c) Kinkinq

Figure 2.6: Mechanisms of Dowel Action Within the Crack

(Ref. 42).

Ref. 29 suggests that the dominant mode of dowel action

changes according to the magnitude of dowel force. For very

small dowel forces, the force transfered across the crack

produces shear deformations in the reinforcement [Figure

2.6(a) above]. At this stage, the bar spans a distance

approximately equal to the initial crack width. As the

dowel force increases, the bearing stresses induced by the

dowel bar on concrete deteriorates the concrete around the

bar, and consequently the unsupported length of the dowel
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bar increases. Dowel forces are then transfered across the

crack primarily by the bending action of the reinforcement

[Figure 2.6(a)]. With further increase in dowel force, the

unsupported length of the dowel bar decreases and the bar

curves around the concrete, and consequently the dowel

stiffness increases due to the kinking action [Figure

2.6(c)]. The unsupported length of the dowel bar is thus a

difficult parameter to estimate and depends, on the initial

crack width, the state of stresses in the concrete

'surrounding the bar, the level of axial and dowel forces

sustained by the reinforcement, and the bar diameter.

2-3 DOWEL ACTION AGAINST CONCRETE COVER

2-3.1 leg; gesglts: A number of test set-ups have been

suggested in the literature for simulating the action of

dowel bars against the concrete cover. Ref. 22 used the

specimen shown in Figure 2.7(a) to idealize the behavior of

a dowel bar acting against cover in a reinforced concrete

beam at the closest crack to the support. This reference

also suggests the test specimen shown in Figure 2.7(b) for

simulating the dowel action between two flexural cracks

along the beam span. Ref. 54 used the specimen shown in

Figure 2.7(c) for modeling the dowel behavior at the first

diagonal crack from the support. The specimen of Figure

2.7(d) has been suggested in Ref. 34 for idealizing the

behavior of a dowel bar acting against concrete cover at a

beam shear-flexural crack.

On the basis of test results presented in Refs. 8 and



14

54, it can be concluded that the constitutive behavior of

dowel bar acting against the concrete cover after split

cracking [Figure 2.2(b)] depends primarily on the spacing

of the stirrup closest (supporting the dowel bar) to the

crack. Maximum dowel capacity when the first stirrup is

spaced further than about one inch (25.4 mm) from the crack

was reached when split cracking occurred (curve A in Figure

2.8). In the cases with a stirrup was placed closer than

one inch (25.4 mm) to the crack, the dowel load could be

increased after split cracking, and the maximum dowel

capacity was reached when the stirrup yielded in tension

(curve 8 in Figure 2.8). Figure 2.8 also shows a typical

constitutive behavior of dowel bars pushed against concrete

core (curve C) that is generally superior to the behavior

of dowel bars acting against cover.

From test results on specimens similar to the one shown

in Figure 2.7(d), it has been concluded in Ref. 8 that in

dowel action against cover, the splitting load increases

with increasing beam width, bar diameter, and concrete

strength. The beam depth, concrete cover, and crack width

did not affect the dowel capacity of the reinforcement. The

presence of two layers of reinforcement increased the dowel

strength by approximately 403 over that of one layer. Test

results presented in Ref. 54 on similar test specimens

confirmed the above results and also showed that the

distance between the support and the diagonal crack does

not affect the dowel capacity. Some results contradicting
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the above conclusions have also been presented in the

literature. For example in the test results reported in

Ref. 27, bar size did not noticeably influence the split

cracking load, and Ref. 32 concluded from test results that

the split cracking load depends on the concrete cover

thickness (especially if the dowel bar is subjected to

axial tension).
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Large axial tension (of the order of 80x of the be:

pull-out

has been

strength

lowering

however,

capacity.

strength) in dowel bars acting against cover also

observed to reduce the dowel stiffness and

by cracking the surrounding concrete and also by

the bar plastic hinge capacity. Snell axial loads,

have been observed to slightly isprove the dowel

10-27i32-‘7 Figure 2.9 shows test results fro-

Ref. 47 on the interaction of the dowel and axial forces.
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2-3.2 Dowel Strength and Monotonic Load:peflection
  

Formulations: Ref. 47 suggest that before split

cracking, the dowel her acting against cover can be

idealized as a beam supported by concrete that works as an

elastic foundation, and the stirrups that work as flexible

supports [Figure 2.10(a)]. The beam in this idealization is

composed of the dowel bars together with the concrete cover

[Figure 2.10(b)]. Failure in this model takes place by the

occurrence of one or a combination of the following

actions: split cracking, yielding of the bar, and yielding

of the stirrup. A complex formulation based on this

theory10 compares relatively well with experimental

results.

Stirrup spacing from crack

[ f 44

" £11“;ng
[L x

vd

 

 

4

 
‘

‘

‘

I

    ”(
i

(a) Bean on Elastic Foundation Hodel L C;monSito Boar

Figure 2 10: Idealization of Dowel Action Against

Concrete Cover (Ref. 31).

For the cases without stirrups, many

investigators.5'22'27v29'30'34'5‘ have used the above beam

on an elastic foundation model [assuming that the idealized

beam is either,the composite one shown in Figure 2.10(b) or

simply the dowel bars acting alone] to derive a simple
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expression for the dowel stiffness before cracking us well

as the dowel load corresponding to split cracking (that is

also the dowel strength for the case without close-by

stirrups). The dowel strength in these formulations

generally increases proportionally with the available beam

width, concrete tensile strength, and in some cases the

embedded length of the dowel bar. The dowel stiffness on

the other hand depends basically on the dowel bar diameter

and modulus of elasticity as well as the concrete

foundation modulus. Most of these references assumed that

upon split cracking, the dowel deflection starts to

increase with a constant dowel load. Ref. 54, however,

assumes that upon split cracking the dowel load drops

suddenly to 80% of the split load and then remains constant

with increasing dowel deflection. Some of these dowel load-

deflections and strength formulations for dowel bars acting

against concrete cover with no stirrup support are compared

in Figure 2.11 for the typical dowel bar shown in this

figure.

As far as formulating the interaction of the axial and

dowel forces is concerned, an elliptical curve seems to be

a simple and accurate idealization of the actual failure

condition.29v32.
47
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2-4 nowsi BEHAVIOR uuggn CYCLIC LOADS

2-4.l Test Results: Experimental studies specifically
 

concerned with the behavior of the beam top or bottom

longitudinal bars subjected to cyclic dowel loads have not

been reported in the literature available to the author.

Some cyclic tests, however, have been performed on dowel

bars in specimens that simulate the behavior of the

reinforcing bars placed in concrete panels [Figure

2.12(a)].29.3o.so

The aggregate interlock in these specimens was

eliminated by means of two 0.01 in (0.25 mm) brass plates

placed at the shear plane. Specimens with different dowel

bar sizes, numbers and placement configurations were

tested. A typical cracking pattern, and the cyclic load



20

u n n n .u n I M f (\ldeflection diagram obserw-d :H rust Hr. .'. ..,....im... w.’ ir

#9 bars and concrete compressive strength of about 3,]00

psi (21.4 MPa) are shown in Figures 2.12(b) and 2.12(c),

respectively.
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As shown in Figure 2.12(c), lhv dowel stiffness

deteriorates significantly in the second cycle, and it

exhibits a hardening type of behavior (pinching). This

indicates permanent distortion and damage in the concrete

produced by the dowel force. The concrete degradation was

observed to be enhanced by the application of large tensile

stresses to the reinforcement and by the presence of

shrinkage cracks around the dowel bars. In general, the

dowel specimen experienced large deteriorations under the

first loading cycle. For subsequent cycles at the same load

amplitude, the response tended to StflblllZH and the rate of

degradation decreased with increasing cycle number.

It was also observed that while the area enclosed by

the hystersis loop initially decreases with cycles [Figure

2.12(c)], this area increases significantly when the

specimen cycles at a shear stress very close to its failure

load. The crack width change due to dowel was found to be

negligible except for dowel forces near to the ultimate

dowel strength. Typical increases in crack width at the

maximum shear stress were of the order of 17% of the

initial crack width.

In an attempt to justify the stiffness degradation of

dowel bars subjected to cyclic loads, Ref. 29 suggests the

following illustration. As a result of the high bearing

stresses produced by the dowel bar in the vicinity of the

crack, the concrete in this area crushes and hence in the

second load cycle it can provide support to the dowel bar
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only if the dowel deflection is large enough to provxde

contact between the dowel bar and the uncrushed concrete.

After the contact is made, the stiffness of the dowel

increases considerably.

2-4.2 Hysteretic Modeling: Two different analytical models

for predicting the cyclic behavior of dowel bars have been

developed in the literature. The first onei’g'30 is a

hysteretic model for the dowel action of the panel

reinforcement [Figure 2.12(a)]. The first loading cycle is

assumed to behave linearly which is true for relatively

small dowel loads (Figure 2.13). The subsequent cycles are

idealized to be highly non-linear with a pinching type of

behavior. This model does not attribute any hysteretic

energy dissipation capacity to dowel. It is based on the

assumption that the dowel energy dissipation [Figure

2.12(c)] is relatively small when compared with the other

sources of energy dissipation in reinforced concrete. The

details of the hysteretic model shown in Figure 2.13 have

been derived empirically in Ref. 30 using the test data

presented in Ref. 29. This model is not directly

applicable t0'the dowel action of the beam longitudinal

bars when pushed against the concrete cover [Figure 2.2(b)]

that cannot be idealized by the panel test specimen shown

in Figure 2.12(a).
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Another dowel hysteretic model has been developed in

Ref. 36 for the action of the beam dowel bars at the beam-

column joint [Figure 2.14(a)]. In the physical idealization

of the dowel behavior, the contribution of the concrete

cover to the dowel stiffness was neglected, and the dowel

bar was assumed to behave like a beam. Some typical

boundary conditions of this beam are shown in Figure

2.l4(b) for the condition with the bar in contact with

either the beam end or the stirrup; in Figure 2.l4(c) for

the condition with the bar in contact with both the first

and the second stirrups; and in Figure 2.l4(c) for the

condition with the bar in contact with the first stirrup

but not the second one. The dowel stiffness in this

idealization is then taken equal to the flexural stiffness

of the dowel bar with the assumed boundary conditions.

In the research project describe below, an integrated

experimental-theoretical approach was adopted for modeling

the dowel action of beam longitudinal bars at the beam-
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CHAPTER 3

EXPERIMENTAL AND ANALYTICAL STUDIES ON DONEL ACTION OF BEAM

LONGITUDINAL EARS AT DEAN-COLQMN INTERFACES

3-1 Introduction

 

The available experimental data on dowel bars applicable

to situation of longitudinal beam reinforcements at joints

are limited to test results on unrealistically small dowel

bars against concrete core. The empirical formulations that

are based on this limited test data are not necessarily

applicable to the actual conditions of dowel bars at the

beam-column connections.

This Chapter illustrates the experimental and

analytical studies performed in this research project on

the behavior of dowel bars at beam-column connections.

First, the studies on the bearing strength and stiffness of

concrete care under dowel bars are presented, and then the

works on the behavior of dowel bars acting against concrete

core are discussed. The rest of this Chapter is devoted to

illustrating behavior of dowel bars acting against concrete

core and cyclic performance of dowel.

3—2 QEARINQTSTRENGTH AND STIFFNESS OF CONCRETE UNDER

R NFORCINO A88

3-2.l Introduction: The ultimate resistance and stiffness

of the dowel bars bearing on concrete core (e.g. the bottom

beam reinforcement in the condition of Figure 3.1) depends

on the bearing strength and the bearing stiffness

(foundation modulus) of the concrete core under the action

25
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of the dowel bars."l‘o30:37

 

 

Figure 3.1: Dowel Action of ReinforCing a.r..

Test results on concrete bearing strength are scarce,

and consequently the values proposed by different

investigators for these two properties of concrete are wide

apart. The values suggested for the bearing strength33-‘3

range from 1.45 to 4.00 times the concrete compressive

strength, and the values of bearing stiffness used by

different investigators30-3°(b) range from 750 ksi/in.

(203.7 "Pa/mm) to 4,000 ksi/in.(1,244.l MPa/mm).

Experimental data on the behavior of dowel her under

concrete bearing stresses was obtained, and empirical

expressions were derived for the bearing strength and

stiffness of concrete.

3-2.2 Test Program: The specimen shown in Figure 3.2(a) was

designed to simulate the behavior of dowel bars bearing

against concrete core. The properties of the test specimens

are summarized below in Table 3-1. A total of 33 tests were

performed for studying the effects of the following

variables on the bearing behavior of concrete: (a) the bar

diameter (series II tests); (b) the concrete strength



27

(series 111 tests); (c) the width of the concrete block

(series IV tests); (d) the depth of the concrete block

(series V tests); (e) the embeddment length of the dowel

bar (series VI tests); (f) the number of dowel bars [Figure

3.2(b), series VII tests]; and (g) confinement of the

concrete block [Figure 3.2(c), series VIII tests].

All the specimens were constructed with type III

Portland cement and normal-weight aggregate. The maximum

size of the aggregate was 3/4 in- The specimens were

covered with plastic in their wood forms for 24 hours. The

forms were then removed and the specimens were placed in a

moist room with 72°F (22.2°C) temperature and 100%

humidity. After 5 days, the specimens were exposed to the

regular lab environment and they were tested at the age of

25: 2 days. The values of concrete strength specified in

Table 3-1 were recorded at the test age.

The test set-up is shown in Figure 3.3. The load was

applied quasi-statically by a hydraulic testing aachine,

and the tests were all load-controlled. The load was

distributed uniformly along the length of the dowel bar,

and the bottom surface of the specimen was greased in order

to prevent development of frictional forces. The

penetration of the dowel bar into the concrete under load

was measured by two electrical displacement transducers as

shown in Figure 3.3. The errors in both displacement and

force measurements were smaller than 1:.
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3-2.3 Test Results: All the specimens behaved elastically

up to failure, and failure in the unconfined specimens

occurred suddenly when the dowel bar together with a

concrete wedge underneath it pushed into the specimen and

produced a split crack (Figure 3.4). In general the split

crack divided the concrete block into two roughly symmetric

segments [Figures 3.5(s) and 3.5(b)], but in the case that

the embedded length of the dowel bar was much shorter than
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the total block length, the crack pattern was similai Lu

the one shown in Figure 3.5(c).

Failure in the multiple bar specimens was also caused

by split cracking of concrete in the plane of each of the

bars (Figure 3.6), with no significant interactions between

the bars.

Failure in the confined specimen was relatively ductile

and the confining bar crossing the split crack prevented a

sudden drop in the bearing resistance of the specimen after

split cracking. The load dropped gradually in these

confined specimens, and transfer of bearing stresses to the

confining bars finally resulted in split cracks in the

plane of the confining bars (as shown in Figure 3.7 for a

specimen confined with two bars).

The values of bearing strength (fb) and bearing

stifness (kc) obtained in tests are given in Table 3-1.

The bearing strength was derived by dividing the failure

load by the projected area of the dowel bar on concrete

[fb = failure load/lids in Figure 3.2(a)], and the bearing

stiffness was defined as the slope of the bearing stress~

bearing deflection diagram (that was found in tests to be

linear). The bearing strength obtained in tests ranged from

1.2 to 3.0 times the concrete compressive strength, and the

bearing stiffness was between 200 and 600 Kai/in.(54.3 to

163.0 MPa/mm).
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Figure 3.3: Test Set-up.
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Figure 3.4: Split Cracking of the

Specimen.



 
(a) Fully Embedded Bar.
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(b) Long, Partially Embedded Bar.
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(c) Short, Partially Embedded Ber.

Figure 3.5: Crack Pattern in Different

Specimens.
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Figure 3.6: Split Cracking of Multiple

Bar Specimen.
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Figure 3.7: Failure of Confined Concrete.
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From the test results presented in Table 3-1, it can be

concluded that: (a) both the bearing strength and the

bearing stiffness of concrete under dowel bars increases

with decreasing bar diameter and increasing compressive

strength; (b) with increasing width of the concrete block

or decreasing the embedded length of dowel bars, the

bearing strength tends to increase while the bearing

stiffness remain unchange; (c) neither the bearing strength

nor the bearing stiffness was sensitive to variations in

the specimen depth; (d) when more than one bar with clear

spacing of one inch (25.4 mm) was hearing against concrete,

the bearing strength is still close to the bearing strength

of specimens with a single dowel bar, whereas the bearing

stiffness was reduced in the case of multiple-bar

specimens; (e) confinement that has favorable effect on the

ductility of concrete under bearing stresses, did not

considerably influence the concrete bearing strength or

stiffness.

3-2.4 Empirical Equations: The values of bearing strength

obtained in tests on unconfined concrete specimens are

shown in Figure 3.8. This figure also presents the results

of two earlier test programs on similar specimens: one with

rectangular plates (instead of dowel bars) bearing against

unconfined concrete25<3), and the other with dowel bars

bearing on unconfined concrete blocks with frictional

forces resisting split cracking at their bottom faces.37

The bearing strength in both of these earlier
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investigations are seen 1n Figure 3.8 to be larger lhnn the

values obtained in this study.
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The trend of the test results can be represented by the

following equation (see Figure 3.8):

96 \lfc’l/ll (w/du)“3 if fc’ in psi

fb = (3-1)

8 w/fc’l/lx (w/dz:)1"3 if fc' in MPa

concrete bearing strength;where: fb

fc’ concrete compressive strength; and other

variables are described in Figure 3.2



40

It should be noticed that due to the limited range of

variables in tests, it seems reasonable to limit the ratios

of 1/11 and w/db in Eqn. (3-1) to 4.0 and 8.0,

respectively. Further test results are also needed for

studying the effects of confinement on the bearing
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The bearing stiffness values derived from tests

conducted on unconfined specimens with a single dowel bar

are shown in Figure 3.9. The trend of test results can be

represented by the following equation that is also shown in



41

Figure 3.5):

4500C; f‘c’(l/do)""J if fc’ in psi, do in inches

kr = (3"2)

127C1 fc’ (l/da)2’3 if fc' in MP3, db in mm

concrete bearing stiffness (foundationwhere: k!

modulus);

fc’ = concrete compressive strength;

db = bar diameter; and

C1 = a coefficient ranging from 0.6 for a clear bar

spacing of one inch to 1.0 for large bar

spacings.

More test data are needed to check the valididy of the

above equation outside the range of variables used in this

experimental study.

3-3 BEHAVIOR OF DOWEL BARS IN ACTION AGAINST CONCRETE CORE

3-3.1 Test Program: The reinforcement in a typical specimen

tested in this study is shown in Figure 3.l0. The shear

plane in this specimen was 6 in.(152.4 mm) by 12.5 in-

(317.5 mm) in cross-section, and two 0.008 in.(0.203 mm)

greased brass plate were used to eliminate the aggregate

interlock at this plane. The shear resistance at shear

plane was provided by two dowel bars shown in Figure

3.ll(a). These bars simulate the dowel action of two

identical longitudinal beam reinforcing bars. When the

specimen is subjected to compression in the shear plane,

the top bar in Figure 3.ll(a) in the left hand side block

acts like a beam longitudinal bar with 2 in.(5.08 mm) cover
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bottom bar in the right hand side of the block. The right

side of the top bar as well as the left side of the bottom

bar, represent the dowel bar continuation into the column

where the bar is well—surrounded by concrete.

Figure 3.ll(b) shows the section A-A through shear

plane of the specimen. The blocks on the two sides of the

specimen were sufficiently reinforced such that failure

could not precede failure under dowel forces.

Three specimens were tested under compression, and they

were designed to overcome the shortcomings of the test

program reported in Ref. 14 on specimens with

unrealistically small dowel bars (diameter less than 0.546

in.or 13.9 mm). The dowel bars used in this study were #4,

#6, and *8 grade 60 deformed bars. The average compressive

strength of concrete in the specimens was 6,400 psi (44.1

MPa) at test age. The specimens were constructed with type

III Portland cement, and water/cement ratio was 0.5. The

concrete air content was 2 x on the average, and its

average slump was 1.5 in.(38.1 mm). The specimens were

removed from their wood moulds after 24 hrs, and were

placed in a curing room with 72°F (22.2°C) temperature and

100% relative humidity for 7 days. The test specimens were

then exposed to the uncontrolled laboratory environment,

and were tested at the age of 28 days.



 
Figure 3.10: Typical Specimen Reinforcement.
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The compre551ve load was applied by a hydraulic

actuator (Figure 3.12), and the load was measured by a load

cell. Measurements during tests were made on the crack

opening ( with two electrical displacement transducers) and

the relative slippage of the two concrete faces at the

shear plane (with two other electrical displacement

transducers). The dowel bar strain was also measured at

three points near the shear plane with electrical strain
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gages. Locations of the load cell, displacement transducers

and the strain gages are shown in Figure 3.13. The maximum

error in the displacement transducer readings was 0.4 X,

and the load cell was capable of reading loads with an

accuracy of 0.2%.

 
Figure 3.12: Test Set—Up For Dowel Action Against Core.
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figure 3.13. Spevimen Instrumenl«

3-3.2 Test Results: Figures 3.14(a), 3.14(b), and 3.14(c)

show the dowel load-dowel displacement curves obtained in

the test on #4, #6, and #8 dowel bars, respectively. These

figures also show some theoretical predictions that will be

disscussed later.
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Figures 3.l5(a), 3.15(b), and 3.l5(r\ present the dowel

load~crack opening curves obtained in tests on #4,#6, and

#8 dowel bars, respectively.
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The maximum capac1ty of all three bars in action

against concrete core was reached when a split crack

appeared in the plane formed by the dowel load and the

dowel bar. Figure 3.16 shows the split crack of the blocks

of a specimen (with the other block removed). Occurrence

of this split crack has not been reported in Ref. 14 for

tests on small-diameter dowel bars with low yield strength.

According to this reference, the maximum dowel capacity

in action against concrete core was reached when the

concrete underneath the bar crushed and the dowel bar

itself yielded. Strain gage readings in tests revealed that

yielding occurred in all the dowel bars at about the same

time that the maximum dowel capacity was reached.

An important observation in Figure 3.14 is that while

#4 dowel bar after reaching its maximum capacity can still

resist considerable dowel loads up to relatively large

dowel displacements, dowel bars, #6, and #8, show a rather

sudden drop in their resistance just after reaching the

maximum dowel capacity. The behavior of #6, and #8 dowel

bars after reaching their maximum capacity invalidates the

assumption made in the available dowel load-deflection

models"M according to which there is no loss in dowel her

capacity after failure.
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Figure 3.16: The Split Crack Observed at Maximum

Dowel Capacity.





5]

The measured crack openings shown in Figure 3.15 are

observed to be small prior to reaching the maximum dowel

capacity. Thereafter, the crack starts to widen in an

increasing rate. Very small crack openings before the

maximum dowel strength is reached might be attributed to

the slight out-of-straightnesses of the two crack surfaces.

The increase in crack opening after maximum dowel capacity

(Figure 3.15), might be caused by the kinking action of

dowel bars [Figure 2.6(c)].

3-3.3 Formulation of Dowel Strength:
 

The action of a dowel bar against concrete core [Figure

3.17(a)] is assumed to be similar to the action of a beam

(dowel bar) on an elastic foundation ( the surrounding

concrete) as shown in Figure 3.17(b). The distribution of

stresses on concrete as well as the moment in the

reinforcement as predicted by the beam on elastic

foundation theory are also shown in Figure 3.17(b).13

According to the beam on elastic foundation theory13,

the maximum moment in the dowel bar occurs at a distance x

from the crack(where c = 0) given by the following

expression:

x = “/4? (3‘3)

where: ‘ 4 K

6 "Va

dowel bar modulus of elasticity

dowel bar moment of inertiaH

I
I



T
—
I
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do: db‘/64

= bar diameter

K — elastic foundation stiffness per unit

length [ unit = force/(1ength)2]

= krdb

Kr: concrete foundation modulus

[ unit = force/(length)3]

 

 
 *

(a) Dowel Bar Pushing BEARIR;

Against Concrete smsss

Core

—l- x +—

BENDINGD

MOMENT

u

(b) Beam on Elastic

Foundation
masnf , . .

‘ ““1 Idealization

x

(c) Failure Condition

Figure 3.17: Dowel Action idealization.
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Failure in this model is assumed to occur when the

dowel bar develops a plastic hinge at the point of maximum

moment, and the surrounding concrete reaches its bearing

strength marked by the development of the split crack shown

in Figure 3.16. It is assumed in this study that concrete

bearing stresses between the crack and the plastic hinge

are uniformly distributed at a value equal to the concrete

bearing strength (f0). The assumed failure condition is

shown in Figure 3.17(c). The assumed uniform bearing stress

distribution can be justified by inelastic stress

redistributions.

The dowel force Du can now be derived by satisfying

equilibrium of moments around the plastic hinge in

Figure 3.l7(c):

 

0.. = 0.5 f. (0.37Td. - c)2 + 0.45 f, do? (142/1,2)”

(s—o

where: ‘Y= ‘ Es/ths ;

c = length of the crushed concrete zone ( derived

empirically in Ref. 14)

0.05 fy db sinCX/fc' ;

K: = concrete foundation modulus ( 106 psi/in or

271.7 MPa/mm);

db = dowel bar diameter;

Ea = dowel bar modulus of elasticity ( 29 x 106 psi

or 2 x 105 MFa);

fb = concrete bearing strength [ Eqn. (3—l)]

fy = dowel bar yield stress;
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T = dowel bar axial force;

Ty = dowel bar yield axial force;

fc’= concrete compressive strength; and

“'= angle of inclination of dowel bar to line

normal to crack plane.

Values of concrete bearing strength (fa) and its foundation

modulus can be derived from Eqns. (3-1) and (3*2),

respectively. The value of 11 in Eqn. (3-1) is equal to x

derived from Eqn. (3-3).

3-3.4 Formulation ofLQowel Lead-Deflection Relationship:

This section illustrates the steps taken in this study for

producing an empirical expression for dowel load (D) versus

the dowel bar deflection at the point of load application

(8) for dowel bars acting against concrete core. In this

derivation, first a relationship was found between the

dowel deflection at the instant when ultimate dowel load

was reached (Sn) and the ultimate dowel load (Do). This

relationship was based on results of the three tests

perfomed in this study as well as the 15 tests of Ref. 14:

Su = 4.26x10‘° Du + 0.00945 (3-5)

Figure 3.18 shows that the above linear relationship which

fits very well to test results.
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The following constitutive model was derived by least

curve square fitting to the two branches of the three test

results performed, as well as the results

reported in Ref. 14. With the value of 80

above equation, the dowel load-deflection

be found from the following equation that

of 15 tests

known from the

relationship can

is developed by
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curve fitting to results of 18 tests performed by the

author and other investigators.1‘

The following equation was derived empirically to

predict the load-deflection diagram:

Du(S/Su)°-s for S < Su

n =
(3’6)

Du - Du(S‘Su)/(O.4/db ‘Su) > 0.40s for S > Su

where: D dowel load;

8 = dowel displacement;

Du = ultimate dowel load in action against core.

[890- (3-4)l;

Su = displacement at ultimate dowel load in action

against core [Eqn. (3-5)];

db = bar diameter.

The ultimate dowel strengths obtained from Eqn (3-4)

are compared in Table (3-2) with the results of 15 tests

reported in Ref. 14 as well as the three test results

produced in this study. Comparison between test and theory

is found to be quite reasonable.

A typical comparison between the dowel load-deflection

diagram as predicted by Eqn 3-6 and those obtained in tests

of Ref. 14 (test no. 8 in Table 3-2) is shown in Figure

3.19, and Figures 3.14(a), 3.14(b), and 3.14(c) also

compare prediction of Eqn. 3-6 with test results produced

in this study. The comparison between test and theory is

observed in these figures to be reasonable. The extra

strength of dowel bar #4 at large slips might have resulted
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from the kinking action [Figure 2.6(c)J that was observed

to be significant in dowel bar #4.

Table 3-2: Comparison of Experimental & Theoretical

Dowel Strength

 

  

Specimen No. “1151‘. (£51) 1:13:11 3 E 225:1 52%;?! BEER

1 (Ref.|4l 0.39 4540 41890 10 O 2381 2020 0.87

2 (Reta) 0.39 4540 41890 10 0 2271 2070 0.91

3 (let. 14.) 0.2535 4260 35070 20 0 948 894 0.94

4 (Rabid-1 0. 2535 4260 35070 20 0 882 894 1.01

5 (Ref. I44 0. 39 1420 41890 20 0 1720 1181 0.69

6 (Ref. 14») 0.39 1420 41890 20 0 1102 1181 1.07

7 (Ref. 14-1 0. 39 4540 41890 20 0 2205 1908 0.87

8 (Ref. 143 0.39 4540 41890 20 0 2712 1908 0.70

9 (Bat. 54) 0. 39 4540 41890 20 0 2205 1908 0.87

10 (M2440 0.546 4260 36490 20 0 4189 3145 0.75

11 (Ref. 141 0.546 4260 36490 20 0 3488 3145 0.90

12 (Rat. [41 O. 39 3410 41890 30 0 1374 1545 0.82

13 (Ref. MO 0. 39 3410 41890 30 0 1543 1545 1.00

14 (hf. H: 0. 39 3410 41890 40 0 1830 1424 0. 78

15 (“(44) 0.39 3410 41890 40 0 1433 1424 0.99

16 (STUO‘f) 0.50 6400 60000 0 0 9419 4469 0.47

17 (STUDY) 0.75 6400 60000 0 0 13266 9337 0.70

18 (sTupv) 1.00 6400 60000 0 0 15707 16176 1.02
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Figure 3.19: Comparison of Theoretical and Experimental

Dowel Load-Deflection.

The effects of different factors on dowel strength and

dowel load-deflection diagrams were evaluated in this study

using Eqns. 3-4 and 3-6. The dowel bar diameter is shown in

Figure 3.20(a) to considerably influence the dowel

behavior. The yield strength of dowel bar is also shown in

Figure 3.20(b) to have some noticable effects. Relatively

small influences of the concrete compressive strength and

the inclination of dowel bar on dowel load-deflection

diagrams can be seen in Figures 3.20(c) and 3.20(d),

respectively. Axial load in the dowel bar is shown in

Figure 3.20(c) to have important effects on the dowel

behavior of the bar especially when its value exceeds about
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80% of the bar yield strength.
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3-4 BEHAVIOR OF DOWEL BARS IN ACTION AGAINST CONCRETE COVER
 

3-4.1 Test Program: The specimens tested in this phase

(Figures 3.21 and 3.22) were similar to the ones used for

simulating dowel action against core (Figures 3.10 through

3.13) except that the load was reversed, and the dowel bars

were supported by #3 stirrups located at 2 in (50.8 mm)

from the crack face (shear plane). Applying tension to the

specimen as shown in Figure 3.22 results in dowel action of

the two bars against concrete cover in one direction and

the core in the other. This is similar to dowel action of

beam longitudinal bars against beam cover at reinforced

concrete joints [Figure 2.1(a)].

Tests were performed on three sizes of grade 60 dowel

bars (#4, #6, and #8). Concrete in the specimens was made

with type III Portland cement, and the mix proportion and

curing condition were similar to the ones in previous

specimens (for dowel action against core). The compressive

strength of concrete at the test age was 6,200 psi (42.8

MPa). As shown in Figure 3.23, the specimens were fixed

through their anchorage bolts to a reaction frame at the

top and to a hydraulic actuator at the bottom. The tensile

force was measured by a load cell with a maximum error of

0.2%. Opening and slippage of the crack were each measured

by two electrical displacement transducers with a maximum

error of 0.4x. Loading in all tests was displacement-

controlled and quasi-static.
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Figure 3.23: Test Set-Up For Dowel Action Against

Cover.
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3-4.2 122$ ResuLts: Action of dowel bars against concrete

cover in all specimens resulted in a split crack separating

the concrete cover fro. the core. After split cracking,

stiffness was reduced but resistance of dowel bars

continued to increase. Propagation of the split crack was

gradual (Figure 3.24) and the concrete cover appeared to be

contributing to dowel resistance even after split cracking.

The ultisate strength was finally reached when the concrete

cover peeled off after which dowel resistance started to

drop. Figure 3.25 shows one of the specimens after failure

(this is the view after half of the specisen was removed).

Figure 3.26 shows the experisental dowel load-

displacesent relationships in action against cover. This

figure also presents the load-deflection relationships

obtained from earlier tests (Figure 3.14) on specimens

subjected to cospression instead of tension (with dowel

bars acting against concrete core). In Figure 3.26,

initially the behavior in dowel actions against core and

cover were similar, but upon split cracking, stiffness of

dowel bars acting against cover dropped suddenly. In these

specisens with stirrups located at 2 in (50.8 as) from the

crack face, dowel bars with different sizes all reached a

saxilul capacity equal to the stirrup yield strength. The

deflection at this maximum capacity, however, depended on

the bar size, and increased with decreasing diameter of

idowel bars.
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Figure 3.24: Split Cracking Resulting From

Dowel Bars Acting Against Cover.
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Figure 3.25: View of Half-Section of Specimen

Showing Crack Pattern.
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Dowel load-crack opening relationships for dowel bars

acting against cover and core are shown in Figure 3.27 for

different bar sizes. The trend in crack opening is observed

in these figures to be similar in both cases.
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3-4.3 Formulation of Doweletrength_a d Load-Deflectigg  

 

 

Relationship: Before split cracking, the load

deflection diagram of dowel bars acting against cover

coincides with those ones acting against core. This

relationship can be represented by the following expression

derived earlier for push against core:

D = Du(s/su)°-s for s < Su

(3‘7)

where: D = dowel load;

3 = dowel displacement;

Du = ultimate dowel load in action against core

= 0.07fb Tzdbz + 0.45fydb2/f (for dowel bars

perpendicular to crack with zero axial stress);

su = displacement at ultimate dowel load in action

against core

= 4.2x10‘5Du + 0.00945 (for su in inches,

Du in lb)

= 2.43x10’5Du + 0.240 (for su in mm, Du in N);

k! = concrete foundation modulus [Eqn. (3-2)]

db = dowel bar diameter;

Es = dowel bar modulus of elasticity;

fa = concrete bearing strength

[Eqn. (3-1), with 11 = x in Eqn. (3-1)}

fy = dowel bar yield stress.

In order to find'the dowel load at the initiation of

cover splitting (Der), where the load-deflection diagram
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deviates from Eqn. (3-6), the dowel bar in action against

cover before split cracking [Figure 3.28(a)] was modeled as

a beam on an elastic foundation [Figure 3.28(b)] in which

the effect of stirrup was neglected. Figure 3.28(b) also

shows the distribution of bearing loads along the length of

the dowel bar. Split cracking was assumed to occur when the

sum total of bearing loads under the dowel bar from the

crack face up to the inflection point [distance (a) in

Figure 3.28(b)] reaches the tensile strength provided by

the beam width in distance (a). This resulted in the

following expression for dowel load at split cracking of

 

cover:

Bar = 0.83(b-da).a.ft (3-8)

where: b = beam width;

ft = concrete tensile strength

= 7.5 fc’ (psi)

= 90 fc’_(!Pa);

a = fi/(zy/kedux4n.;)

Rs = steel elastic modulus ( 29x106 psi or 2x105MPa)

Io = dowel bar moment of inertia

'ndb‘/64.
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Figure 3.28: Idealization of the Pre-Split Cracking

Dowel Bar In Action Against Cover.

The split cracking load from the above equation

compares well with test results:

BAR SIZE fiPLIT CRACKING LOAD kips (EN)

TEST THEORY

#4 ‘ 3.9 (17.3) 3.9 (17.3)

#6 4.6 (20.5) 5.0 (22.2)

#8 5.5 (24.5) 5.9 (26.2)

After split cracking, concrete cover still contributed

to dowel resistance until the ultimate dowel load (that was

roughly equal to the stirrup yield force) was reached. This

contribution of concrete cover cannot be guranteed in

actual conditions where the axial tension in bars tends to
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damage the cover.

3-5 BEHAVIOR OF DOWEL BARS UNDER CYCLIC LOADS:

3-5.l Test Program: Test specimens used for cyclic loading

were similar to the ones used for simulating the monotonic

action of dowel bars against concrete cover and core. The

loading was, however, applied cyclically [Figure 3.29(a)].

The history of deflection application in cyclic tests is

shown in Figure 3.29(b). Three cyclic tests on grade 60

dowel bars #4, #6. and 08 were performed. The same concrete

mix as in the case of similar tests on dowel action against

concrete core and cover was used. The concrete compressive

strength was on the average 6,200 psi (42.8 MPa).
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(b) History of Deflection Application

Figure 3.29: Cyclic Tests On Dowel Bars.

3-6.2 Test Results: The first sign of distress in the

specimens under cyclic loads was initiation of a split

crack between cover and core resulting from dowel action

against cover [like the one shown in Figure 3.30(b)]. At

large loads, dowel action against core also resulted in a

split crack in the plane of dowel bar normal to the

direction of the previous crack. Both of these cracks

propagated and widened as the loading progressed. In fact,
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towards the end of the load history, the cover fully

separated from the core. This resulted in deterioration of

dowel resistance in action against cover at large-amplitude

cycles. Figure 3.30(c) shows the two split cracks in one of

the specimen blocks (with the other block removed) after

test.

K Split crICk

é

(a) Action Against Core

 

      

Split

Coma
 

  

 

(b; Action Against Cover
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(c) Split Cracks of Specimen Resulting From

Cyclic Dowel Action.

Figure 3.30: Split Cracks Resulting From

Cyclic Dowel Action.
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Figures 3.3l(a), 3.31(b), and 3.31(c) show the cyclic

dowel load-deflection diagrams obtained in tests on bars

04, 06, and #8, respectively. These figures also show the

load—deflection diagrams obtained in monotonic tests. Test

results presented in Figure 3.31 show that the stiffness

and the energy dissipation capacity of dowel bars

deteriorate severely with repetition of inelastic load

cycles. The hysteretic envelope on the compression side

(with push against core) is practically the same as the

monotonic load deflection diagram. This means that there is

no significant deterioration of strength with repeated

cycles on this side. This was also true for dowel bars #6,

and 08 on the tension side (with action against cover).

Dowel bar 04, however, showed considerable deterioration of

strength in push against cover.
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The diagram shown in Figure 3.32 presents the

experimentally obtained dowel load-crack opening

relationships. It can be observed that the crack width

continues to grow with application of inelastic cyclic

loads. This is expected because both actions against core

and cover tend to open the crack and there is no tendency

towards crack closure. Hence, in the inelastic region, the

residual crack width after unloading cannot be overcome

with loading in the opposite direction.
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3-5.3 Hysteretic Modeligg: A number of monotonic

constitutive models have been suggested in the literature

for dowel action against core or cover.‘-1‘-3° Lack of

cyclic test data, however, has been an obstacle in

developing hysteretic models for dowel bars. In this study,

hysteretic rules governing the constitutive behavior of

dowel bars under repeated load reversals were derived from

test results.

It was assumed that the hysteretic envelopes in push

against cover and core follow the respective monotonic load

deflection diagrams. This was true for test results on O6,

and 08 bars, but not fo #4 bar in action against cover.

Dowel bar 04 is not, however, regularly used as beam

longitudinal reinforcement.

Figure 3.33 shows the proposed empirical hysteretic

rules by adopting the hysteretic envelopes (monotonic dowel

load-deflection diagrams) from earlier tests. In a typical

cycle for a compressive dowel load (0*) against core and a

tensile dowel load (D') against cover, assuming that D+ is

reached first, unloading takes place with a stiffness of

275 hips/in (4.8 N/mm) up to a dowel load equal to 252 of

0’. Then the unloading path go linearly to the origin. The

load-deflection diagram in the opposite direction coincides

with the last path followed in that direction. This path is

the envelope curve in the first loading in any direction.

Unloading from 0' results in transfer towards the origin.

Loading in the positive direction takes place along the
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last path in that direction, but deviates from this path at

753 of D’ in the second cycle and 658 of D’ in the

subsequent cycles. This is also true in the tension side

with D' substituting 0*. In Figure 3.33, the first cycle is

repeated three times and then the deflection is increased

to a new maximum value in the compression side. As a

result, at point A the stiffness drops to 502 of the

initial unloading stiffness (503 of 275 kips/in-in push

against core) and then the load-deflection diagram follows

path A8 until it reaches the envelope curve at point 8.

Then the envelope is followed until another load reversal

takes place at point C with a new value of 0*. Unloading at

point C also takes place towards the origin. Loading in the

tension side then takes place along the last path in this

direction up to 65% of D-. Then, here also, stiffness drOps

to 503 of the initial unloading stiffness (50: of 175

kips/in.in push against cover) and thereafter follow the

monotonic curve.

Figures 3.34(a), 3.34(b), and 3.34(c) show the

hysteretic diagrams of bars #4, 86, and #8, respectively,

as constructed with the above hysteretic rules and the

monotonic dowel load-deflection diagrams reported earlier.

Comparison of experimental and theoretical hysteretic

diagrams in Figures 3.31 and 3.34 show that the proposed

model can approximate the test results with a reasonable

accuracy. More test data are, however, needed for improving

the above empirical hysteretic model.
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CHAPTER 4

LITERATURE REVIEW ON PULL:OUT4§§§AVIOR OF EEAQALONGITUQINAL

BARS BOND§§71N EEAQrCOLUMN CONNECTIONS

4-1 INTRODUCTION

The interaction of deformed bars with concrete depends

mainly on the mechanical interlocking between the bar lugs

and concrete. Adhesion and friction between the rough bar

surface and concrete add only a little to the bond

resistance.

Bar slippage is caused mainly by crushing of concrete

in front of the lug.19'23'44"3'53 Under small pull-out

forces, the bond resistance is basically made up of

adhesion. At higher loads, however, mechanical interlocking

between the lugs and concrete is the main source of

resistance against pull-out. The high pressure in front of

the lugs causes tensile stresses in the concrete which

result in internal inclined cracks [Figure 4.1(a) and

4.1(b)], called herein the bond cracks.

Bond cracks modify the response of concrete to loading,

and reduce the pull-out stiffness of the anchored bar.

After the occurence of bond cracks, the stress transfer

from steel to concrete is achieved by inclined compressive

forces spreading from the lugs into concrete at an angle

as shown in Figure 4.1(c) above. The components of these

forces parallel to the bar axis are proportional to the

bond stress. The radial components, with respect to the bar

axis, load concrete like an internal pressure and induce
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tensile hoop stresses which cause splitting cracks. When

this crack reaches the concrete surface and none or only a

small amount of confining reinforcement is provided, the

bond resistance will drop to zero. However, if the concrete

is well confined, the load can be increased further.

'OOCCS K!“

o- m‘"

 

  

 
  

   

   
Bond Slip

(d)

Figure 4.1: Internal load Cracks and Forces Inside

Concrete (Ref. 19).

Figure 4-1(d) shows a typical bond stress-slip

relationship. Up to point A in this curve, adhesion is the

main source of bond resistance. Bond cracking occurs at
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point 8. and the splitting cracks (produced by radial

stresses) reach the center surface at point C. Curve CP

represents the behavior of bond in unconfined concrete, and

curve CDEF shows how bond behaves in confined concrete.

When approaching the maximum bond stress in confined

concrete [at point D in Figure 4.1(d)] shear cracks in

parts of the concrete keys between ribs are initiated as

shown below in Figure 4.2.

CONCRE YE

SHEAR CRACK

MR

— TENSION TIAJECTOF'IES

--- CMESSION IRAJCCIOR(S

     

 

Figure 4.2: Shear Cracks In the Concrete Keys Between

Lugs (Ref. [9).

When more slippage is induced, an increasing larger

part of the concrete is sheared off without much drop in

bond resistance. When the slip reaches the clear lug

distance, the lug has traveled into the position of the

neighboring rib (point E) in Figure 4.1(d), and the

concrete between lugs has been sheared off. Thereafter,

only frictional resistance is left which is practically

independent of the deformation pattern.
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Figure 4.3 shows a closer View of the bond cracking

process. The inclined bond cracks shown in Figure 4.3(a) do

not grow much wider than that developed at maximum bond

stress when shear cracks initiate [see Figure 4.3(b)]. In

fact, some new inclined cracks might develop as shown by

dashed lines in Figure 4.3(c) due to the high compressive

forces on concrete in front of the lugs.
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The above illustration of bond failure conditions has nul

been accepted by some investigators. For example, Tassios53

assumed that the maximum bond resistance is controlled by

compression failure of the compression strut spreading out

from the lugs into the concrete.

The adhesive bond resistance is rather small (’54 ‘5: 72

to 145 psi or 1.0 MPa). The bond stress at the occurence of

internal bond crack can be roughly estimated to be 1:9: 208

to 245 psi or l.43 to 1.70 MPa for a concrete with fc’ =

4,350 psi or 30 MPa23. Analysis of these values reveals

that even under service loads, adhesion can be overcome and

internal bond cracks might occur.

The splitting resistance depends mainly on the concrete

failure strength, concrete cover, bar spacing, amount of

transverse reinforcement, and transverse pressure. The bond

stress ~Cc at splitting may be as low as 290 psi (2.0 MPa)

or as high as 1,015 psi (7.0 MPa) for fc’= 4,350 psi (30

HPa) and with no transverse pressure applied.

The maximum bond resistance, I:max is mainly influenced

by the concrete strength, bar deformations, and the

position of the bar during casting. The influence of the

bar diameter is relatively small if all dimensions (height

and spacing of the bar lugs, and concrete dimensions) are

kept constant as multiple of the bar diameter. The bond

strength might be influenced by confining reinforcement and

transverse pressure. Some investigators have assumed that

‘C max is proportional to fc’, but others have taken it



88

proportional to the'V&:’

The influence of the bar deformation pattern on the

bond behavior has been generally described by the so called

relative rib area, ‘<.sa, that is the relation between

bearing area (area of the lug perpendicular to the bar

axis) to the shearing area (bar perimeter times lug

spacing):

0<sa = (K.Fn .SinP/rr.db.C) (4-1)

where: K =is the t of transverse lug around perimeter;

Fa =is the area of one transverse lug;

Sin? =is the angle between lugs and longitudinal axis

of bar.

C =is the center to center distance between

tranverse lug.

Bond strength and bond stiffness increase with

increasing 0(33. Common U.S. deformed bars have Oisn between

0.05 and 0.08. Depending on the relative rib area, the

value of maximum bond stress between 58 to 1,450 psi or 0.4

to 10 MPa for fc’ = 4,350 psi (30 MPa).

There is a large scatter in the experimental bond

stress-slip relationships. This large scatter is due to

difficulty in measuring slip between steel and concrete

correctly and also due to the use of different test

specimens with different stress conditions in the concrete

surrounding the bar. The position of the bar during casting

also influences the local bond laws. The larger bar
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stiffness is for the bar cast vertically and loaded against

the casting direction of fresh concrete. Bars cast

horizontally (especially with a large depth of concrete

underneath them) have smaller stiffness and strength. Bars

cast vertically but loaded in the casting direction of

concrete may perform worse than bars cast horizontally.

The local bond stress-slip relationship is also

dependent on the location along the embedment length. In

Refs. 19 and 23, three different regions with very

different bond stress-slip behavior were identified in a

beam-column joint: unconfined concrete in tension, confined

concrete and unconfined concrete in compression. These

regions are shown in Figure 4.4(a), and typical bond stress-

slip relationships in different regions are compared in

Figure 4.4(b).

If slip reverses before shear cracking, after unloading

[path AF in Figure 4.5(a)], a gap remains open with a width

equal to slip at point F. Continuing slip reversal will

have a frictional resistance which is rather small because

of the smooth surface of concrete surrounding the bar. At

point 8 in Figure 4.5(a), the contact between lugs and

concrete reinitiates. With increase in load, the previous

cracks close and new inclined cracks perpendicular to the

old ones will appear. If the magnitude of bond stress

continues to rise, the old and new crack might even Join.

Confinement makes this-part of reversal path close to the

monotonic envelop. At point I in Figure 4.5(a), a gap with
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a width equal to the difference between slips at points F

and I has opened. When again reversing the slip at point I

in Figure 4.5(a), the bond mechanism for the loading path

IKL is similar to the one for path AFR described earlier.

However, the bond resistance starts only to increase again

at point L, when the lugs start to press broken pieces of

concrete against the previous bearing space. With further

movement, cracks close. At point N, lugs and concrete are

fully in contact again. With more slip in the same

direction, the monotonic envelope is reached again and

followed thereafter.

 

 

rD wcowuo concern a menu

.3) cow-(o concert:

Q “WHOCM“ 00 (”($50

on SPECIMEN AND TEST SEI-UP (SCHEMAIICl

 

 

25 SO 75 I00

0’ LOCAL son Sim-SUP RELAI'ONSNIP
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Different Regions (Ref. 56).
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Figure 4.5: Mechanisms of load Resistance Cyclic

Loading (Ref. 19).

Behavior is different if the slip is reversed after the

initiation of shear cracks in concrete keys. In this case,

the bond resistance in the opposite direction is reduced

compared to the monotonic envelope [path CFOEI in Figure

4.5(a)]. This is because after load reversal, the lug

presses against a key whose resistance is lower due to the

shear crack over part of its length induced by the first

half cycle. When reversing the slip again [path IKLMN in
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Figure 4.5(b)], only the resaining intact part of the

concrete between lugs sust be sheared off, resulting in an

even lower saxisus resistance than at point I.

If a large slip is isposed during the first half cycle

resulting in alsost cosplete shearing of concrete keys

[Figure 4.5(c)], in reversal the friction is larger than

before because the concrete surface is rough along the

entire width of the lug. At point B in Figure 4.5(c), the

lugs are again in contact with the resaining intact parts

of the keys which do not offer such resistance. Therefore,

the saxisus resistance during the second half cycle is

alsost the ease as the ultisate frictional resistance.

During reloading [path JKLMNO in Figure 4.5(c)], an even

lower resistance is offered because the concrete at the

cylinderical surface where shear failure occured has been

ssoothen already during the first cycle.

Free the above consideration it follows that if the bar

is cycled between constant peek slip values, the sain

dosage is done during the first cycle. During successive

cycles, the concrete at the cylindrical surface where shear

failure occurred is ground off, decreasing its interlocking

and frictional resistance. This explains the observed

decrease in saxisus resistance on the path LMN in Figures

4.5(b) and 4.5(c) with increasing nusber of cycles.

According to the above theory, under otherwise

constant conditions, bars with ssaller ratio of clear

lug spacing to lug height will produce sore bond
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deterioration than bars with larger ratio of the lug

spacing to the lug height when cycled between the sane

sinisus and saxisus slip values.

So far, the 12321 bond behavior was discussed. The

anchorage of an esbedded bar inside concrete is, however,

developed along the length of the bar. As shown in

Figure 4.6, the bond stress is alsost constant over the

core region of the joint leading to an alsost linear

distribution of steel stresses in this region. The bond

stress drops outside the joint core. Details of bond stress

distribution depend on the boundary conditions (bar stress

and slip) at the two bar ends as well as the history of

loading.

9’
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4-2 REVIEW OF TEST RESULTS ON QQND
 

 

Two cosprehensive test progress on the bond behavior

inside R/C bees-colusn connections have been reported in

Refs. 12 and 19. The results are discussed in the

following.

The subject of study in Ref. 19 has been the local bond

stress-slip relationship inside joints under sonotonic and

repeated loads. The test specisen shown in Figure 4.7 was

chosen to represent the conditions found in a bees-colusn

joint.
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Figure 4.7: Test Specisen Used in Ref. 19.

Only a short length of grade 60 deforned bar was

esbeded in concrete. During the test, the force acting on

the loaded bar end and the slip, at the unloaded bar end

were seasured. Assusing that bond stresses are evenly
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distributed along the bonded length, the value of bond

stress can be easily calculated from the seasured force.

Furthermore, because the steel behaves elastically and the

embedment length is short, the slip values at the unloaded

and loaded bar ends do not differ significantly.

Therefore, the measured slip represents the local slip in

the middle of embedment length with sufficient accuracy.

Note that strictly speaking the resulting relationship is

not a local bond-slip relationship but an average one. The

esbedded length 5db shown in Figure 4.7 is short enough to

reduce the scatter of test results usually observed in

tests with very short bonded lengths.

The bars in the specimen shown in Figure 4.7 were

placed in the middle of the specimen and cast in a

horizontal position. Therefore, the bond could be expected

to be some what superior or inferior to top or bottom bar,

respectively.

Ref. 19 has reported the results of 125 tests on

specisens similar to the ones shown in Figure 4.7. The

"standard" test in this program consisted of a #8 bar

embedded in concrete with a compressive strength of 4,350

psi (30 MPa), and confined with #4 bars. No transverse

pressure was applied in the ”standard” test in which the

loading was applied with a slip rate of 0.067 ianin (1.702

sm/min). In the other tests of Ref. 19, one parameter of

the standard specimen was varied at each time as follows:

concrete stregth ( increased to 7,975 psi or 55 MPa);
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transverse pressure (ranging from 725 to 1,914 p81 or 5.0

to 13.2 MPa in the direction of the column reinforcement);

bar diameter (#6 or #10); confining reinforcement (#8 or #2

or none); bar spacing (increased fros ldb in the standard

specisen to 6db); and loading rate [0.67 in/min (1.702

mm/min) and 6.7 in/min (170.0 mm/min) slip rate].

The influences of the above parameters were studied for

monotonically increasing slip and for cyclic loading at a

peak slip value of 0.065 in.(l.651 mm). In cyclic tests,

after performing 10 cycles between fixed slip values, the

slip was increased monotonically to failure.

In all tests, except those with an applied transverse

pressure, a splitting crack developed prior to failure in

the plane of the longitudinal axis of the bar. The bond

stress at splitting was about 580 to 1,305 psi or 4 to 9

MPa for concrete with compressive strength of 4,350 psi (30

MPa). After developing this crack, the load dropped rapidly

if concrete was not confined. In the case of confined

concrete, however, the load could be increased further with

a gradually decreasing bond stiffness. This can be

explained by the fact that the growth of cracks can be

controlled by vertical bars crossing the crack plane.

In all tests conducted on specimens with confined

concrete, failure was caused by pulling out of the bars at

steel stresses well below yield strength ( between 40% to

808 of yield strength). The concrete between lugs was

completely sheared off and almost pulverized. Specimens
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with no confining reinforcement failed by splitting of

concrete in the plane of the bar longitudinal axis at about

45% of the pull-out load of comparable confined specimens.

In these specimens, the concrete between lugs was intact

after failure and no severe damage (shear cracks or

crushing) could be detected.

Under monotonic loading as shown in Figure 4.8, the

stiffness of the ascending branch of the bond stress-slip

curve decreased gradually from its initial large value to

zero when approaching the maximum bond resistance at a slip

value approximately 0.05 in.(l.52 mm). After passing the

maximum bond stress, the bond resistance decreased slowly

and almost linearly until it leveled off at a slip of about

0.45 in.(ll.43). This value is almost identical to the

clear distance between lugs. For larger slip values, the

bond resistance was almost constant. The scatter of test

results was relatively small ( coefficient of variation of

bond resistance was about 5%) especially when the specimens

were cast from the same concrete batch.

Bond stress-slip relationships for tension and

compression were almost identical. However, it can be

expected that after yielding (that did not occur in these

tests), the diameter of the bar in tension will be

significantly reduced due to the necking effect, and this

can reduce the bond resistance. The opposite can be true

for bars yielding in compression. The necking effect can be

expected to change the bond resistance by not more than 20
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to 30%.

The absence of confining reinforcement drastically

influenced the bond behavior in test reported in Ref. 19

(Figure 4.9). Specimens having no confined reinforcement

failed by splitting of concrete at a rather small bond

stress (870 psi or 6 MPa). This value compared favorably

with:

Ten... = 1.5 tum (4—2)

where: 'Ccrack = bond stress at occurence of splitting

cracks

C = minimum concrete cover

fct = axial tensile strength of concrete

db = diameter of her.

After splitting, the bond resistance dropped rapidly in

unconfined specimens and reached 145 psi (1 MPa) at a slip

of 0.16 in.(4.06 mm). This resistance is expected to be

provided by the friction at the bearing plate used in the

test.

Specimens with confined concrete failed by bar pull out

because the split cracks developed in the plane of the

longitudinal axis of the bars were restrained by vertical

bars (the influence of stirrups was negligible). There was

no significant difference between the behavior of confined

specimens with different confinements tested in Ref. 19.

This shows that there exists an upper limit for the amount
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of restraining reinforcement beyond which behavior cannot

be improved further.

The maximum bond resistance decreased slightly with

increasing bar diameter in monotonic tests (Figure 4.10).

The relationship was 1.00 : 0.94 : 0.85 for #6, #8, and #10

bars, respectively. The descending branch of the local bond

stress-slip relationships leveled up at slip values that

were almost identical with the clear distance between lugs

[about 0.36 in.(9.14 mm) for #6 and #10 bars and 0.45 in.

(11.43 mm) for #8 bar]. The frictional bond resistance was

not influenced much by variations in bar diameter, lug

spacing, or the related rib area. It was also observed that

increased related rib areas increase the ascending branch

stiffness as well as the peak bond resistance.

As can be seen in Figure 4.11, stiffness of the

ascending branch as well as bond resistance at equal slip

values increase with increasing compressive strength of

concrete. Furthermore, maximum bond resistance is reached

at smaller slip values in specimens with higher-strength

concrete. The increase in bond resistance was proportional

to the increase in tensile strength (which is proportional

to the fc’ ).

The bond behavior in tests performed in Ref. 19

improved with increasing bar spacing; however, as shown in

Figure 4.12, the influence was relatively small. The small

effect of bar spacing is possibly because the split cracks

(that are strongly influenced by bar spacing) are
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restrained by the confining reinforcement and hence failure

is by pull-out and not split cracking.

Increase in transverse pressure is shown in Figure 4.13

to cause increases in the maximum bond resistance and the

ultimate frictional resistance.19 The slip at maximum bond

resistance also shifted to slightly larger values with

increasing transverse pressure.

The influence of rate of pull-out (or rate of slip) on

the local bond constitutive behavior can be seen from

Figure 4.14. While the overall shape of bond stress-slip

relationship was not changed much, bond resistance

increased with increasing rate of pull-out. A change of

rate of pull-out by a factor of 100 resulted in a change of

maximum bond resistance by about 15%.
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Some of the hysteretic loops obtained in a cyclic test

on the standard specimen together with the monotonic stress—

slip relationships are shown in Figure 4.15. In cyclic

tests, the scatter of test results was still tolerable

especially if the tested specimens were from the same

concrete batch. The coefficient of variation of a

characteristic bond stress value was between 6 and 10%.
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In cyclic loading, if the peak bond stress during

cycling did not exceed 70 to BOX of the monotonic bond

strength, the deterioration was moderate (Figure 4.16). No

major deterioration was also observed under repeated slip

from zero load to a peak slip value, no matter what the

peak slip value (Figure 4.17).
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Loading to a slip value inducing a bond stress larger

than 80% of the monotonic bond strength in either direction

led to a degradation in the bond stress-slip behavior in

the reverse direction (Figure 4.18). As shown in this

figure, the bond stress-slip relationship at slip values

larger than the peak value during the previous cycle was

significantly different from the virgin monotonic envelope.

There always was a significant deterioration of the bond

resistance which increased with increasing peak slip and

increasing number of cycles, and was larger for full

reversal of slip than for half cycles. Furthermore, the

cycle produced a pronounced deterioration of the bond

stiffness and bond resistance at slip values smaller than

or equal to the peak slip value.

The frictional bond resistance during cycling was

dependent upon the value of the peak slip and the number of

cycles. With repeated cycles, the frictional bond

resistance deteriorated rapidly [see Figure 4.18].

Cyclic loading with increasing slip values had an added

effect on the deterioration of bond stiffness and bond

resistance. On the other hand, some additional cycles

between smaller slip values than the peak value in the

previous cycles did not significantly influence the bond

behavior at larger peak value.
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The cyclic bond deteriorations were approximatly the

same when the test bars were first loaded in tension or

compression. Substituting #2 bars for #4 bars as transverse

(restraining) reinforcement had no significant effect on

the cyclic bond deteriorations. This is also true for

specimens made out of high strength concrete or with

different clear spacings.

Transverse pressure in the investigated range as well

as a 100 times faster loading rate did not change the

cyclic deteriorations very much. Bars with different

related rib areas also had similar deteriorations under

cyclic loads in the limited number of tests reported in

Ref. 19. The bond resistance was almost independent of the

her size after some load cycles.

In short, it can be stated that the behavior of bond

during cyclic loading is not significantly affected by the

various parameters investigated if the deterioration of

bond resistance is related to the pertinent monotonic
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envelope. However, the influence of bar diameter and

deformation pattern on the cyclic load behavior were not

studied thoroughly in Ref. 19.
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Figure 4.19: Specimen Detail Plea Used In Ref. 12.

Another series of tests have been reported in Ref. 12

on specimens refered to as "column stubs" shown in Figure

4.19. These specimens represent a section of an interior

column through which a single bar of a continous beam

passes Figure 4.20. The column stub is reinforced to

simulate the confinement within a joint core when designed

and detailed according to ACI standard 318—71. 0f the seven

specimens tested in Ref. 12, five were 25 x 10 in.(625 x

250 mm) and two were 20 x 10 in.(500 x 250 mm) in column
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cross—section Figure 4.19. The width of 25 and 20 in.(625

and 500 mm) in tested specimens specified the embedment

lengths of bars. The overall height of the specimen was 46

in.(l,150 mm), and reinforcing bars were all grade 60.

deformed bars. The longitudinal reinforcement for the 25 in

(625 mm) column stub consisted of eight #7 bars and the

ties were 44 reinforcing bars; the 20 in.(500 mm) column

stub consisted of four #8 and 244 reinforcing bars, with O4

ties. The embedded bar is placed so that it is in the

middle of the 10 in.(250 mm) thickness. and approximately

in the center of the column stub height. The concrete type

in the specimens included 4 ksi normal weight, 4 ksi light

weight and 9 ksi normal weight.

 

 

  
 

Figure 4.20: Column Stub Specimen (Ref. 12).
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The test set-up shown in Figure 4.21 below was designed

to avoid support reaction from affecting the behavior of

the bar being tested. For tests in which both ends of the

rebar were loaded, the two and loads were equal but

opposite, representing the condition that occurs in a joint

after the beam had cracked and the top and bottom beam bars

act alone to resist equal couples at the column faces. Some

of the tests were also performed with loading at only one

end of the bar. The instrumentation monitored behavior of

the embedded bar from which the applied loads, displacement

of the bar at either end and the load behavior along the

embedded length of the bar could be deduced ( the deduction

of bond stress-slip relationship required the assumption of

Ramberg-Osgood hysteretic model for steel bar).
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Test results in Ref. 12 were presented in the form of the

local bond stress-slip relationships. The local bond-slip

for different locations along the 25 in.(625 mm) embeddment

length in the standard specimen (that was constructed of

normal weight concrete and was loaded at both ends) are

shown Figures 4.22 and 4.23 for the monotonic loading.
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Figure 4.22 shows the monotonic loading for portions of

the bar that are in tension, and Figure 4.23 shows the

curves for the portion of bar in compression. Comparison of

these figures shows that the compression side exhibits a

stiffer response as well as a higher maximum bond

resistance.
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(Compressive Bar Strain on Push Side of

Specimen) (Ref. 12).

A typical comparison of cyclic bond-slip curves with

monotonic curve at the same relative location in Figure

4.24 reveals how closely the cyclic curve follows the

monotonic curve until bond degradation due to cyclic

loading causes the curve to fall below the monotonic bond

value.

In the case of specimens with light-weight aggregate

concrete, the variation of local bond-slip at different

locations along the embedded length was less than that with

normal weight concrete. For the length of the bar under

tension, the response at 6 in.(150 mm) of embedment shows a

maximum bond stress 40* less than that of a normal~weight

concrete (Figure 4.25). The increase in maximum bond stress

in the compression region of the bar is much less for the
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light weight concrete. Moreover, the degradation in the

compressive region is more severe than with normal weight

concrete.
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Stiffness of the local bond—slip curve in higher

strength concrete specimens, that were constructed with a

shorter embeddsent length of 20 in-(500 mm) in anticipation

of higher bond strength, was much greater than a comparable

local response for the standard concrete. The increase in

maximum bond strength over the standard normal weight

concrete was about 60X. This was less than the relative

difference in compressive strength (9 ksi or 62 MPa versus

4.5 ksi or 31 MPa), indicating the greater influence of

tensile and shear stresses on bond than of compressive

stress. The variation over the embedment length of local

bond-slip for the high strength concrete specimen was

similar to that of the standard specimens. The degradation

under cyclic loads in the high strength concrete specimen

was more than the standard specimen.
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Figure 4.26: bending Moment Produced

Applied Loading (Ref. 12).

Causes of the variation in local bond-slip relationship

for different locations along the embedment length have

also been discussed in Ref. 2. The first cause according to

this reference is due to the bending moment generated by

applied loads (Figure 4.26). The resulting stresses produce
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a tension field near the bar on the pull side and a

compression field on the push side; this produces a change

in bond resistance of the concrete, a decrease for tension

and an increase for compression.

The second cause, related to poisson’s ratio, is the

expansion or contraction of the bar diameter. This results

in a change of the bearing area of bar lugs against

concrete. Tensile strain reduces the area of contact and

results in decreased resistance; compressive strain

increases the bearing area, resulting in an increased

resistance. The bar axial force also changes the distance

between lugs. This alters the state of stress in the

concrete in the immediate area, there by affecting the

strength and stiffness of bond.

4-3 REVIEW OF LOCAL BOND CONSTITUTIVE MODELS
 

A comprehensive model for the local bond stress-slip

relationship under cyclic loads inside the reinforced

concrete beam-column connections has been developed in the

Earthquake Research Center of the University of California,

Berkeley.ll.12,19,23.44

The description of the local bond stress-slip relation

between reinforcing bars and surrounding concrete, that has

been empirically developed in Berkeley, consists of the

following parts:

(1) Two monotonic envelopes, one in tension and one in

compression, which are updated in each slip reversal as a

function of incurred damage [curves (a) and (b) in
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Figure 4.27(a)];

(2) A typical unloading-reloading path described by the

current frictional bond resistance (qr), and unloading

curve (c) and a reloading curve (d), along with a set of

rules for unloading and reloading in the case of incomplete

cycles [Figures 4.27(a) and 4.27(b) ];

(3) A set of functional relation which allow updating

the monotonic envelope values and the frictional bond

resistance as a function of incurred damage.
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Figure 4.27: Iond Model Developed In Berkeley Under

Complete and Incomplete Slip Reversal

(Ref. 19).

The simplified monotonic envelope shown in Figure

4.27(a) simulates the experimentally obtained curve under

monotonically increasing slip. It consists of an initial

non-linear relationship q = qi(u/ui)°-‘ , varied for u g ui

followed by a plateau q = q: for ui g u g uz. For u 1 U2, q

decreases linearly to the value of ultimate frictional bond

resistaance qa at a slip value of us. This value is assumed

to be equal to the clear distance between lugs of deformed

bars. In the case of well confined regions, identical

envelopes apply to tension and compression, i.e., to the

case of the bar being pulled or pushed. In the unconfined

case, two different envelopes curves have to be specified.
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After imposing a load reversal at an arbitrary slip

value [ point A in Figure 4.27(a)], unloading takes place

along a steep straight line up to the point where the

frictional bond resistance Q! is reached [ point B in

Figure 4.27(a)]. Further slippage in the same direction

takes place at an almost constant bond stress [curve (d) in

Figure 4.27(a)] until reaching near the under the reduced

envelope curve [point C in Figure 4.27(a)] which has a slip

value equal to the maximum or minimum slip imposed during

previous cycles. Beyond point C, a bond stress-slip

relationship similar to the virgin monotonic envelope but

with a reduced value of bond stress is followed [curve (e)

in Figure 4.27(a)]. This curve is called reduced envelope.

In case that no slip has been previously imposed in one

direction, reloading takes place along a horizontal line

until reaching the reduced envelope [curve (f)]. If the

slip imposed in one direction does not exceed the maximum

slip attained during previous cycle, a typical cycle

follows the path depicted in Figure 4.27(b).

Updated envelope curves are obtained in this model from

the monotonic envelope by reducing the characteristic bond

stresses qi and qa by a factor, which is formulated as a

function of a parameter, called the "damage parameter”, d,

The relation proposed in Ref. 19 has the form:

qi(N) = qi(1-d) ' (4-3)

where qi represents the characteristic bond stress values
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on the virgin envelope curve and qx(N) is the corresponding

value after N cycles. For no damage, d=0, and the reduced

envelope curves coincide with the monotonic curve. For

complete damage, d=1, signifying that the bond is

completely destroyed. The damage parameter, d was assumed

in Ref. 19 to be a function of the total energy

dissipation. The proposed relationship (Ref. 19) has the

form:

Ll .

d = 1-8-1.2<s/e°) (4-4)

in which E is the total energy dissipated and the

normalizing energy Eo corresponds to the energy absorped

under monotonically increasing slip up to the value us [

Figure 4.27(a)]. An additional relationship is used in

establishing the frictional bond resistance qr, which

depends upon the previous slip value “max and relates qr to

the ultimate bond resistance, qa(N) of the corresponding

reduced envelope curve. For subsequent cycles between fixed

values of slip, qr is further reduced by multiplying its

initial value with a factor which depends on the energy

dissipation by friction alone. Explicit expressions for the

above relation are given in Ref. 19.

It is important to realize that the concept of relating

damage to one scalar quantity, like the normalized

dissipated energy, provides the basis for a relatively easy

generalization of local bond behavior to cover random
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excitations. Moreover, the bond stress~slip model can be

used without any modification over a wide range of

parameter values. Typical parameters include bar diameter,

concrete strength, degree of confinement, and transverse

pressure due to axial load. It should be noted in this

context that, with the exception of the characteristic

values of the monotonic envelope curve, all expressions

prescribed in the model of Ref. 19 are cast in

dimensionless forms. Thus only the characteristic values of

the pertinent envelope curves are needed in order to

establish the hysteretic bond stress-slip relation under

any condition. These values can be based on experimental

results or, alternatively, on the following empirical

values derived in Ref. 19.

Hell-Confined Concrete: The condition of well-confined

concrete is present when a further increase in the amount

of transverse reinforcement does not result in significant

improvement of the local bond stress-slip behavior. This is

depicted in Figure 4.9 presented earlier. In the case of

well-confined concrete regions, identical envelopes apply

to tension and compression. The following set of

characteristic monotonic envelope values represent the

average bond condition for #8 reinforcing bars in well

confined concrete with a compressive strength equal to

4,350 psi (30 MPa):

ui 0.394 in.(l.0 mm)

0.118 in-(3.0 mm)1.12
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us = 0.413 in.(10.5 mm)

Qi = 19.575 ksi (13.5 N/mmz)

qa = 0.725 ksi (5.0 N/mmz)

N = 0.4

(4-5)

Due to inevitable scatter of experimental results, the

values of qi, and qs, and 0( may well vary up to 1 153.

For non-standard condition (her size different from #8,

concrete strength different from 4,350 psi, bar spacing

less than 4du, external pressure applied or related rib

area different from 0.065), the above characteristic

monotonic envelope values for well-confined concrete should

be modified as discussed in the following:

(1) The influence of concrete strength can be taken

into account by multiplying qi, and qa with the factor

 

ykfc’l4,350) where fc' is the concrete compressive

strength in psi. Furthermore, the value of ui should be

 

reduced approximately in proportion toyk4,350/fc').

(2) If the clear spacing between here is smaller than

4d», where db is the bar diameter, qi and qa should be

reduced using the information given in Figure 4.28. The

following expressions have been derived in this study on

the basis of this figure:

OJ9

For s < 4db q(s)/q(4db) = 1-0.833e'1-51(3/db>

(4‘5)
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Figure 4.28: Influence of Clear Iar Spacing s/ds 0n

Bond Resistance (Ref. 19).

(3) The influence of external pressure (e.g. axial

compressive column force) can be taken into account by

increase in qi and q: according to Figure 4.29. Least

square curve fitting to test results resulted in the

following expression:

q(p)/q(p=0) = 1.3-0.3e‘°-°°1°3p (4-7)

where: p is the transverse pressure in psi.

(4) If #6 or #10 bars are used, it is recommended to

increase or decrease, respectively, qi by 10%.

(5) If the related rib area ,cha. differs from the

value 0.065, its influence should be taken into account by

modifying ui and qi using the data given in Ref. 19.

(6) The given values for ui ,uz, and u: should be

multiplied by a factor ci/0.4l, where c: is the clear
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spacings between lugs in inches, but this modification

should not be greater than 130%.

(7) The unloading slope is equal to 26,100 psi (180

MPa) for #8 bars. It should be modified in the same way as

Qi for different conditions.

T<oVTlp=Ol

 

"r T .

   
5 IO l5

TRANSVERSE PRESSURE . p [N/mm’]

Figure 4.29: Influence of Transverse Pressure On

Bond Resistance (Ref. 19).

Unconfined Concrete: Unconfined concrete occurs in the

column cover region of interior and exterior R/C joints

Figure 4.30. It is possible to generalize the local bond

stress-slip relation for confined concrete regions by

introducing the following modifications:

(1) A different monotonic envelope is specified for
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positive slip values than for negative slip values;

(2) The normalizing energy Eo used in the computation

of damage is chosen to be the largest between Eo’ and Eo‘,

which are, respectively, the areas under the monotonic

envelopes for positive and negative slip values up to the

slip value of us. To take into account different rates of

damage in the two directions of loading, the pertinent

total dissipated energies E, used to compute the reduced

envelope are multiplied by an amplification factor fl ,

which is different in the two opposite slip directions.

Similar rules for computing damage apply to the friction

part of the curve.

The following envelope values are suggested for #8 bars

embedded in unconfined concrete with compressive strength

of 4,350 psi or 30 MPa (Ref. 19):

Envelope values for the case that the bar is pulled

(Figure 4.30):

n: = 0.0118 in-(0.3 mm)

uz = 0.0118 in.(0.3 mm)

us = 0.0394 in-(l.0 mm)

Qi = 0.725 ksi (5.0 N/mmz)

l
l

0qa

(4-8)

Envelope values for the case that the bar is pushed

(Figure 4.30):

u1 = 0.0394 in-(l.0 mm)
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u2 = 0.1181 in.(3.0 mm)

us = 0.413 in.(10.5 as)

Q: = 2.900 ksi (20.0 N/mmz)

qs = 1.088 ksi (7.5 N/mmz)

o( 0.40

(4-9)

The some modification as in the case of confined

concrete apply for different bar diameters and concrete

compressive strengths.
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Less detailed models for the local bond behavior under
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cyclic loads have been introduced in Refs. 39, 52, 56. The

first analytical model for the local bond stress-slip

relationship under cyclic loading was proposed by Morita

and Eaku.39 This model is shown in Figure 4.31. The

monotonic envelopes which are different for loading in

tension and compression, and for confined and unconfined

concrete, are bilinear. The assumed bond stress-slip

relationship for the first cycle coincides relatively well

with the behavior observed in tests. This model, however,

neglects any deterioration in the envelope curve or

frictional bond resistance. The model is sufficiently

accurate for a small number of cycles between relatively

small slip values with corresponding bond stresses smaller

than about 80* of the monotonic bond strength. It is,

however, inaccurate for a large number of load cycles, and

it is not valid for slip values larger than the one

corresponding to 80% of the bond strength.

Another bond hysteretic model has been developed by

Tassios.53 As shown in Figure 4.32, the monotonic enve10pe

in this model consists of six succesive straight lines. The

coordinates of the controlling points A to E, which have

the same physical meanings as describe earlier for the

detailed model of Ref. 19, have been theoretically

evaluated and given as functions of the relevant

influencing parameters in Ref. 53. The same bond stress-

slip relationship is assumed regardless of whether the bar

is pulled or pushed. After loading to a slip value greater
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than the value of slip corresponding to point B on the

envelope curve shown in Figure 4.32, the value of the bond

stress-slip relationship for loading in the reverse

direction are reduced by one-third compared to the

monotonic envelope. The bond stress—slip relationship for

reloading and for subsequent cycles between fixed slip

values is somewhat simplistic in this model compared to the

real behavior. However, the deterioration of the bond

resistance at peak slip and that of the frictional bond

resistance are taken into account. when increasing the slip

beyond the previous peak slip value, it is assumed that the

monotonic envelope is reached again. This model an

improvement over the one developed by Morita and Kaku3°

because the descending branch of the local bond stress-slip

relationship is considered, and the influence of load

cycles on bond deterioration is also taken into account.

However, the assumption that for slip values larger than

the peak value in the previous cycle, the monotonic

envelope is reached again and followed thereafter, is not

representative of the experimentally observed behavior. For

monotonic loading, the model seems accurate for the total

slip range. However, for the cyclic loading, it is valid

only for slip values smaller than the slip at ultimate bond

strength.
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4-4 REVIEW or ANALYTICAL MODELS FOR‘EILIJFQQI- 135(13ij gr
...- -..".  

EMBEDDED BARS

The above discussion mainly concentrated on the local

bond stress-slip behavior. The ultimate goal is, however,

to analyze the overall behavior of embedded bars. Refs. 11,

23, and 53 have suggested some methods for using the local

bond stress-slip relationship in predicting the overall

behavior of embedded bars subjected to cyclic loads.

In the typical method developed in Ref.ll, the actual

behavior of a bar of finite length embedded in a concrete

block has been studied using an idealized one-dimensional

mathematical model (Figure 4.33). The governing equilibrium

equation of this model may be written as:

dN(x)/dx - q(x) = 0 (4—10)

bond force per unit length

TTdD’Ux);

bar force

= A600;

’C = bond stress;

where: q

2 l
l

db = bar diameter;

A = area of the bar cross-section.

This relation expresses equilibrium of an infinitesimal

portion of the bar [Figure 4.34(a)]. It has to be coupled

with the constitutive laws for steel and bond, which can be

expressed as:
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é =é(é(x))$éL dxi

’C = C(s(x)) (4-11)

where s(x) is the slip along the bar. Note that here the

influence of concrete deformation on slip has been

considered negligible, as commonly assumed. As a

consequence, the strain in steel,é; , has been set equal to

ds/dx.

Boundary values are specified at the two end points of

the bar. Three different cases, in particular, has been

considered [Figure 4.34(b)]:

(1) The displacement (slip) values at the two ends

are assigned (this is the case , for example, of a pull-

push test with displacement controlled at both ends).

(2) The displacement is assigned at one and only,

together with the axial force at the other end (this is the

case of a pull test with displacement controlled at the

pull end).

(3) while at one end the displacement is assigned,

at the other end the magnitude of force is constrained to

be equal to the one at the first end (this corresponds to a

pull-push test arrangement where the displacement is

controlled at one end only, but the pull and push forces

are constrained to have same magnitude).

Ref. 11 suggests an incremental solution process for

the bond nonlinear equation presented above. In this

solution, small increments of the assigned boundary

conditions define the loading. In Ref. 11, the bond
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equations are recast into the following nonlinear initial

value form:

dN(x)/dx - q(x) = 0

N(x) i ( 6(x)) = fi<ds(x)/dx) (4-12)

Hutu), with To.) = %(s(x))q(X)

The above equations govern the behavior on the interval

[0,L] of the real axis x [Figure 4.34(c)], with the initial

conditions:

€(0) = (ds/dx)x=o = €.:

s(x=0) = 81

In order to solve this problem numerically, the interval

[0,L] is first divided at the position (or stations) x:

(i= 1,2, ........ ,n; Xl=0, xn=L, XI = Xl+l‘Xi), by n points

into n-l sub-intervals [Figure 4.34(c)].

Once the values Ni, Qi.€i, and Si of the functions

N(x), q(x), E(x), and s(x) at station i are known, the

solution is advanced to the next station i+l using the

following relations:

31.1 = s; + [( 6. + 6,.1)/2]23xi

-(4-13)

Nl+l( €101) - Ni - [{q1 + qioi(51+i)}/2]ABXi = 0

which express an approximate integration of the bond

equations given earlier on the sub-interval (X1,Xl+l). The

above two equations combined together result in a nonlinear

equation with only one unknownelioi, the solution of which

requires repeated evaluation of the functions N(€), q(s) at
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point i+]. Once €g+1 has been determined, and 5;.1, N..1,

and q1§l are available, the procedure can be applied to the

next sub-interval and continued up to the end point n.

The type of integration scheme presented above is

implicit and has the disadvantage of requiring at each step

(interval) the iterative solution of a nonlinear equation.

Furthermore, since the regular boundary conditions

presented in Figure 4.34(b) define the conditions at both

ends, a shooting technique should be implemented and this

involves additional level of iterations that makes the

solution very time-consuming.

The method presented in Ref. 53 is also very similar to

the above method of Ref. 11 except that the concrete

strains are approximately taken into account in Ref. 53.

An interesting aspect of model presented in Ref. 11 and

23 is the distinction between confined and unconfined

concrete in specifying the bond stress-slip envelope curves

along the bar embedded length. According to these

references, the dividing line between the confined and

unconfined conditions can not be sharply defined in the

joint. Therefore, it is suggested to assume a gradual

transistion between the region of well-confined concrete

and the region of unconfined concrete. In summary the

following regions have been assumed in Ref. 23 (Figure

4.35) on the basis of a limited number of test results.

(1) Unconfined concrete extends ldb into the column

cover region on both ends of the joint, where db is the
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reinforcing bar diameter;

(2) Transistion region between unconfined and confined

concrete extends 2ds from the end of the unconfined region

on both ends of the joint,

(3) The remaining length inside the column core is

considered as confined concrete region.

hhhhh
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Figure 4.33: Physical Idealization of Anchored Bar
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figure 4.34: Mathematical Model of Deformed Bar.
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CHAPTER 5

ANALYTICAL STUDIES ON PULL-OUT BEHAVIOR OF BEAM

 

LONGITUDINAL BARS BONDED DEAN-COLUMN CONNECTIONS

5-1 INTRODUCTION

This Chapter illustrates the analytical studies

performed on the pull-out behavior on the beam longitudinal

bars embedded in interior beam-column connections. First an

improved local bond stress-slip relationship is presented

and then a new modeling technique that is based on the

displacement method of analysis is presented. This

technique is significantly more efficient than the

available ones. The Chapter concludes with a parametric

studies on the pull-out behavior of embedded bars.

5-2 AN IMPROVED LOCAL BOND CONSTITUTIVE MODEL

The model developed in Ref. 19 (presented in section

4-3 ) assumes that on the reloading curve, the frictional

bond resistance remain constant before reaching the peak

slip value of the previous cycle in the corresponding

direction, and then the resistance jumps suddenly to the

reduced envelope curve Figure 5.1(a). In order to improve

this model, Ref. 23 has suggested a gradual increase in

the force carried by the bar according to a fourth degree

polynomial [Figure 5.1(b)]. The constant friction

assumption of Ref. 5 does not agree well with the test

results, and the gradual increase of the bond resistance

during the loading proposed in Ref. 23 adds to the

complexity of the model. In this study, the following

135
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simple and realistic law for reloading up to the peak siip

value in the previous cycle was developed [Figure 5.l(c)].

If after the first loading up to point A shown in

Figure 5.1(c), unloading and reloading takes place, after

the elastic part is over in point B, a constant frictional

resistance is assumed to be effective up to reaching the

envelope curve in the reversed direction at point C. This

is similar to the assumption of Ref. 19. In the subsequent

reloading, however, the path is suggested to be different.

In the proposed model it is assumed that the frictional

resistance, that becomes effective at point E in Figure

5.1(c), remains constant up to point F the slip value of

which is the average of the maximum and minimum slip value

so far reached at points A and D, respectively, except

that the sign of the slip value at F should be different

from the one at E, otherwise the slip at F should be taken

equal to zero. This means that line EF either crosses the

vertical axis with zero slip value or at least reaches this

axis. After reaching point F, if the reloading is

continued, the path follows a line drawn from F to G on the

reduced envelope curve as shown in Figure 5.1(c).

Thereafter, the reduced envelope curve is followed. In

incomplete cycles, if the elastic reloading path intersects

EF between E and F [see path RIJK in Figure 5.1(c)],

thereafter the path follows EF up to F, and then goes

linearly towards G as discussed above. In case of

incomplete cycles that intersect the line EF outside the E-
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F range [like path HILM in Figure 5.1(c) ], then from M the

reloading path directly goes towards G on a linear path.
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(c)lmprovement on the Reloading

Branch of Berkeley Models

Figure 5.1: Comparison of E t
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r
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Figures 5.2(a), 5.2(b), and 5.2(c) that compare an

experimental cyclic bond stress-slip curve with the ones

predicted by the proposed model and the model of Ref. 19

show the improvements achieved by the proposed modification

of the model of Ref. 19.
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Figures 5.3, 5.4, 5.5, 5.6, and 5.7 show some cyclic

test results as well as the predictions of the proposed

version of the Berkeley’s model. The properties of the test

specimen19 are also shown in these figures. The model is

observed to predict the test results with reasonable

accuracy.
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5-3 A NEW ANALYTICAL MODEL FOR PULL-OUT BEHAVIOR OF
 

EMBEDDED BARS
 

In this study, a technique based on the displacement

method of analysis has been developed for predicting the

behavior of anchored bars under the action of random load

histories. This approach does not involve iterations at

each load step, and thus it is time efficient for computer

analysis.

In finite element modeling of reinforced concrete

structures, the bond between steel and concrete is

sometimes idealized by discrete springs connecting the bar

at different points along its length to concrete.‘ In the

model developed in this study, the idea of idealizing bond

with discrete springs has been employed for deriving a more

efficient procedure for predicting the behavior of anchored

bars with any of the boundary conditions shown in Figure

4.34(b).

The proposed model is shown in Figure 5.8. Each spring

in this model represents the bond resistance provided by

its tributary length of the anchored bar. In this one—

dimensional model, the concrete strains are assumed to have

negligible effects on the anchored bar behavior11 and thus

the springs in Figure 5.8 are assumed to be rigidly fixed

at the ends connected to concrete.
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Figure 5.8: The Proposed Idealisetion of the Deformed

Bar-Concrete Interaction.

Construction of the tangent stiffness matrix of the

anchored bar model in Figure 5.8 requires knowledge of the

steel and bond constitutive laws. Assuming that these laws

are known, and the history and values of dispacement (slip)

at any of the discrete points along the bar length

Figure 5.8 are available, then the bond tangent stiffness

(kit) and the steel tangent stiffness (kfl) can be derived.

The stiffnesses of the springs (ksi) and the steel

segments (keg) can be computed at each stage of loading

history: .

kbl = kti(‘fldb)li (5-1)

Kai = ktl(‘ndo2/4)/11 (5—2)

where: db = bar diameter;

11 = length of the ith steel segment (Figure 5.8)

Knowing the tangent stiffnesses, steel segment and

springs, the overall tangent stiffness matrix (k7) of the

idealized system shown in Figure 5.8 with n degrees of

fredom (n is the number of discrete points along the bar

length) can be constructed as follows:
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Eqn. (5-3) (tangent stiffness matrix) defines the

relationship between incremental end forces (dPi and dPn in

Figure 5.8) and the incremental slip values along the bar

length (dSl, dSz..., ,dSi,....,dSn) according to the

following expression:

  

   

[(190 (as; i

0 dSz

< . 7 = x: < . (5-4)

0 dSn—l

LdPnJ L dSn J

or assuming that F = Kr‘l.

[dSi 7 rdPl‘

dSz 0

d52 0

 
d : F? = F ‘< i >’ (5-5)

dSn-l 0

    ids dP\ n J L "J

It can be concluded from Eqn. (5—5) that:

dSi fi,idPi + f1.ndPn (5‘5)

dSn fn.ldP1 + fn.ndPn ° (5‘7)

where: fl.) = the element in the ith row and the jth column



of matrix F.

Eqns. (5-6) and (5-7) give the incremental values of

end slip in terms of the incremental end forces. Such

expressions are helpful if the loading is defined by

assigning the two end forces. The loads applied on the

anchored bars are, however, generally defined by assigning

one of the three boundary conditions shown in Figure

4.34(b). In the following, Eqns. (5-6) and (5-7) are

reorganized for use with any of these three boundary

conditions.

Case l:— slip assigned at both ends: solving Eqns.

(5-6) and (5-7) for the incremental end forces we get:

d?) = dSi/fi.1 (5-8)

“‘(dSnfl.l"dSlfn.l)/(fn.nfl.lz/f1.n " fn.lfl.l)

dPn =(dSnfl.l"dSifn,l)/(fn.nf1.l-fl.nfn.l) (5‘9)

Eqns. (5-8) and (5-9) give the incremental end forces in

terms of the input values of the incremental end slips.

Case 2:- slip assigned at one end with force at the

other end equal to zero: by substituting dP with zero in

Eqns. (5-6) and (5-7), and solving for dPn and dSn we get:

dPn = dSn/fn.n (5‘10)

(131 '-'-' (dSn-fl.n)/fn,n (5‘11)

Case 3:— slip assigned at one end with the force at two

ends constrained to be equal: by substituting dPn and dPi,

and cancelling dPi in Eqns. (5-6) and (5-7) the following

expression can be derived for the unknown value of dSl in
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terms of dSn:

dSl == dSn.(f\.rr+f1.i)/(fm.xw+fn.1) (5~12)

The incremental end forces can then be computed using Eqn.

(5—6) or (5-7).

For any of the above boundary conditions, the solution

algorithm at each load step will be as follows:

(1) Using the slip values of the previous load step,

construct the overall tangent stiffness matrix of the

system using bond and steel constitutive laws with Eqns.

(5-1), (5-2), and (5-3). Invert this tangent stiffness

matrix to get matrix F (and its elements f1.i, fi.n, fn.i,

and fn.n);

(2) In case 1: Given dSl and dSn, find dP1 and dPn

using Eqns. (5-8) and (5-9),

In case 2: Given dSn and dP1=O find dPn and d3!

using Eqns. (5-10) and (5-11),

In case 3: Given dSn and dP1=dPn, find dSl from

Eqn. (5-12) and dPi=dPn from

Eqn. (5-6) or (5-7).

(3) Find all the incremental slip values along the bar

length using Eqn. (5-4).

The above algorithm gives the slip values along bar the

length at the end of the current time step. This is the

information needed for constructing the new tangent

stiffness matrix for the next time step. Consequently, the

above algorithm can be repeated for the consequent load

step up to the end of the loading history.

 



The above approach to analysis of anchored bars, unlike

the other available methods,‘-“'19 does not involve

iterative solution of nonlinear equation and thus it is

time efficient for analysis by computer. The proposed

approach is also based on the displacement method of

analysis that is commonly used in conventional computer

programs for static and dynamic analysis of complete

structures. Consequently, this model of anchored bars can

be incorporated into such programs conviniently. This might

provide researchers with a practical tool for studying the

effects of bar slippage (e.g. in reinforced concrete beam—

column connections) on the overall response of the

reinforced concrete structures.

5-4 COMPARISON OF THE PROPOSED EMBEDDED BAR MODEL WITH T§_T

RESULTS

The proposed embedded bar model together with a

bilinear hysteretic model of steel (Figure 5.9) and bond

constitutive laws presented in section 5-2 [Figure 5.1(c)]

were incorporated into a computer program for predicting

the behavior of anchored bars under random cyclic loads.

The analytical results were compared with test results

reported in Ref. 56 in order to check the accuracy of the

proposed model.



 
‘

fi—

Strain

 

 
Figure 5.9: Steel Constitutive Model.

In all of the selected tests, #8 deformred bars with

yield strength of 65,000 psi (450 MPa) were anchored in a

confined concrete specimens (Figure 5.10) with compressive

strength of 4,350 psi (30 MPa). The anchorage length was 25

times the bar diameter. The load histories in the selected

tests included: monotonic pull only [boundary conditions

(2) in Figure 4.34(b)], monotonic pull-push and cyclic pull—

push both with equal end forces [boundary condition (3) in

Figure 4 34(b)].

l‘ -l UnConfined Concrete

‘7] Under Tension

 

db

1 ..-_—_—..—_a P

—~ :2 31:11:.it ‘I‘L "

~£ "f‘ T”
I \ .

== 31? Confmed Concrete   
Reaction Unconfined Concrete

Under Compression

Figure 5.10: Test Speciemea Used For Analytical Studies.
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The anchored bar was modeled as shown in Figure 5.8

with 25 springs simulating the bond between steel and

concrete. In the model it was assumed that the cover

(unconfined) concrete thickness was equal to four times the

bar diameter on each side.

Figure 5.ll(a) compares the experimental and

theoretical end force-end slip relationships for the

specimen tested under monotonic pull only, and Figures

5.ll(b), 5.ll(c), and 5.ll(d) present similar comparisons

for the distributions of slip, bar force, and bond force

per unit length, along the anchorage length of this

specimen at an end slip value of 6 mm (0.24 in). Comparison

between test and theory in all these figures is observed to

be reasonably well in aggrement.

The comparison between the experimental and theoretical

end force-end slip relationships at the pull end of the bar

for the specimen subjected to the monotonic push-pull at

the two ends (with equal end forces) is presented in

Figures 5.12(a). Figures 5.12(b), 5.12(c), and 5.12(d)

also present the comparisons of the distributions of slip,

bar force , and bond force per unit length along the

anchorage length of this specimen at a slip value of 6 mm

at the pulled end. A reasonable comparison is obtained in

this case.
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Per Unit Length Along the Anchorage Length 0

6.0 mm Slip. ( 1 mm 8 0.0394 in.; l N/mma =

6.9 ksi: 1 IN 8 2.28 hips).
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Figures 5.13(a) compares the experimental and

theoretical end force-end slip relationships for the

specimens subjected to cyclic pull-push at the two ends
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(with equal end forces). Figures 5.13(b), 5.13(c), and

5.13(d) present comparisons between theoretical and

experimental distributions of slip, bar force, and bond

force per unit length along the anchorage length of this

specimen at the peak of the second cycle with an end slip

value of 0.023 in (0.580 mm). for this specimen also the

comparison between test and theory is reasonably well.
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5-5 RESULTS OF PARAMETRIC STUDIES WITH THE PROPOSED

EMBEDDED BAR MODEL

Effects of variations in bar dimeter and yield

strength, concrete compressive strength and column axial

pressure on the computed response of anchored bars

subjected to equal push and pull forces at two ends are

presented in the following. Loading rate effects of pull-

out behavior of anchored bars pulled at one end are also

discussed. For the purposed of this parametric study, a

basic specimen similar to the one shown in Figure 5.10 was

chosen. The basic values used for her diameter, concrete

compressive strength, bar yield strength, and column

pressure were 1 in (25 mm), 4,350 psi (30 N/mmz), 65,000

psi (450 N/mmz), and 0, respectively. Unless mentioned

otherwise, these basic values are the ones chosen in the

following discussion.

5-5.l Effect of Bar Diameter: Figure 5.14(a) shows pull-out

force-displacement relationships for embedded bars with

different bar diameters. It can be seen in this figure that

with decrease in bar diameter, the pull-out strength

decreases but better pull-out behavior at large slip values

is obtained. The inferior ductility of larger bars can be

illustrated through comparison of bar slip distribution

along its embedded length (at an end pull-out displacement

of 0.236 in or 6.0 mm) shown in Figure 5.14(b). This figure

shows that as the bar diameter (and consequently the

strength and stiffness) of the bar increases, distribution
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of slip along the bar length tends to be more uniform. This

means that larger bars are less stressed along their

embedment length and thus tend to pull out from concrete

like a rigid rod. In this condition, the pull-out

displacement consists more of bond slip and less of bar

stretching. The fact that bond behavior is not as ductile

as steel stretching behavior illustrates the inferior

behavior at large displacements of bars with larger

diameter.

  
 

  
 

(AK). W

2'
K 4

u

U

C

O

“ HM. ~
'—

3.
.3

S
Q

(1.

vafixvvvfiv*"1

0.0 53.1 10.3 I‘LO

PULL-OUT DISPLACEHENT bun)

- lU. ‘ ’2

g 5.. n

w 19

.4 b. .1

L3

5 g g
_4 .

‘ (b)
a; I.

3

V‘ U.

V v v V I v V v v I v 1 y y]

0 250 $00 750

LENGTH OF EMBEDDED BAR

Effects of Bar Diameter On Pull-Out Behavior:

(a) Pull-Out Force-Displaceme
nt Relationship:

(b) Bond Slip Distribution
.

(1 mm = 0.0394 in.; l N/amz = 6.9 ksi;

l KN = 2.28 kips).

Figure 5.14:



160

5-5.2 Effect of Concrete Compressive Strength: Comparison

of pull-out force-displacement relationships in

Figure 5.15(a) as well as slip distribution along the

embedded length of bars [at a pull-out displacement of

0.236 in (6.

improvement
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Figure 5.15:

0 mm)] in Figure 5.15(b) indicate that the

in pull-out behavior with increase in concrete

strength is not significant.
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5—5.3 Effect of Bar Yield Strength:

Increase in bar yield strength is shown in Figure 5.16(b)

to increase the pull-out strength of the anchored bar,

does not damage its ductility.

but

This can be illustrated

(like the effect of bar diameter) by the more uniform

distribution of slip along the embedment length of higher

strength bars shown in Figure 5.16(b).
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5-5.4 Effect of

pressure is show

in a slight impr

162

Column Pressure Increase in column

n in Figure 5.l7(a) and 5.l7(b) to result

ovement of the pull-out behavior. This

 
 

   

improvement, however. does not seem to have any practical

significance.
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5-5.5 §£££9t_of LoadingHBate: The behavior of anchored bars

apart from their dependency on the mechanical properties

of steel and the bond between steel and concrete, are also

sensitive to variations in the rate of loading.1°-‘9")

Consequently, the anchored bar behavior under high

earthquake-induced loading rates is expected to be

different from the behavior under quasi-static loads. This

difference might influence the current anchorage design

requirements that are based on quasi-static test results.

The particular study reported in this section utilizes

the available test data on loading rate-sensitivity of

steel and bond constitutive laws for analyzing the loading

rate-sensitivity of the anchored bar behavior. Loading rate

effects on the bond constitutive behavior were discussed

earlier in section 3.2. The steel strain rateesensitive

constitutive model used in this study has been developed in

 

Ref. 49(a):

( Bis-€- for €s< fy’/Es

f. =

<

fy’ + En’(€s - fy’/Es) for fy’/Es (Es < Eu’

K 0 (5—13)

where: f; = steel stress;

es = steel strain;

Es = steel elastic modulus;

fy’= dynamic yield strength of steel

3 fy.[(‘4.51X10-6fy 4’ 1.46)

+(-9.20xlO-7fy + 0.927)logxoé I:
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fy = quasi-static yield strength of steel (psi);

: strain rate (l/sec);

En’= dynamic strain hardening modulus of steel

= Eh.[2x10’5fy + 0.077

+ (4xio~6£y - 0.185)logioé 1 < En;

En = quasi—static strain hardening modulus of steel;

Eu'= dynamic ultimate strain of steel

€u.[(-8.93x10‘°fy + 1.4)

+ (—1.79x10-6fy + 0.0327)1ogioé 1;

€u = quasi—static ultimate strain of steel.

Figure 5.18 presents a typical comparison of the steel

constitutive model with test resultsfi
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Figure 5.18: Strain Rate—SensiiiVity Steel Model

(Ref. 49(a)’

The steel and bond loading rate—sensitive constitutive

laws together with the proposed model of embedded bars were
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used to study the loading rate effects on anchored bars

similar to the one shown in Figure 5.19 (pull from one side

only) in which a #8 deformed bar with yield strength of

65,000 psi (450 MPa) is embedded in confined concrete with

a compressive strength of 4,350 psi (30 MPa), and is

subjected to a monotonic pull at one end. Figure 5.20(a)

presents loading rate effects on the end force-slip

relationship of this anchored bar. The end slip rates used

in producing Figure 5.20(a) ranged from 5x1"5 in/sec. (2x10-

smm/sec), that corresponds to quasi~static loading

conditions, to 0.5 in/sec (0.02 mm/sec), that is a typical

rate expected under seismic loads. From Figure 5.20(a) it

can be concluded that with increasing slip rate, the

anchored bar resistance against pull-out increases, but its

stiffness remains practically unchanged. The load at which

large inelastic pull-out of the anchored bar initiates

(from now on this is refered to as the anchorage yield

load) increases by 8.6x in Figure 5.20(a) as the loading

rate increases from the quasi-static level to the values

expected under earthquakes. During analysis, the steel

strain rate-was also computed at the point of load

application. Using the steel strain rate- sensitive model,

it was found that the steel yield strength just outside the

anchored bar region increased by 12% as the quasiustatic

rate was increased to rate expected under earthquakes. This

shows that the increase in anchorage yield strength with

increasing loading rate cannot match the corresponding
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increase in bar yield strength. Consequently. if an

anchorage is designed to remain elastic before bar yielding

under quasi-static loads, its yield might undesirably

precede bar yielding under dynamic loads.

7

[Lk J; 17 db LIA

 

w,,~d Uncuniinud

”“ng __________

T r____-____ F3“
    

L
Contined

1 Concrete

     
 

L

Reaction Forces

Figure 5.l9: Test Specimen (Pull From One Side Onlv

Used In Studying Rate of Loading.

The same undesirable effects of loading rate increase

can be seen in Figures 5.20(b) and 5.20 c; for specimens

that simulate the one used for deriving Figure 5.20(a) [see

Figure 5.19(a)] with the same bar yield and concrete

compressive strengths but different bar diameters. For #6

bar [Figure 5.20(b)] the anchorage yield strength increased

by 3.5% that is considerably lower than the 12.1% increase

in bar yield strength as the loading rate was increased

from quasi-static to the seismic level. The corresponding
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increases in anchorage and bar yield strengths of #10 ha:

were 9.2% and 13.2%, respectively.

The effects of concrete compressive strength on

anchored bar strain rate-sensitivity are studied in Figures

5.20(d) and 5.20(e). In Figure 5.20(d) with a low—strength

concrete (fc’ = 2.9 ksi or 20 MPa). the anchorage yield

strength increased by 10.3% compared to 13.1% increase in

the bar yield stength with loading rate increasing from a

quasi-static level to that expected under earthquake

earthquakes. The corresponding increases in anchorage and

bar yield strengths for the high strength concrete (ft’ =

7.25ksi or 50.0MPa) in Figure 5.20(e) are observed to be

11.8% and 13.1% respectively. Hence, the effects of

increasing loading rates are still undesirable, and

irrespective of concrete compressive strength, the increase

in the anchorage yield strength at higher loading rates is

less than the corresponding increase in bar yield strength.

In Figures 5.20(b) through 5.20(a) the anchorage stiffness

can be seen to remain insensitive to loading rate

variations for diffeerent bar diameters and concrete

compressive strengths.

The effect of bar yield strength on anchorage loading

rate-sensitivity are studied in Figures 5.20(f) and

5.20(g). the specimens for these figures were similar to

the one used for producing Figure 5.20(a) except for the

bar yield strength. It should be noticed that the strain

rate-sensitivity of bar yield strength is stronger for
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lower strength concrete.*"4’Thv anrhoragu YIPld strength

for the low-strength steel bar (fy: 43.5 ksi or 300 MPa) in

Figure 5.20(f) increased by 17.4% that was still lower than

the corresponding increase of bar yield strength (21.3%).

Hence, for low-strength steel too, the increase in loading

rate produces undesirable effects. For the high-strength

steel bar (fy= 87.0Ksi or 600 MPa) in Figure 5.20(g),

however, the increase in anchorage yield strength (6.8%)

was higher than the corresponding increase in bar yield

strength (5.4% as the loading rate increased from the quasi-

static level to the level typically expected under

earthquakes. Hence, for a very high-strength steel, the

increase in loading rate has a desirable effect and

increases the safety against possibility of bar pull out

before steel yielding. At different bar yield strengths

also, the anchorage stiffness is not loading rate-

sensitive.
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CHAPTER 6

PULL-OUT BEHAVIOR OF BEAM LONGITUDINAL BARS HOOKED IN

BEAM—COLUMN CONNECTIONS

6—1 INTRODUCTION

Longitudinal bars of reinforced concrete beams are

generally anchored in the exterior beam-column connections

by 90° hooks [Figure 6.1(a)]. these hooks resist pull-out

forces, and prevent large fixed-end rotations that can

contribute significantly to the overall bean deflections

[Figure 6.1(b)].23 It is thus important to assess the

behavior of hooked bars under pull~out forces in order to

predict the beam fixed-end rotations.

l fixed—end

l ‘n/L?———*”"’ rotation

...~

I

l

l l

I l

I

l

l  L
(b) Hook Resistance Against

(a) A Typical Exterior Fixed—End Rotation

Joint

  
Behavior of Exterior R/C Connections

Under

Figure 6.1:

Been End-Monent.



The resistance of hooked bars against pull out is

provided by the bond between steel and concrete along the

straight esbedded length of the bar, and by the hook itself

(Figure 6.2).1 Bond between deformed bars and concrete has

been studied rather extensively,1'1"19'23""53'5° while

the reported studies on hook behavior are

scarce.37(3)'33(C)"‘ The present work is an experimental

study on the behavior of 90° standard hooks embedded in

confined concrete specimens (that simulate the exterior

beam—column connections) under the action of monotonic pull~

out forces.

 

Bond

E; 7 Resistance

Hook

Resistance

    #:135_L_

F gure 6 2‘ Resistance
of Hooked Bars Against Pull-Out

i . .

Forces.
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6-2 BMRKGBQHED

The available test data on hook behavior are very

limited. Refs. 20, 37(a), and 38(c) have reported some test

results on specimens shown in Figures 6.3(a), 6.3(b), and

6.3(c), respectively. From test data reported in Ref. 38(c)

it can be concluded that for hooks embedded in plain

concrete specimens (Figure 6.3), an increase in the angle

of bend reduces the hook pull-out stiffness, but does not

change the pull-out strength.

The full-scale exterior beam-column joints tested in

Ref. 37(a) [Figure 6.3(b)] failed suddenly with entire side

of the column face spelling. Increase in concrete cover

thickness normal to the hook plane increased the ductility

of hooked bars subjected to pull-out forces. Confinement of

concrete surrounding the hook was also found to improve the

behavior of #11 hooked bars, but did not significantly

influence the performance of #7 hooked bars. Test results

reported in Ref. 37(a) showed no effect of column axial

load or angle of hook bent on the overall hook behavior.

Ref. 20 has summarized results of a limited number of

tests on single #8 hooked bars embedded in confined

concrete specimens that simulated exterior beam-column

connections [Figure 6.3(c)]. An empirical constitutive

model was developed for 90° standard hooks in Ref. 20,

which will be presented later.
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6-3 Test_Program
 

The specimen tested in this study (Figure 6.4) simulate

the behavior of hook inside an exterior beam-column

connection. The connection was confined according to the

ACI code1 requirements for R/C frames located in high

seismic risk zones. The straight embedded length of bar was

covered with a plastic tube. This eliminated the bond

resistance, and left the 90° standard hook to provide the

pull-out resistance. The compression zone of the beam was

duplicated in these tests with a steel plate bearing

against column face.
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Concrete was cast vertically in the direction of hook

bent. A plastic sheet was placed horizontally at the level

of anchored bars in concrete cover in order to artificially

produce the radial cracks that could occur under pull-out

forces if the bond between straight segment of the bar and

concrete was not eliminated. Type IA Portland cement, and

aggregate with a maximum size of 3/4 in.(19.l mm) were used

in the mix. The specimens were cured in moist room for

seven days before their wood forms were removed. They were

then kept in moist room for another seven days after which

they were exposed to the uncontrolled lab environment. The

specimens were tested at the age of 30 i 2 days. All the

steel bars used in reinforcing the specimens were grade 60,

and their actual yield strength obtained from tensile tests

was about 70 ksi (480 MPa).

The seven specimens tested in this study had the same

general geometry (Figure 6.4), but the hooked bar size,

confinement, and concrete strength varied in different

specimens are discussed below:

a) Anchored bars were #6, #8, and #10;

b) confinement was provided by #3 ties spaced at 3 in.

(76.2 mm) or 4 in.(101.6 mm), or #4 ties spaced at

3 in (76.2 mm) center to center;

c) the concrete compressive strength were either 3,780

psi (26.1 MPa) or 6,050 psi (41.7 MPa).
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Table 6-1: summarizes the properties of the seven

specimens tested in this study.

Table 6~l: Properties of Test SpeCimena on Hook

 

 

Bar Lateral Concrete Compressive

Specimen Size Confinement Strength (psi)

1 Standard '0 a) Q 1' 3700

2 Standard .0 03 Q 1' 3700

Low

3 Confinement .8 s3 6 6' 3780

High

5 Confinement 00 Ck Q 1' 3700

High

5 Concrete Strength .0 .3 Q 3' 6050

Small

6 Hooked Sara 06 .3 Q 3' 3700

Large

7 Hooked Bars 010 a) e 3' 3780

 

The test setup is shown in Figure 6.5. Two hydraulic

actuators bearing on concrete column applied quasi-static

pull-out force on the hooked bars. The load was measured by

a load cell located midway between the two bars. Four

electrical displacement transducers (two for each bar) were

used to measure pull-out displacements at a point on

anchored bars 4 in.(101.6 mm) above the column face. The

hook pull-out (at point A in Figure 6.5) was obtained by

subtracting the extension of anchored bar between point A

and the point to which transducers were fixed from the
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average measurements of the two transducers (bar extenSions

were measured in seperate tension tests). The tests were

discontinued after excessive cracking of specimens and

large pull-out displacements.
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Figure 6.5: Test Set—Up Used In This Study.

6-4 Test Results

The crack pattern and general behavior of all specimens

were similar. At about half the ultimate load, the crack

that was artificially produced by placing plastic sheets in

specimens started to grow and extended along the hook

[Figure 6.6(a)]. Radial cracks normal to the direction of

artificially produced cracks appeared later in the loading

history [Figure 6.6(b)]. Near ultimate load, the specimens

had a clear tendency to expand in the direction normal to
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the hook plane. This resulted in spelling of concrete cover

[Figures 6.6(c) and 6.6(d)]. This tendency to expand can be

illustrated by the fact that pull-out forces produce large

compressive stresses inside the hook bend [Figure

6.7]39(C), and with the increasing poisson’s ratio of

concrete under high compressive stresses, concrete tends

to expand laterally and push against the ties and the

cover.

Figures 6.8(a) through 6.8(g) show pull-out force

versus hook pull-out displacement relationships for the

seven specimens tested in this study. The Curves in this

figures represent the average behavior of the two hooks in

each specimen. These two hooks behaved almost identically

under pull-out forces.

From test results presented in Figure 6.8 it can be

concluded that: (a) with increasing bar diameter, the hook

ultimate pull-out force as well as its pull-out resistance

at large displacements increase considerably [see Figure

6.9(a)]. This increase is, however, smaller than the

increase in bar yield strength; (b) the hook pull-out

resistance also increase with increasing confinement

[Figure 6.9(b)]; (c) the higher concrete strength used in

specimen 5 did not significantly improve the hook behavior,

but more test data are needed before a final conclusion can

be made in this regard.



181

 
(a) Cracking Along Hook.
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(b) Radial Cracks Normal to Direction of

Artificially Produced Cracks.
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(c) Spelling of Concrete Cover.
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(d) Total Spelling of Concrete Cover.

Figure 6.6: Cracking of Specimen Under Gradual

Increasing Load.
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Figure 6.7: Compressive Slrvssvs lnsndv the Hook Bent.
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1 kip I 0.445 IN).
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6-5 EMPIRICAL FORMULATIONS

The following equations (Figure 6.10)2° were chosen to

represent the relationship between the hook pull-out force

(P) and its pull-out displacement (u)2°:

Pi.(u/ui)°-2 for u‘g u:

p: p, foruiguguz

Pi - (u-uz)(Pi-Pa)/(us-u2)> Pa for u )uz

(6-1)

The characteristic displacement values (ui, uz, and us)

in the above constitutive model were derived from test

results:

0.1 in.(2.5 mm)III

0.3 in.(7.6 mm)u:

us = 1.5 in.(38.l mm)

Characteristics force values (Pi and P3) in this model were

derived from results of tests on different specimens, and

they are presented in Table 6-2. For well confined concrete

specimens with compressive strength of about 4,000 psi

(about 30 MPa), these values can be approximated by:

P1 = 61(1.2db - 0.2) kips (with db in inches)

= 27.1(0.5db - 0.25) KN (with db in mm);

P3 = 33(l.2db - 0.2) kips (with db in inches)

14.7(0.05db - 0.25) KN (with db in mm);

where db = bar diameter.
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q or P P = P1(u/u1)‘a'
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u1(sl) uzlsz) u3(s3) u or s

Figure 6.10: General Shape of Rook and lend Constitutive

Models.

Table 6-2: Characteristic Pall-Out Force Values In the

Constitutive Model of looks 0ives In Ian. (6-1)

 

 

Specimen
P1 (kips) ' F3 (kips)

1 (Standard)
66

36

2 (Standard)
50

32

3 (Low Confinement)
67

6

I. (High Confinement)
66

35

5 (High Concrete Strength)
61

22

6 (Small. llooked let) .6
41

25

7 (Large hooked Bar) 010 ‘ 77 “
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Specimens 1 and 2 in this study were similar to the

specimens tested in Ref. 20 except for the number of hooked

bars which were two in this study (Figure 6.4) and one in

Ref. 20 [Figure 6.3(c)]. The constitutive model that

represents the behavior of books in the specimens of Ref.

20 is compared in Figure 6.11 with the experimentally

observed behavior of hooks in specimens 1 and 2 of this

study. This figure also shows the constitutive model

developed in this study.

This Study
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Figure 6.11: Comparison of Rook Behavior Observed in This

Study with Ref. 20. (1 in. = 25.4 mm;

1 kip = 0.445 KN).
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6-6 angigricitgsigglgg on ngiuooxsn BAR §§HAVIOR

A hooked bar consists of a standard hook and a straight

segment of the bar embedded in concrete. The physical model

shown in Figure 6.12 was used in this study for analytical

studies on the hooked her behavior under pull-out forces.

In this model, bond is simulated by springs connecting the

bar to concrete along the embedded length.“ The hook is

also idealized as a single spring connecting the bar end to

concrete.

 

' "—‘ \ / Unconfined

J? “NC.

3AM: ' 2 '2 " :z‘: —-- ......

/ “fifif

Confined

Concrete

"tick

Spring Bond

Springs

 

   
w [H

lr~ ZSdb

A  
Figure 6.12: Physical Model of Book Anchorage.

Constitutive models of the springs in Figure 6.12 as

well as the steel constitutive law are needed for
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constructing the tangent stiffness matrix of the anchored

bar. This stiffness matrix can be used for analysis of bar

pull-out behavior.

The bond constitutive model used in this study is an

empirical one presented in Ref 19 (that was also presented

in Chapter 5):

where: q

Ill

U2

1.13

Q].

qliu/UI)°°‘ for u g u:

‘11 for ui g u g uz (6-3)

ql‘iu‘uz)(Qi-qs)l(us-uz)qu for u > uz

bond stress;

slip; and for a concrete with compressive

strength of about 4,000 psi (about 30 MPa):

0.394 in.(l.0 mm) for confined concrete

0.0118 in.(0.3 mm) for unconfined concrete in

tension;

0.118 in.(3.0 mm) for confined concrete

0.0118 in.(0.3 mm) for unconfined concrete in

tension;

0.413 in-(10.5 mm) for confined concrete

0.0394 in.(l.0 mm) for unconfined concrete in

tension;

1,960[(3.5-db)/2.5] (psi) for confined concrete

with db in inches

l3.5[(89-db)/63.5] (MPe) for confined concrete

with db in mm

725[(3.5-db)/2.5] (psi) for unconfined concrete

in tension with db in inches

 

 



195

= 5[(89-db)/63.5] (MPa) for unconfined concrete

in tension with db in mm;

q3 = 725 psi (5 MPa) for confined concrete

= 0 for unconfined concrete in tension;

db = bar diameter.

The constitutive model for spring representing 90°

standard books was presented earlier ( see Eqn. 6-1 and

Figure 6.10). A bilinear model was used in this study to

represent the steel areas-strain relationship. The strain

hardening modulus was assumed to be 1.73 of the elastic

modulus in this model.

The validity of the above anchored bar model was

checked through comparison of its predictions with test

results reported in Ref. 37(a). This reference has

presented experimental pull-out force displacement

relationships for deformed bars anchored by 90° hooks in

confined concrete specimens [Figure 6.3(a)]. Concrete

compressive strength in these tests was about 4,000 psi

(about 30 MPa). and steel yield strength was 65,000 psi

(450 MPa). Figure 6.13 shows a comparison of test results

on two different sizes of anchored bars with analytical

predictions based on the physical model shown in Figure

6.12. The model is observed to be capable of predicting

test results with a reasonable accuracy.
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Figure 6.13 Comparison of Test (Ref. 37(a)] and Theory.
(1 in. = 25.4 mm; 1 kip = 0.445 KN).

The above analytical model of hooked bars was also used

to evaluate the new ACI code1 requirements for anchorage of

deformed bars by standard hooks. ACI code (318-83)1

suggests the following equation for basic development

length of hooked bars:

lhb = 1200 db/\/fc' (6-3)

basic development length (in);where: lhb

bar diameter (in);db

concrete compressive strength (psi);fc’

For well-confined concrete, the basic development length

shall be multiplied by a modifying factor of 0.8

Following these ACI guidelines, grade 60 hooked bars #6,

#8, and #10 require development lengths of 12 in-(305 mm),
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15 in.(381 mm), and 19 in (483 mm), respectively, when

embedded in confined concrete with compressive strength of

4,000 psi (27.6 MPa). Books with these devopment lengths

were modeled as shown in Figure 6.12, and the constitutive

models of bond and hook given Eqns. (6-1) and (6-2) were

utilized for deriving pull-out force-displacement

relationships of hooked bars. The analytical results

presented in Figure 6.14 for hooked bars #6, #8, and #10,

respectively, indicate that if the current ACI requirements

for development of 90° standard hooks in tension are

followed, a satisfactory ductile behavior will be achieved

in which the bar yields before the anchorage fails.
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Figure 6.14: Effect of Bar Diameter.

(1 in. = 25.4 mm; 1 kip = 0.445 KN).
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CHAPTER 7

SUMMARY AND CONCLUSIONS

An integrated experimental-theoretical investigation

was performed on the cyclic dowel and pull-out behavior of

beam longitudinal bars at beam-column connections. The

results are expected to facilitate consideration of fixed-

end rotation and sliding shear deformation of beams in

seismic analysis of reinforced concrete structures.

A summary of the major activities and findings of the

research project is presented in the following:

DOHBL ACTION OF BEAM LONGITUDINAL EARS AT BEAM-COLUMN

INTERFACES: Monotonic cyclic tests were performed on

 

different sizes of dowel bars. The tested specimens

simulated behavior of dowel bars in monotonic action

against beam core and cover, and in cyclic action. The beam

on an elastic foundation theory together with test results

were used to develop formulation for dowel strength and

load-deflection relationships in action against cover and

core, and for hysteretic rules governing the cyclic

behavior of dowel bars. The results indicated that:

- In action against beam core, the ultimate strength

was reached when a split crack appeared in the plane

of dowel bar and load. The major factors influencing

behavior of dowel bars in action against core include

her diameter, and to a lesser extent its yield

strength. The effect of concrete compressive strength

was relatively small;
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- In dowel action against cover beam cover, the

stiffness dropped when a split crack separated the

concrete cover from the core. The ultimate load was

reached when the stirrup located near the point of

dowel load application yielded. Before split

cracking, dowel bars acting against cover behaved

similar to the ones against core. After split

cracking, however, the action against cover was more

flexible;

- Cyclic application of dowel load resulted in severe

degradation of dowel bars stiffness and energy

absorption capacity. Dowel strength, however, did not

deteriorate under cyclic loads, except for very small

dowel bars, and the hysteretic envelope practically

coincided with the monotonic dowel load—deflection

diagrams. The interface crack width was also observed

to grow with repeated application of load cycles.

PULL-OUT BEHAVIOR OF BEAM LONOITUDINAL BAR BONDED 1N BEAM-

COLUMN CONNECTIONS: A new modeling technique based on the

displacement method of analysis was developed for

predicting the behavior of deformed bars anchored in

concrete. In this model, the bond between steel and

concrete was simulated by discrete springs connecting the

bar to concrete along the anchorage length. Uhlike the

other available analytical models of anchored bars that

require iterative solution of the governing nonlinear

equations, the proposed approach is non-iterative and it
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involves construction of the tangent stiffness matrix of

the anchorage model at each load step. This technique is

time-efficient for computer analysis, and its predictions

were shown to compare well with test results. A parametric

study was performed on the pull-out behavior of beam

longitudinal bars embedded in interior beam-column

connections using the model developed. The results

indicated that:

- With increasing ber diameter and yield strength, the

pull-out strength increased but the ductility

decreased. This can be illustrated by the observation

that slip distribution along the esbedded length of

bars with larger diameter and yield stength tends to

be more uniform; .

- Increase in concrete compressive strength and column

pressure resulted in slight improvements in pull-out

behavior that do not appear to be of practical

significance;

- The anchored bar pull-out strength increased with

increasing loading rate. This increase was in general

less than the corresponding increase in the bar yield

strength. As a result, anchored bars that yield

before pulling out under quasi-static loads might

fail by pull-out under dynamic loads. This effect is

not desirable and results in loss of energy

absorption capacity.
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QERAEIQ§,OF BEAM LONGITUDINAL BARS ROOEED IN_§§AM—CO§DMN

CONNECTIONS: Pull-out tests were performed on 90° standard

hooks anchored in confined concrete specimens that

simulated external beam-column connections. The effects of

anchored bar diameter, confinement of concrete surrounding

the hook, and concrete compressive strength on the hook

behavior were studied experimentally. Empirical

formulations were also developed for the hook pull-out

force-displacement relationship and they were incorporated

into a physical model for predicting the pull-out force—

displacement relationship of beam longitudinal bars booked

in exterior beam-column connections. The results of

analytical approach compared well with test results, and it

was used to check adequacy of current ACI requirements for

development of 90° standard hooks in tension.

From the experimental and analytical results it could

be concluded that:

- The hook pull-out resistance increases with

increasing bar diameter, but this increased was lower

than the corresponding rise in the bar yield force;

- Better confinement of concrete surrounding the hook

also improved the hook behavior.

- Under monotonic pull-out forces, the ACI design

guidelines resulted in hooks with a satisfactory

ductile behavior.
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