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ABSTRACT

CONTRIBUTIONS TO CONSTRUCTION OF GENERALIZED YOUDEN DESIGN.

ON CONSTRUCTION OF ORTHOGONAL LATIN SQUARES

USING THE METHOD OF SUM COMPOSITION

By

Felipe Ruiz

The present thesis deals with two independent problems.

In the first part (Chapters I and II) we investigate generalized

Youden designs while in the second part (Chapter III) we further

study the method of sum composition of Latin Squares introduced

by Hedayat and Seiden (1969).

Generalized Youden designs were introduced by Kiefer (1958)

who proved E-optimality and, in the presence of some divisibility

conditions, D-Optimality. In Chapter I we study optimality in

detail and investigate relationships among the parameters; several

necessary conditions for existence of GY-designs are found, and

the chapter closes with the usual analysis of these designs.

Chapter II is devoted to the construction of GY-designs;

using well-known combinatorial systems such as finite geometries,

symmetric balanced incomplete block designs, Latin squares, etc.

We construct several infinite families of GY-designs; the last

construction of this chapter provides an infinite family of GY-

designs whose parameters do not satisfy Kiefer's divisibility con-

ditions and which are not D-optimum.



Felipe Ruiz

The method of sum composition of Latin Squares allows us

in certain cases to construct O(n,2) sets by composition of a

O(n1,2) and a O(n2,2) set, n = n1 + n2. It is assumed that

O(n1,2) is based on GF(n1) and formed by A(x), A(y), where

for any r E GF(n1), r i O, A(r) is the n1 X n1 square with

element rai +-a in its (i,j) cell, 01,0 6 GF(n1).

J J

2

Hedayat and Seiden have further assumed that xy = a

for some a E GF(n1); we free ourselves from that restriction

and obtain further constructions. We also prove that the con-

dition xy = 02 is a necessary one in 12 of the 24 possible

patterns of composition of O(pa,2) and 0(3,2),

2

Removal of the restriction xy = 0 produces compatibility

equations which are non-linear in both x and y, therefore

allowing the possibility of extending the method of sum composi-

tion to construction of O(n,3) sets.
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CHAPTER I

ANALYSIS OF GENERALIZED YOUDEN SQUARES

1.1 Introduction

Frequently in scientific investigations the experimenter

wishes to study the effect of several variables that he can control

on a response or dependent variable which he can observe and measure.

The variables under the control of the experimenter are called

FACTORS and they would appear at various categories or IEVELS; a

situation in which every factor appears at some level is a

TREATMENT. Clearly if a design contains m factors F1,F2,...,F ,

m

where F assumes si levels, i = l,2,...,m, there are 31.32 ... s
i m

possible treatments. A design which includes exactly one observation

on each of the 31,...,sm possible treatments is called a COMPLETE

FACTORIAL DESIGN; if several observations are made on each treat-

ment it is called a FACTORIAL DESIGN WITH REPLICATES; if all factors

assume the same number of levels (i.e. ai = s, i = l,2,...,u0 the

design is SYMMETRIC; a COMPLETE SYMMETRIC DESIGN consists therefore

of all sm m—tuples of the 3 levels.

If the number of factors is large, the number of treatments

necessary for a complete design becomes prohibitive; hence the need

for fractional replication and confounding.

Fractional replication was studied, among others, by Finney

(1945), Plackett and Burman (1946) and Plackett (1946). Essentially



a l/sn replication of a complete sm factorial design is a partition

of the 3m treatments into blocks of sm-n treatments each; the

partitioning is said to be of STRENGTH t if no effect of interaction

of t or fewer factors is confounded with the block effect. By

using fractional replication the experimenter can discover cheaply

at the early stages of his research which factors among many have

an important effect on the product.

Balanced Incomplete Block designs are an example of fractional

replication of complete two-factor designs, while Latin Squares,

Youden Squares and Generalized Youden designs are fractional

replications of three-factor designs.

Definition 1.1.1: A (v,b,k,r,x) Balanced Incomplete Block (BIB)

design is an arrangement of v elements (varieties) in b subsets

(blocks) of k varieties each, such that any two distinct varieties

occur together in I blocks.

Then any variety occurs in r blocks and

vr = kb , x(v-l) = k(r-l)

If v = b the BIB design is said to be Symmetric.

Definition 1.1.2: A Latin Square g£_9£gg£_ g_ is a square matrix

of order n on a set of n varieties such that every row and

every column is a permutation of the set of varieties.

Definition 1:1;25 A (v,k) Youden design is a k X v matrix on

v varieties such that with the columns as blocks it is a (v,k,x)

symmetric BIB design, and each row is a permutation of the varieties.

Definition 1.1.4: A (v,b,k,r,x1,x2) Generalized Youden (GY)

 

design is a k X b matrix on a set of v varieties such that the



following conditions are satisfied:

a) Every variety occurs r times.

b) Every variety occurs either m or mml times in each row,

as well as either n or n+1 times in each column, where

b

m is the integer part of 3' and n is the integer part of

k

V

c) Every two distinct varieties occur together X1 times in the

same row and X2 times in the same column.

Generalized Youden designs were first introduced by Kiefer

(1958), who proved some optimality prOperties of those designs

and gave two examples with two and four varities respectively;

however he made no attempt to construct GY-designs.

In the next paragraph we examine closely the Optimality

properties of GY-designs.

1.2 Optimality of GY-designs

Let the linear hypothesis to be tested be R8 = 0, where

a is the p-rowed vector of parameters to be estimated and R is

a q X p matrix of rank q s p; by means of an apprOpriate linear

transformation this hypothesis can be reduced to the canonical

form

The covariance matrix of the best linear estimate of B is

cov(§) = (xTX)‘1xT cov(Y)X(XTX)-1 = (xTxflo2



where X is the matrix of the design and Y is the vector of

2

observations with covariance matrix a I.

We restrict ourselves to the use of the F-test whose power

function is a monotonically increasing function of the parameter

x = 1; BTPTIP (XTXYLPTJPe

Q

where P = ( ), 0 being a r X 3 matrix of zeros (see,I ,0

q q,p-q r93

for instance, Tang 1938).

2

It is known that the minimum value of o X on the unit

sphere (PB)T(PB) = l is equal to the smallest eigenvalue of

P(XTX)-1PT; similarly the greatest eigenvalue equals the maximum

value of 02X on the sphere. Therefore we maximize the minimum

power of the F-test on the contour (PB)T(PB) = l by maximizing

the smallest eigenvalue of P(XTX)-1PT.

. . * T -1PT
For a given design d we will de31gnate Ad = P(X X)

Remembering that the determinant of a square matrix equals the

product of its eigenvalues, we are naturally led to the following

criteria.

Definition 1.2.1: A design d is said to be E-optimum in a class

A of available designs if

* *

min E(A ) = max min E(A ,)
d , d

dEA

where for any square matrix A, E(A) represents the set of eigen-

values of A.

Definition 1.2.2: A design is said to be D-optimum in a class A

of available designs if



*

det(Ad) = max det(A:.) .

d'EA

Both criteria of optimality were introduced by Wald (1943),

who also proved D-optimality of Latin Square designs. Keifer (1958)

has proved that GY-designs are E-optimum, and also that they are

D-optimum if either k or b is a multiple of v. We will show

in the next chapter that if neither k nor b are mutliples of

v the GY-design may fail to be D-Optimum. The problem presents

itself of determining, in the absence of the divisibility condition,

whidh cases give D-optimum GY-designs and which cases do not; we

were so far unsuccessful in solving this problem but hOpe that

further research will overcome the difficulties.

1.3 Properties of GY-designs

The row-incidence matrix of a GY-design is a v X k matrix

A = (a ), where a, is the number of times that the i-th variety

ij ij

appears in the j-th row; of course aij € {m,m+l}.

Similarly, the column-incidence matrix of a GY-design is
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that the i-th variety appears in the j-th column; evidently,

a v X b matrix B = (bij)’ where b, is the number of times

b ,m+ .ij E {m 1}

Notation: The quotient and remainder of the division of an integer

a by another b will be written [3] and a respectively.

(b)

Theorem 1.3.1: In a GY-design

i) The number of rows containing a given variety m+1 times

is the same for all the varieties, and equals r(k).

ii) The number of columns containing a given variety n+1 times

is the same for all the varieties, and equals r

(b)°



iii) The number of varieties occurring mfil times in a given row

is the same for all rows, and equals b(v)'

iv) The number of varieties occurring n+1 times in a given

column is the same for all columns, and equals k(v)°

2529;: Let 0(1) be the number of rows which contain the i-th

variety m+1 times. We must have

a(i)(m+1) + (k - 01(1))m = r , or

(1) 01(1) + km = r

therefore 0(1) is independent of i. Obviously kb = rv, therefore

[E1 = [g] = m, and thus r = mkn+ r(k). Substituting in (1) we

obtain the desired result

(1)
= r .

0’ (k)

The proofs of ii), iii) and iv) are entirely similar and

therefore omitted.

Theorem 1.3.2: Let A be the row incidence matrix of a GY-design.

Then

(1) AAT = (b - v)I + J
r kl v N1 v

(2) A' = AT' = b‘
Jk er ’ JV Jk

where AT is the transpose of A, I is the unit matrix, J =.J
v v v,v

is the v X v matrix of 1's, jn is the n X 1 vector of 1's.

Similarly for the column incidence matrix B,

T

BB = (rk - szflv + XZJv



Proof: Let a(1) be the l X k vector whose j-th component is

811; then the element in the i-th row and L-th column of AAT is

(i)a(L); clearly a(i)a(L) = A if

1

mac)
let us count the number of occurrences

 

the inner product a i # L.

In order to obtain a

in the same row of the design of pairs containing a particular

variety vi; on the one hand V1 is paired 11 times with each

of the remainder v-l varieties; on the other hand if vi appears

aij times in the j-th row of the design it will form pairs with

each of the b - aij varieties (not necessarily different) left in

the row, each pair being counted 3, times, for a total over the

k U

rows of 2 (b - a,j)aij = (bjk - a(i))a(i); the two counts provide

i=1 1
us with

. (i) (i) _
(ka - a )a - 11(v-1)

which gives

a(1)a(1) = rb - x1(v-1)

and therefore the result

AAT - (rb - )I -I- J

11V v I1 v'

Part (2) is self evident.

Theorgm_l.3.3: In any GY—design

2

(l) Xik s r

(2) x21. 5 3

Proof: For real numbers a1,a2,...,an it is always true that



n 2

( 2 81) s n

i=1 i

2

a .
1 i

I
I
M
D

Applying this inequality to the components of the vector a(1)

and using the previous theorem we obtain

2

r 5 k(rb - x1(v-l))

which, remembering that kb = rv, gives

0 s (v-l)(r2 - ilk)

and therefore the theorem.

Part (2) is proven in the same fashion.

Theorem 1.3.4: In any GY-design

xlv s rb

yzv s rk .

Proof: Schwartz inequality gives

(a<i)a<t>)2 S (a<i>a(i))(a<t)a<t>)

By Theorem 1.2.2 this gives

TI s [rb - x1(v-1)]2

2

or o s [rb - x1<v-1)]2 - 11

0 S [rb - x1(v-l) + x1][rb - xlv] .

The first factor of the product is always positive, since

(i) (i)
rb - x1(v-1) + N1 = a a + N1 > 0, and hence so is the second,

giving the theorem.

Part (2) is similarly proven.



Theorem.1;§;§; Let (vi’YL) be a pair of distinct varieties;

let ab, a1, 20 be the number of rows containing the pair

(v1,vL) m2, (m&1)2, m(m&l) times respectively, and similarly

let 80’ 81’ 23 be the number of columns containing the pair

(vi,vL) n2, (n+1)2. n(n+l) times respectively. Then a0, a1,

a, 60’ 51, B are independent of the pair (vi,vL) and

a=rb-)‘1v B=rk-)‘2v

a0 = k - r(k) - rb + Alv 60 = b - r(b) - rk + xzv

01 = r(k) - rb +-x1v 61 = r(b) - rk + xzv .

Proof: Looking at the row-incidence matrix we easily establish

the following relations among a, 00, a1:

Zq+a0+a1=k

a+a1 =r(k)

(1)

ll

>
4
!

0101112 + a1(nrl-1)2 4' 2a m(m+l)

(01 + 0.0)an2 + (a + 011) (m+1)2 rb - Mew-1) .

The first equation expresses the fact that the row-incidence matrix

has k columns, the second gives the number of rows which contain

the i-th variety mnl times, which we know by Theorem 1.2.2 to be

r(k), while the last two are immediate consequences of

a(l)a(L) = 11 a(1)3(1) = rb _ x1(v-1)

Subtracting the 3rd equation from the last one we obtain directly

a=rb-)(1v
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independent of i,L; substituting in the first two equations we

obtain

= r - rb + xlv

“1 (k) =k'r
- b + ,

“o (k) r T1"

In exactly the same way we will obtain the corresponding expressions

for 5, BO, 81'

Theorem 1.3.6: In any GY-design

 

3’ vr(k) ‘ kb(v) br(k) = rb(v)

(I) b) (V-1)(rb - XIV) = b(v) (k - r(k))

r (b - l)

_ (k) (V)
c) 11 - m(r + r(k)) + v-l

8’ vr(b) = bk<v> kr(b) = rk(v)

(II) b) (V‘1)(rk - sz) = k(V) (b " r(b))

r (k - 1)

c) 12 = m(r + r (b) (v)

(b)) + v-l

Proof: If A is the row-incidence matrix of the GY-design, then

A - m Jk v is the incidence matrix of a BIB design with parameters

’

(r',b',k',r',x') where

(V) (k)

Therefore we must have

(1) vr( = kb

k) (v)

(2) (1107-1) = r (b - 1)

(k) (V)
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Equation (1) together with rv = kb gives

br = rb

(k) (V)

therefore proving part a) of I.

By previous Theorem 1.3.5 we know that

= - + .(3) a1 r(k) rb xlv

Substituting in (2) we obtain

(v-l)(rb - xlv) = r(k)(v - b(v))

Using the first result r v = kb we obtain part b) of (I).

(k) (V)

From (2) and (3) we obtain

r ‘[b(v) -l]

v-l +rb-r(k).
 (4) M" =

Notin that b = b - mv and r = mK + r and substitutin

g (V) (k) g

in (4) we obtain after simplifying

(b - m - l)

v - l

1‘

‘0‘) +mr.R1 =

Obsering that b - m = m(v-l) + b(v) we obtain the desired result

)+ r(lower) ' 1)
k1 = m(r + r v _ 1

00

Part (II) is similarly proven.

Corollary 1.3.1: In any GY-design rb = xlv, or equivalently

rk = xzv, if and only if b,(k), is a multiple of v; otherwise

rb > xlv, (rk > xzv).

Proof: It is an immediate consequence of part b) and Theorem 1.2.4.
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Corollary 1.3.2: The matrix AAT,(BBT), is singular if and only if

b,(k), is a multiple of v.

Proof: By Theorem 1.2.2 we know that

T
AA = (rb - xlv)lv + lev .

Since the eigenvalues of XI v are 0 and xlv with multiplicities

v-l and l reapectively, the eigenvalues of AAT are rb - xlv

and rb - xlv + xlv, with multiplicities v-l and 1, therefore

its product, which coincides with det(AAT), is rb(rb - xlv)v-l,

which by previous corollary is zero if and only if b is a multiple

of v.

Corollary 1.3.3: A necessary condition for the existence of a

(v,b,k,r,x1,x2) GY-design is that

(bar) ' 1) and imam)
v - l v - 1

rue ' 1)

both be integers.

2522;: It is an immediate consequence of part c) of the theorem.

Corollary 1.3.4: In any GY-design k.2 v.

2322;: It is Fisher inequality for the BIB design with incidence

matrix A - va.

Assumption: Since the transpose of a GY-design is also a GY-design

we will assume from now on that b 2 k; we will also assume b > v,

since b = v reduces the GY-design to an ordinary Youden design.

1.4 Analysis of GY-designs

(v,b,k5r,x1,x2) - GY-designs serve as designs for factorial

experiments with three factors (row, column and variety) at k,b,v
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levels respectively. The row factor at the i-th level will be

spoken of as the i-th row, and similarly for the other factors.

Every entry of the GY-design represents a treatment, so we have

only N = kb treatments instead of the kbv which will appear

in a complete design.

Let yijL be the observation on the L-th variety in the

i-th row and j-th column; of course L is uniquely determined by

i,j, that is L = L(i,j) where the function L is given by the

design. The model is

= + + +
u- ozi Bj'i'YL eijt

yiJL

where u is the overall mean, a1, Bj’ YE are main effects and

eijL is the random error, that is we assume that no interactions

of two or more factors are present. We further assume that the

random errors are normally distributed around zero with covariance

2

matrix a I.

The model can also be described in matrix notation:

Y = X3 + e

where Y is the N-rowed vector of observations, 8 is the p-rowed

vector of parameters to be estimated (overall mean plus k +'b +-v

main effects), e is the N-rowed vector of errors and X is the

N X p matrix of the design; the normality assumption can be

expressed as Y ~ N(Xa,oI) that is, Y has a multivariate normal

distribution with mean X3 and covariance matrix 021.

We will associate the positive integer a(i,j) = (i-l)b + j

with the (i,j) cell, or plot, of the GY-design. Clearly for



14

every positive integer n sfikb there is exactly one pair (i,j),

or plot, such that a B a(i,j); accordingly, the plot in the i-th

row and the j-th column will be called the a-th plot, and the

corresponding observation the a-th observation, with a = a(i,j).

The matrix X is a matrix of zeros and ones whose rows

correspond to the plots and whose columns correspond to the para-

meters to be estimated. Clearly the column corresponding to p

is a column of 1's only, which we will write as last. Since each

of the k levels of the row factor appears exactly once with each

of the b levels of the column factor, each of the k columns

corresponding to the parameters “1’ i = 1,...,k contains exactly

b ones, each of the b columns corresponding to the parameters

51, j = l,2,...,b contains exactly k ones and the product of the

columns corresponding to ai and Bj is always 1 for any

i = 1,...,k, any j = 1,...,b. Finally the column corresponding

to the parameter yh, h = 1,2,...,v, has a one in the a(i,j) row

if and only if L(i,j) = h and contains exactly r ones. The

matrix X therefore looks like:

’1 o...o 1 o...o o...1...o 1I

10...o o1...o o..1...o 1

10...o oo...1 1

010000 100000 1

01...o o1...o 1

x8 ..... .....

01...o oo...1 1

oo...1 1o...1 1

oo...1 01...0 1

Loo...11o...1 1  



Let

A1 is a b

15

us introduce the matrices A1, Bi, i = 1,...,k where

X k matrix with 1's in the i-th column and zeros else-

where, and B1 is a b X v matrix with a one in the cells

(j,L(i,J)).

of Ones, j

of a matrix

X can be ex

The

so that if

are given by

It is a stra

where A, B

matrices of

j = 1,2,...,b and zeros elsewhere. J will be a matrix

a column vector of ones; we will indicate the dimension

with subindices when necessary. Using these matrices

pressed as

  

normal equations are

XIY = xTx B

T . . .
X X is non-Singular the least square estimates E

E = (xTX)'1 XTY .

ightforward calculation to arrive at

Pblk Jk,b A:,v bit“

JbK k1b B:,V k"jb

Avk Bv,b rIv rjv

n: w.  

are, of course, the row-incidence and column-incidence

the GY-design.
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The normal equations can also be obtained directly from

the model. With the usual notation and side conditions

we obtain

3
-
3

II x
.

0
"

t
)

r
-
i

I
I

x
‘

t
»

+ W

‘
0
)

“
'
1

where, of course, a are the general entries in the row-b

L1’ L1

incidence and column-incidence matrices of the GY-design.

In order to eliminate the row and column effects let us

compute

kb T - b 2 b ,T , - k z a T =
..L 1 L] .J. i 'Li i..

= kb “ - b b b “ - k a . a “ _ b “ =

”’4, 331.1,?th $4,132;in r”

kbr It - kbr a - b §L(rk - 12v) - k yL(rb - 11V) =

. 2 .
YLVEk X1 + b 12 - r ] - kbr p .

2

Dividing by r v,

2

k Al +'b 12 - r

Y = y
r2 L ... ..L

 -12
Ljy-J. r i aLiyi”

- %-z b

1

which gives the variety effects ?L; the row effects &i and column

effects éj can now be easily obtained; from the first normal equa-

tion we obviously obtain fl = y .



CHAPTER II

CONSTRUCTION OF GENERALIZED YOUDEN DESIGNS

2.1 szdesigns with b(v) = 0 9r_ k(v) = 0

Theorem 2.1.1: There exist GY-designs with b = mv, k = nv for
 

any positive integers m, n and v.

Proof: Let {Li j‘i = 1,...,n; j = 1,...,m} be a collection of

9

mn Latin Squares of order v, not necessarily different. Then

the nv X mv matrix

11 12 ... le.I

  
LLnl Ln2 ... an

is a GY-design, since clearly every variety occurs m times in

each row and n times in each column, and every pair of distinct

. 2 . 2
varieties occur together in the same row m k times and n b

times in the same column.

Theorem 2.1.2: If there exists a symmetric BIB design with para-

meters (v,k',x), k' s v, then there exists GY-designs with para-

meters v = v, b = mv, k = nv +'k' for arbitrary positive integers

m, n.

nggg: The other parameters of the GY-design are easily established

to be

17
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r=mk.11_-m2k.12=mT1+n(k+k')].

Let {Bi‘i = 1,...,m} be a collection of symmetric BIB designs,

not necessarily different, with common parameters (v,k',x); each

B1 can be converted to a Youden Square Yi by reordering the

varieties within each block (Smith and Hartley, 1958). Let

{Liin = 1,...,n; j - 1,...,m} be a collection of Latin Squares

of order v, not necessarily different. We claim that the matrix

F‘ 1

Y1 .. Ym

L11 ... le

D = 2

Lnl 00. Ln’m

L. .J  
is a GY—design.

a) Every variety appears v times in each Latin Square and k'

times in each Youden Square, for a total of mnv + mk' = mk = r

times.

b) Every variety appears once in each row of each Youden Square

and of each Latin Square, therefore any pair of distinct

varieties occurs together in the same row of D, mzk = 11 times.

c) Let x,y be two distinct varieties; each Youden Square has 1

columns containing both x and y, (k' - 1) columns containing

x but no y, another (k' - 1) columns containing y but no

x, and the remainder v - X - 2(k' - 1) columns will contain

neither x nor y. Therefore the two varieties x,y will

appear together in the same column in D, [x(n+l)2 + 2(k'-x)n(n+l)

+ [v - I - 2(k'-x)]n2]m = m[x + n(k.+ k'f] = 12 times, which

concludes the proof.
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Note that the existence of a symmetric BIB design is needed

to carry out the construction but is by no means necessary for the

existence of the GY-design, as the following theorem shows.

Theorem 2.1.3: Let s = pn be a power of a prime. Then there

exists GY-designs with parameters

v=s +l,b=s(sz+l),k=s+l.

Proof: The other parameters are easily computed

2 2
r=s(s+l),x1=s(s+l),x2=(s+l)(23 +23+l)

Now let Q be a non-degenerate elliptic quadric in PG(3,s);

it contains 82 + 1 points and each plane of the geometry inter-

sects the quadric Q in either one single point (tangent plane)

or in exactly 8 +'l points forming a non-degenerate quadric

Since Q contains 32 + 1 points, there are s2 +'l tangent

planes and s3 +'32 + s+l - (82 + l) = s(s2 +'l) non-tangent planes.

Taking the points of Q as varieties and the non-tangent planes

as blocks we obtain a BIB design with parameters

v = $2 + 1, b = 3(32 + l), k = s + l, X = s + 1 .

This design has the property that every triple of varieties occurs

in exactly one block, which is a translation of the fact that any

three points of the quadric determine a unique non-tangent plane.

Agrawal (1966) has proved that in any BIB design with

b = mv, the varieties can be rearranged within each block (column)

so that every variety appears in a row m times; the rearrangement

is achieved using systems of distinct representatives, which in
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turn can be constructed with Hall's algorithm (Hall, 1956). After

the rearrangement of varieties, the BIB design becomes the desired

GY-design.

Note that no symmetric BIB design exists with v = 32 + l,

k = s +'l.

2.2 Geometric construction _§_§X;designs

In this section we will consistently make use of the follow-

ing conventions and notation.

s will designate a power of a prime number, s = p“; GF(s)

will stand for the Galois field with 8 elements; EG(2,s) will

designate the Euclidean plane based on GF(s).

Let a0 = 0, a1 = l, a2,...,as-1 be the 3 elements of

GF(s) in some order; let L1 be the line with equation x = 01,

i = O,l,...,s-l and similarly let Lj i be the line with equa-

tion a x'+ y = a1, i,j = O,l,...,s-l; the 3 parallel lines

J

Li, 1 = O,l,...,s-1 form a pencil X, and for each aj E GF(s)

the 5 parallel lines i = O,l,...,s-l, form also a pencil
Lj’i’

Y1; the order in GF(s) induces an order of the lines within each

pencil as follows: for any ai’ aj, an E GF(S),

Li < Lu it and only if ai < au

Lj,i < Lj,u if and only if 0i < an .

The lines L1 and Lj’i will be referred to as the i-th lines

of pencils X and Y1 respectively.

Any point P of EG(2,s) is uniquely determined as the

intersection of a line of the pencil X and a line of the pencil
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Y We can therefore order the points of EG(2,s) as follows:0.

Let P, P' be two distinct points of EG(2,s) given by

P=L1nLOJ’ P'gLi'nLOj'

then P < P' if and only if Li < Li. or i = i' and L0,j < L0,j"

We will assign the numbers 0,1,...,sZ-l to the 32 points

of EG(2,s) in that order. In all the algebraic manipulations

applied subsequently these serial numbers of the points will be

treated as actual numbers.

Lines will be viewed as s-tuples of their points enumerated

in increasing order, and pencils as square matrices of points whose

i-th row is the i-th line of the pencil, i = O,l,...,s-l.

We will use the n X n permutation matrices Tn and en

defined as follows:

By premultiplying a m X n matrix A by Tm we achieve a cyclic

permutation of its rows; by postmultiplying A by gn we achieve

a cyclic permutation of its columns. The subindices will be dropped

whenever the dimensions of the matrices involved are clear.

We will also introduce the transformation a defined on the

points of EG(2,s) as follows:

0(x,y) = (yet) V (x,y) E EG(2.S) -

Y will denote the s2 X 3 matrix



  

r' H

Y0

Y1;

Y = I

s-l

Y C

L 8'1 .I

and G will be the s2 + s X 5 matrix

“1:1 -
Theorem 2.2.1: There exist GY-designs with parameters v = $2,

b=k=s(s+l).

Proof: The other parameters are

'
1 II

(s + l)2 , m = n = l , 11 = 12 = $2 + 33 + 3

2

OI=S ,aO-S-S-l,a1=1.

We will take the varieties of the design to be the points

of EG(2,s).

We claim that each column of the matrix Y is a permuta-

tion of the set of the 82 points.

Suppose that the point a appears twice in the j-th

column of Y for some j; then we must have

{a}=ta.flt =4, (It
, 1 j+q B , k j+8

for some a,e,i,k, a f a, which is impossible since the lines

and L are different and parallel.

LJ'I’OI 1+8

T

Similarly each row of oY is also a permutation of the

points of EG(2,s).
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We now claim that the matrix

X oY

Y L

where L is any Latin Square of order 32, is the desired GY-design.

First note that oXT = X, therefore the first 3 rows of

D are the lines of EG(2,s) written vertically, and we have

natural one-to-one correspondence between the lines of EG(2,s)

and the rows and the columns of D.

Note that a point occurs twice in a row or column of D

if and only if it belongs to the corresponding line; consequently

since no two lines have more than one point in common any two rows

or columns will have at most one point occurring twice in common.

Therefore a1 8 Bl = l and we conclude that D is a GY-design.

Example 2.2.1: For 3 = 4 we have

v = 16 , b = k = 20 , r = 25 , 11 = 12 = 31

o 1 2 3 o 4 8 12

6 7 1 5 13

x= 91011 YO= 2 61014

12 13 14 15 3 7 11 15

o 5 1o 15 o 6 11 13

1 4 11 14 1 7 1o 12

Y1 = 2 7 8 13 Y2 = 2 4 15

3 6 12 3 5 14

o 7 14

1 6 15

Y3 = 2 5 11 12

3 4 1o 13



 

0 l 2 3

4 5 6 7

8

12

11

10

14

15

12

13

9

13

10

ll

13

12

15

14

10 11

14 15

10 14

11 15

15 O

14 1

l3 2

12 3

5 ll

4 10

2 6 10

3 7 11

10 ll 12

11 12 13

12 13 14

13 14 15

14 15 0

15 O 1

12

13

14

15

10

ll

12

l3

14

15

24

10

15

10

ll

12

l3

14

15

14

11

10

11

12

13

14

15

13

10

ll

12

l3

14

15

10

ll

12

l3

14

15

10

11

12

13

14

15

10

13

10

ll

12

13

14

15

15

10

ll

12

l3

14

15

11

12

11

12

13

14

15

13

12

l3

14

15

10

ll

15

13

14

15

10

11

12

l4

14

15

10

ll

12

13

10

15

10

11

12

l3

l4  
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Remark: It seems worthwhile to explain the main idea behind the

construction of the above GY-designs. The points, the lines and

the points within the lines were ordered in such a way that the

corresponding columns Of each of the matrices representing the

parallel pencils Yj’ j = O,1,...,s-l, consist of all elements

of the same row of the matrix X. Moreover since for x = 0 the

equation y = a1 is the same as ajx + y = ai the columns of

each of these matrices consisting of the elements of the row of

the X matrix for which x = 0 are also identical with respect

to the order of their elements within the columns. Consequently,

since no two lines of distinct parallel pencils can have more

than one point in common, the remaining 3 - 1 sets consisting

of 3 columns whose elements belong to the same row of the X

matrix x = ai’ ai # 0, form distinct permutations of these elements

of a specific structure. Namely each element will belong to one

and only one set of 3 columns and will occupy within the set

all the distinct 5 positions of a column. Hence the 3 distinct

powers of the g Operation, which permutes cyclically the columns

of each of the Yj parallel pencils, will place each element in

each of the distinct columns of the matrix Y.

Analogous reasoning applies to the dYT matrix with y

and 7 replacing the roles of x and g respectively.

For the next construction we need the following lemma.

Lemma 2.2.1: There exist Latin Squares of order 32 which can

be split into 8 groups of 3 columns in such a way that every

row in each group is a line of EG(2,s).

Proof: We claim that
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r’ 3" 1
Y0 TYO T 1YO

S-

Y1; TYlg T 1Y1;

L = I Z

8-1 8-1 s— s-l

LYS‘lg TYs-lg ... T 1YS_1C 3  
is the desired Latin Square.

We have already shown that each column of Y is a per-

mutation of the 82 points, therefore so is every column of L.

We must show now that each row of L is also a permuta-

tion of the 82 points; but since Ti is not the identity if

0 < i < s-l each row of L is made out of 3 different lines

belonging to the same parallel pencil and therefore no point can

occur twice in the same row.

Exggple 2.2.3: We have already constructed EG(2,4). The Latin

Square can now be exhibited as follows:

0 4 8 12 l 5 9 13 2 6 10 14 3 7 11

1 5 9 l3 2 6 10 14 3 7 11 15 O 4

2 6 10 14 3 7 ll 15 0 4 8 12 l 5 9

3 7 ll 15 0 4 8 12 l 5 l3 2 6 10

5 10 15 O 4 ll 14 l 7 8 13 2 6 9 12

4 ll 14 l 7 8 13 2 6 9 12 3 5 10 15

L = 7 8 13 2 6 9 12 3 5 10 15 O 4 11 14

6 9 12 3 5 10 15 O 4 ll 14 l 7 8 13

11 13 0 6 10 12 l 7 9 15 2 4 8 l4 3

10 12 1 7 9 15 2 4 8 l4 3 5 ll 13 0

9 15 2 4 8 l4 3 5 11 13 0 6 10 12 l

8 14 3 5 ll 13 0 6 10 12 l 7 9 15 2

14 O 7 9 15 l 6 8 12 2 5 11 13 3 4

15 1 6 12 2 5 ll 13 3 4 10 14 O 7

12 2 5 11 13 3 4 10 14 0 7 15 l 6

l3 3 4 10 14 0 7 9 15 l 6 12 2 5

15

12

13

14

N
H
O
W

b
w
o
m

10

\
O

11
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An attractive feature of this family of Latin Squares is

that they are split into s2 subsquares each of which contains

each of the varieties once. We conjecture that they are orthog-

onally mateless, but were so far unsuccessful in proving it.

Orthogonally mateless Latin Squares of order k are known to

exist for arbitrarily large and even k, but their existence is

unknown for arbitrarily large k when k is odd. Our conjecture,

if true, will give a construction of an orthogonally mateless

Latin Square for all k of the form k = p2“, p a prime number.

Theorem 2.2.2: There exist GY-designs with parameters v = 32,

b = 8(82 - l), k = s(s+l).

Proof: The other parameters are

r=(s+l)2(s-l) m=s-l n=l

-2 _2
r(b) - s - l. r(k) — s - l

7.1 = (s-l)(82 - 1)(s + 2) + (32 - S - 1)

1,2 = (52 - 1) (s + 2) + (3-1)

_ = _2
01-8 010 1 (11—8 -s-1

6 = 52 - s 80 s3 - 232 + l 51 = s - l .

Let L be the Latin Square of order 32 constructed as

in the previous lemma. For every point a, let pL(a) be the

transpose of the column vector of L whose first component is a

with that first component missing, this notation is consistent

since each row of L is a permutation of the points of EG(2,s).

Thus pL(a) is a (82-1)-tuple of distinct points and it does not

contain the point a; is a mapping defined through the Latin
pL

Square L; in matrix notation



pL<a1 = cL(a>T

2

s -l J  

where cL(a) is the column of L whose first element is a.

For any m X n matrix A = (aij)’ pL(A) will be naturally

understood as the m X n(sz-l) matrix pL(A) = (pL(aij))°

Now let G = [:j] and consider the s(s+l) X s(sZ-l)

matrix D = pL(G).

We will prove first that the rows of D satisfy the

requirements for a GY-design.

Any row of D contains every point of the geometry 3

times, except for the 8 points in the corresponding row of G,

which will occur s-l times. Furthermore, since the rows of G

are the lines of EG(2,s) the two elements of every pair of distinct

points occur 5-1 times in the same row of D exactly once.

Therefore a0 = l and the row conditions are satisfied.

Let x, , y be the (i,j) entries in the matrices

13.7 1:3

2

X and Y respectively; let Cj’ j = 0,1,...,s-l, be the s X s -1

matrix whose i-th row is pL(xij)’ i = O,1,...,s-l, and similarly

let Lj’ j = 0,1,...,s-l, be the 52 X 52-1 matrix whose i-th

row is pL(y1j), i = O,1,...,sZ-l. Note that there are no repeated

points in any row or column of Lj’ j = 0,...,s-l, but it is not

a Latin Square since each row has only sZ-l points.

The matrix D can be written
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0 l s-l

L0 L1 ° Ls-l

Observe that since X = YO,

r 1 1 T
T YO

TjY g 0
l 2

1,3 -l

Gj = I j = O,l,...,s-l

I
- 2

TJY 1C8 1 s -l

L. S' ..1 
that is, the matrix C is the transpose of the j-th block of

1

3 columns of L with the first row missing, and that missing

0' Therefore

the columns of G are the lines of EG(2,s) written vertically

1

except for the line LO j and the 3 lines Li, i = 0,1,...,s-l,

’

first row is LO j’ the j-th line of the pencil Y

3

of the pencil X. Hence in each Gj there are s + 1 missing

lines.

The idea Of the construction is to use one of the matrices

Gj consisting of 82 - l = (s+l)(s-l) s-tuple columns to complete

each of the remaining s-l Gj's to a full geometry. We shall

show that this can be achieved by permuting the elements within

each row of the chosen Gj and keeping the rows constant which

will preserve the already established GY-design prOperty for the

rows.

The lines to be recovered by the chosen Gj are the 3

lines Of the pencil X each replicated s-l times plus the lines

of the pencil YO except LO j’ a total of

s(s-l) + 8-1 = 32 - 1 lines .
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Let the lines of the pencil X be written vertically.

Since XT = Y if we apply the cyclic permutation 'r1 to the
0’

*

i-th line of the pencil X, each row of the resulting matrix X

will contain one point from each line of Y0; indeed

* s-l

x [L0, TL1,'°°,T LS'IJ

where Li, 1 = 0,1,...,s-l, is the i-th line x = ai of X

written vertically. Consequently each row of the s X s(s-l)

matrix

9: * s-2*

[x,TX ,...,T X]

will contain 8-1 points from each line of Y0.

We shall add to each row of the above matrix s-l points

chosen in such a way that all the lines except L0 j will be

9

completed. Notice that this must be done in a unique way since

each of the lines had exactly one point missing. We Obtain

*

this way the s X 82 - 1 matrix Gj which is characterized by the

fact that only the line L0 j of Y0 is not complete.

9

*

It is clear from the way G was constructed that the i-th

J

point of L will appear in the j+i-th (j+i taken mod 3) row

0,J

*

of G as well as in the s-2 preceding rows

J

j+i-l (mod s),...,j+i-(s-2)(mod s), but not in the following row

j+l *

G

J

0.J’

i = O,l,...,s-l, which is also the case with GJ. Thus the i-th

1+1 *
G and of G contain the same points, but in a

J J

different order.

j+i+1 (mod 3), i = 0,1,...,s-l. Therefore the matrix T is

such that its i-th row does not contain the i-th point of L

rows of T



. j+1 * .
Substituting ¢ G for Gj in D we obtain

which we claim is a GY-design.

We need only to verify the conditions regarding the columns.

Since every column of Li’ 1 = 0,1,...,s-l is a row of a

Latin Square, and since each column of Gi’ i = 0,1,...,s-l, and

G: is a line of EG(2,s) we see that a point occurs twice in a

column as many times as it appears in a line; since each point

belongs to 8+1 lines in the geometry and we have s-l replicated

geometries, we conclude that any given point occurs twice in

(8+1) (8-1) = $2 - l = r(b) columns.

Two distinct points will appear each twice in the same

column if they belong to the same line; since a pair of distinct

points determine a unique line and there are s-l replicated

*

geometries, Bl = s—l and we can conclude that Dj is a GY-design.

Example 2.2.3: For 3 4 we have

a = 16 b = 60 k = 20 r = 75 *1 = 281 12 = 93 .

From Example 2.3.2 we directly write

0 1 2 6 5 4 7 8 ll 10 9 13 14 15 12

4 5 6 9 10 11 8 l4 13 12 15 3 0 l 2

G3= 8 9 10 12 15 l4 l3 3 O l 2 4 7 6 5

12 13 14 3 O l 2 5 6 7 4 10 9 8 11

We have already obtained
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o 1 2 3 o 4 8 12

4 5 6 7 1 5 9 13

x Y =
8 9 1o 11 o 2 6 1o 14

12 13 14 15 3 7 11 15

We directly obtain

0 7 10 13

x* _ 1 4 11 14

’ 2 5 15

3 6 12

o 7 10 13 1 4 11 14 2 5 a 15

* 1 4 11 14 2 5 8 15 3 6 9 12

Ga = 2 5 15 3 6 9 12 o 7 1o 13

3 6 12 o 7 1o 13 1 4 11 14

it

Since T4 is the identity, the rows of G3

12 9 6

O 13 10

4 1 14

8 5 2

correspond

to the rows of G3, so there is no need to reorder these rows.

*

The GY-design D3 would be

Theorem 2.2.3: There exist GY-designs with parameters

b=k=s(sz-l).

Proof: The other parameters are

2

r = (s -l)2 m = n = 8-1

= (82-1)(s-l) b(v) = 3(8‘1)

1:(1») ' ”(1:1

11 = 12 = as - 333 + 33 - l

3 2
a=B=s(s-1) (11:61-18 -28+1

0’0

V

8o
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Let us permute cyclically the lines within the same parallel

*

pencil in TJ+IGJ; this can be accomplished by matrix multiplication

as follows:

68 I 1'

cs

' * ° **

TJ+IG '. = G,

1 CS J

L gS-la  

where there are s-l matrices £3 and all the off diagonal

matrices are zero.

We claim that the s(sZ-l) X s(sZ-l) square matrix

' **“

G0 G1 . . s-l

L0 L1 . LS_1

**

G1 (32 , . GO

D** ’ L- L1 L2 ... 0

**

Gs-Z Gs-l °° Gs-3

LFS'Z Ls-l "° Ls-3   
is a GY-design.

Using the same argument as in the previous theorem we

will prove that the row conditions for GY-designs are satisfied.

**

Any given column of D is made out of s-l rows of

the Latin Square L, corresponding to the matrices Li’ plus s-l

different parallel lines, cooresponding to either the matrices

**

Gi or to the matrices G1 as the case may be. Therefore a

point occurs in each column either s+l or 5 times; it will

occur 8 times if and only if it belongs to one of the s-l
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parallel lines. Since these parallel lines contain s(s-l) points,

the number of points repeated in the column s = n+1 times is

s(s-l) = 32 - s = k(v)' Furthermore, the missing lines from each

** **

column of D are the columns of the missing Gj’ (G ), matrix

J

in each block of 32-1 columns; these matrices are

**

Go,ooo,G

Gs-l’ s-2

and they constitute, as we have seen in the previous theorem, the

full geometry EG(2,s) replicated 5-1 times. Therefore each

member of a pair of points will appear s-l times in the same column

if and only if both points belong to the line missing from that

column, and 60 = 8-1. This concludes the proof that D** is a

GY-design.

Example 2.2.4: For 3 = 3 we have

v = 9, b = k = 24, r = 64, 11 = 12 = 170, a = B = 6, a0 = 80 2,

01 = 81 = 10

0 l 2 O 3 6 O 5 7 O 4 8

X=3 YO=147 Y1= 138 Y2=156

6 8 2 5 8 2 4 6 2 3 7

O 3 6 1 4 7 2 S 8

1 4 7 2 5 8 O 3 6

2 S 8 O 3 6 1 4 7

5 7 0 3 8 l 4 6 2

L = 3 8 l 4 6 2 5 7 0

4 6 2 5 7 O 3 8 1

8 0 4 6 1 5 7 2 3

6 l S 7 2 3 8 O 4

7 2 3 8 0 4 6 1 5



TC

0

*‘k

”
1

TC

0

80461537

72380461

61572304
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G

1

20345678

53867120

86120534

23704865

=15623708

04815632

37248056

=56l37280

48056123
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We finish this section exhibiting another GY-design D*

with parameters v 3 9, b = k = 24 which is non-isomorphic to

**

D with the same parameters.

Definition 2.1: Two GY-designs with the same parameters are said

to be isomorphic if one can be obtained from the other by renaming

the varieties, reordering the rows or reordering the columns.

The GY-design D which follows, was constructed using
*9

the unique geometry EG(2,3) and trial and error.

1 l 2 2 3 3 4 4 4 5 5 7 6 6 6 7 7 9 8 8 8 9 9 5

4 4 5 5 6 6 8 8 1 2 2 2 3 3 3 7 7 7 1 8 l 9 9 9

7 7 8 8 9 9 l l l 6 2 2 3 3 3 4 4 4 5 5 5 6 6 2

l 1 5 5 9 9 2 2 2 3 3 3 4 4 4 6 6 6 7 7 7 8 8 8

2 2 6 6 7 7 l 1 l 8 3 3 9 9 9 5 5 5 8 3 8 4 4 4

3 3 4 4 8 8 2 2 2 l 1 6 5 5 5 6 6 l 7 7 9 9 9 7

l l 4 4 7 7 2 2 8 3 3 3 5 5 5 9 6 6 9 9 6 2 8 8

2 2 5 5 8 8 3 3 3 l l 1 4 4 4 9 9 9 6 6 7 7 7 6

3 3 6 6 9 9 8 8 8 2 2 2 4 4 l l l 4 7 7 7 5 5 5

8 8 1 1 6 6 9 9 9 7 7 7 5 5 4 3 4 3 3 5 4 2 2 2

9 9 2 Z 4 4 8 8 8 5 5 5 6 6 6 7 7 7 3 3 3 l l 1

3 3 7 7 5 5 6 6 6 9 9 9 2 2 2 8 8 8 l l l 4 4 4

D* =

4 4 3 3 2 2 5 5 5 7 7 8 9 9 7 1 l 6 6 l 6 8 8 9

6 6 7 7 5 5 9 9 9 4 4 4 8 8 8 3 3 3 2 2 2 l l l

8 8 9 9 1 1 7 7 7 6 6 6 2 2 2 5 5 3 4 4 3 5 3 4

2 2 6 6 l 1 3 3 3 5 5 5 7 7 7 8 8 8 9 4 9 4 4 9

8 8 3 3 7 7 4 4 4 9 9 9 2 2 2 5 5 5 1 l l 6 6 6

5 5 9 9 4 4 7 7 7 6 6 6 l l l 8 8 8 3 3 3 2 2 2

5 5 8 8 2 2 7 7 7 4 4 4 9 9 9 l l l 6 6 6 3 3 3

6 6 9 9 3 3 5 5 5 7 7 7 8 8 8 4 4 4 2 2 2 l l 1

7 7 1 l 4 4 6 6 3 8 8 8 3 3 6 2 2 2 9 9 9 5 5 5

9 9 7 7 2 2 5 5 5 8 8 8 l 1 3 3 3 l 4 4 4 6 6 6

5 5 3 3 l 1 6 6 6 4 4 9 8 8 8 9 9 9 2 2 2 7 7 7

6 6 4 4 8 8 9 9 9 l l l 7 7 7 2 2 2 5 5 5 3 3 3
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*9:

That D and D* are not isomorphic is evident since

**

D has several columns identical, while D has not two identical

columns.

2.3 A_class gf'non DeoEtimum Qi-designs

As stated in Chapter I, J. Kiefer proved in his 1958 paper

that GY-designs are D-optimum if either b(v) = 0 or k - 0,

We will show now that if the divisibility condition is not

satisfied the GY-design may not be D-Optimum.

Theorem 2.3.1: There exists GY-designs with v = 4, b = k = 6t

for any odd integer t.

Proof: The other parameters are

 

2
= 9t b - k = 2 - = 3t

1” (v) (v) 1r(b) r(k)

= = 3t-l _ _ 27t3 - t

m n 2 "1 " >2 2

a = B = 2t a0 = 80 ' t 01 = 81 ‘ t .

Let the set of varieties be V {A,1,2,3} and let g be a

permutation on Vb defined as follows:

g(a1,...,ab) = (ab,a1,...,ab_1), V(al,...,ab) E Vb.

Let T be a transformation on V which leaves exactly one

variety fixed; by renaming the varieties if necessary we may

assume without loss of generality that

T(A)=A,T(1)=2.T(2)=3»T(3)=1°
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Finally let p E‘Vb be

m m+1 m+1 m

p = (A ... A, 1 ... l, 2 ... 2, 3 ... 3)

and let D be a k X b matrix whose first row is p and such

that every row and column is the transformed of the preceding one

by g o T.

Since T leaves A fixed, A will occur m times in

each row and column of D; since T3 is the identity every variety

other than A will appear m+1 times in two out of every three

consecutive rows or columns.

Let d i = l,2,...,k, j = 1,2,...,b be the (i,j)

ij’

entry of the matrix D. We claim that if we make di,3t+i = A,

*

i = 1,2,...,3t, the resulting matrix D is a GY-design.

Variety A appears ‘m+l times in each of the first

3t = r(k) rows; any other variety x # A appears m+1 times

in one out of every three consecutive rows for the first 3t

rows, and in two out of every three consecutive rows for the last

3t rows that is in a total of 2!;-+ §£2 = 3t = r rows.

’ 3 3 (k)

Moreover, the pair of distinct varieties A,x (x #.A) appear

m+1 times each in the same row t = a1 times.

A pair of distinct varieties other than A can occur

m+1 times each in the same row only in the last 3t rows and in

exactly one out of every three consecutive rows, that is in

t = (171 rows.

The same arguments applied to the columns would allow us

*

to conclude that D is a GY-design.



Example 2.3.1: For

40

t = 3, we have

9 r 81 3 )t 1 XZ

= k - 2

(v) (v) ’ 0’

1 1 1 1 2 2
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1 A A A A 2 2 2 2 2 A 3 3 3 3 l 1 1

2 2 A A A A 3 3 3 3 3 A l l l l 2 2

3 3 3 A A A A 1 l 1 1 1 A 2 2 2 2 3

1 1 l l A A A A 2 2 2 2 2 A 3 3 3 3

l 2 2 2 2 A A A A 3 3 3 3 3 3 A l l

*

We will show now that the GY-design D is not D-optimum,

by comparing it with the non-symmetrical design D.

The hypothesis to be tested is that variety has no effect

on yield, that is

‘YA='Y1=‘Y2=‘Y3.

In the two-way heterogeneity setting where we have v

varieties and a k X b array of plots, the covariance matrix is
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given by (see for instance, Kiefer, 1958)

1(1) 1(2) r r

..-. .. _l.l_ _ .ii. ...1__1

C11 51111 b k + kb

where 611 is the Kronecker delta, ri is the number of replica-

tions of the i-th variety and

; n<1) n(1)

=1 11 11

(2) n<2)
1 it jL

I
I
M
U
‘

:
1

(q)
with n equal to the number of occurrences of the i-th variety

in the L-th row 01 = l) or the L-th column (q = 2).

It is a straightforward but long computation to obtain

in the case of D

  

  

c* = 27t2 - 2 c* = 2 - 27t2

ii 4 ij 12

for 1 16 j, 1,1 =A,l,2,3.

For the design D one would Obtain

c = 27t2 - 6t - l c = _ 27:2 — 6t - 1

AA 4 Ai 12

2 2
c =2431; +18t-l7 c ____81t ~18t+7

ii 36 ij 36

i 7‘ J, i.J = 1,2,3

*

and for the corresponding determinants A and A,

* [27t2- ]3
A=——3—'—

A = L271:2 + 3t - 212127t2 - 6t - 11
3 " o

3



43

3 2
* 108t - - 12 +

The difference A - A = 45t3 t 4 is

3
* .

positive for any positive t, therefore D is not D-optimum.

Note however that for the eigenvalues we still have

 

2 2
-

- -

*

21£3———Z-> 27t 3 6t 1 , that is the smallest eigenvalue of D

is larger than the smallest eigenvalue of D, as it should be.

Example 2.3.2: For t = l

A11223 A11A23

1112233 1A22A3

1211331 12A33A

D=223All D*=223A11

2331A2 2331112

33112». 33112A

*

A - A = -—'> 0 .

Final Remark: Other sets of parameters satisfying the necessary

conditions for GY-designs were obtained but they did not lead to

suggestive combinatorial configurations. Further research is

now in progress to construct other classes of GY-designs using

different combinatorial structures.



CHAPTER III

SUM COMPOSITION OF LATIN SQUARES

3.1 Introduction and Definitions

The different methods of composition are among the most

powerful techniques of construction of combinatorial systems.

Those methods permit the construction of a new combinatorial

system out of known ones.

However the methods known so far are of the product type,

in the sense that the parameters of the new system are some sort

of product of the parameters of the initial systems; for instance

the existence of orthogonal arrays (xiv:,qi,vi,t), i = l,2,...,r,

implies the existence of the orthogonal array (th,q,vi,t), where

y = y1.y2...yr, v = v1-v2-oovr and q = min(q1,q2,...,qr).

In this chapter we will be dealing with a new sum type

method of composition of Latin Squares due to Hedayat and Seiden

(1969).

Definition 3.1.1: Two Latin Squares of order n are orthogonal
 

if upon superimposition each of the 112 pairs of distinct varieties

occur exactly once.

A system of two orthogonal Latin Squares or order n will

be referred to as a O(n,2) set. If A and B are orthogonal

Latin Squares we will write A 4.8.

Definition 3.1.2: t Latin Squares of order n are mutually

orthogonal if any two of them are orthogonal.

44
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A system of t mutually orthogonal Latin Squares of order

n will be referred to as a 0(n,t) set.

Definition 3.1.3: A Latin Square L of order n is orthogonally

mateless if for any other Latin Square L1 of order n the pair

(L,L1) is not a O(n,2) set.

Definition 3.1.4: A transversal of a Latin Square of order n

is a collection of n cells whose entries exhaust the set of

varieties and such that no two cells belong to the same row or

to the same column.

Two transversals are parallel if they have no cell in

common.

Definition 3.1.5: A common transversal for a 0(n,t) set is a

collection of n cells which is a transversal for each of the

t Latin Squares in the set.

Example 3.1.1:

  

1 2

L a:

1 2 1

r -w

(1) 2 3 4,7 (1) 2 3 3

g 1 4 (3) _3__ 4 1 (2)

L2 "" 3 (4) 1 2 L3 = 4 (3) _2_ 1

L“ 3 (2) 1 2 1 <4) 3J

r71 2 3 41 F1 2 3 47

4 3 2 1 3 4 1

L4 = 2 1 4 3 L5 = 4 1 2

L3 4 1 2J I.“ 1 2 3J     

L1 is the only Latin Square of order 2; it has no transversals

at all.
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L2,L3,L4 form a 0(4,3) set; L is orthogonally mateless,

5

the underlined and paranthesized cells in L form two common
2 ’13

parallel transversals of the 0(4,2) set formed by L ,L ; the

l 2

0(4,3) set formed by L has no common transversals.
1’12 ’13

3.2 The Method of Sum Composition
 

This method was first introduced by Hedayat and Seiden

(1969).

Let L1,L2 be two Latin Squares of orders T11 and 112

on disjoint sets of varieties {a1,a2,...,a } and

n
l

{b1,b2,...,bn }, n1 2 n2, and let L1 have at least n2 parallel

2

transversals.

Select arbitrarily n parallel transversals from L
2 l

and name them l,2,...,n2; in a n1 + 112 square fill the n1 X 111

upper left corner with L1 and the n2 X 112 lower right corner

with L . Fill the cells (i,n + k), k = l,2,...,n2 , with that

l 2

element of transversal k which appears in row i, i = l,2,...,n1;

similarly fill the cells (n1 + k,j), k = l,2,...,n2, with that

element of transversal k which appears in column j, j = l,2,...,n1.

Finally substitute b for the nk elements of transversal k,

l

k = l,2,...,n2.

The resulting n1 + 112 square matrix L is easily seen

to be a Latin Square.

The procedure just described of filling the first 111

entries of column (row) n1 + k is called horizontal (vertical)

projection of transversal k on column (row) 111 + k.
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Remark: It is by no means required that the ordering of transversals

be the same for both horizontal and vertical projections. Therefore,

if N is the total number of parallel transversals of L we can

1

construct by this method

N 2

(n2) 61,!)

different Latin Squares of order n + n .

 

l 2

Example 3 .2 .1 :

0 l 2 3 4 5 6

2 3 4 5 6 0 l A B C D

4 5 6 0 l 2 3 B C D A

L1 = 6 0 l 2 3 4 5 L2 = C D A B

l 2 3 4 5 6 0 D A B C

3 4 5 6 0 1 2

5 6 0 l 2 3 4

In L1 the cells (i,j) such that i + j E k(mod 7)

form a transversal for each value of k, k = 0,1,...,6. Let us

use those corresponding to k = 0,2,4,6, in that order, for

horizontal projection, in reverse order, (6,4,2,0), for vertical

projection and in alternate order (0,4,2,6) for substitution.

The result is the Latin Square L of order 11.



J
>

C
D

A l C 3 B 5 D 0 2 4 6

2 C 4 B 6 D A 1 3 5 0

C 5 B 0 D A 3 2 4 6 l

6 B 1 D A 4 C 3 5 O 2

B 2 D A 5 C O 4 6 l 3

L = 3 D A 6 C l B 5 0 2 4

D A 0 C 2 B 4 6 l 3 5

5 4 3 2 l O 6 A B C D

l 0 6 5 4 3 2 B C D A

4 3 2 l 0 6 5 C D A B

0 6 5 4 3 2 l D A B C

3.3 Sum Composition of O(n,2) Sets
  

Under certain conditions it is possible to use the method

of sum composition to obtain O(n,2) sets from known O(n1,2)

and O(n2,2) sets, n = 111 + n2.

Let {A1,A2} be a O(n1,2) set on the set of varieties

A = {a1,a2,...,an } with at least 2n2

l

and {B1,B2} a O(n2,2) set on the set of varieties

common parallel transversals,

B ={b1,b2,ooo,bn2}, A n B = $9

Select 2n2 common parallel transversals from the first

set and use half of them to compose A and B to obtain a

l 1

Latin Square L1 of order 111 +n2 = n; use the remainder n2

transversals to compose A2 and 32 to obtain a Latin Square

L2 of order n.

It is obvious fnam the construction that upon superimposi-

tion of L1 on L2 the elements of A X B and B X A will

appear along the 2n2 transversals in the 1:11 X 111 upper left

corner; the elements of B X B will appear in the n2 X n2

lower right corner, since B1 and B2 are orthogonal. However
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some of the elements of A X A will be missing, but by prOperly

choosing the 2n2 transversals and the order of projection we

may achieve that the pairs (ai,ak) lost by substituting elements

of B in transversals of A1 and A2 be recovered on projection.

Although we do not have a unified rule to achieve this we

do have procedures which are applicable in several cases.

Example 3.3.1:

Let r11 = pa be a power of a prime number p, and number

the rows and columns of a n X n square matrix 0,1,2,...,n -l;

1 1 l

for a fixed x E GF(nl), x # 0, fill cell (i,j) of the matrix

with ix + j E GF(nl); the resulting square is a Latin Square

A(x). Furthermore the n1 - 1 Latin Squares A(x), x E GF(nl),

x ¥ 0, constitute a 0(n1,n1-l) set; the cells (i,j) such that

i + j = k, k 6 GF(nl) constitute a set of 111 common parallel

transversals of the 0(n,n1-l) set.

Now, let GF(7) be represented as the residue classes

modulo 7, and let A =.A(3), A2 =4A(4) and similarly, for GF(3)

1

let B1 = B(1), B2 = 8(2). To compose A1 and B1 use the

transversals given by k = 0,5,4 in that order for both projec-

tions and substitution and obtain L1; to compose A2 and B2

use the transversals given by k = 1,2,6 and obtain L2;

(L1,L2) is a 0(10,2).
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0 1 2 3 4 5 6

4 5 6 0 l 2 3

0 l 2 3 4 5 6

3 4 5 6 0 l 2

6 0 l 2 3 4 5

A1 = 2 3 4 5 6 0 1

l 2 3 4 5 6 0

A2 = 5 6 0 1 2 3 4

2 3 4 5 6 0 l5 6 0 l 2 3 4

2 3 4 56 0 ll 2 3 4 5 6 0

23 4 5 6 0 14 5 6 0 l 2 3

A

C

.
A

B

C
A

B
C

A 1 2 3 C B 6 0 5 4

3 4 5 C B A l 2 0 6

6OCBBAS421

ZCBSA01643

(330112341

L1=B2A456C310

56

4 A 6 0 l C B 5 3 2

0 5 3 1 6 4 2 A B C

l 6 4 2 0 5 3 B C A

6 4 2 0 C A B3 l5

620 A B 3 4 5 C l

A B 6 0 1 C 3 4 5 2

B 2 3 4 C 6 A 0 l 5

5 6 0 C 2 A B 3 4 l

2 3 C 5 A B l 6 0 4

6 C 1 A B 4 5 2 3 0

C 4 A B 0 l 2 5 6 3

L2 =

4 l 5 2 6 3 0 A B C

l 5 2 6 3 0 4 C A B

3 0 4 l 5 2 6 B C A

Hedayat and Seiden (1969) have proved the following results.
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Theorem 3.3.1: Let 111 = pa 2 7, where p is any odd prime

number, a a positive integer, 111 i 13. Then there exists an

O(n,2) set which can be constructed by composition of two

n -1

 

= —L_ =0(n1,2) and 0(n2,2) sets for 112 2 and n n1 + n2.

meoreL3.3.2: Let r11 = 20’ 2 8 for any positive integer (1.

Then there exists an O(n,2) set which can be constructed by

n

composition of two 0(n1,2) and 0(n2,2) sets for 112 = 21’ and

n = n11+ n2.

The same authors have also proved in 1970

Theorem 3.3.3: If a prime number p has one of the following

forms:

I 3m +'1

II 8m-+ 1

III 8m + 3

IV 24m +'ll

V 60m +-23

VI 60m +’47

then using the method of Sum composition it is possible to con-

struct a pair of orthogonal Latin Squares of order pa + 3. The

method of construction depends on the form of p, but does not

depend on its specific value.

Theorem 3.3.4: If p is a prime of the form 8m-+ l or 8m'+ 3,

m # 0, then one can compose an 0(4,2) with an O(pa,2) based on

Galois field, to obtain an o(p°' + 4,2).
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3.4 Construction of O(n,2) Sets by the Method of Sum Composition

In what follows we assume the following: n1 = pa, a power

of a prime p; the 0(n1,2) set is based in GF(pa) and formed,

with the notation introduced in Example 3.3.1, by A = A(x),
1

A2 = A(y), x,y E GF(nl), x f y, {x,y} fl {0,1} = Q5. We will use

common parallel transversals given by cells (i,j) such that

i +~j = k, k E GF(nl) and named by k. We further call

S = {31,sz,...,sn2} and T = {t1,t2,...,tn2} the disjoint sets

of 112 transversals each used to obtain L and L .

1 2

We have seen that the only difficulty of the method of

sum composition is to make it sure that every element of A X A

on Lappears on superimposition of L the missing pairs are

1 2‘

the 2n2n1 pairs of the form

(m+1.w+1),i+jesu1

which correSpond to the entries in the 2n2 transversals used

in the composition.

If transversal s of A(x) is projected horizontally

on the same column as transversal t of A(y), on superimposition

we will obtain along that column the 111 pairs

(ax+b,ay+c) ,a+b=s,a+c=t

If those pairs are to be some of the lost ones we must have:

ix + j ax + b a + b s E S a + c = t E T

iy +rj ay + c i + j k E S U T
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or i(x-l) +-k = a(x-l) + s

i(y-l) +'k = a(y-l) + t .

Eliminating i we obtain

k(y-X) 8(y-1) - t(x-1)

or k(y-x) s(y-x) + (s-t)(x-l) .

x-l .
Making ;:;'= D we finally get

k=(1+p,)s-p.t

that is, by projecting horizontally transversal s of A(x) on

the same column as transversal t of A(y) we obtain on super-

impoSition the n1 pairs

(ix +'j, iy +>j) i + j = (l + ”)3 - At

Similarly, if transversals s and t of A(x), A(y)

are projected veritcally on the same row, we will obtain along

that row the n1 pairs

(ax+b,cy+b) a+b=s c+b=t.

If those pairs are to be some of the lost ones we must have

ix + j = ax + b a + b s E S c + b = t E T

iy+j=cx+b i+j=kESUT

or i(x-l) +’k = a(x-l) + s

i(y-l) +*k = C(y-l) + t .

Eliminating i we obtain
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k(y-X) = (x-1)(y-1)(a-c) + s(y-l) - t(x-1)

Since a-c = s-t, we get

k(y-X) = 8(y-X) + (s-t)(x-1)y

and finally

k = (1 + yu)s - yut

that is, by projecting vertically transversal s of A(x) on

the same row as transversal t of A(y) we obtain on super-

imposition the 111 pairs

(ix +‘J. 1? + J) i + J = (1 + yu)s - yut

From now on we will use the following functions on S X T

Kh(8,t) = (1 "I' ”)8 - pt

Kv(s,t) = (l + yA)s - ypt .

By properly choosing x,y and the pattern of pairing

transversals from S and T we may be able to recover all the

lost pairs and thus obtain a 0(n,2) set with n = p01 + n2.

Hedayat and Seiden assume in all their work, xy = 1.

Theorem 3.4.1: If p is a prime of the form p = 4m +-l, m > 1, then
 

it is possible to compose O(pa,2) based on GF(pa) with

0(4,2) to obtain a O(pa + 4,2).

Proof: Consider the pattern

1+1 - Kh(si’ti) i 1,2,3 3 Kh(s4’t4)

ti-1 = Kv(si’ti) 1
2,3,4 1:4 = Kv(s1,t1)
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that is

82 = (l + “>81 - ptl t4 = (1 + yu)s1 - ypt1

s3 = (1 + we, - u-tz c1 = (1 + ms, - Yutz

$4 = (1 + 11-)83 - M3 t2 = (1 + yu)s3 - 711113

S1 = (l + “)84 - pt4 t3 = (l + YH)34 - yut4 .

Solving this linear system in terms of s1 and t1, we

obtain as a solution

32 = (l + ”)51 - utl

1 l
83 = (1 + p.)[1 + p, - ;(1 + yu)]sl - [u(l + p.) - $11.0. + YIJ') + 1]]t1

2

1

s4 = [A(l + yp) +11] ix; 81 - ¥&;'t

2=[(1+yp)(11+p,) L381 -[p,(l+yp,)+1]l-t1

t3 = [(1 + 71071..“ [II-(1 + W) + 11- 341(1 + 5310181 -

2

r [(1 + Yum» {41: - yzuzltl

1:4 = (1 + 3'qu1 - yutl -

The compatibility conditions are

2
fin— [u(1+yn) + 1] = (1+p.) [1m - $(1+yu)] - M17711) [Ii-(1+1). + yuz) ' WI

2

1+“ = -(1*u)Lu(1+u) - -L1+u + 7112]] + w3f—U17Vu) Y]

W= (1+Vu)(1+v-)L1+u - jams] - yu<1+yu>1fi13<1mm2> - w]

2

- 11115322.). .. -(l+yu)[u(1+u) - "(11'1143’11-271 + y2$111.41. .7] -

These compatibility conditions reduce to
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3 2 2 2 3 3

(l'i'p) -(1+u)yp+(l+u)yu ‘YTJ. =0.

Dividing by y3p3 and making lEfi-= A we obtain as compatibility

condition

13 - 12 +'x-l = 0 or (A-l)(),2 + l) = 0 .

2

I = 1 would give 33 = 81’ therefore we must have 1 +*l = 0,

that is -1 has to be a quadratic residue in GF(pa) which is

possible only if p is of the form p = 4m +-l.

Calling i2 = -1, the compatibility condition becomes

y(l : i(l-x)) = 1 .

 

which is satisfied by the pair x = 2, y = 1 . Using 8 = 0,

t1 = l we obtain as solution of the system

s =’3 ; i t = -3 $.41

2 5 2 5

=4+2i t =-1~T21

S3 5 3

= -l i.3i t _ 1 1.21

S4 5 4’ 5

We must investigate now under what condition those solutions are

all different. One can easily see that

81 = 32 if 10 E O(mod p), that is p = 2,5

31 3 83 if 20 E O(mod p), that is p = 2,5

31 = 34 if 10 a O(mod p), that is p = 2,5

81 = t2 if 25 E O(mod p), that is p = 5

s1 = :3 if 5 O(mod p), that is p = 5

II
I

s = t4 if 5 O(mod p), that is p = 5
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= 83 if 10 E 0(mod p), that is p = 2,5

84 if 20 a 0(mod p), that is p = 2.5

82 3 t1 if 5 E 0(mod p), that is p = 5

if 45 E 0(mod p), that is p = 3,5

32 = t3 if 25 a 0(mod p), that is p = 5

if 5 E 0(mod p), that is p = 5

s3 = 54 if 50 E 0(mod p), that is p = 2,5

83 = t1 if 5 0(mod p), that is p = 5

33 = t if 85 E 0(mod p), that is p = 5,17

83 = t3 if 5 E 0(mod p), that is p = 5

s3 = t4 if 25 E 0(mod p), that is p = 5

s4 = t1 if 45 s 0(mod p), that is p = 3,5

84 = t2 if 5 E 0(mod p), that is p = 5

s4 = t3 if 25 E 0(mod p), that is p = 5

t4 if 5 E 0(mod p), that is p = 5

t1 = t2 if 80 E 0(mod p), that is p = 2,5

H
‘

H

II

(
'
1
'

3 if 40 a 0(mod p), that is p = 2,5

t1 = t4 if 20 a 0(mod p), that is p = 2,5

t2 = t3 if 40 a 0(mod p), that is p = 2,5

t2 = t4 if 20 E 0(mod p), that is p = 2,5

t3 = t4 if 20 E 0(mod p), that is p = 2,5 .

Therefore the solutions are all different when p = 4m+l, m > 1,

provided p i 17.

If p = 17, the pair x = 5, y = 9 satisfies the

compatibility equation; using again 3 = 0, t = l we obtain

1 l

the solutions
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32 = 16 t2 = 12

83: 3
t3: 2

s4 = 4 t4 = 3

which are all different in GF(17).

The limitation m > 1 is due, of course, to the fact

that the method requires at least 8 parallel transversals in

order to compose a 0(4,2) set.

Note that xy = l is incompatible with y(l i i(l-x)) = l;

indeed, the only common solution is x = y = 1.

Theorem 3.4.2: If p E l,2,4(mod 7), p 2 11 it is possible to

compose O(pa,2) based on GF(pa) with 0(4,2) to obtain a

0(p“ + 4,2).

Proof: Consider the pattern

81 = Kh(32’t2) t1 = Kv(52’t2)

s2 = KhIS3't3) t2 = Kv(s3't3)

s3 = Kh(sa,t4) t3 = Kv(sl,t4)

s4 = Kh(sl,t1) t4 = Kv(sa.t1)

Solving this linear system in terms of s and t2, we

obtain as solutions:

S]. = (1 + ”)82 - ptz

s3 = [(1'111)L(1+u)2-u(1+w)]-HL(HTML(1+p)2-u(1+yu)] - yu(1+'yu)]]sz

2 2 2 2

- L<1+u)[u(1+u)-yu 1 - uL(1+Vu)Lu(1+u)-yu ] - y u lltz

84 = [(1+u)2 - u<1+7u)132 - Lu<1+u) - yu21t2
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F
?

.
.
a

II (“VI-1752 - yutz
H II

2

3 L(1+7u)(1+u)-YHL(1+YH)L(1+H) -u(1+Vu)] ' yu(1+yu)]]82

2 2 2

- L<1+Vu)u - yuL(1+7u)(u(1+u) - yu ) - y u ]]t2

t4 = [annulmz - some] - yeah/ms;

2 2 2

- [(1+yu)[u(1+u) - w '_I - y 111112 -

The compatibility conditions are

1 = (“u-)L(1'I'I1)L(1‘*11-)2 -u- am) 1-61 (1471») 1 an») 2 -a<1+yu>]-ys<1+wm

- HL (1476) (HT-l) -1m[ (1m) 1 (1+6) 2 ‘11-(1'1711) ]-yu(1+yu.)]]

2 2 2 2

0 = -(1+u)L(1+u)Lu(1"u)-yu l-uL(1+yu)Lu(1+u)-yu ]-y u- I]

2 2 2

+ uLu<1+yu)-yu[(1+yu)(u(1+u)-yu )-y u I]

o = <1+ye>1<1+m1<1+m2m<1+w>T-swm)[<1+n>2-n(1m>1-ys<1+vu)11

- yuL(1+yu)(1+u)-yuL(1+Vu)L(1+u)2-u(1+yu)l-yu(1+yu)ll

2 2 2 2

1 = -(1+yu)L(1+u)Lu(1+u)-yu ]-uL(1+Vu)Lu(1+u)-yu I-y u 11

2 2 2

+ YuLu<1fiu)-yui (lflu)(u(1+u)-yu ) - y u- 1]

which reduce to

2 2 2

1 - u(y-1) - u (y-l) (u y + uy-l) = 0 -

Making x-l = u, y -l = v we get

v4(u-l)(u2 + 1) +v3u(3u2 - 3u +-4) - v2u2(u2 - 3u + 6) -

- v u3(u-4) - u4 = O .



For u = l

60

the equation becomes

QVB - 4v2 +'3v - 1 = 0

which can be factorized

However

(VTJE)(2V2-v+l)=0.

u:

look for the roots of 2v2

quadratic residue, and this is so if p

To solve that equation it is necessary that

Calling 12 3.7, u:

1, v = % gives t2 - t4, so we have to

- vi+ l = 0.

1 gives X

-7 be a

1,2,4(mod 7).

=2,y=
5 i.i

4

= 0 we obtain as solution of the system

 

 

=1li

4

=3-71

2

=7-731

8

is easily seen

= 32 if 121

= 83 if 32

= 34 if 32

= t1 if 8

= t2 if 8

= t3 if 56

= t4 if 112

that

0(mod

0(mod

0(mod

0(mod

0(mod

0(mod

0(mod

p).

p).

p).

p).

p).

p).

p).

that

that

that

that

that

that

that

 

 

1:1

2

2

9-751

8

is p

is p

is p

is p

is p

is p

is p

11

2,7

2,7



32 = 83 if

32 = 84 if

82 = t1 if

32 = t4 if

83 = 34 if

83 = t1 if

83 = t2 if

53 = t3 if

33 = t4 if

34 = t1 if

34 = t2 if

84 = t3 if

34 = t4 if

t1 = t2 if

t1 = t3 if

t1 = t4 if

122 = (:3 if

t2 = t4 if

t3 = t4 if

Therefore the solutions are all different

176

32

16

16

16

112

144

32

8

16

32

2

256

224
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0(mod

0(mod

0(mod

0(mod

0(mod

0(mod

0(mod

0(mod

0(mod

0(mod

0(mod

0(mod

0(mod

0(mod

0(mod

0(mod

0(mod

0(mod

0(mod

p).

p).

p).

p).

p).

p).

p).

p).

p).

p).

p).

p).

p).

p).

p).

p).

p).

p).

p).

P 5 1,2,4(mod 7). provided p E 11.

For

31 = 8

t1 = 5

which are all different in GF(ll).

that

that

that

that

that

that

that

that

that

that

that

that

that

that

that

that

that

that

that

p = 11 we obtain, using y =

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

 

+

4

2,7

2,3

2,7 .

when



62

n

Theorem 3.4.3: If n2#6 is even, then for any prime number p 2'—2

2

it is always possible to compare 0(pa,2) based on GF(pa) with

0(n2,2) to Obtain a O(pa + n2,2) set.

Proof: Consider the pattern

n

I

81 = Kh(82’t2) 1 ’ Kv(52’t2)

Solving this system in terms of s the compatibility
13 t1,

conditions are

1 = (1 + u)2 - u(1 + ya)

0 = -u(1 + u) + yuz

0 = (1 +u)(1 +111) - yu(1 +yu)

1 = -u(1 + yu) + yzuz

which reduce to

Yu=1+uw

+ .

1 s1 1 we ObtainTaking t

32 = 31 - u t2 = 31 - ya = 32 - 1

that is, t2,32 are also consecutive numbers. By properly choosing

y, which uniquely determines x, since the equation of compatability

is of first degree in x, we may achieve that t2 = t1 + l; the

2

choice is A = -3 which provides = 3' and x = %u The sets

3 and T are therefore
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S = {31, 31 + 3}

T = {81 + 1, 51 + 2} .

n2
By starting with s1 = 0 and repeating the above process '5-

times, we obtain the sets of transversals

- 4, 2n(
D II [0,3; 4,7;...; 2n2 2 - 1}

1
-
3

II

{1,2; 5,6;000; 2112 ‘3, 2112 '2} c

We could also have considered the pattern

81 = Kh(82’t2) t1 = Kv(s1’t2)

s2 = Kh(sl’tl) t2 = Kv(sz,t1) .

Taking sl,t1 as independent unknowns, the compatibility

condition reduces to

Yu(1 +‘u) = l .

Using again t1 = 31 + l we obtain

= — = - + = ..32 31 u t2 s1 (1 H) 32 1

that is, t2,32 are also consecutive numbers; t2 = t1 + 1 would

imply as before u = -3, y = %3 x = - i“ and we will get

S = {51, 31 + 3}

T = {31 +-l, 51 + 2} .

n2
Again by starting with $1 = 0 and repeating the process 2—

times we Obtain



i
n II {0,3; 4,7;...; 2n2 - 4, 2n2 - l}

I
—
l I

— {1,2; 5,6;...; 2n2 - 3, 2n2 - 2}

however this time we have to reverse the order of the set T

before projecting vertically.

Note that although all the computations have been

carried out in GF(p), that is mod p, the theorem can be

extended to pa since any GF(pa) has a subfield isomorphic

to GF(p); this is also the reason to impose the limitation

n

p 2 a; on p rather than on pa.

Note that if xy = l the compatibility conditions are

not satisfied.

Unlike in previous theorems, where for each value of x

we could obtain at least two values of y satisfying the com-

patibility conditions, this method cannot be extended to the con-

struction of O(n,3) sets because the value of y uniquely

determines x.

3.5 Composition of O(pa,2) and O(3,2) Sets

The smallest non-trivial n for which a 0(n,2) set

exists is n = 3; there are 24 possible patterns to compose a

O(n1,2) and a O(3,2) set. We assume, without loss of generality,

that the pairs (s,t) of transversals horizontally projected on

the same column are (Si,ti), i = 1,2,3. The sets S and T are

now S = {31,82,33}, T = {t1,t2,t3}.
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Theorem 3.5.1: If a pattern for composition of a O(pd,2) and a

O(3,2) set is such that horizontal projection recovers transversals

from both sets S and T, then xy = 1.

23292: For any pattern, of the six equations which determine the

pattern, three will involve the function Rb and the other three

equations will involve the function Kv' Adding the six equations

we will always obtain, no matter what the pattern is,

13si + Eti = (1 +11 + Hymzsi - «thwarti

or (Esi - Eti)(l + p +’YH) = 0 .

If horizontal projection recovers transversals from both

S and T adding the three equations involving Kh we will

obtain in the l.h.s. the sum of either two 3's and one t, or

one s and two t's; in the r.h.s. we will obtain

251 - A(Zti - 281). Therefore if zti - 231 = 0 we will have

31 = tj for some i,j. We must then have 1 + A + yu = 0; but

1 +'p + yp = xy - 1, thus the result.

This theorem applies to 12 of the 24 possible patterns

to compose O(pa,2) and O(3,2) sets; they have been fully

investigated by Hedayat and Seiden (1970).
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