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ABSTRACT

CONTRIBUTIONS TO CONSTRUCTION OF GENERALIZED YOUDEN DESIGN.
ON CONSTRUCTION OF ORTHOGONAL IATIN SQUARES
USING THE METHOD OF SUM COMPOSITION

By

Felipe Ruiz

The present thesis deals with two independent problems.

In the first part (Chapters I and II) we investigate generalized
Youden designs while in the second part (Chapter 1II) we further
study the method of sum composition of Latin Squares introduced

by Hedayat and Seiden (1969).

Generalized Youden designs were introduced by Kiefer (1958)
who proved E-optimality and, in the presence of some divisibility
conditions, D-optimality. In Chapter I we study optimality in
detail and investigate relationships among the parameters; several
necessary conditions for existence of GY-designs are found, and
the chapter closes with the usual analysis of these designs.

Chapter II is devoted to the construction of GY-designs;
using well-known combinatorial systems such as finite geometries,
symmetric balanced incomplete block designs, Latin squares, etc.
We construct several infinite families of GY-designs; the last
construction of this chapter provides an infinite family of GY-
designs whose parameters do not satisfy Kiefer's divisibility con-

ditions and which are not D-optimum.



Felipe Ruiz

The method of sum composition of Latin Squares allows us
in certain cases to construct O(n,2) sets by composition of a

0(n1,2) and a 0(n2,2) set, n = ny + n,- It is assumed that

0(n1,2) is based on GF(nl) and formed by A(x), A(y), where

for any r € GF(nl), r # 0, A(r) is the n, X n,

€ GF(nl).

square with
element rog + aj in its (i,j) cell, ai,aj

2

Hedayat and Seiden have further assumed that xy = o

for some g € GF(nl); we free ourselves from that restriction
and obtain further constructions. We also prove that the con-

dition xy = a2 is a necessary one in 12 of the 24 possible

patterns of composition of O(pa,Z) and 0(3,2).

Removal of the restriction xy = az produces compatibility
equations which are non-linear in both x and y, therefore
allowing the possibility of extending the method of sum composi-

tion to construction of 0(n,3) sets.
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CHAPTER I

ANALYSIS OF GENERALIZED YOUDEN SQUARES

1.1 Introduction

Frequently in scientific investigations the experimenter
wishes to study the effect of several variables that he can control
on a response or dependent variable which he can observe and measure.
The variables under the control of the experimenter are called
FACTORS and they would appear at various categories or 1LEVELS; a
situation in which every factor appears at some level is a
TREATMENT. Clearly if a design contains m factors FI’FZ""’F ,

m

where F, assumes s; levels, i =1,2,...,m, there are $1°8p -+- S

i m

possible treatments. A design which includes exactly one observation
on each of the SyseeesSy possible treatments is called a COMPLETE
FACTORIAL DESIGN; if several observations are made on each treat-
ment it is called a FACTORIAL DESIGN WITH REPLICATES; if all factors
assume the same number of levels (i.e. 8, =s, i=1,2,...,m) the
design is SYMMETRIC; a COMPLETE SYMMETRIC DESIGN consists therefore
of all s m-tuples of the s 1levels.

If the number of factors is large, the number of treatments
necessary for a complete design becomes prohibitive; hence the need
for fractional replication and confounding.

Fractional replication was studied, among others, by Finney

(1945), Plackett and Burman (1946) and Plackett (1946). Essentially



a 1/s" replication of a complete s" factorial design is a partition
of the s™ treatments into blocks of s" © treatments each; the
partitioning is said to be of STRENGTH t if no effect of interaction
of t or fewer factors is confounded with the block effect. By

using fractional replication the experimenter can discover cheaply

at the early stages of his research which factors among many have

an important effect on the product.

Balanced Incomplete Block designs are an example of fractional
replication of complete two-factor designs, while Latin Squares,
Youden Squares and Generalized Youden designs are fractional
replications of three-factor designs.

Definition 1.1.1: A (v,b,k,r,)) Balanced Incomplete Block (BIB)

design is an arrangement of v elements (varieties) in b subsets
(blocks) of k varieties each, such that any two distinct varieties
occur together in ) blocks.

Then any variety occurs in r blocks and

vr = kb , \(v-1) = k(r-1) .

If v =0b the BIB design is said to be Symmetric.

Definition 1.1.2: A Latin Square of order n 1is a square matrix

of order n on a set of n varieties such that every row and
every column is a permutation of the set of varieties.

Definition 1.1.3: A (v,k) Youden design is a k X v matrix on

v varieties such that with the columns as blocks it is a (v,k,2\)
symmetric BIB design, and each row is a permutation of the varieties.

Definition 1.1.4: A (V,b,k,r,kl»lz) Generalized Youden (GY)

design is a k X b matrix on a set of v varieties such that the



following conditions are satisfied:

a) Every variety occurs r times.

b) Every variety occurs either m or mtl times in each row,
as well as either n or ntl times in each column, where

b
m 1is the integer part of v and n is the integer part of
k

v
c) Every two distinct varieties occur together X1 times in the
same row and XZ times in the same column.
Generalized Youden designs were first introduced by Kiefer
(1958) , who proved some optimality properties of those designs
and gave two examples with two and four varities respectively;
however he made no attempt to construct GY-designs.

In the next paragraph we examine closely the optimality

properties of GY-designs.

1.2 Optimality of GY-designs

Let the linear hypothesis to be tested be Rp = 0, where
B 1is the p-rowed vector of parameters to be estimated and R is
a q X p matrix of rank q < p; by means of an appropriate linear
transformation this hypothesis can be reduced to the canonical

form

The covariance matrix of the best linear estimate of g is

cov®) = &) XY coveryxxx) Y = xTx) "1



where X is the matrix of the design and Y is the vector of
2
observations with covariance matrix o I.
We restrict ourselves to the use of the F-test whose power

function is a monotonically increasing function of the parameter

r = L T e 0 2 Typp

Q

where P = ( ), O being a r X s matrix of zeros (see,

I,0
q° q,p-q r,s
for instance, Tang 1938).
2

It is known that the minimum value of o ) on the unit
sphere (PB)T(PQ) = 1 is equal to the smallest eigenvalue of
P(XTX)-lPT; similarly the greatest eigenvalue equals the maximum
value of ozx on the sphere. Therefore we maximize the minimum
power of the F-test on the contour (Pa)T(PB) =1 by maximizing
the smallest eigenvalue of P(XTX)-lPT.

F . . * T -IPT

or a given design d we will designate Ad = P(X"X)

Remembering that the determinant of a square matrix equals the
product of its eigenvalues, we are naturally led to the following

criteria.

Definition 1.2,1: A design d 1is said to be E-optimum in a class

A of available designs if

* *
min E(A,)) = max min EA,,)
d ' d
d’'eA
where for any square matrix A, E(A) represents the set of eigen-

values of A.

Definition 1.2.2: A design is said to be D-optimum in a class A

of available designs if



* *
det(Ad) = max detCAd.) .
d'ea

Both criteria of optimality were introduced by Wald (1943),
who also proved D-optimality of Latin Square designs. Keifer (1958)
has proved that GY-designs are E-optimum, and also that they are
D-optimum if either k or b 1is a multiple of v. We will show
in the next chapter that if neither k nor b are mutliples of
v the GY-design may fail to be D-optimum. The problem presents
itself of determining, in the absence of the divisibility condition,
which cases give D-optimum GY-designs and which cases do not; we
were so far unsuccessful in solving this problem but hope that

further research will overcome the difficulties.

1.3 Properties of GY-designs

The row-incidence matrix of a GY-design is a v X k matrix

A= (aij)’ where a, is the number of times that the i-th variety

ij

appears in the j-th row; of course aij € {m,m1}.

Similarly, the columm-incidence matrix of a GY-design is

a v Xb matrix B = (bij)’ where bij is the number of times
that the i-th variety appears in the j-th column; evidently,

bij € {m,m1}.

Notation: The quotient and remainder of the division of an integer

a by another b will be written [%] and a respectively.

(®)
Theorem 1.3.1: In a GY-design

i) The number of rows containing a given variety wtl times

is the same for all the varieties, and equals r(k).

ii) The number of columns containing a given variety ntl times

is the same for all the varieties, and equals r

(®)"



iii) The number of varieties occurring mtl times in a given row
is the same for all rows, and equals b(v)'

iv) The number of varieties occurring ntl times in a given
column is the same for all columns, and equals k(v)'

Proof: Let a(i) be the number of rows which contain the i-th

variety mtl times. We must have

a(i)(m+1) + &k - a(i))m =r , or

(1)

(1) o + km = r

therefore a(l) is independent of i. Obviously kb = rv, therefore
r b .

[k] = [v] = m, and thus r = mk + r(k). Substituting in (1) we
obtain the desired result

(i)
= r °
* x)

The proofs of ii), iii) and iv) are entirely similar and

therefore omitted.

Theorem 1.3.2: Let A be the row incidence matrix of a GY-design.

Then
1) AAT = (rb - A, VI + \J
xl v x1 v
(2) Aj, = ATj =bj
jk rjv ’ jv Jk

where AT is the transpose of A, I is the unit matrix, J_=J
v v V,v
is the v X v matrix of 1's, j, is the n x 1 vector of 1's.

Similarly for the column incidence matrix B,

T
BB = (rk - )\ZV)Iv + XZJV



Proof: Let a(l) be the 1 X k vector whose j-th component is

aij; then the element in the i-th row and £-th column of AAT is
1, @), MW, @) -, ¢

; clearly a 1

(i)a(i) let us count the number of occurrences

the inner product a i#24.
In order to obtain a
in the same row of the design of pairs containing a particular
variety v,; on the one hand v, is paired xl times with each
of the remainder v-1 varieties; on the other hand if v, appears
aij times in the j-th row of the designlit will form pairs with

each of the b - aij varieties (not necessarily different) left in

the row, each pair being counted a, times, for a total over the

h|
rows of ; ) a,.)a ) - 1),, 1),
- : = (bj a‘"")a ; the two counts provide
j=1 ij" 1] k

us with

b3 -aa® =y @1
which gives

a(i)a(i) =rb - Xl(V‘l)

and therefore the result
AAT = (rb - YT + A\J
ML kl v’

Part (2) is self evident.

Theorem 1.3.3: In any GY-design
2

(1) xlk sr

@ Ab ST

Proof: For real numbers 81585500053, it is always true that
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n 2 n
(Za) <n Ta
i=1 i=1

2
i

Applying this inequality to the components of the vector a(l)

and using the previous theorem we obtain
2
r < k(rb - )\l(v-l))
which, remembering that kb = rv, gives
2
05 (v-1) (" - k)

and therefore the theorem.

Part (2) is proven in the same fashion.

Theorem 1.3.4: In any GY-design

>‘1V <€ rb

AV S Tk .
Proof: Schwartz inequality gives
MONORIPNOROIRORON
By Theorem 1.2.2 this gives
le < b - >\1(v-1)]2
or 0 < [rb - )\1(\7-1)]2 - )‘i
0 < [rb - "1(‘"1) + >‘1][rb - xlv] .

The first factor of the product is always positive, since

1) (1)
rb - kl(v-l) + A\ =ala + > 0, and hence so is the second,
giving the theorem.

Part (2) is similarly proven.



Theorem 1.3.5: Let (vi,vc) be a pair of distinct varieties;
let ags o> 2q¢ be the number of rows containing the pair
(vi,vL) mz, (m+1)2, m(mtl) times respectively, and similarly
let BO’ By» 28 be the number of columns containing the pair
(vi,vi) nz, (n+1)2, n(ntl) times respectively. Then ¥y o>
@, By, By» B are independent of the pair (Vi’vL) and

a =rb - xlv B =rk - xzv
ao=k-r(k)-rb+)‘1v so=b-r(b)-rk+x2v
oy = r(k) - rb + xlv 31 = r(b) - rk + kzv .

Proof: Looking at the row-incidence matrix we easily establish

the following relations among «, oy @q°

2o + o + a; =k

@t T Ty
eV

||
>

aomz + a1(m+1)2 + 20 m(mHl)

@+ a)n’ + @+ a) @D = b - A (v-1) .

The first equation expresses the fact that the row-incidence matrix
has k columns, the second gives the number of rows which contain
the i-th variety mtl times, which we know by Theorem 1.2.2 to be

T k)’ while the last two are immediate consequences of

S0 M ()

xl rb - xl(v-l) .
Subtracting the 3rd equation from the last one we obtain directly

o(=rb-)\lv
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independent of 1i,f; substituting in the first two equations we

obtain

T Ty TN Sk

) - rb + xlv .

%
In exactly the same way we will obtain the corresponding expressions

for B, By By

Theorem 1.3.6: In any GY-design

a) vr = kb br =rb

(k) ) (k) (v)
(1) b) (v-1)(rb - klv) = b(v) k - r(k))
r (b - 1)
- &)
c) kl = m(r + r(k)) + o1
8 Vrgy TPk kg T Tk,
(1I1) b) (v-1)(rk - V) = k(v) (b - r(b))
r, .. &k -1
- b)) (V)
c) \2 = m(r + r(b)) + —y

Proof: If A 1is the row-incidence matrix of the GY-design, then
A-m Jk v is the incidence matrix of a BIB design with parameters
’

(r',b',k"',r',)\') where

2 T &)

Therefore we must have

M T T )

2) al(v-l) =r -1 .

) © )
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Equation (1) together with rv = kb gives

BTy = P (v

therefore proving part a) of I.

By previous Theorem 1.3.5 we know that

3 Ty " rb + AV

S |

Substituting in (2) we obtain

(v-1) (rb - klv) = r(k)(v - b(v))
Using the first result r(k)v = kb(v) we obtain part b) of (I).
From (2) and (3) we obtain
r \[b(v) - 1]
%) MY S v - 1 +rb-r(.k).
= - = + .
Noting that b(v) b-mv and r = mK r(k) and substituting
in (4) we obtain after simplifying
r b -m-1)
9]
xl v - 1 + mr .
Obsering that b = m = m(v-1) + b(v) we obtain the desired result

-1

y + () )

kl =m(r +r —

®)

Part (I1) is similarly proven.

Corollary 1.3.1: In any GY-design rb = xlv, or equivalently

rk = AV, if and only if b, (k), is a multiple of v; otherwise
rb > MV (rk > kzv).

Proof: It is an immediate consequence of part b) and Theorem 1.2.4,
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Corollary 1.3.2: The matrix AAT,(BBT), is singular if and only if

b,(k), is a multiple of wv.

Proof: By Theorem 1.2.2 we know that

T
AA" = (rb - )‘lv)Iv + liv .

Since the eigenvalues of Ay, 2re 0 and xlv with multiplicities
v-1 and 1 respectively, the eigenvalues of AAT are rb - xlv
and rb - klv + xlv, with multiplicities wv-1 and 1, therefore

its product, which coincides with det(AAT), is rb(rb - xlv)v-l,
which by previous corollary is zero if and only if b is a multiple
of wv.

Corollary 1.3.3: A necessary condition for the existence of a

(v,b,k,r,xl,xz) GY-design is that

0]

(b(v) - Y and

v-1 v-1

both be integers.
Proof: It is an immediate consequence of part c) of the theorem.

Corollary 1.3.4: 1In any GY-design k 2 v.

Proof: It is Fisher inequality for the BIB design with incidence
matrix A - mJ .

v
Assumption: Since the transpose of a GY-design is also a GY-design
we will assume from now on that b = k; we will also assume b > v,

since b = v reduces the GY-design to an ordinary Youden design.

1.4 Analysis of GY-designs

(v,b,k;r,xl,xz) - GY-designs serve as designs for factorial

experiments with three factors (row, column and variety) at k,b,v
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levels respectively. The row factor at the i-th level will be
spoken of as the i-th row, and similarly for the other factors.
Every entry of the GY-design represents a treatment, so we have
only N = kb treatments instead of the kbv which will appear
in a complete design.

Let yijL be the observation on the f-th variety in the
i-th row and j-th column; of course { 1is uniquely determined by
i,j, that is 4 = 4(i,j) where the function { is given by the

design. The model is

=p t +8. +y, t
Yigg "R T TRy Y, T e,

where u 1is the overall mean, o Bj’ YL are main effects and
eijL is the random error, that is we assume that no interactions
of two or more factors are present. We further assume that the
random errors are normally distributed around zero with covariance

matrix 021.

The model can also be described in matrix notation:
Y =Xg+e

where Y 1is the N-rowed vector of observations, B is the p-rowed
vector of parameters to be estimated (overall mean plus k +b + v
main effects), e 1is the N-rowed vector of errors and X is the
N X p matrix of the design; the normality assumption can be
expressed as Y ~ N(Xp,o0I) that is, Y has a multivariate normal
distribution with mean Xg and covariance matrix 021.

We will associate the positive integer o(i,j) = (i-1)b + j

with the (i,j) cell, or plot, of the GY-design. Clearly for
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every positive integer o < kb there is exactly one pair (i,]),
or plot, such that o = y(i,j); accordingly, the plot in the i-th
row and the j-th column will be called Ehe a-th plot, and the
corresponding observation the o-th observation, with o = o(i,]).
The matrix X is a matrix of zeros and ones whose rows
correspond to the plots and whose columns correspond to the para-
meters to be estimated. Clearly the columm corresponding to
is a column of 1's only, which we will write as last. Since each
of the k 1levels of the row factor appears exactly once with each
of the b 1levels of the column factor, each of the k columns
corresponding to the parameters 7 i=1,...,K contains exactly
b ones, each of the b columns corresponding to the parameters
Bj’ j=1,2,...,b contains exactly k ones and the product of the
columns corresponding to oy and Bj is always 1 for any
i=1l,...,k, any j =1,...,b. Finally the column corresponding
to the parameter Y h=1,2,...,v, has a one in the g(i,j) row
if and only if £(i,j) =h and contains exactly r ones. The

matrix X therefore looks like:

1 0...0 1 0...0 0...1...0 1]
10...0 01...0 0..1 ...0 1
1 0...0 0 0...1 1
01.'.0 10...0 1
0 1...0 0 1...0 1
x' ®* o e o o e o e o o
0 1...0 0 0...1 1
0 0...1 1 0...1 1
0 0...1 0 1...0 1
0 0...1 1 0.1 1
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Let us introduce the matrices Al, Bi, i=1,...,k where

Ai

is a b X k matrix with 1's in the i-th column and zeros else-
where, and Bi is a b X v matrix with a one in the cells

(G,4G,3)), 3 =1,2,...,b and zeros elsewhere. J will be a matrix
of ones, j a columm vector of ones; we will indicate the dimension

of a matrix with subindices when necessary. Using these matrices

X can be expressed as

-
NEEEL j
AZ I B2 j
X =|.
L.Ak 1 B 3

The normal equations are
xy = x"x §

so that if XTX is non-singular the least square estimates §

are given by

8= & xly .

It is a straightforward calculation to arrive at

(b, Ty Ai,v b3y ]
xTx _ Jbl( kIb B:,v k'jb
Avk Bv,b rIv rjv
| bs” kjg rjz kv |

where A, B are, of course, the row-incidence and column-incidence

matrices of the GY-design.



16

The normal equations can also be obtained directly from

the model. With the usual notation and side conditions

we obtain

-3
]

=
o

b =24

T, =bga+by, +

, a
1

2>

11 L

1
S s M

T =k +k §.= b .~

" BJ % YL

T =rp+gtga
i

oy +Tb

i ijBj+rYL

where, of course, a are the general entries in the row-

b
i’ 1)
incidence and column-incidence matrices of the GY-design.
In order to eliminate the row and column effects let us

compute

KbT _-bgb T, -kga T =
) ? i .j- f‘ 2ii..
=kbr & -b b b Y -k a | a Y - brg =
Y, ?ufu% ?ufmyc ru

kbr Q& -kbr g -b QL(rk - )\zv) -k ’\‘(L(rb - )\lv) =

-~

a 2
=YLV[k)‘1+b)‘2-r]-kbrp..

2
Dividing by r v,

2
E_}l;:_t_ﬁg_:_:_ Yy o= + _ 1 T b - l’E
) A/ AL S ) vit.i. T . a,iYi..

which gives the variety effects QL; the row effects &i and column
effects éj can now be easily obtained; from the first normal equa-

tion we obviously obtain =y .



CHAPTER II

CONSTRUCTION OF GENERALIZED YOUDEN DESIGNS

2.1 GY-designs with b(v) =0 or k =0

Theorem 2.1.1: There exist GY-designs with b = mv, k = nv for

any positive integers m, n and wv.

Proof: Let {Li j‘i =1,...,n; j=1,...,m} be a collection of
]

mn Latin Squares of order v, not necessarily different. Then

the nv X mv matrix

is a GY-design, since clearly every variety occurs m times in

each row and n times in each column, and every pair of distinct
. 2 . 2

varieties occur together in the same row m k times and n b

times in the same column.

Theorem 2.1.2: If there exists a symmetric BIB design with para-

meters (v,k',)), k' < v, then there exists GY-designs with para-
meters v =v, b =mv, k = nv + k' for arbitrary positive integers
m, n.

Proof: The other parameters of the GY-design are easily established

to be

17
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r = mk , 11>- mzk » Ay = m()\ + n(k + k')] .

Let {Bi|i = 1,...,m} be a collection of symmetric BIB designs,
not necessarily different, with common parameters (v,k',)); each
Bi can be converted to a Youden Square Yi by reordering the
varieties within each block (Smith and Hartley, 1958). Let
{Lij|i =1,...,n; j =1,...,m} be a collection of Latin Squares

of order v, not necessarily different. We claim that the matrix

r R
Yl ce Ym
Ll1 e le
D=| .
Lnl Tt Ln,m
L »

is a GY-design.

a) Every variety appears v times in each Latin Square and k'
times in each Youden Square, for a total of mnv + mk' = mk = r
times.

b) Every variety appears once in each row of each Youden Square
and of each Latin Square, therefore any pair of distinct
varieties occurs together in the same row of D, m2k = xl times.

c) Let x,y be two distinct varieties; each Youden Square has )\
columns containing both x and y, (k' - 1) columns containing
x but no y, another (k' - )\) columns containing y but no
x, and the remainder v - ) - 2(k' - %) columns will contain
neither x nor y. Therefore the two varieties x,y will
appear together in the same colummn in D, [)\(n+1)2 + 2(k'-\)n(nt+l)

+ [v-2- 2(k'-x)]n2]m = m{A+ n(k+ k'+] = KZ times, which

concludes the proof.
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Note that the existence of a symmetric BIB design is needed
to carry out the construction but is by no means necessary for the

existence of the GY-design, as the following theorem shows.

Theorem 2.1.3: Let s = pn be a power of a prime. Then there

exists GY-designs with parameters

v = 52 +1,b-= s(s2 +1) ,k=s+1.

Proof: The other parameters are easily computed
2 2
r=s(s+1),11=s(s+1),)\2=(s+1)(25 +2s + 1) .

Now let Q be a non-degenerate elliptic quadric in PG(3,s);

it contains 82 4+ 1 points and each plane of the geometry inter-
sects the quadric Q 1in either one single point (tangent plane)

or in exactly 8 + 1 points forming a non-degenerate quadric

Since Q contains s2 + 1 points, there are s2 + 1 tangent

planes and s3 + 92 + s+1 - (s2 +1) = s(s2 + 1) non-tangent planes.

Taking the points of Q as varieties and the non-tangent planes

as blocks we obtain a BIB design with parameters

v = 32 + 1, b= s(s2 + 1), k=8+1, \=s+ 1,

This design has the property that every triple of varieties occurs

in exactly one block, which is a translation of the fact that any

three points of the quadric determine a unique non-tangent plane.
Agrawal (1966) has proved that in any BIB design with

b = mv, the varieties can be rearranged within each block (column)

so that every variety appears in a row m times; the rearrangement

is achieved using systems of distinct representatives, which in
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turn can be constructed with Hall's algorithm (Hall, 1956). After
the rearrangement of varieties, the BIB design becomes the desired
GY-design.

Note that no symmetric BIB design exists with v = 52 + 1,

k=s 4+ 1.

2.2 Geometric construction of GY-designs

In this section we will consistently make use of the follow-
ing conventions and notation.

s will designate a power of a prime number, s = pn; GF (s)
will stand for the Galois field with s elements; EG(2,s) will
designate the Euclidean plane based on GF(s).

Let =0, oy = 1, Upseeently g be the s elements of

%

GF(8) 1in some order; let Li be the line with equation x = o

i=20,1,...,8-1 and similarly let Lj i be the line with equa-
’
tion ajx +y = ays i,j = 0,1,...,s-1; the s parallel lines

Li’ i=20,1,...,8-1 form a pencil X, and for each aj € GF (s)

the s parallel lines i=0,1,...,s-1, form also a pencil

{‘j,i’

Y,; the order in GF(s) 1induces an order of the lines within each

]

pencil as follows: for any o, a,, a, € GF(s),

3

Li < Lu it and only if o < a
Lj,i < Lj,u if and only if a; <o -
The lines Li and Lj,i will be referred to as the i-th lines
of pencils X and Yj respectively.

Any point P of EG(2,s) 1is uniquely determined as the

intersection of a line of the pencil X and a line of the pencil
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Y We can therefore order the points of EG(2,s) as follows:

0.
Let P, P' be two distinct points of EG(2,s) given by

Pg{zin‘co’j) P'=Li'nLOj'

then P < P' 1if and only if Ly <%y or i= i' and LO,j < LO,j"

We will assign the numbers 0,1,...,s2—1 to the s2 points
of EG(2,8) in that order. 1In all the algebraic manipulations
applied subsequently these serial numbers of the points will be
treated as actual numbers.

Lines will be viewed as s-tuples of their points enumerated
in increasing order, and pencils as square matrices of points whose
i-th row is the i-th line of the pencil, i = 0,1,...,s-1.

We will use the n X n permutation matrices Th and Cn

defined as follows:

By premultiplying a m X n matrix A by T, ve achieve a cyclic
permutation of its rows; by postmultiplying A by gn we achieve
a cyclic permutation of its columns. The subindices will be dropped
whenever the dimensions of the matrices involved are clear.

We will also introduce the transformation g defined on the

points of EG(2,s8) as follows:
o(x,y) = (y,x) V (x,y) € EG(2,s) .

Y will denote the 82 X s matrix



r =
¥
Ylg
Y = .
s-1
s-lg

and G will be the s2 + s X s matrix

(]

2
Theorem 2.2.1: There exist GY-designs with parameters v = s,

b=k =s(s +1).

Proof: The other parameters are

r=(s+1)2,m=n=1,)\1=)\2=32+3s+3

2
o =8 » oy = S -s-l,a1=1.

We will take the varieties of the design to be the points
of EG(2,s).

We claim that each column of the matrix Y is a permuta-
tion of the set of the 82 points.

Suppose that the point a appears twice in the j-th

colum of Y for some j; then we must have

(e} = 4,,1 M lyuy = 25,1 M tiag

for some ,B,i,k, o # B, which is impossible since the lines

and ¢ are different and parallel.

Lita 78

Similarly each row of gYT is also a permutation of the

points of EG(2,s).
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We now claim that the matrix

where L 1is any Latin Square of order 52, is the desired GY~-design.
First note that oXT = X, therefore the first s rows of
D are the lines of EG(2,s) written vertically, and we have
natural one-to-one correspondence between the lines of EG(2,s)
and the rows and the columns of D.
Note that a point occurs twice in a row or column of D
if and only if it belongs to the corresponding line; consequently
since no two lines have more than one point in common any two rows
or columns will have at most one point occurring twice in common.
Therefore oy = Bl = 1 and we conclude that D is a GY-design.

Example 2.2.1: For s =4 we have

v=16,b=k=20,r=25,3 =1, =31

o 1 2 3 0 4 8 12
6 7 1 5 13
X = 9 10 11 Y0 = 2 6 10 14
12 13 14 15 3 7 11 15
0 5 10 15 0 6 11 13
1 4 11 14 1 7 10 12
Y1 = 2 7 8 13 Y2 = 2 4 15
3 6 12 3 5 14
0 7 9 14
1 6 15
Y3 = 2 5 11 12
3 4 10 13



o1 2 3
4 5 6 7
8 91011

12 13 14 15

51015 0O

411 14 1

1113 0 6

1012 1 7

O

15 2 4

=}

14 3 5
14 0 7 9
15 1 6 8
12 2

13 3

10 11 12
11 12 13
12 13 14
13 14 15
1415 0

15 0 1

14

15

10
11
12
13
14

15

2
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10

15

10

11

12

13

14

15

3

14

11

10

11

12

13

14

15

13

10

11

12

13

14

15

10

11

12

13

14

15

10

11

12

13

14

15

10

13

10
11
12
13
14

15

15

10

11

12

13

14

15

11

12

11
12
13
14

15

13

12
13
14

15

10

11

-
15 3 7
4 812
9 5 1
214 10
13 14 15
1415 0
15 0 1

01 2

10 11 12
11 12 13

12 13 14
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Remark: It seems worthwhile to explain the main idea behind the
construction of the above GY-designs. The points, the lines and
the points within the lines were ordered in such a way that the
corresponding columns of each of the matrices representing the
parallel pencils Yj’ j =0,1,...,s-1, consist of all elements
of the same row of the matrix X. Moreover since for x = 0 the
equation y = CH is the same as ajx +y = o the columns of
each of these matrices consisting of the elements of the row of
the X matrix for which x = 0 are also identical with respect
to the order of their elements within the columns. Consequently,
since no two lines of distinct parallel pencils can have more
than one point in common, the remaining s - 1 sets consisting
of s columns whose elements belong to the same row of the X
matrix x = ors o # 0, form distinct permutations of these elements
of a specific structure. Namely each element will belong to one
and only one set of s columns and will occupy within the set
all the distinct s positions of a column. Hence the s distinct
powers of the ( operation, which permutes cyclically the columns
of each of the Yj parallel pencils, will place each element in
each of the distinct columns of the matrix Y.

Analogous reasoning applies to the dYT matrix with vy
and 7T replacing the roles of x and ( respectively.

For the next construction we need the following lemma.
Lemma 2.2.1: There exist Latin Squares of order 32 which can
be split into 8 groups of s columns in such a way that every

row in each group is a line of EG(2,s).

Proof: We claim that
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r s=
YO TYO eese T 1Yo 7
S-
Y.C Y.C cee T ]Ylg
L= . . .
s-1 s-1 s- s-1

is the desired Latin Square.
We have already shown that each column of Y is a per-
mutat ion of the 82 points, therefore so is every column of L.
We must show now that each row of L 1is also a permuta-
tion of the 82 points; but since Ti is not the identity if
0 <1i«<s~-1 each row of L is made out of s different lines
belonging to the same parallel pencil and therefore no point can
occur twice in the same row.
Example 2.2.3: We hgve already constructed EG(2,4). The Latin

Square can now be exhibited as follows:

0 4 8 12 1 5 9 13 2 6 10 14 3 7 11
1 5 9 13 2 610 14 3 7 11 15 0 4
2 610 14 3 711 15 0 4 12 1 5
3 711 15 0 4 8 12 1 5 13 2 6 10
51015 O 41114 1 7 8 13 2 6 9 12
411 14 1 7 813 2 6 12 3 510 15
L= 7 813 2 6 912 3 510 15 o0 411 14
6 912 3 51015 0O 411 14 1 7 8 13
1113 0 6 1012 1 7 915 2 4 814 3
1012 1 7 915 2 4 814 3 5 1113 o0
915 2 4 814 3 5 1113 0 6 1012 1
814 3 5 113 0 6 1012 1 7 915 2
14 07 9 151 6 8 12 2 5 11 13 3 4
15 1 6 12 2 5 11 13 3 4 10 14 0 7
12 2 5 11 13 3 4 10 14 0 7 9 15 1 6
13 3 4 10 14 07 9 151 6 8 12 2 5

15
12
13
14

N = O W

PN o0 O

10

\O

11
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An attractive feature of this family of Latin Squares is
that they are split into 92 subsquares each of which contains
each of the varieties once. We conjecture that they are orthog-
onally mateless, but were so far unsuccessful in proving it.
Orthogonally mateless Latin Squares of order k are known to
exist for arbitrarily large and even k, but their existence is
unknown for arbitrarily large k when k is odd. Our conjecture,
if true, will give a construction of an orthogonally mateless
Latin Square for all k of the form k = pzn, p a prime number.

Theorem 2.2.2: There exist GY-designs with parameters v = 32,

b = 3(32 - 1), k = sg(s+l).

Proof: The other parameters are

r=( + l)z(s -1 m=s -1 n=1
2 2
r(b) =s -1 r(k) =s -1

A < (8-1)(82 -1 +2)+ (32 -s -1
A = (s2 - D(s +2) + (s-1)
a =8 a0=1 d1=s "S'l

82 -8 80 = 3

B

|
(]
]
N
7]
+
et
w
et
|
7]
]
[

Let L be the Latin Square of order 32 constructed as
in the previous lemma. For every point a, let pL(a) be the
transpose of the column vector of L whose first component is a
with that first component missing, this notation is consistent
since each row of L is a permutation of the points of EG(2,s).
Thus pL(a) is a (82-1)-tup1e of distinct points and it does not
contain the point a; 128 is a mapping defined through the Latin

Square L; in matrix notation
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p (@) = cL(a)T

where cL(a) is the column of L whose first element is a.
For any m X n matrix A = (aij)’ pL(A) will be naturally

understood as the m X n(sz-l) matrix pL(A) = (pL(aij)).

Now let G = [::] and consider the s(s+1) X s(sz-l)
matrix D = pL(G)'

We will prove first that the rows of D satisfy the
requirements for a GY-design.

Any row of D contains every point of the geometry s
times, except for the s points in the corresponding row of G,
which will occur s-1 times. Furthermore, since the rows of G
are the lines of EG(2,s) the two elements of every pair of distinct
points occur s-1 times in the same row of D exactly once.
Therefore oy = 1 and the row conditions are satisfied.

Let xi,j’ yi,j
X and Y respectively; let G

be the (i,j) entries in the matrices

j? j=0,1,...,s-1, be the s X 52—1
matrix whose i-th row is pL(xij)’ i=0,1,...,s-1, and similarly
let Lj’ j=0,1,...,8-1, be the 52 X 32-1 matrix whose i-th

row is pL(yij)’ is= 0,1,...,52-1. Note that there are no repeated
points in any row or column of Lj, j =0,...,s-1, but it is not

a Latin Square since each row has only 52-1 points.

The matrix D can be written



29

0 1 s-1
DgPI‘(G)B .
LO L1 . Ls-l
T
Observe that since X = Yo,
Fj '1'1‘
T YO
]
TY.C 0
1 1,32-1
Gj = . j =0,1,...,8-1
1
3 s-1 2
LT Ys-lc s -1
—d

that is, the matrix G, 1is the transpose of the j-th block of

3
s colums of L with the first row missing, and that missing
first row is LO j? the j-th line of the pencil Yo. Therefore
L]
the columns of G, are the lines of EG(2,s) written vertically

]
except for the line LO j and the s 1lines Li’ i=0,1,...,8-1,
9

of the pencil X. Hence in each Gj there are s + 1 missing
lines.

The idea of the construction is to use one of the matrices
Gj consisting of s2 - 1= (stl)(s-1) s-tuple columns to complete
each of the remaining s-1 Gj's to a full geometry. We shall
show that this can be achieved by permuting the elements within
each row of the chosen Gj and keeping the rows constant which
will preserve the already established GY-design property for the
rows.

The lines to be recovered by the chosen Gj are the s

lines of the pencil X each replicated s-1 times plus the lines

of the pencil Y, except (. ., a total of
0 0,]

s(s-1) + s-1 = 52 -1 1lines .
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Let the lines of the pencil X be written vertically.

Since XT =Y , if we apply the cyclic permutation Ti to the

0’
*
i-th line of the pencil X, each row of the resulting matrix X

will contain one point from each line of Yo; indeed

* s-1
X = [{/0’ TL1,°"’T {'S'].]

where Li’ i=0,1,...,8-1, is the i-th line x = oy of X

written vertically. Consequently each row of the s X s(s-1)

matrix

s-2x*]

* *
[X > TX jeee,T

will contain s-1 points from each line of Y

0

We shall add to each row of the above matrix s-1 points

chosen in such a way that all the lines except LO j will be
9’

completed. Notice that this must be done in a unique way since
each of the lines had exactly one point missing. We obtain

*
this way the s X s2 - 1 matrix Gj which is characterized by the

fact that only the line Lo j of Y0 is not complete.
’

*

It is clear from the way Gj was constructed that the i-th

point of 2 will appear in the j+i-th (j+i taken mod s) row
0,

*
of G, as well as in the s-2 preceding rows

j
j+i-1 (mod 8),...,j+i-(8-2) (mod s), but not in the following row
j+1_*
G
h|
0,3’

i=0,1,...,8-1, which is also the case with Gj' Thus the i-th

*
rows of Tj+1G and of G, contain the same points, but in a

3 3

different order.

j+i+l (mod s), i = 0,1,...,s-1. Therefore the matrix T is

such that its i-th row does not contain the i-th point of
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b

Substituting T Gj for Gj in D we obtain
JHL *
GO LN J 'r Gj LN 4 Gs-l
D*
. L
LO oo 0 Lj o0 s-l

which we claim is a GY-design.
We need only to verify the conditions regarding the columns.
Since every column of Li’ i=0,1,...,8-1 is a row of a
Latin Square, and since each column of Gi’ i=0,l,...,8-1, and
G; is a line of EG(2,s) we see that a point occurs twice in a
column as many times as it appears in a line; since each point
belongs to s+l lines in the geometry and we have s-1 replicated
geometries, we conclude that any given point occurs twice in

(s+1) (s-1) = 82 -1=r columns.

(b)
Two distinct points will appear each twice in the same
column if they belong to the same line; since a pair of distinct

points determine a unique line and there are s-1 replicated

*
geometries, B = s-1 and we can conclude that Dj is a GY-design.

Example 2.2.3: For s 4 we have

o=16 b=60 k=20 r =175 kl = 281 A, = 93 .
From Example 2.3.2 we directly write

01 2 6 5 4 7 8 11 10 9 13 14 15 12
4 5 6 91011 8 14 13 12 15 301 2
8 910 1215 14 13 3 0 1 2 4 7 6 5
12 13 14 301 2 5 6 7 4 10 9 811

G
3

We have already obtained
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01 2 3 0 4 8 12
4 5 6 7 1 5 9 13
X 8 91011 Y95 2 610 14
12 13 14 15 3 711 15
We directly obtain
0 7 10 13
- 1 4 11 14
= 2 5 15
3 6 12
07 10 13 1 &4 11 14 2 5 8 15 12 9 6
. 1 411 14 2 5 815 3 6 9 12 01310
Gy = 5 5 15 3 6 9 12 0 710 13 4 114
3 6 12 0 7 10 13 1 411 14 8 5 2

*
Since 1'4 is the identity, the rows of G3 correspond

to the rows of G3, so there is no need to reorder these rows.

*
The GY-design D3 would be
G G *
G 61 Gy G637
*
D3 = .

Theorem 2.2.3: There exist GY-designs with parameters v = 52

be=k=s(s-1).

Proof: The other parameters are

r= (82-1)2 m=n=s-1
2 —
r(b) = r(k) = (8" -1)(s=-1) b(v) = s(s-1)
A< k2 = 85 - 333 + 3 -1
a =8 =s(s-1) @ = Bl = s3 - 252 + 1 ¥y = BO =g-1.
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Let us permute cyclically the lines within the same parallel

*
pencil in Tj+1Gj; this can be accomplished by matrix multiplication
as follows:
Cs i
cs
j+1 * ‘ . - **
T G . = G
3 ¢, j
C’s-l

where there are s-1 matrices gs and all the off diagonal
matrices are zero.

We claim that the s(sz-l) X s(sz-l) square matrix

8 *k )
Gg G, -+ G,
P T
c *ok
G1 2 . G0
D** L
Ll L2 oo 0

*k
Gs-2 Gs-1 tee Gs-3
LFS-Z Ls-l oot Ls-3

is a GY-design.
Using the same argument as in the previous theorem we
will prove that the row conditions for GY-designs are satisfied.
Any given column of D** is made out of s-~1 rows of
the Latin Square L, corresponding to the matrices Li’ plus s-1
different parallel lines, cooresponding to either the matrices
Gi or to the matrices G:* as the case may be. Therefore a

point occurs in each column either s+l or s times; it will

occur s times if and only if it belongs to one of the s-1
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parallel lines. Since these parallel lines contain s(s-1) points,

the number of points repeated in the column s = ntl times is

s(s-1) = s2 -8 = k(v)' Furthermore, the missing lines from each
*k *k

column of D are the columns of the missing G,, (G, ), matrix

3 h|

in each block of 82-1 columns; these matrices are

Fok
G G

G o,coo’ S—2

s-1’

and they constitute, as we have seen in the previous theorem, the
full geometry EG(2,8) replicated s-1 times. Therefore each
member of a pair of points will appear s-1 times in the same column
if and only if both points belong to the line missing from that
column, and BO = g-1. This concludes the proof that D** is a
GY-design.

Example 2.2.4: For s =3 we have

v=9,b=k=24r =64 \y =\ =170, 0 =8 = 6, ay = By = 2,

oy = Bl =10

01 2 0 3 6 0 5 0 4 8
X= 3 4 YO =1 &4 7 Y1 = 1 3 8 Y, = 1 5 6
6 7 8 2 5 8 2 4 6 2 3 7

0 3 61 4 7 2 5 8

1 4 7 2 5 8 0 3 6

2 5 8 0 3 61 4 7

57 03 81 4 6 2

L= 3 81 4 6 2 5 7 0

4 6 2 5 7 0 3 8 1

8 0 4 6 1 5 7 2 3

6 1 5 7 2 3 8 0 4

7 2 3 8 0 4 6 1 5



TG

o

*

*%

i

TG

o

8 0 4 6 1 5 3 7
7 2 3 8 0 4 61

6 1 5 7 2 3 0 4
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G

1

2 0 3 4 5 6 7 8
53 8 6 7 1 2 0

8 6 1 2 0 5 3 4

2 37 0 4 8 6 5

1 5 6 2 3 7 0 8

0 4 81 5 6 3 2

37 2 4 8 0 5 6
=5 6 1 3 7 2 8 0

4 8 0 5 6 1 2 3
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34
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We finish this section exhibiting another GY-design D,
with parameters v = 9, b = k = 24 which is non-isomorphic to
ek
D with the same parameters.
Definition 2.1: Two GY-designs with the same parameters are said
to be isomorphic if one can be obtained from the other by renaming
the varieties, reordering the rows or reordering the columns.

The GY-design D,, which follows, was constructed using

the unique geometry EG(2,3) and trial and error.

112233 444 557 666 779 888 995
445566 881 222 333 777 181 999
778899 111 622 333 444 555 662
115599 222 333 444 666 777 888
226677 111 833 999 555 838 444
334488 222 116 555 661 779 997
114477 228 333 555 966 996 288
225588 333 111 444 999 667 776
336699 888 222 441 114 777 555
881166 999 777 554 343 354 222
992244 888 555 666 777 333 111
337755 666 999 222 888 111 444
D, =
443322 555 778 997 116 616 889
667755 999 444 888 333 222 111
889911 777 666 222 553 443 534
226611 333 555 777 888 949 4409
883377 444 999 222 555 111 666
559944 777 666 111 888 333 222
558822 777 444 999 111 666 333
669933 555 777 888 444 222 111
771144 663 888 336 222 999 555
997722 555 888 113 331 444 666
553311 666 449 888 999 222 7717
664488 999 111 777 222 555 333
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%
That D and D, are not isomorphic is evident since
ok
D has several columns identical, while D has not two identical

columns.

2.3 A class of non D-optimum GY-designs

As stated in Chapter I, J. Kiefer proved in his 1958 paper

that GY-designs are D-optimum if either b 0 or k

™ - @ =0
We will show now that if the divisibility condition is not

satisfied the GY-design may not be D-optimum.

Theorem 2.3.1: There exists GY-designs with v =4, b = k = 6t
for any odd integer t.
Proof: The other parameters are

r = 9t2 b = k =2 r =r = 3t

W) ) (b) (k)
o 3e-1 ) 27¢3 - ¢

mEn=9 M TN 2

a=B=2t d0=eo—t a1=81—t
Let the set of varieties be V = {A,1,2,3] and let ( be a
permutation on Vb defined as follows:

b

g(al,...,ab) = (ab,al,...,ab_l), V(al,...,ab) €V .

Let T be a transformation on V which leaves exactly one
variety fixed; by renaming the varieties if necessary we may

assume without loss of generality that

T@) =A ,7(1)=2,112)=3,13)=1.
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Finally let p € Vb be

o+l w1
p=@ .S.Aa, 170,20 2,3 .7 3

and let D be a k X b matrix whose first row is p and such
that every row and column is the transformed of the preceding one
by Cor.

Since T leaves A fixed, A will occur m times in
each row and column of D; since 73 is the identity every variety
other than A will appear mtl times in two out of every three
consecutive rows or columns.

Let d i=1,2,...,k, j =1,2,...,b be the (i,j)

ij’
entry of the matrix D. We claim that if we make di,3t+i =A,

*
i=1,2,...,3t, the resulting matrix D 1is a GY-design.

Variety A appears mtl times in each of the first
3t = r(k) rows; any other variety x # A appears mtl times
in one out of every three consecutive rows for the first 3t
rows, and in two out of every three consecutive rows for the last
3t rows, that is in a total of 3t + 25-2 =3t =r YOwS.

’ 3 3 (k)

Moreover, the pair of distinct varieties A,x (x # A) appear
mtl times each in the same row t = @y times.

A pair of distinct varieties other than A can occur
mtl times each in the same row only in the last 3t rows and in
exactly one out of every three consecutive rows, that is in
t = a, rows.

The same arguments applied to the columns would allow us

*
to conclude that D is a GY-design.



Example 2.3.1:

40

For t = 3, we have

=18,r=81,)‘1=)\2_
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A A A 3 3 3 33111112 2 2 2 A

*

We will show now that the GY-design D is not D-optimum,
by comparing it with the non-symmetrical design D.

The hypothesis to be tested is that variety has no effect

on yield, that is
A~ V1T Y27 Y3

In the two-way heterogeneity setting where we have v

varieties and a k X b array of plots, the covariance matrix is
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given by (see for instance, Kiefer, 1958)

1) (2)
c . =8 .r - My lii_.+ AR
ij] i34 b k kb
where éij is the Kronecker delta, r, is the number of replica-

tions of the 1-th variety and

K

(1) (1) (1)

My LEI "ie "it
b

(2) 2) (@)

My I M i

with niz) equal to the number of occurrences of the i-th variety
in the g2-th row (q@ = 1) or the £-th column (q = 2).
It is a straightforward but long computation to obtain

in the case of D

c* - 27t2 -2 C* -2 - 27t2
ii 4 ij 12
for i #3, i,j =A,1,2,3.
For the design D one would obtain
c = 27¢% - 6t - 1 c = - 27¢% - 6t - 1
AA 4 Ai 12
2 2
c = 243¢” + 18t - 17 c = - 81t” - 18t + 7
ii 36 ij 36

i # j’ i’j = 1’2’3

*
and for the corresponding determinants A and A,

2 3
* 2 -
A = [fl!%f"'{]

2 4 3e - 21712762 - 6t - 17

_ [27¢
33

A
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3-45t2-12t+4

3
*3 :
positive for any positive t, therefore D is not D-optimum.

* 108t

The difference A - A

Note however that for the eigenvalues we still have

2
- - - *
27t3 2 > 27¢ 3 6t - 1 , that is the smallest eigenvalue of D

is larger than the smallest eigenvalue of D, as it should be.

Example 2.3.2: For t =1

A1 1 2 2 3 A1 1A 23
1 A 2 2 3 3 1 A 2 2 A 3
1 2 A3 31 1 2 A 3 3 A
D= 2 2 3 A 1 1 D=2 2 3 A1 1
2 3 3 1 A 2 2 3 3 1 A 2
3311 2 A 3311 2 A

*
A‘A=_>0.

Final Remark: Other sets of parameters satisfying the necessary

conditions for GY-designs were obtained but they did not lead to
suggestive combinatorial configurations. Further research is
now in progress to construct other classes of GY-designs using

different combinatorial structures.



CHAPTER III

SUM COMPOSITION OF LATIN SQUARES

3.1 Introduction and Definitions

The different methods of composition are among the most
powerful techniques of construction of combinatorial systems.
Those methods permit the construction of a new combinatorial
system out of known ones.

However the methods known so far are of the product type,
in the sense that the parameters of the new system are some sort
of product of the parameters of the initial systems; for instance
the existence of orthogonal arrays (xivi,qi,vi,t), i=1,2,...,r,
implies the existence of the orthogonal array (XVt,q,vi,t), where
A= X1'12°"1r’ VSV vy and q = min(ql,qz,...,qr).

In this chapter we will be dealing with a new sum type
method of composition of Latin Squares due to Hedayat and Seiden
(1969) .

Definition 3.1.1: Two Latin Squares of order n are orthogonal

if upon superimposition each of the n2 pairs of distinct varieties
occur exactly once.

A system of two orthogonal Latin Squares or order n will
be referred to as a 0(n,2) set. If A and B are orthogonal
Latin Squares we will write A L1 B.

Definition 3.1.2: t Latin Squares of order n are mutually

orthogonal if any two of them are orthogonal.
44
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A system of t mutually orthogonal Latin Squares of order
n will be referred to as a O(n,t) set.

Definition 3.1.3: A Latin Square L of order n is orthogonally

mateless if for any other Latin Square L1 of order n the pair
(L’Ll) is not a 0(n,2) set.
Definition 3.1.4: A transversal of a Latin Square of order n
is a collection of n cells whose entries exhaust the set of
varieties and such that no two cells belong to the same row or
to the same column.

Two transversals are parallel if they have no cell in

common.

Definition 3.1.5: A common transversal for a O(n,t) set is a

collection of n <cells which is a transversal for each of the

t Latin Squares in the set.

Example 3.1.1:

1 2

L =

1 12 1

(1y 2 3 4 () 2 3 4]
2 1 4 (3) 3 4 1 (2
Lb®l3s @ 1 2 Li=ls @3 2 1
(4 3 @) 1 2 1 @ 3]
(1 2 3 4 (1 2 3 4]
46 3 2 1 3 4 1
L,=12 1 4 3 Ly = 4 1 2
3 4 1 2 4 1 2 3

L, 1is the only Latin Square of order 2; it has no transversals

at all.
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L2,L3,L4 form a 0(4,3) set; L5 is orthogonally mateless,

the underlined and paranthesized cells in L form two common

2013

parallel transversals of the 0(4,2) set formed by L ,L2; the

1

0(4,3) set formed by LI’LZ’LB has no common transversals.

3.2 The Method of Sum Composition

This method was first introduced by Hedayat and Seiden
(1969) .

Let Ll’LZ be two Latin Squares of orders ny and n,

on disjoint sets of varieties {al,az,...,anl} and
{bl,bz,...,bnz}, n; = n,, and let L1 have at least n, parallel

transversals.

Select arbitrarily n, parallel transversals from L1

and name them 1,2,...,n2; in a ny + n, square fill the 0y X ny

upper left corner with L1 and the n, X n, lower right corner

with L,. Fill the cells (i,n, + k), k = 1,2,...,n2, with that

2 1

element of transversal k which appears in row i, i = 1,2,...,n1;

similarly fill the cells (n1 + k,j), k=1,2,...,n,, with that

2
element of transversal k which appears in column j, j = 1,2,...,n1.

Finally substitute b, for the n

K elements of transversal Kk,

1
k = 1,2,...,n2.
The resulting n, + n, square matrix L 1is easily seen

to be a Latin Square.

The procedure just described of filling the first n,

entries of column (row) ny + k is called horizontal (vertical)

projection of transversal k on column (row) n1 + k.
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Remark: It is by no means required that the ordering of transversals
be the same for both bhorizontal and vertical projections. Therefore,

if N is the total number of parallel transversals of L. we can

1
construct by this method

N 2
) (1)

different Latin Squares of order n, + n,.

1 2
Example 3.2.1:

01 2 3 4 5 6
2 3 4 5 6 01 A B C D
4 5 6 01 2 3 B c D A

L1 = 6 01 2 3 4 5 L2 = ¢ D A B
1 2 3 4 5 6 O D A B C
3 4 5 6 01 2
5 6 01 2 3 4

In L1 the cells (i,j) such that i+ j = k(mod 7)
form a transversal for each value of %k, k =0,1,...,6. Let us
use those corresponding to k = 0,2,4,6, in that order, for
horizontal projection, in reverse order, (6,4,2,0), for vertical

projection and in alternate order (0,4,2,6) for substitution.

The result is the Latin Square L of order 11.



S
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A1 ¢c 3 B 5DUO0 2 4 6
2 ¢4 B 6 DA 1 3 50
C 5 B 0 DA 3 2 4 61
6 B 1 DA 4 C 3 5 0 2
B 2 DA 5 C O0 4 61 3
L= 3 DA 6 C 1 B 5 0 2 4
D A OC 2B 4 61 3 5
5 4 3 21 0 6 A B C D
1 0 6 5 4 3 2 B C D A
4 3 21 0 6 5 C D A B
0 6 5 4 3 2 1 DA B C

3.3 Sum Composition of O0(n,2) Sets

Under certain conditions it is possible to use the method
of sum composition to obtain O0(n,2) sets from known 0(n1,2)

and O(n2,2) sets, n = ny + n,-.

Let {AI,AZ} be a 0(n1,2) set on the set of varieties

A = {al,az,...,an } with at least 2n, common parallel transversals,

2
and {Bl,Bz} a O(n2,2) set on the set of varieties

B = {bl,bz,...,bnz}, ANB = gp.
Select 2n2 common parallel transversals from the first

set and use half of them to compose A1 and B1 to obtain a

Latin Square L1 of order n1 + n, = n; use the remainder n

transversals to compose A

2

2 and B2 to obtain a Latin Square
L2 of order n.

It is obvious from the construction that upon superimposi-

tion of L1 on L the elements of A X B and B XA will

2
appear along the 2n2 transversals in the ny X n, upper left
corner; the elements of B X B will appear in the n, X n,

lower right corner, since B1 and B2 are orthogonal. However
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some of the elements of A X A will be missing, but by properly

choosing the 2n2 transversals and the order of projection we

may achieve that the pairs (ai,ak) lost by substituting elements
of B 1in transversals of A1 and A2 be recovered on projection.
Although we do not have a unified rule to achieve this we

do have procedures which are applicable in several cases.

Example 3.3.1:

Let n, = pa be a power of a prime number p, and number

the rows and columns of a ny X nl square matrix 0,1,2,...,n1

for a fixed x € GF(nl), x #0, fill cell (i,j) of the matrix

..1;

with ix + j € GF(nl); the resulting square is a Latin Square

A(x). Furthermore the ny - 1 Latin Squares A(x), x € GF(nl),

x # 0, constitute a O(nl,nl-l) set; the cells (i,j) such that

i+ j=%k, k€ GF(nl) constitute a set of n, common parallel

transversals of the O(n,n,-1) set.

1

Now, let GF(7) be represented as the residue classes

modulo 7, and let A1 =A(3), A2 = A(4) and similarly, for GF(3)

let B1 = B(1), B2 = B(2). To compose A1 and B1 use the

transversals given by k = 0,5,4 in that order for both projec-

tions and substitution and obtain Ll; to compose A2 and B2

use the transversals given by k =1,2,6 and obtain LZ;
(LPLQ is a 0(10,2).
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01 2 3 4 5 6
4 5 6 01 2 3
1 2 3 4 5 6 0

01 2 3 4 5 6

34 5 6 01 2
6 01 2 3 4 5

Al = 2 3 4 5 6 01

5 6 01 2 3 4
2 3 4 5 6 01

A2

5 6 01 2 3 4

6 01 2 3 4 5
34 5 6 01 2

1 2 3 4 5 6 0
4 5 6 01 2 3

A1 2 3 ¢c B 6 0 5 4

34 5¢c B A1 2 0 6

6 0 C B 3 A 5 4 21

2 CB S A O 16 4 3
C B OA 23 & 1
Ly B 2445 6¢c 310

5

6

4 A 6 01 ¢c B 5 3 2

0 5 31 6 4 2 A BC

6 4 2 0 5 3 B C A

5 31 6 4 2 0 C A B

1

0O AB 3 4 5 C 1 2 6

A B 6 01 Cc 3 &4 5 2
B 2 3 4 C 6 A 01

5

5 6 0 Cc 2 A B 3 41

2 3 C 5 A B 1 6 0 4

6 C 1 A B 4 5 2 3 0

L2 =

Cc 4 A B O1 2 5 6 3

4 1 5 2 6 3 0 A B C
1 5 2 6 3 0 4 C A B

3 04 1 5 2 6 B C A

Hedayat and Seiden (1969) have proved the following results.
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Theorem 3.3.1: Let n, = p¥ > 7, where p is any odd prime

number, ¢ a positive integer, ny # 13. Then there exists an

0(n,2) set which can be constructed by composition of two
n_-1

2 and n = n1 + n2.

Theorem 3.3.2: Let n, = 2% > 8 for any positive integer «-.

Then there exists an 0(n,2) set which can be constructed by

O(nl,Z) and 0(n2,2) sets for n, =

N L‘:I

composition of two O(n1,2) and 0(n2,2) sets for n, = and

2

n= n1 + nz.

The same authors have also proved in 1970

Theorem 3.3.3: If a prime number p has one of the following

forms:
I 3m+1
II 8m+ 1
IIT 8m+ 3
IV 24m + 11
V 60m + 23
VI 60m + 47

then using the method of sum composition it is possible to con-
struct a pair of orthogonal Latin Squares of order pa + 3. The
method of construction depends on the form of p, but does not
depend on its specific value.

Theorem 3.3.4: If p is a prime of the form 8m+ 1 or 8m+ 3,

m # 0, then one can compose an 0(4,2) with an 0(p%,2) based on

Galois field, to obtain an O(p% + 4,2).
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3.4 Construction of O0(n,2) Sets by the Method of Sum Composition

In what follows we assume the following: ny, = pd, a power
of a prime p; the 0(n1,2) set is based in GF(pa) and formed,

with the notation introduced in Example 3.3.1, by A, = A(x),

1
A, = A(y), x,y € GF(nP, x ¢y, {x,y} n {0,1} = 4. We will use
common parallel transversals given by cells (i,j) such that
i+ j=k, k€ GF(nl) and named by k. We further call
S = {sl,sz,...,snz} and T = {tl,tz,...,tnz} the disjoint sets
of n, transversals each used to obtain L1 and L2.

We have seen that the only difficulty of the method of
sum composition is to make it sure that every element of A X A

appears on superimposition of L1 on LZ; the missing pairs are

the annl pairs of the form
(ix+j, iy+j ,i+j€SUT

which correspond to the entries in the 2n2 transversals used
in the composition.
If transversal s of A(x) 1is projected horizontally
on the same column as transversal t of A(y), on superimposition

we will obtain along that column the ny pairs
(ax+b,ay+c¢c) ,a+b=s,a+c=t¢t.

If those pairs are to be some of the lost ones we must have:

ix + j ax + b a+b

s €8S a+c=teT

iy+ j=ay+c i+ j=ke€ESUT
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or i(x-1) + k = a(x-1) + s

i(y-1) + k = a(y-1) + ¢t .

Eliminating i we obtain

k(y-x) = s(y-1) - t(x-1)

or k(y -x) s(y-x) + (s-t) (x-1) .
x-1 .
Making ;_; =y we finally get

k=(+u)s - ut

that is, by projecting horizontally transversal s of A(x) on
the same column as transversal t of A(y) we obtain on super-
impogition the n, pairs
(ix + j, iy + j) i+j=(1+p,)s-p,t
Similarly, if transversals s and t of A(x), A(y)
are projected veritcally on the same row, we will obtain along

that row the n, pairs
(ax + b, cy + b) a+b=g2sg c+b=t
If those pairs are to be some of the lost ones we must have

ix+ j=ax+b a+

o
]

s €8S ct+tb=teT

iy+j=cx+b i+j=kesUuT

or i(x~1) + k = a(x-1) + s

i(y-1) + k = c(y-1) + ¢t .

Eliminating i we obtain
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k(y-x) = (x-1)(y-1) (a-c) + s(y-1) - t(x-1)
Since a-c = s-t, we get
k(y-x) = s(y-x) + (s-t) (x-1)y
and finally
k= (1+yu)s - yut

that is, by projecting vertically transversal s of A(x) on
the same row as transversal t of A(y) we obtain on super-

imposition the n, pairs
(ix + §, iy + J) i+j=Q@Q+yus -yut .
From now on we will use the following functions on S X T

Kh(s,c) = (1 +p)s - ut

Kv(s,t) = (1 + yu)s - yut .

By properly choosing x,y and the pattern of pairing
transversals from S and T we may be able to recover all the
lost pairs and thus obtain a O0(n,2) set with n = pa + n,.
Hedayat and Seiden assume in all their work, xy = 1.

Theorem 3.4.1: If p 1is a prime of the form p =4m + 1, m > 1, then

it is possible to compose 0(pa,2) based on GF(pa) with
0(4,2) to obtain a O(pa + 4,2).

Proof: Consider the pattern

1,2,3

[
|

841 = Kh(si,ti) i = Kh(sb,ta)

ti1 = Kv(si’ti) i=2,3,4 t, = Kv(sl,tl)
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that is
s, = (L+ s, -ty t, = 0 +yu)s; - yut,
s3 = (1 +u)sy - ut, t, =@+ yw)s, - yut,
54 = (1 + u)83 - u.ta t2 =1+ yp,)S3 - yu.t3
s, = a+ p.)s4 - ut, ty = a+ yu)84 - yut, .

Solving this linear system in terms of sy and ty, we

obtain as a solution

sy = a + p,)s1 - ptl
1 1
33 =1 + p.)[l + - ;(1 + yu,)]sl - [u(l + p,) - ;[p,(l + yp,) + 1]]t1
2
1
s, = lb@ + yp) + 1) T;; Sy - %i; ty

1 1
2 =LA+ +p) 51s) - W@ +yw) +1] ey

LA+ ) 7 G+ 9w + 1] - @ + )]s, -

2 1 22
-[A + yuyp T4y Y w1

t4 a+ yu’)sl = Yu-tl .

The compatibility conditions are

1 2
T W + 17 = a0 [ - S0 ] - w@hw (GO + 9’ - )

2 —
1
- 31“_._: = -(1+) [pAH) - ;(l-m + yp,Z]] + yu.3[(1+yu) 11;» -y}

ARLEIW o ) ) [ - 2T - v Q) [ Chin®) - )
2
_ Q) | L2y + o2 3
- Aty e @) - S0ty )] + v [ﬁuﬂ* y) -

These compatibility conditions reduce to
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3 2 2 2 33
A+p) - Q+p)ywt+QA+pyp -yp =0.

Dividing by y3u3 and making l§3'= \ we obtain as compatibility

condition
k3 - 12 +2\-1=0 or (1-1)(x2 +1) =0.

2
A =1 would give Sq = sl, therefore we must have ) + 1 =0,
that is -1 has to be a quadratic residue in GF(pd) which is
possible only if p 1is of the form p = 4m + 1.

Calling 12 = -1, the compatibility condition becomes

yd +i(l=x)) = 1.

which is satisfied by the pair x = 2, y = L, Using s, =0,

ty = 1 we obtain as solution of the system

s = 341 ¢ = -3 + 41
2 5 2 5
_4+2i f ocl¥2i
S3 5 3
_ -1+ 3i ¢ = 1 + 2i
A 5 4 - "5

We must investigate now under what condition those solutions are

all different. One can easily see that

8) = s, if 10 = O(mod p), that is p = 2,5
S, = 8q if 20 = O(mod p), that is p = 2,5
8, =5, if 10 = O(mod p), that is P = 2,5
8, =t, if 25 = O(mod p), that is p =5
8, = tj if 5 = O(mod p), that is p =5

s, = ¢, if 5 O0(mod p), that is p=>5



8, = 83 if
8y = 8, if
s, = t; |if
8y = ty if
8, = tg if
s, = t, if
S3 =5, if
s3 =ty if
84 = t2 if
83 = tg if
83 = t, if
8, =t if
S, =ty if
S, = t3 if
S, =t if
tl = t2 if
tl = t3 if
ty = ¢t, if
t2 = t3 if
ty = ¢, if
ty = t, if

10
20

5
45
25

5
50

5
85

5
25
45

5
25

5
80
40
20
40
20

20

1]

Therefore the solutions are

provided p # 17.
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0 (mod p),
0 (mod p),
0(mod p),
0(mod p),
0(mod p),
0 (mod p),
0(mod p),
0 (mod p),
0 (mod p),
0(mod p),
0(mod p),
0(mod p),
0 (mod p),
0 (mod p),
0(mod p),
0 (mod p),
0(mod p),
0(mod p),
0 (mod p),
0 (mod p),

0 (mod p),

all different when

that

that

that

that

that

that

that

that

that

that

that

that

that

that

that

that

that

that

that

that

that

If p =17, the pair x =5, y =9

compatibility equation; using again

the solutions

1

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

2,5

2,5

3,5

2,5

5,17

2,5
2,5
2,5
2,5
2,5

2,5 .

bortl, m > 1,

satisfies the

0, t

=1 we obtain
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Sy = 16 t2 =12
s = 3 ty = 2
84= 4 t[‘= 8

which are all different in GF(17).
The limitation m > 1 is due, of course, to the fact
that the method requires at least 8 parallel transversals in
order to compose a 0(4,2) set.
Note that xy =1 is incompatible with y(1 + i(l1-x)) = 1;

indeed, the only common solution is x =y = 1.

Theorem 3.4.2: I1If p =1,2,4(mod 7), p 2 11 it is possible to
compose O(pa,Z) based on GF(pa) with 0(4,2) to obtain a
oY + 4,2).

Proof: Consider the pattern

1 = Ku(5208)) ty = K (52:8))
Sy = K, (83583) ty = K3ty
Sq = Kh(sa’ta) tg = Kv(sl’ta)
s, = Kh(sl,tl) t, = Kv(sa’tl) .

Solving this linear system in terms of s, and t,, we

obtain as solutions:
s, a + p)s2 - nt,
53 = [ [ Q) 2 qu Q) 1l Ay LA o (i ] - yu iy 1s,
2 2 2 2
- [AH) @) -yu"] - wlOyw) [w () -y - vy e,

s, = LA’ - u@h1s, - G - wlle,
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£y, = (s, - yut,
£y = [Hy) ) -yl Q) L) 2 W) T - vy 1s,
2 2 2

- [Qtyp)p - yulQ4yp) W) - yu™) -y u'1le,
£, = LA LA - wlw)] - @ ls,

- Lty e h) - w’] - vk,
The compatibility conditions are
1= ) [ [ Q) %o Gy) Tl Q) [ @) 2o by Ty ) 7

= ul @rbyp) () =yl Qv [ ) o (Lbyp) oy ty) 7]

2 2 2 2
0 = - [ Q) [p Q) -yp ]l Qyp) u Q) -y -y 1)
2 2 2

+ ulp Ayp) -yul Ayp) A+ -y ) -y u' 1]
0 = (M) [ Q) [ Q) 2 rby) T (yn) [ L) 2 () Ty (Ly) 1

-yl (Why) ) -yl Ay [ () “ Loy -y (L) 1)

2 2 2 2
1= - (Ltyp) [ ) To () -y "1 Qrby) T () -yu? 9 -y 20”1
2 2 2
+ yulu (yp) -yl QHyp) @A) -yp™) - y'u']]

which reduce to

2 2.2
1 -pu@y-1) = p G- " @y+uy-1) =0.
Making x-1 =u, y -1 =v we get

va(u-l)(u2 +1) + v3u(3u2 - 3u+4) - vzuz(u2 - 3u+6) -

-v u3(u-4) - u4 =0 .



For u=1

60

the equation becomes

bv> -4 +3v-1=0

which can be factorized

However

v - %)(sz -v+1)=0.

u=1l,v=>% gives

look for the roots of 2v2

quadratic residue, and this is so if »p

using

s

t2 = t4, so we have to

-V+1=0.

To solve that equation it is necessary that

= -7, u=1 gives

1]

X

-7 be a

1,2,4(mod 7).

=2’y=_

4

= 0 we obtain as solution of the system

121
32
32

8
8

56

Calling 12
2 = bty

1+
17 7%

3+
S3 5 72

7 +31
4~ " 8
It is easily seen
81 = 8y if
sy = 83 if
Sy = S, if
s1 = t:1 if
8y = t2 if
31 = t3 if
s, < t4 if

112

that

1]

1]

m

1]

0 (mod
0 (mod
0 (mod
0 (mod
0 (mod
0 (mod

0 (mod

P>
P)>
P>
P)>
P)>
P)>

P)>

that

that

that

that

that

that

that

1+
2

2

9 + 5i
8

is P

is P

is P

is P

is P

is P

is P

1

"

11

2,7

2,7



8, = 83 if 8
8, = 8, if 64
80 =ty if 8
S, = ¢, if 176
83 = 8, if 32
54 = t, if 2
sy = t, if 16
s4 = tg if 8
83 = t, if 16
S, =ty if 16
S, = ty if 112
s, = t3 if 144
S, =t if 32
t, =ty if 8
t; =t if 16
t, =¢t, 1if 32
t, =tg if 2
t, =t, if 256
ty =t, if 224

Therefore the solutions are all different
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0 (mod
0 (mod
0 (mod
0 (mod
0 (mod
0 (mod
0 (mod
0 (mod
0 (mod
0 (mod
0 (mod
0 (mod
0 (mod
0 (mod
0 (mod
0 (mod
0 (mod
0 (mod

0 (mod

P)>
P>
P>
P>
P>
P>
P>
1
P>
P>
P>
P>
P>
P>
P>
P)>
P)>
P>

P)>

p =1,2,4(mod 7), provided p # 11.

that

that

that

that

that

that

that

that

that

that

that

that

that

that

that

that

that

that

that

For p = 11 we obtain, using y =

which are all different in GF(11).

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

is

= 2,7

= 2,3

2,7

when
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n
Theorem 3.4.3: 1If n2#6 is even, then for any prime number p 2= Eg

it is always possible to compare O(pa,Z) based on GF(pa) with

0(n2,2) to obtain a O(pd + n2,2) set.

Proof: Consider the pattern

s) = K (s5,t)) t) = K (555t

s, =K (s1,t,) t, =K (s,t))

Solving this system in terms of s tl’ the compatibility

1!

conditions are

1= (1'|'u-)2 - (1 + yu)

0= @ +w +y
0=@Q+p@@+yu) -yp@ + yw
1= -u@ +yw +y2u-2

which reduce to

yu =1+ .

1 s1 + 1 we obtain

Taking t

Sy =8y - t2=sl-yp,=sz-1

that is, t,,s, are also consecutive numbers. By properly choosing
y, which uniquely determines x, since the equation of compatability

is of first degree in x, we may achieve that t, = t1 + 1; the

choice is u = =3 which provides y = % and x = l. The sets

N

S and T are therefore
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S = {31, s, + 3}
T = {sl + 1, s, * 2} .
)
By starting with 8, = 0 and repeating the above process e

times, we obtain the sets of transversals

w
I

= (0,35 4,75...3 20, - 4, 2n, - 1}

2 2

]
|

= {1,2; 5,65...; 2n2 -3, 2n2 -2} .

We could also have considered the pattern

(ad
|

S) = K, (s95t)) 1 T K (5q0t))

5, = Kh(sl,tl) tz = Kv(SZ’tl)

Taking sl,t1 as independent unknowns, the compatibility

condition reduces to

yu@ +p) =1.

Using again t1 =5 + 1 we obtain
Sp =8, "B t2 =8y " Q-+ = S, - 1

that is, t2,52 are also consecutive numbers; t2 = t1 + 1 would
imply as before u = -3,y = %, X = - % and we will get

S = {sl, S, + 3}

T = {sl + 1, s; t 2} .

)

Again by starting with s, = 0 and repeating the process 7

times we obtain



S = {0,3; 4,75...3; 2n2 -4, 2n2 -1}

]
]

(1,25 5,65...3 2n2 -3, 2n2 - 2}

however this time we have to reverse the order of the set T
before projecting vertically.

Note that although all the computations have been
carried out in GF(p), that is mod p, the theorem can be
extended to pa since any GF(pa) has a subfield isomorphic

to GF(p); this is also the reason to impose the limitation

n
pz23 on p rather than on pa.

Note that if xy =1 the compatibility conditions are
not satisfied.

Unlike in previous theorems, where for each value of x
we could obtain at least two values of y satisfying the com-
patibility conditions, this method cannot be extended to the con-
struction of O0(n,3) sets because the value of y uniquely

determines x.

3.5 Composition of O(pa,Z) and 0(3,2) Sets

The smallest non-trivial n for which a 0(n,2) set
exists is n = 3; there are 24 possible patterns to compose a
O(n1,2) and a 0(3,2) set. We assume, without loss of generality,
that the pairs (s,t) of transversals horizontally projected on

the same column are (Si’ti)’ i =1,2,3., The sets S and T are

now S = {31,32,33}, T = {tl,tz,t3}.
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Theorem 3.5.1: If a pattern for composition of a 0(pd,2) and a
0(3,2) set is such that horizontal projection recovers transversals
from both sets S and T, then xy = 1.

Proof: For any pattern, of the six equations which determine the
pattern, three will involve the function Kh and the other three
equations will involve the function Kv' Adding the six equations
we will always obtain, no matter what the pattern is,

Is; tTt, = 1 +u+ 1+yu)Esi - (u"'}’u-)zti

or (zsi - zti)(l +u+yu) =0.

If horizontal projection recovers transversals from both
S and T adding the three equations involving Kh we will
obtain in the 1l,h.s. the sum of either two s's and one t, or
one s and two t's; in the r.h.s. we will obtain
s; - p.(Zti - zsi). Therefore if It - Is; = 0 we will have
s; = tj for some 1i,j. We must then have 1 + y + yu = 0; but
1+, +yp=xy -1, thus the result.

This theorem applies to 12 of the 24 possible patterns
to compose O(pa,2) and 0(3,2) sets; they have been fully

investigated by Hedayat and Seiden (1970).
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