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ABSTRACT

APPLICATION OF A DISCRETE ELEMENT MODEL TO

THE STUDY OF THE STATIC AND DYNAMIC

STABILITY OF BARS, ARCHES,

AND RINGS

By Philip C. Rymers

A physical model of a structural component consist-

ing of a series of mass points connected by bars is used to

investigate stability of the structural component. The bars

are incapable of bending but exhibit axial strain capability.

Bending is accounted for by considering each mass point to

be a nodal point and by attaching a torsion spring across

the node.

Equations of motion are written for each mass point,

employing a right-hand cartesian coordinate system. Provi-

sion is made for non-uniform elastic characteristics in

bending and axial deformation. Unsymmetrical force applica-

tion, physical properties,and geometry capabilities are also

possible with this model.

Solutions of the equations derived for a specific

structural component are presented employing a digital com—

puter for certain problems and using conventional direct

methods for other problems when feasible. Convergence of
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solutions obtained toward known solutions is demonstrated

where known solutions exist. Unsymmetric capabilities of

the model are demonstrated.

The problems investigated include; the buckling of

a straight, pin-ended bar, including the effect of axial

strain; the static buckling pressure on a circular ring,

considering both normal and central loading; the buckling

of a column, including the follower force type of loading;

the determination of the period of oscillation of a beam;

the determination of the period of oscillation of an inex—

tensible circular arch; and the determination of the pure

impulse required to cause snap-buckling of an arch.

The investigation' of static problems is sufficiently

comprehensive, the method so straightforward, and the results

obtained compare so favorably with known solutions presented

in the literature, that the model used is established as a

reliable practical model.

When the model is used in the solution of dynamic

problems, particularly the determination of oscillation

periods of beams, predictable accuracy is demonstrated.

The physical model, when applied to arches, is shown

to respond to unsymmetric loading or unsymmetric physical

properties and geometry. However, no solutions of such

problems have been found in the literature for comparison

purposes.

The computer program and flow chart used in the arch

analysis are included as the Appendix of this thesis.
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CHAPTER I

INTRODUCTION

1.1 Motivation
 

The tOpic for investigation presented here origi-

nated from the First International Conference on Dynamic

Stability of Structures held at Northwestern University

in 1965. Of particular interest at that time was a pres-

entation by Budiansky [17] in which a dynamic buckling

analysis of a single mass point, two bar approximation to

an arch was considered. Efforts to extend this analysis

to include more mass points and bars as well as to beams

and columns led to the use of a digital computer as a

tool to solve the equations which arise. This approach

was partially motivated by the work of Eppink and Veletsos

[24] in which the dynamic analysis of a symmetric, shallow

circular arch is presented.

Prior to these events, attention was drawn to the

general tOpic of elastic stability in a formal course of

instruction presented by the author's graduate advisor,

Dr. W. A. Bradley.

Subsequent study and investigation have served to

greatly increase interest in the subject of static and



dynamic elastic stability, resulting in the thesis that

is presented here.

1.2 History of the Problem,
 

The investigation of the stability of structural

components such as columns, arches, rings, and plates has

occupied the attention of mathematicians and engineers

for many years, the column investigations of Euler in 1759

being among the earliest recorded studies. Until rela-

tively recent times, however, the investigations have

centered on a static analysis of the problem. In 1952,

Ziegler [41] formulated a set of criteria for the solution

of stability problems which expresses the limit of appli-

cability of static analysis. This work was further de-

velOped by Ziegler [42] when he reviewed the classification

of force systems and proposed in particular that a non-

conservative force system requires special treatment,

that of dynamic analysis. Since this work appeared, inter-

est in dynamic stability has steadily increased.

Many Russian scientists have made contributions to

the dynamic analysis of structures, perhaps the most nota-

ble among them being Bolotin [l], [2], who has collected

an extensive bibliography of the efforts of the Russian

scientists in [l].



The work of Koiter [30], which is reviewed in

English in a later article by Koiter [29], firmly estab—

lished the need for consideration of imperfections in

structural analysis, and provides a method for determining

the influence of these effects.

Among other recent contributions are the works of

Hermann and Bungay [25] and Herrmann and Jong [26] in

investigating the class of problems in which structures

are subjected to nonconservative forces, and the work of

Budiansky and Hutchinson [18] in investigating impulse

loading of arches. In addition, the work of Hsu [27] in

defining in a mathematical sense the concept of dynamic

stability, and Humphreys [28] should be noted.

Particularly pertinent to this present study are

the papers by Newmark [35] and Eppink and Veletsos [24].

Newmark has established a method of analyzing dynamic

equations, of the type to be considered here, for linear

systems of equations, which is particularly well suited

to the modern, high speed digital computer, and Eppink and

Veletsos have applied this method to the solution of a

circular arch problem, which is of a considerably more

restrictive nature than some of the problems to be con-

sidered here.

The dynamic analysis of structures and structural

components, in particular those studies relating to



buckling, has progressed to such an extent that a defini-

tion of the stability of a structure has become difficult.

Stability in a mathematical sense, and stability in a

physical sense for a particular structural component may

not be identical concepts. For example, as pointed out

by Koiter [30] in his paper dealing with imperfections,

a structure may be stable in a given equilibrium position,

yet neighboring configurations achieved by imperfections

in the structure may not be stable. In particular, there

may be some lower loading level for which the structure

tends to buckle. Thus, even though a particular solution

to a problem is stable in a mathematical sense, the physi-

cal structure may exhibit tendencies to behave in an unsta-

ble manner due to imperfections.

Other papers of interest on the subject of elastic

stability include, for rings, the work of Ball [13],

Boresi [l6], DenHartog [21], Lind [32], Schreyer and Masur

[36], and Stuiver [40]. Those additional papers consider—

ing principally beams and columns include works by Bailey

[12], Beatty [l4], Beatty and Hook [15], Burgreen [19],

Dengler and Goland [22], Lindberg [33], Morris [34],

Seames and Conway [37], and Sevin [38]. The majority of

the works referenced here and listed in the bibliography

approach the problem as a continuum rather than by the

method of segmenting into systems of bars and masses as



is done here. The usual method of solution in these works

is other than numerical.

The survey article by Eisley [23] provides addi-

tional historical comment and affords a more complete bib-

, liography than that undertaken here.

1.3 Objective
 

For the purpose of this investigation, the stability

of a structural component will be considered assured if

the structure, when displaced to any adjacent configuration.

by any means whatever, is not subject to a catastrophic

failure. Hence, an arch does not "snap through" if it is

displaced to an adjacent configuration with no change in

the loading of the arch. This investigation is then con-

cerned with determining limiting conditions of stable be-

havior in-a physical sense, for a particular structural

configuration, in addition to determining the stable re-

sponse of the structural component to dynamic loading con-

ditions. Additionally, in some problems, static behavior

will be investigated. No attempt is made to define sta-

bility, and no claim to a definition of stability is to

be implied.

The purpose of the study, the results of which are

given in this thesis, was to develop and evaluate a simple

model for study of planar structural components such as



beams, rings, columns,and arches subjected to conservative

and nonconservative static and dynamic loadings. In study-

ing the static and dynamic response of such structures and

structural components, two alternate approaches are:

a) To idealize the component, write the differential

equations of motion or equilibrium,and solve these-

equations. In many cases, closed form solutions

are not easy, or in fact possible, to find with

the mathematical skills presently available. Nu-

merical methods, such as finite differences, are

often used, satisfying an approximation to the

governing differential equations at a finite number

of points.

b) To model the physical problem by a finite number

of discrete elements, and obtain exact solutions

for this model.

Which of these two methods is preferable is at least

partially dictated by the preference of the problem solver,

and in some cases the two methods are entirely equivalent.

It is possible, however, that it is easier to intuitively

estimate the degree to which the discrete model represents

the physical problem than it is to estimate the nearness

of an approximate solution to the exact solution of the

differential equations. The method of approach used here



is the second of those listed, to represent the structural

component as a system of bars and masses connected by

torsion springs, to formulate the mathematical conditions

describing the subsequent response of this system of bars

and masses to an external excitation, and to determine a

solution to this system of equations which is consistent

with the constraints imposed by the geometry of the struc—

tural component and its method of support. The interpre-

tation of the solutions so arrived at will provide insight

into the elastic stability of the structural component

and its fundamental natural frequency when dynamic analysis

is indicated.

Specific structural components studied and their

method of loading are:

1. Straight columns subjected to conservative loads

and the nonconservative follower type of load.

2. Circular rings subjected to normal pressure and

central pressure.

3. Beams subjected to initial displacements but with-

out external loading.

4. Arches subjected to symmetric and unsymmetric

geometry and load conditions and including pure

impulse loadings.



The method of solution used is evaluated by com—

parison of the solutions obtained to known results, where

these results are available.

It was initially intended to study the effect of

transverse shear deformation, axial deformations, bending

deformations, and rotary inertia. However, it was not

found possible to include transverse shear and rotary

inertia effects with the specific solution method employed.



CHAPTER II

DEVELOPMENT OF THE MODEL

2.1 Method of Approach
 

The structural member to be investigated is first

replaced by a model which consists of a number of weight-

less bars connected together by frictionless hinges at the

nodal points where the mass of the structure is considered

to be concentrated. Then the motion of each mass is con-

sidered, employing the necessary conditions of compatibility

to insure a continuous structure. As the number of bars be-

comes large, the condition of the true mass distribution

is approached.

2.2 Formation of the Physical Model
 

The bars are considered to have axial elastic

properties, but are incapable of bending. In allowing

for the influence of bending of the structural component,

it is assumed that torsion springs of constant ki are at-

tached across each nodal point of the model so that as

adjacent bars rotate, these springs are deformed. The

model is illustrated in Figure 2.1.
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Figure 2.l--Typical mass point arrangement.

Each mass point is considered to be acted upon by

a system of externally applied forces, in addition to the

forces and moments in the bars attached to it. The result-

ant of these external forces is denoted by the force vector

Pi in Figure 2.1. Also in Figure 2.1, the angle ¢i denotes

the angle the ith bar forms with the horizontal when the

structure is in the original undeformed position, the angle

th
wi denotes the total rotation of the i bar into its cur-

rent position, Ni denotes the axial force, Si the shear

th
force, and Mi the bending moment attributed to the i bar.

2.3 Equations of Motion
 

Using the model shown in Figure 2.1, the dynamic

equations of motion are written for the coordinate direc-

tions shown.

m.u. = Xi and mivi = Y. (2.1)
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In equations (2.1) the dot is used to indicate differentia-

tion with respect to time. The forces Xi and Yi are ex-

pressed by the equations (2.2).

Xi = ‘N1 °°S(¢i + u’1) + N1+1 °°S‘¢i+1 + 1"14.1)

Si Sin(¢i + wi) + Si+l Sin(4’1“ + 1"1+1) +

Pi sinei

(2.2)

Yi = -N1 sin(¢i + wi) + Ni+l sin(¢i+l + wi+l) +

Si Coswi + 1pi) ' S1+1 C°s(¢i+1 + wi+1)

P. cose.
1 1

2.4 Shear Force, Begging Moment,

and Normal Force

 

 

For a typical bar loaded as illustrated in Figure

2.2, the shear force-bending moment relation is derived,

using a statical moment equation. The use of a statical

moment equation is justified by the assumption that the

bar is weightless, and thus its dynamic resistance to rota—

tion can be ignored. Summing moments about the end A of

the bar in Figure 2.2 gives

 

(2.3)

In equation (2.3), £1 is the original length of the bar,

and 6i is the current axial elongation or contraction of
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Figure 2.2--Force and moment distribution on a typical bar.
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the bar due to a change in position of the ends of the

bar.

The bending moment is related to the rotation of

the bar by the relation

Mi =-ki(wi - win) , (2.4)

where the spring constant ki is given by

 k. = 1 i . (2.5)

In equation (2.5), E1 is Young's modulus of elasticity of

the bar, and I1 is the area moment of inertia of the bar

cross-section measured about an axis perpendicular to the

x-y plane and passing through the centroidal bending

axis of the bar.

The axial force Ni is formed using the relation

N. = a. 6. , (2.6)

where ai is the axial stiffness of the bar, expressed as

 a = 1,1 . (2.7)
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2.5 Axial Deformation and Rotation of a Bar
 

There remains the determination of the extension

6i and the rotation $1 of a typical bar which results from

a change in position of the end points of the bar.

Figure 2.3 shows a typical bar in its original and

displaced configurations, where for ease of illustration,‘

the displacements are greatly exaggerated. From Figure 2.3

we see that

‘1 cos¢i u. + (ILi + Si) cos(¢i + 01) - u.

1-1 1

(ui-l - ui) + (ii + 5i) cos(¢i + $1) ,

from which

6 = £1 cos¢i - (ui-l - ui) _ 2

i cos(¢i + 01) i

 

But we can also write

2. cos¢. + (u.— u._ )
C°S(¢i+'wi) = 1 1 1 1 1 .

“\/[5Licos¢i+(ui-ui_l)12+[£isin¢i+(vi-vi_l)]2

Thus we have for the change in length of the bar

(2.8) 
__ 2 . 2‘.

51: -11 + Wszicos¢i+(ui-ui_l)] +[zis1n¢i+(vi-vi_ln

Also from Figure 2.3 we have
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tan¢. + tanw. 2.sin¢. + (v.

1 1 = 1 1 1

l-tan¢i tantpi llcos¢i + (ui - ui_i)

 

 

 

 

 
Figure 2.3-—Displacement of a typical bar.

Thus, after some computation, we can express the bar rota-

tion wi in terms of the initial geometry of the bar as,

w = Arctan (Vi - vi_l)cos¢i - (ui - ui_l)s1n¢i

_ _ . (2.9)
1 2i + (ui ui_1)cos¢i + (vi vi_1)81n¢i

Expanding equations (2.8) and (2.9) in series, and retain-

ing only up to cubic terms in the relative displacement

of the ends of the bar there results for the bar elonga-

tion,
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. 2 . 2

Sin ¢i 3 cos¢is1n ¢i

51:‘ui'ui-1’°°S¢i+(ui’ui-1) ‘II;“ '(“i'ui-l) 2, 2

i

. 2 coszcbi 3 cosz¢isin¢i

+(Vi'Vi-1’Sln¢i+‘vi‘Vi-1’ ‘EII" -(Vi-Vi-l) 2i:

i

cos¢i sin¢i

‘(ui‘ui-1)(Vi'vi-1) mi

. 3 2 .

2 Sln oi- 3 cos ¢i s1n¢i

-(u.-u. ) (v.-v. )
1 1-1 1 1-1 2*

22.

1

2 cos3¢i- 3 cos¢i sin2¢i

-(ui-ui_l)(vi-vi_l) 22 2 + ... (2.10)

i

Equation (2.10) has been written so that a shortening of

the bar will result in a negative value for Si.

The equations (2.8) and (2.9) are in a form well

suited for use with a high speed digital computer, whereas

equations (2.10) and (2.11) are somewhat more convenient

for use with a desk calculating machine, or for hand cal-

culations, in completing the problem solution by some

numerical scheme.
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For the rotation of a bar there results,

sin . cos . 'n .

$1 2 ¢1 Sl ¢1

 

 

 

 

 

 

 

wi = ’ (“i ‘ ui-l) “I;’ ' (“i ‘ ”1-1) £ 2

i

3 sin3¢i - 3 coszcbi sin¢i

+ (“i ' ui-l) 3
32.

1

cos¢. cos¢. sin¢.

1 2 1 1

+ (Vi ' Vi-l) “I;’ + (Vi ‘ Vi-l) 2 2

i

3 cos3¢i - 3 cos¢i sin2¢i

‘ (Vi ’ Vi-l) 3
. 32.

1

cos2¢i - sin2¢i

+ (“i ‘ “1-1)(V1 Vi 1) 2 2

i

2 cos3¢i - 3 cosoi sin2¢i

+ (ui - u1 1) (v1 - Vl-l) 2 3

i

2 sin3¢i-3cosz¢isin¢i

+ (ui-ui_l)(vi-vi_l) 2 3 + .. (2.11)

i

The formulation of the problem is now complete.

Using the above expressions for the axial deformation and

rotation of each bar of the structural components being

analyzed, the equations (2.1), with equations (2.2) through

(2.7) now become a system of simultaneous differential equa-

tions in the displacements of the mass points of the seg-

mented model. For each mass point two equations will exist,

thus, for a model containing n members and n - 1 mass points
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there will be 2(n - 1) equations to be solved in 2(n - 1)

unknown displacements. Of course, using the model de-

scribed requires that n > 1.

Such a system of equations is very difficult to

solve formally in such a way that the resulting solution

would be applicable to several classes of problems such

as rings, columns, arches, and beams. Therefore a numeri-

cal solution of the system is indicated.

2.6 Reduced Form of the Equations
 

In order that the numerical solutions obtained have

greater general applicability, the equations of the problem

are next written in terms of the elastic constants and cer-

tain geometric properties of the segmented model.

Introducing the quantities,

 

' a' I k. ' mo

_ 1 _ 1-1 _ 1

“i ‘ ET ' ki ’ k. ' mi ‘ ET ' (2'12)
1 l 1

we have for the new coefficients in the equations of the

problem,

I l -(‘Pi-¢i_l)+ki (wi_l-wi)N.

- l:- =

Ni ‘ ET “1 51 ' Si L.+67’ '
1 l l

 

(2.13)
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where “i is the mass per unit volume of the structural com-

ponent. In equations (2.12) and (2.13), primes denote the

new coefficients used in formulating the problem.

Finally then, combining equations (2.1), (2.2),

(2.12), and (2.13) there results,

I 8

“i = [' Ni °°S‘¢i+wi) + N1+1 C°S(¢i+1+wi+1’

v ' Ei

‘ Si Sln‘¢i+¢i’ + Si+1 Sln‘¢i+1+¢i+1’1 u—a'Tz—z
i i 1

Pi
+ $7 Slnei (2.14)

J.

and

I I

Vi = [’ Ni Sln(¢i+wi) + N1+1 Sln(‘bi+1““’i+1)

I 1 Bi

+ Si Sln<¢i+wi) ‘ Si+l °°S(¢i+1+¢i+1’] "“T“§
u.a. l.
l l 1

Pi ‘

- a: COSEi . (2.15)

Equations (2.14) and (2.15) are the equations of the prob-

lem in a "dimensionally reduced" form. Note that in the

event no forces Pi are applied directly to the structural

component being analyzed, the mass of each nodal point is

not required since the ratio Pi/mi becomes the local gravi-

tational constant. Thus for problems where the motion is
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initiated by an initial displacement or velocity, but where

no forces are applied, except possibly forces having a known

magnitude relative to the total weight of the structural

component, the input constants consist of the elastic con-

stants in axial stiffness and bending for each segment of

the model, the ratio of the bending stiffness for adjacent

bars of the model, the mass per unit volume of the material

of the structural component, and Young's modulus of elas-

ticity. Also needed are the conditions of loading, and

the conditions for initiating motion for the problem being

considered.

It is also possible, by the introduction of the

dimensionless ratios,

ui _ vi

u. = —— t v. = —

1 2. ' ' 1 1. '
l 1

 

to write equations (2.1) and (2.2) in the non—dimensional

 

   

 

form,

8 - - fi' c (¢ +1 ) + E" ki+1 1 0 (¢ +w )
1 ‘ 1 03 1 1 1+1 k. 2. °5 1+1 1+1

1 1+1

- S sin(¢ +0 ) + S ki+l £1 in(¢ +0 )

1 1 1 1+1 ki £1+1 5 1+1 1+1

    

+ PK 'n .1 $1 81
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and,

u- - k1+1 11

V1 ="Ni Slnwiwi) + N1+1 k. 9.. 51“ (¢1+1+"’1+1)
1 1+1

k. 2.
— — +1 1

+5. cos(¢.+1p.) - s. 1 cos(d>. +41. )
1 1 1 1+1 ki 2i+l 1+1 1+1

-»Pi cosei .

In these non-dimensional equations, use has been made of

the notations,

 

N 2 8.2. P.2.

fi' = 1 1 § = 1 1 P = 1 1

1 ki ' 1 E1 ' 1 Ei '

2.7 The Column Problem

To solve a column problem it is first necessary to

consider in detail the constraints that are implicit in

equations (2.8) and (2.9). To apply these equations re-

quires that the axial deformation of a bar be dependent

on the position of the ends of the bar. If the structural

component being considered does not possess geometric con-

straints necessary to insure that the displacements can be

calculated, equations (2.8) and (2.9) do not apply. Since

a column lacks these constraints, some additional constraint

must be imposed on the column problem formulation.

One method of introducing the necessary condition

is the construction of an equation of constraint which
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would relate the column geometry and the applied external

forces in a manner independent of the relations expressed

previously. A second method of approach is to introduce

assumptions into the problem formulation without simulta-

neously introducing errors of unacceptable magnitude. The

latter of these methods is employed here.

Starting with equations (2.2) where £1: 0--the

structural component is initially horizontal--we are

X

II I

Nicoswi + Ni+lcoswi+l - Sis1nwi

+ . ‘ . + . ’ .Sl+151nw1+1 P151ne1

(2.16)

Y. = - Nis1nwi + Ni+ls1nxpi+l + Sicoswi

— Si+lcoswi+l - Picosei ,

where Ni and Si are as defined before. Now if the constraint

introduced is that the bars are :inextensible,, and all of

the same length, the distance between mass points does not

change and we have for the bar next to the support in

   

 

  

 

 

9. a -

£7 fi‘JLul uzquvl

Figure 2.4--The column model.
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Figure 2.4,

 

2 - ul= 2 - v1 or u1 = 2 - 2 - vl ,

also

 

22 - u2 - (2 — ul) =1/22 - (v2 - v1) ,

or

 

and in general

 

_ _ 2 _ y 2‘
u. — 1 + ui_l -\/2 (vi vi+1) . (2.17)

Considering the rotation of the bars, and using

equation (2.17) there results,

-1 v. — v._1

I('i"'t""‘1"‘ z 1 1 2] '

Va ‘ (V1 ‘ V1-1) J

which replaces equation (2.9).

(2.18)

To determine the normal forces Ni in the bars now

that no axial deformation is allowed, an additional assump-

tion is useful. Since the masses are numerically quite

small for any real problem, and since by the very nature

of a buckling problem, the accelerations of the mass points

will be small in the vicinity of the actual buckling con-

figuration, since then the period of oscillation tends to
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infinity, the inertia forces in the horizontal direction

will be ignored. The validity of this assumption can only

be borneout by the results of the computations which appear

later in Section 3.4.4 Application to a Column.
 

Using this assumption and the first of equations

(2.16) there results

 

_ 1

Ni _ cosxpi [Picos(Bwi) + Ni+lcoswi+l

- 8131nwi + Si+ls1nwi+ll . (2.19)

In equation (2.19) the angle Bwi replaces the

angle ei in equations (2.16) since it is anticipated that

the column load can be represented as a function of the

angle of inclination of the adjacent bar. Note that if

B = 1, the problem is that of the nonconservative follower

load problem, while if B = 0, we have the conservative load

problem, or the Euler column problem.

To summarize then, the equations governing the

problem represented in this section are,
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miv. = - Nis1n1pi + Ni+ls1n1pi+l + Sicoswi

- Si+1coswi+l + Pis1ani ,

-1 v1 ' v1-1
w. = tan ' (2.20)

1 V22 - (v. - v. )2
1 1-1

N = ——£—— [P cost + N cosw
i cosxpi i i i+l i+l

- Si31nwi + S1+131n¢1+11

and

s=-’i(w -2w+w)
i 2 1+1 i i-l '

2.8 Linearized Form of the Equations

As a first attempt to establish the validity‘of

the use of the model which results in equations (2.2),

consider the following reduction of these equations to

linear form.

For a straight bar, ¢i = 0. Further let 8i = 90°

and hence only axial forces are applied. This gives the

equations (2.21).

-Nicoswi+Ni+1coswi+l-Sis1nwi+si+ls1nwi+1+Pi = Xi

(2.21)

-Nis1nwi+Ni+131nwi+1+Sicoswi-Si+lcoswi+l = Yi
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Now from equations (2.3) through (2.7) where the

bar is of constant cross-section and bending stiffness, we

have

EA

N1 - 7r 61 '

and ‘ (2.22)

_ EI _ _ _

S1 ' 2(2 + 51) [ (21 w1+1) + (wi_1 wi)] . 

Placing equations (2.22) in (2.21) there results, with2.= h.

 

 

 

(w. 'W- )-(W-'W- )
EA EI 1+1 1+2 1 1+1 .

TF‘51+1°°3¢1+1 ' 51°°Sw1’ ' I?“ [ h + 51+1 )Slnw1+1

(w- ‘ W- ) - (¢-_ ‘ W-)
_ [ 1 1+1h + 8.1 1 1 ] Sinwi + Pi = xi I

1 .

and (2.23)

- (¢-'¢- )-(¢- '¢-)
EA . . EI 1 1+1 1-1 1

TF‘51+181n¢1+1‘5151nW1)‘TT'[i h + 51.“ J °°Sw1

 

[(w1+1 ' w1+2) ' (W1 ' w1+1)]
h + 51+1 c°S“’1+1 = Y' °

. Next, assume small mot1on so that 61 = 61+1 = 6

and introduce only the linear parts of equations (2.10)

and (2.11) to form,
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EA E1 2 _

IT’QO) "ir [0‘w1 ’1 + P1 ‘ x1 '

or

Pi = Xi , (2.24)

and

Nh(h + 6)(vi+1-2vi+vi_l) - EI(vi+2-4vi+l+6vi-4vi_l

+ Vi-Z) = Yi . (2.25)

Then if the horizontal motions are neglected we have, with

N =._ P,

(V1-1'2V1+V1+1) _ BI (V1-2'4V1-1+6V1’4V1+1+V1+2’

21
- P

h2 h

(2.26)

The left-hand side of equation (2.26) is the finite

difference approximation-to the first two terms of

P 32” + EI 34V + 91 32V = 0 - (2 27)

3x2, 3x 9 at2

Equation (2.27) represents, in the sign convention

used here, the equation of motion for the vibration of a'

beam acted upon by axial forces as derived in Timoshenko

[10], pages 374-375.



CHAPTER III

APPLICATIONS AND RESULTS

In this chapter, the theory developed in the pre-

ceding chapter is to be applied to a variety of problems,

both static and dynamic. The primary objectives of this

chapter are to illustrate the application of the theory, to

compare results to known solutions so as to verify the ac-

curacy of the equations developed from the theory and to

extend the applications to problem areas where no known

results are available. The problem solutions presented

are of two types. First, certain problems having known so-

lutions will be solved using sufficiently simplified systems

of bars and masses so that hand calculations can be presented.

These solutions will provide some insight into the conver-

gence of the system of equations to known solutions for the

various problems. Finally, problems of greater complexity

will be solved using high speed digital computers as tools.

These problems will be predominantly problems which require

dynamic analysis, and will also include nonlinear effects

which will be ignored in the first category of problems. In

this way will be indicated some idea of the range of applic~

ability of the model as well as the accuracy that can be

generally expected in solving problems of the type considered

here. 28
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3.1 Axial Strain Effect on the Buckling of

a Straight, Pin-Ended Bar

 

 

This problem will be approached in two ways so that

bifurcation and post buckling behavior can both be observed.

Results are compared to the work of Huddleston [43] wherein

an exact solution to this problem is presented.

3.1.1 Bifurcation Values
 

Starting with equations (2.24) and (2.25) where we

set

nv.

_ _ _ 1 _ _ P2 _ 2

x1 ‘ Y1 ‘ 0 ' V1 ‘ ‘2’ ' 5 ‘ nAE ' h ‘ n '

there results

Pi = 0 ,

and

P A22 P '

g2; (T (1 " A‘E) (V1+1 ‘ 2"1 + V1-1) + V1+2 ' 4"1+1 + 6"1

Next introduce the notation

I l P
c=——2. , 1 =-§3—(-5)(1-X§) .

A2 n AE

and we have

Mvi+1 - 2vi + Vi-l) + vi+2 - 4V1+1 + 6vi - 4Vi_l + V1-2 = 0

(3.1)
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Using equation (3.1), A can be determined for any

selected displaced configuration. We note that in general

we have

EI a1 8

P = a and = B , or a = -' ,

27 A22 C

we also have,

P _
-A_'E- _ B 0

Using this notation, the equation relating B and.) becomes

2 2

 

B - B + Cn A = 0 . (3.2)

which has the roots

2

B _ 1 l _ N l

E'IEfl/E'z T:- - ‘3'”

Then with 1 determined from equation (3.1), the buckled con-

figuration equation, g'= a, can be determined from equation

(3.3). So finally we have

_P_

Por

8—
d

(3.4)

a c
u
e

where d is a factor defining buckling of the segmented model

whose solution is sought. For example, with n = 2, d = 8.

Table 3.1 displays the results of applying equations

(3.1), (3.3), and (3.4) for several values of n, where the

value of C is taken to be C = 0.02.
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Table 3.l.--Numerical values of the ratio of applied load to

critical buckling load for a pin-ended column

considering the influence of axial strain.

 

 

 

C = 0.02.

n a P/Pcr

2 10.0000 40.0000 1.2500 5.0000

3 11.7712 38.2288 1.3079 4.2476

4 12.4951 37.5049 1.3331 4.0015

5 12.8533 37.1467 1.3464 3.8911

6 13.0555 36.9446 1.3534 3.8298

7 13.1783 36.8217 1.3579 3.7951      
 

Comparison to Huddleston [43], where the exact solution

is given to be 1.371 and 3.695 for the two values of the

ratio at the bifurcation point, the values in Table 3.1

show that the results for n = 7 are in error by -0.948% and

2.679% respectively. Using the values of Table 3.1 and em-

ploying three point extrapolation for n = 5, 6, and 7, there

results 1.3715 and 3.7002 respectively for the bifurcation

values.

The extrapolation scheme used is that referred to as

Richardson's extrapolation. Two schemes will be used in

this thesis, the two point extrapolation,

  

and the three point extrapolation,

4 4

“f _ A n1

f (n? - nian? - no?) 1 (an - nianiz - no?)
n 4

C

+ A ' I

c (nfz _ n02)‘n12 _ nCZ)

A=A  

 



32

where the subscripts f, i, and c refer to the fine, inter-

mediate and coarse grid sizes, respectively.

3.1.2 Deformed Shape of a Pin-

Ended’Bar
 

The shape of the deformed bar will be characterized

by two values, A/2 and 6/2, which are illustrated in Figure

3.1, the two bar model.

fly

 

 P 1P1 (P1 P

__|g.._

 

  
  

Figure 3.1.--The two-bar model of a deformed, pinrended bar.

For the bar of Figure 3.1, using equations (2.23) in

which we let Xi = Yi = 0 at point 1, there results,

-H (61 coswl - 6l coswl) - ‘H h + 51 sin(-wl) 

 

" h+ 5
] sinlpl + 0 = 0

l

and



33

(1D “(w-(w -w)

(61 sin(-wl) — 61 sinwl) - §% 1 i + &l l l cosw1 11
H

("Wl + I("1) " (191 + 1111)

- h + 31 cost!)l = 0 .
 

In these equations, the conditions of symmetry dictate

that 61 = 62,01 = -w2 and thus the first equation is an identity.

The second equation reduces, with the help of the relations

Nh

  

 

 

5 = AE and P cosw1 + N = 0 ,

to

P _ zwl f EI

- sinw P cosw '
1 h2 1 _ 1

AE

Further introducing

2

h=£ ’ P =TTEI ’ i=2... I C=_:£2. '

2 cr 22 1T2 Pcr A2

there results

a2 _ a + lswl = 0

Ccos$i Csin2¢l ’

which has the roots

a = ————l—— 1 1 /1 - 32c¢ cotw . (3.5)
2Ccosw1 1 1

Additionally, from the geometry of Figure 3.1 we can write

sinwl

——§—- (1 - Ca coswl)

and (3.6)

A
2

n
u
»

I- 1 - coswl (l - Ca coswl) .
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Proceeding in a similar way for the three element

approximation to the bar, there results in place of equations

(3.5) and (3.6) the following set of equations:

 

 

 

_ 1 _ ,
a - 2 C COSWI [l 1 V1 36VC 01 cdtwl]

A sintp1

i- = 3 (1 " CC). 005191) I (3’7)

%-= % [2 - 2 coswl + Ca(1 + 2 cos2 wl)] .

Some values for the ratios A/2 and 6/2 of equations

(3.6) and (3.7) are given for specific values of P/Pcr' with

C = 0.02, in Tables 3.2 and 3.3 and presented graphically in

Figures 3.2 and 3.3. Again it is seen that convergence is

rapid and results compare favorably to those of Huddleston.

Additional references to this problem are the works of Beatty

[l4] and Beatty and Hook [15]. In [15] experimental results

of tests on rubber bars are presented.

Table 3.2.--Numerical values of deformed shape of the two

element pin—ended column considering axial

 

  

 

 

strain. C = 0.02-

11 P/Pcr A/2 6/2

0 1.2500 5.0000 0.0000 0.0000 .2000. .8000

.2 1.2528 5.1243 .0798 .0195 .2125 .8075

.5 1.2691 5.8528 .1970 .0427 .2788 .8436

1.0 1.3447 10.2230 .3718 .0489 .5225 .9372

1.5 1.5301 86.8216 .4901 .0086 .9305 .9988

2.0 1.9470 - .5136 - 1.4701 .9460

2.5 3.0134 - .4148 — 2.1106 .6905         
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1000‘] I

0
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0 0.1 0.2 0.3 0.4 0.5
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0 D

3 element Huddleston

13 ————— o
 

Figure 3.2.--Bar with axial deformations considered, post

buckling.
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l
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0 0.5 1.0 1.5 2.0 2.5

Figure 3.3.--Bar with axial deformations considered,

bifurcation point and post buckling.
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Table 3.3.--Numerica1 values of deformed shape of the three

element pin-ended column considering axial strain.

 

 

 

c = 0.02.

wl P/Pcr A/2 6/2

0 1.3079 4.2476 0.0000 0.0000 .2354 .7646

.2 1.3090 4.3560 .0509 .0153 .2427 .7774

.5 1.3169 5.0137 .1266 .0332 .2823 .8458

1.0 1.3713 8.9111 .2431 .0374 .4368 1.1533

1.5 1.5336 - .3260 - .7124 -

2.0 1.9226 - .3468 - 1.0994 -

2.5 2.9350 - .2839 - 1.6029 -         

A careful examination of the value C = 0.02 used here

may lead to some confusion. If it is assumed that the bar is

of square cross-section, we are led to the result that the

width of the bar approximates one-half the bar length. If,

however, a wide flange section is considered, with the area

equally distributed between the flanges, and with h the depth

of the section, we find the ratio of h to 2 to be about 0.283,

which is on the fringe of practicality.

Also, the values of the ratios 6/2 and A/2 are permitted

to grow to quite large values. Of course when 6/2 becomes

greater than unity, the bar is subjected to tension, and hence

with axial deformations considered, this ratio will increase.

When these large deformation states are reached, the cross-

section distortion will be appreciable and will contribute to

the load values. These effects are not considered here, and

so the problem takes on a flavor of the academic problem for

displacements of such magnitude.
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If stress considerations would be included in the

analysis, and if plastic deformations were accounted for,

these large motions would be viewed in a more realistic

environment.

3.2 Static Analysis of a Circular Ring
 

The circular ring problem will be investigated under

the assumptions of small deformation and inextensibility of

the ring. Two types of loading will be considered. First,

a uniform external pressure will be assumed to be always di-

rected toward the center of the ring, and second, this uni-

form external pressure will be considered to remain normal

to the ring in all deformed and undeformed configurations.

Each of these problems has been given considerable attention

and solutions to them are known, as for example the work of

Boresi [16].

3.2.1 Central Loading of a

CIrcular Ring

 

 

The problem of the circular ring under uniform cen-

tral external pressure will be considered in detail for the

six bar approximation as illustrated in Figure 3.4(b). The

dotted lines represent the deformed configuration, assumed

known beforehand.

The equilibrium of each joint is then considered in

order to derive the equations of equilibrium for this deformed

configuration.
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Figure 3.4.--Four and six bar approximations to a circular

ring.

It is equivalent to use equations (2.2) for vanishing

acceleration, since the equations (2.2) are the equations

of equilibrium for each node point.

We have at node a

F + 2Nl cos(60 + 0) - 33% (30) sin(60 + 0) = 0 , _(3.8)

where N1 is the force in bar ab and the ring is assumed to

be of constant bending stiffness.

At the node b there results

1

and (3.9)

N2 + F cosLaob - N cos(60 + (p) + E;- (3111) sin(60 + 11)) = 0

2

-N1 sin(60 + w) — F sin [_aob - Eé-(3W) cos(60 + w) = 0 ,

2

where N2 is the force in the bar bc.
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Combining these three equations so as to eliminate

N and N2, and considering w to be so small that sin 0 = w
l

and cos 0 = 1, there results

4EI
F = . (3.10)

£2

3.2.2 Methods of Pressure Distribution
 

There are two ways to determine the force F at each

joint that are considered here. The force is considered to

be a function of the externally applied pressure on the ring

in each method. In the first of these methods, it is con-

sidered that each joint carries 1/6 of the total pressure

for the six element ring problem without regard to the in-

clination of the bars adjacent to the joint. In the second

method, the angle of the bars is considered as in Figure 3.5,

where a typical joint is illustrated, and where symmetry is

assumed at a joint. The results of these two approximations

being used along with equation (3.10) gives two values of

pressure required to maintain the assumed equilibrium position,

_ EI _ EI
PCI' - 3.0558 g? and PCI' - 3.6950 3 I (3011)

where R is the radius of the undeformed ring.

Before comments about the accuracy of this result

are to be made, it will first be established whether this

method of approach tends to converge. This requires the

analysis of the same problem using different numbers of bars

to approximate the circular ring. However, before establishing
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P p;

91¢ I p2cos[90-(6+0H.

6+0 ‘5',

9%

Figure 3.5.--Method of force determination at a joint for

a uniformly loaded ring.

the convergence of this model, we first consider the same

six bar approximation to a circular ring under the influ-

ence of normal forces.

3.2.3 Normal Loading of a

Circular Ring

 

 

To approximate normal uniform external pressure

loading of the circular ring, it is assumed that the force

at each joint always acts along the bisector of that joint.

Using this approximation there results at joints a and b

the following equations, derived again from equilibrium

considerations.

At the node or joint a

F + 2Nl cos(60 + 0) - g‘E—Jiwsimeo + 0) = o , (3.12)

at b
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3EI
F cos(60 - £0) - N cos(60 + 0) + N + ———U)sin(60 + 0) = 0

2 l 2 22

and (3.13)

. 1 . 3EI _

-F 31n(60 - 50) - Nl 51n(60 + 0) - ——§0)cos(60 + 0) - 0 .

2

Once again, eliminating N1 and N2, there results

9 22

When the two methods of pressure distribution are used again

there results

_ EI _ EI
Pcr — 2.5465 1:3- and Pcr — 3.0793 ? . (3.15)

These typical calculations are repeated for each

approximation, the foregoing being merely illustrations of

the method used. Table 3.4 lists the critical pressure co-

efficients that result from applying this method to 4, 6,

8, and 10 bar approximations, as well as the results of

extrapolations of the data gathered.

Table 3.4.--Critical pressure coefficients for a statically

loaded uniform circular ring under uniform ex-

ternal pressure.

 

 

 

    

 

   

Number

of Bars Central Pressure Normal Pressure

4 1.8006 2.8284 1.8006 2.8284

6 3.0558 3.6950 2.5465 3.0793

8 3.6398 4.0428 2.7563 3.0615

10 3.9457 4.2177 2.8526 3.0493

Extrapolation

Results

4,6 4.0600 4.3883 3.1432 3.2800

6,8 4.3906 4.4900 3.0260 3.0386

4,6,8 4.5009 4.5239 2.9861 2.9582

6,8,10 4.5451 4.5504 3.0225 3.0214
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The solutions that are accepted as correct for the

two problems considered here are, as found in the paper by

Boresi [16], for central pressure, 4.5, and for normal pres-

sure, 3.0. The above extrapolated results differ from these

by 1.002%, l.1200%, 0.75%, and 0.7133% for the 6, 8, 10 bar

extrapolations respectively. Additional information perti-

nent to the validity of this model will be reported in a

later section in dynamic, nonlinear analysis of the circular

ring problem, section 3.11

3.3 Follower Force Problem
 

The first dynamic analysis problem to be presented

is the follower force problem. Historically this problem

is of considerable interest. The original prOposal of this

problem led to a paradox. Static analysis yielded the re-

sult that a column subjected to a force which always remained

tangent to the end of the column would not collapse under any

force, regardless of the magnitude of the force. Subsequently,

it was shown that dynamic analysis produces a solution, as

given in references [2], [41], [42], which has been further

amplified in later works, [25] and [26], to show the signifi—

cance of dynamic analysis. This problem is the historical

beginning of the modern day dynamic buckling studies.

Consider the two bar, two mass point model of a

column illustrated in Figure 3.6. This is the same model,

exclusive of damping, as that considered by Herrmann and
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Jong [26]. In this problem, the mass is not considered to

be constant along the length of the column.

p

02 m

01 2m

3 11. 1h

h} /

 

 

Figure 3.6.--Two mass point approximation of the follower

load problem.

Applying equations (2.20), where small motion and

the illustrated mass distribution is used, requires

m = j-wh and N1 = N2 = -P .

There results

P(w - w ) + EI(20 -3w ) = 2mh0
l 2 E2 ' 2 1 l

and

P0 + El (0 - w > - P0 = mh (0 + 0 )
231 2 2 1 2 '

which become, after introducing the assumption of harmonic

motion in the form,

and the notation

2 3 2

_ Ph 2 _ mh w

a 7 21— ' B - -—§1— . (3°17)
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the state equations for the problem,

(282 + 3 - a) (-2 + 0) Al

(82 - 1) (82 + 1) A2 0

Setting the determinant of the coefficient matrix

to zero results in the quadratic in 82:

284 + (7 - 2a)82 + 1 = o ,

which is the result arrived at by Herrmann and Jong [26].

This quadratic has the solution,

 

82 = "7 2.20” i 1 ‘\/(7 - 20.)2 -8 . (3.18) 

The value of a for which 8 is a pure imaginary number is

the desired solution for the critical load, since for any

other value of a in equation (3.18), there results a value

of 8 having a non—zero real part and the response 0i of

equation (3.16) then becomes either a damped oscillation

or an ever increasing oscillation, depending on the sign of

the real part of 8. Hence, the ratio of the applied load

to the actual critical load becomes

_P_.

CI

= 3.3813 .

Using equations (2.2), (2.3), (2.4), and (2.5) ig-

noring axial deformations of the bar segments, and consider-

ing as our example the three mass point approximation, there

results the set of equations in the slope angles 01,
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(4 - (1)0l + (-3 + (1)02 + 03 = -801

-01 + (3 - a)02 + (-2 + a)03 -8<wl + 02)

“8(wl + $2 + W3) I-202 + 203

where the end mass point is one-half as large as the other

mass points. These equations could also be derived by con-

sidering the equilibrium of each mass point where small

motion is assumed.

Assuming harmonic motion, the characteristic equation

for the problem is determined to be

3
B - (14 - 4a)82 + (33 - 206 + 362)8 - 4 = 0 . (3.19)

Using this equilibrium approach-—which differs from

the use of equations (2.20) in that additional assumptions

are included in equations (2.20) so that computer solutions

using the Newmark method are feasible in later work-~therer

results for the two and four mass point approximations, the

equations,

82 + (-8 + 2G)B + 4 = o

and (3.20)

84 + (-20 + 6a)83 + (100 - 648) + 10d2)82 + (-96 + 104a

- 36012 + 4a3)8 + 2 = 0 .

In all of these equations, as before, the definitions

(3.17) are used.

The solutions to these three equations are presented

in Table 3.5 and illustrated graphically in Figure 3.7. acr
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Figure 3.7.--Inf1uence of mass points added for

follower force column problem.
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is prOportional to the value of the force applied at buckling,

or when the oscillation frequency is zero.

Table 3.5.--Buckling and natural frequency data for follower

force problem.

 

 

 

Number EI

of Bars acr w/ EAEZ for a = O

2 13:3:

3 12.40 1333;

4 15.09 13:2:

     
Extrapolation, using Richardson's three point for-

mula gives the value for the buckling parameter of

a = 19.414 ,
cr

which compares to the value “or = 20.05 given in [2]. One

other extrapolated result is of interest. Using the smaller

values listed in the third column of Table 3.5 for each

problem, extrapolation gives the number 3.50 which compares

to the value 3.52 as given in reference [10].

This problem is easily solved using three other in-

dependent methods, all of which give the same results. These

methods are finite differences using equation (2.26) and the

appropriate diSplacement boundary conditions for a clamped-

free bar, and application of the Lagrange equations of
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dynamics to the discrete model in terms of either slopes or

displacements.

The finite difference method yields, for the three

mass point model used before, the equations

7vl - 4v2 + v3 + 0I(v2 - 2v1) - 8 v1

2

-4vl + 5v2 - 2v3 + 0I(vl - 2v2 + v3) - 8 v2 (3.21)

2v - 4v + 2v = 82v

1 2 3 3 ’

which, when solved for the characteristic equation again

produces equation (3.19).

Expressing kinetic and potential energy in terms of

the lepes, and using virtual work to derive expressions for

the generalized forces gives for the three mass point ap-

proximation to the problem, the kinetic energy, with w

representing the mass per unit length.

_ l - 2 - 2 . 2

T — -2--Ah[vl + v2 + v3']

or,

_ l 3 - 2 - - 2 1 ° ' ° 2

the potential energy,

2 l

v = EI/h[0l + 2- (02 - 02)2 + % (03 - 02)2] .

and for the generalized forces,

01 = Ph(¢1 — $3) I 02 = Ph(w2 - $3) I Q3 = 0 0

Then employing the Lagrange equations and assuming harmonic

motion, equation (3.19) is again produced.
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The energy method can also be used with displacements

as generalized coordinates rather than rotations, and again

the characteristic equation (3.19) results.

3.4 Computer Solutions of Nonlinear

Problems

 

The equations developed in Chapter II will be solved

by using a step-by-step numerical iteration form of integra-

tion as described by Newmark [35]. A brief discussion of

this method follows.

It is initially assumed that the acceleration, velo-

city, and displacement for each mass point is known at some

time tk' It is desired to determine the values of the

acceleration, velocity, and displacement for each mass

point at some subsequent time t l' where (t - tk) W111
k+ k+l

in the future be represented by the time increment, At.

The solution is begun on the assumption that a

linear variation in the acceleration will exist during the

time interval At. This assumption provides a set of equa-

tions from which, for known values of the acceleration at

the times tk and tk+1’

computed. Using a dot to denote differentiation with re-

the velocity and displacement may be

spect to time, there results from these assumptions, within

a time interval,

X = ik + aT + bT2

and

x = a + ZbT ,
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but we have the following conditions to satisfy:

T = 0 , x = x

 

 

k

T = At , x = xk+l

which give,

x x
_ k+l k

a - xk and b 2At ,

therefore,

x 2
. _ . ” k+l k 2 ,

or

:2 =$<+.1—(x +$E)At (322)
k+l k 2 k+l k ' ‘

However, we also can write

At At x - x

- . " k+l k 2

x] 1 xk’ -[0 xdr +‘[0 [Xk + xk + ( 2At )1 ] dT .
 

which gives

At2 At2
xk+l = xk + xkAt + xk ——3 + xk+l ‘6‘ . (3.23)

Equations (3.22) and (3.23) are applicable to each

mass point of the segmented structural component, and may

be applied to the motion in either of the coordinate

directions.

Using equations (3.22) and (3.23), the trial velo-

cities and displacements :flmr each mass point are computed

in their coordinate directions for the end of the time in-

terval. Using the trial displacements thus computed, the

bar rotations and length changes are next computed.
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Figure 3.8.--Acceleration, velocity and displacement vs.

time curves for a representative mass point.
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The axial force and shear force are then determined,

and from these trial values, plus the additional active

forces applied to the structural component, the resultant

force is determined for each mass point. These forces are

used to compute the acceleration which should exist for the

assumed trial displacements.

The derived accelerations are compared to the assumed

accelerations. If the two values are in satisfactory agree-

ment, the problem is re-cycled to compute the values of

acceleration, velocity, and displacement at the end of the

next time interval. If, however, the two accelerations are

not in satisfactory agreement, the problem is repeated in

the same time interval with a new assumed value of accelera-

tion. A satisfactory method of selecting an improved trial

acceleration is to use the latest derived value of acceleration.

The iteration technique described is repeated as

often as necessary to bring the difference between the trial

acceleration and the latest computed value of the accelera-

tion within a predetermined tolerance. The number of itera-

tions required depends largely on the accuracy desired, as

well as the accuracy of the initially assumed acceleration,

and varies within a problem from one time interval to another.

The method converges rapidly enough to be entirely practical

in use with a high speed digital computer such as the CDC

3600 machine. It is also possible to use this scheme on

the IBM 1620 II computer, but there is a significant time
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difference in the solution of a problem between the two

machines.

The flow chart for the computer program and the

program listing for the arch problem, appears in the Appendix.

If the length of the time interval is not selected

sufficiently small, the method described here will not con-

verge. Newmark [35] has given a method for determining a

suitable time interval and has shown that for such an inter-

val the method described will converge and provide stable

solutions. However, his criteriatue derived for linear

problems and is therefore not entirely satisfactory here.

Newmark's method does, however, give an estimate beyond which

the computer program itself can be made to seek a suitable

time increment. Newmark's approximation is

At < 0.389T , (3.24)

where T is the smallest period of oscillation of the segmented

structural component being used.

3.4.1 Application to the Period of

Vibration of Beams

 

 

The problem considered here was a bar whose modulus

of elasticity of 10 x 106 psi. approximates that of aluminum.

The beam selected had a length of 8.0 inches and cross sec—

tional dimensions such that the ratio of the beam axial

rigidity to bending rigidity is 3.0 in-z. The mass per unit

volume was selected as 0.000246 lb—secz-in-4, again approx—

imating that of an aluminum bar. These numerical data were
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not selected to represent a particular cross section of a

beam. The computer program was designed to seek out a

suitable increment of time after an initial estimate was

made, using the approximation given by equation (3.24). The

time increment used for the five mass point approximation

was 1.0 x 10-7 seconds. Data were then printed out for

each 100 time increments.

Typical data output for a five mass point approxima—

tion of a simply supported beam appears in Table 3.6.~ The

data shown are for the time spanning one quarter period of

oscillation of the beam. Only three of the five mass points

are recorded since symmetry makes the remaining data redun-

dant. The motion was initiated by displacing the beam into

an approximate half sine wave shape with the center displace-

ment being 0.001255 inches from the original equilibrium

position. No sag due to the weight of the beam was taken

into account. Table 3.7 lists the periods of oscillation

measured with this model for a simply supported beam for

several values of n, the number of mass points, along with

the percent deviation from the known linear solution to the

continuum problem. The final data refinement is by linear

interpolation between the listed values of the print out

data. The results of performing this interpolation for the

print out data as shown are not significantly different from

the results obtained by using smaller print out time incre-

ments. Table 3.7 also includes similar data for a seven mass

point approximation of a beam clamped at both ends.



Table 3.6.--Typical computer output.
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Five mass point beam

oscillating in its fundamental mode in the re-

gion of the one quarter period of oscillation

 

 

 

 

 

 

time.

Time Displacement Velocity Acceleration

V1 9.41389-05 -2.12268+01 -l.02727+06

9.000-05 V2 9.28613-05 5.4Sl6l+00 l.7l364+06

V3 1.88278—04 -4.24537+01 -2.05454+06

Vl - 7.26654-05 -5.21242+00 2.77043+06

1.000-04 V2 6.66924—05 ' -2.2539l+01 -4.78336+06

V3 — 1.45331-04 -l.04248+01 5.54087+06

V1 - 5.97098-05 -l.54737+00 —2.35551+06

1.100-04 V2 - 2.69315-04 -2.83320+01 4.17547+06

V3 - 1.19420-04 -3.09475+00 -4.71102+06

V1 - 1.98496-04 -2.15425+01 2.05975+05

1.200-04 V2 - 3.32956-04 7.64956+00 -l.83159+05

V3 - 3.96993-04 -4.30850+01 4.11949+05    
 

Table 3.7.-—Results of computations of periods of oscilla-

tion for transversely loaded beams.

 

 

 

 

   

Number of Mass Computed Period Percent

Points, N (Seconds) Deviation

Ends Pinned

3 .0004280 21.90

5 .0003910 11.41

7 .0003790 7.98

9 .0003730 6.28

11 .0003680 4.84

19 .0003598 2.51

Ends Clamped

7 .000170 9.67
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In Table 3.8 are listed the results of some extra-

polations using the data of Table 3.7., Both two and three

point extrapolations were made.

Table 3.8.--Results of extrapolation of data from Table 3.7.

Transversely loaded beam excited in the funda-

mental mode.

 

 

 

Mass Points Computed Period Percent

Combined (Seconds) Deviation-

3,5 .000370 5.40

5,7 .000367 4.56

3,5,7 .000365 3.99

7,9 .000363 3.42

5,7,9 .000360 2.57

9,11 .000356 1.43

7,9;11 .000353 0.57      
These results indicate that the problem as formulated

and programmed is capable of producing satisfactory results

for the determination of the period of oscillation of a

beam. Other modes of motion can be achieved by apprOpriate

selection of initial conditions and symmetry or asymmetry

conditions in the program.

3.4.2 Application to a

Circular ArCh
 

In order to help establish further confidence in the

physical and mathematical model used as well as the computer

program, the linear response of the discrete model approximat-

ing the inextensible circular arch is studied. Again the
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period of oscillation of the arch is sought. The arch selected

is a sixty degree, pin-ended arch having physical characteris-

tics similar to aluminum, and with a ratio of axial rigidity

to bending rigidity of 3000 in-Z. In order to be certain of

excitation in the same mode as for the problem having known

analytic solution, the top of the arch was restricted so no

motion can occur. Table 3.9 lists the results of the computer

computations with the percent deviation from the known period

of oscillation--Den Hartog [21]--shown for each mass point

that moves. The mass points are numbered so that the mass

point at the tOp of the arch is number four, as illustrated

in Figure 3.9.

Table 3.9.--Inextensive circular arch of seven mass points.

Fundamental period of oscillation for each mass

point that moves and deviation from linear con-

tinuum results.

 

 

 

Computed Period Percent

Mass Point (Seconds) Deviation

1 .00506 -6.65

2 .00583 7.93

3 .00566 4.43     

The results achieved from the beam and circular

arch problem compare favorably with the known, linearized

solutions of these problems. Also, it is evident from.Table

3.7 that as the number of mass points increases, the accuracy

of the results also increases. Thus, as the model approaches
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Figure 3.9.--Inextensible arch of seven mass points.

a continuous distribution of mass along the bar or arch,

the solution tends to the continuum solution. As the

motion amplitudes are allowed to increase, greater deviations

from these linear results would be expected to occur since

then the nonlinear effects which are included in the com-

puter program would become more dominant.

3.4.3 Application to a Parabolic

Arch

 

 

The parabolic arch problem is further sub-classified

into the following categories,

1. Single mass point, single degree of freedom.

2. Single mass point, two degrees of freedom.
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3. Three mass points, three and six degrees of freedom.

4. Five mass points, five degrees of freedom.

Since the present analysis is not intended to be

limited to shallow arches, no definition of "shallow" is

necessary here. The parabolic arch used was selected arbi-

trarily, and its center line lies along the curve

2
4 x )

y = -9- (x - i” . (3.25)

Thus we have an arch of L units of horizontal span.

with a rise of L/9 units at the peak of the arch. The ori-

gin of coordinates is taken to be the left, pinned, end of

the arch and a Cartesian coordinate system is used through—

out computation. While a symmetric arch has been selected,.

the results of computation in category two show that such a

condition is not necessary to obtain results.r

Physically the material of the arch was again similar

to aluminum, and had a ratio of axial stiffness to bending

stiffness of 3000.in-2.

The time period over which data was collected was

that time period sufficient to determine if snap buckling

had occurred. The criterhmlused was that if all mass points

moved to a position below the line between the end points of

the arch, snap failure was assumed. In all attempts where

this criterionwas not met, the arch returned to a position

and assumed velocity components indicating a trend to re-

cover from the induced motions. When the criterfizlwas met,
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snap-through was evident from phase plane type observations

of the displacement vs. motion of the mass points.

The time interval of computations was not the same

for all problems in the categories listed. The largest

possible time increment was always used, to a multiplicative

factor of ten. This was done.to conserve computation time

as much as possible. The time intervals of computation

ranged from .0001 seconds for the single mass point, single

degree of freedom problem to .000001 seconds for the three

and five mass point arch problems. The computer program is

so devised that when convergence tests fail, the time inter-

val of computation is reduced by a factor of ten. This

action has not produced a discernible discontinuity in any

problem output. Further, attempts to refine data computa-

tions by using a finer time grid have not led to the con-

clusion that the problem solutions are time interval

sensitive, so long as sufficiently small intervals are

selected so that the solutions do converge.- However, it is

to be expected that some variations will occur since the

assumption in the solution is that the acceleration is

linear over the time interval, and any variation from this

assumption will be reflected in the computer output. Finally,

Newmark [35] gives a proof of the accuracy of the method

based on the time interval selection as shown in Equation

(3.24) .

Within category 1, the results from five problems

are reported here. These are,
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a. critical initial velocity (pure impulse) with a

sensitivity of one inch per second.

b. Critical force, applied suddenly and left on with

a sensitivity of one pound.

c. Critical impulsive force, sensitivity of one pound

over the time interval of application.

d. Maximum force applied over forty time increments,

sensitivity of one pound.

e. Maximum force applied over eighfiztime increments

with a one pound sensitivity.

These problems were selected to help show the scope

and resolution of the problems that are possible with this

program. Computing time is low for each of the first three

problems, averaging approximately four seconds per problem

using the CDC 3600 computer, and approximately five minutes

per problem using the IBM 1620 Ercomputer. As more mass

points are added, the computation time increases rapidly.

The last two problems in category 1 were included

as approximation of a static loading situation for this

single degree of freedom problem. The force was increased

in steps and the resultant motion was observed.

The results of these computations appear in Tables

3.10 through 3.14 and in Figures 3.10 through 3.14.
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Table 3.10.--One degree of freedom arch-~pure impulse.

 

 

   
 

  

Time v v v v

(Seconds) (Inches); (In/Sec): (Inches) (In/Sec)

.0002 -.688121 -2040.03 - .688330 -204l.69

.0004 -.9l4688 — 530.32 - .915445 - 535.97

.0006 -.971352 - 123.46 - .974338 - 144.14

.0008 -.981660 4.38 - .993656 - 79.05

.0010 -.968972 142.18 -l.017283 - 193.92

.0012 -.904556 600.78 -1.098872 - 747.18

60 = 4417 in/sec 60 = 4418 in/sec

 

Table 3.11.-~0ne degree of freedom arch--suddenly applied

 

 

 

   
   

force.

Time v 6 v v

(Seconds) (Inches) (In/Sec) (Inches) (In/Sec)

.0002 -.41266 -3546.30 - .4127? -3547.44

.0004 -.83807 -1oss.91 - .83852 -1058.81

.0006 -.95242 - 258.82 - .95415 - 270.67

.0008 -.97800 - 36.52 - .98490 - 84.49

.0010 -.97225 102.89 -l.00004 - 90.39

P = 3877 lbs. P = 3878 lbs.  
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Table 3.12.--One degree of freedom arch--impulsive force.

Time v v v v

(Seconds) (Inches) (In/Sec) (Inches) (In/Sec)

.0002 -.12467 '1388.13 -.12480 -1389.55

.0004 -.40969 -1184.87 -.41021 -1187.64

.0006 —.57293 - 500.07 -.57441 - 507.98

.0008 -.63445 - 164.83 -.63888 - 189.47

.0010 -.65482 - 21.54 -.66506 - 97.85

.0012 -.64487 93.96 -.68675 - 141.98

F = 1035 lbs. F = 1036 lbs.    
Table 3.13.--One degree of freedom arch--1oad applied over

40 time cyles.

 

 

 

  
    

No. of v v v v

Cycles . (Inches) (In/Sec) (Inches) (In/Sec)

-.01528 - 92.60 -.01529 - 92.67

-.03571 — 11.31 —.03574 — 11.32

12 -.06113 - 94.56 -.06118 - 94.65

16 -.07945 - 28.11 -.07952 - 28.13

20 -.11167 - 100.26 -.lll77 - 100.39

24 -.l3425 - 40.85 -.13439 - 40.89

28 -.17071 - 124.64 -.17087 - 124.82

40 -.32237 - 212.76 -.32291 - 213.78

48 -.46205 - 68.79 -.46601 - 80.46

52 -.47359 6.024 -.48684 - 34.53

60 -.39653 213.15 -.53577 - 159.38

'R = 1326 lbs. R = 1327 lbs.

  



Table 3.14.-40ne degree of freedom
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80 time cycles.

arch--1oad applied over

 

 

 

  
 

 
    

 

No. of v 6 v 6

CyCIes (Inches) (In/Sec) (Inches) (In/Sec)

10 -.02221 - 41.06 -.02223 - 41.06

20 -.05331 - 27.34 -.05335 - 27.39

30 —.07904 - 12.55 -.07911 - 12.55

40 -.11074 - 45.10 -.11084 - 45.10

50 -.15072 - 60.13 -.15086 - 60.21

60 -.19673 - 64.93 -.l9694 - 65.12

70 —.25349 - 84.19 -.25381 - 84.48

80 -.33943 -135.50 -.34015 -136.09

90 -.45843 - 41.07 -.46408 - 56.54

95 -.46586 7.79 -.48891 - 58.49

100 -.44865 68.27 -.55148 - 58.95

R 1336 lbs. R 1337 lbs.
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Figure 3.10.--Sing1e degree of freedom arch--pure impulse

loading.
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The second parabolic arch problem considered was the

two degree of freedom, single mass point problem. This prob-

lem was considered since it demonstrates the unsymmetrical

capabilities of the program.‘ Three different problems are”

reported here. These are,

1. Bars of different length, but having the same stiff-

ness characteristics. The bar lengths used, compared

to the standard problem, were 21/2 = 0.89436 and

22/1 = 1.10607.

2. The bars are of equal length, but have different

stiffness characteristics. The axial stiffness

ratios used were kl/k = 1.0000 and kz/k = 2.0000.

3. The assembly is symmetric, but a horizontal, non-

symmetric force of 200 pounds is applied.

In each problem, motion was initiated by providing

a pure velocity impulse in the vertical direction for the

mass point. Nonsymmetrical behavior resulted in a manner

which might be expected in each case, as illustrated in

Figure 3.15.

The results from these problems appear in Tables

3.15 through 3.18, along with a symmetrical problem output

where the initial impulse was the same as that for the non-

symmetrical problems. This symmetrical problem is included

for comparison purposes, as a control problem.
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Table 3.15.—2Two degrees of freedom arch-~unsymmetrical mass--
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initial velocity of lOOO'ifi/sec.

 

 

 

Time u u v v

(Seconds) (Inches) (In/Sec) (Inches) (In/Sec)

.00010 .00237 10.11 -.08336 -528.81

.00020 .00207 15.02 -.09060 394.94

.00030 -.00012 -20.00 -.01557 986.08

.00040 -.00183 -38.33 .07290 598.17

.00050 -.00144 9.41 .07949 -482.95

.00060 .00016 46.49 —.00349 —998.24

.00070 .00143 14.35 -.08517 -449.56

.00079 .00221 -29.72 -.09297 335.55    
 

Table 3.16.--Control problem--one degree of freedom-—initial

velocity 1000 in/sec.

 

 

 

Time v v

(Seconds) (Inches) (In/Sec)

.0001 -.09391 -817.3

.0002 -.15438 -362.2

.0003 -.16298 193.7

.0005 -.03079 983.2

.0006 .06648 885.8

.0007 .13246 368.0

.0008 .13358 -344.8

.0010 -.02743 -987.0     
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Table 3.17.--Two degrees of freedom arch--bars of unequal

stiffness-initial velocity of 1000 in/sec.

 

 

 

     

Time u;z u v v

(Seconds) (Inches) (In/Sec) (Inches) (In/Sec)

.0001 -.00732 2.85 -.08197 -504.51

.0002 -.00748 -10.93 -.08500 448.68

.0003 -.00040 - .59 -.00637 997.60

.0004 .00759 13.32 .07670 488.13

.0005 .00670 - .55 .06960 -615.47

.0006 -.00189 - .96 -.01915 -978.02

.0007 -.00802 - 5.55 -.09005 -327.89

.0008 -.00649 -15.80 -.07474 614.09

 

Table 3.18.—-Two degrees of freedom arch-—horizontal force

 

of 200 pounds applied to the mass point--initia1

velocity of 1000 in/sec.

 

 

 

     

Time u . .. u . v 6

(Seconds) (Inches) (In/Sec) (Inches) (In/Sec)

.00010 -.00202 54.41 -.08665 -618.54

.00015 .00000 - 7.22 -.10832 -236.62

.00018 -.00117 -59.65 -.11166 14.74

.00020 -.00230 -46.47 -.10968 182.74

.00022 -.00281 — 1.15 -.10438 346.16
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Categories 3 and 4, the three and five mass point

problems, are included to show the influence of adding mass

points for the parabolic arch problem, and also to show the

effect of neglecting the horizontal motion of mass points in

the analysis of an arch. In all of these arch problems, care

has been exercised to insure that the same arch is being

approximated. The only initial condition considered for

these problems was a vertical velocity impulse of the cen-

tral point of the arch.

Since no reference to this problem is available in

the literature, no conclusions about convergence to a known

solution are possible.

The computer program, whose listing appears in

Appendix B, was devised to seek out the buckling impulse to

within one inch per second of the initial velocity of the

peak mass point. If an impulse velocity less than the criti-

cal value is used as initial input data, the program will

cause this value to increase by increments selected by the

programmer until buckling occurs. Buckling is defined in

the program as the time when all mass points simultaneously

fall to a position below a straight line connecting the ends

of the arch. Stability is determined by observation of the

output, and is readily detected by noting the return of the

mass points to their original positions. The program is so

constructed that the programmer must decide the length of

run time sufficient to insure that if the arch has not
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buckled, it will be stable. A little experience with the

program in the form of several trial runs readily establishes

this time factor, but some care is necessary to avoid false

indicators. No completely satisfactory scheme other than

this one has been found.

No attempt was made to try more than five mass points

for an arch approximation. The computer time quickly becomes

quite large beyond a three mass point approximation., In

fact, the time required for the IBM 1620 II computer to load,

execute and print the output for the three mass point problem'

as given here, starting with an initial input impulse velocity

of 16,000 inches per second and working to completion of the

problem with a sensitivity of one inch per second, was ap-

proximately six hours. During this time, twelve values of

impulse velocity were examined by the computer. The five

mass point problem required even more time, since more mass

points were involved and also since it was necessary to ex-

tend the run time for each value to insure stability, com-

pared to the three mass point problem. It was not possible

to obtain a sufficiently large block of computer time to

permit the five mass point problem to be run on fully auto-

matic as described for the three mass point problem.

Of special interest in the three mass point parabolic

arch problem is the influence of restricting the motion of

mass points to the vertical direction, which is the problem

usually found in the literature on snap buckling of shallow
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arches. The results show quite clearly that this additional

constraint on each mass point has a marked influence on the

oscillation mode and frequency, as well as the critical value:

of the buckling impulse. For example,.the work of Humphreys

[26] is explicitly limited so that only motion perpendicular

to the straight line connecting the ends of the arch is con-

sidered. It would appear that this constraint may somehow

need to be included in any definition of shallowness of an

arch. It is possible that this constraint provides the ori-

terionupon which shallowness might be judged. For example,

it is possible that any arch for which inclusion of this

constraint would not appreciably alter the buckling load

may be considered shallow, otherwise not.- In any event, the

program used here is capable of providing results without

consideration of any definition of shallowness of an arch.

Figures 3.16 through 3.19 show the results of the _

problem solution in the vicinity of the critical values for

the initial velocity imparted to the peak mass point of the

arch. Only the vertical motion of each mass point is plotted.

The figures plotted represent all the output from

the computer program, but do not include all the points that

were calculated by the computer. To conserve computer time,

and to avoid the problem of becoming inundated with data,

the computer was programmed to print out data only after one

hundred time increments had been processed. Thus each set

of points plotted represents one hundred sets of calculated
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Figure 3.19.--Disp1acement response of three and five

mass point arch approximations.
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data. Therefore, the seemingly large jumps in motion made

between points did not in fact actually exist during calcula-

tion. This time increment of print out is a variable that

the programmer may select for each problem run. .

In all of the problems reported here, the same, or

similar statements can be made. The output of the computer,

and hence the points plotted do not represent all the data

points calculated. The frequency of print out was varied to

suit the problem and was selected, by trial, so that a bal-

ance between having a sufficiently large number of points

to plot and having a large amount of unnecessary data was

achieved.

Table 3.19 shows the gnumerical output for selected

time values for the three mass point problem with the mass

points free to move horizontally and vertically, for one

value of the initial velocity.‘

A study of a physically symmetrical, symmetrically

loaded arch was performed previously, using the same computer

program used to collect these data, where it was not assumed

in inserting data to the program that symmetry did exist.,'

The mass point at the peak of the arch exhibited horizontal,

nonsymmetric motion only to within the ability of the com-

puter to approximate zero through the internal errors of

computation which occur. These are errors such as trunca-

tion, orround-off errors, depending on the particular model

of computer used. Additionally, symmetry was evident from
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the observation of the motion of symmetrically placed mass

points. In all subsequent work reported here, to conserve

computation time, symmetry conditions were inserted at the

peak mass point of the arch.. The computer program does not

rely on this compatibility, however, and unsymmetrical prob-

lems can be worked using it. Therefore, in this problem the

top mass point did not move horizontally even though it was

free to do so within the compatibility limits described.

The other mass points did move horizontally, with motion

amplitudes of from one-half to one order of magnitude smaller

than the vertical amplitudes.

3.4.4 Application to a Column
 

Equations (2.20) have been used to determine the

buckling load for a column. The specific model investi-

gated has physical characteristics similar to aluminum and

is approximated by a two bar, two mass point model of non-

constant mass distribution. The mass distribution used was

that of Figure 3.6.

The principal difficulty encountered with this prob-

lem was, as in any dynamically programmed problems, the

simulation of static loading. To approximate static loads,

the column load was incremented using a time dependent step

function. After completing the calculations for each time

increment the load was increased up to a predetermined maxi-

mum value. After full load was achieved, the motion of the
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column was monitored until it was evident that the column

had begun to oscillate. The selection of a total time

value over which full load was applied was critical. Ex-

perience with the arch problem reported in section 3.4.3

indicated a starting point, and longer times were selected

until the final result that is presented here. It is prob-

able that even longer time intervals for the load applica-

tion would permit larger loads to be applied without buckling

being indicated. This is the primary difficulty of static

load simulation using the Newmark scheme of iteration. The

establishment of a load cycle time for a particular column

model by comparison of the results obtained to a known solu-

tion should provide a satisfactory basis for investigation

of additional load configurations for that column model, and

it should also aid in the establishment of a confidence level

for the results obtained from further investigations of that

particular column.

For the particular problem selected as the final

problem in this project, as illustrated in Figure 3.6, the

following results were obtained. When the load was forced

to maintain its original direction as the column displaced,

the ratio of applied load to the known Euler load for the

continuum column was in the range of

1.0117 < P/PCr < 1.0376 . (3.26)

At the upper value of the range, the column collapsed before

full load was applied. At the lower value of the range, the
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column clearly oscillated when its motion was observed for

a time increment of 2-1/2 times the time increment over which

the load was applied. During this additional time span, more

than one full quarter of the period of oscillation of the

loaded column was observed.

When the same column was subjected to a nonconserva-

tive load, specifically the follower load problem, the range

of load ratios was

1.0461 < P/Pcr < 1.0620 . (3.27)

Again at the upper end of this range, the column collapsed

before full load application, and again, more than one full

quarter of the oscillation period was monitored before the

problem was terminated when using the smaller value of load

ratio given in equation (3.27).

The load was applied in time increments of .007143

times the fundamental period of oscillation of the continuum

problem--0.001 seconds of real time—-and was fully applied

at .7143 times the fundamental period, for the conservative

load problem. Correspondingly, the values were .007143 and

1.2664 times the fundamental period of the continuum column

for the follower load problem.



CHAPTER IV

DISCUSSION, CONCLUSIONS, AND FUTURE STUDIES

4.1‘ The Problem Summary

The elastic behavior of circular rings, beams,

columns, and arches has been investigated using a lumped

mass physical model to simulate the continuum problem.

Both static and dynamic response to a variety of loads

hamebeen considered. The influence of bending and axial

strain have been included in the analysis, separately and

together. Nonconservative as well as conservative load-

ing conditions have been considered. Unsymmetric capa-

bilities of the model have been demonstrated. The problem

of the buckling of an arch has been considered where the

arch geometry has not been limited by shallowness or other

Special geometric constraints. Only the constraint of

elastic action has been employed, and that by implication,

since no bounds for elastic action have been established.

Attempts to include the effects of transverse shear

and rotary inertia in the beam and arch problems have not

proven successful. This lack of success is attributed to

the nature of the iteration scheme used in the computer

program, specifically the Newmark scheme described in

Chapter III.

84
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Thus, the problem considered here has been the

determination of the fundamental mode response to static

and dynamic loads of the undamped, one dimensional con-

tinuum elastic bar exclusive of transverse shear and

rotary inertia effects.

4.2 Results of the Analysis
 

The physical and mathematical models used to in-

vestigate this problem have been shown to be reasonable

models. Within each category of problem considered it

has been shown that the models used do converge toward

the known solutions for the continuum problem being ap-

proximated, when such solutions are available. The re-

sults obtained for the static problems are in.each case

in good agreement with the known continuum problem solu-

tions. For the dynamic problems considered, there wa8~

good agreement for the period of oscillation of a beam

as mass points were added to the physical model, as well

as obtaining good agreement for the period of oscillation

of the inextensible circular arch and the buckling load

of the column. No results are available in the literature

to confirm the validity of the model for the buckling of

a parabolic arch excited by impulse load. However, the

articles by Eppink and Veletsos [24] and Lind [32] lend

validity to the method used. Eppink and Veletsos con-

sidered the radial motion of a circular arch, using
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Newmark's method, including axial deformations and bend-

ing moments, and compared the solution obtained to the

solution using a modal method of analysis. Their problem

solution does not have the flexibility of the one used

here, in that the one used here is not restricted to a

circular arch and uses all of the nonlinear terms of the

equations of the problem, and does not terminate an ap-

proximating series.

Lind shows the application of the method of New-

mark, in a very general way, to arches and rings of arbi-

trary shape, and shows the method to be capable of accurate,

yet practical solutions of problems otherwise not readily

yielding to solution using known mathematical methods.

It has further been established here that the

Newmark scheme of iteration is applicable to the various

types of problems considered and is not restricted to

linear analysis.

The models used have not been shown to provide a

means for including transverse shear and rotary inertia

effects, nor has it been shown possible to include the

effects of damping in the dynamic problems considered.

4.3 Conclusions
 

The models used to approximate the beam, column,

and circular ring continuum problems can be expected to

yield accurate results for the period of oscillation of
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a beam, the bifurcation load values for a column includ-

ing the effects of axial strain, and the buckling pressure

for a circular ring.

The period of oscillation of a pin-ended beam,

using three point extrapolation and the results of 7, 9,

and 11 mass point models was in error by 0.57 percent com-

pared to the continuum linear solution.

For the column including axial strain effects,

the values of the critical load ratios at the bifurcation

point deviated from the continuum solution by 0.036 per-

cent and 0.027 percent when three point extrapolation of

the 5, 6, and 7 bar approximations was used.

Results for the circular ring problem showed er—

rors of 1.002 percent and 1.120 percent for central pres-

sure loading and 0.750 percent and 0.713 percent for normal

pressure loading when the 6, 8, and 10 bar approximations

were extrapolated.

Based upon these results, it may be concluded that

the models used are accurate and that it is not necessary

to use more than twelve bars, or eleven nodes, when three

point extrapolation is employed to produce results to ap-

proximately 1 percent error for the types of problem con-

sidered here, and when using the techniques described in

Chapter III.

When the incompressible circular arch problem re-

sults are compared to comparable results for the problems
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listed above, the errors are of similar magnitude. For

example, the largest error in the period of oscillation

for one mass point of the seven mass point inextensible

circular arch was 7.93 percent. This compares to the

error in the period of oscillation of a beam with seven

mass points of 7.98 percent. Thus the incompressible

circular arch problem results can be expected to converge

in a manner similar to that of the beam results.

4.4 Future Studies
 

Several additional problems are suggested by the

work done here. These include the determination of trans-

verse shear and rotary inertia effects using the models

develOped here, however, using an as yet undetermined

iteration scheme for the computer solutions. The influ-

ence of velocity dependent damping is a problem which

might be investigated using the iteration scheme employed

here.

The work presented here also suggests that an at-

tempt at approximation of the errors introduced by finite

difference approximations of differential equations might

be undertaken. In particular, the solution of equations

(2.2) could be compared to the solutions of certain column

buckling problems, for example, those given in references

[19] and [34]. These comparisons might then give insight

into finite difference errors in view of equations (2.26)

and (2.27).
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Different methods of mass distribution might be

investigated to attempt to determine that method which

would provide most rapid convergence for the problems

considered here, provided such a mass distribution method

does exist.

The extension of the circular ring problem to in—

clude the effect of axial strain might be attempted by

utilization of the physical and mathematical models in-

cluded in this presentation.

The physical model presented lends itself well to

the solution of problems where the bar cross-sections are

not constant, or where the bar is not of constant material

properties.

Finally, a study of the influence of time incre—

ment on the rate of convergence of computer determined

solutions toward known problem solutions could be useful

in establishing an optimum time increment vs. number of

mass points curve for several categories of problems.



APPENDICES

Included in this Appendix section are the flow

chart and computer program used in the foregoing analysis,

showing the logic sequence used in the computations.

The computer program was used to gather the data

on which this thesis is based, except for the column prob—

lem, where some alterations of the program were necessary

to incorporate the constraints peculiar to the column

problem, and those problems of Chapter III where static

loading is used, unless indicated otherwise. The program

was so constructed that the initial conditions for the

motion could be altered whenever the structural component

was found to buckle. Thus, if the initial conditions are

selected incorrectly, the computer changes these conditions

and proceeds to seek out the value of the critical param-

eter for the problem within the predetermined range of

values of the parameter that is considered acceptable.
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A. Computer flow chart.
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AND DISPLACEMENTS

ETEST IF TIME TO PRINT)—-®

COMPUTE NEXT TIME

TO PRINT

 

TEST IF ACCELERATION

DIFFERENCES ARE

CHANGING

 

  

  

 

   

 

  
 

 

 

 

PRINT ACCELERATION

DIFFERENCES

TEST IF RATE OF CON- Q

VERGENCE IS TOO SLOW

tTEST IF MCOUNT > 2 Q

to PRINT 'END OF PROB-

LEM' to

TEST IF PROBLEM HAS

@ RUN FOR PRESCRIBED Q

1 TIME

(RICREASE TOLERANCQ to (I)

COMPUTE TRIAL VALUES

FOR DISPLACEMENT,PRINT TOLERANCE

VELOCITY AND ACCELER-

ATION

L

to

to® ©

  

 

 

    

   

PRINT DISPLACEMENTS

VELOCITIES AND

ACCELERATIONS
 

 

 

 

 

 

   

  

   

 

   

 
 

USING IMPROVED ACCELERATIONS

COMPUTE VELOCITIES AND

DISPLACEMENTS  
 

  

  INCREMENT MCOUNT

to®
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PRINT 'ACCELERATION

DIFFERENCES INCREASE'
  

  

 

® IS MMCOUNT < 3?

 

 

REDUCE TIME

INCREMENT

 

  

(I  

 

INCREMENT

MM COUNT
  

)

@

 

@

 

 

 

PRINT 'END

OF PROBLEM'

PRINT

 PROBLEM'

'END OF

  

  

1
1x:()

COMPUTE NEW TRIAL VALUES

FOR ACCELERATION, VELOCITY

AND DISPLACEMENT FOR END

'OF NEW TIME INTERVAL   

1
to©

O

9‘9
TEST IF INITIAL CONDITIONS

EQUAL MAXIMUM VALUES

-u£()  

TEST IF INPUT INITIAL

CONDITIONS INCREMENT

   

 

DECREASE

INITIAL

CONDITIONS

INCREMENT
 

  

 

COMPUTE REDUCED

INITIAL CONDITIONS
  

  

 

PRINT NEw

INITIAL

CONDITIONS   

 

 

 

PRINT 'END OF

PROBLEM'
  

@

to.

 

 

COMPUTE INCREASED

INITIAL CONDITIONS
  

 7 

 

PRINT NEW

INITIAL

 CONDITIONS
 

tolfl)
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B. Computer Program Listing

Listed below are the variable name definitions used

in the computer program which follows. Also included is

a brief resume of the interpretation of statements the

computer may print out in the course of the solution of

a given problem. The program listing is designed for use

on an IBM 1620 II computer which uses a modified FORTRAN II

compiler. This listing will also function, with very minor

changes, on a machine which uses a FORTRAN IV or FORTRAN V

compiler.

The program is an elementary one. No attempt has

been made to produce a program with a high level of sophis-

tication. However, since the program is capable of solving

a great variety of problem types, it may be difficult to

follow its logic throughout. Some careful study and trial

is needed to fully utilize its capabilities.

N Number of bars in the segmented structure.

J Control for symmetry, equals 1 if symmetric,

equals 2 if unsymmetric. Always equals 2

for two bar, one mass point problem.

LL Equals 1 if mass points have two degrees

of freedom, equals 2 if mass points move

in vertical direction only.

KA Inextensibility control. Equals 1 if bars

are extensible, equals 2 otherwise.

LA Ramp load parameter. Equals 1 if load is

suddenly applied, equals 2 if load is gradu-

ally applied, equals 3 if load is gradually

removed after sudden application.



PT

PPT

VELI

DELUAC

DELVAC

TOLU

TOLV

T

CC

VX

VY

AX

AY

PHI

XL

ETA

CAY
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Number of time intervals over which load

is to be applied.

Number of time intervals load is left on

after full application.

Velocity impulse increment.

Acceleration increment, U direction.

Acceleration increment, V direction.

Acceleration tolerance, U direction.

Acceleration tolerance, V direction.

Time increment.

Number of time increments program is to run.

Number of computation intervals between

print out cycles.

Displacement in U direction.

Displacement in V direction.

Velocity in U direction.

Velocity in V direction.

Acceleration in U direction.

Acceleration in V direction.

Initial angle of bar from horizontal.

Initial bar length.

Applied horizontal force.

Applied vertical force.

Applied distributed pressure.

Initial angle of distributed pressure vector

from the vertical.

Mass per unit volume of the bar.

Bending stiffness ratio for adjacent bars.
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ALPHA Ratio of axial stiffness to bending stiff-

ness of a bar.

YM Young's modulus of elasticity.

WT Weight of mass point.

VC Height of mass point above straight line

between ends of the arch.

The program is constructed so that the maximum

velocity impulse acceptable is 29000. If a different value

is desired, statement number 883 must be altered.

If the statement ACCELERATION DIFFERENCES INCREASE

is printed out, the time increment will decrease by a fac-

tor of ten and the problem will continue. After this mes-

sage prints out three successive times, the program termi-

nates.

If the tolerance chosen is too small for signifi-

cance in the computer comparison statement, the computer

increases the tolerance by a factor of ten, prints the

new value of TOLV and continues. If this trouble persists

more than three times in any one problem, the program

terminates.

If the acceleration differences UDIF and VDIF can-

not be improved by successive iterations, the computer

prints the values obtained and continues, assuming conver-

gence has been achieved, whether the tolerance is satisfied

or not.



1

2

800

100

101

103

301

302

801
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Prpgram Listing
 

DYNAMIC ANALYSIS OF BEAMS AND ARCHES

DIMENSION X(ll),VX(ll),AX(11),VY(11),Y(ll),AY(ll),

2UVEL(ll),VVEL(11),U(1l),V(ll),DEL(11),A(11),B(11),

3C(ll),D(ll),PSI(ll),PHI(11),UACC(11),THETA(11),XMV

4(11),YY(11),VC(1l),VACC(1l),WT(ll),CAY(11),XN(11),

58(11),YM(11),ALPHA(11)

DIMENSION E(11),F(11),UDIF(30,11»VDIF(30,11),

2H(1l),ETA(11),XL(11),XX(11)

READ 100,N,J,LL,KA,LA,PT,PPT,VELI

PRINT 205

READ 101,DELUAC,DELVAC,TOLU,TOLV,T,CC,P

CCT=CC*T

DO 3 I =1,N

READ 103,X(I),VX(I),AX(I),Y(I),VY(I),AY(I)

READ 103,PHI(I),XL(I),E(I),F(I),H(I),ETA(I)

READ 103,XMV(I),CAY(I),ALPHA(I),YM(I),WT(I),VC(I)

VEL=VY(N)

ICOUNT=0

FORMAT (515,3F10.0)

FORMAT (7F10.0)

FORMAT (6F10.0)

DO 4 I=1,N

IF (ABSF(PHI(I))-.1E-5) 301,301,302

C(I)=1.

D(I)=0.

GO To 4

C(I)=COSF(PHI(I))

D(I)=SINF(PHI(I))

CONTINUE

MCOUNT=0

VY(N)=VEL

SET COUNTERS AND CONTROLS TO INITIAL VALUES

TT=0.

AT=.5*T

PT=PT*T

PPT=PPT*T+-PT

TTT=P*T

MM:1

GO TO (8,5),J

N=N-l

GO TO 8

DELVAC=.1*VACC(1)

DELUAC=.1*UACC(1)

M=o

COMPUTE APPROXIMATE DISPLACEMENTS

DO 7 I=1,N

VACC(I)=AY(I)4-DELVAC



14

15

16

18

19

20

21

211

22

23

24

25

251

252

253

26

C

36

37

39
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VVEL(I)=VY(I)-+.5*(AY(I)+-VACC(I))*T

V(I)=Y(I)-+(VY(I)-+((AY(I)-+.5*VACC(I))/3.)*T)*T

UACC(I)=AX(I)-+DELUAC ‘

UVEL(I)=VX(I) + .5*(AX(I) +UACC(I))*T

U(I)=X(I)+—(VX(I)-+((AX(I)-+.5*UACC(I))/3.)*T)*T

COMPUTE RAMP FUNCTION PARAMETER

GO TO (16,14,19),LA

IF (AT-PT) 15,16,16

BBT=TT/PT

GO TO 21

IF (AT-PPT) 17,18,18

BBT=1.

GO TO 21

BBT=0.

GO TO 21

BBT=1.-TT/PT

IF (BBT) 20,21,21

BBT=0.

M=M-+1

COMPUTE BAR EXTENSION AND ROTATION

A(1)=U(1)

'B(l)=V(1)

IF (N-l) 1,24,22

DO 23 I=2,N

A(I) = U(I) - U(I-1)

B(I)=V(I)-V(I-1)

GO TO (25,24),J

N=N+ 1

A(N) = -U(N-l)

B(N)= #V(N-l)

DO 26 I=1,N

GO TO (252,251),KA

DEL(I)=0.

GO TO 253

DEL(I) = -XL(I) + SQRTF((XL(I)*C(I) - A(I))**2 +

2 (XL(I) *D(I) - B(I) ) **2)

PSI(I)=ATANF((B(I)*C(I)-A(I)*D(I))/

2 (XL(I)-A(I) *C(I)-B(I) *D(I) ))

CONTINUE

COMPUTE SHEAR AND NORMAL FORCES

DO 36 I=1,N

THETA(I)=PHI(I)-PSI(I)

XN(1)=ALPHA(1) *DEL(1)

S(l)=(PSI(1) -PSI(2) + 2.*CAY(1) *PSI(1) )/(XL(1) +

2DEL (1))

GO TO ( 39,41) ,J

PSI (N+ l) = -PSI (N)

L=N

GO TO 43
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41 IF (CAY(N)) 1,42,39

42 S(N)==(PSI(N)-PSI(N-l))/(XL(N)*DEL(N))

XN(N)==ALPHA(N)*DEL(N)

L= N-l

IF (N-2) 1,54,43

43 DO 44 I =2,L

S(I) = (PSI(I)-PSI(I +1)-CAY(I)*(PSI(I-1)-PSI(I)))

2/(XL(I) + DEL(I))

44 XN(I) = ALPHA(I) *DEL(I)

SET COMPATABILITY CONDITIONS

55 GO TO (56,57),J

56 THETA(N + 1) = -THETA(N)

XN(N-+1)==XN(N)

S(N+l)= -S(N)

GO TO 58

57 N= N-l

58 L=M-1

COMPUTE NEw ACCELERATIONS

59 DO 61 I=1,N

BBB=ETA(I)-+.5*(PSI(I)-+PSI(I-&1))

IF (ABSF(BBB-.1E-5)) 592,592,591

591 EA=(E(I)4-H(I)*SINF(BBB))*BBT

GO TO 593

592 EA=E(I)*BBT

593 XX(I)=(XN(I)*COSF(THETA(I))-XN(I+-1)*COSF(THETA

2(I+-1))+-S(I)*SINF(THETA(I))-S(I+-1)*SINF(THETA

3(I+ 1)))*YM(I)/(ALPHA(I)*XMV(I)*XL(I)*XL(I)) +

4(EA*386.4)/WT(I)

UDIF(M,I)=ABSF(UACC(I)-XX(I))

IF (M-2) 61,61,60

60 IF (UDIF(M,I)-UDIF(L,I)) 61,61,72

61 CONTINUE

GO To 94

62 LB=N+—1

DO 93 I=1,LB

93 XX(I)=0.

94 DO 71 I=1,N

IF (BBT) 64,64,63

63 =ETA(I)4-.5*(PSI(I)-+PSI(I-+1))

IF (ABSF(AAA-.lE-5)) 632,632,631

631 FA=(F(I) + H(I)*COSF(AAA))*BBT

GO TO 67

632 FA= (F(I) +H(I))*BBT

GO TO 67

64 FA=WT(I)

67 YY(I)=(XN(I)*SINF(THETA(I))-XN(I-+1)*SINF(THETA

2(I4-l)) -S(I)*COSF(THETA(I)) +S(I-+1)*COSF(THETA

3(I+l)))*YM(I)/(ALPHA(I)*XMV(I)*XL(I)*XL(I)+FA*

4386. 4/WT(I)



70

71

72

73

74

742

75

741

751

752

999

76

761

77

78

762

763

764

765

998

100

CHECK CONVERGENCE AND TOLERANCE

VDIF(M,I)=ABSF(VACC(I)-YY(I))

IF (M-2) 71,71,70

IF (VDIF(M,I)-VDIF(L,I)) 71,71,72

CONTINUE

GO TO (76,64),LL

PRINT 204

IF (MM-3) 73,89 ,89

T=.1*T

MM=MM4-1

GO TO 6

IF (L-l) 902,742,742

DO 75 I=1,N

IF (VDIF(M,I)-TOLV) 75,75,741

CONTINUE

GO TO 79

DO 752 I=1,N

IF (VDIF(M,I)-VDIF(L,I)) 90,751,90

PRINT 999,VDIF(M,I)

CONTINUE

FORMAT (30X, llHVDIF(M,I)=PElO.3)

GO TO 79

IF (L-l) 902,761,761

DO 78 I=1,N

IF (UDIF(M,I)-TOLU) 77,77,762

IF (VDIF(M,I)-TOLV) 78,78,762

CONTINUE

GO TO 79

DO 765 I=1,N

IF (VDIF(M,I)-VDIF(L,I)) 763,764,763

IF (UDIF(M,I)-UDIF(L,I)) 90,764,90

PRINT 998,VDIF(M,I),UDIF(M,I)

CONTINUE

FORMAT (30x, llHVDIF(M,I)==PE10.3, llHUDIF(M,I)

2 =PE10.3)

C CHECK IF TIME TO PRINT OUTPUT,PRINT OR RECYCLE

79

80

81

82

821

TT=TT+T

AT=TT+-.5*T

GO TO (84,80),LL

DO 81 I=1,N

AY(I)=VACC(I)

VY(I)=VVEL(I)

Y(I)=V(I)

IF(TTT-AT) 82,82,6

IF (MM-2) 824,821,823

T=10.*T

MM=1

GO TO (86,825),LL



823

824

825

83

807

806

804

805

84

85

86

87

88

881

882

883

891

892

893

894

89

101

T=100.*T

MM=1

GO TO (86,825),LL

TTT=TTT+-P*T

PRINT 201,TT

DO 83 I=1,N

PRINT 203,Y(I),VY(I),AY(I)

GO TO 88

VEL=VEL4-VELI

ICOUNT=1-+ICOUNT

IF (VELI-.5) 89,89,806

DO 804 I=1,N

AY(I)=0.

AX(I)=0.

vx(I)=o.

X(I)=0.

VY(I)=0.

Y(I)=0.

PRINT 805,VEL,ICOUNT

FORMAT (16X,14HNEW VELOCITY==,PE 12.4,10X,IS)

GO TO 801

D0 85 I=1,N

AX(I)=UACC(I)

AY(I)=VACC(I)

VX(I)=UVEL(I)

VY(I)=VVEL(I)

x(I)=U(I)

Y(I)=V(I)

IF (TTT-AT) 82,82,6

TTT=TTT+P*T

PRINT 201,TT

DO 87 I=1,N

PRINT 202,X(I),VX(I),AX(I)

PRINT 203,Y(I),VY(I),AY(I)

DO 881 I=1,N

IF (VC(I) -V(I)) 881,882 ,882

CONTINUE

GO TO 891

IF (TT-CCT) 6,883,883

IF (VEL-29000.) 807,89,89

IF (VELI-10.) 892,893,893

IF (VELI-1.1) 89,89,894

VEL=VEL-.8*VELI

VELI=.2*VELI

GO TO 806

VEL=VEL-VELI+-1.

VELI=1.

GO TO 806

PRINT 206

GO TO 1



90

901

903

904

902

91

911

912

913

201

202

203

204

205

206

300

102

IF (MCOUNT-1) 901,903,903

IF (M-20) 902,902,911

IF (M-20) 902,904,904

M==0

DO 91 I=1,N

UACC(I)=XX(I)

UVEL(I)=VX(I)-+.5*(AX(I)4-UACC(I))*T

U(I)=X(I)-+(VX(I)-+((AX(I)4-.5*UACC(I))/3.)*T)*T

VACC(I)=YY(I)

VVEL(I)=VY(I) +.5*(AY(I)-rVACC(I))*T

V(I)=Y(I)4-(VY(I)+-((AY(I)+ .5*VACC(I))/3.)*T)*T

GO TO 21

MCOUNT=MCOUNT+ 1

TOLV=10.*TOLV

TOLU=10.*TOLU

PRINT 300,TOLV

IF (MCOUNT-3) 913,912,912

TOLV=.01*TOLV

TOLU=.01*TOLU

PRINT 300,TOLV

GO TO 89

GO TO (76,74),LL

FORMAT (1X,E10.3/)

FORMAT (16X,3HU 1PE16.7,4X,1PE16.7,4X,1PE16.7)

FORMAT (16X,3HV 1PE16.7,4X,1PE16.7,4X,1PE16.7/)

FORMAT (40H ACCELERATION DIFFERENCES INCRE

2ASE/ )

FORMAT (1H1 , 4X , 4HTIME , 12X, DISPLACEMENT , 13X , 8HVELOC

ZITY , 10X, lZHACCELERATION)

FORMAT (4 0X , 14HEND OF PROBLEM//)

FORMAT (4OX,6HTOLV = 1PE10.3)

END
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