~ul|1 fly! .L. trill; If.“ “VIOII‘MWIIIIJ ‘ |'I I1“. .Iflr..vt«WW.’r j u h £11); A‘lhcl:‘h:b«:l.f-fi [15v 1:. -I... )L [.Ill... u lllll HO)“ CYILII .II {In}? . ”than? “JHIV'fgllf‘bol H.911 I? .. v if..- H .. III | t . .1} ‘ - I I' I I. ALF!!! . In...» ($13!...)ng "Orin F...) NI - .»c\ -1 s n if!!!" v - I}! . (It ‘ I .I 3Q x... .Ihlmmfio J’frvflfu’l. %fl'¢lthhlfl u . {if}. jitbll I ‘ i D ([5] ‘I' ”If! . r . jc V ? no}, . {LNDIIII'IJOHI I I I > I a! v A! I . I ‘4"??? I Irvin)”; .1: I 'lvt -U- vl ivf IIVI jgmthl, f I ’ - ‘ ..-’| I- ‘. = . A . ‘8 '.'~' " 2 _. a I ”’_? .':'_4_- 2.1-5.- "--‘v _;--‘_.' hj “ _v_—'o ET-.-.’.-___._..+._ «44;-.. '3 "4;. 4-..." This is to certify that the dissertation entitled STUDIES TOWARD THE TOTAL SYNTHESIS OF TETRACYCLIC TERPENES: (i) BUTYROSPERMOL AND (1:) EUPHOL presented by Hyun 0k 0k has been accepted towards fulfillment of the requirements for Ph. D. degree in Chemistry mi Major p‘rofessor Date May 28, 1986 MS U is an Affirmative Action/Equal Opportunity Institution 0- 12TH MSU LIBRARIES .—_—-_ RETURNING MATERIALS: Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped below. 030617 STUDIES TOWARD THE TOTAL SYNTHESIS OF TETRACYCLIC TRITERPENES: (i)BUTYROSPERMOL AND (i)EUPHOL By Hyun 0k OR A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Chemistry 1986 ABSTRACT . STUDIES TOWARD THE TOTAL SYNTHESIS OF TETRACYCLIC TERPENES: (i)BUTYROSPERMOL AND (i)EUPHOL By Hyun 0k 0k Studies toward the total synthesis of tetracyclic terpenes (i)butyrospermol and its double bond isomer (i)euphol from the (i)5-epibutyrospermol ring system are presented. Conversion of 9 to 47 followed the procedures for (i)5- epibutyrospermol. The introduction of a double bond at C- 4(5) and the subsequent gem-di-methylation generated p-ring homodiene system 63, and then the dissolving metal reduction of homodiene provided the trans-AB-ring fused tetracyclic core 64. The conformation of this trans-AB—ring fusion came after deprotection and functional group manipulation to give 69. Comparison of 69 with its C-5 epiner 49, prepared and characterized in an earlier study, provided unequivical evidence for these assignments. With the tetracyclic core of butyrospernol 69 in hand, the attachment of the CBHIS side-chain with control of the configuration at 0-17 and C-20 was examined with model ketone 12. Stereoselective addition of methylthiomethyl lithium led to the epoxide 80, and treatment with ethoxyethynyl magnesium bromide, followed by reduction and then acid- catalyzed rearrangement, produced the ¢,p-unsaturated aldehyde EB. Subsequent reduction and Wittig olefination provided the final model side-chain system. Configuration at 0-17 and 0-20 was studied by comparing carbon-l3 chemical shifts of equivalent natural products. For my family, for their love, support and understanding. ii ACKNOWLEDGEMENTS The author wishes to express her deepest appreciation to Professor William Reusch for his guidance and encouragement throughout this study. Appreciation is extended to Professor Steven P. Tanis for his helpful suggestions and informative discussions. Thanks are extended to my colleagues for their friendship and many helpful discussions during the past years. Many thanks also goes to Miss Tonya Acre for her help in preparing this manuscript. A special thanks goes to her husband, Dong, for his endless love and understanding. Finally, the author would like to thank Michigan State University for a teaching assistantship and Mobay Company for a summer term fellowship; iii TABLE OF CONTENTS £212 LIST or FIGURES . . . . . . . . . . . . . . . . . . vi INTRODUCTION. . . . . . . . . . . . . . . . . . . . 1 RESULTS AND DISCUSSION. . . . . . . . . . . . . . . 20 1. CONSTRUCTION OF THE TETRACYCLIC CORE . . . . 20 2. CONSTRUCTION or TRE Ce SIDE—CHAIN. . . . . . 53 EXPERIMENTAL. . . . . . . . . . . . . . . . . . . . 65 GENERAL. . . . . . . . . . . . . . . . . . . . . 65 PREPARATION OF TRIENONE 54 . . . . . . . . . . . 66 PREPARATION OF 4,4—DIMETHYLTRIENONE 63 . . . . . 68 PREPARATION OF A7»<8>, 3-ONE 64. . . . . . . . . 69 PREPARATION OF c—17 ALCOHOL 67 . . . . . . .'. . 71 PREPARATION OF C-3,17-DIKBTONE as. . . . . . . . 78 PREPARATION or 0-3 p—ALCOROL as. . . . . . . . . 74 PREPARATION OF COMPOUND 12 . . . . . . . . . . . 75 PREPARATION OF COMPOUND 78 . . . . . . . . . . . 76 PREPARATION or COMPOUND 79 . . . . . . . . . . . 77 PREPARATION OP COMPOUND 80 . . . . . . . . . . . 78 PREPARATION or COMPOUND 81 . . . . . . . . . . . 79 PREPARATION or COMPOUND 82 . . . . . . . . . . . 80 PREPARATION OF COMPOUND I! . . . . . . . . . . . 80 iv Page PREPARATION OF COMPOUND 85 . . . . . . . . . . . 81 PREPARATION OF COMPOUND 83 . . . . . . . . . . . 82 REFERENCES. . . . . . . . . . . . . . . . . . . . . 152 Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure 10 11 12 13 14 15 16 17 18 19 20 21 Carbon-13 Chemical Shifts of Euphenol Carbon-13 Chemical Shifts of Compound 86 IR IR IR IR IR IR IR IR IR IR IR IR LIST OF FIGURES Spectrum Spectrum Spectrum Spectrum SpectrUm Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum of of of of of of of of of of of of Compound Compound Compound Compound Compound Compound Compound Compound Compound Compound Compound Compound 540) 54(1) 53”) 64”) 64(s) 67(s) 66 60 81 66 86 Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum of of of of of of of vi Compound Compound Compound Compound Compound Compound Compound 54(3) 54(1) §§(l) 54(F) 64(1) 67”) 67(a) Page 63 64 84 86 88 90 92 94 96 98 100 102 104 106 108 109 110 111 112 113 114 Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum of of of of of of of of Compound Compound Compound Compound Compound Compound Compound Compound 888588 18 NMR 1H NMR 1H NMR 1H NMR 1H NMR 1H NMR 1H NMR 13 NMR IE NMR 18 NMR 1N NMR 18 NMR 1H NMR 1H NMR 18 NMR 1H NMR 130 NMR Spectrum of Compound 54([) 13C NMR Spectrum of Compound 54(s) Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum of of of of of of of of of of of of of of of of vii Compound Compound Compound Compound Compound Compound Compound Compound Compound Compound Compound Compound Compound Compound Compound Compound Page 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 I31 132 133 134 135 136 137 138 139 140 Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure 48 49 50 51 52 53 54 55 56 57 58 13C 130 13C 13C 130 130 13C 13C 13C NMR NMR NMR NMR NMR NMR NMR NMR NMR NMR NMR Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum Spectrum of of of of of of of of of of of viii Compound Compound Compound Compound Compound Compound Compound Compound Compound Compound Compound G p: ER Page 141 142 143 144 145 146 147 148 149 150 151 INTRODUCTION The triterpenoids form the largest group among the terpenoids. They are widely distributed in the plant kingdom, either in the free state or as esters or glycosides, although a few important members have been found in the animal kingdom. These include squalene, first isolated from shark liver oil, and a number of tetracyclic compounds, including lanosterol (obtained from wool fat). Among the tetracyclic terpenes having a penhydrocyclo- pentanophenanthrene skeleton, the lanostanes, the euphanes and the cucurbitanes all bear trans-oriented methyl groups at 0—13 and 0-14. Representative structures of each group are shown below. In nature, the tetracyclic triterpenes are formed by enzymatic cyclization of squalene followed by rearrangement.1 Steroids are generated by subsequent loss of methyl groups from lanostanes. A chair-boat-chair-boat folding of squalene leads to the lanostane system, whereas a chair-chair-chair-boat conformation leads to euphol and/or 'tirucallol derivatives. Non-enzymatic, acid-catalyzed cyclization of appropriate polyene intermediates has also Lanosterol Euphol Butyroperniol CUCUFbltaCln 1 generated the lanostane skeleton. However, the euphane skeleton cannot be obtained by such cation-induced polyene cyclization due to its facile rearrangement to the isoeuphane structure. moamemoz<4 _n:_musc_e H ”ocojm lsoeuphol Butyrospermol, isolated from the non-saponifiable fraction of shes-nut oil from Butyrospermum Pat-lied, was first characterized in pure form by Heibron, Jones and Robins in 1949.2 Like so many other members of the Euphane group, it is a secondary alcohol with one easily reduced double bond, present in the side chain, and a second double bond resistant to hydrogenation. Addition of bromine to the side chain double bond of butyrospermol acetate, followed by careful treatment with hydrogen chloride at 0°, and regeneration of the side chain ethylenic linkage by reaction with zinc gave euphenyl acetate. The acidic conditions BUtyrospermol acetate Euphenyl acetate required to convert dihydrobutyrospermol to euphol are milder than those required to isomerize euphol to isoeuphol.a Chemical studies of the triterpenoids started in the late nineteenth century, and 50 years have passed since the initial structural work was reported by Ruzika, et.aLfi The main structural difference between steroids and tetracyclic triterpenes is the presence of three extra methyl groups, two at C-4 and one at C-14, in the latter. Despite their overall similarities, very little work has been accomplished on the total synthesis of tetracyclic triterpenes, whereas more than 100 steroid syntheses have been reported.5 To date, two total syntheses of lanostane triterpenes have been reported, one by R. B. Woodward’s group in 19545 and the other by B. B. van Tamelen’s group in 1972.7 These two syntheses show significantly different strategic approaches. In the Woodward approach, cholesterol served as the starting material, and the introduction of three additional methyl groups was accomplished as shown in Scheme 1. 0n the other Cholesterol Dihydrolanosterol Scheme I _ _ oEocum .3 n3 Bel-33:0». T. .3 0.9 .8233. hand, van Tamelen’s synthesis applied a biomimetic strategy. A polyene precursor was synthesized from (-)-limonene, and the Lewis acid-induced cyclization of a derived epoxide gave either parkeal or isotrucallol ‘ depending on the configuration at C-3, as outlined in Scheme II. There are no reported syntheses of the euphane ring system, and due to its facile acid-induced rearrangement to the isoeuphane system', a polyene cyclisation approach is unlikely to be effective. Recently, the 5-gpitEuphane ring system was synthesized in this laboratory9 starting from the well-known Wieland- Mieshler ketone, which was converted in two steps Ito bicyclic diketone l.10 The synthesis of 1 is outlined in OH 0 CH3 H2 CH3 1. KOH\MVK ’ 5%Rh\A1203 2- OH 0 Z 3 N Li\NH3 KOH ----’r g,_ MeOH\H20 Scheme I I I Scheme III. Using 1 as a starting material for the tetracyclic triterpene synthesis offers certain advantages since this compound contains the required trans dimethyl functionality found in the CD rings of these natural products. Furthermore, by using enantiomerically-pure proline in the Aldol condensation step, either antipode of the Wieland-Mieshler ketone can be obtainedll, permitting the synthesis of enantiomerically pure, as well as racemic, products. There are several possible ways to prepare tetracyclic compounds from CD intermediates. In the total syntheses of steroids, bicyclic intermediates incorporating the C and D rings have been Used to prepare both aromatic ’and nonaromatic steroids.s The assembly strategies fall into three fundamentally different categories. The first of these comprises syntheses in which ring A is first added to the initial CD fragment, followed by closure of ring D (A + CD -—9 ACD --9 ADCD). In the second, the sequence of ring formation is reversed: first ring D and then ring A (CD ---) DCD -—-9 ADCD). Finally, the third method involves the formation of ring D by Diels-Alder diene condensation with the simultaneous introduction of ring A as a component part of the dienophile (CD + A -——9 ABCD). 10 I. OA;:+QQ*-——9 ACD -——9 ABCD. This strategy can be divided into many parts according to the type of reaction used in the condensation of the A fragment with the CD portion. The representative approaches are first, reaction of an anionic ring A with a keto function in the CD portion, as developed by Johnson in his first estrone synthesis (Scheme IV).12 A second approach 0 O O. 00 4- ———--~ ,. D _ MeO ' OH MeO __... —-—> Estrone Scheme IV uses an anionic derivative of the CD portion to react with A. Danishefsky, at. a!” were able to prepare D- homosteroids by this route, which is outlined in Scheme v.13 D-Homosteroid Scheme V II. Q -—> DCD -—-—> ADCD. Many examples of the CD ----> DCD —-) ADCD route are found in the work of W. S. Johnson and his co-workers on the synthesis of dUmAldosterone derivatives.1‘ 12 Me N Etgl- OMe NaOMe MVK\NaOMe F Many Steps a The key step in this method is a Diels-Alder diene condensation of 4—viny1indan with appropriate dienophiles; this leads simultaneously to the formation of ring D and the l3 introduction of ring A. Of the three approaches, this cycloaddition is the most efficient way to form a tetracyclic system due to the generally high regio- and stereoselectivity of Dials-Alder reactions. The reaction of 4-vinylindan 2 with bensoquinones lead to moderate yields of adduct 3, and an equivalent reaction 0 O cowl. / O 2 O 3 with toluquinone and methoxyquinone led to similar adducts with a substituent at C-3.15 Similar reactions of saturated analogs of diene 2 with benzoquinone and its methoxy derivatives gave yields of about 202 of the cis-syn adducts 4 and 6, respectively.15 Recently, a common tetracyclic precursor for both euphane and lanostane triterpenes has been synthesized in this laboratory by a Diels-Alder cycloaddition reaction of diene 6.17 This diene was prepared in 70% yield from diketone 1 in two steps. It has been demonstrated that cycloaddition reactions of 6, with a number of dienophiles under both thermal and acid-catalyzed conditions, gave excellent stereoselectivity. The reactions yielded p-endo adducts exclusively, despite the steric congestion of the . °=<:>=0 0 .0 ‘!!IIHII’> 80IZ " [IIIIIIIIIl O OCH3 O O O . t» 80 C, 48hr CH3O O p S endo transition state. The regioselectivity of the cycloaddition of 6 with 2-methy1-5-methoxybenzoquinone can be .controlled by selective Lewis-acid catalysis. Thus, an efficient synthesis of the lanostane-like tetracyclic O CuSO45H20 a Benzene l + /\MgBr ————-s- intermediate 7 was achieved as shown in Scheme VI. Subsequent conversion of 7 to a euphane-like intermediate 15 was accomplished by photoisomerisation of enolacetate 8, followed by hydrolysis. CH 3 BF30Et CH2C12,'17. CH3O NaOAc, DMAP A620\Benzene l.h0\CH3CN «‘7 2.K2CO3VdeOH Scheme VI All the triterpenes mentioned earlier have a Cs side chain at C-l7. These side chains are often alkyl in nature but may incorporate a variety of functional groups, as in the cases of cucurbitacins. There are many reported side- 16 chain syntheses for steroidsla, and they have been documented in two excellent reviews.1°'3° However, it must be noted that almost all of the studies referred to above have been conducted in the absence of a Cis-s methyl substituent. A crucial aspect of side-chain synthesis is the control of stereochemistry, especially at C-17 and C-20. A large number of steroid side-chain syntheses use one of the following substrates due to their availability from naturally occuring compounds. Common reactions of the C-17 o :02 .. carbonyl group include addition of hydrogen cyanides’l, acetylides22 and Wittig reagents.23 The C-20 carboxylic acid intermediate is usually transformed into an acid chloride21 or is transformed by direct addition of alkyl lithium reagents.3‘ In reactions of the C-17 acetyl group, the stereochemical outcome is dependent on conformational preferences and will vary with different substituents. For example, Grignard-reagent additions to 20-ketones35'2° and 20-aldehydes27 yield mixtures of isomers, whereas addition of dimethyl sulfoxonium methylide is highly stereoselective 17 and gives the 20—R epoxide.‘a A ZO-R epoxide was also obtained by stereoselective addition of methyl selenomethyl lithium.39 Reusch and Gibson reported that Wittig ethylidenation of a bicyclic (C/D) triterpenoid model, 10, gave the E olefin 11.30 In contrast, the equivalent reaction of l7—keto steroids gave predominantly the Z isomer. Rydroboration of 11, followed by oxidation, led to an epimeric mixture of 20- ketones, which could be epimerized cleanly to the s-epimer 12. However, chain extension by Wittig olefination followed by catalytic hydrogenation gave only fair configurational control at C-20. The overall synthetic approach is outlined in Scheme VII. Recently, Koreda has described28 a 20-isocholesterol side-chain synthesis involving reaction of isoamyl magnesium bromide with epoxide 13. Rearrangement of the epoxide proceeded by a completely stereoselective hydride shift to an intermediate aldehyde. Krief also applied a similar 18 1.82H6 CZHSPBSBr __ 2.H202\NaOkI NaH\DMSO '7 3 pcc ' ‘2. H2\Pt02 Scheme VII epoxide-rearrangement-addition reaction sequence for the side-chain synthesis of 20-8 isolanosterol.2° Re obtained an 80/20 mixture of the ZOS/ZOR stereoisomers, as illustrated in Scheme VIII. Excess WMgBr 19 I. LICHQSeCH3 2. CH30502F l. EtOC CMgBr 2. LIAIH4 V O 1. H2\Pd,BaSO4 \ H i assess THPO ' ’ Scheme VIII This dissertation describes an efficient means of converting the 5-epi-euphane (cis A/B ring fusion) tetracyclic ring skeleton to the correct A/B trans configuration and stereoselective side-chain construction of a bicyclic (C/D) triterpenoid model. RESULTS AND DISCUSSION A total synthesis of butyrospermol can be divided into two sections: first, construction_ of the euphane-like tetracyclic system and, second, the subsequent attachment of the CB side chain. I. Construction of the Tetracyclic Core. Fused six-membered carbocyclic ring. systems may be assembled in a number of- different ways, but the most efficient of these is undoubtedly the Diels-Alder reaction. Since its discovery in 192831, the Diels-Alder [4+2] cycloaddition has been widely studied and is (valued as a synthetic tool because of its normally high regio- and stereoselectivity. The stereochemistry of the adduct obtained in many Diels-Alder reactions can be predicted on the basis of two imperical rulesaz: the cis-principle and the endo-addition rule. According to the cis-principle, the relative configuration of substituents in both the dienophile and diene is retained in the adducts. Thus, a dienophile with trans substituents will give ‘an adduct in which their 20 21 configuration is retained; likewise, a cis substituted dienophile will yield an adduct in which the substituents are cis to each other. According to Alder’s endo-addition rule, a dienophile and a diene approach each other in parallel planes, and the most stable transition state arises 1+ COQCH3 I H c02013 :> H COQCH3 4-» / H + / .C02CH3 c02013 H COQCH3 H H c0201, / C02043 fi__ _ H H . 83,013 from that orientation in which there is a maximum overlap of double bonds, including those of the activating groups of the dienophile. The endo rule is not always obeyed and the exo/endo composition in such cases often varies with the structure of the dienophile and the reaction conditions.33 Construction of the Butyrospermol ring system by an A + .CD --9 ADCD Diels-Alder strategy requires an appropriate cisoide diene (CD ring portion), incorporating the trans C- 13 and C-14 methyl groups. 22 Diane 6 can be obtained from diketone l in two steps: nucleophilic addition of a vinyl anion to the six-membered ring carbonyl followed by dehydration of the resulting tertiary allylic alcohol 14. It has been knowna‘ that the reactivity of cyclohexanones in a nucleophilic addition reaction is greater than that of cyclopentanones; and Martin, Ten and Reusch have reported35 the selective addition of a series of nucleophile to the six-membered ring carbonyl of 1 without protecting the fiveemembered ring carbonyl group. For example, sodium borohydride (NIBH4) reduction, lithium phenylacetylide addition and vinyl magnesium bromide addition all favored reaction at the six- membered ring carbonyl site. For this synthesis, the addition reaction of vinyl magnesium bromide with diketone 1 is best effected by using excess Grignard reagent in toluene.3° This improves the yield of 14 from 602 (in THF) to 758 since the change of the solvent enhances the 1,2 addition of Grignard reagents to easily enolizable ketones. 23 NaBH4 Db /\MgBr ’ DCECLI .- HO CECG . Dehydration of the vinyl alcohol 14 in refluxing xylene containing a trace of iodine was troublesome due to the acid-catalyzed rearrangement37 of the initially formed cisoid diene 6 to the transoid isomer 15 under this condition. Based'on an initial report by N. Cohen, et. aLfi', Tan and Reusch found that boron trifluoride etherate (RFs-Olta) in refluxing benzene-TRF solution serves to dehydrate 14 to 6 without subsequent isomerisation in 75~808.39 Recently, Day and co-workers dehydrated the 24 Xylene carbinol 16 in the presence of copper sulfate trihydrate in refluxing xylene to give enyne 17 in very good yield.‘° CUSO4'3H20 Xylene,A 16 Dehydration of vinyl alcohol 14 with copper sulfate pentahydrate in refluxing benzene followed by Kugelrohr distillation of the crude product gave essentially pure diene 6 in over 908 yield on a multi—gram scale. 25 The Diels-Alder reaction of diene 6 with various dienophiles has been studied intensively in this laboratory. Ten and Reusch reported‘1 that, among four possible diastereomeric structures for the Cycloaddition adducts derived from the symmetrical dienophiles prbenzoquinone and maleic anhydride s-endo 16, d-exo 19, p-endo 20, and fi-exo 20, where s and 3 refer to the bottom and top sides of the diene as drawn here, the p—endo adducts were formed O 18 19 2| exclusively in both cases. The configurations of the adducts were confirmed by pmr studies and x-ray diffraction analysis of substituted quinone adducts. An examination of molecular models of diene 6 shows that the C-13 methyl group is tilted over the endocyclic double bond whereas the C-14 methyl group is tilted back away from it. The overall effect of this distortion is that the top side (or p-face) of the diene is more accessable than the bottom side (or s-face). Thus, p-addition should be favored in the transition- state of the Dials-Alder reaction (steric approach control). 26 Diels-Alder cycloaddition of an unsymmetrical diene with an unsymmetrical dienophile may take place in two orientations, which give two regioisomeric adducts. However, in practice, formation of one of these isomers is usually favored‘z, as shown below. This regioselectivity in R R R x x +t ——»U+0 \ x Major K * IX —’RUX £1 Major which the "ortho" or ”para” product is favored over the ”meta” has been rationalized by molecular-orbital calculations.‘3 Derivatives of prbenzoquinone have been used as dienophiles to construct the fused six-membered ring systems found in many natural products. Their high degree of functionality offers special interest and advantages in subsequent transformations. Examples include the syntheses of steroids3°t“, gibberellic acid‘s, reserpineu and trichodermol", as outlined on the following page. 27 R O O \ to + —F ——m- . .Q 0 O HO Cholesterol 0 O \\ + ——> OCH3 O OH HO 0 R0 0 :+> --sr-" CH3O COQH o c02H O Gibberellic acid CH3OQC Reserpine OCH3 R 91.1. g1... 3%! Trichodermol 28 When an unsymmetrically substituted prbensoquinone is used as a dienophile in reactions with unsymmetrical dienes, four possible regioisomers may be obtained as shown in Scheme 1!. 0 R1 \ + —-———.' R2 0 R O R + + R2 R1 0 0 Scheme IX Several important observations have been made concerning the directing effects of substituents on p- benzoquinone. They are: (l) Electron-donating substituents on the quinone deactivate the double bond to which they are attached.‘8 In contrast, electron-withdrawing substituents further activate quinone double bonds as dienophiles.‘9 I CH3O ' CH3O o O ('3 III I (A c02CH3 c02CH3 CH3O (2) Substituents on quinone dienophile usually direct the cycloaddition reaction to give ortho-adducts with 1- substituted dienes‘fi'5° and para-products with 2-substituted dienes. O C02CH3 CO2CH3 ‘ + O O + m- 3O (3) A methoxy substituent exerts a strong influence on one of the two carbonyl groups of a quinone through a vinylogous ester-like relationship. This interaction results in a substantial perturbation of the double bond on the other side of the substituted quinone, leading to strong regioselectivity in the Dials-Alder reaction.“8 + ——m- CH3O CH 0 o CHQOAC 3 The regioselectivity of Diels-Alder reactions of diene 6 and unsymmetrically substituted prbenzoquinones has been examined.“1 For example, the reactions of. 2-methoxy-5- methyl-ptbenzoquinone 22 with 6 in refluxing xylene solution gave adduct 23 exclusively. (However, the reaction of 2-' methoxy-4-methyl-prbenzoquinone 2A with 6 under thermal conditions gave poor regioselectivity and a poor yield of CH3O CH3 Xylene CH3O A 22 31 O CH30 Xylene 6 + A CH3 0 24 tetracyclic adducts 7 and 25. Both the yield and the regioselectivity of this Diels-Alder reaction were greatly improved by Lewis acid catalysis.51 The effect of two of the most selective catalysts, BFs-OEtz and stannic chloride (SnCla), is shown below. This regioselectivity may be explained by a site- specific coordination of the Lewis acid with one of the carbonyl groups of 24 to give a reactive quinone:Lewis acid complex. When a 1:1 ratio of quinone 24 to Lewis acid is used, two types of mono-complexation may occur; and the preferred complexation will depend on the nature of Lewis acid. First, the Lewis acid may be stabilized by chelation with the methoxy substituent, as in 26. Second, the Lewis 32 6 +24 Lewis acid. CH3O Catalyst used ratio( 7:25) yield (70) Heat 2: l 34 5,104 <1 :>99 74 BF3-0Et2 lO ; 1 55 acid may coordinate to the more basic ester-like C—4 carbonyl group as in 27. Boron trifluoride etherate, which LJX ‘wk 0 O 5 CH3 5 CH3 CH3O CH3O ‘1 o o 11A./4' 26 27 is normally tetracoordinate, prefers complex 27, and this leads to activation at C-6 to yield the ortho- or para- cycloadduct in the Diels-Alder reaction. On the other hand, 33 tin tetrachloride, which is able to expand its ligand shell to hexacoordinate, prefers complex 26. The resultant activation at C-5 gives the ggtgroriented cycloadducts. No synthesis of a euphane triterpene or of the characteristic tetracyclic core of this large family of natural products has yet been achieved. Recently, Kolaczkowski and Reusch reported9 an efficient means of converting the lanostane-like configuration of 6 to a euphane configuration 26 via photoisomerization. It has been known52 that Usnic acid 29, a constituent in several genera of licheues, racemized when heated in acetic acid or on acetylation with acetic anhydride in the presence of strong acid. This rare isomerization at a quarternary center was explained by Stork in 1965 (see Scheme X).53 Initial bond cleavage of 29 gives a diradical 30 and one of the resonance forms which can be drawn is the conjugated diene ketene 31. Subsequent ring closure of 31 leads to racemic usnic acid. 34 OH O 0 H0 0 I OH O Usnic acid 29 OH H 0 Scheme x Intramolecular photochemical reactions of saturated and unsaturated ketones have been studied for decades. In 1960, Barton and Quinkert reporteds‘ their investigations into the photochemistry of cyclohexadienones, including the photochemical racemization of usnic acid. Nineteen years later, Quinkert and co-workers reported55 a detailed study of solvent and excitation wavelength effects on the isomerization of 2,4-androstadiene-l-one 32. They found that irradiation of either 32 or 33 in the absence of external nucleophiles gave a mixture of isomers 32 and 33. The relative ratio of 32 and 33 in the photostationary state 35 34 proved to be the same in both cases. The expected ketene intermediate 34iwas identified by spectroscopic studies and by trapping experiments with cyclohexylamine. Thus, a photoequilibrium is established between the two tetracyclic dienones 32 and 33, and the photostationary ratio of 32 and 33 varies from 6.5:1 to 5.7:1, depending on the reaction conditions. The naturally occurring C-lO p-methyl isomer 32 predominates. This result is not surprising since, in isomer 32, the anti relationship of the C-10 methyl and C-9 proton allows the B-ring to adapt a stable chair conformation; whereas, the C-9, C-lO syn relationship in isomer 33 forces ring B into a less stable boat conformation. Reusch and Ten reported‘l that the C-4 carbonyl group of Dials-Alder adduct 7 was enolizable and they trapped it 36 as the acetate 6‘by reaction with acetic anhydride. Mild base ([200: in methanol) treatment of 6 gave back the starting triketone 7 instead of the AB trans-fused 36, indicating that the AD cis configuration was more stable. AC20\DMAP\GH 7 a 8 <~ K2C03\MGOH Bnol acetate 6 has a 9,10-syn configuration analogous to the minor isomer 33 in the Quinkert study. We expected, therefore, that 6‘would undergo photoisomerization to give the desired euphane-like configuration 26 as the major (product. However, in practice, two concerns remained unanswered. First, the possible effect of the oxygen functionality at C-3 and C-4 on the course of the phOtoisomerization and, second, the presence of the C-17 carbonyl function. 37 Photochemical isomerization of keto-acetate 36 was investigated in this laboratory.59 Iradiation of a solution of 36 in ether solution with a 400 watt mercury lamp using a pyrex filter causes isomerization to the cis-fused keto- acetate 37. This Norish-type I cleavage-recombination hV reaction requires - higher energy light than the photoisomerization of enolacetate 6. Thus, by using‘ a saturated copper (II) sulfate filter to block wavelengths below 365 nm, this undesired epimerization at C-13 can be avoided. Acting on the assumption that the substituents at C-3 and C-4 and A 7‘9) double bond would not perturb the photochemical reaction seriously; a solution of enolacetate 6 in acetonitrile was irradiated under Quinkert’s conditions. This photolysis generated a 5.5:1 mixture of photoenol acetate isomer 26 and starting material 8, respectively.9 Many cis-fused bicyclic Diels-Alder adducts with quinones are known to be converted to the corresponding trans-fused isomers on mild base treatment. For example, 38 the cycloaddition adduct 36 from the reaction of quinone 24 with pypenylene even isomerized to the trans compound 36 on standing.35 CH3O 38 In more complex systems, isomerization proved to be dependent upon the stability of the product. Valenta, 'et. ah, reported“"57 that in the case of Diels-Alder adducts 40 and 41, 41 was converted smoothly to its trans isomer 43 under various conditions. These observations suggest that 39 4| 43 the anti-trans relationship at C-8, C-13 and C-14 in 42 is a particularly stable configuration, whereas the syn-cis relationship in 41 is more stable than the related syn-anti configuration of 43. A similar observation was made for the regioisomeric Diels-Alder adducts 7 and 26.39 These results 2S are in accord with the work of W. S. Johnson53 on the relative stabilities of perhydrophenanthrene isomers. According to Johnson’s analysis, the trans-anti-trans isomer has the lowest energy among the many stereoisomers of 4O perhydrophenanthrene since this arrangement allows all the D-ring bonds to assure equatorial orientation and all three rings to adopt chair conformations. ~ .~‘.' Trans-anti-trans Dhenantnrene All previous results indicated that the tetracyclic enedione derived from 26 by base hydrolysis would have an AD-trans relationship since an anti-relationship at C-9 and C-10 exist in 26. A series of reactions, outlined in Scheme XI, was then carried out by Larry Kolaczkowski’, under the assumption that the product from base-catalyzed solvolysis of 26 was the AD trans-fused endione 44. The expected product was the tetracyclic intermediate 46, a precursor to butyrospermol. However, the actual product 46 resisted all attempts to isomerize the 4‘79“) double bond to the more stable 6. 3") location. Therefore, an X-ray crystallographic analysis was conducted, and this demonstrated that the AB-ring fusion in 46 was cis, as shown throughout Scheme XI. At this stage of our synthesis, modifications were sought to convert the AB-cis 5-epi-butyrospermol tetracyclic 41 K2C03 l. Zn\AcOH f 281 ..m- MeOH 2. MsCl\Pyridine CH3O c1430 Ro 'H 44 ' 45 R=H 4K5 R= MB 1 Zn, Nal ,,Glyme A o l. DIBAL t 2. H+,THF\H20 CH3O 9 l. MEMCl. Et(iPr)2N OMEN O 2. 2tBUOK,THF,2CH3I l.TiCl4\CH2C12 ” ~4a> 2H2 3.PDC 4.NaBH4 ‘ 0 H0' 48 49 Scheme XI core to the desired AD-trans ring fusion. The most attractive of these modifications was based on the work of 42 Pike, Summers and Klyne with lumistan43-one derivatives.5° These workers reported that dried methylation of lumista- 4,7,22-triene-3-one 60, followed by dissolving metal reduction of 61, gave AB-trans fused 4,4-dimethyl-5p- 1umista-7,22-diene-3-one 62 in excellent yield. tBuOK\tBuOH,@I—l CH3I 00 50 Li\Liq NH3 To effect transformation of 44 to a form suitable for the introduction of a double bond at C-4, we followed the sequence of Scheme XI to intermediate 46. This procedure was patterned after one developed by Speziale, et. a130, for the preparation of a key CD synthone in the Woodard cholesterol synthesis.“b Thus,. zinc dust reduction of 44, 43 O O 2n,ACOH\H20 4 CH3O fi 01,0 3 R" O HO followed by mesylation and further reductive elimination, gave the methoxy enone 9. Selective reduction of one carbonyl function among three carbonyl groups present in 44 was not a serious concern since the C-1 carbonyl is ester-like in character, due to donation of the electron density from the C-3 methoxy group; and the C-17 carbonyl function was known to be relatively unreactive due in part to severe steric hinderance. The conversion of alcohol 63 to enone 47*was carried outby transforming the hydroxy function at C-4 to a good leaving group, in this case, mesylate, followed by hydride displacement and concurrent reduction of the remaining carbonyl functions. Several methods for the selective removal of mesylate in the presence of other sensitive functionality have been reported.°1'|"c One of the mildest, the method of FuJimoto and Tsatsuno°1¢, involves treatment of mesylate with sodium iodide and zinc dust in refluxing ' glyme. Under these conditions, mesylate 46 was converted to enedione 9 in good yield. Subsequent reduction of endione 9 with diisobutylaluminum hydride (DIDAL) gave, after careful 44 acid hydrolysis, a mixture of epimeric l7-alcohols 47 (s and 3) having the desired l-en-S-one function in ring A. These epimers were separated initially to facilitate subsequent structural assignment; however, this’ is not a necessary operation in the synthesis. Protection of the C-17 alcohols prior to the introduction of a double bond at C-4 proved necessary. In fact, Rolaczkowski and Reusch reported35 that the introduction of the geminal dimethyl substituent at C-4 to the compound 47, without protecting the C-17 hydroxyl function, was troublesome. For this purpose, '- methoxyethoxymethyl chloride (MBMCl), a reagent developed by E. J.a Corey, eh.alfiz, proved to be effective. OMEN MEMCl,Et(iPr) N,CH Cl 47 2 2 2 The MEM-ether derivatives 63 (e and p) are ideally suited for the introduction of a double bond at C-4 and subsequent gem-dimethylation. Both enolization and alkylation at C-2 is blocked by the A 1‘2) double bond, and the reduced state of the C-17 carbonyl prevents enolization at the C-17 ketone. Thus, the A “‘5> double bond was introduced smoothly via selenylation‘3 of the enolate 45 generated by LDA, followed by oxidation (3202, ROAc/RzO), and then elimination of the selenoxide to give trienone 64 (652 yield). l. LDA 2.SeBr 3. H202,HOAC\H20 53’( and ) 54 Our plan at this state was to introduce the gem- dimethyl moiety at C-4, generating a B-ring homoannular diene analogous to that of lumisterol. Alkylation of s,fi-unsaturated ketones with sodium or potassium salts of tertiary alcohols serving fee the base normally gives the s,e—dialkyl-p,y-unsaturated ketone as the major product.“ Woodward and co-workers developed6 this method on their first total synthesis of lanosterol (Scheme XII).' Ringold, ah. ah, reporteda‘b that alkylation of the A ‘-3-keto steroid 66, even with a limited amount of base and alkyl halide, led to the 4,4—dimethyl-A.5-3-one 66 as the major product, together with 4-monomethyl-A“-3-one 67 as a 46 tBUOK\tBUOH ’ CH3I O Cholesterol tBuOK\tBuOH —.- —-> ’. CH3I 820 ——————a- -———a~ Dihydrolanosterol Scheme Xll minor product. This result can be explained by the following scheme (Scheme XIII). 47 .. tBuOK .. CH3| ____p . ———’ o" 0 Q. H 55 K+ 56 tBuOK Fas Scheme XIII The thermodynamically favored dienolate anion undergoes kinetically controlled methylation at the e—position to give 4-monomethyl-p,y-unsaturated ketone 66. the e-proton in this compound is more acidic than the y-proton in the starting material 66 since it is activated by both a carbonyl group and an ethylenic double bond. The resulting anion is again methylated at the sbposition to give 4,4-dimethyl-A.5(°’-3- one 66. If further alkylation does not occur, compound 66 48 isomerizes to the thermodynamically more stable e.)- unsaturated ketone 67. Isolation of the dimethylated compound 66 as the major product indicates that the second alkylation step and/or tertiary carbanion formation proceeds more rapidly than the first alkylation step and/or secondary carbanion formation. Methylation of cross-conjugated dienones in the steroidal system have also been studied. V. Petrov, et. ah, reported°5 that direct dimethylation of compound 66 failed to give any of the desired 4,4-dimethyl compound 66. C8H17 59 A similar lack of reactivity is reported for these same dienones in the deconjugation studies of Ringold and Molhotra.“° A remarkable resistance to gem-dimethylation at C-4 was also found for the cross-conjugated dienone 61 and 62 in this laboratory.°° Therefore, we were concerned that tBuOK CH3! » NO reaction 49 tBuOK CHSI s- No reaction the A 1“”-double bond might expert a negative influence on the methylation reaction of 64. Fortunately, in the event, a solution of trienone 64 is benzene was gem-dimethylated in over 908 yield by the classical procedure of Woodward, et. alfi 54» i- / An examination of the Drieding molecular models of trienone 64 and cross-conjugated dienone 61 is helpful in explaining the outcome of this methylation. Drieding models show that a A 1-double bond causes the dienolate derivated from a Ailv‘-diene-3-one 61 to twist about the C-4:C-5 bond by 30° to 35°. This reduces the effective charge delocalization available to this species. However, the addition of a double bond at C-7, not only resists this 50 twisting, thus neutralising the adverse effect of the A 1- double bond, but also extends the charge delocalization (1'.e., gives a trienolate). Treatment 'of 4,4-dimethyltrienone 63 with 20 equivalents of lithium in liquid ammonia solution containing t-butyl alcohol (10 equivalents) yielded the AD trans-fused A‘7<'>-3-one 64 in excellent yield. Without the t-butyl Li\liq.NH3 tBuOH 63 alcohol, this reduction stopped after reduction of the C-1 double bond to give homodiene 66. The homodiene 66 was also converted to 64 by treatment with lithium in liquid ammonia, followed by oxidation of the resulting epimeric mixture of C-3 alcohols 66. 51 The structure of 64 was assigned from its chemical and spectral properties, and in part on the lumisterol analogy. The infrared spectrum of 64 had a strong carbonyl absorption at 1715 cm'l. The 250 MHz 16 NMR speCtrum showed a quartet- like (1 = 3.3 Hz) signal at 6 5.22 for the vinyl proton at C-7. In addition, there were four sharp singlets at 6 0.64, 1.02, 1.05 and 1.15 (overlap) for the five methyl groups. The 13C NMR spectrum displayed the expected 26 signals, including a saturated carbonyl peak at 6 216.45 and two olefinic signals at 6 145.33 and 117.73. Removal of the C-17 MRM group in 64 by reaction with titanium tetrachloride (TiClc) in methylene chloride‘3 caused an unexpected problem. Even at ~78° for 1 minute, TiClq, not only cleaved the MRM ether, but also rearranged the ring system to give an unidentified product which showed signals in the aromatic region of the 16 NMR. It is well known“? that TiClA is a powerful Lewis acid and the acidity of this Lewis acid can be tempered ‘by replacing chloride by alkoxy groups, such as isopropoxy. Realizing that TiCls is too strong an acid to be used in our system, a series of modified TiCla catalysts were tried to effect cleavage of the MRM ether without any undesired rearrangement. Finally, the MEM protecting group was cleaved cleanly with titanium diisopropyl dichloride (Ti(0- iPr):Clz) to give the C-17 alcohols 67 in 908 yield. 52 Ti(OiPr) CI .01 Cl 64 2 2 2 2 * The last two steps of this synthesis of the tetracyclic core of butyrospermol were straight forward. Swern 68 69 oxidation°° of the epimeric alcohol mixture 67.gave diketone 66 (938). Finally, (taking advantage of the low reactivity of the C-17 carbonyl group, treatment of 66 with sodium borohydride (NaRRs) gave selective reduction of the C-3 carbonyl function, yielding the equatorial alcohol 66 (918). With this compound in hand, we were able to achieve a final conformation of its AD trans-ring fusion. Comparison of chemical and spectral data of 66*with that of its C-5 epimer 46, prepared and characterized by X-ray crystallography in an earlier study“, provided unequivocal evidence for these assignments. 53 II. Construction of the Cg Side-chain. With the butyrospermal tetracyclic core 66 in hand, our next task was to attach the Cs side-chain stereoselectively. Many excellent stereoselective side-chain syntheses for steroids have been published1°v1°?2°, whereas for triterpenes, only the epoxide rearrangement/addition procedure described by Krief2° has been known. .. NaEiH4 66 " " O HC02 HOCO BZO Scheme XIV 54 As illustrated in Scheme XIV, reactions of the l7-keto group in steroids can be highly stereoselective with the effect diminishing as one proceeds along the flexible side- chain to C-20 and C—22. Therefore, our task was to find an appropriate synthetic pathway to control the stereochemistry at C-20. Compound 10, derived from bicyclic ketone 1, has been used as a model compound for construction of the side-chain for triterpenes in our laboratory. Examination of a INaBH4 2.CH3O’Na 3.CH3I CH3O l l0 Drieding model of 10 indicates that its tr-I-configuration induces a puckering of the five-membered ring, analogous to the configuration of the butyrospermol tetracyclic core 66. CH3O CH3 Gibson and Reusch reported30 that the Wittig reaction of ketone 16 with ethylidene triphenyl phosphorane yielded 55 the synthetically useful olefin 11 in good yield. The configuration of the double bond of 11 was assigned on the C2H5p838r NaCHQS(O)CH3,NaI CH3O 11 basis of its proton NMR spectrum compared to the known steroid analogs. It is interesting to note that the olefination of 10 to 11 gave the E-olefin in contrast to equivalent reactions with l7-keto steroids", where the ‘2- isomer dominates. For the l7—keto steroids, the least- hindered approach of nucleophilic reagent is from e-face21 (opposite side to the C-13 p-methyl group), which leads to O / 6 - 6 the Z-isomer. For compound 10, molecular models reveal very little difference in the steric environment of both the s- and p-faces. However, the observed stereselectivity reflected a lesser hindrance of the p-face despite the similarities indicated by the molecular models. 56 H O l I l. B2H6.THF ’ i. Swern 2. H202,NaOH 2. EtONa\ a EtOH E CH3O , CH3O 20 ‘2 Rydroboration of 11 with diborane (6266) yielded alcohol 70 as a mixture of isomers, and subsequent oxidation followed by epimerization with base gave a single isomer 12. Gibson and Reusch assigned30 the ehconfiguration at C-l7 on the basis of the proton NMR spectrum. ECOEt EtOCECMgBr » OH .- 72 73 H l. LiAlH4 ‘— 2. 2M H2SO4\ETHER 57 Recently, Krief, et. aL29, reported the first stereoselective side-chain synthesis of unnatural 20-S isolanosterol. The key step of this synthesis is a novel stereospecific isomerization of the epOxide 72 to the corresponding alcohol 73, using a technique developed by Roreeda in his 20-isocholesterol side-chain synthesis.28 It has been known70'71'72 that epoxides react with organometallics to give two different types of alcohols, 76 and 76, depending upon the nature of the reagents and the reaction conditions. A direct nucleophilic ring opening of the epoxide gives alcohol 75. On the other hand, rearrangement of epoxides prior to organometallic attack leads to alchol 76. D wi O tr—a- R2 CH2R R‘\c/__\ /H + R” "'7 OH 75 R2/ \H R1 R1 R R2 H CH0 R2 H OHH In Koreeda’s 20-isocholesterol side—chain syntheisza, the reaction of isoamyl magnesium bromide with the epoxide 13 produced a rearranged alcohol. 77 with a 1008 stereoselective hydride shift during the transformation. 58 Similarly, Krief reported29 that the epoxide 72 gives a 92:8 (20Rz208) mixture of alcohols based largely on an examination of the s,p-unsaturated aldehyde 74. These results suggest a solution for our side-chain synthesis with control of the configuration at C-20. Dutyrospermol has the same C-20 configuration (R) as does lanosterol. However, the relative configuration at C-l3, C- 17 and C-20 in these two natural products are different: these are 13-R, l7-R and 20-R for lanosterol; 13-8, 17-8 and 20-R for butyrospermol. Therefore, assuming that the C-14 methyl substituent in butyrospermol core 66‘will not perturb the stereoselectivities of the side-chain significantly, the epoxide rearrangement/addition sequence described by Kriefé° should offer the control needed for the butyrospermol synthesis. Our application of this procedure was first exercised on the model ketone 12. There are many ways to form a one-carbon, extended epoxide from a carbonyl compound.73 The most direct approach is Corey’s dimethylsulfonium methylide73f; however, the 59 outcome of the stereoselectivity of the resulting epoxide is doubtful. Recently, Tanis, et. 8L7“, described a convenient method to prepare spiroepoxides with high stereoselectivity using methylthiomethyl lithium. l. LiCHQSCH3 2. CH3! , o 3. NaH\THF ""7 o (90%, IS; I > Treatment of 12 with methylthiomethyl lithium gave alcohol 76 (988 yield, stereoselectivity 92:6 determined by integration of proton NMR). Treatment of 76 with neat methyl iodide provided sulfonium salt 79, which was used without further purification. Ring closure of the hydroxy sulfonium salt 79 with sodium hydride in TRF proceeded smoothly to give the desired epoxide 66 as a single isomer (determined by carbon NMR). The configuration of the major product at C-12 (C-20 for tetracyclic analogs) in alcohol 76 was assigned in part by examining the molecular models of 78 and in part on Erief’s work.2° Molecular models show that the attack of a nucleophile from the least-hindered side (away from the C-9 methyl group) of the carbonyl group will give the desired C- 12(S) thio alcohol (precursor of C-20(R) for the final triterpene). 81111 00m ind: die: Pro: is," addj Inn] 60 (11+ /\ Li(3112543113 ' Excess m» ,, CH3I 12 CH3O 80 The desired alcohol 61 'was obtained by reaction of ethoxyethynyl magnesium bromide with epoxide 60 under the conditions described by Krief29 (ether:benzene:3:l, 20°, 1h). The carbon NMR spectrum of alcohol 61 shows 19 signals indicating that .61 twas obtained largely as a single diastereomer. Thus, the Grignard reaction presumably proceeded via an initial MgBrz-catalyzed, stereospecific isomerization of epoxide 60 into aldehyde 64, followed by addition of the Grignard reagent. Reduction of the ynolether 61 by lithium aluminum hydride (LiAqu), followed by acidic hydrolysis of the resulting y-hydroxy enolether 62 61 BngCEC—OEt 80 )- CH3O produced the ¢,p-unsaturated aldehyde 36 in 838 overall yield. Aldehyde 33 was then reduced by catalytic hydrogenation (palladium on charcoal). The Wittig reaction Lewis Acid 80 hr (MgBr2) 62 of the resulting saturated aldehyde 66*with isopropylidene triphenyl phosphorane gave the final product 66 in 688 yield. H O H 83 pd\C’H2 (CH3)2C&Q3 EtOAc 3’ CH3O 85 The stereochemical outcome of this whole set of reactions was studied at this stage by comparing carbon-13 chemical shifts of 66 to the chemical shifts of equivalent natural products, reported by S. A. Knight.75 The chemical shifts reported for euphenol (Figure l) and the assignments proposed for 66 are shown in Figure 2. Based on these assignments, we assume that compound 66 has a configuration which is analogous to euphenol. However, a definitive assignment may have to wait until the real tetracyclic system is assembled. . oa:o_a Nmmm 63 Q: mmN— 0mm ow— 64 0N— www.m— GROW 00.0 N 839“. www— EXPERIMENTAL Except where otherwise indicated, all reactions were conducted under a dry argon or nitrogen atmosphere using solvents distilled from appropriate drying agents. Small- scale chromatographic separations were accomplished with the use of 2 mm silica plates (Merck F-254, 20 x 20 cm). Larger scale separations were effected by flash chromatography (40- 63 millimicron silica gel, Merck 9385. Melting points were determined on either a Thomas-Hoover capillary melting point apparatus or a Reichert hot-stage microscopic and are uncorrected. Infrared (IR) spectra were recorded on a Perkin-Elmer 237B grating spectrophotometer. Mass spectra (M8) were obtained with a Finnigan 4000 GC/MS spectrometer. Proton magnetic resonance spectra (PMR) were taken in deuterochloroform solution using either a Varian T-60 or a Bruker WM 250 speCtrometer and are calibrated in parts per million (6) from tetramethylsilane (TMS) as an internal standard. Carbon magnetic resonance spectra (CMR) were recorded on a Druker WM 250 spectometer at 69.6 MHz using deuterochloroform as solvent and are calibrated in parts per million (6) from TMS as internal standard. 65 66 Microanalyses were performed by Spang Microanalytical Labs, Eagle Harbor, Michigan. High resolution mass spectra were performed by the Michigan State. University Department of Biochemistry, Mass Spectroscopy Facility, East Lansing, Michigan. Trim-mmi64 To a solution of diisoproylamine (0.26 mL, 2 mmol) in 5mL TRF, cooled to -78°C in a dry ice-acetone bath, was added n-butyllithium (1.1 mL, 1.55 M in hexane, 1.70 mmol) over 2 minutes and the solution was stirred at -76°C for 30 minutes. A solution of enone 63 (610 mg, 1.57 mmol) in 5 mL of TRF was added over 2 minutes and the resulting pale yellow solution was stirred at -78°C for 30 minutes. To this solution was added phenyl selenyl bromide (376 mg, 1.6 mmol) in 3 mL TRF in one portion. Stirring was continued for an additional 2 h and the reaction mixture was slowly warmed to 0°C and then 208 acetic acid (15 mL) was added followed by addition of 308 hydrogen peroxide (63 mL). This mixture was stirred .for l h at 0°C and warmed to room temperature in a period of 30 minutes. The reaction was quenched with 10 mL of water and extracted with ether (4 times). The combined organic layers were washed with water, brine and dried with anhydrous magnesium sulfate. Removal of the solvent gave a yellow oil which was chromatographed ye PM. 3H 311. H :1 cm 12E 53. 27. 11 CI' Has Che PIIH 1.1 3.0 #3 *1 Cm; 128 67 (silica-ether) to give 515 I; (853) of trienone 54 es a yellow oil. Characteristic properties of 54 p are: P88 (00013) 250 882: 5 0.78 (s, 38), 1.20 (s, 38), 1.21 (s, 38), 1.3-2.4 (I, 88), 2.65 (I, 18), 3.05 (I, 28), 3.40 (s, 38), 3.56 (I, 28), 3.70 (I, 38), 4.62 (d, 18, J&6.782), 4.73 (d, 18, J56.782), 5.37 (q, 18, J23.382), 6.11 (t, 18, JEl.882), 6.27 (dd, 18, Jhl.8,10.182), 7.0 (d, 18, J&10.182). 088 (00013) 69.8 882: a 185.74, 165.87, 154.81, 145.28, 128.16, 123.67, 116.52, 94.58, 83.89, 74.94, 71.54, 66.48, 58.72, 49.42, 46.23, 44.35, 42.36, 34.89, 33.10, 32.91, 27.37, 24.71, 19.49, 16.70. 1 IR (0014): 3040, 2940, 2880, 2805, 1665, 1630, 1605, 1375 CI'l. Mess spectruI (70eV): IVe’(re1. intens.) 386 (M’, 2), 371 (1), 310 (2), 265 (6), 159 (12), 89 (54), '59 (100). Characteristic properties of 54 s are: P88 (00613) 250 M82: 0 0.86 (s, 38), 1.09 (d, 38, J5182), 1.18 (s, 38), 1.5-2.0 (I, 78), 2.25 (I, 18), 2.65 (I, 18), 3.05 (I, 28), 3.40 (s, 38), 3.57 (I, 28), 3.70 (I, 28), 4.0 (dd, 18, .k6.4 and 9.082), 4.71 (s, 28), 5.35 (q, 18, JE3.382), 6.11 (t, 18, J&1.882), 6.27 (dd, 18, J&1.8,10.l82), 7.0 (d, 18, J&10.182). CHE (CDCla) 69.8 M82: 5 185.45, 165.35, 154.47, 144.52, 128.05, 123.55, 116.57, 94.52, 84.65, 71.35, 66.30, 58.58, 48.07. 26.82. 11 (CCJ 1460, . Hall a] (2). 2! 1.4—8- A of dry bottoue condens freshly butanol resulti 50°C. added 50°C f0 cooled, Iith u. extFact dried o 'Olvent Crude D 68 48.07, 43.83, 43.38, 42.05, 33.06, 32.86, 29.70, 27.56, 26.82, 20.67, 19.03, 16.56. I8 (001;): 3030, 2960, 2890, 2830, 1675, 1640, 1615, 1480, 1460, 1300 CI'l. Mass spectruI (70eV): sVe’(re1. intens.) 386 (Ht, 1), 280 (2), 265 (2), 225 (1), 259 (6), 89 (43), 59 (100). 4y¥ifllldhfluuienuutflfl A solution of trienone 54 (405 Ig, 1.05 IIol) in 50 IL of dry benzene was prepared in a 100 IL three-necked round- hottoIed flask equipped with an argon inlet, reflux condenser, Iagnetic stirrer and an oil heating bath. A freshly prepared solution of potassiuI t-butoxide in t- butanol (6.3 IIol) was then added dropwise, and the resulting dark brown solution was stirred and heated to 50°C. An excess of Iethyl iodide (2.980g, 21 IIole) was added 10 Iinutes later, and this Iixture was Iaintained at 50°C for 3 h. The resulting bright-yellow solution was cooled, quenched with 10 IL of water, and then extracted with three 20 IL portions of ether. The coIbined ether extracts were washed with water, then brine and finally dried over anhydrous sodiuI sulfate. Evaporation of the solvent yielded 417 Ig (963) of a dark brown oil. This ' crude product proved to be air and light sensitive and was, 69 therefore, used in the next step without further purification. Characteristic properties of 58 p are: PMR (0001.) 250 M82: 5 0.69 (s, 38), 1.11 (s, 38), 1.12 (s, 38), 1.23 (s, 38), 1.30 (s, 38), 0.80~2.70 (I, 98), 3.37 (s, 38), 3.55 (I, 28), 3.70 (I, 38), 4.60 (d, 18, J56.782), 4.71 (d, 18, Jh6.782), 5.65 (dd, 18, J&2.9,5.682), 5.91 (d, 18, .k4.282), 5.96 (d, 18, J&10.382), 6.75 (d, 18, J&10.382). 0M8 (00013) 69.8 M82: 6 202.69, 153.83, 148.22, 144.69, 124.91, 119.33, 115.84, 94.79, 84.33, 71.76, 66.88, 85.92, 49.26, 47.79, 46.33, 44.35, 39.03, 34.18, 30.85, 30.28, 29.60, 27.08, 24.72, 21.80, 16.60, 15.12. 18 (0013): 3050, 2980, 2950, 2890, 2840, 1690, 1670, 1485, 1330 cn-I. ' - Mass spectruI (70eV) sVe (rel. intens.) 414 (M’, 1), 389 (l), 330 (27), 279 (54), 190 (53), 175 (34), 159 (20), 149 (23), 133 (34), 119 (33), 55 (58), 43 (100). d?"’, 3-oIe 64 To a 500 IL three-necked, round-bottoIed flask equipped with an argon inlet adaptor, dry-ice condenser, and Iechanical stirrer was added 200 IL of aIIonia (freshly distilled froI sodiuI) at -78°C. LithiuI wire (171 Ig, 24.6 IIole) and 100 IL of dry THF were then added, and the resulting dark blue solution was stirred at -78°C for 30 Iinutes. To this solution was added a solution of 4,4- diIethyl trienone 84 (510 Ig, 1.231 IIol) in 50 IL of dry THF, 1 stirri adding evapor residu was ex organi anhydr 504 1; oil. ! PKR (CI 33). 1, 11, .h! 4.62 (1 £3.33: Ii (cc; 1035 . 70 THE, followed by t—butyl alcohol (910 Ig, 12.3 IIol). After stirring at -78°C for 5 h, the reaction was quenched by adding 1g of aIIoniuI chloride, and the excess aIIonia was evaporated into the hood under a streaI of argon. The residue was treated with 50 IL of water, and this Iixture was extracted by four 20 IL portions of ether. The coIbined organic layers were washed with ether, brine and dried over anhydrous sodiuI sulfate. ReIoval of the solvent yielded 504 Ig (98%) of 4,4—diIethy1 67(3), 3-one 84 as an off-white oil. Characteristic properties of 84 p are: PMR (00013) 250 M82: 6 0.84 (s, 38), 1.02 (s, 38), 1.05 (s, an). 1.15 (s, an, overlap), 0.80-2.40 (n. 153), 2.76 (at, 18, J55.5,14.582), 3.39 (s, 38), 3.55 (I, 28), 3.70 (I, 38), 4.62 (d, 18, Jh6.782), 4.73 (d, 18, Jk6.782), 5.22 (q, 18, J53.382). IR (0014): 2960, 2940, 2880, 1710, 1450, 1380, 1370, 1260, 1035 CI'l. Mass spectruI (70eV) aye (rel. intens.) 418 (M*, 4), 403 (1), 327 (10), 312 (5), 297 (26), 159 (5), 89 (100), 59 (89), 45 (13). Characteristic properties of 64 a are: PMR (00013) 250 M82: 6 0.93 (s, 38), 1.01 (s, 68, overlap), 1.05 (s, 38), 1.11 (s, 38), 0.80-2.45 (I, 158), 2.75 (dt, 18, JE5.5,14.582), 3.40 (s, 38), 3.58 (I, 28), 3.70 (I, 28), 4.22 (dd, 18, J56.4,9.082), 4.71 (s, 28), 5.30 (q, 18, J53.382). 71 can (00013) 69.8 M82: 0 216.45, 145.33, 117.73, 94.87, 85.35, 71.72, 66.59, 58.90, 52.29, 48.28, 47.73, 43.84, 30.37, 35.06, 34.77, 33.42, 31.00, 30.41, 28.07, 27.13, 24.47, 24.20, 21.48, 21.26, 17.27, 12.65.~ IR (001.): 2960, 2900, 2830, 1730, 1480, 1460, 1395, 1375, 1210. 1130, 1050 cn-l. Mass spectruI (70eV) aye (rel. intens.) 418 (M’, 1), 403 (1), 312 (1), 297 (7), 271 (2), 213 (1), 159 (a), 89 (100), 59 (79), 45 (a). CFr7lflcdhfl.67 This procedure will be illustrated for a single 0-17 I- epiIer 87. A solution of 17a~MBM ether 84 (240 Ig, 0.57 IIol) in 30 IL of dry Iethylene chloride was cooled to 0°C, and a freshly prepared solution of titaniuI dichloro- diisoproxide in Iethylene chloride (5.74 IIol)' was added dropwise with stirring. The resulting pale yellow solution was warIed to rooI teIperature and it slowly turned orange as the reaction proceeded. This solution was stirred for 12 h at rooI teIperature; the starting Iaterial was no longer evident by TLC analysis (silica-ether). The reaction was then quenched by addition of 2 IL of concentrated aIIoniuI hydroxide solution and then was diluted with 10 IL of water. The aqueous phase was extracted twice with Iethylene chloride, and the coIbined organic phases were washed with water until the aqueous phase was neutral. ReIoval of the 72 solvent froI the dried extracts gave a yellow oil, which was chroIatographed (silica-ether) to give 170.5 Ig (908) of the 17s-a1coho1 87 as an off-white solid. Characteristic properties of 87 p are: PMR (00013) 250 M82: 6 0.81 (s, 38), 1.03 (s, 38), 1.05 (s, 38), 1.12 (s, 38), 1.17 (s, 38), 0.8-2.40 (I, 158), 2.76 (dt, 18, J=5.5,14.582), 3.78 (dd, 18, J=1.7,7.482), 5.32 (q, 18, J53.382). IR: 3600, 2960, 2860, 1700, 1445, 1380 CI'l. Mass spectruI (70eV): 330 (M*, 19), 315 (100), 279 (40), 271 (6), 243 (12), 159 (13). Characteristic properties of 87 s are: PMR (00013) 250 M82: 0 0.91 (s, 38), 1.00 (s, 38), 1.01 (s, 38), 1.05 (s, 38), 1.11 (s, 38), 1.26 (s, 38), 1.74 (s, 38), 0.80—2.45 (I, 168), 2.76 (dt, 18, J55.5,14.582), 4.09 (dd, 18, J56.6,9.082), 5.30 (q, 18, J53.382). 0M8 (00013) 69.8 M82: 6 216.68, 145.47, 117.77, 80.60, 52.37, 48.31, 47.82, 44.01, 38.43, 35.13, 34.83, 33.52, 30.67, 29.71, 27.10, 24.52, 24.25, 21.54, 20.41, 17.24, 12.71. IR (0014): 3640, 2970, 2940, 2880, 1740, 1465, 1390, 1275, 1120, 1045 cI‘l. Mass spectruI (70eV) 330 (5), 315 (19), 297 (8), 243 (4), 149 (12), 145 (9), 119 (18), 105 (24), 57 (41), 43 (100). 73 03,rriflllhuI188 A solution of oxaryl chloride (0.1 IL, 1.14 IIol) in 5 IL of Iethylene chloride was placed in a 25 IL pear-shaped flask equipped with an argon inlet, a Iagnetic stirred, and cooled by a dry-ice/acetone bath. 0iIethy1 sulfoxide (0.2 IL, 3.2 IIol) was added slowly to the stirred oxaryl chloride solution at -78°C, and after a 2 Iinute pause, a solution of alcohol 87 (230 Ig, 0.7 IIol) in 2 IL of Iethylene chloride was added. Stirring was continued for an additional 15 Iinutes; triethylaIine (1 IL, 7.1 IIol) was then added and the reaction Iixture was slowly warIed to rooI teIperature. After Iixing with 10 IL of cold water, the organic phase was separated and the aqueous phase was extracted twice with ether. The coIbined organic phases were washed with water, brine and dried over anhydrous IagnesiuI sulfate. ReIoval of the solvent gave a yellow oil which was chroIatographed (silica-hexane:ether:3:1) to give 210 Ig (918) of the 03,17-diketone 68 as a white solid. PMR (00013) 250 M82: 0 0.98 (s, 38), 0.99 (s, 38), 1.04 (s,q 38), 1.07 (s, 38), 1.13 (s, 38), 0.80—2.40 (I, .148), 2.50 (ddd, 18, Jhl.8,9.6,19.482), 2.77 (dt, 18, JE5.5,14.582), 5.47 (q, 18, fi3.5,6.682). 0M8 (00013) 68.7 M82: 0 219.46, 216.19, 142.86, 119.17, . 52.36, 48.52, 47.78, 46.17, 38.39, 35.19, 34.76, 34.21, 30.77, 29.65, 26.85, 24.56, 24.43, 24.19, 23.54, 21.58, 16.97, 12.66. 74 IR (0014): 2985, 2970, 1750, 1720, 1470, 1395, 1380, 1375 CI‘l. Mass spectruI (70eV) aye (rel. intens.) 328 (M‘, 5), 313 (10), 295 (3), 271 (4), 257 (4), 241 (4), 175 (5), 149 (37), 129 (48), 119 (23), 83 (37), 69 (30), 55 (82), 41 (100). CPapdflcdhfl.89 A solution of 03,17-diketone 88 (210 Ig, 0.66 IIol) in 15 IL of 952 aqueous ethanol was cooled to 0°C,‘ and 6 IL of 0.1M sodiuI borohydride in 38 aqueous sodiuI hydroxide was added dropwise. This solution was stirred at 0°C, and the reaction progress was Ionitored by TLC (silica—ether). After 3 h, the soltuion was diluted with 20 IL of water and extracted three 20 IL portions of ether. The coIbined ether layers were washed with water, brine, and dried over anhydrous sodiuI sulfate. ReIoval of the solvent yielded 189 Ig (918) of the 0-3p-alcohol 88 as an off-white solid. PMR (00013) 250 M82: 6 0.78 (s, 38), 0.88 (s, 38), 0.94 (s, 38), 0.99 (s, 38), 1.05 (s, 38), 0.8-2.4 (I, 168), 2.50 (ddd, 18, J51.8,9.6,19.482), 3.26 (dd, 18, J54.4,10.882), 5.44 (q, 18, J53.382). CMR (00013) 69.8 M82: 0 220.09, 142.58, 119.20, 78.94, 50.63, 48.90, 46.12, 38.89, 37.08, 35.05, 34.24, 31.12, 30.69, 29.62, 27.54, 26.67, 24.43, 23.73, 23.47, 16.77, 14.70, 12.91. 75 18 (0014): 3600, 2990, 1720, 1475, 1380 CI'1. Mass spectruI (70eV) IVs (rel. intens.) 331 (7), 330 (M’, 27), 297 (42), 285 (4), 271 (4), 190 (32), 175 (17), 183 (10), 149 (25), 133 (15), 119 (19), 84 (100), 57 (79), 43 (89). (banal-112 To a cooled (-78°0) stirred solution of oxaryl chloride (1.22 IL, 13.95 IIol) in 30 IL dry Iethylene chloride was added (5 Iinutes) a solution of diIethyl sulfoxide (1.5 IL, 2.1 IIol) in 5 IL of Iethylene chloride. This Iixture was stirred for 5 Iinutes,‘ and a solution of alcohol 70 (1.05g, 4.65 IIol) was then added over a 10 Iinute period. Stirring was continued for an additional 20 Iinutes at -78°C, followed by addition of 10 IL of triethylaIine. The reaction Iixture was warIed to rooI teIperature, diluted with 50 IL of water and the organic phase was separated. The aqueous layer was extracted with three 30 IL portions of ether, and the coIbined organic layers were washed with water, brine and dried over anhydrous sodiuI sulfate. Evaporation of the solvent gave 980 Ig of a yellow oil as a Iixture of ketones epiIeric at 0-17. This epiIeric Iixture, in 30 IL of dry ethanol, was added to a freshly prepared solution of sodiuI ethoxide (15 IIol) in ethanol (15 IL of a l Iolar solution in ethanol). After stirring at rooI teIperature for 3 h, the reaction Iixture was quenched with 76 water and extracted with ether (five tiIes). The coIbined ether extracts were washed and dried; and evaporation of the solvent, followed by flash chroIatography (silica- hexane:ethy1acetate:4:1), yielded 843 Ig (80.33) of the 17-a Iethyl ketone 12 as an off—white solid, I.p. 47—48°. PMR (00013) 250 M82: 0 0.91 (s, 38), 0.92 (d, 38, JE182), 0.8-2.0 (I, 98), 2.08 (s, 38), 2.22-2.38 (I, 18), 2.75 (t, 18, JE8.382), 3.2 (I, 18), 3.27 (s, 38). (klpoull784IIl79 To a chilled (0°C) solution of n-butyllithiuI (1.85 IL of a 1.6M hexane solution, 2.96 IIol) in 2.6 IL of T8? was added TMBDA (317 ul, 2.96 IIol). This Iixture was warIed to rooI teIperature and stirred for 30 Iinutes. The resulting pale yellow solution was cooled to 0°C and diIethylsulfide (220 ul, 3.0 IIol) was added. The resulting yellow solution was stirred for 3 h at rooI teIperature, cooled to -78°C in a dry-ice/acetone bath, and then Iixed with a pre-cooled (- 78°C) solution of 17-s Iethyl ketone 12 (663 Ig, 2.96 IIol) in 15 IL of T86. This Iixture was warIed to rooI teIperature and then diluted with 50 IL of ether and 10 IL of saturated aqueous aIIoniuI chloride. The organic phase was separated, washed with water, brine and dried over anhydrous sodiuI sulfate. ReIoval of the solvent gave the crude adduct (698 Ig, 998) as a yellow oil which was used II I! 01 ex ac Ev tr id f0 PM He: 20' 10s 77 without further purification. The characteristic properties of this C-21 alcohol 78 are: PMR (00013) 250 M82: 0 0.90 (s, 38), 1.18 (s, 38), 1.31 (s, 38), 0.9-2.0 (I, 128), 2.15 (s, 38), 2.60 (s, 28), 3.19 (I, 18), 3.28 (s, 38). IR (neat): 3500, 2970, 2940, 2910, 1470, 1430, 1380, 1090 cI'l. Mass spectruI (70eV) aye (rel. intens.) 286 (M’, 1), 269 (1), 225 (16), 193 (12), 175 (16), 149 (48), 123 (30), 71 (100). 43 (87). A portion of this alcohol (238 Ig, 1 IIol) was added to excess Iethyl iodide (5 IL, 35 IIol) in 10 IL of dry acetone, and the reaction Iixture was refluxed overnight. Evaporation of the solvent gave a brown solid, which on trituration with ether, yielded a white solid (310 Ig, 75%) identified as sulfoniuI salt 79. Pure 79 displays the following properties: I.p. 210 (Dec). PMR (do-Acetone) 250 M82: 5 0.90 (s, 38), 1.19 (s, 38), 1.56 (s, 38), 0.90-2.0 (I, 128), 3.19 (I, 18), 3.21 (s, 38), 3.24 (s, 38), 3.28 (s, 38), 3.79 (d, 18, J51382), 3.98 (d, 18, J51382). Mass spectruI (70eV) IVe (rel. intens.) 255 (l), 225 (37), 207 (3), 193 (24), 175 (28), 149 (50), 142 (99), 127 (45), 109 (25), 71 (100). 78 (kIpoIII80 To a suspension of the sulfoniuI salt 79 (414 Ig, 1 IIol) in 20 IL of T8? was added 30 Ig (1.25 IIole) of sodiuI hydride in one portion. After this Iixture was stirred at rooI teIperature for 4 h, the starting Iaterial was no longer evident by TLC analysis (silica-hexane:etherz3:1), and the reaction was quenched with water and then extracted with ether (three tiIes). The coIbined organic extracts were washed with water, brine and dried over anhydrous sodiuI sulfate. ReIoval of the solvent gave 230 Ig of crude product, which on chroIatography (silica-hexane:ether:3:l), yielded 215 Ig (903) of pure epoxide 80. PMR (00013) 250 M82: 0 0.88 (s, 38), 1.11 (s, 38), 1.35 (s, 38), l.0-2.10 (I, 118), 2.30 (d, 18, JE5.2582), 2.49 (d, 18, JE5.2582), 3.16 (I, 18), 3.28 (s, 38). 0M8 (00013) 69.8 M82: 6 85.00, 57.71, 56.24, 51.20, 49.89, 48.70, 44.83, 32.95, 28.95, 23.65, 23.13, 22.72, 20.05; 17.83, 17.60. 18 (0014): 3050, 2990, 2975, 2800, 2830, 1475, 1450, 1390, 1350, 1270, 1190, 1100 Cl'l. Mass spectruI (70eV) sVe (rel. intens.) 238 (M’, 1), 223 (1), 206 (3), 191 (3), 175 (5), 147 (18), 122 (37), 107 (37), 98 (30), 71 (82), 43 (100). 79 Cain-Idln To a cooled (0°C) solution of epoxide 80 (215 Ig, 0.90 IIol) in 20 IL of 3:1 (v/v) ether/benzene was added 3 IL of a 1M solution of ethoxy ethynyl IagnesiuI broIide (3.0 IIol, freshly prepared by reacting ethyl IagnesiuI broIide in ether with ethoxyacetylene in benzene). The light brown Iixture was warIed to rooI teIperature, and reaction progress was Ionitored by TLC analysis (silica- hexane:ether:3:1). After 2 h, the reaction was quenched with 5 IL of saturated aqueous aIIoniuI chloride and extracted with ether (four tiIes). The coIbined organic layers were washed with water, brine and dried over anhydrous IagnesiuI sulfate. Evaporation of the solvent gave 247 Ig (898) of ynol ether 81 as a yellow oil. PMR (00013) 250 M82: 5 0.89 (s, 38), 1.0 (s, 38), 1.01 (d, an, $6.882), 1.37 (t, 311, 027.0112), 0.9-2.o (n, 133), 3.16 (I, 18), 3.28 (s, 38), 4.2 (q, 28, J57.082), 4.67 (d, 18, J52.382). 0M8 (00013) 69.8 M82: 5 93.88, 85.35, 74.47, 63.97, 57.71, 48.83, 46.41, 43.69, 41.24, 39.52, 32.75, 29.26, 26.18, 23.77, 23.23, 17.77, 17.05, 14.37, 13.42. 18 (0014): 3620, 2955, 2895, 2850, 1685, 1460, 1380, 1260, 1115 CI’l. 80 Chaps-ullfltlullfi . To a chilled (0°C) suspension of lithiuI aluIinuI hydride (22.2 Ig, 0.584 IIol) in 30 IL of ether was added (dropwise with stirring) a solution of ynol ether 81 (180 Ig, 0.584 IIol) in 5 IL of ether. The reaction Iixture was warIed to rooI teIperature; and after stirring for 2 h, excess hydride was destroyed by addition of 2 IL of 3N Na08 solution and diluted with 10 IL of water. Extraction with ether followed by reIoval of solvent yielded 180 Ig (993) of vinyl ether 82, a colorless oil which was used without further purification. The characteristic properties of vinyl ether 8! are: PM! (00013) 250 M82: 6 0.88 (s, 38), 0.88 (d, 38,1 $6.882), 1.01 (s, 38), 1.28 (t, 38, J57.082), 0.9-2.0 (I, 138), 3.16 (I, 18), 3.28 (s, 38), 3.74 (q, 18, J57.082), 4.29 (dd, 18, Jh2.3,7.982), 4.91 (dd, 18, JE7.9,12.682), 6.44 (d, 18, J212.682). CMR (00013) 69.8 M82: 6 148.11, 105.94, 85.27, 71.42, 64.68, 57.65, 48.76, 46.65, 43.74, 40.80, 32.69, 29.21, 26.03, 23.20, 17.72, 16.95, 14.62, 12.33. This product was dissolved in 20 IL of 5:1 (v/v) THE/water containing two drops of concentrated hydrochloric acid. The resulting solution was stirred at rooa teIperature and reaction progress was Ionitored by TLC. After 3 h, the Iixture was diluted with water and then extracted with ether. The coIbined ether extracts were 81 washed with saturated aqueous sodiuI bicarbonate, water, brine and dried over sodiuI sulfate. Evaporation of the solvent yielded a light yellow oil which was flash chroIatographed (silica-hexane:ethylacetate:3:1) to give 130 Ig (84.48) of pure unsaturated aldehyde 8! as a white solid, I.p. = 51-53°. . PME (00013) 250 M82: 6 0.86 (s, 38), 0.96 (s, 38), 1.04 (d, 38, Jh6.982), 1.0-2.0 (I, ?8), 2.48 (I, 18), 3.16 (I, 18), 3.28 (s, 38), 6.06 (dd, 18, JE7.9,15.782), 6.70 (dd, 18, J59.6,15.782), 9.49 (d, 18, J57.982). 0M8 (00013) 69.8 M82: 6 194.26, 165.03, 130.57, 84.92, 57.56, 51.55, 48.53, 43.88, 39.94, 32.47, 28.91, 26.13, 23.32, 23.02, 17.42. 16.99. ' IR (0014): 3020, 2980, 2960, 2880, 2820, 2740, 1695, 1635, 1455, 1380, 1190, 1095 Cl'l. Mass spectruI (70eV) I/e (rel. intens.) 264 (M’, 10), 249 (l), 232 (12), 214 (5), 149 (51), 139 (20), 122 (100), 107 (61), 93 (39), 71 (91), 55 (60), 41 (53). Ca-pnlddliandlli The unsaturated aldehyde 88 (60 Ig, 0.227 IIol) was reduced by hydrogen (1 atI.) in the presence of palladiuI on charcoal suspended in 20 IL of ethyl acetate. The resulting aldehyde 88 (60 Ig, 100*) exhibits the following characteristic properties: 82 PME (00013) 250 M82: 6 0.84 (d, 38, J-‘=6.882), 0.86 (s, 38), 1.01 (s, 38), 1.0-2.0 (I, 158), 2.42 (I, 18), 3.16 (I, 18), 3.28 (s, 38), 9.76 (t, 18, JE1.982). can (00013) 69.8 M82: 6 202.94, 85.22, 57.60, 50.76, 48.83, 43.82, 40.89, 34.37, 33.27, 29.07, 27.14, 26.83, 23.52, 23.04, 18.66, 17.70, 16.59. IR (0014): 2940, 2880, 2820, 1710, 1470, 1380, 1090 CI'1. Mass spectruI (70eV) IVe (rel. intens.) 266 (M’, 3), 251 (2), 234 (10), 219 (3), 201 (3), 179 (5), 154 (30), 122 (100), 107 (36), 71 (38), 55 (18). To a suspension of isopropyl triphenylphosphine iodide (994 Ig, 2.3 IIol) in 30 IL of dry toluene was added 2.2 IL of a 1M solution of potassiuI t-aIylate (2.2 IIol). Refluxing for 30 Iinutes gave a dark red solution, to which was added a solution of the reduced aldehyde 85 (60 Ig, 0.227 VIIol) in 2 IL of toluene. After this Iixture was stirred for 16 h under reflux, the starting Iaterial was no longer evident by TLC analysis (silica- hexane:ethylacetate:4:1). The cooled reaction Iixture was diluted with 20 IL of water and extracted (three tiIes) with pentane:ether (4:1). The coIbined organic phases were washed with water, brine and dried over anhydrous IagnesiuI sulfate. Evaporation of solvent followed by coluIn dchroIatography yielded 58 Ig (883) of the product 88 as a colorless oil. 83 PM]! (00013) 250 M82: 6 0.84 (d, 38, J=6.182), 0.85 (s, 38), 0.99 (s, 38), 0.9-2.10 (I, 168), 1.60 (s, 38), 1.68 (s, 38), 3.16 (I, 18), 3.27 (s, 38), 5.08 (t, 18, J57.082). 0M8 (00013) 69.8 M82: 5 130.75, 125.27, 85.48, 57.71, 51.04, 48.90, 43.90, 35.87, 34.85, 33.40, 29.69, 29.24, 26.96, 25.70, 24.79, 23.66, 23.26, 18.88, 17.84, 16.64. 18 (0014): 2920, 2885, 1470, 1380, 1095 ca'l. Mass spectruI (CI) sVe (rel. intens.) 291 (M’, 1), 273 (2), 251 (24), 233 (100), 215 (39), 203 (12), 175 (9). 84 A‘vcn vasoaloo mo lsuuooam mm m oasu4m . .. 2 _H _“ 82.2.qu - 7- — zGEc 2:... .30 2024520028 _ 4 z ..7 477.71. .2 05.6 .538 A .. L d 7 .7!.Il.l'll III"! 1.11.17 07!: 7|..Inldxlll'n .l tl.7. l. .. .29 53.232322, 7:... _ 1. :2: 4x53 80a coon 8mm .25. H. . 1 Z . ._. 3:1... .7 {7. 17777737-. 47 2.-.. 7.37 1 1.7. ...... l . .. . A. _ _ __.:_:_E_._::_.:____._ 33::— 2 _ 3 _: .._ ; ___ _ I w c .m . _ _ _ .. m H u. . 4A “.7“ g L. r; 7m ._#r 7 m: T —. 4 1. 4.114 e. _ r m _ 5 _ . . . . . .4. 4......7 er; LTTJ ... 4 _ _ n 7 4 4 W i 8 .2. _ .m . . _ __ _ .. . J4. .4 .3. in ”m. 41...”... w M. 4 7.18:: .,T L1; _ ___ u: __ " ._._ I. . . 5.... ...._;_ _ .. 5. w. 1:. . . 73.4.. 3:... L. : 7...... N . h.t“_._“::_ Z u. :3 M. , i. Z :1. 2: 7 . .4244 1.2: 1. 1.1. :: mi; m : . flewmhiwgé L. _ r”? w __ f. . . . .. .1 :1. . 4_ ..: .. . . ld—Q1W7i. 77 73 «TJL m... .17).; .1114”. _ 7+. 4L4: 4 m? .1866 m: .31; H. ; gmrgum: :_“.....m. : _ .7. . _ _ _. . . 3...; 95:3,”. .-. . m __ F . a .W L. .1. . . i F1”- 17 ., 4. . . .4 .6. 7.1. m. I - 4..0=77.. £31111? .OQ . .w M” mu.” :1”: "m: .H. , CC _ .. . .. .. t .. _. .3 _ "its:— 3 _ . . . . . a . .. "a". . . . .. .n .3 Q.” . K." .3 . 1L 4 h... . I4? L: __ _ _ ”W; M .._ _... . u. N." ....M.H.*H1fi_r+u7. ”v.7”. ..#7_W4.1.._.__ :2 .13.“ ”2. ._ L _ . 1. _”m__.__. _ r co. .174—70d1h7—7J - c “7. 0" 4H” aw”. LKh 1H.“ “$74.41.d4714..1—LHL 0 ad .w «17W+L..Jl.r . 1.. 4‘ a 1.“ .~. rd” . lhlr Cw mZQzOE‘ O m 0 V 0.0 m n . u. 4.— .. .u ... _. _ 85 .3: ~ ..._........I.. .._.smxu Maison-cl .. . ._ . o- awwm 3.543 . pl'I 5m - Swim 240m A. O. mwmiazw><>> . Axum. § § . ._ . . . 625:2— - 73---.-1i 7| 77!--Iuiw5m .7 2:25.20 can 8? 80 c 4 ... _., 1.9-1.4 f: 3 .4 :3... _ .. .2 . q _. .._..“ w a. .m.__. . _ .31.... f 4.. _ . . J M. ... ..r .m___ . .._.... _.... .. _. __ _ E. g . .1. .__ __ 4 _. u . . . 3.1.; _ ..x... .... ... . .__. .. ._. f. _ ._ .— .._._....._.w.": u... . ._..._ ...:_ :1... . ._ .. ... .. . ._ :2 _.:_._.“z .... ._ t _: w. . . r. . _ av .._.; ..Z...r. .. . g .. T. ".4. . . . .._.. __..._.. . . .. ._.. .. . H .._..T: x T. . 4. ._.~ _ 4. 4.” _. T. . .. t. __ . J... T“ u _. ”.4“ ._._~. . .. . so r— ..m— “r“. ... 4.7 . ..u ..._. . a. .. . ... on _.. .2 . .W n .. ..4 . ._. . :c. .. . ._. 5.11.7. ... 7.1.711. 2.. Jr. 2. TN. 72.. m. -__—4 fl __ .o—————_—_.--— “--_— .._.- . -_ —_— - ._.—— u.— f _.J ———4 ,— A ‘_1 —.-—-—— 4 ... _ 4. _ _ _ ..l . _ : 7. .. ... : u i. _. _ . .. _ _u~ 4.“. _ . f 74:14 4 11.7.:1:;....+ 7 . I .. .4... E. .E. .._. I... . .... .2 .. .... .. . :51. . .3 3 .. 5 .. _. ._ . w 9.... ”Mad I .rmI.r . .17»; n. .7 TL. 1 . L 7.; .v _ ... 4. .. .: _..;_:_ . .. ... .. .. ._ .. .. .._. ......_..,._ .._ Z .11... . . .._...giz. ._ .4. .1 u. .. . .. _. J20 m ..4 L. _ . Ti... .. _ N . .2 .— ... w .. 3.. . u: .2... 7.7.7.; .2? -._. T... .... a... Z .3... .3 . $8.... .. .r.4.E.E. _... _ .. . 1.. .._. .._. .._.... . g . .H L.“ 1.. first”... L4“ ..M+1.._ 1. .2 _ _. . .._. .3 ._ i ..n... _._._ .__ _ . . i. .: . . _ A. i. _... .._. .5 ..m. ... a. .31.... ... .... .K .._. 5.1.4.2-... .2 2... .._. 4. .._.-..l... 4.27174 77.111.4323144 1.114.114... 4. .7. . _ c. 3.3 4 u ...--_-~_--——u.— .._.— .......-_.4. --.—_ m -._....7 .._ “.._....“ o w 9—‘_-" .-_-- .-- -- -._. can. .—- ”--_.- --...—- . -4... mvE<2JZ . --_.-.._- 86 Auv¢m vasomloo mo azuuooam mm c ousuwm . .u i _. .H i _H _. T . :. Riwfimz. : . zafio- 15.5". .38 20.252828 . . mg . c 2. 4d: Egg A¢ u. L mg” .. 20. mwm232w><>> 43:9 .,.:. 1 ...mm. . coon . 8mm 86v _ . -. 1.1.4.. . «... «flu . 1 4 1 _ . ...._ .._.... .. ._.....:__ .._.... ...... .._.... _. .._. ...: _..__. ... _ _ _ .... .. .. . .... .171. .. ...? ... .. . . _ .. ... .. .... _ .; .VW. ; .. .1 . . .1 1 ...____.:..:. .._. . . . .. _. . 1...: _ .... , . . .... : . Qaq;.ow:.: .... . . .. .7 :go« .. . .._..-. ... ... .... ... ... .....L... .... .... ... .. ... ...... ...; ...M : ... ......j... .. u. . ... ...v. .... . _. ... .... ...... ... .. Y.... .. . .. .... u . . . ... . .. .. .. . . .. .....i. _. ............._.. 1...... .. .. .. .._. ...; .. .. ...... .._. .... .... T... .... : M. . 2. . . 1-..... ......r.......... ........... ...._. m. m m . .._. ... ...... .... ... ... .... . .... ... .. ... m . .. .... r. . . .... .. ..- «-.. ...” .2 I ... .... . _LELO TMwMZMJ: :.:w...... w...:;.. L 1 .; . .. ., : .3: :.:1 . .:.. .1 .:r.:. .. g. M .. . . . ... .... ... .. .. . . ... ... _. .. ..g...........$11.1.13......_._...:_ 1:... ... .m ...... . ...r..:.%.a:...:_ .. -. .. . -;.: . . ..r....;..;...¢..;.:.wt. .... . ..r: .... .. H -.....z. .... ......ri .. ruin. ..2 .1... -. .. . m... h... . . .... ...... . . ... ... H . .. . . . _ ; .1.:: m. . . . .. .. a r H .. _ .....83 .... ...... .. . 31.7.8- is -. . .... . If » lull . . . . . . 11.1....117mU1T... . .. . ... . . .. . ......m....:&. U............... H _ . . H... ....3 ......fl. 11.11.141.344 ...J ”P... “--.__1.. .1 . .. ... ... . . . . . ...... ... .5... E... .75.... H. q. T . r .. . kl: . ....1- .. .. ...... ........1...... 3.1”... 2.12.5 112...»...1La; 11.11.“.EEm 3...... _...1...+.-.- -- cc. Qo mzomce. on o. On _ an 87 .-.! 3%... #321831: . I s u: 32 K“: . . .. .. ...r. L... .I thin..un."d.1!.5... . ‘. -. :1: ..... III -- ...wmfiolohfimmmeI II w~(O .: ..m 5 1625.5 88m 50m Ln CV .. :9 mmmzazm>§> 8o 8m , ‘ 8o. 89 CO .. +4.42 _,. 1.4.4. «A ‘ d A m. m:_ 3 _ m _ _ : z n m .L. y M h n _ g m giz... _ L __ ; T . _V vi: w __ : ”a n _ w u 2. .. _ :_ __ m of .1717: w 1 i? T. :3: m . i _ ._ m _ “f2: ... n "_ L. “_ _ ._ __ :...::.. .T . w“ L: “.1 . w .__ __ 7“. ___ : L. h __ _. T”. h J .u ..T _ 3 __ . M“ .3 .. .. w 31:: T. Z. ; E. .. u ._ _ f" w. W.” . é. _.._ w H .w T f. .. w” _: . 4 k: H . . . _ ”V" . Z _ so __ L W i _ J1 1.; . . .$ 5. _ . up??? n a g "2%: r3 x; m _: .5 . . ._ imt¥1+ m w ..z_: i1: . m” .7." :x—. I... .‘u . _ .u Q _ .7. fl q _ it :4 £3. m y . M“ 1m 3 E :2 q , .15” :EE 4qJOm . A. w A. 20. Cwm232w><>> , ....,~+ 08m“ 8mm 86? €%~-a wt2 1 3 fl «2. ~ 4““ fl. . _ . . B . _ . A Y Y . . .. _ 2.“ .. . .. _.<4.:.. ., . . .,.Y . Q, .. ... Y. _ ..., .. . T H I. T”. H.“ _ LY ... ___..N . n. n m L L H ..Y ”I . :44. if... t ..._Y "1 :L.f _ - . «:124 3.9 t” (7731.“ .u .YJHJflLYmH 4x ..m 3C. ._“: ..L 3... u ; H. H. . ._ .. .fi .. . .. ~.Y n. .... — Y“ _~ ... _ ..., .._Y..__.__ N. . 7..- .“.;._..,.;_IJ. ...;f:3..;TT::~:LTt? 4L _ Y“ f _ .2 ,. u.._ g ; .12; .. ”v.. .mma. ..M‘yinawnflb .fi. Tw "w..h4..n+;d..+lo ~*~..« ..~ .»w . .0 M m... _ k. Qu— fi.ar. « ‘1 fip » It: 3?- .1 11 .1 #1 « J u Pr .lq q* .bl.» Mgr b b THFflLkr-Ftl L Y- ~>F_ ..IEI-.. I Fink... 2.. :5 C ID 0 V C‘ ('2 ID C\ 89 I .. I.II---I - III.-: _ I. - Y -I. ... ammo NImng..nm(.m. IiIl .II II-II.- -- .-..I- .- .vz him: 5.... .......”u....(..2h hm“...- qua—......- I-II.!Y|I. III, - I. -I-. I I- is? .I- ,_.¢-11...w mtbflomulfii. IIILYIY - whom 5m CCh$$ ”on oov com com 600— com— .§ .--.---— ..---c—-.—-l -... .. ..._. Y ..._.-- f—vc-OO— .. ._____.—— “—4.“- '- .. .g . 1 -_-§—- .-- -——P——-.—-—.— ' -_d—-_ —-——§—-——.om— ---- .._- -—-—_~ac— ... .— — -—-- ..---- .- ... A . " - 7o“ ..-” _'_ _ _°.-- ---..Y--_.__4 --.— *-—. - ..._ . .._.—.._.. --_.—A... Y‘q; Y.-p. y ._ : ,._.—. 9:15 90 A‘Vem vzaomloo mo ashauomm mm m chamwm T. . .. : 3 3 : 2 a. g H. . - : .1. guys. ..-II . - - . -l 55. :6 YILIIillllleE§=m¥fiU Y «m I .33 559 A . :L e 3. S2523 : .3 . . _Gfi. - ...-..SK . :. 8mm. , Son : . ; -183 . . -.....3 25:: _: 2 : ___Y__ # A: a ._ 25% __ t 2:: .. .._ ..... _ . . H. m _. A” 1f.__:“_~._ _. A. u .. :f .2 A; A: _ :3 E. 5:: _ 3:1: U.._. . ..._;_;_:i;:.w __E_m_____:_ g}; L: :. ”___ :1 “:A :. .:_. ...” :: ..._ _. .1. __ A ini- .23; .:7.m ”1.5T. ..: 4A: .1434: 2. E; _ _ 3.1:.1WAMM251: ”3.35:an T. .... 2 _- ... _m .w AI: .._.. A . . .H “1 _,A :u _ 1 g : .__ a .._...._ . __*__: . _“u__.._ _M..‘.“._ .m_.m..".. __ .._.__. _ w. T. TL; ._nn.m....:.*.wnl_ "...v.“ ..1: __. 3L: 1. .H.M:;i .._; 5 __m. ..5 9 _. . _ ..u L...“ .._"...H; .. _ . _:__ ___WZTF : 3:52.. “M v_ M 3 3;. .3 .... .._: a ... A. _ 5.5 A ._ __ 31.: __ __q . _ _ _ . . . _ :A. 2 Ewing. ___:g: _. "..._“ “ _..“.___%_. ...... .._.: :t _ gm:_ __1 :4 .m;:;_ 1.... :m._ . .. ...___;.... ...... _ _ h. A A I. ..f_. u. .. _. ... _. . . . _ .. T... +“”_:. __ : _LYW "___. ...”. __ _ f _;____ 1 Y ._ H. v __ _ H _ _ i 2%.; 4:3: .2 _ . n. . .._ . _ 3:: E:_.:._.. :r. n .7. _ _ M _ 2.3; "TY: __ 1.2:; ___ A m . . m _. _Y _ . H. ..T L" . . _ 2 m J. 4.: .w .H Y .wl . __. .._.; _ _ .. . Y}. _A . _1 . ...: _ 1592...: MY , _._...fl}1 a : ..._ "E F. “:3; :___.w. _ :11": m . Z .:L E” # _ w: r T... “1. Tax... _ ....E: » .fr I ... ..w . .. ..b IL first c... e V .. . r. :Y mtg. 91 ._ ._ ._ .4 : .._ H. ”_ .._ _ 02 in Sand” «Winfiuolaa gull! , .-.. 1: #20 .. . .Y ----pZSmeOU Mir—{1.32.3 1 2.1211 I «07¢me .Y ...I 3226a “2.15.. SJ. _..._ ..u __ 2.. .3... .fi 1...: . _ v _ . _ ...EE“ . . u . w . _ _ _ _ 92 Auveo vasomloo mo asuuuunm mm b unauflh Hiwflfiz . zafic :2... :3 .. .. ./M1: 20.252350 _ . a .J A 2 ..E b2w>aom M comm coov. 5.... cca. . . coca . comm coo Y . . Y 1 . Y .Y ._ o ..E......... -_ 1‘ -. -1-.. ....Y .... Y... ... . . .. ... . ._ _ _. . .. ...:Zé: : _ 2323:: .3... ... . __h ___: _Z __ . . .. __ ;_ .. V .1- . 11.... . _. .u m: .w._ . . ._ _ . _. . W “ 4.“ 4.11.4: ; w T? ”Y. . ... ...g: _. ...f 2” . W __Y. .32. m... 1.; ,- . ....T Ch . ..._; __.. .... . ... .... .._. ___... Y . u. . :. .. . _.. ._ . .. .46.;1 m + “TITO? .. ., _ L. _ :. . * Y T. a; . ..h .L. .m. . i“: iv“. _L.“ .- . . ... .._.... _. ... . m. N... ... g . Y H. wit; .1 .. ..1 E Y 7:63: ... 8 - .. H“ .u. . .. d“ n . . H. W .. .3311: 2:”. #1.“. .m W Y Y.. . .. .. _ Y .rhda... ... ..._.1...Y_:__;mc_. 4:... ... Y. L. . _ ... . ._. .... :3 4.. u. . Tim...” LITNMTJ" .... .. ... .. ... . a Y .-- j.fl...Y.....ou..... ..._...__n.1_.... . .. ......JY . - 1441.4 Y”...Y.+.: .. L: “.3 Hf“ .3 .u . . _ . . , . . .. . ..._: .... .._....w...;. .-_...Yw.p-....v. .. . .. w. . Y. ...... Y.........:...:._.. .. . . . . . _ . Y .... ...“. Y. Y............ ..._. w... .... 3.4.. .. ...... E. m”... .5... .3 .. Y . w e . .r ...... ......m............. . .._.. _. ......Y.-...... Y... 5...... ...Y .....s. -J.o~....l.. «IriJ- I J . . . 4 q «q a . q 4 . c m m a an... @2030: an O v 93 .89. Nov OZ :2... 82: g: ...¢.:8. .' ....vlu. .4. 02 WW: ...t.¢_..rx.c; ...-3:83 . it}. - . -....m.mm..us..n.=u.¢i uh(0 FEW zohkzwmo wamm 58 .. .20. $955.22. - - . o . ......fi...:..:. . _ ___. ... _ _ _ ... Y. .._ m . ... ... n. a M ... ..._. .m “ .... .... h... . _ .__ H m on . . _zrm: _. . .m ... . _ . ... ...: _ . . u. .._ Y. _ _ __ . . _ cc . . T : .Y I _. Y. . E r . _ _ m . .._ . _ . o... ..._ . W n .. . W .._ .Y E 3m 2 m. _. I M... CO- ...L .0 $1.4: 94 ha. 3: A .... l |.ll-0|| .ll:.‘ll..'l 2. v8 venom-co mo lauuovnm m: m ouauwh wozucwuwa . . .Y 2.6.20 1:... :8 292523200 +3 52:8 u A. 20. mwm232u><>> 94329.5 .8... Y. Y Y . 8mm. Son 88 89 Y. . . . u .. . . - . .Idl.:1« — _fififlfi; .fi J.“ _Y. . 4J .. . . . . .—4 O Y . .Y Y ..._...a:___§__. ..._... __ _ . : . : _. . _ . ... . u . _ . . . .. . _ _ m : ._ ’ . 17:... __ . . -.._—.8 ..._: ...... Y : .m... . ...... .. .. . .... .Y Y... .... . if... _ ..._: m . _ ‘ Y .11.... . ......1 ...... .. .Y ...... Y_Y1.Y.Y..Y.... . “v.21: ...: m . . _... :m. M ..._}..t... .. . .. Y .... 1...... . .....2... . ...... ... .. .... A . ... _ ......x._;.:.:_ _ 3;. ".._.. . ”HO—0... ..-... 2-43-1-341411--.]..I..-«Y. ..jd 1.1.3:..1TI...::_$.1 1.1..IV141K. +3.8. Y Y _ Y. ___. ..Y _ Y... _. _ _ ._ q . .. -... 7...: ...T. ......T. Yin... . m. ..._. .. U. .... .Y . __ .. T. . . . . ..._. H .._._.I...:.... ._ . Y . . Y... ... Y_.... 2...... . _ ca. - Y .} Y.. -- 11.1.1}. -.. .18.. -....Yn..- Yw. .. . 2 x: ....f cc . Y1. 1.1... .. . Y . Y. .. _ ..._. .._ .._........_Y... . . m... .-. . ...;mM .... _j; .._.... _ _ -.- -- .Y..1up.- . - 1. -.H. ... m... ...; .. _ T1 r; .7“. n u . _... Y . ........H 1 ....Y .... ..umnw .._”. ___“;J .mflmi._.. .. _ . ... ...... .. .. . . n. . “ ..... . .u. .. . .-Trw--1 .... ML. 1f. ..im ..._1... ..JmfilhTM ...W.. .....1. q 1......4 . ...1. «w... ”MT .2: 3.... .71“; fr”. 27.1.6.1: on 3. . on ma I I 95 8 1 _, _, __ __ ___- _ j ‘ _ - - - .. .. .. - -. .-- .. ___]C‘l 10: ~ — - ---- -—-—~ - — -- 31 - ..- .. -—- .-- ”- -- v”.— _—.———..—--—— 30 ALLAIAL p 400 L0 -- .-_. --_--.. ------ CV , .._ . . - --- - ..-- --_-.-- --._—.--_... .._--- --._—4 I I ~ I I I I I I - -..- -- __ - — ..._. ___.--—.—-_ . - l. 5.- . -- ——.. . - — __....--.——._—_ .._—- c—d . - . -.- - - ...- .- . .. -o _ . u. ..... — q I8 210 .. ‘5 . . l _. .._.—-._- L.4..L._L- I I I i. I I I6 -— .. - - .-._. . ... _. 2- - .— --._ -__ .—.—.—_ ..—-——.—.-~.——-—I H‘ .- ... ....-- _. . 1 _ _. ---_—... ___ -— -——.—‘——_- T 7---—-_d .- .-. . .._ .- .. .._—o- —..—-»c- -..————-—-_-i ..-...--—_—‘—-1—_-----—— q-.--~-—.—-—_—-—. t ‘ Y . - «--_; ._....--—- .._- . - . “-.._—-.._- - .r q}.-- -1“ ... -._ ..-. "‘7‘- --. -o- -.. ..‘- -— I...‘ _....v. .. . o- .- - . -1 -_- “.._-—.._..._.-——.—.- I A .‘_——.‘-- -— ‘ -c - A O‘ u u (.1 .._.—V .. N N ‘0' i _ -._..---.—.+——.— - — ..~-*--..—-—.-—~-h— —oo— .— . -.-,. .- _.--,.. -—.—.——_—--~.—q——-o— A --- -—-t.--.- . ...—--.—.-—..~— ¢ . a .4 ---n . 1 1.-. . . —_- L * . . I . -. .------. . I.-- . -..,r I - l ‘ . .- ..-_..———u6-— .... :3— 4 .——- A L .... j . - ——v r A V l T— A L T I O - W ' fl -4. __.’..- .4.— ‘ _— :r* i 1 - d — — —; A; d F d A q c C ad a .'_. ..‘. ...-.-.. ¢ ' A " ‘L .‘--— ...—3--..c-u --o——A ‘ ; ; .v. V 4 u-c-p—‘u r w- ‘11 ‘1 L A .-. _. .2 ---_—«.-._...4 --. r_..__-v -------_...— _- d .— .—~——$—-—-.—f—_ -— ‘ Y -YE 3 v ‘;.L -._.. _. - - ‘ L .._—..._.-4. --_.-... _:——-.— +— g .i V A A ‘ - .' ...1 :‘f ' - j o . --.—.._----_u;_._ - - _ . __ Q ---_--.~——- m—-.—w_. + v i ‘ --~——--—-_-- , Y 1 ..- 1.... . . 4. 1 .4 _-._.. -..—.-_.— .k - i .1 T I J _ .7” -._ .--_.- A ' . ... ..-.- . .-_—.-._-..———.————_.-_—_f—-—__. _——_J...-.—-_{ _J—-— — ... - ou-c- -— - »—- —‘— .1 . .-. .. . -._..-..-..._- ...... ___- -._.—--_.. _ --_—-.-..- _—-—...————-——~—--. ...-.—-4 --_—1 ---_ . o -..—— a - .-._- . . - - - - . . . - - . I -- . . .. ----.. --.... 1.-.. . ._ .. 4 _- ‘ .-. - — o a - a - -- ~-- ...—I— c— o- a»- _ .. .--_- - - .. --- .——--.-.1-_ --.—4 . - .-- - . - __ . -.-- - 4 " - . — —— ~ -- _—-—-—- -- - o;— ——-{ no - g -- o 1 u - . . - - . -..— - .. o n. - .- OPE RAIOR DAIE I" REF No. .--—.... -3291- OQ’OIO '65.." II human Mu "I‘D PARLflQJbZ. TIE—c SCAN SPEED SUT awn-I; 1 0mm. Y. I mull-«luau 1000 WAVENUWER (CM 'I I200 I600 96 a venomloo mo lahuoomm m: m chawwm , . _ M . . _ H m h _ 4 _ H _ - l--i--l:||!..m0zw¢muwc . .. . 2.060 12$ duo 2035200200 p f E 330 5.638 J I @523 § § ...0... En. sou 80m 4.... ..s 11 .f q a .t : : 4 .. .3 _ .W _._LT:__:2553—2323.”;—MTZW: at“: : _ ::_T0 m _ . . . ._ ___. _ _ _ ..._. _ Q0 73? 1 2:? : 01:17;me0 . H . __ . : x: . _m _ _ . _ ..um‘ .. .H .. .._. “— ..._ : _‘ N .0 _h w «3.3113. a“... f A} ¢ml ON r ..._. U. :0: _ _ . .1. _. w W" m ...: T _ .f r _ *~__ _ 1. g. . _._ a.” _ gr: w . .1, x ..J ,_ J.” 5;; .u . _W: .e .. ._ x a M__ :1 x. e .i _ z i“ :1 _ u 1.0. E q . . _ A. .. _ _ ___ u_ _ . C: .- -4}. w ___ ..._ _fi _. : a _:.H. y. . .... .72“ a; w... n E; _, _ _ n_. .. :1. _ __{ ..n _ :84. -y - . . .. _ 2...:131. .8 _ _r . .A _ _. _ :2 __zgzgtreg m _. . __T If T“ ‘1“ ..L I ..w. .._...“ __.— _u_. _ 1 -i ; 1-2- - i 1 i.-. . M... ...: qt _3 .. . ; .32: 1,: _ _. M _m}; £15.; .- . ..q 1...... L _. . .M. - o I o s .- l U . . n C ‘ . . . . o. . , ovoivc. . I'Ilv {D'QILYV'IA ial.0Ivll‘cAu1‘t ‘.o.l-ll..,.ll Y. I‘Ttv'.. .- .... ... n A. . . . ‘ .7 — ._.—¢—< - .-..- .__.-..-- ‘8 i -I: ”1 “I ...-.‘ -.- .. _,- .-- I O 'o — .- -.— ,-? ' ..- -.., . 4 . I V .. . ..— __ ,— 4 —. y... _— +74- T ”.--. x: u .M Pkgfvv- o: , k f . 0,4 -V5.o... ..‘c. .1 4 $2313.: 1 o H—m- - Q. .— n. o a. — _ .. -— .. ...... ...... 03...... . ...... t....C. ...-3...... . .1213... 31.5.8 3.33..- .02 mu: wp<>> 8o 89 8a. 8: . , . 3o. § 1 .. -H__.._-__. .--_... __.—.._.... -_.__._] - ———. -._—.— __.—- _— —.——__—d 97 h—.—.————.- - ...- .—.—‘———~—--o . __--..- ”.-_.-‘ n-- ...—..._.- _ __.-.- ....- —, .- --_.". “4.. . -40.- - -. .... .- -—_- __.--__. --._— —-..-- -.— >0-.. - i g a , .H:_ H. . .HiiH... ... 1:23: ..._ H H HH:___WHH_Z.HH.H. ..._:H.._ ._ _ HHS: H H . __ .H._ __,H.. H» ___” _HH_..__ ._ _ .._. _ _ _ _ . .._".HHHHL: H...__.:H_ :. HHHHT H. C H “H _H:HH;HH 7:72.: : .2 PH“ __ :11: . H , _H K. :. -A...H...:H. _.mt LH. .WH._ _ Hmz._ . : , H H. :......_“._. ... .mp. ...HH . _ ...HH. u. :2 H: H: .HH .HHHPH: . w H? HH H.......Ha H. g :H H: H : M ._ ..H n. .w.“ . . i” .._” “Hf; YMIW“ *H “F...“ .H_ItL..MHv~fi. HT {Tilt Y1 :4. 4 L rut v mmnquw..vffv.4 ... w __..H H L: ”.._.: __. I: :fi. H HLHHH :frff ._ .HHHHHHH; 71:. H W . H: .H:___ H”... . H H. . - 2 H ..H .2? HI I; I; ..H .... H. H __. _Y..“ .H. ‘ -H... a H. . 1:92? Hunt)? ; 2; HH. 0.. v _. :7? :TT: HM .._H . ... . g . . H . __H ...H H: ...,.__h-..uH; . . ”.._. ... 4. .w “.5 ...CJ... .H H . . M. 3:52;”. . . . H: .H . i H . . 2 H . ... . _ H“ . ..L x)! H ..H H H“ . H H" H H. . . H. .,H. H . . .qfid 4 1 i .;H 4.1.1:..L4 w “9142—. k........ .. .- - ON. a. w. 0. cd O c 98 an vasoaloo mo lsuuoonm mH -:.,?::E4mo XESEEQBO .5 +30 .zgxa A. 20. 182292 coon OH ohamwm (°o ) SONVLLWSNVBJ. 99 _ t. .80 . mam 02 pin. a...) it. Etc-ii .02 .u—WK 2.15.... .._. . anvil: ”Ital: _‘z 1.. WF<>> SE. A55 26a 26m 950 25¢ ___... - _ .._-. HHH. _._;. . 4-———+ dw—d—us- J -’«---|- . .-., .. ....o". ILD\' 101 . _ .1iI; 5- hr .02 mum _am. .3. 02 5.2.... .8. .1! cit—cl & ‘2 N 33 40 23 I Cay—(awlo 55:62:33..- dfifltz -.Sm N. . owwam z<0m $5255. .. 20. mwgDZw>S$ 102 ? _ H H H H _ H .4 H nu vasomloo no lshuoomm mu Na unamwh - -Rrfimha Iil .; - 2650. :::iqmo ,GEREfiBBO . parxa wtza 9 20. mwgDZw><>> , coo. 80m 080 Sam 68? (9o ) BONVLLIWSNVHL 103 Sen 1 snv Oz 52.... 1.:- 3! call. .2 Kg Z-I.(.‘r!5o xix—su- i w.—<>> 104 an vasonlco no lsuuoomm mm «H ousuwh ‘I!!|Il muzvtfim 111:1I11-.:::I-1- --- 11|||llz_<.:U_ a! .. - .-1129232828 .. .. q - I -- - 1- SEQ- any- 9.5.§§7m><3 .. .. ._ . ._ o .._ _ . . . _H.. _ a ..w ‘ _m H ._ a H _ .._ . .H 3 H _ .H _ . _ H . “H w H .H . _ H m0 H H H_ . Hm . r: _ _ _ # QL.. : .\ 205.2 ...... oi on n _ _ a n C . C : : z ._ 105 WAVMR (00") h. _— It MARKS ! .13 :1' I?‘ 1:1,- a' 1-- 2!; (2 ééé 002 g; .__. 3: i :3 F ‘1 gas ivggt: “d. 1 $35 3: 5‘ :‘z 3 ' . I O I 106 mu vaaoqloo mo lauuoonm mu ea ousmwm .. : ”H . H. 1H ._ .._ w. H. .;:n MUZ£EE :1-I: .11. i ::! 2:530 . m8. . . 15.1.293szon 8 .-....--_...-.-.1||.. 1111.229 . 1r\/u. u .3.§¢é><3 N 4 107 . ..g—.——. 'F-'_' -'—_...—1.— "‘f"’— WAVENUMBER (CM '1 . ..-—.- -._.-o - ...—— - OPERAIOR- . DAVE REF No. :1 J 1: 1 .. a; 1g 3%: 1:122 3&1“ 2!“ g; a; | 1 ...-.- --_ a»... a.--. *- In \ .. '- IRS kl M. 1 1] 11 108 ommwnm Gummnm Anvto vasomloo mo Inuuommm «an: L L mm 2.98 2 .. g B. E a: . «05 52.3.... 8.: "52$ .888. a... = .5 .38 «I. + 8.86. 8:38 am Q... as B. 8:. .28 Storm m9... uv ma unauflu th 106m f o .8. we. Fog!— 109 Aavem vascmloo mo lauuoomm and: mu ouswwm 09 g .8 30 on» 8a 8a 03 mi r»:—:.rhp:4wp:p::-»P>bp>>:h:rpbppbp»:>p:>.burp>-LPPH:.pith . ”r .._.." Dr __E ._ mm Ms. 7 g v i .. r ..s 4 1 88. g . r06. own i. 8. 03 o: 02 8. 3 on 0.. mx: r>>> n».> . ._ n. nu— R . 1 _ Va A LN a N m — nvu u ..._— k v . mu 1 L no r A vm : 1 1 :98 A # W 882 1 an [0.8. no u g E. 3 an. ‘ g :UITfiv; fig .332 6:. 3 .8 .38 8”“ + 8806. $88 an Ex: mmca 3. 2:! .58 gown mmi. @' ....I\t g i "u‘- I‘F! Illht‘IIIL “L1“ 110 8c .... .8 I. ; A g 4 4 4 8E. . .86... L 8a 8a .2 inn 2 8. 4 8E: - .283... a: 9. Giana .3. 53 2 v8 339.8 .3 c Q: " 92 l a: 9.48.3J6 Iin$=a_§25 ‘ Q3 lauuooam mac: 5“ o.=uwh 23 SK IN wk msn -~ ., .cu T fi 106$ 5 f T is. .8— 2w so 9. 9t R” f !w r .g «a an 8 Y 1065 mm 7 a? I. O 08¢ mounflga‘fioobiz Um==AEfiu=?+ouHE§fi mo._ + convuamu moxmuxuo .fifiatmmfll 111 mean— ovmm— P [__A saw a v A§vvw vascaloo mo lauuomqm new: ma ouzuwm “K! N , H... A! a a a v ....N r sum F f... fi .8.» L ...-2 8~ 8. o: ow. 8. 8 3 9. w). ........p_r». C q u ‘ an— a _ no. 8 fl mm mm 3 f fl no.8 i T an ‘ 00 [0.8— NN. n _mo za_ho:nw¢ m:z\_4 .manzcm no .8 3.8 Nona + 83$: 8x33. um. shun“ .Chca zauhummm mmc: 112 Auvcm vnzonloo mo lauuoomw mmmz m~ unauwm as .8 8o ...» 8... 8.. 8.. a: we pr.»p_r:»-rinw:pppsbp....PPP...»—:._.Ppbrp_::...I-ubpspppfia:.h::...: phbtp..».p:»>b:rr . r 1 re... 4 T U fl 3:. L [9.8 8. .._. Sn .8 as an ..... Bu 8“ as we I . ...VL . u o v 8. 8n n N «a r 5 3 f r g 5 r 1 yo... . r 4 .- 3k. - ~98 8m 8. a! a: on. _ 8 B 9. we L2 as .r. h . . _ r. . v . o . ..._ a. 8 x a . 9 a 1 U V0 . . . L .o . 1 10.8 ‘ 1 U o a M 2mg 1 .36. L m 8 -..8. ... u 2 - g 8. 2 8. {~20 .....E ..u. $5.8 a 3:8 .353 .ans 6:. .... do ...-8 N3 + 8:32 88%; mm fix: ms 8. 8:— .cbs gowmm mmS. 113 A‘vpm vasonloo mo lauuuoqm now: am ouauwm w v. 98 on SN on. as > n 8N 4”“ a now a a a Ca mum 52 mm— a: mo— ?” ?— mm. A Sm. L 3N L 4 L 82.”. 1 on. a“... .. mm. - .w 2-.. 3% ...?mm 6:. 2 do .38 . .28... . SEE: umxmrg mam fix: wmco aw. ohm: “5.3 Empowum mmg ’ ‘ 0...... ppb 4 mm 114 23! 232 Auvbm vaaonloo mo Iahuooam can: an ousuwh ofi. n” 88 98 a!" £3 H‘ in 93 .3a wt RE kw 2n 1 [can i . {.22 8N 2K 2: a: 2: < 2: .8. no ow 0v we mum on .8 g; a: M'— Va . . . . . . N.I.fio AQEQILTQDE=U:OVQ.HE§$ ovug + ooummuw_ moxoux—0 Efihfikwmaz .3. . 23¢ 2.:c “do 1¥.E::_E=B a“ . ... .... . . . .go’f rodn I066— a? uW\: WW“. r: use c IA‘-“ 115 L g n 4 GO m¢ o .ou.nn .o.¢ 9. ago ..qu :. 5). mg no. ‘82 .38 96 vasonloo mo lauuoonm and: u; on. a; mu ousuwu 3 mm to I B. . ”8312.0 .mg on: + 8&«6— 83?: 55.8% $5. av [0.89 116 mu vcaoaaoo he aauuounm and: 8N uhfl kg «'N R¥3N_L .ooouvsn .0—3 a. 4:0 undue vw .wsz mmcu n0. «tutu .cfica 2: A . ~ mm vo 2.:nfllawflggflm8. dIR3$¢éonqtim o—._ + oouwvnwa moxuwxuo satatmmfil mm at: mm ousmfim 92 060 I ro;8. 117 Nd canon-co mo lsuuoomm and: ¢N oysmflm 8. . 8 u). _ a“ g can mm 4 «a. . p. d a 0&— «m— . am 1 d I . um 8 8 8 4 a: 1 J 5.8 J I A a f N. ofu ‘ fl _. - ... «3.22975 5.53 a. do .38 as + 8E5 835. mv .th amen «_o manna .chca tachoumm mmc: 118 at vasomaoo mo lauuooam and: RM 22 .“~ 2" Q .,. fl _ 3N no 1 mm 4 a: an 4 ofu mv A - m mQEN \\ . _n .636d3==ni3_.wtim .vvnnnu .u_¢ so ago ._4¢o on.“ + oo..v.o nmxoo\_o an mfituwa ~3on83.:3£_ tfifififiwmat on ousmflm as. r062 119 .— $1 .. —.~ . can . nun ”K— 4 on ; ofu 88. l . L .6 O ... O. .Nusmh_ .0—8 a. 450 .—430 mv aux: wmcm no. qn—v_ .cpca 8 venom-co mo lsuuoomm and: mm ousuwm . _ * sv— «~— :. 8 3. 2 a a an E B 8 8 2: T no I...” z 9 rod: 8-8. aunatlmauxomm .wamtcm N..— + couNN.o~ mo\_~\_o zauhowmw mma: 120 an venom-co no Ishuoonm and: 6N Gunman on . . B. . ‘ . 8 we i w e e a v N . 3— «.— 5 E u _ on an _ a... fi 4 no i a 0m r 1 I...» g: :. f k: B T E i was - m: ..8. = .. on. $5.3... 85333 .353 .588 6:. a. 8 3.8 $6 + 8.85 8&3. «3 fix: wmcm «No one: .38 gown-m mus. U 121 o&5_ l awn I. .mnuomu 5:. 0. do :3 «N— .w\: wmcm nu. g: .38 8 Egon-co no 573025 and: G— a: mm ouaufim A”. !" we a um ..v om nm on + us : loam regs. m. I 2 mm. a» was . 5 g: ”mg 33 + 8392 83:00 gown—m mm: 122 RN EN Jon—m .0; now «mi wms ova van mom N on do 5.80 v0. 903 ..._—cc 8 vsaomloo no lsuuomqm now: .3— mm— a: ma «Laugh 4. Hi PL .10 p-o‘1F - ¢J?>JP. . J. M. m _. x mm— rod... 1 {0.8. mo .. vm. gang 3% 83 + snow: 8x330 .535; mums. 123 .A§vvm venom-co ho lsuuownm :22 =~ n." G.N 86 _ >Hrrbrhrkkk .r»—Fb>»%»>»h »»>P» » Qt } } jgjj a 5 b b > ’ om whamwh Vm ' 3 "JLH‘ ‘ Lu, 124 n \ 4 {,3 1: 4.. _ Auvvm venom-co mo azuaoomm mzz m” an chaufla m.“ B.“ cLL .n..a a.» |LIPPLbb bk—[rb Pb rb PkLV—Ll 125 3. r). A.vnu announce mo usuuoonm :22 a” an ousufim 126 A‘vqm vaaoa-oo mo naugocam as: a" an ousmflm 0.. o.~ own o.+ , o.m FFF»_~L_F.LL+».»»~L»»»L. _»_+>»»»>_ka—rbpbh_FLbF—F»»»~.»FL > 33...? ‘ t 5 is 7. a; .1.) a éifi .7 4,. ~ M . _ J5? 127 Aavvm venom-co Mo asuuoumm :22 a” em muzmfim ELL m.N m.“ N... ELL B.r m.: CLLa.m m‘m e.u _ a . E_rf>»_f+yrr L» 1 ...—LL n.m 128 Auvpm vaaomloo ho lsuuoomm ms: nu on «human as m n M; an nu nu Mn 9: ur tnnm.m mm thrr_rrr rrr FFF rr r?» rrP» Thrrb»frkgrrr»_rrr »_»Lr? 3 \1 1: . <1 I‘ a J ___..E 3%: 52 g ,3 M m ; ELL ELL ELL h.N O.~ fl... n.m L hi [ r lb! 129 . n _ Avam vaaon-oo mo Isuuooam as: =_ mm unamwm Hm a.” 0.... ELLQ.W QM”. ppprhrb Frrf.rr»nPhhkp-rFrpph|rbrp+FrhhpPPFFFFPFP :njéiwxégj A 4 4. f1 130 mu vasonloo mo lsuaoomm mzz a” 5m ousuflm n.m ”I p J 233?.) 31 r I TIT ft! 1 I4! « n._m v 4‘ 1 fi. 1 4‘ .l. x = 2 __ ... u I! x =5 13] ll) NH vsaomlco mo Bauuommm :2: an an ousufim 132 88 m a. up vasomloo mo lsuuoomm :22 mg mm «Laugh my an mm an Mn a: m: LLLs . . . - L_rpkr_rrPF PPrrerFrhr1r£hrrrb_rrrr erbrrrhl_PrPrr 1 fl :43 ' KJsj_ ,_J. Jfi _\\I\\|\l 133 am venomfioo mo Eauuommm :22 ad Vow chamwm a.- _ m. 9.. m.. s.~ m.~ n.n n.n 8.: m.r cLLu.m m.m '. Fr—rrPPr—rPPr—rblrlpPrrPPFPrpr—rkhr~bpbPrPrPr~FPPP—rPFP_pbrr—P 4 _ Jgjgzgjfi 134 am vasomloo mo lahuoumm :22 z" ~¢ ohauwh a a m. a." m._ a N. m.~ s n m n 8.: m r ELLa L—rrkLPPrrLVrhlrr_rPPh—rrgrrbrrrp—PPPV_rrLI__FrPPHrPFL “moumu 135 F_FrFF_ I— Mg IN “N In PIrPP_-Prr—rrrPP_Pbrr—Pr+rerrFPPPP—rhrPN 337a J: Nu vasomloo mo Iahuomnm :22 ad «a «Laugh (Lt t um um an no up up H. m. n . . _ . . _ . Fr?» rrrrbpr b rffrwrr;.rkpp_.rrrk r??? rrrr_ 4fil _ ILL I.l “.0 I‘m a.“ ... “.0 rrrrrrrrrFrrrr—[PPrr—rPPPr—rrPrpr ‘i 136 an vasomaou mo iauuoomm at: a” me chamwh a I Dr I. I. N n It I. _ p —rprr pup—rpprrrr bP-rrr pp rrr— rrrrrrrrrPflU- P .IP p P Fr? P pl? p p r F? Prrrrrrrrrp FrplrrhlPP PPrFrr i JIIIIIIIJD \Ji, lgfifl mvafl :11 . . =1! ”6." 06".. n ”on." an? ‘ -— _ — . "of.“ "OH? H ' N m N ".3 a!» .u ”In. Hhfih a r _r r .g tog" \ 8 canon-co mo £3.50QO mzz ma ev Mun—mam G.s m... B.~ m.— G.N .m.N. 8.”. W.n 8... Q.m W.n 8.B~ rr_frrr_rprr_rppp_rr»r_rrrr_~»r»_Fr??—rppp~fFLFr»»_ppph_£p .1, 31‘ A1.» cm AV 137 138 mu vasomloo mo lzuaoomm :22 I” .mv whamwh 3.9 m. 3., w.” e.~ w.~ e.n m.n 3.: w;. CLLnfm m m er*»_rrlrr_rrrrb Llrlqrr_ hrrf_FFrf_r»rrL rfrr~r+EE T . _ .733 4 .... 139 “vam venom-co mo anguoomm mzz on“ we can»: Alvin teach-co mo lauuuoam :22 0m” 5% «Lauwh ... I. in or. 9.11: km... awn. 7.. «Mn 60.— 9.5 5... . a Q .- — - _r- p» _ PP L >p _> p »:—'> >--:>_>»>L::— rrt. L r? —r>?L .> h _ pL .. > L p — p ». L p 1; 2 L 3.. 3 J. .11 _ A .._ 140 Vm 141 ALveu announce mo Isuuomnm :22 cm. me uuaufiu ..OO— . as 3:133:43}...ng 142 Auvem canon-co mo nauauoam :22 on. me «unmfim I. Ch I... n..... ”N” In.. It. Own fin” nun nu.” NH“ . o _ . . . 143 Aavbm vasomloo ma Izuuommm :22 and an unauwm 3 main... u u: an an 9. am nu up an an n. .....lq nu nu n... um. on. 0.“ can o h .pb r“ b a w r» .> .. h L L» .t>p»>> .bbbbl {bi > > b» E» b . ' 5 VA} — — L [bx 1.3.... 3L ..2 “3 E: q 144 J a venom-30 mo lauaoomm :22 o: Hm ousuflu mu vasoa-oo mo nauaoomm mzz an. an opaufiu I 8* On On Or am am 8h .0 EN .BHH 9:” nm. Hm. Rt“ 80‘ UM GEN MUM E. _ ---_- . -_- _-:-_c .-L . _E. -_ .-,_ LE; MEL- LE. _ET-aLL L _ . . u . . . 145 00 146 am vaaomloo mo Inuuomam :22 co" mm chamwu a S~ &N a! .......l_..-; .-.-_xizilrz ..... Fli. _ Sm 8w SP SN am 8!. S 147 S Q ~ EFLrfiFiLtFr; 12.?5jj EN En 8.1 7 HQ UGq—OQIOO .HO I—uhHOOQm G22 00 a V0 Uhflmwh Sm Gm NI: Gm fim S. x—rr+>—yrer—LFVPPFPP—r1rFFrrb..—’? P-£P.rrr*1— irkufigrd Tar/J 3321.)! , 7<, .«413?:.! fl.-. Goumu 148 I n: hP?”b’b”_’|.L7Lrb’b”—?”‘h””_’}’}b’}"—P’?FhlI’}_”>’h}-’}—'FD*P”}’—}DII-"u.—"”.I}.? —’ ' j x" unschloo mo lzuuoomm :2: Dad am an ar am am . an .33.... GOIUHI mm «Laugh an In awfi enfi ar— am. an. 4‘ 71:41} ’b'rtl ? b P br»>rhb>>>b>rh — th»>>>b>>>?—b>»» P ’h”” > a}!!! 149 1nrfihuollluua- -. .. 0". v” vczomloo mo 8. BI- OOH 88m 80h 0.0" I.Ifl.. ..: _ _ _ _ _ _ .. p p». PPEPbpp Phhpbpbpp P>>>p->~ pphnbp-pb P~>>rpp>h—PFP>>-p’p—p~P~>>-P> EPhphpp tbpubnnp—ppppr hh—hnabppbbp uppbppppp bib).- 8 0m” DhPF—bpbbbPhFP— asuuooam :22 on. we unamfim a a: N. 8m” 8 nwu . . — P>>nh>erHPPphbhppb—pnpbbbpbP—rhrrr>>>>»> >>rbh>>>rvrrphpup hubbbPPr 3:] fl ... j.- uu n O.” I— n“ 0. Mama " m. u" worn a. ,o-n .. “an" n. "I.” u nun" a» ”Man 0- wn” u ulmu a nun ... u .mu m . unnn n a , mu . 150 nu vasomloo mo Iauaommm :22 On" um chaufiu AEQN afim 151 mu vaaoaloo mo asuuownm :22 Dog mm ousmwm ELL 8 P“ n“ 8? EM BU IF SO an 88— ‘- EN— BU— 8..— an -trigiir» -_-»>L- I-m I-p--i—i-L>LIIT>ibi>L>ILt»-7 »_ iLL>>>—»t> pbt#&p>>bPPb> r—rkbbh’bb >_rt>hP>L>~ILFE$_>»>>L»>?L> cm 000 C) If! I L) 10. 11. 12. REFERENCES a) Ourisson, G.; Crabbe, P.; Bodig, 0., "Tetracyclic Triterpenes”, Holden Day, Inc., San Francisco, 1864. b) de Nayo, P., "The Higher Terpenoids", Interscience Publishers, Inc., New York, 159. c) Geissnan, T. A.; Grout, D. 8., ”Organic Chenistry of Secondary Plant Metabolism", Free-an, Cooper & Company, 1939. Beibron, S. 1.; Jones, R. R. 11.; Robins, P. A. J. 0b.. Soc. 1949, 444. a) Barton, D. H. R. J. Chas. Soc. 151, 1444. b) Seitz, K.; Jeger, 0. _Helv. (Ibis. Acts. 1949, 32, 1626. Ruzicks, L. Merjentia 153, .9, 357. Ruzicka, L. Proc. Chm. Soc. 1959, 341. Blickenstoff, R.; Shosh, A.; Wolf, 6., "Total Synthesis of Steroids", Acadelic Press, New York, 1974. Woodward, R. D.; Patchett, A. A.; Barton, D. B. 8.; Ives, D. A. J.; Kelly, R. B. J. As. Chen. Soc. M7, 7.9, 1131. - van Tanelen, E. 8.; Anderson, R. J. J. Al. Chen. Soc. 1972, .94, 8225. Barton, D. B. 8.; McGhie, J. F.; Pradhan, M. K.; Knight, 8. A. J. Chen. Soc. 1“, 876. Kolaczkowski, L.; Reusch, H. J. Org. Chen. 1“, 50, 4766. ' , Grin, K.; Venkataranani, S.; Reusch, W. J. As. Chen. Soc. 1971, .95, 270. Eder, D.; Sonar, 6.; Wiechert, R. Angew. Chas. Internet. Edit. 1911, .10, 496. Johnson, H. 8.; Banerjee, D. K.; Schneider, W. P.; Gutshe, C. D. J. Al. Chen. Soc. 1”, 72, 1426; Johnson, W. 8.; Chinn, L. J. J. As. Chas. Soc. 151, 73, 4987; Johnson, H. 8.; Banerjee, D. K.; Schneider, W. P.; Gutshe, C. D.; Shelberg, W. 8.; Chinn, L. J. J. As. Chen. Soc. 152, 74, 2832. 152 13. 14. 15. 16. 1'7. 18. 19. 20. 21. 22. 23. 24. 25. 153 Danishefsky, 8.; Cavanaugh, R. J. Al. Chas. Soc. 1”, 90, 520; Danishefsky, 8.; Nagal, A.; Peterson, D. Chen. Cm. 1972, 374. Johnson, N. 8.; Collins, J. C.; Pappo, 8.; Rubin, M. B. J. As. Chen. Soc. 158, so, 2685; Johnson, N. 8.; Collins, J. C.; Pappo, 8.; Rubin, M. D.; Krop, P. J.; Johns, N. F.; Pike, J. 8.; Bart'nann, N. J. Al. Chen. Soc. 1933, 85, 1409. Corrall, C. Rev. Res]. Acad. Madrid157, 51, 103; Lora-Tanayo, N.; Marin, J. Males Fix. Quiz. 1952, 48, 693; Lora-Talayo, N.; Alberola, A.; Corrall, C. AnaIes Fis. Win. 1%7, 53, 63. Martinez, M. 8. Rev. Reel. Acsd. Madrid 1932, 56', 383; Alberola, A.; Lora-Ta-ayo, N.; del Rey, A.; Soto, J. I..; Soto, M. Males F121. Quiz. 1-, 5.9, 1359. Tou, J. 8.; Reusch, N. J. Org. Chen. 1m, 46, 5012. a) Koreeda, N.; Schwartz, A. J. Org. Chen. 1m, 46, 1172. b) Dauben, N.; Brookhart, T. J. AI. Chen. Soc. 1&1, 103, 237. c) Marina, J.; Ahe, a. and. 1931, 103. 2907. d) Takahashi, ’1‘.; Yanada, 8.; Tsuji, J. Ibid. m1, 103, 5259. e) Midland, N.; Kwon, Y. Tetrahedron Lett. 1-, 23, 2077. f) Schnuff, N.; Trost, B. J. Org. Chen. 1‘, 48, 1404. Piatak, D.; Wicha, J. Chen. Rev. 1978, 78, 199. Redpath, J.; Zeelen, F. Chen. Soc. Rev. 1-, 12, 75. Oliveto, E. P. in "Organic Reactions in Steroid Chenistry”, Vol. 2, Fried, J. and Edward, J. A., Bds., Van Nostrand-Reinhold, New York, N.Y., 1972. van Rheenan, V.; Shephard, K. P. J. Org. Chen. 1979, 44, 1582. Wroble, R. 8.; Watt, D. S. J. Org. Chen. 1976, 41, 2939. Danishefsky, 8.; Nagasawa, K.; Hang, N. J. Org. Chen. 1975, 40, 1989. - Nes, N. 8.; Varkey, T. B. J. Org. Chen. 1976, 41, 1652. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 154 Koreeda, M.; Eoizuni, N.; Teichler, B. A. J. Chen. Soc. Chen. Cm. 1976, 1035. Pouzar, V.; Havel, 8. Collections 181, 46, 2758. Koreeda, M.; Koizuni, N. Tetrahedron Lett. 1978, 19, 1641. Schauder, J. 8.; Krief, A. htrshedron Lett. 1932, 23, 4389. Gibson, J. 8.; Reusch, N. Tetrahedron 1973, 39, 55. Diels; Alder, K. Ann. 1-, 460, 98. Martin, J. 0.; Bill, 8. X. Chen. Rev. MI, 61, 537. Berson, J. A.; Ila-let, 2.; Mueller, N. A. J. An. Chen. Soc. 1-, 84, 297. Brown, 8. C.; Brewster, J. 8.; Schechter, N. J. An. Chen. Soc. 154, 76, 467. Martin, J. L.; .Tou, J. 8.; Reusch, N. J. Org. Chen. 1979, 44, 3666. Kolaczkowski, L.; Ph.D. Dissertation, Michigan State University, 1994. Rutherford, K. 6.; Maner, 0. A.; Prokipcak, J. M.; Jobin, R. A. Can. J. Chen. was, 44, 2337. Cohen, N.; Banner, B. L.; Bichel, N. 8.; Dickinson, R. A.; Valenta, E. Syn. Co-. 1978, 8, 427. Tou, J. 8.; Ph.D. Dissertation, Michigan State University, 1”. Bollinshead, D. M.; Howell, S. C.; Ley, S. V.; Mahon, M.; Ratcliffe, N. M.; Northington, P. A. J. Chen. Soc. Perkin: I 1-, 1579. Ton, J. 8.; Reusch, N. J. Org. Chen. 1930, 45, 5012. Sauer, J. Angew. Chen. Internet. Edit. 1S7. 6, 16. Honk, K. N. J. An. Chan. Soc. 1973, 95, 4092; Bouk, K. N. Accounts Chen. Res. 1975, 8, 361; Sustnann, 8. Pure Appl. Chen. 1974, 40, 569. a) Dickenson, R. A.; Kubela, 8.; MacAlpine, G. A.; Stojanac, 8.; Valenta, 8. Can. J. Chas. 1972, 50, 2377. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 155 b) Noodward, R. B.; Sondheimer, F.; Taub, P.; Beusler, 2.; McLamore, N. M. J. An. Chen. Soc. 152, 74, 4223. Corey, E. J.; Danheiser, R.; Chandrasekaran, 8.; Siet, P.; Keck, C.; Gras, J.-I.. J. An. Chen. Soc. 1978, 100, 8032. Noodward, R. B.; Bader, F. 8.; Bickel, 8.; Frey, A. J.; Kierstead, R. N.~ J. An. Chen. Soc. 156, 78, 2023, 2657. Still, N. C.; Tsai, M.-Y. J. Al. Chen. Soc. 1m, 102, 3654. Bohlnann, P.; Mather, N.; Schwarz, H. Chen. Ber. 1977, 110, 2028. Ansell, M. P.; Nash, B. N.; Nilson, D. A. J. Chm. Soc. 153, 3012. Schmidt, C. Can. J. Chen. 1973, 51, 3989. Yates, P.; Baton, P. J. An. Chen. Soc. man. 5, 4436. Rochleder, ?; Heldt, ? Annalen. 1m, 48, 11. 1 Stork, G. Chen. andInd. 155, 915. Barton, D. B. 8.; Quinkert, G. J. Chen. Soc. 150, 1. Quinkert, C.; Bngert, N.; Ceckh, F.; Stegk, A.; Baupt, 8.; Leibfritz, D.; Rehm, D. Chen. Ber. 1979, 112, 310. Shau, J.; Ph.D. Dissertation, Michigan State University, 1979. Das, J.; Xubela, 8.; MacAlpine, G. A.; Stojaniac, 2.; Zalenta, 2. Can. J. Chen. 1979, 57, 3308. Johnson, N. 8. J. An. Chen. Soc. 153, 75, 1498. Pike, N. T.; Summers, C.; Klyne, N. J. Chen. Soc. 1”, 7199. Speziale, J. A.; Stephens, J. A.; Thompson, 0. E. J. An. Chm. Soc. 154, 76, 5011. a) Masemune, 8.; Bossy, P. A.; Bates, G. S. J. An. Chen. Soc. 1978, 5, 6152. b) Hutchins, R. 0.; Maryanoff, B. 8.; Milewski, C. A. J. Chen. Soc. Chen. Cm. 1971, 10979. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 156 c) Fujimoto, Y.; Tatsuno, T. Tetrahedron Lett. 1976, 3325. Corey, B. J.; Gras, J.; Ulrich, P. Tetrahedron Lett. 1976, 809. a) Reich, 8. J.; Cohen, M. L.; Clark, P. D. J. An. Chen. Soc. 1973, 5, 5813. ' b) Korenziowski, S. R.; Vanderbilt, D. P.; Hendry, L. B. Org. Prep. Proc. Int. 1976, 8, 81. a) Conia, J. M. Rec. Chen. Frog. 153, 24, 23. b) Ringold, H. J.; Malhatra, S. K. J. An. Chen. Soc. 152, 84, 3402. Adams, N. J.; Patel, D.; Petrow, V.; Stuart-Nebb, A.; Sturgeon, B. J. Chen. Soc. 156, 4490. Munslow, N.; Ph.D. Dissertation, Michigan State University, 151. Field, R.; Cowe, D. L., "The Organic Chemistry of Titanium”, Butterworth, Inc., Nashington, D.C., I”. Mancuso, A.; Huang, 8. L.; Swern, D. J. Org. Chen. 1978, 43, 2480. a) Krubiner, A. M.; Olveto, E. P. J. Org. Chen. 1966, 31, 24. b) Krubiner, A. M.; Gottfried, N.; Olveto, E. P. J. Org. Chen. 158, 33, 1715 . ~ a) Comprehensive Organic Chemistry, Vol. 1, p. 866; Vol. 3, p. 984. b) Boireau, G.; Abenhain, D.; Nany, J. L.; Henry- Basch, R. Zhur. Org. Min. 1976, 12, 1841. Nakefield, B. J., "Chemistry of Organolithium Compounds", Pergamon Press, Oxford, 1974, ISBN 008- 017640-2. a) Parker, R. 8.; Isaacs, N. 8., "Mechanism of Bpoxide Reactions”; Chen. Rev. 159, 53, 737. b) Gaylor, N. G.; Becker, 8. I. Chem. Rev. 1941, 49, 413. a) Burfurd, C.; Cooke, R.; Roy, G.; Magnus, P. Tetrahedron 153, 39, 867. b) Maurer, B.; Rauser, A.; Thommen, A.; Schulte-Blte, K. 8.; 0hloff, G. Her. Chin. Acts 1900, 63, 293; Rosenberger, M.; Jackson, N.; Saucy, G. Re1v. Chin. Acts 1”, 63, 1665. 74. 75. 157 c) Trost, B. M.; Keeley, D. 8.; Arndt, B. C.; Rigby, J. R.; Bogdanowicz, M. J. J. An. Chen. Soc. 1977, 5, 3080. d) van Bnde, D.; Krief, A. Tetrahedron Lett. 1976, 457. e) Johnson, C. R.; Schroeck, C. N.; Shanklin, J. R. J. An. Chen. Soc. 1973, 5, 7424. f) Corey, B. J.; Chaykovsky, M. J. An. Chen. Soc. 154, 5, 1899. g) Shanklin, J. R.; Johnson, J. R.; Johnson, C. R.; Ollinger, J.; Coates, R. M. J. An. Chen. Soc. 1973, 5, 3429. Tanis, S. P.; McMills, M. C.; Herrinton, P. M. J. Org. Chas. 1m, 50, 0000. Knight, 8. A. Tetrahedron Lett. 1973, 83. ”MIMI"!1111111311[111111111111111111115