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ABSTRACT
ANALYSIS AND STABILITY OF LARGE-SPAN FLEXIBLE CONDUITS
by

'Benjamin Nduchekwe Okeagu

The objectives of the present study are twofold:

1) To examine the characteristics of the coefficients of soil
reaction for flexible conduits, and develop simple formulas for their
evaluation.

2) To use such formulas in the prebuckling and buckling analyses
of the conduits. Both circular and elliptical conduits are examined
in order to investigate the effect of the shape of the conduit on its
stability.

The need for this study arises from the fact that existing studies
employ physical idealizations that ignore certain salient parameters
of the soil-structure interaction problem.

The findings suggest the following:

a) The coefficients of soil reaction vary considerably around
the conduit, depending on the span of the conduit, the depth of embedd-
ment, and the direction of action.

b) A good portion of the buckling strength of the conduit is
derived from its interaction with the surrounding fill.

c) The shape of the conduit has considerable influence on its
stability.

Theoretical results from the present study show reasonable agree-

ment with ones from relevant buckling tests.
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NOTATIONS

Semi-major axis

Parameters governing the virtual displacement components in

the radial and tangential directions, respectively
Semi-minor axis

Load-dependent stability matrix

Boussinesque coefficient

Cohesion

Pressure transfer coefficient

Span of conduit

The smaller of the span of conduit or width of load
distribution

Axial rigidity in 6-direction

Modulus of elasticity of conduit material
Initial tangent modulus

Tangent modulus

Modulus of soil reaction

Poisson's ratio number

Buckling stress

Depth of cover

Depth to the crown

Coefficient of horizontal soil reaction
Coefficient of normal soil reaction

Coefficient of tangential soil reaction

ix



K = Modulus parameter

Kl = Modulus parameter
Kee = Change of curvature of the centerline in the 6-direction
Me = Bending moment per unit length in the 6-direction
Ne = Axial force per unit length acting in the 6-direction
Pa = Atmospheric pressure
R = Radius of curvature
r = Radius of gyration
Ub = Bending strain energy
Uk = Strain energy of elastic supports
v = Total potential energy
v = Tangential component of deflections
w = Normal component of deflections
X = Load-independent stability matrix
Hc
¢ - D
B = Reduction factor to account for the depth of cover
* ks
B =
n
eé = Axial strains at the centerline in the 6-direction
ks
A = —
ni

us, Vs = Poisson's ratio of soil
Q = Potential energy of external load

T, Nn = Virtual displacement components during buckling in the normal
and tangential directions, respectively

(o] = Axial stresses in the 6-direction



CHAPTER 1

INTRODUCTION

Underground conduits are built using corrugated steel sheets and
constructed to induce beneficial interaction between the conduit walls
and the surrounding soil. The soil acts as an integral part of the
structural system and the structure is referred to as a composite soil-
steel structure. The benefits of such interaction have long been
recognized by many researchers. As shown by Szechy (1), ascribing even
a minimum amount of lateral support to the soil medium reduces the
moments and stresses in the structure by a significant amount (Figure
l-1). This reduction is enhanced (or in certain cases hindered) at an
appropriate depth of filling by the arching effects of the soil (refer-
ence 1)).}

Fo;-; long time, underground conduits were limited to spans of
less than 25 feet. Only in the last 15 years have soil-steel structures
been built up through 54 feet spans and come to be regarded as economi-
cal alternatives to conventional short span bridges. Construction of
conventional bridges is labor intensive and much of this labor is highly
skilled. Major capital plant equipments, such as cranes and the like,
are required and the conventional bridge components are usually made of
high grade material. In contrast, the major component in soil-steel
structures is soil which is widely available and one of the cheapest
building materials. Further, the high performance of earth moving
equipments make the construction of soil-steel structures highly pro-
ductive and econamical (2).

Low costs and high productivity are the main incentives for using

soil-steel bridge structures. A report by the United States Federal
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Highway Administration estimates that using these low cost bridges
results in savings of 30% over other conventional short span bridges.
Similar savings are reported in Canada (3), while the Australian exper-
ience found the cost of soil-steel bridges to be typically one-third
that of the conventional bridges (4). Value analysis by a product
designer (2) concludes that most conventional overpass structures do
not represent optimum design. Alternative design using flexible metal
arches and culverts was favored when considering all governing
parameters.

The design of flexible conduits is usually governed by the circum-
ferential thrust in the conduit walls (5). If the depth of cover is
equal to or more than a minimum specified depth of one-sixth of the span,
moments in the wall are not required to be calculated. The justifica-
tion for the neglect of moment lies in the manner in which the inter-
face pressure between steel conduit wall and the surrounding soil mass
changes with the movement of the wall. Even if bending moment occurs
locally to cause partial yielding, the resulting movement of the wall
would cause an increase in the interface pressure provided by the adja-
cent soil mass, and this increase in pressure tends to inhibit any
further movement.

In general, flexible conduits are designed to guard against the
following primary modes of failure:

1) Wwall crushing which occurs when the compressive stresses due
only to the circumferential thrust exceed the axial strength
of the wall.

2) Separation of seams when the thrust exceeds the seam strength.

3) Excessive deformation due to plastic yielding under combined

campressive and bending stresses.
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4) Bearing failure of soil (typically for small and shallow con-

duits subjected to heavy live loads).

5) Soil failure above the conduit (stability of soil cover).

6) Buckling in the conduit walls both in the elastic and the

elastic-plastic levels of stresses.

Simplified procedures are developed for the analysis and design
of soil=-steel structures. These procedures proved to be adequate for
the design of short and medium span conduits (up to span of 25 ft) and
with covers of not less than 1/6 the span (6,7,8). Herein, the first
four modes of failure are the dominant consideration for design.
However, with the new trend in building conduits with larger spans and
shallower covers, the latter two modes of failure tend to control the
design.

The behavior and design of long-span metal conduits under shallow
cover have been examined by Duncan (9) who recommended that moments in
conduits should be calculated when the height to span ratio, H/S, is
less than one-fourth. Duncan did not include buckling as part of the
design criteria but stated that "additional research is needed to define
precisely the range of conditions for which buckling failure may occur.”

The stability of soil-steel structures has been examined by many
investigators. Leonards and Stetkar (10) presented a summary of the
information and formulas available. Almost all stability studies deal
with uniformly applied boundary pressure on circular cross-sectionms.
The only stability study that is general in nature and accomodates
sections other than circular was presented by Kloppel and Glock (1l1).
However, this study neglects the bending deformations in the determi-
nation of the critical load or pressure. Also, Kloppel and Glock

considered the conduit to be supported by continuous elastic springs



(similar to Winkler approach) with the assumption that the coefficient
of soil reaction is constant with no variation with the depth or direc-
tion of action.

Recently, Hafez (12) examined the problem of soil failure above
the conduit (failure mode number 5) and the author feels that attention
should be paid to proper evaluation of the buckling criteria (failure
mode number 6).

The thrust of the present research is to develop a methodology
wihich can deal with everyday analysis and stability problems of soil-
s teel structures under shallow or deep covers. Furthermore, the pro-
Prorsed methodology is applied to study the stability problems of soil-
s teel structures. The problem is approached by employing a mathematical
i dealization of the soil response. This approach is similar to the
amnalytical method proposed by Desai and Christian (13) for the design
of footings, and the Spring method applied by Kloppel and Glock (1970)
fox the analysis and stability problems in soil-steel structures.
However, unlike Kloppel's approach, it is recognized here that a large
number of parameters influence the performance of soil-steel structures.

Therefore,

1) A study is conducted in Chapter 3 to examine the parameters
gOwverning the coefficient of soil reaction, kn' normal to the surface
OFf +the conduit wall as well as the coefficient, ks' tangential to the
Wall surface, and to develop a simple formula for their evaluation.

2) The energy principles of mechanics and the associated varia-
tional methods are used in Chapter 4 in the pre-buckling and buckling
a':na:l-yses of the conduit. The geometric non-linearity of the structure
is i ncorporated in the formulation by using non-linear strain-

disIZ'lacem: relations. Equilibrium is then based on the deformed
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geometry of the structure and thus general instability is detected.
3) Both circular and elliptical cross—-sections are examined in

oxder to study the effect of the conduit shape on its stability.



CHAPTER 2

REVIEW OF LITERATURE

In order to provide some appreciation of the complexity of the inter-
action problem, and a motivation for the technique adopted in the present

study, a review of current literature is presented in this chapter.

=2-1 CONDUIT WALLS

The conduit walls are usually made of cold formed corrugated steel
¥>lates. A typical corrugation profile is shown in Figure (2-1). The

¥>lates are usually shipped unassembled and bolted together at the site.

2-2 SOIL MATERIAL

The structural integrity of soil-steel structures is dependent as
much on the selection of adequate steel walls as it is on the soil
materials used for bedding and backfill (Figure 2-2). The bedding
usually has a minimum thickness of 12 inches (30 cm) and is preshaped
in the transverse direction to accomodate the conduit invert curvature.
The backfill is placed and compacted in layers of not more than 12
irnches (30 cm). At no time does the difference in levels of backfill

On the two sides of the conduit exceed twice the thickness of a com-
Pacted layer.

Granular materials are generally recommended for bedding and
backfill. Such materials do not exhibit much change in their physical
AnaA engineering properties once they are constructed. Environmental
changes such as moisture do not affect these properties to the same
QAegree as they affect those of cohesive soils.

After placement of the bedding and backfill envelope, secondary

Material can be used to achieve the desired grade above the conduit.
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However, the behavior of such material should be taken into account
especially with regard to the possible effects of arching above the

conduit.

2—3 CONSTITUTIVE LAWS FOR SOIL MEDIA

A major difficulty in the analysis of soil=-structure interaction is
an accurate description of the relations between stresses and strains
A n the soil media. In order to represent the interaction problem realis-
tically, some form of non-linear relation must be used. Numerous con-

s titutive relations have been proposed over the years and are well
Qocumented. Typical among these are the Hardin model (14) and the hyper-
Iyolic model. The later is proposed by Duncan and Chang (15) who related

the tangent modulus E_ to the principal stresses O . and 03 by the

t
equation

- 3 - 2
Rf(l sing) (01 03)

(2.1)

By =By 1 -=3Ccost + 2 0, sind

where Ei is the tangent modulus, Rf the failure ratio (that is the ratio
between the measured compressive strength (01-0 3) £ and the asymptotic
WValue of the stress difference for the hyperbolic stress-strain curve
(Figure 2-3a), C the cohesion, and ¢ the angle of intermal friction.
As suggested by Janbu (16), the initial tangent modulus Ei is related

tO the confining pressure by

3
E, = kPa (=) (2.2)

Whexe Pa is the atmospheric pressure, and k, n, constants to be determined

SXperimentally.
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Substituting this into equation (2.1) gives the final expression for the

constitutive relation

n

0,4 R_(0,~0,) (1~sin¢)
E, = kB, () |1 - s _ (2.3)
a Pa 2C cos¢ + 2 o, sin¢

In a similar manner, the expression for the tangent values of Poisson's

xatio V_, and the shear modulus Gt at any stress level may be written as

t
n
Oy
G-F log (-P;a-)
vV =
t 2
o d(o,-0,) (2.4)
g n Rf(°1-oa)(1'5in¢)
xp_ (= [1- —]
a Pa 2C cos¢ + 2 o, sind
and
2
R (0,-0,) (1-sin¢) |
G, = G:i. 1=3 0, sin¢ + 2C cos¢ (2.5)

where G, F, and d are parameters to be determined experimentally, and

G i is the initial value of the shear modulus.

2—4 FORCE ANALYSIS

In this section, some of the existing techniques for calculating
the force effects in the conduit walls of soil-steel structures are

Ai s cussed.

2—4 _1 Marston-Spangler Theory

The theory of loads on buried conduits developed by Marston (17)
ANA jater modified by Spangler (18) represents one of the earliest

f°hnal investigations conducted on this subject. Marston based his



theory on an assumed column of soil transferring load directly on the

conduit and derived the following expression

W=y B? (2.6)

where

(9]
(]

a calculation coefficient
B = span of the conduit
Y = unit weight of soil

W = load on the conduit.

Spangler later extended Marston's theory to flexible conduits. Whereas
Marston considered only a single concentrated load, Spangler assumed
<*he pressure distribution shown in Figure (2-4). Soil pressures at the
top and bottom of the conduit are assumed uniform while a parabolic

1 ateral pressure is assumed at the sides with a maximum at the spring-
line. The vertical pressures are assumed to extend over the span of
the conduit while the lateral pressures subtend an angle of 100° at the
center of the conduit. The uniform pressure is taken as the sum of the
over-burden pressure and any distributed live load, PL' atAthe top of

the conduit

P, = Yh + P (2.7)

where Pc = the uniform vertical pressure, h = the depth of cover above

the crown of the conduit, P_ = the equivalent live load pressure includ-

L
ing impact.

For a conduit uniformly supported by a well compacted soil, the
Maze imum horizontal pressures at the sides are taken to be 1.35 the

Vertjcal pressure on the top of the structure. Based on the assumed
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prxessure distribution, the thrust in the wall of the conduit is found
to be 0.7 PCR at the top and bottom of the wall and PcR at the sides,
with a maximum of about 1.1 PCR at the haunches. Similarly the moment
in the wall is taken as 0.02 Pch at the top, sides and bottom, and
—0.02 PcR2 at the haunches.

Based on the model shown in Figure (2-4), Spangler derived what
has now come to be known as the IOWA FORMULA for calculating the crown
deflection
DIKIWra

EI+0.061 E'r° (2.8)

AX =

where

D; = Deflection lag factor of compensate for the volume change of
the soil with time.

K; = Bedding constant which varies with the angle of bedding.
W = Load on the conduit per unit length.

r = Radius of the conduit.

EI = Conduit wall stiffness per inch.

E' = Modulus of soil reaction.

The Iowa formula had been used extensively in culvert design with
& Sg% decrease in the vertical diameter of the culvert generally con-
S i Aered the safe limiting value for the control of deflection. The
CoOnduit was considered to be in a state of incipient failure if the
Aecyxyease in the vertical diameter reached 20%, prompting the use of a
factor of safety of 4.0 against instability.

In view of its empirical nature, Spangler's theory applies with
l:Ln'l:i.‘t:ed success only to small-span conduits under deep fillings. With

Tecent trends toward larger spans, the theory is grossly inadequate for
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the following reasons:

1) The 5% limit for control of deflection is too generous since
for large spans =-- culverts spanning as much as 54 feet -- a 5%
Aecrease in the vertical diameter can be quite excessive.

2) Watkins (1960) has found that under certain conditions, the
conduit wall can fail by ring buckling long before the 20% limit on the
~rertical crown deflection is attained.

3) For culverts under shallow cover, subjected to live loads,
+the assumption of a pressure distribution extending over the full span
o f the conduit can be over-conservative (Bakt, 1980).

4) The assumed pressure distribution is arbitrary and so is the

pP>arameter defined as the modulus of soil reaction.

2-4.2 Ring Compression Theory

White and Layer (1960) assume a uniform pressure around a circular

conduit buried to a depth of at least one-eight its span in a well-

compacted fill. The uniform pressure, P, consists of the overburden

Prxessure, Yh, and a uniform live and impact load pressure, PL'

That is,

P =vh + PL (2.9)

Whexe y is the unit weight of soil, h the depth of cover, and P the

©quivalent live and impact load pressure. The circumferential thrust,

T, 4is expressed as

T = PD/2 (2.10)

Whexe p is the span of the conduit.

The ring compression theory is also extended to non-circular conduits
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and thus implies that the soil pressure is greatest at the point of mini-

rmam radius as illustrated in Figure (2-5).

2—4.3 Method of Watkins

Watkins (19) gives the following expression for the thrust, TL’ in

the conduit wall due to live loads

TL = 0.5 Cp o, (I+1) Dh (2.11)

“where
Cp = a pressure transfer coefficient

GL = the equivalent uniformly distributed pressure at the level
of the crown

I = the impact factor.

The pressure transfer coefficient, cp, accounts for the arching
action of dead loads. UL is computed from Boussinesq's theory of

Fforce effects on an elastic half space, and is expressed as

(2.12)

wherxe P is the concentrated load applied at the level of the embank-
ment, Hc the depth of cover to the crown, and Cb the Boussinesque
Coefficient.

In using Boussinesq's theory, it is assumed that it applies even
to large cavities in the elastic half space. This assumption is found
To ke invalid and the load dispersion differs in the longitudinal and
tx Aansverse directions of the conduit (20). The use of cp presumes that
the phenomenon of arching applies to live and dead loads in like manner.

There is no evidence to support these assumptions.
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2—-4.4 Kaiser Aluminum Method

This method is based on finite element analysis and provides
expressions for the thrusts and bending moments due to live loads.

Hence,

T = kPLL (2.13)

where

T_ = thrust due to live load

L
H
k =1.0 for — < 0.25
P b =
h
H H
=1.23 = — for 0.25 < — < 0.75 (2.14, a-c)
Dh —Dh -

= 0.5 for 4~ > 0.75
Dh—

D, = Span of the conduit

=3

LL = the equivalent line load corresponding to applied concentrated
forces.

The bending moments in the metal arch, due to live load is given as

ML = RLKmDhLL (2.15)

ML = bending moments due to live loads

k_= 0.018 - 0.004 I..oc_.}lo Nf for Nf < 5000

0.0032 for N, > 5000
0.265 - 0.053 Log,, N,

RL = 575 < 1.0 (2.15, a,b)

(g')
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E_ (D )?
Ng = SE+ (2.16, c)

EI = fluxural rigidity per unit length of conduit

E = secant modulus of the fill material.

The equivalent line loads in egquations (2.13) and (2.15) are obtained
fxrom Boussinesq's theory in much the same way as Watkin's method.

The Kaiser Aluminum method leads to conclusions that do not agree
with test data. For example, it predicts that for depths of cover
between 0.3 and 0.5 meters (1.0 and 17.0 feet), live load effects
remain constant. In contrast, tests by Bakt (20) show that live load

ef fects decrease quite rapidly with the depth of cover.

2—4_.5 Frame on Elastic Supports

This procedure employs the Winkler model, replacing a unit length
©Ff the culvert wall by a two-dimensional frame and the supporting soil
by discreet elastic springs (Figure 2-6). Two interacting zones of
©axth pressure are identified -- a zone of active and a zone of passive

€axrxth pressure. The active pressure is due to the movement of the soil
ToOwrard the conduit and consists of a radial and a tangential component.
The tangential component is the result of frictional forces developed
bet‘?een the soil and the conduit as the conduit deflects downwards.
Te is considered negligible in the upper portion of the culvert
< Kloppel and Glock (1970). The radial active pressure is taken in the

:m Of a Cosine functiOll
P =P cos (‘—b‘) (2-1])
S 2¢

where Ps is the vertical compression at the crown and ¢° the spreading
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angle (Figure 2-6).

The spreading angle ¢° depends on the ratio, A, of the horizontal active

pressure to the vertical compression in the soil, and is expressed as:

T2
A = cos (m) (2.18)

where:

A = 0.5 for depths of cover exceeding the span

0.0 for depths of cover less than the span.

The high value of A for deep filling accounts for the reduction of the
wvertical compression of the soil by arching. For shallow culverts,

A is taken to be zero to reflect the fact that the vertical compression
at the level of the c;rown, PS (due mainly to live loads), is much
larger than the horizontal active pressure. The vertical compression

at +the level of the crown, PS, is given as

+ P for P_ < YH (deep cover)
YH o o

)
"

(2.19, a=b)

1.1 (yH + Po) for Po > YH (shallow cover)

herxre P, is the live load pressure, H the depth of cover, and Y the

A& € weight of the soil.

L= 1.0% increase in the case of shallow fillings accounts for concentra-

<t
iQh of live loads on top of the crown.

In the zone of passive pressure, the walls of the culvert move

o
uhﬁ'ards against the supporting fill. The passive pressure is assumed
) =X
< | ct in the form of spring supports, each having a tangential reaction,

T
s a@nd a normal reaction, F. For a typical location, n, on the culvert
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wall, these components are given as:
(2.20)

where Pn is the active part of applied loading, Sn the spring constant,

and Wn the radial displacement. Similarly,
(2.21)

where U is the coefficient of friction.

2—4.6 The Finite Element Method
The geometric and material non-linearities encountered in soil-

steel structures render a complete analytical solution intractable

The finite element method (21) is clearly the only technique that is able

to simulate most of the aspects of the interaction problem with a mini-
It is capable of modelling the

mum of over-simplifying assumptions.
PXesence or lack of friction between the soil and the conduit walls
As well as the non-linear behavior of the soil and conduit walls.

First a finite element mesh is drawn to simulate the soil mass and
A two-dimensional analysis is then performed to

The culvert wall.
< <ampute the nodal stresses, displacements and other quantities of

Clearly the complexity, accuracy and therefore degree of

x> terest.
l‘5~9¢:>r of the finite element method depend on the type of elements and

the refinement of the discretization.

2\4-7 Theory of Elasticity
A circular soil-steel structure has been analyzed as an elastic

<1 indrical shell embedded in an isotropic elastic medium of infinite
The problem is considerably simplified by introducing

S2ctent (22).
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some physical idealizations. The complete solution process, as might
be expected, is very rigorous in detail and the final expressions are
equally involved.

Burns' solution (22) has received a lot of attention in spite of
being quite restrictive. The culvert is considered to be embedded to
a depth of at least 1% times its diameter in a weightless, homogenous,
isotropic and linearly elastic medium of infinite extent. Stresses
and deformations are determined for two limiting cases: (i) full slip
(that is zero shear stress between the soil and the conduit wall), and
(ii) no slip.

Assumptions such as the ones mentioned above over-simplify the
Problem, severly limiting the range of applications of elasticity

solutions.

2—4 .8 Practical Code Provisions on Force Analysis

The Ontario Highway Bridge Design Code gives live load thrusts,

TL' as
T, = 0.5 GLDHmf(I+l) (2.22)
where
OL = the equivalent uniformly distributed load at the level of the
crown.
m_ = modification factor for multi-lane loading.

I = dynamic load factor.
D,. = the smaller of the span of the conduit or width of load
distribution.

le equivalent distributed load UL is calculated on the basis of a 2:1

QisI>ers:i.on (Figure 2-7a) =-- that is, the lines of dispersion slope down
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to the crown at the ratio of 2 vertically to 1 horizontally. The
modification factor me is taken as 1 for a single vehicle, and 0.95

fox two vehicles. The impact factor, I, for a single lane is given as

0.4 for H 0

H
]

2.0 for H > 2 meters (80 inches).

Forxr depths of filling, H, between 0.16 D and 2 meters, a linear inter-
polation is permitted.

The OHBDC method avoids the assumption of a load dispersion extend-
ing over the full span of the conduit which may be conservative for
shallow conduits.

The method of the American Iron and Steel Institute (AISI) is
similar to Watkin's method except that the arching effects (of both
liwve and dead loads) are completely ignored. The thrust, T_, due to

L
1 iwve loads is given simply as

TL = 0.5 O‘L (I+l)Dh (2.23)

Wi th identical notations as in equation (2.11).

The American Association of State Highway and Transportation
O £33 cials' method (AASHTO) is virtually identical to AISI method. The
S&ame expression is used for the thrusts due to live loads, with identi-

(=
=™ potations. That is,

'rL = 0.5 cL (I+1)Dh (2.24)

re only difference is that for a depth of cover, H, exceeding 0.6l

1:“e‘ters (about 2 feet), the live load is assumed dispersed in such a way

as to be uniformly distributed over a square of sides 1.75 H. 1In the
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case of multiple concentrated loads with over-lapping square areas,
the effective area is defined by the outside limits of the over-lapping

sqguares. The total width of dispersion in this case is confined to

the span of the conduit (Figure 2-7b).

2—5 STRENGTH ANALYSIS

The existing techniques for calculating the distribution of force

ef fects on soil-steel structures were the subjects of the preceeding

sections on force analysis. The present section examines the ability

of the structures to sustain the force effects.
Rather detailed study of the literature on this subject is given

in the report by Leonards and Stetkar (1977). With the exception of
Kloppel and Glock (1970), all theories deal with uniform radial boundary

PXrXressures.

2—5_.1 Practical Code Provisions on Strength Analysis

For strength analysis, the OHBDC considers the conduit wall to be
AQi~wrided into two zones -- an upper zone in which the radial displace-
mMmernits are directed toward the inside of the conduit, and a lower zone
Wi th radial displacements outward towards the soil.

, of the wall in both zones is

The elastic buckling stress, fb

_ _3EB
fb = (_lZW (2.25)

w
ha‘te r = the radius of gyration, R the radius of curvature of the wall,
<A g a reduction factor to account for the depth of cover. For depths

Q 3
= <over exceeding twice the radius of curvature at the crown, B is

tm{en as 1.0, and for other cases as:
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H 0.5
B = (EE) (2.26)

The factor K is a function of the relative stiffness of the conduit wall

with respect to the adjacent soil, and is expressed as

0.25
K =1 (£ < 0.5

(2.27)
ER

where EI is the flexural rigidity of the conduit wall. The demarcation

between the two buckling zones (that is the upper and lower zones) is

accounted for through the factor A. For buckling in the lower zone,

A is taken as 1.22, and for the upper zone as

gr  0-25
A=1.22[1.0 + 2(—=) ] (2.28)
E R
whexe
E=©E'[1 - ) ] (2.29)

H = depth of cover above the crown of the conduit

E' = modulus of soil reaction.

Both the AASHTO specifications (American Association of State
Highway and Transportation Officials, 1973) and the AISI (American
Ib@n and Steel Institute, 1971) use equation (2.25) to calculate the

e:La-stic buckling stress in the wall of the conduit. The latter assumes

= Xralue of K of 0.27 for corrugated steel pipes with backfill compacted

to 85% standard density.
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2—6 COEFFICIENT OF SOIL REACTION

The concept of coefficient of soil reaction, K, was first intro-
dAuced by Winkler (1867) and has since been applied by a number of
inwvestigators. It had previously been erroneously thought that this
coefficient was an exclusive soil parameter which could be expressed
purely in terms of the elastic constants of the soil medium. This
misconception was first pointed out by Terzaghi (23). Attempts to
incorporate other salieht properties of the soil-structure system have
s ince been made by Mayerhof and Baike (24), Kloppel and Block (1970),
and Luscher (25).

For culverts embedded in sand backfill, Meyerhoff and Baike gave

the following expression for the coefficient of soil reaction

(2.30)

whexre Es is the modulus of soil, R the condﬁit radius, and K the coeffi-

<ient of soil reaction.

Thh e authors offer no rationale for their expression other than that "the
XT&=s j stance of fills in the horizontal direction will usually govern in
e case of sands and gravels."

Kloppel and Glock derived their expression by considering a plane
state of strain of an elastic plate with a circular opening (repre-
Be:"1"::1.119 the conduit). The plate (representing the soil medium medium)
is <onsidered to have a constant modulus of elasticity Es’ and the

ope:l'x:i.ng a radius R. The opening is subjected to a radial compressive

Ebrce P° and the authors show through plate theory that K is given by:
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E
]

k= ETII;;T (2.31)

where vs is the Poisson's ratio of soil.

Herein it should be noted that the plane strain analysis of isotropic
media resulted in the existence of tensile stresses of equal magnitude
and perpendicular to the radial stresses.

The expression for the coefficient of soil reaction due to Luscher

is:

R, 2
1
e [1- @) ]

- [e)
k= R, 2 (2.32)

1
(l+vs) {1+ (a) (1 - 2vs)} R

E_ = the soil modulus

V_ = the poisson's ratio of soil

R, = inside radius of elastic ring of soil support
R_ = outside radius of elastic ring of soil support

R = conduit radius.

The expression was based on empirical results derived from small scale
model tests and includes the effects of the dgpth of filling.

For a fairly deep cover, the ratio (;i) in equation (2.32) is
nearly zero, and if the poissoﬁ's ratio,fv:, of the soil medium is
taken as 0.5, both expressions (Luscher, Kloppel and Block) simplify to
that given in equation (2.30). In all the above expressions, the coeffi-

cient of soil reaction is assumed to be constant all around a given
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conduit, and the surrounding soil medium is represented by an isotropic,

homogenous, linear continuum.



CHAPTER 3

DETERMINATION OF THE COEFFICIENT OF SOIL REACTION

INTRODUCTION

Many investigators have attempted to examine the behavior of soil-
steel structure systems by employing diverse empirical and analytical
techniques. These range from empirical estimation of the ring compres-
sion stresses to highly sophisticated finite element analyses incorpor-
ating non-linear and stress—dependent properties of the soil media. 1In
between these two approaches, exist the idealized models of soil-structure
interaction analysis (26,27) which attempt to strike a balance between
them. This approach utilizes the physical idealization or
analog modelling of the soil-structure interaction problems in terms of
Winkler element (Kloppel and Glock (1970)). Herein it should be noted
that the above range of interaction analyses and the idealized models
are not unique to soil=-steel structures but also exist in the analysis
of soil=-supported footings and rafts.

Analytically, the problems in soil-steel structures are consider-
ably simplified by the introduction of a physical idealization of the
soil-structure interaction. By using such idealization, a number of
problems can be examined relatively conveniently, such as analyses of
live load effects, stability problems and three dimensional behavior of
the structures. Admittedly, the difficulty in this approach is that the
spring constants and shear stiffness are not unique soil properties
independent of the problem under consideration. They are
related to the soil properties, as well as the geometric and stiffness
parameters of the structure. However, despite the complexity and the

approximate nature of the analog modelling schemes, they present very

24
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useful tools to analysts and designers. They provide the facility to
readily investigate the influence of soil support as well as the conduit
geometry and stiffness properties on the failure characteristics of the
structure.

The objective of this chapter is to improve this approach and make
it more attractive to engineers. Herein explicit results are obtained
incorporating the different parameters governing the soil effects, and
more accurate idealization is achieved for the coefficient of soil
reaction. They are obtained by relating the results of internal force
components and deformations calculated with rigorous finite element
analysis (12) to equivalent results obtained from the system modelling of
the problem. The finite element analysis developed in (12) also forms

the basis for verifying the results of the system modelling.

3-1 FINITE ELEMENT FORMULATION

The composite system of the conduit walls and the supporting fill
is discretized by.a number of finite elements (Figures (3-1) = (3-4)).
Higher order elements are used around the culvert walls to reflect the
steeper variations in soil stresses. Further away from the conduit
walls, constant strain triangular elements are used to model the soil
mass, while the conduit wall itself is discretized into twenty
beam elements. The constitutive relations for the soil media are
based on the stress~-dependent hyperbolic model as shown in Chapter 2.
‘The development of the finite element model and computer program is
Ppresented in detail in reference (12) and briefly outlined here.

An analytical model is used to reflect the normal and shear stresses
resulting from the interaction between the conduit and the surrounding
Soil. Such interaction results from the relative movement of the soil

with respect to the conduit wall at the soil-conduit interface, and the
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relative movement of the soil particles with respect to each other.
The interface element is a two-node spring type element (Figure (3-=5))
possessing no physical dimensions, enabling it to be placed between the
conduit and the soil without distorting the conduit geometry. Each
interface element is assigned a normal and a tangential stiffness, kn
and ks' respectively. Both are taken as zero in case of tension between
the soil and the conduit wall. In order to minimize the overlap
between nodes on either side of the interface in compression, kn is

assigned a very large number, while a non-linear relationship is used

for the shear stiffness

o, s R, T, 2
- ——— r -'
Ts KI Yw (pa) Ll o_tanA- (3.1)

where

Ts is the applied shear stress, Rfs the failure ratio, cn the
nnormal stress, Yw the unit weight of water, A the angle of friction
between the soil and the conduit wall, K, a dimensionless stiffness
number, and ng the stiffness exponent.

An analytical incremental procedure is used to simulate construc-

e tion processes. The filling is applied in ten successive increments and

7

@ sequence of linear analyses are carried out using the stress-strain

el ationships of the form
{ac} = [c]{ae} (3.2)

Whexe {Ac} is the incremental stress vector, {Ae} the incremental strain

Vector, and [c] the constitutive matrix.

The effect of soil compaction is included in the form of equivalent
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nodal loads applied on top of each construction layer. Before proceed-
ing to the next layer, these are removed by applying equal and opposite

forces.

3-2 FACTORS AFFECTING THE COEFFICIENT OF SOIL REACTION

The coefficient of soil reaction, k, is the unit pressure developed
as the sides of the conduit move outward a unit distance against the
£ill. As noted earlier, this coefficient is not a unique soil property,
depending instead on a variety of parameters pertaining to the soil-
conduit system. The parameters selected for investigation in this
study are

1) The degree of compaction, ;

2) the depth of cover, H (ft, in);

3) the span of the culvert, D (ft, in);

4) the flexural rigidity of the culvert wall, EI (in2/in) ;

5) soil modulus, Es (psi);

6) Poisson's ratio of soil, vs;

7) magnitude and direction of soil displacement As' 6 respectively;

8) the unit weight of soil, Yy (pcf):

9) the relative density of soil (defined as dense and medium).

Mathematically these are expressed as

K= f(gl H, D, EI, ES' Vsl Asl el Y) (3.3)

Depending on the constitutive model used, expressions for the soil

moqQulus, Es' and the Poisson's ratio, vs' are very complicated in general,
A8 well as non-linear and stress-dependent. Consequently, the develop-
ment of an analytical model incorporating the wide variability of these

Parameters is virtually impossible. For purposes of computational
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convenience, this study is restricted to two particular class of soils,
namely a well-compacted dense, and a medium dense granular backfill.
This limitation is valid since it is required in practice to use only
well-campacted, granular soil. For such type of soils, the hyperbolic
parameters, on the basis of studies by Duncan et al (1977) may be taken
equal, or as close as possible to those in Table (3-1). Therefore Es
and vs are considered to be prescribed quantities and their effects on
the coefficient of soil reaction are accounted for. A stronger case for
the elimination of Es and vs from extensive consideration comes from
the fact that the subsequent analysis utilizes the theory of dimensional
analysis which requires that the significant parameters be dimensionless
as well as independent of each other. It was noted previously that Es
and vs are dependent upon stress levels, which in turn vary with the
depths of cover, H. Therefore to satisfy the limitation of independence
as required by the theory of dimensional analysis, Es' vs and H cannot
be considered separately. It has been found convenient to eliminate
Es and vs in favor of the more readily amenable parameter, H.

With ES and vs eliminated from further consideration, the theory
of dimensional analysis (28) is applied to furnish the following non-

dimensional form of equation (3.3)

A
H EI s
= f (Bv o D 8, Q) (3.4)

< |

(A brief discussion of the theory of dimensional analysis is presented
in the appendix.)

The advantage of equation (3.4) lies in the reduction of the number
of independent terms. Rather than conduct a parametric study involving

Nnine separate terms as required by equation (3.3), the number of terms
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is reduced to only five in equation (3.4). This represents substantial
savings in time and expense in the present study. Furthermore, each
non=-dimensional term is considered varied if at least one of the para-
meters it consists of is varied. Therefore the choice of which para-
meters to vary is often dictated by convenience and economy.

The method of Kloppel and Glock presented in Chapter 2 identifies
two interacting zones of earth pressure =- a zone of active and a zone
of passive pressure. 1In order to compute the coefficient of soil
reaction, it is desirable to devise a technique for separating the
effects of one from the other. (Throughout the rest of this chapter,
emphasis is placed on the normal component, kn' of the coefficient
of soil reaction. 1In the following chapter, shear interaction is
examined.) To achieve the desired separation, equal normal concentrated
forces are applied at the nodes of the beam elements to induce outward

dAdisplacements all around the conduit as shown below.

Wi th such a device, the influence of active pressure is eliminated

and the coefficient of soil reaction normal to the conduit wall is

giwven simply as:
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(3.5)

=
n
B0

ni

where Ai is the normal displacement at the ith interface node, oi the
normal stress at i in the direction of Ai, and kni the desired coeffi-

cient of soil reaction.

3-3.1 The Effects of Compaction and Flexural Rigidity, EI

Soil stabilization is probably the single most important factor
in most culvert installations. Rather than compute the response to a
range of values of the degree of compaction, this study accounts for
compaction by specifying a dense, granular backfill compacted to
the recammended AASHTO standards. (Later, the case of medium
dense soil is examined.) In this way, the degree of compaction is elimi-
nated from further consideration as a separate, independent entity.
Furthermore, the primary effect of compaction is usually to improve the
qguality of the soil, notably the unit weight. Since the unit weight,
Y., is retained in equation (3.4), the influence of compaction is in
effect reflected.

There is evidence in the literature (29) that the effect of the
Fflexural rigidity, EI, of the conduit wall on the coefficient of soil
Xreaction is quite negligible. This conclusion is presumed accurate and
the term EI/YD“ therefore dropped from equation (3.4). Hence no

S eparate examination of this term is conducted herein.

3—3.2 The Effects of the Depth of Cover, and the Span of the Conduit

The effects of the depth of cover, H, and the span of the conduit,
D, are examined in this study by computing values of the coefficient of

80il reaction corresponding to a range of values of H and D. Results
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for H of 4.0, 6.4, 8.0, 11.73, 12.64, and 20.36 feet and for D of 300,
200 and 100 inches are presented in Tables (3-2) - (3-21). They are
also presented in a non-dimensional form by plotting k/y versus H/D
in Figures (3-7) and (3-8). The plots are nonlinear, and can be des-
cribed with sufficient accuracy as suggested by Bowles (30), by the fol-

lowing relationship

(3.6)

<=
"
5
+
0
3

with As = 0 for sand filling.

Equation (3.6) is developed in detail later.

3-3.3 The Effects of Magnitude and Direction of Soil Displacement (As, 0)

To study the effects of the magnitude of soil displacements, a range
of uniform normal forces are applied according to the loading schedule
summarized in Table (3-22). Corresponding values of the coefficient
of soil reaction are shown in Tables (3-2) - (3-21) for diameters of
100, 200 and 300 inches. These clearly show that the coefficient of
soil reaction is practically independent of the magnitude of soil dis-
pPlacements, for displacements not exceeding 0.1l inches. Furthermore, the
load-displacement relationship (Figure 3-9) is linear in the practical
range of displacements.

Evidence that subgrade reaction may be related to the direction of
soil displacement comes from Terzaghi (1955) and Vesic (31). Terzaghi
proposed expressions for the coefficients of vertical and horizontal
subgrade reaction, kv and kh respectively, based on the results of
Plate load tests. According to him, the coefficient of vertical sub-

grade reaction, kv' for beams on elastic foundation may be expressed as:
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2
_ B+1 2D
k, =K (59 1+ (3.7a)

For piles under lateral loads, a similar expression is given for the

coefficient of horizontal subgrade reaction
_ D
kh =n 3 (3.7b)

where in equations (3.7),

B = the width of the beam or pile

D = the depth of embeddment

n, and Kl = constants based on results of plate load tests.
Recommended values of Kl and n for sand filling are given in Table

(3-23).

By extending the results of laboratory triaxial tests to footings,
Vesic (31) proposed that the coefficient of vertical subgrade reaction,

kv' may be expressed as

x = 0.65 12 EsB Es (3.8)
v B EbI 1-v* °

where:

1]
]

width of footing

I, = moment of inertia of footing

o]

Eb = modulus of elasticity of footing

td
L]

modulus of elasticity of soil

Poisson's ratio.

<
n

Though empirical in nature, equations (3.7) and (3.8) clearly show

that ky and k, are significantly different for identical sets of soil
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parameters and beam, footing or pile dimensions. Since the results of
the present study indicate that the coefficient of soil reaction is
independent of the magnitude of soil displacements, the only variable
responsible for this difference must be the direction of soil displace-
ments, 6. The effects of variations in 6 is accounted for in the sub-
sequent discussion.

3-4 DEVELOPMENT OF THE EXPRESSION FOR THE NORMAL COMPONENT OF
COEFFICIENT OF SOIL REACTION

In the preceeding sections, the effects of a number of parameters
on the coefficient of soil reaction were discussed and after deleting
those factors considered negligible, the coefficient of soil reaction
was shown to be given by the following equation

my = £(m2, m3) (3.9)

where
™ =k/Y
T, = H/D

1r3=6

Equation (3.9) is referred to as a prediction equation, and represents
an unknown function which must be established by a suitable analytical
procedure. A rational procedure for achieving this is discussed by
Murphy (Reference (28)) and adopted here without proof. The method
involves plotting the dependent variable as successive functions of each
of the independent variables with all but one of the later held constant
each time. As an illustration, consider the case described in equation
(3.9). First 71 is plotted as a function of T, with T3 held constant
at ;?3, say. From such a graph, a suitable curve-fitting technique is

employed to develop a relationship between T; and T, (for the constant
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value of m3). Suppose this function is designated as
Ty = £(m2, T3) (3.10a)

Next, the procedure is repeated for 73 with T, held constant (at ;} say)

resulting in a similar expression in T;. Suppose this is written as
Ty = £(T2, T3) (3.10b)

An equation of the form of (3.10a) or (3.10b) is called a component
equation and the choice of the constant values F} and F} are completely
arbitrary. It is shown in (28) that the component equations may be
combined into a prediction equation as

£(T,, T3)*£(T,, T3)

- (3.11)

1M, M3) = — —
F(m2, T3)
where:

S = the number of dimensionless, independent parameters (three
in the present case).

F(;}, ;Q) = equation (3.10a) evaluated at Fz, or equation (3.10b)
evaluated at T3

Hence, the prediction equation can be expressed as a product of its
component equations combined in some appropriate manner. Obviously,
since this technique is semi-empirical, the chances of error increase
with the number of variables involved.

The technique is now applied to the present study. The sign con-
vention for this purpose is that 0 is positive in the clockwise
direction, increasing from zero at the crown. Furthermore, only one-
half of the conduit (0 < 6 < 180°) is considered since the coefficient
of so0il reaction is virtually symmetrical about the vertical axis of

the conduit (Tables 3-2 to 3-35). Hence, any expressions developed
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for one half of the conduit, automatically satisfy the other.

Figures (3.7) and (3.8) show plots of k/Y versus H/D with 6 held

constant at suitable values. From these graphs and using the method

described herein, in conjunction with the method of least squares,

the expression for the coefficient of soil reaction for the dense

soil is found to be

k H
Y=% % Vo
where
0.75D
Cq = 4.25 - o=
c = 1+5.4 6/m
6 4

Finally, if H in equation (3.12) is replaced by
D
H=H + — (l-cosf)
c 2

the expression can finally be written as

k 1
-Y- = o+ 3 (1-cosb)

Ca Co

H
C

(3.12)

(3.13)

where, a = the depth ratio , —, and H_= depth to the crown of the

conduit, D = the span of the conduit fn inches.

3-5 THE EFFECT OF THE RELATIVE DENSITY OF SOIL

So far the discussion has centered on granular soils with high

relative density. What follows is a parametric numerical study of the

effFects of relative density on the coefficient of soil reaction.

For
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the purposes of this study, relative density is defined simply as dense
or medium dense. A variation in relative density is accomplished by
changing the hyperbolic parameters as summarized in Table (3-1). For
example, while a modulus factor, k, of 3100 is assigned to the dense
soil, a value of 1200 is ascribed to the medium soil. The loading
schedule and all pertinent discussions given previously for the dense
soil still apply.

The results are presented in Tables (3-24) to (3-35). In order
to integrate these results into a mathematical expression for the
coefficient of soil reaction, it is found convenient to calculate the
ratio B* of the coefficient of soil reaction for the medium soil to
that of the dense soil at corresponding points around the conduit.
B* is plotted as a function of H/D and of 6 in Figures (3-10) and
(3-11). From these plots and also from Tables (3-24) to (3-=35) it is
seen that B* can be represented with sufficient accuracy by the following

equation

B* = C; + C, (8) (3.14)

where C;, C2 are functions of the span of the conduit. Using the least
squares curve-fitting technique, equation (3.14) is found to simplify

to

D ,O 2
B* = 0.45 + 5= (= = 0.5) (3.15)

Therefore it is proposed herein that the coefficient of soil reaction,

1%:. in the normal direction to the wall of the conduit may in general

be given as:
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- ‘lﬁ
ko =Y B* ¢y Co\D (3.16)

where
_ 0.75D
Cd = 4.25 oo
c =1+S.46/1T
0 4

B* = 1.0 for dense soils

D B 2 . .
= 0.45 + 500 (F'- 0.5) for medium dense soils.

H = depth to the point on the conduit where kn is desired.
D = span of the conduit.

Y = unit weight of soil.

Equation (3.16) is compared with results from the finite element method (12)
in Tables (3-36) and (3-37) and agreement with these is seen to be quite

good.



CHAPTER 4

PRE-BUCKLING AND BUCKLING ANALYSES OF ELASTICALLY SUPPORTED RING

INTRODUCTION

The soil=-steel structure can be analyzed as an orthotropic shell
supported by the soil for which the coefficients of soil reaction are
determined in Chapter 3. However, such analysis could be simplified
by : considering a plane slice of unit width of the conduit and surround-
ing soil. This approach is considered adequate since:

1) Dead load is usually uniform along the axis of the conduit.

2) Effect of live load is simulated by equivalent pressure after

considering its dispersion in the longitudinal direction.

3) Bending and axial rigidity of the shell in the longitudinal direction

is consiflerably small when compared with those in the curved direction.

Therefore the analysis and stability of the conduit are examined
considering the conduit as a frame elastically supported by the soil,

using an energy approach.

4-1 ENERGY THEORIES

The principle of stationary potential energy states that of all
displacements satisfying given boundary conditions, those which satisfy
the equilibrium conditions make the potential energy a stationary

value -- maximum, minimum or neutral. This can be expressed by the

condition

v=20 (4.1)

For stable equilibrium, the potential energy is a minimum (maximum for

unstable and unchanged for neutral equilibrium).

38
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4-2.1 Potential Energy Expressions in Pre-Buckling Analysis

Pre-buckling displacements and stress-resultants are assumed, for
the purposes of this study, to be determined with sufficient accuracy
by linear theory. This assumption is seen to be adequate (33), hence
second and higher-order terms are excluded from the energy equations.

The potential energy, V, of an elastic system is the sum of the
strain energy, U, and the potential energy, i, of external forces.

Hence the total potential energy can be expressed as
V=U+Q (4.2)

For an elastically supported ring, the strain energy consists of the

bending strain energy, U

b’ the membrane strain energy, Um, and the

strain energy of the elastic supports, U

x*
Hence,
U= Ub + Um + Uk (4.3)
where,
2m M 2de
U =.B. I e
b 2 EI
o
2m
EA 2
u =5 [ egas (4.4, a-c)
o
27 2T
-1 2 1 2
U =3 fo k w°ds + > . ksv ds

Furthermore, the bending moment Me is given hy

M. = g% (W + w) (4.5a)

)
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and the strain, Ee, of the centerline in the 6-direction by,

=1 4v _
ee = (de w) (4.5b)

where in equations (4.4) and (4.5),
the dot denotes differentiation with respect to 0.
R = radius of the ring
A = area of cross-section

k = coefficient of soil reaction (normal or tangential as the case
may be)

w, v = displacement components in the normal and tangential direc-

tions, respectively.

A choice of suitable displacement functions w(6) and v(0) is made
consistent with the boundary conditions. For the complete ring, the
boundary requirement is that w and v be periodic in 6. The tangential
displacement, v, may further be taken in such a form as to make the
extension of the centerline of the ring zero. This simplification'is
equivalent to replacing the actual ring by a hypothetical ideal ring with
negligible extension of the centerline.

Hence,

1l ,dv
Ee =0 = E-(ag -w) (4.6)

The condition of inextensional deformation of the ring therefore is

dv

B-VW=DO (4.7a)
or v = [ wad (4.7p)

The following displacement functions are chosen:
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w(8) = ] W cosnf
n
n=1
o (4.8a,b)
1 .
v(8) = } o W,sinn®
n=1

Substitution of these into equations (4.4) gives

EIT v 2
U =35 ] (1-n?) w2 (4.9)

R ® o kR 2m W 2
Uy = E-I k g g W W _cosnBcosmfdf + - fe ) T sinnBd6 (4.10)

[¢] (o]

Finally, using the expression developed in Chapter 3 for kn, and also
employing the trapezoid (as discussed in the Appendix) rule of numerical

integration, equation (4.10) becomes

ﬂRks o an © 60 sin2n6o wn2
=35> I ;> kR I - @
n=1 n=1
YC R cosn‘n’ cosmT
+ (—-6)(28Ja+2 z wa 3 3
n=1 m=1
WC R éOShTT cosmT
+ ——[2 8/a+. 25 n-z_l mzl WW oo g

+64/_Z wa(l)

n=1 m=1
o0 00
+ 7. 4“51_‘ Z z W W cosnﬂ cosmﬂ
=z
n=1l m=1 2
00 oo
+9.2/a+.75 | ]} W °°szg" c°szgm
n=1l m=1
+ 11.0/a+.933 Z Z ww Cos2Mm cos2mm (4.11)

n=1 m=1
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In the above expression, eo is the point of inflection. It is given

approximately, as suggested by Sayed (32), by the following equation

® = 1.6+ 0.2 log —=x radians (4.12)
o E'R
where:
EI = flexural rigidity of ring

E' = modulus of soil reaction

R radius of the ring.

An iterative procedure for determining eo is described subsequently.

4-2.2 Potential Energy of External Load

The potential energy, §i, of the external radial forces is given by

2m
Q=R [ q(O)wad (4.13)
o
The load dispersion criterion proposed by Kloppel and Glock (Chapter 2)

is adopted here. Hence the loading function for a shallow conduit is

taken as

q(0)

-7 i
Pscose, ?i 0 55 (4.14)

0 elsewhere

where Py is the maximum pressure intensity at the level of the crown.

Introducing equation (4.14) into (4.13) and integrating yields

/2 o
Q=2R [ P_cos® ] W cosnbad
s n
(o) n=1
TRP_W, © sin (2217- - -121) sin (%E + %)
=—5—=+PR ] W Ot e D) (4.15)

n=2,4...
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Finally, equations (4.9), (4.11), and (4.15) are introduced into equation

(4.1) to give

v Oo sin29°
o 0= kstl[‘rr - (T - —4—)]
1
YC.R
+ =2 & -6 (28025 Zw °°S“‘3“ o=
(o}
YC TR COSII’\TT coSsT
+ [2.8/0+.25 Zw 3 3t 6.4/041 Zw(l)
cosZm‘rrcosZ‘rr
+ 9.2/0+.75 le W 5 3
STm 5T nPsR
+ 11.0/a+.933 Z W SO €= — (4.16a)
m=1
v EIT 60 sin2n6o
w07 Wy A )"+ kel - (- —2D
YC4R
+ =2 G -6 )(2.8/0%.25 Z w COSTE COSE)
YC COSHTT cosmm
+ [2.8/a+.25 Zw T 05+ 6.4/0e] Zw(l)
m=1
+ 7. 4/0.+_ Z W COSI;TT cosmz‘rr
m=1
cosZ‘rm cosZTrm
+ 9.2/0+.75 mzl W 5 o5
¢ 11.0/675%5 ] w_CoSSIn cossmy
=1
sin(l‘zl'- - %) sin(%[ +3)
- N > 4.16b
PR =t D 4 "1 ( )
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4-3 SOME OBSERVATIONS ON THE SOLUTION SCHEME

A computer program is written to solve equations (4-16) for various
soil-conduit parameters. 1In addition to the unknown displacement
coefficients, Wn, the point of inflection, 60, and the constant coef-
ficient of soil reaction, ks' in the tangential direction to the wall of
the conduit are also unknown. The program is designed to iterate over
both of the later quantities (that is 60 and ks) until an acceptable
convergence is achieved. 1In the absence of experimental data, solutions
from the finite element method (12) are used as the sole basis for verifying
the pre-buckling displacements and stress-resultants.

Literature on the coefficient of soil reaction, ks, in the tangen-
tial'direction to the wall of the conduit, is very scarce. Kloppel
and Glock (1970) have proposed a model of shear interaction that argues
for a total exclusion of the tangéntial component of the coefficient
of soil reaction. According to this model, a set of shear stresses is
induced around the upper section of the conduit as a result of the
direct influence of live load as shown in Figure (4-la). Subsequent
deformation of the conduit induces a similar set of shear stresses
acting in an opposite sense to those due to loading (Figure 4-1b). Both
sets of stresses counteract each other to an extent that is not pre-
cisely detefminate. However, it seems reasonable, according to this
model, to ignore any resultant shear stresses since they are adjudged
too small to make a significant contribution to the overall soil-
structure interaction.

The provision in this computer solution, of a tangential (in addi-
tion to a normal) component of the coefficient of soil reaction is
believed to be a more realistic modelling of the interaction phenomenon.
The results of the computer solution indicate that for any set of

conduit dimensions and live loads, the soil=-structure interaction is
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modelled with sufficient accuracy by taking the coefficient of tangen-
tial reaction, ks, to be constant. 1In particular, it has been found
convenient for the purposes of developing an appropriate expression
for ks’ to take this constant coefficient as some multiple of the normal

component, kn ,» at the invert, expressed by the following equation
i

k = Xk (4.17)
s n,

where,

>
"

a constant less than 1.0

0 for 0 < 06 < 6
- =0

The computer program, as noted earlier, performs an iterative
routine. Starting with very small values of ks and 60, subsequent
solutions are sought with small increments of these till a reasonable
convergence is achieved. The displacement at the crown of the conduit
is negative (inwards). Between the crown and the springline, the dis-
placement reverses and becomes positive (outwards) just beyond the point
of inflection, 60. In other words, the test for convergence is the
angleeo (incremented from zero) beyond which w(Go) just reverses
directions. A typical set of results is presented in Table (4-1) -
(4-3) and results from finite elément analysis are also presented for
comparison. These results.are also plotted in Figures (4-2) and (4-3).
In addition, values of the constant coefficient, A, corresponding to
these are presented in Table (4-4) and Figure (4-4). Of interest is
the indication that A is practically independent of the span, D, of
the conduit. Using the method of least squares, A is found to be
approximately equal to 0.2. If this value is substituted into Equa-

tion (4-17) the expression for ks may finally be written as
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k_ = 0.32 (4.25 - -O—igoﬁ)./a + 1 (4.18)

4-4 BUCKLING ANALYSIS

The ring compression theory of White and Layer (1960) suggests
that the flexural rigidity of underground flexible conduits governs
mainly in the installation stages while the compressive strength of the
conduit material and joints governs the behavior under load, provided
there is an adequate backfill. The theory, however, disregards the
actual properties of soils. Furthermore, buckling may in fact govern
the behavior, under load, of flexible conduits whose spans are much
larger than those considered in the ring compression theory. Therefore
an adequate examination of the buckling limits of large-span flexible
conduits is necessary.

The second variation of potential energy is used to establish the
criterion of elastic stability. The theory was developed with specific
reference to elastic stability by E. Trefftz and has since been employed
extensively (33, 34). It is based on the concept that a‘stationary
mechanical system is in stable equilibrium if, and only if, the poten-
tial energy, V, of the system attains a relative minimum; hence the
change, AV, of potential energy is such that AV > 0 for any small vir-
tual displacement of the system that is consistent with the constraints.
The potential energy for an elastic system, is given in Equation (4-2).
Consequently, the change, AV, in potential energy due to an infinite-

simal (virtual) displacement from an equilibrium configuration is
Av = AU + AQ (4.19)

For an elastic system, AU may be written as
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1 .2 1
21 00+ 33

n

AU = 8U + 63U+ +nl—!60 (4.20)

in which GnU (the nth variation of U) is the volume integral of a homo-
genous polynomial of nth degree in the components of the virtual dis-

placement vector and its first derivatives (35).

Similarly, the change, AQ, in the potential energy of the external load

is

c‘529+3i<53$2+...+L

n!

AQ = 80 + s™Q (4.21)

21

The principle of virtual work requires that the first variation

(8U + 89Q) of the potential energy vanish for any equilibrium configura-
tion. Thus if the virtual displacements are small, the sign of AV is
controlled by the sign of 620 + 629. Therefore the equilibrium is
stable if, and only if, 62U + 529 > 0 for all virtual displacements,
and the criterion of stability, is that the second variation of poten-
tial energy be positive-definite. The critical load for a structure is
the limiting load at which the structure first loses its stability =--
that is, the load at which 62V ceases to be positive-definite as the
load is increased from zero. Accordingly, the question of stability
resolves into a mathematical study of the nature of the second varia-
tion of the potential energy. More importantly, the theory is readily
generalized for multiple-degree-of-freedom systems. For a structure
whose potential energy is a function of say, two variables A and B,

and for arbitrary small virtual displacements Aj; and B; from some equili-
brium configuration (Ag, Bg), the change, AV in potential energy may

be written in a Taylor's series expansion as
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oV Vv
AV = 7Y (Ao, Bp) A + 3 (Ao, Bg) B)
1 d%v 2 3%v
+ 51 SX? (Ay, By) Al + 2 aAaB (Ag, By) A;B;
82V 2
+ -8?5- (Ag, Byp) Bl (4.22)
Hence,
_ 2 1 .2
Av—6v+2—'6v+3!6v+... (4.23a)
where:
3V v
§v = B—A (Rg, Bp) Ay + 3B (Ag, Bp) B) (4.23b)
and
2 2 2
2 3 v 2 20V 9V
§%v = Az (Ay, Bp) Al + 338 (Ao, Bo) A1131+382

The appropriate condition for the limit of positive-definiteness of
a quadratic form is that the determinant of the coefficients equal
zero. Hence, in the present example, the condition for the initial

loss of stability may be written as

2 2
v
%;‘21 (Ag, By) %\-53 (Ag, Bo)
=0 (4.24)
2 2
%Al%- (Ag, Bo) 3,7" (Ao, Bo)

The use of the vanishing of the second variation of potential

energy as a criterion of stability raises the question whether the

(Ao, Bp) B2 (4.23¢)

equilibrium is stable at the critical load itself =-- that is, whether

the equilibrium is stable for P 5-Pcr' or merely for P < Pcr'
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Fortunately, this distinction is of little consequence in the determi-
nation of the critical load (34) and the use of the vanishing of the

second variation of potential energy is a sufficient criterion.

4-5 ENERGY EXPRESSIONS IN BUCKLING ANALYSIS

In the pre-buckling analysis, it was assumed that linear theory
was sufficient to ensure an accurate determination of the deflections
and stress-resultants. In contrast, the development of expressions
for the second variation of potential energy requires consideration of
non-linearity (33), and equilibrium is based on the deformed geometry of
the conduit. Recognizing this necessity, non-linear terms are retained
in the geometric relationships. It is realized however, that retention of
all non-linear terms is not practical and certain simplifying assumptions
therefore become imperative. For example, the ring is assumed to buckle with-
out any incremental membrane strains, and it is further assumed that the
prebuckling membrane strains may be neglected without any loss of accuracy (36).
The expressions for the strains and changes of curvature may be

written as

-— _ l —-— _ — l -— —
€ = R {(ve w) + 5 (v +wp) } (4.25a)
and,
X =2 W +w (4.25b)
86  R2 66 .

where KGG = change in curvature of the centerline in the 6-direction,
Eé = axial strain of the centerline in the 6-direction, the bar denotes
the sum of the pre-buckling equilibrium configuration and the corres-
ponding virtual component. If w and v represent the displacement

vector defining an equilibrium configuration, and [, n the respective

components of the incremental virtual displacement vector.during buckling,
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then, neglecting the pre-buckling rotation of the ring element, v +
which is very small, equations (4.25) may be rewritten as
€, = l-{v -w+ -+ X (n + )2} (4
6~ ® Vo Mg =t *3 N+t .
and,
Ko, = 1 (wo, + + + T) (4
66 - RZ Y66 - ¥ 7 “68 :
The bending and membrane strain energy Ub and Um respectively,
given by
am
U =R jo 5 (MK ) a8 (4.
and
27T
=R =
U, =5 NgEqd® (4.
o
where Ne = the axial force per unit length acting at the centerline
the 06-direction.
It is shown in reference (35) that Ne and Me are given by
Et = EI bl
T c— - - + .
Ng=2 (V- - @+ W) (4
and,
EI 2 —
Me = R7 (W + w) (4.

Therefore using equations (4.26) and (4.28) in equation (4.27), the

strain energy components may finally be written as:

wgr

26a)

26b)

are

27a)

27b)

in

28a)

28b)
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1 2MEr 2
%= ) ® (Wt wog + 2+ Lgg) a0 (4.29)

and,

27
=R Et - -
w3 | SElogweng-o

EI 1 1
R W+ gt Tt wge)l (glvg -wemg -2

+

2:
2 (n+ g Jas (4.29b)

At this juncture, the strain energy, U , of the elastic supports

k
is included. Then by expanding what is left of the total strain
energy (Ub + Um + Uk) and applying the fundamental definition of
the second variation stated earlier, the second variation of the

strain energy may be written, retaining no higher than quadratic

terms, as

§%v = R ”znkn g2+ % (Zgg + z;)z] an (4.30)
The problem of buckling of rings subjected to nonuniform pressures
is much more involved than that of uniform pressure. The first attempt
to consider nonuniform loads was apparently due to Almroth (37) who
considered a pressure load of the form P = Po(l+cose). If the load
remains normal to the conduit wall as the conduit deforms, the second
variation of potential energy of external forces is shown in reference

(35) to be given by:
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21
8§20 = [ P (% + 2z + n?) @b (4.31)

o
It is of interest to note that §2Q, unlike the first variation, depends
only on the loading function and the virtual displacement components.

The problem of determining the limits of eiastic stability is now

reduced to one of seeking the appropriate expressions for the second
variation, 82V, of the total potential energy. In this particular case,

equations (4.30) and (4.31) combine to give:
2 2m EI 2 2 2 2
§2v = fo [E? (Tgg + T + RK T® + P(Z® + 2L,n + n*)]d6 (4.32)

Equation (4.32) may be solved by any number of suitable methods. 1In
one such method, the appropriate Euler equations of variational calculus
(see appendix) are found and together with the associated boundary
condition, these yield a boundary value problem. The Euler equations

for an integral of the form of equation (4.32) are

(4.33, a-b)
OF _ d 9F a: oF _
oF _ 4 . -
9z T @B 3gy T ae? 3y,

0]

where F is the integrand in equation (4.32)

Solving the final set of differential equations can sometimes, as in
the present case, present difficulties.

A simpler approach is the "direct-energy" method, so-called
because the second variation of potential energy is minimized direct-

ly without resort to Euler equations. This is done by evaluating
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the integrals in equation (4.32) term-by-term (after assuming suitable

admissible displacement functions), and then applying the criterion for

the limit of positive-definiteness of quadratic form discussed earlier.

Because of the assumption of admissible displacement functions, this

gives an upper-bound solution.

4-6 SYMMETRIC BUCKLING

If the buckling waves occur in a symmetric mode, the virtual dis-
placement components 7 and n may be taken in the form of infinite

Fourier series

©o

z(®) = ] A _cosnb

n=2 n

00 (4-34, a-b)
n(e) = z B sinnf

n=2 n

where rigid body displacements have been neglected by deleting terms
corresponding to n = 1.

Equations (4.34) automatically satisfy the boundary requirements that
the admissible displacement functions be periodic in 6. Further, the
coefficient of soil reaction, kn' may be conveniently expressed as an

infinite series

k ©o (=]
[¢] . X
= — k k .
kn > + .Z jCOSJe + Z bs1nb6 (4.35)
j=1 b=1
where,
5 T
k == [ k_(8)ae
o o n
o
(4.36, a=-c)
5 T
= = .64a6
kj - f kn(e)cosje

o
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kb =0 (kn is symmetric about the vertical axis of the ring)

Using equations (4.34) and (4.36) in (4.32), we get:

2m ET o 2
§2v=/[ [=3] ] (1-nm)2A_A cosnBcosmd
R nm
o n=2 m=2
(= -] (=] oo
+ R (?§-+ } k.,cos.08) J ] A A cosnbcosmd
j=1 J I n=2 m=2
o (<<} [+ @
+ P(8) { Z Z A A cosnBcosmd - 2 ) ] nA B sinnBsinmf
n m n' m
n=2 m=2 n=2 m=2
oo o
+ Z Z Bansinnesinme}]dB (4.37)
n=2 m=2

where, P(0) = Po + Plcose

It is seen (Figure (4-5)) that a good approximation is obtained by

taking only two terms of the soil coefficient function -- that is,

k
e} . - -
kn(e) = + klcose and also by taking Pl Po, so that P(6)
P_(l+cosf).
o
Now,
m m T
| cosnbBcosmbde = | sinnBsinmfad = ZrR=m
o o
=0, n#m
2T
f cosjecosnecosmede =0, nF¥j+morj#Fm+norm# j+n
o
= %& n=3j+mor j=m+norm=3j +n
2m
f cosjesinnesinmede =0, n#Fj+morj#Fn+morm#3j+n
o
= gy n=j+mor j=n+morm=3j+n
21

]
o

| sinjBcosnBcosmd
o
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Using the above relations in equation (4.37) and performing the integra-

tion, the second variation of potential energy becomes

2y - n2y252 o 2
GV—i-g—Z(ln)An*- >— [ A’
n=2 n=2
o o [}
r 2 2
+ Poﬂ L Z Bn -2 Z nAan + z An] , D=m
N n=2 =2 =2
T[Rk o] @
1 PT ®© @
+ D) o
2 n=2 m=2 AnAm * —3_{ Z Z AnAm
n=2 m=2
=} oo [} =<}
+2 )] I mB + ] ] BBl n=m+1l
n=2 m=2 n=2 m=2 or
m=n+1
n, m#1 (4.38)

Equation (4.38) represents a quadratic form in the displacement
parameters. Differentiating this quadratic form with respect to each
of the parameters, a set of homogenous linear equations in the para-
meters is obtained. The matrix containing these parameters is called
the stability matrix. Clearly, the stability matrix contains two sets
of terms, namely a submatrix of load-independent terms xnm' and one of
load-dependent berms B;m. The critical pressure is represented by
the value of Po for which the determinant of the stability matrix vanishes.
Because of the coupling of terms in An' Bn and Am, Bm (m#n) , the indi-
cated differentiation is accomplished in two parts =-- first with n=m, and

then with n#m. With F as defined earlier, differentiation for n=m gives

dF _ 2TmEI 2,2 _

Tl (1-n?)?A_+ TK RA_ - P_T(20B_ - 2A) =0  (4.3%a)

3 . 2p B - 2nmA D (4.39b)
(o] n no .

9B
n
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Solving for Bn in equation (4-39b) and substituting in equation (4.39a)
gives

2EI
[___

=3 (1-n2)2 + k R+ 2Po(n2-l)] A =0 (4.39¢)

Equation (4.39c) constitutes the diagonal elements, x and B;n of the
stability matrix.

That is,

2EI 24 2
= - <+ 4.4
Xnn ® (1-n%) KOR ( Oa)
B* = 2(n2-1) (4.40b)
nn

Similarly for n # m, differentiation yields:

oF

W - TTklR(An-i»l + An—l) + Pon[An+l + An—l + rI(Bn+l + Bn-l)]=0
. (4.41' a-b)
oF _ =
—aBn =P n(-{B ., - (n+) A .} - {B _, = (n-1) A _,}] =0

A special class of problems is obtained by letting the off-diagonal
elements (An+1’ Bn+1' An-l' Bn—l) of the stability matrix vanish. 1In
this case, equations (4.41) are identically zero, and equation (4.39c)

then simplifies to

_ EI(n?-1) KR (4.42)
cr RS 2(n%-1) .

which is the classical solution for a uniformly supported circular ring
under uniform boundary pressure.
For the non-uniformly supported and non-uniformly loaded ring,

equation (4.41b) is satisfieid in one of two ways:
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(1) (n+1) A . and B__

Bn+l (n-1) An-

1

(ii) B

(n=1) A and B
n-

1 n-1 = (1) A,

n+l 1

In either case, substitution into equation (4.4la) yields

OF _
oa_ - 0" ™R Baay * Anoy)

+ Pm [{n(n=1)+1} & _, + {n(n+1) + 1}]a (4.43)

Equation (4.43) constitutes the off-diagonal elements of the stability
matrix. (The fact that cases (ii) and (iii) give identical results is
due to the symmetry of the stability matrix.)

Hence,

X(n,n+l) = X(n,n-1) = klR
B*(n,n-1) = n(n=1) + 1 (4.44, a-c)
B*(n,n+l) = n(n+l) + 1

As stated earlier, the stability condition is

|x + pB*| =0 (4.45)

This is the standard eigenvalue problem, and the lowest eigenvalue
represents the buckling load. Several techniques are available for
solving matrix eigenvalué problems. This study employs the iterative
Jacobi method, as outlined in the appendix, because of its ability to
furnish the eigenvectors along with the eigenvalues without requiring
a separate set of procedures as in most other method. This is parti-
cularly useful if an approximate geometric configuration of the ring

during buckling, is desired.
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4-7 NONSYMMETRIC BUCKLING

For this case, the boundary requirements are still that the virtual
displacement components be periodic in 6. Hence the following displace-

ment functions are admissible

[ o]
T = nZz(Ancosne + aninne)
(4.46, a-b)
o o]
n= ngz(cnsinne + Dncosne)

Using these equations in equation (4.32) and carrying out the integra-

tion yields

2 EIT ¢ 2,22 2 kOTrR T 2 2
= - +
§%v =0=21 nzz(l n®) (A2 + B2) + — n£2<An + B2)

+

©o o oo o o}
pr()at+ B2+ Jc2+ ]2
© p=217 n=2 " n=2 ® n=2"

0o (- -]
2 Jnac +2 ]nBD), n=n

n=2 n=2
kl-n-R o oo © o PO‘" o oo o oo
+ 2 (Z ZAnAm - Z Ban) + 2 (Z ZAnAm - Z ZBan
nm nm nm nm
o oo oo 0o o ©0 0 oo
-JJcc +JJop +2J Jnac + 2] [nB D), n=mtl
nm nm nm nm nm nm nm n or
m=n+1l
n'mi‘l (4.47)

Proceeding in a manner similar to the symmetric case, the quadratic
form is differentiated with respect to the displacement parameters to
obtain the elements of the stability matrix.

Hence, for n=m, differentiation gives:
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%%; =0 = 2%%5 (l-nz)zAn + TRk A+ 2TP_ (A -nC )

.g:_n =0 = 22}331 (1-n2)2an + TRk B + 2mP_ (B -nD )

g%= 0= 2mp_ (c_-na) (4.48, a-q)
n

%g: =0 = 21rpo (Dn-an)

Solving for Cn and Dn in the last two equations and substituting in the

first two gives

oF 2TEI 2 2 2
— = = - + + -
3 ) 0 R3 (1-n°) An ﬂkoRAn ZHPO n“=-1)A

) (4.49, a-b)

oF 2TEI 2 2
— = - + + -
3 0 R3 (1-n°) B Tk RB 2tP_ (n“-1)B

Each of equations (4.49) is a function of only one type of displace-
ment parameters. Therefore only one set of these equations is necessary
to generate the elements of the stability matrix.

Hence

2

X(n,n) = %’;‘5 (1-n?) + k R (4.50a)
B*(n,n) = 2(n-1) (4.50b)

Similarly for n # m, differentiation gives

= +
BAn 1l n+l + An-l) + Poﬂ(ncn+l + An+l ncn-l + An-l)

(4.51, a-b)

s—=0=Prl+a , + (-1A__, = C ) - c ;]

1
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Equations (4.51) are seen to be identical to equation (4.41l) obtained
for the symmetric case. Therefore the elements of the stability matrix

can be written directly as

X(n,n+l) = K(n,n-1) = klR

B*(n,n-1) n(n-1) +1 (4.52, a-c)

B*(n,n+l) n(n+l) +1

4-8.1 Elliptical Cross-Section

So far, the discussion has centered exclusively on circular cross-
section, resulting in the simplest possible solution, but lacking
generality. In what follows, the theory is extended to rings of ellip-
tical cross-section. As suggested by Brush and Almroth (33), shells of
a general shape subjected to axisymmetric load can be expected to fail
through the passing of a limit point. Therefore the same criterion is
used to define the limit of elastic stability of the elliptical ring
as for the circular ring -- that is the load at which §2v éeases to be
positive-definite as the load is increased from zero.

In the previous chapter, the coefficient of soil reaction in the
normal direction to the wall of the conduit, was shown to be related to
the span, D, of the conduit, the depth of cover, H, and the direction of
action, 6, by equation (3.16). 1In order to show that this expression
applies equally well to general shapes, it is necessary to extend it
to an elliptical section. For this purpose the following expression
for the depth, H, to any point on the elliptical conduit is quite

useful (Figure (4-6a)):
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H=H + 2 (4.53a)

where:

Hc = depth to the crown

z=b {1 -

bcosH }

2911/2 (4.53b)

[a2sin?6+b2cos

Like the circular ring, the results are compared to the corresponding
solutions from finite element analysis. The properties of the ellipse
chosen for this purpose are

Span, D = 286 inches

Semi-minor axis, b = 80.5 inches

Semi-major axis, a = 143 inches
The results for depths of cover to the crown of 4, 6 and 8 feet are
shown in Table (4-5) and agreement with results from finite element
analyses is seen to be reasonable. Therefore the expressions for the
coefficients of soil reaction proposed herein are believed to apply
reasonably well to conduits of arbitrary geometry. (In practice of
course, geometry is prescribed.)

The pre-buckling analysis for the elliptical conduit is identical
in outline to that of the circular section. Hence, a separate elaborate

presentation is not considered necessary here.

4-8.2 Stability Analysis

The radius of curvature of the elliptical section varies around
the conduit, and the expressions for the second variation of potential
energy (equation (4.32)) must be modified to reflect this. The radius

of curvature, R, at any point on the conduit is given by (39)
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1l

[a2sin26+ b2cos?g]

= a2p2
R(O) a“b 373

2
-2 L (37) (4.54)

a [l-€2c0529]3/2

where
2

™
I

2 b
—1___
(a)

a = semi-major axis
b = semi-minor axis

radius of curvature.

o
0

Hence, the second variation of potential energy for the elliptical ring

may be written as

2m 3 b2k g2
§%v = f {EE%- (l-ezcosze)g/z(; +7) 2+ n
o P 69 a[l—ezcosze]3/2
+ P(g?+20n+n?) }ag (4.55)

(As a check, it is seen that for a = b = R, equation (4.55) reduces
to equation (4.32) obtained for the circular conduit of radius, R.)

As in the circular cross-section, the only boundary requirement for
the elliptical ring is still that the virtual displacement functions be
periodic in 6. Therefore the same set of functions are admissible for
the elliptical ring as for the circular.

Hence,
)

z(e) = nz Ancosne

(4.56, a-b)

©
n(e) = } B_sinnf
n=2 "
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where rigid body displacements have been automatically deleted as ex-
plained for the circular section.

Introducing these into equation (4.55) gives

2 3 © 2
8%v = | {E%%— (l-ezcosze)g/2 Z[Ancosne-nzA cosnf ]
o n n
bzkn © o
+ 373 Z ZAnAmcosnecosmB
a[l-e2cos?6] nm
oo oo o ©o
+ P[z ZAnAmcosnecosme -2 Z ZuAansinnesinme
nm nm
oo ©o
+ g anBmSLnnGSanG]}de (4.57)

Evidently, equation (4.57) is difficult to integrate in terms of
elementary functions, hence recourse is sought to numerical integration
schemes. In particular, the trapezoid rule (38) is used. Briefly,
for a function f£(0) defined on some interval O-T say, integration by
trapezoid rule furnishes the following

L n-1

| £(®as = Az—e [£0) + £(m + 2 ] £.]+ Error terms  (4.58)

o i=1
If the uniform interval A6 is kept sufficiently small, the error terms
are relatively negligible. (The trapezoid rule is developed in detail
in the appendix.)

Then using equations (4.53) and (3.16) in (4.57) numerical
integration yields the following expression for the elliptical conduit

embedded in dense fill:
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The quadratic form is reduced to a stability matrix and the resulting
eigenvalue problem solved in much the same manner as the circular cross-

section.

4-9 COMPARISON WITH TEST RESULTS

The present study is compared in Tables (4-6) to (4-8) with results
of buckling tests by Meyerhof and Baike (1963), Watkins and Moser (40),
and Luscher (1963). While agreements with the results of Watkins and
Moser is quite good, there is considerable discrepancy with Luscher's
results. This is the special case of uniform boundary pressures and
uniform elastic support (coefficient of soil reaction) discussed in
the preceding chapter. The discrepancy may be due in part ta the fact
that Luscher's results in themselves exhibit a great deal of scatter
due probably to the rather small dimensions of the test parameters
(0.815 inch for the radius of the conduit and less than 0.75 inch for
the depth of cover). For such small scale tests, the effects of imper-
fections may be considerable.

Meyerhof and Baike's tests do not really belong to the standard
class of buried conduits. Quarter sections of a circular conduit rest-
ing on compacted sand backfill, were loaded to failure by loads applied
directly to the ends of the sheets (figure 4-11). This is a more
severe condition of loading than the case encountered in practice

in which the load is applied on the buried conduit through the fill.
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(The present study falls in the later category.) Consequently, the
later case should yield higher buckling pressures than the former.
Table (4-7) shows that this is the case, with results from the present
study (based on a minimum cover of 3 inches, and medium soil) giving
consistently higher critical pressures than those of Meyerhof and Baike.

However, in all but one case, the two results agree to within 20%.



CHAPTER 5

DISCUSSION

The present study may be broadly divided into two parts:

1) An examination of the characteristics of the coefficient of soil
reaction.

2) Pre-buckling analysis and the determination of the limits of

elastic stability.

5-1 COEFFICIENT OF SOIL REACTION

The concept of coefficient of soil reaction is used to describe
the restraint offered against the outward movement of the conduit by
the supporting fill. The significant work in this area belongs to
Meyerhof and Baike (1963) , Kloppel anq Glock (1970), and Luscher
(1963) as reviewed in Chapter 2. A comparison of the theoretical
formulation is presented in Table (4-9). As noted earlier, the above
studies considered the soil medium to be represented by an isotropic,
homogeneous, l#near continuum. Further, for a Poisson's ratio of soil,
vs, of 0.5 the expressions simplify to a constant value of coefficient

of soil reaction given by

kK = — (5.1)

where E8 is the soil modulus considered to be constant, and R the con-
duit radius.

This author believes that the assumptions inherent in equation (5.1)
are quite conservative and suggests the expressions developed in Chapter

3. These expressions result from a numerical modelling of the interaction

67



68
process by means of non-linear finite element stress analysis. A non-
linear constitutive relationship (the hyperbolic model) is used to
represent the mechanical behavior of the granular backfill. Any realis-
tic modelling of the interaction problem must include some form of
non-linear stress-strain relationship for the soil medium. Furthermore,
it should be possible to determine the material parameters by making
use of test results from conventional soil tests. The finite element
analysis on which this study is based satisfies these requirements in
that the hyperbolic parameters used in Table (3-1) are taken from the
results of triaxial tests by Duncan and associates (1977). For this
reason, the hyperbolic constitutive relationship is clearly an improve-
ment over the linear-elastic model upon which equation (5.1) is based.
Furthermore, an analytical modelling of compaction and construction
processes is an important feature of the finite element analysis used
in the present study. Special elements are adopted to represent the
behavior at the interface between the backfill and the structure. The
objective of developing a simple methodology applicable to everyday
problems in soil-steel structures, is accomplished by means of the
concept of dimensional analysis. By such procedure, the problem sim-
plifies to parameters that are more readily amenable. More importantly,
such simplification in no way precludes a thorough and comprehensive
treatment of the problem. While the original finite element analysis
incorporates the mechanical non-linearities of the soil-structure
system, the final expressions for the coefficient of soil reaction
contain only such simple parameters as the depth of filling, the span
of the conduit, and the direction of action == all of which can be
readily defined without any ambiguity.

Experimental determinationsof the coefficient of soil reaction
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reported in the literature, are very limited in scope. Consistent with
Marston-Spangler theory, Watkins (7) conducted model tests on flexible
conduits in sand backfill and determined the coefficient of soil reac-
tion at the springline. Meyerhof and Baike (1963) performed tests on
quarter sections of circular culverts embedded in sand backfill and
obtained "the average values of the soil pressure, radial deflection,
and coefficient of soil reaction by dividing the total volume under the
pressure and deflection curves by the area of the sheets in contact
with the sand."

A graphical summary of the characteristics of the coefficient of
soil reaction is given in Figures (3-7) and (3-8) and Tables (3-2)
to (3-35). From these, the following observations appear valid:

1) The coefficient of soil reaction is not constant around the
conduit as equation (5.1) suggests. This finding was verified experi-
mentally by Meyerhof and Baike who noted that "the observed coefficients
of soil reaction varied considerably arouna the sheets." It is observed
in the present study that for a given conduit, the coefficient of
reaction of a well-compacted granular backfill varies with the depth
of filling and the direction of action, attaining a maximum value at the
invert and a minimum at the crown of the conduit. The influence of
depth on the coefficient of soil reaction was recognized by Terzaghi
(1955) who postulated that the coefficient of horizontal soil reaction
for sands, was linearly proportional to the depth of the sand backfill,

and proposed the following equation

(5.2)

wWIN

kn = ™

where n = constant of horizontal subgrade reaction (tons per square
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foot per foot); Z = depth at which k, is evaluated (feet), and B =

h
width of pile (feet).

Proposed values of the coefficient of soil reaction based on load
tests by Terzaghi are given in Table (4-10). However, a direct infer-
ence is impossible from these data since they refer exclusively to
footings, beams and piles.

2) Within the range of soil displacements encountered in this study
(less than 0.1 inch in all cases), the magnitude of soil displacements
exerts no influence on the coefficient of soil reaction around the con-
duit. This is indicative of a linear load-deflection relationship
(Figure (3-9)). However, the coefficient of soil reaction is influenced
by changes in the direction of soil displacements. This behavior can be
inferred from the work of Terzaghi (1955).

3) The coefficient of soil reaction is very sensitive to changes
in the relative density of the backfill. This fact is clearly borne
out by Tables (3-2) to (3-35) which show that knincreases with the
relative density of the backfill.

4) The coefficient of soil reaction is more sensitive to changes
in the depth of cover when the depth ratio (the ratio of the depth

of cover to the crown, to the span of the conduit) is in the neighbor-

hood of 0.1 to 0.6.

5-2 ANALYSIS AND STABILITY

The pre-buckling deflections, moments and thrusts are summarized
in Figures (4-2) and (4-3) and compared with corresponding solutions
from the finite element method in Tables (4-1) to (4-3). With the excep-
tion of the elliptical sections, the two sets of results (present study

versus finite element solution) show remarkable agreement. In the case
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of the elliptical section, there is some discrepancy in the values of
the moments at the haunches. This discrepancy may be due to the dif-
ferences in the geometry of the sections used in the two solutions.
The elliptical section considered in the finite element solution is an
actual model of the Adelaide Creek Culvert in Canada, and comprises
sections of circular sheets fabricated to form an approximate ellipse.
In contrast, a perfectly elliptical section is considered in this study.

The study of stability is involved with the determination of the
critical load (or stress) for the soil-steel structure. A detailed
review of the literature on this subject is given by Leonard and Setkar
(1970). As noted earlier, all theories with the exception of Kloppel
and Glock, assume uniform radial boundary pressure around the conduit
wall. To the author's knowledge, the present study is the first
realistic attempt to consider non-uniform £ill support (coefficient of
soil reaction) in addition to non-uniform boundary pressures.

A summary of the theoretical buckling pressures is given in Figures
(4~6b) to (4-9) and Tables (4-1l1l) to (4-14). 1In Figure (4-6a) and Table
(4-11) comparison is made with the results of Luscher (1960), Meyerhof
and Baike (1963), Cheney (41), and Chelapati and Allgood (42). To
illustrate the importance of interaction with the backfill, the critical
stress for a non-supported circular ring (Pcr = 3e1/R%) is also plotted
on the same axes (Figure (4-6a)). From such data, the following obser-
vations may be made:

1) Providing even a fair amount of elastic support increases the
critical stress by an order of magnitude. The case plotted in Figure
(4-6a) is for a circular conduit of diameter 120 inches, buried to a
depth of 120 inches in a £fill of Es = 20,000 psi, and.ﬁé = 0.4. The

results show that the critical stress for the unsupported ring is
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300 psi at EI/R3 of 100. This ﬁumps to 1371 psi and 2380 psi for the
same flexibility factor (EI/R}®) when the ring is embedded respectively
in a medium and a dense backfill. Evidently the substantial increase
in the load carrying capacity of the structure is derived from its
interaction with the surrounding fill. Accordingly the performance
limit of the structure might be expected to be first reached at the
point where it is least supported. Such expectation is verified from
the plots of both the pre-buckling deflection (figure (4-2)) and the
"relative" deflections during buckling (Figure (4-10)). (The relative
nature of the deflections during buckling is emphasized because the
eigenvectors satisfying a particular eigenvalue can only be determined
to a multiplicative degree.) From these plots, it is clear that the
maximum deflections occur at the crown of the conduit (point of least
support) suggesting that instability would first initiate at that
point.

2) At small values of the coefficient of soil reaction and the
flexural rigidity of the conduit wall (EI), the conduit may fail by
buckling. For larger values of these, the conduit may fail by yielding
of the section. A similar conclusion was reached by Meyerhof and Baike
(1963). As an illustration, the critical stress for the case considered
in Figure (4-6a) is only 101 psi for EI/R® = 1.0 when the backfill is
of medium relative density. With an increase in the relative density
(hence an increase in K) and the stiffness of the conduit wall (say
EI/R® = 100, dense soil), the critical stress is 2380 psi. The thrust
corresponding to this (N = PR) is 142800 1lb/in and the corresponding
thrust stress, N/A, (the cross-sectional areas of these thin-walled
structures are much less than unity in general) is well into the in-

elastic range. To extend the theory to stresses in the inelastic
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range, a number of approximate solutions are available. Meyerhof and
Baike (1963) recommended the following equation, due originally to

Timoshenko (36)

£ = —X (5.3)

where:
fe = critical compressive (ring buckling) stress
Fy = yield stress of conduit material
cr = buckling stress obtained from analysis.

3) The critical stress, like the coefficient of soil reaction, is

more sensitive to the depth of cover when the depth ratio

(@ = depth to the crown )
span of the conduit

is less than or equal to 0.6 (Figure (4-8). This behavior has been
verified experimentally by Donnellan (43), and Allgood (44). It may
be explained by the fact that the thrust due to live load increases
due to reduced arching as the depth of cover inchreases (Bakt, 1970).

4) Elliptical conduits have twice as much tendency to buckle as
circular conduits of equal span and rise, under identical soil conditions.

This tendency varies inversely with the aspect ratio

semi-minor axis,
semi-major axis’

Figure (4-9)). Results similar to these have been presented by Kloppel
and Glock (1970) (buckling load of an elliptical conduit is half that

of the circular conduit), and Marlowe and Brogan (45) (buckling load
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decreases with an increase in the aspect ratio). However, the later
study did not consider soil-supported conduits, and a more direct com-
parison is not possible.

The direct correlation between the buckling nressure of ellipti-
cal conduits and the radius of curvature at the crown, suggested by the
OHBDC (equation 2.25) is not verified in the present study. For the
two cases considered, the buckling pressure is 85 psi for a crown radius
of 300 inches (depth to the crown of 48 inches and span of 300 inches)
but increases to 108 psi for the same crown radius of 300 inches with
depth to the crown of 48 inches and span of 250 inches. Clearly the
critical pressure is not governed exclusively by the radius of curvature
at the crown.

. 5) Without exception, buckling strength increases with the rela-
tive density of the backfill. This fact is clearly borne out by all
the results discussed herein. Also, for a given conduit, the pre-

buckling deflections and the relative deflections during buckling de-

crease with increasing relative density.

CONCLUS IONS

The present study has been conducted in the following manner:

a) Examine the parameters governing the coefficient of soil reac-
tion, kn' normal to the surface of the conduit wall as well as the
coefficient, ks' tangéntial to the wall surface, and develop simple
formulas for their evaluation.

b) Use these formulas in the study of both the pre-buckling and

buckling behavior of the conduits.
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On the basis of the study reported herein, the following conclud-
ing remarks may be made:

1) The coefficient of soil reaction is sensitive to the relative
density of the soil, the depth of fill, and the direction of action.

2) Regarding pre-buckling and buckling analyses, the theories
of variational calculus provide a useful alternative where solutions
based on governing differential equations present difficulties. 1In
particular, for the special case of uniform boundary pressures and
coefficient of soil reaction, variational calculus yields identical
solution to the classical approach.

3) The buckling pressure of a buried conduit increases with the
flexural rigidity of the conduit wall. However, in the practical
range, the buckling pressure does not increase in the same order of
magnitude as an increase in the flexural rigidity.

4) A good portion of the strength of buried conduits is derived
from its interaction with the surrounding fill. To this end, the quality
and state of compaction of the fill are critical. Without exception,
the critical pressure increases with the relative density of the fill.

5) For small values of the coefficient of soil reaction and the
flexural‘rigidity of the conduit wall, a moderately sized conduit will
fail by buckling. For large values of these quantities the conduit will
fail by yielding of the section.

6) The critical pressure is more sensitive to the depth of filling
when the depth to the crown is at most one-half the span of the conduit.
7) The shape of the conduit has an influence on its stability.

In particular, conduits of elliptical cross-section have twice as much

tendency to buckle as circular conduits.
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TABLE 3-1: HYPERBOLIC PARAMETERS USED

Parameter Symbol Dense Medium
Angle of Internal Friction ¢ 45° 45°
Friction Angle A 23° 23°
Failure Ratio Rf 0.92 0.85
Failure Ratio Rfs 0.834 0.834
Modulus Parameter K 3100 1200
Modulus Parameter KI 43070 43070
Modulus Number n 0.52 0.48
Modulus Number n_ 0.60 0.60
Poisson's Number G 0.34 0.34
Poisson's Ratio Number d 75.9 11.7
Poisson's Ratio Number F 0.12 0.23
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TABLE 3-2: RESULTS FOR P = 33.3#, Hc = 4 AND DIAMETER=100 INCHES
Interface Soil AX Ay | AN| oyl k_
Element Node (inch) (inch) (inch) (psi) (#/ind)
1 59 - -.00026 .00026 .247 950.0
2 58 -.00016818 -.00025043 .0002901 .247 851.4
3 60 .00016492 -.00025064 .0002893 .247 854.0
4 77 -.00031227 -.00019012 .0003373 .249 738.3
5 78 .00030938 -.00019079 .0003361 .252 750.0
6 80 -.00042372 -.000068541 .000383 .235 613.5
7 82 .00042633 -.000064530 .0003828 .240 627.0
8 84 -.00049414 .00011161 .0004354 .217 498.4
9 86 .00049972 .00012581 .0004364 .214 490.4
10 110 -.00052079 .00033654 .00052079 .198  380.3
11 114 .00051877 .00033176 .00051877 .182 351.0
14 148 -.00050685 .00058760 .0006636 .160 241.1
15 153 .00050623 .00058379 .0006618 .161 243.3
18 186 -.00045735 .00082611 .0008555 .170 198.7
19 196 .00045952 .00082343 .0008557 171  199.8
22 233 -.00035016 .0010899 .0010875 .157 144.4
23 234 .00035012 .0010894 .0010872 .156 143.5
26 237 -.00019972 .0012751 .0012744 .152 119.3
27 238 .0001976 .0012747 .0012733 .153 120.2
30 241 -.0000013188 .00013416 .0013416 .100 74.5
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TABLE 3-3: RESULTS FOR P = 33.3#, Hc = 6.4” AND DIAMETER=100 INCHES

Interface Soil Ax Ay | AN | I_UNI k
Element Node (inch) (inch) (inch) (#1 in?) (#/ in?)

1 59 - -.0003216 .0003216 .320 995
2 58 -.00017306 -.00027905 .0003188 .285 894
3 60 .00017284 -.00027924 .0003191 .285 893
4 77 -.0003271 -.00021404 .0003654 .287 785.4
5 78 .00032634 -.00021465 .0003654 .288 788.3
6 80 -.0004434 -.00008808 .0004104 .269 655.5
7 82 .00044529 -.000086 .0004107 .269 655
8 84 -.00051287 .000090983 .0004596 .246 535.2
9 86 .00051367 .000092635 .0004599 .244 530.6
10 110 -.00053657 .00029474 .00053657 .228 425
11 114 .00053719 .00029502 .00053719 .213 396.6
14 148 ~-.00052955 .00053449 .0006687 .189 282.7
15 153 .00053232 .00053607 .0006719 .189 281.3
18 186 -.00047981 .00075969 .0008346 .201 240.8
19 196 .00048761 .00076159 .000842 .200 237.5
22 233 -.00036693 .001003 .001025 .181 176.6
23 234 .00037252 .0010058 .0010327 .181 175.3
26 237 -.00020617 .0011529 .0011602 .179 154.3
27 238 .00020833 .0011563 .0011641 .179 154

30 241 - .0012062 .0012062 ,116 .96.2
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83

RESULTS FOR P=300%#, Hc=6.4' AND DIAMETER=200 INCHES

Interface Soil Ax Ay | AN | |0'N | k.
Element Node (inch) (inch) (inch) (psi) (# /in®)

1 59 .000050102 -.0039209 .0039209 2.55 650.36
2 58 -.0027646 -.0040328 .0046846 2.43 518.72
3 60 .0028501 -.0040290 .0047098 2.42 513.82
4 77 -.0052202 -.0028986 .0054312 2.34 430.85
5 78 .0052075 -.0029261 .0054257 2.31 425.73
6 80 -.0071361 -.00066596 .0061539 2.18 354.25
7 82 .0071212 -.00072177 .0061807 2.16 349.48
8 84 -.0080793 .0023202 .006952 1.93 277.09
9 86 .0079864 .0020641 .0069564 1.92 276.01
10 110 -.0082896 .0058275 .0082896 1.69 203.87
11 114 .0082773 .0057982 .0082773 1.58 190.88
14 148 -.0077296 .0096365 .0115511 1.45 125.53
15 153 .0077142 .0097402 .0116468 1.47 126.21
18 186 -.0071128 .013418 .0136414 1.41 103.36
19 196 .0070769 .013460 .0136375 1.42 104.13
22 233 -.0058268 .017595 .0176607 1.34 75.87
23 234 .--56883 .017614 .0175945 1.32 75.02
26 237 -.0035325 .021208 .0212621 1.26 59.26
27 238 .00334468 .021112 .0211125 1.27 60.15
30 241 -.000093378 .022550 .02255 1.18 52.33
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RESULTS FOR P=300
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#

’ Hcss‘, AND DIAMETER=200 INCHES

Interface Soil Ax Ay | an| ]GNI k_
Element Node (inch) (inch)
1l 59 .000033532 -.0040658 .0040658 2.65 651.78
2 58 -.0027698 -.0041634 .0048188 2.54 527.105
3 60 .0028226 -.0041683 .0048402 2.53 522.70
4 77 -.0052264 .0030372 .0055272 2.46 445.08
5 78 .0051903 -.003069 .0055285 2.43 439.54
6 80 -.0071199 -.00083707 .0062545 2.30 367.73
7 82 .0070996 -.00088093 .00626 2.27 362.62
8 84 -.0080635 .0021158 .0070165 2.04 290.74
9 86 .0079921 .0019241 .0070043 2.02 288.39
10 110 -.0082943 .0055483 .0082943 1.80 217.02
11 114 .008264 .0055223 .008264 1.67 202.08
14 148 -.0078180 .0092910 .0103061 1.56 151.37
15 153 .0077744 .0093617 .0102861 1.57 152.63
18 186 -.0071755 .012966  .0134266 1.52 113.21
19 196 .0071248 .012989  .0133997 1.52 113.44
22 233 -.0059106 .017056 .0172719 1.45 83.95
23 234 .0057976 .017079  .0172247 1.43 83.02
26 237 -.0035282 .020384 .0204755 1.37 66.91
27 238 .0033798 .020353 .0204008 1.37 67.154
30 241 -.000086828 .021534 .021534 1.28 59.44
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TABLE 3-6: RESULTS FOR P’300#, HC=11.73’, AND DIAMETER=200 INCHES
Interface Soil Ax Ay | AN | lo‘Nl k_
Element Node (inch) (inch)
1 59 .000047599 -.0043184 .0043184 2.86 662.28
2 58 -.0027249 -.0044086 .0050321 2.75 546.49
3 60 .0028077 -.0044055 .0050593 2.74 541.58
4 77 -.0051652 -.0033284 .0057313 2.66 464.12
5 78 .0052011 -.0033399 .0057651 2.65 459.61
6 80 -.0070506 -.0012136 .0064147 . 2.52 392.85
7 82 .0070999 -.0012209 .0064595 2.51 388.58
8 84 -.008034 .0016336 .0071402 2.27 317.92
9 86 .0080629 .0015495 .0068433 2.24 327.33
10 110 -.0082767 .0049080 .0082767 2.55 308.09
11 114 .0083615 .0049140 .0083615 2.55 304.97
14 148 -.0079099 .0085114 .0101535 1.75 172.35
15 153 .0080362 .0085804 .0102947 1.75 169.99
18 186 -.0072285 .012028 .0129191 1.78 137.781
19 196 .0073878 .012080 .0130778 1.77 135.344
22 233 -.0059498 .015889 .0163516 1.66 101.52
23 234 .0060773 .015957 .0164808 1.64 99.51
26 237 -.0033962 .018591 .0187297 l1.60 85.43
27 238 .0034842 .018646 .0188091 1.58 84.00
30 241 .000023878 .019409 .019409 1.50 77.28
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TABLE 3-7: RESULTS FOR pssoo#, nC=4’, AND DIAMETER=300 INCHES
Interface Soil AX Ay | AN | IONI k.

Element Node  (inch) (inch) (inch)  (psi) (*/ in?%)
1 59  .00017183 -10045713 0.0045713 2.19 479.10

2 58 -.0035477 -.0047731 .005636 2.13 377.94

3 60 .0037625 -.0047416 .005672 2.09 368.46

4 77 -.0069716 -.0031147 .0066176 2.01 303.73

5 78 .0068574 -.0032158 .0066323 1.94 292.51

6 80 -.0090851 -.00026326 .0075047 1.85 246.51

7 82 .0087169 -.00060459  .0074075 1.86 251.10

8 84 -.010251 .0039504  .0074309 1.75 235.5

9 86 .010296 .0041711 .007358 1.74 234.0
10 110 -.010311 .0090090  .0085285 1.62 189.95
11 114 .010116 .0082438  .0085032 1.61 189.34
14 148 -.0087211 .014442 .012757 1.07 83.87
15 153 .0085260 .014538  .0126012 1.18 93.64
18 186 -.0078839 .019924 .0180892 0.923 51.02
19 196 .0074904 .020259 .017968 0.973 54.15
22 233 -.0062997 .026951  .0255067 0.831 32.58
23 234 .0059800 0.027372 .025659 0.844 32.89
26 237 -.0050464 .036875 .0366296 0.740 20.20
27 238 .0045887 .03694 .03655 0.757 20.71
30 241 -.0002251 .042842 0.042842 0.603 14.07
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TABLE 3-8: RESULTS FOR p-loo#, ac=6.39‘, AND DIAMETER=300 INCHES
Interface Soil Ax Ay |an| IG'N] k,
Element Node (inch) (inch) (inch) (psi) (1b/in?)
1l 59 .0000309 -.001634 .001634 0.766 468.79
2 58 -.0012128 -.0016917 .00198368 0.755 380.61
3 60 .0012511 -.0016902 .0019940869 0.744 373.103
4 77 -.0023234 -.0011561 .002300965 0.724 314.651
5 78 .0022441 -.0011992 .02289222 0.717 313.207
6 80 -.0031401 -.00013816 .0026216027 0.675 257.476
7 82 .0031361 -.00013995 .0026194187 0.680 259.60
8 84 -.0035277 .0012691 .0027530 0.621 225,57
9 86 .0035245 .0012464 .0026817 0.625 233.06
10 110 -.00296287 .0012691 0.00296287 0.591 199.47
11 114 .00296684 .0012464 0.00296684 0.574 193.47
14 148 -.0032068 .0046003 .00447142 0.381 85.21
15 153 .0032035 .0045885 .00446463 0.390 87.35
18 186 -.0028777 .0064217 .0061026888 0.402 65.87
19 196 .0027696 .0064494 .0060315157 0.442 73.282
22 233 -.0023757 .0085633 .0082912195 0.401 48.364
23 234 .0022859 .0085656 .0082733343 0.407 49.194
26 237 -.0016466 .011007 .0109771065 0.384 34.982
27 238 .0015125 .010928 .0108605339 0.399 36.739
30 241 -.000065664 .012077 .012077 0.324 26.828
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RESULTS FOR P=300
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#

, Hc=6.39’ AND DIAMETER=300 INCHES

Interface Soil Ax Ay | an| o N| k

Element Node (inch) (inch) (inch) (psi) (#/in?)
1 59 .00005462 -.0048582 .0048582 2.306 474.66
2 58 -.003704 -.0050239 .0050751838 2.235 440.38
3 60 .0037608 ~-.0050446 .0051356005 2.204 429.161
4 77  -.0070803 -.0033983 .0069109784 2.114 305.89
5 78 .0068201 -.0035655 .0068932962 2.107 305.66
6 80  -.0095874 -.00033132 .007951114 1.965 247.135
7 82 .0095557 =-.00035528 .007939552 1.99 250.644
8 84  -.0107767 .0039203 .007465 1.701  225.4
9 86 .010775 .0038635 .0074618 1.664  223.0
10 110  -.0107767 .0087567 .0107767 1.701 188.21
11 114 .0107751 .0081836 .0107751 1.664 183.79
14 148  -.0098827 .0140118 .0137288906 1.152  83.91
15 153 .009884 .0138563 .0136820748 1.183 86.463
18 186  -.0088131 .0194707 .018574538 1.147 61.751
19 196 .0084133 .0193734 .0181939016 1.219  67.00
22 233 -.0071488 .0257293 .0250174002 1.113  44.489
23 234 .0068133  0.255476 .0246731998 1.136 46.042
26 237  -.0050035 .033097 .0329393195 1.075 32.636
27 238 .0045219 .032668 .0324664502 1.106 34.066
30 241 -.000226644 .036314 .036314 0.950  26.16
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#

, Hc=6.39’, AND DIAMETER=300 INCHES

Interface Soil Ax Ay | An| ]UN |k,

Element. Node  (inch) (inch) (inch) (psi) (#/in?)
1 59 .0000435  -.0080794 .0080794 3.906 483.45
2 58  -.0062038 ~-.0049478 .0098632098 3.765 381.72
3 60 .0062192 -.0083615 .0098740976 3.724 377.148
4 77  -.0117905 =-.0056169 .0114744496  3.55 309.383
5 78 .011356 -.0058769 .0114294013 3.557 311.215
6 80  -.0158648 -.00056265 .0131607375 3.295 250.37
7 82 .0158311 -.00055436 .0131334736 3.340 254.312
8 84  -.0178266 .0064599 .0149537753 2.851 225.4
9 86 .0178151 .0064732 .014942838  2.804 227.0
10 110  -.0181039 .0144563 .0181039 3.452 190.65
11 114 .0180509 .0137286 .0180599 3.387 187.65
14 148 -.016414 .0232855 .0228062569 1.942 85.152
15 153 .0163736 .0229394 .0226608833 1.971 86.978
18 186  -.0145946 .0323827 .0308413529 1.905 61.768
19 196 .01395948 .0321004 .0301615983 1.985 65.812
22 233 -.011807 .0426376 .0414345235 1.821 43.949
23 234 .0111635 .0423886 .0408863264 1.852 45.296
26 237  -.0083913 .055433 .0553129701 1.752 31.674
27 238 .007515 .054586 .0542375847 1.779 32.80
30 241 -.000403744 .061116 .061116 1.550 25.36
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#

, cha‘, AND DIAMETER=300 INCHES

Interface Soil

Ax

Ay

| aw|

|9 |

k

n
Element Node (inch) (inch) (inch)  (psi) (#/ in%)
1 59 .000028014  -.0016759 .0016759 .782 466.61
2 58 -.0011882  -.0017386 .0020206 .774 383.05
3 60 .0012209  -.0017410 .002033 .767 377.27
4 77 -.002302  -.0012144 .0023354 .742 317.72
5 78 .0022683  -.0012572 .0023501 .729  310.19
6 80 -.0030369 -.00028237 .0026228 .713  271.84
7 82 .0029669  -.0037272 .0026192 .721  275.29
8 84 -.0034626 .0010872 .0026589 .634  238.44
9 86 .0034853 .0011289 .0026835 .636 237

10 110 -.0026689 .0026790 .0026689 .595  223.0

11 114 .0022137 .0025606 .0022137 .493 222.9
14 148 -.0031627 .0043421 .0043458  .435 100.10
15 153 .0031299 .0043814 .0043306 .450 103.91
18 186 -.0028802 .006077 .0059026 .447  75.73
19 196 .0028551 .0061103 .0059013 .471  79.81
22 233 -.0023384 .0081602 .0079761 .434  54.41
23 234 .002363 .0082352 .0080513 .445  55.27
26 237 -.0016453 .010541 .0105334 .404  38.35
27 238 .0015679 .010391 .0104413 .421  40.31
30 241 -.000030801 .011796 .011796 .328  27.81
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#

’ Hcse‘, AND DIAMETER=300 INCHES

Interface Soil Ax Ay | AN ko N! k

Element Node (inch) (inch) (inch)  (psi) (#/in%)
1 59 .000084073  =-.0050273 .0050273 2.37 471.43
2 58 -.0035645  -.0052154 .0060613 2.32  382.75
3 60 .0036625  -.0052224 .0060984 2.29  375.5
4 77 -.0069058  -.0036425 .0070059 2.23  318.3
5 78 .0068049  -.0037708 .0070505 2.18  309.2
6 80 -.0091104 -.00084629 .007838 2.08 265.37
7 82 .0089003  -.0011174 .0078572 2.09 266.00
8 84 -.010387 .0032627 .0078481 1.86 236.68
9 86 .010455 .0033876  .008137 1.87 233.35
10 110 -.0076783 .0080383 .0076783 1.61  209.68
11 114 .0072312 .0076828 .0072312 1.52 210.20
14 148 -.0094873 .013028 .0130487 1.35 103.46
15 153 .0093885 .013146 .0129915 1.42 109.10
18 186 -.0086398 .018235 .0177079 1.26  71.15
19 196 .0085646 .018332 .0177041 1.30  73.43
22 233 -.0070148 .024482 .0239295 1.17  48.89
23 234 .0070887 .024707 .024155 1.18  48.85
26 237 -.0049359 .031624 .0316014 1.10  34.81
27 238 .0047038 .031175 .0311026 1.11  35.69
30 241  -.000092391 .03539  .035390 .995  28.12
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RESULTS FOR P=500

#

, Hcss‘, AND DIAMETER=300 INCHES

Interface Soil Ax Ay |an| lo ‘NI k
Element Node (inch) (inch) (inch)  (psi) (#/in?)
1 59 .00013998  -.0083794 .008794  3.93 469
2 58 -.0059410 -.008693 .0101037 3.86 382.04
3 60 .0061041 -.0087048 .0101672 3.82 375.72
4 77 -.011510  -.0060718 .0116789 3.70 316.81
5 78 .011342  -.0062855 .0117491 3.64 309.81
6 80 -.015185  -.0014115 .0131179 3.42 260.71
7 82 .014834  -.0018633 .0130887 3.46 264.35
8 84 -.017313 .0054365 .014219 3.35 235.6
9 86 .017426 .0056447 .0141525 3.34 236.0
10 110 -.0147868 .013396 .0147868 3.09 208.97
11 114 .0147868 .012803 .0148279 3.10 209.07
14 148 -.015814 .021711  .021749 2.25 103.45
15 153 .015649 .021908  .021653 2.35 108.53
18 186 .014401 .030389  .029513 2.07 70.14
19 196 .014275 .030553 .029507 2.13 72.19
22 233 -.011692 .04080  .03988 1.90 47.64
23 234 .0011815 .041177 .0402576 1.92 47.69
26 237 -,0082268 .052705  .052603 2.74 52.08
27 238 .0078396 .051956 .051834 2.96 57.10
30 241  -.00015426 .058976  .058976 1.61  27.3
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TABLE 3-14: RESULTS FOR P=300#, Hc=11.73‘, AND DIAMETER=300 INCHES

Interface Soil Ax Ay |An| o Nl k
Element Node (inch) (inch) (inch)  (psi) (#/irf)
1 59 .000042057  -.0053059 -.0053059 2.5 471.17
2 58 -.0035472  -.0054881 .0063171 2.45 387.83
3 60 .0035794  -.0055009 .0063367 2.43 383.48
4 77 -.0068180  -.0039850 .0073091 2.38 325.62
5 78 .0067174  -.0041046 .0072668 2.35 323.39
6 80 -.0090511  -.0012555 .0080552 2.23 276.84
7 82 .0088860  -.0014689 .0080601 2.26 280.39
8 84 -.010345 .0027247 .0089978 2.03  225.61
9 86 .010372 .0027988 .008998 2.03  225.60
10 110 -.0090825 .0072660 .0090825 1.98  218.5
11 114 .0091030  .007048 .0091030 1.97  216.41
14 148 -.0097181 .012024 .0129576 1.55 119.62
15 153 .0096215 .012111 .0128935 1.59 123.32
18 186 -.0088170 .016958 .0171 1.46  85.38
19 196 .0087444 .016963 .0170456 1.49  87.41
22 233 -.0073139 .022869  .022797 1.36  59.66
23 234 .0073027 .022891 .0228111 1.35  59.18
26 237 -.0048773 .029165 .0292449 1.28  43.77
27 238 .0047265 .028960 .0290025 1.29  44.48

30 241 .000076984 .031616 .031616 1.19 37.64
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TABLE 3-15: RESULTS FOR P=500#, Hc=ll.73', AND DIAMETER=300 INCHES

Interface Soil Ax oy | An| |gN | k_

Element Node (inch) (inch) (inch) (psi) (#/ina)
1l 59 .000069958 -.0088437 .0°88437 4.51 509.97
2 58 -.005912 -.0091473 .0105289 4.09 388.45
3 60 .0059657 -.0091687 .010564 4.05 383.38
4 77 -.011364 -.0066422 .0109489 3.95 360.77
5 78 .011196 -.0068416 .0110603 3.92 354.42
6 80 -.015086 -.0020931 .013309 3.69 277.26
7 82 .014810 -.0024489 .0134166 3.73 278.01
8 84 -.017243 .0045403 .0149968 3.36 224.05
9 86 .017287 .0046636 .015 3.37 224.65
10 110 -.0146103 .013371 .0146103 3.15 215.6
11 114 .0146906 .011746 .0146906 3.13 213.06
14 148 -.016198 .020039 .0208844 2.57 123.06
15 153 .016037 .020184 .0214894 2.63 122.39
18 186 -.014696 .028263 .0285022 2.40 84.2
19 196 .014574 .028271 .0284078 2.44 85.89
22 233 -.012190 .038114 .0380001 2.23 58.68
23 234 .012171 .038151 .0386184 2.20 57.87
26 237 -.0081290 .048607 .0487402 3.11 63.81
27 238 .0078773 .048265 .0483374 3.09 63.93

30 241 -.00012855 .052691 .052691 1.93 36.63
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TABLE 3-16: RESULTS FOR P=100#, Hc=12.64', AND DIAMETER=300 INCHES
Interface Soil Ax Ay |AN| |0 N! k
Element Node (inch) (inch) (inch) (psi) (#/ in®)
1 59 .000022804 ~-.0017898 .0017898 .845 472.12
2 58 -.0011797 ~-.0018350 .002109736 .833  394.836
3 60 .0012097 -.0018382 .00212205 .825  388.775
4 77 -.002250 -.0013442 .0024099975 .806 334.44
5 78 .0022055 =-.0013855 .0024172534 .803 332.20
6 80 -.0030602 -.00039592 .0027084697 .769 283.92
7 82 .0030718 -.00039702 .0027185009 .781 287.29
8 84 -.0034731 .000391435 .0030205647 .692  229.096
9 86 .0034867 .00090934 .0030350473 .627  223.061
10 110 -.0035311 .0023952 .0035311 0.783 221.87
11 114 .0035638 .0023441 .0035638 .0784 220.00
14 148 -.0033129 .0040112 .0043902841 .490 111.61
15 153 .0033684 .0039849 .0044349406 .496 111.84
18 186 -.0029663 .0056637 .0057288264 .526 91.82
19 196 .0029666 .0056702 .0057328898 .540 94.193
22 233 -.0024646 .0075662 .0075698399 ..508 67.108
23 234 .0024891 .0075599 .0075791439 .514 67.82
26 237 -.0015874 .0094846 .0095106993 .502 52.783
27 238 .0015859 .0094734 .0094998089 .485 51.05
30 241 -.000061849 .010179 .010179 .414 40.67



96

TABLE 3-17: RESULTS FOR P=300#, Hc=12.64‘, AND DIAMETER=300 INCHES

Interface Soil Ax Ay | an| quI k

Element Node (inch) (inch) (inch)  (psi) (#/in?)
1 59 .000053251 -.0053675 .0053675 2.515 468.56
2 58 -.0035984 -.0055206 .0063582 2.443 384.23
3 60 .0036624 -.0055303 .0063903 2.435 381.05
4 77 -.0068433 -.0040479 .0072941 2.346 321.63
5 78 .0067285 -.0041674 .0073291  2.343 319.68
6 80 -.009395 -.00119198 .0083096 2.219 267.04
7 82 .0094021 -.00117974 .0083 2.241 270.00
8 84 -.0106951 .00276945 .0083709 1.982 236.77
9 86 .0107088 .00278804 .0083479 1.957 234.43
10 110 -.0084878 .0072697 .0084878 1.866 219.843
11 114 .0083183 .0071629 .0083183 1.850 222.399
14 148 -.0104319 .0121985 .0136905 1.484 106.40
15 153 .010563 .0121212 .013792 1.483 107.53
18 186 -.0092295 .0171087 .0175217 1.536 87.83
19 196 .0091387 .0170832 .0174344 1.539 ,  88.27
22 233 -.0075166 .0225502 .0226617 1.463 64.56
23 234 .0075973 .0226119  .0227587 1.477 64.90
26 237 -.0047871 .0280616  .0281672 1.426 50.63
27 238 .0047553 .0279904 .0280822 1.415 50.39

30 241 -.000085927 .029827 .029827 1.241 41.61
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TABLE 3-18: RESULTS FOR P-SOO#, Hc=12.64', AND DIAMETER=300 INCHES

Interface Soil Ax Ay | AN| IGNl n

Element Node (inch) (inch) (inch) (psi) (#/ina)
1 59 .000066903 =-.0089462 .0089462 4.235 473.39
2 58 =-.0060072 -.0091764 .0105843 4.103 387.65
3 60 .00608 -.009196 .0106265 4.095 385.36
4 77 -.0114235 -.0067075 .0121413 3.926 323.36
5 78 .0112138 =-.0069029 .0121941 3.933 322.53
6 80 -.0155825 -.00197999 .0137681 3.719 270.12
7 82 .0156176 =-.00194048 .013774 3.751 272.32
8 84 -,0177317 .00458435 .0154477 3.312 214.4
9 86 .0177871  .00462614 .0154864 3.277 211.61
10 110 -.0141202 .0120369 .0181934 2.901 205.45
11 114 .0125235 .0119156 .0184068 2.59 206.81
14 148 -.0173477 .0202857 .0227669 2.504 109.98
15 153 .0176041 .0201032 .0229547 2.493 108.61
18 186 -.0152567 .0284197 .029048 2.546 87.65
19 196 .0152182 .0283352 .0289669 2.549 88.00
22 233 -.0124199 .0374982 .0376343 2.427 64.49
23 234 .0125928 .0374689 .0377151 2.444 64.80
26 237 -.0079349 .0468046 .0469662 2.336 49.74
27 238 .0079419 .0466114 .0467845 2.324 49.67

30 241 -.000071623 .049955 .049955 2.053 41.097



TABLE 3-19:

RESULTS FOR P=100
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#

, nc=2o.36’, AND DIAMETER=300 INCHES

Interface Soil Ax Ay |AN| I%ql k

Element Node (inch) (inch) (inch) (psi) (1/in%)
1 59 .000018863 -.0018853 .0018853 .914 484.8
2 58 -.0011380 -.0019258 .0021830108 .904 414.11
3 60 .001164 -.0019226 .002188197 .896 409.47
4 77 -.0021735 -.001472 .0024684243 .880 356.503
5 78 .0021481 -.0014966 .0024733963 .878 354.98
6 80 -.0029563 -.00058928 .002738067 .851 310.803
7 82 .0029716 -.00057688 .0027431564 .859 313.143
8 84 -.0033793 .00062751 .003019994 .776 256.954
9 86 .0033962 .00064060 .0030320219 .766 252.637
10 110 -.0034615 .0020021 .0034615 .709 245.82
11 114 .0035135 .0020015 .0035135 .604 241.908
14 148 ~-.0033386 .0035291 .0042657557 .584 136.90
15 153 .0033989 .0035288 .0043230051 .578 133.703
18 186 -.0030254 .0050853 .0054366643 .635 116.80
19 196 .0030565 .0051098 .0054619244 .624 114.245
22 233 -.0025392 .0068367 .0070235108 .602 85.172
23 234 .0025933 .0068732 .0070848391 .615 86.81
26 237 -.0015169 .0082832 .0083465392 .576 69.011
27 238 .0015604 .0083363 .0084104825 .586 69.68
30 241 -.000011195 .0086433 .0086433 .503 58.195
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TABLE 3-20: RESULTS FOR P=300#, Hc-20.36', AND DIAMETER=300 INCHES

Interface Soil Ax AY | aN| |o Nl k.

Element Node (inch) (inch) (inch) (psi) (#/in%)
1 59 .0000380246 -.0056853 .0056853 2.704 475.61
2 58 -.0034771 -.0058279 .006618 2.634 398.00
3 60 .0035591 -.005821 .0066387 2.616 394.06
4 77 -.0066767 -.0044763 .0075478  2.55 337.85
5 78 .0066063 =-.0045427 .0075543 2.538 335.97
6 80 -.0091339 -.00181318 .0084506  2.441 288.85
7 82 .009175 -.00175938 .0084601 2.459 290.66
8 84 -.0104978 .00188551 .0094017 2.236 237.83
9 86 .0105467 .0019496 .0094306 2.196 232.86
10 110 -.0108156 .0060866 .0108156 1.999 230.82
11 114 .01098  .006118 .01098 1.794 229.39
14 148 -.0105507 .0107586 .0133587 1.714 128.31
15 153 .0107536  .0107803 .013558 1.698 125.24
18 186 -.0093311 .0153283 .0165593 1.825 110.20
19 196 .0094449  .0154218 .0167057 1.794 107.39
22 233  -.0075791  .0202447 .0208323 1.752 84.1
23 234 .0077786  .0203642 .021047 1.765 83.86
26 237 -.0044847 .0244542 .024643 1.686 68.42
27 238 .0046587  .0246173  .024852 1.696 68.24

30 241 .000056851 .0256633 .0256623 1.543 60.127
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TABLE 3-21: RESULTS FOR P=500#, Hc=20.36‘, AND DIAMETER=300 INCHES

Interface Soil Ax Ay | AN | lo Nl k
Element Node (inch) (inch) (inch) (psi) (#/in?)
1 59 .0000626316 =-.0095354 .0095354 4.524 474.443
2 58 -.0058178 =-.0097463 .0110648 4.404  398.02
3 60 .0059355 -.0097344 .0110906 4.376  394.57
4 77 -.0111236 =-.0074674 .0125776  4.25 337.9
5 78 .0110182 -.0075676 .0125986 4.248  337.18
6 80 =-.0151772 -.00304058 .0140612 4.071  289.52
7 82 .0152539 -.00293418 .0140671 4.109  292.10
8 84 -.0174337 .00309491 .0156257 3.736  239.09
9 86 .0175218 .0032144 .0156715 3.676  234.57
10 110 -.0179928 .0100552 .0179928 3.329  226.00
11 114 .0182591  .0101146 .0182591 3.024 225.616
14 148 -.0175919 .0178588  .0222497 2.874  129.17
15 153 .0179251 .0178831 .0225739 2.848  126.16
18 186 -.0154891  .0254233 .0274743 3.025 110.103
19 196 .0156918  .0255618 .0277194 2.984  107.65
22 233 -.0125678 .0335787  .0345523 2.912 84.28
23 234 .0129131  .0337812 .0349191 2.915 83.48
26 237 -.0074576 .0406872 .0410016 2.806 68.44
27 238 .0077971  .0410613 .0414611 2.806 67.68

30 241 .000011403 .0427413 .0427413 2.563 59.97



TABLE 3-22: LOADING SCHEDULE
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Radius P H P H P H
(1b) (ft) (1b) (ft) (1b) (ft)
100 4.0 4.0 4.0
100 6.4 6.4 6.4
200 8.0 300 8.0 500 8.0
11.73 11.73 11.73
12.64 12.64 12.64
300 20.36 20.36 20.36

TABLE 3-23: RECOMMENDED VALUES OF K1 AND nh (AFTER TERZAGHI 1955)

Relative Density Loose Medium Dense

of Sand K ny K n K "
Dry or Moist Sand  20-60 7 60-300 21 300-1000 56
[Test Results)
Proposed Values 40 7 130 21 500 56
Sumbmerged Sand 25 5 80 14 300 34
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TABLE 3-24: RESULTS FOR Hc = 4, DIAMETER=200 INCHES, AND P=50 LBS

;gzzr- Soil Ax Ay |8 loyl X*
Element Node  (inch) (inch) (inch) psi (#/in?)
1 59 .000029927 .00050551 . 00050551 .282 557.86
2 58 -.00045902 -.00062578 .00073691 .262 355.54
3 60 .00048482 -.00062470 .00074392 .251 337.41
4 77 -.00093804 -.00054158 . 00098935 .247 249.66
5 78  .00089854 -.00054569 . 00096939 .229 236.23
6 80 -.0013941 -.00024788 .0012734 .207 162.55
7 82 .0013119 -.00027817 .0012247 .210 171.5
8 84 -.0017267 .00029879 .0015499 .156 100.65
9 86 .0017063 .00030157 .0015333 .168 109.56
10 110 -.0017780 .0010639 .0017780 .105 59.6
11 114 .0017842 .0011183 .0017842 .108 60.5
14 148 -.0014884 .0017388 .0019521 .108 55.32
15 153 .0014778 .0018419 .0019746 .117 59.25
18 186 -.0013688 .0024113 .0025246 .103 40.8
19 196 .0013661 .0025072 .0025788 .109 42.3
22 233 -.0010664 .0030591 .0030878  .0998 32.32
23 234 .0010162 .0031465 .0031428 .102 32.45
26 237 -.00065706 .0036543 .0036783 .153 41.59
27 238  .00057482 .0036661 . 0036642 .169 46.12
30 241 -.000042342 .0039512 .0039512  .0708 17.92
LEGEND: (Tables 3-24 to 3-35): kn refers to the dense soil and

k; to the medium dense.
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TABLE 3-25: RESULTS FOR HC = 4, DIAMETER =200 INCHES AND P=100 LBS
igzzr- Soil Ax Ay |A] o] K
Element Node (inch) (inch) (inch) psi (#/in?)
1 59 .000059859 -.0010112 .0010112 .563 556.76
2 58 -.00091808 -.0012518 .0014741 .526 356.8
3 60 .00096968 -.0012496 .001488 .504 338.7
4 77 -.0018761 -.0010834 .0019791 .493 249.1
5 78 .0017971 -.0010916 .0019393 .458 236.16
6 80 -.0027883 -.00049598 .0025472 .411 161.35
7 82 .0026238 -.00055659 .0024497 .417 170.22
8 84 -.0034534 .00059732 .0030999 .343 110.65
9 86 .0034126 .00060288 .0030593 .358 117.02
10 110 -.0035560 .0021275 .0035560 .283 79.5
11 114 .0035685 .0022364 .0035685 .285 79.9
14 148  -.0029769 .0034772 .0039056 .218 55.82
15 153 .0029558 .0036834 . 0039493 .233 59.00
18 186 -.0027377 .0048222 .0050491 .202 40.01
19 196 .0027324 .0050140 .0051576 .287 55.64
22 233 -.0021330 .0061179 .0062031 .272 43.85
23 234 .0020324 .0062923 .0062851 .267 . 42.48
26 237 -.0013142 .0073080 .0073564 .235 31.94
27 238 .0011496 .0073318 .0073281 .251 34.25
30 241 .0079019 .153 19.4

.000084729 .0079019
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TABLE 3-26: RESULTS FOR H_ = 6.4 DIAMETER=200 INCHES, AND P=100 LBS
Inter- Soil Ax Ay | An| | GNI X k2
face k
Element Node (inch) (inch) (inch)  psi (#/in%) D
1 59  .000029493  -.0011352 .0011352 0.61 537.35 0.826
2 58 =-.00097073  -.0013599 .0015933  0.57 357.75 0.69
3 60 .00098489  -.0013619 .0015976 0.557 348.6 0.68
4 77 -.0019555  =-.0011694 .0020954 0.533 254.4 0.590
5 78 .0018866  -.0011756 .0020599 0.512 248.5 0.584
6 80  -.0028679 ~-.00057812 .0026599 0.444 166.9 0.471
7 82 .0027369 -.00062167 .0025795 0.451 174.8 .500
8 84 -.0035132 .00049894 .0031870 0.386 121.12 0.43
9 86 .0034481 .00049948 .0031249 0.382 122.24 0.443
10 110 -.003617 .0019777 .003617 0.318  87.9 0.431
11 114 .0035867 .0020456 .0035867 0.312 86.9 0.456
14 148  -.0031524 .0033036 .0040189 0.231  57.5 0.458
15 153 .0030786 .0034255 .0039864 0.243 60.96 0.483
18 186  -.0028955 .0046136 .0050542 0.255 50.45 0.488
19 196 .0028393 .0047247 .0050741 0.260 51.44 0.494
22 233 -.0022034 .0057964 .0059844 0.319  53.3 0.703
23 234 .0021045 .0059409 .0060432 0.331  54.8 0.73
26 237 -.0012923 .006705 .0067761 0.312 46.04 0.777
27 238 .0011508 .0067432 .0067686 0.315 46.58 0.774
30 241 -.00007752 .0067852 .0067852 0.216 31.83 0.608
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TABLE 3-27: RESULTS FOR Hc = 8; DIAMETER=200 INCHES, AND P=100 LBS

Inter- Soil Ax AY | aN| | aN| k* k*
face n. n
Element Node (inch) (inch) (inch) psi (#/in3) kn
1 59 .000037088 .0012186 .0012156 0.631 517.81 0.79%
2 58 -.00096915 -.0014345 . 0016636 0.593 356.4 0.676
3 60 .0010062 -.0014319 .0016726 0.583 348.5 0.669
4 77 -.0019834 -.0012210 . 0021536 0.554 257.2 0.578
5 78 .0019560 -.0012202 .0021367 0.539 252.2 0.5i4
6 80 -.0028730 -.00062744 . 002693 0.466 173. 0.488
7 82 . 0028027 -.00065473 . 0026522 0.471 177.6 0.49
8 84 -.0035138 .00043141 .0032084 0.398 124.05 0.427
9 86 .0034956 .00043522 .0031899 0.406 - 127.3 0.441
10 110 -.0036171 .0018795 .0036171 0.340 93.99 0.433
11 114 . 0036316 .0019352 .0036316 0.334 91.97 0.455
14 148 -.0032013 .0031901 .0040304 0.255 63.27 0.418
15 153 . 0032028 . 0032867 .0040616 0.264 65.00 0.426
18 186 -.0029222 . 0044736 . 0049935 0.287 57.5 0.508
19 196 . 0029223 . 0045608 . 0050449 0.291 57.7 0.508
22 233 -.0022161 .0056071 . 0058387 0.371 63.54 0.757
23 234 . 0021776 .0057128 .0059016 0.362 61.34 0.739
26 237 -.0012769 . 0063999 . 0064812 0.348 53.69 0.802
27 238 .0012034 .0064228 . 0064802 0.339 52.31 0.779
30 241 -.000042355 .0067075 .0067075 0.238 35.48 0.597
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TABLE 3-28: RESULTS FOR Hc = 11.237; DIAMETER=200 INCHES, AND P=100 LBS

Inter- Soil Ax Ay | An| lo. | k* k*
face N n -
Element Node  (inch) (inch) (inch)  psi (#/in®) Fn
1 59  .0000061507 -.00067431 .00067431 .327 484.9 0.732
2 58  -.00050981  -.0007536 .00087421 .309 353.5 0.647
3 60 .00051757 -.000757 .00087978 .305 346.67 0.64
4 77 -.0010223 -.00063033  .0011107 .293 263.79 0.568
5 78 .0010055  -.0006327 .0011027 .288 261.16 0.568
6 80 -.0014426 -.00032957 .0013607 .254 186.66  0.48
7 82 . 0014147 -.00032911 .0013378 .255 190.6 0.49
8 84 -.0017515  .00018711 .0016081 .202 125.6 0.395
9 86 .0017430  .00019236 .0015778 .204 129.29 0.395
10 110 -.0018013  .00089023 .0018013 0.240 133.36 .433
11 114 .0017955 . 00090366 .0017407 0.235 135.0 0.443
14 148 -.0016340 .0015355 .0020284 .163 80.36 0.47
15 153 .0016079 .0015600 .0020111 .165 82.04 0.483
18 186  -.0014613 .0021490 .0024453 .171 69.93 0.508
19 196 .0014345 .0021740 .0024383 .172 70.54 0.522
22 233 -.0011007 .0026860  .0028199 .164 58.16 0.573
23 234 .0010779 .0027315  .0027596 .164 59.43 0.597
26 237  -.00063637 .0030510 .0030982 .155 50.03 0.586
27 238 .00060049 .0030662 .0032561 .155  47.6 0.567

30 241 -.000020220 . 0032287 . 0032287 .139 43.05 0.557
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TABLE 3-29: RESULTS FOR Hc = 4; DIAMETER=300 INCHES, AND P=100 LBS

22::— Soil Ax AY | AN | log| X% ks
Element Node (inch) (inch) (inch) psi  (#/in%) 'n
1 59  .000013627 -.0015101 .0015101 0.514 340.4 0.71
2 58 -.0014546 -.0017836 .0021457 0.489 227.9 0.603
3 60 .0014798 -.0017403 .0021123 0.505 239.1 0.649
4 77 -.0027329 -.0013282 .0026808 0.490 182.8 0.602
5 78 .0027165 -.0012906 .0026407 0.456 172.7 0.590
6 80 -.0037695 ~-.00042411 .0032987 0.455 137.93 0.559
7 82 .0036848 =-.00052689 .0032906 0.414 126.0 0.502
8 84 -.0047874 .0011527 .0049092 0.337 68.6 0.291
9 86 .004684 .0010696 .0047852 0.334 69.8 0.298
10 110 -.0049494 .0033180 .0049494 0.253 51.1 0.27
11 114 .0048809 .0032587 .0048809 0.254 52.0 0.275
14 148 -.0039658 .0051774 .0053715 0.175 32.6 0.387
15 153 .0039325 .0052085 .0053495 0.190 35.5 0.379
18 186 -.0035455 .0070683 .0070229 0.241 34.3 0.672
19 196 .0033999 .0070588 .0068991 0.251 36.4 0.672
22 233 -.0026482 .0089225 .0087749 0.198 22.6 0.693
23 234 .0026423 .0090292 .0088578 0.201 22.7 0.69
26 237 -.0018645 .011563  .011573 0.171 14.78 0.73
27 238 .0017454 .011412 .0113928 0.175 15.36 0.74
30 241 -.000055753 .012610 .012610 0.127 10.1 0.740
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TABLE 3-30: RESULTS FOR Hc = 6.4, DIAMETER=200 INCHES, AND P=50 LBS

izzzr- Soil Ax Ay | AN| |oN k* Ei
Element Node (inch) (inch) (inch)  psi (#/in?) X
1 59 -.00000050803 .00080059 .00080059 .268 334.8 0.714
2 58  -.00073085 -.00091764  .0010984 .259 235.78 0.619
3 60 .00072528 ~-.00089965  .0010796 .266 246.37 0.660
4 77  -.0013932 -.00069191  .0013786 .258 187.14 0.595
5 78 .0013673 -.00067356  .0013484 .240 179 0.568
6 80  -.0018952 -.00022674  .0016664 .227 136.21 0.529
7 82 .0018434 -.00026717  .0016482 .209 126.8 0.488
8 84  -.0023754 .00054046  .0020920 .165 78.87 0.350
9 86 .0023262  .00051513  .0020531 .172 83.77 0.359
10 110  -.0024468  .0015873  .0024468 .178 72.75 0.365
11 114 .0024175  .0015756  .0024175 .180 74.46 0.385
14 148  -.0019823  .0025046  .0026592 .111 41.74 0.49
15 153 .0019824  .0025248  .0026655 .117 43.89 0.503
18 186  -.0017975  .0034530  .0034837 .113 32.44 0.492
19 19 .0017343  .0034425  .0034264 .116 33.85 0.462
22 233 -.0012854  .0043289  .0042589 .134 31.5 0.651
23 234 .0013103  .0043868  .0043191 .138 31.95 0.65
26 237  -.00087272  .0055085  .0055085 .133 24.14 0.69
27 238 .00084651  .0054744  .0054679 .139 25.4 0.691
30 241 -.000010261  .0060132  .0060132 .115 19.12 0.713
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TABLE 3-31: RESULTS FOR Hc = 8, DIAMETER=300 INCHES, AND P=50 LBS

Inter- Soil Ax Ay | an | logl  x* k*
face x
Flement Node (inch) (inch) (inch)  psi (#/in®) *n
1 59 .00000072793 -.00084071 .00684071 .275 327.1 0.702
2 58 -.00072799 -.00094901 .0011316 .266 235.06 0.614
3 60 .00072614 -.00093273 .091114 .272 244.73 0.649
4 77 -.0013848 -.00073527 .0014149 .265 187.3 0.589
5 78 .0013780 =-.00070927 .0013836 .247 178.5 0.575
6 80 -.0019187 -.00025457 .0017018 .233 136.9 0.504
7 82 .0018572 -.00029503 .0016755 .217 129.51 0.470
8 84 -.0023648 .00049886 .0020948 .186 88.8 0.373
9 86 . 0023247 . 00048478 .0020612 .191 - 92.7 0.391
10 110 -.0024472 .0015190 .0024472 .227 92.; 0.307
11 114 . 0024137 .0015221 .0024137 .224 93.6 0.303
14 148 -.0020755 .0024337 .0027259 .126 46.22 0.462
15 153 .0020283 . 0024548 .0026875 .128 47.63 0.458
18 186 -.0017135 .0031421 .003233 .128 39.59 0.523
19 196 .0017913 .0033644 .0034266 .131 38.23 0.48
22 233 -.0013421 . 0041894 .0041781 .159 38.0 0.699
23 234 .0013652 . 0042958 .0042778 .l62 37.9 0.686
26 237 -.00086544 .0052082 .0052207 .146 28.0 0.73
27 238 . 00085203 .0052355 .005242 .156 29.8 0.739

30 241 -.0000096557 . 0055777 .0055777 .108 19.36 0.733
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TABLE 3-32: RESULTS FOR Hc = 8, DIAMETER=300 INCHES, AND P=100 LBS

Inter-  Soil Ax Ay lan]  fogl  xx o kE
face ’ X
Element Node (inch) (inch) (inch) psi (#/in°) n
1 59 .0000013838 -.0016984 .00i6984 .556 327.4 0.702
2 58 -.0014548 -.0019084 .0022636 .532 235.0 0.613
3 60 .0014511 -.0018758 .0022323 .543 243.2 0.645
4 77 -.0027677 -.0014780 .0028225 .530 187.8 0.591
5 78 .0027542 -.001426 .0027724 .493 177.8 0.573
6 80 -.0038348 -.00051525 .0034050 .497 140.7 0.518
7 82 .0037121 -.00059606 .003502 .462 138.0 0.501
8 84 -.0047251 .00099301 .0039384 .371 94.2 0.395
9 86 .0046450 .00096487 .0041157 .382 98.82 0.417
10 110 -.0048888 .0030339 .0030339 .198 65.3 0.303
11 114 .004822 .0030401 .0030401 .197 64.8 0.300
14 148 -.0041451 .0048642 .0054452 .222 40.8 0.408
15 153 .0040507 .0049063 .0053685 .228 42.5 0.409
18 186 -.0037527 .0067296 .0069915 .313 44.8 0.592
19 196 .0035827 .0067291 .0068537 .317 46.3 0.58
22 233 -.0026845 .0083797 .0083571 .316 37.8 0.695
23 234 .0027306 .0085924 .0085563 .316 36.9 0.668
26 237 +.0017311 .010417 .0104379 .290 27.8 0.725
27 238 .0017042 .010472 .010486 .309 29.5 0.732
30 241 -.000019334 .011156 .011156 .227 20.4 0.733
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TABLE 3-33: RESULTS FOR Hc = 11.23; DIAMETER=300 INCHES, and P=50 LBS

Inter- Soil Ax Ay | AN | | 0N| k* k*
face =t
Element Node (inch) (inch) (inch)  psi (#/in®) *n
1 59 -.000019174 -.00090706 .00090706 .287 316.43 0.67
2 58 -.00073930 -.00098955 .0010088 .278 275.6 0.711
3 60 . 00071096 -.00099146 .00098243 .283 288.1 0.751
4 77 -.0013787 -.00077617 .0014382 .275 191.2 0.587
5 78 .0013812 -.00077292 .001437 .262 182.31 0.564
6 80 -.0019496 -.00027019 .0017360 .242 139.4 0.504
7 82 . 0018860 -.00033920 .0017251 .231 133.9 0.478
8 84 -.0023627 . 00046098 .0021046 .187 88.85 0.394
9 86 .0023250 .00041982 .0020813 .194 93.21 0.413
10 110 -.0024381 .0014397 .0024381 .193 79.16 0.362
11 114 .0023939 . 0014026 .0023939 .195 81.46 0.380
14 148 -.0021822 .0023499 .0028014 .146 52.12 0.436
15 153 .0021106  .0023105 .0027212 .150  55.12 0.447
18 186 -.0019739 . 0032590 .0028848 .151 52.34 0.613
19 196 . 0018404 . 0031793 .0028602 .154 53.84 0.616
22 233 -.0014826 .0040828 .0041744 .162 38.8 0.65
23 234 . 0013473 .0039992 .0040272 .155 38.5 0.65
26 237 -.00092491 .0048724 .0049197 .151 30.7 0.701
27 238 .00078875 .0047875 .0047968 .149 31.10 0.699

30 241 -.000063658 .0051058 .0051058 .130 25.46 0.695
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TABLE 3-34: RESULTS FOR Hc = 12.64, DIAMETER=300 INCHES, AND P=50 LBS

Inter- Soil AX AY | aN| |°Nl k¥ k*
face —_—
Element Node (inch) (inch) (inch)  psi (#/in%) X,
1 50  -.000015181 -.00093959 .00093959 .291 309.73 0.661
2 58 -.00073537  -.0010191 .0011963 .284 237.38 0.618
3 60 .00071515  -.0010176 .0011887 .287 241.43 0.634
4 77 -.0013798 -.00080903 .0014654 .278 189.70 0.59
5 78 .0013885 -.00079432  .0014587 .268 183.72 0.575
6 80 -.0019528 -.00030431 .0017584 .246 139.89 0.524
7 82 .0019038 -.00035324  .0017477 .237 135.60 0.502
8 84 -.0023485  .00043318 .0020997 .192 91.44 0.386
9 86 .0023289  .00039733  .0020921 .198 94.64 0.404
10 110 -.0024142 .0013860 .0024142 .211  87.4 0.396
1 114 .0023991 .0013614  .0023991 .209  87.1 0.392
14 148 -.0021897 .0022893  .0027899 .154  55.2 0.509
15 153 .0021435 .0022618  .0027374 .157 57.35 0.533
18 186 -.0019633 .0031787  .0034567 .162 46.87 0.534
19 196 .0018612 .0031170 = .0033377 .163  48.83 0.553
22 233 -.0012932 .0035842  .0036597 .133  36.3 0.563
23 234 .0013844 .0039359 .0039978 .140  35.2 0.542
26 237 -.00089233 .0047140  .004759 .147  30.9 0.610
27 238 .00081654 .0046816 .0047047 .148 31.46 0.624
30 241  -.000035976 .0049623  .0049623 .142 28.62 0.687
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TABLE 3-35: RESULTS FOR Hc = 12,64, DIAMETER=300 INCHES, AND P=100 LBS

Inter- Soil Ax AY |an| lo. | k* k*
face N n 2
Element Node (inch) (inch) (inch) psi (#/in%) kn
1 59 -.000030511 -.0018964 .0018964 0.588 310.1 0.66
2 58 -.0014695 -.0020485 .0024022 0.566 235.6 0.597
3 60 .0014291 -.0020459 .0023873 0.574 240.43 0.618
4 77 -.0027577 -.0016255 .0029359 0.557 189.7 0.567
5 78 .0027750 -.0015963 .0029224 0.535 183.1 0.551
6 ‘80 -.0039030 -.00061476 .0035188 0.524 148.9 0.524
7 82 .0038051 -.00071263 .003497 0.504 144.1 0.502
8 84 -.0046927 .00086165 .0047291 0.406 85.9 0.375
9 86 .0046533 .00078985 .0046695 0.414 88.7 0.398
10 110 -.0048232 .0027679 .0048232 0.358 74.22 0.335
11 114 .0047929 .0027185 .0047929 0.360 75.11 0.341
14 148 -.0043744 .0045754 .005741 0.282 50.6 0.453
15 153 .0042819 .0045203 .0054691 0.289 52.84 0.472
18 186 -.0039267 .0063575 .0069136 0.368 53.4 0.582
19 196 .0037224 .0062339 .0066756 0.375 56.2 0.597
22 233 -.0029234 .0079447 .0081456 0.374 45.9 0.716
23 234 .0027688 .0078720 .007996 0.379 47.4 0.699
26 237 -.0017847 .0094287 .0095187 0.370 38.9 0.74
27 238 .0016332 .0093638 .0094101 0.374 39.7 0.78
30 241 -.000071912 .0099247 .0099247 0.291 29.32 0.72
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TABLE 3-36: COMPARISON OF PROPOSED AND FEM RESULTS FOR MEDIUM SOIL
(CIRCULAR)
Crown: 6 = 0°
?i:::::; Coefficient of
Hc H Soil Reaction
(ft) D (#/in®)
Proposed FEM
200 8.0 0.6928 40. 35.5
300 8.0 0.5657 22.9 19.4
300 12.64 0.71105 33.6 28.62
Springline: 6 = 90°
200 8.0 0.9899 97.7 94.0
300 8.0 0.906 90.6 92.7
300 12.64 1.003 100 87.4
Invert: 6 = 180°
200 8.0 1.2165 450 517
300 8.0 1.149 364 327
300 12.64 1.227 388 310
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TABLE 3-37: COMPARISON OF PROPOSED AND FEM RESULTS FOR DENSE SOIL
(CIRCULAR)
Invert: 6 = 180
?i:’;::f Coefficient of ‘ Difference
Hec H Soil Reaction
(£t) D (#/in?)
Proposed* FEM
100 4.0 1.2415 834 950 12.2
100 6.4 1.3293 893 995 10.2
200 11.73 1.305 689 662 4.4
300 8.0 1.1489 441 466.6 5.5
300 12.64 1.227 471 468 ——
Springline: 6 = 90°
100 4.0 0.99 385 380 ——
100 6.4 1.126 437 42% 7.4
200 11.73 1.097 335 308 8.8
300 8.0 1.003 222 223 ——
300 12.64 0.9066 201.3 210 4.3
Crown: 60 = Q°
100 4.0 0.6928 73 74.5 ——
100 6.4 0.8764 92.4 96.2 4.0
200 11.73 0.8389 69.3 77.3 10.3
300 8.0 0.5657 33.9 27.81 22.0
300 12.64 0.71105 42.66 40.67 5.0

*Based on a unit weight of soil Y of 120 pcf.
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TABLE 4-1: THEORETICAL PRE-BUCKLING THRUSTS
Thrust
Relative Diameter (Compression)
Section Density (inches) Location (1b/in) FEM
Haunch 212 216
Circular Dense 300
Sp. Line 188 180
Haunch 142 141
Circular Dense 200
Sp. Line 134 119
Haunch 110 134
Circular Dense 150
Sp. Line 101 115
Haunch 212.13 —
Circular | Medium 300
Sp. Line 73.44
+ Haunch 221 246
Ellipse Dense ——
Sp. Line 162.6 156
+

Semi-minor axis: 75 inches

Semi-major axis: 150 inches
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TABLE 4-2: THEORETICAL PRE-BUCKLING DEFLECTIONS

Relative Diameter Deflection
Section | Density (inch) Location (inch) FEM
Crown -.03 -.0314
Circular | Dense 300 Spring-Line .008 .005
Invert .0056 .004
Crown -.017 -.0178
Circular | Dense 200 Spring-Line .005 .0035
Invert .0032 .0037
Crown -.0134 -.017
Circular | Dense 150 Spring-Line .004 .0036
Invert .003 .0048
Crown -.048
Circular | Medium 300 Spring-Line .01 ——
Invert .002
+ Crown -.064 -.063
Ellipse | Dense —-— Spring Line .015 .01
Invert .0012 .0018

+Semi-minor axis: 75 inches

Semi-major axis: 150 inches
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TABLE 4-3 THEORETICAL PRE-BUCKLING MOMENTS
Relative Diameter Moments
Section |Density (inches) Location (1b-in/in) FEM
Crown 19.70 20
Circular |Dense 300 Haunch -7.4 -5.5
Spring-Line -2.52 -2.36
Invert 1.0 1.37
Crown 17.85 18.11
Haunch -10.0 -6.031
Circular |Dense 200 Spring-Line -2.0 -2.75
Invert 1.0 1.27
Crown 23.4 19
Circular |Dense 150 Haunch -10.75 -7.4
Spring-Line -3.75 -2.5
Invert 2.13 2.0
Crown 47.6
Haunch -30.5
Circular |Medium 300 Spring-Line -3.17 —
Invert 1.59
+ Crown 23 32
Ellipse |Dense Haunch =100 ~62.3
-— Spring-Line | -63 ~40.5
Invert 3.31 3.91
+Semi-minor axes: 75 inches
Semi-major axes: 150 inches
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TABLE 4-4: VARIATION OF A WITH SPAN

K
Diameter Kﬂi 8 A Ke
(inches) #/in? #/in3 = _“n
i
300 413.6 75 0.18
200 587.7 125 0.21
50 689.34 145 0.21
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COMPARISON OF PROPOSED AND FEM RESULTS FOR DENSE SOIL

TABLE 4-5:
(ELLIPTICAL)
Coefficient of
Soil Reaction
(#/in?)
He Node H
(ft) Number D Proposed FEM
4 0.855 343 319
59
6 0.903 363 333
8 0.948 381 353
4 0.646 336 390
60
6 0.707 357 397
8 0.765 376 410
4 0.41 25.9 16
6 241 0.502 31.7 25
8 0.57 36.6 30
6 58 0.707 357 397

Semi-minor axis:
Semi-major axis:

Span: D = 286 inches

b = 80.5 inches
a = 143 inches
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TABLE 4-6: COMPARISON WITH TEST RESULTS

Uniform Present
. Applied Study
Nominal Sand Soil Ring Buckling (psi)
Investi- Density and Thickness Pressure
gator Void Ratio (in) (psi) Dense Medium
Medium-Dense, 0.50 3/8 9.0
7.72 5.17
Medium-Dense, 0.50 3/8 12.4
Luscher Medium-Dense, 0.48 2/3 14.2
8.09 5.45
Medium-Dense, 0.48 2/3 12.4
Medium-Dense, 0.47 2/3 9.9

(a) All tests on aluminum tubes with constant radius (0.815 in.) and
constant stiffness (EI/R3 = 0.042).

TABLE 4-7: COMPARISON WITH TEST RESULTS

Thrust Present Study
Stress Thrust
at Critical Stress at
Investi- Area Radius EI Failure Pressure Failure
gator (in2/in) (in) RY (psi) (psi) (psi)
.0132 12.9 .0057 5,780 6.9 6,697
.03282 12.9 .086 7,850 22.41 8,813
Meyerhof .03282 25.6 .011 5,600 9.55 7,454
and .03282 12.0 0.11 6,350 19.5 7,134
Baike .o18® 12.0 1.3 41,400 106.11 70,740
.0162b 24.0 0.2 26,100 22.92 33,956

(a) Plain Sheets
(b) Corrugated Sheets
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TABLE 4-8: COMPARISON WITH TEST RESULTS

Soil Density

Present Study

Investi- Radius Critical (psi)
gator (in) Pressure P
% std. (psi)
Pcf AASHTO Dense Medium
30 101.7 83 111
Watkins 151 131.4
and 30 118.4 97 132

Mosexr 30 129 106 97
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TABLE 4-9: COMPARISON OF THEORETICAL FORMULATIONS OF COEFFICIENT
OF SOIL REACTION (SOIL SUPPORT MODULUS)

Investigator Suggested Expression for l:n
2
Lusch E 1l - -ﬁ-
uscher s R
[}
R, 2
(1+us) {1 + R (1-2us) } R
o
Meyerhof and Baike li:s
2
2(1 us) R
Kloppel and Glock Es
R(1+u8)
Present Study & | &
kn = B CD Ce D
k_ =0.2k
s n;
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TABLE 4-10: VALUES OF I(s IN TONS/CU. FT FOR SQUARE PLATES,

1

1 FT X1 FT, OR BEAMS 1 FT WIDE, RESTING ON SAND

(AFTER TERZAGHI, 1955)

Relative Density of Sand Medium Dense
Dry or moist sand, 60 - 300 300 - 1000
Limiting values for KS

1
Dry or moist sand, 130 500
Proposed values
Submerged sand, 80 300

Proposed values

1 ton/cu. ft = 1.1574 pci
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TABLE 4-11: COMPARISON OF THEORETICAL CRITICAL PRESSURES (CIRCULAR)

s for s for 3 for
Investigator |EI/R (psi) EI/R (psi) EI/R (psi)
Meyerhof 1.0 107.3 10 611 100 930
and
Baike
Luscher 1.0 391.9 10 878.4 100 3675.7
Chelapati 1.0 440.54 10 927 100 4410.0
and
Allgood
Cheney 1.0 884 10 1945.2 100 4103.0
[
]
g
&
Present
Study 1.0 180.9 10 1073.2 100 2380.4
3
=
1.0 116.84 10 757.4 100 1371.33
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P
TABLE 4-12: VARIATION OF CRITICAL PRESSURE WITH PA
[-]
(psi)
P Critical Pressure
-1
PO
Dense Medium
0 254 187
0.25 217 165.6
1]
0.33 210 146
0.50 184 126
1.0 165 101

Span = 300 inches
a = 0.16
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TABLE 4-13: VARIATION OF CRITICAL PRESSURES WITH ASPECT RATIO
(ELLIPTICAL SECTION)

(psi)

Aspect Critical Pressure
Ratio,

B/A Medium Dense
0.2 12.3 22.0
0.3 21.1 37.5
0.5 48.7 85.0
1.0 106.03 159.96

Span, D = 300 Inches
a=0.16
P

1
—= 1.0
P2
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TABLE 4-14: VARIATION OF CRITICAL PRESSURE WITH DEPTH

Critical Pressure (psi)
Depth Ratio «

Dense - Medium
0.16 165 101
0.3 175.3 107.2
0.5 187.2 111.5
0.7 198 150
0.9 207 155.12
1.0 211.5 157.5

TABLE 4-15: VARIATION WITH DEPTH OF RALATIVE CROWN DEFLECTION
DURING BUCKLING (CIRCULAR)

Crown Deflection (inches)
De Ratio o
pth Dense Medium
0.16 1.59 2.63
0.3 1.67 2.71
0.5 1.78 2.98
0.7 2.39 3.15
0.9 2.41 3.30
1.0 2.51 3.36
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TABLE A-l: DATA REDUCTION

Conduit Diameter = 300 Inches

0 = m* 6 = 0.97 0 = 0.87

H K H K 4 K

D Y D Y D Y
1.256 3.96 1.23 3.17 1.16 2.62
1.256 4.03 1.23 3.18 1.16 2.54
1.32 3.89 1.296 3.19 1.225 2.64
1.32 3.93 1.296 3.19 1.225 2.65
1.32 3.91 1.296 3.18 1.225 2.63
1.4692 3.93 1.445 3.23 1.374 2.71
1.4692 4.25 1.445 3.24 1.374 3.00
1.5056 3.93 1.481 3.29 1.410 2.78
1.5056 3.90 1.481 3.20 1.410 2.68
1.5056 3.94 1.481 3.23 1.410 2.69
1.8144 4.04 1.790 3.45 1.719 2.97
1.8144 3.96 1.790 3.32 1.719 2.80
1.8144 3.95 1.790 3.32 1.719 2.80

Conduit Diameter = 200 Inches
1.383 5.42 1.359 4.32 1.288 3.59
1.48 5.43 1.455 4.39 1.384 3.71
1.704 5.52 1.679 4.55 1.608 3.87
Conduit Diameter = 300 Inches
6 = 0.7m 0 = 0.6m 0 =5.0m 0 = 0.41

H/D K/Y H/D K/Y H/D K/Y H/D K/Y
1.049 2.09 0.910 1.66 0.756 1.29 0.601 0.73
1.049 2.12 0.910 1.57 0.756 1.09 0.601 0.72
1.049 2.16 0.910 1.59 0.756 1.09 0.601 0.73
1.114 2.29 0.975 1.80 0.82 1.37 0.665 0.87
1.114 2.22 0.975 1.75 0.82 1.28 0.665 0.91
1.114 2.20 0.975 1.74 0.82 1.26 0.665 0.90
1.263 2.33 1.124 1.88 0.969 1.41 0.815 1.03
1.263 2.33 1.124 1.87 0.969 1.39 0.815 1.03
1.299 2.39 1.160 1.91 1.0056 1.47 0.851 0.93
1.299 2.25 1.160 1.77 1.0056 1.33 0.851 0.90
1.299 2.27 1.160 1.79 1.0056 1.33 0.851 0.92
1.608 2.61 1.469 2.14 1.3144 1.71 1.16 1.14
1.608 2.42 1.469 1.98 1.3144 1.52 1.16 1.07
1.608 2.43 1.469 1.99 1.3144 1.54 1.16 1.08

* 0 in radians
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TABLE A-1: DATA REDUCTION (continued)

Conduit Diameter = 200 Inches

1.177 2.91 1.038 2.31 0.883 1.70 0.729 1.05
1.274 3.02 1.134 2.42 0.980 1.81 0.825 1.27
1.498 3.24 1.358 2.73 1.204 2.05 0.825 1.44
Conduit Diameter = 300 Inches
6 = 0.3m 0 = 0.2m 6 = 0.1m 6 = 0.0

K K K K

H/D - H/D — H/D - H/D -

/ Y / Y / Y / Y
0.461 0.61 0.351 0.41 0.28 0.31 0.256 0.22
0.461 0.56 0.351 0.38 0.28 0.28 0.256 0.22
0.461 0.55 0.351 0.38 0.28 0.27 0.256 0.21
0.526 0.67 0.415 0.46 0.344 0.34 0.32 0.23
0.526 0.61 0.415 0.41 0.344 0.30 0.32 0.23
0.526 0.60 0.415 0.40 0.344 0.48 0.32 0.23
0.675 0.73 0.565 0.49 0.494 0.37 0.469 0.31
0.675 0.72 0.565 0.49 0.494 0.53 0.469 0.30
0.712 0.79 0.601 0.57 0.53 0.44 0.5056 0.34
0.712 0.73 0.601 0.54 0.53 0.42 0.5056 0.35
0.712 0.73 0.601 0.54 0.53 0.41 0.5056 0.34
1.021 0.97 0.91 0.72 0.839 0.58 0.8144 0.49
1.021 0.92 0 91 0.70 0.839 0.57 0.8144 0.50
1.021 0.92 0.91 0.70 0.839 0.57 0.8144 0.50

Conduit Diameter = 200 Inches

0.589 0.87 0.479 0.63 0.408 0.50 0.383 0.44
0.686 0.95 0.575 0.70 0.504 0.56 0.48 0.50
0.909 1.15 0.799 0.85 0.728 0.71 0.704 0.64
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TABLE A-2: DATA REDUCTION

% = 1.0 Z=0.5

6 (radians) K 6 (radians) E

Y Y
0 0.54 0 0.33
« 2T 0.75 2T 0.46
AT 1.08 AT 0.71
.6T 1.75 .67 1.08

.81 2.42 .81 1.5
l.0m 3.29 1.0m 2.08
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Geometry of Corrugation
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16

FIGURE 2-3a: HYPERBOLIC STRESS-STRAIN RELATIONSHIP

€c

FIGURE 2-3b: TRANSFORMED HYPERBOLIC STRESS-STRAIN RELATIONSHIP'
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Fig.2-4 Pressurc Distribution Assumed in the Marston-Spangler Theory
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2-5. SOIL PRESSURE DISTRIBUTION ACCORDING
TO THE RING COMPRESSION THEORY:
(a) CIRCULAR SECTION; (b) ELLIPTICAL
SECTION; (c) PIPE-ARCH
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(a) (b)

FIG 2-6: Idcalisation

of the structure for analysis by frame-on-clastic supports method.
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F{_-ﬁ'/(HxLz)

R = (R +BIALXL,)

FI1G. 2-7 Dispersion of Live Load Through the Soil-Fill
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FIGURE 3-1:

LINEAR STRAIN TRIANGULAR ELEMENT



FIGURE 3-2a: 9-NODE QUADRILATERAL ELEMENT

— <

FIGURE 3-2b: 8-NODE QUADRILATERAL ELEMENT

o
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FIGURE 3-5:

INTERFACE ELEMENT
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FIGURE 3-6: LOADING SCHEME
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FIGURE 3-7: VARIATION OF COEFFICIENT OF SOIL REACTION WITH DEPTH
(300 INCH SPAN)



147

700 (.

6 =1.0m

600

500

400

300

Coefficient of Soil Reaction (pci)

200

100

o
[
L]

0 2.0

ojx

FIGURE 3-8: VARIATION OF COEFFICIENT OF SOIL REACTION WITH DEPTH
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FIGURE 3-10: VARIATION OF B* with %.
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FIGURE 3-1lla: VARIATION OF 8 WITH 6 FOR 300 INCH SPAN
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FIGURE 3-1lb: VARIATION OF 8 WITH 6 FOR 200 INCH SPAN
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(a) Due to Loading
T
/ S-\

(b) Due to Deformation

FIGURE 4-1: SHEAR INTERACTION MODEL (AFTER KLOPPEL AND GLOCK, 1970).
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FIGURE 4-2: VARIATION OF THEORETICAL PRE~BUCKLING DEFLECTION WITH 6
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FIGURE 4-3: VARIATION OF MOMENTS AROUND CONDUIT (TYPICAL)
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FIGURE 4-4: VARIATION OF A WITH SPAN
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FIGURE (4-6b): ELLIPTICAL CONDUITS.
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APPENDIX A

THEORY OF DIMENSIONAL ANALYSIS

The theory of dimensional analysis is a useful tool in de-

signipg an experimental investigation, developing equations from a

collection of data, and establishing the principles of model de-

sign, operation and interpretation. It is based on two fundamental
axioms:

(1) Absolute numerical equality exists only when the quantities
concerned are similar qualitatively. That is, for a general
relationship to exist between two quantities they must have the
same dimensions (28).

(2) The ratio of the magnitudes of two like quantities is independent
of the units used in their measurement, provided that the same
units are used for evaluating each.(28).

These two axioms lead directly to an important theorem.

THEOREM 1:

Let o be some quantity which we wish to predict (also called
a secondary quantity); and let ai, i =1, n be a set of those quan-
tities which affect the magnitude of o (the ai are called primary
quantities). If a = f (al, az, e e ey an), then

o= Caaiczazcﬁ;..\ancz (A.1)
where:
ca = Dimensionless coefficient

Ci’ i=1l, n = Dimensionless exponents
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The theorem is proved by considering two systems of the same kind

but different in magnitude.

That is:
a=f (a,a, « . . a) 1st system
1 2 n

(A.2 a-b)

g=f (bl, bz' e o ey bn) 2nd system

where g and b1' bz' .« . ey bn are the secondary and primary quan-
tities respectively of the second system and ai are the same as bi
except in magnitude.

Expressing the above equations in a different unit of measure-

ment, we may write:

1
a’ = £ (xa,, X83,, . « «, xnan)

-(A.3 a=b)

B” = £ (x3by, X,bp, . . ., x b )

where x, are the ratios of the magnitudes of the two systems of units

employed. Then from axiom (2) we get:

[ (A.4)
o B
or o7 = ?g

Substituting into (A.3) we get:
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f (x a X a . . oy X A =
(11’ 22! Inn)

£ (al, az, e o ey an)

f(xb,xb, ..., xb)
11 2 2 nn

f (bl' bz' o« o e bn)

(A.5)
Differentiating (A.5) with respect to xlz
a1 of (xlal, xzaz, e o oy xnan) )
9(x a )
11
f (al, az, e . ey an) . Bf(xlbl, xzbz' e o ey xnbn)
1 d(x b
F (bl, bz' e o oy bn) ( 1 1)
(A.6)

Now let all the x's equal unity. [That is, we are restricting them
to the same set of units. This should not hurt the generality of

the proof.]
Thus:

a of (a,a, « « ., a)
1 1 2 n

d(a )
1
f (al’ az, . . o p an) b af (bl' bzl . . o9 bn)
1
fb,b, ..., b) 9(b)
1 2 n 1

(A.7)
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Separating the variables:

a of(a,a, « . ., a)
1 1 2 n

Ja =
1

f(a,a, «..,a)
1 2 n

b 9f( ,b, .. ., b)
1 12

ab
1

f(bb,b, ..., b))
1 2
(a.8)
For any given value of bi' the right-hand side of (A.8) is a constant
and may be designated as Cl.

Bf(al, az, .« o ey an)

1

= C
Bal 1

m—

f(al, az, « o oy an)

Rearranging:
9df(a ,a, .. .,a)  23a
1 2 n 1
=C, =
f(al, az, .« o ey an) 1
(A.9)
Integrating:
1 £ . . . = 1 d
e (1) (a1' 2, 3y €, 19% ( 1a1)
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where d1 is a constant of integration. If the same procedure is
carried out in succession by differenting (A.5) with respect to

X2, X3, eeey xn, a set of particular solutions will result:

ln(z) f(al, a2, e o oy an) = Cg ln(dzaz)
Qn(a) f(al, az, e o oy an) =C, Rn(d3a3)
Zn(n) f(al, az, e e ey an) = Cn zn(dnan)

where the subscript 1, 2, 3, . . ., n denote that (A.5) is differented

with respect tox , x , . « «, X .
1 2 n

The complete solution is obtained by summing all the partic-

ular solutions.

Hence:

an(a,a,---,an)=

c1 c2 cn
2n £(4d a d a . . . (ac
(@a)?(da) (@.c)

or
f(al, a2’-001 an)=

c c c c c c
(@ 1d 2..d ®Ma la 2,..an

1 2 n 1 2 n

c
=Ccz la2 2 .., .a n (A.10a)
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Hence, the result of interest is:

f(a,a, .. .,a)=C a a e« « oo a n (A.10b)
1 2 n

That is, any measurable phenomenon may be evaluated in terms of
the factors causing it. The application of Dimensional Analysis
therefore reduces to the problem of trying to identify all the

primary quantities and then finding the dimensionless exponents.

To facilitate this, the Buckingham II - theorem is often quite useful.

THEOREM 2: BUCKINGHAM Il - THEOREM

The number of dimensionless products S in a complete set is
equal to the total number of variables n minus the rank r, of their
dimensional matrix. [The rank of the dimensional matrix is also
equal to the number of the basic dimensions involved, and the
two are often used interchangeably.]

The theorem is best illustrated with an example. Consider
the case of a cantilever beam loaded by P located at the end of the

beam as shown.

P

L — \J e
-7

]

- b
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Suppose we wish to find the deflection A at the end of the beam.
We begin by identifying the primary quantities. Thus we write:

A=f(p, L, b, h, E)

where: Dimension
A = required deflection L
P = applied force F
L = length of beam L
b = width of beam L
h = height of beam L

E = modulus of elasticity of beam material FL 2
There are six variables (A, P, L, b, h, E) and with only two funda-
mental dimensions (F, L) Buckingham's theory yields four independent

terms (also called II - terms).
By theorem (1) we write:

€, C3 C, Cg C¢
A=CyP L b h

(A.lla)
c. c.c.c c.cC
1=c A '» %L % *n g ©
and in terms of their dimensions
c ¢c ¢c ¢ ¢ -, C
0 =1L 1F 21, 31, %1, S(FL °) 6 (A.11lb)

These may be arranged in a matrix form:

o Cc Cc (o (o o

1 2 3 L S 6

F 0] 1 0 0 0] 1
L 1 0 1 1 1 -2
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Such a matrix is called the "dimensional matrix". It can be easily
verified that the rank of the matrix equals the number of funda-
mental dimensions used (in this case r = 2). Thus we can choose to
solve for any r (=2) independent (Il) terms in térms of the rest.
Suppose we choose to solve for cz, and c3 in terms of C1' ck, cs R

and ¢ .
6

From equation (A.llb), by equating identical exponents, we

arrive at a system of simultaneous equations in the exponents c,:

F: c +c =0 (A.12)
2 6
L: c +c +¢c +¢c =-2¢c =0 (A.13)
1 3 N 5 6
We then set ¢ =1, ¢c =c¢c =c¢ =0 and solve for ¢ and ¢ .
1 5 6 4 2 3

Hence, from (A.ié),

c +0=0,0rc =0
2 2

and from (A.13),

l4+4c¢c =0,0rc =-=1
3 3

C1 C2 C':a C“ c C
T =4 P° " "n e & = A'POL"!pOnOE° =

>

Proceeding in the same manner, that is settingc =1, ¢ =c¢ = ¢
N

etc., we get:
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b
H2 =T
h
II3 =T
[N
= EL_
H“ =3

The various I - terms may now be combined, by theorem 1, into a

functional relationship.
Hence,
H = f(n ’H 'H )
1 2 3
Or,
2

EL,
5 (A.14)

>

=f (%I

M Es

[4

Any number of Il - terms may be transformed by means of multiplica-
tion and/or division only, provided their dimensionless character
is unaltered. Performing this operation in equation (A.14) we

finally get:

A b h, P
a8 _ S5 ., EF A.15
L f( "b ELZ) ( )

The exact nature of the relationship among the various Il - terms
(equation (A.15)can only be established by means of a well-controlled
experiment and/or some suitable analytical procedure. However, it
is obvious that the number of independent quantities to be varied

in an experiment has now been reduced from the original six to just
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three. Further, any Il - term is considered varied if at least one

of the parameters comprising the term is varied. Therefore the choice
of which parameter to vary may be dictated by convenience, economy,
and feasibility.

The appeal of the theory of diﬁensional analysis is that a
thorough prior knowledge of the physics of the problem is, strictly
speaking, not mandatory. Such knowledge, however, is quite useful.
For example, if in the present beam-deflection problem, it is known

apriori that the variables b and h may be combined into the moment

1 bh?
12

more reduced. A well-controlled experiment should then yield A =
3

of inertia I, (I = = 1"), the amount of rigor will be even much

PL

3gT ' °F something reasonably close, within the limits of experimental

errxor.

DEVELOPMENT OF THE PREDICTION EQUATION

In Chapter III, the non-dimensional parameters were shown to be

related by the equation:

T = f£(m, ™) (A.16)
1 2 3
where:
K
T ==
1 Y
T = H/D
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Selected values of these are shown in Tables (A-l) and (A-2). If ﬂa

is kept constant, ﬂl and vz are seen to fit the equation

(a.17)

where Cd and a* may be functions of other salient parameters of the
soil-steel structure (for example, the span).

Equation (A.l7) is transformed to a logarithmic scale to give:

Log mo= Log C,+a* Logw2 (A.18)

d

This is easily recognized as the equation of a straight line with
slope a*, and intercept Cd on the "1 - axis.
Figure (A-l) is a plot of Log ﬂl versus nz for diameters of 300
and 200 inches, and ﬂ3 held constant at 1.0l and 0.55I. Using the method of

least squares, the following results are deduced for C_., and a*.

d
Diameters (inches) Cd a*
100 3.5 0.501
200 2.8 0.485
300 1.95 0.493

Hence, it is concluded that:

T ~ C

H
L d\’ D (A.19)

The same procedure is repeated for ﬂa with "z held constant at

1.0 to give (Figure A-2):
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™ = 0.5 (1+5.4 —e-)' (A.20)
1 ™

Next Cd is plotted as a function of the span Figure (A-3) to give:

C,= 4.25 = ——— (A.21)

Finally, using the method described in (28) the above equations are

combined to give the prediction equation:
T, )= c ‘/ Bl 0.5+ [1+5.4 9]
1 2" 3 d D n,

0 3=2
0.5 [1+5.4 -Tl-’]

That is,

(a.23)
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APPENDIX C
NUMERICAL METHODS IN ENGINEERING APPLICATIONS

This brief discussion of numerical methods is limited to those
mentioned in this study, namely trapezoid rule of numerical integra-

tion, the solution of matrix eigenvalue problems, and the least-

squares method of curve fitting.

C.1l NUMERICAL INTEGRATION (TRAPEZOID RULE)

Consider an integrable function f(x) on the interval a < x < b

(Figure C-1)

et

R
e e e — o —-—
e - —_—— — — —
b e e = = — = —
e - - — —— -
e = ——

b e - ——
b - — ——
e e ——

L e — -

b
-
0 ]

Vs

We divide the interval a < x < b into n equal subintervals (also

called panels) of width AX, such that

181
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AX = . (c.l)

From an enlarged view of two such adjacent panels (Figure C-2) the

area of each panel is given approximately by

I(I)“

j A X Xid

X, f._1 + fi
[t ax= L= (ax) (C.2)
X.

j-1
X £. + £
[ f ax = L2 ) (c.3)
X,

j

The integral of the function f£(x) over the two panels is given by

X X, X,
[ ) ax = [ 7 £(x) ax + fx3+l
X

Xj-1 j-1 3

f(x) dx
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which, upon introducing Equations (C.2) and (C.3) is given approxi-

mately by

X.
[ f(x) ax =
X

(£

Ax
<> ) (C.4)

+ ij + f.+

j-1 j+1

-1

This is easily recognized as the area of the two trapezia which

approximate the original function f(x) in the interval xj-l to xj+1.
By extending Equation (C.4) over the entire region, the complete

integral becomes

b
Ax
fa £(x) dx = SF (£, + 26, + 26, + ... + 26 +2f 4 £)
(C.5)
or
[ fx) ax =2 (£ +£ +2 I £ (C.6)
a 2 o n j=1 3

where, £ = f£(a) and £ = £(b).
o n

It is apparent that reducing Ax will generally give a better approxi-
mation to the original integral.

This geometric interpretation of the trapezoid rule provides
no information about the error terms. A more elaborate derivation (38)
utilizing Taylor series expansion gives the "trapezoidal rule with end
correction”, so-called because f£f° is needed only at the ends of the

interval:
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b n-1

2
[ ew ax=F e ve 42 1 g9 - 7o) - @)
a j=1

(C.7)

C.2 THE METHOD OF LEAST SQUARES
The method of least squares is based on the premise that a mea-

sure of the accuracy of a function g(x) used as an approximation to
some observed data f(x), is the magnitude d(x) of the local distance

between the two functions.
That is,
d(x) = |£(x) - g(x)] (C.8)

The objective in the least squares method is to minimize d(x) over the
region of x where the approximation g(x) is applied. Let E denote the
sume of the squares of d(x) taken at each of n points xi in the region

of interest.
That is,

n
E= I a’(x,) (C.9)
. i
i=1
Obviously if d(x) is a minimum, so also is E. (It is such reasoning
that forms the basis for calling this the method of "Least Squares".)
In general we make a rational assumption for the approximating func-

tion g(x). Suppose g(x) is a polynomial of degree L.

That is,
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2 L

g(x) = a + a,x + ax + c.. + a x (C.10)
Then,
n . n .
E = 151 l£(x) - gtx)|? = iil lgtx) - £(x)|? =
s 2
.E lg(x;) - £(x,)] (c.11)
i=1

Introducing Equation (C.10) we get, for some point i:

n
- 2 L _ 2
E iil [ao + a,x, + a2xi + ... + a x; f(xi)] (C.12)

E is minimized by equating to zero the partial derivatives of E with

respect to each of the (L+l) coefficients in Equation (C.12).

Hence,

& =0

(C.13)
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For example,

%E _ 3 o 2 L 2
aao ao[iil la, +ax, +ax; + ... +ax - flx)]

= g 2 [a +a.x, + a_x® + +ax® - £(x.)]2
da i i °°c i i

i=1 o (o} 1i 2 L
n , L
+ + cee . = .
= iil 2[a° a.lx1 azxi + + aLx1 f(xl)]

9 2 L
{§;; [a° + alxi + a2xi + .. + ain - f(xi)] }

n
= 2 L- =
iil 2[ao + alxi + azxi + ... + ain f(xi)] (1) 0

(C.14)

The rest of Equations (C.13) can be evaluated similarly to give a
set of (L+l) equations in (L+1) unknowns. (The proof that these
equations do in fact yield a minimum for E is found in several stand-
ard references on numerical methods).

The complete set of the simultaneous linear equations in the

coefficients of the polynomial is readily seen to be:
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s — — -
2 L
n in in oo in a Zf(xi)
2 3 L+l
in ZxL in ces in a, inf(xi)
2 3 4 L+2 - 2
in in Xxi e Xxi a, |= inf(xi)
L L+l L+2 2L L
in in in in a, inf(xi)
T _J L -
(C.15)

C.3 SOLUTION OF MATRIX EIGENVALUE PROBLEMS

The fundamental eigenvalue problem is of the form:
(H-AI)X=0 (c.16)

where H is a known square matrix, X is an unknown column vector with
the same row dimension as H, A is an unknown constant (the eigenvalue);
and I the identity matrix of the same size as H.

Since Equation (C.16) represents a set of homogenous linear

equations, a non-trivial solution exists only if:
det (H-A1I) =0 (C.17)

Expansion of Equation (C.17) yields a polynomial -of some degree n

in A, solution of which giveé the desired eigenvalues A,, i = 1, n.

il
In general, the smallest (or fundamental) eigenvalue is of more

significance, representing a variety of physical quantities depending
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upon the class of problems being solved. (In the present case,
A . is the buckling load.)
min
In many instances, the eigenvalue problem is not of the form of

equation (C.16) but rather of the form:
AX=ABX (C.18)
where B is not an identity matrix.

The solution technique still involves transforming A X = A B X into
the form H X = A X. If B is positive-definite?, then it can be
written as the product of a lower triangular matrix and its transpose.

That is,
B=LL (C.19)

Premultiplying (C.18) by L"1 gives:

rrax=artex=2art @ x=2a1Tx (C.20)
Now, —

whHT = ahH?

whHT ot =1 (C.21)

aaeHTT=a1=a

Hence the left hand side of equation (C.20) becomes:

tlax=1ta @aHT T« (C.22)

2 A matrix is positive-definite for our purposes if all the eigen-
values are positive.
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Using (C.22) in (C.20) we get:

wraahh afxo =a1Tx (C.23)
which can finally be written as:
HZ=A2 (C.24)

. . . T
where H is a symmetric matrix, and 2 = L X.

The eigenvalues of the new matrix are still the same as the original
problem and the eigenvectors Z are related to those of the original

problem by:

X=(L ") 2 (C.25)

It only remains to obtain the decomposition of B into LLT (Equation
(C.19) ). This is readily accomplished by means of the choleski de-
composition (46). Hence, if the elements of B are bij and of L are

lij' the desired decomposition is given in 46) as:

_ b
lll = (bll)
j=1
.. = D X . L, 322, 2, e.., i-1
1lJ (biJ r 1 1Jk) /1lJ j=2, , i
i=2,3,
i-1 n
i = b, - I 15 U
11 k=1
li-l, j =0, j=1, i+l, ..., n (C.26)
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Similarly, the inversion L-l of L is given as:

-1
11 = M1y
-1
115V,
i=2,3,...,n
-1 i -1
1,.=- 2% 1, )
ij k=j+1 ik lk]

, j=i-1, i-2, ..., 1 (C.27)

ij
For a large system, the polynomial method is clearly inefficient for
the obvious reason that solving for the roots of the resulting poly-
nomial equations can present difficulties. A number of efficient
solution techniques are available and only the JACOBI method is brief-
ly outlined here.

The Jacobi method attempts, through a series of orthogonal trans-
formations, to convert the matrix H to a diagonal form. That is, if
U denotes the orthogonal matrix at a praticular step, then UT HU

. th th .
reduces the element in the p row and q column of H to zero. This

can be accomplished if U is of the form:

Pe—— p q
1
P C S
U = - (C.28)
q -S C
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where C and S are constants which depend on the elements of H and all
the off-diagonal elements of U are zero except for upq and qu which
are S and -S respectively. All diagonal elements of U are 1 except
for Upp and qu which are C. Premultiplying H by UT and post-

multiplying by U gives:

1l
h =c%h + s?h - 2csh
pPp PP qq Pq
1l
h =c?h _ +s?h__ + 2csh (C.29 -
qq qq PP Pq
C.31)
1 1l
h =h_ = (c®-s?)h__ + CS(h__-h_))
Pq qp Pq PP qq
A detailed procedure for selecting C and S are given in (37)
where it is shown that:
1 o] ®
C = ‘2‘+"— (C.32)
2B
and
a (-h_))
s= —PRP (C.33)
28 |a] ¢
where a = L (h -h ) and B = (h? + az)k
2 " pp aq Pq

The effects of the orthogonal transformations on all other elements

h

in the pt and qth rows and columns of H are as follows:
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pthrowandqthrow (j #porq)

1
h .=ch _, - sh
<) j 3
(C.34 a-b)
1
h = sh + ch
qj PJ qj
pth column andgkth column (i # p or q)
h1 = chi - shi
ip P q
(C.35 a-b)
1
= sh, + ch
iq ip 1q

All other elements of H remain unchanged.
Hence, the solution technique is to select the element hpq

of the matrix H, which we desire to destroy, then calculate c and s
from (C.32) and (C.33) and the new values h:p and h;q from (C.29 -
C.31) (with hpq and hqp set to zero). Finally the rest of the new
elements of H are obtained from (C.34) and (C.35). The procedure
is then repeated with a new choice of p and q until the off-diagonal
elements become sufficiently small. (Since this is an iterative
method, the off-diagonal elements will not in general be exactly
zero.)

An efficient procedure for choosing which elements hpq to de-
stroy, as well as deciding when the solution has converged is the

so-called threshold method. Briefly, the method involves the

following steps:



(1)

(ii)

(iii)

(iv)

(v)
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Define V, the sum of the off-diagonal elements:

n n
V= g I (h, .)?2 (C.36)
i=1 §=1 1
i#

Compute V for the original untransformed matrix H and then

A"/
compute a "threshold" value U, = ‘ :?

In one sweep through the matrix, annihilate any off-diagonal

element greater than or equal to ul.

Calculate a new threshold H, = El and repeat the sweep through
n

the matrix, annihilating any off-diagonal element greater

than or equal to uz.

Repeat the procedure as often as necessary till uy ﬁ.eul,

where € is a prescribed convergence limit (typically 5_10-6).

The eigenvectors are contained in another set of matrices R

whose elements can be modified along with H. The elements of R

during the transformations are:

Eth column

r, =cr, - sr, (C.37)
ip ip 19

gth column

+ L ]
riq srip criq (C.38)
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All other elements remain unchanged. Upon eventual convergence,

the columns of R become the eigenvectors of the original matrix.
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APPENDIX D

ELEMENTS OF VARIATIONAL CALCULUS*

A) FIRST AND SECOND VARIATIONS OF POTENTIAL ENERGY

Consider a continuous system whose potential energy V is a func-

tion of a displacement variable w(x).

Then,

ve=[*F wx] a (D.1)

X
o

where F is a known function of w, and w an unknown function of x.
Such a quantity as V whose values depend on one or more continuous
variables rather than on a number of discreet variables is called a
FUNCTIONAL.

Suppose for example that our continuous system is a cantilever
beam subjected to a uniformly distributed load. Then the total po-

tential energy may be written

N1 s

FIGURE D-1: § L _ 1
Cantilever beam subjected x
to uniformly distributed L —~
load. N

as the sum of the strain energy and the potential energy of applied

loads.

*The following material is taken from Reference (33) and much of the
original notation has been retained.
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Hence,

- LoEr wy 2
v=[ [ W% + qu] ax (D.2)

2
where w" = %;;

For the cantilever beam, the boundary conditions are of two kinds:
(I) Boundary conditions of physical restraint, also called
forced or geometric boundary conditions -- i.e. w=w" =0
at x = 0.
(II) Boundary conditions of shear (Q) and moments (M) at x = L --
i.e. 9 =M=0 at x = L.
Suppose the beam is in equilibrium in some configuration w = L Sup-

pose further that we permit an infinitesimal increment w, from equili-

1

brium such that,

w —>w°+w

where the arrow means "replaced by". (Both wo and wl must be contin-
uous and twice differentiable in the interval 0 <X < L).

For convenience, let wl(x) 2 € ¢ (x) where € is an arbitrary
small constant and 7 (x) is an admissible but arbitrary function (i.e.

¢ (x) satisfies the necessary geometric boundary conditions).

Then,
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L
vesw=[ B+ 4 q W +en)] ax (D.3)

where AV is the change in potential energy resulting from a variation
in w.
By expanding Equation (D.3) and subtracting Equation (D.2) from the
result, the change in potential energy AV can be written as,
L " on EIL "
a=ef (BIw g +q) ax+e? 3 [ )7 ax (D.4)
(] (-]
The sum of the first-order terms in the expression for AV is called
the "first variation" of V and denoted by the symbol éV. The sum of

the second-order terms is called the "second variation" of V and de-

noted by the symbol %-ézv. For our example,

L
§v=c[ (EIw g+ q) ax
(D.5 a-b)
L
1 EI
I

s 8%v=¢? 5

"2
> > (z )° ax

B) THE EULER EQUATIONS

Consider a structure for which the integrand F is a function of
one independent variable x, and one dependent variable w and its de-

rivatives such that:

x1 ) i
vV = Ix F (x, w, wi, w) dx (D.6)
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Suppose as before, we permit an infinitesimal variation in w such
that w —>» W + L with v, being an equilibrium position. If
wl(x) = €r(x), € being an arbitrary small constant and {(x) any arbi-

trary admissible function, then:

x
Av = fxl [F(x, w_+ €z, w: +eg”, w +eg)
(D.7)

= F(x,wy,wy',wo")dx

Expansion of Equation (D.7) in Taylor's series gives, for the first

variation:

X
1 , JF OF . _oF

v = ¢ fx ( 5;0 g+ 5;: g+ 5;: g™ dx (D.8 a)
°

The criterion for equilibrium is that the first variation of V be

equal to zero, and because € is arbitrary we then have:

X
1 (O L) ) =
fx°(3w¢+aw,c +3m ) &x =0 (D.8 b)
(] o L]

Repeated integration by parts yields:

x 2
Ixo ¢ dw,  dx Jw_ + ax2 Jw" ) g ax =0 (D.9 a)
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which ultimately simplifies to:

3F d OF a2 Jf
—_— e — —_— = 0 x < < x D.%
Bw T & ow, T @2z ow | e -*= (D-9b)
(-]
Equation (D.9 b) is known as the EULER EQUATION of the calculus of
variations. It is easily extended to a multiple degree-of-freedom
system. For example, if there are two dependent variables u(x) and

w(x), with the highest order of the derivatives in u and w being the

first and second order respectively, the Euler equations are:

a_F - d— B_F.. =0
Ju dx ou”

(D.10 a-b)
OF 4 OF az oF

T ax ow T & ow = O

Finally, if there are three dependent variables u, v, w and two in-
dependent variables x, y, and if the highest order of the deriva-
tives are first order in u and v and second order in w, the Euler

equations are found to be of the form:

(D.11)

F _ 9 9F 3 IF
v ox av,x dy 9v,
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32 OF

ow 9% dw, dy ow, + dx2 3w,
x y XX

9xJy ow,
X0y wxy
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