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ABSTRACT

ANALYSIS AND STABILITY or LARGE-SPAN FLEXIBLE CONDUITS

by

.Benjamin Nduchekwe Okeagu

The objectives of the present study are twofold:

1) To examine the characteristics of the coefficients of soil

reaction for flexible conduits, and develop simple formulas for their

evaluation.

2) To use such formulas in the prebuckling and buckling analyses

of the conduits. Both circular and elliptical conduits are examined

in order to investigate the effect of the shape of the conduit on its

stability.

Theneed for this study arises from the fact that existing studies

employ physical idealizations that ignore certain salient parameters

of the soil-structure interaction problem.

The findings suggest the following:

a) The coefficients of soil reaction vary considerably around

the conduit, depending on the span of the conduit, the depth of enbedd-

ment, and the direction of action.

b) A good portion of the buckling strength of the conduit is

derived from its interaction with the surrounding fill.

c) The shape of the conduit has considerable influence on its

stability.

Theoretical results from the present study show reasonable agree-

ment with ones from relevant buckling tests.
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NOTATIONS

Semi-major axis

Parameters governing the virtual displacement components in

the radial and tangential directions, respectively

Semi-minor axis

Load-dependent stability matrix

Boussinesque coefficient

Cohesion

Pressure transfer coefficient

Span of conduit

The smaller of the span of conduit or width of load

distribution

Axial rigidity in 8-direction

Modulus of elasticity of conduit material

Initial tangent modulus

Tangent modulus

Modulus of soil reaction

Poisson's ratio number

Buckling stress

Depth of cover

Depth to the crown

Coefficient of horizontal soil reaction

Coefficient of normal soil reaction

Coefficient of tangential soil reaction

ix



1“s' \)s

C, n

Modulus parameter

Modulus parameter

Change of curvature of the centerline in the 6-direction

Bending moment per unit length in the 8-direction

Axial force per unit length acting in the 6-direction

Atmospheric pressure

Radius of curvature

Radius of gyration

Bending strain energy

Strain energy of elastic supports

Total potential energy

Tangential component of deflections

Normal component Of deflections

Load-independent stability matrix

H

.2.

D

Reduction factor to account for the depth of cover

k

.ii

k
n

Axial strains at the centerline in the 9-direction

k
s

ni

Poisson's ratio of soil

Potential energy of external load

Virtual displacement components during buckling in the normal

and tangential directions, respectively

Axial stresses in the 6-direction



CHAPTER 1

INTRODUCTION

Underground conduits are built using corrugated steel sheets and

constructed to induce beneficial interaction between the conduit walls

and the surrounding soil. The soil acts as an integral part of the

structural system and the structure is referred to as a composite soil-

steel structure. The benefits of such interaction have long been

recognized by many researchers. As shown by Szechy (l), ascribing even

a minimum amount of lateral support to the soil medium reduces the

moments and stresses in the structure by a significant amount (Figure

l-l). This reduction is enhanced (or in certain cases hindered) at an

appropriate depth of filling by the arching effects of the soil (refer-

ence 1)).

For-a long time, underground conduits were limited to spans of

less than 25 feet. Only in the last 15 years have soil-steel structures

been built up through 54 feet spans and come to be regarded as economi-

cal alternatives to conventional short span bridges. Construction of

conventional bridges is labor intensive and much of this labor is highly

skilled. Major capital plant equipments, such as cranes and the like,

are required and the conventional bridge components are usually made of

high grade material. In contrast, the major component in soil-steel

structures is soil which is widely available and one Of the cheapest

building materials. Further, the high performance Of earth moving

equipments make the construction of soil-steel structures highly pro-

ductive and economical (2).

Low costs and high productivity are the main incentives for using

soil-steel bridge structures. A report by the United States Federal
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Highway Administration estimates that using these low cost bridges

results in savings Of 30% over other conventional short span bridges.

Similar savings are reported in Canada (3), while the Australian exper-

ience found the cost Of soil-steel bridges to be typically one-third

that of the conventional bridges (4). Value analysis by a product

designer (2) concludes that most conventional overpass structures do

not represent optimum design. Alternative design using flexible metal

arches and culverts was favored when considering all governing

parameters.

The design of flexible conduits is usually governed by the circum-

ferential thrust in the conduit walls (5). If the depth of cover is

equal to or more than a minimum specified depth of one-sixth of the span,

moments in the wall are not required to be calculated. The justifica-

tion for the neglect of moment lies in the manner in which the inter-

face pressure between steel conduit wall and the surrounding soil mass

changes with the movement of the wall. Even if bending moment occurs

locally to cause partial yielding, the resulting movement of the wall

would cause an increase in the interface pressure provided by the adja-

cent soil mass, and this increase in pressure tends to inhibit any

further movanent.

In general, flexible conduits are designed to guard against the

following primary modes of failure:

1) Wall crushing which occurs when the compressive stresses due

only to the circumferential thrust exceed the axial strength

of the wall.

2) Separation of seams when the thrust exceeds the seam strength.

3) Excessive deformation due to plastic yielding under combined

compressive and bending stresses.
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4) Bearing failure of soil (typically for small and shallow con-

duits subjected to heavy live loads).

5) Soil failure above the conduit (stability of soil cover).

6) Buckling in the conduit walls both in the elastic and the

elastic-plastic levels Of stresses.

Simplified procedures are developed for the analysis and design

Of soil-steel structures. These procedures proved to be adequate for

the design of short and medium span conduits (up to span of 25 ft) and

with covers of not less than 1/6 the span (6,7,8). Herein, the first

four modes of failure are the dominant consideration for design.

However, with the new trend in building conduits with larger spans and

shallower covers, the latter two modes of failure tend to control the

design.

The behavior and design of long-span metal conduits under shallow

cover have been examined by Duncan (9) who recommended that moments in

conduits should be calculated when the height to span ratio, H/S, is

less than one-fourth. Duncan did not include buckling as part of the

design criteria but stated that "additional research is needed to define

precisely the range of conditions for which buckling failure may occur.”

The stability of soil-steel structures has been examined by many

investigators. Leonards and Stetkar (10) presented a summary of the

information and formulas available. Almost all stability studies deal

with uniformly applied boundary pressure on circular cross-sections.

The only stability study that is general in nature and accomodates

sections other than circular was presented by Kloppel and Glock (11).

However, this study neglects the bending deformations in the determi-

nation of the critical load or pressure. Also, Kloppel and Glock

considered the conduit to be supported by continuous elastic springs



(similar to Winkler approach) with the assumption that the coefficient

of soil reaction is constant with no variation with the depth or direc-

tion of action.

Recently, Hafez (12) examined the problem of soil failure above

the conduit (failure mode number 5) and the author feels that attention

should be paid to proper evaluation of the buckling criteria (failure

mode number 6).

The thrust of the present research is to develop a methodology

which can deal with everyday analysis and stability problems of soil-

steel structures under shallow or deep covers. Furthermore, the pro-

posed methodology is applied to study the stability problems of Soil-

steel structures. The problem is approached by employing a mathematical

idealization of the soil response. This approach is similar to the

analytical method proposed by Desai and Christian (13) for the design

of footings, and the Spring method applied by Kloppel and Glock (1970)

for the analysis and stability problems in soil-steel structures.

However, unlike Kloppel's approach, it is recognized here that a large

number of parameters influence the performance of soil-steel structures.

Therefore,

1) A study is conducted in Chapter 3 to examine the parameters

governing the coefficient of soil reaction, kn, normal to the surface

of the conduit wall as well as the coefficient, ks, tangential to the

wall surface, and to develop a simple formula for their evaluation.

2) The energy principles of mechanics and the associated varia-

tional methods are used in Chapter 4 in the pre-buckling and buckling

an"-"-‘~:L:yses of the conduit. The geometric non-linearity of the structure

is incorporated in the formulation by using non-linear strain-

dis£>lacement relations. Equilibrium is then based on the deformed
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geometry of the structure and thus general instability is detected.

3) Both circular and elliptical cross-sections are examined in

order to study the effect of the conduit shape on its stability.



CHAPTER 2

REVIEW OF LITERATURE

In order to provide some appreciation Of the complexity of the inter-

action problem, and a motivation for the techniqueadopted in the present

study, a review of current literature is presented in this chapter.

2-1 CONDUIT WALLS

The conduit walls are usually made of cold formed corrugated steel

plates. A typical corrugation profile is shown in Figure (2-1). The

plates are usually shipped unassembled and bolted together at the site.

22-2 SOIL MATERIAL

The structural integrity of soil-steel structures is dependent as

much on the selection of adequate steel walls as it is on the soil

materials used for bedding and backfill (Figure 2-2) . The bedding

usually has a minimum thickness of 12 inches (30 cm) and is preshaped

in the transverse direction to accomodate the conduit invert curvature.

The backfill is placed and compacted in layers Of not more than 12

inches (30 cm). At no time does the difference in levels of backfill

on the two sides of the conduit exceed twice the thickness of a com-

PaCted layer.

Granular materials are generally recomended for bedding and

ha~cltfill. Such materials do not exhibit much change in their physical

and engineering properties once they are constructed. Environmental

Che-rages such as moisture do not affect these properties to the same

degree as they affect those of cohesive soils.

After placement of the bedding and backfill envelope, secondary

Ina"terial can be used to achieve the desired grade above the conduit.
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However, the behavior of such material should be taken into account

especially with regard to the possible effects of arching above the

conduit.

2—3 CONSTITUTIVE LAWS FOR SOIL MEDIA

A major difficulty in the analysis of soil-structure interaction is

an accurate description of the relations between stresses and strains

in the soil media. In order to represent the interaction problem realis-

tically, some form Of non-linear relation must be used. Numerous con-

stitutive relations have been proposed over the years and are well

documented. Typical among these are the Hardin model (14) and the hyper-

bolic model. The later is proposed by Duncan and Chang (15) who related

the tangent modulus E to the principal stresses (I1 and 03 by the

 

t

equation

Rf(l-sin¢)(01-Oa) 2

Et = Ei l '- 2C cos¢ + 2 03 sino (2'1)

where Ei is the tangent modulus, R.f the failure ratio (that is the ratio

between the measured compressive strength (01-03) f and the asymptotic

Value of the stress difference for the hyperbolic stress-strain curve

(Figure 2-3a) , C the cohesion, and d) the angle of internal friction.

As suggested by Janbu (16) , the initial tangent modulus Bi is related

to the confining pressure by

(2.2)

wFlex-e Pa is the atmospheric pressure, and k, n, constants to be determined

experimentally .
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substituting this into equation (2.1) gives the final expression for the

constitutive relation

03 Rf(01-03)(1-sin¢)

=kP — .—

Et a (P ) 1 2C cos¢ + 2 U3 Sin¢

(2.3)
 

In a similar manner, the expression for the tangent values of Poisson's

ratio \J , and the shear modulus G at any stress level may be written as

 

 

 

 

t t

n

03

Ga-F log (3;)

\) =

t d(o -O) 2
1_ 1 3 (2.4)

a n Rf(01-03)(1-sin¢)

kP FHA [ - . J
a Pa 2C cos¢ + 2 U3 Sin¢

aund

2

R (01-03)(l-sin¢)-1

Gt = Gi 1'- 2 03 sin¢ + 2C cos¢ (2'5)

where G, F, and d are parameters to be determined experimentally, and

Gi is the initial value of the shear modulus.

2—4 FORCE ANALYSIS

In this section, some of the existing techniques for calculating

the force effects in the conduit walls of soil-steel structures are

diSoussed.

2‘4 - 1 Marston-Spangler Theory

The theory of loads on buried conduits developed by Marston (17)

Bung: later modified by Spangler (18) represents one of the earliest

fonnal investigations conducted on this subject. Marston based his



theory on an assumed column of soil transferring load directly on the

conduit and derived the following expression

W= CyB2 (2.6)

Behere

C = a calculation coefficient

B = span Of the conduit

Y = unit weight Of soil

W = load on the conduit.

Spangler later extended Marston's theory to flexible conduits. Whereas

Marston considered only a single concentrated load, Spangler assumed

the pressure distribution shown in Figure (2-4) . Soil pressures at the

top and bottom of the conduit are assumed uniform while a parabolic

lateral pressure is assumed at the sides with a maximum at the spring-

1ine. The vertical pressures are assumed to extend over the span of

the conduit while the lateral pressures subtend an angle of 100° at the

center of the conduit. The uniform pressure is taken as the sum of the

over-burden pressure and any distributed live load, P , at the top Of
L

the conduit

PC = ysh + PL (2.7)

where PC = the uniform vertical pressure, h = the depth of cover above

the crown of the conduit, P = the equivalent live load pressure includ-

L

1119 impact.

For a conduit uniformly supported by a well compacted soil, the

ma~3‘=:imum horizontal pressures at the sides are taken to be 1.35 the

veli‘tical pressure on the t0p of the structure. Based on the assumed
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pressure distribution, the thrust in the wall of the conduit is found

to be 0.7 PCR at the top and bottom of the wall and PCR at the sides,

with a maximum of about 1.1 PCR at the haunches. Similarly the moment

in the wall is taken as 0.02 PCR2 at the top, sides and bottom, and

—0.02 P¢R2 at the haunches.

Based on the model shown in Figure (2-4) , Spangler derived what

has now come to be known as the IOWA FORMULA for calculating the crown

deflection

where

D13

K1=

We

rs

EIB

E'=

 

D11<1Wr3

Ax = EI+ 0.061 E'r3 (2'8)

Deflection lag factor of compensate for the volume change of

the soil with time.

Bedding constant which varies with the angle Of bedding.

Load on the conduit per unit length.

Radius of the conduit.

Conduit wall stiffness per inch.

Modulus of soil reaction.

The Iowa formula had been used extensively in culvert design with

a 5% decrease in the vertical diameter of the culvert generally con-

sidered the safe limiting value for the control of deflection. The

conduit was considered to be in a state of incipient failure if the

de'12::ease in the vertical diameter reached 20%, prompting the use of a

factor ofsafety of 4.0 against instability.

In view of its empirical nature, Spangler's theory applies with

lincited success only to small-span conduits under deep fillings. With

rec=ent trends toward larger spans, the theory is grossly inadequate for
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the following reasons:

1) The 5% limit for control of deflection is too generous since

for large spans -- culverts spanning as much as 54 feet -- a 5%

decrease in the vertical diameter can be quite excessive.

2) Watkins (1960) has found that under certain conditions, the

conduit wall can fail by ring buckling long before the 20% limit on the

vertical crown deflection is attained.

3) For culverts under shallow cover, subjected to live loads,

the assumption of a pressure distribution extending over the full span

of the conduit can be over-conservative (Bakt, 1980) .

4) The assumed pressure distribution is arbitrary and so is the

parameter defined as the modulus Of soil reaction.

2—4.2 Ring Compression Theory

White and Layer (1960) assume a uniform pressure around a circular

conduit buried to a depth of at least one-eight its span in a well-

compacted fill. The uniform pressure, P, consists of the overburden

pressure), yh, and a uniform live and impact load pressure, P

L

That is ,

P = yh + PL (2.9)

where Y is the unit weight of soil, h the depth Of cover, and PL the

equivalent live and impact load pressure. The circumferential thrust,

Tr is expressed as

T = PD/2 (2.10)

whelIe D is the span of the conduit.

The ring compression theory is also extended to non-circular conduits
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and thus implies that the soil pressure is greatest at the point of mini-

ruum radius as illustrated in Figure (2-5) .

2—4.3 Method of Watkins

Watkins (19) gives the following expression for the thrust, TL, in

the conduit wall due to live loads

TL = 0.5 Cp 0L (1+1) Dh (2.11)

C = a pressure transfer coefficient

0' = the equivalent uniformly distributed pressure at the level

of the crown

I = the impact factor.

The pressure transfer coefficient, cp, accounts for the arching

action of dead loads. (IL is computed from Boussinesq's theory Of

force effects on an elastic half space, and is expressed as

PCBa:L H (2.12) 

2

C

Where P is the concentrated load applied at the level of the embank-

ment, He the depth of cover to the crown, and C the Boussinesque
b

coefficient.

In using Boussinesq‘s theory, it is assumed that it applies even

to large cavities in the elastic half space. This assumption is found

to be invalid and the load dispersion differs in the longitudinal and

transverse directions of the conduit (20). The use of cp presumes that

the phenomenon Of arching applies to live and dead loads in like manner.

There is no evidence to support these assumptions.
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2—4.4 Kaiser Aluminum Method
 

This method is based on finite element analysis and provides

enxlpressions for the thrusts and bending moments due to live loads.

lieerice,

T = k LL 2.p ( 13)

sviaerre

T = thrust due to live load

L

H

k = 1.0 for --< 0.25

P D '—
h

H H

= 1.23 - -—-for 0.25 <'-— < 0.75 (2.14, a-c)

Dh -D '—

= 0.5 for 31-> 0.75
Dh -'

D = Span of the conduit

LL = the equivalent line load corresponding to applied concentrated

forces.

me bending moments in the metal arch, due to live load is given as

ML = KmDhLL (2 . 15)

ML a bending moments due to live loads

 

km = 0.018 - 0.004 Log” Nf for Nf _<_ 5000

= 0.0032 for Nf _>_ 5000

0.265 - 0.053 Log1° Nf

R = < 1.0 (2.15, 3,13)

H 0.75 -

(I?
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3

ES (Dh)

H H

II fluxural rigidity per unit length of conduit

[
*
1

II secant modulus of the fill material.

Tire equivalent line loads in equations (2.13) and (2.15) are obtained

from Boussinesq's theory in much the same way as Watkin's method.

The Kaiser Aluminum method leads to conclusions that do not agree

with test data. For example, it predicts that for depths of cover

between 0.3 and 0.5 meters (1.0 and 17.0 feet), live load effects

remain constant. In contrast, tests by Bakt (20) show that live load

effects decrease quite rapidly with the depth Of cover.

2-4.5 Frame on Elastic Supports

This procedure employs the Winkler model, replacing a unit length

Of the culvert wall by a two-dimensional frame and the supporting soil

by discreet elastic springs (Figure 2-6). Two interacting zones Of

earth pressure are identified -- a zone of active and a zone Of passive

earth pressure. The active pressure is due to the movement of the soil

toward the conduit and consists of a radial and a tangential component.

me tangential component is the result of frictional forces developed

bet‘veen the soil and the conduit as the conduit deflects downwards.

It is considered negligible in the upper portion of the culvert

( 2E:‘-'~<'>;ppel and Glock (1970) . The radial active pressure is taken in the

£611“ of a cosine function

P - P cos (—5‘) (2 17)

where P8 is the vertical compression at the crown and 0° the spreading
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angle (Figure 2-6).

The spreading angle (11° depends on the ratio, A, of the horizontal active

pressure to the vertical compression in the soil, and is expressed as:

'IT
2

A = cos (m) (2.18)

where :

0.5 for depths of cover exceeding the span>
2

II

0.0 for depths of cover less than the span.

The high value Of A for deep filling accounts for the reduction of the

vertical compression of the soil by arching. For shallow culverts,

A is taken to be zero to reflect the fact that the vertical compression

at the level of the Crown, Ps (due mainly to live loads), is much

The vertical compressionlarger than the horizontal active pressure.

at the level of the crown, PS, is given as

y}! + PC) for PC < yH (deep cover)'
0 II

(2.19, a-b)

1.1 (7H + Po) for PC > yI-I (shallow cover)

where Po is the live load pressure, H the depth of cover, and Y the

unit weight of the soil.

le 10% increase in the case of shallow fillings accounts for concentra-

t -

1011 of live loads on top of the crown.

In the zone of passive pressure, the walls of the culvert move

o

“Wards against the supporting fill. The passive pressure is assumed

t

Q aCt in the form of spring supports, each having a tangential reaction,

'1?

' For a typical location, n, on the culvertand a normal reaction, F.
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wall, these components are given as:

F = P + s w (2.20)

n n n n

where Pn is the active part of applied loading, 8n the spring constant,

and Wn the radial displacement. Similarly,

(2.21)

where U is the coefficient Of friction.

2-4.6 The Finite Element Method

The geometric and material non-linearities encountered in soil-

steel structures render a complete analytical solution intractable

The finite element method (21) is clearly the only technique that is able

to simulate most of the aspects of the interaction problem with a mini-

It is capable of modelling themum of over-simplifying assumptions.

Presence or lack of friction between the soil and the conduit walls

as well as the non-linear behavior of the soil and conduit walls.

First a finite element mesh is drawn to simulate the soil mass and

A two-dimensional analysis is then performed totl'le culvert wall.

cmpute the nodal stresses, displacements and other quantities Of

Interest. Clearly the complexity, accuracy and therefore degree of

rigor of the finite element method depend on the type of elements and

the refinement of the discretization.

2‘4-7 Theory of Elasticity

A circular soil-steel structure has been analyzed as an elastic

C:§?.‘.l.indrical shell embedded in an isotropic elastic medium of infinite

The problem is considerably simplified by introducingQ3“":1ent (22) .
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some physical idealizations. The complete solution process, as might

be expected, is very rigorous in detail and the final expressions are

equally involved.

Burns' solution (22) has received a lot of attention in spite of

being quite restrictive. The culvert is considered to be embedded to

a depth of at least 1‘: times its diameter in a weightless, homogenous,

isotropic and linearly elastic medium of infinite extent. Stresses

and deformations are determined for two limiting cases: (i) full slip

(that is zero shear stress between the soil and the conduit wall), and

( ii) no slip.

Assumptions such as the ones mentioned above over-simplify the

problem, severly limiting the range of applications of elasticity

solutions .

2-4-8 Practical Code Provisions on Force Analysis

The Ontario Highway Bridge Design Code gives live load thrusts,

TL , as

TL = 0.5 OLDHmf(I+l) (2.22)

o = the equivalent uniformly distributed load at the level of the

crown.

m = modification factor for multi-lane loading.

I = dynamic load factor.

D = the smaller of the span Of the conduit or width Of load

distribution .

‘3 equivalent distributed load UL is calculated on the basis of a 2:1

afLs£>ersion (Figure 2-7a) -- that is, the lines of dispersion slope down
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to the crown at the ratio Of 2 vertically to l horizontally. The

modification factor mf is taken as 1 for a single vehicle, and 0.95

for two vehicles. The impact factor, I, for a single lane is given as

0.4 for H 0H

II

2.0 for H ?_ 2 meters (80 inches).

For depths of filling, H, between 0.16 D and 2 meters, a linear inter-

polation is permitted.

The OHBDC method avoids the assumption of a load dispersion extend-

ing over the full span of the conduit which may be conservative for

shallow conduits.

The method of the American Iron and Steel Institute (A181) is

similar to Watkin's method except that the arching effects (of both

live and dead loads) are completely ignored. The thrust, T , due to

L

live loads is given simply as

TL = 0.5 O'L (I-t-1)Dh . (2.23)

wit}: identical notations as in equation (2.11) .

The American Association of State Highway and Transportation

officials' method (AASHTO) is virtually identical to AISI method. The

same expression is used for the thrusts due to live loads, with identi-

c:

31 notations. That is,

= . 2.24TL 0 5 UL (I+l)Dh ( )

1e only difference is that for a depth Of cover, H, exceeding 0.61

meters (about 2 feet) , the live load is assumed dispersed in such a way

as to be uniformly distributed over a square of sides 1.75 H. In the
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case of multiple concentrated loads with over-lapping square areas,

the effective area is defined by the outside limits of the over-lapping

squares. The total width Of dispersion in this case is confined to

the span of the conduit (Figure 2-7b) .

2—5 STRENGTH ANALYSIS

The existing techniques for calculating the distribution of force

effects on soil-steel structures were the subjects of the preceeding

sections on force analysis. The present section examines the ability

of the structures to sustain the force effects.

Rather detailed study of the literature on this subject is given

in the report by Leonards and Stetkar (1977) . With the exception of

Kloppel and Glock (1970) , all theories deal with uniform radial boundary

pressures .

2—5- 1 Practical Code Provisions on Strength Analysis

For strength analysis, the OHBDC considers the conduit wall to be

divided into two zones -- an upper zone in which the radial displace-

ments are directed toward the inside of the conduit, and a lower zone

wit’li radial displacements outward towards the soil.

, of the wall in both zones isThe elastic buckling stress, fb

3 E B
=

2.25

fb (mm/r)!
( )

w

here r = the radius of gyration, R the radius of curvature of the wall,

6- B a reduction factor to account for the depth of cover. For depths

o _

fi cover exceeding twice the radius Of curvature at the crown, B is

t

3‘an as 1.0, and for other cases as:
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B = (:5) (2.26)

The factor K is a function Of the relative stiffness Of the conduit wall

with respect to the adjacent soil, and is expressed as

(2.27)

where 131 is the flexural rigidity of the conduit wall. The demarcation

between the two buckling zones (that is the upper and lower zones) is

accounted for through the factor A. For buckling in the lower zone,

A is taken as 1.22, and for the upper zone as

 

H 0.25

1 = 1.22 [1.0 + 2(_ 3) ] (2.28)

E R

Where

E = E' [1 - (3:1?) ] (2.29)

H = depth of cover above the crown of the conduit

E' = modulus of soil reaction.

Both the AASHTO specifications (American Association of State

Highway and Transportation Officials, 1973) and the A151 (American

Itch and Steel Institute, 1971) use equation (2.25) to calculate the

en~a.stic buckling stress in the wall Of the conduit. The latter assumes

a Value of K of 0.27 for corrugated steel pipes with backfill compacted

t9 85% standard density.
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2-6 COEFFICIENT 0F SOIL REACTION

The concept of coefficient of soil reaction, K, was first intro-

duced by Winkler (1867) and has since been applied by a number of

investigators. It had previously been erroneously thought that this

coefficient was an exclusive soil parameter which‘could be expressed

purely in terms of the elastic constants Of the soil medium. This

misconception was first pointed out by Terzaghi (23) . Attempts to

incorporate other salient properties of the soil-structure system have

since been made by Mayerhof and Baike (24), Kloppel and Block (1970) ,

and Luscher (25) .

For culverts embedded in sand backfill, Meyerhoff and Baike gave

the following expression for the coefficient of soil reaction

 

(2.30)

where E8 is the modulus of soil, R the condUit radius, and K the coeffi-

Cient of soil reaétion.

me authors Offer no rationale for their expression other than that "the

res istance of fills in the horizontal direction will usually govern in

tlie case Of sands and gravels."

Kloppel and Glock derived their expression by considering a plane

State of strain of an elastic plate with a circular Opening (repre-

Bel'l‘ting the conduit). The plate (representing the soil medium medium)

is considered to have a constant modulus of elasticity Es, and the

o

petting a radius R. The opening is subjected to a radial compressive

E

Q3=‘<=e Po and the authors show through plate theory that K is given by:



 

“
r
“

‘
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E

S

k =W (2.31)

where vs is the Poisson's ratio of soil.

Herein it should be noted that the plane strain analysis of isotropic

media resulted in the existence of tensile stresses of equal magnitude

and perpendicular to the radial stresses.

The expression for the coefficient of soil I‘éactio'n due to Luscher

is:

 

R. 2

1

Es [1 - (R0) ]

k = Ri 2 (2.32)

(l + vs) {1 + (F) (l - 2 vs)} R

o

where:

Es = the soil modulus

vs = the poisson's ratio of soil

R. = inside radius of elastic ring of soil support

R 8 outside radius of elastic ring of soil support

R = conduit radius.

The expression was based on empirical results derived from small scale

model tests and includes the effects of the dgpth of filling.

For a fairly deep cover, the ratio (2;) in equation (2.32) is

nearly zero, and if the poisson's ratio,rv:, of the soil medium is

taken as 0.5, both expressions (Luscher, Kloppel and Block) simplify to

that given in equation (2.30). In all the above expressions, the coeffi-

cient of soil reaction is assumed to be constant all around a given
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conduit, and the surrounding soil medium is represented by an isotropic,

homogenous, linear continuum.



CHAPTER 3

DETERMINATION OF THE COEFFICIENT OF SOIL REACTION

INTRODUCTION

Many investigators have attempted to examine_the behavior of soil-

steel structure systems by employing diverse empirical and analytical

techniques. These range from empirical estimation of the ring compres-

sion stresses to highly sophisticated finite element analyses incorpor-

ating non-linear and stress-dependent properties of the soil media. In

between these two approaches, exist the idealized models of soil-structure

interaction analysis (26,27) which attempt to strike a balance between

them. This approach utilizes the physical idealization or

analog modelling of the soil-structure interaction problems in terms of

Winkler element (Kloppel and Glock (1970)). Herein it should be noted

that the above range of interaction analyses and the idealized models

are not unique to soil-steel structures but also exist in the analysis

of soil-supported footings and rafts.

Analytically, the problems in soil-steel structures are consider-

ably simplified by the introduction of a physical idealization of the

soil-structure interaction. By using such idealization, a number of

problems can be examined relatively conveniently, such as analyses of

live load effects, stability problems and three dimensional behavior of

the structures. Admittedly, the difficulty in this approach is that the

spring constants and shear stiffness are not unique soil properties

independent of the problem under consideration. They are

related to the soil properties, as well as the geometric and stiffness

parameters of the structure. However, despite the complexity and the

approximate nature of the analog modelling schemes, they present very

24
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useful tools to analysts and designers. They provide the facility to

readily investigate the influence of soil support as well as the conduit

geometry and stiffness properties on the failure characteristics of the

structure.

The objective of this chapter is to improve this approach and make

it more attractive to engineers. Herein explicit results are obtained

incorporating the different parameters governing the soil effects, and

more accurate idealization is achieved for the coefficient of soil

reaction. They are obtained by relating the results of internal force

components and deformations calculated with rigorous finite element

analysis (12) to equivalent results obtained from the system modelling of

the problem. The finite element analysis developed in (12) also forms

the basis for verifying the results of the system modelling.

3-1 FINITE ELEMENT FORMULATION
 

The composite system of the conduit walls and the supporting fill

is discretized by'a number of finite elements (Figures (3-1) - (3-4)).

Higher order elements are used around the culvert walls to reflect the

steeper variations in soil stresses. Further away from the conduit

'walls, constant strain triangular elements are used to model the soil

imass, while the conduit wall itself is discretized into twenty

loeam.elements. The constitutive relations for the soil media are

Ibased on the stress-dependent hyperbolic model as shown in Chapter 2.

The development of the finite element model and computer program is

;Emesented in detail in reference (12) and briefly outlined here.

An analytical model is used to reflect the normal and shear stresses

:resulting from the interaction between the conduit and the surrounding

Soil. Such interaction results from the relative movement of the soil

Viith respect to the conduit wall at the soil-conduit interface, and the
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relative movement of the soil particles with respect to each other.

The interface element is a two-node spring type element (Figure (3-5))

possessing no physical dimensions, enabling it to be placed between the

conduit and the soil without distorting the conduit geometry. Each

interface element is assigned a normal and a tangential stiffness, kn

and ks, respectively. Both are taken as zero in case of tension between

the soil and the conduit wall. In order to minimize the overlap

Ibetween nodes on either side of the interface in compression, kn is

assigned a very large number, while a non-linear relationship is used

for the shear stiffness

On nS Rfs TS 2

Ts KI Yw (Pa) L 1 OntanA" (3 ’ 1)

vehere

Ts is the applied shear stress, Rfs the failure ratio, on the

xiormal stress, Yw the unit weight of water, A the angle of friction

loetween the soil and the conduit wall, KI a dimensionless stiffness

rrumber, and n8 the stiffness exponent.

An analytical incremental procedure is used to simulate construc-

. / tion processes. The filling is applied in ten successive increments and

L'"

ii ssequence of linear analyses are carried out using the stress-strain

1?€33Lationships of the form

'{A0} = [c]{A€} (3.2)

“filters {A0} is the incremental stress vector, {As} the incremental strain

Vector, and [c] the constitutive matrix.

The effect of soil compaction is included in the form of equivalent
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nodal loads applied on top of each construction layer. Before proceed-

ing to the next layer, these are removed by applying equal and opposite

forces.

3-2 FACTORS AFFECTING THE COEFFICIENT OF SOIL REACTION

The coefficient of soil reaction, k, is the unit pressure developed

as the sides of the conduit move outward a unit distance against the

fill. As noted earlier, this coefficient is not a unique soil property,

depending instead on a variety of parameters pertaining to the soil-

conduit system. The parameters selected for investigation in this

study are

l) The degree of compaction, 9;

2) the depth of cover, H (ft, in);

3) the span of the culvert, D (ft, in);

4) the flexural rigidity of the culvert wall, 31 (inZ/in);

5) soil modulus, ES (psi);

6) Poisson's ratio of soil, VS;

7) magnitude and direction of soil displacement As, 6 respectively:

8) the unit weight of soil, Y (pcf);

9) the relative density of soil (defined as dense and medium).

Mathematically these are expressed as

K = f(9, H, D, E1, E3, vs, AS, a, y) (3.3)

Depending on the constitutive model used, expressions for the soil

‘“K3<111lus, Es' and the Poisson's ratio, vs, are very complicated in general,

as well as non-linear and stress-dependent. Consequently, the develop-

ment of an analytical model incorporating the wide variability of these

Paranaters is virtually impossible. For purposes of computational
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convenience, this study is restricted to two particular class of soils,

namely a well-compacted dense, and a medium dense granular backfill.

This limitation is valid since it is required in practice to use only

well-compacted, granular soil. For such type of soils, the hyperbolic

parameters, on the basis of studies by Duncan et al (1977) may be taken

equal, or as close as possible to those in Table (3-1). Therefore Es

and vs are considered to be prescribed quantities and their effects on

the coefficient of soil reaction are accounted for. A stronger case for

the elimination of E5 and vs from extensive consideration comes from

the fact that the subsequent analysis utilizes the theory of dimensional

analysis which requires that the significant parameters be dimensionless

as well as independent of each other. It was noted previously that Es

and Vs are dependent upon stress levels, which in turn vary with the

depths of cover, H. Therefore to satisfy the limitation of independence

as required by the theory of dimensional analysis, 33, vs and H cannot

be considered separately. It has been found convenient to eliminate

ES and vs in favor of the more readily amenable parameter, H.

With ES and vs eliminated from further consideration, the theory

of dimensional analysis (28) is applied to furnish the following non-

dimensional form of equation (3.3)

A

5: E! 37.1. .2Y f (D. Ym' D. e, m (3.4)

(A brief discussion of the theory of dimensional analysis is presented

in the appendix . )

The advantage of equation (3.4) lies in the reduction of the number

(bf independent terms. Rather than conduct a parametric study involving

Iline separate terms as required by equation (3.3), the number of terms
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is reduced to only five in equation (3.4). This represents substantial

savings in time and expense in the present study. Furthermore, each

non-dimensional term is considered varied if at least one of the para-

‘meters it consists of is varied. Therefore the choice of which para-

'meters to vary is often dictated by convenience and economy.

The method of Kloppel and Glock presented in Chapter 2 identifies

two interacting zones of earth pressure -- a zone of active and a zone

of passive pressure. In order to compute the coefficient of soil

'reaction,it is desirable to devise a technique for separating the

effects of one from the other. (Throughout the rest of this chapter,

emphasis is placed on the normal component, kn' of the coefficient

(of soil reaction. In the following chapter, shear interaction is

emamined.) To achieve the desired separation, equal normal concentrated

:Eorces are applied at the nodes of the beam elements to induce outward

Ciisplacements all around the conduit as shown below.

‘V5L1:h such a device, the influence of active pressure is eliminated

(311:1 the coefficient of soil reaction normal to the conduit wall is

given simply as:



30

(3.5)3
‘

ll

.
1
4
.
?

ni

where Ai is the normal displacement at the ith interface node, Oi the

normal stress at i in the direction of A1, and kni the desired coeffi-

cient of soil reaction.

3-3.1 The Effects of Compaction and Flexural Rigidity, EI

Soil stabilization is probably the single most important factor

in most culvert installations. Rather than compute the response to a

{range of values of the degree of compaction, this study accounts for

compaction by specifying a dense, granular backfill compacted to

'the recommended AASHTO standards. (Later, the case of medium

«dense soil is examined.) In this way, the degree of compaction is elimi-

xaated from further consideration as a separate, independent entity.

IPurthermore, the primary effect of compaction is usually to improve the

<1ua1ity of the soil, notably the unit weight. Since the unit weight,

‘Yn is retained in equation (3.4), the influence of compaction is in

effect reflected.

There is evidence in the literature (29) that the effect of the

flexural rigidity, EI, of the conduit wall on the coefficient of soil

reaction is quite negligible. This conclusion is presumed accurate and

titles term.EI/YD“ therefore dropped from equation (3.4). Hence no

Separate examination of this term is conducted herein.

3-23.2 The Effects of the Depth of Cover, and the Span of the Conduit

The effects of the depth of cover, H, and the span of the conduit,

‘Dor are examined in this study by computing values of the coefficient of

3°11 reaction corresponding to a range of values of H and D. Results
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for H of 4.0, 6.4, 8.0, 11.73, 12.64, and 20.36 feet and for D of 300,

200 and 100 inches are presented in Tables (3-2) - (3-21). They are

also presented in a non-dimensional form by plotting k/Y versus H/D

in Figures (3-7) and (3-8). The plots are nonlinear, and can be des—

cribed with sufficient accuracy as suggested by Bowles (30), by the fol-

lowing relationship

H (3.6)

-
<
|
3
"

ll 3
’

+ O J
.

with AS = 0 for sand filling.

Equation (3.6) is developed in detail later.

3-3.3 The Effects of Magnitude and Direction of Soil Displacement (As, 8)

 

To study the effects of the magnitude of soil displacements, a range

of uniform normal forces are applied according to the loading schedule

summarized in Table (3-22). Corresponding values of the coefficient

of soil reaction are shown in Tables (3-2) - (3-21) for diameters of

100, 200 and 300 inches. These clearly show that the coefficient of

soil reaction is practically independent of the magnitude of soil dis-

placements, for displacements not exceeding 0.1 inches. Furthermore, the

load-displacement relationship (Figure 3-9) is linear in the practical

range of displacements.

Evidence that subgrade reaction may be related to the direction of

scfii displacement comes from Terzaghi (1955) and Vesic (31). Terzaghi

proposed expressions for the coefficients of vertical and horizontal

subgrade reaction, kv and kn respectively, based on the results of

Plate load tests. According to him, the coefficient of vertical sub-

grade reaction, kv, for beams on elastic foundation may be expressed as:
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2
, _ 3+1 29
kv — K1 (—-B) (1 + —B) (3.7a)

For piles under lateral loads, a similar expression is given for the

coefficient of horizontal subgrade reaction

D

kh - n B (3.7b)

where in equations (3.7),

B = the width of the beam or pile

D = the depth of embeddment

nh and K1 8 constants based on results of plate load tests.

Recommended values of K1 and nh for sand filling are given in Table

(3-23) .

By extending the results of laboratory triaxial tests to footings,

Vesic (31) proposed that the coefficient of vertical subgrade reaction,

kv, may be expressed as

k = 0.65 12 B8B Es (3 8)

V' B EbI 1-\)2 °

where:

U
! l width of footing

I I moment of inertia of footing

O
‘

modulus of elasticity of footing

u
p

M I modulus of elasticity of soil

Poisson's ratio.C

II

Though empirical in nature, equations (3.7) and (3.8) clearly show

tfluit.kv and Rh are significantly different for identical sets of soil
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parameters and beam, footing or pile dimensions. Since the results of

the present study indicate that the coefficient of soil reaction is

independent of the magnitude of soil displacements, the only variable

responsible for this difference must be the direction of soil displace-

ments, 9. The effects of variations in 8 is accounted for in the sub-

sequent discussion.

3-4 DEVELOPMENT OF THE EXPRESSION FOR THE NORMAL COMPONENT OF

COEFFICIENT OF SOIL REACTION

In the preceeding sections, the effects of a number of parameters

on the coefficient of soil reaction were discussed and after deleting

those factors considered negligible, the coefficient of soil reaction

was shown to be given by the following equation

1T1 = fUTZI 1TB) (3.9)

where

1T1 =k/Y

7T2 = H/D

7T3 = 6

Equation (3.9) is referred to as a prediction equation, and represents

an unknown function which must be established by a suitable analytical

procedure. A rational procedure for achieving this is discussed by

Murphy (Reference (28)) and adopted here without proof. The method

involves plotting the dependent variable as successive functions of each

cxf the independent variables with all but one of the later held constant

each time. As an illustration, consider the case described in equation

C3.9). First H1 is plotted as a function of Hz, with W3 held constant

at 753, say. Fran such a graph, a suitable curve-fitting technique is

enmiloyed to develop a relationship between H} and Hz (for the constant
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value of N3). Suppose this function is designated as

7r; = f('rr2, '53) (3.10a)

Next, the procedure is repeated for W3 with W2 held constant (at E} say)

resulting in a similar expression in Hz. Suppose this is written as

1r; = £52, 1T3) (3.10b)

An equation of the form of (3.10a) or (3.10b) is called a component

equation and the choice of the constant values 3} and E} are completely

arbitrary. It is shown in (28) that the component equations may be

combined into a prediction equation as

f('nz, Fahffiz. NJ)
(3 11)"1(“21 1T3) = __ _ _

F(W2' TF3)s 2

where:

S = the number of dimensionless, independent parameters (three

in the present case).

F(§}, 33) = equation (3.19a) evaluated at E}, or equation (3.10b)

evaluated at W3

Hence, the prediction equation can be expressed as a product of its

component equations combined in some appropriate manner. Obviously,

since this technique is semi-empirical, the chances of error increase

with the number of variables involved.

The technique is now applied to the present study. The sign con-

(rention for this purpOse is that 6 is positive in the clockwise

direction, increasing from zero at the crown. Furthermore, only one-

half of the conduit (0 _<_ 6 5_ 180°) is considered since the coefficient

of? soil reaction is virtually symmetrical about the vertical axis of

the conduit (Tables 3-2 to 3-35) . Hence, any expressions developed
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for one half of the conduit, automatically satisfy the other.

Figures (3.7) and (3.8) show plots of k/y versus H/D with 6 held

constant at suitable values. From these graphs and using the method

described herein, in conjunction with the method of least squares,

the expression for the coefficient of soil reaction for the dense

soil is found to be

(3.12)

U
l
m

d 9-
<
l
x

u n n

where

0.75D

d 4.25 - -I66-'0

II

= 1+5.4 G/n

6 4

Finally, if H in equation (3.12) is replaced by

H = H + 2-(1-cose)

c 2

the expression can finally be written as

 

k I l
__ _ _ 3.13

— Cd Ce a + 2 (1 cose) ( )

H

‘where, a = the depth ratio , ‘2» and H = depth to the crown of the

conduit, D = the span of the conduit in inches.

.3-5 THE EFFECT OF THE RELATIVE DENSITY OF SOIL

So far the discussion has centered on granular soils with high

relative density. What follows is a parametric numerical study of the

effects of relative density on the coefficient of soil reaction. For
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the purposes of this study, relative density is defined simply as dense

or medium dense. A variation in relative density is accomplished by

changing the hyperbolic parameters as summarized in Table (3-1). For

example, while a modulus factor, k: of 3100 is assigned to the dense

soil, a value of 1200 is ascribed to the medium soil. The loading

schedule and all pertinent discussions given previously for the dense

soil still apply.

The results are presented in Tables (3—24) to (3-35). In order

to integrate these results into a mathematical expression for the

coefficient of soil reaction, it is found convenient to calculate the

ratio 8* of the coefficient of soil reaction for the medium soil to

that of the dense soil at corresponding points around the conduit.

8* is plotted as a function of H/D and of 8 in Figures (3—10) and

(3-11). From these plots and also from Tables (3-24) to (3—35) it is

seen that 8* can be represented with sufficient accuracy by the following

equation

8* = C1 + c2 (6) (3.14)

where C1, C2 are functions of the span of the conduit. Using the least

squares curve-fitting technique, equation (3.14) is found to simplify

to

D e 2

8* = 0.45 + 5% (3; - 0.5) (3.15)

Therefore it is proposed herein that the coefficient of soil reaction,

1&1: in the nonmal direction to the wall of the conduit may in general

be given as :
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- "Ekn — y 8* cd ce D (3.16)

 

where

0.75D

Cd - 4.25 - 100

C = l + 5.4 G/fl

8 4

8* = 1.0 for dense soils

2

D 6 . .

— 0.45 + 200 (E-- 0.5) for medium dense 50115.

H = depth to the point on the conduit where kn is desired.

D I span of the conduit.

Y = unit weight of soil.

Equation (3.16) is compared with results from the finite element method (12)

in Tables (3-36) and (3—37) and agreement with these is seen to be quite

good.



CHAPTER 4

PRE-BUCKLING AND BUCKLING ANALYSES OF ELASTICALLY SUPPORTED RING

INTRODUCTION

The soil-steel structure can be analyzed as an orthotropic shell

supported by the soil for which the coefficients of soil reaction are

determined in Chapter 3. However, such analysis could be simplified

by . considering a plane slice of unit width of the conduit and surround-

ing soil. This approach is considered adequate since:

1) Dead load is usually uniform along the axis of the conduit.

2) Effect of live load is simulated by equivalent pressure after

considering its dispersion in the longitudinal direction.

3) Bending and axial rigidity of the shell in the longitudinal direction

is considerably small when compared with those in the curved direction.

Therefore the analysis and stability of the conduit are examined

considering the conduit as a frame elastically supported by the soil,

using an energy approach.

4-1 ENERGY THEORIES

The principle of stationary potential energy states that of all

displacements satisfying given boundary conditions, those which satisfy

the equilibrium conditions make the potential energy a stationary

'value -- maximum, minimum or neutral. This can be expressed by the

condition

5V = 0 (4.1)

For stable equilibrium, the potential energy is a minimum (maximum for

unstable and unchanged for neutral equilibrium).

38
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4-2.1 Potential Energy Expressions in Pre-Buckling Analysis

Pre-buckling displacements and stress-resultants are assumed, for

the purposes of this study, to be determined with sufficient accuracy

by linear theory. This assumption is seen to be adequate (33), hence

second and higher-order terms are excluded from the energy equations.

The potential energy, V, of an elastic system is the sum of the

strain energy, U, and the potential energy, 9, of external forces.

Hence the total potential energy can be expressed as

V = U + 9 (4.2)

For an elastically supported ring, the strain energy consists of the

bending strain energy, U , the membrane strain energy, Um, and the

 

b

strain energy of the elastic supports, Uk'

Hence,

U=Ub+Um+Uk (4.3)

where,

2n M 2d6

u=5 9
b 2 E1

0

2n

Um = €§~ I egds (4.4, a-c)

o

1 2n 1 2n 2

=— 2 _-uk 2 foknwds+2 foksvds

Furthermore, the bending moment Me is given by

EI u

Me 8 Ez- (w + W) (4.53)
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and the strain, 88' of the centerline in the 6-direction by,

l dv

£6 - §:(55'- W) (4.5b)

where in equations (4.4) and (4.5),

the dot denotes differentiation with respeCt to 6.

R = radius of the ring

A = area of cross-section

k = coefficient of soil reaction (normal or tangential as the case

may be)

w, v = displacement components in the normal and tangential direc-

tions, respectively.

A choice of suitable displacement functions w(9) and v(8) is made

consistent with the boundary conditions. For the complete ring, the

boundary requirement is that w and v be periodic in 6. The tangential

displacement, v, may further be taken in such a form as to make the

extension of the centerline of the ring zero. This simplification is

equivalent to replacing the actual ring by a hypothetical ideal ring with

negligible extension of the centerline.

Hence,

1 dv

Se - 0 = -(a§-- w) (4.6)

The condition of inextensional deformation of the ring therefore is

dv
5.6.- w __ 0

(4.7a)

or v = I wde (4.7b)

The following displacement functions are chosen:
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w(6) = Z Wncosne

n=1

m

(4.83,b)

l

v(6) = Z -W sinne

n=1 n n

Substitution of these into equations (4.4) gives

co

2

- EEK. - 2 2 ’Ub 2R3 2 (1n) wn (4.9)

R co co ksR 2n wn2

Uk = E-f kn g g W W cosnecosmede + -3-fe Z 33-sinn6d6 (4.10)

O 0

Finally, using the expression developed in Chapter 3 for kn, and also

employing the trapezoid (as discussed in the Appendix) rule of numerical

integration, equation (4.10) becomes

  

1rRks w an w 80 sin2n6o wn2

Uk 2 2 Z n2 - ksR Z (.3.- 4n ’ n2
n=1 n=1

YCdR cosnfl cosmn
+ ——(—-6)..(28/a+25 Zoo anmw —3- -3—)

n=1 m=l

+——:.d—R[2.em E E wnmw C°SM°°SM
n=1 m=l 3 3

+6.4/_Z anm-w(l)m+

n=1 m=1

Q Q

+ .74m 2 Z wnWm cosn_1r cosm'n

2

n=1 m=1 2

co on

+ 9. 2,417.7— 2 Z wnwm°°5213m coszgm

n=1 m=1

+ 11. New. 933 Z Z wnwm°°s§—gm “552“) (4.11)

n=1 m=l
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In the above expression, 60 is the point of inflection. It is given

approximately, as suggested by Sayed (32), by the following equation

EI .

60 = 1.6 + 0.2 log EFEg-radians (4.12)

where:

EI flexural rigidity of ring

E' = modulus of soil reaction

R radius of the ring.

An iterative procedure for determining 80 is described subsequently.

4-2.2 Potential Energy of External Load

The potential energy, 9, of the external radial forces is given by

2n

(2 = RI q(e)wde (4.13)

o

The load dispersion criterion proposed by Kloppel and Glock (Chapter 2)

is adopted here. Hence the loading function for a shallow conduit is

taken as

i

2
q(6) Pscose, §_6 §_%- (4.14)

0 elsewhere

where ps is the maximum pressure intensity at the level of the crown.

Introducing equation (4.14) into (4.13) and integrating yields

  

n/2 w

9 = 2R I P cosG Z W cosanB
S n

0 n=1

"Rpsw1 co sin (1271 - %) sin (127-‘- + g)

= ___—2 + P312 2 wn (”1) + (ml) (4.15)

n=2,4...
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Finally, equations (4.9% (4.11), and (4.15) are introduced into equation

(4.1) to give

6 sin26

o

 

= - — - -——2

8w - 0 ksmlbT (2 4 )1

1

YCde cosmfl co n
+—(—-6)(2..801+252Wm 5-)

4 3 3

o m=1

7c:1m 1r 1r

+ [2.am 121% ”“; mg

+ 9.2m 2* wmcosz__m1rcos_2_1r

m=1 3 3

m Sflm 5N “P R

+ 11.0/a+.933 Z w °°s— °°s— - —""—
1 m 6 6‘ 2

6 sin2n6

8V _ EITT _9. _ _ 0
5w; 3 0 - Wn {T(1 1122) 4’ 1(5th (2 4 )J}

 

yc R

+ _d (_ - eC))(.2 8/a+. 25 Z1 wm °°3931 “5“"

Yeast)
+ [2 8 0+. 25 {1 Wm cosnfl cosm‘”

3 3

+ 7 4/a:- Z wmc051: 008??

m=1

+ 9.2m 2 Wm cos_2__13rn C052?

m=1

. 11.om E Wm ”82—2“ “35—23)
=1

nfl fl

sin(1r'- 39

(n-l)

. nfl fl

Sin (7- + 3)

(n+1)

 
 

- P R T ] , n > 1
S b

+ 6. 4/o+12 Wm (--l)m

lm=1

(4.16a)

—)

+ 6. 4/a+12 Wm(-1)m

1m=1

(4.16b)
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4-3 SOME OBSERVATIONS ON THE SOLUTION SCHEME

A computer program is written to solve equations (4-16) for various

soil-conduit parameters. In addition to the unknown displacement

coefficients, Wn, the point of inflection, 60, and the constant coef-

ficient of soil reaction, kg, in the tangential direction to the wall of

the conduit are also unknown. The program is designed to iterate over

both of the later quantities (that is Go and ks) until an acceptable

convergence is achieved. In the absence of experimental data, solutions

from the finite element method C12) are used as the sole basis for verifying

the pre-buckling displacements and stress-resultants.

Literature on the coefficient of soil reaction, ks, in the tangen-

tial direction to the wall of the conduit, is very scarce. Kloppel

and Glock (1970) have proposed a model of shear interaction that argues

for a total exclusion of the tangential component of the coefficient

of soil reaction. According to this model, a set of shear stresses is

induced around the upper section of the conduit as a result of the

direct influence of live load as shown in Figure (4-Ja). Subsequent

deformation of the conduit induces a similar set of shear stresses

acting in an opposite sense to those due to loading (Figure 4-1b). Both

sets of stresses counteract each other to an extent that is not pre-

cisely determinate. However, it seems reasonable, according to this

model, to ignore any resultant shear stresses since they are adjudged

too small to make a significant contribution to the overall soil-

structure interaction.

The provision in this computer solution, of a tangential (in addi-

tion to a normal) component of the coefficient of soil reaction is

believed to be a more realistic modelling of the interaction phenomenon.

The results of the computer solution indicate that for any set of

conduit dimensions and live loads, the soil-structure interaction is
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modelled with sufficient accuracy by taking the coefficient of tangen-

tial reaction, kg, to be constant. In particular, it has been found

convenient for the purposes of developing an appropriate expression

for kg, to take this constant coefficient as some multiple of the normal

component, kn , at the invert, expressed by the following equation

1

k = Ak (4.17)
s ni

where,

>
2

II

a constant less than 1.0

Ofor036ieo

The computer program, as noted earlier, performs an iterative

routine. Starting with very small values of RS and 60, subsequent

solutions are sought with small increments of these till a reasonable

convergence is achieved. The displacement at the crown of the conduit

is negative (inwards). Between the crown and the springline, the dis-

placement reverses and becomes positive (outwards) just beyond the point

of inflection, 60. In other words, the test for convergence is the

angle 90 (incremented from zero) beyond which w(60) just reverses

directions. A typical set of results is presented in Table (4-1) -

(4-3) and results from finite element analysis are also presented for

comparison. These results are also plotted in Figures (4-2) and (4-3).

In addition, values of the constant coefficient, A, corresponding to

these are presented in Table (4-4) and Figure (4-4). Of interest is

the indication that A is practically independent of the span, D, of

the conduit. Using the method of least squares, A is found to be

approximately equal to 0.2. If this value is substituted into Equa-

tion (4-17) the expression for kS may finally be written as
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ks = 0.32 (4.25 - 9i%§2)¢o + 1 (4.18)

4-4 BUCKLING ANALYSIS

The ring compression theory of White and Layer (1960) suggests

that the flexural rigidity of underground flexible conduits governs

mainly in the installation stages while the compressive strength of the

conduit material and joints governs the behavior under load, provided

there is an adequate backfill. The theory, however, disregards the

actual properties of soils. Furthermore, buckling may in fact govern

the behavior, under load, of flexible conduits whose spans are much

larger than those considered in the ring compression theory. Therefore

an adequate examination of the buckling limits of large-span flexible

conduits is necessary.

The second variation of potential energy is used to establish the

criterion of elastic stability. The theory was developed with specific

reference to elastic stability by E. Trefftz and has since been employed

extensively (33, 34). It is based on the concept that a stationary

mechanical system is in stable equilibrium if, and only if, the poten-

tial energy, V, of the system attains a relative minimum; hence the

change, AV, of potential energy is such that AV > O for any small vir-

tual displacement of the system that is consistent with the constraints.

The potential energy for an elastic system, is given in Equation (4-2).

Consequently, the change, AV, in potential energy due to an infinite-

simal (virtual) displacement from an equilibrium configuration is

AV = AU + A9 (4.19)

For an elastic system, AU may be written as



 

 

—l- 620 + 3— 630 + + i- an (4.20)AU = 5U + 2! 3! ... n!

in which GnU (the nth variation of U) is the volume integral of a homo-

genous polynomial of nth degree in the components of the virtual dis-

placement vector and its first derivatives (35).

Similarly, the change, A9, in the potential energy of the external load

is

1

69+ooo+—6Q (4.21)

The principle of virtual work requires that the first variation

(5U + 69) of the potential energy vanish for any equilibrium configura-

tion. Thus if the virtual displacements are small, the sign of AV is

controlled by the sign of 52H + 629. Therefore the equilibrium is

stable if, and only if, 620 + 629 > 0 for all virtual displacements,

and the criterion of stability, is that the second variation of poten-

tial energy be positive-definite. The critical load for a structure is

the limiting load at which the structure first loses its stability --

that is, the load at which 62V ceases to be positive-definite as the

load is increased from zero. Accordingly, the question of stability

resolves into a mathematical study of the nature of the second varia-

tion of the potential energy. More importantly, the theory is readily

generalized for multiple-degree-of-freedom systems. For a structure

whose potential energy is a function of say, two variables A and B,

and for arbitrary small virtual displacements A1 and B; from some equili-

brium configuration (Ao, Bo), the change, AV in potential energy may

be written in a Taylor's series expansion as
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AV = g—X' (A0! B0) A1 + %% (A0! BO) El

1 32v 2v
+ ‘27 3A2 (A0, B0) A2 + 2 g—-—ABB (A0, Bo) A181

+ 32v 2
553-(A0, Bo) Bl (4.22)

Hence,

_ 1 2 1 2
Av - 6v + 37-6 v + 37-6 v + ...

where:

OV = g—X (A0, B0) A1 + % (A0, Bo) Bl (4.231))

and

32v 232v 32v

52V: 3T2 (A0, Bo) A2 + m (A0180) A131+382

The appropriate condition for the limit of positive-definiteness of

a quadratic form is that the determinant of the coefficients equal

zero. Hence, in the present example, the condition for the initial

loss of stability may be written as

32v 32v

a? ‘on 30’ ma ”‘0' 130’
= 0 (4.24)

2V 2

37% (Aw 30’ '33} ‘on 30’
  

The use of the vanishing of the second variation of potential

energy as a criterion of stability raises the question whether the

(4.23a)

(A0, Bo) B2 (4.23C)

equilibrium is stable at the critical load itself -- that is, whether

the equilibrium is stable for P fi-Pcr' or merely for P < Pcr'
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Fortunately, this distinction is of little consequence in the determi-

nation of the critical load (34) and the use of the vanishing of the

second variation of potential energy is a sufficient criterion.

4-5 ENERGY EXPRESSIONS IN BUCKLING ANALYSIS

In the pre-buckling analysis, it was assumed that linear theory

was sufficient to ensure an accurate determination of the deflections

and stress-resultants. In contrast, the development of expressions

for the second variation of potential energy requires consideration of

non-linearity (33), and equilibrium is based on the deformed geometry of

the conduit. Recognizing this necessity, non-linear terms are retained

in the geometric relationships. It is realized however, that retention of

all non-linear terms is not practical and certain simplifying assumptions

therefore become imperative. For example, the ring is assumed to buckle with-

out any incremental membrane strains, and it is further assumed that the

prebuckling membrane strains may be neglected without any loss of accuracy (36).

The expressions for the strains and changes of curvature may be

written as

— — ‘1— — - l — .—

66 - R {(ve w) + 2 (v + we) } (4.25a)

and,

E - i- (Cz' + G) (4 25b)
66 R2 66 °

where Kee = change in curvature of the centerline in the 6-direction,

2% = axial strain of the centerline in the 6-direction, the bar denotes

the sum of the pre-buckling equilibrium configuration and the corres-

ponding virtual component. If w and v represent the displacement

vector defining an equilibrium configuration, and C, n the respective

components of the incremental virtual displacement vector during buckling,
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then, neglecting the pre—buckling rotation of the ring element, v +

which is very small, equations (4.25) may be rewritten as

E' = 2-{v - w + - + l-( + )2} (4
e R e “a C 2 “ C8 '

and,

E. - 1' (w + w + g + c) (4

88 if 88 88 °

The bending and membrane strain energy U13 and Um respectively,

given by

2N1 ._

Ub = R Io 3 (Maxeeme (4.

and

2N

.. 3 ,-
tJm - 2 I NeeedB (4.

o

where N6 = the axial force per unit length acting at the centerline

the 6-direction.

It is shown in reference (35) that NO and Me are given by

Et ;. EI _. °'

= — - - + 0Ne R (V W) 137-(W W) (4

and,

E1 .2 ._

= 4.Me E;- (w + w) (

Therefore using equations (4.26) and (4.28) in equation (4.27), the

strain energy components may finally be written as:

W
6’

26a)

26b)

are

27a)

27b)

in

28a)

28b)
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1 21‘s: 2
Ub ='§§- o:§3’(w + w66 + C + C66) d9 (4.29a)

and,

C II
2w

R Et

'2' IOWE‘Ve'WWe‘ 5’

El '1 1

F‘w+‘;ee+§+"88)-‘ {E[Ve'w+”8'§

+

2:

% (n ‘+ :9) ]}de (4-29b)

At this juncture, the strain energy, U , of the elastic supports

k

is included. Then by expanding what is left of the total strain

energy (Ub + Um + Uk) and applying the fundamental definition of

the second variation stated earlier, the second variation of the

strain energy may be written, retaining no higher than quadratic

terms, as

62D = R [Imk §2+ ii; (2; + m2] d6 (4 30)
o n R 66 '

The problem of buckling of rings subjected to nonuniform pressures

is much more involved than that of uniform pressure. The first attempt

to consider nonuniform loads was apparently due to Almroth (37) who

considered a pressure load of the form P = Po(l+cosfi). If the load

remains normal to the conduit wall as the conduit deforms, the second

variation of potential energy of external forces is shown in reference

(35) to be given by:
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2“

629 = f p (g2 + 2C6” + n2) d6 (4.31)

o

It is of interest to note that 529, unlike the first variation, depends

only on the loading function and the virtual displacement components.

The problem of determining the limits of elastic stability is now

reduced to one of seeking the appropriate expressions for the second

variation, 62V, of the total potential energy. In this particular case,

equations (4.30) and (4.31) combine to give:

2 2” RI 2 2 2 2
6 v = ID [E3'(C88 + c) + RKnC + p(; + 2C6” + n )]88 (4.32)

Equation (4.32) may be solved by any number of suitable methods. In

one such method, the appropriate Euler equations of variational calculus

(see appendix) are found and together with the associated boundary

condition, these yield a boundary value problem. The Euler equations

for an integral of the form of equation (4.32) are

(4033' a-b)

a? d 3F + d2 3F _
—-_ 2 -

8; d6 8:6 de 3:66

 

0

where F.is the integrand in equation (4.32)

Solving the final set of differential equations can sometimes, as in

the present case, present difficulties.

A simpler approach is the "direct-energy" method, so-called

because the second variation of potential energy is minimized direct-

ly without resort to Euler equations. This is done by evaluating
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the integrals in equation (4.32) term-by-tenm (after assuming suitable

admissible displacement functions), and then applying the criterion for

the limit of positive-definiteness of quadratic form discussed earlier.

Because of the assumption of admissible displacement functions, this

gives an upper-bound solution.

4-6 SYMMETRIC BUCKLING

If the buckling waves occur in a symmetric mode, the virtual dis-

,placement components c;and n may be taken in the form of infinite

Fourier series

C(G) = Z A cosnG

n=2 n

00
(4034' a-b)

n(e) = X B sinnG

n=2 n

where rigid body displacements have been neglected by deleting terms

corresponding to n = 1.

Equations (4.34) automatically satisfy the boundary requirements that

the admissible displacement functions be periodic in 6. Further, the

coefficient of soil reaction, kn, may be conveniently expressed as an

infinite series

k (X) G)

o . .
k = — k. k 0n 2 -+ .Z Jc0536 + z bSian (4 35)

3—1 b—l

where,

2 fl

k0 = F f kn(6)d6

o

(4.36, a-C)

2 w

= - .6d6kj w I kn(6)cosJ

O
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kb = 0 (kn is symmetric about the vertical axis of the ring)

Using equations (4.34) and (4.36) in (4.32), we get:

{IN[%IE 2 (l-nm)2AnAmcosn6cosm6

Rn=2 m=2

co co so

+ R (7§-+ Z k.cos.6) Z Z A A cosnecosme
. j j n m
j=l n=2 m=2

co co co co

+ P(6) { Z Z AnAmcosnGcosmG - 2 Z Z nAnBmsinn63inm6

n=2 m=2 n=2 m=2

(D co

+ Z X BnBmsinnGsintHde (4.37)

n=2 m=2

where, P(6) = P0 + Plcose

It is seen (Figure (4-5)) that a good approximation is obtained by

taking only two terms of the soil coefficient function - that is,

k

0 ' = =
kn(9) = 2 + klcose and also by taking P1 Po' so that P(6)

P (l+cosB).
0

Now,

N w n

I cosnBcosmGdG = I sinnesinmede = 3» n = m

o o

= O, n # m

2“

f cosjecosn6cosm6d6 = O, n # j + m or j # m + n or m f j + n

o

= g; n = j+ m or j = m + n or m = j + n

2W

I cosjesinnesinmede = 0, n # j + m or j ¢ n + m or m # j + n

o

= %y n = j + m or j = n + m or m = j + n

2W

f sinjecosnecosme = O

o
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Using the above relations in equation (4.37) and performing the integra-

tion, the second variation of potential energy becomes

 

62v=—§— Z (1-n2)2A2+ o A2
R n 2 n

n=2 n=2

oo oo oo

+PTrEZB-2znAB+ZA2],n=m
o n n n

. n=2 =2 =2

1T 00 00

+ Rk1 z Z POW m m

2 AA+ Z ZAA
n=2 m=2 n m 2 n m

n=2 m=2

CD 00 (X) 00

+2X ZnAB+Z ZBB],n=m+1
n m n m

n=2 m=2 n=2 m=2 or

m = n + l

n, m # l (4.38)

Equation (4.38) represents a quadratic form in the displacement

parameters. Differentiating this quadratic form with respect to each

of the parameters, a set of homogenous linear equations in the para-

meters is obtained. The matrix containing these parameters is called

the stability matrix. Clearly, the stability matrix contains two sets

of terms, namely a submatrix of load-independent terms Xnm' and one of

load-dependent berms 33m. The critical pressure is represented by

the value of PC for which the determinant of the stability matrix vanishes.

Because of the coupling of terms in An, Bn and Am, Bm (mfn), the indi-

cated differentiation is accomplished in two parts -- first with n=m, and

then with n#m. Withi’as defined earlier, differentiation for n=m gives

3F ZWEI 2 2
-I_ = - + - - = .

3An '—§y— (l n ) An fiKbRAn Pow(2an 2An) 0 (4 39a)

3F

‘3— = 2P TTB - ZnTTA P _ (4.391))

B o n n o
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Solving for Bn in equation (4—39b) and substituting in equation (4.39a)

gives

2EI
[...R3 (1-n2)2 +1<0R + 2Po(n2-l)] An = o (4.39c)

Equation (4.39c) constitutes the diagonal elements, xhn and Ban of the

stability matrix.

That is,

2E1
2 2

Xnn 'Eg— (l n ) KOR ( a)

3* = 2(n2-l) (4.40b)
nn

Similarly for n # m, differentiation yields:

53;'= TTk1R(An+1 + An-l) + PonEAn+1 + An-l + n(Bn+1 + Ian-1)]=0

.
(4.41, a-b)

3F _ - _

55—D- Pofl[-'{Bn+l - (n+1) An+1} {En-l (n 1) A‘n-lfl -0

A special class of problems is obtained by letting the off-diagonal

elements (An Bn-l) of the stability matrix vanish. In
+1' Bn+1' An-l'

this case, equations (4.41) are identically zero, and equation (4.39c)

then simplifies to

K R
_ EI(n2-l) o

Pcr - R + 2(nz-l) (4’42)

which is the classical solution for a uniformly supported circular ring

under uniform boundary pressure.

For the non-uniformly supported and non-uniformly loaded ring,

equation (4.41b) is satisfieid in one of two ways:
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(i) (n+1) An+ and Bn

Bn+1 l -1 (n-l) An-1

(ii) B (n-l) An_ and an (n+1) An+
n+1 l -l 1

In either case, substitution into equation (4.41a) yields

A )
l + n-l

3F___

8A.n - 0 — 1Tk1R (An+

+ Po" [{n(n-l)+l} An_1 + {n(n+l) + 1}]An+1 (4.43)

Equation (4.43) constitutes the off-diagonal elements of the stability

matrix. (The fact that cases (ii) and (iii) give identical results is

due to the symmetry of the stability matrix.)

Hence '

X(n,n+1) = X(n,n-l) = klR

B*(n,n-l) = n(n-l) + l (4.44, a-c)

B*(n,n+1) = n(n+l) + 1

As stated earlier, the stability condition is

X + P°B* = O (4.45)

This is the standard eigenvalue problem, and the lowest eigenvalue

represents the buckling load. Several techniques are available for

solving matrix eigenvalue problems. This study employs the iterative

Jacobi method, as outlined in the appendix, because of its ability to

furnish the eigenvectors along with the eigenvalues without requiring

a separate set of procedures as in most other method. This is parti-

cularly useful if an approximate geometric configuration of the ring

during buckling, is desired.
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4-7 NONSYMMETRIC BUCKLING

For this case, the boundary requirements are still that the virtual

displacement components be periodic in 6. Hence the following displace-

ment functions are admissible

CD

g = n£2(Ancosn6 + aninne)

(4.46, a-b)

n = n22(Cnsinn6 + DncosnG)

Using these equations in equation (4.32) and carrying out the integra-

tion yields

 

 

2 RI“ m 2 k‘oTrR w

6 V = O = i;— Z (l-nz) (A121+ B51) 4" 2 z (A:1 + Bi)

n=2 ' n=2

co co co on

+ P n( 2 A2 + 2 B2 + Z c2 + X D2

° n=2 n n=2 “ n=2 ” n=2 “

co co

-ZZnAC+2ZnBD),n=m

n=2 n n n=2 n n

kl‘n'R 0000 0000 P017 0000 coco

+ 2 ‘5 ZAnAm ' 2 3.3m) + '2— ‘Z 2%. ' Z 5‘3an
n m n m n m n m

m co co co co co CD 00

" Z ZCnCm + 2 £13an + 2 Z ZnIAnCm + 22 ZanDm) , n=m+l

n m n m n m n m or

m=n+l

n,m#l (4.47)

Proceeding in a manner similar to the symmetric case, the quadratic

form is differentiated with respect to the displacement parameters to

obtain the elements of the stability matrix.

Hence, for n=m, differentiation gives:
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3F ZWEI 2 2

3An 2 R3 (l n ) An TIRkOAn ZWPO (A.n nCn)

3F ZflEI 2 2
_= =——— - + —

33m 0 R3 (1 n ) Bn TrRkan + 2‘”?0 (En nDn)

§§_.= 0 = zflp (C _nA ) (4.48, a-d)

3C 0 n n
n

3? __ _
BDn - O — 21TPO (Dn an)

Solving for Cn and Dn in the last two equations and substituting in the

first two gives

8? ZWEI 2 2 2

BAn O R3 (l n ) An TTkoRAn ZHPO (n l)An

2 (4.49, a-b)

3F ZWEI 2 2

3Bn 0 R3 (1 n ) Bn flkoRBn 21r1>o (n 1)Bn

Each of equations (4.49) is a function of only one type of displace-

ment.parameters. Therefore only one set of these equations is necessary

to generate the elements of the stability matrix.

Hence

2

X(n,n) = fig; (l-nz) + koR (4.50a)

B*(n,n) = 2(n2-l) (4.50b)

Similarly for n f m, differentiation gives

3?
-——-= = ' + +

Ban 0 1TRkl‘An-fl + An-l) + Pofl(ncn+l + An+1 nCn-l An-l)

(4.51, a-b)

8F _ _ _ _
-——-= o - Pon[(n+1)An+1 + (n 1)An_1 cn+1 cn_l]
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Equations (4.51) are seen to be identical to equation (4.41) obtained

for the symmetric case. Therefore the elements of the stability matrix

can be written directly as

x(n,n+l) = X(n,n-l) = klR

B*(n,n-l) n(n-l)+-1 (4.52, a-c)

B*(n,n+l) n(n+l)+-l

4-8.l Elliptical Cross-Section

So far, the discussion has centered exclusively on circular cross-

section, resulting in the simplest possible solution, but lacking

generality. In what follows, the theory is extended to rings of ellip-

tical cross-section. As suggested by Brush and Almroth (33), shells of

a general shape subjected to axisymmetric load can be expected to fail

through the passing of a limit point. Therefore the same criterion is

used to define the limit of elastic stability of the elliptical ring

as for the circular ring -- that is the load at which 62V ceases to be

positive-definite as the load is increased from zero.

In the previous chapter, the coefficient of soil reaction in the

normal direction to the wall of the conduit, was shown to be related to

the span, D, of the conduit, the depth of cover, H, and the direction of

action, 6, by equation (3.16). In order to show that this expression

applies equally well to general shapes, it is necessary to extend it

to an elliptical section. For this purpose the following expression

for the depth, H, to any point on the elliptical conduit is quite

useful (Figure (4-6a)):
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H = H + Z (4.53a)

where:

Hc = depth to the crown

bcose }
Z = b {l ' 2611/2 (4.53b)

[azsin26+b2cos

Like the circular ring, the results are compared to the corresponding

solutions from finite element analysis. The properties of the ellipse

chosen for this purpose are

Span, D = 286 inches

80.5 inchesSemi-minor axis, b

Semi-major axis, a 143 inches

The results for depths of cover to the crown of 4, 6 and 8 feet are

shown in Table (4-5) and agreement with results from finite element

analyses is seen to be reasonable. Therefore the expressions for the

coefficients of soil reaction proposed herein are believed.to apply

reasonably well to conduits of arbitrary geometry. (In practice of

course, geometry is prescribed.)

The pre-buckling analysis for the elliptical conduit is identical

in outline to that of the circular section. Hence, a separate elaborate

presentation is not considered necessary here.

4-8.2 Stability Analysis

The radius of curvature of the elliptical section varies around

the conduit, and the expressions for the second variation of potential

energy (equation (4.32)) must be modified to reflect this. The radius

of curvature, R, at any point on the conduit is given by (39)
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l
 

 

R(6) = azb2

[azsin26+ b2c0526]3/2

= 2'2" l (37) (4 54)

[l--€2cosze]3/2 .

where

2 _ _ 2_2
E - 1 (a)

a = semidmajor axis

b = semi-minor axis

radius of curvature.2
1 II

Hence, the second variation of potential energy for the elliptical ring

may be written as

 

{I EIa3 9/2 bzknc2
1T{-—-g—-(l-E 2cos29) (C +C)2+

66 a[l-ezcosze]a/2

+ P(C2+2Cen+n2)}d6 (4.55)

(As a check, it is seen that for a = b = R, equation (4.55) reduces

to equation (4.32) obtained for the circular conduit of radius, R.)

As in the circular cross-section, the only boundary requirement for

the elliptical ring is still that the virtual displacement functions be

periodic in 6. Therefore the same set of functions are admissible for

the elliptical ring as for the circular.

Hence,

no

§(9) = ng Ahcosne

m (4.56, a-b)

0(9) = Z BnsinnG
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where rigid body displacements have been automatically deleted as ex—

plained for the circular section.

Introducing these into equation (4.55) gives

 

2'” 3 °° 2
EIa 9 2

62V = I {—Efi—-(l-€2cosze) / Z[Ancosn6-n2Ancosn6]

o n

bzkn 0000

+ 3/2 X 2A Amcosnecosme

a[l-ezcosze] n m n

coco coco

+ P[Z XAhAmcosnecosmG - 2 Z ZnAthsinnasinme

n m n m

coco

+ g anBmSinnGSinm6]}d8 (4.57)

Evidently, equation (4.57) is difficult to integrate in terms of

elementary functions, hence recourse is sought to numerical integration

schemes. In particular, the trapezoid rule (38) is used. Briefly,

for a function f(6) defined on some interval O-fl say, integration by

trapezoid rule furnishes the following

n A6 n-l

I f(6)d6 = 1;-[f(o) + f(fl) + 2 .2 fi] + Error terms (4.58)

0 i=1

If the uniform interval A6 is kept sufficiently small, the error terms

are relatively negligible. (The trapezoid rule is developed in detail

in the appendix.)

Then using equations (4.53) and (3.16) in (4.57) numerical

integration yields the following expression for the elliptical conduit

embedded in dense fill:
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The quadratic form is reduced to a stability matrix and the resulting

eigenvalue problem solved in much the same manner as the circular cross-

section.

4-9 COMPARISON WITH TEST RESULTS

The present study is compared in Tables (4-6) to (4-8) with results

of buckling tests by Meyerhof and Baike (1963), Watkins and Moser (40),

and Luscher (1963). While agreements with the results of Watkins and

Moser is quite good, there is considerable discrepancy with Luscher's

results. This is the special case of uniform boundary pressures and

uniform elastic support (coefficient of soil reaction) discussed in

the preceding chapter. The discrepancy may be due in part to the fact

that Luscher's results in themselves exhibit a great deal of scatter

due probably to the rather small dimensions of the test parameters

(0.815 inch for the radius of the conduit and less than 0.75 inch for

the depth of cover). For such small scale tests, the effects of imper-

fections may be considerable.

Meyerhof and Baike's tests do not really belong to the standard

class of buried conduits. Quarter sections of a circular conduit rest-

ing on compacted sand backfill, were loaded to failure by loads applied

directly to the ends of the sheets (figure 4-11). This is a more

severe condition of loading than the case encountered in practice

in which the load is applied on the buried conduit through the fill.
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(The present study falls in the later category.) Consequently, the

later case should yield higher buckling pressures than the former.

Table (4-7) shows that this is the case, with results from the present

study (based on a minimum cover of 3 inches, and medium soil) giving

consistently higher critical pressures than those of Meyerhof and Baike.

However, in all but one case, the two results agree to within 20%.



CHAPTER 5

DISCUSSION

The present study may be broadly divided into two parts:

1) An examination of the characteristics of the coefficient of soil

reaction.

2) Pre-buckling analysis and the determination of the limits of

elastic stability.

5-1 COEFFICIENT OF SOIL REACTION

The concept of coefficient of soil reaction is used to describe

the restraint offered against the outward movement of the conduit by

the supporting fill. The significant work in this area belongs to

Meyerhof and Baike (1963), Kloppel and Glock (1970), and Luscher

(1963) as reviewed in Chapter 2. A comparison of the theoretical

formulation is presented in Table (4-9). As noted earlier, the above

studies considered the soil medium to be represented by an isotropic,

homogeneous, linear continuum. Further, for a Poisson's ratio of soil,

VS' of 0.5 the expressions simplify to a constant value of coefficient

of soil reaction given by

k = S (5.1) 

where E8 is the soil modulus considered to be constant, and R the con-

duit radius.

This author believes that the assumptions inherent in equation (5.1)

are quite conservative and suggests the expressions developed in Chapter

3. These expressions result from a numerical modelling of the interaction

67
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process by means of non-linear finite element stress analysis. A non-

linear constitutive relationship (the hyperbolic model) is used to

represent the mechanical behavior of the granular backfill. Any realis-

tic modelling of the interaction problem must include some form of

non-linear stress-strain relationship for the soil medium. Furthermore,

it should be possible to determine the material parameters by making

use of test results from conventional soil tests. The finite element

analysis on which this study is based satisfies these requirements in

that the hyperbolic parameters used in Table (3-1) are taken from the

results of triaxial tests by Duncan and associates (1977). For this

reason, the hyperbolic constitutive relationship is clearly an improve-

ment over the linear-elastic model upon which equation (5.1) is based.

Furthermore, an analytical modelling of compaction and construction

processes is an important feature of the finite element analysis used

in the present study. Special elements are adopted to represent the

behavior at the interface between the backfill and the structure. The

objective of developing a simple methodology applicable to everyday

problems in soil-steel structures, is accomplished by means of the

concept of dimensional analysis. By such procedure, the problem sim-

plifies to parameters that are more readily amenable. More importantly,

such simplification in no way precludes a thorough and comprehensive

treatment of the problem. While the original finite element analysis

incorporates the mechanical non-linearities of the soil-structure

system, the final expressions for the coefficient of soil reaction

contain only such simple parameters as the depth of filling, the span

of the conduit, and the direction of action - all of which can be

readily defined without any ambiguity.

Experimental<determinationsof the coefficient of soil reaction
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reported in the literature, are very limited in scope. Consistent with

Marston-Spangler theory, Watkins (70 conducted model tests on flexible

conduits in sand backfill and determined the coefficient of soil reac-

tion at the springline. Meyerhof and Baike (1963) performed tests on

quarter sections of circular culverts embedded in sand backfill and

obtained "the average values of the soil pressure, radial deflection,

and coefficient of soil reaction by dividing the total volume under the

pressure and deflection curves by the area of the sheets in contact

with the sand.“

A graphical summary of the characteristics of the coefficient of

soil reaction is given in Figures (3-7) and (3-8) and Tables (3-2)

to (3-35). From these, the following observations appear valid:

1) The coefficient of soil reaction is not constant around the

conduit as equation (5.1) suggests. This finding was verified experi-

mentally by Meyerhof and Baike who noted that "the observed coefficients

of soil reaction varied considerably around the sheets." It is observed

in the present study that for a given conduit, the coefficient of

reaction of a well-compacted granular backfill varies with the depth

of filling and the direction of action, attaining a maximum value at the

invert and a mdnimum at the crown of the conduit. The influence of

depth on the coefficient of soil reaction was recognized by Terzaghi

(1955) who postulated that the coefficient of horizontal soil reaction

for sands, was linearly proportional to the depth of the sand backfill,

and proposed the following equation

1% ._. “11%
(5.2)

where nh = constant of horizontal subgrade reaction (tons per square
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foot per foot); 2 = depth at which k is evaluated (feet), and B =

h

width of pile (feet).

Proposed values of the coefficient of soil reaction based on load

tests by Terzaghi are given in Table (4-10). However, a direct infer-

ence is impossible from these data since they refer exclusively to

footings, beams and piles.

2) Within the range of soil displacements encountered in this study

(less than 0.1 inch in all cases), the magnitude of soil displacements

exerts no influence on the coefficient of soil reaction around the con-

duit. This is indicative of a linear load-deflection relationship

(Figure (3-9)). However, the coefficient of soil reaction is influenced

by changes in the direction of soil displacements. This behavior can be

inferred from the work of Terzaghi (1955).

3) The coefficient of soil reaction is very sensitive to changes

in the relative density of the backfill. This fact is clearly borne

out by Tables (3-2) to (3-35) which show that knincreases with the

relative density of the backfill. ‘

4) The coefficient of soil reaction is more sensitive to changes

in the depth of cover when the depth ratio (the ratio of the depth

of cover to the crown, to the span of the conduit) is in the neighbor-

hood of 0.1 to 0.6.

5-2 ANALYSIS AND STABILITY

The pre-buckling deflections, moments and thrusts are summarized

in Figures (4-2) and (4-3) and compared with corresponding solutions

from the finite element method in Tables (4-1) to (4-3). With the excep-

tion of the elliptical sections, the two sets of results (present study

versus finite element solution) show remarkable agreement. In the case
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of the elliptical section, there is some discrepancy in the values of

the moments at the haunches. This discrepancy may be due to the dif-

ferences in the geometry of the sections used in the two solutions.

The elliptical section considered in the finite element solution is an

actual model of the Adelaide Creek Culvert in Canada, and comprises

sections of circular sheets fabricated to form an approximate ellipse.

In contrast, a perfectly elliptical section is considered in this study.

The study of stability is involved with the determination of the

critical load (or stress) for the soil-steel structure. A detailed

review of the literature on this subject is given by Leonard and Setkar

(1970). As noted earlier, all theories with the exception of Kloppel

and Glock, assume uniform radial boundary pressure around the conduit

wall. To the author's knowledge, the present study is the first

realistic attempt to consider non-uniform fill support (coefficient of

soil reaction) in addition to non-uniform boundary pressures.

A summary of the theoretical buckling pressures is given in Figures

(4-6b) to (4-9) and Tables (4-11) to (4-14). In Figure (446a) and Table

(4-11) comparison is made with the results of Luscher (1960), Meyerhof

and Baike (1963), Cheney (41), and Chelapati and Allgood (42). To

illustrate the importance of interaction with the backfill, the critical

stress for a non-supported circular ring (Pcr = 3EI/R3) is also plotted

on the same axes (Figure (4-6a)). From such data, the following obser-

vations may be made:

1) Providing even a fair amount of elastic support increases the

critical stress by an order of magnitude. The case plotted in Figure

(4-6a)is for a circular conduit of diameter 120 inches, buried to a

depth of 120 inches in a £111 of E5 = 20,000 psi, and v; = 0.4. The

results show that the critical stress for the unsupported ring is
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300 psi at EI/R3 of 100. This jumps to 1371 psi and 2380 psi for the

same flexibility factor (BI/Ra) when the ring is embedded respectively

in a medium and a dense backfill. Evidently the substantial increase

in the load carrying capacity of the structure is derived from its

interaction with the surrounding fill. Accordingly the performance

limit of the structure might be expected to be first reached at the

point where it is least supported. Such expectation is verified from

the plots of both the pre-buckling deflection (figure (4-2)) and the

"relative" deflections during buckling (Figure (4-10)). (The relative

nature of the deflections during buckling is emphasized because the

eigenvectors satisfying a particular eigenvalue can only be determined

to a multiplicative degree.) From these plots, it is clear that the

maximum deflections occur at the crown of the conduit (point of least

support) suggesting that instability would first initiate at that

point.

2) At small values of the coefficient of soil reaction and the

flexural rigidity of the conduit wall (EI) , the conduit may fail by

buckling. For larger values of these, the conduit may fail by yielding

of the section. A similar conclusion was reached by Meyerhof and Baike

(1963). As an illustration, the critical stress for the case considered

in Figure (4—6a) is only 101 psi for EI/R3 = 1.0 when the backfill is.

of medium relative density. With an increase in the relative density

(hence an increase in K) and the stiffness of the conduit wall (say

EI/R3 = 100, dense_soil), the critical stress is 2380 psi. The thrust

corresponding to this (N = PR) is 142800 lb/in and the corresponding

thrust stress, N/A, (the cross-sectional areas of these thin-walled

structures are much less than unity in general) is well into the in-

elastic range. To extend the theory to stresses in the inelastic
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range, a number of approximate solutions are available. Meyerhof and

Baike (1963) recommended the following equation, due originally to

Timoshenko (36)

f = ._L... ' (5.3)

where:

fe = critical compressive (ring buckling) stress

Fy = yield stress of conduit material

for = buckling stress obtained from analysis.

3) The critical stress, like the coefficient of soil reaction, is

more sensitive to the depth of cover when the depth ratio

(a = depth to the crown ‘

span of the conduit)

 

is less than or equal to 0.6 (Figure (4-8). This behavior has been

verified experimentally by Donnellan (43), and Allgood (44). It may

be explained by the fact that the thrust due to live load increases

due to reduced arching as the depth of cover inchreases (Bakt, 1970).

4) Elliptical conduits have twice as much tendency to buckle as

circular conduits of equal span and rise, under identical soil conditions.

This tendency varies inversely with the aspect ratio

semi-minor axis\

semi-major axis’
(

Figure (4-9)). Results similar to these have been presented by Kloppel

and Glock (1970) (buckling load of an elliptical conduit is half that

of the circular conduit), and Marlowe and Brogan (45) (buckling load
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decreases with an increase in the aspect ratio). However, the later

study did not consider soil-supported conduits, and a more direct com-

parison is not possible.

The direct correlation between the buckling pressure of ellipti-

cal conduits and the radius of curvature at the crown, suggested by the

OHBDC (equation 2.25) is not verified in the present study. For the

two cases considered, the buckling pressure is 85 psi for a crown radius

of 300 inches (depth to the crown of 48 inches and span of 300 inches)

but increases to 108 psi for the same crown radius of 300 inches with

depth to the crown of 48 inches and span of 250 inches. Clearly the

critical pressure is not governed exclusively by the radius of curvature

at the crown.

. 5) Without exception, buckling strength increases with the rela-

tive density of the backfill. This fact is clearly borne out by all

the results discussed herein. Also, for a given conduit, the pre-

buckling deflections and the relative deflections during buckling de-

crease with increasing relative density.

CONCLUSIONS

The present study has been conducted in the following manner:

a) Examine the parameters governing the coefficient of soil reac-

tion, kn, normal to the surface of the conduit wall as well as the

coefficient, ks, tangEntial to the wall surface, and develop simple

formulas for their evaluation.

b) Use these formulas in the study of both the pre-buckling and

buckling behavior of the conduits.
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On the basis of the study reported herein, the following conclud-

ing remarks may be made:

1) The coefficient of soil reaction is sensitive to the relative

density of the soil, the depth of fill, and the direction of action.

2) Regarding pre-buckling and buckling analyses, the theories

of variational calculus provide a useful alternative where solutions

based on governing differential equations present difficulties. In

particular, for the special case of uniform boundary pressures and

coefficient of soil reaction, variational calculus yields identical

solution to the classical approach.

3) The buckling pressure of a buried conduit increases with the

flexural rigidity of the conduit wall. However, in the practical

range, the buckling pressure does not increase in the same_order of

magnitude as an increase in the flexural rigidity.

4) A good portion of the strength of buried conduits is derived

from its interaction with the surrounding fill. To this end, the quality

and state of compaction of the fill are critical. Without exception,

the critical pressure increases with the relative density of the fill.

5) For small values of the coefficient of soil reaction and the

flexural rigidity of the conduit wall, a moderately sized conduit will

fail by buckling. For large values of these quantities the conduit will

fail by yielding of the section.

6) The critical pressure is more sensitive to the depth of filling

when the depth to the crown is at most one-half the span of the conduit.

7) The shape of the conduit has an influence on its stability.

In particular, conduits of elliptical cross-section have twice as much

tendency to buckle as circular conduits.
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TABLE 3-1: HYPERBOLIC PARAMETERS USED

 

 

Parameter Symbol Dense Medium

Angle of Internal Friction ¢ 450 450

Friction Angle A 230 230

Failure Ratio Rf 0.92 0.85

Failure Ratio Rfs 0.834 0.834

Modulus Parameter K 3100 1200

Modulus Parameter KI 43070 43070

Modulus Number n 0.52 0.48

Modulus Number ns 0.60 0.60

Poisson's Number G 0.34 0.34

Poisson's Ratio Number d 75.9 11.7

Poisson's Ratio Number F 0.12 0.23
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TABLE 3~2: RESULTS FOR P = 33.3#, RC = 4"AND DIAMETERSlOO INCHES

Interface Soil Ax AY I AN I I UNI , kn

Element Node (inch) (inch) (inch) (psi) (#/in3)

1 59 -- -.00026 .00026 .247 950.0

2 58 -.00016818 -.00025043 .0002901 .247 851.4

3 60 .00016492 -.00025064 .0002893 .247 854.0

4 77 -.00031227 -.00019012 .0003373 .249 738.3

5 78 .00030938 -.00019o79 .0003361 .252 750.0

6 80 -.00042372 -.000068541 .000383 .235 613.5

7 82 .00042633 -.000064530 .0003828 .240 627.0

8 84 -.00049414 .00011161 .0004354 .217 498.4

9 86 .00049972 .00012581 .0004364 .214 490.4

10 110 -.00052079 .00033654 .00052079 .198 380.3

11 114 .00051877 .00033176 .00051877 .182 351.0

14 148 -.00050685 .00058760 .0006636 .160 241.1

15 153 .00050623 .00058379 .0006618 I .161 243.3

18 186 -.00045735 .00082611 -.0008555 .170 198.7

19 196 .00045952 .00082343 .0008557 .171 199.8

22 233 -.00035016 .0010899 .0010875 .157 144.4

23 234 .00035012 .0010894 .0010872 .156 143.5

26 237 -.00019972 .0012751 .0012744 .152 119.3

27 238 .0001976 .0012747 .0012733 .153 120.2

30 241 -.0000013188 .00013416 .0013416 .100 74.5



TABLE 3-3: RESULTS FOR P = 33.3 , Hc

82

#
= 6.4’ AND DIAMETER=100 INCHES

 

 

Interface Soil Ax AY IAN I IiUNI _ kn

Element Node (inch) (inch) (inch) (#1 inz) (#/ in2)

1 59 -- -.0003216 .0003216 .320 995

2 58 -.00017306 -.00027905 .0003188 .285 894

3 60 .00017284 -.00027924 .0003191 .285 893

4 77 -.0003271 -.00021404 .0003654 .287 785.4

5 78 .00032634 -.00021465 .0003654 .288 788.3

6 80 -.ooo4434 -.00008808 .0004104 .269 655.5

7 82 .00044529 -.000086 .0004107 .269 655

8 84 -.00051287 .000090983 .0004596 .246 535.2

9 86 .00051367 .000092635 .0004599 .244 530.6

10 110 -.00053657 .00029474 .00053657 .228 425

11 114 .00053719 .00029502 .00053719 .213 396.6

14 148 -.00052955 .00053449 .0006687 .189 282.7

15 153 .00053232 .00053607 .0006719 .189 281.3

18 186 -.00047981 .00075969 .0008346 .201 240.8

19 196 .00048761 .00076159 .000842 .200 237.5

22 233 -.00036693 .001003 .001025 .181 176.6

23 234 .00037252 .0010058 .0010327 .181 175.3

26 237 -.00020617 .0011529 .0011602 .179 154.3

27 238 .00020833 .0011563 .0011641 .179 154

30 241 -- .0012062 .0012062 .116 -96.2
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TABLE 3-4: RESULTS FOR p-300#, Hc=6.4’ AND DIAMETER-200 INCHES

Interface Soil Ax AY I AN I ION I kn

Element Node (inch) (inch) (inch) (psi) o#/in3)

1 59 .000050102 -.0039209 .0039209 2.55 650.36

2 58 -.0027646 -.0040328 .0046846 2.43 518.72

3 60 .0028501 -.0040290 .0047098 2.42 513.82

4 77 -.0052202 -.0028986 .0054312 2.34 430.85

5 78 .0052075 -.0029261 .0054257 2.31 425.73

6 80 -.0071361 -.00066596 .0061539 2.18 354.25

7 82 .0071212 -.00072177 .0061807 . 2.16 349.48

8 84 -.0080793 .0023202 .006952 1.93 277.09

9 86 .0079864 .0020641 .0069564 1.92 276.01

10 110 -.0082896 .0058275 .0082896 1.69 203.87

11 114 .0082773 .0057982 .0082773 1.58 190.88

14 148 -.0077296 .0096365 .0115511 _ 1.45 125.53

15 153 .0077142 .0097402 .0116468 1.47 126.21

18 186 -.0071128 .013418 .0136414 1.41 103.36

19 196 .0070769 .013460 .0136375 1.42 104.13

22 233 -.0058268 .017595 .0176607 1.34 75.87

23 234 .--S6883 .017614 .0175945 1.32 75.02

26 237 -.0035325 .021208 .0212621 1.26 59.26

27 238 .00334468 .021112 .0211125 1.27 60.15

30 241 -.000093378 .022550 .02255 1.18 52.33
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TABLE 3-5, RESULTS FOR P=300#, Hc=8’, AND DIAMETERezoo INCHES

 

 

Interface Soil AX AY I AN I IO' N I kn

Element Node (inch) (inch)

1 59 .000033532 -.0040658 .0040658 2.65 651.78

2 58 -.0027698 -.0041634 .0048188 2.54 527.105

3 60 .0028226 -.0041683 .0048402 2.53 522.70

4 77 -.0052264 .0030372 .0055272 2.46 445.08

5 78 .0051903 -.003069 .0055285 2.43 439.54

6 80 -.0071199 -.00083707 .0062545 2.30 367.73

7 82 .0070996 -.00088093 .00626 2.27 362.62

8 84 -.0080635 .0021158 .0070165 2.04 290.74

9 86 .0079921 .0019241 .0070043 2.02 288.39

10 110 -.0082943 .0055483 .0082943 1.80 217.02

11 114 .008264 .0055223 .008264 1.67 202.08

14 148 -.0078180 .0092910 .0103061 1.56 151.37

15 153 .0077744 .0093617 .0102861 1.57 152.63

18 186 -.0071755 .012966 .0134266 1.52 113.21

19 196 .0071248 .012989 .0133997 1.52 113.44

22 233 -.0059106 .017056 .0172719 1.45 83.95

23 234 .0057976 .017079 .0172247 1.43 83.02

26 237 -.0035282 .020384 .0204755 1.37 66.91

27 238 .0033798 .020353 .0204008 1.37 67.154

30 241 -.000086828 .021534 .021534 1 . 28 59.44



TABLE 3-6: RESULTS FOR P8300
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#
, Her-11.732 AND DIAMETER-200 INCHES

 

 

Interface Soil Ax AY IANI hffil kn

Element Node (inch) (inch) '

l 59 .000047599 -.0043184 ..0043184 2.86 662.28

2 58 -.0027249 -.0044086 .0050321 2.75 546.49

3 60 .0028077 -.0044055 .0050593 2.74 541.58

4 77 -.0051652 -.0033284 .0057313 2.66 464.12

5 78 .0052011 -.0033399 .0057651 2.65 459.61

6 80 -.0070506 -.0012136 .0064147 . 2.52 392.85

7 82 .0070999 -.0012209 .0064595 2.51 388.58

8 84 -.008034 .0016336 .0071402 2.27 317.92

9 86 .0080629 .0015495 .0068433 2.24 327.33

10 110 -.0082767 .0049080 .0082767 2.55 308.09

11 114 .0083615 .0049140 .0083615 2.55 304.97

14 148 -.0079099 .0085114 .0101535 . 1.75 172.35

15 153 .0080362 .0085804 .0102947 1.75 169.99

18 186 -.0072285 .012028 .0129191 1.78 137.781

19 196 .0073878 .012080 .0130778 1.77 135.344

22 233 -.0059498 .015889 .0163516 1.66 101.52

23 234 .0060773 .015957 .0164808 1.64 99.51

26 237 -.0033962 .018591 .0187297 1.60 85.43

27 238 .0034842 .018646 .0188091 1.58 84.00

30 241 .000023878 .019409 .019409 1.50 77.28
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TABLE 3:7: RESULTS FOR p=300#, HC=4’, AND DIAMETER-300 INCHES

Interface Soil AX AY I AN I I oNI kn

Element Node (inch) (inch) (inch) (psi) (“7 in3)

1 59 .00017183 -10045713 0.0045713 2.19 479.10

2 58 -.0035477 -.0047731 .005636 2.13 377.94

3 60 .0037625 -.0047416 .005672 2.09 368.46

4 77 -.0069716 —.0031147 .0066176 2.01 303.73

5 78 .0068574 -.0032158 .0066323 1.94 292.51

6 80 -.0090851 -.00026326 .0075047 1.85 246.51

7 82 .0087169 -.00060459 .0074075 1.86 251.10

8 84 -.010251 .0039504 .0074309 1.75 235.5

9 86 .010296 .0041711 .007358 1.74 234.0

10 110 -.010311 .0090090 .0085285 1.62 189.95

11 114 .010116 .0082438 .0085032 1.61 189.34

14 148 -.0087211 .014442 .012757 11.07 83.87

15 153 .0085260 .014538 .0126012 1.18 93.64

18 186 -.0078839 .019924 .0180892 0.923 51.02

19 196 .0074904 .020259 .017968 0.973 54.15

22 233 -.0062997 .026951 .0255067 0.831 32.58

23 234 .0059800 0.027372 .025659 0.844 32.89

26 237 —.0050464 .036875 .0366296 0.740 20.20

27 238 .0045887 .03694 .03655 0.757 20.71

30 241 -.0002251 .042842 0.042842 0.603 14.07
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TABLE 3-8: RESULTS FOR P8100#, Hc=6.39’, AND DIAMETER=3OO INCHES

Interface Soil AX AY I AN I IO‘NI kn

Element Node (inch) (inch) (inch) (psi) (lh/in3)

1 59 .0000309 -.001634 .001634 0.766 468.79

2 58 -.0012128 -.0016917 .00198368 0.755 380.61

3 60 .0012511 -.0016902 .0019940869 0.744 373.103

4 77 -.0023234 -.0011561 .002300965 0.724 314.651

5 78 .0022441 -.0011992 .02289222 0.717 313.207

6 80 -.003l401 -.00013816 .0026216027 0.675 257.476

7 82 .0031361 —.00013995 .0026194187 0.680 259.60

8 84 -.0035277 .0012691 .0027530 0.621 225.57

9 86 .0035245 .0012464 .0026817 0.625 233.06

10 110 -.00296287 .0012691 0.00296287 0.591 199.47

11 114 .00296684 .0012464 0.00296684 0.574 193.47

14 148 -.0032068 .0046003 .00447142 I0.38l 85.21

15 153 .0032035 .0045885 .00446463 0.390 87.35

18 186 -.0028777 .0064217 .0061026888 0.402 65.87

19 196 .0027696 .0064494 .0060315157 0.442 73.282

22 233 -.0023757 .0085633 .0082912195 0.401 48.364

23 234 .0022859 .0085656 .0082733343 0.407 49.194

26 237 -.0016466 .011007 .0109771065 0.384 34.982

27 238 .0015125 .010928 .0108605339 0.399 36.739

30 241 -.000065664 .012077 .012077 0.324 26.828



TABLE 3-9: RESULTS FOR P8300
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, HC=6.39’ AND DIAMETERs300 INCHES

 

 

Interface Soil Ax AY IANI IE NI kn

Element Node (inch) (inch) (inch) (psi) (it /in3)

1 59 .00005462 -.0048582 .0048582 2.306 474.66

2 58 -.003704 -.0050239 .0050751838 2.235 440.38

3 60 .0037608 -.0050446 .0051356005 2.204 429.161

4 77 -.0070803 -.0033983 .0069109784 2.114 305.89

5 78 .0068201 -.0035655 .0068932962 2.107 305.66

6 80 -.0095874 -.00033132 .007951114 1.965 247.135

7 82 .0095557 -.00035528 .007939552 1.99 250.644

8 84 -.0107767 .0039203 .007465 1.701 225.4

9 86 .010775 .0038635 .0074618 1.664 223.0

10 110 -.0107767 .0087567 .0107767 1.701 188.21

11 114 .0107751 .0081836 .0107751 1.664 183.79

14 148 -.0098827 .0140118 .0137288906 1.152 83.91

15 153 .009884 .0138563 .0136820748 1.183 86.463

18 186 -.0088131 .0194707 .018574538 1.147 61.751

19 196 .0084133 .0193734 .0181939016 1.219 67.00

22 233 -.0071488 .0257293 .0250174002 1.113 44.489

23 234 .0068133 0.255476 .0246731998 1.136 7 46.042

26 237 -.0050035 .033097 .0329393195 1.075 32.636

27 238 .0045219 .032668 .0324664502 1.106 34.066

30 241 -.000226644 .036314 .036314 0.950 26.16



TABLE 3-10: RESULTS FOR P=500
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#
, Hc==6.39’, AND DIAMETER-300 INCHES

 

 

Interface Soil Ax AY IANI IGNI kn

. . Element. Node. (inch) (inch) . . . _ . (inch) (psi) (# /in3)

1 59 .0000435 -.0080794 .0080794 3.906 483.45

2 58 -.0062038 -.0049478 .0098632098 3.765 381.72

3 60 .0062192 -.0083615 .0098740976 3.724 377.148

4 77 -.0117905 -.0056169 .0114744496 3.55 309.383

5 78 .011356 -.0058769 .0114294013 3.557 311.215

6 80 -.0158648 -.00056265 .0131607375 3.295 250.37

7 82 .0158311 -.00055436 .0131334736 3.340 254.312

8 84 -.0178266 .0064599 .0149537753 2.851 225.4

9 .86 .0178151 .0064732 .014942838 2.804 227.0

10 110 -.0181039 .0144563 .0181039 3.452 190.65

11 114 .0180509 .0137286 .0180599 3.387 187.65

14 148 -.016414 .0232855 .0228062569 1.942 85.152

15 153 .0163736 .0229394 .0226608833 1.971 86.978

18 186 -.0145946 .0323827 .0308413529 1.905 61.768

19 196 .01395948 .0321004 .0301615983 1.985 65.812

22 233 -.011807 .0426376 .0414345235 1.821 43.949

23 234 .0111635 .0423886 .0408863264 1.852 45.296

26 237 -.0083913 .055433 .0553129701 1.752 31.674

27 238 .007515 .054586 .0542375847 1.779 32.80

30 241 -.000403744 .061116 .061116 1.550 25.36



TABLE 3-11: RESULTS FOR P3100
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#
, Ec=8’, AND DIAMETER-300 INCHES

 

Interface Soil AX AY IANI IQNI
k

 

n

Element Node (inch) (inch) (inch) (psi) (#/ in3)

1 59 .000028014 -.0016759 .0016759 .782 466.61

2 58 -.0011882 -.0017386 .0020206 .774 383.05

3 60 .0012209 -.0017410 .002033 .767 377.27

4 77 -.002302 —.0012144 .0023354 .742 317.72

5 78 .0022683 -.0012572 .0023501 .729 310.19

6 80 -.0030369 -.00028237 .0026228 .713 271.84

7 82 .0029669 -.0037272 .0026192 .721 275.29

8 84 -.0034626 .0010872 .0026589 .634 238.44

9 86 .0034853 .0011289 .0026835 .636 237

10 110 -.0026689 .0026790 .0026689 .595 .223.0

11 114 .0022137 .0025606 .0022137 .493 222.9

14 148 -.0031627 .0043421 .0043458 .435 100.10

15 153 .0031299 .0043814 .0043306 .450 103.91

18 186 -.0028802 .006077 .0059026 .447 75.73

19 196 .0028551 .0061103 .0059013 .471 79.81

22 233 -.0023384 .0081602 .0079761 .434 54.41

23 234 .002363 .0082352. .0080513 .445 55.27

26 237 -.0016453 .010541 .0105334 .404 38.35

27 238 .0015679 .010391 .0104413 .421 40.31

30 241 -.000030801 .011796 .011796 .328 27.81



TABLE 3-12 :
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#
RESULTS FOR F=300 , HC=8’, AND DIAMETER-300 INCHES

 

 

Interface Soil Ax AY I AN I IO N! kn

Element Node (inch) (inch) (inch). (psi) (t/in3)

1 59 .000084073 -.0050273 .0050273 2.37 471.43

2 58 -.0035645 -.0052154 .0060613 2.32 .382.75

3 60 .0036625 -.0052224 .0060984 2.29 375.5

4 77 -.0069058 -.0036425 .0070059 2.23 318.3

5 78 .0068049 -.0037708 .0070505 2.18 309.2

6 80 -.0091104 -.00084629 .007838 2.08 265.37

7 82 .0089003 -.0011174 .0078572 2.09 266.00

8 84 -.010387 .0032627 .0078481 1.86 236.68

9 86 .010455 .0033876 .008137 1.87 233.35

10 110 -.0076783 .0080383 .0076783 1.61 209.68

11 114 .0072312 .0076828 .0072312 1.52 210.20

14 148 -.0094873 .013028 .0130487 1.35 103.46

’15 153 .0093885 .013146 .0129915 1.42 109.10

18 186 -.0086398 .018235 .0177079 1.26 71.15

19 196 .0085646 .018332 .0177041 1.30 73.43

22 233 -.0070148 .024482 .0239295 1.17 48.89

23 234 .0070887 .024707 .024155 1.18 48.85

26 237 -.0049359 .031624 .0316014 1.10 34.81

27 238 .0047038 .031175 .0311026 1.11 35.69

30 241 -.000092391 .03539 .035390 .995 28.12



TABLE 3-13:
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RESULTS FOR P8500

#
, HC=8’, AND DIAMETER=300 INCHES

 

 

Interface Soil Ax AY IANI FIN] kn

Element Node (inch) (inch) (inch) (psi) (#/ in3 )

1 59 .00013998 -.0083794 .008794 3.93 469

2 58 -.0059410 -.008693 .0101037 3.86 382.04

3 60 .0061041 -.0087048 .0101672 3.82 375.72

4 77 -.011510 -.0060718 .0116789 3.70 316.81

5 78 .011342 -.0062855 .0117491 3.64 309.81

6 80 -.015185 -.0014115 .0131179 3.42 260.71

7 82 .014834 -.0018633 .0130887 3.46 264.35

8 84 -.017313 .0054365 .014219 3.35 235.6

9 86 .017426 .0056447 .0141525 3.34 236.0

10 110 -.0147868 .013396 .0147868 3.09 208.97

11 114 .0147868 .012803 .0148279 3.10 209.07

14 148 -.015814 .021711 .021749 2.25 103.45

15 153 .015649 .021908 .021653 2.35 108.53

18 186 .014401 .030389 .029513 2.07 70.14

19 196 .014275 .030553 .029507 2.13 72.19

22 233 -.011692 .04080 .03988 1.90 47.64

23 234 .0011815 .041177 .0402576 1.92 47.69

26 237 -,0082268 .052705 .052603 2.74 52.08

27 238 .0078396 .051956 .051834 2.96 57.10

30 241 -.00015426 .058976 1.61 27.3.058976
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TABLE 3-14: RESULTS FOR P8300#, HC=11°73" AND DIAMETER-300 INCHES

 

 

Interface Soil Ax AY IANI IO NI kn

Element Node (inch) (inch) (inch) (psi) (#/ in3 )

1 59 .000042057 -.0053059 -.0053059 2.5 471.17

2 58 -.0035472 -.0054881 .0063171 2.45 387.83

3 60 .0035794 -.0055009 .0063367 2.43 383.48

4 77 -.0068180 -.0039850 .0073091 2.38 325.62

5 78 .0067174 -.0041046 .0072668 2.35 323.39

6 80 -.0090511 -.0012555 .0080552 2.23 276.84

7 82 .0088860 -.0014689 .0080601 2.26 280.39

8 84 -.010345 .0027247 .0089978 2.03 225.61

9 86 .010372 .0027988 .008998 2.03 225.60

10 110 -.0090825 .0072660 .0090825 1.98 218.5

11 114 .0091030 _ .007048 .0091030 1.97 216.41

14 148 -.0097181 .012024 .0129576 1.55 119.62

15 153 .0096215 .012111 .0128935 1.59 123.32

18 186 -.0088170 .016958 .0171 1.46 85.38

19 196 .0087444 .016963 .0170456 1.49 87.41

22 233 -.0073139 .022869 .022797 1.36 59.66

23 234 .0073027 .022891 .0228111 1.35 59.18

26 237 -.0048773 .029165 .0292449 1.28 43.77

27 238 .0047265 .028960 .0290025 1.29 44.48

30 241 . 000076984 . 031616 . 031616 1 . 19 37 . 64
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TABLE 3-15: RESULTS FOR P=SOO#, Hc=11.73’, AND DIAMETER=300 INCHES

 

 

Interface Soil Ax AY . IANI ION I kn

Element Node (inch) (inch) (inch) (psi) (#/in3)

1 59 .000069958 -.0088437 .0088437 4.51 509.97

2 58 -.005912 -.0091473 .0105289 4.09 388.45

3 60 .0059657 -.009l687 .010564 4.05 383.38

4 77 -.011364 -.0066422 .0109489 3.95 360.77

5 78 .011196 -.0068416 .0110603 3.92 354.42

6 80 -.015086 -.0020931 .013309 3.69 277.26

7 82 .014810 -.0024489 .0134166 3.73 278.01

8 84 -.0l7243 .0045403 .0149968 3.36 224.05

9 86 .017287 .0046636 .015 3.37 224.65

10 110 -.0146103 .013371 .0146103 3.15 215.6

11 114 .0146906 .011746 .0146906 3.13 213.06

14 148 -.016198 .020039 .0208844 2.57 123.06

15 153 .016037 .020184 .0214894 2.63 122.39

18 186 -.014696 .028263 .0285022 2.40 84.2'

19 196 .014574 .028271 .0284078 2.44 85.89

22 233 -.012190 .038114 .0380001 2.23 58.68

23 234 .012171 .038151 .0386184 2.20 57.87

26 237 -.0081290 .048607 .0487402 3.11 63.81

27 238 .0078773 .048265 .0483374 3.09 63.93

30 241 -.00012855 .052691 .052691 1.93 36.63
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TABLE 3-16: RESULTS FOR P3100#, Hc=12.64’, AND DIAMETER-300 INCHES

 

 

Interface Soil Ax AY I AN I I0 NI kn

Element Node (inch) (inch) (inch) (psi) (#/’in3)

1 59 .000022804 -.0017898 .0017898 .845 472.12

2 58 -.0011797 -.0018350 .002109736 .833 394.836

3 60 .0012097 -.0018382 .00212205 .825 388.775

4 77 -.002250 -.0013442 .0024099975 .806 334.44

5 78 .0022055 -.0013855 .0024172534 .803 332.20

6 80 -.0030602 -.00039592 .0027084697 .769 283.92

7 82 .0030718 -.00039702 .0027185009 .781 287.29

8 84 -.0034731 .000391435 .0030205647 .692 229.096

9 86 .0034867 .00090934 .0030350473 .627 223.061

10 110 -.0035311 .0023952 .0035311 0.783 221.87

11 114 .0035638 .0023441 .0035638 .0784 220.00

14 148 —.0033129 .0040112 .0043902841 .490 111.61

15 153 .0033684 .0039849 .0044349406 .496 111.84

18 186 -.0029663 .0056637 .0057288264 .526 91.82

19 196 .0029666 .0056702 .0057328898 .540 94.193

22 233 -.0024646 .0075662 .0075698399 -508 67.108

23 234 .0024891 .0075599 .0075791439 .514 67.82

26 237 -.0015874 .0094846 .0095106993 .502 52.783

27 238 .0015859 .0094734 .0094998089 .485 51.05

30 241 -.000061849 .010179 .010179 .414 40.67
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TABLE 3-17: RESULTS FOR P-300#, Hc=12.64’, AND DIAMETER-300 INCHES

Interface Soil AX AY IANI IONI kn

Element Node (inch) (inch) (inch) (psi) (#/in3)

1 59 .000053251 -.0053675 .0053675 2.515 468.56

2 58 -.0035984 -.0055206 .0063582 2.443 384.23

3 60 .0036624 -.0055303 .0063903 2.435 381.05

4 77 -.0068433 -.0040479 .0072941 2.346 321.63

5 78 .0067285 -.0041674 .0073291 2.343 319.68

6 80 -.009395 -.001l9198 .0083096 2.219 267.04

7 82 .0094021 -.00117974 .0083 2.241 270.00

8 84 -.0106951 .00276945 .0083709 1.982 236.77

9 86 .0107088 .00278804 .0083479 1.957 234.43

10 110 -.0084878 .0072697 .0084878 1.866 219.843

11 114 .0083183 .0071629 .0083183 1.850 222.399

14 148 -.0104319 .0121985 .0136905 1.484 106.40

15 153 .010563 .0121212 .013792 1.483 107.53

18 186 -.0092295 .0171087 .0175217 1.536 87.83

19 196 .0091387 .0170832 .0174344 1.539 88.27

22 233 -.0075166 .0225502 .0226617 1.463 64.56

23 234 .0075973 .0226119 .0227587 1.477 64.90

26 237 -.0047871 .0280616 .0281672 1.426 50.63

27 238 .0047553 .0279904 .0280822 1.415 50.39

30 241 -.000085927 .029827 .029827 1.241 41.61



TABLE 3-18: RESULTS FOR P3500
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#
, Hc=12.64’, AND DIAMETER=300 INCHES

 

 

Interface Soil AX AY I AN I ION I kn

Element Node (inch) (inch) (inch) (psi) (#/in3)

1 59 .000066903 -.0089462 .0089462 4.235 473.39

2 58 -.0060072 -.009l764 .0105843 4.103 387.65

3 60 .00608 -.009l96 .0106265 4.095 385.36

4 77 -.0114235 -.0067075 .0121413 3.926 323.36

5 78 .0112138 -.0069029 .0121941 3.933 322.53

6 80 -.0155825 -.00197999 .0137681 3.719 270.12

7 82 .0156176 -.00194048 .013774 3.751 272.32

8 84 -.0177317 .00458435 .0154477 3.312 214.4

9 86 .0177871 .00462614 .0154864 3.277 211.61

10 110 -.0141202 .0120369 .0181934 2.901 205.45

11 114 .0125235 .0119156 .0184068 2.59 206.81

14 148 -.0173477 .0202857 .0227669 2.504 109.98

15 153 .0176041 .0201032 .0229547 2.493 108.61

18 186 -.0152567 .0284197 .029048 2.546 87.65

19 196 .0152182 .0283352 .0289669 2.549 88.00

22 233 -.0124199 .0374982 .0376343 2.427 64.49

23 234 .0125928 .0374689 .0377151 2.444 64.80

26 237 -.0079349 .0468046 .0469662 2.336 49-74

27 238 .0079419 .0466114 .0467845 2.324 49.67

30 241 -.000071623 .049955 .049955 2.053 41.097
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TABLE.3-19: RESULTS FOR p-100#, Hc=20.36’, AND DIAMETER-300 INCHES

Interface Soil AX AY IAN I ION I kn

Element Node (inch) (inch) (inch) (psi) (1/in3)

1 59 .000018863 -.0018853 .0018853 .914 484.8

2 58 -.0011380 -.0019258 .0021830108 .904 414.11

3 60 .001164 -.0019226 .002188197 .896 409.47

4 77 -.0021735 —.001472 .0024684243 .880 356.503

5 78 .0021481 -.0014966 .0024733963 .878 354.98

6 80 -.0029563 -.00058928 .002738067 .851 310.803

7 82 .0029716 -.00057688 .0027431564 .859 313.143

8 84 -.0033793 .00062751 .003019994 .776 256.954

9 86 .0033962 .00064060 .0030320219 .766 252.637

10 110 -.0034615 .0020021 .0034615 .709 245.82

11 114 .0035135 .0020015 .0035135 .604 241.908

14 148 -.0033386 .0035291 .0042657557 .584 136.90

15 153 .0033989 .0035288 .0043230051 .578 133.703

18 186 -.0030254 .0050853 .0054366643 .635 116.80

19 196 .0030565 .0051098 .0054619244 .624 114.245

22 233 -.0025392 .0068367 .0070235108 .602 85.172

23 234 .0025933 .0068732 .0070848391 .615 86.81

26 237 -.0015169 .0082832 .0083465392 .576 69.011

27 238 .0015604 .0083363 .0084104825 .586 69.68

30 241 -.000011195 .0086433 .0086433 .503 58.195



TABLE 3-20 : RESULTS FOR P8300
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#
, Hc=20.36’, AND DIAMETER-300 INCHES

 

 

Interface Soil Ax AY I AN I I UNI kn

Element Node (inch) (inch) (inch) (psi) (#/in3)

1 59 .0000380246 -.0056853 .0056853 2.704 475.61

2 58 -.0034771 -.0058279 .006618 2.634 398.00

3 60 .0035591 -.005821 .0066387 2.616 394.06

4 77 -.0066767 -.0044763 .0075478 2.55 337.85

5 78 .0066063 -.0045427 .0075543 2.538 335.97

6 80 -.0091339 -.00181318 .0084506 2.441 288.85

7 82 .009175 -.00175938 .0084601 2.459 290.66

8 84 -.0104978 .00188551 .0094017 2.236 237.83

9 86 .0105467 .0019496 .0094306 2.196 232.86

10 110 -.0108156 .0060866 .0108156 1.999 230.82

11 114 .01098 .006118 .01098 1.794 229.39

14 148 -.0105507 .0107586 .0133587 1.714 128.31

15 153 .0107536 .0107803 .013558 1.698 125.24

18 186 -.0093311 .0153283 .0165593 1.825 110.20

19 196 .0094449 .0154218 .0167057 1.794 107.39

22 233 -.0075791 .0202447 .0208323 1.752 84.1

23 234 .0077786 .0203642 .021047 1.765 83.86

26 237 -.0044847 .0244542 .024643 1.686 68.42

27 238 .0046587 .0246173 .024852 1.696 68.24

30 241 .000056851 .0256633 .0256623 1.543 60.127



TABLE 3-21: RESULTS FOR P3500
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#
, Hc=20.36’, AND DIAMETERe300 INCHES

 

 

Interface Soil AX AY IANI kINI kn

Element Node (inch) (inch) (inch) (psi) (#/ in 3 )

1 59 .0000626316 -.oo95354 .0095354 4.524 474.443

2 58 -.0058l78 -.0097463 .0110648 4.404 398.02

3 60 .0059355 -.0097344 .0110906 4.376 394.57

4 77 -.0111236 -.0074674 .0125776 4.25 337.9

5 78 .0110182 -.0075676 .0125986 4.248 337.18

6 80 -.0151772 -.00304058 .0140612 4.071 289.52

7 82 .0152539 -.00293418 .0140671 4.109 292.10

8 84 -.0174337 .00309491 .0156257 3.736 239.09

9 86 .0175218 .0032144 .0156715 3.676 234.57

10 110 -.0179928 .0100552 .0179928 3.329 226.00

11 114 .0182591 .0101146 .0182591 3.024 225.616

14 148 -.0175919 .0178588 .0222497 2.874 129.17

15 153 .0179251 .0178831 .0225739 2.848 126.16

18 186 -.0154891 .0254233 .0274743 3.025 110.103

19 196 .0156918 .0255618 .0277194 2.984 107.65

22 233 -.0125678 .0335787 .0345523 2.912 84.28

23 234 .0129131 .0337812 .0349191 2.915 83.48

26 237 -.0074576 .0406872 .0410016 2.806 68.44

27 238 .0077971 .0410613 .0414611 2.806 67.68

30 241 .000011403 .0427413 .0427413 2.563 59.97
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TABLE 3-22: LOADING SCHEDULE

 

 

Radius P H 'p H P H

(113) (ft) ' (lb) (ft) (113) (ft)

100 4.0 4.0 4.0

100 6.4 6.4 6.4

200 8.0 300 8.0 500 8.0

11.73 11.73 11.73

12.64 12.64 12.64

300 20.36 20.36 20.36

TABLE 3-23: RECOMMENDED VALUES OF K1 AND nh (AFTER TERZAGHI 1955)

 

 

 
 

Relative Density Loose Medium. Dense

K 4 K
of Sand K1 “h 1 “h 1 nh

Dry oeroist Sand 20-60 7 60-300 21 300-1000 56

[Test Results)

proposed Values 40 7 130 21 500 56

Sumbmerged Sand 25 5 80 14 300 34
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TABLE 3-24: RESULTS FOR Hc = 47 DIAMETERezoo INCHES, AND 9:50 LBS

::::r- Soil Ax A! IANI IONI k;

Element Node (inch) (inch) (inch) psi (#/in3)

1 59 .000029927 .00050551 .00050551 .282 557.86

2 58 -.00045902 -.00062578 .00073691 .262 355.54

3 60 .00048482 -.00062470 .00074392 .251 337.41

4 77 -.00093804 -.00054158 .00098935 .247 249.66

5 78 .00089854 -.00054569 .00096939 .229 236.23

6 80 -.0013941 -.00024788 .0012734 .207 162.55

7 82 .0013119 -.00027817 .0012247 .210 171.5

8 84 -.0017267 .00029879 .0015499 .156 100.65

9 86 .0017063 .00030157 .0015333 .168 109.56

10 110 -.0017780 .0010639 .0017780 .105 59.6

11 114 .0017842 .0011183 .0017842 .108 60.5

14 148 -.0014884 .0017388 .0019521 . .108 55.32

15 153 .0014778 .0018419 .0019746 .117 59.25

18 186 -.0013688 .0024113 .0025246 .103 40.8

19 196 .0013661 .0025072 .0025788 .109 42.3

22 233 -.0010664 .0030591 .0030878 .0998 32.32

23 234 .0010162 .0031465 .0031428 .102 32.45

26 237 -.00065706 .0036543 .0036783 .153 41.59

27 238 .00057482 .0036661 .0036642 .169 46.12

30 241 -.000042342 .0039512 .0039512 .0708 17.92

LEGEND: (Tables 3-24 to 3-35): kn refers to the dense soil and

k; to the medium dense.
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TABLE 3-25: RESULTS FOR Hc = 4; DIAMETER e200 INCHES AND P-lOO LBS

ézzzr- Soil AX AY I AN I I ON I k;

Element Node (inch) (inch) (inch) psi (#/in3)

1 59 .000059859 -.0010112 .0010112 .563 556.76

2 58 -.OOO91808 -.0012518 .0014741 .526 356.8

3 60 .00096968 -.0012496 .001488 .504 338.7

4 77 -.0018761 -.0010834 .0019791 .493 249.1

5 78 .0017971 -.0010916 .0019393 .458 236.16

6 80 -.0027883 -.00049598 .0025472 .411 161.35

7 82 .0026238 -.00055659 .0024497 .417 170.22

8 84 -.0034534 .00059732 .0030999 .343 110.65

9 86 .0034126 .00060288 .0030593 .358 117.02

10 110 -.OO35560 .0021275 .0035560 .283 79.5

11 114 .0035685 .0022364 .0035685 .285 79.9

14 148 -.0029769 .0034772 .0039056 '.218 55.82

15 153 .0029558 .0036834 .0039493 .233 59.00

18 186 -.0027377 .0048222 .0050491 .202 40.01

19 196 .0027324 .0050140 .0051576 .287 55.64

22 233 -.0021330 .0061179 .0062031 .272 43.85

23 234 .0020324 .0062923 .0062851 .267 . 42.48

26 237 -.0013142 .0073080 .0073564 .235 31.94

27 238 .0011496 .0073318 .0073281 .251 34.25

30 241 .0079019 .0079019 .153 19.4.000084729
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TABLE 3-268 RESULTS FOR c = 6.4: DIAMETER-200 INCHES, AND P-100 LBS

Inter- Soil Ax AY I AN I I UNI k; k;

face It

Element Node (inch) (inch) (inch) psi (if/ins) ”

l 59 .000029493 -.0011352 .0011352 0.61 537.35 0.826

2 58 -.00097073 -.0013599 .0015933 0.57 357.75 0.69

3 60 .00098489 -.0013619 .0015976 0.557 348.6 0.68

4 77 -.0019555 -.0011694 .0020954 0.533 254.4 0.590

5 78 .0018866 -.0011756 .0020599 0.512 248.5 0.584

6 80 -.0028679 -.00057812 .0026599 0.444 166.9 0.471

7 82 .0027369 -.00062167 .0025795 0.451 174.8 .500

8 84 -.0035132 .00049894 .0031870 0.386 121.12 0.43

9 86 .0034481 .00049948 .0031249 0.382 122.24 0.443

10 110 -.003617 .0019777 .003617 0.318 87.9 0.431

11 114 .0035867 .0020456 .0035867 0.312 86.9 0.456

14 148 -.0031524 .0033036 .0040189 0.231 57.5 0.458

15 153 .0030786 .0034255 .0039864 0.243 60.96 0.483

18 186 -.0028955| .0046136 .0050542 0.255 50.45 0.488

19 196 .0028393 .0047247 .0050741 0.260 51.44 0.494

22 233 -.0022034 .0057964 .0059844 0.319 53.3 0.703

23 234 .0021045 .0059409 .0060432 0.331 54.8 0.73

26 237 -.0012923 .006705 .0067761 0.312 46.04 0.777

27 238 .0011508 .0067432 .0067686 0.315 46.58 0.774

30 241 -.00007752 .0067852 .0067852 0.216 31.83 0.608
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TABLE 3—27; RESULTS FOR Hc = 8: DIAMETER=200 INCHES, AND P=100 LBS

 

 

 

Inter— Soil AX AY I AN I I ON I k* k*

face n. n

Element Node (inch) (inch) (inch) psi (#/in3) kn

1 59 .000037088 .0012186 .0012186 0.631 517.81 0.794

2 58 -.00096915 -.0014345 .0016636 0.593 356.4 0.676

3 60 .0010062 —.0014319 .0016726 0.583 348.5 0.669

4‘ 77 -.0019834 -.0012210 .0021536 0.554 257.2 0.578

5 78 .0019560 -.0012202 .0021367 0.539 252.2 0.574

6 80 -.0028730 -.00062744 .002693 0.466 173. 0.488

7 82 .0028027 -.00065473 .0026522 0.471 177.6 0.49

8 84 -.0035138 .00043141 .0032084 0.398 124.05 0.427

9 86 .0034956 .00043522 .0031899 0.406 . 127.3 0.441

10 110 -.0036171 .0018795 .0036171 0.340 93.99 0.433

11 114 .0036316 .0019352 .0036316 0.334 91.97 0.455

14 148 -.0032013 .0031901 .0040304 0.255 63.27 0.418

15 153 . 0032028 . 0032867 . 0040616 0. 264 65 . 00 0. 426

18 186 -.0029222 .0044736 .0049935 0.287 57.5 0.508

19 196 .0029223 .0045608 .0050449 0.291 57.7 0.508

22 233 -.0022161 .0056071 .0058387 0.371 63.54 0.757

23 234 .0021776 .0057128 .0059016 0.362 61.34 0.739

26 237 -.0012769 .0063999 .0064812 0.348 53.69 0.802

27 238 .0012034 .0064228 .0064802 0.339 52.31 0.779

30 241 -.000042355 .0067075 .0067075 0.238 35.48 0.597



TABLE 3-28: RESULTS FOR HC

106

= 11.237 DIAMETER=200 INCHES, AND P=100 LBS

 

 

Inter- Soil AX AY I AN I I UNI k; k;

face
._.

Element Node (inch) (inch) (inch) psi (#/in3) kn

1 59 .0000061507 -.00067431 .00067431 .327 484.9 0.732

2 58 -.00050981 -.0007536 .00087421 .309 353.5 0.647

3 60 .00051757 -.000757 .00087978 .305 346.67 0.64

4 77 -.0010223 -.00063033 .0011107 .293 263.79 0.568

5 78 .0010055 -.0006327 .0011027 .288 261.16 0.568

6 80 -.0014426 -.00032957 .0013607 .254 186.66 0.48

7 82 .0014147 -.00032911 .0013378 .255 190.6 0.49

8 84 -.0017515 .00018711 .0016081 .202 125.6 0.395

9 86 .0017430 .00019236 .0015778 .204 129.29 0.395

10 110 -.0018013 .00089023 .0018013 0.240 133.36 .433

11 114 .0017955 .00090366 .0017407 0.235 135.0 0.443

14 148 -.0016340 .0015355 .0020284 .163 80.36 0.47

15 153 .0016079 .0015600 .0020111 .165 82.04 0.483

18 186 -.0014613 .0021490 .0024453 .171 69.93 0.508

19 196 .0014345 .0021740 .0024383 .172 70.54 0.522

22 233 -.0011007 .0026860 .0028199 .164 58.16 0.573

23 234 .0010779 .0027315 .0027596 .164 59.43 0.597

26 237 -.00063637 .0030510 .0030982 .155 50.03 0.586

27 238 .00060049 .0030662 .0032561 .155 47.6 0.567

30 241 -.000020220 .0032287 .0032287 .139 43.05 0.557
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TABLE 3-29: RESULTS FOR Hc = 4: DIAMETER-300 INCHES, AND F-100 LBS

 

 

Inter- Soil Ax AY IANI IOfiI k; k;

face
1(—

Element Node (inch) (inch) (inch) psi (#lin3) n

1 59 .000013627 -.0015101 .0015101 0.514 340.4 0.71

2 58 -.0014546 -.0017836 .0021457 0.489 227.9 0.603

3 60 .0014798 -.0017403 .0021123 0.505 239.1” 0.649

4 77 -.0027329 -.0013282 .0026808 0.490 182.8 0.602

5 78 .0027165 -.0012906 .0026407 0.456 172.7 0-590

6 80 -.0037695 -.00042411 .0032987 0.455 137.93 0.559

7 82 .0036848 -.00052689 .0032906 0.414 126.0 0.502

8 84 -.0047874 .0011527 .0049092 0.337 68.6 0.291

9 86 .004684 .0010696 .0047852 0.334 69.8 0-298

10 110 -.0049494 .0033180 .0049494 0.253 51.1 0-27

11 114 .0048809 .0032587 .0048809 0.254 52.0 0.275

14 148 -.0039658 .0051774 .0053715 0.175 32.6 0-387

15 153 .0039325 .0052085 .0053495 0.190 35.5 0.379

18 186 -.0035455 .0070683 .0070229 0.241 34.3 0.672

19 196 .0033999 .0070588 .0068991 0.251 36.4 0.672

4 22 233 -.0026482 .0089225 .0087749 0.198 22.6 0.693

23 234 .0026423 .0090292 .0088578 0.201 22.7 0.69

26 237 -.0018645 .011563 .011573 0.171 14.78 0.73

27 238 .0017454 .011412 .0113928 0.175 15.36 0.74

30 241 -.000055753 .012610 .012610 0.127 10.1 0-740
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TABLE 3-30: RESULTS FOR RC = 6.47 DIAMETER-200 INCHES, AND 9250 LBS

 

 

Inter- Soil Ax AY IANI ION k; k;

face _—

Element Node (inch) (inch) (inch) psi (#/in3) kn

1 59 -.00000050803 .00080059 .00080059 .268 334.8 0.714

2 58 -.00073085 -.00091764 .0010984 .259 235.78 0.619

3 60 .00072528 -.00089965 .0010796 .266 246.37 0.660

4 77 -.0013932 -.00069191 .0013786 .258 187.14 0.595

5 78 .0013673 -.00067356 .0013484 .240 179 0.568

6 80 -.0018952 -.00022674 .0016664 .227 136.21 0.529

7 82 .0018434 -.00026717 .0016482 .209 126.8 0.488

8 84 -.0023754 .00054046 .0020920 .165 78.87 0.350

9 86 .0023262 .00051513 .0020531 .172 83.77 0.359

10 110 -.0024468 .0015873 .0024468 .178 72.75 0.365

11 114 .0024175 .0015756 .0024175 .180 74.46 0.385

14 148 -.0019823 .0025046 .0026592 .111 41.74 0.49

15 153 .0019824 .0025248 .0026655 .117 43.89 0.503

18 186 -.0017975 .0034530 .0034837 .113 32.44 0.492

19 196 .0017343 .0034425 .0034264 .116 33.85 0.462

22 233 -.0012854 .0043289 .0042589 .134 31.5 0.651

23 234 .0013103 .0043868 .0043191 .138 31.95 0.65

26 237 -.00087272 .0055085 .0055085 .133 24.14 0.69

27 238 .00084651 .0054744 .0054679 .139 25.4 0.691

30 241 -.000010261 .0060132 .0060132 .115 19.12 0.713
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TABLE 3-31: RESULTS FOR Hc = 87 DIAMETER=300 INCHES, AND P=50 LBS

 

 

Inter- Soil Ax AY IANI IONI k; k;

face
_

Element Node (inch) (inch) (inch) psi (it/ins) kn

1 59 .00000072793 -.00084071 .00084071 .275 327.1 0.702

2 58 -.00072799 -.00094901 .0011316 .266 235.06 0.614

3 60 .00072614 -.00093273 .001114 .272 244.73 0.649

4 77 -.0013848 -.00073527 .0014149 .265 187.3 0.589

5 78 .0013780 -.00070927 .0013836 .247 178.5 0.575

6 80 -.0019187 -.00025457 .0017018 .233 136.9 0.504

7 82 .0018572 -.00029503 .0016755 .217 129.51 0.470

8 84 -.0023648 .00049886 .0020948 .186 88.8 0.373

9 86 .0023247 .00048478 .0020612 .191 _ 92.7 0.391

10 110 -.0024472 .0015190 .0024472 .227 (92.7 0.307

11 114 .0024137 .0015221 .0024137 .224 93.0 0.303

14 148 -.0020755 .0024337 .0027259 .126 46.22 0.462

15‘ 153 .0020283 .0024548 .0026875 .128 47.63 0.458

18 186 -.0017135 .0031421 .003233 .128 39.59 0.523

19 196 .0017913 .0033644 .0034266 .131 38.23 0.48

22 233 -.0013421 .0041894 .0041781 .159 38.0 0.699

23 234 .0013652 .0042958 .0042778 .162 37.9 0.686

26 237 -.00086544 .0052082 .0052207 .146 28.0 0.73

27 238 .00085203 .0052355 .005242 .156 29.8 0.739

30 241 -.0000096557 .0055777 .0055777 .108 19.36 0.733
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TABLE 3-32: RESULTS FOR Hc = 87 DIAMETER-300 INCHES, AND P-100 LBS

Inter. 5°11 Ax AY IANI |0N| k; k;-_—

face
'-

Element Node (inch) (inch) (inch) psi (#lina) kn

1 59 .0000013838 -.0016984 .0016984 .556 327.4 0.702

2 58 -.0014548 -.0019084 .0022636 .532 235.0 0.613

3 60 .0014511 -.0018758 .0022323 .543 243.2 0.645

4 77 -.0027677 -.0014780 .0028225 .530 187.8 0.591

5 78 .0027542 -.001426 .0027724 .493 177.8 0.573

6 80 -.0038348 -.00051525 .0034050 .497 140.7 0.518

7 82 .0037121 -.00059606 .003502 .462 138.0 0.501

8 84 -.0047251 .00099301 .0039384 .371 94.2 0.395

9 86 .0046450 .00096487 .0041157 .382 98.82 0.417

10 110 -.0048888 .0030339 .0030339 .198 65.3 0.303

11 114 .004822 .0030401 .0030401 .197 64.8 0.300

14 148 -.0041451 .0048642 .0054452 .222 40.8 0.408

15 153 .0040507 .0049063 .0053685 .228 42.5 0.409

18 186 -.0037527 .0067296 .0069915 .313 '44.8 0.592

19 196 .0035827 .0067291 .0068537 .317 46.3 0.58

22 233 -.0026845 .0083797 .0083571 .316 37.8 0.695

23 234 .0027306 .0085924 .0085563 .316 36.9 0.668

26 237 4.0017311 .010417 .0104379 .290 27.8 0.725

27 238 .0017042 .010472 .010486 .309 29.5 0.732

30 241 -.000019334 .011156 .011156 .227 20.4 0.733
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RESULTS FOR Hc = 11.237 DIAMETER=300 INCHES, and P=50 LBS

 

 

TABLE 3-33:

::::r- Soil AX AY I AN I I ON I k; 3

Element Node (inch) (inch) (inch) psi (#/in3) kn

1 59 -.000019174 -.00090706 .00090706 .287 316.43 0.67

2 58 --.00073930 -.00098955 .0010088 .278 275.6 0.711

3 60 .00071096 -.OOO99146 .00098243 .283 288.1 0.751

4 77 -.0013787 -.00077617 .0014382 .275 191.2 0.587

5 78 .0013812 -.00077292 .001437 .262 182.31 0.564

6 80 -.0019496 -.00027019 .0017360 .242 139.4 0.504

7 82 .0018860 -.00033920 .0017251 .231 133.9 0.478

8 84 -.0023627 .00046098 .0021046 .187 88.85 0.394

9 86 .0023250 .00041982 .0020813 .194 93.21 0.413

10 110 -.0024381 .0014397 .0024381 .193 79.16 0.362

11 114 .0023939 .0014026 .0023939 .195 81.46 0.380

14 148 -.0021822 .0023499 .0028014 .146 52.12 0.436

15 153 .0021106 .0023105 .0027212 .150 55.12 0.447

18 186 -.0ol9739 .0032590 .0028848 .151 52.34 0.613

19 196 .0018404 .0031793 .0028602 .154 53.84 0.616 I

22 233 -.0014826 .0040828 .0041744 .162 38.8 0.65

23 234 .0013473 .0039992 .0040272 .155 38.5 0.65

26 237 -.00092491 .0048724 .0049197 .151 30.7 0.701

27 238 .00078875 .0047875 .0047968 .149 31.10 0.699

30 241 -.000063658 .0051058 .0051058 .130 25.46 0.695



112

TABLE 3-34: RESULTS FOR Hc = 12.64: DIAMETER=300 INCHES, AND P=50 LBS

 

 

Inter- Soil Ax AY IANI IQNI k; k;

face ._.

Element Node (inch) (inch) (inch) psi (#lin3) kn

1 59 -.000015181 -.00093959 .00093959 .291 309.73 0.661

2 58 -.00073537 —.0010191 .0011963 .284 237.38 0.618

3 60 .00071515 -.0010176 .0011887 .287 241.43 0.634

4 77 -.0013798 -.00080903 .0014654 .278 189.70 0.59

5 78 .0013885 -.00079432 .0014587 .268 183.72 0.575

6 80 -.0019528 -.00030431 .0017584 .246 139.89 0.524

7 82 .0019038 -.00035324 .0017477 .237 135.60 0.502

8 84 -.0023485 .00043318 .0020997 .192 91.44 0.386

9 86 .0023289 .00039733 .0020921 .198 94.64 0.404

10 110 -.0024142 .0013860 .0024142 .211 87.4 0.396

11 114 .0023991 .0013614 .0023991 .209 87.1 0.392

14 148 -.0021897 .0022893 .0027899 .154 55.2 0.509

15 153 .0021435 .0022618 .0027374 .157 57.35 0.533

18 186 -.0019633 .0031787 .0034567 .162 46.87 0.534

19 196 .0018612 .0031170 .0033377 .163 48.83 0.553

22 233 -.0012932 .0035842 .0036597 .133 36.3 0.563

23 234 .0013844 .0039359 .0039978 .140 35.2 0.542

26 237 -.00089233 .0047140 .004759 .147 30.9 0.610

27 238 .00081654 .0046816 .0047047 .148 31.46 0.624

30 241 -.000035976 .0049623 .0049623 .142 28.62 0.687
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TABLE 3-35: RESULTS FOR HC 8 12.64: DIAMETERBBOO INCHES, AND P8100 LBS

 

 

Inter- Soil Ax AY IAN I I ON I k* k*

face 11 .31

Element Node (inch) (inch) (inch) psi (#/in3) kn

1 59 -.000030511 -.0018964 .0018964 0.588 310.1 0.66

2 58 -.0014695 -.0020485 .0024022 0.566 235.6 0.597

3 60 .0014291 -.0020459 .0023873 0.574 240.43 0.618

4 77 -.0027577 -.0016255 .0029359 0.557 189.7 0.567

5 78 .0027750 -.0015963 .0029224 0.535 183.1 0.551

6 .80 -.0039030 -.00061476 .0035188 0.524 148.9 0.524

7 82 .0038051 -.00071263 .003497 0.504 144.1 0.502

8 84 -.0046927 .00086165 .0047291 0.406 85.9 0.375

9 86 .0046533 .00078985 .0046695 0.414 88.7 0.398

10 110 -.0048232 .0027679 .0048232 0.358 74.22 0.335

11 114 .0047929 .0027185 .0047929 0.360 75.11 0.341

14 148 -.0043744 .0045754 .005741 0.282 50.6 0.453

15 153 .0042819 .0045203 .0054691 0.289 52.84 0.472

18 186 -.0039267 .0063575 .0069136 0.368 53.4 0.582

19 196 .0037224 .0062339 .0066756 0.375 56.2 0.597

22 233 -.0029234 .0079447 .0081456 0.374 45.9 0.716

23 234 .0027688 .0078720 .007996 0.379 47.4 0.699

26 237 -.0017847 .0094287 .0095187 0.370 38.9 0.74

27 238 .0016332 .0093638 .0094101 0.374 39.7 0.78

30 241 -.000071912 .0099247 .0099247 0.291 29.32 0.72
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TABLE 3-36u COMPARISON OF PROPOSED AND FEM RESULTS FOR MEDIUM SOIL

(CIRCULAR)

Crown: 6 8 0°

?::::::f Coefficient of

Hc §_ Soil Reaction

(ft) 0 (Nina)

Proposed FEM

200 8.0 0.6928 40. 35.5

300 8.0 0.5657 22.9 19.4

300 12.64 0.71105 33.6 28.62

Springline: 9 = 90°

200 8.0 0.9899 97.7 94.0

300 8.0 0.906 90.6 92.7

300 12.64 1.003 100 87.4

Invert: 6 = 180°

200 8.0 1.2165 450 517

. 300 8.0 1.149 364 327

300 12.64 1.227 388‘ 310    
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TABLE 3’37: COMPARISON OF PROPOSED AND FEM RESULTS FOR DENSE SOIL

 

 

 

 

  
 

 

 
 

 

(CIRCULAR)

Invert: 6 = 180

‘3ng Coefficient of “ Differen“

Hc _H Soil Reaction

(ft) 8 (Wins)

Proposed* FEM

100 4.0 1.2415 834 950 12.2

100 6.4 1.3293 893 995 10.2

200 11.73 1.305 689 662 4.4

300 8.0 1.1489 441 466.6 5.5

300 12.64 1.227 471 468 ---

Springline: 6 - 90°

100 0.99 385 380 ---

100 1.126 437 425 7.4

200 1.097 335 308 8.8

300 1.003 222 223 ---

300 0.9066 201.3 210 4.3

Crown: 0 8 0°

100 0.6928 73 74.5 ---

100 0.8764 92.4 96.2 4.0

200 0.8389 69.3 77.3 10.3

300 0.5657 33.9 27.81 22.0

300 0.71105 42.66 40.67 5.0   
   
*Based on a unit weight of soil Y of 120 pcf.
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TABLE 4-1; THEORETICAL PRE-BUCKLING THRUSTS

Thrust

Relative Diameter (Compression)

Section Density (inches) Location (lb/in) FEM

_ Haunch 212 216

Circular Dense 300

Sp. Line 188 180

Haunch 142 141

Circular Dense 200

Sp. Line 134 119

Haunch 110 134

Circular Dense 150

Sp. Line 101 115

Haunch 212.13 --

Circular Medium 300

Sp. Line 73.44

+ Haunch 221 246

Ellipse Dense --- .

Sp. Line 162.6 156

+Semieminor axis: 75 inches

Semi-major axis: 150 inches



117

 

 

 

 

 

 

       

TABLE 4-2: THEORETICAL PRE-BUCKLING DEFLECTIONS

Relative Diameter Deflection

Section Density (inch) Location (inch) FEM

Circular Dense 300 Spring-Line .008 .005

Invert .0056 .004

Crown -.017 -.0178

Circular Dense 200 Spring-Line .005 .0035

Invert .0032 .0037

Crown -.0134 -.017

Circular Dense 150 Spring-Line .004 .0036

Invert .003 .0048

Crown -.048

Circular Medium 300 Spring-Line .01 ---

Invert .002

Ellipse Dense --- Spring Line .015 .01

Invert .0012 .0018

+Semi-minor axis: 75 inches

Semi-major axis: 150 inches
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TABLE 4-3 THEORETICAL PRE-BUCKLING MOMENTS

Relative Diameter Moments

Section Density (inches) Location (lb-in/in) FEM

Crown 19.70 20

Circular Dense 300 Haunch -7.4 -5.5

Spring-Line -2.52 -2.36

Invert 1.0 1.37

Crown 17.85 18.11

Circular Dense 200 Spring-Line -2.0 -2.75

Invert 1.0 1.27

Crown 23.4 19

Circular Dense 150 Haunch -10.75 -7.4

Invert 2.13 2.0

Crown 47.6

Haunch -30.5

Circular Medium 300 Spring-Line -3.17 ---

Invert 1.59

+ Crown 23 32

Ellipse Dense Haunch -100 -62.3

--- Spring-Line -63 -40.5

Invert 3.31 3.91

+Semi-minor axes: 75 inches

Semi-major axes: 150 inches
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TABLE 4-4: VARIATION OF A WITH SPAN

 

 

   

K

Diameter 1811 s 1 KS

(inches) i/ina #/in3 " 7%:

i

300 413.6 75 0.18

200 587.7 125 0.21

50 689.34 145 0.21
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TABLE 4-5: COMPARISON OF PROPOSED AND FEM RESULTS FOR DENSE SOIL

 

 

 

 

 

 

(ELLIPTICAL)

Coefficient of

Soil Reaction

(#lina)

Hc Node H_

(ft) Number D Proposed FEM

4 0.855 343 319

59

6 0.903 363 333

8 0.948 381 353

4 0.646 336 390

60

6 0.707 ' 357 397

8 0.765 376 410

4 0.41 25.9 16

6 241 0.502 31.7 25

8 0.57 (36.6 30

6 58 0.707 357. 397      
 

Semi-minor axis: b - 80.5 inches

Semi-major axis: a a 143 inches

Span: D - 286 inches
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TABLE 4-6: COMPARISON WITH TEST RESULTS

 

 

Uniform Present

- Applied Study

Nominal Sand Soil Ring Buckling (psi)

Investi- Density and Thickness Pressure

gator V0id Ratio (in) . (psi) Dense Medium

Medium-Dense, 0.50 3/8 9.0

7.72 5.17

Medium-Dense, 0.50 3/8 12.4

Luscher Medium-Dense, 0.48 2/3 14.2

8.09 5.45

Medium-Dense, 0.48 2/3 12.4

Medium-Dense, 0.47 2/3 9.9

 

(a) All tests on aluminum tubes with constant radius (0.815 in.) and

constant stiffness (EI/R3 - 0.042).

TABLE 4-7: COMPARISON WITH TEST RESULTS

 

 

Thrust Present Study

Stress Thrust

at Critical Stress at

Investi- Area Radius EI Failure Pressure Failure

gator (inzlin) (in) F (psi) (psi) (psi)

.013a 12.9 .0057 5,780 6.9 6,697

.0328a 12.9 .086 7,850 22.41 8,813

Meyerhof .0328a 25.6 .011 5,600 9.55 7,454

and .0328a 12.0 0.11 6,350 19.5 7,134

Baike .018b 12.0 1.3 41,400 106.11 70,740

.0162b 24.0 0.2 26,100 22.92 33,956

 

(a) Plain Sheets

(b) Corrugated Sheets
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TABLE 4-8: COMPARISON WITH TEST RESULTS

 

Soil Density Present Study

 

Investi- Radius Critical

gator (in) Pressure (P81)

8 Std. (psi)

Pcf AASHTO Dense Medium

30 101.7 83 111

Watkins 151 131.4

and 30 118.4 97 132

M988! 30 129 106 97
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TABLE 4-9: COMPARISON OF THEORETICAL FORMULATIONS OF COEFFICIENT

OF SOIL REACTION (SOIL SUPPORT MODULUS)

 

 

 

 

 

 

Investigator Suggested Expression for kn

R 2

. i

Luscher E 1 -(-—)

s R

0

R1 2

(1+us) {1 + R— (1—2118) I R

o

Meyerhof and Baike E8

2
2(1 Us) R

Kloppel and Glock E8

R(1+u8)

Present Study * — H

kn = B CD Ce «5

ks = 0.2 k

Ini   
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TABLE 4-10: VALUES OF KS IN TONS/CU. FT FOR SQUARE PLATES,

1

1 FT X 1 FT, OR BEAMS 1 FT WIDE, RESTING ON SAND

(AFTER TERZAGHI, 1955)

 

 

 

Relative Density of Sand Medium Dense

Dry or moist sand, 60 - 300 300 - 1000

Limiting values for Ks

1

Dry or moist sand, 130 500

Proposed values

Submerged sand, 80 300

Proposed values    
 

1 ton/cu. ft - 1.1574 pci
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TABLE 4-11: COMPARISON OF THEORETICAL CRITICAL PRESSURES (CIRCULAR)

 

 

 

 

 

 

 

. 3 for. 3 icr 3 -fcr

Investigator EI/R (p81) EI/R (pSI) EI/R (psi)

Meyerhof 1.0 107.3 10 611 100 930

and

Baike

Luscher 1.0 391.9 10 878.4 100 3675.7

Chelapati 1.0 440.54 10 927 100 4410.0

and

Allgood

Cheney 1.0 884 10 1945.2 100 4103.0

0
n
c

8
Present

Study 1.0 180.9 10 1073.2 100 2380.4

1".
2

1.0 116.84 10 757.4 100 1371.33         
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P

TABLE 4-12: VARIATION OF CRITICAL PRESSURE WITH '5;

0

(psi)

P Critical Pressure

.1. -

PO

Dense Medium

0 254 187

0.25 217 165.6

3

0.33 210 146

0.50 184 126

1.0 165 101     
Span = 300 inches

0 = 0.16



127

TABLE 4-13: VARIATION OF CRITICAL PRESSURES WITH ASPECT RATIO

(ELLIPTICAL SECTION)

 

 

 

(psi)

Aspect Critical Pressure

Ratio,

BIA Medium Dense

0.2 12.3 22.0

0.3 21.1 37.5

0.5 48.7 85.0

1.0 106.03 159.96      
Span, D - 300 Inches

0 - 0.16

P
1

——-= 1.0

P2
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TABLE 4'14: VARIATION OF CRITICAL PRESSURE WITH DEPTH

 

 

 

Critical Pressure (psi)

Depth Ratio 0

Dense . Medium

0.16 165 101

0.3 175.3 107.2

0.5 187.2 111.5

0.7 198 150

0.9 207 155.12

1.0 211.5 157.5     
TABLE 4-15: VARIATION WITH DEPTH OF RALATIVE CROWN DEFLECTION

DURING BUCKLING (CIRCULAR)

 

 

 

Crown Deflection (inches)

De Ratio 0

Pth Dense Medium

0.16 1.59 2.63

0.3 1.67 2.71

0.5 1.78 2.98

0.7 2.39 3.15

0.9 2.41 3.30

1.0 2.51 3.36     
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TABLE A-l: DATA REDUCTION

Conduit Diameter - 300 Inches

9 = w* 0 a 0.9h 8 - 0.8N

E E E E E E

D ‘Y D Y ' D ‘Y

1.256 3.96 1.23 3.17 1.16 2.62

1.256 4.03 1.23 3.18 1.16 2.54

1.32 3.89 1.296 3.19 1.225 2.64

1.32 3.93 1.296 3.19 1.225 2.65

1.32 3.91 1.296 3.18 1.225 2.63

1.4692 3.93 1.445 3.23 1.374 2.71

1.4692 4.25 1.445 3.24 1.374 3.00

1.5056 3.93 1.481 3.29 1.410 2.78

1.5056 3.90 1.481 3.20 1.410 2.68

1.5056 3.94 1.481 3.23 1.410 2.69

1.8144 4.04 1.790 3.45 1.719 2.97

1.8144 3.96 1.790 3.32 1.719 2.80

1.8144 3.95 1.790 3.32 1.719 2.80

Conduit Diameter = 200 Inches

1.383 5.42 1.359 4.32 1.288 3.59

1.48 5.43 1.455 4.39 1.384 3.71

1.704 5.52 1.679 4.55 1.608 3.87

Conduit Diameter - 300 Inches

6 = 0.7fl 6 - 0.6fl 6 - 5.0fl 9 - 0.4fl

H/D K/Y H/D K/Y H/D K/Y H/D K/Y

1.049 2.09 0.910 1.66 0.756 1.29 0.601 0.73

1.049 2.12 0.910 1.57 0.756 1.09 0.601 0.72

1.049 2.16 0.910 1.59 0.756 1.09 0.601 0.73

1.114 2.29 0.975 1.80 0.82 1.37 0.665 0.87

1.114 2.22 0.975 1.75 0.82 1.28 0.665 0.91

1.114 2.20 0.975 1.74 0.82 1.26 0.665 0.90

1.263 2.33 1.124 1.88 0.969 1.41 0.815 1.03

1.263 2.33 1.124 1.87 0.969 1.39 0.815 1.03

1.299 2.39 1.160 1.91 1.0056 1.47 0.851 0.93

1.299 2.25 1.160 1.77 1.0056 1.33 0.851 0.90

1.299 2.27 1.160 1.79 1.0056 1.33 0.851 0.92

1.608 2.61 1.469 2.14 1.3144 1.71 1.16 1.14

1.608 2.42 1.469 1.98 1.3144 1.52 1.16 1.07

1.608 2.43 1.469 1.99 1.3144 1.54 1.16 1.08

 

* 6 in radians
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TABLE A-l: DATA REDUCTION (continued)

Conduit Diameter - 200 Inches

1.177 2.91 1.038 2.31 0.883 1.70 0.729 1.05

1.274 3.02 1.134 2.42 0.980 1.81 0.825 1.27

1.498 3.24 1.358 2.73 1.204 2.05 0.825 1.44

Conduit Diameter = 300 Inches

8 a 0.3T 8 = 0.2fl 8 = 0.1h 8 = 0.0

K K K K

H D - H D - H D - H D '-/ Y / Y / Y / Y

0.461 0.61 0.351 0.41 0.28 0.31 0.256 0.22

0.461 0.56 0.351 0.38 0.28 0.28 0.256 0.22

0.461 0.55 0.351 0.38 0.28 0.27 0.256 0.21

0.526 0.67 0.415 0.46 0.344 0.34 0.32 0.23

0.526 0.61 0.415 0.41 0.344 0.30 0.32 0.23

0.526 0.60 0.415 0.40 0.344 0.48 0.32 0.23

0.675 0.73 0.565 0.49 0.494 0.37 0.469 0.31

0.675 0.72 0.565 0.49 0.494 0.53 0.469 0.30

0.712 0.79 0.601 0.57 0.53 0.44 0.5056 0.34

0.712 0.73 0.601 0.54 0.53 0.42 0.5056 0.35

0.712 0.73 0.601 0.54 0.53 0.41 0.5056 0.34

1.021 0.97 0.91 0.72 0.839 0.58 0.8144 0.49

1.021 0.92 0 91 0.70 0.839 0.57 0.8144 0.50

1.021 0.92 0.91 0.70 0.839 0.57 0.8144 0.50

Conduit Diameter = 200 Inches

0.589 0.87 0.479 0.63 0.408 0.50 0.383 0.44

0.686 0.95 0.575 0.70 0.504 0.56 0.48 0.50

0.909 1.15 0.799 0.85 0.728 0.71 0.704 0.64
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TABLE A—2: DATA REDUCTION

 

 

 

 

%= 1.0 %= 0.5

6 (radians) 5 9 (radianS) 1(-

Y Y

0 0.54 0 0.33

.27r 0.75 .21r 0.46

.4fl 1.08 .4fl 0.71

.60 1.75 .61! 1.08

.811 2.42 .811 1.5

1.0T 3.29 1.0fl 2.08 
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0.25 ,—

0.2 _,
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)4

Q
2: 0.15

0.1 ._.

.05 _-

1 fl 1 l I I

10 20' 30 40 50

Subgrade Reaction, C (kg/cm3)

FIGURE 1'1: VARIATION OF THE CROWN MOMENT AS A FUNCTION OF

SUBGRADE REACTION*

*Source: Reference (1)
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Geometry of Corrugation
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FIGURE 2-3a: HYPERBOLIC STRESS-STRAIN RELATIONSHIP

 
 

5:

FIGURE 2-3b: TRANSFORMED HYPERBOLIC STRESS-STRAIN RELATIONSHIP.
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Fig.2—4 Pressure Distribution Assumed in the Marston-Spangler Theory
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1m

(0)

  
2-5. SOIL PRESSURE DISTRIBUTION ACCORDING

TO THE RING COMPRESSION THEORY:

(a) CIRCULAR SECTION: (D) ELLIPTICAL

SECTION: (c) PIPE-ARCH
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(a)

(b)

FIG 2'6: ldcalisation of the Summit for analysis by fwm-on-ctastic supports method.
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Fluff/(LIN?)     

ii = (Ff +%)/(L|x L2)

FIG. 2-7' Dispersion of Live Load Through the Soil-Fill
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FIGURE 3-1: LINEAR STRAIN TRIANGULAR ELEMENT



  

   
FIGURE 3-23: 9-NODE QUADRILATERAL ELEMENT

  
  
FIGURE 3-2b: 8-NODE QUADRILATERAL ELEMENT

I)
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FIGURE 3-5: INTERFACE ELEMENT
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FIGURE 3-6: LOADING SCHEME
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FIGURE 3—7: VARIATION OF COEFFICIENT 0F SOIL REACTION WITH DEPTH

(300 INCH SPAN)
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FIGURE 3-9: LOAD-DEFLECTION CURVE
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FIGURE 3-10: VARIATION OF 8* with %4
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FIGURE 3-11a: VARIATION OF 8 WITH 6 FOR 300 INCH SPAN
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FIGURE 3-11b: VARIATION OF 8 WITH 0 FOR 200 INCH SPAN



152

(a) Due to Loading

I

,/””'—'
S--“\\\.

(b) Due to Deformation

FIGURE 4-1: SHEAR INTERACTION MODEL (AFTER KLOPPEL AND GLOCK, 1970).
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---- Medium Soil

-003 ‘z a

-.06 I
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FIGURE 4-2: VARIATION OF THEORETICAL PRE-BUCKLING DEFLECTION WITH 0
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FIGURE 4-3: VARIATION OF MOMENTS AROUND CONDUIT (TYPICAL)
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FIGURE (4-6b): ELLIPTICAL CONDUITS.
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FIGURE 4-7: VARIATION OF CRITICAL PRESSURE WITH P1/Po
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APPENDIX A

THEORY OF DIMENSIONAL ANALYSIS

The theory of dimensional analysis is a useful tool in de-

signing an experimental investigation, developing equations from a

collection of data, and establishing the principles of model de-

sign, Operation and interpretation. It is based on two fundamental

axioms:

(1) Absolute numerical equality exists only when the quantities

concerned are Similar qualitatively. That is, for a general

relationship to exist between two quantities they must have the

same dimensions (28)-

(2) The ratio of the magnitudes of two like quantities is independent

of the units used in their measurement, provided that the same

units are used for evaluating each.(28).

These two axioms lead directly to an important theorem.

THEOREM 1:

Let a be some quantity which we wish to predict (also called

a secondary quantity); and let ai, i a 1, n be a set of those quan-

tities which affect the magnitude of a (the ai are called primary

quantities). If a = f (a1, a2, . . ., an), then

.Cz Cfi‘ \ C2

a = ‘ C C .Caal 32 an
(11.1)

where:

Co = Dimensionless coefficient

Ci' i=1, n = Dimensionless exponents

167
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The theorem is proved by considering two systems of the same kind

but different in magnitude.

That is:

a f (a , a , . . ., a ) . 1st system

1 2 n

(A.2 a-b)

B = f (b1, b , . . ., b ) 2nd system

where B and b1, b2, . . ., bn are the secondary and primary quan-

tities respectively of the second system and ai are the same as bi

except in magnitude.

Expressing the above equations in a different unit of measure-

ment, we may write:

Q I- f x a x . . . x a(11' 232! I nn)

‘(A.3 a-b)

8’

f (le1 ' Xsz ' o o o g ann)

where xi are the ratios of the magnitudes of the two systems of units

employed. Then from axiom (2) we get:

 

0‘; = 5_ (A.4)

o B

or a’ = ég

Substituting into (A.3) we get:
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f x a x a . . . x a =
(11! 22' Inn)

f (a ' a y o o 0' a)

1 2 n
f (x b , xzbz' . . ., xnbn)

 

 
 

f(b,b,...,b) 11
1 2 n

(A.5)

Differentiating (A.5) with respect to x :

1

a1 3f (xlal, xzaz, . . ., xnan) _

3(x a )

1 1

f (a1, a2, . . ., an) b 3f(x1b1, xzbz' . . ., xnbn)

' 1 3 x bF (b1, b2, . . ., bn) ( 1 1)

(A.6)

Now let all the x's equal unity. [That is, we are restricting them

to the same set of units. This should not hurt the generality of

the proof.]

Thus:

a 3f (a , a , . . ., a )

1 1 2 n
 

 

 

3(a )

1

afb'b’OO'lbf (a1, 3.2, o o 0' an) b (1 2 n)

1

f(b,b,...,b) 3(b)

1 2 n l

(A-7)
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Separating the variables:

a 3f(a , a , . . ., a )

1 1 2 n

 

8a =

l

 

f (a , a , . . ., a )

1 2 n

b 3f(b'b ' o O Olb)

1 1 2

3b

1

 

f (b p b p o o O! b )

l 2

(A.8)

For any given value of bi' the right-hand side of (A.8) is a constant

and may be designated as C1.

3f(a1, a2, . . ., an)

 

1

=IC3a1 1

f(a'a’ooOIa)

1 2 n

 

Rearranging:

8f(a , a , . . ., a ) I Be

1 2 n 1
8C —--—a

f(a ' a I o o of a) 1 1

1 2 n

(A.9)

Integrating:

1 f a a . . . a = C l d aOgeu) (1: 2! I n) l oge (1 1)
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where d1 is a constant of integration. If the same procedure is

carried out in succession by differenting (A.5) with respect to

x2, X3, ..., xn, a set of particular solutions will result:

£n(2) f(al, a2, . . ., an) = C2 £n(d2a2)

2n(3) f(al, a2, . . ., an) = C3 £n(d3a3)

2n(n) f(al, a2, . . ., an) = Cn £n(dnan)

where the subscript 1, 2, 3, . . ., n denote that (A.5) is differented

with respect to x , x , . . ., xn.

1 2

The complete solution is obtained by summing all the partic-

ular solutions.

Hence :

Rn f(a , a , . . ., an) =

C C C

215d 1d 2...d nn ( 1a1) ( 2a2) ( nCn)

or

f(al, a2, . . ., an) =

c c C c C

(d 1d 2 . . d n) a 1a 2. . . a n

1 2 n 1 2 n

c Cc

= Casi 1a2 2 . . . an n . (A.10a)
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Hence, the result of interest is:

f(alp 32, o O 0' an) = Ca a a ° ° °I a n (AolOb)

That is, any measurable phenomenon may be evaluated in terms of

the factors causing it. The application of Dimensional Analysis

therefore reduces to the problem of trying to identify all the

primary quantities and then finding the dimensionless exponents.

T0 facilitate this, the Buckingham H - theorem is often quite useful.

THEOREM 2: BUCKINGHAM H - THEOREM

The number of dimensionless products S in a complete set is

equal to the total number of variables n minus the rank r, of their

dimensional matrix. [The rank of the dimensional matrix is also

equal to the number of the basic dimensions involved, and the

two are often used interchangeably.]

The theorem is best illustrated with an example. Consider

the case of a cantilever beam loaded by P located at the end of the

beam as shown.

 

 

  

P

3%-‘J—LA _(h

L L. ‘IT

IT 7
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Suppose we wish to find the deflection A at the end of the beam.

W0 begin by identifying the primary quantities. Thus we write:

A 3 f(p, L, b] h! E)

where: Dimension

A = required deflection ‘ V L

P 8 applied force F

L = length of beam ' L

b a width of beam L

h a height of beam L

E = modulus of elasticity of beam material FL-2

There are six variables (A, P, L, b, h, E) and with only two funda-

mental dimensions (F, L) Buckinghamfis theory yields four independent

terms (also called H - terms).

By theorem (1) we write:

C2 C3 Cu C5 C6

A=CaP L b h

(A.11a)

c c c C c c

1 = Ca A 1P 2L 3b “h 5E 6

and in terms of their dimensions

c c c c c _2 c

0=L 1F 2L 3L "L s(FL ) 5 (A.1lb)

These may be arranged in a matrix form:

C C C C C C

1 2 3 1+ 5 6

F 0 1 0 0 0 1 I

L 1 0 1 1 1 -2
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Such a matrix is called the "dimensional matrix". It can be easily

verified that the rank of the matrix equals the number of funda-

mental dimensions used (in this case r = 2). Thus we can choose to

solve for any r (=2) independent (H) terms in terms of the rest.

Suppose we choose to solve for CZ, and Ca in terms of Cl, ch, 05 ,

and c .

6

From equation (A.110L by equating identical exponents, we

arrive at a system of simultaneous equations in the exponents Ci:

F: C + C = 0 (A.12)

2 6

L: C + c + c + c - 20 = 0 (A.13)

1 3 I) 5 6

We then set c = l, c = C6 = c = O and solve for c2 and C3 .

l 5

Hence, from (A.12),

c + O = O, or c = O

2 2

and from (A.13),

= -ll + c = 0, or C

3 3

C1C2C3Chc C

II1 = A P L b h 5E 5 = A1P°L'1b°h°E° =

t
‘
I
D

Proceeding in the same manner, that is setting C = 1, C = c = c

I.

etc., we get:
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H=P-
2 L

h

Ha-L

u

H =.§E_

1., P

The various H - terms may now be combined, by theorem 1, into a

functional relationship.

Hence,

H = f(H ,H ,H )

1 2 3 lo

01',

L L'L' P (A.14)

Any number of H - terms may be transformed by means of multiplica-

tion and/or division only, provided their dimensionless character

is unaltered. Performing this operation in equation(Am14J we

finally get:

A=f(g'§.P) (A.15)
L L b ELZ

The exact nature of the relationship among the various H - terms

(equation (A.15)can only be established by means of a well-controlled

experiment and/or some suitable analytical procedure. However, it

is obvious that the number of independent quantities to be varied

in an experiment has now been reduced from the original six to just
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three. Further, any H - term is considered varied if at least one

of the parameters comprising the term is varied. Therefore the Choice

of which parameter to vary may be dictated by convenience, economy,

and feasibility.

The appeal of the theory of dimensional analysis is that a

thorough prior knowledge of the physics of the problem is, strictly

speaking, not mandatory. Such knowledge, however, is quite useful.

For example, if in the present beamrdeflection problem, it is known

apriori that the variables b and h may be combined into the moment

l. bha

12

more reduced. A well-controlled experiment should then yield A a

of inertia I, (I = = L”), the amount of rigor Will be even much

PL3
3E3 ' or something reasonably close, within the limits of experimental

error .

DEVELOPMENT OF THE PREDICTION EQUATION

In Chapter III, the non-dimensional parameters were shown to be

related by the equation:

'fl = f(fl , fl ) (A.16)

1 2 3

where:

K

n ='-

1 Y

n = H/D
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Selected values of these are shown in Tables (A-1) and (A-2). If n3

is kept constant, Hi and n2 are seen to fit the equation

(A.17)

where Cd and a* may be functions of other salient parameters of the

soil-steel structure (for example, the span).

Equation (A.17) is transformed to a logarithmic scale to give:

Log “1 = Log Cd +a* Log “"2 - (A.18)

This is easily recognized as the equation of a straight line with

slope a*, and intercept Cd on the "1 - axis.

Figure (Arl) is a plot of Log n1 versus n2 for diameters of 300

and 200 inches, and n3 held constant at 1.0H and 0.55H. Using the method of

least squares, the following results are deduced for Cd and a*;

 

Diameters (inches) Cd a

100 3.5 0.501

200 2.8 0.485

300 1.95 0.493

Hence, it is concluded that:

V H

nlzcd D (A.19)

The same procedure is repeated for n3 with n2 held constant at

1.0 to give (Figure A—2):
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‘n’ as 0.5 (l+5.4 _6_). (A.20)

1 11'

Next Cd is plotted as a function of the span Figure (A-3) to give:

C =4.25-M§2

d 100 (“'21)

Finally, using the method described in (28) the above equations are

combined to give the prediction equation:

.. ‘f a. . 9.]
171 (Hz, 1T3)— [Cd 0] *0.5 [Li-5.4m

6 3—2

0.5 [Ll-5.4 7?]

" (A.22)
620.55

1r

 

That is ,

(A.23)
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FLOW CHARTS FOR COMPUTER PROGRAMS
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NUMERICAL METHODS IN ENGINEERING APPLICATIONS

This brief discussion of numerical methods is limited to those

mentioned in this study, namely trapezoid rule of numerical integra-

tion, the solution of matrix eigenvalue problems, and the least-

squares method of curve fitting.

C.1 NUMERICAL INTEGRATION (TRAPEZOID RULE)

Consider an integrable function f(x) on the interval a s x s b

(Figure C-l)

f(x)1’
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We divide the interval a g_x E.b into n equal subintervals (also

called panels) of width Ax, such that
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AX =- T (C.1)

From an enlarged view of two such adjacent panels (Figure C-2) the

area of each panel is given approximately by

[(1)0

 

  

 I...  
 

p
_
—
-
—
-
.
—
_
—
—

P
-
—
—
-
—
-
-
-
-

 
1,... I: ‘0‘!

x. f._1 + fi

I 3 f(x) dx=—3—-—2—— (Ax) A (c.2)

X.

j-l

x f. + f

f “1 f(x) dx = —3———3——2*1 (Ax) (0.3)
X.

J

The integral of the function f(x) over the two panels is given by

xj+1

X.

j-l j-1 3

x. x.

1 3+1 f(x) dx - f 3 f(x) dx + j f(x) dx

xx
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which, upon introducing Equations (C.2) and (C.3) is given approxi-

mately by

X .

f 3+1 f(x) dx =

x

(f

Ax

'3? j-l (C.4)+ ij‘+ fj+1)

j-l

This is easily recognized as the area of the two trapezia which

approximate the original function f(x) in the interval xj-l to xj+1.

By extending Equation (C.4) over the entire region, the complete

integral becomes

b
Ax

fa f(x) dx _ 15-(fo + 2f1 + 2f2 + ... + 2£n_2 + 2£n_1 + fn)

(C05)

or

b Ax n-l

I f(x) dx = ——-(f + f + 2 ,2 f.) (C.6)
a 2 O n 3-1 3

where, f = f(a) and f = f(b).

o n

It is apparent that reducing Ax will generally give a better approxi-

mation to the original integral.

This geometric interpretation of the trapezoid rule provides

no information about the error terms. A more elaborate derivation (38)

utilizing Taylor series expansion gives the "trapezoidal rule with end

correction", so-called because f’ is needed only at the ends of the

interval:
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b n-l 2

I f(x) dx = 951‘- (f0 + fn + 2 Z fj) - Li};— [f’(b) - f’(a)]

a j=1

(c.7)

C.2 THE METHOD OF LEAST SQUARES

The method of least squares is based on the premise that a mea-

sure of the accuracy of a function g(x) used as an approximation to

some observed data f(x), is the magnitude d(x) of the local distance

between the two functions.

That is,

d(x) = |f<x) - g(x)| (as)

The objective in the least squares method is to minimize d(x) over the

region of x where the approximation g(x) is applied. Let E denote the

sume of the squares of d(x) taken at each of n points xi in the region

of interest.

That is,

n

E= 2 d2(x.) (C.9)
. 1
i=1

Obviously if d(x) is a minimum, so also is E. (It is such reasoning

that forms the basis for calling this the method of "Least Squares".)

In general we make a rational assumption for the approximating func-

tion g(x). Suppose g(x) is a polynomial of degree L.

That is,
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2 L

g(x) = a0 + alx + azx + ... + aLx (C.10)

Then,

n 2 n. 2

E = 1:1 If(xi) - g(xi)l = 1:1 Ig(xi) - f(xi)| =

n 2
.2 [g(xi) - f(xi)] (c.11).

i=1

Introducing Equation (C.10) we get, for some point i:

n

2 L 2
a + ... - OE 1:1 [a0 + alxi azxi + + ain f(xi)] (C 12)

E is minimized by equating to zero the partial derivatives of E with

respect to each of the (L+l) coefficients in Equation (C.12).

Hence ,

22w

(c.13)
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For example,

n
BE 3 2 L 2
3&0 -;g[iil [a0 + alxi + a2xi + ... + ain f(xi)]

n

= Z [a + a x. + a x? + ... + a RP - f(xiH2

3

i=1 Bao o l i 2 i L i

n

2 L
a

+ 0.0 o - 01:1 2[ao + alx1 a2xi + + ain f(xl)]

3 2 L

{53; [a0 + alxi + a2xi + ... + ain - f(xi)]}.

n

121 2[ao + alxi + azxi + ... + ain f(xi)] (l) 0

(C.14)

The rest of Equations (c.13) can be evaluated similarly to give a

set of (L+l) equations in (L+l) unknowns. (The proof that these

equations do in fact yield a minimum for E is found in several stand-

ard references on numerical methods).

The complete set of the simultaneous linear equations in the

coefficients of the polynomial is readily seen to be:
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r—-— --‘ F— 1

n 2x. 2x? ... Xx? a Zf(x.)
i i i o i

2 3 L+1
in ZxL Exi ... in al inf(xi)

2 3 u 7 L+2 ‘. 2
2x1 in in ... Exi a2 _. inf(xi)

Xx? £x¥+l ZxP+2 Zx?L aL Xx¥f(x.)

i 1 i i i i

a .1 _ .1

(C.15)

C.3 SOLUTION OF MATRIX EIGENVALUE PROBLEMS

The fundamental eigenvalue problem is of the form:

(H - A I) x = o (C.16)

where H is a known square matrix, X is an unknown column vector with

the same row dimension as H, A is an unknown constant (the eigenvalue);

and I the identity matrix of the same size as H.

Since Equation (C.16) represents a set of homogenous linear

equations, a non-trivial solution exists only if:

det (H - A I) = 0 (C.17)

Expansion of Equation (C.17) yields a polynomial of some degree n

in A, solution of which gives the desired eigenvalues Ai' i - 1, n.

In general, the smallest (or fundamental) eigenvalue is of more

significance, representing a variety of physical quantities depending
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upon the class of problems being solved. (In the present case,

A . is the buckling load.)
min

In many instances, the eigenvalue problem is not of the form of

equation (C.16) but rather of the form:

A x = A B x (C.18)

where B'is not an identity matrix.

The solution technique still involves transforming A X = A B x into

the form H x a A X. If B is positive-definitez, then it can be

written as the product of a lower triangular matrix and its transpose.

That is,

B = L L (0.19)

Premultiplying (C.18) by L.1 gives:

L"1 A x = A L"1 B x = A L"1 (L LT) x =‘A LT x (c.20)

Now, ‘

(L'l)T = (LT)-1

(L'l)T L = I (c.21)

-1 T T
A (L ) L = A I = A

Hence the left hand side of equation (0.20) becomes:

L-1 A x = L-1 A (L'l)T LT x (c.22)

 

2 A matrix is positive-definite for our purposes if all the eigen-

values are positive.
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Using (c.22) in (C.20) we get:

(L‘1 A (L‘1)T) (LT x) = A LT x (c.23)

which can finally be written as:

H z = A z (c.24)

. . T

where H is a symmetric matrix, and Z = L x.

The eigenvalues of the new matrix are still the same as the original

problem and the eigenvectors Z are related to those of the original

problem by:

X = (L ) Z (C.25)

. . . T .

It only remains to obtain the decomPOSition of B into LL (Equation

(C.19) ). This is readily accomplished by means of the choleski de-

composition (46). Hence, if the elements of B are bij and of L are

lij' the desired decomposition is given in (46) as:

8

111 - (bll)

j-l

. = . - Z , 1, 1., , =2 2, ... i-l

i-l

1,, = b_. — X 1?
...,n

ii ii ik

=1

11.--1, j = 0’ 3:1; 1+1, .0. p n (c.26)
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Similarly, the inversion L.1 of L is given as:

-1

111 = l/lii

-1

111 = l/lii

i=2'3’ooo'n

-1 i -1

1.. =- X 1. .

ij k=j+l ik 1k]

 

, j=i-l, i-2, ..., 1 (C.27)

ii

For a large system, the polynomial method is Clearly inefficient for

the obvious reason that solving for the-roots of the resulting poly-

nomial equations can present difficulties. A number of efficient

solution techniques are available and only the JACOBI method is brief-

ly outlined here.

The Jacobi method attempts, through a series of orthogonal trans-

formations, to convert the matrix H to a diagonal form. That is, if

U denotes the orthogonal matrix at a praticular step, then UT H U

. th th .

reduces the element in the p row and q column of H to zero. This

can be accomplished if U is of the form:

P q
.T. _

p C S

U = - (C.28)

q -S C
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where C and S are constants which depend on the elements of H and all

the off-diagonal elements of U are zero except for uPq and qu which

are S and -S respectively. All diagonal elements of U are 1 except

for UPp and qu which are C. Premultiplying H by UT and post-

multiplying by U gives:

1

h = Czh + 32h - 2CSh

PP PP qq Pq

l

h = Czh + 52h + 2CSh (c.29 -

qq qq PP Pq

c.31)

1 1

h = h = (Cz-Sz)h + CS(h -h )
Pq QP Pq PP qq

A detailed procedure for selecting C and S are given in (37)

where it is shown that:

1 lal 5C = §,+
(C.32)

28

and

a (-h )

S = -—-ES-— (C.33)

2 8 la] C

where a = i-(h - h ) and B = (h2 + a2)k

2 pp qq pq

The effects of the orthogonal transformations on all other elements

in the pth and th rows and columns of H are as follows:
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pth row and qfh row (j ##p or q)

(C.34 a-b)

pth column andqth column (i # pior q)

(C.35 a-b)

All other elements of H remain unchanged.

Hence, the solution technique is to select the element hPq

of the matrix H, which we desire to destroy, then calculate c and s

from (C.32) and (C.33) and the new values h:Pand h:q from (C.29 -

C.3l) (with hPq and hqp set to zero). Finally the rest of the new

elements of H are obtained from.(C.34) and (0.35). The procedure

is then repeated with a new Choice of p and q until the off-diagonal

elements become sufficiently small. (Since this is an iterative

method, the off-diagonal elements will not in general be exactly

zero.)

An efficient procedure for Choosing which elements hPq to de-

stroy, as well as deciding when the solution has converged is the

so-called threshold method. Briefly, the method involves the

following steps:



(i)

(ii)

(iii)

(iv)

(v)
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Define V, the sum of the off-diagonal elements:

e
1
5 n

v = z (11,.)2 (C.36)

i=1 j=1 13

1353'

Compute V for the original untransformed matrix H and then

V

CONPUte a ”threshold" value pl - I 7?'

In one sweep through the matrix, annihilate any off-diagonal

element greater than or equal to ul.

Calculate a new threshold “2 - El_and repeat the sweep through

n A

the matrix, annihilating any off-diagonal element greater

than or equal to “2'

Repeat the procedure as often as necessary till ui §_€u1,

where e is a prescribed convergence limit (typically §_10-6).

The eigenvectors are contained in another set of matrices R

whose elements can be modified along with H. The elements of R

during the transformations are:

column
 

r. = cr, - sr. (C.3?)

lp 1P 19

qth column
 

r. sr. + cr. (C.38)

iq ip iq
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All other elements remain unchanged. Upon eventual convergence,

the columns of R become the eigenvectors of the original matrix.



E
h

E
v
.
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APPENDIX D

ELEMENTS OF VARIATIONAL CALCULUS*

A) FIRST AND SECOND VARIATIONS OF POTENTIAL ENERGY

Consider a continuous system whose potential energy V is a func-

tion of a displacement variable w(x).

Then,

v = [“1 F [w(x)] dx (0.1)

X

o

where F is a known function of w, and w an unknown function of x.

Such a quantity as V whose values depend on one or more continuous

variables rather than on a number of discreet variables is called a

FUNCTIONAL.

Suppose for example that our continuous system is a cantilever

beam subjected to a uniformly distributed load. Then the total po-

tential energy may be written

FIGURE D-l:

Cantilever beam subjected

to uniformly distributed

load.

 

as the sum of the strain energy and the potential energy of applied

loads.

 

*The following material is taken from Reference (33) and much of the

original notation has been retained.

195
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Hence ,

L E1 "2

V=I.[-2—(w) +qwldx (0.2)

" dzw
where w = 5;;-

For the cantilever beam, the boundary conditions are of two kinds:

(I) Boundary conditions of physical restraint, also called

forced or geometric boundary conditions -- i.e. w a w’ = 0

at x = 0.

(II) Boundary conditions of shear (Q) and moments (M) at x = L --

i.e. Q=M==0atx=L.

Suppose the beam is in equilibrium in some configuration w = wb. Sup-

pose further that we permit an infinitesimal increment w from equili-
1

brium such that,

w —>wo+w

where the arrow means "replaced by". (Both wb and wl must be contin-

uous and twice differentiable in the interval 0 STX s L).

For convenience, let w1(x) E e g (x) where e is an arbitrary

small constant and C (x) is an admissible but arbitrary function (i.e.

g (x) satisfies the necessary geometric boundary conditions).

Then,
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L BI n n

V+AV=I°[—2—(w°+8§)2+q(w°+€§)]dx (D.3)

where AV is the Change in potential energy resulting from a variation

in w.

By expanding Equation (D.3) and subtracting Equation (D.2) from the

result, the change in potential energy AV can be written as,

2&1.

L

2 I (z; )2 dx (0.4)

L

AV = 8 IO (EI w "C" + qg) dx + E

The sum of the first~order terms in the expression for AV is called

the "first variation" of V and denoted by the symbol 6V. The sum of

the second-order terms is called the "second variation" of V and de-

noted by the symbol i-GZV. For our example,

L

5v = a I. (EIwougu + q);) dx

(D.5 a-b)

L

1 E1 n

362v=627f° (z; )zdx

B) THE EULER EQQATIONS

Consider a structure for which the integrand F is a function of

one independent variable x, and one dependent variable w and its de-

rivatives such that:

x

V = le F (x, W, W’, W") dx (D06)
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Suppose as before, we permit an infinitesimal variation in w such

that w -—-)>-wo + w with wo being an equilibrium.position. If
1'

w1(x) - €§(x), 8 being an arbitrary small constant and C(x) any arbi-

trary admissible function, then:

x

AV = [XI [F(x, wo + 6;, w: + g;’, w: + 6;")

(D.7)

- F(x,wo,wo',wo")dx‘

Expansion of Equation (D.7) in Taylor's series gives, for the first

variation:

x

1 3E 3F , ar ..
OV=€Ix (fi°§+fi;§+-fi:§)dx (D.8a)

The criterion for equilibrium is that the first variation of V be

equal to zero, and because 8 is arbitrary we then have:

x

1 3E 3F8F , n

Ix°(3—w §+'3-;.oz; +W§)dx—O (D.8b)

O O 0

Repeated integration by parts yields:

"1 3r d3F d2 as-

Ix°(§5°“a§a_w:+af§$g)§dx=° (13.9.)
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which ultimately simplifies to:

_ag.-.E-aF ...iap so

aw dxaw: dx23_wf '
x<x<x (D-9b)
o... _.

Equation (D.9 b) is known as the EULER EQUATION of the calculus of

variations. It is easily extended to a multiple degree-of-freedom

system. For example, if there are two dependent variables u(x) and

w(x), with the highest order of the derivatives in u and w being the

first and second order respectively, the Euler equations are:

é:-.d_a_.=0

Bu dx Bu’

(D.10 a-b)

3F_d__a§_ + d2 3? =0

E dew’ dx2 3w"

Finally, if there are three dependent variables u, v, w and two in-

dependent variables x, y, and if the highest order of the deriva—

tives are first order in u and v and second order in w, the Euler

equations are found to be of the form:

(D.11)

8F.__§_ as +_3_ 35‘

a ax 3V,x BY av!



 

3 BF

3y 3w,

0

K.,—.3..-—

Bw 3x 3w,

32 BF

+ Byz 3w,

YY
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