

This is to certify that the

dissertation entitled

NEW CHIRAL FERROCENYLAMINE THIOETHER LIGANDS

AND THEIR APPLICATIONS TO CATALYSIS

presented by

Michael Onyekachi Okoroafor

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Chemistry

Carl H. Brubake

Date November 14, 1985

MSU is an Affirmative Action/Equal Opportunity Institution

0-12771

RETURNING MATERIALS: Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped below. the **no**lling and the second

•

1. A. M.

1

স্টেম্বিয়া ও **চার্য্যার** বর্ষ্য হি যে গ

and and apply a solid states a second

te ramada te d

NEW CHIRAL FERROCENYLAMINE THIOETHER LIGANDS AND THEIR APPLICATIONS TO CATALYSIS

By

Michael Onyekachi Okoroafor

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Chemistry

ABSTRACT

NEW CHIRAL FERROCENYLAMINE THIOETHER LIGANDS AND THEIR APPLICATIONS TO CATALYSIS

By.

Michael Onyekachi Okoroafor

New chiral ferrocenylamine thioether ligands of the type, (<u>R</u>,<u>S</u>)-C₅H₅FeC₅H₃[CHMeNMe₂][SR], R = Me, Et, <u>i</u>-Pr, <u>n</u>-Bu, <u>i</u>-Bu, <u>i</u>-Pentyl, Ph, CH₂Ph, p-tolyl, 4-chlorophenyl, have been prepared by lithiation of optically active N,N-dimethyl-1-ferrocenylethylamine followed by reaction with the appropriate disulfide. These compounds are air-stable and were characterized by use of spectroscopic techniques such as ¹H and ¹³C NMR, infrared (IR) and mass spectroscopy as well as elemental analysis. These chiral ferrocenylamine thioethers readily chelate platinum and palladium chloride to form the chiral heterobimetallic complexes, (<u>R,S</u>)-C₅H₅FeC₅H₃[CHMeNMe₂][SR]/MCl₂, (R = Me, <u>i</u>-Pr, <u>n</u>-Pr, <u>i</u>-Bu, Ph, p-tolyl, 4-chlorophenyl; M = Pd, Pt). ¹H NMR, IR, MS and elemental analysis data were obtained for the chiral complexes. An X-ray crystal structure of (<u>R,S</u>)-C₅H₅C₅H₃[CHMeNMe₂][SMe]/PdCl₂ was determined.

The catalytic applications of the chiral complexes were examined. The chiral palladium thioether complexes are effective asymmetric Grignard cross-coupling catalysts. The enantiomeric excess (e.e.) of the asymmetric

cross-coupling product was determined by 1 H NMR spectroscopy in the presence of a chiral shift reagent, Tris(d,d-dicampholylmethanato)europium(III), [Eu(dcm)₃]. A possible mechanism of Grignard cross-coupling is proposed.

The complexes are also highly effective as selective hydrogenation catalysts, converting dienes to monoenes at room temperature.

The chiral dialkyldithiocarbamate derivatives, $(\underline{R},\underline{S})-C_5H_5FeC_5H_3[CHMe-NMe_2][SCSNR_2]$, R = Me and Et, were prepared by reaction of $(\underline{R},R)-N,N-di-$ methyl-lithioferrocenylethylamine with tetraalkylthiuramdisulfide. ¹H and ¹³C NMR, IR, MS and elemental analysis data were obtained. Dynamic NMR studies indicate that restricted rotation occurs around the carbamate carbon-nitrogen bond in these derivatives and two conformers are present at low temperature. Approximate rotational free energy barriers were determined and were correlated with the "thioureide" band in the infrared.

All things are possible with

those who trust in God.

DEDICATION

In Memory of Our Daughter, Ogechukwu.

ACKNOWLEDGEMENTS

I sincerely appreciate the constant guidance, inspiration and encouragement of Professor Carl H. Brubaker, Jr., throughout this work.

In addition, I would like to thank Dr. C.K. Chang and Dr. W.H. Reusch for many helpful discussions and Dr. L.D. Le, for technical expertise in obtaining NMR spectra. My gratitude also to Dr. D. Ward for his assistance in obtaining the X-ray structures.

I would also like to thank Dr. Beth McCulloch, Dr. Robert V. Honeychuck, Dr. Lie-Hang Shen and all the members of the group for their help and friendship.

To our friends, especially Lewe Okereke, Ike and Chi Ononye, and our God-daughter Katrina, I will always remain indebted.

Finally, my deepest gratitude goes to my wife, Ngozi, and her profound love, unrivalled understanding, great patience, professional assistance in interpreting some of my results and prayers throughout this work, and to my mother and her love.

iv

TABLE OF CONTENTS

.

LIST OF TABLES			ix
LIST OF FIGURES			xi
LIST OF SCHEMES			xiii
I.	INT	RODUCTION	1
п.	EXP	ERIMENTAL	20
	Α.	Preparation of Ligands	21
		(<u>R</u>)-1-(dimethylamino)-ethylferrocene, [(<u>R</u>)- <u>7</u>]	21
		(<u>S</u>)-1-(dimethylamino-ethylferrocene, [(<u>S</u>)- <u>7</u>]	21
		$(R,S)-1-(1-dimethylaminoethyl)-2-methyl-thioferrocene,(\overline{46}, R = Me)$	22
		$(\underline{R}, \underline{S})-1-(1-dimethylaminoethyl)-2-ethyl-thioferrocene,(\underline{47}, \overline{R} = Et)$	23
		$(\underline{R},\underline{S})-1-(1-dimethylaminoethyl)-2-isopropyl-thioferrocene,(\underline{48}, R = \underline{i}-Pr)$	24
		(R,S)-1-(1-dimethylaminoethyl)-2- <u>n</u> -propylthioferrocene, (<u>49</u> , R = <u>n</u> -Pr)	25
		$(\underline{R},\underline{S})-1-(1-dimethylaminoethyl)-2-\underline{t}-butyl-thioferrocene,(50, R = t-Bu)$	26
		(R,S)-1-(1-dimethylaminoethyl)-2-isobutyl-thioferrocene, ($\overline{51}$, R = \underline{i} -Bu)	27
		(R,S)-1-(1-dimethylaminoethyl)-2-n-butyl-thioferrocene,(52, R = n-Bu)	28
		(<u>R,S</u>)-1-(1-dimethylaminoethyl)-2-isopentyl-thioferrocene, (<u>53</u> , R = i-pent)	29
		(R,S)-1-(1-dimethylaminoethyl)-2-pehnyl-thioferrocene,(54, R = Ph)	29
	·	$(\underline{R},\underline{S})-1-(1-dimethylaminoethyl)-2-benzyl-thioferrocene,(55, R = CH2Ph)$	30

	(R,S)-1-(1-dimethylaminoethyl)-2-(p-tolyl)-thioferrocene, (<u>56</u> , R = p-tolyl)	31
	(<u>R,S</u>)-1-(1-dimethylaminoethyl)-2-(4-chlorophenyl)- thioferrocene, (<u>57</u> , R = 4-chlorophenyl)	32
В.	Preparation of Metal Complexes	33
	Dichloro[(<u>R</u>)-1-(<u>S</u>)-2-methylthioferrocenylethyldimethyl- aminepalladium (II)- <u>58</u>	33
	Dichloro[(<u>R</u>)-1-(<u>S</u>)-2-isopropylthioferrocenylethyldimethyl- amine]palladium(II)- <u>59</u>	34
	Dichloro[(<u>R</u>)-1-(<u>S</u>)-2-propylthioferrocenylethyldimethyl- amine]palladium(II)- <u>60</u>	34
	Dichloro[(<u>R</u>)–1–(S)–2-isobutylthioferrocenylethyldimethyl– amine]palladium(II)– <u>61</u>	34
	Dichloro[(<u>R</u>)-1-(<u>S</u>)-2-phenylthioferrocenylethyldimethyl- amine]palladium(II)- <u>62</u>	35
	Dichloro[(<u>R</u>)-1-(<u>S</u>)-2-paratolylthioferrocenylethyldimethyl- amine]-palladium(II)- <u>63</u>	35
	Dichloro[(<u>R</u>)-1-(<u>S</u>)-2-(4-chlorophenyl)thioferrocenylethyl- dimethylamine]palladium(II)- <u>64</u>	36
	Dichloro[(<u>R</u>)-1-(<u>S</u>)-2-(4-chlorophenyl)thioferrocenylethyl- dimethylamine]palladium(II)- <u>65</u>	36
	(<u>R,S</u>)-1-(1-dimethylaminoethyl)-2-(dimethyldithiocarbamate)- ferrocene, (<u>66</u>)	36
	(<u>R,S</u>)-1-(1-dimethylaminoethyl)-2-(diethyldithiocarbamate)- ferrocene, (<u>67</u>)	37
с.	Catalytic Applications of Complexes	38
	i. Asymmetric Grignard Cross-Courpling Reactions	38
	Grignard Cross-coupling Reaction of Allylmagnesium Chloride to 4-phenyl-1-pentene Using Complexes <u>58,</u> <u>59, 62, 63</u> , or <u>64</u>	38
	Conversion of 4-phenyl-1-pentene to methyl 3-phenyl butyrate	39

Selective Hydrogenation of Conjugated Dienes to ii. Alkenes with 58, 62-65 40 Hydrogenation of 1,3-cyclooctadiene with 58, 62-64 in 40 acetone at 67 psi Solvent Effects on Hydrogenation of 1,3-cyclohexadiene at Room Temperature 40 III. RESULTS AND DISCUSSION 44 (R,S)-C₅H₅FeC₅H₃[CHMeNMe₂][SR] Α. (R = Me, Et, i-Pr, n-Pr, n-Bu, i-Bu, t-Bu, Ph, CH₂Ph,i-pent, p-tolvl, 4-Cl-Ph) 44 1. Preparation 45 2. ¹H NMR 45 ¹³C NMR 3. 57 Infrared (IR) Spectra 4. 63 Palladium Complexes of (R,S)-C5H5FeC5H3[CHMeNMe2]-**B.** [SR] (R = Me, i-pr, i-Bu, Ph, p-tolyl) and Platinum Complexes of $(R,S)-C_5\overline{H}_5Fe\overline{C}_5H_3[CHMeNMe_2][S-4-Cl-Ph]$ 64 Preparation 1. 64 2. ¹H NMR 67 70 3. Infrared (IR) Spectra 4. Structure of Dichloro[(R)-1-(S)-2-methylthioferrocenylethyldimethylamine]palladium(II), 58 70 $(R,S)-C_5H_5FeC_5H_3[CHMeNMe_2][SCSNR_2] (R = Me,Et).....$ 98 C. 1. Preparation..... 98 2. ¹H NMR 99 ¹³C NMR 3. 102 4. Dynamic NMR Studies 102

	D.	Catalytic Application of Complexes		111
		1.	Asymmetric Grignard Cross-coupling Reactions	111
		2.	Selective Hydrogenation of Conjugated dienes to Alkenes	118
IV.	APP	EN DI	X	127
v.	REF	EREN	ICES	131

LIST OF TABLES

.

Table		Page
1	Chiral Ferrocenylphosphines for Asymmetric Catalysts	16
2	250 MHz ¹ H NMR Data for (<u>R</u> , <u>S</u>)-C ₅ H ₅ FeC ₅ H ₃ [CHMeNMe ₂]- [SR]; R = Me, Et, <u>i</u> -Pr, <u>n</u> -Pr, <u>n</u> -Bu, <u>i</u> -Bu, <u>t</u> -Bu, Ph, CH ₂ Ph, <u>i</u> -Pent, p-tolyl, 4-Cl-Ph	47
3	250 MHz ¹³ C NMR Data for (<u>R,S</u>)-C ₅ H ₅ FeC ₅ H ₃ [CHMeNMe ₂]- [SR] (<u>46-57</u>) in CDCl ₃ /TMS at Room Temperature	58
4	250 MHz ¹ H NMR Data for (<u>R,S</u>)-C ₅ H ₅ FeC ₅ H ₃ [CHMeNMe ₂]- [SR]/MCl ₂ Complexes (<u>58-65</u>) in CDCl ₃ /TMS at Room Temperature	66
5	Metal-S, Metal-N, and Metal-Cl Stretching Modes in Several Metal Complexes	68
6	Positional Parameters and Their Estimated Standard Deviations in Dichloro[(R)-1-(S)-2-Methylthioferrocenylethyldimethyl- amine]palladium(II). (58)	74
7	General Temperature Factor Expressions-B ^{'S} -for dichloro- [(<u>R</u>)-1-(<u>S</u>)-2-Methylthioferrocenylethyldimethylamine]- palladium(II). (<u>58</u>)	76
8	Refined Temperature Factor Expressions-Beta's- for <u>58</u>	77
9	General Temperature Factor Expressions-U'S for 58	78
10	Root-Mean-Square Amplitudes of Thermal Vibrations (in A) for <u>58</u>	79
11	Bond Distances (A) for <u>58</u>	80
12	Bond Angles (in degrees) for <u>58</u>	82
13	Torsional Angles (in degrees) for <u>58</u>	86
14	Least-squares Planes for <u>58</u>	95
15	Dihedral Angles Between Planes in <u>58</u>	97
16	Dehedral Angle and Bridgehead Angle of Selected [3]- ferrocenophanes	97

Table

17	¹ H NMR Data for (R)-7, (R,S)-C ₅ H ₅ FeC ₅ H ₃ [CHMeNMe ₂]- [R]: R = SCSNMe ₂ , <u>66</u> , SCSNEt ₂ , <u>67</u> ; C ₅ H ₅ Fe(C ₅ H ₃ -1- CH ₂ NMe ₂ -2R), and $\overline{C_5}H_5FeC_5H_4R$; R = SCSNMe ₂ , SCSNEt ₂	100
18	¹³ C NMR Data for (R)-7; (R,S)-C ₅ H ₅ FeC ₅ H ₃ [CHMeNMe ₂]- [R], C ₅ H ₅ Fe(C ₅ H ₃ -1-CH ₂ NMe ₂ -2-R); and C ₅ H ₅ FeC ₅ H ₄ R; R = SCSNMe ₂ , and SCSNEt ₂	103
19	NMR Parameters, Kinetic and Infrared Data for (<u>R,S</u>)- C ₅ H ₅ FeC ₅ H ₃ [CHMeNMe ₂][R]; C ₅ H ₅ Fe(C ₅ H ₃ -1-CH ₂ NMe ₂ - 2R); and C ₅ H ₅ FeC ₅ H ₄ R; where R = SCSNMe ₂ , SCSNEt ₂	108
20	Asymmetric Grignard Cross-Coupling Reactions Using Chiral Thioether Complexes	113
21	Selective Hydrogenation of 1,3-Cyclooctadiene at Room Temperature	119
22	Effect of Solvents on the Selective Hydrogenation of 1,3-Cyclohexadiene	124

.

LIST OF FIGURES

Figure		
250 MHz ¹ H NMR Spectrum of <u>55</u> , R = CH_2Ph_{1}	51	
250 MHz ¹ H NMR Spectrum of <u>57</u> , R = 4-Cl-Ph	52	
250 MHz ¹ H NMR Spectrum of <u>53</u> , R = <u>i</u> -pentyl	5 3	
250 MHz ¹ H NMR Spectrum of <u>54</u> , R = Ph	54	
Splitting Pattern of SCH ₂ Protons in 53 , R = i-pentyl	55	
250 MHz ¹ H NMR Spectrum of <u>56</u> , R = p-tolyl	60	
Gated Decoupled 13 C NMR Spectrum of <u>57</u>	61	
Gated Decoupled ¹³ C NMR Spectrum of <u>56</u>	62	
250 MHz ¹ H NMR Spectrum of <u>58</u> , PdCl ₂ Complex	69	
Structure and Numbering Scheme for C ₅ H ₅ FeC ₅ H ₃ - [CHMeNMe ₂][SMe]·PdCl ₂ <u>58</u>	71	
Stereoview of C5H5FeC5H3[CHMeNMe2][SMe]·PdCl2 58	72	
250 MHz ¹ H NMR Spectrum of <u>66</u> , R = SCSNMe ₂	104	
Gated Decoupled ¹³ C NMR of <u>66</u>	105	
Variable-Temperature ¹ H NMR Spectra of <u>66</u> , R = SCSNMe ₂	107	
Assignments of the Substituted Ring Carbons of Some Substituted Ferrocenes	109	
Assignments of Ring Carbons in Some Ferrocenyl Carbamate Derivatives	110	
¹ H NMR Spectra of (<u>R</u>) and (<u>S</u>)-methyl 3-phenyl butyrate in the Presence of Increasing Concentrations of Chiral Shift Reagent, Eu(dcm) ₂	116	
	250 MHz ¹ H NMR Spectrum of <u>55</u> , R = CH ₂ Ph 250 MHz ¹ H NMR Spectrum of <u>57</u> , R = 4-Cl-Ph 250 MHz ¹ H NMR Spectrum of <u>53</u> , R = <u>i</u> -pentyl 250 MHz ¹ H NMR Spectrum of <u>54</u> , R = Ph Splitting Pattern of SCH ₂ Protons in <u>53</u> , R = <u>i</u> -pentyl 250 MHz ¹ H NMR Spectrum of <u>56</u> , R = p-tolyl Gated Decoupled ¹³ C NMR Spectrum of <u>57</u> Gated Decoupled ¹³ C NMR Spectrum of <u>56</u> 250 MHz ¹ H NMR Spectrum of <u>58</u> , PdCl ₂ Complex Structure and Numbering Scheme for C ₅ H ₅ FeC ₅ H ₃ - [CHMeNMe ₂][SMe]·PdCl ₂ <u>58</u> Stereoview of C ₅ H ₅ FeC ₅ H ₃ [CHMeNMe ₂][SMe]·PdCl ₂ <u>58</u> Gated Decoupled ¹³ C NMR of <u>66</u> , R = SCSNMe ₂ Gated Decoupled ¹³ C NMR of <u>66</u> , Assignments of the Substituted Ring Carbons of Some Substituted Ferrocenes Assignments of Ring Carbons in Some Ferrocenyl Carbamate Derivatives ¹ H NMR Spectra of (R) and (S)-methyl 3-phenyl butyrate	

Figure

18	The Magnitudes of $\Delta\Delta\delta$ Increase for Methyl 3-Phenylbutyrate With Decreasing Temperature in the Presence of Chiral Shift Reagent, Eu(dcm) ₃	117
19	Selective Hydrogenation of 1,3-Cyclooctadiene in Acetone at 27°C and 67 psi Using Complex <u>58</u> , R = Me	120
20	Selective Hydrogenation of 1,3-Cyclooctadiene in Acetone at 27°C and 67 psi Using Complex <u>62</u> , R = Ph	121
21	Olefinic Region of 250 MHz ¹ H NMR of 1,3-Cyclooctadiene, the Mixture of 1,3-Cyclooctadiene and Cyclooctene, and Cyclooctene	122

LIST OF SCHEMES

.

Scheme		Page
1	Some Characteristic Reactions of Dilithioferrocene	3
2	Selected Reactions of 1-Dimethylaminomethyl-2-lithio-	
	ferrocene	4
3	Some Reactions of (<u>R</u>)-(<u>R</u>)-N,N-Dimethyl-1-lithioferro-	
	cenylethylamine	5
4	Some Reactions of (<u>S</u>)-(<u>S</u>)-N,N-Dimethyl-1-Lithioferro-	
	cenylethylamine	6
5	Reaction of Methyldisulfide with a <u>t</u> -butylester Enolate	11
6	Reaction of Methyldisulfide with bis(n^6 -phenyllithium)-	
	chromium	11
7	Reaction of Tetraisopropylthiuram Disulfide with	
	Aryllithium Species	12
8	Nucleophilic Substitution Leading to Ferrocenes with	
	Sulfur in the Side Chain	13
9	Introduction of Sulfur to a Ferrocene Ring by Electro-	
	philic Aromatic Substitution	13
10	Aminomethylation of Methylthioferrocene.	14
11	Asymmetric Hydrogenation by Using [(<u>S</u>)-(<u>R</u>)-BPPFA]	15
12	Some Ferrocenylsulfide and Ferrocenylselenide Metal	
	Complexes	19

,

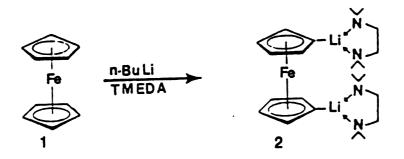
Scheme

13	Preparation Chiral Ferrocenylamine Thioether Ligands of	
	the Type $(\underline{R},\underline{S})$ - $C_5H_5FeC_5H_3[CHMeNMe_2][SR]; R = Me,$	
	Et, <u>i</u> -Pr, <u>n</u> -Pr, <u>n</u> -Bu, <u>i</u> -Bu, <u>t</u> -Bu, <u>i</u> -Pentyl, Ph, CH ₂ Ph, p-tolyl	
	4-Cl-Ph	46
14	Preparation of Palladium Complexes of (<u>R,S</u>)- $C_5H_5FeC_5H_3$ -	
	[CHMeNMe ₂][SR], (R = Me, <u>i</u> -Pr, <u>n</u> -Pr, <u>i</u> -Bu, Ph, p-tolyl,	
	4-Cl-Ph) and Platinum Complexes of (<u>R,S</u>)-C ₅ H ₅ FeC ₅ H ₃ -	
	[CHMeNMe ₂][S-4-Cl-Ph]	65
15	Preparation of (<u>R,S</u>)-C ₅ H ₅ FeC ₅ H ₃ [CHMeNMe ₂][SCSNR ₂],	
	R = Me and Et	101
16	Proposed Mechanism for Grignard Cross-Coupling Reaction	115
17	Proposed Mechanisms for Homogeneous Selective Hydrogena-	
	tion of 1,3-cyclooctadiene via a 4-Coordinate intermediate	125

I. INTRODUCTION

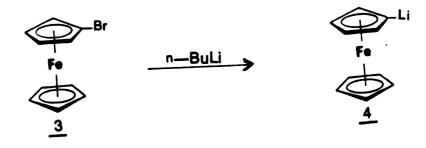
.

.

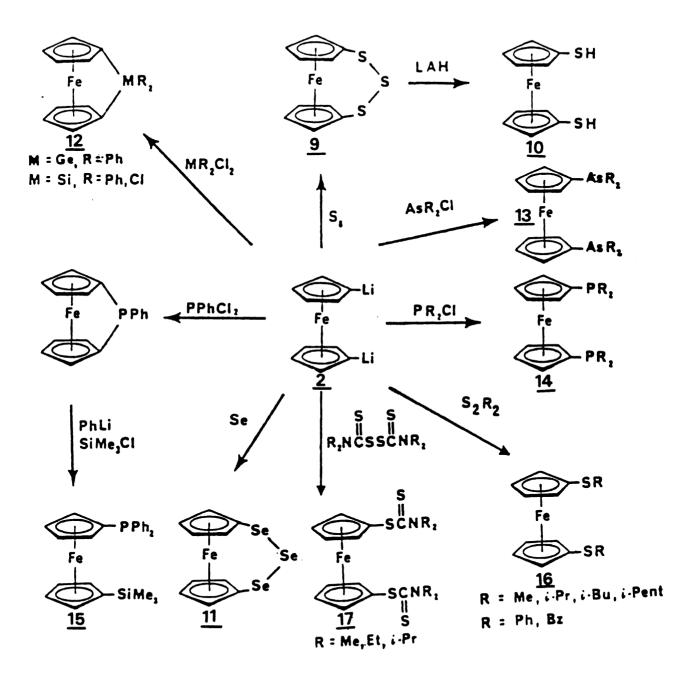

.

INTRODUCTION

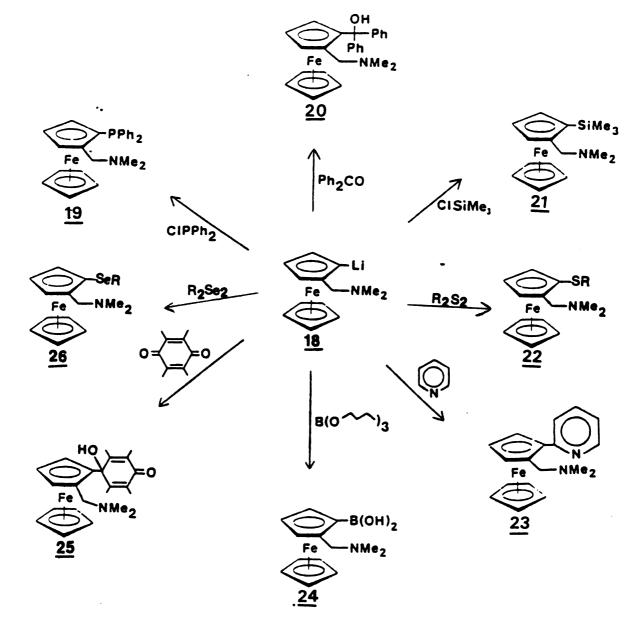
Ferrocene chemistry has generated much interest since its discovery in 1951,¹ primarily due to stability and unusual reactivity. It readily undergoes a variety of aromatic substitution reactions such as acylation, alkylation, formylation, mercuration and sulfonation.² Most of these substitution reactions are electrophilic and are limited to electrophiles which do not oxidize the iron atom or destroy the cyclopentadienyl ring-metal bond.


Metallation reaction complements electrophilic substitution in that it provides an alternate route to introducing reactive functional groups on ferrocene.

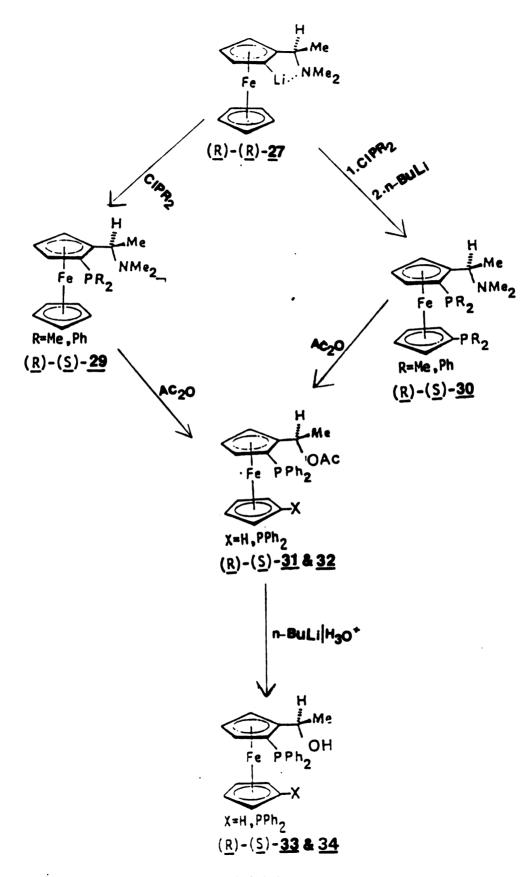
Metallation may be achieved by the reaction of ferrocene with n-butylithium, amylsodium or phenylsodium.³ Ferrocene is dilithiated in over 90% yield by a mixture of <u>n</u>-butyllithium and tetramethylethylenediamine (TMEDA).⁴ The dimetallated species could be isolated as a pyrophoric red-orange crystals where TMEDA chelates the dilithium reagent. Application of the lithium reagent isolated as a pure solid, rather than the <u>in situ</u> slurry, results in higher yields in the subsequent reaction with electrophiles.

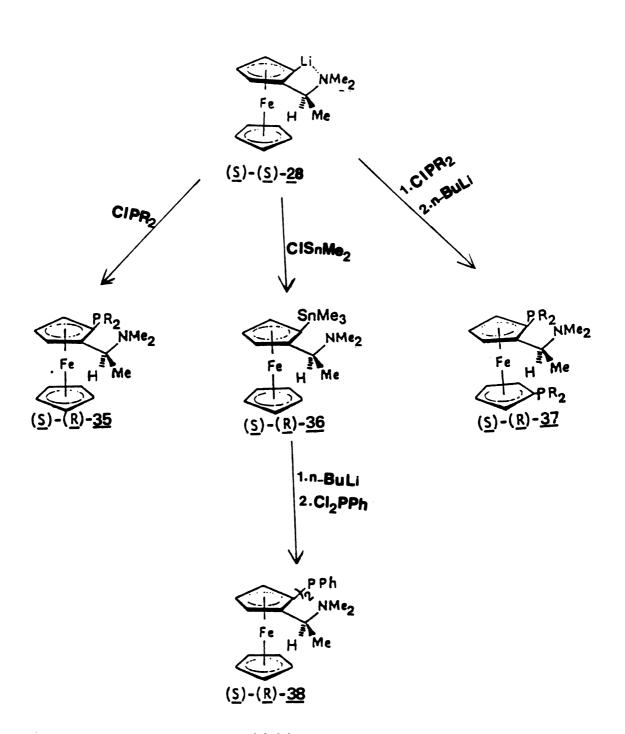

In contrast to the dilithioferrocene, synthesis of monolithioferrocene by addition of stoichiometric amounts of n-butyllithium/TMEDA to ferrocene results in

a mixture of monolithiated and dilithiated species.⁵ Another route to lithioferrocene where alkyllithium is added to chloromercuriferrocene produces a reactive dialkylmercury compound that forms undesirable side products.⁶ High yields of lithioferrocene, with no concurrent dilithiation, is however obtained by reaction of n-butyllithium and bromoferrocene.⁷

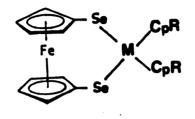


Although the chemistry of ferrocene derivatives resembles that of benzene derivatives, important differences between them arise, when the stereochemistry of these systems is considered. The stereochemistry of metallocene derivatives has generated much interest in the past.⁸⁻¹² This interest is due, in part, to the recognition that ferrocene derivatives are chiral if one ring carries two different substituents (5).¹¹ Optical activity, however, arises because there is no S_n axis.^{11,13} Both the central and planar elements of chirality could be manifested in such disubstituted ferrocene




Scheme 1: Some Characteristic Reactions of Dilithioferrocene.

Scheme 3: Some Reactions of (\underline{R}) - (\underline{R}) -N,N-Dimethyl-1-Lithioferrocenylethylamine.

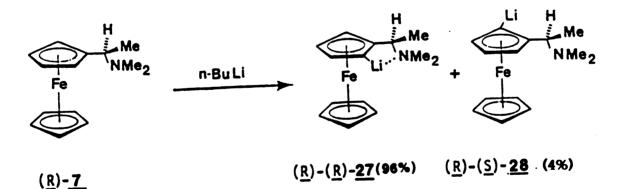

Scheme 4: Some Reactions of (S)-(S)-N,N,-dimethyl-1-Lithioferrocenylethylamine

The organic chemistry of ferrocene and its derivatives is extensive and literally thousands of reactions have been reported. One of the more recent applications is their use as ligands in transition metal complexes.¹⁴⁻¹⁶ Metallation has proved to be a useful synthetic technique for the introduction of potential donors such as phosphines and arsines on to the cyclopentadienyl ring. Schemes 1,2,3 and 4 illustrate the variety of different donor substituents that may be incorporated into ferrocene, dimethylaminomethylferrocene (6), and N,N-dimethyl--1-ferrocenylethylamine (7) respectively. Davison¹⁷ synthesized ferrocenylphosphines and ferrocenylarsines in high yield from 1,1'-dilithioferrocene. Addition of elemental sulfur to dilithioferrocene gave 1,2,3-trithia-[3]-ferrocene (9) which can be reduced quantitatively to 1,1'-dithioferrocene (10). The selenium analog (11) has also been reported.¹⁸

The [1]ferroceneophanes, which have phosphorus, arsenic or Group 6A elements as the bridging atoms, are another interesting class of compounds that have been obtained from the reaction of dilithioferrocene with RPCl₂, $RAsCl_2^{19,20}$ or R_2MCl_2 (M = Ge, R = Ph; M = Si; R = Ph, Cl)²¹ respectively. These compounds exhibit unusual spectroscopic properties as the cyclopentadienyl rings are severely tilted towards the bridge atom. Wrighton and co-workers have used (1,1'-ferrocenediyl)dichlorosilane to derivatize a number of electrode and silica surfaces by opening the highly reactive, strained C-Si-C bond in the ferrocenophane.²²

The ferrocenophanes are cleaved by alkyllithium reagents to give a ring opened ferrocenyllithium reagent. Subsequent reaction with electrophiles gives rise to ferrocene derivatives with mixed functionality as in (15). Cullen²⁰ has also reported to preparation of ring-substituted ferrocenophanes with phosphorus and arsenic bridges. These are precursors to chiral ferrocenes with mixed functionality that have important applications in asymmetric synthesis.

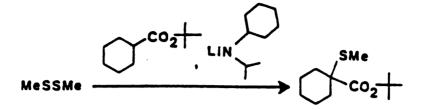
Recently Gautheron²³ reported the synthesis of new metalladiselenaferrocenophanes of the type $Fe(n 5-C_5H_4Se)_2M(n 5-C_5H_4R)_2$ (where M = Zr, H_f; R = H, to -Bu) known as [3]ferrocenophenes.


M = Zr, Hf; R = t-Bu, H

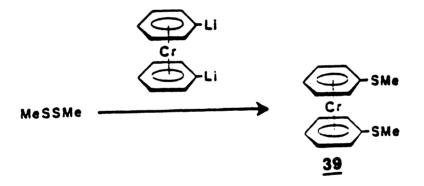
In solution at ambient temperature, these complexes appear to be non-fluxional by a bridge reversal process and show a staggered conformation of the ferrocene moiety.

The coordination chemistry of <u>19</u> (Scheme 2, available from <u>18</u> via nucleophilic substitution of chlorodiphenylphosphine) with chormium, molybdenum, tungsten, iron, and cobalt carbonyls has been investigated.¹⁴ The ligand was bidentate with the group VIB carbonyls, but monodentate through phosphorus with Fe and Co. Compound <u>18</u> adds in Grignard manner to carbonyl species giving $20^{24,25}$ and the addition products of acetylferrocene and acetaldehyde^{15,26}. Pyridine undergoes a nucleophilic aromatic substitution to yield <u>23</u>, whose CoX₂ complexes (X = Cl, Br, and SCN) have been studied.¹⁵

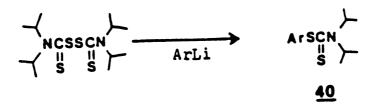
Marr and co-workers²⁷ reported that <u>18</u> reacts with paraformaldehyde and dimethylformamide giving 1-dimethylaminomethyl-2-hydroxymethylferrocene and 1-dimethylaminomethyl-2-formylferrocene, respectively. Several derivatives of these compounds were reported. Trimethylchlorosilane reacts with <u>18</u> to give <u>21</u>²⁸ and <u>18</u> undergoes reaction with hexachloroethane to give the 2-chloro compound.²⁹ The latter reaction involves lithium-halogen exchange followed by β -elimination giving tetrachloroethylene. Tri-<u>n</u>-butyl borate reacts with <u>18</u> to yield, after hydrolysis, boronic acid <u>24</u>,³⁰ which is an amino acid with the same properties as natural amino acids: it has an isoelectric point and is soluble in aqueous base and acid. More important, <u>24</u> undergoes replacement of the boronic acid portion with Cl, Br, and I using cupric chloride, cupric bromide and iodine as the reagents. Finally, various quinones have been added to <u>18</u> giving the corresponding Keto-alcohols, eg., <u>25</u>.³¹ An excess of quinone was used and no evidence was found for addition of two molecules of <u>18</u> to the quinone.


Chiral ferrocenylphosphines³² are readily prepared by lithiation of optically resolved N,N-dimethyl-1-ferrocenylethylamine 7, followed by treatment with chlorophosphines. The lithiation of (<u>R</u>)-7 with <u>n</u>-butyllithium was previously reported by Ugi and co-workers³³ to proceed with high stereoselectivity to give preferentially (<u>R</u>)-N,N-dimethyl(-1-[(<u>R</u>)-2-lithioferrocenyl]-ethylamine[(R)--(<u>R</u>)-7].

(R)-N,N-dimethyl-1-[(S)-2-(diphenylphosphino)ferrocenyl]-amine [(R)-(S)-PPfA] (29) and (S)-N,N-dimethyl-1-[(R)-2-(diphenylphosphino)ferrocenyl]ethylamine,[(S)-(R)-PPfA] (35), was obtained in high yield from (R)-(R)-27 and (S)-(S)-28respectively. The stepwise lithiation of (R)-7 or (S)-7 with n-butyllithium, in ether and with n-butyllithium/TMEDA followed by treatment with chlorodiphenylphosphine led to the introduction of two diphenylphosphino groups, one onto each of the cyclopentadienyl rings to give (R)-N,N-dimethyl-1-[(S)-1',2-bis-(diphenylphosphino)ferrocenyl]ethylamine, [(R)-(S)-BPPfA] (30) or (S)-N,N-dimethyl--1-[(R)-1',2-bis(diphenylphosphino)-ferrocenyl[ethylamine[(S)-(R)-BPPfA](37). The analogous bis(dimethylphosphine) derivatives were also prepared. The preparation of (S)-(R)-38 was achieved by transmetallation of (S)-N,N-dimethyl--1-[(B)-2-(trimethylstannyl)-ferrocenyl]ethylamine 26 that had once been isolated as a precursor for lithioferrocene (S)-(S)-28.34 The acetate (R)-(S)-31 was converted quantitatively into a ferrocenyl phosphine with the hydroxyl group, (R)-1-1[(S)-1',2-bis(diphenylphosphino)ferrocenyl]ethanol, [(R)-(S)-BPPfOH], (R)-(S)-34, and (R)-1-[(S)-2-diphenylphosphine]ferrocenyl]ethanol [(R)-(S)-PPfOH]-(R)-(S)-33.

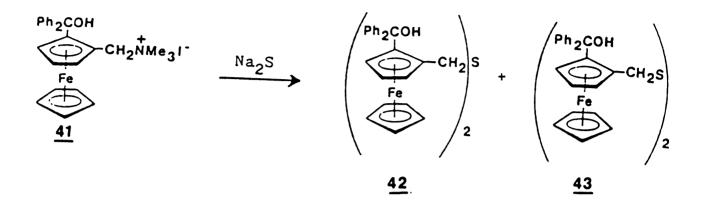

So far it is obvious that there are a multitude of electrophiles that will react with lithioferrocenes 2, 18, 27, and 28. There are also many lithiated compounds that will react with disulfides and diselenides.

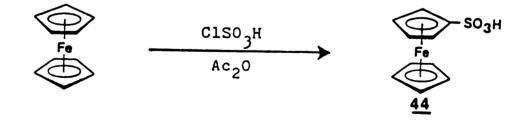
The reaction of disulfides with anions has been known for many years, and involves electrophilic rather than nucleophilic sulfur. In organic chemistry, the reaction is used with enolate anions to produce α -sulfenyl carbonyl species (Scheme 5), intermediates on the path to α , β -unsaturated carbonyl compounds.³⁵⁻³⁷


Scheme 5: Reaction of Methyldisulfide with a t-butylester Enolate

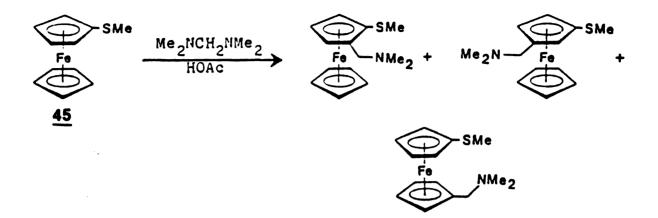
In 1981, bis(n^6 -benzene)chromium was lithiated and the product reacted with methyl disulfide (Scheme 6)³⁸.

Scheme 6: Reaction of Methyldisulfide with bis(η^6 -phenyl Lithium) Chromium


Thioether sandwich complex <u>36</u> acted as a chelating agent with $Mo(CO)_4$. Cava's group³⁹ has found that phenyllithium and a number of lithiated aromatics react with tetraisopropyl thiuram disulfide to give S-aryl-N,N-diisopropyldithiocarbamates (<u>40</u>, Scheme 7). The bulk of the isopropyl groups prevents attack at the thione carbons, in contrast to the tetramethyl analog. With tetraisopropylthiuram disulfide replaced by tetramethylthiuramdisulfide, a major side product, thioamide, results.

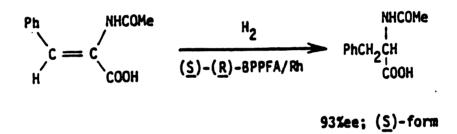

Scheme 7: Reaction of Tetraisopropylthiuram Disulfide with Aryllithium Species

The authors hydrolyzed dithiocarbamates, 40 to the thiols in high yield, so that the sequence represents a new synthesis of aromatic thiols.


Recently in our laboratory, 40-42 it was found that lithioferrocene and 1,1'-dilithioferrocene react with various disulfides to give thioethers <u>16</u> and dithiocarbamates <u>17</u> (Scheme 1). Other ferrocene derivatives with sulfur in side chains have been made, but these were the products of a nucleophilic substitution in the side chain (Scheme 8) or electrophilic sulfonation (Scheme 9). Reaction of tetraalkylammonium iodide <u>41</u> (Scheme 8), with sodium sulfide gave thioether <u>42</u> and disulfide <u>43</u>.⁴³ Sulfur was introduced directly to a ferrocenyl ring via electrophilic sulfonation (Scheme 9).⁴⁴ Sulfonic acid <u>44</u> was converted to the sulfonyl chloride and then the thiol. The thiol was converted to its methyl thioether. The methyl thioether (<u>45</u>, Scheme 10), was subjected to electrophilic substitution with bis(dimethylamino)methane⁴⁵.

Scheme 8: Nucleophilic Substitution Leading to Ferrocenes with Sulfur in the Side Chain

Scheme 9: Introduction of Sulfur to a Ferrocene Ring by Electrophilic Aromatic Substitution



Scheme 10: Aminomethylation of Methylthioferrocene

All three possible monosubstituted products were obtained as was expected from the activating nature of the methylthio group. The lithiation procedure yielding <u>18</u>, <u>27</u>, and <u>28</u>, described previously, offers a distinct advantage over electrophilic substitution in that only a single lithiation product is obtained.

Symmetrically 1,1'-disubstituted ferrocenes Fe($n^{5}-C_{5}H_{4}E$), where E is a potential electron donor such as phosphine or arsine, have generated much interest in functioning as rigid chelating ligands.^{4,16,17,46-48} In particular, 1,1'-bis(diphenylphosphino)-ferrocene (fdpp) strongly chelates Ni and Pd and such complexes have been shown to exhibit extremely high catalytic activity for selective cross-coupling reactions.⁴⁹ Hughes⁵⁰ and Christenson⁵¹ have reported that fdpp complexes of rhodium are highly selective hydroformylation catalysts. Brubaker and co-workers^{40,41} has reported the properties of some 1,1'-bis(thioether)ferrocene derivatives. We have also reported that the Pd complex of dimethylaminomethylferrocenyl sulfide is an efficient selective hydrogenation catalyst.⁵²

Another recent development in ferrocene chemistry is the use of chiral ferrocene derivatives as ligands in transition metal catalyzed asymmetric synthesis. Rhodium and palladium complexes with chiral ferrocenylphosphine ligands have been used as catalysts in asymmetric hydrogenation, 55-62 Grignard cross-coupling 55,63-70 and hydrosilylation reactions 55,71-73. In particular, acylamino acids have been produced in 93% optical purity by the asymmetric hydrogenation of α -acetaminocinnamic acids catalyzed by a rhodium complex of (<u>S</u>)-N,N-dimethyl-1-[(<u>R</u>)-1',2-bis(di-phenylphosphino)ferrocenyl]ethylamine. [(<u>S</u>)-(<u>R</u>)-BPPfA] (Scheme 11).

Scheme 11: Asymmetric Hydrogenation by Using [(S)-(R)-BPPFA]

Table 1 shows a number of various possible ligands - mostly bidentate phosphine derivatives. N,N-dimethyl-1-[2-(diphenylphosphino)ferrocenyl]-ethylamine (PPFA) is the parent member of the ferrocene derived ligands. It has two kinds of chirality, one on the side chain (central element of chirality) and a second on the 1,2-disubstituted cyclopentadiene ring.

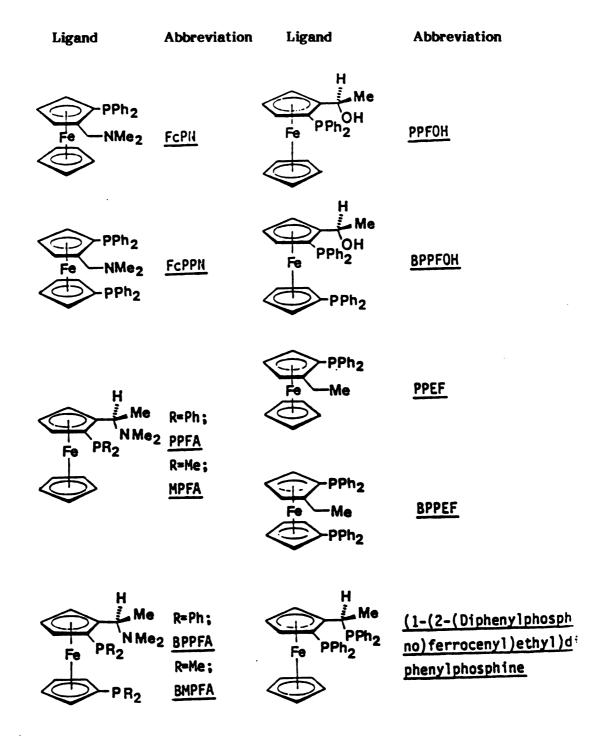
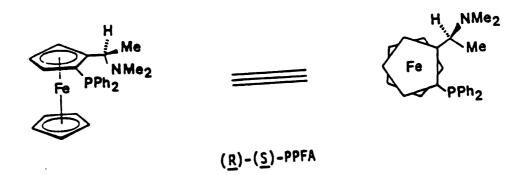
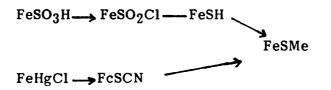
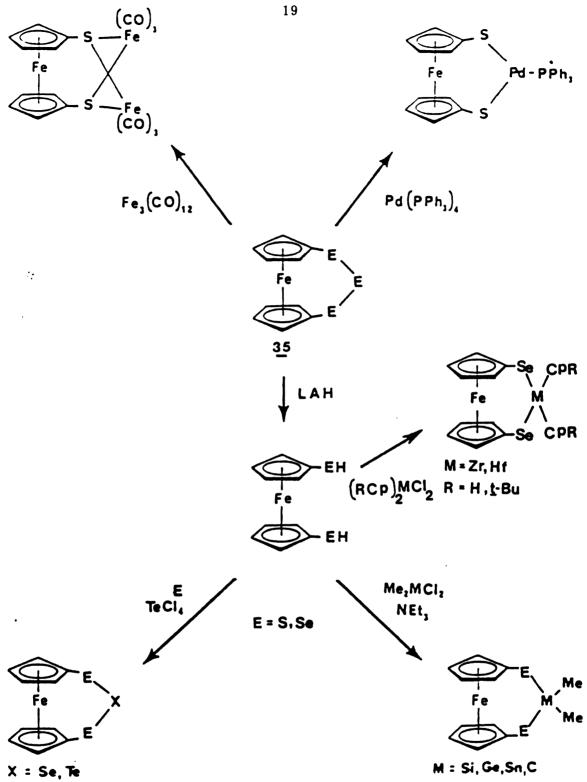




Table 1. Chiral Ferrocenylphosphines for Asymmetric Catalysts.

The aim of this research was to develop a new class of chiral chelating ferrocenyl thioether ligands. The recent interest in transition metal sulfides led to the investigation of the preparation and application of ferrocenyl thio and seleno ethers. 52

A few ferrocenyl thioether complexes are known. Pauson⁴⁴ has reported synthesis of methylthioferrocene from ferrocenesulfonic acid whereas Russian workers⁷⁴ prepared this complex from thiocyanatoferrocene


Ferrocenylmethylsulfides have also been prepared from ferrocene and mercaptans in one step syntheses.⁷⁵

FeH + HSR
$$\xrightarrow{\text{HClO}_4}$$
 FcCH₂SR

These procedures are limited to the preparation of specific ferrocenylsulfide complexes. A new synthetic method^{42,52} has been developed similar to that reported by Elschenbroich³⁸). This procedure is a one-pot, high yield general synthesis of substituted ferrocenylsulfides and has been applied in this work.

Some metal complexes of these new ferrocenyl thio ether chelating ligands have been prepared and their application as catalysts for selective hydrogenation and asymmetric Grignard cross-coupling reactions examined.

In addition the reaction of tetraalkylthiuram disulfides with 27 was examined.

Some Ferrocenylsulfide and Ferrocenylselenide Metal Complexes

II. EXPERIMENTAL

.

EXPERIMENTAL

Air sensitive reagents were manipulated in prepurified argon or nitrogen atmosphere. Standard schlenk-tube techniques and vacuum line were employed. Where necessary a nitrogen-filled glovebox was used for transfers.

Infrared spectra (IR) were obtained by use of a Perkin-Elmer 457 grating spectrophotometer or a Perkin-Elmer 599 grating spectrophotometer by using neat films of liquid samples, Nujol mulls between CsBr plates or in KBr pellets for solid samples. Ultraviolet and visible spectra (UV-VIS) were recorded by use of a Cary 17 spectrophotometer and acetonitrile solutions. Mass spectra (MS) were obtained by means of a Finnigan 4000 instrument with an Incos data system at 70 eV. Optical rotations were determined with a Perkin-Elmer 141 polarimeter. Elemental analyses were performed by Galbraith Laboratories, Knoxville, Tennessee. Gas chromatography (GC) was carried out by using a Hewlett-Packard 5880A instrument.

All melting points were determined by using a Thomas-Hoover capillary melting point apparatus and were uncorrected.

Proton NMR spectra were obtained by use of a Bruker WM-250 spectrometer at 250 MHz in chloroform-d₁ solutions with chemical shifts reported in parts per million downfield from a tetramethylsilane internal standard. Carbon-13 NMR (broadband proton decoupled and gated decoupled) were obtained by use of a Bruker WM-250 spectrometer at 62.9 MHz. A pulse width (PW) of 8 µs and a relaxation delay (RD) of 6s were generally employed.

All solvents used were A·C·S reagent grade and were distilled by standard methods⁷⁶ before use. (<u>R</u>)-N,N-dimethyl-1-ferrocenylethylamine(<u>R</u>-7) and (<u>S</u>)-N,N-dimethyl-1-ferrocenylethylamine (<u>S</u>-7) were prepared according to Ugi's procedure.⁷⁷ Dimethylaminomethyl ferrocene (6) was made by the standard

20

method.⁷⁸ Bis(benzonitrile) complexes, $[(PhCN)_2MCl_2]$ where M = Pd, Pt, were prepared according to published procedures.^{79,80} The hydrogenation substrate 1,3-cyclooctadiene was obtained from Columbian Carbon Co., 1,3-cyclohexadiene was obtained from Columbian Organic Chemical Co., and cyclohexene was obtained from Aldrich Chemical Co. These reagents were retreated by standard methods before use. The Grignard cross-coupling substrate, 1-phenylethyl chloride, was prepared as previously reported;⁸¹ allylmagnesium chloride (2 <u>M</u> solution in THF) and allylmagnesium bromide (1 <u>M</u> solution in ether) were obtained from Aldrich Chemical Co. The ¹H NMR chiral shift reagents, Tris(d,d-dicampholymethanato)europium(III) [Eu(dcm)₃], was obtained from Alfa Products. A pressure bottle with gauge was used to perform hydrogenations.

X-ray structure determinations were performed on a Nicolet P3F computer controlled 4-circle diffractometer equipped with a graphite crystal incident beam monochromator.

A. Preparation of Ligands

(R)-1-(Dimethylamino)-ethylferrocene[(<u>R</u>)-7] and (S)-1-(Dimethylamino)-ethylferrocene [(S)-7].

N,N-dimethyl-1-ferrocenylethylamine (7) was prepared and resolved by using (<u>R</u>)-(+)tartaric acid as described by Ugi.⁷⁷ The (<u>R</u>)-(+)amine tartarate crystals were recovered from the mother liquor by treatment with diethylether and then recrystallized three times from 10:1 acetone:water, allowing about 17 mL of solvent for each gram of salt. The (<u>S</u>)-(-)amine tartarate crystals filtered off readily as previously reported.⁷⁷ The tartarate salts were dissolved in 20% aqueous NaOH solution and extracted with methylene chloride. The amine solutions were dried over anhydrous K₂CO₃ and evaporated to give a dark brown oil that partially solidified on cooling. $[\alpha]_D^{25} + 14.1^\circ$ for (<u>R</u>)-1--(dimethylamino)-ethylferrocene [(<u>R</u>)-7], and $[\alpha]_D^{25} - 14.1^\circ$ for (<u>S</u>)-1-(dimethylamino)-ethylferrocene $[(\underline{S})-7]$, lit.² $[\alpha]_D^{25} + 14.1^{\circ}$ and -14.1° , respectively. MS m/e (relative intensity), 257 (83, M⁺), 242 (95, M⁺-Me), 213 (100, M⁺-NMe₂), 212 (36, M⁺-HNMe₂), 121 (66, FeCp), 72 (18, CHMeNMe₂), 65 (3, Cp), 56 (21, Fe), 44 (4, NMe₂). ¹H NMR (δ ppm) 4.11 (m, 4H, C₅H₄); 4.08 (s, 5H, Cp); 3.60 (q, J = 6.8 Hz, 1H, CH); 2.09 (s, 6H, NMe₂); 1.46 (d, J = 6.8 Hz, 3H, NCHCH₃). ¹³C NMR (δ ppm) 86.2 (s, C₁); 68.5 (d, J = 91 Hz, C₂₋₅), 67.7 (d, J = 88 Hz, Cp); 66.5 (d, J = 92.4 Hz, C₂, C₃, C₄, C₅) 66.3 (d, J = 9.2 Hz, C₂, C₃, C₄, C₅); 65.9 (d, J = 91.4 Hz, C₂, C₃, C₄, C₅); 57.8 (d, J = 67.3 Hz, NCH); 40.2 (q, J = 47.4 Hz, NMe₂); 14.8 (q, J = 42.9 Hz, NCHMe).

(R,S)-1-(1-Dimethylaminoethyl)-2-methylthioferrocene (46, R=Me).

The amine (R)-7 (1.5 g, 5.8 mmol) was dissolved in 50 mL dry ether and placed in a 100 mL round-bottomed schlenk flask equipped with a side arm and rubber septum. The solution was cooled to -78°C and while being stirred 4.0 mL (6.4 mmol) of n-BuLi was added dropwise via a syringe. The orange suspension was allowed to reach room temprature and stirred overnight. Me_2S_2 (0.53 mL, 5.9 mmol) was added dropwise via syringe at -78°C. The solution was allowed to reach room temperature and stirred under N_2 for 24 h. After refluxing for 7 h, the reaction mixture was cooled and then 20 mL of saturated aqueous NaHCO₃ was added. The resulting organic layer and ether extracts from the aqueous layer were combined, washed twice with ice water, dried over anhydrous Na₂SO₄, and evaporated to give a dark oily residue. The oil was chromatographed on alumina by eluting first with hexane and then with CH₂Cl₂ to give the product which upon recrystallization from hexane/petroleum ether gave yellow crystals: yield 65%; mp 64-66°C; MS m/e (relative intensity), 303 (19, M⁺), 213 (100, M⁺-NMe₂), 121 (92, FeCp), 72 (57, CHMeNMe₂), 56 (60, Fe). IR (Nujol, CsI) 1260 (C-N stretch), 1104, 1092 (asymmetric ring breathing), 988 (ring-H bend parallel to ring), 810 (ring-H bend perpendicular to ring),

450 cm⁻¹ (asymmetric ring-Fe stretch). ¹H NMR (δ ppm) 4.28 (m, 1H, H₃, H₄, H₅); 4.18 (m, 1H, H₃, H₄, H₅); 4.17 (m, 1H, H₃, H₄, H₅); 4.10 (S, 5H, Cp); 3.94 (q, J = 7 Hz, 1H, NC<u>H</u>); 2.30 (S, 3H, SCH₃); 2.13 (s, 6H, NMe₂); 1.40 (d, J = 7 Hz, 3H, NCHCH₃).

¹³C NMR (δ ppm) 84.0 (s, C₂); 75.1 (s, C₁); 71.0 (d, C₃, C₄, C₅); 69.9 (d, Cp); 67.3 (d, C₃, C₄, C₅); 66.5 (d, C₃, C₄, C₅); 56.1 (d, NCH); 40.5 (q, NMe₂); 19.8 (q, SCH₃); 13.1 (q, NCH<u>CH₃</u>).

Anal. Calcd. for C₁₅H₂₁FeNS: C, 59.41; H, 6.93.

Found: C, 59.54; H, 6.89.

(R,S)-1-(Dimethylaminoethyl)-2-ethylthioferrocene (47, R = Et).

The amine $(\underline{R})-\underline{7}$ (1.5 g, 5.8 mmol) was dissolved in 50 mL dry ether and placed in a 100 mL round-bottomed schlenk falsk equipped with a side arm and rubber septum. The suspension was cooled to -78°C and while being stirred 4.0 mL (6.4 mmol) <u>n</u>-BuLi was added dropwise via a syringe. The orange suspension was allowed to reach room temperature and stirred overnight. Et₂S₂ (0.73 mL, 5.9 mmol) was added dropwise via a syringe at -78°C. The solution was allowed to reach room temperature and stirred under N₂ for 24 h. After refluxing for 7 h, the reaction mixture was cooled and 20 mL of water added. The organic layer was separated, dried and evaporated to give a brown oil. The oil was chromatographed on alumina by gradient elution (hexane/ether/CH₂Cl₂), giving a brown oil: yield 45%; MS m/e (relative intensity), 317 (53, M⁺), 302 (23, M⁺-CH₃), 272 (44, M⁺-HNMe₂), 121 (29, FeCp), 72 (9, CHMeNMe₂), 56 (17, Fe), 40 (100).

¹H NMR (δ ppm) 4.20 (m, 3H, C₅H₃; 4.10 (s, 5H, Cp); 3.95 (q, J = 7.0 Hz, 1H, -C<u>H</u>-); 2.75 (q, 1H, CH₂CH₃); 2.60 (q, 1H, CH₂CH₃); 2.10 (s, 6H, NMe₂); 1.35

(d, 3H, -CHCH₃); 1.15 (t, 3H, CH₂CH₃).

(R,S)-1-(1-Dimethylaminoethyl)-2-isopropylthioferrocene (48, R = i-Pr)

The amine (R)-7 (1.5 g, 5.8 mmol) was dissolved in 50 mL dry ether and placed in a 100 mL round-bottomed schlenk falsk equipped with a side arm and rubber septum. The suspension was cooled to -78°C and while being stirred 4.0 mL (6.4 mmol) of n-BuLi was added dropwise via a syringe. The orange suspension was allowed to reach room temperature and stirred overnight. Then 0.94 mL (i-Pr)₂S₂ (5.9 mmol) was added dropwise via a syringe at -78° C. The reaction mixture was allowed to reach room temperature and stirred under N_2 for an additional 24 h, after which saturated aqueous NaHCO₃ was added to the mixture. The resulting organic layer and ether extracts from the aqueous layer were combined, washed with cold water and dried over anhydrous Na_2SO_4 . Evaporation of the solvent gave a product mixture which was chromatographed on a silica gel column (hexane/ether) to give orange crystals. The product was recrystallized from hexane to give bright orange needles: yield 80.4 %; mp 34-35°C. MS m/e (relative intensity), 331 (85, M⁺), 316 (25, M⁺-Me), 287 (35, M⁺-NMe₂), 286 (60, M⁺-HNMe₂), 244 (48, M⁺-CHMeNMe₂), 210 (5, M⁺-CpFe), 121 (78, FeCp), 56 (35, Fe), 43 (100, i-Pr).

IR (neat, KBr), 3096 (ring-H stretch), 2870, 2820, 2778, 2930 (alkyl C-H stretch), 1450, 1380 (methyl C-H bond), 1260, 1245 (alkyl C-H bend), 1190 (C-N stretch), 1103, 1090 (asymmetric ring breathing), 998, 930 (ring-H bend parallel to ring), 815 (ring-H bend perpendicular to ring), 532 (asymmetric ring tilt), 465 cm⁻¹ (asymmetric ring-Fe stretch).

¹H NMR (δ ppm), 4.33 (m, 1H, H₃, H₄, H₅); 4.21 (m, 1H, H₃, H₄, H₅); 4.17 (m, 1H, H₃, H₄, H₅); 4.09 (s, 5H, Cp), 4.00 (q, J = 7.0 Hz, 1H, -C<u>H</u>NMe₂); 3.20 (m, J = 7.0 Hz, 1H, SC<u>H</u>Me₂); 2.12 (s, 6H, NMe₂), 1.34 (d, J = 7.0 Hz, 3H, NCHC<u>H₃</u>); 1.22 (d, J = 7.0 Hz, 3H, β CH₃); 1.15 (d, J = 7.0 Hz, 3H, β CH₃).

¹³C NMR (δ ppm), 94.6 (s, C₂), 78.3 (s, C₁); 75.2 (d, J = 91.0 Hz, C₃, C₄, C₅); 69.9 (d, J = 97.4 Hz, Cp), 67.8 (d, C₃, C₄, C₅); 66.7 (d, C₃, C₄, C₅); 55.8 (d, J = 66.5 Hz, N<u>C</u>H); 39.9 (q, NMe₂), 39.2 (d, J = 63.0 Hz, SCH); 23.8 (q, J = 38.0 Hz, β <u>CH₃</u>), 22.6 (q, J = 39.0 Hz, β <u>CH₃</u>); 10.6 (q, J = 39.2 Hz, NCH<u>C</u>H₃). Anal. Calcd. for C₁₇H₂₅FeNS: C, 61.63; H, 7.55; S, 9.67. Found: C, 61.70; H, 7.75; S, 9.90.

$(\underline{\mathbf{R}},\underline{\mathbf{S}})-1-(1-\text{Dimethylaminoethyl})-2-\underline{\mathbf{n}}-propylthioferrocene (49, R = \underline{\mathbf{n}}-Pr).$

The procedure was the same as for <u>48</u>, R = <u>i</u>-Pr, except that 0.92 mL (5.9 mmol) of (<u>n</u>-Pr)₂S₂ was added. The product was recrystallized from hexane/CH₂-Cl₂ to give dark organe crystals; yield 65%, mp 32-33°C. MS m/e (relative intensity), 331 (100, M⁺), 316 (36, M⁺-Me), 288 (13, M⁺-<u>n</u>-Pr), 287 (48, M⁺-NMe₂), 286 (71, M⁺-HNMe₂), 256 (5, M⁺-S-<u>n</u>-Pr), 210 (5, M⁺-FeCp), 121 (17, FeCp), 65 (3, Cp), 56 (7, Fe), 43 (38, <u>n</u>-Pr), 41 (62, CH₂=CHCH₃). IR (neat KBr), 3096 (ring-H stretch), 2830, 2870, 2850, 2818 (alkyl C-H stretch), 1454 (CH₂ scissoring of SCH₂), 1362 (methyl C-H bend), 1260, 1245 (alkyl C-H bend), 1190 (C-N stretch), 1152 (C-H deformation), 1104 (asymmetric ring stretch), 998, 970 (ring-H bend parallel to ring), 815 (ring-H bend perpendicular to ring), 454 cm⁻¹ (asymmetric ring-Fe stretch). ¹H NMR (δ ppm), 4.32 (m, 1H, H₃, H₄, H₅); 4.19 (m, 1H, H₃, H₄, H₅); 2.77 (m,

1H, SCH₂); 2.58 (m, 1H, SCH₂); 2.12 (s, 6H, NMe₂); 1.56 (m, 2H, β CH₂); 1.36

(d,
$$J = 7.0 \text{ Hz}$$
, 3H, NCHCH₃); 0.95 (t, $J = 7.1 \text{ Hz}$, 3H, $\gamma \text{ CH}_3$).

¹³C NMR (δ ppm), 93.2 (s, C₂); 80.5 (s, C₁); 73.3 (d, J = 95.8, C₃, C₄, C₅); 69.9 (d, J = 92.4, Cp); 67.4 (d, J = 92.6, C₃, C₄, C₅); 66.5 (d, J = 92.4, C₃, C₄, C₅); 55.9 (d, J = 71.4, N<u>C</u>HMe); 40.2 (q, J = 51.9, NMe₂); 38.7 (t, J = 58.0, SCH₂); 22.9 (t, J = 43.0, β CH₂); 13.5 (q, J = 37.0, γ CH₃); 12.0 (q, J = 42.5, NCH-<u>C</u>H₃). Anal. Calcd. for C₁₇H₂₅FeNS: C, 61.63; H, 7.55. Found: C, 61.90; H, 7.62.

(R,S)-1-(1-Dimethylaminoethyl)-2-t-butylthioferrocene (50, R = t-Bu)

The amine (R)-7 (1.0 g, 3.9 mmol) was dissolved in 40 mL dry ether in a 100 mL round-bottomed schlenk flask equipped with a side arm and rubber septum. The suspension was cooled to -78°C and while being stirred 1.8 mL of 2.7 M n-BuLi (4.8 mmol) was added dropwise via a syringe. The orange suspension was allowed to reach room temperature and stirred overnight. Then 0.78 mL t-Bu₂S₂ (4.0 mmol) was added dropwise via a syringe at -78° C. The reaction mixture was allowed to reach room temperature and stirred under N_2 for an additional 24 h, after which saturated aqueous NaHCO₃ was added to the mixture. The resulting organic layer and ether extracts from the aqueous layer were combined washed with cold water and dried over anhydrous K_2CO_3 . Evaporation of the solvent gave a brown oil that was chromatographed on a silica gel column by eluting first with hexane, then with ether and finally with MeOH. The product obtained was orange oil: yield 64%. MS m/e (relative intensity), 345 (35, M^+), 301 (5, M^+ -NMe₂), 300 (5, M^+ -HNMe₂), 244 (100, M⁺-t-Bu-NMe₂), 121 (131, FeCp), 89 (4, S-t-Bu), 57 (33, t-Bu), 56 (15. Fe).

IR (neat, CsI), 3100 (ring C-H stretch), 2960, 2940, 2860, 2820 (alkyl C-H stretch), 1450 (asymmetric C-H bend), 1390, 1370 (symmetric C-H bend of CH₃), 1260, 1245 (alkyl C-H bend), 1190 (C-N stretch), 1000, 930 (unsubstituted ring stretch), 818 (ring C-H bend perpendicular to ring), 656 (C-S stretch), 468 cm⁻¹ (asymmetric ring-Fe stretch).

¹H NMR (δ ppm); 4.41 (m, 1H, H₃, H₄, H₅); 4.25 (m, 1H, H₃, H₄, H₅); 4.21 (m, 1H, H₃, H₄, H₅); 4.08 (s, 5H, Cp), 3.88 (q, J = 6.9 Hz, 1H, NC<u>H</u>Me); 2.12 (s, 6H, NMe₂); 1.30 (d, J = 6.9 Hz, 3H, NCHCH₃); 1.24 (s, 9H, β CH₃). ¹³C NMR (δ ppm), 95.5 (s, C₂); 77.8 (s, C₁); 77.7 (d, J = 94.1 Hz, C₃, C₄, C₅); 70.8 (d, J = 88.9 Hz, Cp); 68.9 (d, J = 90.3 Hz, C₃, C₄, C₅); 68.2 (d, J = 91.7 Hz, C₃, C₄, C₅); 55.9 (d, J = 68.4 Hz, N<u>C</u>HMe), 45.9 (s, S<u>C</u>); 39.9 (q, J = 51.6 Hz, NMe₂); 31.7 (q, J = 41.5 Hz, β CH₃); 9.3 (q, J = 42.0 Hz, NCH<u>CH₃</u>). Anal. Calcd. for C₁₈H₂₇FeNS: C, 62.61; H, 7.83.

Found: C, 62.70; H, 8.00.

(R,S)-1-(1-Dimethylaminoethyl)-2-isobutylthioferrocene (51, R = i-Bu)

The procedure was the same as for <u>50</u>, $R = \underline{t}$ -Bu, except that 0.75 mL (4.0 mmol) of \underline{i} -Bu₂S₂ was used. The product was obtained as brownish orange oil: yield 84.5%.

MS m/e (relative intensity), 345 (80, M⁺), 330 (28, M⁺-Me), 301 (38, M⁺-NMe₂), 300 (42, M⁺-HNMe₂), 256 (3, M⁺-S-<u>i</u>-Bu), 244 (24, M⁺-NMe₂-<u>i</u>-Bu), 121 (36, FeCp), 89 (6, S-<u>i</u>-Bu), 72 (100, HCMeNMe₂), 65 (5, Cp), 57 (26, <u>i</u>-Bu), 56 (48, Fe), 45 (16, HNMe₂), 44 (34, NMe₂).

IR (neat, CsI), 3100 (ring C-H stretch), 2960, 2940, 2870, 2820 (alkyl C-H stretch), 1460 (asymmetric C-H bend), 1383, 1365 (symmetric C-H bend of methyl), 1260 (alkyl C-H bend), 1190 (C-N stretch), 1106 (asymmetric ring breathing), 1000 (unsubstituted Cp ring stretch), 818 (ring C-H bend perpendicular to ring), 532, 496 (asymmetric ring tilt), 452 cm⁻¹ (asymmetric ring-Fe stretch). ¹H NMR (δ ppm), 429 (m, 1H, H₃, H₄, H₅); 4.17 (m, 1H, H₃, H₄, H₅); 4.13 (m, 1H, H₃, H₄, H₅); 4.10 (s, 5H, Cp); 3.97 (q, J = 7.0 Hz, 1H, NC<u>H</u>Me); 2.72 (dd, J_{gem} = 12.0 Hz, J_{vic} = 6.0 Hz, 1H, SC<u>H₂</u>); 2.47 (dd, J_{gem} = 12. Hz, J_{vic} = 8 Hz, 1H, S<u>CH₂</u>), 2.12 (s, 6H, NMe₂); 1.76 (M, 1H, β CH); 1.35 (d, J = 7.0 Hz, 3H, NCH<u>CH₃</u>); 0.99 (d, J = 7.0 Hz, 3H, YCH₃); 0.93 (d, J = 7.0 Hz, 3H, YCH₃).

¹³C NMR (δ ppm), 93.2 (s, C₂); 80.8 (s, C₁); 73.2 (d, J = 88.1 Hz, C₃, C₄, C₅); 69.9 (d, J = 84.5, Cp); 67.4 (d, J = 84.5 Hz, C₃, C₄, C₅); 66.5 (d, J = 84.6 Hz, C₃, C₄, C₅); 55.9 (d, J = 84.8 Hz, N<u>C</u>HMe); 45.9 (t, J = 84.5, S<u>C</u>H₂), 40.2 (q, J = 47.7 Hz, NMe₂); 28.4 (d, J = 42.0 Hz, β CH); 22.3 (q, J = 35.6 Hz, γ CH₃); 21.7 (q, J = 35.5 Hz, γ CH₃); 11.8 (q, J = 38.8, NCH<u>C</u>H₃).

Anal. Calcd. for $C_{18}H_{27}FeNS: C, 62,61; H, 7.83.$

Found: C, 62.81; H, 7.99.

(R,S)-1-(1-Dimethylaminoethyl)-2-n-butylthiferrocene (52, R = n-Bu)

The procedure was the same as for <u>50</u>, R = t-Bu, except that 0.76 mL (4.0 mmol) of <u>n</u>-Bu₂S₂ was used. The product was obtained as brownish orange oil: yield 81.2%.

MS m/e (relative intensity), 345 (91, M^+), 330 (31, M^+ -Me), 302 (11, M^+ -Pr),

301 (48, M⁺-NMe₂), 300 (51, M⁺-HNMe₂), 256 (5, M⁺-SBu), 121 (42, FeCp),

65 (6, Cp), 56 (48, Fe), 45 (20, HNMe₂), 44 (42, NMe₂).

IR (neat, CsI), 3100 (ring C-H stretch), 2970, 2940, 2860, 2820 (alkyl C-H stretch), 1460 (asymmetric C-H bend), 1380 (symmetric C-H bend), 1265, 1245 (alkyl C-H bend), 1190 (C-N stretch), 1106 (asymmetric ring breathing), 1000 (unsubstituted Cp ring stretch), 818 (ring C-H bend perpendicular to ring), 532 (asymmetric ring tilt), 452 cm⁻¹ (asymmetric ring-Fe stretch).

¹H NMR (ppm), 4.31 (m, 1H, H₃, H₄, H₅); 4.10 (s, 5H, Cp), 3.97 (q, J = 6.8 Hz, 1H, NC<u>H</u>Me); 2.79 (ddd, $J_{gem} = 13.0$ Hz, $J_{vic} = 7.0$ Hz, 1H, SCH₂); 2.61 (ddd, $J_{gem} = 13.0$ Hz, $J_{vic} = 7.0$ Hz, 1H, SCH₂); 2.12 (s, 6H, NMe₂), 1.51 (m, 2H, β CH₂); 1.37 (m, 2H, γ CH₂); 1.36 (d, J = 6.8 Hz, 3H, NCH<u>CH₃</u>); 0.88 (t, J = 6.8 Hz, 3H, δ CH₃).

¹³C NMR (δ ppm), 93.5 (s, C₂); 80.5 (s, C₁); 73.5 (d, J = 89.4 Hz, C₃, C₄, C₅); 69.9 (d, J = 86.4 Hz, Cp); 67.5 (d, J = 86.4 Hz, C₃, C₄, C₅); 66.5 (d, J = 87.5 Hz, C₃, C₄, C₅); 55.9 (d, J = 66.3 Hz, N<u>C</u>HMe); 40.2 (q, J = 49.0 Hz, NMe₂); 36.4 (t, J = 56.3 Hz, SCH₂); 31.8 (t, J = 38.5 Hz, β CH₂); 21.9 (t, J = 36.9 Hz, γ CH₂), 13.7 (q, J = 34.0 Hz, δ CH₃); 11.9 (q, J = 39.5 Hz, NCH<u>CH₃</u>). Anal. Calcd. for C₁₈H₂₇FeNS: C, 62.61; H, 7.88. Found: C, 62.50, H, 8.00.

(R,S)-1-(1-Dimethylaminoethyl)-2-isopentylthioferrocene (53, R = i-Pent.)

The amine $(\underline{R})-\underline{7}$ (0.5 g, 1.95 mmol) was dissolved in 40 mL dry ether in a 100 mL round-bottomed schlenk flask equipped with a side arm and a rubber septum. The suspension was cooled to -78°C and while being stirred 0.8 mL of 2.8 <u>M</u> <u>n</u>-BuLi (2.14) mmol) was added dropwise via a syringe. The orange suspension was allowed to reach room temperature and stirred overnight. Then 0.41 g isopentyldisulfide (1.99 mmol) dissolved in 30 mL hexane was added dropwise via cannula to the orange solution at -78°C. The reaction mixture was allowed to reach room temperature and stirred under N₂ for an additional 24 h, after which saturated aqueous NaHCO₃ was added to the mixture. The resulting organic layer and ether extracts from the aqueous layer were combined, washed with cold water, dried, and evaporated to a brown oil that was chromatographed on a silica gel (hexane/CH₂Cl₂/Et₂O). The product was obtained as a light brown oil: yield 72%.

MS m/e (relative intensity), 359 (60, M ⁺), 344 (20, M⁺-Me), 315 (25, M⁺--NMe₂), 314 (32, M⁺-HNMe₂), 121 (10, FeCp), 103 (8, S-Pent), 56 (12, Fe). ¹H NMR (δ ppm), 4.31 (m, 1H, H₃, H₄, H₅); 4.20 (m, 1H, H₃, H₄, H₅); 4.16 (m, 1H, H₃, H₄, H₅); 4.10 (s, 5H, Cp); 3.98 (q, J = 7.0 Hz, 1H, NC<u>H</u>Me); 2.85 (m, 1H, α CH₂); 2.63 (m, 1H, α CH₂); 2.10 (S, 6H, NMe₂); 1.71 (m, 2H, β CH₂); 1.45 (m, 1H, C<u>H</u>); 1.35 (d, J = 7.0 Hz, 3H, NCHCH₃), 0.82-0.90 (dd, 6H, CH<u>Me₂</u>).

(R,S)-1-(1-Dimethylaminoethyl)-2-phenylthioferrocene (54, R = Ph)

The amine $(\underline{R})-\underline{7}$ (1.5 g, 5.8 mmol) was dissolved in 50 mL dry ether and placed in a 200 mL round bottomed flask equipped with a side arm and rubber septum. The suspension was cooled to -40°C and 4.0 mL (6.4 mmol) <u>n</u>-BuLi was added slowly via a syringe. the orange suspension was allowed to reach room temperature and stirred overnight. Ph₂S₂ (1.29 g, 5.91 mmol), dissolved in 30 mL warm hexane, was added dropwise via cannula to the orange suspension at -78°C. The resulting solution was allowed to reach room temperature and then refluxed overnight under N₂. Upon cooling the reaction mixture to room temperature, 30 mL H₂O was added. The resulting organic layer was separated, dried and evaporated to give a dark oily residue. Unreacted Ph₂S₂ was removed by sublimation. The oil was chromatographed on activated alumina by eluting first with hexane and then with CH₂Cl₂, to the product, which was recrystallized from hexane/CH₂Cl₂ to give orange crystals: yield 85%, mp 70-72°C. MS m/e (relative intensity), 365 (70, M⁺), 320 (78, M⁺-HNMe₂), 212 (31, vinylferrocene), 121 (54, FeCp), 72 (100, CHMeNMe₂), 56 (45, Fe). ¹H NMR (δ ppm) 7.05-7.25 (m, 5H, Ph); 4.53 (m, 1H, H₃, H₄, H₅); 4.42 (m, 1H, H₃, H₄, H₅); 4.30 (m, 1H, H₃, H₄, H₅); 4.18 (s, 5H, Cp); 3.85 (q, J = 7.0 Hz, NC<u>H</u>Me); 1.90 (s, 6H, NMe₂); 1.45 (d, J = 7.0 Hz, NCHC<u>H₃</u>). Anal. Calcd. for C₂₀H₂₃FeNS: C, 65,75; H, 6.30.

Found: C, 65.32; H, 6.21.

(R,S)-1-(1-Dimethylaminoethyl)-2-benzylthioferrocene (55, R = CH₂PH)

The procedure was the same as for 54, R = Ph, except that 1.45 g (5.88 mmol) of (PhCH₂)₂S₂ was used. The product was obtained as a brown oil: yield 75%.

MS m/e (relative intensity), 379 (25, M⁺), 334 (54, M⁺-HNMe₂), 244 (39), 121 (57, FeCp), 91 (100, CH₂Ph), 72 (84, CHMeNMe₂), 56 (54, Fe).

IR (neat), 3090-3000 (ring C-H stretch), 1490 (CH₂ scissoring of SCH₂), 1000 (unsubstituted Cp stretch), 456 cm⁻¹ (asymmetric ring-Fe stretch).

¹H NMR (δ ppm), 7.18 (m, 5H, Ph); 4.20 (m, 1H, H₃, H₄, H₅; 4.15 (m, 1H, H₃, H₄, H₅); 4.11 (m, 1H, H₄, H₅); 4.06 (s, 5H, Cp); 4.0 (q, J = 7.0 Hz, 1H, N<u>CH</u>Me); 3.90 (m, 2H, SCH₂); 2.21 (s, 6H, NMe₂); 1.38 (d, J = 6.8 Hz, 3H, CH<u>Me</u>).

 13 C NMR (δ ppm), 138.9 (s); 129.1(d), 128.3(d), 126.7 (d, Ph), 79.3, 74.5, 71.6,

69.99 (d, Cp), 67.99, 67.03, 56.4 (d, <u>C</u>HMe), 41.45 (t, S<u>C</u>H₂), 39.95 (q, NMe₂), 10.88 (q, CH<u>Me</u>).

Anal. Calcd. for C₂₁H₂₅FeNS: C, 66.49; H, 6.60.

Found: C, 66.52, H, 6.65.

(R,S)-1-(1-Dimethylaminoethyl)-2-(p-tolyl)thioferrocene (56, R = p-tolyl).

The amine (R)-7 (0.5 g, 1.95 mmol) was dissolved in 30 mL dry ether and placed in a 100 mL round-bottomed schlenk flask equipped with a side arm and rubber septum. The suspension was cooled to -70° C and 0.8 mL (2.14 mmol) of 2.7 M n-BuLi was added slowly via a syringe. The orange suspension was allowed to reach room temperature and stirred overnight. Then p-tolyl disulfide (0.48 g, 1.94 mmol), dissolved in 30 mL warm hexane, was added dropwise via cannula to the orange suspension at -70°C. The reaction mixture was allowed to reach room temperature and stirred for 12 h under N₂. Saturated aqueous NaHCO₃ was added to the mixture and the resulting organic layer and ether extracts of the aqueous layer were combined. After drying and evaporation of solvent, the resulting product mixture was chromatographed on a silica gel column (hexane/CH₂Cl₂/ether). The product was obtained as yellow crystals upon recrystallization from hexane/CH₂Cl₂: yield 85%, mp 66-67°C. MS m/e (relative intensity), 379 (81, M⁺), 364 (27, M⁺-CH₃), 335 (52, M⁺--NMe₂), 334 (19, M⁺HNMe₂), 121 (90, FeCP), 72 (100, CHMeNMe₂), 56 (55, Fe).

¹H NMR (δ ppm), 7.11–6.94 (m, 4H, C₆H₄); 4.49 (m, 1H, H₃, H₄, H₅); 4.30 (m, 1H, H₃, H₄, H₅); 4.25 (m, 1H, H₃, H₄, H₅); 4.15 (S, 5H, Cp); 3.86 (q, J = 7.0 Hz, 1H, NC<u>H</u>Me); 2.24 (s, 3H CH₃Ph); 1.94 (s, 6H, NMe₂), 1.46 (d, J = 7.0 Hz, 3H, NCHCH₃).

¹³C NMR (δ ppm), 138.0 (s, substituted phenyl C); 135.2 (s, para substituted phenyl C); 129.6 (d, J = 103.0 Hz, phenyl C); 128.2 (d, J = 106.2 Hz, phenyl

C); 94.3 (s, C₂); 77.9 (s, C₁); 76.0 (d, J = 97.0 Hz, C₃, C₄, C₅); 70.9 (d, J = 92.2 Hz, Cp); 69.1 (d, J = 93.2 Hz, C₃, C₄, C₅); 68.7 (d, J = 94.2 Hz, C₃, C₄, C₅); 56.6 (d, J = 70.0 Hz, N<u>C</u>HMe); 40.4 (q, J = 50.0 Hz, NMe₂); 20.9 (q, J = 51.0 Hz, <u>C</u>H₃-Ph); 12.7 (q, J = 43.3 Hz, NCH<u>C</u>H₃). Anal. Calcd. for C₂₁H₂₅FeNS: C, 66.49; H, 6.60. Found: C, 66.25; H, 6.82.

$(\underline{\mathbf{R}},\underline{\mathbf{S}})$ -1-(1-Dimethylaminoethyl)-2-(4-chlorophenyl)thioferrocene (57, \mathbf{R} = 4-chlorophenyl).

The amine (R)-7 (1.0 g, 3.89 mmol) was dissolved in 50 mL dry CH_2Cl_2 and placed in a 200 mL round-bottomed schlenk flask equipped with a side arm and rubber septum. The solution was cooled to -70° C and 1.6 mL (4.28 mmol) of 2.7 M n-BuLi was added slowly via a syringe. The orange solution was allowed to reach room temperature and stirred overnight under N_2 . Then 4-chlorophenyl disulfide (1.12 g, 3.9 mmol), dissolved in 50 mL dry CH_2Cl_2 , was added dropwise via cannula to the solution at -70° C. The reaction mixture was allowed to reach room temperature and stirred for 12 h under N₂. Saturated aqueous NaHCO₃ was added and the resulting organic layer and ether extracts of the aqueous layer were combined. After drying and evaporation of solvent, the resulting product mixture was chormatographed on a silica gel column (hexane/ether). The product was obtained as yellowish orange crystals upon recrystallization from CH₂Cl₂/petroleum ether: yield 72%, mp 97-98°C. MS m/e (relative intensity), 399.5 (21, M⁺), 355 (27, M⁺-NMe₂), 354 (20, M⁺-HNMe₂, 143 (7, S-4-chlorophenyl), 121 (75, FeCp), 72 (100, HCMeNMe₂), 56 (55, Fe), 44 (34, NMe₂).

IR (KBr pellet), 3100-3050 (ring C-H stretch), 2970, 2930, 2820 (alkyl C-H stretch), 1575 (phenyl C-C stretch), 1185 (C-N stretch), 1001 (unsubstituted Cp stretch), 470 cm⁻¹ (asymmetric ring-Fe stretch).

¹H NMR (δ ppm), 7.12-7.04 (m, 4H, C₆H₄); 4.47-4.25 (m, 3H, H₃, H₄, H₅); 4.17 (s, 5H, Cp), 3.87 (q, J = 7.0 Hz, 1H, NC<u>H</u>Me); 1.92 (s, 6H, NMe₂); 1.40 (d, J = 7.0 Hz, 3H, NCHC<u>H₃</u>). ¹³C NMR (δ ppm), 141.0 (s, substituted phenyl C); 130.5 (s, p-phenyl C); 128.8 (d, J = 105.0 Hz, phenyl C); 128.8 (d, J = 105.3 Hz, phenyl C); 95.0 (s, C₂); 76.2 (d, C₃, C₄, C₅); 76.1 (s, C₁); 70.8 (d, J = 90.0 Hz, Cp); 69.4 (d, C₃, C₄, C₅); 69.0 (d, C₃, C₄, C₅); 56.5 (d, J = 66.0 Hz, N<u>C</u>H); 39.8 (q, J = 48.5 Hz,

NMe₂),; 11.0 (q, NCH<u>C</u>H₃).

B. Preparation of Metal Complexes

The complexes (<u>R</u>,<u>S</u>)-C₅H₅Fe(C₅H₃-1-CHMeNMe₂-2-SR)MCl₂ where R = Me, i-Pr, n-Pr, i-Bu, Ph, p-tolyl, 4-chlorophenyl; M = Pd, Pt, were prepared from benzene solutions of the appropriate (PhCN)₂MCl₂⁷⁹ species and a slight excess of the ferrocenylsulfide ligand in an approximate 1:1.1 molar ratio. The reaction mixture was stirred for 10 h in the case of Pd complexes, and for a week in the case of Pt complexes. The resulting precipitates were filtered, washed with benzene, then with petroleum ether, and recrystallized from $CH_2Cl_2/$ hexane by slow evaporation.

$Dichloro[(\underline{R})-1-(\underline{S})-2-Methylthioferrocenylethyldimethylamine]-palladium(II)-58$

Deep purple needles decomposed at 162-164°C.

¹H NMR (δ ppm), 4.51 (m, 1H, H₃, H₄, H₅); 4.40 (m, 2H, H₃, H₄, H₅); 4.23 (s, 5H, Cp); 3.87 (q, J = 6.8 Hz, 1H, NCHMe); 3.21 (s, 3H NMe₂); 2.70 (s, 3H, SMe); 2.31 (s, 3H, NMe₂); 1.55 (d, 3H, NCHC<u>H₃</u>). MS m/e (relative intensity), 303 (2, M⁺-PdCl₂), 258 (100, M⁺-PdCl₂-HNMe₂), 121 (34, FeCp), 56 (16, Fe). Anal. Calcd. for C₁₅H₂₁FeNSPdCl₂: C, 37.47; H, 4.37. Found: C, 36.43; H, 4.31.

$Dichloro[(\underline{R})-1-(\underline{S})-2-isopropylthioferrocenylethyldimethylamine]-palladium(II)-\underline{59}.$

Deep brown crystals decomposed at 151-153°C.

¹H NMR (δ ppm), 4.63 (m, 1H, H₃, H₄, H₅); 4.48 (m, 2H, H₃, H₄, H₅); 4.27

(s, 5H, Cp); 3.88 (m, 1H, SCHMe₂); 3.80 (q, J = 7.0 Hz, 1H, NCHMe); 3.17 (s,

3H, NMe₂), 2.24 (s, 3H, NMe₂); 1.93 (d,
$$J = 7.0$$
 Hz, NCHCH₃); 1.75 (d, $J =$

7.0 Hz, 3H, β CH₃); 1.53 (d, J = 7.0 Hz, 3H, β CH₃).

IR (KBr pellet), 493 (b), 460 (Sh, Pd-N stretch), 320 (b, Pd-Cl or Pd-S stretch);

 300 cm^{-1} (b, Pd-Cl or Pd-S stretch).

Anal. Calcd. for C₁₇H₂₅FeNSPdCl₂: C, 40.15, H, 4.95.

Found: C, 39.90; H, 4.19.

$Dichlor[(\underline{R})-1-(\underline{S})-2-propylthioferrocenylethyldimethylamine]-palladium(II)-\underline{60}$

Deep brown crystals decomposed at 162-164°C.

¹H NMR (δ ppm), 4.49 (m, 1H, H₃, H₄, H₅); 4.40 (m, 2H, H₃, H₄, H₅); 4.21 (s, 5H, Cp); 3.86 (q, J = 6.8 Hz, 1H, NC<u>H</u>Me); 3.57 (m, 1H, SCH₂); 3.05 (m, 1H, SCH₂); 3.19 (s, 3H, NMe₂); 2.30 (s, 3H, NMe₂); 2.24 (m, 1H, CH₂); 2.03 (m, 1H, β CH₂); 1.52 (d, J = 6.8 Hz, 3H, NCHC<u>H₃</u>); 1.17 (t, J = 7.0 Hz, 3H, Y CH₃).

IR (KBr pellet), 465 (sh, Pd-N stretch), 322 cm^{-1} (b, Pd-Cl or Pd-S stretch).

Dichloro[(<u>R</u>)-1-(<u>S</u>)-2-isobutylthioferrocenyl ethyldimethylamine]-palladium(II)--61.

Dark brown crystals decomposed at 144-145°C.

¹H NMR (δ ppm), 4.44 (m, 1H, H₃, H₄, H₅); 4.39 (m, 2H, H₃, H₄, H₅); 4.21 (s, 5H, Cp); 3.83 (q, J = 7.0 Hz, 1H, NC<u>H</u>Me); 3.67 (d, 1H, SCH₂); 3.19 (s, 3H, NMe₂); 2.82 (d, 1H, SCH₂); 2.37 (m, 1H, β CH); 2.33 (s, 3H, NMe₂); 1.52 (d, J = 7.0 Hz, 3H, NCHC<u>H₃</u>); 1.20 (d, J = 7.0 Hz, 3H, γ CH₃); 1.18 (d, J = 7.0 Hz, 3H, γ CH₃).

¹³C NMR (δ ppm), 80.2 (s, C₂); 71.0 (d, C₃, C₄, C₅); 68.2 (d, C₃, C₄, C₅); 67.8 (d, C₃, C₄, C₅); 64.5 (s, C₁); 63.2 (d, NCH); 50.1 (t, SCH₂); 50.1 (q, NMe₂); 41.0 (q, NMe₂); 27.5 (d); 22.3 (q, γ CH₃); 21.4 (q, γ CH₃); 10 (q, NCH<u>C</u>H₃). Anal. Calcd. for C₁₈H₂₇FeNSPdCl₂: C, 41.37; H, 5.21. Found: C, 41.10; H, 5.15.

, , ,

Dichloro[(<u>R</u>)-1-(<u>S</u>)-2-phenylthioferrocenylethyldimethylamine]-palladium(II)-<u>62</u>.

Greenish black crystals decomposed at 165-166°C.

¹H NMR (δ ppm), 8.00-7.50 (m, 5H, C₆H₅); 4.36 (m, 1H, H₃, H₄, H₅); 4.25 (m, 1H, H₃, H₄, H₅); 4.10 (s, 5H, Cp); 4.03 (q, J = 6.8 Hz, 1H, HC<u>H</u>Me); 4.02 (m, 1H, H₃, H₄, H₅); 3.28 (s, 3H, NMe₂); 2.36 (s, 3H, NMe₂); 1.52 (d, J = 6.8 Hz, 3H, NCHC<u>H₃</u>).

IR (KBr pellet), 482 (sh), 443, 323 (b, Pd-Cl or Pd-S stretch), 298 cm⁻¹ (s, Pd-Cl or Pd-S stretch).

Anal. Calcd. for C₂₀H₂₃FeNSPdCl₂: C, 44.25; H, 4.24.

Found: C, 44.18, H, 3.96.

Dichloro $((\underline{R})-1-(\underline{S})-2$ -paratolythioferrocenylethyldimethylamine]-palladium(II)--63.

Dark brown needles decomposed at 158-159°C.

¹H NMR (δ ppm), 7.80-7.28 (m, 4H, C₆H₄); 4.33 (m, 1H, H₃, H₄, H₅); 4.21 (m, 2H, H₃, H₄, H₅); 4.00 (s, 5H, Cp); 3.96 (q, J = 7.0 Hz, 1H, NC<u>H</u>CH₃); 3.16 (s, 3H, NMe₂); 2.36 (s, 3H, para CH₃); 2.22 (s, 3H, NMe₂); 1.44 (d, J = 7.0 Hz, 3H, NCHC<u>H₃</u>).

IR (Nujol) 550, 500 (b, asymmetric ring tilt), 460 (sh, Pd-N stretch), 330 (sh, Pd-Cl or Pd-S stretch), 297 cm⁻¹ (m, Pd-Cl or Pd-S stretch).

 $Dichloro[(\underline{R})-1-(\underline{S})-2-(4-chlorophenyl)thioferrocenylethyl-dimethylamine]pal-ladium(II)-64.$

Greenish brown powder decomposed at 198-200°C.

¹H NMR (δ ppm), 8.04-7.55 (m, 4H, C₆H₄); 4.68 (m, 1H, C₃, C₄, C₅); 4.50

(m, 2H, C₃, C₄, C₅); 4.21 (q, J = 6.8 Hz, 1H, NC<u>H</u>Me); 4.12 (s, 5H, Cp); 3.18

(s, 3H, NMe₂); 2.24 (s, 3H, NMe₂); 1.50 (d, J = 7.0 Hz, 3H, NCHCH₃).

Dichloro[(<u>R</u>)-1-(<u>S</u>)-2-(4-chlorophenyl)thioferrocenylethyldimethylamine]pla-tinum(II)-65.

Yellow flakes decomposed at 218-220°C.

¹H NMR (δ ppm), 7.40-7.22 (m, 4H, C₆H₄); 4.5-4.2 (m, 3H, H₃, H₄, H₅); 4.13 (s, 5H, Cp); 3.88 (q, 1H, NC<u>H</u>Me); 3.18 (s, 3H, NMe₂); 2.25 (s, 3H, NMe₂); 1.45 (d, 3H, NCH<u>Me</u>).

IR (KBr pellet), 4.58 (sh, Pt-N), 336 cm⁻¹ (sh, Pt-Cl or Pt-S), 320 cm⁻¹ (W,Pt-Cl). Anal. Calcd. for $C_{20}H_{22}FeNSPtCl_3$: C, 36.06; H, 3.31.

Found: C, 36.29; H, 4.22.

(R,S)-1-(1-Dimethylaminoethyl)-2-(dimethyldithiocarbamate)-ferrocene(66).

A 2.7 <u>M</u> solution <u>n</u>-BuLi in hexane (1.6 mL, 4.3 mmol) was slowly added via a syringe to a solution of (<u>R</u>)-1-(dimethylamino)-ethylferrocene (1.0 g, 3.9 mmol) in 50 mL dry diethyl ether at -78°C. The solution was allowed to reach room temperature and stirred for an additional 12 h water N₂. Tetramethylthiuram disulfide (0.94 g, 3.9 mmol) in 60 mL of benzene was added via cannula to the orange solution that had been cooled to -78°C. The solution was allowed to reach room temperature and was stirred overnight, and then 40 mL saturated aqueous NaHCO₃ added to the dark brown solution. The resulting organic layer and ether extracts from the aqueous layer were combined, washed with cold water and dried over anhydrous Na₂SO₄. Evaporation of the solvent gave a dark brown product mixture that was chromatographed on a silica gel column (hexane/benzene/ether/methanol). The product was recrystallized from $CH_2Cl_2/-hexane$ to give yellowish orange crystals: yield 82.2%, mp 103-105°C. MS m/e (relative intensity), 376 (61,M⁺), 311 (33, M⁺-Cp), 287 (20), 256 (100, M⁺-SCSNMe_2), 255 (19, M⁺-FeCp), 241 (93, M⁺-SCSNMe_2-Me), 121 (3, FeCp), 88 (52, CSNMe_2), 72 (11, CHMeNMe_2). IR (KBr pellet), 2980, 2940, 2780, 1495 cm⁻¹. ¹H NMR (δ ppm) at 22°C; 4.63 (dd, 1H, H₃, H₅); 4.46 (t, 1H, H₄); 4.40 (dd, 1H, H₃, H₄); 4.15 (s, 5H, Cp); 3.71 (q, J = 7.0 Hz, 1H, NC<u>H</u>Me); 3.50 (s, 6H, NMe₂); 2.10 (s, 6H, NMe₂); 1.52 (d, J = 7.0 Hz, 3H, NCHC<u>H₃</u>). ¹³C NMR (δ ppm) at 27°C; 198.9 (s, CS); 91.7 (s, C₁), 76.2 (d, C₃, C₄, C₅); 74.9 (s, C₂), 69.9 (s, Cp); 69.6 (d, C₃, C₄, C₅) 68.6 (d); 68.4 (s); 55.6 (t, N<u>C</u>HMe); 40.8 (q, NMe₂), 18.0 (q, NCH<u>C</u>H₃). Anal. Calcd. for C₁₇H₂₄FeN₂S₂: C, 54.25; H, 6.38.

Found: C, 53.62; H, 6.63.

(R,S)-1-(1-Dimethylaminoethyl)-2-(diethyldithiocarbamate)-ferrocene(67).

A 2.5 <u>M</u> solution <u>n</u>-BuLi in hexane (1.0 mL, 2.57 mmol), was slowly added via a syringe to a solution of (<u>R</u>)-1-(dimethylamino)-ethylferrocene (0.65 g, 2.57 mmol) in 30 mL dry diethyl ether at -78°C. The solution was allowed to reach room temperature and stirred for an additional 12 h under N₂. the solution was then cooled to -78°C and tetraethylthiuram disulfide (0.8 g, 2.7 mmol) in 35 mL toluene was added. The solution was stirred overnight at room temperature and 30 mL saturated aqueous NaHCO₃ added. The resulting organic layer and ether extracts from the aqueous layer were combined, washed with cold water and dried. Evaporation of the solvent gave a brown product mixture that was chromatographed on a silica gel column (hexane/benzene/ether/methanol). The product was recrystallized from CH₂Cl/hexane to give brown crystals, mp 82-85°C. MS m/e (relative intensity), 404 (2, M^+) 297 (16), 213 (11), 148, (12, SCSNEt₂), 116 (100, CSNEt₂), 72 (2, NEt₂).

IR (KBr Nujol) 1498 cm^{-1} .

¹H NMR (δ ppm) at 27°C, 4.60 (dd, 1H, H₃, H₅); 4.48 (t, 1H, H₄); 4.40 (dd, 1H, H₃, H₅); 4.12 (s, 5H, Cp); 3.96 (q, J = 7.0 Hz, 2H, CH₂CH₃); 3.82 (q, J = 7.0 Hz, 2H, CH₂CH₃); 3.63 (q, J = 7.0 Hz, 1H, NCHMe); 2.15 (s, 6H, NMe₂); 1.46 (d, 3H, NCHCH₃); 1.3-1.42 (tt, 6H, carbamate CH₃). ¹³C NMR (δ ppm); 197.3 (s, CS); 86.6 (s, C₁); 86.5; 77.5; 76.5, 68.6 (d, Cp); 67.8 (C₃, C₄, C₅); 67.4 (d, NCHMe); 66.6; 66.4; 57.9; 51.0 (t, NCH₂); 46.8 (t, carbamate CH₂); 39.9; 15.2 (q, NCHCH₃); 12.9 (q, carbamate CH₃); 10.0 (q, carbamate CH₃).

C. Catalytic Applications of Complexes

(i) Asymmetric Grignard Cross-Coupling Reactions

The cross-coupling reactions were carried out in essentially the same manner as was previously reported.⁶⁷ Since the optical rotation of the coupling product (4-phenyl-1-pentene) was strongly affected by small impurities,⁷⁰ in addition racemization of products always occurred, it was difficult to determine the optical purity of the product by use of polarimeter. The alkene was thus converted into the methyl ester, of which the enantiomeric purity was determined by ¹H NMR spectroscopy in the presence of a chiral shift reagent, Eu(dcm)₃.⁸² Detailed procedures for cross-coupling reactions and conversion of 4-phenyl-1--pentene to methyl 3-phenyl-butyrate follow.

Grignard cross-coupling reaction of allylmagnesium chloride to 4-phenyl-1pentene using complex <u>58</u>, <u>59</u>, <u>62</u>, <u>63</u>, or <u>64</u>.

The catalyst (0.0499 mmol) was placed in a 100 mL round-bottomed schlenk flask equipped with a stirring bar and a septum. The vessel was evacuated

and filled with Ar several times. After being cooled to -78° C, the reaction vessel was charged with 1.41 g (10.0 mmol) 1-phenylethyl chloride in 20 mL dry ether and stirred for 2 h at room temperature before addition of allylmagnesium chloride (20 mmol, 10 mL of a 2 <u>M</u> solution in THF) via syringe at -78° C. The reaction mixture was allowed to warm to 0°, stirred for 40 h, and hydrolyzed with 10% HCl. The organic layer and ether extracts from the aqueous layer were combined, washed with saturated NaHCO₃ solution and water, and dried over Na₂SO₄. Evaporation of solvent and chromatography on a silica gel column (hexane/CH₂Cl₂) gave 93 to 98.5% of 4-phenyl-1-pentene. ¹H NMR (δ ppm) 1.25 (d, 3H, CH₃), 2.35 (m, 2H, CH₂), 2.80 (m, 1H, C<u>H</u>CH₃), 5.00 (m, 2H, CH=C<u>H₂), 5.70 (m, 1H, CH</u>=CH₂), 7.25 (m, 5H, Ph); Lit.^{83 1}H NMR (ppm) 1.24 (d, 3H, CH₃), 2.32 (m, 2H, CH₂), 2.75 (sex, 1H, C<u>H</u>CH₃), 4.80 (s, 1H, CH=<u>CH₂</u>), 4.92 (split d, 1H, CH=CH₂), 5.52 (m, 1H, C<u>H</u>-CH₂), 7.0 (5H, Ph); MS m/e (relative intensity), 41 (5, CH₂CH=CH₂), 77 (15, C₆H₅), 105 (100, PhCHCH₃), 146 (15, M⁺). Results are shown in Table 20.

Conversion of 4-phenyl-1-pentene to methyl 3-phenylbutyrate

The reported precedure⁸⁴ for oxidation of 3-phenyl-1-butene was followed. To a solution of 4-phenyl-1-pentene (0.453 g, 3.1 mmol) in 80 mL <u>tert</u>-butyl alcohol were added a solution of 1.24 g (9.0 mmol) K_2CO_3 in 60 mL of water and a solution of 5.13 g (24 mmol) of sodium periodate and 0.63 g (4.0 mmol) of KMnO₄ in 60 mL of water. The solution was adjusted to pH 8.5 with 2N aqueous NaOH and was stirred overnight. After <u>tert</u>-butyl alcohol was removed under reduced pressure, the aqueous solution was acidified with concentrated HCl to pH 2.5, and sodium bisulfite was added until the solution became off-white. The solution was extracted with ether and the extracts were dried over Na₂SO₄, concentrated and distilled [120-135°C (2mm)]. A solution of the acid thus obtained (0.295 g, 1.8 mmol) and p-toulenesulfonic acid (40 mg) in 10 mL of methanol was refluxed for 3 h. The solvent was removed under reduced pressure, and the residue was taken up in ether. The solution was washed with 10% aqueous sodium hydroxide dried over anhydrous Na₂SO₄, and evaporated. The residue was distilled [110-130°C (2mm)] to give about 72-85% of methyl 3-phenyl-butyrate; ¹H NMR (δ ppm), 1.29 (d, J = 7.0 Hz, 3H, CHCH₃), 2.53 (dd, J_{gem} = 15 Hz, J_{vic} = 8 Hz, 1H, CH₂CH), 2.63 (dd, J_{gem} = 15 Hz, J_{vic} = 8 Hz, 1H, CH₂CH), 3.28 (sex, J = 7.0 Hz, 1H, CH₂CHPhMe), 3.61 (s, 3H, OCH₃), 7.16-7.45 (m, 5H, Ph). ¹H NMR spectroscopy with the chiral shift reagent Eu(dcm)₃ showed varying enantiomeric excess (e.e) values as the catalyst was varied (results in Table 20).

(ii) Selective Hydrogenation of Conjugated Dienes to Alkenes with <u>58</u>, 62-65.

In all the cases studied, a period of induction was observed except when additives were introduced. The induction time was dependent on the catalyst.

Hydrogenation of 1,3-cyclooctadiene with 58, 62-64 in acetone at 67 psi.

The complex $(2.0 \times 10^{-5} \text{ mol})$, acetone (9.0 mL) and 1,3 cyclooctadiene (0.91 mL, 7.45 x 10^{-3} mol) were added to a 100 mL pressure bottle with a pressure gauge and stirring bar. The bottle was evacuated and filled several times with H₂ to a pressure of 67 psi. After an induction period, uptake of H₂ began and slowed after absorption of about 5.5 x 10^{-3} mol of H₂. The initial turnover rate, product analysis at the end of reaction, and the calculated selectivity are shown in Table 17.

Solvent Effects on Hydrogenation of 1,3-Cyclohexadiene at Room Temperature

The complex (2.0 x 10^{-5} mol), 1,3-cyclohexadiene (7.45 x 10^{-3} mol) and 9.0 mL of various solvents (acetone, CCl₄/acetone, 2:1 and 1:1, and CCl₄)

were added to a 100 mL pressure bottle with a pressure gauge and stirring bar. The bottle was evacuated and filled several times with H_2 to a predetermined pressure. The hydrogenation was dependent on the chosen solvent. Results are shown in Table 18.

X-ray Structure Determination of dichloro[(\underline{R} -1-(\underline{S})-2-Methylthioferrocenylethyldimethylamine]palladium(II)-58.

Data Collection

A deep purpule pyramidal crystal of dichloro[(<u>R</u>)-1-(<u>S</u>)-2-Methylthioferrocenylethyldimethylamine]palladium(II), $C_{15}H_{21}Cl_2FePdNS$, having approximate dimensions of 0.20 x 0.25 x 0.45 mm, was mounted in a glass capillary in a random orientation. Preliminary examination and data collection were performed with MoK_a radiation ($\lambda = 0.71073$ A) on a Nicolet P3F computer controlled 4-circle diffractometer equipped with a graphite crystal incident beam monochromator.

Cell constants and an orientation matrix for data collection were obtained from least-squares refinement, using the setting angles of 20 reflections in the range $35 < 2.0 < 30^{\circ}$. The orthorhombic cell parameters and calculated volume are: a = 9.226(3), b = 12.219(4), c = 15.448(5) A, V = 1741.5(8) A³. For Z = 4 and F.W. = 480.56 the calculated density is 1.83 g/cm³. From the systematic absences of:

and from subsequent least-squares refinement, the space group was determined to be $P2_12_12_1$ (# 19).

The data were collected at a temperature of $23(1)^{\circ}$ C using the 2theta-theta scan technique. The scan rate varied from 4 to 30 °/min (in 2 θ). The variable

scan rate allows rapid data collection for intense reflections where a fast scan rate is used and assures good counting statistics for weak reflections where a slow scan rate is used. Data were collected to a maximum 2θ of 60° . The scan range (in deg.) was determined as a function of 2θ to correct for the separation of the K_{α} doublet¹; the scan width was calculated as follows:

$$2\theta$$
 scan width = 2.00 (2θ (K_a 2) - (2θ (K_a 1))

The ratio of peak counting time to background counting time was 1:1. The diameter of the incident beam collimator was 1.0 mm and the crystal to detector distance was 19 cm.

Data Reduction

A total of 2937 reflections were collected, of which 2912 were unique and not systematically absent. As a check on crystal and electronic stability 3 representative reflections were measured every 45 reflections. The slope of the least-squares line through a plot of intensity versus time was -17(16)counts/hour which corresponds to a total loss in intensity of 0.3%. A linear decay correction was applied with correction factors on I ranging from 1.000 to 1.003 and with an average value of 1.002.

Lorentz and polarization corrections were applied to the data. The linear absorption coefficient is 22.7 cm⁻¹ for Mo K_a radiation. An empirical absorption correction based on a series of psi-scans was applied to the data. Relative transmission coefficients ranged from 0.892 to 0.999 with an average value of 0.959. A secondary extinction correction was applied.¹²⁸ The final coefficient, refined in least-squares, was -0.344 x 10⁻⁸ (in absolute units).

Structure Solution and Refinement

The structure was solved using the Patterson heavy-atom method which

revealed the position of the Pd atom. The remaining atoms were located in succeeding difference Fourier syntheses. Hydrogen atoms were located and their positions and isotropic thermal parameters were refined.

Scattering factors were taken from Cromer and Waber.¹²⁹ Anomalous dispersion effects were included in Fc;¹³⁰ the values for $\Delta f'$ and $\Delta f''$ were those of Cromer.¹ Only the 2175 reflections having intensities greater than 3.0 times their standard deviation were used in the refinements. The final cycle of refinement included 275 variable parameters and converged (largest parameter shift was 0.25 times) with unweighted and weighted agreement factors of:

R1 =
$$\Sigma$$
 || Fo | - | Fc || / Σ | Fo | = 0.029

R2 = SQRT (
$$\Sigma$$
 w (|Fo| - | Fc|)² / Σ w Fo²) = 0.029

The standard deviation of an observation of unit weight was 1.29. The standard deviation of an observation of unit weight was 1.29. The highest peak in the final difference Fourier had a height of 0.59 e/A³ with an estimated error based on σ F of 0.09.¹³¹ Plots of $\Sigma w(|Fo| - |Fc|)^2$ versus |Fo|, reflection order in data collection, sin θ/λ , and various classes of indices showed no unusual trends.

All calculations were performed on a VAX-11 computer using SDP-PLUS. 132

III. RESULTS AND DISCUSSION

RESULTS AND DISCUSSION

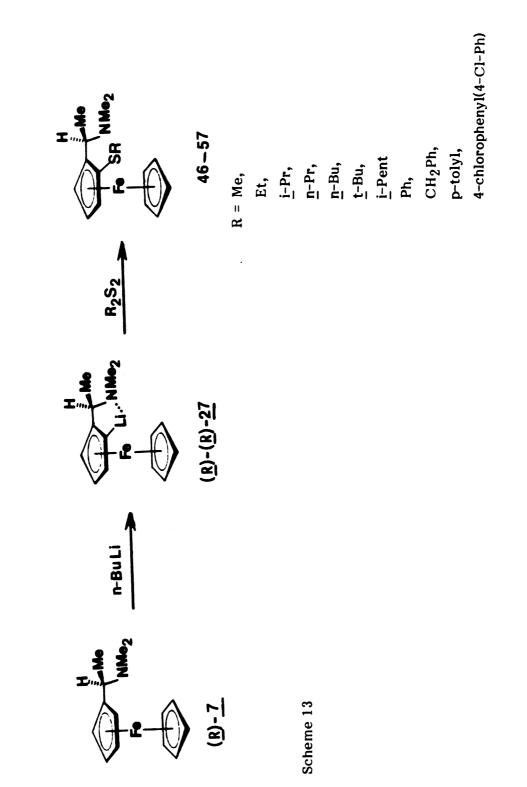
A. (R,S)-C5H5FeC5H3[CH(CH3)N(CH3)2][SR]

(R = Me, Et, i-Pr, n-Pr, n-Bu, i-Bu, t-Bu, Ph, CH₂Ph, i-Pent, p-toly, 4-Cl-Ph

There has been considerable interest in chiral ferrocenylphosphine ligands that possess planar chirality due to a 1,2-unsymmetrically substituted cyclopentadienyl ring and are highly effective as ligands in transition metal catalyzed asymmetric synthesis.^{85,86} Though few sulfide complexes have been used as ligands in catalysis, the preparation of several chiral ferrocenylsulfide complexes was undertaken so that possible catalytic applications to hydrogenation and asymmetric synthesis could be investigated.

Earlier results⁵³ obtained in the syntheses of ferroceny amine sulfides in our laboratory revealed poor yields (from 0.1% yield for phenyl derivative to 45% yield for ethyl derivative) and products were obtained as yellow powders, suggesting that products may be salts of the amine and not free ligands. To circumvent this problem, it was observed that it is necessary to deprotonate the product by washing with aqueous NaHCO₃ prior to final separation. This has eventually resulted in high yeilds in this work. Nesmeyanov has also reported that quaternary ammonium salts of the general formula $[C_5H_5FeC_5H_4CH_2N(CH_3)_2-CH_2R]X^-$, were prepared in high yields by the action of the corresponding alkyl halides on (dimethylamino-methyl)ferrocene even at low temperature.^{87,88} This factor will decrease the yield of the chiral ferrocenyl tertiary amine thioethers. To avoid the problem, we have consistently used dry ether as the solvent in the synthesis and not halogenated organic solvents (CH₂Cl₂, CHCl₃, CCl₄), even though the starting material is highly soluble in such solvents.

44


1. Preparation

A number of previously unknown chiral ferrocenylamine thioether ligands of the type $(R,S)-C_5H_5FeC_5H_3[CH(CH_3)N(CH_3)_2][SR]$ where R = Me, Et, i-Pr, n-Pr, n-Bu, i-Bu, t-Bu, i-Pent, Ph, CH₂Ph, p-toyl, 4-Cl-Ph, have been prepared in a general, high yield, one step synthesis shown in scheme 13. The starting material (R)-N.N-dimethyl-1-ferrocenyl ethylamine [(R)-7] was prepared from ferrocene according to Ugi's procedure⁷⁷ and was resolved by using (R)-(+)-tartaric acid. As illustrated by Ugi, 3^3 the (R)-amine [(R)-7], is stereoselectively lithiated by n-butyllithium to give 96% of the (R)-(R)-7. The (R)-(R) derivative is thought to be stabilized by the coordination of the adjacent nitrogen atom (in the side chain) to the lithium atom. The lithiated chiral ferrocene derivative is then treated with the appropriate disulfides to produce the product as (R)-(S)-amines. In some cases (like in preparation of the phenyl derivative), it may be necessary to reflux the reaction mixture before work-up. The chiral ferrocenyl-amine sulfide products (46-57) are usually deprotonated by washing with aqueous NaHCO₃ before separation by chromatography on alumina or silica gel column. It should be noted here that the chiral ferrocenylamine sulfide compounds 46-57 contain two elements of chirality. The (R) configuration refers to the asymmetric carbon while the (S) configuration refers to the planar chirality. The yields of these products are fairly high (ranging from 45% yield in the ethyl derivative to 85% yield in the p-tolyl derivative) basically due to the modified procedure adopted in this work.⁸⁷ The (R)-N,N-dimethyl-1-[(R)-2-lithioferrocenyl]ethylamine, [(R)-(R)-7], was not isolated here but rather was prepared fresh for each reaction.

2.¹H NMR

The 250 MHz ¹H NMR data for the chiral ferrocenylamine thioethers

45

	250 MHz ¹ h	250 MHz ¹ H NMR Data for (<u>R.S</u>)-C ₅ H ₅ FeC ₅ H ₃ [CH(CH ₃)N(CH ₃) ₂ [ISR] R = Me, Et, <u>i</u> -Pr, <u>n</u> -Pu, <u>t</u> -Bu, <u>t</u> -Bu, Ph, CH ₂ Ph, <u>i</u> -Pent,	<u>(R.S</u>)-C5H5Fe	C ₅ H ₃ [CH(CF	I ₃)N(CH ₃) ₂ ¥SF	t] R = Me, Et,	į-Pr, <u>n</u> -Pr, <u>n</u>	-Bu, <u>t</u> -Bu, Ph	, CH2Ph, <u>i</u> -Pe	ıt,		
		P-totyl, +-CFFIL.	CI-Frin. apec		opectra Obtaured un Coccity I mo at Noom Temperature: 0, ppm (4,112)	191 100011 16 0		(zu'e) mdd	SR			
Compound	£	C ₅ H ₃	C ₅ H ₅	NCH	NM2	NCCH ₃	Η¤	Нâ	ΥH	НŞ	CH(CH ₃) ₂ PhCH ₃	
*(<u>R</u>)- <u>7</u>		4.11	4.08 s	3.60 d (6,8)	2.09 s	1.46 d						
(<u>R</u> , <u>S</u>)- <u>46</u>		4.28 t ^a										
		4.18 mb.c										
		4.17 mb,c	4 .10 s	3.94 q (7)	2.13 s	1.40 d (7)	2 .30 s				47	
(<u>R</u> , <u>S</u>)- <u>47</u>		4.20 m	4.10 s	3.95 q (7)	2.10 s	1.35 d	2.60 q	1.15 t				
							2.75 q					
$(\underline{R},\underline{S})-\underline{48}$		4.33 t ^a									1.22 d (7)	
		4.21 mb.c									1.15 d (7)	
		4.17 mb,c	4. 09 s	4.00 q (7)	2.12 s	1.34 d (7)	3 .20 m					
(<u>R,S)-49</u>		4.32 t ⁸					2.58 q		0.95 t (7.1)			
		4.19 mb,c	4 .10 s	3.97 q (7)	2.12 s	1.36 d (7)	2.77 q	1.56 m				
		4.16 m ^{b,c}										

Table 2

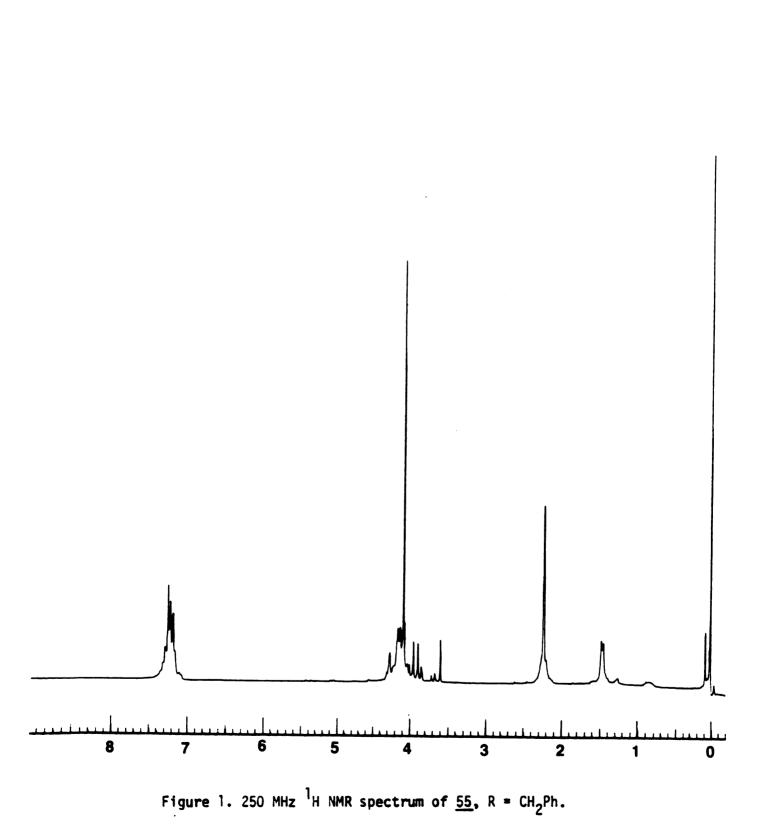
•

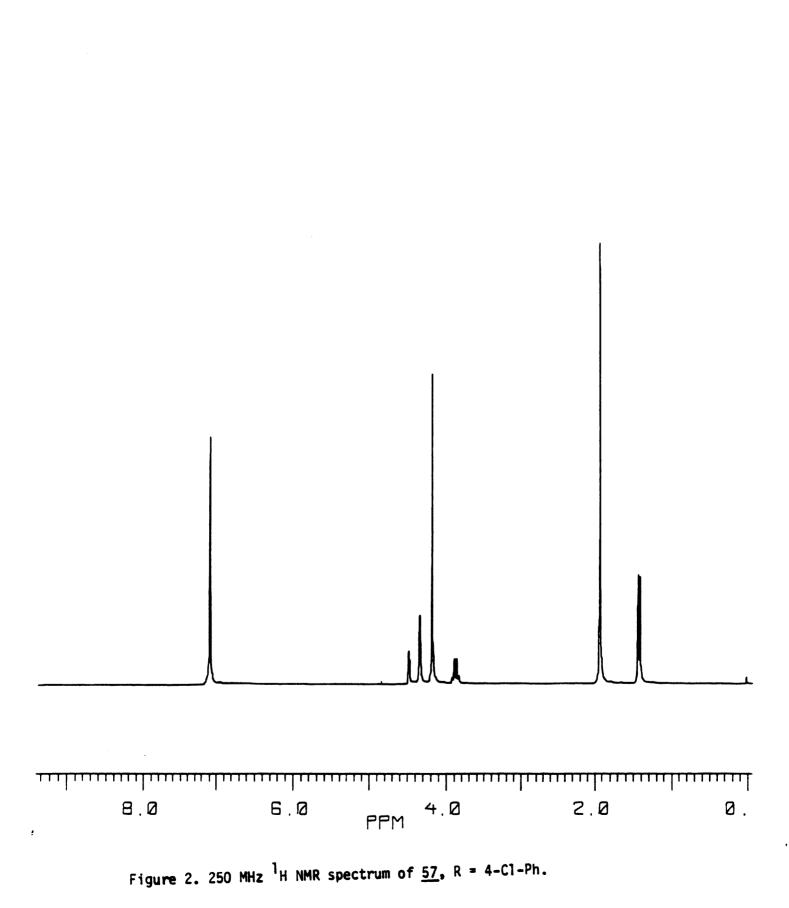
Table 2 continued

									SR		
Compound	£	C ₅ H ₃	C ₅ H ₅	NCH	NM ₂	NCCH ₃	Ha	H S	ΥH	βH	PhCH312 PhCH3
(<u>R</u> , <u>S</u>)- <u>50</u>		4.41 t ^B									
		4.21 mb.c	4 .08 s	3.88 q (6.9)	2.12 s	1.30 d (6.9)		1.24 s			
(<u>R</u> , <u>S</u>)- <u>51</u>		4.29 t ^a									
		4.17 mb.c					2 .72 d		0.99 d (7)		
		4.13 mb,c	4 .10 s	3 .97 q (7)	2.12 s	1.35 d (7)	2.47 d		0.93 d (7)		
(<u>R</u> , <u>S</u>)- <u>52</u>		4.31 t ⁸									
		4.18 mb.c					2.79 m				
		4.15 mb.c	4 .10 s	3.97 q (6.8)	2.12 s	1.36 d (6.8)	2.61 m	1.51 m	1.37 m	0.88 t	
(<u>R</u> , <u>S</u>)- <u>53</u>		4.31 t ^B					2.85 m			0.82-	0.82-
		4.20 mb.c									
		4.16 mb.c	4 .10 s	3.98 q (7)	2.10 s	1.35 d	2.63 m	1.71 m	1.45 m	ш 06.0	0.90m
(<u>R</u> , <u>S</u>)- <u>54</u>	7.25-	4.53 t ^B									
	7.05	4.42 ,b.c									
		4.30 mb.c	4 .18 s	3.85 q (7)	1.90 s	1.45 d (7)					

•

48


Table 2 continued


									SR		
Compound	£	C ₅ H ₃	C ₅ H ₅	NCH	NM2	NCCH ₃	н Н	B H	ΥH	6 H	CHCH312 PhCH3
(<u>R,S</u>) - <u>55</u>	7.18 m	4.20 t ^a 4.15 mb,c									
		4.11 m ^{b,c}	4. 06 s	4.0 q (7)	2.21 s	1.38 d (6.8)	3.90 m				
(<u>R</u> , <u>S</u>)- <u>56</u>	7.11-	4.49 t ^a									
	6.94	4.30									
		4.25 m ^{b, c}	4. 15 s	3.86 q (7)	1.94 s	1.46 d (7)					2.24 s
(<u>R</u> , <u>S</u>)- <u>57</u>	7.12-	4.47-									
	7.04 m	4.25 m	4 .17 S	3.87 q (7)	1.92	1.40 d (7)					
Note:	a = H ₃										
-	b = H4										
·	c = H5										

ligands (<u>46-57</u>) are given in Table 2. The ¹H NMR spectra of these compounds are typical of 1,2-unsymmetrically disubstituted ferrocenes in which one of the rings is unsubstituted. Rosenblum and Woodward⁸⁹ have shown that there is free rotation about the Fe-Cp axis in ferrocenes. The barrier to rotation in ferrocene is only about one-third that of the 2 methyl groups in ethane.⁹⁰ Consequently, the unsubstituted C_5H_5 ring appears as a singlet at 4.06-4.17 ppm region (see figures 1-4). Another striking feature of these spectra is the diastereotopic nature of the S-CH₂ protons. The 2 methylene protons appear at different positions with their appropriate multiplicity. Their splitting pattern is given in diagramatic form in Figure 5. In the case of the isopentyl derivative, (<u>R,S)-53</u> (Figure 3), the total number of peaks expected from the methylene protons should be $2(2^3) = 16$. However, the actual number observed was 15 due to overlap of the central peaks.

The upfield peaks (1.90-2.12 ppm) of NMe₂ in these compounds are due to the ring current effect. The inversion of the pyramidal N of NMe₂ is faster than the NMR time scale at room temperature, so the nitrogen methyls appear as singlet in these compounds. Assignments of the disubstituted ring protons H₃, H₄, and H₅ cannot be made with absolute certainty, since a number of ¹H NMR studies⁹¹⁻⁹³ have shown that a single substituent may deshield or shield positions 3 and 4, in any combination relative to ferrocene. However, tentative assignments for H₃, H₄, and H₅ have been given in Table 2 and deuteration studies may be necessary to make unambiguous assignments.

The 250 MHz ¹H NMR (<u>R-S</u>)-<u>55</u>, R = CH₂Ph is given in Figure 1. One point is striking here. The benzylic protons, although diastereotopic, this property was not observed in the ¹H NMR spectra because, the resonance due to the benzylic protons is partially obscurred probably, by a combination of the cyclopentadienyl and phenyl ring protons. In contrast, the diastereotopic nature

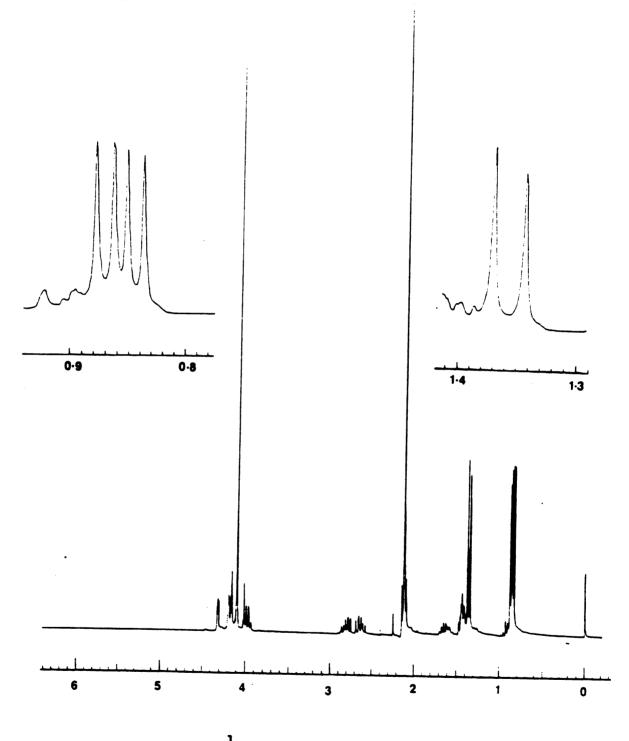


Figure 3. 250 MHz ¹H NMR spectrum of <u>53</u>, R = <u>i</u>-pentyl.

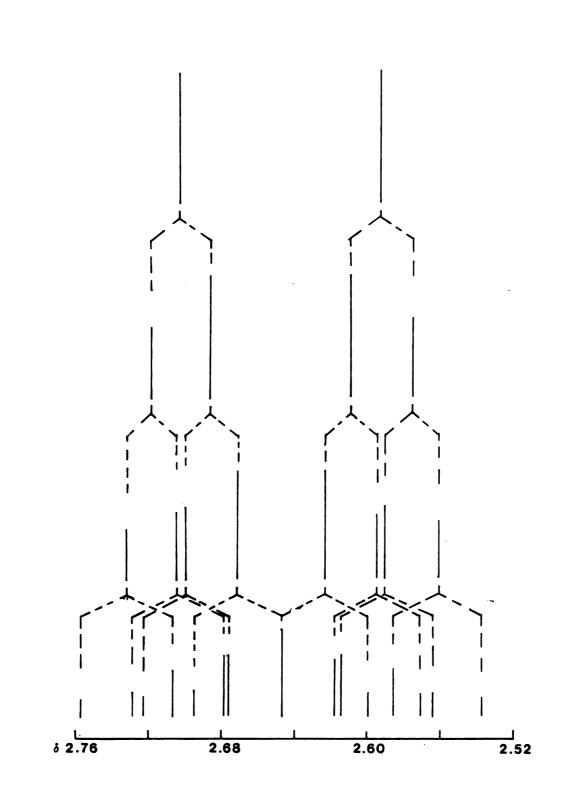


Figure 5 Splitting pattern of SCH_2 protons in 53, R = <u>i</u>-pentyl.

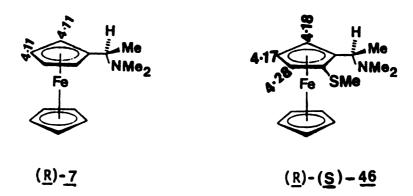


Figure 5B: The Chemical Shifts of Substituted Ring Protons (H₃, H₄, H₅) In $(\underline{R})-\underline{7}$ and $(\underline{R},\underline{S})-\underline{46}$

of the methylene protons in the ethyl derivative, $(\underline{R}-\underline{S})-\underline{47}$, were observed as two distinct quartets at 2.60 and 2.75 ppm. The methyl protons of the sulfide link gave an upfield triplet signal at 1.15 ppm as expected, while the methyl protons at the chiral carbon appeared as a doublet at 1.35 ppm. The appearance of a singlet peak at 4.10 ppm confirmed the presence of an unsubstituted cyclopentadienyl ring, while the multiplet peaks at 4.20 ppm accounted for the disubstituted Cp ring.

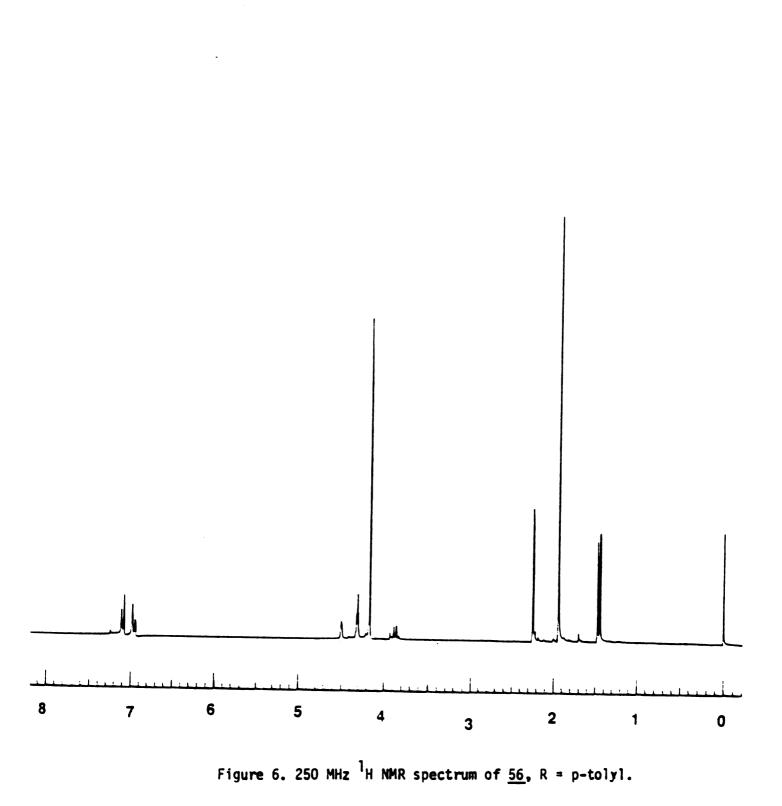
3. 13C NMR

 13 C NMR is a sensitive tool for measuring the electron density distribution on the cyclopentadienyl ring in ferrocene.⁴² Substituents on the ring induce screening of the nuclei in two different ways, one being due to the magnetic anisotropy of the substituent and the second to the electronic effect of the substitutent that consists of both resonance and inductive components.

The 13 C NMR data for the chiral ferrocenylamine thio ether ligands (<u>46-57</u>) are presented in Table 3. Koridze⁹⁴ has assigned the signals in methoxyferrocene on the basis of deuterium labelling studies. Since such labelling studies were not carried out in this work, most of the assignments here could be considered as tentative. However, the assignment of C₁ and C₂ in the 1,2-disubstituted cyclopentadienyl ring appear reasonable. C₂ reflects the inductive and field effects of the substituents (-SR) and exhibits the widest range of values of any of the ring carbons. The C₂ resonance in (<u>R,S)-56</u> (i.e. p-tolyl derivative) is shifted downfield by 26.1 ppm, relative to ferrocene (68.2 ppm⁹⁴), whereas the 4-chlorophenyl derivative, (<u>R,S)-57</u>, is deshielded by 24.9 ppm. the assignments of C₁ and the unsubstituted cyclopentadienyl ring are reasonable, but assignments of C₃, C₄ and C₅ are more difficult. In addition, it is incorrect to extrapolate ¹³C data to ¹H data. In some cases the chemical shift ordering is the same,

	NCCH3		14.8 q			13.1 q			10.6 q			12.0 q
-	PhMe 6 SC Y C											13.7 q
	8 C							22.6 q	23.8 q			22.9 t
	S					19.8 q			39.2 d			38.7 t
•	NMe ₂		40.2 q			40.5 q			39.9 q			40.2 q
 	NCH		57.8 d			56.1 d			55.8 d			55.9 d
	c3, c4, c5			71.0 d	67.3 d	66.5 d	75.2 d	67.8 d	66.7 d	73.3 d	67.4 d	66.5 d
, ,	C ₅ H ₅		67.7 d			69.9 d			69.9 d			6.9 d
	C		86.2 s			75.1 s			78.3 s			80.5 s
ı	C ₂ -C5 ^a C ₂	68.5 d	66.3 d			84.0 s			94.6 s			93.2 s
	£											
	Compound	• •(<u>R</u>)-7		(<u>R</u> , <u>S</u>)- <u>46</u>			(<u>R</u> , <u>S</u>)- <u>48</u>			(<u>R</u> , <u>S</u>)- <u>49</u>		

٠


Table 3

250 MHz ¹³C NMR Data for (<u>R,S</u>)-C₅H₅FeC₅H₃)CH(CH₃)N(CH₃)₂KSR] (<u>46-57</u>) in CDCl₃/TMS at Room Temperature: § ppm,

•

	C2-C5 ⁸ C2	C	C ₅ H ₅	C3, C4, C5	NCH	NMe2	SC	C	RhMe SC SC	NCCH3
				D 7.77					-	
				68.9 d						
6	95.5 s	77.8 s	70.8 d	68.2 d	55.9 d	39.9 q	45.9 s	31.7 q		9.3 q
				73.2 d						
				67.4 d					21.7 q	
93	93.2 s	80.8 s	69.9 d	66.5 d	55.9 d	4 0.2 q	45.9 t	28.4 d	22.3 q	11.8 q
				73.5 d						
				67.5 d					13.7 q ^b	
93.	93.5 s	80.5 s	69.9 d	66.5 d	55.9 d	4 0.2 q	36.4 t	31.8 t	21.9 t	11.9 q
			69.9 d	71.6 d						
				68.0 d						
				67.0 d	56.4 d	39.9 q	41.45 t			10.9 q
				76.0 d						
94.	94.3 s	s 6.77	P 6.07	69.1 d	56.6 d	40.4 q			20.9 q	12.7 q
				68.7 d						

Table 3 continued

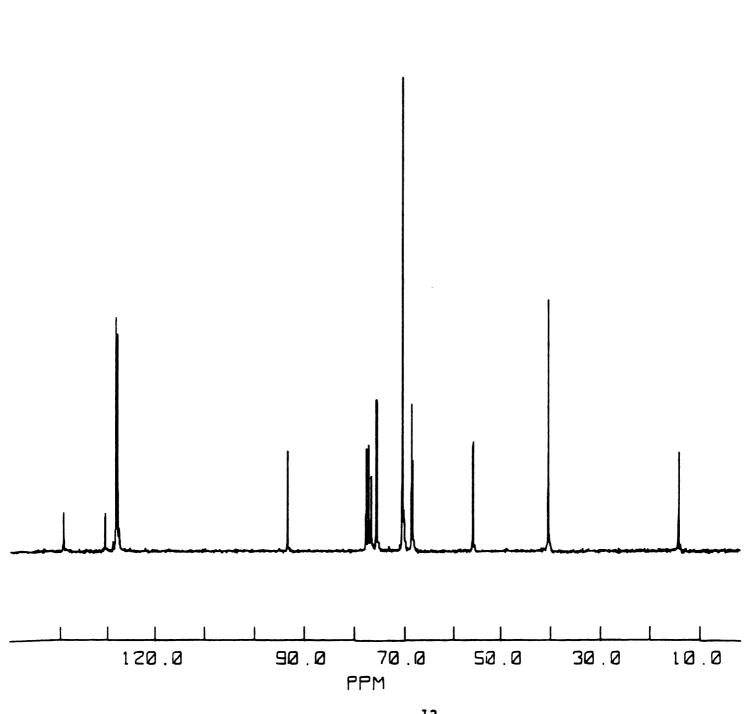


Figure 7. Gated decoupled 13C NMR spectrum of <u>57</u>,

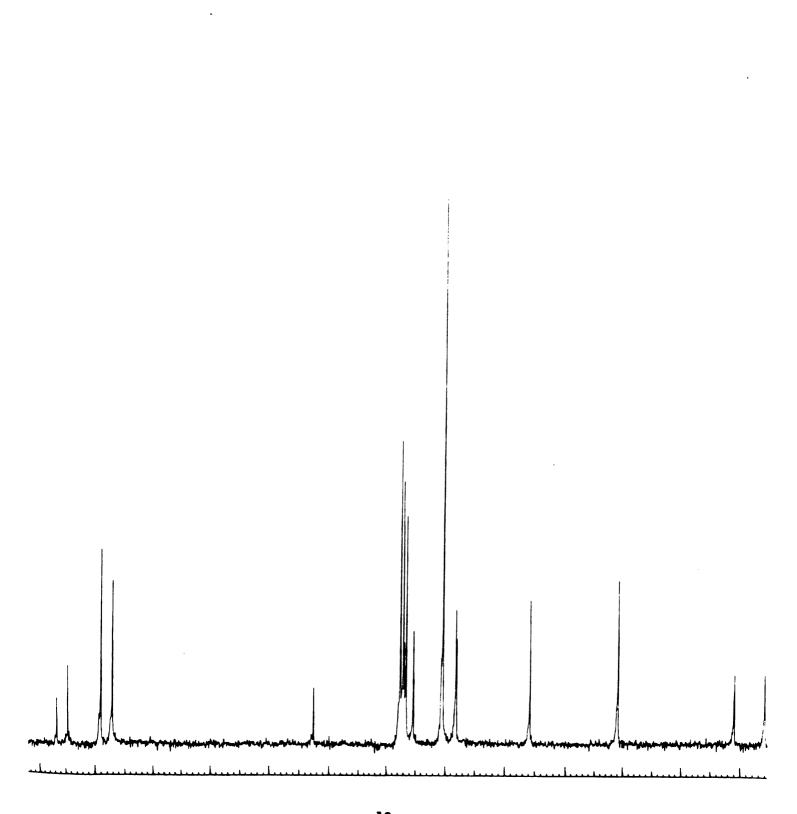


Figure 8. Gated decoupled ¹³C NMR spectrum of <u>56</u>.

but in ferrocenylaldehyde, for example, the carbon order is $C_3 > C_{2,95}$ while the proton order is $H_2 > H_3$.^{91-93, 96, 97}.

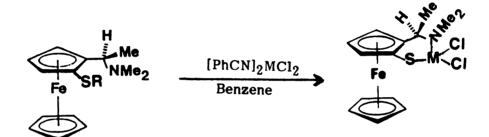
4. Infrared (IR) Spectra

As reported by Rosenblum,² the two most important peaks in the infrared spectra of ferrocenederivatives, in which one ring is unsubstituted, appear around 1000 and 1100 cm⁻¹. In all the chiral ferrocenylamine thioether ligands (<u>46-57</u>), peaks were observed in this region, thus confirming substitution in one ferrocenyl ring of these compounds. The IR data are shown in the experimental section. A general inspection of the IR data indicates that certain frequencies are common to all the chiral ferrocenylamine thioether compounds (<u>46-57</u>). These frequencies have been tentatively assigned by comparison with the vibrational spectra of ferrocene² and dimethylferrocene.⁹⁸

The high frequency infrared bands at $3100-2860 \text{ cm}^{-1}$ are assigned to C-H stretching frequencies. The strong absorption around $1450-1380 \text{ cm}^{-1}$ may be associated with alkyl C-H bend whereas the strong absorption at 1100-1050cm⁻¹ could be assigned to ring breathing modes. The broad band absorptions in the region of $500-450 \text{ cm}^{-1}$ may be associated with ring-metal vibrations such as an asymmetric ring-metal tilt and an asymmetric ring-metal stretch.

The mass spectral data (shown in the experimental section) reveal some important fragments such as M^+ , FeCp, C_5H_5 , HCMeNMe₂, vinylferrocene and M^+ -SR. In addition to these fragments, peaks consistent with the less abundant isotopes ⁵⁴Fe, ⁵⁷Fe, and ³⁴S were observed.

Cullen^{57,99} has determined the crystal structure of [(PPFA)Rh(NBD)]PF₆, where PPFA is (<u>R,S</u>)-1-(2-di-phenylphosphinoferrocenyl)ethyldimethylamine; NBD is norbornadiene, and concluded that the chiral ferrocenyl phosphine ligand coordinated to rhodium through both the phosphorous and nitrogen atoms. Since there is much interest in ligands which have both "hard" and "soft" properties, investigation of the chelation of the chiral ferrocenylamine sulfide, $(\underline{46}-\underline{57})$ with transition metals, such as palladium and platinum, forms the basis of interest in this work. In addition, the effectiveness of these chiral ligands in transition metal catalyzed asymmetric synthesis has been explored.


B. Palladium Complexes of (<u>R,S</u>)-C₅H₅FeC₅F₃[CHMeNMe₂][SR] (R = Me, <u>i</u>-Pr, <u>n</u>-Pr, <u>i</u>-Bu, Ph, p-tolyl, 4-Cl-Ph) and Platinum Complexes of (<u>R-S</u>)-C₅H₅FeC₅H₃-[CHMeNMe₂][S-4-Cl-Ph]


1. Preparation

Palladium and platinum complexes, $(\underline{58}-\underline{65})$, were made by allowing a benzene solution of the chiral ferrocenylamine sulfides, $(\underline{46}, \underline{48}, \underline{49}, \underline{51}, \underline{54}, \underline{56}, \underline{57})$, to react with bis(benzonitrile) adducts of palladium and platinum chloride salts (Scheme 14). The heterobimetallic complexes are insoluble in benzene: the chiral palladium ferrocenylamine sulfide complexes precipitated immediately while the platinum analog precipitated after being stirred for 8 days.

The palladium complexes are soluble in acetone, methylene chloride and chloroform, except the phenyl and tolyl derivatives which were only slightly soluble in these solvents. The platinum complex (57) is also soluble in these solvents. Analytically pure samples were obtained by the slow evaporation of the mixed solvent system, methylene chloride-petroleum ether.

Dichloro[(\underline{R}) -1- (\underline{S}) -2-methylthioferrocenylethyldimethyl-amine]palladium(11), (58), gave the best crystals as reflected in the elemental analysis and x-ray crystal structure.

		tso Mhe ¹ h De	nta for (<u>R</u> , <u>S</u>)C ₅ !	H ₅ PeC ₅ H ₃ (CHI	NeNMe₂)(SR)/h	ACl2Complexes	(<u>58-65</u>) in CDC	Cl ₃ /TMS at Roo	250 MHs ¹ H Data for (<u>R.S</u>)C ₅ H ₅ FeC ₅ H ₃ (CIIMeNMe ₂ XSR)/MCl ₂ Complexes (<u>58–65</u>) in CDCl ₃ /TMS at Room Temperature: 6 ppm	÷ 6 ppm	
Compound	X	£	C ₅ H ₃	C ₅ II5	NCH	SCII	N Me2	NCCII3	He	11 A	Ph-CH ₃ 6 CH ₃
8]	Pd		4.51 m				3.21 s				
			4.40	4.23 s	3.87 q	2.70 s	2.31 s	1.55 d			
<u>59</u>	ра		4.63 m				3.17 s		1.75 d		
			4.48 m	4.27 S	3. 80 q	3. 88 m	2.24 s	1.93 d	1.53 d		
09	Pd		4.49 m			3.57 m	3.19 s		2.24 m		
			4.40 m	4.21 s	3.86 q	3.05 m	2.30 s	1.52 d	2.03	1.17 t	
<u>61</u>	Pd		4.44 m			3.67 d	3.19 s			1.20 d	00
			4.39 m	4.21 s	3.83 q	2.82 d	2.33 s	1.52 d	2.37 d	1.18 d	
<u>62</u>	Pd	8.00-	4.36 m				3 .28 s				
		7.50 m	4.25 m								
			4.02 m	4.10 s	4.03 q		2.36	1.52 d			
<u>63</u>	Pd	7.80-	4.33 m				3.16 s				
		7.28 m	4.21 m	4.00 s	3.96 q		2 .22s	1.44 d			2.36 s
64	Pd	8.04-	4.68 m				3.18 s				
		7.55 m	4.50 m	4.12 5	4.21 g		2.44 s	1.50 d			
<u>65</u>	ħ	7.40-	4.50-				3.18 s				
		7.22 m	4.20 m	4.13 s	3.88 q		2.25 s	1.45 d			

Table 4

2. 1 H NMR

250 MHz 1 H NMR data for the chiral palladium and platinum complexes, (58-65), are presented in Table 4. The chiral ferrocenylamine thioether ligand undergoes a significant change in the ¹H NMR spectra upon complexing with platinum or palladium chlorides. Figure 9 indicates that the most striking difference in the ¹H NMR spectra of the complexed ligand relative to the free ligand is the large downfield shift of the resonance due to H_3 , H_4 and H₅ of the substituted cyclopentadienyl ring. This deshielding effect was originally thought to be due to a severe tilting of the cyclopentadienyl rings where H_3 , H_4 and H_5 were further from the shielding iron atom.¹⁰⁰ The crystal structure of the chiral methylthioether palladium complex (58), (discussed in detail in a later section) however, indicated that the cyclopentadienyl ring was tilted 3.2° from the plane. The large downfield shift of $\rm H_3,\, H_4$ and $\rm H_5$ is either due to the magnetic anisotropy or the inductive effect of the metal chloride. A further difference between the ¹H NMR spectra of the free ligand and complexed methyl ligand is the deshielding of the alkyl protons. In particular, the resonance due to sulfur methyl protons shifts from 2.30 to 2.70 ppm.

Sokolov had observed that the chemical shifts of two methyl groups in NMe_2 of a 2-dimethylaminomethylferrocenyl palladium chloride dimer are different (2.85 and 3.00 ppm respectively).¹⁰¹ The same splitting of NMe_2 protons were observed in this case for the methyl complex (58), indicating the obvious diastereotopic nature of these methyl groups. The two peaks appeared at 2.31 and 3.21 ppm respectively (see Figure 9). The chemical shifts of the two methyl groups in NMe_2 of the metal complexes (58-65), are much more downfield than those of the corresponding free ligands and the chemical shift difference of the two methyl groups (0.90 ppm) is large because the inversion of the pyramidal N of these metal complexes is inhibited by a rigid 6-member

Table 5

Metal-S, Metal-N, and Metal-Cl Stretching Modes in Several Metal Complexes

Compound	⊽, cm ⁻¹	Stretching Mode	Ref eren ce
<u>59</u>	460 sh	Pd-N	a
	320 b	Pd-Cl, Pd-S,	a
	300 Б	Pd-Cl, Pd-S	
<u>60</u>	465 sh	Pd-N	
	322 b	Pd-Cl, Pd-S	a
<u>62</u>	482 sh, 443 b	Pd-N	
	323 b	Pd-Cl, Pd-S	
	298 sh	Pd-Cl, Pd-S	a
<u>63</u>	460 sh	Pd-N	
	297 m	Pd-C1, Pd-S	a
Et			
S PdC12	273, 316	Pd-C1	
Et	349, 396	Pd-S	102
Thioether-metal complexes	280-400	M-S	103
Unidentate amine-Metal complexes	370-500	M-N	103
(PHSC3H6SPh)PdCl2	278 sh, 262 sh	Pd-C1	
	323 sh, 308 sh	Pd-S	104

•

a This work.

.

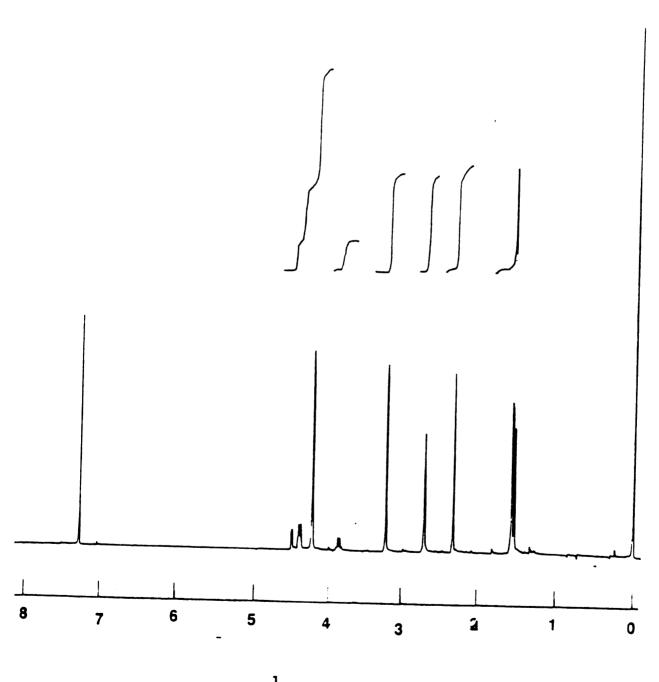


Figure 9. 250 MHz ¹H NMR spectrum of <u>58</u>; PdCl₂ complex.

chelate ring structure in the complex (see structure).

3. Infrared Spectra (IR)

The metal-N, metal-Cl, and metal-S stretching modes of several complexes are given in Table 5. The most striking change occurs in the low frequency region where metal-ligand vibrations are prevalent. Metal-sulfur bands are often weak and occur in a region similar to metal-chloride bands. Consequently, the absorptions around 297 to 323 cm⁻¹ region in complexes <u>59</u>, <u>60</u>, <u>62</u>, and <u>63</u>, have been assigned to Pd-S and/or Pd-Cl stretches. Metal-nitrogen stretches occur at a higher frequency region, so the peaks around 460 to 482 cm⁻¹ region are assigned to Pd-N in the complexes. These assignments are, however, tentative since in complex molecules of low symmetry, more than one fundamental mode often contributes to a given peak.¹⁰⁵ It should be noted that the stretching frequencies assigned to complexes <u>59</u>, <u>60</u>, <u>62</u> and <u>63</u> are in close agreement with those reported for the chelated thioether complex, (PhSC₃H₆SPh)PdCl₂,¹⁰⁴ and most other values in the literature.^{106,107}

4. Structure of Dichloro[(<u>R</u>)-1-(<u>S</u>)-2-methylthioferrocenylethyldimethylamine]palladium(11), 58.

The structure and numbering scheme of dichloro[(\underline{R}) -1- (\underline{S}) -2-methylthioferrocenylethyldimethylamine]palladium(11), <u>58</u>, is shown in Figure 10, while a stereoview is given in Figure 11. Hydrogen atoms have been omitted for clarity. A total of 2937 reflections were collected, of which 2912 were unique and not systematically absent. As a check on crystal and electronic stability, three representative reflections were measured every 45 reflections. The slope of the least-squares line through a plot of intensity versus time was -17 (16) counts/hour which corresponds to a total loss in intensity of 0.3%. A linear

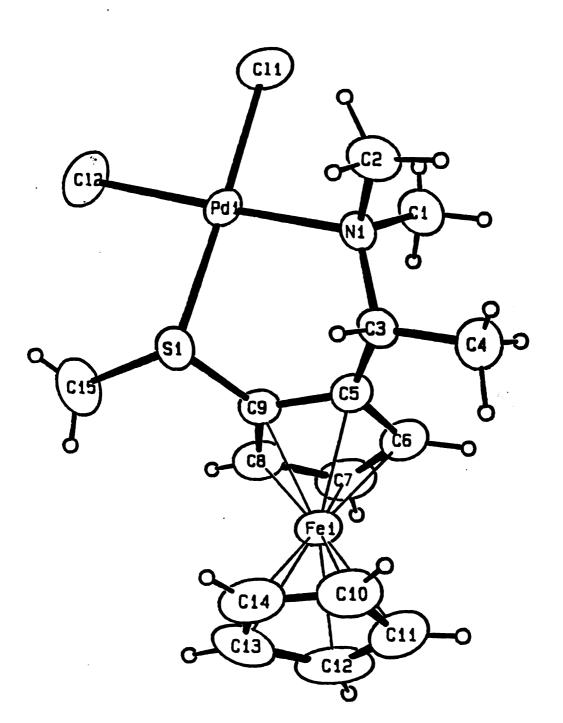


Figure 10: Structure and Numbering Scheme for the Comples C₅H₅FeC₅H₃[CHMeNMe₂][SMe]/PdCl₂, <u>58</u>

Figure 11:

Stereoview of the Complex C5H5FeC5H3[CHMeNMe2][SMe]/PdCl2, 58

decay correction was applied with correction factors on 1 ranging from 1.000 to 1.003 and with an average value of 1.002. The final coefficient, refined in least-squares, was -0.344×10^{-8} (in absolute units).

The positional parameters are given in Table 6, while general temperature factor expressions are given in Tables 7-9. The palladium atom is in a square planar environment where the ferrocenylamine thioether ligand chelates to the palladium atom through nitrogen and sulfur atoms.

The bond distances and bond angles for the complex are presented in Table 11 and Table 12 and are fairly typical. the iron-carbon distances range from 2.02(6) A to 2.050(6) A with an average value of 2.033(7) A that compares favorably with that of ferrocene¹⁰⁸ and 1,1'-bis(siobutylthio)ferrocene palladium-dichloride.⁴² The carbon-carbon distances in the cyclopentadienyl ring vary from 1.378(12) A to 1.429(7) A, averaging at 1.407(1) A, a value typical of ferrocene. The C-C-C bond angles within the two rings vary from 106.7(7) to 109.2(7)°, with an average angle of 108.01° that is the typical angle for a regular, planar pentagon.

The Pd-S bond length is 2.288(1) A which compares favorably with the sum of the covalent radii (2.35 A)¹⁰⁹ and suggests that there is little or no π -bonding in the Pd-S bond. The Pd-Cl bond, which is trans to the sulfur atom, shows no apparent trans bond lengthening, indicating that the thioether ligand has a negligible trans-influence.¹¹⁰ The Pd-Cl bond distances have an average value of 2.307(5) A almost equal to the sum of the Pauling covalent radii, 2.31 A.¹⁰⁹ The Pd-N bond length is 2.159(4) A, and is comparable to the sum of the Pauling covalent radii.

Seyferth¹¹¹ has reported a crystal structure of a heterobinuclear species $(Ph_3P)PdFe(C_5H_4S)_2$ where thiolate groups chelate to palladium. The cyclopent-adienylthiolato groups, (C_5H_4S) , are tilted away from the parallel plane by

 Table6.
 Positional Parameters and

 Their Estimated Standard Deviations for

 dichloro[(R)-1-(S)-2-Methylthioferrocenylethyldimethylamine]palladium(II)

•

B(A2)	2.565(5) 2.76(1) 4.81(4) 6.08(5) 2.42(8) 3.7(1) 3.7(1) 3.7(1) 3.7(1) 3.7(1) 3.7(1) 3.7(1) 3.7(1) 3.7(1) 3.7(1) 3.7(1) 3.7(1) 3.7(1) 5.6(2) 5.6(2) 5.6(2) 5.6(2) 5.6(2) 5.4(2) 5.4(2) 5.4(2) 5.4(2)
И 1	0.32293(3) 0.2000(1) 0.2000(1) 0.3797(2) 0.44528(9) 0.2682(3) 0.2682(3) 0.2682(3) 0.2682(3) 0.3207(4) 0.3213(4) 0.3313(4) 0.3313(4) 0.3313(4) 0.3313(4) 0.3313(4) 0.3313(4) 0.3313(4) 0.3313(4) 0.3313(5) 0.3514(5) 0.5514(5) 0.5514(5) 0.5514(5)
· ۲	0.95281(3) 1.06536(6) 0.9270(2) 0.9739(1) 1.0999(4) 1.0741(6) 1.1772(5) 1.1772(5) 1.1772(5) 1.0719(5) 1.0719(5) 1.0719(5) 1.0719(5) 1.0719(5) 1.0719(5) 1.0719(5) 1.0719(5) 1.0719(5) 1.0719(5) 1.0719(5) 1.0719(5) 1.0884(7) 1.1265(7) 0.8520(6)
יצ	0.24368(4) 0.72981(8) 0.1385(2) 0.3806(2) 0.3355(5) 0.3355(5) 0.3355(5) 0.3355(5) 0.3355(5) 0.3355(5) 0.3355(5) 0.35130(9) 0.5130(9) 0.5130(9) 0.5136(6) 0.5136(9) 0.5136(9) 0.5136(9) 0.5136(9) 0.5136(9) 0.5136(9) 0.5136(9) 0.5723(5) 0.7716(6) 0.5136(9) 0.5723(5) 0.5723(5) 0.5723(5) 0.7716(6) 0.5723(5) 0.7716(6) 0.5723(5) 0.7716(6) 0.7716(6) 0.5723(5) 0.7716(6) 0.5723(5) 0.7716(6) 0.7716(6) 0.7716(6) 0.7716(6) 0.7716(6) 0.7716(6) 0.7716(6) 0.7716(6) 0.7716(6) 0.7717(7) 0.8733(8) 0.77074(8) 0.7074(8) 0.7074(8) 0.7074(8)
Atom	Pdi C C C C C C C C C C C C C C C C C C C

•

. -

,

dichloro((R)-1-(S)-2-Methylthioferrocenylethyldimethylaminelpalladium(II) Their Estimated Standard Deviations (contd.) in Positional Parameters and 1 1 .

z B(A2) 	0.183(4) 4(1) 0.150(4) 4(1) 0.316(5) 7(2) 0.316(5) 7(2) 0.370(4) 4(1) 0.232(4) 6(2) 0.279(4) 6(2) 0.279(4) 6(2) 0.279(4) 6(2) 0.279(4) 5(2) 0.476(4) 5(2) 0.476(4) 5(2) 0.476(4) 5(2) 0.477(4) 4(1) 0.577(5) 6(2) 0.577(4) 5(2) 0.577(4) 5(2) 0.577(5) 5(2) 0.577(
۲	1.020(5) 1.134(5) 1.134(5) 1.196(6) 1.192(6) 1.245(5) 1.271(5) 1.250(4) 1.250(4) 1.250(4) 1.250(4) 1.271(5) 0.924(4) 0.924(4) 0.924(5) 0.924(5) 0.973(6) 1.117(5) 0.875(5) 0.875(5) 0.875(5) 0.796(6)
×ı	0.486(7) 0.335(6) 0.179(8) 0.179(8) 0.122(6) 0.239(9) 0.411(7) 0.450(8) 0.450(8) 0.563(6) 0.563(6) 0.757(8) 0.563(6) 0.757(8) 0.757(8) 0.636(7) 0.827(7) 0.827(7) 0.436(8) 0.436(8) 0.436(8)
Atom	H18 H15 H15 H15 H26 H26 H26 H16 H110 H113 H156 H153 H155 H155 H155 H155

dichloro((R)-1-(S)-2-Methylthioferrocenylethyldisethylasinelpalladius(II) Name B(1,1) B(2,2) B(3,3) B(1,2) B(1,3) B(2.3) Beav ----------------------------------2.75(1) 2.99(1) -0.17(2) 0.20(1) 0.01(1) 2.565(5) Pd1 1.96(1) Fe1 2.08(2) 3.30(3) 2.91(3) 0.12(3) -0.29(2) -0.57(3) 2.76(1) C11 3.75(6) 6.25(9) 4.45(7) -1.13(7) -0.97(6) -0.92(7) 4.81(4) C12 5.35(8) 5.42(8) 7.5(1) -2.79(7) -0.19(9) 6.08(5) 2.03(8) **S1** 2.92(5) 2.92(5) 2.54(5) 0.27(5) 0.23(4) 0.47(4) 2.79(2) N1 2.5(2) 2.6(2) 0.2(2) 0.4(1) 2.1(2) 0.1(1) 2.42(8) C1 4.1(2) 5.1(3) 1.9(2) -0.1(2) 0.3(2) -0.2(2) 3.7(1) C2 3.5(2) 3.2(2) 4.5(3) 1.0(2) - 0.7(2)0.3(2) 3.7(1) C3 2.5(2) 2.4(2) - 0.1(2)0.2(2) 2.65(9) 3.0(2) -0.4(2) 5.1(3) -0.9(3) C4 -0.9(3) 4.8(3) 3.4(3) 1.1(3) 4.4(1) C5 -0.2(2) 3.2(2) 2.7(1) 2.5(2) 2.4(2) 0.1(2) -0.4(2) **C6** 2.6(2) 4.8(3) 3.1(2) -0.4(2) 0.5(2) -0.8(2) 3.5(1) **C7** 2.7(2) 5.0(2) 4.4(2) 1.0(2) 0.1(2) -2.4(2) 4.0(1) -0.2(2) C8 3.4(2) 2.8(2) 4.6(3) -0.9(2) -0.9(2) 3.6(1) 2.6(2) 0.2(2) **C**9 2.5(2) -0.3(2)2.48(9) 2.3(2) -0.3(2) 4.7(3) 4.9(3) C10 4.7(3) -0.2(4) -1.1(3) -1.6(2) 4.8(1) C11 3.8(3) 5.9(4) 5.2(3) -1.3(3) -0.3(3) -0.8(3) 5.0(2) C12 2.8(2) 7.4(4) 6.6(4) 1.1(3) -1.8(3) -2.9(3) 5.6(2) 0.2(3) C13 7.1(4) 5.9(4) 4.5(3) -0.9(4) -3.3(2) 5.8(2) -0.0(2) -2.4(3) 3.7(3) 8.7(4) -1.2(3) 5.4(2) C14 3.9(3) 4.8(3) 2.0(3) C15 0.2(3) -0.3(3) 5.1(2) 6.3(4) 4.3(3) The form of the anisotropic thermal parameter is: $exp(-0.25(h^2a^2B(1.1) + k^2b^2B(2.2) + 1^2c^2B(3.3))$ • 2hkebB(1,2) • 2hlecB(1,3) • 2klbcB(2,3))] where e, b, and c are reciprocal lattice constants.

76

Table 7. General Temperature Factor Expressions - 3's - for

dichloro[(R)-1-(S)-2-Methylthioferrocenylethyldimethylamine]palladium(II) Refined Temperature Factor Expressions - Beta's - for Table 8.

•

Nane	B(1,1)	B(2,2)	B(3,3)	B(1,2)	B(1,3)	<u> </u>
1 1 1 1	0 6 8 1	8 1 1 1 1 8	1 1 1 1 1	1 1 1 1	 	8 8 8 8 8
Pd1	8.	0.00461(2)	0.00313(1)	-0.00077(7)	0.00070(5)	0.00004(4)
Fe1	•	0.00553(5)	0.00304(3)	0.0005(1)	-0.00103(9)	-0.00150(7)
C11	.01	•	0.00466(7)	-0.0050(3)	-0.0034(2)	-0.0024(2)
C12	0.0157(2)	0.0091(1)	0.0078(1)	-0.0124(3)	-0.0007(3)	0.0054(2)
SI	8.	0.00489(9)		0.0012(2)	0.0008(2)	0.0013(1)
IN	8.	0.0044(3)	0.0022(2)	0.0007(7)	0.0003(5)	0.0011(4)
C1	•	0.0086(5)	0.0020(2)	-0.000(1)	0.0010(7)	-0.0006(6)
03 03	.01	0.0054(4)	•	0.0044(9)		0.0008(6)
ខ្ល	80.		0.0026(2)	-0.0002(8)		0.0006(5)
0 4	.01	0.0056(4)	•	-0.004(1)	-0.003(1)	0.0029(7)
S	•	0.0053(4)	0.0025(2)	-0.0011(8)	0.0005(6)	-0.0012(5)
90	.00.	0.0081(5)	0.0032(2)	-0.002(1)	0.0016(6)	-0.0021(6)
c 7	•	0.0083(4)	0.0046(2)		0.0003(7)	-0.0063(6)
C8	.010	0.0046(4)	0.0048(3)	0.0011(9)	-0.0033(8)	-0.0024(6)
60	8.		0.0028(2)			-0.0008(5)
C1 0	.013	0.0078(4)	0.0051(3)	-0.001(2)	-0.004(1)	-0.0041(6)
C11	.011	6600.	0.0054(4)	-0.006(1)	-0.001(1)	.0022
C12	.0082	0.0124(7)	0.0069(4)	0.005(1)	-0.0064(9)	-0.0077(9)
C1 3	.021	.0098	0.0047(3)	-0.004(2)	-0.0115(9)	0.0005(9)
C14	.01	0.0145(8)	0.0040(3)	-0.006(1)	-0.0000(9)	-0.0064(8)
C15	•	0.0071(5)	0.0050(3)	0.001(1)	-0.001(1)	0.0053(7)

The form of the anisotropic thermal parameter is: exp[-(B(1,1)*h² + B(2,2)*k² + B(3,3)*1² + B(1,2)*hk + B(1,3)*h1 + B(2,3)*k1)].

- :

,

1

1

۱

 Table 9.
 General Temperature Factor Expressions - U's - for

 dichloro((R)-1-(S)-2-Methylthioferrocenylethyldimethylaminelpalladium(II)

 •

Name 	U(1,1)	U(2,2)	U(3,3)	U(1,2)	U(1,3)	U(2,3)
Pd1 Fe1	0.0248(1) 0.0263(3)	0.0349(1) 0.0418(4)	0.0378(2) 0.0368(3)	-0.0022(2) 0.0015(3)	0.0025(2) -0.0037(3)	0.0002(2) -0.0072(3)
C11	0		.0564(.0143(.0123	.0117(9
C12	ø.	.069(1	•		5	.026(1
SI	8.	.0370(.0322(.0034(.0029(.0060(
N1	ő	.033(2	.027(2	.002(2	ũ	.005(
CI	0.	.065(4	.024(2	.001(3	.004 (.003(
0 0	•0-	.041(.056(3	.013(3	,000.	.004(
C3	0	.032(.031(.001 (.005(~
0 4	.06	.043(.065(4	.011(.011(.014(
CS	0	.040(.0310	,003(.002(.006(
C6	8.	.061(,039(-	\sim	-0.010(3)
C 7	80.	.063(.056(.0130	.001(~
C 8	.04	.035(.058((E)E00.0	.012(.012(
60	80.	.031(•	-	.004(.004(
C10	.060	.059(.061(.003 (13(-
C11	ò	.075(0.066(4)	-	-0.004(4)	.0110
C12	.03	.094(.084(0.014(4)	23 0	~
C13	ŏ	•	.057(-0.012(5)	1	0.003(4)
C14	.047(.110(•04	-	-0.000(3)	.031(
C15	•	٠	0.061(4)	0.002(4)	-0.003(4)	0.025(3)
8		0 8 9 9 9 9 9 9 9 9 9	1 1 1 1 1 1 1 1 1 1	8 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
The	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	anisotropi	Δ.	araneter is:		
	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	.1) + KZH	+	202U(3.3		

exp[- $2\pi^2(h^2a^2U(1,1) + k^2b^2U(2,2) + 1^2c^2U(3,3)$ + 2hkabU(1,2) + 2hlacU(1,3) + 2klbcU(2,3))] where a, b, and c are reciprocal lattice constants.

-

,

Atom	Min.	Int'med.	Max.
3 5 1 7	8 8		3 1 1 1
Pd1	0.155	0.188	0.196
Fe1	0.158	.18	0.218
CII	-	.25	Ň
C12	0.169	2	0.347
S1	0.168	.18	0.209
TN	0.155	.17	0.193
C1	0.153	0.227	0.255
C C 2	.16	.22	0.249
C3			0.204
0 4	0.186	0.228	0.287
SS	0.167		0.209
C6	.17	ч.	•
C 7	0.147		0.302
C8	0.173	0.194	0.261
60	0.165		0.196
C10	0.187	0.250	0.288
C11	0.195	0.255	0.292
C12	0.161	0.233	0.364
C13	0.168	0.268	0.348
C14	0.181	.21	0.354
C15	0.177	0.282	0.288

79

. .

Table 11. Bond Distances (in Angatroms) for dichlorof(R)-1-(S)-2-Methylthioferrocenylethyldimethylaminelpalladium(II)

•

Distance	2.334(2) 2.288(1) 2.288(1) 2.159(4) 2.159(4) 2.056(6) 2.038(6) 2.038(6) 2.021(6) 2.021(6) 2.021(6) 2.034(7) 2.022(5) 2.024(7) 1.749(5) 1.749(5) 1.749(5) 1.749(5) 1.749(7) 1.783(8) 1.783(8) 1.487(7) 1.425(8) 1.425(8) 1.410(8) 1.395(10) 1.378(12)	.427(1 .387(1
Atom2		-
Atom1	Pd1 Pd1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe	C12 C13

•

Atom1	tom	latanc
8 1 5 8	1 1 1 1	1 1 1 1 1 1 1
C1	Hla	•
បី	HID	, 96 (
ប	HIC	0.73(6)
0 0	H2a	0.93(8)
C 2	H2b	1.04(6)
C2	H2c	0.97(7)
CG	EH	0.89(6)
C4	H4a	1.01(7)
04 0	H4b	
04 0	H4c	0.91(5)
CG	HG	٠
C7	H7	0.96(5)
C8	HB	0.91(6)
C10	HIO	.8
C11	H11	م
C12	H12	0.95(6)
C13	H13	1.03(8)
C14	H14	0.80(6)
C15	H15a	0.80(6)
C15	H15b	0.93(7)
C15	H15c	0.88(7)

Numbers in parentheses are estimated standard deviations in the least significant digits.

· -

•

Table 12. Bond Angles (in Degrees) for dichloro((R)-1-(5)-2-Methylthioferrocenylethyldimethylamine)pelladium(II)

Atom1	Atom2	Atom3	Angle
C11	Pd1	C12	87.79(8)
C11	Pd1	51	178.34(6)
C11	Pd1	N1	90.9(1)
C12	Pd1	51	90.55(7)
C12	Pd1	Nl	177.9(1)
S 1	Pd1	N 1	90.8(1)
C5	Fel .	C6	40.8(2)
C5	Fe1	C7	68.6(2)
C5	Fe1	C8	68.9(2)
C5	Fe1	C9	41.0(2)
CS	Fel	C10	110.0(3)
C5	Fe1	C11	125.2(3)
C5	Fe1	C12	159.8(3)
C5	Fe1	C13	158.3(3)
C5	Fel	C14	124.3(3)
C6	Fe1	C7	40.3(3)
C6	Fe1	C8	68.4(3)
C6	Fe1	C9	68.5(2)
C6	Fe1	C10	122.6(3)
C6	Fe1	C11	107.2(3)
C6	Fe1	C12	122.2(3)
C6	Fe1	C13	159.2(3)
C6	Fe1	C14	158.9(3)
C7	Fe1	C8	40.9(3)
C7	Fe1	C 9	68.6(2)
C7	Fe1	C10	155.7(3)
C7	Fe1	C11	119.4(3)
C7	Fe1	C12	105.1(3)
C7	Fe1	C13	122.9(3)
C7	Fe1	C14	160.6(3)
CB	Fe1	C9	40.8(2)
CB	Fe1	C10	163.1(3)
C8	Fel	C11	154.4(3)
CB	Fe1	C12	119.6(3)
CB	Fe1	C13	106.8(3)
CB	Fe1	C14	125.6(3)
C9	Fel	C10	127.3(3)
C9	Fel	C11	163.1(3)
C9	Fel Fel	C12	156.4(3) 122.0(3)
C9	Fel Sel	C13	122.0(3) 110.5(3)
C9	Fel Fel	C14 C11	40.1(3)
C10	Fel Fel	C12	67.4(3)
C10	Fel Fel	C12 C13	67.6(3)
C10	rei Fel	C13 C14	40.0(3)
C10	rei Fel	C14 C12	39.3(3)
C11		~ • • •	

• •

Bond Angles (Continued) for dichloro((R)-1-(S)-2-Hethylthioferrocenylethyldimethylemine)pelledium(II)

Atom1	Atom2	Atom3	Angle
C11 C11 C12 C12 C13	Fel Fel Fel Fel	C13 C14 C13 C14 C14	67.9(3) 67.3(3) 41.1(3) 67.6(3) 39.8(3)
Pd1 Pd1 C9 Pd1 Pd1 Pd1 Pd1	51 51 51 N1 N1 N1	C9 C15 C15 C1 C2 C3	97.3(2) 114.5(3) 100.8(3) 108.5(4) 104.5(3) 116.1(3)
C1 C1 C2 N1 N1 C4	N1 N1 C3 C3 C3	C2 C3 C3 C4 C5 C5	108.9(4) 109.2(4) 109.4(4) 115.1(5) 108.3(4) 113.0(5)
Fe1 Fe1 C3 C3 C6	C5 C5 C5 C5 C5 C5 C5	C3 C6 C9 C6 C9 C9 C9	130.6(4) 69.7(3) 68.6(3) 132.1(5) 120.8(5) 106.8(5)
Fe1 Fe1 C5 Fe1 Fe1	C6 C6 C6 C7 C7	C5 C7 C7 C6 C8	69.5(3) 69.4(3) 108.5(5) 70.3(3) 68.9(4)
C6 Fel C7 Fel Fel	C7 C8 C3 C8 C9 C9	C8 C7 C9 C9 51 C5	108.2(5) 70.2(4) 69.6(3) 108.0(5) 130.0(3) 70.4(3)
Fe1 51 55 Fe1 Fe1	C9 C9 C9 C9 C10 C10	C8 C5 C8 C8 C11 C14	69.5(3) 117.5(4) 133.7(4) 108.6(5) 69.2(4) 69.7(4)
C11 Fe1 Fe1 C10 Fe1 Fe1	C10 C11 C11 C11 C12 C12	C14 C10 C12 C12 C11 C13	107.3(7) 70.6(4) 70.1(5) 108.9(7) 70.1(4) 59.9(4)

· -

Bond Angles (Continued) for dichloro((R)-1-(S)-2-Nethylthioferrocenylethyldimethylemine)pelledium(II)

Atom1	Atom2	Atom3	Angle
			•
C11	C12	C13	107.9(7)
Fe1	C13	C12	68.9(4)
Fe1	C13	C14	70.0(4)
C12	C13	C14	106.7(7)
Fe1	C14	C10	70.3(4)
Fe1	C14	C13	70.2(4)
C10	C14	C13	109.2(7)
N1	C1	H1e	111.(3)
Nl	C1	H1b	116.(4)
N1	C1	H1c '	114.(5)
Hla	C1	H1b	99.(5)
Hle	C1	H1c	113.(6)
H1b	C1	H1c	102.(6)
N1	C2	H2e	108.(5)
N1	C2	H2b	107.(3)
N1	C2	H2c	111.(5)
H2a	C2	H2b	102.(6)
H2a	C2	H2c	107.(6)
H2b	C2	H2c	121.(5)
NI	C3	НЗ	103.(4)
C4	C3	НЭ	107.(4)
C5	C3	H3	110.(4)
C3	C4	H4e	109. (4)
C3	C4	H4b	109.(5)
C3	C4	H4c	112.(3)
H4e	C4	H4b	109.(6)
H4a	C4	H4c	103.(5)
H4b	C4	H4c	114.(6)
Fel	C6	HG	118.(4)
C5	C6	HG	121.(4)
C7	C6	He	129.(4)
Fe1	C7	H7	124.(3)
C6	C7	H7	132.(3)
CB CB	C7	H7	120.(3)
Fel	C8	H8	134.(4)
C7	C8	HB	128.(4)
C9	C8	HB	123. (4)
Fel	C10	H10	123.(4)
C11	C10	H10	117.(4)
C14	C10	H10 H10	135.(4)
Fel	C10 C11	H11	128.(6)
C10	C11	H11	115.(6)
C10 C12	C11 C11	H11	136.(6)
	C12	H11 H12	126.(4)
Fel	C12 C12	H12 H12	126.(4)
C11		n12	120.147

• •

,

0	Atom2	Atom3	bu
6 8 8 9) 	 	8 6 9 8
C13	C12	H12	126.(4)
Fe1	C13	HI3	119.(4)
C12	C1 3	HI3	121.(4)
C14	C1 3	ETH	132.(4)
Fe1	C14	H14	120.(5)
C10	C14	H14	128.(5)
C13	C14	H14	122. (5)
S1	C15	H15a	115.(5)
S1	C15	HISD	102.(4)
S1	C15	H15c	114.(5)
H15a	C15	HISD	115.(6)
H15a	C15	H15c	97.(7)
HISb	C15	H15c	115.(6)

.

85

.

• -

,

Table 13	Torsion	al Angle	e (in Des	grees) for
dichloro[(R)-1-(5)-2-Me		ferrocen	ylethyld	Lmethylamine]palladium(II)
Atom 1	Atom 2	Atom 3	Atom 4	Angle

.

,

· _

	041	51	C9	131.3
C11	Pd1	51	C15	25.9
C11	Pd1 Pd1	51	C9	127.3
C12	Pd1 Pd1	51 51	C15	21.8
C12	Pd1 Pd1	51 51	C9	-54.3
N1	Pd1 Pd1	51	C15	-159.8
N1	Pd1	N1	C1	-52.1
<u>C11</u>	Pd1 Pd1	N1	C2	64.0
C11		N1	C3	-175.4
C11	Pd1		C3 C1	-102.7
· C12	Pd1	N1	C2	13.4
C12	Pd1	N1 N1	C3	134.0
C12	Pd1		C3 C1	128.1
S1	Pd1	N1	C2	-115.9
51	Pd1	N1	C2 C3	4.8
51	Pd1	N1		-128.7
Ce	Fe1	C5	C3	
C6	Fe1	C5	C9	118.5
C7	Fe1	C5	C3	-165.6
C7	Fe1	C5	C6	-36.9
C7	Fe1	C5	C9	81.6
C8	Fe1	C5	C3	150.4
C8	Fe1	C5	C6	-80.9
C8	Fe1	C5	C9	37.6
C9	Fe1	C5	C3	112.9
C9	Fe1	C5	C6	-118.5
C10	Fe1	C5	C3	-11.5
C10	Fel	C5	C6	117.2
C10	Fe1	C5	C9	-124.4
C11	Fe1	C5	C3	-53.9
C11	Fe1	C5	C6	74.8
C11	Fe1	C5	C9	-166.8
C12	Fe1	C5	C3	-90.3
C12	Fe1	C5	Ce	38.3
C12	Fe1	C5	C9	156.8
C13	Fel	C5	C3	68.0
C13	Fe1	C5	C6	-163.3
C13	Fel	C5	C9	-44.9
C14	Fe1	C5	C3	30.9
C14	Fel	C5	C6	159.6
C14	Fe1	CS	C9	-81.9
C 5	Fel	C6	C7	-120.2
C7	Fe1	C6	C5	120.2
C8	Fel	CS	C5	82.4
CB	Fe1	C6	C7	-37.8
C9	Fel	C6	C5	3 8.3
C9	Fel	C6	C7	-81.9
C10	Fel	CG	C5	-83.1

Torsional Angles (Continued) for dichloro((R)-1-(5)-2-Methylthioferrocenylethyldimethylamine)palladium(II)

------Atom 1 Atom 2 Atom 3 Atom 4 Angle -------------------C6 C7 156.7 C10 Fe1 C11 Fe1 **C6** C5 -124.4 115.4 **C6** C7 C11 Fe1 C6 C5 -165.3 C12 Fe1 74.5 C12 Fe1 **C6** C7 162.6 **C6** C5 C13 Fe1 **C6** C7 42.5 ·C13 Fe1 -53.0 C5 C14 Fe1 **C6** C7 -173.2 C6 C14 Fe1 · C5 Fe1 C7 **C6** 37.4 · C8 -82.1 C7 C5 Fe1 -119.5 C6 Fe1 C7 **C8** 119.5 C7 C6 **C8** Fe1 C7 **C6** 81.6 **C9** Fe1 C7 -37.9 **C9** Fe1 C8 -54.1 C7 C6 C10 Fe1 Fe1 C7 **C8** -173.6 C10 C6 -82.0 C7 C11 Fe1 C11 Fe1 C7 C8 158.5 -122.4 C7 **C6** C12 Fe1 C7 C8 118.1 Fe1 C12 -163.4 C13 Fe1 C7 **C6** C8 77.1 C13 Fe1 C7 C14 Fe1 C7 **C6** 172.6 53.1 C7 **C8** C14 Fe1 C5 Fe1 **C8** C7 81.2 -37.7 **C8** C9 C5 Fe1 C7 37.2 Fe1 **C8 C6** -81.7 **C6** Fe1 **C8** C9 -118.9 **C9** Fe1 **C8** C7 C8 C7 118.9 C9 Fe1 170.9 C7 C10 Fe1 **C8** C9 52.0 C8 C10 Fe1 -47.6 C11 Fe1 C8 C7 C8 С9 -166.5 C11 Fel -78.5 Fe1 C8 C7 C12 C8 С9 162.6 C12 Fel C8 C7 -121.3 C13 Fe1 с9 119.8 C13 Fe1 C8 Fe1 С8 C7 -160.9 C14 80.2 C8 C9 C14 Fe1 C9 **S**1 -109.9 Fel C5 119.5 C5 Fe1 C9 C8 -148.1 С9 **S1** Fe1 C6 -38.2 Fel C9 C5 C6 C8 81.4 C6 Fe1 C9

C9

Fel

C7

.

S1

.

168.5

.

Atom 1	Atom 2	Atom 3	Atom 4	Angle
			· ·	
C7	Fe1	C9	C5	-81.6
C7	Fe1	C9	C8	38.0
C8	Fel	C9	51	130.5
C8	Fe1	C9	C5	-119.5
C10	Fel	C9	S1	-32.7
C10	Fel	C9	C5	77.2 -163.2
. C10	Fel	C9	C8	-69.8
C11	Fe1	C9	51	
C11	Fe1	C9	C5	40.1
C11	Fel	C9	C8	159.7
C12	Fel	C9	51	90.0
C12	Fe1	C9	C5	-160.1
C12	Fe1	C9	C8	-40.6
C13	Fe1	C9	51	52.2
C13	Fe1	C9	C5	162.1
C13	Fe1	C9	CB	-78.4
C14	Fe1	C9	S1	9.3
C14	Fe1	C9	C5	119.2
C14	Fe1	C9	C8	-121.2
C5	Fe1	C10	C11	-121.3
C5	Fe1	C10	C14	119.9
C6	Fe1	C10	C11	-77.6
C6	Fe1	C10	C14	163.7
C7	Fe1	C10	C11	-39.2
C7	Fel	C10	C14	-157.9
CB	Fe1	C10	C11	155.4
C8	Fe1	C10	C14	36.6
C9	Fe1	C10	C11	-164.3
C9	Fe1	C10	C14	77.0
C11	Fe1	C10	C14	-118.7
C12	Fe1	C10	C11	37.1
C12	Fe1	C10	C14	-81.6
C13	Fe1	C10	C11	81.8
C13	Fe1	C10	C14	-36.9
C14	Fe1	C10	C11	118.7
C5	Fe1	C11	C10	79.2
C5	Fe1	C11	C12	-161.3
C6	Fe1	C11	C10	120.6
CG	Fe1	C11	C12	-120.0
C7	Fe1	C11	C10	162.6
C7	Fe1	C11	C12	-77.9
C8	Fe1	C11	C10	-163.7
C8	Fel	C11	C12	-44.2
C9	Fe1	C11	C10	48.1
C9	Fel	C11 .	C12	167.5
C10	Fe1	C11	C12	119.5

-

Torsional Angles (Continued) for dichloro[(R)-1-(5)-2-Nethylthioferrocenylethyldimethylamine)palladium(II) Torsional Angles (Continued) for dichloro((R)-1-(S)-2-Nethylthioferrocenylethyldimethylemine)pelledium(II)

	Atom 1	Atom 2	Atom 3	Atom 4	Angle
	C12	Fe1	C11	C10	-119.5
	C13	Fe1	C11	C10	-81.0
	C13	Fe1	C11	C12	38.5
	C14	Fel	C11	C10	-37.7
	C14	Fe1	C11	C12	81.8
	C5	Fe1	C12	C11	49.3
	.C5	Fe1	C12	C13	168.0
	C6	Fe1	C12	C11	77.9
	C6	Fe1	C12	C13	-163.3
•	C7	Fe1	C12	C11	118.1
	C7	Fe1	C12	C13	-123.2
	CB	Fe1	C12	C11	159.7
	C8	Fe1	C12	C13	-81.5
	C9	Fe1	C12	C11	-171.0 -52.3
	C9	Fel	C12	C13 C11	-32.3
	C10	Fe1	C12		81.3
	C10	Fel Fel	C12 C12	C13 C13	118.7
	C11	Fel Fel	C12 C12	C11	-118.7
	C13	Fel Fel	C12	C11	-80.9
	C14 C14	Fel	C12	C13	37.8
	C5	Fel	C13	C12	-168.8
	CS	Fel	C13	C14	-50.9
	C6	Fel	C13	C12	43.0
	C6	Fe1	C13	C14	160.9
	C7	Fe1	C13	C12	74.3
	C7	Fe1	C13	C14	-167.8
	CB	Fe1	C13	C12	116.1
	CB	Fe1	C13	C14	-126.0
	C9	Fe1	C13	C12	158.1
	C9	Fe1	C13	C14	-84.0
	C10	Fel	C13	C12	-80.8
	C10	Fe1	C13	C14	37.0
	C11	Fel	C13	C12	-37.3
	C11	Fe1	C13	C14	80.6
	C12	Fel	C13	C14	117.9
	C14	Fe1	C13	C12	-117.9
	C5	Fel	C14	C10	-80.3
	C5	Fel	C14	C13	159.6
	C6	Fel	C14	C10	-41.1
	Ce	Fe1	C14	C13	-161.1
	C7	Fel	C14	C10	152.3
	C7	Fe1	C14	C13	32.2
	CB	Fel	C14	C10	-167.7 72.3
	C8	Fel	C14	C13	-124.2
	C9	Fel Tel	C14	C10	115.8
	C9	Fel Fel	C14	C13	-120.0
	C10	Fe1	C14	C13	120.0

. .

.

tom 1	Atom 2	Atom 3	Atom 4	Angle
C11	Fel	C14	C10	' 37.8
C11	Fe1	C14	C13	-82.2
C12	Fe1	C14	C10	81.1
C12	Fe1	C14	C13	-39.0
C13	Fel	C14	C10	120.0
Pd1	51	C9	Fe1	149.1
.Pd1	51 51	C9	C5	62.3
Pd1	51	C9	CB	-111.1
C15	51	C9	Fe1	-94.1
C15	51	C9	C5	179.1
C15	51 51	C9	C8	5.7
Pd1	N1	C3	C4	-176.9
		C3	C5	55.6
Pd1	N1		C4	60.2
C1	N1	C3		
C1	N1	C3	C5	-67.4
C2	N1	СЗ	C4	-58.9
C2	N1	C3	C5	173.5
N1	C3	C5	Fe1	-157.9
N1	C3	C5	Ce	102.9
N1	СЗ	C5	C9	-70.7
C4	СЗ	C5	-Fel	73.3
C4	C3	C5	Ce	-25.9
C4	СЗ	C5	C9	160.5
Fe1	C5	C6	C7	58.6
C3	C5	C6	Fe1	127.0
C3	C5	C6	C7	-174.4
C9	C5	C6	Fe1	-58.8
C9	C5	C6	C7	-0.2
Fe1	C5	C9	51	125.7
Fe1	C5	C9	C8	-59.3
СЗ	C5	C9	Fe1	-125.5
C3	C5	C9	51	0.2
C3	C5	C9	C8	175.2
	C5	C9	Fel	59.5
C6		C9	S1	-174.8
C6	C5		C8	0.2
CG	C5	C9		58.7
Fel	C6	C7	C8	-58.6
C 5	C6	C7	Fel	
C5	C6	C7	C8	0.1
Fel	C7	C8	C9	59.6
Ce	C7	C8	Fe1	-59.6
C6	C7	C 8	C9	0.0
Fel	CB	C9	S1	-126.3
Fel	C8	C9	C5	59.8
C7	CB	C9	Fe1	-60.0
C7	CB	C9	51	173.8
C7	CB	C9	C5	-0.1

. -

Torsional Angles (Continued) for dichloro((R)-1-(5)-2-Methylthioferrocenylethyldimethylamine)palladium(II) Torsional Angles (Continued) for dichloro((R)-1-(S)-2-Hethylthioferrocenylethyldimethylaminelpalladium(II)

	Atom 1	Atom 2	Atom 3	Atom 4	Angle
	Fe1	C10	C11	C12	-59.9
	C14	C10	C11	Fe1	,59.5
	C14	C10	C11	C12	-0.4
	Fe1	C10	C14	C13	59.6
	C11	C10	C14	Fe1	-59.2
	C11	C10	C14	C13	0.4
	Fel	C11	C12	C13	-60.0
	C10	C11	C12	Fel	60.2
	C10	C11	C12	C13	0.3
·	Fe1	C12	C13	C14	-60.1 60.0
	C11	C12	C13	Fel	0.0
	C11	C12	C13	C14 C10	-59.6
	Ee1	C13	C14 C14	Fe1	- 59.4
	C12 C12	C13 C13	C14	C10	-0.2
	C12 C5	Fel	C6	H6	115.6
	C7	Fel	C6	H6	-124.3
	C8	Fel	C6	HG	-162.1
	C9	Fe1	C6	HG	153.9
	C10	Fe1	C6	HG	32.4
	C11	Fel	C6	HG	-8.8
	C12	Fe1	C6	HG	-49.8
	C13	Fe1	C6	H6	-81.8
	C14	Fe1	C6	H6	62.6
	C5	Fe1	C7	H7	164.9
	C6	Fe1	C7	H7	127.5
	Cð	Fe1	C7	H7	-113.0
	C9	Fe1	C7	H7	-150.9
	C10	Fel	C7	H7	73.4
	C11	Fe1	C7	H7	45.6
	C12	Fel	C7	H7	5.1
	C13	Fe1	C7	H7	-35.9
	C14	Fe1	C7	H7	-59.9
	C5	Fel	C8	HB	-154.9 161.1
	C6	Fel	C8	н8 Н8	123.9
	C7	Fel Fel	C8 C8	H8	-117.2
	C9	rei Fel	C8	H8	-65.2
	C10 C11	Fel	C8	нө	76.3
	C12	Fel	C8	H8	45.4
	C13	Fel	C8	HB	2.6
	C14	Fel	C8	нө	-37.0
	C5	Fel	C10	H10	-11.4
	C6	Fel	C10	H10	32.3
	C7	Fe1	C10	H10	70.8
	CS	Fe1	C10	H10	-94.7
	C9	Fe1	C10	H10	-54.3

-

,

Torsional Angles (Continued) for dichloro((R)-1-(5)-2-Methylthioferrocenylethyldimethylamine)pelladium(II)

.

• •

.

.

Atom 1	Atom 2	Atom 3	Atom 4	Angle
C11	Fe1	C10	H10	109.9
C12	Fe1	C10	H10	147.1
C13	Fe1	C10	H10	-168.2
C14	Fe1	C10	H10	-131.3
C5	Fe1	C11	H11	-27.9
C6	Fe1	C11	H11	13.4
	Fe1	C11	H11	55.5
C8	Fe1	C11	H11	89.2
C9	Fe1	C11 ·	H11	-59.1
 C10	Fe1	C11	H11	-107.1
C12	Fel	C11	H11	133.4
C13	Fe1	C11	H11	171.9
C14	Fel	C11	H11	-144.8
C5	Fel	C12	H12	-70.9
C5 C6	Fel	C12	H12	-42.3
		C12	H12	-2.1
C7	Fel Fel	C12	H12	39.5
C8		C12	H12	68.8
C9	Fel	C12 C12	H12	-157.7
C10	Fe1		H12	-120.2
C11	Fe1	C12		121.1
C13	Fe1	C12	H12	158.8
C14	Fe1	C12	H12	
C5	Fe1	C13	H13	76.4
C6	Fe1	C13	H13	-71.8
C7	Fe1	C13	H13	-40.5
C11	Fe1	C13	H13	-152.1
C12	Fe1	C13	H13	-114.8
C14	Fe1	C13	H13	127.3
C8	Fe1	C13	H13	1.3
C9	Fe1	C13	H13	43.3
C10	Fe1	C13	H13	164.4
C5	Fe1	C14	H14	42.8
CG	Fe1	C14	H14	82.1
C7	Fe1	C14	H14	-84.6
C8	Fe1	C14	H14	-44.5
C9	Fe1	C14	H14	-1.1
C10	Fel	C14	H14	123.2
C11	Fel	C14	H14	161.0
C12	Fel	C14	H14	-155.8
C13	Fe1	C14	H14	-116.8
Pdl	S1	C15	H15a	-57.6
Pdl	51	C15	H15b	177.0
Pdl	S1	C15	H15c	52.3
C9	51	C15	H15a	-160.8
C9	S1	C15	H15b	73.7
C9	51	C15	H15c	-50.9
Pd1	N1	c:	Hla	-69.0

.

.

Torsional Angles (Continued) for dichloro[(R)-1-(5)-2-Methylthioferrocenylethyldimethylamine]pelledium(II)

.

· -

Atom 1	Atom 2	Atom 3	Atom 4	Angle
Pd1	N1	C1	H15	179.0
Pd1	N1	C1	H1c	60.6
C2	N1	C1	Hla	177.8
C2	N1	C1	H15	65.8
C2	N1	Cl	H1c	-52.6
C3	N1	C1	H1a	58.4
C3	N1	C1	H1b	-53.6
C3	N1	C1	Hic	-172.0
Pd1	N1	C2	H2a	67.2
Pd1	N1	C2	H2b	-42.1
 Pd1	N1	C2	H2c	-175.9
C1	N1	C2	H2a	-177.0
C1	N1	C2	H2b	73.7
C1	N1	C2	H2c	-60.1
C3	N1 N1	C2	H2a	-57.8
	N1	C2	H2b	-167.1
C3		C2	H2c	59.1
C3	N1	C2 C3		-60.7
Pd1	N1		H3 No	176.3
C1	N1	C3	КЗ	57.3
C2	N1	C3	H3	
N1	C3	C4	H4a	178.2
N1	C3	C4	H4b	58.6
N1	C3	C4	H4c	-68.7
C5	C3	C4	H4a	-56.7
C5	CЗ	C4	H4b	-176.2
C5	C3	C4	H4c	56.4
НЗ	C3	C4	H4a	64.6
НЗ	СЗ	C4	H4b	-54.9
НЗ	C3	C4	H4c	177.8
НЗ	C3	C5	Fe1	-46.5
HЭ	C3	C5	C6	-145.7
НЗ	CЗ	CS	C9	40.7
Fel	C5	C6	Н6	-110.9
C3	C5	C6	H6	16.1
C9	C5	C6	H6	-169.6
Fe1	CG	C7	H7	-119.1
C5 .	C6	C7	H7	-177.7
H6	C6	C7	Fe1	109.8
H6	Ce	C7	CB	168.5
He	C6	C7	H7	-9.3
Fel	C7	CB	нө	-131.5
C6	C7	СВ	нв .	168.9
H7	C7	CB	Fel	118.5
H7	C7	св '	C9	178.1
H7	C7	CB	HB	-13.0
на	CB	C9	Fel	:30.5
на	CS	C9	S1	4.2

Atom 1	Atom 2	Atom 3	Atom 4	Angle
1	1	1	1	:
НB	C.8	60	C5	69.
Fel	C10		H11	23.
C14	C10	C11	HII	-176.8
HIO	C10		Fe1	17.
HIO	C10		C12	177.
HIO	C10		H11	•
Fel.	C10		H14	12.
C11	C10	C14	H14	•
HIO	C10	C14	Fel	16.
H10	C10	C14	C1 3	76.
HIO	C10	C14	H14	, m
Fe1	C11	C12	H12	20.
C10	C11	C12	H12	-179.4
HII	C11	C12	Fe1	24.
HII	C11	C12	C13	75.
H11	C11	C12	H12	4
Fel	C12	C13	H13	12.
C11	C12	C13	HI3	72.
H12	C12	C13	Fel	•
H12	C12	C13	C14	79.
H12	C12	C1 3	HI3	8.
Fe1	C13	C14	H14	13.
C12	C13		H14	2
H13	C13		Fel	111.
H13	C13	C14	C10	71.
C 1 D				

,

Torsional Angles (Continued) for • dichloro(

Table 14. Least-Squares Planes for dichloro((R)-1-(S)-2-Methylthioferrocenylethyldimethylaminelpalladium(II) ------The equation of the plane is of the form: $A \bullet x \bullet B \bullet y \bullet C \bullet z - D = 0$ where A, B, C & D are constants and x, y & z are orthogonalized coordinates. Plane No. 1 A = -0.4255, B = -0.5241, C = -0.7378, D = -12.9444Chi Squared = 0. z Atom x Y Distance Esd -----------------Atome in Plane------

 5.2802
 13.0970
 5.1980
 -0.001

 6.5620
 12.8976
 4.5977
 0.001

 7.1189
 11.7152
 5.1182
 0.000

 6.1973
 11.1620
 6.0426
 0.000

 5.0692
 12.0072
 6.0912
 0.001

 C5 0.005 0.006 C6 C7 0.006 C8 0.006 C9 0.005 -----Other Atoms-----

 4.2053
 14.1071
 4.9545
 0.107
 0.005

 3.5110
 11.9000
 6.8786
 0.139
 0.001

 6.7332
 13.0177
 6.6369
 -1.639
 0.001

 0.005 0.001 СЗ **S1** Fe1 H6 6.9837 13.5890 4.0663 -0.149 0.060 7.968011.29094.96846.221510.34036.4261 H7 0.055 -0.029 H8 0.137 0.061 Plane No. 2 A = -0.4711, B = -0.4929, C = -0.7315, D = -16.0916 0. Chi Squared = Esd Y Atom x z Distance ------------------Atoma in Plane-----

 6.8304
 14.7983
 7.6312
 -0.002
 0.007

 8.0572
 14.4931
 7.0408
 0.002
 0.008

 8.5146
 13.2994
 7.5545
 -0.001
 0.008

 7.5498
 12.8274
 8.4934
 -0.001
 0.008

 6.5269
 13.7643
 8.5177
 0.002
 0.007

 0.007 C10 C11 C12 C13 C14 6.5269 13.7643 8.5177 -----Other Atoms-----6.7332 13.0177 6.6369 1.648 6.4149 15.5251 7.3522 0.039 Fe1 0.001 0.065 H10 8.3760 15.1209 6.4773 0.093 H11 -0.045
 9.3308
 12.8743
 7.3235
 -0.007
 0.058

 7.6284
 11.8917
 8.9107
 0.118
 0.073

 5.8441
 13.6453
 8.9203
 0.088
 0.064
 H12 H13 H14

.

dichloro ((R)-1-(S)-2-Methylthioferrocenylethyldimethylaminelpalladium(II) Least-Squares Planes (Continued) for

.

.

4	Υ - 	Y - - -
1n	Atoms in 11.6424	Atoms in 2482 11.6424
71	7 11.3271	
31	8 9.7731	1.2778 9.7731
98	9 13.4398	3.0949 13.4398
00	0 11.9000	
her Atoms	Other	Other
50	8 13.1250	3.6068 13.1250
40	7 14.3840	
71	-	4.2053 14.1071
72	2 12.0072	5.0692 12.0072
08	9 10.4108	٠

.____

,

Dihedral	Angles Bet	ween Planes:
Plane No.	Plane No.	Dihedral Angle
1 1 2	2 3 3	3.2 73.5 76.6

Table 16. Dihedral Angle and Bridgehead Angle of Selected [3]ferrocenophanes.

Compound	х	М	Dihedral ^a Angle	Bridgehead Angle
Fe(C ₅ H ₄ S) ₂ Se	S	Se	112.2°	100.5°
Fe(C5H4S)2S	S	S	110.9°	103.9°
Fe(C ₅ H ₄ S-iBu) ₂ PdCl ₂	S	Pd	75.4°	84.0°
Fe(C5 ^{H4AsMe} 2)2 ^{Ni(CO)I} 2	As	Ni	46.6°	93 .5°

^aDihedral angle obtained from least-squares planes calculation. Dihedral angle refers to angle between FeX₂ plane and MX₂ plane. 19.6. Seyferth proposed the presence of a weak dative Fe Pd bond on the basis of a Fe-Pd distance of 2.878(1) A. The structure of the methyl palladium complex, 58, makes it impossible for any interaction between Pd and Fe to occur.

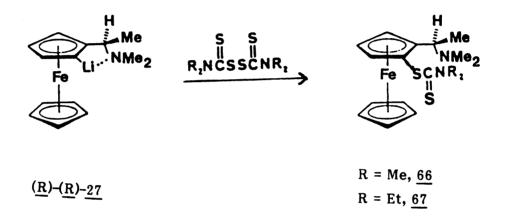
The two cyclopentadienyl rings are eclipsed and are slightly tilted with respect to each other, the dihedral angle being, 3.2°. The planes containing the cyclopentadienyl rings are almost orthogonal to the plane containing the palladium, sulfur, nitrogen and chlorine atoms. Table 14 shows a list of atomic parameters refined in least squares.

C. $(\underline{R},\underline{S})$ -C₅H₅FeC₅H₃[CH(CH₃)N(CH₃)₂][SCSNR₂] (R = Me,Et)

The dithiocarbamate ligand has played a major role in the chemistry of transition-metal sulfide complexes.^{112,113,114} Dithiocarbamates and thiuram disulfides have been used as fungicides, pesticides, vulcanization accelerators, antioxidants, floatation agents and high-pressure lubricants, and as drugs in medicine.¹¹² In particular, complexes of heavy metals with thiuram disulfides are effective fungicides and seed disinfectants. The rich and diverse chemistry of dithio acid and dithiolate complexes has been extensively covered in many reviews.¹¹³

1. Preparation

Tatraalkylthiuram disulfides undergo nucleophilic attack at the disulfide linkage by cyanide ions, amines and Grignard reagents.¹¹⁵ Cava¹¹⁶ has reported that aryllithium derivatives react with tetraisopropylthiuram disulfide to give dithiocarbamate esters that were precursors to aromatic thiols. Recently McCulloch⁴¹ reported that dilithioferrocene and lithioferrocene reacted with a series of tetraalkylthiuram disulfides giving rise to bis(dialkyldithiocarbamate)- ferrocene derivatives and monosubstituted dialkyldithiocarbamateferrocene derivatives respectively. Reaction of 1-dimethylaminomethyl-2-lithioferrocene with tetraalkylthiuram disulfide also gave rise to 1-dimethylaminomethyl-2-(dialkyldithiocarbamate)ferrocene derivatives.⁵⁴


Reaction of $(\underline{R},\underline{R})$ -1-dimethylaminoethyl-2-lithioferrocene, $[(\underline{R})-(\underline{R})-27]$, with tetramethylthiuram disulfide and tetraethylthiuram disulfide gave rise to a high yield of $(\underline{R},\underline{S})$ -1-(dimethylaminoethyl)-2-(dimethyldithiocar bamate)-ferrocene, <u>66</u>, and $(\underline{R},\underline{S})$ -1-(dimethylaminoethyl)-2-(diethyldithiocarbamate)ferrocene, <u>67</u>, respectively (Scheme 15). These new compounds contain a chiral center and plane of symmetry that is absent in bis(dialkyldithiocarbamate)ferrocene derivates and dialkyldithiocarbamateferrocene derivatives.⁴¹ They also contain a chiral center that is absent in 1-dimethylaminomethyl-2-dialkyl-(dithiocarbamate ferrocene.⁵⁴ In contrast to the results obtained by Cava, only the desired product and no thioamide derivative was obtained. The thioamide species arise from competing nucleophilic attack at the thione carbon rather than at the sulfur-sulfur bond in the tetraalkylthiuram disulfide.

2. 1 H NMR

The 250 MHz ¹H NMR data for (<u>R,S</u>)-1-(dimethylaminoethyl)-2-(dialkyldithiocarbamate)ferrocene derivatives, <u>66</u> and <u>67</u>, are given in Table 17. The ¹H NMR spectra of these ligands are similar to the spectra obtained for the chiral ferrocenyl-thioether compounds in the previous section, (Table 2). A comparison of the chemical shifts of the substituted ring protons in Table 17 and Table 2 revealed that the SCSNR₂ group substituted at ring exhibit more downfield peak than SR substituted ring. This is to be expected since the greater electron withdrawing effect of the SCSNR₂ group causes a greater deshielding of the ring protons, resulting in a more downfield peak.^{91,92} At

Compound	T(•C)	Substituted Ring	C ₅ II ₅	NCH	NMe2	CH2	. CH3
(<u>R</u>)-7	25	4.11	4.08 s	3.60 d	2.09 s		1.46 d
(<u>R</u> . <u>S</u>)C5H5FeC5H3(CHMeNMe ₂)- (SCSNMe ₂) <u>66</u>	22	4.63 dd 4.46 t	4.15 s	3.71 q	3.50 s 2.10 s		1.52 d
		4.40 dd					
(<u>R</u> . <u>S</u>)C5H5FeC5H3(CHMeNMe2)- (SCSNEt2) <u>67</u>	27	4.60 dd 4.48 t				3.96 q	1.46 d
		4.40 dd	4.12 s	3.63 q	2.15 s	3.82 q	1.3-1.42 11
<pre>C5H5Fe(C5H3-1-CH2NMe2-2-SCSNMe2)</pre>		4.43 t					
	. 27	4.45 dd		3.40 d			
		4.62 dd	4.16 s	3.18 d	2.21 s		3.50 s
[©] C ₅ H ₅ Fe(C ₅ H ₃ -1-CH ₂ NMe ₂ -2-SCSNEt ₂)		4.42 t					
	27	4.49 dd		3.19 d		3.85	1.22 t
		4.59 dd	4.14 S	3.48 d	2.18 s	3.98	1.39 t
^b C5H5Fe(C5H4SCSNMe2)		4.44 t					
	22	4.34 t	4.24 s				3.51 s
^b C ₅ H ₅ Fe(C ₅ H ₄ SCSNEt ₂)		4.42 t				3.82 q	1.23 t
	22	4.34 t	4.22 s			3.96 q	1.37 t

Table 17

Scheme 15

room temperature, single signal was observed for the NR₂ protons of the carbamate group due to incomplete restricted rotation around the C-N bond. At lower temperatures however, two separate signals were observed for the N,N-dialkyl signals a phenomenon that will be discussed in detail later.

3. ¹³C NMR

The ¹³C NMR data for the chiral carbamate derivatives, <u>66</u> and <u>67</u> are given in Table 18. During acquisition of the ¹³C NMR data, the parameters $PW = 4 \mu s$ and Rd = 4s were used since the thiocarbonyl carbon has a long relaxation time, T_1 .⁴² The low field signal around 198.9 ppm is attributed to the thiocarbonyl carbon. The other assignments shown in table 18 are tentative but results from other work do support these assignments.^{41,54} The assignments of $C_3 < C_4 < C_5$ are based on previous

conclusions about deshielding.41

4. Dynamic NMR Studies

There are two possible resonance forms for the dialkyldithiocarbamate ferrocene complexes, 41 as shown below.

Fc = ferrocenyl backbone.

¹³ C NMR Data for	or (<u>R</u>)-7; (<u>R</u> , <u>S</u>) C ₅ H ₅ Pe	(<u>R</u>)-7; (<u>R</u> , <u>S</u>)-C ₅ H ₅ FeC ₅ H ₃ [CHMeNMe2 K R]; C ₅ H ₅ Fe(C ₅ H ₃ -1-CH ₂ NMe ₂ -2-R); and C ₅ H ₅ FeC ₅ H ₄ R; R = SCSNMe ₂ and SCSNEt ₂ ; (δ , ppm)	С5H5Pe(C5H3 ⁻ iEt ₂ ; (б,ррп	-1-CH2NMe2-2 1)	-R); and		
Compound	۲ د	Substituted Ring C1 C2 C3 C4 C5	C ₅ H ₅	NCH	NMe ₂	CH2	CH3
(<u>R</u>)- <u>7</u>							
(<u>R</u> , <u>S</u>)C5H5FeC5H3(CHMeNMe2)(SCSNMe2) <u>66</u>	198.9	91.7, 74.9, 68.6, 69.6, 76.2	69.9	55.6	40.8		18
(<u>R</u> , <u>S</u>)C5H5FeC5H3(CHMeNMe2)(SCSNEt2) <u>67</u>	197.3	86.6, 86.5, 67.8 68.6, 77.5	68.6	51.0	39.9	46.8 39.9	12.9 10.0
⁸ C5H5Fe(C5H3-1-CH2NMe2-2-SCSNMe2)	199.3	88.1, 75.0, 69.4 71.3, 76.3	70.2	56.8	45.5		
^A C5H5Fe(C5H3-1-CH2NMe2-2-SCSNEt2)	197.4	87.7, 75.2, 69.2 71.2, 76.7	70.0	56.6	45.2	46.8 49.4	11.4 12.9
^b C ₅ H ₅ Fe(C ₅ H ₄ SCSNMe ₂)	199.9	70.3, 75.5, 75.2	69.4				
bC5H5Fe(C5H4SCSNEt2)	198.7	72.0, 77.4, 76.4	69.5			47.2 49.6	11.5 12.6

^a Reference 54; ^b Reference 41

-

Table 18

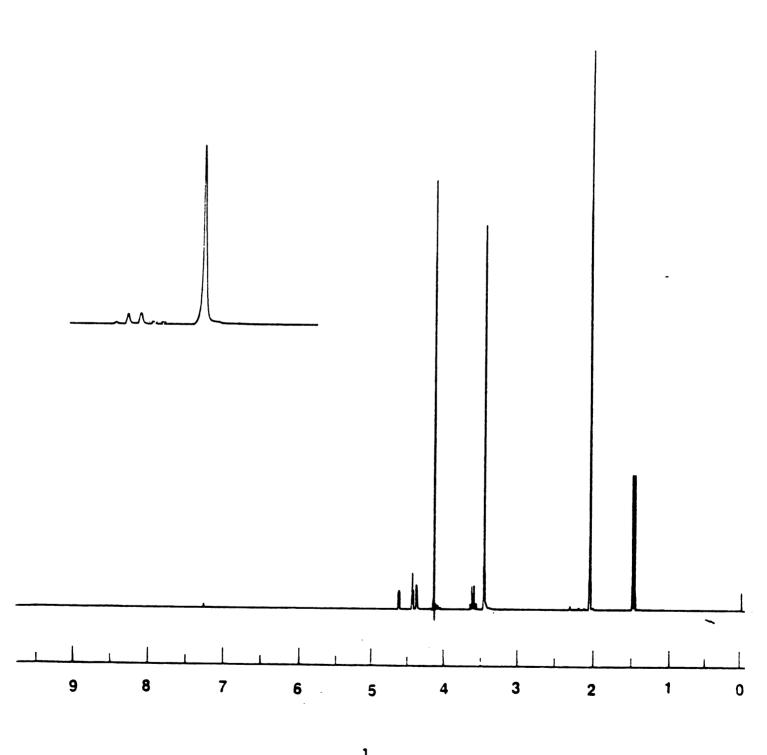


Figure 12. 250 MHz ¹H NMR spectrum of <u>66</u>, $R = SCSNMe_2$.

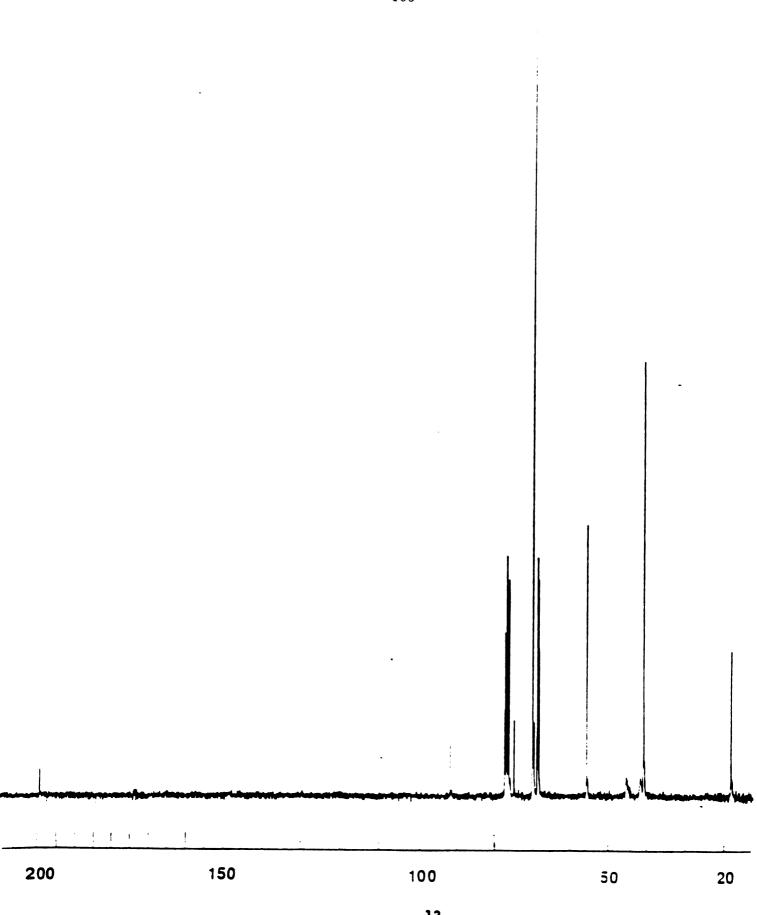


Figure 13. Gated decoupled 13 C NMR of <u>66</u>.

The second resonance form introduces a degree of double bond character into the carbon-nitrogen bond which prevents free rotation around the C-N bond. The ¹H NMR and ¹³C NMR data in Table 17 and Table 18 show that two separate signals were observed for the N,N-dialkyl group of the diethyldithiocarbamate ferrocene derivative, <u>67</u>, at room temperature, but the dimethyldithiocarbamateferrocene derivative, <u>66</u>, are observed only at a lower temperature (12°C). When the temperature is raised, the two N,N-dialkyl signals coalesce, and as the fast exchange limit is approached they sharpen to a single peak. The protons on the cyclopentadienyl rings show no such variation with temperature.

The behavior of the alkyl protons is due to the restricted rotation around the carbamate C-N bond and a rough approximation of the barrier to rotation about this bond has been determined. NMR parameters, rate constants and an approximate value of the barrier to rotation in compounds <u>66</u>, and <u>67</u>, are given in Table 19. The rate constant, k_c , at the coalescence temperature, T_c , was determined from the peak separation, ΔV , at slow exchange by using the equation¹¹⁷ $k_c = \pi \Delta V/(2)^{1/2}$. An approximate rotational free energy barrier was obtained from the Eyring equation:

$$\Delta G^{\mp} = 2.303 RT [10.3 - log(K_c/T_c)].$$

The values of the rotational barriers are 15.36 and 15.81 kcal/mol for compounds <u>66</u> and <u>67</u>, respectively. These $\triangle G$ values, though of fairly narrow range, reveal that the rotational barrier of the NEt₂ in <u>67</u> is higher than that of NMe₂ in <u>66</u>. This is to be expected since the diethylamino group is more sterically hindered than the dimethylamino group in a 1,2-disubstituted cyclopentadienyl ring.

Hollaway¹¹⁸ has determined rotational barriers about the carbamate

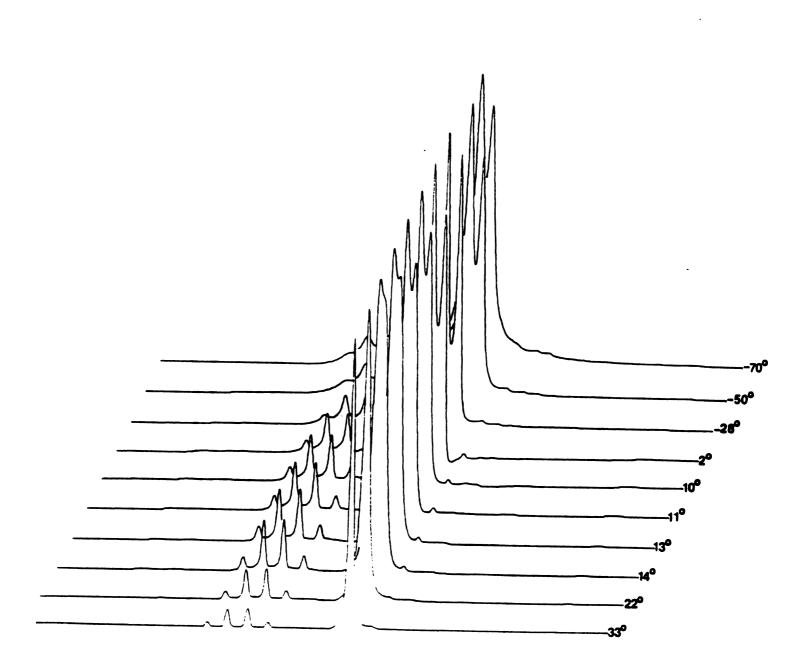
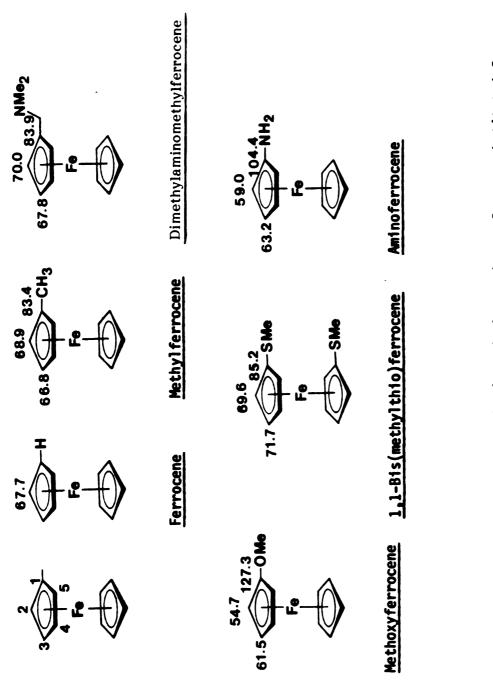
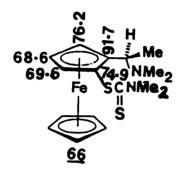


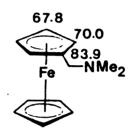
Figure 14. Variable-temperature ¹H NMR spectra of <u>66</u>, R = SCSNMe₂.

~			108	}			
IR(cm ⁻¹)	1495	1498	1498	1487	1475	1480	
۵ G [‡] (kcal/mol)	15.36	15.81	15.83	16.18	16.00	15.98	
T _C (•K)	285	319	296	328	312	320	
Kc, (s ⁻¹)	9.22	91.63	11.73	104.62	39 .32	79.40	
(Hz)	4.15	41.25	5.28	43.87	17.70	31.74	
Compound	<u>66</u> (<u>R</u> , <u>S</u>)C5H5FeC5H3(CHMeNMe2)(SCSNMe2) مع	<u>2/</u> (<u>R</u> , <u>S</u>)C ₅ H ₅ FeC ₅ H ₃ (CHMeNMe ₂)(SCSNEt ₂)	^{&} C ₅ H ₅ Fe(C ₅ H ₃ -1-CH ₂ NMe ₂ - ² -SCSNMe ₂)	⁸ C ₅ H ₅ Fe(C ₅ H ₃ -1-CH ₂ NMe ₂ -2-SCSNEt ₂)	^b C ₅ H ₅ Fe(C ₅ H ₄ SCSNMe ₂)	^b C ₅ H ₅ Fe(C ₅ H ₄ SCSNEt ₂)	

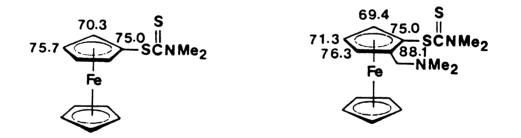

Table 19

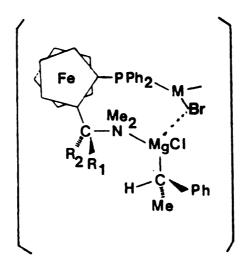
NMR Parameters, Kinetic and Infrared Data for (R.S)-C5H5FeC5H3[CHMeNMe2][R]; C5H5Fe(C5H3-1-(H2NMe2-2R);


•


and C₅H₅FeC₅H₄R where R = SCSNMe₂, SCSNEt₂

^a Reference 54; ^b Reference 41




Figure 16. Assignment of ring carbons in some ferrocenyl carbamate derivatives.

C-N bond in a series of N,N-dialkyldithiocarbamate esters. Activation energies of 10 to 12 kcal/mol suggested that an appreciable amount of C-N double bond character was present. Hollaway was able to correlate the C-N double bond character with the "thioureide" band between 1489 and 1498 cm⁻¹ in the infrared region. The "thioureide" band, which has been assigned to the partial double bond character in the carbon-nitrogen bond, was observed at 1495 cm⁻¹ for the chiral dimethylaminoethyldimethyldithio carbamate derivative <u>66</u>, and 1489 cm⁻¹ for the dimethylaminoethyldiethyldithio carbamate derivative <u>67</u>. The variable temperature ¹H NMR spectrum for the chiral dimethylaminoethyldimethyldithio carbamate derivative, 66, is shown in Figure 14.

D. Catalytic Applications of Complexes

1. Asymmetric Grignard Cross-Coupling Reactions

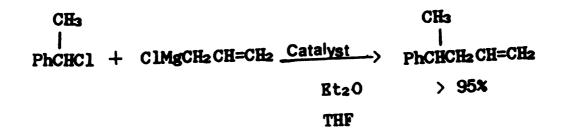
Asymmetric carbon-carbon bond-forming reactions are of great significance for the synthesis of optically active compounds, and the use of chiral transition--metal catalysts for such reactions has recently attracted considerable attention due to a number of advantages of catalytic asymmetric synthesis.¹²⁰ The first report on asymmetric Grignard cross-coupling appeared in 1973, where 2,3-o-isoproylidene-2,3-dihydroxyl-1,4-bis(diphenylphosphino)butane (DIOP) was used as a chiral ligand on a nickel catalyst and 7-16% of the products were obtained in the reaction of (1-phenylethyl)magnesium chloride. Since the first report in 1975 that Pd complexes catalyze the coupling of Grignard reagents with organic halides,¹²² the method has been used with a variety of Grignard reagents and halogenated species. Kumada and co-workers¹²³ has examined various types of chiral ferrocenylphosphine ligands for the nickelor palladium-catalyzed reaction of (1-phenylethyl)-magnesium chloride with vinyl bromide and found that the ferrocene planar chirality played an important role rather than the carbon centered chirality on the side chain of the ferocene and concluded that the asymmetric induction on the coupling product was mainly determined by transmetallation of the alkyl group from the Grignard reagent to the transition-metal catalyst and the most important intermediate of the reaction was the diastereomeric transition state shown below.

The development of such transition metal catalysis depends largely on the availability of suitable ligating compounds. Up to now only chiral phosphines or phosphineamine combinations have provided satisfactory results. 67,124 This is a severe limitation for the synthesis of phosphines is not simple and the derived ligands, once obtained, are often sensitive, especially to oxidation by air.

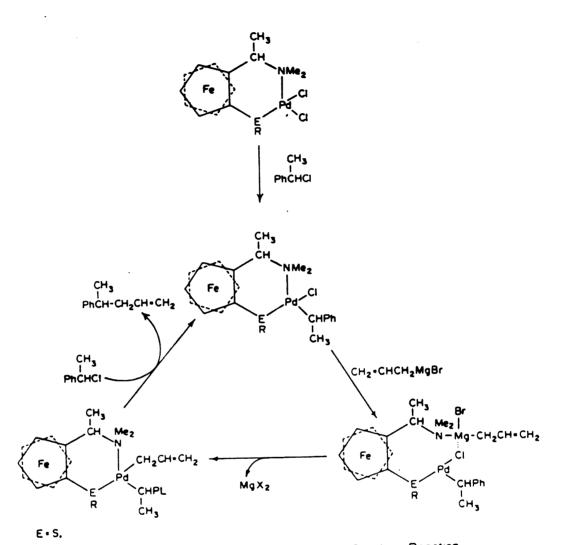
These condiderations induced us to investigate application of our new chiral ferrocenylthioether compounds as potential ligands. While in the process of this work, Kellogg and his co-workers,⁶⁹ reported the asymmetric Grignard cross-coupling reactions of 1-phenylethylmagnesium chloride with vinyl bromide by using nickel catalyzed bi- and polydentate sulfide ligands and obtained good

Table 20

Asymmetric Grignard Cross-Coupling Reactions Using Chiral Thioether Complexes


Catalyst	Chemical Yield(%)	e.e.(%)	Configuration
<u>58</u> , R = Me	97.5	26.0	S
59. $R = i - Pr$	95.0	22.3	S
$\underline{62}$, R = Ph	96.0	18.2	S
$\underline{63}$, R = p-tolyl	96.0	25.5	S
<u>64</u> , R = 4-C1-Ph	94.5	16.5	S
a _{Ni}	100	16.9	S

^a Reference 69


•

chemical yield but poor enantiomeric purity (0.8-16.9% e.e.).

The new chiral ferrocenylaminethioether palladium complexes, <u>58</u>, <u>59</u>, <u>62-64</u>, was tested for asymmetric Grignard cross-coupling reactions represented below

The results are shown in Table 20. Since the optical rotation of the coupling product 4-phenyl-1-pentene was strongly affected by small impurities⁷⁰ and in addition recemization of products always occur, it was difficult to determine the optical purity by use of a polarimeter. The alkene was converted into the methylester, the enantiomeric purity of which was determined by ^{1}H NMR spectroscopy in the presence of a chiral shift reagent, Eu(dcm)3.82 The chemical shift (δ), and the enantiomeric shift difference ($\Delta\Delta\delta$) depend on the concentration of the chiral shift reagent and the temperature at a constant concentration of the substrate (0.5 M) in CDCl₃ as shown in Figures 17 and 18 respectively. At room temperature the ¹H NMR signal of the methyl protons of the methyl ester is a singlet when no chiral shift reagent is present. Upon addition of the shift reagent the signal separates into two distinct singlets. The signal shifted downfield and $\Delta\Delta\delta$ increased as the concentration of the chiral shift reagent increased. When the concentration of the chiral shift reagent was 0.27 M, $\Delta\Delta\delta$ was large enough for the determination of the enantiomeric excess (e.e.) (see Figure 17 and 18). Kumada¹²⁵ had reported that the methyl

ARRIVERSENT OF CET

Scheme 16 Proposed Mechanism for Grignard Cross Coupling Reaction.

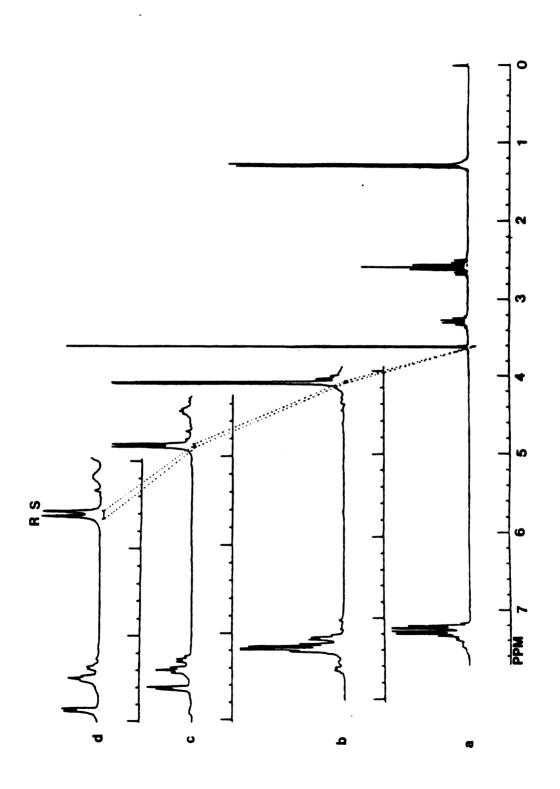


Figure 17. ¹H NMR spectra of (<u>R</u>) and (<u>S</u>)-methyl 3-phenyl butyrate in the presence of increasing these spectra is 0.5M in CDCl₃/TMS, and that of Eu(dcm)₃ is (a) 0.0M, (b) 0.09M, (c) concentrations of chiral shift reagent, $Eu(dcm)_3$. The concentration of substrate in 0.18M, and (d) 0.27M.

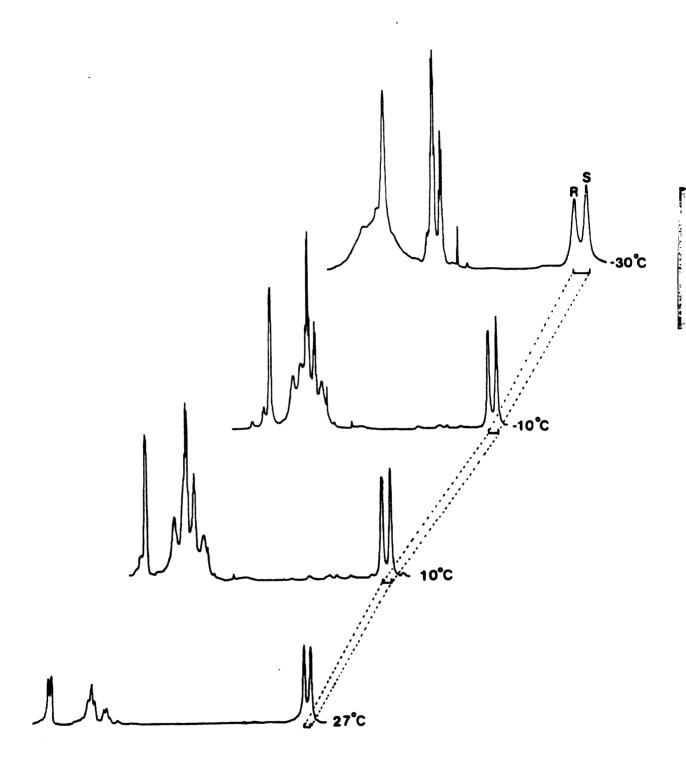


Figure 18. The magnitudes of $\Delta \Delta \delta$ increase for methyl 3-phenylbutyrate with decreasing temperature in the presence of chiral shift reagent, Eu(dcm)₃. The concentration of substrate and chiral shift reagent in CDCl₃/TMS are 0.5 and 0.27 M, respectively.

signal of (\underline{S}) -methyl 3-phenyl butyrate appears at a higher field than that of the R enantiomer.

The chiral ferrocenylamine thioether complexes with Pd, <u>58</u>, <u>59</u>, <u>62-64</u>, catalyzed formation of 4-phenyl-1-pentene from 1-phenyl-1-chloroethane and allylmagnesium chloride at 0° in high yield (>95%). The resulting configuration in all cases were <u>S</u> (see Table 20). The enantiomeric excess (e.e) range from 16.5 to 26.0 e.e (<u>S</u>) and is much higher than those reported by Kellogg.⁶⁹ The Grignard cross-coupling reaction mechanism using phosphine-amine-palladium complex was postulated by Kumada.¹²³ Based on that we have also proposed a mechanism for the chiral thioether-palladium catalyzed reaction (Scheme 16). It should be noted from our results that the planar chirality played an important role rather than the carbon centered chirality of the side chain of the ferrocenyl ligand in the asymmetric induction. Thus the configuration of the coupling product was consistent with the planar chirality of the chiral ferrocenylaminethioether-Pd catalysts.

2. Selective Hydrogenation of Conjugated Dienes to Alkenes

Hydrogenation by homogeneous catalysts is well-developed.¹³³ Of the many known complexes, those of Group VIII metals with amines and sulfides have been used with varying degrees of success. In 1967 $PtCl_2(SPh_2)_2$ was found to be selective for the hydrogenation of dienes to monoenes in the presence of $SnCl_2$.¹³⁴ Treatment of PdCl_2 or Na_2PdCl_4 with tertiary amines resulted in an active selective catalyst.¹³⁵ The same was true of PdCl_2 when treated with 2,2'-bipyridine and NaBH₄.¹³⁶ Palladium chloride and thioethers gave complexes which upon reduction by diisobutylaluminum hydride, were selective catalysts.¹³⁷ The thioetherrhodium complex, RhCl₃(SEt₂)₃ hydrogenates maleic acid, provided maleic acid is present in excess.¹³⁸⁻¹⁴¹

Table 21

Selective Hydrogenation of 1,3-cyclooctadiene at Room Temperature^a.

•

*Solvent in All Cases was Acetone.

	Induction	Initial Turnover	Pro	Products	
Catalyst	Time (h)	Rate(mol/mol.Pd.h)	Cyclooctene (%)	Cyclooctane(%)	Reference
PdC1 ₂ /CpFeC ₅ H ₃ [CHMeNMe ₂][SCH ₃] <u>58</u>	45.00	15.65	86.3	13.7	This work
PdC1 ₂ /CpFeC5H3[CHMeNMe ₂][SPh] <u>62</u>	0.00	256.3	89.9	10.1	This work
PdC1 ₂ /CpFeC ₅ H ₃ [CHMeNMe ₂][SPhMe] <u>63</u>	0.00	462.00	95.5	4 . S	This work
PdC1 ₂ /CpFeC ₅ H ₃ [CHMeNMe ₂][S-PhC1] <u>64</u>	0.50	353.43	87.6	12.4	This work
PdC1 ₂ /CpFeC ₅ H ₃ [CH ₂ NMe ₂][SMe]	49.7	13.96	94.08	5.92	142
PdC1 ₂ /CpFeC ₅ H ₃ [CH ₂ NMe ₂][SPhMe]	0.00	690.91	78.54	21.46	142
PdC1 ₂ /CpFeC ₅ H ₃ [CH ₂ NMe ₂ [S- <u>1</u> -Bu]	0.00	345.46	97.22	2.78	142

^a 9.0 mL acetone; 2.0 x 10⁻⁵ mol of catalyst; 7.45 x 10⁻³ mol of substrate; initial H₂ press. = 67 psi

.

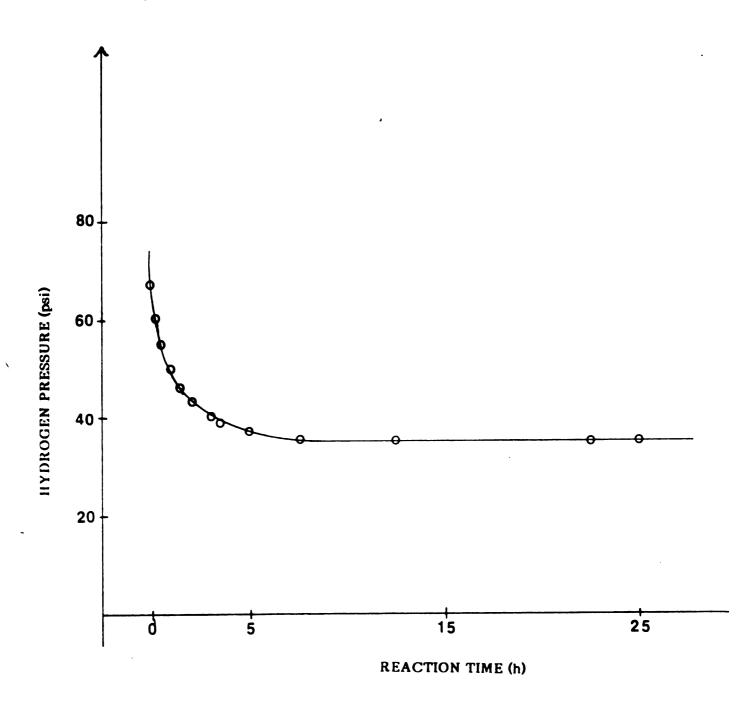


Figure 19: Selective Hydrogenation of 1,3-cyclooctadiene in Acetone at 27°C and 67 psi Using Complex <u>58</u>. R = Me

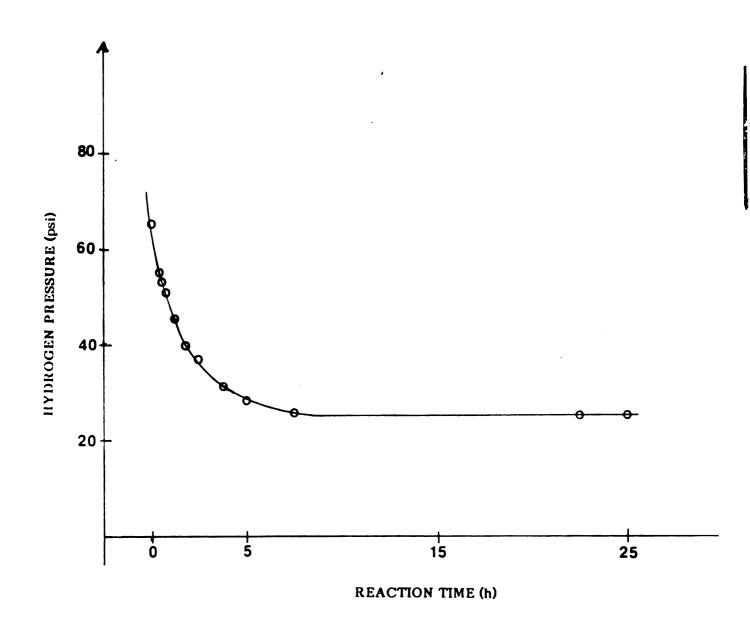
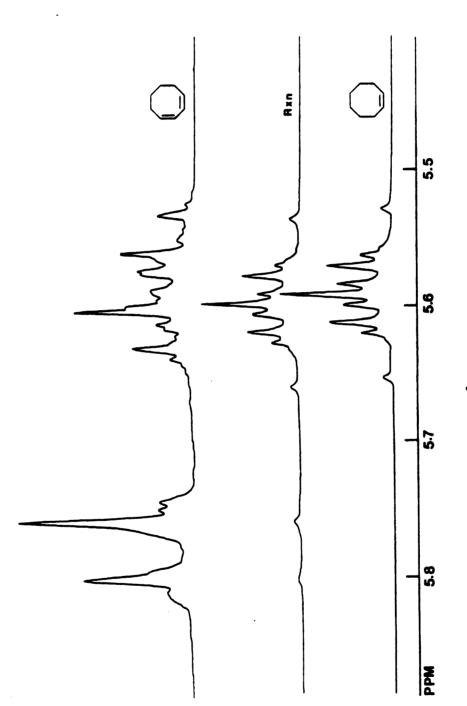
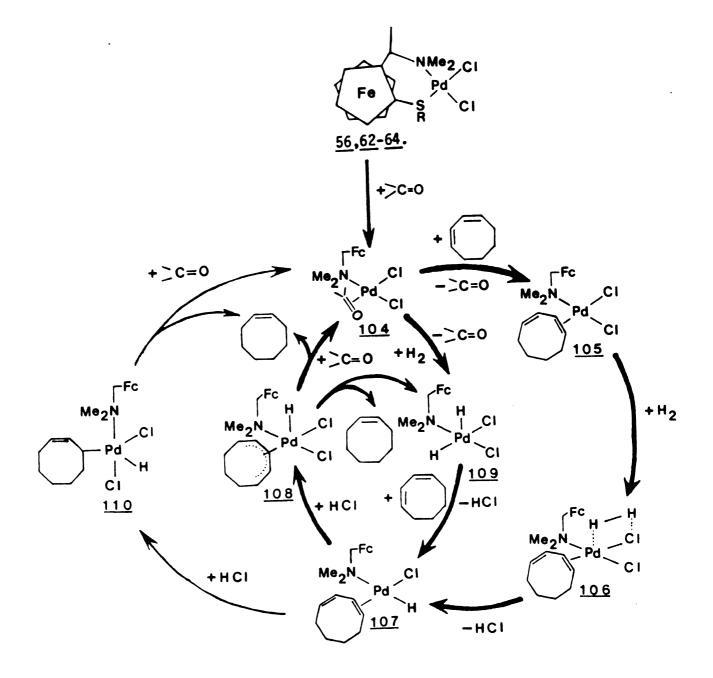



Figure 20: Selective Hydrogenation of 1,3-cyclooctadiene in Acetone at 27°C and 67 psi Using <u>62</u>, R = Ph

In view of the selective hydrogenation of thioether-palladium complexes.^{52,138} we have carried out selective hydrogenation of conjugated dienes to alkenes using ferrocenylamine thioether-palladium complexes 58, 62-64. Our results have previously reported that hydrogenations using thioetherpalladium complex failed if reducing agents were added.⁵² Hydrogenation of 1,3-cyclooctadiene proceeded conveniently in acetone at 67 psi (see Figure 18). This is a homogeneous reaction system without H_2O or reducing agents and reaction proceeds at a useful rate (up to 462 mol/mol Pd.Hr) to afford a high conversion of nearly 96%. As time passed the red solution became brown but remained homogeneous. Most of the product at the end of reaction was cyclooctene, but some cyclooctane was present. The compounds present after each of the hydrogenation reactions were 1,3-cyclooctadiene, cyclooctene and cyclooctane. The (diene + monoene):alkane ratio was determined by gas chromatography, the two peaks being separated typically by more than 0.8 minutes. The ratio of the diene to monoene was determined by ^{1}H NMR, as illustrated in Figure 21. The central olefinic protons of the diene appear near 5.8 ppm while the outer protons appear around 5.6 ppm. The olefinic protons of the monoene appear around 5.6 ppm. The ratio of monoene to diene is therefore given by;

$$\frac{\text{Monoene}}{\text{Diene}} = \frac{\text{A}_{5.6} - \text{A}_{5.8}}{\text{A}_{5.8}}$$

The selective hydrogenations of 1,3-cyclooctadiene in acetone at 27° C and 67 psi initial hydrogen pressure using thioether-palladium complexes <u>58</u> and <u>62</u> as catalysts are shown in Figure 19 and Figure 20 respectively. Table 21 shows that the ratio of products (selectivity) and initial turnover rates depend on the nature of the alkyl group present in the catalyst. Steric crowding rather

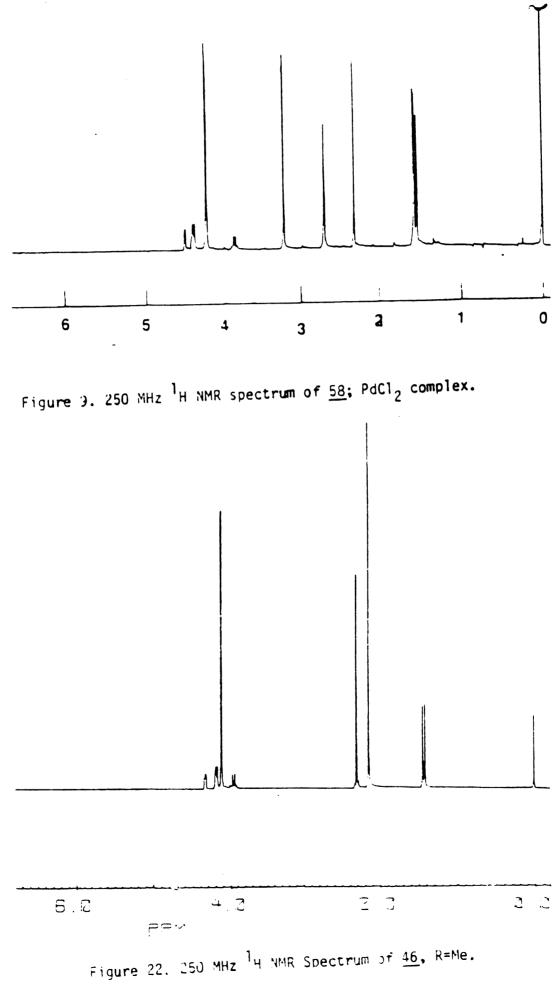

22	
Table	

Effect of Solvents on the Selective Hydrogenation of 1,3-cyclohexadiene⁸

Products (%) exene Cyclohexane	4.5	5.1	3.7	ı
Produ Cyc I ohexene	95.5	94.9	96.3	I
Products (%) Conversion(%) Cyclohexene Cyclohexane	100	56	51	I
Turnover Rate (mol/ mol.Pd.h)	462.00	50.9	16.4	l
Initial H ₂ Pressure (psi)	67	67	67	67
Solvent	Acetone	Acetone/CC14 2:1	Acetone/CC1 ₄ 1:1	CC14
Catalyst	<u>63</u>	<u>63</u>	<u>63</u>	<u>63</u>

•

^a 9.0 mL of solvent; 2.0 x 10^{-5} mol of catalyst; 7.40 x 10^{-3} mol of substrate; T = 27° C



Scheme 17. Proposed Mechanisms for Homogeneous Selective Hydrogenation of 1,3-cyclooctadiene via a 4-coordinate intermediate. Fc- = 2-alkylthioetherferrocenylderivative. than inductive effects of the aryl and alkyl groups present in the catalyst, favor selective hydrogenation.

The effect of solvents on the hydrogenation of 1,3-cyclohexadiene at room temperature is given in Table 22. The catalyst and substrate are soluble in CCl₄. However, the solution is catalytically inactive since H_2 is unable to add oxidatively to Pd. When the catalyst and substrate are dissolved in acetone, acetone replaces the thioether and coordinates to Pd, and thus induces hydrogenation. In a mixed solvent of actone and CCl₄, the hydrogenation turnover rate decreases but the selectivity increases slightly, indicating that proper choice of solvent is essential in the selective hydrogenation process. IV. APPENDIX

.

•

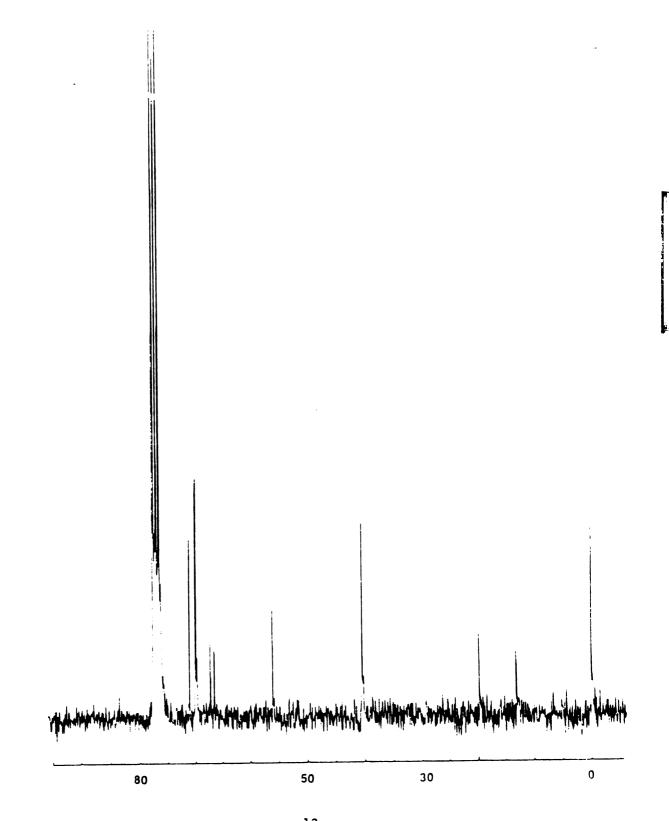


Figure 23. Gated decoupled 13 C NMR of <u>46</u>, R=Me.

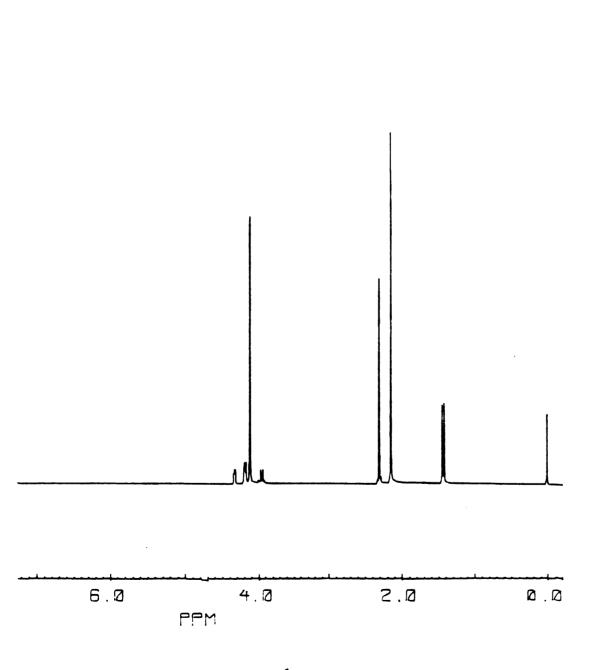


Figure 24: 250 MHz ¹H NMR Spectra of <u>46</u>, R = Me

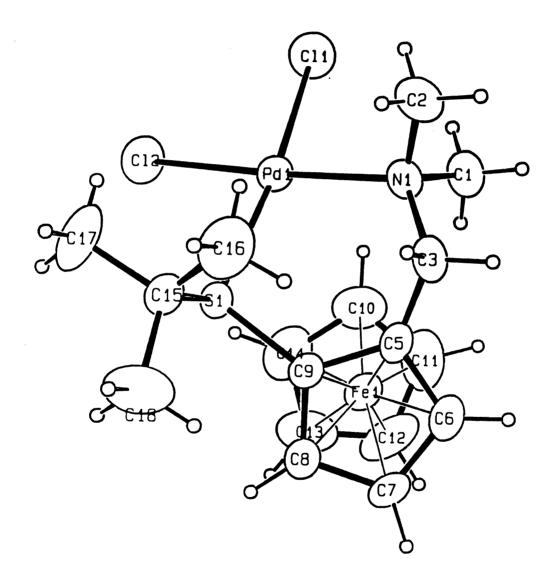


 Figure 25:
 Structure of Dichloro[1-dimethylaminomethyl-2-tbutylthioferrocenyl]palladium(II).

.

· · · ·

-

.

.

v. REFERENCES

.

The Manual St

•

REFERENCES

- 1. (a) Miller, S.A.; Tebboth, J.A.; Tremine, J.F. <u>J. Chem. Soc</u>. 1952, 632; (b) Kealy, T.J.; Pauson, P.L. Nature 1951, 168, 1039.
- (a) Rosenblum, M. "Chemistry of the Iron Group Metallocenes", Part I., Wiley, New York, 1965. (b) Wilkinsom, G.; Stone, F.G.A.; Abel, E.W. "Comprehensive Organometallic Chemistry", Pengamon Press, New York, 1982.
- 3. Slocum, D.W.; Engelmann, T.R.; Ernest, C.; Jennings, C.A.; Jones, W.; Koonsvitsky, B.; Lewis, J.; Shenkin, P. <u>J. Chem. Ed.</u> **1969**, <u>46</u>, 144-150.
- 4. Rausch, M.D.; Ciappenelli, D.J. <u>J. Organomet. Chem.</u> 1967, <u>10</u>, 127-136.
- 5. Hedberg, F.L.; Rosenberg, H. Tetrahedron Lett. 1969, 46, 4011-4012.
- 6. Seyferth, D.; Hofmann, H.P.; Burton, R.; Helling, J.F. <u>Inorg. Chem.</u> 1962, <u>1</u>, 227-231.
- 7. Fish, R.W.; Rosenblum, M. J. Org. Chem. 1965, 30, 1253-1254.
- 8. Goldberg, S.I.; Bailey, W.D. J. Am. Chem. Soc. 1971, 93, 1046.
- 9. MarQuarding, D.; Hoffmann, P.; Hertzer, H.; and Ugi, I. <u>J. Am. Chem.</u> Soc. 1970, <u>92</u>, 1969.
- 10. Aratani, T.; Gronda, T.; and Nozak, H. <u>Tetrahedron Lett.</u> 1969, <u>46</u>, 2265.
- 11. Schlogl, K. Top. Stereochem. 1967, 1, 39.
- 12. MarQuarding, D.; Klusacek, H.; Grokel, G.; Hoffmann, P.; and Ugi, I. Angnew. Chem. Int. Ed. 1970, 9, 371.
- (a) Mislow, K. "Introduction to Stereochemistry", Benjamin, Inc., New York, 1966; (b) Ugi, I.; MarQuarding, D.; Klusacek, H.; Grokel, G.; and Gillespie, P. Angew Chem. Int. Ed. 1970, 9, 703.
- 14. Kotz, J.C.; Nivert, C.L.; Lieber, J.M.; and Reed, R.C. <u>J. Organomet.</u> Chem. **1975**, 84, 225-267.
- 15. Booth, D.J. and Rockett, B.W. <u>Inorg. Nucl. Chem. Letters</u> 1970, <u>6</u>, 121-124.
- 16. Cullen, W.R. and Woollins, D.J. <u>Coordination Chem. Rev.</u> 1981, <u>39</u>, 1-30.
- 17. Bishop, J.J.; Davison, A.; Katcher, M.L.; Lichtenberg, D.W.; Merrill, R.E. and Smart, J.C. J. Organomet. Chem. 1971, 27, 241-249.

- 18. Osborne, A.G.; Hollands, R.E.; Howard, J.A.K. and Bryan, R.F. J. Organomet. Chem. 1981, 205, 395-406.
- 19. (a) Seyferth, D. and Withers, H.P. <u>J. Organomet. Chem.</u> 1980, <u>185</u>, C1-C5; Organometallics 1983, <u>2</u>, 1275-1282.
- 20. Butler, I.R.; Cullen, W.R.; Einstein, F.W.B.; Rettig, S.J. and Willis, A.J. Organometallics 1983, 2, 128-135.
- 21. Osborne, A.G. and Whitely, R.J. <u>J. Organomet. Chem.</u> 1975, <u>101</u>, C27; Stoekli-Evans, H.; Osborne, A.G. and Whitley, R.H.; <u>ibid</u>. 1980, <u>194</u>, 91-101.
- 22. Fischer, A.B.; Kinney, J.B.; Staley, R.H. and Wrighton, M.S. <u>J. Am.</u> Chem. Soc. **1979**, 101, 6501-6506.
- 23. Gautheron, B. and Tainturier, G. J. Organomet. Chem. 1984, 262, C30-C34.
- 24. Slocum, D.W.; Rockett, B.W. and House, C.R. J. Am. Chem. Soc. 1965, 87, 1241-1246.
- 25. Slocum, D.W.; Rockett, B.W. and Houser, C.R. <u>Chem. Ind. (London)</u> 1964, 1831-1832.
- 26. Booth, D.J.; Marr, G.; Rockett, B.W. and Rushworth, A. <u>J. Chem.</u> <u>Soc. (C)</u> **1969**, 2701-2703.
- 27. Marr, G.; Rockett, B.W. and Rushworth, A. <u>J. Organomet. Chem.</u> 1969, <u>16</u>, 141-147.
- 28. Marr, G. J. Organomet. Chem. 1967, 9, 147-152.
- 29. Gay, R.L.; Crimmins, T.F.; Hauser, C.R. <u>Chem. Ind. (London)</u> 1966, 1635.
- 30. Marr, G.; Moore, R.E. and Rockett, B.W. <u>J. Chem. Soc. (C)</u> 1968, 24-27.
- 31. Moore, R.E.; Rockett, B.W. and Brown, D.G. <u>J. Organomet. Chem.</u> 1967, 9, 141-146.
- Hayashi, T.; Mise, T.; Fukushima, M.; Kagotani, M.; Hamada, Y.; Matsumoto, A.; Kawakami, S.; Kiaishi, M.; Yamanoto, K. and Kumada, M. Bull Chem. Soc. Jpn. 1980, 53, 1138-1151.
- 33. MarQuarding, D.; Klusacek, H.; Gokel, G.; Hoffmann, P. and Ugi, I. J. Am. Chem. Soc. 1970, 92, 5389-5393.
- 34. Wakefield, B.J. "The Chemistry of Organolithium Compounds", Pergamon Press, New York, 1974.
- 35. Trost, B.M.; and Salzmann, T.H. J. Am. Chem. Soc. 1973, 95, 6840-6842.

- 36. Seeback, D.; and Teschner, M. <u>Tetrahedron Lett</u>. 1973, 5113-5116.
- 37. Brocksom, T.J.; Petragnani, N.; and Rodriques, R. <u>J. Org. Chem.</u> 1974, 39, 2114-2116.
- 38. Burdorf, H.; Elschenbroich, C. Z. Naturforsch. B 1981, 36, 94-101.
- 39. Ien, K.-Y. and Cava, M.P. Tetrahedron Lett. 1982, 23, 2001-2004.
- 40. McCulloch, B.; Ward, D.L.; Woollins, J.D. and Brubaker, C.H., Jr. Organometallics 1985, 4, 1425-1432.
- 41. McCulloch, B.; Brubaker, C.H., Jr. Organometallics 1984, 3, 1707-1711.
- 42. McCulloch, B., Ph.D. Thesis, Michigan State University, East Lansing, MI, 1983.
- 43. Headlington, M.; Rockett, B.W. and Nelhaus, A. <u>J. Chem. Soc. (C)</u> 1967, 1436-1440.
- 44. Knox, G.R. and Pauson, P.L. J. Chem. Soc. 1958, 692-696.
- 45. Knox, G.R.; Morrison, I.G. and Pauson, P.L. <u>J. Chem. Soc. (C)</u> 1967, 1842-1847.
- 46. Jain, S.C. and Rivest, R. J. Inorg. Nucl. Chem. 1970, 32, 1579.
- 47. Marr, G. and Hunt, T. J. Chem. Soc. (C) 1969, 1070-1072.
- 48. (a) Sollott, G.P. and Howard, E., Jr. J. Org. Chem. 1962, 27, 4034;
 (b) Sollott, G.P.; Mertowoy, H.E.; Portnoy, S. and Sneed, J.L., <u>ibid</u>. 1963, 28, 1090.
- 49. (a) Kumada, M. <u>Pure Appl. Chem.</u> **1980**, <u>52</u>, 669-679; (b) Hayashi, T.; Konishi, M.; Tokota, K.-I. and Kumada, M. <u>Chem. Comm.</u> **1981**, 313-314.
- 50. Hughes, O.R. and Unruh, J.D. J. Mol. Cat. 1981, 12, 71-88.
- 51. Unruh, J.D. and Christensen, J.R. J. Mol. Cat. 1982, 14, 19-34.
- 52. Honeychuck, R.V.; Okoroafor, M.O.; Shen, L.-H.; Brubabker, C.H., Jr. Organometallics in press.
- 53. Honechuck, R.V., Ph.D. Thesis, Michigan State University, East Lansing, MI 1984.
- 54. Shen, L.-H., Ph.D. Thesis, Michigan State University, East Lansing, MI 1985.
- 55. Hayashi, T.; Kumada, M. Acc. Chem. Res. 1982, 15, 395-401.
- 56. Hayashi, T.; Mise, T.; Mitachi, S.; Yamanoto, K.; Kumada, M. <u>Tetrahedron Lett.</u> 1976, 1133.

- 57. Cullen, W.R.; Einstein, F.W.B.; Huang, C.-H.; Willis, A.C.; Teh, E.-S. J. Am. Chem. Soc. 1980, 102, 988-993.
- 58. Hayashi, T.; Mise, T.; Kumada, M. Tetrahedron Lett. 1976, 4351.
- 59. Hayashi, T.; Katsumara, A.; Konishi, M.; Kumada, M. <u>Tetrahedron</u> Lett. **1979**, 425.
- 60. Knowles, W.S. Acc. Chem. Res. 1983, 16, 106-112.
- 61. Hayashi, T.; Kanehira, K.; Kumada, M. <u>Tetrahedron Lett.</u> 1981, <u>22</u>, 4417.
- 62. Cullen, W.R.; Woollins, J.D. Can. J. Chem. 1982, 60, 1793-1799.
- 63. Morrell, D.G.; Kochi, J.K. J. Am. Chem. Soc. 1975, 97, 7262.
- 64. Hayashi, T.; Konishi, M.; Kumada, M. <u>Tetrahedron Lett</u>. 1979, 1871-1874.
- 65. Hayashi, T.; Konishi, M.; Ito, H.; Kumada, M. <u>J. Am. Chem. Soc</u>. **1982**, <u>104</u>, 4962.
- 66. Hosomi, A.; Sakurai, H. Tetrahedron Lett. 1976, 1295.
- 67. Hayashi, T.; Konishi, M.; Fukushima, M.; Mise, T.; Kagotani, M.; Tayika, M.; Kumada, M. J. Am. Chem. Soc. **1982**, <u>104</u>, 180-186.
- 68. Hayashi, T.; Konishi, M.; Kobori, J.; Kumada, M.; Higuchi, T.; Hirotsu, K. J. Am. Chem. Soc. 1981, 106, 158-163.
- 69. Lemaire, M.; Buter, J.; Vriesema, B.K.; Kellog, R.M. J. Chem. Soc. Chem. Commun. 1984, 309-310.
- 70. Hayashi, T.; Konishi, M.; Fukushima, M.; Kanehira, K.; Hioki, T.; Kumada, M. J. Org. Chem. 1983, 48, 2195-2202.
- 71. Hayashi, T.; Tamao, K.; Katsuro, Y.; Nakae, I.; Kumada, M. <u>Tetrahedron</u> Lett. **1980**, 21, 1871-1874.
- 72. Yamanoto, K.; Hayashi, T.; Zembayashi, M.; Kumada, M. J. Organomet. Chem. 1976, 118, 161.
- 73. Hayashi, T.; Yamamoto, K.; Kumada, M. <u>Tetrahedron Lett</u>. 1974, 4405.
- 74. Nefedov, V.A. and Nefedova, M.N. <u>Zh. Obs. Khimii</u>. 1966, <u>36</u>, 122-126. English version, p. 127-130.
- 75. Ratajczak, A.; Misterkiewicz, B. <u>J. Organomet. Chem.</u> 1979, <u>179</u>, 181-185.
- 76. Gordon, A.J.; Ford, P.A. "The Chemists' Companion", John Wiley and Sons, New York, 1972, pp. 445-447.

- 77. Gokel, G.; Ugi, I. J. Chem. Ed. 1972, 49, 294-296.
- 78. Lednicer, D.; Hauser, C.R. Org. Synth. 1973, 5, 434-436.
- 79. Hartley, F.R., "The Chemistry of Palladium and Platinum", Wiley, New York, 1973, p. 462.
- 80. Kharasch, M.S.; Seyler, R.C.; Mayo, F.R. J. Am. Chem. Soc. 1938, 60, 882-884.
- 81. Goerner, G.L.; Hines, W.G. J. Am. Chem. Soc. 1948, 70, 3511.
- 82. McCreary, M.D.; Lewis, D.W.; Wernick, D.L.; Whitesides, G.M. J. Am. Chem. Soc. 1974, 96, 1038-1054.
- 83. Kawakami, K.; Kawata, N.; Maruza, K.-I.; Mizoroki, T.; Ozaki, A. J. Catal. 1975, 39, 134-140.
- 84. Spencer, H.K.; Hill, R.K. J. Org. Chem. 1976, 41, 2485-2488.
- 85. Butter, I.R.; Cullen, W.R.; Kim, T.-J.; Rettig, S.J.; Trotter, J. Organometallics 1985, 4, 972-980.
- 86. Butler, I.R.; Cullen, W.R.; Einstein, F.W.B.; Rettig, S.J.; Willis, A.J. Organometallics 1983, 2, 128-135.
- 87. Perevalova, E.G.; Ustynyuk, Y.A.; Nesmeyanov, A.N. <u>Izv. An SSSR.</u> Otd. Khim. n. 1963, 1036-1045.
- 88. Perevalova, E.G.; Ustynyuk, Y.A.; Nesmeyanov, A.N. <u>Izv. An SSSR.</u> Otd. Khim.n. **1963**, 1045-1049.
- 89. Rossenblum, N.; Woodward, R.B. <u>J. Am. Chem. Soc</u>. 1958, <u>80</u>, 5443-5449.
- 90. Haaland, A. Acc. Chem. Res. 1979, 12, 415-422.
- 91. Rausch, M.D.: Siegel, A. J. Organomet. Chem. 196, 17, 117-125.
- 92. Slocum, D.W.; Ernst, C.R. Adv. Organomet. Chem. 1972, 10, 79-114.
- 93. Slocum, D.W.; Ernst, C.R. Organomet. Chem. Rev. A 1970, 6, 337-353.
- 94. Koridze, A.A.; Petrovskii, P.V.; Mokhov, A.I.; Lutsenko, A.I. J. Organomet. Chem. 1977, 136, 57-63.
- 95. Koridze, A.A.; Mokhov, A.I.; Petrovskii, P.V.; Fedin, E.I. <u>Izv. Akad.</u> Nauk. SSSR Ser. Khim. 1974, 2156.
- 96. Marr, G.; Webster, D.E. J. Organomet. Chem. 1964, 2, 99.
- 97. Marr, G.; Webster, D.E. J. Chem. Soc. B. 1968, 202.
- 98. Bailey, R.T.; Lippincott, E.R. Spectrochim. Acta 1965, 21, 389-398.

- 99. Siddall, T.H.; Stewart, W.E. J. Org. Chem. 1970, 35, 1019-1022.
- 100. Rinehart, K.L.; Freichs, A.K.; Kittle, P.A.; Westman, L.F.; Gustafson, D.H.; Pruett, R.L.; McMahon, J.E. <u>J. Am. Chem. Soc</u>. **1960**, <u>82</u>, 4111-4112.
- 101. Sokolov, V.I.; Troitskaya, L.L.; Reutov, O.A. <u>J. Organomet. Chem.</u> 1979, <u>182</u>, 537-546.
- 102. Schmidt, M.; Hoffmann, G.G. Z. Anorg. Allg. Chem. 1978, 445, 167-174.

E.

- 103. Ali, M.A.: Livingstone, S.E. Coord. Chem. Rev. 1974, 13, 101-132.
- 104. Plusec, J.; Westland, A.D. J. Chem. Soc. 1965, 5371-5376.
- 105. Murray, S.G.; Hartley, F.R. Chem. Rev. 1981, 81, 365-414.
- 106. Allkins, J.R.; Hendra, P.J. J. Chem. Soc., A 1967, 1325-1329.
- 107. Goates, G.E.; Parkin, C. J. Chem. Soc. 1963, 421-429.
- 108. Silverstein, R.M.; Bassler, G.C.; Morrill, T.C. "Spectrometric Identification of Organic Compounds", Wiley, New York, 1974. Third Edition, p. 89-113.
- 109. Pauling, L. "The Nature of the Chemical Bond", Cornell University Press, 3rd. Ed., 1960.
- 110. Reference #79, p. 177.
- 111. Seyferth, D.; Hames, B.W.; Rucker, T.G.; Cowle, M.; Dickson, R.S. Organometallics 1983, 2, 472-474.
- 112. Thorn, G.D.; Ludwig, R.A. "The Dithiocarbamates and Related Compounds", Elsevier, New York, 1962.
- 113. Coucouvanis, D. <u>Prog. Inorg. Chem.</u> 1970, <u>11</u>, 234-371; 1979, <u>26</u>, 302-469.
- 114. Burns, R.P.; McCullough, F.P.; McAuliffe, C.A. <u>Adv. Inorg. Chem.</u> <u>Radiochem.</u> 1980, 23, 211-280.
- 115. Grunwell, J.R. J. Org. Chem. 1970, 35, 1500-1501.
- 116. Jen, K.-Y.; Cara, M.P. Tetrahedron Lett. 1982, 23, 2001-2004.
- 117. Gunther, H., "NMR Spectroscopy-An Introduction", Wiley, New York, 1980.
- 118. Hollaway, C.E.; Gitlitz, M.H. Can. J. Chem. 1967, 45, 2659-2663.
- 119. Sandstron, J. J. Phys. Chem. 1967, 71, 2318-2325.

- 120. For reviews: (a) Kagan, H.B.; Fiaud, J.C. <u>Top. Stereochem</u>. 1978, <u>10</u>, 175. (b) Bosnich, B.; Fryzuk, M.D., <u>ibid</u>. 1981, <u>12</u>, 119.
- 121. Consiglio, G.; Botteghi, C. Helv. Chim. Acta 1973, 56, 460.
- 122. Yamamura, M.; Moritani, I.; Murahashi, S.-I. <u>J. Organomet. Chem.</u> 1975, <u>91</u>, C₃₉-C₄₂.
- 123. Hayashi, T.; Tajika, M.; Tamao, K.; Kumada, M. J. Am. Chem. Soc. 1976, <u>98</u>, 3718-3719.
- 124. Consiglio, G.; Morandini, F.; Picolo, O. J. Chem. Soc. Chem. Commun. 1983, 112-114.
- 125. Hayashi, T.; Konishi, M.; Fukushima, M.; Kanahira, K.; Hioki, T.; Kumada, M. J. Org. Chem. **1983**, <u>48</u>, 2195-2202.
- 126. Whitesides, G.M.; Filippo, J.S., Jr.; Stredronsky, E.R.; Casey, C.P. J. Am. Chem. Soc. 1969, 91, 6542-6548.
- 127. "Data Collection Operation Manual", Nicolet XRD Corp., 1980.
- 128. Zachariasen, W.H. Acta Crystallogr. 1963, 16, 1139.
- 129. Cromer, D.T.; Waber, J.T. "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, 1974, Table 2.2B.
- 130. Ibers, J.A.; Hamilton, W.C. Acta Crystallogr. 1964, 17, 781.
- 131. Cruickshank, D.W.J. Acta Crystallogr. 1949, 2, 154.
- 132. Frenz, B.A. "The Enraf-Nonius CAD 4 SDP-A Real-time System for Concurrent X-Ray Data Collection and Crystal Structure Determination", in Computing in Crystallography, H.Schenk, R. Olthof-Hazelkamp, H. vanKonigsveld, and G.C. Bassi, Eds., Delft University Press, Delft, Holland, 1978, pp. 64-71.
- 133. Parshall, G.W. "Homogeneous Catalysis", Wiley, New York, 1980.
- 134. Tayim, H.A.; Bailar, J.C., Jr. J. Am. Chem. Soc. 1967, 4330-4338.
- 135. Frolov, V.M.; Parenago, O.P.; Bonarenko, G.N.; Kovaleva, L.S.; El'natanova, A.I.; Shiukina, L.P.; Cherkashin, G.M.; Mirskaya, E.Y. <u>Kinet. Katal.</u> 1981, <u>22</u>, 1356-1357.
- 136. Shuikina, L.P.; El'natanova, A.I.; Kovaleva, L.S.; Parenago, O.P.; Frolov, V.M. <u>Kinet. Kital</u>. **1981**, <u>22</u>, 177-182.
- 137. Shuikina, L.P.; Cherkaskin, G.M.; Parenago, O.P.; Frolov, V.M. <u>Dokl.</u> <u>Akad. Nauk. SSSR</u> 1981, 257, 655-659.
- 138. James, B.R.; Ng, F.T.T.; Rempel, G.L. <u>Inorg. Nucl. Chem. Lett.</u> 1968 <u>4</u>, 197-199.

- 139. James, B.R.; Ng, F.T.T. J. Chem. Soc. Dalton. Trans. 1972, 355-359.
- 140. James, B.R.; Ng, F.T.T. J. Chem. Soc. Dalton Trans. 1972, 1321-1324.
- 141. Cross, R.J. MTP Int. Rev. Sci.: Inorg. Chem. Ser. Two 1974, 5, 147-170.
- 142. Okoroafor, M.O.; Shen, L.H.; Honeychuck, R.V.; Brubaker, C.H., Jr., submitted for publication.

.

