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DATA ANALYSIS STRATEGIES FOR QUASI-EXPERIMENTAL STUDIES

WHERE DIFFERENTIAL GROUP AND INDIVIDUAL

GROWTH RATES ARE ASSUMED

By

Stephen F. Olejnik

Selecting an appropriate analysis strategy for a study based on

a quasi-experimental research design has been a topic of considerable

controversy. Recently, the discussion has focused on the issue of

academic growth rates. Some authorities have suggested that the initial

difference between comparison groups on a pretest measure implies that

comparison groups are growing at different rates academically. The

differential growth rate problem has been labeled the fan spread

hypothesis. This theory suggests that along with an increasing mean

difference between groups there is a prOportional increase in the within

group variability. Under this model traditional analyses techniques

have been challenged as inapprOpriate on the basis that they underadjust

for group differences.

The purpose of the study was to compare four analytic strategies

for quasi-experimental studies where differential group and individual

growth rates are assumed. Two models of growth were considered. One

assumed that both individual and group growth were linear. The second

model assumed linear group growth but an individual's growth rate within

the group was assumed to vary over time. Under the second model of

within group growth, an individual's relative academic position within
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the group was likely to change. For each of these models four analytic

strategies were considered: (l) gains in standard scores; (2) single

covariable analysis of covariance with estimated true scores; (3) gain

scores adjusted for differential growth rates; and (4) multiple fallible

covariable analysis of covariance. The appropriateness of each proce-

dure under the two models was based on two criteria: (l) the effect

estimated, and (2) the precision with which each effect was estimated.

The results of the study showed that when individuals and groups

grow at different rates but in a linear fashion, gains in standard

scores, estimated true score analysis of covariance and gain scores

adjusted for differential growth rates, all provide the correct estimate

of group differences. For the second model of growth considered, gains

in standard scores and gain scores adjusted for differential growth

rates were both shown to estimate the desired effect. Only the multiple

fallible covariate analysis of covariance procedure was shown to be an

inappropriate technique for both models of differential growth.

The standard error associated with each competing analytic strategy

was then compared for sample sizes ranging from 20 to 120 and the corre-

lation between the pretest and posttest measures ranging from .l to .9.

The results indicated that when the sample is large and the correlation

between the measures high, all three procedures provide approximately

equal precision. As the sample size and the relationship decrease,

greater precision was provided by the gain score technique adjusted

for differential growth rates. The analysis also indicated that gains

in standard scores provided a spuriously low standard error as a result
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of the two stage process of first calculating the adjusted variable and

then estimating the treatment effect. As the sample size and relation-

ship decreased, the greater the underestimation in the standard error.

It was concluded that when data are available from two points in

time prior to the period investigated, adjusted gain scores provide the

best analytic strategy of those considered where group growth is linear.

If data are available from a single point in time and individuals and

groups are growing differentially but linearly, then true score analysis

of covariance provides the preferred analytic approach. In situations

where only the results of a single pretest are available and individual

growth rates vary across time, gains in standard scores may be appro-

priate but the sample size must be large. To demonstrate these results

a data set was obtained and analyzed using the three competing

strategies. The findings of this analysis were consistent with

those predicted above.
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CHAPTER 1

INTRODUCTION

Individuals are dynamic; attitudes, perceptions, and knowledge

continually change as a result of interactions among individuals and

the communications media. The understanding of this dynamic nature and

at times the modification of it, is a major concern of social science

research. Interest in naturally changing entities has raised, however,

difficult problems in measurement and analysis. Although considerable

discussion has been devoted to the topic of measuring change (McNemar,

1958; Lord, 1956, 1958, 1963; Bereiter, 1963; Cronbach and Furby, 1970;

Linn & Slinde, 1977), the problem is far from resolved.

The problems related to measuring change exist to varying degrees

in all research designs. These issues are less troublesome in experi-

mental studies where the investigator manipulates the variables of

interest and the effects on other variables are observed. Measuring

change is more difficult in quasi-experimental studies where the

investigator lacks the freedom to manipulate the variables of concern.

The present study focuses on the issues of change associated with the

latter design. Specifically, this study considered the non-equivalent

control group design (Campbell & Stanley, 1963) where the results of

one or two pretests are available prior to the period under

investigation.



Another popular research design frequently adopted by social

scientists is based on natural variation. In these studies the

investigator identifies a group of individuals and observes them

in their "natural environment" on a set of variables of interest.

The relationship among these variables is then based on correlational

techniques. Measuring change in these studies is more difficult than

in quasi-experiments and is not considered here. The finding of the

present study may, however, be indirectly relevant to studies based

on natural variation.

The evaluation of an educational program frequently results in

a quasi-experiment of the type considered here. Compensatory education

programs such as Head Start and Follow Through, in particular, have

been the focal point of much discussion on growth assessment in quasi-

experimental studies (Campbell & Erlebacher, 1970). In these programs

students are not randomly assigned to treatments, but rather those in

greatest need are given the treatment-~that is, additional assistance.

Treatment effects are estimated by comparing the academic achievement

of those students receiving the additional assistance with a group of

students who did not receive the additional assistance. Evaluation

in quasi-experimental settings raises a number of issues and problems

not generally encountered in true-experimental designs. Campbell and

Boruch (1975) discuss in detail several concerns which may arise in

the analysis and interpretation of quasi-experimental data. The

overriding theme of their work revolves around the issue of bias in

the estimation of treatment effects. An estimate of the treatment



effect is biased if the estimate indicates that the effect of the

program was either positive or negative when there were no true

treatment effects or vice versa. Although there are several factors

which contribute to a biased estimate, the entire problem originates

from the fact that without randomization there are likely to be sub-

stantial differences between the individuals in their initial status

on the outcomes to be assessed. Estimating the treatment effects

solely on the differences in post-treatment test scores may be biased

since, depending on the direction of the initial differences, a program

may appear effective or harmful even though there were not true treat-

ment effects. Several strategies have been suggested which take

initial differences into consideration when estimating a program's

effectiveness. Campbell and Boruch (1975) argue, however, that these

adjustment procedures frequently fall short of eliminating all of the

bias that can result from initial differences. The magnitude of the

bias is related to two issues: (1) specifying the appropriate var-

iables on which the adjustment is made, and (2) identifying the

apprOpriate model to use the variables in predicting change. These

are difficult problems to solve. Specifying the appropriate variables

means that the investigator can identify those variables which are

predictive of all confounding variables that affect the dependent

variable. Knowledge of those variables on which the assignment of

individuals to groups was based would provide one possible solution.

Another solution is the random assignment of individuals to groups.

This solution is not possible for studies being considered here.



The present study does not pursue this aspect of the specification

problem.

The second issue, that of specifying the appropriate model is

a major concern here. This aspect of the specification problem

includes the question of measuring the adjustment variables reliably.

The unreliability issue has been considered in detail and several

solutions have been suggested (Lord, 1960; Porter, 1967; De Gracie,

1968; Stroud, 1972). Specifying the appropriate analytic model is

dependent on how individuals change over time. The issue of growth

models has recently been considered explicitly by several researchers

(Campbell, 1971; Kenny, 1975; Bryk 8 Weisberg, 1977). Campbell in

particular has been concerned with the relationship between growth

rates and estimates of treatment effects. Although his interest has

centered on the evaluation of compensatory education programs, his

work applies equally to other quasi-experimental investigations.

The issue which Campbell has raised involves the implications

of initial differences on the outcome dimension for the prospect of

differential growth rates. His reasoning is based on the belief that

groups which differ in their initial average performance also differ

in their rate of development on the outcome dimension. Thus, in the

evaluation of compensatory education programs, a control group may have

a higher average pretest score because as a group these individuals

have grown quicker than the group who will receive the treatment, and

this development is likely to continue without program intervention.

Pictorially this selection by maturation interaction can be presented



as in Figure 1, where the lines represent group average performance

over time.
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Figure l. The selection by maturation interaction:

increasing mean differences in achievement

between comparison groups across time.

Campbell further develops this idea of differential growth rates into

a theory which he has labeled the "fan spread hypothesis." It states

that along with the increasing mean difference between the compared

groups, a proportional increase in the variance within the groups

occurs. Figure 1 can be modified to reflect the changing variance

as in Figure 2. The labels for treatment-control are arbitrary.
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Figure 2. The fan spread hypothesis: increasing mean

difference in achievement between comparison

groups with a proportional increase in the

within-group variability across time.

The dashed lines represent the increasing range of achievement scores

within the treatment and control groups over time. This relationship

between the increasing mean difference and the within-group variance

can be represented in the following formula:

uxpt " uxct __, K

0t

where:

“x t’ “xct are the population means on measure (X) for the

p program and control groups, respectively, at time t;

ot is the pooled within-group standard deviation of the

outcome measure at time t; and

K is a constant.



Thus the difference between group means relative to the pooled

within—group standard deviation remains constant over time. It might

be noted here that parallel growth patterns between groups may also

conform to Campbell's fan spread model if the within group variance

remains constant across time. Evidence supporting the fan spread model

of growth has been provided by both cross-sectional and longitudinal

studies (Osborne, 1966; Baugham & Dahlstron, 1968; Fennessy, 1974).

Although this is a relatively small sample of studies on which to base

a theory, Campbell is confident that additional findings will support

the model (Campbell & Boruch, 1975). Kenny (1975) has argued for the

reasonableness of the theory and has provided additional data conforming

to the fan spread hypothesis. This model of growth suggested by

Campbell and supported by Kenny presents a special case of a more

general issue involving linear-growth models. Bryk and Weisberg (1977)

have gone beyond Campbell's fan spread hypothesis and have considered

the problem of differential linear-growth patterns. By varying the

initial starting points of growth and the average rate of group growth,

several linear models were considered.

The discussions of growth models presented by Campbell, Kenny,

Bryk, and Weisberg have concentrated on differential growth rates

between comparison groups and have ignored the issue of differential

growth rates within groups. The question of growth rates within groups

can be conceptualized in at least two ways as presented in Figures 3

and 4.
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Figure 3. The fan spread hypothesis with the linear model

of within-group growth.
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Figure 4. The fan spread hypothesis with a non-linear

model of within-group growth.



In each diagram the solid line represents the average growth rate

for the group, while the dotted lines represent individual rates of

growth. Figure 3 presents within-group growth rates that are generally

associated with the fan spread hypothesis. It conceptualizes within-

group growth as having a common starting point and different linear

rates of individual growth across time. Thus, in any two subsequent

points in time, individuals maintain their relative position within

the group. Figure 4, on the other hand, represents the situation in

which the group's mean growth is linear but individual growth is not

linear. Under this model an individual's growth rate may vary over

time, i.e., growth may occur in spurts, but group growth may be con-

stant. Both of these models can result in data conforming to Campbell's

fan spread hypothesis. The implications these models of within-group

growth have for data analysis and estimation of treatment effects are

substantially different.

Given that the fan spread model represents a valid conceptual-

ization of how individuals and groups change over time in quasi-

experimental studies, Campbell (1971) has argued that current analytic

strategies are inadequate in adjusting for the differential nature of

growth. As a result, recent efforts to evaluate compensatory education

programs may be misleading since the differential growth patterns have

not been considered. The conclusion that these programs have been

ineffective or even harmful may be a statistical artifact rather

than actuality.
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In response to Campbell's argument that current analytic

strategies inadequately adjust for the fan spread model, several

researchers have proposed new or modified techniques to resolve the

differential growth problem. Kenny (1975) has argued that given the

fan spread model, an appropriate analytic strategy is what he calls

standardized gain scores (also referred to as gains in standard scores).

The fan spread hypothesis suggests increasing variability within groups

across time. Kenny's approach counters this increasing variability by

standardizing the pretest and posttest scores using the pooled within—

group standard deviation at time 1 and time 2, respectively. The

difference between the standardized scores is then computed and used

as the dependent measure with the analysis of variance model.

Another solution to the fan spread model was proposed by Porter

and Chibucos (1974). They suggested that the analysis of covariance

model was appropriate for the differential growth rate situation if

the covariate was perfectly reliable. Given that the covariate was

fallible, then analysis of covariance with the estimated true score

of the covariate, would adequately adjust for the fan spread model.

Estimated true score analysis of covariance was originally developed

by Porter (1967) as a solution to the single fallible covariate problem.

Still another solution which might be considered to adjust for the

fan spread effect is the use of gain scores adjusted for differential

group growth. The raw-gain-score strategy assumes that groups are

changing at relatively equal rates, and that the only difference

between the groups other than that caused by treatments, is the
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initial status at the point of intervention. The fan spread model

allows that not only do the groups differ in their pre-treatment

performance levels, but also that the groups are changing at different

rates. Therefore simple gain scores could be inappropriate in light

of the fan spread model. If, on the other hand, the gain scores

themselves were adjusted for the differences between the groups'

growth rates, an appropriate estimate of the treatment effect might

be obtained. An adjustment of the type just described could be made

if data from two pretests over time rather than one pretest were

available. Given that two pretests were available for each group,

then each group's growth rate could be estimated by the difference

between the group's mean performance on the first and second pretests.

Given that multiple pretest data are available, a fourth procedure

which might be considered to analyze data conforming to the fan spread

hypothesis is the analysis of covariance model with multiple covariates.

This technique might be used by researchers in the field where the

tendency is to use all available information on a group of subjects

in the hope of increasing precision and adjusting for all initial

differences. Furthermore, in light of the earlier discussion on

analysis of covariance, multiple covariates may also adjust for the

differential growth rate problem if corrected for their unreliabilities.

Recently, Keesling and Wiley (1976) have suggested a procedure which

they argue solves the multiple fallible covariate problem. Their pro-

cedure may therefore also provide an appropriate solution to the fan,

spread problem.



12

Statement of the Problem
 

A great number of educational research efforts are based on

designs that are quasi-experimental. As a result, researchers in the

field frequently encounter difficult problems in measuring change and

estimating treatment effects. Campbell has argued that a difficulty

which has not always been explicitly recognized in quasi-experimental

studies is a question of differential growth rates. In particular,

the evaluation of compensatory education programs, where the children

with the slowest academic growth receive the treatment, may be

especially vulnerable to this problem. Campbell has suggested

that traditional analyses strategies fail to take the differential

growth patterns into consideration in estimating treatment effects;

thus traditional strategies result in biased estimates of program

effectiveness. These programs have therefore appeared less beneficial

than was actually the case. In response to Campbell's arguments,

several analytic strategies have been suggested which may provide

the apprOpriate adjustment under the fan spread condition.

Purpose of the Study
 

The purpose of the study was to compare four procedures in terms

of their appropriateness as strategies for data analysis in quasi-

experimental studies given that individuals and groups may grow

differentially. The four strategies considered were these: (1)

gains in standard scores, (2) single covariable analysis of covariance

with estimated true scores, (3) gain scores adjusted for differential

growth rates, and (4) multiple fallible covariable analysis of
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covariance. Specifically, two types of individual growth were

considered: first, the situation in which the correlation between

the pre-intervention and post-intervention measures was unity, p =1,

except for measurement errors; and second, the situation in which the

relationship between the two measures was not perfect, pail, regardless

of measurement errors. This second case results when individuals begin

to grow at different points in time and grow at different rates, or

when individuals grow academically in spurts.

The apprOpriateness of the four strategies was based on two

considerations: first, the effect estimated by each technique, and

second, the precision with which each effect was estimated. Further-

more, a discussion of the effects and implications of violating either

of two assumptions was considered. They were the homogeneity of

regression assumption and the assumption that individuals and groups

grow in a linear fashion.

In conducting this study two approaches were used. First, the

four analysis strategies were considered analytically to determine

whether the procedures estimated the effect of interest. Standard

errors were then derived for those strategies estimating the appro-

priate effect to identify those procedures which offered the greatest

precision. The second approach in comparing the strategies was to

analyze a set of data with the procedures that estimated the appropriate

effect. The conclusions drawn by each strategy were then compared as

were their respective error terms.



CHAPTER 2

THE ANALYTIC STRATEGIES

The previous chapter has raised explicitly the question of

differential growth rates in quasi-experimental studies. While some

detail was given to the presentation of this problem, only general

statements as to possible solutions to the fan spread model were pro-

vided. In this chapter the analytic strategies suggested are considered

in detail. Before studying these solutions, however, a brief discussion

is presented concerning the inadequacies of raw gain scores and analysis

of covariance without correction for an unreliable covariate in

quasi-experiments.

In experimental studies where individuals are randomly assigned

to a treatment or a control group, program effectiveness can be esti-

mated by the difference between the group means on some measure of

interest following the treatment:

a=u -u
yp yC'

Where

a is the estimate of the treatment effectiveness;

p ,p c are the population means on the post-treatment measure

yp y (Y) for the program and control groups, respectively.

14
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Since individuals were randomly assigned to the two groups, it can

be assumed that prior to the implementation of the treatment, the

groups differ only by chance factors on the outcome dimension and

their average growth rates were in the long run the same. Furthermore,

if the treatment has no true effect, the groups would remain equivalent

after the period of program experience and the above estimate would

equal zero. For the situation described, the analysis of variance

model provides an appropriate analytic strategy to compare the group

means in that it estimates the effect of interest. The dependent

measure using this strategy is simply the performance on a post-

treatment measure on a dimension of interest.

With quasi-experimental studies initial differences are likely

on the outcome dimension even before the treatment is implemented.

If the above procedure was used to estimate the treatment effect

and the program had no true effect, then the initial difference

would have been treated as a program effect and erroneous conclusions

would have been drawn. Thus in quasi-experimental studies some type

of an adjustment is necessary to take into consideration those initial

differences which may influence the final outcome measure.

Two strategies frequently chosen by researchers in the field for

data analysis in quasi-experimental studies have been the analysis

of variance model with raw gain scores as the dependent measure and

analysis of covariance. Though the former strategy has often been

criticized (Cronbach & Furby, 1970; Campbell & Erlebacher, 1970),

it still remains a popular approach for researchers in the field
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(Richards, 1975). Raw gain scores are calculated by taking the

difference of the post-treatment and pre-treatment scores (post-pre)

and creating a new variable. For example, if Y represents the post-

treatment score on some variable of interest and X represents the

pre-treatment score, a new variable W is created by the simple

difference between the two scores; i.e., W = Y-X. Since the new

variable is created by taking the difference between scores, this

procedure logically requires that the same or equivalent form of

the measure be administered at the two points in time. The analysis

of variance model is then used with W as the dependent measure. The

program effectiveness when the raw gain score strategy is used can be

written as:

Where:

is the treatment difference estimated by using the
0‘GS .

gain score strategy;

u ,u c are the population means on the post-treatment measure

yp y (Y) for the program and control groups, respectively; and

are the population means on the pre-treatment measureU ,U

XP xc (X) for the program and control groups. respectively.

The adjustment which is made using this technique in a situation

conforming to a fan spread model when there are no true treatment

effects is presented in Figure 5.
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Figure 5. Underadjusting for group differences with the

raw gain score procedure in a situation conforming

to the differential growth rate theory.

The solid lines represent actual mean growth of individuals in the

two groups and the dashed line represents the adjusted growth pattern

for 62' The difference at t2 between the solid line for G], and the

dashed line for G2 represents the bias remaining after adjustment in

estimating the treatment effect. It is clear that the gain score

strategy requires the assumption of equal growth rates between com-

parison groups in light of no treatment effects. Violation of this

assumption results in an underadjustment in the situation depicted and

therefore is a biased estimate of the program effect.

A second popular analytic strategy frequently adopted by

researchers in the field is the analysis of covariance model. This

procedure is similar to the raw gain score strategy in the nature of
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the adjustment made, but it is not restricted to the use of the same

or parallel form of the outcome measure in order to make the adjustment.

Rather than subtracting the pretest score from the posttest score, the

analysis of covariance model subtracts only a portion of the difference

of pretest from the posttest. That portion is equal to the pooled

within-group linear regression slope of the line predicting the outcome

measure from the adjustment variable. To facilitate the understanding

of the effect estimated, the dependent variable can conceptually be

thought of as W==Y-by.xx for the analysis of variance model. Although

the adjusted variable is not actually computed, it can be thought of as

such to facilitate comparisons across other similar analytic strategies.

The treatment difference can then be written as:

“AC = uyp-uyc-By,x(uxp-uxc). (1)

Where:

“AC is the estimate of the treatment difference using the

analysis of covariance strategy;

8 -x is the pooled within-group linear regression slope of

y Y on X; and

“yp’uyc’uxp’uxc are as defined previously.

Campbell and Erlebacher (1970) and Kenny (1975) have argued that

in situations conforming to the fan spread hypothesis this strategy also

underadjusts for initial differences. As a result, the strategy pro-

vides a biased estimate of the treatment effect. Their discussion,

however, focused on analysis of covariance with a fallible covariate.
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Furthermore, the distinction between the two models of within-group

growth, that was proposed in Chapter 1 was not made in either

presentation. The importance of this distinction is examined

in Chapter 4. Bryk and Weisberg (1977), on the other hand, have

suggested that the analysis of covariance with a reliable covariate

was an appr0priate strategy for the fan spread condition. Their

conclusion was based on the assumption of linear growth for individuals

within treatment groups. The same conclusion was drawn by Porter and

Chibucos (1974).

Analysis of covariance has also been criticized as inappropriate

in situations conforming to the fan spread model because the assumption

of homogeneity of regression slopes between treatment groups may be

violated. Bryk and Weisberg (1977) and Campbell and Boruch (1975)

have suggested that differential growth rates imply a differential

relationship between the covariate and the dependent measure for the

comparison groups. These authors, however, may have confused the

regression of achievement on time as presented in Figure l with the

regression of posttest achievement on pretest achievement. These two

regressions are not the same and a violation of the homogeneity of

regression slopes does not have to occur for the latter case. The

regression slope for each comparison group is defined as:

S

by-x = r.xy 31..
X
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Where

by-x is the regression slope;

rxy is the correlation of the pretest and posttest

measures, and

S ,S is the standard deviation of the posttest and

pretest, respectively.

The fan spread model suggests only an increasing variance across time

such that Sy > Sx' This increase in variance occurs in both groups.

Nothing in the differential growth rate situation suggests that the

correlation between the two measures should differ from one group to

the other. It does not follow then that a violation of the homogeneity

of regression slopes assumption is likely. Chapter 4 presents two

hypothetical examples conforming to the fan spread model where the

assumption is not violated.

Finally, the analysis of covariance strategy has been criticized

as inappropriate in quasi-experiments since the slope, reflecting

growth over time, is underestimated due to measurement errors in the

covariate. This is a legitimate criticism which has received consid-

erable attention as noted earlier. Several solutions to this problem

have been suggested. Later in this chapter one of those suggested

solutions will be considered in detail.

Thus several methodologists have argued that data analysis for a

study based on a quasi-experimental design may be extremely troublesome

as a result of differences in growth rates between comparison groups.

The evaluation of compensatory education programs, in particular,

has been singled out as being especially vulnerable to this problem.
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Traditional strategies for estimating treatment effects like gain

score analysis of variance and analysis of covariance have been

criticized as inappropriate since they can underadjust for initial

as well as growth related differences between groups. Figure 5

presented a hypothetical example of the bias remaining after using

the gain score strategy. It will be shown that a similar underadjust-

ment could arise with the analysis of covariance strategy depending on

the nature of growth and the value of By-x in equation 1.

Gains in Standard Scores
 

There have been several proposals as to how data might be analyzed

in light of the fan spread hypothesis. One approach to the problem

suggested by Campbell (1971) and later by Kenny (1975) was the use of

gains in standardized scores. This approach counters the increasing

variability within the treatment and control groups across time by

standardizing the pretest and posttest scores separately (”given unit

variance and a mean of zero," Kenny, 1975, p. 347). To standardize the

scores obtained at each test administration, Kenny suggested the fol-

lowing procedure: from each score, subtract the grand mean (across

groups) and divide this difference by the pooled within-group standard

deviation. (Since subtracting a constant has no effect on further.

analysis, it is not considered in the subsequent discussion of the

strategy. Rather, standardization is achieved by simply dividing each

score by the pooled within-group standard deviation for the pretest

and posttest data considered separately.) Conceptually, this results

in a new dependent variable W, created by subtracting from the posttest
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score the product of the ratio of the pooled within-group standard

S

deviation (posttest to pretest) and the pretest score, i.e., W=Y-§1X.

x

The variable W is then taken as the dependent measure in the analysis

of variance model. The treatment difference can be presented as:

31
-O. (u -lJ )

O‘GSS = uyp"“yc x xp xc °

Where:

“655 is the estimate of the treatment difference

estimated by the gains in standard score

strategy;

are the pooled within-group standard deviations

of the pre—treatment and post—treatment measures,

respectively; and

O'y,O

“yp’uyc’uxp’uxc are as defined preV1ously.

The above statement of the treatment difference is only an approximation

since E(S) f o. The use of this strategy, like that of raw gain scores,

logically requires that the pre-treatment measure be identical to or a

parallel form of the post-treatment measure.

In defending the use of this technique, Kenny (1975) presented

several examples where standardized gain scores provided an unbiased

estimate of program effects while raw gain scores and analysis of

covariance were shown to be biased. He concluded that in certain

situations (i.e., where individuals were assigned to a program based

on sociological or demographic variables) gains in standardized scores

provide the best analytic strategy. Bryk and Weisberg (1977) provided

further evidence showing that this strategy is appropriate in

situations conforming to the fan spread hypothesis.
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Analysis of Covariance With Estimated True Scores

Another approach which has been suggested as appropriate in

a situation conforming to the fan spread hypothesis is the use of

estimated true scores in the analysis of covariance. This procedure

was originally developed (Porter, 1967) to eliminate the bias intro-

duced by measurement errors when analysis of covariance is used to

estimate treatment effects in quasi-experimental studies. Porter and

Chibucos (1974) showed that this procedure corrects for the fan spread

theory when the pre-treatment measure predicts the post-treatment

outcome perfectly except for errors of measurement. To use the

procedure suggested by Porter, the estimated true scores of the

covariate must be computed. This can be achieved with the following

formula:

A:_+ --

T X oxx (X X)

Where:

T is the estimated true score of the covariate;

X' is the group mean on the covariate;

X is the covariate's observed score; and

pXX is the reliability of the covariante.

This approach requires knowledge of the covariate's reliability.

The question as to which reliability coefficient should be used in

the above formula has not been completely answered, but Porter and

Chibucos (1974) have suggested that if possible a test-retest
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reliability coefficient over a relatively short period of time should

be the first choice. Having estimated the covariate's true score,

this variable is then used as the covariate in the analysis of

covariance model to estimate group differences.

Using Porter's procedure the program effect can be written as:

= _ _ _XL§. -

O‘TS uyp “yc pXX (“xp “xc)‘

Where:

GT5 is the estimate of the treatment difference

computed by the true score analysis of

covariance strategy; and

“yp’uyc’uxp’uxc’

By-x and pxx are as defined previously.

The similarity of this approach to that of gains in standard scores

presented earlier is clearly shown with the following substitution:

0

By-x = pxy 6f-.

The estimate of the treatment difference can now be written as the

following:

p o

x #1 -

"5Tx o (“xp “xc)'
=11 '11

0‘18 yp yc xx x

Given individuals conform to the fan spread, pre-treatment scores

should predict post-treatment scores perfectly except for measurement

errors. Thus the ratio of the correlation between measures and the
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O

pretest reliability is equal to unity, Eff = 1 if pxx = pxy' The

estimate of the program effect provided by true score analysis of

covariance and gains in standard scores is the same for fan spread

data conforming to the first model of within group growth. This

similarity is only true for the linear growth model for individuals

within comparison groups. When individuals within groups are growing

non-linearly, the ratio of the correlation between measures and the

reliability coefficient of the pretest does not equal unity. The

effect estimated by the gains in standard scores and analysis of

covariance with estimated true scores is therefore different. The

two procedures also differ in that the gains in standard scores

approach assumes that the correct ratio of the standard deviations

is known for the population, while estimated true score analysis of

covariance estimates the parameter on the sample data.

Adjusted Gains Scores
 

The inadequacies of the raw gain score strategy in situations

conforming to the fan spread hypothesis were discussed in some detail

earlier. It was shown that for the general fan spread model of growth,

gain scores were inappropriate since they adjust only for initial

differences at the point of intervention and not for differences in

the rate of growth as the model predicts. These latter differences,

if uncontrolled, would result in a biased estimate of program effec-

tiveness. The gain score strategy may still be appropriate, however,

if modified to reflect not only initial differences but also growth

rate differences. Such a modification could be made if additional
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additional data collected at some time prior to the point of

intervention were available. This modified gain score approach

then could provide a third alternative solution to the fan spread

hypothesis.

To facilitate a discussion on the development of the modified

gain score procedure, Figure 6 presents in greater detail differential

achievement growth over time for a hypothetical program and control

group without a treatment effect.

Point of End of

W Intervention Treatment

I

Control

Group
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Figure 6. Differential growth rates considered over three

points in time.
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The horizontal axis T denotes time while the vertical axis W represents

achievement. On the time dimension three points are identified: t1,

t2, and t3. The vertical dotted line at t2 indicates the point of

intervention while the dotted lines at t1 and t3 represent points in

time prior to and at termination of the intervention, respectively.

The solid lines represent the linear regression of achievement on time

for the populations of program and control groups. In this figure the

control group is shown to have a higher achievement rate (growing

faster) than the program group. The points at which these growth

curves intersect the dotted vertical lines represent the average

achievement level on the measure administered at time t. For example,

(t2’uxp) represents the population mean on measure X for the program

group at the time of intervention. These solid lines can be defined

in regression equations and used to predict the average group perfor-

mance at any point in time. If, for example, group performance at t3

was of interest, the following equations may be used:

II + ..

yp an bp(t3 t2)

and

C

I
I

where:

u ,p c are the population mean performance on measure (Y)

yp y at time t3 for the treatment and control groups,

respectively;

a ,a are the intercept constants of the growth curves

for the treatment and control groups, respectively,

at t °23
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are the lepes (rate of growth per unit time) of

the regression line predicting achievement from

time for the program and control groups,

reSpectively; and

t3--t2 is the period of intervention.

The difference in average performance of the program and control

groups at the termination of the intervention can be determined as

“AGS - uyp'-uyc-(ap'-ac)-[(bp-bC)(t3-t2)].

When the intervention has no effect, the equation is as follows:

0 = uyp-uyc- (ap-ac)-[<bp-bC><t3-t2>1.

Since the intercepts ap and aC of the growth curves are the initial

achievement levels prior to the point of intervention, then,

p c uxp"“xc

the difference in the mean pretest scores of the two groups. With

this substitution the expression becomes the following:

uyp-uyc-(uxp-uxc)-[(bp-bc)(t3-t2)]. (2)

The first two terms of the equation are identical to that of raw gain

scores that adjust for initial differences in test performance while

the second component adjusts for the differential growth rates. If

the lepes are equal, that is the rate of growth is the same for both
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groups, the second component equals 0 and raw gain scores provide

the appropriate adjustment procedure. The fan spread model, however,

states that the growth rates are not equivalent, and therefore an

additional adjustment is needed. The slope of a regression line is

defined as the ratio of the change in the vertical axis to the change

in the horizontal axis, i.e., b = %¥n. By using the information

available before the start of the intervention, the growth rate for

each group can be estimated. For the program group, the regression

slope can be written as the following:

b = uxp"uzp

P t -t '
2 1

This equation is the ratio of the change in population mean achievement

at two points in time prior to the intervention with the period of time

between testing. Similarly for the control group the regression slope

can be written as the following:

b ___ 11xc -“zc

With these estimates of growth rates, the third term of expression 2

can be written as:

u -u u -u

r<b.-b.><t.-t2n =[(—R——P-:z-.: -————:;-.:Cl<t.-t.>]

 

= I<‘“w'“z:::::‘“>w] -
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If the period of time between the first and second testing equals the

period of intervention t2 to t3, the above equation can be simplified

as the following:

[(bp ' bC)(t3 " 132)] = “pr ’Uzp) ‘ (ch -VZC)]'

Thus, the difference in group mean gains prior to the period of

intervention can be an appropriate estimate of the difference in

growth rates between program and control groups. The combination of

this adjustment for differential growth rates and the adjustment for

differences in initial performance levels results in estimating the

treatment effects as:

- ) -(u '-u )

= - - - _ XP 2p xp zc _

aAGS uyp uyc (“xp “xc) t2-t] (t3 t2) ‘

To achieve this type of adjustment requires the creation of a

new variable that takes into consideration all three test results.

A variable, W, can be defined as the following:

_ __ t -t

w=v-x—(w-Z) 3 2 
tz't‘l °

Where:

X,Y,t3-t2,t2-t] are as defined earlier;

X' is the group mean on the pretest administered

at t2 or the point of intervention; and

'2 is the group mean on the pretest administered

at t, or some point in time prior to the

intervention.



31

If the time between the first two test administrations equals the

period of intervention, the new variable is simply a gain score minus

the difference of the group's means at two points in time prior to the

intervention. This second factor adjusts for the growth rate of the

group. Since this technique makes no assumptions as to the rate of

growth or the initial starting point, it is appropriate for any

situation where growth is linear for groups.

Analysis of Covariance With Multiple Covariates
 

The strategy presented above required that two assessments be

made prior to the start of the intervention. Given the availability

of this pre—treatment information, a fourth procedure which has been

suggested to analyze data in a quasi-experimental setting conforming

to the fan spread model is analysis of covariance with the two pretests

as covariates. It was suggested when this technique was proposed that

the covariates should be corrected for their unreliability. Keesling

and Wiley (1977) have recently suggested a new approach to the problem

which may provide a reasonable solution to the question of multiple

fallible covariates. Their approach estimates the treatment effects

within groups separately and then compare the magnitude of those

effects across groups.

The general model for estimating the adjusted posttest mean

for a group can be written as:
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Where:

TG is the estimate of the effect for group G;

“yG is the population mean on the posttest measure Y for

group G;

Bx’EI are the vector of population means on the fallible and

error free covariates, respectively, for group G; and

F'B' are the row vectors of structural regression coefficients

for the fallible and error free covariates, respectively,

for the group G.

In the present study the adjustment procedure using fallible

covariates is of primary interest, and therefore a discussion of the

error free covariates and their structural coefficients will not be

presented here.

In the situation under consideration the posttest mean adjusted

by the two pretest means under the Keesling-Wiley model can be written

as:

16 = “ye “TI“x'Yzl'r

Where:

p ’“x and p2 are the population means of the three tests as

y defined earlier; and

y],y2 are the structural regression coefficients for

the two fallible covariates.

The estimates of the structural regression coefficients are defined

as the following:
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= 2 _ 2 2 _ 2

Y1 (052061n OE1EZO€2nH (“51052 “5152)

Y = 2 -o / 02
2 (051052n £152051n) (&G€1O€2 05152)

Where:

g1,gz,n represent the true scores of the first covariate Z,

the second covariate X, and the posttest measure Y;

and

02,0 represent the variance and covariance of the

subscripted variables, respectively.

In terms of the notation used elsewhere in this study, the structural

regression coefficients can be written as the following:

Y =(B , -B , B )/(l-D2 );l Ty TX TZ Tx TyTz TXTZ

Y =(8 , -B , B . )/(l-o2 ).
2 TyzT TzTx Ty Tx TxTz

(For a discussion of the distinction between structural equation models

and regression models, see Goldberger and Duncan, 1973.) It might be

noted at this point that the above regression coefficients are similar

to those used by Pravalpruk (1974) in one of the two methods he con-

sidered for solving the multiple fallible covariate problem. His

estimates were:

YT ‘ v)/::-TBT2 -Tx ByT2);/ (1"DTXTZ )

V— BTz'Tx 8,),Tx)/(1 -p%XTZ) .
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In his study, however, Pravalpruk only considered situations where

the reliabilities of the covariates were equal. Furthermore, since

By-Tx

sidered by Pravalpruk and those considered by Keesling and Wiley are

= BTy'Tx and By°Tz = BTy'Tz’ the adjustment coefficients con-

identical. To obtain his regression coefficients, Pravalpruk first

computed the estimated true scores for his covariates and then cor-

rected for the attenuated relationship between the two covariates.

Concerning this approach, Pravalpruk concluded that while the correct

effect was estimated, the appropriate probability of a type I error

was only obtained in a two-group design but not in a four-group design.

When a four-group design was considered, the test statistic was shown to

be too liberal for practical purposes. Thus Pravalpruk concluded that

his method did not provide a satisfactory solution to the multiple

fallible covariate problem.

In the approach suggested by Keesling and Wiley the true score

variance-covariance matrix is estimated using the replicate measures

of the covariates. Using the true score relationship the structural

regression coefficients are then estimated. The estimation of these

parameters is provided in a computer program by Jbreskog and Van

Thillo (1972).

To facilitate comparisons across the analytic strategies proposed

for solving the fan spread problem the estimate of a treatment effect

can be written as the following:
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p “p D G

a =<u -u )- TXTY TXTZTZTY 31— (u -u >
MAC yp yc 1 - pIxTz OTX xp xc

Z Y
0T T - pTxszTxTy ( 011

1--p2

TXTZ

) (uzp - 112C) .

While the above procedure has been demonstrated on a data set,

there have not as yet been any investigations considering the properties

of the distribution of the test statistic in small samples. Although

further study of the Keesling-Wiley procedure is needed before it can

be adopted as a competing analytic strategy, it was considered in the

present study because it appeared to be a promising technique for the

future.

Summary

The four analytic strategies proposed as solutions to the fan

spread model have been considered in some detail in this chapter. The

following chapter reviews the literature concerning data analysis in

quasi-experiments, focusing on discussions directly relevant to the

strategies considered in the present chapter.



CHAPTER 3

REVIEW OF RELEVANT LITERATURE

The first chapter began by identifying the measurement of change

as a difficult problem in a study based on a quasi-experimental research

design. As an example of this type of study, the evaluation of com-

pensatory education programs was suggested. These investigations are

characterized by the fact that comparison groups frequently differ in

their initial status on the outcome of interest which generally is some

measure of achievement. It was then pointed out that some authorities

have suggested that differences in initial achievement levels were an

indication that the groups were growing academically at different rates.

Campbell has labeled this differential growth rate issue the fan spread

hypothesis. Given this model, traditional analytic strategies have been

questioned. Several procedures were then introduced as potential solu-

tions for differences in growth rates. These solutions were described

in detail in Chapter 2. The present chapter reviews the literature as

it relates to the proposed solutions.

Data Analysis for Quasi-Experiments
 

The debate on the analysis of quasi-experiments has ranged from

pessimistic arguments stating that appropriate analytic procedures do

not currently exist for these studies (Lord, 1967; Crombach & Furby,

36
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1970) to the optimistic view that a cautious interpretation of

carefully analyzed data is useful (Elashoff, 1969; Harnquist, 1968;

Porter, 1973). Campbell and Erlebacher (1970) reviewed and explicitly

demonstrated using simulated data, many of the problems raised when

treatment effects are estimated from quasi-experiments. The purpose

of their presentation was to illustrate the inappropriateness of gain

scores and analysis of covariance for estimating the effectiveness of

compensatory education programs. Campbell and Erlebacher observed that

pretest data often showed control groups having a higher average per-

formance than those individuals involved in the compensatory program.

"That difference no doubt is there because of previously more rapid

rate of growth on the part of the Control Group, which would be expected

to continue during the period of the experimental treatment" (p. 198).

Thus in addition to all of the other problems the literature has iden-

tified as being present in quasi-experimental studies, differential

growth rates of treatment groups must also be considered in the

selection of an analytic strategy. Campbell and Erlebacher suggested

that as a result of all of these issues, traditional analyses techniques

were inadequate to estimate the effectivenss of compensatory education

programs. When these procedures were used, biased estimates resulted,

and programs appeared to be ineffective or even harmful.

In discussing the fan spread hypothesis, Campbell and Erlebacher

have focused on differences in growth rates between comparison groups

and have neglected the question of within group growth. Their argument

that analysis of covariance is inappropriate for the fan spread model
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is dependent on the nature of the within group growth. This issue

is examined in detail in the next chapter. The authors also have

confused the problem of differential growth rates with the problem

of an unreliable covariate. Given the linear model of within group

growth, analysis of covariance provides an appropriate adjustment if

the covariate is perfectly reliable. Finally, Campbell and Erlebacher

do not point out that parallel growth rate for comparison groups is a

special case of the fan spread model when the variance of the measure

remains constant across time.

Building on many of the same arguments raised by Campbell and

Erlebacher, Campbell and Boruch (1975) identified six ways in which

quasi-experimental research designs in evaluations of compensatory

education programs underestimate program effectiveness. The issue

of differential growth rates among treatment groups was cited as a

major contributing factor to a biased estimate of a program effect.

Although the authors attempted to clarify the question of differential

growth rates, they fell short of addressing those issues ignored in

the Campbell and Erlebacher paper. The authors did provide, however,

several examples of studies from the literature which supported their

contention that cognitive test scores do follow fan spread patterns.

As a possible solution to this problem, the authors suggested that

"standardizing scores (to mean zero and variance one) at each age

level would produce a metric which eliminates differential growth

rates" (p. 37). While this procedure may be appropriate, Campbell

and Boruch argued that actual growth patterns in achievement were not

very well understood and deserved further study.
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Raw Gain Scores
 

Several authorities (Lord, 1956; McNemar, 1958; Cronbach & Furby,

1970; Marks & Martin, 1973) have considered the question of measuring

true change with gain scores. Their concern, however, has been with

individuals rather than groups. Although related, a distinction should

be made between the two topics. The literature has not always done

this with the result of conflicting statements and confusion as to

the appropriateness of analysis strategies.

The use of gain scores as a strategy to measure group change has

been questioned by Cronbach and Furby (1970). These authors pointed

out that in true experiments only differences in the post-treatment

tests were needed to determine a treatment effect. If a pre-treatment

measure was available, then other more powerful techniques such as

analysis of covariance provided more powerful estimates of treatment

effects than gain scores. In quasi-experimental studies Cronbach and

Furby argued that the distribution of true pre-treatment measures was

different across the suprpulations being compared. As a result, these

authors agreed with Lord (1967) and concluded that no analysis strategy

was appropriate to compare treatment effects in quasi-experiments.

Not all authorities share this pessimistic view concerning gain

scores as an analytic strategy in quasi-experimental studies. Porter

(1973) who has argued that the use of gain scores does not provide the

best strategy in true experimental studies, has suggested that under

certain assumptions gain scores may provide the best technique for

quasi-experimental investigations. The issue of the appropriateness
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of the technique is dependent on the reasonableness of the assumption

that the relationship between the true pre and true post measures is

actually unity (BTy'Tx==])' Porter argued that given the assumption

that the treatment effects are additive and that pretest and posttest

measure the same variable in a common metric, it can be shown that the

relationship between the true parts of the measures does equal unity.

He concluded that given these assumptions, the gain score strategy does

provide a reasonable approach to data analysis in quasi-experimental

studies.

The situation in which Porter has suggested that gain scores

would be appropriate is the special case of the fan spread model when

the growth patterns are parallel and the variance of the measures remain

constant across time. The additivity assumption implies the linear

within group growth model.

Gains in Standard Scores
 

As noted earlier, a solution to the more general fan spread

model was proposed by Campbell and Boruch (1975). Their solution was

to standardize the observation at each point in time. Although they

indicated that this procedure may be appropriate they did not recommend

its use, but rather suggested that further study of academic growth

patterns is needed. Kenny (1975) took a much stronger position on

Campbell's proposed solution and argued that under certain conditions

standardized gain scores provided the best analytic strategy for quasi-

experiments. Kenny pointed out that in quasi-experiments the procedure

assigning groups to a treatment was the determining factor in selecting
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the appropriate analysis strategy. For example, if subjects were

assigned to the treatment strictly on test scores to be used as the

covariate then analysis of covariance without adjustments for the

unrealiability of the covariate was the appropriate analysis technique.

0n the other hand, if the subjects themselves determined which treatment

they received, then analysis of covariance corrected for a fallible

covariable was the appropriate approach. Finally, if the treatment

was assigned to groups based on sociological or demographic character—

istics of the group, then the use of standardized gain scores was the

appropriate procedure. An example of a study based on sociological or

demographic variables is one in which members of a particular social

group are eligible for treatment as a matter of legislation. Another

example is a study in which treatment is given to members of a partic-

ular organization such as a school district. A current example where

a compensatory education project was assigned by legislation is the

Response to Educational Needs Project in the Anacostia region of

Washington, D.C. This program was initiated by the President and

Congress specifically for this area in order to increase community

involvement and the quality of education in the schools of the region.

(This project is currently being evaluated by the National Institute

of Education.)

Kenny suggested that the assigning of groups to treatments

based on sociological and demographic factors resulted in situations

conforming to the fan spread model. That is, treatment and control

groups were likely to have different growth rates. Kenny judged the
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use of raw gain scores, analysis of covariance, and adjusted analysis

of covariance to be inappropriate strategies for these types of studies.

Standardized gain scores, however, were appropriate since the technique

adjusts for the increasing variability across time. To support his

contention as to the appropriateness of the procedure, Kenny cited two

examples in an attempt to demonstrate the inapprOpriateness of raw gain

scores and analysis of covariance with or without correction for the

fallible covariate while the standardized gain score strategy drew the

correct conclusion. He thus concluded that the use of standardized

gain scores was an appropriate technique for many quasi-experimental

studies.

Kenny's presentation on the appropriateness of the procedure

he advocates has several weaknesses. First the label of standardized

gain scores is misleading. Gains in standard scores is a more accurate

description of the approach. A second weakness is the author fails to

distinguish different models of within group growth. As a result his

conclusion that adjusted covariate analysis of covariance does not

estimate the treatment effect correctly is in error. This issue is

addressed in Chapters 4 and 5. A third problem with Kenny's paper is

that after showing that gains in standard scores appropriately estimates

the treatment effect of interest, the author fails to consider the

standard error of the approach. As a result of this oversight, Kenny

failed to recognize that the procedure he recommended results in a

spuriously low standard error. The standard error issue is considered

in detail in Chapters 4 and 5.
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Estimate True Score Analysis of Covariance
 

The second solution to the general fan spread model that was

proposed in the first two chapters was the estimated true score

analysis of covariance. The technique differs from traditional

analysis of covariance in that the estimated true score rather than

the observed score on the pre-treatment measure is used as the

covariate in the analytic model.

Analysis of covariance with an observed score covariate has

been criticized as inappropriate as a result of measurement errors.

The problem arises in the calculation of the slope of the regression

of the posttest on the pretest used in computing the residuals. The

treatment effect which is of interest is based on the latent true

variables, but only the observed scores are available. If the re-

gression slope estimated on the observed scores is not the same as

that which would be obtained if the latent true scores were available,

the regression estimate is said to be biased, and the effect which

is estimated is not likely to be the desired one. In the classical

analysis of covariance model the covariate is assumed to be fixed

rather than random. That is, the levels of the covariates are chosen

by the researcher. Berkson (1950) considered using a controlled

observation (fixed levels) as the independent variable in estimating

the regression line. He concluded the regression slope in this

situation to be unbiased. On the other hand, when the independent

variable is uncontrolled (a random sample from an existent population),

the slope is biased. "The distinction between the two situations
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resides not in what the variate represents but how the observations

are acquired. If the values are obtained by taking a sample from

an existent population, we have the biased situation. If they are

obtained by making them as controlled observations, we have the biased

situation" (Berkson, 1950, p. 179). In education and psychology, it

is rare to find a situation where the covariate is fixed. Rather,

for most cases the covariate is a random variable and it is usually

measured with error. Thus the slope which is estimated on the observed

scores is biased, and the effect which is estimated is not the one of

prime interest when treatment groups differ on their mean covariate

score. The nature of the bias in using the observed scores rather

than the latent true variables can be shown in a number of ways. From

a measurement perspective, it is most easily seen through the following

set of identities:

o
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Equation 7 shows that when the observed scores are used to estimate

the slope of the regression of the dependent measures on the covariate,

it underestimates the desired relationship based on the latent true

variables. The observed score regression is biased by a factor equal-

ling the reliability of the covariate. The treatment effect estimated

by the observed score analysis of covariance can be written as

O‘AC = “yp"“yc"By-x (“xp"“xc)°

The treatment effect estimated on the latent true variables, on the

other hand, can be written as

a = - - BYOX

TS “yp “yc Pxx
 

(uxp-uXC).

Since the latent slope is always larger than the observed score slope,

the difference between the two group means on the posttest is adjusted

to a lesser extent with the unadjusted regression slope. In the case

of evaluating compensatory education programs, analysis of covariance

with observed scores underadjusts for initial differences between

comparison groups mean on the covariate.

To obtain an unbiased estimate of the regression slope, Lord

(1960) suggested a large sample approach which required two independent

measures of the covariate. The resulting test statistic, U, was shown

to follow the normal distribution and provide an unbiased estimate of

treatment effects. This procedure is limited to studies comparing two

groups with large samples and two measures on the covariate. Porter

(1967) studied the distributional properties of the U statistic when
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samples were small. His results indicated that a sample size

larger than 20 was necessary for the U statistic to converge to

the normal distribution when the reliability of the covariate and/or

the correlation of the covariate and dependent measure were low.

Another approach to this issue of bias was suggested by

Harnquist (1958). He proposed that the problem of an unreliable

covariate could be solved simply by multiplying the sum of squares

of the covariable by the estimate of the covariable's reliability.

Porter (1967), in further developing this idea, suggested that the

estimated true score of the variable be used as the covariate. Using

this approach, Porter showed that this technique provides an unbiased

estimate of the regression slope. Furthermore, in a simulation study

using this technique, he showed that the analysis of covariance strategy

using true scores followed very closely the theoretical F-distribution.

Stroud (1972) provided still another solution to the problem of

an unreliable covariate but his procedure required knowledge of the

error variance of the covariate. This approach is also a large sample

solution and as yet no small sample distributional investigations have

been done with this procedure.

The fan spread model as suggested by Campbell is a special

conceptualization of a more general linear growth model. Several

models of linear-group growth, including the fan spread, were con-

sidered in detail by Bryk and Weisberg (1977) for the non-equivalent

control group design. These authors suggested that a simple repre-

sentation of individual linear growth could be provided by considering
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the product of growth rate (n) and time, i.e., the difference between

(tj) the point of assessment and (T) the initial starting point of

growth; growth = fl(tj-T). Similarly, the average performance of a

group at time t1 was defined as ufl(t]-UT) where u" was the average

growth rate for individuals within the group and pT was the average

starting point within the group. By changing the initial starting

point for the groups and their rate of growth, Bryk and Weisberg

considered five linear growth models. To produce the fan spread

condition, a common starting point was assumed for all individuals

and the average rate of growth was assumed constant for the group but

varied between the groups. Growth within the groups was assumed con-

stant for the individual but varied across individuals. Using this

model of growth, the authors compared four analyses strategies on the

basis of the effect estimated by each technique. The procedures which

were considered were the following: (1) raw gain scores, (2) gains in

standard scores, (3) analysis of covariance, and (4) Belson's approach

to analysis of covariance. Belson's method, in contrast with tradi-

tional analysis of covariance, estimates the regression slope using

only the data on the control group. In contrast to Kenny's conclusions,

Bryk and Weisberg's analysis indicated that both gains in standard

scores and analysis of covariance adequately adjusted for the fan

spread model. This conclusion was based on the assumption that the

covariate was perfectly reliable. When considering the other models

of linear growth that were studied, the authors concluded that these

approaches were inadequate in estimating treatment effects. They
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therefore suggested that pretest-posttest data were inadequate to adjust

for initial differences that frequently accompany the non-equivalent

control group design. Bryk and Weisberg further recommended that

researchers develop new procedures which might take into consideration

more data on growth collected prior to an intervention.

In their study, Bryk and Weisberg made a basic assumption that

both groups and individuals within groups grow linearly. As a result

they showed that analysis of covariance with a reliable covariate

correctly adjusted for the differential growth rates. The assumption

that individuals within groups grow linearly, however, is not necessary

for the fan spread situation as was pointed out in the first chapter.

Without this assumption and the assumption of a perfectly reliable

pretest, however, the procedure would not provide the appropriate

adjustment. These assumptions were not explicitly stated or discussed

in the authors' presentation. Furthermore, Bryk and Weisberg in con-

cluding that both gains in standard scores and analysis of covariance

provide the apprOpriate adjustment, implied that the two procedures

are equally appropriate. This is not completely true. While both

procedures estimate the same effect, the precision with which the

estimate is made differs. The precision of the strategy suggested

by Kenny is spuriously high. The issue of precision is considered

in detail in the next two chapters.
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Analysis of Covariance ith Multiple Fallible Covariates

The fourth analytic strategy which was proposed as a solution

to the fan spread model was the analysis of covariance with multiple

covariates. This procedure is an extension of the single covariate

analytic technique previously discussed. As in the single covariate

approach, multiple covariate analysis of covariance has been challenged

as inappropriate because of the unreliability of the measures. Unfor-

tunately, the solution to this problem appears more complex than the

single fallible covariate case. Pravalpruk (1974) considered two

approaches to this problem when two fallible covariates were available.

The first method he considered was an extension of Porter's (1967)

procedure of using estimated true scores as covariates. In addition,

however, he corrected the correlation between the two covariates for

attenuation before calculating the beta weights. In the second approach

considered, Pravalpruk transformed the second fallible covariate to be

independent of the first fallible covariate and then used the estimated

true score procedure. The first method was shown to estimate the

desired effect, while the second method did not. In simulating the

distributions of the F-statistic computed by the two methods, he found

that in the case of two-group designs the probability of a type I error

rate was satisfactory. In the case of a four-group design, however,

the type I error rates were found to be too liberal for practical use.

Pravalpruk concluded that the problem of multiple fallible covariate

remains unsolved.
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Stroud (1974) extended the procedure he suggested to the

single fallible covariate problem to include multiple covariates.

His solution, however, requires knowledge of the error variances

associated with each covariate. As yet no investigations have been

conducted studying the distributional prOperties of his test statistic

when small samples are available.

More recently, Keesling and Wiley (1976) have suggested a

procedure to adjust for initial differences that may accompany the

non-random assignment of experimental units to treatment groups. Their

technique is an extension of Lord's (1960) large sample covariance

analysis (discussed earlier) to include multiple covariates, some of

which may be error-free and others fallible. The two approaches are

similar in that the Keesling-Wiley procedure is also a large sample

solution; it requires replicate measures of the fallible covariates,

and it is useful in the analysis of two-group designs. Unlike Lord's

technique, however, the Keesling-Wiley procedure requires replicate

measures of the dependent variable as well as the covariates. It

does not require that the replicate measures be parallel, nor is

it limited to two replicates per variable.

Briefly, the Keesling-Wiley strategy is to take the within-

cell observed variance-covariance matrix of all replicate measures

to estimate the within-cell true score covariance matrix. Using these

estimates of true score relationships, the parameters of the structural

regression system of true dependent variables on the true covariates

can then be computed. These structural regression coefficients are
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maximum-likelihood estimates of the parameters computed following the

procedure suggested by Jbreskog (1973) and implemented in a computer

program by Jbreskog and Van Thillo (1972). The true adjusted dependent

variable is then calculated for each treatment group and compared to

assess the treatment differences. Further discussion of this approach

was presented in the previous chapter.

Summary

The review of the literature has indicated that the measurement

of change and the estimation of treatment effects in quasi-experimental

studies has been a focal point of a great deal of discussion. In dis-

cussing these issues, researchers have shown considerable disagreement

as to the appropriateness of various analytic strategies suggested for

quasi-experiments. The lack of explicit recognition of differential

growth rates as a contributing factor to biased estimates of program

effectiveness has contributed to that debate. The literature review

has also identified a serious weakness in the previous work in the area

of analytic strategies for quasi-experiments. That deficit concerns the

almost total neglect of precision as an issue in selecting among

competing analytic strategies. The next two chapters attempt to

shed some light on the issue of precision as it relates to the

four proposed solutions for the fan spread condition.



CHAPTER 4

EFFECTS ESTIMATED AND THEIR STANDARD ERRORS

The four strategies considered in the second chapter have been

suggested as possible solutions to the problem of differential growth

rates between comparison groups in quasi-experimental studies. The

present chapter compares and evaluates these strategies on the basis

of two criteria: (1) the appropriateness of the effects estimated,

and (2) the precision with which the effects are estimated. While

the first criterion must be met before the issue of precision can be

sensibly addressed, the second criterion provides a useful basis on

which to decide among appropriate competing analytic strategies.

Two conditions of within-group growth are considered in evaluating

the effect estimated by each strategy. The first assumes growth to be

linear at the individual level across time such that an individual's

relative position within the group remains constant over time. This

is the "traditional" model of the fan spread condition examined by

Campbell and others and represented pictorially in Figure 4 found

in Chapter 1. This model of growth suggested that individuals began

to grow at some common point in time; and that the rate of growth

varied among individuals, but is constant for an individual within a

group. As a result, the relationship between test performance across

time is perfect except for measurement errors, p==l. Table 1 depicts

52
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Table l

A Hypothetical Data Example of the Fan Spread Hypothesis

With the Linear Model of Within-Group Growth

 

 

Time 0 Time 1 Time 2

Individual Z X Y

1 1.8 3 4.2

Group 1 2 3.0 5 7.0

3 4.2 7 9.8

Mean 3.0 5 7.0

Standard deviation 1.2 2 2.8

4 4.8 8 ll 2

Group 2 5 6.0 10 14.0

6 7.2 12 16 8

Mean 6.0 10 14.0

Standard deviation 1.2 2 2.8

 

this model of within-group growth for two hypothetical groups, each

consisting of three individuals at three points in time. For this data

set, measurement errors are assumed to equal zero. The second condition

of within group growth which is considered assumes that individuals

within a group do not grow linearly but rather in "spurts." The rate

of growth for an individual may therefore vary across time resulting in

some variability in the relative position an individual holds within the

group. This view of the fan spread model has not previously been con-

sidered in the literature. Pictorially it was represented in Figure 5

found in Chapter 1. Following this model of within-group growth, the

relationship between test performances across time is no longer perfect

even without measurement errors, 01‘]. Table 2 presents this model of
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Table 2

A Hypothetical Data Example of the Fan Spread Hypothesis

With the Non-Linear Model of Within-Group Growth

 

 

Time 0 Time 1 Time 2

Individual 2 X Y

1 2 ll 22

2 3 17 31

Group 3 3 4 15 25

4 5 18 28

5 6 19 34

Mean 4 16 28

Standard deviation 1.56 3.16 4 74

6 4 15 28

7 5 21 37

Group 4 8 6 19 31

9 7 22 34

10 8 23 40

Mean 6 20 34

Standard deviation 1.56 3.16 4.74

 

within-group growth for two hypothetical groups each consisting of five

individuals at three points in time. For these data it is assumed that

there are no errors of measurement. While the two conditions described

above differ in terms of within-group growth rates, both have average

group growth that is linear. In considering both the appropriateness

of the effect estimated and the question of precision, it has been

assumed that the measures available are the same or parallel forms

of the same instrument.
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Estimation of Treatment Effects
 

The fan spread model of growth, as discussed earlier, suggests

that concomitant with an increase in mean difference between comparison

groups is a proportional increase in within-group variability. Further-

more, this relationship between the mean differences and pooled standard

deviation remains constant across time. Algebraically this relationship

is presented as

The terms are as defined previously. This representation of the

differential growth rate problem indicates that the appropriate

adjustment strategy should take the following form:

An analytic strategy having the above form would provide an unbiased

estimate of group differences in situations conforming to the fan spread

model of growth. Since the definition of the fan spread hypothesis does

not include a reference to the nature of the within-group growth pattern,

the above approach is appropriate for both condition 1, p>=l, and con-

dition 2, pail. Assuming that group 1 represents a program group and

group 2 the control, the estimate of a non-existent treatment effect

for the data from Table l depicting condition 1 is as follows:
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C

I
I

-7 -l.4 (-5).

Similarly assuming that group 3 represents a program group and group 4

its control, the estimate of the group differences for the data in

Table 2 representing condition 2 is as follows:

(28 - 34) - L113- (16 - 20)

(
A
)

O

ll (-6)-l.5 (-4).

The above examples demonstrate the appropriateness of the adjustment

technique suggested by the definition of the fan spread model or

alternatively that the data conform to the fan spread model.

Estimation With Gains in Standard Scores
 

The nature of the hypothesis tested by each of the four

analytic strategies is reflected in their respective estimates of

group differences presented in Chapter 2. The gains in standard

scores approach suggested by Kenny was shown to estimate group

differences as

O‘GSS Llypmuyc o xp xc '
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This equation is identical to the adjustment strategy suggested above

based on the definition of the fan Spread model of growth. In

Campbell's definition of the fan spread model, however, it was not

clear whether or not the hypothesis was based on manifest or latent

variables. If the fan spread hypothesis is defined on the latent true

variables then gains in standard scores uses the ratio of the standard

deviations on the observed variables, $2., when the ratio of the

standard deviations of the true variables, STf.’ is desired. The

relationship between the variance of the manifest variables to the

variance of the latent true variables are shown in the following

expressions:

2 = 2

and

2 _ 2

o — o .

y Ty pyy

The ratio of the standard deviations on the manifest variables in terms

of the latent true variables can be written as the following:

o

32.. _IIL_£§21
o o

x Tx /§;;

If the reliability of the pretest equals the reliability of the post-

test, pxx==pyy, then the ratio of the observed score standard deviations

is appropriate for the latent fan spread model. On the other hand for

the latent fan spread model, the ratio of observed standard deviations
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is an inappropriate adjustment coefficient when the reliability of the

measures are not equal. Under the manifest fan Spread model, gains in

standard scores strategy as proposed by Kenny is appropriate regardless.

While the discussion of the fan spread model indicated that

the appropriate adjustment coefficient was the ratio of the population

standard deviations for the posttest to the pretest, Kenny's procedure

estimates that ratio using the sample standard deviations. The expected

value of the ratio of the sample standard deviations, however, does not

equal the ratio of the population standard deviation, E(Sy/thioy/ox ,

where the samples are small. The effect estimated by Kenny's technique,

therefore, is not the desired one when the sample size is small.

Further discussion of this point is presented later in the chapter.

A final consideration concerning the gains in standard scores approach

is the fact that this procedure is not affected by the relationship

among the individuals within the comparison groups. For large samples,

then, the technique estimates the appropriate effect for both models of

within-group growth.

Estimation With True Score Analysis of Covariance
 

The second solution to the fan spread hypothesis proposed

earlier was the analysis of covariance model with estimated true

scores as the covariate. This approach estimates the group differences

as
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This statement of the estimate of group differences indicates

that this strategy is identical to the adjustment strategy suggested

by the fan spread definition except for the ratio of pxy/pxx. This

ratio provides a correction for errors of measurement. Therefore,

if the true relationship between the two measures is perfect as pro-

posed by condition 1, the ratio of the correlation to the reliability

of the covariate will also equal unity. Thus for the first condition

being considered, the analysis of covariance model with estimated true

scores provides the appr0priate adjustment for the fan Spread situation.

This result contradicts Kenny's (1975) conclusion that analysis of

covariance adjusted for an unreliable covariate does not apprOpriately

adjust for the differential growth rate problem. Since Kenny did not

specify the model of within group growth in his study, it must be

assumed that his examples illustrated situations where individual

growth rates were not linear across time.

Previously a distinction was drawn between the manifest and

latent fan spread models. Considering the latent model, the rela-

tionship between the adjustment coefficient provided by estimated true

score analysis of covariance and the ratio of the latent variable

standard deviations can be written as

Q
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The above expression is true when the reliability of the pretest and

posttest are equal for the linear model of within group growth. If
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the reliabilities are not equal then the following set of relationships

Show that the appropriate adjustment is still provided by the procedure:

0 0

35232 $1<_Tx_)/( TX)

0xx 0x 0xx 'Pyy VPxx

ox OTip/0,1,1

pxx GTx VPyy
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IpXX UTX

 

The last expression equals the ratio of the latent standard deviations

when the linear model of within group growth is true. If the manifest

fan spread model is assumed then the effect estimated by the true

score analysis of covariance strategy is appropriate only when the

reliabilities of the pretest and posttest are equal.

The data example presented earlier from Table l, where no

errors of measurement were assumed and p==1, demonstrated the appro-

priateness of the true score analysis of covariance technique. The

example also demonstrated that the assumption of the homogeneity of

regression slopes between comparison groups need not be violated in

a fan spread situation. For both groups the relationship between

the X and Y measures equaled one and the standard deviation for each

variable was equal across the two groups. The regression slopes are

therefore equal between comparison groups.

Under condition 2, however, the true relationship between the

pretest and posttest does not equal unity even after correcting for
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errors of measurement. The data in Table 2 represent this type of

situation. In this example the true relationship between the X and

Y measures equals .90. The estimate of the adjhsted group difference

determined by the analysis of covariance model with estimated true

scores of the covariate is as follows:

“ACTS 3 (P ’1‘ )'

(28 - 34) - (.90) (fig-71%) (16- 20)

(-6)-(1.35) (-4)

= -.60.

Thus under condition 2 this strategy underadjusts for initial group

differences. The data in Table 2 also demonstrate the assumption of

homogeneity of regression slopes does not have to be violated in

Situations conforming to the fan spread model.

Estimation With Adjusted Gain Scores

The third analytic strategy proposed in Chapter 2 to provide

an appropriate adjustment for the differential growth rate problem was

the adjusted gain score stratagy. This technique suggested that given

the results of two test administrations prior to the introduction of

the treatment, the average rate of growth within each group could be

estimated and used to adjust the raw gain scores for differences in

the growth rates. Estimating group differences with the adjusted gain

score strategy was represented as



62

a = ( ~11 ) -( - ) - [( - ) -( - )] t2'-t]
AGS uyp yc Uxp “xc “xp “2p uxc Uzc t1-t0 '

 

The terms are as previously defined. In Situations where the period

of time between the first and second pretests, (t1-t0) equals the

period of intervention, (t2-t1), the above estimate can be simplified

as the following:

041165 = (uyp - uyC) - 2(pr - uxc) + (“2p - 112C).

The utility of the effect estimated is demonstrated for the fan spread

data by showing that aAGS==O. Assume that the difference between the

two group means on the X variable equals some constant (a), uxp-uxc==a.

And the difference between the group means on the Y measure equals

(a-Ib) where b is any constant, p =a +b. Then for fan spread
yp ' “yc

data and equally distant time points the difference between the group

means on the 2 measure would equal a-b; uzp-pzc==a-b. The effect

estimated by the adjusted gain score strategy can be written as the

following:

GAGS = uyp-uyc-2(uxp-u c) +(uZp-uzcl

I
I

N 9
) I

N D
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The adjusted gain score procedure does not require equal time periods

between the administration of the tests. The group's growth rate can

be adjusted for differences in time periods by the ratio of the time

under investigation to the time between the first and second pretests.

Since the adjusted gain scores are only a function of means and thus

unaffected by errors of measurement, the procedure is appropriate for

both the manifest and latent fan spread models. Finally the adjusted

gain score strategy is not influenced by the model of within-group

growth, it is therefore appropriate for both condition 1, p==1 and

condition 2, pfl of the fan spread hypothesis.

The estimate of the group difference provided by the adjusted

gain score approach using the data for Table l is as follows:

GAGS=IU -u )-(u -uxc)-[(uxp-uyp yc xp )- (uxc - uzcl]
2P

(7-14)-(5-lO)-[(5—3)-(10-6)]

“-7+5-H2-4H.O

I

For the data found in Table 2 the estimate of the group difference is

as follows:

“AGS ‘ (uyp-u )-(u -uxcl-[(ux )-(uxc-uzc)]
yc xp p"“ZP

(28 - 34) - (16 - 20) - [(16 - 4) - (20 -6)]

O

11 -6+4-[m-I4L

Both of these examples assume that the period of time between t0 and t1

is equal to the period from t1 to t2.
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Estimation With Multiple Fallible Covariates
 

The final analytic strategy suggested to adjust for the problem

of differential growth rates between comparison groups was the analysis

of covariance model with multiple covariates. The multiple covariates

are the double pretest data collected prior to the period of interven-

tion. In the review of the literature it was pointed out that because

of measurement errors in the covariates, the analysis of covariance

model has been judged as inappropriate in quasi—experimental studies.

It was also pointed out, however, that Keesling and Wiley (1976) have

suggested an approach which adjusts for the fallible covariates. As

a result their technique was suggested as a possible solution to the

fan spread problem. Following the Keesling-Wiley procedure, an

estimate of the group differences is stated as the following:

o

pTxTy"pTxszTzTy_ Ty
 

 

OLMAC = uyp"uyc" lap?xTz oTx (uxp"uxc)

OTXTI ' PTXTZPTXB, Oly ( )

" 11 ' 11 .

l - 2 0 2p zc

pTxTz Tz

On the surface this estimate differs considerably from the one

suggested by the definition of the fan Spread model. The nature

of the coefficients must therefore be examined. For condition 1 the

relationship between the test performance was said to be perfect, c>=l.

Under this assumption, then, the following is true: pTxTy==pTxTz=4

pTzTy‘=]' In the above adjustment coefficients, there appears the

following factor in the denominator: l-p%xTz. If, as condition 1

suggests, the true relationship between test performance is perfect,
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then denominators in these coefficients are zero, and the coefficients

are undefined. The Keesling-Wiley approach is inappropriate for con-

dition 1 when the covariates are repeated administrations of the same

or parallel forms of the posttest measure.

Condition 2, on the other hand, suggests that the relationship

between test scores across time is not perfect pI‘l. Under this con-

dition the adjustment coefficients suggested by the analysis of

covariance strategy are defined. It is necessary then to determine

whether or not the coefficients provide the appropriate adjustment.

For the Keesling-Wiley procedure to be appropriate under condition 2

of the fan spread model, the following equality must be true:

 
 EX"’pxzpzyE—y-(u -u >+ py'pxzpflgll - >=31( - )

1--p:Z Ox xp xc '1- piz Oz uzp uzc Oz uxp “xc

Where in the above expression the correlation coefficients, (p), and

the variances, (o), are in terms of the latent true variables. The

fan spread model defines the differences between the group means on

the 2 variable as the following:

The Keesling-Wiley coefficient can then be written as

  

 
 

- o .-

0” pxipzy—X—(u -u If” oxipxyfy—(u -u )
l--px2 Ox xp xc I-pxz 0x xp xc

EX. OXY"pxzpzy pzy"pxszy

= o (“xp 'UXC) l- p7 + 1'02
x xz xz
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For the Keesling-Wiley procedure to be appropriate, then, the factor

in brackets must equal unity:

 

 

pxy"pxzpzy + pzy"pxszy = 1

l-p2 1-p2 '
xz xz

This may be rewritten as the following:

- 2

nylozy‘sz (ozy+oxy) - l-oxz .

OY‘

... 2

(oxy'tpzy) (l-oxz) - 1 - 0x2.

Further simplification of the equation is provided by noting that:

2 ..

1"pxz — (1"pxz) (I'Ipxz)'

Thus for the Keesling-Wiley procedure to appropriately adjust for the

fan spread hypothesis under the second model of within group growth

(oxy'rozy) = (1 +0”)-

This can only be true if both pxy and p2 are greater than pxz'

y

Since pzy involves variables measured at two points farther apart in

time than pxz’ the above is highly unlikely. Given the more reasonable

assumption that the correlations between any two equally distant points

in time are equal, the statement cannot be true. Thus the Keesling-

Wiley procedure is inappropriate as a solution to the fan spread model.
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The data presented in Table 2 demonstrate the inappropriateness

of the Keesling-Wiley procedure for condition 2 of the fan spread

model. For these data the true relationships between the measures

are as follows:

pzx = .85, pzy = .70, and pxy = .90.

With these values, the estimate of the group difference is as in the

  

following:

= (u _ u )_ pxy ' pxzpzy 31 u _ u )_ pzy ' pxszy 31 u _ u )

OMAC yp yc l - pi, 0x xp xc l - 0;, oz zp 2c

(28- 34) - 301418333470) $13; (16 -20)

 
.70- (.85)(.90) 4.74

l-(.85)2 1756(4’6)

-6 - (l.O99)(1.5)(-4) - (-.2342)(3.038)(-2)

-6+-6.595-1.4229

= -.8279.

The analysis of covariance with the two pretests as covariates does

not therefore estimate the desired effect under the fan spread model

for either condition 1, p=l, or condition 2, pfl.

The examination of the estimates of group differences by the four

analytic strategies has shown that for condition 1, p==1, gains in

standard scores, analysis of covariance with estimated true scores
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of the covariate, and adjusted gain scores all estimate the effect of

interest. Only the Keesling-Wiley analysis with the double pretests

as covariates was Shown to estimate the wrong effect. For condition 2,

p>#l, only gains in standard scores and adjusted gain scores were shown

to estimate the desired effect. Thus, researchers have a choice in

selecting an analytic strategy in both condition 1 and 2 of the fan

spread model. Given these findings, the selection of one technique

over another might be based on precision.

Precision

The precision of an analytic strategy is defined in terms of the

standard error of a Simple contrast which in turn is determined by

the variability of the adjusted variable. Therefore, a comparison of

the standard errors associated with each analytic strategy provides

a way by which the precision of each technique can be assessed.

It was pointed out in Chapter 2 that each analysis strategy being

considered could be conceptualized in terms of an adjusted dependent

measure. In comparing a program group with a control group, the

contrast of interest is the difference between the means of the two

groups on the adjusted variable. The standard error is therefore

 

the square root of the variance of this contrast, /'Var (Wh-—WE).

The variance of the contrast is defined as

Var (W -W€) = Var (Wh)-+Var (W£)-2 Cov (Wp,D W’). (8)
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To determine the standard error of the contrast, both the variance and

the covariance of the adjusted means are needed. All of the analytic

strategies considered take this general form and differ only in the

approach used to define the adjusted variable, W.

Standard Error For an Index of Response
 

Since the gains in standard scores and the analysis of covariance

model with estimated true scores as the covariate use only a Single

pretest and the posttest, the two approaches are similar in how the

adjusted variable is created. They both take the general form of an

index of response,

W = Y -KX.

Where X and Y are the pretest and posttest scores, respectively, and

K is the adjustment coefficient. The contrast of interest, however,

is stated in terms of the group means on the adjusted variable which

can be written as: W'= Y -KX. The variance of the adjusted mean is

the variance of the linear combination of posttest means minus the

product of the adjustment coefficient and the pretest mean,

Var (W) Var (YV-KX)

(9)

Var (Y) +Var (KY) -2 Cov (V,KX).

If K is known to the researcher independently of his data-—that is the

population parameter K is a known constant--the variance of the mean of

the adjusted variable could be further Simplified to:



7O

Var (W) = Var (7)-+K2 Var (X)-—2K Cov (Y,X).

The strategies suggested by Kenny (gains in standard scores) and Porter

(analysis of covariance with estimated true score of the covariate) do

not assume knowledge of the correct adjustment coefficient; rather,

they require that the coefficient be estimated on the data. As a

result of fluctuation from sample to sample, the adjustment coefficient

must be considered a random variable. In determining the variance of

the adjusted mean, the adjustment coefficient appears only in combina-

tion with the pretest mean. Thus, to determine the variability of the

adjusted variable, the variance of the product of two random variables

and the covariance of a random variable and the product of two random

variables are needed. Keesling and Wiley (1976) have derived statements

for both of these terms assuming that K is independent of both X and Y.

The variance of the product of two independent random variables can be

written:

Var (KY) = E(K)2 Var (_)'(')+E(X)2 Var (K)+Var (K) Var (X). (10)

The covariance of a random variable with the product of two independent

random variables can be written:

Cov (V,K ) = E(K) Cov (Y3XD,

where again, K is assumed to be independent of the pretest and posttest

means. The proof of these two statements is provided in Appendices A

and B. In summary, then, the variance of the adjusted variable is:



Var (11’) = Var (T) +£(K)2 Var (if) +£(Y)2 Var (K) +-Var (K) Var (X)

-2E(K) Cov (‘x’,l’).

Finally, to determine the variance of the contrast of interest

(equation 9), the covariance of the two adjusted means is needed; i.e.,

Cov (WE,WE). Since only the adjusted coefficient is common to the group

mean on the adjusted variable, Keesling and Wiley state this covariance

term as:

Cov (Wp,W) = E(X) E(X ) Var (K). (11)

The proof of this statement is provided in Appendix C.

Substituting equations 10 and 11 in equation 9, and assuming a

balanced design with the program and control groups having equal var-

iance on the pretest and posttest measures, the variance of the contrast

between two group means on an adjusted variable is:

Var (Wb-W£) = 2 [Var (Y)+E(K)2 Var (X)-+Var (K) Var (X)

- 2E(K) Cov (X,V)]+E(Xp)2 Var K+I:(T<'C)2 Var (K)

- 2E(Xb) E(XE) Var (K).

This can be simplified to:

Var (Wh-WE) = 2 [Var(Y)+-(E(K)i+- Var(K)) Var (X)

- 2E(K) Cov (7,7)] +[E(Xp) -50?an Var (K).
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Furthermore, E(X ) = uxp and E(XE) = , so that,
p “xc

Var (Wp -WC) = 2 [Var (.Y_)+(E(K)2 + Var (K)) Var (X) - 2E(K) Cov (7,7)]

+ (u -u )2 Var(K). (12)
Xp xc

Equation 12 is a general statement of the variance of the contrast of

interest.

The Standard Error For Kenny's Procedure
 

The strategy suggested by Kenny defined the adjustment coefficient

as the rato of the pooled standard deviations of the posttest to the

pretest: K==§f—. To determine the expected value and the variance of

this coefficient, the density function of the ratio of two correlated

standard deviations is needed. Bose (1935) and Finney (1938) have

derived this function from the bivariate normal density function. The

density function of two correlated standard deviations is written as

the following:

 

 

"'1 n-2 -fl
dF = 2(1-gpi[77_ v 1 ‘ 4p2\)2 2

v 80151, 1%?) (1+v2)n-1 (1+V2)2

where:

0 represents the relationship between the pretest and posttest

for the population on the manifest variables;

8 is the beta function;

S S

\) BAX/Elwand

y x

n is the sample size.
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The expected value of the ratio of the standard deviation is determined

over the interval from O to m the density function as in the following:

E(v) =fm \) dFv.

0

To determine the variance of the coefficient, the expected value of the

squared ratio of the standard deviation is needed. This value is cal-

culated by integrating from O to w the product of the ratio of the

variances and the density function:

E(vz) =1; v2 dFv.

Solving the above equation results in:

2 2

E51=M31

s: "-3

Appendix 0 provides the calculation leading to the above solution. The

solution to determining the expected value of the ratio of standard

deviation was more difficult and required the numerical integration

of the following function:

n-45S .

E(TL) = an_'] f y’(1-pz):1-402 Y(1-Y) (Y(1-D) 2 dy (531-.

X I"(-2-> O X

The derivation of this solution is provided in Appendix E. To integrate

 

this function, a "canned" computer program called DCADRE (de Boor, 1971)

Twas used in conjunction with the CDC6500 computer at Michigan State
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University. The solution of the equation for values of n ranging from

20 to 120 in multiples of 10 and values of p for the manifest variables

ranging from .1 to .9 in increments of .l are presented in Table 3.

Earlier in this chapter it was stated that the ratio of sample standard

deviation was a biased estimator of the rate of population standard

deviation. The results found in Table 3 confirm that statement. If

the ratio of the standard deviations was an unbiased estimator of the

ratio of the p0pu1ation standard deviations then all entries in Table 3

would have been one. For a sample of size 30 and a correlation of .1

between the measures, the ratio of the standard deviations equals

1.0178. As the sample size becomes large and the correlation between

measures high, the magnitude of the bias is reduced. For example, with

a sample of 50 and a correlation of .8, the ratio of the sample standard

deviations equal 1.0038. Thus the procedure suggested by Kenny provides

the appropriate estimate of the group differences in a fan spread

Situation only when the sample is large and the correlation between

measures is high.

The variance of the adjustment coefficient suggested by Kenny is

determined by:

we we)

These results are presented in Table 4, assuming the p0pulation

variances of the two measures are equal. For a sample of 30 and

a correlation of .l, the variance of the ratio of the standard

deviations equals .03733. As the sample size and the correlation
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between the measures increase, the variance of the ratio decreases.

For a sample of 50 and a correlation of .8 the variance of the ratio

of the standard deviations equals .00769.

The Standard Error For Porter's Procedure

The analytic strategy suggested by Porter using the analysis of

covariance model with estimated true score of the covariate, defines

the adjustment coefficient as the ratio of the linear regression slope

of posttest on pretest to the reliability of the covariate: K = %¥:§"

One way of calculating the reliability coefficient is to use the xx

sample data and estimate a measure of internal consistency for the

pretest. It was suggested earlier, however, that a test-retest

reliability was a more desirable coefficient. If one of the two

administrations is also used as the covariate, there would be a lack

of independence between the regression slope and the reliability

coefficient, thus complicating the estimation of the expected value

and the variance of the adjustment. A second approach of estimating

the reliability coefficient would be to select an independent sample

of subjects and administer the instrument twice. This estimate of the

test-retest reliability could be obtained in the pilot testing of the

instrumentation. In both of these methods the resulting estimate of

the reliability coefficient is a random variable whose fluctuation from

sample to sample must be taken into consideration in estimating the

variance of the adjustment coefficient. A third way of determining

the reliability coefficient is to use the published test-retest reli-

.ability coefficient if one is available. The researcher, however, must
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be careful that the reported reliability is appropriate for the

population he is studying. This latter approach was taken in the

present study because it seemed likely that a standardized instrument

would be used in an evaluation study and because it simplified calcu-

lations since the coefficient would be constant across replications.

Given that the reliability estimate is known, the expected value

of the adjustment coefficient is the product of the reciprocal of the

reliability coefficient and the expected value of the regression lepe:

.12...) 1

--E(b ).
oxx o Y’X

and the variance is:

b

Var(eggfi) 6%;-Var (by-x)'

Thus the problem of determining the expected value and variance of the

adjustment coefficient is simplified to determining the expected value

and variance of the regression slope. To obtain these values, the

density function of a regression coefficient is needed. This function

is well known and appears in several forms. Kendall and Stewart (1952)

present the density function of the regression coefficient as:

“4‘23“;—>(§f)m__ d”
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Where

p,oy,ox, and n are as defined previously; and

T represents the gamma function.

The expected value of the regression slope is determined by integrating

over the range, -<n to +<n, the product of the regression coefficient

and the density function,

The solving of this integral results in:

E(by-x) = pyx gf-. (13)

Appendix F presents the details of the integration. This result shows

that the sampled regression coefficient is an unbiased estimator of the

population regression coefficient. To determine the variance of the

regression slope, the expected value of the squared regression coeffi-

cient is needed. This is determined by integrating over the range of

-<» to +4» the product of the squared regression coefficient and the

density function:

+00

2 = 2
E(by.x) f b dFB.

-CX)

Appendix G contains the solution to this integration problem.
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o o2

E(b; )= a—l’i— 4+ $31.. (14)

X

Combining equations 13 and 14:

= 2
Var (by-x) E(b

11

3
—
—
l

I
I

N

V

Q
k
Q

X
N

N

In the earlier discussion of the adjustment coefficient suggested by

Kenny, it was assumed that the standard deviations of the two variables

were equal. Making the same assumption here simplifies the formula for

computing the variance of the regression coefficient and facilitates

comparisons with Kenny's adjustment coefficient. The variance of the

regression coefficient therefore is equal to:

2

Var (brx) = ;—§§—.

Table 5 contains values of this ratio for the same values of p and n

that were considered in the discussion of Kenny's adjustment coeffi-

cient. For example, the variance of the regression slope with a sample

size of 30 and a correlation between the measures equaling .1 is equal

to .03667. As the sample size and the correlation between the measures

increase, the variance of the regression slope decreases. With a sample

of 50 and a correlation of .8, the variance of the regression slope

equals .00766. The variance of the adjustment coefficient suggested
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by Porter can then be calculated by multiplying the variance of the

regression slope by the reciprocal of the reliability coefficient

squared. The reliability coefficient for each entry in Table 5 equaled

the respective correlation between the measures. These results are

presented in Table 6. For a sample of size 30 and a correlation between

the measures equaling .1 with a reliability coefficient of .1, the

variance of the adjustment coefficient equals 3.6667. As the sample

Size increases and the correlation and reliability increase, the var-

iance of the adjustment coefficient decreases. For a sample of 50 and

a correlation of .8 with a reliability coefficient of .8, the variance

of the adjustment coefficient equals .01197.

The Standard Error For Adjusted Gain Scores
 

The derivation of the standard error for the adjusted gain score

strategy involves a slightly different approach. An individual's

adjustment score is determined by the following formula:

v-x-(X-T)z

I
I

or

Where

Z,X, and Y are the first pretest, the second pretest

(administered just prior to the introduction

of the treatment) and the posttest, respecitvely.

The variance of this variable can be written as the following:
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Var (W) = Var (Y)-+Var (X)-+Var (X)-+Var (2)-Cov (Y,X) -2 Cov (Y,X)

+ 2 Cov (Y,7)-+Cov (X,X) -2 Cov (X,2)-—2 Cov (X,2).

The above can be simplified to:

Var (W) = Var (Y)-+(l-+%) Var (X) -(2-+%) Cov (X,Y)

-+%—[Var (Z)-+2 Cov (Y.Z)'-4 COV (X’Z)]

(see Appendix H). To facilitate comparisons with the two previous

standard errors, the above variance of the contrast of adjusted group

means can be written as the following:

Var (W) Var (Y) +(l +%) Var (X) - (2 +%-) Cov (X,Y)

+1H [Var (2') +2 Cov (7,7) - 4 Cov (X,Y)].

Jn'IVam (Y)+(1 +3.4 Va" 0‘) ' (2112?) C“ (x.v)]

+F'z (Var (2) +2 Cov (v.2) -4 Cov (x,2) .

The Standard Error For the KeeslinggWiley Procedure

Since the analysis of covariance with multiple covariates was

shown to be inappropriate in fan spread situations for either con-

dition 1 or 2, the standard error associated with that technique is

not considered.
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To facilitate comparisons of statistical precision, Table 7

presents in summary, the standard errors associated with the competing

analytic strategies. The formulas presented in Table 7 indicate that

the standard errors of the analytic strategies being considered are

determined by a combination of four components. The first three

components involving: the variance of the posttest, the variance

of the pretest, and the covariance of the pretest and posttest, are

included in all three standard errors. Standardized gains and analysis

of covariance with estimated true scores consider the squared difference

between the population means in the fourth component, while the fourth

component of the adjusted gain score strategy involves the variance of

the first pretest and the covariance of the first pretest with the

second pretest and with the posttest. Since the three standard errors

are determined by basically the same components, the differences in the

precision of the analytic strategies can be explained by differences in

the coefficients of the four components.

The first component of each standard error is identical for all

three analytic strategies with 1 as the coefficient of the posttest

variance term. The coefficient of the last three components, however,

differ considerably. Both gains in standard scores and estimated true

score analysis of covariance strategies determine these coefficients

using the expected value and variance of their respective adjustment

coefficients. These expected values and variance estimates were pro-

vided in Tables 3, 4, and 6. The adjusted gain score approach, on the

other hand, determines the coefficient of the last three components
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solely on the sample size. Tables 8 through 13 present the coefficients

associated with the second, third, and fourth components of the standard

errors for the three analytic strategies being considered. For example,

the standard error for each competing analytic strategy when the sample

size equals 60 and the correlation between the measures equals .8 (see

Table 9) can be computed as the following:

for gains in standard errors:

 

/5—2(1 [Var(Y)+(l.0194)Var(X)-2.0096
Cov(X,Y)+,()0534(uxp '“xc’z

for true score analysis of covariance:

 

Vfg%-[Var(Y)+(l.OO968)Var(X)-2.0 Cov(X,Y)J-t.OO968(uxp--uxc)2

for adjusted gain scores:

 

“6%{Var(Y)+(l.OSO)Var(X)-2.033Cov(X,Y)]+.OOOS6[Var(Z)+2Cov(Y,Z)-4Cov(X,Z)]

Tables 8 through 13 were compiled using the previously derived

expected values and variances of the adjustment coefficients when the

variance of the pretest and posttest are equal. The fan spread model,

however, suggests increasing variability from pretest to posttest. This

assumption has the effect of increasing the expected value and variance

of the adjustment coefficients (see Tables 3, 4, angZG) by a factor of

the population posttest to pretest variance ratio, 3¥-. In general,

x
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the greater the difference between the two variances, the larger the

standard error. This results from the fact that the second component

is increased by the ratio of the variances while the third component

is increased by the ratio of the standard deviations. However, the

magnitude of the increased standard error is the same for the gains in

standard score approach as that for the estimated true score analysis

of covariance technique. Thus, in comparing the precision associated

with these two strategies, the coefficients found in Tables 8 through

13 provide a reasonable basis on which judgments can be made. The

adjusted gain score approach is not affected by the fan spread assump-

tion. Thus, the standard errors presented in Tables 8 through 13 remain

the same regardless of the difference between the variance of the pre-

test and posttest. The implications of this result when comparing the

standard error associated with the adjusted gain score approach with

either gains in standard scores or the estimated true score analysis

of covariance techniques are discussed in the following chapter.



CHAPTER 5

DISCUSSION

The previous chapter has considered the fan spread model from

two perspectives. One approach, the traditional perspective, is

viewed within group growth as linear with a common starting point

and a constant rate of growth for an individual but varying rates of

growth among individuals. This view of growth suggested a perfect

relationship, p==1, between test performances except for measurement

errors. The second perspective of the fan spread model viewed within

group growth as non-linear for an individual, but linear for the average

of the group. This approach suggested a less than perfect relationship,

(>21, between test performances even with perfectly reliable measures.

In considering the traditional conceptualization of the fan

spread model, gains in standard scores, estimated true score analysis

of covariance, and adjusted gain score strategies, were all shown to be

appropriate techniques. Choosing one of these strategies in preference

to the others must therefore be based on some criterion other than the

effect estimated. A second criterion was suggested involving the pre-

cision provided by each procedure in testing the common hypothesis. To

evaluate the precision, the standard error associated with each approach

was derived. Examining these standard errors showed that they were

determined by the same basic components. The three competing strategies

95
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have the same first three components consisting of the posttest

variance, the pretest variance and the pretest-posttest covariance.

They differ, however, in the coefficients associated with the second

and third components. The coefficients for the gains in standard scores

and true score analysis of covariance are determined by the expected

value and variance of their respective adjustment coefficient. The

second and third coefficients for the adjusted gain score procedure,

on the other hand, are determined solely on the basis of sample size.

There are considerable differences among the three strategies in the

fourth component of the standard errors. The fourth component for the

gains in standard scores and true score analysis of covariance is

determined by the square of the p0pulation mean difference between

the comparison groups on the pretest measure. They differ only in

the coefficient for this component which is determined by the variance

of their respective adjustment coefficients. The fourth component for

the adjusted gain score procedure, on the other hand, is determined by

the variance of the first pretest, the covariance of the first pretest

and second pretest, and the covariance of the first pretest and the

posttest. The coefficient for this component is determined by the

sample size. Although there were differences in the fourth component,

it was suggested that a comparison of the component coefficients could

determine differences in the precision provided by the three analytic

strategies. The coefficients of those components were presented in

Tables 8 through 13. These coefficients were appropriate for the

special case where the variance of the pretest measure and the posttest
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measure were equal. Conclusions based on this data, however, can

be extended to situations where the variances are unequal.

The first three tables, Tables 8, 9, and 10, present the coef-

ficients for the situations when the correlations between measures is

high (922.7) which is likely for condition 1. Under this condition,

there appear to be only minor differences between the coefficients

defined by the three strategies for the three components. Furthermore,

this result is consistent for both small and large samples. Special

attention might be given to the coefficients for the fourth component.

When the relationship between the measures is high, the coefficients

associated with the fourth component appear to be very small. For

practical purposes these coefficients could be judged to be essentially

zero.

The second three tables, Tables 11, 12, and 13, present the

coefficients for the situations when the correlation between measures

is low, (p<:.7). Under this condition, typical for condition 2 of the

fan spread model, the coefficients associated with the second and third

components again appear similar for the three strategies. As the sample

size increases, the magnitude of the coefficients decreases, thus

reducing the standard error and increasing the precision of the test.

The coefficients associated with the fourth component, however, can no

longer be judged as being equal across the three competing strategies.

The coefficients for the fourth component of the adjusted gain score

strategy are unaffected by the relationship between the measures and

thus, remain essentially zero. The coefficients for gains in standard
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scores and estimated true score analysis of covariance, on the other

hand, are inversely related to the relationship between the measures.

The effect of this relationship is greatest in small samples. Thus,

in comparing the precision associated with the three strategies, the

adjusted gain score procedure must be judged as providing the smallest

standard error when the relationship between the measures is low. It

should also be remembered that the adjusted gain score procedure is the

only one of the three to provide unbiased estimates of effects for data

with low correlations.

The above discussion was based on the coefficients presented in

Tables 8 through 13. These values were determined for the situation

when the variance of the pretest equals the variance of the posttest.

The fan spread model suggests, however, that the variance increases

with time. This assumption of the fan spread model has no effect on

the standard error associated with the adjusted gain score strategy.

The standard errors of the gains in standard scores and true score

analysis of covariance are, however, affected by increasing variance.

As variance increases, the expected value and variance of the adjustment

coefficients increase, which in turn increases the coefficients of the

three components previously discussed. In comparing the three competing

analytic strategies, under increasing variance greater precision is

achieved through the adjusted gain score procedure than either gains

in standard scores or true score analysis of covariance. Furthermore,

the difference in precision increases as: the relationship between the

pretest and posttest measures decreases, the sample size decreases, and

the greater fan Spread.
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The adjusted gain score procedure requires the availability of

two pretests prior to the intervention. When these data are not

obtainable, the decision must be made between gains in standard scores

and estimated true score analysis of covariance. Concentrating on the

coefficients for the gains in standard scores and estimated true score

analysis of covariance, a review of Tables 8 through 13 indicates

almost no differences when the relationship is high between the pretest

and posttest measures. Sample size has very little effect on the

magnitude of these coefficients in the first three tables. As the

relationship decreases between the measures, the coefficients associated

with the estimated true score analysis of covariance procedure became

slightly larger than those for the gains in standard scores approach.

This difference was more prominent in small rather than large samples.

The dissimilarity between the coefficients was especially salient in

comparisons considering the fourth component. These results indicate

that in situations where the relationship is low between the pretest

and posttest measures, gains in standard scores are likely to have a

smaller standard error than estimated true score analysis of covariance.

The observations on which this conclusion was based, were derived for

the special case when the variance of the pretest and posttest measures

was equal. In situations conforming to the fan spread model, the

increase in variability affects both strategies equally. Thus, the

above conclusion applies equally to situations conforming to the

general fan spread hypothesis.
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It should be noted that the standard error given for the gains

in standard scores procedure differs from that suggested by Kenny.

Kenny has suggested a two-stage process: first, determine the adjusted

variable; and second, use it as the dependent variable in the analysis

of variance model. This procedure assumes that the adjustment coeffi-

cient determined in step 1 is a constant across replications. Based

on this assumption the standard error takes the following form:

 

s2 5
fl [Var (Y) +—-2x VaY‘ (X) -2 g1 COV (X,Y)]

SX x

Kenny's standard error, therefore, differs from the correct standard

error presented in Table 7 by eliminating all factors involving the

variability of the adjustment coefficient. This reduced form of the

standard error produces Spurious precision which leads to a liberal

test of the hypothesis under investigation.

The degree to which Kenny's procedure is too liberal is dependent

on the variability of the adjustment coefficient. Tables 8 through 13

provide some information on this question. When the relationship

between the pretest measure and the posttest measure is high and the

sample size is large, Table 6 indicates that the variability of the

adjustment coefficient is essentially zero. As shown earlier, these

are the only conditions under which the procedure estimates the correct

effect. Thus, under those conditions the procedure suggested by Kenny

is likely to be appropriate. As the sample becomes small and the

relationship between measures weakens, the probability of error
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associated with Kenny's technique increases as does the bias in

estimating the effect. These observations were based on the situation

when the variance of the measures are equal across time. In situations

conforming to the fan spread model, the variability associated with the

adjustment coefficient increases and with it the inappropriateness of

the gains in standard scores technique. Thus, unless the sample is

large and the relationship between the measures is high, the use of

gains in standard scores as proposed by Kenny should be avoided. On

the other hand, the estimated true score analysis of covariance tech-

nique does take the variability of the adjustment coefficient into

consideration in determining its standard error. This procedure is,

therefore, appropriate when only a single pretest measure is available

and data conform to condition 1.

In summary, for the fan spread hypothesis under both condition 1,

p=l, and condition 2, pfl, the above findings have indicated that the

most desirable analytic strategy of those considered is that of adjusted

gains. This approach tested the correct hypothesis under both models of

the fan spread condition and with equal to or greater precision than the

competing analytic strategies. When only a single pretest was available,

estimated true score analysis of covariance was shown to be a more

desirable strategy than gains in standard scores for condition 1. This

conclusion, however, was limited only to the traditional conceptualiza-

tion of the fan spread model. This finding, however, was further

qualified by suggesting that when (a) the variance of the measures

are equal, (b) the relationship between pretest and posttest is high,
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and (c) the sample is large; the two procedures estimate the desired

effect with equal precision. Finally, when only a single pretest is

available and the second model of the fan spread hypothesis is appro-

priate, no strategy was appropriate. The multiple covariate analysis

of covariance as suggested by Keesling and Wiley (1976) was rejected

as an inappr0priate technique for any condition of the fan spread

hypothesis.

A Data Example
 

To demonstrate the above results, which were derived analytically,

a data set was obtained and analyzed. These data were collected on

students from seven different elementary schools over a three-year

period. Each Spring these students were given the Stanford Achievement

Test battery and scores were recorded in the metric of grade equivalents

for each subscale of the test as well as total scores. In order to

simulate a situation Similar to the evaluation of a compensatory

education program, random samples of 30 students from the first

quartile and 30 students from the second quartile, based on fourth

grade total reading scores, were chosen for comparative purposes.

Since the students involved were not part of any special program,

the only difference between the two groups was their growth rate.

The dependent measure chosen to compare the three analytic strategies

was the paragraph meaning subtest. Table 14 presents the means in grade

equivalents for the hypothetical treatment group (first quartile) and

the control group (second quartile) over the three year period. The

values in parentheses are the respective standard deviations.
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Table 14

Group Means in the Metric of Grade Equivalent Scores and

Standard Deviations on the Paragraph Meaning Subtest

of the Stanford Achievement Test Battery

 

 

Spring 1973 Spring 1974 Spring 1975

First quartile

(treatment) 3.01 (.530) 4.03 (.723) 4.44 (1.218)

Second quartile

(control) 3.97 (.453) 4.94 (.939) 5.54 (.939)

 

These group means are plotted on a time by achievement graph in Figure 7.

For the paragraph meaning subtest. students in the first quartile were

approximately one grade equivalent behind the students in the second

quartile. This difference remained constant over the three-year period.

The ratios of the group mean differences to the pooled standard

deviations at each point in time were 1.935, 1.089, and 1.012.

5.5 r

5.0 '

4.5 r

4.0 A

3.5 .

3.0 f

 l _L L

Spring '73 Spring '74 Spring '75

:—

Figure 7. Group achievement means plotted across three points

in time.
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In addition to the three competing analytic strategies considered

in this study, traditional analysis of covariance and analysis of

variance with residualized gains were also computed. The residualized

gains procedure creates a new variable, W, by subtracting from the

posttest the product of the regression slope and the pretest measure.

The new variable is then used as a dependent variable in the analysis

of variance model. The results of these analyses are presented in

Table 15. Table 16 presents the effects estimated by each strategy.

These results illustrate several points raised in the earlier

discussion. Since there were no differences between the groups except

for natural growth rates, the correct conclusion from the analyses

should have been that the groups do not differ. The adjusted gain

score and gains in standard scores procedures indicated this conclu-

sion. Estimated true score analysis of covariance, on the other hand,

indicated a significant difference between the two groups. Examining

the relationship between the covariate (Spring 1974 data) and the

dependent measure (Spring 1975 data) indicated a correlation of .33.

To correct for measurement errors the Kuder-Richardson reliability for

internal consistency was used since the more desirable test-retest

reliability coefficient was not available. This reliability coef-

ficient equaled .92. The ratio of the correlation coefficient to

the reliability coefficient was, therefore, significantly less than

unity and little adjustment was made for initial differences.
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Table 15

Results of the Data Analyses Using the Gains in Standard Score

Strategy, True Score Analysis of Covariance, Adjusted Gain

Scores With the Analysis of Variance Model, Adjusted Gain

Scores With the Derived Standard Error, Traditional

Analysis of Covariance and Analysis of Variance

With Residualized Gain Scores

 

Sources d.f. MS F F prob.

 

Gains in standard scores

Between 1 .0835 .063 .802

Within 58 76.4297

True score analysis of covariance

Between 1 4.905 4.605 .036

Within 57 1.065

Adjusted gain scores (using the analysis of variance model)

Between 1 .8449 .667 .417

Within 58 1.2661

Adjusted gain scores (using the derived standard error in a t-test)

v = -.504..(-.367I=.:;Z§Z.= -.8002
9" c

([2 __ __ 2 .2962

fi-Var (vp .vc) [/35 (1.3157)

F = t2 = .64037

 

 

 

Traditional analysis of covariance

Between 1 5.690 5.343 .024

Within 57 1.065

Analysis of variance with residualized gains

Between 1 7.439 7.108 .010

Within 58 1.047

 



106

Table 16

The Effect Estimated by the Gains in Standard Scores, True Score

Analysis of Covariance, Adjusted Gain Scores, and

Traditional Analysis of Covariance

 

Gains in standard scores:

S

O‘GSS = Yp"vc I Sf (Xp"xc)

1.0785
4.44-5.54- .83] (4.03-4.94) 

aGSS .08

Estimated true score analysis of covariance:

b

=- _- -11 -7-
675 vp YC Pxx (7p xc)

4.44 -5.54 - 191% (4.03 -4.94)

-.665
O‘ch

Adjusted gain scores:

aAGS = Yp - Yc - (xp — xc) - [01p Sip) - (7C -7C)]

4.44-5.54-(4.03-—4.94)-[(4.03-3.01)-(4.94-—3.97)]

“AGS = -.24

Traditional analysis of covariance and residualized gains:

“AC = Yp--YC‘-by.x (Xp-XC)

4.44 -5.54 -.44 (4.03-4.94)

aAC = .70
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Kenny's procedure indicated no statistically significant

differences between the comparison groups when the posttest was

the Spring 1975 data and the pretest was the Spring 1974 data. The

conclusion would have been different, however, if the period under

investigation was the 1973-74 school year. The effect estimated by

the strategy would have been the following:

S

-“' _ ex “ _“

O‘GSS Yp Yc Sx (xp Xc)

.831
4.03 -4.94 - T492 (3.01-3.97)

-.91-1.689 (-.96)

.71,

thus indicating a positive treatment effect when there actually was

no treatment.

The adjusted gain score approach was computed treating the

adjustment as a constant (like Kenny's technique) and as a variable.

The degree to which the former analysis is spurious is illustrated by

a comparison of the two F-ratios. The F-ratio when the adjustment was

treated as a constant was slightly larger, indicating a slightly more

powerful test.

The data were also analyzed using the traditional analysis of

covariance and the analysis of variance with residualized gains as

the dependent variable. The purpose of doing these analyses was to

illustrate the inappropriateness of both procedures. The adjustment

coefficient used by both procedures is the same, i.e., the observed
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The average achievement for a particular group was then defined as

Average Achievement = u1T (tj"“r)’

p7T is the average growth rate of the group;

t. is as defined above; and

u is the average point in time when the individuals in the

group began to achieve.

Based on this simple model of linear growth, the authors showed that

the theoretically correct adjustment coefficient for all linear growth

patterns Should take the form

1111p (ty-qu) - 71C (ty-uTc) ,u

unp n"x"1ltp)"uirc Ttxuut;y

where the subscripts p and c indicate the program and control groups,

respectively. This coefficient times the difference between the two

groups on the pretest, results in the adjustment factors

11 -u -(u"p(ty-u1p)-u11c(t 'uTcll-
YD YC Y

From this formulation of individual growth, Bryk and Weisberg argued

that the gains in standard scores and analysis of covariance with a

reliable covariate provided an unbiased estimate of group differences

in situations conforming to the traditional fan spread model. Bryk and

Weisberg Suggested, however, that in situations other than the tradi-

tional fan spread, neither of these procedures adequately adjusts for
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differential linear growth patterns. Their conclusion, therefore,

concurs with the findings observed in the present study.

The present study introduced an adjusted gain score strategy.

The estimate of group differences determined by this procedure was

written as

“AGS = uyp-uyC-(u p -uyc)-[(uxp-uzp)-(uxc-uzc)].

In terms of Bryk and Weisberg's model, this estimate of the group

difference can be written as

O‘AGS T uyp T “yc T (uxp T “xc) T [(“np(tx T utp) T unp(tz T “1p”

I

T (unchx T 11“). u1Tc(tz T HIGH] '

Where:

uxp uflp(tx-urp);

uzp u"p(tz-qu);

uxc “nc(tx"utc); and

uzc u1Tc(tz T uTc) '

Since the average growth rate for each group is assumed to be constant

across time, the above estimate of group differences can be simplified

to

“AGS = uyp - uyc - (uxp - uxc) - [linutx -11Tp)-(’cz - qul]

were, we) - (t, ween].
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Further simplification is obtained by the following substitution:

tx T “1p T (tx T t:2) T “:2 ‘ “Tp)°

Therefore, the adjusted group difference can be written as

”AGS = uyp-uyC-(uxp-uml- [u"p(tx- tz)-unc(tx-tz)]-

If the period of time between the first and second pretests equals the

period of intervention, and changing uxp and “xc to ”np(tx"“tp) and

1.u (t '-u
TTC X TC

(t -u
O‘AGS T uyp ’“yc'TEUnp x )T unc(th T'J

um) (t -tx)+um(ty-tx)1.
TP 11P Y

Combining Similar terms:

Which can be further simplified to

This is the adjustment factor identified by Bryk and Weisberg for all

linear growth patterns. Thus, the adjusted gain score strategy provides

not only the appropriate adjustment for the fan spread model but also

any situation in which group growth is linear.
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One Group vs. Two Group Research Designs
 

The adjusted gain score strategy has been shown to be an

appropriate technique in situations where groups are changing linearly.

Given the assumptions of linear growth and the availability of data

from two pretests, the necessity of having an independent control group

may be questioned. Under these conditions it might be argued that a

treatment group could serve as its own control. This could be achieved

by defining a regression line based on the pre-intervention data and

predicting posttest scores under a no-treatment effect condition. Dif-

ferences between the obtained posttest performances and the predicted

performances might then be attributed to the treatment. While this

approach might be used, it would be difficult to argue that differences

between the observed and expected posttest performances were due solely

to the treatment. History, maturation, testing, and regression effects

are all reasonable threats to internal validity for this approach. The

first two threats represent those alternative explanations which can be

attributed to changes either outside or within the individual that

occur concurrently with the treatment. The last two threats, on the

other hand, are factors which could distort the predictive regression

line. Testing refers to changes in test performance from the first

pretest to the second pretest that are a result of familiarity of test

items. Regression effects are those distortions attributed to positive

or negative errors of measurement. The use of an independent control

group provides a means by which the effects of these threats to internal

validity can be controlled as long as those effects are equal across the
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two groups. For example, if there are testing effects equaling

(a) units on the X measure and this distortion is the same for both

groups, then the estimate of the group difference using the adjusted

gain score procedure could be written as

u -11 -[(1,xp+a) - (uxc+a)] {01,111+al W211) ' (“n+3 '“zc”VP YC

uyp - uyc - [(uxp - uxc) + (a - all-[(14,111 - uzp1-(uxc -uzc) + (a - a)].

Thus, as long as the distortions affect both groups equally, estimates

of group differences are still appr0priate. The selection by regression

or testing interactions refer to the distortions which affect one group

to a greater extent than the other group. If this assumption is

violated then the group difference estimated is biased.

In addition to the issue of internal validity discussed above, a

further consideration is the question of precision. With an independent

control group, the contrast of interest is the difference between the

adjusted group means. The standard error associated with that contrast

can be written as

 

¢r2 Var (W).

The degrees of freedom associated with this test is the sum of the two

sample sizes minus 2. In the single group design the contrast of

interest is the adjusted group mean minus zero. Its standard error

can be written as

/ Var (W).
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The degrees of freedom associated with this test is the number of

individuals in the group minus one. Comparing the one group versus

the two group design in terms of precision would indicate smaller

error variance associated with the former. The two group design,

however, has more degrees of freedom. The difference between the

degrees of freedom becomes negligible, however, when the sample is

large. Thus, the one group design is likely to provide greater

precision than the two group design. The problems related to threats

to internal validity in the one group design, however, discourage the

use of this approach.

Limitations
 

The adjusted gain score procedure has been presented as an

appropriate analytic strategy for situations conforming to the fan

spread model. In order to focus attention on what were considered to

be the central points for comparison, some assumptions about the cir-

cumstances of application have been made. A basic assumption was that

it is possible to measure the same individuals repeatedly on the same

variable. This may be difficult in a real world setting. The example

data examined in the present study to illustrate the analytically

derived results, however, has indicated that it is not impossible

to obtain such measurements. In schools both the administration and

teachers require repeated testing to monitor student progress. These

tests, however, may not be appropriate for the adjusted gain score

approach Since they are unlikely to be the same test or a parallel

form of the test. With careful planning, repeated testing of

individuals with parallel forms of a test may be possible.
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A second assumption has been that there are no selection by

regression or selection by testing interactions. Regression effects

and testing effects were briefly discussed earlier. If these dis-

tortions of the group's growth rate affect both groups equally, then

an estimate of group differences is not affected. On the other hand,

when there are differential effects associated with these threats to

internal validity, then the estimated group difference is biased.

Finally, the adjusted gain score strategy has been based on the

assumption that groups grow in a linear fashion. This assumption is

likely to be met in situations involving short periods of time. Over

extended time periods it seems less likely that a linear model would

adequately characterize group changes. The estimated true score

analysis of covariance and gains in standard scores strategies also

make the same assumption about linear growth. These procedures,

however, use data obtained over a shorter period of time than adjusted

gain scores and thus less likely to violate the assumption. When the

assumption is violated, the adjustment provided by the adjusted gain

score strategy can be totally inappropriate. Thus, in situations

where the intervention period is extensive, the use of the adjusted

gain scores may not be appropriate.
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THE VARIANCE OF THE PRODUCT OF TWO RANDOM VARIABLES

Given: X and Y stochastically independent such that

E()_(_) = g. EY()= g

Var(_X_) = ,Var(Y__)== 21,
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+2E[tr{(n' e)(_e_:_' 6H]

5'2y§_+_11_'2x_r_1_+E[tr{(§_<§_')(§8_')}]+25[tr{(§§')(§§')}]

+2E[tr{(§§:_' )(611' )I]

gel; +_T]_'X£D_+ICY‘IE(§O_') E(ge')}+2tr{E(_66_') E(_e_:§_')l

+2tr{E(§§') E(§rl')

= _g_'£ gfn'e g+trIX 2}

X—-.. .115.

If X and Y are scalars rather than vectors:

Var(XY)= [E(X)]2 o; +[E(Y)]2 0; +02x0;
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APPENDIX B

THE COVARIANCE OF A RANDOM VARIABLE AND THE

PRODUCT OF TWO RANDOM VARIABLES

Given: W = Z - X_Y_where Z and Y are stochastically independent of‘X

and such that

E(X)
I
I

J m

A

N

v

I
I

E. E(Y)

Ex, Var(Y) = Z , Var(Z)

C

Var(X)
2 ..

oz, Cov(z,y) - 02x-

Cov(Z,_fY) Emu) -E<2) E091)

E(X)) E(Z.X_) -C_€_'_Tl_

§'[E(Z,D in]

‘5' Cov(Z,Y)

25.92!

If X and Y are scalars rather than vectors:

= E(X) Cov (Z,Y).
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APPENDIX C

THE COVARIANCE OF TWO ADJUSTED VARIABLES

If W1= z1 - 5'11 and 112 = 22 — _x_'_\_(2

Z1 and Y1 are independent of Z2 and Y2 and X independent of Y and Z

Cov (W1W2) = Cov (X311, 5312)

= 2 'z + '2tr(>:-lzz l) +n l(.112 E _IXZT

If X and Y are scalars rather than vectors

= E(Yl) E(YZ) Var(X).
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APPENDIX D

THE EXPECTED VALUE OF THE RATIO OF TWO NON-INDEPENDENT

SAMPLE STANDARD DEVIATIONS SQUARED

The density function of the ratio of two correlated standard

deviations was derived by Bose (1935) and Finney (1938) as the

 

following:

n-l _n

dF . 2(1-82)T._.v_':i__ 1-4231:

3(92l’ flEl) (1+w2)"" (MHZ

Where

w 3 S2’02

S /o

 

} x"== 2 . 61762-4 . 61762-4

b: 2-4 6:767:4' 2

let's choose the + Sign for x

x=%1b+/BTTZ} XT'=%{b-/$TTT}

x + x" = b

x - x'1 = b2-4
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If x = 142, b = (1 —pz) (t+t")2+4p2-2

(111+W'1)2 = W2+W’2+2 = b+2 = (1 ~02)(t+t")2+402

(VTN'IHw-WTI)
913i= (1 -02)(t+t-l)(t-t

-1) 5%

2 2

1.1 =< 1 > - 1MW2 w+w71 (1-02)(t+t")2+402

1-402 ( W )2 = (1-02)(t+t")2

(1-02)(t+t")2+402

 

  

 
 

 

(112-w 2) = /b2-4 = /(b-2)(b+2)

 

= fi(1-02)(t+t")2+40211(1-02)(t+t")2+402 -4l

 

1K1 -62)I n wean-11546211 (t+t")2-41

(t'tT1)(
I-pz)1/2

{(1 -DT)(t+t
-l)2+4p2

}1/2

ow- (1-02)(t+t")(t-t") g;

" T (t-t'IHI-DZW’WI-62)<t+t-I)2+4621"2 t

1/2

(1-02) (t+t"1) _d_t_

T hummus“) 4621‘” t
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2 11.2]. n
2 -—

< w 2 “40, w 2 an

(HIV) 1+w2 ”

m
l
:

 

 

. {(1-62>(t+t-1):+462} (1-6211’2 (t+t-1) 2t.
- n t

:(1-02 ) (t+t ‘1)2+ 4p2 TTTT(1-02)T( t+t '1 Vi? <1-02>(t+t ‘1)2+4ozt]/T

T n-l1 1 TtT

(l - p2)T(t+t")nT

2 1 dt
 

 

 

2

Let y = ]-y = d : £3.2—

I+t2 1+t2 y (1+1?)2

n-3 9.13. “'3

2 dt _ 2t t dt 2 T"

- = y (l-y) 2 dy
  

(t+t“)"‘1 t (1+t2)"'3 (1+1?)2

—6—— 9:9-2

dF = .Y _0 '1) ELY

y 3(1'2’1 n'TI)

2 ’TT2TT
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WIT E)y) T 402

2

Where (W-FW“)

E(w+w-‘)2 = (1'02) E W. 402

E(w+w-‘) = E(W2)+E(N’2)+2 = 215012)”)

F 1 1 n-5( n 5

1 ("T ) )T2T'dy

EyTTlTT-TSITTlTTTTlTTTEO(1Ty

 

= 4(n-2)(n-3) 3 4(n-2)

(fl-3)2 n-3

E(WZ) = [NEW-112”1 _ (I - p:%n4(n--2) + 202 _]

2(n-2)-n+3 _ 2 2n-4-2n+6 = (n-1)--Zp2

n-3 p n-3 n-3
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APPENDIX E

THE EXPECTED VALUE OF THE RATIO OF TWO

NON-INDEPENDENT SAMPLE STANDARD DEVIATIONS

From Appendix D:

 

 

w+w-1= I/I’TITTTT]1:, + 402

E(W+W‘1) = 2E(W)

9’23

E(w)=-l/o 1' _ dy

(fin—.4144%—.8

 

”Pm”mzfsf— 02+4p Y(1-Y) [Y(1-”IT—

The above integral was evaluated with the DCADRE program on the

CDC6500 computer.

2

11

0
'

Q
—
l

S2

237

-5 n-4

r n-l 2 2 T “2
W] I/I-p +40 Y(1-Y) [Y(1-Y” dyalT.

o
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APPENDIX F

THE EXPECTED VALUE OF A SAMPLE REGRESSION COEFFICIENT

) =
Density function for (B

 
 

  

Y'X

fl - 2 ..

dFT 1(2)“ 0) VT)“ 1 db /2_ o o p o 2 n

’T'Iflz‘l) x %("92)+(b' Tl)x x

0

let--‘1 = k

CIX

 
 

n-l
+00

E(b = 1(3)“ TDZFTT knT] f b db

yTX) FEW-'51.) -.. ’k2(1-02)+(b-pk)2 "/2

  

3&1 n-l

- I‘(%)(1—02) k b db

' mpg—1) f 1(1.m<b-95>2) (k2(1-02))1n/2

 

-00

  

Q21 1 TTn n-

_ 11(2)“ "’2) k f b db

n/2

"/2 kn TT 11+kb,(-1_:1;
T HF(9§-l)(l-02)
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let t = b-pk

b = t'tpk

db = dt

v=k2(l-02)

+00

t + pk dt

_ t7 n/2

-.. T

n -

FL?) T tdt + k

n 1 1’2 t2 "T2 pMama) ( -1,.)
L -00

1t -——71 - ———.—I = ———~.—"
e y 1+t T v+t v+t

TUT v

2-= v + t2
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1/2

3%)]

1/2
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THE EXPECTED VALUE OF A SAMPLE REGRESSION

COEFFICIENT SQUARED
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+00
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t= b-pk

b = t+pk

db=dt

v = k2(1-p2)
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APPENDIX H

THE VARIANCE OF THE ADJUSTED GAIN SCORE VARIABLE

Let: 2 represent the first pretest

X represent the pretest administered immediately prior to

the intervention

Y represent the post-intervention test perfonnance

Then the adjusted score is determined as follows:

W = v-x-[Y-i]

w= Y-X-X+2

Var (W) = Var [Y-X -TXT+TZT]

Var (Y) +Var (X) +Var (XT)+Var (2)

2Cov(Y,X) - 2Cov(Y,X) + 2Cov(Y,2) + 2Cov(X,X') - 2Cov(X,2) - 2Cov(X,2)

N ..

z '21. IY-ullu-ux)
 

 

Cov(Y,XT)= Nn

Nn __Nn Nn__ Nn

=22YX-ZXYux-EZXuyi-Zziiyux/Nn

N ___. N __

=‘ .. - +
L n Y X Z n Y “x Nn uxuy Nn uyux/Nn

N _. N

= Z T X'- ux X V IN

N__ 11x11
six-Tl

T N

=Cov(T,XT)
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Cov (Y,2) = Cov (7,2)

Cov (X,Y) = Var (X)

Cov (Xi) = Cov (Tl-,2)

Assume a single population with observations on two variables X and Y.

Select N random samples of size n from that population, then:

Cov (X,Y)

 Cov (3LT) - "T Y

M
2

(X Y-X Uy-Y uXTTuX uy)/N

____ N _. N __ N

- z X Y-): X uy-Z Y ux+2 “x uy)/N

X 7-N 11x uy-N 11y ux+N 11x uyllN

N - _

2

M
2

M
:

X M
:

.
<

 

N

T1 T1 '1

i.e., (X1+X2)(Y1+Y2)=X1Y1+X2Y2+X1Y2+X2Y

assuming that all pairs where i f i' are independent and there are

n(n-1) such pairs.



N

Z

:
l
—
4

3(
nn 1Nn N 1N2

ZXZY=—§-[XXXY-Znuxuy +3-22nuu

X)’

Nn
l

[Hz-[XXXY-Nn pxpy]+Np u -Nuxuy:| /N

1Nn

F XXXY-Nnuxuy]/Nn

 

= Il—Cov (X Y).

Var (w) = Var(Y) + Var(X) + Var(X) + Var(z') - 2Cov(Y,X) - 2mm?) + 2Cov('v',i‘)

+ 2Var(X) - 2Cov('X',Z) - 2Cov (Xi)

Assuming independent samples Cov(X,Y) =w .
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l.
n

Var(W) Var(Y) +Var(X) 4v;- Var(X) + Var(Z) - 2Cov(Y,X) -%— Cov(Y,X)

2 2 4
+6- Cov(Y,Z) +3 V3Y'(X) "fi' COV(X,Z)

Var(Y) + [Var(X) +%- Var(X) +%- Var(X)] + [— 2 Cov(X,Y) -%— Cov(X,Y)]

l 2 4
+3- Var(Z) + Fl- COV (vol) '3 COV(X’Z)

.2.
n

Var(Y) + (1 +%) Var(X) ..(2 + )Cov(X,Y)

1
+5— [Var(Z) + 2Cov(Y,Z) - 4C0V(X.Z) - 4C0V(X:Z)]

3
Var(W) = Hum) +(1 ”'3‘ Var(X) -(2+§-)cov(x,v)]

+15- [Var(Z) + 2Cov(Y,Z) - 4C0V(X.Z)] -

n
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