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ABSTRACT

DETERMINATION OF PLASMA DENSITY PROFILE AND

OTHER PARAMETERS WITH AN ELECTROACOUSTIC PROBE

By

Jack C. Olin

The electron density profile and other plasma parameters of a

cylindrical warm-plasma column are studied through the excitation of

thermal resonances using an electroacoustic probe. The electromagnetic

field from the probe excites a series of thermal (Tonks-Dattner)

resonances as the current density is varied.

For each driving frequency, the dipole resonance and the first

three T-D resonances fire recorded. In this study, it is sufficient to

measure the relative magnitudes of the plasma densities at which these

resonances occur in order to determine the density profile and other

plasma parameters such as the temperature and the number density.

In the determination of the plasma density, the thermal

resonances are used to determine the unknown parameters appearing in the

solution of Poisson's Equation in the plasma column. The boundary

conditions for the thermal resonances in the plasma column are derived

and the total phase for the thermal resonances is determined using the

WKB approximation. The dipole resonance is used to determine the

average electron density in the plasma column. The analysis leads to

numerical values for the electron density profile parameters.
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CHAPTER 1

INTRODUCTION

Knowledge of the static electron density profile of warm plasmas

in the so-called sheath region near solid boundaries is significant in

analytical work involving the plasma electron density. The sheath

region has been analyzed in plane geometries by researchers based on

approximate theoretical models.1 The more complex problems of determin-

ing the static electron density profile in warm plasmas with cylindrical

boundaries has also been treated theoretically by researchers.2-9 When

knowledge of the functional form of the electron density profile in a

cylindrical plasma column is needed for work involving such plasma

columns, a parabolic electron density profile of the form

ne(r) . no(1 - (ICE-)2)

is frequently employed using some typical value for the parameter 0.4’10

This research deals with the determination of the static electron

density profile in warm cylindrical plasma columns based on experimental

data for the dipole and thermal resonances induced by an electroacoustic

probe which illuminates the plasma column with an EM field and receives

the backseattered field. The experimental part of the research deals

with experimental determination of the discharge current levels in the

plasma column at which thermal resonances occur for a given excitation

frequency w.

The theoretical part of the research considers possible

functional expressions for the static electron density in warm cylin-

drical plasma columns based on a study of Poisson’s Equation in the

plasma column. The phase conditions for thermal resonances are studied
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and the relationship between the average plasma frequency and the

exciting frequency is deve10ped. The commonly used parabolic profile

approximation is considered as an approximation to a Bessel function

solution to Poisson's Equation. Next, a Bessel function approximation

to the Poisson Equation is considered.

The numerical work done as part of this research deals with the

solution of simultaneous equations based on the phase condition for the

thermal resonances and the electron density profiles proposed above.

Graphs on the electron densities obtained on the basis of these

different approaches are presented and compared. It is found that an

appropriate Bessel function approximation of the profile density may

well represent a functional form considerably more representative of

the actual profile than the conventional parabolic profile.

Chapter 2 presents the basic theory of thermal resonances in the

sheath region of cylindrical plasma columns. Phase conditions are

studied using WKB approximations of the electron density perturbations

and the ratio of the average plasma frequency <mp(r)‘ in the plasma

column to the exciting frequency w is developed.

Chapter 3 deals with the formulation of Poisson's Equation in a

cylindrical plasma column and considers various functional forms as

possible solutions. Simultaneous equations are presented for each

assumed functional form whose numerical solution permits determination

of all parameters appearing in the pr0posed profile functions.

Chapter 4 presents the numerical results and shows graphs of the

edectron density profiles obtained. The profiles based on different

functional forms are compared.
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CHAPTER 2

BASIC THEORY OF TEMPERATURE RESONANCES IN PLASMA SHEATHS

2.1 Introduction
 

The occurrence of a plasma sheath in the vicinity of a

plasma boundary such as a solid wall, metallic or nonmetallic, is

well known. The plasma sheath represents a region of reduced

electron density due to the loss of electrons hitting the wall

associated with a negative potential region near the wall. The

sheath phenomenon is briefly discussed to establish the geometry

of the problem at hand. The well documented mathematical treat-

ment of the sheath problem is not presented here but a brief

phenomenological discussion appears in order.

Electrons hitting a nonmetallic wall mostly recombine with

positively charged ions. This leads to an electron density

profile in the vicinity of the wall, the so-called sheath region,

which decreases monotonically towards the wall. Figure 2.1.1 Shows

a typical plasma sheath for a semi-infinite plasma slab with a

solid boundary at x I O. The relative electron density ne(x)/no

is shown where n0 is the electron density as x approaches infinity.

The potential V(x) also goes monotonically from zero at

x I I to a negative wall potential. The commonly accepted sheath

model assumes an ion drift in the sheath region which results in

an approximately constant ion density also shown in Figure 2.1.1.

Typical values determined for the ratio of the relative wall

eV

potential "w I ETEI are in the neighborhood of 2. This value is

Shown to be independent of electron density profile parameters.
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Fig. 7.1.1 Typical electron,ion and potential

profiles in the sheath region of a

semiinfinite plasma in the vicinity

of a solid boundary. With the

assumption of ion drift towards the wall,

the ion density is not significantly

Changed in the sheath region.
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Even though it may vary somewhat in a cylindrical plasma sheath it

should nevertheless be approximately the same.

The electron density and potential distributions are more

complex in a cylindrical geometry as typically represented in

Figure 2.1.2. A parabolic electron density profile is frequently

assumed when cylindrical plasma columns are studied. The main

goal of this thesis is, in fact, the experimental determination of

the electron density profile assuming a parabolic profile, along

with other functional forms of the profile. The tool employed in

this study is an electroacoustic probe used to excite thermal

resonances in the plasma sheath region as discussed below in

section 3.2. Figure 2.1.3 shows typical sketches of thermal

resonances that may be excited in the sheath region of a cylin-

drical plasma column. The cylindrical column of warm plasma with

the sheath region as shown is illuminated by an incident electro-

magnetic wave of frequency w. The incident wave interacts with

the plasma in the sheath region near the wall where the plasma

frequency mp(r) is less than u to excite electroacoustic waves as

shown in Figure 2.1.3. Figure 2.1.3 is only intended to represent

a typical sketch of such resonances. The total phase of the mth

thermal resonance is assumed to be mn. In subsequent sections of

this report a more refined value for this total phase value is

established.

Based on this introductory discussion of the sheath

phenomenon, the basic theory of thermal resonances in plasma

sheaths is presented in this chapter. Boundary conditions for the

thermal resonances at the wall are examined. The phase condition
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region.
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2.2

for the possible occurrence of electroacoustic thermal resonances in

the sheath region is examined using a WKB approximation technique,

and finally dipole resonances in the cylindrical plasma used in

the experiment are studied for the purpose of obtaining a value

for the proportionality constant Cp relating the average plasma

frequency <wp(r)> to the exciting frequency w by

<wp(r)2>

Cp 2 (__.______2)

(a)

General Theory
 

The Maxwell and moment equations applicable to the plasma

region are

_ a ..

V X E - - SE'UOH (2.1)

and

VxlII-en 3+1- E (22)
(30 3t E:0 °

where E and K respectively represent the total electric field

intensity and total magnetic field intensity in the plasma; neo

represents the static electron density distribution in the plasma

which is non-uniform in the plasma sheath near a boundary; v

represents the mean ac electron velocity so that -eneév is the

leading term of the mean induced electron current. This formula-

tion is based on the assumption that the positive ion motion is

negligible in comparison to the electron motion. In the subsequent

analysis the total instantaneous electron density distribution

ne(x,t) will represent the dc component neo(;) plus the ac

perturbation term nl(x,t). All other quantities associated with
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these two components of electron density such as the electric

field, and the velocity are also represented by a superposition of

do and perturbation terms.

In order to study perturbations in the plasma sheath, two

moment equations must be used. The first moment equation of

interest is the continuity equation

3n

3.;4- V - (“e-‘7) I O . (2-3)

Since ne(x,t) I neo(x) + n1(x,t), the continuity equation becomes

8n1(§,t)

at + V ° nev I O . (2-4)

1v, where nlv is a product of two perturbation

terms and therefore represents a negligible second order effect,

Since n v I ne v + n
e 0

equation (2.4) becomes

an
1 _.

Ia-E-I'i" V neov - O . (2.5)

From the vector identity

v-¢K=¢v-X+V¢-7\' (2.6)

equation (2.5) can be rewritten as follows

anl

at

+ neo V -‘$'+'3’- V ne0 O . (2.7)

The second moment equation based on the summation of momenta is

given by

——-—-+vv--EE -YkT
at m total mne

 

Vne . (2.8)

o
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Here the density gradient Vne is associated with the pressure

gradient Vp. For an isothermal process,

p I nkT

and

VP I kTVn .

e

For the case of an ac perturbation, n1(§,t), due to an external

harmonic force, the total electron density is

ne(x,t) I neo(x) + n1(x,t) .

In the presence of ac perturbation at high frequency the adiabatic

law

p n Y I constant

must be used because the temperature is not equalized in the

region of high frequency electron perturbations. y is the ration

of specific heats and is given by (m + 2)/m where m is the degree

of freedom of the gas. For high frequency longitudinal electro-

acoustic plasma oscillations, m I 1, so that for these oscillations

Y I 3 . (2.9)

Separating equation (2.8) into its dc and ac components,

the following equations result. The dc equation is given by

e —- kT -

0 = - In. EdC " 1111',,_ Vneo(x) . (2.10)
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The ac equation is given by

 

+V;=-£-fi _3kT

“1

ac neom an(x,t). (2.11)

Solution of the dc equation for neo in terms of the potential

odc(§) in the plasma proceeds as follows:

 

Edc(x) I — vodc(x) (2.12)

' vadc(§) = n:Te Vneo(§) (2.13)

O

A one-dimensional component of equation (2.13) becomes

d kT d

‘5; ¢(x) I eneo dx neo(x) (2°14)

 

 

dfh¢(x) I 52- n1 dneo(x) + K

80

RT

¢(x) I-E— 1n neo(x) + K

e¢(x)

T? +
1n neo(x) I K'

¢(X)

kT

 

n x I K" ee0( )

K, K', and K" are related arbitrary constants. Defining no to be

the electron density where ¢(x) I O, K" I no; therefore
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e¢(X)

kT *(2.15)

 

neo(x) I no e

which represents a Maxwellian dc electron density distribution

which is used in the subsequent plasma column analysis.

In order to analyze the ac behavior of the plasma it is

necessary to combine equations (2.5) and (2.11) which are repeated

here for reference:

Continuity Equation:

 

3n1(x,t) __

at + V ° neov I 0 (2.16)

Ac Momentum Transfer Equation:

3?] - e — 3kT —

at + vv - 5' ac - neom Vn1(x,t) (2°17)

Since the ac perturbation of the electron density n1(§,t)

is excited by a time harmonic incident EM wave with time dependence

of the form Re ejm , the system of equations may be transformed

into the complex phasor domain:

(2.18)jwnl + V ° neov I 0-

and

3w? + v? a - 5’- E - 3” Vn (2.19)
m neom 1

 

In equations (2.18) and (2.19), the functional notation has been

dropped for simplicity with the understanding that
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(1) n1 represents the phasor transform of n1(;,t) and is a function

of'x'only.

(2) 3 represents the phasor transform of 3(x,t) and is a function

of 3: only .

(3) E is the phasor transform of E(;,t) and is a function of x

only.

Maxwell's equations (2.1) and (2.2), for ac variations

only, become (after phasor transformation)

V x‘E I -jwu§fi' (2.20)

and

V x E-I -eneév + jmegE (2.21)

To obtain a solution for n1, a differential equation for n1 is

derived taking the divergence of equation (2.21), relating E'to V}

V 0 VxfiI—ev ° (neo;)+jw€ov °E

Therefore

 v . (nee?) (2.22)

From equation (2.18)

V ° ne G’I -jwnl (2.23)

Equation (2.22) becomes

__ en1

V o E a -— --—-—€
(2.24)
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In order to eliminate E, the divergence is taken of equation

 

 

(2.19):

(jw-+V)Vov=-Ev-E-3kT Vzn
m ne m 1

O

Combining equations (2.25) and (2.24) yields

e2n

(jw+v)v-{7=+ 1-3kT V2n
meo neom 1

From equation (2.23)

v . neova -jwn1

and using vector identity equation (2.6),

V ° neov I neo V - G'+ 3" Vneo I —jwn1

It follows that

 

Substituting equation (2.29) into equation (2.26) yields

-— 2
-(jw + v)jwnl - +(jw + v)v Vneo ' e n1 _ 3kT

neo neo mso neom

 

 

 

V2n

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

After rearranging, a differential equation for n is obtained:

1

2 2
w - m - jwv

P
 

jw + v _

“1 + (35:) n1 ” (3kT/m) V

m

oVn

eo

(2.31)
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If as a first approximation the collision frequency is set to

zero, equation (2.31) becomes (with V02 I 3kT/m)

2 2
w - w

V2n+——.—i—P——nI1-(2£v-°Vn (2.32)

V

e
l V 1 o

2 2

where Np is the plasma frequency (e ne)/(meco). This is an

inhomogeneous Helmholtz equation in n with a forcing function

1

(jw/V2)(; ° Vneo). This forcing function represents the driving

force for the perturbation in n Careful examination of this1'

driving force shows that it is nonzero only if two conditions are

satisfied:

(1) There must exist a nonzero gradient of the static electron

density neo in the region of interest, and

(2) there must exist a component of 3 parallel to the electron

density gradient Vneo.

The first condition is satisfied in the sheath region of a

cylindrical plasma column where an electron density gradient exists

in the radial direction. The second condition is satisfied if an

electron velocity perturbation in the radial direction is set up

by an electric field component in the incident EM field in the

radial direction. Thus the velocity y'in the driving function

represents the coupling term between the radial component of the

incident EM field and the electron density perturbation n Here1.

the radial component of the EM field represents physically the

driving force exciting the electron density perturbation.
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In the region of interest near the wall of the plasma

cylinder the geometry of interest is shown in Figure 2.2.1. Here

the variable x is introduced representing the distance from the

wall (x I 0) into the plasma normal to the wall. Since the

characteristic dimension of the sheath region is relatively small

compared to the radius of the plasma cylinder, it is justifiable

to treat the section of the sheath region shown in Figure 2.2.1 in

planar geometry. Thus equation (2.32) may be rewritten for that

region as a one-dimensional equation in x as

dzn wz - w 2(x) dne

+ P n = ((jw)/V2)(v
dx v2 1 x dx

 

  

°) (2.33)

The corresponding homogeneous equation is

dznl wz - w 2(x)

+ P n = o (2.34)

dx2 V2 l

 

Equation (2.34) has a natural oscillatory solution in the region

of x in which w2 is larger than m:(x). This is the region between

the wall (x I O) and the so-called critical point (x I xp) where

w I up. For values of x larger than xp, where m2 is less than

mp2, the solution represents an evanescent wave. The natural

oscillatory solution for n1 in the sheath region is of course

subject to boundary conditions at the wall and the functional form

of wp(x), where

2

2 e neo(x)

wp(x) I --————- (2.35)
me:

80

In the subsequent sections the boundary condition for n at the
1

wall is examined, followed by a study of the total phase require-
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2.2.1 Geometric arrangement used in the region

where thermal resonances occur. n

represents a typical waveform of 1

a thermal resonance; t is the critical

point where w=cu . The one—dimensional

approach is justified in this region

because t is typically much smaller than

the radius of the plasma column,a.
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ment between the wall and the critical point xp for the existence

of natural resonances.

Determination of the Boundary Condition at the Wall

The boundary conditions at the wall can only be established

on phenomenological grounds. It is reasonable to assume that the

velocity v associated with the electroacoustic wave motion goes to

zero in the immediate vicinity of the wall. For electroacoustic

standing wave perturbations in a uniform dc electron density

(neo independent of x) it can be shown that the boundary condition

- 0 corresponds to the boundary condition that n is a
vwall 1

maximum at the wall as follows:

From equation (2.18)

jwn + v - neaG'a o (2.36)
l

and using vector identity equation (2.6)

jwnl = - neo v . V + Vneo - V (2.37)

and letting Vneo 0 near the wall the following equation results

in one-dimensional form in x:

a - neo fL-v . (2.38)jwn dx

1

Since we are assuming a standing wave in n and v, the functional

1

dependence of v on x is of the form

v(x) = A sin(kpx + 6) (2.39)

where A and 9 are the arbitrary magnitude and phase constants
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respectively. For the assumed condition that v goes to zero at the

wall and letting x = O at the wall, equation (2.39) becomes:

v(x) = A sin(kpx) (2.40)

Substituting equation (2.40) into equation (2.38) yields

d

jwnl — - neo 52' A sin(kpx) (2.41)

Therefore

Ak

n1 = - neo (352) cos(kpx) . (2.42)

It is important to recall that n represents the phasor transform

1

of the original time harmonic function n1(x,t). The phase term

1

“32;

n1 and v. In addition, a spatial phase difference exists with

) shows that a n/Z radian time phase difference exists between

n1(x) leading v(x) by n/Z radians. This means that at the wall

(x I 0), n1 should have a maximum corresponding to the zero of v

at the wall. This phenomenon is shown graphically in Figure 2.3.1.

It should be understood that the sketches for v and n1 in

Figure 2.3.1 are only intended to show the relative phase at the

wall. It is clear that the actual thermal resonances have varying

phase constant and magnitude away from the wall which is not

represented here.

Determination of the Total Phase for the Thermal Resonances

Figure 2.4.1 shows the typical electron-density contour

expected in a cylindrical plasma column.

The propagation constant for electroacoustic waves in a

warm plasma, kp(x), is given by:
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Fig. ?.3.1 Phase relation between electron density

perturbation n and associated electron

velocity perturbation v1.
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rig. 2.4.1 The under—dense region in which thermal

resonances may occur if the phase con-

ditions are satisfied and an appropriate

EN field illuminates the plasma column.
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2
w (x)

kp(x) = ‘3— (1 - 1741/2 (2.43)

0 w

radian frequency of the electroacoustic wave€ :
3
‘

0 H m 8

ll

plasma frequency as a function of x8

'
U

A

>
4
v

II

V = ’%%I- = thermal electron velocity

0 e

k = Boltzman constant

T = electron temperature

me = electron mass.

The prOpagation constant kp(x) is real only in regions in which

wp(X)2/w2 5,1. In Figure 2.4.1, kp(x) is real in the region

0 < x < xp, so that an electroacoustic wa”e can propagate between

x - 0 and x = xp. This permits electroacoustic standing waves of

a given frequency w to be excited in the sheath region between

x I 0 and x = xp as long as the total phase of the standing wave

satisfies the phase conditions to be derived. The boundary

condition at x a O was established in section 2.2. It is now

necessary to determine the total phase condition between x = 0 and

x - xp. ‘

The standard time-independent wave equation in one dimension

for electroacoustic waves, equation (2.34) is repeated here for

reference:

2

dn1

dx2

 

+ k 2(x) n = o (2.44)
n 1



where n

1

function

the WKB .

x-depend»

x
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where n1 represents the phasor transform of n1(x,t) and is a

function of x only. In order to establish the total phase of ml,

the WKB approximation is used; n1(x) is expressed in terms of an

x-dependent magnitude function ¢(x) and an x dependent phase term

er kp(x) dx as follows:11

x

11f k (x')dX'
p

n1(x) - ¢(x) e (2.45)

where the plus and minus signs in front of the phase term

correspond to waves propagating in the negative and positive x

directions respectively. It is now necessary to find an equation

in ¢(x) from which ¢(x) can be determined. This is accomplished

by substituting the assumed solution for n1(x), equation (2.45),

into the wave equation (2.44),

 

 

x x

dn1 12 ii] kp(x')dx' ti] kp(x')dx'

Fi— ' dx e + iikpbt) ¢e

2 x x _

d 2 11 k ' d ' ii k ' d '

“1.9.3. I v(x’xuie. / v“”‘(+aa»
d 2 2 dx ’ p

x dx

fx ( ) fx ( Mii k x' dx' ~ ~ti k x' x'
d

+‘dfi e p (iikp(x)) + ¢e p

x

2 iif k (x')dx' dk (x)

- (iikp(x)) + ¢e P (:1 dx )

2

d n 2 dk (x)

21- (1%: 21k (309$ +¢(-k2(x) 1 1—P———))
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x
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Therefore equation (2.44) becomes

  

2 dk (x)

53.2 5151:- 2 _2____ 2 .dx2 i Zikp(x) dx kp (x)¢ i i dx ¢ + kp (x)¢ 0 (2.46)

2 dk (x)

2;.2m.)g.2.1+..o
dx p x x

2 dk (x)

1 d ¢ d¢ 1 p
_. (2—+ o) = 0 (2.47)

ikp(x) dx2 dx kp(x) dx

If, in the region of interest, ¢(x) does not change rapidly as a

function of x, the first term in equation (2.47) is negligible

compared with the other terms. In the electroacoustic standing

waves at hand, the first two, or in some cases, three resonances

are considered, so that approximately one to three half-wavelengths

of electroacoustic standing wave are expected in the sheath region.

Therefore the variation of the peak magnitude of n1, ¢(x), in the

vicinity of the turning point is quite small and the second

2 .

derivative term, g—%-, may be neglected. The resulting equation

dx

in v(x) is given by

 

dk (x)

.2. £1.41 1 p ..

¢ dx + k (x) dx 0 (2°68)

Therefore

2d¢ dk (x) a 0
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Integration leads to the following solution:

d dk(x)

2 ¢ kp (x)w+1

1n(¢2) - - 1n(kp(x)) + ln(K2)

1n(¢2) = 1n( )
kp(X)

K3

JkP(X)

¢(X) = (2.49)
 

where K3 is an arbitrary integration constant. Thus, the

expression for n1(x) postulated in equation (2.45) takes the form:

x

‘ '

1 e ii I kp(x)dx

n1(x) - K-—-—-—— x (2.50)

Vkp(X) D

where kp(x) is real for x §_xp.

In the region where x is larger than xp,kp(x) 18

imaginary and may be written as ilkp(x)| so that n1(x) for

xp < x is most conveniently written as

X 0

1 ii] Ik (x')|dx

P
n1(x) = K-———-—- e x (2.51)

Since only an attenuated wave is expected in this region, the

positive term in the exponential is not applicable so that:
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X

1 - f lkp(x')|dx'

(x) = K———————-— e (2.52)

Thus the expressions for n1(x) are summarized as follows:

 

x

K1 ii Jf k (x')dx'

——'_—_—__—" e X P for O<X<X

Vkp(x) p p

nl(x) =< )(2.53)

x

K2 8 - Jr Ikp(x')ldx' for x>xp

x

Jlkp(x)| P   
Since the electroacoustic waves between x = 0 and x = x

represent standing waves, equation (2.53) for that region may be

conveniently written as

K1 p
n1(x) =-—-—-—-— sin(jrK k (x')dx' + 9) (2.54)

kp(x) p

x

where 6 represents an arbitrary phase constant. This expression

breaks down in the limit as x goes to xp where Kl/Jkp(x) becomes

unbounded. Therefore another formulation is required for the

2 l 2 2
vicinity of x - x : Since k (x) --——— (m - m (x)), where

p 1) v02 12

mp(x) is a slowly changing function of x, the expression for

kp2(x) can be linearized near x = xp as follows:

2 -a

kp (x) ;;72 (x - xp) (2.55)

o

This is a linear function with a value of zero at x a xp as



required 2

De

leads to:

"ansforns-

The wave e

Nov: 
and



27

required and a slope equal to (--—2§).

V

0

Defining a new variable

2 = +035)“3 (x - x ) (2.56)
P

V
0

leads to:

k 2(z) - —<—°i§)2’3 z (2.57)
p v

0

Transformation of the original wave equation proceeds as follows:

The wave equation (2.34) from section 2.2 was

 

2

d n1 2
2 + k (x) n1 = 0

dx p

Now:

dn1 dn1 93.: _ £2_ a )1/3

dx dz dx dz V 2

o

and

dzn dn d“ ~ dn‘

.....!~. .. 5L (.__.1.) . £1... (4)93. .. .. £1... _l(_2_)1/3(_9_)1/3

2 dx dx dz dx dx dz dz 2 2

dx V0 V0

' 21 ( a2)
dz V

2/3
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Thus the wave equation in z applicable to the vicinity.of

x I x becomes:

P

d2n

dz2

 

— zn - 0 (2.58)

The solution to equation (2.58) is given in terms of the Airy

function as follows:

N 2

o s

n1(z) ;—- cos(3—-+ sz) ds (2.59)

o

where No is an arbitrary constant. For large values of [2],

equation (2.59) has the following asymptotic approximation:

for z > 0 which is equivalent to x > xp

No e -2/3z3/2

1/4
(2.60)

2/; z

n1(2) -

and for z < 0 which is equivalent to x < xp

N .

O

J; (_z)1/4

 n1(z) - sin(-23- (-z)3/2 + n/4) (2.61)

See Figure 2.4.2 for a typical graph of the Airy function

in the vicinity of z - 0. Since equations (2.53) and equations

(2.60) and (2.61) should agree at some distance from x - xp, where

the linear approximation for kp2(x) still holds, the two solutions

may be compared. In the region x < xp, equation (2.53) gives

(in terms of the variable 2, using equation (2.54))
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K 0

n1(z) I 1 .1 sin(J[ (-z')1/2 dz' + e) (2.62)

z

93

(Rn/v02) (ml/2

and after performing the integration in the phase term,

K1

21/3

(a/Vo )(-z)

 

 

3/2
 

 n1(z) I sin(%-(—z) + e) (2.63)

1/2

The phase term in the argument of equation (2.63) agrees with the

phase term in equation (2.61) if

6 I n/4 (2.64)

Thus the WKB formulations for n1(x) in the two regions become

x

exp(- J{ kp(x') dx' for x > xp

1

Jkp(X) x

n1(x)- p 5 (2.65)

K2

Jkp(X)

Ff

 

x
p

sin(‘[- kpr') dx' + n/4) for 0 < x < xp

x

The significant result from this section needed in the subsequent

determination of the electron density profile from the thermal

resonance data is an expression for the total phase of these

thermal resonances between the wall and the critical point. This

phase expression is now obtainable as follows. From equation

(2.54) and (2.65) it is seen that at the wall where x I 0,

X

 

K p

n1(0) - ——1 sin( k (x') dx' + n/4) (2.66)

(n. (x) p
p 0

must represent a maximum of nl(x). This leads to the condition

that

xp

( kp(x') dx' + n/4) I (2m + 1) (n/2) (2.67)

O
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where m is a positive integer. Therefore the total phase integral

becomes

x

p

kp(x')dx' = <2m + 1)(n/2) - n/a

or

kp(x')dx' = (m + l/4)n (2.68)

0

Figure 2.4.3 shows typical wave forms of the thermal resonances

to be expected in the plasma sheath region. Only the phase shown

in Figure 2.4.3 for the various resonances is significant in

conjunction with this discussion; the magnitudes are merely

representative of typical waveforms.

The phase integral in equation (2.68) is used in the

analytical techniques developed in section 3 for the determination

of the electron density profiles in cylindrical plasma columns.

The WKB approximation developed in this section for the

thermal resonances is also used subsequently to graph examples of

thermal resonances with normalized magnitude for actual cylindrical

plasma columns based on the numerical results for the electron

density profile ne(r) presented in Chapter 4.

Development of Relationships between Dipole Resonance Frequency
 

and Plasma Frequency in a Cylindrical Plasma Column
 

In the determination of the electron density profile in a

cylindrical plasma column based on thermal resonance data, it is

necessary to know the relationship between the exciting EM wave
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frequency w and the average plasma frequency <wp(r)> in the plasma

column.

2 2

< > n C 2.69mp (r) p w ( )

where Cp is a proportionality constant to be determined. An

exact solution for <wp(r)> as a function of m requires knowledge

of the electron density profile in the cylindrical plasma column.

Such exact analyses have been perfOrmed based on an assumed

parabolic electron density profile subdividing the plasma into

cylindrical sublayers and performing a numerical analysis on the

equations resulting from the boundary conditions at the walls and

between the strata.

Since it is the objective of this research to determine the

electron density profile in the plasma cylinder, it would be

inappropriate to presume any specific profile a priori. However,

an approximate value to Cp is sufficient for a profile analysis.

It is, therefore, appropriate to base the determination on a

uniform plasma with a uniform plasma density opuso that the

average <wp(r)> in the actual plasma cylinder corresponds to

wpuof the assumed uniform plasma.

It has been shown that a quasi-static approximation is

appropriate in many cases .13 The test for the validity of the

quasi-static approach in any specific case is based on an examina-

tion of Maxwell's Equations for the plasma region in the absence

of a uniform magnetic field. Maxwell's Equations in the plasma

region are:
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v x B =- +jwuocpE (2.70)

V x E =—jn§ (2-71)

v . 13' - 0 (2.72)

v - F: = 0 (2.73)

Taking the curl of equation (2.70) and (2.71) and combining the

results leads to the homogeneous Helmholtz Equation

2 2-—
(V + cpuow )E I 0 (2.74)

2 2
Letting ke I w uocp, equation (2.74) becomes

(v2 + kez)E'- o (2.75)

Now in the quasi-static approach the system may be solved by use

of Laplace's Equation

2

v o = o . (2.76)

Expressing equation (2.76) in terms of EDby taking the gradient

of equation (2.76) leads to

V E I O (2.77)

In comparing equation (2.77) for the quasi-static approximation to

the homogeneous Helmholtz equation (2.75) it appears that the

quasi-static approximation is justified if ice2 is negligibly

small. Studying, for example, a one-dimensional application in x

of the two equations, equation (2.75) becomes
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d2 2
'——§ E(x) + k E(x) I 0 (2.78)

e

dx

The solution to equation (2.78) is

E(x) I K cos(kex) + K sin(kex) (2.79)
l 2

3E
Given the boundary conditions EO and (ax)o at x I 0, K1 and K2

can be determined as follows:

K a E (2.80)

(fig) I (Klke sin(kex) + K8x 0 ke cos kex)o (2.81)

2

so that

BE 1

K2 (3x)o (Kg)

Thus the solution of equation (2.78) becomes

3E sin(kex)

E(X) '3 E0 COS(keX) + (5;)0T (2.82)

On the other hand, the solution to

32 ‘ ‘

7 E(x) ‘3 0 (2.83)

8x

is

E(x) I le + K2 (2.84)

where from the boundary conditions Eo and (%§)o at x I 0:

K . E
(2.85)
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and

3E

(-3—X)O = K1 (2.86)

It follows that

3E

E(x) E0 4' (SE-)0 x (2.87)

For values Ikexl2 << 1, the solution to the Helmholtz Equation,

equation (2.82), approaches the solution to Laplace's Equation

(2.87), because equation (2.87)

3E

E(x) = Eo + (3;)0 x

is in fact the first order Taylor series approximation of equation

(2.82)

sin k x

k
e

E(x) I Eo cos(kex) + (%§)o

Thus the condition for using a quasi-static approximation is:

2
Ikexl << 1 (2.88)

In terms of the cylindrical plasma column this means that

2 2
lepuow :1G | << 1 (2.89)

where dc represents the characteristic dimension of the system;

m is the incident EM wave frequency, no is the free space

permeability and
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if the collision frequency v is assumed zero. In the experimental

system at hand, up is in the order of 20 x 109 rad/sec, w is in the

order of 10 x 109 rad/sec, dc may be taken as the radius a I .007

m, and so is the free space permittivity all taken in mks units.

” 2 1/2 2 2 -2
Thus Iso(l - —%—9 now dc I is in the order of l x 10 so

m

that the quasi-static approximation is justified in this analysis.

Consider the geometry of a cylindrical plasma column shown

in Figure 2.5.1. The solution of Laplace's Equation

V2¢ - o (2.90)

in cylindrical coordinates with z-independence can be expressed as

series solution

n in6

o = (Klnr + Kan‘“) e (2.91)

where n is an integer unequal zero. In regions 1 through 3 as

indicated in Figure 2.5.1, the solutions become:

61 I Anrn cos(n9) - (2.92)

n -n
62 Bar cos(n6) + Cnr ‘ cos(n9) (2.93)

¢3 ’ Dar-n COS(n9) + rn cos(n9) (2.94)

where an exciting field of the form rn cos(n6) is considered.

Since in the system at hand the free space wavelength of the

exciting EM wave is much larger than the radial dimension, the

dipolar contribution (n I l) is most significant so that the
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    Glass

l

Plasma

(3) (2) (1)

 

  

 Glass wall

thickness b

Fig. 2.5.1 Geometric arrangement of cylindrical plasma

column contained in a cylindrical glass

discharge tube of wall thickness b. The

inside radius is a while the outside radius

is c.
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problem can be simplified significantly by rewriting equations

(2.92) through (2.94) for n I l:

61 I Ar cos(0) (2.95)

62 I Br cos(9) + C-% cos(8) (2.96)

63 I D-% cos n(9) + r cos(8) (2.97)

Continuity of the potential o and the normal component of the

electric displacement at the two boundaries r I a and r I c permit

solution of the arbitrary constants. D is of primary interest

(1)

because it is maximum at the value-—EE at which the dipole

resonance OCCUI‘S .

The system of equations to be solved is:

      

I- I ~ I, - -

a -a -1/a 0 A 0

O c l/c -l/c B c

is
c -e 0 C I 0 2.98p g a, ( )

eg to

0 Eg - "’2 —2‘ D so

The value of the arbitrary constant D must be maximum at the

dipole resonance. Since D can be expressed in terms of Cramer's

Rule, it is evident that its maximum value is obtained by setting

the determinant of the coefficient matrix in equation (2.98) equal

to zero,
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a -a -l/a 0

0 c l/c ~1/c

I O (2.99)

e -e e /a2 0

P 8 8

0 e -e /c2 c /c2

8 8 0

Letting cgr represent the relative permittivity of the glass,

6 I s e and e

8 0 8:, pr

plasma, ep I soap , the expansion of equation (2.99) becomes

r

represent the relative permittivity of the

(U.2 + l/c2)€ (1 + e ) + (1/a2 — 1/c2)
gr pr

(epr - Egr ) I 0 . (2.100)

Equation (2.100 may be solved for Epr which in turn is used in

the numerical determination of mpz/w2 as follows. Given

numerical values for the radial dimensions and the relative

permittivity of the glass, egr I 5, a I .007 m, and c I .008 m:

c

J- -1.6
E

0

Since EB-I l - —%—-I 1 - C

This value for Cp I —§-is used in the subsequent numerical

m

analysis. The value for CI) agrees well with values obtained by Lee12

for similar discharge columns.
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CHAPTER 3

DETERMINATION OF ELECTRON DENSITY PROFILE IN CYLINDRICAL

PLASMA COLUMN BASED ON THERMAL RESONANCE DATA IN THE SHEATH REGION

3.1 Introduction
 

When an electromagnetic wave is incident on a cylindrical

plasma as shown in Figure 3.1.1, a dipole resonance is excited at

a frequency w depending on the average plasma frequency mp(r) in

the plasma. Furthermore, thermal resonances may be excited in the

sheath region near the wall at certain combinations of frequency

and discharge current levels. These thermal resonancra represent

electroacoustic waves. The sheath rerion is the region near the

wall in which the electron density is reduced from its value at the

center. It is well known that the electron density decreases

towards the wall along with an increase in negative potential away

from the center:1 The prepngation constant associated with the

electroacoustic wave, kp(r), is a function of the radial distance

r in the plasma column and is given by:

2

w (r)

kp(r) a %_.(1 _._E_§__)1/2 . (3.1)

O (.0

Here mp(r) is the plasma frequency as a function of r defined as:

2
2 e ne(r)

mp (r) ' ‘FTET—I- (3.2)

e o

where ne(r) is the static electron density as a function of r, e

is the electron charge, me is the electron mass and so is the free

space permittivity; w is the frequency of the incident electro-

41
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Glass wall

A cylindrical plasma_column illuminated by

TM field as shown. B and E ‘represent
0t 01

the transverse and longitudinal components

of electric field respectively.
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magnetic field. Thermal resonances can exist, if in the so-called

sheath region near the wall, the electron density, and therefore

wp(r) is small enough to yield a real value for kp(r). Since in

fact ne(r) and therefore wp(r) increase monotonically away from

the wall as discussed in Chapter 2, there may exist for a given

frequency w of an incident EM wave a point in the plasma column,

say r I rp, at which w I wp(r), so that kp(r) is real for r > rp

and kp(r) is imaginary for r < rp. Under these conditions thermal

resonances may exist between r I rp and the wall where r I a for

frequencies m for which the total phase of such resonances

satisfies the total phase condition derived in Chapter 2. It was

shown there that the total phase for the mth resonance must be

(m'+ l/4)n. If an appropriate functional description of the

electron density profile can be formulated, the unknown parameters

appearing in such a formulation can be determined from pertinent

data regarding the thermal resonances. In the following section,

the experimental procedure is presented for collecting thermal

resonance data followed by a formulation of useful functional forms

of the electron density profile ne(r) and their analysis.

Experimental Procedure
 

The experimental arrangement for obtaining plasma resonance

data in a cylindrical plasma column is illustrated in Figure 3.2.1.

The experimental technique is based on the excitation of the dipole

resonance along with excitation of thermal resonances in the sheath

region in a bounded cylindrical plasma column in glass tubing by

use of an electroacoustic probe. The probe consists essentially of

an open-ended coaxial line fed by an RF generator through a direc-
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Variac Glass

// thickness b=1mm ,

Filament

\5-f-ZPla§ma Column Supply

E.A. 7— Probe a

Anode

Glass mgr

thickness

b=1(mm) 63g?

Directional

Coupler CRO

-section
’

of plasma ggtector l L

cylinder of . 9 Q

inner radius ’- _1_ 1L

a I 7(mm) ’ ’

    
RF

Generator

   

Fig. 3.2.1 Experimental arrangement for obtaining plasma

resonance data in a cylindrical plasma column.

An electroacoustic (E.A.) probe is used to

excite the dipole and thermal resonances in the

plasma column. The E.A. probe also picks up

the scattered field whose peaks indicate the

presence of resonances in the plasma.
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tional coupler. In order to excite electroacoustic resonances in

the plasma column, the open end of the probe is placed near the

glass wall containing the plasma column. The inner conductor of

the coaxial line is extended a small distance beyond the Open end

of the outer conductor so that the RF radiation contains the

necessary longitudinal component of‘E field to excite the desired

longitudinal electroacoustic resonances in the sheath region.

Reflections from the plasma cylinder are received by the probe and

are directionally coupled to an RF detector whose output is

connected to the vertical input of an oscillosc0pe. The electron

density in the plasma column is adjusted by a discharge current

produced by a high voltage source connected to the anode and

cathode of the plasma tube as shown in Figure 3.2.1. The current

has a low frequency (60 Hz) ac variation superposed on its dc level.

The ac component produces a variation in the plasma discharge

current and also produces the horizontal sweep on the oscilloscope.

Whenever the current level passes through a value which satisfies

the resonance condition

_ mp2(rm))1/2 d
r I (m + 1/4)n

at an excitation frequency w for the mth resonance, a peak is

observed in the reflected power level. In addition, the dipole

resonance is observed as the strongest resonance in the column.

The discharge current levels at the dipole resonance and the first

few thermal resonances are observed. In the subsequent numerical

analysis only the ratios of the discharge current levels are used.
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Eight sets of data obtained in the experimentation are

shown in Figures 3.2.2 through 3.2.5. Table 3.2.1 shows the dis-

charge currents id, 11, 12, and i3 along with the excitation

frequency for each of the eight data sets.

DeveloPment of Functional Form for the Electron—Density_Profile
 

If a Maxwellian electron density distribution is assumed,

the electron density profile ne(r) is expressed in terms of the

potential profile, V(r), by equation (2.15) in section 2.2,

eV(r)

ne(r) I noe RT (3.3)

where no is the electron density at V(r) I 0. It is reasonable to

assume that in the plasma cylinder used in the experimentation,

the voltage at r I 0, V(O), is negligibly small and may be approx-

imated as zero,

V(O) I 0 (3.4)

Since the actual value of V(O) is not known, this approximation is

necessary to obtain a solution for the problem. Thus

no I ne(0) ‘ ‘ (3-5)

where no represents the electron density at the center of the

plasma column. The problem then is the formulation of a functional

form for V(r). This might best be arrived at by considering

Poisson's Equation in the region of interest and choosing a

functional relationship for V(r) which at least in form agrees with

the solution to Poisson's Equation. A complete solution of
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Back scattered

Eh field

Data set #1 f=2.016 GHZ

 

Back scattered

. EM field

: Data set a? f:2.10 GHz

 

  _I\

.I .l ‘ I
11

. i
12 d

Fig. 3.2.2 Experimental results (data sets #1 and 2) for

the back scattered Eh field from a cylindrical

plasma column as a function of discharge current.

f is the frequency of the incident EN field.

id, 11, i2, and 13 are the discharge currents

at which the dipole resonance and the first

three thermal resonances respectively occur.
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Back scattered

EN field

Data set 53 f:2.25 GHZ

 

i(ma)

Back scattered

EM field

Data set #4 f:?.5? GHz

i(ma)

 

3.2.3 Experimental results (data sets #3 and 4) for

the back scattered EM field from a cylindrical

plasma column as a function of discharge current.

f is the frequency of the incident EM field.

id, i1, 12, and 13 are the discharge currents

at which the dipole resonance and the first

three thermal resonances respectively occur.
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+ Back scattered

Eh field

1 Data set as r=I.9I7 GHz

i(ma)

 

Back scattered

EM field

Data set #6 f=?.017 GHz

 

_> i(ma)
9 l 150‘ r 2 o 270' 550

5 l 1I .l
12 1d

Fig. 3.2.4 Experimental results (data sets #5 and 6) for

the back scattered EM field from a cylindrical

plasma column as a function of discharge current.

f is the frequency of the incident EM field.

id, 11, i2, and 13 are the discharge currents

at which the dipole resonance and the first

three thermal resonances respectively occur.
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Back scattered

EM field

Data set #7 f=2.275 GHz

 

90‘ t 150 3910 270: 330 mm)

_ w ,e,
13 .i 11 v

12 1c1

1 Back scattered

EN field

Data set #8 f:2.322 GHz

i(ma)

 

Fig. 3.2.5 Experimental results (data sets #7 and 8) for

the back scattered ER field from a cylindrical

plasma column as a function of discharge current.

f is theifrequency of the incident EM field.

1d, 11, 12, and iBare the discharge currents

at which the dipole resonance and the first

three thermal resonances respectively occur.
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Data . - . . .

set # f (GHZ) ld (ma) 11 (ma) 12 (ma) 13 (ma)

1 2.016 270 188 150 125

2 2.100 290 190 150 120

3 2.230 340 235 185 160

4,.

4 2.320 355 245 700 175

5 1.917 270 190 135 110

6 2.017 285 190 150 120

7 2.275 290 195 150 120

8 2.322 320 210 160 155      
Table 3.2.1 Experimental data set 1 through 8. Given

are the frequency of the inCident EN field

and the discharge currents id, i1, 1? and

13 at which the dipole resonance and the

first three thermal resonance respectively

occur.

 



Poi:

the

EXDE

Her

and

is

t 0;;

inc

In

50



52

Poisson's Equation in the plasma column is not possible because

the boundary condition for V(O) is not known and the available

experimental data are insufficient to determine it.

Poisson's Equation in cylindrical coordinates is given by:

gian+1gmi,_e_<gi
dr2 r dr to

(3.6)

slit).

Here 0(r) a eno(1 - e kT ) (3.7)

and T represents the electron temperature. This expression for

0(r) is based on the plasma sheath model in which the ion density

is nearly constant throughout the plasma region due to ion drift

towards the negative wall potential. Substituting equation (3.7)

into equation (3.6) yields:

2 en EELEL

d V(r) + 1 dV(r) = _ o (1 _ e kT

. )

dr2 Y dr 80

(3.8)

In the region away from the wall where eV(r) << kT, the following

approximation may be made:

en . .
____fi__ _ _ __g (l _ 1 _ eV(r)

-—-0
er r r to RT

(3.9)

so that we have the following approximation of Poisson's Equation:

2
e n2

9.191.“). .1__V_§£_)._._....9. .-_-er + r r cho V(r) O (3.10)

This is a Bessel Equation and the solution is in the form of a

zero order Bessel function with imaginary argument:
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V(r) = C IO(Klr) (3.11)

l

2
e n

is an arbitrary constant and K = ———g , containing nowhere C 1 kTeo

1

and electron temperature as constants. If equation (3.11) were

used throughout the plasma column, C would represent the potential
1

V(O). As stated above, a value for V(O) is not available so that

equation (3.11) is merely used to show that a Bessel series is an

appronriate form for the potential V(r) near the center of the

plasma column. The approximations made in equation (3.10) do not

hold near the wall. The wall region is considered next.

In the sheath region near the wall, where the approximation

eV(r)

kT

<< 1 does not hold, the following alternate approximate

formulation may be used. Letting Vw be the wall potential,

V(a) a Vw, Poisson's Equation may be written as follows:

eV eV

2() 1d“ 9,, 913921-191?!

d V r V r _ o T T T
2 + .1?de‘ - (l e e ) (3012)

5

dr 0

 

Defining a new variable v(r) = V(r) - Vw’ equation (3.12)

becomes:
, .

2 ve eV(r)

l

111a+l§zitl=-_.°.(1-ek1‘ ekT ) (3.13)
drz r dr £0

 

Sufficiently close to the wall, v(r) is small enough to let

3313.2.

e kT é l + EE%32- . Therefore:
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eV

2 '( k ) e“ w ‘( )d v r) l.§3_f__= _ “.2. _ kT 9V C_
T4. r dl’ (1 e (1 + kT )) (3.14)

dr 0

This equation becomes:

eV eV

2 a k ) ezn 6—11 en -—11

d v(r) l.§X"£_._ o kT a _ ~_2 _ kT
drz + r dr .ETE; e v(r) co (1 e ) (3.15)

01'

dzvkr) + 1_dv(r) _

2 r dr

I _ _
K2v(r) — K3 (3.16)

dr

with K2 and K3 constants containing the wall potential, the

electron density at r - 0, no, and the electron temperature T.

The solution is again in the form of a zero order Bessel function

with imaginary argument in addition to a constant term:

v(r) - c 10(K2r) + K3/K2 (3.17)
2

The fact that the potential variation throughout the region is in

the form of Bessel function Io(x) and recalling that the only

available boundary condition for V(r) is based on the assumption

of zero potential at r - 0, a reasonable choice for curve fitting

the expected potential distribution is a Bessel function 10(2)

with a unity offset bringing it to zero at the origin as follows

(letting n(r) - -E¥%£l for simplicity of notation and the argument

2 - yr):

n(r) ‘ 1 - 10(Yr) (3.18)
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where y is an arbitrary constant to be determined. In equation

(3.18) it is anticipated on phenomenological grounds that V(r) is

negative for all 0 < r < a. The particular form of equation (3.18)

lends itself well to the determination of the electron density

profile from thermal resonance data as shown subsequently. The

corresponding electron—density distribution ne(r) is given by:

n (r) = n e(1 - 10(Yr)) ' (3 19)
e o ’ '

no and y must now be determined from numerical analysis based on

the thermal resonance data.

As an initial simplified approach, a parabolic approximation

for ne(r) is used in the next section. This is done because the

parabolic approximation for the electron density profile in cylin—

drical plasma columns has been used extensively in the past and it

does indeed represent an approximation of ne(r) given in equation

(3.19) as follows:

(1 - 10(Yr))

no e (3.20)ne(r)

no(1 + 1 - 10(yr))

.. 1.: 2

1_2 2 . .
Letting (2) a a/a leads to the customarily used approximat1on:

necr) - no(1 - cog-)2) (3.22)

In the following section, a numerical solution technique is

deve10ped for no and a as well as the electron temperature T, the
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relative wall potential nw’ the turning points for the first m

resonances rm, and the ratio of peak to average electron density,

R.

Determination of Electron Density Profile in a leindrical‘Waqm
 

Plasma Column Based on a Parabolic Approximation
 

In order to solve for the pertinent parameters, an

apprOpriate system of simultaneous equations must be developed.

The unknown quantities are

(1) no - center peak electron density for the first thermal
1

resonance;

(2) no2 = center peak electron density for the second thermal

resonance;

(3) no a center peak electron density for the dipole resonance;

d

(4) <ne(r)d>av = average electron density for dipole resonance;

(5) r - value of r where kol(r) = 0 (critical turning point) for
1

first thermal resonance;

(6) r2 = value of r where ko2(r) = 0 (critical turning point) for

second thermal resonance;

r 2

(7) a constant in nem(r) “om(1 - o(;) ),

(8) T - electron temperature.

In order to solve for these eight unknown parameters, the

following eight independent simultaneous equations are necessary:

1 no

(1) J - ——1 (3.233)
n

d °d

i no

(2) 2 - ——?- (3.23b)
id nod
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Equations (3.23a) and (3.23h) are valid because the electron

density is proportional to the plasma current level. In this study

only ratios of currents are needed.

2

2

<ne(r)d>av = Cp m (3.23c)
 (3) (mp2(r)>av a

e 0

Equation (3.23c) is based on the relation between the dipole

resonance frequency and the average electron density discussed in

section 2.5 where a numerical value for the proportionality

constant Cp was found.

(4) mp1(r1) = w (3.23a)

(5) mp2(r2) . w (3.23e)

Equations (3.23d) and (3.23e) are based on the fact that kp(r)

goes to zero when mp(r) = w.

a

(6) kpl(r) dr = g-u (3.23f)

r1 .

a

(7) kp2(r) dr - g-n _ . (3.23g)

r2

Equations (3.23f) and (3.23g) represent the total phase spanned by

the first two thermal resonances respectively based on equation

(2.68) in section 2.4.

a

(8) <ned(r)>av - -l§- nod(l - a(§)2) an dr (3.23h)

Tia

O
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In equation (3.23h), the peak electron density is related to the

average electron density for the dipole resonance; this relation-

ship holds equivalently for any thermal resonances.

In the following development, these eight simultaneous

equations are discussed in greater detail and are used to develop

a numerical solution for the desired parameters.

Using the parabolic approximation to the electron density

profile

ne(r) = no(1 - a(§)2), (3.24)

the values of no and a must be determined. These values can be

determined in terms of the thermal resonance data obtained in the

experimentation. To obtain the desired numerical solution for the

electron density profile, a system of simultaneous equations must

be developed which lends itself to a numerical solution on the

computer.

It was shown in section 2.5 that the average value of the

square of the plasma frequency, <wpd2(r)> when the dipole resonance

occurs is related to the resonance frequency w by the relation:

<wpd2> = Cp m2 ‘ ’ (3.25)

where Cp is a pr0portiona1ity constant determined in section 2.5.

The plasma frequency w is by definition given by

pd

 <wpd2(r)> .. <ned(r)> (3.26)

e o

where <nod(r)> is the average electron density at the dipole

resonance. Letting nod represent the peak density at the center
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of the column at dipole resonance, <nod(r)> can be related to w

as follows:

2
(wpd (r)> meeo

 

 

 

 

<ned(r)> = 2

e

mesz

0 P
(ned(r)> = 2

e

2 a

9P meso w nod r.2

2 ='*—§ (l - 0(3) ) 2nrdr

e na

0

C com w <ne(r)>

._2_§_§__.= (1 - g) a ———————- (3.27)

n

e n od

°d

Therefore

2 (1 "%) 92 “0d
w = C e m (3.28)

p o e

The first thermal—resonance standing wave exists between the wall

(r - a) and the point rl in the plasma, at which the phase term

kp1(r) goes to zero:

k a 0
(3.29)

p1(‘1)

Similarly, for the second resonance, the phase term kp2(r) goes to

zero at r2:

kp2(r2) . o (3.30)

From basic theory, the phase term kp(r‘ for an electroacoustic wave

is given by
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2

 

 

w (r)

k (r) = ge-(1 - —R—;——)1’2 (3.31)
P 0 wk

3kT

where Vo represents the thermal electron velocity ’;~— .

e

Therefore

2 r1 2
e “01(1 - a(;—) ) 2

m = m (3.32)

eEo

and

r
2 2 2

e n02(1 - at?) ) 2

m c = m (3.33)

e o

Combining equations (3.28) and (3.32) leads to

r n

2 1 od

(1 - a(—l) ) =-—— (1 - 9) - (——~) (3.34)
a C 2 no

p 1

and combining equations (3.28) and (3.33) leads to

r n

2 2 1 . 0d

(1 - a<—~) ) = E—-(1 - a/2) (———) (3.35)
a no

p 2

no id nod i _

Since -——-- -—-and --- -—-, where i , i and i are the currents

“02 11 1102 12 d 1 2

at which the dipole and first two thermal resonances occur,

equations (3.34) and (3.35) lead to the following expressions for

r and r :

1 2

1 1 1 1d 1/2

r1 ' 3‘; ' a" (a “ '2‘ 1'“) (3°36)
p l

1 1 1 1 1d 1/2

r2 ' 3‘2; ‘ a“ (I; ' ‘2‘ T) (337)
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Since the total phase for the first two thermal resonances is

-%W and %m radius respectively, the following phase integrals

 

 

 

 

result:

2

a w w (r) 1/2

T (1 — J-T) dr = (5/4). (3.38)

r o w

l

and

2

a w m (r) 1/2
T (1 - 174 dr = (9/4)" (3.39)

r o w

2

Since for the first two thermal resonances:

2 r 2

2 e nolu - “(3" )

mp1 (r1) 2 m c ’
e o

and

2 r 2

2 e “02(1 - ((71...) )

mp2 (to) a m e ’
e 0

equation (3.38) and (3.39) become

2 2

a u) ‘3 “°1(1 ' “(”29 ) 1/2 5
"‘7“ (1 - 2 ) dr = (2')" (3.40)

r o w meeo

l

and

2 2

a w e “02‘1 ' “(1:3 ) 1/2 9
6"(1 ' 2 ) dr = (2)" (3.41)

r o m meeo

2

Combining equations (3.40) and (3.41), and expressing no1 and no2

no i

in terms of nod from equation (3.28), recalling that -—l>- ——-and

nod id
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no2 i

-——-- —Z-, the following equation results:

“0d 1d

tl/a 11 C 1/2
9/1. (1-(——)<———L—)(1-a(—:;2)) d(—-)

id (1'50) a

l

(3.42)

- rZ/au - (~13) (——P————C) (1 - (5)2 )dei) = 0
id (1 - .50) a a ) a

1

Equation (3.42) contains the three unknowns a, rl/a and rZ/a; rZ/a

can be expressed in terms of rl/a based on equations (3.36) and

(3.37) as follows:

r 2 1 1 1 1 1 d 1/2

“3’ “a“: (a‘a‘(;‘2) 1;)

1 1 1 1 1d 1/2
- (a -'E— (a - 2) if) (3-43)

p 1

Therefore equation (3.42) becomes:

r la
1 1 c

9/4 <1- (31) ($73—53) (1- a§2<)))1’2d(-§)
d .

1

,1
(3.44)

""* A(r/a)

- (1-(-1-2-)(——C-2-—-)(1-W)))1/2()-0
i 1 - 5a a

1

Solving equation (3.36) for a in terms of r1/a yields:
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d
(1 - C 11>

a = r P 1 (3.45)

r_;92_ d

‘a 2i1C

Equations (3.44) and (3.45) represent two simultaneous equations in

two unknowns which may be solved numerically. After r1/a and a are

available, equation (3.40) can be solved for V0 which in turn gives

3kT

 

the electron temperature T from V0 = Er—-,

e

1 i C

= 52. _ .1 .__11_._ _ 3.2 1/2 .5
v0 5” (1 (id) (1 _ _50) (1 (a) )) d(a) (3.46)

rl/a

and:

mevo2

T 3k, (3.47)

The ratio of peak to average electron density nqkne(r)> is obtained

from equation (3.27) as

n

R=——o—--——= 1

<ne(r)> (1 - a/Z)

  

The equations deve10ped in this section for use in the computer

analysis are summarized here in the form in which they are

incorporated into the computer program for the numerical analysis.

rI/a 1 C

1 1/2

(1) 9/4 (1 - 13'1522372‘(1‘%(”2” d(:)

1

r (3.48a)

'2; A65) 12 C2 r2 1/2
' (l - 13.1 _ 0/2 (1 0*) )) d(a) ‘ O
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d

1 " 11‘6“
(2) a a r 1

(3.48b)

( 1)2_ d

a 211C

(3) (/)-(l-}._(1__1_)f_d_)1/2A r a a C a 2 i

P
2

a C 2 i
. c

P
l

n

._
l

(4)
R ‘3 0 a: ( )

<ne(r)> 1 ‘3'

4w 1 11 C r 2 1/2 r

rl/a

and:

mevo2

(6) T ' 3k
- (3.48e)

The experimental procedure also yields values for 13, the discharge

current level at which the third resonance occurs. These data are

not as reliable as those for i 11, and 1 because the third

2

thermal resonance is somewhat weak. It is nevertheless possible to

d!

check the results obtained from the numerical analysis of equations

(3.48) by performing a similar analysis based on the use of the

first and third resonance data. The corresponding equations differ

from equations (3.48) only in that the subscript (2) must be'

replaced by the subscript (3) as shown.
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r /a

1 i C

1 p __ 1/2d

(1) 13/4 (1 - Ig‘ifjfj;fiz (1 - a( Z) 2)) d(:)

1

rr (3.498)

1 r

-———+ A(-—)
a a i C

- <1——3-——P———(1- a<~>2d£))1/2<)=o
i 1 - /2 a

J 1 d

1 _ .isL
11C

(2) a = Pi (3.491))

(r1)2_ d

a Zile

1 1 1 1 1d 1/2
(3) A(r/a) = (3" E*'(;" 59 "9

p 3

(l- l—(l— 5:511” (349)
- a ~ C o — 2 i ) ° C

p 1

n
1

<4) ———-—9—- = (——-—-—-)
<ne(r)> 1 -%

1 1 C

£9. 1 p 1/2d
(5) Vo ’ 5" (1 - {3'1 _ “/2 (1 a(£)2)) d(a) (3.49d)

rlla

and:

mevo2
(6) T - 3k (3.49e)

 

The numerical results obtained from the computer analysis of these

sets of simultaneous equations, (3.48) and (3.49), are presented

and discussed in Chapter 4.
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3.5 Determination of the Electron Density in a Warm Plasma Cylinder
 

Assuming Potential Distribution of the Form (1 - 10(yr))

 

The assumption of the functional form:

:1(r) = (1 - 10(yr)) (3.18)

where n(r) 3 eV(r)/kT is based on the solutions of Poisson's

Equation in different regions of the cylinder in section 3.3. It

was seen there that this solution cannot represent an exact

solution for the potential distribution but it is of the correct

form especially in the sheath region where an offset Bessel

function was obtained as a solution. It furthermore satisfies the

approximate condition that V(o) and therefore n(o) - 0.

Although this approximation makes the necessary numerical

analysis somewhat complex, it is still sufficiently manageable to‘

be useful as a diagnostic technique which is the ultimate goal of

this thesis.

The known quantities from the experimental work with the

electroacoustic probe are:

m - the frequency of the incident radiation:

id - the current level at which the dipole resonance is observed;

11 I the current level at which the first thermal resonance is

observed;

12 - the current at which the second thermal resonance occurs.

The unknown quantities are:

(l) no1 - the peak electron density at the center of the plasma

column for the first thermal resonance:
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(2) no2 = the peak electron density at the center of the plasma

column for the second thermal resonance;

(3) nod - the peak electron density at the dipole resonax e;

(4) <ne(r)d> - the average electron density at the dipole

resonance;

(5) r1 = the critical phase point (kpl(r1) = O) for the first

thermal resonance;

(6) r2 = the critical phase point (ko2(r2) = O) for the second

thermal resonance;

(7) y = the constant appearing in the Bessel function approximation

(1 - 10(yr)) for the potential profile;

(8) T = electron temperature.

Since eight unknowns appear in the analysis, eight independent

equations are needed; these equations are:

i no

(1) T1' =- TL (3.50.1)

d 0d

i no

(2) 33- - ‘ET’Z‘ (3.50b)

d 0d

Equations (3.50s) and (3.50b) are based on the fact that the peak

electron density in the plasma is proportional to the current

level. These equations also show that only the ratio of the

currents are used for the analysis.

(3) <w 2(r)> ‘ 82
p av meeo

2
 

<ne(r)d> s Cp w (3.50c)

Equation (3.50c) states that at the dipole resonance at a given

current level, and thus electron density level nod, the average
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of the square of the plasma frequency is proportional to the

angular frequency'ufof the incident radiation. (The pr0portion-

ality constant Cp was found in section 2.5.)

(4) mp1(r1) = w (3.50d)

(5) mp2(r2) = w (3.50e)

Equations (3.50d) and (3.50e) relate the critical points r1 and r2

for the first and second thermal resonances respectively to the

2

incident radiation frequency w; here: w 2(r ) = _S__.oo

2 p1 1 meco 1

2 e

exp(l — 10(yr1)), and. wp(r2) - Egzz-noz exp(l - Io(yr2)).

a

(6) kp1(r) dr = (5/4)n (3.50f)

r1

a

(7) ko2(r) dr = (9/4)n (3.50g)

1'2

Equations (3.50f) and (3.50g) are based on the fact that the total

phase of the second thermal resonances span (5/4)n and (9/4)n

respectively based on equation (2.68) in section 2.4. Here:

wplz<r)
—-—————-—2)

0.)

m 1/2

and

kpz") ”'V‘ <1""“3r‘° -
O u)



69

l
a -—-——2- no

173

(8) <nod(r)>a exp(1 - Io(yr))2nr dr (3.50h)
v d

Equation (3.50h) relates the average electron density <nod(r)> to

the center peak electron density nod at the dipole resonance. The

ratio of peak to average electron density remains the same as the

current level is changed so that equation (3.50h) may be formulated

in terms of one of the thermal resonances. Equations (3.50) are

now used to develop a system of simultaneous equations suitable for

numerical analysis on the computer.

Since in this section the assumed functional relationship

for the relative potential distribution as a function of r,

n(r) - eZér) , is given by

 

n(r) 9 1 - Io(yr), (3.51)

the constant 1 appearing in the Bessel function is the primary

parameter of interest. The relative potential distribution appears

in the Maxwellian electron density distribution as follows

no(r) a no exp(1 - Io(yr)). . (3.52)

Here again no represents the electron density at the center of the

cylindrical plasma column where the potential V(o) is assumed zero

and therefore the relative potential n(0) is zero as a boundary

condition. Since Io(0) - 1, equation (3.52) shows that no(o) is

indeed no at the center of the column (r - O). The formulation of

no(r) in equation (3.52) introduces no as an additional parameter

that must be determined for any given electron density profile and
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corresponding current level.

The relationship fundamental to this analysis is based on

the phenomenological argument, that the total phases of the

electroacoustic thermal resonances in the sheath region are

separated by n radians and that furthermore the fundamental thermal

resonance spans a total of one and one quarter n radians between

the wall and the critical turning point r where the propagation

1

constant goes to zero. This argument is based on equation (2.68)

in section 2.4. Now

lim P T

r + r1 ko(r) = 0 (3.53)

r > r1 L -  
th

For the m resonance, the total phase can therefore be written as

follows:

a

kom(r) dr = (m + l/4)n (3.54)

r .

m

Since:

w 2(r)
:23— r)m -1/2

kpm(r) v0 (1 - -—;§———) .. (3.55)

Equation (3.54) becomes

a 2 (m + 1mmo

“‘7‘" d“ .1
 

(3.56)

From the definition of the plasma frequency wo(r)
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e2n (r)
2 e

wpm (r) 3 "3i;§:*- (3.57)

and since from equation (3.52) repeated here for reference

no(r) = no exp(1 — Io(yr)), (3.58)

t

the total phase equation for the m h electroacoustic thermal

resonance becomes

a

 

2
e n exp(1 - I (yr))

(1 _ ( °m 2 0 )1/2 dr

wme

r 80

(m + 1/4)nV

= ° (3.59)
w

 

Here the electron density at the center, nom(0) = nom for the mth

thermal resonance, depends on the discharge current level

maintained in the plasma column; the current level resulting in

nom is im which is available from the experimental data. There

exists a direct proportionality between the current level 1m and

the electron density nom because the electron drift velocity may

be considered constant in a cylindrical plasma discharge column.

The relationship between the current 1m and the correspond~

ing dc electron density nom is established experimentally through

the dipole resonance frequency m which is related to the corre-

sponding plasma frequency wod(r) by

<mod2(r)> ‘ Cp wz (3.60)
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Here Cp is a proportionality constant; wpd(r) is the plasma

frequency as a function of r at which a dipole resonance is

observed when the incident radiation frequency is w; <wpd2(r)>

represents the average of the square of the dipole resonance

plasma frequency. The relationship between w and (“Dd(r)> in

equation (3.60) was established in section 2.5, where a numerical

value for CD was obtained. Since

2 ezned(r)

it follows that

2mw .850

<ned(r)> = Cp ~—-jr—— (3.62)

e

Similarly, because of the direct proportionality between the

current levels and the electron densities, equations for <ne1(r)>

and <nez(r)> can be written as follows

C mzmeco 11

<nel(r)> - (LT—a (3;) (3.63)
e

and

C wzmeco 12

<ne2<r>> - («IL—2*» (7) (3.64)

e d

th

and in general for the m resonance

C wzmeeo 1m

<nem<r>> = (43—2—9 (T) (3.65)

e d
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In order to work with equation (3.59), it is necessary to obtain

an expression for nom; this can be accomplished in terms of

equation (3.65) by formulating <nem(r)> in terms of nom as

follows

a

l
<nem(r)> a ——§-J[. nom exp(1 - Io(yr))2wr dr (3.66)

na

0

Defining R to be the ratio of the peak electron density nom to the

average electron density <ne(r)>,

nom n32

(3.67)

R '<ne(r))- a

exp(1 - Io(yr))21r dr

0

 

nom can be expressed in terms of the frequency of the incident

radiation w and current ratios as follows:

C m meeo 1m

no = (-P-—-—--) (R) (-.-) (3.68)
m 82 1d

The phase integral in equation (3.59) furthermore contains rm and

V0 as unknown parameters. There exists no independent relationship

from.which rm and V0 can be determined but it is possible to

express rm in terms of r for example r2 in terms of r1. The
m-l’

condition leading to a functional relationship between rm and rm_1

is the following:

km(rm) I 0 (3.69)

where again rm is the critical turning point for the mth resonance.
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Therefore:

2

mp (r )
w m m _

V- (1 "' 2 )— 09

o w

so that

2 2

wpm (rm) 3 m (3.70)

Since

2

2 e nom exp(1 - Io(yrm))

wpm (rm) 3 ——- m a —" , (3.71)

e o

it follows that

2

m e w

exp(1 - 1 (Yr )) - i3— (3 72)
o m 2 °

e n0

m

Defining

e nO

Am - 2 ’

w m c
e o

exp(1 - I (yr )> = —1- <3 73)
o m Am °

The value of Am can be determined numerically based on the value

of nom obtained through the solution of equations (3.65) through

(3.68). Since equation (3.73) contains both rm and the parameter

of final interest, 7, rm cannot be determined directly from

equation (3.73). However it is possible to determine rn in terms

of rm (n integer # m) by simultaneous solution of

(1) exp(1 - 10(an)) = 1/An (3.74)
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and

(2) exp(1 - Io(yrm)) = l/Am (3.75)

Simultaneous solution of equations (3.74) and (3.75) leads to a

value for Ar defined by

m n
9

Ar = r - r (3.76)

m

In terms of rm and Arm n it is possible to write two simultaneous

’

phase integral equations in the form of equation (3.59) as follows:

 

 

 

a 1/2 (m + l/4)nV

(l - Am eXp(l - 10(yr))) dr a m (3.77)

r

m

and

a

(1 - An exp(1 - 10mm”2 dr

r +Ar

m m,n

(n + l/4)1rVo

. ..
(3.78)

w

Forming the ratio of equations (3.77) and (3.78) yields

a

(l - Am exp(1 - 10(yr)))1/2 dr

r

m .. 11.1.14)...

a 1/2 (n + 1/4) (3.79)

(l - A exp(1 - I (yr))) dr
n o

r +Ar

m m
9

For any combination of m and n, m # n for which resonance data are

available, equation (3.79) still contains two unknown parameters,

rm and 1. If equation (3.79) is combined with equation (3.73),
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repeated here for reference:

exp(1 - 10(Yrm)) = i— . ' (3.80)

m

equations (3.79) and (3.80) may be solved simultaneously for rm

and 7.

After obtaining values for rm and y, Vo can be calculated

from equation (3.77) as follows:

 

 

a

m 1/2
Vo (m + 1/4) (1 - Am exp(1 - 10(Yr)) dr (3.81)

r

m

Since:

3kT

V0 3 r , (3.82)

e

the electron temperature T can be calculated as:

Vozme .

T - 3k (3.83)

where k is Boltzmann's constant.

In the numerical analysis at hand,‘the first two electro-

acoustic thermal resonances are used so that m = 1 and n - 2.

The equations used in the subsequent computer analysis formulation,

written in terms of the first two thermal resonances, are

summarized here in the form used in the numerical analysis:
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a

j[ (1 - A1 exv(1 - 10010))“2 dr

 

 

  

1’
_

1 g (1 + 1/4)
(1) a 1/2 (2 + 1/4) (3.84a)

(1 - A2 exp(1 - I (Yr))) dr

r1+Ar1 2 o

(2) exp(1 - 10(Yr1)) = %T- (3.84b)

1

(3) exp(1 - 10(Yr2)) .. 7t- (3.84s)

2

2
(3 n01

(9) A1 = 2 (3.84d)

w m C

e 0

e n02

(5) A2 = 2 (3.84e)

(l) m S

e O

2
C m meeo i1

(6) n01 = (~P—-2-—-—) (R) (1") - (3.84:)

e d

C m meeo i2 ‘

(7) n02 = (-L—2————> (R) (3") (3.849,)

e d

2

(8) R = "3 (3.84h) 

a

J{ exp(1 - 10(Yr))2nr dr
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a

(9) v0 = (1‘+“1/4)n (1 - A1 exp(1 - Io(yr)))1/2dr (3.841)

r

1

and

v02me

(10) T = 3k (3.84j)

A numerical analysis based on these equations is also performed

using a combination of the first and third resonance data. The

results from this analysis are used as a check on the results

obtained from the use of the first two resonances. In order to use

equations (3.84) for the first and third thermal resonance com-

bination, it is only necessary to replace the subscript (2) when-

ever it appears by the subscript (3). The corresponding set of

equations are:

a

(1 - A1 exp(1 - Io(yr)))1/2dr

(1) 1 - (1 + 1’41» (3.85a) 
 

(l - A3 exp(1 - 10(Yr))) dr

r1+Ar1 3

(2) exp(1 - 10(le)) 9* [IT (3.85b)

1

(3) exp(1 - 10(yr3)) . %7- (3.85c)

3

2

e n01

(4) A1 ' -§—-—- (3.85d)

m m e .
eo
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821103

(5) A3 = 2 (3.85e)

u) m E

e O

C m meeo i1

(6) n01 = (—P-—2———) (R) (T) (3.851?)
e d

C m meco i3

(7) no, = 62—7—9 (R) (T) (3.855;)
e d

n 2

(8) R .. a a (3.85h)

Jr. exp(1 - 10(Yr))2wr dr

0

a

(9) Vo = (1 +w1/4)n (l - A1 exp(1 - 10(Yr)))1/2dr (3.851)

1'

l

and:

V 2m

(10) T = 3k 6- (3.85j)

The numerical results obtained from the computer solution from

equations (3.84) and (3.85) are presented and discussed in the

following chapter.
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4.2

CHAPTER 4

NUMERICAL RESULTS FOR THE ELECTRON DENSITY

PROFILE IN A CYLINDRICAL PLASMA COLUMN

Introduction
 

The simultaneous equations presented in section 3.4 and

section 3.5 are solved numerically using the data given in section

3.2. The solutions are presented in this chapter. The results

obtained for the different approaches are presented.

Numerical Results Based on Parabolic Electron Densityngrgfilg
 

.Approximation
 

The numerical results obtained in the simultaneous computer

solution of equations (3.48) and (3.49) are listed in Tables 4.2.1

through 4.2.5 for the eight sets of data analyzed. For ease of

identification, the data sets are identified throughout by two

numbers, 1, j; i = l to 8 represents the set number; j a 2

represents the use of the combination of the first and second

resonance (equations (3.48)) while j s 3 represents the use of the

combination of the first and third resonance (equations (3.49)).

The parameters listed in the Tables are:

(1) The factor a in the parabolic approximation

new) - neon - (“i—)2) .

(2) The calculated value of the ratio R - ne(r - 0)/<ne1(r)>.

(3) The critical points rm/a for the mth resonance.

(4) zm/a - (a - rm)/a.

8O
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Data set # J j 2 3 3'3

1 .83 .83

2 .82 .85

3 .83 .83

4 .80 .86

5 .86 .86

6 .83 .83

7 84 .87

8 .85 85     
Table 4.2.1 Numerical results for the factor¢£

for data sets 1 through 8. The columns

identified by 3:? and j=3 represent

numerical values for 4; obtained from

the use of combinations of resonances

1,2 (3:2) and 1,3 (jz3) respectively.
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Data set # nO/zne1(r)> noé<n82(r)>

1 1.70 1.70

2 1.70 1.74

3 1.71 1.71

4 1.67 1.75

S 1.76 1.76

6 1.72 1.7?

7 1.73 1.77

8 1.74 1.74

 

 
Table 4.2.2 Numerical results for the ratio of peak

to average electron density nO A<ne (r)?

and n0 /<ne (r)>'for data sets11 th3ough 8.

2 2
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Data set # r1/a r7/a rB/a

1 .88 .83 .77

2 .87 .80 .71

3 .88 .81 .77

4 .89 .84 .74

5 .86 .79 .71

6 .87 .81 .73

7 .87 .80 .72

8 .86 .79 .71

 

Table 4.2.3 Numerical values for the ratio of

critical radius r. to the total radius

a, rj/a, for dataasets 1 through 8.
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Data set # z1/a 22/a 23/a 22/21 ZS/Z1

1 .12 .17 .23 1.44 1.95

2 .13 .19 .28 1.50 2.02

3 .12 .18 .23 1.51 1.90

4 .11 .16 .26 1.48 2.00

5 .14 .21 .29 1.53 2.07

6 .13 .19 .27 1.48 2.10

7 .13 .20 .28“ 1.53.. 2.02

8 .14 .21 .29 1.92 2.07

L_  
 

Table 4.2.4 Numerical values for the ratio of

critical distance z- measured from the

wall for the jth regonance to the total

radius a as well as the ratios 2 /z1 and

23/z1 for the data sets 1 througg 8.

ti
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Data set # 3 1w? j':w j E 2 j E 3

1 -1.75 -1.75 14670 14670

2 -1.73 -1.90 19960 31630

3 -1.78 —1.78 18950 18950

4 -1.63 —1.96 11590 33070

5 -1.99 -1.99 29000 29000

6 -1.80 —1.80 20480 20480

7 -1.84 -2.00 27370 42820

8 -1-91 -1.91 39060 39060

 

 
Table 4.2.5 Numerical values of relative poten-

tial at the wall,'1w = eV(a)/kT

and electron temperature T for data

sets 1 through 8. The columns identi-

fied by j=2 and 3:3 represent the

numerical values for and T based

on the use of combinations of resonances

1,2 (j=2) and 1,3 (j=3) respectively.
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(5) The ratios 22/21 where 21 - a - r1 and 22 - a — 22.

(6) The ratio 23/21, where 23 - a - r3.

(7) nw - ve/kT evaluated at the wall where Vw is the potential,

k is the Boltzman constant and T is the electron temperature.

(8) T, the calculated electron temperature.

The most significant parameter in the parabolic electron density

profile is the parameter a appearing in the functional formulation

of equation (2.44)

nee) = nolu - (Ag-)2)

The values for a obtained for any one data set using first the

combination of the first and second resonance and then the

combination of the first and third resonance are very close. Since

these two values for any one data set represent a mutual check, it

appears that the results obtained for a are correct. It must be

kept in mind, of course, that any calculations employing the third

resonance are only approximate, since the third resonances are

difficult to interpret from the oscillographs.

The ratio of peak electron density at the center of the

plasma column to the average static electrdn density in the column

for the discharge current level 11 was another of the parameters

obtained from the solution of the simultaneous equations (3.48) and

(3.49). Again this ratio is very close for data sets 1,2 and data

sets 1,3, indicating that the results are reliable. Good corre-

spondence for results using data sets 1,2 and 1,3 is also found

for the relative wall potential nw(nw - ve/kT). The temperature

T indicates some variation as seen in Table 4.2. The relative
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variation is still insignificant considering how sensitive the

temperature is to variations in other plasma column parameters.

It should be recalled that the temperature is determined directly

from the phase integral.

The graphical results are shown in Figures 4.2.1 1‘hrough

4.2.8 for the parabolic electron density profiles and the relative

potential distributions for the eight data sets i,2 on a normalized

scale.

In conclusion, it is observed that some of the values

obtained in this analysis agree well with numerical values obtained

from approximate theoretical treatments or independent experimental

analyses. Theoretical analysis of a plasma sheath, for example,1

leads to a relative wall potential nw of approximately 2 which is

in agreement with the values obtained in this numerical analysis.

More significantly, the ratios of 22/21 obtained in this analysis

of approximately 1.5 agrees well with ratios of the distances from

the wall observed for the electric field perturbation for the

first and second thermal resonances in experimental work reported

earlier.14

The appendix contains complete computer readouts of all the

parameters for each data set.

Numerical Results Based on the Bessel Function Approximatigg;fpg_
 

the Static Electron Density Profile
 

The numerical results obtained in the simultaneous computer

analysis of equations (3.85) are listed in Tables 4.3.1 through

4.3.4 for the eight sets of data analyzed. For ease of identi-

fication, the data sets are identified throughout by two numbers
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Data set # J _ 7 j 2 3

1 327 . 321

2 326 319

3 323 328

4 330 328

5 327 327

6 327 322

7 328 328

8 331 325

     
Table 4.3.1 Numerical results for the factorx

for data sets 1 through 8. The

columns identified by 3:2 and j=3

represent the numerical values for

X obtained from use of combinations

of resonances 1,2 (j=2) and 1,3 (jz3)

respectively.
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Data set # no1/(nefr)> n02/<neér)>

1 1.99 1-94

2 1.98 1.93

3 1.96 1.99

4 2.01 1.99

5 1.99 1.99

6 1.99 1.95

7 1.99 1-99

8 2.02 1-97-

 

 
Talilea 4.3.? Numerical results for the ratio

of peak to average electron density

nO1/.<n.e (10> and no2ficn92(r)> for

data sets 1 through 8.
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2::a# z1/a z2/a zS/a zQ/z1 Z3/Z1

~—3 1 .14 .20 .23 1.49 2.02

2 .14 .21 .27 1.53 2.22

3 .11 .18 .26 1.60 1.94

4 .13 .20 .26 1.47 2.15

‘33 5 .14 .22 .28 1.59 2.08

6 .14 .21 .27 1.53 2.19

7 .14 .21 .28 1.53 2.06

h‘__8 .15 .24 .29 1.57 2.17  
 
 

Table 4 ,33
Numerical values for the ratio of

the critical distance 2' measured from

the wall into the plasma for the jth

resonance to the total radius a and also

the ratios 22/z1 and 23/21'

“.3."
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Data Qw T T

set # j = j = j = 2 ' = 3

1 —1.8 —1.7 47380 30580

2 -1.8 —1.7 83690 74860

3 -1.8 -1.8 67470 57060

4 -1.9 -1.8 47950 77700

5 -1.8 -1.8 10350 10350

6 -1.8 -1.7 71630 66900

7 -1.8 —1.8 14400 14400

8 -1.9 -1.8 10200 10120

 

Table 4.3.4 Numerical values of the relative potential

eV(a)/kT and the electron tempera-nw =
ture T for the data sets 1 through 8.

columns identified by j=2 and 3:3 represent

the numerical results based on the use of

combinations of resonances 1,2 (3:2) and

1,3 (3:3) respectively.
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i,j; here i - 1 through 8 represents the set number; j - 2

represents the use of the combination of the first and second

resonance while 1 - 3 represents the use of the combination of the

first and third resonance.

The parameters listed in the Tables are:

(l) The calculated value of the ratio R 8 no(r a O)/<nel(r)>.

(2) The factor 7 in the Bessel series formulation in equation

(3.52)

ne(r) 8 n0 exp(1 - Io(yr)) .

(3) The ratios 22/21 and 23/21.

(4) The critical points zm/a for the mth resonance.

(5) 11V - ve/kT evaluated at the wall where Vw is the potential, k

is the Boltzmann constant and T is the electron temperature.

(6) T, the electron temperature.

The most important parameter in this analysis is y. The values

for 7 obtained for data sets i,2 and 1,3 compare well for the eight

sets analyzed and since sets 1,2 and 1,3 represent a mutual check

it appears that the functional form obtained is acceptable.

Good correspondence using data sets 1,1 and i,2 is also

obtained for the relative wall potential "w = ve/kT and to a

satisfactory extent for the electron temperature T. Since T is

very sensitive to other parameter variations, the difference

observed in some data sets between sets 1,2 and 1,3 is not very

significant.

The graphical results for the normalized electron density

profiles n31(z)/no1 (here nel(z) is the static electron density at
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discharge current 11 where z - a - r) and the corresponding

relative potential n(r) - eV(r)/RT are shown for the eight data

sets in Figures 4.3.1 through 4.3.8. Subsequently, Figures 4.3.9

through 6.3.16 show simultaneous plots for the normalized electron

density profiles ne1(z)/n01 and nez(z)/nol for each data set.

These Figures also show the location of the critical turning points

zlla and 22/3 marked as t1 and t2. These must, of course, occur at

the same vertical magnitude on the graphs to be correct and indeed

good agreement with this requirement is observed indicating that

the numerical analysis is sufficiently accurate. Figures 4.3.17

through 4.3.24 show the corresponding simultaneous plots for

nel(z)/n01 and ne3(z)/n01. Again critical points zl/a and zala

marked at t1 and t3 closely satisfy the condition that the vertical

magnitudes are the same. It should be recalled from the theoret-

t and t occur at points at whichical development that t1, 2 3

2 2

mp (tm) ' w ,

so that

2

nem(tm) . m meeo

 

m

which depends only on the excitation frequency m which is held

constant in any one data set.

In conclusion it is observed that the value of 11W agrees

with typical values predicted theoretically for plane plasma

sheaths which should not behave too differently near the wall in
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n (z/a)/n = eip(1 - I (326(1—z/a))).
e1 01 p 0 .

Also the normalized potential profile ' ‘

1(z/a)/,w. Based on data set #3 (f=2.10 GHz.

id=290 ma, 11:190 ma, 12:150 ma, 132120 ma).
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Also the normalized potential profile

1(z/a)/ w' Based on data set #3 Cf=2.23 GHz,

id=340 ma, 11:235 ma, 122185 ma, 13:160 ma).
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Also the normalized potential profile .

1(z/a)/ w' Based on data set #7 (f=2.275 GHz,
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the lasma sheath at which k 'and k

respectively go to zero. p1 p2

Based on data set #8.(fa2,3?7 GHz,

id=320 ma, 11:210 ma, i2=160 ma, 13:135 ma).
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Plasma

Glass

Thickness b

1 : Data Set #1. 3

' Profiles at 11 and i3

  
e3(2fifl

 

28.

0 | 0.f 0.4 0.6 0.8 1.0 /

t t
1 3

Normalized Bessel series electron density

profiles at resonances 1 and 3. Points t

and t3 represent the critical points in the

plasma sheath at which k and k

respectively go to zero.p1 p3

Based on data set #1. (f-2 016 GHz,

id=270 ma, 11:185 ma, 12:150 ma, i3=125 ma).
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Fig. 4.3.18 Normalized Bessel series electron density

profiles at resonances 1 and 3. Points t

and t represent the critical points in the

plasmg sheath at which k and k

respectively go to zero. 1 p3

Based on data set #2. (f=2.10 GHz,

id=290 ma, i1=190 ma, i2=150 ma, i3=120 ma).
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4.3.19 Normalized Bessel series electron density

profiles at resonances 1 and 3. Points t

and t represent the critical points in the

plasma sheath at which k ‘ and k

respectively go to zero. 1 p3

Based on data set #3.(f=2.23 GHz,

id=340 ma, 11:235 ma, i2=185 ma, 13:160 ma).
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Fig. 4.3.20 Normalized Bessel series electron density

profiles at resonances 1 and 3. Points t

and t represent the critical points in the

plasmg sheath at which k and k

respectively go to zero.p1 p3

Based on data set #4.(f=2.32 GHz,

id=355 ma, 11:245 ma, i2=2OO ma, i3=175 ma).
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' Fig. 4.3.21 Normalized Bessel series electron density

profiles at resonances 1 and 3. Points t

and t represent the critical points in the

plasma sheath at which k and k

respectively go to zer0.p1‘ ‘ p3

Based on data set #5. ( f=1.917 GHz,

id=270 ma, i1=180 ma, 12:135 ma, 13:110 ma).



123

  

 

 
 

 

1.0 .. lil—

0.8 o: - ne (z/a)

. 1

o r—

! °1

;.c ‘

0'6 2 Plasma

5
Glass

; L ne 3(3/3) Thickness b

0.4 : T—

o

2 1

z _ _-__§

: 0 1 . z[?

0.2 't. , Data Set #6.3

I 1 Profiles at 11 and i3

04

: i

0 J QJHJA:1_11- “l :1fiil Pz/a

O 0 2 0.4 0 6 O 8 1.0

t1 t3

Fig. 4.3.22 Normalized Bessel series electron density

profiles at resonances 1 and 3} Points t

and t represent the critical points in the

p1asm2 sheath at which k and k

respectively go to zer0.p1 p3

Based on data set #6.(f=2.017 GHz,

id=285 ma, 11:190 ma, 12:150 ma, 13:120 ma).
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Fig. 4.3.23 Normalized Bessel series electron density

profiles at resonances 1 and 3. Points t

and t represent the critical points in the

plasmg sheath at which k and k

respectively go to zer0.p1 p3

Based on data set #7. (f=2.275 GHz, '

id=290 ma, 11:195 ma, i?=1SO ma, i3=120 ma).
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Fig. 4.3.24 Normalized Bessel series electron density

profiles at resonances 1 and 3. Points t

and t3 represent the critical points in the

plasma sheath at which k and k

respectively go to zer0.p1 p3

Based on data set #8. (f=2.322 GHz,

id=320 ma, 11:210 ma, i7=160 ma, 13:135 ma).
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the sheath region. More significantly, the ratio 22/21 agrees

well with observed values of approximately 1.5 from measurements

14
of the corresponding E field peaks in the thermal resonances.

Graphical Presentation of Thermal Resonances Using_the WKB
 

Approximation
 

Since the static electron profile analysis was based on the

phase integral in the underdense region, the WKB formulation for

the nth thermal resonance given in equation (2.65)

X

Ill

n1m(x) - E;:?;7 sin ( ‘kpm(x') dx' + n/4 )

x

should yield the correct form of the mth thermal resonance some

distance away from the critical point. Here x - 0 at the wall and

is positive into the plasma; kp(x) represents the phase constant

as a function of x. The mathematical formulation of the phase

integrals for the two profile formulations are, of course,

different. For the parabolic profile it is based on equations

(3.40) and (3.41) and is

x x 2 ‘

m m e nom

kp(x') dx' -

<
|
8

A H

I

(1 - “£12111” dx (4.1)

For the Bessel function approximation the phase integral is based

on equation (3.77) and is
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2
m

m e n

e 0

Based on these phase integrals, the WKB form

X

m

1 ( kpmo.) dx + "/41 (4.3)n (x) -

1m kpm(X)

x

is numerically evaluated and graphically presented in Figures 4.4.1

and 4.4.2 for the parabolic form and in Figures 4.4.3 and 4.4.4 for

the Bessel function formulation for data set #1. The Figures show

the first and second resonance. In the region near the critical

point where the WKB approximation fails, the expected section is

sketched in for completeness and does not represent a precise

solution. The interesting point is the phase of the perturbation

function n1m(x). The basic theory suggested that n1m(0) at the

wall (x . O) has a maximum so that a peak should be observed. In

fact. for the Bessel function formulation n1l(x) and n12(x) fall

slightly short of reaching a peak, while the parabolic approxima-

tion is slightly over the expected peak. It should be recalled

that the numerical analysis was based on the assumption that the

total phase for n1m(x) between x - 0 and xm is (m + l/4)n.

The deviation from the expected phase of n1m(0) at the wall

indicates a limitation in the accuracy of the numerical integration

techniques. Greater precision would not yield significant improve-

ment in the electron density profile in view of the approximate

nature of the available resonance data. It would, however, require
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Fig. 4.4.1 First thermal resonance for data set #1 based

on a WKB formulation using the parabolic

electron density profile,
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Data Set #1

Second Resonance

Parabolic Approximation

Second thermal resonance for data set #1 based

on a WKB formulation using the parabolic

electron density profile.
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-Wall (2:0)

/

 

 

 

 
Data Set #1

First Resonance

Bessel Approximation

0
0
.
.
.
.
0
0
.
0
0
0
0
0
0
.
.
.
0
0
0
0
0
0
0
0
1
0
0
.
.
.
.
.
.
‘
0
0
0
0
.
0
.
0
.
0
0
0
0
0
0
0
0
.
.
.
0
.
0
0
.
0
.
0
0
0
0
0
0
0
0
.

'
0
.
.
.
.
.
.
0
.
0
0
0
0
0
0
0
0
.

Fig. 4.4.3 First thermal resonance for data set #1 based

on a WKB formulation using the Bessel series

electron density profile.
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Critical Point (2:2?)——\\
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Fig. 4.4.4 Second thermal resonance for data set #1 based

on a WKB formulation using the Bessel series

electron density profile.
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unreasonably long computer run times in view of the large number

of parameters determined simultaneously.

Figures 4.4.1 through 4.4.4 do show that, as expected, the

phase constant decreases and the magnitude of n1m(x) increases as

x goes from x - 0 to x - xm.



APPENDIX A

NUMERICAL COMPUTER READOUTS AND

ADDITIONAL COMPUTER GRAPHS
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NUMBER OF DATA SET 8 1

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINCRICAL PLASMA COLUMN BASED ON A

PARABOLIC DENSITY PROFILE APPROXIMATION

USING RESONANCES I AND 2

THE PHASE FOR RESONANCE I IS PI TIHES I.25

THE PHASE FOR RESONANCE 2 IS PI TIHES 2.25

THE SQUARE OF hPOVER H IS EQUAL TO 2.60

IO ' 0.2700E 00

II ' 0.I85OE 00

I2 ' O.I5OOE 00

H ' 0.12675 II

BETA’ATOR ' 0.IOOOE OI

RADIUS ' 0.7000E-OZ

ALFA ' 0.32595 00

RI 3 0.6160E'OZ

R2 ' 0.5767E‘02

ll . 0.3’000E'03

ZZ ‘ 0.IZI3E-OZ

NO DIPOLE 3 0.2233E I8

NO I RESONANCE ' 0.1530E I8

N0 2 RESONANCE ' 0.IZ§IE 18

22 TO ZI ' 0.I§~fiE OI

PEAK TC AVERAGE ' 0.17035 OI

V HALL ' 'O.ZZIOE OI

ETA'VH T0 KTTGO 3 ‘0.I748E OI

ELECTRON TEMP - 0.1567E 05
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NUMBER OF DATA SET 8 I

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINDRICAL PLASMA COLUMN BASED ON A

PARABOLIC DENSITY PROFILE APPROXIMATION

USING RESONANCES I AND 3

THE PHASE FOR RESONANCE I IS PI TIMES 1.25

THE PHASE FOR RESONANCE 2 IS PI TIMES 3.25

THE SQUARE OF hPOVER H IS EQUAL TO 2.60

10 . 0.27005 00

11 - 0.18505 00

12‘ - 0.12505 00

u - 0.12.75 11

BETA-ATOR . 0.10005 01

RADIUS . 0.70005-02

ALFA - 0.02505 00

R1 . 0.61606-02

R2 . 0.53005-02

21 . 0.54005-03

zz - 0.10345-02

NO 019015 - 0.22335 10

N0 1 RESONANCE - 0.15305 18

NC 2 RESONANCE - 0.103~5 10

22 TC 21 . 0.19455 01

PEAK TD AVERAGE . 0.17035 01

v HALL - -0.22105 01

ETA-Vi To «7700 - -0.17405 01

515crao~ TEMP - 0.14.75 05
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NUMBED OF DATA SET 8 2

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINORICAL PLASMA COLUMN BASED ON A

PARABOLIC DENSITY PROFILE APPROXIMATICN

USING RESONANCES I AND 2

THE PHASE FOR RESONANCE I IS PI TINES 1.25

THE PHASE FOR RESONANCE 2 IS PI TIMES 2.25

THE SQUARE OF HPOVER H IS EQUAL TO 2.00_

ID ' 0.2000E 00

II ! 0.1QOOE 00

12 ' 0.1500E 00

U I 0.13I9E II

BETA-ATOR ‘ 0.IOOOE OI

RADIUS 8 0.10005-02

ALFA I 0.82I8E 00

RI ' 0.6090E-02

R2 l 0.5633E-02

lI - 0.9100E-03

12 I 0.1367E-02

NO DIPOLE ' 0.2412E 18

NO I RESONANCE ‘ 0.1560E 16

NO 2 RESONANCE ' 0.12686 18

12 TO II 3 0.1502E OI

PEAK TO AVERAGE 8 O.I697E OI

V HALL ' ~0.2965E OI

ETAtVH TO KTTOQ 3 ~O.I725E OI

ELECTRON TEMP 8 0.I990£ 05
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NUMBER OF DATA SET 3 2

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINDRICAL PLASMA COLUMN BASED ON A

PARABOLIC DENSITY PROFILE APPROXIMATION

USING RESONANCES I AND 3

THE PHASE FOR RESONANCE I IS PI TIMES 1.25

THE PHASE FOR RESONANCE 2 IS PI TIMES 3.25

THE SQUARE OF HPOVER U IS EQUAL TO 2.60

3
3
2
3
3
3
3
3
3

3
'
:

H ‘
8
3
3
8
8

V HALL -O.5I89E 01

‘0.1906E 01

IO 8 0.29006 00

II I 0.1900E 00

12 I 0.1200E 00

H 8 0.1319E 11

BETA'ATOR 8 0.I000E 01

RADIUS 8 0.7000E‘02

ALFA ' 0.8511E 00

R1 - 0.6020Er02

R2 . 0.5023E-02

21 ' 0.9600E-03

22 t 0.1977E°02

NO DIPOLE ' 0.247QE 18

NO I RESONANCE - 0.1621E 18

NO 2 RESONANCE 8 0.1024E 16

22 TO 21 ' 0.2018E 01

PEAK TO AVERAGE ' ’0.174IE 01

ETA-Yd TO KTTOQ

ELECTRON TEMP 0.3163E 05
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NUflBER 05 DATA $51 . 3

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINDRICAL PLASMA COLUMN BASED ON A

PARABOIIC DENSITY PROFILE APPROXIMATICN

USING RESONANCES I AND 2

THE PHASE FOR RESONANCE 1 IS PI TIMES 1.25

THE PHASE FOR RESONANCE 2 15 PI TIMES 2.25

THE SQUARE OF HPOVER H IS EQUAL TO 2.00

ID 8 0.3100E GD

11 8 0.2350E 00

I2 8 0.1650E QC

H 8 0.1401E II

BETA8ATOR 8 0.I000E OI

RADIUS 8 0.7000E-02

ALFA 8 0.6317E 00

R1 8 0.6160E-02

R2 8 0.5735E'02

II 8 0.86OOE-O3

22 8 0.1265E-OZ

N0 DIPOLE 8 0.2745E 18

N0 1 RESONANCE 8 0.I697E 16

N0 2 RESONANCE 8 0.1493E 18

22 TO 21 8 0.1500E OI

PEAK TO AVERAGE 8 0.1712E 01

V HALL 8 '0.2909E 01

ETA8VH TO KTTOQ 8 -0.1782E OI

ELECTRON TEMP 8 0.1895E 05



NUMBER OF DATA SET

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINDRICAL PLASMA COLUMN BASED ON A

PARABOLIC DENSITY PROFILE APPROXIMATION

USING RESONANCES

THE PHASE FOR RESONANCE 1 IS PI TIMES 1.25

THE PHASE FOR RESONANCE 2 15 PI TIMES 3.25

THE SQUARE OF HPOVER H IS EQUAL TO 2.60

10

11

12

H

BETA8ATOR

RADIUS

ALFA

N0 DIPOLE

N0 1 RESONANCE

N0 2 RESONANCE

12 TO 21

PEAK TO AVERAGE

V HALL

ETA8VH TO KTTOQ

ELECTRON TEMP

139

AND 3

0.3400E OD

0.2350E DO

0.1bOOE 00

0.1401E II

0.1000E DI

0.6317E 00

0.5403E-02

0.8400E‘O3

0.2765E 18

0.1897E IB

0.1292E IB

0.1901E 01

D.I712E OI

0.1895E 05



NUMBER OF DATA SET

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINDRICAL PLASMA COLUMN BASED ON A

PARABOLIC DENSITY PROFILE APPROXIMATION

AND 2 'USING RESONANCES

THE PHASE FOR RESONANCE 1 [S P! TIMES 1.25

YHE PHASE FOR RESONANCE 2 15 Pl IIMES 2.25

THE SQUARE OF hPOVER H 15 EQUAL TO 2.60

10

II

12

H

BETA8ATOR

RADIUS

ALFA

R1

R2

21

22

N0 DIPOLE

N0 1 RESONANCE

N0 2 RESONANCE

22 TO 21

PEAK TO AVERAGE

V HALL

ETA-VH TO KTTOQ

ELECTRON TEMP

140

0.3550E 00

0.2450E 00

0.2000E 00

0.1456E 11

0.1000E 01

0.7000E-02

0.6040E 00

0.623OE'02

0.5861E-02

0.77OOE-03

0.1139E-02

0.2904E 18

0.2006E 18

0.1636E 16

0.1679E 01

0.1672E 01

‘0.1627E OI

0.1159E 05
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NUMBER OF DATA SET 8 6

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINDRICAL PLASMA COLUMN BASED ON A

PARABOLIC DENSITY PROFILE APPROXIMATION

USING RESONANCES I AND 3

THE PHASE FOR RESONANCE 1 IS PI TIMES 1.25

THE PHASE FOR RESONANCE 2 IS PI TIMES 3.25

THE SQUARE OF HPOVER H IS EQUAL TO 2.60

ID 8 0.3550E 00

II 8 0.2450E 00

12 8 0.1550E 00

H 8 0.1458E 11

BETA-ATOR 8 0.1000E OI

RADIUS 8 0.7000E-02

ALFA 8 0.6569E 00

R1 8 0.6090E*02

R2 8 0.5179E-02

21 8 0.9IOOE-O3

22 8 0.16215802

N0 DIPOLE 8 0.3OA3E 18

NO I RESONANCE 8 0.2100E 18

NO 2 RESONANCE 8 0.1329E 18

22 TO 21 8 0.2001E 01

PEAK TO AVERAGE 8 0.1753E 01

V HALL 8 80.55795 01

ETA8VH TO KTTOQ 8 -0.1959E 01

ELECTRON TEMP 8 0.3307E 05
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NUMBER OF DATA SET 8 5

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINDRICAL PLASMA COLUMN BASED ON A

PARABOLIC DENSITY PROFILE APPROXIMATION

USING RESONANCES 1 AND 2

THE PHASE FOR RESONANCE 1 IS PI TIMES 1.25

THE PHASE FOR RESONANCE 2 IS PI TIMES 2.25

THE SQUARE OF hPOVER H IS EQUAL TO 2.60

10 8 0.2700E 00

II 8 0.1800E 00

12 8 0.1350E 00

H 8 0.1208E II

BETA8ATOR 8 0.1000E 01

RADIUS 8 0.7000E-02

ALFA 8 0.8641E 00

R1 8 0.6020E-02

R2 8 0.5496E-02

21 8 0.9800E-03

22 8 0.1504E-02

NO DIPOLE 8 0.2065E 18

NO I RESONANCE 8 0.1390E 18

N0 2 RESONANCE 8 0.1042E 18

22 TO 21 8 0.153hE 01

PEAK TO AVERAGE 8 0.1761E 01

V BALL 8 -0.4987E 01

ETA8VH TO KTTOQ 8 '0.1996E 01

ELECTRON TEMP 8 0.2900E 05
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NUMBER OF DATA SET 8 5

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINDRICAL PLASMA COLUMN BASED ON A

PARABOLIC DENSITY PROFILE APPROXIMATIDN

USING RESONANCES I AND 3

THE PHASE FOR RESONANCE 1 IS PI TIMES 1.25

THE PHASE FOR RESONANCE 2 IS PI TIMES 3.25

THE SQUARE OF HPDVER H IS EQUAL TO 2.60

3
8
3
8
8
8

I0 8 0.27006 00

11 8 0.1BOOE 00

I2 8 0.1100E 00

H . 0.120~E II

BETA-ATDR 8 0.10005 01

RADIUS 8 0.7000E’OZ

ALFA 8 0.8b51E 00

R1 . 0.60205802

R2 8 0.§9?4E-02

21 8 0.9800E-03

22 8 0.2026E-02

N0 DIPOLE 8 0.2065E 16

N0 1 RESONANCE 8 0.1390E 13

N0 2 RESONANCE 8 0.8496E 17

22 TO 21 8 0.2067E 01

PEAK TO AVERAGE 8 0.1761E 01

V HALL 8 -0.6987E 01

ETA-vu TD KTTOQ 8 -0.1996E 01

ELECTRON TEMP 8 0.2900E 05



~ d
v
a
a
a
s
l
a
z

144

NUMBER OF DATA SET 8 6

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINDRICAL PLASMA COLUMN BASED ON A

PARABOLIC DENSITY PROFILE APPROXIMATION

USING RESONANCES 1 AND 2

THE PHASE FOR RESONANCE 1 IS PI TIMES 1.25

THE PHASE FOR RESONANCE 2 IS PI TIMES 2.25

THE SQUARE OF EPOVER H IS EQUAL TO 2.60

ID 8 0.2850E 00

I1 8 0.1900E 00

I2 8 0.1500E 00

H 8 0.1267E 11

BETA8ATOR 8 0.1000E 01

RADIUS 8 0.70005-02

ALFA 8 0.8366E 00

R1 8 0.6090E-02

R2 8 0.5653E-OZ

ll . 0.9100E-03

22 8 0.1367E'02

NO DIPOLE 8 0.225DE 18

NO 1 RESONANCE 8 0.1500E 18

N0 2 RESONANCE 8 0.1164E 1B

22 TO 21 8 0.1480E 01

PEAK TO AVERAGE 8 0.1716E 01

V HALL 8 “0.317OE 01

ETA8VH TO KTTOQ 8 '0.1600E 01

ELECTRON TEMP 8 0.2048E 05
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NUMBER OF DATA SET 8 6

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINDRICAL PLASMA COLUMN BASED ON A

PARABOLIC DENSITY PROFILE APPROXIMATION

USING RESONANCES 1 AND 3

THE PHASE FOR RESONANCE I IS PI TIMES 1.25

THE PHASE FOR RESONANCE 2 IS PI TIMES 3.25

THE SQUARE OF HPOVER H 15 EQUAL TO 2.60

10 8 0.2050E 00

11 8 0.19003 00

12 8 0.1200E 00

BETA8ATOR 8 0.10005 01

RADIUS 8 0.7000E“02

ALFA 8 0.83465 00

R1 8 0.6090E’02

R2 8 0.5037E‘02

21 8 0.9100E-03

22 8 0.1913E‘02

N0 DIPOLE 8 0.2250E 15

N0 1 RESONANCE 8 0.15005 13

N0 2 RESONANCE 8 0.9875E 17

22 TO 21 8 0.21025 01

PEAK TO AVERAGE 8 0.17165 01

V HALL 8 ‘0.317bE 01

ETA8VH TO KTTOQ 8 “0.18005 01

ELECTRON TEMP 8 0.20685 05
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NUMBER OF DATA SET 8 7

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINDRICAL PLASMA COLUMN BASED ON A

PARABOLIC DENSITY PROFILE APPROXIMATION

USING RESONANCES 1 AND 2

THE PHASE FOR RESONANCE 1 IS PI TIMES 1.25

THE PHASE FOR RESONANCE 2 15 PI TIMES 2.25

THE SQUARE OF HPOVER H IS EQUAL TO 2.60

10 8 0.2900E 00

11 8 0.1950E 00

12 8 0.1500E 00

H . 0015296 11

BETA8ATOR 8 0.1000E 01

RADIUS 8 0.7000E-02

R1 8 0.6090E-02

R2 8 0.5007E'02

21 8 0.9100E‘03

22 8 0.13935802

N0 DIPOLE 8 0.2878E 18

N0 1 RESONANCE 8 0.1935E 18

N0 2 RESONANCE 8 0.1688E 18

22 TO 21 8 0.1531E 01

PEAK TO AVERAGE 8 0.1725E 01

V HALL 8 80.63335 01

ETA8VH TO KTTOQ 8 80.183BE 01

ELECTRON TEMP 8 0.27375 05
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NUMBER OF DATA SET

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINDRICAL PLASMA COLUMN BASED ON A

PARABOLIC DENSITY PROFILE APPROXIMATION

AND 3USING RESONANCES

THE PHASE FOR RESONANCE 1 IS PI TIMES 1.25

THE PHASE FOR RESONANCE 2 15 P1 TIMES 3.25

THE SQUARE OF HPOVER H IS EQUAL TO 2.60

10

TI

12

H

BETA8ATOR

RADIUS

ALFA

R1

R2

21

22

N0 DIPOLE

N0 1 RESONANCE

N0 2 RESONANCE

22 TD 21

PEAK TO AVERAGE

V HALL

ETA8VH TO KTTOQ

ELECTRON TEMP

147

0.2900E 00

0.195OE 00

0.1200E 00

0.1429E 11

0.10005 01

0.7000E802

0.8704E 00

0.6020E-02

0.5018E-02

0.9600E-03

0.1982E-02

0.2953E 18

0.1986E 18

0.1222E 18

0.2022E 01

0.1771E 01

-0.2043E 01

0.4282E 05
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NUMBER OF DATA SET 8 8

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINDRICAL PLASMA COLUMN BASED ON A

PARABOLIC DENSITY PROFILE APPROXIMATICN

USING RESONANCES 1 AND 2

THE PHASE FOR RESONANCE 1 IS PI TIMES 1.25

THE PHASE FOR RESONANCE 2 IS PI TIMES 2.25

THE SQUARE OF EPOVER H IS EQUAL TO 2.60

10 8 0.3200E 00

11 8 0.2100E 00

12 8 0.1800E CO

H 8 0.1459E 11

BETA8ATOR 8 0.1000E 01

RADIUS 8 0.7000E-02

ALFA 8 0.8523E 00

R1 8 0.6020E-02

R2 8 0.5510E-02

21 8 0.9800E'D3

22 8 0.1490E-02

N0 DIPOLE 8 0.3030E 18

NO 1 RESONANCE 8 0.1988E 18

N0 2 RESONANCE 8 0.1515E 18

22 TO 21 8 0.1521E 01

PEAK TO AVERAGE 8 0.1743E 01

V HALL 8 80.6436E CI

ETA8VH TO KTTOQ 8 80.1913E 01

ELECTRON TEMP I 0.3900E 05
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NUMBER OF DATA SET

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINDRICAL PLASMA COLUMN BASED ON A

PARABOLIC DENSITY PROFILE APPROXIMATICN

AND 3USING RESONANCES

THE PHASE FOR RESONANCE I IS PI TIMES 1.25

THE PHASE FOR RESONANCE 2 IS PI TIMES 3.25

THE SQUARE OF HPOVER H IS EQUAL TO 2.80

10

II

12

H

BETA8ATOR

RADIUS

ALFA

R1

R2

21

22

N0 DIPOLE

N0 1 RESONANCE

N0 2 RESONANCE

22 TO 21

PEAK TO AVERAGE

V HALL

ETA8VH TO KTTOQ

ELECTRON TEMP

149

0.3200E‘00

0.2100E 00

0.13005 00

0.15596 11

0.1000E 01

0.8523E 00

0.6020E-02

0.4987E-02

0.9800E-03

0.2033E‘02

0.3030E 18

0.1988E 18

0.123IE 18

0.2076E 01

0.1743E 01

80.8436E 01

80.1913E 01

0.3906E 05
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NUMBER OF DATA SET 8 1

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINDRICAL PLASMA COLUMN BASED CN A

BESSEL FLNCTICN PRCFILE APPROXIMATICN

USING THERPAL RESONANCES 1 AND 2

TOTAL PHASE FCR FIRST RES IS PI TIPES 1.25

TOTAL PHASE FCR SEC RES IS PI TIMES 2.25

THE SQUARE OF hP OVER H

LOHER INT. LIMIT

INITIAL INCR. IN 21

NUMBER OF INTEGR. STEPS

VALUE OF HI

VALUE OF H2

DIPCLE CURRENT AT H1

CURRENT AT H1

CURRENT AT H2

AUMBER T. D. RESCNANCE 2ND H

CDEFF PEAK TC AVG EL DENS

GAMMA

ETA 8 VHALL TO KT OVER 0

GAMMA TIMES 21

GAMMA TIMES 22

22 TC 21

HPI

HP2

NO1

N02

A1 8 HPI CVER bl SQUARED

A2 8 HPZ CVER H2 SQUARED

21

22

VHALL

ELECTRON TEMPERATURE

2.60.

c.ccoce

c.1ccce,

C.1207E

C.1267E

C.Z7CCE

C.185CE

C.150CE

0.1988E

C.32taE

-0.18CaE

c.31COE

0.4619E

c.119ce

c.23$bE

c.21ZZE

0.1744E

6.14145

c.34595

0.26c«E

c.9485E

0.1413E

-c.73c3E

c.~7255

GI

-03

-02

C1

C5
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NUMBER OF DATA SET . I

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINDRICAL PLASMA COLUMN BASED ON A

BESSEL FUNCTICN PRCFILE APPROXIMATION

USING THERMAL RESONANCES 1 AND 3

TOTAL PHASE FCR FIRST RES IS PI TIMES 1.25

TOTAL PHASE FOR SEC RES IS PI TIMES 3.25

THE SQUARE OF HP OVER H

LOHER INT. LIMIT

INITIAL INCR. IN 21

NUMBER OF INTEGR. STEPS

VALUE OF H1

VALUE OF H2

DIPOLE CURRENT AT H1

CURRENT AT H1

CURRENT AT H2

NUMBER T. D. RESONANCE 2ND H

COEFF PEAK TC AVG EL UENS

GAMMA

ETA - VHALL T0 KT CVER o

GAMMA TIMES 21

GAMMA IIMES 22

22 TC 21

HPI

HPZ

N01

N02

AI 8 HPI OVER H1 SOOARED

AZ 8 HPZ OVER H2 SQUARED

21

12

VHALL

ELECTRON TEMPERATURE

8 2.80

C.COOCE CD

C.IDDCE CG

0.1267E 11

0.1267E 11

C.270CE C0

C.1850E CC

0.13005 C0

0.1937E 01

0.3207E 03

-0.1717E 01

0.25COE 00

0.5050E CD

C.2020E CI

0.2392E 11

0.2005E 11

0.1797E 18

0.1263E 18

C.3563E 01

C.2504E 01

0.7795E-03

0.1575E‘02-

80.4523E CI

0.3058E 05
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NN¢M52« JF LATA SET 2

THIS IS AN ANALYSIS OF Tn: ELCCIRJM LENSITY

IN A CYLIMLRICAL PlASMA COLUMN bASFC LL A

sISSLL FUNCTILN PPCFILF APIROAIMAIICL

LSING THERI’AL RESONANCES I MIL) 2

TCTAL PHASE FER szcsl 4¢s 13 91 TIV:S 1.25

TLTAL PHASE FJR 3:: «E3 13 a; r was 4.26

I
I

N o 3
‘

0THE SQUAJ: CF H9 OVER H

LOHER INT. LIVIT 8 C.CCOCE CC

INITIAL INCR. IN 21 8 0.1000E CO

NUMBER OF INTECR. STEPS 8 2C

VALLE OF HI = C.1319E 11

VALUE OF H2 = (3.131913 11

DIPOLE CURRENT AT H1 8 C.290CE CC

CURRENT AT HI = C.19CCE CC

CURRENT AT H2 8 C.15CCE CC

NUMBER T. O. RESCNANCE 2ND H = 2

CCEFF PEAK TC AVG EL OENS 8 0.1975E CI

GAMMA 8 C.3255E C3

ETA 8 VHALL TC KT EVER 0 = “0.1785E CI

GAMMA TIMES 21 8 C.31CCE CC

GAMMA TIMES 22 8 0.4743E 00

22 TO 21 = 0.1530E C1

HPI 8 C.2635E II

HPZ 8 C.2163E II

MCI 3 CQIOOZE 15

502 . 3 0.14705 18

AI 8 H91 EVER H1 SQUARED 8 0.39C7E C1

A2 8 HP? OVER 82 SQUAREO 3 C.2690E 01

21 8 0.9524[-o3

22 8 C.1457E-C2

VHALL = ‘C.1287E 02

ELECTRON TEMPERATURE 8 C.83¢9E C5
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NUMBER OF DATA SET 8 2

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINDRICAL PLASMA COLUMN BASED ON A

BESSEL FUNCTICN PROFILE APPROXIMATICN

USING THERMAL RESONANCES 1 AND 3

TOTAL PHASE FOR FIRST RES IS PI TIMES 1.25

TOTAL PHASE FCR SEC RES IS PI TIMES 3.25

THE SQUARE OF HP OVER H

LOHER INT. LIMIT

INITIAL INCR. IN 21

NUMBER OF INTEGR. STEPS

VALUE OF H1

VALUE OF H2

DIPOLE CURRENT AT H1

CURRENT AT H1

CURRENT AT H2

NUMBER T. D. RESCNANCE 2ND H

COEFF PEAK TO AVG EL DENS

GAMMA

ETA 8 VHALL TO KT OVER Q

GAMMA TIMES 21

GAMMA TIMES 22

22 TC 21

HPI

HPZ

N01

N02

AI 8 HPI OVER H1 SGUARED

A2 8 HPZ OVER H2 SQUARED

21

22

VHALL

ELECTRON TEMPERATURE

2.60

C.CCCCE CD

C.1CCCE CO

c.13195 11

c.13195 11

c.2qcce cc

c.190ce cc

c.120ce co

0.192bE OI

0.3193E 03

-C.1097E C1

C.2680E CO

c.5950E CC

C.2220E C1

C.2«35E 11

0.19356 11

C.1862E 18

0.11756 16

0.39C7E 01

0.21526 01

c.33935—03

0.18635-02

-C.1095€ CZ

0.7486E CS
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THIS IS AN ANALYSIS OF THE ELECTRON CENSITY

IN A CYLINCRICAL PLASMA COLUMN BASED ON A

BESSEL FUNCTION PROFILE APPROXIMATION

USING THERPAL RESONANCES I AND 2

TOTAL PHASE FOR FIRST RES IS PI TIMES 1.25

PI TIMES 2.25TOTAL PHASE FOR SEC RES IS

THE SQUARE OF hP OVER H

LOHER INT. LIMIT

INITIAL INCR. IN 21

NUMBER OF INTEGR. STEPS

VALUE OF HI

VALUE OF NZ

DIPOLE CURRENT AT HI

CURRENT AT HI

CURRENT AT H2

NUMBER T. D. RESONANCE 2ND H

COEFF PEAK TO AVG EL SENS

GAMMA

ETA 8 VHALL TO KT OVER 0

GAMMA TIMES 2I

GAMMA TIMES 22

22 TO 21

HPI

HPZ

N01

N02

AI 8 HPI OVER HI SOUARED

AZ 8 HPZ OVER NZ SDUARED

21

22

VHALL

ELECTRON TEMPERATURE

2.60

C.CCOCE

C.ICOCE

C.IAOIE

C.IAOIE

c.3«oce

C.235CE

C.IB§CE

6.10566

0.323IE

-C.I751E

c.2ocoe

C.AI¢CE

C.leOE

C.2656E

c.2357E

C.2216E

0.17ASE

c.35cae

0.26296

c.80456

0.1287E

-c.10186

C.b7A?E

CO

CO

20

II

II

CC

CC

CO

2

CI

03

-C3

‘02

C2

C5
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NUMBER OF CATA SET 8 3

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINCRICAL PLASMA COLUMN BASED ON A

BESSEL FUNCTION PROFILE APPROXIMATICN

USING THERMAL RESONANCES I AND .3

TOTAL PHASE FOR FIRST RES IS PI TIMES [.25

TOTAL PHASE FOR SEC RES IS PI TIMES 3.25

THE SQUARE OF NP OVER N

LCHER INT. LIMIT

INITIAL INCR. IN ZI

NUMBER OF INTEGR. STEPS

VALUE OF NI

VALUE OF N2

DIPOLE CURRENT AT HI

CURRENT AT HI

CURRENT AT H2

NUMBER T. D. RESONANCE 2ND N

COEFF PEAK TO AVG EL DENS

GAMMA

ETA 8 VwALL TO KT OVER Q

GAMMA TIMES 21

GAMMA TIWES 22

22 TC 21

NPI

NPZ

NDI

NCZ

A1 8 UPI OVER NI SQUARED

A2 8 HPZ OVER NZ SQUARED

II

22

VHALL

ELECTRON TEMPERATURE

8 2.60

C.CGOCE

0.IOOOE

C.IAOIE

C.I¢OIE

C.3ACCE

C.235CE

C.IbOCE

c.1993E

C.3277E

-C.IBI7E

C.3ICDE

C.bOlAE

C.1940E

0.2617E

C.2159E

C.2151E

0.1‘65E

C.3§89E

C.2375E

c.9fi59E

0.1835E

-008931E

C.57C6E

CC

00

20

II

II

CC

CC

C0

-C3

-cz

CI

05
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NUMBER OF DATA SET 8 6

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINDRICAL PLASMA COLUMN BASED ON A

BESSEL FUNCTION PROFILE APPROXIMATION

USING THERMAL RESONANCES 1 AND 2

TOTAL PHASE FOR FIRST RES IS PI TIMES 1.25

TOTAL PHASE FOR SEC RES IS PI TIMES 2.25

THE SQUARE OF NP OVER H

LONER INT. LIMIT

INITIAL INCR. IN 21

NUMBER OF INTEGR. STEPS

VALUE OF N1

VALUE OF H2

DIPOLE CURRENT AT N1

CURRENT AT H1

CURRENT AT H2

NUMBER T. D. RESONANCE 2ND H

COEFF PEAK TO AVG EL DENS

GAMMA

ETA 8 VHALL TO KT OVER Q

GAMMA TIMES 21

GAMMA TIMES 22

22 TC 21

UPI

HPZ

NCI

NCZ

AI 8 UPI OVER N1 SQUARED

A2 8 HPZ OVER NZ SQUARED

21

22

VHALL

ELECTRON TEMPERATURE

8 2.60

C.CCDCE CC

C.ICCCE CC

C.IASBE 11

C.1A58E 11

C.355CE CC

C.245CE CO

C.2COCE CD

C.2011E Cl

c.3299; 03

-C.18505 OI

c.31coe cc

0.a557£ CO

c.147CE Cl

C.2762E 11

0.2696E ll

C.2397E 18

0.195bE 16

6.35898 01

0.2930E 01

c.9396E-03

c.13516-c2

-c.7o«oe.c1

C.A7955 05
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NUMBER OF DATA SET 8 A

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINDRICAL PLASMA COLUMN BASED ON A

BESSEL FUNCTION PROFILE APPROXIMATICN

USING THERMAL RESONANCES I AND 3

TOTAL PHASE FOR FIRST RES IS PI TIMES 1.25

TOTAL PHASE FOR SEC RES IS PI TIMES 3.25

THE SQUARE OF NP OVER H 8 2.60

LOHER INT. LIMIT 8 C.CCCCE

INITIAL INCR. IN ll 8 C.ICCCE

NUMBER OF INTEGR. STEPS 8

VALUE OF N1 8 C.IASBE

VALUE OF N2 8 C.IASBE

DIPOLE CURRENT AT H1 8 C.355CE

CURRENT AT N1 8 C.245CE

CURRENT AT N2 8 C.I55CE

NUMBER T. D. RESONANCE 2ND N 8

COEFF PEAK TO AVG EL DENS 8 C.IRRQE

GAMMA 8 0.328hE

ETA 8 VNALL TO KT OVER Q 8 80.1828E

GAMMA TIMES 21 8 C.2780E

GAMMA TIMES 22 8 C.5977E

22 TO ll 8 C.2150E

NPI 8 C.28C9E

HPZ 8 0.2234E

N01 8 C.2679E

N02 8 C.ISbBE

Al 8 UPI OVER N1 SQUARED 8 C.37IZE

AZ 8 HPZ OVER N2 SQUARED 8 C.2348E

ll 8 c.8665E

22 8 0.1820E

VHALL 8 '0.1223E

ELECTRON TEMPERATURE 8 C.727OE

CC

CC

II

11

~03

~02

C2

05
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NUMBER OF DATA SET 8 5

THIS IS AN ANALYSIS OF THE ELECTRON CENSITY

IN A CYLINDRICAL PLASMA COLUMN BASED ON A

BESSEL FUNCTION PROFILE APPROXIMATICN

USING THERVAL RESONANCES 1 AND 2

TOTAL PHASE FOR FIRST RES IS PI TIMES 1.25

TOTAL PHASE FOR SEC RES IS PI TIMES 2.25

THE SQUARE OF NP OVER U

LONER INT. LIMIT

INITIAL INCR. IN 21

NUMBER OF INTEGR. STEPS

VALUE OF N1

VALUE OF N2

DIPOLE CURRENT AT NI

CURRENT AT HI

CURRENT AT H2

NLMBER T. D. RESONANCE 2ND H

COEFF PEAK TO AVG EL DENS

GAMMA

ETA 8 VHALL TO KT OVER Q

GAMMA TIMES 21

GAMMA TIMES 22

22 TC 21

NPI

NPZ

N01

N02

A1 8 HPI OVER H1 SCUARED

A2 8 HPZ OVER N2 SQUARED

21

22

VNALL

ELECTRON TEMPERATURE

8 2.60

C.CCOCE

C.IOOCE

C.IZDAE

C.IZOAE

C.270CE

C.IBCCE

C.IBSCE

0.1986E

C.3268E

-C.1804E

C.31CDE

0.4929E

0.1590E

C.2262E

C.IQAIE

0.1579E

C.IIBAE

0.3467E

C.26COE

0.9485E

C.ISCBE

'C.16C9E

C.IDESE

CO

CO

II

01

'03

'62

02

C6
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NUMBER OF CATA SET 8 5

THIS IS AN ANALYSIS or rue ELECTRON DENSITY

x~ A CYLINDRICAL PLASMA COLUMN BASED CA A

BESSEL FUNCTION PROFILE APPROXIMATICN

USING THERMAL RESONANCES 1 AND 3

TOTAL PHASE FOR FIRST RES 15 PI TIMES 1.25

TOTAL PHASE FOR SEC RES IS PI TIMES 3.25

THE SQUARE OF NP OVER H

LONER INT. LIMIT

INITIAL INCR. IN 21

NUMBER OF INTEGR. STEPS

VALUE OF d1

VALUE OF H2

DIPOLE CURRENT AT N1

CURRENT AT HI

CURRENT AT N2

NUMBER T. C. RESONANCE 2ND H

COEFF PEAK TO AVG EL DENS

GAMMA

ETA 8 VJALL TO KT OVER Q

GAMMA TIMES 21

GAMMA TIMES 22

22 TO 21

NPI

HPZ

N01

N02

AI 8 HPI OVER HI SQUARED

A2 8 HPZ OVER N2 SCUARED

21

22

VHALL

ELECTRON TEMPERATURE

8 2.60

C.CCCCE C0

C.ICCCE CO

0.120AE 11

C.IZOAE 11

C.270CE CC

C.IBOCE CC

C.IIOOE 00

C.IQflbE CI

c.32685 03

-O.18C46 OI

C.31COE C0

c.66A66 CC

0.20608 01

c.2242E II

C.ITSZE II

C.ISIRE 16

0.96AGE 17

6.34076 01

0.21196 01

0.1973E-02

-C.16C95'02

0.10356 0e
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NUMBER OF CATA SET 8 6

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINORICAL PLASMA COLUMN BASED ON A

BESSEL FUNCTION PROFILE APPROXIMATICN

ANDUSING THERMAL RESONANCES 1

TOTAL PHASE FOR FIRST RES IS PI TIMES 1.25

TOTAL PHASE FOR SEC RES IS PI TIMES 2.25

THE SQUARE OF NP OVER H

LCHER INT. LIMIT

INITIAL INCR. IN 11

NUMBER CF INTEGR. STEPS

VALUE OF HI

VALUE OF N2

DIPOLE CURRENT AT N1

CURRENT AT HI

CURRENT AT H2

NUMBER T. C. RESONANCE 2ND H

COEFF PEAK TC AVG EL DENS

GAMMA

ETA 8 VNALL TO KT OVER Q

GAMMA TIMES 21

GAMMA TIMES 22

22 TC 21

UPI

HPZ

NOI

NC2

A1 8 UPI OVER N1 SQUARED

A2 8 HPZ OVER N2 SQUARED

21

22

VHALL

ELECTRON TEMPERATURE

8 2.EC

C.CCCCE CD

0.1CO0E 00

20

C.IZETE 11

c.1267E 11

0.28506 00

C.IROCE C0

C.ISOCE 00

2

C.IQBbE C1

0.3268E C3

0.31COE CO

C.6763E C0

0.1530E C1

C.235°E II

C.2096E II

0.1768E 18

C.I380E 18

C.3AE7E CI

0.2737E 01

0.1451E8C2

80.1113E CZ

0.7163E c5
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DATA SET 8 6

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINCRICAL PLASMA COLUMN BASED ON A

BESSEL FUNCTION PROFILE APPROXIMATION

USING THE RMAL RESONANCES I AND 3

TOTAL PFASE FOR FIRST RES IS PI TIMES 1.25

TOTAL PHASE FOR SEC RES IS PI TIMES 3.25

THE SQUAR E OF NP OVER H

LOVER INT. LIMIT

INITIAL INCR. IN ZI

NUMBER OF INTEGR. STEPS

VALUE OF H1

VALUE OF NZ

DIPOLE CURRENT AT HI

CURRENT AT NI

CURRENT AT H2

NUMBER T. O. RESONANCE 2ND H

COEFF PEAK TO AVG EL DENS

GAMMA

ETA 8 VHALL TO KT OVER Q

GAMMA TIMES 21

GAMMA TIMES 22

22 TC 21

UPI

NPZ

NOI

N02

AI 8 UPI

A2 8 HPZ

21

22

VHALL

ELECTRON

OVER NI SQJARED

OVER N2 SQUARED

TEMPERATURE

2.60

C.CCCCE

C.IDOCE

0.1267E

C.IZb7E

0.2850E

C.IROCE

0.1200E

C.ISABE

C.3221E

-0017376

CobebE

0.2190E

C.2359E

0.1875E

C.IT‘BE

C.IICQE

C.34t7E

C.2189E

c.0599E

0.1883E

-COICCIE

C.bb90E

C0
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2C

11
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3
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-02

C2

C5



NUMBER OF-DATA SET 8 7

162

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINDRICAL PLASMA COLUMN BASED ON A

BESSEL FUNCTION PROFILE APPROXIMATICN

USING THERMAL RESONANCES 1 AND 2

TOTAL PHASE FOR FIRST RES IS PI TIMES 1.25

TOTAL PHASE FOR SEC RES IS PI TIMES 2.25

THE SQUARE OF UP OVER H

LOVER INT. LIMIT

INITIAL INCR. IN 21

NUMBER OF INTEGR. STEPS

VALUE OF HI

VALUE OF H2

DIPOLE CURRENT AT H1

CURRENT AT HI

CURRENT AT H2

NUMBER T. D. RESONANCE 2ND U

COEFF PEAK TC AVG EL DENS

GAMMA

ETA I VHALL TO KT OVER 0

GAMMA TIMES 21

GAMMA TIMES 22

22 TC 21

UPI

HPZ

NOI

N02

AI 8 UPI OVER bl SOUARED

AZ 0 HPZ OVER H2 SQUARED

21

22

VHALL

ELECTRON TEMPERATURE

2.60

C.CCDCE

C.ICOCE

C.IQZQE

C.IAZQE

C.ZQOCE

C.IQSCE

C.ISCCE

0.19936

0.32776

-C.IEI?E

0.3ICOE

C.~743E

0.15306

C.2672E

C.234sE

c.22432

C.ITZSE

c.3497E

0.2090E

c.94596

0.1447E

“COZZSQE

C.IAACE

CO

CC

11

11

CO

-C3

-C2

C2
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THIS IS AN ANALYSIS OF THE ELECTRON CENSITY

IN A CYLINDRICAL PLASMA COLUMN BASED ON A

BESSEL FUNCTION PROFILE APPROXIMATICN

USING THERMAL RESONANCES I AND 3

TOTAL PHASE FCR FIRST RES IS PI TIMES 1.25

TOTAL PHASE FOR SEC RES IS PI TIMES 3.25

THE SQUARE OF UP OVER U

LOUER INT. LIMIT

INITIAL INCR. IN 21

NUMBER OF INTEGR. STEPS

VALUE OF UI

VALUE OF U2

DIPOLE CURRENT AT UI

CURRENT AT UI

CURRENT AT U2

NUMBER T. D. RESONANCE 2ND U

COEFF PEAK TC AVG EL DENS

GAMMA

ETA t VUALL TC KT OVER 0

GAMMA TIMES 21

GAMMA TIMES 22

22 TC 21 ‘

UPI

UPZ

NOI

NC2

AI 8 UPI OVER UI SOUARED

A2 ' dPZ OVER U2 SQUARED

2I

22

VHALL

ELECTRON TEMPERATURE i
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I
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I
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I
I
I
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3 2.60

C.CCOCE

C.ICCCE

C.IAZQE

C.IA29E

C.2GCCE

C.I95CE

C.IZOCE

c.1993E

C.3277E

“C.ISI7E

Co3ICCE

0.6386E

C.2060E

0.26725

CoZchE

0.2243E

C.I3EOE

0.3“97E

0.2I52E

COQ‘OSQE

C.IQAQE
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OoIEAOE
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CATA SET 8 8

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINDRICAL PLASMA COLUMN BASED ON A

BESSEL FUNCTION PROFILE APPROXIMATION

USING THERMAL RESONANCES I

TOTAL PHASE FOR FIRST RES

AND 2

IS PI TIMES 1.25

TOTAL PHASE FOR SEC RES IS PI TIMES 2.25

THE SQUARE CF LP EVER U

LOUER INT . LIMIT

INITIAL INCR. IN ZI

NUMBER OF INTEGR. STEPS

VALUE OF UI

VALUE OF U2

DIPOLE CURRENT AT U1

CURRENT AT uI

CURRENT AT U2

NUMBER T. C. RESONANCE 2ND U

COEFF PEAK TC AVG EL DENS

GAMMA

ETA 8 VUALL TO KT OVER 0

GAMMA TIMES ZI

GAMMA TIMES 22

22 TO 21

UPI

UPZ

NOI

NC2

AI 8 UPI OVER UI SCUARED

A2 8 UPZ OVER U2 SQUARED

21

22

VUALL

ELECTRON TEMPERATURE

2.60

C.CCOCE C0

C.IODCE CO

C.IASQE II

C.IASQE II

C.320CE CO

C.2ICCE CC

C.IbCCE C0

C.2C20E CI

C.33IOE 03

‘ColabbE OI

0.35COE 00

c.5495E CC

0.157CE OI

C.2695E II

C.2353E II

0.22825 18

c.1739E Ia

Co34I2E C1

0.2600E OI

C.IC57E'02

C.IbeE'OZ

C.IC2OE 06
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THIS IS AN ANALYSIS OF THE ELECTRON DENSITY

IN A CYLINDRICAL PLASMA COLUMN BASED ON A

BESSEL FUNCTION PROFILE APPROXIMATICN

USING THERMAL RESONANCES I AND 3

TOTAL PHASE FOR FIRST RES IS PI TIMES 1.25

TOTAL PHASE FOR SEC RES IS PI TIMES 3.25

THE SQUARE OF UP OVER U

LOUER INT. LIMIT

INITIAL INCR. IN 21

NUMBER OF INTEGR. STEPS

VALUE OF UI

VALUE OF U2

DIPOLE CURRENT AT U1

CURRENT AT U1

CURRENT AT U2

NUMBER T. D. RESONANCE 2ND U

COEFF PEAK TO AVG EL DENS

GAMMA

ETA 8 VaALL TO KT OVER Q

GAMMA TIMES 21

GAMMA TIMES 22

22 TO 21

UPI

UP2

NOI

N02

AI 8 UPI OVER U1 SQUARED

A2 8 UPZ OVER NZ SQUARED

21

22

VUALL

ELECTRON TEMPERATURE

8 2.60
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0.1A59E
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C.320CE
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0.3248E
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SUMMARY OF RES OF

NO ALFA

DATA SET NC I

0.153E 18 0.826E

DATA SET NC I

0.124E 10 0.8206

DATA SET NC I

0.103: 13 0.820E

DATA SET NC 2

0.1565 13 0.6225

DATA SET NC 2

0.1255 18 0.022E

DATA SET NC 2

0.102E 15 0.8516

DATA SET NC 3

0.1905 15 0.632E

DATA SET NC 3

0.149E Id 0.832E

DATA SET NC 3

0.129E 13 0.632E

DATA SET NC 6

0.2CCE Id 0.80RE

DATA SET NC 4

0.104E Ia 0.80~E

DATA SET N0 6

0.133E 18 0.859E

DATA SET NC 5

0.139E 18 0.806E

DATA SET NC 5

0.104E 18 0.6045

DATA SET N0 5

0.589E I7 0.80~E
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PAR ANAALYSIS

U TEMP

RESONANCE N3 '1

00 0.127E 11 0.162E 05

RESONANCE NO 2

C0 0.127E 11 0.147E 05

RESONANCE NO 3

00 0.127E 11 0.147E 05

RESONANCE NO 1

00 0.132E 11 0.200E 05

RESONANCE NO 2

CO 0.132E II 0.2CCE 05

RESONANCE NO 3

CO 0.132E 11 0.3le 05

RESONANCE NO I

00 C.IhOE II 0.190E D5

RESONANCE NO 2’

CO 0.1«CE 11 0.190E 05

RESONANCE ND 3

C0 0.IACE II 0.190E 05

RESONANCE NO I

00 0.1AOE II 0.116E 05

RESONANCE NO 2

00 0.1fibE 11 0.116E 05

RESONANCE NO 3

CD 0.1“0: 11 C.IICE 05

RESONANCE NO 1

OD 0.120E 11 0.29CE 05

RESONANCE NO 2

00 0.120E II 0.290E 05

RESONANCE NO 3

CO 0.120E 11 0.290E 05

z 0211.

0.840E-03

c.1215—02

0.163E-02

c.1375-02

c.137e—oz

0.5935-02

c.540e-03

c.1275-02

C.Ioos-oé

c.770L-03

0.11AE-02
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0.203E-02
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-00175E

-O.I75E

-0.175E

“0.173E

-0.173E

-001906

-00178E

-0.I78E

-00178E

-00163E

-0.IbBE

'O.I9OE

‘OOZOOE

-O0ZOCE

-0.200E

01

C1

C1

01

C1

01

C1

CI

01

01

C1

C1

01

01

CI



    



U

C
I

w
a

fl
.

u
n
o

.
-

DATA SET

C.IDCE 18

NC

DATA SET NC

0.1165 15

DATA SET N0

0.9455 1?

DATA SET NC

0.194E 18

DATA SET NC

0.1fi9E 15

DATA SET NC

0.122: 15

DATA SET NC

0.1995 16

DATA SET

0.151E 16

N 0

DATA SET NC

0.123E 16

6

008326

b

0.839E

6

0.835E

7

0.841E

7

0.841E

7

0.673E

8

0.8525

8

0.852E

8

0.8523

C0

00

CD

00

C0

00

CO

CO
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KESOJANCE NO 1

C.127E 11 C.2CDE

RESONANCE NO 2

001275 11 002096

RESONANCE NO 3

0.127E 11 C.2C5E

RESONANCE NO 1

0.163E 11 0.279E

RESONANCE NO 2

0.163E 11 0.2766

RESONANCE NO 3

0.193E 11

RESONANCE NO 1

RESONANCE NO 2

0.1nbE 11 0.3Q1E

RESONANCE NO 3

0.1fioE 11 0.391E

35

05

05

05

05

05

05

05

05

c.910£-03

C.135E-02

001916-02

0.910E-03

c.1395‘02

0.1932-02

c.950E-03

C.IQQE‘OZ

C.203E-02

‘0.15CE

-001806

-001806

-0016‘6

-0018“E

-002046

-O.191E

-OOlQIE

-00191E

C1

C1

Cl

01

C1

Cl

C1

C1

01



N

N

u

fl

N

SUHHARY OF RES OF

NO OANHA

DATA SET NC 1

0.17~: 18 0.327E

DATA SET NC 1

0.161E 15 0.327 "
I

DATA SET

0.126E 13

N0 1

0.321E

DATA SET

0.180E 18

NC 2

0.320E

DATA SET NC 2

0.147E 1d 0.326E

DATA SET N0 2

0.1LdE 18 0.319E

DATA SET NC 3

0.222E 13 0.323E

DATA SET N0 3

0.17%E 15 0.323E

DATA SET NC 3

0.197E 16 0.328E

DATA SET NC 6

0.240E 18 0.330E

DATA SET N0 6

0.1906 18 0.3306

DATA SET NC A

0.157E 16 0.328E

DATA SET N0 5

0.153E 18 0.327E

DATA SET NC 5‘

0.116E 16 0.327E

DATA SET NC 5

0.965E 17 0.327E
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BESSEL ANALYSIS

C3

C3

C3

C3

03

03

C3

03

03

03

C3

03

03

03

« TEMP

NJ 1

00‘07'TC

RESONANCS

0.121E 11

RESONANCE NU 2

0.127E 11 0.97wé

RESONANCE NO 3

0.1Z7E 11 0.3065

RESONANCE NO 1

0.132E 11 0.837E

RESONANCE NO 2

0.132E 11 0.837E

RESONANCE NO 3

0.13ZE 11 0.749E

RESONANCE NO 1

0.1~0E 11 0.0?5E

RESONANCE NO 2

0.1hCE 11 0.675E

RESONANCE NO 3

0.160E 11 0.310E

RESONANCE NO 1

0.1»oE 11 0.48CE

RESONANCE ND 2

0.1aoE 11 0.ABCE

RESONANCE NO 3

0.1wbE 11 0.777E

RESONANCE NO 1

0.120E 11 0.1C9E

RESONANCE NO 2

0.120E 11 0.104E

RESONANCE NO 3

0.120E 11 0.106E

05

05

05

05

05

05

O3

05

05

05

06

06

06

Z CRIT.

0.958E-C3

C.1~1E-CZ

0.157E-02

0.952E-03

C.1A6E-02

C.18bE-02

.

0.805E-03

0.129E-02

0.186E-02

C.940E°03

C.IBBE‘DZ

0.182E-02

0:848E-03

0.151E-02

c.197E-02

ETA

-C.18CE

-0018CE

-0.172E

-0.178E

-G.178E

“001706

’00E75E

-0.175E

-O.18ZE

-001855

“001855

-00183E

-001805

-0.180E

-OOISCE

C1

Cl

C1

01

01

C1

C1

C1

01

Cl

Cl

C1

01

01

C1



.
.

‘
.

-
O

U
~

.
-

DATA SET N0

0.175E 16

DATA SET

0.1366 16

NC

DATA SET NC

C.11CE 16

DATA SET ND

0.226E 18

DATA SET NC

0.172: 18

DATA SET N0

0.136E 18

DATA SET NC

0.2235 13

DATA SET NO

0.179E 16

DATA SET N0

0.141E 13

6

0.327E

b

0.327:

b

3.322E

7

0.326E

7

0.326E

7

0.326E

6

0.331E

8

0.331E

6

0.325E

C3

C3

03

C3

C3

C3

C3

C3
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RESONANCE NO

0.127E 11

RESONANC: NC

0.127E 11

RESONANCC NO

C.1Z?E 11

RESONANCE NU

001‘035 11

RESONANCE NO

0.143E 11

RESONANCE NO

0.143E 11

RESONANCE NO

0.166E 11

RESONANCE NO

0.146E 11

RESONANCE ND

0.1405 11

1

0.71oE

2

0.7106

3

300C;E

1

0.194E

2

0.14AE

3

0.164E

1

0.102E

2

C.1C2E

3

C.1C1E

05

’09

Db

Db

06

06

Db

Db

C.9A6E-03

0.1k58-02

C.1%SE-CZ

0.9kbEf03

0.145E-02

0.1956-02

0.10bE-02

C.166E*02

C.2C6E-02

-O.1OCE

’00180:

”C.ITAE

-0.182E

-00 182E

-00162E

‘0.187E

‘0.167E

-0.177E

C1

01

C1

Cl

C1

01

Cl

C1

C1



APPENDIX B

FORTRAN COMPUTER PROGRAMS WRITTEN SPECIFICALLY FOR

THE NUMERICAL ANALYSIS IN THIS RESEARCH PROJECT
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ISYS T1HE'1C

ILOAC HATFTV

[DPT BOSCURCE

C..“‘THTS PROGRAM 1S DESIGNED TO DETERMINE THE PARAHETERS

C....’DF A BESSEL SER1ES ELECTRON SENS1TY PRUFTLE BASED ON

C..".THERFAL RESONANCE DATA DBTINEC thF AN ELECTROACCUSTTC PRCEE.

FUNCTION FTOTXT

1F1X‘.O1T 10192

1 FTC-1.6X‘02I2.*‘2

GO TC 30

2 TFTX-511C920v20

20 FTC'EXPTXTISORT(Z.*3.16159‘X)‘11.+1.18.IX1

GO TO 3C

1C F1C'1.§X..ZIZ.“Z

0X“‘I12o..§‘2.“21

0X"bl12..‘b‘13..2.1.*21

0X“DI(Z..‘D‘1A..3..Z.T..ZT

9X‘.1C/(Z..‘1D‘15..fi.’3.’2.1.‘21

9X‘.12I(Zo..12’16..5..§.‘3..201..21

9X3‘1A/12.‘.14.17.‘6.‘5o‘§..3..2.1“21

3D RETURN

END

C GO ON

FUNCTION FTGZ1OTHTTCHDGZOA1DAZDHIIHZv

1H910HPZIGZDIFFT '

COFFCB ACAHHA

COPPER "TEST

Y1'AGAHPA'GI

TFTIHTTCHT 13013315

13 D‘1o'AZ‘EXPT1o'F1C1T1TT

1F1DT 18915323

23 F'SQRTTDT

50 TC 16

15 0'1.'A1‘EXP11.‘FIC(Y111

TFTDT 15913925

25 F'SDRTTDT

O
U
J
S
U
N
I
-

50 TC 16

18 F'Co

16 RETURN

END

FUNCTTON FTNTTXvCAHHAvETAT

TI'GAFHA..DDT'GAHHA‘X

F1NT'EXP11.-F101YIT1.1.007-X1

RETURN

END

C STNGLE PRECTSTDNPROGRAH

CD'HCN AGAHHA

COPFCA FTEST

DTFENSTCN AN2110C1

DIPENSTCA DIFFTZT

DTPEBSTCN VTISOTIANTISDT

REA015001 NSET

READTSO.’ NUON1DHZIDIPIIOU1[pHZToNHARH

READTSo‘T AGAHHAOCOEFF

REA015001 PFIDPHZDHPTHS

GZlT'C.

DGZlF'.Cl



9A9

G50

€30

73C

72

701

700

7C3

702

O
\
I
b
c
u
fi
a
~

O
d
fl
m
l
~
m
-

l

1
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dRITEIprAQ) NSET

FORMATIIIoZXt'NUHBER OF DATA SET FOR 81C 0 '9I3'II1

HRITEIbuQSOI NHARHpPHlaPHZoHPTHS

FDRHATIZXp'THIS IS AN ANALYSIS CF THE ELECTRON DENSITY'v/p

ZXD'IN A CYLINDRICAL PLASPA CCLLFN BASED CN A'DID

ZXo'BESSEL FUNCTION PROFILE APPROXIHATIDN'DIO

ZXD'USING THERFAL RESONANCES 1 AND '0139”:

ZXp'TDTAL PHASE FOR FIRST RES IS PI TINES '9FA.Z¢IO

Zfip'TDTAL PHASE FDR SEC RES IS PI TIHES 'vFfioZOIIO

ZXI.THE SQUARE OF UP OVER H ' '9F§.ZDIIIT

HRITE1609301 GZ1I'DGZ1E9NU0N19NZODIP110N1IDHZTINHARH

FORMATIZXo'LOHER INT. LIHIT "9E15ofivlo

ZXI'INITIAL INCR. IN 21 "lE15voI0

ZXO'NUHBER OF INTEGR. STEPS "9I159’o

ZXD.VALUE CF H1 "oE15ofiv/u

ZXD'VALUE 0F HZ “oE15.Ao/t

ZXO'DIPULE CbRRENT AT HI 3'9E15.40I0

ZXD.CURRENT AT H1 "OE15.AOII

ZXO'CURRENT AT H2 "vEl’.Rn/o

ZXu'NUHBER T. D. RESCNANCE 2ND N I'DIISOIT

AG'AGAHHA

DGZIFI.CI

GAPA'RGAPPA/aOOT

EH'QollE‘31

EPS'E.85E'12

0'1.EC2E’19

ANCI'?.‘N1‘.2‘EH‘EPSIQ“Z‘U1IIDIPI1

’3..NPTHS

ANCl'ANCI‘CCEEF

ANCZ'ao‘HIRRZ‘EH‘EPSIQ.‘Z.N2IIDIPII

I3.‘hPTHS

ANUZ'ANCZ‘CCEFF

HPI'SCRTIC.‘Z‘ANUIIEHIEPST

HPZ'SCRTIC.‘Z‘ANUZIENIEPST

A1'HP1"ZIH1“Z

A2'UP2“ZIU2.‘Z

Gll"CGZlF/Z.

H01

00 1C I'Foz

Gil-CZIOC021F

DGZ'GZ1IIC.

512‘511

GZZ'GZZODCZ

YLOAGAHNA'GII

YZ'ACAHPA‘GZZ

DCIT'AI‘EIPTIo’FIOI'1TT-AZ‘EXPI[o‘FICIYZTT

IEIDGZT170097029701

IEICGZ'GZ1/90o1 70207020703

CZZ'CZZ'DCZ

DGl'DGZIICo

50 TC 7C1

CONTINUE

IHITCFI'I

UL'CZZ

CALL INTTGZIIDNUnULnAINT'GZIOHIOHZDHPIDHPZDAIDAZDIHITCH'GZDTEFT

AINT1'AINT

IUITCPII

UL'GZ1



1C

AC

9C

ICC

711

721

720

7A1

74C

879

1

1

2

1

m
a
c
a
w
-
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CALL INTICZ1InNUoULoAINTuCZIohI0U20HPIOHPZOA19AZIIHITCFIGICIFFT

AIATZ'AINT

DIFFIII'AINTI'Hl/HZ‘AINTZ‘

PHZIPHI

IFIGZI'A.) EODOOvEI

HRITEIOOTQQI CAHA'COEFF

FURFATIZXO'EUR OAHA ' '9E15.inv

ZXI'AND COEFF ' '0E15oAn/o

ZXv'THE DIFFERENCE DIVERGES FOR ALL POSITIVE GZl'vI/I

IFIDIEFIII’DIFFIZII AODZO'ZC

ERR-011

H'Z

DIFFIII‘DIFFIZI

GO TO 30

IFIDCZIF-.011 100990990

GlI'GZ1‘DCZ1F

DGZIF-DGZIFIICo

GO TO 30

CONTIBUE

GAT"EZI‘.OCOC1

DGAT'GZI

OAT-GATOCGAT

Y3'GAT-GZI

Z1'FICIV31'I1c‘ALOCI1.IA1II

IEIZII 71Co711'71&

IFIDGAT'GZII9.I 711,711'713

GAI'GAT‘DCAT

DGAT'DGATI10.

50 TC 71C

CONTIBUE

IFIABSICAT-AGAHHAI-ABSIGATISC.II 720:72Cv721

AGAHFA'IAGAFHAOGATIIZo

50 TC 73C

CONTINUE

BCCNST'1038E‘23

YY'AGAHPA’GZ1

ETA'1.'FICIAGANHA1

BZ'AZ

81‘A1

lZTOlI'GlZ/GZI

TE’HI“2‘EH‘AINTZ‘*2/GAHA**ZI3.14159"Zl3.IBCCNST

VHALL'ETA‘BCONST‘TEIQ

ZII‘CZIICAHA

lZZ'GZZ/GAHA

CALL INTEIETADGAHAvST

COEFETI.OC7“2/2.IS

IFIABSICCEFF'COEEFTI‘ABSICOEEFIZC.II 74C'74C9741

COEFF'ICOEFF‘COEFFTI’Z.

00 TC 72

CONTINUE

HRITEIboGTQI COEEETOGAHADETADOZ1DOZZOZZTCZ1DHP1OHPZIANC1IAFC20

A19A201110122'VHALL0TE

FORMATIZXv'COEFF PEAK TO AVG EL DENS

2X9'GAHHA

ZXD'ETA I VHALL TO KT EVER O

ZXI'GAHHA TIHES 11

ZXt'GAHHA TIHES ZZ

ZXD'ZZ TO 21

.OE1SQ‘DIO

'0E15.A0I9

.DE150"’9

'pElfivolo

'uE15.AoIn

'0E15.§0ID
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6 2X9.5P1 ' .DE15o‘p’9

7 ZXv'hPZ ' 'DE15ofioIo

8 ZXD'NOI ' 'OEI5ofioI0

1 ZXO'NOZ ' 'pE15.§oI0

Z ZXO'AI ' UPI OVER HI SCLARED ' 'DE15aAoIn

3 ZXo'AZ ' HPZ OVER H2 SQUAREO ' '9E15ofitlo

6 ZXo'II ' '0E15.4ulp

5 2x.'zz U '.El$.4.l.

b ZXO'VHALL ‘ ' 'OE1DoQIID

7 ZXD'ELECTRON TEMPERATURE I '0E15oAD/t

8 III I

01'.CC7/29o

1"01

DO 60C 1.1026

1.1951

R1'AGAHHA'GAHA.Z

VII)‘1.’FIOIRIT

ANZIII'ANOZ‘EXPIVIIII

ECC ANIII'ANCI’EXPIVIIII

CALL PLOT‘IVOANDZbI

CALL PLCTZIANOAN29261

777 STOP

END

SUBRCLTINE INTIXIDN'XFDSOGZ10.1952'UP1'HP2'A1'A20INITCH'CICTFFT

DIFENSICN XI31

COHHCN ACANHA

COPPER PTEST

NINI2‘Z91

XN'N

DX'IXF-XIIITXN-1oI

NCCUNT'C

XIII'TI'Zo’DX

XIZI'TI'DX

XI31'XI

S'C.

DO 10 I'3anZ

XIII'XIIIOZo‘DX

XIZI-X12192o‘DX

XI3I'XI3102.‘DX .

DSIFIGZIDINITCHoXIIItALvAZobIDHZIHPI'HP29GZDIEPD

1+5.‘EIGZIDIIITCH0XI210A10A29HIOHZDHPIvHPZOGZDIFFI

ZOFIGZIOIiITCHOXI3IOA1vAZoHIDUZvHPIDHPZvCIOIEF’

1C 5'5’07/3o‘DS

AC RETURA

END

SUDRCLTINE INTEIETAvGAHHAvSI

DIPENSICN X131

N'ZO

N'N/2.2+1

XN'N

XT'OQ

XF.07CE-2

DX'IXF-XIIIIXN-1.1

NCCUAT'C

XIII'XI'Zo‘DX

XIZT'RI‘OI

XI3I'XI

$.00
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00 1C I'31N02

XIII'XIII’Z.*DX

XIZI'XIiI‘Zo‘DX

XIBI'II3IAZo‘DX

OS'FIATIXIlI:GANHA0ETAI*A.PFIAT1X12).

1 CAHPA'ETAI ‘EINTIXI3IDGAHHAuETA1

1C S‘S‘DXI3o‘DS

AC RETURN

ENC
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00.. Pic JACK CLIN BSSR

ILCAD HAIFIV

ICPT NOSOURCE

cooototHIS PROGRAR IS DESIGNED IO DEIERPINE IPE PARAHEIERS

CRRRRRDF A PARABOLIC tLECtRCNDENSlIY FRCFILE BASED ON THERMAL

COOOODRESCNANCE DATA OBTAINED HITH AN ELLECTROACDUSTIC PROBE.

13

23

15

18

16

17

94.9

SEC

97C

HA1

(
”
N
O
W
-
b
u
l
w
a
-

\
I
O
U
N
I
-

FUNCTICN EINTIRTAI

COPNCA FT

COFHCA AICDAIIAAIZ'RITA

COPHON ALEAABETA

COPHCD A

IEINTT 15:15:13

D'lo"11l‘10‘30’110‘oS‘ALFAT‘I10-‘LFA.RTA“ZTIBET‘..2

IFIDI 18'18v23

FIhT-SORTIDI

GO TC 16

D'1.'AIZIAID‘3.II1o“.5‘ALFA1‘11.‘ALFA‘RTA“ZI/BETA.‘Z

IFIDI 18918025

FINT'SQRT1DT

GO TC 16

FINT'Co

RETURB

ENC

N PRCGRAP

DIPENSICN DIFFIZI

DIPEDSICN AN110019ETAR11001

COPPER HT

COPPCA AICIAI10AI29R1TA

COFHCB ALFAABETA

COHHCA A

CONTIBUE

READISA‘I NSET

READISI‘I AID-AI1'AIZAH9RADIUS'AHARH

READISO‘T DRITADRITAI'OETA

REAC‘SO.T PH19PH29HPTHS

HRITE16'9491 NSET

FORMATIIIAZXA'NUNBER OF DATA SET ‘ 'oI3vIII

HRITEIbAQSOI NHARHQPPIOPHZ'HPTHS

FORMATIZXA'THIS IS AN ANALYSIS CF THE ELECTRCN DENSITY '0’,

ZXA'IN A CYLINDRICAL PLASPA COLUFN BASED CN A '0’:

ZXv'PARABOLIC DENSITY PRCFILE APPROXIVATICN '0’!

ZX-‘USING RESONANCES 1 AND .913!!!

’9

ZXD.THE PHASE FOR RESONANCE 1 IS P1 TIHES .DF‘QZDID

ZXA'THE PHASE FOR RESCDAACE 2 IS PI TIHES 'AFA.ZOID

I9

ZAA'THE SQUARE OF hPCVER 5 IS ECLAL TC 'AEA.2!/’/1

URITE1609701 AID-AI10AIZAH98ETA'RADIUS

FORMATIZXO'ID ' °1E15ofivlv

ZXD.11 ' '0E15o40l9

ZXD'TZ ' '0EI§.A'IA

ZXD'h ' 'vEISoAAIp

ZXA'DETA'ATOR U '9E15.§9I0

ZXA'RADIUS ' .D5150‘D’I’7

A'BETA‘RACIUS

R1TA'R1TAI

fit!

00 1C IIPpZ
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I R1TAIR1TA§DR1TA

ALFA'110-P10’HPTHS,A11‘BETA.‘21IIR1TA‘.2'A10’60’A11.8ET‘..2’

ADIII-IALFA'I1.IALFA'.5IIHPThS'AIC/AIZ’BETA"?

ADZI1clALEA’11.IALFA'oSIIUPTHSPAIO/A11’DETA.’2

IEIADII 19192

2 IFIADZI 19193

DRTAISORTIAD1I’SQRTIAOZI

NTI'I

UL'DRTA‘RITA

CALL INTIUL9AINT1

AINT1IAINT

NTII

ULIRITA

CALL INT‘LL9AINT1

AIhTZIAINT

1C DIFFIIIIAINT1’A1NTZ‘PHZIPH1

IFIRITA'2.I 5C951951

h
)

51 URITEIboGEOI

98C FORHATIZX9'DIFFERENCE DIVERGES'9/11

GO TC 52

5C IFIDIFFIII‘DIFFIZ)! AC9ZD92C

20 ERR-RITA

DIFFIIIIDIFFIZI

HIZ

GO TO 3C

40 IFIABSIRITA-ERR1-.011 10099099C

9C RITA-RITA-DRITA

DRITA-DRITAIlD.

GO TC 30

ICC R1IR1TA‘A011.IBETA-1.IIA

RZIRIODRTAIA+API1.I8ETA'1.I

21IA-Rl

ZZIA-RZ

ANCDIbPTHS/I1.‘.5‘ALFA1.8.85E-12‘9.115"![1.602E‘19‘.2

1 ‘H‘IZ

ANOlIANOC/AID‘AII

ANCZIANCC/AID‘AIZ

ETEHP'9.I1E-31/3./1.386‘23‘H“2l3.16159.92

1 *(AINTZ‘A1“2

HRITEIb99851 ALFA

C85 FDRHAIIZX9'ALFA I '9E15.A9//1

COEFF .19/1 lO-ALFAIZO’

ZZTCZIIZZIZI

ETA-ALOGIlo-ALFAI

VHALLIEIA'I.386'23IETEHP/1.6C2E'19

HRITE1699601 919R29ZI9ZZ9ANOD9ABCI9ANOZ922TOZI9CCEFF9VIALL9

1 ETA9ETEHP

960 FORHAT12X9'R1 I '9E15oA9/9

1 2X9‘R2 I '9E15.69I9

2 2X9'Z1 I '9E159§9I9

3 2X9'22 I '9E15gfi9l9

A ZX9'NO DIPOLE I '9E15oQ9/9

5 2X9'BO 1 RESONANCE I '9E15.§9I9

7 2X9'NO Z RESONANCE I '9E15.§9I9

8 ZXD'ZZ TO 21 I '9E15ofi9/9

9 2X9'PEAK TO AVERAGE I '9E15.A9/9

9 2X9'V hALL I '9E15.§9/9

9 2X9'ETAIVH TO KTTOQ I '9E15ofi9l9 p
p
p
p
—
p
p
p
p
p
p
p
p
p
p
p
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R

1c
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an'ELECTRGN TEHP - '9E15.49III)

DZ-RADILSIZS.

ZI-DZ

DO BCC 1-1926

Z-ZOCZ

ANIID-ANOIIIl.-ALFA‘(1IRADIU
SDIRZI

EYARIII-ALOGIl.-ALFA‘(l/RADI
US)*I2)

COBTIBUE

CALL PLCTAIETARoANprI

GO TC 17

SICP

END ,

SUBRCLTINE lNTIXI-S)

DIPENSICN x13!

COPHON HT

COPHCB AIOoAII9A129R1TA

COPHCA ALFA98ETA

COPPLB A

‘F.10

Nt50

NsN/20241

XN-N

DXIIXF-XIIIIXN-l.)

NCCUNI-C

xxl)-xI-2.on

xt2)-)l-Dx

XIBI-AI

SIC.

DO 10 1I39N92

XIII-XIIIAZ.IDX

XIZ)-X(2)AZ.IDX

XIBD-XI3DOZ.IDX

DS-FIBT(X(11)+6.IFINT(X(2
1)AFIKT(X(31)

s-Soox13.005

RETURN

ENC

u
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‘
o
-
‘
_
_
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F
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F
F
P
p
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p
p
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FOZGRF JACK OLIN BSSR

ILCAD HATFIV

C

C

C

90

91

S)

96

99

ICC

1"-

THIS SUBRUUTINE PLOTS THC VARIABLES ON THE SAFE PLCT

EITH THE ZERO AXIS AS TEE CENTER -FAX VALUES ARE

CALCLLATED AUTOMATICALLY FOR V - ZHAX I YNAX

SUERCLTIKE FLOTZIYoloNI

OIPEBSICN CCL(10219Y110019Z(ICC)

INTEGER SIAR9COT98LANK9COL9PLLS

STARI'. '

STAR- 1547716624

DOTI'. '

DOT. 1262501952

BLANKI' '

BLANK. lC7795257b

PLUSI'A '

PLUS- 1312633600

XXXXII'X ‘

XXXXXI -4152196A8

YHAx-C.CC

ZHAXIC.CC

DO 95 KII9N

XIABSIYIKII-ABSIT"AXI

1‘11193995993

YNAXIYIK)

CONTIDUE

THAXIAOSIVNAXI

DO 1CC L‘19N

QIABSIZILIT‘ABSIZHAXI

IFIOI 1CC91C0999

ZHAX'ZILI

CONTINUE

ZHAXIAOSIZMAXI

WRITE1692COI THAXoZHAX

IFIZFAX‘YFAXI 70971971

YHAXIIHAX

ZHAXITHAX

FORHATIIII918X9'RXNAX I'9E19.095X9'*YHAX I'9E1A.6943X9'X’91CX9'Y'I

WRITE1694COI

FORNATI'I'I

URITE169ZI

FORH‘1"....O.........0.....‘........0‘...................

00.0.0.0..0000OOI00......O0.0.0...0.0.0.0.;000000..’

DO 3 1.19101

COLII) I BLANK

COLISIIIDCT

11"

DO A 1'19h

JI50.'IVIIIIYHAX01.)+1.5

KISD.‘IZIIDIZHAX+1.1+1.5

COLIJ) I STAR

COLIKIIPLLS

HRITEIO9511COLIIJT9IJ'191C119YIII9ZIII

FORMATIIX9101A191PZE9.11

COLIJIIBLANK

COLIKIIBLANK

IFII'III 25C93009300

COLISIIIXXXXX



300

250

990

196

c COLIJIIPLANK

a COLIKTIELANK

IFII-III 25C930093OO

COLIACTIXXXXX

IIIIIAS

GO TC A

COLIAEIIDCT

CONTINUE

HRITE1699901

FORMATIIIII/IIIIII

RETURN

END
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C
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EOZCRF JACK OLIN BSSR

HATFIV

THIS SUBROUTINE PLOTS THC VARIABLES ON THE SAME PLCT

NIT" THE ZERO AXIS AS TEE CENTER ’HAX VALUES ARE

CALCLLATED AUTOMATICALLY FOR Y ' ZHAX I YHAX '

SUEROLTINE ELOTZIY9Z9NI

DIFEASICN CCL110219Y110019ZI1C01

INTEGER STAR9DOT98LANK9CDL9PLUS

STARI'I '

STARI 19Q7714024

DOT... .

DOTI 1262301952

BLAhKI' '

BLANKI 1C77S52576

PLUSI'9 '

PLUSI 1312533¢00

XIXX’I'X '

XXXXXI ‘515219658

YHAXIC.CC

ZHAXIC.CC

DO 95 KII9N

XIABSIYIKII'AOSIT"AXI

IFIXI 95995993

YNAXIYIKI

CONTIDUE

YHAXIADSIYNAXI

DO ICC LI19N

QIADSIIILITIAOSIZHAXI

IFIQI 1CC91C0999

ZHAXIIILI

CONTINUE

lHAXIADSIZNAXI

HRITE1692C01 YHAX9ZHAX

IFIZFAX‘YPAXI 70971971

YHAXIZNAX

lHAXIYHAX

EORHATIIII918X9‘RANAX I'9E1§.O95X9'*YNAX I'9E14ob943X9'X'91CX9'Y'1

HRITE1694COI

FORHATI'I'I

NRITEIO9ZI

Fonn’TO....COOOOOC....00....‘C...0.........................

1 9 '

1......00000.....0....‘0....0.0.‘.....O...’.........‘.’

DO 3 1'19101

COLIII I BLANK

COLISIIIDCT

IIIA

DO A 1I19N

JI50o.IYIIIIYNAX*I.I*I.5

K-SO.‘IZIIIIZHAx+I.I+I.5

COLIJI I STAR

COLIKIIPLLS

HRITE169511COL11JI9IJI191C119YIII9ZIII

FORMATIIX9101A191P2E9.1I

COLIJIIDLANK

COLINIIOLANK

IEII‘III 25C93009300

COLISIIIXXXXX
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IIIIIIS

GO TC '9

COLISIIICCT

COATH‘UE

HRITEIO-GT?)

FORHAH/IIIIIIIIII

REIURA

END
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IIII HKB JACK OLIN 855R

ISYS Tlfle-IC

ILCAD HATFTV

IOPT AOSCURCE

(cooooTHlS PRCGRAH PLCTS THERMAL RESCAALCES BASEC LN A hKB

CAAIOOAPFRCXIHATICN AWAY FROM THE CRITICAL POINT FOR A GIVEN

C‘IIIIBESScL SERIES EL:CTRON DENSITY PRCFILE

1C

23

16

lb

(
T
‘
U
'
l
‘
L
L
J
N
P
-
D

FUNCTICN FICIXI

IFIK‘.OII 19197

FIC=1.IX“2/?.‘.2

2U TC 5L

IFEX’£)1CPI?C'21)

FICIEXPIAI/SCRTIZ.‘3.IAISQIXI°II.*I./3./XI

GO TC 3C

EICIlo‘XR‘ZIZ.“2

OXIIAIIZ.“§IZ.IIZI

IXIIbIIZ."b’I3-‘2.I*‘ZT

OXIIBIIE...8.14.‘3.IZ.TIIZI

RXIRICIIZ.“ICII5.I4.‘3.‘2.1.‘21

Rx..12’T20..12.16-.50.N9.30.20T..ZT

IXRRIA/12.I.1A‘(7.‘b.‘5.‘4.‘3.‘2.1“21

RETURN

ENC

FUNCTION FIX)

COCPLR ANCDOAMNA9A9H9TEHP9EN9EPS'CI8CONST

YI A‘OAHHA'GANHARX

DII.‘1.IH’IZICIIZIEN/EPS‘ANO‘EXPIIo-FIOIYII

IEICI 18918923

FISORTTCT‘H/SORTI3.‘BCCNST*TEVP/EFI

GO TO 16

FIC.

RETURN

END

C"“‘NAIN PRCGRA"

€96

997

998

I

N
O
U
I
l
-
r
i
-
I

DIRENSICN BETAPIICOI9ANIIIOCI

CUHHCR ANCIGAFMA9A9H9TEHP9EH9EPS9C9DCUNST

REAOISORI NSET9NRES9ANO9GAHHA9H9TEPP9ZP

QEAOTSD.T A9N9H

RER0‘5'.T TEST

URITE169QQ61 NSEToNRES

FORMATIII9ZX9'SET NUHBER IS '9139/9

2X9'RES NUMBER IS .9139/IT

HRITEIO99§7I ANOoGAHHA9A9U9TEPp9ZP9N3CT

FORPATIZXI'NO I '9E159‘9/9

2X9'GAH"A I '9E15.A9I9

2X9'RADIUS I '9E15.A9/9

2X9'RADIAN FREQUENCY I '9E15oA9/9

2X9'TENPERATURE I '9El5oA9/9

ZX9'Z CRITICAL I '9E15.‘9/9

ZXO'NUHBER OF DATA SET I '9139/9

I/T

URITEIO99987

FORMATIZX9'DISTANCE FRCH HALL'93X9'PERTLRBEU ELECTR CENSITY'9/l1

EHI9.11E'31

EPSID.85E'12

OI1.6CZE‘19

BCCNSTI1o33E‘23

KNNIN
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200

JZIZNIIXDD'IoI

II’DZ

00 1C 1319I‘I

ZIZIDZ

CALL INTIZD7VIS9MI

Y-A‘GAHFA-GAHHAIZ

D'Io‘I.IERIZIOIIZIEH/EPSIANC’EXPI1.‘FIOIYII

IEIDT IC9§09§1

BETAPIIIICo

GO TO 50

DETAPIITISORTIDTIN/SORTI3.‘OCCNSTRTENPIENI

IFIBETAPIII‘TEST160960961

ANIIITIC.

GO TC 62

ANIIIII1./SCRTIBETAPIIII‘SIN13o1415q/Ao‘SI

URITEIonSQI Z9ANIIII

CONTINUE

CALL PLOTAIAN19ANI9N)

STCP

END

SUDRCLTINE TNTIXI9XE9S9NI

DIVERSICN X131

CCFNCA ANC9GAHHA9A9U9TENP9EP9EPS9C98CONST

N‘ZC

NIN/ZRZ’I

XNIN

DXIIrF-XIT/IXN-1.T

NCCUDTIC

XIITIXI‘Zo'DX

XIZIIXI‘CX

XI3IIFI

SIC.

DO 10 1'39N92

XIITI’IITIZ.‘DX

XIZTI’IZT‘ZoRDX

XI3TIXI3TIZoRDX

DSIFIXIIII’fioRFIXIZTIAFIXI3II

SISIOA/3.RDS

RETURA

END
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.... UKBPAW JACK UL‘N BSSQ

ISYS TIHE'IC

[LOAD HATFIV

ICPT NOSULPCE

C..’.‘THIS FRCGRAp PLOTS THERHAL RESCBANCES EISEU CN A “KB

C.‘...APPRCXIFATTCN AHAY FRO" THE CRTTTCAL POINT FCR A GTVEN

COOtOOPAPABCLlC ELECTRCN DENSITY FFCFILE

FUNCTION FTX’

COPPER ANC.ALFA.A:H.I£HP.EHpEPS'OpBCCNST

Z'x

O‘lo'l.IU‘*2‘C"(/tH/EPS*ANC“1o‘ALFfi‘(l.“Z/A)“Z)

IF(D’ 18913023

(3 F=SC91(C)‘u/SCHI(3.‘BCCNSTtTth/EP)

GU 1C 10

18 Pic.

1t RETLRN

END

C.‘..‘HAIN PRCGRAH

DIVERSICN BETAP(IOO’9ANI(IOCT

CUHHCR ANCoALFADAvHDTEHPOEH'EPSOODBCUNST

pE‘O‘5'.) NSETDNRESOANUOALF‘phnTEFPrZN

READ‘59‘, AoNpH.

REflOC5o.) TEST

WRITETODQQb’ NSEToNRES

996 FURNAT‘IIDZXD'SET NUHBER IS .0139]!

l 2X0'RES NUHBEQ IS '913'19 ~

2 va'PARABULIC APPROXIHATXCN 0F PRUFILE'D/l’

HRXTEC60997’ ANUDALFADA'H'TEHPOZHvNSET

997 FDRHAT(ZXO'NU ' .0515o‘plp

1 ZXO'ILFA 3 'vEl5afivIv

2 ZXp'RACIUS 3 '9515.Qp/D

3 ZXp'RADIAN FREQUENCY ' '9515.49/9

6 ZXo'TEHPtRATURE. ' 'pEl5-‘nln

5 ZXa'l CRTTICAL * 'iElS.‘v/0

t ZXD'hUHBER OF DATA SET I '013010

7 [IT

HRITETvaQS)

998 FURNAT‘ZXo'OISTANCE FRUH UALL'93X0'PERTURBEO ELECTR DENSITY'I”.

EHtG.llE-31

EPS'E.35£‘12

O‘loéCZE‘lq

BCUNST'lo3BE'23

XNN'N

OlllFITxhh-loi

1"02

00 1C T'lvN

231*C1

CALL TNT‘ZDZH051H,

D'lo‘loIU“2‘Q..Z/EHIEPS‘ANC‘(lo‘ALFA‘Tlo‘l/A)“ZT

IF(0, 4C940'Ql

fiC BETAP‘IT'Co

GU TC 5C

41 BETAPTII'SQRT(D)‘HISQRT(3g‘BCUNST‘TEHP/EH)

50 IF‘BETAP‘IT-TEST’60'60:6I

50 TC 62

Cl ANI‘IT'lo/SORTTBETAPTI”‘SINK3.14159/4.0S)

t2 HRITElboGGQT ZoANltl)
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FUR"IT(2’OE[SobprOEl5ob’

CONTINUE

CALL FLUT4(‘Nl-AN10N!

5TCP

tNL

SUfiiiLTINE TNTTKI'XFn59N)

JIFENSILN 1(3)

CUFHGh LAD.ALFA.A.upTEHP-E”-EF3prQC£NST

N'ZC

NIH/2.2‘l

XN'N

OX'TXF-Xl’/(XN'1.’

NCCUNT'C

XTIT'7I'2o.0X

X'ZT'}I'CI

X(3)*)I

5'0.

00 1C ['3thZ

X(l)*’(l)02.‘DX

X‘2)'X(Z)9Z.‘DX

X(3)'X(3l‘2.‘DX

DS'F!)(l!T+§.*F(X(2))*F(X(3)i

S'S‘CXI3.‘US

PETURB

END



REFERENCES



6

1O

11

1?

REFERENCES

B. S. Tanenbaum, "Plasma Physics", McGraw - Hill 00.,

N. Y., 1967.
'

A. Dattner, "Plasma Resonance," Ericsson Tech.,

Vol. 3, No. 2, pp. 309-350, 1957.

"Resonances Oscillations in a Hot Nonuniform Plasma",

The Physics of Fluids, Vol. 7, No. 9, pp. 1489-1500,

Sep. 1964.

P. a. Vandenplas, "Electron Waves and Resonances in

Rounded Plasma", Interscience Publishers, N. Y., 1968.

F. w. Crawford and G. S. Kino, "The Mechanism of Tonks-

Dattner Resonances of a Discharge Column", Proc. of

the Sixth International Conference on Ionization

Phenomena in Gases, Paris, July 1963.

B. Ho and K. M. Chen, "Electroacoustic Resonance in

Plasma Layer Surrounding a Metallic Cylinder",

Proc. of IEEE, Vol. 56, No. 9, pp. 1600-1602, Sept. 1968.

P. D. Golden and E. J. Yadlowsky, "Plasma Resonance and

Standing Longitudinal Electron Waves", The Physics of

Fluids, Vol. 14, No. 9, pp. 1990-1996, Sept. 1971.

A. W. Baird III, "Determination of Electron Density

Profiles from Tonks—Dattner Resonance Data in Plasmas",

J. of Appl. Phys., Vol. 42, No. 13, pp. 5358-5361.

Apr. 1971.

J. V. Parker, "Collisionless Plasma Sheath in

Cylindrical Geometry", The Physics of Fluids, Vol. 6,

Research Notes, pp. 1657-1658, Nov. 1963.

F. W. Crawford, G. S. Kino, and A. B. Cannara, "Dipole

Resonances of a Plasma in a Magnetic Field", J. of

Appl. Phys., Vol. 34, No. 11, pp. 3168-3175, Nov. 1963.

J. L. Powell, and B. Crasemann, "Quantum Mechanics", Addison Weslev

Publ. Co., Inc., Reading, Mass., 1961.

C. Y. Lee, "Electromagnetic Scattering from a Plasma-

Coated Cylinder", Ph.D. Thesis, M.S.U., 1971.

204



13

14

205

P. H. Vandenplas, "Oscillations de plasmas finis,

inhomogenes et de temperature non nulls", Ph. D.

Thesis, Universite de Bruxelles, April 1961.

K. J. Parblakar and Brian C. Gregory, "Direct

Measurement of Dipolar Radial Electric Fields in a

resonating Plasma Column", The Physics of Fluids,

Vol. 14, No. 9, pp. 1984-1989, September 1971-



 


