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ABSTRACT

DETERMINATION OF PLASMA DENSITY PROFILE AND
OTHER PARAMETERS WITH AN ELECTROACOUSTIC PROBE

By

Jack G. Olin

The electron density profile and other plasma parameters of a
cylindrical warm-plasma column are studied through the excitation of
thermal resonances using an electroacoustic probe. The electromagnetic
field from the probe excites a series of thermal (Tonks-Dattner)
resonances as the current density is varied.

For each driving frequency, the dipole resonance and the first
three T-D resonances are recorded. In this study, it is sufficient to
measure the relative magnitudes of the plasma densities at which these
resonances occur in order to determine the density profile and other
plasma parameters such as the temperature and the number density.

In the determination of the plasma density, the thermal
resonances are used to determine the unknown parameters appearing in the
solution of Poisson's Equation in the plasma column. The boundary
conditions for the thermal resonances in the plasma column are derived
and the total phase for the thermal resonances is determined using the
WKB approximation. The dipole resonance is used to determine the
average electron density in the plasma column. The analysis leads to

numerical values for the electron density profile parameters.
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CHAPTER 1

INTRODUCTION

Knowledge of the static electron density profile of warm plasmas
in the so-called sheath region near solid boundaries is significant in
analytical work involving the plasma electron density. The sheath
region has been analyzed in plane geometries by researchers based on
approximate theoretical modols.1 The more complex problems of determin-
ing the static electron density profile in warm plasmas with cylindrical
boundaries has also been treated theoretically by 1:esearchers.2-9 When
knowledge of the functional form of the electron density profile in a
cylindrical plasma column is needed for work involving such plasma
columns, a parabolic electron density profile of the form

n () = n 1 - aDH?)
is frequently employed using some typical value for the parameter a.b'lo

This research deals with the determination of the static electron
density profile in warm cylindrical plasma columns based on experimental
data for the dipole and thermal resonances induced by an electroacoustic
probe which illuminates the plasma column with an EM field and receives
the backscattered field. The experimental paft of the research deals
with experimental determination of the discharge current levels in the
plasma column at which thermal resonances occur for a given excitation
frequency w.

The theoretical part of the research considers possible
functional expressions for the static electron density in warm cylin-

drical plasma columns based on a study of Poisson's Equation in the

plasma column. The phase conditions for thermal resonances are studied
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and the relationship between the average plasma frequency and the
exciting frequency is developed. The commonly used parabolic profile
approximation is considered as an approximation to a Bessel function
solution to Poisson's Equation. Next, a Bessel function approximation
to the Poisson Equation is considered.

The numerical work done as part of this research deals with the
solution of simultaneous equations based on the phase condition for the
thermal resonances and the electron density profiles proposed above.
Graphs on the electron densities obtained on the basis of these
different approaches are presented and compared. It is found that an
appropriate Bessel function approximation of the profile density may
well represent a functional form considerably more representative of
the actual profile than the conventional parabolic profile.

Chapter 2 presents the basic theory of thermal resonances in the
sheath region of cylindrical plasma columns. Phase conditions are
studied using WKB approximations of the electron density perturbations
and the ratio of the average plasma frequency <wp(r)‘ in the plasma
column to the exciting frequency w is developed.

Chapter 3 deals with the formulation of Poisson's Equation in a
cylindrical plasma column and considers various functional forms as
possible solutions. Simultaneous equations are presented for each
assumed functional form whose numerical solution permits determination
of all parameters appearing in the proposed profile functions.

Chapter 4 presents the numerical results and shows graphs of the
electron density profiles obtained. The profiles based on different

functional forms are compared.
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2.1

CHAPTER 2

BASIC THEORY OF TEMPERATURLE RESONANCES IN PLASMA SHEATHS

Introduction

The occurrence of a plasma sheath in the vicinity of a
plasma boundary such as a solid wall, metallic or nonmetallic, is
well known. The plasma sheath represents a region of reduced
electron density due to the lcss of electrons hitting the wall
associated with a negative potential region near the wall. The
sheath phenomenon is briefly discussed to establish the geometry
of the problem at hand. The well documented mathematical treat-
ment of the sheath problem is not presented here but a brief
phenomenological discussion appears in order.

Electrons hitting a nonmetallic wall mostly recombine with
positively charged ions. This leads to an electron density
profile in the vicinity of the wall, the so-calléd sheath region,
which decreases monotonically towards the wall. Figure 2.1.1 shows
a typical plasma sheath for a semi-infinite plasma slab with a
solid boundary at x = 0. The relative electron density ne(x)/no
is shown where n_ is the electron densitv as x approaches infinity.

The potential V(x) also goes monotonically from zero at
X = » to a negative wall potential. The commonly accepted sheath
model assumes an ion drift in the sheath region which results in
an approximately constant ion density also shown in Figure 2.1.1.
Typical values determined for the ratio of the relative wall

eV

potential nw = ifz are in the neighborhood of 2. This value is

shown to be independent of electron density profile parameters.



Fig, ?.1.1 Typical electron,ion and potential

profiies in the sheath region of a
semiinfinite plasma in the vicinity

of a solid boundary. Wwith the

assumption of ion drift towards the wall,
the ion density is not significantly

changed in the sheath region.
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Even though it may vary somewhat in a cylindrical plasma sheath it
should nevertheless be approximately the same.

The electron density and potential distributions are more
complex in a cylindrical geometry as typically represented in
Figure 2.1.2. A parabolic electron density profile is frequently
assumed when cylindrical plasma columns are studied. The main
goal of this thesis is, in fact, the experimental determination of
the electron density profile assuming a parabolic profile, along
with other functional forms of the profile. The tool employed in
this study is an electroacoustic probe used to excite thermal
resonances in the plasma sheath region as discussed below in
section 3.2. Figure 2.1.3 shows typical sketches of thermal
resonances that may be excited in the sheath region of a cylin-
drical plasma column. The cylindrical column of warm plasma with
the sheath region as shown is illuminated by an incident electro-
magnetic wave of frequency w. The incident wave interacts with
the plasma in the sheath region near the wall where the plasma
frequency wp(r) is less than w to excite electroacoustic waves as
shown in Figure 2.1.3. Figure 2.1.3 is only intended to represent
a typical sketch of such resonances. The total phase of the mth
thermal resonance is assumed to be mm. In subsequent sections of
this report a more refined value for this total phase value is
established.

Based on this introductory discussion of the sheath
phenomenon, the basic theory of thermal resonances in plasma
sheaths is presented in this chapter. Boundary conditions for the

thermal resonances at the wall are examined. The phase condition
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normalized static ion and
electron density

n (0)/ng |

r=0

Center of —
Wall

Plasma Column " Thicknes
of Glass
Tubing

2.1.,2 Typical electron and ion density
profiles in the sheath region of
a cylindrical plasma column.
Assuming ion drift towards the solid
boundary, the ion density does not
significantly change in the sheath
region.
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Fig.

Glass wall

=7

2.1.3

Typical sketches of the first three thermal
resonances (m=1,2,3) occuring at a given
frequency of the incident EM field at
three discharge current levels producing
density profilesn , n_, and n_ .
e1 e2 283

The resonances occur whentu':mp’ at any
current level which corresponds to P

n_ (4 Mg €, W
e, 1)=ne2(t2)=ne3(t3)= ———;—2———
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2.2

for the possible occurrence of electroacoustic thermal resonances in
the sheath region 1s examined using a WKB approximation technique,
and finally dipole resonances in the cylindrical plasma used in

the experiment are studied for the purpose of obtaining a value

for the proportionality constant Cp relating the average plasma
frequency <wp(r)> to the exciting frequencv w by

<wp(r)2>

C = ( ).

w

General Theory

The Maxwell and moment equations applicable to the plasma

region are

VxE=-— uoH (2.1)
and

qu-—en%7+—g—t—eo€ (2.2)

where E and E'respectively represent the total electric field
intensity and total magnetic field intensity in the plasma; ne
represents the static electron density distribution in the plasma

which is non-uniform in the plasma sheath near-a boundary; v
represents the mean ac electron velocity so that -ene;; is the
leading term of the mean induced electron current. This formula-
tion is bas:d on the assumption that the positive ion motion is
negligible in comparison to the electron motion. In the subsequent
analysis the total instantaneous electron density distribution
ne(;,t) will represent the dc component neo(;) plus the ac

perturbation term n1(§;t). All other quantities associated with
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these two components of electron densit: such as the electric
field, and the velocity are also represented by a superposition of
dc and perturbation terms.

In order to study perturbations in the plasma sheath, two
moment equations must be used. The first moment equation of
interest is the continuity equation

on

3{3 + 9V . (neV) =0, (2.3)

Since ne(x,t) = neo(x) + nl(x,t), the continuity equation becomes

8n1(§,t)

T +9V-.nv=0. (2.4)

Since né; = “eé; + n,v, where n,v is a product of two perturbation
terms and therefore represents a negligible second order effect,

equation (2.4) becomes

8n1
T+V°neov=0. (2.5)

From the vector identity
Ve dA=¢V « A+Vd » A (2.6)

equation (2.5) can be rewritten as follows

3n1

szf-+ ne Vev+veV Ne, = 0. (2.7)

The second moment equation based on the summation of momenta is

given by

v - _e= _ YKT
at m total mne

Vne . (2.8)
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Here the density gradient Vne is associated with the pressure

gradient Yp. For an isothermal nrocess,

p = nkT
and

Vpr = kTVn .
e

For the case of an ac perturbation, nl(i,t), due to an external

harmonic force, the total electron density is
ne(x,t) = neo(x) + nl(x,t) .

In the presence of ac perturbation at high frequency the adiabatic
law

P n = constant

must be used because the temperature is not equalized in the

region of high frequency electron perturbations. vy is the ration
of specific heats and is given by (m + 2)/m where m is the degree
of freedom of the gas. For hiph frequency longitudinal electro-

acoustic plasma oscillations, m = 1, so that for these oscillations
Yy =3 | (2.9)

Separating equation (2.8) into its dc and ac components,

the following equations result. The dc equation is given by

0=-—=E, =--—-— Vneo&) . (2.10)
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The ac equation is given by

— e — 3kT -
+w=-=F - he m n, (x,t).  (2.11)

2|

Solution of the dc equation for Ne, in terms of the potential

¢dc(;) in the plasma proceeds as follows:

Ly (x) = = V4, (x) (2.12)
v, () = n::e Tng () (2.13)

A one-dimensional component of equation (2.13) becomes
(2.14)

d kT d
In ¢(x) = ene, Ix “eo(x)

fd¢(x) = —le(—'[—‘ ;é—- dneo(x) + K
o

kT
d(x) = - 1n neo(x) + K

1n neo(x) = E%%KL + K'

ed(x)
neo(x) = K'' e kT
K, K', and K'' are related arbitrary constants. Defining n  to be

the electron density where ¢(x) = 0, K'' = n_; therefore
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ed(x)
kT (2.15)

neo(x) =n_ e

which represents a Maxwellian dc electron density distribution

which 1s used in the subsequent plasma column analysis.

In order to analyze the ac behavior of the plasma it is

necessary to combine equations (2.5) and (2.11) which are repeated

here for reference:
Continuity Equation:
3n1(;;t)
at

+ 7 - neoV =0 (2.16)

Ac Momentum Transfer Equation:

LY W Gt (2.17)

¥+ vw = - —
ot m ac ne m

Since the ac perturbation of the electron density nl(i,t)

is excited by a time harmonic incident EM wave with time dependence

of the form Re ejw , the system of equations may be transformed

into the complex phasor domain:
(2.18)

jun, + v . ne Vv = 0.

and
jw; +vw=-SF- kT In (2.19)
m ne m 1

In equations (2.18) and (2.19), the functional notation has been

dropped for simplicity with the understanding that
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(1) n, represents the phasor transform of nl(;;t) and is a function
of §'only.
(2) ;'represents the phasor transform of ;K;,t) and is a function
of x only.
(3) E is the phasor transform of E(x,t) and is a function of x
only.
Maxwell's equations (2.1) and (2.2), for ac variations

only, become (after phasor transformation)

VxE= -jwuaﬁ (2.20)

and

VxHs= -enea; + jwe&E (2.21)

To obtain a solution for n,, a differential equation for n, is

derived taking the divergence of equation (2.21), relating E to v:

VeVUxHs=-eV o (neov)+jweov-'z'

Therefore

v . (neoV) (2.22)

From equation (2.18)

v . neo‘G = —jun, (2.23)
Equation (2.22) becomes
_ en,
T o E = - ———e (2.24)
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In order to eliminate E, the divergence is taken of equation

(2.19):
— e 3kT
(jw + v)V vV = - -m— v E - neom Vznl (2.25)
Combining equations (2.25) and (2.24) yields
e2n
- 1 3kT 2
(ju+ V)V ¢« v =+ me, - he_m v n, (2.26)

From equation (2.23)

A neo;-= —juml (2.27)
and using vector identity equation (2.6),
vV . Ne V = fe_ Vev+yv e Vneo = —jwnl (2.28)
It follows that
_ jun v ¢ Vng
v - v - l - o . (2.29)
neo neo .
Substituting equation (2.29) into equation (2.26) yields
- 2
-(jw + v)jwn1 +(Jw + V)v V“eo e ny 3KT 2
- = - V"n, (2.30)
e e me ne m 1

After rearranging, a differential equation for n, is obtained:

2 2
_— wP T dwv n. = jw + v v
1 3kT 1 (3kT/m)
)

. Vneo (2.31)
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If as a first approximation the collision frequency is set to

zero, equation (2.31) becomes (with Vo2 = 3kT/m)

2 2
w - w
v2n1+_2__Ln-JL;V-Vn (2.32)
v

e
v 1 o
2 2
where wp is the plasma frequency (e ne)/(meeo). This is an

inhomogeneous Helmholtz equation in n., with a forcing function

1
(jw/VZ)(;.' Vneo). This forcing function represents the driving

force for the perturbation in n Careful examination of this

1°

driving force shows that it is nonzero only if two conditions are

satisfied:

(1) There must exist a nonzero gradient of the static electron
density e, in the region of interest, and

(2) there must exist a component of ;-parallel to the electron
density gradient Vneo.

The first condition is satisfied in the sheath region of a

cylindrical plasma column where an electron density gradient exists

in the radial direction. The second condition is satisfied if an

electron velocity perturbation in the radial direction 1is set up

by an electric field component in the incident EM field in the

radial direction. Thus the velocity v in the driving function

represents the coupling term between the radial component of the

incident EM field and the electron density perturbation n Here

ll
the radial component of the EM field represents physically the

driving force exciting the electron density perturbation.
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In the region of interest near the wall of the plasma
cylinder the geometry of interest is shown in Figure 2.2.1. Here
the variable x is introduced representing the distance from the
wall (x = 0) into the plasma normal to the wall. Since the
characteristic dimension of the sheath region is relatively small
compared to the radius of the plasma cylinder, it is justifiable
to treat the section of the sheath region shown in Figure 2.2.1 in
planar geometry. Thus equation (2.32) may be rewritten for that
region as a one-dimensional equation in x as

d2n wz -w 2(x) dne

+ P = (G V) (v
dx VZ 1 x dx

2) (2.33)

The corresponding homogeneous equation is

d2nl wz -w 2(x)
+ 2P n, =0 (2.34)

dx2 Vv

Equation (2.34) has a natural oscillatory solution in the region
of x in which wz is larger than wi(x). This is the region between
the wall (x = 0) and the so-called critical point (x = xp) where

w = wp. For values of x larger than xp, where m2 is less than
wpz, the solution represents an evanescenﬁ waQe. The natural
oscillatory solution for n, in the sheath region is of course
subject to boundary conditions at the wall and the functional form
of wp(x), where

2
2 e neo(x)
mp(x) = —— (2.35)

m €
e o

In the subsequent sections the boundary condition for n, at the

1
wall is examined, followed by a study of the total phase require-
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.Glass wall

e—Glass X
wall 0
thickness
|
|
|
|
ny
| Q 't|1

2.2.1 Geometric arrangement used in the region
where thermal rrsonances occur. n
represents a typical waveform of 1
a thermal resonance; t, is the critical
point where W=w . The one-dimensional
approach is just?fied in this region
because t,is typically much smaller than
the radiu% of the plasma column,a.
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ment between the wall and the critical point xp for the existence

of natural resonances.

Determination of the Boundary Condition at the Wall

The boundary conditions at the wall can only be established
on phenomenological grounds. It is reasonable to assume that the
velocity v associated with the electroacoustic wave motion goes to
zero in the immediate vicinity of the wall. For electroacoustic
standing wave perturbations in a uniform dc electron density
(neo independent of x) it can be shown that the boundary condition

vwall = () corresponds to the boundary condition that n, is a

maximum at the wall as follows: 1
From equation (2.18)

jun, + V- neoV =0 (2.36)
and using vector identity equation (2.6)

jun; = -ne V + V4 Vo -V (2.37)

and letting Vneo = 0 near the wall the following equation results

in one-dimensional form in x:

d
jwnl =-Mne —V. (2.38)
Since we are assuming a standing wave in n, and v, the functional
dependence of v on x is of the form
v(x) = A sin(kpx + 6) (2.39)

where A and 6 are the arbitrary magnitude and phase constants
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respectively. For the assumed condition that v goes to zero at the

wall and letting x = 0 at the wall, equation (2.39) becomes:
v(x) = A sin(kpx) (2.40)

Substituting equation (2.40) into equation (2.38) yields

jwnl == Ne  Ix A sin(kpx) (2.41)
Therefore
Ak
n; = - ne (EGR) cos(kpx) . (2.42)

It is important to recall that n, represents the phasor transform

1

of the original time harmonic function nl(x,t). The phase term

(- %;) shows that a /2 radian time phase difference exists between
n, and v. In addition, a spatial phase difference exists with

nl(x) leading v(x) by 7/2 radians. This means that at the wall

(x = 0), nl should have a maximum corresponding to the zero of v

at the wall. This phenomenon is shown graphically in Figure 2.3.1.
It should be understood that the sketches for v and n, in

Figure 2.3.1 are only intended to show the relative phase at the

wall. It is clear that the actual thermal resonances have varying

phase constant and magnitude away from the‘wali which is not

represented here.

Determination of the Total Phase for the Thermal Resonances

Figure 2.4.1 shows the typical electron-density contour
expected in a cylindrical plasma column.
The propagation constant for electroacoustic waves in a

warm plasma, kp(x), is given by:
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Glass wall

Typical thermal
resonance in under
dense region ,

under-dense region

l
|
//l///////’-where kp(x) is real :

The under-dense region in which thermal
resonances may occur if the phase con-
ditions are satisfied and an appropriate
M field illuminates the plasma column.
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2
w w (x)
kp(x) =y a--L2—

2
o w

1/2 (2.43)

where: w = radian frequency of the electroacoustic wave

wp(x) = plasma frequency as a function of x
Vo = j%gi = thermal electron velocity
e
k = Boltzman constant
T = electron temperature
m, = electron mass.

The propagation constant kp(x) is real only in regions in which
wp(x)zlw2 < 1. 1In Figure 2.4.1, kp(x) is real in the region
0 <x < xp, so that an electroacoustic wa'e can propagate between
x =0 and x = xp. This permits electro--oustic standing waves of
a given frequency w to be excited in the sheath region between
x =0 and x = xp as long as the total phase of the standing wave
satisfies the phase conditions to be derived. The boundary
condition at x = 0 was established in section 2.2. It is now
necessary to determine the total phase condition between x = 0 and
X = xp. |

The standard time-independent wave equation in one dimension
for electroacoustic waves, equation (2.34) is repeated here for
reference:

2

dn1

dx2

2 -
+k (x) n, =0 (2.44)
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where nl represents the phasor transform of nl(x,t) and is a

function of x only. In order to establish the total phase of Ny
the WKB approximation is used; nl(x) is expressed in terms of an
x-dependent magnitude function ¢(x) and an x dependent phase term
er kp(x) dx as follows:11

X
tif k (x')dx'
p

nl(x) = ¢(x) e (2.45)

where the plus and minus signs in front of the phase term
correspond to waves propagating in the negative and positive x
directions respectively. It is now necessary to find an equation
in ¢(x) from which ¢(x) can be determined. This is accomplished
by substituting the assumed solution for nl(x), equation (2.45),

into the wave equation (2.44),

jx fx
gﬂl _de . 3 | kp(x )dx o Sk 00 e i kp(x )dx
dx dx “p
2 x L 3
d"n 2 i k (x')dx' +H k (x')dx'
21 - 14% e / P + %i e j P (xik (x))
dx dx X P
fx k_(x')d fx (x')d
i x')dx’ ~ 1 k (x')dx'
+ %% e P (tikp(x)) + ¢e P
X
9 tif k (x')dx' dk (x)
© (k) + ge P (+1 —E—)
dz"l a? d 2 dkc (x)
5 = (-—%: 20 k (x) 3% 4+4(- k %(x) + 1 —B—))
dx dx P dx P dx

x
ti_[ k (x')dx'
*x e P
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Therefore equation (2.44) becomes

2 dk (x)
d°¢ dé _ 2 P 2 =
dxz % Zikp(x) ™ kp (x)¢ = 1 ax ¢ + kp (x)¢ =0 (2.46)

2 dk (x)
i—;#tuk (x)-?ti—-da—¢=0
dx P x x

2 dk (%)
1 d"¢ dé 1 p
+ (2L~ + $) = 0 (2.47)

ikp(x) de dx kp(x) dx

If, in the region cf interest, ¢(x) does not change rapidly as a
function of x, the first term in equation (2.47) is negligible
compared with the other terms. In the electroacoustic standing
waves at hand, the first two, or in some cases, three resonances
are considered, so that approximately one to three half-wavelengths
of electroacoustic standing wave are expected in the sheath region.
Therefore the variation of the peak magnitude of Ny ¢(x), in the

vicinity of the turning point is quite small and the second
2 .
derivative term, Q_% , may be neglected. The resulting equation
dx

in ¢(x) is given by

dk (x)
2 d¢ 1 p
% dx + ) ax = 0 (2.48)
Therefore
dk_(x)
2d¢ L _D 0

¢ kp(x)
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Integration leads to the following solution:

dk (x)
da¢ _
2/¢ T th
1n($2) = - In(k (x)) + In(K,)

1n(¢?) = InG—
P

K
¢(X) = ___._3_._

(2.49)
/kp(X)

where K3 is an arbitrary integration constant. Thus, the
expression for nl(x) postulated in equation (2.45) takes the form:
x J
+
1 * f kp(x‘)dx

nl(x) = K —— e x (2.50)
Vkp(X) p

where kp(x) is real for x f_xp.

In the region where x is larger than xp,kp(x) is
imaginary and may be written as ilkp(x)[ so that nl(x) for
xp < x is most conveniently written as

X
) :1] lkp(x')ldx'

L) = K—— e (2.51)

Since only an attenuated wave is expected in this region, the

positive term in the exponential is not applicable so that:
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X
1 - f |kp(x')[dx'
nl(x) = K——— e (2.52)

Thus the expressions for nl(x) are summarized as follows:

X
K *i k (x')dx'
———17__— e { P for O<x<x
/E;YX) D P
n) (x) =¢ ) (2.53)
X
Kz . - Jf |kp(x )|dx for x)xp
Jlkp(X)l *p

Since the electroacoustic waves between x = 0 and x = x
represent standing waves, equation (2.53) for that region may be

conveniently written as

! P
nl(x) = — sin(JrK k (x')dx' + 0) (2.54)
kp(X) P

X

where 0 represents an arbitrary phase constant. This expression

breaks down in the limit as x goes to xp where Kl/dkp(x) becomes

unbounded. Therefore another formulation is required for the

vicinity of x = x_: Since k 2(x) -l (w2
P P VOZ

wp(x) is a slowly changing function of x, the expression for

- wpz(x)), where

kpz(x) can be linearized near x = xp as follows:

2 -
kp (x) ;—2' (x - xp) (2.55)
o

This 1s a linear function with a value of zero at x = xp as
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required and a slope equal to (- —25).

\)
o

Defining a new variable

1/3

( 2) ( - xp)
o
leads to:
2 (& 2/3
kp (2) —) z

\Y
o

Transformation of the original wave equa

The wave equation (2.34) from section 2

d2n1 2
7 + k “(x) n, = 0
dx 4
Now:
d“l dn M odz _ ( a
dx dz dx dz
o
and
dzn dn
1,4 1, .4 1 "y ydz
d 2 dx ‘dx dz ‘dx dx
x
2
d nl 2/3
=— (= 2)
dz \')

(2.56)

(2.57)

tion proceeds as follows:

.2 was

1/3
2
_d fﬁ;( ay1/3 (a,1/3
T dz dz v 2 v 2
) )
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Thus the wave equation in z applicable to the vicipity.of

X = xp becomes:
d2n

dz2

-2zn =0 (2.58)

The solution to equation (2.58) is given in terms of the Airy
function as follows:

N 2
o s
nl(z) P cosgg--+ sz) ds (2.59)

o
where No is an arbitrary constant. For large values of |z|,
equation (2.59) has the following asymptotic approximation:

for z > 0 which is equivalent to x > xp

No -2/323
—_— e

1/4

/2

nl(z) = (2.60)

27 z

and for z < 0 which is equivalent to x < xp

N .
(o]

;E—z:;;TTZ sin(% (-2)3/2 + n/4) (2.61)

nl(z) -

See Figure 2.4.2 for a typical graph of the Airy function

in the vicinity of z = 0. Since equations (2.53) and equations
(2.60) and (2.61) should agree at some distance from x = xp, where
the linear approximation for kpz(x) still holds, the two solutions
may be compared. In the region x < xp, equation (2.53) gives

(in terms of the variable z, using equation (2.54))
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Kl
3
[ @ Bt

and after performing the integration in the phase term,

K

0
n, (2) = sin(f (-z)Y2 4z' + ) (2.62)
Z

3/2

n (2) = sinG (-2 + 0 (2.63)

13
(a/v 2 (-2

The phase term in the argument of equation (2.63) agrees with the
phase term in equation (2.61) if
0 = w/4 (2.64)

Thus the WKB formulations for nl(x) in the two regions become

x
exp (- Jr kp(x') dx' for x > xp

Jkp(x) .
s)

nl(x)-< 5 (2.65)

K

v

x

P
sin(.j- k (x') dx' + n/4) for 0 < x < x
mp(x)' . p p

The significant result from this section needed in the subsequent
determination of the electron density profile from the thermal
resonance data is an expression for the totai phase of these
thermal resonances between the wall and the critical point. This
phase expression is now obtainable as follows. From equation

(2.54) and (2.65) it is seen that at the wall where x = 0,

X

K p
n (0) = —2— sin([ k (x') dx' + 1/4) (2.66)
vi_(x) P
P 0
must represent a maximum of nl(x). This leads to the condition
that
xP
( kp(x') dx' + n/4) = (2m + 1) (n/2) (2.67)

0
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where m is a positive integer. Therefore the total phase integral

becomes

X
p

kp(x')dx' = (2m + 1)(n/2) - n/4

or

kp(x')dx' = (m+ 1/4)7 (2.68)
0
Figure 2.4.3 shows typical wave forms of the thermal resonances
to be expected in the plasma sheath region. Only the phase shown
in Figure 2.4.3 for the various resonances is significant in
conjunction with this discussion; the magnitudes are merely
representative of typical waveforms.

The phase integral in equation (2.68) is used in the
analytical techniques developed in section 3 for the determination
of the electron density profiles in cylindrical plasma columns.

The WKB approximation developed in this section for the
thermal resonances is also used subsequently to graph examples of
thermal resonances with normalized magnitqde for actual cylindrical
plasma columns based on the numerical results for the electron

density profile ne(r) presented in Chapter 4.

Development of Relationships between Dipole Resonance Frequency

and Plasma Frequency in a Cylindrical Plasma Column

In the determination of the electron density profile in a
cylindrical plasma column based on thermal resonance data, it is

necessary to know the relationship between the exciting EM wave
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frequency w and the average plasma frequency <mp(r)> in the plasma

column.

<wp2(r)> -c w2 (2.69)

where Cp is a proportionality constant to be determined. An
exact solution for <wp(r)> as a function of w requires knowledge
of the electron density profile in the cylindrical plasma column.
Such exact analyses have been performed based on an assumed
parabolic electron density profile subdividing the plasma into
cylindrical sublayers and performing a numerical analysis on the
equations resulting from the boundary conditions at the walls and
between the strata.12

Since it is the objective of this research to determine the
electron density profile in the plasma cylinder, it would be
inappropriate to presume any specific profile a priori. However,
an approximate value to Cp is sufficient for a profile analysis.
It is, therefore, appropriate to base the determination on a
uniform plasma with a uniform plasma density wpuso that the
average <mp(r)> in the actual plasma cylinder corresponds to
wpuof the assumed uniform plasma.

It has been shown that a quasi-static approximation is
appropriate in many cases?slme test for the validity of the
quasi-gtatic approach in any specific case is based on an examina-
tion of Maxwell's Equations for the plasma region in the absence

of a uniform magnetic field. Maxwell's Equations in the plasma

region are:
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VxB = +jwuoeé§ (2.70)
VxE =-juB (2.71)
VeB=0 (2.72)
V.E=0 (2.73)

Taking the curl of equation (2.70) and (2.71) and combining the

results leads to the homogeneous Helmholtz Equation
2 2. =
(v° + E,HoY JE=0 (2.74)
2 2
Letting ke = uoep, equation (2.74) becomes
v +x HE =0 (2.75)

Now in the quasi-static approach the system may be solved by use

of Laplace's Equation
2
Ve =0 _ (2.76)

Expressing equation (2.76) in terms of E by taking the gradient

of equation (2.76) leads to
2

In comparing equation (2.77) for the quasi-static approximation to
the homogeneous Helmholtz equation (2.75) it appears that the
quasi-static approximation is justified if ke2 is negligibly

small. Studying, for example, a one-dimensional application in x

of the two equations, equation (2.75) becomes
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a2 2

— E(x) + k E(x) = 0 (2.78)
e

dx

The solution to equation (2.78) is

E(x) = K cos(kex) + K sin(kex) (2.79)

1 2

oE
Given the boundary conditions Eo and (ax)o at x = 0, Kl and KZ

can be determined as follows:

K. = E (2.80)

(EE) = GKlke sin(kex) 4+ K

% o ke cos kex)o (2.81)

2
so that
9E 1
KZ (3x)o (E:)

Thus the solution of equation (2.78) becomes

SE sin(kex)

E(x) = EO cos(kex) + (3;)0 -—-——k-e-—-— (2.82)
On the other hand, the solution to

32 ; )

— E(x) = 0 (2.83)

Ix
is

E(x) = le + Kz (2.84)
where from the boundary conditions Eo and (%Ebo at x = 0:

K, = E (2.85)
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and
JoE
(_8—):)0 = Kl (2.86)
It follows that
oE
E(x) Eo + (3;)0 x (2.87)

For values |kex|2 << 1, the solution to the Helmholtz Equation,
equation (2.82), approaches the solution to Laplace's Equation

(2.87), because equation (2.87)

oE
E(x) = Eo + (3;)0 x

is in fact the first order Taylor series approximation of equation
(2.82)

sin k x
e

3E
E(x) = E_ cos(k x) + (3;)0 k,

Thus the condition for using a quasi-static approximation is:
2
|kex| << 1 (2.88)
In terms of the cylindrical plasma column this means that
2,2
|epu°w d, | << 1 (2.89)

where dc represents the characteristic dimension of the system;
w is the incident EM wave frequency, M, is the free space

permeability and
2

“p
€ " € 1 - 57)
w
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if the collision frequency v is assumed zero. In the experimental
system at hand, mp is in the order of 20 x 109 rad/sec, w is in the
order of 10 x 109 rad/sec, dc may be taken as the radius a = .007
m, and €5 is the free space permittivity all taken in mks units.
w2 /2 2 .2 -2
Thus Ieo(l - —%—0 MW dc | is in the order of 1 x 10 © so
w
that the quasi-static approximation is justified in this analysis.
Consider the geometry of a cylindrical plasma column shown

in Figure 2.5.1. The solution of Laplace's Equation

v2¢ = 0 (2.90)

in cylindrical coordinates with z-independence can be expressed as

series solution

n inb

6= (K r + Kan‘“) e (2.91)

where n is an integer unequal zero. In regions 1 through 3 as

indicated in Figure 2.5.1, the solutions become:

¢1 = Anrn cos (nh) ' (2.92)
n -n

¢2 = Bnr cos(nb) + Cnr \ cos(ne) (2.93)

¢3 = D“rmn cos(nd) + " cos(nb) (2.94)

where an exciting field of the form " cos(nf) is considered.
Since in the system at hand the free space wavelength of the
exciting EM wave is much larger than the radial dimension, the

dipolar contribution (n = 1) is most significant so that the
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Glass wall
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Fig, 2.5.1 Geometric arrangement of cylindrical plasma
column contained in a cylindrical glass
discharge tube of wall thickness b. The
inside radius is a while the outside radius
is c.
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problem can be simplified significantly by rewriting equations

(2.92) through (2.94) for n = 1:

¢, = Ar cos (0) (2.95)
¢, = Br cos(8) + C % cos (8) (2.96)
¢3 =D % cos n(8) + r cos(6) (2.97)

Continuity of the potential ¢ and the normal component of the
electric displacement at the two boundaries r = a and r = ¢ permit

solution of the arbitrary constants. D is of primary interest

w

because it is maximum at the value —E£ at which the dipole

resonance OcCcurs.

The system of equations to be solved is:

a -a -1/a 0 A 0
0 c 1/c -1/c B c
‘g
€ -€ 0 C = 0 2.98
o . 4 (2.98)
0 € - — D €
2 2 o
L. 8 c c L J L -

The value of the arbitrary constant D must be maximum at the
dipoie resonance. Since D can be expressed in terms of Cramer's
Rule, it is evident that its maximum value is obtained by setting
the determinant of the coefficient matrix in equation (2.98) equal

to zero,
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a -a -1/a 0
0 c 1/c -1/c¢
=0 (2.99)
€ -€ € /a2 0
P g g
2 2
0 eg -eg/c co/c

Letting €gr represent the relative permittivity of the glass,

= ¢c€ , and € represent the relative permittivity of the

€
g8 o Pr
plasma, ep = coep , the expansion of equation (2.99) becomes
r

(/a2 + 1/¢he (L+e ) + (/a2 - 1/c%)
&y Pr

€ - € = 0 2.100)

( P gr ) (
Equation (2.100 may be solved for cpr which in turn is used in
the numerical determination of wpz/w2 as follows. Given
numerical values for the radial dimensions and the relative

permittivity of the glass, €g, = S, a= ,007 m, and ¢ = .008 m:

Since ER = ] - —g— =1 -~-C

w
This value for Cp = —g-is used in the subsequent numerical
w
analysis. The value for Cp agrees well with values obtained by Lee12

for similar discharge columns.
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CHAPTER 3

DETERMINATION OF ELECTRON DENSITY PROFILE IN CYLINDRICAL
PLASMA COLUMN BASED ON THERMAL RESONANCE DATA IN THE SHEATH REGION

3.1 1Introduction

When an electromagnetic wave is incident on a cylindrical
plasma as shown in Figure 3.1.1, a dipole resonance is excited at
a frequency w depending on the average plasma frequency wp(r) in
the plasma. Furthermore, thermal resonances may be excited in the
sheath region near the wall at certain combinations of frequency
and discharge current levels. These thermal resonanc:-=s represent
electroacoustic waves. The sheath resion is the region near the
wvall in which the electron density is reduced from its value at the
center. It is well known that the electron density decreases
towards the wall along with an increase in negative potential away
from the center;1 The propagation constant associated with the
electroacoustic wave, kp(r), is a function of the radial distance

r in the plasma column and is given by:

2
w_ (r)
k(1) = 4 a - 2yt (3.1)

o w

Here wp(r) is the plasma frequency as a function of r defined as:

e2n (r)

2 e
wp (r) —E;E;——' (3.2)

where ne(r) is the static electron density as a function of r, e
is the electron charge, m, is the electron mass and € is the free

space permittivity; w is the frequency of the incident electro-

41






42

-

.lot A
|
{
- Fl
S K ] _
A Po \
Glass wall

Fig. 3.1.1 A cylindrical plasma_column illuminated by
TM field as shown. B and 'E_ " represent
0y 04
the transverse and longitudinal components
of electric field respectively.
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magnetic field. Thermal resonances can exist, if in the so-called
sheath region near the wall, the electron density, and therefore
wp(r) is small enough to yield a real value for kp(r). Since in
fact ne(r) and therefore wp(r) increase monotonically away from
the wall as discussed in Chapter 2, there may exist for a given
frequency w of an incident EM wave a point in the plasma column,
say r = rp, at which v = wp(r), so that kp(r) is real for r > rp
and kp(r) is imaginary for r < rp. Under these conditions thtermal
resonances may exist between r = rp and the wall where r = a for
frequencies w for which the total phase of such resonances
satisfies the total phase condition derived in Chapter 2. It was
shown there that the total phase for the mth resonance must be

(m + 1/4)w. If an appropriate functional description of the
electron density profile can be formulated, the unknown parameters
appearing in such a formulation can be determined from pertinent
data regarding the thermal resonances. In the following section,
the experimental procedure is presented for collecting thermal
resonance data followed by a formulation of useful functional forms

of the electron density profile ne(r) and their analysis.

Experimental Procedure

The experimental arrangement for obtaining plasma resonance
data in a cylindrical plasma column is illustrated in Figure 3.2.1.
The experimental technique is based on the excitation of the dipole
resonance along with excitation of thermal resonances in the sheath
region in a bounded cylindrical plasma column in glass tubing by
use of an electroacoustic probe. The probe consists essentially of

an open-ended coaxial line fed by an RF generator through a direc-
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High Voltage
DC Power Supply

« | — o Current
Sweep Transformer
Trans- 110 V .
former Lo J,

Plasma rad. a=7mm -
Variac Glass
thickness b=1mm °
Filament
‘!—F-— Plasma Column Supply
E.A. [|] Probe o
Anode
Glass -_
thickness
b=1(mm) @
Directional
Coupler CRO
-section RF X
of plasma ®
cylinder of Detector e 4
inner radius _i_ =L
a = 7(mm) g -
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Generator

Fig. 3.2.1 Experimental arrangement for obtaining plasma
resonance data in a cylindrical plasma column.
An electroacoustic (E.A.) probe is used to
excite the dipole and thermal resonances in the
plasma column. The E.A. probe also picks up
the scattered field whose peaks indicate the
presence of resconances in the plasma.
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tional coupler. 1In order to excite electroacoustic resonances in
the plasma column, the open end of the probe is placed near the
glass wall containing the plasma column. The inner conductor of
the coaxial line is extended a small distance beyond the open ~nd
of the outer conductor so that the RF radiation contains the
necessary longitudinal component of E field to excite the desired
longitudinal electroacoustic resonances in the sheath region.
Reflections from the plasma cylinder are received by the probe and
are directionally coupled to an RF detector whose output is
connected to the vertical input of an oscilloscope. The electron
density in the plasma column is adjusted by a discharge current
produced by a high voltage source connected to the anode and
cathode of the plasma tube as shown in Figure 3.2.1. The current
has a low frequency (60 lz) ac variation superposed on its dc level.
The ac component produces a variation in the plasma discharge
current and also produces the horizontal sweep on the oscilloscope.
Whenever the current level passes through a value which satisfies

the resonance condition

a

2 /2 d

(w

<|H

- Pt ar = @+ 17600

T
at an excitation frequency w for the mth resonance, a peak is
observed in the reflected power level. 1In addition, the dipole
resonance is observed as the strongest resonance in the column.
The discharge current levels at the dipole resonance and the first

few thermal resonances are observed. In the subsequent numerical

analysis only the ratios of the discharge current levels are used.
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Eight sets of data obtainrd in the experimentation are
shown in Figures 3.2.2 through 3.2.5. Table 3.2.1 shows the dis-
charge currents 1d’ 11, 12, and 13 along with the excitation

frequency for each of the eight data sets.

Development of Functional Form for the Electron-Density Profile

If a Maxwellian electron density distribution is assumed,
the electron density profile ne(r) is expressed in terms of the
potential profile, V(r), by equation (2.15) in section 2.2,

eV(r)

ne(r) = e kT (3.3)

where n, is the electron density at V(r) = 0. It is reasonable to
assume that in the plasma cylinder used in the experimentation,
the voltage at r = 0, V(0), is negligibly small and may be approx-

imated as zero,

V(0) = 0 (3.4)

Since the actual value of V(0) is not known, this approximation is

necessary to obtain a solution for the problem. Thus
n = ne(O) ; ‘ (3.5)

where n, represents the electron density at the center of the
plasma column. The problem then is the formulation of a functional
form for V(r). This might best be arrived at by considering
Poisson's Equation in the region of interest and choosing a
functional relationship for V(r) which at least in form agrees with

the solution to Poisson's Equation. A complete solution of
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Back scattered
EM field
Data set #1 f=2.016 GHz

i(ma)

Back scattered
EM field
Data set #2 £=2.10 GHz

VAN

T25% 185 245

305 365

1

i
i, d

3.2.2 Experimental results (data sets #1 and 2) for

the back scattered EN field from a cylindrical
plasma column as a function of discharge current.
f is the frequency of the incident EM field.

id' i1, 12, and 13 are the discharge currents

at which the dipole resonance and the first
three thermal resonances respectively occur.
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Back scattered
BM field
Data set #3 £=2.23 GHz

i(ma)
Back scattered
EM field
‘ Data set #4 £=2.32 GHz
i(ma)

3.2.3 Experimental results (data sets #3 and 4) for

the back scattered EM field from a cylindrical
plasma column as a function of discharge current.
f is the frequency of the incident EM field.

ig, iy, ip, and i3 are the discharge currents

at which the dipole resonance and the first
three thermal resonances respectively occur.
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Back scattered
EMN field
Data set #5 f=1.917 GHz

WP

i(ma)
Back scattered
EM field
Data set #6 £=2.017 GHz

i(ma)

Fig. 3.2.4 ZExperimental results (data sets #5 and 6) for
the back scattered EM field from a cylindrical
plasma column as a function of discharge current.
f is the frequency of the incident EM field.

id, iq, ip, and i3 are the discharge currents

at which the dipole resonance and the first
three thermal resonances respectively occur.
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Back scattered
M field
Data set #7 £=2.275 GHz

4 Back scattered
| EM field
Data set #8 £=2.322 GHz

i(ma)

Fig. 3.2.5 Experimental results (data sets #7 and 8) for
the back scattered XM field from a cylindrical
plasma column as a function of discharge current.
f is the frequency of the incident EM field.
id' 1 iz, and 13are the discharge currents

at which the dipole resonance and the first
three thermal resonances respectively occur.
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Data : . . .
sot 4 f (GHz) ig (ma) i, (ma) i, (ma) iq (ma)
1 2.016 270 185 150 125
2 2.100 290 190 150 120
3 2.230 340 235 185 160
~+
4 2.%20 355 745 200 175
5 1.917 270 120 135 110
6 2.017 285 190 150 120
T 2.275 290 195 150 120
8 2.32?2 320 210 160 135
Table 3.2.1 Experimental data set 1 through 8. Given

are the frequency of the incident MM field
and the discharge currents id’ i1, i? and
13 at which the dipole resonance and the
first three thermal resonnance respectively
occur,
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Poisson's Equation in the plasma column is not possible because
the boundary condition for V(0) is not known and the available
experimental data are insufficient to determine it.

Poisson's Equation in cylindrical coordinates is given by:

a®v(r) , 1av(r) _ _ o(n) (3.6)
€

dr2 r dr o

) 3.7

Here p(r) = eno(l - e

and T represents the electron temperature. This expression for
p(r) is based on the plasma sheath model in which the ion density
is nearly constant throughout the plasma region due to ion drift
towards the negative wall potential. Substituting equation (3.7)
into equation (3.6) yields:

eV(r)

en
(1 -e kT

v, tav) |
€

dr2 rodr

) (3.8)

In the region away from the wall where eV(r) << kT, the following
approximation may be made:

2 en . .
dv(r) 1v(r) _ _ "o _ 1 _ ev(r)
5 +.; - . 1-1 —iﬁf*ﬁ (3.9)

dr o}

so that we have the following approximation of Poisson's Equation:

2
dv(r) 1V() _ o -
>+ 2 . e V(r) = 0 (3.10)
dr o
This is a Bessel Equation and the solution is in the form of a

zero order Bessel function with imaginary argument:
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V(r) = C Io(Klr) (3.11)

1
2
e n
where C1 is an arbitrary constant and Kl = ETE; , containing ng

and electron temperature as constants. If equation (3.11) were

used throughout the plasma column, C, would represent the potential

1
V(0). As stated above, a value for V(0) is not available so that
equation (3.11) is merely used to show that a Bessel series is an
appropriate form for the potential V(r) near the center of the

plasma column. The approximations made in equation (3.10) do not

hold near the wall. The wall region is considered next.

In the sheath region near the wall, where the approximation

eV(r)

KT << 1 does not hold, the following alternate approximate

formulation may be used. Letting Vw be the wall potential,
V(a) = Vw, Poisson's Equation may be written as follows:

eV(r) eVV evw

kT kT kT
e

a®v(r) , 1av(r) _ _ o

er r dr Eo

) (3.12)

Defining a new variable vkr) = V(r) - Vw, equation (3.12)

becomes:

eV ,~
v ev(r)
dzvkr) 1 dv'(r) n, kT _ kT
+ = = - e ) (3.13)

— - (1 -e
dr2 r dr €

Sufficiently close to the wall, v(r) is small enough to let

evli(r)

e kT . 1+ E%%El . Therefore:
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eV
2v( try | °" < r)
dv(r) ,1dvir) _ "o _ kT ev(r)
> + T dr . (1 e (1 + KT )) (3.14)
dr o
This equation becomes:
eV eV
dzvkr\ 1 dvi(r) ezno (kTw €, kTw
—'—2' + —1: —Er—‘- - W v(r) = - —— (l - ) (3.15)
dr o o
or
LRI sLlavo) vir) = -k (3.16)
2 r dr 2V 3 :

dr

with K2 and K3 constants containing the wall potential, the
electron density at r = O, n_ s and the electron temperature T.
The solution is again in the form of a zero order Bessel function

with imaginary argument in addition to a constant term:

[}
v(r) = C IO(KZr) + K3/K2 (3.17)

2

The fact that the potential variation throughout the region is in
the form of Bessel function Io(x) and recalling that the onlyv
available boundary condition for V(r) is based on the assumption
of zero potential at r = 0, a reasonable éhoicé for curve fitting
the expected potential distribution is a Bessel function Io(z)
with a unity offset bringing it to zero at the origin as follows

(letting n(r) =

E{%Sl for simplicity of notation and the argument

zZ = yr):

n(r) = 1 - Io(Yr) (3.18)
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where y is an arbitrary constant to be determined. In equation
(3.18) it is anticipated on phenomenological grounds that V(r) is
negative for all 0 < r < a. The particular form of equation (3.18)
lends itself well to the determination of the electron density
profile from thermal resonance data as shown subsequently. The
corresponding electron-density distribution ne(r) is given by:

n (r) = n e(1 i Io(Yr)) ; (3.19)

e o ’ '

n, and y must now be determined from numerical analysis based on
the thermal resonance data.

As an initial simplified approach, a parabolic approximation
for ne(r) is used in the next section. This is done because the
parabolic approximation for the electron density profile in cylin-
drical plasma columns has been used extensively in the past and it
does indeed represent an approximation of ne(r) given in equation
(3.19) as follows:

(1 -1 (yr))
ne(r) =n_ e ° (3.20)

= no(l +1 - Io(yr))
= ~ (1%y2
n (1-G)Y) (3.21)
Y2 2
Letting (2) = g/a” leads to the customarily used approximation:

a () = n 1 - a®? (3.22)

In the following section, a numerical solution technique is

developed for ng and a as well as the rclectron temperature T, the
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relative wall potential n,s the turning points for the first m
resonances r_, and the ratio of peak to average electron density,

R.

Determination of Electron Density Profile in a Cylindrical Warm

Plasma Column Based on a Parabolic Approximation

In order to solve for the pertinent parameters, an
appropriate system of simultaneous equations must be developed.
The unknown quantities are

(1) ny, = center peak electron density for the first thermal

1
resonance;

2 no, = center peak electron density for the second thermal

resonance;

(3) no, = center peak electron density for the dipole resonance:

d
4) <ne(r)d>av = average electron density for dipole resonance;

(5) r, = value of r where kpl(r) = 0 (critical turning point) for

1
first thermal resonance;
(6) r, = value of r where kpz(r) = 0 (critical turning point) for
second thermal resonance;
r,2
(7) a = constant in nem(r) “om(l - a(;) )s
(8) T = electron temperature.

In order to solve for these eight unknown parameters, the

following eight independent simultaneous equations are necessary:

i ng

(1) =L = -&i (3.23a)
d d
i Ng

(2) 2.2 (3.23b)

13 1Moy
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Equations (3.23a) and (3.23b) are valid because the electron
density is proportional to the plasma current level. In this study

only ratios of currents are needed.

2
2
m_c. <ne(r)d>av = Cp w (3.23¢)

(3) <mp2(r)>av =

Equation (3.23c) is based on the relation between the dipole
resonance frequency and the average electron density discussed in
section 2.5 where a numerical value for the proportionality

constant Cp was found.
(4) wpy(ry) = w (3.23d)
(5) mpz(rz) =-=w (3-238)

Equations (3.23d) and (3.23e) are based on the fact that kp(r)

goes to zero when wp(r) = .

a

(6) kp (£) dr = 2 7 (3.23f)
rl .
a

(7) kp, () dr = % . ‘ (3.23g)
Ty

Equations (3.23f) and (3.23g) represent the total phase spanned by
the first two thermal resonances respectively based on equation

(2.68) in section 2.4.

a
(8) <ned(r)>av = —17 nod(l - a(i)z) 2nr dr (3.23h)

Ta
o
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In equation (3.23h), the peak electron density is related to the
average electron density for the dipole resonance; this relation-
ship holds equivalently for any thermal resonances.

In the following development, these eight simultaneous
equations are discussed in greater detail and are used to develop
a numerical solution for the desired parameters.

Using the parabolic approximation to the electron density
profile

a () =n (1 - a(i)z), (3.24)

the values of ng and a must be determined. These values can be
determined in terms of the thermal resonance data obtained in the
experimentation. To obtain the desired numerical solution for the
electron density profile, a system of simultaneous equations must
be developed which lends itself to a numerical solution on the
computer.

It was shown in section 2.5 that the average value of the

square of the plasma frequency, 2(r)> when the dipole resonance

<wa

occurs is related to the resonance frequency w by the relation:

<wpd2> -c w2 S (3.25)

where Cp is a proportionality constant determined in section 2.5.

The plasma frequency Wpg is by definition given by

<wnd2(r)> = <ned(r)> (3.26)

e o
where <ned(r)> is the average electron density at the dipole

resonance. Letting Mo r-present the peak density at the center
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of the column at dipole resonance, <ﬂed(f)> can be related to g
as follows:

pr 2(I)> m e
d e o
<ne l(r)> = 2

2
e
C me¢e w2 n a
p eo .. 2d _ 2
2 3 (1 - a(3) ) 2nrdr
e ma
o
2
C € M <ne(r)>
_boe _ a-2 == (3.27)
2 2 n
e n o4
°4
Therefore

a 2
2 (1 =3) e no,

w = Cenm (3.28)
poe

The first thermal-resonance standing wave exists between the wall

(r = a) and the point r, in the plasma, at which the phase term

1

kpl(r) goes to zero:

k

pl(rl) = (0 | | (3.29)

Similarly, for the sercond resonance, the phase term kpz(r) goes to

zero at 2‘23

kp,(r,) = 0 (3.30)

From basic theory, the phase term kp(r‘ for an electroacoustic wave

is given by
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w 2(r)
k (r) = & (1 - B l/2 (3.31)
p \Y 2
o w
3kT
where Vo represents the thermal electron velocity i
e
Therefore
2 1.2
e “ol(l - a(;f? ) 2
- = W (3.32)
efo
and
r
2 2.2
e ng,(1 - a(;7)7) 2
- = W (3.33)
efo
Combining equations (3.28) and (3.32) leads to
r n
2 o
A-aDH=—a1-9 . 9 (3.34)
a c 2 ng
P 1
and combining equations (3.28) and (3.33) leads to
r n
2,2 1 ., °d
(1 -a(=)") = l 1 -a/2) (—) (3.35)
a ng
p 2
ng id Moy i
Since — = — and —— = — , where 1,, 1, and. i, are the currents
no, 11 no, 12 da’ "1 2

at which the dipole and first two thermal resonances occur,
equations (3.34) and (3.35) lead to the following expressions for

rl and r2:

(3.36)

raG - G- D (3.37)
P
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Since the total phase for th~ first two thermal resonances is

%ﬂ and %m radius respectively, the following phase integrals

result:
a w 2 (r)
8- J__Z,)I/?- dr = (5/4)w (3.38)
r (o] w
1
and
a W 2(I‘)
8- 202 ar = (97)m (3.39)
r (o] w
2

Since for the first two thermal resonances:

2 r. 2
9 e ng, (1 - al(;7))
“py (rl) = m e ’
e o
and
2 r 2
2 e n02(1 - )
wpy (ry) = m e ’
e o
equation (3.38) and (3.39) become
a " eznol(l - a(g)z) 1/2 5
“7— (1 - 3 ) dr = (Z')‘n (3.40)
r © wme
1
and
° W ‘32“02(1 - °‘(§)2) 1/2 9
v (1 - 2 ) dr = (—4-)11 (3.41)
r © wme
2
Combining equations (3.40) and (3.41), and expressing no1 and o,
ng i
in terms of n from equation (3.28), recalling that —— = — and

o4 i

Moy d
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no, 1
—— = — | the following equation results:
Mog 14
tlla 1 c )
1y P - (BHHl/2 4 x
9/4 A - @) qrzfsy ¢- @D 4R
1
(3.42)
rZ/a i, c 1/2
- - @) G a =5 (- a®MNY 2 = o
1

Equation (3.42) contains the three unknowns a, rl/a and r2/a; rz/a
can be expressed in terms of rl/a based on equations (3.36) and
(3.37) as follows:

r r
p&H-2-2-E-2d-D

a a C ‘a 2 12)
1 1 1 1 d,1/2
"Gt G2 0 (3.43)
P 1
Therefore equation (3.42) becomes:
r1/a 1 C
o6 | - G2 a-adNYrad
d .

1
’1 (3.44)
— + A(x/a) i, C /2

- - 9 ——P2 1 -

(1 ( ) G- A - a (= 2 )) (a) 0

1

Solving equation (3.36) for a in terms of rl/a yielda:
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i

d
(1'011

a=— P T (3.45)
(_l)z- d
a 211Cp

Equations (3.44) and (3.45) represent two simultaneous equations in
two unknowns which may be solved numerically. After r1/a and o are

available, equation (3.40) can be solved for V0 which in turn gives
3kT

the electron temperature T from Vo = |4 >
e
1 i C
= bw Ly - (5y2yy1/2
v, - - (@) G G- @QNTQ) .66
rl/a
and:
mevo2
T K (3.47)

The ratio of peak to average electron density anne(r)> is obtained

from equation (3.27) as

no 1

<a_(r)> @ - a/2)

The equations developed in this section for use in the computer
analysis are summarized here in the form in which they are

incorporated into the computer program for the numerical analysis.

fflfa 1, cC 1/2
I B S AU )2 acy
J1
(3.48a)
r
[El + o) L, ¢C r2..1/2
g a - 0@ ad) o
1
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1- o
(2) @= —2LP (3.48b)
r i
c1y2 h
a 211C
D sl = G-l E oLy 412
r/a — - G- T
P 2
AN S R ig)l/Z (3.480)
a C a 27 i .48c
P 1
n
o 1
(4) R=<ne(r)>= (l-%)
bu 1 11 ._fil___ r.2..1/2, r
) Yo " 5x - 1’; T - a7z 1 - 2@ d(3) (3.48d)
rl/a
and:
mevoz
(6) T = 3Kk . (3.48e)

The experimental procedure also yields values for 13, the discharge
current level at which the third resonance occurs. These data are

not as reliable as those for 1 11, and 1, because the third

d’ 2

thermal resonance is somewhat weak. It is nevertheless possible to
check the results obtained from the numerical analysis of equations
(3.48) by performing a similar analysis based on the use of the
first and third resonance data. The corresponding equations differ

from equations (3.48) only in that the subscript (2) must be’

replaced by the subscript (3) as shown.
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ryfe L ¢ 2..1/2
1 P T 1 r
(1) 13/4 a - I;'Ii:—;7§ (1 - o)™ d(3)
1
r (3.49a)
LA
a 1, C 12,
3
- A - r (- e N2 = o
1
-
ilC
(2) a = Pi (3.49b)
L2 4
a 211C
1 1 1 1, Y4172
(3) A(r/a) = (;'-'E— (; - 7) I—)
p 3
1 1 1 1, faar2
- (; - E—'(;'- 2) I—) (3.49¢)
p 1
no 1
() A T )
2
il 1. C
- _1_ 7 1/2
) Vymsp| ATy - e WH2E @9
rlla
and:
mV 2
(6) T = —%EE— (3.49e)

The numerical results obtained from the computer analysis of these
sets of simultaneous equations, (3.48) and (3.49), are presented

and discussed in Chapter 4.
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3.5 Determination of the Electron Density in a Warm Plasma Cylinder

Assuming Potential Distribution of the Form (1 - Io(yr))

The assumption of the functional form:
n(r) = (1 = I_(yr)) (3.18)

where n(r) = eV(r)/kT is based on the solutions of Poisson's
Equation in different regions of the cylinder in section 3.3. It
was seen there that this solution cannot represent an exact
solution for the potential distribution but it is of the correct
form especially in the sheath region where an offset Bessel
function was obtained as a solution. It furthermore satisfies the
approximate condition that V(o) and therefore n(o) = 0.

Although this approximation makes the necessary numerical
analysis somewhat complex, it is still sufficiently manageable to
be ugseful as a diagnostic technique which is the ultimate goal of
this thesis.

The known quantities from the experimehtal work with the
electroacoustic probe are:

w = the frequency of the incident radiation:

1d = the current level at which the dipole res;nance is observed:

11 = the current level at which the first thermal resonance is
observed;

12 = the current at which the second thermal resonance occurs,

The unknown quantities are:

(1) no, = the peak electron density at the center of the plasma

column for the first thermal resonance;
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(2) Ny, = the peak electron density at the center of the plasma
column for the second thermal resonance;
(3) Moy = the peak electron density at the dipole resona; ‘e;
(4) <ne(r)d> = the average electron density at the dipole
resonance;

(5) r, = the critical phase point (kpl(rl) = () for the first
thermal resonance;

(6) r, = the critical phase peoint (kpz(rz) = 0) for the second
thermal resonance;

(7) y = the constant appearing in the Bessel function approximation
(1 - Io(yr)) for the potential profile;

(8) T = electron temperature.

Since eight unknowns appear in the analysis, eight independent

equations are needed; these equations are:

i Ng
(1) I-l- - Tl' (3.50a)
d 04
i ng
(2) TZ - n—l (3.50b)
d Mog

Equations (3.50a) and (3.50b) are based on the fact that the peak
electron density in the plasma is proportionai to the current
level. These equations also show that only the ratio of the

currents are used for the analysis.

2 e2
(3) <w_(r)> =
P av. me.

2

<ne(r)d> = Cp W (3.50¢)

Equation (3.50c) states that at the dipole resonance at a given

current level, and thus electron density level Nogys the average
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of the square of the plasma frequency is proportional to the
angular frequency u?of the incident radiation. (The proportion-

ality constant Cp was found in section 2.5.)

(4) wpp (ry) = w (3.50d)
Equations (3.50d) and (3.50e) relate the critical points r, and r,
for the first and second thermal resonances respectively to the
2
incident radiation frequency w; here: w 2(r ) = = no
2 P11 m - 1
2

exp(l - Io(yrl)), and: mp(rz) = E;E;'“Oz exp(l - Io(yrz)).

a
(6) kpl(r) dr = (5/4)n (3.50€)

N

a
(7) kpz(r) dr = (9/4)n (3.50g)

r, :

Equations (3.50f) and (3.50g) are based on the fact that the total
phase of the second thermal resonances span (5/4)n and (9/4)n

respectively based on equation (2.68) in section 2.4. Here:

. wpy () 15
kpy () = y- (1 = =)
o W

and

w wpzz(r) 1/2
kpp(r) =y~ A = ———) "~ .
o w
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1
= ———2 ng
wa

(8) <ned(r)>a exp(1l - Io(yr))an dr (3.50h)

v d

Equation (3.50h) relates the average electron density <ned(r)> to
the center peak electron density Moy at the dipole resonance. The
ratio of peak to average electron density remains the same as the
current level is changed so that equation (3.50h) may be formulated
in terms of one of the thermal resonances. Equations (3.50) are
now used to develop a system of simultaneous equations suitable for
numerical analysis on the computer.

Since in this section the assumed functional relationship

for the relative potential distribution as a function of r,

n(r) = S.\L(r_).

T » 1s given by

n(r) = 1 - Io(vr), (3.51)

the constant y appearing in the Bessel function is the primary
parameter of interest. The relative potential distribution appears

in the Maxwellian electron density distribution as follows

ne(r) = exp(l - Io(yr)). . (3.52)

Here again n, represents the electron density at the center of the
cylindrical plasma column where the potential V(o) is assumed zero
and therefore the relative potential n(0) is zero as a boundary
condition. Since IO(O) = 1, equation (3.52) shows that ne(o) is
indeed n, at the center of the column (r = 0). The formulation of
ne(r) in equation (3.52) introduces n_ as an additional parameter

that must be determined for any given electron density profile and
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corresponding current level.

The relationship fundamental to this analysis is based on
the phenomenological argument, that the total phases of the
electroacoustic thermal resonances in the sheath region are
separated by n radians and that furthermore the fundamental thermal
resonance spans a total of one and one quarter n radians between
the wall and the critical turning point Ty where the propagation
constant goes to zero. This argument is based on equation (2.68)

in section 2.4. Now

lim

r-+r kp(r) = ( (3.53)

1

r>r
1

th
For the m resonance, the total phase can therefore bhe written as

follows:
a
kpm(r) dr = (m + 1/4)n (3.54)
. .
m
Since:
w 2(I‘)
w Pm 1/2
kpp () = §= (1 - =) %, (3.55)
w

Equation (3.54) becomes

a wpmz(r) 1/2 (m + 1/4)nVo

(1 - ————?f——) dr = (3.56)
w

From the definition of the plasma frequency wp(r)
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ezn (r)

2 e
wp () = ';i;;:—- (3.57)

and since from equation (3.52) repeated here for reference

ne(r) =n exp(l - Io(yr)), (3.58)

the total phase equation for the mth electroacoustic thermal
resonance becomes

a 2

e'ng exp(l - I (yr))
(1 - ( m > ) )1/2 dr
r © Mefo

(m + 1/4)nV
= o (3.59)

w

Here the electron density at the center, nem(O) = N for the mth
thermal resonance, depends on the discharge current level
maintained in the plasma column; the current level resulting in
nom is im which is available from the experiQental data. There
exists a direct proportionality between the current level im and
the electron density Mo, because the electron drift velocity may
be considered constant in a cylindrical plasma discharge column.
The relationship between the current im and the correspond-
ing dc electron density no is established experimentally through
the dipole resonance frequency w which is related to the corre-

sponding plasma frequency mpd(r) by

<mpd2(r)> - Cp wz (3.60)
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Here Cp is a proportionality constant; wpd(r) is the plasma
frequency as a function of r at which a dipole resonance is
observed when the incident radiation frequency is y; <wpd2(r)>
represents the average of the square of the dipole resonance
plasma frequency. The relationship between ( and <mnd(r)> in
equation (3.60) was established in section 2.5, where a numerical

value for Cp was obtained. Since

9 ezned(r)
wpy (r) = —;igz:——- (3.61)
it follows that
2m
wmE
<ned(r)> = Cp — (3.62)
e

Similarly, because of the direct proportionality between the
current levels and the electron densities, equations for <nel(r)>

and <ne2(r)> can be written as follows

Cow meeo i1
<ng, (£)> = (=52 () (3.63)
e d

and

C mzmego 12
ep(T)> = (T—=2) . (3.64)

d
th
and in general for the m  resonance
C wzm €

g (r)> = (=22 ( L) (3.65)
e” d
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In order to work with equation (3.59), it is necessary to obtain
an expression for Nop s this can be accomplished in terms of
equation (3.65) by formulating <nem(r)> in terms of no, as

follows

a
<nem(r)> - __1_2_[ o, exp(l - Io(yr))an dr (3.66)
ra
o

Defining R to be the ratio of the peak electron density No to the
average electron density <ne(r)>,

ng 2
n Ta (3.67)

'<ne(r)>' a
[ exp(l - Io(yr))21rr dr

o]

R

nom can be expressed in terms of the frequencv of the incident

radiation w and current ratios as follows:

Cuw meeo im
o, = (=) (R) () (3.68)
e d

The phase integral in equation (3.59) furthermore contains L and
V° as unknown parameters. There exists no independent relationship
from which T and Vo can be determined but~it is possible to

express r in terms of r for example r, in terms of . The

m-1°

condition leading to a functional relationship between r and To-1

is the following:

k (r) =0 (3.69)

where again rm is the critical turning point for the mth resonance.
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Therefore:
2
wp “(r )
w m - m
v 4 - 7 ) =0
o w
so that
2 2
wp (rm) = (3.70)
Since
, eznom exp(l - I_(yr ))
wpg, (Ty) = — e — (3.71)
e o
it follows that
2
mecow
exp(1l - Io(yrm)) = =5 (3.72)
Defining
Am ) ’
wme
1
exp(l - Io(Yrm)) = X; (3.73)

The value of Am can be determined numeric;ily gased on the value
of no obtained through the solution of equations (3.65) through
(3.68). Since equation (3.73) contains both o and the parameter
of final interest, vy, r cannot be determined directly from
equation (3.73). However it is possible to determine r in terms

of L (n integer ¥ m) bv simultaneous solution of

(1) exp(l - Io(an)) = 1/An (3.74)
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and

(2) exp(l - Io(yrm)) = l/Am (3.75)

Simultaneous solution of equations (3.74) and (3.75) leads to a
value for Ar defined by
m,n

b

Arm =r - (3.76)

In terms of ro and Ar n it is possible to write two simultaneous
’

phase integral equations in the form of equation (3.59) as follows:

a
(m + 1/4)qV
(1 - A exp(l - Io(yr)))l/z dr = 5 ° (3.77)
r
m
and
a
(1 - A exp(l - Io(Yr)))l/z dr
r +Ar
m m

(n + l/4)ﬂV°

= (3.78)
Forming the ratio of equations (3.77) and (3.78) vields
a
- A exp - I (N ar
r
m - (m+ 1/4)
2 2 (n ¥ 174) (3.79)
(1 -A_exp(l -1 (yr))) dr
n 0

r +Ar
m m,n

b4

For any combination of m and n, m ¥ n for which resonance data are
available, equation (3.79) still contains two unknown parameters,

ro and y. If equation (3.79) is combined with equation (3.73),
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repeated here for reference:

exp(l - I_(yr)) = %r-, (3.80)
m

equations (3.79) and (3.80) may be solved simultaneously for ro
and Y.
After obtaining values for r and v, Vo can be calculated

from equation (3.77) as follows:

a
w 1/2
Vo " ¥+ 178 (1 - A exp(l-TI(yr))"'"dr (3.81)
r
m
Since:
3kT
Vo = |a (3.82)
e
the electron temperature T can be calculated as:
Vozme _
T= (3.83)

where k is Boltzmann's constant.

In the numerical analysis at hand, the first two electro-
acoustic thermal resonances are used so that m = 1 and n = 2,
The equations used in the subsequent computer analysis formulation,
written in terms of the first two thermal resonances, are

summarized here in the form used in the numerical analysis:
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a
f (1 - A, exp(l - Io(mnl“ dr
"1 _ (1 +1/4)

(1) x s (2 ¥ 1/4) (3.84a)
(1 - 1\2 exp(l - I (yr))) " “dr
T +Ar) °
(2) exp(l = I_(yr))) = +— (3.84b)
1
(3) exp(l - Io(yrz)) = -’,1—\- (3.84c)
2
2
(3] nol
(4) Ay =5 (3.84d)
wmE
e o
e no,
(5) Ay = — (3.84e)
wm
e o
Cuw meco il
(6) no, = (272 (®) () (3.84f)
e d
Cw LI 12 ‘
Q) no, = (=) (R) ({9 (3.84g)
e d
a2
(8) R = a (3.84h)

a
f exp(l - Io(yr))Zﬂr dr
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a
w 1/2
) Vo = m (1 - Al exp(1l - Io(yr))) dr (3.841)
r
1
and

vozme

(10) T = 3K (3.843)

A numerical analysis based on these equations is also performed
using a combination of the first and third resonance data. The
results from this analysis are used as a check on the results
obtained from the use of the first two resonances. In order to use
equations (3.84) for the first and third thermal resonance com-
bination, it is only necessary to replace the subscript (2) when-
ever it appears by the subscript (3). The corresponding set of
equations are:

a

aa - Al exp(l - Io(yr)))l/zdr
(31 (1 + 1/4)
(1) - T = G+ 1/4) (3.85a)
(1 - A3 exp(l - Io(yr))) dr
r1+Arl 3
. :
(2) exp(l - Io(vrl)) = rl- (3.85b)
(3) exp(l - I_(yry)) = 11\—3 (3.85¢)
2
e nol
(4) Al = — (3.85d)

W meE
e o
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2
Cuw m_€, il
L= ® (P

(5) Ay =
(6) N, =
¢)) Ngq =
(8) R =

w
9 Vo = ¥ 17w

and:

(10)

exp(l - Io(Yr))an dr

(1 - A, exp(l - I_(yoO)?

/2d

r

(3.85e)

(3.85f)

(3.85g)

(3.85h)

(3.851)

(3.853)

The numerical results obtained from the computéer solution from

equations (3.84) and (3.85) are presented and discussed in the

following chapter.



CHAPTER 4

NUMERICAL RESULTS FOR THE ELECTRON DENSITY
PROFILE IN A CYLINDRICAL PLASMA COLUMN

4.1 1Introduction

4.2

The simultaneous equations presented in section 3.4 and
section 3.5 are solved numerically using the data given in section
3.2. The solutions are presented in this chapter. The results

obtained for the different approaches are presented.

Numerical Results Based on Parabolic Electron Density Pro{i}g

_Approximation

The numerical results obtained in the simultaneous computer
solution of equations (3.48) and (3.49) are listed in Tables 4.2.1
through 4.2.5 for the eight sets of data analyzed. TFor ease of
identification, the data sets are identified throughout by two
numbers, i, j; 1 = 1 to 8 represents the set number; j = 2
represents the use of the combination of the first and second
resonance (equations (3.48)) while j = 3 represents the use of the
combination of the first and third resonance (equations (3.49)).

The parameters listed in the Tables are:

(1) The factor a in the parabolic approximation

a (r) = ne (1 - aDH?) .

(2) The calculated value of the ratio R = ne(r = 0)/<nel(r)>.
(3) The critical points rm/a for the mth resonance.

(4) zm/a = (a - rm)/a.

80
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Data set f 3 f o j f 3
1 .83 .83
2 .82 .85
3 .83 .83
4 .80 .86
5 .86 .86
6 .83 .83
7 .84 .87
& .85 .85

Table 4.2.1

Numerical results for the factor £

for data sets 1 through 8. The columns
identified by j=? and j=3 represent
numerical values for o obtained from
the use of combinations of resonances
1,2 (j=2) and 1,3 (j=3) respectively.
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Data set # n_/<n, (r)” n_/<n, (r)”>
1 1 2 2
1 1.70 1.70
2 1.70 1.74
3 1.71 1.71
4 1.67 1.75
5 1.76 1.76
6 1.72 1.72
7 1.73 1,77
8 1.74 1.74

Table 4.,2,2 Numerical results for the ratio of peak
to average electron density n_ A(ne (r)>

and n /<ne (r)> for data sets 1 th}ough 8.
2 2
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Data set # r1/a rz/a r3/a
1 .e8 .83 17
2 .87 .80 .11
3 .88 . 81 LT
4 .89 .84 .74
5 .86 .79 .71
6 .87 .81 .13
7 .87 .80 .72
8 .86 .79 <71

Table 4.2.3 Numerical values for the ratio of

critical radius r.

a, rj/a, for dataYsets 1 through 8.

to the total radius
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Data set # 21/a 22/3 23/a 22/z1 23/z1
1 .12 L7 .23 1.44 1.95
? .13 .19 .28 1.50 2.02
3 .12 .18 .23 1.51 1.90
4 .11 .16 .26 1.48 2.00
5 .14 .21 .29 1.53 2.07
6 .13 .19 27 1.48 2.10
7 .13 .20 .28 1.53%. . 2.02
8 .14 .21 .29 1.52 2.07

L

Table 4.2.4

Numerical values for the ratio of
critical distance z: measured from the
wall for the jth regonance to the total
radius a as well as the ratios z,/z4, and
23/z1 for the data sets 1 througﬁ 8.

T

-
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Data set # j zw? 3 ZWB 3 S 5 3 E 3
1 -1.75 -1.75 14670 14670
2 -1.73 -1.90 19960 316320
3 -1.78 ~-1.78 18950 18950
4 -1.63 -1.96 11590 33070
5 -1.99 -1.99 29000 29000
6 -1.80 -1.80 20480 20480
7 -1.84 -2.00 27370 42820
8 -1.91 -1.21 39060 39060

Table 4.2.5 Numerical values of relative poten-

tial at the wall, n, = eV(a)/kT

and electron temperature T for data

sets 1 through 8. The columns identi-
fied by j=2 and j=3 represent the
numerical values for n  and T based

on the use of combinations of resonances
1,2 (j=2) and 1,3 (j=3) respectively.
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(5) The ratios zz/z1 where z ) =a-r and z, = a -z,
(6) The ratio 23/21, where zy=a-r,.
(¢))] n, = ve/kT evaluated at the wall where Vw is the potential,

k is the Boltzman constant and T is the electron temperature.
(8) T, the calculated electron temperature.
The most significant parameter in the parabolic electron density
profile is the parameter a appearing in the functional formulation

of equation (2.44)

ne(r) = “ol(l - u(i)z)

The values for a obtained for any one data set using first the
combination of the first and second resonance and then the
combination of the first and third resonance are very close. Since
these two values for any one data set represent a mutual check, it
appears that the results obtained for a are correct. It must be
kept in mind, of course, that any calculations employing the third
resonance are only approximate, since the third resonances are
difficult to interpret from the oscillographs.

The ratio of peak electron density at the center of the
plasma column to the average static electrén dénsity in the column
for the discharge current level il was another of the parameters
obtained from the solution of the simultaneous equations (3.48) and
(3.49). Again this ratio is very close for data sets 1,2 and data
sets 1,3, indicating that the results are reliable. Good corre-
spondence for results using data sets 1,2 and 1,3 is also found
for the relative wall potential nw(nw = ve/kT). The temperature

T indicates some variation as seen in Table 4.2. The relative
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variation is still insignificant considering how sensitive the
temperature is to variations in other plasma column parameters.
It should be recalled that the temperature is determined directly
from the phase integral.

The graphical results are shown in Figures 4.2.1 through
4.2.8 for the parabolic electron density profiles and the relative
potential distributions for the eight data sets 1,2 on a normalized
scale.

In conclusion, it is observed that some of the values
obtained in this analysis agree well with numerical values obtained
from approximate theoretical treatments or independent experimental
analyses. Theoretical analysis of a plasma sheath, for example,1
leads to a relative wall potential n, of approximately 2 which is
in agreement with the values obtained in this numerical analysis.
More significantly, the ratios of zZ/zl obtained in this analysis
of approximately 1.5 agrees well with ratios of the distances from
the wall observed for the electric field perturbation for the
first and second thermal resonances in experimental work reported
earlier.14

The appendix contains complete computer readouts of all the

parameters for each data set.

Numerical Results Based on the Bessel Function Approximation for

the Static Electron Density Profile

The numerical results obtained in the simultaneous computer
analysis of equations (3.85) are listed in Tables 4.3.1 through
4.3.4 for the eight sets of data analyzed. For ease of identi-

fication, the data sets are identified throughout by two numbers
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Fig. 4.2.1 Normalized parabolic electron density profile

as a function of r/a, 2
n_ (r/a)/n_. =1 - .83(r/a)".

Also the normalized potential profile
q1(r/a)/qw. Based on data set #1.(f=2.016 GHz,

14=270-ma, 1,=185 ma, 1,=150 ma, i,=125 ma).



89

1.0 .‘!
0.8 *t
0.6 .: B Plasma
E Glass
0.4 « | Thickness b
0.2 » |- 0 r/a
: Data Set #2.2
. Profile at 11
0 . » »T/2
-0.2 < |
-0.4 %
-0.6 %"
-0.8 & |-
-1.0 %

Fig. 4.2.2 Normalized parabolic electron density profile
as a function of r/a, -

ne (x/a)/mg =1 - .82(x/a)%.

Also the normalized potential profile
n,(r/a)/q . Based on data set #2-(f=2.10 GHz,

14=290" ma, 1,=190 ma, 1,=150 ma, 1,=120 ma).
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Normalized parabolic electron density profile
as a function of r/a,

e, (7/2)/m, =1 - .80(r/a)2.
1

Also the normalized potential profile

'rh r/a)/‘?w

14=355.ma,

Based on data set #4 .(f=2.32 GHz,

1,=245 ma, 1,=200 ma, 3=175 ma).
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Fig. 4.2, 5 ©Normalized parabolic electron dens1ty profile
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Also the normalized potential profile .

q1(r/a)hz Based on data set #5 (f=1.917 GHz,

14=270 ma, i,=180 ma, 1,=135 ma, i;=110 ma).
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as a function of r/a, 5
(r/a)/n =1 - .83%(r/a)

Also the normalized potential profile .
q1(r/a)/n Based on data set #6 (£=2.017 GHz,

14=285 ma, i,=190 ma, i,=150 ma, 3_120 ma)..
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Fig. 4. 2.7 Normalized parabolic electron density profile

as a function of r/a, . 5
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Also the normalized potential profile _
n1(r/a)/qw. Based on data set #7 (£f=2.275 GHz,

14=290 ma, i1,=195 ma, 1,=150 ma, i3=1?0 ma).
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Fg. a. 2.8 Normalized parabolic electron density profile
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Also the normalized potential profile
q1(r/a)/nw. Based on data set #8.(f=2.322 GHz,

14=320 ma, i1=210 ma, 12=160 ma, 13=135 ma).
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Data set # j=2 j=3
1 3217 321
2 326 719
3 323 328
4 330 328
5 327 327
6 327 302
7 328 328
8 331 325

Table 4,31

Numerical results for the factor?
for data sets 1 through 8. The
columns identified by j=2 and j=3
represent the numerical values for

¥ obtained from use of combinations
of resonances 1,2 (j=2) and 1,3 (j=3)
respectively.
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Data set # no1/<ne$r)> n02/<ne§r)>
1 1.99 1.94
2 1.98 1.9%
3 1.96 1.99
4 2.01 1.99
5 1.99 1.99
6 1.99 1.95
7 1.99 1.99
8 2.02 1.97 .

Table 4.3.,72 Numerical results for the ratio
of peak to average electron density
n01/<ne (r)> and n02ﬁ<n92(r)> for

data sets 1 through 8.
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gzza# z,/a 22/a z3/a 7,2/21 z3/z1
B 1 .14 .20 .23 1.49 2.02
2 .14 .21 .27 1.53 2.22

3 11 .18 .26 1.60 1.94

4 .13 .20 .26 1.47 2.15

- 5 .14 .22 .28 1.59 2.08
6 .14 .21 .27 1.5% 2.19

7 .14 .21 .28 1.53% 2.06

8 .15 .24 .29 1.57 2.17

Toble 4.3.3

Numerical values for the ratio of

the critical distance z3i measured from

the wall into the plasm& for the jth

resonance to the total radius a and also

the ratios zz/z1 and z3/z1.

-
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Data w Nw T T

set # j= j= j=2 j =3
1 -1.8 -1.7 47380 30580
2 -1.8 -1.7 83690 74860
3 -1.8 -1.8 67470 57060
4 -1.9 -1.8 47950 77700
5 -1.8 -1.8 10350 10350
6 -1.8 -1.7 71630 66900
7 -1.8 -1.8 14400 14400
8 -1.9 -1.8 10200 10120

Table 4.304

Numerical values of the relative potential
hw = eV(a)/kT and the electron tempera-
ture T for the data sets 1 through 8. The
columns identified by j=2 and j=3 represent
the numerical results based on the use of
combinations of resonances 1,2 (j=2) and
1,3 (j=3) respectively.
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1,j; here 1 = 1 through 8 represents the set number; j = 2
represents the use of the combination of the first and second
regsonance while j = 3 represents the use of the combination of the
first and third resonance.

The parameters listed in the Tables are:
(1) The calculated value of the ratio R = no(r = O)/<nel(r)>.
(2) The factor y in the Bessel series formulation in equation

(3.52)
ne(r) =0 exp(1 - Io(yr)) .

(3) The ratios 22/21 and z3/zl.

(4) The critical points zm/a for the mth resonance.

(5) n, = ve/kT evaluated at the wall where Vw is the potential, k
is the Boltzmann constant and T is the electron temperature.

(6) T, the electron temperature.

The most important parameter in this analysis is y. The values

for vy obtained for data sets 1,2 and i,3 compare well for the eight

sets analyzed and since sets 1,2 and 1,3 represent a mutual check

it appears that the functional form obtained is acceptable.

Good correspondence using data sets 1,1 and i,2 is also
obtained for the relative wall potential n, = ve/kT and to a
satisfactory extent for the electron temperature T. Since T is
very sensitive to other parameter variations, the difference
observed in some data sets between sets 1,2 and 1,3 is not very
significant.

The graphical results for the normalized electron density

profiles nel(z)/no1 (here nel(z) is the static electron density at
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discharge current 11 where z = a - r) and the corresponding
relative potential n(r) = eV(r)/kT are shown for t'ie eight data
sets in Figures 4.3.1 through 4.3.8. Subsequently, Figures 4.3.9
through 4.3.16 show simultaneous plots for the normalized electron
density profiles nel(z)/no1 and nez(z)/n01 for each data set.

These Figures also show the location of the critical turning points
zlla and zZ/a marked as tl and tz. These must, of course, occur at
the same vertical magnitude on the graphs to be correct and indeed
good agreement with this requirement is observed indicating that
the numerical analysis is sufficiently accurate. Figures 4.3.17
through 4.3.24 show the corresponding simultaneous plots for
nel(z)/nol and ne3(z)/n°1. Again critical points z,/a and z3la
marked at tl and t3 closely satisfy the condition that the vertical
magnitudes are the same. It should be recalled from the theoret-

ical development that t t, and t, occur at points at which

1’ "2 3

2 2
v, (tm) =",
so that

2
nem(tm) } wmeE

n 2
Om e"no

which depends only on the excitation frequency w which is held
constant in any one data set.

In conclusion it is observed that the value of n, agrees
with typical values predicted theoretically for plane plasma

sheaths which should not behave too differently near the wall in
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Fig.4.3.,1 Normalized Bessel series electron denSity profile
as a function of z/a,

ne1(z/a)/n01 =‘expﬂ1 - i0(327(1—z/a))).

Also the normalized potential profile
1(z/a)/ w- Based on data set #1 (£=2.016 GHz,

14=270 ma, 1,=185 ma,'12=150 ma,‘i3=125 ma).
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Normalized Bessel sSeries electron density profile
as a function of z/a, '
n, (z/a)/n, = exp(1 - I_ (326(1-2z/a))).
’ 0, o
Also the normalized potential profiile ’ .
1(z/a)/‘ W Based on data set #2 (f=2.10 GHz,

14=290 ma, 1,=190 ma, 1i,=150 ma, i3=120 ma).
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0.2 ’5. Profile at 11
0 ’ o> 2/a
Fig. 4.3.3 Normalized Bessel series electron dénsity profile

as a function of z/a, - )
n, (z/a)/n, = exp(1 = I_(323(1-8/a))).
1 1 !
Also the normalized potential profile
1(z/a)/ . Based on data set #3 (f=2.23 GHz,

14=340 ma, 1,=235 ma, 1,=185 ma, 13;160 ma).
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Fig. 4.3.4 Normalized Bessel series electron den81ty profile
as a functlon z/a

(z/aS/n = exp(1 = I_(330(1- 2/a)).

Also the normalized potential profile
1(z/a)/ . Based on data set #4 (f=2.%2 GHZ,

a-355 ha, i1~245 ma, ?2—200 ma, 3-4-1"(5.ma)



106

1.0

0.8

0.6

0.4

c.o'o.l...h.....loooo..coooooo.

Data Set #5.2
Profile at-1, '

-002

-0.4

[+ ]

.l...."-0-0...‘....0..0‘0....O.Q‘l...l..b‘llnl..c.‘.....

[}
o

.

-1.0 « &

Fig. 4.3.5 Normalized Bessel geries electron density profile
as a function of z/a, .
n, (z/a)/n, = exp(1 - I (327(1-2/a))).
1 1
Also the normalized potential profile . ‘
1(z/a)/ w+ Based on data set #5 (f=1.917 GHz,

14=270 ma, 1,=180 ma, i,=135 ma, 1,=110 ma).
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Fig.’ 4.3.6 Normalized Bessel geries electron density profile
as a function of z/a,

ne (#/a)/ng = exp(1 = 1,(327(1-2/a))).

Also the normaliéed potential profile .
1(z/a)/ we DBased on data set #6 (f=2.017 GHz,

i4=285 na, 1,=190 ma, 12=150 ma, i3=120 ma).,



1.0

006

0.4

0.2

-0.2

-C). 4

]
o
0

b
0

Fig.. 4.3 7

‘-.ao'co-.ttccl....-ooolc-..-co.ooo-.

.Oool'.co‘t-..o-.o.oloooo‘ooo-oc0.‘0.0-.-0.‘..0-0.-.

108

-
>

Plasma

Glass
Thickness b

Data Set #7.2
Profile at {1

1

z/a

Y

‘u—

Normalized Bessel series electron density profile
as a function of 2z

(z/a)/n = exp(1 -1 (328(1-z/a))).
Also the normalized potential profile
1(z/a)/ . Based on data set #7 (£=2.275 GHz,

14=290 ma, 1=195 ma, 1,=150 ma, i=120 ma).
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le. 4.3.8 Normalized Bessel series electron density profile
as a function of z/a,
(Z/a)/n -exp(1 - I (331(1-z/a))).

Also the normalized potential profile
1(z/a)/ Based on data set #8 (f=2.322 GHz,

a=320 pa, 1,=210 ma, 12-160 ma, 3=135 ma).
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Fig. 4 .3.9 Normalized Bessel series electron density
profiles at resonances 1 and 2. Points t1
and t, represent the critical points in
the plasma sheath at which k and k
respectively to to zero. Py P2
Based on data set #1.(f=2.016 GHz,

i =270 ma, 1,=185 ma, i,=150 ma, i,=125 ma).

3



111

-

1.0 & |
0.8 %
0.6 & |

. Plasma

E Glass

N Thickness b
0.4 %

: 0 z/a,
Ose .:J ! Data Set #2.2 '

o3 ' i Profiles at 1, and 1,
0 o lau sl ol L . »z/a

0 [o.r 0.4 0.6 0.8 1.0
t1 1:2

Fig. 4 .3.10 Normalized Bessel series electron density
profiles at resonances 1 and 2. Points t1
and t, represent the critical points in
the plasmn sheath at which-k_ . and k
respectively go to zero. Py Py
Based on data set #2.(f=2.10 GHz,

14=290 ma, i,=190 ma, i,=150 ma, i;=120 ma).
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Fig. 4 _.3,11 Normalized Bessel series electron density
profiles at resonances 1 and 2. Points t1
and t, represent the critical points in
the plasma sheath at which k_° and k
respectively go to zero. Py Ps
Based on data set #3. (f£=2.23 GHz,
14=340 ma, i,=235 ma, i,=185 ma, i3=160 ma).
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Fig. 4. 3,12 Normalized Bessel series electron density
. profiles at resonances 1 and 2. Points t1
and t, represent the critical points in
the plasma sheath at which k and k
respectively go to zero. Py Po
Based on data set #4. (f=2.32 GHz,
id=355 ma, i,=245 ma, 1,=200 ma, i3=175 ma).
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Normalized Bessel series electron density
profiles at resonances 1 and 2. Points t1

-and t, represent the critical points in
the plasma sheath at which k and k
respectively go to zero. 1 Py

Eased on data set #5. ( f=1.917 GHz,
14=270 ma, i,=180 ma, i,=135 ma, 13=11o ma).
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Normalized Bessel series electron density
profiles at resonances 1 and 2. Points t
and t, represent the critical points in
the plasma sheath at which k_ -and k
respectively go to zero. 1 Py
‘Based on data set #6. (£f=2.017 GHz,
id=285 ma, 11=190 ma, i?=150 ma, 13
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Fig. 4.3.15 Normalized Bessel series electron density
profile at resonances 1 and 2. Points t,
and to represent the critical points in
the plasma sheath at which k and k
respectively go to zero. Py Py
Based on data set #7. (£=2.275 GHz, '

id=290 ma, 11=195 ma, 12=150 ma, 13=120 ma).
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Normalized Bessel series electron density
profiles a resonances 1 and 2. Points t1
and t, represent the critical points in

the 61asma sheath at which k_ "'and k
respectively go to zero. Py P2
Based on data set #8. (f=2,32? GHz,

id=320 ma, i1=210 ma, 12=16O ma, 13=135 ma).
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Fig. 4.3.17 Normalized Bessel series electron density
profiles at resonances 1 and 3. Points t
and t3 represent the critical points in tﬂe
plasma sheath at which k and k
respectively go to zero. 1 p3
Based on data set #1.(f=2.016 GHz,

'id=270 ma, i1=185 ma, 12=150 ma, i3=125 ma).
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Normalized Bessel series electron density
profiles at resonances 1 and 3., Points t

and t, represent the critical points in the
plasmg sheath at which k and k
respectively go to zero."1 P3

Based on data set #2. (f=2.10 GHz,
id=290 ma, i1=190 ma, 12=150 ma, 13=12O ma).
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'ig. 4.3.19 Normalized Bessel series electron density
profiles at resonances 1 and 3. Points t
and t, represent the critical points in tﬂe
plasmg sheath at which k__ and k
respectively go to zero."1 p3
Based on data set #3.(f=2.23 GHz,
id=340 ma, 1,=235 ma, i,=185 ma, i3=160 ma).
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4,3,20 Normalized Bessel series electron density

profiles at resonances 1 and 3. Points t
and t, represent the critical points in tﬂe
plasmg sheath at which k and 'k
respectively go to zero.p1 p3

Based on data set #4.(f=7,32 GHz,

14=355 ma, 1,=245 ma, 1,=200 ma, 13=175 ma).
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profiles at resonances 1 and 3. Points t
and t, represent the critical points in tﬂe
plasma sheath at which k_ and k
respectively go to zero.,P1 - - P3

Based on data set #5. ( £=1.917 GHz,

14=270 ma, 1,=180 ma, 1,=135 ma, i5=110 ma).
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Normalized Bessel series electron density

profiles at resonances 1 and 3,
represent the critical points in t

and t
plasmi sheath at which k
respectively go to zero.P1

Points ¢

and kp3

Based on data set #6. (£f=2.017 GHz,
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Fig, 4.3.23 ©Normalized Bessel series electron density
profiles at resonances 1 and 3., Points t
and t, represent the critical points in tﬂe
plasmg sheath at which k and k
respectively go to zero.P1 P3
Based on data set #7. (£f=2.275 GHz,
1d=290 ma, i1=195 ma, i,=150 ma, 13=120 ma).
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Normalized Bessel series electron density
profiles at resonances 1 and 3. Points t
and tz represent the critical points in tﬂe
plasma sheath at which k and k
respectively go to zero.P1 P3

Based on data set #8. (f=2.3%22 GHz,

14=320 ma, 1,=210 ma, 1,=160 ma, iz=135 ma).
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the sheath region. More significantly, the ratio zzlz1 agrees
well with observed values of approximately 1.5 from measurement-

14

of the corresponding E field peaks in the thermal resonances.

Graphical Presentation of Thermal Resonances Using the WKB

Approximation

Since the static electron profile analysis was based on the
phase integral in the underdense region, the WKB formulation for

the mth thermal resonance given in equation (2.65)

X
m

nlm(x) = E;iz;y sin ( kpm(x') dx' + n/4 )
x

should yield the correct form of the mth thermal resonance some
distance away from the critical point. Here x = 0 at the wall and
is positive into the plasma; kp(x) represents the phase constant
as a function of x. The mathematical formulation of the phase
integrals for the two profile formulations are, of course,
different. For the parabolic profile it is based on equations

(3.40) and (3.41) and is

*n *n ezn ‘
Om

‘ ' - — -
kp(x ) dx v Q1
o wme

a - a@H? ux (4.1)

For the Bessel function approximation the phase integral is based

on equation (3.77) and is
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2
m m en
— M exp(l - 1 oM @2

e o
Based on these phase integrals, the WKB form

X
m

(| k(0 dx +w/l) (4.3)

nyp (x) =
n kpm(x)

x
is numerically evaluated and graphically presented in Figures 4.4.1
and 4.4.2 for the parabolic form and in Figures 4.4.3 and 4.4.4 for
the Bessel function formulation for data set #1. The Figures show
the first and second resonance. In the region near the critical
point where the WKB approximation fails, the expected section is
sketched in for completeness and does not represent a precise
solution. The interesting point is the phase of the perturbation
function nlm(x). The basic theory suggested that nlm(O) at the
wall (x = 0) has a maximum so that a peak should be observed. 1In
fact, for the Bessel function formulation nll(x) and nlz(x) fall
slightly short of reaching a peak, while the parabolic approxima-
tion is slightly over the expected peak. It should be recalled
that the numerical analysis was based on the assumption that the
total phase for nlm(x) between x = 0 and X is (m + 1/4)n.

The deviation from the expected phase of nlm(O) at the wall
indicates a limitation in the accuracy of the numerical integration
techniques. Greater precision would not yield significant improve-
ment in the electron density profile in view of the approximate

nature of the available resonance data. It would, however, require
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unreasonably long computer run times in view of the large number
of parameters determined simultaneously.

Figures 4.4.1 through 4.4.4 do show that, as expected, the
phase constant decreases and the magnitude of nlm(x) increases as

x goes from x = 0 to x = X .
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¥ ¥ ¥ 88 ¥ 3

134

NUMBER OF DATA SET = l

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY
IN A CYLINCRICAL PLASMA COLUMN BASED ON A
PARABOLIC CENSITY PROFILE APPRGXIMATICN
USING RESOMNANCES L AND 2

THE PHASE FOR RESONANCE L IS PI TIMES 1.25
THE PHASE FOR RESONANCE 2 IS Pl TIMES 2.25

THE SQUARE OF WPOVER W IS EQUAL TO 2.6C

10 - 0.2700€ 00
I - 0.1850€ 00
12 . 9.1500€ 00
L . 0.12672 11
BETAsATOR = 0.1C00E O1
RADIUS = 0.7000&e-02
ALF A . 0.3259€ 00
R1 = 0.6160E-02
R2 . 0.5787e-02
l1 s 0.8400¢-03
22 = 0.1213€-02
NO DIPOLE s 0.2233€ L8
NO L RESGNANCE = 0.1530€ 18
NO 2 RESUMNANCE = 0.12¢1E 18
2 10 11 = O.l4e4E O1
PEAK TC AVERAGE = 0.1703c 01
vV wWALL = -0.2210€ 01
ETAsVW TO KTTCQ = -0.1748E 01
ELECTRON TEMP - 0.1467E 05
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NUMBER OF OATA SET = 1

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY
IN A CYLINODRICAL PLASMA COLUMN BASED ON A
PARABOLIC CENSITY PROFILE APPROXIMATICN
USING RESCNANCES 1 AND 3

THE PHASE FOR RESONANCE L IS PI TIMES l.25
THE PHASE FOR RESCNANCE 2 [S PI TIMES 3.25

THE SQUARE OF wPOVER w IS EQUAL TO 2.60

-0.1748€ 01
0.1467€ 05

ETA=vW TO KTTOQ
ELECTRON TEMP

10 = 0.2700E 00
1 . 0.1850¢ 00
12, . 0.125CE 00
W . 0.1267€ 11
BETA=ATIR . 0.1CO00E Ol
RAD[US - 0.7000£-02
ALFA . 0.82598 00
R1 = 0.6160£-02
R2 . 0.5366£=02
21 = 0.8400£-03
22 . 0.1634E-02
NG DIPILE - 0.2233€ 18
NO L RESINANCE = 0.1530E 18
NC 2 RESONANCE = 0.1034E 18
22 TC 21 . 0.1945E 01
PEAK TO AVERAGE = 0.1703€ 01
V WALL . -0.2210¢ 01

=

L ]
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NUMBEP JF DATA SegT s 2

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY
IN A CYLINDRICAL FLASMA COLUMN BASED TN A
PARABOLIC DENSITY PRIFILE APPROXIMATICN
USING RcSONANCES 1 AND 2

THE PHASE FOR RESGNANCE 1 IS PI TIMES 1.25
THE PHASE FUR RESUNANCE 2 IS PI TIMES 2.25

THE SQUARE OF WPOVER W IS EQUAL TO 2.00

10 = 0.2900€ 0O
Il = 0.1500t OO
12 . 0.1500€ 00
W = 0.1319¢ 11
BETA=ATOR = 0.1C00E Ol
RAD LUS = 0.7€00c-02
ALFA = 0.8218t 00
R1 = 0.6090&E-02
R2 = 0.5633€-02
z1 = 0.9100€-03
L2 = 0.1367€-02
NO DIPOLE = 0.2412& 18
NC 1 RESUNANCE = 0.154Ce 18
NO 2 RESUNANCE = 0.1248E 18
22 10 21 = 0.1502& Ol
PEAK TO AVERAGE = 0.1697€ Ol
vV WALL = ~0.2965€ 01
ETA=svW TO KTTOQ = -0.1725€ 01
ELECTRON TEMP = 0.1996t& C5
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NOMBER OF DATA SET = 2

THIS IS AN ANALYSIS OF THE ELECTRON CENSITY
IN A CYLINDRICAL PLASMA COLUMN BASED CN A
PARABOLIC OENSITY PRGFILE APPROXIMATION
USING RESONANCES 1 AND 3

THE PHASE FOR RESONANCE 1 IS PI TIMES 1.25
THE PHASE FOR RESONANCE 2 IS Pl TIMES 3.25

THE SQUARE OF WPOVER W IS EQUAL TO 2.60

10 s 0.2900E€ 00
Il = 0.1900¢ 00
12 = 0.1200& OO
] = 0.1319¢ 11
BETA=ATOR = 0.1000¢g 01
RADIUS = 0.7000€-02
ALFA = 0.8511€ 00
R1 = 0.6020€-02
R2 = 0.5023&-02
1 = 0.9300€E-03
z2 = 0.1977E-02
NO OIPOLE = 0.247¢E 18
NO 1 RESONANCE = 0.1621E 18
NO 2 RESONANCE = 0.1024E 18
Z2 10 21 = 0.2018¢ 0Ol
PEAK TO AVERAGE = ‘0.1741E Ol
vV walL = -0.5189c 01
ETA=vVd TO KTTOQ = -0.1904E Ol
ELECTRON TEMP = 0.3163E 05
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NUMBER OF DATA SET

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY
IN A CYLINORICAL PLASMA CJLUMN BASED ON A
PARABDL IC CENSITY PRUOFILE APPRCXIMATICN
USING RESUNANCES

THE PHASE FOR RESCNANCE 1 IS PI TIMES 1.25
THE PHASE FOR RESONANCE 2 IS Pl TIMES 2.25

THE SQUARE OF WPOVER W IS EQUAL TO 2.60

BETA=ATOR
RADIUS

ALFA

NO DIPOLE

NO 1 RESONANCE
NO 2 RESJNANCE

Z2 10 21

PEAK TO AVERAGE

vV WALL

ETAsvW TO KTTOQ
ELECTRON TEMP

138

AND 2

0.3400E GO
0.2350€ 00
0.1850€ OC
0.1401E 11
0.1000€ 01
0.7C00&-02

0.8317€ 00

0.6160E-02
0.5735€-02
0.84¢00e-03
0.1265€-02
0.2745E 18
0.1897E 18
0.1493c 18
0.1506€ Ol
0.1712€ 01
-0.2909€E 01

-0.1782t 01

0.1895€ 05
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NUMBER OF OATA SET = 3

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY
IN A CYLINDRICAL PLASMA COLUMN BASED ON A
PARABIOLIC DENSITY PROFILE APPROXIMATION
USING RESONANCES 1 AND 3

THE PHASE FOR RESUNANCE 1 IS PI TIMES 1.25
THE PHASE FOR RESCNANCE 2 IS Pl TIMES 3.25

THE SQUARE OF WPOVER W IS EQUAL TO 2.60

10 = 0.3400€ 0O
I = 0.2350& 00
I2 = 0.1600€ 00
] = 0.1401c 11
BETA=ATOR = 0.1CO0E O1
RADIUS » 0.7000&-02
ALFA s 0.8317€ 00
R1 = 0.6160c-02
R2 = 0.5403€E-02
i1 - 0.8400E-03
22 = 0.1597€-02
NO OIPOLE = 0.2745t 18
NO 1 RESINANCE = 0.1897€ 18
NO 2 RESJINANCE = 0.1292t 18
Z2 10 11 = 0.1901€ 01
PEAK TO AVERAGE = 0.1712t 01
vV WALL = -0.2909t 01
ETA=vW TO KTT0OQ = -0.1782¢ 01
ELECTRON TEMP = 0.1895€ 05
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NUMBER QF DATA SET - 4

THIS IS AN ANALYSIS OF THE ELECTRON OENSITY
IN A CYLINDRICAL PLASMA COLUMN BASED ON A
PARABIOLIC CENSITY PRCFILE APPROXIMATION
USING RESCNANCES 1 AND 2 )

THE PHASE FCR RESONANCE L IS Pl TIMES 1.25
THE PHASE FOR RESCNANCE 2 IS PI TIMES 2.25

THE SQUARE OF WPOVER w IS EQUAL TO 2.6C

10 = 0.3550E 00
I = 0.245CE 00
12 = 0.2000€ 0O
L] - 0.1458c 11
BETA=ATOR = 0.1C00€E 01
RADIUS = 0.7000€-02
ALFA = 0.8040E 00
R1 = 0.6230€-02
R2 = 0.5861E-02
1 = 0.7700&c-03
2 = 0.1139€-02
NO OIPOLE = 0.29C4c 18
NO 1 RESONANCE = 0.2004¢ 18
NO 2 RESONANCE = 0.1636E 18
Z2 10 11 = 0.1479z 01
PEAK TO AVERAGE = 0.1672€ 01
V wWALL = -0.1627c 01
ETAsvywW TO KTTCQ = -0.1630€ O1
ELECTRON TEMP s O.1159E 05
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NUMBER OF CATA SET = 4

THIS IS AN ANALYSIS OF THE ELECTRON DeNSITY
IN A CYLINODRICAL PLASMA COLUMN BASED ON A
PARABOLIC OcNSITY PRGFILE APPROXIMATION
USING RESONANCES 1 AND 3

THE PHASE FOR RESCNANCE L IS PI TIMES 1.25
THE PHASE FOR RESONANCE 2 IS PI TIMES 3.25

THE SQUARE OF wPQJVcR w [S EQUAL TO 2.60

10 = 0.3550€E 00
I = 0.2450& 00
12 - 0.1550€ 00
W = 0.1458¢ 11
BETA=ATGR = 0.1CCo0E 01
RADIUS = 0.7000€-02
ALFA = 0.8589¢& 00
R1 - 0.6090&€-02
R2 = 0.5179€-02
21 . 0.9100z-03
z2 = 0.1821E-02
NO DIPOLE = 0.3043c 18
NO 1 RESGONANCE = 0.21CCc 18
NO 2 RESUNANCE = 0.1329¢ 18
2 10 11 = 0.2001E 01
PEAK TO AVERAGE = 0.1753€ 01
vV WALL . =0.5579€ 01
ETA=vVW TQ KTTQOQ = =0.1959c 01
ELECTRON TEMP = 0.3307e 05
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NUMBER QF DATA SET = 5

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY
IN A CYLINORICAL PLASMA COLUMN BAScD ON A
PARABILIC DENSITY PRIFILE APPROXIMATICN
USING RESONANCES 1 AND 2

THE PHASE FGR RESONANCE 1 IS PI TIMES 1.25
THE PHASE FOR REZSGNANCE 2 IS PI TIMES 2.25

THE SQUARE OF wWPOVER W IS EQUAL TO 2.60

10 - 0.2700e 0O
I . 0.1800E 00
12 = 0.1350& 00
] = 0.1204E 11
BETA=ATOR = 0.100CE 01
RADIUS . 0.7000€-02
ALFA = 0.8641lc 00
R1 . 0.6020€E-02
R2 . 0.5496E-02
zl = 0.9800€-03
Z2 - 0.1504E-02
NO DIPOLE - 0.2085€ 13
NO 1 RESONANCE = 0.1390€ 18
NO 2 RESINANCE = 0.1C«2€ 18
22 10 21 = 0.1534€ 01
PEAK TO AVERAGE = 0.l761t 01
vV WALL s -0.4987€ 01
ETAsvyW TO KTTOQ = -0.1996€ O1
ELECTRON TEMP - 0.2900¢ 05
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NUMBER JF DATA SET - 5

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY
IN A CYLINORICAL PLASMA COLUMN BASED ON A
PARABIOLIC OeNSITY PRUFILE APPROXIMATION
USING RESONANCES 1 AND 3

THE PHASE FOR RESONANCE 1 IS PI TIMES 1.25
THE PHASE FOR RESONANCE 2 IS Pl TIMES 3.25

THE SQUARE OF WPOVER W IS EQUAL TO 2.60

LI 2K B B I

L 1)

10 = 0.2700€ CO
I - 0.1800& 00
12 = 0.11CO0E 0C
W = 0.120¢€ 11
BETA=ATOR = 0.1000E 01
RADIUS - 0.7000€-02
ALFA = 0.8641E 00
R1 - 0.6020E-02
R2 s 0.4974E-02
1 = 0.9800€-03
2 = 0.2026&=02
NO OIPOLE . 0.2085¢€ 18
NO 1 RESONANCE = 0.1390€ 138
NO 2 RESONANCE = 0.8494E 17
22 10 21 = 0.2C67€ 01
PEAK TO AVERAGE = 0.1761E O1
vV WALL = -0.4987€ 01
ETA=vw TO - -0.1996c 01
ELECTRON TEMP = 0.290C0c 05
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NUMBER OF DOATA SET - 6

THIS IS AN ANALYSIS OF THE ELECTRUN DENSITY
IN A CYLINOKICAL PLASMA COLUMN BASED ON A
PARABJLIC DOENSITY PRIFILE APPROXIMATICN
USING RESONANCES 1 AND 2

THE PHASE FOR RESONANCE 1 IS PI TIMES 1.25
THE PHASE FOR RESOMANCE 2 IS PI TIMES 2.25

THE SQUARE OF WPOVER W [S EQUAL TO 2.60

28 3 ¢ 28

¥ ¥ ¥ 3N 2¥ 3 I T TSN

10 = 0.2850€ 00
Il - 0.1500€ ©€O
12 - 0.1500€ 00
] = 0.1267€ 11
BETA=ATOR = 0.1000€ 01
RADIUS = 0.7000£-02
ALFA = 0.8346E 00
R1 = 0.6C90E~02
R2 = 0.5653€-02
Il - 0.9100&-03
22 = 0.13¢7€-02
NC DIPOLE - 0.2250€ 18
NO 1 RESONANCE = 0.L500€ 138
NO 2 RESUNANCE = O.1184E 18
Z2 70 121 = 0.l480c 01
PEAK TO AVERAGE = 0.1716c O1
vV WALL = =-0.3176€ 01
ETA=sVW TO KTTOQ = -0.1800¢ 01
ELECTRON TEMP = 0.2C48€ 05
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NUMBER OF DATA SET = 6

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY
IN A CYULINDRICAL FLASMA COLUMN BASED ON A
PARABOLIC CENSITY PROFILE APPROXIMATICON
USING RCSUONANCES 1 AND 3

THE PHASE FOR RESONANCE 1 IS PI TIMES 1.25
THE PHASE FOR RESONANCE 2 IS PI TIMES 3.25

THE SQUARE OF wPOVER W IS EQUAL TO 2.60

10 = 0.2850€ 00
Il = 0.1900€8 00
12 = 0.1200€ 0O
L] = 0.1267€ 11
BETA=ATOR = 0.1C00c Q1
RADIUS . 0.7C00e-~02
ALFA . 0.8346E 0O
R1 = 0.6090€-02
R2 = 0.5087€-02
Il = 0.9100€-03
z2 = 0.1913€E-02
NO OIPOLE = 0.2250¢c 18
NO 1 RESUNANCE = 0.15C0E 13
NO 2 RESONANCE = 0.9475E 17
Z2 10 21 - 0.2102E 01
PEAK TO AVERAGE = 0.1716E 01
vV WALL = -0.3176E€ Ol
ETA=avW TO KTTQOQ = -0.1800€ 01
ELECTRON TEMP = 0.2048¢E 05
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NUMBER OF DATA SET = ?

THIS IS AN ANALYSIS OF THE ELECTRUN DENSITY
IN A CYLINORICAL PLASMA COLUMN BASED ON A
PARABUOLIC DeNSITY PROFILE APPROXIMATION
USING RESONANCES 1 AND 2

THE PHASE FOR RESGNANCE L IS PI TIMES 1.25
THE PHASE FOR RESONANCE 2 IS PI TIMES 2.25

THE SQUARE OF wWPOVER W IS EQUAL TO 2.60

10 s 0.2900€ 00
I = 0.1950E 00
12 s 0.150C€ 00
W = 0.1429€ 11
BETA=ATOR = 0.1000€ Ol
RADIUS = 0.700Ge~-02
ALFA = 0.8408E 00
R1 - 0.6090€-02
R2 = 0.5007€-02
l1 . 0.9100€-03
22 . 0.1393:-02
NO OIPOLE = 0.2878€ 18
NO 1 RESUNANCE = 0.1935¢ 18
NOC 2 RESONANCE = 0.1483E 18
2 10 21 = 0.1531c 01
PEAK TO AVERAGE = 0.1725€ 0Ol
vV WALL - -0.4333c 01
ETA=vW TO KTT(0Q = -0.1838c 01
ELECTRON TeMP = 0.2737€ 05



NUMBER JF DATA SET

THIS IS AN ANALYSIS OF THE ELECTRGN CENSITY
IN A CYLINDRICAL PLASMA COLUMN BASED ON A
PARABOLIC CENSITY PROFILE APPROXIMATION

AND 3

USING RESONANCES

147

THE PHASE FOR RESONANCE L IS PI TIMES 1.25
THE PHASE FOR RESCNANCE 2 IS Pl TIMES 3.25

THE SQUARE OF WPOVER W IS EQUAL TO 2.60

2 % ¥ &8 2T 8 ¥ 33 32 3 2 I TI IS

8 & 8 2

<8 3t 8 8 =

10 - 0.2900E 00
I . 0.1950€ 00
12 = 0.1200€ 00
W = 0.1429€ 11
BETA=ATOR = 0.1000E 01
RADIUS = 0.7000E-02
ALFA - 0.8704E 00
R1 - 0.6020&-02
R2 = 0.5018E-02
21 = 0.9800E-03
z2 = 0.1982E-02
NO DIPOLE = 0.2953€ 18
NO 1 RESONANCE = 0.1986E 18
NO 2 RESONANCE = 0.1222¢ 18
z2 76 21 - 0.2022€ 01
PEAK TO AVERAGE = 0.1771¢ 01
V WALL = -0.7536€ C1
ETA=vW TO KTTOQ = -0.2C¢3E 01
ELECTRON TEMP = 0.4282E 05
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NUMBER OF DATA SET - 8

THIS IS AN ANALYSIS OF THE ELECTRON DENSITY
IN A CYLINDRICAL PLASMA COLUMN BASED ON A
PAPABOLIC DENSITY PROFILE APPROUXIMATICN
USING RESCNANCES L AND 2

THE PHASE FOR RESONANCE 1 IS PI TIMES 1.25
THE PHASE FOR RESONANCE 2 IS PI TIMES 2.25

THE SQUARE OF wPOVER w IS EQUAL TO 2.60

10 = 0.3200E€ 00
I = 0.2100& CO
12 = 0.1600€ CO
L s O.1459E 11
BETA=ATOR = 0.1C00E 01
RADIUS = 0.7G00E=-02
ALFA = 0.8523t 00
R1 = 0.6020&-02
R2 = 0.5510e=-02
I1 = 0.9800€-03
z2 = 0.1490€-02
NO OIPOLE = 0.3030c 18
NO | RESONANCE = 0.1638z 18
NO 2 RESONANCE = 0.1l515E 18
2 10 21 = 0.1521€ 01
PEAK TO AVERAGE = 0.1743€ 01
vV wALL = -0.6436E C1
ETA=vW TO KTTQQ = -0.1913c 01
ELECTRON TEMP = 0.3900E 05
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NUMBER OF OATA SET

THIS IS AN ANALYSIS OF THE ELECTRCN DENSITY
IN A CYLINORICAL PLASMA COLUMY BASED CN A
PARABOLIC CENSITY PROFILE APPROXINMATICN

AND 3

USING RESONANCES

THE PHASE FOR RESCNANCE 1
THE PHASE FOR RESCNANCE 2 IS PI TIMES 3.25

THE SQUARE OF WPOVER w IS EQUAL TO 2.60

10
I
12

W
B8ETA=ATOR
RADIUS

ALFA

Rl

R2

141

12

NO DIPOLE

NO 1 RESONANCE
NO 2 RESONANCE
T2 13 11

PEAK TO AVERAGE
V WALL

ETA=svw TO KTTOQ
ELECTRON TEMP

149

0.3200€ 00
0.2100c 00
0.1300¢ 00
0.1459¢€ 11
0.1C00e 01
0.7000€-02

0.8523E 00

0.6020E-02
0.4967c-02
0.9800€E-03
0.2033e-02
0.3030¢ L8
0.1988E 18
0.1231E 18
0.2074E Ol
0.1743¢ OL
-0.6436E Ol
-0.1913c 0Ol
0.3906€ 05

IS Pl TIMES 1.25
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NUMBER GF CATA SET = 1

THIS IS AN ANALYSIS CF THc cLECTRON CeNSITY
IN A CYLINCRICAL FLASMA COLUMN BASED CN A
BESSEL FULNCTICN FRCFILE APPROXIMATICN

USING THERFMAL RE3SCNANCES 1

AND

2

TCTAL PHASE FCR FIRST RES IS PI TIMES 1.25
TCTAL PHASE FCR 5cC RES IS Pl TIMES 2.25

THE SQUARE GF wP DOVER W

LCWER INT. LIMIT

INITIAL INCR. IN 21

NUMBER CF [INTEGR. STEPS
VALUE OF wl

VALUE OF w2

OIPCLE CURKRENT AT wl

CURKENT AT wl

CLRRENT AT w2

NUMBER To Ce RESCNANCE 2ND w

CCEFF PZAK TC AVG EL OENS
GAMMA

ETA = VWALL TC KT CVER Q
GAMMA TIMES 21

GAMMA TlMeS 22

22 1C 21

WPl

wP2

NOl

NO2

Al = WPl CVER Wl SOQUARED
A2 = WP2 CVER w2 SQUARED
Zl

L2

VWALL

ELECTRON TEMPERATURE

2.¢€G.

C.CCOCE CO
C.1CCCE CC

C.1207€ 11
C.1267€ 11
C.27CCE CC,
C.185Ce CC
C.150CE CC

0.1986E 01
C.32¢8E C3
-0.18C4E C1
C.31(0E CC
C.4619E €O
C.149CE Ol
C.c356E 11
C.2122€ 11
C.1744E 18
C.1414E 18
C.3459€ Cl
C.28C4E C1l
C.9485€E-C3
C.16413E-C2
-C.73¢3€ C1
C.4728E C5
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NUMBER OF DATA SET = 1

THIS IS AN ANALYSIS OF THE ELECTRCN DENSITY
IN A CYLINORICAL PLASMA CJILUMN BASED CN A
BESSEL FUNCTICN PRCFILE APPROXIMATICN

USING THeRMAL RESCONANCES 1

AND

3

TOTAL PHASE FCR FIRST RES IS Pl TIMgS 1.25
TGTAL PHASE FOR SEC ReES IS Pl TIMES 3.25

THE SQUARE OF wP OVER W

LOWER INT, LIMIT

INITIAL INCR, IN Z1

NUMBER CF INTEGR. ST¢PS
VALUE OF Wl

VALUE OF w2

OIPGLE CURRENT AT Wl

CURRECNT AT wl

CURRENT AT w2

NUMBER T, C. RESCNANCE 2NJ W

CCEFF PEAK TC AVG EL UENS
GAMMA

ETA = v4alLl TG KT CVER Q
GAMMA TIMES 21

GAMMA TIMES 22

2 7C 21

WPl

wP2

NO1

NO2

Al = WPl OVER Wl SGQUARZD
A2 = WP2 OVER W2 SGUARED
Z1

L2

VWALL

ELECTRON TEMPERATURE

2.60

C.COOCE
C.100CE

0.1267€
0.1267E
C.270C¢e
C.185CE
C.130C¢

0.1937¢
0.32C7¢
-0.1717€
0.25C0¢E
C.5050¢
C.2020E
0.2392¢
0.2GC5¢
0.1797¢
C.1263E
C.3563E
C.25C4E
0.7795¢€
0.1575€
-C.4523E
0.3058¢E

cC
cC
20
11
| B}
cc
cc
co

-03
-02-
cl
a5
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NeMBER JF O LATA SOT =

)

THES IS Al ANALYSTS UF Troe cocCTRAN ULENSITY
I A CYLINLRICAL PLASMA CILUMN BASES Ch A
St5StL FUNCTIUN PRIFILE APERCAIMATICH

LSING THERNMAL RESUNANCLS l AND 2

TCTAL Prase FCw FICST 905 15 PL TIMeS 1.2%
TLTAL PHASE FUR Scl  ~E5 15 20 TIMES ¢.25

Twg SQUAZz CF wP (VvExX W 2.€C

LOWER INT. LIMIT = C.CCOCE COC
INITIAL INCR. IN 21 x C.1CG0CE CO
“UMBeR CF INTEGR, STEFS = 2C
VALLE OF wl = C.131GE 11
VALUE OF w2 = C.l316E 11
JDIPOLE CURKENT AT wl = C.290Ct CC
CURKENT AT Wl = C.19CCE CC
CURKENT AT W2 = C.15CCe CC
COEFF PcAK TC AVG kL CENS z 0.1975E (1
GAMMA = C.3255€ C3
tTA = VWALL TC KT (Cvex Q = -C.1785%5E C1
GAMMA TIMES 21 = C«31CCE CC
GAMMA TIMZS 22 = C.4743E CC
2 TC 11 = C.1520€ Cl1
wPi = C.2435%E 11
wWF2 = Coell€3E 11
NCL = C.l362E 15
02 : = C.1«70E 18
Al = WPl CVER Wl S5SCUA%ED = Ce34C7€ CI
A2 = WP2 CVvER w2 SCUAKED = C.265Ct C1
Z1 = C.%524E-03
4 = C.le57E-C2
YeAlLL = -C.1287t Cc¢
ELeCTRON TeMPeRATURE =

C.82¢9E C5
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NUMEER CF CATA SET = 2

THIS IS AN ANALYSIS GF THE ELECTRCN CENSITY
IN A CYLINCRICAL PLASMA COLUMN BASED CMN A
BESSEL FUNCTICN PRCFILE APPROXIMATICN

USING THZRMAL RESCNANCES 1

AND

3

TCTAL PHASE FCR FIRST RES IS PI TIMES 1l.25
TCTAL PHASE FCR SEC RES IS PI TIMES 2.25

THE SQAUARE OF wP OVeER W

LOWER INT, LIMIT

INITIAL INCR. IN Z1

NUMBER CF INTEGR. STEPS
VALUc OF Wl

VALUE OF w2

DIFCLE CURRENT AT Wl

CURRENT AT wl

CURRENT AT w2

NUMBER T. Co RESCNANCE 2ND W

CCEFF PEAK TG AVG EL DENS
GAMMA

ETA = VaalLl TO KT COveR Q
GAMMA TIMES 21

GAMMA TIMES 22

22 1C 21

WPl

wP2

NO1L

NC2

Al = WPl CVER Wl SGUARED
A2 = WP2 CVER w2 SCUARED
11

22

VWALL

ELECTRON TcMPERATURE

2.60

C.CCCCE
C.1CCCE

C.1316€E
C.1319€
C.2SCCE
C.190CE
C.120CE

0.1926E
0.3163¢
-C.16G7E
C.268CE
C.595CE
C.2220E
Ce2435E
C.1935¢
C.1862E
C.ll176E
C.3«C7E
C.2152¢
C.3363E
0.1863E
-C.106G5¢€
G.7486E

co
o
20
11
11
cc
cc
co

3

ol
03
Cl
ce
ccC
Ccl
11
11
18
18
Cl
o1
-03
-02
c2
C5
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NUMBER OF CATA SET = 3

THIS IS AN ANALYSIS CF THE ELECTROCN CENSITY
IN A CYLINCRICAL PLASMA COGLUMN BASEC CN A
BESSEL FUNCTICN PRCFILE APPROXIMATICN

USING THERMAL RESGNANCES L AND 2

TOTAL PHASE FOR FIRST RES IS PI TIMES 1.25
TCTAL PHASE FOR SEC RES IS PI TIMES 2.25

THE SQUARE OF wP OVER W = 2.¢€0

LOWER INT. LIMIT . C.CCOCE
INITIAL INCR. IN <1 = C.1COCE
NUMBER CF INTEGR. STEPS =

VALUE OF wl = C.1401€
VALUE OF w2 = C.1401E
DIPOLE CURRENT AT wl = C.340CE
CURRENT AT Wl = C.235Ce
CURRENT AT w2 = C.185CE
NUMBER To. C. RESCNANCE 2ND W =

COEFF PEAK TG AVG EL CENS = C.1956E
GAMMA = 0.3231€
ETA = VWALL TO KT OVER Q = -C.1751€
GAMMA TIMES 21 = C.26C0E
GAMMA TIMES 22 = C.41¢€CE
22 10 21 = C.16C0E
WP1 = C.2656E
wWP2 = C.2357E
NO1 = C.2216E
NO2 - C.1745¢E
Al = WPl JVER Wl SGUAKED = C.35G4E
A2 = WP2 CVER W2 SQUARED = 0.2329¢
zZl = C.8046E
¥4 s 0.1287E
VWALL = -C.10158¢
ELECTRON TEMPERATURE = C.6T74TE

-C3
-C2
c2
C5
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NUMBER CF CATA SET = 3

THIS IS AN ANALYSIS JF THE ELECTRON CENSITY
IN A CYLINCRICAL PLASMA CJILUMN BASED CN A
BESSEL FUNCTICN PROFILE APPROXIMATICA

USING THERMAL RESCNANCES 1 AND

213

TCTAL PHASE FCR FIRST RES IS PI TIMES 1.25
TCTAL PHASE FCR SEC RES IS PI TIMES 3.25

THE SQUARE CF wP OVER W

LCWER INT, LIMIT

INITIAL INCR, IN 21

NUMBER CF [NTEGR, STEPS
VALUE OF wl

VALUE OF w2

DIPCLE CURRENT AT Wl

CURRENT AT wl

CURRENT AT w2

NUMBER T, C. RESONANCE 2ND W

COEFF PEAK TC AVG EL DENS
GAMMA

ETA = VwALL TO KT CVER Q
GAMMA TIMES 1

GAMMA TIMES 22

22 1C 121

wP1l

weP2

NO1

NC2

Al = WPl CVER Wl SQUARED
A2 s WP2 DOVER w2 SQUARED
1

22

VWALL

ELECTRON TEMPERATURE

= 2.6C

C.CGOCE
0.1000€

C.1401E
C.1401E
C.34CCE
C.235Ce
C.160CE

C.1993€
C.3277¢
-C.1817¢
C.31C0¢
C.6014E
C.1940¢
C.2617¢
C.2159¢
C.2151¢
C. 1465¢
C.3489E
C.2375¢
C.G459¢
0.1835¢
-C.8931E
C.57Co¢

cc
co

11

o1
-C3
-C2

cl

("}
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NUMBER JF CATA SET = 4

THIS IS AN ANALYSIS OF THe ELECTRCN DENSITY
IN A CYLINCRICAL PLASMA CCLUMN BASED CN A
BESSEL FUNCTICN P&IFILE APPROXIMATICN

USING THERPMAL RESGNANCES 1

AND

2

TOTAL PHASE FCR FIRST RES IS PI TIMES 1.25
TGTAL PHASE FCR SEC ReS IS Pl TIMES 2.25

THE SQUARE OF WP OVER W

LCWER INT, LIMIT

INITIAL INCR. IN 21

NUMBER CF INTEGR. STEPS
VALUE OF wl

VALUE OF w2

DIPOLE CURRENT AT Wl

CUPRENT AT Wl

CURRENT AT w2

NUMBER T, C. RESCNANCE 2ND W

COEFF PcAK TC AVG EL DENS
GAMMA

ETA = VWALL TO KT GVER Q
GAMMA TIMES 21

GAMMA TIMES Z2

2 1C 21

WPl

WP2

NC1

NC2

Al = WPl OVER Wl SQUAKED
A2 = WP2 OVER W2 SQUARED
11

22

VWALL

ELECTRON TEMPERATURE

= 2.60

C.CCOCE CC
C.1CCCE CC

C.1458E 11
C.l1458¢ 11
C.355CE CC
C.245CE CO
C.2C0CE CC

C.2011E C1
C.3299E 03
-C.18¢0E 01
C.31C0E CC
0.4557E CO
C.l47CE Cl
C.2762E 11
C.264906E 11
C.2397¢ 18
C.1956E 18
C.3589¢E Ol
C.2930¢ Ol
C.9396E-C3
C.l3281€=-C2
-C.7640€. Cl
C.4795€ 05
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NUMBER CF CATA SET = 4

THIS IS AN ANALYSIS CF THE ELECTRCN CENSITY
IN A CYLINCRICAL PLASMA COLUMN BAGEG Ch A
BESSEL FUNCTICN PRIFILE APPROXIMATICA

USING THe®MAL REZSONANCES 1

AND

2

TCTAL PHASE FOR FIRST RES IS Pl TIMES 1.25
TOTAL PHASE FCR SEC RES IS Pl TIvES 3.25

THE SQUARE JF WP OVER W

LOWER INT, LIMIT

INITIAL INCR, IN Z1

NUMBER CF INTEGR. STEPS
VALUE OF Wl

VALUE OF W2

DIPCLE CURRENT AT Wl

CURRENT AT Wl

CURRENT AT W2

NUMBER T. C. RESCNANCE 2ND W

COEFF PEAK TT AVG EL DENS
GAMMA

ETA = VwAlLL TC KT OVER Q
GAMMA TIMeS 21

GAMMA TIMES 22

22 10 21

WPl

wWpP2

NG1

NO2

Al = WPl CVER wl SQUAKED
A2 = WP2 CVER W2 SQUAKRED
Z1

22

VWALL

ELECTRON TEMPERATURE

2.¢C

C.CCcCCe
C.1CCCE

C.1458€
C.1458E
C.355CE
C.245CE
C.155CE

C.1999¢
0.3284E
-C.1828E
C.2780E
C.5977¢
C.2150¢
C.28C9E
0.2234E
C.2479E
Cel568E
C.3712¢
C.2348E
C.846E4E
0.1820E
-0.1223¢
C.7770E

-C3
-02
4
05
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NUMBER OF CATA SET . 5

THIS [S AN ANALYSIS OF THE ELECTRGN

CENSITY

IN A CYLINDRICAL PLASMA COLUMN BASED CN A
BESSEL FUNCTICN FROFILE APPROXIMATICNA

USING THERMAL RESCNANCES 1

AND

2

TCTAL PHASE FCR FIRST RES IS PI TIMES 1.25
TOTAL PHASE FCR SEC RES IS PI TIMES 2.25

THE SQUARE OF wP OVER W

LOWER INT, LIMIT

INIVIAL INCR., IN Z1

NUMBER CF INTEGR., STEPS
VALUE OF Wl

VALUE OF w2

DIPOLE CURKENT AT wl

CURRENT AT Wl

CURKENT AT w2

NUMBER T. Co RESCNANCE 2ND w

CCGEFF PEAX TG AVG cl DENS
GAMMA

ETA = VWALL TC KT GVER Q
GAMMA TIMES Z1

GAMMA TIMES 2

Z2 1C 11

WPl

wP2

NO1

NO2

Al = WPl CVER Wl SCUARED
A2 = WP2 CVER W2 SQUARED
Tl

L2

VWALL

ELECTRON TEMPERATURE

2.60

C.CCOCE
C.100CE

C.1204¢E
C.1204E
C.270CE
C.18CCE
C.135CE

0.1986E
C.32¢68E
-C.18C4E
C.31C0E
0.4929€E
C.159CE
C.2242E
C.1941E
C.1579E
C.l184E
C.34¢7E
C.26C0E
0.G485E
C.15C8E
-C.16(C9E
C.1025E

co
co

11
1l

0l
=03

-c2

c2
Cé
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NUMBER CF CATA SET = 5

THIS IS AN ANALYSIS GF THE ELECT2CN CENSITY
IN A CYLINCRICAL PLASMA CCLUMN BASED CN A
BESSEL FUNCTICN PRCFILE APPROXIMATICN

USING THCRMAL RESCNANCES 1

AND

3

TOTAL PHASE FCR FIRST RES IS PI TIMES 1.25
TCTAL PHASE FGR SEC RES IS PI

THE SQUAREZ OF WP QOVER W

LOWER INT. LIMIT

INITIAL INCR. IN 2Zi

NUMBER CF INTEGR., STEPS
VALUE OF Wl

VALUE OF w2

DIPCLE CURREANT AT wl

CURRENT AT wl

CURRENT AT w2

NUMBER To. Co RESCNANCE 2ND W

COEFF PEAK TC AVG EL DENS
GAMMA

ETA = VJALL TG KT CVER Q
GAMMA T[MgS 21

GAMMA TIMeS 22

12 10 11

wP1

wpP2

NO1L

NO2

Al = WPl GVER Wl SQUARED
A2 = WP2 OVER w2 SCUARED
Zl

12

VWALL

ELECTRON TEMPERATURE

Tirss 2.25

= 2,.6C

C.CCCCE
0.1C0CE

0.1204E
C.1204E
C.270CE
C.183CE
C.1100E

C.1986E
C.3268E
~C.18C4E
C.31C0E
C.6448E
C.208CG¢E
C.2242E
C.1752¢
C.1579¢
C.9648¢E
C.3467E
0.2119¢
0.G485¢E
0.1973E
-C.16C9E
C.1C35¢

co
co
2C
11
11
cc
cc
00

3

Cl

ol
-C3
-02
C2
o¢
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NUMBER JF CATA SET = 6

THIS IS AN ANALYSIS GF THE ELECTRCN CENSITY
IN A CYLINCRICAL PLASMA COLUMN BASED CN A
BESSEL FUNCTICN PRCFILE APPROXIMATICN

USING THERMAL RESONANCES 1

AND

2

TOTAL PHASE FCR FIRST RES IS PI TIMES 1.25
TOTAL PHASE FGR ScC RES IS Pl TIMeS 2.25

THE SQUARE CF wP OVER W

LCWER INT. LIMIT

INITIAL INCR, IN 21

NUMBER CF INTEGR. STEPS
VALUE OF wl

VALUE QOF w2

ODIPCLE CURRENT AT wl

CURRENT AT wl

CURRENT AT w2

NUMBER T, Cs RESCNANCE 2ND W

COczFF PEAK TC AVG EL DENS
GAMMA

ETA = VwALL TO KT GVER Q
GAMMA TIMeES 21

GAMMA TIMeS 22

Z2 1C 21

WPl

wP2

NC1

NC2

Al = WPl CVER Wl SQUARED
A2 = WP2 OVER W2 SQUARED
Tl

z2

YwALL

ELECTRON TEMPERATURE

= 2.€C

C.CCCCE CC
0.1C00E €O

20
C.l1267¢ 11
C.1267E 11
C.2850€ CO
C.1G60CE ¢O
C.150CE CC

2

C.1986E C1
C.3268E C3
-C.18C4E C1
C.31CO0E CO
C.4743E CO
C.1530€ C1
C.2359€ 11
C.2096E 11
0.1748¢ 18
C.1380¢ 18
C.34¢&7€ C1
0.2737€ 01
C.9485€-C3
0.1451¢€-C2
-C.1113€ C2
C.7163E C5
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NUMBER GF CATA SET s 6

THIS IS AN ANALYSIS OF THE ELECTRGON CENSITY
IN A CYLINCRICAL PLASMA COLUMN BASED CN A
BESSEL FUNCTICN PRCFILE APPRUXIMATICA

USING THERMAL RESUNANCES 1

AND

3

TOTAL PHASE FCR FIKST RES IS PI TIMES i.25
TOTAL PHASE FCR SEC RES IS PI TIMES 3.25

THE SQUARE GF wP QOVER W

LOwWeR INT, LIMIT

INITIAL INCR. IN 1

NUMBER CF INTEGR. STEPS
VALUE OF Wl

VALUE OF w2

DIFOLE CURCENT AT wl

CURRENT AT wl

CURRENT AT w2

NUMBER To. Co. RESCNANCE 2ND W

COEFF PEAK TC AVG EL UENS
GAMMA

ETA = VWALL TC KT COVER Q
GAMMA TIMES 21

GAMMA TIMES 22

22 1C 21

WPl

wpP2

NOL

NO2

Al = WPL OVER wl SGUARED
A2 = WP2 CVER w2 SQUARED
1

z2

VWALL

ELECTRON TcMPERATURE

2.€C

C.CCCCE Ce
C.100CE CO

0.1267E€ 11
C.1267€ 11
C.2850E CC
C.160CE CC
C.120CE 0O

C.1648E Cl
C.3221€ 03
-C.1737¢ 01
0.2770€ 0O
C.eC66E CO
0.219CE O}
C.2359¢€ 11
0.1875E 11
C.1748E 18
C.11CsE 18
C.34¢7€ Cl
C.2189E ¢l
0.1883€g-02
-C.1CClE C2
C.6690E C5
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NUMBER OF- CATA SET = 7

162

THIS IS AN ANALYSIS OF THE ELECTRGN CENSITY
IN A CYLINCRICAL FLASMA COLUMN BASEC CN A
BESSEL FUNCTICN PRCFILE APPROXIMATICN

USING THERMAL Rz SONANCES 1

AND

2

TOTAL PHASE FCR FIRST RES IS PI TIMES 1.25
TOTAL PHASE FOR SEC RES IS PI TIMES 2.25

THE SQUARE (OF wP QVER W

LOWER INT. LIMIT

INITIAL INCR, IN 21

NUMBER CF INTEGR. STEPS
VALUE OF Wl

VALUE OF w2

DIPOLE CURRENT AT Wl

CURRENT AT Wl

CLURRENT AT w2

NUMBER T. D. RESCNANCE 2ND W

CCEFF PcAK TC AVG EL DENS
GAMMA

ETA = VWALL TC KT CVER Q
GAMMA TIMES 21

GAMMA TIMES 22

z2 1C 11

WPl

wP2

NC1L

NC2

Al = WPl CVER w1l SQUAKED
A2 = wWP2 OVER w2 SQUARED
A

22

VWALL

ELECTRON TEMPERATURE

2.60

C.CCOCE
C.1CO0CE

C.1429¢E
C.1429E
C.290CE
C.195CE
C.15CCE

C.1993F
0,3277€
-C.12817E
C.31COE
C.4743E
C.153CE
C.2672E
Ce2344E
C.2243E
C.1725¢
C.34S7E
0.2690E
C.9459E
C.l447E
=C.2254E
Ce.144CE

co
cC
20
11
11
Cco
CcC
cc

2

Cl
C3
cl
ce
oc
Ccl
11
11
18
18
Ccl
01
-C3
-C2
c2
€6
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THIS IS AN ANALYSIS CF THE ELECTROUN CENSITY
IN A CYLINURICAL PLASMA COLUMN BAScD GCN A
BESSEL FUNCTICN PKCFILE APPROXIMATICN

USING THERPAL RESUNANCES 1

AND

3

TCTAL PHASE FCR FIRST RES IS PI TIMES 1.25
TCTAL PrASE FOR SEC ReS IS Pl TIMES 3.25

THE SQUAKE OF wP CVER W

LOWER INT, LIMIT

INITIAL INCR, IN 21

NUMBER CF INTEGR, STcPS
VALUE OF Wl

YALUE OF w2

DIPCLE CURRENT AT wl

CURRENT AT wl

CURRENT AT w2

NUMBER T. C. RESCNANCE 2ND W

CCEFF PcAK TC AVG EL DENS
GAMMA

ETA = VwWwALL TC KT CVER Q
GAMMA TIMES Z1

GAMMA TIvES 22

2 1C 711

WPl

WP2

NO1

NC2

Al = WPl OVER Wl SCUARED
A2 = WP2 OVER W2 SQUARED
Tl

22

VWALL

ELECTRON TEMPERATURE

[ IO I I B I IO DN RN DN BN I I I )

2.6C

C.CCOCE
C.lCCCE

C.142SE
C.14209E
C.26CCE
C.195CE
C.120CE

C.1993E
C.3277¢
-C.1817€
C.31CCE
0.6386E
C.2060E
0.2672¢E
C.2CS6E
0.2243E
C.1380E
0.3497€
0.2152€E
C.9459E
Ce.1949E
~C.2254¢E
0.1440E

Co
cC

11
11

01
-C3
-C2

c2

06
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NUMBER CF CATA SET = 8

THIS IS AN ANALYSIS UF THE ELECTRGN CceNSITY
IN A CYLINCRICAL PLASMA COLUMN BASEC CN A
BESSEL FUNCTICN PRCFILE APPROXIMATICN

USING THERMAL RESTHANCES 1

AND

2

TCTAL PHASE FCR FIKST RES IS PI TIMES 1.25
TCTAL PHASE FCR ScC RES IS Pl TIMES 2.25

THE SQUAREe CF WP CVER W

LOWER INT. LIMIT

INITIAL INCR, IN 21

NUMBER CF [NTEGR., STEPS
VALUE OF wl

VALUE OF w2

DIPULE CURRENT AT Wl

CURRENT AT Wl

CURRENT AT w2

NUMBER T, Co RESCNANCE 2ND W

CCEFF PZAK TC AVG EL OENS
GANMMA

ETA = VaAlLL TO XT CVER Q
GAMMA TIMES Z1

GAMMA TIMES 22

T2 1C 11

WPl

we2

NO1

NC2

Al = WPl CVER wl SCUARED
A2 = WP2 OVER W2 SQUARED
I

2

VWALL

ELECTRON TeMPERATURE

ZQCC

C.CCOCE
C.100CE

C.1456GE
C.1459E
C.320Ce
C.21CCE
C.16CCE

C.2C2CE
C.3310¢
-C.1866E
0.35C0E
C.5495E
0.157CE
C.2695E
C.2353¢
C.2282¢E
C.1739E
Ce3412E
0.26C0OE
C.1057€
C.1660E
-C.1639E
C.1C20¢

co
co

11
11

o1
-C2
=02

c2’

06
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NUMBER OF CATA SET = 8
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THIS IS AN ANALYSIS CF THE ELECTRCN CENSITY
IN A CYLINCRICAL PLASMA COLUMN BASZOD CN A
BESSEL FUNCTICN PRCFILE APPROXIMATICN

USING THERMAL RESONANCES L

ANO

3

TOTAL PHASE FCR FIRST RES IS Pl TIMES 1.25
TOTAL PHASE FCR SEC RES IS Pl TIMES 3.25

THE SQUARE OF wP CVER W

LOWER INT. LIMIT

INITIAL INCR. IN Z1

NUMBER COF INTEGR. STEPS
VALUE OF wl

VALUE OF w2

DIPOLE CURRENT AT Wl

CURRENT AT Wl

CURRENT AT w2

NUMBER T. D. RESCNANCE 2ND W

COEFF PEAK TC AVG EL DENS
GAMMA

ETA = VaAlLL TO KT CVER Q
GAMMA TiIMzS 21

GAMMA TIMES 22

22 1C 21

wP1l

wP2

NO1

NO2

Al = WPl CVER Wl SQUARED
A2 = WP2 CVER W2 SUUARED
1

22

VWALL

ELECTRON TEMPERATURE

x 2.60

C.0C00CE CC
C.100Ce CGC

0.1459€ 11
C.l459¢€ 11
C.32CCE CC
C.210CE CO
0.130CE CO

C.1969E 01
0.3248E 03
-C.1775e Cl1
C.3060E CO
C.6640E CC
C.2170€ 01
C.26G55€ 11
C.2121¢ 11
C.2282E 18
C.1413E 18
C.3412€ C1
0.2112€ C1
C.6421E-C3
0.2044E-02
~C.1547€E 02
0.1012E 06
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1

Plasma
Thickness b
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|
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0
Data Set #4.3
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Thickness b

Data Set #5.3
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Plasma
3
z/a

~ Glass ’
\ Thickness b
1
Data Set #2.
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Data Set #3.3

aae b o o a1

1 1

d l I 1 i L 1
il v
...........'.............."........’.........................".'................‘....‘..
o o O -+ N N - (Vo) [+ o]

L] L] L] . L ] . L ] L ] .



177

Plasma

<l— |

Thickness b
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Plasma

~X Glass
‘\ Thickness b

Data Set #6.3
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SUMMARY 3JF ReS UF
NC ALFA

DATA SET NC 1
0.153z 13 0.8206c¢

DATA SET NC 1
0.124¢ 13 0.820¢

DATA SET NC l
0.103z 18 0.826¢

DATA SET NC 2

0.1556c 13 0.822:=
DATA Sel WC 2
C.125¢ 18 0Q.822¢

DATA SET NC 2

0.102¢ 13 0.851¢
DATA SET NC 3
0.19Cc 13 0.832¢
DATA SET NC 3
0.149c 14 0.832¢
VATA SET NC 3
0.129¢ 13 0.832¢

DATA SET NC 4
0.2CCe 14 0.804¢

DATA SET NC 4
O.164E 13 0.8u4E

OATA SET NO 4

O0.133E 18 0.859¢
DATA 3ET NC 5
0.139c 18 OC.8c4c

DATA SET NC 5
0.104t 18 0.864:

DATA SET NO 5
0.349€ 17 O0.86~c

182

PAR ANAALYSIS

W Teh?P

RESUNANCE N3 1
00 0.127€ 11 0.142t 05
RESGNANCE NO 2
(0 0.127¢ Ll G.l47t 05
RESCNANCE NO 3
00 0.127€ 11 0.147€ 05
RESUONANCE NO 1
00 9.132% 11 0.200& 05

KESSNANCE HO 2

CO0 0.132¢ 11 0.2CCt 05
RESONANCE NO 3
€O 0.132¢ 11 0.316E 05

<RESONANCE NO 1

60 C.l%0E 11 0.19Ct 05

RESONANCE NO 2

CO O0.l4CE 1! 0.1GCE 05
KESONANCE NO 3
CO 0.14CE L1 0.190¢ 05

RESOGNANCE NO 1
00 O.l46E 11 UG.lleE 05

RESUNANCE NO 2
00 O.l4bc L1 O0.116E 05

RESUNANCE NO 3
CO OU.l4bc L1 C.lletk C5

KESUNANCE NO 1

00 0.120€ 11 0.29CE 05
RESONANCE NO 2
€0 0.12CE LI 0.290t 05

RESUNANCE NO 3

€O 0.12¢e 1l 0.290&E 05

Z cRIT.

0.840E-03
C.121E-02
0.1636-02
C.1378-02
C.137E-02
0.193€-02
C.840E-03
C.127€-02
C.160£-02
C.770£-03

0.114E-02

C.182E-02

C.980¢ 03
C.150E-02

C.203e-02

ETA

-0.175E

-0.175¢

-0.175¢

-0.173€

-0.173¢

-0.190¢€

-C.178¢k

-0.178¢

-0.178¢

-0.163¢

-0.163E

-0.1906E

-C.200CE

-0.20CE

-0.200¢

01

Cl

Cl

ol

Cl

cl

()

Cl

ol

ol

cl

Cl

01

¢l

Cl






U

Qe

DATA 31T
ve.l5Cc 18

OATA 5=zT NC
Collaz 13

OATA SET NC
O.9+8c 17

DATA SET NC
J.194c 18

DATA SET NC
0.149c 13

OATA SET NC
0.122¢ 13

DATA SET NC
0.169z 13
DATA SET HO
0.151€E 13

DATA SET NC
0.123¢ 138

6
O.835¢€

(<)
0.830¢E

6
C.835¢

7
G.841¢E
7
C.84lc
7
0.873¢
8
U.852:

8
N0.852¢c

8
0.852:

co

09

Cc)

09

Cco

o

183 N

NO 1
C.dCo¢c

KESJ4ANCE
C.l127¢ 11

NG 2
G.2Coc

xeSCHANCE
0.127¢ 11

KESONANCZ NU 3

0.127 11 C.2C5¢t

NO 1
0.274¢

KESONANCE
O.le3g 11

~ESONANCE NO 2
Q«143E Ll 0,274t

RESINANCE NJ 3
O.l43c 11 0.428¢

RESCNANCe NO 1
O.lv0g L1 C.3%1c
~E3INANCE NO 2

O.le6E L1l G.391¢

KESONANCZ NO 3
O.l9ot L1 0V.391¢

35

05

05

05

05

05

05

05

05

C.91lCt-03

C.135e-02

C.191e-02

0.910€-03

C.139E-02

0.198E-02

C.980e-03

C.149E-02

C.203&e-02

-0.18C¢t

-0.180¢

-0.180¢

-0.184E

-0.184E

-0.2C«E

-0.191¢

-0.191€

-0.191E

Cl

Cl

Cl

o1

Cl

Cl

Cl

Ccl

ol



SUMMARY OF RES OF

NO GAM1A

DATA ST NC l
0.17+z 18 <CTe327¢

DATA 5ET NC 1
O.l4li 13 C.327¢

DATA S&T NC 1
O.126c 13 0.32l€

DATA SET NC 2
C.l180c 13 0.5320¢

DATA SET NC P4
0.147& 1ld 0.326E

DATA SET NO 2
O.113E 18 0.319¢

OATA SET NC 3
0.222¢ 13 0.323c

DATA SET NO 3
O0.174c 1n 0.323¢

DATA SET NC 3
0.147€ 18 0.324€E

DATA SET NG 4
0.24CE 18 0.330¢

DATA SET NC 4
0.190E 18 0.330E

DATA SET NC 4
O.157¢ 18 0.328¢

DATA SET NO 5
0.153E 18 0.327¢€

OATA SET NC 5
O.118t 18 0.327¢

DATA SET NC 5
0.965& 17 0Q,327E

184

BESSEL AMNALYSIS

L]

Rz 2GINANC: NJ
C3 C.l27¢t8 11

rnc 3ONANCE Nu
3 C.l27e 11

RESONANCE N3
C3 0.127¢ 11

KESONANCE NG
C3 G.132Et 11

KESINANCE NO
03 G.l32c 11

RESONANCE NO
¢3 0.1328 11

RESONANCE NO
C¢3 0.:1+0E 11

RESINANCE NU
03 0.l«CE 1l

RESQNANCE NO
03 0.14CE 11

RESONANCE NO
C3 O.l«oE 11

RKESONANCE NO
C3 O.lebe 11

RESONANCE NC
U3 Ol.lebce L1

RESONANCE NO
G3 0.120& 11

RESONANCE NG
03 0.12CE 11

KESONANCc NO
03 0.12Ct 11

05

05

05

05

05

05

03

05

05

05

06

06

a6

Z CRIT.
€C.948c-C3
C.lelc-C2
C.l157c-02
C.952E-03
C.l46E-02
C.186E-02

.
C.805E-03
C.129€-02
0.184E-02
C.940€-03
C.138€e-02
0.182&-02
0;9485-03

0.151€-02

C.197€-02

ETA

-C.i68CE

-C.18Ct

-0.172¢

~0.178E

-G.178E

-0.17C¢

-0.175E

-0.175¢

-0.182¢E

-0.185¢E

-0.185¢E

-0.180€

-0.180E

-0.18CE

1

Cl

Cl

Gl

Cl

Cl

¢l

Cl

Cc1

Cl

Cl

Cl

Cl

ol

Cl



DATA SET NO
0.17%c 18

DATA SET
0.138¢ 13

NC

OATA 5eTl wNC

Colloz I3

DATA SeT
0.224E 138

NG

OATA SET NC

0.172: 13

OATA SET NO
0.138c 18

DATA SET NC
C.228c 13
VATA SET NO
0.174E 138
OATA SET NO
O.l4lE 13

6
0.327E

6
UVel27=

6
J.322¢

7
0.323€

7
0.323¢

7
0.323¢k

8
0.331€¢

8
0.331¢

8
V.325E

C3

¢3

03

G3

C3

c3

Cc3

c3
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RESONANCE NO
0.127: 11

RESONRNT 2 NU

Cell27¢ 11
r23JdNANCE NG
Col27c 11
xt3SONANCE NO
Cola3E 11

RESONANCE NO
0.143c 11

RESONANCE NG
O.143c 11

KESONANCE NO
O.140E 11

KESGNANCE NO
O.l4b: 11

RESONANCE NU
O.ls0c 11

1
O.710E

<
Ce7loE

3

J.o0t5¢t

1
0. l4ast

2
C.lasE

3
0. 144E

1
0.1U2E

2
C.1C2¢E

3
V. 1CILE

05

I

0o

0o

0o

06

(1

06

(o]}

C.948t2-03
0.145£-02
C.138E-C2
C.9~bEf03
C.1l45€-02
C.195€e-02
C.106E-02
C.l66E-02

C.2C«E=-02

-0.18CE

-0.180¢

=C. 174t

-0.182¢

-0.182¢E

-0.182¢

-0.187¢

-0.187E

-0.177¢

Cl

Ccl

Cl

cl

Ccl

ol

cl

C1

cl



APPENDIX B

FORTRAN COMPUTER PROGRAMS WRITTEN SPECIFICALLY FOR
THE NUMERICAL ANALYSIS IN THIS RESEARCH PROJECT



187

/1SYS TIME=sLC

/LCAC WATFlYy

/OPT NOSCURCE

COe#88THIS PRCGRAM IS DESIGNED TO DETERMINE THE PARAMETERS

Ceesee(OF A BESSEL SERIES ELECTRON SENSITY PROFILE B8ASEC ON

CO0® SO0 THERMAL RESCNANCE OATA CBTINEC wiTk AN ELECTRCACCUSTIC PRCERE.
FUNCTION FIO(X)
[F(X=,01) 1ol,2

1 FiIO0s]l . eX002/2 ,%%2
GO TC 3¢

2 IFIX=-5)11C»20,2C

eC FICSEXP(X)/SQRT(2.,%3,14159¢X)*(1,+1,/8,/X)
GO TC 3C

1C FICsl.exs02/2 %02
X804/ (2,98442,%82)
X905/ (2,806% (3,02, )¢¢2)
IXO$8/(2,498%(4,¢3,982,)982)
AXI01C/(2.08100(5,04,83,82,)092)
X982/ (2.%0]128(6.,%5,.%4,¢3,82,)8¢2)
CXVIOL 4/ (2, 40]140(7,.%6,%5.,%4,93,92,)%%2)
20 RETURN
END
c GO CN
FUNCTIUN FUGZlo IWITCHIGZoALrA2owl,rW2
LWPlswP2,G2DIFF) :
CONMMCN AGAMMA
COFPFPCN MTEST
Y1sAGAMMA-GZ
IFCIWITCH) 13013,15
13 Del.-A2*EXP(Lle=-FICIYL))
IF(D) 18,118,223
é3 F®SQRT(C)
GO TC 16
15 Dal.=ALeEXP (L.=FICIYL))
IF(D) 18,18+25
s FeSQRT(C)

WM e WA e

GO TC 16
18 F=C.,
16 RETURN
ENO

FUNCTION FINT(XsGAMMALETA)
YLsGAMMA® ,007=CAMMA®X
FINTeEXP(l.=-FI0(YL))®(.007=-X)
RETURN
ENO

C SINGLE PRECISIONPROGRAM
COFMCN AGAMMA
COMMCN MTEST
DIFENSICN AN2(1GC)
DIMENSICN DIFF(2)
DIMEMSICN V(150),AN(L50)
READ(S5,®) NSET
READ(So®) NUsMloW2oDIPILoNLI»N2]I,NKARN
READ(S5»®) AGAMMA,COEFF
READ(S5s%) PHLoPH2)WPTWS
GZlls(C.
0GZLlF=,Cl



549

$50

€30

73C
72

7C1

700
€3

102

188

WRITE(6,949) NSET

FORMAT(//+2%Xs *NUMBER OF DATA SET FCR BLC s *,13,/7)
WRITE(6s950) NHARMyPHL,PH2,)WPTHKS

FORMAT(2Xs*THIS IS AN ANALYSIS CF THE ELECTRON DENSITY®,/,

1 2Xs* IN A CYLINDRICAL PLASPA CCLUMN BASED CN AY,/,

2 2X9*BESSEL FUNCTYION PROFILE APPROXIMATICON®s/»

2 2Xs*USING THERMAL RESONANCES 1 AND *ol3s77»

4 2Xs* TOTAL PHASE FOR FIRST RES IS Pl TIMES *sF4a,26/»
H 2X»*TOTAL PHASE FOR SEC RES IS Pl TVIMES '»Fa.207/»

(] 2Xs*THE SQUARE OF WP CVER W s *5F4,201177)
WRITE(6+,930) GZLIsDGZLIFoNUsWLoW2sDIPILloW1IrN2I»NHARN
FORMAT(2X»*LOWER INT, LINMIT s, EL5.40/0

1 2Xs* INITIAL INCR. IN 21 5% ELS.40 /0

2 2X»*NUMBER OF INTEGR. STEPS 2,115/,

k] 2X»*VALUE CF wl 2%, E1l5.40/0

4 2X»* VALUE OF W2 8%, E15.490/»

5 2X»*0IPOLE CURRENT AT Wl 2% ELlS5.40/0

¢ 2Xs*CURRENT AT Wl 8% E1%5.40/»

7 2X»*CURRENT AT W2 2%, ELS5.40/0

8 2Xs*NUMBER T, Do RESCNANCE 2NO W 85 115,7)
AGsAGAMMA

DGZLIFs.Cl

GAMASAGAMPAY,007
EM=9,11E-131
EPS=@.85E-12
Q=]1,¢C2E-19
ANCLs2,0W ] *820EMeEPS/Qee2W 1 ]/0IPIL
1 13.,¢uPTWS
ANCL=ANC19CCEFF
ANC2s 2,0y 1¢s2¢ENSEPS/QOe2ey21/01IP11
1 13.,¢wPTwWS
ANO2=sANC2*CCEFF
WP1l=SCRT(Ce®24ANUI/EMVEPS)
WP2eSCRT(Ce®2¢AND2/EM/EPS)
Al=wWPle22/y]lee?
A2eWP2ee2 /W2ee?
GZl=s=-CG21F/2.
Me]
00 IC [=M,2
GZ1l=GZ1+CG21F
0GZ=G21l/1C.,
GZ2=G11
GZ2sG22+CC2
YiIeAGAMMA-GZ]
Y22 AGAMNMA-GZ2
OGZTeAL®EXP (L .,~FIO(YL))=-A2¢EXP(L.,~FIC(Y2))
IF(DG2T)7000,702,701
IF(CG2-G217G90.) 702,702,703
G22=G22-0CZ
0GZ=DGZ/1C,
GO 7C 7C1
CONTINUE
IWITCHs-=1]
UL=G22
CALL INT(GZYIoNUSULSAINTS»GZLoW1lsW2oWPLsWP2sA1sA2,IWITCHsG20IFF)
AINTLl=sAINT
IWNITCrsl
UL=G21
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CALL INTU(GZlIsNUSULOAINT+GZlomlow2oWPlowP2¢ALsA2:IWITCRoaGICIFF)
AINT2=AINT
1C DIFF(I)=AINTLI-W1/W2*AINT2?
1 PHC/IPH]
IF(GZ1-4,) €0,60,€1
el WRITE(60759) GAMA,COEFF
799 FORMAT(2X»*FOR GAMA = Y,ELl5.44/7
1 2Xs* AND CCEFF ®w ',E1S5.40/>»
2 2Xs*THE OIFFERENCE OIVERCES FCR ALL POSITIVE GZLl*»//)
eC IF(OIFF(L1)*DIFF(2)) 40,20,2C
<C ERR=G21
M= 2
DIFFLL)=DIFF(2)
GO 10 30
4C IF(DG21F-.01) 1CCs9Cy»SC
SC GZ1=G21-0CZ1F
DGZL1F=DG2LIFZ1C.
GO TG 3¢
1C0 CONTINUE
GAT=-C21+.0C0C1
0GAT=GZ1
il0 GAT=GAT+CCAT
Y3sGAT=-G2]
Z1=FICUY3)=(1.-ALOG(L./AL))
TFCZL) 7T1Ce 7110712
712 JF(DGAT-G2179.) 711,711,713
713 GAT=sGAT-DCAT
DGAT=(CGAT/1C,
GO 1C 71C
ll CONTINUE
IF(ABSIGAT-AGAMMA)-ABS(GAT/5C.)) 720,72C,»721
721 AGAMMAS (AGAPMA+GAT) /2.
GO 7C 73C
720 CONT INUE
BCCNSTel.38E-23
YYsAGAMMA-G21
ETA=] . ~FICLAGAMMA)
B2sA2
Bl=Al
227021=G22/7G21
TEsWLO$20EMOAINT 2% 2/ GAMA®®2/3,1415G*%2/3,/7/BCCNST
VWALL=ETA®BCONST*TE/Q
Z11=C21/GAMA
1222G22/GAMA
CALL INTE(ETA»GAMA,S)
COEFFT= ., 0C79¢02/2./5
IF(ABS(CCeFF~COEFFT)-ABS(COEFF/2C.)) 74C»74CHr741
741 COEFFs(COEFF+COEFFT)Z 2.
GO 7C 72
74C CONT INUE
WRITE(6»879) COEFFToGAMALETA»G219oG22,22TCZ1oWPLloWP2,ANCLIANC2,

1 ALleA2,2110222oVWALLHTE

879 FORMAT(2X,*CCEFF PEAK TO AVCG EL CENS = YSELS5.40/
1 2X s *GAMMA e 'HLELS5.40/>
2 2X»'ETA = VWALL TO KT CVER Q = ',EL1S5.40/>
3 2X»*GAMMA TINES 21 ® 'SELS.40/>»
4 2X»*GAMMA TIMES 22 s ' ELS.4e/>
5 2X,*22 10 21 = Y,ELl5.40/>
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(] 2Xs*WP1 s 'ELS5.457»
7 2Xs'WP2 s Y5ELlS5.40/»
8 2X»*'NO1 s Y,EL15.40/0
1 2Xs*NO2 e *,E15.40/>
2 2Xs*A)l = WPLl OVER Wl SCULARED s Y,E15.40/>
2 2X»*A2 = WP2 OVER W2 SCUARED s Y5E15.40/>»
4 2Xs»°'121 s Y,E15.40/>
5 2X»' 22 ® ', E15.40/)
(] 2Xe* VWALL : = ,ELS.40/>
7 2X»*ELECTRON TEMPERATURE = YELlS5.40/>
8 147 )

DIZ=.CC?/725.

1=-01

D0 80C I=1,206

l=2+C2

R1esAGAMMA-GAMASZ

Vil)=1l.,=-FI0(R1)

AN2 (I )=ANQ2¢EXP(VL]))
€CC ANCT)=ANCI®EXP(V(I))

CALL PLOT4(VsAN,26)

CALL PLCT2(ANs»AN2,26)
1 STCP

END

SUBRCLTINE INTUXIsNoXFsS»Gllowlsnw2,WPloWP2,Al0A2,IWITCH)GICIFF)

DIMENSICN X (3)

COMMCN AGAMMA

COPMCN MTEST

NeN/292+]

XN=N

OXe(XF=X]1)/(XN=-1,)

NCCUNT=(C

X(l)sx]=-2,.%DX

X(2)sx[~DX

X(3)ex]

SsC.

DO 10 le3,N,2

X(l)=x{1)e2,¢DX

X(2)sX(2)+42.¢0X

X(3)=x(3)42,¢DX .

OS*F(GZLlo IWNITCHsX{L1)sALsA2omlou2oWP1sWP2,G2D1FF)

L*4,*F(GZLloIWITCHIXI2)0ALoA2sWloW2s WP 1, WP2,GIOIFF)

Q*F(GZ Lo IWITCHIX(3D)s AL o A20MLoW2,WPLsWP25GZDIFF)
1C S»S+0Xx/3,9D5S
4C RETURN

END

SUBRCLTINE INTE(ETA,GAMMA,S)

DIFENSICN X(3)

N=20

N=h/72¢2+1

XNsN

X1=0,

XFe ,7CE=-2

DXs(XF=X1)/(XN-1,)

NCCUMNT=C

X(l)sx]l-2,¢0X

X(2)ex[=-0X

X(3)=Xx]

S.Cl
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DO I1C [=3,N,2
X(l)ax(1l)+2,.%0X
X(2)=Xx(2)+2,.%DX
X(3)ex(3)+2,%DX
OS*FINTUX(L)sGAMMALETA)+& *FINT(X(2)>
1l GAMPALETA) +FINT(X(3)9 GAMMALETA)
1C S=SeCx/73,909
4C RETURN
ENC
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sess PIC JACK GLIN BSSR
/LCAD WATFI1YV
/CPT NOSOURCE
Coees0THIS PRCGRAM IS DESIGNED TO DETERPMINE THE PARAMETERS
Co4es80F A PARAROLIC tLECTRCNDENSITY FRCFILE BASED ON THERMAL
CO®S¢+09RESCNANCE DATA UBTAINED WITH AN ELLECTROACGUSTIC PROBE.,
FUNCTICN FINT(RTA)
COPMCN MY
COMMCN AICsAIlsAI2,R1TA
COMMGN ALFASBETA
COMMCN A
IFI(MT) 15515513
13 D*1.=Al1/AID®3./7(lo=oS5*ALFA)®(Ll.~ALFA*RTA®*2)/BETA®S2
IF(D) 18,18,23
23 FINT®SQRTI(D)
GO 7C 16
15 Dele=Al2/A10%3./(1e=.5%ALFA)®(1.-ALFA®RTAS®®2)/BETAS®S?
[F(0) 18+18025

<95 FINT=SQRT (D)
GO TC 1le

18 FINTeC,

16 RETURM
ENC

C MAIN PRCCRANM
DIFENSICN DIFF(2)
DIMENSICN AN(100)sETAR(100)
COMMCN MT
COMMCN AICHALLIALI2,RITA
COMMCN ALFA,BETA
COMMCNM A
17 CONTINUE
READ(%,¢) NSET
READ(S»®) AIDsALILIAI2»WoRADIUSY NHARM
READ(S5s®) DRITALRITAI,BETA
REAC(5+%) PHL,PH2,WPTWS
WRITE(6,G49) NSET
G49 FORMAT( /752X, *NUMBER OF DATA SET s 513,77)
WRITE(6,950) NHARMoPHLoPH2»WPTHKS
65C FORMAT(2X,»*THIS IS AN ANALYSIS CF THE ELECTRCN DENSITY '/,

1 2Xs* IN A CYLINDRICAL PLASFA CCLUMN BASED CN A *»/,
P4 2Xs*PARABOLIC DENSITY PRCFILE APFROXIMATICN %4/,
3 2XsYUSING RESONANCES 1 AND *»13s7.
4 /»
5 2X»*THE PHASE FOR RESCNANCE L IS Pl TIMES '9sFée20/»
(3 2X»* THE PHASE FOR RESCNANCE 2 IS PI TIMES 'sFé.20/»
7 />
8 2X»YTHE SCUARE OF WPCVER W IS ECLAL TC *»F4,25777)
WRITE(6,970) AIDsAlLrIAJ2sWsBETALRADIUS
57C FORMAT(2X»*ID s 0, 15,40/
1 2Xs' 11 = Y, E15.40/»
2 2X»* 12 s YYElS. 40/
3 2Xs'h s ', E15.40/»
4 2X»*BETASATOR 2 YELS.40/»
H 2X»*RADIUS s YHELS40l1?)
A=BETASRACIUS
RITA=RLITAIL
M=1

20 00 1C [=M,2
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] RITA=R1TA+DRITA
ALFAS (] ,~AID/WPTWS/ALL®BETA®#2)/(R1TA%32-A]D/6,/A11%BETA®*2)
ADlel o /ALFA=(1o/ALFA=.5)/WPTuS®AIC/AI2*BETA®®?
AD2=1 . /ALFA=(1./ALFA=.5)/7uPTWSSAID/AIL®BETA®®2
[FCADL) Lrls2

2 IF(AC2) 1,1,3

2 ORTA=SQRT(ADL)=SQRT(AD2)
MT==]
UL=DRTA+RITA

CALL INT(UL,AINT)
AINTL=AINT
MT=1
UL=RI1TA
CALL INTCLLAINT)
AINT2=AINT

1C DIFFUI)=AINT1=-AINT2*PH2/PHL
IF(RITA=2.) 5Ce51,51

sl WRITE(6+580)
S8C FORMATI2X,*DIFFERENCE DIVERGES®'»//)
GO TC 52
s5C IF(DIFFUL1)I*DIFF(2)) 4Cr20,2C
20 ERR=RITA
DIFF(1)=DIFF(2)
Ma2
GO TC 3¢
40 IF(ABS{R1TA-ERR)=-.01) 100+9C,SC
SC RITA=RLITA-DRITA
DRITA=DR1TAZ1O,
GO TC 3¢

1CcC RISR1ITA*A+(1./BETA-1.)%A
R2sR14DRTA®A+A® (1. /BETA-1,)
ZleA=R]
I2=A=R2
ANCO= WP TWS/ (1le=o5*ALFA)®8,.85E-12%9.11E-21/]1.602E~19%¢2
1 yee?
ANOLl=ANGC/AID*AIlL
ANC2=ANCC/AID®A]2
ETEMP=9,11E=-31/3./1.38E-23%w*%2/3,1415G¢¢7
1 *(AINTC*A) 292
WRITE(6+985) ALFA
cas FORMAT(2Xs*ALFA = 'SE15.45//)
COEFF .l.’(l.-ALFAIZO'
L21C21=22/21
ETAsALOGt1.=ALFA)
YWALL=ETA®] ,3BE-23%ETEMP/1.6C2E~LS
WRITE(6+G€0) RLIR2»21»22+»ANCO»ANC1oAND2,22TOZ1oCCEFFoVUALL S,
1 ETALETEMP
560 FORMAT(2X,*R1

e ' EL15.40/»
1 2Xs*R2 a S ELlS5.40/)
2 2X»'21 s ', E15.4,7»
3 eXe'122 = Y,ELl5.40/,»
4 2X»*NO DIPOLE a ', E15.49/»
s 2Xs*NO 1 RESONANCE = *,E15.40/»
7 2X9s*NC 2 RESONANCE = ',EL15.4,/»
8 2X»%22 TC 21 = V,EL5.45/
S 2X»*PEAK TO AVERAGE = *,El1S5.45/»
S 2Xs'V WALL s YYE15.40/»
S 2Xs*ETAevW TO KTTOQ = *5E15.40/>

P o e Gun P P G bt PO o B0 oo Pt P o P
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2X»"ELECTRCN TEMP ® 'S, EL1S5.40/7171)
DZ=RACILS/25.
ls-D2
DO 8CC I=1.,26
l=1+C2
AN(I)sANCI*(L.=ALFA®(2/RADIUS)®**2)
ETAR(I)®ALOG(l.=ALFA®(Z/RADIUS)?**2)
CONTINMNUE
CALL PLCT4(ETAR,AN,»26)
GO TC 17
STCP
ENO )
SUBRCLTINE INT(XI»S)
DIMENSICN X(3)
COMMON MT
COMMCN AIDsAlLsAl2sKITA
COMMCN ALFALBETA
COMMUN A
XfF=l,
N=50
NaN/2%2+1
XN=N
OXs(XF=XxI)/(XN=-1.)
NCCUNTs=(C
X{l)=x[=2,¢0X
X(2)s>»[=-0X
X(3)=x]
S=C,
DO 10 1=3sNs2
XCLl)sx(1l)+2,.¢0X
X(2)=ex(2)+2.%0X
X(3)eXx(3)+2,.%DX
DSsFINTIX(L)) 44 *FINT(X(2))+FINT(X(3))
SeSeDX/72.¢05
RETURN
ENC
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FO2GRF JACK CLIN BSSR

/LCAD WATFIYV

C
C
o

<0

$1
52
S6

S9
1CC

32
35

42
45

THIS SUBRUUTINE PLOTS TwC VARIABLES CN THE SAME PLCT
wlTh THE ZERQO AXIS AS THE CENTER =MAX VALUES ARE
CALCLLATEG AUTOMATICALLY FOR VY = ZMAX = YMAX
SUBRCLTINE FLCT2(YeZsN)
OIMEMSICN CCL(LG2),YLL00)s2(1CC)
INTEGER STAR,COT,BLANK,COLsPLLS
STAR='s .

STAR= 15477140624
DOT=e, *

00T= 1262501952
BLANKs=? ¢

BLANK S 1C77552576
PLUS="'+ !

PLUS= 1312833¢00
XXXXks®X ¢

XXXXX® -4152190648
YMAxs(,CC

IMAX=C.CC

DO 95 K=l,N
XsABRS(Y(K))=-ABS5CYMAX)
[FUIXx) S52+,95,G92
YMAX=2Y(K)

CONT INUE

YMAXsABS (YMAX)

00 L1CC L=1,N
Q=ABS(ZIL))=ABS(ZMAX)
IF(Q) 1CC»1C0»99
IMAX=Z(L)

CONT.INUE

IMAX=ABS (ZMAX)
WRITE(H,2CO0) YMAX»ZMAX
IF(ZMAX=-YNMAX) T70,71,71
YMAX=2MAX

IMAX=YMAX
FORMAT(/ /7o 1BX» " *XMAX o', ELl4q.005X) ¢+ YMAX =2, El4.6543X,"X°,1CX»*Y?)
WRITE(604CO)
FORMAT('1*)

WRITE(692)

FO“"“‘.‘...Il...“.ll.....“.l‘..l.I.‘..Q...l..‘l‘....'..

1 ’

* * *

| L A
00 3 1=1,101
COL(I) = BLANK

COL(S51)=DCT

I1=4

DO 4 Is=l,N

JuS5C.¢(Y(])/YMAXG].)+1.5
Ke50,¢(2(])/IMAX+].)+1.5

COL(J) = STAR

COL(K)=PLLS
WRITE(G6eSH(COLCLI)»II=LslCLl)oY(ID2UI)
FORMATIIX»LCLlALs iP2E9,.L)

COL(J)=BLANK

COL(K)=BLANK

IFCI-11) 25C»3CC,»300

COL(ST)mXXXXX

° .
®s0e0 0o o e eoe s 000 o000 00000 oocnoo-o.. )



300

25C

590

196

¢ COLUJ)=RLANK
S COL(K)=BLANK

IFCI-11) 25C,30C,300
COLt4e)mXXXXX
[I=1145

GO TC 4

COL(4¢)=0CT

CONTINUE
WRITE(6.560)
FORMATY(//10111117)
RETURN

END
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FO2GRF JACK GLIN BSSR
WATFIV

THIS SUBRGUTINE PLOTS TwWC VARIABLES CN THE SAME PLCT
wlTh THE ZERQ AXIS AS TrE CENTER =MAX VALUES ARE
CALCLLATEG AUTOMATICALLY FOR Y = ZMAX = YMAX

SUBRCLTINE FLCT2(YsZ»N)

OIMENSICN CCLILCZ2)eY(L00)»2Z(LCC)
INTEGER STAR,DOT,»BLANK,COL»PLLS
STARs'e ¢

STARs 157714024
0QTs=e, ¢

D0Ts 1262501952
BLANKS? .

BLANKs 1C772652576
PLUYs' 4 ¢

PLUS= 1312833¢00
XXXXXxm®X ¢

XXXXX® -415219648
YMAX=s(,CC

IMaxsC.CC

D0 95 K=l.N
X2ABS(Y(K))=ABSLYMAX)

TFEX) 92955062

YMAXsY(K)

CONT INMUE

YMAXSABS(YMAX)

00 1CC L=1,N

Q=ABS(Z(L))=ABS(ZMAX)

IF(Q) 1CC,»1C0,99

IMAXs2(L)

CONT INUE

IMAX=2ABS(2ZMAX)

WRITE(6,2C0) YMAX,IMAX
IF(ZNAX-YFAX) T0,71,71
YMAX=2MAX

IMAXsYMAX

FORMAT(//7/7+18Xs**XMAX ', ELla.0s5X» ¢+ YMAX

WRITE(6,4C0)
FORMAT('L")
WRITE(6,2)

50,ELl4.6043X,'X%,1CXp'Y?)

FOHHI]("........o‘o.-..---.‘-..-..o--‘...--o-..‘.-.o...--'

1 ’

l.‘o.ouo.n--‘cn-o--oo."--o.oooc.co.oOoo.c'ooooooooo‘.,

00 3 1=1,101

COL(I) s BLANK
coLts1)=0CT

I1sé

DO & I=l,N
JnS5C.o0(Y(1)/YMAX+]Ll . )*]l,.5
Ks5Q0,¢(2(]1)/ZMAX¢]L . )¢l.5
COLI{J) = STAR
COL(K)=PLLS
WRITE(65)(COL(LINSTI=1,LlCL)oYLds2LI)
FORMAT(IXsLGlALs LP2ES.1)
COLtJ)=BLANK
COL(K)=BLANK

IFLI-11) 25C»300,300
COLES]1)mXXXXX



Il=l145

GO TC 4
coLtsly=CcCT
CONTINUE
WRITE(6,577)
FORMAT(/21711711111)
RETURNM

ENO
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¢e%e uKB JACK COLIN BSSR
/SYS TIMgselC
/LCAD WATFI1V
/GPT NOSCURCE

CeeeeoTHIS PRCGRAM PLCTS THERMAL RESCMNANCES BASEC LN A wKB

Coe804APFRCXINATICN AWAY FRUM THE CRITICAL PCINT FCR A GIVEN
Coeso0eB8iSSel SERIES ELeCTRCN DENSITY PRCFILE

LYY

1C

c3

13
le

Lo BV I S VR N

FUNCTICN FICHtX)
[F(X=,01) 1lsl»?
FIC=1.4x842/72 ¢4
O T 3c
IFIX=2)1C»2(»20
FIC=EXP X))/ S50rT(2.,%2,14156?X)2(].+41./8./X)
GO0 TC 23cC
FIC=] ,ex042/2 #3%2
CXRV4L)(2,00482 ,%42)
X5/ (2. %% (3,02, )¢82)
A4XI4BI (2, 9%8¢ (4, 03,82 )ee2)
¢XPO1C/r(2,%¢]|Co(5,¢4,03,%2 ,)%92)
X002/ (2,001 .2(06.%5,04,¢3,02,)0%2)
NGV A/ (2,404 (7 %6 ,85,¢4 93,42, )%+7)
RETURN
ENC
FUNCTIGN F(X)
COMMUN ANCoGAMMAL A, Wy TEMP,LEMIFPS,CrBCONST
Ys A®GAMMA-GAMMA®YX
DEle=l. /WOC2¢( e /EM/EPSCANC*EXF(L . -FIO(Y))
IF(C) 18518523
FxSCRTI(C)I*W/SQRT (3, #BCONST*TENMP/EM)
GO TO 1¢
F=C,
RETURM
ENC

(eeereMAIN PRCGRANM

€Ge

S97

€98

1

NN S W N

ODIPENSICN BETAPLICO)H» ANL(10OC)

COMMCN AMCoGAPMALA»Wo TEMPLEMLEPS»CoBCONST

READ(5e%) NSETHNKRESSPANCHGAMMA, W, TENMP, 2PV

READ(Ss?*) AwN,M

READ(S,*) TEST

WRITEL6,996) NSET.NRES

FORMAT(/7/7+2X%s*SET NUMBER IS '»13.7/,
2Xs*RES NUMBER IS *»13s//)

WRITE(6,GGS7) ANUSGAMMA A, WMo TEFPP»ZF,NSET

FURMAT(2Xxs*NC = Y,EL15.45/,
2X o GAMMA YoE1S5.40/
2X»*RADIUS *»EL15.4,/,
2X+*RADIAN FREQUENCY YSE15.40 7/
EXs* TEMPERATURE *5E15.44/»
2%e'2 CRITICAL 'eE15.44017,
2Xe * NUMBER OF DATA SET *91307,»
/1171)

WRITE(6,5G8)

FORMAT(2Xo*OISTANCE FRCM WALL'»3X,*PERTLRBED ELECTR

EM=9,11€E-121

EPS=8.85E-12

Q=) ,6C2E-19

BCCN>T=]l,38E-23

XNN=N

CENSITY'H»/7)



n

1c
4C

200

JIZe2M I XAN-1,)

1==-0

U0 1C I=1.,N

11402

CALL INT(Ls7M,5,M)
YRACCANMA-GAMMAR]
Dolo=1./n*®2%Q*e2/EM/EPS®ANC*EXFP(L.-FIOLY))
IF(C) 4Co40,41

BETAP(I)=(C,

GO T7C 5¢C

BETAP (I )=SQRT(D)*W/SQRT (3 ,#BCCNSTEeTEMP/EM)
IF(BETAP(I)-TEST)IO60,6Cr61l
AN1(I)=C,

GO TC 62

ANLCI )=l . /SCRTU(BETAPLIDI)I*SIN(I,141509/4,4+5)
WRITEL6+9G63) Z,ANLLT)
FORMAT(2XsELS.606X»ELS5.6)
CONTINUE

CALL PLOT4(ANLsANLI,»N)

STCP

ENC

SUBRCLTINE INT(XIsXFsSe»N)
DIMENSICN X(3)

CCPMCMN ANCoGAMMA, A, WoTEMPLEP,EPSH»C,BCONST
N=2C

NaN/2%2+]

XN=N

DXs{(VF=X])/(XN=-1.)

NCCUNT=C

X{l)ex]-2.%0X

X(2)sx[-Cx

X(3)=x]

S=C.

DO 10 [=34Ns2

X(1)ax(l)+2.40X
X(2)=x(2)+2.¢DX
X(3)=x(3)+2.¢DX
DS=F(XUL))+4 . ¢F(X(2))¢F(X(3))
SeSeCx/3.%DS

RETURN

END
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e8¢ YKBPAR JACK CGLIN BSSR
/1SYS TINMEs=]C
/LOAD WATFIV
/CPT NOSOLRCE
COee8¢THIS FRCGRAP PLCTS THERMAL RESCMANCES BASED CN A wKB
CoeeeeAPPRCXIMATICN AWAY FROM THE CRITICAL POINT FCR A GIVEN
CO8%00PARARCLIC ELECTRCN DENSITY FRCFILE
FUNCTIGN FUX)
COFPMCN ANCoALFASA, WoTEMPLEMIEPS»Q»BCCNST
I=X
Dmle=lo /WO 2% o0, /cM/EPSEANC® (] ,~ALFA*(1.~7/A)%*%2)
IF(D) 18,13,23

3 FzSCRI(C)I®W/SCRT (I *BCINST*TeMP/ENV)
GO TC 1o

18 F=C,

1¢ RETURN
END

Ce¢sesMAIN PRCGRAM
DIMENSICN BETAP(100),» ANL(10C)
COMMCN ANCoALFAsA»WoTEMPoEMp EPS» Qs BCONST
READ(S»®) NSEToNRESo»ANOsALFA, s TEMP, IM
READ(5s%) AN, M,
READ(S,*) TEST
WRITE(6,»956) NSET,NRES

€96 FORMAT(/Z/792Xs*SET NUMBER IS *913s7,

1 2Xo'RES NUMBER IS ', 135/
2 2X»*PARABLGLIC APPROXIMATICN CF PROFILE'»/7/)
WRITE(6+5G7) ANOSALFASsAsWoTEMP, ZN,NSET

$G7 FORMAT(2Xs*NO = YSE15.45/)
1 2Xs* ALFA = YYEL15.4¢/,
2 2X»*RACIUS = Y5E15.45/»
3 2X»*RADIAN FREOQUENCY = YHEL1S5.49/»
4 2Xo* TEMPERATURE s Y,E15.407,
5 2Xs*2 CRITICAL s YL,E15.44/
¢ 2X»*NUMBER OF CAYA SET = %5030/,
7 17)

WRITE(65968)
698 FORMAT(2Xe*DISTANCE FROM WALL®»3IX,*'PERTURBED ELECTR DENSITY®»/7)
EM2G,]11E-231
EPS=8 . 85E-12
C=],&6C2E-19
BCUNST=],38E~21
XNN=N
OZ=2M/(XNN=1,)
l=-02
00 1C I=].N
2=a2+(C2
CALL INT(Zs2MeSHM)
Dele=l./Wee2¢Qes2 /EM/EPS®ANC*(Ll.-ALFAS®(].=-2/A)¢*2)
IF(D) 4C,r40941

«C BETAP(L)=C,
GO0 TC 5C
41 BETAP(])=SQRT(D)I*W/SQRT(3,*BCCNSTHTEMP/EM)
H [F(BETAP(I)=-TEST)I60+60,61
eC AN1(I)=C,
GO TC 62
el ANL(I)s L, /SCRT(BETAPII))I*SIN(2,14159/4,¢S)

€2 WRITE(60G69) ZoANLL(I)



2V2

€69 FORMATI(Z2XeELS.6sbXsELS5.6)
10 CUNT INUE
CALL FLOT4(AN1+ANL»N)
STCP
tNL
SUSRILTINE INTIXI»XFsoSsN)
GIMENSICN X (3)
COPMON  ANDLALFA»As ws TEMPOE™ 2 5F - pC»ACINST
N=2(C
N=N/2%2+]
XN=zN
OXs{(XF=X1)/(XN-1.)
NCCuUNTs=C
X{1)=¥[=2.¢0X
X(2)ex]-Cx
X(3)=ex]
S=0.
00 1C [=3,N»2
X(1)ex(l)e2,¢DX
X({2)sx(2)+2,.¢0X
X(3)ex(2)s2,#DX
DSaF(XUL)Iea, *F(XI2))+F(X(3))
1C S*S+CXx/73,NS
«C RETURN

ENC

wn
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