DETERMINATION OF PLASMA DENSITY PROFIE AND OTHER PARAMETEX
 WTH AN ELECTROACOUSTIC PROBE

Thesis for the Dagree of Ph, D. MCHIEAN STATE UNWERSIV JAOK G. OLIN 1974

This is to certify that the
thesis entitled
DETERMINATION OF PLASMA DENSITY PROFILE AND OTHER PARAMETERS WITH AN ELECTRCACOUSTIC PROBE
presented by
Jack G. Olin
has been accepted towards fulfillment
of the requirements for
Ph.D. degree in Electr. Engineering

Date Ami 24, 1974

ABSTRACT

determination of plasma density profile and OTHER PARAMETERS WITH AN ELECTROACOUSTIC PROBE

By

Jack G. Olin

The electron density profile and other plasma parameters of a cylindrical warm-plasma column are studied through the excitation of thermal resonances using an electroacoustic probe. The electromagnetic field from the probe excites a series of thermal (Tonks-Dattner) resonances as the current density is varied.

For each driving frequency, the dipole resonance and the first three T-D resonances àre recorded. In this study, it is sufficient to measure the relative magnitudes of the plasma densities at which these resonances occur in order to determine the density profile and other plasma parameters such as the temperature and the number density.

In the determination of the plasma density, the thermal
resonances are used to determine the unknown parameters appearing in the solution of Poisson's Equation in the plasma column. The boundary conditions for the thermal resonances in the plasma column are derived and the total phase for the thermal resonances is determined using the WKB approximation. The dipole resonance is used to determine the average electron density in the plasma column. The analysis leads to numerical values for the electron density profile parameters.
|

DETERMINATION OF PLASMA DENSITY PROFILE AND OTHER PARAMETERS WITH AN ELECTROACOUSTIC PROBE

By

Jack G. Olin

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Electrical Engineering

1974

To my family
Sigrid, Peter and Leslie

The au
màance and
ien.

He also
fyuist, J. As
soject.

The aut:
sheat effort pu
teen. Her hel
trvaluable. !!e
andinfinite pat

ACKNOWLEDCMENTS

The author expresses his sincere appreciation and thanks for the guidance and encouragement given him by his major professor, Dr. K. M. Chen.

He also wishes to thank the committee members, Drs. P. D. Nyquist, J. Asmussen, B. Ho, and G. Pollack for their interest in this project.

The author furthermore wishes to express his gratitude for the great effort put into the final typing of this thesis by Mrs. Roberta Green. Her help in producing the final version of this thesis was invaluable. He also thanks his wife, Sigrid, for the preliminary typing, and infinite patience.
2.1 Introdud
2.2 General
2.3 Deterni
2.4 Detera

Resonand
2.5 Develo-

Frequen
Column
derepuriatio.
Pusye colim
Sheith renio:
3.1 Introcuo
3.2 Experime
3.3 Devel

Density
3.4 Determir

Culindri:
Approxir
3.5

Plasma
the Forr

- Wreric
ollidrical
4.1 Introdud

2 Numerica
4.3 Profile
humerica
Dproxie
Profile
.4
rapiica
the his

TABLE OF CONTENTS
Page
ACKNOWLEDGMENTS iii
LIST OF FIGURES vi

1. INTRODUCTION 1
2. BASIC THEORY OF TEMPERATURE RESONANCES IN PLASMA SHEATHS 3
2.1 Introduction 3
2.2 General Theory 8
2.3 Determination of the Boundary Condition at the Wall 18
2.4 Determination of the Total Phase for the Thermal Resonances 19
2.5 Development of Relationships Between Dipole Resonance Frequency and Plasma Frequency in a Cylindrical Plasma Column 31
3. DETERMINATION OF ELECTRON DENSITY PROFILE IN CYLINDRICAL PLASMA COLUMN BASED ON THERMAL RESONANCE DATA IN THE SHEATH REGION 41
3.1 Introduction 41
3.2 Experimental Procedure 43
3.3 Development of Functional Form for the Electron- Density Profile 46
3.4 Determination of Electron-Density Profile in a Cylindrical Warm Plasma Column Based on a Parabolic Approximation 56
3.5 Determination of the Electron-Density in a Warm Plasma Cylinder Assuming Potential Distribution of the Form ($1-I_{o}(\gamma r)$) 66
4. NUMERICAL RESULTS FOR THE ELECTRON DENSITY PROFILE IN A CYLINDRICAL PLASMA COLUMN 80
4.1 Introduction 80
4.2 Numerical Results Based on Parabolic Electron-Density Profile Approximation 80
4.3 Numerical Results Based on the Bessel Function Approximation for the Static Electron-Density Profile 87
4.4 Graphical Presentation of Thermal Resonances Using the WKB Approximation 126

APPELDIX A
 APPETDIX B

REEEEEMCES

Page

APPENDIX A NUMERICAL COMPUTER READOUTS AND ADDITIONAL COMPUTER GRAPHS 133
APPENDIX B FORTRAN COMPUTER PROGRAMS WRITTEN SPECIFICALLY FOR THE NUMERICAL ANALYSIS IN THIS RESEARCH PROJECT 186
REFERENCES 203

Figure Page2.1.1 Typical electron, ion and potential profiles in thesheath region of a semiinfinite plasma in thevicinity of a solid boundary. With the assumptionof ion drift towards the wall, the ion density isnot significantly changed in the sheath region42.1.2 Typical electron and ion density profiles in thesheath region of a cylindrical plasma column.Assuming ion drift towards the solid boundary, theion density does not significantly change in thesheath region6
2.1.3 Typical sketches of the first three thermal resonances ($m=1,2,3$) occuring at a given frequency of the incident EM field at three discharge current levels producing density profiles $n_{e_{1}}, n_{e_{2}}$, and $n_{e 3}$. The resonances occur when $\omega^{2}=\omega p^{2}$ at any current level which corresponds to $n_{e_{1}}\left(t_{1}\right)=n_{e_{2}}\left(t_{2}\right)=n_{e_{3}}\left(t_{3}\right)=\frac{m_{e} \varepsilon_{0} \omega^{2}}{e^{2}}$ 7
2.2.1 Geometric arrangement used in the region where thermal resonances occur. n_{1} represents a typical waveform of a thermal resonance; t_{1} is the critical point where $\omega=\omega_{p}$. The one-dimensional approach is justified in this region because t_{1} is typically much smaller than the radius of the plasma column, a 17
2.3.1 Phase relation between electron density perturbation n_{1} and associated electron velocity perturbation v_{1}. 20
2.4 .12.4.2 Sketch of Airy function,$A f(z)=\frac{1}{\pi} \cos \left(s^{3} / 3+s z\right) d z$29
2.4.3 Typical waveforms of the first three thermal resonances. $x_{p 1}, x_{p 2}$, and $x_{p 3}$ are the critical points at which $k_{p 1}, k_{p 2}$, and $k_{p 3}$ respectively go to zero 32
2.5.1 Geometric arrangement of cylindrical plasma column contained in a cylindrical glass discharge tube of wall thickness b. The inside radius is a while the outside radius is c 38
Figure
3.1.1 A cylindrical plasma column illuminated by TM field as shown. $E_{O t}$ and $E_{O 1}$ represent the transverse and longitudinal components of electric field respectively 42
3.2.1 Experimental arrangement for obtaining plasma resonance data in a cylindrical plasma column. An electroacoustic (E.A.) probe is used to excite the dipole and thermal resonances in the plasma column. The E.A. probe also picks up the scattered field whose peaks indicate the presence of resonances in the plasma 44
3.2.2 Experimental results (data sets \#1 and \#2) forthe back scattered EM field from a cylindricalplasma column as a function of dischargecurrent. f is the frequency of the incidentEM field. i_{d}, i_{1}, i_{2}, and i_{3} are the dischargecurrents at which the dipole resonance and thefirst three thermal resonances respectively
occur 47
3.2 .3
Experimental results (data sets \#3 and \#4) forthe back scattered EM field from a cylindricalplasma column as a function of discharge current.f is the frequency of the incident EM field. i_{d},i_{1}, i_{2}, and i_{3} are the discharge currents at whichthe dipole resonance and the first three thermalresonances respectively occur 48
3.2.4 Experimental results (data sets \#5 and \#6) for the back scattered EM field from a cylindrical plasma column as a function of discharge current. f is the frequency of the incident EM field. i_{d}, $i_{1}, 1_{2}$, and i_{3} are the discharge currents at which the dipole resonance and the first three thermalresonances respectively occur49
3.2 .5 Experimental results (data sets \#7 and \#8) forthe back scattered EM field from a cylindricalplasma column as a function of discharge current.f is the frequency of the incident EM field. i_{d},$i_{1}, 1_{2}$, and i_{3} are the discharge currents at whichthe dipole resonance and the first three thermalresonances respectively occur 50

4．2．1 Normalized parabolic electron density profile as a function of $r / a, n_{e 1}(r / a) / n_{01}=1-.83(r / a)^{2}$ ． Also the normalized potential profile $n_{1}(r / a) / n_{w}$ ． Based on data set 非 $\left(f=2.016 \mathrm{GHz}, \mathrm{i}_{\mathrm{d}}=270 \mathrm{ma}\right.$ ， $\left.\mathrm{i}_{1}=185 \mathrm{ma}, \mathrm{i}_{2}=150 \mathrm{ma}, \mathrm{i}_{3}=125 \mathrm{ma}\right)$88

4．2．2 Normalized parabolic electron density profile as a function of $r / a, n_{e 1}(r / a) / n_{01}=1-.82(r / a)^{2}$ ． Also the normalized potential profile $n_{1}(r / a) / n_{w}$ ． Based on data set $⿰ ⿰ 三 丨 ⿰ 丨 三 八$ 2 $\left(f=2.10 \mathrm{GHz}, i_{d}=290 \mathrm{ma}\right.$ ， $\left.i_{1}=190 \mathrm{ma}, i_{2}=150 \mathrm{ma}, \mathrm{i}_{3}=120 \mathrm{ma}\right)$89

4．2．3 Normalized parabolic electron density profile as a function of $r / a, n_{e 1}(r / a) / n_{o l}=1-.83(r / a)^{2}$ ． Also the normalized potential profile $n_{1}(r / a) / n_{w}$ ． Based on data set $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 3（ $\mathrm{f}=2.23 \mathrm{GHz}, \mathrm{i}_{\mathrm{d}}=340 \mathrm{ma}$ ， $\left.i_{1}=235 \mathrm{ma}, \mathrm{i}_{2}=185 \mathrm{ma}, \mathrm{i}_{3}=160 \mathrm{ma}\right) \quad . \quad . \quad . \quad$.90

4．2．4 Normalized parabolic electron density profile as a function of $r / a, n_{e l}(r / a) / n_{01}=1-.80(r / a)^{2}$ ． Also the normalized potential profile $\eta_{1}(r / a) / n_{w}$ ． Based on data set $⿰ ⿰ 三 丨 ⿰ 丨 三 一 4, ~\left(f=2.32 \mathrm{GHz}, i_{d}=355 \mathrm{ma}\right.$ ， $\left.i_{1}=245 \mathrm{ma}, i_{2}=200 \mathrm{ma}, \mathrm{i}_{3}=175 \mathrm{ma}\right)$

4．2．5 Normalized parabolic electron density profile as a function of $r / a, n_{e l}(r / a) / n_{01}=1-.86(r / a)^{2}$ ． Also the normalized potential profile $n_{1}(r / a) / n_{w}$ ． Based on data set $\# 5\left(f=1.917 \mathrm{GHz}, \mathrm{i}_{\mathrm{d}}=270 \mathrm{ma}\right.$ ， $i_{1}=180 \mathrm{ma}, \mathrm{i}_{2}=135 \mathrm{ma}, \mathrm{i}_{3}=110 \mathrm{ma}$ ）

4．2．6 Normalized parabolic electron density profile as a function of $r / a, n_{e 1}(r / a) / n_{01}=1-.83(r / a)^{2}$ ． Also the normalized potential profile $n_{1}(r / a) / n_{w}$ ． Based on data set $⿰ ⿰ 三 丨 ⿰ 丨 三 八$（ $\mathrm{f}=2.017 \mathrm{GHz}, \mathrm{i}_{\mathrm{d}}=285 \mathrm{ma}$ ， $\mathrm{i}_{1}=190 \mathrm{ma}, \mathrm{i}_{2}=150 \mathrm{ma}, \mathrm{i}_{3}=120 \mathrm{ma}$ ）．．．．．．93

4．2．7 Normalized parabolic electron density profile as a function of $r / a, n_{e 1}(r / a) / n_{01}=1-.84(r / a)^{2}$ ． Also the normalized potential profile $n_{1}(r / a) / n_{w}$ ． Based on data set $\# 7\left(f=2.275 \mathrm{GHz}, 1_{d}=290 \mathrm{ma}\right.$ ， $\left.\mathbf{i}_{1}=195 \mathrm{ma}, \mathbf{1}_{2}=150 \mathrm{ma}, \mathrm{i}_{3}=120 \mathrm{ma}\right) \quad . \quad . \quad . \quad$.

4．2．8 Normalized parabolic electron density profile as a function of $r / a, n_{e 1}(r / a) / n_{01}=1-.85(r / a)^{2}$ ． Also the normalized potential profile $n_{1}(r / a) / n_{w}$ Based on data set $⿰ ⿰ 三 丨 ⿰ 丨 三 八$（ $f=2.322 \mathrm{GHz}, i_{d}=320 \mathrm{ma}$ ， $\left.i_{1}=210 \mathrm{ma}, i_{2}=160 \mathrm{ma}, i_{3}=135 \mathrm{ma}\right)$
4.3.1 Normalized Bessel series electron density profile as a function of z / a, $n_{e 1}(z / a) / n_{01}=\exp \left(1-I_{0}(327(1-z / a))\right)$. Also the normalized potential profile $n_{1}(z / a) / n_{w}$. Based on data set \#1 ($f=2.016 \mathrm{GHz}, i_{d}=270 \mathrm{ma}$, $\left.i_{1}=185 \mathrm{ma}, i_{2}=150 \mathrm{ma}, i_{3}=125 \mathrm{ma}\right)$102
4.3.2 Normalized Bessel series electron density profile as a function of z / a, $n_{e l}(z / a) / n_{01}=\exp \left(1-I_{o}(326(1-z / a))\right)$. Also the normalized potential profile $n_{1}(z / a) / n_{w}$. Based on data set $\# 2\left(f=2.10 \mathrm{GHz}, i_{d}=290 \mathrm{ma}\right.$, $i_{1}=190 \mathrm{ma}, i_{2}=150 \mathrm{ma}, i_{3}=120 \mathrm{ma}$)103
4.3.3 Normalized Bessel series electron density profile as a function of z / a,
$n_{e 1}(z / a) / n_{01}=\exp \left(1-I_{0}(323(1-z / a))\right)$. Also the normalized potential profile $n_{1}(z / a) / n_{w}$. Based on data set 3 ($f=2.23 \mathrm{GHz}, i_{d}=340 \mathrm{ma}, \mathrm{i}_{1}=235 \mathrm{ma}$, $1_{2}=185 \mathrm{ma}, 1_{3}=160 \mathrm{ma}$)
4.3.4 Normalized Bessel series electron density profile as a function z / a, $n_{e 1}(z / a) / n_{01}=\exp \left(1-I_{o}(330(1-z / a))\right)$. Also the normalized potential profile $\eta_{1}(z / a) / \eta_{w}$. Based on data set $\# 4\left(f=2.32 \mathrm{GHz}, \mathrm{i}_{\mathrm{d}}=355 \mathrm{ma}, \mathrm{i}_{1}=245 \mathrm{ma}\right.$, $i_{2}=200 \mathrm{ma}, i_{3}=175 \mathrm{ma}$)105
4.3.5 Normalized Bessel series electron density profile as a function of z / a, $n_{e 1}(z / a) / n_{01}=\exp \left(1-I_{0}(327(1-z / a))\right)$. Also the normalized potential profile $n_{1}(z / a) / \eta_{w}$. Based on data set $\# 5\left(f=1.917 \mathrm{GHz}, i_{d}=270 \mathrm{ma}, i_{1}=180 \mathrm{ma}\right.$, $1_{2}=135 \mathrm{ma}, \mathrm{i}_{3}=110 \mathrm{ma}$)106
4.3.6 Normalized Bessel series electron density profile as a function of z / a,
$n_{e_{1}}(z / a) / n_{01}=\exp \left(1-I_{0}(327(1-z / a))\right)$. Also the normalized potential profile $n_{1}(z / a) / n_{w}$. Based on data set ${ }^{2}\left(f=2.017 \mathrm{GHz}, i_{d}=285 \mathrm{ma}, i_{1}=190 \mathrm{ma}\right.$, $1_{2}=150 \mathrm{ma}, \mathrm{i}_{3}=120 \mathrm{ma}$)
4.3.7 Normalized Bessel series electron density profile as a function of z / a,
$n_{e_{1}}(z / a) / n_{01}=\exp \left(1-I_{0}(328(1-z / a))\right)$. Also the normalized potential profile $n_{1}(z / a) / \eta_{w}$. Based on data set $77\left(f=2.275 \mathrm{GHz}, i_{d}=290 \mathrm{ma}, i_{1}=195 \mathrm{ma}\right.$, $\mathrm{i}_{2}=150 \mathrm{ma}, \mathrm{i}_{3}=120 \mathrm{ma}$) 108

4.3 .8	Normalized Bessel series electron density profile as a function of z / a ， $n_{n_{1}}(z / a) / n_{01}=\exp \left(1-I_{0}(331(1-z / a))\right)$ ．Also the normalized potential profile $n_{1}(z / a) / n_{w}$ ．Based on data set $\# 8\left(f=2.322 \mathrm{GHz}, \mathrm{i}_{\mathrm{d}}=320 \mathrm{ma}, \mathrm{i}_{1}=210 \mathrm{ma}\right.$ ， $i_{2}=160 \mathrm{ma}, i_{3}=135 \mathrm{ma}$ ）．

4．3．9 Normalized Bessel series electron density profiles at resonances 1 and 2．Points t_{1} and t_{2} represent the critical points in the plasma sheath at which $k_{p 1}$ and $k_{p_{2}}$ respectively go to zero．Based on data set $⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 𠃋 十 一 ~\left(f=2.016 ~ G H z, ~ i_{d}=270 \mathrm{ma}, i_{1}=185 \mathrm{ma}\right.$ ， $\mathrm{i}_{2}=150 \mathrm{ma}, \mathrm{i}_{3}=125 \mathrm{ma}$ ）110

4．3．10 Normalized Bessel series electron density profiles at resonances 1 and 2．Points t_{1} and t_{2} represent the critical points in the plasma sheath at which $k_{p 1}$ and $k_{p 2}$ respectively go to zero．Based on data set \＃2（f＝ $2.10 \mathrm{GHz}, \mathrm{i}_{\mathrm{d}}=290 \mathrm{ma}, \mathrm{i}_{1}=190 \mathrm{ma}$ ， $\mathrm{i}_{2}=150 \mathrm{ma}, \mathrm{i}_{3}=120 \mathrm{ma}$ ）111

4．3．11 Normalized Bessel series electron density profiles at resonances 1 and 2．Points t_{1} and t_{2} represent the critical points in the plasma sheath at which $k_{p 1}$ and $k_{p 2}$ respectively go to zero．Based on
 $i_{2}=185 \mathrm{ma}, i_{3}=160 \mathrm{ma}$ ）112

4．3．12 Normalized Bessel series electron density profiles at resonances 1 and 2．Points t_{1} and t_{2} represent the critical points in the plasma sheath at which $k_{p 1}$ and $k_{p 2}$ respectively go to zero．Based on data set 非 $4\left(f=2.32 \mathrm{GHz}, \mathrm{i}_{\mathrm{d}}=355 \mathrm{ma}, \mathrm{i}_{1}=245 \mathrm{ma}\right.$ ， $\mathrm{i}_{2}=200 \mathrm{ma}, \mathrm{i}_{3}=175 \mathrm{ma}$ ）113

4．3．13 Normalized Bessel series electron density profiles at resonances 1 and 2．Points t_{1} and t_{2} represent the critical points in the plasma sheath at which $k_{p 1}$ and $k_{p 2}$ respectively go to zero．Based on data set $\# 5\left(f=1.917 \mathrm{GHz}, \mathrm{i}_{\mathrm{d}}=270 \mathrm{ma}, \mathrm{i}_{1}=180 \mathrm{ma}\right.$ ， $i_{2}=135 \mathrm{ma}, i_{3}=110 \mathrm{ma}$ ）114

4．3．14 Normalized Bessel series electron density profiles at resonances 1 and 2．Points t_{1} and t_{2} represent the critical points in the plasma sheath at which $k_{p 1}$ and $k_{p_{2}}$ respectively go to zero．Based on data set 非 $6\left(f=2.017 \mathrm{GHz}, \mathrm{i}_{\mathrm{d}}=285 \mathrm{ma}, \mathrm{i}_{1}=190 \mathrm{ma}\right.$ ， $i_{2}=150 \mathrm{ma}, i_{3}=120 \mathrm{ma}$ ）
4.3.15 Normalized Bessel series electron density profiles at resonances 1 and 2. Points t_{1} and t_{2} represent the critical points in the plasma sheath at which $k_{p 1}$ and $k_{p 2}$ respectively go to zero. Based on data set ${ }^{3} 7\left(f=2.275 \mathrm{GHz}, \mathrm{i}_{\mathrm{d}}=290 \mathrm{ma}, \mathrm{i}_{1}=195 \mathrm{ma}\right.$, $\left.i_{2}=150 \mathrm{ma}, i_{3}=120 \mathrm{ma}\right)$
4.3.16 Normalized Bessel series electron density profiles at resonances 1 and 2. Points t_{1} and t_{2} represent the critical points in the plasma sheath at which $k_{p 1}$ and $k_{p 2}$ respectively go to zero. Based on data set $\# 8\left(f=2.322 \mathrm{GHz}, 1_{d}=320 \mathrm{ma}, 1_{1}=210 \mathrm{ma}\right.$, $i_{2}=160 \mathrm{ma}, i_{3}=135 \mathrm{ma}$)117
4.3.17 Normalized Bessel series electron density profiles at resonances 1 and 3 . Points t_{1} and t_{3} represent the critical points in the plasma sheath at which $k_{p 1}$ and $k_{p_{3}}$ respectively go to zero. Based on data set $\#\left(f=2.016 \mathrm{GHz}, \mathrm{i}_{\mathrm{d}}=270 \mathrm{ma}, \mathrm{i}_{1}=185 \mathrm{ma}\right.$, $\mathrm{i}_{2}=150 \mathrm{ma}, \mathrm{i}_{3}=125 \mathrm{ma}$) 118
4.3.18 Normalized Bessel series electron density profiles at resonances 1 and 3 . Points t_{1} and t_{3} represent the critical points in the plasma sheath at which $k_{p 1}$ and $k_{p 3}$ respectively go to zero. Based on data set $\# 2\left(f=2.10 \mathrm{GHz}, i_{d}=290 \mathrm{ma}, i_{1}=190 \mathrm{ma}\right.$, $\left.\mathrm{i}_{2}=150 \mathrm{ma}, \mathrm{i}_{3}=120 \mathrm{ma}\right)$. 119
4.3.19 Normalized Bessel series electron density profiles at resonances 1 and 3 . Points t_{1} and t_{3} represent the critical points in the plasma sheath at which $k_{p 1}$ and $k_{p 3}$ respectively go to zero. Based on data set ${ }^{2}\left(f=2.23 \mathrm{GHz}, i_{d}=340 \mathrm{ma}, i_{1}=235 \mathrm{ma}\right.$, $1_{2}=185 \mathrm{ma}, \mathrm{f}_{3}=160 \mathrm{ma}$)120
4.3.20 Normalized Bessel series electron density profiles at resonances 1 and 3 . Points t_{1} and t_{3} represent the critical points in the plasma sheath at which $k_{p 1}$ and $k_{p 3}$ respectively go to zero. Based on data set $\mathrm{F}_{4}\left(\mathrm{f}=2.32 \mathrm{GHz}, \mathrm{i}_{\mathrm{d}}=355 \mathrm{ma}, \mathrm{i}_{1}=245 \mathrm{ma}\right.$, $\left.1_{2}=200 \mathrm{ma}, \mathrm{i}_{3}=175 \mathrm{ma}\right)$. 121
4.3.21 Normalized Bessel series electron density profiles at resonances 1 and 3 . Points t_{1} and t_{3} represent the critical points in the plasma sheath at which $k_{p 1}$ and $k_{p 3}$ respectively go to zero. Based on data set $\begin{gathered} \\ \text { d }\end{gathered}\left(f=1.917 \mathrm{GHz}, i_{d}=270 \mathrm{ma}, \mathrm{i}_{1}=180 \mathrm{ma}\right.$, $1_{2}=135 \mathrm{ma}, 1_{3}=110 \mathrm{ma}$)122
:"pure
.1 .3 .22
1.23
9.,.23
4.3.24
4.4 .4
ble
1.2 .1
Figure Page
4．3．22 Normalized Bessel series electron density profiles at resonances 1 and 3 ．Points t_{1} and t_{3} represent the critical points in the plasma sheath at which $\mathrm{k}_{\mathrm{p} 1}$ and $\mathrm{k}_{\mathrm{p} 3}$ respectively go to zero．Based on data set \＃16（ $\mathrm{f}=2.017 \mathrm{GHz}, \mathrm{i}_{\mathrm{d}}=285 \mathrm{ma}, \mathrm{i}_{1}=190 \mathrm{ma}$ ， $1_{2}=150 \mathrm{ma}, \mathrm{i}_{3}=120 \mathrm{ma}$ ） 123
4．3．23 Normalized Bessel series electron density profiles at resonances 1 and 3．Points t_{1} and t_{3} represent the critical points in the plasma sheath at which $\mathrm{k}_{\mathrm{p} 1}$ and $\mathrm{k}_{\mathrm{p} 3}$ respectively go to zero．Based on data set $⿰ ⿰ 三 丨 ⿰ 丨 三 一$（ $f=2.275 \mathrm{GHz}, \mathrm{i}_{\mathrm{d}}=290 \mathrm{ma}, \mathrm{i}_{1}=195 \mathrm{ma}$ ， $i_{2}=150 \mathrm{ma}, \mathrm{i}_{3}=120 \mathrm{ma}$ ） 124
4．3．24 Normalized Bessel series electron density profiles at resonances 1 and 3 ．Points t_{1} and t_{3} represent the critical points in the plasma sheath at which $k_{p 1}$ and $k_{p 3}$ respectively go to zero．Based on data set $\# \#\left(f=2.322 \mathrm{GHz}, i_{\mathrm{d}}=320 \mathrm{ma}, \mathrm{i}_{1}=210 \mathrm{ma}\right.$ ， $1_{2}=160 \mathrm{ma}, \mathrm{i}_{3}=135 \mathrm{ma}$ ） 125
4．4．1 First thermal resonance for data set $⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 𠃋 十 一 1$ based on a WKB formulation using the parabolic electron density profile 128
 a WKB formulation using the parabolic electron density profile 129
4．4．3 First thermal resonance for data set \＃l based on a WKB formulation using the Bessel series electron density profile 130
4．4．4 Second thermal resonance for data set \＃l based on a WKB formulation using the Bessel series electron density profile 131
Table Page
3．2．1 Experimental data set 1 through 8．Given are the frequency of the incident $E M$ field and the dis－ charge currents i_{d}, i_{1}, i_{2} and i_{3} at which the dipole resonance and the first three thermal resonances respectively occur 51
4.2.1 Numerical results for the factor α for data sets 1 through 8. The columns identified by $j=2$ and $j=3$ represent numerical values for α obtained from the use of combinations of resonances 1,2 ($j=2$) and $1,3(j=3)$ respectively 81
4.2.2 Numerical results for the ratio of peak to average electron density $n_{01} /\left\langle n_{e 1}(r)>\right.$ and $n_{02} /<n_{e 2}(r)>$ for data sets 1 through 8 82
4.2.3 Numerical values for the ratio of critical radius r_{j} to the total radius $a, r_{j} / a$, for data sets l through 8 83
4.2.4 Numerical values for the ratio of critical dis- tance z_{j} measured from the wall for the j th resonance to the total radius a as well as the ratios $22 / z_{1}$ and z_{3} / z_{1} for the data sets 1 through 8 84
4.2.5 Numerical values of relative potential at the wall, $\eta_{w}=e V(a) / k T$ and electron temperature T for data sets 1 through 8 . The columns identified by $j=2$ and $j=3$ represent the numerical values for n_{w} and T based on the use of combinations of resonances $1,2(j=2)$ and $1,3(j=3)$ respectively 85
4.3.1 Numerical results for the factor γ for data sets 1 through 8. The columns identified by $j=2$ and $j=3$ represent the numerical values for γ obtained from use of combinations of resonances $1,2(j=2)$ and $1,3(j=3)$ respectively 96
4.3.2 Numerical results for the ratio of peak to average electron density $n_{01} /<n_{n_{1}}(r)>$ and $\mathrm{n}_{\mathrm{O} 2} /<\mathrm{n}_{\mathrm{el}}(\mathrm{r})>$ for data sets 1 through 8 97
4.3.3 Numerical values for the ratio of the critical distance z_{j} measured from the wall into the plasma for the $j^{\text {th }}$ resonance to the total radius a and also the ratios z_{2} / z_{1} and z_{3} / z_{1} 98
4.3.4 Numerical values of the relative potential $\eta_{w}=e V(a) / k T$ and the electron temperature T for the data sets 1 through 8. The columns identified by $j=2$ and $j=3$ represent the numerical results based on the use of combina- tions of resonances $1,2(j=2)$ and $1,3(j=3)$ respectively 99

malytical work
:exivn has been
aproximate the
ing the static
Sunciaries has
tariecige of t
Thactical plac
a'uens, a parat
is Erequently
This ress
iessity profile
ata for the dir
moje winch 111 u:
ine jaciscatere:
ath experimenta
tissay column at
fefrency w.
The theo
actional expre
cal plasma col

CHAPTER 1

INTRODUCTION

Knowledge of the static electron density profile of warm plasmas in the so-called sheath region near solid boundaries is significant in analytical work involving the plasma electron density. The sheath region has been analyzed in plane geometries by researchers based on approximate theoretical models. ${ }^{1}$ The more complex problems of determining the static electron density profile in warm plasmas with cylindrical boundaries has also been treated theoretically by researchers. ${ }^{2-9}$ When knowledge of the functional form of the electron density profile in a cylindrical plasma column is needed for work involving such plasma columns, a parabolic electron density profile of the form

$$
n_{e}(r)=n_{0}\left(1-\alpha\left(\frac{r}{a}\right)^{2}\right)
$$

is frequently employed using some typical value for the parameter α. 4,10
This research deals with the determination of the static electron density profile in warm cylindrical plasma columns based on experimental data for the dipole and thermal resonances induced by an electroacoustic probe which illuminates the plasma column with an EM field and receives the backscattered field. The experimental part of the research deals with experimental determination of the discharge current levels in the plasma column at which thermal resonances occur for a given excitation frequency $\boldsymbol{\omega}$.

The theoretical part of the research considers possible functional expressions for the static electron density in warm cylindrical plasma columns based on a study of Poisson's Equation in the plasma column. The phase conditions for thermal resonances are studied
and the relationship between the average plasma frequency and the exciting frequency is developed. The commonly used parabolic profile approximation is considered as an approximation to a Bessel function solution to Poisson's Equation. Next, a Bessel function approximation to the Poisson Equation is considered.

The numerical work done as part of this research deals with the solution of simultaneous equations based on the phase condition for the thermal resonances and the electron density profiles proposed above. Graphs on the electron densities obtained on the basis of these different approaches are presented and compared. It is found that an appropriate Bessel function approximation of the profile density may well represent a functional form considerably more representative of the actual profile than the conventional parabolic profile.

Chapter 2 presents the basic theory of thermal resonances in the sheath region of cylindrical plasma columns. Phase conditions are studied using WKB approximations of the electron density perturbations and the ratio of the average plasma frequency $<\omega_{p}(r)$, in the plasma column to the exciting frequency ω is developed.

Chapter 3 deals with the formulation of Poisson's Equation in a cylindrical plasma column and considers various functional forms as possible solutions. Simultaneous equations are presented for each assumed functional form whose numerical solution permits determination of all parameters appearing in the proposed profile functions.

Chapter 4 presents the numerical results and shows graphs of the electron density profiles obtained. The profiles based on different functional forms are compared.
bASIC THEORY OF TEMPERATURE RESONANCES IN PLASMA SHEATHS

2.1 Introduction

The occurrence of a plasma sheath in the vicinity of a plasma boundary such as a solid wall, metallic or nonmetallic, is well known. The plasma sheath represents a region of reduced electron density due to the loss of electrons hitting the wall associated with a negative potential region near the wall. The sheath phenomenon is briefly discussed to establish the geometry of the problem at hand. The well documented mathematical treatment of the sheath problem is not presented here but a brief phenomenological discussion appears in order.

Electrons hitting a nonmetallic wall mostly recombine with positively charged ions. This leads to an electron density profile in the vicinity of the wall, the so-called sheath region, which decreases monotonically towards the wall. Figure 2.1 .1 shows a typical plasma sheath for a semi-infinite plasma slab with a solid boundary at $x=0$. The relative electron density $n_{e}(x) / n_{0}$ is shown where n_{0} is the electron density as x approaches infinity.

The potential $\mathrm{V}(\mathrm{x})$ also goes monotonically from zero at $x=\infty$ to a negative wall potential. The commonly accepted sheath model assumes an ion drift in the sheath region which results in an approximately constant ion density also shown in Figure 2.1.1. Typical values determined for the ratio of the relative wall potential $\eta_{w}=\frac{e V_{W}}{k T}$ are in the neighborhood of 2 . This value is shown to be independent of electron density profile parameters.

Fig. 2.1.1 Typical electron,ion and potential profiles in the sheath region of a seminfinite plasma in the vicinity of a solid boundary. With the assumption of ion drift towards the wall, the ion density is not significantly changed in the sheath region.

Even though it may vary somewhat in a cylindrical plasma sheath it should nevertheless be approximately the same.

The electron density and potential distributions are more complex in a cylindrical geometry as typically represented in Figure 2.1.2. A parabolic electron density profile is frequently assumed when cylindrical plasma columns are studied. The main goal of this thesis is, in fact, the experimental determination of the electron density profile assuming a parabolic profile, along with other functional forms of the profile. The tool employed in this study is an electroacoustic probe used to excite thermal resonances in the plasma sheath region as discussed below in section 3.2. Figure 2.1 .3 shows typical sketches of thermal resonances that may be excited in the sheath region of a cylindrical plasma column. The cylindrical column of warm plasma with the sheath region as shown is illuminated by an incident electromagnetic wave of frequency ω. The incident wave interacts with the plasma in the sheath region near the wall where the plasma frequency $\omega_{p}(r)$ is less than ω to excite electroacoustic waves as shown in Figure 2.1.3. Figure 2.1 .3 is only intended to represent a typical sketch of such resonances. The total phase of the $m^{\text {th }}$ thermal resonance is assumed to be $m \pi$. In subsequent sections of this report a more refined value for this total phase value is established.

Based on this introductory discussion of the sheath phenomenon, the basic theory of thermal resonances in plasma sheaths is presented in this chapter. Boundary conditions for the thermal resonances at the wall are examined. The phase condition

Fig. 2.1.2 Typical electron and ion density profiles in the sheath region of a cylindrical plasma column. Assuming ion drift towards the solid boundary, the ion density does not significantly change in the sheath region.

Fig. 2.1.3 Typical sketches of the first three thermal resonances ($m=1,2,3$) occuring at a given frequency of the incident $k M$ field at three discharge current levels producing density profiles $\mathrm{n}_{\mathrm{e}_{1}}, \mathrm{n}_{\mathrm{e}_{2}}$, and $\mathrm{n}_{\mathrm{e}_{3}}$. The resonances occur when $\omega^{2}=\omega_{p}^{2}$ at any current level which corresponds to

$$
n_{e_{1}}\left(t_{1}\right)=n_{e_{2}}\left(t_{2}\right)=n_{e_{3}}\left(t_{3}\right)=\frac{m_{e} \epsilon_{0} \omega^{?}}{e^{2}}
$$

$$
\begin{aligned}
& \text { for the : } \\
& \text { the sheath } \\
& \text { and final: } \\
& \text { the experi- } \\
& \text { for the pr } \\
& \text { Erequency } \\
& \therefore \text { General } T \\
& \text { The } \\
& \text { resion are } \\
& \text { and }
\end{aligned}
$$

for the possible occurrence of electroacoustic thermal resonances in the sheath region is examined using a WKB approximation technique, and finally dipole resonances in the cylindrical plasma used in the experiment are studied for the purpose of obtaining a value for the proportionality constant C_{p} relating the average plasma frequency $<\omega_{p}(r)>$ to the exciting frequency ω by

$$
C_{p}=\left(\frac{\left\langle\omega_{p}(r)^{2}\right\rangle}{\omega^{2}}\right) .
$$

2.2 General Theory

The Maxwell and moment equations applicable to the plasma region are

$$
\begin{equation*}
\nabla \times \bar{E}=-\frac{\partial}{\partial t} \mu_{0} \bar{H} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla \times \bar{H}=-e n_{c_{0}} \bar{v}+\frac{\partial}{\partial t} \varepsilon_{o} \bar{E} \tag{2.2}
\end{equation*}
$$

where \bar{E} and \bar{H} respectively represent the total electric field intensity and total magnetic field intensity in the plasma; $n_{e_{0}}$ represents the static electron density distribution in the plasma which is non-uniform in the plasma sheath near a boundary; $\overline{\mathbf{v}}$ represents the mean ac electron velocity so that $-\mathrm{en}_{\mathbf{e}_{0}} \overline{\mathbf{v}}$ is the leading term of the mean induced electron current. This formulation is bas?d on the assumption that the positive ion motion is negligible in comparison to the electron motion. In the subsequent analysis the total instantaneous electron density distribution $n_{e}(\bar{x}, t)$ will represent the dc component $n_{e_{0}}(\bar{x})$ plus the ac perturbation term $n_{1}(\bar{x}, t)$. All other quantities associated with
these two
field, aric
de and per In
soment egi:
interest
since n_{e}

Since $n_{e} \bar{v}$
terns and
equation

From the v
equation

The second
siven by
these two components of electron densit: such as the electric field, and the velocity are also represented by a superposition of dc and perturbation terms.

In order to study perturbations in the plasma sheath, two moment equations must be used. The first moment equation of interest is the continuity equation

$$
\begin{equation*}
\frac{\partial n_{e}}{\partial t}+\nabla \cdot\left(n_{e} \bar{v}\right)=0 . \tag{2.3}
\end{equation*}
$$

Since $n_{e}(x, t)=n_{e_{0}}(x)+n_{1}(x, t)$, the continuity equation becomes

$$
\begin{equation*}
\frac{\partial n_{1}(\bar{x}, t)}{\partial t}+\nabla \cdot n_{e} \bar{v}=0 \tag{2.4}
\end{equation*}
$$

Since $n_{e} \bar{v}=n_{e_{0}} \bar{v}+n_{1} \bar{v}$, where $n_{1} \bar{v}$ is a product of two perturbation terms and therefore represents a negligible second order effect, equation (2.4) becomes

$$
\begin{equation*}
\frac{\partial n_{1}}{\partial t}+\nabla \cdot n_{e_{0}} \bar{v}=0 \tag{2.5}
\end{equation*}
$$

From the vector identity

$$
\begin{equation*}
\nabla \cdot \phi \overline{\mathrm{A}}=\phi \nabla \cdot \overline{\mathrm{A}}+\nabla \phi \cdot \bar{\Lambda} \tag{2.6}
\end{equation*}
$$

equation (2.5) can be rewritten as follows

$$
\begin{equation*}
\frac{\partial n_{1}}{\partial t}+n_{e_{o}} \nabla \cdot \bar{v}+\bar{v} \cdot \nabla n_{e_{0}}=0 \tag{2.7}
\end{equation*}
$$

The second moment equation based on the summation of momenta is given by

$$
\begin{equation*}
\frac{\partial \stackrel{\rightharpoonup}{v}}{\partial t}+v \bar{v}=-\frac{e}{m} \bar{E}_{t o t a l}-\frac{\gamma k T}{m n_{e_{o}}} \nabla n_{e} \tag{2.8}
\end{equation*}
$$

Here the
gracient

For the
harmonic

In the pr law

Dust be
repion o:
of speci
of freed
acoustic
the fnllo

Here the density gradient ∇_{n} is associated with the pressure gradient $\nabla \mathrm{p}$. For an isothermal nrocess,

$$
p=n k T
$$

and

$$
\nabla_{r}=k T \nabla n e
$$

For the case of an ac perturbation, $n_{1}(\bar{x}, t)$, due to an external harmonic force, the total electron density is

$$
n_{e}(\bar{x}, t)=n_{e_{0}}(\bar{x})+n_{1}(\bar{x}, t) .
$$

In the presence of ac perturbation at high frequency the adiabatic law

$$
\mathrm{p} \mathrm{n}^{-\gamma}=\text { constant }
$$

must be used because the temperature is not equalized in the region of high frequency electron perturbations. γ is the ration of specific heats and is given by $(m+2) / m$ where m is the degree of freedom of the gas. For high frequency longitudinal electroacoustic plasma oscillations, $m=1$, so that for these oscillations

$$
\begin{equation*}
\gamma=3 \tag{2.9}
\end{equation*}
$$

Separating equation (2.8) into its $d c$ and ac components, the following equations result. The dc equation is given by

$$
\begin{equation*}
0=-\frac{e}{m} \bar{E}_{d c}-\frac{k T}{n+1} \nabla n_{e_{0}}(\bar{x}) \tag{2.10}
\end{equation*}
$$

The ac equation is given by

$$
\begin{equation*}
\frac{\partial \bar{v}}{\partial t}+v \bar{v}=-\frac{e}{m} \bar{F}_{a c}-\frac{3 k T}{n_{e_{0} m}} \nabla n_{1}(\bar{x}, t) \tag{2.11}
\end{equation*}
$$

Solution of the dc equation for $n_{e_{0}}$ in terms of the potential $\phi_{d c}(\bar{x})$ in the plasma proceeds as follows:

$$
\begin{align*}
& \bar{E}_{d c}(\bar{x})=-\nabla \phi_{d c}(\bar{x}) \tag{2.12}\\
& \nabla \phi_{d c}(\bar{x})=\frac{k T}{n_{e_{0}} e} \nabla n_{e_{o}}(\bar{x}) \tag{2.13}
\end{align*}
$$

A one-dimensional component of equation (2.13) becomes

$$
\begin{aligned}
& \frac{d}{d x} \phi(x)=\frac{k T}{e n_{e_{0}}} \frac{d}{d x} n_{e_{0}}(x) \\
& \int d \phi(x)=\frac{k T}{e} \int \frac{1}{n_{e_{0}}} d_{e_{0}}(x)+k \\
& \phi(x)=\frac{k T}{e} \ln n_{e_{o}}(x)+k \\
& \ln n_{e_{o}}(x)=\frac{e \phi(x)}{k T}+k^{\prime} \\
& n_{e_{0}}(x)=K^{\prime} e^{\frac{e \phi(x)}{k T}}
\end{aligned}
$$

K, K^{\prime}, and $K^{\prime \prime}$ are related arbitrary constants. Defining n_{0} to be the electron density where $\phi(x)=0, K^{\prime \prime}=n_{0}$; therefore

$$
\begin{equation*}
n_{c_{0}}(x)=n_{o} e^{\frac{e \phi(x)}{k T}} \tag{2.15}
\end{equation*}
$$

which represents a Maxwellian dc electron density distribution which is used in the subsequent plasma column analysis.

In order to analyze the ac behavior of the plasma it is necessary to combine equations (2.5) and (2.11) which are repeated here for reference:

Continuity Equation:

$$
\begin{equation*}
\frac{\partial n_{1}(\bar{x}, t)}{\partial t}+\nabla \cdot n_{n_{0}} \bar{v}=0 \tag{2.16}
\end{equation*}
$$

Ac Momentum Transfer Equation:

$$
\begin{equation*}
\frac{\partial \bar{v}}{\partial t}+v \bar{v}=-\frac{e}{m} \bar{E}_{a c}-\frac{3 k T}{n_{e_{0}} m} \nabla_{n_{1}}(\bar{x}, t) \tag{2.17}
\end{equation*}
$$

Since the ac perturbation of the electron density $n_{1}(\bar{x}, t)$
is excited by a time harmonic incident EM wave with time dependence of the form $R e e^{j \omega t}$, the system of equations may be transformed into the complex phasor domain:

$$
\begin{equation*}
j \omega n_{1}+\nabla \cdot n_{e_{0}} \bar{v}=0 \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
j \omega \bar{v}+v \bar{v}=-\frac{e}{m} \bar{E}-\frac{3 k T}{n_{e_{0}} m} \nabla n_{1} \tag{2.19}
\end{equation*}
$$

In equations (2.18) and (2.19), the functional notation has been dropped for simplicity with the understanding that
(1) n_{1} represents the phasor transform of $n_{1}(\bar{x}, t)$ and is a function of \bar{x} only.
(2) \bar{v} represents the phasor transform of $\bar{v}(\bar{x}, t)$ and is a function of \bar{x} only.
(3) \bar{E} is the phasor transform of $\bar{E}(\bar{x}, t)$ and is a function of x only.

Maxwell's equations (2.1) and (2.2), for ac variations only, become (after phasor transformation)

$$
\begin{equation*}
\nabla \times \bar{E}=-j \omega \mu_{0} \bar{H} \tag{2.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla \times \bar{H}=-e_{e_{o}} \bar{v}+j \omega \varepsilon_{o} \bar{E} \tag{2.21}
\end{equation*}
$$

To obtain a solution for n_{1}, a differential equation for n_{1} is derived taking the divergence of equation (2.21), relating \bar{E} to $\overline{\mathrm{v}}$:

$$
\nabla \cdot \nabla \times \bar{H}=-e \nabla \cdot\left(n_{e_{0}} \bar{v}\right)+j \omega \varepsilon_{0} \nabla \cdot \bar{E}
$$

Therefore

$$
\begin{equation*}
\nabla \cdot \bar{E}=\frac{e}{\varepsilon_{0} j \omega} \nabla \cdot\left(n_{e_{0}} \bar{v}\right) \tag{2.22}
\end{equation*}
$$

From equation (2.18)

$$
\begin{equation*}
\nabla \cdot n_{e_{0}} \bar{v}=-j \omega n_{1} \tag{2.23}
\end{equation*}
$$

Equation (2.22) becomes

$$
\begin{equation*}
\nabla \cdot \bar{E}=-\frac{e n_{1}}{\varepsilon_{0}} \tag{2.24}
\end{equation*}
$$

In order to eliminate \bar{E}, the divergence is taken of equation (2.19):

$$
\begin{equation*}
(j \omega+v) \nabla \cdot \bar{v}=-\frac{e}{m} \nabla \cdot E-\frac{3 k T}{n_{e_{o}}{ }^{m}} \nabla^{2} n_{1} \tag{2.25}
\end{equation*}
$$

Combining equations (2.25) and (2.24) yields

$$
\begin{equation*}
(j \omega+v) \nabla \cdot \bar{v}=+\frac{e^{2} n_{1}}{m \varepsilon_{0}}-\frac{3 k T}{n_{e_{0} m}^{m}} \nabla^{2} n_{1} \tag{2.26}
\end{equation*}
$$

From equation (2.23)

$$
\begin{equation*}
\nabla \cdot n_{e_{0}} \bar{v}=-j \omega n_{1} \tag{2.27}
\end{equation*}
$$

and using vector identity equation (2.6),

$$
\begin{equation*}
\nabla \cdot n_{e_{0}} \bar{v}=n_{e_{0}} \nabla \cdot \bar{v}+\bar{v} \cdot \nabla n_{e_{0}}=-j \omega n_{1} \tag{2.28}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\nabla \cdot \bar{v}=-\frac{j \omega n_{1}}{n_{e_{0}}}-\frac{\bar{v} \cdot \nabla n_{e_{0}}}{n_{e_{o}}} \tag{2.29}
\end{equation*}
$$

Substituting equation (2.29) into equation (2.26) yields

$$
\begin{equation*}
\frac{-(j \omega+v) j \omega n_{1}}{n_{e_{0}}}-\frac{+(j \omega+v) \bar{v} \cdot \nabla n_{e_{o}}}{n_{e_{o}}}=\frac{e^{2} n_{1}}{m \varepsilon_{o}}-\frac{3 k T}{n_{e_{o}} m} \nabla^{2} n_{1} \tag{2.30}
\end{equation*}
$$

After rearranging, a differential equation for n_{1} is obtained:

$$
\begin{equation*}
\nabla^{2} n_{1}+\frac{\omega^{2}-\omega_{p}^{2}-j \omega \nu}{\left(\frac{3 k T}{m}\right)} n_{1}=\frac{j \omega+\nu}{(3 k T / m)} \bar{v} \cdot \nabla n_{e_{0}} \tag{2.31}
\end{equation*}
$$

If as a first approximation the collision frequency is set to zero, equation (2.31) becomes (with $v_{o}^{2}=3 \mathrm{kT} / \mathrm{m}$)

$$
\begin{equation*}
\nabla_{n_{1}}+\frac{\omega^{2}-\omega_{p}^{2}}{v^{2}} n_{1}=\frac{j \omega}{v^{2}} \bar{v} \cdot \nabla n_{e_{0}} \tag{2.32}
\end{equation*}
$$

where ω_{p}^{2} is the plasma frequency $\left(e^{2} n_{e}\right) /\left(m_{e} \varepsilon_{o}\right)$. This is an inhomogeneous Helmholtz equation in n_{1} with a forcing function $\left(j \omega / v^{2}\right)\left(\bar{v} \cdot \nabla_{n_{0}}\right)$. This forcing function represents the driving force for the perturbation in n_{1}. Careful examination of this driving force shows that it is nonzero only if two conditions are satisfied:
(1) There must exist a nonzero gradient of the static electron density $\mathrm{n}_{\mathrm{e}_{0}}$ in the region of interest, and
(2) there must exist a component of \bar{v} parallel to the electron density gradient $\nabla_{n_{e_{0}}}$.
The first condition is satisfied in the sheath region of a cylindrical plasma column where an electron density gradient exists in the radial direction. The second condition is satisfied if an electron velocity perturbation in the radial direction is set up by an electric field component in the incident EM field in the radial direction. Thus the velocity \bar{v} in the driving function represents the coupling term between the radial component of the incident $E M$ field and the electron density perturbation n_{1}. Here the radial component of the EM field represents physically the driving force exciting the electron density perturbation.

In the region of interest near the wall of the plasma cylinder the geometry of interest is shown in Figure 2.2.1. Here the variable x is introduced representing the distance from the wall ($x=0$) into the plasma normal to the wall. Since the characteristic dimension of the sheath region is relatively small compared to the radius of the plasma cylinder, it is justifiable to treat the section of the sheath region shown in Figure 2.2.1 in planar geometry. Thus equation (2.32) may be rewritten for that region as a one-dimensional equation in x as
$\frac{d^{2} n_{1}}{d x^{2}}+\frac{\omega^{2}-\omega_{p}^{2}(x)}{v^{2}} n_{1}=\left((j \omega) / v^{2}\right)\left(v_{x} \frac{d n_{e_{o}}}{d x}\right)$

The corresponding homogeneous equation is

$$
\begin{equation*}
\frac{d^{2} n_{1}}{d x^{2}}+\frac{\omega^{2}-\omega_{p}^{2}(x)}{v^{2}} n_{1}=0 \tag{2.34}
\end{equation*}
$$

Equation (2.34) has a natural oscillatory solution in the region of x in which ω^{2} is larger than $\omega_{p}^{2}(x)$. This is the region between the wall $(x=0)$ and the so-called critical point $\left(x=x_{p}\right)$ where $\omega=\omega_{p}$. For values of x larger than x_{p}, where ω^{2} is less than ω_{p}^{2}, the solution represents an evanescent wave. The natural oscillatory solution for n_{1} in the sheath region is of course subject to boundary conditions at the wall and the functional form of $\omega_{p}(x)$, where

$$
\begin{equation*}
\omega_{p}^{2}(x)=\frac{e^{2} n_{e_{0}}(x)}{m_{e} \varepsilon_{0}} \tag{2.35}
\end{equation*}
$$

In the subsequent sections the boundary condition for n_{1} at the wall is examined, followed by a study of the total phase require-

Fig. 2.2. 1 Geometric arranfement used in the region where thermal rrsonances occur. n_{1} represents a typical waveform of 1 a thermal resonance; t_{1} is the critical point where $\boldsymbol{\omega}=\boldsymbol{\omega}$. The one-dimensional approach is justPfied in this region because t is typically much smaller than the radius of the plasma column, a.

> ment bet:-
> of nature
> \therefore Deterrina
and lettir
in one-dir

Since we a
dependence
where A
ment between the wall and the critical point x_{p} for the existence of natural resonances.
2.3 Determination of the Boundary Condition at the Wall

The boundary conditions at the wall can only be established on phenomenological grounds. It is reasonable to assume that the velocity v associated with the electroacoustic wave motion goes to zero in the immediate vicinity of the wall. For electroacoustic standing wave perturbations in a uniform dc electron density ($n_{e_{0}}$ independent of x) it can be shown that the boundary condition $v_{\text {wall }}=0$ corresponds to the boundary condition that n_{1} is a maximum at the wall as follows:

From equation (2.18)

$$
\begin{equation*}
j \omega n_{1}+\nabla \cdot n_{e_{0}} \bar{v}=0 \tag{2.36}
\end{equation*}
$$

and using vector identity equation (2.6)

$$
\begin{equation*}
j \omega n_{1}=-n_{e_{0}} \nabla \cdot \bar{v}+v n_{e_{0}} \cdot \bar{v} \tag{2.37}
\end{equation*}
$$

and letting $\nabla n_{e_{0}} \doteq 0$ near the wall the following equation results in one-dimensional form in x :

$$
\begin{equation*}
j \omega n_{1}=-n_{e_{o}} \frac{d}{d x} v \tag{2.38}
\end{equation*}
$$

Since we are assuming a standing wave in n_{1} and v, the functional dependence of v on x is of the form

$$
\begin{equation*}
v(x)=A \sin \left(k_{p} x+\theta\right) \tag{2.39}
\end{equation*}
$$

where A and θ are the arbitrary magnitude and phase constants
respectively. For the assumed condition that v goes to zero at the wall and letting $x=0$ at the wall, equation (2.39) becomes:

$$
\begin{equation*}
v(x)=A \sin \left(k_{p} x\right) \tag{2.40}
\end{equation*}
$$

Substituting equation (2.40) into equation (2.38) yields

$$
\begin{equation*}
j \omega n_{1}=-n_{e_{0}} \frac{d}{d x} A \sin \left(k_{p} x\right) \tag{2.41}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
n_{1}=-n_{e_{0}}\left(\frac{A k_{p}}{j \omega}\right) \cos \left(k_{p} x\right) . \tag{2.42}
\end{equation*}
$$

It is important to recall that n_{1} represents the phasor transform of the original time harmonic function $n_{1}(x, t)$. The phase term ($-\frac{1}{j \omega}$) shows that a $\pi / 2$ radian time phase difference exists between n_{1} and v. In addition, a spatial phase difference exists with $n_{1}(x)$ leading $v(x)$ by $\pi / 2$ radians. This means that at the wall ($x=0$), n_{1} should have a maximum corresponding to the zero of v at the wall. This phenomenon is shown graphically in Figure 2.3.1.

It should be understood that the sketches for v and n_{1} in Figure 2.3.1 are only intended to show the relative phase at the wall. It is clear that the actual thermal resonances have varying phase constant and magnitude away from the wall which is not represented here.

2.4 Determination of the Total Phase for the Thermal Resonances

Figure 2.4 .1 shows the typical electron-density contour expected in a cylindrical plasma column.

The propagation constant for electroacoustic waves in a warm plasma, $k_{p}(x)$, is given by:
-

Fig. 2.3.1 Fhase relation between electron density perturbation n and associated electron velocity perturbation v_{1}.

8． 2.4 .1

Pig. 2.4.1 The under-dense region in which thermal resonances may occur if the phase conditions are satisfied and an appropriate mi field illuminates the plasma column.
satisfie
concitio
decessar
$x=x_{p}$.
for eleo
referenc

$$
\begin{equation*}
k_{p}(x)=\frac{\omega}{v_{0}}\left(1-\frac{\omega_{p}(x)^{2}}{\omega^{2}}\right)^{1 / 2} \tag{2.43}
\end{equation*}
$$

where: $\omega=$ radian frequency of the electroacoustic wave

$$
\begin{aligned}
\omega_{p}(x) & =\text { plasma frequency as a function of } x \\
V_{0} & =\sqrt{\frac{3 k T}{m_{e}}}=\text { thermal electron velocity } \\
k & =\text { Boltzman constant } \\
T & =\text { electron temperature } \\
m_{e} & =\text { electron mass. }
\end{aligned}
$$

The propagation constant $k_{p}(x)$ is real only in regions in which $\omega_{p}(x)^{2} / \omega^{2} \leq 1$. In Figure 2.4.1, $k_{p}(x)$ is real in the region $0<x<x_{p}$, so that an electroacoustic wa e can propagate between $x=0$ and $x=x_{p}$. This permits electronoustic standing waves of a given frequency ω to be excited in the sheath region between $x=0$ and $x=x_{p}$ as long as the total phase of the standing wave satisfies the phase conditions to be derived. The boundary condition at $x=0$ was established in section 2.2. It is now necessary to determine the total phase condition between $x=0$ and $x=x_{p}$.

The standard time-independent wave equation in one dimension for electroacoustic waves, equation (2.34) is repeated here for reference:

$$
\begin{equation*}
\frac{\mathrm{dn}_{1}^{2}}{\mathrm{dx}}+\mathrm{k}_{\mathrm{n}}^{2}(\mathrm{x}) \mathrm{n}_{1}=0 \tag{2.44}
\end{equation*}
$$

where n,
function
the WR'B
x-depend
$\int_{k_{p}}^{k_{p}}$
where th:
correspe:
directic
In $f(x)$
by subs:
into tine
$\frac{d n}{d x}=\frac{d t}{d x}$
$\frac{d^{2}}{d x^{2}}$
$\frac{d^{2}}{\frac{1}{d x^{2}}}=1$
where n_{1} represents the phasor transform of $n_{1}(x, t)$ and is a function of x only. In order to establish the total phase of n_{1}, the WKB approximation is used; $n_{1}(x)$ is expressed in terms of an x-dependent magnitude function $\phi(x)$ and an x dependent phase term $\int^{x} k_{p}(x) d x$ as follows : ${ }^{11}$

$$
\begin{equation*}
n_{1}(x)=\phi(x) e^{ \pm i \int^{x} k_{p}\left(x^{\prime}\right) d x^{\prime}} \tag{2.45}
\end{equation*}
$$

where the plus and minus signs in front of the phase term correspond to waves propagating in the negative and positive x directions respectively. It is now necessary to find an equation in $\phi(x)$ from which $\phi(x)$ can be determined. This is accomplished by substituting the assumed solution for $n_{1}(x)$, equation (2.45), into the wave equation (2.44),

$$
\begin{aligned}
& \frac{d n_{1}}{d x}=\frac{d \phi}{d x} e^{ \pm i \int^{x} k_{p}\left(x^{\prime}\right) d x^{\prime}}+ \pm i k_{p}(x) \quad \phi e^{ \pm i \int^{x} k_{p}\left(x^{\prime}\right) d x^{\prime}} \\
& \frac{d^{2} n_{1}}{d x^{2}}=\frac{d^{2} \phi}{d x^{2}} e^{ \pm i \int^{x} k_{p}\left(x^{\prime}\right) d x^{\prime}}+\frac{d \phi}{d x} e^{ \pm i \int^{x} k_{p}\left(x^{\prime}\right) d x^{\prime}}\left(\pm i k_{p}(x)\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{d \phi}{d x} e^{ \pm i \int^{x} k_{p}\left(x^{\prime}\right) d x^{\prime}}\left(\pm i k_{p}(x)\right)+\phi e^{ - \pm i \int^{x} k_{p}\left(x^{\prime}\right) d x^{\prime}} \\
& \cdot\left(\pm 1 k_{p}(x)\right)^{2}+\phi e^{ \pm i \int^{x} k_{p}\left(x^{\prime}\right) d x^{\prime}\left(\pm i \frac{d k_{p}(x)}{d x}\right)} \\
\frac{d^{2} n_{1}}{d x^{2}}= & \left(\frac{d^{2} \phi}{d x^{2}} \pm 2 i k_{p}(x) \frac{d \phi}{d x}+\phi\left(-k_{p}^{2}(x) \pm i \frac{d k_{p}(x)}{d x}\right)\right) \\
& * e^{ \pm i \int^{x} k_{p}\left(x^{\prime}\right) d x^{\prime}}
\end{aligned}
$$

Therefore equation (2.44) becomes

$$
\begin{align*}
& \frac{d^{2} \phi}{d x^{2}} \pm 2 i k_{p}(x) \frac{d \phi}{d x}-k_{p}^{2}(x) \phi \pm i \frac{d k_{p}(x)}{d x} \phi+k_{p}^{2}(x) \phi=0 \tag{2.46}\\
& \frac{d^{2} \phi}{d x^{2}} \pm 2 i k_{p}(x) \frac{d \phi}{d x} \pm i \frac{d k_{p}(x)}{d x} \phi=0 \\
& \frac{1}{i k_{p}(x)} \frac{d^{2} \phi}{d x^{2}} \pm\left(2 \frac{d \phi}{d x}+\frac{1}{k_{p}(x)} \frac{d k_{p}(x)}{d x} \phi\right)=0 \tag{2.47}
\end{align*}
$$

If, in the region $c f$ interest, $\phi(x)$ does not change rapidly as a function of x, the first term in equation (2.47) is negligible compared with the other terms. In the electroacoustic standing waves at hand, the first two, or in some cases, three resonances are considered, so that approximately one to three half-wavelengths of electroacoustic standing wave are expected in the sheath region. Therefore the variation of the peak magnitude of $n_{1}, \phi(x)$, in the vicinity of the turning point is quite small and the second derivative term, $\frac{d^{2} \phi}{d x^{2}}$, may be neglected. The resulting equation in $\phi(x)$ is given by

$$
\begin{equation*}
\frac{2}{\phi} \frac{d \phi}{d x}+\frac{1}{k_{p}(x)} \frac{d k_{p}(x)}{d x}=0 \tag{2.48}
\end{equation*}
$$

Therefore

$$
\frac{2 \mathrm{~d} \phi}{\phi}+\frac{d k_{p}(x)}{k_{p}(x)}=0
$$

Integration leads to the following solution:

$$
\begin{align*}
& 2 \int \frac{d \phi}{\phi}=-\int \frac{d k_{p}(x)}{k_{p}(x)}+K_{1} \\
& \ln \left(\phi^{2}\right)=-\ln \left(k_{p}(x)\right)+\ln \left(K_{2}\right) \\
& \ln \left(\phi^{2}\right)=\ln \left(\frac{K_{2}}{k_{p}(x)}\right) \\
& \phi(x)=\frac{K_{3}}{\sqrt{k_{p}(x)}} \tag{2.49}
\end{align*}
$$

where K_{3} is an arbitrary integration constant. Thus, the expression for $n_{1}(x)$ postulated in equation (2.45) takes the form:

$$
\begin{equation*}
n_{1}(x)=K \frac{1}{\sqrt{k_{p}(x)}} e^{ \pm i \int_{x_{p}}^{x} k_{p}\left(x^{\prime}\right) d x^{\prime}} \tag{2.50}
\end{equation*}
$$

where $k_{p}(x)$ is real for $x \leq x_{p}$.
In the region where x is larger than $x_{p}, k_{p}(x)$ is imaginary and may be written as $i\left|k_{p}(x)\right|$ so that $n_{1}(x)$ for $x_{p}<x$ is most conveniently written as

$$
\begin{equation*}
n_{1}(x)=k \frac{1}{\sqrt{k_{p}(x) \mid}} e^{ \pm i \int_{x_{p}}^{x} \mid k_{p}\left(x^{\prime} \mid d x^{\prime}\right.} \tag{2.51}
\end{equation*}
$$

Since only an attenuated wave is expected in this region, the positive term in the exponential is not applicable so that:

Thus the

Since the
represent
convenie:
where θ I
breaks do
unbounded.
vicinity
${ }^{4} p(x)$ is
$i^{2}(x)$

This is a

$$
\begin{equation*}
n_{1}(x)=k \frac{1}{\sqrt{\left|k_{p}(x)\right|}} e^{-\int_{x_{p}}^{x}\left|k_{p}\left(x^{\prime}\right)\right| d x^{\prime}} \tag{2.52}
\end{equation*}
$$

Thus the expressions for $n_{1}(x)$ are summarized as follows:

$$
n_{1}(x)=\left\{\begin{array}{lll}
\frac{k_{1}}{\sqrt{k_{p}(x)}} & e^{ \pm i} \int_{x_{p}}^{x} k_{p}\left(x^{\prime}\right) d x^{\prime} & \text { for } 0<x<x_{p} \tag{2.53}\\
\frac{k_{2}}{\sqrt{\left|k_{p}(x)\right|}} & e^{-\int_{p}} x_{p}^{x}\left|k_{p}\left(x^{\prime}\right)\right| d x^{\prime} \text { for } x>x_{p}
\end{array}\right\}
$$

Since the electroacoustic waves between $x=0$ and $x=x_{p}$ represent standing waves, equation (2.53) for that region may be conveniently written as

$$
\begin{equation*}
n_{1}(x)=\frac{k_{1}}{\sqrt{k_{p}(x)}} \sin \left(\int_{x}^{x_{p_{k}}}\left(x^{\prime}\right) d x^{\prime}+\theta\right) \tag{2.54}
\end{equation*}
$$

where θ represents an arbitrary phase constant. This expression breaks down in the limit as x goes to x_{p} where $K_{1} / \sqrt{k_{p}(x)}$ becomes unbounded. Therefore another formulation is required for the vicinity of $x=x_{p}$: Since $k_{p}^{2}(x)=\frac{1}{v_{0}^{2}}\left(\omega^{2}-\omega_{p}^{2}(x)\right)$, where $\omega_{p}(x)$ is a slowly changing function of x, the expression for $k_{p}^{2}(x)$ can be linearized near $x=x_{p}$ as follows:

$$
\begin{equation*}
k_{p}^{2}(x)=\frac{-\alpha}{v_{0}^{2}}\left(x-x_{p}\right) \tag{2.55}
\end{equation*}
$$

This is a linear function with a value of zero at $x=x_{p}$ as
required and a slope equal to $\left(-\frac{\alpha}{v_{0}}\right)$.

Defining a new variable

$$
\begin{equation*}
z=+\left(\frac{\alpha}{v_{0}^{2}}\right)^{1 / 3}\left(x-x_{p}\right) \tag{2.56}
\end{equation*}
$$

leads to:

$$
\begin{equation*}
k_{p}^{2}(z)=-\left(\frac{\alpha}{v_{0}^{2}}\right)^{2 / 3} z \tag{2.57}
\end{equation*}
$$

Transformation of the original wave equation proceeds as follows: The wave equation (2.34) from section 2.2 was

$$
\frac{d^{2} n_{1}}{d x^{2}}+k_{p}^{2}(x) n_{1}=0
$$

Now:

$$
\frac{\mathrm{dn}_{1}}{\mathrm{dx}}=\frac{\mathrm{dn}}{\mathrm{~d}} \mathrm{~d} \frac{\mathrm{~d} z}{\mathrm{dx}}=-\frac{\mathrm{dn}}{\mathrm{dz}}\left(\frac{\alpha}{\mathrm{v}_{0}^{2}}\right)^{1 / 3} .
$$

and

$$
\begin{aligned}
\frac{d^{2} n_{1}}{d x^{2}} & =\frac{d}{d x}\left(\frac{d n}{d x}\right)=\frac{d}{d z}\left(\frac{d n_{1}}{d x}\right)^{d z} d x=-\frac{d}{d z} \frac{d n_{1}}{d z}\left(\frac{\alpha}{v_{0}^{2}}\right)^{1 / 3}\left(\frac{\alpha}{v_{0}^{2}}\right)^{1 / 3} \\
& =\frac{d^{2} n_{1}}{d^{2}}\left(\frac{\alpha}{v_{0}^{2}}\right)^{2 / 3}
\end{aligned}
$$

Thus the wave equation in 2 applicable to the vicinity of $x=x_{p}$ becomes:

$$
\begin{equation*}
\frac{d^{2} n_{1}}{d z^{2}}-z n=0 \tag{2.58}
\end{equation*}
$$

The solution to equation (2.58) is given in terms of the Airy function as follows:

$$
\begin{equation*}
n_{1}(z)=\frac{N_{0}}{\pi} \int_{0}^{\infty} \cos \left(\frac{s^{2}}{3}+s z\right) d s \tag{2.59}
\end{equation*}
$$

where N_{0} is an arbitrary constant. For large values of $|z|$, equation (2.59) has the following asymptotic approximation: for $z>0$ which is equivalent to $x>x_{p}$

$$
\begin{equation*}
n_{1}(z)=\frac{N_{0}}{2 \sqrt{\pi} z^{1 / 4}} e^{-2 / 3 z^{3 / 2}} \tag{2.60}
\end{equation*}
$$

and for $z<0$ which is equivalent to $x<x_{p}$

$$
\begin{equation*}
n_{1}(z)=\frac{N_{0}}{\sqrt{\pi}(-z)^{1 / 4}} \sin \left(\frac{2}{3}(-z)^{3 / 2}+\pi / 4\right) \tag{2.61}
\end{equation*}
$$

See Figure 2.4.2 for a typical graph of the Airy function in the vicinity of $z=0$. Since equations (2.53) and equations (2.60) and (2.61) should agree at some distance from $x=x_{p}$, where the linear approximation for $k_{p}{ }^{2}(x)$ still holds, the two solutions may be compared. In the region $x<x_{p}$, equation (2.53) gives (in terms of the variable z, using equation (2.54))

Fig. 2.4.2 Sketch of Airy function, ${ }^{11}$

$$
A i(z)=\frac{1}{\pi} \int_{0}^{\infty} \cos \left(s^{3} / 3+s z\right) d z
$$

$$
\begin{equation*}
n_{1}(z)=\frac{K_{1}}{\sqrt{\left(\alpha / v_{0}^{2}\right)(-z)^{1 / 2}}} \sin \left(\int_{z}^{0}\left(-z^{\prime}\right)^{1 / 2} d z^{\prime}+\theta\right) \tag{2.62}
\end{equation*}
$$

and after performing the integration in the phase term,

$$
\begin{equation*}
n_{1}(z)=\frac{K_{1}}{\sqrt{\left(\alpha / v_{0}^{2}\right)(-z)^{1 / 2}}} \sin \left(\frac{2}{3}(-z)^{3 / 2}+\theta\right) \tag{2.63}
\end{equation*}
$$

The phase term in the argument of equation (2.63) agrees with the phase term in equation (2.61) if

$$
\begin{equation*}
\theta=\pi / 4 \tag{2.64}
\end{equation*}
$$

Thus the WKB formulations for $n_{1}(x)$ in the two regions become

The significant result from this section needed in the subsequent determination of the electron density profile from the thermal resonance data is an expression for the total phase of these thermal resonances between the wall and the critical point. This phase expression is now obtainable as follows. From equation (2.54) and (2.65) it is seen that at the wall where $x=0$,

$$
\begin{equation*}
n_{1}(0)=\frac{k_{1}}{\sqrt{k_{p}(x)}} \sin \left(\int_{0}^{x_{p}} k_{p}\left(x^{\prime}\right) d x^{\prime}+\pi / 4\right) \tag{2.66}
\end{equation*}
$$

must represent a maximum of $n_{1}(x)$. This leads to the condition that

$$
\begin{equation*}
\left(\int_{0}^{x_{p}} k_{p}\left(x^{\prime}\right) d x^{\prime}+\pi / 4\right)=(2 m+1)(\pi / 2) \tag{2.67}
\end{equation*}
$$

thermal r
thermal
plas ia
density
i,
Developmen
and P1
In_{n}
Clindirica
necessary
where m is a positive integer. Therefore the total phase integral becomes

$$
\int_{0}^{x_{p}} k_{p}\left(x^{\prime}\right) d x^{\prime}=(2 m+1)(\pi / 2)-\pi / 4
$$

or

$$
\begin{equation*}
\int_{0}^{x_{p}} k_{p}\left(x^{\prime}\right) d x^{\prime}=(m+1 / 4) \pi \tag{2.68}
\end{equation*}
$$

Figure 2.4 .3 shows typical wave forms of the thermal resonances to be expected in the plasma sheath region. Only the phase shown in Figure 2.4.3 for the various resonances is significant in conjunction with this discussion; the magnitudes are merely representative of typical waveforms.

The phase integral in equation (2.68) is used in the analytical techniques developed in section 3 for the determination of the electron density profiles in cylindrical plasma columns.

The WKB approximation developed in this section for the thermal resonances is also used subsequently to graph examples of thermal resonances with normalized magnitude for actual cylindrical plasma columns based on the numerical results for the electron density profile $n_{e}(r)$ presented in Chapter 4.
2.5 Development of Relationships between Dipole Resonance Frequency and Plasma Frequency in a Cylindrical Plasma Column

In the determination of the electron density profile in a cylindrical plasma column based on thermal resonance data, it is necessary to know the relationship between the exciting EM wave

Fig. 2.4.3 Typical waveforms of the first three thermal resonances. $x_{p_{1}}, x_{p_{2}}$, and $x_{p_{3}}$ are the critical points at which $k_{p_{1}}, k_{p_{2}}$, and $k_{p_{3}}$ respectively go to zero.
where C
exact sc
of the

Such exa
parabol:
crlindr:
equation.
between
electron
inappronr
an approx
It is, th
uniform
average
"pof the
appropria
Fuasi-sta
tion of y
of a unif
${ }^{\text {ienton }}$ ar
frequency ω and the average plasma frequency $\left\langle\omega_{p}(r)>\right.$ in the plasma column.

$$
\begin{equation*}
\left\langle\omega_{p}^{2}(r)\right\rangle=C_{p} \omega^{2} \tag{2.69}
\end{equation*}
$$

where C_{p} is a proportionality constant to be determined. An exact solution for $\left\langle\omega_{p}(r)\right\rangle$ as a function of ω requires knowledge of the electron density profile in the cylindrical plasma column. Such exact analyses have been performed based on an assumed parabolic electron density profile subdividing the plasma into cylindrical sublayers and performing a numerical analysis on the equations resulting from the boundary conditions at the walls and between the strata. 12

Since it is the objective of this research to determine the electron density profile in the plasma cylinder, it would be inappropriate to presume any specific profile a priori. However, an approximate value to C_{p} is sufficient for a profile analysis. It is, therefore, appropriate to base the determination on a uniform plasma with a uniform plasma density $\omega_{p_{4}}$ so that the average $\left\langle\omega_{p}(r)\right\rangle$ in the actual plasma cylinder corresponds to $\omega_{p_{u}}$ of the assumed uniform plasma.

It has been shown that a quasi-static approximation is 13 appropriate in many cases. The test for the validity of the quasi-static approach in any specific case is based on an examination of Maxwell's Equations for the plasma region in the absence of a uniform magnetic field. Maxwell's Equations in the plasma region are:

SHall.

$$
\begin{align*}
& \nabla \times \overline{\mathrm{B}}=+j \omega \mu_{0} \varepsilon_{\mathrm{p}} \overline{E_{1}} \tag{2.70}\\
& \nabla \times \mathrm{E}=-j \omega \overline{\mathrm{~B}} \tag{2.71}\\
& \nabla \cdot \overline{\mathrm{~B}}=0 \tag{2.72}\\
& \nabla \cdot \overline{\mathrm{E}}=0 \tag{2.73}
\end{align*}
$$

Taking the curl of equation (2.70) and (2.71) and combining the results leads to the homogeneous Helmholtz Equation

$$
\begin{equation*}
\left(\nabla^{2}+\varepsilon_{p} \mu_{0} \omega^{2}\right) \bar{E}=0 \tag{2.74}
\end{equation*}
$$

Letting $k_{e}^{2}=\omega^{2} \mu_{0} \varepsilon_{p}$, equation (2.74) becomes

$$
\begin{equation*}
\left(\nabla^{2}+k_{e}^{2}\right) \bar{E}=0 \tag{2.75}
\end{equation*}
$$

Now in the quasi-static approach the system may be solved by use of Laplace's Equation

$$
\begin{equation*}
\nabla_{\phi}^{2}=0 \tag{2.76}
\end{equation*}
$$

Expressing equation (2.76) in terms of \bar{E} by taking the gradient of equation (2.76) leads to

$$
\begin{equation*}
\nabla^{2} \bar{E}=0 \tag{2.77}
\end{equation*}
$$

In comparing equation (2.77) for the quasi-static approximation to the homogeneous Helmholtz equation (2.75) it appears that the quasi-static approximation is justified if $k_{e}{ }^{2}$ is negligibly small. Studying, for example, a one-dimensional application in x of the two equations, equation (2.75) becomes

Given the
can be de
so that

Thus the

On the or
is
where $\mathrm{fro}_{\mathrm{o}}$

$$
\begin{equation*}
\frac{d^{2}}{d x^{2}} E(x)+k_{e}^{2} E(x)=0 \tag{2.78}
\end{equation*}
$$

The solution to equation (2.78) is

$$
\begin{equation*}
E(x)=k_{1} \cos \left(k_{e} x\right)+k_{2} \sin \left(k_{e} x\right) \tag{2.79}
\end{equation*}
$$

Given the boundary conditions E_{o} and $\left(\frac{\partial E}{\partial x}\right)_{o}$ at $x=0, K_{1}$ and K_{2} can be determined as follows:

$$
\begin{gather*}
K_{1}=E_{0} \tag{2.80}\\
\left(\frac{\partial E}{\partial x}\right)_{0}=\left(K_{1} k_{e} \sin \left(k_{e} x\right)+K_{2} k_{e} \cos k_{e} x\right)_{o} \tag{2.81}
\end{gather*}
$$

so that

$$
K_{2}=\left(\frac{\partial E}{\partial x}\right)_{o}\left(\frac{1}{k_{e}}\right)
$$

Thus the solution of equation (2.78) becomes

$$
\begin{equation*}
E(x)=E_{0} \cos \left(k_{e} x\right)+\left(\frac{\partial E}{\partial x}\right)_{o} \frac{\sin \left(k_{e} x\right)}{\cdot k_{e}} \tag{2.82}
\end{equation*}
$$

On the other hand, the solution to

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}} E(x)=0 \tag{2,83}
\end{equation*}
$$

13

$$
\begin{equation*}
E(x)=K_{1} x+K_{2} \tag{2.84}
\end{equation*}
$$

where from the boundary conditions E_{0} and $\left(\frac{\partial E}{\partial x}\right)_{0}$ at $x=0$:

$$
\begin{equation*}
K_{2}=E_{0} \tag{2.85}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\partial E}{\partial x}\right)_{0}=K_{1} \tag{2.86}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
E(x)=E_{0}+\left(\frac{\partial E}{\partial x}\right)_{0} x \tag{2.87}
\end{equation*}
$$

For values $\left|k_{e}\right|^{2} \ll 1$, the solution to the Helmholtz Equation, equation (2.82), approaches the solution to Laplace's Equation (2.87), because equation (2.87)

$$
E(x)=E_{0}+\left(\frac{\partial E}{\partial x}\right)_{0} x
$$

is in fact the first order Taylor series approximation of equation (2.82)

$$
E(x)=E_{0} \cos \left(k_{e} x\right)+\left(\frac{\partial E}{\partial x}\right)_{0} \frac{\sin k_{e} x}{k_{e}}
$$

Thus the condition for using a quasi-static approximation is:

$$
\begin{equation*}
\left|k_{e} x\right|^{2} \ll 1 \tag{2.88}
\end{equation*}
$$

In terms of the cylindrical plasma column this means that

$$
\begin{equation*}
\left|\varepsilon_{p} \mu_{o} \omega^{2} d_{c}^{2}\right| \ll 1 \tag{2.89}
\end{equation*}
$$

where d_{c} represents the characteristic dimension of the system;
ω is the incident EM wave frequency, μ_{0} is the free space permeability and

$$
\varepsilon_{p}=\varepsilon_{0}\left(1-\frac{\omega_{p}^{2}}{\omega^{2}}\right)
$$

if the collision frequency v is assumed zero. In the experimental system at hand, ω_{p} is in the order of $20 \times 10^{9} \mathrm{rad} / \mathrm{sec}, \omega$ is in the order of $10 \times 10^{9} \mathrm{rad} / \mathrm{sec}, \mathrm{d}_{c}$ may be taken as the radius a $=.007$ m, and ε_{0} is the free space permittivity all taken in mks units. Thus $\left|\varepsilon_{0}\left(1-\frac{\omega_{p}}{\omega^{2}}\right)^{1 / 2} \mu_{0} \omega^{2} d_{c}^{2}\right|$ is in the order of 1×10^{-2} so that the quasi-static approximation is justified in this analysis. Consider the geometry of a cylindrical plasma column shown in Figure 2.5.1. The solution of Laplace's Equation

$$
\begin{equation*}
\nabla_{\phi}^{2}=0 \tag{2.90}
\end{equation*}
$$

in cylindrical coordinates with z-independence can be expressed as series solution

$$
\begin{equation*}
\phi=\left(K_{1 n} r^{n}+K_{2 n} r^{-n}\right) e^{i n \theta} \tag{2.91}
\end{equation*}
$$

where n is an integer unequal zero. In regions 1 through 3 as indicated in Figure 2.5.1, the solutions become:

$$
\begin{align*}
& \phi_{1}=\Lambda_{n} r^{n} \cos (n \theta) \tag{2.92}\\
& \phi_{2}=B_{n} r^{n} \cos (n \theta)+C_{n} r^{-n} \cos (n \theta) \tag{2.93}\\
& \phi_{3}=D_{n} r^{-n} \cos (n \theta)+r^{n} \cos (n \theta) \tag{2.94}
\end{align*}
$$

where an exciting field of the form $r^{n} \cos (n \theta)$ is considered. Since in the system at hand the free space wavelength of the exciting EM wave is much larger than the radial dimension, the dipolar contribution ($n=1$) is most significant so that the

\%. 2.5 .1

Fig. 2.5.1 Geometric arrangement of cylindrical plasma column contained in a cylindrical glass discharge tube of wall thickness b. The inside radius is a while the outside radius is c.
problem can be simplified significantly by rewriting equations (2.92) through (2.94) for $n=1:$

$$
\begin{align*}
& \phi_{1}=\operatorname{Ar} \cos (\theta) \tag{2.95}\\
& \phi_{2}=\mathrm{Br} \cos (\theta)+\mathrm{C} \frac{1}{r} \cos (\theta) \tag{2.96}\\
& \phi_{3}=D \frac{1}{r} \cos n(\theta)+r \cos (\theta) \tag{2.97}
\end{align*}
$$

Continuity of the potential ϕ and the normal component of the electric displacement at the two boundaries $\mathbf{r}=\mathbf{a}$ and $\mathbf{r}=\mathrm{c}$ permit solution of the arbitrary constants. D is of primary interest because it is maximum at the value $\frac{\omega_{p_{\mu}}}{\omega}$ at which the dipole resonance occurs.

The system of equations to be solved is:
$\left[\begin{array}{cccc}a & -a & -1 / a & 0 \\ 0 & c & 1 / c & -1 / c \\ \varepsilon_{p} & -\varepsilon_{g} & \frac{\varepsilon_{g}}{a^{2}} & 0 \\ 0 & \varepsilon_{g} & -\frac{\varepsilon_{g}}{c^{2}} & \frac{\varepsilon_{0}}{c^{2}}\end{array}\right]\left[\begin{array}{l}A \\ B \\ C\end{array}\right]=\left[\begin{array}{l}0 \\ c \\ 0 \\ 0 \\ \varepsilon_{0}\end{array}\right]$

The value of the arbitrary constant D must be maximum at the dipole resonance. Since D can be expressed in terms of Cramer's Rule, it is evident that its maximum value is obtained by setting the determinant of the coefficient matrix in equation (2.98) equal to zero,

$$
\left|\begin{array}{cccc}
a & -a & -1 / a & 0 \tag{2.99}\\
0 & c & 1 / c & -1 / c \\
\varepsilon_{p} & -\varepsilon_{g} & \varepsilon_{g} / a^{2} & 0 \\
0 & \varepsilon_{g} & -\varepsilon_{g} / c^{2} & \varepsilon_{o} / c^{2}
\end{array}\right|=0
$$

Letting $\varepsilon_{g_{r}}$ represent the relative permittivity of the glass, $\varepsilon_{g}=\varepsilon_{0} \varepsilon_{g_{r}}$, and $\varepsilon_{p_{r}}$ represent the relative permittivity of the plasma, $\varepsilon_{p}=\varepsilon_{0} \varepsilon_{p_{r}}$, the expansion of equation (2.99) becomes

$$
\begin{gather*}
\left(1 / a^{2}+1 / c^{2}\right) \varepsilon_{g_{r}}\left(1+\varepsilon_{p_{r}}\right)+\left(1 / a^{2}-1 / c^{2}\right) \\
\quad\left(\varepsilon_{p_{r}}-\varepsilon_{g_{r}}{ }^{2}\right)=0 \tag{2.100}
\end{gather*}
$$

Equation (2.100) may be solved for $\varepsilon_{p_{r}}$ which in turn is used in the numerical determination of $\omega_{p}^{2} / \omega^{2}$ as follows. Given numerical values for the radial dimensions and the relative permittivity of the glass, $\varepsilon_{g_{r}}=5, a=.007 \mathrm{~m}$, and $c=.008 \mathrm{~m}$:

$$
\frac{\varepsilon_{p}}{\varepsilon_{0}}=-1.6
$$

$$
\frac{\varepsilon_{p}}{\varepsilon_{0}}=1-\frac{\omega_{p}^{2}}{\omega^{2}}=1-C_{p}
$$

$$
C_{p}=2.6
$$

This value for $C_{p}=\frac{\omega_{p}^{2}}{\omega}$ is used in the subsequent numerical analysis. The value for C_{p} agrees well with values obtained by Lee ${ }^{12}$ for similar discharge columns.

DETERMINATION OF ELECTRON DENSITY PROFILE IN CYLINDRICAL PLASMA COLUTN BASED ON THERIAL RESONANCE DATA IN THE SHEATH REGION

3.1 Introduction

When an electromagnetic wave is incident on a cylindrical plasma as shown in Figure 3.1.1, a dipole resonance is excited at a frequency ω depending on the average plasma frequency $\omega_{p}(r)$ in the plasma. Furthermore, thermal resonances may be excited in the sheath region near the wall at certain combinations of frequency and discharge current levels. These thermal resonanc represent electroacoustic waves. The sheath rerion is the region near the wall in which the electron density is reduced from its value at the center. It is well known that the electron density decreases towards the wall along with an increase in negative potential away from the center. The propagation constant associated with the electroacoustic wave, $k_{p}(r)$, is a function of the radial distance r in the plasma column and is given by:

$$
\begin{equation*}
k_{p}(r)=\frac{\omega}{v_{0}}\left(1-\frac{\omega_{p}^{2}(r)}{\omega^{2}}\right)^{1 / 2} \tag{3.1}
\end{equation*}
$$

Here $\omega_{p}(r)$ is the plasma frequency as a function of r defined as:

$$
\begin{equation*}
\omega_{p}^{2}(r)=\frac{e^{2} n_{e}(r)}{m_{e^{\varepsilon_{0}}}} \tag{3.2}
\end{equation*}
$$

where $n_{e}(r)$ is the static electron density as a function of r, e is the electron charge, m_{e} is the electron mass and ε_{0} is the free space permittivity; ω is the frequency of the incident electro-
$\%$

Fig. 3.1.1 A cylindrical plasma column illuminated by $T M$ field as shown. $\bar{E}_{O_{t}}$ and $\bar{E}_{O_{1}}$ represent the transverse and lonfitudinal components of electric field respectively.
magnetic field. Thermal resonances can exist, if in the so-called sheath region near the wall, the electron density, and therefore $\omega_{p}(r)$ is small enough to yield a real value for $k_{p}(r)$. Since in fact $n_{e}(r)$ and therefore $\omega_{p}(r)$ increase monotonically away from the wall as discussed in Chapter 2, there may exist for a given frequency ω of an incident $E M$ wave a point in the plasma column, say $r=r_{p}$, at which $\omega=\omega_{p}(r)$, so that $k_{p}(r)$ is real for $r>r_{p}$ and $k_{p}(r)$ is imaginary for $r<r_{p}$. Under these conditions thermal resonances may exist between $r=r_{p}$ and the wall where $r=a$ for frequencies ω for which the total phase of such resonances satisfies the total phase condition derived in Chapter 2. It was shown there that the total phase for the $m^{\text {th }}$ resonance must be $(m+1 / 4) \pi$. If an appropriate functional description of the electron density profile can be formulated, the unknown parameters appearing in such a formulation can be determined from pertinent data regarding the thermal resonances. In the following section, the experimental procedure is presented for collecting thermal resonance data followed by a formulation of useful functional forms of the electron density profile $n_{e}(r)$ and their analysis.

3.2 Experimental Procedure

The experimental arrangement for obtaining plasma resonance data in a cylindrical plasma column is illustrated in Figure 3.2.1. The experimental technique is based on the excitation of the dipole resonance along with excitation of thermal resonances in the sheath region in a bounded cylindrical plasma column in glass tubing by use of an electroacoustic probe. The probe consists essentially of an open-ended coaxial line fed by an RF generator through a direc-

Fig. 3.2.1 Experimental arrangement for obtaining plasma resonance data in a cylindrical plasma column. An electroacoustic (E.A.) probe is used to excite the dipole and thermal resonances in the plasma column. The E.A. probe also picks up the scattered field whose peaks indicate the presence of resinances in the plasma.
tional coupler. In order to excite electroacoustic resonances in the plasma column, the open end of the probe is placed near the glass wall containing the plasma column. The inner conductor of the coaxial line is extended a small distance beyond the open and of the outer conductor so that the $R F$ radiation contains the necessary longitudinal component of \vec{E} field to excite the desired longitudinal electroacoustic resonances in the sheath region. Reflections from the plasma cylinder are received by the probe and are directionally coupled to an RF detector whose output is connected to the vertical input of an oscilloscope. The electron density in the plasma column is adjusted by a discharge current produced by a high voltage source connected to the anode and cathode of the plasma tube as shown in Figure 3.2.1. The current has a low frequency (60 Hz) ac variation superposed on its dc level. The ac component produces a variation in the plasma discharge current and also produces the horizontal sweep on the oscilloscope. Whenever the current level passes through a value which satisfies the resonance condition

$$
\int_{r_{m}}^{a} \frac{1}{V_{0}}\left(\omega^{2}-\omega_{p}^{2}\left(r_{m}\right)\right)^{1 / 2} d r=(m+1 / 4) \pi
$$

at an excitation frequency ω for the $m^{\text {th }}$ resonance, a peak is observed in the reflected power level. In addition, the dipole resonance is observed as the strongest resonance in the column. The discharge current levels at the dipole resonance and the first few thermal resonances are observed. In the subsequent numerical analysis only the ratios of the discharge current levels are used.

Eight sets of data obtained in the experimentation are shown in Figures 3.2.2 through 3.2.5. Table 3.2.1 shows the discharge currents i_{d}, i_{1}, i_{2}, and i_{3} along with the excitation frequency for each of the eight data sets.

3.3 Development of Functional Form for the Electron-Density Profile

If a Maxwellian electron density distribution is assumed, the electron density profile $n_{e}(r)$ is expressed in terms of the potential profile, $V(r)$, by equation (2.15) in section 2.2,

$$
\begin{equation*}
n_{e}(r)=n_{0} e^{\frac{e V(r)}{k T}} \tag{3.3}
\end{equation*}
$$

where n_{0} is the electron density at $V(r)=0$. It is reasonable to assume that in the plasma cylinder used in the experimentation, the voltage at $r=0, V(0)$, is negligibly small and may be approximated as zero,

$$
\begin{equation*}
v(0) \doteq 0 \tag{3.4}
\end{equation*}
$$

Since the actual value of $V(0)$ is not known, this approximation is necessary to obtain a solution for the problem. Thus

$$
\begin{equation*}
n_{0}=n_{e}(0) \tag{3.5}
\end{equation*}
$$

where n_{0} represents the electron density at the center of the plasma column. The problem then is the formulation of a functional form for $V(r)$. This might best be arrived at by considering Poisson's Equation in the region of interest and choosing a functional relationship for $V(r)$ which at least in form agrees with the solution to Poisson's Equation. A complete solution of

Fig. 3.2. 2 Experimental results (data sets \#1 and 2) for the back scattered EN. field from a cylindrical plasma column as a function of discharge current. f is the frequency of the incident EM field. i_{d}, i_{1}, i_{2}, and i_{3} are the discharge currents at which the dipole resonance and the first three thermal resonances respectively occur.
A $\begin{aligned} & \text { Back scattered } \\ & \text { EM field } \\ & \text { Data set \#3 }\end{aligned}$
Back scattered
Back scattered
EM field
EM field
Data set \#4 $\quad f=2.32 \mathrm{GHz}$

Fig. 3.2.3 Experimental results (data sets \#3 and 4) for the back scattered $E N$ field from a cylindrical plasma column as a function of discharge current. f is the frequency of the incident EM field. i_{d}, i_{1}, i_{2}, and i_{3} are the discharge currents at which the dipole resonance and the first three thermal resonances respectively occur.

$$
1
$$

Fig. 3.2.5 Experimental results (data sets \#7 and 8) for the back scattered $k \mathbb{N}$. field from a cylindrical plasma column as a function of discharge current. f is the frequency of the incident EM field. i_{d}, i_{1}, i_{2}, and i_{3} are the discharge currents at which the dipole resonance and the first three thermal resonances respectively occur.

Data set \#	f (GHz)	$\mathrm{i}_{\mathrm{d}}(\mathrm{ma})$	i_{1} (ma)	$\mathrm{i}_{2}(\mathrm{ma})$	i_{3} (ma)
1	2.016	270	185	150	125
2	2.100	290	190	150	120
3	2.230	341)	235	185	160
4	2.320	355	215	200	175
5	1.917	270	190	135	110
6	2.017	285	190	150	120
7	2.275	290	195	150	170
8	2.32?	320	2.10	150	135

Table 3.2.1 Fxperimental data set 1 through 3. Given are the frequency of the incident fir field and the discharge currents $i_{d}, i_{1}, i_{?}$ and i_{3} at which the dipole reson'ance and the first three thermal resonance respectively occur.

Poisson's Equation in the plasma column is not possible because the boundary condition for $V(0)$ is not known and the avallable experimental data are insufficient to determine it.

Poisson's Equation in cylindrical coordinates is given by:

Here

$$
\begin{align*}
& \frac{d^{2} V(r)}{d r^{2}}+\frac{1}{r} \frac{d V(r)}{d r}=-\frac{\rho(r)}{\varepsilon_{0}} \tag{3.6}\\
& \rho(r)=e n_{0}\left(1-e^{\frac{e V(r)}{k T}}\right) \tag{3.7}
\end{align*}
$$

and T represents the electron temperature. This expression for $\rho(r)$ is based on the plasma sheath model in which the ion density is nearly constant throughout the plasma region due to ion drift towards the negative wall potential. Substituting equation (3.7) into equation (3.6) yields:

$$
\begin{equation*}
\frac{d^{2} V(r)}{d r^{2}}+\frac{1}{r} \frac{d V(r)}{d r}=-\frac{e_{0}}{\varepsilon_{0}}\left(1-e^{\frac{e V(r)}{k T}}\right) \tag{3.8}
\end{equation*}
$$

In the region away from the wall where $\mathrm{eV}(\mathrm{r}) \ll \mathrm{kT}$, the following approximation may be made:

$$
\begin{equation*}
\frac{d^{2} V(r)}{d r^{2}}+\frac{1}{r} \frac{V(r)}{r}=-\frac{e_{o}}{\varepsilon_{0}}\left(1-1-\frac{e V(r)}{k T}\right) \tag{3.9}
\end{equation*}
$$

so that we have the following approximation of Poisson's Equation:

$$
\begin{equation*}
\frac{d^{2} v(r)}{d r^{2}}+\frac{1}{r} \frac{V(r)}{r}-\frac{e^{2} n_{o}}{k T \varepsilon_{0}} v(r)=0 \tag{3.10}
\end{equation*}
$$

This is a Bessel Equation and the solution is in the form of a zero order Bessel function with imaginary argument:

$$
\begin{equation*}
V(r)=C_{1} I_{0}\left(K_{1} r\right) \tag{3.11}
\end{equation*}
$$

where C_{1} is an arbitrary constant and $K_{1}=\frac{e^{2} n_{0}}{k T \varepsilon_{0}}$, containing n_{0} and electron temperature as constants. If equation (3.11) were used throughout the plasma column, C_{1} would renresent the potential $V(0)$. As stated above, a value for $V(0)$ is not available so that equation (3.11) is merely used to show that a Bessel series is an appropriate form for the potential $V(r)$ near the center of the plasma column. The approximations made in equation (3.10) do not hold near the wall. The wall region is considered next.

In the sheath region near the wall, where the approximation $\frac{e V(r)}{k T} \ll 1$ does not hold, the following alternate approximate formulation may be used. Letting V_{W} be the wall potential, $V(a)=V_{w}$, Poisson's Equation may be written as follows:

$$
\begin{equation*}
\frac{d^{2} V(r)}{d r^{2}}+\frac{1}{r} \frac{d V(r)}{d r}=-\frac{e n_{o}}{\varepsilon_{0}}\left(1-e^{\frac{e V(r)}{k T}-\frac{e V_{v}}{k T}-\frac{e V_{w}}{e^{k T}}}\right) \tag{3.12}
\end{equation*}
$$

Defining a new variable $v^{\prime}(r)=V(r)-V_{w}$, equation (3.12)
becomes:

$$
\begin{equation*}
\frac{d^{2} v^{\prime}(r)}{d r^{2}}+\frac{1}{r} \frac{d v^{\prime}(r)}{d r}=-\frac{e n_{n}}{\varepsilon_{0}} \cdot\left(1-e^{\frac{e V_{w}}{k T}} e^{\frac{e v^{\prime}(r)}{k T}}\right) \tag{3.13}
\end{equation*}
$$

Sufficiently close to the wall, $v(r)$ is small enough to let

$$
\mathrm{e}^{\frac{\mathrm{ev}^{\prime}(\mathrm{r})}{\mathrm{kT}}} \doteq 1+\frac{\mathrm{ev}(r)}{\mathrm{kT}} \quad \text {. Therefore: }
$$

This equa
 $\frac{d^{2} v^{\prime}\left(r^{\prime}\right)}{d r^{2}}+$ or

with K_{2} electron

Tie solut
with imar 2
he fact
the form
available
of zero
the expect
with a uni
letting
${ }^{2}=r(s):$

$$
\begin{equation*}
\frac{d^{2} v^{\prime}(r)}{d r^{2}}+\frac{1}{r} \frac{d v^{\prime}(r)}{d r}=-\frac{e n_{o}}{\varepsilon_{0}}\left(1-e^{\frac{e V_{w}}{k T}}\left(1+\frac{e v^{\ell}(r)}{k T}\right)\right) \tag{3.14}
\end{equation*}
$$

This equation becomes:
$\frac{d^{2} v^{\prime}(r)}{d r^{2}}+\frac{1}{r} \frac{d v^{\prime}(r)}{d r}-\frac{e^{2} n_{o}}{k T \varepsilon_{o}} e^{\left(\frac{e V_{w}}{k T}\right)} v(r)=-\frac{e n_{o}}{\varepsilon_{0}}\left(1-e^{\frac{e V_{w}}{k T}}\right)$
or

$$
\begin{equation*}
\frac{d^{2} v^{\prime}(r)}{d r^{2}}+\frac{1}{r} \frac{d v^{\prime}(r)}{d r}-K_{2} v^{\prime}(r)=-K_{3} \tag{3.16}
\end{equation*}
$$

with K_{2} and K_{3} constants containing the wall potential, the electron density at $r=0, n_{0}$, and the electron temperature T. The solution is again in the form of a zero order Bessel function with imaginary argument in addition to a constant term:

$$
\begin{equation*}
v^{\prime}(r)=C_{2} I_{o}\left(K_{2} r\right)+K_{3} / K_{2} \tag{3.17}
\end{equation*}
$$

The fact that the potential variation throughout the region is in the form of Bessel function $I_{o}(x)$ and recalling that the only available boundary condition for $V(r)$ is based on the assumption of zero potential at $r=0$, a reasonable choice for curve fitting the expected potential distribution is a Bessel function $I_{0}(z)$ with a unity offset bringing it to zero at the origin as follows (letting $n(r)=\frac{e V(r)}{k T}$ for simplicity of notation and the argument $z=\gamma r):$

$$
\begin{equation*}
n(r)=1-I_{0}(\gamma r) \tag{3.18}
\end{equation*}
$$

where γ is an arbitrary constant to be determined. In equation (3.18) it is anticipated on phenomenological grounds that $V(r)$ is negative for all $0<r<a$. The particular form of equation (3.18) lends itself well to the determination of the electron density profile from thermal resonance data as shown subsequently. The corresponding electron-density distribution $n_{e}(r)$ is given by:

$$
\begin{equation*}
n_{e}(r)=n_{o} e^{\left(1-I_{o}(\gamma r)\right)} \tag{3.19}
\end{equation*}
$$

n_{0} and γ must now be determined from numerical analysis based on the thermal resonance data.

As an initial simplified approach, a parabolic approximation for $n_{e}(r)$ is used in the next section. This is done because the parabolic approximation for the electron density profile in cylindrical plasma columns has been used extensively in the past and it. does indeed represent an approximation of $n_{e}(r)$ given in equation (3.19) as follows:

$$
\begin{align*}
n_{e}(r) & =n_{0} e^{\left(1-I_{0}(\gamma r)\right)} \tag{3.20}\\
& =n_{0}\left(1+1-I_{o}(\gamma r)\right) \\
& =n_{0}\left(1-\left(\frac{Y r}{2}\right)^{2}\right) \tag{3.21}
\end{align*}
$$

Letting $\left(\frac{Y}{2}\right)^{2}=\alpha / a^{2}$ leads to the customarily used approximation:

$$
\begin{equation*}
n_{e}(r)=n_{0}\left(1-\alpha\left(\frac{r}{a}\right)^{2}\right) \tag{3.22}
\end{equation*}
$$

In the following section, a numerical solution technique is developed for n_{0} and α as well as the electron temperature T, the
(3)
(4) $)_{n} e^{(r}$
(5) $r_{1}=$
(6) $r_{2}=$
(7) $a=c$
(8) $T=$

In
\{0110wing,
(1) $\frac{i^{1}}{i_{d}}=$
(2) $\frac{i_{2}}{1_{d}}=\frac{n}{n}$
relative wall potential η_{w}, the turning points for the first m resonances r_{m}, and the ratio of peak to average electron density, R.

3.4 Determination of Electron Density Profile in a Cylindrical Warm

Plasma Column Based on a Parabolic Approximation

In order to solve for the pertinent parameters, an appropriate system of simultaneous equations must be developed.

The unknown quantities are
(1) $n_{0_{1}}=$ center peak electron density for the first thermal resonance;
(2) $\mathrm{n}_{\mathrm{O}_{2}}=$ center peak electron density for the second thermal resonance;
(3) $n_{O_{d}}=$ center peak electron density for the dipole resonance;
(4) $\left.<n_{e}(r)_{d}\right\rangle_{a v}=$ average electron density for dipole resonance;
(5) $r_{1}=$ value of r where $k_{p_{1}}(r)=0$ (critical turning point) for first thermal resonance;
(6) $r_{2}=$ value of r where $k_{p_{2}}(r)=0$ (critical turning point) for second thermal resonance;
(7) $\alpha=$ constant in $n_{e_{m}}(r)=n_{o_{m}}\left(1-\alpha\left(\frac{r}{a}\right)^{2}\right)$;
(8) $T=e l e c t r o n ~ t e m p e r a t u r e . ~$

In order to solve for these eight unknown parameters, the following eight indopendent simultaneous equations are necessary:
(1) $\frac{i_{1}}{i_{d}}=\frac{n_{0_{1}}}{n_{0_{d}}}$
(2) $\frac{i_{2}}{i_{d}}=\frac{n_{O_{2}}}{n_{O_{d}}}$

Equations (3.23a) and (3.23b) are valid because the electron density is proportional to the plasma current level. In this study only ratios of currents are needed.
(3) $\left\langle\omega_{p}^{2}(r)\right\rangle_{a v}=\frac{e^{2}}{m_{e} \varepsilon_{o}}\left\langle n_{e}(r)_{d}\right\rangle_{a v}=C_{p} \omega^{2}$

Equation (3.23c) is based on the relation between the dipole resonance frequency and the average electron density discussed in section 2.5 where a numerical value for the proportionality constant C_{p} was found.
(4) $\omega_{p_{1}}\left(r_{1}\right)=\omega$
(5) $\omega_{p_{2}}\left(r_{2}\right)=\omega$

Equations (3.23d) and (3.23e) are based on the fact that $k_{p}(r)$
goes to zero when $\omega_{p}(r)=\omega$.
(6) $\int_{r_{1}}^{a} k_{p_{1}}(r) d r=\frac{5}{4} \pi$
(7) $\int_{r_{2}}^{a} k_{p 2}(r) d r=\frac{9}{4} \pi$

Equations (3.23f) and (3.23g) represent the total phase spanned by the first two thermal resonances respectively based on equation
(2.68) in section 2.4.
(8) $\left\langle n_{e_{d}}(r)\right\rangle_{a v}=\frac{1}{\pi a^{2}} \int_{0}^{a} n_{O_{d}}\left(1-\alpha\left(\frac{r}{a}\right)^{2}\right) 2 \pi r d r$
square

In equation (3.23h), the peak electron density is related to the average electron density for the dipole resonance; this relationship hold: equivalently for any thermal resonances.

In the following development, these eight simultaneous equations are discussed in greater detail and are used to develop a numerical solution for the desired parameters.

U:ing the parabolic approximation to the electron density profile

$$
\begin{equation*}
n_{e}(r)=n_{0}\left(1-\alpha\left(\frac{r}{a}\right)^{2}\right), \tag{3.24}
\end{equation*}
$$

the values of n_{0} and α must be determined. These values can be determined in terms of the thermal resonance data obtained in the experimentation. To obtain the desired numerical solution for the electron density profile, a system of simultaneous equations must be developed which lends itself to a numerical solution on the computer.

It was shown in section 2.5 that the average value of the square of the plasma frequency, $\left\langle\omega_{p_{d}}{ }^{2}(r)\right\rangle$ wien the dipole resonance occurs is related to the resonance frequency ω by the relation:

$$
\begin{equation*}
\left\langle\omega_{p_{d}}^{2}\right\rangle=C_{p} \omega^{2} \tag{3.25}
\end{equation*}
$$

where C_{p} is a proportionality constant determined in section 2.5 . The plasma frequency $\omega_{p_{d}}$ is by dofinition given by

$$
\begin{equation*}
\left\langle\omega_{r_{d}}^{2}(r)\right\rangle=\frac{e^{2}}{m_{e^{2}} \varepsilon_{0}}\left\langle n_{e_{d}}(r)\right\rangle \tag{3.26}
\end{equation*}
$$

where $\left\langle n_{e_{d}}(x)\right\rangle$ is the average electron density at the dipole resonance. Letting $n_{0} r$ represent the peak density at the center
of the column at dipole resonance, $\left\langle n_{e_{d}}(r)\right\rangle$ can be related to ω as follows:

$$
\begin{align*}
& \left\langle n_{e_{d}}(r)\right\rangle=\frac{\left\langle\omega p_{d}{ }^{2}(r)\right\rangle m_{e} \varepsilon_{o}}{e^{2}} \\
& \left\langle n_{e_{d}}(r)\right\rangle=\frac{m_{e} e_{o} C_{p} \omega^{2}}{e^{2}} \\
& \frac{c_{p} m_{e} \varepsilon_{o} \omega^{2}}{e^{2}}=\frac{n_{o_{d}}}{\pi a^{2}} \int_{0}^{a}\left(1-\alpha\left(\frac{r}{a}\right)^{2}\right) 2 \pi r d r \\
& \frac{C_{p} \varepsilon_{o} m^{e^{\omega}}}{e^{2} n_{o_{d}}}=\left(1-\frac{\alpha}{2}\right)=\frac{\left\langle n_{e}(r)\right\rangle}{n_{o_{d}}} \tag{3.27}
\end{align*}
$$

Therefore

$$
\begin{equation*}
\omega^{2}=\frac{\left(1-\frac{\alpha}{2}\right) e^{2} n_{o_{d}}}{C_{p} \varepsilon_{o}^{m} e} \tag{3.28}
\end{equation*}
$$

The first thermal-resonance standing wave exists between the wall ($r=a$) and the point r_{1} in the plasma, at which the phase term $k_{p_{1}}(r)$ goes to zero:

$$
\begin{equation*}
k_{p_{1}}\left(r_{1}\right)=0 \tag{3.29}
\end{equation*}
$$

Similarly, for the second resonance, the phase term $k_{p_{2}}(r)$ goes to zero at r_{2} :

$$
\begin{equation*}
\mathrm{k}_{\mathrm{p}_{2}}\left(\mathrm{r}_{2}\right)=0 \tag{3.30}
\end{equation*}
$$

From basic theory, the phase term $k_{p}(r$) for an electroacoustic wave is given by

$$
\begin{equation*}
k_{p}(r)=\frac{\omega}{v_{0}}\left(1-\frac{\omega_{p}^{2}(r)}{\omega^{2}}\right)^{1 / 2} \tag{3.31}
\end{equation*}
$$

where V_{0} represents the thermal electron velocity $\sqrt{\frac{3 k T}{m_{e}}}$.
Therefore

$$
\begin{equation*}
\frac{e^{2} n_{o_{1}}\left(1-\alpha\left(\frac{r_{1}}{a}\right)^{2}\right)}{m_{e^{\varepsilon}}}=\omega^{2} \tag{3.32}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{e^{2} n_{o_{2}}\left(1-\alpha\left(\frac{r_{2}}{a}\right)^{2}\right)}{m_{e^{\varepsilon}}}=\omega^{2} \tag{3.33}
\end{equation*}
$$

Combining equations (3.28) and (3.32) leads to

$$
\begin{equation*}
\left(1-\alpha\left(\frac{r_{1}}{a}\right)^{2}\right)=\frac{1}{C_{p}}\left(1-\frac{\alpha}{2}\right) \cdot\left(\frac{n_{o_{d}}}{n_{o_{1}}}\right) \tag{3.34}
\end{equation*}
$$

and combining equations (3.28) and (3.33) leads to

$$
\begin{equation*}
\left(1-\alpha\left(\frac{r_{2}}{a}\right)^{2}\right)=\frac{1}{C_{p}}(1-\alpha / 2) \cdot\left(\frac{n_{o_{d}}}{n_{o_{2}}}\right) \tag{3.35}
\end{equation*}
$$

Since $\frac{n_{o_{d}}}{n_{0_{2}}}=\frac{i_{d}}{i_{1}}$ and $\frac{n_{O_{d}}}{n_{O_{2}}}=\frac{i_{d}}{i_{2}}$, where i_{d}, i_{1} and. i_{2} are the currents at which the dipole and first two thermal resonances occur, equations (3.34) and (3.35) lead to the following expressions for r_{1} and r_{2} :

$$
\begin{align*}
& r_{1}=a\left(\frac{1}{\alpha}-\frac{1}{C_{p}}\left(\frac{1}{\alpha}-\frac{1}{2}\right) \frac{i_{d}}{i_{1}}\right)^{1 / 2} \tag{3.36}\\
& r_{2}=a\left(\frac{1}{\alpha}-\frac{1}{C_{p}}\left(\frac{1}{\alpha}-\frac{1}{2}\right) \frac{i_{d}}{i_{2}}\right)^{1 / 2} \tag{3.37}
\end{align*}
$$

Since the total phase for the first two thermal resonances is $\frac{5}{4} \pi$ and $\frac{9}{4} \pi$ radius respectively, the following phase integrals result:

$$
\begin{equation*}
\int_{r_{1}}^{a} \frac{\omega}{V_{0}}\left(1-\frac{\omega_{p}^{2}(r)}{\omega^{2}}\right)^{1 / 2} d r=(5 / 4) \pi \tag{3.38}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{r_{2}}^{a} \frac{\omega}{v_{0}}\left(1-\frac{\omega_{p}^{\omega}(r)}{\omega^{2}}\right)^{1 / 2} d r=(9 / 4) \pi \tag{3.39}
\end{equation*}
$$

Since for the first two thermal resonances:

$$
\omega_{p_{1}}^{2}\left(r_{1}\right)=\frac{e^{2} n_{o_{1}}\left(1-\alpha\left(\frac{r}{a}\right)^{2}\right)}{m_{e^{\varepsilon}} \varepsilon_{0}}
$$

and
equation (3.38) and (3.39) become

$$
\begin{equation*}
\int_{r_{1}}^{a} \frac{\omega}{v_{0}}\left(1-\frac{e^{2}{n_{0}}_{1}\left(1-\alpha\left(\frac{r}{a}\right)^{2}\right)}{\omega^{2} m^{2} \varepsilon_{0}}\right)^{1 / 2} d r=\left(\frac{5}{4}\right) \pi \tag{3.40}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{r_{2}}^{a} \frac{\omega}{v_{0}}\left(1-\frac{e^{2} n_{o_{2}}\left(1-\alpha\left(\frac{r}{a}\right)^{2}\right)}{\omega^{2} m_{e^{\varepsilon}}}\right)^{1 / 2} d r=\left(\frac{9}{4}\right)_{\pi} \tag{3.41}
\end{equation*}
$$

Combining equations (3.40) and (3.41), and expressing $n_{O_{1}}$ and n_{02} in terms of $n_{o_{d}}$ from equation (3.28), recalling that $\frac{n_{o_{1}}}{n_{o_{d}}}=\frac{i_{1}}{i_{d}}$ and
$\frac{n_{0_{2}}}{n_{0_{d}}}=\frac{i_{2}}{i_{d}}$, the following equation results:

$$
\begin{align*}
& 9 / 4 \int_{1}^{r_{1} / a}\left(1-\left(\frac{1_{1}}{i_{d}}\right)\left(\frac{C_{p}}{(1-.5 \alpha)}\right)\left(1-\alpha\left(\frac{r}{a}\right)^{2}\right)^{1 / 2} d\left(\frac{r}{a}\right)\right. \tag{3.42}\\
& \quad-\int_{1}^{r_{2} / a}\left(1-\left(\frac{i_{2}}{i_{d}}\right)\left(\frac{C_{p}}{(1-.5 \alpha)}\right)\left(1-\alpha\left(\frac{r}{a}\right)^{2}\right)\right)^{1 / 2} d\left(\frac{r}{a}\right)=0
\end{align*}
$$

Equation (3.42) contains the three unknowns $\alpha, r_{1} / a$ and $r_{2} / a ; r_{2} / a$ can be expressed in terms of r_{1} /a based on equations (3.36) and (3.37) as follows:

$$
\begin{gather*}
\Delta\left(\frac{r}{a}\right)=\frac{r_{2}}{a}-\frac{r_{1}}{a}=\left(\frac{1}{\alpha}-\frac{1}{C_{p}}\left(\frac{1}{\alpha}-\frac{1}{2}\right) \cdot \frac{i_{d}}{i_{2}}\right)^{1 / 2} \\
-\left(\frac{1}{\alpha}-\frac{1}{C_{p}}\left(\frac{1}{\alpha}-\frac{1}{2}\right) \cdot \frac{i_{d}}{i_{1}}\right)^{1 / 2} \tag{3.43}
\end{gather*}
$$

Therefore equation (3.42) becomes:

$$
\begin{aligned}
& 9 / 4 \int_{1}^{r_{1} / a}\left(1-\left(\frac{i_{1}}{i_{d}}\right)\left(\frac{C_{p}}{1-.5 \alpha}\right)\left(1-\alpha\left(\frac{r}{a}\right)^{2}\right)\right)^{1 / 2} d\left(\frac{r}{a}\right) \\
& \\
& -\int_{1}^{\frac{r_{1}}{a}+\Delta(r / a)}\left(1-\left(\frac{i_{2}}{i}\right)\left(\frac{C_{p}}{1-.5 \alpha}\right)\left(1-\alpha\left(\frac{r}{a}\right)^{2}\right)\right)^{1 / 2} d\left(\frac{r}{a}\right)=0
\end{aligned}
$$

Solving equation (3.36) for α in terms of r_{1} /a yielda:

$$
\begin{equation*}
\alpha=\frac{\left(1-\frac{i_{d}}{C_{p} i_{1}}\right)}{\left(\frac{r_{1}}{a}\right)^{2}-\frac{i_{d}}{2 i_{1} C_{p}}} \tag{3.45}
\end{equation*}
$$

Equations (3.44) and (3.45) represent two simultaneous equations in two unknowns which may be solved numerically. After r_{1} / a and α are available, equation (3.40) can be solved for v_{o} which in turn gives the electron temperature T from $V_{o}=\sqrt{\frac{3 k T}{m_{e}}}$,

$$
\begin{equation*}
V_{0}=\frac{4 \omega}{5 \pi} \int_{r_{1} / a}^{1}\left(1-\left(\frac{i_{1}}{i_{d}}\right)\left(\frac{c_{p}}{1-.5 \alpha}\right)\left(1-\left(\frac{r}{a}\right)^{2}\right)\right)^{1 / 2} d\left(\frac{r}{a}\right) \tag{3.46}
\end{equation*}
$$

and:

$$
\begin{equation*}
T=\frac{m_{e} V_{o}^{2}}{3 k} \tag{3.47}
\end{equation*}
$$

The ratio of peak to average electron density $n_{q} k_{n}(r)>$ is obtained from equation (3.27) as

$$
R=\frac{n_{0}}{\left\langle n_{e}(r)\right\rangle}=\frac{1}{(1-\alpha / 2)}
$$

The equations developed in this section for use in the computer analysis are summarized here in the form in which they are incorporated into the computer program for the numerical analysis.
(1) $9 / 4 \int_{1}^{r_{1} / a}\left(1-\frac{i_{1}}{i_{d}} \frac{c_{p}}{1-\alpha / 2}\left(1-\alpha\left(\frac{r}{a}\right)^{2}\right)\right)^{1 / 2} \mathrm{~d}\left(\frac{r}{a}\right)$

$$
\begin{equation*}
-\int_{1}^{\frac{r_{1}}{a}+\Delta\left(\frac{r}{a}\right)}\left(1-\frac{i_{2}}{i_{d}} \frac{C_{p}}{1-\alpha / 2}\left(1-\alpha\left(\frac{r}{a}\right)^{2}\right)\right)^{1 / 2} d\left(\frac{r}{a}\right)=0 \tag{3.48a}
\end{equation*}
$$

(2)

$$
\begin{equation*}
\alpha=\frac{1-\frac{i_{d}}{i_{1} C_{p}}}{\left(\frac{r_{1}}{a}\right)^{2}-\frac{i_{d}}{2 i_{1} C_{p}}} \tag{3.48b}
\end{equation*}
$$

(3) $\left.\Delta(r / a)=\left(\frac{1}{\alpha}-\frac{1}{C_{p}}\left(\frac{1}{\alpha}-\frac{1}{2}\right)^{i_{d}}\right)^{i_{2}}\right)^{1 / 2}$

$$
\begin{equation*}
\left.-\left(\frac{1}{\alpha}-\frac{1}{C_{p}}\left(\frac{1}{\alpha}-\frac{1}{2}\right)^{i_{d}}\right)_{1}\right)^{1 / 2} \tag{3.48c}
\end{equation*}
$$

(4)

$$
\begin{align*}
& R=\frac{n_{0}}{\left\langle n^{(r)\rangle}\right.}=\left(\frac{1}{1-\frac{\alpha}{2}}\right) \\
& \text { (5) } \quad V_{0}=\frac{4 \omega}{5 \pi} \int_{r_{1} / a}^{1}\left(1-\frac{i_{1}}{i_{d}} \frac{c_{p}}{1-\alpha / 2}\left(1-\alpha\left(\frac{r}{a}\right)^{2}\right)\right)^{1 / 2} d\left(\frac{r}{a}\right) \tag{3.48d}
\end{align*}
$$

and:

$$
\begin{equation*}
T=\frac{\mathrm{m}_{\mathrm{e}} \mathrm{v}_{\mathrm{o}}^{2}}{3 \mathrm{k}} \tag{6}
\end{equation*}
$$

The experimental procedure also yields values for i_{3}, the discharge current level at which the third resonance occurs. These data are not as reliable as those for i_{d}, i_{1}, and i_{2} because the third thermal resonance is somewhat weak. It is nevertheless possible to check the results obtained from the numerical analysis of equations (3.48) by performing a similar analysis based on the use of the first and third resonance data. The corresponding equations differ from equations (3.48) only in that the suliscript (2) must be replaced by the subscript (3) as shown.
(1) $13 / 4 \int_{1}^{r_{1} / a}\left(1-\frac{i_{1}}{i_{d}} \frac{c_{p}}{1-\alpha / 2}\left(1-\alpha\left(\frac{r}{a}\right)^{2}\right)\right)^{1 / 2} d\left(\frac{r}{a}\right)$

$$
\begin{equation*}
-\int_{1}^{\frac{r_{1}}{a}+\Delta\left(\frac{r}{a}\right)}\left(1-\frac{i_{3}}{i_{d}} \frac{C_{p}}{1-\alpha / 2}\left(1-\alpha\left(\frac{r}{a}\right)^{2}\right)\right)^{1 / 2} d\left(\frac{r}{a}\right)=0 \tag{3.49a}
\end{equation*}
$$

(2)

$$
\begin{equation*}
\alpha=\frac{1-\frac{i_{d}}{i_{1} C_{p}}}{\left(\frac{r_{1}}{a}\right)^{2}-\frac{i_{d}}{2 i_{1} C_{p}}} \tag{3.49b}
\end{equation*}
$$

(3) $\quad \Delta(r / a)=\left(\frac{1}{\alpha}-\frac{1}{C_{p}}\left(\frac{1}{\alpha}-\frac{1}{2}\right)^{i_{d}}\right)_{3}^{i_{3}}{ }^{1 / 2}$

$$
\begin{equation*}
\left.-\left(\frac{1}{\alpha}-\frac{1}{C_{p}}\left(\frac{1}{\alpha}-\frac{1}{2}\right)^{i_{d}}\right)_{1}^{i_{1}}\right)^{1 / 2} \tag{3.49c}
\end{equation*}
$$

(4)

$$
\frac{n_{0}}{\left\langle n_{e}^{(r)\rangle}\right.}=\left(\frac{1}{1-\frac{x}{2}}\right)
$$

(5) $\quad V_{0}=\frac{4 \omega}{5 \pi} \int_{r_{1} / a}^{1}\left(1-\frac{i_{1}}{i_{d}} \frac{C_{p}}{1-\alpha / 2}\left(1-\alpha\left(\frac{r}{a}\right)^{2}\right)\right)^{1 / 2} d\left(\frac{r}{a}\right)$
and:

$$
\begin{equation*}
T=\frac{m_{e} V_{o}^{2}}{3 k} \tag{6}
\end{equation*}
$$

The numerical results obtained from the computer analysis of these sets of simultaneous equations, (3.48) and (3.49), are presented and discussed in Chapter 4.

3.5 Determination of the Electron Density in a Warm Plasma Cylinder

Assuming Potential Distribution of the Form (1- $\mathrm{I}_{\mathrm{o}}(\mathrm{rr})$)
The assumption of the functional form:

$$
\begin{equation*}
1(r)=\left(1-I_{0}(\gamma r)\right) \tag{3.18}
\end{equation*}
$$

where $\eta(r)=e V(r) / k T$ is based on the solutions of Poisson's Equation in different regions of the cylinder in section 3.3. It was seen there that this solution cannot represent an exact solution for the potential distribution but it is of the correct form especially in the sheath region where an offset Bessel function was obtained as a solution. It furthermore satisfies the approximate condition that $V(0)$ and therefore $\eta(0)=0$.

Although this approximation makes the necessary numerical analysis somewhat complex, it is still sufficiently manageable to be useful as a diagnostic technique which is the ultimate goal of this thesis.

The known quantities from the experimental work with the electroacoustic probe are:
$\omega=$ the frequency of the incident radiation:
i_{d} the current level at which the dipole resonance is observed;
$1_{1}=$ the current level at which the first thermal resonance is observed;
$1_{2}=$ the current at which the second thermal resonance occurs. The unknown quantities are:
(1) $n_{0_{1}}$ = the peak electron density at the center of the plasma column for the first thermal resonance:
(2) $n_{O_{2}}=$ the peak electron density at the center of the plasma column for the second thermal resonance;
(3) $n_{o_{d}}=$ the peak electron density at the dipole resonal e;
(4) $\left\langle n_{e}(r)_{d}>=\right.$ the average electron density at the dipole resonance;
(5) $r_{1}=$ the critical phase point $\left(k_{p_{1}}\left(r_{1}\right)=0\right)$ for the first thermal resonance;
(6) $r_{2}=$ the critical phase point $\left(k_{p_{2}}\left(r_{2}\right)=0\right)$ for the second thermal resonance;
(7) $\gamma=$ the constant appearing in the Bessel function approximation (1- $\left.I_{o}(\gamma r)\right)$ for the potential profile;
(8) $\mathrm{T}=$ electron temperature.

Since eight unknowns appear in the analysis, eight independent equations are needed; these equations are:
(1)

$$
\begin{equation*}
\frac{i_{1}}{i_{d}}=\frac{n_{o_{1}}}{n_{o_{d}}} \tag{3.50a}
\end{equation*}
$$

(2)

$$
\begin{equation*}
\frac{i_{2}}{i_{d}}=\frac{n_{o_{2}}}{n_{o_{d}}} \tag{3.50b}
\end{equation*}
$$

Equations (3.50a) and (3.50b) are based on the fact that the peak electron density in the plasma is proportional to the current level. These equations also show that only the ratio of the currents are used for the analysis.
(3) $\quad\left\langle\omega_{p}^{2}(r)\right\rangle_{a v}=\frac{e^{2}}{m e^{\varepsilon_{0}}}\left\langle n_{e}^{\left.(r)_{d}\right\rangle=C_{p} \omega^{2}, ~}\right.$

Equation (3.50c) states that at the dipole resonance at a given current level, and thus electron density level $n_{o_{d}}$, the average
of the square of the plasma frequency is proportional to the angular frequency ω^{2} of the incident radiation. (The pronortionality constant C_{p} was found in section 2.5.)

$$
\begin{equation*}
\omega_{\mathrm{p} 1}\left(r_{1}\right)=\omega \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\omega_{P_{2}}\left(r_{2}\right)=\omega \tag{5}
\end{equation*}
$$

Equations (3.50d) and (3.50e) relate the critical points r_{1} and r_{2} for the first and second thermal resonances respectively to the incident radiation frequency ω; here: $\omega_{p_{1}}^{2}\left(r_{1}\right)=\frac{e^{2}}{m_{e} r_{0}} n_{o_{1}}$ $\exp \left(1-I_{o}\left(\gamma r_{1}\right)\right)$; and: $\omega_{p}^{2}\left(r_{2}\right)=\frac{e^{2}}{m_{e} \varepsilon_{o}} n_{o_{2}} \exp \left(1-I_{o}\left(\gamma r_{2}\right)\right)$.
(6)

$$
\begin{equation*}
\int_{r_{1}}^{a} k_{p_{1}}(r) d r=(5 / 4) \pi \tag{3.50f}
\end{equation*}
$$

(7)

$$
\begin{equation*}
\int_{r_{2}}^{a} k_{p_{2}}(r) d r=(9 / 4) \pi \tag{3.50g}
\end{equation*}
$$

Equations (3.50f) and (3.50g) are based on the fact that the total phase of the second thermal resonances span (5/4) π and (9/4) π respectively based on equation (2.68) in section 2.4. Here:

$$
k_{p_{1}}(r)=\frac{\omega}{v_{0}}\left(1-\frac{\omega_{p_{1}}^{2}(r)}{\omega^{2}}\right)^{1 / 2}
$$

and

$$
k_{p_{2}}(r)=\frac{\omega}{V_{0}}\left(1-\frac{\omega_{D_{2}}{ }^{2}(r)}{\omega^{2}}\right)^{1 / 2}
$$

$$
\begin{equation*}
\left\langle n_{e_{d}}(r)\right\rangle_{a v}=\frac{1}{\pi a^{2}} \int_{0}^{a} n_{o_{d}} \exp \left(1-I_{o}(\gamma r)\right) 2 \pi r d r \tag{8}
\end{equation*}
$$

Equation (3.50h) relates the average electron density $<n_{e_{d}}(r)>$ to the center peak electron density $n_{O_{d}}$ at the dipole resonance. The ratio of peak to average electron density remains the same as the current level is changed so that equation (3.50h) may be formulated in terms of one of the thermal resonances. Equations (3.50) are now used to develop a system of simultaneous equations suitable for numerical analysis on the computer.

Since in this section the assumed functional relationship for the relative potential distribution as a function of r, $n(r)=\frac{e V(r)}{k T}$, is given by

$$
\begin{equation*}
n(r)=1-I_{0}(r r), \tag{3.51}
\end{equation*}
$$

the constant γ appearing in the Bessel function is the primary parameter of interest. The relative potential distribution appears in the Maxwellian electron density distribution as follows

$$
\begin{equation*}
n_{e}(r)=n_{0} \exp \left(1-I_{0}(\gamma r)\right) \tag{3.52}
\end{equation*}
$$

Here again n_{0} represents the electron density at the center of the cylindrical plasma column where the potential $\mathrm{V}(0)$ is assumed zero and therefore the relative potential $\eta(0)$ is zero as a boundary condition. Since $I_{0}(0)=1$, equation (3.52) shows that $n_{e}(0)$ is indeed n_{0} at the center of the column ($r=0$). The formulation of $n_{e}(r)$ in equation (3.52) introduces n_{0} as an additional parameter that must be determined for any given electron density profile and
corresponding current level.
The relationship fundamental to this analysis is based on the phenomenological argument, that the total phases of the electroacoustic thermal resonances in the sheath region are separated by π radians and that furthermore the fundamental thermal resonance spans a total of one and one quarter π radians between the wall and the critical turning point r_{1} where the propagation constant goes to zero. This argument is based on equation (2.68) in section 2.4. Now

$$
\begin{align*}
& \lim \tag{3.53}\\
& r \rightarrow r_{1} \\
& r>r_{1}
\end{align*}\left[k_{p}(r)\right]=0
$$

For the $m^{\text {th }}$ resonance, the total phase can therefore be written as follows:

$$
\begin{equation*}
\int_{r_{m}}^{a} k_{p_{m}}(r) d r=(m+1 / 4) \pi \tag{3.54}
\end{equation*}
$$

Since:

$$
\begin{equation*}
k_{p_{m}}(r)=\frac{\omega}{v_{0}}\left(1-\frac{\omega_{p_{m}}^{2}(r)}{\omega^{2}}\right)^{1 / 2}, \tag{3.55}
\end{equation*}
$$

Equation (3.54) becomes

$$
\begin{equation*}
\int_{r_{m}}^{a}\left(1-\frac{\omega_{p_{m}}^{2}(r)}{\omega^{2}}\right)^{1 / 2} d r=\frac{(m+1 / 4) \pi v_{o}}{\omega} \tag{3.56}
\end{equation*}
$$

From the definition of the plasma frequency $\omega_{p}(r)$

$$
\begin{equation*}
\omega_{p_{m}}^{2}(r)=\frac{e^{2} n_{e}(r)}{m_{e} \varepsilon_{0}} \tag{3.57}
\end{equation*}
$$

and since from equation (3.52) repeated here for reference

$$
\begin{equation*}
n_{e}(r)=n_{0} \exp \left(1-I_{0}(\gamma r)\right), \tag{3.58}
\end{equation*}
$$

the total phase equation for the $m^{\text {th }}$ electroacoustic thermal resonance becomes

$$
\begin{gather*}
\int_{r_{m}}^{a}\left(1-\left(\frac{\left.e^{2}{n_{o_{m}} \exp \left(1-I_{o}(\gamma r)\right)}_{\omega^{2} m_{e} \varepsilon_{o}}\right)^{1 / 2} d r}{\omega}\right.\right. \\
=\frac{(m+1 / 4) \pi v_{o}}{\omega} \tag{3.59}
\end{gather*}
$$

Here the electron density at the center, $n_{e_{m}}(0)=n_{o_{m}}$ for the $m^{\text {th }}$ thermal resonance, depends on the discharge current level maintained in the plasma column; the current level resulting in $\mathrm{n}_{\mathrm{o}_{\mathrm{m}}}$ is i_{m} which is available from the experimental data. There exists a direct proportionality between the current level i_{m} and the electron density $n_{0_{m}}$ because the electron drift velocity may be considered constant in a cylindrical plasma discharge column. The relationship between the current i_{m} and the corresponding dc electron density $n_{0_{m}}$ is established experimentally through the dipole resonance frequency ω which is related to the corresponding plasma frequency $\omega_{p_{d}}(r)$ by

$$
\begin{equation*}
<\omega_{p_{d}}{ }^{2}(r)>=C_{p} \omega^{2} \tag{3.60}
\end{equation*}
$$

Here C_{p} is a proportionality constant; $\omega_{D_{d}}(r)$ is the plasma frequency as a function of r at which a dipole resonance is observed when the incident radiation frequency is ω; $<\omega_{p_{d}}{ }^{2}(r)>$ represents the average of the square of the dipole resonance plasma frequency. The relationship between ω and $\left\langle\omega_{r_{d}}(r)\right\rangle$ in equation (3.60) was established in section 2.5 , where a numerical value for C_{p} was obtained. Since

$$
\begin{equation*}
\omega_{p_{d}}^{2}(r)=\frac{e^{2} n_{e_{d}}(r)}{m_{e^{\varepsilon}}} \tag{3.61}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\left\langle n_{e_{d}}(r)\right\rangle=C_{p} \frac{\omega^{2} m e^{\varepsilon} o}{e^{2}} \tag{3.62}
\end{equation*}
$$

Similarly, because of the direct proportionality between the current levels and the electron densities, equations for $\left\langle\mathrm{n}_{\mathrm{e}_{1}}(\mathrm{r})\right.$ > and $\left\langle\mathrm{n}_{\mathrm{e}_{2}}(\mathrm{r})\right.$ > can be written as follows

$$
\begin{equation*}
\left\langle n_{e_{1}}(r)\right\rangle=\left(\frac{C_{p} \omega^{2} m^{2} e^{\varepsilon} o}{e^{2}}\right)\left(\frac{1_{1}}{i_{d}}\right) \tag{3.63}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle n_{e_{2}}(r)\right\rangle=\left(\frac{C_{p} \omega^{2} m_{e} e^{\varepsilon}}{e^{2}}\right)\left(\frac{i_{2}}{i_{d}}\right) \tag{3.64}
\end{equation*}
$$

and in general for the $m^{\text {th }}$ resonance

$$
\begin{equation*}
\left\langle n_{e_{m}}(r)\right\rangle=\left(\frac{C_{p} \omega^{2} m_{e} e^{\varepsilon} o}{e^{2}}\right)\left(\frac{i_{m}}{i_{d}}\right) \tag{3.65}
\end{equation*}
$$

In order to work with equation (3.59), it is necessary to obtain an expression for $n_{o_{m}}$; this can be accomplished in terms of equation (3.65) by formulating $\left\langle\mathrm{n}_{\mathrm{e}_{\mathrm{m}}}(\mathrm{r})\right\rangle$ in terms of $\mathrm{n}_{\mathrm{o}_{\mathrm{m}}}$ as follows

$$
\begin{equation*}
\left\langle n_{e_{m}}(r)>=\frac{1}{\pi a^{2}} \int_{0}^{a} n_{o_{m}} \exp \left(1-I_{o}(\gamma r)\right) 2 \pi r d r\right. \tag{3.66}
\end{equation*}
$$

Defining R to be the ratio of the peak electron density $n_{o_{m}}$ to the average electron density $<n_{e}(r)>$,

$$
\begin{equation*}
R=\frac{n_{o_{m}}}{\left\langle n_{e}^{(r)\rangle}\right.}=\frac{\pi a^{2}}{\int_{0}^{a} \exp \left(1-I_{0}(\gamma r)\right) 2 \pi r d r} \tag{3.67}
\end{equation*}
$$

$n_{0_{m}}$ can be expressed in terms of the frequency of the incident radiation ω and current ratios as follows:

$$
\begin{equation*}
n_{o_{m}}=\left(\frac{C_{p} \omega^{2} m_{m} e^{\varepsilon} o}{e^{2}}\right)(R)\left(\frac{i_{m}}{i_{d}}\right) \tag{3.68}
\end{equation*}
$$

The phase integral in equation (3.59) furthermore contains r_{m} and V_{0} as unknown parameters. There exists no independent relationship from which r_{m} and V_{o} can be determined but it is possible to express r_{m} in terms of r_{m-1}, for example r_{2} in terms of r_{1}. The condition leading to a functional relationship between r_{m} and r_{m-1} is the following:

$$
\begin{equation*}
k_{m}\left(r_{m}\right)=0 \tag{3.69}
\end{equation*}
$$

where again r_{m} is the critical turning point for the $m^{\text {th }}$ resonance.

Therefore:

$$
\frac{\omega}{v_{0}}\left(1-\frac{\omega_{p_{m}}^{2}\left(r_{m}\right)}{\omega^{2}}\right)=0
$$

so that

$$
\begin{equation*}
\omega_{p_{m}}^{2}\left(r_{m}\right)=\omega^{2} \tag{3.70}
\end{equation*}
$$

Since

$$
\begin{equation*}
\omega_{p_{m}}^{2}\left(r_{m}\right)=\frac{e^{2} n_{o_{m}} \exp \left(1-I_{o}\left(\gamma r_{m}\right)\right)}{m^{\varepsilon_{o}}} \tag{3.71}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\exp \left(1-I_{o}\left(\gamma r_{m}\right)\right)=\frac{m_{e} \varepsilon_{0} \omega^{2}}{e^{2} n_{o_{m}}} \tag{3.72}
\end{equation*}
$$

Defining

$$
\begin{align*}
& A_{m}=\frac{e^{2} n_{o_{m}}}{\omega^{2} m_{e^{\prime}} \varepsilon_{o}} \\
& \exp \left(1-I_{o}\left(\gamma r_{m}\right)\right)=\frac{1}{A_{m}} \tag{3.73}
\end{align*}
$$

The value of A_{m} can be determined numerically based on the value of $n_{0_{m}}$ obtained through the solution of equations (3.65) through (3.68). Since equation (3.73) contains both r_{m} and the parameter of final interest, γ, r_{m} cannot be determined directly from equation (3.73). However it is possible to determine r_{n} in terms of $r_{m}(n$ integer $\neq m$) by simultaneous solution of

$$
\begin{equation*}
\text { (1) } \quad \exp \left(1-I_{0}\left(\gamma r_{n}\right)\right)=1 / A_{n} \tag{3.74}
\end{equation*}
$$

and
(2) $\quad \exp \left(1-I_{o}\left(\gamma r_{m}\right)\right)=1 / A_{m}$

Simultaneous solution of equations (3.74) and (3.75) leads to a value for $\Delta r_{m, n}$ defined by

$$
\begin{equation*}
\Delta r_{m, n}=r_{n}-r_{m} \tag{3.76}
\end{equation*}
$$

In terms of r_{m} and $\Delta r_{m, n}$ it is possible to write two simultaneous phase integral equations in the form of equation (3.59) as follows:

$$
\begin{equation*}
\int_{r_{m}}^{a}\left(1-A_{m} \exp \left(1-I_{o}(\gamma r)\right)\right)^{1 / 2} d r=\frac{(m+1 / 4) \pi V_{0}}{\omega} \tag{3.77}
\end{equation*}
$$

and

$$
\begin{gather*}
\int r_{m}^{a}+\Delta r_{m, n}\left(1-A_{n} \exp \left(1-I_{o}(\gamma r)\right)\right)^{1 / 2} d r \\
\quad=\frac{(n+1 / 4) \pi V_{0}}{\omega} \tag{3.78}
\end{gather*}
$$

Forming the ratio of equations (3.77) and (3.78) yields
$\frac{\int_{r_{m}}^{a}\left(1-A_{m} \exp \left(1-I_{0}(\gamma r)\right)\right)^{1 / 2} d r}{\int_{r_{m}+\Delta r_{m, n}}^{a}\left(1-A_{n} \exp \left(1-I_{0}(\gamma r)\right)\right)^{1 / 2} d r}=\frac{(m+1 / 4)}{(n+1 / 4)}$
For any combination of m and $n, m \neq n$ for which resonance data are available, equation (3.79) still contains two unknown parameters, r_{m} and γ. If equation (3.79) is combined with equation (3.73),
repeated here for reference:

$$
\begin{equation*}
\exp \left(1-I_{o}\left(\gamma r_{m}\right)\right)=\frac{1}{A_{m}}, \tag{3.80}
\end{equation*}
$$

equations (3.79) and (3.80) may be solved simultaneously for r_{m} and γ.

After obtaining values for r_{m} and γ, V_{o} can be calculated from equation (3.77) as follows:

$$
\begin{equation*}
v_{0}=\frac{\omega}{(m+1 / 4)} \int_{r_{m}}^{a}\left(1-A_{m} \exp \left(1-I_{0}(\gamma r)\right)^{1 / 2} d r\right. \tag{3.81}
\end{equation*}
$$

Since:

$$
\begin{equation*}
v_{o}=\sqrt{\frac{3 k T}{m_{e}}} \tag{3.82}
\end{equation*}
$$

the electron temperature T can be calculated as:

$$
\begin{equation*}
T=\frac{v_{o}^{2}{ }_{m}{ }_{e}}{3 k} \tag{3.83}
\end{equation*}
$$

where k is Boltzmann's constant.
In the numerical analysis at hand, the first two electroacoustic thermal resonances are used so that $m=1$ and $n=2$. The equations used in the subsequent computer analysis formulation, written in terms of the first two thermal resonances, are summarized here in the form used in the numerical analysis:
(1)

$$
\frac{\int_{r_{1}}^{a}\left(1-A_{1} \exp \left(1-I_{0}(r r)\right)\right)^{1 / 2} d r}{\int_{r_{1}+\Delta r_{1,2}}^{a}\left(1-\Lambda_{2} \exp \left(1-I_{0}(\gamma r)\right)\right)^{1 / 2} d r}=\frac{(1+1 / 4)}{(2+1 / 4)} \text { (3.84a) }
$$

(2)

$$
\begin{equation*}
\exp \left(1-I_{o}\left(\gamma r_{1}\right)\right)=\frac{1}{A_{1}} \tag{3.84b}
\end{equation*}
$$

(3)

$$
\begin{equation*}
\exp \left(1-I_{o}\left(\gamma r_{2}\right)\right)=\frac{1}{\Lambda_{2}} \tag{3.84c}
\end{equation*}
$$

(4)

$$
\begin{equation*}
A_{1}=\frac{e^{2} n_{o_{1}}}{\omega^{2} m_{e} \varepsilon_{0}} \tag{3.84d}
\end{equation*}
$$

(5)

$$
\begin{equation*}
\Lambda_{2}=\frac{e^{2} n_{o_{2}}}{\omega^{2} m_{e} \varepsilon_{o}} \tag{3.84e}
\end{equation*}
$$

(6)

$$
\begin{equation*}
n_{01}=\left(\frac{C_{p} \omega^{2} m_{e} e_{0}}{e^{2}}\right)(R)\left(\frac{i_{1}}{i_{d}}\right) \tag{3.84f}
\end{equation*}
$$

(7)

$$
\begin{equation*}
n_{0_{2}}=\left(\frac{C_{0} \omega^{2} m_{e} e_{o}}{e^{2}}\right)(R)\left(\frac{i_{2}}{i_{d}}\right) \tag{3.84g}
\end{equation*}
$$

(8)

$$
\begin{equation*}
R=\frac{\pi a^{2}}{\int_{0}^{a} \exp \left(1-I_{0}(\gamma r)\right) 2 \pi r d r} \tag{3.84h}
\end{equation*}
$$

(9) $\quad V_{0}=\frac{\omega}{(1+1 / 4) \pi} \int_{r_{1}}^{a}\left(1-\Lambda_{1} \exp \left(1-I_{0}(\gamma r)\right)\right)^{1 / 2} d r$
and

$$
\begin{equation*}
T=\frac{v_{o}^{2} m_{e}}{3 k} \tag{10}
\end{equation*}
$$

A numerical analysis based on these equations is also performed using a combination of the first and third resonance data. The results from this analysis are used as a check on the results obtained from the use of the first two resonances. In order to use equations (3.84) for the first and third thermal resonance combination, it is only necessary to replace the subscript (2) whenever it appears by the subscript (3). The corresponding set of equations are:
(1)

$$
\begin{equation*}
\frac{\int_{r_{1}}^{a}\left(1-A_{1} \exp \left(1-I_{0}(\gamma r)\right)\right)^{1 / 2} d r}{\int_{r_{1}+\Delta r_{1,3}}^{a}\left(1-A_{3} \exp \left(1-I_{0}(\gamma r)\right)\right)^{1 / 2} d r}=\frac{(1+1 / 4)}{(3+1 / 4)} \tag{3.85a}
\end{equation*}
$$

(2)

$$
\begin{equation*}
\exp \left(1-I_{0}\left(\gamma r_{1}\right)\right)=\frac{1}{\Lambda_{1}} \tag{3.85b}
\end{equation*}
$$

(3)

$$
\begin{equation*}
\exp \left(1-I_{0}\left(\gamma r_{3}\right)\right)=\frac{1}{A_{3}} \tag{3.85c}
\end{equation*}
$$

(4)

$$
\begin{equation*}
A_{1}=\frac{e^{2} n_{0_{1}}}{\omega^{2} m_{e} \varepsilon_{0}} \tag{3.85d}
\end{equation*}
$$

(5)

$$
\begin{equation*}
A_{3}=\frac{e^{2} n_{o_{3}}}{\omega^{2} m_{e} \varepsilon_{0}} \tag{3.85e}
\end{equation*}
$$

(6)

$$
\begin{equation*}
n_{o_{1}}=\left(\frac{C_{p} \omega^{2} m_{e} e_{o}}{e^{2}}\right)(R)\left(\frac{i_{1}}{i_{d}}\right) \tag{3.85f}
\end{equation*}
$$

(7)

$$
\begin{equation*}
n_{o_{3}}=\left(\frac{C_{p} \omega^{2} m_{e} e_{o}}{e^{2}}\right)(R)\left(\frac{i_{3}}{i_{d}}\right) \tag{3.85g}
\end{equation*}
$$

(8)

$$
\begin{equation*}
R=\frac{\pi a^{2}}{\int_{0}^{a} \exp \left(1-I_{0}(\gamma r)\right) 2 \pi r d r} \tag{3.85h}
\end{equation*}
$$

(9) $\quad V_{0}=\frac{\omega}{(1+1 / 4) \pi} \int_{r_{1}}^{a}\left(1-A_{1} \exp \left(1-I_{0}(\gamma r)\right)\right)^{1 / 2} d r$
and:

$$
\begin{equation*}
T=\frac{v_{o}^{2}{ }_{\mathrm{m}}^{\mathrm{e}}}{} \tag{10}
\end{equation*}
$$

The numerical results obtained from the computer solution from equations (3.84) and (3.85) are presented and discussed in the following chapter.

CHAPTER 4

NUMERICAL RESULTS FOR THE ELECTRON DENSITY profile in a cylindrical plasma coluin

4.1 Introduction

The simultaneous equations presented in section 3.4 and section 3.5 are solved numerically using the data given in section 3.2. The solutions are presented in this chapter. The results obtained for the different approaches are presented.
4.2 Numerical Results Based on Parabolic Electron Density Profile Approximation

The numerical results obtained in the simultaneous computer solution of equations (3.48) and (3.49) are listed in Tables 4.2.1 through 4.2.5 for the eight sets of data analyzed. For ease of identification, the data sets are identified throughout by two numbers, $i, j ; i=1$ to 8 represents the set number; $j=2$ represents the use of the combination of the first and second resonance (equations (3.48)) while $j=3$ represents the use of the combination of the first and third resonance (equations (3.49)).

The parameters listed in the Tables are:
(1) The factor α in the parabolic approximation

$$
n_{e}(r)=n_{e_{0}}\left(1-\alpha\left(\frac{r}{a}\right)^{2}\right)
$$

(2) The calculated value of the ratio $R=n_{e}(r=0) /\left\langle n_{e_{1}}(r)\right\rangle$.
(3) The critical points r_{m} / a for the $m^{\text {th }}$ resonance.
(4) $z_{m} / a=\left(a-r_{m}\right) / a$.

Data set \#	$\begin{gathered} \alpha \\ j=2 \end{gathered}$	$\begin{gathered} \alpha \\ j=3 \end{gathered}$
1	. 83	. 83
2	. 82	. 85
3	. 83	. 83
4	. 80	. 86
5	. 8t	. 86
6	. 83	. 83
7	. 84	. 87
8	. 85	. 85

Table 4.2.1 Numerical results for the factor \mathcal{L} for data sets 1 through 8. The columns identified by $j=?$ and $j=3$ represent numerical values for $\&$ obtained from the use of combinations of resonances 1,2 $(j=2)$ and $1,3(j=3)$ respectively.

Table 4.2.2 Numerical results for the ratio of peak to average electron density $\mathrm{n}_{\mathrm{o}},\left\langle\left\langle\mathrm{n}_{\mathrm{e}}(\mathrm{r})\right\rangle\right.$ and $\left.\mathrm{n}_{\mathrm{o}_{2}} /<\mathrm{n}_{\mathrm{e}}(\mathrm{r})\right\rangle$ for data sets ${ }^{1} 1$ through 8 .

Data set \#	r_{1} / a	r_{2} / a	r_{3} / a
1	.88	.83	.77
2	.87	.80	.71
3	.88	.81	.77
4	.86	.79	.74
5	.87	.81	.73
7	.87	.86	.72
8		.89	.71
7			

Table 4.2.3 Numerical values for the ratio of critical radius r_{j} to the total radius $a, r_{j} / a$, for data sets 1 through 8.

Data set \#	z_{1} / a	z_{2} / a	z_{3} / a	z_{2} / z_{1}	z_{3} / z_{1}
1	.12	.17	.23	1.44	1.95
2	.13	.19	.28	1.50	2.02
3	.12	.18	.23	1.51	1.90
4	.11	.16	.26	1.48	2.00
5	.14	.21	.29	1.53	2.07
6	.13	.19	.27	1.48	2.10
7	.14	.21	.29	1.52	2.07
8	.20			1.53.	2.02

Table 4.2.4 Numerical values for the ratio of critical distance z; measured from the wall for the $j^{\text {th }}$ resonance to the total radius a as well as the ratios z_{2} / z_{1} and z_{3} / z_{1} for the data sets 1 through 8 .

Data set ${ }^{\text {f }}$	$j \stackrel{7 w}{=}$	$j \stackrel{\eta_{w}}{=} 3$	$j \stackrel{T}{=} 2$	$j \stackrel{T}{=} 3$
1	-1.75	-1.75	14670	14670
2	-1.73	-1.90	19960	31630
3	-1.78	-1.78	18950	18950
4	-1.63	-1.96	11590	33070
5	-1.99	-1.99	29000	29000
6	-1.80	-1.80	20480	20480
7	-1.84	-2.00	27370	42820
8	-1.91	-1.91	39060	39060

Table 4.2.5 Numerical values of relative potential at the wall, $\eta_{w}=e V(a) / k T$ and electron temperature T for data sets 1 through 8 . The columns identified by $j=2$ and $j=3$ represent the numerical values for ηw and it based on the use of combinations of resonances $1,2(j=2)$ and $1,3(j=3)$ respectively.
(5) The ratios z_{2} / z_{1} where $z_{1}=a-r_{1}$ and $z_{2}=a-z_{2}$.
(6) The ratio z_{3} / z_{1}, where $z_{3}=a-r_{3}$.
(7) $\eta_{w}=e V_{w} / k T$ evaluated at the wall where V_{w} is the potential, k is the Boltzman constant and T is the electron temperature.
(8) T, the calculated electron temperature.

The most significant parameter in the parabolic electron density profile is the parameter α appearing in the functional formulation of equation (2.44)

$$
n_{e}(r)=n_{0_{1}}\left(1-\alpha\left(\frac{r}{a}\right)^{2}\right)
$$

The values for α obtained for any one data set using first the combination of the first and second resonance and then the combination of the first and third resonance are very close. Since these two values for any one data set represent a mutual check, it appears that the results obtained for α are correct. It must be kept in mind, of course, that any calculations employing the third resonance are only approximate, since the third resonances are difficult to interpret from the oscillographs.

The ratio of peak electron density at the center of the plasma column to the average static electron density in the column for the discharge current level 1_{1} was another of the parameters obtained from the solution of the simultaneous equations (3.48) and (3.49). Again this ratio is very close for data sets 1,2 and data sets 1,3 , indicating that the results are reliable. Good correspondence for results using data sets 1,2 and 1,3 is also found for the relative wall potential $\eta_{w}\left(n_{w}=e V_{w} / k T\right)$. The temperature T indicates some variation as seen in Table 4.2. The relative
variation is still insignificant considering how sensitive the temperature is to variations in other plasma column parameters. It should be recalled that the temperature is determined directly from the phase integral.

The graphical results are shown in Figures 4.2 .1 hrough 4.2.8 for the parabolic electron density profiles and the relative potential distributions for the eight data sets $i, 2$ on a normalized scale.

In conclusion, it is observed that some of the values obtained in this analysis agree well with numerical values obtained from approximate theoretical treatments or independent experimental analyses. Theoretical analysis of a plasma sheath, for example, ${ }^{1}$ leads to a relative wall potential η_{w} of approximately 2 which is in agreement with the values obtained in this numerical analysis. More significantly, the ratios of z_{2} / z_{1} obtained in this analysis of approximately 1.5 agrees well with ratios of the distances from the wall observed for the electric field perturbation for the first and second thermal resonances in experimental work reported carlier. 14

The appendix contains complete computer readouts of all the parameters for each data set.

4.3 Numerical Results Based on the Bessel Function Approximation for the Static Electron Density Profile

The numerical results obtained in the simultaneous computer analysis of equations (3.85) are listed in Tables 4.3.1 through 4.3.4 for the eight sets of data analyzed. For ease of identification, the data sets are identified throughout by two numbers

Fig. 4.2.1 Normalized parabolic electron density profile as a function of r / a,

$$
\mathrm{n}_{\mathrm{e}_{1}}(\mathrm{r} / \mathrm{a}) / \mathrm{n}_{\mathrm{o}_{1}}=1-.83(\mathrm{r} / \mathrm{a})^{2} .
$$

Also the normalized potential profile $\eta_{1}(r / a) / \eta_{w}$. Based on data set $\# 1 .(f=2.016 \mathrm{GHz}$, $\left.i_{d}=270 \cdot \mathrm{ma}, i_{1}=185 \mathrm{ma}, i_{2}=150 \mathrm{ma}, i_{3}=125 \mathrm{ma}\right)$.

Fig. 4.2.2 Normalized parabolic electron density profile as a function of r / a,

$$
\operatorname{nin}_{e_{1}}(r / a) / n_{o_{1}}=1-.82(r / a)^{2} .
$$

Also the normalized potential profile $\eta_{1}(r / a) / \eta_{w}$. Based on data set \#2. $(f=2: 10 \mathrm{GHz}$, $\left.i_{d}=290 \mathrm{ma}^{\circ} i_{1}=190 \mathrm{ma}, i_{2}=150 \mathrm{ma}, i_{3}=120 \mathrm{ma}\right)$.

Fig. 4.2.3 Normalized parabolic electron density profile as a function of \dot{r} / a,

$$
\operatorname{tion}_{\mathrm{n}_{1}}(\mathrm{r} / \mathrm{a}) / \mathrm{n}_{\mathrm{o}_{1}}=1-.83(\mathrm{r} / \mathrm{a})^{2} .
$$

Also the normalized potential profile $\eta_{1}(r / a) / \eta_{w}$. Based on data set \#3. $(f=2: 23 \mathrm{GHz}$, $\left.i_{d}=340 \mathrm{ma}, i_{1}=235 \mathrm{ma}, i_{2}=185 \mathrm{ma}, i_{3}=160 \mathrm{ma}\right)$.

Fig. 4.2.4 Normalized parabolic electron density profile as a function of r / a,

$$
\operatorname{tion}_{\mathrm{n}_{1}}(\mathrm{rf} / \mathrm{r}) / \mathrm{n}_{\mathrm{o}_{1}}=1-.80(\mathrm{r} / a)^{2} .
$$

Also the normalized potential profile $\eta_{1}(r / a) / \eta_{w}$. Based on data set \#4. $(f=2.32 \mathrm{GHz}$, $\left.i_{d}=355 \mathrm{ma}, i_{1}=245 \mathrm{ma}, i_{2}=200 \mathrm{ma}, i_{3}=175 \mathrm{ma}\right)$.

Fig. 4.2.5 Normalized parabolic electron density profile as a function of r / a

$$
\underset{n_{e_{1}}}{\operatorname{tion}}(r / a) / n_{0_{1}}=1 .-.8 \dot{6}(r / a)^{2} .
$$

Also the normalized potential profile $\eta_{1}(r / a) / \eta_{w}$. Based on data set $\# 5(f=1.917 \dot{\mathrm{GHz}}$, $i_{d}=270^{\circ} \mathrm{ma}, i_{1}=180 \mathrm{ma}, i_{2}=135 \mathrm{ma}, i_{3}=110 \mathrm{ma}$).

Fig. 4.2.6 Normalized parabolic electron density profile as a function of r / a,

$$
{ }_{n_{e_{1}}}(r / a) / n_{o_{1}}=1-.83(r / a)^{2} .
$$

Also the normalized potential profile $\eta_{1}(r / a) / \eta_{w}$. Based on data set $\# 6^{\circ}(f=2.017 \mathrm{GHz}$, $i_{d}=285 \mathrm{ma}, i_{1}=190 \mathrm{ma}, i_{2}=150 \mathrm{ma}, i_{3}=120 \mathrm{ma}$).

Fig. 4.2.7 Normalized parabolic electron density profile as a function of r / a,

$$
{ }_{n_{e_{1}}}(r / a) / n_{o_{1}}=1-.84(r / a)^{2} .
$$

Also the normalized potential profile $\eta_{1}(r / a) / \eta_{w}$. Based on data set $\# 7$. $(f=2.275 \mathrm{GHz}$, $\left.i_{d}=290 \mathrm{ma}, i_{1}=195 \mathrm{ma}, i_{2}=150 \mathrm{ma}, i_{3}=120 \mathrm{ma}\right)$.

Fig. 4.2.8 Normalized parabolic electron density profile as a function of r / a,

$$
\begin{aligned}
& \text { ion of } r / a, \\
& n_{e_{1}}(r / a) / n_{o_{1}}=1-.85(r / a)^{2} .
\end{aligned}
$$

Also the normalized potential profile $\eta_{1}(r / a) / \eta_{w}$. Based on data set $\# 8 .(f=2.322 \mathrm{GHz}$, $\left.i_{d}=320 \mathrm{ma}, i_{1}=210 \mathrm{ma}, i_{2}=160 \mathrm{ma}, i_{3}=135 \mathrm{ma}\right)$.

Data set \#	γ $j=?$	γ $j=3$
1	327	321
2	326	319
3	323	328
4	330	328
5	327	327
7	328	322
8	331	325
7		
7	328	

Table 4.3.1 Numerical results for the factor γ for data sets 1 through 8. The columns identified by $j=2$ and $j=3$ represent the numerical values for γ obtained from use of combinations of resonances $1,2(j=2)$ and $1,3(j=3)$ respectively.

Data set \#	$n_{o_{1}} /\left\langle n_{e_{1}^{(r)\rangle}}\right.$	$n_{o_{2}} /\left\langle n_{e_{2}}(r)\right\rangle$
1	1.99	1.94
2	1.98	1.93
3	1.96	1.99
4	1.99	1.99
6	1.99	1.99
7	2.02	1.99
8		1.97
6		

Table 4.3.? Numerical results for the ratio of peak to average electron density $n_{O_{1}} /\left\langle n_{e_{1}}(r)\right\rangle$ and $n_{O_{2}} /<n_{e_{2}}(r)>$ for data sets 1 through 8 .

Data set \#	z_{1} / a	z_{2} / a	z_{3} / a	z_{2} / z_{1}	z_{3} / z_{1}
1	.14	.20	.23	1.49	2.02
2	.14	.21	.27	1.53	2.22
3	.11	.18	.26	1.60	1.94
4	.13	.20	.26	1.47	2.15
5	.14	.22	.28	1.59	2.08
6	.14	.21	.27	1.53	2.19
7	.14	.21	.28	1.53	2.06
8	.15	.24	.29	1.57	2.17

Table 4.3.3 Numerical values for the ratio of the critical distance z_{j} measured from the wall into the plasma for the j th the ratios z_{2} / z_{1} and z_{3} / z_{1}.

Data set \#	η_{w} $j=2$	η_{w} $j=3$	T $j=2$	T $j=3$
1	-1.8	-1.7	47380	30580
2	-1.8	-1.7	83690	74860
3	-1.8	-1.8	67470	57060
4	-1.8	-1.8	10350	10350
5	-1.8	-1.7	71630	66900
6	-1.8	-1.8	14400	14400
7	-1.9	-1.8	10200	10120
8	-17950			

Table 4.3.4 Numerical values of the relative potential $\eta_{W}=e V(a) / k T$ and the electron temperature T for the data sets 1 through 8. The columns identified by $j=2$ and $j=3$ represent the numerical results based on the use of combinations of resonances $1,2(j=2)$ and 1,3 ($j=3$) respectively.
$i, j ;$ here $i=1$ through 8 represents the set number; $j=2$ represents the use of the combination of the first and second resonance while $j=3$ represents the use of the combination of the first and third resonance.

The parameters listed in the Tables are:
(1) The calculated value of the ratio $R=n_{0}(r=0) /\left\langle n_{e_{1}}(r)\right\rangle$.
(2) The factor γ in the Bessel series formulation in equation (3.52)

$$
n_{e}(r)=n_{0} \exp \left(1-I_{0}(\gamma r)\right)
$$

(3) The ratios z_{2} / z_{1} and z_{3} / z_{1}.
(4) The critical points z_{m} / a for the $m^{t h}$ resonance.
(5) $\eta_{w}=e V_{w} / k T$ evaluated at the wall where V_{w} is the potential, k is the Boltzmann constant and T is the electron temperature.
(6) T, the electron temperature.

The most important parameter in this analysis is γ. The values for γ obtained for data sets 1,2 and $i, 3$ compare well for the eight sets analyzed and since sets 1,2 and $i, 3$ represent a mutual check it appears that the functional form obtained is acceptable.

Good correspondence using data sets 1,1 and $i, 2$ is also obtained for the relative wall potential $n_{w}=e V_{w} / k T$ and to a satisfactory extent for the electron temperature T. Since T is very sensitive to other parameter variations, the difference observed in some data sets between sets 1,2 and 1,3 is not very significant.

The graphical results for the normalized electron density profiles $n_{e_{1}}(z) / n_{0_{1}}$ (here $n_{e_{1}}(z)$ is the static electron density at
discharge current i_{1} where $z=a-r$) and the corresponding relative potential $n(r)=e V(r) / k T$ are shown for the eight data sets in Figures 4.3.1 through 4.3.8. Subsequently, Figures 4.3.9 through 4.3.16 show simultaneous plots for the normalized electron density profiles $n_{e_{1}}(z) / n_{O_{1}}$ and $n_{e_{2}}(z) / n_{o_{1}}$ for each data set. These Figures also show the location of the critical turning points z_{1} / a and z_{2} / a marked as t_{1} and t_{2}. These must, of course, occur at the same vertical magnitude on the graphs to be correct and indeed good agreement with this requirement is observed indicating that the numerical analysis is sufficiently accurate. Figures 4.3.17 through 4.3.24 show the corresponding simultaneous plots for $n_{e_{1}}(z) / n_{o_{1}}$ and $n_{e_{3}}(z) / n_{o_{1}}$. Again critical points z_{1} / a and z_{3} / a marked at t_{1} and t_{3} closely satisfy the condition that the vertical magnitudes are the same. It should be recalled from the theoretical development that t_{1}, t_{2} and t_{3} occur at points at which

$$
\omega_{p}^{2}\left(t_{m}\right)=\omega^{2},
$$

so that

$$
\frac{{ }^{n_{e_{m}}\left(t_{m}\right)}}{n_{o_{m}}}=\frac{\omega^{2}{ }^{2} e_{e} \varepsilon_{o}}{e^{2} n_{n_{o_{m}}}}
$$

which depends only on the excitation frequency ω which is held constant in any one data set.

In conclusion it is observed that the value of η_{w} agrees with typical values predicted theoretically for plane plasma sheaths which should not behave too differently near the wall in

Fig.4.3.1 Normalized Bessel series electron density profile as a function of z / \dot{a},

$$
n_{e_{1}}(z / a) / n_{o_{1}}=\exp \left(1-\dot{I}_{0}(327(1-z / a))\right) .
$$

Also the normalized potential profile
$1^{(z / a) / w .}$ Based on data set \#1 $(f=2.015 \mathrm{GHz}$, $\left.i_{d}=270 \mathrm{ma}, i_{1}=185 \mathrm{ma}, i_{2}=150 \mathrm{ma}, i_{3}=125 \mathrm{ma}\right)$.

Fig. 4.3.2 Normalized Bessel series electron density profile as a function of z / a,

$$
n_{e_{1}}(z / a) / n_{o_{1}}=\exp \left(1-I_{0}(326(1-z / a))\right)
$$

Also the normalized potential profile
1 ($\mathrm{z} / \mathrm{a}) / \mathrm{w}$. Based on data set \#? $(\mathrm{f}=2.10 \mathrm{GHz}$; $\left.i_{d}=290 \mathrm{ma}, i_{1}=190 \mathrm{ma}, i_{2}=150 \mathrm{ma}, i_{3}=120 \mathrm{ma}\right)$.

Fig. 4.3.3 Normalized Bessel series electron density profile as a function of z / a,

$$
n_{e_{1}}(z / a) / n_{0_{1}}=\exp \left(1-I_{0}(323(1-s / a))\right) .
$$

Also the normalized potential profile
$1(z / a) / w^{\circ}$ Based on data set $\# 3(\cdot f=2.23 \mathrm{GHz}$, $\left.i_{d}=340 \mathrm{ma}, i_{1}=235 \mathrm{ma}, i_{2}=185 \mathrm{ma}, i_{3}=160 \mathrm{ma}\right)$.

Fig: 4.3.4 Normalized Bessel series electron density profile as a function z / a,

$$
\operatorname{nin}_{e_{1}}(z / a) / n_{o_{1}}=\exp \left(1-I_{0}(330(1-z / a))\right)
$$

Also the normalized potential profile
(z / a)/ w . Based on data set \#4 ($\mathrm{f}=2.32 \mathrm{GHz}$, $\left.i_{d}=355 \mathrm{ma}, i_{1}=245 \mathrm{ma}, i_{2}=200 \mathrm{ma}, i_{3}=175 \mathrm{ma}\right)$.

Fig. 4.3.5 Normalized Bessel series electron density profile as a function of $z / a, n_{n}=\exp \left(1-I_{0}(327(1-z / a))\right)$.

$$
n_{e_{1}}(z / a) / n_{o_{1}}=\exp \left(1-I_{0}(327(1-z / a))\right) .
$$

Also the normalized potential profile $1^{(z / a)} / \mathrm{w}^{\circ}$ Based on data set \#5 ($\mathrm{f}=1.917 \mathrm{GHz}$, $\left.i_{d}=270 \mathrm{ma}, i_{1}=180 \mathrm{ma}, i_{2}=135 \mathrm{ma}, i_{3}=110 \mathrm{ma}\right)$.

Fig. 4.3.6 Normalized Bessel series electron density profile as a function of z / a,

$$
n_{e_{1}}(z / a) / n_{o_{1}}=\exp \left(1-I_{0}(327(1-z / a))\right)
$$

Also the normalized potential profile
$1^{(z / a) / w . ~ B a s e d ~ o n ~ d a t a ~ s e t ~ \# 6 ~(~} f=2.017 \mathrm{GHz}$, $i_{d}=285 \mathrm{ma}, i_{1}=190 \mathrm{ma}, i_{2}=150 \mathrm{ma}, i_{3}=120 \mathrm{ma}$).

Fig.4.3.7 Normalized Bessel series electron density profile as a function of z / a,

$$
n_{e_{1}}(z / a) / n_{0_{1}}=\exp \left(1-\cdot I_{0}(328(1-z / a))\right) .
$$

Also the normalized potential profile $1^{(z / a) / w^{\circ}}$ Based on data set \#7 $(f=2.275 \mathrm{GHz}$, $\left.i_{d}=290 \mathrm{ma}, i_{1}=195 \mathrm{ma}, i_{2}=150 \mathrm{ma}, i_{3}=120 \mathrm{ma}\right)$.

> Fig. 4.3.9 Normalized Bessel series electron density profiles at resonances 1 and 2. Points t_{1} and t_{2} represent the critical points in the plasma sheath at which k_{p} and k_{p}. respectively to to zero. Based on data set \#1. $(\mathrm{f}=2.016 \mathrm{GHz}$, $\left.i_{d}=270 \mathrm{ma}, i_{1}=185 \mathrm{ma}, i_{2}=150 \mathrm{ma}, i_{3}=125 \mathrm{ma}\right)$.

Fig. 4. 3. 10 Normalized Bessel series electron density profiles at resonances 1 and 2. Points t_{1} and t_{2} represent the critical points in the plasma sheath at which $\mathrm{k}_{\mathrm{p}_{1}}$ and $\mathrm{k}_{\mathrm{p}_{2}}$ respectively go to zero.

GHz , $\left.i_{d}=290 \mathrm{ma}, i_{1}=190 \mathrm{ma}, i_{2}=150 \mathrm{ma}, i_{3}=120 \mathrm{ma}\right)$.

Fig. 4. 3.11 Normalized Bessel series electron density profiles at resonances 1 and 2. Points t_{1} and t_{2} represent the critical points in the plasma sheath at which ${ }^{k_{1}} p_{1}$ and $k^{p_{2}}$
respectively go to zero. Based on data set \#3. ($f=2.23 \mathrm{GHz}$, $\left.i_{d}=340 \mathrm{ma}, i_{1}=235 \mathrm{ma}, i_{2}=185 \mathrm{ma}, i_{3}=160 \mathrm{ma}\right)$.

$$
\begin{aligned}
\text { Fig. 4. 3.12 } & \begin{array}{l}
\text { Normalized Bessel series electron density } \\
\\
\\
\text { profiles at resonances } 1 \text { and 2. Points } t_{1}
\end{array} \\
& \text { and represent the critical points in }
\end{aligned}
$$

Fig. 4. 3. 13 Normalized Bessel series electron density profiles at resonances 1 and 2. Points t_{1} and t_{2} represent the critical points in the plasma sheath at which $k_{p_{1}}$ and $k_{p_{2}}$

17 GHz , Eased on data set \#5. ($f=1.917 \mathrm{GHz}$, $\left.i_{d}=270 \mathrm{ma}, i_{1}=180 \mathrm{ma}, i_{2}=135 \mathrm{ma}, i_{3}=110 \mathrm{ma}\right)$.

Fig. 4.3.14 Normalized Bessel series electron density profiles at resonances 1 and 2 . Points t_{1} and t_{2} represent the critical points in the plasma sheath at which $k_{p_{1}}$ and $k_{p_{2}}$
respectively go to zero. Based on data set \#6. ($\mathrm{f}=2.017 \mathrm{GHz}$, $\left.i_{d}=285 \mathrm{ma}, i_{1}=190 \mathrm{ma}, i_{2}=150 \mathrm{ma}, i_{3}=120 \mathrm{ma}\right)$.

Fig. 4.3.15 Normalized Bessel series electron density profile at resonances 1 and 2. Points t_{1} and t_{2} represent the critical points in the plasma sheath at which $k_{p_{1}}$ and $k_{p_{2}}$
respectively go to zero. Based on data set \#7. ($f=2.275 \mathrm{GHz}$, $\left.i_{d}=290 \mathrm{ma}, i_{1}=195 \mathrm{ma}, i_{2}=150 \mathrm{ma}, i_{3}=120 \mathrm{ma}\right)$.

Fig. 4.3.16 Normalized Bessel series electron density profiles a resonances 1 and 2. Points t_{1} and t_{p} represent the critical points in the plasma sheath at which $k_{p_{1}}$ and $k_{p_{2}}$.
respectively go to zero. Based on data set \#8. ($\mathrm{f}=2.32$) GHz, $\left.i_{d}=320 \mathrm{ma}, i_{1}=210 \mathrm{ma}, i_{2}=160 \mathrm{ma}, i_{3}=135 \mathrm{ma}\right)$.

Fig. 4.3.17 Normalized Bessel series electron density profiles at resonances 1 and 3 . Points t and t_{3} represent the critical points in the plasma sheath at which k_{p} and $\mathrm{k}_{\mathrm{p}_{3}}$ Based on data set \#1. ($\mathrm{f}=2.016 \mathrm{GHz}$, $\left.i_{d}=270 \mathrm{ma}, i_{1}=185 \mathrm{ma}, i_{2}=150 \mathrm{ma}, i_{3}=125 \mathrm{ma}\right)$.

Fig. 4.3.18 Normalized Bessel series electron density profiles at resonances 1 and 3 . Points t_{1} and t_{3} represent the critical points in the plasma sheath at which $k_{p_{1}}$ and ${ }^{k_{1}} p_{3}$ Based on data set \#2. ($f=2.10 \mathrm{GHz}$, $\left.i_{d}=290 \mathrm{ma}, i_{1}=190 \mathrm{ma}, i_{2}=150 \mathrm{ma}, i_{3}=120 \mathrm{ma}\right)$.

ig. 4.3.19 Normalized Bessel series electron density profiles at resonances 1 and 3 . Points t and t_{3} represent the critical points in the plasma sheath at which k_{p}; and $k_{p_{3}}, ~$
Based on data set \#3. ($f=2.23 \mathrm{GHz}$, $\left.i_{d}=340 \mathrm{ma}, i_{1}=235 \mathrm{ma}, i_{2}=185 \mathrm{ma}, i_{3}=160 \mathrm{ma}\right)$.

Fig. 4.3.20 Normalized Bessel series electron density profiles at resonances 1 and 3 . Points t_{1} and t_{3} represent the critical points in the plasma sheath at which k_{p}, and ${ }^{\prime} \mathrm{k}_{\mathrm{p}_{3}}$ Based on data set \#4. ($\mathrm{f}=$? 2.32 GHz , $\left.i_{d}=355 \mathrm{ma}, i_{1}=245 \mathrm{ma}, i_{2}=200 \mathrm{ma}, i_{3}=175 \mathrm{ma}\right)$.

Fig. 4.3.21 Normalized Bessel series electron density profiles at resonances 1 and 3 . Points t, and t_{3} represent the critical points in the plasma sheath at which k and k respectively go to zero. $p_{1} \quad p_{3}$ Based on data set \#5. ($f=1.917 \mathrm{GHz}$,

$$
\left.i_{d}=270 \mathrm{ma}, i_{1}=180 \mathrm{ma}, i_{2}=135 \mathrm{ma}, i_{3}=110 \mathrm{ma}\right) \text {. }
$$

Fig. 4.3.2? Normalized Bessel series electron density profiles at resonances 1 and 3. Points t_{1} and t_{3} represent the critical points in the plasma sheath at which k_{p} and $\mathrm{k}_{\mathrm{p}_{3}}$ Based on data set \#6. ($f=2.017 \mathrm{GHz}$, $\left.i_{d}=285 \mathrm{ma}, i_{1}=190 \mathrm{ma}, i_{2}=150 \mathrm{ma}, i_{3}=120 \mathrm{ma}\right)$.

Fig. 4.3.23 Normalized Bessel series electron density profiles at resonances 1 and 3. Points t and t_{3} represent the critical points in the plasma sheath at which $k_{p_{1}}$ and $k_{p_{3}}$ Based on data set \#7. ($\mathrm{f}=2.275 \mathrm{GHz}$, $i_{d}=290 \mathrm{ma}, i_{1}=195 \mathrm{ma}, i_{2}=150 \mathrm{ma}, i_{3}=120 \mathrm{ma}$).

Fig. 4.3.24 Normalized Bessel series electron density profiles at resonances 1 and 3. Points t and t_{3} represent the critical points in the
 Based on data set \#8. ($f=2.322 \mathrm{GHz}$, $\left.i_{d}=320 \mathrm{ma}, i_{1}=210 \mathrm{ma}, i_{2}=160 \mathrm{ma}, i_{3}=135 \mathrm{ma}\right)$.
the sheath region. More significantly, the ratio z_{2} / z_{1} agrees well with observed values of approximately 1.5 from measurement? of the corresponding E field peaks in the thermal resonances. ${ }^{14}$

4.4 Graphical Presentation of Thermal Resonances Using the WKB

Approximation

Since the static electron profile analysis was based on the phase integral in the underdense region, the WKB formulation for the $m^{\text {th }}$ thermal resonance given in equation (2.65)

$$
n_{1_{m}}(x)=\frac{1}{k_{p_{m}}(x)} \sin \left(\int_{x}^{x_{m}} k_{p_{m}}\left(x^{\prime}\right) d x^{\prime}+\pi / 4\right)
$$

should yield the correct form of the $m^{\text {th }}$ thermal resonance some distance away from the critical point. Here $x=0$ at the wall and is positive into the plasma; $k_{p}(x)$ represents the phase constant as a function of x. The mathematical formulation of the phase integrals for the two profile formulations are, of course, different. For the parabolic profile it is based on equations (3.40) and (3.41) and is

$$
\begin{gather*}
\int_{x}^{x_{m}} k_{p}\left(x^{\prime}\right) d x^{\prime}=\int_{x}^{x_{m}} \frac{\omega}{V_{0}}\left(1-\frac{e^{2} n_{o_{m}}}{\omega^{2} m_{e^{\prime}} \varepsilon_{0}}\right. \\
\left.\left(1-\alpha\left(\frac{r}{a}\right)^{2}\right)\right)^{1 / 2} d x \tag{4.1}
\end{gather*}
$$

For the Bessel function approximation the phase integral is based on equation (3.77) and is

Based on these phase integrals, the WKB form

$$
\begin{equation*}
n_{1_{m}}(x)=\frac{1}{k_{p_{m}}(x)}\left(\int_{x}^{x}{ }_{k_{p_{m}}}(x) d x+\pi / 4\right) \tag{4.3}
\end{equation*}
$$

is numerically evaluated and graphically presented in Figures 4.4.1 and 4.4.2 for the parabolic form and in Figures 4.4 .3 and 4.4.4 for the Bessel function formulation for data set \#1. The Figures show the first and second resonance. In the region near the critical point where the WKB approximation fails, the expected section is sketched in for completeness and does not represent a precise solution. The interesting point is the phase of the perturbation function $n_{1_{m}}(x)$. The basic theory suggested that $n_{1_{m}}(0)$ at the wall ($x=0$) has a maximum so that a peak should be observed. In fact, for the Bessel function formulation $n_{1}(x)$ and $n_{1_{2}}(x)$ fall slightly short of reaching a peak, while the parabolic approximation is slightly over the expected peak. It should be recalled that the numerical analysis was based on the assumption that the total phase for $n_{1_{m}}(x)$ between $x=0$ and x_{m} is $(m+1 / 4) \pi$.

The deviation from the expected phase of $n_{1_{m}}(0)$ at the wall indicates a limitation in the accuracy of the numerical integration techniques. Greater precision would not yield significant improvement in the electron density profile in view of the approximate nature of the available resonance data. It would, however, require

Fig. 4.4.1 First thermal resonance for data set \#1 based on a WKB formulation using the parabolic electron density profile.

Fig. 4.4.2 Second thermal resonance for data set \#1 based on a WKB formulation using the parabolic electron density profile.

Fig. 4.4.4 Second thermal resonance for data set \#1 based on a WKB formulation using the Bessel series electron density profile.
unreasonably long computer run times in view of the large number of parameters determined simultaneously.

Figures 4.4.1 through 4.4 .4 do show that, as expected, the phase constant decreases and the magnitude of $n_{1_{m}}(x)$ increases as x goes from $x=0$ to $x=x_{m}$.

APPENDIX A

NUMERICAL COMPUTER READOUTS AND
ADDITIONAL COMPUTER GRAPHS

```
NUMBER UF DATA SET = 1
This IS an analysis of the electron oensity
IN a CYLINCRICAL PLASMA COLUMN BASED ON A
PARABOLIC LENSITY PROFILE APPRCXIMATICN
USING RESONANCES I AND 2
THE PHASE FOR RESONANCE L IS PI TIMES 1.25
THE PhASE for RESDNANGE 2 IS PI TIMES 2.25
THE SQUARE OF hPOVER W IS EOUAL TO 2.0C
\begin{tabular}{lll}
10 & \(=\) & \(0.2700 E 00\) \\
11 & \(0.1850 E 00\) \\
12 & \(0.1500 E 00\) \\
\(W\) & \(0.1267 E 11\) \\
BETA=ATOR & \(=\) & \(0.1000 E 01\) \\
RAOIUS & \(=\) & \(0.7000 E-02\)
\end{tabular}
RAOIUS = 0.7000E-02
ALFA O.S259EOO
\begin{tabular}{|c|c|}
\hline R1 & 0.6160E-02 \\
\hline R2 & 0.5787E-02 \\
\hline 21 & 0.8400E-03 \\
\hline 22 & \(0.1213 E-02\) \\
\hline NO Dipole & \(0.2233 E 18\) \\
\hline NO 1 RESUNANCE & \(0.1530 E 18\) \\
\hline NO 2 RESUNANCE & \(0.1241 E 18\) \\
\hline 22 TC 21 & O.1444E OL \\
\hline peak tc average & 0.1703 El \\
\hline \(\checkmark\) Wall & -0.2210E O1 \\
\hline ETA=VW TO KTTCO & -0.1748E 01 \\
\hline ELECTRON TEMP & 0.1407E 05 \\
\hline
\end{tabular}
```

```
NUMBER OF DATA SET = l
ThIS IS AN analySIS Of the elegtron density
IN A CYLINORICAL PLASMA COLUMN GASED ON A
PARABOLIC CENSITY PROFILE APPROXIMATICN
USING RESONANCES 1 AND 3
THE PHASE FOR RESONANCE I IS PI TIMES l.25
THE PHASE fOR RESCNANCE 2 IS PI TIMES 3.25
THE SOUARE OF hPOVER G IS EQUAL TO 2.60
\begin{tabular}{lll}
10 & \(=\) & \(0.2700 E 00\) \\
11 & \(=\) & \(0.1850 E 00\) \\
12 & \(0.1250 E 00\) \\
\(W\) & \(=\) & \(0.1207 E 11\) \\
BETA=ATIJR & \(=\) & \(0.1 C O O E O 1\) \\
RADIUS & \(0.7000 E-02\)
\end{tabular}
ALFA = 0.8259E OO
R1 = 0.6160\tilde{E}-02
R2 = 0.5360E-02
21 = 0.8400E-03
22 0.1634E-02
NO DIPJLE = 0.2233E 18
NO 1 RESJNAINCE 0.1530E 18
NC 2 RESUNANCE = 0.1034E 18
22 TC 21 = 0.1945E O1
PEAK to average = 0.1703E Ol
V WALL -0.2210E Ol
ETA=VWTO KTTOO= -0.1748E OL
ELECTRON TEMP = 0.1407E 05
```



```
NUMBER DF DATA SET = 2
This IS an analySIS of the electron censity
IN A CYLINDRICAL PLASMA COLUMN BASED CN A
PARABOLIC DENSITY PZGFILE APPROXIMATION
USING RESDNANCES 1 AND 3
THE PHASE fOR RESONANCE 1 IS PI TIMES 1.25
THE PHASE fOR RESONANCE 2 IS PI TIMES 3.25
THE SQUARE OF WPOVER W IS EQUAL TO 2.60
\begin{tabular}{lll}
10 & \(=\) & \(0.2900 E 00\) \\
11 & \(=\) & \(0.190 C E 00\) \\
12 & \(=\) & \(0.1200 E 00\) \\
\(W\) & \(=.1319 E 11\) \\
BETABATOR & \(=\) & \(0.1000 E O 1\) \\
RADIUS & \(=\) & \(0.7000 E-02\)
\end{tabular}
ALFA 0.8511E 00
R1 = 0.6020E-02
R2 = 0.5023E-02
21 = 0.9300E-03
22 = 0.1977E-02
NO DIPOLE = 0.2474E 18
NO }1\mathrm{ RESDINANCE = 0.162IE 18
NO 2RESONANCE = 0.1024E 18
22TO 21 0.2018E 01
PEAK TO AVERAGE = 0.1741E OL
V WALL - = - 5189E OL
ETA=VA TJ KTTOQ = -0.1904E OL
ELECTRON TEMP = 0.3163E OS
```



```
NUMBER OF DATA SET = 3
THIS IS an analysis of the electron density
IN A CYLINORICAL PLASMA COLUMN BASEO ON A
PARABJLIC DENSITY PRUFILE APPROXIMATION
USING RESONANCES 1 AND 3
The phase for ReSünance l IS PI tIMES 1.25
the Phase for rescnance 2 IS PI TIMES 3.25
THE SQUARE OF WPOVER W IS EQUAL TO 2.60
\begin{tabular}{lll}
10 & \(=\) & \(0.3400 E O O\) \\
11 & \(=\) & \(0.2350 E 00\) \\
12 & \(0.1600 E 00\) \\
\(W\) & \(=\) & \(0.1401 E 11\) \\
BETA=ATOR & \(=0.1 C O O E O 1\) \\
RADIUS & \(=\) & \(0.7000 E-02\)
\end{tabular}
ALFA O.8317E 00
\begin{tabular}{|c|c|}
\hline RI & 0.6160E-02 \\
\hline R2 & 0.5403E-02 \\
\hline 21 & 0.8400E-03 \\
\hline 22 & 0.1597E-02 \\
\hline NO OIPOLE & 0.2745 E 18 \\
\hline NO 1 RESJNANCE & \(0.1897 E 18\) \\
\hline NO 2 RESUNANCE & 0.1292 E 18 \\
\hline 22 T0 21 & \(0.1901 E 01\) \\
\hline PEAK to average & 0.1712 OL \\
\hline \(\checkmark\) WALL & -0.2909E OL \\
\hline ETA=Vh to kttoo & -0.1782E 01 \\
\hline ELECTRON TEMP & \(0.1895 E\) \\
\hline
\end{tabular}
```

```
NUMBER IF DATA SET = 4
THIS IS AN ANALYSIS DF THE ELECTRON OENSITY
IN A CYLINORIICAL PLASMA COLUMN BASED ON A
PARABULIC DENSITY PRCFILE APPROXIMATION
USING RESCNANCES I ANJ }
THE PHASE FOR RESONANCE L IS PI TIMES 1.25
THE PHASE FOR RESCNANCE 2 IS PI TIMES 2.25
THE SQUARE OF WPOVER W IS EQUAL TO 2.6C
\begin{tabular}{lll}
\(I D\) & \(=\) & \(0.3550 E O O\) \\
11 & \(=\) & \(0.245 C E O O\) \\
\(I 2\) & \(=\) & \(0.2000 E O O\) \\
\(H\) & \(=\) & \(0.1458 E 11\) \\
BETA=ATOR & \(=0.1 C O O E O 1\) \\
RADIUS & \(=\) & \(0.7000 E-02\)
\end{tabular}
ALFA 0.8040E 00
R1 0.0230E-02
R2 = 0.5861E-02
21 = 0.7700E-03
22 0.1139E-02
NO DIPOLE O.2904E 18
NO 1 RESONANCE = 0.200%E 18
NO 2 RESJNANCE = 0.1636E 18
22TOL O.1479E O
PEAK TO AVERAGE 0.2672E OL
VWALL = -0.1627E 01
ETA=VW TD KTTCQ= -0.1630E OL
ELECTRON TEMP O 0.1l,VE OS
```



```
NUMBER OF OATA SET
    = 5
THIS IS AN ANALYSIS OF THE ELECTRON DENSITY
IN A CYLINDRIGAL PLASMA COLUMN BASED ON A
PARABJLIC DENSITY PRJFILE APPROXIMATICN
USING RESUNANCES 1 AND 2
THE PHASE FGR RESJNANCE I IS PI TIMES 1. 25
THE PHASE FOR RESUNANCE 2 IS PI IIMES 2.25
THE SQUARE OF WPOVER W IS EQUAL TO 2.00
\begin{tabular}{lll}
10 & \(=\) & \(0.2700 E O 0\) \\
11 & \(=\) & \(0.1800 E O 0\) \\
12 & \(=\) & \(0.1350 E O 0\) \\
\(W\) & \(=\) & \(0.1204 E 12\) \\
BETA=ATOR & \(=\) & \(0.7000 E O 1\) \\
RADIUS & \(=\) & 0.700
\end{tabular}
ALFA \(=0.8641 E 00\)
R1 0.6020E-02
R2 = 0.5496E-02
21 0.9800E-03
22 = 0.1504E-02
NO DIPOLE 0.2085E 1O
NO I RESONANCE O.L390E 18
NO 2 RESJNANCE 0.1042E 18
2TOL1 O.1534E OL
PEAK TO AVERAGE = O.176IE OL
VWALL -0.4987E OL
ETA=VW TO KTTOO= -0.1990E O1
ELECTRON TEMP 0.2900E O5
```



```
NUMBER OF OATA SET = 6
THIS IS AN ANALYSIS OF THE ELECTRON DENSITY
IN A CYLINORICAL PLASMA COLUMN BASED ON A
PARABULIC OENSITY PRUFILE APPROXIMATICN
USING RESUNANCES I AND 2
THE PHASE FOR RESOHIANCE 1 IS PI TIMES 1.25
THE PHASE for resorance 2 IS PI TIMES 2.25
THE SQUARE OF hPOVER W IS EQUAL TO 2.60
\begin{tabular}{lll}
10 & \(=\) & \(0.2850 E 00\) \\
11 & \(=\) & \(0.1900 E 00\) \\
12 & \(=\) & \(0.1500 E O O\) \\
\(H\) & \(=\) & \(0.1267 E 11\) \\
BETA=ATOR & \(=\) & \(0.7000 E-01\) \\
RADIUS & \(=\) &
\end{tabular}
\begin{tabular}{|c|c|}
\hline ALFA & \(0.8346 E 00\) \\
\hline R1 & 0.6C90E-02 \\
\hline R2 & \(0.5653 \mathrm{E}-02\) \\
\hline 21 & \(0.9100 E-03\) \\
\hline 22 & 0.1347E-02 \\
\hline NC DIPOLE & 0.2250E 18 \\
\hline NO 1 RESONANCE & \(0.1500 E 18\) \\
\hline NO 2 RESUNANCE & 0.1184 E 18 \\
\hline 22 TO 21 & 0.1480 El \\
\hline peak to average & \(0.1716 E 01\) \\
\hline \(\checkmark\) WALl & -0.3170E 01 \\
\hline ETA=VW TD KTTOO & -0.1800E 01 \\
\hline ELECTRON TEMP & 0.2C48E 05 \\
\hline
\end{tabular}
```

```
NUMBER OF DATA SET = 6
THIS IS aN aNALYSIS OF the Electron densIty
IN A CYLINDRICAL FLASMA COLUMN BASED ON A
parabolic censity profile approximation
USING RESUNANCES 1 AND 3
The Phase for RESONANCE I IS PI TIMES 1.25
THE PHASE fOR RESONANCE 2 IS PI TIMES 3.25
THE SQUARE OF WPOVER W IS EQUAL TO 2.60
\begin{tabular}{lll}
10 & \(=\) & \(0.2850 E 00\) \\
11 & \(=\) & \(0.1900 E 00\) \\
12 & \(=\) & \(0.1200 E 00\) \\
\(W\) & \(=\) & \(0.1267 E 11\) \\
BETA=ATOR & \(=00 E O 1\) \\
RADIUS & \(=0.7 C O O E-02\)
\end{tabular}
ALFA \(\quad 0.8346 E 00\)
\begin{tabular}{|c|c|}
\hline R1 & 0.6090E-02 \\
\hline R2 & 0.5097E-02 \\
\hline 21 & 0.9100E-03 \\
\hline 22 & 0.1913E-02 \\
\hline no dipole & \(0.2250 E 18\) \\
\hline no 1 RESUNANCE & \(0.15 \operatorname{CoE} 13\) \\
\hline NO 2 RESONANCE & \(0.9475 E 17\) \\
\hline 22 TO 21 & \(0.2102 E 01\) \\
\hline Peak to average & \(0.17160^{01}\) \\
\hline \(\checkmark\) WALL & -0.3176E 01 \\
\hline ETA=VW TO KTTOO & -0.1800E 01 \\
\hline ELECTRON TEMP & 0.2048 OS \\
\hline
\end{tabular}
```



```
NUMGER OF OATA SET = 8
THIS IS AN ANALYSIS OF THE ELECTRON DENSITY
IN A CYLINORICAL PLASMA COLUMIN BASED CN A
PARABJLIC CENSITY FROFILE APPROXIMATICN
USING RESONANCES I AND }
THE PHASE FOR RESONANCE I IS PI TIMES 1.25
THE PHASE FOR RESONANCE 2 IS PI TIMES 3.25
THE SQUARE OF WPOVER W IS EQUAL TO 2.60
\begin{tabular}{lll}
10 & \(=\) & \(0.3200 E 00\) \\
11 & \(=\) & \(0.2100 E 00\) \\
12 & \(0.1300 E 00\) \\
\(W\) & \(=\) & \(0.1459 E 11\) \\
BETA=ATOR & \(=\) & \(0.1 C 00 E 01\) \\
RADIUS & \(=\) & \(0.7000 E-02\)
\end{tabular}
ALFA 0.8523E00
R1 = 0.6020E-02
L1 - 0.9800E-O3
22 0.0.033E-02
NO DIPOLE 0.3030E 18
NO 1 RESINANCE O.1988E 18
NO 2 RESUNANCE 0.1231E 18
22TO 21 O.2074E OL
PEAK TO AVERAGE = 0.1743E OL
VWALL - -0.6436E OL
ETA=VW TO KTTOQ = -0.1913E OL
ELECTRJN TEMP = 0.3906E O5
```

```
NumeER GF CATA SET = 1
This is an analyjis cf the electiojn cénsity
IN a CylinCriCal flasma COLUMN baSEO CN A
BESSEL FLACTICN FLCFILE APPROXIMATICN
USING THERMAL REJCNANCES l aNO 2
TCTAL PHASE FCR fIRST RES IS PI TIMES l.25
tctal phase fer sec res is pi tires 2.25
The SQuARe OF hP OVER W = 2.tC
```


CCEFF PEAK TC AVG EL DENS $=0.1986 E 01$
GAMMA =
C. 32 EBE C 3
-0.18C4E CI
C. 31 COE CC
gamma times 21
Gamma times 22
C.4019E 00
C. 149CE Ol
22 TC 21
C. 149 CE
C. 2356 E
11
HP1
C.2122E 11
C. 1744 E 18
WP2
$\begin{array}{ll}\text { NOZ } \\ \text { AI }=W P I ~ C V E R ~ W I ~ S O U A R E D ~ & = \\ C .1414 E 18 \\ C .3459 E C 1\end{array}$
$A 2=W P 2$ CVER H2 SOUARED $=$ C.2OCAE CI
21 !
22
C. $9485 \mathrm{E}-\mathrm{C} 3$
C. 1413E-C2
VWALL
-C.73t3E Cl
ELECTRON TEMPERATURE $=\quad$ C.4738EC5

```
NUMBER OF DATA JET = 1
ThIS IS an avalysis of the electren oensity
IN A CYLINDRICAL PLASMA CJLUMV BASED CN A
BESSEL FUNCTICN PRCFILE APFROXIMATICN
USING THERMAL RESCNANCES 1 AND 3
TOTAL PHASE FCR FIRST RES IS PI TIMES 1.25
tGTal phaje for Sec res is pl times 3.25
THE SQUARE DF hP OVER W =2.00
LOWER INT. LIMIT = C.COOCE CC
INITIAL INCR. IN ZI
NUMBER CF INTEGR. STEPS = 20
VALUE OF WI = 0.1267E 11
VALUE OF WZ
oIPCLE CURRENT AT WI
CURRENT AT WI
CURRENT AT Hz
0.1267E 11
C.270CE CC
C. 185CE CC
C.130CE CO
NUMBER T. C. RESCNAINCE 2NJ W = 3
COEFF PEAK TC AVG EL UENS = 0.1937E OL
GAMMA =0.32C7E 03
ETA VWALL TG KT CVER O =0.1717E O1
GAMMA TIMES 2I = 0.25COE CO
GAMMA TIMES 22 0.5050E CO
22 たL2
WPI
C.2020E S1
0.2392E 11
0.20C5E 11
0.1797E 18
C.1263E 18
C.3563E O1
C.25C4E OL
0.7795E-03
0.1575E-02
-C.4523E CL
    0.3058E C5
```

```
BUMGEK JF LATA SET ?
TMIS IS AIV ANALYSIS LF THE ELECTRJNG LENSITY
I! A CYLIVEPICAL PIASMA CJIUMIV, BASFO GM, A
=ESSEL FごここTILN PKEFILF APFKUxIMAIIご.
LSINO}\mathrm{ THFRNAL RESUNANCLS 1 IIOJ 2
PCTAL PHAJE F[K F!GjI <iS IJ FI TINES lo!S
ILTAL PHAjE FjR Sti -Ej IJ Di I!NEJ <.25
THE SOUAみE LF WP LVEKW = 2.tC
```

LSWER INT．LINIT	$=$	C．CCOCE CO
INITIAL INCR．IV LI	$=$	C．LOOCE CO
＇UMBCR EF INTEGR．STEFS	＝	20
VALLE OF inl	＝	C． 1319 L 11
VALUE DF 2	$=$	C． 1315 L L1
O！POLE こURRENT AT Wl	\％	C． 290 CE CC
CURKENT AT WL	＝	C． $19 C C E$ CC
CUFKENT AT W2	$=$	C． $15 C C E C C$
ALMBER T．U．RESENANCE 2 NOS W	＝	2
CUEFF PEAK tC avo tl dens	＝	0．1975E CI
GAMMA	\pm	C． 3255 C 3
ETA＝VWALL TC KT CVER Q	＝	－C．1785E Cl
GAMMA TIMES 21	$=$	C． $31 C C E C O$
GAMMA TIMES 22	x	C．4743E OC
22 TC 21	$=$	C． 1530 Cl
WPL	$=$	C． 2435 E 11
WP2	\pm	C．21E3E 11
NC1	＝	C． 1362 Cl
$\therefore 02$	$=$	C．1470E 18
AL＝WPL CVER WL SEUATEJ	＝	C．34CTE CI
A2＝WP2 LVER W2 SQUARED	$=$	C．26SCE 01
21	$=$	C． $9524 E-03$
22	$=$	C． $1457 \mathrm{E}-\mathrm{C} 2$
v A ALL	$=$	－C．1287E Cく
electroid temperature	$=$	C．8̇t9E C5

```
NUMEER CF CATA SET = 2
this is an analysis cf the elegtrun censity
IN a CrlINCRICAL PLASMA COLUMN baSED CA A
BESSEL FUNCTICN PRCFILE APPROXIMATICN
using thErmal resunances 1 ano 3
TCTAL PHASE fCR firSt RES IS PI TIPES 1.25
tCTAL Phase fCR SEG RES IS PI TINES 2.25
THE SJUARE OF hP EVERW = 2.60
LOWER INT. LIMIT = C.COCCE SO
INITIAL INCR.IN LII = C.ICCCE CO
NUMBER CF INTEGR. STEPS = 20
value of wl
valle OF wz
OIfCLE CURRENT AT WI
CURRENT AT WI
C.1319E 11
C.29CCE CC
C.190CE CC
CURRENT AT WZ CRSCNANGE 2NO W = C.l2OCE CO
NUMBER T. C. RESCNANGE 2ND W= 3
COEFF PEAK TC AVG EL DENS = 0.1920E 01
GAMMA = 0.31G3E 03
ETA = VNALL TC KT CVER Q = -C.1097E C1
gamma TIMES Zl
    C.268CE CO
        C.595CE CC
        C.222OE Cl
        C.2435E 11
        C.1935E 11
        C.1862E 18
        C.1170E 18
        C.34C7E Cl
        C.2152E O1
        C.83G3E-03
        0.1863E-0.2
-C.1095E C2
    C.7486E C5
```

```
NUMBER DF CATA SET = 3
this is an analysis ef the electrun censity
IN a CYLINCRICAL PLASMA CGLURN BASEC CN A
BESSEL FUNCTICN PRCFILE APPROXIMATICN
USING THERPAL RESGINANCES 1 ANO }
TOTAL PHASE FGR fIRST RES IS PI TIMES 1.25
TCTAL PHASE fOR SEC RES IS PI fIMES 2.25
THE SOUARE OF hP OVEK W = 2.tu
LOWER INT. LIMIT 
COEFF PEAK TC AVGEL CENS = C.1950E Cl
GAMMA = 0.323IE 03
ETA = VWALL TO KT OVER O - = - I751E Cl
gamMa TIMES ll = C.20COE CO
GAMMA TIMES 22 = C.4lECE CO
22TO21 C C.16COE Ol
WP1
        C.2656E 11
WP2 (
WP2 ( 
NO2 = 0.1745E 18
AL=WPI JVER WI SGUARED = C.35G4ECL
A2 =WPZ CVER W2 SQUARED = 0. = 0.2829E C1
A2=WPZ CVER W2 SQUARED 
21 l2 = C.8046E-C3
-C.1019E C2
VWALL
elECtron temperature
```

```
number cf cata set = 3
this is an analysis of thE electron density
IN a CYLINCRICAL PLASMA CJLUY'N BASED CN A
besSel functicn profile apordximatica
uSING therral rescmanCes 1 and 3
TCTAL PHASE FCR fIRST RES IS PI TIMES 1.25
ICTAL PhaSE fCR SEC RES IS PI TIMES 3.25
THE SQUARE OF hP OVERW = 2.6C
LCWER INT. LIMIT = C.COOCE CC
INITIAL INCR.IN 2I O.1000E CO
NUMEER SF INTEGR. STEPS = 20
value of hl
VALUE OF W2
DIPCLE CURRENT AT Wl 
CURRENT AT WI =
CURRENT AT W2
number. t. C. resolance 2nJ we
COEFFPEAK TC AVG EL DENS = C.1793E Cl
GAMMA = C.3277E C3
ETA = VMALL TO KT CVER Q = -C.lol7E Cl
gamma tIMES Zl = C.3ICOE OO
gAMMA TIMES 22 = C.6014E CO
22TC 21 = C.1940E O1
WPI
WP2
NCl
C.2159E 11
C.2151E 18
C. 1465E 18
C.3489E C1
C.2375E O1
C.G459E-C3
0.1825E-C2
-0.8931E C1
C.57COE CS
```

```
NUMbER JF cata set = 4
```

this is an analysis of the electroct density
IN a CYLINCRICAL plasma column basej in a
BESSEL FUNCTICN PEJFILE APPROXIMATICN
USING THERMAL RESUNANCES 1 aNO 2
TOTAL PHASE FCR FIRST RES IS PI TIMES 1.25
tCTAL Phase fer sec res is pi times 2.25
THE SQUARE OF WP OVER W $=2.60$

LCWER INT. LIMIT	C. CCOCE CC
INITIAL INCR. IV 21	C. 1 CCCE CC
number cf intecr. steps	20
value of wl	C.1458E 11
value of wz	C. 1458 E 11
dipole current at wl	C.355CE CC
CUPRENT AT WL	C. 245 CE CO
CURRENT AT WZ	C.2COCE CO
NUMBER T. C. RESCNANCE 2 NO W	2
coeff peak tc avg el dens	C. 2011 Cl
GAMMA	C.3299E 03
ETA = VNALL TO Kt over o	-C.1850E O1
GAMMA TIMES 21	C.31COE CC
gamma times 22	$0.4557 E$ CO
22 TC 21	C.147CE CI
WPI	C. 2762 El
WP2	C.2490E 11
NCl	C.2397E 18
NC2	0.1956 E 18
A1 = WPL OVER Wl Souaneo	C. 3589 El
A2 = WP2 OVER W2 SOUARED	C. 2930 OL
21	C.9396E-C3
22	C. 13 ALE-C2
VWALL	-C.7640E. Cl
electron temperature	C. 4795805

```
NUMbER CF EATA SET = 4
ThIS IS a.i analysis cf the electren censity
in a cyliNOर̇ICAl plajga column bajeg in a
BESSEL FUNCTICN PROFILE APPROXIMATICA
USING thenMal resGNaNCES 1 ano 3
TCTAL PHASE fOR FIFjT RES IS PI TIMES 1.25
TOTAL PHASE FCR SEC RES IS PI TIUES 3.25
THE SQUARE DF hP OVER W = 2.tC
```



```
COEFF PEAK TS AVG EL DENS = C.l999E Cl
n gamma
GAMMA TIMES 2I C. C.2780E CO
GAMMA TIMES L2 = C.5977E CO
22 10 21
WPI
WP2
NCl
NO2
Al = WPI GVER WI SOUAREO
A2 = WP2 CVER W2 SQUARED
21
22
VWALL
ELECTRON TEMPERATURE
0.3284E 03
* ETA = vwall tC kt over o
```

```
NUMBER OF CATA SET = 5
this is an analysis of the elegtron censity
in a cylindrical plasma column based cN a
BESSEL FUNCTICN FRDFILE APPROXIMATICN
USING THEENAL RESCNANCES l and 2
TCTAL PHASE fCR firSt RES IS Pi tIMES 1.25
total phase fCR SEC RES IS PI TIMES 2.25
THE SQuARE OF WP OVEK W = 2.60
LOWER INT. LIMIT = C.CCOCE CO
INITIAL INCR. IN LI = C.IOOCE CO
NUMGER CF INTEGR. STEPS = 20
valle of wl
C.1204E 11
    C.1204E 11
    C.270CE CO
    C.18CCE CO
CUREENT AT WZ RESCNANCE 2NO W = C.135CE CO
CCEFF PEAK TC AVG al DENS : 0.1986E 01
GAMMA = C.32E8E C3
ETA = VWALL TC KT CVER O = -C.18C4E CL
GAMMA TIMES 2l = C.31COE CO
GAMMA TIIHES 22 - 0.4929E CO
22 IC 21 = C.1590E Cl
WP1 = C.2242E 11
WP2
C.1941E 11
0.1579E 18
C.1184E 18
C.34ETE OL
C. 26COE O1
0.9485E-03
C.15C8E-C2
-C.16C9E CZ
C. 1035E C6
```

```
NUMBER C.F CATA SET = 5
this is an analysis úf the electocn cenjity
IN a CYLINORICAL plasma columi baSED CN a
BESSEL FLNCTICN PREFILE APPROXIMATICN
USING THÉRMAL RESCNANCES 1 ano 3
TOTAL PHASE FCR FIRST RES IS PI TIMES 1.25
TCTAL PHASE FGR SEC RES IS PI TIMES 3.25
THE SQUARE OF hP OVERW =2.60
LOWER INT. LIMIT = C.CCCCE CO
INITIAL INCR. IN 2i O.lCOCE CO
NUMGER CF INTEGR. STEPS = 2C
value OF WI
VALUE OF W2
0.1204E 11
C.1204E 11
DIPCLE CURRENT AT WI = C.270CE CC
CURRENT AT WL = C.LBOCE CC
CURKENT AT W2 = C.lllOOE OO
Number t. C. RESCNANCE 2ND W= 3
COEFF PEAK TC AVG EL DENS = C.1986E CL
GAMMA = C.3268E 03
ETA = VNALL TC KT OVER O = -C.18C4E Cl
GAMMA TIMES LI = C.3ICOE CO
GAMMA TIMES 22 C.6448E CC
22 2L = C.208CE O1
WPl
C.2242E 11
C.1752E 11
C. 1579E 18
C.9648E 17
C.3467E Cl
0.2119E O1
0.9485E-C3
0.1973E-02
-C.16C9E C2
    C.IC35E OE
```



```
NUMEER GF CATA SET = 6
THIS IS AN ANALYSIS DF THE ELECTRON CENSITY
IN A CYLINCRICAL PLASMA COLUMN BASEO CN A
BESSEL FURICTICN PREFILE APPRUXIMATICA
USING THERMAL RESUNANCES I AND 
TGTAL PHASE FCR FIEST RES IS PI TINES L.25
TOTAL PHASE FCR SEC RES IS PI TIMES 3.25
THE SQUARE GF hP OVERW = 2.EC
LOWERINT.LIMIT E.CCCCE CO
INITIAL INCR.IN EI C.IOOCE CO
NUMBER CF INTEGR. STEPS = 2C
VALUE OF WI
0.1267E 11
VALUE OF W2
DIFQLE CURUENT AT WI
CURRENT AT WI
C.1267E 11
C.2850E CC
CURRENT AT WL = C.LGOCE CC
CURRENT AT W2 O.LZOCE 00
NUMGER T. C. FESCNAHCE 2ND W = 3
CDEFF PEAK TC AVG EL UENS C.1S48E Cl
GAMMA
C.322LE O3
ETA = VWALLTCKTEVER O -C.1737E OL
GAMMA TIMES LI
GAMMIA TIMES L2
22 IC 21
WPI
WP2
NOI
NO2
AL - WPL DVER WL SGJARED
A2 = WP2 CVER W2 SQUARED
21
22
VWALL
ELECTRON TEMPERATURE = C.0090E CS
```

```
NUMBER OF.CATA SET = 
THIS IS AN ANALYSIS OF THE ELECTPON CENSITY
IN A CYLINCRICAL FLASMA COLUMN BASEC CN A
BESSEL FUNCTICN PRCFILE APPROXIMATILN
USING THERMAL RESONANCES 1 AND }
TOTAL PHASE FCR FIRST RES IS PI TIMES 1.25
TOTAL PHASE FOR SEC RES IS PI TIMES 2.25
THE SQUARE OF WP OVERW =2.60
LQWER INT.LIMIT E.CCOCE CO
INITIAL INCR.IN II = C.ICOCECC
NUMBER LF INTEGR. STEPS = 20
VALUE OF WI
VALUE OF W2
DIPQLE GURRENT AT WI
CURRENT AT WI
CLRRENT AT W2 C.15CCE CC
NUMBER T. D. RESENANCE 2NO W = 2
COEFF PEAK TC AVG EL DENS = C.1993E Cl
GAMMA
ETA = VWALLTC KT CVER Q - C.IEITE CL
GAMMA TIMES LI O.31COE CC
GAMMA TIMES L2
22 TC 21
WPl
WP2
NOI
NC2
A1 = WPI CVER HL SQUARED
A2 - WPZ OVER W2 SQUARED
21
22
VWALL
ELECTRON TEMPERATURE
```



```
0.3277E C3
    C.4743E OC
        C.153CE Cl
        C.2672E 11
        C.2344E 11
        C.2243E 18
        C.1725E 18
        C.34G7E Cl
        O.2690E O1
        C.9459E-C3
        C. 1447E-C2
-C.2254E C2
    C.144CE C6
```

```
-
    NUMEER CF CATA SET = 7
    this is an analysis if the electron censity
    IN A CYLINURICAL PLASMA CJLUMN BASEO CN A
    BESSEL FUNCTICN PECFILE APPROXIMATICN
    USING THERMAL RESUNANCES 1 AND 3
    TCTAL PHASE FCR fIRST RES IS PI TIMES 1.25
    tCTAL PHASE FOR SEC RES IS PI TIMES 3.25
    THE SQUARE OF WP CVER W = 2.6C
    LOWER INT. LIMIT = C.CCOCE CO
    INITIAL INCR.IN 2I = C.ICCCE CC
    NUMGER CF INTEGR. STEPS = 20
    VALUE OF Wl
    VALUE DF W2
    DIPCLE CJRRENT AT Wl
CURRENT AT WI
# CURRENT AT WZ RESCNANCE 2NO W=
    CCEFF PEAK TC AVG EL DENS = S.l793E Cl
    GAMMA = C.3277E C3
    ETA = VWALL TE KT CVER Q -C.1817E Cl
    gamMA TIMES Ll = C.3ICCE CO
    gamma TlyES iz
    22 TC 21
    WPI
    WP2
    NOl
    NC2
    Al = WPI OVER HI SCUARED
    A2 -WP2 OVER H2 SQUARED =
    22
    22
VWALL
ELECTRON TEMPERATURE
C.1429E 11
C.1429E 11
C.2GCCE CC
C. 195CE CO
C.120CE CC
        0.6386E 00
        C. 2060E Cl
        0.2072E 11
        C.2CG6E 11
        0.2243E 18
        C.1380E 18
        0.3497E O1
        0.2152E 01
        C.9459E-C }
        C.1949E-C2
    -C.2254E C2
        0.1440E 06
```

```
NUMgER こF CATA SET = 8
this is an analysis uf the electren censity
IN A CYLINCZICAL flasma columN baSEC CA a
beSSEl functicN prCfile approximaticn
using therral resunamces l aroo 2
tCTAL PHASE fCR figSt REJ IS PI TIMES 1.25
TCTAL Phase fCR SEC RES IS PI TIMES 2.25
The SQuaze EF hp CVERW = 2.tC
LOWER INT.LIMIT INCR.INZI C.COCCE CO
NUMBER こF INTEGR. STEPS = 20
VAlle OF wl
C.1459E 11
VALlE OF W2
DIPULE CURRENT AT WI C.32OCE CO
    C.1459E 11
CURRENT AT WI = C.2LCCE CC
CURRËNT AT WZ = C.16CCE CO
NLMGER I. C. RESENANLE 2NO W = 2
CCEFF PEAK TC AVG EL DENS = C.2C2CE Cl
GAMMA PEAK TC AVGEL DENS
= C.3310E 03
ETA = VAALL TO KT CVER Q - = -1866E OL
gamma times zl
- 0.35COE CO
gamma tliaES l2
C.5495E CC
0.157CE Ol
C.2695E 11
C.2353E 11
    C.2282E 18
    C.1739E 18
    C.3412E Cl
    0.2600E Ol
        C.1057E-C2
        C.1660E-02
    -C.1639E C2
        C.lC20E 06
```

(1)
$\because \because 10$
\therefore " THIS IS AN ANALYSIS CF THE ELECTRCN CENSITY
IN A CYLINCRICAL PLASMA COLUMN BASEO CN A
BESSEL FUNCTICN PRCFILE APPROXIMATICN
USING THERMAL RESONANCES 1 ANO 3
TOTAL PHASE FCR FIRST RES IS PI TIMES 1.25
TOTAL PHASE FCR SEC RES IS PI TIMES 3.25
THE SQUARE OF WP CVER $W=2.60$

COEFF PEAK TC AVGEL OENS C.1909E 01
GAMMA $\quad 0.3248 E 03$
ETA = VaALL TOKTEVER O -C.1775E CI
GAMMA TIMES 21
GAMMA TIMES 22
22 TC 21
$W P I$
WP 2
NOI
NO2
AI = WPI CVER WI SOUARED
A2 = HPZ CVER H2 SUUARED
21
22
VWALL
ELECTRON TEMPERATURE
J 10
"

ω
NUMBER OF CATA SET = 8
C. 3060E CO
C. 6640 EC
C. 2170E O1
C. 26 G5E 11
$C .2121 E 11$
$C .2282 E 18$
C. $2282 E 18$
C. $1413 E 18$
C. $1413 E 18$
C. $3412 E$ C1
0.2112E C1
C. 94 21E-C3
0. 2044 E-02
-C. $1547 E 02$
$0.1012 E 06$

(-)

都
 \square -
 T
\square


```
summary jf res uf pak didatirsis
```



```
oata jミT iNi b kEju\aNle fov l
```



```
OATA SET NC O kESDNANCE NO }
0.113ミ13 0.83jE OO 0.127E 11 O.2CJE 05 C.135E-02 -0.180E Cl
data SET NC 6 kESONANCE Nu 3
0.940E 17 0.835E CO 0.127E 11 C.2CSE OS C.191E-02 -0.180E Cl
dATA SET NC 7 KESDINANE NUG 1
0.194E 18 0.84LE OO 0.143E 11 0.274E O5 0.9IOE-03 -0.184E OL
DATA SET NO 7 % % mONANCE NO 2
0.149E LJ C.84IE CO O.143E LL O.27IE OS C.139E-02-0.184E CI
OATA SET NC 7 REJJHANCE NO }
0.122E 13 0.870E CO 0.143E 11 0.428E OS O.1gaE-02 -0.2C4E Cl
OATA SET NC 8 RESCINANCE NO l
0.199ミ 10 0.85? = 00 0.140E Ll O.T.lE 05 C.980E-03-0.191E Cl
DATA SET NO 8 NEJONANCE NO 2
0.151E 1O 0.852E CO O.L4GE LI C.39LE OS C.149E-02 -0. 19IE CL
DATA SET NC 8 KESONANCE NO }
0.123E 18 0.8j2ミ CO 0.14OE Ll O.3GLE O5 C.2O3E-02 -0.191E OL
```

```
SUMMARY OF RES OF bESSEL ANALYSIS
NO GAMYA TEMP I CRIT. ETA
```



```
DATA SET NL 1 riEJNNANCENU }
0.141E 13 C.327E C3 C.12TE 11 C.474E U, C.141E-C2-C.18CE Cl
data SET NC l resunancenj 3
0.126E 13 0.321E C3 0.127E 11 C.3C6E 05 C.157E-02 - 0.172E Cl
DATA SET HC 2 kESUNANGE NU 1
0.180E 18 0.j2OE C3 C.132E 11 0.837E 05 C.952E-03 -0.178E Cl
DATA SET NC 2 kESJ.VANCE NO 2
0.147E LO 0.326E 03 C.132E 11 0.837E 05 C.146E-02-C.178E Cl
DATA SETNO 2 RESUNANCENO }
0.1LJE L8 0.319E C3 0.132E 11 0.747E 05 C.l86E-02 -0.17CE Cl
OATA SET NC 3 RESDNANCENU l l
0.222E 13 0.323E U3 0.1+0E 11 0.075E O5 C.805E-03 -0.175E Gl
DATA SET NO 3 RESJNANCE NL 2
0.174E LJ 0.323E O3 O.14CE 11 O.075E 05 C.129E-02 -0.175E CI
data SEt no 3 kesuidaince no 3
0.147E LO 0.32ठE O3 0.14CE IL O.310E 03 0.184E-02 -0.182E Cl
data SET NO 4 kESONANCE NO l
0.24CE 18 0.330E C3 O.14OE 11 0.48CE 05 C.94OE-03-0.185E Cl
data SET NO 4 kESONANCENO 2
0.19OE LO 0.33DE C3 O.14OE 11 0.48CE O5 C.138E-02-0.185E Cl
DATA SETNC 4 RESONANCENC 3
0.157E 18 0.j2BE C3 O.140E 11 0.777E O5 O.182E-02-0.183E Cl
data set no 5 meSinange no l
0.153E 18 0.327E O3 O.12CE 11 O.1C4E O6 C.94BE-03 -0.18OE Cl
DATA SET NC 5 RESUNANCE NO 2
O.118E 18 0.327E O3 0.L2CE LI O.1O4E OO 0.15LE-02 -0.180E OL
DATA SET NC 5 KESONANCE NO 3
0.905E 17 0.327E 03 O.12CE 1L O.104E 06 C.197E-02 -0.18CE CI
```

```
DATA SET NO G KESUNANCE NO }
0.17SE LO 0.327E C3 0.127ミ 11 O.71OE O5 C.948E-03 -0.18CE Cl
DATA SET NG 6 ṅSJivmivor=NU e
0.138E 13 U.327= C3 S.127E 11 U.71OE Jj 0.145E-02 -0.180E Cl
oata jet ng o nEjuinainCénu 3
O.11U三 1J J.322E C3 C.127E 11 O.OEFE OJ C.1FAE-CZ-C.174E Cl
data Set no 7 kejonance no l
0.224E 18 0.328E 03 C.143E 11 0.144E 00 C.946E-03 -0.182E Cl
oata SET iNC 7 RESONANCENO }
0.172E 13 0.32bE C3 0.143E 11 O.144E OO C.145E-02 - 0.182E Cl
DATA SET NO }7\mathrm{ % RESONANCE NG 3
0.138E 1У O.32BE C3 0.143E 11 0.144E Ob C.195E-02 -0.182E O1
DATA SET NC 8 kESONANCENO 1
0.223E LO 0.331E C3 0.14OE 11 O.LUZE OO O.106E-02 -0.187E CI
dATA SET HO 8 GESCNANEE NO 2
0.174E 18 O.331E C3 0.146E L1 C.1C2E O6 C.l06E-02 -0.187E Cl
OATA SET NO 8 fESUNANCE Nú }
O.14LE LJ O.325E CO O.14OE 11 L.LCLE OG C.2C4E-O2-0.177E CL
```


APPENDIX B

FORTRAN COMPUTER PROGRAMS WRITTEN SPECIFICALLY FOR THE NUMERICAL ANALYSIS IN THIS RESEARCH PROJECT

```
ISYS TIME=IC
glCAC watFIV
/OPT NOSCURCE
C*****THIS PRCGRAM IS DESIGNEO TO OETERMINE THE Parameters
C*****OF A BESSEL SERIES ELECTRON SENSITY PROFILE BASEC ON
C*****THERMAL RESCNANCE DATA CBTINEC HITH AN ELECTRCACCUSTIC PRCEE.
    FUNCTION FIO(X)
    IF(X-.01) 1.1.2
1FFIO=1.*X**212.**2
    GO TC 3C
2 IF(X-5)IC.20,2C
2C FIC=EXP(X)/SORT(2.*3.14159*X)*(1.+1.18.1X)
    GO TG 3C
IC FIC=1.+X**212.**2
        1 4 x**4/(2.**4*2.**2)
    2 +x**0/(2.**6*(3.*2.)**2)
    3+x**8/(2.**8*(4.* 3.*2.)**2)
    4 *x**1C/(2.**10*(5.*4.*3.*2.)**2)
    5 +x**12/(2.**12*(6.*5.*4.*3.*2.1**2)
    t * x**14/(2.**14*(7.*6.*5.*4.*3.*2.)**2)
30 RETURN
    ENO
C GOCN
    FUNCTIUN FIGZI.IWITCH,GZ,AL,AZ.WI,WZ,
    1WP1.WP2,G20IFFI
        COMMCA AGAMMA
        COPMCN MTEST
        YL=AGAMNA-GL
        IF(IWITCH) 13.13.15
13 D=1.-A2*EXP(1.-FIC(YI))
        IF(D) 18,18,23
<3 FOSQRT(C)
        GO TC 16
15 D=1.-A1*EXP(1.-FIC(YI))
        IF(O) 10.18.25
25 F=SQRT(C)
        GO TC 10
18 F=C.
16 RETURA
        ENO
        FUNCTION FINTIX,GAMMA,ETA)
        YI=GAMMA*.007-GAMMA*X
        FINT=EXP(1.-FIO(YI))*(.007-X)
        REIURA
        ENO
C SINGLE PRECISIONPROGRAM
        COMMCN AGAMMA
        commCN MTEST
        DIMENSICN ANZILOCI
        DIMENSICN DIFF(2)
        DIMEASICN V(150):AN(I50)
        READ(S.*) NSET
        READ(E.*) NLOW1,W2.DIPIIOWII,W2I,NHARM
        READ(5,*) AGAMMA,COEFF
        REAO(5,*) PHIOPHZ,WPTHS
        G211=C.
        OG2LF=.CL
```

```
    WRITE(0.949) NSET
G49 FORMATIII. 2XO'NUMBER OF DATA SET FCR BLC . .13.1/1
    WRITE(0,950) NHARM,PH1,PH2,WPTWS
G50 FORMATI2X,'THIS IS AN ANALYSIS CF THE ELECTRON DENSITY',I,
    1 2X,OIN A CYLINORICAL PLASPA CCLLMN BASED CN AO,I,
        2X," BESSEL FUNCTION PROFILE APPROXIMATION',IO
        2X,'USING THERMAL RESONANCES 1 AND '.I3.11.
        2X.'IOTAL PHASE FOR FIRST RES IS P\ IIMES 0.F4.2.1.
        2x, TOTAL PHASE FOR SEC RES IS PI TIMES P,F4.2.IIO
        2X.'IHE SQUARE OF WP CVER W -.F4.2.1/11
        WRITE(6.930) GZII.OGZIF.NU.W1,W2.OIPIL.W1I,WZI,NHARM
        FORMAII2X,'LOWER INT. LIMIT EOEL5.4010
        2X,OINITIAL INCR.IN 2I =0.E15.4.1.
        2X,0NUMBER OF INTEGR. STEPS E',II5.10
        2x.'VALUE CF WI ='.E15.4.1.
        2x.0VALUE OF W2 =0,E15.4.10
        2x,OIPOLE CLRRENT AT WI =',EL5.4.10
        2X,'CURRENT AT Wl EO.El5.4.10
        2x,0}\mathrm{ CURRENT AT W2 =0,EIS.4.1.
        2X,'NUMBER T. D. RESCNANCE 2ND W .0.II5,11
    AG=AGAMMA
72 DG2IF=.C1
        GAMA=AGAMPAN.OO7
        EM=9.11E-31
        EPS=8.85E-12
        O=1.CC2E-19
        ANCI=2.*W1**2*EM*EPS/O**2*WII/DIPII
    I 13.*WPTWS
        ANCI=ANC1*CCEFF
        ANC2*2.*W1**2*EM*EPS/O**2*W2I/OIPII
    1 13.*WPTWS
        ANO2=ANC2*CCEFF
    WPI=SCRT(G**2*ANUI/EM/EPSI
    WP2=SGRT(C**2*ANOZ/EM/EPS)
    Al=WP1**2/W1**2
    A2*WP2**2IW2**2
    GZ1*-CGZ1F/2.
    M=1
    OO 1C I=M.2
        G21=G21+CG21F
    OG2=C21/1C.
    G22=G21
    GZ2=G22+CCZ
    YLOACAMMA-G21
    Y2=AGAMMA-GZ2
    OGZT=A1*EXP(1.-FIO(Y1))-A2*EXP(1.-FIC(Y2))
    IF(DG2T)700.702.701
700 IFICG2-G21/90.1 702.702.703
7C3 G22-C22-OCZ
    DG2=0G211C.
    GOTC 7C1
702 CONTINUE
    IWITCF=-1
    UL=GZ2
    CALL INTIGZIIONU,UL,AINT,GZIOW1OWZOWPI,WPZ,AI,AZOIWITCH,GZOIFFI
    AINTI=AINT
    IWITCR=1
    UL=G21
```

```
        CALL INTIGZIIONUOUL.AINT,GZIOWI.WZ.WPI.WPZ.ALOAZOIWITCFOGZCIFFI
        AIAT2-AINT
IC DIFF(I)=AINTI-WI/W2*AINT2*
    1 PHट/PHI
    IFIGZI-4.) EO,60.EL
E1 WRITEIG.7GOI GAMA,CDEFF
IG9 FORMATI2X.OFOR GAMA ©.EI5.4.1.
    1 2x,'AND COEFF O.EL5.4.1.
    2 2X,'THE DIFFERENCE DIVERGES FCR ALL POSITIVE GZI',1/I
    IF(DIFF(1)*DIFF(2)) 40,20,2C
    ERR=G2L
    M=2
    OIFF(1)=DIFF(2)
    GO TO 30
4C IFIDGZIF-.OLI 1CC.9C,GC
GC GZI=G2L-DCZLF
    OGLIF=DGZIF/IC.
    GO TC 30
ICO continue
    GAT=-G21*.OCOCL
    OGAT=GZ1
710 GAT=GAT+CCAY
    V3=GAT-G21
    Z1=FIC(V3)-(1.-ALOI(1./A1))
    IF(21)71C.711.712
    IFIDGAT-G21/9.1 711.711.713
    GAT=GAT-DCAT
    OGAT=CGAT/IC.
    GO TC 7IC
ill CONTINUE
    IF(ABS(GAT-AGAMMA)-ABS(GAT/5C.)) 720.72C.721
    AGAMMA=(AGAMMA+GAT)/2.
    GO TC 73C
720 CONTINUE
    BCCNST-1.38E-23
    YY=AGAMNA-GZ1
    ETA=1.-FIC(AGAMMA)
    B2=A2
    Bl=Al
    22T021=G221G2L
    TE=W1**2*EM*AINT2**2IGAMA**213.14159**2/3.IBCCNST
    VWALL=ETA*BCONST*TETO
    Z11=G21/GAMA
    222=G221GAMA
    CALL INTE(ETA,GAMA,SI
    COEFFT=.OC7**2/2.1S
    IFIABSICCEFF-COEFFTI-ABSICOEFF/2C.I) 74C,74C.741
    COEFF=(CDEFF+COEFFT)/2.
    GO TC 72
74C CONTINUE
    WRITE(O,879) COEFFT,GAMA,ETA,GZ1.GZZ,Z2TCZ1,WPLOWP2,ANCIOANCZ.
    1 AL.AZ,Z1L.ZZ2,VWALLOTE
879 FORMAII 2X.OCLEFF PEAK TO AVGEL CENS E O,E15.4.1.
    1 2X,OGAMMA O,OEI5.4.1.0
    2 2X,OETA= VHALLTOKTCVERO O,OEL5.4.1,
    3 2X,'GAMMA TIMES 2l OP,EI5.4.1.
    4 2X,'GAMMA TIMES 22 * OEL5.4.1.0
    5 2x,0221021 O.,EL5.4.1.
```

```
2X.0WP1 = 0.EI5.4.1.
2x.OWP2 = OE15.4.10
2X.0NO1 = ,.E15.4.1.
2X.0NO2 - , EL5.4.1,
2X.OA1 WPI OVER WI SCLARED U,EL5.4.1.
2X,0A2 WP2 OVER W2 SCUARED O, WL5.4.1.
2x,011
2x,'22
2x.0 VWALL
2X,0ELECTRON TEMPERATURE = 0EL5.4.1.
1|1 1
    DZ=.CC7/25.
    z=-0z
    00 10C 1-1.26
    Z-2+Cl
    RI=AGAMMA-GAMA*Z
    V(|)=1.-FIO\RI)
    ANZ(I)=ANO2*EXP(VIII)
ECC AN(I)=ANCI*EXP(VII))
    CALL PLOT4(V,AN,26)
    CALL PLCI2(AN.AN2.26)
777 STCP
    ENO
    SUBRCLTINE INTIXI,NOXF,SOGZIOWIOW2,WPIOWPZ,ALOAZ,IWITCH,GICIFFI
    DIMENSICN X\3)
    COMMCN ACAMMA
    COMMCN MTEST
    N=N/2*2*1
    XN=N
    OX=(XF-XI)/(XN-1.)
    NCCUNT=C
    X(1)=xI-2.*DX
    X(2)=x{-0x
    X(3)=xl
    S=C .
    DO 10 1=3.N.2
    x(1)=x(1)+2.*OX
    x(2)=x(2)+2.*Dx
    X(3)=x(3) +2.*OX
    OS=F(GZ1,IWITCH,X(1),A1,A2,W1OW2OWP1,WP2,G2OIFFI
    1+4.*F(GZ1.IWITCH,X(2),AL.AZ,W1,W2,WP1,WP2,GZO(FF)
2*F(GZI,IWITCH,X(3),AI,AZ,WI,WZ,WPI,WPZ,GZOIFFI
    S=S*OX/3.*OS
    REIURA
    END
    SUBRCLTINE INTEIETA.GAMMA,SI
    DIPENSICN X(3)
    N=20
    N=N/2*2+1
    XN=N
    XI=0.
    XF=.7CE-2
    OX=(XF-XI)/(XN-1.)
    NCCUNT=C
    X(1)=xI-2.*OX
    x(2)=xI-0x
    X(3)=xI
    S=C.
```

 00 \& \(1=3, N, 2\)
 \(x(1)=x(1)+2 . * 0 x\)
 \(x(2)=x(2)+2 . * D x\)
 \(x(3)=x(3)+2\). 0 Dx
 OS=FINT(X(1),GAMMA.ETA)+4.*FINT(X(2).
 1 GAMPAOETA) +F(NT(X(3), GAMMA,ETA)
 \(S=S+O X / 3.0 S\)
 RETURN
ENC

```
**** PIC JACK CLIN BSSR
ILCAD WATFIV
ICPT NOSOURCE
C*****THIS PRCGRAM IS designed to deterrine tre parameters
C****OF A PARAROLIC ELECTRCNDENSITY fRCFILE BASED ON THERMAL
C****RESCNANCE DATA OBTAINED WITH AN ELLECTROACOUSTIC PROBE.
    FUNCTICN FINTIRTAI
    COMMCN MT
    COMMCN AlC.AILIAIZ,RITA
    COMMCN ALFA.BETA
    COMMCA A
    IF(MT) 15,15,13
    D=1.-AII/AID*3.1(1.-.5*ALFA)*(1.-ALFA*RTA**2)/BETA**2
    IF(0) 18,18,23
    FINTESOFT(DI
    GO TE 16
15 D=1.-A12/A10*3.1(1.-.5*ALFA)*(1.-ALFA*RTA**2)/BETA**2
    (FIO) 18.18.25
i5 FINT=SORT(D)
    GO TC IE
10 FINT=C.
16 RETURN
    ENC
C main prceram
    DIMENSICN OIFF(2)
    DIMENSICN AN(100),ETAR(100)
    COMMCA MT
    COMMCA AIC.AILOAlZ,RITA
    COMMCA AlFA,BETA
    cOmmCA A
    contINUE
    REAO(S,*) NSET
    READ(5,*) AID.AIL,AIL,HORADIUS,NHARM
    REAO(5,*) ORITA,RITAI,BETA
            REAC(5,*) PHI,PHZ,WPTWS
        WRITE(6,949) NSET
        FORMAII/1.2X,0NUMBER OF DATA SET = ..13.111
        WRITE(6.950) NHARM,PH1,PHZ,WPTWS
G5C FORMATIZX,TTHIS IS AN ANALYSIS CF THE ELECTRCN DENSITY '.I'
    1 2X,O IN A CYLINDRICAL PLASPA CCLUMN BASEO CN A .,I.
                        2X.'PARABOLIC DENSITY PRCFILE APFRDXIMATICN •.I,
                    2X.'USING RESONANCES I AND !.13.1.
                    1.
                    2x,0THE PHASE FOR RESCNANCE I IS PI TIMES '0F4.201,
                    2x, THE PHASE FOR RESCNANCE 2 IS PI TIMES 1,F4.2.1.
                    1.
                    2X,0THE SQUARE OF hPCVER W IS EGLAL TC P.F4.2.1/11)
            WRITE(0.970) AID,AIL,AI2,W,BETA,RADIUS
G7C FORMATI2X.'10 = O,EL5.4.1,
    I 2x,111 - OEEI5.4.1%
    2 2x,O12 :OELE.4,1,
    2 2x.0.% - OE15.4.1%
    4 2X,OBETA=ATOR = OEI5.4.1,
    g 2X,ORAOIUS = PEIS.4.111I
    A=BETA*RACIUS
        RITA=RITAI
        M=I
20 00 LC 1=M,2
```

```
1 <ITA=&ITA+DRITA
    ALFA=(I.-AID/WPTWSIAII*8ETA**2I/(RITA**2-AIO/6.1AII*日ETA**2)
    AOL=1./ALFA-(1./ALFA-.5)/WPTWS*AIC/AI2* BETA**2
    AD2=1./ALFA-(1./ALFA-.5)/WPTHS*AIO/AII*BETA**2
    |F|AD|\ 1,1.2
    IF(AC2) 1.1.3
    ORTA=SORT(AOL)-SORT(AO2)
    MT=-1
    UL=DRTA*RITA
    CALL INTIULOAINTI
    AINTIEAINT
    MT=1
    UL=RITA
    CALL INTILL,AINTI
    AINT2=AINT
    OIFF\\)=A\NTI-AINT2*PH2/PHI
    IF(RITA-2.) 5C.51.51
    WRITE(6.SEO)
    FORMAT(2X,'OIFFERENCE DIVERGES',//I
    GO TC 52
    IF(DIFF(1)*DIFF(2)) 4C.20.2C
    ERR=RITA
    DIFF(1)=DIFF(2)
    M=2
    GO TO 3C
    IF(ABS(RITA-ERR)=.01) 100.9C.9C
    RITA=RITA-DRITA
    DRITA=ORLTA/IO.
    GO TC 3C
ICC RI=RITA*A&IL.IBETA-I.I*A
    R2=R1*DRTA*A+A*(1.IBETA-1.)
    Z1*A-R1
    22=A-R2
    ANCD=HPTWS/(1.-.5*ALFA)*8.85E-12*9.11E-9!/1.602E-19**2
    1 *W**2
    ANOL=ANCC/AIO*AIL
    ANC2=ANCC/AID*AI2
    ETEMP=9.11E-31/3.11.38E-23*W**2/3.1415G**2
    1 *(AINTC*A)**2
    WRITE(0.985) ALFA
    FORMATI2X.OALFA - OEL5.4.1/I
    COEFF 1./(1.-ALFA/2.)
    Z2TC21=22121
    ETA=ALOG\1.-ALFA) . & l
    VWALL=ETA*I.38E-23*ETEMP/1.6C2E-19 &
    WRITE{G,GEOI RL,RZ,ZL,Z2,ANOD,ANCIOANOZ.Z2TOZL,CCEFF,VWALL, 1
    1 ETA,ETEMP I
G60 FORMATI2X,ORI ODEI5.4.1. 1
    1 2x,OR2 0,E15.4.10 l
    2 2x,021 0,E15.4.10 I
    2 2x,'22 0,E15.4.1. 1
    4 2X.'NO DIPOLE O.EI5.4.1. &
    2X,'NO 1 RESONANCE - EE15.4.1% &
    2X.'NC 2 RESONANCE = .E15.4.1. - \
    2x,022TC 21 - OE\5.4.10 1
    2XOPPEAK TO AVERAGE = 0,E15.4.10 l
    2X,OVWALL ! OEL5.4.1, \
    2X,'ETA=VWTOKTTOO:O,E15.4.1. \
```

```
    1 2x,'ELECTRCN TEMP - OEL5.4.1/11
    OZ=RACILS/25.
    Z=-DZ
    DO 8CC 1=1.26
    z=l+Cl
    AN(I)=ANOI* (1.-ALFA*(Z/RAOIUS)**2)
    ETAR(I)=ALOG(1.-ALFA*(Z|RADIUS)**2)
8CC CONTINUE
    CALL PLCTG(ETAR,AN,26)
    GO TC 17
&2
    STCP
    ENO
    SUBRCLTINE INTIXI.SI
    DIMENSICN X(3)
    COMMON MT
    COMMCA AID.AIL,AI2,KITA
    CONMEA ALFA, BETA
    CONMCA A
    XF=1.
    N=50
    N=N/2*2+1
    XN=N
    OX=(XF-XII/(XN-1.)
    NC[UNT=C
    X(I)=xI-2.*OX
    x(2)=x(-0x
    x(3)=xl
    S=C.
    OO 10 1=3.N.2
    X(1)=x(1)+2.*OX
    x(2)=x(2)+2.*Ox
    x(3)=x(3)+2.*DX
    DS=FINT(X(1))+4.*FINT(X(2)) +FINT(X(3))
    S=S+DX/2.*DS
    RETURN
    ENC
```

```
**** FO2GRF JACK GLIN BSSR
ILCAO WATFIV
C THIS SUBRUUTINE PLOTS THC VARIABLES CN THE SAME PLCT
C WITH THE ZERO AXIS AS TFE CENTER -MAX VALUES ARE
C CALCLLATEC AUTOMATICALLY FOR Y - ZMAX = YMAX
    SURRCLTIAE FLCTZ(YOZ,N)
    OINENSIEN CCL(1CZ), Y(1OO).Z(ICC)
    INTEGER SIAR,COI,BLANK,COL,PLLS
    STAR=0* -
    STAR= 1547714024
    DOT=`.*
    OOT= 1262501952
    BLANK=' - 1C77952576
    PLUS=0.4 -
    PLUS= 1312833t00
    XXXXX= 'X , -415219048
    YMAX=C.CC
    ZMAX=C.CC
    DO Q5 K=1,N
    x=ABS(Y(K))-i&j(YNAX)
    |F(x) シン,方,q?
    YMAX=Y(K)
S) CONTINUE
    YMAX=ABS(YMAX)
G6 OOLCCL=1,N
    Q=ABS(Z(L))-ABS(2MAX)
    IF(O) ICC.ICO,99
    ZMAX=2(L)
ICC CONTIINUE
    ZMAX=ABS(2MAX)
    WRITEIB,2COI YMAX,ZMAX
    IF(ZMAX-YMAX) 70,71,71
    YMAX= 2MAX
    ZMAX=YMAX
```



```
    WRITE(6,4CO)
    CC FORMATI'1!1
    WRITE(6,2)
```



```
        I
        1.*.........*.........*.........*.....................**1
            00 3 1=1.101
            COL(I) = ELANK
            COL(51)=OCT
            I I=4
            DO 4 1=1.N
            J=5C.*(Y(|)/YMAX+1. ) +1.5
            K=50.*(2(1)/2MAX+1.) +1.5
        32COL(J) = STAR
        35 COL(K)=PLLS
            WRITE(6.5)(COL(1J),1J=1,1C1),Y(1),2(I)
            FORMATIIXOLCIAL.&P2EG.II
        42 COL(J)= BLANK
        45 COL(K)=BLANK
            IF(I-II) 25C,3CC,300
:CC COL(51)=XXXXX
```

```
        4C COLIJ)=RLA'HK
        4S COL(K)=eLANK
        1F(I-11) 25C,30C,300
    300 COL(4t)EXXXXX
        11=11+5
        GO TC 4
    25C COL(4E)=DCT
4 continue
    WRITE(0.950)
S90 FORMAT////I//I/|/I
    RETURN
    END
```


$11=11+5$
GO IC 4
二5C CO! (51)=CCT
4 CONTINUE
WRITE (0.577)
C77 FORMAT(/1///////1)
RETURA
ENO

```
    **** WKB JACK OLIN BSSR
ISYS TIME=IC
ILCAD WATFIV
ICPT NOSEURCE
C*****THIS PRCGRAM PLCTS THERMAL RESCAANCES BASEC CN A wKg
C*****APGRCXIMATICN AWAY FRUM THE CGITICAL PCINT FCR A GIVEN
C*****BESSEL series electrcN density prCfile
            FUNCTICN FIC(X)
            IF(x-.nl) 1.1.?
1 FIS=1.+x**212.***
            ,0 ri, al.
; lF(x-5)lC.P(0.20
¿C FIC=txP(x)/SwrT(2.*3.1415G*x)*(1.+1.18.1x)
            GO TC 3C
IC FIC=1.****212.**2
            1 *x**4/(2.**4*2.**2)
    2 +x**0/(2.****(3.*2.1**2)
    3 *x**8ノ(z.**8*(4.*3.*2.1**2)
    4 +x**1C(12.**1C*15.*4.*3.*2.1**2)
    5 * x** 12/(2.**1く*(6.*5.*4.*3.*2.)**2)
    t +x**14/(2.**14*17.*e.*5.*4.*3.*2.)**?)
        QEIURN
            ENC
            FUNCTICN F(X)
            COMMLA ANC,GAMMA.A,W,TEMP,EM,EPS.C,BCDNST
            Y= A*GAMMA-GAMMA*X
            O=1.-1.1W**2*C**2IEM/EPS*ANC*EXF(1.-FIO(Y))
            IF(C) 14,18.23
                    ¿3 F=SORI(C)*WISORT(3.*BCCNST*TENP/EM)
            GO TO 1t
B F=C
16 PEEILRA
            ENO
C*****MAIN PRCGFAM
            DIPENSICN BETAP(ICO),ANI(IOC)
            COMACN ANC.GAMMA,A,H.TEMP,EM.EFS.G.BCONST
            REAO(S.*) NSET,NKESOANC,GAMMA,WOIENP,ZH
            READ(S.*) A.N,M
            REAO(E,*) TEST
            WRITE(6.996) NSET.NRES
                    CG% FORMATIII.2X,'SET NUMBER IS ..13.1.
            1 2x.0RES NLMBER IS 0.13.111
            WRITE(G,GG7) ANG.GAMMA.A.W.TERP,ZR,NSET
SQ7 FCRMATI 2X,ONO
                            -.,E15.4.1.
            1 2x,'GAMMA
                    2x.OGAMMA 
                    2x.0RADIAN FREQUENCY = '.E15.4.1.
                    2x.'TEMPERATURE : !,E15.4.1.
                    2X.'2 CRITICAL = .,E15.4.1,
                    2x.'Number OF data SEt = '.l3.1.
                    111
            WRITE(6,GG8)
C98 FORMATIZX.'DISTANCE FRCM WALL', IX.'PERTLRAEO ELECTR CENSITY'./I)
            EM=9.11E-31
            EPS=8.85E-12
            O=1.6C2E-19
            BCCNST=1.3nE-23
            YNN=N
```

```
    NZ=2N/(\timesNN-1.)
    l=-0l
    OO 1C 1=1,N
    2=2+C2
    CALL INT(L.7N,S,N)
    Y=A*GAMMA-IJAMMA*Z
    0=1.-1.1h**2*O**2IEM/EPS*ANC*EXF(1.-FIO(Y))
    IF(C) 4C.40.41
    BETAP(I)=C.
    GO TC 5C
    BETAP(I)=SORT(D)*W/SORT(3.*BCCNST*TEMP/EM)
    IFIBETAP(I)-TEST/6006C,61
    ANI(I)=C.
    GO TC 62
    ANI(I)=1.1SCRT(BETAP(I))*SIN(3.14159/4.45)
    WRITE(6.9GQ) Z.ANIIII
    G&9 FORMAT(2X.E15.0.6X,E15.6)
IC CONTINUE
    CALL PLCTG(ANL,ANI,N)
    STCP
    ENC
    SUBRCLIINE INTIXI.XF,S.NI
    DINENSICN XIGI
    CCMMCA ANC,GAMMA,A,WOTEMP,EN,EPS.G,BCONST
    N=2C
    N=N/2*2+1
    XN=N
    OX=(IF-XI)/(XN-1.)
    NCCUNT=C
    x(1)=x|-2.*Ox
    x(2)=xI-cx
    x(3)=x1
    S=C.
    00 10 1=3,N.2
    x(1)=x(1)+2.*0x
    x(2)=x(2)+2.*0x
    x(3)=x(3)+2.*0x
    DS=F(x(1))+4.*F(X(2))+F(X(3))
    S=S+CX/3.*OS
4C RETURA
    ENO
```

```
    ** WKBPAR JACK OLIN BSSR
ISYS TIME=1C
ILOAD WATFIV
ICPT NOSOLRCE
C*****THIS FRCGRAP PLCTS THERMAL RESCAANCES RASED CN A WKB
C*****APPRCXIMAIICN AHAY FROM THE CRITICAL POINT FCR A GIVEN
C*****PARABCLIC ELECTRCN DENSITY FREFILE
    FUNCTICN F(X)
    COFMCA ANC.ALFA,A,WOTEMP,EM,EPS,O,BCCNST
    Z=X
    D=1.-1.1W**2*C**</EM/EPS*ANC*(1.-ALFA*(1.-Z/A)**2)
    IF(D) 18,13,23
    F=SCRT(C)*W/SCNT(3.*BCこNST*TEMP/FN)
    GO IC lo
    F=C
    RETLRN
    ENO
C*****MAIN PRCGRAM
    DIMENSICN BETAP(1OOI,ANI(IOC)
    COMMCA ANC,ALFA,A,HOTEMP,EM,EPS,O,BCONST
    REAO(S,*) NSET,NRES,ANO,ALFA,H,TEMP,ZM
    REAO(5,*) A,N,M.
    REAO(5.*) TEST
    WRITE(6,9G6I NSET,NRES
C96 FORMAI///, 2X,'SET NUMBER IS '.I3.1.
    1 2x.0RES NUMBER IS 0,I3.1.
    2 2X,'PARABLLIC APPROXIMAIICN CF PROFILE',I/I
    WRITE\6,GG7) ANO,ALFA,AOWOTEMP,ZM,NSET
Gq7 FORMAII 2X.0NO = %E15.4.10
    1 2X,'ALFA = 0.E15.4.1.
    2 2X,ORACIUS = EL5.4.1.
    3 2x,ORAOIAN FREOUENCY :.E15.4.1.
    2x.0 TEMPERATURE - OE15.4.1.,
2x,02 CRITICAL =.,EI5.4.1.
2X,ONUMBER OF CATA SET =.,13.1.
111
    WRITE(0.095)
G98 FORMATI2X,'DISTANCE FROM HALL', 3X,'PERTURBEO ELECTR DENSITYO,IPI
    EM= G.11E-31
    EPS=8.85E-12
    O=1.tC2E-19
    BCUNST=1.38E-23
    XNN=N
    DZ=2M)(XNA-1.1
    Z=-02
    OO 1C I=1.N
    z= l+Cl
    CALL INTIZ,2M,S,M)
    O=1.-1.1W**2*O**2/EM/EPS*ANC*(1.-ALFA*(1.-Z/A)**2)
    IF(D) 4C,40.41
    BETAP(I)=C.
    GO TC 5C
4 BETAP(I)=SORT(D)*W/SQRT(3.*BCONST*TEMP/EM)
EO IF(BETAF(I)-TEST)60.60.6l
CC ANIIII=C.
    GO TC 62
EI ANIIII=L.ISCRT(BETAPIII)*SINI?.L4159/4.4S)
t2 WRITE(6.9C9) Z.ANIII)
```

```
CGq FORMATI2X.EL5.6.מX.EL5.6)
10 CUNTINUE
    CALL FLOTA(ANI.ANI.NI
    SICP
    tNL
    JU&RILTINE INTIXI,XF,S,NI
    UIMENSICN *(3)
    COPMGA ANG.ALFA,A,W,TEMPDEN,EFF,G,ACINST
    N=2C
    N=N/2*2*1
    XN=N
    OX=(XF-XI)/(XN-1.)
    NCCUNT=C
5 X\1)=>1-2.*OX
    x(2)=x 1-Cx
    X(3)=x l
    S=0.
    OO 1C I=3,N,2
    x(1)=x(1)+2.*Dx
    X(2)=x(2)+2.*DX
    x(3)=x(3)+2.*Ox
    DS:F(x(1))+4.*F(X(2))+F(X(3))
1C S=S+CX/3.DN
4C RETURN
    ENC
```

REFERENCES

REFERENCES

1 B. S. Tanenbaum, "Plasma Physics", McGraw - Hill Co., N. Y., 1967.
? A. Dattner, "Plasma Resonance," Ericsson Tech., Vol. 3, No. 2, pp. 309-350, 1957.

3 "Resonances Oscillations in a Hot Nonuniform Plasma", 'The Physics of Fluids, Vol. 7, No. 9, pp. 1489-1500, Sep. 1964.

4 P. E. Vandenplas, "Electron Waves and Resonances in Rounded Plasma", Interscience Publishers, N. Y., 1968.

5 F. W. Crawford and G. S. Kino, "The Mechanism of TonksJattner Resonances of a Discharge Column", Proc. of the Sixth International Conference on Ionization Jhenomena in Gases, Paris, July 1963.
f B. Ho and K. M. Chen, "Electroacoustic Resonance in Plasma Layer Surrounding a Metallic Cylinder", Proc. of IEEF, Vol. 56, No. 9, pp. 1600-1602, Sept. 1968.

7 P. D. Golden and E. J. Yadlowsky, "Plasma Resonance and Standing Longitudinal Electron Waves", The Physics of Fluids, Vol. 14, No. 9, pp. 1990-1996, Sept. 1971.

8 A. W. Baird III, "Determination of Electron Density frofiles from Tonks-Dattner Resonance Data in Plasmas", J. of Appl. Phys., Vol. 42, No. 13, pp. 5358-5361, Apr. 1971.

9 J. V. Parker, "Collisionless Plasma Sheath in Cylindrical Geometry", The Physics of Fluids, Vol. 6, Kesearch Notes, pp. 1657-1658, Nov. 1963.

10 F. W. Crawford, G. S. Kino, and A. B. Cannara, "Dipole Kesonances of a Plasma in a Magnetic Field", J. of Appl. Fhys., Vol. 34, No. 11, pp. 3168-3175, Nov. 1963.

11 J. L. Powell, and B. Crasemann, "Quantum Mechanics", Addison Weslev Publ. Co., Inc., Reading, Mass., 1961.

17 (.. Y. Lee, "Flectromagnetic Scattering from a PlasmaCoated Cylinder", Ph.D. Thesis, M.S.U., 1971.

13 F. E. Vandenplas, "Oscillations de plasmas finis, inhomofenes et de temperature non nulle", Ph. D. Thesis, Universite de Bruxelles, April 1961.

14 K. J. Parblakar and Brian C. Gregory, "Direct Measurement of Dipolar Radial Electric Fields in a resonating Plasma Column", The Physics of Fluids, Vol. 14, No. 9, pp. 1984-1989, September 1971.

