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ABSTRACT

WITHDRAWAL RESISTANCE OF A

PILE TYPE FOUNDATION

By Neil Franklin Meador

In certain applications, foundations are required

to anchor a structure to the soil. The anchoring capacity

of a foundation is referred to as its withdrawal resist--

ance. Consideration was limited to circular foundations

that have a depth into the soil from 4 to 12 times their

diameter. These are the ratios that are commonly used in

foundations for light buildings. Only forces acting along

the axis of the foundation and consequently only pure up-

lifting forces were considered.

The objective of the research was to determine

the character of the withdrawal resistance of a shallow

pile-type foundation and to deve10p a prediction equation

for the withdrawal force.

Research reported in the literature includes tests

where full scale, driven piles were pulled from the soil.

In these tests the total withdrawal resistance was assumed

to be frictional forces on the soilefoundation interface

and the pressure normal to this surface is assumed to vary



Neil Franklin Meador

linearly with depth below the ground surface. With these

assumptions, the force required to withdraw the foundations

indicated that pressures normal to foundation surface dur-

ing withdrawal were approximately equal to the passive

earth pressures. Other research reports the movement of a

shallow pile type foundation that results when withdrawal

forces are applied and also the maximum withdrawal force

for several depths of embedment.

A mathematical analysis was presented which charac-

terizes the soil as an elastic solid. The approach was to

treat the problem as an aXially symmetric problem in cylin-

drical coordinates. Several forms of the Love strain func-

tion were assumed and the corresponding stresses and dis-

placements computed. Not all boundary conditions were

satisfied by simple selection of constants. One boundary

condition was satisfied by a Fourier series and one was

satisfied by a numerical point-by-point matching of func-

tions.

The experimental analysis consisted primarily of

withdrawal of a model foundation from a dune sand. In

these tests the depth of embedment, coefficient of fric-

tion between the sand and the foundation, density of the

sand, and the withdrawal rate were varied. On some or

all of the tests the withdrawal force, bulk density of

the sand, variation of horizontal pressure on the founda-

tion during withdrawal, and vertical stress in the founda-

tion at different depths were measured.
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The results of the experimental analysis show

that the withdrawal resistance varies as the square of

depth of embedment. This is shown by the total with-

drawal force variation in tests at different depths of

embedment and also is shown by the variation with depth

of the vertical stress in a single foundation. It is

also shown that the coefficient of friction on the

foundation-soil interface and the density of the sand

are linearly related to withdrawal force. The coeff-

cient of earth pressure that was computed from the tests

was about 0.92. This value was determined by several

different methods and indicates that the coefficient of

earth pressure acting during withdrawal is intermediate

between the coefficient of earth pressure at rest (KO =

0.4 to 0.6) and the passive earth pressure (Kp = 2.0).
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I. INTRODUCTION TO THE PROBLEM

‘A. The Nature of the Problem

The usual function of a foundation is to so dis-

tribute the weight of the structure and its contents upon

the underlying soil that differential settlements will

not cause cracking or tipping of the structure. With less

frequency, the function of the foundation is to withstand

a pulling away of the structure from the soil. Examples

of this latter case would occur when the uplift of a wind

exceeds the weight of the building, certain cantilever

structures, submerged buoyant structures, guy wire anchors,

and others. When this occurs, the foundation must anchor

the structure to the soil. This anchoring capacity is

herein referred to as the withdrawal resistance of the

foundation.

Consideration in this investigation is restricted

to foundations such as shown in Figure 1 where the vertical

dimension (D) is large compared to the horizontal dimension

(2R). This is the type of foundation of most interest when

considering withdrawal resistance. For this type founda-

tion, withdrawal resistance would certainly be a function

of the angle between the axis of the foundation and the



line of action of the force (p). Consideration herein is

restricted to the case where the line of action of the

withdrawal force and the axis of the foundation are co-

incident and vertical. The question of oblique forces is

reserved and recommended for further study.
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Figure 1. Foundation geometry and nomenclature.

The foundation depth divided by the foundation

least dimension (D/2R) was restricted to a minimum of 4

and a maximum of 12. The reason for this is that these

ratios correspond to the foundations most commonly used

in light buildings. Much research has been done on piling

which has a much higher (D/2R) ratio. Most of the re-

search has been concerned with bearing capacity, although

some has treated the withdrawal problem. The type of



withdrawal failure for piling may differ from that of a

shallow foundation, and, if more than one type of failure

is present, the percentage of resistance from each type

would be expected to be quite different.

B. Objective

The objective of this research was to determine

the character of the withdrawal resistance of a shallow

pile type foundation and to develop a prediction equation

for the withdrawal force.



II. BACKGROUND THEORY AND RESEARCH

A. Soil Characterization and Properties

1. Stress-Strain

Characterizations

 

 

The usual assumptions as to the rheoloqical prop—

erties of soil when solving a problem involving stress and

displacement is that the soil is an ideal, isotrOpic,

Hookean solid. Most peOple who accept this assumption are

reluctant to do so because it does not describe the soil's

strain dependency upon history of loading, dilatancy, and

the magnitude of strains observed in most cases. Scott

(1963) indicates that the elasticity assumption is best

made on a non-cohesive dry soil which has been subjected

to repeated cycles of loading producing stresses that are

low compared to failure.

Another assumption used in problems of retaining

wall pressure, bearing capacity of deep foundations, and

similar problems, is that the soil flows plastically at

failure. The plastic regions are considered quite narrow

and the resulting problem is the construction of a slip

line field that is in equilibrium with the boundary con-

ditions. These methods are described in most soil mechanics

texts such as Terzaghi (1943).



2. Horizontal Earth Pressure
 

For withdrawal of a foundation from the soil the

horizontal earth pressure supplies the normal force govern-

ing the shearing strength of the soil and the frictional

force on the foundation-soil interface. Rankine in 1857

first solved for the passive and active lateral pressures

when the soil is in a state of plastic equilibrium. His

determination for horizontal pressures acting in cohesion-

less soils was

0A = yz tan2 (4 - g-) (2.1)

2
Up = yz tan (45 + %) (2.2)

The horizontal pressure under conditions of

stress due only to the weight of the soil mass (earth

pressure at rest) has been investigated by a number

of people and reported in such books as the Conference
 

On Earth Pressure Problems. A notable work on earth
 

pressure at rest is by Bishop (1958), who states that the

horizontal pressure is linear with z and the ratio of

horizontal to vertical pressure is

KO = v/l-v (2.3)

for an ideal elastic solid. This defines a coefficient of

earth pressure at rest when the soil is considered to be

an ideal elastic solid. From measurements on both



cohesive and non-cohesive soils, he found the coefficient

of earth pressure best approximated by

K0 = 1 - sin ¢ (2.4)

Horizontal pressures occurring on a pile when it

was pulled from the soil have been reported by Ireland

(1957). He computed the coefficient of lateral pressure

by measuring the force required to withdraw the piles and

solving for the coefficient in an equation for withdrawal

considering only frictional failure along the foundation-

soil interface. Coefficients of earth pressure that he

computed were near and some were even above the coefficient

of passive earth pressure. Ireland concluded that designs

should use a value of 1.75 for the earth pressure coeffi-

cient. The piles were driven and the high coefficients of

lateral pressures he observed are probably a combination of

increased lateral pressure due to the driving operation and

the shearing of the sand upon pulling.

When a soil is sheared, it will usually exhibit a

dilatancy. Sand, for example, will expand upon being

sheared if the sand is more dense than the critical den-

sity and will contract if less dense. Since withdrawal

forces on a foundation are resisted primarily by shear

near the foundation surface, it would be expected that

dilatancy would cause change in the horizontal pressure

during withdrawal. If this is true and this factor is



the most significant factor, then the lateral pressure

would be expected to increase or decrease depending upon

whether the sand is above or below the critical density.

3. Failure Criteria
 

Failure during withdrawal of a foundation is usu-

ally considered to occur at the soil-foundation interface.

However, the failure will occur within the soil whenever

the friction on the interface is greater than the strength

of the soil. This frictional force can be increased by

either increasing the foundation surface roughness or by in-

creasing the surface of the foundation without increasing

its effective diameter. This latter method could be ac-

complished by using a corrugated pile surface.

When the entire failure occurs along the interface,

Lundgren (1967) estimates the uplift resistance by the

following formula:

0 =rz K pave tan 1.; (2.5)

where orz unit shearing resistance,

K = coefficient of earth pressure at the interface

of the pile and the soil,

= average overburden pressure,
pave

tan u = coefficient of friction between pile and soil.

The uncertainties in the equation are whether the value

of K is the coefficient of earth pressure at rest or



possibly some other value depending upon dilatancy, and

when does this type of failure occur.

When the failure occurs in the soil and the soil

is a sand, then the condition for failure in sand is given

by Kirkpatrick (1957). Starting from the Couloumb equation

for failure in sand

Orz = c + Orr tan ¢ (2.6)

and considering the Mohr theory of strength, the condition

for failure in terms of principal stresses is

2 2

{(01 - 02) [(01 + oz)sin¢]2}{(02 - 03)

-[(.2 + c3)sin¢]2}{(o3 - ol)2

- [(03 + ol)sin¢]2} = o. (2.7)

Provided the stresses are known throughout the region, this

equation can be used to predict the zone where failure will

occur.

Hurst (1959) observed withdrawal failures in a soil

that was cohesive and therefore had some tensile strength.

Radial tension cracks on the surface and uplifting of large

quantities of the soil with the foundation seem to indicate

tension failure within the soil mass, and a lifting of a

quantity of soil. However, the shape of lifted soil mass



(usually assumed to be a cone) and the depth at which this

failure will occur rather than a foundation interface

failure, is not known. The proportion of the total with-

drawal force that may be attributed to tension failure in

the soil is much higher in shallow foundations and is the

major difference between this research and that concerning

the uplifting of piles.

B. Experimental Techniques and Results

Hurst (1959) has investigated the uplifting of

pole-type foundations. The procedure was to apply a with-

drawal force hydraulically to a number of poles embedded

3.5, 4.5 and 5.5 feet into holes backfilled with earth,

crushed stone and concrete. The data recorded was the move-

ment of the foundation at several loading levels. Also,

data as to the soil compaction versus water content, bulk

density, Atterberg limits, type of soil, and water capacity

were reported. The conclusions of this study are concerned

mostly with the comparison of various backfill treatments,

but of most importance to this present study is the data

that can be used to check any prediction equation.

Other research concerned with uplift resistance

of piles has been reported by Ireland (1957) and by Yoshimi

(1964). Both of these papers consider the uplift resist-

ance to be essentially given by

0 = KYz tan u

rz
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where orz is the frictional resisting force. From the

data collected both solved for K and found that the values

were near the coefficient of passive earth pressure.

Ireland suggests a design value of K = 1.75 and Yoshimi

reports a value of about 2.9.

C. Mathematical Analysis

As mentioned in Section A.1 of this chapter, a

common assumption as to the nature of the soil, when it

is desired to solve for stress and/or strain distribution,

is that it is an isotrOpic Hookean solid. This assumption

opens the analysis to the techniques and solutions of

elasticity.

Ruderman (1939) started with the assumption of

elasticity in order to investigate the stress distribution

in the soil in the vicinity of a pile loaded with a gravity

load. From elasticity he took the Mindlin (1936) solution

for stresses and strains arising from a concentrated force

being applied at a point below the surface of a semi-

infinite body. An assumption of linear decrease in stress

in the pile with 2 was made and then the Mindlin solution

was integrated along the z axis from the z = 0 plane to

the bottom of the pile.

This analysis has several faults. The solution is

not valid very close to the pile surface because the Mindlin

solution assumes a body force, not a surface traction, and
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also because the pile was assumed to be a line along the

z axis. Despite these difficulties, the solution can show

the variation in stresses at some distance from the pile

when a withdrawal or hearing load is applied to the pile.

Using Ruderman's solution and computing the radial stress,

0 it is found that withdrawal of the foundation causes
rr’

a tensile Orr or a decrease in compressive stress if the

lateral pressure, due to the soil weight, is considered.

This tensile stress would arise from the attachment of the

soil to the foundation sides and also to the bottom.

Although Timoshenko and Goodier (1951) did not con-

sider the withdrawal of a foundation from the soil, they

did consider some problems with axially symmetric deforma-

tion of a circular cylinder which shows some techniques

that could be applied in this problem. In these problems,

Love's "strain function" was used. The stresses and de—

formation are written by Fung (1965) as derivatives of a

potential function as follows:

 

F 2

— i 2 “U;

99 32 L r 3r '

a 7 2 3qu
= -—- - V - -—— 2.10022 32 L(2 v) ¢ 322] ( )

2

—._3_ _ 2-11Urz - 8r [(1 v)V ¢ 322] (2.11)
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2

_ _ 3 ¢

2Gur _ araz (2.12)

2 32¢
2Gu = 2(1-v)V ¢ - ——— (2.13)

z 322

where orr' 066' 022 are stresses normal to planes per-

pendicular to the r, 6, and z direction re-

spectively

Orz is the shear stress in the r direction acting

on the plane perpendicular to the z direction

ur,uz are displacements in the r and 2 directions

respectively.

¢ is the Love strain function

Since the problems considered were axially symmetric, 026'

are, and ue are zero, and ¢ is independent of e. The re-

striction on the potential function, as written by Fung

(1965), is that it must satisfy the equation

X

v v ¢ = — l-v (2.14)

where X2 is the body force per unit volume in the z

direction called y in other parts of this thesis.

Timoshenko and Goodier (1951) started by assuming

the solution of the equation

v2¢ = 0 (2.15)
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which is also a solution of equation 2.15 when X2 = 0

is of the form

¢ = f(r) sin kz (2.16)

or

¢ = f(r) cos kz (2.17)

and found that

f(r) = AIo(kr) + BKO(kr) (2.18)

where I0 is a modified, Bessel function of first kind of

zero order

K0 is a modified Bessel function of the second kind

of zero order

A, B, k are constants.

After the form of strain function is selected, the

stresses and displacements are computed from equations 2.8

to 2.13 and then the constants are selected such that the

stresses and displacements satisfy the boundary conditions.

The potential function can be expressed as a sine and/or

cosine Fourier series thereby satisfying more complex

boundary conditions.

This technique of expressing the Love strain func-

tion as a Fourier series was also used extensively by

Pickett (1944). He used more than one Fourier series to

satisfy the boundary conditions. The constants of each

series then depends upon the constants of the other series,

and therefore the final solution involves the solution of

simultaneous equations giving relations between the coef-

ficients.



III. MATHEMATICAL ANALYSIS

A. Mathematical Statement of the Problem

Starting with the assumption that the soil is an

isotrOpic and homogeneous, Hookean solid, the mathematical

analysis of Timoshenko, g£_al. (1951) and Pickett (1944)

described in the last section can be used as a basis for

the analysis.

 

{forz = Ozz = 0
 
 

+1.

rewoo -00=zl = =r : 22 Y ur 0, uz constant or

u = 0 -= z
z r ' orz a or

ur = 0, o = constant

rz

  L—r=R 

Figure 2. Mathematical description of the problem includ-

ing boundary conditions.

Focusing attention on the boundary conditions of the

problem, consider first the z = 0 plane of the semi-infinite

solid shown in Figure 2. This plane is stress free, there-

fore, the normal and shearing stress must be zero. Consider

the r = R surface (the surface of the cylindrical foundation),

the boundary conditions could be considered to be (1) ur 0,

u2 = constant; (2) ur = 0, orz = az; and (3) ur = 0, orz

constant. These boundary conditions on the foundation
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surface either consider the foundation as a rigid body,

(n: make use of experimental information obtained, or

consider the soil highly cohesive to arrive at the con-

ditions respectively considered.

Two more boundary conditions must be examined.

They are the stresses as r and 2 become infinite. Con-

sidering that the stresses caused by the weight of the

soil will be added later, then for the first part of the

problem all stresses must vanish as r and 2 become in-

finite. This latter condition will, however, be violated

in the solution in anticipation of either superimposing

another solution which will satisfy that boundary condi-

tion or confining attention to the region where z is

small compared to D.

The problem is axially symmetric and therefore

the stresses and strains as derivatives of the Love strain

function will be the same as equations 2.8 through 2.13

Oin the preceding section. Again a and ue are
26' re'

zero becuase of axial symmetry.

The solution of the problem now proceeds by selec-

ting functions of r and 2 which will satisfy the bihar-

monic equation (2.14). After differentiating the func-

tion in accordance with equations 2.8 through 2.13 to

obtain the stresses and displacements that would occur,

the constants in the function are selected so that the

boundary conditions are satisfied.
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B. Possible Forms of the Potential Function

If the function

¢ = [szz/(l-Zv)] - [yz4/24(l-v)l (3.1)

is selected it will be found that

V V ¢ = - Y/(l-V) 022 = - Y2

o = o =- V Y2 o = 0
rr 66 (1-v) rz

_ _ Gw _ l-2v 2
Ur - 0 2Guz - —2— m'V ‘YZ

which is the stress and displacement condition caused by

the weight of the soil. The remaining functions that may

make up the Love strain function can be selected to satisfy

the equation

v v ¢ = 0. (3.2)

As shown in the last section, if the Love strain

function is assumed to be a product of f(r) and f(z) then

assuming f(z) to be trigometric functions sin az or cos az

determines f(r) to be

f(r) = [AIO(ar) + BKO(ar)] (3.3)

It can also be shown by the same development that if f(z)

is assumed to be hyperbolic functions sinh az or cosh az

then

f(r) = CJ0(ar) + EY0(ar)] (3.4)
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where J0 is a Bessel function of the first kind of zero

order

Y is a Bessel function of the second kind of zero

order

C, E, a are constants.

All the f(z) - f(r) combinations given in the pre-

ceding paragraph are solutions of the harmonic equation

2.15 and are also solutions of the biharmonic equation 3.2.

However, there are more solutions to the biharmonic equa—

tion than those indicated. Examine the equation

¢ = arJl(ar)[sinh az] (3.5)

It can be easily determined that

V2¢ = 2a2JO(ar)[sinh a2]

and since J0(ar) sinh az is a solution to the harmonic

equation then arJ1(ar) sinh az must be a solution of the

biharmonic equation. This same argument can be advanced

to show that the following functions of f(r) and f(z) when

multiplied by each other properly will satisfy the bihar—

monic equation:

arJl(ar) arIl(ar) az sin az az sinh az

arYl(ar) arKl(ar) az cos az az cosh az .
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By being multiplied properly is meant that the trigometric

functions must be multiplied by Bessel functions Jn(ar)

and Yn(ar), hyperbolic functions must be multiplied by

In(ar) and Kn(ar), and functions f(r) and f(z) which do

not satisfy the harmonic equation cannot be multiplied by

each other. The solutions to the harmonic and biharmonic

equations give 36 different terms that can be used to

meet boundary conditions.

Other functions can be found by the trial and

error method which will satisfy the biharmonic equation

and can also be used to meet the boundary conditions.

For this axially symmetric problem functions which con-

tain 1n r give some interesting results in terms of

stresses. These functions will be used where it is ad—

vantageous to do 50.

C. Solution of the Problem

As was shown there are a large number of terms

that can be combined to make up the potential function.

The stresses are required to be finite as r becomes in-

finite. All Bessel functions except In(ar) satisfy this

condition therefore the In(ar) Bessel functions will not

be considered in the solution. The Yn(ar) and Kn(ar)

Bessel functions are infinite at r = 0 however this is

out of the region of consideration so they are possible

solutions.
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After combining the possible terms of the poten-

tial function in a multitude of ways the function

¢==[wGZZ/(l-2v)] - [yz4/24(l-v)] + 4A(lnr+l)

w

+ [BkJ0(Bkr)][Bkz sinh BkZ] (3.6)

lW

was selected. Computing the stresses and displacements

of interest from formulas 2.10, 2.11, and 2.12 one obtains

first

v2¢ = [ZwG/(l-Zv)] - [yz/2(1-v)] + 4A(lnr + 1)

k:

2

-+ E: 28k[BkJo(Bkr)] [cosh Bkz] (3.7)

K=1

and

32¢ 2
——5 = [ZwG/(l-Zv)] - [Y2 /2(l-v)]

az

kzm

.+ E: 32[B J (B r)][2 cosh 8 z + 8 z sinh 8 z] (3 8)
k k 0 k k k k: °

k=1

then

k=co

2Gur = Z 812([BkJ1(Bkr)][sinh Bkz + Bkz cosh BkZ] (3.9)

k=1
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k=oo

3
4A(l-v)/r + E: Bk[Ble(8kr)][2v cosh Bkz

k=1

0

ll

rz

+ Bkz sinh Bkz] (3.10)

:00

-yz + Z egtskJomer [l-Zv) sinh Bkz

k=1

0 II

22

- 8 z cosh 8 z]. (3.11)
k k

In order to satisfy the boundary condition, ur = 0

when r = R,Bk was selected as roots of the equation

Jl(BkR) = 0 (3.12)

which causes the first term to become zero when r = R.

Now examining the boundary condition Crz = constant when

r = R. It is found that the condition is already satis-

fied and

Orz = 4A(1-v)/R. (3.13)

The constant A can be related to the total withdrawal

force P by integrating the shear stress over the founda-

tion surface to obtain

A = P/8nD(1-v). (3.14)
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Next investigating the value of 022 at z = 0, it

is found that the boundary condition 022 = 0 is satisfied

because the last term of the equation becomes zero.

The last condition is that Orz = 0 when 2 = 0,

r = r. It can be seen that this condition is not satis-

fied unless

k=co

E: ZVB:[Ble(Bkr)] = - 4A(l-v)/r. (3.15)

k=1

Since the left side of the equation consists of non-

orthogonal functions over the region r = R to r = L, the

usual method of selecting the constants Bk to be con-

stants of a Fourier-Bessell series does not apply. The

constants can be selected, however, by a point-by-point

matching of the left and right side of the equation.

This would require solving for the constants as coef-

ficients of simultaneous linear equations. The number

of equations would be equal to the number of terms re-

tained in the series.

Another solution to the problem can be obtained

by selecting the potential function (stress due to soil

weight can be added later)
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11:00

¢ [AnK0(anr) + Bnaanl(arr)] Sln anz

n=l

i=co

+ 2E:J0(A.r)[c. sinh 1.2 + E. cosh A.z

1 1 1 1 ' 1

1:1

+ GiAiz s1nh 112]. (3.16)

If the formulas 2.10, 2.11, and 2.12 are used to compute

the stresses and displacements one obtains

n=oo

_ 2
ur - EE:an[AnKl(anr) + Bnaano(anr)] cos anz

n=1

1%

2 .
+ :E:_AiJl(Air)[Ci cosh 112 + Ei s1nh_Aiz

1 l

+ Gi(51nh.Aiz + Aiz cosh 112)], (3.17)

n=co

o = 0(3[-AK(0L r)-BdrK(dr)

rz n n 1 n n n 0 n

n=l

+ 2(1-V)BnKl(anr)] sin anz +
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i=m

3&7 3\ I

+-Zfl;).iJl.(Air)[Ci Slnh.AiZ + Ei cosh Aiz

i=1

4-Gi(liz sinh )iz - 2v cosh_Aiz)L and (3.18)

{1:00

VI“ 3

022 = ;MJan[AnKo(onr) - 2(2-v)BnK0(anr)

n=l

+ Bnaanl(anr)] cos anz

i=oo

3 .
- EE:AiJO(Air){Ci cosh Aiz + Ei s1nh.liz

i=1

+ Gi[-(1-2v) s1nh Aiz + Aiz cosh 112]}. (3.19)

The condition that ur = 0 at r = R is satisfied

if

An _ - BnanR Kl(anR) ( ' )

and).i are the solutions of the equation

J1(AiR) 0. (3.21)

The condition that Orz = 0 at z = 0 is satisfied if

E. = 206..

l 1
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The shear distribution upon the foundation can now be

selected to be a function of z, for example, 9(2). The

equation for shear at r = R is then

n=oo

g(z) = E:: 2a:(l-V)BnKl(anR) Sin anz. (3.22)

n=1

The constants Bn can now be solved for by the usual Fourier

series method. Then

 

 

on = nfl/D

and D

B = [a3(1-V)K (a R)D]-l g(z)sin(n"z dz (3 23)
n n l n D ' '

The last condition, that 022 = 0 when 2 = 0 is satisfied

if

i=3“) =®

3 _ _ _
E: AiCiJo(Air) — EE: [AnKo(anr) 2 (2 v)BnK0(dnr)

i=1 n=l

+ Bndanl(anr)]. (3.24)

Again, as before the left side of the equation is not

orothogonal over the region r = R to r = L and equation

3.24 must be satisfied by point-by-point matching as pre-

viously indicated.
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Consider now the solution as 2 becomes large. The

superposition of another solution in order to satisfy the

boundary conditions when 2 becomes large will be discussed

here but will not actually be worked out. If another term

can be added to the Love strain function which will meet

all boundary conditions and which will have a free constant

available, then the free constant can be selected to match

one stress or displacement boundary condition at a ficti-

tious boundary where z = D, r = r. The way the constant

would be selected would be to first load the portion of

the solid below 2 = D with the 022 stress obtained from

the first solution when 2 = D. Let that stress determined

from the first solution that is acting on the z = D plane

be called F(r). The stresses and displacements in the

lower portion can be obtained by integrating the Boussinesq

solution for a force acting at a point on a semi-infinite

body. The displacement in the z direction at point z = D,

r = t would be

m 2n 2

uz = (12.-V )F(r)rd6d§ 1/2 . (3.25)

nE(r -2tr cose-It )

0 0

This is now set equal to uz that arises from the first

 

solution thereby determining the free variable. This

same procedure can be followed once more matching ur and

orz along the boundary. This latter superposition

(matching ur) will determine all the available constants
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and the Cerruti solution for a horizontal force on the

boundary of a semi-infinite solid would be the function

integrated.



IV. EXPERIMENTAL ANALYSIS

A. Experimental Model

1. Soil

The soil selected for the experimental model was

a dune sand from the shore of Lake Michigan. This sand

was selected because of its rather uniform grain size

distribution. It was assumed that a uniform sand would

be less sensitive to handling and that the physical char-

acteristics, such as void ratio, could be more easily con-

trolled and held constant throughout the sand. To estab-

lish the particle size distribution, a sieve analysis was

performed and the results are shown in Figure 3. ‘This

analysis shows that the sand is quite uniform for a natu—

rally occurring sand and that it would be classified as a

medium to fine sand.

Examination of the sand under a microscope showed

that the sand grains had rounded edges. The standard test

for determination of the specific gravity of the sand

grains as described by Lamb (1951) was performed and in-

dicated a specific gravity of 2.67. ‘

A number of direct shear tests, as described by

Lamb (Ibid.), were performed on the sand with normal
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pressures of the same magnitude as occurred during the

withdrawal tests. These direct shear tests establish the

variation of the peak coefficient of internal friction as

a function of the normal pressure and of porosity. The

data is given in Figure 4 and is of the same nature as

was found by Taylor and Leps (1938). It was also observed

that the sample expanded during shearing except for one

case. This exceptional case was at a void ratio of 0.678,

or porosity of 0.404 and establishes an approximate value

for the critical void ratio, i.e., the void ratio above

which the sample will contract and below which the sample

will expand upon being sheared. This critical void ratio

was obtained by placing the sand in the container being

careful not to vibrate it. It is concluded that this sand

in_§itu would be below the critical void ratio (i.e.,

more dense). This expansion of the sand on being sheared

led to the theory that when withdrawing the foundation

from the sand, the sand would be subjected to shearing

stress and therefore would tend to increase in volume as

indicated in the previous chapter.

One other item of interest is the fact that the

peak friction angle, a measure of the sand strength, de-

creased as the normal force and porosity increased. This

phenomenon is discussed by Leonards (1962) and he indicates

that the change in friction angle is at least partially

due to the work done by volume change. This work done
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during volume change would have the effect of reducing the

friction angle with increasing normal force and porosity.

Relating this to the case of withdrawal of the foundation,

this means that the "apparent" shear strength of the sand

compared to the lateral force acting, decreases with in-

creasing depth below ground surface. This decrease in

strength, however, may be offset somewhat by a decrease

in void ratio, due to the greater confining pressure.

All tests were conducted with the sand in an air

dry state (about .15 percent water content). The angle

of repose of the sand was measured by means of a tilt-

table shown in Figure 5. The angle of repose was 36°.

2. Foundation
 

The foundation selected was a three-inch diameter,

28 gauge, galvanized steel cylinder thirty inches long.

The cylinder was made in two halves to facilitate the in-

stalling of strain gauges on the interior surfaces. The

two cylinder halves were soldered together and the entire

surface sanded to give a uniform surface roughness. The

bottom was sealed with a rubber stopper and a wooden stOp-

per with a hook for pulling was attached to the top. The

cylinder embedded in the sand is shown in Figure 6.

3. Foundation Surface Roughness
 

As already mentioned the cylinder surface was

galvanized metal. To obtain a greater value of the
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Figure 5. Tilt-table for determination of the coef—

ficient of friction and angle of repose.

 
Figure 6. Experimental cylinder embedded in the sand

tank.
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coefficient of friction between the sand and the founda-

tion, a medium emery cloth (Crystal Bay Emery Cloth LN31

by Minnesota Mining & Mfg. Co.) was glued to the foundation

surface.. The coefficient of friction between the galva-

nized metal or the emery cloth and the sand was deter-

mined by using the tilt-table shown in Figure 5. This

method of measuring the coefficient of friction gives the

coefficient of friction as the tangent of the tilt angle

of the table when the sample being tested slides on the

sand surface. Several metals and sand papers were tried

and it appeared that a limiting value of the angle was

about 33° for the sandpaper and the normal pressures used.

It was also observed that the coefficient of friction de—

creases with normal pressure. This reduction of the co-

efficient of friction would reduce the maximum transfer

of force at greater depths below the sand surface when

compared to the lateral pressure.

4. Sand-tank and Foundation

Withdrawal Device
 

The sand-tank was 36" in diameter and 26" deep.

.This diameter was large enough so that the sand acted as

a semi-infinite solid. This was checked by measuring the

movements of the surface of the sand at various distances

from the foundation. It was found that no measurable

(0.001 inch) deflection of the surface occurred six inches

from the surface of the foundation. The apparatus for
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measuring the deflection of the sand surface is shown in

Figure 7 and consisted of dial gauges measuring the move-

ment of one inch square blocks on the sand surface. The

dialgauges exerted 50 to 200 grams force on the soil sur-

face which will change the stresses in the vicinity of the

gauges and thereby give a false reading. The movement, if

any, in the vicinity of the gauges could not be large,

however, or the gauges would have registered some.

The apparatus for withdrawing the foundation from

the soil is shown in Figure 8. It consists of an electric

motor coupled to a gear reducer. From the gear reducer, a

belt is used to transfer the motion to a horizontal shaft.

The foundation was then pulled by the wrapping of a nylon

cord around the horizontal shaft. Although the system

produces a constant displacement rate under no-load con-

ditions, slip and stretch in the system cause the.dis-

placement rate to be reduced during loading. The effect

of this system, when withdrawing a foundation, was nearly

a constant loading rate (linearly increasing force) until

maximum force was reached. After the maximum force was

reached, the displacement rate increased substantially

and became erratic as the sand alternately held and sud-

denly failed. A graph of the total withdrawal force ver-

sus time in Figure 9 illustrates the described action in

a representative test.
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Figure 7. Apparatus for measuring the movement of the

sand surface.

 
Figure 8. Apparatus used to withdraw the foundation

from the soil.
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Although a constant displacement rate is desirable

Taylor and Leps (1938) showed that the shearing strength

of dry sand is quite insensitive to the shear strain rate.

This was also somewhat substantiated by tests shown in

Figure 10. This graph shows the effect of withdrawal

rate upon maximum total withdrawal force. It appears

from this graph that experimental variation exceeds the

effect of a twenty-fold increase in withdrawal rate.

B. Experimental Procedure

1. Experimental Design
 

The experimentation was to produce a prediction

equation for the total withdrawal force. With this as

the experimental objective, the tests were organized and

the important variables were selected by considering sim-

ple theories. The important variables were selected as

follows:

1. Withdrawal force, P (pounds)

2. Soil density, y (pounds/cubic foot)

3. Coefficient of friction of the foundation

surface, tan u (dimensionless)

4. Soil angle of internal friction, ¢ (dimension-

less)

5. Depth of foundation embedment, D (feet)

6. Diameter of the foundation, d (feet)

7. Coefficient of earth pressure, K (dimension-

less)
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The experimentation was organized such that the

main emphasis was placed on the relationship between with-

drawal force and depth of embedment. The other factors

previously listed were tested in such a way that their in-

fluence on total withdrawal force could be checked against

theory. The tests conducted are listed in Table l.

The standard dense condition of the sand was

achieved by placing the sand in the sand-tank in five-

inch layers. After placing each layer, the layer was

rodded in a standard manner. To achieve a less dense

sand, the sand was not rodded. This procedure produced

a maximum variation in density of less than two percent

in the standard dense state and a significantly less

dense sand in the test where the sand was to be in the

loose condition. After each test the sand was entirely

removed from the sand-tank and thoroughly mixed before

being used for the next test. This procedure eliminated

segregation of sand particles. The tests were also some-

what randomized to take care of unknown variations.

The bulk density of the sand was calculated from

the weight of the entire sand tank and the volume of sand.

The weight of the sand tank was obtained by placing it on

a scale throughout the tests and the volume was determined

from the diameter of the tank and the depth of sand, minus

the volume of the foundation. This method gives an average

bulk density and does not show local variations in density.
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Table 1. List of withdrawal tests showing how the

variables were tested.

 

Depth of Rate of

 

1...... .233... 3:530? ”2:322? 2:222:33:

62 Standard .384 20 0.54*

63 Standard .384 20 7.44*

64 Standard .384 20 0.33*

65 Standard .384 20 0.85*

66 Standard .384 20 0.85*

67 Standard .384* 20 0.54*

68 Standard* .625* 20* 0.54

69 Standard* .625* 20* 0.54

70 Loose* .625 20 0.54

71 Standard .625 10* 0.54

72 Standard .625 24* 0.54

73 Standard .625 15* 0.54

74 Standard .625 24* 0.54

 

*Variable of primary interest.
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The total withdrawal force was measured by the

transducer shown in Figure 6. The output from this trans-

ducer was amplified and fed into an X-Y recorder to be

plotted as the Y-axis and time as the X axis. The output

was zeroed with the foundation suspended in air thereby

automatically subtracting the weight of it from the with-

drawal force. The transducer was calibrated by hanging

a known weight from the bottom of the foundation which

was in turn, hooked to the transducer.

During one test the strain gauges on the inside

surface of the foundation were used to measure the trans-

fer of withdrawal force to the soil as a function Of depth

in the soil. The strain gauge bridge was arranged with

active gauges in Opposite arms of the bridge circuit and

with temperature compensating gauges in the remaining two

arms of the circuit. This arrangement, along with the

placement of the active gauges on Opposite ends of a

diameter Of the foundation, gave double sensitivity to

axial strains while cancelling out any bending strains.

Gauges were placed at five inch intervals along the length

of the foundation, thereby giving five vertical strain

bridge circuits. Due to trouble with the gauges and with

the amplifiers, not all circuits produced useful data.

The signal from the strain gauge circuits was amplified

by Brush Universal amplifiers and recorded on a Brush

oscillograph.



42

During one other test the same procedure was fol-

lowed as was described in the preceding paragraph, except

that strain gauge circuits were used to measure the hori-

zontal pressure rather than the vertical force. As with

the vertical gauges, there were five bridge circuits ar-

ranged to give double sensitivity to circumferential

strain of the cylinder and to provide temperature com-

pensation. The gauges were calibrated by placing the

foundation in water and thereby subjecting it to hydro-

static pressures. This calibration procedure did, how-

ever, present some difficulty with temperature compensa-

tion due to the fact that the temperature compensating

gauges were attached to galvanized metal placed in the

center of the cylinder not bonded to the cylinder walls.

This resulted in the active and temperature compensating

gauges being subjected to different temperatures. This

difficulty was overcome by taking the rapid response of

the gauges to be from pressure change and the gradual

drift Of the signal to be from temperature effects.

C. Results

1. Distribution of Withdrawal

Farce Transmitted to the Scil

A tabular summary of the tests performed and the

numerical results Obtained is shown in Table 2. These

results were used in the determination of a prediction

equation for the withdrawal resistance.
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During test number 72 strain gauges were used to

measure the vertical force in the foundation at several

points below the surface of the sand. This data, along

with the total withdrawal force, is shown in Figure 11 as

a function of time. Several Observations from these

graphs are of interest. One observation is that the

maximum force transmitted through the foundation occurs

later in time as z (the depth below the surface) is in-

creased. The importance Of this can be better seen if

the withdrawal force transmitted to the soil above the

point z is plotted against 2 for various instants near

the time of maximum force. This graph is shown in Figure

12. It can be seen in this graph that before the peak

total withdrawal force is reached a larger percentage of

the force is resisted near the surface, but as time

passes the percentage of force transmitted to the soil

near the top decreases. This seems to indicate that

failure proceeds from the top to the bottom of the founda-

tion. Also, if a least squares regression of the form

f = az2 is fitted to the withdrawal force (f) and the

depth (2) at the time of maximum total force, the re-

sulting equation is

f = 0.159722 (4.1)

where f is the withdrawal force in pounds and

z is depth below the soil surface in inches
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or

f = 23.0022 (4.2)

where z is depth below the soil surface in feet.

If the failure occurs as a frictional failure on

the foundation-soil interface, then the withdrawal force

is given by

f = again: 2?- (4,3,

From the above regression line then

23.00 = EIEEEEBE

All factors except K were measured in test 72, therefore,

solving for K one obtains

K = 0.948.

This value is quite high compared to the coefficient of

earth pressure at rest (KO). For the test sand, using

the angle of internal friction, the estimates of K0 would

be from 0.4 to 0.6. The difference between the K and Ko

values will be discussed more fully in the last part of

this section.

2. Horizontal Pressure

Variation Duringpwithdrawal

 

The horizontal pressure acting at two points below

the sand was measured during test number 74. The variation

of pressure is shown in Figure 13 as a plot of horizontal
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pressure versus time. These horizontal pressures are not

as reliable quantitatively as they are qualitatively. The

doubt about their magnitude arises from temperature com-

pensation difficulties during calibration.

Several important observations can be made from

the horizontal pressure versus time graph. First, the

most evident is that the horizontal pressure decreases

during withdrawal. As previously mentioned, this would

be expected if the sand was at a density less than the

critical density. When comparing the density during this

test (96.2 pounds per cubic foot) to the maximum (105.0)

and the minimum (94.5) density that was attained in the

laboratory, it can be seen that the sand was relatively

loose but probably not below the critical density.

One other observation of importance is that the

rate of decrease in lateral pressure seems independent of

2 except after the peak load. After the peak load the

pressure at the greater 2 dropped off most rapidly. This

may be due to the sand flowing into the space under the

foundation. However, when this is taking place the with-

drawal force was less than its maximum value and therefore

is of little design importance.

3. Prediction Equation

for Withdrawal Forces

 

A graph of withdrawal force versus depth of embed-

ment is given in Figure 14. Data plotted is from tests
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where only depth was varied and also data from some pre-

liminary tests. A least squares regression line of the

form

9 = a02 (4.4)

was fitted to the data. The resulting equation was

P = 22.5D2 (4.5)

where P is in pounds and D in feet. As was done for the

data from the strain gauges measuring vertical force, the

withdrawal force equation can be assumed to be

P = W02 (4.6)

and the value of K can be determined. For the regression

line fitted to the data the calculated value of K would

be

K = 0.926.

Again the value of K is much higher than the co-

efficient of earth pressure at rest. The K value obtained,

however, does agree quite close, 0.948 to 0.926, with the

data obtained from the strain gauges. This reinforcement

of data taken two different ways suggests that there is

not an error in the measurement but either K is really

that large or the theory from which K is calculated is

not describing the actual phenomenon.
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Using the value of K determined from the P versus

D data and adjusting to the value of u used in test number

67 it is found that the equation 3.6 closely predicts the

value of total withdrawal force obtained. It therefore

is logical to conclude that the equation, as written, can

predict the withdrawal force for various values of u.

As was done in the preceding paragraph one can

vary the value of y as was done in test number 70 and see

if the equation derived will predict the total withdrawal

force. When this is done, the prediction equation over-

estimates the value of the total withdrawal force. This

could be expected if one considers that the value of K

is altered when one attempts to alter Y.

The fitting of a least squares regression line

through the preliminary data also adds evidence that the

prediction equation is similar to equation 3.6. In addi-

tion to this, the preliminary tests used a different size

cylinder (6 inches in diameter), different coefficient of

friction, and method of loading (loading with weights to

failures). The value of K calculated from this data is

K = .893

which is approximately the same as previously predicted.

The sand was less dense in the preliminary tests and

therefore, the lower value of K would be expected.



53

In Figure 15 is shown some data taken from a pub-

lication entitled "Resistance of Steel-and Wood—Pole

Foundations to Uplifting and Overturning Forces" by H. T.

Hurst and J. P. H. Mason, Jr. (1959). This data is for

wood poles being pulled from a hole in soil backfilled

with No. 7 gravel. When a regression line, of the form

P = aDZ, is fitted to this data, it appears that the line

predicts very well the total withdrawal force. The value

of K was not determined because the value of u was not

known. The value of K tan u was, however, determined to

be

K tan u = 3.43.

This data reinforces the choice of prediction equation

by showing the same type failure for full scale founda-

tions with much larger soil particles but still without

cohesive forces.
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V. IMPLICATIONS OF THE RESULTS

The prediction equation for withdrawal force as

a function of depth has been shown to be of the form

P = aD2 (5.1)

This has been shown by (1) measuring P for various values

of D, (2) fitting this form of the equation to data pub-

lished elsewhere, and (3) measuring the tensile force at

several points on an individual foundation being withdrawn

from the soil. This form of the equation is what would be

expected from theory provided that the following conditions

were valid:

1. friction angle (u) is not a function of confining

pressure,

2. horizontal pressure increases linearly with depth,

and

3. horizontal pressure is not a function of with-

drawal force.

Closer examination of these conditions in this study and

by others (1967)* has shown (1) and (3) appearing to be

false. The friction angle decreases with greater confining

 

*Coyle, et al. (1967) reported on these factors in

November after this research was completed.



56

pressure and the horizontal pressure decreases when with-

drawal forces are applied. Both of these relationships

will tend to decrease the value of "a". The magnitude of

the change of the friction angle with various normal pres-

sures can be seen from the data shown in Table 3 of the

Appendix.

It was also shown that if the value of the friction

angle and/or the diameter of the foundation was changed by

a specific amount, the withdrawal force could be predicted

by

P (alp tan u)D2 (5.2)

and with less accuracy the equation

P (azpy tan u)D2

will account for the variation in soil density.

Now the only unknown quantity is the value of a2

which, according to equation 4.6, is equal to 2K. The

value of K was solved for in tests where P was measured

for various values of D, in the equation for shear trans-

ferred to the soil as a function of depth, and in prelimi-

nary tests of P versus D. The value of K determined in

each of these three ways was 0.926, 0.948, and 0.893 with

an average of 0.92. This value of K is approximately twice

as large as Ko given in most references in soil mechanics

but less than some values reported in other published re-

search. Most of the other values published are for piles

driven in the ground and therefore, should more nearly
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approximate passive earth pressures. The value of K de-

termined from the tests indicates that withdrawal of a

foundation is resisted by pressures greater than earth

pressures at rest but less than passive earth pressures

or, that failure occurs in another way that has the ef-

fect of giving the same form of withdrawal force transfer

to the soil as a function of depth.

It was shown that the coefficient of earth pres-

sure decreases when withdrawal forces are applied. In

the test soil used this means that the tension applied to

the soil in the radial direction by the withdrawal forces

and the sand flowing into the vacated space below the

foundation combine to more than compensate for any dila-

tant expansion of the soil. 1

Two solutions for stresses and displacements in

the soil mass have been found. The assumptions of the

solution are that:

1. the soil is isotropic, homogeneous and an ideal

Hookean solid, and

2. a shear stress on the foundation-soil interface

is constant in the first solution and can take

any form in the second solution.

The solution must be evaluated by numerical methods.

The evaluated solution will give a picture of the stress

pattern in the soil at low loads.



VI. RECOMMENDATIONS FOR FURTHER STUDY

The total problem of foundation withdrawal could

be thought of as consisting of four parts. They are (1)

pure uplift in a cohesionless soil, (2) pure uplift in a

cohesive soil, (3) oblique forces on a foundation in a

cohesionless soil,and (4) oblique forces on a foundation

in a cohesive soil. As was indicated in the first section

of this thesis, effort in this study was concentrated on

part (1) of the above list. The remaining three parts are

of interest, and in fact more nearly represent the actual

situation in practically all cases. The interaction of

withdrawal and overturning moments should be of major

interest and value. The three remaining parts are recom-

mended for future study.

The mathematical analysis herein presented repre-

sents a basic approach to the problem which can be refined

by meeting the boundary conditions when 2 becomes infinite

and can be numerically evaluated to obtain the qualitative

and possible quantitative variation of stresses and dis-

placements. The solutions obtained herein could be ap-

plied to many problems and need not be confined to the

usual concept of foundations.
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Table 3. Coefficient of friction test results.

Test No Surface Normal force Friction Comments
' lbs/sq. ft. Angle

1 Galvanized Metal l.l 21.0° I

I

2 Galvanized Metal 1.1 20.0° ;

3 Galvanized Metal 1.1 21.0° > Azirgge
} O

4 Galvanized Metal 1.1 22.0° g

5 Galvanized Metal 1.1 22.0°,f

6 Emery Cloth 1.1 33.o° \

7 Emery Cloth 1.1 33.0°

8 Emery Cloth 1.1 32.5° > Aggrgge

9 Emery Cloth 1.1 31.0°

10 Emery Cloth 1.1 31.0° I

11 Emery Cloth 1.1 31.0° ‘

O

12 Emery Cloth 1.1 32.0 2 Average

0

13 Emery Cloth 1.1 32.3° 31'6

14 Emery Cloth 1.1 31.0° J

16 Emery Cloth 167 30.0° I

O

17 Emery Cloth 167 30.0 L Average

0

18 Emery Cloth 167 28.0° 29'4

l9 Emery Cloth 167 29.5° J
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