

By
John James Meek

Cattle prices and cattle numbers in Canada have historically demonstrated a regular cyclical time pattern; recently this pattern has become more irregular. This cycle results in fluctuating incomes to producers, fluctuating prices to consumers, and fluctuating contributions to the foreign trade sector. While these fluctuations might have been tolerated in an earlier age, modern society demands more stability, more growth, and more management.

In order to predict supply or prescriptive right actions, descriptive knowledge of the dynamics of cattle production and trade is required. The purpose of this dissertation is to contribute both descriptive knowledge and analytical tools that may subsequently be employed in prescriptive and predictive applications as well as in future descriptive analyses.

The study has three basic objectives; these objectives are realized concurrently rather than sequentially. The first objective is to identify the structure and develop a model of the Canadian cattle herd consistent with specified design parameters. The second is to
identify, assemble, and explicitly evaluate such data, official and otherwise, as are required to build and validate the model. Thirdly, the model must be tested and found to be valid by specific validation criteria. The third objective includes generation of plausible disaggregations of published population and slaughter data.

This study was conducted as an element of the sector modeling program of the Economics Branch, Agriculture Canada. While the cattle herd model is designed to interact with other models in this program, it is also designed to provide useful answers independent of these other models. Specifically, the model reflects the supply side of the cattle-calves sub-sector. Modeling of the price determination mechanism, the trade mechanism, and the wheat-feed grain sub-sector are left to the other models with the cattle herd model taking prices and trade flows as given.

The cattle herd model is based on the biological growth and production processes as experienced and practiced in Canada. In addition, the cattle herd is separated into its dairy, beef, male and female components. Three geographic regions are recognized; Eastern and Western Canada are modeled explicitly while the third region, the rest of the world, is treated implicitly through the exogenously determined or given trade flows.

The herd is further disaggregated to recognize function, production process, and age. The basic functional choice is recognized through allocation of breeding age cattle to either the breeding herd (investment) or to the feedlot for subsequent slaughter (consumption).

Two feeding processes are modeled: the first simulates a low energy ration such as might be experienced with high roughage feeding; the second employs a high energy ration simulating feedlot feeding-finishing. Finally, the model recognizes age by subdividing calves into ages one to three months, four to six months, and six to twelve months. Further age subdivision is recognized through the above functions and processes.

While many aspects of cattle production and marketing are behavioral, three were isolated for explicit modeling. All others are left for subsequent model development. As investment-disinvestment in the breeding herd is central to the study of cattle herd dynamics, cow and bull cull flows and cow and bull replacement flows are estimated econometrically. In addition, the flow of calf slaughter is estimated in similar manner.

In order to conveniently adapt the behavioral models to the cattle herd model, a statistical "excess price" model was developed. This latter model is developed from simultaneous supply-demand equations to abstract from "own" price producing a single equation with quantity as the endogenous variable.

The excess price model proved to be a good predictor of quantity (flows) but was a disappointing estimator of sign. That is, the estimated sign of the regression coefficients differed from the predicted sign in a high proportion of instances.

The technique employed to model the cattle herd is that of generalized simulation. This technique encompasses the system science approach to problem solving. The system science approach is an
iterative, learning one where concepts or values initially held to be true may subsequently be found to be false or not useful in the context of the study. Should this occur, then a return to a prior stage of the investigation is required. Four tests of objectivity were used as validation criteria; the first two were applied continually throughout the study. These tests are: consistency with observed and possibly recorded experience, logical internal consistency of the concepts used, interpersonal transmissibility of the concepts used and results produced, and workability of the model in the solution of practical problems.

Three basic versions of the cattle herd simulator, CATSIM, were built. They differ basically in the method of calculating investment and disinvestment in the breeding herd. The most advanced version, CATSIM3, employs the behavioral models to estimate these flows. Two other models were built. The first, MATRIX, is used to estimate endogenous variables for the behavioral models from known published data using simplifying assumptions. The second, RECON, is used to evaluate the various published data series and other information descriptive of the cattle herd. This second model is based on a single identity.

The most substantive results of this study are contained in the structure, parameter estimates, and assumptions of the models. A basic purpose of this study was to develop general models and evaluate historic cattle data in order to solve future practical problems. This objective was met.

While meeting this basic objective, several useful results were obtained concurrently. MATRIX provided highly plausible estimates of dairy and beef cow slaughter and replacement flows for both Eastern and Western Canada. Eastern and Western bull cull and replacement flows are also estimated as well as beef and dairy calf slaughter flows. These estimates are produced for the years 1958 to 1972 inclusive.

RECON provided valuable insights into the validity of official cattle-calves statistics for the period 1959 to 1972. In addition, the model provided an opportunity to test certain beliefs about the cattle herd, cattle production and cattle trade. The assumptions made to disaggregate the official data in order to build MATRIX, RECON, and CATSIM, served to accent the deficiency of the official data.

Model CATSIM embodies all of the descriptive knowledge of the cattle herd that was assembled. This model generated quarterly population and slaughter flows for the years 1958 to 1972 inclusive. These estimates were demonstrated to be highly credible when compared to the historic official data. These data disaggregations are a significant result.

All models serve to highlight deficiencies in the descriptive knowledge of the Canadian cattle herd. Model sensitivity to certain model elements served to rank the importance of the missing elements. While all models developed in this study may immediately be adapted to solve practical problems of the cattle-calves sub-sector, a concurrent effect must be made to alleviate these noted deficiencies.

SIMULATION OF THE CATTLE-CALVES SUB-SECTOR IN A DEVELOPED ECONOMY WITH SPECIAL REFERENCE TO THE CANADIAN CATTLE HERD

By

John James Meek

A DISSERTATION

Submitted to
Michigan State University in partial fulfillment of the requirement for the degree of

DOCTOR OF PHILOSOPHY

Department of Agricultural Economics
and Economics

ACKNOWLEDGMENTS

The author wishes to thank the members of his guidance and dissertation committees for their assistance and helpful criticism. Dr. G. L. Johnson served as chairman of both committees; Drs. W. J. Haley and M. L. Hayenga completed the dissertation committee. With Dr. Hayenga's departure, Dr. J. N. Ferris ably served as his replacement. Drs. V. L. Sorenson, T. J. Manetsch, A. Y. C. Koo, R. Rashe, and L. Katz served as members of the author's guidance committee.

Appreciation is extended to the Economics Branch, Agriculture Canada. The educational leave and financial assistance provided were instrumental in the author's decision to pursue an advanced graduate degree.

To Marion, Robbie and Janet for their assistance, patience, and understanding, I am indebted. Their support made this period not only bearable, but very enjoyable. We each gained in our own way from this joint experience.

TABLE OF CONTENTS

Page
LIST OF TABLES vii
LIST OF FIGURES ix
Chapter
I. INTRODUCTION 1
The Problem Setting 1
The Study Context 4
The Problem Statement 6
Study Objectives 12
Literature Review 13
Dissertation Organization 17
II. METHODOLOGY 19
The Systems Science Approach to Problem Solving 20
Feasibility Analysis 26
System Modeling 27
Validation 29
The Cattle Sub-Sector 32
The Spatial Dimension 32
The Trend-Cycle or Time Dimension 34
The Trade Dimension 39
The Internal Flow Dimension 43
The Calf Slaughter Dimension 45
The Seasonal Dimension 47
The Statistical Data Base 48
The Livestock Survey 49
Calves Born Survey 52
INSPECTED Cattle SLAUGHTER 53
WEST-EAST Cattle-Calf Movement 54
Dairy Correspondents Survey 55
UNINSPECTED Cattle SLAUGHTER 55
IMPORT Data 57
EXPORT Data 57
Chapter Page
The Economic Model 59
Investment and Disinvestment 62
Competing Demands and Complementary Inputs 73
Feedback and Cattle Cycle 77
Restatement of the Hypothesized Model 78
III. THE BEHAVIORAL MODELS 80
The Econometric Model 82
Behavioral Model Development 88
Cow SLAUGHTER 90
REPLACEMENTS, Heifers 97
Bull SLAUGHTER and REPLACEMENT 103
Calf SLAUGHTER 105
Modifications to the Specified Models 110
Accounting Identities for Cattle and Calves 112
Generation of Endogenous Variables 117
Assumptions 118
Description of the Model (MATRIX) 123
The Generated Endogenous Data Series 126
Parameter Estimates and Behavioral Model Appraisal 136
Cow SLAUGHTER and REPLACEMENT 140
Calf SLAUGHTER 144
Bull SLAUGHTER and REPLACEMENT 158
IV. EVALUATION OF THE STATISTICAL DATA BASE 167
Data Base Disaggregation 172
Description of the Model (RECON) 177
Analysis and Evaluation 184
Calf Births 186
Ending Calf Inventory 190
REPLACEMENT Cattle 194
The Sex Ratio of EXPORTS and WEST-EAST Cattle-Calf Movement 195
Yearling Cattle 203
Dairy Heifer SLAUGHTER 206
Model Accuracy 209
V. THE CATTLE HERD SIMULATOR 211
A Model Overview 211
Simulation of the Elements in Cattle Production 218
Simulation of BIRTHS 218
Simulation of DEATHS 226
Simulation of Calf, Cow and Bull SLAUGHTER 229
Chapter Page
Simulation of EXPORTS and IMPORTS 233
Simulation of WEST-EAST Cattle-Calf Movement 237
Simulation of Feeder Cattle ALLOCATION to Feeding Programs 238
Simulation of the Growth Process 239
Simulation of REPLACEMENTS 244
Simulation of Steer and Heifer SLAUGHTER 247
VI. MODEL TESTING AND OPERATION 250
Validation of the Model 251
Model Sensitivity 254
Model Stability 257
Operation in a Deterministic Mode 264
Operation in a Stochastic Mode 267
VII. SUMMARY AND APPLICATION 285
Summary 285
Program MATRIX and the Behavioral Models 287
Program RECON 290
Program CATSIM 292
Adaptation to Potential Applications 295
Future Model Development 296
Appendix
A. PARAMETER INITIAL VALUES 300
Birth Rate 301
Calving Distribution 302
DEATH Rates 305
SLAUGHTER and UNINSPECTED SLAUGHTER 306
IMPORT-EXPORT 307
Allocation to Ration B 311
Allocation of REPLACEMENTS 311
Delay Parameters 313
B. SIMULATION 316
Simulation of the Modeled System 316
Simulation Building Components 323
C. PROGRAM MATRIX 335
Appendix Page
D. PROGRAM RECON 347
E. PROGRAM CATSIM2 WEST 366
F. DISAGGREGATE QUARTERLY CATTLE AND CALF POPULATION-- 1958-1972, ESTIMATED BY PROGRAM CATSIM2 384
G. DISAGGREGATE QUARTERLY INSPECTED STEER AND HEIFER SLAUGHTER--1961-1972, ESTIMATED BY PROGRAM CATSIM2 392
BIBLIOGRAPHY 394

LIST OF TABLES

Table Page

1. National distribution of cattle and calves, June 1 , 1972, expressed as a proportion of the national total 34
2. The stock and flow variable notational convention 50
3. Notation for and description of behavioral model variables 94
4. Coefficient signs implied by the theoretical models 109
5. Quarterly INSPECTED plus UNINSPECTED Cow SLAUGHTER and REPLACEMENT, 1958-1972, estimated by program MATRIX 128
6. Quarterly INSPECTED plus UNINSPECTED Calf SLAUGHTER, 1958-1972, estimated by program MATRIX 129
7. Quarterly INSPECTED plus UNINSPECTED Bull SLAUGHTER and REPLACEMENT, 1958-1972, estimated by program MATRIX 130
8. Adjustments made to Eastern Cow SLAUGHTER and REPLACEMENT data as generated by MATRIX 131
9. Parameter estimates for Cow SLAUGHTER and REPLACEMENT behavior models 145
10. Parameter estimates for Calf SLAUGHTER behavioral models 154
11. Parameter estimates for Bull SLAUGHTER and REPLACEMENT behavioral models 160
12. Quarterly INSPECTED plus UNINSPECTED Cow SLAUGHTER and REPLACEMENT, 1959-1972, estimated by the behavioral mode 1 164
13. Quarterly INSPECTED plus UNINSPECTED Calf SLAUGHTER, 1959-1972, estimated by the behavioral model 165
Table Page
14. Quarterly INSPECTED plus UNINSPECTED Bull SLAUGHTER and REPLACEMENT, 1959-1972, estimated by the behavioral model 166
15. Report format for program RECON 178
16. A comparison of RECON generated Calf BIRTHS with Statistics Canada's semi-annual BIRTH estimates, 1958-1972 189
17. A comparison of RECON generated Dairy Calf BIRTHS with STATISTICS Canada's Dairy Correspondent Survey, "Estimates of Cow and Heifers to FRESHEN This Month," 1958-1972 191
18. A comparison of RECON generated Ending Calf Inventory with Statistics Canada's December 1 Calf POPULATION estimates 1958-1972 193
19. A comparison of RECON estimated REPLACEMENTS with INVENTORY expressed in terms of a REPLACEMENT Rate, WEST and EAST, 1959-1972 196
20. A listing of Eastern and Western Steer and Beef Heifer Feeding "ERRORS" from given parameter settings, 1959-1972, program RECON 199
21. A comparison of RECON Estimated TRANSFER IN with Ending Inventory for all Yearling Cattle categories, 1959-1972, program RECON 204
22. A comparison of RECON Estimated Dairy Heifer SLAUGHTER with Dairy Heifer Inventory, 1959-1972, program RECON 208
23. A comparison of RECON "ERROR" with selected data bases 210
24. Sensitivity test results on selected model parameters-- CATSIM2, West 258
25. Sensitivity test results on selected model parameters-- CATSIM2, East 260

LIST OF FIGURES

Figure Page

1. A simple system with feedback 23
2. The systems simulation process 24
3. Eastern Cow Population, June 1, 1954-1972 35
4. Western Cow Population, June 1, 1954-1972 36
5. Western Cattle SLAUGHTER and Calf BIRTHS, 1958-1972 40
6. Eastern Calf BIRTHS, EXPORTS, and SLAUGHTER, 1958-1972 42
7. Western Calf BIRTHS, EXPORTS, and SLAUGHTER, 1958-1972 44
8. Total INSPECTED Cattle SLAUGHTER, 1958-1972 46
9. Expected marginal value product, $E(M V P)$, of a cow 70
10. Expected marginal value product, $E($ MVP), of a heifer 71
11. Price determination given competing demands and fixed supply 73
12. The excess demand model 83
13. The excess price model 84
14. Quarterly INSPECTED plus UNINSPECTED Beef and Dairy Cattle SLAUGHTER, West, 1953-1972, estimated by program MATRIX 132
15. Quarterly INSPECTED plus UNINSPECTED Beef and Dairy Cow SLAUGHTER, East, 1958-1972, estimated by program MATRIX 133
16. Quarterly Beef and Dairy Cow REPLACEMENTS, West, 1958-1972, estimated by program MATRIX 134
Figure Page
17. Quarterly Beef and Dairy Cow REPLACEMENTS, East, 1958-1972, estimated by program MATRIX 135
18. Simulation of Calf BIRTHS 222
19. Simulation of DEATHS in a Flow Situation 228
20. Simulation of DEATHS in a Stock Situation 229
21. Simulation of SLAUGHTER 233
22. Simulation of Feeder Cattle ALLOCATION to Feeding Processes 240
23. Simulation of Feeding-Finishing Process using a Distributed Delay 243
24. Simulation of a Growing Process using a Discrete Delay 243
25. Simulation of the REPLACEMENT Process (CATSIM1) 246
26. Simulation of Local Steer and Heifer SLAUGHTER 249
27. Quarterly Beef Cow Population, West, 1958-1972, Published, and Estimated by CATSIMI and CATSIM2 268
28. Quarterly Dairy Cow Population, West, 1958-1972, Published, and Estimated by CATSIM1 and CATSIM2 269
29. Quarterly Bull Population, West, 1958-1972, Published, and Estimated by CATSIM1 and CATSIM2 270
30. Quarterly Beef Cow Population, East, 1958-1972, Published, and Estimated by CATSIM1 and CATSIM2 271
31. Quarterly Dairy Cow Population, East, 1958-1972, Published, and Estimated by CATSIM1 and CATSIM2 272
32. Quarterly Bull Population, East, 1958-1972, Published, and Estimated by CATSIM1 and CATSIM2 273
33. Quarterly Beef Cow Population, West, 1958-1972, Estimated by CATSIM2 and CATSIM3 277
Figure Page
34. Quarterly Dairy Cow Population, West, 1958-1972, Estimated by CATSIM2 and CATSIM3 278
35. Quarterly Beef Cow Population, East, 1958-1972, Estimated by CATSIM2 and CATSIM3 279
36. Quarterly Dairy Cow Population, East, 1958-1972, Estimated by CATSIM2 and CATSIM3 280
37. Quarterly INSPECTED Steer SLAUGHTER, West, 1961-1972, Published, and Estimated by CATSIM2 and CATSIM3 281
38. Quarterly INSPECTED Heifer SLAUGHTER, West, 1961-1972, Published, and Estimated by CATSIM2 and CATSIM3 282
39. Quarterly INSPECTED Steer SLAUGHTER, East, 1961-1972, Published, and Estimated by CATSIM2 and CATSIM3 283
40. Quarterly Heifer SLAUGHTER, East, 1961-1972, Published, and Estimated by CATSIM2 and CATSIM3 284

CHAPTER I

INTRODUCTION

The livestock sub-sector is a major element in the Canadian agriculture economy. Vast expanses of range lands and apparent ample supplies of feed grains coupled with a growing domestic and world demand for red meat should make livestock, and cattle in particular, a growth sub-sector. But an anomaly appears to be developing. Over the past several years, Canada has been losing its self sufficiency in beef and in fact has incurred several successive trade deficits.

This thesis does not intend to examine Canada's comparative advantage in the production of red meat or beef; its objective is much more modest. This study intends to expand or make a contribution to the growing stock of knowledge concerning the dynamics of the Canadian cattle herd. More specifically, it intends to provide both descriptive knowledge and analytical tools that may aid in future prescriptive and predictive applications as well as further descriptive analysis.

The Problem Setting

The agricultural situation in Canada in the early 1970's could have been described as: (1) unacceptably low net farm income, (2) unstable income (product prices), (3) uncertainty as to the future, and,
(4) inadequate production planning leading to chronic mismatching of supply with demand.

The internal economic situation is aggravated by the fact that Canada is a trading nation thus highly interdependent with the world economy. In the agricultural sector alone, it is estimated that 25-30 percent of the nation's total agricultural production is exported. Thus, while current commodity shortages occur largely outside her borders, these shortages (as well as gluts) are felt internally through the international trade sector. These periodic and often unpredictable shocks tend to confound long and intermediate range internal planning. The most vulnerable agricultural sub-sectors are wheat and feed grains as these commodities are largely produced to meet an often volatile international market.

This inability is transmitted through various linkages to other sub-sectors, notably livestock, and in fact to other sectors. The situation is aggravated by the fact that wheat, feed grain and livestock production (beef and to a lesser extent hogs) is concentrated regionally in the Prairie Provinces. Because this region, and especially Saskatchewan, is highly dependent on agriculture, the regional economy is prone to unacceptable fluctuations. Fluctuations in the Prairie agricultural economy are transmitted nationwide through balance of payments, the producer durable goods sector, and especially the food element in the consumption sector. While these fluctuations might have been tolerated in an earlier age, modern society demands more stability, more growth, and more management.

One noteworthy result of the combined events of the past several years has been the unprecedented trend of growing trade deficits in beef and veal. While trade in these commodities showed a very slight surplus in 1969 and 1970, the deficits became increasingly large into 1973; this is in contrast to substantial trade surpluses in prior years. This situation has been aggravated by continuing declines in the dairy herd in virtually all parts of Canada with the prospects of deficits in milk and dairy products appearing as matters of some real concern.

As in most developed countries, the right course of action to pursue concerning the domestic and international agricultural situation has been a preoccupation of government, university, and industry personnel for some 50 years. While the problem has taken many forms through depression, war, and post-war periods, a problem still exists.

A most significant study in this regard was produced by the recent (1969) Canadian Task Force on Agriculture. ${ }^{1}$ It stated the following hierarchy of values for agriculture.

- Higher national income per capita;

First level

Second level

Third level
all Canadians must have at least a minimum standard of living

- Functional balance of payments
- Higher net farm income
- Full employment
- Reasonably stable prices
- Stable farm income
- Lower cost of production and marketing
- Increased mobility of labor out of agriculture.
${ }^{1}$ Canadian Agriculture in the 70 's, Report of the Federal Task Force in Agriculture, Ottawa, Queen's Printer, 1969.

In addition to these values, it stated specific goals for the non-dairy livestock sub-sectors. These specific goals are:

- that a target of 500,000 feeder cattle for export be set for 1980, and
- that enough beef and veal be produced in Canada to meet domestic consumption, and
- that all tariffs be removed on cattle and beef, and
- that Quebec and Ontario dairymen reconsider selling dairy calves as veal in order to market heavier veal or feeders, and
- that resources be diverted from grain production to cattle production, and
- that the Canadian Dairy Commission institution incentives for dairymen to move into beef production.

Since these recommendations were made, the world and domestic agricultural situation have switched from a surplus to a deficit position. Is this a permanent or temporary switch? How should Canada react domestically? In the face of uncertainty and fluctuations, what is the best long and short run resource allocation policy?

The Study Context

Government, especially at the federal level, must take the lead in ensuring the well being of all Canadians through thoughtful and appropriate policies and programs effectively implemented in a timely fashion. To this end, the Economics Branch of Agriculture Canada has been and is providing increasingly effective input into policy and program planning for the agriculture and food sector.

To aid the Branch policy advisors, the Branch has been developing an interactive set of agricultural sub-sector models. These include:

- feed grain models
- oil seed models
- beef models
- dairy models
- hog models
- production adjustment models.

In certain instances, several models have been or are being developed for one sub-sector. In the case of the beef sub-sector, at least two models have been developed.

The first of these is a short run linear programming model that was initially designed to interact with the feed grains and oil seeds models. In this model, the cow herd is considered as fixed, however, the progeny are allowed to move at several critical stages of the production process. The initial application of this model was to assist in the development of a national feed grains policy. ${ }^{1}$

A second beef model is being developed at the University of Guelph. ${ }^{2}$ This model is a quadratic programming application that considers cattle production, trade, beef and veal consumption, and

[^0]price determination among three regions, Canada East, Canada West, and United States. While this model is basically a transportation model, the production, and especially the behavioral elements, are well developed.

A third study, a simple cattle herd simulator, was begun in mid-1973 to examine the consistency of Canada's statistical data base, related to cattle and calves. This study was curtailed before the completion due to subsequent staff shortages. This third study has been incorporated as an important part of this dissertation.

This dissertation research is being conducted as an integral part of the sector modeling program of the Economics Branch, Agriculture Canada. It has been designed with general purposes in mind that require something less than a general equilibrium model. While encompassing the simulator mentioned above, an early attempt was made to ensure general compatibility with the Guelph quadratic programming model.

In addition, it is planned that subsequent to this dissertation research, the developed models are to be adapted to meet specific descriptive, predictive, and evaluative needs of the Economics Branch. Some anticipated applications are discussed briefly in the next section.

The Problem Statement

The problem that is confronted in the dissertation is the conceptualization and construction of a dynamic demographic model of the Canadian cattle herd. This model is conceptualized and constructed according to the terms of reference and design criteria stated below.
were initially established in consultation with the Economics Branch in light of current and expected future research and policy requirements. These terms of reference and design criteria are discussed below.

The model that is developed in this study is partial equilibrium when operated independently of the other Branch models. While it is intended that it be operated interactively with other models, it is to be useful without this interaction. In other words, it is designed as a component, but a self-contained component.

The model is based on the biological growth and production process as experienced and practiced in Canada. In addition to this basic departure from prior models, ${ }^{1}$ the model separates cattle into beef and dairy components, constituting a second major departure. In turn, each of these have a separate male and female component. ${ }^{2}$

The model has three geographic elements, two modeled explicitly, and the third implied. The two explicit regions are Canada East and Canada West. The third region is the rest of the world and is treated implicitly through the trade component. In Canada, the major trading partner in cattle and calves i^{4} the United States.

In addition to the above disaggregation of the herd, the herd is further subdivided in terms of the (1) age and/or (2) function,

[^1]and/or (3) process. The basic functional choice is recognized through allocation of breeding age cattle to either (1) the breeding herd or (2) the feedlot and slaughter.

The variation in production process is recognized through two separate and distinct feeding rations. The first process utilizes a low energy ration where cattle are grown on grass, hay and other roughage; this process may or may not be terminated by a short finishing period. The second process involves a high energy, high caloric intake ration, such as would be experienced by cattle on full feed in a feedlot. This process assumes that the animal is both grown and finished in such an environment. Some combination of these two processes should approximate the actual Canadian experience. In addition, this element of the model allows for a changing combination of the two processes over time.

The model is designed to subdivide calves into ages $1-3$ months, 4-6 months, and 6-12 months. This subdivision is reasonably consistent with the cattle production and marketing process as practiced in Canada.

The major behavioral aspects of the model include: (1) calf slaughter rate, (2) cow and bull cull rate, and (3) cow and bull replacement rate. These major flow elements drive the model and provide it with its basic cyclical and trend nature.

The models developed in this thesis, as previously mentioned, are partial equilibrium. Specifically, the following mechanisms have not been developed:

- the price determination mechanism for beef and veal and for cattle, and
- the trade mechanism for cattle, calves and beef, either internal or external to Canada, and
- the major sub-sector which is both competitive and complementary in production has not been modeled, namely, the wheat and feed grain sub-sector.

In the first two instances, the model developed by MacAuley ${ }^{1}$ generates the emitted prices and flows; the output and input matrices of this and the MacAuley model are designed in such a manner that there is potential for the two to be operated interactively. In the third instance, the international grain market provides a major influence on domestic grain price. Because the influence is largely unidirectional, the grain prices, stocks, and outlook can be treated as exogenous to cattle production.

The major outputs of the model are (1) a time series of cattle population numbers by age, function, and process cohorts and (2) a time series of slaughter cattle and calf numbers by sex, function, and process. ${ }^{2}$

The stock values (population cohorts) are determined by a set of flow variables. These flow variables include:

1. calf slaughter rate
2. cow and bull cull rate
3. cow and bull replacement rate
4. export rate
5. import rate
${ }^{1}$ MacAuley, op. cit.
${ }^{2}$ Official Statistics Canada (STATCAN) livestock statistics list seven cattle-calves categories biannually for both Eastern and Western Canada; this model produces 25 categories quarterly. In addition, STATCAN produces six slaughter categories; this model can generate at least 11 for both East and West.
6. birth rate
7. death rate
8. feeding-finishing rate.

Numbers 1, 2, and 3 are pure behavioral variables. Econometric techniques are used to arrive at parameter estimates. Prices, including cattle prices, are exogenous to the model. Prices provide a feedback mechanism for the cattle production process, and are an element of interaction with other models.

Numbers 4 and 5 are taken as exogenous, and provide a second level of interaction with other models. Exports and imports are interpreted to mean interregional as well as foreign trade.

Numbers 6, 7, and to a lesser extent 8, are basically biological Technology and environmental influences are of major significance. The impact of economics, especially relative prices and price expectations, have an effect on 6 and 7; their influence on 8 is marked. This latter area is not explored in this study but must be given top priority in future model development. ${ }^{1}$

Major design criteria involve flexibility to meet future and possibly unanticipated applications. In the extreme, this requirement can invoke undue cumbersomeness. To avoid this result, flexibility features are avoided if they prove to be mildly cumbersome.

[^2]At the design stage and during model development, specific applications were not known with certainty. This in major part was due to the fact that problems to be addressed, and thus applications, occur in the future. However, several general types of applications were identified. The model is designed:

1. to analyze and evaluate existing data series (while this is part of the existing study, additional interaction with statisticians and researchers is planned), and
2. to analyze and assess the impacts on the cattle-calf sub-sector of changing:

- biological parameters,
- production processes,
- flows values such as exports and imports, and

3. to use the model in an optimum control mode to determine optimal or alternate paths that may lead to present targets such as projected domestic or expert demand, and
4. to operate in a forecasting mode, and
5. to operate interactively with researchers in order to heighten their descriptive knowledge and understanding of the sub-sector.

These applications are not exhaustive. Since the model is based on the biological reproduction and growth process and since one anticipated application set involves the evaluation of changes in biological parameters and production processes, the model must incorporate basic biological parameters and processes.

The evaluation mentioned above would be expected to include (1) breeding herd size, (2) breeding herd maintenance, (3) progeny feed intake, and (4) beef and veal output. The basic biological parameters that are indicated include:

1. live birth rate
2. birth weight
3. birth distribution
4. heifer calving age
5. heifer calving distribution
6. weaning weight
7. rate of gain
8. carcass weight
9. carcass dressing percentage.

While all of these parameters are not modeled either explicitly or implicitly, the model must accommodate them with very little alteration. In addition, the model must be flexible enough to accommodate additional production and finishing processes beyond the high and low energy streams initially modeled.

Study Objectives

The purpose of this study is to develop a general simulator of the Canadian cattle herd that can subsequently be readily adapted to meet specific research needs of the Economics Branch and other Canadian institutions associated with the cattle-calves sub-sector. This main objective must be conducted concurrently with or subsequent to other prerequisite objectives which are included below.

The following specific objectives of this study are realized concurrently rather than sequentially. This concept is consistent with the systems analysis process to be described in the next chapter.
a. Data and Information assessment:

1) to identify and gather such data and information as required to support the hypothesized model, and
2) to attempt a reconciliation of these data and information in order to determine their accuracy.
b. Model Development:
3) to identify the structure and develop a general simulation of the Canadian cattle herd consistent with the hypothesized model, and
4) to identify, conceptualize, and estimate those behavioral and biological relationships that are found to be the model's critical parameter and flow variables, and
5) to identify and design into the model those critical elements that are consistent with expected applications and future development.
c. Model Testing and Validation:
6) to successfully "track" past population and slaughter data consistent with the simplifying assumptions used, and
7) to generate disaggregate historic population and slaughter data series and to generate replacement and cull data series that are held to be highly plausible.

Literature Review

The literature is particularly undeveloped with respect to the problem outlined above. While this is the case, certain related literature is available or is emerging. This related literature falls into five categories.

1. Simulations of agricultural sectors or sub-sectors.
2. Simulation techniques and components.
3. Econometric models of the cattle-feed grain sub-sectors.
4. Structure of the Canadian cattle-calves sub-sector.
5. Data description of this sub-sector.

A cattle herd model was incorporated as a component of the "Nigerian Model."1 This component modeled both a "traditional" and a "modern" sector in an attempt to develop policy strategies and evaluate policy alternatives. The beef component employed calving rates, death rates, and various marketing strategies with the former two rates being functions of nutritional level. The "modern" beef component utilized a land allocation (allocation between crops and grazing) as a policy variable. The output of land allocated to grazing was a function of input expenditures on it. Supplemental feeding was used as a policy variable as well.

Posada ${ }^{2}$ developed a somewhat similar model for the Northern Columbia beef industry. This industry appears to be a traditional economy; policy instruments include imposition and assimilation of more advanced technology. Credit and export incentives were also employed.

Both the Nigerian and the Posada models are explicitly oriented toward policy evaluation; consequently, the identification and modeling

[^3][^4]of output and policy variables become a major part of the model. Input demand, a crop element and a price determining element are included as part of both models. The Nigerian study modeled the non-agricultural sectors of the economy while Posada did not.

Both of the above studies model one or more sectors of the national economy. As a consequence, the models are highly aggregated; minimum detail is dictated only by policy and output variables that are found to be relevant. A more detailed sub-sector simulation was done by Hovav Talpaz. ${ }^{1}$

Talpaz developed a hog supply response model subject to both biological and economic constraints. This model tends to more explicitly model a sub-sector, the hog sub-sector, while taking the balance of the economy as exogenous. He states that "demand for hogs and the distribution and marketing system are beyond the scope of this model." The model does evaluate production response to an identified set of policy variables and ultimately recommendations are made for dampening the hog cycle.

Key variables in the Talpaz model are the hog-corn price ratio and volume (rate) of farrowing. The study has two parts. The first used econometric techniques to identify and estimate key model parameters. Specifically, a Fourier series application to a trigonometric time function is employed. The second uses a time-variant mixed

[^5]difference equation system to simulate production supply response. A component model was developed to yield age and weight distributions for market hogs. The sow farrowing variable was found to be the major state variable while hog-corn price ratio represented the major input signal.

The components and techniques necessary to develop the Talpaz and Posada models, as well as other simulation models not discussed here, ${ }^{1}$ can largely be attributed to T. J. Manetsch and his associates. These techniques and components were perfected in large part during the execution of the "Nigerian Project" and subsequent "Korean Project." The text, of which Manetsch is joint author, only reflects this knowledge in part. ${ }^{2}$ Full credit must be given to lectures, seminars, and mimeographed material presented by him and his colleagues.

The next chapter deals explicitly and at length with the structure of the Canadian cattle industry and the data base descriptive of that industry. Specific sources and references are cited at that time. Chapter III cites references relevant for the development of the behavioral models.

[^6]
Dissertation Organization

The dissertation is organized in such a manner as to provide a general statement of the problem and a specific set of objectives in this present chapter. This chapter has also provided a description of the context in which the study is being conducted as well as a discussion of what is being attempted and what is being left to related models.

Chapter II discusses the background necessary to proceed to the detail of Chapters III, IV, and V. Specifically, Chapter II discusses the system science simulation approach to problem solving, provides a historical description of the cattle-calves sub-sector and a discussion of the currently available statistical data base. In addition, the theoretical economic model underlying the cattle-calves sub-sector is discussed in detail.

Chapter III develops the behavior models required for the simulation model and provides parameter estimates for the latter model. In addition, the model MATRIX is discussed. This model is required to generate an estimated matrix of endogenous variables for the above behavioral models.

The statistical data bases concerning cattle and calves is felt to be less than desirably consistent. Chapter IV discusses a model called RECON that assists in isolating errors and biases in these data series. The implications for both this study and others are considered.

Chapter V discusses the development of the cattle herd simulator, CATSIM. The building of this simulator requires a second set of estimated parameters. These parameters are obtained from sources other than statistical analysis. They fall into two basic categories: the first concerns the basic biological relationships, and the second involves data base disaggregation. A third set is suggested but left to a subsequent study, that is, the statistical estimation of these two former sets.

Chapter VI provides an evaluation of CATSIM under various operating conditions. Three basic versions of CATSIM are developed. CATSIM 1 operates the basic model under a set of strict and somewhat unrealistic assumptions concerning the rate of breeding herd replacement; CATSIM 2 relaxes that assumption. CATSIM 3 utilizes behavior models to generate replacement rates and certain other critical rates.

The final chapter, Chapter VII, summarizes the study and discusses the modifications required to adapt the model to anticipated applications. Aspects of the model that require further development are also discussed.
\because

CHAPTER II

METHODOLOGY

The development of a cattle herd simulator, together with its integral behavior elements, requires a description of the sub-sector, a description of the sub-sector's context, and a theoretical basis for analysis. An understanding of the technique of analysis is required as well. It is the purpose of Chapter II to provide this necessary foundation.

The first section, The Systems Science Approach to Problem Solving, considers systems science simulation as a problem-solving technique useful for investigating both the normative and the nonnormative aspects of problems. It should be noted that while the first section discusses the total method or approach, this dissertation covers only the first few steps of that approach. The steps involving application are left to future studies, some of which are being developed concurrently and in coordination with this study.

The second section, The Cattle Sub-Sector, provides a historical, verbal, and graphical sketch of the Canadian cattle herd, while the third section, The Statistical Data Base, discusses the statistical base descriptive of that herd. It should be stressed that the description of the herd is recorded largely in terms of stock and flow data
series that are proving to be inadequate, incomplete, incompatible, and possibly, in error.

The final section, The Economic Model, develops the economics relevant to describing the cattle herd. Special attention is paid to investment and disinvestment in the basic breeding herd and to the relationship between the cattle-calves sub-sector and the wheat-feed grain sub-sector. It is a basic contention of this dissertation that analysis of investment/disinvestment provides a chief indicator of fed cattle supply 24-36 months hence.

The Systems Science Approach to Problem Solving

The word simulation conjures up a wide variety of concepts or techniques in the minds of those who contemplate it. Lack of concensus or existence of misunderstanding leads to unwarranted confusion. The concept of systems science simulation used in this dissertation follows closely the one developed and applied by G. L. Johnson and his associates at Michigan State University. ${ }^{1}$

The systems science simulation approach is general with respect to technique; thus it may use single or simultaneous equation models, LP, and NLP models, input/output tables, PPB and capital budgeting

[^7]techniques, or any number of other more specialized techniques. Each is eligible for inclusion at that point at which each is more appropriate. The approach is also general with respect to data use and data sources. Thus, both time series and cross section data are often employed. Statistical estimation procedures may be used to obtain parameter estimates. Another source of data, used extensively in this dissertation, is informed judgment or data of a judgmental nature implying a Bayesian approach. The method employed in this study utilizes the techniques developed by systems scientists as well as the concept of a system now used generally by most disciplines. While the systems science simulation approach to systems design and analysis was originally developed by electrical engineers, it is increasingly finding favor in a diverse group of disciplines. It is also finding favor in multi-disciplinary problem oriented research as the systems approach allows the diversity to be handled in a comprehensive and coordinated manner, with the logic that is common to all disciplines.

Thus, generalized systems science simulation is flexible with respect to kinds and sources of information and technique. The mechanical and logical nature of the process allows adaptation to a wide variety of modes, including projection, optimization, and optimum control. It has also been found useful in a normative policy making mode where the following preconditions for optimization, not being present, have hampered or even precluded appropriate use of specialized techniques. The preconditions for optimization are as follows:

1. A common denominator for the "goods" and "bads" is present.
2. This common denominator is comparable among those individuals or groups affected.
3. The order, or second order condition, is apparent before optimization takes place.
4. A specific decision rule for selection of the optimum is available.

The generalized systems science simulation approach continues to be flexible in application; this is important when all possible applications are not known a priori.

The systems science approach to simulation is an iterative, learning process. While many, if not most, economists "talk systems," very few actually "do systems." This study provides an example of "doing systems," of laying out the system in explicit detail and simulating the components. The systems approach to accomplishing this task has the appeal of Bay ${ }^{\text {ésian }}$ statistics, that is, it appeals to the logic and thought process of the non-economist or noneconometrician. It accomplishes this by formalizing the learning and corrective process that is the method of all scientists and in fact all entities that learn when reacting to stimuli.

A very simple system is presented diagramatically in Figure 1.
Three types of problems can be identified with such a system.

1. Synthetic or design problems: given desired output and expected input, design the system to produce the desired output, e.g., a pollution control device for internal combustion motors.
2. Analysis problem: given input variables of the system, find the output variables, e.g., prediction of national crop yields, or the daily weather.
3. Identification problem: given measured input and output variables, find the relation between them.

Figure 1. A simple system with feedback

The identification problem basically is the one of concern in this study. In final application, however, the model will deal with problems of analysis, or even design.

The systems analysis approach uses an iterative, learning, problem investigating approach in dealing with all three types of problems. Figure 2 provides a general overview of this process.

This study basically includes stages 1 through 3. At each stage interaction takes place between the model builder(s) and the model user. In a policy evaluation mode, the ultimate model user becomes the policy or decision maker.

Figure 2. The systems simulation process

The method is iterative in that stage 1 takes place before stage 2, stage 2 prior to stage 3, etc. At each stage, however, new or conflicting information may be uncovered that partially or wholly negates information or concepts previously held to be true in earlier stages. Thus, any one step may have to be repeated, possibly several times. Similarly, new information may force a return to a prior step or, in fact, a return to step 1.

In addition to the possibility and process of uncovering new knowledge as the overall process takes place, the process accommodates the possibility of uncovering new problems that were not anticipated a priori. These new problems may force a return to a prior stage.

As previously mentioned, this study basically does not include stage 4. However, the foregoing applies to stage 4. Thus, in application, there still exists the critical interaction between model builder and model user. In fact, the human element is not seen as divorced from the process but as an integral part of the process. Thus, even in stage 4, the possibility of new knowledge or new problems may force a reversion to any prior stage. Consequently, the results of this study must be held tentatively.

The application of the systems simulation process to policy problems should be noted at this point. Models, including simulation models, normally are thought of as providing knowledge of a nonnormative nature. An objective function is normally used to minimize a set of "bads" and to maximize a set of "goods." This objective function explicitly states what is "good" and what is "bad"; knowledge
of the normative is clearly implied. But in policy problems very often it is knowledge of a normative nature that is missing; it is the normative knowledge that must be acquired.

To successfully optimize, the preconditions for optimization must be present. In many, if not most, policy applications, these preconditions are not present. In another parlance there is normally an absence of an explicit social welfare function. While the model provides a set or competing sets of production possibilities, no clear rule is present for evaluating these competing sets with respect to social welfare.

The problem may be expressed in terms of the lack of knowledge concerning the normative. Systems science simulation can aid in the learning and awareness heightening process by involving the policy maker in the total process from problem formulation to model application. The process forces the accumulation of normative and non-normative information germane to the eventual policy decision.

While the above discussion provides an overview of the general process, more specific steps are required before a problem may be approached, systemized, and eventually simulated. The process involves the following basic steps.

Feasibility Analysis

This step precedes the commencement of work on any project including this one. It corresponds in part to stage 1 of Figure 2 and includes the following self-explanatory steps:

- needs analysis
- system identification (in very general terms)
- problem formulation
- generation of the systems' concepts (a broad general list)
- determination of physical, social, and political relizability
- determination of economic feasibility
- generation of a subset of viable concepts.

System Modeling

This step receives the set of viable concepts as inputs, the working model is the output. It is basically an elaboration of stages 2 and 3 of Figure 2. This step involves:

- concept selection (the final subset)
- modeling of these concepts
- parameter estimation or approximation
- stability analysis
- sensitivity analysis.

From the subset of viable concepts, a further subset is selected that best appears to represent the system being modeled in light of the identified problem. The concepts are individually modeled to collectively produce the model of the system.

Systems modeling takes place in terms of the subset of concepts finally selected. This model represents a second level of abstraction from reality. The sequence is:

The mathematical model can be represented in terms of an exact block diagram. The elements in the exact block diagram are modeled in terms of system components ${ }^{1}$ that in many cases have been developed in the past and are published in the form of specialized systems languages. ${ }^{2}$

Parameter estimation is a major element in the building of a simulator. These parameters may often be estimated statistically where adequate data are available. Where this is not possible, "guesstimates" and informed judgment provide a second source. In addition, the simulator itself may be deployed to produce parameter estimates with certain optimal properties.

If the model output simulates some set of "correct" values, then a formal optimization procedure may be employed to estimate parameter values. If some less precise concept of correctness is held or if highly plausible parameter estimates are available from other

[^8]sources, then an informal method of parameter adjustment or "fine tuning" may be employed.

Viability testing is the first stage of testing. At this stage, generated variable values are checked for correct sign and approximate magnitude. Validation involves a more detailed test and may include a comparison of simulated output with some known output, as in the case of this study.

Sensitivity analysis involves testing the sensitivity of the model to parameter changes. There are two basic reasons for this test. In the first case, the accuracy of sensitive parameter estimates is more critical than those of lower sensitivity. This test then gives some ordering to the allocation of further research resources. In the second instance, the ranking of policy parameters in terms of sensitivity can be very informative to decision makers.

Stability testing can take place concurrently with sensitivity testing. This test ensures that the model is stable over all reasonable combinations of parameter values. The dynamic properties of the model should approximate the observed dynamic properties of the system being modeled.

Validation

The actual process of validation is one of demonstrating that the model fails to be found invalid. Thus, the model may be incorrect in one or more aspects yet superficially appear to be valid. The model may be found incorrect in application; at this stage, corrections or revisions will be made in keeping with the systems process.

A simulation model, such as the one being developed in this study, uses information from a wide variety of sources. These include published statistical data, experimental data, as well as the informed judgment of a range of knowledgeable people. The reliability or accuracy of any or all of this information is open to question.

Unlike specialized techniques, the usual statistical tests do not always apply; where possible, they are used. In all cases, however, less sophisticated but nevertheless useful tests of objectivity are applied. These tests are applied consistently at each stage of model development in order to validate and verify the process that is taking place.

These tests of objectivity are:

1. consistency with observed and possibly recorded experience (correspondence),
2. logical internal consistency of the concepts used (coherence),
3. interpersonal transmissibility of the concepts used and the results produced, and
4. workability of the model in the solution of problems. ${ }^{1}$

More specifically, the model's output must be consistent with the official published cattle statistics and users evaluation of these statistics. Also, the process by which the model generates output must

[^9]be consistent with generally held concepts of how the sub-sector functions.

The model must be able to reconcile those various bits of information used in its construction in such a manner as to successfully reproduce, or change, the commonly held view of the sub-sector. These include generation of short term fluctuations and long term trends. If the model lacks stability or does not reproduce trends and cycles then it fails to be consistent with the real world. In this case the model would fail the consistency (correspondence) test. If the model cannot reconcile the elements used in its construction then it (the model or the elements) fail the internal consistency (coherence) test.

The process, the parameter values, and the generated output, must be accepted by a wide range of individuals cognizant of the various aspects of the cattle sub-sector. This group would include animal scientists, livestock economists, livestock marketing experts, and other knowledgeable industry people. This is the interpersonal transmissibility test.

Finally, the model must demonstrate workability or prove to be insightful with respect to specific problems. This means that this model (or some future amended version) is only useful insofar as it can provide useful answers; for a wide range of problems it may be found to be inferior to some other methods or of no use whatsoever.

The process of objective validation and verification is never ending. The present stage of development of the model represents a
highly plausible representation of the system. Additional information at some future date may cause this model to be greatly modified or simply rejected.

Thus the model's validation will not generally be expressed in a set of well-known and accepted statistics but rather will take an objective truth in the minds of those scientists, policy makers, and others who wish to use it, understand its logic, and contemplate the validity and usefulness of its output.

The Cattle Sub-Sector

This section describes the cattle sub-sector in terms of its various dimensions. This sub-sector is in interaction with other sub-sectors and indeed with international influences through its foreign trade dimension; thus, it is ever changing. An attempt is made, consequently, to describe the sub-sector in dynamic terms with emphasis on the external influencing factors.

The Spatial Dimension

Canada is divided geographically by physical barriers running north and south, giving rise to separate and readily identifiable regions. Within each region, considerable similarity exists with respect to climate, population density, degree of industrialization, as well as political and social thinking. Generally, each region is made up of one or more provinces; statistical data collection is conducted on a basis consistent with these regions.

For the purpose of this study, two major regions will be identified, East and West. The major elements in the Western region, with respect to the cattle sub-sector, are the Prairies. In the East, Ontario and Quebec are of major significance.

Approximately 70 percent of Canada's population lives in the East, mainly in southern Ontario and Quebec, while the remaining 30 percent is spread rather thinly over the Prairies and concentrated in the Vancouver area of British Columbia.

In contrast, the June 1, 1972 Livestock Survey indicates that the West had 61.6 percent of the cattle population. This uneven distribution of human and cattle population gives some clue as to the direction of the internal trade in cattle and meat.

The relative distributions are even more distorted if the cattle population is split into its dairy and beef cattle components. Table 1 shows the June 1, 1972 distribution on a seven region basis. The West is shown to have the bulk (81%) of the beef cow herd, while the East has most of the dairy herd (79% of the nation's dairy cows).

Table 1 provides a static picture only; Figures 3 and 4 show the trend in dairy and beef cow numbers, both East and West, over the 1954-1972 period. In general, the dairy cow herd has declined over most of the period and continues to decline both in absolute numbers and as a proportion of the total herd. In contrast, beef cow numbers have been on the increase over this same period with irregularity in this rate being the greatest in the West.

Table 1. National distribution of cattle and calves, June 1, 1972, expressed as a proportion of the national total

	Bulls	Milk COWS	Dairy heifers	Beef cows	beef heifers	Steers	Calves
Maritimes	. 0274	. 0457	. 0512	. 0137	. 0127	. 0228	. 0236
Quebec	. 1967	. 4116	. 3529	. 0476	. 0338	. 0341	. 0914
Ontario	. 1446	. 3329	. 4101	. 1237	. 2396	. 3746	. 1772
EAST	. 3687	. 7902	. 8140	. 1849	. 2932	. 4314	. 2922
Manitoba	. 0829	. 0480	. 0467	. 1071	. 0825	. 0885	. 0940
Sask.	. 2121	. 0452	. 0362	. 2884	. 2326	. 1476	. 2488
Alberta	. 2892	. 0805	. 0629	. 3670	. 3453	. 3036	. 3212
B.C.	. 0471	. 0361	. 0401	. 0527	. 0465	. 0289	. 0448
WEST	. 6313	. 2098	. 1860	. 8151	. 7068	. 5686	. 7088

The Trend-Cycle or Time Dimension
Marshall ${ }^{1}$ points out that official estimates of the numbers of cattle and calves in Canada have been kept since 1906. Over that period, milk cow numbers rose smoothly to peak in the mid-1930's and have fallen rather steadily since that date. On the other hand, cattle, other than milk cows, have trended upward irregularly since 1906.

Marshal goes on to say that these irregularities in cattle numbers, the so-called cattle cycle, is basically a phenomerion of the beef cattle population and thus most pronounced in the West. He identifies the following cycles for cattle other than milk cows.

[^10]

1911-1928	upswing 1911-1919 downswing 1919-1928	8 years 9 years
1928-1939	upswing 1928-1933 downswing 1933-1939	5 years 6 years
1939-1950	upswing 1939-1945 downswing 1945-1950	6 years 5 years
1950-1963	uncompleted 12 year upswing (one year decline in 1958)	

Subsequent analysis shows that the last continued until 1965. A four year down turn followed that bottomed out in 1969. An upswing has been in progress since that date.

Marshall has been tempted to say that the "conventional" cattle cycle (as occurring 1911-1950) has not been in evidence since 1950. He states, "this apparent deviation from the historical cyclical pattern over recent years, both in terms of timing and magnitude, would appear to negate the automatic properties of the cattle cycle as seemed apparent in the earlier years."1

Petrie characterizes the cattle cycle in terms of slaughter, and from peak to peak. ${ }^{2}$

1945-1957	downswing 1945-1950 upswing 1951-1957	6 years 1957-1965
	downswing 1957-1958 upswing 1959-1965	$1 \frac{1}{2}$ years
$1965-1969$	downswing $1965-1969$	$\frac{1}{2}$ years

${ }^{1}$ Marshall, op. cit., p. 11.
${ }^{2}$ T. Petrie, "Analysis of Seasonal, Cyclical and Trend Variations in the Prices and Output of Cattle and Hogs in Canada," unpublished Master's thesis, Saskatoon, University of Saskatchewan, 1971.

Marshall discounts the 1957-1958 downswing as being a product of high exports, therefore, low domestic slaughter. Beef cow members continued to increase during this period.

Both Marshall and Petrie note that the cyclical motion in cattle numbers, generally, is a western beef cattle phenomenon. Petrie goes on to give three basic reasons for this cyclical motion.

1. Producer response to short term conditions. This would include the drought in the thirties, the outbreak of foot and mouth disease in Saskatchewan in 1952, and the drought in 1961.
2. Exports as a response to relative international prices, especially U.S. cattle prices. A low period of exports are noted between 1952-1956 and 1967-1972. The intervening period 1958-1966 generally was a period of high exports.
3. Wheat--the competitive condition of livestock in the Western economy. If wheat exports and prices are average to high, resources are traditionally withdrawn from cattle production in the West. The years 1963-1967 saw high wheat exports and low carryover. Conditions changed during 19681970 as exports were reduced and carryover reached unprecedented levels.

Summarizing both Marshall and Petrie, the following events had a significant impact on the Western beef cattle population.

1937-1940 drought
1941-1945 government policy to divert excess grain to livestock

1945-1950 high western grain sales
1950-1962 high grain carryover especially wheat
1963-1967 high wheat sales
1967-1970 high wheat carryover
1970- government policy to divert excess resources to livestock.

The recent rise in cattle numbers has in part been sparked by diversification (into livestock) programs sponsored by several provincial governments, as well as the 1970 Lower Inventories for Tomorrow (LIFT) program of the Federal government.

Thus, to Petrie's list might be added a fourth item, government programs. These items are in addition to and superimposed on the traditional cobweb model of the cattle cycle. Figure 7 attempts to show the progress through 1958-1972 of births, calf exports, calf slaughters, while Figure 5 relates cow-heifer slaughter to calf births and steer slaughter.

The Trade Dimension

Boswell, ${ }^{1}$ Boswell and MacEachern, ${ }^{2}$ and Marshall ${ }^{3}$ provide a panorama of the changing cattle trade pattern in North America, especially as it affects Canada.

Cattle export statistics divide non-dairy, non-breeding stock exports into three weight classes: less than 200 pounds, 200-700 pounds, and over 700 pounds. While these categories will be treated in some

[^11]detail later in this chapter, the intent of this discussion is to provide some appreciation of the changing nature of trade flows. ${ }^{1}$

Calves under 200 pounds flow from Eastern Canada (mainly Quebec, and to a lesser extent Ontario) into New York, Michigan, and the New England States. A recent occurrence has been the shipment of calves to Europe, especially to Greece and Italy. These calves are destined for veal slaughter and are primarily excess male calves from the dairy herd. This flow occurs primarily in the March-June period. Figure 6 demonstrates how this flow has gradually increased over the 1956-1972 period.

Cattle exports in the 200-700 pounds range are primarily feeder calves from Western Canada moving to feedlots in North-Central and northern United States. These calves are, for the most part, 6-8 months of age and in the $400-500$ pound weight range. Historically a large percentage have been heifers due to differential steer-heifer price margins between the two countries. Figure 7 shows this flow, while irregular, it has been of major significance over the 1956-1968 period. Of recent years, this flow has virtually stopped due to relative conditions between the sub-sectors in the two countries.

The third major category is hard to specify. It can contain heavy feeder cattle, fed cattle or cows, primarily low quality cows for manufacturing purposes. This category is believed to contain a fairly

[^12]
Figure 6. Eastern Calf BIRTHS, EXPORTS, and SLAUGHTER, 1958-1972.
steady flow of the latter class of cow. Flows of heavy feeder cattle are irregular, mainly from the West and occur in response to price differentials, again, mainly from Western Canada.

The flow of breeding stock, both export and import, is small, except for dairy cows and heifers. A significant export market persistently exists for both purebred and grade dairy females. These flows originate primarily in Eastern Canada.

Cattle imports are primarily heavy finished cattle for immediate slaughter. This flow is intermittent and in response to relative price differences. The import (or export) response is due in large part to an "import margin" (or export margin). This margin is believed to be made up of tariff plus transport plus shrink. It is usually calculated when both prices are in Canadian dollars.

The Internal Flow Dimension

The major internal flow of cattle is from West to East. Because of the difference between the cattle/people geographic distribution, either cattle or beef must move East. Over the past 16 years both flows have increased. From Figure 7 it can be seen that calves shipped East increased during the 1957-1967 period, with a slight tapering off to 1971. The latter period was consistent with the adverse Prairie grain economy.

The movement of cattle (over 550 and 575 pounds) ${ }^{1}$ from West to East has been significant and relatively steady at the annual rate of

[^13]

115,000-230,000 head per year. Most of these cattle are for immediate slaughter; however, some may be placed on feed for an additional finishing period.

Figure 8 shows that an increasing proportion of the Canadian slaughter takes place in the West. Since 1965, the East has generally suffered an absolute, as well as proportionate, slaughter decline.

In general, the cattle sub-sector has shifted from East to West. Both the beef cow herd and cattle on feed have expanded rapidly in the West. This has been accompanied by substantially increased Western slaughter, particularly since 1965.

The Calf Slaughter Dimension
An important aspect of cattle production is the slaughter of calves. This slaughter reduces the potential beef supply from a given calf crop. In addition, it adversely affects the ability to expand (should some of the slaughter be female).

In the West, both inspected and uninspected calf slaughter rates have generally declined since 1957, except for a slight increase in the 1962-1965 period when the grain economy was buoyant. Since 1968, calf slaughter has declined to less than 3 percent of total calf crop. Even in 1957, a peak year, calf slaughter was only 14 percent of the total calf crop. Figure 7 portrays Western calf slaughter.

In the East, calf slaughter is still of major significance although declining, generally, over the 1957-1972 period. In 1957, calf slaughter was about 42 percent of the calf crop, in 1972,15 percent. The calf slaughter is believed to originate largely from

Figure 8. Total INSPECTED Cattle SLAUGHTER, 1958-1972.
the dairy herd and is about 70 percent male. It should be noted that in both East and West, uninspected has been a growing proportion of total calf slaughter, although declining absolutely. Eastern calf slaughter is shown in Figure 6.

The Seasonal Dimension

Annual calving distributions are difficult to determine exactly; however, reasonable estimates suggest a fairly uniform quarterly distribution in the East where the dairy herd predominates. In the West, 70-75 percent of the calf births occur before June 1st and probably the majority of these in the preceding three months.

Petrie's study ${ }^{1}$ provides the best evidence of cattle slaughter. He notes peaks in slaughterings (all steers, heifers, cows, bulls) in March, June, and September, with the October-December period being slightly above average. The rest of the months experience slightly below average slaughterings. He attributes the March-June, and to a lesser extent September slaughtering peaks to fed cattle from feedlots. The October-December peak is made up of a higher proportion of lower quality cattle, likely cattle finished on grass. The September peak is due to a convergence of marketings of all cattle classes including cull cows. In general, he states, the seasonal pattern has not appreciably changed for 14 years (1956-1969).

The seasonal pattern of calf slaughter has also been consistent over the past 16 years. In the East, calf slaughter peaks in spring and

[^14]early summer, reflecting the large number of veal dairy calves being made available. In the West, calf slaughter peaks during the fall as heavier calves are slaughtered.

The Statistical Data Base

The data that makes up the data base are collected and published by several agencies and divisions within agencies. This data base was assembled by bringing together the relevant published (and unpublished) data series from these several and diverse sources. ${ }^{1}$

These data are used in this study in several ways:

1. as stock and flow variables for the various component models,
2. as standards against which the various model's output may be compared, and
3. as hypotheses.

This third point may need some elaboration. One study objective is to "attempt a reconciliation of these data . . . in order to determine their accuracy." In this regard, the data are not assumed

[^15]to be accurate; rather, it is held as a hypothesis that is either accepted or rejected. Chapter IV deals specifically with this data reconciliation.

The balance of this section provides a brief description of the content of each data series incorporated into the data base. In addition, the collecting agency is listed. The content of each of these data series has been tentatively determined by referring to published articles and the personal comments of knowledgeable individuals as well as from personal knowledge of these data series. In keeping with the concept of data as a hypothesis, it is recognized at the outset that subsequent findings may lead to a revised understanding of the context of various data series.

The Livestock Survey ${ }^{2}$
Historically and for the period under consideration, Statistics Canada (STATCAN) has published a June 1 and December 1 livestock census. These data series are the basic reference for the stock variables.

[^16]Table 2. The stock and flow variable notational convention ${ }^{\text {a }}$
A. FLOH values and rates. These values and rates are capitalized; all modifiers of FLOWS have only the first letter capitalized.

BIRTHS and modified by Calf, Cow, and Heifer BIRTH Rate and modified by Cow and Heifers

DEATHS DEATH Rate	with various modifiers such as Beef, Dairy, Male, Female, and age identification
SLAUGHTER, CULL SLAUGHTER Rate, CULL Rate INSPECTED SLAUGHTER	with various modifiers
UNINSPECTED SLAUGHTER	with various modifiers
also sub-categories	Farm Killed and Eaten Farm Killed and Sold
Cattle for SLAUGHTER Cattle for Local SLAUGHTER Cattle for Immediate SLAUGHTER	and with other modifiers

IMPORTS
Purebred IMPORTS
Other IMPORTS
EXPORTS
Purebred EXPORTS
Other Dairy EXPORTS
EXPORTS, Cattle Under 200 Pounds
EXPORTS, Cattle 200-700 Pounds
EXPORTS, Cattle Over 700 Pounds
$\left.\begin{array}{l|l}\text { REPLACEMENTS } \\ \text { REPLACEMENT Rate }\end{array}\right\}$ with various modifiers
IN FLOW
OUT FLOW
Cows MILKED Yesterday
Cows and Heifers to FRESHEN This Month
MILK Cows BUTCHERED This Month

WEST-EAST Movement with modifiers
Cattle-Calf
Cattle
Calf
also sub-categories
to FEEDLOT
to STOCKYARDS
to SLAUGHTER
${ }^{\text {a }}$ A specific notational convention is employed in this study to indicate which of three possible meanings are attached to words that are often used in three different contexts. These words are used to describe stock and flow variables, as well as to modify processes, distributions, and prices. This table provides a list of the elements in these three groups in order to aid the reader in comprehending this study.

Table 2--Continued
B. Stock values. These values have only their first letter capitalized; this applies as well to all modifiers.

Calf, Calves Weaned Calves Vealer Calves Stock or Stocker Calves	with modifiers such as Beef, Dairy, Male, Female, and age identification
Heifers, Heifer Populatio Bred Heifers Open Heifers Replacement Heifers First Calf Heifers Slaughter Heifers	with modifiers Beef and Dairy
Steers, Steer Population Slaughter Steers	with modifiers Beef and Dairy
Yearlings, Steers, Heifer Feeder Cattle, Steers, He Finished Cattle, Steers,	
Herd Cattle Herd Cattle Population Breeding Herd	with various modifiers
Cows, Cow Population Brood Cows Mature Cows Cull Cows	with various modifiers
Bulls, Bull Population Replacement Bulls Cull Bulls	with various modifiers
Number of Farms Reporting Total Cows and Heifers fo Cows and Helfers in Calf	ilk--Two Years and Over

C. Processes, delays, distributions, and prices. Modifiers of these are not capitalized.

Processes:birth death slaughter growth feeding, finishing, feeding-finishing gestation production calving replacement breeding weaning	birth, calving death slaughter, cull replacement

Delays

Calves,
Under 1 Year 01d

Steers,
1 Year 01d or 01der

Beef Heifers

Beef Cows

Dairy Heifers

Dairy Cows

Bulls,
1 Year 01d or 01der

This time series represents both Male and Female, Dairy and Beef Calves. While this and all other Livestock Survey data are published by Province, for the purposes of this study Provincial totals have been aggregated to form an Eastern and Western total.

These data represent both Dairy and Beef Steers.

These data are described as Female stock 1 to 2 years of age being raised for replacements and those for slaughter. As is the case with Steers, no attempt is made to differentiate those on feed from the balance over most of this time period (1958-1972).

This figure is described as Female stock 2 years old and older, kept mainly for beef purposes.

These data are described as Female stock 1 to 2 years being raised mainly for milk purposes.

These are described as Female stock 2 years old and older kept mainly for milk purposes.

These data summarize both Beef and Dairy Bulls.

Calves Born Survey

STATCAN publishes semi-annual estimates of Calf BIRTHS. The June 1 figure represents an estimate of the Calf Crop from December 1 of the previous year until June 1 of the current year. Similarly, the December 1 figure represents the accumulated Calf Crop from June 1 to December 1. Calves born include both Beef and Dairy Calves.

INSPECTED Cattle SLAUGHTER

These data are collected and published by the Livestock Division, Production and Marketing Branch, Agriculture Canada. Because these data are collected daily by on-site federal government inspectors, a good deal of credibility is attached to them.

SLAUGHTER, Male Calves
SLAUGHTER, Female Calves

SLAUGHTER, Steers
SLAUGHTER, Heifers
SLAUGHTER, COWS
SLAUGHTER, Bulls

This rather broad category includes animals from light Vealers to heavy Butcher Calves. An examination of carcass weight reveals a low of 100-110 pounds in April-May to a high of 165-185 pounds in November. Western Female Calf SLAUGHTER historically peaked in the fourth quarter raising average carcass weight. Thus SLAUGHTER Calves might be expected to range from $200-450$ pounds and from 3-6 months of age.

While Calf SLAUGHTER is primarily thought of as Male Dairy Calves, historically there has been significant Female Calf SLAUGHTER in both Eastern and Western Canada.

No attempt has been made to separate these categories into their Beef and Dairy components. The definition of Heifers and Cows does not necessarily conform to the age cohorts previously described for the STATCAN Livestock Survey.

In addition, no attempt has been made to calculate carcass weight for each of these four categories. An examination of an aggregate carcass weight reveals that it has risen from about 525 pounds in 1958 to about 575 pounds in 1972. During this period, the proportion of Steers and Heifers on feed has risen. This undoubtedly has raised both live slaughter weight and dressing percentage.

WEST-EAST Cattle-Calf Movement

Like INSPECTED SLAUGHTER these data are collected and published weekly by the Livestock Division, Production and Marketing Branch, Agriculture Canada. These data refer only to those Cattle and Calves shipped East by rail. It is believed that most are shipped by rail with the balance by truck. Thus, these data represent a lower bound.

SLAUGHTER These are assumed to be Finished Cattle for

FEEDLOT STOCKYARDS

SLAUGHTER

FEEDLOT STOCKYARDS

Immediate SLAUGHTER.
Cattle Movement for: immediate SLAUGHTER.

These are assumed to be Feeder Cattle, over $550 / 575$ pounds ${ }^{1}$ to be placed in a feedlot mainly--some may go to grass.

Calf Movement for:
These are assumed to be Calves for Immediate SLAUGHTER--they are likely above average weight and age for Slaughter Calves.

These Calves are assumed to be below $550 / 575$ pounds ${ }^{2}$ and may go directly to a feedlot or to grass depending on season and prices.

[^17]Dairy Correspondents Survey
Monthly data is collected by STATCAN from a sample of dairy farmers. The sample data has been adjusted to correspond to STATCAN's June 1 and December 1 Livestock Survey by Economics Branch personnel.

The self explanatory headings are as follows:

- Numbers of Farms Reporting
- Total Cows and Heifers for Milk--Two Years and Over
- Cows MILKED Yesterday
- Cows and Heifers in Calf
- Cows and Heifers to FRESHEN This Month
- Milk Cows BUTCHERED This Month

UNINSPECTED Cattle SLAUGHTER

These data are not published, however, they are compiled on a provincial basis by the Agricultural Division of STATCAN for their own internal use. Certain of these data were made available to the author on a quarterly basis with the balance on an annual basis. These data are compiled only on a cattle/calves basis.

UNINSPECTED SLAUGHTER falls into two categories: slaughter in plants and slaughter on the farm. ${ }^{1}$ The former data are estimates of slaughter in packing plants not inspected by federal inspectors although they may be inspected for one or more reasons by provincial, municipal, or other federal authorities.

[^18]| Cattle | In the West, this SLAUGHTER is about 5 percent of total Cattle SLAUGHTER, while in the East, it is about 20-25 percent; it is reasonably stable in both cases. |
| :---: | :---: |
| Calf | In the West, this SLAUGHTER is about 20-25 percent of total Calf SLAUGHTER; however, this total has fallen drastically over the 1958-1972 period. In the East, this SLAUGHTER is also 20-25 percent of total Calf SLAUGHTER. In contrast, Eastern Calf SLAUGHTER has remained relatively high, although only about half its earlier (1958) rate. This reduction in Eastern UNINSPECTED Calf SLAUGHTER is mainly attributed to major reductions in Quebec. |
| Farm Killed and Sold, Farm Killed and Eaten | These data represent estimates of animals that are slaughtered, butchered, and possibly sold by the farmer in such a manner as to not pass through a packing plant. The number of Farm Killed Cattle has remained fairly steady at about 130,000 head in the East and 70,000100,000 head in the West. The numbers of Farm Killed Calves has dropped from 130,000 to 80,000 head in the East and from 60,000 to 25,000 head in the West. |

The types of Cattle in this latter category are not readily apparent. One assumption might be that the Calf portion is distributed by sex and quarter, as is INSPECTED Calf SLAUGHTER. It also might be assumed that Farm Killed Cattle may be distributed fairly evenly among quarters. It might intuitively be expected that Cows and Heifers would make up a higher proportion of Farm Killed and UNINSPECTED SLAUGHTER than INSPECTED SLAUGHTER. Thus, one tentative distribution might be Cows $(1 / 3)$, Heifers $(1 / 3)$, and Steers $(1 / 3)$. They might also be divided between Beef and Dairy, roughly in proportion to the incidence of Beef and Dairy in the total Herd.

IMPORT Data

The most reliable trade data is believed to be collected by the External Affairs Division of STATCAN and published in Trade of Canada. Data prior to 1969 data were readily available only on an annual basis. From 1969 forward, monthly data were available.

Purebred IMPORTS This category includes both Dairy and NES (Beef) Cattle as well as Males and Females. ${ }^{1}$ For the purpose of this model, all Purebred IMPORTS AND EXPORTS are assumed to be Cattle of at least two years. The breakdown into Beef and Dairy occurred only with the 19691972 data.

Other IMPORTS This category contains largely Cattle for Immediate SLAUGHTER. They are assumed to be primarily Steers.

With all IMPORTS, the statistics are compiled at the Port of Entry. If these data are used as though destination coincided with the Port of Entry, some error may be introduced.

EXPORT Data

As with IMPORTS, only annual aggregate data is available prior to 1969. For 1969 and forward, these same statistics are available on a monthly basis.

- Annual Purebred

[^19]- Annual Purebred Dairy
- Annual Purebred NES. ${ }^{1}$

These data are not divided into Dairy and Beef components prior to 1966. In addition, no division is made into Male and Female. One possible guide to disaggregation is data published by the Livestock Division, Marketing and Trade Branch, Agriculture Canada. Using 1973 data from this source, Purebred NES (Beef) appears to run 60 percent Bulls in the West and 10 percent in the East. Purebred Dairy is less than 10 percent Bulls, East and West. Purebred Cattle appear to be almost 95 percent or better Beef in the West and 10 percent in the East (prior to 1972).

Dairy, NES, Weight 200 Pounds and Up ${ }^{2}$	This category is assumed to be Dairy Cows and Heifers that are not Purebred. For the
purpose of this study, it will be assumed	
that all Catile in this category are 2 years	
or over.	

[^20]

Cattle, NES, Weight	This category contains everything from
Over 700 Pounds	Feeder and Slaughter Cows to Slaughter
Steers and Heifers. One knowledgeable	
official has stated that it is primarily	
	Cows; when relative prices place Canada on
an export basis, the increase in this cate-	
gory is largely Slaughter Steers and Heifers.	
	A review of Agriculture Canada's figures show
that most Eastern Cattle in this category are	
	for slaughter, with the numbers being reason-
	ably stable, therefore, they are likely Cows.
	The Western pattern varies widely.

The above annual categories are also given on a monthly basis for 1969 and onward. This monthly basis provides a distribution for disaggregating the annual data prior to 1969.

The Economic Model

At any point in time, the size and composition of the Canadian Cattle Herd can be taken as given. This Herd represents the net effect of all past adjustments to price, institutional and biological conditions as well as those expected to prevail in the future.

The Breeding Herd, in terms of Cows and Bulls is viewed as a stock of capital. This stock of capital is a productive input in the production function for Calves and thus beef. The relative prices for inputs and products determine an optimum flow of services required from that stock, or abstracting from the user cost problem, determine the optimum size of that stock of capital.

Consideration of the Breeding Herd as a stock of capital that is an input to the production of beef from Slaughter Cattle differs from conventional capital theory. It differs in that net investment or
disinvestment in the Cattle Herd directly affects beef supplies and, thus, relevant prices and, in turn, the optimum stock.

The optimum stock and the production functions are markedly influenced by the price of inputs and especially inputs that are produced with largely the same set of resources. The input in question is feed grain.

A Cattle Herd simultaneous equation model may be described in the following oversimplified terms. ${ }^{1}$

- A production function for Slaughter Cattle: ${ }^{2}$
(1) SLAUGHTER CATTLE $=f_{1}$ (land, labor, BREEDING STOCK, GRAIN, other capital, non-farm inputs, technology).
- Beef supply function:

[^21](2) FED BEEF $=f_{2}$ (SLAUGHTER CATTLE, EXPORTS, IMPORTS, P_{a}, P_{s}, GRAIN PRICES) ${ }^{1}$
(3) NON-FED BEEF $=\mathrm{f}_{3}$ (SLAUGHTER CATTLE, CULL CATTLE, IMPORTS, EXPORTS, GRAIN PRICES).

- Breeding Herd investment functions:
(4) REPLACEMENTS $=f_{4}$ (land, labor, SLAUGHTER CATTLE, P_{a}, P_{s}, MVP $_{\text {BREEDING STOCK }}$).
(5) CULLS $=f_{5}$ (land, labor, P_{a}, P_{s}, MVP $_{\text {BREEDING STOCK }}$).
(6) d $\frac{\text { BREEDING HERD }}{\mathrm{dt}}=$ REPLACEMENTS - CULLS.
- Beef demand functions:
(7) PRICE ${ }_{a}^{\prime}=f_{7}$ (NON-FED BEEF, FED BEEF, price of substitutes, income).
(8) PRICE' $=f_{8}$ (NON-FED BEEF, FED BEEF, price of substitutes, income).
- Farm price functions:
(9) $P_{a}=f_{9}$ (PRICE ${ }_{a}^{\prime}$, processing and retailing cost, price of by-products).
(10) $P_{s}=f_{10}$ (PRICE', processing and retailing costs, price of by-products).

[^22]- EXPORTS and IMPORTS of Cattle functions:
(11) EXPORTS $=f_{11}\left(P_{a}, P_{S}\right.$, US prices, tariffs, transport costs).
(12) IMPORTS $=f_{12}\left(P_{a}, P_{s}\right.$, US prices, tariffs, transport costs).
- Grain production and demand functions:
(13) GRAIN $=\mathrm{f}_{13}$ (land, labor, other capital, non-farm inputs, technology).
(14) GRAIN PRICE $=\mathrm{f}_{14}$ (GRAIN, BREEDING HERD, international price, institutional factors).

The balance of this section develops the concepts introduced above, while drawing on this simple simultaneous equation model. It should be emphasized that this dissertation basically expands on equations (1), (4), (5), and (6).

Investment and Disinvestment ${ }^{1}$
Neo-classical capital theory makes provision for depreciation of capital stock through a process of physical depletion and functional obsolescence. Capital stock may also be reduced by direct sale or salvage. The investment and disinvestment processes, discussed in a growth context, also make provision for capital of different vintages and different embodied technology.

[^23]Normally or usually depletion, disinvestment or depreciation take the form of the oldest and/or lowest technological items being displaced first. Investment normally takes place in terms of new items embodying superior technology. In addition, neo-classical theory allows for the possibility of investment and disinvestment taking place concurrently. ${ }^{1}$

Neo-classical theory suggests that investment takes place when the marginal value product ($\mathrm{MVP}_{\mathfrak{i}}$) of an asset exceeds its market price. ${ }^{2}$

$$
\begin{equation*}
P_{i}<M V P_{i} \tag{15}
\end{equation*}
$$

Disinvestment takes place when expected marginal value is less than market price.

$$
\begin{equation*}
P_{i}>M V P_{i} \tag{16}
\end{equation*}
$$

${ }^{1}$ A traditional treatment of investment, business cycles and growth is given in R. G. D. Allen, Macro-Economic Theory, A Mathematical Treatment, New York, St. Martin's Press, 1968.

An excellent review of recent literature on the economics of investment in fixed capital is given in Dale W. Jorgenson, "Economic Studies of Investment Behavior: A Survey," Journal of Economic Literature 9:1111-1147, Dec. 1971.

Because the nature of investment and disinvestment in livestock differs in some fundamental ways from investment in industrial capital goods, the method used in this study diverges somewhat from the method and studies cited in Joregenson.

The theoretical argument that is developed in this section is presented in a very lucid fashion by Dan Sumner in a mimeographed paper, "An Empirical Examination Concerning Investment and Disinvestment in Durable Assets: Econometric Analysis of U.S. Milk Cow Herd," Michigan State University, 1973.
${ }^{2}$ Market price or P_{i} refers to the asset's rental price.

Fluctuations in P_{i} or in MVP $\mathbf{i}_{\mathbf{i}}$ lead either to investment or disinvestment.

A revision to neo-classical theory, developed by G. L. Johnson and his associates leads to a third alternative, that of assets (stock) fixed in production. ${ }^{1}$ The three investment possibilities depend on the existence of two prices, not one. The two prices are referred to as acquisition price, P_{a}, and salvage price, P_{S}. The divergence of these two prices is attributed to cost of obtaining information, transaction and transport costs.

The three investment possibilities now are:

$$
\begin{aligned}
& \text { Invest if } \mathrm{P}_{\mathrm{ai}}<M V P_{i} \\
& \text { Disinvest if } \mathrm{P}_{\mathrm{si}}>M V P_{i}
\end{aligned}
$$

Neither invest nor disinvest if $P_{s i}<M V P_{i}<P_{a i}$.

This latter position is known as the fixed asset position where assets are fixed or locked in production for the firm. A firm never plans on being in this position, a position in which it incurs a capital loss. This situation comes about through mistakes made in past investment decisions or where expectations do not materialize.

This discussion indicates that net investment takes place in two activities, gross investment in new capital usually of high

[^24]technological content and gross disinvestment in older capital of lower technological content. Further, this investment and disinvestment considers two prices, not one. In addition, the optimum stock of capital is reached when the adjustment is completed with respect to a change in the two prices, P_{a} and P_{s}, and to changes in MVP.

This adjustment process may be represented as ${ }^{1}$

$$
\begin{equation*}
\text { STOCK }_{t+1}-\operatorname{STOCK}_{t}=(1-\lambda)\left(\text { STOCK }_{t}^{*}-\text { STOCK }_{t}\right) \tag{17}
\end{equation*}
$$

where

$$
\begin{aligned}
\text { STOCK* } & =\text { the desired level } \\
1-\lambda & =\text { the accelerator }
\end{aligned}
$$

and
(18) STOCK $_{t+1}-$ STOCK $_{t}=$ Gross Acquisitions $_{t}$-Gross Dispositions ${ }_{t}$

This theory may now be applied to the instance of a specific operator or decision maker, making marginal adjustments to his breeding herd. While prices (P_{a}, P_{s}, and input prices) are determined at a macro level, aggregate supply of cull or slaughter animals or demand for replacements is the sum of the decisions made by the micro units.

The micro decision makers in the cattle sub-sector are farmers, ranchers, and cattle feeders. Their large numbers and dispersion at the

[^25]cow-calf production level suggests that the sub-sector can be approximated by the competitive model. However, at the feedlot level, competition might be something less than perfect, leading to increasing vertical coordination. ${ }^{1}$

The actions of these micro decision makers result in investments disinvestment, and calf slaughter which control the capacity of the subsector to subsequently produce more beef and veal. It is their aggregate behavior that is of major interest in these models.

It is assumed that the decision makers are utility maximizers, that is, they attempt to acquire and utilize resources in such a manner as to maximize utility over time. It is further assumed that utility is a function of the goods and services that they can command and leisure. This utility function may be expressed

$$
\begin{equation*}
\text { Utility }_{t}=f_{1}\left(\text { goods and services }_{t}, \text { leisure } t\right) . \tag{19}
\end{equation*}
$$

Assuming that profit, however defined, is a good proxy for command over goods and services and, that given leisure, utility is a function of profit, then equation (19) can be written

$$
\begin{equation*}
\text { Utility }_{t}=f_{2}\left(\pi_{t} / \text { leisure }_{t}\right) \tag{20}
\end{equation*}
$$

[^26]The profit function for the dairy or beef (cow-calf) farmer could be depicted as follows:
(21) $\pi_{t}=P_{\text {milk }} Q_{\text {milk }}+P_{\text {beef }} Q_{\text {beef }}+P_{\text {grain }} Q_{g r a i n}{ }^{\star}-f_{3}\left(Q_{\text {milk }}\right.$,

$$
Q_{\text {beef }}, Q_{\text {grain }}, \text { other expenses). }
$$

But each output is subject to the constraint of the production function. Production functions can be written as follows.
(22) $Q_{m i l k}=f_{4}$ (dairy cows, grain, forage, labor, housing, non-farm inputs, technology).
(23) Q beef $=f_{5}$ (cows, grain, forage, labor, housing, non-farm inputs, technology).

It will be noted that grain is an input into the production of beef and milk, it also competes for resources with beef and milk production. Thus a production function can be written
(24) $Q_{\text {grain }}=f_{6}$ (land, labor, machinery, non-farm inputs, weather, technology).

The following argument is developed in terms of these basic production functions. It should be recognized that (1) grain and livestock production are both competitive and complementary in production and (2) that milk and beef are produced as joint products in some proportions.
${ }^{1} Q_{\text {grain }}^{*}$ is grain sold, $Q_{\text {grain }}$ is grain produced.

Substituting equations (22) and (23) into (21) and
differentiating (21) with respect to cows, the following is obtained.

$$
\begin{equation*}
\frac{d}{d \text { cow }}=P_{\text {milk }} \frac{\partial Q_{\text {milk }}}{\partial \text { cow }}+P_{\text {beef }} \frac{\partial Q_{\text {beef }}}{\partial c o w}+P_{\text {grain }} \frac{\partial Q_{\text {grain }}}{\partial c o w} \tag{25}
\end{equation*}
$$

$$
+Q_{\text {milk }} \frac{\partial P_{\text {milk }}}{\partial \operatorname{cow}}+Q_{\text {beef }} \frac{\partial P_{\text {beef }}}{\partial \operatorname{cow}}+Q_{\text {grain }} \frac{\partial P_{\text {grain }}}{\partial \operatorname{cow}}-\frac{f_{3}()}{\text { cow }} .
$$

Since for each farmer $\frac{\partial P}{\partial Q}=0$, the fourth to six terms drop out. If $P_{\text {grain }}$ is equated with the value in milk or beef production then the third term is cancelled out as well by the last (cost function) term. The MVP ${ }_{\text {cow }}$ then equals

$$
\begin{equation*}
\text { MVP }_{\text {cow }}=P_{\text {milk }} \frac{\partial Q_{\text {milk }}}{\partial \text { cow }}+P_{\text {beef }} \frac{\partial Q_{\text {beef }}}{\partial \text { cow }}-\frac{f_{3}}{\text { cow }} . \tag{26}
\end{equation*}
$$

Using an adaptation of equation (26) the E(MVP) of a cow can be approximated by the discounted value of all future net returns. ${ }^{1}$

[^27]\[

$$
\begin{equation*}
E(M V P)=\sum_{j=n}^{T} \frac{\left[E\left(P_{1}\right)_{j}-E(C)_{j}\right]}{(l+i)^{j}}+\frac{E\left(P_{2}\right)_{T}(1-R(t))^{T-n}}{(1+i)^{T-n}} \tag{27}
\end{equation*}
$$

\]

where

$$
\begin{aligned}
P_{1}= & \text { price of milk } x \text { quantity of milk } \\
& \text { price of calf } x \text { weight of calf, } \\
P_{2}= & \text { price of cull cow } x \text { weight of cull cow, } \\
\mathrm{C}= & \text { cost of maintaining cow for } 1 \text { year plus cost of } \\
& \text { maintaining calf until sold (l year or less), } \\
R(t)= & \text { a risk factor associated with death; assume that it } \\
& \text { increases with age, } \\
E\left(P_{1}\right)_{\mathbf{j}}= & \text { contain the risk associated with conception, medical } \\
& \text { problems, calving problems. They also are assumed to } \\
& \text { increase with age, } \\
\mathbf{i}= & \text { the discount factor, a measure of the opportunity cost } \\
& \text { of resources, a variable that has a } P_{a} \text { and } P_{s}, \\
T= & \text { some terminal length of stay in the herd under existing } \\
& \text { technology, a function of (MVP, } \left.P_{s}\right), \text { and } \\
n= & \text { current age of cow, } N=0 \text { at first calving. }
\end{aligned}
$$

In making decisions on whether or not to invest in breeding stock,
farmers look largely at the recent past and next immediate year. ${ }^{1}$
This is the case as retain-cull decisions can be made almost continuously and are revocable at a cost for the herd. The lower limit is to cull all the breeding herd or to completely disinvest; the upper limit is imposed by the capacity of the physical plant. Alteration of

[^28]the physical plant requires that $E(M V P)$ of the physical plant exceeds its acquisition price. ${ }^{1}$

For an individual cow, $E($ MVP) diminishes with age as $n \cdots T$, as shown in equation (27) for positive i. This circumstance is shown graphically in Figure 9.

Figure 9. Expected marginal value product, E(MVP), of a cow.

The dotted horizontal line represents salvage price or cull cow price. At some age, $P_{S}=E(M V P)$; call this age N^{*}. This can be considered as the average or expected length of stay in the herd for any one cow. At equilibrium, $\left(N^{\star}\right)^{-1}$ of the herd is replaced each year. If the herd size is k, then culls $=k \times\left(N^{*}\right)^{-1}$ per year.

[^29]$1: 2$
Ans

At equilibrium (no growth), $X=k \times\left(N^{*}\right)^{-1}$ represents a supply of cull cows and demand for replacements. That is, at equilibrium, no net investment is taking place, gross investment covers only the depreciation on the stable stock of capital (the cow herd).

Heifers available to enter the cow herd, Q, also have a distribution of genetic desirability. For this reason, E(MVP) of heifers can be depicted as a downward sloping curve as with cows, however, age is constant (say 1-2 years) while quantity is variable.

Figure 10. Expected marginal value product, $E(M V P)$, of a heifer.

The E (MVP) here represents E (MVP) of a cow. But heifers have an opportunity cost as slaughter animals. This is represented by the dotted horizontal line P_{a} or acquisition price. $P_{a}=E(M V P)$ indicates the supply of replacement heifers. This quantity is denoted as Q^{*}. By necessity, $Q^{*} \leq Q$.

The above formulations consider P_{a} and P_{s} as constants. This is the situation for a farmer in competitive equilibrium. In the aggregate, however, the price is jointly determined with quantity.

These E(MVP) curves become the demand curve for stock of cows and supply curve for replacement heifers, respectively. These curves are considered further in the next section.

The above discussion develops the E (MVP) formulation and determines that it is a downward sloping function as well. In the case of a stock of (fixed genetic desirability) cows, this downward slope can be attributed to the aging or physical deterioration process. In the case of a stock of heifers (fixed age), a downward slope can be attributed to a distribution of genetic desirability.

Given these downward sloping functions, an optimum stock can be determined, given P_{a} and P_{s} as shown in Figures 9 and 10. A shift in P_{a} of P_{s} or a shift in the $E(M V P)$ curve would indicate a new optimum stock. The adjustment process is indicated by equation (17). This adjustment is carried out by acquisitions and dispositions as noted in equation (18).

The $E(M V P)$ function is really a distribution function as previously noted. Thus Q^{\star} or N^{\star} are not known with certainty. Rather, Q^{*} (and N^{\star}) represent a range with an upper bound and lower bound. These might be interpreted in terms of Q_{a}^{*} and Q_{s}^{*} where the subscripts " a " and " s " have the usual meaning. If this interpretation of Q^{*} is used, then a small change in P_{a} (or P_{s}) or any of the $\mathrm{E}($ MVP) shifters, might not dictate a change in optimum stock. Three situations might be noted:

- add to stock if $Q^{\star}>Q_{a}^{*}$
- decrease stock if $Q^{*}<Q_{S}^{*}$
- maintain stock if $Q^{\star}<Q^{\star}<Q$.

Competing Demands and Complementary Inputs
At any one time stocks of cows, heifers, bulls, and calves are fixed. This is certainly the case when the time period under consideration is short. Facing this fixed supply are competing demands--the market price is that price that will simultaneously satisfy all demands given supply.

This situation is demonstrated in Figure 11 for the competing demands of heifers for replacement and the demand for heifers for slaughter. This situation occurs also in the case of the demand for slaughter calves and the demand for calves for further feeding.

Figure 11. Price determination given competing demands and fixed supply.

Thus, the determination of optimum rate of flow (or stock) must simultaneously consider competing demands given a fixed initial stock.

From a stock of eligible heifers, Q, only Q_{t}^{*} will have $E($ MVP $)>P_{a}$.

If the sub-sector is in equilibrium then--
$k \times\left(N^{*}\right)^{-1}$ is the demand for replacement heifers

$$
Q^{\star} \text { is the supply of replacement heifers }
$$

and

$$
Q^{*}=k \times\left(N^{*}\right)^{-1} \text { conditional on } P_{a}, P_{S} \text { such that this }
$$

identity holds true.
Also, $\left(N^{*}\right)^{-1}$ would be the average replacement rate and herd size would be an excellent indication of cows culled and heifers needed for replacement. But the industry is not in equilibrium as evidenced by the cattle cycle. The $E(M V P)$ curve shifts as does the demand for cattle for slaughter. Thus the P_{a}, P_{S}, and elements in $E($ MVP) are indicators of the elements to include in the relevant supply and demand equations.

A second supply/demand situation might exist where the demand relative to the stock is so small that the supply is essentially completely elastic. This instance might apply to the demand and supply of bulls. For all eligible male calves, an $E(M V P)$ might be drawn that is downward sloping to the right, as is the case with heifers (as depicted in Figure 10).

For all practical purposes, that portion of the $E(M V P)$ curve lying above P_{a} represents the demand for herd sires with supply being
unlimited at $P=P_{a}$. Thus, the demand for herd sires does not effectively influence price; however, price is exogenous to the demand for bulls. ${ }^{1}$

A second phenomena germane to the cattle herd model is the concept of grain (wheat and feed grain, oilseeds) as complementary to the breeding herd in the production of slaughter cattle and as a product competitive with slaughter cattle for land, labor, and capital. The relevant equations from the simultaneous model expressing these two relationships are (1), (4), (5), (13), and (14).

Since both grain and slaughter cattle are final products (with respect to the farm firm) and since both may utilize the same land, labor, and capital, an exogenous rise in the price of grain will raise the MVP of resources employed in grain production. Land, labor, and capital would be expected to shift toward the production of grains and away from cattle production.

This same exogenous rise in the price of grain will raise the cost of slaughter cattle since they utilize grain as an input. The MVP of other inputs, especially stock calves, will be reduced. The MVP of the breeding herd is reduced in like manner. In addition, the costs of land, labor, and capital to all phases of cattle production rises

[^30]because of their opportunity cost in grain production. Through the processes described above, the MVP of a brood cow is reduced still further.

The extent and rate at which resources move out of cattle production and into grain production is a function of their MPP, as well as relative prices. In addition, their degree of "fixity" in the production of grain and livestock is a second consideration. A third consideration is the degree of perception and rate of response of the micro units.

A growing specialization would be expected to fix resources in the production of the product utilizing the specialized inputs. ${ }^{1}$ On the other hand, it would be expected that the superior management of larger, more specialized firms would be more cognizant of and responsive to changes in relative prices, as well as being more sophisticated in the formation of expectations.

Since both grain and cattle producers have been rather unaffected by technological innovation, and since the ratio of land to labor or capital remains high, it is expected that resources are rather rapidly switched between livestock (including cattle) and grain production. This rapid reallocation might be expected to lead to unstable supplies of both cattle and grain.

[^31]
Feedback and the Cattle Cycle

The cattle cycle, if one exists, is an example of the well documented cobweb model initially demonstrated with the hog cycle. ${ }^{1}$ The cobweb phenomena is the result of three basic considerations. The first consideration is that of imperfect knowledge with respect to future demand, supply, and thus prices. Consequently, incorrect (in retrospect) production and investment decisions are made. The second consideration concerns the biological production lag between the decision to increase or decrease production and the realization of that increase or decrease. The third consideration, in the case of beef, is that the decision to increase or decrease production through change in the size of the breeding herd, leads to immediate changes in the supply that accentuate the observed price movement. A fourth consideration, not developed by the classic cobweb model, is that of shifting supply and demand functions. These shifters are often largely exogenous to the economy being modeled. ${ }^{2}$

The price mechanism can be, and is, influenced by factors apparently exogenous to the cattle-beef economy. Two examples are weather and government policy. ${ }^{3}$ These influences can disrupt the smoothly functioning cobweb phenomena. In the instance of government

[^32]policy, the intent may be to smooth out this traditional cycle. Ill timed or improperly implemented policy may augment the cycle worsening an already unstable resource allocation situation.

Major changes in input prices and opportunity costs for resources employed in cattle (and grain) production are specific exogenous variables that will disrupt the cattle cycle, and must therefore be given consideration when anticipating future supplies. These impacts may be felt in equations (1), (2), (3), (4), (5), (13), and (14), of the simplified simultaneous equation model presented above. ${ }^{1}$

Restatement of the Hypothesized Model
The simplified simultaneous equation model may be used in still another manner to restate what is and what is not to be included in this Cattle Herd simulator.

Equation (1) is simulated. This equation will be expanded to include Slaughter Steers and Heifers, for Beef and Dairy breeds, for both Eastern and Western Canada. In addition, Male and Female Calves will be estimated, once again for both East and West. Future development will include the economic impacts producing short term changes in Slaughter Cattle supply and slaughter weight.

Equations (4) and (5), as well as identity (6), are modeled. They are, once again, subdivided into Male and Female, Beef and Dairy, East and West. The formulation and parameter estimation of these equations make up the bulk of the next chapter.

[^33]Equations (7), (8), (9), and (10), are not included, nor are equations (11) and (12). These elements of the simultaneous equation model are being developed in a complementary study being conducted at the University of Guelph, for the Economics Branch.

Equations (13) and (14) are not developed. These endogenous variables are treated as enogenous to this simulation model. The economics Branch currently have models of this sub-sector; however, there are no plans to coordinate them with this study.

Equations (2) and (3) are not being developed in the simulation model at this time; however, it is planned that they be developed for one or more of the planned applications. Specific attention must be given to the economic aspects of changes in slaughter weight. Carcass cut out percentage must also be considered.
$\because \because$
M,

CHAPTER III

THE BEHAVIORAL MODELS

In the previous chapter, it was shown that the change in the size of the breeding herd depended on the relative rate of investment and disinvestment. These rates, in turn, are the result of reactions by farm operators adjusting to realized or anticipated conditions in a competitive environment.

In addition, it was shown that realized or anticipated conditions have a distinct bearing on whether or not the progeny of this herd were fed out to maturity or slaughtered at a younger age and lower weight. ${ }^{1}$

The theoretical behavioral relationships developed in Chapter II are used to develop specific predictive equations for application in the cattle herd simulator. These predictive equations are used to simulate cyclical motion and long term trends; they fall into three basic categories:

1. investment in the breeding herd (by replacement cattle)
2. disinvestment in the breeding herd (by culling)
3. calf slaughter.
[^34]These equations are both predictive and behavioral. Since price and quantity are determined simultaneously, in this instance, and since only quantity (or flow rate) is required, an econometric model (or models) is/are developed to remove "own price" and thus avoid the need for simultaneous equations. This econometric model is described in the next section.

The econometric model requires that both supply and demand equations be hypothesized. The second section of this chapter lays out these supply and demand models, and in addition, specifies the equations that are to be estimated. The theory developed in Chapter II is used to indicate the structure of these supply and demand models and to suggest the types of variables that should logically be included. The outcome of this chapter is a set of predictive equations developed from these behavioral relationships. ${ }^{1}$

These econometric models raise a problem in that the current statistical data series are not complete enough to provide the necessary time series for the endogenous variables. The third and fourth sections, therefore, lay out a set of identities, a method, and a computer program (RECON) that generates the required endogenous data series from and constrained by existing data series.

The fifth and final section displays the estimated behavioral model parameters and relevant statistics. This last section comments on the reasonableness of these estimators and provides ex post

[^35]explanations. Finally the estimated endogenous data series are listed in tabular form.

The Econometric Model

In static equilibrium ${ }^{1}$ for one commodity in a competitive equilibrium, the Walrasian supply-demand model can be given as:

$$
\begin{equation*}
\frac{d P}{d t}=\phi[D(P)-S(P)]=\phi[E(P)] \tag{29}
\end{equation*}
$$

This formulation was expanded to " n " commodities by Hicks. But the Marshallian stability conditions could be used as a starting point in like manner. ${ }^{2}$ This Marshallian formulation would be

$$
\begin{equation*}
\frac{d Q}{d t}=\phi[D(Q)-S(Q)]=\phi[E(Q)] \tag{30}
\end{equation*}
$$

[^36]${ }^{2}$ The following quote is taken from M. Blaug, Economic Theory in Retrospect, Homewood, Ill., Richard D. Irwin, Inc., 1968, p. 414. "But the Walrasian excess demand treatment which is usually implied in modern text book treatments is no more plausible than the Marshallian excess demand-price treatment." The context of the above quotation indicates that this is true if both price and quantity can vary. In the instances under consideration, the flows do in no way deplete the whole stock even though the stock is fixed for a given period. An example: in time period " t," heifers 1-2 years of age is fixed. The flow, or Q^{\star}, being added to the cow herd as replacements, can be varied by altering the flow, Q^{\prime}, being fed for slaughter.
where
\[

$$
\begin{aligned}
D(Q) & =\text { demand price; } \\
D(S) & =\text { supply price } \\
\phi & =\text { an excess price function. }
\end{aligned}
$$
\]

This model can also be presented in graphic terms. The traditional excess demand model is shown in Figure 12 (b) as taken from the supply-demand model of Figure 12(a).

Figure 12. The excess demand model

The axis of these models can be reversed to produce an excess price model. The relationship between P and Q is still negative. These relationships are shown in Figures 13(a) and 13(b).

In Figures 12 and 13, P and Q are in equilibrium at P^{*} and Q^{*}; excess price is zero. At a quantity lower than Q^{*}, say $Q^{\star *}$, the demand price is $D\left(Q^{* *}\right)$ and the supply price is $S\left(Q^{* *}\right)$. Since $D\left(Q^{\star *}\right)>S\left(Q^{\star *}\right)$, excess price exists equal to $P^{* *}-P^{*}$. To restore equilibrium $\frac{d Q}{d P}$ must be negative as indicated by general equilibrium theory.

Figure 13. The excess price model

Thus

$$
\frac{d Q}{d t}=\phi[\text { demand price }- \text { supply price }]
$$

or

$$
\frac{d Q}{d t}=\phi[D(Q)-S(Q)]=\phi[E(Q)]
$$

as given in equation (30) above.
Assuming a linear function, ϕ, this differential equation can be specified in discrete difference equation form. Transformation suggests three different models.

$$
\begin{equation*}
Q_{t}-Q_{t-1}=k E_{t}+e_{t} \tag{31}
\end{equation*}
$$

or

$$
\begin{equation*}
Q_{t}-Q_{t-1}=k E_{t-1}+e_{t-1} \tag{32}
\end{equation*}
$$

\because
：
＂
\cdots
\qquad

$$
\begin{equation*}
Q_{t}-Q_{t-1}=\lambda k E_{t}+(1-\lambda) k E_{t-1}+e_{t}^{1} \quad 0<k \leq 1 \tag{33}
\end{equation*}
$$

A fourth modification might be suggested by a distributed lag formulation ${ }^{2}$ where the adjustment takes place over several periods rather than within one period.

$$
\begin{equation*}
Q_{t}-Q_{t-1}=k(1-\lambda) E_{t}+\lambda\left(Q_{t}-Q_{t-1}\right)+n_{t} \tag{34}
\end{equation*}
$$

where ${ }^{2}$

$$
n_{t}=e_{t}-\lambda e_{t-1}
$$

The excess price function requires both supply and demand functions. These may be specified as:

[^37]\[

$$
\begin{aligned}
& D(Q)=\alpha_{0}+\alpha_{1} Q_{t}+\alpha D_{t}+n_{t} \\
& S(Q)=\beta_{0}+\beta_{1} Q_{t}+\beta_{2} S_{t}+n_{t}^{\prime} .
\end{aligned}
$$
\]

Utilizing these functions the excess price function may now be specified as:

$$
\begin{equation*}
E_{t}=\left(\alpha_{0}-\beta_{0}\right)+\left(\alpha_{1}-\beta_{1}\right) Q_{t}+\alpha_{2} D_{t}-\beta_{2} S_{t}+e_{t} \cdot{ }^{1} \tag{35}
\end{equation*}
$$

where
$S_{t}=$ the supply shifters;
$D_{t}=$ the demand shifters;
$\eta_{t} \sim N\left(0, \sigma^{2}\right) ;$
$\eta_{t}^{\prime} \sim N\left(0, \sigma^{2}\right) ;$
$e_{t}=$ a linear combination of η_{t} and η_{t}, is $N\left(0, \sigma^{2}\right)$.

The final form of the econometric models is obtained by substituting (35) into equations (31) to (34). Substituting (35) into (31)

$$
\begin{gathered}
Q_{t}-Q_{t-1}=k\left(\alpha_{0}-\beta_{0}\right)+k\left(\alpha_{1}-\beta_{1}\right) Q_{t}+k \alpha_{3} S-k \beta_{3} D+e_{t} \\
Q_{t}=\pi_{1}+\pi_{2} Q_{t-1}+\pi_{3} S_{t}+\pi_{4} D_{t}+e_{t}
\end{gathered}
$$

${ }^{1}$ The excess price function, as specified, reverses the sign of the regression coefficients associated with the exogenous and lagged endogenous variables of the supply function.
and (35) into (32)

$$
Q_{t}-Q_{t-1}=k\left(\alpha_{0}-\beta_{0}\right)+k\left(\alpha_{1}-\beta_{1}\right) Q_{t-1}+k \alpha_{3} S_{t-1}-k \beta_{3} D_{t-1}+e_{t} .
$$

$$
\begin{equation*}
Q_{t}=\pi_{1}+\pi_{2} Q_{t-1}+\pi_{3} S_{t-1}+\pi_{4} D_{t-1}+e_{t} . \tag{37}
\end{equation*}
$$

and (35) into (33)

$$
\begin{aligned}
Q_{t}-Q_{t-1}= & k \theta\left(\alpha_{0}-\beta_{0}\right)+k \theta Q_{t}+k \theta \alpha_{3} S_{t}-k \theta \beta_{3} D_{t}+(1-\theta) k \theta\left(\alpha_{0}-\beta_{0}\right) \\
& +(1-\theta) k Q_{t-1}+(1-\theta) k \theta S_{t-1}-(1-\theta) k \theta D_{t-1}+e_{t}
\end{aligned}
$$

(38) $\quad Q_{t}=\pi_{1}+\pi_{2} Q_{t-1}+\pi_{3} S_{t}+\pi_{4} S_{t-1}+\pi_{5} D_{t}+\pi_{5} D_{t-1}+e_{t}$.
and finally (35) into (34)

$$
Q_{t}-Q_{t-1}=(1-\lambda) k\left(\alpha_{0}-\beta_{0}\right)+(1-\lambda) k Q_{t}+(1-\lambda) k \alpha_{3} S_{t}-(1-\lambda) k \beta_{3} D_{t}-\lambda Q_{t-2}+e_{t}
$$

$$
\begin{equation*}
Q_{t}=\pi_{1}+\pi_{2} Q_{t-1}+\pi_{3} Q_{t-2}+\pi_{4} S_{t}+\pi_{5} D_{t}+e_{t} \tag{39}
\end{equation*}
$$

Behavioral Model Development

The economic theory presented in Chapter II (pages 59-80) is combined with the econometric models suggested in the previous section of this chapter to provide the required prediction behavioral models. These behavioral models are developed in this section and subsequently fitted to the data to provide the parameter estimates presented in the final section of this chapter. ${ }^{1}$

The behavioral models required for the Cattle Herd simulator fall into three general categories: ${ }^{2}$

1. investment in the Breeding Herd (REPLACEMENTS)
2. disinvestment in the Breeding Herd (CULLS), and
3. Calf SLAUGHTER.

These behavioral models are required for both Eastern and Western Canada. The investment/disinvestment models are required for Beef Cattle as well as Dairy Cattle. In addition, SLAUGHTER models are required for Calves on an East/West, Male/Female basis. In total, 16 behavioral models or estimating equations are developed and fitted to the data.

[^38]The various econometric models developed in the previous section are not considered as alternate hypotheses, although they lend themselves readily to that purpose. They are considered, rather, as alternate possible forms that will be examined to obtain accurate estimates of, or predictors for, the endogenous variables required in the Cattle Herd simulation.

In order to utilize the econometric models previously developed, both supply and demand functions must be hypothesized for each estimating equation. These in turn are used to develop excess price models. As previously implied, the development of the supply and demand models draws on the economic theory, sub-sector description, and statistical data description presented in Chapter II.

The supply and demand equations fall into two general
categories: (a) those that are derived from the $E(M V P)$ or production function formulation, and (b) those derived from the traditional final demand formulation.

Because of the similarity in the basic argument, use of the same or similar data and the similarity in algebraic manipulation, all demand/supply and excess price functions will not be developed in detail. In addition, the excess price model will not be fitted for each of the four variations on the basic excess price model as given in equations (31) to (34).
.
:
,

Cow SLAUGHTER

Four separate Cow SLAUGHTER equations are required for the Cattle Herd simulator. They are:

- Dairy Cow SlAughter, East;
- Dairy Cow SLAUGHTER, West;
- Beef Cow SLAUGHTER, East; and
- Beef Cow SLAUGHTER, West.

Because of the similarity of these equations, only one will be developed in detail; the other three will be taken as variations on this equation.

SLAUGHTER Cows are supplied by farmers and ranchers. These are Cows that are surplus to the Herd because their expected productivity has become very low relative to their salvage price. ${ }^{1}$ As previously mentioned, culling takes place during both expansion and contraction of the herd--only the rate changes.

If the Cow Herd is in a steady state, then a fixed proportion would be culled annually due to physical deterioration. In this rather hypothetical instance, Herd size would be an excellent indicator of the CULLING Rate (number CULLED per unit time).

The production function or E(MVP) formulation, equation (27), indicates the basic variables or type of variables that should be included in a supply function for Slaughter Cows. The first variables

[^39]are those associated with revenue, namely, milk and veal calf prices. One index of milk price is the price of manufacturing milk for all purposes plus the government net subsidy on such milk. It is expected to have a negative sign. Since this subsidy was introduced during the 1958-1972 period, a dummy variable is indicated to express years of subsidy. ${ }^{1}$ This variable is intended to reflect the economic impacts of the psychological effects of the subsidy and the expectations associated with federal government involvement in manufactured milk policy and pricing. A positive sign might be expected. In addition, a quota system was subsequently introduced with penalties applied for production in excess of quota. The years of over quota penalty are recognized with a second dummy variable. A negative coefficient is expected. The value of the calf is recognized by the inclusion of the price of veal calves giving a positive coefficient.

A second major element in the calculation of $E(M V P)$ is the cost of inputs. Three major elements are identified: feed, labor, and cost of capital. All are expected to positively affect the CULLING Rate. The feed cost used is the offboard price of barley. This is the local price at grain elevators for non-Canadian Wheat Board sales. ${ }^{2}$ The labor proxy used was the monthly salary of farm labor without board.

[^40]A third element in the $E(M V P)$ formulation is the salvage value of the cull cow. An increase in cull cow price increases E(MVP), thus a negative sign would be expected. However, cull cow price is also P_{S}. As P_{s} rises, more cows could be culled, thus a positive sign would be expected. Consequently, the a priori sign associated with this variable is indeterminate. The price of cull cows is represented by the price of canner and cutter cows.

A fourth and final element in the E(MVP) formulation is the opportunity cost of resources. While this variable can be estimated by the interest rate, a more direct proxy is the price of competitive products. For this purpose, the price of barley and the price of hogs provide one index. The coefficient associated with hogs is expected to be negative, while the coefficient associated with barley is expected to be positive. In the West, due to the actions of the Canadian Wheat Board, the back-up of grains in storage on farms is thought to be a good index of the opportunity cost of resources in grain production.

Over the period 1958-1972 there have been considerable technological advances in dairying as well as increased incidence of adoption. These changes fall into the general areas of feeding, breeding, housing, and equipment. It might be expected that husbandry and business management, as well, have improved. These changes have resulted in increased milk yield per cow. One proxy for the net effect of technological changes is milk yield per cow; a second might simply be a time variable.
\square
\because
\because
$\%$
$\because \because$

The demand for Cull Cows is a demand derived from the demand for beef, especially low grade beef. It would be expected that demand will vary inversely with own price and directly with the price of substitutes and income. The own price is again taken as the price for canner and cutter cows. The price of choice slaughter steers and index 100 hogs are taken as substitutes. Aggregate national income deflated by the consumer price index is taken as the income variable.

The supply and demand functions for Cull Dairy Cows are laid out below and manipulated to produce excess price functions as given by equation (35). The excess price function in turn is substituted into the first of the four econometric models represented by equations (31), (32), (33), and (34).

The supply function for Cull Dairy Cows is: ${ }^{1}$

$$
\begin{align*}
c^{c}= & b_{0}^{\prime}+b_{1} p^{c+c}+b_{2}^{\prime} P O P^{C}-b_{3}^{\prime} p^{m}-b_{4}^{\prime} N+b_{5}^{\prime} L-b_{6}^{\prime} p^{V}+b_{7}^{\prime} p^{b}+b_{8}^{\prime} I \tag{40}\\
& +b_{9}^{\prime} W+b_{10}^{\prime} M+b_{1}^{\prime} I .
\end{align*}
$$

This function is manipulated into the form required for the excess price functions as follows:

$$
\begin{align*}
p^{c+c}= & b_{0}+b_{1} c^{c}+b_{2} P O P^{c}-b_{3} p^{m}-b_{4} N+b_{5} L-b_{6} p^{v}+b_{7} p^{b}+b_{8} I \tag{41}\\
& +b_{9} W+b_{10} M+b_{11} T .
\end{align*}
$$

[^41]Table 3. Notation for and description of behavioral model variables

Variable name	Symbol ${ }^{\text {a }}$	Source and description
COW SLAUGHTER (CULLS) Bull SLAUGHTER (CULLS) REPLACEMENTS, Heifers REPLACEMENTS, Bulls Calf SLAUGHTER Heifer SLAUGHTER Steer SLAUGHTER	$\begin{aligned} & C_{c}^{c} \\ & C_{h}^{b} \\ & R_{h}^{b} \\ & R_{b}^{b} \\ & S_{h}^{v} \\ & S_{s} \end{aligned}$	Revised output of program MATRIX, expressed in head.
Cow Population Bull Population Heifer Population Steer Population	$\begin{aligned} & \mathrm{POP}^{-\mathrm{c}^{--}} \\ & \mathrm{POP}^{\mathrm{b}} \\ & \mathrm{POP}^{h} \\ & \mathrm{POP}^{\mathrm{s}} \end{aligned}$	Source: Report of Livestock Survey's Cattle, Sheep Horses. Expressed in head. January 1 value--published December 1 statistics. July 1 value--published June 1 statistics. April 1 and October 1 value--average of December 1 and June 1 published statistics.
Price of choice slaughter steers Price of good heifers Price of canner and cutter cows Price of good stock steer calves Price of good veal calves	$\begin{aligned} & p^{p^{-}} \\ & p^{h}+c+c \\ & p^{c} c v \\ & p^{v} \end{aligned}$	Source: Quarterly Bulletin of Agricultural Statistics. Expressed in dollars per pound. Toronto and Calgary prices used except for veal where Edmonton replaced Calgary prices, expressed in dollars per pound.
Price of index 100 hogs	$\mathrm{p}^{\text {¢ }}$	Source: Quarterly Bulletin of Agricultural Statistics. Expressed in dollars per pound. Toronto and Calgary prices used. Grade A hog prices converted to index 100 by: index $100=0.971429 \times$ grade A.
Price of barley (off board)	$p^{\text {b }}$	Source: Economics Branch, Agriculture Canada. Expressed in dollars per bushel.
On farm grain stocks (March 31)	K	Source: Quarterly Bulletin of Agricultural Statistics. Expressed in millions of tons. The March 31 value is used for the first quarter and the last three quarters of the previous year.
Price of manufactured milk for all purposes plus subsidy	$\mathrm{P}^{\text {m }}$	Source: Dairy Review. Expressed in dollars per hundred weight.
Years of milk subsidy	N	A zero/one variable. Value of 1 for the second quarter of 1962 forward.
Years of over quota penalty	L	A zero/one variable. Value of 1 for the second quarter of 1967 forward.
Interest Rate	1	Source: Bank of Canada, Annual Statistics Review. Expressed in two places of decimal.
Farm wages (without board)	W	Source: Quarterly Bulletin of Agricultural Statistics. Expressed in dollars per month. In all cases the value for the fourth quarter is a repetition of the third quarter value.
Milk yield per cow	M	Source: Dairy Review and Report of Livestock Survey's Cattle, Sheep, Horses. Calculated in hundred weight per annum by the formula: total milk production average dairy cow population The one annual figure was replicated for the four quarters.
Aggregate real income	Y	Source: Prices and Price Indices and National Accounts Income and expenditures by quarters, expressed in millions of dollars at annual rates.
Time	T	First quarter 1948=0.

The demand function is stated and manipulated in equations (42) and (43).

$$
\begin{align*}
& c^{c}=a_{0}^{\prime}-a_{1}^{\prime} p^{c+c}+a_{2}^{\prime} p^{s}+a_{3}^{\prime} p^{h g}+a_{4}^{\prime} Y . \tag{42}\\
& p_{t}^{c+c}=a_{0}-a_{1} c^{c}+a_{2} p^{s}+a_{3} p^{h g}+a_{4} Y .
\end{align*}
$$

Equation (44) is obtained by substituting equations (42) and
(43) into the excess price function, equation (35).

$$
\begin{align*}
E_{t}= & \left(a_{0}-b_{0}\right)-\left(a_{1}+b_{1}\right) c^{c}+a_{2} p^{s}+a_{3} p^{h g}+a_{4} Y-b_{2} P O P^{c}+b_{3} p^{m} \tag{44}\\
& +b_{4} N-b_{5} L+b_{6} p^{V}-b_{7} p^{b}-b_{8} I-b_{9} W-b_{10} M-b_{11} T
\end{align*}
$$

This excess price function is then substituted into the first of the econometric models, equation (31), where C_{t}^{C} is now substituted for Q_{t}^{C} in that equation.

$$
\begin{gathered}
c_{t}^{c}-C_{t-1}^{c}=k\left(a_{0}-b_{0}\right)-k\left(a_{1}+b_{1}\right) c_{t}^{c}+k\left(a_{2} p^{s}, \ldots, b_{11}^{T}\right) . \\
\\
C_{t}^{c}+k\left(a_{1}+b_{1}\right) c_{t}^{c}=k\left(a_{0}-b_{0}\right)+c_{t-1}^{c}+k\left(a_{2} p^{s}, \ldots, b_{11}^{T}\right) . \\
(45) \quad C_{t}^{c}=\frac{k\left(a_{0}-b_{0}\right)}{\left(1+k a_{1}+k b_{1}\right)}+\frac{1}{\left(1+k a_{1}+k b_{1}\right)} C_{t-1}^{c}+\frac{k}{\left(1+k a_{1}+k b_{1}\right)} \\
\left(a_{2} p^{s}, \ldots, b_{11}^{T}\right) .
\end{gathered}
$$

The estimating equation for the Eastern Dairy Cow SLAUGHTER becomes, in reduced form: ${ }^{1}$

$$
\begin{align*}
C_{t}^{C D E}= & \pi_{0}+\pi_{1} C_{t-1}^{c D E}-\pi_{2} P O P_{t}^{C D E}+\pi_{3} P_{t}^{S E}+\pi_{4} P_{t}^{h g E}+\pi_{5} P_{t}^{m E}+\pi_{6} N_{t}-\pi_{7} L_{t}^{E} \tag{46}\\
& +\pi_{8} P_{t}^{V E}-\pi_{9} P_{t}^{b E}-\pi_{10} I_{t}^{E}-\pi_{11} W_{t}^{E}+\pi_{12} Y_{t}^{E}-\pi_{13} M_{t}^{E}-\pi_{14} T_{t}
\end{align*}
$$

To obtain the Western Dairy Cow SLAUGHTER equation, grain stocks are added as an opportunity cost of dairying.

$$
\begin{align*}
C_{t}^{C D W}= & \pi_{0}+\pi_{1} C_{t-1}^{C D W}-\pi_{2} P O P_{t}^{C D W}+\pi_{3} P_{t}^{s E}+\pi_{4} P_{t}^{h g W}+\pi_{5} P_{t}^{m W}+\pi_{6} N_{t}-\pi_{7} L_{t} \tag{47}\\
& +\pi_{8} P_{t}^{V}-\pi_{9} P_{t}^{D W}+\pi_{10} K_{t}-\pi_{11} I_{t}^{W}-\pi_{12} W_{t}^{W}+\pi_{13} Y_{t}^{W}-\pi_{14} M_{t}^{W}-\pi_{15} T .
\end{align*}
$$

To obtain the Eastern Beef Cow SLAUGHTER equation, the price of veal calves is replaced by the price of good stock steer calves while those variables related to milk are dropped.
(48) $\quad C_{t}^{C B E}=\pi_{0}+\pi_{1} C_{t-1}^{C B E}-\pi_{2} P O P_{t}^{C B E}+\pi_{3} P_{t}^{S E}+\pi_{4} P_{t}^{C E}+\pi_{5} P_{t}^{h g E}-\pi_{6} P_{t}^{b E}$

$$
-\pi_{7} I_{t}^{E}-\pi_{8} W_{t}^{E}+\pi_{9} Y_{t}^{E}-\pi_{10} T
$$

${ }^{1}$ The additions to the superscripts refer to Dairy (D), Beef (B), East (E), and West (W), as indicated in Table 3.

Finally, to obtain the estimating equation for Western Beef Cow SLAUGHTER, farm stocks of grain are added.
(49) $\quad C_{t}^{c B W}=\pi_{0}+\pi_{1} C_{t-1}^{c B W}-\pi_{2} P O P_{t}^{C B W}+\pi_{3} P_{t}^{S W}+\pi_{4} P_{t}^{c W}+\pi_{5} P_{t}^{h g W}-\pi_{6} P_{t}^{b W}$

$$
+\pi_{7} K_{t}^{W}-\pi_{8} I_{t}^{W}-\pi_{9} W_{t}^{W}-\pi_{10} Y_{t}^{W}-\pi_{11} T
$$

REPLACEMENTS, Heifers
As with Cow SLAUGHTER, four estimating equations are required:

- REPLACEMENTS, Dairy Heifers, East;
- REPLACEMENTS, Dairy Heifers, West;
- REPLACEMENTS, Beef Heifers, East; and
- REPLACEMENTS, Beef Heifers, West.

At any one time, the supply of Heifers available for REPLACEMENT is fixed. Two separate demands face this fixed supply; namely, demand for REPLACEMENT and demand for SLAUGHTER.

The supply/demand model for REPLACEMENT Heifers is then:

$$
\begin{aligned}
D^{\text {replacements }} & =f(\text { Price }, \text { MVP }) \\
D^{\text {slaughter }} & =f\left(\text { Price, Price }{ }^{\text {compet. prod. }}, \text { Income }\right) \\
S & =D^{\text {replacements }}+D^{\text {slaughter }}
\end{aligned}
$$

If at a steady state, the Herd would require a fixed REPLACEMENT Rate. Thus, size of Cow Herd is a good indicator of the required flow of Replacement Heifers.

The demand for Dairy REPLACEMENTS is expected to vary directly with milk price, directly with the years of milk price subsidy and inversely with the years of over quota penalty. In the case of Beef Cows, the demand for REPLACEMENTS will vary directly with calf and slaughter cattle prices. The salvage price of cull cows, canner and cutter cow price, is expected to have a positive effect on REPLACEMENT Rate.

Labor cost, feed cost and interest costs are expected to have a negative affect on REPLACEMENT Rate, as would the indicators of technological progress.

The price of replacement heifers is expected to have a negative effect on REPLACEMENT Rate.

The demand for Slaughter Heifers is expected to vary indirectly with own price and directly with the price of good substitutes such as choice slaughter steers, veal calves, canner and cutter cows, and index 100 hogs. The demand for Slaughter Heifers is also expected to vary with real aggregate income.

The REPLACEMENT demand function is:

$$
\begin{align*}
R^{h}= & b_{0}^{\prime}-b_{1}^{\prime} p^{h}+b_{2}^{\prime} P O P^{c}+b_{3}^{\prime} P^{m}+b_{4}^{\prime} N-b_{5}^{\prime} L+b_{6}^{\prime} p^{v}+b_{7}^{\prime} p^{c v}+b_{8}^{\prime} p^{s} \tag{50}\\
& +b_{9}^{\prime} p^{c+c}-b_{10}^{\prime} p^{b}-b_{1}^{\prime} w-b_{12}^{\prime} I-b_{13}^{\prime} M-b_{1}^{\prime} T .
\end{align*}
$$

It is manipulated so that price appears on the left hand side.

$$
\begin{align*}
p^{h}= & b_{0}-b_{1} R^{h}+b_{2} p O P^{c}+b_{3} p^{m}+b_{4} N-b_{5} L+b_{6} p^{v}+b_{7} p^{c v}+b_{8} p^{s} \tag{51}\\
& +b_{9} p^{c+c}-b_{10} p^{b}-b_{11} W-b_{12} I-b_{13} M-b_{14} T .
\end{align*}
$$

The SLAUGHTER demand function is:

$$
\begin{equation*}
s^{h}=a_{0}^{\prime}-a_{1}^{\prime} p^{h}+a_{2}^{\prime} p^{v}+a_{3}^{\prime} p^{s}+a_{4}^{\prime} p^{c+c}+a_{5}^{\prime} p^{h g}+a_{6}^{\prime} \gamma . \tag{52}
\end{equation*}
$$

In equation (53), price is placed on the left hand side.

$$
\begin{equation*}
p^{h}=a_{0}-a_{1} p^{h}+a_{2} p^{v}+a_{3} p^{s}+a_{4} p^{c+c}+a_{5} p^{h g}+a_{6} \gamma . \tag{53}
\end{equation*}
$$

The above two demands represented by equations (51) and (53) are constrained by total available Heifers. ${ }^{1}$ The excess price function thus becomes the difference between the two demands. ${ }^{2}$

[^42]\[

$$
\begin{align*}
E_{t}= & \left(-a_{0}+b_{0}\right)+a_{1} S^{h}-b_{1} R^{h}-a_{2} p^{V}+b_{6} p^{V}+b_{7} p^{c V}-a_{3} p^{S}+b_{8} p^{s}-a_{4} p^{c+c} \\
& +b_{9} p^{c+c}-a_{5} p^{h g}-a_{6} Y+b_{2} P^{\prime} P^{c}+b_{3} p^{m}+b_{4} N-b_{5} L-b_{10} p^{b}-b_{11}{ }^{W} \\
& -b_{12} I-b_{13} M-b_{14} T . \\
E_{t}= & \left(-a_{0}+b_{0}\right)+a_{1} S^{h}-b_{1} R^{h}-\left(a_{2}-b_{6}\right) p^{V}+b_{7} p^{c V}-\left(a_{3}-b_{8}\right) p^{s} \tag{54}\\
& -\left(a_{4}-b_{9}\right) p^{c+c}-a_{5} p^{h g}-a_{6} Y+b_{2} P O P^{c}+b_{3} p^{m}+b_{4} N-b_{5} L-b_{10} p^{b} \\
& -b_{11} W-b_{12} I-b_{13} 3^{M-b_{14} T .}
\end{align*}
$$
\]

The constraint is imposed by $P O P^{h}=S^{h}+R^{h}$ or $S^{h}=R^{h}-P O P^{h}$.

$$
\begin{align*}
E_{t} & =\left(-a_{0}+b_{0}\right)+a_{1}\left(R^{h}-P O P^{h}\right)-b_{1} R^{h}, \ldots,-b_{14} T . \\
E_{t} & =\left(-a_{0}+b_{0}\right)+\left(a_{1}-b_{1}\right) R^{h}-a_{1} P O P^{h}-\left(a_{2}-b_{2}\right) P^{V}+b_{7} P^{C V}-\left(a_{3}-b_{8}\right) P^{S} \tag{55}\\
& -\left(a_{4}-b_{9}\right) P^{c+c}-a_{5} P^{h g}-a_{6} Y+b_{2} P O P^{c}+b_{3} P^{m}+b_{4} N-b_{5} L-b_{10} P^{b} \\
& -b_{11} W-b_{12} I-b_{13} M-b_{14} T .
\end{align*}
$$

This excess price function is then substituted into equation (31), where $R_{t}^{h}=Q_{t}$.

$$
\begin{gather*}
R_{t}^{h}-R_{t-1}^{h}=k\left(-a_{0}+b_{0}\right)+k\left(a_{1}-b_{1}\right) R^{h}+k\left(-a_{1} P O P^{h}, \ldots .,-b_{14} T .\right. \tag{56}\\
R_{t}^{h}-k a_{1} R^{h}+k b_{1} R^{h}=k\left(-a_{0}+b_{0}\right)+R_{t-1}^{h}+k\left(-a_{1} P O P^{h}, \ldots,-b_{14}^{T} .\right. \\
R_{t}^{h}=\frac{k\left(-a_{0}+b_{0}\right)}{\left(1-k a_{1}+k b_{1}\right)}+\frac{1}{\left(1-k a_{1}+k b_{1}\right)} k_{t-1}^{h}+\frac{k}{\left(1-k a_{1}+k b_{1}\right)} \\
\left(-a_{1} P O P^{h}, \ldots,-b_{14}^{T}\right) .
\end{gather*}
$$

The estimating equation for Eastern REPLACEMENTS, Dairy Heifers now becomes:

$$
\begin{align*}
R_{t}^{\text {hDE }} & =\pi_{0}+\pi_{1} R_{t-1}^{h D E}-\pi_{2} P O P_{t}^{h D E} \mp \pi_{3} P_{t}^{V E} \mp \pi_{4} P_{t}^{S E} \mp \pi_{5} P_{t}^{C+c E} \mp \pi_{6} P_{t}^{h q E} \tag{58}\\
& -\pi_{7} Y_{t}^{E}+\pi_{8} P O P_{t}^{C D E}+\pi_{9} P_{t}^{m E}+\pi_{10} N_{t}^{E}-\pi_{11} L_{t}-\pi_{12} P_{t}^{\mathrm{DE}}-\pi_{13} W_{t}^{E} \\
& -\pi_{14} I_{t}-\pi_{15} 5_{t}^{\mathrm{M}}-\pi_{16} \mathrm{~T} .
\end{align*}
$$

The estimating equation for Western REPLACEMENTS, Dairy Heifers is similar except that grain stocks are added as an opportunity cost for resources employed in dairying. In addition, good stock steer calf price replaces veal calf price.

$$
\begin{aligned}
& -\pi_{7} Y_{t}^{W}+\pi_{8} P D P_{t}^{C D W}+\pi_{9} P_{t}^{m W}+\pi_{10} N_{t}^{W}-\pi_{11} L_{t}-\pi_{12} P_{t}^{B W}+\pi_{13} K_{t} \\
& -\pi_{14} W_{t}^{W}-\pi_{15} I_{t}-\pi_{16}{ }^{M}{ }_{t}^{W}-\pi_{17} T .
\end{aligned}
$$

Eastern REPLACEMENTS, Beef Heifers are estimated with a similar equation except that those variables related to milk are dropped.

$$
\begin{align*}
R_{t}^{\mathrm{hBE}}= & \pi_{0}+\pi_{1} R_{t-1}^{\mathrm{hBE}}-\pi_{2} P O P_{t}^{\mathrm{hBW}}+\pi_{3} \mathrm{P}_{t}^{C E} \pm \pi_{4} \mathrm{P}_{t}^{\mathrm{SE}} \mp \pi_{5} P_{t}^{\mathrm{C+CE}}-\pi_{6} \mathrm{P}_{t}^{\mathrm{hgE}} \tag{60}\\
& -\pi_{7} \mathrm{Y}_{t}^{\mathrm{W}}+\pi_{8} P O P_{t}^{\mathrm{CBE}}-\pi_{9} \rho_{t}^{\mathrm{BE}}-\pi_{10} W_{t}^{\mathrm{E}}-\pi_{11} \mathrm{I}_{t}-\pi_{17}{ }^{\mathrm{T} .}
\end{align*}
$$

The Western REPLACEMENTS, Beef Heifer estimator includes the farm stock of grain as an index of on-farm opportunity cost of resources employed in grain production.
(61) $\quad R_{t}^{h B W}=\pi_{0}+\pi_{1} R_{t-1}^{h B E}-\pi_{2} P O P_{t}^{h B W}+\pi_{3} P_{t}^{C W} \pm \pi_{4} P_{t}^{s W+}-\pi_{5} P_{t}^{\mathrm{C}+\mathrm{cW}}-\pi_{6} P_{t}^{\mathrm{hgW}}$

$$
-\pi_{7} Y_{t}^{W}+\pi_{8} P P_{t}^{C B W}-\pi_{9} P_{t}^{B W}+\pi_{10} K_{t}-\pi_{11} W_{t}^{W}-\pi_{12} I_{t}-\pi_{13} T .
$$

Bull SLAUGHTER and REPLACEMENT

The demand for Bulls is derived from a technical requirement for the production of Cattle and thus, from the demand for Cows. This latter demand, in turn, is derived from the demand for beef and dairy products. It is expected that if the Cow Herd expands, then more Bulls will be required and vice versa.

If Bulls have a fixed useful life, then the demand for Replacement Bulls, as well as the supply of Cull Bulls, are indicated by the stock of Bulls, everything else being equal. Since the flow for both SLAUGHTER and REPLACEMENT are influenced by changes in the size of the Cow Herd, factors influencing that Herd would be expected to influence the Bull Herd, and in the same direction.

The demand for Replacement Bulls is expected to vary directly with the price of milk, directly with the price of stock calves, and inversely with the cost of barley, labor, and interest. In addition, it is expected that the increased use of artificial insemination and possibly more efficient use of existing bulls, could result in a negative time trend.

The demand for Slaughter Bulls is expected to be a competing demand with Replacement Bulls, both constrained by the supply of existing eligible Male Calves. However, only a small proportion of such Calves are required for Herd sires. In addition, the cost of maintaining a Herd sire is a relatively minor cost in the production of Calves, therefore, these cost factors are not considered.

The market for Slaughter Steers is not felt to be influenced by the demand for Replacement Bulls; however, the price of choice slaughter steers may represent an acquisition price for Bulls. In the context of the following model, the indicated sign would be negative. However, the price of slaughter steers should directly affect the price of the stock calves and positively influence the $E(M V P)$ of cows. This latter positive influence is felt to be the stronger of the two.

The model that is proposed may be represented by Figure 10, of the last chapter, where the E (MVP) curve becomes the demand curve for Replacement Bulls, D-D'. The D-D' curve is derived from the demand for a Cow Herd and thus the $E(M V P)$ of Cows. The supply curve is infinitely
 estimates for Cull and Replacement Bulls are based on derived demand.

The estimator for Eastern Bull REPLACEMENTS then becomes:

$$
\begin{align*}
R_{t}^{b E}= & a_{0}+a_{1} R_{t-1}^{b E}+a_{2} P_{t}^{S E}+a_{3} P O P_{t}^{C E}+a_{4} P_{t}^{m E}+a_{5} P_{t}^{C E}+a_{6} p_{t}^{C+c E}+a_{7} P_{t}^{h g E} \tag{62}\\
& -a_{8} P_{t}^{b E}-a_{9} W_{t}^{E}-a_{10} I_{t}^{E}-a_{11} T .
\end{align*}
$$

The estimator for Western Bull REPLACEMENTS is similar with the exception that grain stocks are added as an index of opportunity cost.

$$
\begin{align*}
R_{t}^{b W}= & a_{0}+a_{1} R_{t}^{b E}+a_{2} P_{t}^{S W}+a_{3} P O P_{t}^{c W}+a_{4} P_{t}^{m W}+a_{5} P_{t}^{c W}+a_{6} p_{t}^{c+c E}+a_{7} P_{t}^{h g W} \tag{63}\\
& -a_{8} P_{t}^{b W}+a_{9} K_{t}-a_{10} W_{t}^{W}-a_{11} I_{t}^{W}-a_{12} T .
\end{align*}
$$

The supply of Slaughter Bulls is once again thought to be mainly a function of the demand for a Cow Herd and beef in general. Thus, the demand for Bulls as a source of beef will not be considered.

The estimator for Eastern Bull SLAUGHTER then becomes:

$$
\begin{align*}
C_{t}^{b E}= & a_{0}+a_{1} C_{t-1}^{b E}-a_{2} P_{t}^{S E}-a_{3} P O P_{t}^{C E}-a_{4} P_{t}^{m E}-a_{5} P_{t}^{C E}-a_{6} P_{t}^{C+c E} \tag{64}\\
& -a_{7} P_{t}^{h g E}+a_{8} P_{t}^{b E}+a_{9} W_{t}^{E}+a_{1} I_{t}^{E}+a_{11} T .
\end{align*}
$$

and for the Western Bull SLAUGHTER:

$$
\begin{align*}
c_{t}^{b W}= & a_{0}+a_{1} c_{t-1}^{b E}-a_{2} P_{t}^{S W}-a_{3} P O P_{t}^{c W}-a_{4} P_{t}^{m W}-a_{5} P_{t}^{c W}-a_{6} P_{t}^{c+c W} \tag{65}\\
& -a_{7} P_{t}^{p g W}+a_{8} p_{t}^{b W}-a_{9} K_{t}+a_{10} W_{t}^{W}+a_{11} I_{t}^{W}+a_{12} T .
\end{align*}
$$

Calf SLAUGHTER

The Cattle Herd simulator requires four Calf SLAUGHTER estimating equations:

- Male Calf SLAUGHTER, East;
- Female Calf SLAUGHTER, East;
- Male Calf SLAUGHTER, West; and
- Female Calf SLAUGHTER, West.

At any point in time, the stock of Calves available for SLAUGHTER is fixed. There are two major demands facing the stock of Calves. The first of these is the demand for SLAUGHTER, the second
is the demand for further feeding. The next chronological market for Calves, beyond the market for Slaughter Calves, is the market for Stock Calves. The demand for Stock Calves is a function of the cost and availability of feed and the expected price of slaughter cattle.

In Eastern Canada, most Slaughter Calves are a by-product of the dairy industry; thus, the Dairy Cow Herd is a good index of the supply of Dairy Calves; this is more or less true in the West also. Thus, the decision to sell Veal Calves is made in large part by dairymen.

The following factors might affect their decision. A rise in the price of milk would raise the opportunity cost of milk fed to Calves, thus, promoting sales of Calves at the earliest possible age, i.e., as light Vealers. A rise in the price of other inputs, such as barley, wages, and interest, would have the same effect. On the other hand, an increase in the price of stock calves would raise the opportunity cost of calves devoted to veal production, thus, promoting a negative relationship.

Because the two markets for Calves do not operate for the same Calves at the same time (about 3-4 months apart) and historically not for the same Calves (one is largely Dairy, the other Beef), the two demands were not treated as with Replacement Heifers. Another more practical reason also existed; official estimates of Male Dairy Calves are not available. For these two reasons, the traditional supply-demand model is used. The demand function is:

$$
\begin{equation*}
S^{v}=a_{0}^{\prime}-a_{1}^{\prime} p^{v}+a_{2}^{\prime} p^{s}+a_{3}^{\prime} p^{h g}+a_{4}^{\prime} \gamma . \tag{66}
\end{equation*}
$$

Equation (66) is manipulated to place price on the left hand side.

$$
\begin{equation*}
p^{v}=a_{0}-a_{1} s^{V}+a_{2} p^{s}+a_{3} p^{h g}+a_{4} Y . \tag{67}
\end{equation*}
$$

The supply model is:

$$
\begin{equation*}
s^{v}=b_{0}^{\prime}+b_{j}^{\prime} p^{v}-b_{2}^{\prime} p^{c}+b_{3}^{\prime} p O P^{c}-b_{4}^{\prime} p^{m}+b_{5}^{\prime} p^{b}+b_{6}^{\prime} W+b_{7}^{\prime} I-b_{8}^{\prime} T . \tag{68}
\end{equation*}
$$

Price is once again placed on the left hand side.

$$
\begin{equation*}
p^{v}=b_{0}+b_{1} s^{v}-b_{2} p^{c}+b_{3} P O P^{C}-b_{4} p^{m}+b_{5} p^{b}+b_{6} W+b_{7} I-b_{8} T . \tag{69}
\end{equation*}
$$

Functions (67) and (69) are now put in excess price model form.

$$
\begin{align*}
E_{t}= & \left(a_{0}-b_{0}\right)-\left(a_{1}+b_{1}\right) s^{V}+b_{2} p^{c}-b_{3} P O P^{c}+b_{4} p^{m}-b_{5} p^{b}-b_{6} W \tag{70}\\
& -b_{7} I+b_{8} T+a_{2} p^{s}+a_{3} p^{h g}+a_{4} Y .
\end{align*}
$$

The excess price function is then substituted into the first statistical model, function (31), where $S_{t}^{V}=Q_{t}$.

$$
\begin{gathered}
s_{t}^{v}-s_{t-1}^{v}=k\left(a_{0}-b_{0}\right)-k\left(a_{1}+b_{1}\right) s_{t}^{v}+k\left(b_{2} p^{c}, \ldots, a_{4} Y\right) . \\
s_{t}^{v}+k\left(a_{1}+b_{1}\right) s_{t}^{v}=k\left(a_{0}-b_{0}\right)+s_{t-1}^{v}+k\left(b_{2} p^{c}, \ldots, a_{4} Y\right) . \\
s_{t}^{v}=\frac{k\left(a_{0}-b_{0}\right)}{\left(1+k b_{1}+k a_{1}\right)}+\frac{1}{\left(1+k b_{1}+k a_{1}\right)} s_{t-1}^{v}+\frac{k}{\left(1+k b_{1}+k a_{1}\right)} \\
\left(b_{2} p^{c}, \ldots, a_{4} Y\right) .
\end{gathered}
$$

The estimating function for Eastern Male Calf SLAUGHTER then becomes, in reduced form:

$$
\begin{align*}
S_{t}^{\mathrm{VmE}}= & \pi_{0}+\pi_{1} S_{t-1}^{\mathrm{VE}}+\pi_{2} P_{t}^{\mathrm{CE}}-\pi_{3} P O P_{t}^{\mathrm{CDE}}+\pi_{4} P_{t}^{\mathrm{SE}}+\pi_{5} P_{t}^{\mathrm{hgE}}+\pi_{6} \mathrm{Y}_{t}^{\mathrm{E}} \tag{71}\\
& +\pi_{7} \mathrm{~m}_{t}^{\mathrm{mE}}-\pi_{8} P_{t}^{\mathrm{bE}}-\pi_{9} W_{t}^{\mathrm{E}}-\pi_{10} \mathrm{I}_{t}^{\mathrm{E}}+\pi_{11} \mathrm{~T} .
\end{align*}
$$

The estimating equation for Eastern Female Calf SLAUGHTER is
(72) $\quad S_{t}^{V f E}=\pi_{0}+\pi_{1} S_{t-1}^{V E}+\pi_{2} P_{t}^{C E}-\pi_{3} P O P_{t}^{C D E}+\pi_{4} P_{t}^{S E}+\pi_{5} P_{t}^{\text {hgE }}+\pi_{6}{ }_{t}^{\mathrm{Y}}$

$$
+\pi_{7} P_{t}^{m E}-\pi_{8}{ }^{D E E}-\pi_{9} W_{t}^{E}-\pi_{10} I_{t}+\pi_{11} T .
$$

The stock of grain on farms is felt, once again, to be a good indicator of opportunity costs and is included in the Western model for both Male and Female.

Table 4. Coefficient signs implied by the theoretical models ${ }^{\text {a }}$

COW SLAUGHTER-1 REPLACEMENTS, Heifers - 1 Bull SLAUGHTER-1 REPLACEMENTS, Bulls -1 Calf SLAUGHTER-1	+ + + +	$\pm+$ +	$\pm++$	+ + +
Population Cows-1 Population Heifers-1 Population Bulls-1	- - - -	$\pm \pm \pm+$		-
Price slaughter steers-1 Price can. and cut. cows-1 Price stock steer calves-1 Price veal calves-1 Price index 100 hogs	$+\quad+\quad+$		$\begin{array}{llll} - & - & + & + \\ - & - & + & + \\ - & - & + & + \end{array}$	$\begin{array}{llll} + & + & + & + \\ + & + & + & + \\ + & + & + & + \end{array}$
Price manufactured milk Milk subsidy Over quota penalty	+ + + -	$+\quad+$ + +	- - + +	$\pm++$
Price barley Grain stocks Interest Farm wages	$\begin{array}{llll}- & - & - \\ - & - \\ - & -\end{array}$	- - - - -	+ + + + +	- - - - - -
Roal aggregate national income Milk production per cow Time Season ${ }^{\text {b }}$	$\begin{array}{llll} \pm & + & + & + \\ - & - & - & -\end{array}$	$\begin{array}{llll}- & - & - & - \\ - & - & -\end{array}$	+ + -	$\begin{aligned} & +\quad+\quad+\quad+ \\ & +\quad+\quad+ \end{aligned}$

The excess price function, as specified, reverses the sign of the regression coefficient associated with the exogenous and lagged endogenous variables of the supply function.
bThe theoretical models do not include a seasonal variable; the nature of the data and the process being modeled suggest its inclusion.

$$
\begin{align*}
& S_{t}^{\mathrm{VmW}}=\pi_{0}+\pi_{1} S_{t-1}^{\mathrm{VmW}}+\pi_{2} \mathrm{P}_{t}^{\mathrm{CW}}-\pi_{3} P O P_{t}^{\mathrm{CDW}}+\pi_{4} P_{t}^{\mathrm{sW}}+\pi_{5} \mathrm{P}_{t}^{\mathrm{hgW}}+\pi_{6} \mathrm{Y}_{t}^{\mathrm{W}} \tag{73}\\
& +\pi_{7} P_{t}^{m W}-\pi_{8} P_{t}^{\text {bW }}+\pi_{9} K_{t}-\pi_{10} W_{t}^{W}-\pi_{11} I_{t}+\pi_{12} T . \\
& S_{t}^{v f W}=\pi_{0}+\pi_{1} S_{t-1}^{v f W}+\pi_{2} P_{t}^{\mathrm{CW}}-\pi_{3} P O P_{t}^{C D W}+\pi_{4} P_{t}^{s W}+\pi_{5} P_{t}^{\text {hgW }}+\pi_{6}{ }_{t}^{W} \tag{74}\\
& +\pi_{7} P_{t}^{m W}-\pi_{8} P_{t}^{b W}+\pi_{9} K_{t}-\pi_{10} W_{t}^{W}-\pi_{11} I_{t}+\pi_{12} T .
\end{align*}
$$

Modifications to the Specified Models

The foregoing models are each modified by the four basic statistical models given as equations (31), (32), (33), and (34). Only model (31) was developed above for the sake of brevity.

Equation (32) has the effect of lagging the demand and supply shifters by one period. Equation (33) has the effect of including both lagged and unlagged supply and demand shifters. And finally, equation (36) has the effect of lagging the endogenous variable both once and twice.

The basic period used in establishing the data series is three months or one quarter of a year. The basic production cycle for cattle and grain, and to a lesser extent hogs, is a one-year cycle. Consequently, the lag suggested by the econometric model makes little or no basic sense.

The fundamental purpose of these models is to generate good predictors, not to test hypotheses. Consequently, the question of the
appropriate lag is left as an open question. Lags of zero (t) to four ($t-4$) quarters were considered, and the decision rule used was to select the lag giving the best fit in terms of the " t " statistic. The final model selected is some combination of statistical models (31) to (34). An ex post rationalization for the selected models is given in the final section of the chapter.

A second major modification to these models is the addition of seasonal dummy variables. The rationale for adding these variables follows the argument presented with respect to lags and the annual production cycle. That is, the basic production cycle for crops and livestock is an annual cycle highly dependent on the seasons. Response to endogenous and exogenous stimuli is not necessarily immediate nor of a fixed lag, but seasonal. The calendar year was divided into four quarters; these quarters were used to represent the seasonal influence.

Accounting Identities for Cattle and Calves

The next major problem to be considered is the availability of time series data for the endogenous variables. In many instances these are not available from any source. The following table indicates the endogenous data series required and those available for both East and West.

Desired
Veal Calf SLAUGHTER
Bull SLAUGHTER
Bull REPLACEMENTS
Dairy Cow SLAUGHTER
Beef Cow SLAUGHTER
Dairy REPLACEMENT, Heifers Beef REPLACEMENT, Heifers

Available

Veal Calf SLAUGHTER
Bull SLAUGHTER
no data available

Cow SLAUGHTER
no data available

Thus, an attempt must be made to generate data series from known information and relationships. The following identity is the main relationship which is employed.

$$
\begin{align*}
\text { POP }_{t+1} \equiv & \text { POP }_{t}+\text { REPLACEMENTS }_{t}-\text { DEATHS }_{t}-\text { SLAUGHTER }_{t} \tag{75}\\
& + \text { IMPORTS }_{t}-\text { EXPORTS }_{t} .
\end{align*}
$$

POP $_{t+1}$ and POP ${ }_{t}$ are known from available data series. DEATH Rate is being taken as given from a study of DEATH Rates. EXPORTS ${ }_{t}$ and IMPORTS $_{t}$ are known in an aggregate fashion; they must be disaggregated to meet the needs of the model. Three bases will be used for this disaggregation:

1. disaggregate data from 1969-1972, inclusive;
2. informed judgment of professional livestock economists; and
3. evidence given by the simulation model(s).

Thus, we might indicate that the following models are conditional on a set of parameters $\left(\lambda_{3}, \ldots, \lambda_{k}\right)^{1}$ which are used to disaggregate EXPORTS and IMPORTS.

Turning to the Cow Herd, there are two unknowns remaining in identity (75), SLAUGHTER and REPLACEMENTS. Since the size of the Dairy Herd is more stable than that of the Beef Herd, the former will be considered first. ${ }^{2}$

Over the period under consideration, 1958-1972, the Dairy Cow Population has been monotonically decreasing, with the exception of the years 1960-1961.

By fixing alternately CULL Rate (λ_{1}) and REPLACEMENT Rate (λ_{2}), a data series can be generated for the non-fixed element in the identity. If CULL Rate, λ_{1}, is set at some Rate known to be historically correct on average, then identity (75) can be solved for REPLACEMENTS ${ }_{t}$.

$$
\begin{aligned}
\text { POP }_{t+1}= & \text { POP }_{t}+\text { REPLACEMENTS }-D R \cdot \text { POP }_{t}-\lambda_{1} \cdot \text { POP }_{t} \\
& + \text { IMPORTS }_{t}-\text { EXPORTS }_{t} .
\end{aligned}
$$

[^43]Now solve for REPLACEMENTS ${ }_{t}$.
REPLACEMENTS $_{t}=$ POP $_{t+1}-$ POP $_{t}+D R \cdot P_{t}+\lambda_{1} \cdot$ POP $_{t}$ - IMPORTS $\left(\lambda_{3}-\lambda_{j}\right)_{j}^{2}+\operatorname{EXPORTS}\left(\lambda_{j+1}{ }^{-\lambda_{k}}\right)_{t}$.

$$
\begin{align*}
\text { REPLACEMENTS }_{t}= & \text { POP }_{t+1}+\left(D R .+\lambda_{1}-1\right) \text { POP }_{t}-\operatorname{IMPORTS}\left(\lambda_{3}, \ldots, \lambda_{j}\right) \tag{76}\\
& +\operatorname{EXPORTS}\left(\lambda_{j+1}, \ldots, \lambda_{k}\right) .
\end{align*}
$$

In a similar fashion if REPLACEMENT Rate, λ_{2}, is known, then identity (75) can again be used to calculate SLAUGHTER $_{t}$ (CULLS).

$$
\begin{aligned}
\text { POP }_{t+1}= & \text { POP }_{t}+\lambda_{2} \cdot \operatorname{POP}_{t}-\text { DR } \cdot \text { POP }_{t}-\operatorname{SLAUGHTER}_{t} \\
& +\operatorname{IMPORTS}\left(\lambda_{3}, \ldots, \lambda_{j}\right)_{t}-\operatorname{EXPORTS}\left(\lambda_{j+1}, \ldots, \lambda_{k}\right)_{t} \\
\operatorname{SLAUGHTER}_{t} & =\operatorname{POP}_{t}+\lambda_{2} \cdot \operatorname{POP}_{t}-D R \cdot \operatorname{POP}_{t+1}+\operatorname{IMPORTS}\left(\lambda_{3}, \ldots, \lambda_{j}\right) \\
& -\operatorname{EXPORTS}\left(\lambda_{j+1}, \ldots, \lambda_{k}\right)
\end{aligned}
$$

$$
\begin{align*}
\operatorname{SLAUGHTER}_{t}= & \left(1+\lambda_{2}-D R\right) \cdot P_{O P}-P O P_{t+1}+\operatorname{IMPORTS}\left(\lambda_{3}, \ldots, \lambda_{j}\right)_{t} \tag{77}\\
& -\operatorname{EXPORTS}\left(\lambda_{j+1}, \ldots, \lambda_{k}\right)_{t} .
\end{align*}
$$

If Dairy Cow REPLACEMENT Rate is taken as known (an historical average figure) then Dairy Cow SLAUGHTER can be calculated by identity (75). Since Total Cow SLAUGHTER ${ }_{t}$ is also known, Beef Cow SLAUGHTER $_{t}$ can be calculated.
(78) Beef Cow SLAUGHTER ${ }_{t} \equiv$ Total Cow SLAUGHTER $_{t}$ - Dairy Cow SLAUGHTER $_{t}$

Beef Heifer REPLACEMENTS can be calculated by substituting (78) into (75) and solving for REPLACEMENTS ${ }_{t}$
(79) Beef Heifer REPLACEMENTS ${ }_{t}=$ POP $_{t+1}-$ POP $_{t}+D R \cdot P_{t}$

+ Beef Cow SLAUGHTER ${ }_{t}-\operatorname{IMPORTS}\left(\lambda_{3}, \ldots, \lambda_{j}\right)_{t}$
$+\operatorname{EXPORTS}\left(\lambda_{j+1}, \ldots, \lambda_{k}\right)_{t}$.

Since Bull SLAUGHTER (CULL) data is published, this figure can be substituted into (75) to calculate Bull REPLACEMENTS ${ }_{t}$.
(80) Bull REPLACEMENTS ${ }_{t}=$ POP $_{t+1}-$ POP $_{t}+D R \cdot$ POP $_{t}+$ Bull $^{\text {SLAUGHTER }}$ t
$-\operatorname{IMPORTS}\left(\lambda_{3}, \ldots, \lambda_{j}\right)_{t}+\operatorname{EXPORTS}\left(\lambda_{j+1}, \ldots, \lambda_{k}\right)_{t}$.

An identity type computer program (MATRIX) was designed to calculate the required endogenous data series from published data using the above identities where required.

The rates (λ_{i} 's and DR's) previously specified are annual rates while MATRIX requires semi-annual rates, thus, equations (76) and (77) must be slightly modified to fit. POP_{t} and POP_{t+1} now refer to semiannual livestock figures as do EXPORTS and IMPORTS.

$$
\text { REPLACEMENTS }_{t}=P O P_{t+1}+\frac{D R}{2} \cdot P_{t}+\frac{\lambda_{1}}{2} \cdot P O P_{t}
$$

$-\operatorname{IMPORTS}\left(\lambda_{3}, \ldots, \lambda_{j}\right)_{t}+\operatorname{EXPORTS}\left(\lambda_{j+1}, \ldots, \lambda_{k}\right)_{t}$.
(81) REPLACEMENTS $_{t}=$ POP $_{t+1}+\left(\frac{D R}{2} \cdot \frac{\lambda_{2}}{2}-1\right) \cdot P_{t}$

$$
-\operatorname{IMPORTS}\left(\lambda_{3}, \ldots, \lambda_{j}\right)_{t}+\operatorname{EXPORTS}\left(\lambda_{j+1}, \ldots, \lambda_{k}\right)_{t}
$$

$$
\text { SLAUGHTER }_{t}=\text { POP }_{t}+\frac{\lambda_{2}}{2} \cdot P_{t}-\frac{D R}{2} \cdot P_{t}-P_{t+1}
$$

$$
-\operatorname{IMPORTS}\left(\lambda_{3}, \ldots, \lambda_{j}\right)_{t}-\operatorname{EXPORTS}\left(\lambda_{j+1}, \ldots, \lambda_{k}\right)_{t}
$$

$$
\begin{align*}
\text { SLAUGHTER }_{t} & =\left(1+\frac{\lambda_{2}}{2}-\frac{D R}{2}\right) \cdot P_{t}-P O P_{t+1}+\operatorname{IMPORTS}\left(\lambda_{3}, \ldots, \lambda_{j}\right)_{t} \tag{82}\\
& -\operatorname{EXPORTS}\left(\lambda_{j+1}, \ldots, \lambda_{k}\right)_{t} .
\end{align*}
$$

The results obtained from MATRIX are conditional on the parameters $\left(\lambda_{3}, \ldots, \lambda_{k}\right)$ used to disaggregate EXPORT and IMPORT data. While the best known estimates will be used initially, subsequent new information may be obtained, some of which may be generated by MATRIX and other computer programs used in this study. This new information will require that a revised set of endogenous variables be estimated.

The results obtained from MATRIX are also conditional on λ_{1} or λ_{2}. These are average or typical values but may not be correct for non-average years; a few, some, or most years, may be non-average. This problem is minimized by selecting that Herd (Dairy or Beef) that demonstrates the most stability in the period under consideration.

For non-average years, when λ_{1} or λ_{2} do not hold true, the endogenous estimates will be badly biased. Since all endogenous estimates are constrained by published SLAUGHTER and Population figures, manual adjustments can be made to the estimated data series. These adjustments were made in a manner consistent with other known information such as price movements, unusual conditions or unique expectations.

In such a manner, endogenous data series can be generated that are consistent among themselves, consistent within themselves, and consistent with known external influences. The generated endogenous data series will ultimately be verified by knowledgeable livestock economists as reasonable and consistent with their concept of the historical situation. This verification will come at some future date when the models developed in this study are used to solve practical livestock problems.

Generation of Endogenous Variables

Program MATRIX was developed to calculate the time series of endogenous variables required for the behavioral models and ultimately for use in program CATSIM. ${ }^{1}$ In addition to generating these endogenous variables, the program provides another check on consistency and in this way aids in verifying the models and in determining likely parameter values.

[^44]MATRIX is a quarterly model utilizing identities. The basic identities used are those developed in the previous section, namely, (75) to (82). These basic identities are normally modified slightly to meet the exact application in this model.

To repeat a listing made in the previous section, the following endogenous data series are calculated:

Dairy Cow SLAUGHTER	East and West
Beef Cow SLAUGHTER	
East and West	
REPLACEMENTS, Dairy Heifer	East and West
REPLACEMENTS, Beef Heifer	East and West
Bull SLAUGHTER	
Bull REPLACEMENTS	East and West
Male Calf SLAUGHTER	
Female Calf SLAUGHTER	East and West
East and West	

Assumptions

The first assumption made in developing this model is that Dairy Cow SLAUGHTER Rate is basically very stable. An observation leading to a second assumption is that the Dairy Herds, East and West, have been basically declining over the 1958-1972 period, and the Eastern Beef Herd has been climbing steadily over that same period. ${ }^{1}$ It is further assumed that the SLAUGHTER Rate on the Eastern Beef Cow Herd has been basically stable over the 1958-1972 period.

The above assumptions plus identities (75) to (82) are used in generating a first estimate of the 16 endogenous data series. These are

[^45]combined with the various published data series. The most critical of these is the semi-annual Livestock Survey. These data series lead to a fourth and fifth set of assumptions.

The fourth set of assumptions concerns the quarterly distribution of REPLACEMENTS. From STATCAN figures, the number of additions (REPLACEMENTS) can be calculated for each of the two six-month periods (December 1-June 1, June 1-December 1), however, the requirement is for quarterly estimates.

The fifth set of assumptions concerns the disaggregation of the relevant data series to fit the model requirements. Discussion of this third and fourth set of assumptions occupies much of the balance of this section.

Calculation of IMPORTS. --The data series used to calculate IMPORTS is the STATCAN annual series Purebred IMPORTS which is available on an annual basis. This data series was disaggregated into first half/ second half, Beef/Dairy, and Male/Female components using available monthly 1969-1972 data as a basis. ${ }^{1}$

The following parameters and their values are used to disaggregate annual Purebred IMPORTS:

Purebred IMPORTS	1st half 2nd half	V22 $=.526$ V24$=.474$
Purebred IMPORTS	Female	$V 3=.90$
	Dairy	$V 10=.20$

${ }^{1}$ Appendix A deals with the discussion of data disaggregation and, in general, information relevant to the building of MATRIX and all other models.
\because
\because

Calculation of EXPORTS. --The STATCAN annual category Purebred EXPORTS is disaggregated in the same fashion as IMPORTS. The parameters employed are:

Purebred EXPORTS	lst half 2nd half	V72 $=.50$		
V74	$=.50$			
Purebred EXPORTS		Female	\quad	V8 $=.85$
:---				
Dairy				

A second export category is Other Dairy EXPORTS. These EXPORTS are assumed to be Cows and Heifers Over Two Years of Age. Further, it is assumed that the semi-annual distribution is similar to that for Purebred EXPORTS.

The final export category of relevance is EXPORTS, Cattle Over 700 Pounds. It is generally believed that a fairly constant number of these are Cull Dairy Cows, the balance being Steers and Heifers for further finishing and Immediate SLAUGHTER.

Observation of the data suggests that at least 11,000 head are shipped annually in this category. These are taken to be largely Cull Dairy Cows. Larger shipments are assumed to be largely Steers and Heifers. This disaggregation was programmed using the following parameters.

```
Proportion of Cull Dairy
                                    V11 = . 80
    Cows in first 11,000 head
    (East, 3,000 head)
    (West, 8,000 head)
Proportion of Cows in the
East V111 = . 10
    balance
    (East, 2,400 head)
    (West, 6,400 head)
```

An examination of the data also reveals that 57 percent of EXPORTS are made in the first half and 43 percent in the last half. The following parameters are used for that purpose.

$$
\begin{array}{lll}
\text { SLAUGHTER COW EXPORTS } & \text { lst half } & \text { V82 }=.57 \\
& \text { 2nd half } & V 84=.43
\end{array}
$$

Calculation of SLAUGHTER.--SLAUGHTER is calculated by summing the UNINSPECTED with the INSPECTED. INSPECTED SLAUGHTER data is available in the form required, however, the UNINSPECTED is only available in highly aggregated form.

UNINSPECTED Calf SLAUGHTER is distributed semi-annually by the following parameters.

UNINSPECTED Calf SLAUGHTER	1st half	East West	$V 13=.60$
		V14 $=.44$	
UNINSPECTED Calf SLAUGHTER	2nd half	East	$V 15=.40$
		West	$V 16=.56$

The Male/Female, first quarter/second quarter, and third quarter/fourth quarter allocations are assumed to be the same as INSPECTED Calf SLAUGHTER and are recalculated semi-annually from that source by the MATRIX program.

Cows and Bulls in UNINSPECTED Cattle SLAUGHTER are calculated using the following parameters.

Proportion of Cows in UNINSPECTED Cattle SLAUGHTER

Proportion of Bulls in UNINSPECTED Cattle SLAUGHTER

```
East V23 = . 28
West V19 = . 25
East V25 = . 06
West V26 = . 06
```

Calculation of Rates.--A set of parameter values, generally described as rates and distributions, are used in constructing MATRIX. The first of these are the quarterly birth distributions. The quarterly distribution of BIRTHS is also utilized in the program to allocate REPLACEMENTS among quarters. These quarterly distributions are:

Dairy, East and West
1st quarter $\operatorname{VALD}(1)=.262$
2nd quarter $\operatorname{VALD}(2)=.258$
3rd quarter $\operatorname{VALD}(3)=.222$
4th quarter $\operatorname{VALD}(4)=.282$
Beef, East and West
ist quarter $\operatorname{VALBE}(1)=.20 \quad \operatorname{VALBW}(1)=.28$
2nd quarter $\operatorname{VALBE}(2)=.50 \quad \operatorname{VALBW}(2)=.64$
3rd quarter $\operatorname{VALBE}(3)=.15 \quad \operatorname{VALBW}(3)=.05$
4th quarter $\operatorname{VALBE}(4)=.15 \quad \operatorname{VALBW}(4)=.05$

Two semi-annual Rates are used for DEATHS, one for the first half and a second for the second half. No differentiation is made between East and West.

$$
\begin{array}{lll}
\text { DEATH Rate } & \begin{array}{l}
\text { lst half }
\end{array} & \text { DR1 }=.008 \\
& \text { 2nd half } & \text { DR2 }=.006
\end{array}
$$

The final set of Rates concerns that rate at which Cows are slaughtered or culled from the Herd. Rates are estimated for Beef Cows East and Dairy Cows West.

Beef Cow CULL Rate	East East	1st half 2nd half	V20 $=.045$
V21 $=.055$			
Dairy Cow CULL Rate	West	1st half	V27 $=.08$
	West	2nd half	V28 $=.10$

It should be noted at this point that all parameters including BIRTH Rates, CULL Rates, etc. are used in other programs besides MATRIX. Consistency is attempted among the parameters used in all models thus aiding with their validation.

Description of the Model (MATRIX)
The model MATRIX attempts to generate plausible time series data for the 16 endogenous variables previously listed. It does this because and in spite of the fact that some of the basic statistical data are not available.

The method used in approaching the problem is to make a set of reasonable assumptions. Some of these have been made before; more are made in the balance of this section.

MATRIX is divided into two parts. The first calculates endogenous variable values for the first and second quarters, the second part for the third and fourth quarters. Structurally, both parts are identical.

Calculation of the Cow Slaughter series. --The first two

 values calculated are Eastern Beef Cow Slaughter and Western Dairy Cow Slaughter. ${ }^{1}$ The method used is to apply a rate (semi-annual) to the Cow Population to generate that proportion slaughtered. This in turn is allocated quarterly.[^46]The next two values are calculated using identities (78) and (82). The values generated in this way are Eastern Dairy Cow SLAUGHTER and Western Beef Cow SLAUGHTER. Identity (78) uses the fact that there are only two types of Cows, Dairy and Beef. By the residual method, those that are not the one must be the other.

The allocation of SLAUGHTER between quarters is made by allocating the semi-annual in a manner consistent with Eastern (or Western) Cow SLAUGHTER. The seasonal effect is amplified slightly more in the case of Beef Cow SLAUGHTER as opposed to Dairy Cow SLAUGHTER. Examination of monthly Cow SLAUGHTER data shows that Cow SLAUGHTER is low during spring and summer rising during the September-December period. Exceptions occur during periods of rapid expansion or contraction.

Calculation of the REPLACEMENT Heifer series.--The calculation of REPLACEMENTS uses a modification of identity (81) where SLAUGHTER is taken as generated above. The REPLACEMENT values generated are Eastern Dairy, Western Dairy, Eastern Beef, and Western Beef.

The allocation of REPLACEMENTS between quarters is a problem of some significance. From a priori information it is known that the expected age of a Dairy Heifer at first calving is in excess of 33 months or $23 / 4$ years. The data series being calculated is by definition, the rate of flow of 12 month old Heifers, to the Cow Herd via the Bred Heifer stream. It can readily be seen that the two ends of the process differ by $13 / 4$ years or 21 months (33 months minus 12 months). If the distribution of dairy cow freshenings is to be maintained over
time, it is reasonable to assume that Dairy Heifers freshen according to the same distribution. It can then be calculated that Heifers entering the Bred Heifer stream in the first quarter (at 12 months of age) will be in the same ratio as Dairy Cow freshenings 21 months later during the fourth quarter. Consequently, Dairy Heifer REPLACEMENTS are allocated between quarters as follows where VALD is the quarterly birth distribution for Dairy Cows.

> Ist quarter 1st half REPLACEMENTS $\times \frac{\operatorname{VALD}(4)}{\operatorname{VALD}(4)+\operatorname{VALD}(1)}$ 2nd quarter \quad 1st half REPLACEMENTS $\times \frac{\operatorname{VALD}(1)}{\operatorname{VALD(4)+VALD~(1)~}}$

The same reasoning is used to allocate Beef REPLACEMENT Heifers. In this instance, for lack of better information, it is assumed that Beef Heifers calve at two years of age. Thus Beef Heifers entering the Cow Herd in the first quarter, also enter the Bred Heifer stream in the first quarter. Western REPLACEMENTS are distributed quarterly as follows:
1st quarter \quad 1st half REPLACEMENTS $\times \frac{\operatorname{VALBW}(1)}{\operatorname{VALBW}(1)+\operatorname{VALBW}(2)}$
2nd quarter \quad 1st half REPLACEMENTS $\times \frac{V A L B W(2)}{\operatorname{VALBW}(1)+\operatorname{VALBW}(2)}$

For Eastern Beef REPLACEMENTS, the distribution used is VALBE rather than VALBW.

Calculation of Bull REPLACEMENTS. --This calculation utilizes a modification of identity (80). As with Heifer REPLACEMENTS, Bull REPLACEMENTS are allocated using the calving distribution. Since Bulls are assumed to enter the Bull Herd at one year of age, no maturation period need be considered. The distribution used to allocate Bull REPLACEMENTS is VALBE and VALBW in the East and West, respectively.

Calculation of Bull and Calf SLAUGHTER.--These calculations involve a manipulation of the INSPECTED and UNINSPECTED SLAUGHTER data as previously discussed.

The Generated Endogenous Data Series
The endogenous data series generated by MATRIX appear in Tables 5 to 7. Since certain anomalies appear in these data, each data series will be discussed below.

The Calf SLAUGHTER series is generated by simply summing monthly published data and in the case of UNINSPECTED SLAUGHTER, disaggregating quarterly and annual data. The only major assumptions of note concerns this disaggregation. These four data series are used directly as endogenous variables in the Calf SLAUGHTER behavioral models.

The Bull REPLACEMENT series indicates that most REPLACEMENTS are added during the first two quarters of the year. This occurs to such an extent that negative Bull REPLACEMENT values appear sporadically for the last two quarters. Barring errors in the published data series, the only source of this error can be UNINSPECTED Cattle SLAUGHTER. The Bull proportion of this aggregate series was incremented to 6 percent
to generate the series presented even though 6 percent is a much higher proportion than that occurring in INSPECTED SLAUGHTER. The only logical explanation that could be found suggested that high demand for Slaughter Bulls came from small UNINSPECTED meat packers producing specialty meats. The remaining negative values can only be inadequately explained by year to year fluctuations.

The final data series generated by MATRIX are Cow SLAUGHTER and REPLACEMENT. The assumption that Dairy Cow SLAUGHTER is fairly stable is believed to be reasonably accurate. Since this assumption is used for the West, all Western Cow SLAUGHTER and REPLACEMENT figures are used as generated by MATRIX.

In the East, the assumption that the Beef Cow SLAUGHTER rate is stable is undoubtedly a gross abstraction. Consequently, Eastern Cow SLAUGHTER and REPLACEMENT values were adjusted in accordance with a priori information and consistency among these series. These alterations appear in Table 8.

Figures 14 to 17 present a visual display of these 16 generated (and adjusted) endogenous data series.

Table 5. Quarterly IMSPECTED plus UNIMSPECTED COw SLAUGHTER and REPLACEMENT, 1958-1972, estimated by program MATRIX

Year	Quarter	Slauchter		REPLACEMENTS		SLAUGHTER		REPLACEMENTS	
		Datry Cows		Dairy Helfers		Beef Cows		Beef Helfers	
		East	West	East	West	East	West	East	West
1938	$\begin{array}{r}1 \\ 2 \\ \hline\end{array}$	(head)							
		$\begin{aligned} & 08463 \\ & 83907 \\ & \hline \end{aligned}$	$\begin{array}{r} 34853 \\ 30907 \\ \hline \end{array}$	$\begin{array}{r} 147946 \\ 97796 \\ \hline \end{array}$	$\begin{array}{r} 39911 \\ 37061 \end{array}$	14731 14466	$\begin{array}{r} 49935 \\ 40360 \\ \hline \end{array}$	$\begin{array}{r} 7202 \\ 12506 \\ \hline \end{array}$	$\begin{array}{r} 57915 \\ 132377 \end{array}$
		83225	38634	94007	39197	15368	49121	23350	41075
		115156	43566	78743	33728	19450	55574	23079	41470
1753	$\begin{aligned} & \frac{1}{2} \\ & \frac{3}{3} \end{aligned}$	74248	34590	95569	36033	13613	32585	6331	62389
		69709	36236	07567	33478	12065	31750	15827	142001
		73263	37639	76741	-4178	12445	42261	27213	29503
	4	85846	42411	68758	38514	2.563	40636	21724	29500
2565	2	$\begin{aligned} & 76033 \\ & 66114 \\ & \hline \end{aligned}$	$\begin{aligned} & 33729 \\ & 29911 \end{aligned}$	$\begin{aligned} & 117436 \\ & 144682 \\ & \hline \end{aligned}$	$\begin{aligned} & 62443 \\ & 39433 \end{aligned}$	$\begin{aligned} & 16534 \\ & 10209 \\ & \hline \end{aligned}$	$\begin{aligned} & 40961 \\ & 35080 \end{aligned}$	$\begin{aligned} & 5911 \\ & 9777 \end{aligned}$	$\begin{array}{r} 59668 \\ 135012 \\ \hline \end{array}$
	3	$\begin{aligned} & 61808 \\ & 93963 \\ & \hline \end{aligned}$	37849		43330	\$407	43443	29670	40683
	6		42681	77384	37284	12571	49046	27375	46033
1961	1	77200	33873	119102	47022	10331	39235	7276	77926
	2	$\begin{aligned} & 69357 \\ & 72398 \end{aligned}$	30039	12.5655	43687	8452	41284	18189	178116
	3		38390	97158	39673	10385	53490	23988	25664
	$\stackrel{ }{4}$	$\begin{array}{r} 72398 \\ 102045 \end{array}$	4329 d	83515	34137	12643	54698	21470	25664
1502	1	$\begin{aligned} & 81916 \\ & 79930 \\ & \hline \end{aligned}$	$\begin{aligned} & 34005 \\ & 3 \mathrm{in} 155 \end{aligned}$	$\begin{aligned} & 112568 \\ & 104565 \end{aligned}$	$\begin{aligned} & 31195 \\ & 28982 \end{aligned}$	$\begin{array}{r} 10910 \\ 8926 \end{array}$	$\begin{aligned} & 46268 \\ & 43095 \end{aligned}$	$\begin{array}{r} 8151 \\ 20379 \end{array}$	$\begin{array}{r} 70652 \\ 161490 \end{array}$
	3	$\begin{array}{r} 91286 \\ 117546 \end{array}$	37.55	91725	27311	11Ju9	61065	25150	67729
	4		41817	78926	23560	13455	76420	22481	67729
1363	1	89823	31970	1155903	35023	11553	42439	9583	72871
	2	$\begin{aligned} & 81792 \\ & 90567 \end{aligned}$	26350	167683	32539	3653	37315	23959	166562
	3		35391	90690	32621	11739	49618	19956	73591
	6	$\begin{array}{r} 90567 \\ \hline 168468 \end{array}$	39959	77518	28069	16340	52715	17115	73591
1564	$\frac{1}{2}$	$\begin{aligned} & 86798 \\ & 83686 \\ & \hline \end{aligned}$	$\begin{aligned} & 31537 \\ & 27523 \end{aligned}$	$\begin{aligned} & 134495 \\ & 126956 \end{aligned}$	$\begin{aligned} & 31818 \\ & 29561 \end{aligned}$	$\begin{array}{r} 11979 \\ y 801 \end{array}$	$\begin{aligned} & 39920 \\ & 51994 \end{aligned}$	$\begin{aligned} & 11677 \\ & 23693 \end{aligned}$	$\begin{array}{r} 94168 \\ 215242 \end{array}$
	3	$\begin{array}{r} 89868 \\ 112346 \\ \hline \end{array}$	34163	96529	27275	27363	55666	20151	55125
	4		58531	70642	23469	22037	76064	19168	00126
1365	1	82359	29636	130794	27786	22269	66493	21300	100942
	2	$\begin{array}{r} 85467 \\ 109865 \\ \hline \end{array}$	26282	126807	25815	20038	58747	35251	230724
	3		32336	116453	21296	37540	84019	20658	74987
	6	$\frac{109865}{135065}$	36456	9675	18325	60000	136291	25616	76787
1356	2	$\begin{aligned} & 91585 \\ & 02347 \end{aligned}$	$\begin{aligned} & 27655 \\ & 24515 \end{aligned}$	$\begin{aligned} & 115766 \\ & 105786 \end{aligned}$	$\begin{aligned} & 18436 \\ & 17129 \\ & \hline \end{aligned}$	$\begin{aligned} & 24917 \\ & 21750 \end{aligned}$	$\begin{array}{r} 207750 \\ 78056 \end{array}$	$\begin{aligned} & 13561 \\ & 23102 \end{aligned}$	$\begin{array}{r} 86085 \\ 196765 \\ \hline \end{array}$
	3	$\begin{array}{r} 78351 \\ 199393 \end{array}$	29516	91466	20127	21620	8195	25967	69062
	4		33284	77308	17319	26262	124449	23150	09662
$\sqrt{3}$	2	$\begin{aligned} & 190393 \\ & 74776 \end{aligned}$	25315 22447	92516 35953	16135 14991	11652 $y 534$	66148 60537	10556 26391	$\begin{array}{r} 76502 \\ 170291 \end{array}$
	3	$\begin{array}{r} 74776 \\ 81734 \\ 100324 \end{array}$	26978	91288	-14991 21636	$\begin{array}{r}\text { y } \\ \hline 12920\end{array}$	605037	26391	170291
	4		30422	78550	18617	14568	113630	23650	48879
1968	1	64088	23405	101497	18703	12476	94870	13424	75903
	2	82981	20755	94274	17451	16208	76778	33560	173495
	3	84770	25239	101451	22711	12946	98019	11231	53853
	6	102404	28462	07275	19593	25821	209501	0093	53853
2565	8 2	843638545389866200544	$\begin{aligned} & 22048 \\ & 19552 \end{aligned}$	$\begin{aligned} & 111194 \\ & 103308 \end{aligned}$	$\begin{array}{r} 20149 \\ 18720 \end{array}$	$\begin{array}{r} 12677 \\ 10372 \end{array}$	$\begin{aligned} & 80961 \\ & 67167 \end{aligned}$	$\begin{aligned} & 20398 \\ & 50994 \end{aligned}$	$\begin{array}{r} 82610 \\ 188823 \\ \hline \end{array}$
	3		23923	97425	-31125	15730	63364	16965	64225
	4		26971	03034	26773	16789	53550	13575	64225
2970	1	92160	21582	126434	24374	15699	50974	17707	09879
	$\frac{2}{3}$	$\begin{aligned} & 90049 \\ & 06246 \end{aligned}$	19138	16.0783	22665	11208	52436	46267	205437
	3		25782	03736	20806	14444	51995	31616	62650
	6	$\begin{aligned} & 06246 \\ & 93571 \end{aligned}$	26818	63463	17903	17654	49897	26116	62658
1571	1	$\begin{aligned} & 96515 \\ & 65730 \\ & \hline \end{aligned}$	$\begin{aligned} & 20606 \\ & 18274 \\ & \hline \end{aligned}$	$\begin{aligned} & 95895 \\ & 00.10 \end{aligned}$	$\begin{aligned} & 25675 \\ & 23295 \end{aligned}$	$\begin{aligned} & 15065 \\ & 12326 \end{aligned}$	$\begin{aligned} & 57336 \\ & 61883 \end{aligned}$	$\begin{aligned} & 20855 \\ & 52138 \end{aligned}$	$\begin{aligned} & 126726 \\ & 285096 \end{aligned}$
	3	$\begin{aligned} & 86571 \\ & 91571 \end{aligned}$	र2917	91283	6623	16030	64059	11089	49151
	4		25843	78546	5527	14594	74657	7202	49151
2772	1	74635855150622091380	18826	819996	32605	15568	75404	24600	809788
	2		-16596	111650	-36295	12737	b8371	61499	254963
	3		21739	48824	8749	16840	64934	11592	83018
	5		26581	80635	7525	25582	7527	7509	${ }^{3} 3018$

Teble 6. quarterly IMSPECTED plus UNINSPECTED Calf SLAUGHTER, 1958-1972, estimated by progrem MatRIX

Year	Quarter	Male Calf SLAUGHTER		Feme le Calf SLAUGHTER	
		East	Hest	East	West
1958	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{r} \text { (head) } \\ 120313 \\ 251992 \\ \hline \end{array}$	$\begin{aligned} & \text { (head) } \\ & 30888 \\ & 40884 \end{aligned}$	$\begin{array}{r} \text { (head) } \\ 40729 \\ 104570 \\ \hline \end{array}$	$\begin{aligned} & \text { (head) } \\ & 27798 \\ & 29249 \end{aligned}$
.	3	$\begin{aligned} & 134870 \\ & 107924 \end{aligned}$	$\begin{aligned} & 53277 \\ & 40174 \end{aligned}$	$\begin{aligned} & 56467 \\ & 47071 \end{aligned}$	$\begin{aligned} & 35342 \\ & 32216 \end{aligned}$
1753	1	126830	31376	44796	20441
	2	222590	38791	85906	22330
	3	121915	38145	49838	30290
	4	96528	37019	39300	40867
2563	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 121120 \\ & 213970 \end{aligned}$	$\begin{aligned} & 29566 \\ & 36517 \end{aligned}$	$\begin{aligned} & 45870 \\ & 77561 \end{aligned}$	$\begin{aligned} & 29221 \\ & 27034 \end{aligned}$
	3	122806	41841	49743	34894
	4	100059	32512	42188	43950
2962	1	121700	26100	47999	25190
	2	210161	33511	82919	27543
	3	125485	37954	47231	36356
	4	107i26	33276	44697	46473
2762	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 119415 \\ & 222525 \\ & \hline \end{aligned}$	$\begin{aligned} & 26871 \\ & 29068 \end{aligned}$	$\begin{aligned} & 43095 \\ & 64375 \end{aligned}$	$\begin{aligned} & 29131 \\ & 25397 \end{aligned}$
	3	130655	31036	54253	31783
	6	224640	31006	48966	47107
1363	1	184754	22202	45737	21448
	$\frac{1}{2}$	219997	24636	\$9826	20267
	3	128630	27607	55021	27365
	5	108176	27391	45879	39196
2566	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 107653 \\ & 216460 \end{aligned}$	$\begin{aligned} & 19945 \\ & 32612 \end{aligned}$	$\begin{aligned} & 46560 \\ & 98441 \end{aligned}$	$\begin{aligned} & 26660 \\ & 31480 \end{aligned}$
	3	128418	31635	56870	32640
	4	128900	35725	53306	52293
1365	1	146252	29970	61855	39292
	2	235858	30265	97795	35526
	3	167950	35036	69673	37525
	5	122526	5159	57225	62670
8560	2	$\begin{aligned} & 156780 \\ & 213605 \end{aligned}$	$\begin{aligned} & 20635 \\ & 27470 \end{aligned}$	$\begin{aligned} & 63325 \\ & 96429 \end{aligned}$	$\begin{aligned} & 31188 \\ & 32766 \end{aligned}$
	3	107356	25285	48757	32657 53758
	6	104002	34402	48172	53758
1367	1	$\begin{aligned} & 127370 \\ & 217327 \end{aligned}$	$\begin{aligned} & 22848 \\ & 23078 \end{aligned}$	$\begin{aligned} & 56176 \\ & 93746 \end{aligned}$	$\begin{aligned} & 29346 \\ & 29552 \\ & \hline \end{aligned}$
			26561	45485	41798
	4	98887	28020	44512	55400
1968	2	125432	20374	55621	31325
	2	196746	20021	86872	29856
	3	110320	22955	46943	37779
	6	104547	24665	46411	40152
1365	1	$\begin{aligned} & 134005 \\ & 174722 \end{aligned}$	$\begin{aligned} & 17963 \\ & 15780 \end{aligned}$	$\begin{aligned} & 39265 \\ & 80897 \end{aligned}$	$\begin{aligned} & 25288 \\ & 20182 \end{aligned}$
	3	97658	16218	42114	22219
	6	100228	26034	43698	22776
1370	1	115478	11849	48637	13845
	2	150924	11576	76241	12269
	3	93328	11305	37751	15372
	6	85789	12269	34035	16715
8971	1	$\begin{aligned} & 109668 \\ & 155940 \end{aligned}$	$\begin{array}{r} 10257 \\ 6570 \end{array}$	46346 68484	13516 10966
	3	Y0890	9950	15469	13039
	4	63773	12301	32265	15091
1772	1	101983	9945	41021	11722
	2	\$46225	8885	64806	10355
	3.	72409	9657	30633	11104
	6	76545	12741	23659^{-}	23840

Table 7. Quarterly IMSPECTED plus UNINSPECTED Bull SLAUGHTER and REPLACEMENT, 1958-1972, estimated

		Bull slaughter		BUll REPLACENENT	
Year	Quarter	East	West	East	West
1958		(head)	(head)	(head)	(head)
	1	11469	6491	15095	9156
	2	13070	8043	37737	20928
	3	27511	9379	63	-38
	4	$248 \geqslant 0$	9414	63	-30
1357	1	0734	4327	15302	9727
	2	11285	6623	38256	22233
	3	16125	8732	4	2978
	4	11055	7211	4	2978
1965	8	9106	5303	15126	8469
	2	12316	7915	37615	17353
	3	16358 11098	$\begin{aligned} & 8865 \\ & 8328 \end{aligned}$	-823 -823	$\begin{aligned} & 3296 \\ & 3296 \end{aligned}$
1761		9350	6242	15317	9102
	2	21541	7817	38292	20806
	3	16432	10701	1924	3162
	4	23112	8921	1924	3162
2٪62	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{array}{r} 9352 \\ 11706 \\ \hline \end{array}$	$\begin{aligned} & 5251 \\ & 6586 \end{aligned}$	$\begin{aligned} & 13713 \\ & 34284 \end{aligned}$	$\begin{array}{r} 9065 \\ 20721 \\ \hline \end{array}$
	3	16759	9853	102	2097
	6	12438	10095	102	2097
1363	1	0830	5595	14059	10288
	2	10880	6258	37147	23515
	3	15384	8372	-309	4978
	6	85708	8755	-309	4975
856	8	1956 11154	5330 7515	13585 33712	11496 26273
	3	15859	8535	51967	26273
	4	12696	9663	1967	7610
1763	1	9237	6118	14212	11310
	2	22319	7908	35529	
	3	20153	10037	2018	5976
	6	13728	11969	2018	5976
153	8	$\begin{aligned} & 9205 \\ & 10300 \end{aligned}$	$\begin{aligned} & \text { Trez } \\ & 7853 \end{aligned}$	$\begin{aligned} & 121775 \\ & 31188 \end{aligned}$	$\begin{array}{r} 2765 \\ 20034 \end{array}$
	3	13428	7578	2857	-2190
	6	18616	10136	1847	-2190
2967	8				1385
	2	10153	6641	31492	23737
	3	$\begin{aligned} & 14626 \\ & 10437 \end{aligned}$	8969 0787	1561 1561	799 799
1968	1	8609	5240	12310	8859
	2	11554	6639	30794	20250
	3	14507	0573	2968	-4213
	6	12005	8868	2961	-4210
1565	8	$\begin{array}{r} 6747 \\ 11485 \\ \hline \end{array}$	$\begin{aligned} & 5495 \\ & 6728 \end{aligned}$	$\begin{aligned} & 12372 \\ & 30930 \end{aligned}$	$\begin{aligned} & 80259 \\ & 23449 \\ & \hline \end{aligned}$
	3	$\begin{aligned} & 14337 \\ & 11621 \end{aligned}$	$\begin{aligned} & 8647 \\ & 7865 \end{aligned}$	$\begin{aligned} & 2847 \\ & 2647 \end{aligned}$	$\begin{aligned} & -612 \\ & -612 \end{aligned}$
1973	1	9363	4797	11278	10635
	2	11753	5756	26195	$2630{ }^{\circ}$
	3	12960	0535	5027	128
	4	18307	6447	5027	128
1571	1	$\begin{array}{r} 9365 \\ 12466 \end{array}$	4537 6051	12662 31656	33154 3853
			67\%	-2504	51545
	4	10990	8679	2504	5845
1472	1	0955	7222	12296	13853
	2	12682	8. 657	30739	38865
	3	12012	9439	1242	1238
	6	18496	6615	1292	${ }^{1231}$

Table 8. Adjustments made to Eastern Cow SLAUGHTER and REPLACEMENT data as generated by MATRIX

Year	Quarter	Adj. Factor	SLAUGHTER		REPLACEMENT		SLAUGHTER		REPLACEMENT	
			Beef Cows		Beef Heifers		Dairy Cows		Dairy Heifers	
			Orig.	Rev.	Orig.	Rev.	Orig.	Rev.	Orig.	Rev.
1958		(head)								
	1	$\begin{aligned} & 5,000 \\ & 7.000 \end{aligned}$	9,737 7,966	$\begin{aligned} & 14,731 \\ & 14,966 \end{aligned}$	2,202	7,202 12,506	93,063 87,907	88,063 80,906	114,946 106,794	$\begin{array}{r} 109,946 \\ 99,794 \end{array}$
	3	6,000	9,368	15,368	17,350	23,350	89,220	83,220	100,809	94,809
	4	8,000	11,450	19,450	15,079	23,029	123,156	115,156	86,743	78,743
1959	1	4,000	9,613	13,613	4,331	8,331	78,248	74,248	99,569	95,569
	2	5,000	7,865	12,865	10,827	15,827	74,909	69,909	92,507	87,507
	3	3,000	9,445	12,445	24,312	27,213	76,163	73,163	79,941	76,941
	4	0	11,543	11,543	21,724	21,724	85,846	85,846	68,787	68,787
1960		$6,000$	10,034		-89	$5,911$	$82,033$	$76,033$	$123,436$	
	2	$10,000$	$8,209$	$18,209$	-223	$9,777$	$76,114$	$66,144$	$114,682$	$104,682$
1964	3	$5,000$	$12,303$	$17,303$	$15,151$	$20,151$	$94,048$	$89,048$	$99,529$	$94,529$
	4	$7,000$	$15,037$	$22,037$	$12,168$	$19,168$	$118,346$	$111,346$	$85,641$	$78,641$
1965	1	10,000	12,269	22,269	$11,300$	21,300	92,059	82,059	140,794	130,794
	2	10,000	10,038	20,038	21,251	38,251	95,447	85,447	130,809	120,809
	3	25,000	12,548	37,548	3,658	28,658	134,865	109,865	141,457	116,453
	4	25,000	15,337	40,337	616	25,616	156,064	131,064	121,715	96,715
1966	1	13,000	11,917	24,917	441	13,441	111,081	98,081	126,786	113,786
	2	12,000	9,750	21,750	11,106	23,102	93,342	81,347	117,794	105,786
	3	10,000	11,620	21,620	15,967	25,967	88,951	78,951	101,466	91,466
	4	10,000	14,202	24,202	13,150	23,150	110,393	110,393	87,308	77,308

Parameter Estimates and Behavioral Model Appraisal

The parameter estimates for the 16 behavioral models are given in Tables 9 to 11. The balance of this section briefly discusses these models, their parameter estimates and properties. Estimated values for the endogenous data series are listed in Tables 12 to 14.

The excess price model formulation developed in the first section of this chapter met with only modest success in terms of predicted sign of the coefficients. That is, many of the explanatory variables had significant coefficients that were opposite in sign to those predicted by the excess price model. This is particularly true in the case of Calf SLAUGHTER. The behavioral models, however, serve as good predictors in most instances when assessed in terms of R^{2} and \bar{R}^{2}. The excess price model was a success in that the models retain high explanatory power in spite of the fact that "own price" was excluded from each model in keeping with the theoretical excess price model.

In almost all instances, the lagged endogenous variable proved to be significant when evaluated in terms of the Student's "t" statistics. It is retained in each model in keeping with the theoretical econometric model even though in a few instances this variable was not significant at the 5 percent level.

The form of the models finally selected do not necessarily conform to the four models given by equations (31) to (34). For those exogenous variables representing cattle and calf price, only lagged values are accepted. The reason for this is twofold. First, these
behavioral models are part of an unspecified but highly related simultaneous equation system such as the one given earlier in this chapter. Thus, these prices could be construed to be endogenous, not exogenous. Second, these econometric models (as used in CATSIM) may be operated in a recursive mode with other beef models, such as those being developed by the Economics Branch. These other models generate cattle and calf prices.

For all other variables, the lag that has been accepted ranges from zero to four periods--the decision rule used was to retain the lag giving the best fit in terms of the Student's "t" test. For many variables, the lag was either zero or one period, in accordance with the econometric models (31), (32), and (33).

One notable exception occurs very consistently; that exception is the lagged endogenous variable. In all cases, econometric model (34) did not fit as well as the form finally selected. In most models, a single four period lag, for the lagged endogenous variable, provided the best fit. The explanation rests with the data, not the econometric model. All endogenous data series are of a highly seasonal nature, thus a lag of four periods (a one year lag) has more explanatory power than a one period lag.

The seasonal dummy variables were all retained regardless of significance as most, if not all, endogenous variables were considered a priori to have a distinct seasonal component. In addition, a time trend was often noted that was not explained in terms of other included variables. For this reason, a "time" variable appears in many models.

Since all models have a lagged endogenous variable on the right hand side in accordance with econometric models (31) to (34), the statistic that is normally used to indicate the degree of serial correlation, the Durbin-Watson (DW) statistic, is unreliable. Thus, another statistic, the " h " statistic, is used in this dissertation. ${ }^{1}$ This "h" statistic is distributed approximately $N(0,1)$ but has only large sample properties.

The condition of serial correlation often occurs when time series data is used, as opposed to those instances when cross sectional data is employed. This condition proved to be significant in one "Cow" model, three "Bull" models and just significant in one "Calf" model.

Serial correlation is usually based on the interpretation of the error term as "a summary of a large number of random and independent factors that enter into the relationship under study, but which are not measured." ${ }^{2}$ Thus, an excluded, but systematic

[^47]relationship may cause serial correlation. Johnson adds a second potential source of this condition, namely, a measurement error in the explained or endogenous variable. ${ }^{1}$ Either or both of these causes are likely to be present in these models, especially the latter, as these data are generated by a simulation method that undoubtedly, (1) provides more stability than is present in the real world, and (2) fails to generate at least some of the systematic variation that is present in the real world phenomena being modeled. ${ }^{2}$

Both Johnson and Kmenta indicate that the properties of serially correlated models are:

1. unbiased estimates of the regression coefficients and large sample consistency, and
2. inflated and thus inefficient estimates of the standard errors of the regression coefficients--these standard errors are not asymptotically efficient.

The consequences of these properties are that the tests of significance of the regression coefficients are incorrect, and development of accurate confidence intervals is precluded as well. In addition to the above, the models are inefficient predictors in that the standard error of estimate is needlessly large.

The significance of these properties for the purpose of the five serially correlated behavioral models is that variables might have

[^48]been retained as significant or discarded as insignificant due to the inaccurateness of the Student's " t " test. This was not considered as serious since most variables with " t " > 1 were retained. The second property (prediction inefficiency) was not considered as serious in that the five effected models have either high R^{2} (i.e., .9948, .9208, .9913, . 8687, and . 9586) or have low impact on the overall situation model, as is the case with the "Bull" predictors.

Cow SLAUGHTER and REPLACEMENT

In most of the 16 behavioral models, a lag of more than one period, usually four periods, was found to be most significant, for reasons given above. In the case of Cow SLAUGHTER and REPLACEMENT models, only two of eight have a four period lag, the balance have a one period lag. In the case of Dairy Cow SLAUGHTER and REPLACEMENT, this one period lag can be attributed to a weakness of the seasonal variation. An explanation for Eastern Beef Cow SLAUGHTER and REPLACEMENT lag does not readily come to mind.

The price of slaughter steers entered the four Eastern models with a four period lag in three instances and a three period lag in one instance. In the West, the lag on this variable was two period except in one instance when it was three periods.

It is interesting to note that farm wages enter both the Eastern and Western Dairy Cow SLAUGHTER models and very significantly so in the East, the dairy region. In this same regard, milk production per cow was a significant variable in the Eastern Dairy REPLACEMENT model.

The price of veal calves entered the Eastern Dairy SLAUGHTER model at a very significant level reflecting the significance of this source of income to dairy farmers. As might have been expected, veal calf price was insignificant but stocker calf price was significant in the Western Dairy Cow SLAUGHTER model as well as the Western Dairy REPLACEMENT model.

The price of feed, as represented by the price of barley and western grain stocks, were not found to be significant in any of these eight models. It is believed that this is due to the inappropriateness of the statistical index used or to the structure of the model or both. In any case, the real effect of these variables is obscured.

The price of hogs enters some models usually with no lag. While price of milk would normally be thought of as a very significant variable, it did not prove to be significant in any one of these models--this is undoubtedly a result of institutional involvement in price stabilization and its impact on expectations. The imposition of an over quota penalty was not found to be significant; however, the application of milk subsidy had a significant effect in the Eastern Dairy Cow SLAUGHTER model.

It was thought that farm wages, interest rates, and milk production per cow would influence SLAUGHTER/REPLACEMENT decisions. With the exception of farm wages, these variables proved to be rather insignificant in most instances.

It should be noted that distinct non-linear time trends were observed in the four Eastern models, while the non-time variables proved to be adequate in the Western models.

It was observed that the seasonal pattern of Eastern Beef Heifer REPLACEMENT changed over the 1958-1972 period. The early part of the period was characterized by high fall REPLACEMENT, while the latter part incurred high spring REPLACEMENT--as in Western Canada. For this reason, one set of regional dummies (the "A" set) was used for the years 1958-1967, and another set (the "B" set) for 1968-1972.

Serial correlation proved to be a problem with early Eastern Beef Cow SLAUGHTER models. This condition was removed by using time, time ${ }^{2}$ and time ${ }^{3}$ variables. While this removes the serial correlation, the basic underlying relationship still remains unidentified. The " h " statistic indicates that the Western Dairy Cow SLAUGHTER model has significant serial correlation. The model used above was attempted but without success.

Two different statistics were consulted in an attempt to determine which exogenous, and lagged endogenous, variables were the most important in explaining variation in the endogenous variables. These statistics are the beta coefficient ${ }^{1}$ and the R^{2} delete

[^49]value. ${ }^{1}$ While the ranking of these two indices rarely agreed, both identified the same five most important variables in most instances.

Dairy Cow Population proved to be very important in both Western Dairy models with Dairy Heifer Population being important in the Dairy REPLACEMENT models. In these latter models real income, price of stocker calves, and the seasonal variable prove important. In the SLAUGHTER model, both fall and spring as well as farm wages were isolated as being important.

The seasons fall and summer proved important in the Beef Cow SLAUGHTER model while spring and summer had the same effect in the REPLACEMENT model. Beef Cow Population was important in both with lagged Cow SLAUGHTER important in the SLAUGHTER model. The price of stock steer calves proved to be important in both Beef models, as in both Dairy.

In all Eastern Cow models, the time variable (including squared and cubed terms) proved important as did specific seasonal variables in all models except Beef Cow SLAUGHTER. Cow Population proved important in all models except Beef Cow REPLACEMENTS. In the Dairy SLAUGHTER
of the different independent variables." Given the model

$$
x_{1}=\alpha_{1}+\alpha_{2} x_{2}+\sum_{i=3}^{h} \alpha_{i} x_{i}+E
$$

the beta coefficient is defined as

$$
\beta_{1 i}=\alpha_{1 i} \frac{\sigma_{x_{i}}}{\sigma_{x 1}}
$$

${ }^{1}$ Both the " t " and " F " statistics for the standard error of the regression coefficients provide the same ranking as the R^{2} delete statistic.
model, lagged SLAUGHTER and veal calf prices are noted; Dairy Heifer Population is noted in the REPLACEMENT model. In the Beef models, the two indices fail to agree on the most important variables except as previously noted plus real income.

Calf SLAUGHTER

The four Calf SLAUGHTER models have consistently high R^{2} values. In all cases, except Female Calf SLAUGHTER, West, the endogenous variable is lagged four periods--in the exception the lag was one period.

There appears to be no consistency among the models with respect to lagged Cow Population. In the case of Female Calf SLAUGHTER, East, this variable was not found to be significant.

In all cases, the price of stocker calves proved to be a very significant variable. This fact may indicate that dairy farmers, and beef feeders, do consider Dairy Calves as an alternative to Beef Calves for feeding purposes.

The price of slaughter cattle was also a significant variable in all four models with a consistent one period lag. This fact may be interpreted to mean that farmers form expectations strongly influenced by recent slaughter cattle prices--these recent prices thus influence whether or not Calves are slaughtered or retained for further feeding.

The price of hogs entered both Eastern models but was found to be insignificant in both Western models. This situation may indicate that Eastern farmers and Eastern dairy farmers in particular view hogs as a significant production alternative while this relationship is not so clear in the case of the West.

Table 9. Parameter estimates for Cow SLAUGHTER and REPLACEMENT behavior models ${ }^{\text {a }}$
A. Dairy Cow Slaughter, West

Variable	Expected coefficient sign	Estimated regression coefficient and standard error
Constant		$\begin{aligned} & 5239.2920^{\star *} \\ & (2317.2045) \end{aligned}$
Slaughter ${ }_{-1}$	+	$\begin{aligned} & -.2517 * * \\ & (.1024) \end{aligned}$
Dairy cow population-1	-	$\begin{aligned} & .0608 \\ & (.0051) \end{aligned}$
Price slaughter steers ${ }_{\text {-2 }}$	+	$\begin{aligned} & -78.4407 * * \\ & (36.2866) \end{aligned}$
Price hogs -4	+	$\begin{aligned} & -16.4147 \\ & (19.3081) \end{aligned}$
Farm wages	-	$\begin{aligned} & 20.3559 \star * \\ & (2.8485) \end{aligned}$
Spring		$\begin{gathered} -5239.1323 * * \\ (830.4257) \end{gathered}$
Summer		$\begin{gathered} -42.6815 \\ (1137.0268) \end{gathered}$
Fall		$\begin{array}{r} 10395.2214 * \\ (669.8801) \end{array}$
R^{2}		. 9948
\bar{R}^{2}		. 9939
Standard error		540.1972
h		-3.1645

${ }^{\mathrm{a}}$ All regression coefficients significant at the 5 percent level are denoted with a single asterisk (*) while those significant at the 1 percent level have a double asterisk (**). All tests are two-tailed tests. This notational convention is continued to Tables 10 and 11.

Table 9--Continued
B. Replacement Dairy Heifers, West

Variable	Expected coefficient sign	Estimated regression coefficient and standard error
Constant		$\begin{aligned} & 128129.7538 * * \\ & (37202.5045) \end{aligned}$
Replacements -1	+	$\begin{aligned} & .2959 \star \star \\ & (.1204) \end{aligned}$
Dairy cow population-1	+	$\begin{aligned} & -.2556 \star \star \\ & (.0696) \end{aligned}$
Dairy heifer population-1	-	$\begin{aligned} & .8051^{* *} \\ & (.2300) \end{aligned}$
Price slaughter steers ${ }^{\text {-2 }}$	+/-	$\begin{aligned} & -481.4096 \\ & (431.7824) \end{aligned}$
Price stocker calves ${ }^{\text {-1 }}$	+	$\begin{aligned} & 762.6667 * * \\ & (250.1689) \end{aligned}$
Real income ${ }_{-1}$	-	$\begin{aligned} & -7.4142 * * \\ & (2.1360) \end{aligned}$
Spring		$\begin{gathered} 1476.4807 \\ (2407.4369) \end{gathered}$
Summer		$\begin{aligned} & -2396.8143 \\ & (1872.3770) \end{aligned}$
Fall		$\begin{gathered} -10070.2533 \star * \\ (2062.8982) \end{gathered}$
R^{2}		. 8073
\bar{R}^{2}		. 7696
Standard error		4719.1838
h		1.176

Table 9--Continued

C. Beef Cow SLAUGHTER, West

Variable	Expected coefficient sign	Estimated regression coefficient and standard error
Constant		$\begin{aligned} & -37656.1259 \star * \\ & (14268.3452) \end{aligned}$
Slaughter ${ }_{\text {-1 }}$	+	$\begin{aligned} & .5509 * * \\ & (.0942) \end{aligned}$
Beef cow population-1	-	$\begin{aligned} & .0340 \star \star \\ & (.0082) \end{aligned}$
Price slaughter steers ${ }_{-3}$	+	$\begin{aligned} & 1370.9668 \\ & (928.8684) \end{aligned}$
Price stocker calves-1	+	$\begin{gathered} -1854.1417 * * \\ (467.3457) \end{gathered}$
Spring		$\begin{gathered} 2528.2616 \\ (4161.3974) \end{gathered}$
Summer		$\begin{aligned} & \text { 14816.0353** } \\ & (4554.5544) \end{aligned}$
Fall		$\begin{aligned} & 21352.8221^{* *} \\ & (4353.5838) \end{aligned}$
R^{2}		. 8223
$\overline{\mathrm{R}}{ }^{2}$. 7964
Standard error		10484.4407
h		1.0616

Table 9--Continued
D. Replacement Beef Heifers, West

Variable	Expected coefficient sign	Estimated regression coefficient and standard error
Constant		$\begin{gathered} 72005.3371 * * \\ (36146.2612) \end{gathered}$
Replacements-1	+	$\begin{aligned} & .2870^{* *} \\ & (.1372) \end{aligned}$
Beef cow population-1	+	$\begin{aligned} & .0496 * * \\ & (.0150) \end{aligned}$
Price slaughter steers ${ }^{-2}$	+/-	$\begin{aligned} & -4702.1262 \star \star \\ & (1699.0234) \end{aligned}$
Price c+c cows ${ }_{\text {- }}$	+/-	$\begin{aligned} & -3962.3855^{*} \\ & (2844.0655) \end{aligned}$
Price stocker calves ${ }^{\text {-1 }}$	+	$\begin{array}{r} 2873.9203 * \\ (1503.3735) \end{array}$
Price of barley	-	$\begin{aligned} & -15507.6432 \\ & (13923.5667) \end{aligned}$
Spring		$\begin{gathered} 107848.8030 * * \\ (9407.3271) \end{gathered}$
Summer		$\begin{aligned} & -57797.7163 \star * \\ & (21798.3628) \end{aligned}$
Fall		$\begin{gathered} -23375.2773 * * \\ (7932.4784) \end{gathered}$
R^{2}		. 9243
\bar{R}^{2}		. 9095
Standard error		18404.9669
DW		1.9010

Table 9--Continued

Variable	Expected coefficient sign	Estimated regression coefficient and standard error
Constant		$\begin{array}{r} -175450.0196 * \\ (99812.7032) \end{array}$
Slaughter_1	+	$\begin{aligned} & .2109 \star * \\ & (.0139) \end{aligned}$
Dairy cow population-1	-	$\begin{aligned} & .1262 \star \star \\ & (.0483) \end{aligned}$
Price slaughter steers ${ }^{-4}$	+	$\begin{gathered} 648.6532 \\ (498.7230) \end{gathered}$
Price veal calves ${ }_{\text {- }}$	+	$\begin{gathered} -2156.4092 * * \\ (455.3432) \end{gathered}$
Price hogs	+	$\begin{aligned} & 397.4019 \star * \\ & (201.3366) \end{aligned}$
Farm wages	-	$\begin{aligned} & 82.1449 * * \\ & (27.4525) \end{aligned}$
Years of milk subsidy	+	$\begin{aligned} & 8177.3600 * * \\ & (3740.9331) \end{aligned}$
Spring		$\begin{aligned} & 7219.3242 * * \\ & (2840.6800) \end{aligned}$
Summer		$\begin{aligned} & 8918.4068 \star * \\ & (3114.9672) \end{aligned}$
Fall		$\begin{aligned} & 33873.0833 \star \star \\ & (6898.2210) \end{aligned}$
Time		$\begin{gathered} -1162.1717 \star * \\ (541.5361) \end{gathered}$
Time squared		$\begin{aligned} & 26.5366 \star * \\ & (10.0332) \end{aligned}$
R^{2}		. 8784
$\overline{\mathrm{R}}^{2}$. 8445
Standard error		4870.8309
h		1.785

Table 9--Continued
F. Replacement Dairy Heifers, East

Variable	Expected coefficient sign	Estimated regression coefficient and standard error	
Constant		$\begin{aligned} & 779768.2174 * * \\ & (140060.6315) \end{aligned}$	$\begin{aligned} & 461939.2288^{\star \star} \\ & (112695.9787) \end{aligned}$
Replacements ${ }_{-1}$	+	$\begin{aligned} & .1319 \\ & (.0669) \end{aligned}$	$\begin{gathered} .2027 \\ (.1423) \end{gathered}$
Dairy cow population-1	+	$\begin{aligned} & -.3607 * * \\ & (.0669) \end{aligned}$	$\begin{aligned} & -.1789 * * \\ & (.0416) \end{aligned}$
Dairy heifer population ${ }_{-1}$	-	$\begin{aligned} & .3437 * * \\ & (.0917) \end{aligned}$	$\begin{aligned} & .3132 \star * \\ & (.0980) \end{aligned}$
Price slaughter steers ${ }_{-4}$	+/-	$\begin{gathered} -1408.9147 * * \\ (643.1696) \end{gathered}$	$\begin{gathered} -1452.9586^{\star *} \\ (705.6278) \end{gathered}$
Price c+c cows -1	+/-	$\begin{gathered} -457.6674 \\ (1030.8904) \end{gathered}$	$\begin{gathered} 1065.9288 \\ (1056.3383) \end{gathered}$
Price hogs	-	$\begin{aligned} & \text { 1474.8048** } \\ & \text { (363.4522) } \end{aligned}$	$\begin{aligned} & 1175.1190^{\star *} \\ & (379.3627) \end{aligned}$
Milk production per cow	-	$\begin{array}{r} -14.4532 * \\ (8.3878) \end{array}$	$\begin{gathered} -19.5076 \star * \\ (7.6607) \end{gathered}$
Spring		$\begin{gathered} -9991.5818^{*} \\ (5626.1975) \end{gathered}$	$\begin{aligned} & -9897.8295 \\ & (6183.2009) \end{aligned}$
Summer		$\begin{gathered} -22355.4252 \star * \\ (4977.9252) \end{gathered}$	$\begin{gathered} -22645.2115^{* *} \\ (5349.7168) \end{gathered}$
Fall		$\begin{gathered} -35404.4679 \star * \\ (4637.2970) \end{gathered}$	$\begin{gathered} -37845.2569 * * \\ (4710.4716) \end{gathered}$
Time		$\begin{aligned} & 1530.0588^{* *} \\ & (503.5889) \end{aligned}$	
Time squared		$\begin{aligned} & -39.1851 * * \\ & (11.6297) \end{aligned}$	
R^{2}		. 8764	. 8438
\bar{R}^{2}		. 8420	. 8091
Standard error		6302.8194	6927.0427
h		. 4753	
DW			1.7345

Table 9--Continued
G. Beef Cow SLAUGHTER, East

Variable	Expected coefficient sign	Estimated regression coefficient and standard error
Constant		$\begin{aligned} & -36765.0456 \\ & (23493.2732) \end{aligned}$
Slaughter -4	+	$\begin{aligned} & .5244 \star \star \\ & (.0773) \end{aligned}$
Beef cow population-1	-	$\begin{aligned} & .1885 * * \\ & (.0267) \end{aligned}$
Price slaughter steers ${ }^{-3}$	+	$\begin{aligned} & -696.5868 \star \star \\ & (320.4876) \end{aligned}$
Price c+c cows-1		$\begin{gathered} -2247.9625 \star * \\ (391.7064) \end{gathered}$
Price stocker calves -3	+	$\begin{gathered} 259.3201 \\ (250.6175) \end{gathered}$
Price hogs	+	$\begin{gathered} 525.8325 * * \\ (126.9048) \end{gathered}$
Real income	+	$\begin{aligned} & 2.5390 * * \\ & (1.2264) \end{aligned}$
Spring		$\begin{aligned} & 2725.9907 * * \\ & (1212.2651) \end{aligned}$
Summer		$\begin{aligned} & 6119.1481 * * \\ & (1466.6370) \end{aligned}$
Fall		$\begin{aligned} & 6370.4933 \star * \\ & (1365.0145) \end{aligned}$
Time		$\begin{gathered} -4780.9209 \star * \\ (808.5554) \end{gathered}$
Time squared		$\begin{aligned} & 101.2289 * * \\ & (22.0375) \end{aligned}$
Time cubed		$\begin{aligned} & -.8845 * * \\ & (.1971) \end{aligned}$
R^{2}		. 8396
\bar{R}^{2}		. 7900
Standard error		2817.6410
h		1.3984

Table 9--Continued
H. Replacement Beef Heifers, East

Variable		Estimated regression coefficient and standard error
Constant		$\begin{aligned} & 112212.2469 \star * \\ & (48163.5818) \\ & \hline \end{aligned}$
Replacements -4	+	$\begin{array}{r} .1176 \\ (.1419) \\ \hline \end{array}$
Beef cow population-1	+	$\begin{aligned} & -.0603 \\ & (.0476) \\ & \hline \end{aligned}$
Price slaughter steers -4	+/-	$\begin{gathered} -1393.5692^{* *} \\ (593.2013) \end{gathered}$
Price c+C COWs-1	+/-	$\begin{aligned} & -2171.3383^{\star} \\ & (1305.7785) \end{aligned}$
Price stocker calves-1	+	$\begin{gathered} 924.2043 \\ (638.4321) \\ \hline \end{gathered}$
Farm wages	-	$\begin{array}{r} 97.7775 \\ (61.9624) \\ \hline \end{array}$
Real income ${ }_{\text {- }} 1$	-	$\begin{aligned} & -4.0940^{\star} \\ & (2.4792) \\ & \hline \end{aligned}$
Spring A		$\begin{aligned} & 15559.7570^{\star \star} \\ & (4089.4627) \\ & \hline \end{aligned}$
Summer A		18752.6570** (4810.2201)
Fall A		$\begin{gathered} 32013.6511 \star \star \\ (12312.1751) \\ \hline \end{gathered}$
Spring B		$\begin{aligned} & 27583.4245^{\star *} \\ & (4827.9243) \end{aligned}$
Summer B		$\begin{gathered} 4004.7022 \\ (5070.9654) \\ \hline \end{gathered}$
Fall B		$\begin{gathered} 26041.7988 \\ (16868.2736) \\ \hline \end{gathered}$
Time		$\begin{gathered} 485.1695 \\ (506.3804) \\ \hline \end{gathered}$
Time squared		15.4424 (9.6243)
R^{2}		. 8270
\bar{R}^{2}		. 7622
Standard error		5640.5029
h		test fails
DW		1.6951

In three out of the four models, real aggregate income lagged one period was significant while the application of the milk subsidy was found to be significant only in the East.

Milk price, price of barley, interest rate, farm wages, and grain stocks proved to be non-significant variables. In all cases, except Western Female Calf SLAUGHTER, a significant time trend was noted. While this trend was downward in all cases, the positive sign on time ${ }^{2}$ for both Eastern models indicated that the rate of change is slowing.

The excess price model proved particularly disappointing in the case of Calf SLAUGHTER in the sense that the realized sign of the regression coefficients were opposite to the predicted signs in most cases. The "incorrect" signs are mostly associated with variables from the underlying "supply" model--Dairy Cow Population, slaughter steer price, and stock calf price are examples. The sign of real aggregate income is also incorrect in all instances; however, it serves as a factor in the demand for both veal and beef. The simplified Calf SLAUGHTER model used in this study did not adequately reflect these two demand functions and their relative income elasticities.

Lagged Calf SLAUGHTER was consistently an important variable in all Calf models by both indices. The price of stocker calves was also consistently important by the R^{2} delete index. Continuing to use this index, the seasonal variable, spring, proved important in Eastern models while fall held the same position in the Western.

Table 10. Parameter estimates for Calf SLAUGHTER behavioral models
A. Male Calf SLAUGHTER, East

Variable	Expected coefficient sign	Estimated regression coefficient and standard error
Constant		$\begin{gathered} 80336.0628 \\ (157301.7436) \end{gathered}$
Slaughter_4	+	$\left(.4833^{\star *}\right.$
Dairy cow population-3	-	$\begin{aligned} & .0986 \\ & (.0756) \end{aligned}$
Price slaughter steers-1	+	$\begin{aligned} & -2090.6330 * * \\ & (1056.9372) \end{aligned}$
Price stocker calves-1	+	$\begin{gathered} -2424.8488 * * \\ (716.7474) \end{gathered}$
Price hogs	+	$\begin{gathered} 762.2596 * \\ (397.0427) \end{gathered}$
Real aggregate income_1	+	$\begin{aligned} & -7.8629 * \\ & (4.1497) \end{aligned}$
Milk price	+	$\begin{aligned} & 11446.9538 \\ & (8090.3190) \end{aligned}$
Years of milk subsidy	+	$\begin{aligned} & \text { 20245.7945** } \\ & (6666.7433) \end{aligned}$
Spring		$\begin{aligned} & 36665.1023^{* *} \\ & (9346.3692) \end{aligned}$
Summer		$\begin{aligned} & -4188.0444 \\ & (3436.3258) \end{aligned}$
Fall		$\begin{aligned} & -8605.1330^{* *} \\ & (3737.8357) \end{aligned}$
Time		$\begin{aligned} & -2598.8677 \star \star \\ & (1190.8180) \end{aligned}$
Time squared		$\begin{aligned} & \text { 69.2244** } \\ & (21.9653) \end{aligned}$
R^{2}		. 9715
\bar{R}^{2}		. 9627
Standard error		8448.7312
h		1.622

Table 10--Continued
B. Female Calf SLAUGHTER, East

Variable	Expected coefficient sign	Estimated regression coefficient and standard error
Constant		$\begin{aligned} & 95538.9696 * * \\ & (26234.8607) \end{aligned}$
Slaughter_4	+	$\begin{aligned} & .4582 \star \star \\ & (.0880) \end{aligned}$
Price slaughter steers-1	+	$\begin{aligned} & -643.3298 \\ & (424.7172) \end{aligned}$
Price stocker calves -1	+	$\begin{aligned} & -824.5499 * * \\ & (270.3680) \end{aligned}$
Price hogs	+	$\begin{aligned} & 407.9670^{* *} \\ & (157.2757) \end{aligned}$
Real aggregate income ${ }_{-1}$	+	$\begin{aligned} & -2.6336^{*} \\ & (1.5608) \end{aligned}$
Years of milk subsidy	+	$\begin{aligned} & 8684.8348^{\star \star} \\ & (1959.8415) \end{aligned}$
Spring		$\begin{aligned} & 17267.3015 \star \star \\ & (3445.1789) \end{aligned}$
Summer		$\begin{aligned} & -2149.2194 \\ & (1446.3352) \end{aligned}$
Fall		$\begin{aligned} & -3912.9951^{* *} \\ & (1506.4636) \end{aligned}$
Time squared		$\begin{aligned} & 11.1973^{\star} \\ & (6.2663) \end{aligned}$
R^{2}		. 9672
\bar{R}^{2}		. 9599
Standard error		3557.2212
h		-. 3554

Table 10--Continued
C. Male Calf SLAUGHTER, West

Variable	Expected coefficient sign	Estimated regression coefficient and standard error
Constant		$\begin{aligned} & 59399.4215^{\star *} \\ & (25761.4252) \end{aligned}$
Slaughter -4	+	$\begin{aligned} & .4085 * * \\ & (.0729) \end{aligned}$
Population diary + beef COWS-1	-	$\begin{aligned} & .0132 * * \\ & (.0032) \end{aligned}$
Price slaughter steers ${ }^{-1}$	+	$\begin{aligned} & -417.1973^{*} \\ & (230.8712) \end{aligned}$
Price stocker calves ${ }^{\text {-1 }}$	+	$\begin{aligned} & -503.6313 * * \\ & (157.3257) \end{aligned}$
Real aggregate income ${ }_{-1}$	+	$\begin{gathered} -12.7213^{* *} \\ (5.9461) \end{gathered}$
Spring		$\begin{aligned} & \text { 1914.7789** } \\ & \text { (973.3416) } \end{aligned}$
Summer		$\begin{aligned} & 2741.8436 * * \\ & (1041.2650) \end{aligned}$
Fall		$\begin{aligned} & 3340.8456 * * \\ & (1077.0228) \end{aligned}$
Time		$\begin{gathered} -220.5733 \star * \\ (83.7173) \end{gathered}$
R^{2}		. 9458
\bar{R}^{2}		. 9352
Standard error		2433.7700
h		-. 5536

Table 10--Continued
D. Female Calf SLAUGHTER, West

Variable	$\begin{gathered} \text { Expected } \\ \text { coefficient } \\ \text { sign } \end{gathered}$	Estimated regression coefficient and standard error
Constant		$\begin{gathered} 8896.0727 \\ (7753.6348) \end{gathered}$
Slaughter_4	+	$\begin{aligned} & .2835 \star \star \\ & (.0734) \end{aligned}$
Population diary + beef cows-3	-	$\begin{aligned} & .0150 \star \star \\ & (.0029) \end{aligned}$
Price slaughter steers ${ }_{-2}$	+	$\begin{aligned} & -600.6975^{*} \\ & (358.4579) \end{aligned}$
Price stocker calves_1	+	(289.2789**
Price barley	-	$\begin{gathered} 4379.4108 \\ (2954.2386) \end{gathered}$
Spring		$\begin{aligned} & -1887.9025 \\ & (1454.4207) \end{aligned}$
Summer		$\begin{gathered} 2671.5658^{*} \\ (1469.5519) \end{gathered}$
Fall		$\begin{aligned} & 12084.5311 * * \\ & (1852.4866) \end{aligned}$
R^{2}		. 9208
\bar{R}^{2}		. 9074
Standard error		3780.6137
h		2.057

For the Eastern models, real income was important by the beta index while the importance of milk subsidy was evidenced by the R^{2} delete index. In the case of the Western models, the sum of Dairy plus Beef Cow Population was important. In both models, the slaughter steer price was shown to be important by the beta index.

Bull SLAUGHTER and REPLACEMENT

The least consistent feature of the Bull models is the use of lagged Population as a predictor. In the case of Eastern Bull SLAUGHTER, the sum of Dairy + Beef Cows lagged three periods gave a reasonable fit together with predicted sign. In the case of Western Bull REPLACEMENTS, Bull Population lagged three periods gave the best fit. In the other two instances, a lag of one period on Bull Population was highly significant.

The price of canner and cutter cows, price of slaughter steers and price of feeder calves, enter these four models in a rather inconsistent manner as do hog prices. In the two Western models both interest rate and barley price were good predictors even though the sign was "incorrect" in the Bull SLAUGHTER model. Grain Stocks once again proved to be insignificant.

A time trend was noted in both Bull REPLACEMENT models; however, the sign was not consistent between them. A positive sign was expected; this occurred in the Western model but not the Eastern. The negative Eastern sign might result from the establishment of a large number of small Beef Herds, each with its own Herd size; this is a hypothesis only.

A serial correlation problem occurred with Eastern Bull REPLACEMENTS that could not be removed with either the use of the theoretically suggested variables or by the use of a time trend. The same situation applied to Western Bull SLAUGHTER. The "h" statistic failed in the case of Western Bull REPLACEMENTS: however, the low DW statistic value and high standard error on the lagged endogenous variable suggest that it also has significant serial correlation.

In both Bull SLAUGHTER models, the price of canner and cutter cows was consistently important as were the seasons summer, spring, and fall, and the price of hogs. Lagged REPLACEMENTS was consistently important in the Bull SLAUGHTER models as was lagged Bull Population and time. In both REPLACEMENT models, spring or summer proved important with fall also being important in the Western model.

Table 11. Parameter estimates for Bull SLAUGHTER and REPLACEMENT behavioral models

Variable	Expected coefficient sign	Estimated regression coefficient and standard error
Constant		$\begin{aligned} & 23229.2923 * * \\ & (11535.8110) \end{aligned}$
Slaughter_4	+	$\begin{aligned} & .1631 \\ & (.1142) \end{aligned}$
Population diary + beef cows-3	-	$\begin{aligned} & -.0052 \\ & (.0044) \end{aligned}$
Price $\mathrm{c}+\mathrm{C}^{\text {cows }}{ }_{-1}$	-	$\begin{aligned} & -673.4769 \star * \\ & (141.2890) \end{aligned}$
Price stock calves ${ }^{\text {-1 }}$	-	$\begin{aligned} & 132.4531 * * \\ & (57.9927) \end{aligned}$
Price hogs	-	$\begin{aligned} & 77.3524 \star * \\ & (30.2596) \end{aligned}$
Spring		$\begin{aligned} & 3181.1680^{\star \star} \\ & (478.0134) \end{aligned}$
Summer		$\begin{aligned} & \text { 6716.5654** } \\ & (907.6478) \end{aligned}$
Fall		$\begin{aligned} & 3519.1658 \star \star \\ & (591.4977) \end{aligned}$
R^{2}		. 8864
\bar{R}^{2}		. 8671
Standard error		908.6374
h		. 4945

Table 11--Continued
B. Replacement Bulls, East

Variable	Expected coefficient sign	Estimated regression coefficient and standard error
Constant		$\begin{aligned} & \text { 69370.8097** } \\ & (13785.8886) \end{aligned}$
Replacement_4	+	$\begin{aligned} & .5187 * * \\ & (.0948) \end{aligned}$
Bull population_1		$\begin{aligned} & -.4639 \star \star \\ & (.1003) \end{aligned}$
Price slaughter steers ${ }^{-1}$	+	$\begin{array}{r} 249.3419 * \\ (140.6795) \end{array}$
Price c+c cows -1	+	$\begin{aligned} & -813.9760 * * \\ & (233.7458) \end{aligned}$
Spring		$\begin{aligned} & \text { 4653.4734** } \\ & (1965.2978) \end{aligned}$
Summer		$\begin{aligned} & -3571.4346 \star * \\ & (1324.9432) \end{aligned}$
Fall		$\begin{gathered} 1807.8445 \\ (1740.4049) \end{gathered}$
Time		$\begin{gathered} -270.0263^{\star *} \\ (63.7154) \end{gathered}$
R^{2}		. 9913
\bar{R}^{2}		. 9898
Standard error		1345.0842
h		2.6093

Table 11--Continued

C. Bull SLAUGHTER, West

$\left.\begin{array}{l|c|c}\hline \text { Variable } & \begin{array}{c}\text { Expected } \\ \text { coefficient } \\ \text { sign }\end{array} & \begin{array}{c}\text { Estimated regression } \\ \text { coefficient and } \\ \text { standard error }\end{array} \\ \hline \text { Constant } & & \begin{array}{c}\text { 7248.6288** } \\ \text { (2098.4868) }\end{array} \\ \text { Slaughter_2 } & + & -.3554^{* *} \\ \text { (.1221) }\end{array}\right\}$

Table 11--Continued
Replacement Bulls, West

Variable	Expected coefficient sign	Estimated regression coefficient and standard error
Constant		$\begin{aligned} & \text { 70266.2945** } \\ & \text { (11677.6818) } \end{aligned}$
Replacement ${ }_{\text {-4 }}$	+	$(.5397 * *$
Bull population ${ }^{\text {a }}$		$\begin{aligned} & -.3475 \star * \\ & (.1029) \end{aligned}$
Price slaughter steers ${ }^{\text {-2 }}$	+	$\begin{aligned} & -527.0168 \star \star \\ & (150.5670) \end{aligned}$
Price hogs	+	$\begin{gathered} -102.4590 \\ (84.6617) \end{gathered}$
Interest	-	$\begin{gathered} -2029.0168 * * \\ (610.9371) \end{gathered}$
Price barley	-	$\begin{aligned} & -2922.2334 * \\ & (1641.2919) \end{aligned}$
Spring		$\begin{aligned} & \text { 9555.9719** } \\ & (1843.8523) \end{aligned}$
Sumner		$\begin{aligned} & -4062.9831 * * \\ & (1405.8923) \end{aligned}$
Fall		$\begin{aligned} & -6956.0921 * * \\ & (1410.5917) \end{aligned}$
Time		$\begin{aligned} & 365.0983 * * \\ & (80.5094) \end{aligned}$
R^{2}		. 9586
\bar{R}^{2}		. 9494
Standard error		2107.3617
DH		1.3924
h		test fails

Teble 12. Quarterly IMSPECTED plus UNINSPECTED COw SLAUGKTER and REPLACEMENT, 1959-1972, estimated by the behavioral model

Table 13. quarterly IMSPECTED plus UNINSPECTED Calf SLAUGHTER, 1959-1972, estimated by the behavioral medel

Year	Quarter	Male Calf SLAUGHTER		Femile Calf SLAUGMTER	
		East	West	East	Uest
1959	1	(head)	(head)	(head)	(head)
		$\begin{array}{r} 122466 \\ 220865 \end{array}$	$\begin{array}{r} 31115 \\ 36321 \\ \hline \end{array}$	$\begin{array}{r} 43002 \\ -6589 \end{array}$	$\begin{array}{r} 22071 \\ 2113 \\ \hline \end{array}$
1962		$\begin{array}{r} 111075 \\ 97053 \\ \hline \end{array}$	$\begin{array}{r} 39420 \\ 35873 \\ \hline \end{array}$	$\begin{array}{r} 43906 \\ 37569 \\ \hline \end{array}$	$\begin{aligned} & 26952 \\ & 363310 \end{aligned}$
	1	122334	30346	14926	24275
	3	$\begin{aligned} & 212327 \\ & 127205 \end{aligned}$	$\begin{array}{r} 35595 \\ 36371 \\ \hline \end{array}$	$\begin{aligned} & 83134 \\ & 48690 \end{aligned}$	$\begin{array}{r} 25296 \\ 34426 \end{array}$
	+	103767	36555	41572	44917
1961		$\begin{aligned} & 128309 \\ & 206405 \end{aligned}$	$\begin{array}{r} 29710 \\ 32865 \\ \hline \end{array}$	$\begin{aligned} & 50263 \\ & 81763 \end{aligned}$	$\begin{aligned} & 29409 \\ & 27776 \end{aligned}$
	3	$\begin{array}{r} 126090 \\ 1026.31 \\ \hline \end{array}$	$\begin{array}{r} 38298 \\ 35405 \end{array}$	$\begin{array}{r} 50740 \\ 43.362 \\ \hline \end{array}$	$\begin{array}{r} 35145 \\ 49175 \\ \hline \end{array}$
19.2	1	115880	26543	47779	30546
	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 219249 \\ & 127663 \end{aligned}$	$\begin{array}{r} 30560 \\ 32442 \end{array}$	$\begin{aligned} & 89308 \\ & 53172 \end{aligned}$	$\begin{array}{r} 29637 \\ 34050 \\ \hline \end{array}$
	4	113857	29813	47953	44726
1963	1	$\begin{aligned} & 124766 \\ & 221736 \\ & \hline \end{aligned}$	$\begin{array}{r} 22750 \\ 27211 \\ \hline \end{array}$	$\begin{aligned} & 50132 \\ & 89543 \end{aligned}$	$\begin{aligned} & 25588 \\ & 24125 \\ & \hline \end{aligned}$
	3	$\begin{array}{r} 122495 \\ 197231 \end{array}$	$\begin{array}{r} 28799 \\ 29872 \end{array}$	$\begin{aligned} & 53120 \\ & 47987 \end{aligned}$	$\begin{array}{r} 32581 \\ 43511 \\ \hline \end{array}$
2964	1	121739	24150	52003	24831
	2	$\begin{aligned} & 219228 \\ & 128973 \end{aligned}$	$\begin{aligned} & 27245 \\ & 29002 \end{aligned}$	$\begin{aligned} & 93652 \\ & 57577 \end{aligned}$	$\begin{aligned} & 27059 \\ & 36540 \end{aligned}$
	4	118203	33031	52275	49103
1965	1	$\begin{aligned} & 133416 \\ & 220199 \end{aligned}$	$\begin{array}{r} 26717 \\ 33282 \\ \hline \end{array}$	$\begin{aligned} & 57829 \\ & 97696 \\ & \hline \end{aligned}$	$\begin{aligned} & 34062 \\ & 38868 \\ & \hline \end{aligned}$
	3	$\begin{array}{r} 138292 \\ 12757 \\ \hline \end{array}$	$\begin{array}{r} 32961 \\ 36738 \\ \hline \end{array}$	$\begin{aligned} & 61615 \\ & 57544 \end{aligned}$	$\begin{aligned} & 60999 \\ & 55018 \\ & \hline \end{aligned}$
296.	1	149062	28670	64536	38708
	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 215515 \\ & 129187 \end{aligned}$	$\begin{aligned} & 26981 \\ & 311253 \end{aligned}$	$\begin{aligned} & 93338 \\ & 59217 \end{aligned}$	33682 3621
	4	115120	35355	52086	54280
1967	1	$\begin{aligned} & 129803 \\ & 19.9689 \\ & \hline \end{aligned}$	$\begin{array}{r} 23060 \\ 23501 \end{array}$	$\begin{array}{r} 58406 \\ -89029 \end{array}$	$\begin{array}{r} 33968 \\ 29497 \\ \hline \end{array}$
		$\begin{array}{r} 107468 \\ 198422 \end{array}$	$\begin{aligned} & 23501 \\ & 24287 \\ & 28789 \end{aligned}$	$\begin{aligned} & 89029 \\ & 47343 \\ & 438081 \end{aligned}$	$\begin{aligned} & 33183 \\ & 48392 \end{aligned}$
1963	1	$\begin{aligned} & 118774 \\ & 20860 \end{aligned}$	$\begin{aligned} & 17984 \\ & 21725 \end{aligned}$	$\begin{aligned} & 51740 \\ & -89316 \end{aligned}$	$\begin{aligned} & 28331 \\ & 28425 . \end{aligned}$
	3	$\begin{array}{r} 120738 \\ \text { Q9059 } \\ \hline \end{array}$			
			$\begin{aligned} & 22931 \\ & 2.3999 \end{aligned}$	$\begin{array}{r} 47147 \\ 43979 \\ \hline \end{array}$	$\begin{array}{r} 34531 \\ 45790 \\ \hline \end{array}$
1962	1	121674	16523	53496	25771
	2	$\begin{array}{r} 188878 \\ 92169 \\ \hline \end{array}$	$\begin{aligned} & 16796 \\ & 14439 \end{aligned}$	$\begin{array}{r} 83147 \\ 42334 \end{array}$	$\begin{array}{r} 23080 \\ 22233 \end{array}$
	4	85961	14822	39128	23190
1970	1	$\begin{array}{r} 116550 \\ 184193 \end{array}$	$\begin{aligned} & 11692 \\ & 10062 \end{aligned}$	$\begin{aligned} & 52663 \\ & 15120 \\ & \hline \end{aligned}$	$\begin{aligned} & 10907 \\ & 8765 \end{aligned}$
	3	$\begin{array}{r} 97833 \\ 9846 \end{array}$	$\begin{array}{r} 12951 \\ 13.828 \end{array}$	$\begin{array}{r} 40984 \\ 38441 \\ \hline \end{array}$	$\begin{aligned} & 13254 \\ & 2 \text { ROAB } \\ & \hline \end{aligned}$
1921	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 106724 \\ 158120 \\ 00141 \end{array}$		43398 69200 34182	$\begin{aligned} & 11016 \\ & 10740 \\ & 24186 \end{aligned}$
	4	64994	14289	30931	20009
1972	$\begin{aligned} & 1 \\ & -2 \\ & \hline 3 \end{aligned}$	$\begin{array}{r} 93952 \\ -14683 \\ 77286 \\ 24406 \end{array}$	$\begin{array}{r} 7686 \\ 6730 \\ 9682 \\ 12145 \end{array}$	$\begin{aligned} & 36325 \\ & 64534 \\ & 30504 \\ & 29768 \end{aligned}$	629192931180115922

Table 14. Quarterly IMSPECTED plus UNIMSPECTED Bull SLAUGKTER and REPLACEMENT, 1959-1972, estimatod

Yeer	grarter	Bull slaughter		Bull replacement	
		East	West	East	West
1959		(head)	(head)	(head)	(mead)
	8	$\begin{array}{r} 6382 \\ -10697 \\ \hline \end{array}$	$\begin{array}{r} 4978 \\ 6163 \\ \hline \end{array}$	$\begin{array}{r} 13587 \\ 32300 \\ \hline \end{array}$	$\begin{aligned} & 10226 \\ & 21691 \\ & \hline \end{aligned}$
	3	$\begin{aligned} & 15818 \\ & 12523 \end{aligned}$	$\begin{aligned} & 8678 \\ & 828 \\ & \hline \end{aligned}$	$\begin{array}{r} 2069 \\ 105 \% \\ \hline \end{array}$	$\begin{aligned} & 1131 \\ & 1202 \end{aligned}$
1969	1	8990	5656	15690	9681
	2	12150	7692	37638	21833
	3	15648	8493	1158	1762
	\bullet	12519	6747	767	2302
1961	1	$\begin{array}{r} 9779 \\ -2006 \end{array}$	$\begin{aligned} & 5964 \\ & 7218 \end{aligned}$	$\begin{array}{r} 15057 \\ 36842 \\ \hline \end{array}$	$\begin{array}{r} 9256 \\ 22487 \\ \hline \end{array}$
	3	16277	0902	030 -507	3705
1962	1	9147	4975	13463	11326
		11710	7365	35025	22632
	3	15665	9406	1009	2603
	4	11989	9598	1286	3344
1963	12	$\begin{array}{r} 8613 \\ -1522 \\ \hline \end{array}$	$\begin{aligned} & 5000 \\ & 6323 \end{aligned}$	$\begin{aligned} & 13757 \\ & 34480 \\ & \hline \end{aligned}$	$\begin{array}{r} 9164 \\ 22572 \end{array}$
	3	15879	6646	333 -203	$\begin{aligned} & 4194 \\ & 5874 \end{aligned}$
1964	1	1238	6025	12615	12761
	2		7464	35205	27291
	3	15685	9033	570	6194
	\bullet	12743	91.47	2242	5174
1965	8	$\begin{array}{r} 9737 \\ 17651 \end{array}$	6140	$\begin{aligned} & 13792 \\ & 33873 \end{aligned}$	$\begin{aligned} & 11682 \\ & 25818 \end{aligned}$
	3	$\begin{aligned} & 16567 \\ & 13305 \end{aligned}$	$\begin{aligned} & 10403 \\ & 11138 \end{aligned}$	$\begin{aligned} & 2300 \\ & 2095 \end{aligned}$	$\begin{aligned} & 4087 \\ & 2535 \end{aligned}$
126.6	1	20175	7754	14211	2164
	2	11276	1754	34038	21674
	3	15868	A194	1933	-202
	4	12771	9377	3066	1255
1967	$\begin{array}{r} 1 \\ 2 \end{array}$	$\begin{array}{r} 6010 \\ 9741 \end{array}$	$\begin{aligned} & 6464 \\ & 7204 . \end{aligned}$	$\begin{array}{r} 12856 \\ 32064 \\ \hline \end{array}$	$\begin{array}{r} 6762 \\ -22492 \\ \hline \end{array}$
	3	13656	8866 9257	1169	65
1968	1	${ }_{8} 8679$	4287	13665	7295
	2	11262	6158	32976	19832
	3	$\begin{aligned} & 15003 \\ & 11159 \end{aligned}$	$\begin{aligned} & 8542 \\ & 9264 \end{aligned}$	$\begin{aligned} & 1966 \\ & 2497 \end{aligned}$	1840 18.83
1962	1	1380	5231	12175	9266
	2	12323 14697	7022 0164	31596 2025	$\begin{aligned} & 22384 \\ & -2117 \quad \end{aligned}$
	4	10544	7382	1847	-3694
1978	2	$\begin{array}{r} 9561 \\ 1262 \end{array}$	$\begin{array}{r} 4540 \\ -6095 \end{array}$	$\begin{aligned} & 11957 \\ & 30205 \end{aligned}$	$\begin{array}{r} 9859 \\ 25586 \end{array}$
	3	$\begin{aligned} & 14649 \\ & 17698 \end{aligned}$	$\begin{aligned} & 7659 \\ & 6827 \\ & \hline \end{aligned}$	$\begin{aligned} & 3494 \\ & 46.49 \\ & \hline \end{aligned}$	$\begin{aligned} & 1585 \\ & 2915 \\ & \hline \end{aligned}$
1972	1	1675	-. 4519	12998	14203
	2	11639	6755	30262	28370
	1	13756	Q482	3298	4095
	4	10534	8526	3569	4706
1972	1 -2	$\begin{array}{r} 8877 \\ -11002 \end{array}$	$\begin{array}{r} 5660 \\ -8547 \end{array}$	$\begin{array}{r} 12193 \\ 29925 . \end{array}$	$\begin{aligned} & 16770 \\ & 22600 \\ & \hline \end{aligned}$
	3	13767	9729	726	3730
	1	114	912	982	1838

CHAPTER IV

EVALUATION OF THE STATISTICAL DATA BASE

Statistics concerning Cattle and Calves are collected, compiled, and published by several different agencies within Canada. ${ }^{1}$ Some relevant data are collected but only used internally by the collecting agency. Much data that would appear to be relevant to a wide range of problems is not collected by anyone. One question that must be asked by researchers, policy makers, and outlook economists is, do these published data represent a sufficiently accurate, comprehensive, and compatible base for the statistical analysis relevant to the execution of their respective tasks. The implication for statisticians is clear, as is the challenge.

These Cattle and Calves data differ among collecting agencies. One such difference concerns the time period of collection. While some series are published weekly, others are published monthly or semiannually. In addition, some data collection periods coincide with calendar years, others do not. SLAUGHTER and EXPORT-IMPORT data, for example, are aggregated on a calendar year basis while Livestock Population data has historically been published on a June 1 to December 1 basis.

[^50]These data differ in definition among agencies. For example, STATCAN's Agriculture Division defines a Heifer in terms of age (1-2 years of age), while the External Trade Division does not report by sex at all. The Production and Marketing Branch of Agriculture Canada, on the other hand, defines a Heifer in terms of certain recognizable physiological characteristics.

These data differ with respect to the level and basis of aggregation. As one example, STATCAN's Agriculture Division uses age to designate Calf Population with no differentiation between Male and Female. STATCAN's External Trade Division uses weight, but again no differentiation between Male and Female Calves. The Marketing and Trade Division, Agriculture Canada, uses weight and sex to identify Calf SLAUGHTER.

Four related aspects of the overall data problem might be identified. The first of these would be data compatibility--this aspect was discussed above. If all data were compatible with respect to time, definition, and basis of aggregation (disaggregation) it would be possible to add and subtract these various data series to generate some desired bit of information. If these data series are not compatible, then this sort of manipulation may result in such error as to make the end result not only useless, but dangerous.

The second aspect concerns data completeness or comprehensiveness; this aspect was also discussed above and is highly related to data compatibility. The current data base has some glaring omissions. Without commenting further, it is sufficient to say that missing data can
only be generated from the current data base with high potential error due to lack of data compatibility.

The third major aspect is data accuracy. Accuracy can be checked by comparing one data series with another. A second method involves periodic completion of a comprehensive and highly controlled survey to generate an "accurate" benchmark. In either case, consistency might be observed, or the two series might differ. If the latter case holds, one series is generally held to be correct and the other incorrect. In the same sense, if the two data series are consistent then they are both considered to be correct. Correct and incorrect are inappropriate words for describing these sorts of consequences. While consistency is necessary for accuracy, it is not sufficient; these data must be believed to be accurate and found to be useful in solving meaningful problems. These data are believed to be correct in a probablistic rather than an absolute sense.

The fourth and final aspect of the data problem concerns application to meaningful problems. If the data is accurate, comprehensive, and compatible, then it may be used for analysis and projection work, among other uses. If the data base were to meet the above three conditions, results of analysis and projections would be held in higher regard and found to be more useful.

In attempting to build a demographic model of the Cattle Herd, it is critical that both the builder and the user have some knowledge of the reliability of these basic data series. While it may not be possible to isolate exact errors, it is hoped that the sign and the
relative magnitude of biases may be indicated, trends noted, and the deviation in random errors isolated. Information concerning these biases, trends, and inconsistencies could be conveyed to the collecting agencies; this act would constitute an additional payoff to the investigation.

To this end, a project ${ }^{1}$ was initiated in the Research Division, Economics Branch, Agriculture Canada in mid-1973. This work was curtailed in part during early 1974, as the economist in charge changed positions. An internal report on this project was produced in mid-1974. The continuation of that project became part of this current study where its basic concepts are retained intact. The model RECON is an attempt to computerize its major features. ${ }^{2}$

The purpose of RECON is twofold. First, the model attempts to reconcile the various available data series, to note discrepancies, and to evaluate the data series for error, bias, trends, and randomness. ${ }^{3}$ The second purpose is to obtain one estimate of some of the parameters that will be used in MATRIX and CATSIM. It should be noted that RECON, MATRIX and CATSIM all model the same Cattle Population over the same time period using the same basic statistical data. The difference

[^51]among them basically involves level of aggregation, although methods of calculation vary also. All three models complement each other and should be generally consistent with each other. By utilizing all three models, it is planned that a dynamic picture of Cattle demographics will appear, together with plausible estimates of critical system parameters. RECON is an annual model utilizing annual data only. All equations are identities using the basic livestock identity (75) from Chapter III. It is reproduced here as follows.
\[

$$
\begin{align*}
\text { Population }_{t+1} & \equiv \text { Population }_{t}+\text { BIRTHS }_{t}+\text { TRANSFER IN }_{t}-\text { DEATHS }_{t} \tag{83}\\
& - \text { SLAUGHTER }_{t}-\text { EXPORTS }_{t}-\text { TRANSFER }^{\text {OUT }}
\end{align*}
$$
\]

This identity (in a modified form) is used for each and every row of the RECON output matrix which is displayed in Figure 18. This modification is shown in identities (84) and (85).
(84) TOTAL SOURCES \equiv Population $_{t}+$ BORN $_{t}+$ TRANSFER IN $_{t}+$ IMPORTS $_{t}$
(85) TOTAL DISPOSITIONS \equiv DIED $_{t}+$ SLAUGHTER $_{t}+$ EXPORTS $_{t}+$ TRANSFER OUT $_{t}$ + Population $_{t+1}$.

If identity (83) holds true, then TOTAL SOURCES \equiv TOTAL DISPOSITIONS; if not, then an "ERROR" of given magnitude and sign is produced. The "ERROR" will be discussed in more detail later in this chapter.

RECON's output matrix is produced for each year under consideration, i.e., 1958-1972 inclusive, for both East and West. WEST-EAST Cattle Movement provides one major link between the two Cattle producing regions. This dichotomy allows an evaluation of the completeness of WEST-EAST Cattle-Calf Movement data. In addition, some evidence may be found concerning the sex of Cattle and Calves shipped East.

There initially appears to be a duplication with respect to Calves; this is not the case however. Calves have been split into two groups; Calves Born This Year (XCAV stream), and Calves On Hand (YCAV stream). This split assists in tracing the flow as it ages. For example, Ending Calf Inventory must all be due to this year's BIRTHS, while all Calves in the YCAV stream must be disposed of or allocated to non-Calf categories by year end.

In the discussion that follows, the calculation of the elements of the RECON output matrix are considered. An important part of the discussion concerns the assumptions made and the initial values of the parameters that are used.

As was the case with MATRIX, a critical problem is the disaggregation of statistical data to fit the structure of the model. This disaggregation is discussed in the next sub-section.

Data Base Disaggregation

The discussion of the data base follows closely the same discussion with respect to program MATRIX presented in Chapter III. To avoid undue duplication, this discussion will be abbreviated.

EXPORT and IMPORT data. --Since RECON is an annual model, only annual data are used. The first export category is Cattle Under 200 Pounds. These are assumed to be solely Male Dairy Calves.

A second export category is Cattle 200-700 Pounds. This flow is divided between Male/Female and XCAV/YCAV streams. The first case is self explanatory; however, the second may need further elucidation. The XCAV stream refers to Calves born this year while the YCAV stream refers to Calves born last year. Calves exported in this category may be either this year's or last year's Calves. A further assumption is made that only Beef Calves are exported in this category. The following parameters are employed.

Proportion of EXPORTS 200-700 Pounds from XCAV stream V1 $=.90$

Proportion of Male Calves in EXPORTS 200-700 Pounds ${ }^{1}$ V2 = . 135

The export category Other Dairy EXPORTS is assumed to be solely Dairy Cows and Heifers over two years of age. As such, it is in a form for direct use in the model.

The import category Other IMPORTS is assumed to be soley Steers and Heifers for Immediate SLAUGHTER. This category is further assumed to contain only Beef Cattle. The Male/Female separation remains. It is disaggregated by parameter V12.

Proportion of Steers in Other IMPORTS $\mathrm{V} 12=.65$

[^52]The Purebred EXPORTS and IMPORTS remain to be disaggregated into Beef/Dairy, Male/Female components. The following parameter values are used.

Proportion of Females in Purebred EXPORTS ${ }^{1}$
East, V3 = . 90
West, V4 = . 90
Proportion of Females in Purebred IMPORTS ${ }^{2}$
East, V5 = . 80
West, V6 = . 80
Proportion of Dairy in Purebred EXPORTS
East, V7 = . 826
West, $\mathrm{V} 8=.826$
Proportion of Dairy in Purebred IMPORTS
East, V9 = . 20
West, $\mathrm{V} 10=.20$

The final export category is Cattle Over 700 Pounds. As previously discussed, a fairly stable element in this category is Cull Cows; the transient element is Steers and Heifers for further feeding and Immediate SLAUGHTER. This was programmed using the following parameters. The critical limit referred to is 8,800 head of Cull Cows, 2,400 East and 6,400 West. The following parameters are used to model this feature.

Proportion of Steers in the non-Cull Cow portion of EXPORTS,
Cattle Over 700 Pounds, $\mathrm{V} 14=.35$
Proportion of Cull Cows in EXPORT Cattle Over 700 Pounds
Under a critical limit, V15 $=.80$
Over a critical limit, East, V16 = . 10
West, V17 = . 05

[^53]${ }^{2}$ Ibid.

SLAUGHTER data. --Calf SLAUGHTER is assumed to be totally Dairy Calves. Cow SLAUGHTER must be divided between Dairy and Beef Cows, however; the following parameters are employed.

Proportion of Beef Cows in Cow Slaughter, East $\mathrm{V} 20=.10$

Proportion of Dairy Cows in Cow SLAUGHTER, West V21 = . 18

While the above applies to INSPECTED SLAUGHTER, a second and major category is UNINSPECTED SLAUGHTER. The following are used to disaggregate UNINSPECTED SLAUGHTER.

Proportion of Males in UNINSPECTED Calf SLAUGHTER ${ }^{1}$
East, V22 $=.65$
West, V23 $=.50$
Proportion of Steers in UNINSPECTED Cattle SLAUGHTER ${ }^{2}$
(non-Cow, non-Bull UNINSPECTED Cattle SLAUGHTER)
East, $\mathrm{V} 24=.615$
West, $\mathrm{V} 25=.30$
Proportion of Cows in UNINSPECTED Cattle SLAUGHTER
East, $\mathrm{V} 26=.28$
West, $\mathrm{V} 27=.25$
Proportion of Bulls in UNINSPECTED Cattle SLAUGHTER
East, $V 28=.06$
West, V29 = . 06

WEST-EAST Cattle-Calf Movement data. --The data available on
WEST-EAST Cattle-Calf Movement covers only Cattle and Calves moved by rail; however, this is believed to be the bulk of such shipments. The
${ }^{1}$ These parameters are discussed in detail later in this chapter. These values are very tentative and should be treated as such.
${ }^{2}$ Ibid.
data is divided into Cattle and Calves. Each in turn is recorded as to destination, SLAUGHTER, FEEDLOT, and STOCKYARD. All are assumed to be Beef Cattle. The disaggregation is in terms of sex; the following a priori parameter values are used initially.

Proportion of Males in WEST-EAST Calf Movements to FEEDLOTS and STOCKYARDS $\mathrm{V} 32=.80$

Proportion of Males in WEST-EAST Cattle and Calf Movement for SLAUGHTER Calves, V33 = . 95 Cattle, V35 = . 95

Proportion of Males in WEST-EAST Cattle Movement to FEEDLOTS and STOCKYARDS $V=.80$

DEATH Rates.--DEATH Rates are assumed to be similar for Dairy and Beef, Males and Females. Differentiation, however, is made between Calves in the XCAV and YCAV streams and Cattle over one year.

Calves YCAV stream, East, YDRME $=.03$
YDRFE $=.03$
West, YDRMW $=.03$
YDRFW $=.03$
Cattle over one year, East, DRE $=.015$ West, DRW = . 015

[^54]A further parameter is used to proportion Calf DEATHS between the XCAV and YCAV streams.

Proportion of first year Calf DEATHS occurring in the XCAV streams $\mathrm{V} 38=.60$

BIRTH Rates. --Two BIRTH Rates were used, one for Beef Cattle and the second for Dairy Cattle.

Beef Cow BIRTH Rate, East, BRBFE $=.85$
West, BRBFW $=.85$
Dairy Cow BIRTH Rate, East, BRDYE $=.75$
West, BRDYW = . 765

Description of the Model (RECON) ${ }^{1}$

RECON generates BIRTHS by applying a BIRTH Rate to the Cow Population plus that portion of the Heifer Population expected to freshen during the ensuing year. Dairy Cow Population is taken as an average of December 1 plus June 1 STATCAN Inventory. Beef Cow Population is taken as the December 1 STATCAN Inventory of Beef Cows. Separate BIRTH Rates are used for Beef and Dairy; in fact, separate Dairy BIRTH Rates are used for East and West. These rates are initially given by a priori knowledge of the sub-sector and then adjusted upward or downward as indicated by the consistency required in the model. ${ }^{2}$

[^55]Table 15．Report format for program RECOM

	Beginning Inventory	Sorn	Transfer in	Import	Total sources	Died	Slaughter	Export	Transfer out	Ending inventory	Total disposition	Error
OULLS	12009？		33695.	747.	156641.	2C32．	27825.	814.		126iu6．	156661.	
oajer cous	5！ア9の・		86551．	597.	596259.	7612．	91350.	11296.		48Eこうし．	596259．	
OAIQY MEIFE？S	1－？${ }^{\text {a }}$ ？		117129．		219128．	1582．	32884.		86661.	98おうこ。	219126.	
gEEF CEWS	2－233？：		422386.	2389.	2847775．	36345.	205259．	7161.		2599：06．	2847775．	
3F HFP RED：」EE			420：22．		428722.	6336.	－		422386.		428722.	
8F HFP FEEJING	565？		E42555．	5951．	1212367.	15587.	394271．	7842.		62，0J0．	1053196.	159711．
STEERS	535339．		1215676．	10956．	1561436．	11392.	934587 ．	4223.		520 Cuv	1651003．	－96367．
TOTAL GATILE	425519：。		2746333.	2C594．	7022927.	75778.	1685687.	31336.	559048．	4457000.	6953524．	6． 04.
YL ef calves		12：9869．			1269869.	21778.	－	564.	269976.	977551.	12J98690．	－53080．
fr ef Calves		12¢9869．			1269859．	21778.	－	3612．	51401.	1133077.	1259869．	－38945．
HL OY CALVES		194119．			194119.	3494.	36651.	59.		153915.	194119．	
FM OY Calves		154119.			194119．	34940	40431.	－		15：193．	194119.	－92025．
SUETJPaL		29：7975．			2857975．	54544．	77083.	4235.	261377.	2414736.	2837975.	6736．
ML eF Cuives	336190.				934199.	11216．		63.	922926.		934199.	
fM gF Calves	13810103.				1984199.	13616．		$4 C 1$.	1C7C787．		1084199．	
HL OY Calves	141594．				1－1534．	1699.	13436．	2.	126445.		141584.	
FM OY CALVES	1335：${ }^{\text {\％}}$				133509.	1602.	14779．	－	117128．		133509．	
Suetotal	2233431．				2293491.	27522.	28217.	466.	2237286.		2273491.	
TOTAL CALVES	2293491.	29：7975．			5161466.	78065.	165300．	4701.	2237286.	2424736.	5131466.	

Calf DEATHS are calculated for the XCAV stream by applying a DEATH Rate to Calf BIRTHS. Provision is made in the model to have different Male and Female DEATH Rates. In addition, a second parameter is provided to allocate DEATHS between the XCAV and YCAV streams. This parameter, V38, accounts for the proportion of time (Calves x days) between the two streams--it is set by informed judgment. YCAV stream DEATH Rates are set based on a study done by Agriculture Canada. Thus XCAV stream Rates are the Rates that will be varied, if Calf DEATH Rates are varied.

Calf SLAUGHTER in the XCAV stream is assumed to be totally Dairy Calves for veal; thus, Beef Calf SLAUGHTER is zero. Calf SLAUGHTER is made up of INSPECTED plus INSPECTED SLAUGHTER; the latter is divided between Male and Female by parameters V22 and V23.

Calf EXPORTS are considered next. It is assumed that all Cattle EXPORTS Less Than 200 Pounds are Male Dairy Calves. These are divided between the XCAV stream and the YCAV stream by the parameter VI . These EXPORTS are further split between Male and Female by parameter V2. Beef calving distribution and other a priori information give initial clues to likely values for these parameters.

The final columns considered in the XCAV stream are Ending Inventory and "ERROR." Ending Inventory is calculated by subtracting DEATHS, SLAUGHTER, and EXPORTS from BIRTHS. The "ERROR" is calculated by comparing this figure with the official December 1 Calf Population.

Calves on Hand (the YCAV stream).--Beginning Inventory for the YCAV stream in period t is the Ending Inventory of the XCAV stream in period $t-1$.

DEATHS are calculated by applying DEATH Rates to the Beginning Inventory. As previously mentioned, parameter (1-V38) is used to weight DEATHS in the YCAV stream.

The assumption is made that no Calves are slaughtered from the YCAV stream. This assumption is applied consistently to MATRIX and CATSIM as well.

It is assumed that no Dairy Calves are exported. The EXPORTS from the YCAV stream are based on published Cattle EXPORTS 200-700 Pounds using parameters (1-V1), and V2 as discussed under the XCAV stream.

Ending Inventory is zero. This occurs as all Calves on hand January 1st must pass one year of age on or before December 31st. TRANSFER OUT is calculated by subtracting TOTAL DISPOSITIONS from TOTAL SOURCES. No consistency check can be made on the YCAV stream as was done with the XCAV stream, that is, no "ERROR" term can be calculated.

Bulls.--Beginning Inventory of Bulls is that given by the December 1 official Bull Population. IMPORTS are taken from Purebred IMPORTS by using parameters V5 and V6 to separate Females from total. At this stage there is no reliable information available on the magnitude of these parameters. DEATHS are calculated by multiplying
a DEATH Rate by average December 1 and June 1 Bull Population. This same DEATH Rate applies to all Cattle over one year of age. Bull SLAUGHTER is taken directly from published INSPECTED Bull plus UNINSPECTED Cattle SLAUGHTER statistics. In the case of the latter, only a portion is used. The Bull portion is separated by using parameters V28 and V29. EXPORTS are calculated from Purebred EXPORTS using parameters V3 and V4 to separate Females from total.

Ending Inventory is taken from December 1 Bull Population. The only missing column is TRANSFER IN or Bull REPLACEMENTS. This is the value (number of head) that will equate TOTAL SOURCES with TOTAL DISPOSITIONS.

Dairy and Beef Cows.--Dairy and Beef Cow Beginning Inventory is taken from the December 1 official statistics published for year t-1. IMPORTS are calculated from published Purebred IMPORTS using parameters V5 and V6 to separate Cows from total. Parameters V9 and V10 are used to separate IMPORTS into Beef and Dairy. DEATHS are calculated by applying a DEATH Rate to Beginning Inventory. SLAUGHTER is considered by applying parameters V20 and V21 to separate published Cow SLAUGHTER into its Beef and Dairy components. The method used, which is consistent with MATRIX, is to calculate Dairy (Beef) Cow SLAUGHTER as a proportion of Inventory. Beef (Dairy) Cow SLAUGHTER is the difference between total Cow SLAUGHTER and calculated Dairy (Beef) Cow SLAUGHTER. Total Cow SLAUGHTER includes INSPECTED plus a portion of UNINSPECTED Cattle SLAUGHTER. This portion is separated by parameters V26 and V27.

EXPORTS are calculated by using parameters V3 and V4 to separate Purebred Cow EXPORTS from total published Purebred EXPORTS. In addition, Cows are exported in the category Cattle Over 700 Pounds. Parameters V15, V16, and V17 are used to indicate the Cow proportion in this category. In the case of Dairy Cows, there is still another category of EXPORTS, namely, Other Dairy EXPORTS. These data can be used directly.

Ending Inventory of the Dairy and Beef Cows is taken directly from published Cow Population for December 1.

As in the case of Bulls, the column still unaccounted for is TRANSFER IN or REPLACEMENTS. This figure is the number of Cattle that will balance TOTAL SOURCES with TOTAL DISPOSITIONS.

Dairy Heifers. --Beginning Inventory of Dairy Heifers is calculated from published Dairy Heifer Population, December 1, for year t-1. TRANSFER IN is set equal to TRANSFER OUT for Female Dairy Calves in the YCAV stream. Dairy Heifer DEATHS are calculated by applying a DEATH Rate to average December 1 and June 1 published Dairy Heifer Population. TRANSFER OUT is set equal to TRANSFER IN for Dairy Cows. Ending Inventory is calculated from published Dairy Heifer Population, December 1 in year t. In the case of Dairy Heifers, the missing item is SLAUGHTER. It is the number of head required to balance TOTAL SOURCES with TOTAL DISPOSITIONS.

Beef Heifers. --Beef Heifers are divided into two categories: those for REPLACEMENT and those for SLAUGHTER. For REPLACEMENT Heifers,

TRANSFER OUT is set equal to Beef Cow TRANSFER IN. TRANSFER IN is set at (1 + DEATH Rate) times TRANSFER OUT. DEATHS $=$ TRANSFER IN minus TRANSFER OUT.

Beginning Inventory for Beef Heifers Feeding is taken from published Beef Heifer Population, December 1 in year t-1. IMPORTS are taken from published Other Cattle IMPORTS by applying parameter V12 to separate Male from total. EXPORTS are taken from published EXPORTS Over 700 Pounds by applying parameter V14 to separate Male from the non-Cow portion of this EXPORT category.

SLAUGHTER is calculated from published INSPECTED and UNINSPECTED SLAUGHTER less calculated Dairy Heifer SLAUGHTER. In the case of UNIINSPECTED SLAUGHTER, parameters V24, V25, V26, V27, V28, and V29 are used to separate Heifers from total. TRANSFER IN is calculated by subtracting Replacement Heifers TRANSFER IN from YCAV stream Female Beef Calves TRANSFER OUT. DEATHS, and ENDING INVENTORY are calculated in the usual manner.

In this instance, all relevant columns have been calculated. A check on consistency is given by comparing TOTAL SOURCES with TOTAL DISPOSITIONS. The difference is given under "ERROR."

Steers.--Not enough information is currently available to separate Dairy from Beef Steers; consequently, they are considered together under Steers.

Beginning and Ending Inventory, as well as DEATHS, are calculated in the usual manner. IMPORTS are calculated from published

Other Cattle IMPORTS by applying parameter V12 to separate the Male portion. EXPORTS are calculated from published EXPORTS Over 700 Pounds, again applying a parameter V14 to the non-Cow portion. TRANSFER IN is calculated by summing TRANSFER OUT from Dairy and Beef Male Calves in the YCAV stream minus TRANSFER IN for Bulls. SLAUGHTER is calculated by summing published INSPECTED and UNINSPECTED SLAUGHTER. In the case of the latter, the Male portion is calculated by using parameter V24 and V25.

As was the case with Beef Heifers, all columns have been calculated. Thus, comparison of TOTAL SOURCES with TOTAL DISPOSITIONS provides a consistency check. The difference is given under "ERROR."

Analysis and Evaluation

The output of RECON is an annual matrix (for each of 14 years, 1959-1972 inclusive) presenting beginning and ending stock values for 15 livestock cohorts together with the interconnecting flow values for seven major flow variables. The purpose of the model is to assess these stock and flow values which are the published statistical data series. The major method of analysis is a test of consistency; to execute the analysis, the concept of objectivity is employed. The results or output of RECON also substantiates, at an aggregate level, the results or output of MATRIX and CATSIM. In turn, the knowledge and information obtained from utilizing RECON is used to construct or revise these latter two models.

The analysis of the data base involves applying the four tests of objectivity. Internal consistency is obtained through model design; this has been discussed in the previous sections. External consistency is checked through comparison of RECON output with published data series. Another test of external consistency involves comparison of RECON output with commonly held beliefs about the Cattle-Calves sub-sector. The tests of interpersonal transmissibility and usefulness cannot be fully applied until RECON is operated interactively with individuals knowledgeable of the Cattle-Calves sub-sector. This will occur subsequent to this study.

To assist with the analysis, the concept of the data as a hypothesis was compromised. One data series, INSPECTED SLAUGHTER, is commonly believed to be the most reliable of all data series used in these models. Two identities, Steers and Beef Heifer Feeding, include INSPECTED SLAUGHTER as the major component on the right hand or DISPOSITION ${ }^{1}$ side. An "ERROR" element is calculated for each of these two identities as well as a third "ERROR" element that is the algebraic sum of the first two. This "ERROR" is calculated by subtracting DISPOSITIONS from SOURCES. A negative "ERROR" indicates that SOURCES is too low relative to DISPOSITIONS (believed to be reasonably correct) and vice versa.

[^56]A very simple objective function is used--it is simply the algebraic sum of the "ERROR" element for any one identity for the 14 observations (1959-1972 inclusive). Variation in the annual "ERROR" values constitute a significant part of the analysis.

Calf Births

RECON calculates Calf BIRTHS in the following manner. A BIRTH Rate is applied to Cow Inventory (Cows and Heifers over two years) plus that portion of Heifers (Females 1-2 years) expected to freshen in the ensuing year.

For Dairy Cows, the Cow Inventory estimate is the average of June 1 and December 1 STATCAN estimates. No Heifers (Females l-2 years) are added to this base as a priori information indicated that Dairy Heifers freshen with a mean age of two years nine months.

The Inventory of Beef Cows is taken as the December 1 STATCAN estimate. To this figure is added a portion of Beef Heifers (Females 1-2 years) as given by STATCAN's December 1 estimates. An examination of observations for 1958-1972 inclusive, indicates that an approximate average of 30 percent of Eastern Heifers and 75 percent of Western Heifers enter the Cow Herd annually.

The initial BIRTH Rates were selected and restricted by a priori knowledge or beliefs about the sub-sector. First, it was believed that the Beef Cow BIRTH Rate was higher than the Dairy Cow BIRTH Rate. The former would be expected in the .80 to .90 range, while the latter would be expected in the .70 to .80 range. Second, it was believed
that the Western Dairy Cow Herd was managed more like the Beef Herd than was the case in the East, at least at the margin. Third, it was believed that WEST-EAST Cattle-Calf Movement statistics underestimated the actual eastward movement. Fourth, there was no reason to believe that BIRTH Rates differed markedly between East and West for Beef Cattle, or for Dairy Cattle for that matter. Finally, the Dairy Cattle BIRTH Rate must be high enough to supply the demand for Replacement Dairy Heifers.

Since the West has a very high proportion of Beef Cattle, while the opposite holds true for the East, a "reasonable" Beef BIRTH Rate was selected for the East and the Dairy BIRTH Rate was adjusted until a "small" negative Steer + Beef Heifer Feeding "ERROR" was obtained.

The same procedure was used for the West except, in this instance, a "reasonable" Dairy BIRTH Rate was used. The Beef BIRTH Rate was incremented until a "small" positive Steer + Beef Heifer Feeding "ERROR" was obtained.

Adjustments in all Rates were made until Eastern and Western Beef BIRTH Rates were equal and the Western Dairy BIRTH Rate equalled the Eastern Dairy BIRTH Rate $+.015^{1}$ and all rates fell within a priori ranges. In addition, BIRTH Rate adjustments were made until the Eastern and Western "ERRORS" were equal in magnitude but opposite in sign. As was expected, the Western "ERROR" was positive while the Eastern was

[^57]negative indicating that the statistical WEST-EAST Movement underestimated the actual flow.

The final BIRTH Rates selected were:

$$
\begin{array}{rrr}
\text { East, Beef }=.85 & \text { West, Beef }=.85 \\
\text { Dairy }=.75 & \text { Dairy }=.765
\end{array}
$$

BIRTHS generated by the above process were compared with STATCAN's semi-annual BIRTHS as a test of consistency and a check on bias and/or trend. The results appear in Table 16.

From Table 16, it is shown that in the West, STATCAN overestimates Calf BIRTHS by an average of 46,241 head per year or by 1.5 percent of BIRTHS. This could be explained entirely in terms of Calf DEATH Rate. ${ }^{1}$ The sign of these "differences" is as expected. A priori, it would be expected that RECON would underestimate BIRTHS in periods of expansion (giving a negative sign) and overestimate BIRTHS in periods of contraction (giving a positive sign) due to the cattle cycle, which is not modeled by RECON.

STATCAN overestimates Eastern Calf BIRTHS consistently by an average of 260,000 head. This difference varies from $8-17$ percent over the RECON estimate. Part of this difference can be explained in terms of an actual DEATH Rate which might be higher than that used in RECON. I concur with Lee ${ }^{2}$ that it is unrealistic to expect DEATH Rate

[^58]Table 16. A comparison of RECON generated Calf BIRTHS with Statistics Canada's semi-annual BIRTH estimates, 1958-1972

Year	West		East	
	Difference $^{\mathrm{a}}$	$\frac{\text { Difference }}{\text { RECON Births }}$	Difference $^{\mathrm{a}}$	$\frac{\text { Difference }}{\text { RECON Births }}$
1958	(head)	(ratio)	(head)	(ratio)
	$-136,733$	-.0618	$-163,245$	-.0800
	$-65,514$	-.0294	$-161,279$	-.0806
1961	$-75,687$	-.0330	$-175,675$	-.0876
1962	$-128,612$	-.0539	$-202,407$	-.1001
1963	$-54,818$	-.0223	$-181,941$	-.0887
1964	$-28,935$	-.0114	$-219,484$	-.1074
1965	51,052	.0071	$-271,299$	-.1328
1966	$-16,975$.0177	$-324,841$	-.1584
1967	3,695	.0058	$-302,268$	-.1508
1968	19,592	.0071	$-313,196$	-.1593
1969	25,330	.0093	$-343,923$	-.1746
1970	$-92,025$	-.0328	$-351,317$	-.1793
1971	$-191,198$	-.0646	$-349,554$	-.1784
1972	$-21,929$	-.0069	$-298,657$	-.1544
Ave	$-46,241$		$-241,711$	-.1256

${ }^{\text {a }}$ Formula: DIFFERENCE $=$ RECON BIRTHS - STATCAN BIRTHS.
to account for the total discrepancy in this instance, even though Dairy Calf DEATH Rate may be very high. It should also be noted that the discrepancy has tended to widen over the 1958-1972 period.

A second consistency check was made against data from the Dairy Correspondent Survey. The annual sum of the Cows and Heifers to FRESHEN This Month ${ }^{1}$ item from that survey was subtracted from the RECON estimate of Dairy BIRTHS. The results are shown in Table 17.

The Dairy Correspondent Survey overestimates BIRTHS by 9 to 27 percent in the West, and by 15 to 29 percent in the East. There is some indication that the difference is narrowing through the survey period.

Ending Calf Inventory

Program RECON was designed to divide Calves into two categories: those in inventory at the beginning of the year, and those during the year. Only those born during the year would be on ending inventory at year end.

Ending Inventory is calculated as follows:

Ending Inventory ㅋ BIRTHS - DEATHS + TRANSFER IN - TRANSFER OUT

- SLAUGHTER + IMPORTS - EXPORTS.

DEATHS are calculated by applying a DEATH Rate while SLAUGHTER (INSPECTED + UNINSPECTED) is taken as given by STATCAN. IMPORTS

[^59]Table 17. A comparison of RECON generated Dairy Calf BIRTHS with Statistics Canada's Dairy Correspondent Survey, "Estimates of Cow and Heifers to FRESHEN This Month," 1958-1972

Year	West		East	
	Difference ${ }^{\text {a }}$	$\frac{\text { Difference }}{\text { RECON BIRTHS }}$	Difference ${ }^{\text {a }}$	$\frac{\text { Difference }}{\text { RECON BIRTHS }}$
	(head)	(ratio)	(head)	(ratio)
1958	-141,671	-. 2253	-425,308	-. 2573
1959	-150,970	-. 2460	-411,223	-. 2548
1960	-164,713	-. 2690	-412,639	-. 2576
1961	-162,587	-. 2711	-479,403	-. 2979
1962	-107,516	-. 1767	-360,828	-. 2232
1963	-115,310	-. 2000	-315,394	-. 1993
1964	-93,720	-. 1679	-317,449	-. 2025
1965	-89,605	-. 1689	-439,167	-. 2809
1966	-80,331	-. 1646	-336,438	-. 2193
1967	-75,111	-. 1677	-264,550	-. 1765
1968	-39,155	-. 0940	-271,866	-. 1855
1969	-69,670	-. 1769	-255,204	-. 1764
1970	-53,080	-. 1367	-217,147	-. 1534
1971	-80,624	-. 2165	-267,045	-. 1991
1972	-60,051	-. 1730	-257,174	-. 1983
Ave.	-98,941		-335,389	

${ }^{\text {a Formula: }}$ DIFFERENCE $=$ RECON Dairy BIRTHS - DCS Dairy FRESHENINGS.
are zero while EXPORTS are taken as published by STATCAN. These data series have all been discussed previously.

The remaining elements are TRANSFER IN and TRANSFER OUT. These elements are entirely made up of Calves shipped from West to East. These shipments are recorded in the data series WEST-EAST Calf Movement for those Calves shipped by rail. As previously mentioned, additional Calves are believed to be shipped by other means.

Once again, the "ERROR" in Steer + Beef Heifer Feeding was used to augment rail shipments. A factor of 1.07 (parameter V40 in RECON) is used to scale up rail shipments. This factor has the effect of reducing the above "ERROR" to zero for both East and West, since BIRTH Rates were calculated in such a manner as to make this happen (i.e., equal magnitude but opposite sign).

With TRANSFER IN and TRANSFER OUT adjusted by a factor of 1.07 , a comparison was made between RECON's Ending Calf Inventory and STATCAN's December 1 Calf Population. These results are shown in Table 18.

An average overestimation of 27,362 head occurred in the Western STATCAN Calf Population. This error is fairly consistent with the average overestimation of BIRTHS by 46,241 head. The sign (or direction) of the year by year discrepancy is consistent between BIRTHS and Ending Inventory for all years except 1964, 1965, 1970, 1971, and 1972. As previously mentioned with Calf BIRTHS, these discrepancies are largely explained by the cattle cycle. In addition, the average discrepancy is rather small and can be accounted for by a slightly higher DEATH Rate.

Table 18. A comparison of RECON generated Ending Calf Inventory with Statistics Canada's December 1 Calf POPULATION estimates 1958-1972

Year	West		East	
	Difference ${ }^{\text {a }}$	$\frac{\text { Difference }}{\text { RECON Inventory }}$	Difference ${ }^{\text {a }}$	$\frac{\text { Difference }}{\text { RECON Inventory }}$
	(head)	(ratio)	(head)	(ratio)
1958	-75,301	-. 0340	209,307	. 1549
1959	-28,382	-. 0163	205,789	. 1470
1960	-14,975	-. 0082	183,436	. 1289
1961	-98,886	-. 0584	139,835	. 0937
1962	-84,989	-. 0476	67,324	. 0463
1963	-87,357	-. 0429	146,292	. 0994
1964	-148,205	-. 0685	166,459	. 1111
1965	-118,627	-. 0564	135,705	. 0978
1966	-3,812	-. 0018	252,681	. 1685
1967	55,997	. 0255	253,658	. 1662
1968	28,122	. 0131	267,021	. 1752
1969	21,491	. 0094	252,728	. 1660
1970	8,736	. 0036	326,542	. 2073
1971	53,847	. 0209	389,228	. 2436
1972	81,908	. 0300	353,237	. 2195
Ave.	-27,362		223,283	

${ }^{\text {a }}$ Formula: DIFFERENCE $=$ RECON Inventory - STATCAN Population.

For the East, the STATCAN data series seems highly inconsistent with RECON. In addition, STATCAN's December 1 Calf Population is highly inconsistent with STATCAN BIRTHS. While it was previously noted that STATCAN BIRTHS overestimate RECON BIRTHS by 8 to 17 percent, STATCAN December 1 Calf Population underestimates RECON by 5 to 24 percent. The trend in these two data series is to a widening discrepancy.

REPLACEMENT Cattle

In the previous sub-section it was stated that Calves were considered under two categories, the second of these were Calves on Hand at the beginning of the year. By the end of the year, all such Calves, of definitional necessity, must have transferred to non-Calf categories. The following itemizes the possible transfers.

$\left.\begin{array}{l}\text { Dairy Bull Calves } \\ \text { Beef Bull Calves }\end{array}\right\}$	to	Bull REPLACEMENTS or Steers
Dairy Heifer Calves to	Dairy Cow REPLACEMENTS	
Beef Heifer Calves to	Beef Cow REPLACEMENTS or Feeder Heifers	

The calculation of REPLACEMENTS (TRANSFERRED IN) is made through the following identity for Dairy Cows, Beef Cows, and Bulls.

REPLACEMENTS $=$ Ending Inventory - Beginning Inventory

+ SLAUGHTER + EXPORTS + DEATHS - IMPORTS + TRANSFER OUT

Since EXPORTS and IMPORTS are minor, errors will be of little significance. TRANSFER OUT is nil, while Beginning and Ending Inventory
is given by the STATCAN December 1 estimates. The major sources of error occurs in dividing Cow SLAUGHTER between Beef and Dairy. Because the method used does not adequately account for the cattle cycle, RECON estimates are inferior to those made by MATRIX in

Chapter III. Table 19 compares REPLACEMENTS with INVENTORY.
The REPLACEMENT Rates for both Beef and Dairy Cows are inferior to the same ratios that may be calculated from adjusted MATRIX output. This is the case as MATRIX output is adjusted for the cattle cycle, while RECON output is not so adjusted. Nevertheless, the Western Beef Rates do trace out a pattern that is consistent with that cycle. These rates should be tempered by the fact that some Herds are expanding while others are contracting. In general, the Beef Herd is expanding while the Dairy is contracting. ${ }^{1}$

The Bull REPLACEMENT Rate differs between the West and the East, with the Eastern Rate being almost twice the Western Rate. No explanation readily comes to mind.

The Sex Ratio of EXPORTS and WEST-EAST Cattle-Calf Movement

To this point in the analysis, the "objective" function has been used to minimize the "ERROR" in Steers + Beef Heifers Feeding. Since these two "ERRORS" were summed, the analysis abstracted from the sex ratio.

[^60]Table 19. A comparison of RECON estimated REPLACEMENTS with Inventory expressed in terms of a REPLACEMENT Rate, WEST and EAST, 1959-1972
A. WEST

Year	$\frac{\text { Dairy REPLACEMENTS }}{}{ }^{\text {a }}$	$\frac{\text { Beef REPLACEMENTS }}{}{ }^{\text {a }}$	Bull REPLACEMENTS ${ }^{\text {a }}$ Average June 1 and Dec. 1 Inventory
	(ratio)	(ratio)	(ratio)
1959	. 1896	. 1660	. 3479
1960	. 2052	. 1724	. 3321
1961	. 2068	. 1749	. 3139
1962	. 1396	. 1993	. 3337
1963	. 1712	. 1975	. 3530
1964	. 1544	. 2205	. 3719
1965	. 1347	. 2060	. 3311
1966	. 1134	. 1735	. 2814
1967	. 1211	. 1416	. 2523
1968	. 1440	. 1504	. 2308
1969	. 1879	. 1728	. 2860
1970	. 1703	. 1943	. 2539
1971	. 1258	. 1960	. 3362
1972	. 1793	. 1884	. 2936

${ }^{a_{\text {Formula }}: ~ R A T I O}=\frac{\text { REPLACEMENTS (Heifers or Bulls) }}{\text { Inventory (Cows or Bulls) }}$.

Table 19--Continued

B. EAST

Year	$\frac{\text { Dairy REPLACEMENTS }}{}{ }^{\text {Dec. } 1 \text { Inventory }}$	$\frac{\text { Beef REPLACEMENTS }}{}{ }^{\text {a }}$	Bull REPLACEMENTS ${ }^{\text {a }}$ Average June 1 and Dec. 1 Inventory
	(ratio)	(ratio)	(ratio)
1959	. 1598	. 1664	. 5150
1960	. 1927	. 1507	. 4918
1961	. 1949	. 1774	. 5484
1962	. 1823	. 1800	. 4804
1963	. 1880	. 1580	. 5233
1964	. 2175	. 1456	. 5350
1965	. 2617	. 0948	. 5934
1966	. 2133	. 1019	. 5259
1967	. 1758	. 1915	. 5554
1968	. 1986	. 1372	. 5819
1969	. 2083	. 2020	. 5879
1970	. 1993	. 2248	. 6217
1971	. 1988	. 1543	. 6242
1972	. 2458	. 1706	. 6186

${ }^{\text {a }}$ Formula: RATIO $=\frac{\text { REPLACEMENTS (Heifers or Bulls) }}{\text { Inventory (Cows or Bulls) }}$.

A priori information concerning the sex ratio of WEST-EAST Cattle-Calf Movement for SLAUGHTER were 90-100 percent Male, while the Cattle and Calves for FEEDLOT and STOCKYARD were 80 percent Male. A priori information about EXPORTS of Feeder Cattle to the United States indicated a sex ratio of 35-42 percent Male.

The procedure used to confirm or reject these ranges involved adjusting the sex ratio of WEST-EAST Movements until the Eastern "ERRORS" summed algebraically to zero. The sex ratios that provide this balance are 95 percent Male in SLAUGHTER and 80 percent Male in FEEDLOT and STOCKYARD Movements. The resultant "ERRORS" are given in Table 20 A.

An attempt was then made to bring the Western "ERRORS" into balance by adjusting the sex ratio of EXPORTS, Cattle 200-700 Pounds. This was unsuccessful in that there were still excess Western Heifers on the average, when 100 percent of the above EXPORTS were considered as Heifers. ${ }^{1}$ These "ERRORS" are listed in Table 20B. ${ }^{2}$

For the East, the average "ERRORS" are close to zero for both Steer and Beef Heifer, with the sign and magnitude of the "ERRORS" producing no distinct trend.

[^61]Table 20. A listing of Eastern and Western Steer and Beef Heifer Feeding "ERRORS" from given parameter settings, ${ }^{\text {a }}$ 1959-1972, program RECON

A.				
Year	WEST		EAST	
	Steers	Heifers	Steers	Heifers
1959	(head)	(head)	(head)	(head)
	79,991	$-87,038$	38,352	75,044
	6,151	$-41,786$	50,287	33,649
1962	46,475	$-36,991$	1,684	3,433
1963	48,108	$-92,521$	$-13,408$	30,165
1964	32,503	$-122,023$	$-60,898$	26,773
1965	$-43,981$	$-32,813$	$-37,276$	$-32,251$
1966	11,314	$-24,258$	$-60,896$	$-134,891$
1967	$-55,931$	$-17,687$	$-95,157$	$-51,857$
1968	$-30,161$	135,979	72,083	23,527
1969	$-2,636$	21,436	75,289	$-4,323$
1970	$-34,366$	13,936	38,231	$-23,835$
1971	$-61,437$	130,840	$-51,103$	385
1972	$-1,403$	89,496	10,198	58,546
	$-49,691$	129,013	34,879	4,100
Ave.		$-3,933$	4,685	

${ }^{\text {a }}$ WEST-EAST Cattle and Calf Movement set at 95 percent Males, FEEDLOT, and STOCKYARD Cattle and Calf Movement set at 80 percent Males. EXPORTS, Cattle 200-700 Pounds set at 35 percent Males with UNINSPECTED Male SLAUGHTER at 0 percent (100 percent Female).

Table 20--Continued

Year	WEST		EAST	
	Steers	Heifers	Steers	Heifers
	(head)	(head)	(head)	(head)
1959	127,100	-134,147	34,729	78,667
1960	-10,197	-25,438	46,766	37,169
1961	16,641	7,157	-3,159	8,276
1962	82,332	-126,746	-15,927	32,684
1963	54,938	-144,458	-69,376	35,251
1964	-94,105	17,312	-39,501	-30,026
1965	-54,287	41,343	-53,319	-142,468
1966	-42,199	-31,410	-91,846	-55,168
1967	-40,108	145,925	83,522	12,089
1968	-67,061	85,861	86,026	-15,060
1969	-105,366	84,936	48,156	-33,759
1970	-157,119	226,523	-51,736	1,019
1971	-92,613	180,706	8,011	60,732
1972	-145,882	225,204	29,708	9,272
Ave.	-37,709	38,461	861	-94

${ }^{\text {a WEST-EAST SLAUGHTER Cattle and Calf Movement set at } 100 \text { percent }}$ Males, FEEDLOT and STOCKYARD Movement 85.5 percent Males. EXPORTS, Cattle 200-700 Pounds set at 0 percent Males (i.e., 100 percent Females). UNINSPECTED Male SLAUGHTER at INSPECTED level.

The Western data presents an anomaly. The a priori assumptions used do not work; on the average there are too many Beef Heifers and too few Steers--by about 38,000 head annually. In addition, a distinct time trend is evident, that is, from 1960 through 1972 the Heifer surplus increased. More Heifers could not have been shipped to the United States because these shipments were set at 100 percent Heifers in the model. One logical conclusion is that UNINSPECTED SLAUGHTER is made up of more Beef Heifers and less Steers. ${ }^{1}$

The procedure used to explore this latter alternative was to initially accept a priori assumptions about sex ratios. Thus, for WEST-EAST Movements, SLAUGHTER was set at 95 percent Male and FEEDLOTSTOCKYARD Movements at 80 percent. The sex ratio of EXPORTS Cattle 200-700 Pounds was set at 35 percent Male. The Eastern Female UNINSPECTED SLAUGHTER ${ }^{2}$ ratio was incremented until the Eastern "ERROR" came into balance. A separate Western Female UNINSPECTED SLAUGHTER ratio was then incremented until the Western "ERROR" also came into balance. ${ }^{3}$ The results of this analysis are displayed in Table 20A. These results indicate that even at 100 percent Female, the "ERROR" (Western) does not come into balance, although it is close.

[^62]The logical conclusion is that the a priori assumptions do not hold. The Steer content in EXPORTS Cattle 200-700 Pounds must be between 0 and 35 percent concurrently with the Heifer content in UNINSPECTED SLAUGHTER being between 30 and 100 percent. An infinite number of linear combinations would work. One such linear combination is 20.5 percent steers in EXPORTS, Cattle $200-700$ Pounds and 70 percent Heifers in UNINSPECTED SLAUGHTER. A distinct trend in the "ERROR" still remains and must be resolved.

An assumption was made that the sex ratio in UNINSPECTED SLAUGHTER ${ }^{1}$ is constant over the 1958-1972 period. Consequently, the sex ratio of EXPORTS, Cattle 200-700 Pounds must change over this period. A linear time trend was fitted with the sex ratio being about 50 percent Heifers in 1958 rising to 100 percent in 1972. This tact appeared to be successful for the years 1958-1966; however, the flow of EXPORTS dropped off from 1967-1972, severely reducing the impact of this change. Consequently, the discrepancy remained for those latter years. The results of this run are not listed.

The only possible conclusion, given the above assumptions, is that the sex ratio of both EXPORTS, Cattle 200-700 Pounds and UNINSPECTED SLAUGHTER changed over this period with both exhibiting a high Heifer proportion in the period 1967-1972.

[^63]
Yearling Cattle

The ratio of TRANSFER IN/Ending Inventory gives some index of the average length of stay in the Yearling categories. Theoretically, Replacement Heifers (1-2 years) should stay exactly one year in this category. Thus, the above ratio for Replacement Dairy Heifers should be one.

This same ratio for Beef Heifers (the sum of Replacements plus Feeders) and Beef Steers would be less than one, if the average length of stay is less than one year and vice versa. Another alternative involves believing in the reliability of flows (i.e., TRANSFER IN, SLAUGHTER, etc.) and using an a priori notion of average age of Feeder Cattle. Holding these beliefs then, the reliability of stocks (Beginning and Ending Inventory) can be tested for consistency. Since the author does not have any strongly held beliefs concerning the latter alternative, the former will be used. The results of this analysis appear in Table 21.

The Western Dairy Heifer ratio is about as expected for 1959-1965 but then becomes much "too high" and subsequently "too low." The explanation does not likely involve age of Heifer but rather classification of both Heifers and the Female offspring of Dairy Cows, some of which may be more Dual Purpose or crossbred Beef than Dairy. The ratio is substantially above one during the Herd contraction period, 1965-1969, and substantially below one during the subsequent expansion, 1970-1972.

Table 21. A comparison of RECON Estimated TRANSFER IN with Ending Inventory for all Yearling Cattle categories, 1959-1972, program RECON
A. WEST

Year	Dairy Heifers ${ }^{\text {a }}$	Beef Heifers ${ }^{\text {a }}$	Steers ${ }^{\text {a }}$
	(ratio)	(ratio)	(ratio)
1959	. 9604	. 9697	. 4956
1960	1.0284	. 7146	. 5589
1961	1.0461	. 6652	. 5048
1962	1.0233	. 8816	. 5918
1963	. 9349	. 9413	. 6016
1964	. 8535	. 7180	. 6016
1965	1.0697	. 6137	. 6137
1966	1.3340	. 6666	. 5826
1967	1.1574	. 5791	. 5862
1968	1.5539	. 5576	. 5618
1969	1.3095	. 5644	. 5631
1970	. 8279	. 5723	. 5264
1971	. 6613	. 6193	. 5360
1972	. 6870	. 6057	. 5418

$\mathrm{a}_{\text {Formula: }}$ RATIO $=\frac{\text { Ending Inventory }}{\text { TRANSFER IN }}$.

Table 21--Continued
B. EAST

Year	Dairy Heifers a	Beef Heifers a	Steers a
1959	(ratio)	(ratio)	(ratio)
1960	.9195	1.0809	.8581
1961	.9144	1.0405	.7892
1962	.9423	1.0459	.8642
1963	.9073	1.0692	.9305
1964	.9337	1.0103	1.0227
1965	.9420	.9677	.8925
1966	.9471	.8442	.8274
1967	.9517	.9310	.9309
1968	.9173	.9971	.7881
1969	.9506	1.0278	.7749
1970	.9639	.9348	.7771
1971	.8597	.9853	.8592
1972		1.1522	.8629

${ }^{\text {a }}$ Formula: RATIO $=\frac{\text { Ending Inventory }}{\text { TRANSFER IN }}$.

The Dairy Heifer ratio for the East is very stable except for 1971-1972. If Inventory and classification are correct, then a ratio of slightly less than one might be expected to account for DEATHS and culling of Heifers.

The Beef Heifer and the Beef Steer ratios for Western Canada will be biased by the sex ratio errors noted in the previous sub-section and listed in Table 20. If this bias were removed the effect would be to make these ratios even more consistent through time. Taking a typical Steer value as .5 , this would imply that the average Steer is 1.5 years or 18 months old at slaughter. A typical Heifer value is . 7 , this value is made up of Replacement Heifers and Feeder Heifers in about equal proportions. This would imply that the average Slaughter Heifer is slaughtered at about 1.4 years of age or 16-17 months.

The Steer and Beef Heifer ratios for Eastern Canada are substantially higher than for Western Canada. A typical Heifer value is 1.0 while a typical Steer value is .85 . If TRANSFER IN is accepted as correct, and it seems to be consistent with SLAUGHTER, then either Ending Inventory is high or Eastern Cattle are slaughtered at an older age than Western Cattle.

Dairy Heifer SLAUGHTER
An initial assumption was made that all Calf SLAUGHTER was of Dairy breeding. At another point in the analysis of RECON, it was stated that Dairy Cow BIRTH Rate must be adequate to generate Replacement Dairy Heifers.

Since the residual element in the Dairy Heifer identity is Dairy Heifer SLAUGHTER, this element merits examination in light of the above assumptions.

It is generally believed that few Dairy Heifers are slaughtered. One explanation might be that some progeny of "Dairy Cows" might be from Beef sires. Table 22 lists Dairy Heifer SLAUGHTER and compares SLAUGHTER to Beginning Inventory.

Dairy Heifer SLAUGHTER in the East appears to be more stable than in the West. The one negative Eastern value (1965) can be attributed to a model design that underestimates Beef Cow SLAUGHTER, leading to an overestimation of Dairy Cow SLAUGHTER thus making an unusual demand on Dairy Heifers. This explanation would also apply to 1964 and 1966. In most other years, from 15-30 percent of Beginning Inventory are slaughtered.

The rather eratic nature of Dairy Heifer SLAUGHTER in the West can possibly be traced to two sources. First, some misclassification might occur, so that the offspring of the Dairy Herd might oscillate between Dairy and Beef, depending on economic outlook. In addition, a given Heifer classified as a Dairy Heifer on one occasion might be classified as a Beef Heifer on a second occasion, depending on the farmer's intentions.

Second, some Female Calf SLAUGHTER may come from the Beef Herd. This would increase the number of Dairy Heifers on Inventory. A wide fluctuation in Beef Female Calf SLAUGHTER would thus cause wide fluctuations in the ratio being considered. The effect of these two

Table 22. A comparison of RECON Estimated Dairy Heifer SLAUGHTER with Dairy Heifer Inventory, 1959-1972, program RECON

Year	WEST		EAST	
	SLAUGHTER	SLAUGHTER as proportion ${ }^{\text {a }}$ of Inventory	SLAUGHTER	SLAUGHTER as proportion of Inventory
	(head)	(ratio)	(head)	(ratio)
1959	25,340	. 1445	164,707	. 3485
1960	3,229	. 0183	123,080	. 2505
1961	2,737	. 0152	109,286	. 2188
1962	53,497	. 3075	162,831	. 3185
1963	52,223	. 3090	128,775	. 2597
1964	66,303	. 4196	72,583	. 1455
1965	42,222	. 2833	-34,133	-. 0702
1966	23,768	. 1801	36,491	. 0798
1967	30,807	. 2525	117,163	. 2690
1968	-7,852	-. 0689	75,128	. 1680
1969	-14,815	-. 1347	63,219	. 1391
1970	32,884	. 3224	105,861	. 2357
1971	80,171	. 8181	171,116	. 3903
1972	49,502	. 5500	24,485	. 0633

$a_{\text {Formula }} \quad$ RATIO $=\frac{\text { Dairy Heifer SLAUGHTER }}{\text { Dairy Heifer Beginning Inventory }}$.
possible errors could conceivably provide the variation noted in Western Beef Heifer SLAUGHTER.

Model Accuracy

The overall accuracy or variation in RECON is demonstrated by summing algebraically the Steer plus the Beef Heifer Feeding "ERROR." This data is displayed in Table 23.

Two bases of comparison are used. In the first case, the "ERROR" is compared to total Steer plus Dairy Heifer plus Beef Heifer SLAUGHTER. As the major output of the system, SLAUGHTER seemed like a reasonable basis. The second comparison is between "ERROR" and TOTAL DISPOSITION of Cattle. Since "ERROR" is the sum of all the errors in all data series, for the seven Cattle series, this also appears as a reasonable basis for comparison.

Since the first basis has a much smaller denominator, the relative "ERROR" appears larger. In the West, with the exception of 1963 and 1967, the relative "ERROR" is 6 percent or less. The "ERRORS" appear reasonably random. The "ERROR" in the East appears less random and reaches major proportions in 1959-1960 and 1965-1967.

When the second basis of comparison is used, the relative "ERROR" becomes very small (less than 2 percent) in all but two cases.

Generally, this simple model constructed entirely of identities and naive relationships may be considered as quite consistent internally with the data series being acceptably accurate except where noted.

Table 23. A comparison of RECON "ERROR" with selected data bases

Year	WEST			EAST		
	Error	ERROR as a proportion ${ }^{\text {a }}$ of		Error	as a proportion ${ }^{\text {ER }}$ of	
		SLAUGHTER	DISPOSITION		SLAUGHTER	DISPOSITION
	(head)	(ratio)	(ratio)	(head)	(ratio)	(ratio)
1959	-7,048	-. 0102	-. 0013	113,396	. 1469	. 0198
1960	-35,635	-. 0450	-. 0063	83,935	. 1000	. 0147
1961	9,484	. 0105	. 0016	5,117	. 0062	. 0009
1962	-44,414	-. 0549	-. 0075	16,757	. 0195	. 0028
1963	-89,520	-. 0972	-. 0143	-34,125	-. 0380	-. 0057
1964	-76,794	-. 0699	-. 0112	-69,529	-. 0691	-. 0109
1965	-12,945	-. 0123	-. 0018	-195,787	-. 1717	-. 0307
1966	-73,609	-. 0635	-. 0104	-147,014	-. 1421	-. 0244
1967	105,817	. 0882	. 0155	95,610	. 0942	. 0161
1968	18,800	. 0199	. 0028	70,966	. 0670	. 0118
1969	-20,430	-. 0155	-. 0030	14,397	. 0134	. 0024
1970	69,404	. 0510	. 0100	-50,718	-. 0487	-. 0084
1971	88,093	. 0627	. 0120	68,743	. 0667	.0117
1972	79,322	. 0527	. 0102	38,979	. 0361	. 0065

${ }^{\text {a Formula: }}$ RATIO $=\frac{\text { Steer }+ \text { Heifer Feeding "ERROR" }}{\text { SLAUGHTER or TOTAL DISPOSITIONS }}$.

CHAPTER V

THE CATTLE HERD SIMULATOR

The computer program that simulates the dynamics of the Cattle Herd is called CATSIM. ${ }^{1}$ It is the main or focal program in this study. Because of the sheer bulk of the program and the initial requirement to build and debug, the program was built in four parts. The parts are Dairy East, Beef East, Dairy West, and Beef West. The two Eastern parts were subsequently merged to form CATSIM East; and similarly, the West to produce CATSIM West.

A comprehensive knowledge of the simulator can only be gained by a line by line study of CATSIM. The purpose of this chapter, however, is to provide an appreciation of the model through a general discussion of its parts, their interrelationships, the assumptions made, and the parameter values used. The first section of this chapter provides an overview of the model; the second section discusses the model in detail.

A Model Overview

The model of the Cattle Herd, that is simulated by CATSIM, is divided into four parts:

[^64]1. Beef Cattle West,
2. Dairy Cattle West,
3. Beef Cattle East, and
4. Dairy Cattle East.

The structure of each is deliberately designed to be virtually identical. Thus, the following discussion applies to any or all the four parts. It also follows Figures 18 to 26 , which are the exact block diagrams of the above four parts of the model. ${ }^{1}$

The basic element in the model is the Cow Herd. ${ }^{2}$ The size of the Cow Herd changes with SLAUGHTER (CULL), IMPORTS, EXPORTS, DEATHS, and addition of Replacement Heifers. The size of the Cow Herd increases due to favorable expectations; there is a reduction of Slaughter Heifers as additional Heifers are retained as REPLACEMENTS. After a two or three year lag, allowing for gestation and progeny maturation, the SLAUGHTER flow is increased. Since ceteris paribus, prices move in the opposite direction to quantities, adverse prices might now reverse the process after appropriate lags. These changes in the size of the Cow Herd lead to further changes in prices and price expectations, which lead to still further changes in the Cow Herd. Thus the Cow Herd is basic to the phenomenon known as the cattle cycle. Consequently, investment (REPLACEMENT) and disinvestment (CULLS) form a major part of this model, providing it with its cyclical motion.

[^65]The Cow Herd is defined as female stock two years and older (Beef and Dairy). This allows comparison of the simulated Cow Herd with Statistics Canada's semi-annual Livestock Survey.

Generation of a Calf crop is produced by breeding the Cow Herd and allowing for a nine month gestation delay. Three aspects are considered at this point:

1. the nine month gestation delay,
2. the birth distribution over the year, and
3. the live BIRTH Rate.

Observation of the exact box diagrams will reveal that First Calf Heifers are treated differently than Mature Cows. This is so with respect to: (1) that portion of gestation occurring after two years of age, and (2) live BIRTH Rate. The former is due to the structure of the model and the age at which Heifers are bred. This structure is discussed in detail in the next section. The latter is a hypothesis that may or may not be true.

The BIRTHS from First Calf Heifers and Mature Cows are combined to produce the Calf crop. This in turn is split between Male and Female Calves. Initially, it is assumed that the sex ratio is .5 ; this also is a hypothesis and thus subject to subsequent change.

The Calves are subsequently aged through a series of discrete (fixed length) and continuous (variable length) delays, ${ }^{1}$ simulating the

[^66]growing and feeding-finishing processes until they are either slaughtered or added to the Breeding Herd. Through time, addition and attrition occurs due to EXPORTS, IMPORTS, SLAUGHTER, and DEATHS. The following discussion follows these processes looking at each of the several identified stages (delays).

Shortly after birth a certain number of Calves are exported. These Calves are mainly Dairy Males ("bob" Calves) from the East to the United States, although increasing numbers are being shipped to Europe. In addition, the model allows for attrition due to DEATH at the beginning of each period.

At the end of the first period (three months of age) a number of Calves are slaughtered for veal. While Veal SLAUGHTER is currently Male Dairy Calves, it has not necessarily been the case historically. In addition, all Veal is not necessarily slaughtered at three months of age; however, this is a reasonable approximation.

At the end of the second period (six months of age), Calf numbers are adjusted for the flow of Stock Calves. This includes EXPORTS mainly to the United States, as well as Movements from Western to Eastern Canada. This point in time approximates weaning age as well as the first point in time at which Calves are normally placed on feed.

At this point also, the Calves are directed along one of two streams which correspond to ration and method of feeding. The first stream is called Stream A and the ration fed, Ration A. This ration is high roughage, low energy, and is received by all Cattle not placed in a feedlot. It is assumed that all future Breeding Stock will be derived from Stream A.

Ration B (fed in Stream B) corresponds to a high energy, high feed intake ration such as would be fed to Cattle on full feed in a feedlot. It is assumed that none of these Cattle are used for breeding purposes.

Stream B Cattle are matured to Finished Cattle through a variable length delay process. This "continuous" delay provides for: (1) an expected time on feed, and (2) a distribution about this expected value.

This continuous delay attempts to approximate the effect of the different feeds and feeding practice used, as well as variation in genetic growth rates.

As the Finished Cattle leave the feeding-finishing process (continuous delay), they are added to Cattle matured on Ration A to produce total Steers and Heifers Available for SLAUGHTER.

Steers and Heifers Available for SLAUGHTER are adjusted by EXPORTS AND IMPORTS of Slaughter Cattle to produce Steer and Heifer SLAUGHTER for each region (Local SLAUGHTER).

Six month old Calves not going directly into a feedlot proceed to mature along Stream A, on Ration A. The next stage of the growth process is six months in length. This period is simulated by a fixed length or discrete delay. At the end of this period, when Calves are one year of age, adjustments to their numbers are made for EXPORTS and WEST-EAST Movements. It should be pointed out that EXPORTS, IMPORTS, and WEST-EAST Movements do not occur at discrete points in time (age) but occur more or less continuously. Thus the model abstracts from reality to simplify the study.

The numbers of Calves generated by the model may be summed at this point to compare with Statistics Canada's semi-annual Livestock Survey category, Calves Under One Year 01d. This summation includes: calves one to three months
calves four to six months
calves seven to twelve months Ration A
calves seven to twelve months Ration B (a portion of total Ration B Cattle)

At this stage (one year of age) a decision is assumed to be made as to whether or not Calves will be added to the Breeding Herd or finished for slaughter. Those not added to the Breeding Herd are matured through a continuous delay process and subsequently added to the flow of Steers and Heifers Available for SLAUGHTER. This was discussed above in connection with Cattle fed on Ration B.

The number of Yearlings entering the Breeding Herd are calculated in the following manner. Their numbers are large enough to provide for DEATH losses and just provide the necessary additions to the Breeding Herd. In actual practice more than this number would be allocated to allow for non-breeders, poor type and to provide flexibility. Thus, this model deals only with actual REPLACEMENTS, not intended or potential REPLACEMENTS.

One year old Bulls are added immediately to the Bull Herd. The size of the Bull Herd generated by the model may then be compared with Statistics Canada's semi-annual Livestock Survey category Bulls, One Year or Older.

One year old Heifers are matured for one more year before being added to the Cow Herd. During this period they are bred. As was discussed in connection with MATRIX, the assumption is made, at least initially, that Beef Heifers are bred at 15 months to calve at 24 months. Thus, all Beef Heifers are assumed to calve immediately upon leaving the one year maturation period. This assumption and subsequent modeling will be followed until new information is found to the contrary.

In the instance of Dairy Heifers a more sophisticated and realistic approach is used. From a priori knowledge, an expected calving age and distribution about this expected age have been determined. Thus, as Dairy Heifers leave the one year delay they enter another continuous or variable length delay with an expected value and dispersion as indicated above. This second delay models the period of time between two years of age and parturition.

For various purposes, all First Calf Heifers are added to (or deleted from) the Cow Herd at three points. In the first instance, Heifers are added to the Cow Herd to provide a total which can be compared with Statistic Canada's semi-annual Livestock Survey category Female Stock Two Years 01d and 01der. In the second instance, they are deducted from the above total so that different BIRTH Rates and gestation lags can be applied to First Calf Heifers and Mature Cows. In the third instance, the Calves from both groups of Cows are summed to provide the total Calf Crop.

Simulation of the Elements in Cattle Production

The elements in the Cattle Herd simulator are described in detail in this section. ${ }^{1}$ The structure of each element, the assumptions made, and the system's key parameters are given together with plausible estimates of their value. ${ }^{2}$ This structure is also displayed in the form of exact block diagrams which indicate the relationships of stocks, flows, and system parameters. A rationale for this structure is provided in many instances.

Simulation of BIRTHS

BIRTHS are simulated by applying a BIRTH Rate to the available stock of Cows and Heifers. The first assumption is that BIRTH Rate is a function of the age of the Brood Cow. This model identifies two ages of Brood Cow; namely, First Calf Heifers, and Mature Cows. Different BIRTH Rates could be used for these two ages.

It is initially assumed that the Dairy Cow breeding cycle was approximately 13 months; this figure is based on a priori information. It was then assumed that, everything else being equal, the First Calf Heifer BIRTH Rate would be the Mature Cow BIRTH Rate $\times 13 / 12$. This was roughly translated to provide a BIRTH Rate differential of . 08 for Dairy. The same assumptions were not made for Beef.

[^67]It was further assumed that Eastern and Western Beef BIRTH Rates do not differ. This assumption was made for lack of information to the contrary. Subsequent testing resulted in a slight differential being introduced.

Finally, it was assumed that the Western Dairy Herd was managed somewhat like a Beef Herd, at least at the margin. For this reason, a Western Dairy BIRTH Rate was selected that fell between the Beef and the Eastern Dairy BIRTH Rates.

The Rates used in this model and their variable names are listed below. ${ }^{1}$

Dairy Birth Rate	Cows, East	BREDC $=.72$
West	BRWDC $=.76$	
	Heifers, East	BREDH $=.80$
Beef Birth Rate	BRWDH $=.84$	
	Cows, East	BREBC $=.85$
West	BRWBC $=.84$	
	Heifers, East	BREBH $=.85$
	BRWBH $=.84$	

The second assumption is that BIRTH Rate is constant over time. This may well be unrealistic in two respects. First, there may be a long run trend and, second, BIRTH Rate could well be expected to have

[^68]both a predictable and a stochastic element. These two aspects were not considered in constructing CATSIM.

A third assumption concerns sex ratio. It is initially assumed that this ratio is $1: 1$ or Calves are Male and Female in equal numbers.

A major element in simulating Calf BIRTHS is the quarterly distribution. Various estimates are discussed in Appendix A. CATSIM uses a monthly distribution that is subsequently aggregated to produce the required quarterly distribution. ${ }^{1}$ Dairy birth distributions, East and West, are initially assumed to be equal, however, the Eastern Beef birth distribution is assumed to be more uniform than the Western Beef birth distribution. ${ }^{2}$ The array "VAL" indicates the monthly BIRTH Rate at the beginning of each month (note that $\operatorname{VAL}(1)=\operatorname{VAL}(13))$.

```
VALDE(1), VALDW(1) = . 088
VALDE(2), VALDW(2) = . 093
VALDE (3), VALDW(3) =.069
VALDE (4), VALDW(4) = . }11
VALDE(5), VALDW(5) = . 089
VALDE(6), VALDW(6) = . 065
```

$\operatorname{VALDE}(7)$,	$\operatorname{VALDW}(7)$
$\operatorname{VALDE}(8)$,	$=.054$
$\operatorname{VALDDW}(8)$	$=.069$
$\operatorname{VALDE}(10), \operatorname{VALDW}(9)$	$=.077$
$\operatorname{VALDE}(11), \operatorname{VALDW}(10)$	$=.097$
$\operatorname{VALDE}(12), \operatorname{VALDW}(12)$	$=.096$
$\operatorname{VALDE}(13), \operatorname{VALDW}(13)$	$=.094$

${ }^{1}$ An integration subroutine, INGRAT, is used to calculate the proportion of BIRTHS for any stated period of time. This subroutine is described in Appendix B and listed in Appendix E.
${ }^{2}$ The characters D and B refer to Dairy and Beef while E and W refer to East and West. This convention is followed in all variable names used in all programs. In addition, M and F are used to denote Male and Female.

$\operatorname{VALBE}(1)$	$=.05$	$\operatorname{VALBW}(1)$
$\operatorname{VALBE}(2)$	$=.06$	$\operatorname{VALBW}(2)$
$\operatorname{VALBE}(3)$	$=.01$	
$\operatorname{VALBE}(4)$	$=.06$	$\operatorname{VALBW}(3)=.04$
$\operatorname{VALBE}(5)$	$=.20$	$\operatorname{VALBW}(4)=.25$
$\operatorname{VALBE}(6)$	$=.20$	$\operatorname{VALBW}(5)=.39$
$\operatorname{VALBE}(7)$	$=.10$	$\operatorname{VALBW}(6)=.11$
$\operatorname{VALBE}(8)$	$=.04$	$\operatorname{VALBW}(7)=.04$
$\operatorname{VALBE}(9)$	$=.04$	$\operatorname{VALBW}(9)=.01$
$\operatorname{VALBE}(10)$	$=.05$	$\operatorname{VALBW}(10)=.01$
$\operatorname{VALBE}(11)$	$=.05$	$\operatorname{VALBW}(11)=.01$
$\operatorname{VALBE}(12)$	$=.05$	$\operatorname{VALBW}(12)=.01$
$\operatorname{VALBE}(13)$	$=.05$	$\operatorname{VALBW}(13)=.01$

Figure 18 is an exact block diagram of the birth generation process. After a stock of Cows are bred, a gestation period is realized. This period is approximately nine months in length or three DT's. ${ }^{1}$ The gestation period is simulated by a discrete delay process 2 that essentially retains the generated BIRTHS for nine months before emitting them. First Calf Dairy Heifer BIRTHS are delayed through a continuous or distributed delay. This process which was used as the age at which First Calf Heifers calve, describes a distribution. Since this distribution is known, it is modeled with a continuous delay. ${ }^{3}$

[^69]Male Calf
BIRTHS

The expected value of this Dairy Heifer gestation delay is approximately .85 years beyond two years of age. This is modeled by the use of the following parameters.

DELEDH, DELWDH $=.85$

The distribution is very flat, with some BIRTHS occurring before two years of age and as late as four years. The parameter that provides the shape to the distribution is:

$$
\mathrm{KEDH}, \mathrm{KWDH}=3
$$

For lack of proper information, no delay is experienced with First Calf Beef Heifers. It is assumed that they immediately calve upon turning two years of age. Information received in the future may allow this element of the model to be developed more accurately, possibly along the lines of the simulation of First Calf Dairy Heifer BIRTHS .

Figure 18 shows that First Calf Dairy Heifers are added to the Cow Herd at point A and subtracted again at point B. The purpose of this structure is to allow the model to both conform to STATCAN statistics and provide the differential birth process. In the first instance, Heifers are added to the Cow Herd at two years of age. This allows comparison of simulated "Cows and Heifers, Two Years and Over," with the published figures. In the second instance, First Calf Heifers are subtracted after being multiplied by a constant in
order to generate BIRTHS in an accurate manner consistent with actual practice. The rationale for this structure is described below.

By definition, Cows are considered to be females over two years of age, kept primarily for milk and for producing Calves. At first glance, BIRTHS would appear to be a product of Cow times BIRTH Rate. That is:

$$
\text { BIRTHS }=\text { Cow Population } \times \text { BIRTH Rate. }
$$

This formula assumes, however, that only Cows over two years of age produce calves; in fact, only Cows two years or older are bred.

If Heifers are bred at 15 months, they drop their first Calf at two years. Thus, two groups of Females calve: Replacement Heifers under two years, plus Cows over two years. If Cows only are considered, BIRTHS are understated by the Calves produced by Heifers bred prior to two years of age.

On the other hand, if Cows do not produce their first Calf until they are $33 / 4$, then BIRTHS will be overstated if the above formula is used. This occurs as Females two to three years of age do not produce Calves at all.

Sine the possibility of different BIRTH Rates exist for First Calf Heifers, as opposed to Mature Cows, the following formula may be used.

```
Cow BIRTHS \(=\left(\right.\) Cow Population - Heifer Population \(\left.{ }^{1}\right) \times\) Cow BIRTH Rate
```

[^70]
Heifer BIRTHS = Heifer Population x Heifer BIRTH Rate Total BIRTHS = Cow BIRTHS + Heifer BIRTHS.

This formula applies only to the situation where a Cow has its first calf at approximately $23 / 4$ years. It does not apply to the above "early" and "late" calving instances. To do so it must be altered--the critical point is the breeding age of 15 months. At this breeding age, Heifer Population is not subtracted from Cow Population in order to calculate Cow BIRTHS. If bred at two years, then Heifer Population is subtracted; if bred at three years, then Heifer Population is subtracted approximately twice.

The generation of BIRTHS can be reformulated as follows to handle all the above instances mentioned.

Cow BIRTHS $=$ (Cow Population - Heifer Population \times A) \times Cow BIRTH Rate Heifer BIRTHS $=$ Heifer Population \times Heifer BIRTH Rate

Total BIRTHS = Cow BIRTHS + Heifer BIRTHS
where

$$
\begin{array}{ll}
A=0 & \text { if Heifers bred at } 15 \text { months, } \\
A=1 & \text { if Heifers bred at } 24 \text { months, } \\
A=2 & \text { if Heifers bred at } 33 \text { months. }
\end{array}
$$

The continuous delay parameter DEL is used to indicate the expected age of First Calf Heifers at calving, by measuring time from two years onward; thus, DEL is used to calculate A.

$$
A=D E L / .75
$$

where
. 75 represents gestation period in years, the same unit as DEL.

Thus, if Heifers calve at two years of age, as it is assumed Beef Heifers do, $D E L=0$, and $A=0$. If Heifers calve at $23 / 4$ years, then $D E L=.75$ and $A=1$; this is roughly the case with Dairy Heifers.

If DEL is unknown, but all other elements in the birth generation process are known, it may be possible to optimize on A. DEL would then be estimated by the formula:

$$
D E L=A \times .75
$$

Simulation of DEATHS
DEATHS constitute a continuous, but not necessarily constant, depletion of the Cattle Herd. The major parameter of concern is the DEATH Rate, usually expressed in annual terms as a proportion of the Herd. The DEATH Rate is most likely a function of the age of the animal, possibly its sex, possibly its function, and quite likely its environment.

Due to the lack of information concerning DEATH Rate, several assumptions are made to accommodate the simulated process and the available data. The first assumption is that Male and Female DEATH Rates are equal. A second assumption is that for East and West, all Cattle under one year of age have the same DEATH Rate. All non-Fed Cattle over one year of age have a second and different DEATH Rate.

A third assumption is that all Cattle on Feed, East and West, have a third DEATH Rate. A final assumption is that the DEATH Rate for the first six months of the year is at a high level, a lower level is used for the last six months.

The best initial estimates of annual DEATH Rate of Calves are as follows, together with their variable names.

DRMBCE 1	1st quarter $=.048$
DRMDCE	2nd quarter $=.048$
DRFBCE	3rd quarter $=.022$
DRFDCE	4th quarter $=.022$
DRMBCW	1st quarter $=.040$
DRMDCW	2nd quarter $=.040$
DRFBCW	3rd quarter $=.020$
DRFDCW	4th quarter $=.020$

Lower annual DEATH Rates are used for Cattle over one year and all Cattle on Feed. The DEATH Rate variables and their annual rates are listed below.

$\operatorname{DRCATE}(1)=.015$	$\operatorname{DRCATW}(1)=.016$
$\operatorname{DRCATE}(2)=.015$	DRCATW 2$)=.016$
$\operatorname{DRCATE}(3)=.012$	DRCATW 3$)=.012$
$\operatorname{DRCATE}(4)=.012$	$\operatorname{DRCATW}(4)=.012$

$\operatorname{DRCATF}(1)=.014$
DRCATF (2) $=.014$
DRCATF (3) $=.012$
DRCATF (4) $=.012$
${ }^{1}$ The annual Rates are stored in a set of subscripted variables whose names commence with CY, i.e., CYMBC(1). The DEATH Rate parameters take on different values each quarter. The value of the parameters are changed quarterly by a CBOX subroutine which cycles the subscripted CY variables. This CBOX subroutine is explained in Appendix B as well as in Llewellyn, op. cit., pp. 52-55. The CBOX program is listed in Appendix E.

DEATHS are simulated by generating the flow at the beginning of each period, for each age, and/or function cohort. This is done by multiplying the net inflow rate by the annual DEATH Rate then by the length of time in that cohort. If the cohort is represented by a stock value (i.e., Cows and Bulls) then the stock value is multiplied by an annual DEATH Rate.

These two types of simulation models are shown in the following exact block diagrams (Figures 19 and 20).

Figure 19. Simulation of DEATHS in a Flow Situation.

Some inaccuracy is introduced as the whole DEATH flow is deducted at the beginning of the period as a continuous process is being simulated by a discrete process. This inaccuracy, however, is not felt to be significant in light of the possible error in the estimated DEATH Rate.

Figure 20. Simulation of DEATHS in a Stock Situation.

Simulation of Calf, Cow and Bull SLAUGHTER
Simulation of SLAUGHTER is not so much a problem of method or model structure as one of data or of obtaining estimates of the magnitude of the flow variables. The technique used to estimate the flow variable, Calf SLAUGHTER, is to employ published statistical data or at least available statistical data.

The data basically fall into two categories: INSPECTED and UNINSPECTED. Both categories have previously been discussed in Chapter II. INSPECTED data are available on a monthly basis, East and West, Male and Female. The only remaining problem is to allocate it between Beef and Dairy. Good estimates are unavailable; consequently,
the following parameters are used in CATSIM1 to generate the necessary flows. ${ }^{1}$

Proportion of Male Calf SLAUGHTER that is Beef East, V41 = . 10
West, V1 = . 10
Proportion of Female Calf SLAUGHTER that is Beef East, V42 = . 10 West, $V 2=.25$

The second category of data is UNINSPECTED SLAUGHTER. These data are estimated by STATCAN under the classification, Farm Killed and Eaten, and Farm Killed and Sold. The latter two data series are available only on an annual basis, while the former is available on a quarterly basis. All are available on an East/West separation but not on a Male/Female basis. The problem then is to estimate a quarterly distribution and a Male/Female separation. While this matter is discussed in detail in Appendix B, the first estimates were made by simply applying the comparable rates from INSPECTED SLAUGHTER.

The parameter values used are as follows:
Proporion Females in UNINSPECTED Calf SLAUGHTER
East, V43 = . 55
West, V3 = .50, before 1966 V3 $=1.00$, after 1965.

Quarterly Distribution of UNINSPECTED Calf SLAUGHTER $=.25$ (included as a structural element, not as a parameter).

[^71]The allocation into Dairy and Beef follows the same distribution as INSPECTED Calf SLAUGHTER. CATSIM1 re-calculates this latter distribution quarterly.

Calf SLAUGHTER flow values for CATSIM2 and CATSIM3 are taken as generated by MATRIX and the relevant behavioral models, respectively. These flows are given in Tables 6 and 13.

The allocation of Cow SLAUGHTER into its Dairy and Beef components represents a further data problem. In CATSIM2, Cow SLAUGHTER flows are calculated by MATRIX; these data are given in Table 5. Cow SLAUGHTER flow data for CATSIM3 are generated by the behavioral models; these data are listed in Table 12. Finally, CATSIMl calculates Dairy Cow SLAUGHTER in the West and Beef Cow SLAUGHTER in the East by selecting fixed values (constants) that maintain the respective Cow Herds at published levels given REPLACEMENT Rates. The replacement process and Rates are discussed below in sub-section Simulation of the Growth Process.

SLAUGHTER Rates are determined by REPLACEMENT Rate plus or minus a constant. The former Rate is then applied to the appropriate Cow Population to determine SLAUGHTER flow. The constants are minus . 06 for Eastern Beef Cow and plus . 022 for Western Dairy Cows. Calculation of Western Beef Cow SLAUGHTER and Eastern Dairy Cow SLAUGHTER is the residual given the published Total Eastern and Western Cow SLAUGHTER. Program MATRIX corroborates the estimates for these flow values.

As with Calves, UNINSPECTED Cattle SLAUGHTER also contains Farm Killed and Eaten and Farm Killed and Sold estimates. This flow
must be disaggregated into its Cows, Bulls, Steers, and Heifers elements.

The calculation of Bull SLAUGHTER follows the pattern of the calculations for Calves and Cows. That is, SLAUGHTER flows for CATSIM2 and CATSIM3 are taken as estimated by MATRIX and the behavioral models. These flows are listed in Tables 7 and 14 . For CATSIMI, the UNINSPECTED Bull SLAUGHTER is added to the published INSPECTED Bull SLAUGHTER.

It was initially assumed that Bulls occurred in UNINSPECTED SLAUGHTER in the same proportion as in INSPECTED SLAUGHTER. This assumption was modified as the result of new information obtained through the use of program MATRIX leading to the following parameter values.

```
Proportion of Bulls in UIIINSPECTED Cattle SLAUGHTER
    East, V75 = . 06
    West, V35 = . 06
```

Flow values for UNINSPECTED Heifer SLAUGHTER is required, as well as for Steers. The Heifer value is the residual after UNINSPECTED Steers, Cows, and Bulls have been accounted for. The following parameters are used for this purpose.

Proportion of Steers in UNINSPECTED Cattle SLAUGHTER

 East, V76 = . 40 West, V36 = .207, before 1966V36 = .00, after 1965
It was assumed initially that 25 percent of UNINSPECTED Cattle SLAUGHTER was Cows, the balance was Heifers. Program MATRIX indicated an upward revision in the case of the Eastern Cow value.

Proportion of Cows in UNINSPECTED Cattle SLAUGHTER East, V45 = . 28
West, V11 = . 25

The allocation of UNINSPECTED Cow SLAUGHTER between Beef and Dairy is the same as that for INSPECTED SLAUGHTER.

When the SLAUGHTER flow has been estimated in the disaggregate form required of CATSIM, it is deducted from the IN FLOW by the simple operation of subtraction. This is demonstrated in Figure 21.

Figure 21. Simulation of SLAUGHTER.

Simulation of EXPORTS and IMPORTS
As with SLAUGHTER, the major problem encountered in attempting the simulation of EXPORTS is the determination of magnitude of the flow. SLAUGHTER statistics are available in a fairly disaggregate form for the years 1969-1972 inclusive and in a highly aggregate form for the years 1958-1968 inclusive.

The 1958-1968 data is available on an annual basis only. The first set of parameters provide initial quarterly estimates.

Quarterly distribution of Purebred IMPORTS
East and West, Q1(1) = . 21
Q1 (2) $=.32$
Q1 $(3)=.18$
Q1 $(4)=.29$
Quarterly distribution of Purebred EXPORTS
East and West, Q2(1) = . 18
Q2(2) $=.28$
Q2 (3) $=.24$
Q2 $(4)=.30$
Quarterly distribution of Other Dairy EXPORTS
East and West, Q3(1) $\left.\begin{array}{rl} & =.16 \\ 2\end{array}\right)=32$
Q3(2) $=.32$
Q3(3) $=.30$
Q3(4) $=.22$
Quarterly distribution of Other IMPORTS
East and West, Q4(1) = . 31
$Q 4(2)=.26$
$Q 4(3)=.03$
$\mathrm{Q} 4(4)=.40$
Quarterly distribution of EXPORTS, Cattle Under 200 Pounds
East and West, Q5(1) = . 20
Q5(2) $=.52$
$05(3)=.18$
$05(4)=.10$
Q5(4) $=.10$
Quarterly distribution of EXPORTS, Cattle 200-700 Pounds East, $\begin{aligned} & Q 6\left(\begin{array}{l}1 \\ 06 \\ 2\end{array}\right)=.14 \quad \text { West, } Q 6(1) \\ & 06\end{aligned} \quad=.04$
$\mathrm{Q6}(3)=.29 \quad \mathrm{Q6}(3)=.08$
Q6 4 (4) $=.41 \quad$ Q6(4) $=.84$
Quarterly distribution of EXPORTS, Cattle Over 700 Pounds

The next problem is the division of EXPORTS into Male/Female and Beef/Dairy.

```
Proportion Females in Purebred IMPORTS
    East, V59 = . 90
    West, V19 = . 90
Proportion Females in Purebred EXPORTS
    East, V58 = . }8
    West, V18 = . 85
Proportion of Dairy in Purebred IMPORTS
    East, V55 = . }2
    West, V25 = . 20
Proportion of Dairy in Purebred EXPORTS
    East, V56 = . 826
    West, V26 = . 826
```

The EXPORT category, Cattle 200-700 Pounds, contains Cattle that range from Weaned Calves to Yearlings. A parameter is needed to make the basic division Between six month old Calves and one year old Calves.

Proportion of six month old Calves in EXPORTS, Cattle 200-700 Pounds

East, V46 = . 90
West, V6 = . 90

A parameter of major interest, as it has historically hampered Herd expansion possibilities, is the proportion of Male Calves in EXPORTS, Cattle 200-700 Pounds.

```
Proportion of Males in EXPORTS, Cattle 200-700 Pounds
    East, V44 = . 145
    West, V4 = . 50, before 1966
        \(V 4=.00\), after 1965
```

The EXPORT category, Cattle Over 700 Pounds, contains a variety of Cattle. To make this division, the following assumptions are made.

East:

1. Of the first 3,000 head shipped annually, 80 percent are Cull Dairy Cows.
2. Of all Cattle over 2,400 head (80 percent of 3,000) only 10 percent are Cull Dairy Cows.

West:

1. Of the first 8,000 head shipped annually, 80 percent are Cull Dairy Cows.
2. Of all Cattle over 6,400 head (80 percent of 8,000) only 5 percent are Cull Dairy Cows.

ALL EXPORTS, Cattle Over 700 Pounds that are not Cull Dairy Cows are assumed to be Steers and Heifers for Immediate SLAUGHTER.

Proportion of Cull Dairy Cows in EXPORTS, Cattle Over 700 Pounds below a fixed critical figure East, V53 $=.80$
West, V13 $=.80$
Proportion of Cull Dairy Cows in EXPORTS, Cattle Over 700 Pounds above a fixed critical figure East, V531 = . 10
West, V131 $=.05$
Proportion of Steers in the non-Cow portion of EXPORTS, Cattle Over 700 Pounds

East, $\mathrm{V} 54=.35$
West, V14 = . 35

In addition, the Dairy/Beef proportion of EXPORTS of Cull Cows is assumed to be in the same ratio as Cows in the general population. Other assumptions include: (1) all EXPORTS of Cattle Under 200 Pounds are very young Male Dairy Calves, and (2) all EXPORTS of non-Purebred Dairy Cattle are Dairy Cows.

Finally, consideration must be given to the proportion of Males in IMPORTS, Cattle Over 700 Pounds. It is assumed that this category only contains Cattle for Immediate SLAUGHTER.

Proportion of Males in IMPORTS, Cattle Over 700 Pounds
East, West, V16 = . 70

Simulation of EXPORTS and IMPORTS is done by the same subtraction operation as was the case with SLAUGHTER.

Simulation of WEST-EAST Cattle-Calf Movement

Closely related to foreign trade are the internal trade flow variables. The following assumptions are made concerning the published data.

1. Eastern Movements by rail are something less than total Cattle Movements. The scale of coefficient for WEST-EAST Cattle-Calf Movement is: East, $V 9=1.07$ West, V7 $=1.07$
2. Calves shipped for SLAUGHTER are assumed to be slaughtered immediately. Calves shipped to FEEDLOTS or STOCKYARDS are assumed to be placed in a feedlot or on grass.
3. Cattle shipped for SLAUGHTER are assumed to be slaughtered immediately. Cattle shipped to FEEDLOT or STOCKYARDS are assumed to be placed in a feedlot or on grass.

The remaining problem is the Male/Female division. The following parameters are used.

Proportion of Males in Calf Movements for FEEDLOT and STOCKYARDS V5 = . 80

Proportion of Males in Cattle Movements for FEEDLOT and STOCKYARDS
$\mathrm{V} 12=.80$

Proportion of Males in Cattle and Calf Movements for SLAUGHTER V15 = . 95

As with SLAUGHTER, EXPORTS, and IMPORTS, WEST-EAST Movements are simulated by a simple arithematic operator: in the case of the East, the recipient, an addition operator; in the case of the West, the shipper, a subtraction.

Simulation of Feeder Cattle ALLOCATION to Feeding Programs

As previously discussed, CATSIM models the feeding and finishing of Cattle using two processes. The first or Ration A is a low energy ration. The second, Ration B, is a high energy ration. While a whole spectrum of processes are used in practice, these two processes in some proportion are felt to reasonably represent cattle feeding and finishing in Canada. The decision point comes at approximately six months of age when the Calves are weaned and are brought in off the range.

An assumption made in constructing the model is that all
REPLACEMENT Cattle are taken from the low energy or A Stream. Thus, at least enough Cattle must remain in this stream to comfortably provide for REPLACEMENT flow. An extension of this assumption is that no Dairy Heifers are diverted to the high energy B Stream.

Appendix A provides a discussion of the initial values used in allocating six month old Calves to the two feeding-finishing processes. These parameters and their values are:

```
Proportion of Beef Males to Ration B
    East, V47 = . }7
    West, V7 = . }6
```

Proportion of Dairy Males to Ration B
East, $\mathrm{V} 67=.40$
West, V27 = . 70
Proportion of Beef Females to Ration B
East, V48 = . 30
West, V8 = . 20
Proportion of Dairy Females to Ration B
East, V68 $=0.0$
West, V28 = 0.0

The simulation of Feeder Cattle ALLOCATION to Feeding Programs is demonstrated in Figure 22.

Simulation of the Growth Process
One of the most important processes in cattle production is that of growth (and feeding-finishing). This process can be of varying length depending on genetic stock, feed intake, disease and environmental factors and the cultural or husbandry practices followed.

Three observations might be made. One, for any group of Cattle, the growth (and feeding-finishing) rate varies from animal to animal. This is true for one feedlot as well as for the total Herd. A second observation is that given constant cultural practices, the average length of the growing period might shorten over time, due to technological improvement in feeding and breeding and wider adaptation of superior techniques. A third observation might be that the shape of the distribution of cattle coming out of the growth process might change for the same reasons as were used to support the hypothesis that the growing rate was increasing.

Figure 22. Simulation of Feeder Cattle ALLOCATION to Feeding Processes.

On the other hand, due to economic influences, ${ }^{1}$ farmers, ranchers, and feedlot operators might switch from one feeding practice to another, from one breeding practice to another, and, in fact, may be changing several aspects of production concurrently.

CATSIM is designed to accommodate the varying length or distributional aspect of the growth process, the trend in the growth process over time and variation in the proportion of Cattle on one of two feeding processes. Changes in Breeding Stock and cultural practices can be accommodated by a replication of existing "streams" in the model, plus a new vector of parameters describing that new "stream."

CATSIM models the growth process by using a combination of discrete or fixed time period delays, plus continuous or distributed delays. These have been used in modeling the gestation delay and are discussed in detail in Appendix B.

Discrete delays are used to model the first portion of a Calf's life. Variation will occur in the weight and degree of maturity of Calves leaving this fixed period of time. Thus discrete delays are used to model the first six months of all Calves' lives, the next six months of Cattle on Ration A and the subsequent year for Heifers entering the herd. ${ }^{2}$

[^72]After this first portion of the Calf's life has been simulated with discrete delays, continuous delays are used to model the remainder. A continuous distribution is characterized by the fact that a flow entering at point A, leaves with an expected value at point B and a distribution about point B. The subroutines used to model continuous delays has two parameters, the first of these, DEL, provides the expected value, the second, K, dictates the shape. The subroutines used, model an erlang distribution. This distribution is described and displayed graphically in Appendix B. By varying parameters DEL and K, the distribution can range from a declining exponential ($K=1$) through Chi-square $(K=2,6)$ to an approximate normal ($K=10,25$).

The problem then becomes one of determining the expected value of that aspect of the growth and feeding-finishing process as well as determining the shape or distribution about this expected value.

To bring the modeling of the growth and feeding-finishing process into perspective, the following is laid out:

Growth Process
Calves one to three months
Calves four to six months Ration B, 7 months onward Ration A, 7-12 months Ration A, 13 months onward Heifers one to two years Gestation period First Calf Heifers

Simulation Element
Discrete delay Discrete delay Continuous delay Discrete delay Continuous delay Discrete delay Continuous delay
regard, CATSIM may be used to model an early calving process where Heifers calve before two years, but a discrete delay could not be used reasonably beyond one year of age.

The discrete delays are modeled with a BOXC subroutine; the distributed delays employ a subroutine called VDELDT. This latter subroutine, VDELDT, has provision for changing DEL during the time period being modeled; this allows a shortening or lengthening trend to be modeled. ${ }^{1}$ This trend need not be linear.

Figure 23. Simulation of Feeding-Finishing Process using a Distributed Delay.

Figure 24. Simulation of a Growing Process using a Discrete Delay.

[^73]The following initial parameter values are used in modeling the cattle production and growth processes where distributed delays are employed.

All Dairy Heifer gestation periods
East and West
$D E L=.85$
$K=3$
Ration A feeding-finishing processes
East, Male and Female West, Male and Female
$D E L=.83 \quad D E L=.75$
$K=3 \quad K=3$
Ration B feeding-finishing processes

East, Male
$D E L=.91$
$K=5$
East, Female
$D E L=.83$
$K=5$

West, Male $D E L=.99$
$K=4$
West, Female $D E L=.83$ $K=4$

Simulation of REPLACEMENTS ${ }^{1}$

The process of adding REPLACEMENTS to the Breeding Herd can be extremely complicated in that this investment function is a function of the market mechanism. To this end, the behavioral models developed in Chapter III are utilized to provide the price feedback of the market mechanism in CATSIM3.

In CATSIMI, a much simpler mechanism is used; this mechanism replaces a fixed proportion of the Herd annually. ${ }^{2}$ Since no price or
${ }^{1}$ The three versions of CATSIM (CATSIM1, CATSIM12, CATSIM3) are basically differentiated on the basis of the simulation of REPLACEMENTS.
${ }^{2}$ As with SLAUGHTER flows, REPLACEMENT flows are calculated by one method in CATSIMI while estimates are provided by MATRIX and the behavioral models for CATSIM2 and CATSIM3. The following discussion refers to the method used in CATSIMI.
market feedback mechanism is involved, the cattle cycle is not simulated. What is simulated is one of three phenomena, steady state, exponential growth or exponential decline.

The modeling involves two basic parameters. The first dictates the annual proportion of the Herd to be replaced. The following values are used.

Proportion of the Dairy Cow Herd to be replaced East, V65 = . 191 West, V21 = . 160

Proportion of the Beef Cow Herd to be replaced East, V61 = . 16 West, V31 = . 19

Proportion of the Bull Herd to be replaced East, V62 = . 476 West, V22 = . 307

The second basic parameter allocates REPLACEMENTS in a quarterly fashion. The basic assumption is that Heifers are added proportional to the quarterly birth distribution. Bulls are added mainly in the first and second quarters in a manner somewhat consistent with Beef Cow calving distribution. This is verified semi-annually by program MATRIX.

Quarterly Dairy Cow replacement distribution
East, $\operatorname{ADDDCE}(1)=.27$ West, $\operatorname{ADDDCW}(1)=.27$ $\operatorname{ADDDCE}(2)=.30 \quad \operatorname{ADDDCW}(2)=.30$ $\operatorname{ADDDCE}(3)=.22 \quad \operatorname{ADDDCW}(3)=.22$ $\operatorname{ADDDCE}(4)=.21 \quad \operatorname{ADDDCW}(4)=.21$

Quarterly Beef Cow replacement distribution

$$
\text { East, } \begin{aligned}
\operatorname{ADDBCE}(1) & =.20 & \text { West, } \begin{aligned}
\operatorname{ADDBCW}(1) & =.19 \\
\operatorname{ADDBCE}(2) & =.50 \\
\operatorname{ADDBCE}(3) & =.15
\end{aligned} & \operatorname{ADDBCW}(2)
\end{aligned}=.73
$$

Figure 25. Simulation of the REPLACEMENT Process (CATSIMI).

Quarterly Bull replacement distribution

$$
\text { East, } \begin{aligned}
\operatorname{ADDBLE}(1) & =.50 & \text { West, } \operatorname{ADDBLW}(1) & =.50 \\
\operatorname{ADDBLE}(2) & =.40 & \operatorname{ADDBLW}(2) & =.40 \\
\operatorname{ADDBLE}(3) & =.05 & \operatorname{ADDBLW}(3) & =.05 \\
\operatorname{ADDBLE}(4) & =.05 & \operatorname{ADDBLW}(4) & =.05
\end{aligned}
$$

CATSIM2 uses the REPLACEMENT values calculated by program MATRIX. These are listed in Tables 5 and 7. CATSIM3 uses the REPLACEMENT values estimated by the behavioral models developed in Chapter III; these are listed in Tables 11 and 13.

Simulation of Steer and Heifer SLAUGHTER

The purpose of a Cattle Herd in Canada, besides milk production, is for the production of beef and veal. The input into beef and veal production is, of course, Cattle and Calves. CATSIM generates the following vector of SLAUGHTER flows for both East and West. ${ }^{1}$

SLAUGHTER, Stream A (low finish)
Beef Steers
Dairy Steers
Beef Heifers
Dairy Heifers
SLAUGHTER, Stream B (high finish)
Beef Steers
Dairy Steers
Beef Heifers
Dairy Heifers

While the generation of each element in this vector is done with something less than absolute accuracy, the potential exists for

[^74]incorporation of new information to improve accuracy for testing hypothesis, making projections and simulating different grades and quantities of beef and veal.

CATSIM aggregates the output of Stream A and B and adjusts these for appropriate EXPORTS, IMPORTS, and WEST-EAST Cattle Movements. Two basic assumptions are made. The first is that trade in SLAUGHTER Cattle is in terms of Beef Cattle only. The second is that the SLAUGHTER element in WEST-EAST Cattle Movements are Cattle for Immediate SLAUGHTER and all IMPORTS of non-Purebred Cattle and all non-Cull Cow EXPORTS Over 700 Pounds are also for Immediate SLAUGHTER. The problem that remains is one of making the Male/Female separation. ${ }^{1}$

Proportion of Males in WEST-EAST Cattle Movements East, West, V15 = . 95

Proportion of Males in EXPORTS, Cattle Over 700 Pounds (that portion that is not Cull Cows)

East, V54 = . 35
West, V14 = . 35
Proportion of Males in IMPORTS, non-Purebred East, West, V16 = . 70
${ }^{1}$ The SLAUGHTER estimates of CATSIM2 are listed in Appendix G.

Figure 26. Simulation of Local Steer and Heifer SLAUGHTER.

CHAPTER VI

MODEL TESTING AND OPERATION

Model CATSIMl is a highly deterministic model incorporating, simplifying and limiting assumptions. These assumptions were discussed in Chapter V and concern investment and disinvestment in the Breeding Herd. ${ }^{1}$ While these assumptions might initially appear to be limiting, this model proved to be very useful in developing the more realistic versions that are to be discussed subsequently. It also proved useful for conducting preliminary tests and for estimating the magnitude and sign of preliminary stock and flow variables. It is felt that CATSIMI will prove useful in certain types of future practical applications.

The output of program MATRIX is incorporated into the basic CATSIM1 to produce CATSIM2. That is, the simplifying investment/ disinvestment assumptions of CATSIM1 are dropped and MATRIX output (as amended) is incorporated directly. A comparison of the output of CATSIM1 and CATSIM2 demonstrates the superiority of the second model. CATSIM2 is used for all sensitivity tests on the Cattle Herd simulator.

CATSIM2 is operated in a stochastic mode to generate CATSIM3. In the latter instance, the output of MATRIX is replaced by the

[^75]estimated values produced by the behavioral equations. The operation and output of CATSIM1, CATSIM2, and CATSIM3 are discussed in the last sections of this chapter.

The first section discusses the model validation process. The second section tests the sensitivity of key parameters and serves as a "quasi optimization" procedure for obtaining parameter estimates. The third section discusses model stability while the fourth and fifth sections make the comparisons among CATSIM1, CATSIM2, and CATSIM3. ${ }^{1}$

Validation of the Model

At this stage of model development, the questions "is the model valid" and "how do you know that it is valid" could be asked. As mentioned in Chapter II, the process is largely one of demonstrating that the model fails to be invalid. Two tests of validation were set out in the study objectives. They are repeated here.

1. To successfully "track" past Population and SLAUGHTER data consistent with the simplifying assumptions used (the correspondence test).
2. To generate disaggregation Population and SLAUGHTER data series and to generate REPLACEMENT and CULL data series that are held to be highly plausible (the coherence test).

Starting with the second objective first, REPLACEMENT and Cull data series were generated by program MATRIX. These data series are

[^76]given in Tables 5 and 7 and displayed in Figures 14 to 17. One test of their validity involves a comparison of the output of CATSIM1 with CATSIM2. Since the output of MATRIX is expected to be superior to the simplifying assumptions concerning investment/disinvestment used in CATSIM1, a comparison of the output of CATSIM1 and CATSIM2 with the official published statistics should reveal the superiority of CATSIM2. These comparisons are demonstrated in Figures 27 to 32.

Appendices F and G contain a list of historic Population and SLAUGHTER data estimates. These data are in the disaggregate form that was initially specified in the hypothesis. A comparison of these data with the published statistics cannot be made for the obvious reason. These disaggregate data must wait to be tested by tests that fall beyond this particular study.

A demonstration of objective one is given in Figures 27 to 40. These figures, for example, compare Cow Population estimates under the assumptions made in CATSIM1, CATSIA2, and CATSIM3. These three sets of estimates and their comparisons occupy the body of the balance of this chapter.

At this point the first two tests of objectivity, as given in Chapter II, are applied to the models. The first is a test of consistency with observed and possibly recorded experience. This first test concerns the relationship of the structure of the model with the structure of the real world--does the model fairly represent the real world? The answer to this question is a qualified "yes." The impetus to develop CATSIM stermed from lack of detail inherent in
compatible models. By including more detail. CATSIM comes closer to the real world than these latter models. ${ }^{1}$ A second level of comparison involves the modeling of individual components. At this level, a comparison of assumptions specific to that component may be made with the reviewer's knowledge of the real world. Many oversimplifying assumptions were made--the effect of these is discussed throughout the balance of this chapter, while additional model developments are explored in Chapter VII. A third level of comparison is that of comparing generated data series (or some aggregate) with published data series; these comparisons are scattered throughout the dissertation in the form of figures and tables.

The second test of objectivity is the logical internal consistency of the concepts used. While this test is of necessity related to the one above, the model must prove itself in terms of stability; that is, do the components fit together to present a stable model that accurately reproduces the system being modeled. The model proved to be stable within the confines of the assumptions. The stability aspect of CATSIM is covered in the next section.

The third test of objectivity is one of interpersonal transmissibility of the concepts used and the results produced. This test, together with the fourth, workability of the model, has not been fully applied. These tests are ongoing and will be given a more rigorous

[^77]application when CATSIM is adapted to the set of planned or proposed applications.

The first two objectivity tests were applied during model construction and during model testing. They will continue to be applied during model application--the process never ends. In addition, as the model is given wider exposure during application, the potential for failure increases--in this sense the test of objectivity become more severe through time. Failure will result in a return to some earlier step in the system simulation process to make revisions and to implement additional tests.

Model Sensitivity

The model of the Cattle Herd (CATSIM) is composed of: (1) stocks and flows of Cattle and Calves, (2) a structure describing the relationship of these stocks and flows to each other, and (3) a structure that describes the relationship of the Cattle Herd to the balance of the economy.

The structural relationships are built or designed in terms of parameters. In the behavioral models the relationships are expressed in terms of regression coefficients which are estimates of the true parameters. These regression coefficients are estimated by ordinary least squares regression analysis, which attempts to minimize a squared error objective function. In the balance of this section, a squared error value is also used to provide some insight into the impact on the model's outcome of varying the value of selected parameters. In
other words, this "squared error value" will be used as the index of model sensitivity to parameter changes.

In Chapter IV, a simple error value was used as the index to "correctness" in the case of model RECON. This index was used to indicate the direction of change for parameter values in order to achieve some gross indication of optimality. The basis for the error value in that instance was Steer and Heifer SLAUGHTER. It is believed that published Steer and Heifer SLAUGHTER statistics are reasonably accurate; therefore, this basis will be used once again.

Three squared error values are calculated for each parameter setting. These three squared error values are calculated as follows:

$$
\begin{aligned}
& \text { Steer Squared Error }=\sum_{\mathbf{i}} \sum_{\mathbf{j}} \text { (Published Steer } \text { SLAUGHTER }_{\mathbf{i j}} \\
& \text { - Estimated Steer SLAUGHTER } \left.{ }_{\mathbf{i j}}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { Heifer Squared Error } & =\underset{i}{i} \sum_{\mathbf{j}} \text { (Published Heifer } \text { SLAUGHTER }_{\mathbf{i j}} \\
& \left.- \text { Estimated Heifer } \text { SLAUGHTER }_{\mathbf{i j}}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Total Squared Error }=\underset{\mathbf{i}}{\sum} \sum_{\mathbf{j}} \text { (Published Steer SLAUGHTER } \\
& + \text { Published Heifer SLAUGHTER - Estimated Steer SLAUGHTER } \\
& - \text { Estimated Heifer SLAUGHTER) }{ }^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathfrak{i}=\text { years } 1958-1975 \text { inclusive } \\
& \mathfrak{j}=\text { four quarters of each year. }
\end{aligned}
$$

These squared error values are given in Tables 24 and 25 for several key parameters. Each of these parameters is varied over a reasonable range. In many instances a minimum squared error value is found within the context of the balance of the model. A true optimization algorithm would allow all parameters (or a relevant sub-set) to vary concurrently. Since this latter instance does not apply, the technique does not necessarily indicate the optimum parameter value. Other evidence of optimum parameter value is incorporated into the analysis such as visual inspection of the output, a knowledge of the model's idiosyncracies ${ }^{1}$ as well as some a priori knowledge of likely values for certain parameters.

In order to minimize the potential for error in utilizing this method (sensitivity test results) to provide some sense of optimality, the subject parameters were ranked in order of significance. ${ }^{2}$ The results of the sensitivity run on parameter one are used to adjust parameter one prior to conducting the sensitivity test on parameter two, and so on. Regardless of the inaccuracy of parameter estimates, the technique provides a good index of parameter sensitivity.

Many parameters could have been tested. However, it is felt that the key ones have been selected; testing additional parameters would not add a great deal to our knowledge of the system given the

[^78]current level of sophistication of the model and the technique. The following parameters were selected for sensitivity tests.

- BIRTH Rate--Beef Cows and Heifers, West --Dairy Cows and Heifers, East
- The "DEL" parameter ${ }^{1}$ in all Steer and Heifer delays
- The "K" parameter ${ }^{2}$ in all Steer and Heifer delays
- The scale up of WEST-EAST Cattle-Calf Movement

For the East only:

- The proportion of Female Calves in UNINSPECTED Calf SLAUGHTER
- The proportion of Female Cattle in UNINSPECTED Cattle SLAUGHTER.

Model Stability

Stability refers to a system's ability to return to the region of a steady state (or growth path) when that system receives an exogenous shock. In this discussion of CATSIM, a slightly wider interpretation of stability is used--that is, stability refers to the system's ability to respond to natural control features inherent in the real world.

Most systems have feedback loops that give direction to the system. In the Cattle-Calves economy these include price feedback loops. These loops provide interaction with the balance of the economy. CATSIM by itself does not have price feedback loops;

[^79]Table 24. Sensitivity test results on selected model parameters-CATSIM2, West
A. Beef BIRTH Rates (BRWBC, BRWBH)

BRWBC	Squared error values		
	Steer error	Heifer error	Total error
.82	$.25770 E+11{ }^{\text {a }}$	$.20755 E+11$	$.43092 E+11$
.83	$.22202 E+11$	$.20657 E+11$	$.36717 E+11$
.84	$.20158 E+11$	$.21587 E+11$	$.34438 E+11$
.85	$.19138 E+11$	$.33544 E+11$	$.36356 E+11$
.86	$.19142 E+11$	$.30539 E+11$	$.42121 E+11$

B. WEST-EAST Cattle Movement, scale-up factor (V9)

V9b			
1.00	$.19981 E+11$	$.20056 E+11$	$.34006 E+11$
1.02	$.20909 E+11$	$.20098 E+11$	$.35409 E+11$
1.04	$.22185 E+11$	$.20154 E+11$	$.37311 E+11$
1.06	$.23810 E+11$	$.20223 E+11$	$.39709 E+11$
1.08	$.25784 E+11$	$.20305 E+11$	$.42606 E+11$

C. DEL paramater, the High Energy Ration Streams (B Stream)

DEL			
	$.54760 E+11$	$.25315 E+11$	$.84313 E+11$
.75	$.37900 E+11$	$.26152 E+11$	$.65794 E+11$
.83	$.27982 E+11$	$.26613 E+11$	$.55229 E+11$
.91	$.22397 E+11$	$.26676 E+11$	$.48925 E+11$
.99	$.19467 E+11$	$.36446 E+11$	$.44971 E+11$

${ }^{\text {a }}$ The value $.25770 E+11$ is read .25770 times 10 raised to the power 11.
$\mathrm{b}_{\text {BRWBC }}$ and BRWBH are set at . 82 ; the "DEL" and " K " values are set at their final values.

Table 24--Continued

D. K parameter, the High Energy Ration Streams (B Stream)

K	Squared error values		
	Steer error	Heifer error	Total error
3	$.22584 E+11$	$.22513 E+11$	$.28277 E+11$
4	$.21614 E+11$	$.24034 E+11$	$.42594 E+11$
5	$.22397 E+11$	$.26152 E+11$	$.50978 E+11$
6	$.24687 E+11$	$.28652 E+11$	$.62281 E+11$
7	$.28422 E+11$	$.31391 E+11$	$.75941 E+11$

E. DEL parameter, the Low Energy Ration Streams (A Stream)

DEL			
.59	$.21757 E+11$	$.40285 E+11$	$.70318 E+11$
.67	$.19556 E+11$	$.30074 E+11$	$.48699 E+11$
.75	$.19702 E+11$	$.24582 E+11$	$.39456 E+11$
.83	$.19605 E+11$	$.21582 E+11$	$.36494 E+11$
.91	$.20389 E+11$	$.20089 E+11$	$.36570 E+11$

F. K parameter, the Low Energy Ration Stream (A Stream)

K			
2	$.22873 E+11$	$.29857 E+11$	$.58371 E+11$
3	$.19202 E+11$	$.24250 E+11$	$.39456 E+11$
4	$.19136 E+11$	$.23588 E+11$	$.36369 E+11$
5	$.21124 E+11$	$.25859 E+11$	$.43647 E+11$
6	$.24445 E+11$	$.30574 E+11$	$.58343 E+11$

Table 25. Sensitivity test results on selected model parameters-CATSIM2, East
A. Dairy BIRTH Rates (BREDC, BREDH)

BREDC	Squared error values		
	Steer Error	Heifer error	Total Error
	$.20633 E+11$	$.13342 E+11$	$.55921 E+11$
.70	$.19653 E+11$	$.12444 E+11$	$.52182 E+11$
.71	$.19348 E+11$	$.12222 E+11$	$.51138 E+11$
.72	$.19716 E+11$	$.12667+11$	$.52788 E+11$
.73	$.20759 E+11$	$.13792 E+11$	$.57134 E+11$
.74			

B. WEST-EAST Cattle Movement, scale-up Factor (V9)

V9 a			
1.00	$.20931 E+11$	$.14546 E+11$	$.58473 E+11$
1.02	$.20446 E+11$	$.14559 E+11$	$.58047 E+11$
1.04	$.20314 E+11$	$.14558 E+11$	$.58120 E+11$
1.06	$.20532 E+11$	$.14625 E+11$	$.58693 E+11$
1.08	$.21102 E+11$	$.14678 E+11$	$.59766 E+11$

C. DEL parameter, the High Energy Streams (B Stream)

DEL			
.67	$.29423 E+11$	$.14803 E+11$	$.71598 E+11$
.75	$.25249 E+11$	$.14531 E+11$	$.65047 E+11$
.83	$.22879 E+11$	$.14370 E+11$	$.61338 E+11$
.91	$.21609 E+11$	$.14282 E+11$	$.59398 E+11$
.99	$.20975 E+11$	$.14241 E+11$	$.58489 E+11$

D. K parameter, the High Energy Streams (B Stream)

K			
3	$.22578 E+11$	$.14492 E+11$	$.62113 E+11$
4	$.21852 E+11$	$.14420 E+11$	$.60543 E+11$
5	$.21609 E+11$	$.14385 E+11$	$.59758 E+11$
6	$.21713 E+11$	$.14387 E+11$	$.59573 E+11$
7	$.22117 E+11$	$.14422 E+11$	$.59890 E+11$

${ }^{\mathrm{a}}$ BREDC and BREBC are set at. 73 .

Table 25--Continued

E. Del parameter, the Low Energy Streams (A Stream)			
	Squared error values		
	Steer error	Heifer error	Total error
.67	$.23162 E+11$	$.14797 E+11$	$.62987 E+11$
.75	$.21609 E+11$	$.14385 \mathrm{E}+11$	$.59758 \mathrm{E}+11$
.83	$.20386 \mathrm{E}+11$	$.14084 \mathrm{E}+11$	$.57265 \mathrm{E}+11$
.91	$.19396 \mathrm{E}+11$	$.13848 \mathrm{E}+11$	$.55254 \mathrm{E}+11$
.99	$.18580 \mathrm{E}+11$	$.13653 \mathrm{E}+11$	$.53581 \mathrm{E}+11$

F. K parameter, the Low Energy Ration Streams (A Stream)

K			
2	$.21001 E+11$	$.13429 E+11$	$.57270 E+11$
3	$.21609 E+11$	$.14385 E+11$	$.59758 E+11$
4	$.22401 E+11$	$.15205 E+11$	$.62592 E+11$
5	$.23333 E+11$	$.16020 E+11$	$.65757 E+11$
6	$.24376 E+11$	$.16834 E+11$	$.69145 E+11$

G. Steer proportion of UNINSPECTED Cattle SLAUGHTER

V76				
.20	$.39701 E+11$	$.33808 E+11$	$.57223 E+11$	
.30	$.25182 E+11$	$.19078 E+11$	$.57223 E+11$	
.40	$.20306 E+11$	$.14072 E+11$	$.57223 E+11$	
.50	$.25313 E+11$	$.18788 E+11$	$.57223 E+11$	
.60	$.39964 E+11$	$.33228 E+11$	$.57223 E+11$	

H. Heifer proportion of UNINSPECTED Calf SLAUGHTER

V34			
.15	$.19914 E+11$	$.14592 E+11$	$.57463 E+11$
.25	$.20143 E+11$	$.14325 E+11$	$.57343 E+11$
.35	$.20386 E+11$	$.14072 E+11$	$.57223 E+11$
.45	$.20642 E+11$	$.13833 E+11$	$.57105 E+11$
.55	$.20913 E+11$	$.13609 E+11$	$.56988 E+11$

however, version CATSIM3 does incorporate price and other stimuli through the behavioral elements. To the extent that these price feedback loops are not closed by incorporation of a second model (a model determining price), CATSIM is unstable.

The CATSIMI version is highly sensitive and unstable due to the method of Replacement Heifer generation. ${ }^{1}$ In CATSIM1, REPLACEMENTS are generated as a proportion of the existing Cow Herd. If the proportion is slightly high (low), the Cow Herd grows (or declines) exponentially, finally exploding (or collapsing). This feature was found to be very useful in arriving at initial values for certain parameters as a slight change in the value of a parameter became very apparent over a 15 year run of the simulator.

To demonstrate, CATSIMI is analogous to the following very simple system with respect to its dynamic properties.

The model of the simple system is expressed by the differential equation:

$$
d \frac{P_{t}}{d t}=B R \cdot P_{t}-D R \cdot P_{t}-S
$$

where $\quad P_{t}=$ population in time period t;
BR = BIRTH Rate;
DR = CULL + natural DEATH Rate; and $S=$ other factors such as EXPORT and IMPORT Rates.

[^80]If it is assumed that $S=0$, then the solution to the differential equation is:

$$
P_{t}=P_{0} e^{(B R-D R)^{t}}
$$

This model's dynamic properties are shown in the following graph. These properties are also shared by CATSIMI.

Version CATSIM2 does not explode in an exponential sense due to the method of calculation of REPLACEMENTS. However, due to the lack of price feedback, the output can become highly biased without a correction mechanism coming into effect.

Since a simulator is a second level of abstraction from reality, instability can occur in the simulator even though it does not appear in the real world or the mathematical model. This stability or lack of stability is a function of the models' parameters and especially those associated with the distributed lag subroutines. This aspect of stability is discussed in Appendix B.

Version CATSIM3 is by design a model reflecting the impact of relevant prices and other external influences. While the model itself does not complete the price feedback loop, to be operated as a partially closed system this loop must be closed. Thus, in operation CATSIM3 is stable within the bounds of the cattle cycle. ${ }^{1}$

CATSIM1 and CATSIM2 are unstable in the sense of the above discussions. Lack of stability, however, does not preclude their application to a range of problems and research questions.

Operation in a Deterministic Mode

CATSIM1 and CATSIM2 operate in a deterministic mode, that is, they contain no stochastic elements. The main difference between CATSIM1 and CATSIM2 involves the method of generation of Cow SLAUGHTER and REPLACEMENTS. This difference has been stated before on several occasions and is discussed in detail in Chapter IV.

The best method of conveying an understanding of the performance of these two models is to visually display the output. To that end, Figures 27 to 32 plot the historical Cow and Bull Population as estimated by these two models. These estimates in turn are compared with the published Population statistics. The estimated flow of Slaughter Steers and Heifers is given in Figures 37 to 40 in the next section. These latter estimates are also compared with published SLAUGHTER statistics.

[^81]CATSIM2 tracks Cow Population official statistics with extremely low error in the West and with tolerable error in the East. The tracking of official Bull Population statistics is less precise with error mostly below 5 percent although in the 1971-1972 case, the errors are larger.

In operating CATSIM2, it was found to be necessary to alter MATRIX output ${ }^{1}$ in three instances. This was found to be necessary to force CATSIM2 output to track the official statistics. This alteration was applied in terms of a factor multiple of the MATRIX REPLACEMENT series. These factors are as follows:

Bull, REPLACEMENTS, West x . 97 East x 1.03

Beef Cow, REPLACEMENTS, East $\times 1.03$
All others $\times 1.00$

In all instances, an attempt was made to keep all parameter settings constant between MATRIX and CATSIM2. This was not always possible as the structure of the tivo models is inherently different. In the case of Western bulls, CATSIM2's ability to exactly duplicate the conditions of MATRIX is obviously open to some error, as evidenced by the divergence of the estimated from the published Bull Population data series. The fact that a correction factor of .97 is needed indicates that the differences between CATSIM2 and MATRIX are not only random but also biased.

[^82]The explanation for Eastern Beef Cows is different. The data series (Cow SLAUGHTER and REPLACEMENT) used in CATSIM2 is not the original MATRIX output but the altered output. This alteration accounts for most of the adjustment factor of 1.03. The Eastern Dairy Herd did not require any adjustment factor since the alterations are relatively much smaller with respect to the larger Dairy Herd. These alterations, however, show up in the form of poorer tracking in the East than in the West.

CATSIM1 ${ }^{1}$ overestimates Western Beef Cow Population during the 1958-1963 expansion period and underestimates it during the 1964-1969 contraction period, contrary to expectations. In the East, the Beef Cow Population is once again overestimated durina the 1958-1963 period but gives predictable (overestimated) results during the 1965-1969 downswing in the cattle cycle.

In the West, the Dairy Cow Herd was assumed a priori to be immune to the cattle cycle, consequently MATRIX was constructed on such a premise. ${ }^{2}$ In addition, MATRIX output was used in an unaltered form with respect to Western SLAUGHTER and REPLACEMENT data sources.

[^83]Figure 28 shows the results--a steady decline in Dairy Cow numbers. The published statistics, however, show a rather definite cycle tending to dispute this stability premise.

The alterations made to the Eastern output of MATRIX may have been unnecessary as the output of CATSIM2 clearly exaggerates the cycle indicated by the published Dairy Cow Population series, especially over the 1959-1965 period.

Operation in a Stochastic Mode

CATSIM3 is developed by adding the behavioral models developed in Chapter III to CATSIM2. In effect, the elements of CATSIM2 concerning REPLACEMENT and SLAUGHTER are replaced by the behavioral estimators. To reiterate, these behavior models estimate (1) Cow SLAUGHTER and REPLACEMENT, (2) Bull SLAUGHTER and REPLACEMENT, and (3) Calf SLAUGHTER.

CATSIM3 represents the most sophisticated version of CATSIM developed in this study. The inclusion of the behavioral models allow the incorporation of price feedback loops and provide other points of interaction between the Cattle-Calves sub-sector and the balance of the economy.

Figures 33 to 36 compare the output of CATSIM3 with CATSIM2 as well as with the official published statistics with respect to Cow Population. Figures 37 to 40 make these same comparisons with respect to Steer and Heifer SLAUGHTER. The first comparison reflects the accuracy of the behavioral models with respect to Cow SLAUGHTER and REPLACEMENT. The second comparison reflects the accuracy of the

Figure 27. Quarterly Beef Cow Population, West, 1958-1972, Published, and Estimated by CATSIM1 and

Figure 32. Quarterly Bull Population, East, 1958-1972, Published, and Estimated by CATSIM1 and CATSIM2.
behavioral models with respect to the above, plus the accuracy of Calf SLAUGHTER estimates.

With respect to Cow Population estimates (Figures 33 to 36), CATSIM3 provides acceptable estimates in comparison with CATSIM2. Most turning points are reflected; the magnitude of quarter to quarter and year to year adjustments are estimated quite accurately as well. A statement that generalizes CATSIM3 performance might be that it "moderates" cyclical adjustments.

The CATSIM3 estimates of INSPECTED SLAUGHTER (Figures 37 to 40), closely approximate those of CATSIM2. Steer SLAUGHTER estimates are particularly close; Heifer SLAUGHTER estimates show more deviation between CATSIM2 and CATSIM3 estimates. This might be explained in terms of the fact that Heifer SLAUGHTER is derived from those Heifers that are surplus or residual to REPLACEMENT needs. Since more Heifers are used for REPLACEMENT, any error in REPLACEMENT estimates generate a relatively much larger SLAUGHTER error.

Figures 37 to 40 compare SLAUGHTER estimates with official published statistics. The statement that SLAUGHTER is a residual applies to CATSIM, and, in fact, the real world. Thus, all flow errors are summed and are finally revealed in SLAUGHTER estimates. Generally speaking, the observed seasonal SLAUGHTER pattern is more variable than the somewhat fixed CATSIM seasonal SLAUGHTER. ${ }^{1}$ For this reason, the turning points in the estimated and the official data series

[^84]do not occur in the same quarter in every instance. The obvious conclusion is that the observed feeding-finishing lag fluctuates about the stable one built into CATSIM.

CATSIM tends to even out the observed peaks in SLAUGHTER.
This would indicate the shape of the continuous delay's distribution is too flat. ${ }^{1}$ A "best" fit is obtained by using this flat or smoothing distribution together with a "mean" delay in the feeding-finishing process. These two unrealistic fixed values (mean delay and delay distribution) tend to complement each other. If a more accurate delay were introduced, a more responsive (less flat) delay distribution could be used.

The second set of comments concerning SLAUGHTER estimates refer specifically to Heifer SLAUGHTER. These latter estimates deviate markedly from the observed or official Heifer SLAUGHTER. This deviation is a result of the two factors mentioned above, namely, (1) SLAUGHTER is a residual, and (2) the continuous delay element in the model does not accurately reflect actual conditions, but rather "mean" conditions. In Figure 38, estimated and official estimates differ widely during the 1962-1963 and 1966-1967 period. In Figure 40, this difference is noted in the 1964-1965 period. The 1965-1966 period is the first two years of the cattle cycle downswing. In many years, estimated Heifer SLAUGHTER is lower than official Heifer SLAUGHTER. A plausible explanation might be that official Heifer SLAUGHTER includes both Heifers,

[^85]as defined in CATSIM, plus very young Cows. The latter would in many cases meet the physiological limits of a Heifer as defined for SLAUGHTER statistics purposes.

In summary, CATSIM3 appears to operate as well as CATSIM2 or stated in another fashion, introduction of the behavioral elements causes little, if any, loss in estimation accuracy, while introducing all the advantages of the price feedback and other interaction with the non-Cattle-Calves economy. The limitations of CATSIM2 are also the limitations of CATSIM3.

Figure 33. Quarterly Beef Cow Population, West, 1958-1972, Estimated by CATSIM2 and CATSIM3.

$$
1
$$

(1900

CHAPTER VII

SUMMARY AND APPLICATION

The most substantive results of the study are contained in the structure and assumptions of the various models which are built in the course of this investigation. These assumptions and the models structure are described in the body of the thesis and will not be reiterated in this final chapter.

The Cattle Herd simulator that was designed and built is called CATSIM. It is, however, the end result of a series of other subservient, but nevertheless, useful models. These latter models are used to estimate parameter values and generate data series that were not available, but are required to construct the Cattle Herd simulator.

The first section of this final chapter summarizes these various models, describes their purpose, relates the models to each other and to the study objectives as listed in Chapter I. In addition, chapters, figures, tables, and appendices are referenced where these describe various aspects of the model or its output.

Summary

In order to build the simulator, it was necessary to utilize existing official data that are descriptive of the Canadian Cattle Herd. These data become the stock and flow variable values for the simulator,
as well as for all other models. ${ }^{1}$ It was recognized at the onset that these official data were not necessarily accurate nor were the various series compatible with each other. In addition to these two shortcomings, these data are not comprehensive enough to support the proposed simulator. In order to assess the official data, a simple simulator was built. This simulator, called RECON, was built on the basis of a single identity. Some of the key results obtained from the use of RECON are described later in this section.

Parameter estimation is another major part of this study. One major set of parameters is estimated by ordinary least squares. This technique is applied to 16 behavioral relationships that were designed for CATSIM3. While many more behavioral and time variant relationships could have been considered, the scope of this study limited it to 16. The behavioral relationships serve to complete the price feedback loop that provides direction to the growth of the Cattle Herd. They also provide the connecting link between Cattle-Calves subsector and the wheat-feed grain sub-sector, as well as with the balance of the economy.

In order to fit these behavioral relationships, a set of time series data was required that was not available from published statistics. To generate these data, the endogenous variables, a third model was built. It is called MATRIX.

[^86]Additional parameter values were needed that could not easily be estimated by econometric techniques because of the lack of historical data series. In truth, of ten the purpose of obtaining parameter estimates was to generate the missing data series. In these instances, parameter estimates were obtained from a variety of sources including data compiled by various organizations, by extrapolation and by obtaining guesstimates from individuals who should be in a position to provide reliable information. The test of these parameter values is their objectivity in use in the various models.

All models are based in large part on judgment. The structure of these models is based on judgment; certain parameter values are based on informed judgment. In almost all cases, this judgment was given by individuals who had no subsequent opportunity to revise, clarify, or defend their subjective estimate. The stage of development of these models is such that refinement can only come through interaction between these subject matter specialists and the model. This will occur subsequent to this study.

Program MATRIX and the Behavioral Models
The model used to generate the endogenous data series for the behavioral models (and ultimately for version CATSIM3) is called MATRIX. These data series are used directly in version CATSIM2 as well. This model is described in Chapter III while its Fortran program is listed in Appendix C.

This model generates a time series of quarterly Dairy and Beef Cow SLAUGHTER (CULL) and REPLACEMENT data. These same data series are
generated for Bulls. A listing of these data series, together with Male and Female Calf SLAUGHTER, is given in Tables 5 to 8.

One test of the reliability of these data series is to assess their performance in the simulator. Version CATSIMI does not use these data series while CATSIM2 does. Figures 27 to 32 compare Cow and Bull Population estimates given by CATSIM1, CATSIM2, and the official published data. Since the only difference between CATSIMI and CATSIM2 involves these data, their relative performance can be attributed to it. CATSIM2's superiority is marked; these data series are considered to perform satisfactorily.

MATRIX was designed so as not to generate a Western Dairy Cattle cycle while an Eastern cycle was built into the model's output. The results demonstrated in Figures 28 and 31 clearly demonstrate that such a cycle does exist in the West while it is overemphasized, as simulated, in the East.

A most annoying outcome of MATRIX is the presence of negative REPLACEMENT Bull flow during certain third and fourth quarters. Discussions with livestock officials could only produce very tentative explanations of this anomaly. It might be suspected that Bull SLAUGHTER data is in error or Bulls make up a disproportionately high element in UNINSPECTED Cattle SLAUGHTER or both.

The behavioral models employ an "excess price" model that abstracts from "own price." This model was developed to avoid the use of simultaneous equations as the simulator requires quantities only. The theoretical development of the excess price model is given
in Chapter III as well as the development of the behavioral models which utilize it. The parameter estimates for the 16 behavioral models are given in Tables 9 to 11.

The excess price model served as a good predictor of quantities when evaluated in terms of the statistics R^{2} and \bar{R}^{2}. This was the case in spite of the fact that "own price" was excluded in keeping with the theoretical model.

The excess price model proved to be particularly disappointing as it failed to provide the theoretically predicted sign for many regression coefficients. This model obviously requires additional development even though its preditive ability is very good in its present form.

A variation of the excess price model employing lagged endogenous variables was used in all behavioral models. These lagged endogenous variables entered most models at a highly significant level (1 percent level of significance). Because these estimators are quarterly and the cattle production cycle is annual, seasonal dummy variables were significant variables in most models.

A time trend or cycle was present in many models that was not otherwise accounted for by the exogenous and lagged endogenous variables. In some instances, especially Bull SLAUGHTER and REPLACEMENT, the trend or cycle was not removed. This resulted in significant serial correlation, however, it was not considered to be highly detrimental to their usefulness as quantity predictors in the context of program CATSIM.

Program RECON

The purpose of RECON was to attempt a dynamic reconciliation of the various published data series that describe the Canadian Cattle Herd. This model is described in Chapter IV while its Fortran program is listed in Appendix D. The model was used to gain knowledge of these data series and to obtain some preliminary estimates of parameter values. It is intended to be used to test hypotheses concerning parameter values and structure as well as hypotheses concerning the consistency or accuracy of the published data series. Several of these latter tests were made in this study.

Statistics Canada publishes semi-annual Calf BIRTH statistics. Western BIRTHS were found to be consistent with the Western Cow Population (plus a proportion of the Beef Heifer Population) when BIRTH Rates of 85 percent for Beef and 76.5 percent for Dairy were utilized. Year to year variation ranges from 1 percent high to 6 percent low for the official estimates.

In contrast, Statistics Canada's Eastern BIRTH estimates were 8-18 percent higher than RECON estimates when BIRTH Rates of 85 percent for Beef and 75 percent for Dairy were applied in a similar fashion. This discrepancy between official and estimated BIRTHS appears higher in later years.

An interesting observation is made that the discrepancy in the East and West move in opposite directions over time. In addition, the magnitude of the discrepancy appears somewhat correlated with the cattle cycle.

Another official data series and potential source of Dairy Calf BIRTH data is the Dairy Correspondent Survey. This Survey's data series, Cows and Heifers to FRESHEN This Month, overestimated RECON's estimated Dairy BIRTHS by 9-30 percent with the Eastern relative discrepancy being slightly larger than the Western.

Statistics Canada's December lst Calf Population estimates proved to be reasonably consistent with RECON estimates in the case of the West, especially when considered in light of Western BIRTH discrepancy. In contrast, the Eastern official estimates were 9-24 percent below the RECON estimates. This discrepancy has tended to increase through time.

It was previously stated that Statistics Canada's Eastern BIRTH estimates were high and tending to get higher through time while December lst official Eastern Calf Population estimates were low and getting lower through time. This inconsistency is the most marked result of the RECON analysis and the one most worthy of further study.

An analysis of REPLACEMENT Rate did not produce startling results when compared with a priori assumptions. The one possible exception is the case of Bull REPLACEMENTS. This latter Rate is much higher in the case of the West than the East. It would appear that a herd sire is used for two seasons on average in the West while being used for three seasons in the East.

The sex of EXPORTS and WEST-EAST Cattle Movements might be of interest but is not currently published; this information is required
in model RECON as well as in CATSIM. RECON was used to explore several possibilities; however, the information available constituted an overidentified set. Additional information must be brought to bear on the problem before a dynamic picture of these sex ratios can emerge. The outcome of RECON suggested that both Western EXPORTS Cattle 200-700 Pounds and UNINSPECTED Cattle SLAUGHTER contain a very high portion of Heifers.

RECON was used to examine Ending Population of Yearlings. In most cases the results could be rationalized. One result might be interpreted to indicate that Western Steers are slaughtered at 18 months of age while Eastern Steers are slaughtered at 22 months, on average. If this information cannot be reconciled with other information held to be true, then official Ending Steer Population is suspect.

RECON also provided insight into possible Dairy Heifer SLAUGHTER. First, it appeared consistent with the balance of the model that some Dairy Heifer SLAUGHTER does occur in both the East and West. A typical Eastern proportion of Dairy Heifers (1-2 years) is 25 percent but ranges from minus 7 percent (due to model design) to 39 percent over the 19581972 period. The proportion in the West has a wider range; it is thought that this might result from some "reclassification" of Heifers from Dairy to Beef with changing economic outlook.

Program CATSIM

Program CATSIM is the main or focal model of this study. It is described in detail in Chapter V; Chapter VI discusses sensitivity tests
and model stability. It compares CATSIM1, CATSIM2, and CATSIM3 with each other and their output with the comparable published statistics, as well.

In their present state, CATSIM is a very general model and does not provide specific answers to specific problems. The results of the study, with respect to CATSIM, are contained in its structure, parameter values, and the assumptions that are made in its construction.

The comparison of the output of CATSIM1, CATSIM2, and CATSIM3 is given in Figures 27 to 40. A complete listing of disaggregate quarterly Cattle Population and Steer and Heifer SLAUGHTER data is presented in Appendices F and G. Appendix F gives Population figures for the years 1958 to 1972, inclusive, while Appendix G lists SLAUGHTER data for 1961 and 1972.

All versions of CATSIM demonstrated reasonable ability to "track" past Cow Population data. The more sophisticated versions, CATSIM2 and CATSIM3, proved to be superior to CATSIM1 in this regard as expected. CATSIMI proved to be very sensitive to changes in critical parameter values and without a corrective feedback mechanism was unstable. This proved to be useful in fine tuning the model; it can be used to advantage in further fine tuning.

All versions of CATSIM proved to be inconsistently good predictors of Steer and Heifer SLAUGHTER, although the discrepancy (estimated compared with published) was low in most years. Over the 1961 to 1972 period, CATSIM2 estimated published Steer SLAUGHTER by 97 percent in the West and 97 percent in the East. The comparable

Heifer figures are 94 percent in the East and 100 percent in the West, but Heifer estimates show more year to year variation. ${ }^{1}$ This can be rationalized by the fact that Heifer SLAUGHTER is a residual after EXPORT and REPLACEMENT demands have been satisfied. Lack of precision in the estimation of either of these flows adversely influences Heifer SLAUGHTER estimates.

In spite of this lack of precision in estimating Steer and Heifer SLAUGHTER, most quarter to quarter turning points are estimated correctly, although they are often slightly out of phase with the published SLAUGHTER data. The explanation for this is that CATSIM uses a fixed expected feeding-finishing period while the length of the actual period is responsive to economic conditions.

One of the most interesting structural elements of CATSIM is the BIRTH generation process. Since BIRTHS are produced by both Mature Cows and First Calf Heifers, a knowledge of the stock of both is critical. In the case of Beef, annual calving distribution statistics are inadequate. Also, the calving age distribution of First Calf Heifers is critical. Both of these features are included in CATSIM and discussed in detail in Chapter VI.

[^87]
Adaptation to Potential Applications

The Cattle Herd simulator developed in this dissertation is a very general model. It requires the refinement that can come only through interaction among researchers, policy makers, and statisticians. To become useful, it must be adapted to specifically defined problems, the sorts of problems that might be identified by researchers, policy makers, and statisticians who have a practical interest in the problem of the Canadian Cattle-Calves sub-sector. The above discussion applies equally to models RECON and MATRIX.

Any discussion of specific applications would be both lengthly and incomplete. Five general types of applications are listed in Chapter I; these provide examples of anticipated applications. The changes or additions required to accommodate these applications include the following.

1. Provision for structural change. Researchers may wish to change or improve the structure of the model. Some elements that require further development are discussed in the next section. Structural changes might be exploratory in nature and thus treated as hypotheses.
2. Addition of a "front end." 1 The specific application may identify a few key variables, possibly policy variables that are of particular interest. The front end would allow easy manipulation of these key variables.
3. Addition of a report writer. Once again, the specific application will dictate the output information that is

[^88]required. The report written presents the output information in an easily read form.
4. Control mechanisms and mode of operation. While the price feedback mechanism is the major element in the cattle-calves economy, providing it with direction, there are many policy alternatives that may be superimposed on it. A specific rule, or controller, can be designed into the model or the model may be controlled manually.

The Cattle Herd simulator was specifically designed to accommodate biological as well as economic parameters. The above types of changes or additions apply equally to model applications developed to solve practical problems suggested by animal scientists as well as to those suggested by economists and policy makers.

Future Model Development

The building of MATRIX, RECON and especially CATSIM, helped identify gaps in the descriptive knowledge of the dynamics of the Canadian Cattle-Calves sub-sector. The problems associated with the published statistical data, descriptive of this sub-sector have been discussed in detail in most chapters. Lack of adequate data made it necessary to develop a set of data assumptions in order to build the various models. These assumptions represent a list of areas where the data base may be altered, redefined, or expanded.

A second type of data was found to be unavailable or inadequate; this data can be adequately determined only through further research and statistical analysis. A third limiting area, not unrelated to either the first or second, is described by the term, structural design.

These last two limiting features, requiring additional research and development, occupy the balance of this section.

A refinement in the structure of the feeding-finishing process is required if CATSIM is to adequately predict the supply of Slaughter Steers and Heifers. As currently modeled, this process is not a function of relative prices, feed quality, climatic or any other factors that might influence the weight and the quality of the carcass. Attempt to predict the quantity supplied of various qualities of beef and veal should consider these factors.

INSPECTED Heifer SLAUGHTER is a residual after EXPORTS, IMPORTS, WEST-EAST Movements, UNINSPECTED SLAUGHTER, and especially REPLACEMENTS. CATSIM suffers from an inability to determine the Female portion of the former flows. While the estimates of REPLACEMENT flows, estimated by MATRIX and the behavioral models, performed well on the average, the model's inability to predict Slaughter Heifer flows with accuracy leaves these estimates as suspect.

Both calving distributions and the distribution of the age of calving for First Calf Heifers, proved to be limiting. These distributions require additional research as they influence predictions of the Calf Crop.

It is also suggested that BIRTH and DEATH Rates are functions of economic and climative influence, among others. The variation noted between the RECON and CATSIM Calf Crops and the official Calf Crop, might be explained, in part, by these influences.

CATSIM identifies two feeding-finishing processes and allocates Calves between them in a manner that is proportionally non-variant. In actual practice, there is a spectrum of feeding-finishing processes, but, more important, the allocation to these two (or more) processes is a management decision based on current and expected future relative prices, feed quality, and availability. This aspect of CATSIM should be developed.

In addition to refinement to the current model, additions could be suggested. The first addition must be that of a price determining mechanism and mechanisms determining trade flows. These additions might involve interfacing CATSIM with a second model that performs these functions.

A second addition might involve adding a feed demand vector that interacts with CATSIM's Cattle Population vector. In this way, estimates of total feed requirements could be determined for any given size and age composition of the Canadian Herd.

The behavioral models and the theoretical excess price model developed in Chapter III have potential for further development. Four potential variations of the theoretical excess price were developed. These four variations could form the bases for a statistical study; the application to the subject matter of this dissertation would still remain appropriate. The excess price model's predictive performance in this study is very encouraging even though it did not consistently yield the predicted sign for the regression coefficients.

The behavioral models themselves form the bases for many interesting statistical tests with policy implications. A refinement of these models would benefit model CATSIM. In particular, the problems of serial correlation remain, as do the inadequate structure of the models with respect to farm wages, interest rates, and grain stocks.

The basic models represented by MATRIX, RECON, and CATSIM represent a first attempt to simulate the Canadian Cattle Herd. Additional research and adaptation to practical problems can make them valuable teaching, research, and policy tools.

APPENDICES

APPENDIX A

PARAMETER INITIAL VALUES

Appendix A deals with the support and derivation of the initial values for the various models' parameters and such other data analysis as might be useful in building the model. Since program MATRIX, RECON, and CATSIM all model some aspect of the same Cattle Population, this discussion refers equally to all models.

Parameters are of two types. The first may be called characteristics of the cattle production process as practiced and experienced in Canada. These parameters have to do with the birth and death process, as well as the growth and maturation process.

The second set of parameters disaggregate published data series. The level of disaggregation at which all models are constructed, especially program CATSIM, exceed the limits of the published data. This disaggregation may involve breaking out the Male/Female component, Dairy/Beef component, seasonal component, or one of several others. These data, in disaggregate form, are required to provide a major and often only source of the critical flow elements for these models.

All initial parameter values are viewed as hypotheses; this means that they may subsequently be accepted or rejected on the basis of the four tests of objectivity when used in the models. Some of these parameter values can be determined fairly accurately from prior sources,
others are guesses only. It is planned that the operation and optimization of these models will reveal estimates that approach the true values. This is especially true in the case of those parameters to which the model proves to be sensitive.

Birth Rate

(a) STATCAN's statistics for BIRTHS and Cow Population are used to compute a BIRTH Rate estimate. The formula used is as follows:

BIRTH Rate $=\frac{\text { June } 1 \text { BIRTHS }_{t}+\text { December } 1 \text { BIRTHS }_{t}}{\text { Total Cow Population Dec. } 1_{t-1}+\text { Total Cow Population June } T_{t}}$

The results:

	Calculated Year BIRTH Rate	
1972	$\underline{\text { WEST }}$	$\underline{\text { EAST }}$
1971	.95385	.90815
1970	.98400	.92400
1969	.96170	.94029
1968	.93481	.93828
1965	.93009	.93777
1962	.89776	.91858
1959	.92817	.82239
	.92876	.81541

(b) Dairy Correspondent Survey data was also examined. Total Cows and Heifers were compared with Cows and Heifers to FRESHEN This Month, on a monthly basis. The sum of the 12 monthly ratios provides the elements in the following matrix.

Year	Calculated BIRTH Rate		
	Ontario	Quebec	Alberta
1972	. 8604	. 9268	. 8931
1971	. 8658	. 9542	. 9136
1970	. 8458	. 9034	. 9132
1969	. 8490	. 9187	. 9633
1968	. 8390	. 9214	. 8814
1965	. 9112	1.0132	. 8980
1963	. 8678	. 9399	. 9533
1961	. 9088	1.0310	. 9598

(c) ROP data suggests that the average period between calvings for Dairy Cows is 13 months. This would place an upper bound of $\frac{12}{13}=.923$ on Dairy BIRTH Rate.

Calving Distribution

(a) The ROP Section, Agriculture Canada provided an estimate of dairy birth distribution based on their data base.

Month	Monthly proportion
January	.09236
February	.06761
March	.11133
April	.08768
May	.06404
June	.05321
July	.06601
August	.07635
September	.09606
October	.09532
November	.09261
December	.08670

(b) The Dairy Correspondent Survey also provides an estimate. Two years were sampled for the Eastern (mainly Dairy) region.

	Monthly Dairy Birth		
Month	Distribution, selected years		

The same years were also sampled for the Western region.

Monthly Dairy Birth

Distribution, selected years

Month	1962				$\underline{1966}$	$\underline{1970}$
January	.07676	.06912	.07125			
February	.08035	.07784	.07960			
March	.08754	.08851	.08518			
Apri1	.09785	.10311	.09441			
May	.11459	.11879	.10322			
June	.09764	.10043	.09082			
July	.06950	.07402	.06852			
August	.05580	.06123	.05645			
September	.05521	.05561	.05534			
October	.05285	.05405	.06160			
November	.05642	.05182	.05849			
December	.06404	.05737	.06568			

(c) The Alberta Department of Agriculture provided an estimate of the Western beef cow calving distribution on a weekly basis for the first 37 weeks of the year (until mid-September). This distribution was broken down into commercial and purebred components. It is based on ROP records for 1972 and 1973.

Both distributions are heavily concentrated in March, April, and May. Very little calving occurred in the Beef Herd after July 15th according to their analysis. The distributions provided show that the commercial Herd reaches peak calving rate during the April 19-25 period while the purebred Herd peaks during April 2-8 period.

One Alberta official also added that he feels the calving distribution has shifted toward earlier calving by 15-30 days over the past 15 years.

Period	$\frac{\text { Alberta Beef Birth Distribution, }}{\frac{1972-1973}{}}$	
	(head)	(\%)
First 13 weeks	12,930	30.5
Second 13 weeks	28,500	67.5
Third 11 weeks	925	2.2
Total	42,355	100.0

(d) While no estimates were obtained for Eastern beef cow calvings, it is felt that this distribution is less concentrated in the first two quarters due to year round and especially fall calving.
(e) The semi-annual calving distribution can be obtained by comparing the December-June BIRTHS and June-December BIRTHS with Total BIRTHS as published by STATCAN.

Year	Semi-Annual Birth Distribution, selected years			
	$\frac{\text { December- }}{\text { June }}$	JuneDecember	$\frac{\text { December: }}{\text { June }}$	JuneDecember
1958	. 70	. 30	. 67	. 33
1960	. 71	. 29	. 67	. 33
1962	. 74	. 26	. 67	. 33
1964	. 755	. 245	. 675	. 325
1966	. 77	. 23	. 665	. 335
1968	. 78	. 22	. 655	. 335
1970	. 78	. 22	. 65	. 35
1972	. 78	. 22	. 65	. 35

DEATH Rates

The estimates of DEATH Rates are taken from a study by W. Y. Yang, A Statistical Analysis of Death Rates of Farm Animals in Canada, Research Division, Economics Branch, Canada Department of Agriculture, 1969. The data in the following table is taken from Yang's Table 2-1, p. 19.

DEATHS per 1,000 Head, 1950-1967

Region	Semi-Annual		Annual
	December-	June-	
	May	November	
Calves:			
Atlantic	16.74	10.49	27.04
Quebec	29.40	10.40	38.53
Ontario	19.07	13.30	32.36
Prairies	20.64	9.84	29.88
B.C.	15.94	10.65	26.30
Canada	21.24	10.74	31.43
Cattle:			
Atlantic	7.57	6.02	13.52
Quebec	8.28	5.70	13.80
Ontario	6.27	6.49	12.76
Prairies	8.21	5.88	13.94
B. C.	8.60	7.04	15.57
Canada	7.57	6.02	13.52

SLAUGHTER and UNINSPECTED SLAUGHTER

The disaggregation of SLAUGHTER and UNINSPECTED SLAUGHTER may be inaccurate at best due to a lack of statistical data. The initial estimated parameter values may have to be revised as a result of inconsistencies noted when the models are applied to practical problems.

The first assumption made is that UNINSPECTED SLAUGHTER of Calves is proportional to INSPECTED SLAUGHTER. This approach is used in MATRIX; this program calculates the relevant ratios semi-annually and applies them to the UNINSPECTED data.

The following table provides some analysis of the INSPECTED SLAUGHTER data for Calves.

INSPECTED Calf SLAUGHTER

		Prop.	Quarterly distributions				
Year	Total	$\frac{\text { Male }}{}$		lst	$\frac{\text { 2nd }}{\text { (nd }}$	$\frac{\text { 3rd }}{}$	4th
	(head)				(proportion)		
East:							
1958	568,486	.7025	.1950	.4114	.2164	.1771	
1960	511,962	.7196	.2143	.3766	.2240	.1848	
1962	528,280	.7176	.1937	.3658	.2336	.2067	
1964	572,511	.6913	.1817	.3712	.2316	.2154	
1966	576,432	.6884	.2601	.3808	.1815	.1769	
1968	509,393	.6985	.2358	.3668	.2040	.1933	
1970	448,930	.7005	.2550	.3654	.1983	.1813	
1972	461,630	.7052	.2617	.3826	.1762	.1794	
West:							
1958	215,981	.5938	.2247	.2647	.2812	.2308	
1960	200,138	.5058	.2145	.2361	.2752	.2742	
1962	180,949	.4719	.2238	.2177	.2514	.3070	
1964	177,808	.4619	.1619	.1995	.2695	.3690	
1966	189,164	.4205	.2443	.2266	.2098	.3194	
1968	159,018	.3870	.2295	.2214	.2660	.2831	
1970	50,232	.4490	.2618	.2440	.2368	.2573	
1972	40,740	.4597	.2669	.2374	.2209	.2748	

A similar analysis is also made of INSPECTED Cattle SLAUGHTER with the intent of providing initial estimates for UNINSPECTED Cattle SLAUGHTER.

INSPECTED Cattle SLAUGHTER

Year	Total	Bulls	Cows	Heifers	Steers
	(head)	(proportion)			
East:					
1958	971,356	. 0466	. 2793	. 1897	. 4025
1960	932,676	. 0391	. 2992	. 1929	. 4688
1962	958,978	. 0378	. 3228	. 1962	. 4430
1964	1,134,670	. 0314	. 2917	.1911	. 4859
1966	1,173,379	. 0265	. 2974	. 1930	. 4831
1968	1,163,369	. 0285	. 2629	. 2024	. 5062
1970	1,167,962	. 0274	. 2742	. 1838	. 5147
1972	1,126,890	. 0267	. 2491	. 1830	. 5411
West:					
1958	917,924	. 0318	. 3304	. 2181	. 4196
1960	1,009,077	. 0264	. 2775	. 2208	. 4754
1962	1,069,181	. 0251	. 3079	. 2002	. 4667
1964	1,287,590	. 0204	. 2394	. 1989	. 5503
1966	1,531,760	. 0180	. 3033	. 2102	. 4684
1968	1,621,010	. 0146	. 2691	. 2478	. 4685
1970	1,532,871	. 0123	. 1685	. 2305	. 5887
1972	1,751,701	. 0168	. 1860	. 2352	. 5619

IMPORT-EXPORT

The best evidence of import-export distribution is obtained by analyzing disaggregate 1969-1972 STATCAN data.

Purebred EXPORTS

Year	West Proportion Beef	East 1966
1967	.782	.798
1968	.700	.943
1969	.619	.918
1970	.775	.944
1971	.704	.966
1972	.932	.946
		.950

Purebred IMPORTS

	West Year	Proportion Beef
1969	.911	Proportion Dairy
1970	.899	.286
1971	.761	.287
1972	.898	.229
	.803	

Quarterly			Distribution of Purebred
Quarter	East	Dairy IMPORTS	(1969-1972)
lst quarter	.20	.11	Canada
2nd quarter	.29	.46	.161
3rd quarter	.26	.32	.362
4th quarter	.25	.10	.284
			.193

Quarterly Distribution of Purebred Beef IMPORTS (1969-1972)

Quarter	East	West	Canada
1st quarter	.14	.25	.214
2nd quarter	.41	.26	.310
3rd quarter	.19	.14	.160
4th quarter	.26	.34	.315

Quarterly Distribution of Other IMPORTS (1969-1972)

Quarter	East	West	Canada
1st quarter	.32	.29	.308
2nd quarter	.20	.36	.260
3rd quarter	.04	.01	.030
4th quarter	.44	.34	.402

Quarterly	Distribution of	Purebred	Dairy EXPORTS
Quarter	(1969-1972)		
lst quarter	.20	$\underline{\text { West }}$	Canada
2nd quarter	.11	.20	.204
3rd quarter	.20	.23	.204
4th quarter	.49	.14	.149
		.43	.443

Quarterly			
Quarter	Distribution of 0ther	Dairy EXPORTS	(1969-1972)
list quarter	$\underline{\text { East }}$	West	Canada
2nd quarter	.16	.18	.162
3rd quarter	.32	.26	.318
4th quarter	.30	.25	.300
	.21	.30	.220

Quarterly Distribution Total Purebred IMPORTS-EXPORTS (1969-1972)

Quarterly	Distribution of EXPORTS	200-700 Pounds	(1969-1972)
Quarter	East	West	Canada
lst quarter	.137	.039	.056
2nd quarter	.161	.036	.058
3rd quarter	.289	.076	.108
4th quarter	.412	.850	.778

Quarterly		Distribution of	EXPORTS	Over 700
Quarter	East	Pest	(1969-1972)	
1st quarter	.135	.312	Canada	
2nd quarter	.339	.221	.273	
3rd quarter	.265	.178	.247	
4th quarter	.260	.287	.198	
		.281		

The Canada Livestock and Meat Trade Report provides the following disaggregation of EXPORTS to United States.

	EXPORT Category							
EXPORTS to United States								
	(head)							
$\stackrel{\sim}{\text { ¢ }}$ Wast	$\begin{array}{r} 20,972 \\ 1,422 \end{array}$	11,163	$\begin{array}{r} 776 \\ 11 \end{array}$	$\begin{aligned} & 9,233 \\ & 3,885 \end{aligned}$	$\begin{aligned} & 3,817 \\ & 2,974 \end{aligned}$	$\begin{array}{r} 414 \\ 3,814 \end{array}$	$\begin{aligned} & 6,776 \\ & 6,521 \end{aligned}$	$\begin{array}{r} 1,443 \\ 28,271 \end{array}$
Nㅣㅇㅢ	$\begin{array}{r} 31,074 \\ 2,143 \end{array}$	16,006 427	$\begin{array}{r} 1,426 \\ 14 \end{array}$	$\begin{aligned} & 1,719 \\ & 3,012 \end{aligned}$	$\begin{array}{r} 465 \\ 2.764 \end{array}$	$\begin{array}{r} 164 \\ 2,701 \end{array}$	$\begin{aligned} & 3,079 \\ & 7,127 \end{aligned}$	$\begin{array}{r} 112 \\ 2,731 \end{array}$
잉 Wast	$\begin{array}{r} 36,441 \\ 2,334 \end{array}$	22,440 294					3,160 7,967	$\begin{aligned} & 129 \\ & 182 \end{aligned}$
잉 East	$\begin{array}{r} 33,069 \\ 2,930 \end{array}$	22,283 327					2,677 12,876	$\begin{array}{r} 129 \\ 3,397 \end{array}$
$\stackrel{\circ}{\circ} \mid \text { East }$	$\begin{array}{r} 19,673 \\ 2,226 \end{array}$	19,148 660					$\begin{array}{r} 1,626 \\ 23,936 \end{array}$	$\begin{array}{r} 119 \\ 14,546 \end{array}$
$\begin{array}{l\|l} \circ \\ \circ & \text { East } \\ \text { West } \end{array}$	$\begin{array}{r} 13,965 \\ 585 \end{array}$	$\begin{array}{r} 13,286 \\ 217 \end{array}$					$\begin{array}{r} 6,488 \\ 26,295 \end{array}$	$\begin{array}{r} 86 \\ 21,456 \end{array}$
¢0\% East	11,810 301	11,569 180					2,334 7,223	$\begin{array}{r} 106 \\ 10,736 \end{array}$
융 ${ }^{\text {East }}$	$\begin{array}{r} 19,389 \\ 486 \end{array}$	18,772 275					$\begin{array}{r} 8,441 \\ 28,133 \end{array}$	$\begin{array}{r} 258 \\ 61,692 \end{array}$
$\begin{array}{l\|l} \text { East } \\ \circ & \text { West } \end{array}$	$\begin{array}{r} 14,178 \\ 896 \end{array}$	$\begin{array}{r} 17,952 \\ 494 \end{array}$					$\begin{aligned} & 23,766 \\ & 31,101 \end{aligned}$	$\begin{array}{r} 788 \\ 94,193 \end{array}$
	$\begin{array}{r} 12,965 \\ 1,085 \end{array}$	$\begin{array}{r} 16,283 \\ 542 \end{array}$					$\begin{aligned} & 14,952 \\ & 12,162 \end{aligned}$	$\begin{array}{r} 513 \\ 17,516 \end{array}$
	$\begin{array}{r} 11,244 \\ 281 \end{array}$	$\begin{array}{r} 16,607 \\ 318 \end{array}$					$\begin{aligned} & 7,862 \\ & 9,188 \end{aligned}$	$\begin{array}{r} 141 \\ 28,916 \end{array}$
$\stackrel{\sim}{\circ} \left\lvert\, \begin{aligned} & \text { East } \\ & \text { West } \end{aligned}\right.$	$\begin{array}{r} 14,639 \\ 296 \end{array}$	$\begin{array}{r} 15,509 \\ 269 \end{array}$					$\begin{array}{r} 7,558 \\ 19,649 \end{array}$	$\begin{array}{r} 34 \\ 44,624 \end{array}$
힝 West	16,889	19,140 97					$\begin{array}{r} 450 \\ 28,812 \end{array}$	$\begin{array}{r} 125 \\ 86,595 \end{array}$

Allocation to Ration B

The best evidence of the proportion of Cattle placed on a high energy ration might be given by an examination of the proportion of Slaughter Steers and Heifers falling in the top two grades (choice, good). This analysis is given in the following table.

Year	Proportion of Slaughter Steers Heifers in top two grades
1961	.7472
1962	.7177
1963	.7520
1964	.7644
1965	.7413
1966	.7622
1967	.7742
1968	.7968
1969	.8339
1970	.8479
1971	.8449

Allocation of REPLACEMENTS

The following table shows the annual change in the Dairy Cow Population (June 1 data).

Year	Change in Eastern	Change in Western
	Cow Herd	Cow Herd
	(head)	(head)
1957	-149,500	-51,500
1958	-7,300	-10,500
1959	-8,400	-13,000
1960	52,200	2,000
1961	59,000	15,000
1962	-227,500	-53,000
1963	-46,500	-36,000
1964	-2,000	-26,000
1965	-11,000	-38,000
1966	-61,100	-60,000
1967	-50,900	-54,000
1968	-43,000	-37,000
1969	-19,000	-28,000
1970	-50,000	-3,000
1971	-115,500	-18,400
1972	-20,500	-23,800
1973	-36,000	-22,800 Canada
Annual \% change 1957-1973		
	-1.821	-3.98 -2.337

The following table calculated the ratios for selected years.

		Ratio A	
	Year	East	West
$A=\frac{\text { INSPECTED Cow SLAUGHTER }}{\text { Average Cow Population }}$	1964	. 1279	. 1036
	1969	. 1264	. 1070
	1972		. 0945
		Ratio B	
	Year	East	West
$B=$ INSPECTED Cow SLAUGHTER	1964	. 4185	. 381
Average Heifer Population	1969	. 3861	. 423
	1972	. 354	. 339

The calculation of the parameters for the continuous delays are based in most part on a set of more or less realistic assumptions concerning the process being simulated. The exception is the simulation of First Calf Dairy Heifer BIRTHS--a distribution was obtained from ROP in this instance.

The parameters in question are DEL and K. These are described in Appendix B. Given the erlang distribution, the purpose of this section is to consider initial expected values and distributions.

Ration A and B Delays

Initial assumption--Calves weaned at 180 days
Male Calf weaning weight 375 pounds Female Calf weaning weight 350 pounds

Ration B--on full feed
Males to 1,050 pounds
ADG range 1.9 to 2.4 pounds Days on feed 281 to 355

Females to 950 pounds
ADG range $\quad 1.7$ to 2.1 pounds
Days on feed 285 to 352
Ration A--low energy ration for all or part
Assume at 365 days Males 600 pounds
Females 550 pounds

At one year these Cattle may be placed in a feedlot or may be placed on grass for a further four to six months. This option increases the ADG range; thus, the distribution being simulated is flatter than the above "full feed" distribution.

> Males to 1,100 pounds ADG range 1.5 to 2.25 pounds Days on ration A 222 to 333 Females to 1,000 pounds $\begin{array}{ll}\text { ADG range } 1.4 \text { to } 2.00 \text { pounds } \\ \text { Days on feed } & 225 \text { to } 321\end{array}$

The above ranges provide a bound for expected value; it might also be expected that at least two-thirds of the distribution would fall in this range. The shape of the distribution might be expected to be skewed to the right possibly suggesting an order (K) of five.

In the case of Ration B, this provides

```
mean of 3.33 DT's or . }82\mathrm{ years
variance of 2.22 DT's
standard deviation of 1.25 DT's or . }3125\mathrm{ years
```

The distribution associated with Ration A might be expected to be flatter--an order of three is suggested.

```
mean of
    3 DT's or . }75\mathrm{ years
variance of
standard deviation of 1.75 DT's or . }4375\mathrm{ years
```

Dairy Heifer Birth Delay
The ROP Section of Agriculture Canada provided the following age distribution for First Calf Heifer FRESHENINGS.

$\frac{\text { Age Range }}{}$	Proportion of Total
(months)	
under 21	.00278
$21-24$.01719
$24-27$.10542
$27-30$.16005
$30-33$.15536
$33-36$.11261
$36-39$.09634
$39-42$.12149
$42-45$.12652
$45-48$.10078

The distribution rises rapidly, then slowly tails off. It is quite flat and is in fact bi-modal suggesting two distributions.

Half this distribution falls below the mid-point of the 33-36 month range. The flatness of the distribution suggests the order (K) of three. These parameters would provide:

```
mean of about
variance of about
    3.5 DT's or . }85\mathrm{ years
    4.1 DT's
standard deviation of about 2 DT's or . }5\mathrm{ years
```


APPENDIX B

SIMULATION

Appendix B describes several different aspects of simulation pertinent to an understanding of this thesis. The first section describes the implied mathematical model and the exact block diagram. The second section describes several common simulation building components used in the models.

Simulation of the Modeled System

The simulation model is the second level of abstraction from reality. The sequence is:

There is thus an implied or possibly explicitly expressed mathematical model of the system under investigation. The mathematical model in turn is the model that is simulated. In actual practice, exact expression of the system in mathematical form is most often skipped. The development, performance, consideration, and theoretical
discussion of the simulation components, however, takes place in exact mathematical form.

The dynamic aspects of a biological growth process, such as a cattle herd, probably can most precisely be expressed in non-linear differential equations. Their solution, however, even with advanced numerical techniques, can be unduly complex. If the relationship is essentially a function of time, it is usually possible to pick a time period of short enough duration so that the non-linear system can be modeled in linear terms.

The basic mathematical representation of the cattle population is developed in terms of linear differential equations and the related first order difference equations. The matrix representation of a first order linear differential equation could be given as follows:

$$
\begin{equation*}
\frac{d x(t)}{d t}=\underline{A} x(t)+\underline{B} U(t) \tag{86}
\end{equation*}
$$

where

$$
\begin{aligned}
& x(t)=a \text { vector of state variables } \\
& U(t)=\text { a vector of rate or stimulus vectors } \\
& \underline{A}, \underline{B}=\text { matrices }
\end{aligned}
$$

Or in first order difference equation form as:

$$
\begin{equation*}
X(t+1)=\underline{A} x(t)+\underline{B} U(t) \tag{87}
\end{equation*}
$$

where the symbols have the same meaning as above.

The terms state and rate variables are used in systems parlance to represent stock and flow variables, respectively. The state variables are described as the product of the integration of rate variables. In the specific terminology of this study, stock (or state) variables refer to cattle numbers at a point in time; flow (or rate) variables refer to number of head per unit of time.

An nth order linear differential equation is used to represent lagged response to a stimulus. This can generally be represented as:

$$
\begin{gather*}
a_{n} \frac{d^{n} y(t)}{d t^{n}}+a_{n-1} \frac{d^{n-1} y(t)}{d t^{n-1}}+, \ldots, a_{0} Y(t)=b_{m} \frac{d^{m} U(t)}{d t^{m}} \tag{88}\\
+, \ldots,+b_{0} U(t)
\end{gather*}
$$

where

$$
\begin{aligned}
& x(t)=\text { the stimulus }, \\
& y(t)=\text { the response. }
\end{aligned}
$$

Since differential equations are difficult to solve or manipulate, a method is used by engineers, called Laplace Transformations. ${ }^{1}$ This is a transformation whereby differential equations can be converted to ordinary algebraic equations, manipulated, and then transformed back to differential equation form by an inverse Laplace Transformation.

$$
\begin{aligned}
& { }^{1} \text { The basic Laplace Transformation is by definition } \\
& \qquad L[x(t)]=x(s)=\int_{0}^{0} x(t) e^{-s t} d t
\end{aligned}
$$

All other transformations are derivatives of this formula.

If a Laplace Transformation is performed on equation (87), the following form is obtained

$$
\begin{equation*}
Y(s)=\left(\frac{b_{m} s^{m}+\ldots \ldots,+b_{0}}{a_{n} s^{m}+\ldots \ldots,+a_{0}}\right) X(s)+\frac{I \cdot C .(s)}{a_{n} s^{m}+\ldots \ldots,+a_{0}} \tag{89}
\end{equation*}
$$

where

$$
\text { I.C. }=\text { the initial conditions. }
$$

If I.C. $=0$, then

$$
\begin{equation*}
Y(s)=G(s) X(s) \tag{90}
\end{equation*}
$$

where

$$
\begin{aligned}
& G(s)= \text { ratio of two polinomials known as the transfer function, } \\
& \text { itself a polynomial. }
\end{aligned}
$$

The transfer function, $G(s)$, determines the response of the system being modeled by the nth order differential equation and thus the model's dynamic properties. This transfer function is used to design into the model both stability and the required response characteristics. ${ }^{1}$

With respect to the overall Cattle Herd simulator, the foregoing discussion is strictly theoretical as the system is much too complex to be modeled in terms of differential and difference equations and assessed

[^89]in terms of their Laplace transformations. Rather, the system is simulated using system components with known properties and the complete model is then subjected to a series of validation, sensitivity, and stability tests to assess its dynamic properties and to fine tune it accordingly.

The simulation of these linear differential equations that represent the dynamics of the Cattle Herd essentially involve solving them at discrete points in time. Such a model is called a discrete model and the simulation essentially becomes a difference equation model.

Block and exact (mathematical) block diagrams are commonly used to display and represent the system being modeled. These diagrams allow lines and direction of causation to be shown, feedback loops to be displayed, as well as stock and flow variables to be represented. The exact block diagram displays the simulation components that are the differential (difference) equations or transfer functions.

For demonstration purposes, a simple block diagram is shown below. It involves a vector of state variables, x, an exogenous rate vector, μ, and an output rate vector, y. In addition, the model has a feedback loop.

Feedback involves an output of the system influencing an input, usually a delayed influence. Most, if not all, real world systems involve feedback loops together with controller mechanisms. A system without a feedback loop is called an open loop system, a system with a feedback loop is a closed loop system. A complex system may involve both open and closed loop components.

The feedback mechanism is closely associated with system performance and stability. If changes in a system's output are felt almost immediately through a short "delay process," then the controller can act quickly and so provide smooth performance as does a governor on an engine. If the system has long delays and slow controller response, as does the price mechanism in the economic system, then cyclical motion may result. With poor feedback and an ineffective control mechanism, explosive behavior or a complete collapse may be observed.

Feedback can be of either a positive or of a normative nature-usually both are present in a system of any complexity. The behavioral response of individuals and firms in the economic system represent a positive response to largely normative stimuli. When certain outcomes are observed and evaluated as being good or bad (with respect to some welfare function, largely unspecified), specific adjustments are observed. Thus, in this model, beef farmers represent the controller, adjusting Herd investment and disinvestment as well as Calf SLAUGHTER and certain other variables under their control. A larger model can be visualized representing the aggregation of all beef farmers, as well as other immediate elements in the economic system. In the larger model, the Federal government, their advisors, and operating agencies are the controller.

Let x represent the vector of the various age cohorts in the Cattle Population, μ represent the vector of EXPORTS, and y, the vector of Slaughter Cattle. Then H is a matrix of SLAUGHTER Rates and \underline{A}, a matrix of BIRTH and DEATH Rates. In differential equation and exact block diagram form, the model may be represented as follows:

$$
\begin{aligned}
\frac{d x}{d t} & =\underline{A} x+U \\
y & =\underline{H} x
\end{aligned}
$$

In difference equation form, the model is

$$
\begin{aligned}
x(t+1) & =\underline{A} x(t)+U(t) \\
Y(t) & =\underline{H} x(t)
\end{aligned}
$$

The symbols used in representing a model in exact block diagram form are

Simulation Building Components

Integration
The dynamics of the Cattle Population can be visualized as a series of stocks and flows. Stocks are quantities at a point in time, flows are quantities per unit of time. Stocks result from the integration of flows.

Mathematically, this process can be modeled by differential equations such as:

$$
\begin{equation*}
\frac{d F(x)}{d t}=f(x) \tag{91}
\end{equation*}
$$

where

$$
\begin{aligned}
& F(x)=a \text { stock } \\
& f(x)=a \text { flow }
\end{aligned}
$$

Differential equation (91) states that the change in the stock is a function of the flow. If both sides of (91) are integrated from time 0 to time $t+D T$, the following is obtained.

$$
\begin{equation*}
F(t+D T)-F(0)=\int_{0}^{t+D T} f(x) d x . \tag{92}
\end{equation*}
$$

Assume $F(0)$ to be zero and rewrite the right hand side

$$
\begin{equation*}
F(t+D T)=\int_{0}^{t} f(x) d x+\int_{t}^{t+D T} f(x) d x \tag{93}
\end{equation*}
$$

This form, (92), can be related directly to cattle population by specifying:

$$
\begin{aligned}
F(t+D T) & =\text { cattle population at time } t+D T, \\
\int_{0}^{t} f(x) d x & =\text { cattle population at time } t, \\
\int_{0}^{t+D T} f(x) d x & =\text { the flow of cattle over the period } t, t+D T .
\end{aligned}
$$

This in turn can be rewritten as:
(94)

$$
F(t+D T)=F(t)+\int_{t}^{t+D T} f(x) d x .
$$

Expression (94) can be simulated by a series of integral simulators that vary in degree of accuracy. ${ }^{1}$ For the application used in this study, the simplest possible formula was used initially. It is called Euler integration and assumes: (1) DT is small, and (2) $f(x)$ is constant over the interval ($t, t+D T$). Since neither of these conditions hold, some inaccuracy may result. ${ }^{2}$ The form of the Euler integral is:

$$
\begin{equation*}
F(t+D T)=F(t)+D T \cdot(f(x)) \tag{95}
\end{equation*}
$$

Delays
The second major building block is the delay. The delays, as used in this study, are of two basic types. The first is "discrete," where a flow is delayed for a finite or discrete period while a process or function takes place. The second basic type is called "continuous" or "distributed." In this instance, the delay is of variable length; however, the output is of a fixed distributional character.

Discrete delays.--Delays are associated with flow variables. A discrete delay may be represented by

[^90]\[

$$
\begin{equation*}
O(t)=I(t-D T) \tag{96}
\end{equation*}
$$

\]

where

$$
\begin{aligned}
O(t) & =\text { output of the delay in period }(t) \text {; and } \\
I(t-D T) & =\text { the input to the delay in period }(t-D T) .
\end{aligned}
$$

For a poli-period delay, a series of such delays would be utilized.

$$
\begin{aligned}
0(t) & =I_{1}(t-D T) \\
0_{1}(t) & =I_{2}(t-D T) \\
0_{n-1}(t) & =I_{n}(t-D T)
\end{aligned}
$$

where

$$
0_{1}(t) \text { to } 0_{n-t}(t) \text { are intermediate values. }
$$

This delay procedure is simulated by the BOXC subroutine. The call statement for BOXC is as follows:

SUBROUTINE BOXC (BINR, BOUTR, TRAIN, NCOUNT, N CY, LT, SUMIN)
where

$$
\begin{aligned}
\text { BINR }= & \text { the unlagged value, } I(t) ; \\
\text { BOUTR }= & \text { the lagged value, } 0(t) ; \\
\text { TRAIN }= & \text { the array of } L T-1 \text { intermediate values } 0_{1}(t), \ldots, \\
& 0_{L T-1}(t) ; \\
\text { NCOUNT }= & \text { number of DT's since last indexing of the TRAIN; }
\end{aligned}
$$

NOCY = number of DT's per indexing of the TRAIN;
LT = number of sub-delays in the total delay; and
SUMIN $=$ sum of the inputs since the last indexing.

This delay might be demonstrated graphically as

A second discrete delay is used called CBOX. It is used to cycle a series of values such as seasonal or monthly values. It might be depicted graphically as:

The call statement for CBOX is

SUBROUTINE CBOX(CYCLE, LT, NCY, NK)
where

$$
\begin{aligned}
\text { CYCLE } & =\text { an array of } L T \text { values; } \\
L T= & \text { the number of elements in the array; } \\
N C Y= & \text { the number of } D T \text { between indexings; } \\
N K= & \text { a counter that records the number of DT's since the } \\
& \text { last indexing. }
\end{aligned}
$$

Both subroutines, $B O X C$ and CBOX are described and the programs listed by Llewellyn. ${ }^{1}$

Continuous delays.--A continuous delay can be defined as a

 linear differential equation.$$
\begin{equation*}
x(t)=a_{k} \frac{d^{k} y(t)}{d t^{k}}+a_{k-1} \frac{d^{k-1} y(t)}{d t^{k-1}}+, \ldots,+a_{1} y(t) \tag{97}
\end{equation*}
$$

where

$$
\begin{aligned}
& x(t)=\text { the unlagged value, and } \\
& y(t)=\text { the lagged value. }
\end{aligned}
$$

This delay is defined by its order, or the size of K. The output of this type of delay is distributed over several periods; the output $y(t)$ thus adjusts slowly to changes in input $x(t)$.

The difference between the output of a discrete as compared to a continuous delay may be demonstrated by the following diagrams, where $x(t)$ is input, $y_{1}(t)$ is the discrete response, and $y_{2}(t)$ is the continuous response.

${ }^{1}$ R. W. Llewellyn, op. cit., pp. 7-50 to 7-54.

If $x(t)$ were a non-sustained flow, then the $y(t)$ function might look like the following:

The shape of the $y(t)$ distribution depends on the order of the differential equation (97) that represents the delay.

The delayed output has an erlang distribution ${ }^{1}$ with parameters a and k, k being the order of the delay.

$$
f(x)=\frac{(a k)^{k} x^{(k-1)} e^{-k a x}}{(k-1)!} \text { defines the erlang distribution. }
$$

where

$$
\begin{aligned}
& E(x)=\frac{1}{a} ; \\
& V(x)=\frac{1}{k a^{2}} ; \text { and } \\
& \text { mode }=\frac{k-1}{a k}
\end{aligned}
$$

The parameter k allows this distribution to represent a whole family of distributions. The following figure provides examples.

A rather sophisticated continuous delay subroutine is used in CATSIM to simulate continuous delays that have an erlang distribution. The subroutine is VDELDT.

SUBROUTINE VDELDT(RINR, ROUTR, CROUTR, DEL, DELP, IDT, DT, K)
where

$$
\begin{aligned}
\text { RINR } & =\text { the unlagged value } x(t) \\
\text { ROUTR } & =\text { the lagged value } Y(t) \\
\text { CROUTR } & =\text { the array of intermediate values }
\end{aligned}
$$

${ }^{1}$ T. J. Manetsch and G. L. Park, op. cit., pp. 12-9 to 12-11.

The Erlang Family of Density Functions

$$
\begin{aligned}
D E L & =\text { the mean delay at }(t) ; \\
D E L P & =\text { the mean delay at }(t-D T) ; \\
I D T & =\text { a parameter to subdivide } D T ; \\
D T & =\text { the increment in the model; and } \\
K & =\text { the order of the delay. }
\end{aligned}
$$

DEL is related to "a" of the erlang distribution by the relation $D E L=\frac{1}{a}$. The DEL, DELP feature allows the average length of the delay to change each DT. The IDT subdivides DT; the purpose of this feature is to provide for stability in the model, ${ }^{1}$ by meeting the stability conditions for distributed delays. The K defines the order of the underlying differential equation and is the same parameter as used in the erlang distributions.

Stability of Delay Subroutines

One source of instability in a simulator is the continuous delay. The nature of the continuous delay subroutine must correspond to the size of the DT or the model will be unstable. This source of instability is derived from the size of the DT and the order of continuous delays and integrators. There are no hard and fast rules, however, various authors ${ }^{2}$ have given rules of thumb that are calculated to minimize the probability of instability.
${ }^{1}$ Manetsch et al., op. cit., pp. 11-1 to 11-15.
${ }^{2}$ These authors would include J. W. Forrester, Industrial Dynamics, Cambridge, The Massachusetts Institute of Technology Press, 1961; T. J. Manetsch and G. I. Park, op. cit., Chapter VIII; and R. W. Llewellyn, op. cit., Chapter VI.

For Euler integration, Forrester's criterion is: ${ }^{1}$

$$
D T \leqslant \frac{D E L}{2 K}
$$

Manetsch and Park indicate that for Euler integration the rule should be:

$$
\begin{aligned}
& \operatorname{Min} \\
& j=1, \ldots ., p\left[\frac{D E L_{j}}{2 K_{j}}\right]>D T>0
\end{aligned}
$$

which is the same as Forrester's rule except that it is extended to include all the delays in a more complex system.

Llewellyn states his criterion as:

$$
\begin{aligned}
& \operatorname{Min} \\
& j=1, \ldots ., p\left[\frac{D E L \times I D T}{2 K}\right]>D T>0
\end{aligned}
$$

Where IDT is a parameter used in certain continuous delays to subdivide DT. ${ }^{2}$

A different stability rule is required if a higher order integrator (higher than an Euler integrator) is imployed. These stability criterion are a function of the roots of the differential equations underlying the model.

[^91]CATSIM proved to be stable under all conditions imposed during construction including the sensitivity tests. ${ }^{1}$

The INGRAT Subroutine

This sub-function integrates over a distribution and is used in this model to calculate the quarterly calving distribution. The call statement is:

> INGRAT (IBEG, IEND, VAL)
where

$$
\begin{aligned}
\text { IBEG } & =\text { the lower bound of the integral; } \\
\text { IEND } & =\text { the upper bound of the integral; and } \\
\text { VAL } & =\text { the array describing the distribution. }
\end{aligned}
$$

[^92]$$
\frac{.59 \times 10}{2 \times 7}=.4214>.25
$$

APPENDIX C

PROGRAM MATRIX

Appendix C provides a listing of program MATRIX. This program shares the matrix of published statistical cattle-calves data with program RECON and CATSIM; the statement required to dimension core storage and to read this data matrix into core are common to all three programs. ${ }^{1}$

Because this matrix of published data is central to this study, as well as to all programs, the variable names of these data are listed below. A description of these data is provided in Chapter II, the third section.

June 1 and December 1 Population Data
$K=$ year; $1946=0 ; L=$ quarter $; 1$ st quarter $=1$
CALVE, CALVW, CALVT = Calves Under One Year 01d, East, West, Total

STRSE, STRSW, STRST = Steer One Year 0ld or Older, East, West, Total

BHFRE, BHFRW, BHFRT = Beef Heifers, East, West, Total
BCOWE, BCOWW, BCOWT = Beef Cows, East, West, Total
DHFRE, DHFRW, DHFRT = Dairy Heifers, East, West, Total

[^93]DCOWE, DCOWW, DCOWT = Dairy Cows, East, West, Total
BULLE, BULLW, BULLT $=$ Bulls, East, West, Total

June 1 and December 1 Calf BIRTH Data
$K=$ year; $1946=0 ; L=$ quarter $; 1$ lst quarter $=1$
BIRTHE, BIRTHW, BIRTHT = Calf BIRTHS, East, West, Total

INSPECTED SLAUGHTER Data

$I=$ year; $1946=0 ; J=$ month; January $=1$
SCAVE, SCAVW = SLAUGHTER, Calves, East, West
SCATE, SCATW = SLAUGHTER, Cattle, East, West
SBULLE, SBULLW = SLAUGHTER, Bulls, East, West

K = year; $1946=0 ; L=$ month; January $=1$
SMCAVE, SMCAVW = SLAUGHTER, Male Calves, East, West
SFCAVE, SFCAVW = SLAUGHTER, Female Calves, East, West
SSTRE, SSTRW = SLAUGHTER, Steers, East, West
SHFRE, SHFRW = SLAUGHTER, Heifers, East, West
SCOWE, SCOWW = SLAUGHTER, Cows, East, West
SBULLE, SBULLW = SLAUGHTER, Bulls, East, West

WEST-EAST Cattle-Calf Movement Data

$K=$ year; $1946=0 ; L=$ month; January $=1$
ZCTSLR, ZCTFD, ZCTSTK, ZCTTOT = Cattle Movements for SLAUGHTER, FEEDLOT, STOCKYARDS, and TOTAL

ZCVSLR, ZCVFD, ZCVSTK, ZCVTOT = Calf Movements for SLAUGHTER, FEEDLOT, STOCKYARDS, and TOTAL

Dairy Correspondent Study Data

$\mathrm{I}=$ year; $1946=0$; J = month; January $=1$
FARME $=$ Number of Farms Reporting
TCAHE = Total Cows and Heifers for Milk
CAHMKE = Cows MILKED Yesterday
CAHCVE $=$ Cows and Heifers in Calf
CAHFSE $=$ Cows and Heifers to FRESHEN This Month
CWBCHE = Milk Cows BUTCHERED This Month

UNINSPECTED SLAUGHTER Data

$I=$ year; $1946=0 ; J=$ quarter $; 1$ lst quarter $=1$
USRTQE, USRTQW = UNINSPECTED Cattle SLAUGHTER, East, West (excludes the following sub-categories)

USTKEE, USTKEW = Farm Killed and Eaten (Quarterly)
USTKSE, USTKSW = Farm Killed and Sold (Quarterly)
USRTQE, USRTQW = Farm Killed, Eaten, Sold (Quarterly)
USRTAE, USRTAW = Farm Killed, Eaten, Sold (Annually)
USRVQE, USRVQW = UNINSPECTED Calf SLAUGHTER, East, West (excludes the following sub-categories)

USVKEE, USVKEW = Farm Killed and Eaten (Quarterly)
USVKSE, USVKSW = Farm Killed and Sold (Quarterly)
USRTQE, USRTQW = Farm Killed, Eaten, Sold (Quarterly)
USRVAE, USRVAW = Farm Killed, Eaten, Sold (Annually)

Annual IMPORT Data

$I=$ year; $1946=0$
VPBRDE, VPBRDW = Purebred IMPORTS, East, West
VOTHRE, VOTHRW $=$ Other IMPORTS, East, West

Monthly IMPORT Data

$\mathrm{I}=$ year; $1946=0 ; \mathrm{J}=$ month, January $=1$
YPDRYE, YPDRYW = Purebred Dairy IMPORTS, East, West
YPBFE, YPBFW = Purebred Beef IMPORTS, East, West
YOTHRE, YOTHRW = Non-Purebred IMPORTS, East, West

Annual EXPORT Data

$I=$ year $; 1946=0$
WPDRYE, WPDRYW = Purebred Dairy EXPORTS, East, West
WPDBFE, WPDBFW = Purebred Beef EXPORTS, East, West
WPBRDE, WPBRDW = Purebred Total EXPORTS, East, West
WODRYE, WODRYW = Dairy, NES, Weight 200 Pounds and Over
WCAVE2, WCAVW2 = Cattle, NES, Weight Less than 200 Pounds
WCAVE7, WCAVW7 = Cattle, NES, Weight 200-700 Pounds
WCATE9, WCATW9 = Cattle, NES, Weight Over 700 Pounds

Monthly EXPORT Data

$I=$ year; $1946=0 ; J=$ month; January $=1$
XCAVE2, XCAVW2 = Cattle NES, Weight Less than 200 Pounds
XCAVE7, XCAVE7 $=$ Cattle, NES, Weight 200-700 Pounds
XCATE9, XCATW9 = Cattle, NES, Weight Over 700 Pounds
XOTDYE, XOTDYW = Dairy, NES, Weight 200 Pounds and Over
XPDRYE, XPDRYW = Purebred Dairy EXPORTS, East, West
XPBFE, XPBFW = Purebred Beef EXPORTS, East, West

The model parameters, their descriptions, and initial values are listed next; further explanation is provided in Chapter III.

A number of intermediate values are calculated requiring a set of variables. While these will not be described, the output variables are listed below.

```
HFRDEI = REPLACEMENTS, Dairy Heifers, East
HFRDW1 = REPLACEMENTS, Dairy Heifers, West
HFRBEI = REPLACEMENTS, Beef Heifers, East
HFRBW1 = REPLACEMENTS, Beef Heifers, West
BULLE1 = REPLACEMENTS, Bulls, East
BULLWI = REPLACEMENTS, Bulls, West
SBULEI = SLAUGHTER, Bulls, East
SBULWI = SLAUGHTER, Bulls, West
SCVMEI = SLAUGHTER, Male Calves, East
SCVMWI = SLAUGHTER, Male Calves, West
SCVFE1 = SLAUGHTER, Female Calves, East
SCVFW1 = SLAUGHTER, Female Calves, West
BCSCE1 = SLAUGHTER, Beef Cows, East
BCSCW1 = SLAUGHTER, Beef Cows, West
DCSLEI = SLAUGHTER, Dairy Cows, East
DCSLW1 = SLAUGHTER, Dairy Cows, West
```

The last element in the variable name, a "1" or "2," refers to the quarter. In the first half of the program "1" and "2" refer to the first and second quarter while in the last part of the program they refer to quarters three and four.

COMMON VALD(b), VALEE(ち),VAL (If
C OImension the matrix of punlisicio statistical oata

c

SWITr. $\mathrm{Hz}=1$, ${ }^{0}$,
$0102 K=1 ; 27$
$1 F T S H I C H . E O$
L=2

(1) Sh

- FOOMAT111x;12F9.9)

3 LEC

ETI; BCOWT(K,L)
2 CONTINKO.
c
SMITCH=1:0,
IFISWITCH.En.1.0IGO TO g

- ORHAT11X, je9.0

2 Sho
1 CONTINGC.O
ĆC reat june 1 and dec 1 galf nirth data

- fonnatilix. 3F1).01

c
C
C
rfad inspectro slaughteo data

1 SBULLM(I, J!
CONT NNE
c
$0_{00}^{14} \quad k=12,26$

C


```
C PEAD mEST-EAST CATTLE-CALF MOVEAFNT OATA
    00 31 k=2,25
```



```
    3? CONTTNIE
C
REAO DAIQY GORRFSPONOEVIS SIUDY OATA
    00 38 I=10,27
        RFAO(1J=11:12 FARMEII,J),TGAME(I,J),CAHMKE(I,J), FAHCVE(I,J),FAM
        1FSE RI,J1,CNACHE(I,J1)
    42 FORMAT'1
C
    00 65 I=10,27
        READ(1,H2I;'2 FA२YH(I,J), TCAHW(I,J),CAHMKW(I,J),CAHCVA(I,J),FAH
        6% CONTINUE.CNBCNW\IOJ)
    46 CONTINUE
C
            lol
```



```
    SG CONTINUF
C
            00 82 I=10, 26
            NOGSGJ=1;i4,GO in 92
```



```
    & CUSRVNH(I,JI,USRVA:III,USPVAWII)
    88 CONTINUE
C
    REAO ANNUAL IMPORT DATA
            OO T2 I=2,?%
        REQM(1,RSN
    72 FOPMATISX,PE15.0.15X,2F15.01
    CONIINUE
C REAO MONTMLY IMPOPT OATA
            no 77 I=23,26
            HEAN(1,7,j) YPODYE(T,J),YPDOYH(I,J),YPBFFII,J),YPGFN(I,J),YOTH
```



```
    7% CNNTINIF
C
    REAO ANNISAL FXPTRT DATA
```



```
        $1 FORYATISX.SF15.01
    61FORYATCSX
            O0 50 I=20.25
            RFAT(I,SII WOTRPYW(I),WPIJFWIII,WPZROW(I),WPNRYF(I), WMOM=F(I),
    GO\mp@code{MPIRNENIN'}
C
            0062 1=2,25
```



```
    63 FONNAYIS
C
    REAO MONTHLV EXPODT NATA
            OO 6% ?=23;?n
```



```
    66 f004afigx,1>&q.oi
    65 CONTINU!
```

1


```
    progran matrIX
    6 PARAMETFP DESCRIPTIONS
```



```
    V1% OROM,
```



```
        #RITICAL XこATG EXPIRY LIMIT,FACT
        DRODJRIION IE SLAUCTHFR CTN EXPORTS.IST WALF
        UNIVSPECTEJ SLQ CALVES EAST 1SST HALFF
        MOOSNRTION OF COWS IN UNINSPICTED SLAUGHTER,EEST
        *)
        OAIPY COA SLAUGHTEO DATE WEST-IST MALF
        SN
        BRBF GEFFCONAIMTMRATF
        \forallALBF(L) QUARTFOLV IIFTRIMUTINN OF REFF CON BIRTHS,EAST
```



```
        ORI FIRST HALF DEATH RATE
    INITIALIzE PARAYFIFO VALUES
        [2:2%
```



```
        *)
        Y10z.2n
        V111=:10
        V13=.6n
        iGMv3
        V19=.20
        V2%=045
        V23=.2
        V27=.0日 
        VAG=:4
        OR1=.00月
        VALOil)=.2F?
        * VALn(3)=:??2
        \forallALnf \II:? &
        \forallAL3F(2)=: 5%
        VALnEG(0)=
        VAL马H(?)
    VAL9H(3)E:C口
C
PQINT sor.
```


execuition phase
Calcurate the first two guarters

$\begin{array}{ll}S C W E 1=0.0 \\ S C W H 1= & 0 \\ S & 0\end{array}$

C
SCWE $2=0.0$
$S C W H 2=7.0$
$S O L E 2=0.0$
$S B L E 2=0.0$
$S B L W$
$S H C N$

$\stackrel{C}{c}$
calculate coarbull anj inspectrt calf slaughtep
DO $3112 J=1 ; 3$ S

SCWHI=ラ=WWIナSCOWNIJJ.JI

C

SHCVF $1=S 4 C V=1+54 C A V E(J J, J)$

SFCVF1=SFCVEI*SFCAVE(JJ,J)
SFGV「2=SFFVC?+SFCGVF $9 J, J+3)$

311 CONTTNUE
C calculats neff ano datar coin slaushiter

RARIO1 = 2こWF/(OCWF•JCWE)
c
$O C W W=O C \cap W W(J J=1,4)+\eta=7 W H(J J, 2)$

QATIO2=0こWW/(7CWW+יCWW)
TOTALF=WこAYEY(JJ):VA?

C OCSLEI=SこWEI-BCSL「1

C OCSLEZ=SこのLて

BCSLWI =SこWWI-OCSLH!
BCSLW2=SCWH2-O「SLW?
C CALCULATE PEPLACTMENT TEIFEZS

C

BULLWI = AJL WeVALSW(i)f (VALRW(i)\&VAL!W())
E

CALCULATE BULL OEPLACEYENTS

GULL $2=3$ UL W•VALSW(2)/(VALBHII) VALUW(2))
C UNSLPE=(JSVKEE(JJ) OUSVKEE(J)) *USOVAE(JJ)

SCVMCI =SYCVWIGUNSLSWOVISGAATIOLGOITIGK

C
SPYYE2=SYOV=? UNSLOEOVI3*QATINBO(1.-QATIOT)

C SCVFW2=S = EVWZ*UNSL२W*V14*(1.-RATIOL)*(1.-RATIO6
C PRINT THE FIPSP TMO DUARTERS
$K K=J J * 66$

C
 303 SAL WZ
C

315 FORBNI, SCLEI, SULWI:HULLEA. 'ULLH1
C

C
C Calculare the last imn quarteps
SCWE $1=0$. 1
STWWI = 0.0
$S B L E 1=U .0$
$S B L W 1=0 . n$

SMCVAI=0.?
C
SCHE $2=9.0$
SCHZ
$S C W H 2=C .0$
$S B L F 2=0.0$
$S O L$
SmFvr $=0.0$
SFCvG?
Smevin
SMCVHZ $=0.0$
SFGVMZ $=0.0$

C
C

C

C

C

alculate null replacenents

c

 BULLW2=3ULW•VALGWIか) IVALAW(3) OVALSW(4))
GALGULATE INSPECTED PLJS UNINSPETETES CALF SLAUGHTER

RAIIO5=(SMCVE1+SFFVE1)/SSMCVE1+SMCVEZ+SFCVE1+SFSVE?)
C
SCVNE1=SYEVEI*UNSLOFET150RATIOTODATIOS

c

$\underset{C}{C}$
PRINT THE LAST TMO QUARTEQS
LE 5

c

c

C

310 CNNTINUF

APPENDIX D

PROGRAM RECON

Appendix D provides a listing of program RECON. The first statements in the program dimension the output variables, as well as the variables that are the matrix of published statistical data described in Chapter II, the third section. The variable names used to describe these data are listed in Appendix C. The next set of program statements read the published statistical data matrix into core.

The parameters of program RECON are briefly described in corment statements; the initialization of these parameters occupy the next set of program statements.

The number of intermediate and output variables preclude their listing, however, the logic of the output variable names is given below.

The program calculates the elements in the output format matrix displayed in Table 15; each row of this matrix is an adaptation of identity (83). The first part of the program calculates the four "Calves Born This Year" rows on the XCAV stream elements.

These row elements are:

$$
\begin{aligned}
& \text { XBMCV + E or } W+1 \text { to } 9 \text { or } P \text { or } M \\
& \text { XBFCV }+E \text { or } W+1 \text { to } 9 \text { or } P \text { or } \\
& \text { XDMCV + } \text { or } W+1 \text { to } 9 \text { or } P \text { or } M \\
& X D F C V+E \text { or } W+1 \text { to } 9 \text { or } P \text { or } M
\end{aligned}
$$

Male Beef Calves
Female Beef Calves Male Dairy Calves Female Dairy Calves.

The E or W refers to East or West while the 1 to 9 or P or M refers to columns of the output format matrix. These columns are:

1 Beginning Inventory
2 BORN
3 TRANSFER IN
4 IMPORT
P TOTAL SOURCES
5 DIED
6 SLAUGHTER
7 EXPORT
8 TRANSFER OUT
9 Ending Inventory
M TOTAL DISPOSITION
The second part of the program calculates the "Calves On Hand" rows or YCAV stream elements.

$$
\begin{array}{ll}
\text { YBMW } & \text { Male Beef Calves } \\
\text { YBFW } & \text { Female Beef Calves } \\
\text { YDMW } & \text { Male Dairy Calves } \\
\text { YDMW } & \text { Female Dairy Calves }
\end{array}
$$

E and W as well as 1 to $9, M$ and P make up the last two characters of the variable name.

Using these same last two elements in the variable name, the remaining rows of the matrix are listed.

BULL Bulls
DCOW Dairy Cows
DHFR Dairy Heifer
BCOW Beef Cows
BHFRR Beef Heifers--Replacement
BHFRF Beef Heifers--Feeding
STRS Steers

COMFON BULLFI（27），BULLE3（27），BULLE4（27），BULLEP（27）：BULLES（27）． 2BULLE6（27），BULLF7（27），BULLE9（27），SULLEM（27），DCOWE1（？7），DCOWE3（27）＇， 2DCOWE4（27），DCOWFP（27），DCOWE5（27），DCOWF6（27），DCOWE7（27），DCOWE9（27）． 3DCOHEM（27），DHFRF1（27），DHFRE3（27），DHFREP（27），DHFRE5（27），DHFRE6（27）； ADHFFES（27），DHFRE9（27），DHFREM（27），BCOWE1（27），BCOWE3（27），BCOWE4（27）， SBCONEP（27），PCOWF5（27），$B C O W E 6(27), ~ B C O W E 7(27), ~ B C O W E 9(27), ~ R C O W E M(27), ~$ 6BHFFRE3（27），GHFRREP（27），BHFRRE5（27），BHFRREB（27），BHFRRFM（27），BHFRFE 71（27），BHFRFEJ（27），甘HFRFE4（27），甘HFRFFP（27），BHFRFES（27），甘HFRFE6（27）． 88HFFFE7（27），EHFPFE8（27），甘HFRFE9（27），BHFRFEM（27），STRSE1（？7），STRSE3！ 927），STRSE4（27），STRSEP（27），STRSE5（27），TBIRTHE（27），PBIRTHW（27）

COAMON STRSEO（27），STRSET（27），STRSE9（27），STRSEN（27）：BEGINVE（27）． 1TRAFINE（27），TIMPTE（？7），SOURCE（27），TIIEDE（27），TSLRE（27），TEXPTE（27）： 2TRNCUTE（27），ENDINVE（27）．TDSPNE（21），DEIRTHE（27），DEIRTHW（27）：
SXBHCVE2（27），XAMCVFP（27），XAMCVE5（27），XBACVE6（27），XBMCVE7（27），XAMCVE 49（27），XRYCVFY（27），XAFCVE2（27），XRFCVFP（27），XAFCVE5（27），XAFCVE6（27）： SXAFCVE7（27），XAFCVE9（27），XRFCVEM（27），XDMCVE2（27），XDHCVFP（27），XDMCVE 65（27），XDYCVEO（27），XNHCVE7（27），XDYCVE9（27），XDMCVEM（27），XDFCVE2（27）， 7XDFCVEP（27），XDFCVE5（27），XDFCVEG（27），XDFCVF7（27），XDFCVE9（27），XOFCVE OM（27），XXCAVF2（27），XXCAVEP（27），XXXAVF5（27），XXCAVE6（27），XXCAVE7（27）： 9XXCAVE9（27），XXCAVEM（27），XHACVF3（27），XRFCVE3（27），BHFRREG（27）

COMMON YZMCVE1（27），YGMCVE3（27），YSHCVEP（27），YBMCVE5（27），YBNCVE6（？7） 1．YBYCVET（27），YBMCVEB（27），YGMCVEA（27），YBFCVE1（27），Y甘FCVE3（27），Y甘FCV 2EP（27），YaFCVE5（27），YGFCVEG（27），YJFCVET（27），YBFCVE8（27），Y甘FCVEN（27） 3，YDYCVEI（27），YDMCVEP（27），YUMCVES（27），YDMCVEO（27），YDMCVET（27）。 GYOMRVE8（27），YOACVEA（27），YDFCVE1（27），YDFCVFP 27 ，YDFCVF5（27）， SYDFCVEG（27），YDFCVE7（27），YDFCVEB（27），YDFCVEM（27），YYCAVF1（27）， GYYCAVE3（27），YYCAVEP（27），YYCAVE5（27），YYCAVE6（27），YYCAVE7（27）。 TYYCAVEA（27），YYCAVEA（27），XXCAVE3（27），YDACVE3（27），YDFCVE3（27）

COMMON AULLW1（27），BULLH3（27），BULLH4（27），BULLWP（27）：BULLW5（27）． 18ULL W6（27），RLLLW7（27），BULLW9（27），BULLWM（27），DCOWW1（27），DCOWW3（27）： 2DCOVW4（27），DCOWHP（27），DCOWW5（27），DCOWW6（27），DCOWW7（27），DCOWW9（27）， 3DCOKHH（27），DHFRH1（27），DHFRH3（27），DHFRWP（27），DHFRW5（27），DHFRN6（27）： ADHFFWA（27），ПHFRW9（27），DHFRWH（27），RCOWW1（27），甘COWW3（27），ACOWH4（27）＇， SQCOVWP（77），RCOWWS（27），BCOWWG（？7），RCOWW7（27），BCOWW9（27），RCOWWM（27）， ABHFFRW3（27），GHFRRWP（27），BHFRRW5（27），UHFRRW8（27），UHF RRWH（27），BHFRFW $71(27)$, BHFWFW3（27），BHFRFW4（27），BHFRFWP（27），BHFRFW5（27），BHFRFW6（27）： 8BHFPFW7（27），GHFRFWO（27），BHFRFW9（27），甘HFRFWH（27），STRSW1（27），STRSW3（ 927），STRSW4（27），STRSWP（27），STRSW5（27），RHFRRWG（27），BHFRFW3（27）

COMMON STRSWG（27），STRSW7（27），STR；W9（27），STRSWM（27）：REGINVW（27）． ITRANINH（27），TIMPTW（27），SOURCW（27），TDIFDW（27），TSLRW（27），TEXPTW（27）： 2TRNOUTH（27），ENDINVW（27），ITSPNH（21），STRSW8（27）．
3XAMCVH2（27），XBMCVWP（27），XHMCVWS（27），XRMCVW6（27），XBMCVW7（27），X9MCVW 49（27），XRYCVWF（27），XAFCVW2（27），XRFCVWP（27），XAFCVW5（27），XRFCVW6（27）： SXAFCVW7（27），XBFCVW9（27），XHFCVWM（27），XDMCVW2（27），XDMCVWP（27），XDMCVH 65（27），XПYCVWO（27），XDMCVW7（27），X！YCVW9（27），XDMCVWM（27），XDFCVW2（27）： 7XDF（VWP（27），XDF CVWS（27），XDFCVH6（27），XNFCVW7（27），XDFCVW9（27），XDFCVW 8H（27），XXCAVH2（27），XXCAVWP（27），XX：AVW5（27），XXCAVW6（27），XXCAVW7（27）， QXXCAVW9（27），XXCAVHM（27），XAMCVNB（27），XAFCVW8（27），XXCAVWO（27）
COMPON YBMCVM1（27），YBMCVH3（27），YSMCVNP（27），YBMCVNS（27），YBACVN6（27） 1．YOFCVH7（27），Y甘MCVWA（27），YBACVWM（27），YBFCVW1（27），Y甘FCVW3（27），YBFCV 2WP（P7），YaFCYH5（27），YGFCVWB（27），YSFCVW7（27），YBFCVWB（27），YBFCVWM（27） 3，YDMCVW1（27），YUMCVWP（27），YDHCVH5（27），YDYCVH6（27），YDNCVW7（27）， GYDMCVWO（27），YDMCVWH（27），YDFCVW1（27），YDFCVWP（27），YDFCVW5（27）。 SYAFCYW6（27），YDFCVW7（27），YDFCVWB（27），YDFCVWA（27），YYCAVW1（27）． GYYCAVW3（27），YYCAYWP（27），YYCAVWS（27），YYCAVWG（27），YYCAVW7（27）。 TYYCAVHE（27），YYCAVHA（27）
${ }^{C}$6
IMENSION PHE MATAIX OF PUBLISHED STATISTICAL DATA
COMRON BCCWE(27,4), 甘COWW(27,4), BCOWT(27,4), BHFRE(27,4), BWFRW(271,4), BHFRT(27,4), DCOUE (27,4), DCOWA(27,4), DCOWT(27,4), DHFRE(27,4),2DHFPW(27,4), [HFRT(27,4), STRSE(27,4),STRSW(27,4), STRST(27,4),CALVEP327,4), CALVH(27,4), CALVT(27,4), BULLE(27,4), BULLW(27:4), BULLT(27,4)ABIRTHE (27.4), AIRTHN(27,4), BIRTHT(27,4), SCAVE(27,12), SCAVN(27.12).SSACAVE(27,12), SFCAVF(27,12), SMCAVW(27,12), SFGAVW(27,12).GSCOWE(27,12), SECWW(27,12), SAULLF(27,12), SBULLW(27,12), SHFRE(27,127), SSTRE(27,12), SSTRW(27,17), SCAT=(27,12), SCATW(27,12), SHFRW(27,12)0.2CTSLR(27.12), ZCTFR(27.12), ZCTSTK(27.12), ZCTTOT(27.12). ZCVSLR(27.-12). ZCVFD(27,12), ZCVSTK(27.12), Z:VTOT(27.12)c
COMPON VPBRDW(27), VPBRDE(27), VOTHRW(27), VOFHRE(27):WPDRYW(27).
1WPDRYE(27), WPDUFW(27), WPDRFE(27), WONRYW(27), WODRYE(27),WCAVW2(27),
2WCAVE2(27), WCAVW7(27),WCAVE7(27), HCATW9(27),WCATE9(27), WPRRDE(27).
3WPBRDW(27),WCRYW2(27), WDRYE2(27), WDRYW9(27), WDRYE9(27).
2USTVEE(27), USTKSE(27),USRTOE (27,4), USRTAE (27), USTKEW(27), USTKSW(
327),USRT2W(27,4),USRTAW(27),USVK=F(27),USVKSE(27),USRVOF(27.4).
GUSRVAE(27), USVKEW(27), USVKSW(27), USRVQW(27,4), USRVAW(27)
c
COMKON YPDRYE(27,12),YPDRYN(27,12), YPEFE(27,12), YPRFW(27,12):
2YOTHRE(27,12), YOTHRW(27.12), XCAV=2(27,12), XCAVW2(27.12), XCAVW7(7)
2.12), XCAVET(27.12), XCATE9(27.12), XCATH9(27,12), XPDRYE(27.12), XPRF
3E(27,12), XPAFW(77,12), XPDRY(27,12), XOTDYE(27,12),XOTNYW(27.12),
AFARFE(27,12), FARMW(27,12). TCAHE(27,12), TCAHW(27,12). CAHMKE(27,12);
SCAHMKW(27.12), CAHCVE(27.12), CAHC, VW(27.1?). CAHFSE(27,12), CAHFSW(27!,
612).CWBCHE(27.12),CW日CHW(27.12),AA(27),88(27),CC(27).DD(27)
C
C READ JUPE 1 and EEC 1 POPULATION DATA.
C
SWITCH=1.0
DO 2 Ker. 27
IFISWITCH.EO.1.O)GO TO 3
Le2
RFAD(1.4) CALVE(K,L),CALVW(K,L),CALVT(K,L),STRSE(K,L), STRSW(K:
1L), STRST(K,L), BHFRE(K,L), BHFRW(K,L), BHFRT(K,L), BCOWE(K,L),BCOWH(K.
2L), PCOWT(K,L)
- FORFATIIX.12F9.0)
3 FORY
REAC(1.4) CALVE(K,L),CALVW(K,L),CALVT(K.L),STRSE(K,L),STRSW(K;
1L), STAST(K,L), $\forall H F R E(K, L)$, , H FRW(K,L), BHFRT(K,L), BCOWE(K,L), BCOWW(K.
2L), FCOWT (K,L)
SWITCHEn.O
2 CONTINUE
C
SWITCHE 1.0
DO 7 KE1. 27
IF(SWITCH.EO.1.0)GOTO 9
Le2
RFAD(1,A) DMFRE(K,L), DHFRW(K,L), DHFRT(K,L),DCOWE(K,L), DCOWW(K.,
RFAD(1,A), DCOWT(K,L), BIJLLE(K,L), AULLK(K,L), BULLY(K,L)
IL), HCOWT(K,L), BILL
FORFATS $12 x, 959.0$)
- Lea
READ(2,g) DHFPE(K,L), DHFRW(K,L), DHFRT(K.L), DCOWE(K,L),DCOWW(K.
2L), DCOWT(K,L), BULLE (K,L), BULLW(K,L), BULLT(K,L)
SWITCH=O.O
7 GONTINUE
C
C
C READ JUNE 1 AND CEC 1 CALF BIRTH DATA.
DO $13 \mathrm{~K}=2.27$
LE2
RFAP(1.14) UIRTHE(K,L),BIRTHW(K.L),BIRTHT(K,L)
14 FORPAT(12x,3F10.0)
Le4
RFAD(1.14) UIRTHF(K,L).BIRTHW(K.L).BIRTHT(K,L)
83 CONTINUE

0021 1=3.12
$0012 \mathrm{~J}=1.12$

ssPULLH(I,J)
15 FORFAT(AX, 2F10,0,10X,2F10,0.10X,2F10.0)
12 CONTINUE
18 CONTINUE
c
DO 18 K=12.26
DO 19 L=1.12
REAR(1.71)SMCAVE(K,L), SMCAVW(K,L), SFCAVE(K,L).SFCAVH(K,L)
21 FORFAT(11X,2F10.0.10X.2F10.0)
19 CONTINUE
10 CONTINUE
DO $24 K=12.26$
DO 25 LE1. 12
READ(1.27) SSTRE(K.L),SSTRW(K,L),SHFREPK.L),SHFRW(K.L),SCOWE(
1K,L), SCOWH(K,L),SBULLE(K.L),SBULGH(K,L)
27 FORFAT(1:X.0F10.0)
25 CONTINUE
24 CONTINUE

C C C

C READ MEST-EASt CATTLE-CALF MOVEMENT dATA
DO $31 K=2.26$
DO $32 L=1.12$
REAR(1,34) ZCTSLR(K,L), ZCTFD(RGL), ZCTSTK(K,L), ZCTTOT(K.L),ZCV
18LR(K,L), ZCVFD(K,L), ZCVSTK(K,L), LCVTOT(K,L)
34 FORPAT(11X, OF12.0)
32 CONTINUE
32 CONTINUE
\mathbf{C}
\mathbf{C}
\mathbf{C}
READ DAIRY CORRESPOMDENTS STUDY DATA
DO 38 1=10.27
DO $39 \mathrm{~J}=1.12$
REAR(1.42) FARMF(I, J), TCANE(f.J),CAHMKE(l.J),CAHCVE(l.J),CAM
IFSE(I, J).CWPCHE(I, J)
12 FORART(1120,F15.0.5520.0)
30 CONTINUE
30 CONTINUE
C
$\begin{array}{lll}\text { DO } & 45 & 1=10.27 \\ \text { DO } & 16 & J=1.12\end{array}$
RFAD(1.42) FARMW(1,J), TCAHW(1,J),CAHMKW(I,J),CAHCVW(I,J),CAH
1FSW(1,J). CWRCNW(I,J)
46 CONTINUE
45 CONTINUE
\mathbf{C}
\mathbf{C}
\mathbf{C}
read uninspected slaughter data
DO 53 1: 10.20
DO $54 \mathrm{~J}=1.4$
IF(J.FO.4.0)GO 1058
REAF(1,55) IISRTDE(I,J),USRTQAPI.J)
55 FORPAT(17X,40X,2F10.1)
001054
5@ RFAD(1.59) IJSTKFE(I),IISTKEW(I),USTKSE(I),USTKSW(I),USRTOE(I, J)
1.USPTOW(I,J), USRTAE (I), USRTAW(I)

50 FOHFAT(17X, AF10.1)
$5 a$ CONTIIUE
53 CONTINUE
C
Dn A2 $1=1 n, 26$
DO P8 JE1.4
IF(J.F.O.4.0)GO TO 9?
REAR(1.55) USRVDE(l.J),USRVDA(I.J)
6n 10 on
92 RFAN(1.59) USVKFE(1),USVKEN(1),USVKSE(f),USVKSN(1),USRVOE(I, J)
1,USRYON((1, J), USRVAE (1), USRVAW(I)
88 CONTINUE
82 CONTINUE

```
C
c READ AMNUAL IMPORT DATA
            REAR(1,73,VPBRDW(1),VPGRDE(1),VOTHRW(I),VOTHRE(1)
        FORMAT(6x, 2F15,0,15x, 2F15,0)
    72 CONTINUF
C
READ MONTMLY IMPGRT DATA
            DO 77 1=23.26
            DO 78 J=1.12
            RFAT(1.76) YPDRYE(I.J),YPDRYAYI.J),YPBFE(I.J),YPBFW(!.J),YOTH
            2RE(l, J), YOTHRW(l, J)
    76 FORMAT(BX.6F12.0)
    70 CONTINUE
    7% CONTINUE
C
C
            READ(!,6!)WPCRYE(1),WPDAFE(I),WPIRDE(I),WPDRYN(I),WPDAFM(I).
            READ(1,61)
        62 FORMAT(6X.GF15.0)
        6 7 \text { CONTINUE}
    C
            DO 60 l=20.26
            READ(1.61)MPCRYW(l),WPDBFW(l),WP JRDW(l),MPDRYE(l),MPDBFE(I).
            1WPBPDF(I)
        60 continue
    C
            00 62 1=2.26
```



```
            2WCAVE7(I),WCATMQ(i),WCATEQ(I)
        63 FORPAT(6X,8F15.0)
        62 CONTINUE
C
C READ MONTHLY EXPCRT DATA
C
            DO A4 1-23.20
            DO 65 J.1,12
            REAT(1.66) XCAVEZ(I,J),XCAVW&(I,J),XCAVET(I,J):XCAVNT(I,J),XC
        IATEO(I,J),XCATMO(I,J),X\capTNYE(I,J), XOTDYW(I,J),XPDRYE(I,J),XPURYW
        2(I,J), XPGFE(I,J),XPAFN(I,J)
    6 6 \text { FORPAT(BX.12F9.0)}
    6 5 \text { CONTINUE}
    G4 CONTINUE
C
c program recov
C
PARAMETER DESCRIPTIONS
V1 PROPCRTION OF CALF EXPORIS FROM THE XCAV STREAM
V2 PROPCRTION OF MALE CALVES: IN EXPORTS 200-700LBS.
V3 PROPCRTION OF FEMALES IN PURERRED EXPORTS,EAST
V4 PROPCRTION OF FEMALES IN PURERRFD EXPORTS.HEST
V5 PROPCRTION OF FEMALES IN PURERRED IMPORTS.EAST
VG PROPORTION OF FEMALES IN PURERRED IMPORTS,WEST
V7 PROPCRTION DF DAIRY IN PJRERRFD EXPORTS,EAST
VE PROPORTION OF DAIRY IN PJRERRED EXPIRTS.WEST
VQ PROPORTION DF DAIRY IN PJRERRFD IMPORTS.EAST
VIO PROPCRTION OF DAIRY IN PJRERRED IMPORTS.WEST
V12 PROPCRTION DF STEERS IN JTHR IMPORTS
VIA PROPCRTION OF STEFES IN VON-CON XCATQ
VIS PROPCRTION OF CILLL COWS IN XCATQ, UNHER CRITICAL LIMIT.EAST
V16 PROFCRTION OF CULL COWS IN XCATQ,OVFR CRITICALLIMIT,FAST
V17 PROPORTION NF CULL COWS IN XCATQ,OVFR CRITICAL LIMIT,WEST
```


$V 1=.90$
V2=. 135
V3 .90
V4E. 90
V5e. 80
V6:. 80
V7:. 826
V8. 826
V9:. 20
V10: 20
$V 12=.65$
V14E. 35
V15=. 80
V16 2.10
V178. 05
V20:. 10
V210.18
V22:.65
V23:. 50
$V 24=.615$
V25=. 30
V26:. 28
V27E. 25
V20=. 06
$V 29=.06$
V32=. 800
V33=0.95
V34E. 100
V $35=0.95$
V30=. 60
$V 40=1.07$
XRRME =. 03
XDRFW=.03
XDRIEE. 03
XDRF $W=.03$
YRRPEE.73
YDRFW=. 73
YDRTEE.O3
YDRS WE. 03
DREE.015
DRME. 015

```
    ORBFE=.85
    CRAF NM.AS
    ORDYEE.75
    ORDYME.765
C
C Paint paramEtER values
C
    PRINT 300
    30& FORMATI*I*.\bulletVARIARLE SETTINGS UTILIZED IM PHIS RUN*)
c
    PRINT 301,V1,V2,V3,V4,V5,V6,V7,V8,V9,V10
    302 FORMATPOOO,4X,F5,3,3X, OPROPORTIOV OF CALF EXPORT FROM XCAV STREAME
        1.1.5x,F5.3,3X:*PROPORTION OF MAL 三'CALVES IN EXPORTS 200-700LBS.
        2.1.5x.F5.3.3x.*PROPORTION OF FEMALES IN PURFBRED EXPORTS.EAST*
        3.1.5x.F5.3.3X.&PROPORTION OF FEMALES IN PIJREBRED EXPORTS,WEST.
        4.1.5X,F5,3,3X,&PROPORTION OF FEMALES IN PUREGRED IMPORTS.EAST*
        5.1.5X,F5,3,3X,*PROPORTION OF FEMALESS IN PUREBRED IMPORTS,WEST.
        6.11.5X,F5,3.3X.*PRUPORTION OF DAIRY IN PURERRED EXPORTS.EAST.
        7.1.5x.F5.3.3x.*PRNPNRTION OF DAITY IN PUREBRED EXPORTS.WEST*
        8.1.5x,F5,3.3x.*PROPORTION OF DAITY IN PUREBRED IMPORTS.EAST.
        9,1,5X,F5,3,3X,*PROPORTION OF DAINN IN PUREQRED IMPORTS,WEST*)
c
    302
        PRINT 302,V12,V14,V15,V16,V20,V21,V22,V23
    FORMATI*O*.4X,F5,3.3X.*PROPORTIOY OF STEERS IN OTHR IMPORTS*
        2.1,5x,F5,3.3X, &PROPCRTION OF STESRS IN NON-CON XCAPO-
        2.1.5X.55,3.3X.OPROPIRTION OF CULLI COWS IN XCATG.UNDER LIMIT.EAST.
        3.1.5X.F5.3.3X,\odotPROPNRTION OF CULGI COWS IN XCATP.OVER LIMIT.EAST.
        4.1.5x,F5,3,3x, PPROPNRTION OF CULGI COWS IN XCAT9,OVER LIMIT.WEST*
        5,/1,5x,F5,3,3X,\odotPROPORTION OF BFEF COWS SLAIIGNTERED,EAST.
        0./.5X,F5.3.3X,&PROPORTION OF DAIIM COWS SLAUGHTERED,WEST.
        7.1.5X.F5.3.3X.&PROPORTION OF MALES IN UNINSPECTED CALF SLR.EAST.
        O./.5X0F5,3.3X.*PROPORTION OF MALES IN UNINSPECTED CALF SLR,WEST*)
C
    303
        PRINT 303,V24,V25,V26,V27,V28,V2%,V32,V33,V34,V35
    FORNATI* ©4X,F5,3,3X,OPRNPORTIOV. OF STEERS IN UNINSP CT SLR,EAST
    8.1.5X,F5.3.3X,&PROPORTION OF STESRS IN UNINSP CATTLEE SLR,WEST*
    2,1.5X,F5,3,3X,&PROPORTION OF COWS IN UNINSPECTED CATTLE SLR,EAST.
    3,1.5x.55,3.3x.\bulletPROPORTION OF COHS. IN UNINSPECTED CATTLE SLR.WEST.
    A./.5x.F5.3.3x.\odotPROPORTION OF BULLE IN UNINSPECTED CATTLE SLR,EAST.
    S.C.5X,F5,3,3X, &PROPNRTIINN OF BULIGS IN UNINSPECTED CATTLE SLR,HEST.
    G.11.5x,F5.3.JX.,PROPORTION OF MA,ESS IN ZCVSTK AND ZCVFD.
    7.1.5X.55.3.3X.0PRNPORTION OF WALES IN ZCVSLR.
    8.1.5x.F5.3.3x.\bulletPRNPNRTION OF MALES IN ZCTSFK AND ZCTFD.
    O.f.5x.55.3.3x,*PRDPNRTION OF MALES IN ZCTSLROI
C
    PRINT 3H4,V4O, XDRHE, XNKHW, XDRFE, XDRFW, YDRME, YORFW, YDRFE, YORFN
    304
    FORHAY(* *,4X.F5,3.3X.*SCALE FACIOR FOR WEST-EASY YRANSFERS*
    1./1.5X,F5.3.3X. -DEATH RATE OF MA.ES, XCAV STREAM,EAST*
    2.1.5X,F5.3.3X.,DEATH RATE OF MAL=E.XCAV STREAM,WESTO
    3,1.5X,F5.3.3X,\bulletNEATH RATE OF FEMALESOXCAV STREAM,EAST-
    4./.5x.F5%3.3x, -DEATH RATE OF SEMALES,XCAV STREAM,WEST.
    S.1/.5X,F5,3,3X,&DFATH RATE OF HA.FS.YCAV STREAM.EAST*
    G.1.Ex,F5.3.3x,0 ПEATH RATE OF MAL ES,YCAV STREAM,WEST-
    7.1.SX,F5.3.3x, ODEATH RATE OF FEMALES,YCAV STREAM,EAST.
    B,O,5X,F5,3.3X,ODEATH RATE OF FEMALES,YCAV STREAM,WEST*)
c
    PRIRT 305.DPE,DRW,V30,BPGFE,GRBFA,BRDYE,BRDYW
305 FORT'ATPO O,4X,F5,3,3X,ODEATH RATSI OF ALL CATTLE ITR AND OVER,EAST*
1.1.5x.55.3.3x.0DEATH RATE OF ALL CATTLE IYR AND OVER,NEST-
2.1.5 \(5.55 .3,3 x_{0} \bullet\) PRRNPORTION \(2 S T\) YFAR CALF DEATHS OCCURING XCAV STRM.
3.1/:5x, \(55,3,3 X, \odot H I R T H\) RATF EEFFF SOWS, EAST•
4.1.EX,F5.3.3x, ©RIRTH RATE BFEF CJWS.WEST.
5.1.5x.55.3,3x, ©RIRTH RATE DAIRY OOWS,EAST.
6.1.EX,F5.3.3X.e日IRTH RATE DAIRY LOWS,WEST•I
```

```
\square
    galculate catple population reconcilIation mapRix
C CalCULATE CALVES BORN THIS YEAR mATRIX
    SWITCHE1.0
    DO 310 1=12.26
C
    TOTALI=0.0
    POTAL2=0.0
    DO 311 J=?,4.2
    TOTAL1=TOTALI*BIRTHF(1,J)
    TOTAL?=TOTAL2**IRTHW(1,J)
    312 CONTINUE
    TBIFTHE(1)=TCTALI
    TBIPTHN(I)=TOTAL2
C
    TOTAL3=0.0
    TOTAL4=0.0
    DO 312 J=1.12
    TOTAL3=TOTAL3+CAHFSE(I.J)
    TOTALA=TOTAL4*CAHFSW(!,J)
    3&2 CONTINUE
    DRffTHW=((DCCNW(1-1,4)* तCOWN(1,2))/2)&BRDYW
```



```
    BBIFTHW= OCOWH(I-1,4) &BRAFW+BHFRW(I-1,4)%, 75-8RBFW
AA(I)=DAIRTHE-TOTALRE
    OA(I)=DAIRTHM-TOTALDN
    CC(I)=BRIPTHE-TOTALRE
    DD(I)=BAIRTHM-TOTALRW
C
    XRHCVE2(I)=P8IRTHE*.5
    XAHCVWZ(I)=P8IKTHW*.5
    XAFCVE2(I):PBIRTHE*.5
    XBFCVH2(I)= RGINTHW*.S
    XDMCVE2(I)=NEIRTHF*.S
    XDACVW2(I)=DGIRTHW@.5
    XDFTVEZ(I):DEIRTHF*.5
    XDFPVH2(I)=DEIRTHN*.5
C
    TOTAL5=0.0
    TOTAL6=0.0
    DO 323 J:7.12
    TOTAL5=TOTAL5*(ZCVSTK(I,J)&2CVFD(I,J))&V40
    313 CONTINUE
    DO 314 Je4.12
    TOTAL6&TOTAL6*2CVSLR(I,J)&V4O
    3_a CONTINUE
C
    XAHCVE3(1):TCTAL5*V32*TOTAL6*V33
    XAFCVF3(1) =TCTALS*(1,-V.3) - TOTALO-(1,-V33)
    XAHCVNA(1) =TCTALS\bulletV32\bulletTOTALGOV33
    XBFCVWA(I)=TCTALS*(1,-V32)-TOTALO*(1,-v33)
    XAMSVEP(I):XBMCVE?(I)& XAMCVEJ(I)
    XAFRVEP(!):XBFCVE?(i)&XHFCVEJ(I)
    XDMCYEP(i):XCHCVES(i)
    XHFCVEP(I)=XCFCVE2(I)
    XPMTVMP(I)=X日GCVMP(I)
    XAF(YNP(i)=XEFCVWP(I)
    XDHCVHP(I)EX[MCVW\(1)
    XDFTVWP(I)=XCFCVW2(I)
```

 TOTAL4E0.0
 DO \(315 \mathrm{~J}=4.12\)
 TOTALI=TOTALI-S"CAVF(!.J)
 TOTAL2=TOTALe•SFCAVE(1, J)
 TOTAL3=TOTAL3-SNCAVW(1,J)
 TOTAL4ETOTAL4*SFCAVW(I。J)
 315
 XAMCVFS(1)=XEMCVE? (f) ©XRRME®V3O

XAFCVWS (i) =XGFCVWP(I) ©XRRFW•V38
XBFCVES (I)=X6FCVE2(I)बXRRFE®V38
XDHCVFS $(1)=X[H C V E 2(i) \oplus X D R M E \odot V 3$
XDHCVWS (I) =X[HCVW2(I)\& XDRNW\&V38
XDFCVES(I)=XCFCVE?(I)*XDRFE*V38
XDFCVHS(I) =XCFCVW2(I) ©XDRFE®V38
CONTINUE
TOTAL5=0.0
TOTAL6=0.0
DO 316 J=2.4
TOTAL5: TJTALS•USVKEE(1)/4-USVKSE(1)/4\&USAVOE(1, J)
TOTAL6:TOTAL6•USVKEW(I)/4\&USVKSW(I)/4\&USRVOW(1,J)
316
C
XBMCVEG(t)=0.0
XRMCVWO (1$)=0.0$
XAFCVEG $(i)=0.0$
XAFCVWG(l)=0.0
XDARVEG(I):TCTAL 1 - TDTAL5*V22
XDACVW6(1):TCTAL3-TOTAL6eV23
XDFCVEG(i)=TCTAL2•InTAL5e(1.-V2?)
XDFCVWG(l)=TOTAL4+TOTAL6*(1, -V23)
TOTAL7ancavez(l)e.96
TOTALBaWCAVEZ (l)-. 96
totaleancavficl)
TOTAL10EwCAVH7(1)
c
XBNCVET(I):TCTAL9॰V1॰V2
XAMCVW7(I) =TCTALIn*V1*V2
XAFCVET(I)
XEFCVW7(I)=TCTAL10*V1•(1.-V2)
XDACVET(l) =TCTAL7
XDMCVWT(I)ETCTALB
XDFCVET(i)=0.0
XDFCVW7(i)=0.0

SUBXBMW = XAMCVWS(I) X甘MCVWB(I) XXRYCVW7(I) -XBMCVWB(I)

SUBXBFW=XRFC.VW'j(I)\&X甘FCVAG(I)\&XR=CVW7(I) \&XAFCVNB(I)

SUBXDFE =XDFCVES(I) \triangle XDFCVEG(I) \times DFCVET(I)

XBACVE $9(1)$ ：XEACVEP（ 1$)$－SUBXBME XRACVWQ（i）＝XEMCVWP（ 1 ）－SUBX甘MW XBFCVE9（I）＝XEFCVEP（I）－SIJXXXFE XAF（VHO（I） XEF CVGP（I）－SJ甘X甘FW XDACVE $\mathcal{C}(1)=X[M C V E P(!)-S U B X D M E$ XDMCVW9（i） XDFPVE9（I）$=$ XCFCVEP（I）－SUBXDFE XDFCVW9（I）：XFFCVWP（ I）－SUBXDFW

XBACVEN（I）：XBACVEQ（I）－SUBXBAE

 XAFCVWM（i）＝XGFCVNO（I）\＆SUUXBFN

 xDFTVFM（I）：x［FCVEO（t）\＆SUUXDFE XDFCVWM（I）＝XCFCVW9（I）•SU甘XDFW
 XXCAVE3(I):XGMCVE3(!)॰XAFCVF3(I)

 XXCAVET(!):XGMCVET(I)\&XAFCVET(I)\&XDMCVET(I)\&XDFCVET(I) XXCAVE9(I):XAMCVEG(!)\&XAFCVF9(I)*XDMCVE9(i)\&XDFCVE9(i)

XXCAVW2(I) =XEMCVW2(I)\&XAFCVW2(I)*XDHCVW?(I)*XDFCVH2(I) XXCAVHP (1$)=X G M C V W P(1) \odot X A F C V W P(1) * X D M C V W P(1)+X D F C V W P(I)$ XXCAVWS (i)=XGMCVW5(i)\&XRFCVWS(I)\&XDMCVWS(i)\& XDFCVWS(I)

 XXCAVWB(I) $=X E A C V W B(!)+X F F C V W B(I)$
XXCAVW9(I)=XGMCVWO(I)

\dot{C} calculate calves on hand matrix
(FiSNITCH.ED.1.) GO TO 320
YAMCVEI(I) =XGACVE9(l-1)
YBMCVWI(1) $\operatorname{XXBMCVWO}(!-1)$
YBFCVEI(I) x XEFCVEO(I-1)
YAFCVHI(I) $=\times 8$ FCVHO(I-1)
YOMCVEI(I)=XCMCVE9(l-1)
YOMCVW1(1) $\operatorname{YXCHCVWO}(1-1)$
YDFCVEI(1)=X[FCVEQ(l-1)
YDFCYM1(1)=XCFCVM9(I-1)
0010321
320 YAMCVE1(1)=0.0
YBACVW1(I)=0.0 YBFCVE1(I) $=0.0$ YRFCVW1 (1)=0.0 YOMCVE1 (i)=0.0
YDHCVW1 (l) $=0.0$
YDFCVEI(I)=0.0
YDFCVWI(I)=0.0
SWITCHEO.O
321 CONTINUE
TOTAL1=0.0
TOTAL2 $=0.0$
DO 322 Jel. 6

TOPAL1=TOTAL1•(ZCVSTK(I.J)•ZCVFD(I.J))•V40
322 CONTINUE
DO 323 Jas.3
TOTAL2:TOTAL2*2CVSLR(1.J)*V40
323 CONTINUE
YRMCVE3(1)=TOTALI*V32*TDTAL2*V33
YAFCVF3(1):TCTAL1*(1.-V32) +TOTALC*(1.-V33)

YDACVE3(1)=0.0
YOFCVE3(I)=0.0
YDACVWB(I):0.0
VDFCVHE(i)=0.0
YAMCVEP(I):YGMCVEI(I)-YAMCVE3(I)
YRACVMP(I) =YGACVW1(I)
YAFCVEPP(I):YGFCVEI(I)\&YAFCVE3(I)
YAFCVHP (i) =YGFCVWI(I)

YOHCVMP(I)EYCHCVWI(I)
YDFCVEP(I)EYCFCVEI(I)
YOFCVMP(i): YCFCVW1(i)
YAMCVES(I):YGMCVEI(I)॰YRRAE•(1.-V38)
YAMCYWS(1):YEMCVHI(I)-YDRMW•(1,-V38) YAFCVES(I)=YEFCVEI(I)-YTHFE-(1,-V38) YAFCVWS (i)=YEFCVWI(i)-YDRFW•(1.-V38)
YDMCVES(l)=YCMCVEI(I)-YDRME•(1.-V30)
YOHCVWS(I)EYCHCVHI(l)-YחHMH*(1,-V3甘)

YDFCVFS(I)=YCFCVEI(I)-YOKFE-(1.-V38) YAMCYWA（ 1 ）＝YBNCVWR（1）\＆SU甘YBAN YAFCVEN（I）EYBFCVEA（I）\＆SUBYBFE YAFCYUA（I）＝YEFCVWB（I）\＆SIJBYAFW YDACVEA（ 1 ） $\operatorname{YYCHCVEA}(1)+$ SII甘YDME YDACYWA（i）＝YCACVWA（i）\＆SIJ甘YOMW YDFCVEA（I）EYCFCVEA（1）\＆SU甘YDFE YDF（VHA（I）EYCFCVWA（I）\＆SUBYDFH
VYCAVEI（I）：YOACVEI（ 1$)$－YAFCVFI（I）－YDMCVEI（I）－YDFCVEI（I）

 YYCAVET（I）EYGMCVET（i）\＆YAFCVF7（I）\＆YDMCVET（I）－YI）FCVET（I）

C
C Calculare bulls and bull replacements：
c
c

C

C
BULLEI（1）：BULLE（I－1．4） BULLWI（t）＝8ULLW（I－1．4）

POTAL 3aUSTKEE（！）\＆USTKSE（I）\＆USRTAER（）

TOTAL5EVPARDE（I）
TOTALGEVPBRDG（l）
BULLEA（1）＝YOPALSe（1．－V5）
BULIN4（l）＝TOTAL6•（1．－V6）
BULLES（1）＝（ $(8 U L L E(1-1,4) \triangleleft R U L L E(1,2)) / 2) * D R E$

C
TOTAL7＝WPRRDE（I）
TOTALBEMPBRDG（1）
C
BULLET（1）＝POTAL7•（1．－V3）
OULLW7（I）＝TOTALB＊（1．－V4）
C
TOTAL9＝0．0
TOTAL10＝0．0
DO 325 Ja1． 12
TOTAL9ETOTALQASBULLE（I．J）
TOTAL10ETOTAL10－SBULLW（I，J）
325
C
OULIE6（1）：TOTAL9－TOTAL3－V78
BULLM6（I）＝TOTAL10•TOTALA\＆V29
c
OULLE9（1）：OULLE（1．4）
BULLW9（1）＝BULLW（I．4）

BULIE3（I）：BULLEM（I）－BULLEI（I）－BULLEA（I）

BULL WP（I）E 甘ULLWI（I）•BULLW3（I）• 甘ULLW4（I）
C
C calculate cnus and replacenents
c
DCOHE1（1）＝DCCWE（I－1．4）
DCOWN1（t）＝DCCWN（I－1．4）
BCOWEI（I）＝ECCWE（1－1，4）
BCOWM（I）＝$甘 C C W H(1-1.4)$
C
DCONEA（I）＝TOTALS＊V5＊V9
DCOH：M4（I）＝TOTAL6＊V6＊VIO
BCOHEA（l）＝TगTALS•VS•（1．－V9）
ECOKINA（I）＝TOTAL6eV6•（1，－V10）
C
DCOHES（1）＝（DCOWF（1－1，4）－DCOWE（1，（1））／2•DRE

BCOHES（l）：BCCWE（l－1，4）－ORF
BCONWS（l）\＆ 8 COWN（I－1．a）©DRW
C
TOTAL9an． 0
POTAL10＝0．0
DO 33n Jei． 12
PחTAL9＝TOTALQ\＆SCOWE（I，J）
TOTALIO＝TOTAL10•SCOWN（1．J）
330 CONTINUE

```
DCOWNG(I)=(DCOWN(I-1,4)&DCOWN(1, 25)/2-V21
    BCOWEG(1)=\OmegaCOWE(1-1,4)ev20
    DCONE6(1)=(TOTAL9&THTAL`OV26)-ECJWE6(1)
    OCONNG(I)=(TCTAL10-TOTAL&-V27)-D:OWWG(I)
```

 POTALBE=wCATE9(!)
 TOTALBN:WCATMQ(!)
 IF(TOTALBE.LE. 3000) TOTALCEETOTA_REOV15
 IF(TOTALBW.LE.8000) TOTALCWETOTA_BE VV15
 IF(TOTALBE.GT.300n) POTALCE=240n-(TOTALAE-2400)-V16

RATI05aDCOWE(1.2)/(DCOWE (1.2) © BC.JWE (1.2))
RAT106=DCOWW(8,2)/(DCOWW(1,2) \& BC JWW(1,2))
c
DCOWET(I): POTALT*V3*V7\&TOTALCE* +ATIO5*WODRYE(I)
DCOLMT(I)= TCTALB*V4*V7-TOTALCW* +ATIO6*WODRYW(I)

C
- DCOWEQ(l)=DCOWE(1.4)
DCOWNO(I)=DCOWN(I.4)
-COHEQ(1)=BCOWE(1,4)
-COWW9(I)=BCOWN(Iっか)
c

BCOWEN(I)=BCCNES(i)\&BCOWES(I)\&BCJWET(i)\&BCOWE9(i)
COWNH(i)=BCOWNS(i)\&BCOWNG(i)\&BCJWNT(i)\&甘COWNO(i)
DCOWES(1)=DCCWEN(1)-DCOWEI(1)-DC JWEA(1)
-DCOWN3(i)=DCOWNH(i)-DCOWHI(i)-DC JWN4(i)

CCOVMJ(I)=8COWWM(I)-8COWW1(I)-8C JWW4(I)

COWWP (i) = BCOWMI (i)\&BCOWW3(i)\&BC JWW4(i)
6
C Calculate dairy melfer and dairy heifer slaughter
DHFPE1(1) = DHFRE($-1,4$)
DWFPWI(1)=DHFRN(1-1.4)
DHFFES(i)=YNFCVEB(i)
DHFFW3(1)EYJFCVWO(I)

c
DHFPES(1)=((CHFRE(I-1,4)*DHFRE(1, 2))/2)-DRE
DHFRWS(1)=((DHFRW(i-2,4) NHFRW(1,2))/2) ©DRW
DHFPES(l)=DCOWE3(1)
DHFPWA(I) = DCCWH3(I)
DHFPE9(1)=DHFRE(1.4)
DHFFWO(1)=DHFRW(1,4)
DHFFEG(1)=DHFREP(1)-DHFRES(1)-DHFRER(I)-DHFREQ(1)
DHFPWG(i)= DHFRWP (i)-DHFRWS(i)-DHFRWA(i)-DHFRN9(i)

${ }_{c}$
c
BHFPPE1(1)=AMFRE(1-1,4)
BHFFFWI(I)BBMFRW(I-1.4)
C
c
OHFPREG(1)=0.0
BHF(RNG(i)=0.0
BHFHREA(I) : 日COWE3(I)
BHFFRWO(I)=BCOWW3(I)
TOTAL9:9.0
TOTAL10=0.0
DO 335 . 1×1.12
TOTALQETOTALQ•SHFRE (I,J)

335 CONTINUE

TOTAL12=0.0
DO 337 Je1. 12
TOPAL11=THTAL 11-SSTRE(!-J)
TOTAL12=TOTAL 12 -SSTRN(I.d)
337
6
BMFPFEG(1):TOTAL9-TOTAL3*(1,-V26-V2A)-(1,-V24) -DHFRE6(8)
OHFRFW6(1):TCTAL10-TOTAL4-(1,-V2/-V29)-(1.-V25) -DHFRNG(i)
OHFPFEA(I)=VCTHRE(I)*(1,-V12)
QHFPFWA($!)=V C T H R W(I) \bullet(1,-V 12)$
OHFPFET(1)=(TOTALRE-TOTALCE)-(1.-V14)
BAFRFMT(I) =(TOTALBK-TOTALCH)=(1.0V14)
c
BMFFRE3(1)=BHFRREB(1) $-(1, \bullet$ DRE)
BHFFRW3(1)=RHFRRWA(1)*(1.*DRW)
BHFPRES(I)=RMFRRE3(!)-BHFRREB(!)
BHFPRWS(I): BHFRRW3(I)-BHFRRNB(I)
c
TOTAL9:0.0
TOTAL10=0.0
D0 336 Ja 1.12
TOTAL9=TOTAL9•2CTSLR(I,J)•VAO

336 CONTINUE
6

- DHFFFW3(I)EYGFCVWB(I)-BHFRRW3(I)

OHFFFW3(I):YGFCVWB(I)-BHFRRW3(I)
OMFFFUP(!)=RMFRFM! (1) BHFRFM3(1) BHFRFE4(!)
c

OWFFREP(I)=RHFRRE3(I)
OMFFRWP(I)=RHFRRW3(I)

CMFHFE9(1):AMFHF(1,4)
OWFPFWو(I):ANFRW(1,4)
c
OMFPREM(d) = BHFRRES(i)\&BHFRREA(I)
DHFRRWH(I) ERFFRRWS(I)\&BHFRRWB(I)
OHFPFEN(I) = BHFRFES(I)\&BHFRFEG(I) \&RHFRFET(I)\&BHFRFE9(I)

C calculate steers and steer slauohter

$$
\bar{c}
$$

STRSE1(1):STRSE(1-1,4)
STRSN1(1)=STASW(1-1,4)
STRSE9(1)=STKSE(1.4)
c

STRSW3(l)EYDRCVWB(i)-Y日MCVWB(i)-JULLM3(i)
STRSE4(1)=VOTHRE(I)\&V12
STRSW4(I)=VOTHRW(I)*V12
c
STRSEP(I)=STRSEI(I)-STRSES(l)\&ST+SE4(I)
STRSWP(l)=STASN1(1)-STRSH3(1)*ST\&SW4(1)

STRSWS(l)=(STRSW(l-1,4)\&STRSW(1, (1))/2•DRW
C
STRSE6(1)=TOTAL11-TOTAL3-(1,-V26-V28)-V24
STRSW6(1)=TחTAL12-THTAL4-(1.-V27-V29)*V25
STRSET(1)=(TCTALBE-TOTALCF) ©VI4
STRSW7(1)=(TOTAL日W-TOTALCW)•V14
STRSWA(I)=TMTALQOV35•TOTALIO\&V34
STRSEM(I)=STKSE5(I)-STHSEG(I)-ST\&SET(I)-STRSEO(I)

C
C
C
SUM COWS. RULLS.HEIFERS AND STEERS


```
1STRSEI(1)
```



```
1OMFRFE3(!)&STRSF3(1)
```



```
    8OU~CF(i)=QULLEP(i)&DCONEP(I)&DHFREP(I)&ACOWEP(I)&BNFRREP(I)*
SOWFRFEP(i)*STRSEP(I)
```



``` 18HFFFES（1）－STRSES（I）
```



``` SSTRSE6（1）
TEXPTE（I）＝BULLET（I）－DCOWET（I）\＆甘C，JWET（I）\＆BHFRFET（I）\＆STRSET（I）
TRNCUTE（I）：DLFREB（I）－AHFRREA（I）
```



``` 1STRSE9（1）
TDSPHE（I）＝BULLEM（I）\＆DCOWEM（I）\＆DHFREM（I）\＆BCOWEN（I）\＆BHFRREM（I）＊ 1BHFPFEM（I）－STRSEM（I）
BFEINVW（I）＝BULLWI（I）－DCOWW1（I）＊DAFRWI（I）＊BCOWW1（I）＊BHFRFWI（I）＊ 18TRSW1（I）
TRAFINH（I）：BLLLW3（I）\＆DCOWH3（I）\＆D．4FRW3（I）\＆BCOWW3（I）\＆BHFRRN3（I）＊ 18HFPFW3（I）هSTRSH3（I）
```



``` 1OWFPFWP（I）－STRSWP（I）
```

 1OHFPFWS（I）－STRSWS（1）
 18TRSWG（I）

PANOUTW（I）＝！FRRWB（I）\＆BHFRRWO（I）
 8STRSN9（！）
 18WFFFMH（I）\＆STRSWM（I）
C
310 CONTINUE
c
C
c
D0 338 I 122.26
Ja1946－1
PRINT 370．J
370 FORPATYOIO，QLIVESTOCK POPULATION－STOCK AND FLON－RECONCILIATION MAY SRIX FOR THE VEAR © $16,2 X$, ©NEST•）
C
PRINT 371

 33X．© INVENTORY＊， $2 X_{0} \bullet$ DPSITION＊，4X，©ERROR•）
C
PRINT 372．BULLW1（t），BULLW3（I），BU－LW4（I）．BULLWP（I），BULLW5（I），BULLW6 1（1），BULLWT（I），甘ULLW9（1），BULLHM（1）
392 FORMAT（＊－＊．e日ULLS＊． 10 X，F10．0．10X．6F10．0．10X．2F10．01
 1（8），DCOWH7（1）．DCOWMG（1），DCOWHM（I）

373 FORMATS＊O＊．© LAIRY COWS＊．5X．F10．0．10X．6F10．0．10X．2F10．0）
C PRICT 374，DHFRNI（I），DHFRW3（1），DHFRWP（I），DHFRNS（I），DHFRWG（I），DHFRWE 1（1）．DHFRN9（！），UHFRNM（I）
 $18)$
C
PRINT 375，BCOWWI（I），BCOWH3（I），BC，JWWA（I），BCOWNP（I）．BCOWNS（I），BCOWW6 1（1），BCOWH7（I），甘COWW9（I）．BC，OWWM（I）

c
 1BMFIRWMCI
 1510．0）

```
C
C
C
C
C
C
C
C
C
&xXCAYMB(i),XXCAVMQ(i),XXCAVMM(I),
c
```



```
C
c
c
C
c
C
PRINT 3A9,YYCAVNI(I). VYCAVNP(I),YYCAVW5(I),YYCAYWG(I),
    &VYCAVW7(1), YYCAVWA(1), YYCAVWH(1)
    300 FORMATP-00,4X, SSURTOTALO,3X,F10,0,30X,5F10,0,10X,F10,0)
c
C
    POTALPEXXCAVmP(1)&YYGAVWP(1)
    TOTAL5EXXCAVMS(I)&YYCAVWS(1)
    TOTAL6:XXCAVh6(I)-YYCAVWG(I)
    TOTAL7=XXCAVM7(I)&YYCAVMT(I)
    TOTALNaxXCAVMH(1)&YYCAVNM(1)
            PAINT 390.YYCAVWI(I), XXCAVH2(I), TOTALP,TOTAL5,TOTALG.TOTALT
            1,YYCAVWA(i), XXCAVW9(i), TOTALM
390'FORMAT(*-0, 3x,0FOTAL CALVES*,2F10,0,20x,7F10,0)
3S CONTIMUE
```

```
E
C PAIMT THE LIVESTOCK RECONCILIATION MATRIX.EAST
    00 339 I=12.26
        J=1946*1
        PRINY 340.J
    S40 FORMATP-I*,&LIVESTOCK POPULATION-STOCK AND FLON-RECONCILIATIOM MAT
        2RIX FOR TME YEAR ©,I0.2X, EEAST*)
C
        PrINT 34&
    341 FORPAT&*-*,17X, &BEGINING*,6X,*BOTN*, 2X,*TRANSFER*.4X,*IMPORT*,5X,*
        1TOTAL*,5X,\bulletDIED*, 2X,*SLAUGHTER*,4X, *EXPORT*, 2X,*TRANSFER*,4X,*ENDI
```



```
        33X,&INVENTORY*,2X, &DPSITION-,4X, ©ERROR=1
C
        PRINT 342,8ULLEI(I),BULLE3(!),BULLE4(I),BULLEP(I),BULLES(I),BULLE6
    1(1),BULLET(I), 甘ULLEO(I),BULLEM(1)
    342FORFATP**O.0BULLS*,10X,F10.0,10X,6F10.0.10X,2F10.0,
C
            PRINT 343,DCOWEI(I),DCOWE3(I),DC.JWE4(I),DCONEP(I),DCOWE5(I),DCOWE6
        1(i),DCOWE7(i),UCOWE9(I),DCOWEN(I)
    343 FORFAT(000.0EAIRY COWS0.5X.F10.0.10x.6F10.0.10x.2F10.0)
C
            PQINY 344, DHFREI(i), DHFRES(I),DHFREP(I),DHFGES(I),DNFREG(I),DHFRES
        1(1),DHFRE9(1),DHFREM(I)
    3A4 FORMATSOOQ,ODAIRY HEIFERSO, 2X,F10,0,10X,F10,0,10x,3F10,0,10X,3F10.
        181
C
        PQINP 34S,BCCWEI(I), BCOWE3(I),BCJWE4(I),BCOWEP(I),BCOWES(I),BCOWE6
        &(I),BCOWE7(I), 甘COWE9(I), BCONEM(I)
    345 FORPAT{-D*.#GEEF COWS*.6X,F10.0.10X,6F10.0.10X,2F10:0)
```



```
        1OWFHREN(I)
    346 FORFAT(00*.0.FF HFR REPLACE*.21X.F10.0.10x.3F10.0.10x.F10.0.10x.
        1F10.0)
C
        A=BHFRFEP(1)-AHFRFEM(!)
        O=STRSEP(i)-STHSEM(I)
        CsSCURCE(1)-TDSPNE(I)
        D=XXCAVEQ(i)-CALVE(i,4)
        EEXXGAVE2(I)-THIRTHE(I)
C
            PRINT 347, BNFRFEI(I), BHFRFE3(I), JHFRFE4(|), BHFRFEP(I),BHFRFES(I).
        &BMFPFEG(I), BMFHFET(I), BHFRFEQ(I), BHFRFEM(I),A
    347 FORFAT(OOPOQGF NFR FEEDINGO.1X,FIO.0.10X,6FI0.0.10X,3F10,0)
C
            PRINT 348,STRSEI(I),STRSE3(I),STISE4(I),STRSEP(I).STRSES(i),STRSE6
            1(1),STRSET(I),STRSEQ(I).STRSEN(I).8
    34O FORMATPOOO,OSTEERS*,9X,F10,0,10X,6F10.0,10X,3F10,01
C
            PAINT 349, BEGINVE(I),TRANINE(I), TIMPTE(I),SNURCE(I):TDIEDE(I).
            1TSLFE(I), TEXPTE(I),TRNOUTF(I),ENUINVE(I),TDSPNE(I):C
    3A9 FORRIAT(OO-, 3X,OTOTAL CATTLE*,F10,0.10X,10F10,01
C
            PAINT 350,XARCVEZ(I), XBMCVE3(I), XRMCVEP(I),XBMCVES(I),XANCVEG(I).
            IXANCVET(I), XGNCVEQ(I), XHMCVEM(I),AA(I)
    350 FORMAT(-0.OML BF CALVESO,13x,2FIO,0,10x,4F10,0.10x,3F10,0)
C
            PAIPT 351, XAFCVF2(I), XBFCVES(I), XAFCVEP(I), XAFCVES(I),XAFCVEO(I).
            IXBFCVET(I), XGFCVEQ(I), XRFCVEM(I),CC(I)
```



```
c
            PNINT 352,XDFCVF2(I),XDHCVEP(I),XDHCVES(I),XDNCVES(I),XDMCVET(I).
            2XOMPVE9(1),XEMCVEM(I)
    352 FORMAT(*0.,OML DY CALVES., 13X.F1U.0.20X.4F&0.0.10x;2F10.0)
C
            PRINT 353, XRFCVEZ(I), XDFCVEP(I),XDFCVES(I),XDFCVES(I),XDFCVET(I).
            IXDFCVE9(1).XEMCVEN(I),E
    353 FORPAT(*O*.ORL DY CALVES*.13X.F10.0.20x.4F10.0.10x:3F10.0)
C
PMINT 354,XXCAVEZ(I),XXCAVE3(I),XXCAVEP(!),XXCAVES(I),XXCAVE6(!).,
```

```
            IXXCAVET(i),XXCAVES(I),XXCAVEN(I),D
```



```
C
            PRINP 35S.YARCVEI(I), YBNCVES(I), YBMCVEP(I),YBNCVES(I),YBNCVEG(i).
            IYAMCVET(1),YBNCVEO(I),YAMCVEH(1)
    355 FORMATPO-0.OHL BF CALVES*. 3X,F10.0.10x,F10,0.10x,5F10.0.10x,F10.0)
C
            PRINT 356, YRFCVFI(I),YBFCVE3(I), YBFCVEP(I),YBFCVES(I),YBFCVEG(I),
            IYAFCVE7(I),Y&FCVER(1),YBFCVEM(1)
    356 FORMAT(000,OFM BF CALVESO, 3x,F10,0,10X,F10,0,10x,5F10,0,10X,F10,0)
            1.10x.510.08
            PRINT 357,YDNCVEI(I),YDMCVEP(i), YDHCVE5(i),YDNCVE6(i),YDMCVET(i).
            2YDHCVES(1),YCHCVEN(1)
```



```
c
            PRINT 358,YDFCVEI(I),YDFCVEP(I),YDFCVES(I),YDFCVE6{!),YOFCVE7(!).
            IYOFCVEB(I), YCFCVEM(I)
    350 FORMAT(00., OFM DY CALVES*.3X,F10.0.30X.5F10.0.10X. F10.0)
C
            PRINT 359.YYCAVEI(I),YYCAVE3(I), PYCAVEP(|),YYCAVES(!);YYCAVEG(I).
            IYYCAVET(I),YYCAVEA(I),YYCAVEA(I)
    359 FORMAT(000,4X,OSURTOTALO,3X,F10.0.10X,F10.0.10X,5F10.0.10X,F10.0)
C
            TOTAL3-xxCAVES(1)- YYCAVE3(I)
            TOTALPaXXCAVEP(!)&YYCAVEP(1)
            TOTALSEXXCAVE5(I)&YYCAVES(I)
            TOTALGEXXCAVEG(1)&YYCAVEG(1)
            TOTAL7aXXC,AVET(I)&YYCAVET(I)
            TOTALH&XXCAVEM(I)&YYCAVEN(I)
C
    PRINY 360,YYCAVEI(I),XXCAVE2(I), TOTAL3,TOTALP,TOTALS.TOTAL6.TOTALY
    1.YY(AVEB(I),XXCAVEQ(I), TOTALM
    368 FBRMATP*-0.3x.0.POTAL CALVES..3F10.0.10x.7F10.0)
    339 CONTINUE
    END
```


APPENDIX E

PROGRAM CATSIM2 WEST

Appendix E provides a listing of program CATSIM2 West. While there are five other versions of CATSIM, they are basically similar; CATSIM and its variants are described in Chapter V.

The dimension statements for all subscripted variables and the read statements for the published statistical data base are the first statements encountered in the model. ${ }^{1}$ The statements that read the revised program MATRIX output are next encountered. ${ }^{2}$ The variable names for these data are listed immediately below.

RDCWSLE, RDCWSLW SLAUGHTER, Dairy Cows, East, West RBCWSLE, RBCWSLW SLAUGHTER, Beef Cows, East, West

RDHFRRE, RDHFRRW REPLACEMENTS, Dairy Heifers, East, West RBHFRRE, RBHFRRW REPLACEMENTS, Beef Heifers, East, West

RCSLRME, RCLSRMW SLAUGHTER, Male Calves, East, West RCSLRFE, RCSLRFW SLAUGHTER, Female Calves, East, West

RBLSLRE, RBLSLRW SLAUGHTER, Bulls, East, West RBLRPLE, RBLRPLW REPLACEMENT, Bulls, East, West.

[^94]Statements 245 to 329 describe and initialize the parameters for CATSIM. The initialization of a wide set of distributions occupy statements 330 to 480; all of these are described in Chapter V, if only in a generic fashion.

The next major part of the program initializes beginning values including the intermediate values in the delay subroutines. This part of the program was difficult to program and would be equally difficult to describe. The tact ultimately taken was to attempt to simulate approximate beginning values then operate the model for several cycles; the values generated by the model tend to converge on correct values in most instances. The main problem involves initializing intermediate values for the continuous (distributed) delays.

The main element of the program is the execution phase. This phase is described in terms of exact block diagrams (Figures 18 to 26) in Chapter V. CATSIM employs several subroutines; these are described in Appendix B.

The output of CATSIM2 West is the disaggregate Population and Steer and Heifer SLAUGHTER data listed in Appendices F and G, respectively. These output variables are listed below for the Western Dairy Herd.

PCMDW1, PCFDW1 Population Calves, one to three months, Male, Female
PCMDW2, PCFDW2 Population Calves, four to six months, Male, Female
PCMDW3, PCFDW3 Population Calves, seven to twelve months, Stream A, Male, Female
PCMDW4, PCFDW4 Population Cattle, seven months onward, Stream B, Male, Female

PCMDW5, PCFDW5	Population Cattle, twelve months onward, Stream A, Male, Female Population Replacement Heifers, one to two years
PHFRDW	Population Cows over two years
PCOWDW	Population Bulls (Dairy plus Beef)
PBULL	SLAUGHTER, Steers
SLRMDW	SLAUGHTER, Heifers.

A similar set of variables is used to describe the Western Beef Herd except that the letter B replaces the D in the variable name.

A third set of variables sums the above two sets and disaggregates the published statistical data series in order to make a comparison of the simulated (albeit reaggregated) with the published data. These may be determined from the logic of the program so will not be listed here.

REAL INGRAT, METWHE, NFTHAL, NETHOC
REAL JCHANS, JCFIJS, KCMING, YCFBW, LCMBWG, LCFBW6

C

MENSION THE MATRIX OF CALF SLAUGHTER,CON ANO BULL CULL ANO RFILACEMENT OATA

IFiSMITCH.EO.1.01gn TO 3
KEZ

le
PEAOIA:H) CALVE(K,L), CALVWPK,L), CALVTRK,LI, STRSEIK,LI,STRSWIK

SWITCHE1.0
OFSSMITCH.Eの.1.0150 TO 9

1L), DCOWT(K,L), TULLE(K,L),BIMLK(K,L), BULLT(K,L)
FOPMA $181 \times, 3 F 9.0)$
9 IEG
 2L) OC,CKI(K,L), JULLFIK,LI, UULLW(K,L), BULLTIK,L)
7 CONT (NOJE.
C
C
C
PEAN WNE 1 ANO OEC \& C,ALF BIRTH DATA
$\mathrm{OO}_{1=2}^{13 \mathrm{~K}=2.27}$
PEROR1.14) UIPTHF(K,L), AIPTHW(K,L),BIRTHT(K,L)

13 CONTINUF.

C

C DEAO INSPECTEO SLAUGHTER OATA

15^{2} SOMLLN(I
12 COVTINUE
C
$\begin{array}{lll}00 & 18 \\ 00 & 19 \\ 0 & =12 ; 26 \\ 0\end{array}$

19 COVIINUE
c
$\begin{array}{ll}00 & 24 \\ 00 & 2 \\ 2 & =12,25 \\ L & =12\end{array}$

25 CONTINGE
24 COVIINUE
C
C
READ WEST-EAST CATTLE-SALF VOUFMENT DATA

1SLR(K,L); ZCVF)(K, し), ZEVSJK(X,L), TCVTOT (K, L)
34 FOPYAT(11x.9F12.0)
31 CONTINUE
C
C
read halry Cordespmndevis stuoy data

RFAN(1, GZi

39 CONTIM'
36 CONTINUS
c
no $45 \quad 7=102^{7}$
$\begin{array}{ll}00 & 40 J=1, i 2 \\ R E A D i s, 6\end{array}$

48 COATINJF
c
C
READ UNIMSPECTET SLAJGHTEQ DATA

C

C
$\begin{array}{lll}00 & \text { B } & T=10,25 \\ 00 & 8 & j \\ J=1, i\end{array}$

I, USOVDN(T,JI, USDVAFIII, USDVAWIII
9 B CONIINUF
82 CONTINUE
C
C
C
DEAO anNUAL IMPOTT DATA

¢
6
PEEAO MONTHLY IMPOPT DATA

76 2OFOM, Ji,YNTMOWII,J)
77^{2} CONTPMIF
77 CONTINIE


```
C INITIALIZE PAQAYETER VALUES
    V1=,10
    V3=.50
        V47.50
        V7=:50
        V9=11.07
        V11=.? 
        V13z:8C
        V14x.3 
        V16=.70
        V19=.90
        V21=.150
        v25=.20
        V27=:7
        V29=0.0
        V31=.100
c
        80W3C=.94
        ORNBH=.94
        BPWDH=.96
        OT=.29
C OUARTERLY DEATH OISTRIJUTION(AT ANNJAL RATESS
    CYYRCH(1)=.049
        CVMACN(3)=00??
        CyYoCN(1)=.00.A
        CYyTNW(2)=:3+A
        CYYOCW(C)=002
        CYF3CW(1)=20&0
        CFFOHM3)=:322
        CYFBCN(4)彐:322
        CYFOCN(1)=.0L
        CYFOUN(2)=:04A
        CVFOCN(6)= =0\geq2
        CVCT「N(2)=0.014
        CrCTFW(4)=:012
        M
        CYT\NH(1)=:012
        CFCITH(3)=:0012
C MONTHLY CALVING OISTRITUTION
    VALBN(1)=.01
    VALRW(2)=: n4
    VAL
    VAL\ON(F)=:39
    VALSN(f)=:11
        VALIN(7)=:O1
        VALBH(110)=.01
        VALIHW(12)=:0
        VA
        ValoH(3)=:ngy
        VALDH(c.) =.D日,
```



```
        VALDH(1)=.CEO
        VALDW(1)=:C17
        VALN'1101: =0,7%
        YALOW(1)I=.074

\section*{C QUARTERLT EXPORT－IMPORT OISTRIOUTIOV}


C PARAMETEO VALUES FDO ALL CONTINUOUS
C AND OISCUFTE DELAY SUBROUTINFS
NCOUNT
NOCV
N
NCV
SUMI
N

C
\(L T 3 T H=3\)
\(L O T H=6\) LTOTHz LTY3W1 IFBWI＝
IFOWI \(=\)
 LF3W2＝
LFDW2
L7M日甘 \(=2\)


C
\(N K=0\)
\(\mathbf{N}\)
KWIHI
KHOH \(=3\)
KHOH＝
KMA
KMOW
K
K

KFOWG \(=4\)
 KNVHr \(=4\)
\(K F R W C=4\)
C KFJWSモ4
OELWOHz。AR
VGOE CELNOH／． 75
C
OL MOWL
OLFAHL
OR


OPFIWL \(=.93\)
OPYクd \(=.7\)

OLYクWS＝．75
OLFクHS

DPFRW5 \(=.75\)
OPUDWR：\(=.79\)
C
POINT TCO O THE VARTABLF AHD PARAMETER SETTINGS FOR THIS RUV＊I








C





PDINT 347:V25,V26,V13-V199V7,V27,VR V28

\section*{347}

解


C
PDINT 351: V31, V21, V22
FOKMAT
 2:1;5x;F5:3;3x;-RPDPORTION OF THE BULL HERD BEING REDLAZED,WESTEI
CALCULATE bEGINNING POPULATION FIGUQES
\(\substack{L=0 \\ j=1}\)
Jfy 12
0048
ORF3CH=CYF3CH(1)
ORYC \(\mathrm{CH}=\mathrm{CYF}\) CH \(\mathrm{CH}(1)\)

C
TOTAL \(9=0.0\)
C

314 CONTINUE
\(\underset{C}{C}\)




PCFONG (JJ-1:4) \(=0.0\)





PCOWUN (JJ-1; \(1 ;\) ) \(=0\) © NWW (JJ- \(1 ; 6)\)
C

C
ROTALIEPROWRH(JJ-1.4)
ROTAL \(=P C O H O A(J J-1 ; 4)\)

C RATITI=PCNW(3W(JJ-1, 4) /(PCOWOW(JJ-1,4) \& PCOWOW(JJ-1, 4)

370

2 (J)



```

G calculate values in delars ano afioinning flow values for ivtegraters
LOAD TRAIN FOR WESTERN CALF GIPTHS

```



```

 -BRNIC
    ```


```

 1*BRH?
    ```

```

 C
 352 FORNATP?
 353 FORM T
 353 FORMAT(*O.,6F10.C)
 C
1:CRNVE1

```

```

 1: ก? WOC
    ```

```

 1: BTN 3 C
    ```

```

 188 BWCO
    ```


```

 ACFOWI=TCALVE3:-50(1-- RरFR
    ```


```

 ACFOH1=TCAL VC4*-5*(1.-D२FDCW*)
 TNMAWI IIEACMINI
 TNFBW1(1)=ACF7W
 TNYDA1 (1) =ACYDWI
 TNFDHIIIIEACFJWI
 C
 PRINT 356
 354 FOOYATPO- OTOAIN EOR WESTFRN CALVES 1-3*)
    ```


```

C LOAD TRAIN EOR WFSTERN CALVES(4-6)
$\operatorname{TOFAL}=0.0$
$\operatorname{OTAL} 2=0.0$

```

```

 \({ }^{1}=1\)
    ```

```

 1/31-(1.-47)
    ```

```

 \(11^{2}\) CONJINU:
 \(\operatorname{rotal}^{3}=0.0\)
 $\operatorname{TOLA}_{4}=0.0$
$\mathrm{I}=\boldsymbol{J} J=1$
$K=J J$

```

```

 10TAL3= YOTAL
 MIALG=TJYAL6+SFCAVN(K,J)+CUSVKEW(I)/12+USVKSH(I)/12+USRVTA(I,L)
 12 CONTINUS
    ```





```

 10PRWTC
    ```

```

 1 - กアックロ
    ```




```

 C
    ```


```

 TN40W?(1)=C「40W?
    ```

```

 C
 FOIM1 356
 350 FOTMATIO-G OTOAIN FOD WESTRRN CALVFS 4-601
 357 FOKMATIFCOGFIO. JJIFIO.OI
    ```
\(C\)
\(C\)
\(C\)FCMOH＝PCHOWS（JJ－1，4）／（2－DT）

    NMOWH
    NFONS (I) SFCFOW3
c
    TNARAF(2) =FCYTH3

    GCMSA3=POYTH3(JJ-1, 4) © (20CT)
    GCMOA \(=\) PCMON3 (JJ-1, 6) /(2:0ता)

C CALCULATE THE SEGIMMTNS VALUFS FOR GATTLE ON RATION B
    KCMBNL \(=\) PCHNWL \((J J-1,4) /\) DL MBNG



C
    CMOHL = PC4ON \((J J-1,4) /\) ПL MOW \(_{4}\)
    CNAN4 = P

C CALCIRATE THE NEGINNING VALUES FRR GATTLE ON RATION A

    HCFクHC=PCF クH \(2(J J-1 ; 4) \prime 0 L F O W 5\)
C
    HCFDWS = P SF OWS \((J J-1: 6) / 0 L F O W 5\)

    JCMONS=P=4กWT(JJ-1, 6)/JL YTW5

c
    ABULLN=RPLOPLH(JJ. 1) \&
(ASULLA.Lア.0.J) ABULLW=0.?
C CALCULATE BEGINHING HEIFEQ VALUFS

    CHFRNW=PTHFNOW(JJ:1):4
C
    TNHAHP \((6)=\) ZHFO NM
    INNDHD (6) = OHFO O

    INWDAE \((?)=0\).\(\} NF ODW (J J, 4)=4\)
    NWOHP ( \()=0\) ) \(34 F D R A(J J, \$ 106\)
    INHOHR(2)= JHFNOH (JJ, 3 I:
C
    PPINT 354



Č LOAO BETIINNING VALUES EJR CONS ANO JULLS



    TOIALE=WFRONW(JJ):J2(1)OVZG
c
C

    SCOWTH = R T, WSLW(JJ, 1):


    YCON \(1 H=17 T A L T 0 V 1904\)

    OCOWON = PCOWUA (JJ-1;4): NRCATM


```

CGgrcle deatm oates
CALLC:IOX(CYYTCW,LYOYN,NCY,NK)
CALL CNOX\CYCTFN:LYOTH:NCY:NK)
CALLLCSOX(r,YFNCN:LYOYH:VY,Y:NK)
C
ORMACN=CYMACH(1)
004กこん=ごY7CW11
ORFBRN=CYF ZCN(1)
ORFOCN=CYFNCH(1
ORCATF=CYCTFW(1)
C CALCularion of CONS
PCOWIW(JJ.L)= OOTALI\&TTENFTHAC
PCONON(JJSI=ROTAL
ROJAL2=PSOWDWIJJ?L
\&
RATIO1=PEOW3H(JJ:L)/(PCOWRW(JJ.L) \&PCOONOW(JJ.L))
TOTALA=WCATHP(I):QT(4)
FOTAL(?=WRTSNW(I):OZ(y):(1:-v25)

```

```

 TOTALSIVP\OON(I) - I(4)*V25
 C
IFII .LT.23ISO TO 408
TOTALB=0.0
TOTAL 3=00%
TOTAL5=0.0
0066ja k=1,3
TOTALU=TOTALZ\&XCATNG(T,J)
IOTAL 2=TOTAL P*XOSFWII,JI
TOTALB=YOYALI\&YP{FFNII;J
TOYAL4=TNTALG*XPNQYH(T:J)
609 CNNTVNUF
C
C
{FPTOTALB.LE.29OO) TOTALC=TOTALPEVIS
YCOMRN=TOTALTOVIg*:
YCNHN=INYALJOVI90:%

```

```

 C
 xSCDWRWETr.nW%W
 MSCOWNW=SCRHAN
 SCOWJN=OCCNTLN(I,M):C
 OCON!M=PこONIM\JJ?LIOjOCAIN
 C
 C CALGULATION JF gulls
 PBULLN(J),L)=00TALT&TT EMETMGL
 c
 SWOULL=?3LSLOW(I,M)OG
 XBULLN=TJTAL?:(1,-V19):4+TNTAL&*(10-V1A)*4
    ```

```

 C
 CALCULAPION OF HEIFERSIBREO ANN FOR RREEDING)
 TOTALE=0.0
 OO al? K=1.LTHEO
 IOTALS= FJTALC, TNWAMR(K)
 CONT IMII
 PHFQ!YN(JJ.L!=TOTALE :OT
 IFII.[?. 2a) V=T
    ```

```

 AHFOUN=CNHTNSH(N,M)/(I:-DOCATW):4
 C
 XHFRON=CHFOON
 xHFOT)N=CHFONW
 BHFK SN=A1FMNN:(1, -nOCATN)
    ```

```

 C
    ```



\(\xi\)
CPCMAM\＆（JJOL）＝ACMNWI＝TT
        PCFGWI \((J J, L)=A C F A W I\) की
PCFOWI
IJ,
    IFILHIGH.LT.16IGO TO 303
        COHE1



        VALDWIOC

LHIGH=LHIGH+3
c
c
    CALL EOXC TROWTE, MTHARC. TNHTC. N:OUNT NOCY.LTBTH, SUYIN

    OTHMB=डTHNJC+DODNBH
    BTHN = ITHHOC HTHHOH
    8MFCHE BYHKZ: 9
    \(8 F J C H=1\) HHY日: 5

    OMOCN1 = ゴロ
    OFJCHI=RFOCA*DPFIJCN•OT


C
    CALL BUXC (ACHAH1. SCY7H1. YNMTHI, NC NUNT, NOCY,LTMAH1, SIMTY)

    CALL BOX: (ACFOWI:JCFTWI: TNFTHI:NGOUNT: NUCV:LIFDN1:SJYIV)
\& calculation ne calves(b-5)


C
    SMACNZ=OCSLONM(T•M)OVI*







C

    CALL ODXC (CCF.3H2, DT:FJW2. INFTH2: VITOUNT, NOCY,LTF 3A2, SUIIV)

c
C
    \(\operatorname{ToraL} 7=0.0\)
\(\operatorname{TOTALA}=0.0\)
    \(\operatorname{TOTAL}\)
\(\operatorname{TOTAL}\)
\(9=0.0\)
    Jotal 1 \begin{tabular}{rl}
\(r\) & \(=0\) \\
\hline
\end{tabular}
        00 al 3 K 1 ITMAN
        TOTAL7- TOTALT THARW3(K)


    \(c\)
    PCHON \(3(J J, L)=T\) TIAL 7:nT
    PCMON3(JJ.L) = YTIALAOUT
    PCFOW3(JJOL) = TOTALIO•OT
C

    \(\mathrm{J}_{\mathrm{J}}^{\mathrm{O}} \mathrm{CO}\)

    c
    CONT (lい)
C
C
    TOTAL B=WCa vwTIJO
    Frip jit.231r.0 Tn 604

    On sur
\(j=\) orolinfor

    \(6 n 5\) COHTlMy
C



    \(X H O C W 3=0 . ?\)
\(X F Y C H 3=0.0\)











CALL BOX JIFCFOW3,GCFTW3. TNFOWB,NCOUNT,NOCY;LTFDW3; SUYIVI
C CALCULATION OF FEEDE? CATILE,PATION \(B\)
    \(\operatorname{TOTAL} 11=0 . C\)
\(\operatorname{TOTAL} 12=0.0\)
    THTAL \(13=0\).


    14
        TOTALI = IOTALI \(3+C\) Trawh (K) ITT
        continir


            PCFYWL (JJ, L) \(=\) YOTALI 3 © DT* OLF 1 WG
C







C CALCULATION DF FEEJER CATTLE.DATION A
    TOTAL \(1=0.0\)
TOTAL \(2=0.0\)
    TOTAL \(3=0.0\)
    TクTAL \(4=C .0\)




    11
    corstitup


C
C
TOTALExMこムV47(I) 37(円)
    FFI 1 C. 23) 3,0 10 606
    TOrAL \(6=0.0\)
On 677
\(k=1\)
    \(J=\) COIJNTマャK
    ITIALE = IJTALG + XCAYNTII,3)
    607 CONTYNUE
C



    407 rOHIINU
    CONTINUE
CONTINUE
    XHBCN5 = TOTAL6* (1.-V6) * V4* 4
```

XFOCW5=YOTALG*\&1,-VG):(1.-VG)OG

```

```

XMOCN5=0.0
ZMNCW5=0:08
ABUL THzA SULLWODATITI
ABULUW=ABULLW*II.-रarIO!)

```


```

 DFACWC=(TFFFTWI-XFTFWT,-2HRC.W5-AHFRTW) ORRCATF -DLFGWS
    ```


```

 HCHOAG=5CMOW3-XMICNS-2MOCWF,-NMTEWS-ANULNW
    ```

```

C

```



```

C
C CalCuLATION DF SLAUGHTER CATTLE
ASBMN(JJ.L)=(JCMNNS\&LCYMWG):ONT
W(JJ,L)=(J\GammaF!,Wr+LCFBWG)=0
C
c
C TOTALLI=VOTHOW(T) OTG(4)
c
c
C
18TAL 9=0.0.3
J=CnuNTo*\&*S
TOTALN=TJTALQ\&ZCTSLQ(I.J)
45 CONIINUS
FFil ilT.23)co TO 502
0063 K K=1.3
F=FOUNIP\&KK
XSMSMG=TOTALS*V14
M,
\,
YSYBHF=TNTALI*VIG
XS4OH6=0.0
\
{ S4\PiWG=0.0
\EMOWR=0.0
C TOIAL=UJTKEN(JJI/GOUSTKSN(JJI/GOUSRTGNIJJ.L)
C SLRMJN(JJ.L)=ATПM4(JJ.L)

```

```

 SLRFYWIJJ,L)=ASBFW(JJ,OLI-XSFGW6-2SFUWG+YSFGW6-TOTAL-(1.-VII-V 35
 1-F36)
 C
ISLRAW(JJOL)=SLRYRA(JJ)L{:FLRMNN(JJ,L)
C C DRINT OUIPUI OF SIMULATION ANN LIVFSTOCK STOCK FIGUQES
IFIL:En.bII=JJ
IF(L.EN:?)C{UNYO=3.0
IFC:(N. S)CUNHYP=6.0
C

```


```

C
C


```
    TOTALG=PCNOWI(JJ,L)&PFROWI(JJ,L)* OrMOWP!JJ.L)OPFFOWZIJJ,L!
```



```
    TOTALT=TOTALIOTOTAL4
    TOTALB=InTAL&TOTAL
    TOTALY= IOIALB&IOTALE
```

```
    MSTEP=0:0
    MSTEPP=O:0
```

c
IFALEEO: If CNUYYR=3.0

1F(L2 EO.2.00.L.EO.4) 50 TO 374
PRTJ

373 FOOMAT (DOO:

1, PC P

c

c
374 ACAL VFS=PAYTOIOCALUW(T,L)
ASTE 2SERATIOLSTOSHIT. L

c
c
c

c
15F15.0.24x,F10.0.2F10.0)
C

$37 E$ CONTINUF
348 CONIINJF
349 CONTINUE
ENO
\& Subroutine ajxc
SUTROUTINE, BOXC (AIMR, BOUTR,TRAIN, NKOUNT, NOCY,LT, SUMIV)
OIMFNSION TRATMIROI
NCUHI=SUMU
SIFNN=ONT: NE HORY) in in

3

SUMTM=0.0

RND
\because
¢ subroutine ceox
SUGROUTINE CGOXPCY:LE,LT,NCY,NK)
OIMENSION CYCLE(5)
NKINK+1.GT:NKIGO TO 1
$T E Y P=C r C L E(1)$

CTKLE ULTI=TÉMP
1 RETUQN
END

を subroutine voelot.

$0 E L P=O F L$
ROUTO $=0 . C$

$\left.\left.0_{A B C}^{1}=C^{1}=1\right\}^{k}\right\}^{k}(1)$
CROUTR(I) =ATC+(RIN-ATC-11.+JFLO)I/DEL1
1 12 RIN A A AC QETURN

है function mezat
REAL FUNET TDN INGRATCTBFG. TENO,VAL)
OIYENSION VAL (IS), DEOT10)
$k=0$
$\mathrm{DO}_{\mathrm{ol}}^{1} \mathrm{I}=1 \mathrm{I}^{\mathrm{KK}}$

1
ONA
KKEA=1ENOD-I 9 CR
$00 \quad \mathrm{C}=\mathrm{I}=1$
CONTINITE
INGRAT =ADEA
2 fonilinue

APPENDIX F

DISAGGREGATE QUARTERLY CATTLE AND CALF POPULATION--1958-1972, ESTIMATED BY PROGRAM CATSIM2

Appendices F and G display the output of CATSIM2 for the parameter settings given in Chapter V. These are not necessarily the correct settings; the correct setting is undoubtedly a function of a wide range of factors not considered at this stage of development. Indeed, the structure of CATSIM may be in substantial error and itself a function of both exogenous and endogenous factors.

These appendices are included to demonstrate the sorts of output possible from a model such as CATSIM2. The obvious anomalies in the output underline the fact that additional work must be done. The reasonableness of most of these results support the contention that this work is worth pursuing.
APPENDIX F. DISAGGREGATE QUARTERLY CATTLE AND CALF POPULATION--1958-1972, ESTIMATED BY PROGRAM CATSIMR

APPENDIX F--Continued

| Year | Quarter | Calves 1-3 mos. Male Female | | $\begin{aligned} & \text { Calves 4-6 mos. } \\ & \text { Male Female } \end{aligned}$ | | Stream A
 Calves 7-12 mos.
 Male Female | | Stream B
 Cattle over 7 mos.
 Male
 Fcmale | | Stream A Cattle over 12 mos Male Female | | Replace Heifers 1-2 yrs. | Cows over 2 yrs. | Bulls over 1 yr. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1953 | | (head) | - (head) | (head) | (head) | (head) | (head) |
| | 1 2 | $\begin{array}{r} 125906 \\ 37850 \\ \hline \end{array}$ | $\begin{aligned} & 171049 \\ & 158700 \\ & \hline \end{aligned}$ | $\begin{array}{r} 07433 \\ -3853 \\ \hline \end{array}$ | $\begin{array}{r} 156655 \\ 112395 \\ \hline \end{array}$ | $\begin{aligned} & 30464 \\ & 85415 \\ & \hline \end{aligned}$ | $\begin{aligned} & 261428 \\ & 273859 \\ & \hline \end{aligned}$ | $\begin{aligned} & 57487 \\ & 85964 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{array}{r} 29967 \\ 3638 \\ \hline \end{array}$ | $\begin{array}{r} 59923 \\ 48680 \\ \hline \end{array}$ | $\begin{array}{r} 394239 \\ 403248 \\ \hline \end{array}$ | $\begin{aligned} & 1966576 \\ & 1959540 \\ & \hline \end{aligned}$ | $\begin{array}{r} 89270 \\ 107249 \\ \hline \end{array}$ |
| | 3 | $\begin{aligned} & 112132 \\ & 161726 \\ & \hline \end{aligned}$ | $\begin{array}{r} 150342 \\ 198563 \\ \hline \end{array}$ | -16525 41336 | $\begin{aligned} & 11943 \\ & 119731 \end{aligned}$ | $\begin{array}{r} 43914 \\ -82092 \\ \hline \end{array}$ | $\begin{array}{r} 261907 \\ 229258 \end{array}$ | $\begin{array}{r} 60498 \\ 39818 \\ \hline \end{array}$ | $\begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 21623 \\ & 52962 \\ & \hline \end{aligned}$ | $\begin{array}{r} 49381 \\ 62692 \\ \hline \end{array}$ | $\begin{array}{r} 399226 \\ 395765 \\ \hline \end{array}$ | $\begin{array}{r} 1961437 \\ 1931435 \\ \hline \end{array}$ | $\begin{aligned} & 96769 \\ & 84630 \end{aligned}$ |
| 1963 | 1 | 125776 | 163037 | 72546 | 146774 | 14399 | 234929 | 45563 | 0 | 36195 | 59593 | 399505 | 1941786 | 86663 |
| | 2 | 3.670 | 145222 | -2137 -10785 | 107920 | 66690 | 260081 | 63032 50808 | 8 | -2992 | $\begin{aligned} & 46432 \\ & 55336 \end{aligned}$ | $\left\|\begin{array}{l} 402930 \\ 386295 \end{array}\right\|$ | $\begin{aligned} & 1933899 \\ & 1417935 \end{aligned}$ | $\begin{array}{r} 103614 \\ 90064 \end{array}$ |
| | $\frac{3}{6}$ | 121485 | $\frac{1+7878}{184562}$ | -10785 53540 | 11913731 | -7668 | 2295559 | 36992 | 0 | 34828 | 9331 \% | $\frac{371920}{}$ | 2977495 | 73971 |
| 135 | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | $\begin{array}{r} 126624 \\ -3958 \end{array}$ | $\begin{aligned} & 102533 \\ & 165674 \end{aligned}$ | $\begin{aligned} & 85103 \\ & 17784 \end{aligned}$ | $\begin{aligned} & 150207 \\ & 111071 \end{aligned}$ | $\begin{aligned} & 24955 \\ & 81190 \end{aligned}$ | $\begin{aligned} & 23 \overline{2} 7 \overline{3} \\ & 261508 \end{aligned}$ | $\begin{aligned} & 42096 \\ & 74070 \end{aligned}$ | 0 | $\begin{aligned} & 22102 \\ & -6125 \end{aligned}$ | $\begin{aligned} & 79191 \\ & 74923 \end{aligned}$ | $\begin{aligned} & 352694 \\ & 336911 \end{aligned}$ | $\begin{aligned} & 1875289 \\ & 1954334 \end{aligned}$ | $\begin{aligned} & 78874 \\ & 91499 \end{aligned}$ |
| | 3 | $\begin{aligned} & 12.519 \\ & 164367 \end{aligned}$ | $\begin{aligned} & 147776 \\ & 1938 \equiv 3 \end{aligned}$ | $\begin{array}{r} -12966 \\ 56300 \\ \hline \end{array}$ | $\begin{aligned} & 119531 \\ & 126119 \end{aligned}$ | 65390 2859 | 256452 228566 | $\begin{array}{r} 71157 \\ 47101 \\ \hline \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 10776 \\ & 43065 \end{aligned}$ | $\begin{aligned} & 67900 \\ & 95527 \\ & \hline \end{aligned}$ | $\begin{aligned} & 345360 \\ & 356437 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1512907 \\ & 1759137 \\ & \hline \end{aligned}$ | $\begin{aligned} & 79915 \\ & 7 C 747 \end{aligned}$ |
| 2771 | 1 | 113890 | 155262 | 89657 | 150767 | 25275 | 239356 | 55333 | 0 | 37057 | 62619 | 370729 | 1737947 | 11779 |
| | 2 | 71215 | 13754 | 14445 | 107727 | 85473 | 268238 | 83894 | 0 | 3503 | 43257 | 401279 | 1696179 | 86936 |
| | 3 | $1)^{5} 5663$ | 1142322 | 9781 | 112519 | 61075 | 253691 | 75754 | 0 | 19551 | 41479 | 4 C 9540 | -1t59709 | 72506 |
| | 6 | 149367 | 874065 | 40647 | 119800 | 26336 | 217023 | 60405 | 0 | 52278 | 72899 | 415329 | 1E21701 | 61640 |
| 1372 | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | $\begin{array}{r} 107787 \\ 43577 \end{array}$ | $\begin{aligned} & 147308 \\ & 129280 \end{aligned}$ | $\begin{aligned} & 86155 \\ & 16310 \end{aligned}$ | $\begin{aligned} & 14+565 \\ & 102321 \end{aligned}$ | $\begin{aligned} & 34250 \\ & 75427 \end{aligned}$ | $\begin{aligned} & 228254 \\ & 258094 \end{aligned}$ | $\begin{aligned} & 62950 \\ & 84223 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{array}{r} 42502 \\ .17522 \end{array}$ | $\begin{aligned} & 45153 \\ & 26931 \end{aligned}$ | $\begin{array}{\|} 415329 \\ 415329 \end{array}$ | $\begin{array}{r} 1543149 \\ -1639359 \\ \hline \end{array}$ | $\begin{aligned} & 62876 \\ & 78161 \\ & \hline \end{aligned}$ |
| | 3 | $\begin{array}{r} 3063 \\ 123286 \end{array}$ | $\begin{aligned} & 129359 \\ & 163430 \end{aligned}$ | $\begin{array}{r} -290 \\ 34270 \end{array}$ | $\begin{aligned} & 105005 \\ & 108499 \end{aligned}$ | $\begin{array}{r} 53057 \\ 5941 \end{array}$ | $\begin{array}{r} 242256 \\ 200012 \end{array}$ | $\begin{aligned} & 71764 \\ & 50963 \end{aligned}$ | 0 | $\begin{aligned} & 28046 \\ & 54216 \end{aligned}$ | $\begin{aligned} & 27395 \\ & 58955 \end{aligned}$ | $\begin{aligned} & 415329 \\ & 415329 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1631309 \\ & 1596954 \\ & \hline \end{aligned}$ | $\begin{aligned} & 64226 \\ & 52219 \end{aligned}$ |

beef cattle east

| 1959 | 1 | 31E63 | 31663 | 13220 | 17211 | 46534 | 61005 | 233669 | 78937 | 42960 | 26096 | 67266 | 383750 | 115196 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 2 | 73590 | 81776 | 120211 | 23535 | 27515 | 42326 | 182042 | 61593 | 55042 | 31891 | 70597 | 373252 | 138485 |
| | 3 | 27.64 | 29214 | 67900 | 76965 | 8498 | 28127 | 132650 | 47676 | 72960 | 29152 | 74450 | 385311 | 127805 |
| | \dagger | 31640 | 33161 | 19203 | 25542 | 35053 | 75366 | 173166 | 61002 | 83416 | 18950 | 73075 | 350034 | $1 \overline{01607}$ |
| 1959 | 1 | 33192 | 39973 | 22603 | 23646 | 37858 | 77333 | 150658 | 55191 | 70346 | 20989 | 70675 64625 | 381938 392296 | $\begin{aligned} & 107282 \\ & 137054 \end{aligned}$ |
| | 2 | 77562 | 80976 | 21254 | $33: 47$ | 13639 | 38308 | 131005 | 49621 | 79339 | 54260 | 64625 | 352294 | 133054 |
| | 3 | 23924 | 34726 | 69.942 | 75512 | 17217 | 45421 | 117327 | 46067 | 83371 | 41140 | 67032 | 395016 | 125043 |
| | 4 | 33690 | 35119 | 21565 | 27619 | 63292 | 6567 | 177743 | 63584 | 102279 | 30710 | 72733 | 404937 | 103586 |
| 1965 | 1 | 37233 | 39175 | 26311 | 31298 | 61165 | 00425 | 164941 | 59311 | 91304 | 34934 | 74099 | 392506 | 108719 |
| | 2 | 77375 | 80756 | 29991 | 32009 | 16106 | 41746 | 146933 | 53552 | 98721 | 59561 | 82510 | 382307 | 133036 |
| | 3 | 27Cus | 23833 | 67810 | 75602 | 15918 | 45498 | 122237 | 47959 | 92495 | 46675 | 76929 | 401636 | 114776 |
| | 4 | 35765 | 37152 | 19375 | 25523 | 66829 | 87535 | 195545 | 66093 | 90345 | 36619 | 7C923 | 41638 C | 101671 |
| 1361 | 2 | 3591 75357 | 42433 91248 | 26258 24531 | 33150 35790 | 67533 17743 | 83 4257 4254 | 181442 163153 | 50736 55262 | 75149 90976 | $\begin{aligned} & 36754 \\ & 61245 \end{aligned}$ | $\begin{aligned} & 71735 \\ & 73939 \end{aligned}$ | $\begin{aligned} & 411610 \\ & 619737 \\ & \hline \end{aligned}$ | $\begin{aligned} & 106682 \\ & 132137 \end{aligned}$ |
| | | | 329% | | | | | | | | | | | |
| | 4 | 31123 3861 | 329.9 35420 | 63023 22959 | 77678 27365 | 21145 64592 | 56951 97312 | 165749 242159 | 51128 71948 | $\begin{array}{r} 96480 \\ 96060 \\ \hline \end{array}$ | $\begin{array}{r} 48235 \\ 39209 \\ \hline \end{array}$ | $\begin{aligned} & 75150 \\ & 76161 \end{aligned}$ | $\begin{array}{r} 43216 \epsilon \\ 439589 \\ \hline \end{array}$ | $\begin{aligned} & 116449 \\ & 103944 \\ & \hline \end{aligned}$ |

appexdix F-continued

| Year | Quarter | Calves 1-3 mos. Male
 Female | Calves 4-6 mos. Male Femple | Strean A Calves 7-12 mos. Male
 Female | Stream 8 Catte over 7 mos. Male | Strean A Cattle over 12 mos. Male Female | Replace Heifers 1-2 yrs. | Cows over 2 yrs. | Bulls over 1 yr. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1362 | | (head) (head) | (head) | (head) | (head) |
| | 1 | $37733 \quad 61668$ | 24606 | $61502 \quad 93661$ | $236069 \quad 67961$ | 86446 39941 | 77593 | 635000 | 107404 |
| | 2 | 8793509637 | 22767 36889 | 26676 67869 | 211029 61156 | $95502 \quad 62977$ | 81173 | 464911 | 128702 |
| | 3 | 33659 35569 | 75765 -6678 | 22920 50881. | 177788 | $90317 \quad 53487$ | 75979 | 657714 | 120961 |
| | 6 | 33633 | 26923 31722 | 53612 99596 | 25669675219 | 63430 - 64645 | 70638 | 465328 | 97430 |
| 1963 | 1 | 4218943916 | 26763 33639 | 57590 96324 | 231750 E9994 | $69461 \quad 62075$ | 72532 | 461419 | 102585 |
| | 2 | $91912 \quad 95161$ | 25361 36657. | $2 j 627$ 67432 | 201133 62279 | $87757 \quad 63762$ | 77236 | 474209 | 127675 |
| | 3 | $33397 \quad 38717$ | $81612 \quad 90455$ | $20681 \quad 50879$ | $165265 \quad 55074$ | $06763 \quad 53427$ | 77431 | 490998 | 110908 |
| | 6 | 35232
 36789 | $28625 \quad 35282$ | $65826 \quad 107136$ | 271007
 79449 | $02802 \quad 63915$ | 79699 | 681947 | 97703 |
| 1956 | 1 | -2276 43806 | 2633232706 | 69067107177 | 258228 75707 | 7554935443 | 89312 | 479470 | 101325 |
| | 2 | 33768 101918 | 2572735956 | $26165 \quad 56565$ | 22596066647 | $103690 \quad 57250$ | 98870 | 496658 | 122661 |
| | 3 | $45422 \ldots 2211$ | 88845 97116 | 22031 50440 | $106475 \quad 57741$ | 115014 | 107377 | 497352 | 107636 |
| | 4 | 30100 - 37735 | 31331 37997 | 83130 119610 | 331929 -87483 | 124i31 37603 | 2123825 | 493223 | 95675 |
| 1705 | 1 | $\begin{array}{rr}43652 \\ 137346 & 110722\end{array}$ | $\begin{array}{ll}24829 & 32701 \\ 25725 & 37818\end{array}$ | $\begin{array}{ll}90660 & 124364 \\ 29186 & 55125\end{array}$ | $\begin{array}{ll}326995 & 85054 \\ 279734 & 73019\end{array}$ | 109939 39030
 139563 32692 | $\begin{array}{r} 105966 \\ 90917 \end{array}$ | $\begin{aligned} & 490334 \\ & 506765 \end{aligned}$ | $\begin{array}{r} 99636 \\ 121454 \end{array}$ |
| | $\frac{3}{3}$ | 455056 47768 | 95720 104917 | 21670 | 22199162799 | 133273 72542 | 80126 | 696208 | 202671 |
| | 6 | $43320 \quad 41952$ | 3569742516 | 76584119964 | 32658389902 | 13179458736 | 85650 | 479947 | 90556 |
| 1736 | 1 | - 7235 - 9267 | 2895936593 | 01364125474 | $310418 \quad 87083$ | 11797955692 | 82775 | $4 E 5336$ | 92646 |
| | 2 | 135699 - 59627 | $30940 \quad 61530^{\circ}$ | $36627 \quad 60523$ | $2692 \overline{36} \quad 76943$ | 837844 - 89553 | 86064 | CE5526 | 111968 |
| | 3 | 3353946 | 98105105395 | 2565358144 | 22252367040 | $132620 \quad 77831$ | 86636 | 669199 | 98295 |
| | 6 | 335i4 40199 | 31613 37234 | 95337 134192 | 38484799365 | 13388564140 | 87136 | 465227 | 66223 |
| 1557 | 1 | $\begin{array}{ll}44720 \\ 36737 & 96520\end{array}$ | $\begin{array}{ll}28900 & 35554 \\ 29080 & 35995\end{array}$ | $\begin{array}{rrr}101928 & 134945 \\ 37096 & 60914\end{array}$ | $\begin{array}{ll}372626 & 93886 \\ 332272 & 82431\end{array}$ | | | $\begin{aligned} & 462323 \\ & 477605 \end{aligned}$ | $\begin{array}{r} 89907 \\ 110074 \end{array}$ |
| | 2 | 30737 | $\begin{array}{ll}29080 & 35975 \\ 88038 & 95886\end{array}$ | $\begin{array}{rr}37096 & 60714 \\ 35702 & 62139\end{array}$ | $332272-82431$ 282496 | $\begin{array}{ll} 155025 & 95358 \\ 170227 & 97542 \end{array}$ | 97173 | 477605 | 110074 |
| | 3 | $\begin{array}{ll}39070 & 46636 \\ 33200 & 37599\end{array}$ | $\begin{array}{ll}88038 \\ 31.99 & 95884 \\ & 37166\end{array}$ | $\begin{array}{rr} 35707 & 62139 \\ 99939 & 131299 \\ \hline \end{array}$ | $\begin{array}{ll} 282496 & 71351 \\ \\ \hline 26973 & 99139 \\ \hline \end{array}$ | 170227 97542
 166716 93249 | $\begin{aligned} & 81865 \\ & 65338 \end{aligned}$ | $\begin{array}{r} 495909 \\ 499493 \\ \hline \end{array}$ | $\begin{aligned} & 96569 \\ & 06450 \\ & \hline \end{aligned}$ |
| 1963 | 1 | 54050 46375
 $10: 771$ 1.3708 | 28487 35203
 29535 37553 | 109487 129635
 3.596 57240 | 394486 92635
 328978 79387 | 143235 77233
 170714 90136 | $\begin{aligned} & 73232 \\ & 96716 \\ & \hline \end{aligned}$ | $\begin{aligned} & 697477 \\ & 519244 \end{aligned}$ | $\begin{array}{r} 89270 \\ 107269 \end{array}$ |
| | 3 | +3587 45172 | 92267 99716 | 2963957314 | 26468867913 | 16126180869 | 95370 | 515538 | 94769 |
| | \bigcirc | 33737 35241 | 35550 4:618 | 105976136543 | 433594100361 | $145197 \quad 70631$ | 101872 | 505578 | 84638 |
| 1763 | 1 | -J9E2 42650 | 23640 35426 | $113236 \quad 240898$ | $417685 \quad 97021$ | 11943459828 | 99131 | 511515 | 86663 |
| | 2 | 113212115559 | 27426 36164 | 3702161542 | $362457 \quad 83404$ | $154872 \quad 87638$ | 92454 | 552582 | 103814 |
| | 3 | 5276154575 | 105350 11179: | 2750352934 | 27992668309 | 13650769859 | 107157 | 554257 | 96066 |
| | 6 | 3367936112 | 45135 507:7 | 160213137409 | 436032102636 | 11647340627 | 121798 | 549416 | 78971 |
| 2375 | $\begin{aligned} & 2 \\ & 2 \end{aligned}$ | 46696 46367
 123322 121489 | 27702 36651
 32235 46310 | $\begin{array}{rr} 121226 & 150558 \\ 33155 & 64712 \end{array}$ | 613186 101120
 34184 86220 | 91318 35335
 130137 66619 | $\begin{aligned} & 124856 \\ & 132727 \\ & \hline \end{aligned}$ | $\begin{aligned} & 551553 \\ & 504309 \\ & \hline \end{aligned}$ | $\begin{aligned} & 78874 \\ & 91499 \\ & \hline \end{aligned}$ |
| | 3 | 52635 54577 | 111704 113665 | 26597 54595 | $268159 \quad 71776$ | $125838 \quad 75820$ | 112198 | 630086 | $\div 9915$ |
| | 4 | +5252 47366 | 4599951261 | 103200 143822 | 430297106590 | $107575 \quad 71432$ | 91294 | 603401 | 70747 |

APPENDIX F--Continued

| Year | Quarter | Calves 1-3 mos. Male Female | Calves Male Female | Strean A Calves 7-12 mos. Male Female | Stream B
 Cattle over 7 mos.
 Male
 Female | $\begin{aligned} & \text { Strean A } \\ & \text { Cattle over } 12 \text { mos. } \\ & \text { Male Female } \end{aligned}$ | Replace Helfers 1-2 yrs. | Cous over 2 yrs. | Sulls over 1 yr. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1371 | | (head) (head) | (head) | (head) | (head) |
| | 1 | 3.265 _ 55036 | $37617 \quad 63366$ | 121626153627 | $431146 \quad 104273$ | 6721455006 | 95029 | 613520 | 71779 |
| | 2 | 12753622972 | 62059 50590 | 35308
 25458
 18955 | $\begin{array}{ll}367698 & 91068 \\ 279876 & 78479\end{array}$ | 127618 76091
 119359 78343 | 104370 104893 | 652968 646155 | 86936 72506 |
| | 3 | 5.3378 $-1228 ~$ | $\begin{array}{ll}125054 & 226366 \\ 52564 & 57726\end{array}$ | 2114625- 156828 | $\begin{array}{lr}279176 & 76479 \\ 457983 & 115351\end{array}$ | $\begin{array}{ll}119359 & 78343 \\ 99241 & 74400\end{array}$ | 104893 105200 | $\underline{646155}$ | 72506 |
| 1372 | 2 | 53710 52236
 143793 145779 | $\begin{array}{ll}33177 & 38966 \\ 39614 & 46805\end{array}$ | 121318 166434
 40267 73682 | 465302 116146
 379508 97569 | $\begin{array}{rr}86513 & 62067 \\ 136771 & 09669\end{array}$ | $\begin{aligned} & 105250 \\ & 105200 \end{aligned}$ | $\begin{aligned} & 639351 \\ & 687630 \end{aligned}$ | $\begin{aligned} & 62876 \\ & 70161 \end{aligned}$ |
| | $\frac{3}{3}$ | ój514 67559 | 1376026 | -27204 62126 | $299565 \quad 81015$ | -137054-93604 | 105230 | 685701 | 64226 |
| | 4 | $\pm 3035 \quad 44238$ | 6344665665 | 127668 16696 | $691207-22291$ | $117595 \quad 85240$ | 105230 | 664970 | 52219 |

DAIRY CATTLE WEST

| 1953 | 1 | 9.603 | 34665 | 54516 | 65829 | 23300 | 116311 | 123579 | 0 | 30264 | 46450 | 146039 | 821576 | 107172 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 2 | 7.486 | 76486 | 46164 | 68975 | 27652 | 122699 | 129396 | 0 | 26599 | 55114 | 142436 | 622356 | 118889 |
| | 3 | 71251 | 71251 | 26373 | 47715 | 27884 | 125546 | 126229 | 0 | 26735 | 52197 | 147417 | 819619 | 109017 |
| | 4 | 95043 | 85363 | 34902 | 46830 | 19747 | 108487 | 112348 | 0 | $3396 \overline{1}$ | 59911 | 151733 | 005958 | 99122 |
| 1353 | 1 | 75676 | 78674 | 56913 | 69666 | 18046 | 92897 | -105079 | 0 | 32833 | 59338 | 158113 | 631513 | 103004 |
| | 2 | 73746 | 7374 | 43237 | 61106 | 26883 | 113700 | 115298 | 0 | 22374 | 46765 | 164050 | 900363 | 110286 |
| | 3 | 5306 | 6965 | 39197 | 53746 | 29493 | 128535 | 117573 | 0 | 21735 | 30318 | 163220 | 803697 | 112038 |
| | 4 | 9.612 | 54512 | 35695 | 38167 | 24458 | 110699 | 116363 | 0 | 29598 | 46288 | 162490 | 795426 | 107325 |
| 1960 | 1 | 73023 | 78023 | 57040 | 61964 | 22023 | 07419 | 121531 | 0 | 31541 | 46596 | 167069 | 000016 | 109769 |
| | 2 | 75413 | 73413 | 45060 | 55572 | 27094 | 97689 | 121604 | 0 | $27 \overline{5} 5$ | 37621 | 171323 | 805401 | 120104 |
| | 3 | 55729 | 66729 | 35559 | 46992 | 30071 | 115418 | 123620 | 0 | 26288 | 20169 | 167666 | 307607 | 114042 |
| | 4 | 33077 | 83477 | 37262 | 3350 | 23920 | 102626 | 118138 | 0 | 32683 | 35035 | 164519 | 798778 | 108533 |
| 2351 | 1 2 | 75069 | 76409 | 58572 | 63425 | 21461 | 79240 | 113170 | 0 | 33612 | 49136 | 149691 | 807583 | 110668 |
| | 2 | 12560 | 72560 | 45417 | 55161 | 29140 | 94667 | 123752 | 0 | 26887 | 53253 | 133936 | 916950 | 122561 |
| | 3 | 53361 | 63341 | 38190 | 45043 | 30713 | 126467 | 125573 | 0 | 26305 | 41702 | 121624 | 816644 | 214324 |
| | 4 | 0.823 | 86323 | 38181 | 33302 | 24806 | 99103 | 121461 | 0 | 33301 | 62835 | 110997 | 001519 | 108090 |
| $1 \rightarrow 62$ | 1 | 75931 | 75981 | 59912 | 62219 | 22510 | 77051 | 116561 | 0 | | 64715 | $\begin{aligned} & 114816 \\ & 118375 \\ & 123633 \\ & 128252 \end{aligned}$ | 794687
 709054
 775746
 753852 | $\begin{aligned} & 1111174 \\ & -126202 \\ & 116763 \\ & 108302 \end{aligned}$ |
| | 2 | 72005 | 72.05 | 49222 | 56250 | 28722 | 93229 | -12712i | 0 | 28492 | 55695 | | | |
| | 3 | 67170 | 69170 | 43030 | 47963 | 32146 | 126357 | 130708 | 0 | 28148 | 34586 | | | |
| | 4 | 63540 | 33940 | 41036 | 35654 | 27669 | 103007 | -129530 | 0 | 35257 | 50290 | | | |
| 1363 | 1 | 77392 | 77852 | 63191 | 67560 | 25020 | 50222 | 125264 | 0 | 36716 | 59364 | 125067 | 752362 | 112235 |
| | 2 | 71117 | 71117 | 55225 | 61939 | 30516 | 98277 | 136220 | 0 | 31498 | 59445 | 122069 | 753046 | 120307 |
| | 3 | 65959 | 66915 | 46017 | 50315 | 36098 | 126686 | 141779 | 0 | 30430 | 44966 | 116723 | 747001 | 224336 |
| | 4 | 91720 | 81720 | 41.97 | 37315 | 30039 | 111020 | 139699 | 0 | 36894 | 67884 | 112123 | 731845 | 119995 |
| 1966 | 1 | 11360 | 71300 | E 3005 | 65630 | 25804 | 06102 | 233138 | 0 | 39319 | 82305 | 108071 | 728899 | 125350 |
| | 2 | 55763 | 66763 | 41646 | 4715 | 35538 | 100288 | 141461 | 0 | 35955 | 82850 | 104345 | 727023 | 142841 |
| | 3 | ¢3046 | 63646 | 38091 | 42345 | 3.745 | 116459 | 135479 | 0 | 31724 | 69516 | 93366 | 716791 | 140954 |
| | \checkmark | 77347 | 77347 | 36724 | 23696 | 23596 | 88161 | 127049 | 0 | 36966 | 60183 | 93221 | 693361 | 136319 |

appempix F--Continued

| Year | Quarter | Calves 1-3 mos. Male Female | | $\begin{aligned} & \text { Calves } \\ & \text { Male } \end{aligned}$ | $\begin{aligned} & -6 \text { mos. } \\ & \text { Female } \end{aligned}$ | Stresa A
 Calves 7-12 mos.
 Male
 Female | | Streem 8
 Cattle over 7 mos. Male . Fumie | | ```Mole \\ Strean A \\ Cattle over 12 mos. \\ Female``` | | Replace Helfers $1-2$ yrs. | Cows over 2 yrs. | $\begin{aligned} & \text { Bulls } \\ & \text { over } \\ & 1 \text { yp. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1765 | | (head) |
| | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | $\begin{aligned} & 53963 \\ & 0.660 \end{aligned}$ | $\begin{aligned} & 699 \div 3 \\ & 6 \div 600 \end{aligned}$ | $\begin{array}{r} 69769 \\ 62192 \end{array}$ | $\begin{aligned} & 67363 \\ & 62779 \end{aligned}$ | $\begin{aligned} & 20295 \\ & 23568 \end{aligned}$ | $\begin{aligned} & 64709 \\ & 69295 \end{aligned}$ | $\begin{aligned} & 116188 \\ & 116695 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 35386 \\ & 28871 \end{aligned}$ | $\begin{aligned} & 19951 \\ & 15007 \end{aligned}$ | $\begin{aligned} & 83871 \\ & 75195 \end{aligned}$ | $\begin{aligned} & 692914 \\ & E B S 110 \end{aligned}$ | $\begin{aligned} & 142585 \\ & 159129 \\ & \hline \end{aligned}$ |
| | 3 | 51260 | 61230 | 32705 | 36315 | 27091 | 88676 | 115800 | 0 | 25413 | 58287 | 74016 | 673513 | 154372 |
| | 4 | 74504 | 76506 | 26341 | 14120 | 22293 | 78224 | 109484 | 0 | 29210 | 61337 | 73011 | 651892 | 147666 |
| 2965 | 1 | 65686 | 66.06 | 49749 | 45365 | 17063 | 49696 | 97910 | 0 | 30850 | 66533 | 70710 | 639143 | 147863 |
| | 2 | 63788 | 62785 | 41261 | 61407 | 21855 | 58057 | 104790 | 6 | 26628 | 66437 | 68572 | 620119 | |
| | 3 | 57564 | 57544 | 37322 | 36125 | 26809 | 05227 | 107358 | 0 | 24511 | 36543 | 70091 | 615864 | 848646 |
| | 6 | 53295 | 67295 | 26636 | 17138 | 23664 | 76679 | 107566 | \square | 35572 | 43081 | 71379 | 596956 | 135877 |
| 1367 | 2 | $\begin{aligned} & 52782 \\ & 56376 \end{aligned}$ | $\begin{aligned} & 62782 \\ & 56876 \end{aligned}$ | $\begin{aligned} & 49062 \\ & 41690 \end{aligned}$ | $\begin{aligned} & 46720 \\ & 40230 \end{aligned}$ | 16962 22160 | $\begin{aligned} & 52647 \\ & 62316 \end{aligned}$ | 98966 106102 | 0 | $\begin{aligned} & 31755 \\ & 26174 \end{aligned}$ | $\begin{aligned} & 50888 \\ & 54011 \end{aligned}$ | $\begin{aligned} & 74027 \\ & 76497 \end{aligned}$ | $\begin{aligned} & 586752 \\ & 574154 \end{aligned}$ | $\begin{aligned} & 140013 \\ & 155784 \end{aligned}$ |
| | 3 | 51561 | 51561 | 32789 | 25387 | 26670 | -65286 | 108731 | 8 | 25501 | 30716 | 77622 | 565340 | 147085 |
| | 4 | 5?660 | 62658 | 25432 | 9956 | 22039 | 64796 | 106979 | 0 | 30357 | 40936 | 78598 | 552015 | 138572 |
| 1963 | $\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & 57611 \\ & 52542 \\ & \hline \end{aligned}$ | $\begin{aligned} & 57611 \\ & 52542 \end{aligned}$ | $\begin{aligned} & 43797 \\ & 39117 \\ & \hline \end{aligned}$ | $\begin{aligned} & 38706 \\ & 36776 \\ & \hline \end{aligned}$ | $\begin{aligned} & 17190 \\ & 2.286 \\ & \hline \end{aligned}$ | $\begin{aligned} & 34824 \\ & 67492 \\ & \hline \end{aligned}$ | $\begin{aligned} & 95626 \\ & 99550 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 31782 \\ & 27566 \\ & \hline \end{aligned}$ | $\begin{array}{r} 47737 \\ 39958 \\ \hline \end{array}$ | $\begin{aligned} & 79954 \\ & 01233 \\ & \hline \end{aligned}$ | 544842 537269 | $\begin{aligned} & 161296 \\ & 153617 \\ & \hline \end{aligned}$ |
| | $\begin{aligned} & 6 \\ & 3 \\ & \hline \end{aligned}$ | $\begin{array}{r} 46390 \\ 57654 \\ \hline \end{array}$ | $\begin{aligned} & 46090 \\ & 57036 \\ & \hline \end{aligned}$ | $\begin{aligned} & 31737 \\ & 26736 \\ & \hline \end{aligned}$ | $\begin{aligned} & 26675 \\ & 16694 \end{aligned}$ | $\begin{aligned} & 24430 \\ & 21013 \end{aligned}$ | $\begin{aligned} & 72189 \\ & 58223 \\ & \hline \end{aligned}$ | $\begin{array}{r} 101497 \\ 98493 \\ \hline \end{array}$ | $\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{array}{r} 25609 \\ 29953 \\ \hline \end{array}$ | $\begin{array}{r} 3697 \\ 4996 \\ \hline \end{array}$ | $\begin{aligned} & 09577 \\ & 95757 \end{aligned}$ | $\begin{array}{r} 531328 \\ 520046 \\ \hline \end{array}$ | $\begin{aligned} & 146371 \\ & 126053 \end{aligned}$ |
| 1967 | 1 | 53023 | 53j23 | 40371 | 38223 | 16650 | 40093 | 90376 | 0 | 39529 | 12256 | 100932 | $51527 E$ | 130706 |
| | 2 | 43377 | 48877 | 38355 | 37432 | 17239 | 53590 | 94008 | 0 | 25747 | 11133 | 104907 | 510350 | 145706 |
| | 3 | 44166 | 40166 | 36672 | 32635 | 23376 | 74326 | 96876 | 0 | 23397 | 2771 | 94598 | 515155 | 135982 |
| | 6 | 56302 | 54386 | 25856 | 26936 | 21495 | 68703 | 96835 | 0 | 26925 | 18616 | 85728 | 511347 | 126828 |
| 197\% | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | 53571
 47566 | $5 i 571$ 47566 | $\begin{aligned} & 43191 \\ & 39532 \end{aligned}$ | $\begin{aligned} & 43659 \\ & 40873 \end{aligned}$ | $\begin{aligned} & 18564 \\ & 21095 \end{aligned}$ | $\begin{aligned} & 57970 \\ & 68712 \end{aligned}$ | $\begin{aligned} & 92608 \\ & 96186 \end{aligned}$ | 0 | $\begin{aligned} & 28131 \\ & 25029 \end{aligned}$ | $\begin{aligned} & 27079 \\ & 20289 \end{aligned}$ | $\begin{aligned} & 86427 \\ & 07077 \end{aligned}$ | $\begin{aligned} & 510946 \\ & 510739 \\ & \hline \end{aligned}$ | $\begin{aligned} & 131801 \\ & 148967 \end{aligned}$ |
| | 3 3 | 61563 5194 | 41563 51904 | 37156 30353 | 35835 28057 | 26390 22777 | $828 i 6$ 75867 | 101508 102637 | 0 | 26364 28477 | 38670 64190 | 72694 60318 | 594392 492117 | 141915 134700 |
| 1371 | 1 | 43276 | 49276 | 42205 | 41264 | 19920 | 63618 | 96193 | 0 | 29323 | 55693 | 67850 | 493706 | 142436 |
| | | 45675 | 45675 | 41064 | 60559 | 21265 | 68648 | 101695 | 0 | 25888 | 40544 | 74646 | 495585 | 165536 |
| | 3 | 43533 | 43533 | 36518 | 35E ${ }^{\text {3 }}$ | 26541 | 60387 | 104724 | 0 | 24440 | 42313 | 77174 | 476171 | 161808 |
| | 6 | 53877 | 53677 | 32212 | 32 6 38 | 23019 | 75429 | -104363 | 0 | 27274 | 60515 | 79175 | 453449 | 158017 |
| 1372 | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | $\begin{aligned} & 45691 \\ & +1585 \end{aligned}$ | $\begin{aligned} & 45631 \\ & 41585 \end{aligned}$ | $\begin{aligned} & 43597 \\ & 37243 \end{aligned}$ | $\begin{aligned} & 43756 \\ & 37660 \end{aligned}$ | $\begin{aligned} & 2 i 267 \\ & 22197 \end{aligned}$ | $\begin{aligned} & 66575 \\ & 73773 \end{aligned}$ | $\begin{aligned} & 100450 \\ & 104359 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 29030 \\ & 26361 \end{aligned}$ | $\begin{aligned} & 51486 \\ & 37455 \end{aligned}$ | $\begin{aligned} & 79175 \\ & 79175 \end{aligned}$ | 464745
 475592 | $\begin{aligned} & 162832 \\ & 182293 \\ & \hline \end{aligned}$ |
| | 3 | 46338 | 44338 | 32992 | 33074 | 23815 | 79740 | 104207 | 0 | 26192 | 43633 | 79175 | 460492 | 172902 |
| | 4 | 53832 | 53982 | 33536 | $3377!$ | 26809 | 69746 | 100893 | 0 | 29786 | 64767 | 79175 | 440543 | 164869 |

aPPEMDIX F--Contimued

apperoix F-Continued

APPEWDIX 6
disaggregate quarterly imspected steer and heifer slaughter--1961-1972. estimated by progrn catsinz

Apperioix 6--Continued

| Year | Quarter | WEST | | | | | | EAST | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Steers | | | Heifers | | | Steers | | | Helfers | | |
| | | Beef | Dairy | Total |
| 1938 | | (head) |
| | 1 | 1.9320 | 36339 | 185658 | 69038 | 14036 | 83074 | 132527 | 25313 | 157841 | 36173 | 27850 | 62022^{\prime} |
| | 2 | 153961 | 35561 | 189002 | 95698 106776 | 146801 | 110171 113406 | 145794 140323 | 20795 23579 | | 33272 31315 | 22850 20939 | |
| | 3 | 153is2 $1+5363$ | 34015 34315 | 184097 | 106776 79896 | 8429 | 113406 | 140323 | 23579 | 163902 151532 | 31315 27265 | 20939 25910 | 52254 |
| | $\stackrel{\square}{6}$ | 1+5363 | 34315 | 279678 | 79896 | 1951 | 82068 | 122460 | 29072 | 151532 | 27265 | 25910 | 53175 |
| 1565 | 1 | 150365 150527 | $\begin{aligned} & 36659 \\ & 33137 \end{aligned}$ | $\begin{aligned} & 191323 \\ & 193664 \end{aligned}$ | $\begin{aligned} & 71758 \\ & 93368 \end{aligned}$ | $\begin{aligned} & 2107 \\ & 3688 \end{aligned}$ | $\begin{aligned} & 75565 \\ & 97056 \end{aligned}$ | $\begin{aligned} & 124222 \\ & 144269 \end{aligned}$ | $\begin{aligned} & 25570 \\ & 16411 \end{aligned}$ | $\begin{aligned} & 149791 \\ & 160600 \end{aligned}$ | $\begin{aligned} & 27500 \\ & 32372 \end{aligned}$ | $\begin{aligned} & 26872 \\ & 22450 \end{aligned}$ | $\begin{aligned} & 54372 \\ & 54822 \end{aligned}$ |
| | 3 | 1.7366 | 32561 | 179605 | \$56347 | 2825 | 106875 | 152789 | 16857 | -157646 | 28750 | 2185 | 50666 |
| | 6 | 163182 | 32464 | 192646 | 87262 | 3423 | 90626 | 106213 | 19031 | 125243 | 18929 | 29119 | 48048 |
| 2372 | 1 | 186911 | 33227 | 200127 | 00662 | 7067 | 87729 | 113469 | 10036 | 131505 | 19194 | 32959 | 52154 |
| | | 151025 | | 186062 | 92215 | 9375 | 501589 | 151332 | 13570 | 165202 | 25632 | 31623 | 57055 |
| | 3 | 196263 | 33636 | 219299 | 111662 | 21276 | 122936 | 136051 | 17429 | 153479 | 34934 | 29575 | 64508 |
| | 6 | 133856 | 36137 | 227993 | 132355 | 26313 | 156665 | 109318 | 25405 | 135721 | 33.567 | 32352 | 6625 |
| 137 | 1 | 135973 155638 | $\begin{aligned} & 35110 \\ & 34690 \end{aligned}$ | 231103 200328 | 101525 124373 | 19789 16949 | 120811 131321 | 165956 142340 | $\begin{aligned} & 26238 \\ & 21327 \end{aligned}$ | $\begin{aligned} & 132192 \\ & 162667 \end{aligned}$ | $\begin{aligned} & 30652 \\ & 31630 \end{aligned}$ | $\begin{aligned} & 30165 \\ & 22557 \end{aligned}$ | $\begin{aligned} & 60830 \\ & 54187 \end{aligned}$ |
| | 3 | 153526 | 34199 | 218126 | 125250 | 16081 | 162321 | 117380 | 23281 | 160661 | 31978 | 13535 | 50516 |
| | 4 | 133349 | 34722 | 218071 | 101299 | 16323 | 127622 | 98394 | 30533 | 128927 | 29954 | 22321 | 52274 |
| 1372 | 1 | 203376 | 35397 | 240773 | 95882 | 10472 | 116355 | 110999 | 31465 | 142463 | 34404 | 21941 | 56345 |
| | 2 | 132165 | 35219 | 217356 | 117173 | 15651 | 132825 | 166895 | 26955 | 171875 | 34059 | 15635 | 49646 |
| | 3 | 211136 | 34957 | 246093 | 161379 | 13677 | 154756 | 127837 | 27530 | 155367 | 33736 | 12421 | 51127 |
| | 6 | 255279 | 35255 | 256566 | 12156 | 17506 | 13025 | 85165 | 31780 | 126945 | 29.55 | 16635 | 46437 |

BIBLIOGRAPHY

BIBLIOGRAPHY

Agriculture Canada. Livestock Market Review. Ottawa: Queen's Printer, various issues.
_. Livestock and Meat Trade Report. Ottawa: Queen's Printer, various issues.

Allen, R. G. D. Macro-Economic Theory--A Mathematical Treatment. New York: St. Martin's Press, 1968.

Blaug, M. Economic Theory in Retrospect. Homewood, Ill.: Richard D. Irwin, Inc., 1968.

Boswell, A. M. "The Changing Economic Profile of Canada's Beef and Veal Trade." Canadian Farm Economics 8(5):1-14, October 1973.
and G. A. MacEchern. "Determinants of Change in the North American Feeder Cattle Economy." Canadian Journal of Agricultural Economics 15(1):53-65, 1967.

Branson, W. H. Macro-Economic Theory and Policy. New York: Harper and Row, 1972.

Canadian Agriculture in the 70 's. Report of the Federal Task Force on Agriculture. Ottawa: Queen's Printer, 1969.

Canada: Growth Potential in the Grain and Livestock Sector. Foreign Agricultural Report No. 77, Economics Research Service, U.S. Department of Agriculture, 1972.

Durbin, J. "Testing for Serial Correlation in Least Squares Regression, When Some of the Regressions Are Lagged Dependent Variables." Econometrica 38:410-421, 1970.

Ferber, R., and P. J. Verdoorn. Research Methods in Economics and Business. New York: The MacMfilan Company, 1962.

Forrester, J. W. Industrial Dynamics. Cambridge: The Massachusetts Institute of Technology Press, 1961.

Forster, D. L. "The Effects of Selected Water Pollution Control Rates on the Simulation Behavior of Beef Feedlots." Unpublished Ph.D. dissertation, Michigan State University, 1974.

Freebain, J. W. "Some Adaptive Control Models for the Analysis of Economic Policy: United States Beef Trade Policy." Unpublished Ph.D. dissertation, University of California, 1972.

Hayenga, M. L., T. J. Manetsch and A. N. Halter. "Computer Simulation as a Planning Tool in Developing Economics." American Journal of Agricultural Economics 50(5):1755-1759, December 1968.

Henderson, J. M., and R. E. Quant. Micro-Economic Theory--A Mathematical Approach. New York: McGraw-Hill Book Company, 1971.

Johnson, G. L., et al. A Generalized Simulation Approach to Agricultural Sector Analysis with Special Reference to Nigeria. East Lansing: Michigan State University, 1971.
. Korean Agricultural Sector Analysis and Recommended Development Strategies, 1971-1985. East Lansing: Michigan State University, 1972.

Johnson, G. L., and C. L. Quance. The Overproduction Trap in U.S. Agriculture. Baltimore: The John Hopkins Press, 1972.

Johnson, G. L., and L. K. Zerby. What Economists Do About Values. East Lansing: Michigan State University, 1973.

Johnson, J. Econometric Methods. New York: McGraw-Hill Book Company, 1973.

Jorgenson, D. W. "Econometric Studies of Investment Behavior: A Survey." Journal of Economic Literature 9:1111-1147, December 1971.

Kerr, T. C. Determinants of Regional Livestock Supply in Canada.
Agricultural Economics Research Council of Canada, Publication No. 15, Ottawa, 1968.

Kmenta, J. Elements of Econometrics. New York: The MacMillan Company, 1971.

Kulshreshtha, S. N., A. G. Wilson, and D. N. Brown. An Econometric Analysis of the Canadian Cattle-Calves Economy. Department of Agricultural Economics, University of Saskatchewan, 1971.

Lee, B. "Reconciliation of Canadian Cattle Statistics, 1971-1972 and 1972-1973." A mimeographed paper, Economics Branch, Agriculture Canada, Ottawa, 1974.
. "Simulation of Population in Several Sub-Categories of the Canadian Cattle Herd (a project outline). A mimeographed paper, Economics Branch, Agriculture Canada, Ottawa, 1973.

Llewellyn, R. W. FORDYN: An Industrial Dynamics Simulator. Raleigh: Univeristy of North Carolina, 1965.

Lockhart, W. J. "Structural Changes in Cattle Enterprize of the Prairie Provinces." Canadian Farm Economics 3(2):17-21, June 1968.

Lohoar, J. S. "Prospects for Increasing Beef Supplies in Canada." Canadian Farm Economics 4(1):1-8, April 1969.

Lok, M. K. "A Dynamic Model of Canada's Slaughter and Feeder Cattle Trade with the United States." Unpublished MSc dissertation, University of Guelph, 1970.

Manetsch, T. J., and G. L. Park. System Analysis and Simulation with Application to Economic and Social Systems. East Lansing: Michigan State University, 1973.

Marshall, R. G. An Assessment of Current and Prospective Trade Patterns, Supply and Demand Situations for Cattle and Beef, Hogs and Pork, With Reference to Canada's Position in the North American Market. Department of Agricultural Economics, University of Guelph, 1968.
\qquad . "The Size of the Livestock Industry in Canada, 1980. Canadian Journal of Agricultural Economics 17(3):90-103, November 1969. - Variations in Canadian Cattle Inventories and Marketing. Department of Agricultural Economics, Ontario Agricultural College, Guelph, 1964.
and H. B. Huff. A National Research Program for the Marketing of Canadian Cattle and Beef. A restricted distribution publication, School of Agricultural Economics and Extension Education, University of Guelph, 1970.

MacAuley, G. L. Unpublished Ph.D. dissertation, University of Guelph, 1975 (forthcoming).

McCallum, B. T. "Competitive Price Adjustments--An Imperical Study." American Economics Review 44:56-65, March 1974.

Mills, C. "WSGA Market Information Service (CANFAX)." Proceedings of the CAES Workshop: Banff, 1970.

Petit, M. "Econometric Analysis of the Feed Grain, Livestock Economy." Unpublished Ph.D. dissertation, Michigan State University, 1964.

Petrie, T. "Analysis of Seasonal Cyclical and Trend Variations in the Prices and Output of the Cattle and Hogs in Canada." Unpublished Ph.D. dissertation, University of Saskatchewan, 1971.

Posada, Alvaro. "A Simulation Analysis of Policy for the Northern
Columbia Beef Cattle Industry." Unpublished Ph. D. dissertation,
Michigan State University, 1974.
Rutherford, L. "Dairy Beef in Ontario." Proceedings at the CAES Workshop: Banff, 1970.

Slen, S. B., and M. A. Cameron. "Prospects and Potential in Canadian Beef Production." Canadian Journal of Agricultural Economics 17:80-89, 1969.

Situation and Outlook Reports. Various issues, Economics Branch, Canada Agriculture, Ottawa.

Statistics Canada, Dairy Review. Ottawa: Queen's Printer, various issues. . Livestock and Animal Product Statistics. Ottawa: Queen's Printer, various issues.

- Queen's Printer, various issues. \quad Cattle, Sheep, Horses. Ottawa:

Quarterly Bulletin of Agricultural Statistics. Ottawa: Queen's Printer, various issues.
\qquad - Trade of Canada. Ottawa: Queen's Printer, various issues.

Sumner, Dan. "An Empirical Examination Concerning Investment and Disinvestment in Durable Assets: Econometric Analysis of the U.S. Milk Cow Herd." A Plan B paper, Department of Agricultural Economics, Michigan State University, 1973.

Talpaz, Hovav. "Simulation Decomposition and Control of a MultiFrequency Dynamic System: The United States Hog Production Cycle." Unpublished Ph.D. dissertation, Michigan State University, 1973.

The Interregional Structure of the American Beef Industry in 1975 and 1980. Publication No. B-708. Stillwater: Oklahoma State University, 1973.

Teigen, L. D. "Costs, Loss and Forecasting Error: An Evaluation of Models for Beef Prices." Unpublished Ph.D. dissertation, Michigan State University, 1973.

Theil, H. Principles of Econometrics. New York: John Wiley and Sons, Inc., 1971.

Van Horne, J. C. Financial Management and Policy. 2nd ed. Englewood CTiffs, N.J.: Prentice-HalT, Inc., 1958.

Yang, W. Y. Death Rates of Farm Animals. Economics Branch, Canada Department of Agriculture, 1969.

Yankowsky, Z. "The Intermediate and Long Term Outlook for Canadian Beef." Proceedings of the CAES Workshop: Banff, 1970.

[^0]: ${ }^{1}$ An interim feed grain policy was implemented in August 1973, and replaced by a more permanent policy in August 1974. Both policies were developed with assistance from Economics Branch models.
 ${ }^{2}$ G. L. MacAuley, unpublished Ph.D. dissertation, University of Guelph (forthcoming).

[^1]: ${ }^{1}$ Most models of the beef or cattle sub-sector are based on and tied to available published statistical data as their main, and usually only, source of information. Most models of the beef sub-sector emphasize beef cattle. Reference to the dairy herd as a very significant source of beef is generally treated tangentially.
 ${ }^{2}$ Most models fail to distinguish between steer and heifer beef, cow beef and bull beef; however, veal is normally treated as a separate commodity.

[^2]: ${ }^{1}$ The events in the cattle industry during 1973-74 have demonstrated that producers can and do alter feeding-finishing rate in the face of major price adjustment and price uncertainty. This unusual instability leads to further price instability and uncertainty.

[^3]: ${ }^{1}$ This model and related study are reported in G. L. Johnson et al., A Generalized Simulation Approach to Agricultural Sector Analysis with Reference to Nigeria, East Lansing, Michigan State University, 1971.

[^4]: ${ }^{2}$ Alvaro Posada, "A Simulation Analysis of Policy for the Northern Columbia Beef Cattle Industry," unpublished Ph.D. dissertation, Michigan State University, 1974.

[^5]: ${ }^{1}$ Hovav Talpaz, "Simulation Decomposition and Control of MultiFrequency Dynamic System: The United States Hog Production Cycle," unpublished Ph.D. dissertation, Michigan State University, 1973.

[^6]: ${ }^{1}$ One example is D. L. Forster, "The Effects of Selected Water Pollution Control Rules on the Simulation Behavior of Beef Feedlots, 1974-1985," unpublished Ph.D. dissertation, Michigan State University, 1974.
 ${ }^{2}$ T. J. Manetsch and G. L. Park, Systems Analysis and Simulation with Application to Economic and Social Systems, East Lansing: Michigan State University, 1973.

[^7]: ${ }^{1}$ For further elaboration refer to: (a) G. L. Johnson et al., op. cit., pp. 25-37; G. L. Johnson et al., Korean Agricultural Sector Ana 1 ysis and Recommended Development Strategies, 1971-1985, East Lansing, Michigan State University, 1972, pp. 32-46; andM. L. Hayenga, T. J. Manetsch, and A. N. Halter, "Computer Simulation as a Planning Tool in Developing Economics," American Journal of Agricultural Economics 50:1755-1759, Dec. 1968.

[^8]: ${ }^{1}$ Appendix B contains a detailed discussion of mathematical modeling, explains the symbols used in expressing the model in exact block diagram form, and discusses, as well, the principle system components used in this dissertation.
 ${ }^{2}$ An example is R. L. Llewellyn, FORDYN: An Industrial Dynamics Simulator, Raleigh, North Carolina State University, 1965.

[^9]: ${ }^{1}$ The following two references are examples of those using objectivity as a validation and verification criterion. G. L. Johnson et al., Korean Agricultural Sector Analysis, pp. 43-45; and G. L. Johnson and C. Leroy Quance, The Overproduction Trap in U.S. Agriculture, Baltimore, The John Hopkins Press, 1972, pp. 44-48.

[^10]: ${ }^{1}$ R. G. Marshall, Variations in Canadian Cattle Inventories and Marketing, Department of Agricultural Economics, Ontario Agricultural College, Guelph, 1964.

[^11]: ${ }^{1}$ A. M. Boswell, "The Changing Economic Profile of Canada's Beef and Veal Trade," Canadian Farm Economics 8(5):1-14, Oct. 1973.
 ${ }^{2}$ A. M. Boswell and G. A. MacEachern, "Determinants of Change in the North American Feeder Cattle Economy," Canadian Journal of Agricultural Economics, 15(1):53-65, 1967.
 ${ }^{3}$ R. G. Marshall, An Assessment of Current and Prospective Trade Patterns, Supply and Demand Situations for Cattle and Beef, Hogs and Pork, with Reference to Canada's Position in the North American Market, Department of Agricultural Economics, University of Guelph, 1968.

[^12]: ${ }^{1}$ Since Canadian trade in cattle cannot be divorced from the U.S. cattle industry, knowledge of the changing U.S. pattern is helpful. One useful reference is The Interregional Structure of the American Beef Industry in 1975 and 1980, Publication B-708, Oklahoma State University, July 1973.

[^13]: ${ }^{1}$ The statistics are collected in terms of a 550 pound upper limit for heifers while a 575 pound upper limit is used for steers.

[^14]: ${ }^{1}$ Petrie, op. cit.

[^15]: ${ }^{1}$ As each of these agencies may publish in one or more statistical journals, and indeed publish each other's data, several publications are listed covering this data base: Agriculture Canada, Livestock Market Review, Ottawa, Queen's Printer, various issues; Agriculture Canada, Livestock and Meat Trade Report, Ottawa, Queen's Printer, various issues; Statistics Canada, Dairy Review, Ottawa, Queen's Printer, various issues; Statistics Canada, Livestock and Animal Product Statistics, Ottawa, Queen's Printer, various issues; Statistics Canada, Quarterly Bulletin of Agricultural Statistics, Ottawa, Queen's Printer, various issues; Statistics Canada, Report on Livestock Surveys Cattle, Sheep, Horses, Ottawa, Queen's Printer, various issues; and Statistics Canada, Trade of Canada, Ottawa, Queen's Printer, various issues.

[^16]: ${ }^{2}$ From this point onward, except where noted, a specific notational convention will be used to emphasize the stock and flow variables that are major elements in this study. This convention is as follows:

 - flow values and rates will be capitalized, i.e., BIRTH Rate and SLAUGHTER. Modifiers will have the first letter capitalized only.
 - stock values will be written with the first letters only capitalized, i.e., Cow Population and Steers.
 When words are used to describe age cohorts or functions of cattle or in any other context, this convention will not be used. Examples are modifiers of process or distribution, i.e., birth distribution and slaughter process. Table 2 provides a list of the stock and flow variables referenced in the balance of this dissertation. These variables include the published statistical data as well as those variables used to describe the various models.

[^17]: ${ }^{1}$ The statistics are compiled in terms of 550 pounds for Heifers and 575 pounds for Steers.
 ${ }^{2}$ Ibid.

[^18]: ${ }^{1}$ From this point onward both categories will be included in UNINSPECTED SLAUGHTER unless otherwise stated.

[^19]: ${ }^{1}$ Not elsewhere specified. This element of the various EXPORT and IMPORT data name is dropped elsewhere in this dissertation in order to shorten the name; the context provides ample identification.

[^20]: ${ }^{1}$ Ibid.
 ${ }^{2}$ Shortened to Other Dairy EXPORTS elsewhere in this dissertation.

[^21]: ${ }^{1}$ While these equations will not be discussed immediately or directly, they are intended to facilitate the discussion which follows. They have no other purpose.

 Many similar, but more comprehensive models of the cattlefeed grain sub-sector have been developed. One example is S. N. Kulshreshtha, A. G. Wilson, and D. N. Brown, An Econometric Analysis of the Canadian Cattle-Calves Economy, Department of Agricultural Economics, Saskatoon, University of Saskatchewan, 1971; and J. W. Freebain, "Some Adaptive Control Models for the Analysis of Economic Policy: United States Beef Trade Policy," unpublished Ph.D. dissertation, University of California, 1972.

 Teigen provides a critical analysis of five such studies in his Ph.D. dissertation. L. D. Teigen, "Costs, Loss and Forecasting Error: An Evaluation of Models for Beef Prices," unpublished Ph.D. dissertation, Michigan State University, 1973.
 ${ }^{2}$ The notation for these equations is as follows: variables written with upper case letters are endogenous to the model, those written in lower case are exogenous.

[^22]: ${ }^{1} P_{a}$ and P_{S} are defined in the following pages.

[^23]: ${ }^{1}$ The notational convention described in Table 2 is dropped for the balance of Chapter II.

[^24]: ${ }^{1}$ For a detailed description and mathematical treatment refer to G. L. Johnson and C. L. Quance, The Overproduction Trap in U.S. Agriculture, Baltimore, John Hopkins Press, 1972.

[^25]: ${ }^{1}$ This formulation is that of the flexible accelerator. Much of the recent literature on investment uses this formulation with emphasis on the determination of the level of desired capital, the time structure of the investment process and the treatment of replacement investment.

[^26]: ${ }^{1}$ There is increasing concern that vertical coordination is resulting in less than desirable price reporting due to the lower volume of cattle through public stockyards. Price quotations are given for sales at this point. The concern is expressed by C. Mills, "WSGA Market Information Services (CANFAX)," Proceedings of the CAES Workshop, Banff, 1970; and by R. G. Marshall and H. B. Huff, A National Research Program for the Marketing of Canadian Cattle and Beef, a restricted distribution publication, School of Agricultural Economics and Extension Education, University of Guelph, 1970.

[^27]: ${ }^{1}$ This formulation is an adaptation of the familiar capital budgeting discounted present value formula. It is given in many texts including J. C. Van Horne, Financial Management and Policy, 2nd ed., Englewood Cliffs, N.J., Prentice Hall, Inc., 1968, pp. 53-55.

 Branson provides a lucid argument demonstrating that utility is maximized by maximizing present value in W. H. Branson, Macroeconomic Theory and Policy, New York, Harper and Row, 1972, pp. 199-203.

 Branson goes on to demonstrate that the present value criterion is preferred to the marginal effeciency of capital criterion in that the former explicitly considers the opportunity cost of capital.

 Because of uncertainty, MVP is seen as a random variable with first and second moments. For this reason, MVP will be expressed as E(MVP) for the balance of this theoretical development. It should be explained that MVP is the marginal value of a cow over cost thus for an individual farmer it is discrete rather than continuous. This usage differs from the usual definition of the marginal addition to gross revenue made by the last unit produced and sold. The latter is usually thought of as a continuous differentiable function of output.

[^28]: ${ }^{2}$ While this model does include expected prices, price expectation models are not explicitly incorporated into subsequent applications. All prices that are subsequently considered are either current or lagged, as noted. The author recognizes, however, that a price expectation model is implicitly suggested.

[^29]: ${ }^{1}$ Expansion of the herd through utilization of existing capacity as compared with expansion through investment in additional plant capacity suggests an interesting and realistic dimension to the problem. This question is left for future studies.

[^30]: ${ }^{1}$ Commercial beef bulls sell at a small premium over the price of slaughter steers of comparable weight and age. This premium appears to just compensate the vendor for the additional effect required to market this male animal in the fashion. A few beef bulls earn a noted economic rent due to their unique breeding or intense marketing effect on the part of the vendor. On a national average, these beef bulls are the exception.

[^31]: ${ }^{1}$ This fixation is due to the higher proportion of fixed costs, more specialized units and the lower opportunity costs of those resources. Specialized units would be expected to continue to produce even though prices had dropped rather markedly, while smaller, less specialized firms had switched to other products.

[^32]: ${ }^{1}$ Talpaz, op. cit.
 ${ }^{2}$ The model developed in this dissertation does consider shifting supply and demand curves and because of this, cannot be considered as an adaptation of the cobweb model.
 ${ }^{3}$ Changes in weather conditions or government policy anywhere in the world may influence domestic demand through the international trade sector.

[^33]: ${ }^{1}$ Government policy in Canada normally works through the price system. A stabilization (control) mechanism would typically operate through the variables explicitly recognized.

[^34]: ${ }^{1}$ A third possibility exists in the form of interregional trade when relative conditions among regions change. These flows are worthy of consideration; however, as previously explained, they are taken as exogenous in this study.

[^35]: ${ }^{1}$ No attempt is made to retain any structural nature that exists in the supply/demand relationship or to infer back to them from the fitted reduced forms.

[^36]: ${ }^{1}$ The argument in this section follow closely that of B . T. McCallum, "Competitive Price Adjustments: An Empirical Study," American Economic Review 44:56-65, March 1974.

[^37]: ${ }^{1}$ This distribution lag uses the familiar geometric lag model. A partial adjustment rationalization is suggested by the theoretical model previously presented. The argument is as follows: given a set of relative prices and other pertinent exogenous variables, call these X_{t-1}, an optimum rate of flow (or stock) is suggested, call this level Y_{t}^{*}. A linear relationship could be specified as

 $$
 Y_{t}^{*}=\alpha+\beta X_{t-1}+e_{t-1}
 $$

 The relationship between X_{t}^{*}, which is not observable, and Y_{t} could be specified as

 $$
 Y_{t}-Y_{t-1}=\gamma\left(Y_{t}^{*}-Y_{t-1}\right) \quad 0<\gamma \leq 1
 $$

 That is, the actual adjustment is only part of the desired adjustment in the period between t and $t-1$. Substitution and the application of a Koyck transformation generates model specification (34) below.

[^38]: ${ }^{1}$ The author wishes to acknowledge helpful consultation with G. MacAuley, who was concurrently developing somewhat similar models for his Ph.D. dissertation at the University of Guelph. His dissertation is cited elsewhere in this dissertation. Also, specifically consulted were T. C. Kerr, Determinants of Regional Livestock Supply, Agricultural Economics Research Council of Canada, Publication No. 15, Ottawa, 1968; and Kulshreshtha et al., op. cit.
 ${ }^{2}$ The stock and flow notational convention is resumed at this point in the dissertation. This notational convention is given in Table 2, pp. 50-51.

[^39]: ${ }^{1}$ As previously stated no price expectation models are specifically employed to generate expected prices. All prices used in the behavioral models are current or lagged. Specific lags are stated below.

[^40]: ${ }^{1}$ The subsidy coincides with the establishment of the Canadian Dairy Commission. This commission is a federal agency which monitors the sub-sector, makes policy recommendations and implements programs aimed at improving the well-being of the manufactured milk industry.
 ${ }^{2}$ International and interprovincial sales of prairie grains, including barley, are a monopoly of the Canadian Wheat Board. Within each province, grains, including barley, trade on a competitive basis. It is felt that this offboard price reflects the within-province competitive price.

[^41]: ${ }^{2}$ For a description of the variables used in these equations, refer to Table 3.

[^42]: ${ }^{1}$ At any point in time the stock of Heifers available for either slaughter or replacement is fixed at level $P O P_{t}^{h}$.
 ${ }^{2}$ The excess price formulation being used is $E_{t}=\phi$ (Price Replacements - Price Slaughter). If the values in the brackets are reversed, then the excess price function is $E_{t}=\phi$ (Price Slaughter Price Replacement). The use of the latter has the impact of reversing all the signs in the excess price function.

 The former was used as it was felt that demand for replacements "dominated" SLAUGHTER demand or SLAUGHTER demand was a residual. The use of the former, therefore, retained the signs associated with the "dominant" REPLACEMENT demand. This decision can be viewed as a hypothesis--the predominancy of "correct" or "incorrect" signs on the parameter estimates will determine whether the decision was correct or incorrect.

[^43]: ${ }^{1}$ Parameters λ_{3} to λ_{k} are dummy parameters representing whatever structure and parameter values are necessary to disaggregate the published EXPORT and IMPORT data series.
 ${ }^{2}$ This same situation applies in reverse to the Eastern Beef Cow Herd, with the exception of 1966, the Herd has been growing at a fairly constant rate since 1958.

[^44]: ${ }^{1}$ A listing of program MATRIX is provided in Appendix C. All programs are written in FORTRAN IV compatible with Michigan State University's CDC 6500 computer.

[^45]: ${ }^{1}$ As previously noted, a slight upturn in Dairy Cow numbers occurred in 1960-1961.

[^46]: ${ }^{1}$ Originally, Eastern Dairy Cow SLAUGHTER was calculated, however, the small errors generated caused relatively large errors in calculation of the much smaller Eastern Beef Cow SLAUGHTER. Calculation of Eastern Beef Cow SLAUGHTER, in this manner, is assumed plausible due to its stable growth over the 1958-1972 period.

[^47]: ${ }^{1}$ This alternate statistic is presented in J. Durbin, "Testing for Serial Correlation in Least Squares Regression When Some of the Regressors Are Lagged Dependent Variables," Econometrica 38:410-421, 1970.

 The statistic " h " is calculated as follows:
 $h=r \sqrt{\frac{n}{T-n V}\left(b_{i}\right)}$
 where $r \simeq 1-\frac{1}{2} d x\left(b_{i}\right)=\begin{aligned} & \text { the } D W \text { variance of the coefficient of the lagged } \\ & \\ & \text { endogenous value. }\end{aligned}$
 The test fails when $1-n V\left(b_{i}\right)<0$.
 ${ }^{2}$ Jan Kmenta, Elements of Econometrics, New York, The MacMillan Company, 1971, p. 269.

[^48]: ${ }^{1}$ J. Johnson, Econometric Methods, New York, McGraw-Hill Book Company, 1963, p. 178.
 ${ }^{2}$ While I refer to the generation of the endogenous data series by MATRIX, it should also be recognized that the published data sources undoubtedly are subjected to a "revision or correction" by a simulation type process.

[^49]: ${ }^{1}$ A reference for this statistic is Robert Ferber and P. J. Verdoorn, Research Methods in Economics and Business, New York, The MacMillan Company, 1962, pp. 99-100. The authors state, "an idea of the relative importance of each independent variable in a multiple regression is obtained through the so-called beta coefficient." "This is not the only means of evaluating the relative importance

[^50]: ${ }^{1}$ The reader is reminded that the notational convention employed to denote stock and flow variables continues through Chapter IV. This convention is given in Table 2, pages 50-51.

[^51]: ${ }^{1}$ Bruce Lee, "Simulation of Population in Several Sub-Categories of the Canadian Cattle Herd," a mimeographed paper, Economics Branch, Agriculture Canada, Ottawa, 1973.
 ${ }^{2}$ The method of analysis involves providing a visual array of RECON output that may be compared with published official data.
 ${ }^{3}$ A listing of program RECON is provided in Appendix D.

[^52]: ${ }^{1}$ This parameter value is the subject of subsequent discussions in this chapter. This value by itself can be very misleading.

[^53]: ${ }^{1}$ These parameter values differ slightly from the values used ultimately in CATSIM and MATRIX; however, all models prove to be relatively insensitive to these parameters.

[^54]: ${ }^{1}$ In all variable names E and W refer to East and West, M and F to Male and Female while B and D refer to Beef and Dairy.

[^55]: ${ }^{1}$ The discussion in this section follows the form of identities (84) and (85). Together these identities form one row in the output format displayed in Table 15.
 ${ }^{2}$ The structure of RECON with respect to BIRTHS is discussed in more detail in a subsequent sub-section.

[^56]: ${ }^{1}$ The element SLAUGHTER includes both INSPECTED and UNINSPECTED. Later in this analysis, the initial assumptions made concerning UNINSPECTED SLAUGHTER will be called into question.

[^57]: ${ }^{1}$ The constant . 015 was arbitrarily selected to fall between the Eastern Dairy BIRTH Rate and the Beef BIRTH Rate, to reflect the assumption that the Western Dairy Herd is treated, at the margin, as a Beef Herd.

[^58]: ${ }^{1}$ The calf DEATH Rate used in RECON are taken from Yang; however, his estimates show some variance. In addition, a priori information would indicate that these DEATH Rates are a lower bound.

    ```
    2Lee, op. cit.
    ```

[^59]: ${ }^{1}$ The freshening ratio from that survey is applied to STATCAN's December 1 and June 1 Milk Cow data series to scale up the actual Dairy Correspondent Survey data.

[^60]: ${ }^{1}$ Over the 15 year sample period, the Western and Eastern Beef Herds grew at an average continuous rate of 4.5 and 3 percent, while the Western and Eastern Dairy Herds contracted at an average continuous rate of about 4 and 2 percent.

[^61]: ${ }^{1}$ This aspect of CATSIM was modeled using a step function with some success. For 1958-1965 inclusive, EXPORTS were considered to be 60 percent Male; after 1965, EXPORTS were considered 0 percent Males (i.e., 100 percent Female).
 ${ }^{2}$ While the sex ratios of WEST-EAST Movements are not constant between Table 20A and Table 20B, this minor discrepancy does not effectively mask the inconsistency that is being revealed.

[^62]: ${ }^{1}$ The original assumption was that UNINSPECTED SLAUGHTER had the same ratio as INSPECTED SLAUGHTER.
 ${ }^{2}$ For the balance of this sub-section UNINSPECTED SLAUGHTER refers to the non-Cow, non-Bull portion.
 ${ }^{3}$ The sex ratio of INSPECTED SLAUGHTER (excluding Cows, Bulls, and Calves) over the 1959-1972 period ranged from 25.3-30.9 percent Heifers in the East and 25.4-34.2 percent Heifers in the West.

[^63]: ${ }^{1}$ This appears to be the case in the East; some degree of similarity might exist between East and West in this regard.

[^64]: ${ }^{1}$ Three versions of this basic model are developed. They are CATSIM 1, CATSIM 2, and CATSIM 3. Unless otherwise indicated, this chapter will use the name CATSIM when referring to all three versions. A listing of CATSIM 2 West in provided in Appendix E.

[^65]: ${ }^{1}$ Appendix B discusses exact block diagrams and explains the symbols used.
 ${ }^{2}$ A notational convention is followed to denote stock and flow variables. This convention is given in Table 2, pages 50-51.

[^66]: ${ }^{1}$ Delays and simulation of delays are discussed in detail in Appendix B.

[^67]: ${ }^{1}$ One version of CATSIM, namely CATSIM2 West, is listed in Appendix E together with an explanation of key stock and flow variables not described in this chapter.
 ${ }^{2}$ These parameters also include those that are required to disaggregate published statistical data in order to generate certain stock and flow variables.

[^68]: ${ }^{1}$ Appendix A contains a detailed discussion of the derivation of BIRTH Rates and of many other parameter values used in CATSIM as well as RECON and MATRIX. The parameter values listed in this chapter, in many instances, were derived or at least verified, through the operation of programs RECON and MATRIX. The sensitivity analysis described in the next chapter also influenced the selection of the values listed.

[^69]: ${ }^{1}$ The model CATSIM simulates the Cattle Herd in time increments of three months or . 25 of a year. Each time increment is termed a DT: a DT is the same as the $\Delta \mathrm{t}$ used in other contexts.
 ${ }^{2}$ A BOXC subroutine is used. This subroutine is described in Robert W. Llewellyn, FORDYN, An Industrial Dynamics Simulator, Raleigh, University of North Carolina, 1965, pp. 52-56. The BOXC program is listed in Appendix E.
 ${ }^{3}$ The subroutine used was VDELDT. A similar subroutine DELDT is described in Llewellyn, op. cit., pp. 40-51. A complete discussion of VDELDT is contained in Appendix B; the program is listed in Appendix E.

[^70]: ${ }^{1}$ Refers to the stock of Replacement Heifers, not total Heifers.

[^71]: ${ }^{1}$ This sub-section is largely devoted to describing the method of estimating SLAUGHTER (Calf, Cow, Bull) flows for CATSIM1. SLAUGHTER flows for CATSIM2 and CATSIM3 have previously been estimated by program MATRIX and the behavioral models, respectively.

[^72]: ${ }^{1}$ Historically, farmers have been switching from a low energy ration to a high feed intake, high energy ration through increased feedlot finishing--with recent high grain prices, there is some evidence that they are switching back to low energy rations.
 ${ }^{2}$ This simulation element is practical provided that Stream A and B Cattle are not ready for slaughter before twelve and six months, respectively, and Heifers to not calve before two years. In this latter

[^73]: ${ }^{1}$ CATSIM does not utilize the feature; however, it was built into CATSIM so that it might be exploited in the future.

[^74]: ${ }^{1}$ SLAUGHTER estimates for Cull Cows and Bulls, as well as Calves, is provided by program MATRIX and the relevant behavioral models previously discussed.

[^75]: ${ }^{1}$ The stock and flow notational convention continues to be used in Chapter VI.

[^76]: ${ }^{1}$ For the balance of this dissertation the program name CATSIM will be used when the discussion refers generally to all three variations of the model.

[^77]: ${ }^{1}$ As has been mentioned, CATSIM does not have complete price feedback loops as do many models to which CATSIM might be compared. This assertion concerns that portion of a model to which CATSIM might be compared.

[^78]: ${ }^{1}$ Problems with initialization of the delay subroutines cause 1958 and 1959 SLAUGHTER estimates to be less than accurate. These obviously inaccurate values are included in the squared error term, tending to bias it in an upward direction.
 ${ }^{2}$ In developing and building the model, the sensitivity and impact of certain parameters become apparent.

[^79]: ${ }^{1}$ This parameter indicates the expected value of the length of the delay.
 ${ }^{2}$ The parameter dictates the shape of the delay distribution and is a key parameter in the standard deviation of the delay distribution.

[^80]: ${ }^{1}$ This model can be controlled through incorporation of a price feedback loop where price directed the "rate" of REPLACEMENT.

[^81]: ${ }^{1}$ This was the case over the 1958-1972 test period. The model could be tested using extreme prices and price variations.

[^82]: ${ }^{1}$ The reader is reminded that CATSIM2 used REPLACEMENT and COW SLAUGHTER data as generated by program MATRIX and as amended.

[^83]: ${ }^{1}$ CATSIMI calculates REPLACEMENTS as a constant proportion of the existing Cow Population. This model then does not respond to the cattle cycle except through the Cow SLAUGHTER element; thus, the response is weak. A priori, it would be assumed that CATSIM1 would overestimate Heifer REPLACEMENTS (thus Cow Population) in the downswing of the cattle cycle and vice versa in the upswing.
 ${ }^{2}$ The fact that this premise did not hold true resulted in significant serial correlation occurring with the behavioral model for Western Dairy Cow models.

[^84]: ${ }^{1}$ The CATSIM seasonal pattern is fixed to the extent that the " K ": and "DEL" parameters of the continuous delays are constant.

[^85]: ${ }^{1}$ The shape of the continuous delay's distribution, the erlang distribution, is determined by the parameter "K."

[^86]: ${ }^{1}$ The notational convention employed to denote stock and flow variables is continued in this final chapter. This convention is outlined in Table 2, pages 50-51.

[^87]: ${ }^{1}$ If an Eastern Dairy BIRTH Rate of BREDC $=.738$, and a Western Beef BIRTH Rate of BRWBC $=.85$ were used, most of these average discrepancies would be removed. These Rates would then be more consistent with those used in RECON.

[^88]: ${ }^{1} A$ "front end" accepts data and instructions from the user in a form most easily understood by the user and converts them to a form usable by the algorithm.

[^89]: ${ }^{1}$ For a detailed discussion of Laplace transformations and the dynamic properties of differential and system control equations, see T. J. Manetsch and G. L. Park, op. cit., especially Chapters IV and VII.

[^90]: ${ }^{1}$ T. J. Manetsch and G. L. Park, op. cit., pp. 9-19 to 9-43.
 ${ }^{2}$ Euler integration was only used in CATSIM to calculate Cow and Bull Population; in all other possible instances it was found to be inaccurate. Rather than employ a more sophisticated integration, all other Populations were calculated by summing the storage (Train Values) in the delay sub-routines.

[^91]: ${ }^{1}$ DEL and K are parameters of the continuous delay.
 ${ }^{2}$ CATSIM utilizes the continuous delay subroutine VDELDT which has the parameter IDT. This subroutine was used to retain stability while employing a relatively large DT.

[^92]: ${ }^{2}$ As an example, in the sensitivity tests, the largest K employed was $K=7$, the smallest DEL was DEL $=.59$. Since $I D T=10$ for all delays, the stability formula is:

[^93]: ${ }^{1}$ All programs were written in FORTRAN IV compatible with Michigan State University's CDC 6500 computer system.

[^94]: ${ }^{1}$ The core storage required to compile and execute CATSIM in its present form is about 130 K . A minor rewrite is planned to combine CATSIM1, CATSIM2, and CATSIM3 while concurrently reducing the core storage requirement to 65 K .
 ${ }^{2}$ These identical statements read the output of the behavioral models in CATSIM3. In fact, the only difference between CATSIM2 and CATSIM3 is the data read by these statements.

